EcoLanes - "Economical and sustainable pavement infrastructure for surface transport"

Dott. Ettore Musacchi ETRA, European Tyre Recycling Association http://ecolanes.shef.ac.uk – http://www.etra-eu.org

Outline

- Concrete road pavements and fibres from tyre-steel cord
- EcoLanes overview
- Benefits from EcoLanes

Surface transport infrastructure

- EU infrastructure: €600bn up to 2010 for maintenance and extension of network
 - respond needs of enlarged EU
 - benefit single market

Road pavements main element of infrastructure

- Flexible: Asphalt concrete
- Rigid: Portland cement concrete

Road pavements Flexible pavements:

- Deep foundations / multi layer construction
- Energy consumption due to transportation of materials
- Increasing cost of asphalt due to high oil prices

Rigid pavements

- Single layer
- Generally last longer
- May require asphalt topping due to noise / comfort issues Conventional rigid pavements more expensive than flexible

Rigid pavements

- Use steel reinforcement to
 - improve mechanical properties
 - reduce pavement depth

- Steel fibres reduce costs associated with rebar placement
- Concrete mixes
 - wet / slip forming (laborious require side formwork)
 - dry / roller compaction (fast cost effective)
- Difficult to add fibres in roller-compacted concrete

EcoLanes background:

 University of Sheffield research on tyre recycling (http://www.shef.ac.uk/tyre-recycling)

Tyre shredding: SRSF

EcoLanes

Microwave induced pyrolysis of whole tyres: PRSF

EcoLanes background

UoS research proved that tyre-fibres (e.g PRSF) can be as effective as industrially-produced fibres (ISF).

EcoLanes background

Aggregate Industries Ltd UK (AI) / Holcim

- Precast concrete products
- Contractors for all types of pavement surfacing and construction
- Major supplier of aggregate / asphalt / cement
- But interested in concrete road pavements
 - future competitiveness (uncertain future of asphalt)
 - environmental issues (CO₂ trading scheme)

EcoLanes background •Al's interest in road pavements

- research collaboration between AI and UoS
- funded a year's Fellowship for further research &
 preparation of proposals on concrete roads

No.	Participant organisation name	Country
1	The University of Sheffield (concrete)	United Kingdom
2	Akdeniz University (environmental)	Turkey
3	Technical University "Gheorghe Asachi" lasi (transportation)	Romania
4	European Tyre Recycling Association (environmental policy)	France
5	Aggregates Industries UK Ltd (concrete materials & pilot demonstration)	United Kingdom
6	Antalya Municipality (demonstration)	Turkey
7	Romanian National Road Authority (demonstration)	Romania
8	Adriatica Riciclaggio e Ambiente s.r.l.* (tyre recycler)	Italy
9	Public Works Department (demonstration)	Cyprus

EcoLanes Outline

- Call: FP6-2005-Transport-4
- Type of instrument: Specific Targeted Research Project (STREP)
- 9 partners, 9 work packages, 633 man-months total cost ~€2.5m
- Reference Number: 031530
- Submitted: 1 September 2005
- **Evaluated: October 2005**
- Contract Negotiations: March August 2006
- Start of contract: 1 October 2006
- End of contract: 30 September 2009

EcoLanes Objectives Develop infrastructure for surface transport using:

- Roller-compacted techniques based on existing asphalt laying equipment
- Steel fibre reinforced concrete
- Concept of long-lasting-rigid-road-pavements
- The project aims to reduce:
- Construction costs by 10-20%
- Construction time by 15%
- Energy consumption in road construction by 40%,
- Maintenance

And to

- Use waste materials
- Make tyre recycling more economically attractive

EcoLanes work plan

WP 1: Fibre Sorting Leader: AD.RI.A (Italian Tyre Recycler)

Develop techniques and equipment:

- Post-processing steel fibres extracted from tyres
- Arrive at fibres suitable for incorporation in concrete

WP 2: Fibre-reinforced Concrete Leader: The University of Sheffield (United kingdom)

Develop steel fibre-reinforced concrete mixes:

- Suitable for slip forming and roller compaction
- Use recycled materials, low energy cements

WP 3: Pavement testing, analysis and design

- Leader: Technical University of Iasi (Romania)
- Develop long-lasting-rigid-road-pavement concept:
- Accelerated load tests (facility ALT-LIRA)
 - 1.5 million cycles: 30 years(600 trucks /day)
- Durability (climate) tests
- 115kN axle lor

 Image: state sta
- Develop design guidelines for LLRRPs

WP 4: Environmental studies & site processes Leader: Akdeniz University (Turkey)

- Develop life-cycle cost tool to assess environmental impact:
- Site construction processes

• Use of existing asphalt equipment

WP 5 - 7: Demonstrations

Leaders: Aggregate Industries (UK), DRDPIASI (RO), Antalya Municipality (TR)

- Construct four concrete roads in rural and urban European environments
- Eliminate the problem of r deterioration due to cold a wet environments
- Eliminate the problem of asphalt displacement due to hot weather

WP 8: Dissemination and Exploitation

- Leaders: European Tyre Recycling Association (France), Sheffield University Entrerprices Ltd (UK)
- Focus the project on developing solutions needed for transport infrastructure
- Develop technology implementation plan (IPR)
- Disseminate research findings:
 - website (http://ecolanes.shef.ac.uk)
 - 2 industrial seminars

WP 9: Project Management

- Leader: The University of Sheffield (United Kingdom)
- Optimise application of technical resources
- Ensure compliance with the project objectives
- Ensure efficient communication within the project
- Ensure that all aspects of the EC requirements for communication and reporting are met

EcoLanes expected output

Tyre-recycled steel fibres:

• Processes & machinery to sort and clean shredded fibres

Steel-fibre-reinforced RCC rigid pavements

- Processes and machinery to disperse steel fibres in RCC
- Use of waste materials
- Analysis and design software for concept of LLRRPs

Surface transport infrastructure

- Reduction of construction time and cost
- Reduction of energy consumption during construction

Benefits for tyre recyclers

- Price of industrial fibres: €650 ~ €14000 per tonne
- Initial market value of RSF:
 €150 ~ €300 per tonne
- E conomic benefits for tyre recycling industry

EcoLanes

Benefits for tyre recyclers

Use of recycled tyre-cord in concrete construction

- Provide sustainable market for recycled tyre-cord
- Encourage material recovery of large amounts of tyres
- Facilitate implementation of EC directives

Benefits for construction industry

- Low-cost steel-fibre reinforcement
- Economic method for road construction
- Reduction of industry's CO₂ emissions
- Access to construction innovation

The presentation is available online : http://ecolanes.shef.ac.uk/diss.htm

Thank You

Background Notes

Placing of RCC in paver

From mixing to rolling ~ $\frac{1}{2}$ hour

Rolling of RCC pavement

