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1. General Introduction  3 

 

In 1966 Trofimenko first reported the synthesis of a class of molecules that would become a 

precious ligand system in modern coordination chemistry: tris(pyrazol-1-yl)borate anions (Tp 

and analogs) 1,2. He defined this discovery "a new and fertile field of remarkable scope". Like 

the pincer of a scorpion, these versatile tripodal ligands generally bind metal centers with 

nitrogen atoms from two pyrazole rings attached to the central boron atom; the third pyrazole 

attached to boron rotates forward like a scorpion's tail to "sting" the metal; hence the name of 

“scorpionates”3-7 (Figure 1.1). 

 

 

 

Figure 1.1 Illustration of the analogy between Tp, the first scorpionate ligand, and a scorpion. 

 

As regards the coordination properties, we are dealing with ligands that, as a result of their 

trigonal nature, preferably link to metal ions by occupying a trigonal face of a coordination 

polyhedron (fac binding), as a tetrahedron or an octahedron, so that the T-shaped coordination 

mode (mer binding) is precluded (Figure 1.2). 

 

 

 

Figure 1.2 Comparison between (a) the fac coordination of a κ3 tripodal ligand and (b) the mer 

binding of a κ3 pincer ligand.8 
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In general, however, tris(pyrazolyl)borates include a wide set of coordination modes in 

addition to the typical κ3-N,N’,N’’9 (Scheme 1.1). They can behave also as tridentate κ3-

N,N’,B-H donors10 with a borohydride moiety linked to the metal, as bidentates κ2-N,N’11-13 

or κ2-N,B-H14-16 and, more rarely, as κ1 and “κ0“ (i.e. as uncoordinated counterion).17,18 

Higher hapticities (κ6 and occasionally κ4 and  κ5) are possible in case the substituents in 3-

position of the pyrazole rings (Scheme 1.2) contain additional donor atoms.19,20 

 

 

 

Scheme 1.1 More common coordination modes of Tps, alternative to κ3-N,N’,N’’. 

 

The coordination properties of Tp ligands (Tps) strictly depend on the steric and electronic 

effects of the substituents on pyrazoles, which are usually located on C3 and C5 of each 

heterocycle21 (see Scheme 1.2). 

 

 

 

Scheme 1.2 
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In particular, the steric hindrance exerted on the metal center mainly depends on the 

substitution on C3 of each pyrazole and it was quantified by Trofimenko, who measured the 

cone angle (ϑ)21 of different TpX ligands22-24 (X indicates the C3 substituent). Clearly, larger 

cone angles favor the formation of [TpXML] complexes over [TpX
2M] ones (M = metal, L = 

co-ligand). It is worth of note that the steric bulk on C3 has the result of creating a 

hydrophobic pocket around the metal ion, which may affect its reactivity with other species 

(e.g. substrates, co-ligands).25 As regards the electronic effects of the substituents, the 

electron-donation of the ligands to the metal is affected by them in analogy to what happen in 

organic chemistry for substituted hydrocarbons.21 

The definition of scorpionates has been extended to tripodal ligand analogs to 

tris(pyrazolyl)borates with different donor groups and bridging atoms. Central atoms other 

than boron, such as carbon, silicon,26,27 germanium and tin,28 aluminium, gallium and 

indium,29 phosphorus30-32 and nitrogen33,34, possibly affecting the total charge of the ligand, 

have been reported (Scheme 1.3), even though the most studied classes of scorpionates are the 

Trofimenko’s B-centered tris(pyrazol-1-yl)borate derivatives and the C-centered 

poly(pyrazol-1-yl)alkane derivatives.35-40 Their coordination properties with s,p-block 

elements41 and transition metals have been  reviewed.42-45 

 

 

Scheme 1.3 Stylized examples of scorpionate ligands with different central atoms/groups. 
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In general, independently from the nature of the bridging atom, two families of scorpionate 

ligands may be distinguished, namely homoscorpionates and heteroscorpionates, according to 

the presence of one or more types of metal binding groups, respectively. We are dealing not 

only with different substituted pyrazoles5,46, but also with other types of heterocycles 

(possibly with different donor atoms), such as methimazole,47,48 indole,49 indazole50, 

pyridine,34 triazole51 and others, and even with acyclic donor groups.52-54 As an example, three 

classes of B-centered tripods are reported in Scheme 1.4, the classical TpR2 in comparison 

with the soft analogs TmR 48 and TrR,R1,55 containing respectively methimazole and thioxo-

triazole as donor ‘arms’. 

 

 

Scheme 1.4 

 

As regards the synthesis of scorpionates, we focus on the two major classes, i.e. tris(pyrazol-

1-yl)borate and poly(pyrazol-1-yl)methane derivatives. In particular, B-centered Tps and 

analogs can be prepared most easily by the neat reaction of a heterocycle (e.g. pyrazole) with 

a borohydride anion in a temperature-controlled solvent-free reaction, but even in presence of 

dry solvents as THF and toluene (Scheme 1.5).  

 

 

Scheme 1.5 
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Whereas the synthesis of B-centered homoscorpionates is quite plain, the preparation of the 

homologous heteroscorpionates (which implies the employment of a mixture of different 

heterocycles)46,56 is not always successful, due to the scarce control achievable on the 

substitution grade on boron. Preparation of heteroleptic scorpionates is simpler in the case of 

carbon as central atom of the tripod, because of the greater variability of carbon chemistry 

with respect to boron one. Tris(pyrazol-1-yl)methane35-38,57-62 and bis(pyrazol-1-

yl)methane39,40 derivatives are mainly prepared as shown in Scheme 1.6. 

 

 

 

Scheme 1.6 

 

The wide use of scorpionate ligands in coordination chemistry is due to their reliability and 

accountability as “spectator ligands”,9 which normally do not interfere with the reaction 

scenarios occurring at the metal centers. Because we are dealing with polydentate ligands, 

which possibly impose steric hindrance on the metal, their role is that of blocking certain sites 

and to leave a specific set of sites available for the “actor ligands”, so that the desired 

chemistry can occur. Thus, scorpionates are inclined only to modulate and tune the electronic 
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and steric properties of the metal ion and of the co-ligands, without taking part to the 

reactivity of the complexes. Studies about the effects of the presence of scorpionates on the 

rate of co-ligand substitution in metal complexes are reported in literature.63 

The most important applications of the metal-scorpionate complexes are based on the 

behaviour of these tripodal molecules as spectator ligands. More specifically, the main fields 

of application can be grouped in four categories: biomimetics, catalysis, material science and 

production of radiopharmaceuticals. 

 

1) As regards biomimetics, many metal-scorpionate complexes behave as structural and/or 

functional models for active sites of metalloproteins or metalloenzymes. In fact, Tp and 

analogs (broadly speaking) would mimic the donor groups of the protein framework, which 

coordinate the metal ion as a spectator, only affecting its electronic and steric properties, and 

without directly taking part to the reactivity of the substrates. In particular, pyrazole groups, 

and more appropriately imidazole ones, model the nitrogen-donor hystidine residues of the 

protein, whereas more soft ‘arms’ (as methimazole) mimic the S-cysteine residues. Many 

works regard the modeling of active sites containing late transition-metals, such as zinc (e.g. 

Scheme 1.7),8,64-68 copper21,69-73 or iron,74-76 even though the biomimetics of vanadium,77 

molybdenum,78-80 tungsten81,82 and manganese83,84 has been also studied. 
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Scheme 1.7 Tp-zinc-hydroxide complexes (b) mimicking the active site of carbonic anhydrase (a).85-88 
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A peculiar case is represented by the structural and functional mimics of T1 sites of blue 

copper proteins by means of Tp-metal-thiolate complexes89-92 (e.g. Scheme 1.8). Blue copper 

proteins are small copper proteins (10-20 kDa), which control electron transfer from donor to 

acceptor biomolecules in respiratory and photosynthetic processes of many bacteria and 

plants.93,94 The unusual coordination of T1 centers, intermediate between trigonal planar and 

distorted tetrahedral, is characterized by strong bonds between the metal and three donor 

atoms on a plane (N-His, N-His, S-Cys) and by a weaker interaction with a fourth axial ligand 

(usually S-Met). Copper geometry and donor set favor a reversible and fast electron transfer 

of the Cu(II)/Cu(I) couple, associated with low reorganization energy in the redox process.95 
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Scheme 1.8 A Tp-Cu(II)-thiolate model for T1 sites of blue copper proteins.89
 

 

2) Moving from enzymatic to chemical catalysis is natural; in fact, many metal-scorpionate 

complexes have found application also in relation to the latter aspect. The 

hydrotris(pyrazolyl)borate ligand is formally analogous to the cyclopentadienide (Cp−) ligand, 

in that both are uninegative, six-electron donors, and even formally isolobal.96 Hence, the use 

of Tp and derivatives in analogy to Cp as spectator ligands in organometallic catalysts, as 6-

electron hard donors. Many scorpionate complexes, often containing late transition metal ions 

(such as Cu(I), Ag(I), Rh(I), Ir(I), Pt(II), Ru(II)) are active in the activation of aromatic and 

aliphatic CH bonds.97-103 Catalytic formation of C-C,104 C-O,105 and C-N106-108 bonds are 

reported (Cu(I) complexes). Usually, carbene or nitrene intermediates are involved in the 

catalytic mechanisms (e.g. Scheme 1.9). Early transition metal complexes (and especially 
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metals of group 4) are active as catalysts for olefine polymerization.102,109-114 The recent 

characterization of the thermally stable gold complex [(Tp)Au(CH2CH2)] prefigures the use of 

Au-scorpionate complexes in catalysis.115 Quasi-heterogeneous catalysts (which may be 

nanofiltered) were obtained by grafting dendrimers to scorpionate complexes of Rh.116 

Stereoselective catalysis in presence of chiral scorpionate systems was also studied.104,117  
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Scheme 1.9 An example of carbene-complex involved in the activation of C-H bonds (M = Cu, Ag).101 

 

 

 

3) Regarding the applications in material science and crystal engineering, some metal-

scorpionate complexes have polynuclear solid state structures, i.e. can be considered as 

coordination polymers, and in particular as metal-organic frameworks (MOFs).118-120 We are 

dealing with materials with special electronic and magnetic properties,121 or with application 

as non-linear optics media,122 or as exchanging agents for small molecules (e.g. Figure 1.3),123 

possibly paramagnetic.124 Other metal-scorpionate complexes give rise to supramolecular 

assemblies through weak interactions involving the ligands, instead through coordination 

bonds.125-129 
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Figure 1.3 The compound Pb(B(Im)4)(NO3)
.1.35H2O is a coordination polymer, which can readily 

undergo anion exchange in the solid state with retention of crystallinity. 

 

4) Recently, some scorpionate-containing complexes of 99mTc and Re have found application 

respectively as radiopharmaceuticals or as models for these ones.130-135 Clearly, water-

solubility and water-stability are essential conditions for the applicability of these complexes 

in this field.136 As an example, [99mTc{κ3-HB(timMe)3}(CO)3] (Scheme 1.10) acts as radio-

emitting target for particular receptors of the central nervous system.137,138 
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Scheme 1.10 The fac-[99mTc{κ3-HB(timMe)3}(CO)3] acts as a radio-emitting target for the 5-HT1A 
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Our work regards the synthesis and characterization of new metal-scorpionate complexes, 

with a focus on Cu(I) complexes with N/S-donor tripodal ligands. In particular, amongst the 

above-mentioned possible fields of application for these systems, we focused our efforts 

almost exclusively on the modeling of metal-sites of Cu-proteins (as the T1 reduced sites of 

blue copper proteins). We have been interested in evaluating the coordination modes of the 

employed ligand systems, the nuclearity of the resulting complexes and the geometries around 

the metal. We have placed a special emphasis on the often neglected solution properties of the 

complexes, together with the structural characterization at the crystalline state. We aimed at 

verifying if the employed scorpionates have the ability of imposing coordination geometry on 

the metal centers, or the electronic and steric requirements of the latter dominate the 

coordination, instead. In the former case we would be dealing with sufficiently preorganized 

ligands that induce an ‘energized state’ of the metal, defined as entatic state,139 which may be 

conserved with no appreciable structural arrangements in the oxidized state, in analogy to 

what possibly happens in the T1 sites of blue copper proteins.140-146 

Initially, we considered dinuclear Cu(I) complexes with anionic tripodal B-centered S3 and 

S2N donor ligands147 and investigated their reactivity with monodentate co-ligands (Chapter 

2). Analyzing the drawbacks of these systems (scarce tunability of the scorpionate arms and 

possible coordination of the borohydride to the metal) we pointed our attention towards 

neutral C-centered scorpionates. A new class of tripods based on a pyridine-pyrazole moiety 

was developed, the first of which is the N,N’,O-donor LOH (Chapter 3), whose coordination 

capabilities were tested with late transition metal ions (Ni2+, Cu2+, Zn2+). N/S-donor ligands of 

the same typology, namely N,N’,S,S’-scorpionates (Chapters 5 and Section 6.1) and a N,N’,S 

precursors (Chapter 4), were prepared and coordinated to Cu(I) Finally, we tested the binding 

capabilities of new N2S,S’-donor bis(pyrazolyl)methane derivatives with Cu(I) (Section 6.2). 



 

 

2 

 

Cu(I) Dinuclear Complexes with B-Centered 

N/S-Scorpionates. 

Reactivity with σσσσ-Donor Monodentate Ligands148 

 

 

 

The complexes [(PPh3)Cu(TrMes,Me)] (1), [(PPh3)Cu(TrMe,o-Py)] (2) and [(PPh3)Cu(BrMespzo-Py)] (3) 

{TrMes,Me = hydrotris[1,4-dihydro-3-methyl-4-mesityl-5-thioxo-1,2,4-triazolyl]borate; TrMe,o-Py = 

hydrotris[1,4-dihydro-4-methyl-3-(2-pyridyl)-5-thioxo-1,2,4-triazolyl]borate; BrMespzo-Py = 

hydro[bis(thioxotriazolyl)-3-(2-pyridyl)pyrazolyl]borate} were synthesized by reaction of the 

dinuclear complexes [Cu(L)]2 (L= TrMes,Me, TrMe,o-Py, BrMespzo-Py) with PPh3. As revealed by X-ray 

studies, 1 and 2 are mononuclear complexes with the metal in a slightly distorted tetrahedral geometry 

(S3P coordination) bound by a κ3-S3 ligand and a PPh3. No fluxionality in solution is evidenced by 1H 

VT NMR (210-310 K, CDCl3).The compound 3 was characterized only by 1H VT NMR (320-200 K, 

CD2Cl2) and 1H-1H NOESY: an equilibrium between two species, 3a and 3b, was detected (coalescing 

temperature = ~260 K). DFT calculations suggest that 3a and 3b present S2HP and S2NP coordination 

to copper, respectively. The mononuclear complex [(tu)Cu(TrMes,Me)] (4) crystallized in presence of an 

excess of tu with respect to [Cu(TrMe,o-Py)]2 (~6:1). The metal adopts a distorted tetrahedral geometry 

with an overall S3H coordination determined by the ligand κ3-S2H bound (two C=S groups and a [B-

H···Cu] interaction) and by a tu. The reactivity of the dinuclear complexes [Cu(L)]2 with monodentate 

ligands (L’ = PPh3, tu and py) was investigated by means of 1H NMR titrations, which allowed to 

determine the formation constants of the [(L’)Cu(L)] adducts. 
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2.1 Introduction 

 

In a previous study the coordination properties of three B-centered S/N-donor scorpionates 

with Cu(I) were investigated (Scheme 2.1), aiming at obtaining models for reduced T1 sites of 

blue copper proteins.
147  
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Scheme 2.1 

 

The dinuclear complexes [Cu(L)]2 (L = TrMes,Me, TrMe,o-Py, BrMespzo-Py), exhibiting fluxional 

behavior in solution, are poor candidates for our purposes. This status is favored by the 

availability of various energetically accessible geometries for Cu(I) and its intrinsic 

lability.149,150 

In the present chapter, to further investigate the properties of the dinuclear complexes, we 

followed their reactivity with monodentate ligands such as triphenylphosphine, thiourea, and 

pyridine, providing a varied donor set. The evaluation of the stability of the dinuclear 

complexes against σ-donor ligands is important for the interpretation of possible equilibria 

occurring in solution. In addition, the ternary adducts [(L’)Cu(L)] (L’ = PPh3, tu, py) could 

have importance as catalytic precursors, wherein L’ could be substituted by a substrate (e.g. to 

rise a carbene complex).101,151 In a first step, some adducts were structurally characterized by 

X-ray diffraction or by 2D NMR techniques/DFT calculations: all these species are 

mononuclear. Subsequently, the speciation equilibria and the stability constants of the adducts 

were determined, when possible, by means of 1H NMR titrations152 of the Cu(I) dimers with 

the monodentate ligands.  
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2.2 Experimental 

 

2.2.1 General procedures 

 

All reagents and solvents were commercially available (Aldrich), except for [Cu(L)]2 (L = 

TrMes,Me, TrMe,o-Py, BrMespzo-Py), which were prepared as previously reported.147 The solvents 

were stored under nitrogen on molecular sieves 4Å (1-2 mm) and degassed before use. The 
1H, 13C and 2D NMR (homonuclear COSY and 1H-13C HSQC, useful for peak assignment, 

and homonuclear NOESY) spectra were recorded on a Bruker Avance 300 spectrometer using 

standard pulse sequences, whereas the 31P NMR spectra were recorded on a Bruker AMX-400 

spectrometer. Chemical shifts are reported in ppm referenced to residual solvent signals (1H 

and 13C), or to an external standard (31P45, 85% H3PO4). The 2D-NOESY experiments were 

recorded using a mixing time (τm) of 0.6 s for 1-3. Variable temperature 1H NMR experiments 

were recorded at 10 K intervals in the 210-310 K range (CDCl3) for 1 and 2 and in the 210-

300 K range (CD2Cl2) for 3 in controlled atmosphere valve NMR tubes. Mass spectra were 

acquired on a Micromass ZMD spectrometer. The mixtures were analyzed in negative and 

positive ionization modes by direct perfusion in ESI-Mass interface. Infrared spectra were 

recorded from 4000 to 400 cm-1 on a Perkin-Elmer FT-IR Nexus spectrometer (KBr pellets). 

Elemental analyses (C, H, N) were performed with a Carlo Erba EA 1108 automated analyzer. 

 

2.2.2 Synthesis of [(PPh3)Cu(Tr
Mes,Me

)] (1)  

 

[Cu(TrMes,Me)]2 (211 mg, 0.137 mmol) and PPh3 (81 mg, 0.309 mmol) were mixed in CHCl3 

(6 ml). The solution was stirred for 1 h, hexane (~10 ml) was added until a minimum amount 

of precipitate formed. It was filtered off, and an exceess of hexane was added to the residual 

solution, causing the slow formation of colorless micro-crystals, which were filtered, washed 

with hexane, dried under vacuum and collected (1, 85 mg, 0.082 mmol, 30%). IR (cm-1): 

3050w, 2997w, 2968w, 2920w, 2858w, 2492w br, [ν(BH)], 1609w, 1580m, 1488m, 1419s, 

1369s, 1325s, 1301s, 1275s, 1172w, 1153w. 1H NMR (300 MHz, CDCl3): δ 1.73 (s, 9H, CH3 

mes ortho), 2.03 (s, 18H, CH3 mes ortho; CH3 triazole), 2.38 (s, 9H, CH3 para), 5.07 (br, 1H, 

BH), 6.98 (s, 3H, CH mes), 6.99 (s, 3H, CH mes), 7.06 (m, 6H, CH, PPh3 meta), 7.21 (m, 9H, 

CH, PPh3 ortho and para). 13C NMR (75 MHz, CDCl3): δ 11.17 (CH3 mes ortho / CH3 

triazole), 18.14 (CH3 mes ortho / CH3 triazole), 18.62 (CH3 mes ortho), 21.20 (CH3 mes 
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para), 127.7 (d, JCCCP = 8.8 Hz, CH PPh3 meta), 128.6 (s, CH PPh3 para), 129.24 (CH mes), 

129.49 (CH mes), 130.06 (C quat.), 133.85 (d, JCCP = 14.3 Hz, CH PPh3 ortho), 134.48 (d, JCP 

= 25.7 Hz, C quat. PPh3), 136.17 (C quat.), 136.73 (C quat.), 139.17 (C quat.), 148.20 (C 

quat.), 167.66 (C=S). 31P NMR (160 MHz, CDCl3): δ 9.7 (s br). Anal. calcd for 

C54H58N9S3BCuP (1134.62): C, 62.69; H, 5.65; N, 12.18. Found: C, 62.12; H, 5.21; N, 

11.91%. Colorless crystals suitable for X-ray structure determination were obtained by slow 

evaporation from a CHCl3/hexane solution of 1, corresponding to [Cu(TrMes,Me)]2 4CHCl3 

(1a). 

 

2.2.3 Synthesis of [(PPh3)Cu(Tr
Me,o-Py

)] (2) 

 

[Cu(TrMe,o-Py)]2 (81 mg, 0.062 mmol) and PPh3 (34 mg, 0.130 mmol) were mixed in CH2Cl2 

(10 ml). The solution was stirred for 1 h and concentrated under reduced pressure to about 5 

ml. A pale yellow product was precipitated by the addition of hexane, filtered, washed with 

hexane, dried under vacuum and collected (2, 80 mg, 0.088 mmol, 71%). IR (cm-1): 3050w, 

2498w [ν(BH)], 1589m, 1478s, 1455m, 1434m, 1411s, 1341s, 1216m, 1084m. 1H NMR (300 

MHz, CDCl3): δ 3.98 (s, 9H, CH3), 5.15 (s br, 1H, BH), 7.31 (m, 12H, CH py (3H) and CH 

PPh3 meta and para (9H)), 7.59 (m, 6H, CH PPh3 ortho), 7.73 (t, J = 7.2 Hz, 3H, CH py), 8.15 

(d, J = 7.8 Hz, 3H, CH py), 8.63 (d, J = 4.2 Hz, 3H, CH py). 13C NMR (75 MHz, CDCl3): δ 

33.34 (CH3 triazole), 124.07 (CH py), 128.28 (d, JCCCP = 7.3 Hz, CH PPh3 meta), 129.30 (CH 

PPh3 para), 133.80 (d, JCCP = 15.2 Hz, CH PPh3 ortho), 136.61 (CH py), 147.24 (C quat.), 

148.48 (CH py), 149.11 (C quat.), 169.95 (C=S). 31P NMR (160 MHz, CDCl3): δ 5.0 (s br). 

Anal. calcd for C42H37N12S3BCuP (911.35): C, 55.35; H, 4.09; N, 18.44. Found: C, 54.77; H, 

4.13; N, 17.97%. Colorless crystals were grown by slow evaporation from a DMF solution of 

2, corresponding to [(PPh3)Cu(TrMe,o-Py)].DMF (2a). 

 

2.2.4 Synthesis of [(PPh3)Cu(Br
Mes,Me

pz
o-Py

)] (3) 

 

PPh3 (21 mg, 0.080 mmol) was added to a CH2Cl2 solution (5 ml) of [Cu(BrMes,Mepzo-Py)]2 (50 

mg, 0.036 mmol). After 30 min. of stirring, the volume was reduced to about 1 ml under 

reduced pressure. A bright yellow product was precipitated by the addition of an excess of 

hexane (~10 ml). The product was filtered, washed with hexane, dried under vacuum and 

collected (3, 24 mg, 0.025 mmol, 35%). IR (cm-1): 3048w, 3004w, 2963w, 2919w, 2854w, 
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2471w br [ν(BH)], 1609w, 1592w, 1568w, 1488m, 1434s, 1414s, 1364m, 1325m, 1263s, 

1199m, 1094s, 1017s. 1H NMR (300 MHz, CD2Cl2): δ 1.97 (s, 12H, CH3), 2.05 (s, 6H, CH3), 

2.38 (s, 6H, CH3), 6.81 (br, 1H, CH py), 6.87 (d, J = 2.1 Hz, 1H, CH pyrazole), 7.05 (s, 2H, 

CH mes), 7.07 (s, 2H, CH mes), 7.32 (m, 16H, CH PPh3 (15H) and CH py), 7.63 (br, 1H, CH 

py), 8.16 (br, 1H, CH py), 8.27 (br, 1H, CH py). 31P NMR (160 MHz, CDCl3): δ 2.4 (br). 

Anal. calcd for C50H50N9S2BCuP (946.45): C, 63.45; H, 5.32; N, 13.32. Found: C, 63.12; H, 

5.62; N, 13.23%. 

 

2.2.5 Synthesis of [(tu)Cu(TrMes,Me)].3CH2Cl2 (4) 

 

Colorless crystals of [(tu)Cu(TrMes,Me)] were obtained from a 1:1 hexane:CH2Cl2 solution of 

[Cu(TrMes,Me)]2 (50 mg, 0.032 mmol) and tu (14 mg, 0.184 mmol). The crystals were filtered, 

dried under vacuum and collected (4, 20 mg, 0.023 mmol, 35%). IR (cm-1): 3381m br, 3301m 

br, 3184m br, 3014m, 2959w, 2920w, 2855w, 2481w, 2410w, 1609s, 1576m, 1488m, 1406s, 

1374s, 1326s, 1301s, 1274m, 1172m, 1144m, 1013m, 852w. 1H NMR (300 MHz, 300 K, 

CD2Cl2): δ 1.954 (s, 18H, CH3), 2.03 (s, 9H, CH3), 2.32 (s, 9H, CH3), 6.43 (s, br, 4H, NH2), 

6.97 (s, 6H, CH mes). 13C NMR (75 MHz, CD2Cl2): δ 11.45 (CH3), 18.00 (CH3), 21.29 (CH3), 

129.64 (CH mes), 130.22 (C quat.), 136.53 (C quat.), 140.20 (C quat.), 148.96 (C quat.), 

168.05 (C=S), 182.63 (C=S tu). Anal. calcd for C37H47N11S4BCu (848.46): C, 52.38; H, 5.51; 

N, 17.91. Found: C, 52.42; H, 5.48; N, 18.22%. 

 

2.2.6 X-ray crystallography 

 

A summary of data collection and structure refinement for [(PPh3)Cu(TrMes,Me)]·5CHCl3 (1a), 

[(PPh3)Cu(TrMe,o-Py)].DMF (2a) and [(tu)Cu(TrMes,Me)]·3CH2Cl2 (4) is reported in Table 2.1. 

Single crystal data was collected with a Bruker AXS Smart 1000 area detector diffractometer 

(Mo Kα: λ = 0.71073 Å) for 1a and 2a and with an Enraf Nonius CAD4 diffractometer (Cu 

Kα: λ = 1.54183 Å) equipped with an Oxford Cryosystems liquid nitrogen cryostream for 4 

operating at 245 K. The crystal of 4 decomposed during the data collection with a 40% 

intensity loss of the reference reflection. An absorption correction was applied using the 

program SADABS153 with transmission factors in the ranges 0.757-1.000 (1a) and 0.915-

1.000 (2a) and using the method of Walker & Stuart154 for 4 with min. and max. transmission 
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factors of 0.816 and 1.000. The structures were solved by direct methods (SIR97)155 and 

refined with full-matrix least-squares (SHELXL-97),156 using the Wingx software package.157  

 

Table 2.1 Summary of X-ray crystallographic data for 1a, 2a and 4. 

 

 1a 2a 4 

Empirical formula C58H62BCl12CuN9PS3 C45H38BCuN13OPS3 C56H106B2Cl12Cu2N22S8 

Formula weight 1512.07 978.38 1918.21 

Colour, habit Colourless, block Colourless, block Colourless, block 

Crystal size, mm 0.35x0.30x0.15 0.35x0.25x0.18 0.45x0.20x0.10 

Crystal system Triclinic Triclinic Monoclinic 

Space group P-1 P-1 P21/c 

a, Å 12.328(1) 10.573(1) 19.682(8) 

b, Å 12.901(1) 13.571(1) 17.139(8) 

c, Å 24.666(2) 38.381(2) 32.789(9) 

αdeg. 77.466(1) 106.265(2) 90 

βdeg. 79.834(1) 97.971(2) 97.26(2) 

γ deg. 75.178(1) 104.757(2) 90 

V, Å3 3671.5(5) 2384.9(4) 10972(7) 

Z 2 2 4 

T, K 293 293 245 

ρ(calc), Mg/m3 1.368 1.362 1.161 

µ, mm-1 0.883 0.673 4.906 

θ range, deg. 1.66 to 27.02 1.64 to 27.07 3.31 to 64.68 

No.of rflcn/obsv F>4σ(F) 21770 / 7068 25981 / 4328 16374 / 5352 

GooF 1.003 1.004 1.010 

R1 0.0551 0.0465 0.0850 

wR2 0.1123 0.0804 0.1655 

 

R1 = Σ||Fo|-|Fc||/Σ|Fo|, wR2 = [Σ[w(Fo
2-Fc

2)2]/Σ[w(Fo
2)2]]½ , w = 1/[σ2(Fo

2) + (aP)2 + bP], where P = 

[max(Fo
2,0) + 2Fc

2]/3 

 

Non-hydrogen atoms were refined anisotropically; for 1a and 2a the B-H hydrogen atoms 

were found and refined whereas the remaining hydrogen atoms were placed at their calculated 

positions. In 4 all the hydrogen atoms were placed at their calculated positions. In 1a, three 

CHCl3 molecules could be located from the difference Fourier map and two CHCl3 solvent 

molecules were found disordered and were modeled with the SQUEEZE PLATON 

program.158 The DMF molecule in 2a was found disordered in two positions with site 
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occupancy factors of 0.57 and 0.43, respectively. In 4, a CH2Cl2 solvent molecule was located 

from the difference Fourier map and two CH2Cl2 molecules were modeled with the 

SQUEEZE PLATON program. Molecular drawings were prepared using the Mercury 1.4.2 

program.159  

 

2.2.7 DFT calculations 

 

All the calculations were performed with Gaussian 03 program suite.160 Geometry 

optimizations were performed for the isomers of compounds 3 starting from geometries 

proposed on the basis of 1D and 2D NMR experiments. The two layers ONIOM technique161-

163 was employed. All the mesityl groups and the methyl groups on the triazoline rings were 

approximated to hydrogen atoms in the model system, and the gradient-corrected hybrid 

density functional B3LYP164,165 and double-ζ basis set LANL2DZ with Hay and Wadt 

effective core potential (ECP)166,167 were employed. A polarization d-function for the sulfur 

and phosphorous atoms were also added in the basis set. For the real system, Hartree-Fock 

with the LANL2MB basis set with Hay and Wadt ECP were used, the details of the 

partitioning scheme are given in the Appendix 1, Fig. A1. Single point energy calculations 

were performed for all compounds using the B3LYP density functional and the LANL2DZ 

basis set for copper and the 6-31G(d) basis set for the C, H, N, B, S and P atoms. The energies 

of the various compounds do not include thermal or entropy corrections. 

 

2.2.8 NMR titrations 

 

Dilution 1H NMR experiments on [Cu(L)]2, complexes were performed in the 10-2-10-4 M 

copper concentration range (CCu). Samples of [Cu(L)]2 (500 µL, CCu = 10-3 M) were titrated 

with 0.1 M solutions of PPh3 in CDCl3. The [Cu(L)]2/tu systems were studied by titrating a 

800 µL sample of [Cu(L)]2 (CCu = 10-3 M) with a 0.1 M solution of tu (300K, fast-exchange 

regime). 25 spectra were collected up to a tu:[Cu(TrMes,Me)]2 molar ratio of 10 in 

CDCl3:MeOD 1:1 and 12 spectra up to a tu:[Cu(BrMespzo-Py)]2 ratio of 12.4 in CD2Cl2:MeOD 

1:1. The solubility properties of [Cu(TrMe,o-Py)]2 and tu did not allow us to perform the NMR 

titration in this case. All sets of chemical shifts were treated simultaneously with the 

HypNMR 2004 program to compute the stability constants.168 For L = TrMes,Me the chemical 

shifts of the mesityl o-CH3 (~1.9 ppm), the triazolyl CH3 (~2.0 ppm) and the mesityl CH 
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(~6.9 ppm) protons were computed, whereas in the case of L = BrMespzo-Py the data fitting was 

performed on the chemical shifts of the mesityl-o-CH3, the triazolyl-CH3 and the mesityl-CH 

protons. The [Cu(L)]2/py systems were studied by titrating a 500 µL sample of [Cu(L)]2 (CCu 

= 6.10-3 M) with a 0.1 M solution of py in CDCl3 (300K, slow-exchange regime). 20 spectra 

were collected in the py:[Cu(TrMes,Me)]2 range up to 40 (CDCl3), 13 spectra were collected in 

the py:[Cu(TrMe,o-Py)]2 range up to 64 (CDCl3) and 10 spectra were collected in the 

py:[Cu(BrMespzo-Py)]2 range up to 40 (CD2Cl2). The titrations of [Cu(TrMe,o-Py)]2 and 

[Cu(BrMespzo-Py)]2 with py were performed under nitrogen because of the air-sensitive 

products. All solutions were prepared by weight and used within 24 hours. The distribution 

diagrams were calculated and plotted by the program HySS 2000.169 

 

 

 

 

 

2.3 Results and Discussion 

 

In order to explore their stability/reactivity, the dinuclear complexes [Cu(L)]2 (L = TrMes,Me, 

TrMe,o-Py or BrMes,Mepzo-Py) were reacted with the σ-donor ligands PPh3, tu and py. All the 

reactions were monitored through 1H NMR titrations to evaluate the formation constants of 

the ternary complexes [(L’)Cu(L)]. As the reactions with PPh3 are quantitative, the 

[(PPh3)Cu(L)] adducts were isolated in stoichiometric conditions (Scheme 2.2). 

 

[Cu(L)]2  +  2 PPh3 
CHCl3 / CH2Cl2

2 [Ph3PCu(L)] 
 

 

Scheme 2.2 

 

The compounds can also be obtained by the one-pot reaction between [Cu(CH3CN)4]BF4,
170 

LiL, and PPh3. The products are colorless (1) or pale yellow (2-3) air-stable solids. The 

stability constants (K) of the complexes [(tu)Cu(L)] and [(py)Cu(L)] are much lower (in some 

cases too low to be determined). Due to the latter, we cannot isolate the complexes from a 1:2 

mixture of [Cu(L)]2 and tu or py. However, colorless crystals of [(tu)Cu(TrMes,Me)] were 

obtained from an hexane:CH2Cl2 solution of [Cu(TrMes,Me)]2 and tu in 1:6 ratio. 
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2.3.1 Molecular structures 

 

Essentially, the solid state structures of the phosphinic complexes 1a and 2a (Fig. 2.1-2.2) 

present an equivalent type of copper coordination. Selected bond lengths and angles are 

reported in Tables 2.2 and 2.3. 

 

Figure 2.1 Molecular drawing of 1a at the 30% thermal ellipsoids probability level. Hydrogen atoms, 

except the B-H, have been removed for clarity. 

 

Figure 2.2 Molecular drawing of 2a at the 30% thermal ellipsoids probability level. Hydrogen atoms, 

except the B-H, have been removed for clarity. 



2. Cu(I) Complexes with B-Centered N/S-Scorpionates 23 

 

Table 2.2 Selected bond lengths (Å) and angles (°) for 1a. 

 
Cu-S(1) 2.379(5) S(1)-Cu-S(2) 107.03(4) 
Cu-S(2) 2.383(1) S(1)-Cu-S(3) 105.77(3) 
Cu-S(3) 2.372(1) S(2)-Cu-S(3) 102.39(4) 

Cu-P 2.243(1) S(1)-Cu-P 112.48(4) 

B-H 1.04(3) S(2)-Cu-P 111.53(4) 
  S(3)-Cu-P 116.75(4) 

 

The metal exhibits a tetrahedral geometry, bound by a tridentate ligand (κ3-S3) and by a 

terminal PPh3 with an overall S3P coordination. Both complexes present non-crystallographic 

C3 symmetry. The Cu-P bond lengths [2.243(1) Å, 1a; 2.220(1) Å, 2a] and the Cu-S ones 

[2.372(1)-2.385(1) Å, 1a; 2.343(2)-2.363(1) Å, 2a] are in accordance with the Cu-S and Cu-P 

separations reported for the [(PR3)Cu(Tm))] (R = m-tolyl, p-tolyl) compounds.171 1a and 2a 

exhibit the same coordinative environment, despite the ligands TrMes,Me and TrMe,o-Py present 

different substituents on the triazoline rings. The S-Cu-S bond angles in 1a [102.39(4)-

107.03(4)°] are significantly smaller than the S-Cu-P bond angles [111.53(4)-116.75(4)°], 

whereas 2a presents a more regular tetrahedral geometry [S-Cu-S = 105.22(4)-108.58(4)°; S-

Cu-P = 107.65(4)-114.59(4)°]. The former may be the result of the pronounced steric 

hindrance determined by the mesityl groups of TrMes,Me, which would limit the approach of 

the tripod to the [Cu(PPh3)]
+ fragment. 

 

Table 2.3 Selected bond lengths (Å) and angles (°) for 2a. 

 
Cu-S(11) 2.352(1) S(11)-Cu-S(12) 105.22(4) 
Cu-S(12) 2.363(1) S(11)-Cu-S(13) 106.73(4) 

Cu-S(13) 2.343(1) S(12)-Cu-S(13) 108.58(4) 
Cu-P 2.220(1) S(11)-Cu-P 114.59(4) 

B-H 1.14(2) S(12)-Cu-P 107.65(4) 

  S(13)-Cu-P 113.62(4) 

 

In solution of chlorinated solvents the compounds 1 and 2 essentially preserve the solid state 

structures. In fact, in the 1H and 13C NMR spectra only a set of signals was detected for the 

three donor groups of the tripodal ligands, in accordance with the pseudo-C3 symmetry 

exhibited by the complexes in the solid state. Any fluxional behavior was excluded by means 

of variable temperature NMR experiments performed in the 220-305 K temperature range 

(only a slight derive of the chemical shifts was observed). The NOESY spectra (not reported) 
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show cross-peaks between the ortho and meta CH of PPh3 and the CH3-mesityl groups (1), or 

the triazoline methyl groups (2), thus confirming the proximity between PPh3 and the tripodal 

fragment. Moreover, the nitrogen atoms of the pyridine rings of 2 are oriented towards the 

triazoline methyl groups, as evidenced by the cross peak between the N-ortho proton of py 

and the CH3 of triazoline. 

Despite all attempts to crystallize the phosphinic compound 3, we could not obtain suitable 

crystals for an X-ray structure analysis. However, some structural information comes from 

NMR data and quantum mechanical calculations. Compound 3 exhibits a fluxional behavior 

in CD2Cl2 solution, as resulted from variable temperature NMR experiments (220-300 K, 

Figure 2.3). 

 

 

 

Figure 2.3 (a)Temperature dependence of the 1H NMR spectrum (aromatic region) of 3 in CD2Cl2 and 

(b) interpretation as an equilibrium between the isomers 3a and 3b. 

 

A major species evident at 240 K is in equilibrium with a second species present in a small 

concentration, whose signals are broad or covered by the major species peaks. The NOESY 

spectrum recorded in CD2Cl2 at 300 K (above the coalescence temperature) presents a 
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positive cross peak indicative of the fluxional behavior of the complex, which involves the a 

proton and another proton of a second species exhibiting a very broad signal at approximately 

8.50 ppm (Appendix 1, Figure A2). Unfortunately, the remaining positive cross peaks arising 

from the dynamic process could not be detected. 

Quantum calculations were employed to propose reasonable structures of 3 and to explain its 

fluxional behavior in solution. The conformations and the relative energies of three possible 

isomers of 3 (3a-c) are reported in Figure 2.4 and their relevant geometric parameters are 

listed in Appendix 1, Table A1.  

 

 

 

Figure 2.4 Calculated energy diagram for the 3a-c isomers. Optimized geometries were obtained at 

the ONIOM b3lyp/lanl2dz-HF/lanl2mb level. Single point energy calculations were performed with 

the b3lyp density functional and with the lanl2dz (Cu) and 6-31G(d) (other atoms) basis set. 

 

The geometry optimizations were performed by using initial geometries proposed on the basis 

of the NOESY spectrum (CD2Cl2, 240 K), which suggests the coordination of PPh3 to copper 

in the major species (as attested by negative cross-peaks between the ortho mesityl CH3 
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groups of BrMes,Mepzo-Py and the ortho and meta PPh3 protons, Figure 2.5). In the 3a-c isomers 

the metal is always tetrahedral, whereas the scorpionate ligand presents different 

conformations and donor sets (S2H for 3a and S2N for 3b-c). The energy difference between 

3a, which results the most stable species, and 3b is of 8.3 kJ.mol-1, being in agreement with an 

equilibrium between the two species, which would be consistent with the NMR evidences 

(see Figure 2.3 a). This energy difference also justifies the fact that 3b is essentially 

undetected by the NMR experiments.  

 
Figure 2.5 Aromatic-methylic region of the 1H-1H NOESY NMR spectrum of 3 at 240 K in CD2Cl2. 

Solid lines denote negative cross-peaks (* = water and impurities). See Figure 2.3 for the attribution. 

 

The structural reorganization for the 3a Ý 3b process involves the inversion of the ligand 

conformation since in 3a the hydride is bound to the metal (1.915 Å), whereas in 3b it points 

outward and the pirazole nitrogen atom enters the metal coordination (see Figure 2.3 b). In 

3b, the pyridinyl nitrogen N33 is directed toward Cu, but it is located at a non interacting 

distance (3.320 Å). The destabilization of the hypothetical 3c isomer, absent in solution, with 

respect to 3b (25.6 kJ.mol-1) is due to the pyridine conformation, which presents a C-H group 

that interferes with the metal and the C-Hortho of PPh3. Finally, in solution of CD2Cl2 an 
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equilibrium between a major species presenting a S2HP coordination to copper (3a) and a 

minor one (3b, S2NP coordination) can be supposed for the phosphinic complex 3.  

As regards the tu complexes, we have information only for the compound [(tu)Cu(TrMes,Me)] 

(4), which crystallized from a solution of [Cu(TrMes,Me)]2 in presence of an excess of tu. The 

X-ray structure of 4 is reported in Figure 2.6 and selected bond distances and angles in Table 

2.4. 

 

 

 

Figure 2.6 Molecular drawing of 4 at the 30% thermal ellipsoids probability level. Hydrogen atoms, 

except those of the B-H and of the NH2 groups, have been removed for clarity. 

 

Two independent molecules are present in the unit cell, exhibiting the same structure. The 

metal is bound to the tridentate ligand (κ3-S2H) and to tu in a tetrahedral S2S’H coordination 

environment. One of the three thioxo groups of the ligand is not bound to copper. The ligand 

adopts the same conformation as observed for the dinuclear parent compound [Cu(TrMes,Me)]2, 

with the B-H moiety pointing toward the metal. The B-H hydrogens could not be located from 

the difference Fourier map, so that they were placed in their calculated positions. The 

interacting Cu-H(B) distances of 2.108 (Cu(1)-H(1)) and of 2.152 Å (Cu(2)-H(2)) are in 

agreement with 3-center-2-electron [B-H···Cu] interactions for both independent molecules172 

and they are comparable with the Cu-H(B) distances found in the dinuclear complexes 

[Cu(TrMes,Me)]2, [Cu(TrMe,o-Py)]2 and [Cu(TrEt,Me)]2 (1.94(4)-2.29(3) Å range).147,173 

Accordingly, the metal sites exhibit a significant deviation from the plane defined by the three 

sulfur atoms (sum of angles at copper: 356.0(5) for Cu(1) and 355.2(5)° for Cu(2)) and the 

distortion from planarity (0.262(1) Å for Cu(1) and 0.286(2) Å for Cu(2)) is directed toward 
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the B-H group. From the analysis of the distances, it appears that tu interacts more strongly 

with copper with respect to the triazoline thioxo groups of the ligand. In fact, the Cu-Stu 

distances are shorter (2.221(3)-2.223(3) Å) than the Cu-Sligand bond lengths (2.260(3)-2.288(3) 

Å) and, at the same time, the C=Stu distances (1.748(8)-1.759(8) Å) are significantly longer 

than the C=Sligand ones (1.680(8)-1.722(8) Å).  

 

Table 2.4 Selected geometric parameters (Å) for 4. 

 

Cu(1)-S(11) 2.264(3) C(11)-S(11) 1.707(9) 
Cu(1)-S(12) 2.281(2) C(12)-S(12) 1.698(9) 

Cu(1)-S(14) 2.221(3) C(13)-S(13) 1.682(8) 

Cu(1)-B(1) 2.91(1) C(14)-S(14) 1.748(8) 
    

Cu(2)-S(15) 2.288(3) C(15)-S(15) 1.715(8) 

Cu(2)-S(16) 2.260(3) C(16)-S(16) 1.722(8) 
Cu(2)-S(18) 2.223(3) C(17)-S(17) 1.680(8) 

Cu(2)-B(2) 2.93(1) C(18)-S(18) 1.759(8) 

 

All of the tu hydrogens are involved in an extensive net of hydrogen bonds (H.B.) that 

determine the formation of layers in the ab plane (Figure 2.7).  

 

 

Figure 2.7 Crystal packing of 4 in the ab plane. Three types of hydrogen bonds are present. The 

mesityl groups and the hydrogen atoms (except the B-H and NH2) have been removed for clarity. 
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The H.B.s can be classified in three types according to the H.B. acceptor: 1) intramolecular 

NH···S (triazoline thioxo group as acceptor); 2) intermolecular NH···N (triazoline nitrogen 

atoms as acceptors); 3) intermolecular NH···S ( C=Stu as acceptor). The mesityl groups of 

TrMes,Me are pointing above and below these layers, determining the packing along the c 

crystallographic axis through hydrophobic interaction. 

 

2.3.2 Solution equilibria 

 

The dinuclear complexes [Cu(L)]2 (L = TrMes,Me, TrMe,o-Py, BrMespzo-Py) were titrated with 

PPh3, tu and py in order to gain insights concerning their stability/reactivity with respect to 

monodentate σ donor ligands and to determine the formation constants (K) of the respective 

ternary complexes. The reactions with PPh3 are quantitative, suggesting that the K for the 

reactions [Cu(L)]2 + 2PPh3 → 2[(PPh3)Cu(L)] are quite high. Under these experimental 

conditions, it is not possible to determine their values since the titrations go to completeness 

when the [Cu(L)]2:PPh3 ratio is 1:2. As regards the compound 3, the explanation of its 

fluxional behavior in solution through a conformational rearrangement (3a Ý 3b) and not 

through a PPh3 dissociative mechanism, was ensured by performing the titration of 

[Cu(BrMespzo-Py)]2 with PPh3 up to a ratio of 1:10.  

More interesting are the titrations of [Cu(L)]2 (L = TrMes,Me, BrMespzo-Py) with tu, since the 

reaction completion is reached at higher tu:[Cu(L)]2 ratios in both the cases. We are dealing 

with  fast exchange equilibria (with respect to NMR time scale) above approximately 290 K, 

whereas the systems exhibit slow exchange features at lower temperature, with 

distinguishable signals of the [(tu)Cu(L)] adducts and of the dinuclear complexes. 

Unfortunately an accurate determination of the coalescence temperature is difficult as a 

consequence of the overlap of the [Cu(L)]2 and [(tu)Cu(L)] peaks, so that no information 

could be obtained concerning the activation parameters. We studied the tu/[Cu(L)]2 systems in 

fast exchange regime, by following the chemical shift variation as a function of tu 

concentration (Figure A3 of Appendix 1 for the titration of [Cu(TrMes,Me)]2) using the curve 

fitting procedure.152 

Supposing that the equilibria reported in Scheme 2.3 are reasonable, i.e. the formation of a 

ternary adduct following the dissociation of the corresponding dinuclear complex into 

monomers, the stability constant of the [Cu(L)]2 + 2tu Ý 2[(tu)Cu(L)] process (logK) can be 

calculated only knowing the dimerization constant (logβDIM).  



2. Cu(I) Complexes with B-Centered N/S-Scorpionates 30 

 

2 [Cu(L)]  [Cu(L)]2

[Cu(L)]  +  L'  [(L')Cu(L)]

[Cu(L)]2  + 2L'  2 [(L')Cu(L)]

βDIM

β

K

 

 

Scheme 2.3 

 

In this way, logK can be obtained from the relation: 

 

DIMK ββ loglog2log −=  

 

where logβ is the formation constant of the ternary adduct from [Cu(L)] monomers, as 

derived from the fitting of the NMR data. However, it can be easily demonstrated that if 

logβDIM is high enough (i.e. [Cu(L)] is negligible), logK becomes independent from it. 

Dilution studies on the [Cu(TrMes,Me)]2 and [Cu(BrMespzo-Py)]2 complexes in CD3OD:CD3Cl 

1:1 showed no dissociation of the dimers in the 10-2-10-4 M concentration range, so that 

logβDIM is expected to be quite high. Assuming that a 5% dissociation of the dimeric complex 

may occur, but that it cannot be detected at the experimental copper concentration of 10-3 M 

(i.e. 5.10-5 M of [Cu(L)]), logβDIM would be > 5.3. In this approximation (logβDIM = 5.3), logK 

values for the [Cu(L)]2 + 2tu Ý 2[(tu)Cu(L)] equilibria resulted 4.3(2) and 2.1(2), respectively 

for L = TrMes,Me and BrMespzo-Py. The distribution diagram of the [Cu(TrMes,Me)]2/tu system is 

reported in Figure 2.8. The data fitting was performed also by using higher logβDIM, leading to 

the same logK values. Thus, the stability of [(tu)Cu(L)] with respect to the [Cu(TrMes,Me)]2 

dimer is 2.2 order of magnitude higher than in the case of [Cu(BrMespzo-Py)]2. Being logK 

independent from the dimerization constant βDIM this difference reflects directly the tendency 

of tu to react preferentially with [Cu(TrMes,Me)]2 over [Cu(BrMespzo-Py)]2. 

We attempted to evaluate the dependence of the logK on the temperature according to the 

Van’t Hoff analysis, in order to obtain information on ∆H° and ∆S°. Unfortunately, both in 

the slow exchange and in the fast exchange regimes, the observed logK variations in function 

of the temperature are well within the experimental error, thus providing no direct insights 

into the thermodynamic parameters for the reactions. However, if the formation constant does 

not vary appreciably with the temperature, it can be concluded that ∆H° has to be small. This 
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is in agreement with the equivalence of the Cu coordination environment in [Cu(TrMes,Me)]2 

and in the [(tu)Cu(TrMes,Me)] adduct, whose X-ray geometries are reported. In fact, in both 

compounds three C=S groups and a BH hydride are linked to the metal center. 

 

 

 

Figure 2.8 Distribution diagram corresponding to the 1H NMR titration of [Cu(TrMes,Me)]2 with tu in 

CD3OD:CDCl3 1:1 at 300 K. Three different chemical shifts are reported (○ = observed, • = 

calculated). 

 
 
Attempts to determine the logK for the competitive reaction [(tu)Cu(L)] + PPh3 Ý 

[(PPh3)Cu(L)] + tu were unsuccessful. Even in presence of an excess of a competitor such as 

tu (10:1 with respect to [Cu(L)]2) the reaction goes to completeness with 2 equivalents of 

PPh3. With the limit of 5% of free dimer present in solution after the addition of 2 equivalents 

of PPh3, we could determine that the logK for the reaction [Cu(L)]2 + 2PPh3 Ý 

2[(PPh3)Cu(L)] should be > 8.2 and > 7.2 respectively for L = TrMes,Me and BrMespzo-Py 

(simulations performed with Cdimer = 5.10-3 M, Ctu 25.10-3 M). This values mean that PPh3 

reacts at least four orders of magnitude more favorably than tu with the studied dimers. 

According to the 1H NMR titrations, the only dimer that reacted with py was [Cu(TrMes,Me)]2 

whereas for [Cu(TrMe,o-Py)]2 and [Cu(BrMespzo-Py)]2 a py excess of 40-or 64-fold, respectively, 

did not give any  product. The analysis of the [Cu(TrMes,Me)]2/py system was performed at 300 

K under slow exchange conditions (220-340 K), evaluating the ratio between the integrals of 

the parent dimer and the py adduct (Figure A4 and fitting equation derivation in Appendix 1). 
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This procedure was hindered by the overlap of signals of [Cu(TrMes,Me)]2 and 

[(py)Cu(TrMes,Me)], which were deconvoluted. A logK of 1.6(1) was obtained, much lower 

than that of the corresponding tu-adduct. Moreover, the [(py)Cu(TrMes,Me)]:[Cu(TrMes,Me)]2 

ratio was noticeably temperature-dependent, ensuring the possibility of extracting 

thermodynamic parameters from the [Cu(TrMes,Me)]2/py titration carried out at different 

temperatures (260-305 K). The Van’t Hoff analysis provides a ∆H° of -53(3) kJ.mol-1 and a 

∆S° of -140(20) J.mol-1 K-1 (Figure 2.9). 

 

 

 

Figure 2.9 (a) Saturation plots reporting the molar fraction χ = (mol [(py)Cu(L)]) / (mol [(py)Cu(L)] + 

mol [Cu(L)]2) with L = TrMes,Me vs. py/Cu molar ratio in CDCl3 at three representative temperatures. ■ 

= 270 K, ▲ = 290 K, ● = 305 K. (b) Van’t Hoff plot: lnK = -(∆H°/R)/T + ∆S°/R, R = 8.3145 J mol-1 

K-1, T = 260-305 K, experimental values (♦) and least-squares fit (—). 

 

The exothermic character of the reaction can be explained by considering the different donor 

set of Cu(I) in the product and in the reagent. A tentative assignment of the [(py)Cu(TrMes,Me)] 

molecular structure leads to the hypothesis of tetrahedral S3N coordination of copper, rather 

than S2NH, in analogy to the PPh3 adducts. In fact, a S3H → S3N change in the coordination 

sphere (Scheme 2.4) of each metal center of the dimer would be consistent with the negative 

experimental ∆H°, suggesting a greater donor ability of N-py with respect to B-H. Finally, to 

explain why logK is much lower for py addition than for tu one, the entropic factor becomes 

decisive, in so far ∆H (negative in the former case and close to zero in the latter) would favor 

the tu-complex. 
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Scheme 2.4 

 

 

 

2.4 Conclusions 

 

The reactivity of the dinuclear complexes [Cu(L)]2 (L = TrMes,Me, TrMe,o-Py, BrMespzo-Py) with 

the monodentate ligands PPh3, tu and py (L’) was investigated. A summary of the formation 

constants (K) of the [(L’)Cu(L)] adducts, determined by means of 1H NMR titrations, is 

shown in Table 2.5. 

 

Table 2.5 Summary of the logK for the [Cu(L)]2 + 2L’ Ý 2[(L’)Cu(L)] equilibria (300 K). 

 
 PPh3 tu py 

[Cu(TrMes,Me)]2 >8.2a (300) 4.3(2)a (300) 1.6(1) (300)c 

[Cu(TrMe,o-Py)]2 n.d. n.d. -d 

[Cu(BrMespzo-Py)]2 >7.2b (300) 2.1(2)b (300) -d 

 

a = CDCl3:MeOD 1:1; b = CD2Cl2:MeOD 1:1; c = CDCl3; d = too low; n.d. = not determined. 

 

Assuming that the effect of the solvent on the stability constants is minimal, the dimers 

[Cu(TrMes,Me)]2 and [Cu(BrMes,Mepzo-Py)]2 show a precise trend: K([(PPh3)Cu(L)]) >> 

K([(tu)Cu(L)]) > K([(py)Cu(L)]). [Cu(TrMe,o-Py)]2 reacts quantitatively with PPh3 but no 

appreciable reaction occurs even with a large excess of py (the reaction with tu could not be 

studied due to solubility drawbacks). 

The products [(PPh3)Cu(TrMes,Me)] and [(PPh3)Cu(TrMe,o-Py)] show a tetrahedral Cu(I) 

environment (κ3-S3 ligand plus a PPh3) both at the solid state and in solution. Only solution 

data and DFT calculations are available for [(PPh3)Cu(BrMespzo-Py)]: an equilibrium between 

two mononuclear isomers, with κ3-S2H and κ3-S2N coordination of the tripodal ligand on 
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copper, was assumed. The B-H involvement into the metal coordination, noticed in the more 

stable S2HP isomer (as in the parent compound [Cu(BrMespzo-Py)]2), is not surprising, as for 

analogous boron-centered scorpionates several examples are known.174-177 The reactions of 

[Cu(L)]2 with PPh3 are about quantitative, so that only minimum values of logK can be 

(indirectly) determined. In the case of tu adducts the equilibrium constants are lower and can 

be determined by means of NMR titrations. The minimal K dependence on temperature 

implies a small ∆H° of reaction (as well as a positive ∆S°), which is presumably related to the 

equivalence of the copper donor set in the parent compound and in the corresponding adduct. 

This is evidenced by the X-ray structure of [(tu)Cu(TrMes,Me)], which presents three C=S 

groups coordinated to copper and a Cu···H-B interaction, as in [Cu(TrMes,Me)]2. The smaller 

values of K for the py complexes (K is high enough to be detectable only when L = TrMes,Me), 

which prevented to isolate any adduct at the solid state, is due to entropic reasons (∆H° =         

-53(3) kJ.mol-1, ∆S° = -140(20) J.mol-1 K-1). 

 



 

 

3 

 

A First Example of a New Class of C-Centered 

Scorpionate Ligands. 

Solution Studies on M2+ Complexes (M = Ni, Cu, Zn)178 

 

 

 

The neutral N,N’,O heteroscorpionate ligand 1-(4-Methoxy-3,5-dimethyl-pyridin-2-yl)-2-methyl-1-

pyrazol-1-yl-propan-2-ol (LOH) was prepared in two high yield steps. The complexes 

[M(LOH)2][MCl4] (M = Cu and Zn) and [M(LOH)2]Cl2 (M = Ni and Cu) were prepared and 

characterized by X-ray crystallography. The speciation in solution of the M2+/LOH systems was 

investigated by means of spectrophotometric/1H NMR titrations, determining the global formation 

constants β1 and β2 for the [M(LOH)]2+ and [M(LOH)2]
2+ species (MeOH:H2O 95:5). The Zn2+/LOH 

system was studied by quantitative 1H-1H EXSY spectroscopy (300 K, mixing time = 0.2-0.8 s), which 

allows the description of the equilibria occurring between five octahedral [Zn(LOH)2]
2+ structural 

isomers and the tetrahedral [Zn(LOH)Cl]Cl species. Exchange constants kex
ij and associated rate 

constants kij suggest that two types of interconversion occur: octahedral-octahedral (faster) and 

octahedral-tetrahedral (slower). DFT calculations (b3lyp/6-311+G(d)) were employed to evaluate the 

relative stability of the [Zn(LOH)2]
2+ isomers, which are comparable for the five complexes with a 

maximum energy difference of 6.3 kJ/mol. 
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3.1 Introduction 

 

The N,N,O-donor heteroscorpionate ligands have found application in biomimetics, as 

synthetic models of the 2-Hys-1-carboxylate triad, which is present in various metalloproteins 

and metalloenzymes (mainly containing Zn and Fe, but also Mn, Ni and Cu),66,76,80,179-186 in 

catalysis (Ti, Zr, Ru, Mo and Al complexes)109,110,112,113,187,188 and, more recently, as models 

for radiopharmaceuticals (Re complexes).134,135 As far as the topology of the ligands is 

concerned, N,N,O-heteroscorpionates can be grouped in three categories: (a) C-centered 

pyrazole-based, such as the bis(pyrazol-1-yl)-acetates,76,182,183,189-192 bis(pyrazoly1-yl)-

ethoxydes,193,194 bis(pyrazolyl)-phenolates66,195-198 and tris(pyrazol-1-yl)methane sulfonates199-

202 (Scheme 3.1 a); (b) B-centered bis(pyrazol-1-yl)borato derivatives (HCO2)Bp and 

(MeO)Bp,179,180 (Scheme 3.1 b); (c) C-centered imidazole-based bis(imidazol-2-

yl)propionates186 and bis(imidazol-2-yl)nitromethane170 (Scheme 3.1 c).  
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Scheme 3.1 

 
An additional class is represented by N-centric tripodal ligands in which the bridging nitrogen 

atom is able to coordinate together with the N,N,O donor set so that these ligands can be 

considered as N3O tetradentate33,203 (Scheme 3.1 d). 
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Some N,N,O-scorpionates are chiral. The asymmetry is usually introduced (a) by employing 

three different donor groups connected to the central atom184,204 or (b) by using an enantiopure 

heterocycle (e.g. camphorpyrazole or menthylpyrazole) as a precursor to yield a Hc*
2AX 

ligand (Hc* = enantiopure heterocycle, A = bridging atom, X = O-donor group), Scheme 

3.2.205,206 It is worth of note that only the latter method yields a homochiral ligand without 

complex enatiomeric/diasteroisomeric separations.  
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Scheme 3.2 

 

This work reports the synthesis of a new pyrazolyl-pyridine based N,N’O tripodal ligand 

(LOH, Scheme 3.3), which represents the first example of a new class of heteroscorpionate 

N,N’,E donor ligands (E = additional donor group). 
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Scheme 3.3 

 

LOH can be prepared in two high-yield steps even though the reaction is not stereoselective. 

This synthetic pathway first generates a prochiral N,N’ bidentate ligand, which can be 

opportunely functionalized on the methylene bridge by applying the procedures developed for 

the derivatisation of the bis(pyrazolyl)methanes.40 

The coordination properties of LOH were explored by reacting it with MCl2 salts (M = Ni, Cu 

and Zn) in 1:1 and 1:2 M:LOH ratios. The crystal structures of the [M(LOH)2]Cl2 (M = Cu 

and Ni) and [M(LOH)2][MCl4] (M = Cu and Zn) complexes show that the ligand behaves 

always as κ3-N,N’O ,coordinating. The speciation of the M2+/LOH systems in methanol:water 
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(95:5) was investigated by UV-Visible (Ni2+ and Cu2+) and by 1H-NMR (Zn2+) titrations. A 

detailed structural description of the Zn2+/LOH system in solution was performed by means of 

ESI-Mass spectrometry, 1H-1H EXSY NMR spectroscopy and DFT calculations.  

 

 

 

3.2 Experimental 

 

3.2.1 General procedures 

 

All the reagents and solvents, except for THF (distilled from sodium benzophenone), were 

used as purchased from Aldrich. Synthesis of LOH was performed under N2 atmosphere using 

standard Schlenk techniques. The NMR spectra (1H, 13C and 2D) were recorded on a Bruker 

Avance 300 spectrometer. 2D experiments (1H-1H NOESY/EXSY and not reported 1H-1H 

COSY, 1H-13C HSQC) were recorded using standard Bruker pulse sequences. Chemical shifts 

are reported in ppm referenced to residual solvent protons (CDCl3, CD3OD and CD3OD:D2O 

95:5207). Visible spectra were recorded on a Perkin–Elmer Lambda 25 spectrophotometer 

(range 200–1100 nm) using matched cells of 1 cm pathlength. Mass spectra were obtained 

with a Micromass ZMD spectrometer. The mixtures were analyzed in positive ionization 

mode by direct perfusion in ESI-Mass interface. Infrared spectra were recorded from 4000 to 

700 cm-1 on a Perkin-Elmer FT-IR Nexus spectrometer equipped with a Thermo-Nicolet 

microscope. Elemental analyses (C, H, N) were performed with a Carlo Erba EA 1108 

automated analyzer. 

 

3.2.2 Synthesis of 4-Methoxy-3,5-dimethyl-2-pyrazol-1-yl-methyl-pyridine (L
0
)  

 

2-Chloroethyl-4-methoxy-3,5-dimethylpyridine hydrochloride (5.00 g, 22.51 mmol) and 

pyrazole (1.80 g, 26.44 mmol) were mixed in toluene (150 ml). After adding aqueous NaOH 

(40% in water, 50 ml) and 30 drops of n-tetrabutylammonium hydroxide (40% in water) the 

mixture was refluxed 4 h with stirring. The organic phase was separated from the aqueous 

one, washed with water (20 ml), dried with anhydrous Na2SO4 and filtered. The solvent was 

removed under vacuum and a colorless microcrystalline powder was collected (L0, 4.56 g, 

93%). IR (cm-1): 3121w, 2966w, 2927w, 1585m, 1569m, 1510s, 1470s, 1438s, 1390s, 1255m, 

1089s, 993s, 964s, 874m, 864m, 747vs. 1H NMR (300 MHz, CDCl3): δ 2.25 (s, 6H, CH3), 
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3.74 (s, 3H, CH3O), 5.44 (s, 2H, CH2), 6.24 (t, J = 2.1 Hz, 1H, C-CH-C pz), 7.43 (d, J = 2.1 

Hz, 1H, C-CH-N pz), 7.50 (d, J = 1.4 Hz, 1H, C-CH-N pz), 8.23 (s, 1H, CH py). 13C NMR 

(75 MHz, CDCl3): δ 11.09 (CH3), 13.55 (CH3), 56.24 (CH3O), 60.13 (CH2), 106.00 (C-CH-C 

pz), 126.09 (C quat), 126.44 (C quat), 129.42 (C-CH-N pz), 139.30 (C-CH-N pz), 149.68 (CH 

py), 164.55 (C quat, C-OCH3). Anal. calcd for C12H15N3O (217.27): C, 66.34; H, 6.96; N, 

19.34. Found: C, 66.41; H, 7.01; N, 19.18%. 

 

3.2.3 Synthesis of 1-(4-Methoxy-3,5-dimethyl-pyridin-2-yl)-2-methyl-1-pyrazol-1-yl-propan-2-

ol (LOH) 

 

To a THF solution (100 ml) of L0 (4.56 g, 20.99 mmol) cooled at -78 °C, n-BuLi in hexane 

(1.6 M, 15 ml, 24 mmol) was slowly added. The resulting red solution was stirred for 0.5 h at 

-78 °C, and then acetone (1.8 ml, 24.51 mmol) was added. The solution was allowed to warm 

to room temperature, becoming slowly colorless. After 1 h, EtOH 95% (50 ml) were added 

and the solution was stirred for 2 h. The cloudy mixture was dried under vacuum and the solid 

was extracted with diethyl ether (50 ml). The organic phase was washed with water (3 x 20 

ml), dried with anhydrous Na2SO4 and filtered. The solvent was removed under vacuum, and 

a colorless microcrystalline powder was isolated (LOH, 5.03 g, 87%). Colorless crystals 

suitable for X-ray diffraction were obtained by stratification of hexane on an ethereal solution 

of the product. IR (cm-1): 3289m br, 3149w, 2988w, 2975m, 2945w, 1586m, 1567m, 1470s, 

1416s, 1396s, 1261s, 1146m, 1086s, 1078s, 1048s, 996s, 801s, 761vs. 1H NMR (300 MHz, 

CD3OD): δ 1.02 (s, 3H, CH3), 1.29 (s, 3H, CH3), 2.24 (s, 3H, CH3 py), 2.32 (s, 3H, CH3 py), 

3.79 (s, 3H, CH3O), 5.61 (s, 1H, CH
*), 6.29 (t, J = 2.1 Hz, 1H, C-CH-C pz), 7.50 (d, J = 1.8 

Hz; 1H, C-CH-N pz), 7.70 (d, J = 2.4 Hz, 1H, C-CH-N pz), 8.34 (s, 1H, CH py). 13C NMR 

(75 MHz, CD3OD): δ 11.75 (CH3 py), 14.28 (CH3 py), 27.99 (CH3), 29.47 (CH3), 56.76 (C 

quat), 61.57 (CH3O), 68.48 (CH*), 76.19 (C-CH-C pz), 107.63 (C-CH-C pz), 129.36 (C quat), 

129.60 (C quat), 131.86 (C-CH-N pz), 139.77 (C-CH-N pz), 149.97 (CH py), 157.89 (C quat), 

167.44 (C quat). Anal. calcd for C15H21N3O2 (275.35): C, 65.43; H, 7.69; N, 15.26. Found: C, 

65.52; H, 7.60; N, 15.24%.  
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3.2.4 Synthesis of [Ni(LOH)2][NiCl4] (1) 

 

A solution of LOH (100 mg, 0.36 mmol) in methanol (3 ml) was added drop-wise to a 

methanolic solution (2 ml) of NiCl2
.6H2O (87 mg, 0.37 mmol). The resulting solution was 

stirred for 15 min. By adding an excess of diethyl ether, a green gluey precipitate slowly 

formed. The solvent was removed by suction and the solid was dissolved in CH2Cl2 (5 ml). 

The mixture was micro-filtered and dried under vacuum, yielding a green-light blue powder 

(1, 102 mg, 0.13 mmol, 72%). IR (cm-1): 3250s br, 3103s br, 2979s, 2866s, 1594m, 1574m, 

1470s, 1408s, 1380s, 1294m, 1260s, 1154m, 1115w, 1098w, 1076s, 994m, 845m, 813s, 769s 

br. ESI-MS (cone 70 V, CH3OH, m/z, I%): 304.4, 100 [Ni(LOH)2]
2+; 368.3, 10 

[Ni(LOH)Cl]+; 607.6, 8 [Ni(LOH)(LO)]+. Anal. calcd for C30H42N6O4Ni2Cl4 (809.88): C, 

44.49; H, 5.23; N,10.38. Found: C, 44.53; H, 5.18; N, 10.33%. 

 

3.2.5 Synthesis of [Ni(LOH)2]Cl2 (2) 

 

A solution of LOH (100 mg, 0.36 mmol) in methanol (3 ml) was added drop-wise to a 

methanolic solution (2 ml) of NiCl2
.6H2O (43 mg, 0.18 mmol). The resulting violet solution 

was stirred for 15 min. The product was precipitated with an excess of diethyl ether, filtered 

and dried under vacuum, yielding a light violet microcrystalline powder (2, 60 mg, 0.09 

mmol, 49%). Crystals suitable for X-ray diffraction were obtained by diffusion of diethyl 

ether in a methanolic solution of the product, corresponding to [Ni(LOH)2]Cl2
.3CH3OH (2a). 

IR (cm-1): 3423s, 3381s, 3100s, 2974vs, 2885s, 2777s, 1677w, 1598m, 1574m, 1407s, 1295m, 

1216m, 1194w, 1157m, 1082s br, 993 s, 925w, 908w, 886w, 844m, 812s, 778s br. Anal. calcd 

for C30H42N6O4NiCl2 (680.29): C, 52.97; H, 6.22; N, 12.35. Found: C, 52.89; H, 6.30; N, 

12.27%. 

 

3.2.6 Synthesis of [Cu(LOH)2][CuCl4] (3) 

 

A solution of LOH (100 mg, 0.36 mmol) in methanol (3 ml) was added drop-wise to a 

methanolic solution (2 ml) of CuCl2
.2H2O (65 mg, 0.38 mmol). The resulting dark green 

solution was stirred for 15 min. Dark green crystals of the product (3, 80 mg, 0.10 mmol, 

54%), suitable for X-ray diffraction, were obtained by diffusion of diethyl ether in the 

methanolic solution, corresponding to [Cu(LOH)2][CuCl4]
.2CH3OH (3a). IR (cm-1): 3257s br, 

3098s, 2973s, 1596s, 1572m, 1472s br, 1409s, 1294s, 1264vs, 1159s, 1078vs, 989s, 920w, 
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811s, 773s. ESI-MS (cone 70 V, CH3OH, m/z, I%): 306.8, 25 [Cu(LOH)2]
2+; 338.4, 10 

[Cu(LO)]+; 370.4, 20 [Cu(LOH)(CH3OH)]+; 612.5, 2 [Cu(LOH)(LO)]+. Anal. calcd for 

C30H42N6O4Cu2Cl4 (819.59): C, 43.96; H, 5.16; N, 10.25. Found: C, 44.05; H, 5.21; N, 

10.15%. 

 

3.2.7 Synthesis of [Cu(LOH)2]Cl2 (4) 

 

A solution of LOH (100 mg, 0.36 mmol) in methanol (3 ml) was added drop-wise to a 

methanolic solution (2 ml) of CuCl2
.2H2O (31 mg, 0.18 mmol). The resulting bright blue 

solution was stirred for 15 min. Blue crystals of the product (4, 87 mg, 0.13 mmol, 70%), 

suitable for X-ray diffraction, were obtained by diffusion of diethyl ether in the methanolic 

solution, corresponding to [Cu(LOH)2]Cl2
.2H2O (4a). IR (cm-1): 3476s, 3406s, 3104s br, 

2977m, 2739w, 2527w, 1624w, 1595m, 1407s, 1380s, 1296m, 1260vs, 1188w, 1156s, 

1076vs, 993s, 846m, 812s, 766vs. Anal. calcd for C30H42N6O4CuCl2 (685.14): C, 52.59; H, 

6.18; N, 12.27. Found: C, 52.63; H, 6.22; N, 12.19%. 

 

3.2.8 Synthesis of [Zn(LOH)2][ZnCl4] (5) 

 

A solution of LOH (100 mg, 0.36 mmol) in methanol (3 ml) was added drop-wise to a 

methanolic solution (2 ml) of ZnCl2 (50 mg, 0.37 mmol). The resulting colorless solution was 

stirred for 15 min. The product was precipitated with an excess of diethyl ether, filtered and 

dried under vacuum, yielding a colorless microcrystalline powder (5, 128 mg, 0.31 mmol, 

86%). Crystals suitable for X-ray diffraction were obtained by diffusion of diethyl ether in an 

acetonitrile solution of the product, corresponding to [Zn(LOH)2][ZnCl4]
.2CH3CN (5a). IR 

(cm-1): ~3430br, ~3230br, 3103s, 2936s, 2974s, 1593m, 1570m, 1512w, 1406s, 1289m, 

1187w, 1150m, 1073s br, 990m, 954w, 922w, 809m, 769m. 1H-NMR spectrum (300 MHz, 

CD3OD:D2O 95:5): see discussion for Zn2+:LOH 1:1 ratio. ESI-MS (cone 25 V, CH3OH, m/z, 

I%): 307.3, 100 [Zn(LOH)2]
2+; 374.0, 10 [Zn(LOH)Cl]+; 613.2, 20 [Zn(LOH)(LO)]+. Anal. 

calcd for C30H42N6O4ZnCl2 (823.28): C, 43.77; H, 5.14; N, 10.21. Found: C, 43.70; H, 5.20; 

N, 10.29%. 
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3.2.9 X-ray crystallography 

 

A summary of data collection and structure refinement for the ligand LOH and for the 

compounds [Ni(LOH)2]Cl2
.3CH3OH (2a), [Cu(LOH)2][CuCl4]

.2CH3OH (3a), 

[Cu(LOH)2]Cl2
.2H2O (4a) and [Zn(LOH)2][ZnCl4]

.2CH3CN (5a) is reported in Table 3.1. 

 

Table 3.1 Summary of X-ray crystallographic data for LOH, 2a, 3a, 4a and 5a. 

 

R1 = Σ||Fo|-|Fc||/Σ|Fo|, wR2 = [Σ[w(Fo
2-Fc

2)2]/Σ[w(Fo
2)2]]½ , w = 1/[σ2(Fo

2) + (aP)2 + bP], where P = 

[max(Fo
2,0) + 2Fc

2]/3 

 
Single crystal data was collected with a Bruker AXS Smart 1000 area detector diffractometer 

(Mo Kα: λ = 0.71073 Å, LOH, 2a, 3a and 5a) and with a Philips PW 1100 diffractometer 

(Mo Kα: λ = 0.71073 Å, 4a). Cell parameters were refined from the observed setting angles 

 LOH 2a 3a 4a 5a 

Empirical formula C15H21N3O2 C33H54Cl2N6NiO7 C32H48Cl4Cu2N6O6 C30H46Cl2CuN6O6 C34H48Cl4N8O4Zn
 Formula weight 275.35 776.43 881.64 721.17 905.34 

Colour, habit Colorless, block Violet, block Green, block Blu, plate Colorless, block 

Crystal size, mm 0.45x0.45x0.35 0.55x0.50x0.50 0.50x0.45x0.30 0.45x0.25x0.10 0.25x0.20x0.17 

Crystal system Triclinic Monoclinic Monoclinic Orthorhombic Monoclinic 

Space group P-1 P21/n C2/c Pbca C2/c 

a, Å 8.515(1) 11.3780(1) 25.631(2) 14.037(8) 26.383(3) 

b, Å 10.540(2) 15.3700(1) 8.455(1) 18.297(6) 9.016(2) 

c, Å 10.582(2) 11.4960(1) 21.883(2) 13.928(8) 22.609(2) 

αdeg. 63.298(2) 90 90 90 90 

β, deg. 86.374(2) 102.49(1) 121.860(2) 90 125.33(2) 

γdeg. 69.046(2) 90 90 90 90 

V, Å3
 786.9(2) 1962.8(3) 4027.8(7) 3577(3) 4387.5(12) 

Z 2 2 4 4 4 

T, K 293(2) 293(2) 293(2) 293(2) 293(2) 

ρ�(calc), Mg/m3
 1.162 1.314 1.454 1.339 1.371 

µ, mm-1
 0.079 0.681 1.369 0.808 1.380 

θ  range, deg. 2.17 to 27.99 2.25 to 27.96 1.87 to 27.98 3.03 to 27.01 1.89 to 27.02 

No.of rflcn/obsv 8456 / 3418 20820 / 4345 21494 / 4578 4459 / 3902 23449 / 4764 

GooF 1.010 1.008 1.010 1.004 0.861 

R1 0.0429 0.0372 0.0345 0.0419 0.0424 

wR2 0.1297 0.0920 0.0857 0.0650 0.0431 
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and detector positions of selected strong reflections for LOH, 2a, 3a and 5a. Intensities were 

integrated from several series of exposures frames covering the sphere of reciprocal space.208 

For 4a the cell constants were obtained by a least-square refinement of the setting angles of 

24 randomly distributed and carefully centered reflections. An absorption correction was 

applied using the program SADABS153 with transmission factors in the ranges 0.830-1.000 

(LOH), 0.715-1.000 (2a), 0.794-1.000 (3a) and 0.752-1.000 (5a) and using the method of 

Walker & Stuart154 for 4a with min. and max. transmission factors of 0.886 and 1.000. The 

structures were solved by direct methods (SIR97155) and refined on F2 with full-matrix least 

squares (SHELXL-97156), using the Wingx software package.157 Non hydrogen atoms were 

refined anisotropically for all compounds. The hydrogen atom of the hydroxyl group was 

found and refined for all compounds, whereas the remaining hydrogen atoms of the ligands 

were placed at their calculated positions. One of the three solvent molecules of crystallization 

(CH3OH) in 2a was found disordered in two positions with a site occupancy factor of 0.5 for 

each molecule. For 3a, the independent crystallization solvent molecule was found disordered 

in three positions, each with a site occupancy factor of 0.33. Molecular drawings were 

prepared using the Mercury 1.4.2 program.159
 

 

3.2.10 DFT calculations 

 

All the calculations were performed with Gaussian 03 software.160 Assuming that the ligand 

LOH is a racemic mixture of the R and S enantiomers, five possible octahedral [Zn(LOH)2]
2+ 

complexes can be obtained: three RR/SS enantiomeric pairs, the RS/SR non centro-symmetric 

pair and the RS centro-symmetric complex (see discussion). For the optimization of the 

molecular geometry of the five [Zn(LOH)2]
2+ model complexes, in which the methyl groups 

were replaced by hydrogen atoms, the gradient-corrected hybrid density functional 

B3LYP164,165 and the 6-31+G basis set were used. Single point energy calculations were 

performed using the B3LYP density functional and the 6-311+G(d) basis set. The energies of 

the various compounds do not include thermal or entropy corrections. 

 

3.2.11 Spectrophotometric and NMR titrations 

 

Complexation of M2+ ions (M = Ni, Cu, Zn) with the ligand LOH was studied in a 

methanol:water 95:5 mixture at T = 25 °C by spectrophotometric titrations in the visible range 

(400–900 nm). Ni2+ and Cu2+ stock solutions (CNi = 0.207 M; CCu = 0.035 M) were prepared 
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by weight from their chloride salts and contained NMe4Cl as an ionic medium (CNMe4Cl = 0.46 

M). Metal ions and ligand stock solutions (prepared by weight) were used immediately. 

Speciation of the Ni2+ or Cu2+/LOH systems was studied by collecting visible spectra of batch 

samples containing a fixed metal ion concentration with increasing concentrations of ligand 

up to 1:2.71 (Ni2+/LOH) and 1:2.26 (Cu2+/LOH) ratios. Speciation of the Zn2+/LOH system 

was investigated by collecting 1H NMR spectra (26) of a 0.009 M ligand sample titrated with 

aliquots of a 0.05 M ZnCl2 solution (up to a 7.4:1 Zn2+:LOH ratio). Visible 

spectrophotometric data were treated by means of the SPECFIT32 program,209,210 which 

allowed determination of both the complexation log β values and the molar absorbancies of 

the complex species. For the Zn2+/LOH system, the equilibria between LOH, [Zn(LOH)Cl]+ 

and [Zn(LOH)2]
2+ occur in the slow-exchange NMR condition, with the inconvenience of 

signal overlap between various species. Nevertheless, the observed intensity at a certain 

chemical shift can be expressed by the sum of the integrals appearing at that chemical shift 

value if all the contributions derive from the same type of protons. This is expressed by: 

 

∑∑ ⋅⋅⋅=⋅⋅=
δ δδ δδ χ
,

*0

,

*0*      
species

species

L

L

species

species

L Cmn
C

I
mnII (3.1) 

 

where: Iδ
* = observed integral at chemical shift δ, I0

L
* = ligand one-proton integral at the 

initial condition, χδ = molar fraction of the species (LOH, [M(LOH)Cl]+ or [M(LOH)2]
2+) 

with protons absorbing at chemical shift δ, n = number of protons of the functional groups at 

chemical shift δ of each species, m = number of ligands in the absorbent species, CL = total 

ligand concentration. Iδ
* and I0

L
* were normalized for the internal standard integral (TMS). 

The right side of Equation 3.1 closely resembles the Lambert-Beer equation for an optical 

pathlength of 1 cm and ε = (n·m·I0
L

*/CL). On this ground, least square regression calculation 

procedures, employed to treat spectrophotometric data, can be applied to the treatment of 

slow-exchange NMR data. In this work, SPECFIT32 program was used for the calculations. 

The application of this pseudo Lambert-Beer equation to obtain global formation constants 

(β) simply consists of the introduction of the n·m·I0
L

*/CL values (pseudo ε) for each of the 

signals taken into account in the calculations, together with the Iδ
* (pseudo adsorbance). 

Species which does not possess protons absorbing at a given chemical shift δ are treated with 

n·m·I0
L

*/CL = 0. 
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3.2.12 EXSY spectroscopy 

 

1H-1H EXSY spectra of 5 were recorded in CD3OD at 300 K using a conventional phase 

sensitive NOESY pulse sequence employing different mixing times (τm), 0.2, 0.4, 0.6 and 0.8 

s. The method of Perrin was applied to calculate the exchange rate constants:211 R = lnA/τm, 

where R is the relaxation matrix, which contains exchange constants kex
ij (i = starting 

species/proton, j = derived species/proton) as diagonal elements and A is a matrix whose 

elements are Iij(τm)/M0
j (Iij = volumes of the 2D peaks, M0

j = volumes of the diagonal peaks at 

τm = 0). The final kex
ij elements are reported as the mean value of the experimental kex

ij(τm) 

obtained at different mixing times.212 Rate constants kij and semi-reaction rates rij were 

calculated from kex
ij by considering a first order mechanism for the interconversion of the 

[Zn(LOH)2]
2+ isomers, and a second order one for the exchange between [Zn(LOH)Cl]+ and 

the octahedral [Zn(LOH)2]
2+ species (see Appendix 2). Equilibrium concentrations were 

derived from the integration of the diagonal peaks volumes at τm = 0 and from the analytical 

concentration of Zn in the solution (CZn = 0.015 M). Uncertainties of kij and of rij were 

calculated by propagation and neglecting concentration errors.  
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3.3 Results and Discussion 

 

The two-steps synthesis of LOH is described in Scheme 3.3. The first reaction between the 

electrophilic chloromethyl-dimethylpyridine derivative and pyrazole, performed in biphasic 

solvent (toluene/water) via phase transfer catalysis (n-Bu4NOH), is analogous to a procedure 

reported in the literature.213 The second step involves insertion of an electrophile on the 

generated carbanion in agreement with the method developed for the synthesis of 

bis(pyrazolyl)methane derivatives.40 The use of acetone as an electrophile provides the 

N,N’,O heteroscorpionate ligand LOH in good yield. The selective deprotonation of the 

methylene bridge without competition from other acidic groups, such as the C5 proton on 

pyrazole,214,215 is favoured by the benzylic-like character of the coniugated base. Moreover, 

the methyl substituents on pyridine allow electrophile insertion exclusively on the bridging 

carbon and not on the 3 and 5 positions of the pyridine ring. This synthetic pathway has a 

more general application concerning the preparation of mixed N,N’,X (X = heteroatom) 

scorpionates. In fact, variously substituted pyrazoles can be in principle employed without the 

drawbacks of pyrazole deprotonation on the C5 position. However, it has to be noted that 

when a mono-substituted pyrazole is employed, two structural isomers can be obtained 

depending on which pyrazole nitrogen atom is eventually attached to the bridging methylene 

group, Scheme 3.4. 
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Scheme 3.4 

 

Nevertheless, this inconvenience has minimum consequences since the reaction usually favors 

the isomer which is unsubstituted on the C5-pyrazole position (see Chapter 4). Furthermore, 

the stability of the pyrazole-pyridine conjugate base (with respect to the bispyrazolyl one) 

allows it to react with electrophiles that exhibit weak acidic character such as acetone. LOH is 

chiral due to the asymmetry of the bridging carbon, even though the synthetic route is not 
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stereoselective. On the other hand, the introduction of a stereogenic center on analogous 

bis(pyrazolyl)methane derivatives requires the use of two differently substituted pyrazoles, a 

procedure that can generate at least three possible products in a first step (two symmetric 

compounds and the prochiral molecule) with subsequent low yields and 

purification/separation inconveniences.204 It is worth considering that the acidic nature of the 

bridging CH of LOH may limit the use of the ligand in its R or S enantiopure forms, in the 

presence of mild basic conditions. 

The donor ability of the neutral LOH ligand versus 3d late transition metal ions was 

investigated by reacting LOH with MCl2 salts (M = Ni, Cu and Zn) in both 1:1 and 2:1 

M:LOH ratios that exclusively gave [M(LOH)2]
2+ cationic complexes. For Ni2+ and Cu2+, the 

M:LOH stoichiometric ratio determined the type of counterions, which was Cl- or [MCl4]
2- for 

M:LOH of 1:2 and 1:1, respectively, whereas only the Zn-complex [Zn(OH)2][ZnCl4] was 

isolated, regardless of stoichiometric conditions. 

We attempted to explore the coordination properties of the deprotonated ligand LO- with Zn2+ 

in 1:1 ratio in order to obtain a [Zn(LO)Cl] neutral complex analogous to bis(pyrazolyl)-

alkoxides.80,193,194 The Li(LO) alkoxide was prepared by deprotonating the alcoholic function 

of LOH using n-BuLi in THF. The reaction with anhydrous ZnCl2 did not give the desired 

[Zn(LO)Cl] complex since decomposition of LOH occurred, presumably in a metal catalyzed 

pathway, which generated the carbanionic ligand precursor (L0)- and acetone, followed by 

protonation of (L0)- by adventitious moisture. In fact, the [Zn(L0)Cl2] complex was isolated 

from this reaction (not reported structure). 

 

3.3.1 Solid state structures 

 

The molecular structures of the ligand LOH and of the complexes 

[Cu(LOH)2][CuCl4]
.2CH3OH (3a) are reported in Figure 3.1-3.2, whereas the molecular 

geometries (Ortep drawings216) of [Cu(LOH)2]Cl2
.2H2O (4a), [Ni(LOH)2]Cl2

.3CH3OH (2a), 

and [Zn(LOH)2][ZnCl4]
.2CH3CN (5a) are reported in Appendix 2 (Figures A5, A6, A7). 

Selected geometric parameters are listed in Table 3.2. The main difference between the free 

and coordinated LOH resides in the different orientation of the pyrazole and pyridine groups 

with respect to the central C atom, since in the free ligand they point in opposite directions in 

order to minimize the N lone pairs repulsion. In addition, in the free ligand, the hydroxyl 

group acts as hydrogen bond donor with the pyridine nitrogen atom (d[O(12)-N(13)] = 

2.741(2) Å).  
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Figure 3.1 Molecular drawing of the ligand LOH at the 30% thermal ellipsoids probability level. 

Hydrogen atoms (except for hydroxylic and methinic ones) and the CH3OH solvent molecules were 

omitted for clarity. Selected bond distances (Å): O(12)-C(22) = 1.425(2), N(13)-C(53) = 1.337(2), 

N(13)-C(13) = 1.339(2), N(21)-C(11) = 1.326(2), N(21)-N(11) = 1.354(2).  

 

 

Figure 3.2 Molecular drawing of [Cu(LOH)2][CuCl4]
.2MeOH (3a) at the 30% thermal ellipsoids 

probability level. Hydrogen atoms (except for hydroxylic and methinic ones) and the CH3OH solvent 

molecules were omitted for clarity. ‘ = -x; y; ½-z; ‘’ = ½-x; ½-y; -z. 
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In 3a and 4a the metal lies on a crystallographic inversion center and the complexes present a 

distorted octahedral geometry with the equatorial plane defined by the nitrogen atoms of two 

pyrazole and two pyridine groups from two N,N’,O chelate ligands. The apical positions are 

occupied by two hydroxyl groups and the Cu-O bond lengths are ~ 0.3 Å greater than the Cu-

N one (d[Cu-O(12)] is 2.331(2) Å for 3a and 2.298(2) Å for 4a), as a consequence of the 

tetragonal distortion typical of the Cu2+ ion. The [CuCl4]
2- counter-anion of 3a adopts a 

geometry intermediate between the square planar and the tetrahedral one. The tetrahedron is 

flattened along the Cl(1)-Cu(1)-Cl(1)’ (141.30(6)°) and Cl(2)-Cu(1)-Cl(2)’ (140.53(5)°, ‘ = -

x; y; 1/2-z) angles bisector. The chlorine anions of 4a are exchanging hydrogen bonds with 

two crystallization water molecules. In addition, the hydroxyl groups of 3a and 4a behave as 

hydrogen bond donors with the Cl(2) chlorine anion (d[O(12)-Cl(2)’’’] = 3.216(2) Å, ‘‘’ = 1-

x; y-1; 1/2-z) and with the Cl(1) chlorine anion (d[O(12)-Cl(1)’’’’] = 3.063(3) Å, ‘‘’ = 1/2+x; 

1/2-y; -z), respectively.  

 

 

Table 3.2 Selected bond lengths (Å) for 2a, 3a, 4a and 5a. 

 
2a 3a 4a 5a 

Ni-N(21) 2.051(2) Cu(1)-N(21) 1.989(2) Cu-N(21) 1.973(2) Zn(1)-N(21) 2.098(3) 

Ni-N(13) 2.056(2) Cu(1)-N(13) 2.027(2) Cu-N(13) 2.033(2) Zn(1)-N(13) 2.131(2) 

Ni-O(12) 2.092(2) Cu(1)-O(12) 2.331(2) Cu-O(12) 2.298(2) Zn(1)-O(12) 2.134(2) 

  Cu(2)-Cl(1) 2.242(1)   Zn(2)-Cl(1) 2.227(1) 

  Cu(2)-Cl(2) 2.264(1)   Zn(2)-Cl(2) 2.282(1) 

 

 

 

The molecular structures of the Zn2+ and Ni2+ complexes are in agreement with the structure 

reported for compound 3a and 4a, respectively. The metal, in both complexes, lies on an 

inversion center and it is in a regular octahedral geometry with M-(donor atom) bond 

distances that essentially reflect the differences between the ionic radii of the two metals 

(range distances: Ni2+-donor = 2.051(2)-2.092(2) Å, Zn2+-donor = 2.098(3)-2.134(2) Å), 

Table 2. The [ZnCl4]
2- counterion of 5a exhibits a regular tetrahedral geometry with the Cl-

Zn-Cl angles in the range 105.70(5)-116.10(5)°. 
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3.3.2 Solution studies 

 
Speciation of the three M2+/LOH systems (M = Ni, Cu, Zn) was evaluated in a 

methanol:water 95:5 solution by titration methods (Figures 3.3 and 3.4). 

 

 

 
Figure 3.3 Visibile spectra of CuCl2·2H2O titrated with LOH (Cu2+:LOH = 1:0-2.26, CCu = 0.018 M). 

 

 

Figure 3.4 
1H NMR titration of the Zn2+/LOH system (a). The assignment of the different NMR 

signals for each Zn2+/LOH species is reported in (b), (c) and (d) (for LOH, [Zn(LOH)Cl]+ and 

[Zn(LOH)2]
2+ respectively).  
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The choice of the solvent depends on the solubility properties of both the MCl2 salts and the 

ligand. For all of the M2+/LOH systems, three-species equilibria were obtained (Scheme 3.5) 

and the distribution diagrams are reported in Figure 3.5.  

M2+   +   LOH

M2+   +   2LOH

[M(LOH)]2+

[M(LOH)2]
2+

β1

β2

 

 

Scheme 3.5 

 

The global formation constants (β) of [M(LOH)]2+ and [M(LOH)2]
2+ are in agreement with 

the Irving-Williams series (Ni2+<Cu2+>Zn2+), Table 3.3.217,218 The greater stability constants 

of the Zn2+ complexes with respect to the Ni2+ ones could be due to the presence of the OH 

group, which increases the hard character of the ligand.  

 

 

Figure 3.5 Distribution diagrams of the different M2+/LOH systems (M = Ni, Cu, Zn). 

 

Table 3.3 Logarithms of the global formation constants of [M(LOH)]2+ (β1) and [M(LOH)2]
2+ (β2). 

 
 Ni2+ Cu2+ Zn2+ 

log β1  2.7(4) 6.4(4) 3.8(1) 
log�β2 5.3(5) 12.0(5) 7.7(2) 

σ[a] 0.02 0.01 0.56 
 

σ[a] = [Σ(Ai
o-Ai

c)2/(n-m)]1/2 = sample standard deviation; Ai
o = experimental absorbance or intensity; n = number 

of observations, m = number of parameters refined. 
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The metal coordination of the [M(LOH)]2+ species is most probably completed by chlorine 

ions or solvent molecules whereas it is easy to describe the [M(LOH)2]
2+ complexes as 

octahedral analogous with the X-ray structures. ESI-Mass spectra recorded from a methanolic 

solution of 1, 3 and 5 (M:LOH = 1:1), revealed the occurrence of the [M(LOH)2]
2+ complex 

together with the [M(LOH)Cl]+ (Ni2+ and Zn2+) and [Cu(LOH)(CH3OH)]+ species. In 

addition, in the ESI-Mass spectrum obtained from a solution of 5 containing a large excess of 

Zn2+ (10:1 over LOH), only the peak of [Zn(LOH)Cl]+ is present (Figure A8 of Appendix 2). 

This would provide evidence for the chlorine and solvent coordination to the [M(LOH)]2+ 

moiety, but it also supports the molecular structures reported in Figure 3.4, with the 

[Zn(LOH)Cl]+ complex exhibiting a tetrahedral structure bound by the N,N’,O ligand and by 

an apical chlorine ion. The [M(LOH)2]
2+ (M = Cu and Zn) complexes crystallized also in 1:1 

stoichiometric conditions; a reason for this comes from the analysis of the distribution 

diagrams, wherefrom results evident that the global concentration of [MCl4]
2- and 

[M(LOH)2]
2+ is greater or comparable to the [M(LOH)]2+ one for a 1:1 M2+:LOH ratio. 

Moreover, [Zn(LOH)2][ZnCl4] is precipitated also from a solution containing a 1:2 Zn2+:LOH 

ratio. This probably occurs as a consequence of favourable packing forces between the 

tetrahedral [ZnCl4]
2- and the octahedral [Zn(LOH)2]

2+. 

The 1H NMR spectra of LOH titrated with ZnCl2 in CD3OD:D2O 95:5 and the peak-

assignments of LOH, [Zn(LOH)Cl]+ and [Zn(LOH)2]
2+are reported in Figure 3.4. Various sets 

of signals appear in the 1H NMR spectrum in the presence of the maximum concentration of 

[Zn(LOH)2]
2+, whereas only a set of signals appears when increasing the Zn2+ concentration 

(up to ~4 fold with respect to LOH). This is in agreement with the ESI-Mass findings, 

suggesting that the [Zn(LOH)Cl]+ complex becomes preponderant when increasing the Zn2+ 

concentration. It is helpful to resort to 2D NMR techniques for the elucidation of the 

equilibria occurring between the various solution species. The 1H-1H NOESY/EXSY 

spectrum of 5 registered at 300 K (τm = 0.6 s, not reported), along with the negative cross-

peaks deriving from cross-relaxation (NOE), shows a set of positive cross-peaks (same 

diagonal sign) disappearing at 250 K (τm = 0.6 s), which are due to chemical exchange 

between different species in solution. In order to quantitatively analyze the chemical exchange 

processes, a series of more resolved EXSY spectra were registered in the 7.25-8.55 ppm range 

and at various τm (0.2, 0.4, 0.6, 0.8 s) that focused on the set of seven well-separated pyridyl 

protons (Figure 3.6). 
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Figure 3.6 
1H-1H EXSY spectrum of 5 in CD3OD registered at 300 K in the 7.25-8.55 ppm range 

(mixing time = 0.8 s). The pyridyl protons of [Zn(LOH)Cl]+ (X) and of the [Zn(LOH)2]
2+ isomers (Y1-3 

and Z1-3) are evidenced. Exchange between X and the two groups of Y1-3 and Z1-3 protons (····); 

exchange within the two groups of Y1-3 and Z1-3 protons (─ ▪ ─ and ----). 

 
 
According to the NMR titration, the X proton belongs to the [Zn(LOH)Cl]+ tetrahedral 

species (1A, Figure 3.7), while the other six (Y1, Y2, Y3 and Z1, Z2, Z3 protons) belong to the 

[Zn(LOH)2]
2+ structural isomers (2A-E). The two groups of protons Y1-3 and Z1-3 exchange 

with X, but there is no evidence of Y1-3 Ý Z1-3 interconversion, i.e. Y1, Y2, Y3 exchange with 

each other but not with Z1-3. This implies that [Zn(LOH)Cl]+ is in equilibrium with two 

distinct sets of octahedral [Zn(LOH)2]
2+ isomers (2A-C and 2D-E). 
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Figure 3.7 DFT optimized model complexes of the [Zn(LOH)2]
2+ (2A-E) and [Zn(LOH)Cl]+ (1A) 

species together with the equilibrium scheme proposed for the Zn2+/LOH system in methanol:water 

95:5. The centro-symmetric isomer (2D) is taken as reference for the energy level of the isomers. The 

complete nomenclature for each isomer is reported with, in parenthesis, the energetically equivalent 

enantiomers. 

 

To explain such a complexity, it has to be borne in mind that five octahedral isomers can be 

generated when using a racemic mixture of LOH, as a consequence of the ligand and metal 

chirality (see Figure 3.7): three C2-symmetric RR/SS isomers in enantiomeric pair (2A, 2B, 

and 2C), a centrosymmetric RS isomer (2D, as found in the solid state structure) and finally 

an RS asymmetric isomer (2E). According to their symmetry, 2A-D have to display a single 

set of signal, whereas 2E has to display two sets of signals. This would correspond to the six 

exchanging signals found in the EXSY at 300 K. A DFT optimization of five [Zn(LOH)2]
2+ 
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model complexes was performed and the relative energies were calculated by taking as a 

reference the centrosymmetric isomer 2D. The various molecular arrangements are too close 

in energy to provide information of a structural preference. In fact, the maximum energy 

difference of 6.3 kJ/mol (between 2A and 2B) is within the accuracy of the DFT calculation 

method219,220 and would confirm that all the five species can be present in solution in 

approximately equimolar ratio, in agreement with the NMR spectrum. 

By means of quantitative EXSY analysis, the values of the exchange rate constants kex
ij (i = 

starting species/proton, j = derived species/proton) between the different pyridyl protons (X, 

Y1-3 and Z1-3) were obtained (Table 3.4).  

 

Table 3.4 Relaxation matrix containing the exchange constants kex
ij (i = column, j = row, s-1) between 

the different Zn2+/LOH species in CD3OD (1A, 2A-E, see Figure X7). The corresponding X, Y1-3 and 

Z1-3 exchanging-sites (NMR signals) are reported in the same order of the EXSY spectrum (see Figure 

3.6). 

 

 X Y1 Z1 Z2 Y2 Z3 Y3 

X  0.03(1 0.07(1 0.05(1 0.05(2 0.06(1 0.07(2) 

Y1 0.06(2)  - - 0.48(4 - 0.14(7) 
Z1 0.13(3) -  1.8(1) - 1.7(2) - 

Z2 0.09(2) - 1.4(1)  - 0.12(9 - 

Y2 0.12(3) 0.45(2 - -  - 2.7(3) 

Z3 0.12(2) - 1.3(2) 0.11(8 -  - 

Y3 0.15(5) 0.13(6 - - 2.6(3) -  

 

Since kex
ij are of pseudo-first order, they can be compared, thus making speculations about the 

mechanisms of interconversion between various isomers, possible. It is evident that eight 

(underlined in Table 4) [Zn(LOH)2]
2+ → ([Zn(LOH)2]

2+)# interconversions (kex
ij: 2.7(3)-

0.45(2) s-1) are faster than the [Zn(LOH)Cl]+ → [Zn(LOH)2]
2+ (0.06(2)-0.15(5) s-1) and 

[Zn(LOH)2]
2+ → [Zn(LOH)Cl]+ (0.03(1)-0.07(2) s-1) semi reactions by approximately an 

order of magnitude. This would exclude the “dissociative/associative” pathway for the 

interconversion of the octahedral species, [Zn(LOH)2][ZnCl4] → 2[Zn(LOH)Cl]+ + 2Cl- → 

[Zn(LOH)2]
#[ZnCl4], in favor of a rotational mechanism that would involve a ligand C3 

rotation around the Cchiral-Zn-Cchiral axis, with the transition state exhibiting a trigonal 

pyramidal geometry (Scheme 3.6).  

 



3. A First Example of a New Class of C-Centered Scorpionates 57 

 

N

O

NN

OH

ZnH

N

O

OH

H

N N

  

O

N N

H

N

NN

OH

H

N

O

Zn

O

NN

OH

Zn ClH

N

O  

N

O

NN

OH

ZnH

N

O

OH

H

N N

 

Zn
ClCl

Cl
Cl  

(a)

(b)

k2D-2E

k2E-2D

2+ 2+

2D 2E

k1A-2D

k2D-1A

1A 2D

2+

2 +
2-

X                                  Y1-3(Z1-3) 

Y1-3 (Z1-3)                     Y1-3
#(Z1-3

#)

Cl

H

[Zn(LOH)2]
2+                 ([Zn(LOH)2]

2+)#

#

[Zn(LOH)Cl]2+                 [Zn(LOH)2]
2+

rotational

associative/dissociative  

 

Scheme 3.6 First order (a) and second order (b) reaction pathways proposed for the interconversion of 

the different Zn2+/LOH species. X and Y1-3(Z1-3) correspond to [Zn(LOH)Cl]+ and [Zn(LOH)2]
2+ 

pyridyl protons, respectively. Selected examples are reported. 

 

The other four interconversions [Zn(LOH)2]
2+ → ([Zn(LOH)2]

2+)# are slower (kex
ij: 0.11(8)-

0.14(7) s-1) and their kex
ij are comparable with those of the [Zn(LOH)Cl]+ → [Zn(LOH)2]

2+ 

and [Zn(LOH)2]
2+ → [Zn(LOH)Cl]+ processes, making it difficult to discriminate between 

dissociative/associative or rotational mechanisms. This would signify that if the isomerization 

proceeds through a rotational mechanism, it would involve a considerably hindered trigonal 

prismatic transition state. 
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3.4 Conclusions 

 

The heteroscorpionate ligand 1-(4-Methoxy-3,5-dimethyl-pyridin-2-yl)-2-methyl-1-pyrazol-1-

yl-propan-2-ol (LOH) was synthesised in two high yield steps. Its versatile and easy two-step 

preparation could be exploited for the synthesis of chiral N,N’,X(,Y) tripodal donor ligands 

(e.g. X = O, S; Y = additional donor group as substituent on the pyrazole ring). The synthesis 

and coordination properties of N,N’,S and N,N’,S,S’ ligands prepared according to this 

procedure will be analyzed in the next chapters. 

LOH  exhibits κ3-N,N’,O coordination towards late transition divalent ions (M = Ni, Cu and 

Zn) as evidenced by the X-ray structures of the complexes. Spectrophotometric (Cu2+ and 

Ni2+) and 1H NMR (Zn2+) titrations provided further insights on the solution speciation and on 

the complexation constants, which are in accordance with the Irving-Williams series. 

Interestingly, in the solid state only octahedral centrosymmetric [M(LOH)2]
2+ complexes were 

isolated also for 1:1 M2+:LOH ratio, whereas in solution there are also evidences of 1:1 

species. In the case of Zn2+, 1H-1H EXSY spectroscopy revealed the occurrence of equilibria 

between different [Zn(LOH)2]
2+ octahedral isomers and the [Zn(LOH)Cl]+ tetrahedral species. 

Quantitative EXSY allowed the determination of the rate constants of the different semi-

reactions and to propose two main interconversion pathways: a) rotational mechanism, which 

involves the octahedral species interconversion (faster) and b) dissociative/associative 

mechanism, which involves the octahedral-tetrahedral interconversion (slower). It is 

reasonable to assume that the presence of exchanging isomeric octahedral complexes in 

solution can be extended to the Ni2+ and Cu2+ systems even though we do not have direct 

evidence for it.  

 



 

 

4 

 

A N,N’,S-Scorpionate Precursor. 

Ternary Cu(I) Complexes.  

    Biomimetics of Cu-Thioneins221 

 

 

The N,N’,S-donor ligand L1, based on the pyrazole-pyridine moiety, and the Cu(I) complexes 

[Cu2(L
1)2(CH3CN)][Cu(L1)(CH3CN)](BF4)3 (1), [Cu(L1)(PPh3)]BF4 (2) and [Cu6(L

1)2(C6F5S)6] (3) 

were prepared and characterized by X-ray crystallography. The unit cell of 1 consists of co-

crystallized mononuclear and dinuclear entities wherein all of the copper atoms exhibit distorted 

tetrahedral coordination. 2 is monomeric, with a κ3-N,N’,S ligand and PPh3 giving tetrahedral 

coordination, and fluxional in CDCl3 solution due to the boat inversion of the six-membered N,N’ 

chelate ring (∆H# = +43.6(3) kJ mol-1, ∆S# = -16(1) J mol-1 K-1). Crystallization of 3 in CH3CN leads to 

a polynuclear structure: [Cu6(L
1)2(C6F5S)6(CH3CN)] (3a). The core of 3a partially resembles a 

{Cu4S6} adamantane-like moiety, the only difference being a Cu-NCCH3 interaction that leads to the 

opening of the cluster by disrupting a Cu-Cu interaction. Part of this assembly is found in the yeast 

metallothionein copper(I)-cysteinate core whose crystal structure has recently been reported. Two 

additional [Cu(L1)]+ peripheral moieties interact with the cluster by means of bridging thiolates. ESI-

Mass, conductivity and 1H/19F-PGSE NMR experiments suggest the dissociation of 3a in acetonitrile: 

3a + CH3CN Ý [Cu4(C6F5S)6]
2- + 2[Cu(L1)(CH3CN)]+. The stability of the cluster with respect to the 

hypothetical mononuclear species, [Cu(L1)(C6F5S)], is confirmed by DFT calculations (B3LYP). 
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4.1 Introduction 

 

The bioinorganic relevance of copper is evidenced through its involvement in many crucial 

biological functions.222 These can be classified as follows: (a) dioxygen activation 

(tyrosinase223,224); (b) dioxygen transport (hemocyanin225); (c) electron transfer (blue copper 

proteins226-229); and (d) copper delivery, storage and detoxification (thioneins230). The metal 

coordination is fundamental in the definition of the functional properties of these copper-

proteins.231,232 

We are interested in preparing new Cu complexes with nitrogen-sulfur donor ligands suitable 

as mimics of copper sites in biological systems. In particular, the easy synthesis of a variously 

substituted pyrazole-pyridine platform (see Chapter 3) prompted us to investigate the 

coordination ability of new ligands belonging to this class with opportune pyrazole 

substituents. It is noteworthy that, due to the easy deprotonation of the bridging methylene 

group and further functionalization, these ligands can be considered as parent compounds for 

the synthesis of new scorpionates, which should produce a more pre-organized coordination 

environment. 

In this work we have used a thioether-substituted pyrazole, 3-(2-(methylthio)phenyl)-

pyrazole, as a precursor, thus producing a new N,N’,S-donor ligand (L1, Scheme 4.1).  

 

N

NN

O

S

N

O
Cl

NH

N

S

. HCl

NaOH 40% water 
NBu4OH 40% water

toluene, reflux

L1

+

a

 

Scheme 4.1 

 

Here we describe the coordination properties of L1 with copper(I). To complete the 

coordination at the metal, PPh3 and C6F5S
- were also employed as coligands. The crystal 

structures of [Cu2(L
1)2(CH3CN)][Cu(L1)(CH3CN)](BF4)3 (1), [Cu(L1)(PPh3)]BF4 (2), and 

[Cu6(L
1)2(C6F5S)6(CH3CN)] (3a) are reported and they point to a certain coordination 

flexibility of L1, which appears not to be able to impose a definite geometry at the metal. 

After using PPh3, which led to the isolation of 2 as a mononuclear complex, we employed the 

C6F5S
- thiolate ligand to mimic the -S-Cys fragment of proteins. In the present case, the 
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ternary ensemble Cu(I)/L1/C6F5S
- affords the polynuclear structure 3, which can be 

rationalized in terms of the general property of the thiolates to form M-S-M bridges,233-236 and 

by the lack of specific steric hindrance on the ligand L1. This copper-sulfur structural 

arrangement can be found in metallothionein models237 and it bears similarities with the 

copper(I)-thiolate core of the yeast copper thionein, whose crystal structure has recently been 

reported.238 We also wished to evaluate the stability of the cluster structure of 3 in solution. 

For this purpose, 1H and 19F PGSE (Pulsed Gradient Spin Echo) NMR spectroscopy was 

employed,239 affording a hydrodynamic radius (rH) and the corresponding volume (VH), which 

are consistent with the multinuclear solid state structure, even though some degree of 

dissociation of 3 into the [Cu4(C6F5S)6]
2- and [Cu(L1)(CH3CN)]+ ions can be envisaged. This 

hypothesis was also supported by conductivity measurements and ESI-Mass spectrometry.  

 

 

 

4.2 Experimental 

 

4.2.1 General procedures 

 

All reagents and solvents were commercially available, except for 3-(2-(methylthio)phenyl)-

1H-pyrazole56 and [Cu(CH3CN)4]BF4,
170 which were prepared as previously reported. 

Dichloromethane and acetonitrile were dried over CaH2 and distilled before use. The 

syntheses of the complexes were performed in inert gas (N2) using Schlenk techniques. 

 

4.2.2 Synthesis of 4-methoxy-3,5-dimethyl-2-((3-(2-(methylthio)phenyl)-1H-pyrazol-1-

yl)methyl)pyridine (L
1
) 

 

2-Chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride (5.84 g, 26.29 mmol) and 3-

(2-(methylthio)phenyl)-1H-pyrazole (5.00 g, 26.28 mmol) were mixed in toluene (150 ml). 

After adding a 40% NaOH water solution (50 ml) and a 40% NBu4OH water solution (30 

drops), the mixture was refluxed for 3 h. The organic phase was separated, washed with water 

(30 ml), and dried with Na2SO4. The solvents were removed under vacuum. Purification of 

the product by flash chromatography using ethyl acetate as the eluent produced a yellow oil, 

which was washed and triturated with hexane and finally dried under vacuum, yielding a light 

orange microcrystalline powder (L1, 5.35 g, 15.77 mmol, 60%). Colorless crystals suitable for 
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X-ray diffraction were obtained by layering hexane over a dichloromethane solution of the 

product, corresponding to L1. IR (cm-1): 3146w, 3122m, 3059w, 3047w, 2999m, 2957m, 

2943m, 2918m, 1586m, 1569m, 1480m, 1450s, 1437m, 1401m, 1332m, 1255s, 1213m, 

1086m, 1050m, 999m, 867w br, 753vs. 1H NMR (300 MHz, CDCl3): δ 2.28 (s, 3H, CH3 py o-

CH), 2.33 (s, 3H, CH3 py p-CH), 2.43 (s, 3H, CH3S), 3.77 (s, 3H, CH3O), 5.51 (s, 2H, CH2), 

6.60 (d, J = 2.2 Hz, 1H, CH pz(ph)), 7.18 (dt, J = 7.0, 1.9 Hz, 1H, CH ph), 7.29 (m, 2H, CH 

ph), 7.45 (d, J = 2.2 Hz, 1H, CH pz(CH2)), 7.56 (d, J = 7.4 Hz, 1H, CH ph), 8.26 (s, 1H, CH 

py). 13C NMR (75 MHz, CDCl3): δ 10.7 (CH3 py p-CH), 13.0 (CH3 py o-CH), 15.7 (CH3S), 

56.1 (CH2), 59.5 (CH3O), 106.2 (CH pz(ph)), 124.1 (CH ph), 124.9 (CH ph), 125.9 (C quat. 

py), 125.9 (C quat py), 127.7 (CH ph), 129.2 (CH pz(CH2R)), 129.3 (CH ph), 132.1 (C quat 

ph), 137.0 (C quat ph), 149.0 (CH py), 149.6 (C quat), 153.4 (C quat), 164.0 (C quat CH3O). 

ESI-MS (p.i., cone 50 V, MeOH, m/z, I%): 340.5, 100, [LH]+. Anal. calcd for C19H21N3OS 

(339.46): C, 67.23; H, 6.23; N, 12.38. Found: C, 67.14; H, 6.30; N, 12.44%. 

 

4.2.3 Synthesis of [Cu2(L
1
)2(CH3CN)][Cu(L

1
)(CH3CN)](BF4)3 (1) 

 

A solution of [Cu(CH3CN)4]BF4 (264 mg, 0.84 mmol) in dichloromethane (20 ml) was added 

to a solution of L1 (272 mg, 0.80 mmol) in dichloromethane (20 ml) at room temperature 

while stirring. After 1 h, the solution was concentrated to ~5 ml under vacuum; a white 

product was precipitated with hexane (25 ml), and filtered and dried under vacuum, yielding a 

colorless powder (1, 250 mg, 0.16 mmol, 62%). Colorless crystals suitable for X-ray 

diffraction were obtained by evaporation from an acetonitrile:water solution of the product. IR 

(cm-1): 3138m, 3016w, 2946w, 1591m, 1521w, 1494m, 1473s, 1434s, 1411m, 1366m, 

1298m, 1256s, ~1050vs br, 761s. 1H NMR (300 MHz, CD2Cl2): δ 2.22 (s br, 6H, CH3 py), 

2.48 (s, 3H, CH3S), 3.82 (s br, 3H, CH3O), 5.29 (s br, 2H, CH2), 6.43 (s br, 1H, CH pz(ph)), 

7.45 (s br, 4H, CH(ph)), 7.87 (s br, 1H, CH pz(CH2), 8.20 (s br, 1H, CH py). 13C NMR (75 

MHz, CD2Cl2): δ 2.80, 11.40, 13.29, 20.89, 51.90, 60.41, 106.40, 127.55, 128.28, 129.37, 

129.70, 130.28, 131.02, 131.75, 132.16, 132.60, 148.85, 151.08, 165.64. Anal. calcd for 

C61H69B3F12N11O3S3Cu3 (1551.54): C, 47.22; H, 4.48; N, 9.93. Found: C, 47.02; H, 4.35; N, 

9.49%. 
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4.2.4 Synthesis of [Cu(L
1
)(PPh3)]BF4 (2) 

 

A solution of [Cu(CH3CN)4]BF4 (195 mg, 0.62 mmol) in acetonitrile (5 ml) was added to a 

solution of L1 (206 mg, 0.61 mmol) and PPh3 (155 mg, 0.59 mmol) in acetonitrile (20 ml) at 

room temperature while stirring. After 1 hour, the solution was dried under a vacuum, 

producing a colorless solid, which was recrystallized in dichloromethane:hexane, yielding a 

white powder (2, 400 mg, 0.53 mmol, 90%). Colorless crystals suitable for X-ray diffraction 

were obtained by layering hexane over a THF solution of the product. IR (cm-1): 3139w, 

3054w, 3005w, 1591m, 1569m, 1475m, 1433s, 1256m, 1061vs br, 755s br, 695s. 1H NMR 

(300 MHz, CDCl3): δ 1.78 (s, 3H, CH3S), 2.20 (s, 3H, CH3 py o-CH), 2.57 (s, 3H, CH3 py p-

CH), 3.82 (s, 3H, CH3O), 5.49 (s br, 2H, CH2), 6.52 (s, 1H, CH pz(ph)), 7.15-7.30 (m, 17H, 

CH ph), 7.46 (t, J = 6.9 Hz, 1H, CH ph), 7.58 (d, J = 7.2 Hz, 1H, CH ph), 7.99 (s, 1H, CH py), 

8.25 (s, 1H, CH pz(CH2)). ESI-MS (p.i., cone 29 V, MeOH, m/z, I%): 402.2, 100, [Cu(L)]+; 

664.2, 70, [Cu(L)PPh3]
+. Anal. calcd for C37H36BF4N3OPSCu (752.09): C, 59.09; H, 4.82; N, 

5.59. Found: C, 59.17; H, 4.90; N, 5.51%. 

 

4.2.5 Synthesis of [Cu6(L
1
)2(C6F5S)6] (3) 

 

L1 (720 mg, 2.12 mmol) was added to a suspension of CuCl (630 mg, 6.36 mmol) in 

acetonitrile (20 ml), and produced an orange solution. After few minutes, C6F5SH (0.85 ml, d 

= 1.5 g/ml, 6.37 mmol) and NH4OH 15.71 M (0.41 ml, 6.44 mmol) were added, with 

consequent formation of a precipitate. After 30 min, water (10 ml) was added and the white 

solid was filtered and dried under vacuum, yielding a bright yellow powder (3, 1.68 g, 0.74 

mmol, 70 %). IR (cm-1): ~2920w, 1636w, 1626w, 1508vs, 1473vs, 1373w, 1357w, 1294w, 

1260w, 1138w, 1082vs, 1009w, 968vs, 850vs, 761w. Anal. calcd for C74H42F30N6O2S8Cu6 

(2254.92): C, 39.42; H, 1.88; N, 3.73. Found: C, 39.51; H, 1.79; N, 3.65%. Colorless crystals 

suitable for X-ray diffraction were obtained by cooling to 8°C an acetonitrile/water solution 

of 3, corresponding to [Cu6(L)2(C6F5S)6CH3CN] (3a). The solution characterization of 3 was 

performed in acetonitrile (see Results and discussion section). 1H NMR (300 MHz, CD3CN): 

δ 2.12 (s, 3H, CH3), 2.20 (s, 3H, CH3), 2.42 (s, 3H, CH3S), 3.78 (s, 3H, CH3O), 5.50 (s, 2H, 

CH2), 6.50 (d, J = 2.2 Hz, 1H, CH pz(ph)), 7.30 (m, 3H, CH ph), 7.42 (m, 1H, CH ph), 7.83 

(d, J = 2.2 Hz, 1H, CH pz(CH2)), 8.16 (s, 1H, CH py). 13C NMR (75 MHz, CD3CN): δ 11.7, 

13.4, 18.2, 53.0, 107.0, 128.0, 129.8, 130.1, 131.3, 132.8, 136.3 (m), 139.6 (m), 145.4 (m), 
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148.5 (m), 151.3. 19F NMR (564 MHz, CD3CN): δ-200.7 (d, J = 28 Hz, 2F), -233.0 (t, J = 25 

Hz, 1F), -233.8 (t, J = 23 Hz, 2F). ESI-MS (n.i., cone -41 V, CH3CN, m/z, I%): 461.0, 100, 

[Cu(C6F5S)2)]
-; 724.8, 25, [Cu2(C6F5S)3)]

-; 986.6, 30, [Cu3(C6F5S)4)]
-; 1248.7, 12, 

[Cu4(C6F5S)5)]
-; 1512.5, 8, [Cu5(C6F5S)6)]

-. ESI-MS (p.i., cone 85 V, CH3CN, m/z, I%): 

387.3, 100; 402.3, 40, [Cu(L)]+. 

 

4.2.6 Physical Techniques 

 

1H, 13C and 2D NMR spectra were recorded on a Bruker Avance 300 spectrometer using 

standard Bruker pulse sequences. Chemical shifts are reported in ppm referenced to residual 

solvent protons (CDCl3CD2Cl2, CD3CN). 1H and 19F PGSE NMR measurements were 

performed in a solution of 3 (10-3 M) in CD3CN using a standard stimulated echo (STE) 

sequence on a Varian Inova spectrometer (600 MHz) at 300 K and without spinning. An 

external reference (trifluorotoluene, -63.72 ppm) was used for the 19F chemical shift 

calibration. Tetrakismethylsilylsilane (TMSS, hydrodynamic radius rH ~ rvdW = 4.28 Å) was 

used as an internal standard. The hydrodynamic radius (rH) and volume (VH = 4/3.π.rH
3) were 

obtained as described in the literature239,240 (see also Section 5.2.8, accounting that 

(γ(1H)/γ(19F))2 = 1.13). The van der Waals volumes (VvdW) and the solvent-excluded volumes 

(Vsoft)
241 were computed on 3a and on the mononuclear unit of 1 starting from the X-ray 

coordinates using the software package DS Viewer Pro 5.0.242 

Mass spectra were obtained with a Micromass ZMD spectrometer. The mixtures were 

analyzed in the positive and negative ionization modes by direct perfusion in ESI-Mass 

interface. Infrared spectra were recorded from 4000 to 700 cm-1 on a Perkin-Elmer FT-IR 

Nexus spectrometer equipped with a Thermo-Nicolet microscope. Elemental analyses (C, H, 

N) were performed with a Carlo Erba EA 1108 automated analyzer. The luminescence 

spectrum of 3 (yellow powder) was recorded on a Horiba Jobin Yvon SPEX FluoroMax 4 

Spectrofluorometer, using a UG11 band-pass filter on the excitation slit and a long-pass filter 

GG475 on the emission slit. Conductivity measurements were performed on a Crison 

microCM 2202 conductometer operating at 25° C. 

 

4.2.7 X-ray crystallography 

 

A summary of data collection and structure refinement for L1, 1, 2 and 3a is reported in Table 

4.1. The Ortep drawing216 of L1 is reported in Appendix 3 (Figure A9).  
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Table 4.1 Summary of X-ray crystallographic data for L1, 1, 2, and 3a. 

 

 
R1 = Σ||Fo|-|Fc||/Σ|Fo|, wR2 = [Σ[w(Fo

2-Fc
2)2]/Σ[w(Fo

2)2]]½ , w = 1/[σ2(Fo
2) + (aP)2 + bP], where P = 

[max(Fo
2,0) + 2Fc

2]/3 

 

Single crystal data were collected with a Bruker Smart 1000 area detector diffractometer (Mo 

Kα; λ = 0.71073 Å). Cell parameters were refined from the observed setting angles and 

detector positions of selected strong reflections. Intensities were integrated from several series 

of exposure frames covering the sphere of reciprocal space.208 No crystal decay was observed. 

Absorption corrections using the program SADABS153 was applied for L1, 2 and 3a, which 

resulted in transmission factors ranging from 0.720-1.000 (L), 0.653-1.000 (2) and 0.834-

1.000 (3a), whereas the program XABS2243 was used for 1 (max. and min. absorption 

correction coefficients of 1.000-0.497). For 1, the space group (P21) was chosen on the basis 

 L1 1 2 3a 

Empirical formula C38H42N2S2 C61H69B3Cu3F12N11O3S3 C37H36B4CuF4N3OPS C76H45Cu6F30N7O2S8 

Formula weight 678.90 1551.50 752.07 2295.91 

Colour, habit Colorless, block Colorless, block Colorless, block Colorless, plate 

Crystal size, mm 0.45x0.20x0.15 0.18x0.10x0.08 0.38x0.30x0.10 0.35x0.15x0.10 

Crystal system Monoclinic Monoclinic Triclinic Triclinic 

Space group P21/c P21 P-1 P-1 

a, Å 16.984(3) 12.430(9) 10.431(1) 15.502(2) 

b, Å 7.628(1) 20.105(9) 12.378(1) 16.672(2) 

c, Å 28.302(5) 14.665(8) 15.213(2) 18.535(2) 

αdeg. 90 90 78.13(1) 106.93(1) 

β, deg. 98.15(1) 107.10(3) 78.95(1) 100.92(1) 

γ deg. 90 90 70.41(1) 93.45(1) 

V, Å3 3630(1) 3503(4) 1794.8(3) 4465.7(9) 

Z 4 2 2 2 

T, K 293(2) 293(2) 293(2) 293(2) 

ρ�(calc), Mg/m3 1.242 1.471 1.392 1.707 

µ, mm-1 0.188 1.075 1.766 1.701 

θ  range, deg. 1.45 to 27.04 1.45 to 24.00 1.77 to 27.97 1.35 to 25.00 

No.of rflcn/obsv 38065 / 4095 10942 / 4747 19539 / 4898 42725 / 3759 

GooF 1.006 0.892 1.009 0.979 

Flack parameter - 0.04(1) - - 

R1 0.0409 0.0587 0.0357 0.0780 

wR2 0.0841 0.0675 0.0683 0.0843 
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of the systematic extinction and intensity statistics, the absolute configuration has been 

confirmed at the 3σ level of the Flack parameter (0.04(1)).244 The structures were solved by 

direct methods (SIR97)155 and  refined with full-matrix least-squares (SHELXL-97),156 using 

the Wingx software package.157 Non-hydrogen atoms were refined anisotropically for L1 and 

2. The BF4
- anions in 1 were severely disordered and were refined isotropically. The carbon 

atoms in 3 were also refined isotropically due to the poor quality of the crystal and the limited 

number of observed reflection available. The hydrogen atoms were placed at their calculated 

positions. Molecular drawings were prepared using the Mercury 1.4.2 program.159 

 

4.2.8 DFT calculations 

 

Theoretical calculations were carried out using the Gaussian 03 program suite.160 Geometry 

optimization of the mononuclear model compound [Cu(L’)(C6H5S)] was performed starting 

from a pseudo-tetrahedral copper coordination as found in 2, by substituting PPh3 with C6H5S
- 

and by substituting the -CH3 and -OCH3 groups of the pyridine ring of L1 with hydrogen 

atoms, thus giving the model ligand L’. The CH3CN molecule and the isolated model ligand 

L’ were also optimized. The complex [Cu(L’)(CH3CN)]+ was optimized starting from the X-

ray coordinates of the mononuclear species of 1. The polynuclear model complexes 

[Cu6(L’)2(C6H5S)6] and [Cu4(C6H5S)6]
2- were optimized starting from the [Cu4(C6F5S)6]

2- 

adamantane-like core as found in various copper(I)-thiolate clusters,236 whereas 

[Cu4(C6H5S)6(CH3CN)]2- was optimized starting from the X-ray geometry of 3a by removing 

the peripheral [Cu(L1)]+ moieties. The gradient-corrected hybrid density functional 

B3LYP164,165 and the lanl2dz basis set with Hay and Wadt effective core potential (ECP) were 

employed.166,167 Vibrational frequencies were calculated at the same level of theory to ensure 

that the stationary points were true minima, and for the calculation of zero-point energies. 

Thermal corrections and  free energy of reaction were calculated at 300 K. In order to take 

into account the effect of the solvent on the energy of reactions involving ionic dissociation, 

the solvation energies (∆Gsolv) were estimated using the polarizable continuum model 

(PCM)245-249 at the B3LYP/lanl2dz level. ∆Gsolv represents the energy required to bring a 

molecule of solute from the gas phase to a polarizable dielectric media. This requires the 

opening of a cavity in the solvent where the solute can be fitted (∆Gcav), giving rise to solvent-

solute electrostatic interactions (∆Geletr), to van der Waals solvent-solute contributions 

(∆Gdisp), and to some steric repulsion (∆Grep), so that ∆Gsolv = ∆Gcav + ∆Grep + ∆Gdisp + 
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∆Gelectr.250 Single-point energy calculations at the PCM level were performed on the gas-phase 

structures without further optimization, assuming that the stationary points in the gas phase 

are also stationary points in solution. We therefore approximated the ∆Gsolv as the difference 

between the free energy in solution (Gsolv) and the gas-phase total energy (E) without zero-

point or thermal correction. Inside the cavity that hosts the solute, the dielectric constant is the 

same as in vacuum, whereas outside it takes the value of the solvent (acetonitrile, ε = 36.6). 

Finally, the free energy of reaction in solution (∆Gsolution) was computed as the sum of the gas-

phase free energy (∆G300) and the solvation free energy ∆Gsolution = ∆G300 + ∆∆Gsolv (where 

∆∆Gsolv = ∆GP
solv-∆GR

solv), according to the thermodynamic cycle reported in Scheme 4.2. 

 

R P

Rsolution Psolution

∆G300

∆Gsolution

∆GP
solv∆GR

solv

gas-phase

solution

 

 

 

Scheme 4.2 Thermodynamic cycle for the calculation of the reactions free energies in solution, 

∆Gsolution = ∆G300 +∆∆Gsolv (where ∆∆Gsolv = ∆GP
solv-∆GR

solv). 
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4.3 Results and Discussion 

 

4.3.1 Solid state structure of [Cu2(L
1
)2(CH3CN)][Cu(L

1
)(CH3CN)](BF4)3 (1) 

 

At first, the coordination capabilities of the N,N’,S-donor ligand L1 versus Cu(I) were tested 

through reaction with [Cu(CH3CN)4]BF4 in acetonitrile in a 1:1 ratio to yield compound 1. As 

can be seen in Figure 4.1, a mononuclear and a dinuclear complex co-crystallize in the unit 

cell.  

 

 

 

Figure 4.1 Molecular drawing of 1 at the 30% thermal ellipsoids probability level. A mononuclear and 

a dinuclear unit are present in the unit cell. The hydrogen atoms and the BF4
- counterions have been 

omitted for clarity. 

 

The former is comprised by a copper(I) center, Cu(1), bound by a κ3-N,N’,S chelate ligand 

and a CH3CN molecule. The metal geometry is distorted tetrahedral since the coordination 

angles range from 122.1(3) to 89.6(3)°. The dinuclear unit exhibits two metal centers in 

different coordination environments. In particular, Cu(2) is bound by an acetonitrile molecule 

and by a N,N’S chelate ligand, which in turn bridges to the Cu(3) atom with the thioether 

sulfur atom S(15). The coordination of Cu(3) is completed by another N,N’S chelate ligand. 

Interestingly, the bond distances (Table 4.2) within the sulfur bridge are not equivalent since 

Cu(3)-S(15) (2.230(3) Å) is significantly shorter than Cu(2)-S(15) (2.462(3) Å). This is 

related to the different geometry of the Cu(2) and Cu(3) atoms since the latter exhibits a more 
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regular tetrahedral geometry, which is distorted as a consequence of the constraints imposed 

by the chelate ligand. Conversely, Cu(2) is in a tetrahedral  geometry severely distorted 

towards the trigonal one (equatorial atoms: N(17), N(25), N(18)) due to the long Cu(2)-S(15) 

interaction . The nearly trigonal geometry of Cu(2) is supported by the sum of the equatorial 

angle values, 353.1(3)°, which is close to the theoretical value of 360°, and by the fact that 

Cu(2) is only 0.282(1) Å out of the equatorial plane and is directed towards the apical sulfur 

S(15). The three metal atoms are stereogenic centers and they all exhibit an S configuration. 

Interestingly, this leads to a spontaneous resolution at the solid state since 1 crystallizes in the 

chiral space group P21. Each of the three BF4
- counterions are disordered in two positions that 

roughly define a spherical structural site occupation. In light of these results, it can be 

concluded that the nuclearity of 1 cannot be defined a priori, due to the flexibility and the 

lack of appropriate sterical hindrance of L1. 

 

Table 4.2 Selected bond lengths (Å) for 1, 2, and 3a. 
 

 1   
Cu(1)-S(11) 2.304(3) Cu(2)-N(17) 2.044(7) 

Cu(1)-N(21) 2.033(7) Cu(2)-N(18) 1.890(8) 
Cu(1)-N(13) 2.054(8) Cu(3)-S(15) 2.230(3) 

Cu(1)-N(14) 1.919(9) Cu(3)-S(19) 2.390(3) 

Cu(2)-S(15) 2.462(3) Cu(3)-N(29) 2.016(6) 
Cu(2)-N(25) 1.988(7) Cu(3)-N(111) 2.062(7) 

 2   

Cu-S(11) 2.4482(7) Cu-N(13) 2.092(2) 
Cu-P(14) 2.1957(7) Cu-N(21) 2.014(2) 

 3a   

Cu(1)-N(21) 1.937(8) Cu(4)-S(19) 2.214(3) 
Cu(1)-N(13) 2.072(7) Cu(5)-S(18) 2.234(4) 

Cu(1)-S(17) 2.156(3) Cu(5)-S(19) 2.259(3) 

Cu(2)-N(16) 2.028(8) Cu(5)-N(1) 1.88(1) 
Cu(2)-N(24) 2.03(1) Cu(6)-S(17) 2.297(3) 

Cu(2)-S(14) 2.399(4) Cu(6)-S(18) 2.341(3) 

Cu(2)-S(111) 2.254(3) Cu(6)-S(112) 2.244(3) 
Cu(3)-S(110) 2.261(3) Cu(4)-Cu(5) 2.768(2) 

Cu(3)-S(111) 2.223(3) Cu(5)-Cu(6) 2.814(2) 

Cu(3)-S(112) 2.244(3) Cu(4)-Cu(6) 2.842(2) 
Cu(4)-S(110) 2.241(3) Cu(3)-Cu(4) 3.489(2) 

Cu(4)-S(17) 2.330(3) Cu(3)-Cu(6) 3.396(2) 
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4.3.2 Solid state structure and solution properties of [Cu(L
1
)(PPh3)]BF4 (2) 

 

The hypothesis that an ancillary σ-donor ligand such as PPh3 would complement the 

coordination properties of L1 to yield a mononuclear species has led to the synthesis and 

isolation of 2. The copper coordination is achieved through the N(21), N(13) and S(11) atoms 

of L1 and by PPh3 (Figure 4.2).  

 

 
 

Figure 4.2 Molecular drawing of the cationic unit of 2 at the 30% thermal ellipsoids probability level. 

The hydrogen atoms (except for the methylenic ones) and the BF4
- counterion have been omitted for 

clarity. 

 

The metal geometry is intermediate between trigonal-pyramidal and tetrahedral: the trigonal 

plane can be defined by P(14), N(21) and N(13) with S(11) in the apical position (Cu-S(11) = 

2.4482(7) Å). This geometry is supported by the following criteria: i) the sum of equatorial 

angles is 344.23(5)° (cfr. 328.5° for a tetrahedral geometry and 360° for trigonal planar 

geometry), and ii) the metal lies out of the trigonal plane by ~ 0.46 Å in the direction of S(11). 

The BF4
- counterion is statically disordered in three positions that occupy a structural 

spherical site.  

Complex 2 presents a fluxional behaviour in solution, as shown by the 1H VT NMR spectrum 

in CDCl3, Figure 4.3. The bridging methylene of the ligand gives a broad signal at 270 K, 

which splits into two sharp doublets by lowering the temperature to 210 K, while the other 

peaks exhibit only a chemical shift temperature dependence. This behaviour is justified with 

the diastereotopic nature of the methylene group at low temperatures, which can be explained 

in two ways: (a) the presence of the stereogenic Cu(I) center, and (b) the boat conformation of 
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the N,N’ chelate six-membered ring around the metal center. The kinetic parameters of the 

exchange process were determined from the complete lineshape analysis251,252 to be: ∆H# = 

+43.6(3) kJ.mol-1, ∆S# = -16(1) J mol-1 K-1. These values suggest a non-dissociative 

rearrangement, which is most likely the inversion of the boat, as shown by some examples 

reported in the literature.42,215,253 This implies a fast inversion (on the NMR time-scale) 

around the Cu center, which probably involves the stretching or rupture of the labile Cu(I)-S-

thioether bond.  

 

 

 

Figure 4.3 Experimental (a) and simulated (b) 1H NMR spectrum of 2 in the region of the Ha and Hb 

diasterotopic protons. A description of the boat inversion process is reported in (c). 

 

4.3.3 Solid state structure, solution properties, DFT calculations for [Cu6(L
1
)2(C6F5S)6] (3) 

 

By using the monodentate sulfur donor ligand C6F5S
- as a coligand in place of PPh3, 

additional complications became evident. The idea of obtaining a neutral copper(I) complex 

exhibiting an approximately tetrahedral structure with a N,N’,S,S’ donor set is difficult to 

fulfill, mainly because of the absence of steric hindrance on both L1
 and on the thiolate group, 

which enables the thiolate to bridge metal centers. In the first stage, the 1:1:1 Cu:C6F5S
-: L1 

stoichiometric ratio was employed for the synthesis, but this led nonetheless to the isolation 
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and X-ray characterization of a 3:3:1 hexanuclear complex (3a). We therefore optimized the 

synthesis in 3:3:1 conditions to give 3, which crystallized as 3a by incorporating an 

acetonitrile molecule. An exemplified molecular drawing, depicting the coordination 

environment of the six copper atoms, is reported in Figure 4.4. The structure consists of six 

metal atoms, six thiolate groups and two L1 ligands arranged in a cluster-like fashion. Cu(1) 

and Cu(2) are the only atoms that are bound to L1, and they are located in the peripheral part 

of a [Cu4(C6F5S)6]
2- copper-thiolate cluster. The four metals of the core adopt a trigonal 

geometry determined by bridging thiolate groups, and in the case of Cu(5), also by an 

acetonitrile molecule (crystallization solvent). 

 

Figure 4.4 Molecular structure of the copper(I)-SC6F5 cluster crystallized from an acetonitrile:water 

solution (3a). The hydrogen atoms have been omitted for clarity. 

 

The structure of the copper-thiolate cluster is likely derived from a closed [Cu4(C6F5S)6]
2- 

adamantane-like structure,234,236,254 by disruption of S-Cu-S links and subsequent insertion of 

CH3CN, now bound to Cu(5) to give an ‘open’ structure. The negative charge (2-) of the open 

[Cu4(C6F5S)6(CH3CN)]2- cluster is compensated by two [Cu(L1)]+ peripheral moieties, which 

are bound to the former by means of thiolate groups. As a consequence of the open structure, 

three Cu-Cu interactions are shorter, ~ 2.8 Å (between Cu(4), Cu(5) and Cu(6)) and two are 
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longer, ~ 3.4 Å (Cu(3)-Cu(4) and Cu(3)-Cu(6)). Interestingly, part of this structure reproduces 

that present in the core of the yeast copper metallothionein (Cu-MT),238 a protein rich in 

cysteine residues that can bind up to eight copper(I) ions, six of which are in a trigonal 

geometry whereas two are in a digonal arrangement. It has been proposed that these two labile 

peripheral metals confer to the protein the ability to regulate copper homeostasis and they are 

also involved in the delivery of copper to apo-copper chaperones. Figure 4.5 reports, for 

comparison, the atom connectivity of the Cu-MT core and that found in 3a. Even though the 

Cu-MT cluster is more complex and it hosts more metal ions, some similarities with 3a are 

evident. It is interesting to note that the Cu-MT core may be imagined as a superposition of 

open {Cu4S6} clusters.  

 

 

 

Figure 4.5 Copper-donor atom connectivity in 3a (left), and in the yeast copper metallothionein 

(right). Structural analogies are highlighted in the dashed boxes. 

 

When acetonitrile, which is present in the structure of 3a (colorless crystals), is removed 

under vacuum, the deep yellow product 3 forms. This process is reversible: by adding few 

drops of acetonitrile, the product turns white. The complex 3 is luminescent in the solid state, 

emitting at 680 nm (excitation: 300 nm, 300 K, Figure 4.6), whereas in acetonitrile solution 

there is no evidence of emitting properties. This can be readily explained by a direct solvent-

cluster interaction, also supported by the solid state structure 3a, that results in luminescence 

quenching. The large stoke shift (380 nm) is typical of multinuclear copper compounds.255 On 

the basis of these observations, and also according to known Cu(I) adamantane-like structures 

reported in the literature,233,236 a closed adamantane-like structure (Scheme 4.3), derived from 
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the X-ray structure by elimination of the coordinated acetonitrile and by the closure of S(111) 

on Cu(5), may be proposed for the yellow solid 3. 

 

 

 

Figure 4.6 Emission spectrum of 3 (yellow powder) at 300 K (excitation wavelength of 300 nm). 
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Acetonitrile is the only common organic medium in which 3 is quite soluble, so that the 

solution characterization of 3 was performed in this solvent. The presence of a Cu(I)-thiolate 

cluster in solution is confirmed by the ESI-Mass spectrometry and by 19F PGSE NMR 

experiments. In particular, the mass spectrum in negative ionization mode reveals the 

presence of monoanionic [Cun(C6F5S)n+1]
- (n = 1-5) fragments of the cluster, whereas in 

positive ionization mode, only the [Cu(L1)]+ fragment is present. This could arise during the 

ESI-Mass ionization process or be present in solution according to a ionic dissociation 

equilibrium: 3a + CH3CN Ý [Cu4(C6F5S)6]
2- (3b) + 2[Cu(L1)(CH3CN)]+ (see Scheme 4.3). 

The latter hypothesis is in agreement with conductivity measurements performed on a 10-3 M 

solution of 3, which afford a molar conductivity value of 131(1) Ω-1 cm2 mol-1, slightly less 

than the range reported for 1:2 electrolytes in acetonitrile (145-336 Ω-1 cm2 mol-1).256 This 

would give credit to the hypothesis of the ionic dissociation of 3a in solution. 
1H and 19F PGSE NMR experiments were performed in order to obtain the hydrodynamic 

radius (rH) and volume (VH) of 3. The measurements based on 19F afford a rH of 6.8(1) Å and 

a VH of 1300(60) Å3, while the 1H PGSE values point to significantly smaller dimensions (rH 

= 5.2(1) Å and VH = 600(30) Å3). This discrepancy can be explained by considering the 

aforementioned dissociation equilibrium: the 19F nucleus, in fact, is present only in the 

exhanging 3a and 3b clusters (large), while protons are shared by 3a (large) and 

[Cu(L1)(CH3CN)]+ (small). Hence, the VH value derived from 1H PGSE (VH(1H)) would 

corresponds to the weighted average between the volumes of 3a and [Cu(L1)(CH3CN)]+, and 

should result significantly smaller than VH(19F). In addition, a comparison between the 

experimental VH(1H) with the van der Waals volumes (VvdW) of 3a (1228 Å3) and 

[Cu(L1)(CH3CN)]+ (327 Å3), would suggest only a partial ionic dissociation of 3a, since 

VH(1H) is intermediate between the above-mentioned values. On the other hand, by 

considering the solvent-excluded volume (Vsoft) as an estimate of the hydrodynamic volume 

of the respective species (2039 Å3 for 3a and 605 Å3 for [Cu(L1)(CH3CN)]+) we would infer a 

nearly complete ionic dissociation, as VH(1H) becomes comparable to the Vsoft of 

[Cu(L1)(CH3CN)]+. Since VvdW represent the lower limit of VH
257 and assuming that Vsoft 

represents the upper VH limit, the dissociation of 3a is partial or complete  according to which 

theoretical volume, VvdW or Vsoft, is taken as reference. However, a complete ionic 

dissociation appears quite plausible, as attested by the following evidences: (1) as stated 

above, the molar conductivity is close to that reported for completely dissociated 1:2 

electrolytes in acetonitrile; (2) no peaks of a [Cun(L
1)(C6F5S)n+1]

- species appear in the ESI-
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Mass spectrum; (3) both the 1H and 19F NMR spectra exhibit only a set of signals, and it 

would be consistent with the presence of a more symmetrical 3b species (if compared to 3a) 

and [Cu(L1)(CH3CN)]+. If this is not the case, a fast-exchange equilibrium with 3a should be 

invoked. 

To further support the hypothesis that a Cu(I)-thiolate cluster structure is energetically 

favored over a mononuclear complex, DFT calculations were performed to compute the free 

energy of the gas phase reaction, 6[Cu(L’)(C6H5S)] → [Cu6(L’)2(C6H5S)6] + 4L’, as well as to 

evaluate the stability of the hexanuclear cluster in acetonitrile solution (Tables 4.3 and Figure 

4.7).  

 

Table 4.3 Computed thermodynamic properties for gas-phase (∆E, ∆E300, ∆G300)
a and solution 

(∆Gsolution)b reactions (a)-(c) reported in Figure 4.7 (kJ mol-1, B3LYP/lanl2dz). 

 
reaction ∆E ∆E300 ∆G300 ∆Gsolution 

(a) -125.6 -114.0 -58.6 - 
(b) 668.1 682.5 634.7 -101.8 
(c) -40.4 -23.5 2.3 28.8 

 

a, calculated as ∆G300 = ΣGProduct-ΣGReactant; b, calculated according to the thermodynamic cycle reported in 

Scheme 4.2, ∆Gsolution = ∆G300 +∆∆Gsolv. 

 

The C6H5S
- thiolate was employed instead of the less electron-donating C6F5S

- to save 

computational resources, so some caution is required when inferring properties of the real 

system by using these models. As an example, the comparison between the [Cu(L’)(C6H5S)] 

and [Cu(L’)(C6F5S)] optimized models reveals that in the former case the copper geometry is 

trigonal planar with the thioether sulfur not coordinated, whereas in the latter the metal 

geometry is tetrahedral with the thioether bound to copper and a longer Cu-SC6F5 bond 

distance (Figure A10 of Appendix 3).  

The in vacuo free energy (∆G300) of cluster-formation from the mononuclear entities (Figure 

4.7 a) is -58.6 kJ mol-1, supporting the stability of the aggregate. This is in agreement with 

previous DFT calculations performed on cyclic copper(I)-thiolate assemblies showing that 

oligomerization is energetically favored.258 The [Cu4(C6H5S)6]
2- inner core of the 

[Cu6(L’)2(C6H5S)6] optimized structure presents three copper atoms in trigonal planar 

arrangements and one copper atom in a distorted digonal geometry. The two outer trigonal 

copper centers are bound by two κ2-N,N’ ligands, and they are linked to the [Cu4(C6H5S)6]
2- 
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unit by bridging thiolates. We propose that this structure may model that adopted by 3 when 

acetonitrile is removed under vacuum (see Scheme 4.3).  

 

 

 

Figure 4.7 Optimized molecular structures for the Cu(I)/L’/C6H5S
- system (B3LYP/lanl2dz). (a) 

Oligomerization reaction 6[Cu(L’)(C6H5S)] → [Cu6(L’)2(C6H5S)6] + 4L’, (b) ionic dissociation of the 

[Cu6(L’)2(C6H5S)6] cluster and (c) acetonitrile interaction with the [Cu4(C6H5S)6]
2- cluster. 

 

Since there is experimental evidence that the two peripheral [Cu(L1)]+ moieties of 3 may be 

subject to dissociation from the [Cu4(C6H5S)6]
2- cluster in acetonitrile solution, we computed 

the energetics of this reaction to substantiate this hypothesis (Figure 4.7 b). The computed ∆E 

and ∆G300 of the ionic dissociation reaction are positive in the gas-phase (668.1 kJ mol-1 and 

634.7 kJ mol-1, respectively), pointing to a considerable stabilization of the neutral 

[Cu6(L’)2(C6H5S)6] assembly. However, if we take into account the effect of the solvent, and 

in particular the stabilization that derives from a polar solvent such as acetonitrile on the ionic 

products of the reaction, it appears that the reaction is exergonic (∆Gsolution = -101.8 kJ mol-1), 

making the dissociation even more favored in the presence of a large excess of solvent.  
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The reaction reported in Figure 4.7 c describes the ‘opening’ of the closed [Cu4(C6H5S)6]
2- 

cluster by acetonitrile. The gas phase reaction is exothermic (∆E = -40.4 kJ mol-1) but 

endergonic (∆G300 = +2.3 kJ mol-1) since it is entropically disfavoured. Moreover, the reaction 

is even more endergonic in CH3CN solution (∆Gsolution = +28.8 kJ mol-1), suggesting the 

greater stability of the closed [Cu4(C6H5S)6]
2- cluster with respect to the open form. This is in 

agreement with the proposed 3b structure, which is supported also by the absence of CH3CN 

in all of the ESI-Mass fragments, and by the reported crystallization of 

[(C6H5)4P]2[Cu4(SC6H5)6] from acetonitrile, in which the cluster is in the closed form.233  

 

 

 

4.4 Conclusions 

 

The coordination capabilities of the N,N’,S ligand 4-methoxy-3,5-dimethyl-2-((3-(2-

(methylthio)phenyl)-1H-pyrazol-1-yl)methyl)pyridine (L1) were evaluated with Cu(I). Since 

the ligand possesses a weakly coordinating thioether group, ancillary monodentate ligands 

were employed (PPh3 and C6F5S
-) to complete the copper coordination requirements. 

However, as evidenced by the X-ray structures, the nuclearity of the complexes can not be 

easily controlled, and only the ternary complex [Cu(L1)(PPh3)]BF4 (1) is mononuclear, 

whereas the L1/Cu(I) binary mixture in acetonitrile produces two co-crystallized entities: a 

monomeric [Cu(L1)(CH3CN)]+ and a dinuclear [Cu2(L
1)2(CH3CN)]2+complex. In addition, the 

ternary Cu(I)/L1/C6F5S
- system gives rise to the isolation of a polynuclear compound, 

[Cu6(L
1)2(C6F5S)6(CH3CN)] (3a), which bears similarities to an open adamantane-like 

{Cu4S6} cluster. Part of this Cu-thiolate framework is found in the structure of the yeast 

metallothionein core, which exhibits eight Cu(I) metals bound by cysteinate residues. The 

propensity of the thiolate ligands to bridge metal centers is probably the driving force that led 

to the isolation of a multinuclear structure. Moreover, DFT calculations show how the 

hexanuclear unit is favored, in the gas phase, over a hypothetical mononuclear complex. Thus, 

in order to better control the nuclearity of Cu(I) centers, especially in presence of thiolates, it 

would be necessary to employ a more pre-organized ligand.259 This could be obtained by 

functionalization of the prochiral methylene group of L1 with proper donor moieties to yield 

tetradentate N,N’,S,S’ heteroscorpionates, which may alone satisfy the electronic and steric 

requirement of Cu(I) without additional monodentate co-ligands (see Chapter 5).



 

 



 

 

5 

 

Cu(I) Complexes with C-Centered  

N,N’,S,S’-Scorpionates. 

Evidence for Dimer-Monomer Equilibria260 

 

 

The heteroscorpionate N,N’,S,S’ donor ligands La and Lb, based on the pyrazole-pyridine moiety, were 

prepared. The Cu(I) complexes [Cu(La)]2(BF4)2 (a2(BF4)2) and [Cu(Lb)]2(BF4)2 (b2(BF4)2) were 

synthesised and characterized by X-ray crystallography. Both exhibit a dinuclear structure, presenting 

each Cu(I) center in a distorted N,N’,S,S’ tetrahedral environment. On the basis of NMR and ESI-

Mass data, the presence of a mononuclear complex in equilibrium with the dimer was hypothesized for 

both complexes. The dimerization constants of the processes, 2a
+ Ý a2

2+ and 2b
+ Ý b2

2+, were 

obtained by 1H NMR dilution experiments (fast-exchange regime) in CD3CN: logΚ (a2
2+) = 3.55(6) 

and logΚ( b2
2+) = 3.23(5) at 300 K. Thermodynamic parameters were determined by a van’t Hoff 

analysis (280 - 310 K temperature range): ∆H
0(a2

2+) = -12(1) kJ.mol-1, ∆H
0(b2

2+) = -10(1) kJ.mol-1, 

∆S
0(a2

2+) = +27(4) kJ.mol-1, and ∆S
0(b2

2+) = +28(4) kJ.mol-1. Pulsed Gradient Spin Echo (PGSE) NMR 

experiments provided the weighted-average hydrodynamic volume (VH) of the species present in 

CD3CN solution at different copper concentrations (CCu). Nonlinear interpolation of VH as function of 

CCu for a dimer-monomer equilibrium led to the hydrodynamic volumes of both monomers (VH
0(M)) 

and dimers (VH
0(D)): VH

0(a+) = 620(40) Å3 VH
0(b+) = 550(10) Å3, VH

0(a2
2+) = 950(20) Å3 and 

VH
0(b2

2+) = 900(10) Å3 Cyclic voltammetry experiments performed in CH3CN and CH2Cl2 showed a 

quasireversible to irreversible behavior of the Cu(I)/Cu(II) redox couple for both complexes. 
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5.1 Introduction 

 

We are currently exploring the coordination properties of polydentate ligands derived from 

the pyrazole-pyridine moiety (see Chapter 3 and 4). Due to the facile derivatization of this 

platform, we aim at designing preorganized N/S donor ligands based on it. The underlying 

idea is to obtain Cu(I) mononuclear complexes exhibiting a tetrahedral geometry of the metal 

center. The usefulness of this reside in the possible exploitation of low molecular weight 

complexes as functional models of Type 1 cupredoxins (electron transfer copper 

proteins).90,92,261-266 Some of these models have recently been studied as electron-transfer 

mediators267 in dye-sensitized solar cells.268 

Thus, we present the coordination properties of two C-centered tetradentate N,N’,S,S’ donor 

ligands (La and Lb in Scheme 5.1) with Cu(I). La and Lb are based on an N,N’S-donor 

substituted pyrazole-pyridine platform with an alkyl-thioether group as the fourth 

coordination site.  

 

N

O
N

N

S
Cl Sn

 

N
N

S

N
O

CH
2

S
n

 

1. BuLi, -78°C, THF dry  

2.

n = 2, La

n = 1, LbL1

 

Scheme 5.1 

 

Unfortunately, the major drawback with respect to the control of the nuclearity of the 

complexes presented in this work, is related to the flexible nature of the alkyl-thioether moiety 

of the ligands, which leads to the isolation of dinuclear species at the solid state, with the 

thioether-sulfur bridging a second metal center, [Cu(La)]2(BF4)2 (a2(BF4)2) and 

[Cu(Lb)]2(BF4)2 (b2(BF4)2). It is worth noting that this molecular arrangement is also retained 

when diminishing the length of the thioether group from -CH2-CH2SCH3 in La to -CH2-SCH3 

in Lb. However, from dilution 1H NMR titrations and Pulsed Gradient Spin Echo (PGSE) 

NMR experiments performed in CD3CN, we found evidence of the equilibrium involving the 
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a2
2+ and b2

2+ dimers and the corresponding mononuclear entities, [Cu(La)]+ (a+) and [Cu(Lb)]+ 

(b+): a2
2+

 Ý 2a
+ and b2

2+
 Ý 2b

+. ESI Mass spectrometry in CH3CN would confirm this 

hypothesis. From a functional point of view, the electrochemical properties of the complexes 

were investigated by cyclic voltammetry in CH3CN (wherein the dimerization constants were 

also determined) and CH2Cl2. A quasireversible to irreversible behavior of the Cu(I)/Cu(II) 

redox couple was found in all of the experimental conditions (e.g. solvent, concentration), 

attesting to a sizeable reorganization energy during the heterogeneous electron transfer. 

 

 

 

5.2 Experimental 

 

5.2.1 General procedures 

 

All reagents and solvents were commercially available (Aldrich), except for 4-methoxy-3,5-

dimethyl-2-((3-(2-(methylthio)phenyl)-1H-pyrazol-1-yl)methyl)pyridine (L1, see Chapter 4) 

and [Cu(CH3CN)4]BF4,
170 which were prepared as previously reported. THF and 

dichloromethane were distilled over Na/benzophenone and CaH2, respectively. All syntheses 

were performed in inert gas (N2) using Schlenk techniques. 1H and 13C NMR spectra were 

recorded on a Bruker Avance 300 spectrometer using standard Bruker pulse sequences. 

Chemical shifts are reported in ppm referenced to residual solvent protons (CDCl3 CD3CN). 

Mass spectra were obtained with a Micromass ZMD spectrometer. The mixtures were 

analyzed in positive ionization mode by direct perfusion in the ESI-Mass interface. Infrared 

spectra were recorded from 4000 to 700 cm-1 on a Perkin-Elmer FT-IR Nexus spectrometer 

equipped with a Thermo-Nicolet microscope. Elemental analyses (C, H, N) were performed 

with a Carlo Erba EA 1108 automated analyzer. 

 

5.2.2 Synthesis of 4-methoxy-3,5-dimethyl-2-(3-(methylthio)-1-(3-(2-(methylthio)phenyl)-1H-

pyrazol-1-yl)propyl)pyridine (L
a
)
 

 

A solution of 4-methoxy-3,5-dimethyl-2-((3-(2-(methylthio)phenyl)-1H-pyrazol-1-

yl)methyl)pyridine (L1, 2.15 g, 6.33 mmol) in THF (80 ml) was cooled to -78 °C, and then n-

BuLi (4.15 ml, 1.6 M in hexane, 6.64 mmol) was slowly added. After stirring the red solution 

at -78 °C for 45 min, 97% 2-chloroethyl methyl sulfide (0.68 ml, d = 1.11 g/ml, 6.62 mmol) 
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was added and the resulting solution was allowed to warm to room temperature with stirring. 

After 1 h, the clear yellow solution was dried under a vacuum and the residual solid was 

extracted in diethyl ether:water (80 ml:30 ml). The organic phase was washed with brine and 

dried with Na2SO4. The solvents were removed under vacuum, giving a yellow oil that was 

purified by silica column chromatography (hexane:ethyl acetate 75:25), yielding a colorless 

oil (La, 1.53 g, 3.70 mmol, 58%). IR (cm-1): 3054w, 2917s, 2852w, 1587m, 1563s, 1472s, 

1451s, 1436s, 1395s, 1337m, 1260s, 1048s, 999s, 754vs. 1H NMR (300 MHz, CDCl3): δ 2.11 

(s, 3H, CH3SR), 2.26 (s, 3H, CH3 py o-CH), 2.35 (s, 3H, CH3 py p-CH), 2.42 (s, 3H, 

CH3SAr), 2.44-2.60 (m, 2H, CH2(SCH3)), 2.65-2.72 (m, 2H, CH2(CH*)), 3.74 (s, 3H, CH3O), 

6.00 (m, 1H, CH*), 6.57 (d, J = 2.1 Hz, 1H, CH pz(ph)), 7.17 (dt, 1H, J = 7.0, 2.0 Hz, CH ph), 

7.28 (m, 2H, CH ph), 7.55 (m, 2H, CH pz(CH*) + CH ph), 8.30 (s, 1H, CH py). 13C NMR (75 

MHz, CDCl3): δ 10.6 (CH3 py p-CH), 13.2 (CH3 py o-CH), 15.3 (CH3SR), 15.4 (CH3SAr), 

30.7 (CH2(SCH3)), 33.8 (CH2(CH*)), 59.9 (CH3O), 61.8 (CH*), 106.5 (CH pz(ph)), 124.4 

(CH ph), 125.3 (CH ph), 127.7 (CH ph), 127.9 (CH ph), 129.6 (CH pz(CH*)), 149.1 (CH py). 

ESI-MS (p.i., 50 V, CH3OH, m/z, I%): 414.6, 100, [LaH]+. Anal. calcd for C22H27N3OS2 

(413.60): C, 63.89; H, 6.58; N, 10.16. Found: C, 63.73; H, 6.85; N, 10.29%. 

 

5.2.3 Synthesis of 4-methoxy-3,5-dimethyl-2-(2-(methylthio)-1-(3-(2-(methylthio)phenyl)-1H-

pyrazol-1-yl)ethyl)pyridine (L
b
) 

 

The same procedure used to prepare La was applied by using the same quantities of 

reagents/solvent and 95% chloromethyl methyl sulfide (0.58 ml, d = 1.17 g/ml, 6.67 mmol) 

instead of 2-chloroethyl methyl sulfide. A colorless oil was obtained (Lb, 1.52 g, 3.80 mmol, 

60%). IR (cm-1): 2918m, 2850w, 1587w, 1563m, 1471s, 1454s, 1432s, 1395m, 1257m br, 

1211m, 1036w, 999w, 750m. 1H NMR (300 MHz, CDCl3): δ 2.02 (s, 3H, CH3SR), 2.25 (s, 

3H, CH3 py o-CH), 2.30 (s, 3H, CH3 py p-CH), 2.38 (s, 3H, CH3SAr), 3.33 (dd, J = 13.3, 5.9 

Hz, 1H, HCH(CH*)), 3.65 (dd, J = 13.3, 8.9 Hz, 1H, H’CH(CH*)), 3.72 (s, 3H, CH3O), 5.95 

(dd, J = 8.8, 6.0 Hz, 1H, CH*), 6.53 (d, J = 2.4 Hz, 1H, CH pz(ph)), 7.14 (dt, J = 7.0, 1.9 Hz, 

1H, CH ph), 7.15 (m, 2H, CH ph), 7.51 (m, 2H, CH pz(CH*) + CH ph), 8.28 (s, 1H, CH py). 
13C NMR (75 MHz, CDCl3): δ 10.8 (CH3 py p-CH), 13.3 (CH3 py o-CH), 16.1 (CH3SR), 16.3 

(CH3SAr), 38.2 (CH2), 60.0 (CH3O), 62.9 (CH*), 106.6 (CH pz(ph)), 124.5 (CH ph), 125.3 

(CH ph), 126.1 (C quat), 126.5 (C quat), 128.0 (CH ph), 129.7 (CH ph), 132.6 (C quat), 137.4 

(C quat), 149.1 (CH pz(CH*)), 149.6 (C quat), 154.7 (C quat), 164.1 (C quat). ESI-MS (p.i., 
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50 V, CH3OH, m/z, I%): 400.6, 100, [LbH]+. Anal. calcd for C21H25N3OS2 (399.57): C, 63.12; 

H, 6.31; N, 10.52. Found: C, 63.31; H, 6.15; N, 10.33%. 

 

5.2.4 Synthesis of [Cu(L
a
)]2(BF4)2 (a2(BF4)2) 

 

A solution of [Cu(CH3CN)4]BF4 (132 mg, 0.42 mmol) in dichloromethane (10 ml) was added 

to a solution of La (157 mg, 0.38 mmol) in dichloromethane (10 ml) at room temperature with 

stirring. After 1 h, the solution was concentrated to ~5 ml under a vacuum; hexane was added 

(25 ml) and a colorless oil formed, which was triturated, filtered and dried under a vacuum. A 

white powder was collected (a2(BF4)2, 147 mg, 0.13 mmol, 70%). Colorless crystals suitable 

for X-ray diffraction were obtained by stratification of hexane over a dichloromethane 

solution of the product, corresponding to [Cu(La)]2(BF4)2
.2CH2Cl2 (a2(BF4)2

.2CH2Cl2). IR 

(cm-1): 3125m, 2922m, 1591m, 1565m, 1476s, 1430s, 1366m, 1304m, 1264s, 1220w, ~1060 

vs br, 762s. 1H NMR (300 MHz, CD3CN): δ 2.07 (s, 3H, CH3SR), 2.24 (s, 3H CH3 py p-CH), 

2.26 (s, 3H, CH3 py o-CH), 2.34 (m, 3H, CH2(SCH3) + HCH(CH*)), 2.43 (s, 3H, CH3SAr), 

2.87 (m, 1H, H’CH(CH*)), 3.80 (s, 3H, CH3O), 6.04 (dd, J = 9.9, 4.6 Hz, 1H, CH*), 6.57 (d, J 

= 2.4 Hz, 1H, CH pz(ph)), 7.42 (m, 2H, CH ph), 7.54 (m, 2H, CH ph), 7.89 (d, J = 2.4 Hz, 

1H, CH pz(CH*)), 8.31 (s, 1H, CH py). ESI-MS (p.i., 45 V, CH3CN, m/z, I%): 476.2, 100, 

[Cu(La)]+. ESI-MS (p.i., 39 V, CH3OH, m/z, I%): 476.2, 100, [Cu(La)]+. Anal. calcd for 

B2C44Cu2F8H54N6O2S4 (1127.90): C, 46.85; H, 4.82; N, 7.45. Found: C, 47.24; H, 4.96; N, 

7.18%. 

 

5.2.5 Synthesis of [Cu(L
b
)]2(BF4)2 (b2(BF4)2) 

 

The same procedure used to prepare a2(BF4)2 was applied by using Lb (160 mg, 0.40 mmol) 

instead of La and a different quantity of [Cu(CH3CN)4]BF4 (139 mg, 0.44 mmol). A white 

powder was collected (b2(BF4)2, 170 mg, 0.15 mmol, 77%). Colorless crystals suitable for X-

ray diffraction were obtained by cooling an acetonitrile:water solution of the product to 8 °C. 

IR (cm-1): 3137 w, 3001 w, 2930 m, 1589 w, 1568 w, 1470 m, 1427 m, 1351 w, 1254 m, 

~1035 m br, 762 m. 1H NMR (300 MHz, CD3CN): δ 2.16 (s, 3H, CH3SR), 2.29 (s, 3H, CH3 

py o-CH), 2.30 (s, 3H, CH3 py p-CH), 2.47 (s, 3H, CH3SAr), 3.35 (dd, J = 14.5, 5.5 Hz, 1H, 

HCH(CH*)), 3.54 (dd, J = 14.4, 8.1 Hz, 1H, H’CH(CH*)), 3.84 (s, 3H, CH3O), 6.01 (dd, J = 

8.9, 5.9 Hz, 1H, CH*), 6.64 (d, J = 2.4 Hz, 1H, CH pz(ph)), 7.46 (m, 2H, CH ph), 7.58 (m, 

2H, CH ph), 7.98 (d, J = 2.4 Hz, 1H, CH pz(CH*)), 8.33 (s, 1H, CH py). ESI-MS (p.i., 54 V, 
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CH3CN, m/z, I%): 462.2, 100, [Cu(Lb)]+. ESI-MS (p.i., 30 V, CH2Cl2, m/z, I%): 462.2, 100, 

[Cu(Lb)]+.Anal. calcd for B2C42Cu2F8H50N6O2S4 (1099.85): C, 45.86; H, 4.58; N, 7.64. 

Found: C, 45.61; H, 4.75; N, 7.80%. 

 

5.2.6 X-ray crystallography 

 

A summary of data collection and structure refinement for a2(BF4)2
.2CH2Cl2 and b2(BF4)2 is 

reported in Table 5.1.  

 

Table 5.1. Summary of X-ray crystallographic data for a2(BF4)2 and b2(BF4)2. 

 
 a2(BF4)2

.2CH2Cl2 b2(BF4)2 

Empirical formula C46H58B2Cl4Cu2F8N6O2S4 C42H50B2Cu2F8N6O2S4 

Formula weight 1297.72 1099.82 

Colour, habit Colorless, block Colorless, block 

Crystal size, mm 0.45x0.35x0.23 0.25x0.20x0.15 

Crystal system Triclinic Monoclinic 

Space group P-1 P21/c 

a, Å 10.548(1) 11.899(6) 

b, Å 12.138(1) 21.022(7) 

c, Å 12.780(1) 19.541(2) 

αdeg. 111.20(1) 90 

β deg. 101.16(1) 91.14(2) 

γ  deg. 101.29(2) 90 

V, Å3
 1432.1(2) 4887(3) 

Z 1 4 

T, K 293(2) 293(2) 

ρ�(calc), Mg/m3
 1.505 1.495 

µ, mm-1
 1.143 1.114 

θ range, deg. 1.79 to 28.07 1.71 to 26.00 

No.of rflcn/obsv 16171 / 3779 9588 / 4067 

GooF 1.037 0.996 

R1 0.0426 0.0597 

wR2 0.0910 0.0816 

 

R1 = Σ||Fo|-|Fc||/Σ|Fo|, wR2 = [Σ[w(Fo
2-Fc

2)2]/Σ[w(Fo
2)2]]½ , w = 1/[σ2(Fo

2) + (aP)2 + bP], where P = 

[max(Fo
2,0) + 2Fc

2]/3 

 



5. Cu(I) Complexes with C-Centered N,N’,S,S’-Scorpionates 88 

 

Single crystal data were collected with a Bruker Smart 1000 area detector diffractometer (Mo 

Kα; λ = 0.71073 Å). Cell parameters were refined from the observed setting angles and 

detector positions of selected strong reflections. Intensities were integrated from several series 

of exposure frames that covered the sphere of reciprocal space.208 No crystal decay was 

observed. An absorption correction was applied for a2(BF4)2
.2CH2Cl2 and b2(BF4)2 using the 

program SADABS153, with minimum and maximum transmission factors of 0.703-1.000 for 

a2(BF4)2
.2CH2Cl2 and 0.763-1.000 for b2(BF4)2. The structures were solved by direct methods 

(SIR97)155 and refined with full-matrix least-squares (SHELXL-97),156 using the Wingx 

software package.157 Non-hydrogen atoms were refined anisotropically and the hydrogen 

atoms were placed at their calculated positions. In a2(BF4)2
.2CH2Cl2 the independent BF4

- is 

disordered in two positions with site occupancy factors of ~0.4 and ~0.6, respectively, 

whereas in b2(BF4)2, one of the two independent BF4
- molecules is disordered in three 

positions with site occupancy factors of 0.33 for each image. Molecular drawings were 

prepared using the Mercury 1.4.2 program.159 

 

5.2.7 NMR titrations 

 

Dilution 1H NMR titrations for a2(BF4)2 and b2(BF4)2 were performed at 280, 290, 300 and 

310 K in CD3CN. Eleven spectra were registered in the copper concentration (CCu) range 0.1-

0.00014 M for each temperature. TMS was used as the internal standard and a line broadening 

factor of 0.5 was applied. The variation of the chemical shifts with dilution was used to 

determine the equilibrium constants of the dimerization processes. The refinement of the data 

was initially performed with the HypNMR 2006 program,168 yielding stoichiometric constants 

(K). Since the ionic strength varies over the course of the dilution an empirical correction for 

ionic strength variation was applied (Davies’ equation),269 yielding stability constants 

extrapolated at zero ionic strength (K0) (Appendix 4). The program SPSS 15.0270 was used to 

perform the van’t Hoff analysis, which afforded the thermodynamic parameters for the 

dimerization equilibrium ∆H
0 and ∆S

0). The distribution diagrams were calculated and plotted 

by the program HySS 2006.169 
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5.2.8 PGSE Experiments 

 
1H PGSE NMR measurements were performed for a2(BF4)2 and b2(BF4)2 solutions in CD3CN 

(ε = 37.5 at 21 °C) at different CCu (10-1-10-4 M range), using a standard stimulated echo 

(STE) sequence on a Bruker Avance 300 spectrometer at 300 K without spinning. The most 

intense signals were investigated. The dependence of the resonance intensity (I) on the 

gradient strength (g) is described by the following equation: 

 
)3/(

0

222 δδγ −∆⋅⋅⋅⋅−⋅= gDeII  
 

where I = observed intensity (attenuated signal intensity), I0 = reference intensity 

(unattenuated signal intensity), D = diffusion coefficient, γ = nucleus gyromagnetic ratio, g = 

gradient strength, δ = gradient duration, and ∆ = diffusion delay. The parameters δand ∆ were 

kept constant during the experiments, whereas g was varied from 2 to 95% in 16 steps. 

Different values of δ(1-2 ms), ∆ (50-100 ms) and number of scans (depending on 

concentration) were used for different samples. All spectra were acquired using 16K points 

and processed with a line broadening of 1.0 Hz. PGSE data were treated by applying a 

procedure reported in the literature,239,271 taking advantage of an internal standard 

(tetrakismethylsilylsilane, TMSS; rH
TMSS (hydrodynamic radius) ~ rvdW

TMSS (van der Waals 

radius) = 4.28 Å).272 A nonlinear regression on I and g2 data was performed with the SPSS 

15.0 software in order to obtain the coefficients m = D.γ2.δ2.(∆-δ/3) for both the sample and 

the corresponding internal standard signals (msample and mTMSS, respectively). The following 

expression (based on the Stokes-Einstein equation) was applied and numerically resolved to 

get the hydrodynamic radius of each sample (rH
sample): 

 

TMSS
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sample

H
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H
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m

m
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⋅
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The coefficients csample and cTMSS can be estimated from the semiempirical equation:273 
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where x = sample or TMSS, and rsolv ~ van der Waals radius of the solvent (2.33 Ǻ for 

CD3CN). Hydrodynamic volumes were calculated from the respective radii: VH = 4/3.π.(rH). 

Uncertainties were obtained by error propagation on m.  

The van der Waals volumes (VvdW)274 and the Connolly volumes (VConnolly)
241 were computed 

for both the X-ray (a2
2+ and b2

2+) and DFT optimized structures (a+ and b+) using the software 

package DS Viewer Pro 5.0. The X-ray volume (VX-ray) was calculated by dividing the 

crystallographic unit cell volume by the number of molecular entities contained in the unit 

cell and by subtracting the VConnolly of counterions and solvent. 

 

5.2.9 DFT calculations 

 

DFT calculations were carried out with the Gaussian 03 program.160 The mononuclear models 

[Cu(La)]+ (a+) and [Cu(Lb)]+ (b+) were optimized starting from hypothetical tetrahedral Cu(I) 

complexes in which the ligands are N,N’,S,S’ coordinated. The B3LYP164,165 density 

functional and the lanl2dz basis set with Hay and Wadt effective core potential (ECP) were 

employed.166,167 Vibrational frequencies were calculated at the same theoretical level in order 

to ensure that the stationary points were true minima. As described in the PGSE section, the 

optimized geometries were used to determine the theoretical volumes, VvdW and VConnolly, 

which were compared with the hydrodynamic volumes extrapolated from PGSE NMR 

experiments. 

 

5.2.10 Electrochemistry 

 

Cyclic voltammetry (CV) was performed in a three-electrode cell with a Pt disk as the 

working electrode, a Pt rod as the counter-electrode, and a 3 M Ag/AgCl/KCl (E0 = +194 mV, 

T = 25 °C) as the reference electrode, by using a computerized electrochemical workstation 

consisting of an Autolab PGSTSAT 20 potentiostat (Ecochemie, Utrecht, The Netherlands) 

controlled by GPES 4.9 software. Cyclic voltammograms were recorded at different scan 

rates (20, 50, 100, 200, 500 mV.s-1) on freshly prepared solutions of a2(BF4)2 and b2(BF4)2 in 

CH2Cl2 and CH3CN at two different concentrations (0.01 and 0.001 M). All the samples 

contained 0.1 M supporting electrolyte (tetra-n-butylammonium hexafluorophosphate, 

NBu4PF6).  
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5.3 Results and Discussion 

 

The synthesis of La and Lb is described in Scheme 5.1. The reaction between 2-Chloromethyl-

4-methoxy-3,5-dimethylpyridine and 3-(2-(methylthio)phenyl)-1H-pyrazole affords the 

N,N’,S donor ligand, L1, which can be functionalized on the methylene bridge with opportune 

electrophiles after deprotonation with n-butyllithium, in analogy to the preparation of 

bis(pyrazolyl)-scorpionates.40 The use of 2-chloroalkyl methyl sulfides provides good yields 

of the N,N’,S,S’ heteroscorpionate ligands La and Lb. In order to obtain a more symmetric 

donor ligand, we first attempted the reaction between 3,5-alkyl-substituted 

bis(pyrazolyl)methanes (previously deprotonated with n-BuLi) and 2-chloromethyl methyl 

sulfide, but we recovered the parent bis(pyrazolyl)methanes instead of the desired product 

(Scheme 5.2).  

 

N

N

R

R

N

N

R

R

Cl S

1. BuLi, -78°C, THF dry  

2.

no reaction

R = Me, i-Pr  

Scheme 5.2 

 

With respect to this, in the synthesis of La and Lb the presence of the pyridyl group confers a 

greater stability to the benzylic carbanion, therefore allowing for the attack of weak acid 

electrophiles. La and Lb are chiral ligands due to the asymmetry of the central carbon atom, 

but we employed the racemic mixture for the preparation of the copper complexes. As far as 

the coordination capabilities of the ligands are concerned, the two thioether moieties and the 

pyrazole-pyridine assembly could provide the N2S2 coordination mode required by Cu(I) in a 

hypothetical mononuclear complex. Nevertheless, when reacting La with [Cu(CH3CN)4]BF4, 

the dinuclear complex a2(BF4)2 was obtained, probably because of the extreme flexibility of 

the alkyl thioether arm of La. To reduce the degrees of freedom of this fourth donor group, we 

reduced the length of the alkyl chain from -CH2-CH2SCH3 to -CH2-SCH3 (in Lb), but with no 

substantial changes in the coordination properties of the ligand or in the geometry of the 

resulting complex. In fact, from a Cu(I) coordination perspective, b2(BF4)2 is identical to 

a2(BF4)2. The two complexes are soluble in acetonitrile, nitromethane, and dichloromethane, 

and slightly soluble in acetone.  
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If dichloromethane solutions of a2(BF4)2 and b2(BF4)2 are exposed to air, after some time they 

turn green as a consequence of copper(I) oxidation; in the case of b2(BF4)2, green crystals of 

the oxidized product [Cu(Lb)Cl2] were isolated. On the other hand, the complex 

[Cu(La)2(H2O)](OTf)2 (OTf- = triflate) was prepared by reacting Cu(OTf)2 and La in 1:1 molar 

ratio in methanol. These complexes may be taken as models for the coordination capabilities 

of the ligands with Cu(II) (see below). 

 

5.3.1 Solid-state structures 

 

Relevant geometric parameters of a2(BF4)2 and b2(BF4)2 are listed in Table 5.2. Both 

compounds exhibit a dinuclear structure, presenting an almost equivalent metal coordination 

geometry (Figures 5.1 and 5.2). 

 

Table 5.2 Selected bond lengths (Å) and angles (°) for a2(BF4)2
.2CH2Cl2 and b2(BF4)2. 

 
       a2(BF4)2

.2CH2Cl2  

Cu-S(11) 2.452(1) Cu-N(13) 2.040(2) 
Cu-S(12)’ 2.201(1) Cu-N(21) 2.001(2) 

    

N(21)-Cu-N(13) 92.27(9) S(12)’-Cu-S(11) 109.82(3) 
N(21)-Cu-S(12)’ 128.14(7) N(13)-Cu-S(12)’ 123.17(7) 

N(21)-Cu-S(11) 87.81(7) N(13)-Cu-S(11) 109.74(7) 

    
              b2(BF4)2  

Cu(1)-S(11) 2.335(2) Cu(2)-S(12) 2.239(2) 
Cu(1)-S(15) 2.246(2) Cu(2)-S(14) 2.302(2) 

Cu(1)-N(21) 2.044(4) Cu(2)-N(24) 2.034(4) 

Cu(1)-N(13) 2.076(4) Cu(2)-N(16) 2.071(4) 
    

N(21)-Cu(1)-N(13) 90.1(2) N(24)-Cu(2)-N(16) 90.9(2) 

N(21)-Cu(1)-S(15) 124.0(1) N(24)-Cu(2)-S(12) 123.8(1) 
N(13)-Cu(1)-S(15) 117.3(1) N(16)-Cu(2)-S(12) 118.6(1) 

N(21)-Cu(1)-S(11) 85.6(1) N(24)-Cu(2)-S(14) 93.7(1) 

N(13)-Cu(1)-S(11) 113.5(1) N(16)-Cu(2)-S(14) 114.5(1) 
S(15)-Cu(1)-S(11) 119.35(6) S(12)-Cu(2)-S(14) 111.89(6) 

 

‘ = -x+1,-y,-z+1 
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Each Cu(I) is located in a distorted tetrahedral environment, bound by two nitrogen atoms and 

by the aryl-thioether sulfur atom of a ligand, with the fourth coordination site deriving from 

the alkyl-thioether sulfur atom of the second ligand. The Cu-N bond distances are nearly 

equivalent for both compounds (2.040(2)-2.001(2) Å in a2(BF4)2 and 2.076(4)-2.034(4)-Å in 

b2(BF4)2). The bridging alkyl-thioether group gives rise to Cu-S bond distances that are 

significantly shorter (with differences that vary from ~0.10 and ~0.25 Å) than those derived 

from the aryl thioether. The reason for this may reside in the better donor ability of the alkyl- 

with respect to the aryl-thioether, but it could also be a consequence of the major 

stereochemical constraints of the aryl-thioether, which results in a non-ideal overlap of the 

sulfur’s coordinating lone pair with copper(I). a2(BF4)2 is centrosymmetric, with the two 

ligands presenting the stereogenic carbon in the R and S configurations, respectively.  

 

 

 
Figure 5.1 Molecular drawing of a2(BF4)2

 2CH2Cl2 at the 30% thermal ellipsoids probability level. 

The BF4
- counterions, the hydrogen atoms (except for the methinic ones) and the crystallization 

solvent molecules are omitted for clarity. ‘ = 1-x; -y; 1-z. 

 

In b2(BF4)2, the ligands exhibit equivalent configurations for the central carbon, so that the 

complex is asymmetric; however, since the space group is centrosymmetric (P21/c) both RR 

and SS enantiomers are present in the unit cell. In addition, the metals are also stereogenic 

centers, and in a2(BF4)2 they exhibit opposite chirality (due to the center of symmetry), 
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whereas in b2(BF4)2 they adopt the same configuration. In summary, the overall chirality of 

a2(BF4)2 can be represented as (RS)C(RS)Cu, whereas that of b2(BF4)2 can be represented as 

(RR)C(RR)Cu/(SS)C(SS)Cu. The large distance between the two copper centers (4.972(1) Å in 

a2(BF4)2 and 5.212(2) Å b2(BF4)2) rules out any metal-metal interaction. 

 

 
Figure 5.2 Molecular drawing of b2(BF4)2 at the 30% thermal ellipsoids probability level. The BF4

- 

counterions and the hydrogen atoms (except for the methinic ones) are omitted for clarity. 

 

The crystal structures of the Cu(II) complexes [Cu(Lb)Cl2] and [Cu(La)2(H2O)](OTf)2 are 

reported in the Appendix 4 (Figures A11 and A12). In both structures, the metal exhibits a 

trigonal bipyramidal geometry. In [Cu(Lb)Cl2], the metal is bound to a k3-N,N’,S ligand and 

to two chloride ions. The apical positions are occupied by the aryl-thioether sulfur and by the 

pyridine nitrogen, whereas the pyrazole nitrogen atom and two chloride ions are in the 

equatorial plane. The alkyl-thioether sulfur does not take part in the metal coordination. In 

[Cu(La)2(H2O)](OTf)2, the metal is bound by two κ2-N,N’ ligands, with both thioether groups 

not coordinated. The pyridine nitrogen atoms are in apical positions, whereas the pyrazole 

nitrogen atom and a water molecule occupy the equatorial positions. 
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5.3.2 Solution studies 

 

To better comprehend the solution behavior of the complexes, we performed dilution 1H 

NMR titrations for a2(BF4)2 and b2(BF4)2 in CD3CN. In both cases, by varying the analytical 

copper concentration (CCu), we observed a drift in the chemical shift of various protons. In 

Figure 5.3 and in Figure A13 of Appendix 4, the NMR stacking plots of b2(BF4)2 and 

a2(BF4)2 are reported.  

 

 

 

Figure 5.3 Stacking plot of 1H NMR spectra of b2(BF4)2 in CD3CN at different copper concentrations 

(CCu). The drifts of the A, C and D chemical shifts were used to derive the logK0 for the 2b
+ Ý b2

2+
 

equilibrium. 
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In addition, the diastereotopic methylene protons of b2(BF4)2 (peak B in Figure 5.3), 

constituting an ABX spin system, exhibit two doublets of doublets in concentrated solution, 

whereas in dilute solutions (CCu ~ 10-4 M), they give rise to a pseudo-doublet. This 

phenomenon can be explained with the gradual appearance, over the course of dilution, of a 

fast-exchanging species that is less “aggregated” than the complex predominant at high CCu 

(presumably the dinuclear complex), and whose methylene protons have closer chemical 

shifts, so that a pseudo-doublet appears for second-order effects. This is in accordance with 

the presence of a fast monomer-dimer equilibrium, which would also explain the variation of 

the chemical shifts of the other protons. In order to exclude the possibility that this behavior is 

related to the aggregation of cations and anions in solution (ion pairing),275 BF4
- was 

substituted with BPh4
-, providing the complex b2(BPh4)2.

276 The trend of the NMR spectra at 

three different CCu (Figure A14 of Appendix 4) is analogous to that of b2(BF4)2 and would 

rule out the ion pairing hypothesis. These conclusions can be extended to a2(BF4)2. Moreover, 

in other solvents (CD3NO2, (CD3)2CO and CD2Cl2) the complexes present spectral 

characteristics similar to the ones previously described, even though the spectra are much less 

resolved (data not reported). The equilibrium constants of the association processes, 2a
+ Ý 

a2
2+ and 2b

+ Ý b2
2+, were determined in CD3CN at different temperatures (280 - 310 K, Table 

5.3).  

 

Table 5.3 Logarithms of the zero ionic strength equilibrium constants (logK
0) for the dimerization 

processes 2a
+ Ý a2

2+
 and 2b

+ Ý b2
2+

 in the 280-310 K temperature range. 

 
T (K) logΚ0

(a2
2+) logΚ0

(b2
2+) 

280 3.70(10) 3.36(6) 
290 3.65(7) 3.27(5) 

300 3.55(6) 3.23(5) 

310 3.48(5) 3.17(4) 

 

 

As an example, the distribution diagram of b2
2+ at 300 K is reported in Figure 5.4, together 

with the variation in selected observed and calculated chemical shifts as a function of CCu; in 

a 10-4 M solution, the monomer/dimer ratio is ~9/1, whereas in a 10-1 M solution, this ratio is 

nearly reversed.  
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Figure 5.4. Distribution diagram corresponding to the dilution 1H NMR titration of b2(BF4)2 in 

CD3CN at 300 K (CCu = copper concentration). The observed and calculated chemical shifts for peaks 

A (∆, ▲) and C (□, ■) of Figure 5.3 are reported. 

 

By means of a van’t Hoff analysis, the thermodynamic parameters of the dimerization 

processes were determined; the ∆H
0 show that both reactions are slightly exothermic 

(∆H
0(a2

2+) = -12(1) kJ.mol-1, ∆H
0(b2

2+) = -10(1) kJ.mol-1), while the ∆S
0 are surprisingly 

positive (∆S
0(a2

2+) = +27(4) kJ.mol-1, ∆S
0(b2

2+) = +28(4) kJ.mol-1). The small ∆H
0 values can 

be justified by considering that there is no net bond formation or rupture in these 

monomer/dimer equilibria, since two Cu(I)-S(thioether) dissociations are compensated for by 

two Cu(I)-S(thioether) formations. Furthermore, the hypothesis that acetonitrile would 

complete the coordination of copper in the monomer in place of a thioether group of La or Lb 

can be excluded by taking into account the energetics of the model reaction, [Cu(MeCN)2]
+ + 

2 Me2S = [Cu(Me2S)2]
+ + 2 MeCN (+30.1 kJ.mol-1),277 from which it is evident that the 

substitution of acetonitrile bound at Cu(I) with a thioether is an unfavorable process. In the 

present case, given the exothermic nature of the dimerization, we can assume that no CH3CN 

molecules are liberated in the reaction; hence, the ligands would behave as κ4-N,N’,S,S’ 

tetradentate in the monomers. The entropy values deserve some comments, even though it has 

to be borne in mind that the determination of ∆S
0 through a van’t Hoff analysis is affected by 

an intrinsic limited accuracy. In the present case, the positive ∆S
0 of dimerization can be 
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justified with a better overall solvation of the monomers with respect to the dinuclear entities, 

resulting in the release of solvent molecules during the association.278-281  

To propose a molecular geometry for the mononuclear complexes, a
+ and b

+, DFT 

calculations were performed and the optimized structures are reported in Figure 5.5.  

 

 

 

Figure 5.5 DFT-optimized geometries (B3LYP/lanl2dz) of the mononuclear species a+ and b+. 

 

It appears that both La and Lb can accommodate Cu(I), even if in a considerably distorted 

tetrahedral, almost bisphenoidal, environment. In particular, the S-Cu-S angle in a+ and b+ is 

significantly greater than in a2
2+

 and b2
2+ (Figure 5.6). In the monomers, the most relevant 

structural consequence that is derived from the different length of the alkyl-thioether arm is in 

a more pronounced coordination strain at the metal in b+
 with respect to a

+, with a consequent 

increase in the S-Cu-S angle by ~10°. This is also associated with a slight increase of the Cu-

Salkyl bond length by ~0.04 Å.  
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From the analysis of the log K0 values, it appears that a+ exhibits a slightly greater propensity 

to dimerize if compared to b+; conversely, b2
2+ is more easily dissociated into monomers with 

respect to a2
2+. This can be tentatively explained by a close inspection of Figures 5.5 and 5.6, 

where the Cu(I) geometry of the dinuclear and mononuclear species (as derived by X-ray 

analysis and DFT calculations, respectively) are compared. In fact, in the mononuclear 

complex, the alkyl-thioether in La gives rise to two 7-member chelate rings and a 6-member 

one, whereas in Lb, it generates three 6-member chelate rings, and thus a more stable 

mononuclear complex.  

 

 

 

Figure 5.6. Comparison between the Cu(I) experimental geometries (X-ray) of the dinuclear 

complexes a2
2+ and b2

2+ with the respective DFT-optimized mononuclear species a
+ and b

+. The 

double values in b2
2+ reflect the two different metal geometries as found in the crystal structure. 

 

As far as the kinetics of the dimerization process are concerned, the fast-exchange regime is 

in agreement with the lability of the Cu(I)-S(thioether) bonds and with the low viscosity of 

acetonitrile (3.69.10-4 Pa.s at 298 K). A variable-temperature NMR experiment was performed 

on a 0.00045 M sample of b2(BF4)2 in CD3CN (wherein the dimer and the monomer are about 
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at equimolar ratio) in the 300 - 230 K range. On decreasing the temperature, an enlargement 

of the signals can be noted; this is particularly evident for the methylene protons (Figure 5.7). 

However, the kinetic parameters could not be determined through a complete lineshape 

analysis because of the slight broadening of all the peaks and the inability to estimate the 

chemical shifts of the single species below the temperature of coalescence. 

 

 

 

Figure 5.7 Variable temperature 1H NMR of a b2(BF4)2 solution (CCu = 0.00045 M) in CD3CN. B 

protons are shown (see Figure 5.3). 

 

To further confirm the dissociation of the dimers in solution and to determine the 

hydrodynamic volumes of both the monomers (a+, b+) and the dimers (a2
2+, b2

2+), 1H PGSE 

NMR experiments were performed on solutions of a2(BF4)2 and b2(BF4)2 at different CCu in 

CD3CN (Table 5.4), and the data were interpolated for ideal monomer-dimer equilibria.  
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Table 5.4 Experimental hydrodynamic volumes (VH) for a2(BF4)2 and b2(BF4)2 in CD3CN at 

different copper concentrations (CCu) at 300 K. 

 
CCu (M) VH(a2(BF4)2) (Å

3) VH(b2(BF4)2) (Å
3) 

0.0001 700(20) 590(20) 
0.001 780(20) 700(20) 

0.01 860(30) 820(20) 
0.1 950(30) 860(30) 

 

The high permittivity of acetonitrile allows the exclusion of ionic aggregation of all the 

cationic complexes with BF4
- anions,240,257 which would not, however, affect the experimental 

hydrodynamic volumes due to the small encumbrance of BF4
- (VvdW  = ~40 Å). For an ideal 

monomer-dimer equilibrium, the following equation can be derived (Appendix 4): 

 

1418

)(2)()(418))((2)((
00

0000000

−++

+−−+−
=

CuCu

HHHCuCuHH

H

CKCK

MVDVDVCKCKMVDV
V    (5.1) 

 

where VH is the experimental hydrodynamic volume, V0
H(D) is the hydrodynamic volume of 

the dimer, V0
H(M) is that of the monomer and K

0 is the corrected dimerization constant 

(obtained from 1H NMR titrations). The fitting with the experimental data is shown in Figure 

5.8, whereas the hydrodynamic values of the individual species are reported in Table 5.5.  

 

 

 

Figure 5.8 Experimental hydrodynamic volumes (VH) of a2(BF4)2 (▲) and b2(BF4)2 (●) in CD3CN 

plotted as function of CCu at 300 K. The fitting curves (see Equation 5.1) are reported. 
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Table 5.5. Hydrodynamic volumes (V°H) of the dimeric (a2
2+ and b2

2+) and of the monomeric (a+ and 

b
+) species in CD3CN, together with the van der Waals (VvdW), Connolly (VConnolly) and X-ray (VX-ray) 

volumes. 

 
 V°H (Å3) VvdW VConnolly VX-ray 

a2
2+ 950(20) 702 1339 1092 

a
+ 620(40) 373 642 - 

b2
2+ 900(10) 669 1280 1061 

b
+ 550(10) 357 612 - 

 

 

For both complexes, V0
H(D) have values that lie between VvdW and VX-ray.

271 This latter 

volume is comparable to the solvent-excluded volume (VConnolly) that is computed by taking 

into account the cavities and inlets of the solute, which are not accessible by the solvent (so 

that VConnolly > VvdW). As far as the monomers are concerned, in this case, V0
H(M) is also 

intermediate between VvdW and VConnolly. This is in agreement with previous results, which 

show that VvdW and VX-ray/VConnolly are the lower and upper limits of the real hydrodynamic 

volume.271 

An additional proof of the predominance of the monomeric species in diluted solution comes 

from the ESI-Mass spectra (10-6 M solutions of a2(BF4)2 in CH3CN and CH3OH, and b2(BF4)2 

in CH3CN and CH2Cl2), which show only the presence of monomers ([La/bCu]+ for both 

complexes), and without solvent molecules bound to copper.  
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5.3.3 Electrochemistry 

 

The cyclic voltammograms of the 0.01 and 0.001 M solutions of a2(BF4)2 in CH2Cl2 and 

CH3CN are reported in Figures 5.9 and 5.10 (those of the analogous solutions of b2(BF4)2 are 

not reported). 

 

 

Figure 5.9 Cyclic voltammograms of a2(BF4)2 in CH3CN at different scan rates (ν = 20 - 500 mV.s-1, 

third scans). (a) CCu = 0.01 M, (b) CCu = 0.001 M. Supporting electrolyte: NBu4PF6 0.1 M. Reference 

electrode: Ag/AgCl/KCl 3 M. 

 

The voltammetric parameters of both the complexes are reported in Tables 5.6 and 5.7. CV 

experiments were also performed on 10-4 M solutions, but the voltammograms are not 

reported because the peaks are hardly detectable. In a first stage, the potential range employed 

allowed us to identify two redox systems for each sample: Cu(0)/Cu(I) and Cu(I)/Cu(II) 

couples. The former, in the Cu(0) → Cu(I) process, was characterized by high peak current 

and a narrow shape typical of Cu(0) deposition on the electrode surface (“anodic 

stripping”).282 The Cu(0) → Cu(I) oxidation generates a Cu(I) species that may be different 

from the initial Cu(I) complex. To avoid such an electrochemical process, the lower limit of 

the potential window was set at higher values; hence, the reported voltammograms depict 

only the Cu(I)/Cu(II) redox system. 
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Figure 5.10 Cyclic voltammograms of a2(BF4)2 in CH2Cl2 at different scan rates (ν = 20 - 500 mV.s-1, 

third scans). (a) CCu = 0.01 M, (b) CCu = 0.001 M. Supporting electrolyte: NBu4PF6 0.1 M. Reference 

electrode: Ag/AgCl/KCl 3 M. 

 

The complexes show quasireversible to irreversible redox behavior of the Cu(I)/Cu(II) couple 

in all of the experimental conditions (e.g., solvent, concentration); in fact, the separation 

between the forward (anodic, Epa) and the reverse (cathodic, Epc) peaks always increase with 

the scan rate (ν). Nevertheless, the ∆Ep values (Epa-Epc) are considerably large, implying a 

high reorganization energy involved in the electron transfer.283 This is tentatively justified 

with the flexibility of the ligands, and in particular that of their alkyl-thioether “arm”. This 

allows the electrogenerated Cu(II) to organize the coordination sphere according to its 

electronic and steric preferences; i.e. to adopt five or six coordinations, as supported by the 

crystal structures of Cu(II) with La and Lb (see Figures A11 and A12 of Appendix 4). The 

analysis of these Cu(II) complexes supports the hypothesis that the thioether groups may not 

be bound to Cu(II), so that the coordination/decoordination may contribute to the non-

reversible behavior of the complexes. Moreover, the voltammetric behavior of the Cu(I) 

systems is complicated by the dimerization equilibrium preceding the redox event, which 

reasonably involves two electroactive species (monomer and dimer). It is worth noting that in 

the dimers, the two metal centers are electrochemically independent due to the large distance 
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between them (~5 Å). Bearing in mind that the Cu(I) coordination sphere is equivalent in the 

dimer and in the monomer (N,N’,S,S’), comparable values of formal redox potential (E0’) can 

be assumed for both species. Consistent with this, in changing CCu (i.e. varying the 

dimer:monomer ratio), minimal shifts in the anodic (EPA) and cathodic (EPC) potentials can be 

detected for equivalent scan rates (ν). The only significant variation of ∆Ep with CCu is seen 

for a2(BF4)2 in CH2Cl2; in fact, at ν = 200 mV.s-1, a difference of ∆Ep of 324 mV between the 

0.01 M and the 0.001 M samples is detected. 

 

Table 5.6 Summary of CV parameters for a2(BF4)2 in CH2Cl2 and CH3CN at CCu 0.01 M and 0.001 M. 

 
conc. (M) / solv. ν Epa Epc ∆Ep ipa/ipc 

      
0.01 / CH2Cl2 20 1.16 0.637 0.523 0.40 
 50 1.157 0.569 0.588 0.46 

 200 1.179 0.508 0.671 0.54 

 500 1.223 0.42 0.803 0.45 
      

0.001 / CH2Cl2 20 1.02 0.793 0.227 0.58 

 50 1.057 0.781 0.276 0.66 
 100 1.076 0.754 0.322 0.61 

 200 1.096 0.749 0.347 0.65 

 500 1.154 0.759 0.395 0.55 
      

0.01 / CH3CN 50 1.024 0.445 0.579 0.98 

 100 1.087 0.421 0.666 1.02 
 200 1.114 0.384 0.73 1.07 

 500 1.161 0.343 0.818 1.00 

      
0.001 / CH3CN 20 1.124 0.492 0.632 0.66 

 50 1.185 0.457 0.728 0.72 

 100 1.175 0.411 0.764 1.53 
 200 1.214 0.389 0.825 1.10 

 500 1.244 0.348 0.896 0.98 
 

ν = Scan Rate, Epa = Anodic Peak Potential, Epc = Cathodic Peak Potential, ∆Ep = Epa-Epc, ipa = Anodic Current, 

ipc = Cathodic Current. 
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Table 5.7 Summary of CV parameters for b2(BF4)2 in CH2Cl2 and CH3CN, at CCu  0.01, 0.001 M. 

 
conc. (M) / solv. ν Epa Epc ∆Ep ipa/ipc 

      
0.01 / CH2Cl2 50 1.201 0.505 0.696 0.85 

 100 1.245 0.447 0.798 0.85 

 200 1.272 0.408 0.864 0.84 
 500 1.377 0.332 1.045 0.86 

      

0.001 / CH2Cl2 50 1.108 0.527 0.581 0.82 
 100 1.111 0.503 0.608 0.81 

 200 1.133 0.469 0.664 0.80 

 500 1.243 0.4 0.843 0.82 
      

0.01 / CH3CN 20 0.981 0.376 0.605 0.68 

 50 1.174 0.293 0.881 0.73 
 100 1.138 0.285 0.853 0.71 

 200 1.199 0.244 0.955 0.72 

 500 1.265 0.2 1.065 0.73 
      

0.001 / CH3CN 50 1.108 0.398 0.71 0.75 

 100 1.174 0.339 0.835 0.76 
 200 1.211 0.327 0.884 0.77 

 500 1.235 0.286 0.949 0.76 
 

ν = Scan Rate, Epa = Anodic Peak Potential, Epc = Cathodic Peak Potential, ipa = Anodic Current and ipc = 

Cathodic Current. 
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5.4 Conclusions 

 

The scorpionate N,N’,S,S’-donor ligands La and Lb were synthesised. The Cu(I) complexes 

[Cu(La)]2](BF4)2 (a2(BF4)2) and [Cu(Lb)]2](BF4)2 (b2(BF4)2) are dinuclear at the solid state, 

with each copper center exhibiting a distorted tetrahedral N,N’,S,S’ coordination 

environment. However, the crystal structures of the complexes do not completely reflect the 

solution properties. In fact, in acetonitrile, there is evidence of mononuclear species in 

equilibrium with the dimers. In particular, the aggregation processes were quantitatively 

analyzed by means of 1H NMR dilution titrations, which allowed the determination of the 

thermodynamic parameters of the dimerization reactions: 2a
+ Ý a2

2+ and 2b
+ Ý b2

2+. The 

equilibrium constant (K0) was measured in the 280-310 K range, yielding a negative ∆H
0 and, 

surprisingly, a positive ∆S
0. The latter suggests that dimerization may be entropy-driven due 

to a better solvation in the monomers with respect to the dimers, resulting in the release of 

solvent molecules in the association. Furthermore, 1H PGSE NMR experiments performed at 

different CCu provided a weighted-average hydrodynamic volume (VH) of the exchanging 

species. The combination of 1H NMR titration with 1H PGSE NMR data (log K
0 and VH, 

respectively), allowed us to determine the hydrodynamic volumes of the individual species 

(VH
0(M) and VH

0(D)). The applied procedure is analogous to one that was recently reported 

and that combines PGSE and conductimetric data.284 As cyclic voltammetry attests, the 

complexes a2(BF4)2 and b2(BF4)2 show a quasireversible to irreversible behavior of the 

Cu(I)/Cu(II) redox couple (CH3CN and CH2Cl2), with quite high ∆Ep values (in the 0.2-0.9 V 

range for a2(BF4)2, and 0.6-1.1 V range for b2(BF4)2). Presumably, this is due to the flexibility 

of the ligands, especially the alkyl-thioether groups, which confer to the complexes a 

considerable conformational freedom, implying a high reorganization energy involved in the 

electron transfer. 
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6.1 A Luminescent Cu(I) Coordination Polymer: [Cu(L*)(PPh3)]BF4 (L* = N,N’,S-

Scorpionate Ligand) 

 

Coordination polymers, and in particular metal-organic frameworks (MOFs), have attracted 

much attention in recent years due to their peculiar properties and structural diversity.285 The 

fields of application of these compounds encompass catalysis, gas absorption, and nonlinear 

optics.118,286 In addition, MOFs exhibiting luminescence properties are particularly interesting 

due to their possible employment in the construction of light-emitting devices or solar light-

harvesting systems.287,288 

In this report we present the X-ray structure and solid state fluorescence properties of a 

ternary complex of Cu(I) with a new N,N’,S-scorpionate ligand and triphenylphosphine. The 

behaviour of the complex in solution was investigated by means of NMR techniques. The 

synthesis of the pyrazole-pyridine based ligand is reported in Scheme 6.1.  
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Scheme 6.1 

 

The precursor L2 could be easily prepared in a water/toluene biphasic mixture, employing 

NBu4OH as phase transfer catalyst, step (a). The N,N’,S tridentate ligand L* was prepared by 

deprotonation of the methylene bridge of L2 with n-BuLi, by subsequent reaction with 

ethylene sulfide, and finally by conversion (in situ) of the generated thiolate into a thioether 

group by addition of methyl iodide, step (b). L* is chiral, and since the synthesis is not 

stereoselective, both enantiomers are produced and used  for complexation. The thioether 

group of L* can in principle confer to the ligand the ability to occupy a face of a coordination 

polyhedron, as is the case with other N2S scorpionate ligands (see General Introduction). 

However, in the present case, the flexibility of the thioether group prevents the possibility to 
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achieve κ3-N2S coordination on Cu(I) (see Chapter 5). This became evident when testing the 

coordination properties of L* with Cu(I), and using as a supporting ligand 

triphenylphosphine. As revealed by the X-ray structural analysis, [Cu(L*)(PPh3)]BF4 exhibits 

a polymeric structure in the solid state. The coordination of copper is distorted trigonal planar 

(Figure 6.1), attained through the N,N chelate ligand and the phosphorus atom of PPh3.  

 

 

 

Figure 6.1 Cu(I) coordination sphere of [Cu(L*)(PPh3)]BF4. Selected bond distances (Å) and angles 

(º): Cu-N(21) = 1.976(3), Cu-N(13) = 2.057(3), Cu-P = 2.184(1), Cu-S(12)# = 2.917(1), N(21)-Cu-

N(13) = 94.5(1), N(21)-Cu-P = 124.0(1), N(13)-Cu-P = 135.5(1), N(13)-Cu-S(12)# = 79.7(1), N(21)-

Cu-S(12)# = 94.4(1), P-Cu-S(12)# = 114.6(1). Symmetry code: # = ½-x, ½+y, ½-z. 

 

The Cu-N(21) bond distance (1.976(3) Å) is significantly shorter than the Cu-N(13) one 

(2.057(3) Å), suggesting the greater donor ability of the pyrazole ring with respect to the 

pyridine one. The N(21)-Cu-N(13) bite angle is of 94.5(1)º whereas the N-Cu-P angles are 

considerably greater than 120º. A very long contact with the S-thioether group from a second 

ligand (Cu-S(12)# = 2.917(1) Å, # = ½-x, ½+y, ½-z.) is responsible of the distortion from the 

ideal trigonal planar geometry. In agreement with this, the metal lies out of the plane defined 

by the N(21), N(13) and P atoms of 0.28 Å and is directed towards the sulfur atom. This long 

interaction is responsible for the generation of a chain, roughly aligned with the b 

crystallographic axis (Figure 6.2). It is worth noting that a single chain is homochiral (all the 

ligands and metals maintain the same configuration), but chains with opposite configurations 

are present in the structure, according to the fact that the compound crystallizes in a 
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centrosymmetric space group. The BF4
- counterion is disordered in three positions that occupy 

a spherical site.  

 

 
Figure 6.2 Crystal packing of [Cu(L*)(PPh3)]BF4. The hydrogen atoms are omitted for clarity. 

In order to investigate the nuclearity of the complex in solution, we performed 1H-PGSE 

NMR experiments271 in different deuterated solvents (acetonitrile, acetone and choloform; 

copper concentration = 10-2 M). The hydrodynamic volume (VH) of the complex is as follow: 

1070(30) Å3 in acetonitrile, 1120(30) Å3 in acetone and 1400(40) Å3 in chloroform. The VH 

values are slightly greater than the volume of an hypothetic mononuclear entity (V0 ~950 Å3) 
289, so that the preservation of the polymeric framework in solution can be excluded. The 

discrepancy of the experimental VH with V0 could be the result of partial aggregation of the 

complex cations mediated by the BF4
- anions (formation of ion pairs/ion quadruples).257 The 
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VH values diminish as increasing the dielectric constant of the solvent (acetonitrile > acetone 

> chloroform), pointing to a greater ion pair disruption in acetonitrile with respect to 

chloroform. 

The emission properties of [Cu(L*)(PPh3)]BF4 were investigated: the solid state fluorescence 

spectrum is reported in Figure 6.3. 

 

 

Figure 6.3 Solid state emission spectrum of [Cu(L*)(PPh3)]BF4 recorded at room temperature(λex = 

370 nm). 

 

The complex exhibits an emission band at 540 nm upon excitation at 370 nm. The excited 

state may be of metal-to-ligand charge transfer nature, in agreement with the presence of 

empty 3d phosphorous orbitals or empty antibonding P-C orbitals, and the d10 metal ion.290,291 

Another possibility resides in the copper to L* charge transfer due to the presence of 

heterocyclic aromatic systems.292 On the opposite, there are no evidences of emitting 

properties in acetonitrile, acetone or chloroform solutions (10-4-10-5 M). The fluorescence 

quenching in solution is probably due to the loss of structural rigidity, accountable with the 

fragmentation of the solid state polymer attested by PGSE NMR. In particular, in polar and 

coordinating solvents a contribution to the quenching could derive from a direct metal-solvent 

interaction, whereas the ion pair formation between the metal complex and the BF4
- anions 

may be the prevalent relaxation pathway in non-polar solvents.293 
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6.1.1 Experimenta 

 

Synthesis of L
2
. A mixture of 2-Chloromethyl-4-methoxy-3,5-dimethylpyridine hydrochloride 

(1.45 g, 6.53 mmol), 3,5-Diisopropyl-1H-pyrazole (1.00 g, 6.57 mmol), NaOH (40% water, 

15 ml), NBu4OH (40% water, 10 drops) was heated at reflux for 3 h in 50 ml of toluene. The 

organic phase was separated, washed with brine (10 ml), dried with anhydrous Na2SO4 and 

filtered. The organic phase was then vacuum dried and the product collected (L2, 1.37g, 4.55 

mmol, 70%). IR (cm-1): 2962s, 2927s, 2867m, 1588w, 1566m, 1540m, 1474m, 1436m, 

1394m, 1381w. 1H NMR (300 MHz, CDCl3): δ 1.05 (d, 6H), 1.21 (d, 6H), 2.22 (d, 6H), 2.93 

(m, 2H), 3.69 (s, 3H), 5.36 (s, 1H), 5.83 (s, 1H), 8.15 (s, 1H). Anal. calcd for C18H27N3O 

(301.21): C, 71.71; H, 9.03; N, 13.95; Found: C, 71.45; H, 9.49; N, 13.48. 

 

Synthesis of L*. L2 (1.37 g, 4.55 mmol) was dissolved in THF dry (80 ml) in a 250 ml 

Schlenk flask under nitrogen. The solution was cooled to -78°C and n-BuLi (1.6 M in 

hexanes, 3.13 ml, 5.00 mmol) was slowly added. The deep red solution was stirred for 40 min 

at -78°C. Ethylene sulfide (0.29 ml, 4.90 mmol) was then added and the solution was warmed 

to room temperature and stirred for 1.5 h. CH3I (0.31 ml, 4.90 mmol) was then added and the 

solution was stirred for 1 h. The mixture was vacuum dried and then CH2Cl2 (30 ml) and 

water (20 ml) were added to the solid. The organic phase was separated, dried with anhydrous 

Na2SO4 and filtered. The organic phase was vacuum dried and the resulting red oil was 

purified by column cromatography (Silica gel, hexane/ethyl acetate 70:30) yielding a 

colorless oil (L*, 921 mg, 2.46 mmol, 54%). IR (cm-1): 3128w, 3052w, 2958m, 2926m, 

2865w, 1586m, 1579m, 1539m, 1480s, 1436s, 1258m, 1093s, 992m. 1H NMR (300 MHz, 

CDCl3): δ 0.89 (d, 3H), 1.05 (d, 3H), 1.23 (d, 6H), 2.11 (s, 3H), 2.14 (s, 3H), 2.26 (s, 3H), 

2.72 (m, 3H), 2.95 (m, 2H), 3.71 (s, 3H), 5.76 (m, 1H), 5.84 (s, 1H), 8.26 (s, 1H). Anal. calcd 

for C21H33N3OS (375.23): C, 67.16; H, 8.86; N, 11.19; Found: C, 66.89; H, 8.58; N, 11.43. 

 

Synthesis of [Cu(L*)(PPh3)]BF4. L* (0.667 g, 1.77 mmol) and PPh3 (0.466 g, 1.77 mmol) 

were dissolved in acetonitrile (20 ml) under nitrogen. A solution of [Cu(CH3CN)4]BF4 in 10 

ml di acetonitrile was then added and the mixture was stirred for 1.5 h. The solution was 

vacuum dried and the solid was redissolved in diethyl ether. The mixture was filtered and 

vaccum dried yielding a pale yellow solid ([Cu(L*)(PPh3)]BF4, 1.36 g, 1.73 mmol, 97%). 1H 

NMR (300 MHz, CDCl3): δ 0.75 (d, 3H), 1.01 (d, 3H), 1.24 (d, 3H), 1.41 (d, 3H), 1.97 (s, 

3H), 2.03 (s, 3H), 2.53 (s, 3H), 2.85 (m, 1H), 3.27 (m, 1H), 2.75-2.47 (m, 4H), 3.89 (s, 3H), 
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5.97 (s, H), 6.17 (m, 1H), 7.47 (m, 15H), 7.60 (s, 1H). Anal. calcd for C39H48BCuF4N3OPS 

(787.26): C, 59.43; H, 6.14; N, 5.33; Found: C, 59.78; H, 6.31; N, 5.02. Crystals suitable for 

X-ray analysis were obtained by stratification of pentane on a dichloromethane solution of the 

complex. 

 

Data collection for the compound was performed on a Bruker Smart 1000 CCD diffractometer 

equipped with graphite-monochromated Mo-Ka radiation (λ = 0.71073 Å). Crystal data: 

C39H48BCuF4N3OPS, crystal dimensions: 0.25 x 0.15 x 0.10 mm3, FW = 788.18, monoclinic, 

space group P21/n, a = 11.037(3) Å, b = 15.038(7) Å, c = 23.996(8) Å, β = 92.88(3), V = 

3978(2) Å3, Z = 4, Dc = 1.316 mg/m3, µ = 0.694 mm-1, F(000) = 1646, GOF = 1.002, ρmax/min 

= 0.541/-0.263 eÅ-3. Data collection: 1.60 < θ < 26.10, 3036 observed reflections with I > 

2σ(I) out of 7852 unique reflections (Rint = 0.1007). Final R1 = 0.0595, wR2 = 0.0631.
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6.2 N2S,S’-Heteroscorpionate Ligands Based on Bis(pyrazol-1-yl)methane and 

Complexation of Cu(I) 

 

An alternative to the pyrazole-pyridine derivatives described in Chapter 5 as N2S2–tripodal 

ligands, consists in a bis(pyrazol-1-yl)methane platform (N2-donor) functionalized with 

groups containing two S-thioether functions. This type of preorganized ligands could possibly 

encapsulate a copper(I) ion in way of yielding mononuclear tetrahedral complexes, wherein 

the ligand would control the topology of the metal. It is worth of note that, by using 

bis(pyrazolyl)methane derivatives, we overcome the complication of chirality, that was 

introduced in the case of pyrazole-pyridine scorpionates. 

In this section we present the X-ray structures of binary complexes of Cu(I) with two new 

N2S,S’-scorpionate ligands based on the bis(pyrazolyl)methane moiety, Lx and Ly. The 

synthetic route to the ligands is based on a reported method for the formation of 

dipyrazolylalkanes starting from bis(pyrazolyl) ketones and aliphatic or aromatic carbonyl 

compounds (Scheme 6.2).196,294-296  
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Scheme 6.2 

 

The ligands Lx and Ly differ only for the nature of the substituents on the pyrazole rings, 

respectively methyl and more hindered isopropyl for Lx and Ly. The target would be to obtain 

κ4-N2S,S’ coordination on Cu(I), but X-ray analysis disproves it. In fact, testing the 

coordination properties of Lx with Cu(I), the resulting complex crystallized from an 

acetonitrile:water mixture presents the structure reported in Figure 6.4. It is a dinuclear 

compound with stoichiometry [Cu2(L
x)2(CH3CN)](BF4)2 (1a); thus, the ligand is not 

successful in imposing a tetrahedral geometry on the metal center to give a mononuclear 

compound. The lack of stereochemical control from Lx is attested by: (1) the dinuclear 
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structure of the complex, (2) the coordination of a solvent molecule (CH3CN) to one of the 

copper ions, and (3) the absence in the coordination sphere of Cu(I) of a potentially chelating 

S,S’ group (S(18), S(19)). The former Cu(I) ion, namely Cu(1), is located in a trigonal planar 

environment, bound by three nitrogen atoms, two from a ligand Lx and one from acetonitrile, 

the latter presenting the shortest Cu-N distance (1.834(6) Å). The other copper center is 

approximately tetrahedral, bound by two N-pyrazole atoms from a second ligand and by two 

S-thioether groups, belonging to the former bridging Lx. 

 

 

Figure 6.4 Molecular drawing of [Cu2(L
x)2(CH3CN)](BF4)2

.1.5CH3OH (1a) at the 30% thermal 

ellipsoids probability level. The BF4
- counterions and the hydrogen atoms (except for the methinic 

ones) are omitted for clarity. Selected bond distances (Å): Cu(1)-N(9) = 1.834(6), Cu(1)-N(21) = 

2.010(5), Cu(1)-N(22) = 1.953(5), Cu(2)-N(26) = 2.024(4), Cu(2)-N(27) = 2.066(4), Cu(2)-S(13) = 

2.321(2), Cu(2)-S(14) = 2.339(2). 

 
Regarding the complexation of Cu(I) with Ly, it led to the crystallization of a coordination 

polymer,285 corresponding to [Cu(Ly)]n(BF4)n (2a) (Figure 6.5). Two symmetrically non-

equivalent Cu centers, Cu(1) and Cu(2), alternate in an infinite chain, which is hold together 

by strong Cu-S interactions (2.179(2)-2.186(2) Å distances). Both the Cu ions are trigonal 

planar, bound by two nitrogen atoms from pyrazolyl groups of a ligand and by a sulfur atom 

from an aryl-thioether group of an adiacent ligand. It is worth of note that only terminal S-

thioethers, namely S(2) ans S(4), are bound to copper, whereas S(1) and S(2) are not 

coordinated.  
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In conclusion, the new heteroscorpionate ligands Lx and Ly here presented are unable to 

impose a κ4-N2S2 coordination on Cu(I), thus giving mononuclear complexes; instead, the 

isolated compounds exhibit polynuclear structures. The reason for this may be the inability of 

the ligands to generate a proper tetrahedral coordination arrangement around Cu(I). 

 

 

 

Figure 6.5 Molecular drawing of [Cu(Ly)]n(BF4)n (2a). The BF4
- counterions and the hydrogen atoms 

are omitted for clarity. Selected bond distances (Å): Selected bond distances (Å): Cu(1)-N(21) = 

2.028(5), Cu(1)-N(22) = 2.005(4), Cu(1)-S(4) = 2.179(2), Cu(2)-N(26) = 1.994(4), Cu(2)-N(27) = 

2.014(4), Cu(2)-S(2) = 2.186(2). 

 

6.2.1 Experimental 

 

Synthesis of 2-(phenylthio)benzenethiol (modified from a reported procedure).297 A solution of 

thiophenol (4 ml, 38.95 mmol) in cyclohexane (10 ml) was added to a solution of n-BuLi (1.6 

M in hexane, 54 ml, 86.4 mmol) and N,N,N’,N’-tetramethylethylenediamine (TMEDA, 13 

ml, 86.70 mmol) in cyclohexane (60 ml) at 0 °C under nitrogen. The reaction was stirred for 

30 min at 0 °C and for 6 h at room temperature. A solution of diphenyl disulfide (9.5 g, 43.57 

mmol) in cyclohexane (90 ml) was added at 0 °C. After being stirred for 30 min at 0 °C, the 

mixture was stirred overnight at room temperature and quenched with 15% HCl(aq) (175 ml). 

The organic and water layers were separated and the latter was extracted with diethyl ether (3 

x 50 ml).The organic phases were mixed and dried with anhydrous Na2SO4. Solvents were 

removed under vacuum. The solid was recrystallized from a CH2Cl2:EtOH mixture, yielding a 

colorless crystalline solid (4 g, 18.35 mmol, 47%). 1H NMR (300 MHz, CDCl3): δ 4.29 (s, 
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1H, SH), 7.1-7.6 (m, 9H, CH). Anal. calcd for C12H10S2 (218.02): C, 66.01; H, 4.62. Found: 

C, 66.10; H, 4.44. 

 

Synthesis of 2-(2-(phenylthio)phenylthio)benzaldehyde (analogous to a reported procedure for 

preparation of 2-(phenylthio)benzaldehyde).298 To a stirred solution of 2-

(phenylthio)benzenethiol (2 g, 9.17 mmol) and anhydrous Na2CO3 (1.3 g) in dry DMF (5 ml) 

under nitrogen at 90 °C, 2-chlorobenzaldehyde (0.9 ml, 7.99 mmol) was slowly added. The 

mixture was stirred at 90 °C overnight. After cooling, the reaction mixture was poured into 

water (50 ml) and extracted with diethyl ether (50 ml). The extract was washed with water (2 

x 50 ml), dried with anhydrous Na2SO4, and concentrated under vacuum. The resulting oil 

was triturated with hexane in an ultrasoud bath for 20 min, filtered and dried under vacuum to 

afford a pale white solid (1.85 g, 5.74 mmol, 72%). 1H NMR (300 MHz, CDCl3): δ 7.11-7.51 

(m, 12H, CH ph), 7.94 (d, J = 7.5 Hz, 1H, CH ph), 10.39 (s, 1H, CHO). Anal. calcd for 

C19H14OS2  (322.05): C, 70.77; H, 4.38. Found: C, 70.53; H, 4.51. 

 

Synthesis of 1,1'-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-dimethyl-1H-

pyrazole) (L
x
). 2-(2-(phenylthio)phenylthio)benzaldehyde (900 mg, 2.79 mmol) and 

CoCl2
.6H2O (5 mg, 0.021 mmol) were added to bis(3,5-dimethyl-1H-pyrazol-1-yl)chetone299 

(670 mg, 3.07 mmol) in a Schlenk flask under nitrogen. The mixture was heated at 90 °C and 

vigorously stirred until it set, during which time the mixture turned dark blue and evolution of 

CO2 was observed. After 2 h the mixture was cooled to room temperature before CHCl3 (50 

ml) and water (50 ml) were added and the flask shaken until discoloration of the organic 

layer. The latter was separated and washed with water (2 x 50 ml), dried with anhydrous 

Na2SO4 and concentrated under vacuum to afford a pale oil, which was purified by purified 

by column cromatography (Silica gel, gradient of elution from hexane/ethyl acetate 18:1 to 

pure ethyl acetate). The resulting oil was triturated with hexane in an ultrasound bath, filtered 

and dried under vacuum, affording a white powder (Lx, 790 mg, 1.59 mmol, 57%). 1H NMR 

(300 MHz, CDCl3): δ 2.11 (s, 6H, CH3), 2.20 (s, 6H, CH3), 5.82 (s, 2H, CH pz), 6.99-7.14 (m, 

5H, CH ph), 7.31 (m, 8H, CH ph), 7.86 (s, 1H, CH bridge). Anal. calcd for C29H28N4S2 

(496.18): C, 70.13; H, 5.68; N, 11.28. Found: C, 69.96; H, 5.79; N, 11.36. 

 

Synthesis of 1,1'-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-diisopropyl-1H-

pyrazole) (L
y
). 2-(2-(phenylthio)phenylthio)benzaldehyde (770 mg, 2.39 mmol) and 

CoCl2
.6H2O (4 mg, 0.017 mmol) were added to bis(3,5-diisopropyl-1H-pyrazol-1-
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yl)chetone299 (910 mg, 2.75 mmol) in a Schlenk flask under nitrogen. The mixture was heated 

at 150 °C and vigorously stirred until it set, during which time the mixture turned dark green. 

After 4 h the mixture was cooled to room temperature before CHCl3 (50 ml) and water (50 

ml) were added and the flask shaken until discoloration of the organic layer. The latter was 

separated and washed with water (2 x 50 ml), dried with anhydrous Na2SO4 and concentrated 

under vacuum to afford a dark oil, which was purified by purified by column cromatography 

(Silica gel, hexane:ethyl acetate 9:1). The resulting oil was recrystallized from hexane (2-3 

ml) at room temperature, yielding a crystalline white solid (Ly, 640 mg, 1.05 mmol, 44%). 1H 

NMR (300 MHz, CDCl3): δ 0.92 (d, J = 6.9 Hz, 6H, CH3), 0.99 (d, J = 6.9 Hz, 6H, CH3), 1.20 

(d, J = 6.9 Hz, 12H, CH3), 2.91 (hept, J = 6.9 Hz, 2H, CH i-Pr), 3.15 (hept, J = 6.9 Hz, 2H, 

CH i-Pr), 5.91 (s, 2H, CH pz), 6.95 (m, 1H, CH ph), 7.08 (m, 4H, CH ph), 7.19-7.32 (m, 8H, 

CH ph), 8.00 (s, 1H, CH bridge). Anal. calcd for C37H44N4S2 (608.30): C, 72.98; H, 7.28; N, 

9.20. Found: C, 73.07; H, 7.11; N, 9.12. 

 

Synthesis of [Cu2(L
x
)2(CH3CN)](BF4)2 1.5CH3OH (1a). A mixture of Lx (100 mg, 0.20 mmol) 

and [Cu(CH3CN)4]BF4 (65 mg, 0.21 mmol) were dissolved in CH2Cl2 (5 ml) under nitrogen. 

After stirring for 1 h, a white solid was precipitated with hexane (30 ml), filtered and dried 

under vacuum (1, 130 mg). 1H NMR (300 MHz, CD3CN): δ 2.18 (s, 6H, CH3), 2.41 (s, 6H, 

CH3), 6.03 (s, 2H, CH pz), 6.60 (d, 1H, J = 7.5 Hz, CH ph), 7.07 (m, 1H, CH ph), 7.18-7.31 

(m, 11H, CH ph), 7.65 (s, 1H, CH bridge). Crystals suitable for X-ray analysis (1a) were 

obtained by stratification of pentane on a methanolic solution of 1 under nitrogen. Anal. calcd 

for C61.50H65BCu2F4N4S2 (1136.33): C, 64.95; H, 5.76; N, 4.93; Found: C, 64.78; H, 5.87; N, 

5.00. 

 

Synthesis of [Cu(L
y
)]n(BF4)n (2a). A mixture of Ly (136 mg, 0.22 mmol) and 

[Cu(CH3CN)4]BF4 (74 mg, 0.23 mmol) were dissolved in acetone (10 ml) under nitrogen. 

After stirring for 1/2 h, the solvent was removed under vacuum, affording a white solid (2, 

145 mg, 0.19 mmol, 86%). 1H NMR (300 MHz, CD3CN): δ 1.16 (t, J = 6.3 Hz, 12H, CH3), 

1.25 (s br, 12H, CH3), 3.08 (s br, 2H, CH i-Pr), 3.33 (m, CH i-Pr), 6.26 (s, 2H, CH pz), 6.48 (s 

br, 1H, CH ph), 7.12 (m, 2H, CH ph), 7.25-7.41 (m, 10H, CH ph), 7.85 (s, 1H, CH bridge). 

Crystals suitable for X-ray analysis (2a) were obtained by stratification of diethyl ether on a 

methanolic solution of 2 under nitrogen. Anal. calcd for C37H44BF4CuN4S2 (758.23): C, 

58.56; H, 5.85; N, 7.39; Found: C, 58.43; H, 5.89; N, 7.61. 
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Data collection for the compounds 1a and 2a was performed on a Bruker Smart 1000 CCD 

diffractometer equipped with graphite-monochromated Mo-Ka radiation (λ = 0.71073 Å). 

Crystal data for 1a: C61.50H65BCu2F4N4S2, crystal dimensions: 0.15 x 0.10 x 0.05 mm3, FW = 

1383.17, monoclinic, space group P21/n, a = 12.017(8) Å, b = 14.253(7) Å, c = 38.495(9) Å, 

β = 90.45(3), V = 6593(6) Å3, Z = 4, Dc = 1.393 mg/m3, µ = 0.842 mm-1, F(000) = 2852, GOF 

= 1.003, ρmax/min = 0.706/-0.510 eÅ-3. Data collection: 1.06 < θ < 26.31, 13262 observed 

reflections with I > 2σ(I) out of 62809 unique reflections (Rint = 0.1140). Final R1 = 0.0598, 

wR2 = 0.1012. 

Crystal data for 2a: C37H44BF4CuN4S2, crystal dimensions: 0.12 x 0.10 x 0.05 mm3, triclinic, 

space group P-1, a = 17.791(5) Å, b = 18.127(7) Å, c = 25.875(9) Å, α = 94.87(3), β = 

95.10(3), γ = 92.61(3), V = 8269.7(7) Å3, Z = 2, Dc = 1.472 mg/m3, µ = 0.74 mm-1, F(000) = 

3800. Final R1 = 0.0915. Partial structure solution. 
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Appendix 1 

 

Least-square equation for the treatment of the slow exchange equilibrium: 

[Cu(Tr
Mes,Me

)]2 + 2py Ý 2[(py)Cu(Tr
Mes,Me

)] 

 

Molar fraction χ of [Cu(L)]2 referred to total dimer concentration (CD) can be calculated from 

integrals of [Cu(L)]2 and [(py)Cu(L)] by the following equation (slow exchange condition): 
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where C[Cu(L)]2 and CD are the free and total dimer concentration, respectively, and I[Cu(L)]2 and 

I[(py)Cu(L)] are the integrals of peaks corresponding to the same functional group in the two 

complexes. From the mass balance and the definition of K as equilibrium constant for the 

equilibrium [Cu(L)]2 + 2 py Ý 2[(py)Cu(L)], Equation A2 is derived: 
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By  insertion of A1 in A2, Equation A3 is derived, representing the regression model for the 

experimental data: 
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I[Cu(L)]2 = sum of the integrals of the z and v mesityl protons (6), I[(py)Cu(L)] = sum of the 

integrals of the z’ and v’ mesityl protons (6). 
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Figure A1. ONIOM partitioning scheme of the CuBrMes,Mepzo-Py fragment used for the geometry 

optimization of the isomers of 3. 

 

 

           

 

Figure A2. NOESY NMR spectrum of 3 at 300 K in CDCl3. Solid lines denotes negative contours, 

dashed lines denotes positive cross-peaks.  
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Figure A3. Stacking plot of the 1H NMR spectra of [Cu(TrMes,Me)]2 titrated with tu in CD3OD/CDCl3 

1:1 (u, v and z = para and ortho mesityl protons, w = methyl proton of triazoline). 

 
 

 

 

Figure A4. Stacking plot of the 1H NMR spectra of [Cu(TrMes,Me)]2 titrated with py in CDCl3. (u, v and 

z = para and ortho mesityl protons, w = methyl proton of triazoline, ‘ indicates the adduct). 
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Table A1. Calculated bond lengths (Å) and angles (°) for 3a-b. 

 

 3a   
Cu-S(11) 2.425 B-H 1.204 

Cu-S(12) 2.387 C(11)-S(11) 1.708 

Cu-H 1.915 C(12)-S(12) 1.709 
Cu-P 2.332   

    

S(11)-Cu-S(12) 114.70 S(12)-Cu-H 88.90 
S(11)-Cu-H 90.22 S(11)-Cu-P 115.56 

S(12)-Cu-P 126.06 H-Cu-P 109.07 

    
 3b   

Cu-S(11) 2.446 B-H 1.194 

Cu-S(12) 2.567 C(11)-S(11) 1.708 
Cu-N(23) 2.079 C(12)-S(12) 1.701 

Cu-P 2.356 Cu-N(33) 3.320 

    
S(11)-Cu-S(12) 106.79 S(12)-Cu-N(23) 91.92 

S(11)-Cu-N(23) 107.44 S(11)-Cu-P 107.88 

S(12)-Cu-P 102.33 N(23)-Cu-P 135.85 
    

 3c   

Cu-S(11) 2.505 B-H 1.193 
Cu-S(12) 2.447 C(11)-S(11) 1.704 

Cu-N(23) 2.092 C(12)-S(12) 1.706 

Cu-P 2.363   
    

S(11)-Cu-S(12) 105.42 S(12)-Cu-N(23) 109.14 

S(11)-Cu-N(23) 94.91 S(11)-Cu-P 104.54 
S(12)-Cu-P 105.03 N(23)-Cu-P 134.15 
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Appendix 2 

 

Semi-reaction rates rij and rate constants kij determination 

 

For the equilibria (a) and (b) in Scheme 3.6, the following equations can be written: 

 

(A4 a)  

 

(A4 b) 

 

where Mx, My, Mz, My
# and Mz

# are the magnetizations of the corresponding exchanging 

species (X, Y1-3 and Z1-3). According to: 
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][2## χη QM
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where [X] is the equilibrium concentration of X, η is an unknown constant, χ and χ# are molar 

fractions of the different [Zn(LOH)2]
2+ isomers and [Q] is the total equilibrium concentration 

of the [Zn(LOH)2]
2+ isomers:                                (the factor 2 in My(z) formula is due to the 

presence of two ligands for each species), the semi-reaction rates rij can be determined (Table 

A2). 

 
Table A2 Semi-reaction rates rij (M

.s-1, i = column, j = row) calculated according to the mechanisms 

proposed in Scheme 3.6. 

 X Y1 Z1 Z2 Y2 Z3 Y3 

X   0.00007(2) 0.00016(3) 0.00010(5) 0.00014(4) 0.00013(3) 0.00018(6) 
Y1 0.00007(2)    0.0012(1)  0.0003(2) 
Z1 0.00016(3)   0.0041(2)  0.0037(5)   
Z2 0.00010(5)  0.0041(2)   0.0002(2)   
Y2 0.00014(4) 0.0012(1)     0.006(1) 
Z3 0.00013(3)  0.0037(5) 0.0002(2)     
Y3 0.00018(6) 0.0003(1)     0.006(1)     
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(A5 a)   

 

(A5 b)      

 

Supposing a first-order mechanism for (a) and a second-order one for (b), the semi-reaction 

rates can be defined as follows: 

(A6 a)       

(A6 b)   

By subtracting (A5 a) to the corresponding (A6 a), and (A5 b) to the corresponding (A6 b), 

the rate constants are thus obtained, Table A3: 

(A7 a)         

(A7 b)      

 

Table A3 Matrix of rate constants kij (i = column, j = row) between the different Zn2+/LOH species in 

CD3OD (1A, 2A-E, see Figure 3.7) calculated according to the mechanism proposed in Scheme 3.6. 

The corresponding X, Y1-3 and Z1-3 exchanging-sites (NMR signals) are reported in the same order of 

the EXSY spectrum (Figure 3.6). 

 X Y1 Z1 Z2 Y2 Z3 Y3  

X  1.7(5) 3.7(7) 3(1) 4(1) 4(1) 5(2) ← (M s-1) 
Y1 12(4)  - - 0.48(4) - 0.14(7)  
Z1 29(6) -  1.8(1) - 1.7(2) -  
Z2 19(6) - 1.4(1)  - 0.12(9) -  
Y2 25(7) 0.45(2) - -  - 2.7(3)  
Z3 25(5) - 1.3(2) 0.11(8) -  -  
Y3 32(10) 0.13(6) - - 2.6(3) -   
 ↑ (M s-1)       (s-1) 
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Figure A5 Ortep drawing of [Cu(LOH)2]Cl2
.2H2O (4a) at the 30% thermal ellipsoids probability level. 

‘ = -x; 1-y; 1-z; ‘’ = -x; -y; -z. 

 

N11 

N21 

Ni 

O12 

N13 

N13’ 

N21’ 

N11’ 

O12’ 

H1 

O13 

O13’ 

 

Figure A6 Ortep drawing of [Ni(LOH)2]Cl2
.3MeOH (2a). The cation complex [Ni(LOH)2]

2+ is 

reported. ‘ = -x, -y, -z. 
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Figure A7 Ortep drawing of [Zn(LOH)2]ZnCl4
.2(CH3CN) (5a). Crystallization solvent molecules are 

removed for clarity. ‘ = ½-x; ½-y; -z, ‘’ = -x; y; ½-z. 

 

 

 

Figure A8 ESI-Mass spectra of the Zn2+/LOH system in 1:1 ratio (a), and in 1:~10 ratio (b) in 

methanol. 
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Appendix 3 

 

 

Figure A9 Ortep drawing of the ligand L1
 at the 30% thermal ellipsoids probability level. The 

asymmetric unit is represented by two independent molecules roughly related by a pseudo plane of 

symmetry. The molecules differs by the value of the torsion angle [N24-N14-C15-C16] = 95°, and 

[N21-N11-C12-C13] = -82°. 

 

 

 

 

 

 

Figure A10 Comparison between the DFT optimized structures (B3LYP/lanl2dz) of [Cu(L’)(C6H5S)] 

(left) and [Cu(L’)(C6F5S)] (right). 
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Appendix 4 

 

Determination of zero ionic strength equilibrium constants 

 
By considering the mass balance (CCu = CM + 2CD) and the stoichiometric dimerization 

constant (K = CD/CM
2), the ionic strength (I) can be derived for each sample: 
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according to Davies empirical expression, the correction factors f(I) can be determined for 

each sample:  
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where K
0 = stability constant extrapolated at zero ionic strength, A = 0.509 (empirical factor), 

and Σzi
2 = zD

2-2zM
2 = 2 (zD and zM are the charges of the dimer and the monomer, 

respectively). Taking into account that: 
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and introducing: the mass balance, the definition of K and the Davies correction, we can write 

the following expression: 
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that was used as regression model on δ and CCu data for the refinement of K0 values. 
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Determination of the non-linear regression equation for the hydrodynamic volumes 

 
Equation 5.1 is derived by the following expression:  
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where VH is the experimental hydrodynamic volume, V0
H(M) and V0

H(D) are the 

hydrodynamic volumes of the monomer and the dimer, respectively, and CM and CD are the 

corresponding equilibrium concentrations. Defining the dissociation grade α as: 
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and remembering that for a dimerization process K = CD/CM
2 and CCu = CM + 2CD (mass 

balance), α can be written as: 
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Introducing the definition of α into A13, A15 is obtained: 
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By substituting α with the second member of equation A14 into A15, we obtain Equation 5.1: 
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Figure A11 Ortep drawing of [Cu(Lb)Cl2] with thermal ellipsoids shown at 30% probability. 

Selected distances: Cu-N(11) = 2.017(2) Å, Cu-N(13) = 2.036(2) Å, Cu-S(11) = 2.361(1) Å, 

Cu-Cl(1) = 2.285(1) Å, Cu-Cl(2) = 2.424(1) Å. 

 

Figure A12 Ortep drawing of [Cu(La)2(H2O)](OTf)2
.H2O

.CH3OH with thermal ellipsoids 

shown at 30% probability. The -OTf counterions and the crystallization solvent (CH3OH) are 

omitted for clarity. Selected distances: Cu-N(13) = 1.988(3) Å, Cu-N(16) = 1.997(3) Å, Cu-

N(21) = 2.117(3) Å, Cu-N(24) = 2.105(3) Å, Cu-O = 2.040(3) Å. 
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Figure A13 Stacking plot of 1H NMR spectra of a2(BF4)2 in CD3CN at different CCu. The drifts of the 

chemical shifts of the protons A, B and C were computed to derive the logK for 2a
+ Ý a2

2+. 

 

Figure A14 Stacking plot of 1H NMR spectra of b2(BPh4)2 in CD3CN at different CCu
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