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CHAPTER I - INTRODUCTION AND AIM OF THE STUDY 

1. L-ARGININE METABOLISM   

The occurrence of L-Arginine (2-amino-5-guanidinovaleric acid) in mammalian 

protein was discovered by Hedin in 1895, although its existence as a naturally occurring 

molecule had already been known since 18861.  

Since then, several studies have been performed to characterize the metabolism of 

this basic amino acid and its biological function in cellular homeostasis. As a result, it is 

now demonstrated that, although arginine is, strictly speaking, not an essential amino acid, 

its de novo synthesis does not always seem able to sustain an adequate supply. Particularly 

under conditions of high demand, such as growth, sepsis, or wound healing, the 

endogenous arginine supply may become limiting, suggesting that the homeostasis of the 

plasma concentration of this amino acid can be regulated by a variety of anabolic and 

catabolic pathways, more than by dietary intake2. Thus, arginine is now considered a 

semiessential amino acid in humans and most mammals; its recommended dietary intake is 

1–3 g/d. The complexity of its metabolism arises not only from the diversity of the 

enzymes involved (Fig.1), but also from their cell-specific patterns of expression.  

For what concerns L-Arg catabolism, four sets of enzymes are known to be mainly 

involved in mammalian cells: nitric oxide synthases (NOS), arginases (ARG), 

arginine:glycine amidinotransferase (AGAT), and arginine decarboxylase (ADC) (Fig.1)3.  

In 1932, Krebs & Henseleit reported that arginine is an essential component in the 

urea cycle, an ubiquitous, cyclic metabolic pathway which allows the elimination of 

Fig.1 Schematic representation 
of L-Arginine metabolism. 

ADC, arginine decarboxylase; 
AGAT, arginine:glycine amidino-
transferase; ARG, arginase; ASL, 
argininosuccinate lyase; ASS, 
argininosuccinate synthetase; 
OAT, ornithine aminotransferase; 
ODC, ornithine decarboxylase; 
OTC, ornithine transcarbamylase; 
P5C, L-Δ1-pyrroline-5-carboxy-
late. 
(from Morris, The American 
Society for Nutritional Sciences, J. 
Nutr. (2004), 134:2743S-2747S). 
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continuously generated toxic ammonia; it consists of the synthesis of L-arginine and of its 

subsequent disintegration into L-ornithine and urea catalyzed by the activity of arginase4. 

The “byproduct” of this reaction, L-ornithine, is also a precursor for the synthesis of 

polyamines, molecules essential for cell proliferation and differentiation; a quantitatively 

minor pathway for their synthesis in mammals is constituted by direct the Arginine 

Decarboxylase (ADC)-dependent convertion of L-arginine to CO2 and agmatine, which 

can be further catabolized by agmatinase to produce putrescine and urea. Although in the 

1990s evidence of arginine decarboxylase activity has been presented for mammalian cells 

and a putative human arginine decarboxylase clone has been reported, the existence of 

arginine decarboxylase in mammals is still somewhat controversial. The physiologic roles 

of agmatine in mammals have not been conclusively defined; however, various studies 

have indicated that it may act as a neurotransmitter, an inhibitor of cell proliferation, or an 

inhibitor of NOS suggesting a possible role for it as an endogenous modulator of NO 

production if local concentrations are sufficiently high3.  

 In 1939, Foster et al. discovered that L-arginine is also required for the synthesis of 

creatine5. Arginine:glycine amidinotransferase catalyzes the first and rate-controlling step 

in the synthesis of this molecule, which, in its phosphorylated form (creatine phosphate), is 

an essential energy source for muscle contraction. Its degradation product, creatinine, is 

eliminated by glomerular filtration in the kidney and is used as a surrogate measure of 

glomerular filtration rate1. Flux of L-arginine through arginine:glycine amidinotransferase 

is determined in part by dietary levels of creatine, which acts as a feedback repressor of this 

enzyme.  

Finally, in the 1980s it was discovered that L-arginine is one of the main precursors 

of nitric oxide (NO), the chemical entity previously known as endothelium-derived 

relaxing factor (EDRF)6.  

2. NITRIC OXIDE  

2.1. NO BIOSYNTHESIS 

NO is a gas produced by many cells of the immune system, such as dendritic cells, 

NK, mast cells and phagocytic cells, including monocytes, macrophages, microglia, 

Kupffer cells, eosinophils, and neutrophils, as well as other cells involved in immune 

 6



reactions (endothelial cells, epithelial cells, vascular smooth muscle cells, fibroblasts, 

keratinocytes, chondrocytes, hepatocytes, mesangial cells and Schwann cells)7.  

ase (NOS) isolated, cloned, and characterized in 1991 from 

macrophages8, endothelial cells9, and neuronal cells10.  

n a variety of cell types, whereas 

ulated 

glia

an 

h 

ins 

comple

The enzyme that catalyzes the oxidation of the terminal guanidino nitrogen group 

of L-Arg to produce NO and L-Citrulline, with NADPH and O2 serving as cosubstrates 

(Fig.2), is the NO synth

Three related NOSs are expressed in mammal cells, encoded by distinct genes: 

inducible NOS (iNOS, Type II NOS or NOS2), neuronal NOS (nNOS, Type I NOS or 

NOS1) and endothelial NOS (eNOS, Type III NOS or NOS3). For the most part, nNOS 

and eNOS are constitutively expressed at low levels i

iNOS, which normally is not expressed in most cell models, is highly inducible by 

bacterial endotoxin and inflammatory cytokines in several cell models, such as stim

murine macrophages, hepatocytes, pancreatic islet cells, vascular smooth muscle cells, 

l cells, retinal epithelial cells and keratinocytes11; human hepatocytes have also been 

shown to produce iNOS-derived NO in the presence of the same combination of endotoxin 

and cytokines as rodent hepatocytes12, whereas, as far as its expression in hum

endothelium is concerned, conflicting evidences report either its constitutive absence under 

both basal and inflammatory conditions, or, rather, its induction following stimulation wit

inflammatory compounds13,14; in our hands, however, the mRNA of iNOS rema

tely undetectable in HUVECs, even in the presence of TNFα15. 

Actually, also the activity of eNOS and nNOS can be modulated in several ways, 

suggesting them to be inducible enzymes too. In particular, the shift to a more active eNOS 

is known to be triggered by several stimuli, such as shear stress, PKC inhibitors, insulin, 

TGFβ1, H2O2, VEGF and autacoids that are generated locally by tissue injury, while other 

inflammatory stimuli such as TNFα, hypoxia, lipopolysaccaride, thrombin, and oxidized 

Fig.2 The two reactions of NO synthesis as catalyzed by NOS. 
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LDL can decrease eNOS mRNA levels16. Besides the observation that steady-state levels 

of eNOS mRNA may be influenced by changes in transcription, many studies have also 

underlined the importance of posttranscriptional regulation mechanisms in response to 

numerous stimuli, particularly those that appear to have the greatest effect on mRNA 

expression17. The reason for the importance of such posttranscriptional regulation seems to 

relate to the finding that eNOS mRNA has a long half-life at baseline (10–35 h): since 

stable mRNA species are able to pool in the cytosol, synthesis of the encoded proteins is 

likely to persist long after gene transcription has been repressed; thus, altering the half-life 

of stab

arcolemma of skeletal muscle; as in the case of eNOS, it is thought that 

the su

le transcripts in this pool may be the most rapid and efficient means of modulating 

steady-state mRNA levels and gene expression. This level of regulation would provide 

endothelial cells with flexibility to perform rapid phenotypic changes in response to 

different stimuli17.  

Among the best characterized posttranslational modification of NOS enzymes, it is 

widely accepted that activities of the constitutive eNOS isoenzymes are dynamically 

regulated by Ca2+/calmodulin or by the availability of essential cofactors such as 

tetrahydrobiopterin18. Moreover, also the subcellular localization of NOS isoenzymes 

seems to be involved in the regulation of their activity, particularly in the cases of eNOS 

and nNOS; such regulation probably involves dynamic changes in direct protein-protein 

interactions or placement near ion channels and transporters. For example, eNOS is 

associated with caveolae at localized regions of the plasma membrane; this may allow 

more efficient modulation of eNOS activity via local changes in flow-induced shear stress 

and in calcium fluxes, and may also affect the rate of NO production by placing eNOS in 

close apposition to arginine transporters at the plasma membrane19. Similarly, nNOS is 

primarily associated with the rough endoplasmic reticulum and postsynaptic membranes in 

brain and with the s

bcellular localization of nNOS near calcium channels allows highly precise 

regulation of its activity18.  

Finally, protein phosphorylation is known to regulate eNOS activity, too. In 

particular, eNOS can be phosphorylated primarily on serine residues and, to a lesser extent, 

on tyrosine and threonine residues. Among the several regulatory cascades likely involved 

in the stimulation of eNOS activity, one of the best characterized pathways is that of the 

serine/threonine kinase Akt (protein kinase B), which increases eNOS activity several-fold 

by directly phosphorylating eNOS at Ser1177 (human eNOS) and Ser1179 (bovine 

eNOS)20. 
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2.2. NO FUNCTION IN HEALTH AND DISEASE 

Although only a minor portion of L-arginine is metabolized via NOS-dependent 

pathways in vivo, they have attracted a lot of interest in recent years because of the 

prominent role that NO plays in vascular physiology and pathophysiology. Indeed, nitric 

oxide physiologically produced by constitutive endothelial NOS in the vasculature in vivo 

is known to play a key role

.  

Besides the well known beneficial effects of nitric oxide under physiological 

conditions, NO is known to play a ronic inflammatory disease, 

and the increasing evidence of the protection afforded against inflammation and immunity 

by NO

cytostatic and cytotoxic antimicrobial activities towards 

pathog

y 

conditions: the amounts of NO responsible for basal intracellular signalling are generally 

 in many cellular events, acting as a paracrine-signaling 

molecule mediating vasodilation21, inhibiting platelet activation22 and monocyte-leukocyte 

adhesion23, impairing smooth muscle cell proliferation24, and controlling vascular 

oxidative stress and the expression of redox-regulated genes25; consistently, in certain 

animal models and in human diseases where the biological functions of endothelium-

derived NO are impaired, the deregulation of endothelial control of vascular tone and 

blood flow appears evident1

beneficial role even in ch

 represents a new particular interest in the immunology world. At the same time, 

however, clinical evidence also supports the assumption of a key role for harmful NO-

dependent mechanisms in a variety of autoimmune or chronic inflammatory diseases26,27. 

The resulting conflicting literature attributing to nitric oxide either pro-

inflammatory or anti-inflammatory effects has been solved by the assumption that the local 

concentration of the molecule is a crucial determinant of NO-triggered cytotoxicity: 

picomolar amounts of the gas are sufficient for intracellular signalling, whereas higher 

concentrations can be at the same time microbicidal as well as pro-inflammatory and 

damaging to the surrounding cells and tissues26. Consistently, nitric oxide produced in the 

millimolar range during an inflammatory insult, besides exerting protective actions in 

mammalian tissues due to 

ens28, may also lead, because of its high concentrations, to lipid peroxidation, DNA 

damage, oxidation of thiols and nitration of tyrosine residues18,29, acting indirectly via 

reactive nitrogen oxide species (RNOS), generated through interaction of NO with O2 or 

O2
−. 

A paradigm has been thus far accepted, concerning the specific contribution of the 

different NOS isoforms to the production of nitric oxide under basal and inflammator
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ascriba

d, a plethora of reports from animal studies have shown that acute or chronic 

admini

ed coronary vasomotor responses to 

acetylc

ble to the activity of eNOS isoform, while both the beneficial and detrimental 

effects of nitric oxide produced under pathological conditions are usually referred to the 

sole iNOS. However, in light of the recent demonstration of eNOS being an inducible 

enzyme too, this model can no more be accepted30. Actually, the characterization of the 

events following an inflammatory insult has shown that the early phase of cellular response 

is characterized by the conversion of L-Arg by iNOS to trigger an high-output generation 

of NO; however, under these conditions, also eNOS is present and the stimulus can 

increase also its activity and production of NO17.  

Apart from the specific contribution of the different NOS isoforms to the 

production of nitric oxide under inflammatory conditions, what appears of peculiar interest 

is the experimental evidence demonstrating the key role of L-arginine in such event1. 

Indee

stration of L-arginine in vivo improves vascular responsiveness, probably via 

enhanced NO elaboration: acute administration of L-arginine augments endothelium-

dependent vasodilation in cholesterol-fed rabbits, while long-term oral administration of L-

arginine has been associated with a significant improvement in NO-dependent vasodilation 

in cholesterol-fed rabbits31,32 and in low-density-lipoprotein receptor knockout mice33. In 

the same animal models, other NO-dependent vascular functions are also modulated by 

chronic supplementation with L-arginine: endothelial leukocyte adhesion is reduced34, 

platelet aggregation is inhibited35, and vascular smooth muscle cell proliferation in vivo is 

attenuated36. Moreover, very soon after the first animal experiments had proven a 

beneficial effect of L-arginine on endothelial function, it was shown that local 

intracoronary infusion of L-arginine normaliz

holine in hypercholesterolemic humans. A similar observation was also made upon 

systemic (intravenous) infusion of L-arginine in hypercholesterolemic subjects, in whom 

endothelium-dependent forearm vasodilation was improved1. 

Although the mechanisms behind these phenomena have not yet been fully 

elucidated, experimental evidences suggest that, under certain conditions, L-arginine 

availability regulates endothelial cell NOS activity. For example, reduced activity of 

endothelial NOS has been shown to occur in the presence of low-density-lipoprotein 

cholesterol, and this effect can be overcome by excess L-arginine. Consistently, NOS is 

known to be inhibited by L-arginine analogs that are substituted at the guanidino nitrogen 

atom, but, again, the inhibitory action of these molecules is overcome by excess L-
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arginine, indicating that there is competition for NOS binding between L-arginine and its 

inhibitory analogs1.  

In light of these findings, particular attention has been devoted in the last decades to 

better define the role of L-Arg availability, as nitric oxide supplier, in the maintenance of 

cellular homeostasis, under both physiological and pathological conditions.  

3. L-ARGININE SYNTHESIS AND TRANSPORT 

As far as the anabolic pathways responsible for L-Arginine synthesis are 

concerned, it is now evident that the main tissue in which endogenous synthesis occurs is 

the kidney, where the amino acid is formed from L-citrulline mainly released by the small 

intestine1. The liver is also capable of synthesizing considerable amounts of L-arginine; 

however, this is completely reutilized in the urea cycle so that the liver contributes little or 

not at all to total plasma L-arginine concentration. Cell types containing nitric oxide 

synthase (NOS) have been demonstrated to be able to reutilize L-citrulline, the byproduct 

of nitric oxide (NO) synthesis, to produce L-arginine via the so called arginine-citrulline 

cycle37

cle18.  

Anyway, irrespective of whether nutrition or biosynthesis is the primary source, 

arg e nd, therefore, every cell needs to 

transport arginine across the plasma membrane. Thus, since the lipid bilayer of biological 

membr

further 

distinguished by their interaction with neutral amino acids (NAAs), and one Na+-dependent 

. This pathway is mediated by enzymes also involved in the hepatic urea cycle; 

however, the fact that L-citrulline accumulates in the medium of NO-producing cells 

indicates that the arginine-citrulline cycle is far less efficient than the urea cy

inin  needs to be exchanged between different tissues a

anes is impermeable for hydrophobic solutes such as amino acids, specialized 

carrier proteins are necessary to provide adequate import and export routes. 

Pioneering work by Halvor Christensen concerning the study of L-Arg transporters 

demonstrated that arginine shares the same transport system with other cationic amino 

acids (CAAs) such as lysine and ornithine, and that, in most cells, arginine transport 

through the plasma membrane is not energized by coupling to the Na+ gradient: in 

particular, a single Na+-independent transport system termed y+ was postulated to be the 

major entry route for CAAs in most cells38,39; this transport system has been shown to be 

pH insensitive40 and strongly stimulated by hyperpolarization and by substrate at the 

opposite membrane side (trans-stimulation)41.  

More recently, several additional Na+-independent transport systems, 
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system

ding branched 

and sm

3.1. CAT  TRANSPORTERS

 for CAAs have been discovered2: system y+L, first defined by Deves et al.42, 

transports both CAAs and large NAAs, the latter in a Na+-dependent manner; system b0,+ 

transports both CAA and NAA in a Na+-independent manner and prefers large NAAs that 

are not branched at the α and β carbon43; finally, system B0,+ mediates the Na+-coupled 

transport of CAAs and NAAs and accepts a wide range of substrates, inclu

all NAAs43 (Table 1).  

At molecular level, system y+ activity is mediated by the CAT (for cationic amino 

acid transporter) family of single carrier transporter proteins, CAT1, -2, and -3. 

Conversely, system y+L comprises the heteromeric transporters named HAT, formed by a 

glycoprotein (also called heavy chains) combined with a carrier protein. Finally, ATB0,+, 

the protein that mediates system B0,+ activity, belongs to the SLC6 family of Na+- and Cl–-

dependent transporters2. 

  

CATs are integral membrane glycoproteins with 14 putative transmembrane 

domains and intracellular N- and C-termini44. Among the members of this SLC7 

subfamily, four carrier proteins are recognized: CAT1, -2A, -2B, and -3, with CAT2A and -

SLC3A24F2hc

Mo

No0.01Yes + Cl–0.10–0.15Yes + Cl–B0,+SLC6A14ATB0,+

Yes0.30No0.08–0.20Nob0,+SLC7A9 + 
SLC3A1

b0,+AT + 
rBAT

Yes0.20–0.30Yes0.12–0.14Noy+LSLC7A6 + 
SLC3A2

y+LAT2 + 
4F2hc

Yes0.02Yes0.34No
SLC3A24F2hc

Mo

No0.01Yes + Cl–0.10–0.15Yes + Cl–B0,+SLC6A14ATB0,+

Yes0.30No0.08–0.20Nob0,+SLC7A9 + 
SLC3A1

b0,+AT + 
rBAT

Yes0.20–0.30Yes0.12–0.14Noy+LSLC7A6 + 
SLC3A2

y+LAT2 + 
4F2hc

Yes0.02Yes0.34Noy+LSLC7A7 + y+LAT1 + 

——————SLC7A4CAT-4

derate——0.20–0.50Noy+SLC7A3CAT-3

Moderate——0.25–0.70Noy+SLC7A2CAT-2B

No——3.40–3.90NoNDSLC7A2CAT-2A

Yes——0.10–0.16Noy+SLC7A1CAT-1

mmol/Lmmol/L

Apparent
KmNa+-dependent

Apparent
KmNa+-dependent

Trans-
stimulation

Leucine transportArginine transport

Transport
systemGeneProtein

y+LSLC7A7 + y+LAT1 + 

——————SLC7A4CAT-4

derate——0.20–0.50Noy+SLC7A3CAT-3

Moderate——0.25–0.70Noy+SLC7A2CAT-2B

No——3.40–3.90NoNDSLC7A2CAT-2A

Yes——0.10–0.16Noy+SLC7A1CAT-1

mmol/Lmmol/L

Apparent
KmNa+-dependent

Apparent
KmNa+-dependent

Trans-
stimulation

Leucine transportArginine transport

Transport
systemGeneProtein

Table 1. Plasma membrane transporters that accept arginine as subbstrate 

(modified from Closs, The American Society for Nutritional Sciences, J. Nutr. (2004), 134: 2752S-2759S). 
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2B bei

s to trans-stimulation. In good agreement with system y+ activity, 

human CAT1 exhibits an apparent Km of 0.10 to 0.16 mmol/L for cationic amino acid, is 

strongly trans-stimulated and is mainly pH independent. Human CAT2B and -3 both 

exhibit apparent Km values of 0.25 to 0.70 mmol/L for arginine and 0.2 to 0.5 mmol/L for 

lysine, and their affinities to ornithine are slightly lower; both carriers are only moderately 

trans-stimulated. Like CAT1, CAT3 is pH independent in a range of 5.5 to 8. In contrast, 

CAT2B shows only 50% activity at pH 5.5, compared with pH 7.5. CAT2A is clearly 

distinguishable from system y+, because of its low affinity for CAA (apparent Km 2–5 

mmol/L), insensitivity to trans-stimulation, and moderate pH dependence2.  

CATs are widely expressed. In spite of its almost ubiquitous presence, CAT1 

expression is highly regulated at the transcriptional and post-transcriptional level; therefore, 

modulation of CAT1 mRNA, dependent, for example, upon bacterial LPS, TGFβ, 

interleukin-1, insulin or IFNγ, might not be reflected in corresponding changes in CAT1 

protein, or these changes might not involve the surface expressed CAT1. Furthermore, 

expression-independent factors such as membrane potential, trans-stimulation, and 

subcellular distribution of CAT1 may cause pronounced changes in CAT1 activity 2.  

For what concerns the two CAT2 splice variants, they exhibit quite distinct 

expression patterns: CAT2B is significantly expressed only upon treatment of many cell 

types with cytokines or LPS, whereas the low-affinity splice variant, CAT2A, is expressed 

in skeletal muscle, pancreas, cardiomyocytes, cardiac microvascular endothelial cells and 

vascula

xpressed during embryonic development, but seems to be 

confine

ng splice variants that differ only in a stretch of 42 amino acids. The product of 

another related gene (SLC7A4), expressed in brain, testis, and placenta, is only 40% 

identical to CAT1 to -345.  

As evidenced by transport studies in Xenopus laevis oocytes and mammalian cells, 

CAT1 to -3 all mediate Na+-independent transport of CAAs, but differ in their substrate 

affinities and sensitivitie

r smooth muscle cells, although its highest expression occurs in the liver, where it 

most likely serves to clear plasma of excess arginine46; substantial CAT2A expression can 

be induced by surgical trauma (hepatectomy and spleenectomy) as well as by food 

deprivation47, when CAT2A probably serves as an export route for arginine derived from 

the breakdown of muscle proteins.  

CAT3 is widely e

d to central neurons in adult mice and rats. In humans, it is strongly expressed in the 

thymus, moderately expressed in the uterus, testis, mammary gland, and brain and only 

weakly expressed in the ovary and stomach. The specific function of CAT3 in these tissues 
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is not understood, although a role for CAT3 in the substrate supply of neuronal NOS has 

been postulated48. 

3.2. HAT TRANSPORTERS 

Heterodimeric HAT transporters are formed by a glycosylated type II membrane 

protein (heavy chain), with a single transmembrane helix and a large extracellular domain, 

and an associated protein with 12 putative transmembrane helices (light chain). This latter 

protein is distantly related to CAT and, together, they comprise a subfamily of SLC7. 

Other than the CATs, mem

n b0,+AT 

to mediate s

y

 and intracellular binding sites of the apical 

(rBAT/b

y 4F2hc/y+LAT1 is coupled to Na+, they cannot exit cells by this 

route (against the Na+ gradient) and CAAs are thus the exclusive export substrates for 

4F2hc/y+LAT1, although the resulting low extracellular affinity combined with substantial 

competition by NAAs make this an inefficient entry pathway for these amino acids. Taken 

bers of this subfamily are not glycosylated and localize to the 

plasma membrane only when co-expressed with the respective glycoprotein. Eight different 

HATs have been identified to date; in all but one, the heavy chain 4F2hc associates with 

different light chains to form amino acid transporters with diverse substrate selectivity; two 

of these accept arginine as a substrate: association of 4F2hc with the light chains y+LAT1 

and y+LAT2 gives rise to y+L-like transporters. In the only HAT transporter which does not 

comprise 4F2hc heavy chain, the glycoprotein rBAT interacts with the light chai

ystem b0,+-dependent L-Arginine transport49. 

All arginine-accepting HATs function as obligatory exchangers (i.e., uptake or 

efflux of arginine by these transporters can occur only in exchange with another CAA or 

NAA). Their physiological function is best understood in the absorbing epithelia of the 

small intestine and renal tubule, where the combined action of rBAT/b0,+AT and 

4F2hc/y+LAT1 causes trans-epithelial CAA flux. In addition, rBAT/b0,+AT in the apical 

membrane is essential for the (re)absorption of c stine2.  

The vectorial transport of substrate across the epithelium is brought about by an 

asymmetry of substrate binding at extra-
0,+AT) and basolateral (4F2hc/y+LAT1) transporters. Uptake of CAAs by apical 

rBAT/b0,+AT is favoured because of its extracellular high affinity for these amino acids and 

the negative membrane potential; conversely, NAAs are preferentially exported owing to 

their high intracellular concentration. In return, the basolateral 4F2hc/y+LAT1 has a higher 

extracellular affinity for NAAs, which are therefore the preferred uptake substrates; 

because their transport b
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togeth BA /y+LAT1 serve as the import and export routes, 

respectively, for arginine in epithelial cells of the kidney and small intestine.  

cellu

er, r T/b0,+AT and 4F2hc

    The arginine-accepting HATs are expressed in several cell types. 4F2hc/y+LAT 

expression is strong in lung (y+LAT1) and stomach and colon (y+LAT2) cells, where it 

may serve as an export route for amino acids accumulated due to the action of apical Na+-

dependent carriers, such as ATB0,+ 2,50; moreover, in organs with blood–tissue barriers 

(e.g., brain, placenta, and testis), these transporters may contribute to arginine transport 

across the barrier2. However, HAT expression is also found in a number of nonpolarized 

cells, where their function is less well understood. It can be generally assumed that in these 

cells, rBAT/b0,+AT and 4F2hc/y+LAT1 or 4F2hc/y+LAT2 also serve as influx and efflux 

routes, respectively, for arginine. It is therefore highly unlikely that 4F2hc/y+LAT1 

provides arginine to intra lar enzymes such as NOS46.  

3.3. ATB0,+  

ATB0,+ is the only known Na+-dependent transporter for arginine, whose transport 

activity is coupled to Na+ and Cl– 51. It is a glycoprotein with 12 putative transmembrane 

helices and recognizes a wide range of CAAs and NAAs with high affinity. Its expression 

is most abundant in lung and salivary gland tissue but can also be found in mammary 

gland, pituitary gland, stomach, and colon tissue. In mice, ATB0,+ is expressed on the 

apical 

aracterization 

of the pathways responsible for arginine recruitment in different human cellular models, in 

membrane of epithelial cells of the trachea and bronchi (predominantly in ciliated 

cells), but also in the bronchioles and alveoli52. In human airway epithelial cells B0,+ is 

responsible for the apical influxes, involved in transepithelial arginine transport50. It has 

therefore been suggested that the transporter contributes to protein clearance by removing 

amino acids from the airway lumen, thus playing a role in lung defense through the 

maintenance of a low-nutrient environment. In the gastrointestinal tract, the expression 

pattern of ATB0 is similar to that of the basolateral 4F2hc/y+LAT253. In the pituitary gland, 

human ATB0 has been proposed to play a role in hormone secretion induced by amino 

acids (e.g., arginine and leucine). 

4. AIM OF THE STUDY 

The research performed during my PhD course has concerned the ch

 15



light o

nce most of the contributions 

available in literature about these cell types concern animal, rather than human, models; as 

for arginine tr  human endothelium, experimental evidences, reported in the last 

years and n

pathological, inflammatory conditions. 

f the importance of this amino acid as the obliged substrate for nitric oxide 

biosynthesis. In particular, human endothelial cells and human monocytes/macrophages 

have been employed, since they are among the cell types more directly linked to NO 

pathway: nitric oxide acts in the endothelium as a versatile mediator, involved in a variety 

of endothelial functions, such as the regulation of vascular contraction, leukocyte adhesion, 

vascular smooth muscle cell growth and platelet aggregation; cells of the 

monocyte/macrophagic lineage, instead, specifically produce it in the context of an 

inflammatory response, because of its cytotoxic, antimicrobial activity towards pathogens.  

A preliminary characterization of L-arginine transport and nitric oxide production 

has been performed in monocytes and macrophages, si

ansport in

ow widely accepted, have been initially confirmed in our models of foetal 

(HUVECs) and adult (HSVECs) endothelial cells, so as to verify possible tissutal- or 

species-specificities.  

Afterwards, once defined the molecular pathways involved in the maintenance of 

physiological concentration of L-Arg under resting conditions, the studies have been 

extended to activated cells: pro-inflammatory cytokines, known to be effective in 

stimulating the transport of cationic amino acids in other models, have been tested on our 

cells, to define whether amino acid transport has a role in the inflammatory response of to 

exogenous stimuli and which are the molecular pathways responsible for such cytokine-

dependent events. In this context, particular attention have been paid to the production of 

nitric oxide and, specifically, to the study of the relation likely connecting the availability 

of L-arginine and the synthesis of nitric oxide under inflammatory conditions; indeed, the 

existence of such link could give a rationale to the clinically evidenced protective effects of 

arginine subministration under specific 
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CHAPTER II – EXPERIMENTAL PROCEDURES 

1. CELL CULTURES AND EXPERIMENTAL TREATMENTS 

1.1. ENDOTHELIAL CELLS 

Human saphenous vein endothelial cells (HSVECs) were obtained from vessel 

remnants of patients undergoing coronary artery bypass grafting; human umbilical vein 

endothelial cells (HUVECs) were isolated from normal, full-term deliveries umbilical 

cords. The cultures of both cell models were established according to the method of Jaffe 

and colleagues54, with minor modifications. Briefly, vein lumen was cannulated at both 

ends and 50-100 ml of phosphate-buffered saline (PBS) were flushed through the 

preparation to rem

All endothelial cells were routinely grown in the same complete growth medium 

described above, on collagen-coated (2 µg/cm2 Collagen Solution, Sigma), 10-cm diameter 

dishes, and kept at 37°C, pH 7.4, in an atmosphere of 5% CO2. Culture medium was 

always renewed 24h before each experiment. For the experiments, all the cytokines and 

LPS (from E. coli, serotype O55:B5) were added from stock solutions in sterile water to 

complete growth medium for the times and at the concentrations indicated for each 

experiment; the inhibitors required by the experimental protocols were added 1h before the 

cytokines. 

ove any blood; after isolation with 0.48% dispase solution (0.5 U/mg) 

(Dispase II; Boehringer-Mannheim Italia) in a sterile water bath (37°C) for 15-20 min, the 

vein lumen was flushed with M199. The cell suspensions were then collected and 

centrifuged at 1000 rpm for 5 min; pellets were resuspended in complete growth medium 

consisting of M199 supplemented with 20% fetal bovine serum, heparin (90 U/mL), 

endothelial cell growth supplement (50 μg/mL), glutamine (2 mmol/L) and antibiotics (100 

U/ml penicillin and 100 µg/ml streptomycin). 

Human aortic endothelial cells (HAECs) were purchased by Cambrex Bio Science. 

Cultured cell monolayers were screened for typical endothelial cobblestone morphology by 

phase-contrast microscopy and periodically tested for staining for von Willebrand’s factor 

and CD31/PECAM-1 antigens with indirect immunofluorescence.  
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1.2. MONOCYTES AND ALVEOLAR MACROPHAGES 

For the isolation of human monocytes, mononuclear cells were separated from 

buffy coats, obtained from normal healthy volunteers, supplied by the Unità di 

Immunoe a. The buffy coats, 

diluted 1:4 with PBS, were layered on 10 ml of Fycoll Hypaque and centrifuged at 750 g 

for 30 min at 20 °C. Peripheral blood mononuclear cells (PBMC) at the interface were 

remove

performed as described 

by D’I

endotoxin-free FBS, 2 mM glutamine, 10U/mL penicilline and 10 µg/ml 

streptomycin. Cells were plated in 12-well or 96-well dishes and allowed to adhere (37°C, 

5% CO2). After 2h, the medium was renewed to remove non-adherent cells and AM were 

matologia e trasfusione of Azienda Ospedaliera di Parm

d, washed three times in PBS, and centrifuged at 150g for 10 min at 20°C. After the 

final wash, PMBC were suspended in RPMI 1640 (Cambrex Bio Science) containing 2% 

endotoxin-free fetal bovine serum (FBS; Euroclone) and seeded on plasticware appropriate 

for the various determinations. After a 30 min incubation at 37°C in an atmosphere at 5% 

CO2, non-adherent cells were removed with vigorous washes with prewarmed sterile 

Earle’s Balanced Salt Solution (EBSS). Adherent monocytes were employed immediately 

(for characterization of arginine transport and expression of CAA transporters in freshly 

isolated cells) or collected, resuspended in RPMI supplemented with 10% FBS in the 

absence or in the presence of IFNγ (10 ng/ml), and maintained at 37°C under gentle 

agitation for the indicated times. After the incubation, monocytes were let to sediment for 

1h before the experimental determinations. To assess the purity of the preparation, cells 

were stained with monocyte-specific anti-CD14 mAb; more than 75% of the isolated cells 

expressed CD14.   

To obtain alveolar macrophages (AM), subjects were enrolled by Clinica 

Pneumologica of University of Parma and put through the lavage procedure for routine 

diagnostic purpose. After written informed consent and local anaesthesia of the patient, 

fiber-optic bronchoscopy and broncho-alveolar lavage (BAL) were 

ppolito et al.55. Briefly, the bronchoscope was wedged into a segment of the right 

middle lobe and three 50 ml aliquots of sterile saline solution, warmed at 37°C, were 

instilled into the subsegmental bronchus. Fluid was gently aspirated immediately after each 

aliquot was introduced and collected into a sterile container. AM isolation started within 2h 

of bronchoalveolar lavage. The fluid obtained was filtered through two layers of sterile 

surgical gauze and centrifuged (200g x 10 min). The whole BAL pellet was washed once 

in RPMI 1640, centrifuged at 200g for 10 min, re-suspended in RPMI 1640 supplemented 

with 10% 
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used dia above described for the times 

indicated in each experiment in the absence or in the presence of LPS (1 µg/ml) and 

cytokines (20 ng/m

 cells, L-arginine uptake was measured in 

the presence of increasin

imme tely or cultured in RPMI supplemented as 

l IFNγ or 10 ng/ml GMCSF). Differential cell counts were carried out 

on DIFF-Quick (Don Baxter)-stained cytospin smears, counting at least 400 cells. The 

adherent cell population consisted of more than 95% alveolar macrophages. Cell viability 

exceeded 95%, as assessed by trypan blue exclusion.  

2. L-ARGININE INFLUX 

For transport studies, endothelial cells were seeded on 2-cm2 wells of collagen-

coated disposable 24-well trays, while monocytes and AM were cultured on 96-well 

dishes. All the experiments were performed using the cluster-tray method for the 

measurement of solute fluxes in adherent cells56 with appropriate modifications.  

Cell monolayers were washed twice in Earle’s balanced salt solution (EBSS), 

containing 117 mM NaCl, 5 mM KCl, 1.8 mM CaCl2, 1 mM NaH2PO4, 0.8 mM MgSO4, 

5.5 mM glucose, buffered at pH 7.4 with 20 mM Tris/HCl. In the experiments in which 

Na+-independent transport was to be measured, a modified EBSS named NMG-EBSS was 

employed, with N-methyl-D-glucamine replacing NaCl. To further discriminate the 

different components of CAA uptake in cultured

g concentrations of L-leucine or after a 5 min pretreatement with 

0.5 mM N-ethylmaleimide (NEM): in the presence of sodium, 2 mM leucine completely 

abolishes system y+L activity, while NEM specifically inhibits system y+ but not system 

y+L57. In all cell models, L-Arginine influx was assayed with a 30 s incubation of the cells 

in the same solution used for the washes, supplemented with L-[3H]arginine (4-6 µCi/ml, 

100 µM); in this interval of time arginine uptake approached linearity. The experiments 

were terminated by two rapid washes in ice cold 0.3 M urea. Cell monolayers were 

extracted in 0.2 ml ethanol and the radioactivity of extracts was determined with a Wallac 

Microbeta Trilux (Perkin Elmer). Extracted cell monolayers were then dissolved with 0.5% 

sodium deoxycholate in 1 M NaOH and protein content was determined directly in each 

well using a modified Lowry procedure, described by Gazzola et al.56. 

Amino acid influx is expressed as nmoles • mg of protein-1 • min-1.  

Kinetic parameters of arginine influx were determined by non-linear regression 

analysis using GraphPad Prism3™ software.  
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The equations used for fitting the experimental data were:    
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for a transport process resulting from the additive operations of a saturable system and a 

non-saturable component, where v is the initial influx, V the maximal influx and Km the 

Michaelis constant, or 
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for the additive effects of two saturable systems and a non-saturable component. 

3. RNA ISOLATION AND ANALYSIS 

3.1. RNA EXTRACTION AND REVERSE TRASNCRIPTION 

For expression studies, cells were seeded onto 6-well trays and total RNA was 

isolated with RNeasy Mini Kit® (QIAGEN S.p.a.), according to manufacturer’s 

instructions. RNA (2 µg), along with 150 ng of random primers and dNTP (0.5 mM), was  

heated at 70°C for 10 min, placed on ice for 1 min, then incubated with a mixture 

containing 5 mM dithiothreitol, 1X first-strand buffer, 40 U of RNAse inhibitor (Invitrogen 

s.r.l.), 200 U of SuperScriptTM III RT (Invitrogen s.r.l.) and water to a final volume of 20 

µl for 1h at 42°C; the reaction was stopped by heating at 70°C for 15 min. 

3.2. SEMI-QUANTITATIVE PCR 

100 ng of single-strand cDNA from each sample were amplified with 1.0 x PCR 

buffer, 0.2 mM each dNTPs, 2.5 mM MgCl2, along with proband primers (see Table 2 for 

sequences) and 1.25 U of Hot Master Taq DNA polymerase. The reaction program 

consisted of an initial denaturation step at 92 °C for 2 min, followed by 32 cycles with a 2-

min denaturation step at 94°C, the annealing at 59°C for 30 s, and the extension step at 

72°C for 1 m

120 Kodak cam

ers were also added in the 

in. Images of the electrophoresed cDNAs were recorded with a digital DC 

era and quantified by ID Image Analysis Software (Kodak Digital 

Science). In semi-quantitative experiments GAPDH prim
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amplif ic ratio of proband vs. 

GAPDH product. 

3.3. REAL TIME QUANTITATIVE PCR (qPCR)

ication mixture and the results expressed as the densitrometr

 

SuperMix-UDG (Invitrogen s.r.l.), along with the forward and 

reverse primers (5 pmol each), designed according to the known sequences reported in 

GenBank with the help of Primer 3 program ble 3). Quantitative PCR was performed in 

a 36 well Rotor Gene 3000 (Corbett Research). For all probands each cycle consisted of a 

 °C) and 

extension (30 s, 72°C) steps. Fluorescence was monitored at the end of each extension 

ste  n ntrol was included in each experiment. At 

the end of the amplification cycles a melting curve analysis was added. The analysis of the 

data was made 58. 

4. 

For real time PCR (40 cycles), cDNA (25 ng) was amplified with 2X Platinum® 

SYBR® Green qPCR 

 (Ta

denaturation step at 95°C for 15 s, followed by separate annealing (30 s, 57

p. A o-template, no-reverse transcriptase co

 according to the Relative Standard Curve Method

PROTEIN ANALYSIS 

4.1. WESTERN BLOT 

Cells were washed twice with ice-cold phosphate-buffered saline, scraped in the 

same solution and collected by low speed centrifugation.  

For the analysis of E-selectin, cells were lysed in 0.5 ml of RIPA buffer (100 mM 

Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Igepal CA 630, 1% sodium 

deoxy te, cocktail of protease inhibitors (Complete Mini 

EDTA-free, Roche S.P.A, Monza, Italy), sonicated for 30 s and centrifugated for 20 min at 

16000g. For CAT2 and NOS3, cells were suspe

primary antibodies (NOS3 1:200; E-selectin 1:200) or to a filtered anti-hCAT2 polyclonal 

chola 0.1% SDS) containing a 

nded in 0.3 ml of Laemmli buffer (62.5 M 

Tris–HCl, pH 6.8, 2% SDS, 20% glycerol, 0.2 M DTT), sonicated for 15 s and 

centrifugated for 5 min at 12000g. After total protein quantification by a modified micro 

Lowry protein assay, 30 µg of protein samples were separated on 8% acrylamide gels by 

SDS-PAGE and electrophoretically transferred to a polyvinylidene difluoride (PVDF) 

membrane (Bio Rad). Membranes were blocked at 4°C overnight with an incubation in 

Tris-buffer saline (TBS; 50 mM Tris-HCl pH 7.5, 150 mM NaCl), containing 3% BSA, 1% 

Casein, 0.33% gelatin and 10% goat serum and exposed for 2h at  room temperature to 
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antiserum (diluted 1:2000). This antiserum was generated by Neosystem Groupe SNPE 

(Strasbourg) against the C-terminus peptide Y-17-F (Y-R-N-L-S-S-P-F-I-F-H-E-K-T-S-E-

F) of human CAT2 proteins. 

kinase was determined with the 

PhosphoPlus®

The expression of total and phospho-p70S6 

 p70S6 Kinase Antibody kit from Cell Signaling (Celbio) following 

manufacturer’s instructions. The same cell lysates were analyzed also for total and 

phospho-Akt expression with antibodies anti-Akt and anti-phospho-Akt (Ser 473) (Cell 

Signaling).  

Immunoreactivity was visualized with enhanced chemiluminescence (Millipore). 

GAPDH, detected with a monoclonal antibody (1:500) was employed for standardization. 

4.2. IMMUNOCYTOCHEMISTRY 

Immunostaining was performed on cell monolayers grown on two-well chamber 

slides (Falcon). Cells, after the experimental treatments, were washed twice with PBS and 

fixed with 3.7% paraformaldehyde in PBS (pH 7.4).  

After additional washing, cells undergoing immunostaining for actin were 

permeabilized with a 10 min incubation in 0.1% Triton X-100 in PBS, then incubated for 

20 mi 7 ° r 488-phalloidin (15 U/ml) in PBS.  

At the same time, cells which had to be stained for CAT2 were instead incubated  

for 1h 

anti-CAT2 polyclonal antiserum 

(see W

n at 3 C with Alexa Fluo

in PBS containing 2% bovine serum albumin, to block non-specific absorption of 

antibodies; they were then incubated for 1h at 37 °C with 

estern analysis) diluted 1:500 in blocking solution, and finally incubated for 1h at 

room temperature with Alexa Fluor 488–conjugated secondary antibodies (Molecular 

Probes, Invitrogen) (1:400 dilution in blocking solution).  

After immunostaining with the different antibodies, the cells were finally washed, 

the slides were mounted with Pro-Long® antifade kit (Molecular Probes, Invitrogen), and 

examined with a confocal microscope ZEISS, LSM 510 META equipped with inverted 

microscope Axiovert 200M (Carl Zeiss Meditec GmbH). Alexa Fluor 488 signal was 

acquired at a λex of 488 nm and the emission recorded through a 510 nm primary 

beamsplitter and a 530 nm dichroic filter. For each condition, a series of confocal images 

of representative fields were taken and the section yielding the maximal signal was 

selected. 
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4.3. ELISA 

Cells seeded on 96-well plates were washed with PBS and fixed with 2% 

parafor

exposed to the Streptavidin-HRP conjugate (1:100). Optical 

density was m 2

5. MIN

s was determined by HPLC analysis 

with a 

 the high-temperature 

reactio

M) to terminate the incubation; 

cell m

 

maldehyde for 15 min at room temperature. After an overnight incubation in PBS 

with 3% BSA at 4°C, the monolayers were exposed for 1h at 37°C to anti-E-selectin 

polyclonal antibody (1:50). Cells were then washed twice in PBS and incubated for 30 min 

in biotin-conjugated mouse anti-rabbit secondary antibody (1:300); after additional washes 

with PBS, they were finally 

easured at 490 nm with a Victor  Multilabel Counter (Perkin Elmer); the 

values obtained were then referred to the correspondent protein content in each well. 

A O ACID CONTENT 

The intracellular content of amino acid was determined on cell monolayers washed 

twice with ice-cold MgCl2 and extracted in a 5% solution of acetic acid in ethanol. The 

intracellular content of the single amino acid specie

Biochrom 20 amino acid analyzer (Biochrom) employing a high-resolution column 

(Bio 20 Peek Lithium) and the physiological fluid chemical kit (Biochrom) for elution. The 

column effluent was mixed with ninhydrin reagent, passed through

n coil, and read by the photometer unit. Cell contents of the single amino acid 

species are expressed as nanomoles per milligram of protein. 

For the determination of the intracellular concentration of amino acids, cell 

volumes were determined in parallel cultures under the same experimental conditions by 

urea distribution space59. Briefly, cells were incubated for 10 min in [14C]urea (1.5 µCi/ml, 

0.5 mM), then rapidly washed with ice-cold urea (300 m

onolayers were extracted as described in section 2. Values of cell volume are 

expressed as microliters per milligram of protein.  

6. NITRIC OXIDE PRODUCTION  

6.1. NITRITE PRODUCTION 

The accumulation of nitrites, stable derivatives of NO, in the culture media of cell 

monolayers was assessed through a fluorimetric approach, based upon the production of 
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the fl en le 1-(H)-naphtotriazole from DAN in the presence of nitirites in an 

acid environment60. Briefly, 100 µl of medium were put in wells of a black 96-well plate 

with a clear bottom

uoresc t molecu

, along with 20 µl of DAN (0.025 mg/ml in 0.31 M HCl); after 10 min 

at room temperature, the reaction was stopped with 20 µl of 0.7 M NaOH. Standards were 

performed in the same medium from a solution of 1 mM sodium nitrite. Fluorescence was 

determined with a Victor2 1420 Multilabel Counter (Perkin Elmer). Nitrite production was 

expressed in nmoles per ml of extracellular medium (µM). 

6.2. BIOACTIVE NO PRODUCTION (RFL-6 REPORTER CELLS ASSAY) 

The RFL-6 reporter cell assay was performed as already described by Simon and 

co u

Cells were grown to confluence in 6-well plates and treated as indicated. After 

removi

e with 2 ml LS containing 3-

isobuty

 the RFL-6 cells were determined by 

radioimmunoassay as described62.  

7. CELL VIABILITY AND DEATH 

7.1. CELL NUMBER AND VIABILITY

lleag es61.  

ng the culture medium, monolayers were washed twice with Locke’s solution (LS) 

(NaCl 154.0mM; KCl 5.6mM; CaCl2, 2.0; MgCl2 1.0 mM; NaHCO3 3.6 mM; glucose 5.6 

mM; N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES) 10.0 mM, pH 7.4) 

and equilibrated in the same solution for 20–30 min; SOD (20 U/ml) was added to prevent 

the oxidation of NO.  

Since RFL-6 fibroblasts express significant amounts of soluble guanylyl cyclase, 

but no nitric oxide synthase, they can be used as reporter cells for exogenous NO. RFL-6 

cells cultured to confluence in 6-well plates were washed twic

l-1-methylxanthine (IBMX, 300 μM), to inhibit phosphodiesterases, preventing the 

formation of cGMP from degradation, and equilibrated for 20 min in the same solution at 

37 °C. The medium was removed and conditioned medium from treated cells (1 ml) was 

transferred onto the reporter cells. After a 2 min incubation, the medium was removed, ice-

cold sodium acetate buffer (50 mM, pH. 4.0) was added to each well, and the cells were 

frozen and lysed with liquid N2. cGMP levels in

 

detachment of adherent cells by trypsinization.  

Cell number was assessed with Cell Counter ZM (Coulter Electronics Ltd), after 
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Cell viability was tested with the fluorescent molecule resazurin, a widely used 

viability indicator63. For the assay, the culture medium was replaced with a solution of 

resazurin (44 μM) in complete growth medium. After 2h of incubation at 37°C, 

fluorescence was measured at 572 nm with a Wallac 1420 Victor2 Multilabel Counter 

fluorimeter (Perkin Elmer).  

7.2. PROPIDIUM IODIDE STAINING 

Cells were seeded on 10 cm diameter dishes and treated as indicated for each 

experiment. After culture trypsinization and centrifugation of the medium (to collect both 

adhere

BS, cells were resuspended and incubated for 1h at 37°C in the dark in 1 ml 

of Prop

7

nt and floating cells), cells were fixed in ice-cold methanol for 30 min at 4°C. After 

washing with P

idium Iodide solution, containing Propidium Iodide (PI, 20 µg/ml), Triton 0.1% and 

RNAse A (10µg/ml) in PBS. Propidium staining of at least 105 cells was acquired by 

FACSCalibur Flow Cytometer (Becton Dickinson); the analysis was performed using Cell 

Quest software. The number of cells undergoing late apoptosis or non apoptotic death is 

expressed as the percentage of the sub G0 population on the whole cell content. 

.3. ANNEXIN V STAINING 

Cells were grown onto 10 cm diameter, collagen coated Petri dishes and treated 

according to the experimental settings. After incubation, the floating cells in the different 

conditions were collected in 50 ml-tubes, while the monolayers were detached with trypsin 

and collected in the same tube, together with the correspondent media. The solutions 

containing adherent and floating cells were then centrifuged at 1800 rpm for 10 min and 

apoptotic cells were estimated according to the kit protocol of Annexin V/FITC (Bender 

MedSystems). Briefly, cells were incubated with 10 µl Annexin V-FITC conjugate in 

binding buffer (Bender MedSystems) for 30 min at room temperature in the dark, then 

washed with PBS and resuspended in 190 µl of binding buffer added with 10 µl of  

Propidium Iodide solution (PI, 1 µg/ml). Cell staining was acquired in at least 105 cells 

wi  F on Dickinson); analyses were performed using 

Cell Quest software. The number of apoptotic cell is expressed as percentage of total cells 

binding Annexin V but negative for PI on total cells. 

th a ACSCalibur Flow Cytometer (Bect
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7.4. CASPASE 3 ACTIVITY 

The activity of caspase 3 was determined by Caspase 3 Colorimetric Assay Kit 

(Sigma Aldrich); this method is based on the hydrolysis of the peptide substrate acetyl-

Asp-Glu-Val-Asp p-nitroanilide (Ac-DEVD-pNA) by caspase 3, which results in the 

release of the chromophore p-nitroaniline (p-NA). Briefly, cells were grown on 10 cm 

diame ish After the experimental treatments, culture 

monolayers were washed with ice-cold PBS and lysed in 1X lysis buffer. Cell lysates were 

then te

ter d es and treated as indicated. 

sted for protease activity using Ac-DEVD-pNA as caspase substrate (1h incubation 

at 37°C); the concentration of the p-NA released in each condition was calculated from the 

absorbance values at 405 nm, using a standard curve of p-nitroaniline. The caspase 3 

activity is expressed as nmol pNA/min/mg of protein. 

7.5. LDH MEASUREMENT 

Lactate Dehydrogenase (LDH) released from dead cells into the medium was 

assessed with a CytoTox 96® Non-Radioactive Cytotoxicity assay (Promega), based on an 

enzymatic reaction, which results in the conversion of a tetrazolium salt (INT) into a red 

formazan product. Briefly, 50 µl of culture medium were incubated with 50 µl of Substrate 

Mix provided by the manufacturer; after 30 min at room temperature in the dark, 

absorba

xtension length tip and incubated at 

37°C. After 0 (control), 12 and 24h, images of the same field were acquired with a Nikon 

Eclipse Inverted Microscope equipped with a Nikon DS Cooled Camera Head DS-5Mc 

nce at 490 nm was measured for each well with a Wallac 1420 Victor2 Multilabel 

Counter fluorimeter (Perkin Elmer). The amount of LDH released in each experimental 

condition is expressed as a percent of the maximum LDH released in lysed untreated cells 

(% of cytotoxicity).  

8. ENDOTHELIAL MIGRATION IN VITRO 

To assess endothelial migration in vitro, endothelial wound healing assay described 

by Weber et al. 64 was used, with minor modifications. Cells were cultured onto 6-well 

collagen coated Petri plates; once grown to confluence, fresh complete growth medium 

was added to the wells, along with the compounds required by the experiments. After 12h, 

the endothelial monolayers were wounded by two parallel strokes across the diameter of 

the well with a 0.4 mm-wide 200 µl Gilson-style e
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employing a Proxim re. The number of cells migrated into 1 

mm2 of wound area was quantified. 

 

chlorophenyl)-4-(4-fluorophenyl)-5-

pyridin-4-yl-1 (CFPD) and CD14 mAb were from Vinci Biochem. NF-kB inhibitors, 

peptide aldehyde C Leucinal (MG132), 2’-amino-3’-methoxiflavone 

(PD98059), the PKCα pseudosubstrate inhibitor peptide, and 4-(4-Fluorophenyl)-2-(4-

methylsulfinylphenyl)-5-(4-pyridyl)1H-im

ated. 

 

o 32 Image Analysis softwa

9. MATERIALS 

Endotoxin-free fetal bovine serum (FBS, Euroclone) and culture mediums

(Medium 199 for endothelial cells and RPMI 1640 for human monocytes and 

macrophages) were purchased from Celbio (Pero, Italy). [L-2,3,4-3H]Arginine (58.0 

Ci/mmol) was obtained from Perkin-Elmer Italia, while [14C]urea (58.0 Ci/mmol) was 

purchased from GE Healthcare Italia, as well as Fycoll Hypaque. GM-CSF, INFγ, TNFα, 

anthra [1,9-cd] pyrazol-6 [2H]-one (SP600125), 2-(4-

bz-Leu-Leu-

idazole (SB203580) were from Calbiochem. Hot 

Master Taq polymerase for semi-quantitative PCR was from Eppendorf s.r.l., while all 

reagents for Reverse Transcription and qPCR were purchased from Invitrogen s.r.l., 

together with 2,3-diaminonaphthalene (DAN), Alexa Fluor 488-phalloidin and Alexa Fluor 

488-conjugated secondary antibodies were from Molecular Probes. All the primary 

antibodies (Santa Cruz Biotechnology) were purchased from DBA Italia. Biotin conjugated 

mouse anti-rabbit and Streptavidin-HRP were from DAKO Italia. Sigma (Milano, Italy) 

was the source of LPS, rapamycin, FK506, AICAR as well as of all the other chemicals, 

unless otherwise indic



Table 1. Primers employed for semi-quantitative PCR  
 

GenBank 
Accession No. cDNA rodu p  Sense Antisense P ct Size, b

 
   

NM_003045 SLC7A1 5'-CGTCCCTCTTGA
   
 SLC7A1 5'-ACTTGCTTCTAT
   

NM_003046 SLC7A2 5'-GTTGACTGCAGGGG
 (CAT2A)  

NM_001008539 SLC7A2 5'-CCCAATGCCTCGTGT 262 
 (CAT2B)   
    

NM_001012661 SLC3A2 5'-GTTTGTCTCAGGCAA 270 
    

NM_003983 SLC7A6 5'-CTTTCTACTTCATGG 332 
    

NM_003982 SLC7A7 5'-AGACATCTTCCAGCT ' 481 
    

NM_000625 NOS2 5'-TCTGTTCAAGACCAA 151 
    

NM_002046 GAPDH 5'-CTCTGACTTCAACAG 209 
    

 
TCTGCTTC-3' 5'-GGCTGGTACCGTAAGACCAA-3' 

 
GCCTTCGTG-3' 5'-TGTGGCGATTATTGGTGTTT-3' 

 
TCATTT-3' 5'-ACATTTGGGCTGGTCGTAAG-3' 

 
AATCT-3' 5'-ACATTTGGGCTGGTCGTAAG-3' 

 
 

GGCTC-3' 5'-GGAACAAGGAAAGGAGGGAG-3' 
 

GTGTTTACC-3' 5'-ATCCTGAGTCTCCTATAGCTTACCAA-3' 
 

CATTAACTACTACAG-3' 5'-CTTTTCAACTTCCTTAGCTCTAGCCAGTA-3
 

ATTCCACC-3' 5'-CGGGGGACTCATTCTGCTGC-3' 
 

CGACACCCACTCCT-3' 5'-GTCTCTCTTCTTCCTCTTGTGCTCTTGCT-3' 
 

 
427  

 
387 

 
163  

 
 

 

 

 

 

 
Sense primers for CAT2A and CAT2B have been formulated  the alt r SLC7A2 transcript.

 
 
 

on the basis of the different sequences resulting from e native splicing of   
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PCR Table 2. Primers employed for Real Time quantitative 
 

S AGenBank 
Accession No. cDNA ense ntisense Product Size, bp  

 
   

5'-
   

NM_ 03046 5 5'-  
(CA 2A    

9 5 5'-
   
  

NM_003983 SLC7A6 -CTTTCTACTTCATGGGTGTTTACC-3' 5'-ATCCTGAGTCTCCTATAGCTTACCAA-3' 332 
   
5 5'-
  

5'-
  
5 5'-
  
5 5'-
  
5 5'-
  

NM_000450 ELAM 5'-ACCTCCACGGAAGCTATGACT-3' 5'-CAGACCCACACATTGTTGACTT-' 173 

N
 

  
NM_003045 SLC7A1 5'-CTTCATCACCGGCTGGAACT-3' GGGTCTGCCTATCAGCTCGT-3' 100 

  
0 SLC7A2 '-TTCTCTCTGCGCCTTGTCAA-3' TCTAAACAGTAAGCCATCCCGG-3' 95 
 T ) 

NM_00100853 SLC7A2 '-TTCTCTCTGCGCCTTGTCAA -3' CCATCCTCCGCCATAGCATA-3' 82 
 (CAT2B) 
   

5'
  

NM_003982 SLC7A7 
  

'-GAAGGAGGAGCATCAGACCA-3' CCCAGTTCCGCATAACAAAG-3' 481 
 

NM_000625 NOS2 
  

5'-TCTGTTCAAGACCAAATTCCACC-3' CGGGGACTCATTCTGCTGC -3' 151 
 

NM_000603 NOS3 
  

'-TGGTACATGAGCACTGAGATCG-3' CCACGTTGATTTCCACTGCTG-3' 148 
 

NM_000576 IL1β 
  

'-ACAGACCTTCCAGGAGAATG-3' GCAGTTCAGTGATCGTACAG-3' 127 
 

NM_000660 TGFβ1 
  

'-TAGACCCTTTCTCCTCCAGGAGACG -3' GCTGGGGGTCTCCCGGCAAAAGGT-3' 226 
 

     
_002046 GAPDH 5'-AGCCTCAAGATCATCAGCAATG-3' 5'-CACGATACCAAAGTTGTCATGGA-3' 87 

 

M



C PTER I ARGININE AND H M  D H I  

1. I ODUCTION AND AIM OF THE STUDY 

Since L-arginine–nitric oxide signalling pathway has emerged as one of the key 

second messenger systems involved in the regulation of vascular tone and permeability, the 

research of the last decades has been devoted to define the role of circu ng and i cellular 

concentrations of  a o id an the gu ry echanis in ve n their 

maintenance in endothelial cells  healt d as  

An extensiv ac ran rt  b pe med in 

human u  b iff nt up he sul f these 

studies have demon te at, der ph olo al di s, rg e t sp n these 

endothelial cells is me ed edom ntl y ste y nd +L . The same 

contributions also m tra that, H E  em + activ erable 

predominantly to C 1 sp r, wh CA A  C 2B e cta  o  

low levels; system y+L is also present, as demonstrated by the expression of y+LAT1, y+LAT2 

and 4F2hc transcripts, but its contribution to the overall L-Arg transport under basal 

conditions is considered minimal15.   

While a regulatory mechanism  system ly documented, a lot of 

evidences demonstrate that the expression of CAT m As d p ein an modulated by 

riet  hormonal and inflammatory stimuli66  p  i  d

erial S and p inf m s ulating arginine transport 

ifferent cell models15, . I ght of se din  se ed 

erify whether  c in epend  s la  o rg e sp o ved in 

rent animal an um  m els is me  ib  t e matory 

onse, possibly t ug e eased d on nit ox  a ll known signalling 

ecule produce

Among the pro-inflamm to modulate arginine transport, Tumor 

rosis tor plays a 

tal role in the i uct ammation; in particular, this 

kine i nown to promote the activation of endothelial cells, profoundly affecting the 

es many es  p ins in ve  th gu on of endothelial function, such 
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as COX2, the adhesion molecules ICAM, VCAM and E-selectin, growth factors and 

secon

As far as a possible connection between the stimulation of L-arginine transport and 

nit  concerned, conflicting results has lead 

to the idea that CAT proteins and NO synthesis can not be considered always induced in 

parallel

 upon incubation with TNFα is not 

signific

r such induction. Nuclear factor-[kappa]B (NF-kB) and 

p38 mi

ells upon treatment with pro-inflammatory stimuli 

(i.e. w

dary messengers, as nitric oxide. 

ric oxide production under pathological conditions is

70-72. In further support of this hypothesis, experiments performed in our laboratory 

have shown that the TNFα- and LPS-dependent modulation of arginine transport in HUVECs 

is dissociated from the stimulation of nitric oxide production: Sala and colleagues have indeed 

demonstrated that, although TNFα and LPS induce a transient stimulation of arginine influx, 

mediated specifically by system y+, nitrite accumulation

antly different, although lower in cytokine-treated cells with respect to control ones; 

moreover, the mRNA of iNOS is not detectable either in the absence or in the presence of the 

inflammatory stimuli, while eNOS expression is even decreased by the treatment with the 

cytokine15.  

In the same paper, it is also shown that the stimulation of L-Arg transport upon 

treatment of endothelial cells with TNFα or LPS can be ascribed to the increased expression 

of the sole SLC7A2 mRNA, while SLC7A1 levels remain substantially unaffected, as well as 

system y+L expression and activity. Thus far, however, little is known about the signal 

transduction pathways responsible fo

togen-activated protein kinase have been identified as essential mediators of CAT2B 

induction in rat alveolar macrophages and RASMCs, respectively73,74; furthermore, the 

activation of PKC is known to be required for TNFα stimulation of L-Arg transport in 

HUVEC75. However, given the network of signalling pathways acting downstream the 

cytokine, it is possible that several transduction routes may overlap to modulate arginine 

transport.  

Therefore, the aim of the first part of this research project has been the definition and 

the characterization of all the molecular events leading to the induction of L-Arg influx and 

system y+ activity in human endothelial c

ith TNFα). Since differences between the metabolic features of endothelial cells 

obtained from different vascular districts are well established, we have analyzed human cells 

derived from both foetal (umbilical vein) and adult (saphenous vein) endothelium, so as to 

verify whether the results obtained were specific for an endothelial model or more generally 

referable to human endothelium.  
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In light of the many evidences describing the dependence of endothelial cells response 

to TNFα on new protein synthesis (for review see76), particular interest has been initially 

devoted

lying this effect remain undefined, several TNFα responsive protein kinases, such 

as MA

Stimulus  >  MAPKKK  >  MAPKK  >  MAPK  >  Response 

where 

 composed by the δ, ε, η, and θ isoforms, require DAG, but 

not Ca2+;  

 to the study of NF-kB activity.  

NF-kB is a transcription factor, involved in cellular responses to stimuli such as stress, 

cytokines, free radicals, ultraviolet irradiation, and bacterial or viral antigens77. Its activity is 

regulated primarily by the phosphorylation of specific inhibitory proteins, the IkBs, which 

withhold the factor in the cytoplasm of non-stimulated cells; in response to proper stimuli, 

IkB kinase (IKK) phosphorylates the IkBs, rendering them suitable of ubiquitination and 

consequent degradation by proteasome, thus permitting the nuclear translocation of the NF-

kB to the nucleus. In endothelial cells, TNFα specifically causes degradation of IkBα, IkBβ 

and IkBε, producing sustained activation of p50 (NF-kB1), p65 (RelA) and c-Rel 

subunits78,79; furthermore, in the same model, cytokine-dependent NF-kB activation is known 

to require the intracellular complex TRADD/RIP/TRAF2. Although the precise molecular 

events under

PK, PI3K/Akt and PKC, are supposed to be involved in the connection between 

RIP/TRAF2 and NF-kB, since all of them can phosphorylate and activate IKK. 

Mitogen activated protein kinases (MAPKs) could be good candidates for such a role, 

since they are known to be activated by TNFα in endothelial cells80. These proteins are 

serine/threonine specific kinases that transduce a large variety of external signals, leading to a 

wide range of cellular responses, including growth, differentiation, inflammation and 

apoptosis. In mammals, three major MAPK pathways have been identified: MAPK/ERK 

(Extracellular-signal regulated kinase), SAPK/JNK (stress activated protein kinase/Jun N-

terminal kinase), and p38MAPK. All these pathways are characterized by the following general 

signalling cascade, highly conserved from yeasts to mammals: 

MAPKK is the kinase of MAPK and MAPKKK is the kinase of MAPKK. 

Another molecular pathway linked to TNFα signalling is that of protein kinases C 

(PKCs). This family comprises three subfamilies of kinases, based on their second messenger 

requirements: 

 classical or conventional PKCs, (c)PKCs, includes the isoforms α, βI, βII, and γ, 

and requires Ca2+, diacylglycerol (DAG) and a phospholipid such as 

phosphatidylcholine for activation (Fig.3);  

 novel PKCs, (n)PKCs,
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 atypical PKCs, (a)PKCs, includes protein kinase Mζ and ι / λ isoforms and 

requires neither Ca2+ nor DAG for activation.  

 

lls TNFα is known to activate 

Akt in a PI3K- es that play a 

th, motility, 

prolifer

K dependent serine/threonine kinases (PDK1) and Akt from the cytoplasm to 

the plasma

changes in 

PDK1. 

For 

TNFα, through different intermediates, such as Akt83,84. mTOR (mammalian Target Of 

In endothelial cells from human saphenous vein three known isozymes have been 

described: the classical PKCα, the novel PKCε and the atypical PKCζ81; moreover, in the 

same model, PKCα and PKCε, but not PKCζ, are known to be stimulated by TNFα81.  

Fig.3 Activation of a conventional PKC. 

An external stimulus activates a G 
protein-coupled receptor (GPCR), which, 
in turn, activates phospholipase C (PLC), 
to cleave phosphoinositol-4,5-bisphos-
phate (PIP2) into DAG and IP3. The IP3 
interacts with a calcium channel in the 
endoplasmic reticulum (ER), releasing 
Ca2+ into the cytoplasm. The increase in 
Ca2+ levels activates PKC, which 
translocates to the membrane, anchoring 
to DAG and phosphatidylserine.  
(modified from Signal Transduction 
Resource, Promega Corporation) 

Finally, among the different signalling pathways leading to NF-kB activation, also Akt 

is of great interest, since it is reported to phosphorylate IKK and mediate activation of NF-kB 

in response to specific agonists82. Akt is a serine/threonine kinase which requires a double 

phosphorylation to become fully activated: phosphorylation at Thr308, catalyzed by 

PI3K/PDK1 and essential for Akt activation, and phosphoSer473 due to the activity of the 

mTOR/rictor complex, TORC2. In particular, in endothelial ce

dependent way79. PI3Ks are ubiquitous, heterodimeric enzym

central role in the regulation of many cellular processes, including cell grow

ation, and survival. Activated PI3-kinases phosphorylates phosphoinositol (PI) 

substrates to produce PI(3)P, PI(3,4)P2, and PI(3,4,5)P3, which act as second messengers and 

recruit the PI3

 membrane; lipid binding and membrane translocation lead to conformational 

Akt, which let it be phosphorylated in a residue of Thr in the activation loop by 

what concerns mTOR, there are evidence demonstrating that it can be activated by 
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Rapamy

size and pr  signals,  such as nutrients, energy 

and growth factors availability or stress associated conditions85. Following proper stimuli

mTOR

phosphorylation status of ribosomal S6 kinase and 4EBP186, while TORC2 seems to be 

mainly involved in the regulation of actin cytoskeleton87. What is noteworthy, the activities of 

the two complexes have different effects on Akt (Fig.4): once the kinase has activated 

TORC1, this acts as an inhibitor for it, eliciting a negative feedback loop to stop Akt-

dependent activation; on the contrary, the other complex, TORC2, is known to promote Akt 

activation, by phosphorylating it in Ser47388.  

loy of the drug in clinical practice, and particularly in DES, is currently the object of 

an open discussion turned to evaluate the safety of the compound for human health. Indeed, 

cin) is a serine/threonine kinase, which plays a pivotal role in the regulation of cell 

oliferation, in response to different extracellular

, 

 complexes with the adaptor proteins raptor or rictor, forming respectively TORC1 and 

TORC2; the first is involved in the regulation of protein translation through the control of the 

Fig.4 Schematic representation of the 
interplay between Akt and TORCs, 
TORC1 and TORC2.  

, (modified from Bhaskar and Hay
Developmental Cell (2007), 12(4), 487) 

Studies about mTOR pathway are greatly favoured by the availability of a specific 

inhibitor, rapamycin (sirolimus), a macrolide antibiotic that, after binding to the protein 

FKBP1289, inhibits the signalling cascade dependent upon mTOR and leads to the arrest of 

both protein synthesis and cell cycle progression. In light of the effects of the drug on cell 

proliferation, rapamycin has been proposed in clinical practice as both an immunosuppressant 

and an anticancer agent90,91; for the same reason, more recently, the Food and Drug 

Administration has also approved its use in drug-eluting stents (DES) for the prevention of 

restenosis after percutaneous coronary revascularization92. This is another reason why studies 

about mTOR involvement in the maintenance of endothelial function appear of great interest: 

the emp
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the resu

sequences of mTOR inhibition at molecular 

vascular level have been assessed under basal conditions, but also in cells incubated 

simultaneously with rapamycin and pro-inflammatory cytokines; in this way, the role of the 

kinase in the modulation of nitric oxide production, as well as of the expression of adhesion 

molecules, stress-associated proteins and other known markers of endothelial activation has 

been defined both in normal cells and during the endothelial response to an inflammatory 

insult. 

 

lts of recent clinical investigations have shown that, beyond reducing the incidence of 

in-stent restenosis, thus preventing the need for repeating percutaneous intervention92, the use 

of DES is associated to an increased rate of late stent thrombosis (LST)93,94. Although the 

molecular basis of this effect have not been fully elucidated thus far, recent evidences report a 

connection between the implantation of rapamycin-eluting stent and a long-term endothelial 

dysfunction, suggesting that the observed increased risk of LST could be due to a deleterious 

effect of the drug on the endothelium95.  

In this context, once clarified the involvement of the kinase in the regulation of L-Arg 

transport in human endothelium, the second part of the research has been intended to define 

more generally the role of mTOR in the maintenance of endothelial viability and function, 

that is not only the regulation of vascular tone and permeability under physiological 

conditions, but also endothelial ability to counteract an exogenous insult by inducing an 

activated phenotype. More in detail, the con
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2. RESULTS AND DISCUSSION 

2.1. CHARACTERIZATION OF L-ARG TRANSPORT IN HUMAN  ENDOTHELIAL CELLS 

Preliminary characterization experiments indicate that HSVECs, like HUVECs15, 

transport L-Arg through two Na+-independent components: one, insensitive to N-

ethylmaleimide (NEM) and suppressed by excess of L-

leucine (2mM) in the presence of sodium, corresponds to 

syst +em y L; the other, inhibited by NEM and relatively 
+ 

ars referable to the sole NEM-sensitive component (Panel A), 

insensitive to leucine, is identifiable with system y

(Fig.5).  

 

The effects of pro-inflammatory stimuli, such as cytokines and bacterial LPS, in 

HSVECs have been therefore studied on arginine influx, discriminated for its different 

components. 

As shown in Fig.6, both TNFα and LPS, but not IL-1β and INFγ, produce an increase 

of L-Arg transport, which appe

 

Fig.5 Characterization of L-Arginine influx in HSVECs. 

In endothelial cells from saphenous vein arginine transport occurs 
through both systems y+ and y+L. 

tot
al

+NEM
+Leu
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1.0
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Fig.6 Effects of inflammatory cytokines and LPS on L-Arg transport in HSVECs. 

Panel A. System y+. Data represent the NEM-sensitive arginine influx calculated as the difference between 
total and NEM-resistant influx; only TNFα and LPS stimulate system y+ activity. Panel B. System y+L. 
NEM-resistant arginine influx is unaltered under any of the experimental conditions tested. 
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sin sistant component, i.e. system y+L, is detected under 

any of the experimental conditions tested (Panel B). Conversely, the significant induction of 

system ter 

9h of treatment, when the influx of the amino acid is almost doubled in treated cells with 

respect to co

 and LPS, as far as arginine tran

The molecular mechanisms underlying this st

endothelial amino acid transport have been then investigated. 

As shown in Fig.7, the treatment with the reversible transcription inhibitor 5,6-

dichloro-1-β-D-ribobenzimidazole (DRB) substantially hinders TNFα-induced increase of 

system y+ transport activity without altering the basal uptake of arginine (Panel A); 

consistently, the analysis of the expression of genes involved in L-Arg transport in human 

endothelial cells shows that only the mRNA of SLC7A2/CAT2B undergoes a significant 

induction upon treatment with the cytokine (Panel B), whereas SLC7A1/CAT1 (Panel B), 

SLC7A6/y+LAT2, SLC7A7/y+LAT1 and SLC3A2/4F2hc (data not shown) do not show any 

significant variation with either TNFα or LPS. Therefore, it looks evident that the stimulatory 

Fig.7 Effects of TNFα on gene transcription. 

Panel A. DRB (50 µM), added 1h before TNFα, inhibits cytokine-induced increase of system y+ transport 
activity, without affecting the basal L-Arg uptake. **P<0.01inhibitor present vs. inhibitor absent in TNFα 
treated cells. Panel B. TNFα-dependent stimulation of L-Arg transport is referable to the induction of 
SLC7A2/CAT2B transcript, as assessed through RT-PCR and the relative densitometric analysis. 

ce no significant change of NEM-re

 y+ activity is evident throughout the 24h incubation, with a maximal stimulation af

ntrol, untreated cells.  

We can thus conclude that, as already demonstrated in HUVECs, also in HSVECs the 

sporters are concerned, is system y+.  
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effects of inflammatory cytokines on arginine transport in human endothelium likely depend 

on transcription mechanisms, particularly concerning SLC7A2/CAT2B mRNA.  

Most of the best characterized endothelial responses to TNFα are known to involve, 

among the possible transcription factors, NF-kB; we have thus investigated its role also in 

cytokine-induced stimulation of system y+ activity. For this purpose, we have tested the effect 

of seve

s 

with th

 IkB98.  

ral inhibitors of the transcription factor, with different mechanisms of action: CAPE 

and PDTC, that inhibit transcription activation suppressing the interaction of NF-kB protein

e DNA96; PPM-18, that blocks the removal of IkBα from NF-kB/IkBα complex97; and 

MG132 that inhibits the proteasome-dependent degradation of

As shown in Fig.8, all the inhibitors have no significant effect on basal arginine 

transport, while, in the presence of TNFα (9h), PDTC, CAPE, and MG132 completely 

suppress the stimulatory effect of the cytokine, and PPM-18 too, although only partially 

(Panel A). Consistently, RT-PCR analysis indicates that PPM-18 markedly reduces, but does 

not abolish, the induction of CAT2B caused by TNFα (Panel B). 
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Fig.8 Role of NF-kB on TNFα-induced stimulation of system y+ activity. 

Panel A. CAPE (25 µg/ml), PPM-18 (1 µM), PDTC (100 µM), MG132 (2 µM) inhibit cytokine-induced 
se of system y+ transport activity, without affecting the basal L-Arg uptake. **P<0.01(inhibitor present 

vs. inhibitor absent in TNFα treated cells). Panel B. PPM-18 reduces TNFα-dependent stimulation of 
SLC7A2/CAT2B transcript, as assessed through RT-PCR and the relative densitometric analysis. 

increa

In light of these results, the involvement of NF-kB in the molecular mechanism 

responsible for inflammation-dependent stimulation of L-Arg transport, previously described 

only in non endothelial models73, appears now evident also in human endothelial cells; in this 

model, SLC7/CAT2 gene can be added to the enlarging list of targets of the transcription 

factor.  
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transport (Fig.9), excluding the involvement of 

these transduction pathways in the stimulatory 

effect of the cytokine on human endothelium. 

 

Fig.9 Effects of MAPK inhibitors.  

Cells have been incubated with PD98059 (50 µM), 
SB203580 (20 µM), SP600125 (5 µM), or CFPD (15 
µM) for 9h. Both basal and TNFα-stimulated activities 
of system y+ are unaffected by any of the inhibitors 
tested. 

f endothelial arginine 

 

Afterwards, also PKC pathway has been studied, since in HUVECs its inhibition is 

known to counteract the effects of TNFα treatment on the expression of adhesion molecules 
101. Three distinct approaches have been employed to evaluate the role of PKC in TNFα-

induced stimulation of system y+ transport activity: 

 chronic exposure to 100 nM PDBu to downregulate (c) and (n)PKCs activity81,102; 

 use of chelerythrine (inhibitor of the catalytic domain of PKCs) at the maximal 

concentration non toxic for HSVECs (Visigalli, unpublished results); 

 use of the inhibitor peptide for PKCζ. 

Results in Fig.10 show that TNFα-dependent stimulation of system y+ transport 

activity is still clearly detectable under each of the three conditions adopted. This is in 

contras

rature may be due to differences in the endothelial model employed and/or in the 

Several transduction pathways have been then studied, to ascertain their role in the 

NF-kB-mediated stimulation of arginine transport by TNFα.  

Initially, MAPK cascades have been considered, since evidences demonstrate that in 

HUVECs short term, adenosine-99 or D-glucose-dependent100 stimulation of arginine influx 

via system y+ are blocked by the inhibition of p44/42 MAPK; moreover, the stimulation of 

arginine transport by LPS in smooth muscle cells also appears to involve MAPK, and in 

particular p3874. Nevertheless, in our hands, inhibitors of the main MAPK groups, ERK1/2 

(PD98059), p38MAPK (SB203580 and CFPD), and JNK (SP600125), do not interfere with 

TNFα stimulation (9h) o

t with the paper by Pan et al., where cytokine-mediated stimulation of arginine 

transport in HUVECs is shown to be blocked by chelerythrine75; moreover, results published 

by Krotova and colleagues indicate that the downregulation of (c)PKC, through a 18h 

exposure to phorbols, produces an increase of arginine transport102. Whatever the discrepancy 
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isozym

the PKC isozymes appears to be 

request

Finally, also mTOR involvement in stem y+ transport 

activity has been investigated. L-Arg transp s 

upon treatment with rapamycin, a known inh

Surprisingly, mTOR inhibition no  doesn’t inhibit the TNFα-dependent 

stimulation of arginine transport, but, rather, it gnificantly enhances the effects of the 

cytokin

sti

ed evidences103,104, these results suggest 

that, in th m cle 

cells105

e pattern, PKC involvement in the regulation of arginine transport in endothelial cells 

deserves further investigations; however, in our hands any of 

ed for TNFα effect on L-Arg transport in HSVECs. 

TNFα-induced stimulation of sy

ort has been measured in human endothelial cell

ibitor of the kinase (Fig.11).  

t only

si

e. Indeed, when combined with TNFα, L-Arg transport is significantly higher than in 

cells incubated with the only cytokine; moreover, also in the absence of TNFα, rapamycin 

mulates arginine transport, with values ranging from +10% to +50%, depending on the cell 

strain employed. Consistently with recently publish

 spite of the antagonism described for rapamycin and TNFα in vascular smoo us

, the effects of the two compounds may actually synergize in endothelial cells.  
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Fig.10 Effects of PKCs inhibitors.  
Cells, pre-incubated with chelerytrine (5 µM) for 1h, 

(100 
α for 
l the 
f the 

PKCζ inhibitor peptide (10 µM) for 1h, or PDBu 
nM) for 24h, have been further treated with TNF
9h. L-Arg transport looks stimulated under al
experimental conditions, even in the presence o
inhibitors. 

Fig.11 Effects of mTOR inhibition. 

Cells have been incubated with 
rapamycin for 9h, with or without 
TNFα. The activity of system y+ under 
both basal and cytokine-stimulated 
conditions appears induced by the 
macrolide in HSVECS.  
**P<0.01 vs. control, untreated cells 
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In conclusion, the first part of the research thus far described demonstrates that  

 human endothelial cells from foetal (HUVEC) and adult (HSVEC) veins respond 

similarly to pro-inflammatory cytokines or bacterial LPS by stimulating the sole 

transport system y+ activity for L-Arg influx, through the induction of SLC7A2 

transcript; 

an endothelium, so 

as to 

 the enhancement of arginine transport induced by the cytokine requires mRNA 

transcription and, more precisely, the activation of NF-kB transcription factor; 

 neither MAPK or PKC pathways appear to be involved in the regulatory 

mechanism responsible for transport stimulation; 

 mTOR inhibition is ineffective in lowering TNFα-dependent stimulation of L-Arg 

transport, and even strengthens it, suggesting that rapamycin relieves a 

downregulatory effect of the PI3-kinase/Akt/mTOR transduction pathway on 

system y+-mediated amino acid transport . 

The second part of this study has then concerned the further characterization of the 

role of mTOR in TNFα-dependent stimulation of arginine transport in hum

define the mechanism responsible for the strengthening of cytokine-dependent 

stimulation of L-Arg transport upon incubation of endothelial cells with rapamycin.  

2.2. DEFINITION OF THE ROLE OF mTOR IN CYTOKINE-DEPENDENT STIMULATION 

OF ARGININE TRANSPORT IN HUMAN ENDOTHELIAL CELLS 

The consequences of mTOR inhibition on human endothelium have been assessed also 

on foetal endothelial cells derived from umbilical vein (HUVECs), to verify whether the 
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Fig.12 Effects of rapamycin 
on Arg transport. 

In HUVEC and HSVEC 
rapamycin stimulates the
activity of system y+, both 
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of TNFα.  
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control, untreated cells) 
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effects ble in 

the two mo

more mark

becomes ev

system y+-m ginine transport is 2- or 3-fold increased, compared with untreated, 

control cells (Fig.12). 

To b

arginine transport in th  

untr ed H

observed in HSVECs are tissue specific or not. The results obtained are compara

dels: also in HUVECs, rapamycin stimulates L-Arg transport, with effects even 

ed than in HSVECs. Such stimulation, already observable after 8h treatment, 

en more evident after 24h: at this time, in cells incubated with both compounds, 

ediated ar

etter characterize this effect, a kinetic analysis of system y+ transport activity (i.e. 

e presence of excess extracellular leucine) has been performed with

eat SVECs or with cells treated for 24h in the presence of TNFα and rapamycin. The 
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Fig.13 Kinetic analysis of L-arginine transpor

α+rapamycin-treated cells (see Experimental Procedures). In the inset, data of arginine influx obtained 
 arginine concentrations up to 1 mM (control) are represented in an amplified scale. Panel B. Eadie-

Hofstee graphical representation of data in Panel A. In the inset, data of arginine influx obtained in control 

 High affinity component Low affinity component 

control 
Vmax  1.67±0.114 nmol/mg of prot/min 

Km 0.08±0.027 mM 
- 

+ TNFα + 

rapamycin 

Vmax   10.4 ±2.35114 nmol/mg of prot/min 

Km 0.12±0.035 mM 

Vmax 27.3±2.48114 nmol/mg of prot/min

Km  5.0±1.48 mM 

 

                                               Table 4. Kinetic constants of L-Arg transport 
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diffusive component (Kd of 0.95±0.02 min-1), derived from the linear regression of influx 

values at high arginine concentrations (from 2 to 10 mM) in control cells, has been subtracted 

to influx data to yield the saturable arginine influx. The results are presented both in v vs. [S] 

representation (Panel A) and in the Eadie-Hofstee graphical transformation (Panel B) so as to 

allow a better discrimination among the transport components. As shown in Fig.13, saturable 

arginine transport in untreated cells is satisfactorily fitted with a single system (insets in 

Panels 

significantly modified, and a low affinity component, not detectable in control cells (Table 4). 

A and B), while, in cells treated with TNFα and rapamycin, transport data are best 

fitted by the operation of two saturable transport systems with very divergent affinities (Panel 

B): the high affinity component, whose Vmax is markedly increased while its Km is not 

Similar analyses indicates that incubation with TNFα or rapamycin alone raises the Vmax of 

the high affinity component and causes the appearance of the low affinity component, 

although at a lesser extent than the two compounds together (results not shown). While the 

Km of the high affinity component is in the range attributed to the high affinity system y+-

related CAT isoforms (CAT1 and CAT2B), the Km of the low affinity component is 

compatible with the operation of CAT2A transporter106.  

Consistently with this hypothesis, molecular analyses at protein level reveal that 

rapamycin-treated cells express higher amounts of CAT2 with respect to control, untreated 

cells. The cell content of CAT2 has been determined in HUVECs incubated with TNFα, 

rapamycin, or both, by using, in both Western Blot and immunocytochemistry analyses, a 

polyclonal antiserum that does not discriminate between CAT2A and CAT2B isoforms. The 

results of the Western Blot analysis (Fig.14) indicate that, while carrier proteins are barely 

expressed in control, untreated HUVECs, a 8-fold increase in CAT2 expression is detected in 

response to a 24h treatment with either rapamycin or TNFα, confirming that either 
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Fig.14 Effect of rapamycin on the expression of 
CAT2 protein. 

CAT2 expression has been assessed in cells incubated 
for 24h in the absence or in the presence of TNFα, 
rapamycin, or both. Rapamycin stimulates CAT2 
expression, both when employed alone or in 
combination with TNFα.  
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compounds stimulate L-Arg transport through the induction of the amino acid transporter; 

however, the largest induction (20-fold) is detectable in cells treated with both compounds 

together.  

The same results are confirmed by the immunocytochemical analysis of CAT2 

expression in HUVECs (Fig.15): while the carrier proteins are almost undetectable in control 

cells, they become evident in cells treated for 24h with TNFα or rapamycin. More 

interestingly, cells treated with both rapamycin and TNFα uniformly present a much higher 

CAT2 signal, with an evident intracellular distribution, although a clear cut positivity of 

plasma membrane is also evident. 

To characterize the mechanism responsible for the induction of CAT2 protein, a qPCR 

analysis of genes related to system y+ activity has been also performed (Fig.16). While the 

stimulation of L-Arg transport in human endothelial cells appears as quite a straightforward 

process, with increased SLC7A2 transcription followed by increased abundance of CAT2 

Fig. 15 Expression of CAT2 proteins in HUVECs. 

 proteins signal, undetectable in control, untreated cells, becomes evident upon treatment with 
rapamycin or TNFα, and, even more, when the two compounds are employed together. Arrows indicate 
perinuclear areas of high CAT2 expression, arrowheads the membrane expression of CAT2 proteins. 

CAT2

levels of SLC7A1/CAT1 are unaffected by any of the experimental conditions adopted (data 

not shown), transcripts for both SLC7A2/CAT2A (Panel A) and SLC7A2/CAT2B (Panel B) 

appear induced by the treatment with both TNFα or rapamycin, in the absence and in the 

presence of the cytokine; in this latter case, a massive (>5-10 fold) increase in both CAT2A 

and CAT2B mRNA levels is consistently observed after 8h and, even more clearly, after 24h 

of incubation. The relative increase in mRNA abundance is of the same order of magnitude as 

the increase in protein levels, thus suggesting that no gross regulations at post transcriptional 

level are active; moreover, intermediate regulatory steps at the translational level are unlikely, 

since the increase observed for the immature, non glycosylated form of CAT2 is proportional 

to that of the mature, fully glycosylated form (Fig.14). Thus, rapamycin-dependent 
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proteins and the stimulation of transport Vmax; the stimulatory effects of the drug on system y+ 

activity seem therefore to contrast with other regulatory mechanisms of arginine transport, in 

which the expression of CAT transporters has been described to be finely regulated at post-

transcr

For what concerns L-Arg transport and 

the induction of the system y+-related genes, 

what also appears of peculiar interest is the 

induction of the low affinity (Km = 5 mM) 

CAT2A isoform. In human endothelium, 

SLC7A2/CAT2A expression is almost 

undetectable in control cells, suggesting that 

the expression of the low affinity isoform is, at 

best, marginal under basal conditions. High 

combined with TNFα.  
*P<0.05, **P<0.01, ***P<0.001 vs. control cells. 

iptional107,108 or protein level109. 

Fig.16 Effect of rapamycin on the expression of 
genes related to system y+. 

In cells treated for 8h or 24h, rapamycin induces the 
levels of SLC7A2/CAT2A (Panel A) and 
SLC7A2/CAT2B (Panel B),  particularly when 

constitutive expression of CAT2A has been 

described only in hepatocytes, while the 

induction of the transporter by cytokines has been reported in other animal cell models, such 

as rat cardiac myocytes109 or rat vascular smooth muscle cells 47; moreover, CAT2A 

expression is also known to be induced in rat skeletal muscle under stress conditions, such as 

surgical trauma or food deprivation 2. Our results demonstrate that in human endothelial cells, 

while CAT2A contribution appears negligible under basal conditions, it becomes clearly 

detectable in cells treated with both TNFα and rapamycin, when arginine transport can be 

satisfactorily explained by two mechanisms, one with an high and one with a low affinity for 

the substrate. The physiologic significance of this induction remains however unclear since, 

even at the supraphysiological arginine concentrations of the culture medium (0.3 mM vs. 

normal plasma concentrations ranging around 0.1 mM), the kinetic parameters reported in 

Table 1 indicate that no more than 20% of arginine influx in cells treated with both rapamycin 
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and TNFα occurrs through CAT2A, with the remaining 80% attributable to CAT2B and 

CAT1 activity.  

A possible explanation of CAT2A function derives from the analysis of cationic amino 

acids cell content under the different experimental conditions (Fig.17): treatment with 

α, induces a significant increase of the 

 

stimulation of system y+ activity; since rapam

cells110,111, this increase in intracellular arg

induction of arginine influx, referable to 

proteolysis. If this is the case, the stimulation

prevent the excessive accumulation of cationi

since this low affinity transporter has been pr
2

rapamycin, either alone or combined with TNF

intracellular concentration of both lysine and arginine, consistent with the observed

ycin is known to induce autophagy in cultured 

inine levels could be the result of both the 

CAT2B activity, and the stimulation of cell 

 of CAT2A could be explained as a device to 

c amino acids in the intracellular compartment, 

oposed as an export route for arginine derived 

from the breakdown of proteins . 

In summary, the second part of this research has led to the following observations: 

 mTOR inhibition is not associated to the suppression of TNFα-dependent 

stimulation of endothelial L-Arg transport, but, rather, to its further strengthening; 

 even when employed alone, rapamycin stimulates arginine transport across the 

cell membrane through the induction of the transcription of both SLC7A2/CAT2A 

and CAT2B messengers;  

 rapamycin-dependent stimulation of SLC7A2 is followed by the straightforward 

increase in expression of CAT2B isoform and, more interestingly, by the 

induction of the low affinity, stress-associated CAT2A protein; 

lysine arginine
0.0

0.5

1.0

1.5

control TNFα

rapamycin TNFα + rapamycin

[a
a]

, m
M

* *

**
** nic 

amino acids.  

Rapamycin, both alone and together with TNFα, 
cause
argini

Fig.17 Intracellular concentration of catio

s an increase in intracellular concentration of 
ne and lysine.  

*P<0.05, **P<0.01 vs. control cells. 
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 consistently with the stimulation of system y+ activity, rapamycin causes a 

significant increase of both arginine and lysine intracellular concentrations, 

pro-inflammatory stimuli, mTOR is responsible of the repression of CAT2 transcription, 

although the functional consequences of the observed changes in CAT expression and 

arginine transport remain undefined. However, given the association of CAT2A transporters 

to stress conditions, its induction by rapamycin could insinuate that mTOR inhibition is 

responsible of a severe cellular stress in human endothelium and, as a consequence, that the 

kinase plays a central role in the preservation of endothelial function and viability.  

2.3. EFFECT OF mTOR INHIBITION ON NITRIC OXIDE PRODUCTION

probably referable to an induced amino acid transport (CAT2B) and to a higher 

rate of cell proteolysis, likely involving CAT2A. 

These results suggest that, under basal conditions and, even more, in the presence of 

 

Given the central role of L-arginine in the biosynthesis of nitric oxide and the 

relevance of this signalling molecule in the maintenance of vascular integrity, a possible link 

lation of the two genes.  

arginine detected, upon inhibition of mTOR, in HUVECs might be somehow related to 

chan s in 

amino acid 

As e

output and

particularly ated with rapamycin, in spite of their higher levels of 

CAT2 and 

untreated co

The o acid, as well as 

the expression of the related transporters, can be uncoupled from the production of nitric 

between nitric oxide and the processes involved in the intracellular concentration of its 

precursor have been investigated in a variety of endothelial cell models, with controversial 

results: for example, Durante and coworkers found that inflammatory cytokines induce the 

expression of both CAT transporters and iNOS in vascular smooth muscle cells, to direct the 

metabolism of L-arginine to the synthesis of the anti-proliferative gas112; conversely,  protein 

tyrosine kinase inhibition seems to attenuate iNOS, but not CAT2B induction in RAMSCs74, 

indicating differences in the stimu

In light of these contributions, we have assessed whether the high concentration of L-

ge NO production, thus providing a rationale for the massive stimulation of cationic 

transport in rapamycin-treated human endothelial cells.  

xpected from endothelial cells17,113-115, incubation with TNFα lowers nitric oxide 

 NOS expression in HUVECs (Fig14-15); on the contrary, what stands out as 

 interesting is that cells tre

their higher intracellular concentration of arginine, rather synthesizes less NO than 

ntrols or cytokine-treated cells (Fig.18).  

se results clearly demonstrate that the transport of cationic amin
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oxid even

and pathol

inflammato

although th

olecular level, consistently with reports demonstrating HUVE  

activity

e;  in endothelial cells, where this molecule plays a key role under both physiological 

ogical conditions, being the endothelium one of the first-line defences to 

ry insults, neither rapamycin nor TNFα are able to stimulate NO production, 

ey both highly induce the transport of L-arginine.  

At m C’s lack of iNOS

 even under inflammatory conditions13,15, our results show that the enzyme is 

completely undetectable neither in the presence of TNFα nor of rapamycin (data not shown). 

Conversely, the observed decrease of nitric oxide production correlates with the inhibition of 

the endothelial isoform of nitric oxide synthase, eNOS (NOS3), at both mRNA and protein 

levels (Fig.19): indeed, together with a diminished synthesis of nitric oxide, the treatment 

with rapamycin also produces a significant decrease of NOS3 mRNA (Panel A), particularly 
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Fig.18 Rapamycin lowers NO 
production.  
The amount of both nitrite and 
bioactive NO produced by 
HUVECs is decreased by 24h-
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*P < 0.05, **P < 0.01, treated vs. 
control, untreated cells. 

rap
am

co
ntr

ol α
TNF

rap
am

yc
in  +α

TNF

0

30

60

90

120

O
S3

/G
AP

D
H

 (A
.U

.)

rap
am

yc
in

N

8h 24h
0

2

4

6
control TNFα

*

rapamycin TNFα + rapamycin

*

***
***/G

AP
D

H
 m

R
N

A 
(A

.
N

O
S3

U
.)

BA

- GAPDH

- NOS3

co
ntr

ol α
TNF

rap
am

yc
in  +α

TNF

0

30

60

90

120

O
S3

/G
AP

D
H

 (A
.U

.)

rap
am

yc
in

N

8h 24h
0

2

4

6
control TNFα

*

rapamycin TNFα + rapamycin

*

***
***/G

AP
D

H
 m

R
N

A 
(A

.
N

O
S3

U
.)

BA

- GAPDH

- NOS3

Fig.19 Effects of rapamycin on NOS3 expression. 
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evident after 24h-treatment, and a likewise reduced expression of the correspondent protein 

(Panel B). In the same experiment, an even more marked decrease of NOS3 mRNA and 

protein is caused by the combined treatment with rapamycin and TNFα, both at 8h and at 24h 

of incubation (Panels A and B), although under this condition, the production of NO is 

reduced to a lesser extent than in cells treated with rapamycin alone. This latter result may be 

however explained by the finding recently described by Yang and Rizzo116 that TNFα exert a 

stimulatory effect on NOS3 activity, thus explaining why, in cells treated with TNFα and 

en

responsible for attenuated endothelial-dependent vasodilation, characteristic of many different 

cardiovascular disease processes and usually referred to as endothelial dysfunction117,118, our 

results clearly suggest detrimental effects of rapamycin on human endothelium. According to 

our in vitro findings, clinical evidences reported by Fuke et al119 suggest that the abnormal 

vasoconstrictive response to acetylcholine, observed in the peri-stent area after implantation 

of rapamycin eluting stents, are likely related to an impaired NO production and to a more 

general endothelial dysfunction of the vasculature; this effect could also be responsible of the 

increased incidence of Late Stent Thrombosis (LST) observed in patients with rapamycin-

medicated DES120. The molecular basis for the rapamycin-dependent endothelial defect has 

not been fully elucidated yet; the possibility exists that rapamycin is toxic per se or, rather, 

exerts detrimental effects on endothelium due to peculiarities of stent microenvironment, such 

as, for example, the pro-inflammatory cytokines, whose levels are particularly increased in 

sites of arterial injury121 and after coronary stenting122.  

rapamycin, there is no significant decrease in NO output even in the presence of the lowest 

NOS3 expression.that the inhibition of NO output may derive also from the inhibition of Akt 

that has been described to stimulate NOS3 activity by direct phosphorylation20; indeed, it has  

In light of the fundamental role of eNOS-derived nitric oxide in the maintenance of 

physiological vascular tone and permeability, this rapamycin-induced hindrance of 

dothelial NO output suggests that the drug may be deleterious for endothelial function, 

either per se or, even more, when combined with pro-inflammatory cytokines. Indeed, in our 

experiments, the results obtained through the measurement of the stable derivatives of nitric 

oxide, nitrites, are confirmed by the assessment of the amount of actual bioactive NO 

produced under the different experimental conditions (Fig.18), thus confirming the real 

lowering of the production of endothelial relaxing factor upon inhibition of mTOR in 

HUVECs. Since impaired endothelial-dependent NO production in blood vessels is 
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As a consequence, the last part of the research has been intended to define the role of 

mTOR in the maintenance of endothelial welfare, under both physiological and pathological 

conditions. In particular, the experiments of this last part focused on the consequences of the 

inhibition of the kinase in both unstimulated or TNFα-treated endothelial cultures, in order to 

verify whether the detrimental effects reported for rapamycin eluting stents are due to the 

generation of an inflammatory response in the vascular district by the drug itself or, rather, by 

its hampering the vascular response triggered by exogenous pro-inflammatory stimuli. 

2.4. EFFECT OF mTOR INHIBITION ON ENDOTHELIAL FUNCTION AND VIABILITY 

In accordance with the assumption of toxic effects of rapamycin, other known markers 

of endothelial activation appear induced by the drug, both in the absence and in the presence 

of TNFα. Indeed, besides our findings demonstrating rapamycin-dependent induction of 

SLC7A2/CAT2A, an indicator of cellular stress, also TNFα-induced expression of Tissue 

Factor is known to be reinforced by rapamycin in human endothelial cells104.  

Moreover, as a further support, the expression of other markers of endothelial 

function, i.e. the expression of the adhesion molecules and endothelial cell mobility, have 

been considered upon incubation with the mTOR inhibitor, both in the absence and in the 
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A Fig.20 Rapamycin stabilizes TNFα-
induced expression of E-selectin 

Panel A. E-selectin transcript levels are 
increased by TNFα after 4 and 8h 
incubation, but not by rapamycin; this 
latter, however, strengthens the 
cytokine’s effect, extending it till 24h. 
Panel B. Consistently with mRNA, also 
protein levels, etected through ELISA, 
are significantly higher in TNFα+rapa-
mycin-treated cells with respect to 
controls and still detectable in 
TNFα+rapamycin treated cells after 24h, 
as confirmed by Western Blot (Panel C).  
***P < 0.001, treated vs. control, 
untreated cells. 
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presenc

ounds 

than in cells treated with each compound alone. Consistently, under this condition, protein 

levels are still sign

detecta

 has also been 

e of pro-inflammatory stimuli. As expected123, TNFα induces in HUVECs a strong 

and transient stimulation of E-selectin at both mRNA and protein level (Fig.20, Panels A, B 

and C), with maximal effects at 4h and values substantially comparable to basal levels within 

24h. Conversely, rapamycin alone does not stimulate E-selectin expression, neither in the 

absence nor in the presence of TNFα, at any incubation time. Interestingly, the combined 

treatment with the two compounds exerts the same effect as the cytokine, up to 8h; then, after 

24h, E-selectin mRNA levels appear much higher in cells incubated with both comp

ificantly higher than in control cells (Panel B) and, consistently, still 

ble with Western Blot (Panel C). These findings suggest that rapamycin toxicity may 

be reinforced by the simultaneous presence of exogenous inflammatory stimuli, thus 

explaining why clinical endothelial dysfunction is particularly evident in peri-stent areas, 

where inflammatory conditions are present. 

As another indicator of endothelial function, cells mobility in vitro

A A 

Fig.21 Rapamycin impairs endothelial 
wound healing. 
After pre-incubation with the different 
compounds (0h), cell monolayers have been 
wounded with a tip and photographed. Panel A. 
Phase contrast images of the same 
representative field, taken 0, 12 and 24h after 
wounding. Bar = 100µm. Panel B. Number of 
cells migrated into the wound zone.  
*P < 0.05, ***P < 0.001 treated vs. control 
cells. 
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assessed with a wound healing assay, an in vitro test that evaluates the capability of an 

endothelial culture to react against a mechanical damage64.  

The results obtained (Fig.21) show that this peculiar endothelial function is hampered 

by rapamycin, independently of TNFα: indeed, while the wound is almost completely 

repaired after 12h in both control and TNFα-pretreated HUVECs, wound borders are still 

clearly detectable in cells preincubated either with rapamycin or TNFα and rapamycin, where 

they remain evident till 24h. Under the same conditions, the estimation of the endothelial re-

colonization indicates that, both at 12h and at 24h, fewer cells have migrated into the 

wounded area, compared to either control, untreated cultures or cultures treated with the 

cytokine alone (Fig.21, Panel B). In agreement with this observation, a recent autopsy study 

by Schaffer and colleagues describes evident defects of wound healing in rats undergone 

dorsal skin incision, after treatment of the animals with rapamycin; in light of this 

observation, the authors suggest that one of the major mechanisms responsible for stent 

thromb

TNF st 

r 

 

r 

, 

determ ll 

 

 

osis with DES may reside in rapamycin-dependent defects or delays of stent 

reendothelization124.  

Looking at the phase contrast images of the different cultures, what appears also 

particularly relevant is that a 24h treatment with rapamycin, either alone or together with 

α, leaves endothelial cultures still apparently disorganized, although the wound is almo

repaired, with evident morphological changes, such as loss of cobblestone organization and 

enhanced cell pleomorphism; in the same fields, frankly apoptotic cells are evident too, 

indicating that the antibiotic may exert cytotoxic effects on endothelial cultures. In order to 

verify this latter hypothesis, dose-dependent effects of rapamycin on HUVEC cell number 

have been assessed, both in the absence and in the presence of inflammatory stimuli (Fig.22, 

Panel A); in parallel cultures, cell viability has been quantified with the fluorescent indicato

resazurin, under the same experimental conditions (Fig.22, Panel B). Identical measurement 

have been also repeated in cells obtained from human aorta (HAECs), so as to determine 

whether the effects of the drug on cell viability are specific of human foetal cells or also

reproducible in adult endothelial cells (Fig.22, Panels C and D).  

As shown in the plot, rapamycin causes a significant decrease in HUVEC cell numbe

at concentrations higher than 1 nM when employed alone while, in the presence of TNFα

ines a significant cell loss even at this concentration (Panel A); consistently, ce

viability is significantly affected at rapamycin concentrations higher than 1 nM both in the

absence and in the presence of TNFα (Panel B). Similar effects on cell number (Panel C) and

viability (Panel D) upon treatment with rapamycin 100nM are detectable also in endothelial 
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cells from human aorta (HAEC), thus demonstrating that the cytotoxic effects of the drug are 

independent of the endothelial cell model employed. 

Following these first observations, a further characterization of rapamycin-dependent 

cell loss has been performed, studying indicators of apoptosis and necrosis in both HUVECs 

and HAECs treated with the drug (Fig.23). Rapamycin and TNFα, either alone or used 

together, increase the percentage of the PI stained sub-G1 population, a marker of late 

apoptotis or necrosis, although only the combined treatment with the two compounds 

Fig.22 Dose-dependent 
effects of rapamycin on 
HUVEC and HAEC
viability. 
Rapamycin causes a
significant cell loss, in both
HUVEC (Panel A and B) 
and HAEC cultures (Panels 
C and D), particularly when 
combined with TNFα. 
Detrimental effects of the 
drug have been assessed as 
decrease of both cell number 
(Panels A and C) and 
viability (Panels B and D).  
*P < 0.05, **P < 0.01, ***P 
< 0.001 treated vs. control, 
untreated cells. 
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viability. 

Combined treatmen
with rapamycin and
TNFα for 24h causes
an increased number 
of cells in the sub-G1
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, 
propidium iodide-stai-
ned population (Panel 
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r 
-
 

1, 
d 

A), a more eviden
staining by Annexin V
(Panel B), a highe
Caspase3 activity (Pa
nel C) and a more
evident release of 
LDH (Panel D).  
*P < 0.05, **P <0.0
***P < 0.001, treate
vs. control cells. 
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produces a significant increment of this index in both cell models (Panel A); a similar 

tendency is displayed by both Annexin V staining of early apoptotic cells (Panel B) and 

Caspase3 activity values under the different experimental conditions (Panel C), indicating the 

thus far considered rapamycin insensitive.  

triggering of an apoptotic pathway. Finally, also the occurrence of necrotic events is evident, 

as demonstrated by the marked increase of LDH release observed in HUVECs and HAECs 

incubated with rapamycin and TNFα (Panel D). 

These results altogether demonstrate that a prolonged exposure to rapamycin hinders 

endothelial cell viability, as well as function, therefore suggesting a key role for mTOR kinase 

in the preservation of endothelial welfare and providing an explanation to clinical evidences 

of endothelial dysfunction in the area of DES implantation. The molecular mechanisms 

involved in such events remain however unclear.  

In order to further investigate the molecular targets of rapamycin responsible for its 

effects on human endothelium, other compounds inhibiting mTOR in a rapamycin-

independent way have been tested: AICAR, an AMPK-activator that selectively inhibits 

TORC1 complex, as demonstrated by the hypophosphorylation of p70S6K but not of Akt, and 

wortmannin, a widely employed inhibitor of PI3K that inhibits Ser473-Akt phosphorylation, 

without affecting p70S6K. The results of the Western Blot analysis, reported in Fig.24, 

confirm the expected effects of AICAR and wortmannin on TORC1 and TORC2 targets, 

Thr389-p70S6K and Ser473-Akt respectively. More interestingly, rapamycin, beyond causing 

a complete suppression of p70S6K phosphorylarion, as expected from TORC1 inhibition, also 

causes a decrease of Akt phosphorylation, a change only compatible with TORC2 inhibition, 

Ⓟ-p70S6K (Thr389)

Ⓟ-Akt (Ser473)

p70S6K 

Akt 

Ⓟ-p70S6K (Thr389)

Ⓟ-Akt (Ser473)

p70S6K 

Akt 

Ⓟ-p70S6K (Thr389)

Ⓟ-Akt (Ser473)

p70S6K 

Akt 

 
Fig.24 Effects of rapa-
mycin on p70S6K and Akt 
phosphorylation. 

The treatment of 24h with 
AICAR causes a hypo-
phosphorylation of p70S6K 
but not of Akt, while 
wortmannin affects the only 
Ser473 phosphorylation.  
Rapamycin, both alone or 
combined with TNFα, 
similarly inhibits p70S6K 
and Akt phosphorylations, 
demonstrating its effects on 
both TORC1 and TORC2. 
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In agreement with these findings, also the changes in the organization of actin 

cytoskeleton observed in HUVECs upon incubation with rapamycin (Fig.25) support the 

assumption of mTORC2 sensitivity to the drug: rictor knockdown (and consequently TORC2 

inhibition) is known to promote the formation of thick actin stress fibres throughout the 

cytoplasm125; consistently, the confocal images for the visualization of actin cytoskeleton in 

our endothelial model indicate that rapamycin, either in the absence or in the presence of 

TNFα 

actin fibers much thicker than those observed in 

control cells or in cells treated with the cytokine alone (Panels A and B).  

, its 

 

(Panels C and D), markedly modifies the organization of the cytoskeleton, leading to 

the formation of evident bundles of stress 

 
Fig.25 Effects of rapamycin on actin 
cytoskeleton 

24h treatment with rapamycin, either 
in the absence or in the presence of 
TNFα (Panels C and D), leads to the 
formation of bundles of actin stress 
fibres, markedly thicker than those 
observed in control or TNFα-treated 
cells (Panel A and B). 

We can conclude that rapamycin exerts its effects on human endothelium by inhibiting 

both mTOR complexes, as recently proposed also by Sarbassov et al.126, and not only 

mTORC1, as thus far accepted. 

Since the activation of the Akt pathway is known to mediate pro-survival signals79

inhibition by rapamycin via TORC2 could explain why cell death is promoted under our

experimental conditions. In further support of this hypothesis, the assessment of AICAR and 

wortmannin effects on endothelial cell viability demonstrates that only the latter causes a 

significant cell loss, comparable to that caused by rapamycin, while AMPK-activator does not 

(Fig.26); this confirms the involvement of mTOR kinase in the maintenance of endothelial 

viability, underlying the specific role of mTORC2. 
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The demonstration of the inhibitory effect of rapamycin on TORC2 can also help to 

explain the results of the wound healing assay. Indeed, as already described, a recent study 

has demonstrated that rapamycin impairs wound healing in vivo124 and this effect is 

associated  to a decrease of VEGF expression and of NO production in the wound area127: 

since it is widely accepted that Akt-dependent transduction pathway plays a pivotal role in 

VEGF-mediated endothelial cell migration128, it is possible that also the inhibitory effect of 

rapamycin on cell motility depends on mTORC2 inhibition. This hypothesis would be also 

consistent with the findings that high doses of rapamycin hamper angiogenesis in vivo by 

inhibiting Akt phosphorylation128,129.  

Conversely, the specific contribution of TORC1, rather than TORC2, to rapamycin-

dependent modulation of other endothelial functions (i.e. NO production and adhesion 

molecules expression) has not been fully elucidated thus far: in human aortic endothelial cells, 

AICAR has been demonstrated to activate eNOS and, consequently, to induce NO 

 both TORC1 and 

TORC2

s demonstrate that the cytokine-induced expression of pro-

inflamm

tokines, impairs endothelial viability and 

production130, likely through the TORC2-dependent activation of Akt by AMPK and 

TSC1\2131; consistently, prolonged treatment with rapamycin, inhibiting

, is shown to decrease endothelial NOS expression, suggesting that TORC2 could 

effectively play a pivotal role in the modulation of endothelial nitric oxide production too. On 

the other hand, recent evidence

atory and adhesion molecule genes is inhibited by the AICAR-dependent activation 

of AMPK132, while our data show that rapamycin stimulate them (see E-selectin, Fig.20); 

whether this effect is mediated by TORC1 rather than TORC2 remains however unclear.  

In summary, this last part of the research has demonstrated that: 

 a prolonged treatment with rapamycin, alone or even more clearly when employed 

in association with pro-inflammatory cy
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0) Fig.26 Effects of AICAR and wortmannin on HUVEC viability 

24h treatment with AICAR doesn’t affect endothelial cell number, 
while wotmannin causes a significant cell loss.  
**P <0.01 treated vs. control, untreated cells. 
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function, modifying adhesion molecules expression and cell mobility and 

impairing endothelial nitric oxide production;  

 a 24h treatment with rapamycin leads to the inhibition of both mTOR complexes, 

TORC1, as already expected from literature data, and TORC2, previously 

considered rapamycin-insensitive; 

 the molecular mechanisms underlying the effects of mTOR inhibition on cell 

viability and function are different: detrimental effects of rapamycin on cell 

amycin or experimental conditions able to lower 

rapamy   

viability are likely due to the inhibition of TORC2. Instead, as far as endothelial 

functions are concerned, the pathways involved seem to be function-specific: the 

modulation of nitric oxide production is probably due to the activity of TORC2, 

while it remains uncertain whether the stimulation of adhesion molecules 

expression occurs preferably via TORC1 or TORC2. 

The precise understanding of the molecular mechanisms underlying rapamycin-

dependent detrimental effects on human endothelium would contribute to explain the adverse 

consequences of rapamycin eluting stents, recently described in vivo119,133. In this context 

pharmacological treatments other than rap

cin cytotoxicity could also be pursued, so as to allow a safer employ of DES, 

avoiding endothelial damage and vascular dysfunction responsible for late stent thrombosis. 
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3. SU

Alth

differential

umbilical o ears mainly referable to the activity of just y+ 

and y+L s

endothelial

microvascu

also been fo

Con

demonstrat

stimuli, wh oth cytokines and bacterial 

LPS. In particular, the incubation of HUVECs or HSVECs with inflammatory compounds, 

such a

t 

induction of both CAT2A and CAT2B mRNAs, as well as to a straightforward huge increase 

of CAT2 protein levels.  

Given the relevance of nitric oxide in cellular homeostasis and the prominent role of 

L-arginine for its biosynthesis, several contributions have thus far investigated the existence 

of a relation between the stimulation of cationic amino acid transporters upon incubation with 

inflammatory cytokines and the activation of NO’s pathway. As a result, several conflicting 

contributions report a co-induction of arginine transporters and nitric oxide synthases in 

endothelial models upon proper stimulation or, rather, their complete independency. The aim 

of the present research project has been therefore to assess whether this possible correlation 

does exist also in human endothelial cells, where cytokines and bacterial LPS are known to 

induce a massive inflammatory response, as well as a huge stimulation of L-Arg transport. 

Both adult (HSVECs) and foetal (HUVEC) human endothelial cells have been employed, so 

as to assess possible tissutal specificities.  

MMARY 

ough cationic amino acids can be transported into cells by a number of 

ly expressed transport systems (y+, b0,+, B0,+, y+L)134, the influx of L-arginine in 

r saphenous vein-derived cells app

ystems, as already described for other endothelial models71. More precisely, 

 cells predominantly expresses CAT1 transporter135, although, in cardiac 

lar endothelial cells and HUVECs, very low levels of CAT2B and CAT2A have 

und under basal conditions68,136.  

sistently with previous contributions137, the results of the studies here presented 

e that only system y+ is involved in the endothelial response to inflammatory 

ile system y+L is almost completely insensitive to b

s TNFα or LPS, induces a significant stimulation of system y+ activity, through the 

induction of the low affinity transporter SLC7A2/CAT2A and the increased expression of the 

high affinity SLC7A2/CAT2B. The molecular mechanisms responsible for such effects 

include the transcription process (specifically, the activation of NF-kB transcription factor) 

and likely involve the kinase mTOR, which seems to exert a repressive effect on SLC7A2 

gene; indeed, its inhibition by the specific inhibitor rapamycin is associated to a significan

 58



As expected for endothelial cells17,113-115, cytokines-dependent stimulation of cationic 

amino acids transport and transporters do not produce in neither cell models a comparable 

inducti

show the existence of a tight relation between 

these tw 11

 by rapamycin or TNFα, may not involve an alteration of NO levels, 

thus su

lar mechanism responsible for rapamycin effects 

remains substantially unclear, although the results here presented clearly demonstrate the 

involvement of bothmTOR complexes, mTORC1 and mTORC2, thus far considered 

on of NO pathway: nitric oxide levels remain substantially unaffected, or rather 

lowered, by the cytokine, as well as the expression of endothelial nitric oxide synthase; iNOS 

isoform, undetectable under basal conditions, is still absent in TNFα-treated cells, while 

eNOS is expressed at low levels in control, untreated cells, and rather lowered by the 

cytokine, consistently with previous results15. These observations demonstrate that the 

induction of arginine transport and nitric oxide production are uncoupled in both HUVECs 

and HSVECs, although other contributions 

o events in different endothelial models 2.  

In support of our findings, also the results of the experiments performed on 

rapamycin-treated cells confirm that CAT and NOS expressions are completely unrelated in 

HUVECs. Indeed, the treatment of endothelial cells with rapamycin, besides exerting the 

same stimulatory effects on L-Arg transport as TNFα, also induces the appearance of an 

activated phenotype in human endothelium, characterized by an impaired cell motility and by 

a modified expression of genes, markers of an inflammatory conditions, i.e. E-selectin and 

SLC7A2/CAT2A, usually associated to stress-conditions47; however, treatment with the drug, 

as well as with the cytokine, is ineffective in stimulating the synthesis of nitric oxide in the 

cell model employed, while even diminishes the expression of eNOS mRNA and protein. 

Taken together, these results demonstrate that, in human endothelium, an inflammatory 

condition, as that induced

ggesting that an impaired metabolism of this molecule can not be considered a 

universal marker of inflammation, as well as human endothelial cells are concerned. 

Given the relevance of the mTOR inhibitor in the clinical practice of coronary stenting 

and the adverse effects of rapamycin eluting stents, recently described on endothelium in 

vivo119,133, the findings here reported also gain a clinical relevance. The results obtained have 

demonstrated, indeed, that mTOR inhibition by rapamycin exerts detrimental effects on 

human endothelial cells, thus pointing to a key role for the kinase in the preservation of 

endothelial homeostasis under physiological condition: its inhibition, indeed, leads to a 

significant cell loss, referable to the induction of both apoptotic and necrotic markers, as well 

as to the modification of endothelial cell motility and of other well known indicators of 

endothelial function. The precise molecu
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rapamy

 of stent implantation; their complete 

compre

cin-insensitive. Moreover, it looks apparent from our findings that mTORC2, rather 

than mTORC1, is involved in the maintenance of endothelial viability, likely through the 

activation of Akt pathway; indeed, an inhibitor of this kinase, but not AICAR (which 

specifically inhibits mTORC1), exerts detrimental effects comparable to those of rapamycin. 

Conversely, the pathways responsible for the control of endothelial function seem to be 

function-specific: the modulation of nitric oxide production is probably due to the activity of 

TORC2, while it remains uncertain whether the stimulation of adhesion molecules expression 

occurs preferably via TORC1 or TORC2.  

Further investigations will be required to better define the mechanisms underlying 

rapamycin toxic effects, particularly in the area

hension could then provide the basis for the development of pharmacological 

treatments alternative to rapamycin, still inhibiting mTOR, while minimizing detrimental 

effects on endothelial function and viability, and thus allowing a safer employ of DES.  
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C A IV - A TRANSPORT IN HUMAN MONOCYTES 

AND MACROPHAGES 

1. NTROD TION AND AIM OF THE STUDY 

family

well as

called 

such as

stimulating factor (GM-CSF), interleukin-3 (IL-3), KIT, tumor necrosis factor (TNF)-family 

proteins, on key transcription factors, as PU.1 and on interactions with stroma in 

hae

Monocytes circulate in the bloodstream (where they constitute between three to eight 

percent

into tissues throughout the body. Once in the tissu

changes to evolve into mature macrophages, the so called resident macrophages, detectable at 

strategic points in almost every organ where their phagocytic activity is likely to be required; 

each of them, depending on its location, has tissue-specific name and function: connectival 

macrophages are also known as hystiocytes; in the spleen, resident macrophages begin the 

H PTER   RGININE 

I UC

Macrophages, together with their circulating precursors monocytes, belong to the 

 of the mononuclear phagocytes, active in nonspecific defence (or innate immunity) as 

 in specific defence (or cell-mediated immunity) of vertebrate animals. 

Monocytes are produced by the bone marrow from a common myeloid progenitor, 

monoblast, whose growth and differentiation depend on lineage-determining cytokines, 

 macrophage colony-stimulating factor (M-CSF) and granulocyte-macrophage colony-

matopoietic organs (Fig.27)138.  

Fig.27 Simplified life history of the macrophage and closely related cells 
(modified from Gordon, Nature Reviews Immunology (2003), 3, 23) 

 of the leukocytes in the blood) for about one to three days, and then typically move 

es, they undergo a series of morphological 
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process leading to the destruction of senescent red blood cells, which is kept on in the liver by 

th  

apoptotic neurons, while a sp ophages, the osteoclasts, are 

involved in bone reabsorption; finally, lungs host the well known alveolar macrophages 

(A  line defence of lower respiratory tract 

against airborne pathogens and involved in complex regulatory interplays with airway 

epithel

d to enter the 

activat

ar signals able to induce the activation of macrophages, 

, together 

-

e sinuisodal Kupfer cells; in the central nervous system, the so called microglia phagocytes

ecialized population of macr

M), a group of phagocytes responsible for the first 

ial cells, as well as with endothelial cells, lymphocytes, and fibroblasts of the alveolar 

septa.  

In the presence of proper stimuli, macrophages are rapidly recruite

ion process, characterized by the blockade of cell proliferation139 and by a more 

massive phagocytic activity, exerted through the induction of lysosomial enzymes and 

reactive oxygen species; activated macrophages also undergo other biochemical and 

morphological modifications that allow them to perform their functional activity140, such as 

altered adhesion and migration, secretion of various products and antigen processing and 

presentation. Among the extracellul

cytokines play a fundamental role; in particular, Th1-type cytokines, such as IFNγ

with bacterial lipopolysaccharide (LPS), induce the so called classical activation, while Th2

type cytokines, such as IL-4 and IL-13, are responsible of the induction of the alternative 

activation (Fig.28)138.   

Fig.28 Clas-
sical and alter-
native active-
tion.  
(modified from 
Gordon, Nature 
Reviews Immu-
nology (2003), 
3, 26) 

In murine systems the two types of activations are easily distinguishable on the basis 

of the metabolic pathway of L-arginine that is induced in response to either process: the 

stimulated expression of inducible nitric oxide synthase (iNOS, NOS2) and the consequent 

increased synthesis of nitric oxide (NO) are characteristic of classically activated 

macrophages; on the contrary, the alternative activation of murine macrophages is associated 
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to a marked increase of arginase pathway and of urea and ornithine production140. Given its 

requirement as substrate for the production of both nitric oxide, via classical activation, and 

polyamines and proline upon 

alternative activation, it is apparent the 

functional significance of the amino 

acid L-arginine in the macrophages 

activation process (Fig.29)141. The 

extracellular milieu is the main source 

  

In both monocytes and macrophages system y+ is known to be the major transport 

system for cationic amino acids143; in particular, the best characterized transporters in these 

cell models are CAT-1 and CAT-2B: the first presumably accounts for the most basal rate of 

arginine influx, while the increased rate of arginine uptake observed upon incubation with 

inflammatory cytokines has been referred to the induction of CAT2B, whose expression is 

either very low or absent in normal tissues144. More in detail, Yeramian and colleagues have 

recently demonstrated that, in murine bone marrow-derived macrophages, SLC7A2/CAT2 is 

induced upon incubation with both Th1 and Th2 cytokines, i.e. during both classical and 

alternative activation, although only Th1-like cytokines stimulate NO production and only 

Th2-like ones induce arginase activity; on the contrary, SLC7A1/CAT1 expression is 

unaffec

of arginine required for cytokine-

mediated activation; indeed, in rat and 

mouse models, it has been 

demonstrated that LPS/IFNγ-induced 

NO production does not occur in J774 

macrophages (despite the induction of 

iNOS) if arginine is excluded from the culture medium or in the presence of lysine (which 

inhibits CAT-dependent arginine uptake by a competitive mechanism)142. It is then evident 

why also the characterization of the expression and activity of the cellular amino acid 

transporters appears of great interest for the definition of macrophages response to 

inflammatory cytokines.

ted by any of these activating agents, thus suggesting that CAT2 is the main regulator 

of arginine transport under inflammatory conditions145. In the same paper, they also 

demonstrate that macrophages from SLC7A2/CAT2 knockout mice show a decrease of L-

arginine transport in response to the two kinds of cytokines, associated to the reduced 

production of both nitrite and polyamines, even if neither NOS2 nor arginase expression and 

Fig.29 NOS2-Arginase pathway is 
controlled by Th1-Th2 cytokines.  
(from Hesse et al., The Journal of 
Immunology (2001), 167(11), 6533) 
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the extracellular concentration of L-Arg are modified; they therefore conclude that 

SLC7A2/CAT2 can modulate and limit the function of macrophages, independently of L-Arg 

metabolize it.  

port under basal conditions as well as 

s been mainly studied on murine rather 

t the modulation of cationic amino acid 

hages may be profoundly different146. 

es and alveolar resident macrophages at 

nd inflammatory conditions. Moreover, 

nsport and nitric oxide production has 

ytokines-dependent induction of CAT2-

 in murine models to a parallel increase 

 under basal conditions142,144; although 

thus far there are no data demonstrating CAT-2B-dependent NOS2 activity71, the observed 

coinduction of the two genes has suggested that CAT-2B might provide substrate for NOS2, 

also in human cells. Also, the involvement of the other transport system for cationic amino 

acid, system y+L, has been assessed in human monocytes and macrophages, since, thus far 

y+LAT1 and y+LAT2 tran

availability and of the expression of the enzymes that 

However, the characterization of L-Arg trans

upon treatment with pro-inflammatory compounds ha

than human models, and recent evidences suggest tha

transport in murine and human monocytes/macrop

Therefore the first part of the research project has been intended to investigate the 

mechanisms of amino acid influx in human monocyt

functional and molecular levels, under both basal a

also the link between CAT2B-dependent arginine tra

been investigated in the same models: inflammatory c

mediated L-Arg transport has been shown to associate

of NOS2 protein expression, otherwise undetectable

sporters have been only scarcely studied in human leukocytes147,148, 

without being referred to a particular cell type.  

In resident alveolar macrophages the study of system y+L activity appears particularly 

noteworthy also because of its involvement in Lysinuric Protein Intolerance (LPI). Indeed, 

system y+L is known to be selectively altered in this rare autosomic recessive disease (LPI, 

MIM 222700), caused by a defect in the transport of cationic amino acids in the basolateral 

membrane of intestinal and renal epithelial cells. Because of this transport defect, LPI patients 

have an high renal clearance and a low intestinal absorption of cationic amino acids, whose 

plasma levels are consistently usually low149. Moreover, besides selective aminoaciduria, LPI 

patients also exhibit severe extra-renal alterations that are often the immediate cause of death. 

As far as airways are concerned, one of the best extra-renal complications observed in LPI 

patients is the increased frequency of pulmonary alveolar proteinosis (PAP), a rare disorder 

characterized by the accumulation of  lipoproteinaceous material within alveoli, usually 

associated to susceptibility to pulmonary infections, also with opportunistic organisms150. 

There are three clinically distinct forms of PAP: the congenital disorder is due to mutations of 

genes encoding surfactant protein B or C or the beta chain of the receptor for granulocyte–
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macrophage colony-stimulating factor (GM-CSF), an already described cytokine, involved in 

the process of macrophage differentiation; acquired (or idiopathic) pulmonary alveolar 

proteinosis is an autoimmune disease targeting GM-CSF; finally, LPI-associated PAP (or 

second

tated in patients affected by LPI and likely 

respons

ary pulmonary alveolar proteinosis) resembles autoimmune PAP with accumulation of 

surfactant lipids and proteins in the airspaces and the presence of enlarged alveolar 

macrophages that contain numerous phospholipid inclusions. The progresses in the definition 

of PAP pathogenesis have not yet shed light on the mechanisms responsible for LPI-

associated PAP and, more in general, for LPI extra-renal alterations; in particular, it is not 

known if they derive from the low cationic amino acid levels available in plasma of LPI 

patients or, rather, from the consequences of the expression of LPI defect in extra-renal 

tissues. However, the observed accumulation of lipoproteins in LPI-associated PAP supports 

the latter hypothesis, suggesting that abnormalities of surfactant catabolism by the alveolar 

macrophages could contribute to the development of the disorder151. Consistently, a recent 

clinical evidence reports the case of an LPI patient who underwent a heart-lung 

transplantation for severe, PAP-associated respiratory insufficiency, relapsed and died of 

respiratory failure after a period of clinical remission 152, suggesting that circulating 

pathological cells, such as monocytes/macrophages, can re-colonize the transplanted lung and 

reproduce the pathological condition.  

In 1999, SLC7A7, coding for y+LAT1 subunit of system y+L, has been identified by 

two groups independently153,154 as the gene mu

ible of the blockade of cationic amino acid efflux from kidney and intestine epithelial 

cells to the interstitium46; it is therefore apparent that the LPI-associated defect in SLC7A7 

expression appears one of the best candidate to play an important role in the pathogenesis of 

PAP, thus rendering alveolar macrophages an interesting cell framework to build up a reliable 

in vitro model of LPI defect and open new field of investigation about surfactant metabolism.  

Therefore, once defined the mechanisms responsible for the modulation of L-Arg 

influx in normal human alveolar macrophages, the second part of the project has been devoted 

to define the role of system y+L and, specifically, of SLC7A7/y+LAT1 in the regulation of L-

Arg influx in pathological models, so as to verify whether a causal link exists that connects 

the alterations in arginine transport of alveolar macrophages to their defective response to 

surfactant, characteristic of LPI patients.  
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2. RESULTS AND DISCUSSION  

2.1. CHARACTERIZATION OF L-ARG TRANSPORT IN HUMAN MONOCYTES AND 

MACROPHAGES 

 Since at least four distinct membrane transport systems can perform arginine transport 

in mammalian cells134, a discrimination of the various components active in human 

monocytes and in freshly isolated (2h) macrophages (Fig.30) has been performed, according 

to the strategy already used in human endothelial cells, as well as in other cell models15,155.  

In detail, in human freshly isolated monocytes maintained in control medium, L-

arginine uptake has been measured in the presence or in the absence of sodium, with or 

without the addition of 2 mM L-leucine; the assay has been performed with cells either 

 Characterization of arginine transport in human monocytes and freshly isolated macrophages. 

In freshly isolated human monocytes system y+ contribution to Arg transport is, at best, marginal, while 
system y+L is the major transport system under basal conditions. Similarly, in adherent human alveolar 
macrophages system y+L accounts for most of the saturable transport of arginine, while the contribution of 
system y+ is negligible under the same conditions.  
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treated

with NEM is ineffective in inhibiting L-

arginine uptake under any of the experimental conditions adopted, confirming that system y+ 

contribution is, at best, marginal under basal conditions.  

Fig.30

 or untreated with NEM, a well known inhibitor of system y+ but not of system y+L57. 

As shown in the plot, the substitution of extracellular sodium does not inhibit L-arginine 

uptake, thus excluding a significant contribution of sodium dependent transport systems, such 

as B0,+; leucine inhibits L-Arg transport in the presence of sodium, a result compatible with 

system y+L activity, but not in its absence, thus excluding a significant contribution of system 

b0,+. Moreover, the pre-incubation of monocytes 

 67



Therefore, consistently with the results by Reade et al., which attribute only a minor 

role to system y+ in a preparation of non stimulated human peripheral blood mononuclear 

cells, an c flux in 

huma pears marginal, system y+L is the major transport system for arginine 

under basal conditions. The main characteristics shown by system y+L in human monocytes 

are sim

thw s, 

e RT-PCR analysis of arginine 

transporters expressed in human monocytes (Fig.32, Panel A) shows that among system y+-

we c onclude that, while the contribution of system y+ to the overall L-Arg in

n monocytes ap

ilar to those found in human mesenchymal models15,155; at variance with those models, 

however, human monocytes exhibit a significant stimulation of arginine transport by 

extracellular leucine under sodium-free conditions, which might be explained by a trans-

stimulation of arginine influx by leucine entered into the cells through parallel pa ay

other than system y+L, during the transport assay. 

Results comparable to those observed in monocytes have been obtained in human 

adherent alveolar macrophages (AM), after 2h-seeding: their arginine transport is similar in 

the absence or in the presence of sodium, thus excluding a significant contribution of sodium 

dependent transport systems, such as B0,+. The addition of leucine is able to inhibit arginine 

influx by more than 70% only in the presence of sodium, indicating that most of the arginine 

uptake occurs through system y+L; on the contrary, lack of inhibition by leucine in the 

absence of sodium excludes a significant contribution of sodium independent systems, such as 

b0,+. Finally, either in the presence or in the absence of sodium, preincubation with NEM 

results ineffective in inhibiting arginine transport, thus pointing to system y+L as the 

predominant cationic amino acids transporter also in human AMs.; consistently, system y+L, 

identifiable as the leucine inhibitable portion of transport, accounts for most of the saturable 

component of arginine transport in all human AM isolated from 12 different subjects (Fig.31).  

 

Consistently with functional results, qualitativ
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Fig.31 Dispersion plot of Arg transport in AMs. 

The values of saturable arginine uptake of AMs isolated 
from 12 different subjects do not significantly differ from 
those of the leucine-inhibitable component. 
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 genes, only the expression of SLC7A1, coding for the CAT1 transporter, is detectable, 

whereas SLC7A2/CAT2B transcript is much less expressed and no expression of 

SLC7A2/CAT2A is detected; in alveolar macrophages (Fig.32, Panel B), not only 

SLC7A2/CAT2A, but even SLC7A2/CAT2B transcript is not detectable under basal 

conditions. In both cell models, the transcripts of SLC3A2, that code for system y+L heavy 

chain 4F2hc/CD98, SLC7A7, coding for the light chain y+LAT1, and SLC7A6, for the 

alternative light chain y+LAT2, are all clearly detectable.  
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In particular, a clear-cut expression of the y+L-related genes SLC7A6 and SLC7A7 

that code for the two alternative light chains of the transporter, y+LAT1 and y+LAT2, is 

evident in alveolar macrophages, where, actually, arginine transport is accounted for by the 

activity of system y+L (Fig.30).  
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Fig.32 Expression of arginine transporters 
mRNAs. 

RT-PCR products obtained with freshly 
isolated human monocytes (Panel A), human 
alveolar macrophages (Panel B) or human 
lung adenocarcinoma (Calu3, Panel C). 

Interestingly, a comparison between the levels of arginine transporters in human

macrophages and in endothelial cell, where cationic amino acid transport preferentially occurs 

via system y+, shows that the pattern of expression of the transcripts significantly differs in 

the two models (Table 5): in AMs the relative expression of SLC7A7 is enormously higher

10.6 ± 0.635.3 ± 1.3714 ± 59178 ± 23HUVEC

899 ± 9218.2 ± 1.11.1 ± 0.6132 ± 7Alveolar
Macrophages

SLC7A7SLC7A6SLC7A2 (CAT2B)SLC7A1

10.6 ± 0.635.3 ± 1.3714 ± 59178 ± 23HUVEC

899 ± 9218.2 ± 1.11.1 ± 0.6132 ± 7Alveolar
Macrophages

SLC7A7SLC7A6SLC7A2 (CAT2B)SLC7A1

Table 

    
GAPDH proband gene

5. Relative expression of genes for L-Arg transport in human AM and endothelial cells (HUVEC). 

The indicated gene mRNA is indexed to the housekeeping gene GAPDH, using the formula                 
1,000 x 2ΔCt (ΔCt = Ct - Ct ) 
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than in endothelial cells, suggesting that the expression of this transporter could be a good 

marker of cells of the monocyte/macrophage lineage; conversely, SLC7A2/CAT2B is 

definitely more abundant in HUVEC than in AM, consistently with L-Arg influx data.  

In summary, the results of these preliminary studies clearly demonstrate that, at 

variance with murine models, human cells of the monocyte/macrophage lineage do not take 

up arginine through system y+; in these models, instead, m
+

ost of arginine transport (> 90% of 

the saturable uptake) occurs through system y L. In the absence of a functional system y+, 

system y+L-related genes SLC7A7 and SLC7A6 represent the most expressed transcripts for 

arginine transporter in human AMs, whereas, in the same model, SLC7A2/CAT2B is 

significantly lower, or rather undetectable, with respect to human endothelial cells. 

2.2. EFFECTS OF INFLAMMATORY CYTOKINES ON L-ARG TRANSPORT  

2.2.1. HUMAN MONOCYTES AND IFNγ 

The differences observed between humans and animals as far as basal arginine 

transport is concerned prompted us to investigate the efficacy of pro-inflammatory cytokines 

in our human models, so as to evaluate whether differences are evident in activated cells too.  

n monocytes a modest, although significant, increase of L-

arginin

The first cytokine that we have tested on L-arginine transport in human monocytes and 

alveolar macrophages has been IFNγ, known to induce system y+-mediated arginine influx in 

several animal models145,156. In contrast with murine models, a 24h-treatment (Fig.33, Panel 

A) with IFNγ produces in huma

e transport fully attributable to an increase of system y+L activity, rather than y+; after 
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Fig. 33 Effects of INFγ on arginine transport 
in human monocytes. 

After 24h-treatment with IFNγ (Panel A), 
system y+L, but not y+, activity is induced in 
freshly isolated monocytes; the stimulation 
appears even more marked after 48h (Panel B). 

***
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48h (Panel B), the stimulation of arginine influx by IFNγ becomes much more evident and, 

again, fully accounted for by a marked increase of system y+L transport activity.   

Consistently with functional measurement, the results of a semi-quantitative RT-PCR 

analysis of the expression of genes for cati

, nor the 

products of system y -related genes SLC7A1 and SLC7A2 (CAT2B transcript) are changed 

by the treatme

, and 

 

, no 

 

besides accounting for the major arginine transport system under basal conditions, is also 

Fig. 34 Expression of 
arginine transporters 

onic amino acid transporters upon treatment with 

IFNγ (Fig.34) demonstrate that the only gene significantly induced by the cytokine is 

SLC7A7. The correspondent densitometric analysis more precisely reveals that in IFNγ- 

treated monocytes the relative abundance of SLC7A7 expression, corrected for GAPDH, is 

increased more than three-fold at 48h compared with control, untreated cells. Under the same 

conditions neither the expression of SLC3A2, the gene for system y+L heavy chain 

4F2hc/CD98, and of SLC7A6, the gene for the alternative light chain y+LAT2
+

nt with the cytokine.   

SLC7A1
CAT1

SLC7A1
CAT1

SLC7A1
CAT1

SLC7A2
CAT2B
SLC7A2
CAT2B
SLC7A2
CAT2B

It is generally accepted that the y+L light chain y+LAT1 is the subunit expressed in 

absorbing epithelia, while the alternative isoform y+LAT2 should be preferentially expressed 

mRNA for SLC7A7 is 
markedly induced, 
while all other genes 
appear unaltered. 

in human monocytes 
upon stimulation with 
INFγ. 

After 48h-treatment 
with IFNγ only the 

T0      T48

SLC7A6

T0       T48

in non epithelial tissues46; however, it is known that also y+LAT1 is expressed in non 

epithelial cells, such as human fibroblasts155, human endothelial cells15

leukocytes147,148,157. The results here reported, not only demonstrate that SLC7A7/y+LAT1 is

clearly expressed by human monocytes, but also show the stimulation of its expression by 

IFNγ, a thus far unknown effect of the cytokine. Indeed, although Mykkanen and coworkers 

have identified in the 5’ regulatory region of the gene several putative transcription factor 

binding sequences, such as NFAT, that could be involved in IFNγ signal transduction158

previous report had indicated SLC7A7 as a target of the cytokine.  

In summary, these data demonstrate that in human monocytes system y+L activity,
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markedly stimulated by IFNγ, suggesting a role for it in the activation process induced by the 

cyotkine in these cells. Moreover, the clear-cut expression of SLC7A7/y+LAT1 in human 

monoc

inated activity of L-arginine transport routes in human 

e absence or in the presence of LPS, IFNγ, or 

both. Even in 24h-cultured alveolar macrophages, as well as in freshly isolated cells, system 

y+L ac

ytes and its induction by IFNγ strengthen the hypothesis that monocytes may be a 

phenotypic target of LPI-associated mutations, since alterations of this gene are known to 

associate to this autosomal recessive condition153.  

2.2.2. HUMAN ALVEOLAR MACROPHAGES AND CYTOKINES  

Human resident alveolar macrophages (AM) are even better candidate for the study of 

the pathogenesis of the severe LPI-associated alveolar proteinosis (PAP); therefore the effects 

of cytokines on amino acid transport have been assessed also in these monocyte-macrophage 

cells. Data in Fig.35 reports the discrim

alveolar macrophages, incubated for 24h in th

tivity accounts for most of the arginine influx; interestingly its activity is modified 

neither by treatment with LPS nor with IFNγ. Consistently, no significant change is detectable 
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Fig.35 Effects of IFNγ on arginine 
transport in AM. 

A 24h-treatment with LPS or IFNγ doesn’t 
affect either system y+L or system y+ activity 
in human alveolar macrophages. 

Fig.36 Effects of IFNγ 
on the expression of 
arginine transporters 
in AM. 

After 24h-incubation 
with LPS or IFNγ the 
expression of genes 
coding for arginine 
transporters remains 
substantially unaffected, 
although SLC7A2/ 
CAT2B appears slightly 
induced. 
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under 

 in AM, cells have been maintained in 

complete growth medium in the absence or in the presence of 10 ng/ml GM-CSF for 6 days; 

LPS w  incubation, either in the absence or 

in the presence of the colony-stimulating factor. Compared with arginine influx observed after 

24h of 

transport components.  

 

gene is concerned. Indeed, as shown in Fig.38, while SLC7A1 expression is not modified by 

the cytokine, a significant induction of SLC7A2/CAT2B expression is observed upon 

incubation with LPS. In GM-CSF–primed cells LPS produces a more evident induction of the 

transporter gene, while the colony stimulating factor alone does not produce a significant 

increase of SLC7A2B transcript. No significant change in the expression of either SLC7A6 or 

SLC7A7 genes, encoding for the system y+L transporters y+LAT2 and y+LAT1, is observed in 

cells treated with GM-CSF, LPS, or both.  

any experimental condition for the genes coding L-Arg transporters, although LPS-

treated cells exhibit an increase in abundance of SLC7A2/CAT2B transcript that, however, 

doesn’t reach statistical significance (Fig.36).  

Another stimulus known to induce arginine transport in macrophages from animal 

models is GM-CSF156, a cytokine which promotes the survival and the differentiation of AMs 

and modulates their biological functions159-161. To evaluate the effect of GM-CSF on the 

expression and function of arginine transporters

as added in a subset of cells during the last 24h of 

culture, the activity of system y+L in AM cultured for 6d is significantly higher (1.54 ± 

0.154 (Fig.37) versus 0.72 ± 0.085 (Fig.35) nmol/mg of protein/min, p < 0.05) and constitutes, 

also at this time point, the predominant transport route for arginine, with only a marginal 

contribution of system y+. However, neither the 6d-incubation in the presence of GM-CSF nor 

the further 24h treatment with LPS have any significant effect on either system y+L or y+ 

Consistently with functional assays, results comparable to those observed for 24h- 

treated cells have been obtained in 6d-treated cells, as far as the expression of transporters 
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Fig.37 Effects of LPS on Arg 
transport in the absence and 
in the presence of GM-CSF. 

Neither the 6d-incubation in the 
presence of GM-CSF nor the 
24h-treatment with LPS have 
any significant effect on L-Arg 
transport. 
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The discrepancy between the expression of CAT transporters at mRNA level and the 

lack of a detectable transport activity may be explained either by low levels of expression or 

by a lack of carrier protein production or membrane targeting. The first hypothesis is 

consist

arable in AM 

and in tected15; 

s 

ellular 

comp odels, 

indicat

ith the endotoxin compared with untreated cells 

(Fig.39, Panel B). 

mRNA is conversely 
observed upon incu-
bation with LPS. 

ent with the exceedingly low levels of relative expression of SLC7A2/CAT2B detected 

in AM compared with human endothelial cells, as shown in Table 5. In contrast, as far as 

Fig.38 Effects of 
LPS on L-Arg 
transporters of 
AMs cultured in the 
absence and in the 
presence of GM-
CSF. 

No significant 
change of SLC7A6, 
SLC7A7 or CAT1 
gene expression is 
observed in cells 
treated with GM-
CSF, LPS or both; a 
significant induction 
of SLC7A2/CAT2B 

SLC7A1/CAT1 is concerned, its expression, relative to that of GAPDH, is comp

 endothelial cells, where the operation of CAT transporters is readily de

therefore the same explanation could not to be valid for this transporter.  Conversely, it seem

more likely that in human AM CAT1 protein is expressed but remains in the intrac

artment; consistently, literature evidence, obtained in non-macrophagic m

es that the trafficking of CAT transporters to the plasma membrane is regulated by 

PKC activity and suppressed when PKC is activated162,163.  

In any case, lack of transport activity of CAT transporters should not be referred to 

cell dedifferentiation during the culture procedure, since AM maintain the competence for 

Interleukin-1β (IL-1β) production in response to LPS treatment, as demonstrated by the 

results of the qRT-PCR analysis of cytokine’s transcript (Fig.39, Panel A). The same pattern 

is observable in cells treated for 6d with GM-CSF and then exposed to LPS: treatment with 

LPS, but not with GM-CSF, produces a huge induction of IL-1β mRNA, which is nearly 50-

fold more abundant in AM incubated w
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In summary, the lack of system y+ operation observed in freshly isolated AM, as well 

as in cells cultured for up to 6d, is maintained even if AM are incubated with GM-CSF, LPS, 

or IFNγ, stimuli that are able to induce this transport activity in macrophages from animal 

models145,156. These results confirm the hypothesis that monocytic/macrophagic cells from

humans and animals present obvious differences as far as the regulation of arginine transport 

is concerned. However, what appears particularly noteworthy is that also differences among 

human cell types of the same monocyte/macrophage lineage may exist; for instance, our data 

demonstrate that, in human alveolar macrophages the treatment with inflammatory cytokines 

 

does not stimulate either SLC7A7 expression nor system y+L activity, at variance with what 

happens in blood monocytes (Fig.33-34).  

 with AM-dependent surfactant 

catabol

stimulation of IL-1β expression 
is detected after 6d-treatement 
with GM-CSF (Panel B). 

As already stated, mutations of SLC7A7/y+LAT1 are responsible for LPI148,153 and are 

associated with a severe, GM-CSF–insensitive form of pulmonary alveolar proteinosis (PAP) 

with apparent alterations in AM151. The high level of SLC7A7 expression found in human 

monocytes and alveolar macrophages suggests that system y+L operation may be an absolute 

requirement for surfactant metabolism by alveolar macrophages and could therefore play an 

important role in the pathogenesis of LPI-associated PAP; it is possible, indeed, that the 

absence of y+LAT1 expression and/or activity interferes

 

Fig.39 Effects of cytokines on 
IL-1β in AM. 

24h treatment with LPS, but not 
with IFNγ (Panel A), produces a 
huge induction of IL-1β mRNA; 
the same LPS-dependent 

ism, thus mimicking the defects in GM-CSF signalling pathway that underlie most 

cases of PAP150. The definition of the functional role of system y+L in human AM deserves, 

therefore, further studies, since it may contribute to the definition of LPI and PAP 

pathogenesis. 
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2.2. EFFECTS OF INFLAMMATORY CYTOKINES ON NITRIC OXIDE PRODUCTION IN 

HUMAN MONOCYTES AND ALVEOLAR MACROPHAGES. 

As already described, the classical and alternative activations of macrophages in 

murine models are characterized by the induction of different L-Arg metabolic pathways: 

classically activated macrophages exhibit a stimulated expression of inducible nitric oxide 

synthase (NOS2) and the consequent increased synthesis of nitric oxide, while, the alternative 

activation implies a marked increase of arginase pathway and of urea and ornithine 

production. Conversely, in the human system, the production of nitrites by monocytes remains 

orm

arginine metabolism and NO production markedly differ between animal and human 

very low and substantially unaffected by the cytokine (Fig.40), although a high IFNγ-

dependent stimulation of system y+L-mediated arginine transport (Fig.33). 

As far as alveolar macrophages are concerned, nitrite determination, perf ed under 

conditions of maximal stimulation of system y+–related genes, indicates that also human AM 

have a very low, LPS- and GM-CSF–insensitive NO production (Fig.41, Panel A) and, 

consistently, do not express NOS2 at appreciable levels (Panel B). 

These data are in agreement with the observations of other groups164,165, indicating that 
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in human monocytes. 

IFNγ does not alter nitric oxide levels in human 
monocytes, after neither 24h nor 48h-treatment. 

Fig.41 Effects of
cytokines on nitric oxide
production in AM. 
Human AM produce a 
very low amount of nitric 
oxide, insensitive to LPS 
and GM-CSF (Panel A); 
consistently, they do not 

 
 

express NOS2 gene, 
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macrophagic c

enhan , the NOS inhibitor NMMA has no 

effect on macrophagic functions, and neither NOS2 mRNA nor NO can be detected in human 

AMs s

edium with the 

cationic amino acid does not trigger NO production in human AM167, thus excluding this 

possibility. Another hypothesis is suggested by the finding that, in rodent model, at variance 

with other cells168, NOS2-dependent NO synthesis markedly depends upon the transport of 

extracellular arginine to the intracellular compartment through the inducible transporter 

SLC7A2/CAT2B169 and that, as a consequence, the expressions of NOS2 and CAT2B appear 

strictly linked; for instance, in rat alveolar macrophages, NOS2 and CAT2B are 

simultaneously induced in an NF-kB–dependent manner by LPS and IFN-γ73 and are inhibited 

by polyamines170, thus suggesting that arginine flux through CAT2B could be functionally 

linked 

+ is definitively effective.  

In any case, it should be stressed that the results presented here may not be necessarily 

ells. For instance, at variance with what observed in murine cells, IFNγ fails to 

ce growth inhibition of mycobacteria by human AM

timulated with LPS and IFNγ or even mycobacteria166. Consistently, our results show 

that IFNγ leaves human alveolar macrophages substantially unaffected, as far as NO 

production or NOS expression is confirmed.  

As a consequence, the activation of macrophages in human cells is more difficult than 

in murine ones to be characterized, as monocyte-derived human macrophages from peripheral 

blood do not produce NO in response to the classical activating stimuli. The divergent 

behaviour of rodent and human AM has been suggested to depend on  limited availability of 

extracellular L-arginine; however, the supplementation of the culture m

to NOS2 activity. If this is the case, the absence of a significant activity of CAT 

transporters in human AMs would lead to an insufficient fuelling of NOS2 even in the 

presence of fairly high concentrations of extracellular arginine, thus explaining the different 

behaviour of human and rodent models, where, conversely, system y

extendible to cells obtained from subjects affected by pathological conditions. Indeed, an 

effective NOS2 expression by AM has been reported in systemic sclerosis or acute respiratory 

distress syndrome171. In this last situation, although NO production by AM has not been 

directly demonstrated, high levels of nitrites/nitrates are detected in bronchoalveolar lavage 

and immunocytochemical positivity for protein nitrosylation has been observed in AM171. It 

will be, therefore, interesting to assess if, in these situations, system y+ transport activity is 

expressed by human AM and, in this case, to define what kind of signals trigger its functional 

expression.  
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3. SUMMARY  

In accordance with their role in the first line defence of the lower respiratory tract 

against airborne pathogens, alveolar macrophages (AM) are known to produce a wide array of 

mediators, such as cytokines, growth factors, reactive oxygen species and arachidonic acid 

derivatives; more controversial is if and under what conditions they also synthesize nitric 

oxide, although NO output from resting AM is believed to be very low172. L-arginine is the 

obliged substrate for NO production, and several contributions have demonstrated that in 

rodent monocyte/macrophage cells, NOS2-dependent NO production, induced by pro-

inflamm

e mechanisms responsible for the modulation 

of argin

Significant differences between human and animal models are also evident as far as 

the response to inflammatory stimuli is concerned: indeed, in human cells, at variance with 

atory compounds such as LPS or IFNγ, mainly depends on the uptake of extracellular 

arginine169,173.  

Most of the studies have however concerned rodent cellular models, while thus far 

little is known about human macrophages and their circulating precursors, monocytes; 

moreover, recent evidences have also suggested that human and animal models may be 

profoundly different146. Therefore the aim of this research project has been to evaluate the 

production of nitric oxide in human monocytes and AM upon incubation with pro-

inflammatory cytokines, as well as to define th

ine transport in these models, under both physiological and inflammatory conditions.    

As for this last point, it is widely accepted that rodent monocyte/macrophage cells 

preferentially transport cationic amino acids through system y+143; consistently, CAT2B 

expression has been documented in alveolar macrophages from animal models73,174 and, most 

recently, CAT2B transporter has been found to play a critical role in regulating AM activity in 

the mouse175. Conversely, the results presented here clearly demonstrate that in both human 

monocytes and macrophages system y+L is the major transport system for cationic amino 

acids, while system y+ contribution is at best marginal. In accordance with functional results, 

also the analysis of the genes coding for the different transporters demonstrates a clear-cut 

expression of the y+L-related SLC7A6 and SLC7A7, with respect to CAT genes. 

Consistently, also a comparison between human alveolar macrophages and human endothelial 

cells confirms that SLC7A7 gene is enormously expressed in human AM, where cationic 

amino acid transport is mainly accounted for by system y+L, whereas, HUVECs exhibit a 

much evident expression of SLC7A2, consistent with the role of system y+ as the major route 

for L-arginine in this model.  
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murine ones, pro-inflammatory compounds are ineffective in stimulating CAT-mediated L-

Arg transport, while IFNγ rather stimulates system y+L and the expression of its related gene, 

SLC7A

reated with IFNγ, thus suggesting that the two events must be, at least, 

uncorrelated. Similarly, in alveolar macrophages, the production of nitric oxide is almost 

undetectable and insensitive to GMCSF or LPS, the conditions of maximal stimulation of 

system y+ activity. 

Taken together these data confirm the hypothesis that animal and human monocytes 

and alveolar macrophages substantially differ, as far as the modulation of L-Arg transport 

under physiological or inflammatory conditions is concerned; however, also differences may 

exist, between cells of the same human monocyte/macrophage lineage, particularly upon 

stimulation with pro-inflammatory compounds. What also appears of great relevance is that 

neither monocytes nor AM produce a significant amount of nitric oxide, not only under basal 

conditions, but even under conditions of maximal stimulation of arginine transport; since 

comparable results have been obtained also in human endothelial cells, where inflammatory 

cytokines are ineffective in modulating NO production, besides stimulating arginine transport, 

it seems apparent that the hypothesis of a link between cationic amino acid transport and NO 

biosynthesis under inflammatory conditions may not be valid for human cells, although 

plausible in animal models. 

7, in isolated monocytes; conversely, human AM are completely insensitive to LPS, 

IFNγ or GM-CSF, as far as either systems y+ or y+L-mediated cationic amino acid transport 

are concerned, thus suggesting that differences among cells of the same human 

monocyte/macrophage lineage may also exist. 

Finally, as for the production of nitric oxide in human cells, the results presented here 

indicate that both human AM and monocytes synthesize a very low amount of this signalling 

molecule under resting conditions; interestingly, NO levels of nitric oxide remain unaltered 

even upon stimulation with cytokines able to induce arginine transport, as in the case of 

monocytes t
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