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Sommario

Lo studio della propagazione di onde elastiche è di interesse in molte applicazioni

acustiche ed ingegneristiche. Alcuni esempi includono lo studio di vibrazioni

libere e forzate ad alte frequenze, shock analysis [1], trasmissione del rumore

[2, 3], tecniche non distruttive per il monitoraggio di danni nelle strutture [4],

caratterizzazione delle propietà elastiche dei materiali [5, 6], utilizzo di energy

predictive tools [7]. Tra le principali caratteristiche di tali onde vi sono le curve di

dispersione, che descrivono l’evoluzione dei numeri d’onda rispetto alle frequenze,

ed i modi d’onda, che rappresentano le deformazioni della sezione normale alla

direzione di propagazione dell’onda stessa. La conoscenza di tali caratteristiche

consente di predire la propagazione dei disturbi nelle strutture, il trasporto di

energia e la velocità di gruppo e la distribuzione dello stato di tensione e de-

formazione nelle strutture, specialmente ad alte frequenze. Tuttavia, i modelli

analitici per la determinazione delle relazioni di dispersione sono risolvibili solo

in pochi semplici casi, e.g. [2, 8]. In molti casi di interesse tecnico, la ricerca di

soluzioni analitiche è estremamente difficoltosa. Ad alte frequenze, molte delle

ipotesi e approssimazioni comunemente adottate sulla distribuzione dello stato di

tensione e deformazione del solido non sono più valide e sono quindi necessarie

teorie più dettagliate per ottenere modelli che predicano accuratamente il compor-

tamento della struttura [8, 9]. Inoltre, le strutture spesso presentano sezioni con

caratteristiche complicate. Uno dei metodi numerici piu’ utilizzati per l’analisi

dinamica di strutture aventi geometrie complesse è il metodo agli elementi finiti,

[10–12]. Tale metodo tuttavia è inadatto ad analisi dinamiche a medie–alte fre-

quenze. Al fine di ottenere risultati accurati infatti, le dimensioni degli elementi

finiti utilizzati nella discretizzazione devono essere comparabili con le lunghezze

d’onda di interesse. Il costo computazionale a medie–alte frequenze risulta cos̀ı

proibitivo. In questi casi diviene quindi necessaria la ricerca di approcci numerici

alternativi.

Lo scopo di questa tesi è stato lo sviluppo e l’applicazione di un metodo,

Wave/Finite Element method (WFE), che fornisce un alternativa numerica per

la predizione delle caratteristiche di propagazione delle onde elastiche in strut-

ture bi–dimensionali. Le strutture di interesse sono strutture uniformi in due

dimensioni le cui caratteristiche possono però variare lungo la sezione, per esem-

pio piastre o cilindri laminati, pannelli sandwich, strutture piane o curve trattate

con layers di materiali polimerici etc. Tali strutture possono chiaramente essere
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considerate strutture periodiche. Il metodo propone un approccio sistematico e

diretto per correlare la teoria della propagazione ondosa in strutture periodiche,

[13], con l’analisi agli elementi finiti risultando di particolare interesse nell’analisi

dinamica ed acustica loddove le dimensioni della struttura sono comparabili alla

lunghezza d’onda. Più in dettaglio, sfruttando le propietà di periodicità della

struttura, il metodo consiste nell’analisi di un solo segmento rettangolare della

struttura, identificabile in un periodo della struttura stessa. Tale segmento è

discretizzato tramite elementi finiti convenzionali. Questo implica tipicamente

l’utilizzo di un solo elemento finito rettangolare di tipo shell o di un certo nu-

mero di elementi finiti di tipo brick, i cui “nodi” sono ottenuti concatenando

tutti i nodi lungo la sezione del segmento. L’equazione del moto del modello

discreto cos̀ı definito è successivamente espressa in funzione degli spostamenti

nodali di un unico “nodo” utilizzando relazioni tipiche della propagazione di dis-

turbi armonici in strutture periodiche. Le curve di dispersione ed i modi d’onda

si ottengo quindi da un problema di autovalori e autovettori che può assumere

diverse forme, lineare, polinomiale o trascendentale, a seconda della natura della

soluzione ricercata.

Uno dei vantaggi di questo metodo, rispetto ad altre tecniche recentemente

proposte per analisi dinamica ed acustica, [14, 15], stà nella possibilità di in-

terfacciarsi agevolmente con software commerciali agli elementi finiti. In questo

lavoro ad esempio è stato utilizzato il software ANSYS. Sfruttando le capacità di

mesh e le estese librerie dei codici commerciali basati sul metodo degli elementi

finiti, è possibile ottenere l’equazione del moto di un periodo della struttura, e

conseguentemente le sue matrici caratteristiche di massa, rigidezza ed eventual-

mente di smorzamento, in modo sistematico e veloce anche nel caso di strutture

complicate. Altri vantaggi possono essere riassunti nei seguenti punti. Il costo

computazionale è indipendente dalle dimensioni della struttura. Il metodo infatti

richiede l’analisi di un piccolo modello agli elementi finiti le cui dimensioni sono

legate alla dinamica della sezione nel campo di frequenze di interesse. Utilizzando

il contenuto in frequenza relativo alla propagazione di onde piane, l’approccio

consente di predire le caratteristiche ondose ad alte frequenze superando i lim-

iti dell’analisi convenzionale agli elementi finiti. La formulazione è generale e

può essere applicata, mantenendo lo stesso grado di semplicità, equivalentemente

a strutture le cui caratteristiche di sezione sono semplici (ad esempio strutture

isotropiche) o molto complicate (ad esempio strutture sandwich o honeycomb).

Nel corso di questa tesi il metodo è stato sviluppato e le implicazioni numeriche
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sono state discusse. La prima parte della tesi è dedicata alla presentazione del

metodo nella sua forma pù generale, oltre che ad una breve introduzione ed ad

una breve rivisitazione della recente letteratura collegata al presente lavoro. Nella

seconda parte è mostrata una più specifica applicazione del metodo a tipiche strut-

ture omogenee in 2 dimensioni. Gli esempi analizzati includo piastre e strutture

cilindriche isotropiche, laminate e sandwich, cilindrici con fluido interno e piastre

isotropiche o laminate trattate con layer di materiale viscoelastico. Una parte

di questi esempi ha consentito di valutare l’accuratezza del metodo tramite il

confronto con soluzioni analitiche o con soluzioni ottenute da altri autori tramite

metodi diversi.

Il metodo ha dimostrato di fornire predizioni accurate ad un costo com-

putazionale molto basso.
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Abstract

This thesis presents a Wave/Finite element (WFE) method by which the wave

characteristics for a 2–dimensional structure can be predicted from a finite ele-

ment (FE) model.

The technique involves modelling a small segment of the structure using con-

ventional FE methods. This is typically a 4–noded rectangular element or a stack

of elements meshed through the cross-section. Periodicity conditions are applied

to relate the nodal degrees of freedom and forces, resulting in various eigenprob-

lems whose solution yields the wavenumbers and wavemodes. The form of the

eigenproblem depends on the nature of the solution sought and may be a linear,

quadratic, polynomial or transcendental eigenproblem. In this WFE method,

commercial FE codes can be used to determine the mass and stiffness matrices

of the segment of the structure. This is one of the main advantages of the tech-

nique since the full power of existing FE packages and their extensive element

libraries can be exploited. Therefore a wide range of structural configurations can

be analysed in a straightforward and systematic manner. Furthermore, making

use of wave content, the WFE approach allows predictions to be made up to high

frequencies. The formulation of the method is general and can be applied to any

kind of homogeneous structures in 2 dimensions.

In the first part of the thesis the general method is outlined and numeri-

cal issues are discussed. The second part deals with application of the method

to several examples. These include wave propagation in isotropic, orthotropic,

laminated, laminated foam-cored sandwich plates and cylinders and fluid-filled

cylindrical shells. Various interesting wave propagation phenomena are observed,

particularly concerning cut-off and bifurcations between various wave modes. In

the last chapter the WFE method is extended to account for viscoelastic mate-

rial properties, enabling the prediction of dispersion, attenuation and damping

behaviour when inherent damping is not negligible. Application to plates with

constrained layer damping treatments is shown. The method is seen to give

accurate predictions at very little computational cost.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Scope of the dissertation

Vibrations can be described in terms of waves propagating through a structure.

This approach is particularly appealing at high frequencies, when the size of the

structure is large compared to the wavelength. Typical applications include free

and forced vibration analysis, transmission of structure-borne sound, statistical

energy analysis, shock response, non–destructive testing, acoustic emission and

so on. In many cases, once the characteristics of wave propagation are known,

the analysis becomes straightforward.

Theoretical understanding of wave propagation provides the background nec-

essary for utilisation and better implementation of many techniques in science

and industry. The analysis of wave propagation in beams, plates and shells is of

importance in a number of non–destructive evaluations. Acoustic emission testing

has been frequently employed as a technique for monitoring structural integrity.

Discontinuities and cracks in structures subjected to stress and strain fields are

accompanied by the emission of elastic waves which propagate within the ma-

terial and can be recorded by sensors [4]. Within non–destructing evaluation

techniques, acousto–ultrasonic techniques are also used [16]. These techniques

combine some aspects of acoustic emission methodology with ultrasonic simula-

tion of stress waves. In the contest of material characterisation of anisotropic

media, wave propagation in different directions are measured to determine the

elastic constants [5, 6]. Owing to the increased use of laminate and sandwich pan-

els, in particular in the transport engineering field, there is the need for methods

to evaluate and optimise their vibroacoustic properties [3, 17]. The necessity to

predict high frequency wave propagation is also typical in, for example, shock
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Chapter 1. Introduction

analysis [1]. For high frequency vibrations and high modal density, statistical

prediction methods can be used to evaluate the dynamic behaviour of complex

structures. If energy predictive tools are considered (among which the prominent

technique is Statistical Energy Analysis [7]) the main predictive analysis requires

wave characteristics to be given. Indeed all these techniques would take advantage

of improvements in the theoretical understanding of propagating waves.

The primary characteristics of these waves are the dispersion relations, which

relate frequency and wave heading to the wavenumber, and wavemodes, which

are related to the cross–section displacements. However, dispersion relations are

frequently unavailable or treated in a simplified manner. In simple cases, ana-

lytical expressions for the dispersion equation can be found, e.g. [2, 8]. Exam-

ples include isotropic 1–dimensional structures such as rods and thin beams and

2–dimensional structures such as thin plates and cylinders. However at high fre-

quencies the analysis becomes difficult also for these simple cases. The underlying

assumptions and approximations concerning the stress–strain distribution in the

solid break down and more complicated theories might be required to accurately

model the behaviour as the frequency increases [8, 9]. Furthermore, the proper-

ties of the cross–section of a homogeneous solid might be complicated. Examples

include rods of complicated cross–section geometry, layered media and laminated,

fibre-reinforced, composite constructions. The equations of motion then become

very complicated at best.

For the dynamic analysis of structures posed over complicated domains, the

most commonly employed tool is the Finite Element Method (FEM) [10–12]. The

FEM is a numerical method in which a structure is discretised into an assemblage

of small finite elements interconnected by nodes. A convenient approximate solu-

tion, usually in the form of polynomial based shape functions, is assumed in each

element. The compatibility of the displacements and equilibrium of the forces at

the nodes is then requires. However the method is inappropriate for large sized

structures and high frequency analysis because the computational cost becomes

prohibitive. In particular, in order to obtain accurate predictions at high frequen-

cies, the size of the elements should be of the order of the wavelength, resulting

in impossibly large computers models.

Thus in all such cases alternative semi–analytical and numerical methods are

potentially of benefit for determining the dispersion properties, wavemodes, group

and phase velocities and so on.

The aim of the present work is the development of a FE based approach, the

2



Chapter 1. Introduction

Wave Finite Element (WFE) method, by which the wave characteristics of a 2–

dimensional structure can be predicted from a FE model. The method proposes

a systematic and straightforward approach which combines the analytical theory

for wave propagation in periodic structure with commercial FE tools. One of

the main advantages of the WFE method is the fact that standard FE routines

and commercial FE packages can be used. Hence the meshing capabilities and

the wealth of existing element libraries of FE tools can be exploited. At the

same time the method, making use of the wave content, enables the limitations

of conventional FEA to be avoided.

1.2 The Wave Finite Element approach

The structures of interest for the method presented in this thesis are homoge-

neous 2–dimensional structures, whose properties can vary in an arbitrary man-

ner through the thickness. It is clear that they can be considered as periodic

structures in 2 dimensions. Examples include isotropic plates, sandwich plates,

cylinders, fluid–filled pipes and so on. The method requires the analysis of just a

small, generally rectangular, segment of the structure. The general displacements

qL, qR, qB and qT and the generalised forces fL, fR, fB and fT at the left and

right and at the bottom and top of this segment are related by the periodicity

conditions
qR = λxqL, fR = −λxfL,

qT = λyqB, fT = −λyfB,

(1.1)

where λx = e−iµx , λy = e−iµy and µx, µy are the propagation constants of a plane

harmonic wave in a 2–dimensional geometry.

The segment of the structure is discretised using conventional finite elements.

This involves a low order FE model, commonly just a single rectangular finite

element, or a stack of elements meshed through the cross–section. The mass and

stiffness matrices, typically obtained using commercial FE packages, are sub-

sequently post-processed using the periodicity conditions in order to obtain an

eigenproblem whose solutions provide the frequency evolution of the wavenumber

(dispersion curves) and the wavemodes. The form of the eigenproblem depends

on the nature of the problem at hand. If µx and µy are real and assigned, the

frequencies of the waves that propagate in the structure can be obtained from

a standard eigenvalue problem while, if the frequency is prescribed, it yields a

3



Chapter 1. Introduction

polynomial or a transcendental eigenvalue problem. For the first two kinds of

problem efficient algorithms, which include error and condition estimates, are

well established while the last problem is less obvious and solutions can be found

by a variety of methods.

1.3 Thesis outline

Chapter 2 is devoted to literature review. The aim of this chapter is to present a

short summary of some of the recent semi–analytical and numerical methods for

the computation of the dispersion curves in engineering structures.

Chapter 3 describes the WFE formulation for homogeneous structures in 2

dimensions. The various forms of the resulting eigenproblem are analysed. Nu-

merical issues are also discussed and an illustrative example concerning the out–

of–plane vibration of an isotropic plate is used to illustrate some considerations

about general features of the method. In common with 1–dimensional WFE appli-

cations, significant issues arise because the original structure is continuous while

the WFE model is a lumped, discrete, spring-mass structure which is spatially

periodic. For wavelengths which are long compared to the size of the element

there are no significant consequences of this and the WFE model predicts the

wavenumbers with good accuracy. For shorter wavelength, i.e. higher frequen-

cies, periodic structure effects occur.

Chapters 4, 5, 6 and 7 are devoted to the application of the method to several

examples. One aim is to validate the approach in situations for which analytical

solutions are well established. Another aim is to apply the method to situations

where no immediate analytical solutions are available. In these examples the

FE software ANSYS is used to obtain the mass and stiffness matrices of a small

segment of the structure.

In Chapter 4 the method is applied to plate structures. Providing that the

plate thickness remains small with respect to the bending wavelength, the WFE

dispersion curves of an isotropic thin plate are compared with the one predicted

by the Kirchoff theory. The dispersion curves of a thick plate are also shown up

to high frequencies. An orthotropic plate made of fiber reinforced composite ma-

terial is then analysed. More complicated examples concern composite sandwich

and layered plates. The real dispersion curve for the transverse displacement of a

three layered isotropic sandwich plate is compared with the one obtained by solv-

ing the sixth–order equation of motion originally proposed by Mead and Markus

4
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in [18]. The complex dispersion curves and wavemodes of the sandwich plate are

then given and analysed. An asymmetric [0/90] laminated plate is studied. For

this example the dispersion curves obtained by the WFE method and the method

proposed by Chackraborty and Gopalakrishnan in [19] are compared. The WFE

approach can be applied equally to laminates of arbitrary complexity, with an

arbitrary number of layers: the final example given in this chapter concerns an

asymmetric, angle-ply laminated sandwich panel.

Chapter 5 shows the application of the WFE method to the analysis of wave

propagation in uniform axisymmetric structures as a special case of WFE analysis

of 2–dimensional structures. Two examples of isotropic cylindrical shells are

analysed, for which the ratio of the thickness to mean radius is h/R = 0.05 and

h/R = 0.1. In order to validate the method, the dispersion curves predicted

by the WFE method for the first case are compared with the analytical results

obtained by solving the Flügge equations of motion. The WFE method is also

applied to predict the wave behaviour of a laminated sandwich cylindrical shell.

A very similar construction was considered by Heron [20].

Chapter 6 addresses prediction of wave propagation in fluid–filled elastic cylin-

drical shells using the WFE method. The analysis exploits capability of an FE

package to modelling acoustic fluid–structure coupling. The WFE formulation

for fluid–filled cylindrical shells is presented and the method is applied to predict

the complex dispersion curves of an isotropic undamped steel cylindrical shell

filled with water.

In Chapter 7 the method is extended to account for viscoelastic materials,

enabling the prediction of dispersion, attenuation and damping behaviour in

composite materials when inherent damping is not negligible. The viscoelastic

characteristics of the composites are taken into account by considering complex

components in the material’s stiffness matrix. This leads to dissipation in addi-

tion to dispersion. In the first part of the chapter definitions of the modal loss

factor are given and the WFE approach for predicting propagating waves and the

loss factor in viscoelastic structures is described. As a first example, the WFE

results are compared with those obtained by Kerwin [21], and by Ghinet and

Atalla [22], for the flexural loss factor of an aluminium beam with an attached

constrained layer damping treatment. A laminated plate with constrained layer

damping treatment is also analysed. In particular the effect of the viscoelastic

material properties and the influence of the stacking sequence on the damping

performance are discussed. The real and imaginary parts of the wavenumber ver-
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sus the frequency for propagating waves in an asymmetric angle–ply laminated

sandwich with viscoelastic material properties are also given. The loss factor for

this last case is predicted as a function of the frequency and of the propagation

direction.
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Chapter 2

Literature review

Wave propagation in elastic solids has been the subject of many studies. For these

waves, of primary importance are the dispersion relations and the wavemodes.

The existing literature on “exact” and approximate analytical theories to eval-

uate the dispersion relation is vast. In simple cases, analytical expressions for the

dispersion equation can be found (e.g. [2, 8]). Examples include 1–dimensional

structures such as rods and thin beams and 2–dimensional structures such as

thin plates. For more complex structures or at higher frequencies the analysis

becomes more difficult or even impossible, and the dispersion equation is often

transcendental. At high frequencies the underlying assumptions and approxima-

tions break down - for example, for a plate, Mindlin [2, 8, 9] or Rayleigh-Lamb

[8, 23] theories might be required to accurately model the behaviour as frequency

increases. On the other hand, the algebra involved in the exact theory of linear

elasticity is so complicated that the definition of the dispersion equation can be

very difficult even for simple cases. Furthermore, the properties of the cross-

section of a homogeneous solid might be complicated.

It is therefore not surprising that many authors have been interested in semi–

analytical or numerical methods to predict wave motion. Many significant works

have been published and it goes beyond the scope of this brief literature review

to examine all of them. The aim of this chater is to present a short summary

of some of the recent methods for the computation of the dispersion curve in

engineering structures.
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2.1 Dynamic Stiffness Method

The first method considered is the Dynamic Stiffness Method, DSM. In the DSM

the structure is divided into simple elements, whose degrees of freedom are defined

at certain points called nodes. The key of the technique is the establishment of

an element dynamic stiffness matrix in the frequency domain to relate nodal

responses x and forces F, i.e.

D(ω)x = F, (2.1)

where D is dynamic stiffness matrix. The matrix D is obtained from the ana-

lytical solutions of the element governing differential equations for harmonically

varying displacements [24]. A global dynamic stiffness matrix at a specific fre-

quency can be subsequently assembled as in standard FEM.

In contrast with the FEM, frequency–dependent shape functions, which are

exact solutions to the local equations of motion for time harmonic motion, are

adopted. As a consequence the computational cost is reduced significantly since

there is no need of finer elements to improve the solution accuracy as the frequency

increases. The method, given the assumption and approximation involved in

deriving the equations of motion, can be considered as exact. Some applications

of the method can be found in [25] where Lee and Thompson studied helical

springs and in [26] where Langley applied the method to analyse free and forced

vibrations of aircraft panels.

2.2 Spectral Element Method

The dynamic stiffness matrix can be obtained in a number of ways. In the Spec-

tral Element Method (SEM), sometimes called the Analytical Spectral Element

method (ASE), the dynamic stiffness matrix is formulated in the frequency do-

main from the general solution of the equation of motion represented by a spectral

form. The solution is assumed to be a sum of simple harmonic waves at different

frequencies. A Fast Fourier Transform (FFT) can be then performed to recon-

struct the solution in the time domain [14]. The method is simple in the analysis

of the behaviour of the waves but the frequencies and the mode–shapes are usually

extracted using numerical approaches.

The works based on the SEM basically concern 1–dimensional waveguides,

that is structures which are homogeneous in one direction, i.e. are uniform and ex-

tend to infinity along one direction, but which can have arbitrary cross–sectional
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properties. A description of the method followed by a number of applications, in-

cluding applications to isotropic plates and shells, can be found [14]. Mahapatra

and Gopalakrishnan presented in [27] a spectral element for axial-flexural-shear

coupled wave propagation in thick laminated composite beams with an arbitrary

ply-stacking sequence. In [27] a first order shear deformation theory for the study

of high order Lamb waves was considered. The effect of viscous damping on the

wavemodes was also studied. Another spectral element for laminated composite

beams can be found in [1]. The assumptions in [1] are similar to those in [27].

However the approach in [1] is focused on applications to pyroshock analysis

and in particular the response of a sandwich beam subjected to a simulated py-

roshock was determined. In [28] and [29] the free vibration problems of a twisted

Timoshenko beam and of a doubly symmetric spinning beam respectively were

addressed using the SEM. Spectral elements for asymmetric sandwich beam were

also developed in [30] and in [31]. In [30] the governing differential equation for

flexural vibration was obtained accepting the same basic assumptions that were

adopted by Mead and Markus in [18] while in [31] a more complicated model

for the displacement field was assumed: the outer layer behaves like a Rayleigh

beam and the core behaves like a Timoshenko beam. In the latter, symbolic com-

putation was required to make the analysis tractable. In [28–31] the eigenvalue

problem was then solved using the Wittrick–William algorithm [32]. An elastic–

piezoelectric two layer beam was studied by Lee and Kim in [33]. Lee and Kim

also presented in [34] a spectrally formulated element for beams with active con-

strained layer damping in which the equations of motion were formulated within

the Eulero–Bernoulli theory assuming constant voltage along the length of the

beam. The solutions were verified by comparison with FEA results. Wave prop-

agation in a composite cylindrical shell was analysed in [35]. In [35] the spectral

element was obtained considering three translational and three rotational degrees

of freedoms at the cross section of the cylinder and involving a massive amount of

algebra. An analytical solution for the impact–induced response of a semi–infinite

membrane shell with unidirectional composite was presented to validate the SEM

results. Numerical simulations for a clamped-free graphite/epoxy tubular element

were also shown. The spectral element for thin–walled curved beams subjected

to initial axial force was obtained by Kim et al. in [36]. The equations of motion,

boundary conditions and force–deformations, rigorously obtained, gave a system

of linear algebraic equations with non–symmetric matrices in 14 state variables

and again involved a vast amount of algebra. Then the displacement parame-
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ters were evaluated numerically. The accuracy of the method was validated by

comparison with analytical and FE solutions for coupled natural frequencies of

a non–symmetric thin curved beam subjected to compressive and tensile forces.

Some other dynamic and acoustic applications of the SEM can be found in [37],

in which the dynamics of a sandwich beam with honeycomb truss core was stud-

ied, in [38], where a spectral element model was developed for uniform straight

pipelines conveying internal steady fluid and in [39], where a global-local hy-

brid spectral element (HSE) method was proposed to study wave propagation in

beams containing damage in the form of transverse and lateral cracks. Applica-

tions of the method to 2–dimensional problems can be found for example in [40]

and [41], where a harmonic dependence in one dimension was imposed, so that a

2-dimensional structure reduced to an ensemble of 1-dimensional waveguides. In

[40] the dynamic stiffness matrix of a 2-dimensional Kirchhoff rectangular plate

element with free edge boundary conditions was presented while in [41] Lamb

wave propagation in angle–ply laminates were studied using a special spectral

layer element.

In these papers generally the numerical verifications carried out to illustrate

the effectiveness of the method have shown that the SEM provides accurate re-

sults over a wide frequency range. However, for complicated construction and in

particular for 2–dimensional applications, the development of the spectral element

becomes very difficult and the vast amount of algebra involved often necessitate

the use of symbolic computation software. Moreover, since the method requires

the exact solutions of the governing equation of motion, the formulation must

be examined on a case by case basis. In any event the accuracy is limited by

the given assumptions and approximations involved in deriving the equations of

motion.

2.3 Transfer Matrix Method

A method for the analysis of wave propagation is the Transfer Matrix Method

(TMM). The literature review and description of the Transfer Matrix Method for

periodic structures is given in section 2.7.

The technique, originally proposed by Thompson in [42], basically consist in

constructing a matrix that relates the displacements and the stress at the top

and the bottom free surfaces of a waveguide, typically a plate. The plate is

subdivided into a certain number of layers where the displacement field is in the
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form of harmonic wave propagation. The stresses and displacements of one single

layer interfaces are settled into a layer transfer matrix and a global global transfer

matrix is obtained by multiplication of each layer transfer matrix in a recursive

form. The plate dispersion equation results from imposing the general traction–

free boundary conditions on the outer surfaces of the plate. The method has the

advantage of obtaining exact analytical solutions and to allow one to calculate the

dispersive characteristics in laminate with arbitrary stacking sequences. However

the construction of the global transfer matrix for the whole structure is generally

not straightforward.

Nayfeh [43] developed this method for studying the interaction of harmonic

waves in n–layered plate. In [43] the dispersion curves for different representative

cases of layered structures were shown. In [44] the method was modified in order

to take into account acoustic field between the layer. Analytical expression for the

transfer matrix and the interface matrix, which relate the acoustic field between

one layer and another, have been provided for acoustic fluid, structural and porous

layers. Uniform mean flow can also be included in the model. In [45] the TMM

was applied to magneto–electro–elastic plate. The general displacements and

stresses of the medium were divided into the “out–of–plane” variables and “in–

plane–plane”. Then the transfer matrix was obtained connecting the “out–of–

plane” variables at the top and the bottom of each layer. Due to the large

number of variables involved, only the “out–of–plane” was considered. When the

thickness of the layer increases, the transfer matrix becomes quasi singular leading

to instability of the method. In order to solve this problem, instead of the layer

transfer matrix a layer stiffness matrix was calculated in [46]. The layer stiffness

matrix relates the stresses at the top and the bottom to the displacement at the

top and the bottom of the layer. The global stiffness matrix is then obtained

through a recursive algorithm. An alternative approach to a computationally

stable solution is the Global Matrix method [47].

2.4 Thin Layered Method

The Thin Layered Method (TLM) [48] is an approach that combines the finite

element method in the direction of the cross section with analytical solutions in

the form of wave propagation in the remaining directions. In this method the

plate is discretised in the direction of lamination. Every lamina of a cross section

of the plate is subdivided into several thin sub–layers. The material properties
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of every sub–layers are homogeneous while they can change for different layers.

The upper and lower faces that bound the structure have prescribed stresses or

displacements. The displacement field within the sub–layers is discretised in the

finite element sense through interpolation functions, while the motion within each

sub–layer is assumed in the form of harmonic wave propagation. The equilibrium

within each lamina is preserved applying appropriate tractions, [48, 49]. After

evaluating the mechanical energy expression by summation over all the laminae,

a variational approach is generally used to obtain the governing equations for the

cross section. Hence an eigenvalue problem is set which yields the wavenumbers

for given frequency.

In [49] the TLM was applied to obtain complex dispersion curves for a plate

with elastic modulus increasing with depth. Herein, a technique to obtain an

algebraic eigenvalue equation instead of a transcendatal one was proposed. Park

and Kausel deeply investigated in [48] the numerical dispersion artifacts involved

in the use of this technique. A similar approach to the TLM but termed discrete

laminate method was used in [22] for modelling wave propagation in sandwich

and laminate structures with viscoelastic layers.

2.5 Spectral Finite Element Method

Another method for structural dynamics and acoustic applications is the Spec-

tral Finite Element Method (SFEM). In its standard formulation, the SFEM

approach applies to 1–dimensional waveguides. In summary the cross–section of

the elastic waveguide is discretised using a FE procedure. Assuming that the elas-

tic wave travels along the waveguide with the wavenumber k, the characteristic

finite element equation of motion for the cross–section becomes

(K(k) − ω2M)q = 0 (2.2)

where q defines the waveforms (i.e. q is the vector of cross–section nodal dis-

placements), M is the mass matrix and

K(k) =
∑

n

(ik)nKn. (2.3)

Equation (2.2) results in an eigenvalue problem in either k or ω [15]. This formu-

lation allows short wavelength propagation along the waveguide to be evaluated
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since polynomial approximations of the displacement field in this direction are

avoided. However, the matrices involved in the method are not conventional

FE operators associated with the cross–section dimensions and must be deter-

mined using other approaches, typically using Hamiltonian approach, e.g. [50].

As a consequence, new elements and new spectral stiffness matrices Kn must be

determined case by case.

There have been various SFE studies. To the best of the author’s knowledge,

the method first appeared in [51] for the analysis of wave motion in prismatic

waveguides of arbitrary cross section. More recently, application of the method

for wave propagation in laminated composite panels was presented in [52]. In [52]

a SFE was developed to obtain the dispersion curves of a four layered plate. Plane

strain and anti–plane strain with respect to the section of lamination were both

considered. The problem obtained seems tractable analytically only for propaga-

tion directions equal to 0o or 90o. Numerical results were compared for isotropic

and orthotropic plates with the results obtained by Mindlin in [53], and with the

results shown in [54] for a four–layers [0/90/0/90] plate. A generalisation of the

approach in [52] was proposed by Mukdadi et al., [55, 56], to study dispersion

of guided waves in anisotropic layered plates of rectangular cross section. Wave

propagation in thin–walled beams and in railway tracks were described through

the SFEM by Gavrić in [50, 57]. In [58] the method was used for studying propa-

gating waves and wavemodes in a uniformly pretwisted beam. The SFE method

was also applied to analyse wave propagation in a uniform circular duct with

porous elastic noise control foam [59], in rib–stiffened plate structures [60] and

fluid–filled pipes with flanges [61]. Prediction of turbulence–induced vibration

in pipe structures was achieved in [62] by deriving the structural response to

a travelling pressure wave. Wave propagation in laminated plates based on 1–

dimensional SFE was studied by Tassoulas and Kausel [63] and by Shorter [64].

In particular, in [64] the dispersion properties of the first few wave types of a

viscoelastic laminate plate were predicted considering a full 3–dimensional dis-

placement field within the laminate. The strain energy distribution through the

section was used to estimate the damping loss factor for each wave type. Re-

cently a SFE for fluid and fluid-shell coupling have been presented in [65], where

dispersion curves and some wave–shapes for a pipe and for a duct with nearly

rectangular cross-section were shown.

As already pointed out, it can be noticed from these papers that the for-

mulation of new spectral elements requires substantial effort. Especially for
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complicated constructions, the technique necessitate a complicated treatments

of coupling operators.

2.6 Methods for periodic structures

Other authors have proposed different approaches exploiting the properties of

periodic structures to simplify the study of the dynamic behaviour of structures

which exhibit characteristics that repeat periodically in either one, two or three

dimensions. Periodic structures can be considered as an assemblage of identical

elements, called cells or periods, which are coupled to each other on all sides and

corners by identical junctions. This characteristic is indeed observable in many

engineering real systems. Examples include railway tracks, flat or curved panels

regularly supported, such as stringer stiffened panels, fluid filled pipes with regular

flanges, acoustical ducts, rail structures, car tyres, composite plates or shells etc.

For these structures the dynamic behaviour of the complete structure can be

predicted through the analysis of a single period. One of the classical book where

the mathematic of wave propagation in periodic structures has been discussed is

that of Brillouin [13]. With his book, Brillouin, covering a wide range of problems

that occur in solid sate physic, optics and electrical engineering, traced the history

of the subject.

The University of Southampton has contributed significantly to the analysis of

free and forced wave motion in continuous periodic structures and an exhaustive

literature review on methods developedwas published by Mead in [66]. Many

works in this context were carried out by Mead himself, who introduced significant

investigations and characterisations of wave propagation in periodic structures.

For the sake of brevity most are not cited here but the reader can find many

references in [66].

2.7 Transfer Matrix Method for periodic struc-

tures

The Transfer Matrix Method for 1–dimensional periodic structures is based on the

construction of a transfer matrix, which relates the displacements and the forces

on both side of a periodic element of the structures. Consider the generalised

displacements and forces at the left hand L of one period of the structures and
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at the right end of next periodic element R. They are combined into the state

vectors QL and QR and related by

QR = TL−RQL (2.4)

where TL−R is the transfer matrix. Applying the Floquet’s principle [67], the

state vectors, in turn, are related by

QR = λjQL (2.5)

where λj = eiµj and µj is the propagation constant. Substituting equation (2.5)

into (2.4), the eigenvalue problem

TL−RQL = λjQR. (2.6)

is defined. Therefore λj, and consequently the propagation constant µj, is ob-

tained as an eigenvalue of the transfer matrix TA−B. One of the first applications

of this Transfer Matrix Method to 1–dimensional periodic structures can be found

in [68]. Numerical problem are implicit in this approach since the eigenvalue prob-

lem (2.6) suffers from ill–conditioning. In [69], Zhong and Williams developed

efficient and accurate computational procedures concerning the transfer matrix

and the solutions of the eigenvalue problem (2.6). Wave motion energetics using

transfer matrices were also analysed in [70]. As a complement of [70], a variety

of results and properties concerning the transfer matrix were presented in [71].

2.8 Receptance Method

In this method a receptance matrix, which is the reciprocal of the dynamic stiff-

ness matrix in equation (2.7), is considered to relate the displacements q and the

forces f at the left and the right hand–side of a periodic element, i.e.

q = Rf. (2.7)

q and f are then related by the propagation constant λ in the following way:

qR = λqL; fR = −λfL, (2.8)
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where λ = e−iµ and µ is the propagation constant. Substituting these periodicity

conditions into the element equation of motion, an eigenvalue problem in the

frequency ω and in the propagation constant µ is obtained.

Application of the method to beams with periodic supports can be seen [72].

Waves and wave vectors in mono–coupled periodic systems and multi–coupled pe-

riodic systems were analysed using the method by Mead in [73, 74]. In particular

in [73, 74] a discussion about the relationships between the bounding frequencies

of propagation zones and the natural frequencies of a period of the structures

were discussed. The decay of forced harmonic motion for coupled flexural and

axial wave motions in damped beams was studied in [75].

2.9 Wave Finite Element method

The Wave Finite Element method is a technique to investigate wave motion in

periodic structures. In this method a period of the structure, that is for example

a short section of a waveguide or a small segment of a 2–dimensional structure,

is modelled using conventional FEs. The equation of motion for time–harmonic

motion is therefore obtained from the FE model in terms of a discrete number

of nodal DOFs and forces in the same form as the dynamic stiffness method, i.e.

equation (2.7). Periodicity conditions are then applied and an eigenvalue problem

is formulated whose solutions give the dispersion curves and wavemodes. In the

WFE element formulation for waveguides, e.g. [76, 77], a transfer matrix as

in equation (2.4) is formed from the FE dynamic stiffness matrix and then an

eigenvalue problem is obtained applying periodicity condition.

Perhaps one of the first application of the method was the work of Orris and

Petyt [78]. In [78] Orris and Petyt proposed a FE approach and applied a re-

ceptance method for evaluating the dispersion curves of periodic structures. In

his PhD thesis, [79], Abdel–Rahman extended this FE approach to beams on

periodic elastic supports, 2–dimensional flat plates with periodic flexible stiffen-

ers and 3–dimensional periodic beam systems. Another early application of the

method can be found in [80], where Thompson analysed the free wave propaga-

tion in railway tracks. The dynamic behaviour of railway track was also analysed

by Gry in [81] using a similar approach. In the same way as the SFEM, the

advantage of this strategy is that only one section of the structure has to be

meshed and solved, reducing drastically the cost of calculation. However, unlike

the SFEM, the numerical implementation of the technique is rather simple also
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for complicated cross–sectional properties since conventional FE description of a

period of the structure is used. This is a great advantage since no new elements

have to be developed for each application. Mencik and Ichchou [82] applied the

method to calculate wave transmission through a joint. Free wave propagation

in simple waveguides were analysed by Mace et al. in [76]. In [76] the WFE

approach was described and an estimation of energy, power and group velocity

was given together with some illustrative numerical examples. In the approach

proposed in [76] the high geometrical and material flexibility of standard com-

mercial FE packages were exploited. In particular an application of the WFE

method to wave propagation in a laminated plate using the FE software ANSYS

was shown. In [77], after reformulating the dynamic stiffness matrix of one cell

of a waveguide in terms of wave propagation, the dynamic stiffness matrix of the

whole structure was then found using periodic structure theory. The response

of the whole structure to force excitation was then evaluated. The two exam-

ples provided in [77] have shown that the accuracy of the method is good when

common requirements for the accuracy of FE discretisation are satisfied. Waki et

al. applied the method for predicting flexural wave propagation in a plate strip

with free boundaries [83]. They also studied the example of forced vibration of a

smooth tyre [84]. In [84] the tyre was considered as a uniform waveguide around

the circumference with a geometrically complicated cross-section involving many

different materials, including rubbers with frequency dependent properties. The

FE software ANSYS was used to obtain the mass and stiffness matrices of a small

segment of the waveguide. Despite the complicated geometry the size of the nu-

merical model was only 324 degrees of freedom. It was shown that the WFE

approach allows predictions to be made to 2kHz or more - the whole frequency

range where tyre vibrations and radiated noise are important - at a very small

computational cost. For 1–dimensional waveguides there have been applications

of the WFE method to thin-walled structures [85], helical waveguides [86] and

fluid-filled pipes [87, 88]. In [89] the WFE formulation for 2–dimensional periodic

structures was applied for evaluating the propagation of elastic waves within cel-

lular structures, such as a honeycomb plate. In [90], Duhamel applied the WFE

approach as in [76, 77] to evaluate the Green’s functions of a 2-dimensional struc-

ture. Harmonic dependence in one dimension was however imposed, so that a

2-dimensional structure reduces to an ensemble of 1-dimensional waveguides. The

Green’s functions were then found by evaluating an integral over the wavenumber

k.
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The method is extended in this thesis to 2–dimensional structures. Applica-

tions of the method for predicting free wave propagation in isotropic, orthotropic

and composite laminated plates and cylinders and fluid filled–pipes were pre-

sented in [91, 92] and in the technical memorandum [93].
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Chapter 3

The Wave Finite Element

method for 2–dimensional

structures

This chapter concerns the application of the WFE method to the analysis of

wave propagation in uniform 2–dimensional structures. The structure is homo-

geneous in 2 dimensions but the properties might vary through the thickness.

The method involves post–processing the mass and stiffness matrices, found us-

ing conventional FE methods, of a segment of the structure. This is typically

a 4–noded rectangular segment, although other elements can be used. Period-

icity conditions are applied to relate the nodal degrees of freedom and forces.

The wavenumbers, which can be real, imaginary or complex, and the frequencies

then follow from various resulting eigenproblems. The form of the eigenproblem

depends on the nature of the solution sought and may be a linear, quadratic,

polynomial or transcendental eigenproblem.

The different eigeinproblem forms are examined and numerical issues are dis-

cussed. The example of a thin steel plate in bending vibration is used to illus-

trate the general behaviour of a 2–dimensional uniform structure studied using

the WFE method.

3.1 Plane waves in 2–dimensional structures

This analysis considers time–harmonic waves propagating in a 2–dimensional

structure as plane waves at frequency ω. A certain disturbance W0 propagates

as a plane wave if its magnitude is constant along planes perpendicular to the
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direction of propagation. With reference to Figure 3.1, let n = e1 cos θ + e2 sin θ

be the vector that represents the propagation direction. If the disturbance W0 is

travelling at a certain velocity c, the equation of a plane perpendicular to n at a

distance d = ct from the origin is

c t − n · r = constant, (3.1)

where r = xe1 + ye2 is the position vector of an arbitrary point on the plane.

In order to satisfy equation (3.1), r must increases in magnitude as the time

increases. Suppose now that the disturbance is propagating with a harmonic

pattern of wavelength λ, while k represents the number of complete harmonic

oscillations per unit distance, i.e. the wavenumber, defined as k = 2π/λ. Under

this circumstances

W (r) = W0e
ik(ct−n·r), (3.2)

will represent a harmonic disturbance whose magnitude is the same for every plane

defined by equation (3.1). Herein W0 is the complex amplitude, k(c t − n · r) is

indicated as the phase while c, being the propagation velocity of the constant

phase, i.e. kn · r, is defined as the phase velocity. Equation (3.2) can be rewritten

as

W (r) = W0e
i(ωt−kxx−kyy) (3.3)

where ω is the angular frequency and kx = k cos θ and ky = k sin θ are the

components of the wave vector k = kn in the x and y direction.

When kx and ky are real valued, free waves can propagate without attenuation,

i.e. propagating waves. Hence, kx and ky represent the change in phase of the

oscillating particles per unit distance in the x and y directions respectively. On

the other hand, if kx and ky are purely imaginary there is no propagation but os-

cillations of particles at the same phase with a spatial decaying amplitude. These

waves are referred as evanescent waves. In general the wavenumber components

kx and ky are complex quantities and these waves are referred to as attenuating

waves. The real parts of kxx and kyy cause the change in phase with distance

while their imaginary parts cause exponential decay of the wave amplitude. The

global motion of the structure in a general case will be a superposition of different

waves.

The relation between the wavenumber and the frequency

ω = k c (3.4)
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is called the dispersion relation and basically governs the wave propagation. The

nature of the propagating waves is said to be dispersioneless if all wavelengths

travel at the same speed, that is c is independent of k. It can be shown that if

the propagation velocity of each harmonic is independent of k, a certain wave dis-

turbance, which at the instant t = 0 is specified by a certain function, will travel

with the velocity c without changing its shape [8]. If the wave is dispersive, c

depends on k, thus each harmonic component will propagate at its own veloc-

ity. As a result, all the harmonic components will be superimposed at different

moments with different phases, which leads to a change of shape compared to

the original one. An analytical explanation of this phenomenon is evident when

considering a disturbance whose spectrum differ from zero only in a small vicinity

of a certain frequency ω [8, 94]. Writing the disturbance in the form of a Fourier

integral, it can be proved, see for example [8], that as this disturbance propagates

it will resemble a modulated harmonic wave with the envelope propagating at the

velocity

cg =
dω

dk
, (3.5)

where cg is defined as the group velocity. This is the velocity at which energy

propagates.

The dispersion relation is usually represented in a graphical form for easier

interpretation. This graph is called the dispersion curve. As an example, flexural

waves in a free thin plate are considered. The governing equation for the out–of–

plane motion of the thin plate is [8]

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
= −ρh

∂2w

∂t2
, (3.6)

where

D =
Eh3

12(1 − ν2)
,

is the flexural rigidity, w(x, y, t) measures the deflection of the middle plane of

the plate, h is the plate thickness and ρ is the material density [8]. Substituting

(3.3) into equation (3.6), gives

D(k2
x + k2

y)
2 = ρhω2. (3.7)
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Since kx = k cos θ, ky = k sin θ, and hence k = k2
x + k2

y, the dispersion relation is

k =
√

w
4

√
ρh

D
. (3.8)

Figure 3.2 shows the dispersion curve for positive–going propagating flexural

waves. From the dispersion curve it is possible to obtain information about the

phase velocity and the group velocity. As an example, the slope of the segment

OP in Figure 3.2 represents the phase velocity at point P , while the slope of the

tangent to point P indicates the group velocity at that wavenumber.

3.2 The Wave Finite Element formulation for

2–dimensional uniform structures

Periodic structures can be considered as systems of identical segments each of

which is coupled to its neighbours on all sides and corners. A famous example

of periodic structure deals with crystal lattices [13]. Examples of engineering

structures that can be treated as periodic structures are general waveguides with

uniform cross–section, multi–span bridges, pipelines, stiffened plates and shells,

multi–stored building, tyres and so on.

In particular this study considers uniform structures in 2 dimensions as a

special case of periodic structures, that is structures homogeneous in both the

x and y directions but whose properties may vary through its thickness in the

z direction. These kinds of structures can be assumed to be an assembly of

rectangular segments of length Lx and Ly arranged in a regular array as shown in

Figure 3.3. Exploiting the periodicity of the structure, only one segment of the

structure is taken and discretised using conventional FEM [10–12]. This segment

should be meshed in such a way that an equal number of nodes at its left and right

sides and top and bottom sides is obtained. If the periodic lengths Lx and Ly, are

small enough, the simplest way to discretise the segment is obtained using just

one 4–noded rectangular FE as shown in Figure 3.4. It is worth noting that the

element lengths should be neither extremely small in order to avoid rounding–off

errors during the computation nor too large in order to avoid dispersion errors. A

detailed discussion about the numerical errors involved in the FE discretisatison

will be given in section 3.5.

With reference to the Figure 3.4, the segment degrees of freedom (DOFs) q
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are given in terms of the nodal DOFs by

q = [qT
1 qT

2 qT
3 qT

4 ]T , (3.9)

where the superscript T denotes the transpose and where qj is the vector of the

nodal DOFs of all the elements nodes which lie on the jth corner of the segment.

Node j is in general a “hypernode” obtained by concatenating all the nodes of

the FEs through the thickness. Similarly, the vector of nodal forces is

f = [fT1 fT2 fT3 fT4 ]T . (3.10)

The vectors q and f are then the concatenation of the nodal DOFs and forces.

Although free wave motion is considered, and so no external loads are taken

into account, the load vector is different from zero since the nodal forces are

responsible for transmitting the wave motion from one element to the next.

The equation of motion for the element in Figure 3.4 is

(
K + iωC − ω2M

)
q = f, (3.11)

where K, C and M are the stiffness, damping and mass matrices. The form of

the plane free wave that propagates along the structure can take the form of a

Bloch wave [95]. Most famous in photonic crystals, Bloch’s theorem is sometimes

called Floquet’s theorem since it represents a generalisation in solid–state physics

of the Floquet’s theorem for 1–dimensional problem [67].

Therefore the propagation of a free wave can be obtained from the propagation

constants

µx = kxLx and µy = kyLy, (3.12)

which relate the displacements q on each side of the periodic element by

q2 = λxq1; q3 = λyq1; q4 = λxλyq1, (3.13)

where

λx = e−iµx ; λy = e−iµy . (3.14)

The nodal degrees of freedom can be rearranged to give

q = ΛRq1, (3.15)
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where

ΛR = [I λxI λyI λxλyI]
T . (3.16)

In the absence of external excitation, equilibrium at node 1 implies that the sum

of the nodal forces of all the elements connected to node 1 is zero. Consequently

ΛLf = 0, (3.17)

where

ΛL = [I λ−1
x I λ−1

y I (λxλy)
−1I]. (3.18)

Substituting equation (3.15) in equation (3.11) and premultiplying both side of

equation (3.11) by ΛL, the equation of free wave motion takes the form

[K(µx, µy) + iωC(µx, µy) − ω2M(µx, µy)]q1 = 0, (3.19)

where
K = ΛLKΛR;

C = ΛLCΛR;

M = ΛLMΛR,

(3.20)

are the reduced stiffness, damping and mass matrices, i.e. the element matrices

projected onto the DOFs of node 1.

The eigenvalue problem of equation (3.19) can also be written as

D(ω, λx, λy) = 0, (3.21)

where D is the reduced dynamic stiffness matrix (DSM). If there are n DOFs per

node, the nodal displacement and force vectors are n × 1, the element mass and

stiffness matrices are 4n × 4n while the reduced matrices are n × n.

It can be seen from equation (3.19) that the mathematical formulation of the

method is fairly simple. Standard FE packages can be used to obtain the mass

and stiffness matrices of the segment of the structure. No new elements or new

“spectral” stiffness matrices must be derived on a case–by–case basis and more-

over standard FE packages can be used to obtain the mass and stiffness matrices

of one period of the structure. This is a great advantage since complicated con-
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structions such as sandwich and laminated constructions can be analysed in a

systematic and straightforward manner. Moreover if the elements used in the

discretisation are brick solid elements, the present method is formulated within

the framework of a 3–dimensional approach, that is the stress and displacement

assumptions are the one used in the 3–dimensional FE analysis.

3.2.1 Illustrative example

This illustrative example is used throughout the chapter to show some numerical

results related to the application of the method. The example deals with flexural

vibration of a thin steel plate whose material properties are: Young’s modulus

E = 19.2 · 1010Pa, Poisson’s ratio ν = 0.3, density ρ = 7800kg/m3. The plate

thickness is h = 0.5mm. A rectangular element with four nodes is considered.

The element has three degrees of freedom at each node: translation in the z

direction and rotations about the x and y axes. The shape function assumed for

this element is a complete cubic to which the two quartic terms x3y and xy3 have

been added. For more details see [11] although note typographical errors. The

formulation of the mass and stiffness matrices obtained for this example is given

in Appendix A. The nondimensional frequency for this example is defined as

Ω = ωL2
x

√
ρh/D; (3.22)

where

D =
Eh3

12(1 − ν2)
,

3.3 Application of WFE using other FE imple-

mentations

The method can be applied to cases other than 4–noded, rectangular elements

straightforwardly, so that the full power of typical element libraries can be ex-

ploited.

3.3.1 Mid–side nodes

Mid–side nodes can be accommodated as described by Abdel–Rahman in [79].

Consider the rectangular segment with mid–side nodes shown in Figure 3.5.
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Defining the nodal DOFs as

q = [qT
1 qT

2 qT
3 qT

4 qT
L qT

R qT
B qT

T ]T , (3.23)

the periodicity conditions become

q = ΛR




q1

qL

qB


 , (3.24)

where

ΛR =




I λxI λyI λxλyI 0 0 0 0

0 0 0 0 I λxI 0 0

0 0 0 0 0 0 I λyI


 . (3.25)

Equilibrium at node 1 gives equation 3.17 while equilibrium at the left and bottom

mid–side nodes leads to
fL + λ−1

x fR = 0;

fB + λ−1
y fT = 0,

(3.26)

and hence

ΛL




f1

fL

fB


 =




0

0

0


 , (3.27)

where

ΛL =




I λ−1
x I λ−1

y I λ−1
x λ−1

y I 0 0 0 0

0 0 0 0 I λ−1
x I 0 0

0 0 0 0 0 0 I λ−1
y I


 . (3.28)

The mass and stiffness matrices are again reduced as given by equation (3.20).

An approximation which reduces the size of the resulting eigenproblem is

suggested here by enforcing further periodicity conditions between nodes 1, L

and B. In this it is assumed that

qB = λ
1/2
x q1; qL = λ

1/2
y q1. (3.29)
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Hence ΛL and ΛR become

ΛR = [I λxI λyI λxλyI

λ
1/2
y I λxλ

1/2
y I λ

1/2
x I λ

1/2
x λyI]

T

(3.30)

and
ΛL = [I λ−1

x I λ−1
y I λ−1

x λ−1
y I

λ
−1/2
y I λ−1

x λ
−1/2
y I λ

−1/2
x I λ

−1/2
x λyI].

(3.31)

The segment matrices are then projected onto the DOFs of node 1 only. This

introduces some errors which seem to be small in most, if not all, cases of interest.

Figure 3.6 shows the WFE wavenumber prediction for flexural waves using

the rectangular 4–noded element in section 3.2.1 and an equivalent rectangular

8–noded element. The analytical dispersion curve is also given. The WFE results

for the 8–noded element are obtained from the approximated formulation above.

It can be noticed that both the numerical results show good accuracy.

3.3.2 Triangular elements

Figure 3.7 shows a triangular element with 3 nodes. The nodal degrees of freedom

and the nodal loads are
q = [qT

1 qT
2 qT

3 ]T ;

f = [fT1 fT2 fT3 ]T .

(3.32)

A second, identical segment is appended so that together they form a parallelo-

gram with one side parallel to the x axis and another parallel to the direction y′

at an angle ϕ to the y axis. The periodicity conditions are now

q2 = λxq1; q3 = λ′
yq1; q4 = λxλ

′
yq1, (3.33)

where

λy′ = λyλ
Ly tan ϕ/Lx

x . (3.34)
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ΛL and ΛR are

ΛL = [I λxI λ′
yI λxλ

′
yI]

T ;

ΛR = [I λ−1
x I λ′−1

y I (λxλ
′
y)

−1I],

(3.35)

Once ΛL and ΛR are evaluated, the reduced mass, stiffness and damping matrices

in equation (3.19) can be obtained by equation (3.20) as shown in the section 3.2.

3.4 Forms of the eigenproblem

By partitioning the dynamic stiffness matrix of the element in equation (3.11) as

D =




D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44




, (3.36)

then the reduced eigenvalue problem is given by

[(D11 + D22 + D33 + D44)λxλy + (D12 + D34)λ
2
xλy+

+(D13 + D24)λxλ
2
y + D32λ

2
x + D23λ

2
y + (D21 + D43)λy+

+(D31 + D42)λx + D14λ
2
xλ

2
y + D41]q = 0.

(3.37)

Since the matrices in equation (3.11) are real, symmetric and positive definite,

for the partitions of the dynamic stiffness matrix in (3.36) Dij = DT
ij where T

denotes the transpose. Considering the transpose of equation (3.37) divided by

λxλy, it can be proved that the solutions come in pairs involving λx, 1/λx, λy and

1/λy for a given real frequency ω. These of course represent the same disturbance

propagating in the four directions ±θ, π ± θ.

Equations (3.19) and (3.37) give eigenproblems relating λx, λy and ω, whose

solutions give FE estimates of the wave modes (eigenvectors) and dispersion rela-

tions for the continuous structure. Three different algebraic eigenvalue problems

follow from formulations (3.19) or (3.37). If µx and µy are chosen and real,

a linear eigenvalue problem results in ω for propagating waves. In the second

class of eigenproblem the frequency ω and one wavenumber, say kx, are given.
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This might physically represent the situation where a known wave is incident

on a straight boundary so that the (typically real) trace wavenumber along the

boundary is given and all possibly solutions are sought, real, imaginary or com-

plex. Wave propagation in a closed cylindrical shell is a second example, where

the wavenumber around the circumference can only take certain discrete values.

In this case, equation (3.37) becomes a quadratic polynomial in λy, for which

there are 2n solutions. When ω and θ are prescribed and k is regarded as the

eigenvalue parameter, the resulting problem is either a polynomial eigenvalue

problem or a transcendental eigenvalue problem whose solutions for k may be

purely real, purely imaginary or complex.

3.4.1 Linear algebraic eigenvalue problem for real propa-

gation constants

To calculate the dispersion relations for free wave propagation, the real propaga-

tion constants µx and µy are given and the corresponding frequencies of propa-

gation ω are to be found. Then

|λx| = 1 and |λy| = 1 (3.38)

represent free waves that propagate through the structure with a wavenumber

k =
√

k2
x + k2

y in a direction θ = arctan ky/kx. Equation (3.19) then becomes a

standard eigenvalue problem in ω.

For real values of µx and µy it can be proved that the reduced matrices in

equation (3.20) are positive definite Hermitian matrices. Therefore, for any given

value of the propagation constants, there will be n real positive eigenvalues ω2 for

which wave propagation is possible. The corresponding eigenvectors will define

the wave modes at these frequencies. Although there are a certain number of

solutions, not all of these represent wave motion in the continuous structure as

it will be discussed in section 3.5. Some of them are in fact artifacts of the

discretisation by FE of the structure.

3.4.2 Quadratic polynomial eigenvalue problem for com-

plex propagation constant

In the second class of eigenproblem the frequency ω and one wavenumber, say

kx, are given. This might physically represents the situation where a known wave
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is incident on a straight boundary so that the (typically real) trace wavenumber

along the boundary is given and all possibly solutions for ky are sought, real,

imaginary or complex. Wave propagation in a closed cylindrical shell is a second

example, where the wavenumber around the circumference can only take certain

discrete values. Hence equation (3.37) becomes a quadratic in λy, i.e.

[A2λ
2
y + A1λy + A0]q1 = 0. (3.39)

and a quadratic eigenproblem results, for which there are 2n solutions.

Figure 3.8 shows the real and imaginary part of the solutions µy as a func-

tion of the propagation direction for given µx. Solving equation (3.39) for the

illustrative example in section 3.2.1, 6 solutions are obtained which correspond

to 3 pairs of waves which either decay or propagate in the negative and positive

y direction. Since damping is not considered, the solutions for freely propagating

waves satisfy the equation |e−iµy | = 1. Hence solutions 1 and 2 represent the

component in the y direction of the wave that propagates along the ±θ direction.

Solutions 3 and 4 represent the y components of evanescent waves with ampli-

tudes that decrease in the θ and −θ directions respectively while solutions 5 and

6 are numerical artifacts. The real part of µy shows that adjacent nodes along

the y direction vibrate in phase for solution 3 and 4 and in counter phase for

solution 5 and 6.

3.4.3 Polynomial eigenvalue problem for complex propa-

gation constants

In the third type of eigenproblem the frequency ω and the direction of propagation

θ are specified. Hence λx and λy are of the form

λx = e−iµx , λy = e−iµy ,
µy

µx

=
Ly

Lx

tan θ, (3.40)

where µx and µy might be complex, but their ratio is real and given.

If the ratio µy/µx = m2/m1 is rational, m2 and m1 being integers with no

common divisor, the propagation constants can be written as µx = m1σ and
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µy = m2σ. Putting γ = eiσ, the eigenvalue problem (3.37) can be written as

[A8γ
2m1+2m2 + A7γ

2m1+m2 + A6γ
m1+2m2 + A5γ

m1+m2 + A4γ
2m1+

+A3γ
2m2 + A2γ

m2 + A1γ
m1 + A0]q1 = 0,

(3.41)

or in a more general formulation

P (γ) =
m∑

j=0

Ajγ
j Aj ∈ R, m ∈ N, (3.42)

where Am 6= 0. The matrices A are of order n × n so that equation (3.41) is

a polynomial eigenvalue problem of order 2(m1 + m2) which has 2n(m1 + m2)

solutions for γ.

As a standard procedure to solve equation (3.42), the regular polynomial form

in equation (3.42) is linearised as







Am−1 · · · A1 A0

I
...

. . .

I 0




− γ




−Am

I
. . .

I







Z = 0, (3.43)

where

Z =




γm−1q
...

γq

q




.

After multiplying the first row of equation (3.43) by A−1
m , a standard eigenvalue

problem is obtained as

[Q − γI]Z = 0, (3.44)

where

Q =




−A−1
m Am−1 · · · −A−1

m A1 −A−1
m A0

I
...

. . .

I 0




. (3.45)
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The eigenvalues and the eigenvectors of the polynomial eigenproblem in equation

3.42 can be recovered from those of Q using subroutines for standard eigenprob-

lems. The same procedure for conversion to linear eigenvalue problem can be

applied to equation (3.39). An efficient algorithm to order the coefficients and to

solve the polynomial eigenproblem in equation (3.42) for any given value of m1

and m2 has been realised and is available on request.

Since in numerical computation only finite interval numbers exist, it is inter-

esting evaluate the behaviour of the solutions of equation (3.41) as m2/m1 → tan θ

with tan θ irrational. As an example tan θ =
√

3 is considered. Figure 3.9 shows

the roots of equation (3.41) in the complex plane for (m2, m1) equal to (17, 10)

and (173, 100) as approximations to
√

3 while Figure 3.10 shows the variation of

|γ| with respect to m2 and m1. Both the Figures show that the absolute value

of γ converges to 1 as m2 and m1 increase. This behaviour can be inferred con-

sidering that, for m ≫ M , M ∈ R
+ arbitrarily large, equation (3.42) can be

approximated as
m∑

j=1

Ajγ
j + A0 ≈ Amγm + A0, (3.46)

and therefore when m ≫ M

|γ| = |A−1
m A0|1/m ≈ 1. (3.47)

The order of the eigenvalue problem might be very large and hence there

be many solutions, only some of which represent free wave propagation in the

continuous structure, the rest being solutions relevant only to the discretised

problem. In principle this is not an issue since all but a few solutions lie far enough

from the origin in the complex kL plane that the finite element discretisation

is known to be inaccurate. However, another approach is given to solve the

eigenproblem efficiently when tan θ is irrational.

3.4.4 Transcendental eigenvalue problem

In order to consider a general way to solve equation (3.37) for any possible (ra-

tional or irrational) value of µy/µx, equation (3.37) is rewritten in the following

general form

B(λx, λy)q = 0. (3.48)
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To avoid trivial solutions, |B| must be equal to zero. The function |B| is a

complete polynomial function in the two complex variables λx and λy

|B| =

p=2n∑

p=0

q=2n∑

q=0

Bpqλ
p
xλ

q
y. (3.49)

Since
λx = e−iµx = e−ikLx cos(θ);

λy = e−iµy = e−ikLy sin(θ),

(3.50)

equation (3.49) then becomes a transcendental eigenvalue problem in k for given

θ, i.e.

g(k) = |B| =
2n∑

p=0

2n∑

q=0

Bpq

[
e−ikLx cos(θ)

]p[
e−ikLy sin(θ)

]q
. (3.51)

The function g(k) in equation (3.51) is a holomorphic function. Holomorphic

functions are defined on an open subset of the complex number plane C and

they are complex–differentiable at every point. An equivalent definition for holo-

morphic functions is the following: a complex function f(x + iy) = u + iv is

holomorphic if and only if u and v have continuous first partial derivatives with

respect to x and y and they satisfy the Cauchy–Riemann conditions, which are

∂u

∂x
=

∂v

∂y
;

∂u

∂y
= −∂v

∂x
.

(3.52)

For the sake of simplicity a square finite element with sides of length L is consid-

ered. The wavenumber k is generally a complex number and it can be split into

its real and imaginary parts, say k = x + iy. A general term of the polynomial

function (3.51) is rewritten as

Bpq

[
e(−ix+y)L cos(θ)

]p[
e(−ix+y)L sin(θ)

]q
=

= Bpqe
yL(p cos(θ)+q sin(θ))e−ixL(p cos(θ)+q sin(θ)).

(3.53)

From this formulation it can be seen that the function g(k) has continuous first

partial derivatives with respect to x and y and satisfies the Cauchy–Riemann

conditions (3.52). It can easily be also shown that the real and imaginary parts
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of g(k), which are harmonic functions, satisfy Laplace’s equation, that is

∂2Imag[g(x, y)]

∂x2
+

∂2Imag[g(x, y)]

∂y2
= 0,

∂2Real[g(x, y)]

∂x2
+

∂2Real[g(x, y)]

∂y2
= 0.

(3.54)

As expected, Real[g(x, y)] is an even function while Imag[g(x, y)] is an odd func-

tion. Figures 3.11–3.13 show, as examples, the real and imaginary parts of the

function g(x, y) evaluated for y = 0, 1,−1, θ = π/6 and Ω = 0.0837 for the

illustrative example given in section 3.2.1.

The analytical functions involved in equation (3.51), sums and products of

exponential functions, are continuous and continuously differentiable with re-

spect to the variable k. Many numerical approaches for finding complex roots

of the transcendental equation (3.48) can be found. These include Interval New-

ton method [96–98], contour integration method [99], Powell’s Method [100] or

Muller’s method [101].

However, the most natural technique to solve equation (3.51) is Newton’s

method. A brief summary of how Newton’s method works for a function of complex

variables is given in Appendix B. Sufficient conditions for the existence of the

solution and the convergence of Newton’s method are given by the Kantorovich

theorem, [102], which the function |B| satisfies.

An alternative choice seeks the complex roots of the equation (3.51) using a

Newton’s eigenvalue iteration method, [103, 104]. This method extends Newton’s

method to the matrix B(k) in the following way. Given

B = −dB(k)

dk
, (3.55)

then solve for
[B(ki−1) − ri(B(ki−1)]qi = 0,

ki = ki−1 + min(ri),

(3.56)

where min means the minimum absolute value of the eigenvalues ri. The main

difference to the method applied to the 1–dimensional case is that the values of

ri are determined by solving an eigenvalue problem for each step in the iteration

and that the approach is more general. Although both methods are shown here

for first order approximations, higher order approximations can be included by
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evaluating higher order terms in the series expansion of either the matrix B or of

the function g.

In the present work, a variant of the Powell’s method, which is implemented

in the function fsolve in the Optimization Toolbox of MATLAB, is used to eval-

uate the complex roots of g(k). The algorithm is similar in nature to the one

implemented in [105].

Despite the fact that the solution space seems to be more sensitive to Real(k)

than Imag(k), the above algorithms have good guaranteed convergence within

the closed interval of interest, that is −π/3 < µ < π/3 (because the discretisation

errors discussed below). The solutions obtained by applying the three different

methods have been found to be virtually identical. As an example, Figure 3.14

shows the location of the nondimensional wavenumber µ = kL obtained by solving

equation (3.48) using the function fsolve for θ = π/3 and Ω = 0.0837.

3.4.5 Bounds of the eigenvalues: an algorithm for the dis-

tribution of the roots of the polynomial eigenvalue

problem in the complex plane

The generalised eigenvalue problem in equation (3.42) can be solved by a number

of eigensolution methods. However, some modes can be missed in the computa-

tion and methods to define the exact number of eigenvalues in a given region of

the complex plane are therefore often required.

The modified companion linear form (3.44) is considered to define the region

in the complex plane in which all possible roots of the eigenproblem (3.42) are

defined.

From the Gershgorin theorem [99] it can be said that if γ is an eigenvalue of

the square matrix Q = qij, then for some j, 1 ≤ j ≤ m, where m is the maximum

power in the polynomial equation (3.42), it should be

|qjj − γ| ≤ |qj1| + |qj2| + · · · + |qjj−1| + |qjj+1| + · · · + |qjm|, (3.57)

that is, each of the eigenvalues of Q lies in one of the disk in the complex plane

whose centre is C = qjj and whose radius is given by Rj =
∑

j 6=i |qji|.
Another theorem that can be used to obtain bounds for the eigenvalues is

Brauer’s theorem [106]. This theorem states that all the eigenvalues of a square
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matrix Q = qij lie in the union of the Cassini ovals

Oij = |γ − qii||γ − qjj| ≤ RiRj, i 6= j. (3.58)

Although the results of Brauer’s theorem are stronger than those of Ger-

schgorin’s theorem, in both cases it can be verified that the inclusion is not very

sharp.

Another procedure to define the number of eigenvalues in a specified range is

the Sturm sequence. However, Sturm’s theorem deals with real roots and disre-

gards their multiplicities. Hence to check the region in the complex plane where

all the eigenvalues are distributed a modified Sturm sequence is proposed. The

method is based on the algorithm proposed by Gleyse et al. in [107], which counts

the exact number of complex eigenvalues inside an open unit disk. Here the ap-

proach is generalised to an open disk of arbitrary radius. To apply the method

the linear eigenvalue problem in (3.44) is represented using its characteristic poly-

nomial form

p(γ) =
m∑

j=0

ajγ
j, (3.59)

where now aj are real coefficients and m = 2n(m1 + m2). If the radius of the

open disk in which the roots should be counted is R, substitute γ = Rγ̃ in

equation (3.42) and hence consider a modified polynomial where the coefficients

are ãj = ajR
j. The algorithm states that the number of roots of the polynomial

(3.59) inside the open disk of radius R is

N = m − S[1, ∆1, ∆2, ..., ∆m] (3.60)

where S is the sign count in the sequence [1, ∆1, ∆2, ..., ∆m]. Here ∆i stands for

the determinants of the leading principal submatrices in the Schur–Chon matrix

[107] of equation (3.59) which is

SCij =

min(i,j)∑

q=0

a(m − i + q)a(m − j + q) − a(i − q)a(j − q). (3.61)

For the cases analysed, the method resulted in efficient evaluation of the num-

ber of eigenvalues inside some open disk of arbitrary radius. As an example, Table

3.1 shows some results. Here the value max|γ| corresponds to the maximum ab-

solute value of the eigenvalues of the matrix (3.45). The examples show that the
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(m1,m2) m max|γ| R N

(3, 1) 24 2.69908
2.699 22
2.7 24

(7, 5) 72 1.32901
1.329 70
1.33 72

(2, 9) 66 1.62951
1.629 64
1.63 66

Table 3.1: Number of roots of polynomial (3.59), N , inside an open disk of radius
R. The number N is evaluated by equation (3.60).

algorithm predicts with good accuracy the radius R of the disk in the complex

plane where all the eigenvalues can be found.

3.5 Numerical issues

In this section some numerical issues related to the application of the WFE

method are discussed. Significant issues arise because the original structure is

continuous while the WFE model is a lumped, discrete, spring–mass structure

which is spatially periodic with periods Lx and Ly in the x and y directions.

In particular at high frequencies, or for short wavelengths, there are substantial

differences between the behaviour of the continuous structure and the periodic

structure [13, 73, 74, 78, 108]. Hence the issue is one of determining which so-

lutions to the eigenvalue problem are artifacts of the spatial discretisation and

which are valid estimates of wavenumbers in the continuous structure.

As with conventional FEA, FE discretisation errors become significant if the

size of the element is too large [11]. As a rule–of–thumb, there should be at

least 6 or so elements per wavelength. These errors also depend on the element

aspect ratio and the direction of wave propagation. As in 1–dimensional WFE

applications [109], if the size of the element is too small then care must be taken

in numerical computations because round–off errors can occur if the dynamic

stiffness matrix is to be calculated (i.e. if ‖ω2M‖ ≪ ‖K‖).
In the first part of this section periodicity conditions are discussed, then nu-

merical errors are investigated. At the end of the section a method is proposed

to estimate which solutions represent wave motion in the continuous structure.

The method evaluates the sensitivity of the solutions to the dimensions of the

element.
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3.5.1 Periodicity effects

Equation (3.19) yields the same values of q and ω for (µx, µy) or (µx +2mxπ, µy +

2myπ) where mx and my are integers, that is the wave modes and the propagat-

ing frequencies are periodic functions of the propagation constants with period

2π because of the spatial periodicity. This aliasing effect is a consequence of

considering a discretised structure instead of the continuous one and represents a

substantial difference to the analytical approach. Detailed discussion about the

periodicity conditions can be found in [13]. The dispersion curves for the illustra-

tive example in section 3.2.1 are shown in Figure 3.15 for θ = 0. It is found by the

eigensolution of equation (3.19) considering the example in section 3.2.1, which

has 3 solutions for ω2 for given µx. The abscissa represent the nondimensional

frequency in equation (3.22) while the ordinate shows the propagation constant

µ = kLx. All solutions are shown, i.e. those for mx, my = 0, ±1, ±2, . . .. From

the graph it can be seen that the frequency is a periodic function of µ with period

2π. Also shown is the analytical solution for the continuous plate.

Since a wave propagates in the positive and negative direction in the same

way, e.g. θ = 0 and θ = π, Real(µx) ∈ [−π, π], Real(µy) ∈ [−π, π] are taken

as the most convenient interval in which to examine the variation of ω. This

restriction is not arbitrary as it might appear since it contains a complete period

of the frequency and avoid ambiguity in the wavenumbers at the same time. As

another example, Figure 3.16 shows the plots of the nondimensional (Ω, µx, µy)

surfaces for propagating waves when Real(µx) ∈ [−π, π], Real(µy) ∈ [−π, π]. The

surfaces in Figure 3.16 show symmetry because the wavenumber is independent

of the propagation direction for an isotropic plate.

Periodic structures are known to exhibit pass–bands and stop–bands, in that

disturbances can propagate freely only in certain frequency ranges, otherwise they

decay with distance. Since generally the number of propagation surfaces equals

the number of degrees of freedom at each node of the structure considered, three

pass bands are shown in Figures 3.15 and 3.16 for the example considered. The

cut–off frequencies are indicated in Figure 3.15. It can be noticed that the model

behaves as a low–pass filter for all the frequencies below the cut–off frequency

Ωa. The frequencies outside the pass bands, i.e. Ωa < Ω < Ωb and Ω > Ωc, do

not propagate. However, only the first passing band, sometimes called “acoustic

branch” [13] exists for the continuous plate. The second and third passing bands,

sometimes called “optical branches” [13], are due to the discrete FE model of

the plate and the use of the terms “propagating wave” or “wave form” is not
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rigorously correct in this case. Although the presence of the bounding frequencies,

Ωa, Ωb and Ωc, is due to the discretisation of the continuous model, they are

characteristics of the discrete periodic structure. The bounding frequencies are

in fact related to the natural frequencies of the periodic element under various

boundary conditions [73, 74, 78, 108]. The WFE results give accurate prediction

only for long wavelengths with respect to element size L. For shorter wavelengths,

WFE solutions diverge from those of the continuous structure.

3.5.2 Numerical errors

One of the FE approximation error consists in dispersion errors that are caused

by the difference between the numerical estimate of the wavenumber and the

true value. As a rule–of–thumb, there should be at least 6 or so elements per

wavelength. This is an often–used criterion to ensure that there are enough

elements per wavelength to accurately characterise the wave. For wavelengths

which are long compared to the size of the element, there are no significant

consequences of this and the WFE model predicts the wavenumbers with good

accuracy as shown in Figure 3.15. The first pass band of the WFE results gives

accurate results for µ up to π/3 or so, which in terms of the wavelength means

L < λ/6. This is illustrated more clearly in Figure 3.17 where propagation in

the positive x direction is considered. Analytical solutions are also shown in

this figure. Figure 3.17 shows the three WFE solutions for µ as functions of Ω.

The first is real in the pass bands and becomes complex in the stop bands. The

other two are imaginary, with one accurately representing the evanescent waves

while the other is a result of the FE discretisation. The first two eigenvalues

are inaccurate for µ > π/3 or so due to discretisation errors and break down

completely for µ > π because of periodic structure phenomena.

The errors also depend on the element aspect ratio and on the direction of wave

propagation. Figure 3.18 and Figure 3.19 show the relative error in the estimated

frequencies and the estimated wavenumbers as a function of the direction of

propagation. Elements of various aspect ratios are considered. The error in the

ordinate axis of Figures 3.18 and 3.19 is calculated as

error % =

∣∣∣∣
ξ∗ − ξ

ξ∗

∣∣∣∣ %, (3.62)

where ξ∗ is the frequency (or the wavenumber) obtained by the analytical for-

mulation while ξ is the corresponding numerical result. The latter are found
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by solving the transcendental eigenvalue problem to which there are multiple

solutions. The error increases as the size of the element increases and has a max-

imum for propagation in the direction of the diagonal across the element. The

fact that the error shown in Figure 3.19 is piecewise constant is a consequence of

the methods used to solve the transcendental equation (3.51), Powell’s method

or Newton’s method. In fact, when these iterative methods are applied to find a

root of complex functions, the set of points where the methods converge to the

root is a domain of attraction.

For the continuous model it is implicitly assumed that a certain propagation

characteristic could be “measured” between particles and that the observable

wavelengths will be all the ones included in the interval 0 ≤ λ ≤ ∞. On the other

hand, since the FE model is a discrete model of the structure, if the distances

between the nodes along x and y in one element are Lx and Ly, the model will

allow any wavelength components along x and y such that λx > 2Lx, λy > 2Ly

[13]. The numerical solutions will approach the theoretical values as the size of

the element approaches zero. However the mass and stiffness matrices obtained

by the FE model critically depend on Lx and Ly and for decreasing value of the

lengths, the stiffness of the element may become predominant with respect to the

inertia, resulting in round–off errors if the dynamic stiffness matrix is calculated.

3.5.3 Sensitivity analysis

From the analysis carried out, it is clear that there is a set of WFE solutions which

does not correspond to the results for the continuous structure. Thus there is the

need for a systematic procedure for enabling results that represent the behaviour

of the continuous structure to be evaluated. This means that the eigensolutions

that correspond to waves in the continuous model must be identified. Here a

proposed criterion is to determine the sensitivities of the estimated solutions to

the dimensions of the element: increasing the size of the element both decreases

the stiffness and increases the mass, hence reducing the bounding frequencies of

the propagating zones. Wavenumber and frequency estimates which are periodic

artifacts are thus very sensitive to the dimensions of the element whereas those

which provide estimates of wavenumbers and frequencies in the continuum are

insensitive to such changes. The sensitivities can be found either analytically or

numerically by simple re–meshing. A direct approach to obtain the eigenvalue

sensitivities is to differentiate equation (3.19) with respect to the element length

L. If the eigenvalues are simple (not multiple) and the eigenvectors are normalised
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with respect to the mass matrix, the expression for the derivative of equation

(3.19) is
∂ω2

i

∂L
= qT

i

(
∂K

∂L
− ω2

i

∂M

∂L

)
qi; i = 1, . . . , n. (3.63)

In simple cases the stiffness and mass matrices can be evaluated as functions

of the dimension of the element and their derivatives with respect to L can be

determined analytically.

For example, for the thin plate in section 3.2.1, the analytical variation of the

frequency with respect to the L is:

L

ω2
1

∂ω2
1

∂L
= 3.8780 · 10−5;

L

ω2
2

∂ω2
2

∂L
= −4.1175;

L

ω2
3

∂ω2
3

∂L
= −3.9960. (3.64)

Equations (3.64) show clearly that the second and third modes are sensitive to a

small change in the element dimension and therefore are numerical artifacts due

to the discretisation process.

If any numerical evaluation of the matrices is available, for example the ma-

trices are outputs of commercial FE packages, the derivatives of the element

matrices may be approximated by their first order numerical derivatives as

∂K(L)
∂L

≈
K(L + ∆L) − K(L)

∆L ,

∂M(L)
∂L

≈
M(L + ∆L) − M(L)

∆L .

(3.65)

Finally it is worth noting that for elements with rigid body modes (i.e. those for

which the stiffness matrix is singular), ω = 0 is a cut–off frequency so that at

least one wave must propagate from ω = 0 and this wave must represent a wave

in the continuous structure.

The FE estimates also depend on the element aspect ratio. This is particu-

larly significant for the higher periodic structure branches while solutions which

represent wavemodes in the continuous model are very insensitive to aspect ratio.

As an example, the complex values of the nondimensional wavenumbers, kL, are

obtained solving the transcendental eigenproblem for θ = π/3, Ω = 0.0837 for

various element aspect ratios. Figure 3.20 shows the sensitivity of the nondi-

mensional wavenumber location to changes in the element aspect ratio. Only the

solutions 1, 2, 3 and 4 indicated in the Figure 3.20 are not affected by changes in

the element geometrical parameters. As another example, Figure 3.21 shows the
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sensitivity in the estimated wavenumbers as a function of L. The error in the

wavenumber is evaluated as (k(L0)−k)/k(L0)% where L0 is a given initial length.

The figure shows that solutions 1, 2, 3 and 4 are insensitive to the variation of L

while a change of 1% in the length of the element results in a change of nearly 1%

for the other solutions. It can be concluded that, for the case analysed, only solu-

tions 1, 2, 3 and 4 provide good estimates of the wavenumbers in the continuous

structure while the rest being solutions relevant only to the discretised problem.

42



Chapter 3. Figures

n

θ

x

y

r

d

c

e1

e2

Figure 3.1: Plane wave propagating in the direction n.

k

ω

O 

P 

Slope = 

Slope =c
g

c
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Figure 3.5: Other finite element implementations: element with mid–side nodes.
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Figure 3.6: WFE and analytical dispersion curves for flexural wave propagation
in direction θ = 0: ——– analytical solution; ++++ WFE rectangular 4–noded
element; o o o WFE rectangular 8–noded element.
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Figure 3.7: Other finite element implementations: triangular element.
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Figure 3.8: Real and imaginary part of µy as a function of the propagation
direction for given µx. Isotropic steel plate, Lx = Ly = 5mm, Ω = 0.0837.
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Figure 3.9: Roots of equation (3.41) for m2/m1 →
√

3: o (m2 = 17,m1 = 10); ∗
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Figure 3.11: Real and imaginary parts of the function g(x, y) evaluated for y = 0,
θ = π/6, Ω = 0.0837: · · · · · · Real[g(x)]; ——– Imag[g(x)].
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Figure 3.12: Real and imaginary parts of the function g(x, y) evaluated for y = 1,
θ = π/6, Ω = 0.0837: · · · · · · Real[g(x)]; ——– Imag[g(x)].
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Figure 3.13: Real and imaginary parts of the function g(x, y) evaluated for
y = −1, θ = π/6, Ω = 0.0837: · · · · · · Real[g(x)]; ——– Imag[g(x)].

−10 −8 −6 −4 −2 0 2 4 6 8 10

−4

−3

−2

−1

0

1

2

3

4

Real(kL)

Im
ag

(k
L)

 

 

Figure 3.14: Free wave propagation in an isotropic plate in direction θ = π/3,
Ω = 0.0837, µ = 0.289: + analytical solutions; o numerical solutions to the
transcendental eigenvalue problem.
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Figure 3.18: Relative error in estimated frequency as a function of θ for propa-
gating waves in an isotropic plate, Ω = 0.0837, µ = 0.289: ——– Ly = L; · · · · · ·
Ly = L/2; - · - · - · Ly =

√
2L.
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Figure 3.19: Relative error in estimated frequency as a function of θ for propa-
gating waves in an isotropic plate, Ω = 0.0837, µ = 0.289: ——– Ly = L; · · · · · ·
Ly = L/2; - · - · - · Ly =

√
2L.
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Figure 3.21: Sensitivity of eigensolutions with respect to element length, θ = π/3,
Ω = 0.0837, µ = 0.289: ——– numerical solutions to the transcendental eigen-
value problem corresponding to true solutions; · · · · · · other solutions (periodic
artifacts).
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Chapter 4

Wave Finite Element Method:

application to plates

4.1 Introduction

In this chapter the application of the WFE method to plates is illustrated. One

aim is to validate the approach in situations for which analytical solutions are

well established. Another aim is to apply the method to situations where no

analytical solutions are available.

The first part of the chapter concerns plane wave propagation in an isotropic

plate. The real and imaginary valued dispersion curves are given and an analysis

of the wave characteristics through the study of the mode shapes is provided.

Subsequently another example concerning a thick orthotropic plate made of a

glass–epoxy composite material is discussed. In the last part of the chapter the

wave propagation characteristics in sandwich and layered plates are investigated.

These represent the most meaningful case studies in which the method shows

its advantages when compared to other semi–analytical techniques. The use

of the FEA libraries, in fact, greatly simplifies the analysis and allows one to

solve complicated problems of the dispersion relations for high frequency wave

propagation in a simple, systematic and straightforward manner.

Two different kinds of FE model can be used to apply the technique. The

first can be employed when the plate has a moderate thickness compared to

the wavelength. In this case only one rectangular finite element of shell type

can be used to discretise the plate as shown in Figure 4.1. In developing the

mass and stiffness matrices for this kind of elements various assumptions and

approximations are made concerning the stress distribution in the solid, whose
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motion is described fully in terms of the displacements of the neutral plane.

ANSYS, as other commercial FE softwares, offers a choice of shell elements. In the

present work element types SHELL63, SHELL91 and SHELL181 of the ANSYS

libraries have been used. All these elements have four nodes and six degrees of

freedom at each node: three translations and rotations about the nodal x, y, and

z-axes. The accuracy in modelling composite shells is generally governed by the

Mindlin-Reissner shell theory in which the effect of the shear deformation and

rotary inertia are included. Further details can be found in the ANSYS user’s

manual.

As the thickness is increased, the approximate theories become less appropri-

ate. The FE model for thick plate is shown in Figure 4.2, where the structure

is then meshed by solid elastic elements. Solid elements of the type SOLID45

in ANSYS are used. This element element type has eight nodes each having

three degrees of freedom: translations in the x, y, and z directions. To apply

the WFE method, the nodal DOFs are formed by concatenating those of all the

element nodes through the thickness of the segment, although for simplicity the

comes referred to subsequently as nodes. Every node has a number of degrees of

freedom equal to a quarter of the total number of the degrees of freedom of the

model. Hence, the mass and the stiffness matrices Mr and Kr in equation (3.19)

are square matrices of order n× n, where n is the number of the total degrees of

freedom of the model divided by 4.

For the sake of simplicity, in the following examples the elements used for the

FE analysis are square elements in the (x, y) plane. With reference to Figures

4.1 and 4.2, this implies that Lx = Ly = L.

In the first part of the chapter the wave behaviour of isotropic and orthotropic

plate is studied. The second part concerns laminated and composite sandwich

plates.

4.2 Isotropic plate

When a wave propagates in a 2–dimensional uniform isotropic plate–like struc-

ture, it is guided by the plate surface. Guided waves propagating at high fre-

quencies along a plate with traction–free boundary conditions at the surfaces are

sometimes called Lamb waves, named after Lamb’s classical analysis in this sub-

ject, [23, 110]. More recently, an extensive analysis of wave propagation in plates

is due to Mindlin, [9, 53, 111, 112]. In isotropic plates, guided waves are classified
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into three types: extensional, flexural and shear waves. The classification can be

given according to the direction of the displacement vector for wave propagating

in the x direction. The waves involving motion of the medium in the x− z plane,

are defined as extensional or flexural. For these kinds of waves, the displacements

of the particles are directed primarily along the x and z axes respectively, that

is y = 0, x 6= 0, z 6= 0. On the other hand, waves which involve motion of the

medium primarily in the y direction, or in other terms x = z = 0, y 6= 0, are

classified as shear waves. The flexural and extensional waves are governed by

a plane strain state in the (x − z) plane while shear waves by an antiplane and

hence displacement y only. The behaviour of the waves is termed as symmetric or

antisymmetric according to the symmetry or antisymmetry of the displacements

about the middle plane of the cross section as shown in Figures 4.3 and 4.4.

The isotropic plate studied in this section is an aluminium plate of thickness

h whose central plane is located in the (x, y) plane. The material properties are

taken to be: Young’s modulus E = 71GPa, Poisson’s ratio v = 0.329, density

ρ = 2700kg/m3. As a first case a thin plate is studied and a comparison with the

analytical results is given while the second case studied concerns a thick plate.

4.2.1 Thin isotropic plate

If the ratio between the thickness of the plate and the wavelength is roughly less

than 1/10, the classical Love–Kirchoff theory can give accurate results for the

wavenumber. The upper frequency limit is approximately

ω ≈ 0.04π2

h2

√
D

ρh
,

where D = Eh3/12(1 − ρ2) is the bending stiffness of the plate. A thin plate

of thickness 5mm is considered in order to accurately compare WFE results and

analytical results up to 20kHz. The mass and stiffness matrices were found from a

single shell element of type SHELL63 in ANSYS. The dispersion curves for real µ,

i.e. for free wave propagation, are shown in Figure 4.5 for θ = 0. They are found

by the eigensolution of equation (3.19). Analytical solutions are also given. The

figure shows very good agreement between the WFE and the analytical results.

The three branches in Figure 4.5 correspond respectively to flexural, shear and

longitudinal waves [8].
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4.2.2 Thick isotropic plate

There are various plate theories, each of which involves various assumptions and

approximations concerning the distribution of stresses, strains or displacements

across the plate. At higher frequencies these models become inaccurate. An

alternative in FEA is to model the structure through the thickness using a num-

ber of solid elastic elements. Henceforth, 8–noded elements with 3 displace-

ment DOFs per node are used in the numerical simulations. These were imple-

mented as SOLID45 elements in ANSYS. The thickness of the plate investigated

is h = 15mm while the lengths of the sides of the element are Lx = Ly = 1mm.

The FE model of the plate is realised using solid elements as shown in Figure 4.2.

A mesh convergence study has been carried out for this example. The element

size across the section is reduced, i.e. the number of element to discretise the

cross–section is increased, in order to determine a good element size for accurate

prediction. As an example, the dispersion curves and the wavenumber estimates

at 130kHz are given in Figures 4.6 and 4.7 respectively for an increasing number

of FEs in the model. It can be seen that the wavenumber estimation is affected by

the number of elements used in the discretisation, in particular at high frequency.

However, Figures 4.6 and 4.7 show that 10 elements suffices to give an accurate

estimate of the wavenumber at this frequency.

The complete dispersion curves for plane waves in the thick plate are given

in Figure 4.8 for θ = 0. Results are presented in terms of the dimensionless

frequency

Ω =
hω

πcT

,

where

cT =

√
E

2ρ(ν + 1)

is the shear wave speed. The complex branches are here represented by plotting

the real and imaginary parts of the wavenumber separately. The plate is meshed

using 20 solid elements with Lx = Ly = 1mm, although as shown in Figures 4.6

and 4.7 fewer elements provide accurate results in the frequency range consid-

ered. The term cut–on frequency here refers to the frequency value at which a

certain wave starts propagating (the wavenumber becomes pure real) while cut–

off frequency indicates the frequency for which the wave stops propagating as

the frequency increases. Only those solutions which propagate for Ω < 2.5 are

shown in Figure 4.8. There are 3 propagating waves for Ω < 1, which correspond
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to primarily flexural, shear and extensional waves. Higher order modes across

the thickness cut–on at Ω = 1, these being primarily antisymmetric shear and

extensional waves. The cut–on frequencies are here sometimes called critical fre-

quencies. Quoting L. M. Brekhoviskikh [113]: at a critical frequency a certain

number of longitudinal or transverse half wavelengths fits into the thickness of the

plate. At frequency below critical, the phase velocity turns out to be imaginary for

a given shape of oscillations of the plate. In this case there is no traveling along

the plate, and there are only oscillations of particles with the same phase along

the plate, and an amplitude decaying according to an exponential law.

A pair of complex conjugate wavenumbers bifurcates into a pair of propagating

waves with real wavenumbers around Ω ≈ 1.8. One of these propagating waves

has phase and group velocities of opposite sign.

In order to investigate the characteristics of the propagating waves, in par-

ticular the higher order waves, the mode shapes are studied. The mode shapes

are the eigenvectors obtained by solving the polynomial eigenproblem in equation

(3.19) for a specified frequency. The eigenvectors, representing the displacements

that are propagated along the structure, are of primary importance in evaluating

the wave behaviours.

According to the number of nodal degrees of freedom of the element used for

the mesh, the eigenvectors are decomposed in three different vectors representing

respectively the components of the cross–section displacements in the x, y and

z directions. In the following, the real part of the eigenvectors are plotted with

respect to the thickness of the plate for each of the numbered branches in Figure

4.8(a). These plots represent the deformation of the (x = 0, y = 0) cross–section

at the time t = 0 in the x, y and z directions respectively.

The displacement of branch 1 in Figure 4.8(a) at Ω = 0.5 is shown in Figure

4.9(a). The dominant displacement of branch 1 is an almost constant displace-

ment in the z direction. Hence this wave represents an antisymmetric flexural

wave although note that there is a small component in the x direction due mainly

to rotation of the cross–section.

Figures 4.9(b) and 4.9(c) show that the dominant displacements of waves

represented by branches 2 and 3 are respectively along y and x directions, both

symmetric with respect to the middle plane. They represent symmetric shear

and extensional waves. Lateral displacements are due to Poisson contraction. It

can be seen from Figure 4.8(a) that the first shear branch, branch 2, represents a

non dispersive shear wave while the other higher shear branches represent waves
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that propagate dispersively.

At Ω = 1 two higher order waves cut–on. Their behaviour is evaluated at

Ω = 1.1. From Figures 4.10(a) and 4.10(b) it can be observed that the principal

disturbance propagated is a displacement in the y and x directions respectively.

Hence these two waves are primarily antisymmetric shear and extensional waves.

Between Ω = 1.3 and Ω = 1.6, branch 3 and branch 4 cross. In particular

the shape of the mode represented by branch 3 changes. To investigate how the

characteristics of this branch change, its mode shapes are plotted at Ω = 1.3 in

Figure 4.11(a) and at Ω = 1.6 and in Figure 4.11(b). At both frequencies the

wave resembles a quasi extensional wave symmetric about the middle plane with

some Poisson contraction in the z direction. At Ω = 1.6 the displacement in the

z direction becomes more significant.

At Ω = 1.98 branch 6 cuts–on. For frequencies close to and below this critical

frequency, the wavenumber appears to be double–valued with phase and group

velocities having the same or the opposite sign depending on the wavenumber.

In this example, for µ = [0, 0.11], the phase and group velocities of branch 6

have opposite sign. The mode shapes of branch 6 are evaluated at Ω = 1.92. At

this frequency, the wave that corresponds to the lower wavenumber has phase

and group velocities of opposite sign. The two waves seem to behaves mainly as

quasi–extensional symmetric waves as shown in Figure 4.12. It can be also seen in

Figure 4.8(a) that a complex branch cuts–off from this second extensional branch

at the point in which the branch exhibits a non–zero minimum with respect to

the Ω axis. These phenomena was theoretically predicted by several authors.

The existence of certain wavemodes having energy transport directions opposite

to the phase velocity was noticed by Mindlin [53, 112]. Tolstoy, in [114], tried

to physically explain the significance of negative group velocity: “Clearly, this

does not mean that the energy is traveling towards the source, but merely that

the phase and group velocities are in opposite directions. In an infinite plate,

the situation is entirely symmetrical with respect to the source and the sign of

the group velocity is therefore immaterial. But this result does imply that the

phase and group velocities are of opposite sign, i.e. that we have negative phase

velocity. In other words, given certain optimum conditions of detection and/or

excitation one may see some slow wave packets in which the wave troughs and

crests will be traveling, at rather high speed, in the opposite direction towards the

source.”. More recently Wolf et al. [115] measured experimentally the existence

of Lamb wavemodes having negative group velocity. The experiment was carried
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out to investigate the S1 mode of a thin brass plate and the results were com-

pared with computational predictions. However the authors pointed out that the

approach should be applicable to any Lamb wave space mode that is predicted to

exhibit negative group velocity. In [116] the higher order Lamb wavemodes and

in particular their anomalous behaviours were investigated. It was shown that

the S1 Lamb mode always exhibits phase and group velocities of opposite sign. It

was also shown that there are an “infinite” number of such waves for symmetric

modes. Marston in [117] reviewed some of the literature concerning higher order

symmetric Lamb waves and considered some related applications to scattering of

sound by elastic shells in water.

At about Ω = 2.3 branch 6 crosses branch 7. At the crossover point the

frequency and the phase velocity are the same for both branch 6 and 7 but

the group velocities are different. In particular, the waves represented by this

point seem to carry extensional energy faster than the energy related to shear

deformation. Branches 7 and 8, which cut–on at Ω = 2, are shown at Ω = 2.1 in

Figure 4.13. They correspond to quasi–shear and quasi–extensional waves.

4.3 Orthotropic plate

In this section an orthotropic plate made of a glass–epoxy is considered, whose

material properties given in Table 4.1. The plate has uniform thickness h = 5mm.

Ex = 54GPa Ey = 54GPa Ez = 4.8GPa

Gxy = 3.16GPa Gyz = 1.78GPa Gxz = 1.78GPa

νxy = 0.06 νyz = νxz = 0.313 ρ = 2000kg/m3

Table 4.1: Orthotropic plate: material properties.

For such a plate the equation for bending vibrations is

Dx
∂4w

∂x4
+ 2H

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4
= −ρh

∂2w

∂t2
, (4.1)
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where h is the plate thickness and H = D1 + 2Dxy. The rigidities are defined as

Dx =
Exh

3

12(1 − ννm)
; Dy =

Eyh
3

12(1 − ννm)
;

D1 =
Eyνh3

12(1 − ννm)
; Dxy =

Gxyh
3

12
,

(4.2)

where νm is the minor Poisson’s ratio. For more details see [118]. Substituting

(3.3) into (4.1) and considering that kx = k cos θ and ky = k sin θ, the free

wavenumber is

k =
√

ω 4

√
ρh

Dx cos θ4 + 2H cos θ2 sin θ2 + Dy sin θ4
. (4.3)

Figure 4.14 shows the flexural dispersion curves obtained by equation (4.3) and

that predicted by the WFE method. The Figure shows that WFE results gives

accurate estimation for µ up to π/3 or so.

4.4 Sandwich and layered plates

In the present section the WFE method is applied to evaluate the wave propaga-

tion characteristic of sandwich and layered panels.

Layered panels consists of different layers of different materials such as fiber

reinforced material attached at their interface. Each lamina can be usually treated

as equivalent homogenous orthotropic or transversely isotropic. For a layered

plate, the repeatedly reflections at the top and the bottom surfaces that guided

the waves in isotropic plate are complicated by the reflections and refractions

between the layers. As a consequence, the three types of wave, i.e. flexural, shear

and extensional, are generally coupled and pure wave modes are lost. A detailed

illustration of the theory of wave propagation in layered media can be found in

[113].

The approaches to obtain theoretical information about the wave character-

istic of layered plate generally involve assumptions to simplify the problem. The

majority of the formulations proposed in literature assume the laminate symmet-

ric and each layer modelled by thin plate theory. In reference [119] an exhaustive

discussion of approximate theories developed for laminated plate is given.

The term sandwich is here used to refer to structures with thin skins, which
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can be made by laminated or isotropic high–strength–materials, that bind a a

thick lightweight core. The sandwich panels can be classified considering the

properties of the core: strong–core or soft–core. For thin laminated and thin

sandwiches with a strong core, at low frequencies equivalent orthotropic shells

can be assumed and theories for moderately thick shells may be used to obtain

the dispersion relations. However, this is not generally true for the case of sand-

wich plates with soft core or at higher frequencies. For increasing frequencies, in

fact, the bending of the sandwich becomes influenced by the shear and rotation

in the core and the out–of–plane modes are expected to decrease with increas-

ing frequency as described in [120]. Hence, for sandwich structures, the classical

plate theory becomes inadequate and the analytical model increases in complex-

ity since, at least a first order shear deformation theory has to be considered.

Moreover, shear correction coefficients are required, which are generally strongly

related to the problem considered. The classical model of a three–layer sym-

metric sandwich plate assumes that the core carries transverse and shear stress

primarily while the skins are responsible to carry the bending, tensile and com-

pressive stresses. Di Taranto [121] assumed constant shear stress and negligible

in–plane stress in the core while negligible shear strain was considered in the

face–plates. The normal stress between laminates and core was ignored. The

same assumptions were used by Mead and Markus [18] to evaluate the transverse

displacement of a three–layer sandwich beam with viscoelastic core. As another

example, Nilsson assumed in [122] that the displacement in the core was described

by a combination of longitudinal and shear waves. The equations of motion for

each thin layers was set taking shear and normal stress at the surfaces of the

laminates. The characteristics equation for wave propagation was then obtained

using continuity of the displacements and stresses at the two junctions between

laminate and core. Other kind of assumption can be made in order to capture

the dynamic properties of the core and special formulation have been proposed

for the core dynamics [123].

The WFE method for a moderately thick layered or sandwich panel can be

applied using a simple FE model obtained by a single shell element with layer or

sandwich capability, e.g. SHELL91, SHELL99 or SHELL181 in ANSYS. If the

thickness of the plate increases, the plate should be meshed using solid element

in order to evaluate the wave characteristics at high frequencies. The FE mesh

made using solid elements is generally preferred for composite structure because

it does not involve any assumptions concerning the motion. For sandwich plates,
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in order to better evaluate the cross–section deformation, more elements must be

generally used to mesh the core. However, the correct number of elements that

should be used to mesh the section changes on a case–to–case basis. In particular,

if the interest is most in a high frequency range, a convergence analysis is usually

required. It is worth pointing out that the latter model is not within the so called

thin–wall theory.

In the first part of this section the results for the bending vibrations are

compared with those obtained in [18] for a three layered sandwich beam. Then the

dispersion curves for the same sandwich panel are given for a frequency range up

to 10kHz and the characteristics of the propagating waves are studied. The second

case shows the real valued dispersion curves for a layered plate. A comparison

with the wavenumber solutions in [19] is given. The real–valued dispersion curves

for several propagation directions are also shown. In the third part of this section

the complex frequency spectrum for the more complicated cases of an asymmetric

sandwich plate is given.

4.4.1 Isotropic sandwich panel

The skins of the sandwich plate considered for this analysis are 5mm thick with

material properties as follow: Young modulus E = 16.7GPa, Poisson’s ratio

ν = 0.3 and density ρ = 1730kg/m3. The core is a 50mm isotropic with material

properties: E = 0.13GPa, ν = 0.3 and ρ = 130kg/m3. Sixty SOLID45 elements

are used to mesh the section: five for each skin and fifty for the core. In this

example Lx = Ly = 1mm and θ = π/2.

Figure 4.15 shows the dispersion curve for flexural waves obtained applying the

WFE method and the method proposed by Mead and Markus in [18] up to 5.5kHz.

The comparison between the two curves shows good agreement. Dispersion curves

for the sandwich plate are shown in Figure 4.16. As the figure shows, the complex

frequency spectrum is complicated, in particular at high frequency. In order

to have a clearer outline of the waves propagating in the plate, only the real

valued dispersion curves are given in Figure 4.17. Figure 4.18 shows results

in the frequency interval 3.7–4.3kHz. It can be noticed that both branches 3

and 6 exhibit the behaviour already pointed out for the isotropic case in Figure

4.8: a positive phase speed but a negative group velocity with complex cut–off

branches. The same behaviours was observed by Waki et al. [84] analysing wave

propagation in a vehicle tyre. This phenomenon was seen in [64] and in [76] for

a similar sandwich plate. In particular in [76], the loci of the complex valued

64



Chapter 4. Wave Finite Element Method: application to plates

wavenumbers was given in a frequency range close to a complex cut–off point in

the frequency spectrum.

Some wavemodes for the sandwich plate are now investigated. Only the real

parts of the eigenvectors, which represent the displacements in the x, y and z

directions of the nodes in the FE model at (x = 0, y = 0), is plotted with respect

to the plate thickness.

A description of the wavemodes is here given in terms of their predominant

displacements. Although pure wavemodes do not exist in this case, the terms

quasi–flexural, quasi–shear and quasi–extensional are here used to refer to the

predominant behaviour of the wavemodes. Figures 4.19–4.24 show the mode

shapes of branches 1, 2 and 3 at 1.5kHz, branches 4 and 5 at 2.5kHz, branches 3

and 6 at 4.5kHz and branches 7 and 8 at 8kHz. From Figures 4.19 and 4.20 it can

be observed that the predominant displacement of the wavemode for branch 1 is

along the z direction and it resembles an antisymmetric flexural wave. However,

as already pointed out, the mode is not fully described by a flexural wave. As

shown in Figure 4.19(b), it is coupled with slightly antisymmetric shear motion

where the skins and the core are moving in antiphase. The slightly symmetric

extensional displacement may due to rotation of the cross–section. For branch

2, the wave in Figure 4.19(c) seems to be a quasi–symmetric shear wave with

Poisson contraction while for branch 3, the wave in Figure 4.20(a), as expected,

resembles a symmetric extensional wave with lateral displacement. The small

displacements in the z direction of this wave are symmetric. At about 2.278kHz

two waves cut–on. The wavemodes of these branches are shown at 2.5kHz in

Figure 4.21. At 2.5kHz the wave represented by branch 4 seems to be a quasi–

antisymmetric–shear wave while the wave represented by branch 5 resembles a

quasi–extensional wave with antisymmetric shear in the core. The skins and core

out–of–plane displacements are in phase. Furthermore, Figure 4.17 shows that

as the frequency increases, branch 3 veers and changes its behaviour.

At about 4.262kHz a higher order wave starts propagating. The wavemodes

that correspond to branches 3 and 6 are studied at 4.5kHz. As shown in Fig-

ure 4.22(a) the extensional nature of branch 3 seems to couple with a flexural

behaviour at 4.5kHz. Figure 4.23(a) shows that at 4.5kHz branch 6 has char-

acteristics that are similar to an extensional wave with the skins and the core

in slightly antiphase. At about 7.9kHz this branch crosses branch 4. At this

point the frequency and the phase velocity are the same for the two branches

but the group velocities are different. The same phenomenon seems to happen at
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about 7.55kHz between branches 7 and 5. The behaviours of the two higher order

branches which cut–on at about 7.02kHz are evaluated at 8kHz and their cross–

sectional displacements are given in Figure 4.24. The wavemodes in Figure 4.24

can be described as quasi–shear and quasi–extensional wavemodes respectively.

4.4.2 Laminated plate

Consider a laminated plate comprising two 5mm thick layers of composite fiber

reinforced material. The ply–stacking of the laminae is an asymmetric [0/90]

sequence. The WFE results for the dispersion curves are compared with those

obtained by Chackraborty and Gopalakrishnan in [19]. The WFE model has 2

solid elements across the section. The FEs are 3D solid elements of the type

SOLID45 in ANSYS. Figure 4.25 shows the real-valued dispersion curves for kx

when ky = 50m−1 together with the results using the method in [19]. The agree-

ment is good at low frequencies and less good as the frequency increases. This

is explained in part because Chackraborty and Gopalakrishnan used a first-order

layer-wise laminate theory, which becomes less accurate as frequency increases.

One further advantage of the 2–dimensional WFE approach is that the dis-

persion curves can be readily evaluated for different directions of propagation.

As an example, Figure 4.26 shows the real-valued dispersion curves for various

values of θ.

4.4.3 Antisymmetric cross–ply sandwich panel

The WFE approach can be applied equally to laminates of arbitrary complexity,

with an arbitrary number of layers. The final example is an asymmetric, cross-

ply laminated sandwich panel. The two outer skins of the asymmetric angle-ply

laminated sandwich considered in this section comprise 4 sheets of 0.25mm of

graphite-epoxy material. The stacking sequence of the bottom and the top skins

are [45/ − 45/ − 45/45] and [−45/45/45/ − 45] respectively. The core is a 5mm

thick foam core. Material properties for the skins and the core are shown in Table

4.2.

To model the structure 4 SOLID45 elements with Lx = Ly = 1mm were used

for each skin and 5 SOLID45 elements used for the core. The reduced WFE model

has therefore 42 DOFs. Figures 4.27 shows the real propagation constant, kL,

versus the frequency for θ = 0 and θ = π/4. The first three branches in Figures

4.27 represent the first quasi–flexural, quasi–shear and quasi–extensional waves
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Graphite–epoxy Foam core

Ex = 119GPa Ey = 8.67GPa Ez = 8.67GPa Ex = 0.18GPa

Ez = 8.67GPa Gyz = 3.9GPa Gxy = Gxz = 5.18GPa ρ = 110kg/m3

νxy = νxz = 0.31 νyz = 0.02 ρ = 1389kg/m3 ν = 0.286

Table 4.2: Laminated sandwich plate: material properties.

propagating in the laminated sandwich. At higher frequency, further propagating

waves cut–on, which involve higher order modes across the thickness of the plate.

It can be noticed that the dispersion characteristics are very complicated at high

frequency, involving coupling between the various wave modes, veering and so on.

The dispersion curves can be evaluated for different directions of propagation

as contour curves for fixed value of the frequency. Considerations about the the

direction of the group velocity can be obtained analysing these contour curves.

The dispersion curves in the (kx, ky) plane are in fact obtained as contour curves

such that ω = f(kx, ky) and therefore the gradient

∇ω =

[
∂ω

∂kx

,
∂ω

∂ky

]T

(4.4)

is in the direction of the normal to the contour curves. Since the group velocity

is defined by

cg =
dω

dk
, (4.5)

the direction of cg (or the direction of the energy flow) coincides with the direction

of the normal to the dispersion curves in the (kx, ky) plane. As an example, Figure

4.28 shows the dispersion contours at 5kHz and 10kHz in the (µx, µy) plane where

µx = kxLx and µy = kyLy. It can be noticed in Figure 4.28(b) that the contour

curves corresponding to shear waves shows regions in which a particular value

of µy corresponds to two distinct values of µx. These represent two distinctly

different propagating waves. In particular the directions of the group velocity

are different, with the wave represented by one of these points having a negative

group velocity in the x direction. As an example, points A and B are shown in

Figure 4.28(b) for µy = 0.02 and 10kHz. Figure 4.28(b) shows that the normal

vector to the curve at the point B has a positive component with respect to the

x direction and therefore it has a positive group velocity in the x direction. On

the other hand at point A, the curve has a normal with a negative component

along x axis denoting that positive group velocity is in the −x direction with
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phase velocity and the group velocity of opposite signs. The curves for lower

frequencies have similar shapes. It can be seen that the dispersive behaviour

strongly depends on the propagation direction.
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Figure 4.1: FE model of a small rectangular segment of a 2–dimensional homo-
geneous plate meshed with one shell element.
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Figure 4.2: FE model of a small rectangular segment of a 2–dimensional homo-
geneous thick plate meshed with solid elements.
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Figure 4.3: Examples of symmetric and antisymmetric components of the dis-
placements in the z direction.
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Figure 4.4: Examples of symmetric and antisymmetric components of the dis-
placements in the x and y directions.
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Figure 4.5: Real valued dispersion curves for a thin isotropic plate: ——– analytic
solution; · · · · · · WFE results
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Figure 4.6: Isotropic thick plate: convergence of the nondimensional wavenumber
estimates at 130kHz.
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Figure 4.7: Real valued dispersion curves for a thick isotropic plate. Results
obtained increasing the number of FEs: ——– 2; - - - - - 10; · · · · · · 20 and - · - · - ·
50 solid elements.
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Figure 4.8: Thick isotropic plate, h = 15mm, θ = 0. . . . . . . complex valued
wavenumbers; . . . . . . pure real and pure imaginary wavenumbers
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(b) Branch 2 at Ω = 0.5
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(c) Branch 3 at Ω = 0.5

Figure 4.9: Isotropic thick plate. Mode shapes of branches 1, 2 and 3 in Figure
4.8(a) evaluated at Ω = 0.5: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 4 at Ω = 1.1
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(b) Branch 5 at Ω = 1.1

Figure 4.10: Isotropic thick plate. Mode shapes of branch 4 and branch 5 in
Figure 4.8(a) evaluated at Ω = 1.1: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 3 at Ω = 1.3
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(b) Branch 3 at Ω = 1.6

Figure 4.11: Isotropic thick plate. Mode shapes of branch 3 in Figure 4.8(a)
evaluated at Ω = 1.3 and Ω = 1.6: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 6 at Ω = 1.92, higher µ
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(b) Branch 6 at Ω = 1.92, lower µ

Figure 4.12: Isotropic thick plate. Mode shapes of branch 6 in Figure 4.8(a)
evaluated at Ω = 1.92: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 7 at Ω = 2.1
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(b) Branch 8 at Ω = 2.1

Figure 4.13: Isotropic thick plate. Mode shapes of branch 7 and 8 in Figure 4.8(a)
evaluated at Ω = 1.92: ——– x; - - - - - y; - · - · - · z.
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Figure 4.14: Orthotropic plate, dispersion curve for flexural wave propagation,
θ = 0: ——– analytic solution; · · · · · · WFE results.
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Figure 4.15: Isotropic sandwich panel, dispersion curve for flexural wave propa-
gation: ——– WFE results; · · · · · · theory of [18].

75



Chapter 4. Figures

0 2000 4000 6000 8000 10000

0.01

0.02

0.03

0.04

0.05

Frequency[Hz]

R
ea

l(µ
)

(a) Real dispersion curves

(b) Imaginary dispersion curves

Figure 4.16: Isotropic sandwich panel, θ = π/2. Dispersion curves: . . . . . . complex
valued wavenumbers; . . . . . . pure real and pure imaginary wavenumbers.
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Figure 4.17: Isotropic sandwich panel: real valued dispersion curves.
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Figure 4.18: Isotropic sandwich panel: real valued dispersion curves in the 3700–
4300Hz band.
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(a) Branch 1 at 1.5kHz.
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(b) Branch 1 at 1.5kHz. Amplitude
normalised to 1.
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(c) Branch 2 at 1.5kHz.
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Figure 4.19: Isotropic sandwich plate. Mode shapes of branches 1 and 2 in Figure
4.15 evaluated at 1.5kHz: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 3 at 1.5kHz.
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(b) Branch 3 at 1.5kHz. Amplitude
normalised to 1.

Figure 4.20: Isotropic sandwich plate. Mode shapes of branch 3 in Figure 4.15
evaluated at 1.5kHz: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 4 at 2.5kHz.
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(b) Branch 4 at 2.5kHz. Amplitude
normalised to 1.
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(c) Branch 5 at 2.5kHz.
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Figure 4.21: Isotropic sandwich plate. Mode shapes of branches 4 and 5 in Figure
4.15 evaluated at 2.5kHz: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 3 at 4.5kHz.
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normalised to 1.

Figure 4.22: Isotropic sandwich plate. Mode shapes of branches 3 in Figure 4.15
evaluated at 4.5kHz: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 6 at 4.5kHz.
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Figure 4.23: Isotropic sandwich plate. Mode shapes of branches 6 in Figure 4.15
evaluated at 4.5kHz: ——– x; - - - - - y; - · - · - · z.
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(a) Branch 7 at 8kHz.
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Figure 4.24: Isotropic sandwich plate. Mode shapes of branches 7 and 8 in Figure
4.15 evaluated at 8kHz: ——– x; - - - - - y; - · - · - · z.
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Figure 4.25: Asymmetric cross-ply laminate plate: real valued dispersion curves,
ky=50m−1: ——– WFE results; · · · · · · theory of [19].
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Figure 4.26: Asymmetric cross-ply laminate: real-valued dispersion curves: ——–
θ = 0; · · · · · · θ = π/4; - · - · - · θ = π/3.
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Figure 4.27: Asymmetric sandwich plate: real–valued dispersion curves.
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Figure 4.28: Asymmetric sandwich plate, dispersion contour curves: · · · · · · 5kHz
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Chapter 5

Wave Finite Element Method:

application to cylinders

5.1 Introduction

Cylindrical panels are used in many engineering applications such as rotorcraft,

pipes, acoustic ducts, aerospace structures and so on. Because of the great inter-

est in their vibrational characteristics they have been a subject of many studies.

However these studies require a comprehensive development of a mathematical

model that is difficult at best. Analytical expressions can be developed for simple

cases - e.g. isotropic cylinders - but for more complex structures analytical ap-

proaches become very difficult or even impossible. Although some authors have

studied the problem of wavepropagation in cylindrical shells in the framework of

the exact three–dimensional elasticity theory [124–133], analytical approaches are

extremely complicated. This is particularly true for laminated structures due to

the massive amount of algebra involved in enforcing interlaminar continuity when

a large number of layers is considered. Moreover, there are numerical problems

in obtaining the dispersion curves because of convergence difficulties for short

wavelengths, large circumferential wavenumbers and especially for complex lay-

ered structures. A common approach is to study composite curved structures by

making assumptions and approximations concerning the stress distribution and

the displacements. However, in any event, the equations lead to a complicated

dispersion relation to which numerical solutions are sought.

The free vibration characteristics of isotropic cylindrical shells have been ob-

tained by various approximate theories. A good summary of these theories is

given by Leissa in [134]. There have been also a number of previous studies
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about wave propagation in thin cylindrical shells and a brief summary of some of

them is given here.

D. C. Gazis analysed the propagation of free harmonic waves in a thin long

cylinder. He provided the frequency equation for an arbitrary number of waves

around the circumference in [126] and he presented the results for free harmonic

waves in [127]. Kumar and Stephens [128] studied dispersion of flexural waves

in isotropic shells of various wall thickness using the exact three dimensional

equations of linear elasticity. In [135], Fuller considered the effect of wall dis-

continuities on flexural waves in an isotropic cylindrical shell. He also provided

the dispersion curves in a semi-infinite thin walled shell for circumferential modal

number n = 1. More recently Langley [136, 137] extended the analysis to gen-

eral helical motion in isotropic cylindrical shells and studied the modal density

and mode count of the out-of-plane modes for isotropic thin cylinders and curved

panels. Tyutekin [138] obtained the dispersion curves in an isotropic cylindrical

shell for different angles of propagation of the helical waves. He also evaluated

the dispersion characteristics and the eigenfunctions of circumferential waves for

Neumann and Dirichlet boundary conditions [139].

The present chapter is devoted to the application of the WFE method to the

analysis of wave propagation in homogeneous axisymmetric structures, and in

particular cylinders. Several examples are provided to show the accuracy of the

method and its applicability. The examples concern homogeneous isotropic and

orthotropic thin shells, for which analytical solutions are well established, and

composite laminated cylinders for which analytical solution are not available.

5.2 WFE formulation for axisymmetric struc-

tures

The application of the WFE method to axisymmetric structures could be con-

sidered as a special case of WFE analysis of 2–dimensional structures. Figure

5.1 shows a schematic representation of a cylindrical structure. The cylindrical

coordinates are y, r and α while u, v and w are the axial, circumferential and

radial displacements respectively. R is the mean radius of the shell and h is the

thickness. A time harmonic disturbance at a frequency ω is assumed to propagate

through the structure with a helical pattern so that, for example,

w(r, α, y, t) = W (r)ei(ωt−kαα−kyy), (5.1)
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where kα and ky are the projections of the wavenumber in the circumferential

and axial directions while W (r) is the complex wave amplitude.

Quite frequently in practice the structure is thin and therefore it is possible

to define a mean radius R. Examples include in vacuo cylinders. Under this

circumstances it is perhaps more convenient to define an axis x around the cir-

cumference, for which x = Rα. This substitution allows the wavenumber kα to

be replaced with kx = kα/R. Hence kx, which is related to the linear distance x

instead of the angle α, represents the wavenumber of the circumferential compo-

nent of the wave whose corresponding wave vector is directed along the tangent

to the circumference of radius R. Therefore the helical wave in equation (5.1)

takes the form

w(r, x, y, t) = W (r)ei(ωt−kxx−kyy). (5.2)

Equation (5.2) represents a plane wave propagating along the axisymmetric struc-

ture in a manner analogous to a wave propagating in an infinite flat structure in

two dimensions. Figures 5.3 and 5.3 depict helical waves in cylindrical coordinates

and the equivalent plane waves in Cartesian coordinates respectively.

To apply the WFE method, a small segment of the structure subtending a

small angle Lα is taken and modelled using FEs as shown in Figure 5.4. With

FEs, curved structures are commonly approximated by piece–wise–flat surfaces.

Therefore for the subsequent analysis, the two different kinds of FE models shown

in Figures 5.5 and 5.6 are used to apply the technique. For thin structures, a sin-

gle shell element as shown in Figure 5.5 can be used to obtain good accuracy for

a wide range of frequencies while for moderately thick shells, laminated compos-

ites, sandwich constructions and so on, an appropriate model consists of several

elements across the section as shown in Figure 5.6. Note that for the model in

Figure 5.6 any internal DOFs are condensed to obtain a 4–noded hyperelement.

From Figure 5.5, the element degrees of freedom q are

q = [qT
1 qT

2 qT
3 qT

4 ]T , (5.3)

with a similar expression for the nodal forces f.

The node qj are obtained concatenating all the nodes of the FE model through

the thickness. When applying the periodicity condition, the local coordinates

must be rotated in order to model the desired curvature. For example, the DOFs

of node 2 and node 4 (defined in local coordinates) are transformed to global

coordinates by a rotation through an angle Lα as shown in Figure 5.7. A trans-
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formation matrix R can be defined as

R =




I 0 0 0

0 R 0 0

0 0 I 0

0 0 0 R




, (5.4)

so that the mass and stiffness matrices of the “curved” element become

M = R
T
MLOCR;

K = R
T
KLOCR,

(5.5)

where MLOC and KLOC are the element’s mass and stiffness matrices in local

coordinates, that is the mass and stiffness matrices of the flat FE model obtained

by conventional FE methods or FE commercial packages. In equation (5.4) the

order of the matrices 0, I and R equals the number of the nodal degrees of

freedom of the FE model.

With reference to Figure 5.5, the nodal rotation matrix R is

R =

[
r 0

0 r

]
, (5.6)

while for the FE model in Figure 5.6 (solid elements are used to mesh the cross

section) the matrix R takes the form

R =




r 0 · · · · · · 0

0 r 0 · · · 0
...

. . .
...

0 · · · r




, (5.7)

where 0 is a 3 × 3 zero matrix and r is the affine transformation

r =




cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)


 . (5.8)

Once the mass and stiffness matrices for the curved element are calculated ac-
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cording to equation (5.5), the WFE method reduces to that for the case of flat

structures.

5.2.1 The eigenvalue problem for closed axisymmetric struc-

tures

Equations 5.1 and 5.2 correspond to the general case of a non closed axisymmetric

structures so that kα can in principle attain any value: real, imaginary or complex

denoting propagating, evanescent or decaying waves respectively.

However, in closed structures the phase change of a wave as it propagates

around the circumference must be a multiple of 2π. Therefore the circumferential

wavenumber can only take the discrete values kα = n, n = 0, 1, 2, . . . which defines

the order n of the wave mode. The modes n are independent and can be analysed

separately. For cylindrical shells of mean radius R where the x axis is such that

x = Rα, then kx = n/R, n = 0, 1, 2, . . .. Under these circumstances

λx = e−inLx/R (5.9)

is known for a given circumferential order n and equation (3.37) becomes either

a linear eigenproblem in ω2 for a given λy or a quadratic eigenproblem in λy for a

given ω. In the latter case, the polynomial eigenvalue problem in equation (3.37)

takes the form [
A2λ

2
y + A1λy + A0

]
q = 0, (5.10)

where A2 6= 0. In order to avoid conditioning errors in solving equation 5.10, the

following standard linear companion form

L(λy) =

[
−A−1

2 A1 −A−1
2 A0

I 0

]
− λy

[
I 0

0 I

]
(5.11)

is considered and the eigenvalues and the eigenvectors of equation (5.10) are

recovered from those of (5.11) using subroutines for the standard linear eigen-

problem. The eigenvalues may be purely real, purely imaginary or complex and

therefore the complex frequency spectrum can be determined for any circumfer-

ential number.
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5.2.2 The ring frequency

For cylindrical shells the ring frequency is usually defined as the frequency at

which one longitudinal wavelength wave equals the cylinder perimeter [2], that is

ωr =
1

R

√
E

ρ(1 − ν2)
. (5.12)

This frequency plays an important role in describing the dynamics of cylindrical

structures and it is used to indicate the frequency range for which the curvature

effects are important. Above the ring frequency the shell behaves more as a flat

plate while near and below the ring frequency the effect of the curvature stiffens

the structure considerably and results in more complicated behaviour.

In order to investigate how ωr can be evaluated graphically from the disper-

sion curves, the analytical wave number solutions are evaluated for an isotropic

cylindrical shell. As already pointed out, there are a number of theories regarding

the dynamics of cylindrical shells. Here the Flügge equations of motion are used

since they provide quite accurate results for moderately thick shells. The partial

differential operator for the evaluation of the Flügge equation of motion can be

found in [134], Chapter 2. In the following analysis the non dimensional coordi-

nate s defined in [134] is replaced with the axial coordinate y. The displacement

solution is assumed to have the form

u = Ae−iky cos nθeiωt;

v = Be−iky sin nθeiωt;

w = Ce−iky cos nθeiωt,

(5.13)

where A,B,C are the amplitudes of the displacements. Substituting (5.13) into

the differential operators given in [134], an eighth order algebraic equation in k is

obtained. This means that there are eight admissible axial waves in the cylinder.

The characteristic equation can be written as a quartic in k2

D8(Ω)(k2)4 + D6(Ω)(k2)3 + D4(Ω)(k2)2 + D2(Ω)k2 + D0(Ω) = 0, (5.14)

where Ω = ω/ωr. Equation (5.14) has been directly evaluated and solved in

closed–form. The coefficients D8, D6, D4, D2, D0 are given in Appendix B. Alge-

braic expressions for these coefficients and for direct evaluation of the wavenum-

bers can be found in [140]. The solutions of equation (5.14) are rather complicated
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and it is quite difficult to have a clear idea of the dispersion characteristics. As-

suming that the thickness of the shell is small compared to the mean radius, a

good approximation to the solutions is given in [14] as

k2
1 =

ω2ρ(1 − ν2)

E
− 1

R2 − n2; (5.15)

k2
2 =

ω2ρ2(1 + ν)

E
− n2; (5.16)

k2
3 =

1

2R2 +

√
ω2ρh

D
+

1

4R4 − n2

R2 − n2; (5.17)

k2
4 =

3

2R2 −

√
ω2ρh

D
+

9

4R4 − n2

R2 − n2, (5.18)

where D = Eh3/(12(1 − ν2)) is the flexural rigidity. It can be noticed from

equations (5.15)–(5.18) that the first two solutions for n = 0 represent extensional

and shear waves respectively while the third and fourth are dispersive flexural

waves. However the equation (5.18) does not give pure real wavenumber and

therefore it does not represents propagating waves. Solution (5.16) is not affected

by the curvature while the influence of the curvature for the solutions (5.15),

(5.17) and (5.18) become less significant as the frequency increases. Figure 5.8

shows the dispersion curves for a thin steel plate and a steel cylindrical shell. It

can be seen that for frequencies above ωr the cylinder behaves like a flat plate

while in the neighbourhood of and below ωr the effect of the curvature is to

stiffen the structure and results in a more complicated behaviour. The cut–on

frequencies for the waves in equations (5.15)–(5.18) are respectively

ω1 =

√
1/R2 − n2

cL

; (5.19)

ω2 =
n

cT

; (5.20)

ω3 = n2

√
D

ρh
; (5.21)

ω4 =

√

n4 − 2
n2

R2

√
D

ρh
, (5.22)
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where

cL =
√

E/ρ(1 − v2) (5.23)

and

cT = E/2ρ(1 + ν) (5.24)

are the phase velocities of longitudinal and torsional waves. The n = 0 waves

represented by (5.16) and (5.17) start propagating from values of ω close or equal

to zero while wave (5.15), which represents an extensional wave, has a cut–on

frequency ω = ωr, where ωr is the ring frequency given by equation (5.12). At the

ring frequency ωr this mode involves only radial displacement along the thickness.

Therefore, it can be concluded that the ring frequency can be considered as

the first cut–on, or transition frequency, of the dispersion equation. When the

assumption of a very thin structure does not hold, as in the Flügge equation

of motions, the value of the ring frequency is slightly different from the one in

equation (5.12). Solving the Flügge equation of motion for the circumferential

mode order n = 0 and considering only axial u and radial displacements w, a

sixth order algebraic equation, cubic in k2, is obtained

D6(Ω)(k2)3 + D4(Ω)(k2)2 + D2(Ω)k2 + D0(Ω) = 0. (5.25)

When D0(Ω) vanishes, two roots coalesce to zero and therefore the value of the

frequency that gives D0 = 0 can be taken as the ring frequency. Given that

D0 = Ω2(1 + b2) − Ω4, where b = h/(R
√

12), the ring frequency in this case is

ωr =
√

1 + b2
1

cLR
. (5.26)

The same value can be obtained setting to zero the coefficient D0 in equation

(5.14).

5.3 Isotropic cylinders

In this section an isotropic cylindrical shell is studied by post-processing an

ANSYS FE model. The material properties are as follow: Young’s modulus

E = 19.2 · 1010Pa, Poisson’s ratio ν = 0.3 and density ρ = 7800kg/m3. The finite

element lengths in the (x, y) plane are taken as Ly = Lx = 1mm. The nondimen-

sional frequency Ω = ω/ωr is introduced, where ωr is the shell ring frequency.

The dispersion curves of two examples of isotropic cylinders are predicted and
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discussed. In order to validate the method, the WFE results are compared with

those derived directly from the Flügge equations of motion [141] for the first

example.

5.3.1 Isotropic cylindrical shell, h/R = 0.05

The ratio of the thickness to mean radius for the cylinder is h = h/R = 0.05,

R = 1m. The rectangular four node element SHELL63 was used to obtain the

mass and stiffness matrices resulting in a system with 6 DOFs after the WFE

reduction. The real-valued dispersion curves for circumferential modes of order

n = 0, 1, 2, 3 obtained from the WFE method are given in Figures 5.8–5.11.

Figures 5.9–5.11 show also analytical results obtained solving directly the Flügge

equation of motions for the cylindrical shell. In applying the WFE method,

since the element has 6 DOFs per node, six real passing bands are obtained.

However, only the first three are shown since they are the ones that correspond to

propagating waves in the continuous shell while the other are numerical artifacts

due to the discretisation. The three branches shown in Figures 5.9–5.11 broadly

correspond to flat–plate flexural, torsional and extensional waves as shown in

Figure 5.8 for n = 0. This behaviour is particularly clear above the ring frequency.

It is seen that the results computed from the WFE method agree extremely well

with those obtained by Flügge theory. Figures 5.12–5.15 show the wave speed of

the branches 1, 2 and 3 where the nondimensional wave speed c∗ is defined as the

ratio of the wave speed and the phase velocity of an extensional wave in a thin

plate given by equation (5.23). From Figures 5.8 and 5.12 it can be noticed that

only waves 1 and 2 exist below the ring frequency. They propagate as in–plane

extensional and torsional waves respectively. Hence, for Ω < 1 and n = 0 the

cylindrical shell seems to behave dynamically as a membrane. For n = 1, Figure

5.9 shows that both waves 1 and 2 propagate below the ring frequency. Figure

5.13 shows that this two branches asymptotically resemble a flexural and a shear

wave in a plate. However, their behaviour cannot be considered as purely flexural

or shear, in particular for small values of ky as clearly shown Figure 5.13. For

increasing values of the circumferential wave number, waves start propagating at

certain frequencies different from zero. For n > 1, below the ring frequency, only

wave 1 exists and its behaviour approaches that of a flexural wave in a plate as

the circumferential order n increases.
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5.3.2 Isotropic cylinder, h/R = 0.1

Consider now a thick cylinder for which the nondimensional thickness is h =

h/R = 0.1, where R = 0.5m. The mass and stiffness matrices were found using

20 SOLID45 elements in ANSYS. Since the elements used are brick solid elements,

the present method is formulated within the framework of a three–dimensional

approach. Figure 5.16 shows the complex dispersion curves for circumferential

modes of orders n = 0, 1, 2, 3. At very high frequencies other cross–section waves

start propagating but are not shown here for simplicity.

The complex frequency spectrum results are quite complicated, in particular

at high frequency. It can be seen that for the breathing and bending modes,

n = 0 and n = 1, only two types of plane waves can propagate below the ring

frequency. For n = 0 two waves start propagating at Ω = 0: they represent

shear and extensional waves. At the ring frequency a third branch cuts–on as

an extensional wave while the second branch veers approaching a flexural waves

in a flat plate. For n = 1 only one wave propagates from Ω = 0 while another

one cuts–on below the ring frequency. Waves of orders n > 1 can propagate only

above a certain frequency and only the first branch propagates below the ring

frequency. There are also complex branches of the dispersion curves (representing

a pair of complex conjugate wavenumbers) for which the real and the imaginary

parts reduce with increasing frequency. At the frequency for which the real part

of this complex wavenumber becomes zero, the corresponding imaginary part

bifurcates into a pair of evanescent waves with pure imaginary wavenumbers.

This phenomenon is here indicated as a complex cut–off, that is the complex

wavenumber becomes purely imaginary. It can be seen from Figure 5.16 that

complex cut–off appears at the minima of the imaginary branches with respect to

the frequency axis. From this frequency to the one at which the next propagating

wave cuts–on, the imaginary branches are multi–valued for a single frequency.

It is worth pointing out that the evaluation of the dispersion curves for higher

order circumferential modes using the WFE method does not present any differ-

ences or numerical difficulties compared to the evaluation of dispersion curves for

low order modes.

Figures 5.17–5.19 show the contour curves of various dispersion branches for

Ω = 0.1, 0.2, 1.5, 2 and 3. It can be seen that only the first two branches propagate

below Ω ≈ 1+b, where b is defined in section 5.2.2, while for Ω = 1.5 all the three

branches appear in the graph. Figure 5.19 shows that at Ω = 2 and Ω = 3 all

the three waves propagate. For an isotropic plate the dispersion characteristics
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do not depend on the propagation angle θ and therefore the contour curves are

circular. However, for the curved shell, the presence of the curvature stiffens

the structure resulting in different shapes of the contour curves with respect to

circular one. In particular at Ω = 1.5, Figure 5.18, the contour curves show an

elliptical shape similar to that of extensional, torsional and flexural waves in an

equivalent orthotropic plate.

At low frequencies there exist regions in which a particular value of kyR corre-

sponds to two distinct values of kxR. As an example, points A and B are shown

in Figure 5.17 for kyR = 2 and Ω = 0.5. As shown in chapter 4, section 4.4.3,

the direction of the group velocity is given by the direction of the normal to the

contour curves. It can be seen from Figure 5.17 that the normal vector to the

curve at the point A has a component with respect to the x direction opposite to

that at the point B, thus showing that the points represent respectively two dis-

tinct waves having different directions of the group velocity in the circumferential

direction. Figure 5.20 shows the wavemodes of waves A and B. As expected the

predominant displacement is out–of–plane for both the waves.

A discussion about the nature of the waves associated with the dispersion

curves can be found in [136]. In [136], Langley analysed the relative contribution

of the in–plane and out–of–plane motion to the kinetic energy for waves prop-

agating in an isotropic cylinder at Ω = 0.6, 1.1, 1.5. In particular, for waves

similar to waves A and B in Figure 5.17, it was shown that, although the pre-

dominant displacement is out–of–plane, the energy associated with the wave with

the smaller circumferential wave number is transmitted mostly through in-plane

tractions.

5.4 Orthotropic cylinder

An orthotropic cylinder, whose material properties are shown in Table 5.1 is

considered in this section. The cylinder has a thickness–to–mean radius ratio of

h = h/R = 0.05, where R = 1m. The FE model is realised using 20 SOLID45

elements in ANSYS for which Lx = Ly = 1mm.

The effects of changing circumferential order are mostly noticeable at low

frequency and low wavenumber, i.e. below or around the ring frequency. The real

valued dispersion curves are shown in Figures 5.21 and 5.22 for n = 0, 1, 2, 3 up to

8kHz. It can be seen that for large values of the wavenumber, the dispersion curves

do not significantly depend on the circumferential order. However, changing the
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Ex = 144.48GPa Ey = 9.63GPa Ez = 9.63GPa

Gxy = 4.128GPa Gyz = 4.128GPa Gxz = 4.128GPa

νxy = νxz = 0.02 νyz = 0.3 ρ = 1389kg/m3

Table 5.1: Orthotropic cylinder: material properties.

circumferential order may lead to significant changes in the dispersion curves for

low wavenumbers.

Figures 5.23 and 5.24 show the complex dispersion curves for the circumfer-

ential modes n = 0 and n = 5 up to 45kHz. Modes of order n = 0 and n = 5 are

here chosen to illustrate various feature since there are no significant changes in

the dispersion curves for other order branches. The sixth high frequency branch

indicates the presence of a wave having group and phase velocities of opposite

sign. At the cut–on frequency, that is the minimum frequency for which the wave

represented by branch 6 propagates, a complex branch bifurcates into a pair of

propagating waves with real wavenumbers. One of these propagating waves has

phase and group velocities of opposite sign with a behaviour similar to the one

already studied for the case of a plate. Branch 6 seems not to be affected by

changing the mode order. Branches 3, 5 and 8 in Figure 5.23(a) also do not

appear to be very sensitive to a change in the circumferential order.

5.5 Laminated sandwich cylinder

In this section the WFE method is applied to evaluate the wave propagation

characteristics of sandwich structures. The real valued dispersion curves and the

complete complex dispersion spectra are given. The eigensolutions yield numeri-

cal estimates of the dispersion relations in a straightforward and systematic man-

ner. The behaviour is in general very complicated, involving coupling between

the various wave modes, complex cut-off phenomena at non-zero wavenumbers,

veering and so on.

The sandwich shell comprises two laminated skins sandwiching a foam core.

The two skins each comprise 4 orthotropic sheets with a lay-up of [+45/-45/-

45/+45] and a total thickness of 4mm. The material properties for the skins

are given in the previous chapter in Table 5.1. The core material is a 10mm

polymethacrylamide ROHACELL whose material properties are: Young modu-
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lus E = 1.8 · 108Pa, Poisson’s ratio ν = 0.286, density ρ = 110Kg/m3. The

nondimensional thickness of the sandwich construction is h = 0.018 with mean

radius R = 1m. A very similar construction was considered by Heron [20]. In [20],

Heron assumed a classical theory for sandwich structures: a thick core that car-

ries shear stress and thin skins that work in bending and extension. To study the

symmetric, single curved sandwich, a discrete layer theory was used accomplish-

ing a 47th order dispersion system, which was subsequently solved numerically

to determine the dispersion relations. The WFE model was realised using 18

SOLID45 elements in ANSYS, 4 for each skin and 10 for the core, resulting in 57

DOFs after the reduction.

The choice of a symmetric laminate is due to the fact that this kind of laminate

is often used in the aerospace industry. In the analytical approach, material

symmetry relative to the coordinate axis allows eigensystems to be simplified.

On the contrary, the WFE technique enables any kind of stacking sequence for

the composite laminate to be analysed with the same degree of simplicity.

Figures 5.25 and 5.26 show the frequency spectrum for the circumferential

orders n = 0, 1, 2, 3. Real and imaginary parts of the wavenumber are plotted

separately. The ring frequency for the sandwich cylinder, which is the first tran-

sition frequency for n = 0, is found at ≈ 622.7Hz. For n = 0 and n = 1, only

waves represented by branches 1 and 2 propagate below the ring frequency. For

n = 2, branch 2 propagates for frequencies close to the ring frequency, while for

n = 3 only the wave represented by branch 1 propagates below the ring frequency.

The lowest cut–on frequencies for branches 1 and 2 are ≈ 11.5Hz and ≈ 550.3Hz

respectively. As expected, the wave behaviour below the ring frequency is very

complex and cannot be described simply in terms of torsional, extensional and

flexural waves alone. However some main features can be observed. It can be

seen that the frequency spectrum exhibits complex cut–on and cut–off phenomena

with non–zero wavenumber. Some branches exhibit phase and group velocities

of opposite sign and as a consequence there are regions in which there are two

or more possible values of a pure real wavenumber for the same frequency. It

can be seen in Figure 5.25(b) that for n = 0 there is a bifurcation from a com-

plex wavenumber to two evanescent waves. For one of these two waves, as the

frequency increases the wavenumber decreases until the wave starts propagat-

ing. For n = 1 the propagating branches exhibit complex cut–on and cut–off

phenomena. It can been noticed that for branch 1, between 0Hz and 600Hz,

there is a bifurcation from a pair of complex conjugate wavenumbers to a pair
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of propagating waves, one with phase and group velocities of the same sign and

another with phase and group velocities of opposite sign. When the wave with

phase and group velocities of opposite sign meet the one having phase and group

velocity of same sign there is another bifurcation point. At this point a complex

branch links the two stationary points of branches 1 and 2. This complex branch

leaves the first propagating branches at a maximum and re–enter as a real at a

minimum of the next branch where a “rightward” and a “backward” waves start

propagating. For n = 1, branches 1 and 2 exhibit more than one possible value

of kyR for the same value of the frequency. For n = 1, branch 1, there are three

values of kyR for the same frequency when 384Hz. f . 399Hz. The lower and

the higher values correspond to waves with positive group velocities in the y di-

rection while the middle value corresponds to a wave which has phase and group

velocities of opposite sign. Moreover, for n = 1, branch 2 exhibits two values of

kyR, which correspond to two different waves travelling in opposite directions in

the frequency range 428Hz. f . 550Hz. In particular, the wave associated with

the lower value of kyR has a negative group velocity in the y direction. Similar

conclusions can be drawn for the dispersion curves in Figure 5.26.

The WFE technique is not limited to either low frequencies or to propagating

waves. Figures 5.27 and 5.28 show the complex dispersion curves up to 20kHz

for circumferential modes n = 1, 2 as an example. The behaviour is again very

complicated. Complex cut–on and cut–off phenomena can be observed in both

the real and imaginary plane.

Dispersion curves in the (kxR, kyR) plane are shown in Figures 5.29 and 5.30.

These figures show that there are regions in which distinct values of kxR corre-

spond to the same value of kyR and distinct values of kyR correspond to the same

value of kxR. The dispersion curves in Figures 5.29 and 5.30 are almost identical

in shape to those obtained by Heron in [20] using an analytical approach.
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Figure 5.1: Axisymmetric structure. The diagram shows the cylindrical coordi-
nate system, mean radius R and the thickness h.
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Figure 5.2: Axisymmetric structure: schematic representation of a helical wave
in cylindrical coordinates.
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Figure 5.3: Axisymmetric structure: schematic representation of a helical wave
in Cartesian coordinates.
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Figure 5.4: Small rectangular segment of the axisymmetric structure.
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Figure 5.5: FE mesh of a small rectangular segment of a thin axisymmetric
structure.
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Figure 5.6: FE mesh of a small rectangular segment of a thick axisymmetric
structure.
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Figure 5.7: Rectangular flat shell elements.
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Figure 5.8: Real valued dispersion curves for an isotropic cylindrical shell, h =
0.05, R = 1m, circumferential mode n = 0: · · · · · · WFE results; ——– flexural,
shear and extensional dispersion branches in the equivalent flat thin plate.
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Figure 5.9: Real valued dispersion curves for an isotropic cylindrical shell, h =
0.05, R = 1m, circumferential mode n = 1: · · · · · · WFE results; ——– analytic
solution from the Flügge equations of motion.
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Figure 5.10: Real valued dispersion curves for an isotropic cylindrical shell, h =
0.05, R = 1m, circumferential mode n = 2: · · · · · · WFE results; ——– analytic
solution from the Flügge equations of motion.
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Figure 5.11: Real valued dispersion curves for an isotropic cylindrical shell, h =
0.05, R = 1m, circumferential mode n = 2: · · · · · · WFE results; ——– analytic
solution from the Flügge equations of motion.
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Figure 5.12: Isotropic shell, h = 0.05mm, R = 1m. Nondimensional wave speed
for circumferential mode n = 0: ——– extensional, torsional and flexural wave
speed in the flat shell; + o ∗ wave speeds in the cylindrical shell.
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Figure 5.13: Isotropic shell, h = 0.05mm, R = 1m. Nondimensional wave speed
for circumferential mode n = 1: ——– extensional, torsional and flexural wave
speed in the flat shell; + o ∗ wave speeds in the cylindrical shell.
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Figure 5.14: Isotropic shell, h = 0.05mm, R = 1m. Nondimensional wave speed
for circumferential mode n = 2: ——– extensional, torsional and flexural wave
speed in the flat shell; + o ∗ wave speeds in the cylindrical shell.
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Figure 5.15: Isotropic shell, h = 0.05mm, R = 1m. Nondimensional wave speed
for circumferential mode n = 3: ——– extensional, torsional and flexural wave
speed in the flat shell; + o ∗ wave speeds in the cylindrical shell.
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Figure 5.16: Isotropic cylinder, h = 0.1, R = 0.5m. Dispersion curves for circum-
ferential modes n = 0, 1, 2, 3: . . . . . . complex valued wavenumbers; . . . . . . pure
real and pure imaginary wavenumbers.

105



Chapter 5. Figures

k
x
R

k yR

−4 −2 0 2 4
−4

−2

0

2

4

 A  B 

Figure 5.17: Isotropic cylinder, h = 0.1, R = 0.5m. Dispersion contour curves:
——– Ω = 0.1; · · · · · · Ω = 0.5.
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Figure 5.18: Isotropic cylinder, h = 0.1, R = 0.5m. Dispersion contour curves:
——– Ω = 1; · · · · · · Ω = 1.5.
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Figure 5.19: Isotropic cylinder, h = 0.1, R = 0.5m. Dispersion contour curves:
——– Ω = 2; · · · · · · Ω = 3.
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(b) Mode shapes B

Figure 5.20: Isotropic cylindrical shell. Mode shapes of waves A and B in Figure
5.17: ——– x; - - - - - y; - · - · - · z.
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Figure 5.21: Orthotropic cylindrical shell, h = 0.05, R = 1m. Real valued
dispersion curves: ——– circumferential modes n = 0; · · · · · · circumferential
modes n = 1.
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Figure 5.22: Orthotropic cylindrical shell, h = 0.05, R = 1m. Real valued
dispersion curves: ——– circumferential modes n = 2; · · · · · · circumferential
modes n = 3.
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0 1 2 3 4

x 10
4

−90

−80

−70

−60

−50

−40

−30

−20

−10

Frequency[Hz]

Im
ag

(k
yR

)

(b) Imaginary dispersion curves

Figure 5.23: Orthotropic cylindrical shell, h = 0.05, R = 1m. Dispersion curves
for circumferential mode n = 0: . . . . . . complex valued wavenumbers; . . . . . .
pure real and pure imaginary wavenumbers.
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(a) Real dispersion curves
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Figure 5.24: Orthotropic cylindrical shell, h = 0.05, R = 1m. Dispersion curves
for circumferential mode n = 5: . . . . . . complex valued wavenumbers; . . . . . .
pure real and pure imaginary wavenumbers.
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Figure 5.25: Sandwich cylindrical shell, h/R = 0.018, R = 1m. Dispersion curves
for circumferential modes n = 0 and n = 1: . . . . . . complex valued wavenumbers;
. . . . . . pure real and pure imaginary wavenumbers.
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Figure 5.26: Sandwich cylindrical shell, h/R = 0.018, R = 1m. Dispersion curves
for circumferential modes n = 2 and n = 3: . . . . . . complex valued wavenumbers;
. . . . . . pure real and pure imaginary wavenumbers.
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(a) Real dispersion curves

(b) Imaginary dispersion curves

Figure 5.27: Sandwich cylindrical shell, h/R = 0.018, R = 1m. Dispersion curves
for circumferential modes n = 1: . . . . . . complex valued wavenumbers; . . . . . .
pure real and pure imaginary wavenumbers.
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Figure 5.28: Sandwich cylindrical shell, h/R = 0.018, R = 1m. Dispersion curves
for circumferential modes n = 2: . . . . . . complex valued wavenumbers; . . . . . .
pure real and pure imaginary wavenumbers.
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Figure 5.29: Sandwich cylindrical shell, h/R = 0.018, R = 1m. Dispersion
contour curves: ——– 200Hz; · · · · · · 500Hz.
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Figure 5.30: Sandwich cylindrical shell, h/R = 0.018, R = 1m. Dispersion
contour curves: ——– 800Hz; · · · · · · 1200Hz.

115



Chapter 6. Wave Finite Element Method: application to fluid–filled elastic
cylindrical shells

Chapter 6

Wave Finite Element Method:

application to fluid–filled elastic

cylindrical shells

6.1 introducion

This chapter addresses prediction of wave propagation in fluid–filled elastic cylin-

drical shells using the WFE method. In industrial applications piping systems

convey vibrational energy from sources, such as compressors pumps or valves,

via wave propagation in both the pipe shell and the fluid, resulting in undesired

sound radiation and excitation of other equipments. Evaluation of dispersion

curves in fluid–filled pipes are of primary importance to evaluate vibration and

noise transmission and are extensively exploited in non–destructive tests.

Wave propagation, as well as the control of wave propagation in fluid–filled

elastic cylindrical shells, has been analysed in a number of papers [142–146]. Nev-

ertheless, most of the studies available in literature have a high–frequency limit

of applicability and attention directed only toward the lowest mode. Therefore

the high frequency behaviour of fluid–filled pipes is still a subject of research.

Moreover, in many cases of interest, the analysis is very difficult, involving de-

pendence between the parameters and highly transcendental Hankel functions for

which explicit solutions for the roots of the dispersion relation do not exist.
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6.2 FE formulation for fluid–filled cylindrical shells

The analysis that follows exploits the capability of FE package to model acoustic

fluid–structure coupling. To apply the WFE method, as in the previous cases,

a small rectangular portion of the structures is meshed using conventional FEs.

The FE model for the fluid–filled cylindrical shell is shown in Figure 6.1. Here 8–

noded elements are used to mesh the acoustic fluid and the structure respectively.

In the FE model realised using solid elements no assumptions such as thin–wall

theory might be made in and therefore, depending of the fineness of the FE

mesh, the wave behaviour can be predicted for thick pipes and for frequency

much higher than the ring frequency. In the analysis it will be assumed that the

structure and the fluid are losses and that the fluid is compressible and inviscid.

The mean density and pressure are uniform throughout the fluid and no mean

flow of the fluid is considered. Under these circumstances, the wave equation for

propagation of sound in the fluid is

1

c2

∂2p

∂t2
−∇2p = 0, (6.1)

where c is the speed of sound in the fluid and p is the acoustic pressure. Con-

sidering time harmonic varying pressure p = Peiωt, equation (6.1) reduces to the

well–known Helmholtz equation

ω2

c2 P −∇2P = 0. (6.2)

At the fluid–structure interface S, the relationship between the normal pressure

gradient of the fluid and the normal acceleration of the structure at the surface

S is [10]

n · ∇P = −ρfn · ∂2u

∂t2
, (6.3)

where n is the unit normal to the interface S, u is the displacement vector of the

structure at the interface and ρf is the mean fluid density.

Considering the standard FE discretisation for the spatial variation of the

displacement and pressure, equation (6.1) can be written in matrix notation to

get the discretised wave equation

Mf p̈ + Kfp + ρfC
T q̈ = 0. (6.4)

In equation (6.5) p is the vector of nodal pressures, q the nodal structural DOFs,
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Mf and Kf are the fluid mass and stiffness matrices while ρfC
T is the coupling

mass matrix at the fluid–structure interface. In order to obtain the complete dis-

cretised equations of motion for the fluid–structure interaction problem, the fluid

pressure load vector Fp at the interface S is added to the discretised structural

equation of motion (3.11)

Mq̈ + Kq = F + Fp, (6.5)

where Fp is obtained by integrating the pressure over the area of the surface S.

Since Fp = Cp, the complete finite element discrete equations of motion of the

structural–acoustic problem are

[
M 0

ρfC
T Mf

][
q̈

p̈

]
+

[
K −C

0 Kf

][
q

p

]
=

[
F

0

]
. (6.6)

6.3 WFE formulation for fluid–filled cylindrical

shells

Once the mass and the stiffness matrices for the whole segment of the structure

are obtained from the FEA, they are post–processed as explained in chapter 3.

In the structural–acoustic interaction models obtained by ANSYS for example,

the nodal degrees of freedom are arranged as [q,p], that is first the structural

degrees of the freedom and then the pressure degrees of freedom. Therefore

an algorithm is implemented to partition the DOFs. Since the acoustic duct is

axisymmetric, the same assumptions and considerations as depicted in section

5.2 hold. In particular, in order to model the desired curvature, the DOFs must

be transformed to global coordinates by a rotation through an opportune angle

as shown in section 5.2.

As discussed in the previous chapter concerning in vacuo axisymmetric struc-

tures, a time harmonic disturbance at a frequency ω is assumed to propagate

as

w(r, α, y, t) = W (r)ei(ωt−kαα−kyy), (6.7)

where kα and ky are the projections of the wavenumber in the circumferential and

axial directions while W (r) is the complex wave amplitude. In closed structures

the phase change of a wave as it propagates around the circumference must be a

multiple of 2π so that the circumferential wavenumber can only take the discrete
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values kα = n, n = 0, 1, 2, . . .. The order n defines the circumferential order mode.

Under these circumstances λα = e−ikαα is known for a given circumferential order

n and equation (3.37) becomes either a linear eigenproblem in ω2 for a given λy or

a quadratic eigenproblem in λy for a given ω. In the latter case, the polynomial

eigenvalue problem in equation (3.37) takes the form

[
A2λ

2
y + A1λy + A0

]
q = 0, (6.8)

where A2 6= 0. To solve equation (6.8), the standard linear companion form

L(λy) =

[
−A−1

2 A1 −A−1
2 A0

I 0

]
− λy

[
I 0

0 I

]
(6.9)

is considered.

6.4 Isotropic undamped steel cylindrical shell

filled with water

In this section the WFE method is applied to a water–filled steel pipe with

thickness–to–mean radius ratio equal to h = 0.1, R = 0.4m. A similar example

was studied by Maess et al. in [87] applying the WFE method for 1–dimensional

waveguides according to Mace et al. [76]. In [87], a cross–section segment of

a fluid–filled pipe was modelled using FE–code. The dynamic stiffness matrix

was rearranged in a transfer matrix form and periodicity conditions were then

applied in order to obtain an eigenvalue problem whose solution gave the disper-

sion characteristics as shown in [76]. In [87] only real–valued dispersion curves

were discussed. As the dispersion curves were obtained the circumferential order

had to be inferred. On the contrary, the present approach allows the disper-

sion curves to be evaluate for selected circumferential orders without any further

analysis. Moreover, the larger number of DOFs and the potential numerical dif-

ficulties implicit in the use of the transfer matrix, makes the WFE method for

2–dimensional applications, as proposed in this thesis, a preferable choice for

the analysis of axisymmetric structures compared to its WFE formulation for

1–dimensional waveguides as adopted in [87].

The FE model for the fluid–filled shell is here realised in ANSYS using 2 solid

structural brick elements (SOLID45) and 20 fluid elements (FLUID30), resulting
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in 30 DOFs after the reduction. The model includes the fluid structure interaction

at the interface between the fluid and the structure. The frequency Ω in the

numerical examples is the non–dimensional frequency Ω = ω/ωr where ωr is the

ring frequency for the cylindrical shell in vacuo given by equation (5.12).

Figure 6.2 shows the WFE predictions of the dispersion curves for mode or-

ders n = 0, 1, 2, 3, 4. The non–dimensional wavenumber kyR is considered. The

various waves can be associated with motion that is predominantly structure or

fluid–borne. It can be noticed that the dispersion characteristics when the struc-

ture is coupled with acoustical field are more complicated than the in vacuo case

(Figure 5.16) and coupling between the fluid and the shell affects the vibration

even at low frequency. To each circumferential mode there correspond distinct

axial wavenumbers, which can be real, imaginary or complex. They represent

propagating, evanescent or propagating decaying waves respectively. The com-

plex frequency spectra for the fluid–filled cylindrical shell are given in Figures

6.3–6.5 for circumferential orders n = 0, 1, 3. The n = 0 “breathing” mode and

the n = 1 “bending” mode are analysed since they are easily excited by fluid–

borne sources and hence they are of major importance for the vibration analysis

of pipes. The n = 3 mode is chosen as a representative example of a “lobar

mode”. Figures 6.3–6.5 show also the in vacuo dispersion curves for comparison.

The behaviour of the fluid–filled cylindrical shell for modes n = 0 and n = 1

was analysed in details in [142]. In [142] Fuller and Fahy originally obtained the

dispersion relation for a fluid–filled pipe using the Donnell–Mushtari equations of

motion. A short description of the dispersion curves is here given following the

physical interpretation discussed in [142].

The dispersion curves for the cylindrical shell in vacuo and filled with water

vibrating in the circumferential mode n = 0 are shown in Figure 6.3. As shown

in Figure 6.3(a) the in vacuo shell exhibits only two propagating waves at low

frequency. The first real branch for the in vacuo shell is a pure shear wave

while the second branch is an extensional wave at low frequency and it changes

into a flexural wave around the ring frequency. For the water–filled steel pipe

vibrating at n = 0, branch 1 in Figure 6.3(a) cuts–on as an acoustically slow

wave close in nature to a fluid wave in a rigid–walled while it approaches the

in vacuo flexural branch as the frequency increases. It can be noticed that the

presence of liquid in the pipe has very little effect on the characteristics of this

shear wave (branch 2). Branch 2 represents in fact a torsional mode whose motion

is a predominantly tangential and is therefore almost unaffected by the contained
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fluid. Branch 3 cuts–on as a structure–borne longitudinal wave. At Ω = 1 the

shell starts resonating as a ring. Hence, for Ω ≥ 1 the motion of the shell and the

fluid becomes strongly coupled due to rapid increase in radial vibration. Branch

3 thus turns into a fluid–type mode for Ω ≥ 1. At Ω = 0.96 branch 4 cuts–on

as a fluid–type mode, at Ω ≈ 1.5 it veers, resembling that of the corresponding

extensional structural wave, and then veers again sharply to approach a fluid–

born wave. At Ω = 1.47 branch 5 cuts–on as a fluid–type mode. The behaviour of

higher order branches show similarities. All these branches cut–on as a fluid wave,

turn to a structural extensional wave uncoupled from the fluid and then veer to

approach a fluid wave. For these higher wave modes, at the point where one

branch approaches a structural wave, the previous one changes to a fluid wave.

This behaviour can be explained considering that as the frequency is increased

the shell becomes less stiff in the radial direction. Hence there is a large coupling

between fluid and structure. The imaginary part of the dispersion curves in

Figure 6.3(b) also appears quite complicated. At low frequency the branches are

very similar to the rigid–walled duct modes. As the frequency increases the shell

becomes less stiff in the radial direction and coupling between fluid and shell

motion occurs. Complex waves cut–on, and cut–off frequencies appear at the

minima and the maxima of the imaginary branches. Fuller and Fahy showed in

[142] the existence in the imaginary plane of a complex branch at low frequency

which progresses with increasing frequency as a series of complex and imaginary

sections.

Figure 6.4 shows the dispersion curves for the n = 1 order for the in vacuo

and the water–filled shell. For higher order branches, the behaviour for mode

n = 1 is similar to that discussed for the case n = 0. However there are some

significant differences between Figures 6.3 and 6.4 at low frequency, i.e. Ω < 1.

Figure 6.4(a) shows only one propagating wave at low frequency. For the water–

filled pipe this first branch behaves like a beam type shell motion. At Ω = 0.62

a second branch cuts–on, which correspond to the first rigid walled mode for

n = 1. This second branch exhibits a complex cuts–off and there is a wave with

phase and group velocities of opposite sign. Higher branches are associated with

cross–section modes and start propagating at certain cut–on frequencies: branch

3 cuts–on at Ω ≈ 0.62, branch 4 at Ω ≈ 1.4 and branch 5 at Ω ≈ 1.72. Looking

at the imaginary plane in Figure 6.4(b), it can be seen that the second complex

branch in Figure 6.4(a) cuts–on from two evanescent waves.

The dispersion curves for circumferential mode order n = 3 are given in Figure
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6.5. Only one propagating wave exists below Ω = 1.5. For the water–filled pipe

this branch resembles that of the in vacuo shell. Waves of orders n > 1 can

propagate only above a certain frequency. The dispersion curves in Figure 6.5

shows similarities to the one for circumferential order n = 1 shown in Figure 6.3.
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Figure 6.1: FE model of a small rectangular segment of a fluid–filled cylindrical
shell.
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Figure 6.2: Real valued dispersion curves for a water–filled steel pipe, h = 0.1,
R = 0.4m, circumferential mode n = 0, 1, 2, 3, 4.
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Figure 6.3: Isotropic steel cylinder, h = 0.1, R = 0.4m. Dispersion curves
for circumferential mode n = 0: . . . . . . complex valued wavenumbers of the
water–filled cylinder; . . . . . . pure real and pure imaginary wavenumbers of the
water–filled cylinder; + + + + complex valued wavenumbers of the in vacuo cylinder;
+ + + + pure real and pure imaginary wavenumbers of the in vacuo cylinder.
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Figure 6.4: Isotropic steel cylinder, h = 0.1, R = 0.4m. Dispersion curves
for circumferential mode n = 1: . . . . . . complex valued wavenumbers of the
water–filled cylinder; . . . . . . pure real and pure imaginary wavenumbers of the
water–filled cylinder; + + + + complex valued wavenumbers of the in vacuo cylinder;
+ + + + pure real and pure imaginary wavenumbers of the in vacuo cylinder.
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Figure 6.5: Isotropic steel cylinder, h = 0.1, R = 0.4m. Dispersion curves
for circumferential mode n = 3: . . . . . . complex valued wavenumbers of the
water–filled cylinder; . . . . . . pure real and pure imaginary wavenumbers of the
water–filled cylinder; + + + + complex valued wavenumbers of the in vacuo cylinder;
+ + + + pure real and pure imaginary wavenumbers of the in vacuo cylinder.

126



Chapter 7. Wave Finite Element Method: application to the estimation of loss
factor

Chapter 7

Wave Finite Element Method:

application to the estimation of

loss factor

7.1 Introduction

In this chapter the WFE method is extended to account for viscoelastic materials,

enabling the prediction of dispersion, attenuation and damping behaviour when

inherent material damping is not negligible. In particular the WFE method is

applied to predict the loss factor of composite structures with constrained layer

damping (CLD) treatments. The method can be used to estimate quickly and

easily the wavenumbers and loss factors given the design parameters of composite

viscoelastic structures.

A brief literature review about the loss factor of CLD treatments is given

first. Section 7.3 introduces some characteristics of viscoelastic materials and

gives definitions of the modal loss factor. The last section concerns some nu-

merical examples, which include isotropic and laminated plate with CLD and an

asymmetric angle ply–laminated sandwich plate.

7.2 Constrained layer damping

Constrained viscoelastic layers are widely used as passive damping treatments to

reduce vibration and the noise radiated from the structures. They are realised

by bonding a layer of viscoelastic material between two other layers, which can

be metallic or fibre reinforced layered sheets.
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A classical analysis of CLD was carried out more than 40 years ago by Ker-

win [21]. After this work, Ungar and Kerwin, gave in [147] a formulation for the

loss factor in terms of energy, which has became the basis for the evaluation of

the loss factor and the parametric design of damped structures. Since then, a

number of works have been published to predict damping and to improve the

performance of passive constrained layer treatments applied to beams and plates,

e.g. [18, 121, 148, 149]. Most of the classical works about three–layer sandwich

beams and plates use the same basic assumptions about the shear–stress dis-

tribution in the structure. These assumptions are clearly pointed out in [150],

where Mead compared some of the classical theories proposed for the study of the

flexural vibration of damped sandwich beams. In some cases these assumptions

result in inaccurate predictions and more detailed models are required. In par-

ticular, transverse shear and rotational inertia could significantly influence the

dynamics of the structure at higher frequency. For example, in [151] vibrations

of unsymmetrical sandwich beams and plates with viscoelastic cores were studied

including the effect of longitudial inertia and shear deformation in the skins while

in [152] there is an extension of the well–known sixth order Mead and Markus

theory to include thickness deformation in the viscoelastic layer.

The level of damping that a structure with CLD treatment can achieve strongly

depends on the choice of the cross–section characteristics and a design strategy

can greatly improve the damping capability of structures with viscoelastic damp-

ing treatments [153, 154]. A proper choice of the viscoelastic material type, its

location and its thickness, the material characteristics of the constraining layers,

the laminate stacking sequence and the use of multi–layer damping configuration

can optimise the damping capability with respect to frequency and tempera-

ture without penalising the stiffness or mass of the structure. However, since

viscoelastic material properties are frequency and temperature dependent, para-

metric optimisation requires iterative algorithms and therefore simple methods

for fast numerical evaluation of the global damping.

Passive treatments are more efficient at higher frequencies, while semi–active

or active control methods might also be used to improve the damping prop-

erties at low frequency. These include, in particular, active constrained layer

damping, ACLD, treatments which consists of a layer of viscoelastic material

constrained by the host structure and a smart material, such as piezoelectric

material. There have been many studies to investigate the energy dissipation

mechanisms, control mechanisms and optimisation performances of ACLD, e.g.
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[155–157]. However, the high cost and complexity in implementation of ACLD

have made passive damping using viscoelastic layers the preferred choice in many

applications, ranging from aerospace, vehicle and marine structures to civil con-

structions. Moreover, these kinds of treatments are quite easy to apply and are

effective in dissipating energy with little influence on the structural stiffness and

strength.

Fibre reinforced materials are used extensively in many practical applications

because of their high strength–to–weight ratio compared to metallic materials.

In addition, fibre reinforced polymers exhibit better fatigue and corrosion perfor-

mance compared to steel or aluminium. Many structures are therefore realised

by alternating uniaxial plies in two or more directions of fibre reinforced material,

i.e. laminate structures. The damping in these structure derive mainly from the

resin matrix, which is often a polymer. The introduction of a viscoelastic core

layer is also widely used to improve their damping performance. In many cases,

e.g. detection of damage, noise transmission and so on, it is of importance to be

able to predict dispersion, attenuation and damping of laminated composites.

7.3 The loss factor

7.3.1 Definition of the loss factor

Viscoelastic materials are so called because they combine the properties of an

elastic material, for which all the energy stored during loading is returned as the

load is removed, and a viscous material, which does not return any of the energy

stored during loading. The physical mechanisms that describe the damping of

viscoelastic materials are quite a complicated subject and it is not the aim of this

study to explain it. However, for our purposes, it can be modelled considering

that, for pure elastic materials under a harmonic loading, the cyclic stress and

strain curves are in phase; the stress is proportional to the strain and their ratio

gives the elastic modulus. On the other hand, for a purely viscous material the

cyclic stress and strain are out of phase by π/2 and the stress/strain ratio is

defined as the loss modulus of the material. For viscoelastic materials the stress

and strain induced by a harmonic loading are out of phase by an angle between

0 and π/2 and therefore the modulus can be represented by a complex quantity.

The absolute value is given by the ratio of the amplitudes of the stress and

strain gives the elastic modulus while the phase angle between these two gives
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the material damping capacity. The complex elastic modulus is then

E∗ = E ′ + iE ′′ = E ′(1 + iη), (7.1)

where E ′ is the dynamic modulus of elasticity called the storage modulus (Young’s

modulus) while E ′′, the loss modulus, measures the internal losses. The material

loss factor is defined as

η = E ′′/E ′, (7.2)

where 0 ≤ arctan η ≤ π/2 is the phase angle between stress and strain. A short

overview on the nature of damping materials related to their applications for

passive damping control can be found in [158].

The loss factor is a suitable quantity to characterise the dissipated energy of a

structure treated with viscoelastic materials. Ungar and Kerwin in [147] defined

the loss factor of a viscoelastic system under harmonic excitation as

η =
1

2π

Energy dissipated in the system per cycle

Maximum amount of energy stored per cycle
. (7.3)

7.3.2 Definition of the loss factor for a structure including

viscoelastic components

Consider a general laminated plate, where each layer of the structure, including

the viscoelastic layers, is denoted with the subscript q. The material properties,

including the material loss factor, are assumed to be uniform in each layer. More-

over, the loss factor is assumed to be small. For motion in mode j, equation (7.3)

can be obtained in terms of “modal” strain energy, [158], to give

ηj =

N∑

q=1

ηqUj,q

Uj

(7.4)

where N is the total number of layers, ηq is the material loss factor of the qth

layer while Uj,q is the maximum strain energy stored in each layer for one cycle

of mode j. Equation (7.4) provides exact values only if the damping is uniformly

distributed along the the whole structure, that is when ηq is the same for each

layer. When the damping is not uniform, the loss factor evaluated by equation

(7.4) is only approximated since the modes of vibration are generally coupled.

However, the approximation has generally been found to be satisfactory [158].
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7.3.3 Modelling the loss factor using FEA

A hysteretic damping model is assumed to represent material damping. The

material properties are therefore modelled by considering complex components

in the material stiffness matrix. If the laminate is discretised using FEs, where

each FE is defined by the subscript q, the stiffness matrix for the whole laminated

structure is

K =
N∑

q=1

K′
q + iK′′

q = K′ + iK′′, (7.5)

where N is the total number of solid elements used in the FE discretisation

while K′
q and K′′

q are the real and imaginary stiffness matrix contributions of the

qth finite element to the global matrices K′ and K′′. Assuming time harmonic

solutions, the discretised equation of motion gives the complex eigenvalue problem

KQ = λMQ (7.6)

where λ is the diagonal matrix of generalised eigenvalues and Q is a matrix

whose columns are the corresponding eigenvectors. It is worth noting that the

stiffness matrix K is symmetric but not Hermitian while the mass matrix is

positive definite, symmetric and real. The eigenvectors Q in (7.6) are therefore

generally complex and not orthogonal with respect to the mass matrix M and the

stiffness matrix K′, that is Q∗K′Q and Q∗MQ are not diagonal matrices. This

physically means that there are energy exchanges between the modes and it is

not possible define a proper modal energy. However, an approximate formulation

for the modal loss factor can be obtained as shown in [159]. Consider the right

and left eigenvector matrices for the eigenvalue problem in equation (7.6), where

the left eigenvector matrix in this case is nothing else than the transpose of the

right one. For mode j and mode k

KQj = λjMQj; (7.7)

KQk = λkMQk. (7.8)

Transposing equation (7.8) gives

QT
k K = λkQ

T
k M. (7.9)

131



Chapter 7. Wave Finite Element Method: application to the estimation of loss
factor

Premultiplying equation (7.7) by QT
k and postmultiplying equation (7.9) by Qj

gives

QT
k KQj = λjQ

T
k MQj; (7.10)

QT
k KQj = λkQ

T
k MQj. (7.11)

Subtracting equation (7.10) and (7.11), one finds

(λj − λk)Q
T
k MQj = 0. (7.12)

Hence, when j 6= k

QT
k MQj = QT

k KQj = 0. (7.13)

QTKQ and QTMQ are now diagonal and the left and right eigenvectors are

said to be biorthogonal. In practise, the complex eigenvectors Qj are often ap-

proximated by the real eigenvectors Vj obtained for the equivalent conservative

system, that is when K′′ = 0 and the stiffness matrix is purely real, i.e. the

eigensolutions of

K′Vj = ω2
njMVj. (7.14)

The approximation is acceptable if K′′ is small. The complex eigenvalues λj of

equation (7.6) can be written as

λj = ω2
nj

(1 + iηj), (7.15)

where ηj is the modal loss factor of mode j. Using equation (7.5) for the complex

stiffness matrix, equation (7.6) can be rewritten as

ω2
j (1 + iηj) =

VT
j K′Vj

VT
j MVj

+ i
VT

j K′′Vj

VT
j MVj

. (7.16)

The real and imaginary part of equation (7.16) can be separated such that

ω2
j =

VT
j K′Vj

VT
j MVj

;

ω2
j ηj =

VT
j K′′Vj

VT
j MVj

,

(7.17)
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where the first equation in (7.17) is the well known Rayleigh quotient. Eliminating

ω2
j from equations (7.17) gives

ηj =
VT

j K′′Vj

VT
j K′Vj

(7.18)

or equivalently

ηj =

N∑

q=1

VT
j K′′

qVj

N∑

q=1

VT
j K′

qVj

, (7.19)

where Vj is the eigenvector associated at the jth undamped mode. The sum over

q in equation (7.19) gives the sum of the dissipated and stored energies. Equation

(7.19) has been frequently used to evaluate the global loss factor of structures with

components having different material properties such as laminated structures or

sandwich structures. It has been seen to predict the loss factor with satisfactory

approximation and to be simple in application.

7.3.4 Estimation of the loss factor using WFE

To apply the WFE method a small segment of the structure is taken and discre-

tised using solid FE. The viscoelastic characteristics of the composites are taken

into account by considering complex components in the material’s stiffness ma-

trix as in equation (7.5). Therefore the WFE formulation given in the section

3.2 applies where C = 0 and the stiffness matrix in equation (3.11) is complex as

shown in equation (7.5).

Wave propagation in viscoelastic media gives rise to frequencies and wavenum-

bers that can be real or complex. Forced wave propagation in the viscoelastic

structure leads to real frequencies and propagating, nearfield and oscillating but

highly decaying waves. All the wavenumbers, including those for propagating

waves, are complex. For the remainder of the chapter, however, complex nearfield

and oscillating but highly decaying waves are not considered. For propagating

waves, the imaginary part of the wavenumber describes the decay of the wave due

to damping. The dispersion curves for propagating waves are predicted by the

WFE method by solving the polynomial eigenvalue problem in equation (3.44)

when the (real) frequency and the propagation direction are specified. On the

other hand free vibrations give rise to complex frequencies and real wavenumbers.
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The real part of the frequency is the frequency of oscillation while the imaginary

part describes the decay of free vibration with time. Complex frequencies are

predicted by the solutions to the eigenproblem in equation (3.19) for free waves

with no applied tractions.

In the present chapter the loss factor can be obtained by WFE from equation

(7.19) and also considering the eigenproblem in equation (3.19) modified as

[(K − ω2
rM) − λM]q1 = 0, (7.20)

where the real propagation constant µx and µy = tan θµx and ωr, the real part

of the frequency, are prescribed. If ω2
i is neglected, the eigenvalues λ in equation

(7.20) are λ = i2ωrωi, where ωi is the imaginary part of the frequency. Once the

eigenproblem in equation (7.20) is solved, the loss factor η can be approximated

as

η = 2
ωi

ωr

. (7.21)

7.3.5 Estimation of the loss factor using WFE: inclusion

of frequency dependent material properties

The properties of viscoelastic materials are influenced by many parameters. They

include frequency, temperature, static pre–load, aging and so on. The most

important of these are the temperature and frequency. Hence the stiffness matrix,

and consequently the material loss factor, is given as a function of the frequency

and temperature, i.e.

K(ω, T ) =
N∑

q=1

K′
q(ω, T ) + iK′′

q(ω, T ). (7.22)

Suppose now that only the constrained viscoelastic layer has material properties

that are frequency dependent for a fixed temperature T0. The viscoelastic mate-

rial is considered isotropic with constant Poisson’s ratio ν and density ρ at T0.

Let q̄ be the constrained viscoelastic layer. Since the stiffness matrix is propor-

tional to the Young’s modulus E (for constant ν), the contribution to the global

stiffness matrix K(ω, T ) of the viscoelastic layer q̄ at a frequency ω will be given

by [84]

Kq̄(ω, T0) =
E(ω)

E(ω0)
K′

q̄(ω0, T0)[1 + iηq̄(ω, T0)] (7.23)
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where ηq̄(ω, T0) is the frequency dependent loss factor and K′
q̄(ω0, T0) is the stiff-

ness matrix of the viscoelastic layer q̄ evaluated at ω0 and neglecting damping.

For layers q 6= q̄ we suppose material that are generally orthotropic and whose

properties are frequency and temperature independent; hence

EII = EII(1 + iηII); I = 1, 2, 3;

G12 = G12(1 + iη12);

G23 = G23(1 + iη23);

G13 = G12(1 + iη13).

The contribution to the global stiffness matrix of the qth layer is then

Kq = K′
q + iK′′

q q 6= q̄. (7.24)

From equations (7.23) and (7.24), the global stiffness matrix in equation (7.22)

can be rewritten in its real and imaginary parts as

K
′
(ω, T0) =

N∑

q=1,q 6=q̄

K′
q +

E(ω)

E(ω0)
Kq̄(ω0, T0)

K
′′
(ω, T0) =

N∑

q=1,q 6=q̄

K′′
q + η(ω, T0)q̄

E(ω, T0)

E(ω0, T0)
Kq̄(ω0, T0)

(7.25)

and the global loss factor (7.19) at frequency ω, is

ηj(ω, T0) =
Vj

TK
′′
(ω, T0)Vj

Vj
TK

′
(ω, T0)Vj

(7.26)

7.4 Numerical examples

In this section some numerical examples are presented to illustrate the application

of the WFE method for damping prediction of composite structures.

7.4.1 Aluminum beam with CLD treatment

As a first example, the WFE results are compared with those obtained by Kerwin

[21], and by Ghinet and Atalla [22], for the flexural loss factor of an aluminium

beam with an attached constrained layer damping treatment. A schematic rep-

resentation of the cross section of the beam is given in Figure 7.1.
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It can be assumed that the mechanism of energy dissipation in the viscoelastic

layer is predominantly due to the shear strain that it undergoes during the vi-

bration of the whole structure. That is, according to [149], the energy dissipated

per cycle per unit length and width is

Ed = πh2G
′′γ2

2 , (7.27)

where G′′ is the imaginary part of the shear modulus of the viscoelastic material

while γ2 is the amplitude of the induced shear strain in the viscoelastic layer.

The analytical expression for γ2 can be quite complicated, however following

[18], under some assumptions (the shear strain is negligible in the skins, which

experience pure bending; small displacement; longitudinal stress negligible in the

core; the viscoelastic layer thickness remains constant) it can be approximated

by

γ =
utc − ubc

h2

+
∂w

∂x
, (7.28)

where the meaning of symbols is given in Figure 7.2. Since

utc = ut + h1
2

∂w
∂x

ubc = ub − h3
2

∂w
∂x

,

it follows that

γ =
ut − ub

h2

+
1 + (h1 + h3)/2

h2

∂w

∂x
. (7.29)

The global damping loss factor was estimated by Kerwin in [21] assuming

the approximations given above. Other simplifying assumptions were also made

in [21] to obtain an approximate analytical formulation for the loss factor of

bending waves. In particular equation (IV–5) in [21], is accurate only for a thin

constrained layer damping treatment, that is h3/h1 ≦ 0.2. The data for the elastic

properties of the damping layer in the numerical examples are extrapolated from

the frequency dependent real and imaginary part of the shear modulus given in

[21]. Three cases are studied. In each, the thickness of the constraining layer is

changed as shown in Table 7.1, while the bottom layer and the core thicknesses

are h1 = 3.175mm h2 = 0.254mm respectively. The FE model is realised using

five SOLID45 elements to discretise the bottom layer, one SOLID45 element

to discretise the viscoelastic core and one SOLID45 element to discretise the

upper layer, resulting in a model with 24 DOFs after the WFE reduction. The
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Bar W X Y

h3 0.1524 mm 0.254 mm 0.508 mm

Table 7.1: Thickness of the constraining layer for the three–layer aluminum beam
configuration

convergence of the WFE method has been checked for this example. Figure 7.3

shows a comparison between the loss factor obtained by the WFE method, the

loss factor obtained by Kerwin, equation (IV–5) in [21] and by Ghinet and Atalla

(data provided by Ghinet) [22]. To evaluate the loss factor Ghinet and Atalla used

a discrete laminate method where the displacement field of any discrete layer was

described by the Reissner–Mindlin theory. It can be seen that the WFE results

are in good agreement with other results. The slight differences can be explained

in part considering the a priori assumptions, which concern the variation of stress

and strain through the thickness in [21] and [22].

The influence of the thickness of the outer layers is now analysed. With

reference to Figure 7.4 several configurations are considered for which the distance

from the middle plane of the composite plate and the middle plane of the damping

layer d is increased. The thickness of the top and bottom layers vary, but h1 +h3

remains constant. The material properties of the plate are the same as that used

in the previous example. When d = 0, the thicknesses are h1 = h3 = 1mm and

h2 = 0.1mm. The flexural loss factor is shown in Figure 7.5 for four different

configurations: d = 0mm, d = 0.25mm, d = 0.5mm and d = 0.75mm. It can

be seen that the loss factor decreases as the offset d increases. When the two

skins have the same thickness, the shear deformation in the viscoelastic core is

maximised and therefore the loss factor is a maximum with respect to the other

configurations.

7.4.2 Laminated plate with CLD treatment

The WFE approach can be applied equally to laminates of arbitrary complexity,

with an arbitrary number of layers. In this example a laminated plate with a CLD

treatment is considered. The skin material material properties are given in Table

7.2. The plate cross section configuration is shown in Figure 7.1. The global

damping performance of the laminate is basically affected by two causes: the

fibre orientation with respect to the direction of propagation and the shear strain

in the viscoelastic layer induced by the relative strain of the top and bottom
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Ex = 119GPa Ey = 8.67GPa Ez = 8.67GPa

Ez = 8.67GPa Gyz = 3.9GPa Gxy = Gxz = 5.18GPa

νxy = νxz = 0.31 νyz = 0.02 ρ = 1389kg/m3

ηxy = ηxz = ηx = 0.118% ηyz = 0.846% ηy = ηz = 0.620%

Table 7.2: Laminated plate: material properties

constraining layers. The first cause is explained because the damping of the

fibre reinforced material derives essentially from the resin matrix while the the

second is due to the mechanism we assume of energy dissipation in the viscoelastic

layer, equation (7.27). Since the relative stress–strain distribution in the skins

influences the shear strain in the core, it is expected that a proper choice of

the fibre orientation, stacking sequence and viscoelastic material can optimise

the loss factor. As a first case the effect of the viscoelastic material properties

and the influence of the fibre orientation on the flexural loss factor are analysed

assuming the configuration [0/d/0], where d refers here to the damping layer.

Two viscoelastic materials are considered, named material N.1 and material N.2.

The material properties for material N.1 are obtained from Figure 6 in [21] at a

temperature of 25oC. For material N.2, the curves for the frequency dependence

of the shear modulus and the loss factor are given in Figures 7.6 and 7.7. The

geometrical parameters of the sandwich construction are h1 = 1mm, h2 = 0.1mm

and h3 = 1mm. Figures 7.8 and 7.9 show the flexural loss factors for propagation

directions θ = 0, θ = π/4 and θ = π/2 using the viscoelastic materials N.1 and

N.2 respectively. It can be observed that the loss–factor behaviour is influenced

by the fibre orientation and by the choice of the viscoelastic material. Suppose

we are interested in the case in which the propagation direction is primarily

in the θ = 0 direction and the frequency range of interest is between 500Hz

and 1kHz. This simplified case study is here considered in order to do an early

stage study and to show how the WFE method can be applied to optimise the

damping characteristic of laminated constructions. Considering the frequency of

range of interest, Figures 7.8 and 7.9 show that the loss factor is maximised when

material N.1 is used and the propagation direction is θ = π/2. Equivalently, if

the propagation direction that we are considering is θ = 0, the lay–up [90/d/90]

is here taken as optimised with respect to the global loss factor.

As a further analysis, the flexural loss factor for laminates with lay–ups

[0/90/d/90/0], [45/90/d/90/45] and [−45/90/d/90/ − 45], is compared with the
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flexural loss factor for the case [90/d/90] in Figure 7.10. It can be noticed that

between 500Hz and 1kHz, a slight improvement in the loss factor is obtained if

the configuration [0/90/d/90/0] is used.

The influence of symmetric and antisymmetric ply–stacking configuration on

the loss factor is also evaluated. Figure 7.11 and 7.12 show the global loss

factor versus frequency for [0/90/d/90/0], [0/90/d/0/90] and [45/90/d/90/45],

[45/90/d/45/90] laminated configuration. From Figures 7.11 and 7.12 it is seen

that the symmetric laminate has higher damping for the cases investigated.

7.4.3 Asymmetric angle–ply laminated sandwich plate

The two outer skins of the asymmetric angle–ply laminated sandwich considered

in this section comprise 4 sheets of 0.25mm thickness of glass–epoxy material.

The stacking sequence of the bottom and the top skins are [45/ − 45/ − 45/45]

and [−45/45/45/−45] respectively. The core is a 5mm thick foam core. Material

properties for the skins are given in Table 7.2 while the core material properties

are: E = 0.18GPa, ρ = 110kg/m3, ν = 0.286 and η = 10%. The FE model for

the structure is realised using 4 SOLID45 elements for each skin and 5 SOLID45

elements to discretise the core, resulting in 13 elements. The reduced WFE model

therefore has 42 DOFs. Figure 7.13 shows the real and imaginary parts of the

propagation constant, kL, versus the frequency for propagating waves (i.e. those

waves which would be true propagating waves if the damping were zero). The

first three branches in Figure 7.13(a) represent the first quasi–flexural, quasi–

shear and quasi–extensional waves propagating in the laminated sandwich. At

higher frequency, further propagating waves cut–off, which involve higher order

modes across the thickness of the plate. It can be noticed that the dispersion

characteristics are very complicated at high frequency, involving coupling between

the various wave modes, veering and so on. Comparison with the results obtained

by solving the eigenproblem in equation (3.19) for the undamped case has shown

that the material damping has a negligible effect on the real dispersion curves.

The loss factor for the first quasi–flexural wave in the laminated sandwich

plate is evaluated using both the formulation in equation (7.26) and the eigen-

values obtained from (7.20). Propagations direction θ = 0o and θ = 45o are

considered. The results are given in Figure 7.14. It can be noticed that there is

good agreement between the results found using the two methods of estimating

the loss factor.

In Figure 7.15, the loss factor of the laminated sandwich plate is given as
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function of the propagation direction θ at 5kHz and 10kHz. The results are

obtained solving equation (7.20). It can be observed that the damping is affected

by the direction of propagation but not by a great deal.
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Figure 7.1: Schematic representation of the cross section of a three-layer sandwich
structure.
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Figure 7.2: Deformation of the three layer sandwich structure with no shear
deformation in the top and bottom layers.
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Figure 7.3: Loss factor for the first flexural wave in the aluminum beam with
CLD treatment: · · · · · · WFE results; ——– theory of [22]; ++++ theory of [21].
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Figure 7.4: Schematic representation of the cross section of a three–layer non–
symmetric sandwich structure.
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Figure 7.5: Flexural loss factor of an aluminum plate with constrained layer
damping treatment: effect of the thickness of the outer layers.
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Figure 7.6: Viscoelastic material N.2: shear modulus as a function of frequency.
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Figure 7.7: Viscoelastic material N.2: loss factor as a function of frequency.
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Figure 7.8: Influence of the propagation direction on the flexural loss factor:
laminated plate [0/d/0], material N.1.
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Figure 7.9: Influence of the propagation direction on the flexural loss factor:
laminated plate [0/d/0], material N.2.
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Figure 7.10: Influence of different laminate lay–up on the flexural loss factor:
laminated plate [90/d/90], [0/90/d/90/0], [45/90/d/90/45]. Propagation direc-
tion θ = 0. Material N.1.
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Figure 7.11: Influence of the symmetric [0/90/d/90/0] and antisymmetric
[0/90/d/0/90] lay–up on the flexural loss factor, θ = 0. Material N.1.
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Figure 7.12: Influence of a symmetric [45/90/d/90/45] and antisymmetric
[45/90/d/45/90] lay–up on the flexural loss factor, θ = 0. Material N.1.
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Figure 7.13: Dispersion curves for the laminated sandwich plate, θ = 0.
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Figure 7.14: Loss factor for the first flexural wave in the laminated sandwich plate
as a function of frequency: · · · · · · θ = 0 and ++++ θ = π/4, results obtained
from equation (7.19); ——– θ = 0 and - · - · - · θ = π/4, results obtained by solving
equation (7.20).
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Figure 7.15: Loss factor for the first flexural wave in the laminated sandwich
plate as a function of the propagation direction: ++++ 5kHz and · · · · · · 10kHz
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Chapter 8

Concluding remarks

In this thesis a method for the numerical prediction of wave characteristics of 2–

dimensional structures using standard FE analysis has been presented. The struc-

tures are homogeneous in 2 dimensions but the properties might vary through the

thickness. The method involves post–processing the mass and stiffness matrices

of a small segment of the structure, produced using conventional FE methods.

Emphasis was placed on a 4-noded rectangular segment, although other element

types can be used. Periodicity conditions were then applied using the approach

developed by Abdel-Rahman [79] in the context of FE analysis of periodic struc-

tures. Eigenproblems of various forms then arise, the form depending on the na-

ture of the problem at hand. These eigenproblems are the kernel of the method

and might be linear, quadratic, polynomial or transcendental eigenproblems. The

solutions sought provide the frequency evolution of the wavenumber (dispersion

curves) and the wavemodes, which are related to the cross–section motion. Al-

though not analysed in this thesis, the forced response can be determined from

these eigensolutions. Further technical details can be found in [77] for the forced

response. An alternative approach to the forced response is described in [84].

Numerical issues were discussed. It has been found that issues arise because

the original structure is continuous while the WFE model is a lumped, discrete,

spring–mass structure which is spatially periodic. First, there is the issue of spa-

tial discretisation and consequent aliasing effects: the frequency of propagation is

a periodic function of the real propagation constant µ. In practical applications

this is not important since Real(µ) ∈ [−π, π] is taken as the most convenient

interval in which to examine the variation of the frequency. This restriction is

not as arbitrary as it might appear since it contains a complete period of the

frequency and avoids ambiguity in the wavenumbers at the same time. Moreover,
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in common with conventional FEA, FE discretisation errors become significant

if the size of the element is too large [11]. As a rule-of-thumb, there should be

at least 6 or so elements per wavelength. Hence the FE discretisation is known

to be inaccurate for µ > π/3 or thereabouts. It has also been observed that

the WFE model exhibits pass- and stop-bands structure, in which disturbances

can propagate freely only within certain frequency ranges, otherwise they decay

with distance. For a 2-dimensional element with n DOFs per node there will

be n propagation surfaces. The issue is to determine which ones are artifacts

of the spatial periodicity rather than being representative of wave motion in the

continuum. Which of these is the case was determined by sensitivity analysis.

The method has been applied to several examples including isotropic, or-

thotropic, laminated and sandwich plates and cylindrical shells, fluid–filled cylin-

drical shells and plates with constrained layer damping treatments. The FE

software ANSYS was used to obtain the mass and stiffness matrices of a small

segment of the structure. One aim was to validate the approach in situations

for which analytical solutions are well established. Another aim was to apply

the method to situations where no analytical solutions are available. Of partic-

ular interest was the case of either asymmetric or symmetric angle–ply laminate

sandwiches since the analytical approach for these types of panels is extremely

complicated. Various interesting wave propagation phenomena have been ob-

served, particularly concerning cut–off and bifurcations between various wave

modes at high frequencies. Accurate predictions of the dispersion relations have

been found at negligible computational cost. The application of the method has

been seen to be straightforward even in complicated cases. In the analytical ap-

proach, material symmetry relative to the coordinate axis allows eigensystems to

be simplified. On the contrary, the WFE technique enables any kind of stack-

ing sequence for the composite laminate to be analysed with the same degree of

simplicity. The dispersion curves have been readily evaluated for high frequen-

cies and for different propagation directions. Mesh convergence studies, carried

out for the examples analysed, have shown the number of elements required to

discretise the cross–section is generally small.

In summary, the WFE approach involves the systematic post-processing of

element matrices typically found using a commercial FE package, in this case

ANSYS. The size of the numerical model is very small - laminates typically in-

volve about 3 degrees of freedom per layer. This method is particularly appealing

at mid to high frequencies, when the size of the structure is large compared to
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the wavelength.

The main advantages of the technique can be thus summarised as follows:

⋄ the computational cost becomes independent of the size of the struc-

ture since the method requires the treatment of a small FE model

whose size is related to the cross–section dynamic within the frequency

band of interest;

⋄ the meshing capabilities and the wealth of existing element libraries

of commercial FE packages can be exploited. Hence complicated con-

structions can be analysed in a straightforward and systematic man-

ner;

⋄ making use of wave content, the WFE approach enables the wave

characteristics to be evaluated up to high frequencies;

⋄ the formulation is general and can be applied to any kind of homo-

geneous structure. In particular the WFE approach can be applied

equally to composite laminates of arbitrary complexity with the same

degree of simplicity;

⋄ the technique is particularly appealing for free wave analysis.

Current and future work concerns issues such as:

⋄ transmission loss calculation;

⋄ optimisation of constrained layer damping treatments;

⋄ wave propagation in fluid–filled cylindrical shell with internal mean

flow;

⋄ calculation of reflection and transmission coefficients for complicated

joints in structures;

⋄ evaluation of the response to external loads such as point forces or

random pressure fields.
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Mass and stiffness matrices of a thin rectangular isotropic

plate bending element

A rectangular element with four node points is considered. The nodes are num-

bered as in Figure 3.4. Each node has three degrees of freedom: displacement

normal to the plane of the plate and two rotations in the x and y directions. The

polynomial displacement function is a complete cubic to which two quartic terms

are added. More details can be found in [11]. The mass and stiffness matrices are

here shown since typographical errors have been found in [11]. E, ρ, and ν are

the Young’s modulus, density and Poisson’s ratio, h is the plate thickness and

Lx, Ly are the element dimensions in the x and y directions. In the following

ax = Lx/2, ay = Ly/2, A = ax/ay and B = ay/ax.

The mass matrix is

M(
ρaxayh

6300
)

[
M11 MT

21

M21 M22

]

where

M11 =




3454 922 ay −922 ax 1226 398 ay 548 ax

922 ay 320 ay
2 −252 ax ay 398 ay 160 ay

2 168 ax ay

−922 ax −252 ax ay 320 ax
2 −548 ax −168 ax ay −240 ax

2

1226 398 ay −548 ax 3454 922 ay 922 ax

398 ay 160 ay
2 −168 ax ay 922 ay 320 ay

2 252 ax ay

548 ax 168 ax ay −240 ax
2 922 ax 252 ax ay 320 ax

2




;
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M21 =




394 232 ay −232 ax 1226 548 ay 398 ax

−232 ay −120 ay
2 112 ax ay −548 ay −240 ay

2 −168 ax ay

232 ax 112 ax ay −120 ax
2 398 ax 168 ax ay 160 ax

2

1226 548 ay −398 ax 394 232 ay 232 ax

−548 ay −240 ay
2 168 ax ay −232 ay −120 ay

2 −112 ax ay

−398 ax −168 ax ay 160 ax
2 −232 ax −112 ax ay −120 ax

2




;

M22 =




3454 −922 ay 922 ax 1226 −398 ay −548 ax

−922 ay 320 ay
2 −252 ax ay −398 ay 160 ay

2 168 ax ay

922 ax −252 ax ay 320 ax
2 548 ax −168 ax ay −240 ax

2

1226 −398 ay 548 ax 3454 −922 ay −922 ax

−398 ay 160 ay
2 −168 ax ay −922 ay 320 ay

2 252 ax ay

−548 ax 168 ax ay −240 ax
2 −922 ax 252 ax ay 320 ax

2




.

The stiffness matrix is

K =
Eh3

48(1 − ν2)axay




K11 KT
21 KT

31 KT
41

K21 K22 KT
32 KT

42

K31 K32 K33 KT
43

K41 K42 K43 K44




where

K11 =




4 B2 + 4 A2 + 14
5
− 4

5
ν

(
4 A2 + 2

5
+ 8

5
ν
)
ay

(
−4 B2 − 2

5
− 8

5
ν
)
ax

(
4 A2 + 2

5
+ 8

5
ν
)
ay

(
16
3

A2 + 16
15

− 16
15

ν
)
ay

2 −4 ν ax ay

(
−4 B2 − 2

5
− 8

5
ν
)
ax −4 ν ax ay

(
16
3

B2 + 16
15

− 16
15

ν
)
ax

2


 ;
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K21 =




−4 B2 + 2 A2 − 14
5

+ 4
5
ν

(
2 A2 − 2

5
− 8

5
ν
)
ay

(
4 B2 + 2

5
− 2

5
ν
)
ax

(
2 A2 − 2

5
− 8

5
ν
)
ay

(
8
3
A2 − 16

15
+ 16

15
ν
)
ay

2 0
(
−4 B2 − 2

5
+ 2

5
ν
)
ax 0

(
8
3
B2 − 4

15
+ 4

15
ν
)
ax

2


 ;

K31 =




−2 B2 − 2 A2 + 14
5
− 4

5
ν
(
−2 A2 + 2

5
− 2

5
ν
)
ay

(
2 B2 − 2

5
+ 2

5
ν
)
ax

(
2 A2 − 2

5
+ 2

5
ν
)
ay

(
4
3
A2 + 4

15
− 4

15
ν
)
ay

2 0
(
−2 B2 + 2

5
− 2

5
ν
)
ax 0

(
4
3
B2 + 4

15
− 4

15
ν
)
ax

2


 ;

K41 =




2 B2 − 4 A2 − 14
5

+ 4
5
ν
(
−4 A2 − 2

5
+ 2

5
ν
)
ay

(
−2 B2 + 2

5
+ 8

5
ν
)
ax

(
4 A2 + 2

5
− 2

5
ν
)
ay

(
8
3
A2 − 4

15
+ 4

15
ν
)
ay

2 0
(
−2 B2 + 2

5
+ 8

5
ν
)
ax 0

(
8
3
B2 − 16

15
+ 16

15
ν
)
ax

2


 ;

K22 = IT
3 K11I3; K32 = IT

3 K41I3; K33 = IT
1 K11I1;

K42 = IT
3 K31I3; K43 = IT

1 K21I1; k44 = IT
2 K11I2;

I1 =




−1 0 0

0 1 0

0 0 1


 ; I2 =




1 0 0

0 −1 0

0 0 1


 ; I3 =




1 0 0

0 1 0

0 0 −1


 .

154



Appendix

Appendix B

Newton’s method for functions of complex variables

Consider a function f(z) = u(x, y)+iv(x, y) where z = x+iy ∈ C with (x, y) ∈ R
2.

To apply the Newton method one need to calculate f(z)/f ′(z). Considering the

Cauchy-Riemann equations (ux = vy and uy = −vx) we can write:

f(z)

f ′(z)
=

u + iv

ux + ivx

=
(uux + vvx) + i(uuy + vvy)

u2
x + v2

x

→

→ 1

u2
x + v2

x

(
uux + vux

uuy + vvy

)
.

(8.1)

Therefore the “next iteration” of the Newton method is:

zk+1 = zk −
f(zk)

f ′(zk)
→ zk −

1

u2
x + v2

x

(
uux + vux

uuy + vvy

)
. (8.2)

Since the absolute value of f is F (x, y) = |f(x + iy)| =
√

u2 + v2, differentiable

except where f(z) = 0, and the gradient of F is

∇F =
1√

(u2 + v2)

(
uux + vux

uuy + vvy

)
, (8.3)

the Newton method for function of complex variable can be explained as a gra-

dient method for the absolute value of the function f .

The geometrical interpretation is analogous to the real case: the “next iter-

ation point” in the method is in fact the intersection between the (x, y) plane,

the tangent plane of |f | at the point (zk, |f(zk)|) and the vertical plane passing

through zk which contain ∇|f |(zk).

Sufficient conditions for the existence of the solution and the convergence of

the Newton’s process are given by the Kantorovich theorem, see [102].
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Appendix C

Coefficients of the dispersion relation in equation (5.14)

obtained from the Flügge equations of motions for a cylin-

drical shell

Coefficients of the dispersion relation in equation (5.14) are obtained for a cylin-

drical shell of thickness h, mean radius R, Poisson’s ratio ν. In the following

Ω is the nondimensional frequency Ω = ω/ωr where ωr is the ring frequency in

equation (5.12), n is the circumferential mode order and h = h/(R
√

12) is a non

dimensional thickness.

D8(Ω) =
1 − ν

2
(h

2
+ 2 h

4 − 3 h
6
)

D6(Ω) = 2 h
2
ν 1−ν

2
+ 6 h

4
ν 1−ν

2
+ h

2
n2(−1 − 2 1−ν

2
− 1−ν

2

2
+ 1+ν

2

2
)+

+h
4
n2(1 − 6 1−ν

2
− 6 1−ν

2

2 − 2 1+ν
2

3−ν
2

+ 3−ν
2

2
) − 9 h

6
n2 1−ν

2

2
+

+Ω2h
2
(1 − h

2
+ 1−ν

2
+ 3 1−ν

2
h

2
);

D4(Ω) = 1−ν
2

+ 4 1−ν
2

h
2
+ 3 1−ν

2
h

4 − ν2 1−ν
2

− 3 h
2
ν2 1−ν

2
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2
n2(−2 ν − 2 1−ν

2
+

+2 ν 1−ν
2

2
+ 2 1+ν

2
− 2 3−ν

2
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2

3−ν
2

) + h
2
n4(2 + 2 1−ν

2
+ 2 1−ν

2

2 − 2 1+ν
2

2
)+

+h
4
n2(−6 1−ν

2
+ 6 ν 1−ν

2

2
) + h

4
n4(6 1−ν

2
+ 8 1−ν
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2 − 1−ν
2

3 − 2 1−ν
2

1+ν
2

3−ν
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+
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2
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6
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2
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2
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D2(Ω) = n2ν2 − n2 1−ν
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D0(Ω) = 1−ν
2

(h
2
n4 − 2 h

2
n6 + h

2
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4
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4
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