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Abstract 

The rostral part of the macaque ventral premotor cortex (PMv), corresponding to the 

histochemical area F5, is a functionally heterogeneous cortical sector. Two main populations of 

visuomotor neurons were electrophysiologically identified in this premotor sector : “Mirror neurons” 

and “Canonical neurons”. “Mirror neurons” were mostly found in the F5 sector extending on the 

lateral convexity while “Canonical neurons” were found in the F5 sector located in the posterior 

bank of the inferior arcuate sulcus (IAS). In the present study, we aimed to verify whether there is 

an anatomical counterpart underlying this differential distribution of F5 visuomotor neurons using 

both, architectonic and hodological approaches. The results showed that the rostral PMv hosts 

three architectonically distinct areas, which occupy different parts of F5. One area, referred to as 

“convexity” (F5c) F5, extends on most of the postarcuate convexity cortex adjacent to the IAS. The 

other two areas, referred to as “posterior” (F5p) and “anterior” (F5a) F5, lie within the postarcuate 

bank at different antero-posterior levels. This subdivision was strongly supported by our 

hodological data showing that the three architectonically defined PMv areas are characterized by 

different connectional patterns. F5p was strongly connected with the hand field of F1, with the arm-

related premotor fields of F4, F2vr, F6 and F3 and with the cingulate areas 24d and 24c. Parietal 

afferents originated from areas PF, PFG, AIP, PEip and SII region. Weak connections with the 

prefrontal cortex involved the caudal sector of area 46v. Finally, F5p was a source of corticospinal 

projections. F5c was strongly connected with face/mouth fields of F4 and F3 and weakly with F1. 

Cingulate connections involved areas 24c and 24a. Strong connections were observed with caudal 

frontal opercular areas. Parietal afferents mostly originated from PF, SII and PV (mostly 

face/mouth representations), but also from AIP and PFG. Connections with the prefrontal cortex 

involved a more rostral sector of area 46v and area 12r. F5a lacked connections with F1 and 

displayed connections with F4, F6 and cingulate areas, 24c, 24d and 24a. Strong connections 

were observed with rostral frontal opercular areas. Parietal afferents originated mostly from PF, 

PFG, AIP and from the hand representations of PV and SII. Relatively robust prefrontal 

connections were observed with rostral area 46v and areas 12r and 12l. The present data, together 

with functional data available in the literature, suggest that the three rostral PMv areas F5p, F5a 

 - 4 -



and F5c correspond to functionally distinct cortical entities. Thus, the current study provides a new 

anatomical frame of reference of the macaque PMv that appears to be very promising for gaining 

new insight into the possible role of this premotor sector in different aspects of motor control and 

cognitive motor functions. 

 

Keywords: architecture, hodology, area F5, monkey, visuomotor, frontal lobe, parietal lobe , 

mirror neurons, canonical neurons. 
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A. Introduction  

1. Architectonic organization of the monkey ventral premotor cortex 

The primates agranular frontal cortex has been subdivided by Brodmann (1909) into two 

cytoarchitectonically distinct areas: area 4 located in the precentral gyrus and area 6 located 

rostrally to area 4. This simple cytoarchitectonic map corresponded to an equally simple view of a 

functional organization: the “primary motor cortex”, corresponding to area 4, the “supplementary 

motor area” in the mesial surface (Penfield and Welch, 1951; Woolsey et al. 1952) and the  

“premotor area”  on the lateral convexity (Fulton 1935), which correspond to Brodmann’s area 6. 

All of the subsequent architectonic, connectional and functional studies agreed that area 6 is made 

up of many structural and functional fields, each of which processes different aspects of the motor 

behaviour.  

Area 6 was subdivided into three main regions: 1) the supplementary motor area “SMA proper” and 

area “pre-SMA” on the mesial surface, 2) the dorsal premotor cortex (PMd) on the dorsolateral 

convexity, and 3) the ventral premotor cortex (PMv) on the ventrolateral convexity. Moreover, the 

PMv resulted anatomically not homogeneous as well (Vogt and Vogt, 1919; Bonin and Bailey 

1947; Matelli et al., 1985; Barbas and Pandya, 1987; Preuss and Goldmann-Rakic, 1991), (Fig. 1).  

Architectonic investigations provided variable maps of the PMv, which differ in terms of number, 

location and extent of the areas. Two cytoarchitectonic areas were defined by Bonin and Bailey 

(1947) within the PMv: area FBA located caudally and area FCBm extending rostrally (Fig. 1). 

Other architectonic studies of the PMv have resulted in markedly different parcellation schemes. 

For example, Barbas and Pandya (1987), similarly to Vogt and Vogt (1919), have subdivided the 

PMv into a dorsal, an intermediate and ventral area, designated as 4C, 6Va and 6Vb, respectively 

(Fig. 1). A dorsoventral subdivision of the PMv based on cyto- and myloarchitectonic criteria, but in 

two areas only, 6Va and 6Vb, has been proposed by Preuss and Goldman-Rakic, (1991). 
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The laminar pattern of cytochrome oxidase activity was studied in the agranular frontal cortex of 

the macaque monkey by Matelli and co-workers (1985). This study provided a new detailed 

parcellation of the agranular frontal cortex and distinguished two histochemically different areas in 

the PMv: area F4 which lies on the precentral gyrus, just rostral to the precentral area F1 (area 4) 

and area F5 which lies rostrally to F4 on the lateral cortical convexity and extends in the posterior 

bank of the inferior limb of the arcuate sulcus (IAS), (Figs. 1 and 2). 

More recently, Petrides and Pandya, (1994; 2002) analyzing sections cut orthogonally to the IAS, 

have defined an area -area 44- mostly located in the anterior part of the postarcuate bank that, 

according to Petrides et al. (2005), represents an architectonic and functional distinct cortical 

entity. 

2. Connections of the ventral premotor area F5 

Recently, the monkey premotor area F5 has received strong interest from the anatomical and 

functional investigations of the last two decades. Connectional studies have shown that area F5 is 

connected with the primary motor cortex (area F1), particularly with hand and face/mouth fields 

(Pandya and vignolo, 1971; Matelli et al.,1987; Lu et al., 1994; Dum and Strick, 2005). Other 

hodological investigations have shown that area F5 is connected with the supplementary motor 

areas F3 (SMA-proper) and F6 (pre-SMA), (Luppino et al., 1993). Area F5 displays connections 

also with the dorsal premotor area F2 (Marconi et al., 2001) and with the adjacent premotor area 

F4 (Godschalk et al., 1984, Matelli et al.,1986). 

Other connectional studies which targeted the prefrontal cortex, showed that the rostral PMv sector 

(corresponding to area F5) is consistently connected with area 12 (Carmichael and price, 1995) 

and with area 46v (Preuss and Goldman-Rakic, 1989).  

Several connectional investigations carried out on the parietal cortex have demonstrated that area 

F5 receives strong projections from the posterior parietal areas. Its major connections arise from 

the inferior parietal lobule (IPL) areas, PF, PFG and PG  and from the intraparietal areas AIP and 

PEip (Cavada and Goldman-Rakic, 1989; Rozzi et al., 2006; Borra et al., 2007). In another study 

conducted by Disbrow et al, (2003) in which electrophysiologically controlled tracer injections were 
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made in the PV/SII complex, demonstrated that the rostral PMv sector displays connections with 

this somatosensory complex.  

Finally, a series of hodological studies made by Strick and co-workers (1991, 1993), in which the 

topographic organization of corticospinal neurons in the frontal lobe was examined by injecting 

neural tracers in different segmental levels of the spinal cord, showed that the only ventral 

premotor area sending projections to the spinal cord is the rostral part of the PMv, in particular, its 

sector located in the posterior part of the bank of  the IAS (Dum and Strick, 1991; He et al., 1993). 

It is noteworthy that the previous anatomical and functional studies carried out on area F5 

considered this area as one entity.  

3. Functional properties of the ventral premotor area F5  

3.1. General properties of F5 neurons 

Single neurons recordings during the execution of active movements and intracortical 

microstimulation of area F5 have shown that this area contains a representation of hand and 

mouth movements (Okano and Tanji, 1987; Rizzolatti et al., 1988; Gentilucci et al., 1988; Hepp-

Reymond et al., 1994; Ferrari et al 2003a; Raos et al 2006). 

The great majority of F5 ‘hand’ neurons discharge during goal-directed actions such as grasping, 

manipulating, tearing and holding (Rizzolatti et. al., 1988). The mostly represented F5 neurons are 

‘grasping neurons’. These neurons typically begin to discharge before the contact between the 

hand and the object. Some neurons are more active during the opening of the fingers that 

precedes the closure phase, some discharge during finger closure and some others discharge 

during the whole movement, from the beginning of fingers opening until their contact with the 

object (Fadiga et al., 2000). This temporal relation between grasping movement and neuron 

discharge varies from neuron to neuron (Fadiga et al., 2000). Furthermore, many grasping neurons 

discharge in association with a particular type of grip. Most of them are selective for one of the 

three most common grip types of the monkey: precision grip, finger prehension and whole hand 

prehension.  

Another population of F5 neurons has been described by Ferrari et al. (2003a). These neurons are 

related to the mouth actions such as grasping, sucking and breaking food. 
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on the basis of the functional properties of F5 neurons, it has been suggested that area F5 stores a 

set of  motor schemata (Arbib, 1981), or a ‘vocabulary’ of motor acts (Rizzolatti and Gentilucci, 

1988). Populations of neurons constitute the ‘words’ composing this vocabulary. Some of them 

indicate the general category of an action (hold, grasp, tear, manipulate). Finally, other neurons are 

concerned with the temporal segmentation of the actions (hand opening, fingers closure, object 

holding). 

Beside the motor properties of F5 neurons, visual stimuli  have been shown to be able to trigger F5 

neurons activity (Murata et al., 1997; Rizzolatti et al., 1988; Raos et al., 2006). Two completely 

different categories of F5 visuomotor neurons have been identified: neurons of the first category 

discharge when the monkey observes graspable objects ‘canonical’ F5 neurons, (Murata et al., 

1997; Rizzolatti and Fadiga, 1998), (Fig. 3A). Neurons of the second category, ‘mirror neurons’, 

discharge when the monkey observes another individual making an action in front of it (Di 

Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996 ), (Fig. 3B).   

It is noteworthy that the two categories of F5 neurons are located in two different sectors of area 

F5: ‘canonical neurons’ were mostly found in F5 sector buried within the arcuate sulcus, whereas 

‘mirror neurons’ were almost exclusively found in the cortical convexity of F5. 

3.2. Visuomotor transformations for grasping execution  

3.2.1. Canonical neurons  

In the typical course of daily events, we make a variety of body movements on the basis of 

what we interact manually with objects in our environment. Usually, we gaze at an object, reach 

toward it and grasp it.  

As described some years ago, in single neuron recording experiments in which a monkey was 

required to grasp food and other objects, many F5 neurons fired also in response to food or object 

presentation (Rizzolatti et al., 1988). 

More recently, the visual responses of F5 neurons were re-examined using a formal behavioural 

paradigm, which allowed to separately test the response related to object presentation, during the  
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Waiting phase between object presentation and movement’s onset, and during movement 

execution. 

The results showed that a high percentage of the tested neurons, in addition to the motor 

response, responded also to visual presentation of three-dimensional graspable object (Murata et 

al., 1997). Among these visuomotor neurons, two-thirds were selective to one or a few specific 

objects (Fig. 3B). Very often there is a strict relationship between the type of prehension coded by 

a neuron and the physical characteristics of the stimulus effective in triggering response (Rizzolatti 

et al., 1988). In congruence with this data, Raos et al. (2006) showed that F5 grasping neurons 

displayed a preference for grasping of an object or a set of objects. This preference was also 

maintained when grasping was performed in the dark in the absence of any visual feedback. Often 

the object that evoked the strongest activity during grasping also evoked optimal activity during its 

observation. 

3.2.2. Parieto-frontal circuit for visuomotor transformations for grasping 

‘Canonical neurons’ neurons are mostly located in the posterior part of the inferior 

postarcuate bank (F5 of the arcuate bank -F5ab- in Rizzolatti and Luppino, 2001), which is 

reciprocally connected with the intraparietal area AIP. Extensive studies made by Sakata and 

collaborators (Taira et al., 1990; Sakata et al., 1995; Murata et al., 2000) showed that the 

properties of AIP neurons are strikingly similar to those of F5 ‘canonical neurons’: visual responses 

in area AIP are determined by the shape and orientation of objects, while the motor responses are 

triggered in relation to specific hand movements. It has been suggested that F5 ‘canonical 

neurons’ receive visual information about the object features from area AIP (Luppino et al., 1999; 

Borra et al., 2007). Area F5 in turn ‘translates’ these object features into a potential action, with 

which the individual may act on the object. Thus, Jeannerod et al. (1995) suggested that the AIP-

F5 circuit seems to be involved in transforming intrinsic object properties into the appropriate hand 

movements. This hypothesis is supported by reversible inactivation studies performed both, in area 

F5 (Gallese et al., 1994) and in area AIP (Fogassi et al., 2001). In both areas the inactivation 

caused very similar deficits: awkward object grasping or even a complete grasping failure. 

According to Sakata and co-workers (1995), the motor activity in AIP reflects a corollary discharge 
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originating in area F5ab. Its function is to create reverberatory activity that keeps AIP neurones 

active during action (Murata et al., 1996). The  activity of F5 ‘canonical neurons’ represents the 

step that transforms the object representations coded in the AIP into a format suitable to active 

area F1 motor neurons plus a series of subcortical centres among which are the basal ganglia and 

cerebellum (Jeannerod et al., 1995). 

3.3. Mirror neurons system 

A category of stimuli of great importance for primates is that formed by actions done by the 

other individuals. In the daily life, we must understand the actions of the others because without 

action understanding, social organization becomes impossible (Rizzolatti and Graighero, 2004). 

Recently, Rizzolatti and colleagues proposed a neurophysiological mechanism -the mirror neurons 

mechanism- that appears to play a fundamental role in both action understanding and imitation. 

Now, there is a wide consensus that the activation of the motor system, particularly the ventral 

premotor area F5 is a necessary requisite for these cognitive abilities. 

3.3.1. Mirror neurons properties 

Single-neuron recording experiments in monkeys have shown that area F5 contains a 

population of visuomotor neurons, ‘mirror neurons’ which are endowed with an intriguing visual 

property: these neurons become active not only when the monkey does a particular action (like 

grasping an object) but also when it observes another individual (Monkey or human) doing the 

same action (Fig. 3A), (Gallese et al., 1996). 

Early studies on mirror neurons concerned essentially the upper sector of F5 where hand actions 

are mostly represented (Di Pellegrino et al., 1992; Gallese et al., 1996). Recently, in order to 

investigate the functional properties of F5 neurons located in its lateral sector -where neuron 

activity is mostly related to mouth actions- Ferrari et al. (2003a) have demonstrated that about one 

third of mouth motor neurons discharge also when the monkey observes another individual 

performing mouth actions. The majority of these ‘mouth mirror neurons’ become active during the 

execution and observation of mouth actions related to ingestive functions such as grasping, 

sucking or breaking food, but the most effective visual stimuli in triggering them are communicative 
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mouth gestures (e.g. lips macking). These findings extend the notion of mirror neurons system 

from hand to mouth action. 

In order to be triggered by visual stimuli, the ‘mirror neurons’ require an interaction between a 

biological effector (hand or mouth) and an object. The sight of an object alone, of an agent 

mimicking an action, or of an individual making intransive (non object directed) gestures are all 

ineffective. The object significance for the monkey has no obvious influence on the mirror neuron 

response. Grasping a piece of food or geometric solid produces responses of the same intensity 

(Rizzolatti and Graighero, 2004). 

An important functional aspect of mirror neurons is the relation between their visual and motor 

properties. Virtually all mirror neurons show congruence between the visual actions they respond 

to and the motor responses they code. According to the type of congruence they exhibit, mirror 

neurons have been subdivided into ‘strictly congruent’ and ‘broadly congruent’ neurons (Gallese et 

al., 1996). 

3.3.2. Mirror neurons circuit 

 Neurons responding to the observation of actions done by others are present not only in 

area F5 but also in the superior temporal sulcus (STS), (Perrett et al., 1989; Jellema et al., 2002). 

A set of neurons in the STS have been shown to respond to the action observation. Movements 

effective in eliciting neuron responses in the STS are walking, turning the head, bending the torso, 

and moving the arms. A small set of STS neurons discharge also during the observation of goal-

directed hand movements (Perrett et al., 1990). 

Another cortical area where there are neurons that respond to the observation of actions done by 

other individuals, is area 7b or PF/PFG complex in the IPL (Fogassi et al., 1998; Gallese et al., 

2002; Fogassi et al., 2005). This area receives inputs from the STS and sends an important output 

to the PMv including area F5 (Rozzi et al., 2006). PF/PFG neurons are functionally heterogeneous. 

Most of them respond to sensory stimuli, but about 50% of them have motor properties discharging 

when the monkey performs specific movements or actions (Fogassi et al 2005; Gallese et al., 

2002; Hyvarinen, 1982). PF/PFG neurons responding to sensory stimuli have been subdivided 

into: somatosensory neurons, visual neurons, and bimodal (somatosensory and visual) neurons. 
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Visually responsive neurons in area PF/PFG respond specifically to action observation, most of 

them have mirror properties (Gallese et al., 2002; Fogassi et al., 2005). 

In conclusion, the cortical mirror-neuron circuit is formed by two main regions: the rostral part of the 

inferior parietal lobule and the rostral ventral premotor cortex. The STS is strictly related to it but, 

lacking the motor properties, cannot be considered part of it (Rizzolatti and Graighero, 2004).  

  3.3.3. Functions of the mirror neuron system: action understanding 

 One of the hypotheses which have been advanced on what the functional role of mirror 

neurons was that these neurons could be at the basis of action understanding. A mechanism was 

proposed by Rizzolatti and co-workers explaining how the mirror neurons mediate understanding 

of actions done by the others. Following these authors, each time an individual sees an action 

done by another individual, neurons that represent that action are activated in the observer’s 

premotor cortex. This automatically induced, motor representation of the observed action 

corresponds to that to which is spontaneously generated during active action and whose outcome 

is known to the acting individual (Rizzolatti et al., 2001).  

4. Objective 

On the basis of the functional data focused on the rostral PMv, we hypothesized that area F5  

-considered histochemically as a unique area- could be formed by a complex of anatomically and 

functionally distinct entitites, possibly corresponding to F5ab, F5c (Rizzolatti and Luppino, 2001) 

and to area 44 (Petrides and Pandya, 1994, 2002; Petrides et al., 2005). To resolve this question, 

two different, but complementary studies were undertaken:  

a-The first study was focused on the analysis of the architectonic organization of area F5, 

and the adjacent areas. For this purpose, we used a qualitative multimodal histological approach 

combining cyto- and myeloarchitectonics with SMI-32 and calcium binding protein (CB) 

immunohistochemistry, along with a quantitative analysis of SMI-32-ir and CB-ir cells within each 

architectonically defined sector of area F5, area F4 and area F1. 

b-The second study consisted in the analysis of the connectional pattern of each F5 

architectonically defined sector, to seek for an eventual differential connectivity of the different F5 

sectors, which could enable us to confirm the data from the architectonic study. For this purpose, 
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retrograde, anterograde and retro-anterograde neuronal tracers were injected in each 

architectonically defined sector of F5 and the distribution of labeled neurons and terminals were 

analysed in the cerebral cortex, in parallel with the examination of the cortico-spinal projections, 

mainly in the upper and lower cervical segments of the spinal cord. 

Preliminary data have been presented previously (Luppino et al., 2005; Nelissen et al., 2005; 

Belmalih et al., 2007). 
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B. Materials and methods 

 Animal care and all experimental procedures were performed according to protocols 

approved by the Veterinarian Animal Care and Use Committee of the University of Parma and 

complied with the European law on the care and use of laboratory animals. 

1. Architectonics 

19 adult macaque monkeys (11 Macaca nemestrina, 6 Macaca fascicularis and 2 Macaca 

mulatta) of both sexes weighing between 5 and 8 kg were used in the present study. We didn’t 

observe any architectonic differences consistently related to either the species or the gender. 

Brains from 6 monkeys (PR11, PR17, PR18, PR19, PR20 and CNR-29) were used exclusively for 

the purposes of architectonic studies. M3 and M4 have been used as subjects in fMRI experiments 

as well (Nelissen et al., 2005). The remaining monkeys have been used in tract-tracing studies in 

which neural tracers were injected in different frontal or posterior parietal areas (see, e.g., Galletti 

et al., 2001; Luppino et al., 2001; Rozzi et al., 2006).  

1.1. Surgical and histological procedures 

Each animal was anesthetized with ketamine hydrochloride and subsequently received an i.v. 

lethal injection of sodium thiopental. Intracardial perfusion was initiated through the left cardiac 

ventricle with saline solution, followed by 3.5-4% paraformaldehyde. In all animals, except for 

cases PR18 and PR19, the perfusion was continued with 5% glycerol. All solutions were prepared 

in phosphate buffer 0.1M, pH 7.4. The brain was then exposed, eventually blocked on a stereotaxic 

apparatus, removed from the skull and photographed. All brains, but cases PR18 and PR19, were 

placed in 10% (three days) and then in 20% (three days) buffered glycerol for cryoprotection. The 

right hemisphere of case PR18 and the left hemisphere of case PR19 were embedded in celloidin 

and cut tangentially to the IAS and parasagittally, respectively, at 50 µm. All the other brains were 

cut frozen, at 60 µm, for a total number of 16 hemispheres coronally, 10 parasagittally, 1 

perpendicularly to the IAS and 1 tangential to IAS. Table 1 summarizes the cases used for this 

study. 

The parasagittal, tangential and perpendicular to the IAS planes of sectioning were used in 

order to obtain optimal and complementary views of the architecture of the postarcuate bank and  
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TABLE 1. Summary of cases studied 

 

Case Species Hemisphere Cut Staining * 
PR17 Nemestrina Right Perpendicular to IAS Nissl, Myelin (120), SMI-32 (60), CB 

(60) 
PR18 Nemestrina Right Tangential to IAS Nissl (celloidin) 
PR19 Nemestrina Left Parasagittal Nissl (celloidin) 
PR11 Nemestrina Left Parasagittal Nissl, SMI-32 (60) 
PR20 Nemestrina Right Parasagittal Nissl, Myelin (120), SMI-32 (60), CB 

(60) 
M4 Mulatta Left 

Right 
Parasagittal 
Parasagittal 

Nissl, Myelin (60), SMI-32 (60) 
Nissl, Myelin (60), SMI-32 (60) 

M3 Mulatta Right 
 

Left 

Parasagittal 
 

Coronal 

Nissl, Myelin (120), SMI-32 (60), CB 
(60) 
Nissl, Myelin (120), SMI-32 (60), CB 
(60) 

MEF16 Fascicularis Right 
Left 

Parasagittal 
Parasagittal 

Nissl, SMI-32 (120), CB (60) 
Nissl, SMI-32 (120), CB (60) 

MEF17 Fascicularis Left Parasagittal Nissl, SMI-32 (60) 
CNR-29 Fascicularis Left Parasagittal Nissl, SMI-32 (60) 
Case 12 

 
Case  24 

Nemestrina 
 

Nemestrina 

Right 
 

Right 
Left 

Coronal 
 

Coronal 
Coronal 

Nissl, Myelin (120), SMI-32 (120), CB 
(60) 
Nissl 
Nissl 

Case 18 Nemestrina Right 
Left 

Coronal 
Coronal 

Nissl, Myelin (120), SMI-32 (60) 
Nissl, Myelin (60) 

Case 13 Fascicularis Right 
Left 

Coronal 
Coronal 

Nissl 
Nissl, SMI-32 (60) 

Case 14 Nemestrina Right 
Left 

Coronal 
Coronal 

Nissl 
Nissl 

Case 20 
 

Nemestrina Right 
Left 

Coronal 
Coronal 

Nissl 
Nissl 

Case 23 Fascicularis Left 
Right 

Coronal 
Coronal 

Nissl, Myelin (60) 
Nissl 

Case 29 Fascicularis Left Coronal Nissl, Myelin (60) 
Case 38 Nemestrina Left Coronal Nissl, Myelin (60) 
 

* Number in parentheses indicates the distance in μm from the Nissl stained section. 
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of the adjacent postarcuate convexity cortex. In fact, the architecture of this cortical sector, 

especially of the postarcuate bank, is often poorly discriminated in the standard coronal plane, 

because of the oblique or almost vertical direction of the sulcus. In addition, sections cut tangential 

or perpendicular to the IAS or parasagittal sections, offered optimal views of different rostro-caudal 

levels of the postarcuate bank and/or of the postarcuate convexity cortex for the identification of 

boundaries between rostro-caudal subdivisions. 

In all hemispheres, every fifth section was stained with the Nissl method (thionin, 0.1% in 

0.1M acetate buffer pH 3.7). In 9 animals (12 hemispheres, 7 of them cut coronally, 4 parasagitally 

and 1 perpendicular to the IAS), sections adjacent or very close to those stained with thionin were 

stained for myelin (Gallyas, 1979). 

The immunoarchitectonic study of the rostral PMv was based on the analysis of the 

distribution of the immunoreactivity (ir) for the antibody SMI-32 and for the calcium-binding protein 

calbindin (CB). SMI-32-ir was analyzed in 11 animals (14 hemispheres, 4 of them cut coronally, 9 

parasagitally and 1 perpendicular to the IAS) and CB-ir in 5 animals (7 hemispheres, 2 of them cut 

coronally, 4 parasagittally and 1 perpendicular to the IAS). In these hemispheres, every tenth 

section was immunoreacted. Immediately after cutting, sections were rinsed in phosphate-buffered 

saline (PBS) for 10 15 min. Endogenous peroxidase activity was eliminated by incubation in a 

solution of 0.6% H2O2 and 80% methanol for 15 min at room temperature. Sections were rinsed in 

PBS for another 10-15 min and incubated in a solution of one of the following primary antibodies: 

mouse monoclonal SMI-32 (Sternberger Monoclonals, Baltimore, MA, USA) dilution 1:5000 in 

0.3% Triton (Sigma, St Louis, MO, USA), 2% normal horse serum (Vector, Burlingame, CA, USA), 

in PBS or monoclonal anti-calbindin D-28K (Swant, Bellinzona, Switzerland), dilution 1:5000 in 

0.3% Triton, 5% normal horse serum in PBS. After incubation and rinsing in PBS (15 min), sections 

were processed with the avidin-biotin method by using a Vectastain ABC kit (Vector) and 3,3'-

diaminobenzidine (DAB, Sigma) as chromogen. The reaction was intensified with cobalt chloride 

and nickel ammonium sulphate. Immunoreacted sections were then mounted on gelatine-coated 

slides from saline, air dried, dehydrated in graded alcohols, and cover slipped. In order to avoid 
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possible sources of variability among sections from the same case, all sections selected for one 

type of immunostaining were processed all together in the same solutions. 

1.2. Qualitative analysis 

The cytoarchitectonic analysis was carried out with a Wild M420 Universal macroscope 

equipped with Apozoom objective for low-power observations, and with a Nikon Optiphot-2 and a 

Zeiss Axioscop 2 microscope for medium and high power observations. In each section, the outer 

and inner cortical borders (pial and white matter borders) and the location of the boundaries 

between the various identified cytoarchitectonic areas were plotted with the aid of inductive 

displacement transducers mounted on X and Y axes of the microscope stage. The transducer 

signals were digitized and stored by using software developed in our laboratory that allows the 

visualization of section outlines, of gray-white matter borders and of architectonic borders. Data 

from individual sections were also imported into 3D reconstructions software (Bettio et al., 2001), 

which allowed us to obtain volumetric reconstructions of the monkey brain. The analysis of myelin-

stained and SMI-32 and CB immunoreacted sections was carried out independently from the 

cytoarchitectonic analysis by using the same procedures. Myelo- and immuno-architectonic 

borders were then correlated with cytoarchitectonic borders. 

1.3. Quantitative analysis 

A quantitative analysis of the distribution of SMI-32 and CB immunoreactivity was carried out 

in the ventral agranular frontal areas, using procedures virtually identical to those adopted in a 

previous study focused on the caudal ventrolateral prefrontal cortex (Gerbella el., 2007). 

The distribution of SMI-32ir was analyzed quantitatively in three hemispheres (PR17, M4l and 

MEF16l), from three different macaque species and cut in two different planes of section. Coronal 

sections were not used for this analysis, because of the very oblique cutting of the postarcuate 

bank. This analysis was aimed to evaluate the density of immunopositive cells in different 

cytoarchitectonic areas and cortical layers. By using the above mentioned computer based 

charting system, immunopositive neurons were plotted, at a magnification of 200X, in cortical 

transverses 250 µm wide from the pial surface through the entire cortical thickness. In each 

hemisphere, eight transverses were plotted for each of five different areas, as cytoarchitectonically 
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defined. Thus, this analysis was based on a total number of 40 transverses from each hemisphere 

and a total number of 24 transverses (8 transverses per case) for each area. The plotted 

transverses were selected from different sections and different parts of each area. By using a 

camera lucida attached to the microscope, borders between different cortical layers were 

transferred on the plots from adjacent Nissl-stained sections. 

For each area, the density of the SMI-32 immunopositive cells, was analyzed separately for 

layers II/III and V, where virtually all these neurons were observed. Density was defined in terms of 

number of immunopositive cells, plotted in a given layer, divided by the thickness of that layer 

expressed in millimetres, for a transverse 250 µm wide. Although in the supragranular layers SMI-

32 immunopositive cells were all located in layer III, layers II and III were considered together 

because of the difficulty in setting the border between them. The obtained data were tested with a 

two-way ANOVA for repeated measures (factors: Area, Layer, 5X2 ANOVA), followed by post-hoc 

Bonferroni correction for multiple comparisons. 

The distribution of CBir was analyzed quantitatively in three hemispheres (PR17, M3l and 

MEF16l), from three different macaque species and cut in two different planes of section, in terms 

of density of immunopositive cells in different cytoarchitectonic areas and cortical layers. As 

reported in other studies (for review, see Hof et al., 1999), CB immunopositive neurons included 

two main populations of cells. One, by far the most represented, consisted of darkly and more 

lightly stained nonpyramidal cells, the other of pyramidal cells, most of them only lightly stained. 

However, in the areas object of the present study, the number of the observed CB immunopositive 

pyramids was very low or almost negligible. For this reason, this type of CB positive cells was not 

considered for this analysis. CB immunopositive nonpyramidal cells were plotted at a magnification 

of 400X, in cortical transverses 250 µm wide from the pial surface through the entire cortical 

thickness. The total number of transverses analyzed and the criteria for their selection were the 

same as in the analysis of SMI-32ir described above.  

Two types of analyses were carried out in order to compare the distribution of CB 

immunopositive nonpyramidal cells across different areas. The first analysis aimed to evaluate 

their density in the studied areas. To this purpose, the total number of cells, plotted in transverses 
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250 µm wide, was divided by the cortical thickness expressed in millimetres. It should be noted 

however that in the agranular frontal cortex the border of layer VI with the white matter generally 

relatively gradual and difficult to draw with precision. Thus, we considered for this and the following 

analysis the cortical thickness from the pial surface to the border between layers V and VI. In this 

respect, it is worth noting that in all areas under study, layer VI CB immunopositive neurons were 

sparse and homogenously distributed. The obtained data were tested with a two-way ANOVA for 

repeated measures (factors: Cell type, Area, 2X5 ANOVA) followed by post-hoc t-test with 

Bonferroni correction for multiple comparisons. The second analysis aimed to obtain an estimate of 

the differences in the laminar distribution of CB immunopositive nonpyramidal neurons in each 

area. To this purpose, the number of these cells, plotted in a given layer of a cortical transverse 

250 µm wide, was divided by the thickness of that layer expressed in millimetres. Given that the 

distribution of CB immunopositive nonpyramidal cells in supragranular layers was highly 

heterogeneous, with a much higher concentration in layer II and uppermost part layer III, these two 

layers, considered as a whole, were subdivided into four sublaminae of equal thickness. Thus, five 

different layers/sublayers were analyzed: the four layer II/III sublaminae and layer V. The obtained 

data were tested with a two-way ANOVA for repeated measures (factors: Area, Layer/Sublamina, 

5X5 ANOVA), followed by post-hoc Bonferroni correction for multiple comparisons 

1.4. Architectonic maps 

In all cases used in the present study, architectonic maps were obtained by reporting the 

location of architectonic borders on drawings of dorsolateral views of the studied hemispheres. 

Furthermore, in order to obtain more realistic views of the location and extent of the identified 

architectonic areas, data from individual sections, spaced 600 µm, obtained with the above 

mentioned computer based charting system, were imported into a 3D reconstruction software 

(Bettio et al., 2001). By using this software, the individual sections were firstly manually translated 

or rotated for their alignment. The alignment was based on the location of the track left in the white 

matter by a needle inserted orthogonally to the plane of sectioning and of several cortical and 

subcortical anatomical landmarks. Furthermore, local non-linear transformations were applied to 

correct distortions due to the histological processing. Finally, a 3D rendering of the cortical surface 

 - 28 -



was created showing the extent of the identified architectonic areas. The obtained 3D 

reconstructions could be also re-sliced in any desired plane, for comparing data from hemispheres 

cut with different planes of sectioning, or dissected to expose cortical surfaces buried within sulci. 

The location of areas lying on the cortical convexity was visualized in standard dorsolateral views 

of the hemispheres. Areas located in the postarcuate bank were visualized in non-standard views 

of the hemispheres in which the bank was exposed with appropriate dissection of the 3D 

reconstruction. 

1.5. Photographic presentation 

Photomicrographs shown in the present study were obtained by capturing images directly 

from the sections with a digital camera attached to the macroscope or to the microscope. Individual 

images were then imported in Adobe Photoshop, in which they were assembled into digital 

montages and reduced to the final enlargement. Image brightness and contrast were adjusted, if 

necessary, to reproduce the original histological data. 

2. Hodology 

2.1. Surgical procedure and tracers injection 

 The connectivity of the different sectors of area F5 was investigated in ten macaque 

monkeys (7 Macaca nemestrina, 2 Macaca fascicularis and 1 Macaca mulatta). In all cases, except 

for cases C21 and C10, neural tracers were injected in different subdivisions of area F5. In C21 the 

tracer injection was made in F1, and in C10 the tracer injection was made in the cervical segments 

C4-C5 of the spinal cord.  

Each animal was anaesthetized with either ketamine hydrochloride (15-20 mg/kg i.m.) or sodium 

thiopental (10-15 mg/Kg i.v.) and placed in a stereotaxic apparatus under aseptic conditions. In all 

animals except for C10, an incision was made in the scalp, the skull was trephined to remove the 

bone overlying the target region and the dura was opened. 

In all monkeys but C10, the injection sites were chosen by using AP stereotaxic coordinates as a 

frame of reference and the IAS, the spur, the inferior precentral dimple and the central sulcus as 

anatomical landmarks. In C21, the hand field of the primary motor cortex (area F1) was 
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electrophysiologically defined before the injections, using the intracortical microstimulation. Trains 

of 50 ms duration were generated by a constant current stimulator (7-40 μA) and were delivered at 

300 Hz through tungsten microelectrodes (Impedance 1.5MΩ).  

Once the appropriate site was chosen, fluorescent tracers (Fast Blue [FB] 3% in distilled water, 

diamidino Yellow [DY] 2% in 0.2M phosphate buffer at pH 7.2, EMS-POLYLOY GmbH, Gross-

Umstadt, Germany, cholera toxin B sub-unit conjugated with Alexa 594 [CTB-A] 1% in phosphate-

buffered saline, Molecular Probes and Microruby [MR] 10% in 0.2M phosphate buffer PH 7.4, 

Invitrogen-Molecular probes), wheat germ agglutinin-horseradish peroxidase conjugated [WGA-

HRP] 4% in distilled water, SIGMA, St.Louis, Missouri, biotinylated dextran amine [BDA] 10% 

phosphate buffer 0.1M, pH 7.4; Molecular Probes, Eugene, Oregon, and fluororuby [FR], 10% in 

distilled water, Molecular Probes, Eugene, Oregon,  were slowly pressure injected through a glass 

micropipette (tip diameter 100±50µm) attached to a 1ml Hamilton microsyringe (Reno, NV, USA). 

Figure 4 and table 2 summarize the locations of injections, the injected tracers and their amounts. 

The tracers injected into the cortical convexity were delivered 1,5 mm below the cortical surface, 

while those injected in the posterior bank of the arcuate sulcus were delivered at various depths 

from the cortical crown. After the injection, the pipette remained in place for 15 to 30 min to prevent 

spread of the tracer. The dural flap was then sutured, the bone replaced and the superficial tissues 

sutured in layers.  

In the animal in which the tracer was injected in the spinal cord (C10), following a laminectomy, the 

dura was opened and the segments of the spinal cord selected for the injection exposed. The 

horseradish peroxidase [HRP], 30% in 2% lysolectin, SIGMA, (6 injections of total amount of 10 µl) 

was pressure injected with 5 µl Hamilton microsyringe in the lateral funiculus at C4-C5 spinal cord 

level.  

During surgery, hydration was maintained with saline (about 10 cc/ h, i.v) and temperature was 

maintained with a heating pad. Heart rate, blood pressure, respiratory depth and body temperature 

were continuously monitored. Upon recovery from anaesthesia, the animal was returned to its 

home cage and closely monitored. 
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TABLE 2. Monkey species, localization of the cortical injections, and tracers employed In the   

       experiments 
 

Monkey Species Hemisphere Area Tracer % Amount (µl) 
Case 14 M.nemestrina Left F5p FB (3) 0,2 µl x 1 
Case 21 M.nemestrina Right 

Right 
F1(convexity)

F1(bank) 
FB (3) 

MR (10) 
0,2 µl x 1 
1 µl x 1 

Case 25 M.nemestrina Right F5c WGA-HRP (4) 0,2 µl x 1 
Case 30 M.nemestrina Right 

Left 
F5a 
F5a 

DY (2) 
WGA-HRP (4) 

0,2 µl x 1 
0,2 µl x 1 

Case 31 M.nemestrina Right 
Left 

F5p 
F5p 

WGA-HRP (4) 
FR (10) 

0,2 µl x 1 
1µl x 2 

Case 33 M.nemestrina Left F5c FB (3) 0,2 µl x 1 
Case 34 M.fascicularis Left F5a BDA (10) 1µl x 2 
Case 35 

 
 

 

Case 36 

M.mulatta 
 
 

M.fascicularis 

Left 
Left 

Right 
Left 

 

F5c 
F5a 
F5p 
F5c 

FB (3) 
DY (2) 

BDA (10) 
CTB-A 594 (1) 

0,2 µl x 1 
0,2 µl x 1 
1µl x 2 
1µl x2 

-In C10 (M. nemestrina), horseradish peroxidase (HRP, 10%) was injected in the cervical segments 
of the spinal cord (C4-C5). For the abbreviations see the list. 
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2.2. Histological procedure 

After appropriate survival periods following cortical (28 days for BDA and FR, 12-14 days for 

FB, DY and CTB-A, and 2 days for WGA-HRP) or spinal  cord (3 days for the HRP) injections, 

each animal was anesthetized with ketamine hydrochloride (15 mg/kg i.m.) followed by an i.v. 

injection of sodium thiopental (60 mg/Kg) and perfused through the left cardiac ventricle with 

saline, 3.5-4% paraformaldehyde and 5% glycerol in this order. All solutions were prepared in 

phosphate buffer 0.1M, pH 7.4. Each brain was then blocked coronally on a stereotaxic apparatus, 

removed from the skull, photographed and placed in 10% buffered glycerol for 3 days and 20% 

buffered glycerol for 4 days. Finally, it was cut frozen in coronal sections 60 µm thick. In cases C10 

and C31 the spinal cord was removed and after cryoprotection, cut transversally or horizontally 

respectively at 60 µm.  

In all the cases injected with fluorescent tracers, one section of each five was mounted 

immediately, air-dried and quickly coverslipped for fluorescence microscopy. In cases C25r, C30l 

and C31r, one section of each five was processed for WGA-HRP histochemistry with 

tetramethylbenzidine as chromogen (Mesulam, 1982). In cases, C31l and C34l, one series of each 

fifth section was processed for the visualization of FR or BDA respectively, using a Vectastain ABC 

kit (Vector Laboratories, Burlingame, CA, USA) and 3,3'-diaminobenzidine (DAB) as chromogen. 

The reaction product was intensified with cobalt chloride and nickel ammonium sulphate. 

In all cases, one series of each fifth section was stained with the Nissl method (thionin, 0.1% in 

0.1M acetate buffer pH 3.7). In cases C10 and C31 one section of each five of the spinal cord was 

processed for the HRP histochemistry (C10) or for FR immunocytochemistry (C31l). One section of 

each five was stained with Nissl method. 

2.3. Data analysis 

2.3.1. Injection sites  

The injection sites were defined according to the criteria previously described in detail by 

Luppino and collaborators (2001, 2003). Two concentric zones were defined for each tracer 

injection: a central zone, defined as the core and a surrounding zone, defined as the halo. The 

core of WGA-HRP, FR, BDA injection sites was considered to be the densely stained regions 
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adjacent to the needle track. The halo was considered to be the region with a less intense 

background staining and in which almost all neurons were labeled. 

The core of the fluorescent tracers injection sites was considered to include an inner zone (zone I), 

sharply delineated around the needle track, which appeared necrotic and intensely fluorescent and 

a second zone (zone II), less sharply delineated and less brilliantly fluorescent, in which almost all 

of the neurons and many glial cells showed bright fluorescence. The halo was defined as the 

region which contained some background tissue fluorescence and in which almost all neurons and 

some glial cells were labelled. Zones I and II should correspond to the effective area of uptake and 

transport of fluorescent tracers (Kuypers and Huisman, 1984; Condé, 1987; Luppino et al., 2001, 

2003). 

In order to verify the locations of the cortical injection sites, Nissl stained material was used 

to identify the various areas. The borders between different areas and the extent of injection sites 

were then plotted on individual section drawings and mapped onto a dorsolateral view of the 

hemisphere. The injection sites of all the cases presented in this study were restricted within the 

limits of a single cytoarchitectonic area.  

2.3.2. Distribution of the labeling 

Retrogradely labeled neurons were plotted Under U.V. illumination and with the aid of a 

longpass barrier filter allowing one to visualize wave lengths greater than 395 nm, the fluorescent 

neurons were identified as follows: FB-labeled neurons by a sky-blue fluorescence in the 

cytoplasm; DY-labeled neurons by a yellow-green fluorescent nucleus; CTB-A 594 labeling was 

analyzed by using standard rhodamine filter. CTB-A 594-labeled neurons were identified for a red 

granular fluorescence in the cytoplasm. 

The retrograde and anterograde (WGA-HRP, BDA and FR injections) labeling was plotted in each 

section every 600 µm, together with the outer and inner cortical borders with the aid of inductive 

displacement transducers mounted on the X and Y axes of the microscope stage. The transducer 

signals were digitized and stored by using software developed in our laboratory (Inside software) 

that allows the visualization of section outlines, of gray and white matter borders, and of labeled 

cells or terminals. 
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Data from individual sections were then imported into a three-dimensional (3D) reconstruction 

software (Bettio et al., 2001), creating volumetric reconstructions of the hemispheres from 

individual histological sections containing connectional data. The results of this processing allowed 

us to obtain realistic visualizations of the labeling distribution for a more precise comparison of 

data from different hemispheres. Distribution of labeling on exposed cortical surfaces was 

visualized in standard mesial, dorsolateral, or orbital views of the hemispheres. 

The distribution of the labeling in the lateral fissure (LF) was visualized in two-dimensional 

(2D) reconstructions obtained by using Inside software, according to the following procedure: in 

each plotted section, the cortex included in the region of interest was subdivided into columnar bins 

by lines perpendicular to the cortical surface and connecting the outer and inner cortical contours. 

In order to minimize the distortion caused by cortical curvature, the cortex was then unfolded at the 

level of a virtual line connecting the midpoints of all the perpendicular lines, approximately 

positioned at the border between layers III and IV. The unfolded sections were then aligned and 

the labeling distributed along the space between two consecutive plotted sections (600 µm).  

2.3.3. Areal attribution of the labeling 

The parcellation of Matelli and co-workers (see also Geyer et al., 2000a) was adopted to 

attribute the labeling in the motor cortex (Matelli et al., 1985). While areas in the prefrontal cortex 

were identified following Preuss and Goldamn-Rakic, (1991) and Carmichael and Price, (1994) 

subdivisions. The labeled areas of the IPL were identified according to architectonic criteria from 

Gregoriou et al. (2006), the intraparietal areas according to the criteria defined by Borra et al. 

(2007). Finally, for the parietal operculum, we matched our data with the functional maps of the SII 

region of Krubitzer et al. (1995) and Fitzgerald et al. (2004).  
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C. Results 

1. Architectonics of the ventral premotor cortex 

We identified three architectonically distinct areas in the rostral PMv that, all together, occupy 

the cortical sector corresponding to area F5, as histochemically defined (Matelli et al., 1985). Two 

of them are located within the inferior postarcuate bank, one more posteriorly (and dorsally), the 

other more anteriorly (and ventrally). They will be referred to as “posterior” (F5p) and “anterior” 

(F5a) F5, respectively. The third area occupies most of the shoulder of the inferior postarcuate 

bank and the adjacent postarcuate convexity cortex. It will be referred to as “convexity” (F5c) F5. 

F5p and F5c border caudally with a caudal PMv architectonic area corresponding to histochemical 

area F4. 

The identification of these areas has been primarily based on the analysis of Nissl-stained 

material. In this respect, it should be noted the following (Gregoriou et al., 2006; Gerbella et al., 

2007). First, given that very often architectonic features change gradually from one region to 

another, usually in the range of about 0.5 mm, borders between areas have been set at the 

intermediate points of these transitions. Second, given that some general and primary architectonic 

features (e.g., cell density and size) often show some interindividual variability, the definition of the 

cytoarchitectonic areas has been mostly based on relative changes, within individual cases, in 

single layer characteristics and in individual histological elements, reliably and consistently 

observed across different cases. By employing this approach and by using different planes of 

sectioning, we were able to set reliable cytoarchitectonic criteria, despite the interindividual 

variability of cytoarchitectonic features. 

To seek a possible validation of the cytoarchitectonic subdivision of the rostral PMv, we 

combined this approach with the myeloarchitectonic and two chemoarchitectonic ones. This 

multiarchitectonic analysis proved to be very helpful in providing independent and complementary 

criteria for the characterization of the various identified rostral PMv areas. 

The analysis of myelin-stained material, in spite of some variability in the quality of fiber 

staining from one section to another, showed that, in several cases, the identified cytoarchitectonic 

areas differed also in their myeloarchitectonic features. Myeloarchitectonic changes, however, 
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were rather more gradual with respect to the cytoarchitectonic ones and less effective for a precise 

delineation of architectonic borders. 

SMI-32ir and CBir are two chemoarchitectonic approaches which provide complementary 

information on the organization of some aspects of the efferent and intrinsic components of the 

cortical circuitry (Campbell and Morrison, 1989; Hendry et al., 1989). In the primate neocortex, 

SMI-32ir reveals, almost everywhere, subpopulations of layers III and V pyramidal cell bodies and 

proximal portions of their apical and basal dendrites (Campbell and Morrison, 1989). SMI-32 

immunopositive cells and neuropil display, however, specific regional and laminar distribution 

patterns, used in other studies for the delineation of occipito-parietal (Hof et al., 1999), temporal 

(Cusick et al.,1995), parietal (Gregoriou et al., 2006) dorsal premotor (Geyer et al., 2000b), 

cingulate (Nimchinsky et al., 1996) and prefrontal (Carmichael and Price, 1994) areas. In contrast, 

CBir is present in a subpopulation of cortical nonpyramidal and pyramidal neurons (e.g., DeFelipe 

et al., 1989; Hendry et al., 1989), in which, though with some variability across different cortical 

regions, nonpyramidal neurons are by far the most represented. In general, in the primate 

neocortex, CB immunopositive cells are highly concentrated in layers II and uppermost III and 

sparser in deeper layers. Other studies have shown that regional differences in the distribution of 

CB immunopositive nonpyramidal or pyramidal cells can be used for the characterization of 

different sensory (Kondo et al., 1999), temporal (Kondo et al., 1994) and prefrontal (Carmichael 

and Price, 1994; Condé et al., 1994; Dombrowski et al., 2001; Gerbella et al., 2007) areas. Both 

these chemoarchitectonic approaches proved to be very helpful for a further and independent 

validation of the results of the cytoarchitectonic analysis. In this respect, it should be noted that, 

likely because of slight differences in fixation and immunostaining procedures, some variability was 

observed, from one case to another, in the absolute staining intensity of the immunopositive cells 

and neuropil. Nevertheless, qualitative analysis of SMI-32ir, based on relative changes, within 

individual cases, in the number of immunopositive cells and laminar position and intensity of cell 

and neuropil immunostaining, showed that the various PMv cytoarchitectonic areas very well 

corresponded to different chemoarchitectonic fields. These observations were supported by 

quantitative analysis of the density of immunopositive pyramids in layers II/III and V. Furthermore, 
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qualitative and quantitative analysis of CB immunoreacted material showed that, in spite of a 

similar general pattern of CBir, differences in the number and laminar distribution of 

immunopositive cells were very helpful for the characterization of different PMv areas. Changes in 

CBir from one area to another were, however, relatively more gradual than in SMI-32ir. 

In the next sections, the architectonics of the rostral PMv areas F5p, F5a and F5c and of the 

neighboring cortical areas will be firstly described in terms of cyto- myelo- and chemo-architectonic 

features. The results of the quantitative analyses of the distribution of SMI-32 and CB 

immunoreactivity will be described comparatively in a separate section. 

1.1 Area F5p 

Area F5p was identified in the more posterior part of the inferior postarcuate bank. In the 

standard coronal plane this cortical sector is cut almost tangentially to the cortical surface and its 

architecture was very poorly delineated (Figs. 5B and 6C). Parasagittal, perpendicular to the IAS 

and tangential to the arcuate sulcus sections (Figs. 7A, 9A and 10A), provided optimal and 

complementary views of the location and architectonic features of this area. The combined 

analysis of these sections showed that F5p is characterized by the presence of relatively large 

layer V pyramids. These cells, though varying in absolute size across different cases, represented 

one major distinguishing architectonic feature of this rostral PMv area. Higher magnification views 

(Figs. 8A, 9C, 10A and 11A) showed that F5p is also characterized by a barely discernible layer II 

and a layer III relatively homogeneous in cell density. Layer III pyramids, as a whole, were 

relatively small, but showed a size gradient with a slight, but evident increase in size from the 

upper to the lower part of it. Layer V was clearly sublaminated: layer Va is cell dense and 

populated by small pyramids, layer Vb is relatively densely populated by medium sized pyramids 

and hosts the relatively large pyramids typical of this area. Layer VI is homogeneous and displays 

a radial cellular organization. 

Myeloarchitectonic analysis showed that area F5p was relatively heavily myelinated (Figs. 

12A, 13A, and 14A). Vertical bundles of fibers were dense and relatively thick, ending within a very 

dense and coarsely delimited plexus of mixed vertical and horizontal fibers. In those sections in 
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which this sector was cut almost orthogonally to the cortical surface, this plexus presented an 

evident increase in staining intensity in correspondence of the outer band of Baillarger. 

F5p could be very clearly delineated with SMI-32ir. One outstanding chemoarchitectonic 

feature of this area was the presence in layer V of relatively large, darkly stained pyramids 

distributed along its entire extent (Figs. 15A, 16B, 16C and 17A). These immunopositive pyramids 

appeared to correspond to virtually the entire population of the relatively large layer Vb pyramids 

identified in adjacent Nissl-stained sections. In layer III, numerous, darkly stained, small 

immunopositive pyramids and relatively dense immunopositive apical dendrites were observed in 

its lower half (Fig. 17A). 

In CB immunostained sections, darkly stained nonpyramidal cells were highly concentrated in 

layer II and in the uppermost part of layer III, where immunopositive neuropil was densely stained 

(Figs. 18A, 19A and 19C). In the remaining part of layer III, these cells were much sparser and the 

neuropil staining much weaker. In correspondence of layer Va, there was a relatively higher 

number of large, multipolar, darkly stained cells. These cells, which represent a subset of CB 

immunopositive cells typically encountered in layer V and VI (Hof et al, 1999) displayed darkly 

stained dendritic arbors forming an horizontal plexus within layer Va that, at low power views, 

appeared as a faint band of neuropil. 

1.2. Area F5a 

F5a was identified in the inferior postarcuate bank, anteriorly (and ventrally) to F5p. In Nissl-

stained sections, the most distinctive feature of this area, evident even at very low power view 

(Figs. 5C, 7A and 7B), was a relatively prominent layer V, which characterized F5a among the 

three rostral PMv areas identified in the present study. Higher magnification views (Figs. 6D, 8C, 

9D,10B and 11B) showed that this layer displayed a not very distinct sublamination, being 

populated mostly by relatively densely packed medium-sized pyramids, only slightly larger and 

sparser in the lower part. Layer II was barely discernible and layer III was, in general, densely and 

homogeneously populated by small pyramids. However, the lowest part of this layer typically 

displayed an almost continuous single row of relatively sparse, deeply stained and relatively large 

pyramids which, though with some interindividual variability, tended to be even larger than those 
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observed in layer V. These relatively large layer III pyramids were very often clearly evident even 

at low power views and represented a further distinguishing cytoarchitectonic feature of F5a. In 

correspondence with the layers III/V border, in all cases, some small granular cells were observed, 

intermingled with pyramidal cells. Though these granular cells varied in number and density from 

one case to another (Figs. 11D and 11E), independently of the macaque species, in any case we 

were able to identify in this area the presence of a layer IV, even in a rudimentary form. 

F5a was considerably less myelinated than F5p (Figs. 12C, 12D, 13B, 13C and 14B). Vertical 

bundles of fibers were relatively thin and both bands of Baillarger were clearly evident, which 

represented a distinguishing architectonic feature of this area. 

SMI-32ir was relatively low in F5a, especially in comparison with the two other rostral PMv 

areas (Figs. 15A, 15B, 16A, 16B, 16D and 17B). In layer III, immunopositive apical dendrites were 

relatively poor and only an almost continuous single row of darkly stained, relatively large pyramids 

was observed in the lowest part of this layer. These cells appeared to correspond to the large layer 

III pyramids observed in Nissl-stained sections and represented a distinguishing 

chemoarchitectonic feature of this area. Layer V was very poorly stained and populated by sparse 

and lightly stained small pyramids. 

CBir pattern was very helpful for the characterization of F5a, where the overall 

immunostaining was relatively high in comparison with the two other rostral PMv areas (Figs. 18A,  

18B, 19B and 19D). In particular, darkly stained CB immunopositive cells, though highly 

concentrated in the most superficial layers, were very numerous through the almost entire extent of 

layer III, where immunopositive neuropil was quite densely stained. Furthermore, F5a displayed a 

relatively higher concentration of multipolar, darkly stained cells in layer V, with respect to F5p. 

Accordingly, the horizontal plexus formed by the dendritic arbores of these cells was much denser 

and more clearly visible at low power views than in F5p. 

1.3. Area F5c 

F5c was identified on the postarcuate convexity cortex, close to the IAS. At low power views 

(Figs. 5B, 5C, 7B and 9B), this area was distinguished from its neighbours for a very poorly 

laminated appearance, due to its overall cell population rather homogeneous in size and density. 
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Higher magnification views (Figs. 6B, 8B, 9E and 11C) showed that layer III was homogeneously 

populated by small pyramids without any evident size gradient. Layer V was sublaminated, 

relatively cell dense and populated by quite small pyramids. In layer Vb these cells were only 

slightly larger and sparser in layer Va. A radial cellular organization was evident in lower layer III 

and in layers V and VI, with thin vertical columns of cells very close to each other. The poor 

lamination, the columnar organization, the lack of a size gradient in layer III and the overall 

smallness of layer V pyramids, all represented reliable criteria for the definition of the border of F5c 

with F5p and F5a. 

F5c was heavily myelinated (Figs. 12D, 13B, 13C and 14C) and characterized by the 

presence of thin and very close vertical bundles, most of them ascending up to the superficial 

layers, where a relatively high myelin content represented a distinguishing myeloarchitectonic 

feature of this area. The outer band of Baillarger was densely stained and more neatly delineated 

than in F5p. An inner band of Baillarger was not evident. 

SMI-32ir was relatively higher than in F5a, especially in layer III, where numerous small 

immunostained pyramids were observed in the lower part of it (Figs. 15B, 16A, 16B, 16D and 17C). 

Apical dendrites were numerous as well, but less than in area F5p. Layer V was poorly labeled and 

only very sparse and lightly stained cell were observed. The very poor immnunostaining in this 

layer clearly distinguished F5c from F5p. 

CBir pattern in F5c was basically similar to that observed in F5p, except for a denser staining 

of the neuropil band observed in layer V (Figs. 18B, 19B and 19E). 

1.4. Cortical areas neighbor to F5p, F5a and F5c 

Posteriorly to F5c and to the dorsal part of F5p, we identified a caudal PMv architectonic area 

very well corresponding to histochemical area F4. Accordingly, it has been designated as F4. The 

cytoarchitecture of this area was optimally analyzed in coronal sections (Fig 5A), in perpendicular 

to the IAS sections (Fig. 9A) and in parasagittal sections, taken, however, at more medial levels 

than those shown in Figure 7, in which the postarcuate convexity cortex is cut more 

perpendicularly to its surface (Fig. 20A). In F4, layer III was relatively cell sparse and displayed an 

evident increase in cell size from the upper to the lower part of layer III, where numerous medium-
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sized pyramids were observed (Figs. 6A, 20A and 20C). The relative cell sparseness and the 

evident size gradient in layer III represented major, reliable cytoarchitectonic criteria for 

distinguishing the border of F4 with F5p and F5c. Layer V was clearly subdivided into a cell dense 

layer Va, populated by small pyramids and less dense than in F5p, and a relatively cell sparse 

layer Vb, where large pyramids were observed. Although with some degree of interindividual 

variability in their number and size, in most of the cases these large layer V pyramids tended to be 

larger and more numerous than in F5p. Furthermore, a dorsoventral gradient was observed within 

F4, in which these cells tended to be slightly smaller and denser more ventrally (Fig. 5A). The 

appearance of a much less evident size gradient in layer III, of a much sparser layer Va and, even 

more, of numerous giant layer Vb pyramids, arranged in multiple rows, clearly distinguished the 

caudal border of F4 with the precentral area F1. In myelin stained sections, F4 was slightly less 

myelinated than F5p and characterized by very close and conspicuous vertical bundles and an 

evident (when optimally visualized) outer band of Baillarger (Figs. 12B, 13A, 13D and 14D). SMI-

32ir was higher than in F5p in both layer III, where positive cell bodies and apical dendrites were 

more numerous and in layer V, which was more densely populated by positive pyramids (Figs. 

15A, 15B, 16C, 16D and 17D). These immunopositive pyramids tended to be smaller more 

ventrally in F4. Based on this gradient in immunopositive layer V cells, it has been previously 

suggested (Geyer et al., 2000b) that F4 possibly consists of a dorsal and a ventral subdivision. 

This gradient was indeed observed, in the present study, in SMI-32ir as well as in Nissl-stained 

section. These changes were, however, rather gradual and we did not found further architectonic 

support for this subdivision. Finally, CBir was, in general, lower than in F5p and F5c in terms of 

positive cell bodies and neuropil, though with a quite similar laminar distribution of positive cells 

(Figs. 18A, 18B, 19A and 19F). The neuropil band observed in layer V in F5p, F5a and F5c, was 

much less pronounced in F4. 

Ventrally, F5c bordered with an area displaying markedly distinct architectonic characteristics 

(Figs. 5C, 6B  and 20D). Major cytoarchitectonic features of this area (Fig. 20D) were the presence 

of a layer III rather dense and homogeneous in cell size and density, a faint, rudimentary layer IV, 

where granular cells were intermingled with layers III and V pyramids, and an homogeneous layer 
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V, densely populated by small pyramids. This area could be distinguished from F5c also for a 

decrease in myelin content with a less distinct outer band of Baillarger (Figs. 13C and 14E), a 

considerably sharp decrease in number and size of SMI-32 immunopositive layer III pyramids 

(Figs. 16A and 17F) and by an increase in CB immunopositive cells and neuropil. This area 

occupied a ventral convexity sector and bordered ventrally, close to the frontal operculum, with 

area PrCO as defined by Roberts and Akert (1963). On the basis of its multiarchitectonic features, 

we found this area much more similar to the frontal opercular cortex than to the PMv. Accordingly, 

we have provisionally designated it as Dorsal Opercular (DO) area. 

In the very rostralmost part of the postarcuate convexity cortex and of the postarcuate bank, 

striking architectural changes marked the rostral border of F5c and F5a (Figs. 5D, 6E, 7B and 

10B). The distinguishing cytoarchitectonic features of this cortical sector were an evident layer IV 

and a prominent layer V, populated by densely packed, small and deeply stained pyramids. This 

sector was also characterized by a very low myelin content (Figs. 12C, 12D and 14F), a very poor 

SMI-32ir (Figs. 15B and 17E) and a very high CBir (FigS. 18A, 18B and 19H). All together these 

architectonic features strongly suggest that this sector should be considered as part of the granular 

frontal cortex. We have, therefore, generically designated it as Granular Frontal (GrF). It should be 

noted, however, that in a previous multiarchitectonic study, focused on the caudal ventrolateral 

prefrontal cortex (Gerbella et al., 2007), we have suggested that this very rostral part of the 

postarcuate cortex is in continuity with area 12l as defined by Carmichael and Price, (1994). 

Finally, while F5p appeared to occupy virtually the entire extent of the postarcuate bank, 

bordering with area 8/FEF (Gerbella et al., 2007), F5a tended to occupy only the lateral two/thirds-

three/fourths of the bank. If it is considered that the ventral border of the prearcuate area 45B is 

located deeply in the prearcuate bank (Gerbella et al, 2007), then F5a and 45B appear to be 

separated by a small cortical sector mostly located along the fundus of the IAS (Figs. 20B and 

20E). Because of its location, the architectonic features of this field could not be optimally 

visualized in any of the used planes of sectioning. Nevertheless, it appeared to be characterized by 

the presence of a size gradient in layer III, in which, however, layer IIIc medium-sized pyramids 

were denser and smaller than in area 45B. A faint layer IV and a poorly developed, homogenous 
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layer V also characterized this field. Thus, it is possible that this fundal sector of the IAS represents 

a distinct field, with architectonic features intermediate between those of F5a and area 45B. Given 

that this field appear to be neither part of the PMv, nor of area 45B, we have provisionally 

designated as “Fundal Inferior Arcuate” (FIA) area. We will discuss later the possibility that this 

field corresponds, at least in part, with area 44, as defined by of Petrides et al. (2005). 

1.5. Quantitative analysis 

To seek for possible additional and more objective criteria supporting the above described 

subdivision of the rostral PMv, our qualitative analysis has been complemented by a quantitative 

analysis of the distribution of SMI-32 or CB immunopositive cells in F5p, F5a and F5c. 

Furthermore, to have a more complete view of the chemoarchitecture of all the various areas of the 

ventral agranular frontal cortex, F4 and the precentral area F1 were also included in this analysis. 

In SMI-32 immunostained material, differences were observed across the studied areas in 

the density of immunopositive pyramids in layer II/III and in layer V (Fig. 21A). The two-way 

ANOVA performed on the values of laminar density of SMI-32 immunopositive cells showed a 

significant main effect of Area [F(4;92)=28.827, p<0.001] and a significant interaction effect (Area x 

Layer) [F(4;92)=27.439, p<0.001]. Post-hoc analysis showed that, in layer III (Fig. 21A), the 

immunopositive cell density in F4, F5p and F5c was significantly higher than in F1 (p<0.05) and 

F5a (p<0.005). In layer V (Fig. 17B), the density of immunopositive pyramids in the two caudal 

areas F1 and F4 was significantly higher than in the three rostral areas F5p (p<0.005 for F1 and 

p<0.05 for F4), F5c (p<0.001) and F5a (p<0.001). Moreover, in F5p it was significantly higher than 

in F5c (p<0.001) and F5a (p<0.001) and in F5c it was significantly higher than in F5a (p<0.05). 

Finally, post-hoc analysis also showed that the ratio between layer III and layer V immunopositive 

pyramids was <1 in F1 (p<0.001) and F4 (p<0.05) and >1 in F5c (p<0.001) and F5a (p<0.005). 

All together, these data indicated that F1 and F4 display a higher density of immunopositive 

pyramids in layer V, with respect to layer III and differed from more rostral areas for a higher 

density of immunopositive cells in layer V. F4, however, differed from F1 for a lower density of 

layer V immunopositive cells. In F5p the density of immunopositive pyramids in layer III and in 

layer V is similar. This area differed from F4 for a lower density of immunopositive pyramids in 
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layer V and from F5c and F5a for a higher density of immunopositive pyramids in layer V and in 

layers III and V, respectively. In both F5c and F5a, layer III immunopositive pyramids are denser 

than in layer V. Finally, F5a differed from F5p and F5c for a lower density of immunopositive 

pyramids in both layers III and V. Accordingly, SMI-32ir proved to be a very helpful approach for 

the architectonic definition of all the various ventral agranular frontal areas, on the basis of both 

qualitative and quantitative criteria. 

In the analysis of CB immunostained material we firstly observed that the number of CB 

positive pyramids in all the studied areas was almost negligible, except for F5a, where, however, 

these cells represented no more than 5% of the whole population of CB positive cells. For this 

reason, CB positive pyramids were not considered for quantitative analysis. This paucity of CB 

positive pyramids represents a major chemoarchitectonic difference between the agranular frontal 

and the caudal ventrolateral prefrontal cortex, where these cells are, for example in prefrontal 

areas 45A and 46, about 10% of the whole population of CB positive cells (Gerbella et al., 2007).  

The quantitative analysis of the density and/or laminar distribution of CB immunopositive 

nonpyramidal neurons showed several chemoarchitectonic differences among the five studied 

ventral agranular frontal areas. The one-way ANOVA for repeated measures of the density values 

of CB immunopositive nonpyramidal neurons showed a significant main effect of Area 

[F(4;92)=189.901, p<0.001]. Post-hoc analysis showed that the studied areas significantly differed 

each other (p<0.001) in terms of density of CB positive nonpyramidal cells, except for F5p and 

F5c. In particular, in F4 the density was about 20% higher than in F1, in F5p and F5c was about 

25% higher than in F4 and in F5a was about 30% higher than in F5p and F5c (Figs. 21C and 21D). 

The two-way ANOVA of the values of laminar density of CB immunopositive nonpyramidal 

cells showed a significant main effect of Area [F(4;92)=115.581, p<0.001] and Layer/Sublamina 

[F(4;92)=688.548, p<0.001] and a significant interaction effect (Area x Layer/sublamina) 

[F(16;368)=21.094, p<0.001]. In spite of a general similarity across the five studied areas, some 

significant differences were observed in layer II/III sublamina and in layer V. In particular, post-hoc 

analysis showed that the differences observed across the studied areas in terms of overall density 

were reflected into similar significant differences (p<0.005) at the level of the first and second layer 
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II/III sublamina. Furthermore, in F5a, as evident also at a qualitative level of analysis, the density of 

CB immunopositive nonpyramidal cells in the lower layer II/III sublaminae and in layer V, was 

significantly higher than in all the other studied areas (p<0.001 for all comparisons except for F5a 

vs. F5p in layer V, which was p<0.05). 

All together, these data indicated that the architectonic areas of the ventral agranular frontal 

cortex can be distinguished each other also on the basis of differences in overall and/or laminar 

density of CB positive nonpyramidal cells, except for F5p and F5c, which showed a very similar 

distribution pattern of CBir. In particular, F1, F4 and the two more rostral areas F5p and F5c, 

mostly differed in terms of density of CB positive nonpyramidal cells in the most superficial layers. 

The rostralmost area F5a markedly differed from the other areas for a much higher overall density 

of CB positive nonpyramidal cells and for a higher density of these cells in the lower half of layer 

II/III and in layer V. 

1.6. Location and extent of areas F5p, F5a and F5c 

To obtain an estimate of the distribution of the identified rostral PMv areas, a 3D 

reconstruction was generated from the individual sections for each case studied. The location and 

the extent of areas F5p, F5a, F5 and of the neighbouring areas F4 and DO, are shown in two 

reconstructed hemispheres (Cases 18r) in Figure 22. For each hemisphere, the frontal lobe is 

shown from a dorsolateral view and from a rostrolateral view in which the posterior bank of the IAS 

was exposed with dissection of the 3D reconstruction along the fundus of the arcuate sulcus. Both 

location and extent of these areas are quite consistent and the areal distribution was very similar in 

the rest of the cases studied. 
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2. Cortico-cortical connections of F5p, F5a and F5c  

As shown in the previous section, the rostral PMv area F5 is not an homogeneous area, but 

can be subdivided, architectonically, into three areas: F5a, F5c and F5p. Both F5a and F5p are 

located in the posterior bank of the IAS, F5c lies caudally on the adjacent convexity. Each of these 

three premotor areas was a target of multiple neural tracers injection. The histological analysis 

allowed us to attribute the injection site to the targeted area and only the cases in which the 

injection sites were restricted within the limits of a single architectonic area will be presented.     

Our results showed that the three premotor areas are reciprocally connected, but each one 

displayed differential connections with frontal and parietal areas, giving an additional anatomical 

support to our architectonical parcellation of the PMv area F5.  

2.1. Connections of area F5p 

Area F5p was injected in three cases (C14l, C31r, C31l, C35r) with retrograde (FB), 

anterograde (BDA) and retro-anterograde (WGA-HRP, FR) tracers.  

The distribution of the labeling was very similar across cases. The intensity of the labeling varied, 

however, from one case to another. Likely because of differences in tracers sensitivity. 

The cortical connections of area F5p are shown in figures 23, 24 and 25, in which the distribution 

of the labeling is represented in mesial and lateral views of the injected hemisphere, in 

representative coronal sections (Fig. 23) and in 2D reconstruction of the parietal operculum (Fig. 

25). 

The results showed that F5p displays strong connections with area F1. These connections 

involved the hand-related field (Fig. 23, 3D reconstruction lateral view, section e). This finding was 

confirmed by our tracer injections made in F1 (C21r), in which the hand-related field was identified 

with intracortical microstimualtion before the injection (Fig. 24). In both FB and MR injections made 

in C21r, we observed that the connections of F1 with the PMv involved the posterior bank of the 

IAS, mainly its posterior sector which corresponds to F5p. Very few labeling was observed also 

with its anterior sector (Fig. 24, 3D reconstruction views, a and b parasagittal sections). 

F5p was strongly connected, with the arm-related premotor field of the adjacent area F4 (Gentilucci 

et al., 1988; Graziano et al., 1994; Fogassi et al., 1996), (Fig. 23, 3D reconstruction lateral view, 
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section d). F5p was also connected with the PMd area F2, mainly with its ventral rosral sector (Fig. 

23, 3D reconstruction lateral view, sections c and d) where the distal arm movements are 

represented (Raos et al., 2003). Connections with the mesial areas F6 (Pre-SMA) and F3 (SMA 

proper) and cingulate areas 24d and 24c (Luppino at al., 1991, 1993) were also observed (Fig. 23, 

3D reconstruction mesial view). Weak connections with the prefrontal cortex involving the caudal 

sector of area 46v as defined by Preuss and Goldman-Rakic (1991) were seen as well (Fig. 23, 3D 

reconstruction lateral view, section a). 

F5p received parietal afferents mainly from the IPL areas PF and PFG (Gregoriou et al., 2006; 

Rozzi et al., 2006). These connections were relatively more dense with PF than with PFG. Few 

labeling with area PG was observed as well (Fig. 23, 3D reconstruction lateral view, sections f-h). 

F5p was also connected with the intraparietal areas AIP (Fig. 23, sections f and g) and PEip (Fig. 

23, section h), (Borra et al., 2007). F5p was a target of projections from the SII region. Comparison 

with data from Krubitzer et al. (1995) and Fitzgerald et al. (2004), suggests that these projections 

involved mostly the hand field of SII (Fig. 23, sections f and g; Fig. 25).  

Finally, our HRP injection in the lateral funiculus, at C4-C5 spinal cord level, showed that while the 

PMd contains a dense population of corticospinal neurons (Fig. 26 A, 3D reconstruction views), the 

PMv was devoid of labeling except for a sector of the posterior bank of the IAS which showed a 

patch of labeled neurons (Fig. 26, Postracuate view, sections a and b). This sector corresponds 

very well to area F5p. This last finding was confirmed by our FR injection in F5p (C31L) which 

showed that fibres and terminals targeting the ventral most part of lamina VII were seen in all 

cervical segments. Terminals were very dense in the upper cervical segments (C2-C4) weakly 

dense in the lower cervical segments (C7-C8) which are involved in the forelimb distal muscles 

(Fig. 26B), (See Kuypers, 1981).  

2.2. Connections of area F5a 

Area F5a was injected in three cases (C30r, C30l, c34l and C35l) with retrograde (DY), 

anterograde (BDA) and retro-anterograde (WGA-HRP) tracers.  
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Representative cortical connections of area F5c taken from cases C34l-BDA and C35l-DY are 

shown in figures 25, 27, 28 and 29. The distribution of labeled neurons is represented in mesial, 

lateral and orbital views of the injected hemisphere and in representative coronal sections (Figs. 

27, 28). Labeled neurons in the parietal operculum are shown in 2D reconstruction (Figs. 25, 29). 

Our data showed that F5a connections with the motor area F1 were almost absent (Fig. 27, 3D 

reconstruction lateral view). F5a, however, displayed relatively strong connections with the PMv 

area F4 (Gentilucci et al., 1988; Graziano et al., 1994; Fogassi et al., 1996), (Fig. 27, 3D 

reconstruction-lateral view, section g). F5a was also connected with area F6 (Pre-SMA) and 

cingulate areas, 24c, 24d and 24a (Luppino et al., 1991, 1993), (Fig. 27, 3D reconstruction mesial 

view, sections d, e and f; Fig. 28, 3D reconstruction mesial view, sections e and f). Strong 

connections were observed with the GrF area, rostral frontal opercular areas and PrCO (Robert 

and Akert, 1963), (Fig. 27, 3D reconstruction lateral view, sections e and f; Fig. 28, 3D 

reconstruction lateral view, section f). Relatively robust prefrontal connections were observed with 

rostral area 46v as defined by Preuss and Goldman-Rakic (1991), (Fig. 27, 3D reconstruction 

lateral view, sections b-d; Fig. 28, 3D reconstruction, sections c and d) and areas 12r and 12l as 

defined by Carmichael and Price (1995), (Fig. 27, 3D reconstruction lateral view, sections a-e; Fig. 

28, 3D reconstruction lateral view, sections a, b and e). 

Area F5a displayed strong parietal connections with mostly the IPL area PF. Connections with area 

PFG were less dense than those with PF. Weak connections involved area PG as well (Gregoriou 

et al 2006; Rozzi et al., 2006), (Fig. 27, 3D reconstruction lateral view, sections i and j; Fig. 28, 

sections i-m). Relatively strong labeling involved also the intraparietal area AIP (Borra et al., 2007), 

(Fig. 27, sections i and j). 

F5a was strongly connected with the SII/PV complex as defined by Krubitzer el al. (1995) and 

Disbrow et al. (2003). These connections involved mostly the hand representations (Fig. 27 section 

h, Fig. 28, sections I and j, Figs. 25 and 29).  

2.3. Connections of area F5c 

Area F5c was injected in four cases (C25r, C33l, C35l and C36l) with retrograde (FB, CTB-A 

594) and retro-anterograde (WGA-HRP) tracers. 
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Representative cortical connections of area F5c taken from cases (C33l-FB and C35l-FB) are 

shown in figures 25, 28, 29 and 30. The distribution of labeled neurons is represented in mesial, 

lateral and orbital views of the injected hemisphere and in representative coronal sections (Figs. 

28, 29) and the distribution of the labeled neurons in the parietal operculum in 2D reconstruction 

(Figs. 25, 30). 

Some variability was observed across cases as for connections of F5c with F1. In fact, these 

connections were almost absent in C33l-FB (Fig. 30, 3D reconstruction lateral view), while they 

involved the face/mouth related field of F1 in C35l-FB (Fig. 28, 3D reconstruction lateral view, 

section i). F5c was strongly connected with area F4, mostly with face/mouth related field 

(Gentilucci et al., 1988; Graziano et al., 1994; Fogassi et al., 1996), (Fig. 28, 3D reconstruction 

lateral view and section h; Fig. 30, 3D reconstruction and section g). Relatively strong connections 

were also observed with area F3 mostly involving its face/mouth field (Luppino et al., 1991, 1993), 

(Fig. 28, 3D reconstruction mesial view and section g; Fig. 30, 3D reconstruction mesial view and 

section f). The cingulate connections of area F5c involved areas 24c and 24a. 

F5c was connected with the caudal frontal opercular areas (Fig. 30, 3D reconstruction lateral view 

and section g).  These connections were relatively stronger in C33l. 

Prefrontal connections were relatively robust and involved a more rostral sector of area 46v 

(Preuss and Goldman-Rakic, 1991), (Fig. 28, 3D reconstruction lateral view and section c; Fig. 30, 

3D reconstruction, sections b-d) and area 12r (Carmichael and Price., 1995), (Fig. 28, 3D 

reconstructions, sections a and b; Fig. 30, 3D reconstruction lateral view, sections a-c). 

F5c received strong afferents from the IPL area PF (Fig. 28, section j). Furthermore, Connections 

were observed also with area PFG (Fig. 28, section k) and the intraparietal area AIP (Gregoriou et 

al 2006; Rozzi et al., 2006; Borra et al., 2007), (Fig. 28, sections j and m),  

Connections with SII and PV involved mostly face/mouth representations (Krubitzer et al., 1995; 

Disbrow et al., 2003; Fitzgerald et al., 2004), (Figs. 25; 28-sections I and j, 29, 30-sections h and i). 
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D-Discussion 

In the present study we have provided a detailed description of the anatomical organization 

of the macaque rostral PMv area F5, using a combination of both, architectonics and hodological 

approaches. The major finding of our study is that area F5, as defined with cytochrome oxidase 

histochemistry (Matelli et al., 1985), consists of three anatomically distinct areas. One of these 

areas -F5c- extends on most of the postarcuate convexity cortex immediately adjacent to the IAS. 

The other two areas -F5p and F5a- lie within the postarcuate bank at different antero-posterior 

levels. F5c and F5p border caudally with an architectonic area distinct from the precentral area F1 

and well corresponding to histochemical area F4 (Matelli et al., 1985).  

In the next sections, the results of the architectonical study will be firstly compared with those 

already reported in the literature, and which were focused on the macaque PMv. Subsequently, the 

connectional features of the new architectonically defined premotor areas F5p, F5a and F5c, will 

be discussed on the basis of the differential connectivity observed in the present study. Finally, on 

the basis of the available functional data, we will discuss the possibility that the three rostral PMv 

areas F5p, F5a and F5c, correspond to distinct cortical entities, involved in different aspects of 

executive and/or cognitive motor functions. 

1. Architectonics of the macaque ventral premotor cortex 

The present data extend other architectonic subdivisions of the macaque PMv and provide a 

new multiarchitectonic frame of reference for this agranular frontal region. One major argument 

against the validity of the classic cyto- and myeloarchitectonic architectonic approaches is 

represented by the variability of the maps proposed by different investigators. Indeed, 

architectonics has been often accused of giving uncertain results, due to its subjective nature and 

to the variability of the criteria used for defining borders between areas. In the current study, in an 

attempt to provide robust results and establish reliable criteria we used different planes of 

sectioning relying mainly on the ones that were perpendicular to the cortex of interest, eliminating 

thereby, as far as possible, ambiguities generated by the distortion of architectonic features. 

Furthermore, the architectonic characterization of the PMv areas identified in the present study 
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was obtained primarily on the basis of the analysis of Nissl stained material (by far the most 

informative approach for this type of studies) in a large number of different cases. Nevertheless, 

the cytoarchitectonic approach has been combined with myeloarchitectonic and qualitative and 

quantitative chemoarchitectonic analysis which provided independent and complementary criteria 

fully supporting the cytoarchitectonic subdivision. 

The macaque PMv has been the object of several other studies that have resulted in 

markedly different parcellation schemes, in which both the number and the extent of the identified 

areas vary. Nevertheless, these studies have led up, basically, to two different views of the 

architectonic organization of this region. 

One of these views holds that the PMv consists of different areas, located at different 

dorsoventral levels. The Vogts (Vogt and Vogt, 1919) firstly subdivided this cortical region into four 

architectonic fields: a dorsal most one, reckoned as part of an area 4 sub-sector (area 4c) and 

three other ones, designated, from the dorsal to the ventral, as 6aα, 6bα and 6bβ. In particular, 

areas 6aα and 6bα occupy different dorsoventral sectors of the postarcuate convexity cortex, while 

area 6bβ is mostly located around the ventral tip of the IAS. A similar subdivision, based on cyto- 

and myeloarchitectonic criteria, has been proposed by Barbas and Pandya, (1987). According to 

them, the PMv hosts a dorsalmost area, designated as 4C, but distinct from area 4 and two more 

ventral areas -6Va and 6Vb- that appear to roughly correspond to areas 6aα and 6bβ of the Vogts 

(Vogt and Vogt, 1919), respectively. Area 6bβ of the Vogts was considered by Barbas and Pandya, 

(1987) as part of the prefrontal area 12. Finally, a dorsoventral subdivision of the PMv has been 

also proposed by Preuss and Goldmann Rakic, (1991), mostly on the basis of myeloarchitectonic 

criteria. Two PMv areas were, however, identified in this study, a more dorsal and much larger 

area 6Va and a more ventral and smaller one 6Vb. In particular, area 6Va appears to include areas 

4C, 6Va and, possibly, part of area 6Vb of Barbas and Pandya, (1987), while area 6Vb appears to 

include the ventral part of area 6Vb of Barbas and Pandya, (1987), extending ventrally into area 

12. 

The other view of the architectonic organization of the macaque PMv holds that this region 

consists of different areas located at different rostrocaudal levels. This view has been firstly 
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proposed by Von Bonin and Bailey, (1947), on the basis of cytoarchitectonic criteria. In this study, 

rostral to area FA (corresponding to area 4), two areas were identified in the ventral part of the 

agranular frontal cortex: a more caudal one, designated as FBA and a more rostral one, 

designated as FCBm. Using a completely different architectonic approach, i.e., cytochrome 

oxidase histochemistry, a very similar subdivision has been proposed by Matelli et al., (1985). In 

this study, on the basis of regional differences in the laminar pattern of enzymatic activity, Matelli et 

al., (1985) identified two histochemically distinct PMv areas: a caudal one -F4- and a rostral one -

F5- which well correspond to areas FBA and FCBm of Von Bonin and Bailey, (1947), respectively.  

The present study, at least as far as the inferior postarcuate convexity cortex is concerned, 

strongly supports this last view. In fact, our data provide robust multiarchitectonic evidence for a 

rostrocaudal subdivision of this region into two areas: a more caudal one -F4- and a more rostral 

one -F5c- which appear to very closely correspond to the cytoarchitectonic areas FBA and FCBm 

of Von Bonin and Bailey, (1947), respectively. As a consequence, these two areas only partially 

overlap with the PMv subdivisions identified by Barbas and Pandya, (1987) or Preuss and 

Goldmann-Rakic, (1991). In particular, F4 appears to include at least area 4C and the caudalmost 

part of area 6Va of Barbas and Pandya, (1987), or the caudal part of area 6Va of Preuss and 

Goldmann-Rakic, (1991). F5c appears to coincide with the rostral part of area 6Va and, possibly of 

area 6Vb of Barbas and Pandya, (1987) and with a rostroventral sector of area 6Va of Preuss and 

Goldmann-Rakic, (1991). The limited photographic material provided by Barbas and Pandya, 

(1987) and Preuss and Goldmann-Rakic, (1991) makes any comparison between their data and 

the data presented in the current study difficult. Nevertheless, according to Barbas and Pandya, 

(1987) area 4C is characterized by the presence of large layer V pyramids and both outer and 

inner Baillarger bands, while area 6Va displays prominent layer III and V neurons and a well 

developed outer Baillarger band. This myeloarchitectonic difference, however, was not noticed by 

Preuss and Goldmann-Rakic, (1991), who described their area 6Va as densely myelinated, with a 

prominent outer Baillarger band. In agreement with Von Bonin and Bailey, (1947), we found that F4 

displays an evident size gradient and relatively large layer V pyramids along its entire dorsoventral 

extent. These features clearly distinguish this area from area F5c, which is poorly laminated and 
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displays considerably smaller layer III and V pyramids. In this respect, it is noteworthy that the 

gradual reduction in size observed in F4 in dorsoventral direction was not considered as a 

sufficient criterion for a dorsoventral subdivision of this area. Indeed, our data also showed that F4 

has an homogeneous myeloarchitetonic pattern and chemoarchitectonic features which clearly 

distinguish this area from both area F5c and F1. Accordingly, our data suggest that area 4C and 

the caudal part of area 6Va of Barbas and Pandya, (1987) actually correspond to a single 

architectonic area -F4- and that a rostral area with the cytoarchitectonic features of F5c has not 

been recognized by these authors. Moreover, given that F4 and F5c display relatively subtle 

myeloarchitectonic differences, which can be better visualized in planes of sectioning orthogonal to 

their border (e.g. parasagittal sections), it is not surprising that Preuss and Goldmann-Rakic, 

(1991) did not note a rostrocaudal myeloarchitectonic difference in coronal sections within their 

area 6Va. 

In our study, we found that the postarcuate convexity cortex immediately adjacent to the IAS 

was largely occupied by a single architectonic area -F5c- without any dosrsoventral subdivision, 

possibly equivalent to areas 6Va and 6Vb of Barbas and Pandya, (1987) and Preuss and 

Goldmann-Raki,c (1991). It is very likely, however, that this discrepancy is only apparent. In fact, 

the major criterion identified in these studies for setting the border between areas 6Va and 6Vb 

was a marked decrease in myelin content in 6Vb, with respect to 6Va, that is exactly what we have 

observed at the transition between F5c and area DO. Moreover, the location of area 6Vb in the 

coronal sections presented by Barbas and Pandya, (1987) and Preuss and Goldmann-Rakic, 

(1991) is remarkably similar to that of area DO. In our 3D reconstructions, area DO is located very 

ventrally in the dorsolateral convexity cortex, rostral to the inferior precentral dimple. Its location 

appears quite compatible with that of area 6Vb in the 2D reconstruction presented by Preuss and 

Goldmann-Rakic, (1991), but ventral to that of area 6Vb in the 2D reconstruction presented by 

Barbas and Pandya, (1987). However, considering the relatively dorsal location also of the extent 

of areas 3a and 3b in the frontal cortex, it is possible that in the 2D reconstruction of Barbas and 

Pandya, (1987) area 6Vb has been somewhat misplaced in dorsal direction. Thus, in this case, the 

major difference between the present data and those of Barbas and Pandya, (1987) and Preuss 
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and Goldmann-Rakic, (1991) is not in the number of identified areas, but in the attribution of this 

ventral frontal area to a given architectonic cortical domain. As described in the result sections, 

multiarchitectonic evidence strongly suggests that this area is much more similar to the frontal 

opercular cortex than to the PMv. 

One major finding of the present study is the identification of two architectonically distinct 

areas -F5p and F5a- buried within the postarcuate bank. Architectonic differences between the 

postarcuate bank and the postarcuate convexity cortex have not been reported in any of the above 

mentioned architectonic studies of the PMv. It is noteworthy, however, that all these studies have 

been mostly based on the analysis of coronal sections, in which the architecture of the postarcuate 

bank is very difficult to discriminate. Indeed, in our study, for the identification of areas F5p and 

F5a was crucial the analysis of sections cut in several different planes. However, in a series of 

architectonic studies focused on the caudal ventrolateral prefrontal cortex, Petrides and Pandya, 

(1994; 2002) have described in the anterior part of the postarcuate bank a cytoarchitectonic area, 

designated as area 44, considered, for its cytoarchitectonic features as the homologue of the 

human area 44 (caudal part of the Broca’s region). In their schematic unfolded views of the IAS, 

this area, characterized by a size gradient in layer III and a barely discernible layer IV, was placed 

by Petrides and Pandya in the anterior part of the postarcuate bank. Thus, its location very closely 

coincides with that of area F5a. Indeed, though we failed in identifying in F5a an even rudimentary 

layer IV, several architectonic features, suggest that this area displays somewhat transitional 

features between those of the PMv and of the granular frontal cortex. Among them are the rather 

homogeneous layer V, the significant decrease in myelin content and in SMI-32ir and the 

significant increase in CBir, with a density of CB immunopositive non pyramidal neurons 

comparable to that observed in caudal ventrolateral prefrontal areas (Gerbella et al., 2007). In a 

more recent study, however, using sections cut perpendicularly to the IAS, Petrides et al., (2005) 

have redefined the location of area 44. Accordingly, this dysgranular area lies anteriorly along the 

fundus of the IAS and only slightly extends in the postarcuate bank that is mostly reckoned as part 

of the agranular premotor cortex. Thus, though the very limited photographic material provided by 

Petrides et al., (2005) makes any comparison rather difficult, it is possible that area 44, as defined 
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by these authors, does not correspond to area F5a, but is the equivalent of our area FIA, where a 

faint layer IV was observed. 

2. Comparative connectivity of the premotor areas F5p, F5a and F5c  

It is largely accepted in neuroscience that the cerebral cortex contains many functionally 

distinct domains, usually referred to as “areas”. There is no consensus, however, on what precisely 

constitutes a cortical area and what the best criteria for their definition are (see, e.g., Van Essen, 

1985). In general, three main experimental approaches, the architectural, the connectional and the 

functional one, are considered most useful for their definition and converging evidence from these 

three approaches is generally considered a strong argument for their reliable identification and 

delineation (see, e.g., Felleman and Van Essen, 1991; Lewis and Van Essen, 2000 ; Van Essen, 

1985). 

In an attempt to give a reliable and strong anatomical support to the architectonic parcellation of 

the PMv area F5 established in the present study, we made a series of neural tracer injections in 

each newly defined premotor area (F5p, F5a and F5c), to see whether the architectonic 

subdivision of F5 could be validated by a differential connectivity of each area and to provide an 

anatomical background to the functional segregation showed within area F5. 

Beside the present study, many other hodological investigations have been already focused 

on the premotor cortex (Pandya and vignolo, 1971; Godshalk et al., 1984; Matelli et al., 1986; 

Barbas and Pandya, 1987; Tokuno and inase, 1994; Gosh and Gattera., 1995; Tanné-Gariépy et 

al., 2002). However, most of these studies used different architectonical maps of the premotor 

cortex  for the attribution of the injection sites. Consequently, most of the tracer injections made in 

these studies were not perfectly confined to our area F5, usually extending beyond its architectonic 

limits. Moreover, when the tracer injection was restricted to area F5, the injection sites were 

relatively large, likely including more than one rostral PMv subdivision as architectonically defined  

in this study.  

Nevertheless, most of these studies agree that the rostral PMv sector -corresponding to our area 

F5- displays afferent and efferent connections with the adjacent caudal PMv (F4) area, with the 

PMd, mainly its caudal sector (F2), with areas in the mesial aspects of the hemisphere (F3 and F6) 
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and with area 4 (F1). Connections with the posterior parietal cortex which involved the IPL areas, 

mainly the rostral sector -area 7b- have been described by several studies (e.g. Petrides and 

Pandya,1984; Tanné-Gariépy et al., 2002; Rozzi et al., 2006). It has been shown that other parietal 

afferents to F5 originated also, from the intraparietal areas AIP and PEip (Borra et al., 2007; 

Marconi et al., 2001) and from the opercular area SII (Disbrow et al., 2003). 

Connections with the prefrontal cortex have been reported by several hodological investigations 

(Barbas and Pandya, 1987; Matelli et al., 1986; Preuss and Goldman-Rakic, 1989; Deacon, 1992; 

Lu et al., 1994; Carmichael and Price, 1995). These connections arise from both area 46v and 

area 12. 

In agreement with these studies, our results indicate that F5p, F5a, and F5c as a whole displayed 

connections with frontal and parietal areas, but each one of these premotor areas was 

characterized by a different pattern of connections. 

Area F5p was connected with the adjacent premotor area F4, mainly with the arm-related field 

(Gentilucci et al., 1988; Graziano et al., 1994; Fogassi et al., 1996) and was connected also with 

the rostral sector of the PMd area F2 (F2vr) where arm movements are mostly represented (Raos 

et al., 2003). F5p displayed relatively strong connections with the hand field of areas F3 and F6 in 

the mesial wall of the hemisphere as defined by Luppino et al., (1991). All the tracer injections 

made by these authors in the arm/hand fields of areas F3 and F6 involved the posterior sector of 

F5 (F5p), which fits perfectly with our observations after F5p tracer injections. 

The strong involvement of F5p in motor execution is also demonstrated by the presence of a 

consistent connectivity with the hand field of F1. 

F5p is also a target of parietal afferences which arise from the IPL. In fact, we demonstrate in the 

present study, along with in our previous investigations in which we targeted the IPL areas with 

different tracer injections (Rozzi et al., 2006), that the IPL projections to F5p originated mainly from 

PF, PFG and PG. According to Hyvärinen (1981), this IPL sector contains a hand/arm field and 

neurons responsive to visual and somatosensory stimuli. F5p received consistent projections also 

from the intraparietal area AIP, which is congruent with our recently published data focused on the 

connectivity of this parietal area (Borra et al., 2007), in which we provided evidence of direct 
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anatomical connections of AIP with the infero-temporal cortex. Thus AIP could have a role in 

linking the paieto-frontal network of areas involved in sensory-motor transformations for grasping -

among which area F5p- with areas involved in object recognition (Borra et al., 2007).  

The analysis of the labeling distribution within the upper bank of the lateral fissure, following the 

F5p injection and the matching of the labeling distribution with the maps provided by Krubitzer et 

al. (1995) and Fitzgerald et al. (2004) indicate that F5p is mostly connected with the hand field of 

SII/PV complex. This data suggests that F5p could integrate the somatosensory information 

necessary for manual object exploration and recognition (Disbrow et al., 2003). 

A strong anatomical link between area AIP and SII has been shown by Borra et al., (2007). 

Accordingly, it has been suggested that SII may contribute to the control of grasping movements, 

not only as theorized by Fagg and Arbib, (1998), through the connections with F5 (Disbrow et al., 

2003; Tanne-Gariepy et al., 2002), but also through connections with AIP. These connections 

appear to involve sectors in the SII region, in which neurons have mostly proprioceptive responses 

and are active during object manipulation (Krubitzer et al., 1995; Fitzgerald et al., 2004). 

Thus, area F5p could play a major role in translating the objects features into potential hand action 

appropriate to interact with an object. 

One major distinguishing connectional feature of area F5p is that this area is the only PMv area 

sending direct projections to cervical segments of the spinal cord. Mainly the upper cervical 

segments (C2-C4). These data are in agreement with those from Dum and Strick, (1991) and  He 

et al., (1993) in which they injected neural tracers in different cervical segments. In addition, our 

data show that some fibres originating from F5p targeted also the lower cervical (C7-C8).  

In another study made by Jenny and Inukai, (1983), in which they investigated how the 

motoneurons controlling the arm and hand muscles are distributed in the cervical spinal cord, 

these authors showed that the motoneurons which control hand movements are located primarily 

in in the lower cervical segments (C8-T1). 

A clear discrepancy emerges if we take in consideration what is area F5p at the upstream (a 

potential hand field) and what should process in the downstream (predominant projections to the 

upper cervical segments). The functional significance of this arrangement is not fully elucidated. 
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One of the possible interpretations of this disparity was suggested by He et al (1993). These 

authors speculated that this disparity could reflect a projection of corticospinal efferents from the 

F5p (rostral PMv in their terminology) to propriospinal neurons in C2-C4 that in turn innervate the 

motoneurons in lower cervical segments that control hand muscles (Martino and Strick, 1987; Dum 

and Strick, 1989; see also Gentilucci et al., 1988). Though, there is evidence of such propriospinal 

neurons in cat (Alstermark and Sasaki, 1985; Alstermark et al., 1990), they still remain to be 

demonstrated in primates.  

Both, the hodological data found in the present study and the functional data available, indicate 

that F5p is a potential hand field which should integrate the hand/arm related informations from the 

parietal and the premotor areas to deliver it to the hand field of the primary motor cortex in order to 

control the hand motor outputs of F1. In addition, through its corticospinal projections, area F5p 

has a more direct access to motor outputs at the spinal cord levels. 

F5a lacked connections with area F1, while F5c projections to F1 targeted the face/mouth 

field. Both F5a and F5c displayed connections with area F4. F5a with mostly the arm related field, 

while F5c tended to be connected mainly with the face/mouth related field of area F4.  

The mesial areas F3 and F6 were a target of different neural tracer injections made by Luppino 

and co-workers (1993). These authors found that area F6 is connected with both the bank and the 

convexity parts of F5, while in the present study only area F5a displayed connections with area F6. 

As for F5c, our data are congruent with those from Luppino et al., (1993), in which we found that 

F5c displayed connections with F3, mainly with its face/mouth field. 

These connectional patterns indicate that F5c could correspond to F5 sector implicated in the 

motor control of face/mouth effector, while F5a could correspond to F5 sector related to the hand 

motor control.  

F5a displayed connections with the IPL areas PF, PFG and PG. F5c, however, received 

projections mainly and strongly from the rostral IPL area PF. Weak connections to F5c originating 

from PFG were observed as well. According to Hyvärinen (1981), area 7b contains a rostral, 

mostly somatosensory, mouth and face field, and as already mentioned, a caudal hand/arm field in 

which neurons are responsive to visual or visual and somatosensory stimuli. Recent data 
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suggested a role of this IPL sector in higher order aspects of visuomotor transformations and 

organization of goal-directed arm/hand and face movements. The caudal part of 7b have been 

shown to contain visually responsive neurons during the observation of arm, hand and mouth goal-

directed movements made by the experimenter (Ferrari et al., 2003b, Gallese et al., 2002) 

suggesting a role of this area in action recognition.  

Other parietal connections of areas F5a and F5c are with SII/PV complex. F5a was connected 

with, mostly, hand field of SII/PV complex. F5c, however, tended to be mostly connected with the 

mouth/face field of SII/PV complex as defined by Krubitzer et al (1995). It has been proposed that 

these connections indicate the involvement of these PMv areas in complex hand and mouth/face 

tactile behaviours (Disbrow et al., 2003). 

Both area F5a and area F5c are connected with the frontal opercular areas, but these 

connections showed different topographical distribution. F5a was connected with the rostral 

opercular areas while F5c was connected with the caudal ones. These connections were almost 

absent after F5p tracer injections. These data fit partially with those from Cipolloni and Pandya, 

(1999) in which different neural tracer injections were made in different rostro-caudal sectors of the 

fronto-parietal opercular cortex. Similarly, these authors did not find any connections between the 

posterior sector of the bank of the IAS (F5p in our study) and the frontal opercular cortex, but no 

difference between the anterior sector of the bank of the IAS (F5a) and  the postarcuate convexity 

(F5c) as to their connections with the frontal opercular cortex was reported by these authors. This 

discrepancy could be due to the large injection sites of their study which included several areas, in 

both the upper bank of the LF and the adjacent convexity. 

Both F5a and F5c were connected with the prefrontal cortex. These connections form a direct 

link between the rostral PMv and the ventrolateral prefrontal region and constitutes an exclusive 

characteristic of the rostral PMv, given the lack of connections between the prefrontal cortex and 

caudal PMv. 

Prefrontal connections of areas F5a and F5c involved both 46v and 12. The connections with area 

46v shown in this study are in full agreement with the study of  Preuss and Goldman-Rakic, (1989). 

These authors by injecting neural tracers in 46v, showed that area 6v -corresponding to our F5a 
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and F5c areas- displayed connections with different sectors of area 46v. The connections with area 

12 are in agreement with those from Carmichael and Price, (1995).  

The prefrontal connections of F5a and F5c differ, however, in two aspects: 1) area F5a tends to be 

connected with the more caudal sector of area 46v as defined by Preuss and Golman-Rakic, 

(1991), while F5c was connected with the more rostral sector of area 46v, 2) F5a displayed 

connections with both areas 12r and 12l as defined by Carmichael and Price, (1995), while F5c 

was connected only with area 12r. The possible functional significance of this difference has to be 

elucidated. It is well-known, however, that area 46v is a target of IPL projections. In fact, area 46v 

receives IPL projections arising from areas PF, PFG and PG (Rozzi et al., 2006). Area 12 is a 

target of projections from the infero-temporal cortex which provide it with visual information 

(Webster et al., 1994; Carmichael and Price, 1995). Area 12 is considered as a functional domain 

where the sensory non-spatial information is processed, in particular information related to the 

object identity and faces (Wilson, 1993). Thereby, the prefrontal connections of F5a and F5c, 

support the proposed role of these areas in higher order aspects of motor control and action 

recognition.  

3. Functional considerations  

 In the last two decades, the ventral premotor cortex became a subject of extensive 

functional investigations, from the single-neuron recording to the functional magnetic resonance 

imaging. Early electrophysiological studies have shown that the rostral part of the PMv, 

corresponding to the histochemical area F5, is involved in the control of hand and mouth 

movements (Rizzolatti et al., 1981; Kurata and Tanji, 1986; Rizzolatti et al., 1988; Hepp-Reymond 

et al., 1994). In the F5 sector located posteriorly in the bank of the IAS, neurons showed changes 

in activity related to active movements of the hand (Rizzolatti et al., 1981; Gentilucci et al., 1988). 

Intracortical stimulation in this F5 sector, evoked movements of the fingers and wrist (Gentilucci et 

al., 1988, 1989) which suggests the implication of F5p in the motor control of the hand movements. 
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In the ventral part of F5, lying on the postarcuate convexity cortex, neurons coding mouth 

movements predominate, though mixed with hand- or both hand- and mouth-related neurons 

(Gentilucci et al., 1988).  

More recent evidence, indicated clearly that these two different F5 sectors do not differ simply for 

their motor representation, but represent two functionally distinct rostral PMv subdivisions. One 

major difference between these two F5 sectors is represented by different visual properties of their 

visuomotor neurons, which have been subdivided into two main classes: ‘canonical’ and ‘mirror’ 

neurons (Rizzolatti et al., 2000). Canonical visuomotor neurons are mostly located in the posterior 

part of the inferior postarcuate bank. These neurons typically are active even when the monkey 

merely observes three-dimensional visual stimuli whose size and shape is congruent with the type 

of hand grasping action coded by the neuron (Rizzolatti et al., 1988; Murata et al., 1997; Raos et 

al., 2006). It has been proposed that these functional properties reflect the results of a visuomotor 

transformation processing, leading to the selection of motor programs of distal movements 

appropriate for hand-object interactions (Jeannerod et al., 1995).  

Other studies have also shown that neurons in the posterior part of the postarcuate bank display 

object/grasp related tuning earlier than M1 neurons in the visual presentation and pre-movement 

periods and a greater preference for particular objects/grasps than did M1 neurons (Umiltà et al., 

2007). Furthermore, this is the only F5 sector providing a robust, short-latency facilitation of motor 

outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles (Shimazu et al., 

2004; Cerri et al., 2003). 

Mirror neurons are typically located, more ventrally, in the postarcuate convexity cortex close to the 

IAS, where extensive single unit recording studies showed that half of the cells code mouth 

actions, the other half coding hand or both hand and mouth actions (Ferrari et al., 2003a). Mirror 

neurons were initially identified as neurons active both when the monkey performs a motor action 

and when it observes a similar action made by another individual (Di Pellegrino et al., 1992; 

Gallese et al., 1996; Rizzolatti et al.,1996). Mirror neurons, however, can be activated also by the 

observation of ingestive or communicative mouth action (Ferrari et al., 2003a). It has been 

proposed that these functional properties reflect coding in visual terms of actions made by others 
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that are mapped onto the repertoire of motor representations coded in F5. The result of this 

mapping would be at the basis of recognition and understanding of actions made by others, a 

cognitive function of crucial importance in animals with a complex social behaviour, such as 

primates (Rizzolatti et al., 2001). The discovery that a PMv sector is possibly involved in 

communicative behaviour has been used to support to the notion, based on architectonic and 

phylogenetical considerations, that the rostral part of PMv is the homologue of at least part of the 

human Broca’s language region (see Rizzolatti and Arbib, 1998). 

These functional data are in favour of our architectonic and hodological findings, because 

they indicate clearly that F5 consists of at least two distinct subdivisions, a more dorsal one, 

playing a crucial role in the control of object-oriented hand actions and a more ventral one, 

involved in cognitive motor functions. These two subdivisions have been previously referred to as 

F5ab and F5c, respectively (Rizzolatti et al., 1998; Rizzolatti and Luppino, 2001). In the present 

study, we have identified two premotor areas, F5p and F5c, which appear to very likely represent 

the anatomical counterpart of these two F5 subdivisions. Thus, areas F5p and F5c should 

correspond to two distinct cortical entities. 

The F5 sector corresponding to F5a, likely because of its anterior location in the postarcuate 

bank, has been so far only marginally involved in electrophysiological studies, except for the study 

of Petrides et al. (2005) in which, however, intracortical microstimulation in anaesthetized monkeys 

was not effective in evoking body movements. A recent functional magnetic resonance study in 

awake monkeys, however, showed up to be very useful for shedding light on the possible 

functional properties of F5a (Nelissen et al., 2005). The aim of this study was to map the frontal 

areas of the monkey involved in coding actions made by others. A constrained analysis using ROIs 

defined on the basis of preliminary architectonic data of the present study showed that both F5c 

and F5a, but not F5p, were activated by the observation of video clips of goal-directed object-

oriented movements. F5c and F5a, however, showed a differential pattern of activation: while F5c 

was active only for the observation of a person grasping objects in full view, F5a was active also 

for the observation of an isolated hand grasping objects, a hand mimicking grasping and a robot 

arm grasping objects. These data, therefore, suggest that in F5c, where mirror neurons have been 
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recorded, actions done by others are represented in a more context-dependent way, while F5a 

appears to be involved in coding actions at a more abstract level, possibly related to the general 

meaning of the action. All together, these data showing that architectonic areas F5p, F5c and F5a, 

are functionally distinct, provide strong support for the presently proposed subdivision of the rostral 

PMv into three areas.  
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Conclusions and perspectives 

In the present study, we established a new PMv parcellation based on a multimodal 

histological approach combining  cyto- and myeloarchitectonics with SMI-32 and calcium binding 

protein (CB) immunohistochemistry, on the basis of which we provided a detailed description of the 

architectonic organization of the PMv and the neighbor areas. The major finding of this study is that 

the rostral PMv area F5, as histochemically defined by Matelli et al., (1985), is not an 

homogeneous area, but consists of three architectonically distinct areas: F5p, F5a and F5c. F5c 

extends on most of the postarcuate convexity cortex immediately adjacent to the IAS. The other 

two areas -F5p and F5a- lie within the postarcuate bank at different antero-posterior levels.  

In order to get solid evidence in favour of our architectonically based parcellation of area F5, a 

series of tracer injections was made in each one of the three -architectonically- defined areas (F5a, 

F5p and F5c). The results showed clearly that each one of these areas displays a differential 

connectional pattern, suggesting that area F5 as was histochemically defined, is not a unique area 

but consists of three anatomical entities each of which could be involved in different aspect of the 

visuomotor integration. 

On the basis of the results from the present study and the functional data available, we suggest 

that F5p should correspond to F5 sector where ‘canonical neurons’ are located, while area F5c 

could correspond to F5 sector where ‘mirror neurons’ are located. F5a, however, has been shown 

to be activated by action observation, but in less context-dependent way with respect to F5c. The 

role of this area in action observation has to be elucidated. 

Thereby, the current study provides a new anatomical frame of reference of the macaque PMv that 

appears to be very promising for gaining new insight into the possible role of this premotor sector 

in different aspects of motor control and cognitive motor functions. 
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