Please use this identifier to cite or link to this item: https://hdl.handle.net/1889/3099
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBacci, Cristina-
dc.contributor.advisorKramer, Laura Helen-
dc.contributor.authorVismarra, Alice-
dc.date.accessioned2016-07-14T10:54:17Z-
dc.date.available2016-07-14T10:54:17Z-
dc.date.issued2016-03-23-
dc.identifier.urihttp://hdl.handle.net/1889/3099-
dc.description.abstractToxoplasma gondii is a coccidian parasite with a global distribution. The definitive host is the cat (and other felids). All warm-blooded animals can act as intermediate hosts, including humans. Sexual reproduction (gametogony) takes place in the final host and oocysts are released in the environment, where they then sporulate to become infective. In intermediate hosts the cycle is extra-intestinal and results in the formation of tachyzoites and bradyzoites. Tachyzoites represent the invasive and proliferative stage and on entering a cell it multiplies asexually by endodyogeny. Bradyzoites within tissue cysts are the latent form. T. gondii is a food-borne parasite causing toxoplasmosis, which can occur in both animals and humans. Infection in humans is asymptomatic in more than 80% of cases in Europe and North-America. In the remaining cases patients present fever, cervical lymphadenopathy and other non-specific clinical signs. Nevertheless, toxoplasmosis is life threatening if it occurs in immunocompromised subjects. The main organs involved are brain (toxoplasmic encephalitis), heart (myocarditis), lungs (pulmonary toxoplasmosis), eyes, pancreas and parasite can be isolated from these tissues. Another aspect is congenital toxoplasmosis that may occur in pregnant women and the severity of the consequences depends on the stage of pregnancy when maternal infection occurs. Acute toxoplasmosis in developing foetuses may result in blindness, deformation, mental retardation or even death. The European Food Safety Authority (EFSA), in recent reports on zoonoses, highlighted that an increasing numbers of animals resulted infected with T. gondii in EU (reported by the European Member States for pigs, sheep, goats, hunted wild boar and hunted deer, in 2011 and 2012). In addition, high prevalence values have been detected in cats, cattle and dogs, as well as several other animal species, indicating the wide distribution of the parasite among different animal and wildlife species. The main route of transmission is consumption of food and water contaminated with sporulated oocysts. However, infection through the ingestion of meat contaminated with tissue cysts is frequent. Finally, although less frequent, other food products contaminated with tachyzoites such as milk, may also pose a risk. The importance of this parasite as a risk for human health was recently highlighted by EFSA’s opinion on modernization of meat inspection, where Toxoplasma gondii was identified as a relevant hazard to be addressed in revised meat inspection systems for pigs, sheep, goats, farmed wild boar and farmed deer (Call for proposals -GP/EFSA/BIOHAZ/2013/01). The risk of infection is more highly associated to animals reared outside, also in free-range or organic farms, where biohazard measure are less strict than in large scale, industrial farms. Here, animals are kept under strict biosecurity measures, including barriers, which inhibit access by cats, thus making soil contamination by oocysts nearly impossible. A growing demand by the consumer for organic products, coming from free-range livestock, in respect of animal-welfare, and the desire for the best quality of derived products, have all led to an increase in the farming of free-range animals. The risk of Toxoplasma gondii infection increases when animals have access to environment and the absence of data in Italy, together with need for in depth study of both the prevalence and genotypes of Toxoplasma gondii present in our country were the main reasons for the development of this thesis project. A total of 152 animals have been analyzed, including 21 free-range pigs (Suino Nero race), 24 transhumant Cornigliese sheep, 77 free-range chickens and 21 wild animals. Serology (on meat juice) and identification of T. gondii DNA through PCR was performed on all samples, except for wild animals (no serology). An in-vitro test was also applied with the aim to find an alternative and valid method to bioassay, actually the gold standard. Meat samples were digested and seeded onto Vero cells, checked every day and a RT-PCR protocol was used to determine an eventual increase in the amount of DNA, demonstrating the viability of the parasite. Several samples were alos genetically characterized using a PCR-RFLP protocol to define the major genotypes diffused in the geographical area studied. Within the context of a project promoted by Istituto Zooprofilattico of Pavia and Brescia (Italy), experimentally infected pigs were also analyzed. One of the aims was to verify if the production process of cured “Prosciutto di Parma” is able to kill the parasite. Our contribution included the digestion and seeding of homogenates on Vero cells and applying the Elisa test on meat juice. This thesis project has highlighted widespread diffusion of T. gondii in the geographical area taken into account. Pigs, sheep, chickens and wild animals showed high prevalence of infection. The data obtained with serology were 95.2%, 70.8%, 36.4%, respectively, indicating the spread of the parasite among numerous animal species. For wild animals, the average value of parasite infection determined through PCR was 44.8%. Meat juice serology appears to be a very useful, rapid and sensitive method for screening carcasses at slaughterhouse and for marketing “Toxo-free” meat. The results obtained on fresh pork meat (derived from experimentally infected pigs) before (on serum) and after (on meat juice) slaughter showed a good concordance. The free-range farming put in evidence a marked risk for meat-producing animals and as a consequence also for the consumer. Genotyping revealed the diffusion of Type-II and in a lower percentage of Type-III. In pigs is predominant the Type-II profile, while in wildlife is more diffused a Type-III and mixed profiles (mainly Type-II/III). The mixed genotypes (Type-II/III) could be explained by the presence of mixed infections. Free-range farming and the contact with wildlife could facilitate the spread of the parasite and the generation of new and atypical strains, with unknown consequences on human health. The curing process employed in this study appears to produce hams that do not pose a serious concern to human health and therefore could be marketed and consumed without significant health risk. Little is known about the diffusion and genotypes of T. gondii in wild animals; further studies on the way in which new and mixed genotypes may be introduced into the domestic cycle should be very interesting, also with the use of NGS techniques, more rapid and sensitive than PCR-RFLP. Furthermore wildlife can become a valuable indicator of environmental contamination with T. gondii oocysts. Other future perspectives regarding pigs include the expansion of the number of free-range animals and farms and for Cornigliese sheep the evaluation of other food products as raw milk and cheeses. It should be interesting to proceed with the validation of an ELISA test for infection in chickens, using both serum and meat juice on a larger number of animals and the same should be done also for wildlife (at the moment no ELISA tests are available and MAT is the reference method for them). Results related to Parma ham do not suggest a concerning risk for consumers. However, further studies are needed to complete the risk assessment and the analysis of other products cured using technological processes other than those investigated in the present study. For example, it could be interesting to analyze products such as salami, produced with pig meat all over the Italian country, with very different recipes, also in domestic and rural contexts, characterized by a very short period of curing (1 to 6 months). Toxoplasma gondii is one of the most diffuse food-borne parasites globally. Public health safety, improved animal production and protection of endangered livestock species are all important goals of research into reliable diagnostic tools for this infection. Future studies into the epidemiology, parasite survival and genotypes of T. gondii in meat producing animals should continue to be a research priority.it
dc.language.isoIngleseit
dc.publisherUniversità di Parma. Dipartimento di Scienze Medico-Veterinarieit
dc.relation.ispartofseriesDottorato di ricerca in Scienze Medico-Veterinarieit
dc.rights@Alice Vismara, 2016it
dc.subjectToxoplasma gondiiit
dc.subjectFood safetyit
dc.subjectmeat-producing animalsit
dc.subjectEpidemiologyit
dc.subjectGeneticsit
dc.titleIntermediate hosts of Toxoplasma gondii and food safety:epidemiology, genetics and parasite survival in meat-producing animals in Italyit
dc.typeDoctoral thesisit
dc.subject.miurVET-04it
Appears in Collections:Scienze medico-veterinarie. Tesi di dottorato

Files in This Item:
File Description SizeFormat 
tesi_Alice Vismarra_2015__XXVIII_ciclo..pdfTESI DOTTORATO3.89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.