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General introduction 
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The second half of the 20
th

 century showed a marked enhancement in hygiene practices, diagnostic 

methods, and drugs and vaccine development which permitted an extraordinary reduction in prevalence 

and mortality of several infectious diseases in developed countries. Nevertheless, infectious diseases 

remain the largest cause of death in the world. 

In the last 30 years, next to the more traditional clinical and epidemiological approaches to the fight 

against disease, a new approach based on ecological principles has been introduced. It focuses on 

infectious disease occurrence from an ecological and evolutionary point of view, by taking into account 

the dynamics of host and pathogen interactions. In the ecological perspective, the disease occurrence 

patterns are products of basic biological processes (such as host interaction, migration, mutation) that 

may predict the spread and the course of the infection within and between populations. The main tools 

used to describe first-principle biological processes which generate time and space infection patterns 

are mathematical models. Through mathematical models it is possible to predict disease occurrence, 

but also to obtain a deeper understanding of the causative mechanisms underlying disease processes. 

Furthermore, mathematical models allow to test and perform disease control policies in a faster, 

cheaper, and a more ethically sustainable way than in vivo programs. 

Historically, the first pioneering modelling applications concerned human diseases such as malaria 

(Ross, 1915) and measles (Kermack and McKendrick, 1927), but animal diseases have also become 

object of theoretical investigations (Anderson and May, 1979; May and Anderson, 1979). Diseases in 

domestic animals cause major economic impacts on the breeding sector, while diseases in wild animals 

may threaten endangered species survival. In addition, domestic and wild animal pathogens are 

responsible for several spillover infections to humans, as shown by recent cases of avian influenza, 

SARS and Ebola epidemics (called emerging infectious diseases). The ecology of the most part of 

emerging infectious diseases (EID) involves different host populations and it is characterized by 

infection transmission among wild, domestic and humans (Daszak et al., 2000). In order to represent 

complexity and differences among pathogen agents, theoretical ecologists have generated a theoretical 

taxonomy of pathogens that allows to split them into two groups: microparasite and macroparasite 

(Smith et al., 2005). Microparasites (e.g., virus, bacteria, protozoa, and prions) are usually described 

through compartmental models that characterize the hosts as a function of their infectious status 

(susceptible, infected, immune); while they omit to describe pathogen dynamics, because they may be 

always considered at equilibrium, since they are several orders of magnitude faster than the hosts 

(Kermack and McKendrick, 1927). Macroparasites (e.g., worms, ticks, and fleas) are described through 
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more complex models which take into account the number of parasites in the host and their distribution 

(Tallis and Donald, 1970; Crofton, 1971a,b). 

In the present thesis I investigate the dynamics of microparasite diseases in wildlife. The aim of the 

work is to investigate host-pathogen relationships with specific interest in the effects of temporal, 

genetic, and social heterogeneities on infection dynamics. In particular, I will discuss the consequences 

of seasonal variations (temporal heterogeneity), different strain co-circulation (genetic heterogeneity), 

and age/stage structure (social heterogeneity) on epidemic course and disease control. 

Historically, models for infectious diseases considered populations of host and pathogen to be well-

mixed with homogeneous disease transmission among susceptible and infected individuals, and with 

homogeneous antigenic characteristic in pathogen population. In recent years, however, we have 

recognized that transmission may not be constant – varying with time, social structure, and/or 

age/stage-class – (Dietz, 1976; Castillo-Chavez, 1989; Lloyd-Smith et al., 2005) and the pathogenic 

strength of different pathogen strains neither – affecting transmission, virulence, and/or host immunity 

– (Koelle et al., 2006). While there are several theoretical and field evidences of heterogeneities in 

human infectious disease dynamics, not much information exists in the case of domestic animals 

(Matthews et al., 2006) and there is only anecdotal information in the case of wild animals 

(Heesterbeek and Roberts, 1995). 

In this work I focused on the relationships between host-pathogen ecological dynamics and disease 

control. In particular, how both heterogeneities in host and pathogen populations affect control 

techniques effectiveness. 

While the science of infectious diseases has made tremendous progress in the last several decades 

thanks, in part, to advances in molecular biology, immunology, medicine and mathematical modelling, 

the eradication of pathogens and parasites in wildlife relies very often only on two simple strategies, 

namely vaccination and culling, i.e., the removal of animals to push host population density below the 

threshold for disease invasion (Grenfell and Dobson, 1995). Quarantine and isolation through the 

construction of sanitary containments are rare options in the control of wildlife diseases and are applied 

primarily to domestic animals and farms such in the case of the foot-and-mouth epidemics in UK 

(Gilbert et al., 2005) and of avian flu epidemics in Asia (Ellis et al., 2004) often entailing huge 

economic losses. 

Here, I focused on analyses of the culling effects on host and pathogen populations. The aim of the 

analyses is to show that the understanding of the ecological dynamics and parameters is unavoidable to 

provide effective control policies for disease eradication. 
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Ecological parameters are usually hard to estimate correctly in wild populations, but, in the case of 

infectious diseases, the rate of transmission of the pathogen agent is often the most complex process to 

evaluate. Of the many traits characterizing host species demography, body size is probably the most 

influential one, as many demographic parameters scale allometrically with host body size (Peters, 

1983; Calder, 1984). Larger hosts are thus expected to have longer life expectancy, lower reproductive 

rate, slower dynamics and more sparse populations densities when compared to smaller host species. 

Such scaling laws (also called allometric laws) imply that ecological systems complexity can be 

reduced by considering processes according to their inherent scale. In this work I show how the 

allometric relationships, usually found for demographic parameters, may link host body size with the 

disease transmission rate and its basic reproduction number (i.e., the expected number of secondary 

cases produced by an infected host introduced into a susceptible population at its carrying capacity 

(Anderson and May, 1991)). Then, it is interesting to understand how the epidemiological dynamics 

vary as a function of the host body size. In other words, which epidemiological dynamics we might 

expect for small size hosts and which ones for large size hosts. 

Seasonal variations in host birth rate, social aggregation, or resource availability are central features of 

the life of all temperate and many tropical habitats (Altizer et al., 2006). Usually, wildlife birth rates 

peak in the spring time, while intraspecific competition increases in the winter time, when the resources 

become scarce. Epidemiological parameters may also exhibit a seasonal trend; in particular, contact 

and transmission rates are inherently linked to animal mobility and social behaviour. Under the 

hypotheses of the allometric relationship between host size and demographic parameters, I analysed the 

effect of seasonal variation in different ecological and epidemiological parameters on disease 

dynamics. 

Under the point of view of disease control, I analysed the effectiveness of depopulation policies in 

different ecological conditions. In particular, I focused on control effectiveness when strains with 

different virulence co-circulate in the host population and when disease transmission is a function of 

the age/stage class of the host individuals. In both cases, I found that (under certain conditions) culling 

policies may perform worse, in terms of disease control, than the do-nothing alternative. I also show in 

which conditions simple time-variant control policies can improve disease control in wildlife. 

In the following chapters I propose some theoretical frameworks to investigate these heterogeneities in 

the context of wildlife diseases, with the aim to understand their effects on disease dynamics and to 

provide some suggestions on disease control. The thesis is organised as follows: in the next two 

chapters (2 and 3) I analyse the effects of seasonality (temporal heterogeneity) on epidemics in a wide 
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range of wildlife species. I illustrate these general points using rabies as a reference disease. I chose 

rabies because of its ability to spread, in principle, in every mammal population from mice to bears and 

because of the risks linked to exposure of humans to the bite of rabid animals. In chapter 2, I present 

and analyse a model able to describe rabies infections in several wild populations by using allometrical 

relationships to recast model parameters in different cases. In the third chapter I present the effects of 

seasonal variation in disease transmission and host birth rate on disease epidemics by highlighting the 

differences with the homogeneous case described in chapter 2. In the last three chapters, I discuss the 

effects of heterogeneities on disease control through culling (i.e., the selective removal of animal by 

hunting). In chapter 3, I present and analyse a model for describing the effects of culling on selection of 

pathogen strains with different virulence (genetic heterogeneity) and in chapter 4 I use this model to 

implement different classes of time-variant culling policies to minimize disease incidence. In the last 

chapter, I present and analyse a model for describing the effects of age/stage host population structure 

(social heterogeneity) on culling. I illustrate these general points using classical swine fever in wild 

boar as a reference disease. I chose classical swine fever because the etiologic agent responsible for the 

infection (classical swine fever virus) is an RNA virus characterised by mutation rates sufficiently high 

to generate genetic variability during the outbreaks. In addition, it caused serious economic losses in 

Europe from spillover infection to pig farms over the last twenty years. 

The take-home message of all the studies shown in this thesis would be that both heterogeneities in 

host and pathogen populations dramatically affect disease dynamics in wildlife and their understanding 

is unavoidable in order to perform effective control policies apt to disease eradication. 
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ABSTRACT 

 

A number of wildlife pathogens are generalist and can affect different host species characterized by 

a wide range of body sizes. In this work I analyse the role of allometric scaling of host vital and 

epidemiological rates in a Susceptible-Exposed-Infected (SEI) model. My analysis shows that the 

transmission coefficient threshold for the disease to establish in the population scales allometrically 

(exponent=0.45) with host size as well as the threshold at which limit cycles occur. In contrast, the 

threshold of the basic reproduction number for sustained oscillations to occur is independent of the 

host size and is always greater than 5. In the case of rabies, I show that the oscillation periods 

predicted by the model match those observed in the field for a wide range of host sizes. 

The population dynamics of the SEI model is also analysed in the case of pathogens affecting 

multiple coexisting hosts with different body sizes. My analyses show that the basic reproduction 

number for limit cycles to occur depends on the ratio between host sizes, that the oscillation period 

in a multihost community is set by the smaller species dynamics, and that intermediate interspecific 

disease transmission can stabilize the epidemic occurrence in wildlife communities. 
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1. INTRODUCTION 

 

Pathogens are a ubiquitous, often neglected component of biodiversity which may have a 

tremendous impact on the population dynamics of their hosts and can play an important role in 

shaping the structure of ecological communities. Some pathogens, such as rabbit haemorrhagic 

disease virus, are species-specific, others, such as rabies or distemper viruses, are quite generalist 

and can affect many different host species. Of the many traits characterizing host species 

demography, body size is probably the most influential one, as many demographic parameters scale 

allometrically with host body size (Peters, 1983; Calder, 1984). Larger hosts are thus expected to 

have longer life expectancy, smaller reproductive rate, slower dynamics and more sparse 

populations densities when compared to smaller host species. Such scaling laws imply that 

ecological systems complexity can be reduced by considering processes according to their inherent 

scale. This approach has been used to describe food web structure (Cohen et al., 2003), home-range 

area (Jetz et al., 2005), and pathogens spread (De Leo and Dobson, 1996). 

In the case of generalist pathogens, it is interesting to investigate how threshold conditions for the 

disease to invade and establish in a parasite-free host population change with different body size. Of 

course, many different ecological and epidemiological factors - ranging from immune response to 

interspecific competition, animal behaviour, feeding habits etc. -  can regulate the ability of a 

pathogen to successfully establish in a host population. Some basic epidemiological parameters, 

such as the life expectancy of infected individuals and the time from inoculation to the first 

symptom, may exhibit a quite regular scaling pattern over a wide range of host species that may all 

be potentially infected by the same pathogen. For instance, in a recent study, J.M. Cable and B.J. 

Enquist (unpublished manuscript) have used epidemiological data on 16 host species affected by 

pseudorabies virus (PRV, Herpesvirus suis), 11 species by anthrax (Bacillus anthracis), and 21 

species by rabies (Lyssavirus sp.) to show that interspecific variations in the host metabolic rate, 

which highly correlates to body size, strongly influence the timing of pathogenesis. As a 

consequence,  epidemiological parameters such as the length of the latent period and the disease-

induced mortality may also scale allometrically with host body size. Based on the evidence of 

allometric scaling available at the time, De Leo and Dobson (1996), without inferring relationships 

between transmission and size, had used a simple Susceptible-Infected (SI) model to show that 

transmission coefficients necessary to produce comparable values of R0 in different species are 

themselves allometric functions of host body size. Here, I use a similar approach for an SEI 

(Susceptibles, Exposed, Infected) model of rabies that takes into account the empirical finding by 

J.M. Cable and B.J. Enquist (unpublished manuscript). I extend the pioneering model by Anderson 
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et al. (1981), who were first in proposing an SEI approach to study rabies in the wildlife, by 

explicitly accounting for the influence of body size. The dynamics of the SEI model can be more 

complex than the one predicted with a simpler SI (and SIR) model: in particular, if the latent period 

(the average time spent in the exposed class) is sufficiently long, the population dynamics of the 

infected host can be characterized by sustained oscillations (Swart, 1989; Pugliese, 1991). Epidemic 

cycles of this kind have already been observed in the field for many species infected by rabies, such 

as black-backed jackals (Courtin et al., 2000; Walton and Joly, 2003) and feral dogs (Bingham et al. 

1999; Widdowson et al., 2002). See examples in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the present chapter I explore how disease invasion and epidemic occurrence can depend on the 

host metabolic rates and body size. To address these issues, I first recast the basic Anderson et al.’s 

(1981) SEI model setting the birth and death rates and the carrying capacity of the host population 

as simple allometric functions of host body size. In accordance with the analysis of J.M. Cable and 

B.J. Enquist (unpublished manuscript) the latent period and the disease-induced mortality rate are 

 

Fig. 1: Rabies confirmed cases (grey lines) with (a) moving 12-month 

centred mean (b) and 24-month centred mean (black lines) among black-

backed jackals in central Namibia, 1986-1996 (a, data from Courtin et al., 

2000) and feral dogs in Santa Cruz, Bolivia, 1972-1997 (b, data from 

Widdowson et al., 2002). Time series show sustained oscillations in the 

total number of infected in different host populations. 
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also assumed to scale allometrically with host body size. Threshold conditions are analysed under 

different assumptions on disease mortality and on the time spent in the exposed class by the hosts. 

Recent work showed that single-host/single-pathogen relationships are not able to capture the 

epidemic dynamics in wildlife communities, because generalist pathogens may cause `apparent 

competition' between hosts (Hudson and Greenman, 1998) and cross-species transmission can 

modify pathogen evolution (Woolhouse et al., 2001). To account for this important point I extend a 

previous work by Dobson (2004) on a multiple-host SI model of wildlife disease and analyse the 

population dynamics of an SEI model in the case of inter-specific transmission among hosts with 

different body size. Inter-specific infections pose dramatic problems in conservation biology as 

shown by the case of Serengeti National Park where the lion population (Panthera leo) has been 

endangered by the canine distemper virus epidemic in feral dogs (Canis lupus familiaris) 

(Cleaveland et al., 2000), and Ethiopian wolves (Canis simensis) and African wild dogs (Lycaon 

pictus) have been threatened by rabies epidemics in feral dogs (Gascoyne et al., 1993; Sillero-Zubiri 

et al., 1997). Moreover, multihost models can be used to explain other epidemic dynamics, for 

example when host populations are not able to support infection endemically without reintroduction 

from outside species sources (‘disease spillover’ and ‘apparent multihost’ according to the 

classification of Fenton and Pedersen, 2005). In the case of rabies there are a lot of similar 

examples, such as grey wolf (Canis lupus) epidemics supported by foxes in North America (Brand 

et al., 1995) and side-striped jackal (Canis adustus) epidemics supported by dogs in Zimbabwe 

(Rhodes et al., 1998). Specifically, I want to identify the conditions under which a reservoir host 

species can drive other host species to extinction and analyse the population dynamics of multiple 

interacting hosts characterized by different body sizes. 

The chapter is organized as follows: in the next section I present the basic structure of the allometric 

SEI model. In the third and fourth section, threshold conditions and model bifurcation diagrams are 

derived analytically and numerically with reference to the most important epidemiological 

parameters (latent period and disease mortality) and over a wide range of possible host body sizes. 

In the fifth section, I analyse the population dynamics of two host species characterized by different 

body size when a pathogen can affect both species with some degree of interspecific transmission. 

The results are finally summarized and discussed in the concluding section. Although specific 

numerical analyses have been developed by taking rabies as reference disease, the structure of the 

model analysed in the present work is quite general and can be considered valid for a range of lethal 

diseases of the wildlife. Therefore, the implications of my findings are quite broad. 
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2. THE ALLOMETRIC SEI MODEL 

 

The epidemiology of a lethal disease within a homogeneous wildlife population has been 

traditionally modelled by partitioning the host population into three epidemiological classes - 

Susceptible (S), Exposed (E, i.e., infected but not yet infectious) and Infective (I) individuals - and 

by describing population dynamics of the three classes by means of ordinary differential equations. 

This simple deterministic approach was first developed in the seminal work of Anderson et al. 

(1981) to predict the impact of rabies in the European fox. I develop my analysis using the same 

model because, despite the simplicity of its formulation, it has been able to grasp the main features 

of observed epidemiological trends. In its original version, the SEI model assumes logistic growth 

of the host species in the absence of rabies, density-dependent transmission of the disease, and 

reproduction of disease-free animals only. Recovery and immunity is not included in the basic 

model. The ordinary differential equations that describe the dynamics of  densities in the three 

population classes are: 

 

ν (µ γ ) βS S N S SI= − + −&       ( 1a ) 

β (σ µ γ )E SI N E= − + +&       ( 1b ) 

σ (α µ γ )I E N I= − + +&       ( 1c ) 

where N = S + E + I is the total population density, ν and µ are the intrinsic birth and death rates, γ 

is the intraspecific competition coefficient (with γ  = r/K, where r = ν - µ is the intrinsic growth rate 

and K the carrying capacity), β is the transmission coefficient, σ is the rate at which an infected 

individual becomes infective (1/σ being the mean latency period of rabies) and α the disease-

induced mortality. By summing the right-hand sides of the Eq.s (1), one obtains the dynamics of N, 

namely: 

 

INNSN αγµν −+−= )(&       ( 1d ) 

In order to account for a variety of mammalian host species, one can assume, as evidenced by 

Peters (1983), Silva and Downing (1995) and De Leo and Dobson (1996), that the basic vital rates 

scale allometrically with the host body size w as follows: 
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25.0−= wν         ( 2a ) 

25.04.0 −= wµ         ( 2b ) 

70.02.16 −= wK        ( 2c ) 

where w is expressed in kilograms, ν, µ and r in year
-1

 and K in individuals/km
2
. 

J.M. Cable and B.J. Enquist (unpublished manuscript) have also shown that the basic 

epidemiological parameters scale allometrically with the host body size in the same way as µ. 

Accordingly, I have assumed  that the latent period (1/σ) and the infectious period (1/α) - 

representing respectively the average time spent in the exposed and the infective class - are 

proportional to the mean life expectancy of the disease-free host (1/µ) at low population density. 

More precisely, I assume that: 

 

25.04.0 −== wnnµσ        ( 3a ) 

25.04.0 −== wmmµα        ( 3b ) 

where n and m are always greater than one, because the times spent in exposed and infective classes 

are shorter than the mean life expectancy. For example, in the case of rabies in foxes, the host life 

expectancy is about 2 years, while the incubation period is one month and the life expectancy after 

infection is only a few days (about 5). Obviously, large values of the two parameters n and m 

correspond to pathogens with short latency period and high disease mortality rate, respectively. 

Integrating the relationships (2) and (3) into the original Anderson et al.'s (1981) system (1) 

produces a body-size-dependent model for rabies or diseases with similar characteristics. Contrary 

to σ and α, there is no evidence that the transmission coefficient β scales allometrically with host 

body size. Moreover, the transmission coefficient measurements are often difficult as it can be 

estimated only from extensive field data (Begon et al., 1999). For this reason, in the next section I 

will perform a sensitivity analysis of model (1) behaviours for a broad range of β values. 
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3. STABILITY ANALYSIS AND THRESHOLDS 

 

Before exploring the influence of host body size w on the population dynamics of the host-pathogen 

relationship, it is important to briefly review the main features of model (1) which has been 

thoroughly analysed elsewhere (Swart, 1989). For convenience I consider model (1) in the variables 

N, E, I using Eq.s (1b), (1c), (1d) in which I set S = N – E – I. The model (1) has three equilibrium 

points: the trivial equilibrium X0 = (0,0,0), the disease-free equilibrium X1 = (K,0,0), and the 

enzootic equilibrium X2 = (Neq, Eeq, Ieq), where: 
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with ξ = (α + µ)/σ and φ = γ/σ. 

The equilibrium X2 is biologically meaningful only when Neq, Eeq, Ieq ≥ 0. 

By analysing the eigenvalues of the Jacobian matrix of model (1) it is possible to determine the 

stability of the three equilibria (see Swart, 1989 for details). The trivial equilibrium point X0 

represents the extinction of the host species and is always unstable when ν > µ. The disease-free 

equilibrium X1, at which the host population is at its carrying capacity in absence of the disease, is 

stable if and only if 
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where the parameter R0 is the basic reproduction number of the disease, that is the expected number 

of secondary cases produced by an infected host introduced into a susceptible population at its 

carrying capacity (Anderson and May, 1991). Thus, the basic reproduction number scales 

allometrically with body size via the exponent -0.45 as in the SI model (De Leo and Dobson, 1996). 

Moreover, R0 decreases with increasing disease mortality (which grows with m), while it increases 

and levels off with decreasing latent period (namely, with increasing n). In particular, R0  tends to  

zero with decreasing ν, because no epidemic can establish with an infinite latency period, while R0  

increases with ν up to an asymptotic value which corresponds to a vanishing latency period (as in 

the SI model by De Leo and Dobson, 1996). It is easy to prove that the enzootic equilibrium X2, 
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representing the case in which rabies persists endemically in the host population, becomes 

epidemiologically feasible (that is strictly positive) when X1 loses its stability, i.e., as soon as R0 

exceeds unity. The manifold in the parameter space defined by equation R0 = 1 is thus characterized  

by a transcritical bifurcation (Kuznetsov, 1995) in which the two equilibrium points X1 and X2 

collide and exchange their stability. The condition for X2 to be positive can also be expressed as 
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Therefore, I can state that the disease can persist in the host population if and only if the 

transmission coefficient of the disease β is above a minimum threshold value (called βTC). The 

threshold for the transmission coefficient βTC) scales allometrically with body size (exponent 

+0.45), increases linearly with µ and decreases with ν down to an asymptotic minimum value, 

which corresponds to a vanishing latency period. 

It can be shown analytically that the enzootic equilibrium X2 undergoes a supercritical Hopf 

bifurcation with the emergence of limit cycles when R0 is sufficiently high, more precisely when 
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where Γ0(n,m), function of n and m only, represents the smaller positive solution of equation 

number 6 in Swart (1989, pag. 201) when one replaces the model parameters with expressions (2) 

and (3) (see appendix for details). In simpler words, for  β < βH the enzootic equilibrium X2 is 

stable, while for β > βH there are stable sustained oscillations. From an epidemiological viewpoint, 

the reason for oscillations was explained by Anderson et al. (1981): rabies acts as a time-delayed 

density-dependent regulator of wildlife population growth, the time lag being determined by how 

long the host population density remains below a critical size. This will largely be influenced by 

host birth rates. The transmission coefficient along the Hopf bifurcation βH) scales allometrically 

with exponent +0.45, just as the value βTC did along the transcritical bifurcation. 

A particularly interesting result is derived by looking at how the basic reproduction number R0 

changes along the Hopf bifurcation manifold. By substituting expression (6) for βH into (4), it is 

easy to prove that the value of the basic reproduction number along the Hopf bifurcation manifold 

does not depend on the body size w of the host species but is a function of the epidemiological 

parameters n and m only. However, the period of the epizootic cycle corresponding to the Hopf 
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bifurcation does grow with the host body size w. In fact, along the Hopf bifurcation the oscillation 

period T (in years) of the densities in the three compartments of the host population is: 

 

ρπ /2=T        ( 7 ) 

 

where )22( eqeq NN γµσαγρ +++=  is the  modulus of the imaginary eigenvalues at the 

bifurcating enzootic equilibrium. By replacing Eq.s (2) and (3) into (7), it can be proved that T 

grows allometrically with body size with exponent +0.25. 

Despite the simplicity of the mathematical formulation, the model is able to qualitatively grasp the 

dynamical behaviour of wildlife diseases observed in nature for which it is known that host species 

with larger body size exhibit a larger period of epizootic cycles. As illustrated in Fig. 2, the 

expected duration of the oscillation period derived by my model matches quite well that observed in 

the field for a number of different wildlife species affected by rabies (black dots). In Fig. 2 the solid 

line represents the minimum oscillation period of epidemics predicted by the SEI model (i.e., the 

period of cycles originating at the Hopf bifurcation), while the grey area shows feasible cycle 

periods for each host body size. 

 

 

Fig. 2: The relationship between host body size and the period of sustained oscillations. The thick black line 

represents the period of cycles arising along the Hopf bifurcation, while the grey area represents feasible periods of 

sustained oscillations as predicted by the SEI model. The black points represent the minimum epizootic cycle 

period observed in the field for a range of mammal species affected by rabies. Thin lines connect points related to 

the same species. Data for: yellow mongoose (Herpestes javanicus), Arctic fox (Alopex lagopus), northern raccoon 

(Procyon lotor), red fox (Vulpes vulpes), black-backed jackal (Canis mesomelas), raccoon dog (Nyctreutes 

procyonides), Eurasia badger (Meles meles), and feral dog (Canis familiaris). See Supplementary Material for data 

details. 
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To sum up, the SEI model behaviour is completely determined by body size w, transmission 

coefficient β, latency rate n and disease mortality m. The complete bifurcation diagrams in the w-β, 

n-β, and m-β spaces are easily derived from Eq.s (5) and (6). These curves are shown in Fig. 3: in 

each of the three bifurcation diagrams a transcritical bifurcation curve (tc) separates a region DF, 

where the disease-free equilibrium is the only attractor of the model (1), from a region EE, where 

the model variables are attracted to the enzootic equilibrium. Through a supercritical Hopf 

bifurcation curve (h) the system enters the region EC: here the enzootic equilibrium is unstable and 

an attracting epizootic periodic solution appears, whose period increases with host body size w. Fig. 

3a shows the bifurcation diagram in the w-β space. In the previous section I showed that the 

transmission coefficient (β) scales allometrically with host body size with exponent +0.45 along 

both the transcritical and the Hopf bifurcation curves (see Eq.s (5) and (6)). Fig. 3b, which shows 

the bifurcation diagram in the n-β space, demonstrates that the Hopf bifurcation curve exhibits a 

minimum when n = m, namely when the duration of the latency period equals the average time to 

death of a diseased individual. Fig. 3c shows the bifurcation diagram in the m-β space: the 

transcritical bifurcation curve is a linear function of m (see Eq. (5)); the Hopf bifurcation curve has 

a barely visible minimum for m equal to unity (i.e., natural mortality equals disease-induced 

mortality), but of course realistic values of m are much larger than one, as I explained above. 

We showed that, along the Hopf bifurcation, R0 is a function of the epidemiological parameters n 

and m only, not of host body size. How R0 value changes along the Hopf bifurcation for different 

values of these parameters is reported in Fig. 4. It shows that limit cycles arise only for large values 

 

Fig. 3: Bifurcation diagrams of the SEI model in the w-β space (a), n-β space (b), and m-β space (c). In region DF 

(disease-free equilibrium) the virus becomes extinct. In region EE (enzootic equilibrium) the parasite survives in a 

constant host population. In region EC (epizootic cycle) the parasite survives in a fluctuating host population. The 

curve tc marks transcritical bifurcations and the curve h marks Hopf bifurcations. Other parameters set to: m = 250, 

in (a) and (b), n = 50, in (a) and (c), and w = 3 kg, in (b) and (c). 

 



 19

of the basic reproduction number. On the other hand, even for high values of R0, limit cycles occur 

only for intermediate n or m. In fact, if the latent period is very short, the SEI model tends to the SI 

model, while if it is too long, it tends to an SE model, neither of which can exhibit limit cycles (Gao 

et al., 1995; De Leo and Dobson, 1996). Interestingly enough, Fig. 4 shows that the Hopf 

bifurcations curves present a minimum R0 when n = m, exactly as βH does in Fig. 3b. This is true 

regardless of the specific value of n and m, as long as the duration of the latency period equals the 

expected time to death of a diseased individual. I can hypothesize a sort of resonance effect, in 

which similar average times spent in E and I classes favour the onset of oscillations. Moreover, the 

minimum value of R0 for limit cycles to occur is about 5, regardless of host body size and specific 

values assigned to the allometric functions (2). In addition, I numerically analysed for fixed values 

of the basic reproduction number, the cycle period beyond the Hopf bifurcation (i.e., inside the 

regions EC of Fig. 3). It increases allometrically with host body size (with exponent +0.25) as along 

the Hopf bifurcation curve. 

 

 

 

 

Fig. 4: Hopf bifurcation curves of the SEI model, computed by 

varying m and β (as in Fig. 3c), plotted in the m-R0 space for 

different values of the relative latency rate n. Unspecified 

parameter values as in Fig. 3c. 
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4. THE MULTIPLE HOST SEI MODEL 

 

As pathogens like rabies can affect and establish in a wide range of host species, there is a definite 

possibility that interspecific transmission may occur among hosts of different body sizes. In this 

section, I investigate the population dynamics of a multiple hosts infection by extending the 

analysis performed by Dobson (2004) for a multihost SI model to an SEI model of two host species 

with interspecific transmission, as described hereafter: 
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where i,j = 1,2. As in paragraph 2, model parameters scale allometrically with the hosts' body size 

(Eq.s (2) and (3)). In addition, I assume that the disease has the same basic reproduction number in 

both populations. From now on, I assume that w1 < w2, without lack of generality. Then the 

intraspecific transmission coefficients βii (i.e., the transmission among individuals of the same 

species) can be obtained from Eq. (4) by using a unique value for R0 and 2 different values for w. 

The interspecific transmission βij (i ≠ j), which is the transmission among individuals of different 

species, is here assumed to be proportional to the mean of the intraspecific transmissions as in 

Dobson (2004), namely: 
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where i,j = 1,2 and c is the strength of interactions between species. I have assumed that between-

species transmission is more difficult than within-species transmission, so that 0 ≤ c ≤ 1. Dobson 

(2004) has thoroughly discussed the threshold conditions for disease invasion in a multihost SI 

model. Here, besides invasion thresholds, I analyse conditions for which the populations exhibit 

epizootic cycles and conditions for which a host population acts as a disease reservoir and drives the 

other host to extinction. In particular, my analysis shows that model behaviours do not depend on 

the absolute value of the two species body sizes, but only on their ratio. Results are reported in Fig. 

5 which shows the bifurcation diagrams of model (8) as a function of the degree of interspecific 

transmission c and the intraspecific basic reproduction number R0 (assumed equal for both species) 
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for different values of the ratio between the two species body sizes (δw = w2/w1). For this purpose I 

used a continuation method supported by the software LOCBIF (Khibnik et al., 1993) and 

CONTENT (Kuznetsov, 1998) which compute bifurcation curves starting from any bifurcation 

point by means of an adaptive prediction-correction continuation procedure with tangent prediction 

and Newton correction. 

For low values of R0, at each level of interspecific transmission there exists only the disease-free 

equilibrium, in which the two species coexist in the absence of disease. Dashed curve etc1  in Fig. 5 

represents transcritical bifurcations (infection threshold) between the disease-free equilibrium and 

the enzootic one, where the two species coexist and the disease is present with a constant 

prevalence. Because of operating interspecific transmission, there exist no equilibria corresponding 

to the disease being present in one species, not in the other one. So, the curve etc1  does not depend 

on δw, the ratio between the hosts' body sizes. As shown by Dobson (2004), when transmission is 

density-dependent as in model (8), the presence of more species of susceptible hosts implies that the 

number of contacts between infected individuals and potentially susceptible hosts increases. In fact, 

Fig. 5 shows that, for large level of interspecific transmission c, disease may invade host 

populations also for values of intraspecific basic reproduction number R0 smaller than 1. 

Solid curves (hi) in Fig. 5 represent Hopf bifurcations: increasing values of R0 lead stable enzootic 

equilibria to instability and give rise to stable epizootic cycles. Bifurcations h1 involve attractors in 

which the two host population coexist, while bifurcations h2 (which exist only for large values of 

δw) involve attractors in which the larger species is extinct. As a consequence, the value of the 

basic reproduction number at which bifurcations h2 occur is independent of the value of 

interspecific transmission c. 

By increasing δw a diseased host species that would exhibit sustained oscillations when isolated (c 

= 0) can be characterized by a stable infectious equilibrium when coexisting with another species 

with sufficiently different body size if interspecific transmission is intermediate (see solid curves in 

Fig. 5). A further (more detailed) analysis shows that the cycle period along Hopf bifurcations (hi) 

is always close to that of the smaller species when isolated; therefore it is the smaller host species 

that drives the population dynamics setting the period of oscillations. 

Curves etc2  represent transcritical bifurcations of coexistence equilibria: increasing values of 

interspecific transmission c or reproduction number R0 drive the coexistence equilibrium to 

instability and the species with smaller body size out-competes the other which goes extinct. 

Similarly, curves tc
c
 represent transcritical bifurcations of limit cycles: increasing values of c 

destabilise the epizootic cycle at which the two host species coexisted and the host species with 
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smaller body size out-competes the other and keeps exhibiting sustained oscillations, according to 

the specific value of R0 (as in model (1)). It is interesting to notice that curves etc2  and tc
c
 appear in 

the bifurcation diagram only for sufficiently high values of δw (dark grey and black curves in Fig. 

5, which correspond to δw = 2 and δw = 10, respectively). This implies that high differences in size 

among host species may increase the extinction risk of the species with larger body size. Further 

analyses, not reported here, show similar pattern of behaviours for multiple-host model (8) with 

more than two host species (i,j = 1,...,n with n > 2). 

As remarked by Dobson (2004) for the SI model, a sufficiently high degree of interspecific 

transmission c can invariably drive to extinction the species with slower dynamics. Here, I have 

similar results, because the species that becomes extinct for sufficiently large c is the one with 

larger body size; this is also true when epizootic cycles occur. 

 

 

 

 

Fig. 5: Bifurcation diagram of the multiple host SEI model (8) in the c-R0 space (plotted in semi-logarithmic scale). 

(A) Two host species with different body sizes ratio (δw = w2/w1): light grey curves (δw = 1.1), dark grey curves 

(δw = 2), and black curves (δw = 10). Thin solid lines (h1), thick solid lines (h2), dashed lines (tci
e
), and dash-dotted 

lines (tc
c
) represent Hopf bifurcations of coexisting equilibria, Hopf bifurcations of one species equilibria, 

transcritical bifurcations of equilibria, and transcritical bifurcations of cycles (see text for details).Other parameters 

as in Fig. 3.(B) Arrows describe the effect of different control strategies in the case of δw = 10 and four different 

situations corresponding to low/high basic reproduction number and low/high interspecies infection transmission. 

Dotted arrows correspond to reduction of c (blocking tactics), solid arrows to reduction of R0 (target and reservoir

control). See Discussion and conclusions paragraph for details. 
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5. DISCUSSION AND CONCLUSIONS 

 

In this chapter I have presented a class of simple SEI models in which basic vital rates and 

epidemiological parameters are set via allometric scaling with host body size in order to describe 

the spread of a lethal disease in a wide range of wildlife host species. 

My analysis shows that the minimum basic reproduction number R0 necessary to sustain epizootic 

cycles does not depend upon host body size or allometric formulation of model parameters, but is a 

function of the relative duration of the latent period and the relative mean time to death of infected 

individuals with respect to the mean life expectancy of a disease-free host. The SEI model predicts 

that epizootic cycles cannot arise if the basic reproduction number is smaller than 5 regardless of 

host body size. This suggests the need of a sort of minimum activation energy (represented by the 

strength of R0) for oscillation to arise, that is a structural property of the SEI model and not of the 

parameters chosen. On the other hand, field observations of rabid populations in the wild show that 

epizootic cycles may actually occur also for R0 as low as 1.5-2.5 (Coleman and Dye, 1996; Kitala et 

al., 2002). As a consequence, it is possible that other factors, such as spatial dynamics or age 

structure or social hierarchy, and, most important, seasonal forcing, may actually play an important 

role in generating the observed patterns. The interplay between body size scaling of ecological and 

epidemiological parameters and these heterogeneity factors will be the subject of further 

investigations. Nevertheless, the relationship between host body size and the expected period of 

oscillations, as predicted by my SEI model, matches very well the field observations for a range of 

mammalian host species infected by rabies. Thus, my model might be used to roughly extrapolate 

the period of epizootic cycles in species for which data are not available. 

Furthermore, simple extensions of the model are particularly suitable to describe infections in 

wildlife communities and networks consisting of animals with a spectrum of body sizes, in order to 

describe spillover, multiple-host, and multiple-pathogen dynamics. In the present chapter I have 

analysed multiple host interactions in the simple case of one pathogen infecting different host 

species. In the literature, several works analysed parasite establishment (Holt et al., 2003; Dobson, 

2004), host extinction risk (de Castro et al., 2005; Fenton and Pedersen, 2005), and parasite 

evolution (Woolhouse et al., 2001; Gandon, 2004) in multihost communities, but little attention was 

paid to non-equilibrium behaviours. Here, I have put the stress on the epidemic events occurrence, 

deriving conditions for which epizootic cycles arise and underlining their features. I have found 

that, contrary to single-host models, the value of the basic reproduction number for sustained 

oscillation to occur strongly depends on the sizes of the two hosts (in particular on their ratio). 

Epidemic dynamics tends to stabilize for intermediate value of interspecific transmission c if 
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species affected by the disease have different body sizes (see Fig. 5). Since c represents the level of 

coupling between population species, this result is in agreement with findings in metapopulation 

models of disease, in which intermediate level of host dispersal favours stability and synchrony of 

infections (Keeling and Rohani, 2002). Moreover, when two coexisting host populations exhibit 

limit cycles, the period of oscillation near the Hopf bifurcation is mainly driven by the smaller 

species. In addition, for sufficiently high values of interspecific transmission and species size ratio, 

the host species with faster population dynamics (smaller body size) can drive the slower one 

(larger body size) to extinction. In practice, the smaller species acts as a disease reservoir. In fact, I 

have found that the extinction conditions of the larger species depend primarily on the transmission 

from the smaller host to the larger one (i.e., parameter β21 in model (8)). Therefore, policies for 

preventing the threatened host extinction should also devote efforts to avoiding reservoir-target 

transmission in addition to traditional measures such as vaccination of the endangered species. 

There are other implications of my results for disease control in wildlife communities. Haydon et al. 

(2002) identified three different control strategies in multihost systems: target control and reservoir 

control, which are aimed at controlling infection within each populations (in model (8) the target is 

the larger size species and the reservoir is the smaller size one) and blocking tactics, to prevent 

transmission between species. These control strategies correspond to reducing R0 and c in model 

(8), respectively. The benefits of these different approaches vary according to the difference in size 

of infected host species and to transmission conditions. 

For host-pathogen systems with low interspecific transmission c, blocking tactics will be 

ineffectual, while control of within-species transmission proves to be effective under the same 

starting conditions. Indeed, in cases of high basic reproduction number (e.g., see point (a) in Fig. 5B 

in the case of large δw values), blocking tactics will drive the system toward large oscillations thus 

increasing the likelihood of host stochastic extinction `during transient depression of population' 

(sensu de Castro and Bolker, 2005), while target and reservoir controls tend to damp epizootic 

oscillations. In cases of low R0 (see point (b) in Fig. 5B), control of within-species transmission is 

also more effective, driving the system toward the disease-free threshold. 

On the contrary, for hosts-pathogen systems with high levels of c (points (c) and (d) in Fig. 5B), 

blocking tactics are effective because they move the target species away from extinction. Moreover, 

when R0 is high (point (c) in Fig. 5B), they also reduce oscillation in the hosts' populations. In cases 

of low R0 (point (d) in Fig. 5B), control of within-species transmission is also effective, driving the 

system toward the disease-free threshold. In the light of these considerations, it turns out that an 

adequate estimation of transmission levels (within and between populations) is crucial to 

implementing effective control policies of rabies and similar diseases in wildlife systems. 
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The main features of the dynamics of the basic SEI body-size-dependent host-pathogen system are 

quite robust with respect to other variations in the model structure. In fact, further analysis not 

reported here demonstrates that results do not change substantially if I introduce spatial structure 

(patchy environment). Apparently, the introduction of more realistic details in the model does not 

significantly modify the relationship between the body size of the host and the characteristic 

transmission rate that allows for multi-years periodicity to occur. I suspect that allometry holds for a 

wide class of variations of the basic SEI models. 

There are a large number of other diseases in which the host can develop temporary or permanent 

immunity. The introduction of an immunity class strongly changes the epidemic dynamics. Such 

model was analysed by Coyne et al. (1989). They showed that even for small values of the 

immunity, the Hopf bifurcation that arises for increasing transmission rates in the SEI model 

disappears. 

Recently, several works stressed the crucial role of social, spatial (Cross et al., 2005), and age/stage 

(Bolzoni et al., 2007) heterogeneity to understand transmission pattern of wildlife disease. In this 

context, the explicit introduction in the model of the host social organization will be an interesting 

development. For example, Brashares et al. (2000) show that group size in African antilope (family 

Bovidae) is allometrically related to species body size. This suggests that the within-group disease 

transmission in these species can be described as an allometric function of the body size as well.  

Even though the relationships I found between host body size, transmission rate and resulting 

dynamics should not be interpreted as universal laws, they can provide useful hints on the kind of 

population dynamics in host-pathogen systems that is most likely to occur over a broad range of 

host body sizes. Information on the expected population dynamics can be used to design field 

campaigns to gather further data for the estimation of the basic epidemiological parameters. It is 

also useful to guide control and eradication policies, when action must be taken rapidly and 

information on host species is scanty, as it usually occurs in the case of many endangered 

populations. 
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CHAPTER 2 APPENDIX 

 

Hopf bifurcation condition for model (1) found by Swart (1989, Eq.6 pag. 201) is a 4
th

 degree 

equation in the variable γβ-1
: 
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where Q = ν (α + σ + µ) + ασ. 

By replacing allometric expressions (2) and (3) into Eq. (A1), I obtain the following relationship: 

 

+Γ+Γ+Γ −−− ),()(),()(),()[( 221331441 mnmnmn γβγβγβ 0)],(),()( 2/3011 =Γ+Γ −− wmnmnγβ   ( A2 ) 

 

where the Γi
's (i = 1,…,5) are suitable functions of n and m only. As shown by Swart (1989), Eq. 

(A2) has two positive solutions, say Γ0(n,m) and Γ1(n,m), but only with the first (the smaller one) 

the inequality (5) – i.e., the existence of a positive endemic equilibrium – is satisfied. Hence, 

relationship (6) – i.e., β = γ /Γ0(n,m) = 0.037 w^{0.45}/ Γ0(n,m) – guarantees the existence of two 

purely imaginary eigenvalues of the characteristic equation of model (1). Moreover, Swart (1989) 

has already proved that this solution satisfies the Hopf bifurcation transversality conditions. Then, 

relationship (6) represents Hopf condition for model (1). 
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CHAPTER 2 SUPPLEMENTARY MATERIAL 

 

Table S1: Figure 1 data details 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. S1: Table S1 summarizes basic information and bibliographic references about data used for 

Fig. 1 in main text. Column 1 and 2: common and scientific name of host species; Column 3: 

weight of host species (in kg) and related reference (in brackets); Column 4: minimum epizootic 

cycle period observed in populations infected by rabies (in years) and related reference (in 

brackets). 
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ABSTRACT  

I present an SEI (Susceptibles-Exposed-Infectives) model to analyse the effects of seasonality on 

epidemics, mainly of rabies, in a wide range of wildlife species. Model parameters have been cast as 

simple allometric functions of host body size. Bifurcation diagrams have been derived for different 

levels of seasonality in the transmission rate and for different values of the pathogen basic reproduction 

number R0 over a broad range of body sizes. While the unforced SEI model exhibits long-term 

epizootic cycles only for large values of R0, the seasonal model exhibits multi-year periodicity for small 

values of R0. The oscillation period predicted by the seasonal model is consistent with those observed 

in the field for different host species. These conclusions are not affected by alternative assumptions for 

the shape of seasonality nor for the parameters that exhibit seasonal variations. However, the 

introduction of host immunity (which occurs for rabies in some species and is typical of many other 

wildlife diseases) significantly modifies the epidemic dynamics; multi-year cycles now require a large 

level of seasonal forcing. My analysis suggests that the explicit inclusion of seasonality in model of 

wildlife disease may be crucial to correctly describe the epidemics of pathogens of wildlife that inhabit 

strongly seasonal environments.  
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1. INTRODUCTION 

Seasonal forcing can have a dramatic impact on the dynamics of ecological and epidemiological non-

linear systems (Olsen et al., 1988; Hanski et al., 1993, Keeling et al., 2001) and thus realistic models 

should account for the influence of seasonally varying exogenous factors that affect disease dynamics 

(Altizer et al., 2006; Olsen and Schaffer, 1990; Greenman et al., 2004; Koelle et al., 2005b). Seasonal 

variations in host birth rate, social aggregation, or resource availability are central features of the life of 

all temperate and many tropical habitats (Altizer et al., 2006, Aron and Schwartz, 1984). Usually, 

wildlife birth rates peak in the spring time (e.g. see Bingham and Purchase, 2002), while intraspecific 

competition increases in the winter time, when the resources become scarce. Epidemiological 

parameters may also exhibit a seasonal trend; in particular, the contact and transmission rates are 

inherently linked to animal mobility and social behaviour. For example, the transmission of rabies 

among African black-backed jackals (Canis mesomelas) is facilitated by the dry season, when they 

increase their home range due to the scarcity of water (McKenzie, 1993). Among European red foxes 

(Vulpes vulpes), the transmission coefficient of rabies increases with their mobility during the mating 

season, and decreases when parents become more sedentary while raising the offspring (Pastoret and 

Brochier, 1999). 

The effect of seasonality on host-parasite dynamics has received increasingly larger attention in the 

past twenty years, especially in human diseases (Hethcote and York, 1984; Bolker and Grenfell, 1993; 

Grenfell et al., 1995; Kamo and Sasaki, 2002; Greenman et al., 2004). Several studies have shown that 

seasonality in the transmission rate can enormously complicate the population dynamics of host–

parasite interaction and produce a sequence of bifurcations corresponding to cycles with multiyear 

periods or even chaos for high levels of seasonal variation (Schwartz and Smith, 1983; Aron and 

Schwartz, 1984; Schwartz, 1985; Keeling and Grenfell, 1997; Keeling et al., 2001; Rohani et al., 2002; 

Greenman et al., 2004). This has recently led to new sets of questions regarding the adaptive dynamics 

of pathogens in a seasonal environment (Koelle et al., 2005a; Kamo and Sasaki, 2005) and the 

maintenance of pathogen diversity (McKenzie et al., 2001).  

The importance of seasonality in population ecology has been recognized long ago (Nisbet and Gurney, 

1982), but the role played by seasonal fluctuations in wildlife diseases have attracted somehow less 

attention than in human diseases, probably because of the general lack of long historical records of 

disease in wildlife. As notable exceptions I can cite Ruxton (1996) who analysed an SEIR (Susceptible, 

Exposed but not infectious yet, Infective and Recovered) model of bovine tuberculosis in a badger host 
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population capable of Malthusian growth and showed that seasonality in model parameters is unable to 

sustain epidemic cycles; and Briggs and Godfray (1996) who studied the interaction between an insect 

and its pathogen in a seasonal environment when host dynamics is characterized by discrete 

generations. 

On the other hand, the population dynamics of a free-living host is generally affected by intraspecific 

competition for resources or space. The interaction between the effect of seasonality and those due to 

density-dependent processes deserves particular attention. However, a systematic analysis of a 

seasonally forced SEI model of a self-regulating wildlife host has not been presented yet, although 

Ireland et al. (2004) have recently analysed the complex dynamics of a seasonally forced SIR model of 

a self regulating population. Nevertheless the SIR framework does not account for the time delay 

between the onset of infection and the actual infectivity of the host. This delay is particularly important 

to understand the dynamics of disease in the wildlife, as pointed out by Anderson et al. (1981) in their 

seminal SEI model of rabies. In fact, if the latent period (the average time spent in the infected-but-not-

infectious class) is sufficiently long, the population dynamics of the non-seasonal host can be 

characterized by sustained oscillations (Swart, 1989; Pugliese, 1991). The interplay between the 

intrinsic tendency to oscillate of these non-linear epidemiological systems with seasonal fluctuations of 

host fertility or transmission rate can elicit complex dynamical patterns (Keeling et al., 2001). This was 

anticipated by Kuznetsov and Piccardi (1994) who derived the general bifurcation diagram of a 

seasonally forced SEIR model of human diseases in a constant population.  

The aim of this chapter is to thoroughly investigate the dynamics of seasonally forced SEI(R) of lethal 

diseases in the wildlife. I use an SEI model of rabies as a reference example since rabies is one of the 

most significant zoonoses worldwide and can affect a wide range of different host species. Rabies 

dynamics can be well described by SEI models: it has considerable latent period (usually longer than 

the infectious one) and assures low survival probability to the full-blown infected (absence of recovery 

class). On the other hand, in some species (as raccoon and skunks), individuals exposed to rabies can 

develop natural immunity without develop full-blown disease (i.e., without become infected). Each 

year, about 30,000-50,000 people die from rabies in the developing world and hundreds of millions of 

dollars are spent on rabies control in the developed countries, mainly for animal vaccination and 

postexposure prophylaxis. Rabies is quite generalist and can infect hosts ranging from a few grams 

(mice) to several hundreds of kg (bears). Moreover, the main key features of its dynamics can be 

captured in a quite general mathematical framework that applies to other infectious diseases. As a 
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consequence, the rabies SEI model provides important general insights into the dynamical properties 

for a wider range of zoonoses.  

 

I perform the epidemiological analysis by casting host demographic rates as allometric functions of 

host body size. In fact, larger hosts are expected to have longer life expectancy, smaller reproductive 

rate, slower dynamics and more sparse population densities when compared to smaller host species 

(Peters, 1983). Moreover, Bolzoni et al. (2007) have shown that oscillations arising in the autonomous 

(i.e., non-seasonal) SEI model of a rabid host scale allometrically with its body size; in particular this 

work shows that hosts with larger body size exhibit longer periods of oscillation. As fluctuations in the 

fertility and/or mortality of the host, as well as in the transmission rate typically have a one-year period, 

the interplay of seasonal forcing with the intrinsic oscillation frequency due to host-pathogen 

interaction may be different for hosts with different body size. Specifically, here I want to assess 

whether the introduction of seasonality can explain the observed patterns of multi-year periodicity in 

rabies epidemics. Also, I extend the present analysis to diseases other than rabies by investigating the 

dynamics of a diseased host that is able to develop some level of immune response. Although this is 

possible unlikely for rabies (except in bats), it does often occur in other viral disease of wildlife such as 

rinderpest, distemper, brucellosis, and hog cholera. 

This chapter is organized as follows: in the next section I introduce the non-seasonal, allometrically-

scaled SEI epidemic model originally developed by Anderson et al. (1981) and thoroughly described 

by Bolzoni et al. (2007). Then, I investigate the effect of different levels of seasonality in the 

transmission coefficient on the population dynamics of the infected host for species characterized by a 

wide range of body sizes. To verify the robustness of the results, I derive the bifurcation diagrams 

when host birth rate (instead of transmission coefficient) exhibits seasonal fluctuations and investigate 

the effect of different shapes of seasonal forcing functions. The model is then modified so as to include 

an immune class and the population dynamics are again analysed under this new assumption.  
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2. THE BASIC SEI MODEL 

The first SEI model of rabies was derived in the seminal paper by Anderson et al. (1981) to describe 

the spread of this infectious disease in European foxes and assess the efficacy of culling and 

vaccination for disease control and eradication. Some years later Coyne et al. (1989) presented a 

modified version of the epidemiological model so as to account also for the development of acquired 

immunity in raccoons. In this chapter I will mainly use the original version of the Anderson et al. 

(1981) model which does not include an immune class, namely: 

SISNSS βγµν −+−= )(&       ( 1a ) 

ENSIE )( γµσβ ++−=&       ( 1b ) 

INEI )( γµασ ++−=&       ( 1c ) 

Here S, E, and I are the densities of susceptible, infected but not infectious, and infective individuals in 

the population, respectively; N is the total population density, i.e. N = S + E + I; ν, µ, γ are the 

ecological parameters: intrinsic birth and death rates, and intraspecific competition coefficient, 

respectively; β, σ, and α are the epidemiological parameters: transmission coefficient, latency rate (1/σ 

being the mean latency period), and disease-induced mortality, respectively. I refer to existing literature 

for a comprehensive stability analysis of the unforced SEI model (Swart, 1989; Pugliese, 1991; Gao et 

al., 1995). 

To account for a wide range of host species, according to Silva and Downing (1995) and J.M. Cable 

and B.J. Enquist (unpublished manuscript) and following De Leo and Dobson (1996), I have cast the 

demographic and epidemiological parameters of the model as simple allometric functions of mean host 

body size w: 

25.00.1 −= wν        ( 2a ) 

25.04.0 −= wµ        ( 2b ) 

70.02.16 −=
−

= wK
γ

µν
     ( 2c ) 

25.020 −= wσ        ( 2d ) 

25.0100 −= wα        ( 2e ) 

where body size w is in [kg], carrying capacity K in [#individuals km-2], and the rates in [yr
-1

]. Even 

though this model is quite simple, it is able to capture the main features of the population dynamics of 
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rabies. A detailed analysis of the dynamics of the non-seasonal allometric SEI model of a lethal disease 

has been presented in Bolzoni et al. (2007). Their work shows that the threshold values of the 

transmission coefficient βth for the disease to establish in the population scales allometrically with host 

body size as well as the threshold values βH (>βth) for limit cycles to occur; both exhibit the same 

power scaling, namely they increase with body size as w
0.45

. In contrast, the threshold value of the basic 

reproduction number ))(/(0 νανσσβ ++= KR  for sustained oscillations to occur is independent of the 

host size. 

In order to analyse the effect of seasonality on the basic SEI model, I assume that the transmission rate 

can be expressed as a sinusoidal function of time t (Dietz, 1976): 

( )( )tt πεββ 2sin1)( 0 +=      ( 3 ) 

where β0 is the mean transmission coefficient (or baseline of transmission) and 0 ≤ ε ≤ 1 is the degree 

of seasonality (or strength of the seasonal forcing). The periodically forced model is thus obtained by 

substituting Eq. (3) into model (1) with the allometric relationships (2).The model behaviour has been 

analysed through bifurcation analysis using numerical continuation methods implemented in the 

specialized software LOCBIF (Khibnik et al., 1993) and CONTENT (Kuznetsov, 1998). The 

dynamical features of the seasonal model are illustrated in the following section. 
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3. RESULTS 

Since empirical estimates of transmission coefficient in wildlife diseases are hard to be found (see e.g., 

Begon et al., 1999), it is essential to understand how behaviours of the SEI model changes under a wide 

range of values assigned to parameters ε and β0 that fully describe disease transmission in a seasonal 

environment. Fig. 1 shows the bifurcation diagram of the periodically forced SEI model in the ε−β0 

space for a host with body mass of 1 kg. I only show bifurcation curves corresponding to attractors, as 

this simplifies the interpretation of the diagram.  

 

 

Fig. 1: Bifurcation diagram of the seasonally forced SEI model in the ε (seasonality)– β0 (transmission coefficient) 

parameter space. The black bifurcation curves mark the appearance of cycles from the attractors of the unforced SEI

model. The light grey bifurcation curves involve attractors that appear due to the frequency locking associated with 

period-three cycles. The parameter values of the model have been allometrically scaled for a host with body size w = 1 

kg. Point TC is the starting point of the transcritical bifurcation curve (tc); H is the Hopf bifurcation point in the 

unforced model; BT represents a Bogdanov-Takens point and Ri (with i = 1,2,3,4) represent strong resonance 1:2

points; h(i) represent the Neimark-Sacker bifurcation curves where cycles of period i arise; f(i) represent flip (period 

doubling) bifurcation curves where cycles of period i arise; the point T3 on the β0 axis identifies the value of the 

transmission coefficient that corresponds to a three-year epizootic cycle and is the root of two tangent bifurcation 

curves, t(3)a and t(3)b, which delimit the grey region of the parameter space called Arnol’d tongue. The population 

dynamics corresponding to the points a-e of the parameter space along the dash-dotted line are illustrated in Fig. 2. 
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Along the vertical axis (ε = 0) it is possible to identify, for increasing values of the baseline of 

transmission β0, the simple bifurcation sequence of the non-seasonal model. For β0< TC (that is, the 

transcritical bifurcation point characterized by R0 = 1, the threshold for pathogen establishment), rabies 

is not able to invade the host population and the system settles to its natural ‘carrying capacity’ (a 

disease-free equilibrium). For TC < β0 < H, the pathogen is able to invade its host population that 

eventually reaches a stable enzootic equilibrium; for β0 > H (the Hopf bifurcation point) the system 

exhibits stable epizootic cycles: the period of oscillation is greater than two years and increases for 

increasing value of the transmission coefficient. The introduction of seasonality (ε > 0) does not affect 

the disease-free equilibrium while it remarkably changes the model behaviour for β0 > TC. Quite 

obviously, a small degree of seasonality transforms the enzootic equilibrium of the non-seasonal, 

unforced model into an epizootic cycle of one-year period (see Fig. 2a), and the epizootic cycles of the 

unforced model (when β0 > H) into quasi-periodic solutions. However stronger seasonal fluctuations of 

the transmission coefficient β(t) can give rise to more complex dynamic behaviours that are mainly 

rooted into point T3 on the β0 axis. 

Hereafter I report only major epidemiological results linked to the bifurcation analysis of model (1) and 

refer to Appendix A in Supplementary Material for a detailed description of Fig. 1. T3 is not a 

bifurcation point in the non-seasonal model (ε = 0): it is the value of the transmission coefficient 

corresponding to an epizootic cycle of three-years period. According to the classical bifurcation theory 

of periodically forced models (Kuznetsov, 1995), T3 is the root of a pair of so called “tangent 

bifurcation” curves (t(3)a and t(3)b in Fig.1) that identify a region in the parameter space ε−β0 called 

Arnol’d tongue (the grey area of Fig. 1). Within this region the population dynamics can resonate with 

the seasonal forcing function – a phenomenon called frequency locking – and give rise to a period-three 

cycle. As a consequence, within the Arnol’d tongue, two attractors coexist: the first one corresponds to 

the small, period-one cycle generated by the seasonal forcing function for β0 < H (such as that 

represented in Fig. 2a). The second attractor, that arises through frequency locking, is characterized by 

an outbreak that occurs every three years, followed by a two-year phase of endemism (see Fig. 2b 

corresponding to point b in Fig. 1). For increasing levels of seasonality ε, on the boundary f(3) of Fig. 1 

the stable period-three cycle undergoes a so called “flip bifurcation” and is transformed into a stable 

period-six cycle (see Fig. 2c), a phenomenon called period-doubling. A further increases of the level of 

seasonality ε produces a cascade of period-doubling bifurcations (f(6), f(12), …, f(∞)) that occurs close 

by f(3). Along the f(∞) curve a chaotic attractor appears, but numerical simulations from several initial 
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conditions have shown that its basin of attraction is too 

small to have any ecological and epidemiological 

significance. As a consequence, population dynamics 

will basically converge back toward the stable one-

year cycle that occurs also for smaller ε (Fig. 2d, 

corresponding to point d in Fig. 1).  

On the other hand, an increase of the baseline of 

transmission β0 brings the cycles to instability through 

Neimark-Sacker bifurcations h(3) corresponding to the 

appearance of quasi-periodic solutions.  

According to the bifurcation theory for seasonally-

forced models, along the vertical axis there exist 

infinite points T4,T5,… of frequency locking 

corresponding to cycles of period 4,5,..., in which 

bifurcation curves similar to those originated in point 

T3 are rooted. I have omitted these curves in Fig. 1 

because of their little ecological significance. In fact, 

in general, periodic solutions with large oscillation 

period have very small basins of attraction (Schwartz, 

1985), and therefore the state of the system in the 

presence of environmental noise is very likely to 

converge towards attractors with smaller oscillation 

period (Greenman et al., 2004), specifically the small, 

smooth, period-one cycle or the period-three cycle 

characterized by a pronounced outbreak that coexist in 

the grey area rooted in T3. Further technical comments 

on Fig. 1 are reported in Appendix A. 

Fig. 3 provides a synoptic view of the dynamic behaviour outlined in Fig. 1 for host species 

characterized by three different body sizes: 1, 5, and 10 kg, respectively. To facilitate the comparative 

analysis, I have rescaled the vertical axis as a function of the average basic reproduction number as R0 

is proportional to the mean transmission coefficient β0. 

 

 

Fig. 2: The prevalence of infective hosts I(t) in the 

attractors of the periodically forced SEI model for 

increasing values of seasonality ε along the dash-

dotted line of Fig. 1. Fig.s a-e are obtained by 

setting the parameter values as those at points a, b, 

c, d, e of figure 1. The grey rectangles are the 

corresponding Poincaré section of the attractors: the 

number of dots represents the period of the cycles. 

In Fig.s b and c there are two coexisting attractors 

(black and grey curves). 
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The bifurcation diagrams show that hosts with small 

body size (and large birth and death rate according to the 

allometric relationships) may exhibit population 

dynamic trajectories more complex than those of hosts 

with large body size (and small birth and death rate). As 

shown in Fig.s 3b and 3c, the cascade of flip 

bifurcations involving period-one cycles is not present 

anymore for host of 5 and 10 kg. Furthermore, the first 

frequency locking point on the vertical axis corresponds 

to cycles of period four (dark grey curves). As a 

consequence, hosts with larger body size are likely to 

exhibit larger epizootic oscillations than host with 

smaller body size, which means a longer inter-epidemic 

phase and a higher peaks of infection during the 

epidemics. Finally, hosts with larger body size can 

exhibit long-term epizootic cycles only for values of the 

basic reproduction number R0 larger than that of host 

with small body size. Accordingly, for R0 values ranging 

between 2 and 3, only small species can exhibit multi-

year periodicity, while larger species do not. 

Numerical simulations of seasonal SEI model dynamics, 

starting from different initial conditions, show that, in 

parameter regions in which multiple attractors coexist 

(the grey areas in Fig. 1 and 3), the attractor with the 

lowest frequency locking period (3 years for hosts of 1 

kg, 4 years for hosts of 5 and 10 kg) has the largest basin 

of attraction. In the case of point ‘b’ of Fig. 1 for a host 

of 1 kg, simulations starting from initial conditions 

chosen randomly in the range 0.75K<S0<K and 

0<I0<0.01K show that the period-three cycle basin of 

attraction is about twice as large as the period-one cycle 

one (in 62% of cases trajectories converge toward 

 

 

Fig. 3: The effects of increasing host body size w 

[kg] on the bifurcation diagram of the seasonal 

SEI model in the ε−R0 space. Fig. 3a is for w = 1 

(e.g., mustelids), Fig. 3b is for w = 5 (e.g., foxes), 

and Fig. 3c is for w = 10 (e.g., jackals). For the 

meaning of the curves shown in figure 3a see 

figure 1. In figures 3b and 3c, the black curves 

correspond to tc and h(1) bifurcations; the dark 

grey curves are the bifurcation curves involving a 

period-four cycle that appears through frequency 

locking; Dark grey areas represent the parameter 

regions in which four-years epizootic cycles 

appeared by frequency locking and attractors with 

one-year return time of epidemics coexist. 
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period-three cycle, 25% converging to period-one and 13% converging to epizootic cycles with period 

larger than the 3 years, see also Figure A1 in Supplementary Material). As a consequence, numerical 

simulations confirm the theoretical prediction that dynamical regime corresponding to the smallest 

frequency locking are the most likely to occur in wildlife host populations.  

Fig. 4 shows the smallest frequency locking period as a function of the mean host body size (broken 

dark, grey, horizontal line) it also illustrates the oscillation period observed for some mammal species 

that are known to be important reservoirs for rabies. Log-log regression shows significant positive 

correlation between observed period of epizootic cycles and host body size (slope = 0.49, 95% CI: 

0.28-0.58, R
2
 = 0.85, n = 10); Reduced Major Axis regression was used to calculate the slope because 

there is an equal probability of measurement error for both variables; the confidence intervals (CI) were 

estimated by bootstrapping (1000 iterations). The grey area of Fig. 4 corresponds to feasible cyclic 

solutions with period of oscillation larger than the minimum one arising through frequency locking 

(e.g. 3 years for host ranging between 1 and 6 kg 

and 4 years host between 6 and 18 kg). As shown 

in Fig. 4, the oscillation period predicted by my 

seasonally-forced SEI model matches the 

observed one quite well. Only in the case of 

black-blacked jackal the period of oscillation 

predicted by the model parameterised according 

to the expected vital rates in Eqs. (2) for a 7 kg 

animal is larger than the one observed by Courtin 

et al. (2000) (4 years instead of 3); yet, further 

analyses show that if carrying capacity is only 

slightly larger than that predicted by Eq. (2c), the 

model will generate cycles of the observed 

length.  

I have not been able to find information about 

epizootic cycles in populations infected by rabies 

with body size larger than 15 kg; although this is 

in perfect agreement with the prediction of my 

model which predicts that hosts with larger body 

size will only exhibit epizootic oscillations for 

 

Fig. 4: Comparison of minimum oscillation periods 

predicted by seasonal SEI model against existing data for 

rabies. Broken dark grey line represents the smallest period 

of frequency locking as a function of the host body size w

(in kg). The black points represent the minimum epizootic 

cycle estimated for some mammal species: a) mongoose; 

b) Arctic fox; c) northern raccoon; d) red fox; e) and f) 

black-backed jackal; g) raccoon dog; h) Eurasian badger; i) 

and j) feral dog (see Table A1 for data details). Grey area 

is the region in the plane predicted by seasonal SEI model, 

in which epizootic cycle can occur. The parameters σ and 

α are fixed to 24w-0.25 and 100w-0.25, respectively. 
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very large values (and possibly non-realistic) of the basic reproduction number R0.  

 

3.1. Seasonality in host birth rate and in other parameters 

Seasonality may obviously affect demographic or epidemiological parameters other than the 

transmission rate. The host fertility rate, for instance, usually exhibits quite regular fluctuations in both 

temperate and tropical areas in correspondence of the succession of dry and rainy or hot and cold 

seasons. I have thus analysed the dynamical properties of the model assuming that host birth rate is a 

sinusoidal function of time, namely (and as also described in White et al. (1996) and Ireland et al. 

(2004)),: 

( )( )tw πενν 2sin1
25.0

0 += −      ( 4 ) 

where ν0 w
-0.25

 is the average value of the intrinsic birth rate and ε again reflects the magnitude of 

seasonal variations, as in Eq. (3). As shown in Fig. 5, the bifurcation diagram of the modified model 

derived under the assumption of seasonal birth 

rate, plotted in the ε-ν0 space, is similar to that of 

the SEI model with seasonally transmission rate 

depicted in Fig. 1. The curves’ meaning in Fig. 5 

is the same as in Fig. 1. It is to be remarked that 

even in the case of a seasonal birth rate, more 

complex behaviours, namely multi-year 

periodicity for low R0 and ε, are possible only for 

hosts with smaller body size. 

 

As the reproductive season might be remarkably 

short (as pointed out in Roberts and Kao, 1998), I 

have also derived the bifurcation diagram of the 

model using a pulse-like function for the host 

birth rate: 

 

Fig. 5: Bifurcation diagram for model (1) under the 

assumption of a seasonally fluctuating birth rate of the 

host. I use uses the same conventions of Fig. 1 plotting 

regions of dynamic behaviour in the ε-v0 space. The 

black bifurcation curves originate from the Hopf 

bifurcation point of the unforced SEI model. The light 

grey bifurcation curves involve attractors that appear 

via the first frequency locking (period-three years 

cycle). The curves’ meaning is the same as in Fig. 1. 

The mean transmission coefficient β0 has been fixed to 

50. 
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where ν0 w
-0.25

 is again the average value of the intrinsic birth rate and the term in the brackets is the 

seasonal forcing function (whose average value is equal to unity for each ε). It turns out that even in 

this case, the qualitative behaviour of the modified seasonal SEI model is not topologically different 

from the one with a sinusoidal transmission rate.  

As observed by Altizer et al. (2006), the actual dynamics depends upon which parameters are assumed 

to be seasonal and the shape and level of seasonality. Yet, further analyses not reported here show that 

the qualitative behaviour of the seasonal SEI model does not depend upon which demographic or 

epidemiological parameters actually characterize the seasonal fluctuations, a phenomenon that was 

observed in other seasonally forced population models (Gragnani and Rinaldi, 1995). The results I have 

derived here are thus quite robust with respect to alternative hypotheses on the type of seasonality.  

 

3.2. The effect of the host immune response 

Most host species do not produce an effective immune response to the rabies virus, so the infection 

leads inexorably to the death of the infected individual. However, for a few wildlife species (such as 

raccoons and skunks) rabies may occasionally not be fatal (Coyne et al., 1989). More commonly, there 

are a large number of other diseases in which the host can develop temporary or permanent immunity. 

In this section I explore the consequences of naturally acquired immunity of the host for the epidemic 

dynamics of the seasonally forced model. I have incorporated a new class R into model (1) for 

individuals becoming immune as a result of infection. In the case of rabies the exposed individuals 

become immune without developing full-blown infection – i.e., without moving into class I – as shown 

by Coyne et al. (1989). Hence the epidemic model can be rewritten in the following manner: 

SItSNRSS )()()( βγµν −+−+=&      ( 6a ) 

ENSItE )()( γµσβ ++−=&       ( 6b ) 

INEI )()1( γµασρ ++−−=&      ( 6c ) 

RNER )( γµρσ +−=&       ( 6d ) 
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where the S, E, and I classes have the same meaning as in model (1), as well as parameters ν, µ, γ, σ, α, 

and β(t). The parameter ρ represents the mean fraction of infected individuals that develop a permanent 

immune response to the pathogen; R thus represents the density of hosts that have developed an 

immune response. I have assumed that immune individuals are fully reproductive. N is the total 

population density, namely N = S + E + I + R. Obviously, when the probability of developing 

immunity tends to zero ( 0→ρ ), we come back to the classical SEI model (1). A similar non-seasonal 

version of model (6) was analysed by Coyne et al. (1989) and Childs et al. (2000). They showed that 

even for small values of the immunity ρ, the Hopf bifurcation that arises for increasing transmission 

rates in the SEI model disappears for realistic values of the basic reproduction number R0, and thus no 

limit cycles can occur in the non-seasonal SEIR model. The consequence is that no cyclic solution can 

arise through frequency locking and, thus, multi-year periodicity only appears in response to high 

levels of seasonal forcing; it does not occur anymore for low level of seasonality (see grey region in 

Fig. 6) regardless of host body size. 

 

Fig. 6: Bifurcation diagram in the ε-β0 space for the model (6) with the coefficient of transmission periodically 

forced with function (3), calculated for two different values of natural immunity (ρ = 0.1 and ρ = 0.2). The black 

curves mark the appearance of cycles from the bifurcation of attractors of the unforced model. The light grey curves 

involve attractors that appear due to tangent bifurcations associated with period three cycles. See the main text for the 

meaning of the points and curves shown in the figure. Grey area represents the parameter region in which three-years 

epizootic cycles and attractors with annual peak of epidemics (one- and two-years cycles) coexist. Other parameter 

values of the model are fixed as in Fig. 1. 
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I refer to Appendix B in Supplementary Material for a detailed description of the bifurcation diagram 

depicted in Fig. 6. 

 Results obtained with model (6) are independent to the assumption, true for rabies, that exposed 

individuals skip full-blown infection stage before become immune. In fact, I found analogous results to 

those in Fig. 6 with a Susceptible-Exposed-Infected-Recovered model in which exposed individuals 

become infected before develop immunity. 

Moreover, it is interesting to note that results similar to those showed for the SEIR model with host 

density-dependence were obtained by Kuznetsov and Piccardi (1994) for models describing childhood 

diseases and by Casagrandi et al. (2006) for model describing influenza epidemics in constant human 

populations, where host immunity was included. The same results apply as in model (6) when 

seasonality is included in host birth rate, the presence of an immune class buffers the system against 

more complex dynamics. These results are in accordance with those obtained by Ireland et al. (2004) 

for a SIR model with host density dependence. 
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4. DISCUSSION 

In this chapter I have analysed the importance of seasonality in lethal diseases of self regulating 

wildlife populations. Through allometric scaling of demographic and epidemiological parameters I 

have examined the dynamics of the epidemiological system over a wide range of host body sizes. My 

analysis shows that, while the unforced SEI model exhibits long-term epizootic cycles only for large 

values of the reproduction number R0 (Bolzoni et al., 2007), the seasonally forced model can exhibit 

multi-year periodicity for much smaller values (< 5) of R0. Furthermore, bifurcation analysis shows that 

hosts with small mean body size may exhibit complex dynamics even at small levels of seasonal 

forcing (ε). The resonance (frequency locking) is the key mechanism that determines the onset of 

multi-year periodic cycles for low transmission coefficients, and the larger the host the longer the 

oscillation period. The typical period predicted by my SEI model for different species of hosts infected 

with rabies is in accordance with field observations (see Fig. 4 and Table A1). This correspondence can 

be used to predict the frequency of outbreaks for diseases established in new populations by knowing 

only the host body size. 

 

My analysis shows that the explicit consideration of the latency period, namely the period between the 

onset of infection and the time when the infected animal becomes infective, may dramatically change 

the population dynamics of the infectious disease with respect to what predicted by SI-like models of a 

self-regulating host population (Ireland et al. 2004). In fact, multi-year periodicity can occur even for 

very low levels of seasonality in the case of a seasonally forced SEI model, while this is not possible in 

the simpler SI-like models. Moreover, in the seasonally forced SEI model, high levels of seasonality 

coupled with high values of the basic reproduction number R0 can potential produce chaotic dynamics 

that arise through bifurcations involving quasi-periodic orbits for increasing values of the basic 

reproduction number or through a cascade of period-doubling bifurcations for increasing values of 

seasonality. However, the basins of attraction of the chaotic attractors that arise from frequency locking 

are quite small and, even for intermediate or high level of seasonality, the system basically tends to 

display yearly peaks of infectives (see Fig. 2d and 2e).  

These conclusions are quite robust with respect to alternative assumptions on how seasonality is 

introduced in the model. The same qualitative structure of the bifurcation diagram is retained when 

seasonality is included in demographic or epidemiological parameters other than transmission rate, 

even when more than one parameter has seasonal oscillation, and when significant phase differences 
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between the periods of oscillations of the seasonally forced parameters are included. The same holds 

true for different shapes of the seasonal forcing function. 

In contrast, in an SEIR model no multi-year periodicity will occur at low levels of seasonality when a 

small fraction of infected hosts is able to develop a successful immune response without becoming 

infective. By setting the parameters as in (2), the SEIR model cannot show long-term cycles arising 

from frequency locking for values of immunity (ρ) greater than 0.036 (independently of the host size w 

and the average transmission coefficient β0). The crucial role of the class R in the model behaviour 

suggests that a correct estimate of the degree of immunity in the host population is necessary to 

understand the disease dynamics and to implement successful control policies. Moreover, class R can 

also mimic the immunity induced in host population by the oral vaccination. Then, the introduction of 

vaccination policies (with the effect to increase the value of ρ) can drive host population dynamics 

from a long period epizootic behaviour with high epidemic peaks (frequency locking oscillations) to a 

short period one for the same level of seasonality. 

A number of other processes have not been accounted for in the present study - such as spatial 

dynamics, ,multiple-strain interactions and stochastic fade out of the disease during the endemic phase - 

these might be relevant in determining the observed detailed patterns of behaviour in specific rabies 

outbreaks (Mollison, 1991; Mollison and Levin, 1995; Rohani et al., 2002; Real et al., 2005). 

Nevertheless, the allometric scaling approach adopted here provides key insights into the broad patterns 

of behaviour likely to be observed in a large class of hosts species exposed to lethal pathogens and 

living in seasonal environments. In fact, as already outlined by Grenfell et al. (1995) and Keeling et al. 

(2001) for human disease, the explicit introduction of seasonality into models of host-parasite 

interaction in the wildlife is a crucial element of realism. Without this key ingredient, it would be 

impossible to reproduce and explain the multi-year cycles observed for low values of the basic 

reproduction number R0. 
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CHAPTER 3 SUPPLEMENTARY MATERIAL 

The following supplementary material is available for this chapter: 

 

Appendix A Description of the full bifurcation diagram generated by the SEI model (1) 

Appendix B Description of the full bifurcation diagram generated by the SEIR model (6) 

Table A1 Data details in Fig. 4 

Figure A1 Basin of attraction of attractors: point ‘b’ in Fig. 1 

 

APPENDIX A: 

Description of the full bifurcation diagram generated by the SEI model (1)  

 

As shown in Fig. 1, TC is the starting point of a transcritical bifurcation curve (tc) for ε > 0: when 

crossing the curve tc for decreasing values of β0, stable period-one epizootic cycles become unstable 

and the pathogen declines to extinction. This bifurcation represents the disease invasion threshold (i.e., 

the condition necessary for parasite to invade and establish in the host population) corresponding to R0 

= 1 in the non-seasonal model (Kermack and McKendrick, 1927). Then point H is the starting point of 

the Neimark-Sacker bifurcation curve h(1). By crossing the curve h(1) for increasing values of mean 

transmission coefficient (β0), the stable period-one cycle becomes unstable, and a quasi-periodic 

attractor appears (see Kuznetsov, 1995, for details). The bifurcation curve h(1) ends in the 

codimension-two point of strong resonance 1:2 (R1), that is a point where two different bifurcation 

conditions are satisfied. In fact, two other bifurcation curves start from R1: the flip bifurcation f(1) and 

the Neimark-Sacker bifurcation h(2). The f(1) bifurcation involves a stable, period-one, cycle. For 

increasing levels of seasonal forcing (ε), the period-one cycle becomes unstable and a stable period two 

cycle appears (see Fig. 2e). The h(2) bifurcation involves the stable period-two cycle that appeared 

from the f(1) bifurcation: when crossing this curve for increasing value of transmission (β0) the period-

two cycle becomes unstable and a quasi-periodic attractor appears. The Neimark-Sacker bifurcation 

curve h(2) ends in another codimension-two point of strong resonance 1:2 (R2). Here, two other 

bifurcation curves arise: a flip f(2) and a Neimark-Sacker h(4) bifurcation curve, respectively. These 

curves have properties similar to the f(1) and h(2) curves, but they involve cycles with double period. 
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APPENDIX B: 

Description of the full bifurcation diagram generated by the SEIR model (6)  

 

For R0 > 1, the only attractor of model (6) for small values of seasonality is a period-one cycle that can 

undergo a period doubling (flip) bifurcation when crossing the boundary f(1) in Fig. 6. The bifurcation 

curve f(1) is supercritical for values of the mean transmission coefficient β0 smaller than that 

corresponding to point D, which is a codimension-2 degenerate flip bifurcation point (which is also the 

root of the tangent bifurcation curve t(2)), and subcritical elsewhere. By crossing the supercritical 

branch of the bifurcation f(1) for increasing values of seasonality the stable period-one cycle becomes 

unstable and a stable period-two cycle appears. When crossing the subcritical branch for increasing 

values of seasonality, the stable period-one cycle and the unstable period-two cycle, which originated 

from the tangent bifurcation t(2), collide and give rise to an unstable period-one cycle; hence, the only 

attractor is the stable period-two cycle that also originated from the tangent bifurcation t(2). For greater 

values of ε the period-two cycle undergoes a flip bifurcation along the curve f(2), and a stable period-

four cycle appears. By crossing the tangent bifurcation t(3) for increasing values of seasonality, a stable 

period-three cycle occurs (along with an unstable one): this cycle coexists with the stable period-one 

cycle below f(1), with the stable period-two cycle between f(1) and f(2) and with the stable period-four 

cycle above f(2). 

Due to the lack of stable sustained cycles in the unforced SEIR model, frequency locking is not 

possible in the seasonal forced version of the SEIR model. As a consequence, epizootic cycles with 

period longer than three years (grey area in Fig. 6) are possible only for high values of seasonal 

variation (ε). Fig. 6 shows that the parametric region in the ε−β0 space, for which pluriennial epizootic 

cycles can occur, decreases in size for increasing values of immunity (ρ). This is due to the fact that the 

Neimark-Sacker bifurcations h(.) depicted in Fig. 1 disappear even for small values of immunity; 

hence, at low seasonality levels, there exist no quasi-periodic attractors in models that incorporate 

immunity, even for high values of disease transmission rate. 
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Table A1: 

 

References in Table A1 

 

[1] Carbone, C., and Gittleman, J. (2002) A common rule for the scaling of carnivore density, Science 

295:2273-2276. 

 

[2] Childs, J.E., Curns, A.T., Dey, M.E., Real, L.A., Feinstein, L., Bjornstad, O.N., and Krebs, J.W. 

(2000) Predicting the local dynamics of epizootic rabies among raccoons in the United States, 

Proceedings of the National Academy of Sciences USA 97:13666-13671. 

 

[3] Carbone, C., Cowlishaw, G., Isaac, N.J.B., and Rowcliffe, J.M. (2005) How far do animals go? 

Determinants of day range in mammals, American Naturalist 165:290-297. 

 

[4] Atanasov, A.T. (2005) Allometric relationship between the length of pregnancy and body weight in 

mammals, Bulgarian Journal of Veterinary Medicine 8:13-22. 
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Figure A1: 

 

 

 

 

 

 

Fig. A1: Basin of attraction of three stable cycles coexisting in model (1) for parameter settings as in point ‘b’ of 

Fig. 1. Initial states in the blue, yellow, and red sets indicate convergence to a period-1, -3 and -4 respectively. 

Convergence to periodic attractors has been simulated for 2500 initial conditions: with susceptibles (S0) varying 

from 0.75K and K, infectious (I0) varying from 0 and 0.01K, and exposed (E0) equal to 0. 
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ABSTRACT 

Eradication of the classical swine fever in wild boar population is usually attempted by host 

depopulation. The wild boar threshold density for infection extinction is very low, and is rarely 

reached by increasing hunting or culling. When the depopulation effort does not reach the threshold 

of extinction, a possible perturbation on the virus virulence evolution might occur. Empirically, the 

decrease of contact rate between infectious and susceptible animals will favour the less virulent 

strain. A SI(R) model coupled with two virus strains of different virulence was used in order to 

evaluate the impact of host population management in the dynamics of virulence evolution. 

Surprisingly, when a reduced depopulation effort is applied the whole prevalence increases, because 

the decrease of the most virulent strain abundance is overcompensated by the increase of the less 

virulent one. The latter spreads due to the relatively low host density resulting in an higher 

prevalence. Furthermore, acquired disease immunity may dramatically affect strain selection with 

distinct scenarios possible depending on depopulation pressure, which increases uncertainty on 

control effectiveness. If so, depopulation in the wild should be accurately planned and performed 

exclusively when the host threshold density can be reached in a reasonable way. 
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1. INTRODUCTION 

Host-pathogen are among the most complex interspecific interactions. The pathogenic agent 

depends completely on its host for resources and transmission to other susceptible hosts. On the 

other hand, presence of pathogens cause a general reduction in host fitness through a decrease in 

survival and fertility, and alteration of anti-predatory behaviours. As a consequence, the relationship 

may affect both host and pathogen evolution. Generally speaking, in the case of genetically 

different pathogen strains co-circulating in genetically distinct host population, the most frequent 

host genotype suffers the large pathogen burden, because infection easily spreads in high density 

populations. If dominant host genotype density drops due to the decrease in fitness by parasitism, 

another host genotype will become dominant. But, by increasing in density, its vulnerability to the 

disease will also raise. This implies cyclical behaviours in host-pathogen dynamics, which have a 

firm theoretical interpretation in literature (Anderson and May, 1991), while field observations are 

quite rare. The main reason is the asymmetry in generation times between host and pathogen, that 

differ in several order of magnitude. Only pathogen genetic changes are clearly detectable in the 

short time. Rabbit myxomatosis in Australia represents the best known case of evolution in 

pathogen virulence, where highly virulent strains were supplanted by better transmittable but less 

virulent strains (Fenner and Ratcliff, 1965; Fenner, 1994). Recent findings highlight virulence 

evolution in several viral and bacterial diseases: the human HIV, where virulence is evolving 

toward lower values (Arien et al., 2007), and the pathogenic Escherichia coli, where virulence is 

evolving toward higher values (Reid et al., 2000). 

The problem of virulence evolution is relevant not only from the theoretical point of view (Read, 

1995), but also for its large implications in human health (Wilson et al., 1994). Several emerging 

diseases (e.g., Lyme disease, Hantavirus, Ebola) were already circulating in restricted areas in wild 

animal populations (Gibbons, 1993; Leroy et al., 2005) and – afterwards evolutionary pressure 

linked to climate change and land use – they emerged as zoonotic threats for humans and other 

species (Schrag and Wiener, 1995; Daszak et al., 2000). Data from the World Health Organization 

(www.who.org) and Center for Disease Control and Prevention (www.cdc.gov) have shown that 

infectious diseases are the main cause of mortality in developing countries because of social, 

cultural, and environmental aspects such as: demographic growth, poverty, malnutrition, increase in 

mobility, and changes in land use  (Wilson et al., 1994). Virulence evolution implies disease control 

problems in developed country also, as indicated by cases of virulence control in hospitals. 

Theoretical models and field observations have shown that extensive use of vaccines and antibiotics 

may cause, in specific conditions, the selection of strains resistant to common control therapies 

(Björkman and Phillips-Howard, 1990; Anderson and May, 1991; Smith et al., 2005). Furthermore, 
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several theoretical works showed that infection control through vaccination may affect the evolution 

of disease induced mortality in different ways (Gandon et al., 2001; Iannelli et al., 2005). 

Recently, disease spread between wild and domestic animals has become a significant health 

problem due to their economic and veterinary consequences and risks for human health (Longini et 

al., 2005). The classical swine fever (CSF) is a highly infectious disease of domestic and wild pigs. 

Whereas the incidence of CSF in Western Europe is decreasing (despite outbreaks in Germany in 

2006), the disease is still endemic in many regions, such as South-East Asia, Eastern Europe, and 

Central and Southern America (Edwards et al., 2000). CSF in Europe is a notifiable disease, 

according to Council Directive 82/894/EEC. A case notification in intensive livestock farm implies 

the compulsory slaughter of the whole herd, by causing considerable economic losses (Horst et al., 

1997; De Vos et al., 2005). 

Wild boar (Sus scrofa) are considered the main reservoir for the classical swine fever permitting the 

disease transmission to domestic animals (Aubert et al., 1994). Then, a great deal of effort has been 

focused on the eradication of the disease in wildlife. Historically, control and eradication of 

classical swine fever in wild boar have been performed through selective removal of animal by 

hunting (used term hereafter: culling). Theoretical models showed that diseases may be eradicated 

from wild host population by reducing host density below a fixed threshold (called critical 

community size) and, consequently, reducing the contact rate between infected and susceptible 

animals (Anderson et al., 1981). Culling is not exempt of criticism (Szent-Ivánky, 1984; 

Laddomada, 2000). Guberti et al. (1998) observed that culling may change wild boar population 

structure in favour of younger and more-susceptible individuals since hunters usually prefer to 

shoot older, less-susceptible individuals. Moreover, the original population density may be quickly 

re-established as a result of the high fertility of wild boar. As a consequence, the threshold level is 

never reached and the disease cannot be completely eradicated (Laddomada, 2000). Finally, hunting 

parties may push wild boar from their natural home range. This could lead to an increase in contact 

rate despite a reduction in population density (Guberti, 1991; Sodeikat and Pohlmeyer, 2002). 

Practically, culling might not lead to the eradication of the infection in the wild, but the opposite: by 

reducing host density, disease endemisation could be favoured. Furthermore, host density drop may 

favour selection of less virulent strain in wild boar, but equally dangerous in domestic pig. Less 

virulent strains may persist in more sparse population posing a more dangerous threat to pig farm. 

The aim of this chapter is to evaluate if, and under which condition, depopulation by culling could 

select for lower virulent strains able to persist in more sparse host populations. I used the 

compartment model approach by performing a SI(R) (Susceptible-Infected-Recovered) model 

(Kermack and McKendrick, 1927) with two different infectious individual classes and taking into 
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account the competition effects between strains of different virulence. I also discussed the effect of 

host immunity on strain selection. I chose CSF as a reference disease because the etiologic agent 

responsible for the infection (classical swine fever virus) is an RNA virus with a mutation rate 

sufficiently high to generate genetic variability during the outbreaks (Stadejek et al., 1997; Greiser 

Wilke et al., 1998; Hofmann and Bossy, 1998; Vilcek and Belak, 1998). 
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2. THE MODEL 

 

In this section, I introduce a two-strain epidemic model for a wildlife host population. I build the 

epidemic model through different level of complexity (Scott and Smith, 1994) by starting with the 

description of the disease-free host dynamics and, subsequently, by introducing the one- and two- 

strain disease dynamics. 

 

2.1. Host dynamics without disease 

Lets S(t) the susceptible host density in the population. In the absence of infective agent, the 

population dynamics may be described as follows:  

 

SSGS )(=&         ( 1 ) 

where S&  is the rate of change of S with respect to time; G(S), the growth rate, a monotonically 

decreasing function of S, with G(0) > 0 and G(K) = 0 (where K is the carrying capacity of the host). 

As a consequence, equation (1) has two different equilibria (corresponding to 0=S& ) for S = 0 and 

S = K. These results are true for a large range of G(S) functions; however, without losing generality, 

I assume that host population grows with logistic dynamics as follows (Verhulst, 1838): 
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where r [time
-1

] is the intrinsic growth rate (i.e., the growth rate at low population density). 

 

2.2. One-strain epidemic model 

Looking from an epidemiological point of view, in the case of a single infective agent (e.g., strain 

1), the host community can be subdivided at any time (t) into two compartments with respect to the 

circulating strain: susceptible individuals S(t) (i.e., those which do not already experience the 

infection) and infected individuals I1(t) (i.e., those who are infected by the strain 1). The host-

parasite dynamics may be described as follows: 

 

11)( SISSGS β−=&       ( 3a ) 

11111 )( ISII µαβ +−=&      ( 3b ) 

Following conventional lines (Kermack and McKendrick, 1927), I assume that the rate at which 

hosts acquire infection is proportional to the number of encounters between susceptible and infected 

individuals: β1SI1; where β1 [time
-1

 #infected host
-1

] represents the transmission coefficient, with 
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1

1

−β  proportional to the average time interval between host contacts; µ [time
-1

] represents the 

natural mortality rate of a disease-free host, and its inverse (µ-1
) can be easily calibrated as the 

average lifetime of the host species. Finally, α1 [time
-1

] represents the increasing in mortality rate 

due to the infection (usually called disease-induced mortality or virulence). Therefore, (α1 + µ)
-1

 

represents the average lifetime of a host infected by the strain 1. It is possible to prove that the strain 

1 infective agent can spread in the population if and only if: 
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where R0 is the basic reproduction number, i.e., the average number of secondary infections by a 

primary infection in a totally susceptible population at its carrying capacity K (Anderson and May, 

1979). Alternatively, I can state that the disease can persist in the host population if and only if the 

carrying capacity of the host population is set above a fixed threshold, 
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that is, the strain 1 infective agent can spread in the population if and only if the host density (K) is 

larger than the threshold level KT1 (which can be termed critical community size (Bartlett, 1957)). 

This means that, under the threshold level described in (5), the host population is too sparse and 

there are too few contacts among individuals to sustain the infection. Equation (5) shows that, for 

the value of the transmission coefficient (β1), the lower the disease-induced mortality (α1), the more 

difficult it is to achieve the disease eradication. As a consequence, it is more difficult to eradicate a 

low virulent strain than a high virulent one. Indeed, a low virulent strain can persist in more sparse 

population since larger life expectancy for infected hosts allows more possibility for contacts 

between individuals. 

If R0 > 1, after a transient period, susceptible and infected hosts reach a stable equilibrium: 
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equations in (6) are usually defined as endemic equilibrium. 

 

2.3. Disease control through culling for one circulating strain 
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By using the threshold criteria defined above, I introduce the analysis of the disease control policy 

effectiveness based on culling, i.e. the selective removal of animals from the population. The core 

issue of culling strategy is to push host population density below the threshold for disease invasion 

through the removal of a sufficient number of specimens (Grenfell and Dobson, 1995). 

Lets c the culling rate, which represents the eradication effort. This formulation assumes that the 

animals culled each year are a constant fraction of the population, rather than a fixed quota. Then, 

model (3) with the add of disease control through culling takes the form: 

 

)()( 11 cSSISSGS +−= β&       ( 7a ) 

11111 )( IcSII ++−= µαβ&       ( 7b ) 

I assume that all classes are subject to culling. If the assessment of the clinical state of animals on 

the field was possible, it would implement more selective forms of culling. In practice, this is not 

possible in wild populations and the culling equally affects all the epidemiological classes. 

For sufficiently large culling rate values, the disease cannot persist in the population. The most 

precautionary policy implies the totally prevention of the disease spread. It is possible to prove that 

for a sufficiently large effort, the number of infected always decreases. Mathematically: 
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where R0 is defined as in (4). 

If host population growth follows logistic dynamics (2), the threshold value of culling rate for 

disease eradication will be: 
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Equation (9) shows that ce is always smaller than c
*
. It follows that, by applying culling efforts 

between values ce and c
*
 (c

*
 > c > ce), the infection initially spreads in the population and producing 

an epidemic peak will subsequently not be able to persist and becomes extinct. 

 

 

2.4. One-host and two-strain epidemic model with culling 

If two infective agents co-circulate in the population, the host-pathogen system can be described 

with a three compartmental model with a susceptible class S(t), i.e. healthy individuals that can be 

infected by both strains, and two infected classes I1(t) and I2(t), i.e. individuals infected by strain 1 

(with low virulence) and strain 2 (with high virulence), respectively. Thus the model takes the form: 
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)()( 2211 cSSISISSGS ++−= ββ&       ( 10a ) 

211211111 )( IIIcSII βµαβ −++−=&       ( 10b ) 

211222222 )( IIIcSII βµαβ +++−=&      ( 10c ) 

where G(S), µ and c are as indicated in (3); α1 and α2 are respectively the strain 1 and strain 2 

disease-induced mortality rates (with 12 αα >> ); β1 (β2) is the strain 1 (strain 2) transmission 

coefficient from strain 1 (strain 2) infected to susceptible individual; β12 is the super-infection 

transmission coefficient denoting the rate of transmission from I2(t) to I1(t). Hosts can leave the 

susceptible compartment (S) for three reasons: i) to die independently from infection, ii) to contact 

strain 1 infected and moving in class I1, iii) to contact strain 2 infected and moving in class I2. I 

assume that individuals infected by the strain 1 (I1) which come into contact with individuals 

infected by the second strain (I2) become re-infected with the strain 2. This process is referred to as 

super-infection. The biological assumption justifying super-infection processes is that more virulent 

pathogens reproduce themselves faster within the host than the less virulent ones. Then, when an 

individual already harbouring the strain 1 is infected by the strain 2, it is assumed that the more 

virulent strain will out-compete the less virulent strain within the infected host (Nowak and May, 

1994). The super-infection process as in (10b,c) describes the limit case of within-host competition 

between strains, without taking into account cases of coinfection (i.e., the contemporary infection 

from different pathogens in the same host), where both strains coexist in the host. Preliminary 

analyses showed that model behaviours (presented in the next sections) do not qualitatively change 

introducing coinfection processes in (10). Therefore, in order to minimize model complexity, I 

present results related to the model without coinfection. 

 

2.5. Further assumptions 

In this section I specify some hypotheses on model (10) parameters. First, strain 2 virulence is 

larger than strain 1; this difference is translated mathematically through inequality: 

 

12 αα >>       ( 11 ) 

Therefore, strain 2 disease-induced mortality is larger than strain 1; with individuals in class I2 

exhibiting a shorter life expectancy than individuals in class I1. 

Second, transmission coefficient values do not need strict assumptions: in epidemic modelling it is 

usually assumed that β2 is equal or larger than β1, since larger virulence implies faster replication 

rate inside the host and therefore larger transmission probability (Nowak and May, 1994). Be that as 
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it may, I assumed that the strain 1 basic reproduction number (R01) is larger than that of the strain 2 

(R02), that is: 
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This implies that, by considering the two strain infections separately, the eradication threshold for 

the strain 1 (KT1) is lower than the strain 2 threshold (KT2). In other words, strain 1 eradication is 

more difficult than the eradication of the strain 2. 

In the next section I analyse model (10) behaviours as a function of the super-infection transmission 

coefficient (β12) and of the culling effort (c). I present the analysis in two different step. First, I 

discuss the conditions for the two strains coexistence and exclusion in the absence of control. 

Second, I use the case of classical swine fever in wild boar to analyse the effects of the control 

through culling on strain competition. 

 

3. RESULTS: Coexistence or competitive exclusion? 

In the absence of control, I may distinguish two sub-cases. In the absence (β12 = 0) and in the 

presence of super-infection (β12 > 0). In the first case it is possible to prove that the strain with 

faster reproduction (i.e., larger basic reproduction number R0) spreads in the population out-

competing that with a slower rate. For model (10), since R01 > R02, the less virulent strain (strain 1) 

out-competes the more virulent one (strain 2), that becomes extinct in the population. In other 

words, strain 1 has a competitive advantage compared to strain 2 because of its ability to persist in 

populations with lower density (KT1 < KT2). Individuals infected by strain 1 have higher life 

expectancy than strain 2 infected. They circulate in the population for more time infecting on 

average more susceptible individuals. In the absence of super-infection, the competition selects 

strains with low virulence, because high virulent strains kill their host too fast to be competitive. 

In the second sub-case, presence of super-infection (β12 > 0), the model (10) behaviour depends 

upon the value of super-infection transmission (β12). I define: 
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It is possible to distinguish three different competition outcomes as a function of the super-infection 

transmission coefficient (β12): if 
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the strain 1 out-competes strain 2; if 
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both strains coexist in the population; if 
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the strain 2 out-competes strain 1. 

Therefore, two strains with different virulence may coexist in the population if and only if: i) super-

infection mechanisms play out; ii) the super-infection transmission is sufficiently large (see (13)). 

Furthermore, it is possible to proof that larger carrying capacities (K) favour strain coexistence. As 

a consequence, high host densities favour the persistence of large virulent strains, unable to persist 

at low population densities. 

 

3.1. The case of classical swine fever 

In this section I analyse how disease control policies through culling affect the competition 

processes between strains. I use the classical swine fever in a wild boar population located in North-

Eastern Sardinia (Italy) as a reference disease (Guberti et al., 1996; Guberti et al., 1998). Parameter 

values used in the numerical simulations as shown in Table 1. The disease-free wild boar population 

density is 600 individuals in an area of 220 km
2
, that corresponds to 2.73 individuals/km

2
. The 

intrinsic birth rate at low density is 0.7 [years
-1

]. The mortality rate for disease-free individuals is 

0.2 [years
-1

] which corresponds to a life expectancy of 5 years. Regarding the epidemiological 

parameters, I assumed the life expectancy for host infected by strain 1 is 70 days, then α1 = 1/70 

[days
-1

] = 5 [years
-1

]; and the life expectancy for host infected by strain 2 is 24 days, then α2 = 1/24 

[days
-1

] = 15 [years
-1

]. I set the transmission coefficients in Table 1 to obtain basic reproduction 

numbers consistent with Guberti et al. (1998) results, that is R01 = 4.6 and R02 = 2.37.  

Unfortunately, direct or indirect estimates of super-infection transmission are not available for the 

classical swine fever. To show a possible counter-intuitive deleterious effect of culling I analysed 
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model (10) in the case of large β12 values (as in 13c). I assume β12 is equal to 0.84, which implies 

that the more virulent strain (strain 2) out-competes the less virulent one in the absence of culling. 

I computed the asymptotic behaviours of model (10) variables as a function of the culling effort c 

(which corresponds to the annual population fraction harvested). The model behaviours were 

analysed through bifurcation analysis using numerical continuation methods implemented in the 

specialized software LOCBIF (Khibnik et al., 1993) and CONTENT (Kuznetsov, 1998). 

In Fig. 1 I show the disease prevalence in the host population as a function of the fraction of the 

animals removed annually. When only strain 2 circulates in the population, the disease prevalence 

at the equilibrium in the absence of culling is about 2.6%. Increasing culling effort, prevalence 

decreases monotonically until the disease eradication, which is obtained by culling more than 32% 

of the population annually; then the critical community size is 1.15 individuals/km
2
 (see light gray 

dashed curve in Fig. 1). When only strain 1 circulates in the population, the disease prevalence at 

the equilibrium in the absence of culling is higher than case of larger virulence, about 9.5%. The 

complete disease eradication needs larger culling effort (about 41% of individuals removed 

annually) and the critical community size is 0.59 individuals/km
2
, which is 50% lower than the 

previous case  (see dark gray dashed curve in Fig. 1). When both strains circulate at the same time 

in the host population, model (10) shows more complex behaviours, as described in Fig. 1. In the 

absence of culling effort the more virulent strain (strain 2) out-competes the less virulent one and 

establishes itself in the population (see dark grey solid curve in Fig. 1). Increasing culling effort, 

strain 2 prevalence decreases as seen in the single strain case until the fraction of individuals 

Parameter Symbol Value Measure unit 

Intrinsic growth rate r 0.7 year
-1

 

Natural mortality rate  µ 0.2 year
-1

 

Carrying capacity K 600 #individuals/220 km
2
 

low virulent strain disease-induced mortality α1 5 year
-1

 

high virulent strain disease-induced mortality α2 15 year
-1

 

low virulent strain transmission rate β1 0.04 #strain 1 infected/ Year
-1

 

high virulent strain transmission rate β2 0.06 #strain 2 infected/ Year
-1

 

super-infection transmission rate β12 0.84 #strain 2 infected/ Year
-1

 

Tab. 1: Parameters values as estimated by Guberti et al. (1996) and Guberti et al. (1998) for classical swine fever in wild boar 

in Sardinia (Italy). 
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removed reaches c. 5% of the total population. Above this threshold the decrease of host density 

due to culling favours the less virulent strain persistence and the two strains coexist in the 

population (grey region in Fig. 1). In the grey region, the strain 1 prevalence increases with the 

culling effort, while strain 2 prevalence drops faster than in the single strain scenario. When the 

fraction of removed individuals exceeds 17-18% the less virulent strain (strain 1) out-competes the 

more virulent one and establishes itself in the population. Further increases in culling effort cause 

decrease in strain 1 prevalence until complete disease eradication at 42% of removed individuals. 

I notice that, for intermediate value of culling, the total disease prevalence in the population 

increases with the effort (see thin black curve in Fig. 1), as opposed to the single strain cases. 

 

The increase of prevalence as a function of culling effort may have a dramatic effect in management 

policies. Indeed, the contemporary presence of super-infection mechanisms and culling policies 

may modify the result of the strain competition affecting the total prevalence of the disease. As 

shown in Fig. 1, removing efforts powerful enough for the eradication of the strain 2 from the 

population (about 30% of individual removed) favour condition to the strain 1 spread and 

persistence, with the consequence of an increase of disease prevalence. Then, this policy not only 

proves to be ineffective (because can not eradicate the disease), but also counter-productive for 

disease control.  

 

Fig. 1: Prevalence of the less virulent strain I1 (dark grey curve), more virulent strain I2 (light grey curve), and total 

prevalence (black thin curve) at the equilibrium point of model (10) as function of the fraction animal removed 

annually. Solid lines represent the equilibria in the two-strains model, while dashed lines represent the equilibria in 

the one-strain model. Parameter values as in Tab. 1. 
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3.2. The effect of immunity 

In previous paragraphs I analysed the outcomes of strain competition due to culling control by using 

the most simple SI multi-strain model to highlight the key mechanisms promoting strain selection. 

In this paragraph I discuss the consequences on strain selection of host acquired immunity. I 

introduce a new compartment in model (10) to describe individuals who recover after the infection 

(R class). Then, the strain competition model with immunity takes the form:  

 

)()( 2211 cSSISISSGS ++−= ββ&       ( 14a ) 

211211111 )( IIIcSII βδµαβ −+++−=&      ( 14b ) 

211222222 )( IIIcSII βδµαβ ++++−=&      ( 14c ) 

RcIIR )(21 +−+= µδδ&        ( 14c ) 

where δ [time
-1

] is the recovery rate of the infected individuals under the assumption that both 

strains have the same recovery rate. 

I summarize the results obtained by model (14) in Fig. 2 by showing the bifurcation diagram of 

model (14) in the space of fraction animal removed annually and recovery rate parameters. In the 

absence of culling (vertical axis) the more virulent strain (I2) persists for any values of recovery rate 

lower than δ4 (i.e., R0 > 1), while the less virulent one (I1) persists only for intermediate values of 

recovery rate (δ2 < δ < δ3), unable to exclude the other strain by the competition. Along the 

horizontal axis (δ = 0) it is possible to identify the bifurcation sequence of the without-immunity 

model (10): more virulent strain persistence for low culling efforts (I2 region), strain coexistence for 

intermediate culling efforts (Coex region), less virulent strain persistence for high culling efforts (I1 

region), and disease extinction (Disease-free region) for culling effort larger than ce (see (9)). 

Increasing the recovery rate it is possible to obtain complete disease extinction for lower value of 

culling effort, and Fig. 2 shows that the extinction threshold is a linear function of δ (black curve). 

On the contrary, strain competition in grey regions (where disease persists) shows more complex 

behaviours as a function of the recovery rate. For low values of δ (< δ1), both strain exclusion and 

strain coexistence are feasible for different level of culling, as in the case of absence of immunity. 

For δ1 < δ < δ2, the more virulent strain (I2) cannot out-compete the less virulent strain for any level 

of culling; then, strain coexistence and less virulent strain persistence (I1) are the only two feasible 

competition outputs. For δ2 < δ < δ3, both strain exclusion and strain coexistence are feasible, while 

for δ3 < δ < δ4 only the more virulent strain can persist in the population. 
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As shown by model (14) analysis, disease 

immunity may affect strain selection. 

Furthermore, change in recovery rate 

does not have univocal effects on strain 

competition, favouring alternatively low 

and high virulence strain persistence, in 

terms of initial recovery rate value and 

culling pressure. 

 

 

 

 

Fig. 2: Bifurcation diagram of the SIR model (14) in the parameter 

space of fraction animal removed annually and recovery rate. In 

parameter region ‘Disease-free’ infection can not persists in the 

population; in region I1 (I2) only the less (more) virulent strain 

persists; in region ‘Coex’ both strain coexist. See the main text for 

further details. Other parameter values as in Tab. 1. 
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4. DISCUSSION AND CONCLUSIONS 

 

The results here presented suggest that depopulation through culling may theoretically favour the 

selection of less virulent strains in wildlife diseases. This implies a decrease in the critical 

community size threshold for disease extinction (KT) and, consequently, an increase in the culling 

effort for disease eradication. Furthermore, culling policies providing intermediate level of animal 

removal may produce an increase in the total prevalence of the disease in a population, with 

opposite results than expected. Thus, culling effort for complete disease eradication may be 

unfeasible due to large implementation costs or because of the risk for host population persistence. 

The results obtained with model (10) suggest that disease control through host removal may affect 

virulence selection only in the presence of super-infection. Therefore, in the case of classical swine 

fever, it will be necessary to verify through laboratory and field tests if during the epidemic: i) 

genetically and antigenically different strains coexist, as shown by Stadejeck et al. (1997) for 

epidemics in Estonia, Poland, Hungary, and Slovakia in the 1990s and Hoffmann and Bossy (1998) 

for 1993 epidemic in Switzerland; ii) host immunological response varies in different strains, 

suggesting different virulence, as shown by Kosmidou et al. (1998). Then, if both conditions are 

satisfied, it is possible that, by manipulating host density through culling, less virulent strains will 

be selected with management consequences as highlighted above. Similarly, Iannelli et al. (2005) 

showed that control of human disease through vaccination may lead to the establishment of less 

virulent strains in the presence of super-infection. 

In the presence of co-infection or super-infection optimal policies do not exist a priori. As 

suggested by model (10) analysis, if large levels of culling are not possible, disease control may 

cause larger infection than the do-nothing policy. The analysis of model (10) transients shows large 

oscillations in the number of infected, thus large epidemic peaks alternate with long inter-epidemic 

periods characterized by very low level of infection. Therefore, it is possible that, during the inter-

epidemic periods, infection might be extinct due to environmental noise (stochastic fade-out, see de 

Castro and Bolker, 2005). Preliminary results obtained through the stochastic version of model (10) 

confirm this expectation. On the contrary, an insufficient depopulation does not provide disease 

eradication, and may cause dumping in epidemic oscillation favouring disease endemisation. I 

analysed the effects of host acquired immunity on strain selection. My investigations showed that 

disease immunity may dramatically affect strain selection and that variation in recovery rate does 

not have univocal effects on strain competition. Then, combining control policies of culling and 

animal treatment or vaccination (that increase host resistance) may cause the selection of 

unpredictable values of disease virulence. 
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ABSTRACT 

In the epidemiological literature, the eradication of a wildlife disease through culling is usually 

described in terms of a constant hunting rate to simulate the selective removal of animals from the 

population. By using simple SI (Susceptible-Infected) models it is easy to prove that if the hunting 

rate is high enough the population eventually drops below a critical threshold level under which the 

pathogen is deemed to be extinct. However, hunting costs as well as the monetary benefits of 

disease control are almost systematically neglected. Moreover, the hunting rate is usually assumed 

to be constant over time, while in reality, health authorities can implement more flexible culling 

policies. In this chapter I examine a class of more realistic time-variant culling strategies in a cost-

benefit framework. Culling strategies differ in the way decisions are made about when and how 

much to cull. That is, whether hunting occurs when disease prevalence, host population density or 

the number of carcasses exceeds (or is below) a given threshold. For each culling strategy, the 

optimal value of the control parameters and the hunting rate are those that minimize the sum of the 

culling costs and the sanitary costs associated with infection over a specific period of time. Classical 

swine fever (CSF) in wild boar populations has been taken as a reference example because of its 

potential economic impact on industrialized and developing countries. 

I show that the optimal time-flexible culling strategy is invariably more efficient than the best 

traditional strategy in which the hunting rate is held constant through time. I also show that the type 

of hunting strategy that is selected as optimal depends on the shape of the cost functions.  
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1 INTRODUCTION 

Classical swine fever (CSF) is a highly infectious disease; outbreaks of it are responsible for severe 

losses in pig farming worldwide. While the incidence of CSF in Western Europe is decreasing, the 

disease is still endemic in many regions, such as South-East Asia, Eastern Europe, and Central and 

South America (Edwards et al., 2000). There is still debate on the relative efficacy of different 

strategies to control and prevent disease outbreaks. In the European Union, Mexico and Brazil, the 

preventive vaccination of susceptible animals on pig farms is prohibited. Measures for the control 

and eradication of CSF in domestic pigs usually include the pre-emptive slaughtering of an entire 

herd when an infected pig is detected and the establishment of protection and surveillance zones 

around pig-farms to prevent animal translocation outside the potentially contaminated area 

(Wilpshaar et al., 2002). The economic impact of these measures on the pig industry can be 

dramatic in industrialized countries (e.g., 11 million animals have been slaughtered in the 

Netherlands in 1997-98; 2 million in Germany, and more than 2 million in Spain, Belgium and Italy 

combined during the same period) and in developing ones (e.g., 414,000 animals have been 

slaughtered in Cuba from 1993 to 1997). As a consequence, pig farmers have asked for effective 

and comprehensive strategies to prevent disease outbreaks, rather than controlling them once they 

have occurred. In many countries, but especially in Russia and her former Eastern Block allies, the 

wild boar (Sus scrofa) is implicated as a reservoir of classical swine fever and as supporting disease 

transmission to domestic animals (Aubert et al., 1994). For this reason, a great deal of effort has 

been focused on the eradication of the disease in wildlife. The main disease control measure in wild 

boar relies on culling, that is the selective removal of animals by hunting, to draw population 

densities below the critical threshold for the eradication of the disease. In animal epidemiology, it is 

well known that when transmission is density-dependent – as in CSF – a suitable reduction in the 

contact rate between infected and susceptible animals forces the disease to fade out (Anderson et 

al., 1981). Vaccination policies have also been tested (e.g., see Kaden et al., 1997), and have been to 

slow the spatial diffusion of the virus, but have proved to be ineffective in achieving disease 

eradication. One potential reason is that younger animals are both more susceptible to CSF, since 

they have not yet developed an immune response, and are a difficult target for vaccination in the 

wild, because vaccine-bearing baits are usually picked up by older, more experienced (and less-

susceptible) individuals. In practice, this prevents the vaccination of the younger, more susceptible 

age classes, and limits the effectiveness of vaccination. 

Since population size, demographic vital rates, epidemiological parameters and rates of movement 

are hard to estimate through fieldwork, the disease dynamics may remain poorly understood (Artois 

et al., 2001). For all these reasons, the control of the disease in wildlife is definitely more 
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challenging than in the case of pig farms. Unfortunately, while the epidemiological aspects of 

infectious disease eradication in wildlife (Artois et al., 2001; Matthews et al., 2003; Karsten et al., 

2005a,b) and the economic effectiveness of implemented agricultural policies (De Vos et al., 2005) 

have been the subject of some investigation, the economic costs and benefits associated with 

different eradication strategies in wildlife have scarcely been analysed.  

The purpose of the present chapter is the evaluation of the effectiveness of a number of alternative 

culling policies on the basis of the costs associated with wild boar culling and with the transmission 

risk from wild boar to domestic pigs. More specifically, the aim is to assess whether and how time-

variable culling policies can be more efficient than the best constant-culling policy. 

The problem is approached within a conceptual framework in which the goal is to minimize the 

total costs by finding the best trade-off between culling cost and sanitary cost of CSF. While in 

principle the problem could be solved through optimal control techniques in order to derive 

unconstrained, very flexible, and detailed culling strategies, in practice, only simple policies based 

on a few control parameters can be implemented. The wildlife agencies that implement culling 

strategies are faced with logistical limitations and constrained by government regulations that 

prevent them from applying complex, adaptive eradication policies. Especially (but not exclusively) 

in developing countries disease control activities are further constrained by limited funding. As a 

consequence, I have analysed a broad range of culling policies defined by only a few control 

parameters and a number of variables observable in the field, such as wild boar density and the 

disease prevalence in the population. In this sense, I concentrated the investigation to a sub-optimal 

class of culling policies applied to a SI epidemic model developed by De Leo and Guberti (2003) to 

simulate the dynamics of CSF in wildlife. I illustrate the mathematical formulation of the cost 

functions associated with a CSF policy that only needs simple and easily retrievable or measurable 

data or information for implementation. 

The chapter is organized as follows: after a brief description of the epidemic model of a wild boar 

population with culling activities, I analyse the performance of different time-variant culling 

policies selected from a fixed class of policies. Finally, I present the results of a sensitivity analysis 

and discuss the main results obtained with the model. 
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2 EPIDEMIOLOGICAL MODEL 

In order to simulate the costs and monetary benefits of different culling strategies, the epidemiology 

of CSF has been simulated using a modified version of the model developed by De Leo and Guberti 

(2003). The model assumes a self-regulating wild boar population with a density-dependent birth 

rate: i.e., I describe a population, N(t), with logistic growth in the absence of disease with intrinsic 

growth rate r and carrying capacity K (Verhulst, 1838). 
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When the model includes epidemic dynamics, the wild boar population, N(t), can be generally 

divided into different compartments: a susceptible class S(t) – i.e., healthy individuals that can be 

infected by the disease – and an infected class I(t) – i.e., sick individuals that can infect other 

individuals. Following conventional lines (Kermack and McKendrick, 1927), I assume that the rate 

at which wild boar acquire CSF is proportional to the number of encounters between susceptible 

and infected wild boar: βSI; where β is the transmission coefficient, with 1/β being proportional to 

the average time interval between wild boar contacts. 

The causative disease agent, the CSF virus (CSFV), has a high degree of genetic variability and 

different strains of CSFV can co-circulate in a single host population (Stadejek et al., 1997; Pan et 

al., 2005). Usually, these strains are characterized by different epidemiological parameters, such as 

the degree of virulence and transmission, and they compete with each other to become established 

in the host population (Gennip et al., 2004; Kaden et al., 2004b). In this chapter, I describe the 

simplest competition model between strains: a two-strain epidemic model in which one strain can 

infect individuals already infected by the other (called a super-infection mechanism). Both of the 

two CSFV strains can infect susceptible individuals: the low virulent strain (strain 1) is 

characterized by a low disease-induced mortality rate, α1, and the more virulent strain (strain 2) is 

characterized by a high disease-induced mortality rate, α2. Accordingly, the wild boar population, 

N(t), in model (1) is divided into three compartments: density of susceptible individuals, S(t), 

density of individuals infected with strain 1, I1(t), and density of individuals infected with strain 2, 

I2(t). For a susceptible wild boar, the per-capita probability of getting a type-1 infection is 

proportional to the density of type-1 infected individuals, I1(t), through the transmission rate β1; 

while, the probability of getting a type-2 infection is proportional to, I2(t), and β2 transmission. β12 

is the super-infection coefficient denoting the rate of transmission from I2(t) to I1(t). When an 

individual already harbouring the type-1 strain is infected by the type-2 strain, it is assumed that the 

more virulent strain out-competes the less virulent one within the infected host (Nowak and May, 

1994). 
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The final model is given by: 

uSSIufSIuf
K

N
rSS −−−








−= 2211 )()(1 ββ&     ( 2a ) 

211211111 )()()( IIufIuSIufI βµαβ −++−=&     ( 2b ) 

211222222 )()()( IIufIuSIufI βµαβ +++−=&     ( 2c ) 

where µ is the natural mortality rate, u the culling effort, N is the total population size (N = S + I1 + 

I2) and 
2
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+= , a function accounting for the increase in animal contact rate that occurs 

during hunting when wild boar are driven from their natural home range (Sodeikat and Pohlmeyer, 

2002). Function f(u) mimics the type III functional response of a predator, where a is the maximum 

increase in transmission and b is the half-saturation constant (Hassell et al., 1977). In describing the 

home range increase due to hunting, I chose an S-shaped functional response (as type III) rather 

than the classical type II functional response because, at low hunting levels, wild boar groups may 

not leave their home range, while they leave it permanently if the hunting level is high (Maillard 

and Fournier, 1995) thus increasing the contact rate between infected and susceptible individuals. 

Demographic and epidemiological parameters, reported in Tab. 1, have been estimated by De Leo 

and Guberti (2003) with reference to the wild boar population of Sardinia (Italy) where CSF is 

endemic (Guberti et al., 1996; Guberti et al., 1998). 

 

Parameter Symbol Value Measure unit 

Intrinsic growth rate r 0.5 year
-1

 

Natural mortality rate  µ 0.2 year
-1

 

Carrying capacity K 600 #individuals/220 km
2
 

low virulent strain disease-induced mortality α1 5 year
-1

 

high virulent strain disease-induced mortality α2 15 year
-1

 

low virulent strain transmission rate β1 0.04 #strain 1 infected/ Year
-1

 

high virulent strain transmission rate β2 0.06 #strain 2 infected/ Year
-1

 

super-infection transmission rate β12 0.86 #strain 2 infected/ Year
-1

 

Tab. 1: Parameters values as estimated by Guberti et al. (1996) and Guberti et al. (1998). 
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It follows that, when isolated, the culling rate for the eradication of the more virulent strain, 

calculated through model (2), is about c = 0.28 year
-1

 (that is, culling 28% of the host population in 

a year), while, for the eradication of the less virulent strain, c is about 0.38 year
-1

 (see Fig. 1 where I 

show the prevalence of the two different strains at the model equilibria as a function of the culling 

effort). As a consequence, it is more difficult to eradicate the less virulent strain than the more 

virulent one, since the less virulent strain can persist in a less dense population. The population 

density is a key control parameter when the two strains compete for the same host. De Leo and 

Guberti (2003) showed that if the population carrying capacity is sufficiently high and there is no 

hunting mortality, the more virulent strain out-competes the less virulent one and establishes itself 

in the host population (see strain 2 region in Fig. 1); yet, the small reduction in the population 

density caused by culling allows the less virulent strain to coexist with the more virulent one (see 

coexistence region in Fig. 1). By further increasing the culling effort, it is possible to eradicate the 

more virulent strain from the population without eradicating the less virulent strain, since the 

threshold density for eradication of the less virulent strain is substantially lower (see strain 1 region 

in Fig. 1). As a consequence, the culling effort required to completely eradicate the disease from the 

population (i.e., both strains) can be substantially larger than the culling effort estimated by 

assuming that only the more virulent 

strain is established in the infected 

population. Therefore, if the culling 

effort is not large enough for the 

complete eradication of the disease 

from the population, the effects of 

culling may be worse than the “do-

nothing” alternative, as shown in Fig. 1. 

In fact, disease prevalence (as well as 

the number of infected individuals) 

under moderate culling can be larger 

than in the case of no-culling. On the 

other hand, very high culling efforts can 

be too expensive to be achieved. 

 

Fig. 1: Prevalence of the less virulent strain I1 (black curve), more 

virulent strain I2 (dark grey curve), and total prevalence (light grey 

curve) at the equilibrium point as function of the constant culling rate 

( u ). Solid lines represent the equilibria in the two-strains model, 

while dotted lines  represent the equilibria in the one-strain model. 

The parameters of the function f(u) have be fixed to: a = 0.3, and b = 

0.1. Other parameter values as in Tab. 1. 
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THE COSTS OF CSF OUTBREAKS AND DISEASE ERADICATION 

The transmission of CSFV from wild boar to domestic pigs may cause extensive damage to the pig 

industry worldwide, because in many countries, all the pigs on infected farms must be slaughtered 

and properly disposed of (usually burned) according to the legislations in force (see Edwards et al., 

2000). Moreover, in order to reduce the risk of contamination and further economic losses to nearby 

farms, sanitary belts are enforced around the infected farms to prevent the movement of animals and 

equipment and pig trade outside the belts. (Meuwissen et al., 1999). These costs can be borne by the 

government to compensate for economic losses. On the other hand, depopulation of wild boar by 

hunting also comes at a cost, since a considerable effort in terms of the time and staff of wildlife 

agencies is required to cull wild boar as they become rare. Moreover, hygienic measures, such as 

the treatment of carcasses and the sanitary inspection of killed specimen, also increase the cost of 

hunting. As a result, the lower the threshold population density is for disease eradication, the higher 

are the culling costs.  

Total costs are thus given by the sum of two factors. The first is simply the culling cost CH and 

includes the cost of organizing and carrying out hunting activities, monitoring population densities, 

checking for disease prevalence, etc. The second comprises the damages associated with disease 

transmission to pig farms (from here on also referred to as sanitary costs, CF) and includes costs for 

control measures (such as pig slaughtering and carcass disposal, movement restriction, supply and 

delivery problems and farms disinfection), missing revenues caused by the interruption of 

production activities, and the costs of farms repopulation (see Meuwissen et al., 1999 for a review). 

Generally, low culling rates imply low culling costs CH and high sanitary costs CF, while high 

culling rates imply high CH and low CF. As the probability of CSF spreading to pig farms increases 

with the number of the infected wild boar, I assumed the sanitary cost CF is an increasing function 

of the total infected individuals’ density, namely: 

γ))()(()( 21 tItIctC FF +=       ( 3 ) 

where cF ≥ 0 is the unitary cost of an infection which takes into account the costs of control 

measures (see description above), the probability of transmission from wildlife to pig farms, density 

of pig farms and the average number of pigs per farm; γ > 0 is a shape coefficient which takes into 

account nonlinearities in the relationship between the level of infection and the sanitary costs. 

Consequently, γ > 1 (γ < 1) means that the sanitary costs increase more (less) than proportionally 

with the total number of infected wild boar. 

The culling cost CH is assumed to increase with culling effort (u ≥ 0): 

 CH(t) = cH u(t)
θ
       ( 4 ) 
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where cH ≥ 0 is the unitary cost of harvesting; θ > 0 is a shape coefficient which takes into account 

nonlinearities in the costs of culling, θ > 1 (θ < 1) means that costs increase more (less) than 

proportionally with culling. Hence, the total cost over T years (time horizon) as a function of the 

culling effort, u(t), can be computed as follows:  

  
C

tot
(u) = e

−δ t (C
F

+ C
H

)dt
0

T

∫       ( 5 ) 

where δ ≥ 0 is the discount rate and CF and CH are computed as in (3) and (4), respectively. 

 

2.1 The optimization problem 

The aim of the present analysis is to assess: i) how control policies implementing time-variable 

culling rates perform with respect to traditional policy in which the culling effort is constant in time, 

and ii) how different assumptions about cost functions may affect the performance of alternative 

control policies? 

Formally, the optimization problem can be stated as follows: 

min
u(t)≥0

 Ctot(u)       ( 6 ) 

where u(t) is the culling policy that needs to be specified. In the following, I present the solution of 

the problem for a constant culling rate utu =)( ; then, I solve the same problem when the culling 

rate changes over time. I analyse only a set of very simple time-variable policies based on the 

estimation of the host population density, the number of host carcasses, or disease prevalence. 

Detailed information on disease dynamics and population structure is usually relatively scarce and, 

most importantly, health authorities have, in general, limited organizational capacities; hence, they 

are only able to implement culling schemes based on simple rules. The unconstrained optimization 

problem provides solutions that would be seen as too complex to be implemented. I thus focus my 

analysis on a set of constrained culling strategies as described below.  

2.1.1 Swiss Health Authority policy 

The Swiss Health Authority of Canton Ticino devised a control strategy based on the following 

assumption (Hofmann et al., 1999): it is not convenient to implement high culling rates during the 

first disease epidemic phase, which is characterized by sharp increases in wild boar mortality 

(mainly caused by the disease), because it would not significantly influence the ratio between 

susceptible and infected individuals. In addition, it would increase the movement of CSF virus 

infected animals throughout their territory, increasing the contact rate among infected and 
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susceptible individuals. As a consequence, the policy implemented by the Swiss health authority of 

Canton Ticino can be described as follows: 

- not to cull at the onset of the epidemics when disease dynamics is mainly affected by the 

pathogen induced mortality that eventually leads to a lower host population density;  

- then, to cull at a constant rate at the end of the first epidemic wave. 

Accordingly, I solved the optimization problem under the following constraints: 
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where the optimal culling rate (u
*
) and the time to start the hunting activity (t

*
) need to be estimated 

so as to minimize Ctot(u
*
,t

*
). 

 

2.1.2 Immediate intervention policy 

Notwithstanding the policy recommended by the Swiss Health Authority, it often happens that 

under the emotional wave of the first epidemic outbreak, the farmers’ lobby calls for immediate 

intervention to reduce the risk of transmission from wildlife to domestic pigs. I simulate such a 

strategy by setting u(t) as follows: 
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where the optimal culling rate (u
*
) and the time to stop the hunting activity (t

*
) need to be estimated 

so as to minimize Ctot(u
*
,t

*
). 

 

2.1.3 Policy based on the observed prevalence of infection 

In this case, culling intensity is determined on the basis of information related to the actual level of 

disease prevalence. Usually, during CSF epidemics, public health authorities carry out laboratory 

diagnoses on wild boar to detect the infection level in the population This information can be used 

to improve the disease control policy. However, high costs and organizational problems make it 

difficult to continuously monitor the disease prevalence in the population. I thus assumed the more 

realistic hypothesis that the census of population and the infected fraction of wild boar is carried out 

periodically by the public health authorities. Therefore, the culling rate has been assumed to remain 

constant within each census season (Ghezzi and Piccardi, 1997), as follows: 

,...2,,0),,[)()( τττ =+∈∀= kkktkutu      ( 8 ) 
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where τ is the period between two censuses and u(k) is a function of the disease prevalence. Under 

this assumption I analysed two control schemes. In the first case, wild boar are culled when disease 

prevalence exceed a fixed threshold, that is: 
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In the second case wild boar are removed only when disease prevalence is below a fixed threshold, 

that is:  
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where the optimal culling rate (u
*
) and the prevalence threshold (ith) in (9a) and (9b) are chosen to 

minimize Ctot(u
*
,ith). 

 

2.1.4 Policy based on the observed population density 

In this case, culling intensity is determined on the basis of information related to the actual 

population density of wild boar and the decision whether or not to cull is revised based on a 

periodic census of the population density (see (8)). Again, two simple eradication schemes have 

been analysed: to cull when population density exceeds a fixed threshold, that is: 
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or to cull when population density is below a fixed threshold, namely: 
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where the optimal culling rate (u
*
) and the population threshold (Nth) in (10a) and (10b) need to be 

estimated so as to minimize Ctot(u
*
,Nth). 
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2.1.5 Policies based on carcass counting 

Usually, health officials and foresters count and remove potentially infected carcasses during CSF 

epidemics to reduce the risk of disease transmission to susceptible hosts. Hence, a control policy 

based on information about animal carcasses is certainly feasible. I have thus implemented two 

policies, one based on the total number of carcasses and the other on the fraction of infected 

carcasses. As for the disease prevalence in the population, the number of carcasses (or their 

prevalence) cannot be monitored in real-time because of practical reasons (as logistical and funding 

limitations). In order to provide realistic hypotheses, I assume that data are collected only during the 

census season and the culling effort is based on the acquired information. Accordingly, the number 

of carcasses accumulated during the k-th season can be computed as follows: 

( )∫
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is the infected carcass prevalence during the k-th season. 

As in previous control policies, I implement two alternative management schemes: only culling if 

the number of carcasses exceeds a fixed threshold: 
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or to cull only when the number of carcasses is below a fixed threshold: 
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where the optimal culling rate u
*
 and the number of carcasses Dth need to be estimated so as to 

minimize Ctot(u
*
,Dth). 

In the case where the prevalence of infected carcasses is used as a control parameter, the two 

management strategies are to only cull if the prevalence of infected carcasses exceeds a fixed 

threshold: 
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or to cull only when the carcass prevalence is below a fixed threshold: 
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where the optimal culling rate u
*
 and the carcasses prevalence PDth need to be estimated so as to 

minimize Ctot(u
*
,PDth). 

 

2.2 Further assumptions 

Control policies have been evaluated over a 50 year period and with a discount rate δ = 4% (see 

(5)). I chose a finite time horizon for my analysis since forecasts for a longer period would be of 

little significance due to uncertainties in epidemic processes resulting from factors such as long 

term demographic trends in wild boar populations not accounted for in the model or changes in 

future land uses. Moreover, recent advances in vaccine technology for CSF may eventually lead to 

different and more sophisticated control policies (Oirschot, 2003; Kaden et al., 2004a). A period of 

50 years from the onset of the epidemics is long enough to encompass several epidemic waves and 

to account for the effects of strain competition. However, in section 4.1, I also discuss the 

sensitivity of optimal policy performance to changes in the length of the time horizon. I assumed 

that one individual infected with each strain is introduced into a healthy population at its carrying 

capacity (i.e., S(0) = 600, (I1(0) = 1 and I2(0) = 1) and that a census of the host population is carried 

out every 3 months.  

Several published studies provide estimates of the economic costs and losses caused by classical 

swine fever epidemics in European pig farms (see Vanthemsche, 1995; Saatkamp et al., 1997; 

Meuwissen et al., 1999). However, little information is available about the probability of wildlife-

domestic transmission, how transmission translates into potential damages to pig farm activities, 

especially in developing countries, and about the costs of hunting wild boar. In the absence of 

quantitative information, I simply assumed that the sanitary and culling costs have the same order of 

magnitude, i.e., that their contributions to the total costs are comparable. Furthermore, I used two 

different shapes for the cost functions in the optimization problem: the case in which sanitary and 

culling costs scale linearly with disease transmission to pig farms and harvesting rate (from here on 

referred to as the linear cost case, γ = θ = 1 in eqs.(3) and (4)) and the case in which both scale 

quadratically (γ = θ = 2 in eqs.(3) and (4)). 

For each culling scheme, parameter values that allow the minimization of the overall costs have 

been estimated using the Matlab optimization toolbox (The MathWorks, Inc.). 
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RESULTS 

The total cost, Ctot(u), vs. constant culling effort for the linear and quadratic cost-scaling 

relationships are shown in Fig 2a and 2b, respectively. In both cases, the total costs function Ctot(u) 

has two minima: the first one corresponds to the stability frontier between the presence of the more 

virulent strain alone and the coexistence behaviour (strain 2 - coexistence edge in Fig. 1), the 

second minimum corresponds to disease eradication (strain 1 edge in Fig. 1). As expected from the 

analysis carried out by De Leo and Guberti (2003), the total costs associated with classical swine 

fever in domestic pigs also show a local maximum for intermediate values of the culling rate. This 

is a consequence of concurrently increasing both the infected individuals and the culling effort up to 

18.0≅u  y
-1

. 

As reported in Tab. 2, all time-variable hunting 

policies investigated in the present chapter allow 

for a reduction of the overall costs relative to the 

optimal control policy in which hunting is held 

constant. Yet, in the case of time-variant culling 

strategies the choice of the optimal control rule 

clearly depends upon the shape of the cost 

functions (3) and (4). For instance, when the 

culling decision is based on the observed 

prevalence in the host population (section 3.1.3), 

the optimal strategy for the linear cost function (γ = 

θ = 1), is to cull when disease prevalence in the 

population exceeds the threshold ith = 1.7% (with c 

set to about 0.4 year
-1

) as shown in Fig. 3a. On the 

other hand, if the cost function is quadratic (γ = θ = 

2), the optimal strategy is to cull with lower culling 

effort (c ~ 0.1 year
-1

) only when the disease 

prevalence is below ith = 2%, as shown in Fig. 3b. 

 

Therefore, not only does the optimal value of the 

culling effort change with the shape of the cost 

function, but also the type of culling strategy (i.e., 

(9a) vs. (9b)). Furthermore, I notice that in the case 

of control policy (9a) the density of infected 

Fig. 2: The total costs Ctot (computed as in (5)) as 

a function of the constant culling rate ( u ) when 

(a) sanitary and culling costs scale linearly with 

disease transmission to pig farms and harvesting 

(γ = θ = 1 in eqs.(3) and (4)) and (b) the case in 

which both scale quadratically (γ = θ = 2 in 

eqs.(3) and (4)). Cost functions parameters have 

be fixed to: δ = 0.04, cF = 4, cH = 40 (in Fig. 2a), 

and cH = 1300 (in Fig. 2b). Values of model 

parameter as in Fig. 1. 
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individuals during the first inter-epidemic period is remarkably smaller than in the case of control 

policy (9b), thus increasing the probability of stochastic fade-out of the pathogen (i.e., the parasite 

stochastic extinction caused by environmental noise; de Castro and Bolker, 2005). 

I found similar results when the culling strategy is based on the number of carcasses discovered or 

the prevalence of CSF among dead individuals (as in section 3.1.5). The optimal policy for the 

linear cost function is to only cull when the number of carcasses or the disease prevalence in 

carcasses exceeds the fixed threshold. While in the case of a quadratic cost function culling occurs 

when the number of carcasses or the disease prevalence in carcasses is below the threshold.  

Interestingly, when the decision whether or not to cull is taken on the basis of population density (as 

in section 3.1.4), the assumption about the shape of the cost functions does not affect the type of 

optimal control policy to be implemented. In both cases, the best strategy is to cull when the 

population density exceeds a fixed threshold (eq.(10a)). Yet, the optimal level of culling effort is 

remarkably different in the two cases, that is c ~ 0.4 y
-1

 for γ = θ = 1 and c ~ 1.5 y
-1

 for γ = θ = 2. 

The optimal culling strategies based on host population density are reported in Fig. 4.  

 

Linear cost function 

(γγγγ = θ θ θ θ  = 1) 

 
Quadratic cost function 

(γ γ γ γ = θ θ θ θ  = 2) 

Culling Policy 

 
Optimal value of 

control variables 
∆∆∆∆Ctot 

 

 
Optimal value of  

control variables 
∆∆∆∆Ctot 

Swiss Health 

Authority policy 
(7a) 

u* = 0.4 

t* > 5.45 
-1.4% (7a) 

u* = 0.28 

t* > 4.27 
-3.1% 

Immediate 

intervention policy 
(7b) 

u* = 1.09 

t* < 0.53 
-0.6% (7b) 

u* = 3.37 

t* < 0.17 
-68.5% 

With information on 

prevalence 
(9a) 

u* = 0.41 

ith > 0.017 
-7.7% (9b) 

u* = 0.095 

ith < 0.02 
-1.1% 

With information on 

population density 
(10a) 

u* = 0.4 

Nth > 331 
-1.3% (10a) 

u* = 1.32 

Nth > 355 
-38.8% 

With information on 

number of carcasses 
(13a) 

u* = 0.39 

Dth > 8.13 
-7.5% (13b) 

u* = 0.34 

Dth < 5.05 
-11.9% 

With information on 

infected carcasses 
(14a) 

u* = 0.32 

PDth > 0.02 
-6.5% (14b) 

u* = 0.17 

PDth < 0.068 
-17.4% 

Tab. 2: Summary of the control policies performances. ∆Ctot represents the relative change in total costs with respect to the 

optimal time-invariant policy. Numbers in square brackets refer to the function defining the culling schemes. 
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2.3 Sensitivity analysis 

A sensitivity analysis has been performed with regards to the cost parameters cF and cH, as these are 

among the most difficult to estimate. Specifically, I investigated how the optimal solutions change 

as a consequence of substantial variations in cF and/or cH. In particular I look at the effects for 

sanitary and culling costs that are 25% larger or smaller than the values used to derive the results 

reported on Tab. 2. For each case, I computed the relative variation in the total costs ∆Ctot(u)/ 

Ctot(u), and the relative change of the control parameters ∆u
*
/u

*
 and ∆ith/ith. Results are reported in 

Tab. 3 for the culling policy based on disease prevalence in the host population, (9a), and when the 

cost function is quadratic. In general, uncertainty in the estimation of the cost functions would 

translate into negligible changes in both the cost-effectiveness and the optimal value of the control 

parameters. The only exception is when sanitary costs increase by 25% and hunting costs decrease 

by 25%. In this case, the optimal hunting effort would be three times larger and the intervention 

threshold 18% smaller. Nevertheless, under this circumstance, the change in the overall costs would 

still be negligible (~ 3%).  

Finally, I analysed the sensitivity of 

optimal policy performance with 

respect to changes in the time horizon 

(T) in eq. (5). For all six types of 

control policies I computed the optimal 

solution when T = 100 years and T = 

150 years respectively. In both cases, 

the total costs, Ctot(u), do not increase 

by more than 1%, and the variation of 

the optimal value of the control 

parameter is smaller than 1%. In fact, 

the majority of the costs are suffered 

during the first epidemic wave and the 

discount rate further reduces the burden 

of costs perceived in the distant future.  

 

Fig. 3: The total infectious densities, I1(t) + I2(t) (grey curves), 

obtained with model (2) and time-variable culling efforts, u(t), 

(black curves) calculated by using information on disease 

prevalence in host population (see section 3.1.3). (a) Sanitary and 

culling costs are linear functions of infected individuals and 

control effort, respectively (γ = θ = 1). (b) Sanitary and culling 

costs are quadratic functions of infected individuals and control 

effort, respectively (γ = θ = 2). Other parameter values as in Fig. 

2. 
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3 DISCUSSION AND CONCLUSIONS 

The present chapter shows that, regardless of the shape of the cost functions analysed, all the time-

variable control policies are more cost effective than the best strategy based on implementing a 

constant culling rate. For the nonlinear cost functions, time-variable control strategies generally 

perform much better than the constant culling protocol (see Tab. 2). This is not true in the linear 

case, where the improvement in term of costs reduction is only marginal. 

 

Ranking the different culling strategies according to their cost effectiveness strongly depends upon 

the specific shape of the cost function (see Tab. 2). For instance, for the linear cost function, the 

Swiss Health Authority policy (7a) performs slightly better than an immediate intervention policy 

(7b). On the other hand, when the shape of the cost function is quadratic, the immediate 

intervention policy is substantially better than the Swiss Health Authority policy. Similarly, the 

strategy (10b), based on host population density, allows for a significant reduction of the overall 

cost of disease control only in the case of quadratic costs. 

Further analyses, not reported here, 

show that the optimal control policy 

is only affected by the shape of the 

sanitary cost function CF (eq.3), 

while the optimal control policy is 

rather insensitive to the actual shape 

of the culling cost function CH (eq.4). 

As a consequence, a great deal of 

effort in future researches needs to be 

devoted to explore the route of 

infection from wildlife to livestock 

and the relationship between disease 

prevalence and consequent costs. 

In the case of a quadratic cost 

function, the immediate intervention 

policy and those based on estimations 

of the host population density 

through periodic censuses perform 

 

Fig. 4: The total infectious densities, I1(t) + I2(t) (grey curves), 

obtained with model (2) and time-variant culling efforts u(t) 

(black curves) calculated by using information on host population 

density (see section 3.1.4). (a) Sanitary and culling costs are 

linear functions of infected individuals and control effort, 

respectively (γ = θ = 1). (b) Sanitary and culling costs are 

quadratic functions of infected individuals and control effort, 

respectively (γ = θ = 2). Other parameter values as in Fig. 2. 
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significantly better than the other policies analysed here. On the other hand, these policies require a 

large culling effort (Tab. 2) and countries without organized veterinary authorities may face critical 

problems implementing them effectively.  

In the case of the linear cost function, policies based on carcass sampling and disease prevalence 

among live or dead animals perform better than other policies, even though the reduction of costs in 

the linear case is remarkably lower than in the nonlinear case.  

In this chapter I used a very simple strains-competition model without considering age structure, 

acquired immunity of the host population, or stochasticity in the infection dynamics – which are 

important elements in understanding epidemic evolution – to point out the mutual interactions 

between the persistence of classical swine fever strains in wildlife and the costs of disease control 

by culling.  

 

The next step should be the introduction of stochastic processes in the epidemic dynamics in order 

to take into account the possibility of stochastic fade-out of the disease during the inter-epidemic 

periods.  

∆∆∆∆cF/cF 
∆∆∆∆Ctot/ Ctot 

-25% 0 +25% 

+25% 0.25% 0.22% 0.21% 

0 0.044% -- 0.18% ∆∆∆∆cH/cH 

-25% 0.062% 0.067% 2.6% 

 

∆∆∆∆cF/cF ∆∆∆∆u
*
/ u

*
 

∆∆∆∆ith/ ith  -25% 0 +25% 

+25% 
+0.32% 

-7.0% 

+0.32% 

-7.5% 

+0.32% 

-7.5% 

0 
-2.5% 

-6.5% 
-- 

+0.32% 

-6.0% 
∆∆∆∆cH/cH 

-25% 
+0.21% 

-3.0% 

+0.21% 

-3.0% 

+297% 

-18.4% 

Tab. 3: Relative increase of the total cost, Ctot(u), (above) and relative variation of the optimal value of the control 

variables u
*
 and ith (below) due to uncertainty in the estimation of the unitary costs cF and cH. The optimal control 

problem has been solved for quadratic cost functions (γ = θ = 2) as in Fig. 3b for the policy in which the culling 

decision is based on the disease prevalence in the host population (equation (9b)). 
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Moreover, it should be interesting to introduce host age/stage structure to the model to investigate 

how hunting activities modify the population structure and to understand how the selective culling 

of the young individuals – which are the main virus targets – or the young adult females – which are 

the most fecund individuals – can improve the disease control. Nevertheless, I are confident that the 

analysis presented here may be very useful in highlighting the importance of cost estimation in the 

design and implementation of eradication strategies in the wildlife. 
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ABSTRACT 

Background 

The control of emergence and spread of infectious diseases depends critically on the details of the 

genetic makeup of pathogens and hosts, their immunological, behavioural and ecological traits and 

the pattern of temporal and spatial contacts among the age/stage-classes of susceptible and 

infectious host individuals. 

Methods and Findings 

I show that failing to acknowledge the existence of heterogeneities in the transmission rate among 

age/stage-classes can make traditional eradication and control strategies ineffective, and in some 

cases, policies aimed at controlling pathogen emergence can even increase disease incidence in the 

host. When control strategies target for reduction in numbers those subsets of the population that 

effectively limit the production of new susceptible individuals, then control can produce a flush of 

new susceptibles entering the population. The availability of a new cohort of susceptibles may 

actually increase disease incidence. I illustrate these general points using Classical Swine Fever as a 

reference disease. 

Conclusion 

Negative effects of culling are robust to alternative formulations of epidemiological processes and 

underline the importance of better assessing transmission structure in the design of wildlife disease 

control strategies. 
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INTRODUCTION 

Historically, models for infectious diseases considered populations of host and pathogen to be well-

mixed with homogeneous disease transmission among susceptible and infected individuals. In 

recent years, however, I have recognized that transmission may not be constant but may vary with 

time, social structure, and/or age/stage-class. In human epidemiology it is well known that 

transmission may indeed change substantially among social groups and age classes, as observed, for 

instance, in the early phases of HIV epidemics (Castillo-Chavez, 1989; Hethcote and Van Ark, 

1992). Recently, different works emphasized the roles of superspreaders in the dynamics of SARS, 

sexually transmitted and childhood diseases (Galvani and May, 2005; Lloyd-Smith et al., 2005). 

However, there is only anecdotal information about variation in transmission rate by age/stage 

structure in wild animals or the implication of such variation on disease dynamics in zoonotic 

reservoirs (Heesterbeek and Roberts, 1995), while few information exist in the case of domestic 

animals (see e.g., Matthews et al., 2006). This is unfortunate since the majority of emerging 

infectious diseases are zoonotic and it is well know that many species exhibit a high degree of 

heterogeneity in their spatial, social and age/stage structure. It is highly likely that age/stage-

dependent behavioural differences in reservoir contact rates may significantly affect disease 

transmission between and within different age/stage classes and, as a consequence, the effectiveness 

of disease control policies. 

While the science of infectious diseases has made tremendous progress in the last several decades 

thanks, in part, to advances in molecular biology, immunology, medicine and mathematical 

modelling, the eradication of pathogens and parasites in wildlife relies very often only on two 

simple strategies, namely vaccination and culling, i.e., the removal of animals to push host 

population density below the threshold for disease invasion (Grenfell and Dobson, 1995). 

Quarantine and isolation through the construction of sanitary containments are rare options in the 

control of wildlife diseases and are applied primarily to domestic animals and farms such in the case 

of the foot-and-mouth epidemics in UK (Gilbert et al., 2005) and of avian flu epidemics in Asia 

(Ellis et al., 2004) often at the cost of huge economic losses.  

Oral vaccination, on the contrary, is a quite widespread technique for disease eradication and 

control: it has been applied in the USA to control the westward expansion of rabies virus in raccoon 

hosts and has effectively eliminated rabies in coyotes in Texas (Real et al., 2005; Sidwa et al., 

2005). In Germany, oral vaccination is used to control classical swine fever virus exposure in wild 

boars (Kaden et al., 2005). The drawbacks of oral vaccination mainly consist in the difficulty of 

producing, at a reasonable price, a sufficient amount of a vaccine able to persist long enough in 

baits so as to be picked up by a suitable fraction of susceptible animals. Moreover, vaccination 
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might be less effective than expected, as older animals – who may have antibodies resulting from 

prior infection – are often more aggressive in ingesting baits than younger more susceptible 

individuals. 

Culling is usually the most simple and economical measure to control diseases spread in wildlife 

and its application is strongly supported as an emergency procedure for disease eradication. It has 

been historically applied to control different domestic and wildlife diseases with the aim to reduce 

host population or to put down infected individuals, such as for bovine tuberculosis in badgers 

(Donnelly et al., 2006) and foot-and-mouth disease in cattle in the UK (Haydon et al., 2004), avian 

flu in waterfowl birds and poultry in Asia  and classical swine fever in wild boars and domestic pigs 

in Europe . Albeit, sport hunting per se is certainly not aimed at preventing disease spread, it 

usually exerts effects similar to those of culling in terms of population density reduction. The same 

is true also for illegal hunting (poaching).  

Despite its simplicity and alleged cost effectiveness, there is some evidence that under a variety of 

circumstances culling may not generate the benefits anticipated (Donnelly et al., 2003; Woodroffe 

et al., 2004; Shirley and Rushton, 2005). Selective hunting may interfere with establishment of herd 

immunity inducing faster turnover of the population and decreasing host life expectancy. 

Furthermore, it may induce long distance host movement, increasing contacts between different 

groups of animals (Laddomada, 2000), and it may affect the evolution of some host species traits 

(Coltman et al., 2003). Finally, culling often affects age/stage structure by preferentially removing 

older and less susceptible individuals. This is important, as the basic theory for Susceptible-

Infected-Recovery (SIR-like) compartmental models of a self-regulating host suggests that disease 

prevalence in a homogenous population should monotonically decrease with increasing culling rate 

(as in Anderson et al., 1981; Coyne et al., 1989). However, as we will see, the existence of 

age/stage structure in transmission rate may significantly alter this conclusion  

In the present chapter I show (using very general assumptions about life history traits of host 

species) that the presence of age-dependent heterogeneity in the transmission rate may produce the 

counter-intuitive result that disease prevalence increases over a range intermediate levels of culling. 

I recast a simple SIR model for wildlife disease with two age/stage classes, namely, pre-

reproductive juveniles and adults and sub-adults (see Material and Methods). Numerical 

characterization of the problem was examined for the specific case of classical swine fever in wild 

boar (see Protocol S1 in Supporting Information). I chose CSF as reference disease because it 

caused serious economic losses in Europe from spillover infection to pig farms over the last twenty 

years (Saatkamp et al., 1997) and it is still endemic in Asia and South America and in some regions 

of Eastern Europe and Italy (Sardinia). Also, Choisy and Rohani (2006) have recently illustrated 
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similar points using CSF but with a different model structure. Comparison across model structures 

for the same disease will lead to an increased robustness in any general characterization of optimal 

strategies for control. 

While the ideas being investigated in the present chapter are based on a detailed understanding of 

wild boar biology, the epidemiological model itself has been simplified to address the following key 

question: how do age-dependent heterogeneities in transmission interact with culling rate in the 

control of disease prevalence?  

To answer this question, I extend the classical SIR model of infection to allow for an age structured 

wildlife population. In this simple model, host population is divided into two age classes, juveniles 

and adults. I assumed that juveniles are highly susceptible to infection with associated high 

mortality and negligible recovery rates. On the other hand, infected adults and sub-adults exhibit 

negligible mortality and can recover with life-long immunity (see Material and Methods for details).  
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RESULTS 

I have computed disease prevalence in the population at equilibrium as a function of culling rate or 

hunting mortality for different values of age-dependent heterogeneity in transmission, called 

∆β=βa−βj (where, βa is the transmission rate 

between adults and βj is the transmission rate 

between juveniles). I held constant the basic 

reproduction number R0 in model (1) to keep 

the same level of infection in the population for 

each value of ∆β when culling is absent (see 

details in Protocol S2 in Supporting 

Information). 

When the within class transmission rate for 

adults is larger than that within juveniles, the 

disease prevalence can actually increase with 

culling or hunting rate instead of decreasing as 

expected under the assumption of homogenous 

mixing (Fig. 1a); disease prevalence eventually 

peaks for intermediate values of culling and 

then decreases only for high level of animal 

removal. Moreover, the absolute number of 

infected individuals is larger in the case of 

heterogeneous mixing relative to the number 

under conditions of homogenous mixing at all 

levels of culling. The explanation for this effect 

is that at low and intermediate levels of culling, 

by removing older resistant individuals, 

population age structure is skewed in favour of 

highly susceptible juvenile hosts thus making 

culling ineffective. The minimum culling rate 

Cmin required to bring disease prevalence below 

the value attained in the absence of culling can 

be fairly high, as depicted in Fig. 1a. As a 

consequence, as long as c < Cmin, culling 

actually performs worse, in terms of disease 

Fig. 1: Effects of age/stage transmission on culling - a) 

Solid lines represent disease prevalence as function of 

the fraction of animals killed through culling scaled with 

respect to prevalence at equilibrium in the absence of 

culling; dotted lines refer to the number of infected 

individuals as functions of the fraction of animals killed 

through culling scaled with respect to prevalence at 

equilibrium in the absence of culling; grey lines ∆β = 0

(βa = βj = 0.2856); black lines ∆β = βa − βj = 0.31 (βa = 

0.32; βj = 0.01). In both cases R0 =9.

- b) Degree of depression of population abundance as a 

function of culling rate c under the same condition than 

above . Other parameter values have been set as follows: 

ν=1.25 years
-1

, µj=0.9 years
-1

, µa=0.4 years
-1

, γ= 0.0067 

(#individual
-1

 * 220 km
2
 * years

-1
), α=25 years

-1
, ρ=2 

years
-1

, δ=17.4 years
-1

. 
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control, than the do-nothing alternative (c=0). The dynamics of infection also reveal that the 

population density at equilibrium decreases with culling more quickly in the presence of in 

transmission heterogeneity (see Fig. 1b) even though, for intermediate values of culling, the actual 

number of infected hosts is larger in the case of heterogeneous transmission. 

I also performed a sort of sensitivity analysis in the transmission parameters by estimating the 

values assumed by Cmin for a broad range of R0 and ∆β values. Fig. 2 shows that, in the case of quite 

large transmission heterogeneity, relatively low R0 values are sufficient to obtain Cmin > 0, then a 

reduction of culling effects compared to the homogeneous case. 

 

Fig. 2: Value of the minimum culling rate Cmin required to bring disease prevalence below the 

value attained in absence of culling as a function of the basic reproduction number (R0) and the 

age-dependent heterogeneity in transmission (∆β = βa − βj) renormalized by the maximum 

heterogeneities in transmission (∆βmax) allowed at each level of R0 (see Protocol S2). 
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DISCUSSION 

The pattern revealed in Fig. 1a suggests that if the culling rate for disease eradication is computed 

by assuming homogenous mixing while transmission rate is actually age dependent, then classical 

culling strategies may prove to be ineffective: in fact, even though the host population is even more 

depressed then expected under homogeneous mixing, not only will the disease not be eradicated 

from the population but prevalence can be even higher than in the absence of culling. As a 

consequence, unless it is possible to guarantee a sufficiently high removal of adult individuals, the 

do-nothing alternative is more effective and less costly than an intermediate culling strategy. For 

example, in the case of classical swine fever, to move from c=0 to Cmin requires removing at least 

22.5% of individuals in the population; consistent results may be obtained for a broad range of the 

parameter setting (see Fig. 2). Similarly, intermediate levels of hunting pressure, especially when 

not aimed at disease control, might actually increase disease prevalence as well as the number of 

infected individuals. 

On the other hand, the maintenance of a high level of culling that guarantees disease eradication is 

not always feasible in practice. In fact, if the host population is very small, culling might generate 

conservation concern, as the removal of a large fraction of individuals might drive the host to the 

brink of extinction, as argued by Dobson and Meagher (1996) for the eradication of Brucellosis in 

Yellowstone National Park bison. On the contrary, if the host population is very large, it might be 

impossible to cull a large enough fraction of individuals. This may correspond to the case, for 

instance, for huge colonies of bats in central Africa suspected of being the reservoir of Ebola and 

Marburg viruses (Leroy et al., 2005) or populations of small rodents in North America, that 

comprise the main reservoirs for Hanta viruses or the vectors of Lyme disease (Oliver et al., 2003).  

 The results presented in Fig. 1 contain an important insight concerning the potential for 

disease to spill-over into domestic animals. If transmission between wildlife and domestic animals 

is density-dependent, the risk of spill-over decreases for increasing culling rates even though it is 

higher than in the case of homogenous mixing (dotted lines in Fig. 1a); while if transmission 

between wildlife and domestic animals is frequency dependent, the risk of spillover can 

substantially increase for intermediate values of culling rate with respect to the case of homogenous 

mixing (solid lines in Fig. 1a). Therefore, it is crucial to articulate and understand the exact 

mechanisms by which infectious wild hosts interact with susceptible domestic animals and humans 

susceptible in order to predict the effects of wildlife culling on the risks of spillover. 

 I thus conclude that age/stage structure of transmission rate can be crucial in our 

understanding of disease pattern and the implementation of control policies. This conclusion likely 
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applies to other wildlife diseases in which age/size structure is an important component of 

population dynamics.  

 Recently, Choisy and Rohani (2006) presented a model of wildlife disease that focused on 

the effects of strong density-dependence and seasonality on culling and equilibrium disease 

prevalence. Their model was different from mine in that it was not age-structured and culling was 

random over the population of hosts. Nonetheless, they showed a similar response to culling with 

intermediate levels of culling producing a counter-intuitive increase in disease prevalence. Given 

the explicit difference in model structures it is instructive to speculate on how two very different 

models can generate the same over all effect. As Choisy and Rohani indicate, the result of their 

model is driven by culling releasing the population from density-dependent reductions in the birth 

rate thereby producing a flush in new susceptible in the population. In my model I have a similar 

effect but driven by a completely different mechanism. The age-dependent culling coupled to the 

intrinsic heterogeneity in transmission similarly produces a flush in the relative abundance of the 

young susceptible class. I imagine that other mechanisms besides age/stage structure (as in my 

model) or strong density-dependence and seasonality (as in the Choisy and Rohani model), may 

interact with culling to produce similar patterns of prevalence. 

Given the implications of transmission heterogeneities on dynamics and control, more detailed 

studies are thus necessary to assess these heterogeneities when structuring control strategies in 

current and ongoing wildlife epizootics (Coyne et al., 1989; Donnelly et al., 2003; Donnelly et al., 

2006). What appears certain is that the negative effects of culling are robust to alternative model 

formulations and highlight the importance of better assessing transmission structure, seasonality, 

and population regulatory processes in the design of wildlife disease control strategies. 
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MATERIAL AND METHODS 

The model is characterized by five classes: susceptible juveniles and adults, infected juveniles and 

adults and recovered (immune) adults. The infection dynamics in this age-structured population are 

described by: 
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where Sj(a), Ij(a), and Ra refer to susceptible juveniles (adults), infected juveniles (adults), and 

recovered adults, respectively. The system parameters ν, µj, µa, and ρ represent the host birth rate, 

the juveniles mortality rate at low population density, the adults mortality rate, and the rate at which 

juveniles pass into adulthood, respectively. I assume that host population is self-regulating with 

density-dependent mortality in juveniles (γ) affected by total adults density (A=Sa+Ia+Ra). The 

force of infection for susceptible juveniles (adults) individuals is λj(a)= βj(a)I, where I=Ij+Ia is the 

total infectious density in the population. Parameters α and δ represent the disease-induced 

mortality in juveniles, and the adult recovery rate, respectively. Finally, c is the control parameter 

and represents the culling effort over the adults population. Only adult and sub-adult individuals are 

here assumed to be culled either because of conservation measures or, in the case of hunting, 

because of the preference for large trophies. Moreover, culling is not usually allowed in spring 

when peak fertility occurs and when most juveniles are born. By the onset of the hunting season, at 

the beginning of autumn, juveniles have already moved into the sub-adult age class. 

Contact rate among adults increases dramatically during mating season (when males roam 

considerable distances in search of reproductive females). Consequently, within adult transmission 

rate is assumed to be larger than within juvenile transmission. It is this variation in the within-class 

transmission rates that forms the basis of transmission heterogeneity. I assign the magnitude of this 

heterogeneity in age-specific transmission as a new variable, ∆β=βa−βj (≥0) assessing the marginal 

increase of adult transmission rate (βa) relative to that of juveniles (βj). 
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CHAPTER 6 SUPPORTING INFORMATION 

Protocol S1: Details about the setting of epidemiological and demographic parameters in model (1) 

for classical swine fever in wild boar. 

Protocol S2: Details about calculation of the basic reproduction number for model (1). 

 

PROTOCOL S1: 

Details about the setting of epidemiological and demographic parameters in model (1) for classical 

swine fever in wild boar: 

 

Wild boar populations are characterized by a well-defined social structure with closely related adult 

females (1 years old or more) and sub-adult females (6-12 months old) grouping together with their 

piglets (0-6 months old). Young males and females become sub-adults after about six months. Sub-

adult males leave the herd and roam around in search of new territory in the fall at the beginning of 

the hunting season. Adult males tend to be more sedentary but they wander over considerable 

distances during the mating season, thus greatly increasing their contact rate with respect to that of 

piglets. This difference in movement patterns between piglets and adult individuals may obviously 

affect disease transmission among different age classes similarly to what has been observed for 

humans (see for example Anderson and May, 1991). 

Vital parameters of the host population have been set in accordance with field studies on the 

ecology of wild boar: Fenati and Guberti estimated that potential number of daughters produced by 

an adult sow per year is about 2.5 individuals/year (Fenati, M. and Guberti, V., unpublished data). 

As the observed rate of increase of the population at low densities in absences of harvesting is about 

2.5, I have set the birth rate ν at 1.25 year
-1

. Bieber and Ruf (2005) estimated that piglets survival in 

the first year of life ranges between 25-52% with mean value around 40%. As a consequences the 

natural mortality rate at low density µj is equal to 0.9 year
-1

 for individuals with age<6 months. The 

parameter µa (adult mortality rate) can be easily calibrated as the inverse of the average life 

expectancy of an adult host, namely about 2-3 years. Guberti et al. (1998) estimated the carrying 

capacity of a Sardinian wild boar population in 600 individuals on a surface of 220 km
2
 which yield 

to instraspecific competition coefficient γ equal to 0.0067 (220 km
2
 years

-1
). 

The main means of viral transmission is by direct contact between infected and susceptible animals. 

Once infected, wild boars become infectious after a short latent period of 2-6 days. Young 

individuals die between 10 and 20 days post-infection, while most adults recover after 3 weeks. 

Even though the issue is very controversial, wild boar have been considered the reservoir of the 

disease (Laddomada, 2000) and, consequently, eradication policies in recent years have been based 

essentially on vaccination and culling, that is, the removal of animals to push population density 
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below the threshold for disease invasion Culling has been widely implemented throughout Europe 

in the 1990s and is still considered a central component of national control plans of the disease in 

the wildlife in many Member States of the European Union (Laddomada, 1999). 

Disease induced mortality in piglets (α) has been estimated as the inverse of the average time spent 

by a juvenile in the infected class before dying, that is about 15 days. The recovery rate of infected 

adults wild boar (δ) has been estimated as the inverse of the average time spent by adult in the 

infectious class Ia before recovering, namely about 3 weeks. 

Howard and Donnelly (2000) estimated the basic reproduction number (R0) of a wild boar CSF 

infection in Pakistan. Through the epidemic wave, R0 ranges from values under unity to picks larger 

than 10. In my analyses I have set R0=9 as this figure well fits the range of observed basic 

reproduction numbers of CSF in wild boar estimated for Italian populations by Guberti (pers. 

comm.). 
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PROTOCOL S2: 

Details about calculation of the basic reproduction number for model (1): 

 

I calculated the basic reproduction number R0 for model (1) as a function of within-class disease 

transmission βj and βa. 

The basic reproduction number for heterogeneous population, whose individuals are distinguishable 

by age or behaviour, but can be grouped in homogeneous compartments, may be calculated as 

suggested by van den Driessche and Watmough (2002). They define the basic reproduction number 

as the spectral radius of the ‘next generation’ matrix (FV
-1

). 

R0 = ρ(FV
-1

) 

where F and V are defined as Jacobian matrix of new infections appearance matrix F and the 

Jacobian matrix of other rates of transfer matrix V calculated for infected compartments in the 

disease-free equilibrium (DFE) x0 = [Kj(c), 0, Ka(c), 0, 0]
T
. Where Kj(c) and Ka(c) are the carrying 

capacities of juveniles and adults. 
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The infected compartments are Ij and Ia, hence: 
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with Kj and Ka monotonically decreasing functions of the culling rate: 
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and its spectral radius is: 
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Then, the basic reproduction number in host population is sum of the contribution of juveniles and 

adults to infection. 
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As a consequence, for a fixed value of R0, the age-dependent heterogeneity in transmission 

(∆β=βa−βj) can range between the finite values of ∆βmin (when βa=0) and ∆βmax (when βj=0); at 

which correspond values of βj=R0(α+µj+γKa(c))/Kj(c) and βa=R0(µa+δ+c)/Ka(c), respectively. 

 

 Protocol S2 References: 

van den Driessche P. and Watmough J. (2002) Reproduction numbers and sub-threshold endemic 

equilibria for compartmental models of disease transmission, Mathematical Biosciences 

180:29-48. 
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7 

 
Conclusions 



 117

Ideas about threshold levels of host abundance for invasion or persistence of infectious diseases are 

central to the theory and practice of disease ecology (Grenfell and Dobson, 1995). These thresholds are 

directly related to the basic reproduction number (R0). The disease spreads in the population if R0 ≥ 1. 

Threshold theorems are very useful in investigating disease dynamics and control policies like culling 

and vaccination, but their use is hampered in practice because direct measurements of the disease 

transmission rate are difficult, if not impossible, to obtain without extensive field data (Anderson and 

May, 1991; Lloyd-Smith et al., 2005). In contrast, estimates of the basic host demography (as natality 

rate, mortality rate, and carrying capacity) are available for many species. Extensive comparative 

studies (Peters, 1983; Calder, 1984) relate demographic parameters to body size and show that they 

scale with the host weight as simple allometric relationships. These relationships should not be 

interpreted as deterministic laws giving the exact transmission rate for any species, however, because 

other important details must be considered. We can thus derive a similar allometric relationship for the 

transmission rate and predict its threshold value for species over a wide range of body sizes. 

My analysis of an epidemiological SEI model for rabies shows that the transmission coefficient 

threshold for the disease to establish in the population scales allometrically (exponent=0.45) with host 

size as well as the threshold at which limit cycles occur. In contrast, the analysis shows that the 

minimum basic reproduction number R0 necessary to sustain epizootic cycles does not depend upon 

host body size or allometric formulation of model parameters, but is a function of the relative duration 

of the latent period and the relative mean time to death of infected individuals with respect to the mean 

life expectancy of a disease-free host. The model predicts that epizootic cycles cannot arise if the basic 

reproduction number is smaller than 5 regardless of host body size. This suggests the need of a sort of 

minimum activation energy (represented by the strength of R0) for oscillation to arise, that is a 

structural property of the model and not of the parameters chosen. On the other hand, field observations 

of rabid populations in the wild show that epizootic cycles may actually occur also for R0 as low as 1.5-

2.5 (Coleman and Dye, 1996; Kitala et al., 2002). For this reason the classical homogeneous model 

appears unsuitable to mimic the disease dynamics in wild populations. As a consequence, it is possible 

that other factors, such as seasonal forcing, may actually play an important role in generating the 

observed patterns. 

The analysis of the seasonal forced SEI model shows that, while the unforced model exhibits long-term 

epizootic cycles only for large values of the reproduction number R0, the seasonally forced model can 

exhibit multi-year periodicity for much smaller values (< 5) of R0. Furthermore, bifurcation analysis 

shows that hosts with small mean body size may exhibit complex dynamics even at small levels of 
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seasonal forcing. The resonance (frequency locking) is the key mechanism that determines the onset of 

multi-year periodic cycles for low transmission coefficients, and the larger the host the longer the 

oscillation period. The typical period predicted by SEI model for different species of hosts infected 

with rabies is in accordance with field observations 

Furthermore, simple extensions of the model are particularly suitable to describe infections in wildlife 

communities and networks consisting of animals with a spectrum of body sizes, in order to describe 

spillover, multiple-host, and multiple-pathogen dynamics. I have analysed multiple host interactions in 

the simple case of one pathogen infecting different host species. I have put the stress on the epidemic 

events occurrence, deriving conditions for which epizootic cycles arise and underlining their features. I 

have found that, contrary to single-host models, the value of the basic reproduction number for 

sustained oscillation to occur strongly depends on the sizes of the two hosts (in particular on their 

ratio). Epidemic dynamics tends to stabilize for intermediate value of interspecific transmission if 

species affected by the disease have different body sizes. 

In addition, for sufficiently high values of interspecific transmission and species size ratio, the host 

species with faster population dynamics (smaller body size) can drive the slower one (larger body size) 

to extinction. In practice, the smaller species acts as a disease reservoir. 

 

I also analysed the effectiveness of disease control through culling in the presence of social structure 

heterogeneities and genetic heterogeneities. I show  that age-dependent heterogeneity in the 

transmission rate and heterogeneity in strains virulence may produce counter-intuitive results on 

disease control. In particular, I show (using very general assumptions about life history traits of host 

species) that the presence of age-dependent heterogeneity in the transmission rate may produce disease 

prevalence increases for intermediate levels of culling. In fact, even though the host population is even 

more depressed then expected under homogeneous mixing, not only will the disease not be eradicated 

from the population but prevalence can be even higher than in the absence of culling. As a 

consequence, unless it is possible to guarantee a sufficiently high removal of adult individuals, the do-

nothing alternative is more effective and less costly than an intermediate culling strategy. 

The analysis on an epidemiological model with co-circulation of strains of different virulence suggests 

that depopulation through culling, in presence of super-infection mechanisms, may favour the selection 

of less virulent strains in wildlife diseases. This implies a decrease of the critical community size 

threshold for disease extinction and, consequently, an increase in the culling effort for disease 

eradication. Furthermore, culling policies providing intermediate level of animal removal may produce 
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an increase in the total prevalence in the population, with opposite results than expected. Moreover, 

culling effort for complete disease eradication may be unfeasible because of large cost of 

implementation or because of the risk for host population persistence. 

To conclude, my work show that a better understanding of ecological processes in disease transmission 

and spread is crucial in our understanding of wildlife disease pattern and for the implementation of 

control policies. Lack of consideration of relevant ecological details (as seasonality, strain competition, 

age structure) can drive to the implementation of ineffective and, sometimes, counter-productive 

control strategies. 

Other ecological processes than those presented in this thesis can reduce the effectiveness of disease 

control, such as: increase in animal contact rate that occurs during culling battues when animals are 

driven from their natural home range (Sodeikat and Pohlmeyer, 2002; Donnelly et al., 2006); increase 

frequency of mating contacts due to an increased frequency of oestrus as a consequence of fertility 

controls (Caley and Ramsey, 2001); decrease of the inter-epidemic period length that favour disease 

endemisation as a consequence of vaccination campaigns (Pulliam et al., 2007). These topics are 

actually object of examination in further development of this thesis.
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