Please use this identifier to cite or link to this item: https://hdl.handle.net/1889/3200
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCaselli, Stefano-
dc.contributor.authorOleari, Fabio-
dc.date.accessioned2016-08-02T14:38:55Z-
dc.date.available2016-08-02T14:38:55Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/1889/3200-
dc.description.abstractThis thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.it
dc.language.isoIngleseit
dc.publisherUniversità degli Studi di Parma. Dipartimento di Ingegneria dell'Informazioneit
dc.relation.ispartofseriesDottorato di ricerca in Tecnologie dell'Informazioneit
dc.rights© Fabio Oleari, 2016it
dc.subjectunderwaterit
dc.subjectcomputer visionit
dc.subjectinterventionsit
dc.subjectAUVit
dc.subjectstereo visionit
dc.subjectobject detectionit
dc.subjectembedded systemit
dc.titleDesigning a Computer Vision System for Underwater Robotic Interventionsit
dc.typeDoctoral thesisit
dc.subject.miurING-INF/05it
Appears in Collections:Tecnologie dell'informazione. Tesi di dottorato

Files in This Item:
File Description SizeFormat 
OleariFabio_DSPACE.pdfTesi di dottorato162.18 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons