
UNIVERSITÀ DEGLI STUDI DI PARMA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Dottorato di ricerca in Tecnologie dell’Informazione

XX Ciclo

Natalya Fedotova

SECURITY IN DHT-BASED PEER-TO-PEER

NETWORKS

DISSERTAZIONE PRESENTATA PER IL CONSEGUIMENTO

DEL TITOLO DI DOTTORE DI RICERCA

Gennaio 2008

To my Mother

 Моей Маме

 Security in DHT-based Peer-to-Peer Networks 4

Table of Contents

1 Introduction.. 9

2 DHT-based P2P Networks ... 13

2.1 Overlay Networks .. 13

2.2 Distributed Hash Tables ... 14

2.2.1 Chord .. 18

2.2.2 CAN.. 20

2.2.3 Kademlia... 23

2.2.4 Pastry .. 26

2.2.5 Tapestry .. 29

2.3 References .. 31

3 Vulnerabilities and Security Threats in DHT-based P2P

Environment .. 33

3.1 Specific attacks... 33

3.2 Countermeasures .. 37

3.3 Summary .. 39

3.4 References .. 39

4 Trust and reputation management in DHT-based P2P

Environment .. 41

4.1 Reputation in P2P... 42

 5

4.2 Reputation management techniques for DHT-based P2P

networks... 44

4.3 Applicability analysis of some reputation management

techniques .. 47

4.3.1 Supporting Trust in Virtual Communities and Fuzzy Model

for Context- dependent Reputation .. 47

4.3.2 PeerTrust... 48

4.3.3 Personalized Trust Model (PET)....................................... 48

4.3.4 Poblano ... 49

4.3.5 NICE... 50

4.3.6 XREP.. 51

4.3.7 Sporas and Histos.. 51

4.3.8 Beta Reputation System.. 51

4.3.9 Debit-Credit Reputation Computation (DCRC) and Credit-

Only Reputation Computation (CORC) ... 52

4.3.10 Summary... 53

4.4 Combination of different reputation mechanisms for the trust

management in DHT-based P2P environment... 55

4.4.1 Preliminary remarks.. 55

4.4.2 Realization details of the proposed solution 56

4.4.3 Findings .. 63

4.5 Byzantine Agreement for Reputation Management in DHT-based

Peer-to-Peer Networks... 64

4.5.1 Byzantine Generals Problem in distributed computer

 Security in DHT-based Peer-to-Peer Networks 6

systems: history of the problem ... 64

4.5.2 Applicability of classical solutions for BGP to P2P

environment ... 67

4.5.3 Algorithms and techniques involved in the proposed

solutions .. 73

4.5.4 Reputation evaluation algorithm with use of Byzantine

Agreement protocol.. 75

4.5.5 Complexity evaluations of the modified and the previous

algorithms .. 79

4.5.6 Summary... 85

4.6 References .. 86

5 Distributed Hash Tables in collaborative environments..................... 91

5.1 Enterprise networks.. 91

5.2 General description of the proposed approach 93

5.3 Kademlia for data storage and retrieval in enterprise networks . 95

5.3.1 Why Kademlia? .. 95

5.3.2 Proposed scenario of the network organization 96

5.3.3 Assignment of node identifiers ... 97

5.3.4 Key assignment and data storage procedures.................... 99

5.3.5 Data publication process ... 102

5.3.6 Modification and update of stored data........................... 104

5.3.7 Security mechanisms and countermeasures involved in the

presented solution... 107

 7

5.4 Findings and future work ... 109

5.5 References .. 110

6 Conclusions .. 113

7 Acknowledgments.. 117

 Security in DHT-based Peer-to-Peer Networks 8

 Introduction 9

1 Introduction

Today, peer-to-peer technology has reached the peak of its popularity.

Currently, P2P file sharing represents the dominant usage component of

Internet bandwidth. Moreover, P2P networks enable sharing of other

different computer resources and services, including distributed

(collaborative) computing, processing cycles, instant messaging, CPU and

storage resources, etc.

Peer-to-peer (P2P) is a communication model in which multiple autonomous

devices interact as equals. In a pure P2P network each node implements

functions of both client and server, and either peer can initiate a

communication session at any moment.

In terms of Internet users, P2P is a sort of “transient” network that allows a

group of computers with the same networking software (P2P client) to

directly access files from one another's hard drives via Internet connection –

simple to join, simple to use. Nevertheless, P2P network is a quite complex

system that represents a synthesis of several technological components, and

one of them is overlay network.

Nowadays, overlay networks based on Distributed Hash Tables (DHT) are a

building block of many peer-to-peer applications. DHT mechanisms provide

guaranteed data retrieval, moderate lookup times, automatic load balancing

and self-organizing data storage and lookup system [1].

However, DHT-based peer-to-peer networks represent a particular

environment susceptible to some specific threats and attacks due to their

completely distributed nature without any centralized control. Generally,

these attacks are caused by malicious behaviour of some nodes of the

network and aimed at routing and lookup processes.

 Security in DHT-based Peer-to-Peer Networks 10

This thesis is meant to find solutions for some specific security problems of

DHT-based P2P environment. At the same time, it is also proposed to exploit

the advantages of DHT mechanisms applying them to systems where they

can be effective against some particular problems. In other words, the

research was conducted in two directions:

• DHT as an object to specific attacks;

• DHT as a security improving tool.

Regarding the first direction, we propose some solutions based on the use of

trust and reputation evaluation mechanisms to cope with some types of

specific attacks of DHT environment. The character of interactions between

peers and the presence of “misbehaving” and “honest” peers indicate an

analogy between P2P environment and human communities. So, it makes

sense to apply reputation evaluation techniques to avoid further contacts with

nodes that have already demonstrated malevolent behaviour in order to

resolve the problem of polluting routing tables by malicious contacts.

In this work a detailed analysis of applicability of several existent reputation

evaluation techniques as protection from some types of attacks in DHT-based

P2P networks is presented. Possibilities of incorporation of some reputation

mechanisms in DHT routing and lookup processes are analysed. Then we

propose a solution that combines different reputation management

instruments involved by some analyzed techniques in order to provide a

single peer with necessary individual instruments to analyze and

independently evaluate reputation and trustworthiness of other peers.

Following this direction, we also apply Byzantine Agreement (BA) concept

and some existing solutions for Byzantine failure to cope with some types of

malicious activity in P2P networks. It is motivated by analogy between

Byzantine failure adversary model and some specific attacks in DHT-based

environments. We propose to integrate algorithms for Byzantine Agreement

 Introduction 11

proposed by Lamport, Shostak and Pease for distributed computer systems

and some reputation mechanisms designed for DHT-based P2P networks.

The goal is to obtain a simpler and efficient reputation management

algorithm for the completely distributed P2P environment.

The second direction concerns possibilities of application of DHT

mechanisms for data storage and retrieval to systems with a hierarchical

organization (such as enterprise networks) instead of use a client-server

model. Now, many corporations are looking at the advantages of using P2P

as a way for employees to share files without expenses caused by maintaining

a centralized server, and as a way for businesses to exchange information

with each other directly. For example, many companies of healthcare

industry, along with the scientific research and development sectors, use

distributed information infrastructure offered by P2P technology to exchange

and retrieve important data.

It is proposed to apply DHT principles to enterprise networks in order to

avoid some typical problems of centralized environments regarding

information security, data retrieval efficiency and reliability. We introduce a

distributed peer-to-peer (P2P) data organization system into the enterprise

environment in order to create a system that exploits hardware and memory

resources of all terminals of the network, provides a reliable data storage

system and possibilities of effective collaboration between geographically

distant users. The presented solution is based on application of Kademlia

DHTs to an enterprise data sharing system.

 Security in DHT-based Peer-to-Peer Networks 12

 DHT-based P2P networks 13

2 DHT-based P2P Networks

2.1 Overlay Networks

Overlay network is an important functional component of most peer-to-peer

applications. This is a virtual network where the nodes are connected with

each other by logic or virtual links, and each of these links corresponds to a

path that consists of multiple physical links of an exploited transport network

(Fig. 2.1). For example, P2P networks are overlay networks in relation to

Internet, while Internet via dial-up connection is an overlay for a telephone

network.

Fig. 2.1Overaly Network

 Security in DHT-based Peer-to-Peer Networks 14

Regarding P2P environment, overlay networks create a structured virtual

topology above the basic transport protocol level for implementing lookup

processes and some supplementary services. Overlay networks enable routing

of messages between peers and search of resources (i.e. IP addresses of nodes

that host them) according to predefined lookup protocol.

This work considers structured overlay networks based on Distributed Hash

Tables (DHT). Recently, a great number of P2P platforms have adopted DHT

lookup mechanisms: eDonkey (Kademlia), BitTorrent (Kademlia), CFS

(Chord), OceanStore (Tapestry), etc.

In DHT-based systems a group of distributed hosts collectively manages a

mapping from keys to data values without any fixed hierarchy and with very

little human assistance. It is realized in accordance with some predefined

lookup algorithm, e.g. CAN, Chord, Pastry, Tapestry, Kademlia. DHT-based

overlay networks provide guaranteed data retrieval, moderate lookup times,

automatic load balancing and self-organizing data storage and lookup system

[1]. Let’s consider how do DHT mechanisms work.

2.2 Distributed Hash Tables

The base of a typical DHT-based network is a routing table-based lookup

service, which maps a given key to a node that is responsible for the key

using a hash function. In such system each node is analogous to an array slot

in a hash table.

Responsibility for maintaining the mapping from names to values is

distributed among all nodes, in such a way that a change in a set of

participants causes a minimal probability of disruption. This allows DHTs to

scale to extremely large numbers of participants and to handle continual

joins, leaves, and failures of nodes.

 DHT-based P2P networks 15

Fig. 2.2 Data storage and retrieval in DHT-based networks

For example, to publish a resource with some predefined name, a user should

convert its name to a numeric key using a hash function. Then the publisher

invokes a “lookup (key)” operation and sends a file with corresponding

metadata to a node with an identifier coinciding with the key (Fig.2.2). The

latter should store the file. So, another node, that needs to get this file, should

only convert its name into the key, invoke a “lookup (key)” and request a

resulting node for a copy of the required file [2]. Hence, the lookup process

in such type of networks consists in defining the closest node to a key

corresponding to some desired resource. It is important to note, that the

concept of “closeness” in DHT-based systems depends on the type of lookup

scheme used.

For instance, in Chord the closeness is defined by a numeric difference

between two IDs; in Pastry and Tapestry it depends on a number of equal bits

in prefixes of two IDs; in Kademlia it’s calculated by XOR function applied

to a pair of IDs. Anyway, the concept of closeness in this case has nothing in

common with geographical distance and concerns only key-space.

 Security in DHT-based Peer-to-Peer Networks 16

Depending on the mode of organization of the identifier space DHT-based

lookup algorithms can implement routing in one dimension (Chord, Pastry,

Tapestry, Kademlia) and multiple dimensions (CAN).

The data structure of routing tables maintained by existing DHT lookup

protocols can present:

• skip-list (Chord);

• tree-like data structure (Pastry, Tapestry, Kademlia);

• rectangles (CAN).

The lookup process can be realized in iterative or in recursive mode. In the

case of iterative lookup (Fig.2.3), a search query is sent to a node that is

considered by a requestor to be the “closest” to a desired key amongst all

contacts maintained in its routing table. If that node is not responsible for the

key, it replies with an ID of the next hop of the lookup. Then the querying

peer redirects its request according to this reply. Iterative routing can be

performed concurrently, with multiple outstanding requests to decrease

latency and reduce the impact of timeouts [3].

When we deal with a recursive lookup (Fig.2.4), the first contacted node

forwards the query to a node it regards “closer” to the key than itself without

any reply to the lookup initiator. This process continues until the key is found

and the query is satisfied.

Despite the particular differences in data structure and routing

implementation, all DHT protocols for data storage and retrieval are based on

the idea of consistent hashing and they share the following fundamental

principle: route a message to a node responsible for an identifier in

)(log NO b
steps using a certain routing metric where N is the number of

nodes in the system and b is the base of the logarithm with values (2, 4, 16…)

[4].

 DHT-based P2P networks 17

Fig. 2.3Iterative lookup [3]

Fig.2.4 Recursive lookup [3]

 Security in DHT-based Peer-to-Peer Networks 18

In the following sections we briefly describe the original DHT protocols

mentioned above.

2.2.1 Chord

Chord is a lookup protocol based on consistent hashing that provides fast

distributed computation of a hash function mapping keys to nodes

responsible for them. This mechanism assigns each node and key (resource) a

unique m-bit identifier using a base hash function such as SHA-1. A node’s

identifier is a result of hashing the node’s IP address, while a key identifier is

produced by hashing the key.

Chord views the identifier space as a circle formed by no more than m2 nodes

(where m = 160) with identifiers/keys ranging from 0 to 12 −m [5].

Each node of a Chord network maintains two data structures:

• successor list;

• finger table.

The first is a list of peers immediately succeeding the key in the identifier

circle in a clockwise direction. So, a node with the smallest ID that is greater

than or equal to i represents the successor of a key (or node identifier) i.

Chord defines a key’s successor as a node responsible for the key.

Figure 2.5 shows a simple example of a Chord identifier circle represented by

three nodes with identifiers 0, 1 and 3 that are successors of keys 6, 1 and 2

respectively.

 DHT-based P2P networks 19

Fig.2.5 Identifier space organization in Chord [5]

This hashing scheme lets nodes join and leave a network with minimal

disruption. When a node n leaves a network, all the keys it is responsible for

should be reassigned to its successor. In the case when a node n joins a

network, certain keys previously assigned to n’s successor pass to n. To join

a Chord network, a node contacts any peer in the network and requests for an

ID to be assigned to the “newcomer”. Once the ID is assigned, the node

occupies an appropriate position in the identifier circle, and the predecessors

of the newly joined peer update their successor lists.

A finger table is a routing table which contains IP addresses of peers halfway

around the ID space from the node, a quarter-of-the-way, an eighth-of-the-

way and so forth in a data structure that resembles a skip-list (Fig. 2.6). The

size of a Chord routing table is N2log , where N is the number of nodes in

the network. If a node is looking for a resource with a key k, it forwards the

query to a node in its finger table with the highest ID not exceeding k. Due to

the skip-list structure a desired key can be reached in)(log2 NO steps.

 Security in DHT-based Peer-to-Peer Networks 20

Fig.2.6 Skip-list -like data structure of a routing table in Chord [5]

Hence, we can conclude that a successor list is required for maintaining the

correct organization of the identifier space and data structure, while a finger

table is meant to speedup lookup processes [3]. The lookup in Chord can be

implemented in both iterative and recursive modes, but the requests should be

forwarded sequentially.

2.2.2 CAN

Content-Addressable Network (CAN) is a distributed infrastructure that

provides “hash table-like functionality on Internet-like scales” [6]. CAN is a

scalable, fault tolerant and completely self-organizing system. To organize

the identifier space CAN uses a virtual d-dimensional Cartesian coordinate

space. A hush function is applied to deterministically map keys (file names)

into points in a logical coordinate space. This coordinate space is partitioned

dynamically among the peers of the network such that each peer covers a

certain region (zone) within the overall space (Fig. 2.7).

 DHT-based P2P networks 21

Fig. 2.7 Bidemensional CAN identifier space with 6 nodes [6]

A peer is responsible for storing (key, value) pairs for those keys that are

hashed into a point which is located within a zone it covers. Each peer

maintains a routing table that contains IP addresses of all neighbour nodes

whose virtual coordinate zones are contiguous to its own zone. In a d-

dimensional coordinate space, two nodes are neighbours if their coordinate

spans overlap along d -1 dimensions and abut along one dimension.

A lookup operation consists in routing a query towards its destination along a

path that approximates a straight between a querying node and a point with

the destination coordinates (Fig.2.8). It is implemented by simple greedy

forwarding to the neighbor peer closest to the destination.

 Security in DHT-based Peer-to-Peer Networks 22

Fig. 2.8 Lookup in CAN [6]

To join the network a peer chooses a casual point P in the coordinate space.

Then, the peer contacts a node already in the network and initiates a lookup

for a node n whose zone contains P. Once the node n is found, its zone

should be split in half and one half should be assigned to the new node.

To update routing tables all node should send an update message followed by

periodic refreshes, with their currently assigned zone to all their neighbours.

A too long absence of an update message from a peer indicates its failure.

 DHT-based P2P networks 23

2.2.3 Kademlia

Kademlia [7] is a DHT-based peer-to-peer system based on the XOR metric.

So, the distance between to identifiers is defined as: d (x,y) = x XOR y.

All nodes and resources in this system have 160-bit identifiers (keys). The

data are replicated by finding k (the recommended value for k is 20) closest

nodes to a key and storing the key/value pair on them. As it was noted above

Kademlia has a tree-like data structure. So, Kademlia considers network

nodes as leafs of a binary tree (Fig.2.9).

Routing processes are implemented in prefix-matching mode. The routing

table size is N2log (N is a number of nodes in the network) [4].

Fig. 2.9 Kademlia binary tree: node 0011… and sub-trees where it has

contacts [7]

 Security in DHT-based Peer-to-Peer Networks 24

Fig.2.10 Routing table data structure in Kademlia [7]

Each Kademlia node stores information about IP address, UDP port and node

ID for nodes from the interval: [)12;2 +∈ iid .

Nodes from this interval form a group called k-bucket (Fig. 2.10). So, a

Kademlia network can be presented as a bucket table. Due to the mechanism

of k-bucket a Kademlia node has at least one contact in each sub-tree. This

facilitates and makes faster lookup and routing processes: the lookup speed

can be increased by considering b bits (instead of one bit) at each step,

reaching a desired resource in less time.

The symmetry of XOR-metric provides peers with a possibility to learn and

update routing information from queries they receive during a lookup

process. So, in Kademlia updates of routing tables are implemented by nodes

automatically, as a “secondary effect” of ordinary lookups and interactions

with other nodes.

 DHT-based P2P networks 25

Fig. 2.11 Kademlia lookup [8]

 Security in DHT-based Peer-to-Peer Networks 26

Kademlia uses iterative lookup that is performed in parallel mode [4]: a host

contacts peers with progressively smaller XOR distances to the target ID in

turn.

As shown in the figure 2.11, the node with prefix 0011… initiates the process

of look-up for some resource, sending FIND_VALUE RPC to a node

residing in another sub-tree that is considered as closer to the target resource.

The contacted node returns a triple <IP address, UDP port, Node ID> for

node 1101… that is closer to the target than itself, and so on. As we can see,

every step of the lookup process narrows a ”search area” until the target node

is localized.

2.2.4 Pastry

Pastry assigns to each node a unique numeric identifier consisting of 128 bit.

Like in Chord, all node identifiers in Pastry can be logically positioned in a

circular identifier space [9]. However, routing tables has a tree-like structure

and lookup processes are performed by prefix-matching.

Each Pastry node maintains a routing table, a neighbour set and a leaf set.

A peer’s routing table is organized into Nb2
log rows with 12 −b entries

each (Fig. 2.12). So, a routing table contains IP addresses of peers with no

prefix match, with b bits prefix match, 2b bits prefix match and so on, where

b is a configuration parameter (typically b=4).

 DHT-based P2P networks 27

Fig. 2.12 Routing table of a Pastry node with node ID 65a1x, b=4 [9]

The leaf-set L of a node n contains information about |L|/2 closest nodes with

identifiers that are numerically smaller than that of the node n and |L|/2

closest nodes with identifiers that are numerically larger than that of the node

n (|L| is a configuration parameter with a typical value of 16 or 32). The leaf-

set in Pastry is conceptually similar to the Chord’s successor list.

Routing in Pastry is recursive: each host forwards a lookup message along a

chain of nodes to a destination. At each step of a routing process a contacted

peer tries to route a lookup message to a node whose ID contains a longer

sequence of bits coinciding with those of a sought key than its own ID

(Fig. 2.13).

 Security in DHT-based Peer-to-Peer Networks 28

Fig. 2.13 Routing of a lookup message from node 65a1fc to key d46a1c in

Pastry identifier space. Black points represent currently active peers [9]

To join a Pastry network a node should contact any active node in the

network that implements bootstrap functions for the newcomer. It is realized

in the following mode: a new node with identifier X tries to get an active

status sending to some currently active node a special message and using X

as a key. The message is forwarded by hop-by-hop routing to a node Z whose

ID is the closest to X. Then X obtains from Z information about the

neighbourhood in order to build its own leaf set. To create its routing table X

uses routing data obtained along the path from the bootstrap node to Z. After

that, the newcomer announces its “alive” status to the neighbourhood. So, the

neighbour nodes should update their routing tables and leaf sets taking in

consideration the presence of the new node.

In the case of leaving the network by some node, only leaf sets of neighbours

are immediately updated; routing tables data are corrected on demand, only

 DHT-based P2P networks 29

when some node tries to contact a node that is currently is not available.

2.2.5 Tapestry

Tapestry [10] DHT structure is very similar to Pastry system. However, there

are some differences regarding key mapping and management of data

replicas.

Tapestry is an extensible infrastructure that provides decentralized object

location and routing focusing on efficiency and minimizing message latency.

This is achieved since Tapestry constructs only locally optimal routing tables

and maintains them in order to reduce routing stretch (Fig.2.14).

Furthermore, Tapestry allows flexible data (objects) distribution according to

particular needs of a given application.

Fig. 2.14 Tapestry routing mesh from the point of view of a single

node. Outgoing links point to nodes with a prefix match. Higher

level entries match more digits. Together these links represent a

local routing table [10]

 Security in DHT-based Peer-to-Peer Networks 30

Each node is assigned a unique nodeID. All node identifiers are uniformly

distributed in a large identifier space. Tapestry uses SHA-1 to produce a 160-

bit identifier space represented by a 40 digit hex key. Pastry defines specific

endpoints GUID's that are similarly assigned unique identifiers. NodeID's

and GUID's are roughly and evenly distributed in the identifier space.

Tapestry implements so called “surrogate routing” (Fig.2.15). At each hop of

a routing process a message is progressively routed closer to a targeted key

by incremental suffix routing. Each routing table has multiple levels, and

each level contains links to nodes with IDs matching up to a certain digit

position. It means that level 1 has links to nodes with IDs that have nothing in

common, contacts of level 2 have the first digit in common, etc. When a

certain digit of an ID cannot be matched, a lookup is redirected to some

“close” digit. So, each nonexistent ID is mapped to some live node with a

similar ID. The number of hops in a routing process in Tapestry is defined as

log2
bN (N is a number of nodes in the network).

Fig. 2.15 Lookup routing in Tapestry [10]

 DHT-based P2P networks 31

To join the network a node sends a multicast message to all active nodes with

the same prefix (i.e. to those of them that share with the newcomer the

longest sequence of digits of the ID). These nodes should add the new contact

to their routing tables. Then, the nodes contact the new node to provide a

temporary neighborhood list. After that, the new node performs an iterative

search for the nearest neighbor contacts to fill all levels of its routing table.

Leaving the network a node informs other nodes about its intention and

communicates IDs of replacing nodes for each level of the routing table.

Resources and data stored at the leaving node are redistributed or provided

from redundant copies.

2.3 References

[1] D. Doval, D. O’Mahony. Overlay Networks: A Scalable Alternative

for P2P. IEEE Journal on Internet Computing, Vol.7, No.4, pp. 79-82,

August 2003.

[2] H. Balakrishnan, M. F. Kaashoek et al. Looking Up Data in P2P

Systems. Communications of the ACM, Vol. 46, No. 2, pp.43-48, Feb. 2003.

[3] S.A. Crosby, D.S. Wallach. An Analysis of BitTorrent’s Two

Kademlia-based DHTs. Technical Report TR-07-04, Department of

Computer Science, Rice University, June 2007

[4] S. Baset, H. Schulzrinne, E. Shim. Common Protocol for DHT

Algorithms. Internet-Draft at: http://www.ietf.org/internet-drafts/draft-baset-

sipping-p2pcommon-00.pdf

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan.

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In

Proceedings of SIGCOMM-2001, San Diego, California, USA, August

2001.

 Security in DHT-based Peer-to-Peer Networks 32

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker. A

Scalable Content-Addressable Network. In Proceedings of SIGCOMM-2001,

San Diego, California, USA, August 2001.

 [7] P. Maymounkov, D. Mazières, “Kademlia: A Peer-to-peer

Information System Based on the XOR Metric”, in Proceedings of the 1st

International Workshop on Peer-to-peer Systems, MIT, March 2002.

[8] http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/p9.html#Kademlia

[9] A. Rowstron, P. Druschel,. Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. In Proceedings of

the 18th IFIP/ACM International Conference on Distributed Systems

Platforms (Middleware 2001), March 2002.

[10] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, J. D.

Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay for Service

Deployment. IEEE J-SAC, 22(1), January 2003.

 Vulnerabilities and Security Threats in DHT-based P2P Environment 33

3 Vulnerabilities and Security

Threats in DHT-based P2P

Environment

3.1 Specific attacks

In a DHT-based P2P network adversaries are represented by participants of

its own distributed hash lookup system that do not follow the protocol

correctly [1]. Thus, this environment is vulnerable to some specific threats

and attacks that are generally caused by malevolent behaviour of some nodes

of the network and aimed at routing and lookup processes.

Routing attacks that take place in P2P systems using DHT-mechanisms

usually consist in incorrect lookup routing, incorrect routing updates and

partitions. Let's consider them in details.

Incorrect lookup routing takes place when some malicious peer tries to

forward lookup process to an incorrect or non-existent node (Fig.3.1). As we

know, the lookup process in such type of networks consists in defining the

“closest” node to a key corresponding to some desired resource. So, each step

of the lookup is supposed to get closer to the node responsible for the key.

But a malicious peer can confuse the process of routing claiming that some

random node is the closest to a sought key. Hence, lookup process can be

directed incorrectly and this can prevent a pair key/value from being found.

The figure below represents incorrect lookup routing in CAN. The initiator

(the node with coordinates [0.0, 0.5, 0.5]) starts the lookup for a key stored

at node [0.75, 0.75, 0.1]. At the third step of the lookup the malicious node

34 Security in DHT-based Peer-to-Peer Networks

Fig. 3.1Incorrect lookup routing in CAN

incorrectly forwards the query to node [0.75, 0.1, 0.5]. So, this step annuls

the search progress that has been reached previously. Anyway, the lookup

process can be “saved” by backtracking to the precedent correct step and

asking for an alternative hop that maybe offers less progress but directs the

lookup in a correct manner.

Incorrect routing updates take place when a malicious peer corrupts routing

tables of other peers by sending them incorrect updates. It is possible because

in P2P networks using mechanisms of DHT peers create their routing tables

by consulting each other. As result, “well-behaving” peers direct their queries

to inappropriate or non-existent nodes, as in the case with incorrect lookup

routing.

 Vulnerabilities and Security Threats in DHT-based P2P Environment 35

Fig.3.2Partitions in CAN

The problem of partition appears while bootstrapping a new peer, i.e. when a

new node contacts some already active peer to join the network. So, if some

malicious peer has been chosen as a bootstrap node, the newcomer can be

partitioned into an incorrect (parallel) network created by a set of malevolent

nodes. Fig.3.2 illustrates partitions in CAN network: the newcomer has

chosen the point P in the coordinate space to join the network. Unfortunately,

the node contacted for bootstrapping is malicious and the point P belongs to a

zone controlled by the malicious peer [0.75, 0.75, 0.1]. So, our newcomer is

partitioned into the network segment controlled by malevolent users.

The same happens when one of the malicious nodes is cross-registered in the

“right” network. So it is able to make new nodes to be connected to the

36 Security in DHT-based Peer-to-Peer Networks

parallel network even if firstly a legitimate node has been contacted to

effectuate the bootstrapping process [1].

Rapid joins and leaves represent another type of malicious activity that

causes rebalancing process on the network and, as a result, an unjustified

excess of data transfers.

Inconsistent behaviour of some node is manifested in its correct behaviour in

respect of certain nodes (for instance, its “neighbours” in the identifier space)

and misbehaving in regard to others. So, neighbour nodes don't remove such

malicious contacts from their routing tables giving them the possibility to

participate in routing processes and to continue confusing “less lucky” peers.

Some malicious nodes can follow rules of a lookup protocol correctly, but

deny the existence of resources they are responsible for or refuse to provide

interested users with these resources. In this case we deal with storage and

retrieval attacks.

Sybil attack consists in forging multiple identities by a malicious entity in

order to obtain the possibility to act as a number of peers with different

identities. This type of malicious activity exploits the mechanism of

identifier-to-key (ID-to-key) mapping that represents a basic element of

DHT-based P2Psystems [2]. As we know, a DHT-based overlay network

uses a virtual addressing scheme based on logical identifiers obtained through

consistent hashing. Such scheme provides for each entity of the underlay

network a corresponding unique identity in the overlay network, i.e. forms a

“ID-to-key” mapping pair for each entry [3]. In the case of the Sybil attack

malevolent nodes break “one entity-one identity” relation spoofing multiple

identities.

In the next section we describe several countermeasures and protective

mechanisms provided by DHT-based lookup algorithms to cope with some

 Vulnerabilities and Security Threats in DHT-based P2P Environment 37

effects of the above attacks.

3.2 Countermeasures

The self-organizing nature of DHTs enables some countermeasures against

several effects of different types of malicious activity described in the

previous section.

Incorrect lookup routing can be detected by checking the progress of lookup

at each step. In the case of absence of any progress (blatantly incorrect query

forwarding), lookup process is backtracked to the previous “right” step and

then proceeds with looking for an alternative direction of the search that

maybe offers less progress but leads to a desired target. This checking

procedure makes the routing and lookup processes slower, but helps to

prevent a lookup from failure.

In the lookup algorithms with iterative character (Kademlia, Chord) incorrect

lookup rooting is easy to detect due to the possibility of lookup progress

control at each step after a corresponding <key; value> pair has been returned

by a contacted peer.

In the case of recursive lookup it is problematic to apply verifying

mechanisms at each step, as a query is forwarded without interacting with the

requestor. So, this countermeasure is not applicable to recursive lookup.

Incorrect routing updates can be prevented by setting certain requirements for

correct routing updates that should be verified. For example, in Pastry routing

updates are considered as correct if each table entry has a correct prefix. So,

blatantly incorrect updates can be easily identified and annulled. Hence, it is

important to verify whether a newly updated contact is reachable (existent)

before introducing it into a routing table [1].

In Kademlia the problem of incorrect routing updates is solved due to the

38 Security in DHT-based Peer-to-Peer Networks

particular mechanism of updates used in this system: every routing table

update is implemented by a Kademlia node automatically, as a “secondary

effect” of ordinary lookups and interactions with other nodes. In this mode

each update inserted into a routing table is verified by the previous

experience of the node.

The problem of inconsistent behaviour may be resolved by implementing

routing by short hops only through close (“locally good”) nodes. In this case

each participant of the lookup has to demonstrate a good behaviour

interacting only with its neighbours. As we know, misbehaving is not

convenient for malicious nodes in this case because it causes removing

malevolent contacts from routing tables and, as a result, impossibility to

participate in further routing processes. However, almost all routing systems

use hops toward distant points in the identifier space to reach a desired key in

less time [1].

Storage and retrieval attacks can be prevented by replication of files using

multiple hash functions. In such way we avoid the responsibility of a single

node for replication or facilitating access to the replicas. So, if some node

refuses to provide a sought resource, the last can be obtained from another

responsible peer.

To resolve the problem of partitions it is proposed to implement

bootstrapping through some trusted nodes. The trusted nodes can be

represented by some predefined authority or by some nodes that have been

previously discovered or successfully used as bootstrap by a node rejoining

the network.

Sybil attacks cannot be excluded in a distributed computing environment, but

a lookup efficiency can be improved by parallel routing (issuing α lookup

requests at a time) [4]. The solution that is frequently used to resolve this

problem is establishing a trusted certificate authority that can guarantee a

one-to-one correspondence between entity and identity [5].

 Vulnerabilities and Security Threats in DHT-based P2P Environment 39

3.3 Summary

The countermeasures provided by the nature of DHT-based lookup

algorithms have a “short-term” character: they help to cope only with

instantaneous effects of malicious activity and usually don’t resolve a

problem of detection and elimination of malevolent contacts from routing

tables. Moreover, as we have seen, for some specific security problems of

DHT-based environment opportune countermeasures don’t exist (e.g.

incorrect routing updates in the case of recursive lookups, inconsistent

behaviour, Sybil attacks).

As mentioned above, some solutions require use of centralization elements

that contradict the completely distributed nature of P2P networks. Moreover,

it means introducing into the system a central critical point and significant

increase of maintenance costs. Thus, such solutions involve some typical

problems of centralized systems.

In the next chapter some ways to resolve the above problems are proposed.

3.4 References

 [1] E. Sit, R. Morris. Security considerations for Peer-to-Peer

Distributed Hash Tables. In Proceedings of the First International Workshop

on Peer-to-Peer Systems (IPTPS’02), Cambridge, Massachusetts, March

2002

[2] M. Srivatsa, L. Liu. Vulnerabilities and Security Threats in

Structured Overlay Networks: A Quantitative Analysis. In Proceedings of

ACSAC-2004

 [3] L. Wang. Attacks Against Peer-to-Peer Networks and

40 Security in DHT-based Peer-to-Peer Networks

Countermeasures. Seminar on Network Security, Helsinki University of

Technology, December 2006

 [4] D. Stutzbach, R. Rejaie. Improving Lookup Performance over a

Widely-Deployed DHT. In Proceedings of the 25th IEEE International

Conference on Computer Communications, INFOCOM’06, April 2006

[5] J.R. Douceur. The Sybil Attack. In Proceedings of the 2nd Annual

IPTPS Workshop, 2002

 Trust and reputation management in DHT-based P2P environment 41

4 Trust and reputation

management in DHT-based P2P

Environment

“…Ideas that have great results are always simple ones.

My whole idea is that if vicious people are united and constitute a power,

then honest folk must do the same. Now that's simple enough…”

 Lev Tolstoy, “War and Peace”, 1869

To resolve some security problems considered before there is need to apply

mechanisms based on analysis of the activity of peers and the acquired

reputation in order to “clear” routing tables from contacts that have evinced

malicious or inconsistent behaviour to avoid them in the future.

Applying opportune mechanisms for verifying lookup progress, the querying

node can make a conclusion about “honesty” of the nodes participating in the

lookup process, assigning to them the corresponding reputation values.

Analogically, a node that honestly shares its resources with other nodes gets

reputation “points”, and a node denying the existence of data it is responsible

for (storage and retrieval attacks), loses them.

In the case of recursive lookups to avoid forwarding queries to malicious

peers (incorrect lookup routing), all participating nodes (not only a lookup

initiator but also each intermediate node) should control all stored reputation

values and choose among possible hops the most reliable one.

Reputation techniques based on exchange and analysis of opinions of

different nodes can be used in the case of inconsistent behaviour. These

42 Security in DHT-based Peer-to-Peer networks

techniques can be applied to make nodes realize that some “locally good”

nodes are malicious in respect to distant peers.

Thus, to cope with some types of malicious activity the collaboration

between “honest” network nodes is indispensable.

In this chapter we analyze possibility of application of existent reputation

techniques to DHT-based P2P systems.

We also propose integration of reputation mechanisms with other instruments

used in distributed computing environment in order to improve resilience of

such systems to destructive actions of malevolent or faulty components. The

goal of this integration is to obtain a more efficient, less expensive (in terms

of data transferred, computational resources involved and time spent) and

possibly simple solution to cope with the specific problems of DHT-based

environment described in Chapter 3.

4.1 Reputation in P2P

In P2P networks, like in any human community, nodes (users) interact, create

new contacts, and progressively gain their own experience and reputation.

These two factors help them to evaluate trustworthiness of other nodes and to

understand what kind of behaviour can be expected from a certain node.

Hence, the entities that enjoy a high reputation are considered as trusted.

According to Abdul-Rehman and Hailes [1]“reputation is an expectation

about an individual’s behaviour based on information about or observations

of its past behaviour”. So, we can see that the reputation and the experience

are particularly interrelated factors. To evaluate the reputation of some

individual it is possible to use an own direct experience, recommendations

and experiences of other persons, or all these factors.

The reputation is an integral part of the trust concept and it is very important

 Trust and reputation management in DHT-based P2P environment 43

for the establishment of trust relationships between two entities. Grandison

and Sloman [2] define trust as “the firm belief in the competence of an entity

to act dependably, securely and reliably within a specified context”. So,

while the reputation concept considers only real facts regarding the behaviour

and the activity of some entity in the past to evaluate a level of

trustworthiness of the entity, the trust often can be based on such subjective

factors as recommendations of some friends, intuition or banal sympathy.

Recently, a number of trust and reputation management techniques for P2P

networks has been proposed by different researchers.

All existing decentralized trust management techniques for P2P communities

can be divided in two groups depending on the approach used to establish

and evaluate trust relationships between peers [3]:

• credential and policy based

• reputation based.

In credential and policy based trust management systems peers use a set of

credentials and policies to determine whether a certain peer can be trusted or

not. This approach is typically used for authorization and access control in

open systems, and it is meant for systems with strong protection

requirements. Obviously, in this case the presence of some sort of

certification authority is required. Such techniques often require a central

server for storing and distributing reputation information. Therefore,

credential and policy based mechanisms are to be applied in centralized

systems with a hierarchical structure.

The backbone of each reputation-based technique is a trust computational

model that provides mechanisms to evaluate the level of trust toward both a

resource and its possessor. In this case the reputation management is based

only on the recommendations and direct experiences of the users. Normally,

the data (opinions regarding reputation of other users) exchanged by the

44 Security in DHT-based Peer-to-Peer networks

peers is not signed by certification authorities, but it can be self-signed by the

source of the information [4].

4.2 Reputation management

techniques for DHT-based P2P

networks

In the case of completely distributed DHT-based P2P networks, we need the

techniques providing mechanisms that can be realized in decentralized

systems with instruments applicable to the overlay network environment. In

such networks a central server, that assigns a univocal reputation value to

each peer, is absent. So, each single peer should be provided with all

necessary means to analyze and independently evaluate the reputation and the

trustworthiness level of other peers.

Thus, taking in consideration the particularities of deploying reputation

mechanisms in a DHT setting, we introduce the following applicability

criteria for reputation mechanisms:

1. technical realizability in overlay networks;

2. availability of individual reputation evaluation instruments.

The first criterion is related to a category of reputation evaluation technique:

pure reputation or with credential and policy elements.

The second criterion is represented by some different parameters, such as:

• possibility to provide recommendations;

• possibility to “weigh” recommendations, i.e. recommendations from

different peers have different levels of trustworthiness;

 Trust and reputation management in DHT-based P2P environment 45

• responsibility for the behaviour of recommended entities;

• evaluation of the community context (the average level of

vulnerability of the network environment and the level of

cooperation between peers);

• incentives for feedback compilation.

A reputation technique that satisfies the above criteria can provide a single

node with all necessary instruments for independent evaluation of

trustworthiness levels of other nodes. Only techniques based on pure

reputation mechanisms without credential and policy elements can offer this

possibility.

Reputation techniques specifically designed for DHT-based networks are

heavily based only on evaluation mechanisms of successful and unsuccessful

downloads. These techniques regard only file sharing P2P applications [5,6].

However, P2P technology also supports instant messaging, collaborative

applications, distributed computing, etc.

In the last few years P2P systems have been successfully used for sharing

computation under various distributed computing projects like

FightAIDS@Home, Genome@Home, Seti@Home, United Devices Cancer

Research Project and others [7]. These projects represent a public-resource

computing that relies on personal computers with excess capacity, such as

idle CPU time, to resolve some complex research problems. Public-resource

computing is an aspect of the peer-to-peer paradigm, even if it uses a grid

technology to realize its tasks. Currently, such systems approach a DHT

nature. Some steps of computational processes become completely

independent from central servers: calculations results of some node are stored

in the network and retrieved by a successor that use them for its own part of

the task; if a peer leaves a network while processing a work unit, the work

unit is eventually sent to another peer that becomes responsible for it (like in

46 Security in DHT-based Peer-to-Peer networks

DHT data storage systems when a node becomes responsible for resources of

some failed node if their identifiers are considered as the closest to each

other).

Another type of systems that use DHT principles are collaborative

applications for data storage and editing by several geographically distant

work groups. Such systems should provide a rapid and secure data exchange

between different system units and possibility of team-work in real-time and

transparent mode.

The systems described above represent active distributed collaborative

environments, where every interaction between peers is important and, as

L. Lamport said, “the failure of a computer you didn't even know existed can

render your own computer unusable”. So, in these systems a number of

successful downloads cannot be a sufficient instrument for reputation

management. In collaborative environments it is also very important to

consider possible risks and various parameters regarding the community

context (number of lookup requests without response, number of join and

leaves for a node, off-line status time), because the cost of a mistake, caused

by a malicious activity in such systems is incomparably higher than in file-

sharing networks. Just some unreliable peers that have not been discarded

form routing tables in time can interrupt a long chain of calculations.

In the next section we present a detailed analysis of applicability of several

existent reputation evaluation techniques as protection from some types of

attacks in P2P networks based on DHTs. The analyzed techniques are not

designed for DHT-based environment, so none of them represents a universal

solution for such systems. At the same time, different reputation management

instruments used by these techniques could be a quite effective in some

particular cases in a DHT environment. These techniques give the possibility

to evaluate the community context parameters mentioned above.

 Trust and reputation management in DHT-based P2P environment 47

4.3 Applicability analysis of some

reputation management techniques

Here we briefly describe some distributed trust and reputation management

techniques, underlining some specific characteristics and mechanisms. Then,

the possibility of application of these techniques to the DHT-based P2P

environment is analyzed.

4.3.1 Supporting Trust in Virtual Communities and

Fuzzy Model for Context- dependent Reputation

These two models propose relatively simple solutions regarding the

reputation data management. Both of them have a possibility to provide

recommendations.

In the first case [1] the trustworthiness of recommendations is defined by the

“semantic distance” between the recommendation provided by some entity

and other entity’s own perception of the recommender’s trustworthiness. So,

the “semantic distance” is a value applied to a recommendation (that may be

subjective or lying) to obtain possibly realistic information based on one’s

own opinion of a recommender.

In the second case [9] we don’t have a mechanism for evaluation of the

trustworthiness of recommendations, but they can be expressed with different

“levels of certainty”. A recommender can be absolutely sure of the future

behaviour of a recommended entity or can have some doubts about it, and

this technique gives him the possibility to express it. Moreover, in this model

the behaviour of a recommended entity affects (in a balanced and perfectly

symmetric mode) the reputation of the recommender. So, the network

presents a particular community, where each entity is responsible in some

degree for events that take place here.

48 Security in DHT-based Peer-to-Peer networks

4.3.2 PeerTrust

PeerTrust [10] presents the most complete model among all the analyzed

techniques. It takes in consideration a lot of parameters of great importance

to calculate a reputation value: feedbacks and the trustworthiness of entities

realizing them; transactions and conditions in which they are executed;

community and environment context. The “weight” of each of these

parameters in evaluation of the reputation of a single node can be modified

depending on the situation, and this possibility render this model more

flexible than others. The solutions regarding the algorithm for calculation of

the trustworthiness level propose mechanisms of defence against malicious

behaviour of some nodes who:

• provide good services, but compile feedbacks incorrectly to confuse

other peers;

• due to collaboration with other malicious peers gain a high

reputation value according to feedbacks provided by the malicious

“allies”.

This technique propose to peers an incentive to make them compile

feedbacks correctly, assigning to “good” nodes a corresponding recompense.

There is another very important feature of PeerTrust that helps to cope with

concomitant problems of dynamic character of P2P environment: the peers

should keep in consideration feedbacks obtained during some predefined

time interval. Then, comparing the information received in different intervals

of time, it is possible to find out the peers with inconsistent behaviour.

4.3.3 Personalized Trust Model (PET)

PET [11] has two main particularities in respect of other techniques analyzed:

1. recommendations play a very modest role in calculation of the trust

 Trust and reputation management in DHT-based P2P environment 49

value, and all of them have the same level of importance and

trustworthiness. It is explained by the fact that an entity, considered

as trusted by some peer, is not automatically considered as trusted

by another peer;

2. the highest priority is assigned to direct experiences of the peers,

that undoubtedly provide the highest level of certainty.

The incidence of these components in the analysis concerning trustworthiness

of a single peer is modifiable, but anyway, the incidence of the

recommendations shouldn’t exceed 20%.

This technique also involves mechanisms to resolve the problems caused by

the dynamic character of peers. Here, like in PeerTrust, it is proposed to

analyze information received from other peers (feedbacks, recommendations)

at stated intervals. This model can be quite efficient in environments, where

peers’ status is particularly dynamic, and the great part of them is unreliable.

4.3.4 Poblano

Poblano [12] is a distributed trust model created by JXTA developers, that

proposes solutions, which are completely diverse from those we have just

described. Here, the analysis is focused on the trust based on interests of

different peer groups. Discussing the precedent techniques, we always

considered such aspects as “honesty” and reliability of single peers,

trustworthiness of their recommendations, but we didn’t take in consideration

the quality of available resources. In this case, the trust relationships are

established on the base of quality evaluation of data (resources) provided by

users (peers). It is important to note, that each peer evaluates the data

representing its sphere of interests, associated with some specific Codat.

Codat is defined as a unit of information (that can present either code or data)

shared and exchanged within a single peer group. So, in Poblano the

50 Security in DHT-based Peer-to-Peer networks

evaluation of the reputation of some single node is implemented on the base

of quality of resources provided by this node.

An algorithm of calculation of the trust value proposed in this technique,

takes in consideration not only the original quality of a resource provided by

a certain node, but it regards also the quality of the path the resource has gone

through before being read by a requestor node.

In the context of data authentication, this model involves some principles

of “Web of Trust” conception and use of certificates, both those self-signed

and signed by Certification Authority.

4.3.5 NICE

The characteristic that makes NICE [13] unique in respect of other

techniques consists in the following: at the end of an interaction each peer

creates a cookie, where it registers a level of its satisfaction of the

transaction’s results, signs it, and then the signed cookies are exchanged by

the interaction’s participants. But the cookies can contain either positive or

negative estimations. In the case of the positive estimation the cookies are

exchanged by interacting peers as noted above, and each of them saves these

cookies as a proof of its high reputation. In the case of negative estimation

they are retained by the peers that create it.

So, when a peer requests for a certain resource from another peer, that it has

interacted with before, it presents the provider with a cookie signed by the

provider itself. The provider peer verifies its own signature and accepts the

cookie as a proof of the requestor’s trustworthiness. If the peers have never

interacted before, the requestor should find a “path of trust” between itself

and the provider, and presents this path instead of a “direct cookie”. Another

very important characteristic of NICE is the establishment of a solid

cooperation between “good” peers in order to isolate malicious peers.

 Trust and reputation management in DHT-based P2P environment 51

4.3.6 XREP

XREP [14] proposes a model, where each peer has its experience repository,

that contains information about the quality of the resources and the

trustworthiness of other peers, that it has directly interacted with before.

Once a needed resource has been individuated, a peer initiates a “vote

process” involving all peers, that have had a direct experience regarding a

certain resource and can present the corresponding information registered in

their repositories. In this way, the requestor has the possibility to compare

opinions of all these peers and then to make its own conclusion about the

trustworthiness level of this peer.

The main disadvantage of this technique is a great number of messages the

peers exchange with each other during the vote process.

4.3.7 Sporas and Histos

These are very similar models [15], based on a quite simple mechanism.

Anyway, both of them offer to each peer the possibility to analyze data

received at stated time intervals and even to personalize these intervals.

Moreover, peers can differentially evaluate opinions about behaviour of other

peers, taking in consideration the reputation of the authors of these opinions.

In some degree it is possible to consider Histos as evolution of an algorithm

defined in Sporas. Histos exploits relations between peers, that already have

been evaluated, to provide an estimation mostly personalized.

4.3.8 Beta Reputation System

This technique [16] is entirely based on the statistical theory and uses

probability density function beta as a key instrument. Originally this model

was created for a system with a more centralized character, but it is possible

52 Security in DHT-based Peer-to-Peer networks

to adapt it in decentralized systems too, but it is easier to realize this model in

decentralized environment with some elements of centralization. Anyways,

this technique consists of different blocks, that can be utilized and combined

according to certain requirements.

Beta Reputation System supports such mechanisms as: management and

analysis of feedbacks from multiple sources; differential evaluation of

opinions about peers and their resources provided by other peers; data

analysis at stated personalized time intervals.

4.3.9 Debit-Credit Reputation Computation (DCRC)

and Credit-Only Reputation Computation (CORC)

These techniques [17] propose a partially distributed solution, that involves

the presence of special peers called “reputation computation agents” (RCA).

These agents periodically calculate and validate “points” assigned to different

peers during their interaction with other peers. These points represent so

called “reputation score”. So, RCAs determine and “formalize” a reputation

value of each peer. The points is derived from credits assigned to peers when

they implement activities useful for the community: elaboration and

forwarding of queries, providing resources and remaining on-line for a long

time.

The debits (in DCRC) reduce the points and it takes place when peers

download resources provided by other peers of the network. Each peer

generates a couple of keys (private and public) and registers it at the RCA

host. The digest of public keys is used by the RCAs to identify a peer.

 Trust and reputation management in DHT-based P2P environment 53

4.3.10 Summary

The summary table below contains data regarding all the basic characteristics

of the analyzed reputation models.

Concerning the first applicability criterion, almost all the analyzed techniques

can be subsumed under the reputation based category. NICE and

DCRC/CORC realize some credential and policy elements: digital signatures

of cookies in NICE, peer identification by “reputation computation agents”

(RCAs) using public key in DCPC/CORC. Poblano and XREP also involve

some mechanisms with a centralized nature. This fact represents some

difficulties for application of these techniques to completely distributed

DHT-based networks.

As to the second criterion, all these techniques have different completeness

degrees. PeerTrust and Fuzzy Model represent the most complete techniques,

as they realize almost all possible mechanisms for evaluation of a peer’s

trustworthiness.

We can conclude that none of these techniques in its pure form represents a

suitable solution for DHT-based P2P networks. At the same time, different

reputation management instruments used by these techniques could be a quite

effective in some particular cases in DHT environments. So, in the next

section we propose a way to exploit advantages of single mechanisms

provided by different reputation management models.

54
S
ecurity in D

H
T
-based P

eer-to-P
eer netw

orks

Credential
and policy
elements

No

No

No

No

No

No

Yes

No

No

Yes

Incentive to
feedback

compilations

No

Yes

No

No

No

No

No

No

No

No

Community
context

No

Yes

No

Yes

No

No

No

No

No

No

Transaction

consideration

No

Yes

No

Yes³

No

No

No

No

No

Yes

Responsibility for
the behaviour of
recommended

entities

No

No

No

Yes

No

No

No

No

No

No

Possibility to
“weigh”
recommen-
dations

Yes

Yes²

No

Yes

No

No

No

Yes²

Yes²

No

Providing
recommen-

dations

Yes

Yes¹

Yes

Yes

No

Yes4

Yes6

Yes¹

Yes¹

No

Reputation
Value Scale

4 possible
levels

Normalized
from 0 to 1

Normalized
from 0 to 1

Normalized
from 0 to 1

6 possible
levels [-1; 4]

Normalized
from 0 to 1

Binary 5

From 0 to 3000
exclusive

Normalized
from 0 to 1

Non- negative

 Parameter

Model

Supporting Trust in
Virtual Communities

Peer Trust

Personalized Trust
model

Fuzzy Model

Poblano

NICE

XREP

Sporas and Histos

Beta

DCRC/CORC

 1 – feedbacks compiled by other users 3 – only the events’ number is considered 5 - a binary value scale is not obligatory
 2 – regards an entity compiling a feedback 4 – recommendations regarding some determined peer 6 – in the form of a vote

 Trust and reputation management in DHT-based P2P environment 55

4.4 Combination of different

reputation mechanisms for the trust

management in DHT-based P2P

environment

The solution we propose is a combination of different instruments for

reputation management offered by the analyzed techniques: each of these

instruments should be applied when it is considered as the most efficient one

for a certain situation. In this section we present a possible scenario of

application of the proposed solution to a P2P network based on Kademlia

DHTs, extracting some reputation evaluation instruments from the models

analyzed before and adapting them to particularities of DHT-based

environment.

4.4.1 Preliminary remarks

As an environment for our scenario we chose a network based on Kademlia

DHT protocol that is widely used by a number of P2P platforms (eDonkey,

BitTorrent, etc). Taking in consideration that in Kademlia lookups are

implemented in iterative mode, we can describe the following model of

integration of reputation mechanisms and lookup processes:

• each node of the network after every contact with another node

assigns a new reputation value to the contacted peer depending on

the interaction results;

• all the assigned reputation values are to be stored by the querying

node and should be consulted before contacting corresponding

nodes again;

56 Security in DHT-based Peer-to-Peer networks

• these reputation values are used as recommendations that each node

exchanges with others, sending them with the corresponding IP

addresses that indicate the next step of iterative lookup.

The proposed combination of the reputation instruments includes:

• risk evaluation method provided by PET model [11];

• resources and servent repositories from XREP model [14];

• debit-credit based reputation computation model (DCRC) [17].

The proposed scenario represents a situation in which a peer joins a network

the first time and initiates a lookup process for a data file with a certain ID.

Since it is a new node for this network, it has no idea about trustworthiness of

other nodes.

4.4.2 Realization details of the proposed solution

As reputation is an accumulative value, it is not possible for a newcomer to

evaluate someone’s reputation after the first contact. However, it is possible

to define a level of vulnerability of the network environment on the base of

results of the first experiences using the appropriate instrument offered by

PET.

PET model derives the trustworthiness value T from two components:

reputation factor
eR and risk factor

iR with different weights (incidence)

eRW and
iRW respectively. The trustworthiness value is defined as follows:









=

=

≤≤−×−

=

0,

0,

10,))1(,()1,(

ei

ie

T

ie

ifRR

ifRR

RR

T

ααα
 (4.1)

 Trust and reputation management in DHT-based P2P environment 57

where α=
eRW and α−= 1

iRW , and the values of T,
eR and

iR are all

from 0 to 1.

So, in our scenario
iRT = , as the node doesn’t have sufficient data to

evaluate the reputation factor, but it is necessary for it to define a level of

vulnerability of the network it has joined. The risk value in PET model is

calculated by the formula:

∑

∑

=

=

×

×

=

LNBGj

j

LNBi

i

i
NBh

ihN

R

.,,

,,

)(

))((
 (4.2)

where G, B, N, L are four levels of quality (Q) of services provided by a peer

(it is applicable to any type of interaction between peers - elaboration and

forwarding of queries during a lookup process, providing resources, etc.):

G – Good,

L – Low Grade,

N – No Response,

B – Byzantine Behaviour;

iN is the number of services (interactions) provided with quality i; h is a

map function from Q to a score for one interaction between nodes, i.e. it

shows how many reputation points a node has gained or lost at the end of one

interaction:













<=

<=

><=

>=

=

344

233

1222

11

,,

,,

||,0,,

0,,

)(

SSBQS

SSNQS

SSandSLQS

SGQS

Qh
 (4.3)

58 Security in DHT-based Peer-to-Peer networks

So, we can see that misbehaving reduces a reputation value faster than a good

behaviour increases it. No Response is considered as a bad behaviour here. It

helps to avoid too frequent and long leaving in P2P networks: it is not

convenient for a peer to be off-line for a long period, because all requests

sent to the node during its absence will rest without response, significantly

reducing its reputation. It is explained by a high importance of the

cooperation component for collaborative environments: a node that doesn’t

participate in routing and lookup mechanisms by processing and forwarding

requests from other nodes cannot be positively evaluated by the community.

The risk value is normalized to the worst case, that represents a situation

when all services received by a peer in a certain time interval are Byzantine

services. In our example we assign to S1, S2, S3 and S4 the values 1, -2, -3

and -4 respectively.

In Kademlia, identifiers of nodes consist of 160 bit. Here we present a

simplified model of Kademlia’s binary tree with a little number of sub-trees

and leaves.

As shown in figure 4.1, the node with prefix 0011 initiates the process of

look-up for some resource, sending FIND_VALUE RPC to two nodes

residing in two different sub-trees with prefixes 0111 and 1011.

The first node doesn’t respond (the one-directional dashed arrow). The

second node returns a triple <IP address, UDP port, Node ID> for the node

1101. Applying the look-up progress verification mechanism, the requestor

concludes that the Node ID sent by the second node is really closer to the

key.

 Trust and reputation management in DHT-based P2P environment 59

Fig.4.1. Look-up process based on Kademlia algorithm in terms of PET

model

According to PET model our requestor assigns to this contact the quality

value G, and to the first contact – the value N. Then, it sends FIND_VALUE

RPC to node 1101, that returns a triple containing Node ID 1110, but with a

little delay. In its turn, 1110 replies with Node ID 11110, that stores the

desired data. 11110 returns the stored value. Having controlled at each step

the look-up progress, the requestor assigns to nodes 1101, 1110 and 11110

the quality values L, G and G respectively.

The risk value in our case is:

25,0
)113(4

)3(1)2(1

)(4

32 =
++×−

−×+−×
=

++×

×+×
=

NLG

NL
i

NNNS

SNSN
R .

60 Security in DHT-based Peer-to-Peer networks

Information, regarding the quality of resources and the reliability of the peers

obtained during this look-up process, should be stored in the resource and

servent repositories [14].

The repositories represent two tables with the following data structures:

• resource_ id, value;

• servent_id, num_plus, num_minus.

XREP’s authors don’t precise a type of data representing quality values, and

leave for us a liberty of interpretation: it may be a numeric value, or it may be

simply defined as good or bad.

The data of a servent repository contain IDs of contacted peers and

corresponding numbers of successful and unsuccessful transactions

effectuated with these peers. As in our case we use DCRC model, it makes

sense to substitute the num_plus and num_minus with data regarding the total

number of uploaded and downloaded megabytes of content for a certain peer,

e.g. mb_up and mb_down.

To calculate the QRC parameter, for each contacted node the total number of

queries addressed to a node and a number of queries processed and forwarded

by a node should be stored. Adapting the data structure of the servent

repository to our case, we have:

<servent_id, mb_up, mb_down, num_query, num_reply>.

Since the information of the resource repository is not used in further

calculations, in our case it is optional. Possibility of supporting both

repositories depends on memory resources a peer has at disposal. Having

downloaded the desired resource, the node 0011 stores the following data in

its servent repository:

 Trust and reputation management in DHT-based P2P environment 61

servent_id mb_up mb_down num_query num_reply

 0111 0 0 1 0

 1011 0 0 1 1

 1101 0 0 1 1

 1110 0 0 1 1

 11110 20 0 1 1

In terms of technical realization this mechanism represents a quite simple

solution: a simple counter seems to be sufficient.

According to DCRC model [19], a reputation value of a peer is defined by

credits it gains or loses during a certain period interacting with other peers.

The total number of reputation points is calculated by the following formula:

 ∑ ∑ ×+×−×+×=
l m

ll SCdDDcUCbQRaN (4.4)

where, QR is the number of points gained by a node for each processed

query; a is the total number of queries processed by a peer; b is the number

of uploads facilitated by a peer; c is the number of downloads performed by a

peer; d is the predefined time factor (in hours) that determines a time interval

during which the described interactions have been performed;
lUC and

mDD

are the upload credit and download debit for files l and m respectively.

In its turn the UC is defined as follows:

b

bw

f

s
UC ×= (4.5)

where: s is the size of an uploaded file (in megabytes); bw is the bandwidth

available (in megabytes); f is the file size factor that determines how many

megabytes of data transfer increases the reputation score by a unit; b is the

62 Security in DHT-based Peer-to-Peer networks

bandwidth factor that classifies peers on the base of bandwidths they have at

disposal.

The DD for a download of a resource of size s is given by:

b

bw

f

s
DD i×= (4.6)

where
ibw is the bandwidth of a peer i from which a download is performed.

The Sharing Credit (SC) for a peer that shares n files during some predefined

time interval is given by:

 ∑=
n

j

j

f

s
SC (4.7)

where, js is the size of jth file.

Let’s calculate the reputation value of the node 11110 using the data stored

by 0011 at the repository after the considered look-up process. Let the size s

of the file downloaded by the node 0011 from 11110 be 20 MB, the file size

factor f =2MB, the available bandwidth bw = 6MB, and the bandwidth factor

b = 2MB. Then, the UC of 11110 after this interaction is:

30
2

6

2

20
=×=UC

For simplicity, let the number of points gained by a peer for each query

processed QR=1. Let’s suppose that the total size of the resources shared by

11110 node is 500 MB and the predefined time interval is 1 hour. Hence,

SC=250.

Then, at a=1 and DD=0, the total number of reputation points gained by the

peer 11110 after the interaction in question is:

281=+−+= tottottottot SCDDUCQRCR .

 Trust and reputation management in DHT-based P2P environment 63

4.4.3 Findings

We can conclude that, the risk calculation method used in PET model helps

to define a level of vulnerability of an unfamiliar environment, while DCRC

technique represents a an objective method of reputation evaluation based on

points gained by a peer due to its collaboration with the community. In its

turn, the repository mechanism is a simple and efficient solution for

systematization of the data necessary for reputation points calculation.

All of these instruments can by easily adapted to DHT-based environment.

This example demonstrates that the mechanisms used in our scenario

successfully complement each other, even if they have been “extracted” from

three different reputation evaluation models.

As is clear from the described scenario, the proposed solution represents an

individual mechanism of reputation management for a single peer based on

its own experience. However, as it has been discussed before, the reputation

evaluation cannot be defined as complete and objective without taking in

consideration opinions of other members of the community. For example, in

the case of inconsistent behaviour of malevolent peers, it is very difficult to

reveal the presence of malicious activity for some peers without opportune

warning messages from “already attacked” peers.

So, it is necessary for peers to interact with each other and to share their

personal opinions in order to define the trustworthiness level of a certain

member of the community.

The communication between peers in DHT-based P2P networks should be

based on some opportune interaction algorithm that :

• doesn’t require introduction of centralization elements into the

system;

• doesn’t cause the exceeding increase of data traffic;

64 Security in DHT-based Peer-to-Peer networks

• uses as few computational resources as possible.

In this work we propose to integrate the classical algorithm for reaching

Byzantine Agreement (BA) [18] and some reputation mechanisms designed

for P2P networks based on DHTs in order to obtain a simpler and efficient

reputation management algorithm for the completely distributed P2P

environment that respects the above requirements. BA algorithms are

currently used in distributed computer systems to cope with Byzantine

Generals Problem (Interactive Consistency Problem) that provokes Byzantine

failure.

Particularities of the proposed integration and the obtained algorithm are

provided in the next section.

4.5 Byzantine Agreement for

Reputation Management in DHT-based

Peer-to-Peer Networks

4.5.1 Byzantine Generals Problem in distributed

computer systems: history of the problem

Byzantine Generals Problem [18] (also known as Interactive Consistency

Problem) takes place in distributed computer systems in the presence of

malfunctioning components that give conflicting information to other parts of

the system. It causes a Byzantine failure, that may consist in:

• failure to pass to the next step in the algorithm;

• system's inability to correctly implement the actual algorithm;

• arbitrary execution of a step different from one predicated by the

 Trust and reputation management in DHT-based P2P environment 65

algorithm (incorrect hops).

Originally, BGP is a problem about an agreement between generals of the

Byzantine army, that must take a common decision: to attack or not to attack

an enemy army? The generals are geographically distant from one another

and they have to communicate with each other only through messengers. This

situation is complicated by the presence of traitors among the generals. The

traitors try to confuse loyal generals, sending them a false information about

decisions of other generals, and moreover, they may do it in an arbitrary

manner, i.e. different loyal generals receive different false information.

This problem was formulated by L. Lamport, R. Shostak, and M. Pease in

1982, who were the first to apply the concept of BGP to distributed computer

systems.

They presented several solutions and algorithms for reaching agreement

between system units in the presence of failed components. It has been

proved that, assuming the possibility of sending messages directly to each

other by all generals, there must exist some round-by-round algorithm of

information exchange, equal for all generals, so, that:

• all generals make the final decisions;

• all loyal generals decide upon the same plan of action;

• this final plan of loyal generals must coincide with final decision of

one loyal general at least.

Oral message-based (OM(m)) and signed message-based (SM(m)) algorithms

have been proposed. The former allows loyal generals (system components)

to reach agreement in the presence of t traitors only if the total number of

generals is 3t+1 at least. The latter works for any number of generals and

possible traitors.

66 Security in DHT-based Peer-to-Peer networks

The algorithms for BA presented by Lamport, Shostak and Pease are quite

simple but expensive in both the amount of time and the number of messages

sent by participants.

Later, a number of “faster” and “lighter” algorithms for reaching agreement

have been proposed at different times by different researchers. Developers of

these algorithms used diverse approaches including deterministic,

randomized and quantum principles, applying them to synchronous and

asynchronous computational models and different types of adversaries (fail-

stop, Byzantine, etc.).

Typical quality measures for a BA protocol are the total number of

processors, the number of communication rounds, and its communication

complexity, alternatively given by the maximal message size, or the total

number of transmitted bits. The known lower bounds are, respectively,

n > 3t, t+1, 1, and n (t+1)/4 [19].

Algorithm presented by M.Rabin and M. Ben-Or in 1983 [20,21] use

principles of randomness and probability, and significantly reduce the

number of necessary rounds in respect of the solution by Lamport et al.

Later, Lewis and Saia presented a new scalable protocol for BA [22] which is

very similar to Rabin's one, but they proposed to use random sampling: in

each round each processor takes input from a small random sample of all the

other processors, in distinction from Rabin's protocol, in which a processor

takes input from all other processors in each round. This algorithm was

created for those types of distributed computer systems where the direct

communication network components with each other is not realizable

because of their great quantity. This solution reduces the number of messages

exchanged by nodes. The authors say that their protocol can tolerate any

fraction of faulty processors which is strictly less than 1/6. The protocol is

correct only with high probability and involves simultaneously all the

 Trust and reputation management in DHT-based P2P environment 67

components of the network.

In 2005 M. Ben-Or and A. Hassidim proposed a fast quantum Byzantine

agreement protocol [23], that reaches agreement in O(1) expected

communication rounds against a strong full information, dynamic adversary

in the presence of up to t < n/3 faulty participants in synchronous setting, and

up to t < n/4 faulty participants for asynchronous setting. This solution

consists in postponing coin flips and using quantum superposition.

In 1998 J. Garay and Y. Moses presented a fully polynomial deterministic

protocol for reaching Byzantine agreement in t + 1 rounds for n > 3t

processors (where t is an a priori upper bound on the number of faulty

processors possible) [24]. For the moment it is the shortest deterministic

algorithm executable with the minimal number of processors and in the

minimal number of rounds.

Currently, Byzantine Agreement is a central problem in fault-tolerant

distributed computing and secure multi-party computation, and it abstracts

out a variety of situations where conflicting parties must coordinate their

decisions and cooperate towards achieving a common goal.

4.5.2 Applicability of classical solutions for BGP to

P2P environment

In DHT-based P2P networks malevolent peers exploit routing mechanisms to

trouble reliable communication between nodes and to break down consistent

operation of the network. So, the analogy between the behaviour of malicious

nodes in P2P networks and actions of traitorous components in the case of

Byzantine failure is obvious. Byzantine behaviour in P2P environment

manifests in different types of attacks, such as incorrect lookup routing,

incorrect routing updates, etc.

68 Security in DHT-based Peer-to-Peer networks

So, it is possible to apply some classical solutions developed for distributed

computer systems to cope with some types of malicious activity in DHT-

based P2P networks.

Let’s consider an example of application of classical solutions for BGP to the

case of incorrect routing updates. In this example we present a situation with

a small number of participating nodes. A malicious node in the considered

case demonstrates poor behaviour regarding all other nodes (e.g. doesn’t

behave in an inconsistent manner).

To update information about keys of resources and the identifiers of

appropriate responsible nodes in routing tables, peers should exchange

information they have with each other. So, each node sends to others a list of

keys of resources it is responsible for. The loyal peers send the real

information to other nodes, and the traitors may send different information to

each node.

Let’s say, the first node (peer) sends to others the list of keys in the form of

vector N1 consisting of binary numbers of a fixed length that present

resource identifiers. The second node sends vector N2; the third sends three

different vectors X, Y and Z to node 1, node 2 and node 3 respectively, the

fourth node sends vector N4 to all of them. Then, they exchange the received

information with each other in accordance with oral message-based algorithm

OM(m) for BA. The traitor sends arbitrary values to all other peers again.

Hence, after this data exchange, each peer can form its matrix on the base of

the information received. The element nij of each matrix represents a vector

that node i received from node j. So, in our case we have the following

matrixes:

 Trust and reputation management in DHT-based P2P environment 69

As we can see, in each matrix there are one row and one column containing

values different from other cells, and these values are sent by the third peer.

So, the peers update their routing tables with the values received from the

majority of peers. In this case the application of the OM(m) algorithm is quite

efficient.

However, in a real P2P network the application of the classical solutions for

BGP in their pure form is complicated by some specific aspects regarding the

nature of P2P. These systems represent an environment with a great number

of participants, where nodes join and leave the network continuously. So, a

P2P network cannot be considered as a static system where each component

can contact directly all others at any moment. But in accordance with

interactive consistency conditions [18], each participant of the algorithm

should have the possibility to directly contact all others.

 N1 N2 X N4 N1 N2 X N4

P1 = N1 N2 Y N4 P2 = N1 N2 Y N4

 A B C D E F G H

 N1 N2 Z N4 N1 N2 Z N4

 N1 N2 X N4 N1 N2 X N4

P3 = N1 N2 Y N4 P4 = N1 N2 Y N4

 N1 N2 N3 N4 I J K L

 N1 N2 Z N4 N1 N2 Z N4

70 Security in DHT-based Peer-to-Peer networks

Moreover, as already mentioned above, the solutions presented by Lamport et

al are expensive from the point of view of time spent and the number of

messages sent by nodes. In fact, to reach an agreement the number of rounds

executed must be linear in the total number of participating components. The

algorithms (OM(m) and SM(m)) require message paths of length up to t + 1

(where t is a number of traitors). Thus, the total number of messages that

nodes send to each other to reach an agreement is:

 (n - 1)(n – 2) ... (n – t – 1) = (n – 1)! /(n – t – 2)! (4.8)

i.e., there is a factorial-like dependence between the number of messages and

the number of nodes. In P2P environment it implies sending an exceedingly

massive amount of messages and, as a result, the overload of the network.

So, to apply the solutions for Byzantine failure to P2P systems we should

find a way to reduce the data traffic load on the network during execution of

the BA algorithm.

Taking in consideration that the algorithms by Lamport et al are effective for

small groups of participants, it makes sense to present a P2P network as a

number of peer groups. In this case each node launches the algorithm only

within a group it belongs to, and the total number of messages sent by

network nodes is:

 Nm = ((ni - 1)(ni – 2) ... (ni – ti – 1))× k (4.9)

where ni - the average number of nodes in one group; ti - the average number

of traitors in one group; k - the number of groups in the network.

The diagrams (Fig.1 and Fig.2) show that the number Nm of messages

decreases with increase of the number of groups k, at various network sizes

(number of nodes in the network N = 100; 1000; 10000; 100000; 1000000),

for the cases when the number of traitors on the network is t = 1/5N and t =

1/3N (the worst case).

 Trust and reputation management in DHT-based P2P environment 71

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

0

20

40

60

80

100

120

140

160

180

k

ln
(N
m
) N = 100000

N = 10000

N = 1000

N = 100

N = 1000000

Fig.4.2 Diagrams of Nm change at k increased for t = 1/5N

N = 10

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

k

ln
(N
m
)

N = 100000

N = 10000

N = 1000

N = 100

N = 1000000

Fig. 4.3 Diagrams of Nm change at k increased for t = 1/3N

72 Security in DHT-based Peer-to-Peer networks

So, the problem of overload can be resolved applying the solutions for BGP

to small groups of peers. Here emerges the following question: how can peer

groups be created and individuated?

The network may be divided into subgroups in many senses, such as: a group

of the most frequent contacts, a group of neighbour nodes with ''close''

identifiers according to the XOR-metric, groups of peers with common

interests, etc. However, the listed principles of “peers clustering” are hardly

realizable in P2P networks because of particularly dynamical nature of this

environment explained by continuous joins and leaves. These principles

suppose creating groups that are stable in terms of time and membership, but

it is not possible in P2P. For instance, in DHT-based networks the identifier

of a node that has just left the network can be assigned to a node that will join

it in the next moment.

It is also important to note, that in our example we deal with the malicious

peer who demonstrates poor behaviour toward all other nodes. In the case of

inconsistent behaviour it is not so easy to detect the presence of malicious

activity. When a malicious peer is more “cunning” and sends the real values

to one part of the nodes, and to other part of them sends some arbitrary

values, it becomes possible to consider one of the right values as false. Thus,

in the case of inconsistent behaviour application of reputation evaluation

mechanisms integrated with the above solutions makes sense.

Thus, the goal of our research is to find a solution that exploits the simplicity

and the effectiveness of BA protocol and at the same time can be easily

adapted to the dynamic and distributed nature of P2P, in order to cope with

some effects of specific attacks of DHT-based environment.

In the next section we describe some mechanisms and techniques that we

propose to integrate in order to achieve this goal.

 Trust and reputation management in DHT-based P2P environment 73

4.5.3 Algorithms and techniques involved in the

proposed solutions

As a starting point we take EigenTrust algorithm [25] and modify it replacing

some mechanisms with the techniques listed below, but keeping some

original features unchanged. In particular the algorithm we propose uses the

following instruments:

• “score managers” from EigenTrust;

• concept of responsible nodes (primary tier) from OceanStore

distributed data storage system [26];

• algorithm for reaching agreement based on oral messages OM(m) by

Lamport et al [18].

Let’s consider each of these instruments in details.

We start from EigenTrust [25] algorithm for reputation management that is

designed specifically for DHT-based P2P environment.

EigenTrust assigns each peer a unique global trust value based on a peer’s

history of uploads. The global trust value assigned to some peer i reflects the

experiences of all peers in the network regarding peer i. This algorithm is

based on the following statements:

• self-policing of the system;

• anonymity of peers;

• no profit to newcomers;

• minimal overhead in terms of computation, infrastructure, storage

and message complexity;

• resilience to alliances of malicious peers.

74 Security in DHT-based Peer-to-Peer networks

The trust value of a peer in this system is computed by a responsible group

of M peers called score managers. Score managers for a peer are located by

applying a set of one-way secure hash functions to a unique ID of the peer

(e.g. IP address) and searching for nodes that can be responsible for

theobtained key (those with the IDs closest to the key in the identifier space).

Since each node in the network acts as a score manager, it is assigned a set

of daughters Di represented by indexes of peers whose trust values are

computed by this peer.

When a score manager leaves the network it passes all stored trust values

to its neighbour peer in accordance with DHT data distribution principles.

Another mechanism we use for our solution is the concept of the “primary

tier” nodes proposed by authors of OceanStore distributed data storage

system [26]. In OceanStore privileged nodes of the “primary tier” cooperate

with one another through a BA protocol to take a decision about a final

commit order for an update generated by some node of the “secondary tier”.

The BA algorithm is launched on the base of an update request received from

the initiator of the update. Once the agreement is reached primary nodes send

the result to all interested secondary nodes.

In this case the classical solutions for BGP are efficient due to the small

number of the algorithm’s participants. However, here we deal with a

hierarchical model where nodes of the primary tier represent a sort of central

authority. The static set of privileged nodes contradicts the completely

distributed nature of DHT-based P2P environment.

So, we propose to exploit the mechanism of score managers used by

EigenTrust algorithm to define a group of responsible nodes. In this case,

responsible nodes are assigned randomly (by a set of M hash-functions) and

they are changed in course of time.

 Trust and reputation management in DHT-based P2P environment 75

At the same time, we modify secure EigenTrust algorithm introducing the use

of a BA protocol by score managers. Executing a BA algorithm score

managers take a common decision about what trust value is to be reported

when some peer requests information about a trustworthiness of another peer

they are responsible for. As a BA algorithm in our solution we apply the

classical oral message-based OM(m) algorithm by Lamport et al. This choice

is made to avoid complications inherent to signed message-based techniques.

4.5.4 Reputation evaluation algorithm with use of

Byzantine Agreement protocol

Preliminary remarks

Before describing the modified algorithm, it is necessary to set the

following assumptions.

• Let Nk ∈ be a fixed value that defines the maximum number of trust

values that a peer can report to its score managers. So, a local trust

vector sent by peer d to its score manager i ki

dc]1;0[∈ .

• The oral message-based algorithm OM(m) for reaching agreement is

applied instead of the iterative calculation of trust values used in

Eigen Trust.

• Normalized trust values will be used as in EigenTrust.

• Each peer has M score managers, whose DHT coordinates are

defined by applying a set of hash functions
1||10 ,...,, −Mhhh , to a peer's

unique identifier; posi represents coordinates of peer i in the hash

space.

76 Security in DHT-based Peer-to-Peer networks

• Since each peer also acts as a score manager it is associated with a set

of daughter peers Di, comprising IDs of peers it is responsible for.

Moreover, a peer stores each daughter peer's opinion vector.

• Furthermore, for each daughter peer
iDd ∈ , i learns i

dA representing

a set of peers which have downloaded files from its daughter peer.

• Finally, for each
iDd ∈ , a peer learns i

dB representing a set of peers

from which its daughter peer d has downloaded files.

Description of the proposed algorithm

As in EigenTrust, in the proposed solution each peer acts simultaneously as

an ordinary user and as a score manager for some other peers in the network.

Each peer i (as a user) provides score managers with its local trust vector
ic

that contains all local trust values cij computed by peer i regarding other

peers j. Acting as score managers, peers process M vectors
ic received

before through BA algorithm. After the algorithm has been performed, each

score manager stores the resulting trust value. A score manager execute this

procedure for each peer it is responsible for.

A node that needs information about the trustworthiness of some peer i asks

corresponding score managers at positions)(),...,(1||0 iMi poshposh −
for trust

values they have obtained through the described algorithm. Then, it receives

M trust values and computes the median value of the vector containing these

values in ascending order.

Below we provide the original secure EigenTrust Algorithm (Algorithm 1)

and the modified reputation evaluation algorithm (Algorithm 2).

 Trust and reputation management in DHT-based P2P environment 77

foreach peer i do

submit local trust values
ic to all score managers at positions

)(im posh , m = 1…M-1;

collect local trust values
dc and sets of acquaintances i

dB

of daughter peers
iDd ∈ ;

submit daughter d’s local trust values
djc to

score managers)(dm posh , m = 1…M-1, i

dBj ∈∀

collect acquaintances i

dA of daughter peers;

foreach daughter peer
iDd ∈ do

query all peers i

dAj ∈ for
jjd pc ;

repeat

compute
d

k

nnd

k

d

k

d

k

d aptctctcat ++++−=+)...)(1()()(
22

)(
11

)1(

send)1(+k

ddjtc to each score manager of each peer i

dBj ∈ ;

wait for each score manager of each peer i

dAj ∈ to return)1(+k

jjd tc ;

until ε<−+ ||)()1(k

d

k

d tt ;

end

End

Algorithm 1. Secure EigenTrust Algorithm

78 Security in DHT-based Peer-to-Peer networks

foreach peer i do:

send ic to M score managers at positions)(),...,(1||0 iMi poshposh −
;

for ∀
iDd ∈ perform a BA protocol with other score managers

in order to form a resulting vector
BA

dc form M values of
ic

foreach
iDd ∈ do:

i

dBl ∈∀ ask d for a local trust value of peer l dlc

 send value dlc to each score manager of peer l

i

dAj ∈∀ wait for each score manager of peer j to return
jdc

choose by a majority vote k values of
jdc

compute the mean value and get d’s trust value
dt

end

end

Algorithm 2. Reputation Evaluation using Byzantine Agreement protocol

 Trust and reputation management in DHT-based P2P environment 79

The modified algorithm appears computationally simpler than EigenTrust,

since it does not involve iterative calculation of trust values)(k

dt by score

managers. However, it is necessary to estimate complexity of both

EigenTrust and the modified algorithms to confirm our expectations. In the

next section we provide the complexity evaluation of both algorithms in

terms of average number of sent messages per node.

4.5.5 Complexity evaluations of the modified and the

previous algorithms

At first, the following parameters should be introduced:

• n is the total number of nodes in the network;

• k is the maximum number of evaluations a node can report to its

score managers;

• M is the number of score managers per node;

• c is the number of necessary iterations needed by EigenTrust to

converge (typically 10).

According to the previous definition of k and M, it can be shown that, upon

the average, for each peer i and for each daughter peer d, |
iD |=M (if robust

hash functions are used) and kBA i

d

i

d == |||| . Moreover, every message is

assumed to have computational cost 1, regardless of differences between

scalars and vectors.

It is important to note that in the presented solutions the algorithm

complexity does not depend on the total number n of nodes in the network.

As a consequence, the number of sent messages per node is also independent

80 Security in DHT-based Peer-to-Peer networks

from the number of connected users.

Both the algorithms described above for a single node i should be performed

by each node in the network. So, each step of the algorithms is repeated n

times at every round. However, while computing the average number of sent

messages per node, the total number is divided by n, i.e. n is cancelled out of

the calculation.

Complexity evaluation of EigenTrust

Let’s consider how many messages are to be sent at each step of EigenTrust.

At the first step, sending a vector
ic by peer i to its score managers requires

M messages to be generated.

Then, each score manager of peer i sends M – 1 messages to other score

managers. It means that (M - 1)M messages are sent in total to execute this

step of the algorithm.

At the third step, for each
iDd ∈ peer i:

• asks each peer i

dAj ∈ for a trust assessment of its daughter peer;

• performs c iterations consisting of computing the trust value)(k

dt and

sending)(k

ddjtc to each score manager of all i

dBj ∈ . Hence, kM

messages are sent.

Thus, the total number of messages generated at this step is

M(k + Mkc) = M²(kc) + kM.

So, in total, the “cost” of EigenTrust in terms of sent messages per node is:

M + ((M – 1)M) + (M²(kc) + kM) =

 = M² + M²(kc) + kM = M²(kc + 1) + kM. (4.10)

 Trust and reputation management in DHT-based P2P environment 81

Complexity evaluation of the modified algorithm

Firstly, the number of messages exchanged by nodes during the execution of

the BA algorithm should be calculated. It is performed at the beginning of the

algorithm, after peer i has reported vector
ic to its score managers.

As we know, the number of messages exchanged in OM(t) algorithm with t

traitors and 3t + 1generals involved is

(n – 1)(n – 2) …(n – t – 1).

This step of the algorithm represents a situation comparable to the case with a

commander (peer i) sending an order (vector
ic) to his M lieutenants (score

managers). In this case the total number of participants of the BA algorithm

is M + 1. So, the number of sent messages is defined as:

M(M – 1)…(M – t).

To cope with t traitors, the minimum value of M is defined so, that:

M + 1 ≥ 3t + 1.

Thus, M = 3t and we have:








 −
=








−−=−−

3

32
1

3
)1(

MM
MtM .

Then, it follows that:


























 −
==−−

!
3

32
!

...))...(1(
M

M
tMMM

82 Security in DHT-based Peer-to-Peer networks

Let’s set b as a number of messages sent by score managers to each other at

this step of the algorithm in order to achieve an agreement regarding local

trust values
ic provided by each peer for its responsible nodes:


























 −
=

!
3

32

!

M

M
b

.

Then, each i’s score manager asks M score managers of each peer i

dAl ∈ for

a value
lic . Since kA i

d ≈|| , the average number of sent messages at this step

is kM.

Hence, the complexity of the proposed algorithm in terms of messages sent is

22

!
3

32

!
kM

M

M
kMb +


























 −
=+

 (4.11)

Figures 4.4 and 4.5 show how the number of sent messages per node changes

with increase of the number of score managers at k = 100 and k =10000

respectively. As is clear from the graphs and the equations we have provided

before, EigenTrust has a quadratic dependence between the number of

messages sent and the number of score managers involved, while the

modified algorithm provides the factorial-like dependence. The latter will be

more efficient when M is quite small or k is quite large. We can see that when

the maximum number of values reported by a peer to its score managers is

k∈[100, 10000] and M ≤12 (in the first case) or M ≤ 17 (in the second case)

the modified algorithm is always “cheaper” than EigenTrust in terms of

messages required.

 Trust and reputation management in DHT-based P2P environment 83

Fig.4.4 Complexity comparison between EigenTrust (ET) and the modified

algorithm (MA) in terms of number of sent messages per node at k=100

84 Security in DHT-based Peer-to-Peer networks

Fig.4.5 Complexity comparison between EigenTrust (ET) and the modified

algorithm (MA) in terms of number of sent messages per node at k=10000

 Trust and reputation management in DHT-based P2P environment 85

4.5.6 Summary

The proposed solution is less expensive in the number of messages sent per

node in respect of the previously proposed EigenTrust algorithm. At the same

time the use of Byzantine Agreement protocol instead of the iterative

calculation of trust values significantly simplifies the algorithm saving

computational and memory resources of the system.

The mechanism of assignment of score mangers using hash functions makes

it impossible for malicious peers to effectively cooperate and to create

alliances in order to confuse loyal peers: malicious peers can neither know

which nodes they are responsible for, nor choose appropriate coordinates to

become a score manager of a certain peer. Moreover, when most of peers are

malicious, misbehaving towards honest peers is to be considered as regular,

because in according to the self-policing principle [6] of the system the

shared ethics of the user population are defined and enforced by the peers

themselves.

To render the algorithm less expensive in the amount of time (rounds)

required for execution it is possible to apply faster protocols for BA, such as

that of Garay and Moses [24], instead of classical algorithms by Lamport et

al.

Assessing the efficiency of the modified algorithm at small values of M in

order to evaluate the possibility of further minimization of the total number

of messages sent will be the next step of the optimization of the proposed

solution.

86 Security in DHT-based Peer-to-Peer networks

4.6 References

[1] A. Abdul-Rahman, S. Hailes. Supporting Trust in Virtual

Communities. In Proceedings of the 33rd Hawaii International Conference on

System Sciences, Maui, Hawaii, January 2000.

 [2] T. Grandison, M. Sloman. A survey of trust in Internet applications.

In IEEE Communication surveys 3(4).

[3] G. Suryanarayana, R.N. Taylor. TREF: A Threat-centric

Comparison Framework for Decentralized Reputation Models. In ISR

Technical Report UCI-ISR-06-2, January 2006

[4] P.Bonatti, C.Duma, D.Olmedilla, N.Shahmehri. An integration of

reputation-based and policy-based trust management. In Proceedings of

Semantic Web Policy Workshop in conjunction with 4th International

Semantic Web Conference, Galway, Ireland, November 2005

[5] S. D. Kamvar, M.T. Schlosser, H. Garsia-Molina. The Eigen Trust

Algorithm for Reputation Management in P2P Networks. In Proceedings of

the 12th International World Wide Web Conference, May 2003

[6] S. Y. Lee, O-H. Kwon, J. Kim, S. J. Hong. A Reputation

Management System in Structured Peer-to-Peer Networks. In Proceedings of

14th IEEE International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprise (WETICE’05)

[7] V. Martins, E. Pacitti, P. Valduriez. Survey of data replication in

P2P systems. Research report, INRIA, December 2006

[8] N. Fedotova, M. Bertucci, L. Veltri, “Reputation Management

Techniques in DHT-based Peer-to-Peer Networks”, in Proceedings of

ICIW’07, Mauritius, May 2007

[9] V. Grishchenko. A fuzzy model for context-dependent reputation.

 Trust and reputation management in DHT-based P2P environment 87

Trust, Security and Reputation Workshop at ISWC, Hiroshima, Japan, 2004

[10] L. Xiong, L. Liu. A Reputation-Based Trust Model for Peer-to-Peer

Ecommerce Communities. In Proceedings of IEEE Conference on E-

Commerce (CEC '03), June 2003

[11] Z. Liang, W. Shi. PET: A Personalized Trust Model with Reputation

and Risk Evaluation for P2P Resource Sharing. In Proceedings of the 38th

Hawaii International Conference on System Sciences, 2005.

[12] Rita Chen and William Yeager. Poblano: A Distributed Trust Model

for Peer-to-Peer Networks. Technical report, Sun Microsystems.

http://www.jxta.org/docs/trust.pdf

[13] Lee, S., Sherwood, R., et al. Cooperative peer groups in NICE. In

Proceedings of IEEE Infocom, San Francisco, USA, 2003

[14] Damiani, E., di Vimercati, S., et al. A Reputation-Based Approach

for Choosing Reliable Resources in Peer-to-Peer Networks. In Proceedings of

the 9th ACM Conference on Computer and Communications Security,

Washington DC, 2002

[15] Zacharia, G. and Maes, P. Collaborative Reputation Mechanisms in

Electronic Marketplaces. In Proceedings of the 32nd Hawaii International

Conference on System Sciences, Hawaii, 1999

[16] A. Josang, R. Ismail. The Beta Reputation System. In Proceedings of

the 15th Bled Electronic Commerce Conference, Bled, Slovenia, 2002

[17] M. Gupta, P. Judge, M. Ammar. A Reputation System for Peer-to-

Peer Networks. In Proceedings of the 13th ACM International Workshop on

Network and Operating Systems Support for Digital audio and Video.

Monterey, California, 2003

[18] L.Lamport, R.Shostak, M.Pease. 'The Byzantine Generals Problem.

88 Security in DHT-based Peer-to-Peer networks

ACM Transactions on Programming Languages and Systems, Vol.4, No.3,

pp. 382-401, July 1982

[19] http://cm.bell-labs.com/who/garay/#ba-hl

[20] M.O.Rabin. Randomized Byzantine generals. In Proceedings of

FOCS'83, Los Alamitos, CA, USA, Nov. 1982, IEEE Computer Society

Press

[21] M.Ben-Or. Another advantage of free choice: Completely

asynchronous agreement protocols (extended abstract). In Proceedings of the

Second Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, pages 27-30, Montreal, Quebec, Canada, 17-19

August 1983

[22] C.S.Lewis, J.Saia. Scalable Byzantine Agreement. In Proceedings of

NIPS'03, Whistler, Canada, Dec. 2003

[23] M. Ben-Or, A. Hassidim. Fast Quantum Byzantine Agreement. In

Proceedings of STOC’05, Baltimore, Maryland, USA, May 2005

[24] J.Garay, Y.Moses. Fully Polynomial Byzantine Agreement for n >

3t Processors in t+1 Rounds. SIAM Journal of Computing, 27(1), 1998

[25] S.D. Kamvar, M.T. Schlosser, H. Garsia-Molina. The EigenTrust

Algorithm for Reputation Management in P2P Networks. In Proceedings of

WWW-2003, Budapest, Hungary, May 2003

[26] J. Kubiatowicz et al. OceanStore: An Architecture for Global-Scale

Persistent Storage”. In Proceedings of ASPLOS’2000, Cambridge,

Massachusetts, USA, November, 2000

[27] N. Fedotova, L. Veltri. Reputation Management for DHT-based

Collaborative Environments. Submitted to the 4th European Conference on

Next Generation Internet Networks (NGI-2008), April 28-30, 2008, Krakow,

 Trust and reputation management in DHT-based P2P environment 89

Poland.

[28] N. Fedotova, L. Veltri. Byzantine Generals Problem in the Light of

P2P Computing. In Proceedings of the Third International Workshop on

Ubiquitous Access Control, July 17, 2006, San Jose, California, USA

[29] N. Fedotova, G. Orzetti, L. Veltri, A. Zaccagnini. Byzantine

Agreement for Reputation Management in DHT-based Peer-to-Peer

Networks. Submitted to International Conference on Telecommunications

(ICT-2008), June 16-19, 2008, St. Petersburg, Russia.

90 Security in DHT-based Peer-to-Peer networks

 Distributed Hash Tables in collaborative environments 91

5 Distributed Hash Tables in

collaborative environments

“The two offices of memory are collection and distribution”

Samuel Johnson (1709-1784)

5.1 Enterprise networks

Computer networks has become an integral part of the technical

infrastructure of today enterprises and play an important role in management

of their business activity and successful realization of any type of projects.

An enterprise network is defined as a geographically dispersed network for a

large business enterprise, that typically comprises a number of local area

networks (LANs), which have to interface with each other, as well as with a

central database management system and many client workstations. Usually,

such network has a hierarchical structure, and it is based on a client-server

model and centralized architecture.

An enterprise network should provide effective mechanisms for:

• secure communication between network terminals;

• rapid and secure data exchange between different system units;

• reliable data storage system;

• secure network access;

• simple network administration.

92 Security in DHT-based Peer-to-Peer networks

Fig. 5.1Enterprise network

It is also very important to make data, produced by some department

maximally available for other interested entities. It should be realized in

accordance with a predefined policy of attribution of different privileges,

regarding data access, to users from various departments of the same

organization.

Recently, the possibility of collaboration between different geographically

distant organizational units in real-time and transparent mode is

indispensable for many enterprises. Today there are numerous groupware

applications, that provide the opportunity of synchronous collaboration

among distant work groups engaged in a common task via computer

networks (for example, Groove Virtual Office).

Currently, almost all enterprise networks as well as the groupware they

utilize, have either a centralized architecture or a hybrid architecture based on

the use of central servers that require high administration and maintenance

costs. Moreover, centralized systems are subject to some problems regarding

 Distributed Hash Tables in collaborative environments 93

information security, data retrieval efficiency and reliability, such as:

• predisposition to “denial of service” and “packet filtering” attacks;

• single point of failure, represented by one (or more) server, that is a

unique network component responsible for the storage of all data

and resources;

• possible reduction of performance characteristics of network

terminals in terms of bandwidth and time of access to resources, that

takes place when a great number of clients simultaneously request

for the access to different resources;

• low network scalability caused by growing number of terminals and,

as supervention, necessary augmentation of storage capacity of

servers, that, in its turn, causes additional costs;

• complexity of database organization;

• high administration and maintenance costs.

To cope with the above problems and to satisfy the requirements regarding

effective data management and functionality of enterprise networks provided

before it is advisable to pass from the centralized organization to a

decentralized and distributed system. In particular, we propose to introduce a

distributed peer-to-peer data organization system based on DHT to the

enterprise environment.

5.2 General description of the

proposed approach

The proposed approach consists in introducing a distributed peer-to-peer data

organization system to the enterprise environment. This system exploits

94 Security in DHT-based Peer-to-Peer networks

hardware and memory resources of all terminals of the network to provide a

reliable data storage system and the possibility of effective collaboration

between geographically distant users. In this case all the network terminals

together form a huge distributed disk space. Moreover, the distributed

structure gives the possibility of incremental growth of the network,

delivering complementary capacity when and where needed. This feature is

very appreciable in potentially extensible environment of enterprise

networks.

The solution presented here is based on resource sharing and data storage

principles inherent to peer-to-peer networks based on Distributed Hash

Tables.

As already mentioned above, in a DHT-based P2P system a group of

distributed hosts collectively manage a mapping from keys to data values

according to some predefined algorithm (CAN, Chord, Pastry, Tapestry,

Kademlia), without any fixed hierarchy and with a very little human

assistance. Today, a great number of P2P platforms use DHT-based overlay

networks, that create a structured virtual topology above the basic transport

protocol level implementing effective self-organizing data storage and lookup

mechanisms.

The concept of Virtual Enterprise Networks involves use of overlay

mechanisms as well: Supernet layer with the appropriate address system is

employed to protect data transmitted by the network layer [1]. The Supernet

is based on communications tunnelling technique (mainly IP over IP), that is

widely used to implement such services as multicasting, virtual private

networks (VPN) and mobility support. Due to the Supernetworking users of

a “virtual” enterprise network can securely communicate with each other and

access to the database of the enterprise to get information they need from any

Internet access point. However, the problem of a single point of failure and

other problems concerning the centralized network architecture are still

 Distributed Hash Tables in collaborative environments 95

present here.

We propose application of Kademlia DHTs to organize data storage and

retrieval in enterprise networks. Due to the particular nature of the enterprise

environment, it is necessary to make some modifications in Kademlia

protocol in order to better suit several specific security requirements.

Since most of enterprise networks exploit trustless public network

infrastructures, it is important to provide users with appropriate data

authenticity and access control instruments, that can guarantee secure

communication and data exchange.

We introduce a system of different levels of privileges based on use of prefix

identifiers (prefix_IDs) for both nodes and resources to handle read/write

permissions in accordance with a certain enterprise hierarchical model. This

is realizable due to Kademlia’s tree-like structure of the identifier space.

5.3 Kademlia for data storage and

retrieval in enterprise networks

5.3.1 Why Kademlia?

Kademlia DHT has been already described in Chapter 2. Here we provide

only a brief summary on Kademlia system.

Kademlia is a peer-to-peer DHT based on the XOR metric. The distance

between two identifiers is defined as: d (x,y) = x XOR y. All nodes and

resources in this system have 160-bit identifiers (keys). The data are

replicated by finding k (the recommended value for k is 20) nodes closest to a

key and storing the key/value pair on them.

Kademlia has a tree-like data structure and the routing process is

96 Security in DHT-based Peer-to-Peer networks

implemented in prefix-matching mode. The routing table size is N2log .

Comparing the main characteristics of different DHT-based algorithms, we

can say that Kademlia is the most appropriate system to be applied to

enterprise networks due to the following advantages it offers:

• the binary tree-based structure of the identifier space and routing by

prefix matching permit to manage the assignment of IDs to enterprise

terminals and diverse privileges to single departments in simple and

intuitive mode in accordance with a predefined hierarchy;

• easy implementation of eventual algorithm modifications in the case

of enhancement of a network’s dimensions;

• the symmetry of XOR-metric provides peers with a possibility to

learn and update routing information from queries they receive

during a lookup process;

• a Kademlia network can be presented as a bucket table. So, the

lookup speed can be increased by considering b bits (instead of one

bit) at each step, reaching a desired resource in less time.

So, Kademlia offers all necessary mechanisms to create a flexible and

effective overlay “infrastructure” for enterprise networks.

5.3.2 Proposed scenario of the network organization

Before describing the processes of publishing and modifying data stored by

network nodes, it is necessary to explain how the new identification system is

organized.

Let’s consider an enterprise network of some hypothetical company. We

suppose that our company consists of many departments of different levels

(A, B, C), which have different privileges regarding the possibility to access

 Distributed Hash Tables in collaborative environments 97

and modify data produced by the same department or by another one.

According to this system of privileges, any department of level A can access

and modify data produced only by an office of the same level. Any B

department has more privileges than A departments: it can get and modify

data produced by any B office and also by any office of level A. Accordingly,

C departments are enabled to access and modify files created by departments

of lower levels A and B, and so on. Finally there are nodes with a manager

status (M), that can get, change, store and cancel files produced by nodes of

any department.

Some types of data should be accessible and shared by all the departments,

for example administrative circulars, recommendations, instructions, etc. So,

this information should be stored at A nodes, that belong to the lowest level

of the described system, to provide free access to these resources for all

nodes of the network.

Since an enterprise network is a quite particular system with specific

requirements regarding information security and access control mechanisms,

it is necessary to make some appropriate modifications in Kademlia protocol

to adapt this algorithm to such environment.

Let’s begin from keys and node IDs assignment.

5.3.3 Assignment of node identifiers

Although each workstation of an enterprise network may have a static IP

address, it is not convenient to assign to a node an identifier obtained as a

hash function of its static IP address, because the node would get the same

node ID every time it joins the network, and it would potentially be more

vulnerable to masquerade attacks (a type of attack in which one system entity

illegitimately poses as another entity to gain access to confidential data).

98 Security in DHT-based Peer-to-Peer networks

The solution we propose is a random attribution of node IDs by some trusted

bootstrap terminal that should be contacted by nodes to join the network. In

this case we avoid a situation when a malicious node can get and use a

specific ID in order to possess certain keys related to confidential data.

To organize all work processes (storage, retrieval and exchange of data) and

interactions between network terminals in accordance with hierarchical

principles described above, we propose a solution explained below.

Each Kademlia node has a 160-bit node ID, that we divide in two strings of

bits: the former is called prefix_ID, the latter is called node_ID. The prefix

consists of β bits, and the remaining 160 - β bits represent the node_ID.

The length of the prefix and of the node ID depends on the network

dimensions and on the corresponding structure, i.e. on the number of nodes in

the network and the number of different departments that an enterprise

consists of. The prefix defines a level that a node belongs to.

When some node contacts a bootstrap terminal, this one recognizes the level

of privileges the node can enjoy examining its certificate, and assigns to the

node the corresponding prefix_ID predefined for the departments of this

level. The node_ID should be randomly generated by the bootstrap terminal,

that also verifies that the matched pair <prefix_ID; node_ID> doesn’t

coincide with some node that is already online. The assigned ID expires

immediately when a node leaves the network.

Since Kademlia system has a tree-like data structure it is quite simple to

realize this ID assignment technique (Fig. 5.2).

 Distributed Hash Tables in collaborative environments 99

Fig. 5.2. Assignment of IDs to the network terminals

5.3.4 Key assignment and data storage procedures

Regarding the key assignment to files published on the network, the 160-bit

key ID cannot be simply calculated as hash function of the file, as it happens

in Kademlia. In fact, in this case, the prefix-based mechanism is also needed.

Without involving the prefixes we can have the following situation: when a

node A is going to publish some file, it first calculates the key applying a

hash function to the file’s content, then looks up for the nodes closest to the

key. Since these ones may belong to departments of level B or C, the file

could be stored at nodes of the higher level that is inaccessible for nodes of

level A for the future modifications and use. So, in terms of files retrieval

efficiency and according to the “competence principle” it’s more useful to

store data using the already introduced prefix-based approach.

In order to implement this principle, we use the same technique as for node

IDs, dividing a key identifier in two strings of bits that represent the

prefix_ID (the first β bits) and the key_ID (the remaining 160-β bits).

A key_ID can be obtained applying a hash function to the file content, as it is

implemented in Kademlia. A prefix_ID of a resource usually coincides with a

prefix_ID of the node that produced it. So, the prefix indicates a level of

“confidentiality” of a file’s content, i.e. if it is for common use or only for

100 Security in DHT-based Peer-to-Peer networks

limited use of certain departments. However, if a node B, for example,

intends to make a file it has created available for all departments, it should

store the file on some node of level A. To do it the “publisher” should assign

to the file a prefix_ID predefined by the bootstrap for nodes of level A.

Hence, according to Kademlia principles the file will be stored at some node

of level A with the node_ID “closest” to the file’s key_ID. Obviously, a node

is not permitted to store data at nodes of the level that is higher than its own

one.

Thus, for the efficient data retrieval, files should be stored in such mode that

nodes, using those files frequently during a work process, could easily get

them. This is possible only if all necessary files are hosted by nodes of the

same or the lower level in respect of the level of a certain node.

To illustrate the mechanisms described above we provide a simple example.

In our example (Fig.5.3) instead of 160-bit key-space we consider 4-bit

space, where the number of bits assigned to the prefix_ID is β = 2 and the

other two bits represent node_ID or key_ID. All terminals represented on the

figure are online.

Fig 5.3. Example of data storage procedure

 Distributed Hash Tables in collaborative environments 101

Let’s suppose that a node C needs to publish a file for internal use of

department C with key_ID 01. In this case the node has to store the data at

some node of level C. So the file’s ID (key) will be 1001. In this example

there is only one node C online apart from the publisher.

Calculating the distances between the key of our resource and IDs of the

active nodes according to XOR-metric, we obtain the following results:

dist(1001;1010)=0011=3

dist(1001;1101)=0100=4

dist(1001;0000)=1001=9

dist(1001;0011)=1010=10

dist(1001;0010)=1011=11

dist(1001;0110)=1111=15.

So, the closest nodes are: the node C with ID=1010, the Manager node 1101,

and the node 0000 of level A.

To avoid the problem of data storage at inappropriate nodes, the publisher

should verify the node IDs returned by the lookup procedure and choose for

the storage the nodes with opportune prefix_IDs. In our case the opportune

node is C with ID=1010 of the original sub-tree. Thus, the STORE RPC

should be sent only to nodes with IDs that satisfy the condition:

(,) 2ndist ID key β−< ,

where n is the total number of bits in the node ID, β is the number of bits in

the prefix identifier.

This inequality imposes an upper bound to the distance between a key and a

target node. If IDs of two nodes satisfy this condition, they reside at the same

sub-tree of the identifier space and belong to the same department (Fig. 5.4).

102 Security in DHT-based Peer-to-Peer networks

Fig. 5.4 Differentiation between peer groups in accordance with the

proposed prefix-based identification technique at various number of bits in

the prefix identifier β

5.3.5 Data publication process

Publication of data in Kademlia is implemented by storing of <key, value>

pairs corresponding to a certain file at nodes with the IDs closest to the key.

The flexibility of DHT algorithms provides us with two possibilities: the

“value” can represent information about an “address” (ID) of a node where a

file can be found and the resource’s description (metadata), as well as the file

itself.

Since most of the files produced and exchanged by nodes in enterprise

environment represent different types of documentation (text, diagrams,

tables) that usually don’t occupy a lot of disk space, the second way may be

preferred. In this way we can use mechanisms of “integrated backup” to

avoid situations when some node leaves the network and resources it

possesses become unreachable for other terminals. It is realized in the

following mode.

A publisher defines the k closest nodes for a resource to be stored according

to Kademlia principles. In order to rationally distribute network memory

resources and to avoid excessive traffic increase, the “value” representing a

 Distributed Hash Tables in collaborative environments 103

replica of the resource is stored at γ nodes from these k nodes (γ < k). The

rest k – γ nodes receive the STORE RPC regarding the same <key, value>

pair, but with the “value” in the form of the file’s metadata. So, on the

network a certain number of the replicas will be presented, and leaving of

some of the file’s holders will not create any problem.

Besides the limit on the number of replicas γ, it also makes sense to introduce

size limits for files to be replicated. The files that exceed this limit can be

stored only at the nodes of origin, and the corresponding metadata should be

hosted by the nodes defined by XOR metric.

To simplify the task of a publisher, we propose to apply a “tree-like data

memorization model”. Using this model a publisher doesn’t need to send a

<key, value> pair to all γ nodes. Instead of this, it sends the pair concerning a

file to be stored, to two nodes that it considers the closest. In this case the

<key, value> pair is complemented by a Time To Live (TTL) parameter such

that:

γ=∑
=

TTL

i

i

1

2

When the two closest nodes receive the STORE RPC, each of them store the

received data and send to the node that has initialized the process a

confirmation of the executed data storage. Then they verify that the TTL

value is not null yet, as at each step of the process it is decremented by one.

Hence, each of these nodes sends the new TTL value and the <key, value>

pair to other two nodes it regards the closest to the key, and so on until TTL

value has reached zero.

Figure 5.5 illustrates a tree-like data memorization process for γ=6.

104 Security in DHT-based Peer-to-Peer networks

Fig.5.5 Tree-like data memorization model

This technique of data publication represents a quite fast and reliable

mechanism. Such model provides a uniform distribution of a resource’s

replicas within the network. It guarantees that each node potentially

interested in a certain file, keeps in its k-bucket at least one contact which

possesses a replica of this file or an ID of its possessor.

5.3.6 Modification and update of stored data

Now, let’s consider how a node can modify some file and then publish this

modification, making it available for remote users working on the same file

(editing of the same document, performance of some calculations based on

results of the previous step). Realization of this mechanism provides a

possibility of real-time collaboration between interested users.

A node that has modified some file should publish the updated version at a

node from which the previous version of the file was downloaded. If the

latter is not active at this moment, the file should be stored at some of the k

nodes closest to the key that store the metadata or a copy of the original

version of the file. In case of all these nodes leave the network, the updated

file should be published in accordance with the data publication algorithm

described above. As in the case of new data publication, the STORE RPCs

are sent to the k closest nodes with appropriate <key, value> pairs.

 Distributed Hash Tables in collaborative environments 105

The tree-like data memorization model is to be respected in the case of

updates publication too. It means that once a node has published a modified

version of some file at its node of origin, this last sends the STORE RPCs

with replicas and metadata of the updated file to the appropriate γ and k

nodes.

To effectuate the update procedure correctly, each <key, value> pair should

be supplemented with such data as:

• identity data of an “author” of modifications confirmed by his

digital certificate and the node ID of the used terminal;

• exact date and time of update;

• an original file’s key and ID of a node that stores it (in the case of its

off-line status).

When some user publishes successive modifications of the same file, the k

nodes that store the file or the relative metadata simply remove his precedent

updates every time a new update is performed.

Figure 5.6 illustrates data modification and update processes. In the presented

example two nodes of level B (0011 and 0000) engaged in the same task

download a file to be modified from two (amongst γ possible) diverse nodes

(1000 and 1111) of level A responsible of this file (Step 1). After some

necessary modifications have been made, the nodes 0011 and 0000 store the

modified files at nodes from which the original versions have been

downloaded (Step 2). Then, according to the tree-like data memorization

model, replicas of the modified files are sent at γ responsible nodes by the

nodes 1000 and 1111. As shown in the figure, the modifications of the node

0000 are effectuated later than those of 0011. So, the file with modifications

made by the node 0000 will be the last version of this file.

106 Security in DHT-based Peer-to-Peer networks

Fig. 5.6 Data modification and update

 Distributed Hash Tables in collaborative environments 107

5.3.7 Security mechanisms and countermeasures

involved in the presented solution

Secure assignment of node identifiers

In section 5.3.3 we have already described the procedure of secure

assignment of node identifiers that consists in random attribution of IDs by

trusted bootstrap terminals. As noted above, a node with ID, that is obtained

as a hash function (SHA-1) of its static IP address, is potentially vulnerable to

masquerade attacks. So, we try to avoid this undesired effect applying the

described ID assignment mechanism.

Use of certificates

For effective handling of privileges regarding data access, it is necessary that

each node, before downloading or modifying some file, is able to

demonstrate its belonging to a department with the privileges equal or greater

than those of the file’s source node. To avoid some problems regarding

identity falsification, the use of digital certificates makes sense.

A personal digital certificate associates a public key to some identity. Only

the possessor of the certificate knows the corresponding private key, that

permits him/her to create own digital signature and decrypt information

encoded by the public key.

In our case, such certificate is attributed to a certain network terminal and

attests its identity and level of privileges it possesses. So, regarding the

described enterprise model, certificates of types A, B and C enable nodes of

the corresponding levels to access, store and modify data within the same-

name sub-trees and those of the lower levels (for B and C nodes). The

certificates of type M are assigned to the nodes with a manager status and

permit them to access, store, modify and cancel data produced and stored by

108 Security in DHT-based Peer-to-Peer networks

any other node.

Countermeasures against specific attacks of DHT-based P2P environment

Regarding specific attacks of DHT-based environment, the described system

proposes the following countermeasures and protective mechanisms.

 Some effects of incorrect lookup rooting attacks can be avoided due to

iterative character of Kademlia’s lookup algorithm. In Kademlia such attacks

can be detected by checking the progress of lookup at each step. In the case

of absence of any progress (blatantly incorrect query forwarding), lookup

process is backtracked to the previous “right” step and then proceeds with

looking for an alternative direction of the search.

Incorrect routing update attack can be prevented, because in Kademlia the

update of routing tables is implemented by a node automatically, as a

“secondary effect” of ordinary lookups and interactions with other nodes.

Sybil attacks are not excluded, but lookup efficiency is improved by parallel

routing (issuing α lookup requests at a time).

Partition attacks are prevented by involving trusted bootstrap terminals that

should be contacted by nodes to join the network.

Mechanism of replication and storage of resources at the γ closest nodes

prevents storage and retrieval attacks. So, even if one of the γ nodes

maliciously denies the existence of data it is responsible for, there are other

nodes enabled to provide the same resource. In this way we also eliminate a

single point of failure represented by a unique node that stores a certain file.

Moreover, the system can effectively cope with overload of targeted nodes

with garbage packets, that represents a DHT analogue of Denial of Service

 Distributed Hash Tables in collaborative environments 109

attack. The tree-like data memorization model mitigates the impact of such

attack due to uniform distribution of a file’s replicas within the network.

Since the replicas are stored in different sub-trees, even in the case of

localized overload attacks to nodes of some selected part of the key-space, it

is always possible to find at least one active node that stores a desired file’s

replica.

It is possible to additionally improve security of this solution applying the

techniques for trust and reputation management presented in the previous

chapter, i.e. using DHT mechanisms integrated with the proposed reputation

evaluation algorithm.

5.4 Findings and future work

Kademlia DHT represents a secure, reliable and flexible infrastructure for

data storage and retrieval system in enterprise networks.

Application of DHT principles to enterprise network environment is a novel

approach, that allows to avoid such problems of centralized systems as denial

of service, packet filtering attacks and low resistance to failure.

Taking in consideration specifics of deployment of P2P mechanisms in

enterprise environment, it has been demonstrated that Kademlia is the most

adaptable one to some particularities of hierarchical systems with clear

distribution of different privileges and tasks between nodes. It is explained by

the tree-like data structure of Kademlia DHTs.

Some novel approaches regarding the assignment of node identifiers and data

storage in Kademlia are proposed: prefix identifiers are introduced to handle

data access privileges, and the tree-like data memorization model is proposed

to improve the storage mechanisms.

110 Security in DHT-based Peer-to-Peer networks

 It is important to note that the presented system of data storage, retrieval and

collective file editing can be adapted to any type of collaborative

environment. It is not necessary to be applied to closed systems with specific

hierarchical architectures.

So, while in the case of the hierarchical enterprise environment the prefixes

are used to identify work groups with diverse privileges regarding data

access, in the case of a network community consisting of nodes with equal

“rights” the mechanism of prefixes can be used to distinguish groups with

different interests, goals, tasks, etc.

We are currently working toward a software implementation of the described

solution using available open-source implementations of Kademlia protocol.

5.5 References

[1] G. Caronni et al. Virtual Enterprise Networks: The Next Generation

of Secure Enterprise Networking. In Proceedings of the 16th Annual

Computer Security Applications Conference, ACSAC 2000

[2] P. Maymounkov, D. Mazières. Kademlia: A Peer-to-peer

Information System Based on the XOR Metric. In Proceedings of the 1st

International Workshop on Peer-to-peer Systems, MIT, March 2002

[3] D. Stutzbach, R. Rejaie. Improving Lookup Performance over a

Widely-Deployed DHT. In Proceedings of 25th IEEE International

Conference on Computer Communications, INFOCOM’06, April 2006

[4] E. Sit, R. Morris. Security considerations for Peer-to-Peer

Distributed Hash Tables. In Proceedings of the First International Workshop

on Peer-to-Peer Systems (IPTPS’02), Cambridge, March 2002

[5] N. Fedotova, S. Fanti, L. Veltri. Kademlia for Data Storage and

 Distributed Hash Tables in collaborative environments 111

Retrieval in Enterprise Networks. In Proceedings of the Third International

conference on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom-2007), November 12-15, 2007, New York,

USA.

112 Security in DHT-based Peer-to-Peer networks

 Conclusions 113

6 Conclusions

DHT-based peer-to-peer systems represent a quite young field of network

technologies (the first four DHTs — CAN, Chord, Pastry, and Tapestry —

were introduced about the same time in 2001). Overlay networks using DHT

mechanisms offer many advantages, such as: efficient routing performance,

high scalability, high exact-match accuracy of search, no single point of

failure.

At the same time such systems represent a particular environment with

specific security problems that are poorly studied yet. Even though DHT

lookup algorithms provide some countermeasures against several effects of

specific attacks, all these countermeasures have a “short-term” character:

they help to cope only with instantaneous effects of malicious activity and

don’t resolve the problem of detection and elimination of malevolent contacts

from routing tables. Moreover, for some specific security problems of DHT-

based environment (e.g. incorrect routing updates in the case of recursive

lookups, inconsistent behaviour, Sybil attacks) opportune countermeasures

don’t exist. Besides, some types of malicious activity in such kind of

networks can cause the same problems as Byzantine failure in distributed

computer systems.

This thesis has addressed the problem of integration of reputation

management mechanisms and other instruments used in distributed

computing environment with lookup processes in DHT-based peer-to-peer

networks in order to improve resilience of such systems to destructive actions

of malevolent or faulty components. The goal of this integration is to obtain a

more efficient, less expensive (in terms of data transferred, computational

resources involved and time spent) and possibly simple solution to cope with

the specific problems of DHT-based environment.

114 Security in DHT-based Peer-to-Peer networks

A particular accent has been given to DHT-based environments with a

collaborative nature. Unlike most of existing reputation management

systems, we don’t use the number of successful downloads as the main

instrument to evaluate the trustworthiness of peers. It has been proposed to

consider any type of interactions between nodes. It is explained by the fact

that file sharing is not a unique service supported by DHT-based P2P

systems. There are other application areas for P2P (e.g. collaborative and

distributed computing) where it is important to consider such aspects as a risk

factor, a “stay on-line” time or a number of requests without reply.

The solution that has been provided consists in application of a combination

of different reputation mechanisms provided by some previously analyzed

techniques for trust and reputation management in P2P. This solution

represents an individual mechanism of reputation management for a single

peer based on its own experience.

Then, it has been proposed to integrate the individual mechanism of

reputation evaluation with an algorithm for trust and reputation management

that takes in consideration the community context.

In particular, it has been proposed to introduce solutions for Byzantine

Agreement used in distributed computing environment into a trust

management algorithm designed for P2P networks based on DHTs, in order

to obtain a simpler and efficient algorithm for reputation management in

completely distributed environment. The complexity evaluation of the

proposed solution compared to the previously proposed EigenTrust algorithm

for reputation management in terms of number of messages sent per node

shows that the algorithm presented in this thesis is less “expensive” in both

number of messages sent and computational and memory resources involved.

 Conclusions 115

Another issue considered in this work regards the application of DHT

mechanisms to lookup and data retrieval processes in hierarchical

collaborative environments, in particular, in enterprise networks.

Centralized organization of current enterprise networks doesn’t represent an

ideal solution in terms of information security and reliability. Denial of

service, packet filtering and low resistance to failure are frequent

shortcomings of centralized systems. To avoid the above problems it has

been proposed to introduce a distributed P2P data organization system to the

enterprise environment. Kademlia-based Distributed Hash Tables has been

applied to organize data storage and retrieval systems of enterprise networks.

Due to the tree-like structure of the identifier space and the prefix matching

lookup algorithm, Kademlia is easily adaptable to the context of enterprise

hierarchy, e.g. it facilitates the assignment of different privileges regarding

data access, to various system entities. The presented solution provides

geographically separated users of enterprise networks with possibility to

share, modify and publish data in parallel way.

Further optimization of the proposed algorithms and software

implementations of the presented solutions are the future goals of the

research activity presented in this thesis.

116 Security in DHT-based Peer-to-Peer networks

 Acknowledgments 117

7 Acknowledgments

I would like to thank everybody who helped me in different ways in these

three years of my PhD studies and collaborated with me on this research.

Special thanks go to:

my Ph.D. advisor, Luca Veltri, who gave me the possibility to work on this

interesting topic and has made several direct contributions to this work. I

really appreciate the freedom of research activity he let me have during these

years and his precious suggestions that often helped me to resolve my doubts;

my husband Michele for being incredibly understanding, supportive, helpful,

and most of all, patient with me all this time;

to all my “italian” family Tomaiuolo-Armillotta for their sincere

encouragement and support that I feel from my first day in Italy. Thank you,

my dears, for letting me enter not only in your family but also in your hearts!

to my closest friends Francesco and Susanna who are always ready to listen

and to lend their shoulders to me when I need it, and to my good friends Luca

and Marco for their always kind-hearted attitude towards me.

All my thanks will never be enough to express my gratitude to my Mother.

Her infinite love and the support she gives me through all my life are the

basis of everything I do. She always goes the extra mile for me, and she does

it with incredible grace.

