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Abstract

Stochastic particle methods in optimization constitute a popular class of heuristic
techniques where a set of possible solutions is iteratively updated according to determin-
istic and stochastic mechanisms. These algorithms are oftentimes inspired by natural
phenomena such as the collective motion of birds in a swarm or the reproduction of genes
in biology. Recent works apply kinetic tools developed for modeling such phenomena
to the analysis of particle-based optimization methods to develop a full mathematical
understanding of their convergence properties.

In this thesis, we follow this line of research and propose a semi-discrete mean-field
model for the analysis of Consensus-Based Optimization (CBO) methods. In the literature,
CBO methods are typically analyzed after a twofold approximation: first, the algorithm
dynamics are approximated by a system of time-continuous processes, then, the system is
approximated by a mono-particle process of McKean type. Here, we directly consider a
mean-field approximation of the algorithm’s update and derive a mono-particle difference
equation. We also adapt the convergence results for the time-continuous mean-field
model to these semi-discrete settings, claiming that this modeling procedure avoids the
introduction of an unnecessary additional approximation error.

The second part of the thesis extends the class of CBO methods to solve constrained
and multi-objective optimization problems. For constrained optimization, we couple the
CBO update rule with an exact penalization technique. By adding a penalty term, we
reformulate the constrained problem as an unconstrained one and further propose an
algorithmic technique to tune, during the computation, the penalization strength to its
optimal value. For multi-objective problems, we modify the CBO dynamics so that every
particle aims to optimize a different, parameterized scalar sub-problem. In this way, we
are able to compute an approximation of the entire Pareto front with a single run of the
algorithm. The parameters of the scalarized sub-problems are further adapted following
binary repulsive dynamics to improve the diversity of the computed front.

Via mean-field approximation, we show that the proposed algorithms are able to
converge into a neighborhood of the solutions under mild assumptions, both in the case
of constrained and multi-objective optimization problems. Numerical experiments over
benchmark problems illustrate the algorithms’ performance in different settings and for
different problem types.
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Zusammenfassung

In der Optimierung stellen stochastische Partikelmethoden eine beliebte Klasse heuris-
tischer Techniken dar, bei denen eine Menge möglicher Lösungen iterativ nach determi-
nistischen und stochastischen Mechanismen aktualisiert wird. Diese Algorithmen sind
oft von natürlichen Phänomenen inspiriert, wie der kollektiven Bewegung von Vögeln in
einem Schwarm oder der Reproduktion von Genen in der Biologie. Aktuelle Arbeiten wen-
den Werkzeuge aus der Kinetik, die für die Modellierung solcher Phänomene entwickelt
wurden, auf die Analyse partikelbasierter Optimierungsverfahren an, um ein umfassendes
mathematisches Verständnis ihrer Konvergenzeigenschaften zu erhalten.

In dieser Arbeit folgen wir dieser Forschungsrichtung und schlagen ein semidiskretes
Mean-Field-Modell für die Analyse von konsensbasierten Optimierungsverfahren (CBO)
vor. In der Literatur werden CBO-Methoden typischerweise nach einer zweifachen Ap-
proximation analysiert: Zunächst wird die Dynamik des Algorithmus durch ein Sys-
tem zeitkontinuierlicher Prozesse approximiert, dann wird das System durch einen Ein-
Teilchen-Prozess vom McKean-Typ approximiert. Hier betrachten wir direkt eine Mean-
Field-Approximation der Aktualisierung des Algorithmus und leiten eine Mono-Teilchen-
Differenzgleichung her. Weiterhin passen wir auch die Konvergenzergebnisse für das
zeitkontinuierliche Mean-Field-Modell an diese semidiskreten Einstellungen an und be-
haupten, dass dieses Modellierungsverfahren die Einführung eines unnötigen zusätzlichen
Approximationsfehlers vermeidet.

Der zweite Teil der Arbeit erweitert die Klasse der CBO-Methoden, um eingeschränkte
sowie Mehrzieloptimierungsprobleme zu lösen. Für die eingeschränkte Optimierung
koppeln wir die CBO-Aktualisierungsregel mit einer exakten Bestrafungsregel. Durch
Hinzufügen eines Bestrafungsterms formulieren wir das eingeschränkte Problem als ein
nicht eingeschränktes Problem um und stellen eine algorithmische Technik vor, die die
Stärke der Bestrafung während der Berechnung auf ihren optimalen Wert abstimmt.
Bei Mehrzielproblemen modifizieren wir die CBO-Dynamik so, dass jeder Partikel ein
anderes, parametrisiertes skalares Teilproblem optimiert. Auf diese Weise sind wir in der
Lage, eine Approximation der gesamtem Pareto-Front mit einem einzigen Durchlauf des
Algorithmus zu berechnen. Die Parameter der skalaren Teilprobleme werden nach der
binären repulsiven Dynamik weiter angepasst, um die Diversität der berechneten Front zu
verbessern.

Mittels Mean-Field-Approximation zeigen wir, dass die vorgeschlagenen Algorith-
men in der Lage sind, unter milden Annahmen in eine Nachbarschaft der Lösungen zu
konvergieren, sowohl bei eingeschränkten als auch bei Mehrzieloptimierungsproblemen.
Numerische Experimente von Benchmark-Problemen zeigen die Leistung der Algorithmen
in verschiedenen Situationen und für verschiedene Problemtypen.
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Sommario

I metodi particellari stocastici nell’ottimizzazione costituiscono una popolare classe di
tecniche euristiche in cui un insieme di possibili soluzioni viene aggiornato iterativamente
secondo meccanismi deterministici e stocastici. Questi algoritmi sono spesso ispirati a
fenomeni naturali come il moto collettivo degli uccelli in uno stormo o la riproduzione dei
geni in biologia. Lavori di ricerca recenti applicano strumenti cinetici sviluppati per la
modellazione di tali fenomeni all’analisi dei metodi di ottimizzazione basati sulle particelle
per sviluppare una piena comprensione matematica delle loro proprietà di convergenza.

In questa tesi, seguiamo questa linea di ricerca e proponiamo un modello di campo
medio semi-discreto per l’analisi dei metodi di ottimizzazione basati sul consenso (CBO). In
letteratura, i metodi CBO sono tipicamente analizzati dopo una duplice approssimazione:
dapprima, la dinamica dell’algoritmo è approssimata da un sistema di processi tempo-
continui, quindi, il sistema è approssimato da un processo mono-particellare di tipo
McKean. In questa tesi, consideriamo direttamente un’approssimazione di campo medio
dell’iterazione dell’algoritmo e deriviamo un’equazione alle differenze mono-particellare.
Adattiamo inoltre i risultati di convergenza per il modello di campo medio continuo nel
tempo a queste impostazioni semidiscrete, notando come questa procedura di modellazione
eviti l’introduzione di un inutile errore di approssimazione aggiuntivo.

La seconda parte della tesi estende la classe dei metodi CBO per risolvere problemi di
ottimizzazione vincolata e multi-obiettivo. Per l’ottimizzazione vincolata, accoppiamo la
regola di aggiornamento CBO con una tecnica di penalizzazione esatta. Aggiungendo un
termine di penalizzazione, riformuliamo il problema vincolato come un problema non vin-
colato e proponiamo una tecnica algoritmica per regolare, durante la computazione, la forza
della penalizzazione al suo valore ottimale. Per i problemi multi-obiettivo, modifichiamo
la dinamica del CBO in modo che ogni particella miri ad ottimizzare un diverso problema
scalare parametrizzato. In questo modo, siamo in grado di calcolare un’approssimazione
dell’intero fronte di Pareto con una singola esecuzione dell’algoritmo. I parametri dei
problemi scalari vengono ulteriormente adattati attraverso una dinamica repulsiva binaria
per migliorare la diversità del fronte calcolato.

Tramite un’approssimazione di campo medio, dimostriamo che gli algoritmi proposti
sono in grado di convergere in un intorno delle soluzioni in presenza di lievi ipotesi, sia nel
caso di problemi di ottimizzazione vincolati che multi-obiettivo. Esperimenti numerici su
test di riferimento illustrano le prestazioni degli algoritmi in diversi contesti e per diversi
tipi di problemi.

iii



iv



Contents

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Consensus-Based Optimization methods and mean-field theory 7
2.1 Derivation of CBO from PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Literature review on continuous mean-field approximations . . . . . . . . . 10
2.3 A semi-discrete mean-field model . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 A variant with memory effects . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Convergence analysis of consensus-based optimization algorithms 21
3.1 Literature review on convergence of CBO dynamics . . . . . . . . . . . . . . 22
3.2 Convergence analysis in mean-field law . . . . . . . . . . . . . . . . . . . . 24

3.2.1 CBO without memory effects . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 CBO with memory effects . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Mean-field approximation error for bounded domains . . . . . . . . . . . . 33
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Proof of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Constrained optimization problems 43
4.1 Adaptive exact penalization strategy . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Convergence analysis in mean-field law . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Convergence for exact penalization (case β(k) > β) . . . . . . . . . . . 50
4.2.2 Violation of feasibility check (case β(k) ≤ β) and proof of Theorem 4.5 52

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Simulation of mean-field regime . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Benchmark problems in d = 5 . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Benchmark problems in higher dimensions . . . . . . . . . . . . . . 59

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



5 Multi-objective optimization problems 65
5.1 Scalarization strategy and energy-based diversity measures . . . . . . . . . 67
5.2 Consensus-based optimization and adaptive strategies . . . . . . . . . . . . 70

5.2.1 CBO for parameterized sub-problems . . . . . . . . . . . . . . . . . 70
5.2.2 Parameters adaptation for bi-objective problems . . . . . . . . . . . 71
5.2.3 Parameters adaptation for general multi-objective problems . . . . . 74

5.3 Convergence analysis in mean-field law . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Mean-field approximation of the coupled dynamics . . . . . . . . . 76
5.3.2 Convergence to the Pareto front . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Proof of Theorem 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Bi-objective problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Tri-objective problems . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Problems definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusion and Outlook 101
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 103

vi



Chapter 1

Introduction

Optimization problems can be found everywhere. What is the shortest route to go
home? How can I schedule my meetings in the most efficient way? Already in such
common settings, we often rely on mobile applications to get answers to our optimization
problems. What mobile applications do on our phones is simply run an optimization
algorithm that returns the optimal solution possible. For the route planning problem, we
insert a destination and the algorithm computes the best itinerary for us. In engineering
and applied sciences, the complexity of optimization problems can increase exponentially.
What is the optimal balance between ingredients in a chemical solution? What is the car
design which minimizes air friction? What is the best Neural Network architecture for a
given Natural Language Processing task? To solve these kinds of optimization problems
having efficient and reliable algorithms is of paramount importance. In this thesis, we
study and extend a class of optimization algorithms, the Consensus-Based Optimization
methods, which have proven, in recent years, to be both effective and theoretically sound.

Historically, optimization algorithms are divided into exact methods and heuristics.
Most exact methods are designed to provably converge to local solutions to the problems,
eventually taking an infinite computational time to do so. Heuristics are usually designed
with a specific application in mind and aim to find the best solution possible, given a
certain computational budget. Exact methods are theoretically analyzed and are popular
among the mathematical community, while heuristics are more popular among engineers
and practitioners. Quoting [76], “[...] these two communities are almost completely disjoint:
they have different journals, different conferences, and different test functions.”

One of the features which makes heuristics popular in the applied community is that
their core mechanism has oftentimes an intuitive, nature-inspired interpretation. To name
a few, the Particle Swarm Optimization method [64] mimics the behavior of a swarm of
birds; the Genetic Algorithm [79] is inspired by Darwin’s principle of natural selection;
Simulated Annealing [65] resembles the annealing technique in metallurgy. Names aside,
the main reason why the mathematical community has traditionally had no interest in
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studying heuristics is that, to put it simply, they are too difficult to analyze. Being the result
of several trials and errors, a heuristic algorithm is a stratified collection of mechanisms
involving stochastic choices and complex recombination of possible solutions. The usual
mathematical programming techniques developed for exact methods are not suitable for
the analysis of such algorithms. This is where another branch of mathematics, namely
mathematical physics, enters the story.

Statistical mechanics was first developed by L. Boltzmann (1844–1906) to study the
macroscopic properties of rarefied gases. Even in a rarefied state, a gas contains an
enormous number of particles, colliding with each other at every instant. One cannot
study how the gas behaves, let us say, how its pressure evolves, by tracking the trajectory
of every single particle: this would be computationally prohibitive. To deal with this
issue, Boltzmann suggested describing the gas in probabilistic terms. We should not try to
describe the state of every single particle but rather model how they are likely to behave,
that is, we should look at probability distributions rather than particle systems. At the
cost of sacrificing a certain amount of precision, we may obtain a useful mathematical
model that we can employ to predict how the gas pressure or its temperature evolves, for
instance.

We can find the same situation in many other contexts. In biology, we know how cells
interact with each other at the microscopic level, and we would like to know how a certain
tissue grows. In economics, from a model of the traders’ behavior, we would like to infer
the long-time evolution of stock prices. In social sciences, can we guess the election output
if we know how people exchange opinions with one another? In all these cases, the aim is
to analytically study the collective behavior of a system from the laws that regulate the
interaction between the individuals (to be intended in a broad sense). There is a large body
of literature in which Boltzmann’s idea of switching from a discrete, individual-based
model to a continuum mathematical model dealing with probability distributions has
been successfully applied in these contexts, see, for instance, [24, 28, 33, 70, 71, 80] and the
references therein.

Some heuristic algorithms can also be described as individual-based models where the
individuals are given possible solutions to the optimization problems. It should come as no
surprise that this is the case with the previously mentioned Particle Swarm Optimization
method and Genetic Algorithm. The heuristic’s mechanism which combines and modifies
the solutions plays here the role of the interaction mechanisms in physics, biology, or
economics. The only difference is that it is the algorithm’s designer who makes the rules,
and not nature or society. The most common heuristics optimization paradigms were
developed in the ‘80s and ‘90s [64, 65, 79]. Thanks to they broad popularity and flexibility,
these methods are the subject of an impressive number of publications in which the
algorithms are constantly improved, see for instance [60] for a literature review on the
time span 1983–2016. Up until recent years, though, parallelism between heuristics and
individual-based models has been long overseen.

In [72], authors proposed the Consensus-Based Optimization (CBO) heuristics where
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a set of possible solutions interact through dynamics inspired by the ones used to study
opinion formation among social individuals. CBO shares many features with Particle
Swarm Optimization, but it was designed specifically to be amenable to theoretical analysis
via tools from mathematical physics. Indeed, the algorithm’s mechanism can be studied in
probabilistic terms to theoretically analyze its collective behavior.

From [72], many authors are now developing statistical mechanics of heuristics which
aim to analytically study the convergence properties of popular heuristics with the new
mathematical tools developed in the analysis of collective dynamics [2, 5, 16, 19, 41, 50,
54, 59]. Can we still consider it to be non-exact a heuristic that is mathematically proven
to converge to a solution with a high probability? Is it still a heuristic if the algorithm’s
dynamics were the result of a theoretical investigation, rather than several trials and
errors against benchmark problems? This body of work thinned the gap between heuristic
algorithms and exact methods and calls for a new type of classification in the optimization
literature.

1.1 Contribution

This thesis deals with CBO methods and their theoretical analysis. The contribution
is twofold: we propose a novel mean-field mathematical analysis that does not rely on
continuous-in-time approximations, and we extend the class of CBO methods to solve
constrained and multi-objective optimization problems.

Mean-field analysis. One of the possible ways of deriving a statistical description starting
from an individual-based model, is to take the so-called mean-field limit. Let us briefly give
an intuition on how to perform such an approximation. Given our set of N individuals,
which we call particles from now on, we focus on a particular one (anyone) and study how
it interacts with the remaining N − 1. Assuming N large, we approximate the rest of the
ensemble with a probability distribution. In this way, we now need to model only the
interaction between a single particle and a probability measure describing the average
behavior of the rest. Due to the arbitrariness of the initial choice of particle, it turns out
that such a measure describes the probability distribution of our particle as well. We are
left, therefore, with a mono-particle process that aims to approximate a N particle system.
It is called mean-field limit as its accuracy typically increases as the number of particles N
increases, and it becomes exact as N →∞. Going from a model of N equations to a model
of one single equation greatly simplifies the theoretical analysis of the system.

The starting point for the derivation of mean-field limits for swarming models, bi-
ological models, or opinion models, is, most of the time, a set of N , time-continuous,
ordinary (or stochastic) differential equations. This is because, in these contexts, events are
considered to happen seamlessly, at every instant of time. On the contrary, optimization
algorithms, and CBO methods in particular, are intrinsically discrete. The particles are
updated at each iteration and there is no concept of time continuity in the physics of
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Algorithm’s update rule
System of N stochastic
differential equations

Mean-field
difference equation*

Mean-field
differential equation

τ→0

N→∞ N→∞

τ→0

Figure 1.1: In the diagram, τ is step-size of the particles’ update in the CBO algorithm,
while N is the number of particles. In this thesis, we study the convergence of CBO
methods via the mathematical model (*).

the algorithm. Yet, the most frequent approach in the analysis of CBO methods is to
first perform a continuous-in-time approximation of the algorithm’s update rule, see,
for instance, [16, 41, 72]. The consensus dynamics is, so, approximated by a system N
Stochastic Differential Equations (SDEs). From this point onwards, one can apply the
classical tools in mean-field theory to derive the mono-particle process, which can either
be described by a SDE of McKean type, or a Partial Differential Equation (PDE). After
a twofold approximation, the mathematical model of the heuristic can be theoretically
analyzed.

In this thesis, we suggest a different approach that requires to perform a single ap-
proximation. We achieve that by directly taking the mean-field limit N →∞, without
relying on a time-continuous approximation of the dynamics, see Figure 1.1. We argue that
this is sufficient to prove the convergence of the CBO dynamics towards global minima,
thanks to the simplicity of the consensus mechanism. Moreover, it avoids introducing an
unnecessary approximation error in the theoretical investigation. Our analysis is built
upon the recent results on the convergence of CBO methods [41, 42], but takes a novel
point of view. The convergence results we are able to prove for the classical CBO method,
we also prove for a variant that includes memory effects, and for a projected version of
the CBO dynamics. For the former, we also provide quantitative error estimates of the
mean-field approximation, in the case of convex, bounded domains.

The second part of the thesis concerns the design of novel heuristic algorithms.

Constrained optimization problems. We start by adapting CBO to solve constrained
optimization problems. In such problems, a solution does not only have to minimize
an objective but should also satisfy certain constraints to be admissible. To include
constraints, we add an exact penalization strategy to CBO. Penalization techniques aim
to rule out non-admissible solutions by adding a penalization term to those that do not
satisfy the constraints. The strength of the penalization is determined by the so-called
penalty parameter. For a penalization to be exact, it means it ensures correspondence
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between the penalized problem and the original constrained one, provided the penalty
parameter is sufficiently large. Exact penalization typically makes the objective function
non-smooth and, therefore, it is non-suitable for gradient-based methods. As CBO methods
are gradient-free, this does not represent an issue.

In the proposed algorithm, we couple the CBO dynamics with a dynamical update of
the penalty parameter. Whenever the constraint violation of the particles is larger than a
certain tolerance, the penalty parameter is increased. If the violation remains within the
tolerance, instead, we decrease the tolerance for the next iteration. We perform a mean-
field analysis of the novel method and derive conditions under which the particle system
is expected to converge toward an admissible minimizer of the objective problem. Several
numerical experiments are performed to assess the performance of the algorithm against
benchmark problems. We also compare the experimental results with the theoretical
analysis and investigate the role of the different parameters involved in the method. This
application shows how the original CBO dynamics can be easily enriched with further
mechanisms, without affecting its convergence properties and theoretical understanding.

Part of this work on CBO for constrained optimization has already been published
in [7]1. We note that the algorithm analysis in the semi-discrete settings is novel.

Multi-objective optimization problems. The second algorithm we propose is designed to
solve multi-objective optimization problems, but it can also be applied to any task where
several problems need to be solved in parallel.

In multi-objective optimization, two or more objectives need to be taken into account at
the same time. Since objectives are typically in conflict with each other, we expect to be no
solution that minimizes all of them. Therefore, the classical notion of optimality is relaxed
to the notion of Edgeworth-Pareto (EP) optimality. To find the possibly many EP optimal
points, we employ a scalarization strategy that allows us to translate the multi-objective
problem into several parameterized single-objective sub-problems. The CBO algorithm we
propose distributes the optimization tasks among the particles so that every particle is in
charge of solving a different sub-problem. During the computation, the multi-objective
values of the particles are shared among the ensemble so that we can compute a different
consensus point for each problem.

As in the case of exact penalization, the choice of the sub-problems’ parameters is
essential to guarantee a good quality of the solution. In multi-objective optimization, one
should find EP solutions that are as diverse as possible to one another, meaning that their
images should not be close from one another in the objective space. To this end, we couple
the CBO dynamics with a short-range repulsive evolution in the space of the parameters.
Through several numerical experiments with bi- and tri-objective benchmark problems,

1 CRediT authorship contribution statement for [10–12]: Giacomo Borghi: Conceptualization, Software,
Validation, Formal analysis, Data curation, Writing – original draft, Visualization. Michael Herty & Lorenzo
Pareschi: Conceptualization, Methodology, Formal analysis, Writing - Review & Editing, Supervision, Project
administration, Funding acquisition.
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we show the validity of the proposed algorithm. We also derive a mean-field description
of the coupled dynamics and theoretically prove convergence towards EP optimal points
under mild assumptions on the parameterized sub-problems.

This chapter on CBO methods for multi-objective optimization is built upon the
published works [7, 7, 7]1. As for the penalized CBO algorithm, we remark the novelty of
the converge analysis in the semi-discrete mean-field settings.

1.2 Outline

The thesis is organized as follows. Chapter 2 is devoted to the presentation of the
CBO algorithm for single-objective, unconstrained problems and the derivation of the
corresponding mean-field difference equation. After presenting the original CBO method,
we show how it can be derived as a simplified version of the popular PSO algorithm. Then,
we consider the CBO with anisotropic diffusion and derive its mean-field approximation
via the propagation of chaos assumption. We also present and discuss a CBO variant where
the personal best of each particle is included in the dynamics, as in PSO methods.

Chapter 3 is devoted to the theoretical analysis of the mean-field model, both in the
case of dynamics with and without memory effects. Under suitable growth conditions of
the objective function and choice of the algorithm parameters, we show that the mean-field
process concentrates in an arbitrary small neighborhood of the minimizer. We also analyze
a further variant where particles are constrained, via projection, in a convex and bounded
domain. For the projected dynamics, we not only show convergence in mean-field law but
also provide a quantitative error of the mean-field approximation in terms of number of
particles.

In Chapter 4, we show how to adapt the CBO method to solve constrained optimization
problems via exact penalization. After presenting the algorithm and, in particular, the
adaptive strategy for the penalty parameters, we analyze the corresponding mean-field
description and its convergence properties. Then, we extensively test the method on
benchmark problems to validate the theoretical analysis and further understand the role
of the different algorithm’s parameters.

Chapter 5 is dedicated to multi-objective optimization. We propose here a CBO
method that makes use of the scalarization technique and that aims to minimize several
parameterized sub-problems simultaneously. We start by presenting the CBO dynamics
in case of fixed parameters and then propose different adaptive strategies for bi-objective
problems and general multi-objective ones. After deriving their mean-field approximations,
we analytically study their convergence properties towards the Pareto front. Several
numerical experiments are performed for both bi- and tri-obective problems to validate
the CBO dynamics and the different adaptive strategies.

Final remarks and possible future research directions are discussed in Chapter 6.
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Chapter 2

Consensus-Based Optimization
methods and mean-field theory

Consensus-Based Optimization (CBO) algorithms make use of a set of possible solu-
tions, which we will call particles, to explore the search space and find a global minimum
of the objective function. The update rule is the result of an interaction of consensus
type between the particles where convergence towards a consensus point is coupled with
random steps favoring exploration of the search space.

The collective behavior of interacting particle systems has been subject of extensive
mathematical investigation in last decades, see, for instance, [52,71] and references therein.
Following this large body of literature, convergence analysis of CBO algorithms typically
makes use of a twofold approximation of the dynamics [16, 41, 72]. First, the particles’
update rule is approximated by a continuous-in-time dynamics. Then, the particle system
is approximated by a mono-particle process of mean-field type which greatly simplifies
the convergence analysis [16, 41]. Quantitative estimates of the two approximations allow
eventually to recover error estimates for the original CBO algorithm [41].

In this chapter, we propose a different strategy to study the collective behavior of
the CBO particle system. In particular, we directly perform a mean-field approximation
of the CBO algorithm. We simplify in this way the modeling procedure and avoid the
introduction of a second approximation error (the one which depends on the step size).
This also simplifies the well-posedness analysis of the mean-field approximation.

Before delving into the mathematical modeling, we introduce in Section 2.1 the CBO
update rule. Following its genesis [72], we present the CBO interaction as a simplified
version of the popular Particle Swarm Optimization (PSO) heuristic. We recall from [43]
the main steps on how to derive CBO dynamics from PSO ones. Next, we show how
to leverage such simplified dynamics to provide a statistical description of the particle
evolution. We will first present in Section 2.2 the typical twofold approximation used in the
CBO literature. In Section 2.3 we then present the novel mean-field approximation of the
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CBO dynamics. We also illustrate in Section 2.4 how to re-introduce the typical memory
effects of PSO methods, while keeping the particle system amenable to mathematical
description. Additional remarks and details regarding the literature are provided at the
end of the chapter.

2.1 Derivation of CBO from PSO

Inspired by the intelligent behavior of flocks of birds, the first PSO algorithm was
proposed in [64], and has now been improved in many aspects to serve a wide range of
use cases [56]. Following the steps proposed in [43], we introduce in this section the CBO
dynamics as a modification of the PSO algorithm.

Let E : Rd → R be the objective function the swarm aims to optimize, the problem
reads

minimize E(x) . (2.1)

In the original PSO, N ∈N particles are characterized by their locations {Xi}Ni=1 ⊂R
d and

their velocities {V i}Ni=1 ⊂R
d. At every iteration k of the algorithm, each particle modifies

its velocity to move towards two different points in the search space. The first point is
given by the particle own best position found so far up to step k. We indicate the best
position of the i-th particle at step k as Y i

(k):

Y i
(k) such that E(Y i

(k)) = min
h,0≤h≤k

E(Xi
(h)) .

In case the above minimum is not unique, the first one reached during the computation is
typically set to be the particle’s personal best [56].

The second point considered in the velocity update is the global best location among
the all personal bests. Let f N,y

(k) = (1/N )
∑N

i=1 δY i
(k)

be the empirical measure of the personal

bests, where with δy we denote the Dirac measure at y ∈Rd. We will indicate the global

best location as m∗[f N,y
(k) ]:

m∗[f N,y
(k) ] such that E(m∗[f N,y

(k) ]) = min
j,1≤j≤N

E(Y j
(k)) .

To be more precise, for any f belonging to the set P (Rd) of Borel probability measure over
R

d we consider a map m∗ : P (Rd)→R
d satisfying

m∗[f ] ∈ argmin
x∈supp(f )

E(x) .

To include stochasticity in the dynamics, two vectors for each particle are randomly
sampled from the uniform distribution over [0,1]d, θi,1

(k),θ
i,2
(k) ∼ Unif([0,1]d). Let c1, c2 > 0

8



be positive constants and ⊙ denote the component-wise (Hadamard) product, the PSO
algorithm iteration then readsXi

(k+1) = Xi
(k) +V i

(k+1)

V i
(k+1) = V i

(k) + c1

(
Y i

(k) −X
i
(k)

)
⊙θi,1

(k) + c2

(
m∗[f N,y

(k) ]−Xi
(k)

)
⊙θi,2

(k)

(2.2)

for all i = 1, . . . ,N .
To be able to analytically analyze the PSO dynamics, authors in [72] suggested to:

consider a first-order dynamics, avoid the use of personal bests, and avoid the use of
any memory mechanism at all. Also, for modeling purposes, the global best position is
regularized by considering a weighted average of the particles locations.

Let f ∈ P (Rd) be a probability measure describing a particle distribution. The cor-
responding weighted average mα[f ] ∈ R

d is computed through the Boltzmann-Gibbs
distribution associated with the objective function E and thermodynamic temperature 1/α,
for α > 0:

mα[f ] :=

∫
xexp(−αE(x))df (x)∫
exp(−αE(x))df (x)

. (2.3)

One can verify that such weighted average is an approximation of the global best position
for empirical particle distributions. Indeed, if the global best position is unique among the
personal bests, direct computations leads to

mα[f N,y
(k) ] −→m∗[f N,y

(k) ] , as α→∞ .

We remark that proving the above limit for generic, non-empirical, probability measures is
a non-trivial task which requires additional assumptions on the objective function E, see
the quantitative version of the so-called Laplace principle [42, Proposition 1].

Let f N
(k) be the empirical distribution associated with the particle locations {Xi

(k)}
N
i=1.

After disregarding personal bests and velocities, and by regularizing m∗, update rule (2.2)
simplifies to

Xi
(k+1) = Xi

(k) + c2

(
mα[f N

(k)]−X
i
(k)

)
⊙θi,2

(k)

which is not yet the CBO dynamics, though. As suggested in [43], the CBO update rule can
be obtained after splitting the variation c2

(
m∗[f N

(k)]−X
i
(k)

)
⊙θi,2

(k) into a deterministic term
and a zero-mean term. Such components are also tuned separately through two different
parameters, λ > 0 and σ > 0 respectively for greater flexibility. At the cost of making the
system over-parameterized, an additional parameter τ ∈ (0,1) regulating the step-size is
also introduced.

The obtained CBO update rule finally reads

Xi
(k+1) = Xi

(k) +λτ
(
mα[f N

(k)]−X
i
(k)

)
+ σ
√
τ
(
mα[f N

(k)]−X
i
(k)

)
⊙θi

(k) , (2.4)
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where θi
(k) ∼N (0, Id) is now sampled form the standard normal distribution.

We note that, while the CBO dynamics differs significantly from the PSO one (2.2), the
main features of PSO, that is,

• flock convergence towards a (regularized) global best position

• exploration via random component

are preserved in (2.4). On the other hand, we will see in the following how this simpler
update rule is more amenable to mathematical analysis, thanks to its first-order nature,
the lack of personal bests, and, most importantly, the regularization of the global best.

Remark 2.1. Equation (2.4) corresponds to the anisotropic CBO dynamics proposed in [19],
where the noise acts differently on each coordinate of the search space. The algorithm iteration
was originally proposed with isotropic exploration:

Xi
(k+1) = Xi

(k) +λτ
(
mα[f N

(k)]−X
i
(k)

)
+ σ
√
τ |mα[f N

(k)]−X
i
(k)|θ

i
(k) .

While the mean-field modeling procedure proposed in this work can be applied to both iso- and
aniso-tropic CBO dynamics, we will focus on the latter as it has been proved to be more robust
against large-scale optimization problems (d≫ 1) [5, 19].

2.2 Literature review on continuous mean-field approximations

Most works in the CBO literature analyze the numerical particle iteration through two
approximations: first, the algorithm is approximated by a continuous-in-time dynamics
of N particles, then, a mean-field approximation of the particle interaction is performed
[16, 41, 42, 72]. Loosely speaking, this corresponds to performing two different limits,
τ → 0 and N → ∞. For completeness, we recall in this section the main steps of this
modeling procedure.

To derive the first approximation, we note that (2.4) corresponds to an Euler-Maruyama
discretization [55, 73] of the following system of N Itô’s Stochastic Differential Equations
(SDEs)

dXi
t = λ

(
mα[f N

t ]−Xi
t

)
dt + σ

(
mα[f N

t ]−Xi
t

)
⊙ dBi

t (2.5)

for i = 1, . . . ,N , where {(Bi
t)t≥0}Ni=1 are independent Wiener processes and f N

t = (1/N )
∑N

i=1 δXi
t

is the (random) empirical particle measure. Such approximation introduces an error which
is polynomial in the step size τ [73]. Well-possesses of the above system of SDEs is guaran-
teed by classical arguments in SDE analysis, provided the objective function E is locally
Lipschitz continuous [16].

We note that this first approximation does not address the main mathematical challenge
of the CBO particle system, that, is the (possibly) large number N of equations involved.
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To do so, authors in [72] propose a mean-field approximation of the particles’ interaction
by making the so-called propagation of chaos assumption on the marginals [78]. Let
FN
t = Law(X1

t , . . . ,X
N
t ) ∈ P ((Rd)N ) be the probability distribution of the particle system

at time t ≥ 0. We assume that for N ≫ 1 it factorizes as FN
t ≈ f ⊗Nt for some ft ∈ P (Rd).

Under such assumption, particles X1
t , . . . ,X

N
t are identically, independently distributed at

all times t ≥ 0 and evolve according to the McKean mono-particle process

dXt = λ
(
mα[ft]−Xt

)
dt + σ

(
mα[ft]−Xt

)
⊙ dBt (2.6)

with ft = Law(Xt). Thanks to Itô-Doeblin formula, ft weakly satisfies the Fokker-Planck
equation

d
dt

∫
φ(x)dft(x) = λ

∫
∇φ(x) · (mα[ft]−x)dft(x) +

σ2

2

∫ d∑
ℓ=1

∂ℓℓφ(x)(mα[ft]−x)2
ℓdft(x) (2.7)

for any φ ∈ C∞b (Rd). Well-posedness of the mean-field dynamics (2.6) for given initial data
X0 ∼ f0 can be proved under mild assumptions on the objective function by means of the
Leray-Schauder fixed point theorem [16].

A rigorous analysis of the mean-field limit N →∞ has been carried out in [57] where
authors justify the propagation of chaos assumption. Under suitable initial data, authors
prove that the empirical random measures f N and the solution f ∈ P (C([0,T ],Rd)) to (2.7)
for a time horizon T > 0 satisfies

f N ⇀ f in law as N →∞ .

This is proven under mild assumptions on the objective E, that is, local Lipschitz continuity,
quadratic lower bound, and quadratic growth at infinity. Quantitative error estimates
for the mean-field approximation are provided in [41] under the same assumptions for
E, provided the dynamics remains bounded (and this is shown to happen with high
probability). Let T > 0 be a given time horizon. By coupling the N particle system

(2.5) with N solutions {Xi
t}Ni=1 to the mean-field dynamics (2.6), authors in [41] prove, in

particular, that

max
i=1,...,N

sup
t∈[0,T ]

E

[
|Xi

t −X
i
t |2

∣∣∣ΩM

]
≤ CMFAN

−1 ,

where ΩM is the set of realizations satisfying (1/N )
∑N

i=1 max{|Xi
t |4, |X

i
t |4} ≤M for all t ∈

[0,T ], and where CMFA > 0 is a constant that depends on T ,M.
By studying the mean-field description (2.7) one can investigate the large-time behavior

of the particles’ system, such as the creation of consensus and the convergence towards
a global minimizer. While we will review the different approaches to the analysis of the
mean-field model in Chapter 3, we remark now that any convergence analysis of this type
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necessarily includes an error of order O(τ +N−1) introduced by the twofold approximation.
In the following section, we propose a mean-field approximation of the dynamics which
only consider the limit N →∞ and keep τ > 0 fixed. Therefore, this modeling procedure is
expected to introduce an error of order O(N−1) only.

2.3 A semi-discrete mean-field model

We start by considering the discrete CBO update rule (2.4) which generates for k =
0,1, . . . a sequence of random variables {X(k)}Ni=1. Then, we directly assume propagation
of chaos of the marginals. Let FN

(k) ∈ P ((Rd)N ) be the probability distribution associated

with {X(k)}Ni=1. We assume that for large particle systems, N ≫ 1, FN
(k) ≈ f ⊗N(k) for some

f(k) ∈ P (Rd). Under such assumption, the consensus point satisfies

mα[f N
(k)] =

∫
xexp(−αE(x))df N

(k)(x)∫
exp(−αE(x))df N

(k)(x)
≈

∫
xexp(−αE(x))df(k)(x)∫
exp(−αE(x))df(k)(x)

= mα[f(k)]

and so the update rule (2.4) becomes, as before, independent on the particle index i:

X(k+1) = X(k) +λτ
(
mα[f(k)]−X(k)

)
+ σ
√
τ
(
mα[f(k)]−X(k)

)
⊙θ(k) (2.8)

where f(k) = Law(X(k)) and θ(k) ∼N (0, Id). The obtained difference equation is of McKean
type and is the semi-discrete equivalent of model (2.6).

For simplicity, let us forget for a moment about the iterative step k and introduce the
following notation

x′ = x+ (λτ + σ
√
τθ)⊙ (mα[f ]− x)

=: CCBO(x,f ,θ)
(2.9)

for a given f ∈ P (Rd) and θ ∈ Rd. For any measurable test function φ : Rd→ R, we have
that the mono-particle process satisfies

E

[
φ(X(k+1))

]
= E

[
φ(CCBO(X(k), f(k),θ(k))

]
= E

[
φ(X

′
(k))

]
or, equivalently, ∫

φ(x)df(k+1)(x) =
"

φ(x′)df(k)(x)dµ(θ) (2.10)

where, here, x′ = CCBO(x,f(k),θ) is given by (2.9) and µ = Law(θ(k)). We will favor the
notation x′ over the more precise CCBO(x,f ,θ) for the sake of readability, whenever it is
clear from the context the arguments we consider.
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Again, we note that equation (2.10) describes a dynamics of mean-field type which
is discrete time and that can therefore be interpreted as the discrete counterpart of (2.7).
We prove now the well-posedness of the above iterative scheme under the following
assumptions.

Assumption 2.2. The objective function E satisfies:

• E := infE > −∞ ;

• there exists LE , cu , cl ,Rl > 0 such that
|E(x)−E(y)| ≤ LE(1 + |x|+ |y|)|x − y| ∀ x,y ∈Rd ,

E(x)−E ≤ cu(1 + |x|2) ∀ x ∈Rd ,

E(x)−E ≥ cl |x|2 ∀ x : |x| > Rl .

(2.11)

Let Pq(Rd) be the set of Borel probability measures with bounded q-moment, Pq(Rd) =
{f ∈ P (Rd) :

∫
|x|qdf (x) <∞}.

Proposition 2.3. Under Assumption 2.2, if f(0) ∈ P2(Rd), then f(k) ∈ P2(Rd) for all k ≥ 1.

Before presenting the proof, we collect the following auxiliary results.

Lemma 2.4 ( [16, Lemma 3.3]). Let E satisfy Assumption 2.2 and f ∈ P2(Rd). Then∫
|x|2 exp(−αE(x))∫

exp(−αE(x))df (x)
df (x) ≤ b1 + b2

∫
|x|2df (x)

with constants

b1 = R2
l + b2, b2 = 2

cu
cl

1 +
1
αcl

1

R2
l


depending only on Rl , cu , cl

Lemma 2.5. Let θℓ be a random variable taking values in R with E[θℓ] = 0 and E[θ2
ℓ ] = 1, and

define
S1(θℓ) := 1− (λτ + σ

√
τθℓ) , S2(θℓ) := λτ + σ

√
τθℓ .

It holds

E[S2
1 (θℓ)] = (1− (2λτ − σ2τ −λ2τ2)) ,

E[S2
2 (θℓ)] = σ2τ +λ2τ2 ,

E[S1(θℓ)S2(θℓ)] := λτ − (σ2τ +λ2τ2) .
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Proof. Let us start by computing E[S2
2 (θℓ)]. By computing S2

2 (θℓ), we obtain

S2
2 (θℓ) =

(
λτ + σ

√
τθℓ

)2
= λ2τ2 + 2λτσ

√
τθℓ + σ2τθ2

ℓ .

When taking the expectation, the second term vanishes as E[θℓ] = 0. Using assumption
E[θ2

ℓ ] = 1 one obtains the desired value

E[S2
2 (θℓ)] = λ2τ2 + σ2τ .

Next, we note that S1(θℓ) = 1− S2(θℓ) and so it holds

S2
1 (θℓ) = (1− S2(θℓ))

2 = 1− 2S2(θℓ) + S2
2 (θℓ) .

By taking the expectation and using the computed value for E[S2
2 (θℓ)], we get

E[S2
1 (θℓ)] = 1− 2λτ + σ2τ +λ2τ2 .

For the mixed term, it holds

S1(θℓ)S2(θℓ) = (1− S2(θℓ))S2(θℓ) = S2(θℓ)− S2
2 (θℓ) .

Again, by re-using the computed values we obtain

E[S1(θℓ)S2(θℓ)] = λτ − σ2τ −λ2τ2 .

Proof of Proposition 2.3. By applying (2.10) with φ(x) = |x|2, we obtain∫
|x|2df(k+1)(x) =

"
|x′ |2df(k)(x)dµ(θ)

= E

∫
|(1− (λτ + σ

√
τθ))⊙ x+ (λτ + σ

√
τθ)⊙mα[f(k)]|2df(k)(x)

=
d∑

ℓ=1

E

∫ (
(1− (λτ + σ

√
τθℓ))xℓ + (λτ + σ

√
τθℓ)m

α
ℓ [f(k)]

)2
df(k)(x) ,

where the expectation is taken with respect to the sampling of θ. Using the notations S1,S2
introduced in Lemma 2.5, the argument of the integral can be written as

(x′ℓ)
2 = |(1− (λτ + σ

√
τθℓ)xℓ + (λτ + σ

√
τθℓ)m

α
ℓ [f(k)]|2

= (1− (λτ + σ
√
τθℓ))

2x2
ℓ + 2(1− (λτ + σ

√
θℓ))(λτ + σ

√
τθℓ)xℓm

α
ℓ [f(k)]

+ (λτ + σ
√
τθℓ)

2mα
ℓ [f(k)]

2

= S2
1 (θℓ)x

2
ℓ + 2S1(θℓ)S2(θℓ)xℓm

α
ℓ [f(k)] + S2(θℓ)

2mα
ℓ [f(k)]

2 .
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By applying Lemma 2.5 we have that

E

∫
(x′ℓ)

2df(k)(x) = E[S2
1 (θℓ)]

∫
x2
ℓdf(k)(x) +E[2S1(θℓ)S2(θℓ)]

∫
xℓm

α
ℓ [f(k)]df(k)(x)

+E[S2
2 (θℓ)]m

α
ℓ [f(k)]

2

= (1− (2λτ − σ2τ −λ2τ2))
∫

x2
ℓdf(k)(x)

+ 2(λτ − (σ2τ +λ2τ2))
∫

xℓm
α
ℓ [f(k)]df(k)(x) + (σ2τ +λ2τ2)mα

ℓ [f(k)]
2

≤ (1 + τc1)
∫

x2
ℓdf(k)(x) + τc2m

α
ℓ [f(k)]

2

for some constants c1, c2 > 0 independent on τ for τ ∈ (0,1), but that depend on λ,σ . By
summing all components ℓ = 1, . . . ,d we obtain the estimate∫

|x|2df(k+1)(x) ≤ (1 + τc1)
∫
|x|2df(k)(x) + τc2|mα[f(k)]|2 .

Thanks to Assumptions 2.2, we are able to apply Lemma 2.4 and Jensen’s inequality to
bound |mα[f(k)]|2 as

|mα[f(k)]|2 ≤

∫
|x|2 exp(−αE(x))df(k)(x)∫

exp(−αE(x))df(k)(x)
≤ b1 + b2

∫
|x|2df(k)(x)

for positive constants b1,b2 depending on cu , cl ,Rl ,α. This further leads to∫
|x|2df(k+1)(x) ≤ (1 + τc3)

∫
|x|2df(k)(x) + τc4

for some c3, c4 > 0. By iterating the argument for all h = 0,1, . . . , k, we can conclude∫
|x|2df(k)(x) ≤ (1 + τc3)k

∫
|x|2df(0)(x) + τc4

k−1∑
h=0

(1 + τc3)h

= (1 + τc3)k
∫
|x|2df(0)(x) + τc4

(1 + τc3)k − 1
τc3

≤ ec3kτ
∫
|x|2df(0)(x) +

c4

c3
(ec3kτ − 1) ,

due to inequality 1 + s ≤ es for any s ∈ R. Therefore, if f(0) ∈ P2(Rd), the above estimates
guarantees that f(k) ∈ P2(Rd) for all k ≥ 1.

15



We note that the obtained bound on the second moments is analogous to the one
obtained in [16, Theorem 3.2] for the continuous mean-field model (2.6) under the same
assumptions on E. Indeed, we will see how most of the arguments used in the continuous
settings can be adapted to the semi-discrete model, thanks to the simplicity of the CBO
dynamics.

Remark 2.6. By formally taking the limit τ → 0 in (2.10) with φ ∈ C∞b (Rd), we obtain the
Fokker-Planck equation (2.7). For any k ≥ 1, by Fubini’s theorem it holds as τ→ 0∫

φ(x)df(k+1)(x) =
"

φ(x′)df(k)(x)dµ(θ)

=
∫

E

[
φ(x) +∇φ(x) · (x′ − x)

+
1
2

d∑
ℓ1,ℓ2=1

∂ℓ1ℓ2
φ(x)(x′ − x)ℓ1

(x′ − x)ℓ2

]
df(k)(x) + o(τ) .

Now, we recall from the proof of Proposition 2.3 that E[x′−x] = λτ(mα[f(k)]−x), E[(x′−x)ℓ1
(x′−

x)ℓ2
] = o(τ) for all ℓ1 , ℓ2, and E[(λτ + σ

√
τθℓ)2] = λτ2 + σ2τ . This yields to

∫
φ(x)df(k+1)(x) =

∫ (
φ(x)+λτ∇φ(x) · (mα[f(k)]−x)+τ

σ2

2

d∑
ℓ=1

∂ℓℓφ(x)(x′−x)2
ℓ

)
df(k)(x)+o(τ)

which we rewrite as∫
φ(x)df(k+1)(x)−

∫
φ(x)df(k)(x)

τ

=
∫ (

φ(x) +λ∇φ(x) · (mα[f(k)]− x) +
σ2

2

d∑
ℓ=1

∂ℓℓφ(x)(x′ − x)2
ℓ

)
df(k)(x) + o(1) .

As τ→ 0, the above equation formally converges to the time-continuous mean-field model (2.7).

2.4 A variant with memory effects

We have shown in Section 2.1 how the CBO particle interaction can be seen as a simpler
variant of the PSO dynamics. Inspired by recent analysis of PSO algorithms [43, 59] and
CBO variants [74], we propose in the following a mean-field CBO model where the memory
mechanism of PSO methods is reintroduced. This is achieved by coupling the particle
location Xi

(k) with the corresponding personal best Y i
(k) and by computing the regularized
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global best position through the measure f
N,y

(k) = (1/N )
∑N

i=1 δY i
(k)

:

Xi
(k+1) = Xi

(k) +λτ
(
mα[f N,y

(k) ]−Xi
(k)

)
+ σ
√
τ
(
mα[f N,y

(k) ]−Xi
(k)

)
⊙θi

(k) ,

Y i
(k+1) =

Xi
(k+1) if E(Xi

(k+1)) < E(Y i
(k)) ,

Y i
(k) else .

(2.12)

Let f N
(k) ∈ P (Rd ×Rd) be the particles’ empirical measure. Under the same propagation

of chaos assumption we used for the CBO dynamics, f N
(k) ≈ f(k) ∈ P (Rd ×Rd) for N ≫ 1, we

obtain the mean-field process

X(k+1) = X(k) +λτ
(
mα[f y

(k)]−X(k)

)
+ σ
√
τ
(
mα[f y

(k)]−X(k)

)
⊙θ(k) ,

Y (k+1) =

X(k+1) if E(X(k+1)) < E(Y (k)) ,

Y (k) else ,

(2.13)

where f
y

(k) = Law(Y (k)).

For any test measurable function φ : Rd ×Rd→R
d, it holds

E

[
φ(X(k+1),Y (k+1))

]
= E

[
φ(X(k+1),X(k+1))

∣∣∣ E(X(k+1)) < E(Y (k))
]

+E

[
φ(X(k+1),Y (k))

∣∣∣ E(X(k+1)) ≥ E(Y (k))
]

= E

[
φ(X(k+1),X(k+1))1{E(X(k+1))<E(Y (k))}

]
+E

[
φ(X(k+1),Y (k))1{E(X(k+1))≥E(Y (k))}

]
in which the indicator function is defined as 1{True} = 1 and 1{False} = 0. As a consequence,
f(k+1) satisfies∫

φ(x,y)df(k+1)(x,y)

=
" (

φ(x′ ,x′)1{E(x′)<E(y)} +φ(x′ , y)1{E(x′)≥E(y)}

)
df(k)(x,y)dµ(θ) (2.14)

where x′ is again given by the CBO dynamics (2.9), but with f = f
y

(k).
It is interesting to notice how the model (2.14) exactly implements the memory mech-

anism, unlike similar time continuous models in which the personal bests update rule
is regularized [43, 59, 74]. As we will see in the next chapter, it is possible to prove con-
vergence towards the global minimizer directly for (2.14), but a regularized update rule
may be required to obtain quantitative error bounds for the mean-field approximation.
Moments’ estimates for (2.13) can be derived similarly to the CBO dynamics without
memory effects.
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Proposition 2.7. Under Assumption 2.2, if f(0) ∈ P2(Rd ×Rd), then f(k) ∈ P2(Rd ×Rd) for all
k ≥ 1.

Proof. Assume f(k) ∈ P2(Rd ×Rd). Following the computations done in the proof of Propo-
sition 2.3 we obtain∫

|x|2df x
(k+1)(x) ≤ (1− τc1)

∫
|x|2df x

(k)(x) + τc2|mα[f y
(k)]|

2

≤ (1− τc1)
∫
|x|2df x

(k)(x) + τc2

(
b1 + b2

∫
|y|2df y

(k)

)
<∞

where we applied, again, Lemma 2.4 to bound |mα[f y
(k)]|

2. For the particle best, a rough
estimate can be given by noting that∫

|y|2df y
(k+1)(y) =

∫
|x′ |21{E(x′)<E(y)}df(k)(x,y) +

∫
|y|21{E(x′)<E(y)}df(k)(x,y)

≤
∫
|x′ |2df x

(k)(x) +
∫
|y|2df y

(k)(y) <∞ ,

due to the previously computed bound. This proves the claim by induction.
As it will be useful later for the convergence analysis, let us derive a sharper estimate

by exploiting the memory mechanism. Thanks to Assumption 2.2, we have∫
|y|2df y

(k)(y) =
∫
B2
Rl

(0)
|y|2df y

(k)(y) +
∫

(B2
Rl

(0))c
|y|2df y

(k)(y)

≤ R2
l +

1
cl

∫
R

d
(E(y)−E)df y

(k)(y)

≤ R2
l +

1
cl

(∫
R

d
E(y)df y

(k)(y)−
∫
R

d
E(y0)df y

(0)(y0) +
∫
R

d
(E(y0)−E)df y

(0)(y0)
)
.

Now, since E(Y (k)) ≤ E(Y (0)) with probability 1, as the personal best can improve its
objective value, it holds ∫

R
d
E(y)df y

(k)(y) ≤
∫
R

d
E(y0)df y

(0)(y0) .

Therefore, we can drop their difference in the previous estimate and further bound the
second moment as ∫

|y|2df y
(k)(y) ≤ R2

l +
1
cl

∫
(E(y0)−E)df y

(0)(y0) < +∞ . (2.15)

We note that the right-hand side of (2.15) is independent on both k and τ .
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2.5 Discussion

In this chapter we introduced the CBO algorithm and proposed a novel mean-field
approximation by directly considering the many-particle limit N →∞ of the CBO update
rule. We also recalled the most common modeling approach in the CBO literature which
consist of deriving the mean-field model from a time-continuous system of SDEs. To
conclude the chapter we mention other approaches used in the literature.

In [48], authors approximate the CBO particle system as τ → 0, but do not perform
a mean-field approximation of the particle interaction. This approach is taken further
in [49, 67], where the convergence analysis is directly performed at the fully discrete
CBO particle system. As the theoretical analysis does not rely on mean-field averaging,
convergence is proved under rather restrictive assumptions on the initial data (see, for
instance, [49, Theorem 3.2]). We note that a time-discrete model which is similar to the
one proposed here, has been employed in [18], where authors propose a variant of CBO,
the Consensus-Based Sampling method, for inverse and optimization problems.
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Chapter 3

Convergence analysis of
consensus-based optimization
algorithms

In this chapter, we investigate the large-time behavior of the CBO algorithm iteration
by exploiting the mean-field approximation of the particle dynamics. We recall that for
an initial particle distribution f(0) ∈ P2(Rd) the proposed mean-field model consists of a
sequence of probability measures (f(k))k∈Z+

⊂ P2(Rd) (thanks to Proposition (2.3)) where
f(k) = Law(X(k)), and X(k) is given by the difference equation

X(k+1) = X(k) +λτ
(
mα[f(k)]−X(k)

)
+ σ
√
τ
(
mα[f(k)]−X(k)

)
⊙θ(k) (3.1)

with θ(k) ∼N (0, Id).
Among other assumptions, we will restrict our analysis to objective functions E at-

taining a unique global minimizer x∗ := argminx∈RdE(x). Let f ∈ P2(Rd) be a particle
distribution, we investigate convergence by studying the expected mean-field error of f
with respect to x∗:

Err[f ] :=
∫
|x − x∗|2df (x) . (3.2)

In particular, we show that Err[f(k)] can reach, during the computation, any desired
accuracy ε > 0, provided the objective function E and the CBO parameters {λ,σ ,τ,α} satisfy
certain conditions. We note that the above error coincide with the squared Wasserstein-2
distance between f and the probability measure concentrated at the solution x∗, Err[f ] =
W 2

2 (f ,δx∗). We refer to [75] for the definition and more details on Wasserstein distances.
In this chapter, we start by reviewing in Section 3.1 the main strategies used in the

literature to prove convergence of the continuous-in-time mean-field model. In Section
3.2 we then adapt such techniques to study (3.1) and prove convergence in mean-field
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law without relying on time-continuous approximations. We will do that for the CBO
algorithm both with and without memory effects. Next, in Section 3.3 we consider particle
dynamics with bounded search space and provide quantitative error estimates of the
mean-field approximation in terms of number of particles N . By coupling the mean-
field approximation error with the mean-field convergence analysis, we are able to prove
convergence of the CBO algorithm for bounded, convex domains in expectation. Final
remarks are discussed in Section 3.4, while Section 3.5 collects the proof of auxiliary
lemmas.

3.1 Literature review on convergence of CBO dynamics

The key ingredient for the convergence analysis of CBO methods is the Boltzmann-
Gibbs distribution used to compute the consensus point. In particular, this choice of
weights allows to use a classical result of large-deviation analysis: the Laplace principle [27].
This principle states that for any f ∈ P (Rd) absolutely continuous with respect to the
Lebesgue measure it holds

lim
α→∞

(
− 1
α

log
(∫

e−αE(x)df (x)
))

= inf
x∈supp(f )

E(x) .

The approaches available in the literature can be summarized into two main ones,
which we briefly recall for completeness. In the following, f ∈ C([0,T ],P2(Rd)) is assumed
to be a solution to the mean-field continuous model (2.7).

The first technique was proposed in [16] and further applied in many other works
[19, 38, 39, 48–50]. To follow this strategy, one needs to study the consensus formation
through the evolution of the system variance Var[ft] = (1/2)

∫
|x −m0[f ]|2dft(x). Under

suitable assumptions, it is typically possible to prove exponential decay of the variance,
leading to W2(ft ,δx̃) → 0 as t → ∞ for some point x̃ ∈ R

d. Next, provided Var[f0] is
sufficiently small, E ∈ C2(Rd) is sufficiently regular, and the interaction parameters are
well-chosen, one can prove the upper bound as α→∞

E(x̃) ≤ − 1
α

log
(∫

e−αE(x)df0(x)
)

+O(α−1) ,

see, for instance, [19, Theorem 3.2]. Finally, thanks to the Laplace principle, the above
upper bound can be made arbitrary close to the objective value global minimum E(x∗),
assuming large α and x∗ ∈ supp(f0).

This variance-based approach, has shown to be flexible enough to be successfully
applied to many variants of CBO algorithms [5, 58]. On the other hand, differentiability of
the objective function is required together with a strict assumption on the initial variance,
as Var[f0] and α need to be inversely proportional. This gives a local flavor to the result.
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The second approach has been proposed in [41] for isotropic CBO dynamics, and
adapted in [42] for anisotropic ones. The main intuition behind these techniques is to show
that the mean-field dynamics corresponds to a gradient flow with respect to the mean
squared error. In this case, Err[ft] itself plays the role of a Lyapunov functional, rather
than the variance. In the analysis of the proposed semi-discrete mean-field model (3.1) we
are going to take this same point of view. Therefore, we recall in the following the main
steps of the convergence analysis carried out in [41, 42].

As before, the key result used for the analysis is the Laplace principle. In [41], authors
derive a quantitative version of this asymptotic result to prove that the consensus point
mα[ft] can be made arbitrary close to the global minimum x∗ if the mass around the
minimizer does not vanish during the evolution. To be more precise, the quantitative
version of the Laplace principle for anisotropic CBO can be obtained under the assumptions
below.

Assumption 3.1 (Growth conditions around minimizer). There exists a unique minimizer x∗

of E and c1,p1 > 0,R > 0 such that

c1∥x − x∗∥
p1
∞ ≤ E(x)−E(x∗) ∀x, ∥x − x∗∥∞ ≤ R, (3.3)

and lower bound E∞ > 0 such that

E∞ < E(x)−E(x∗) ∀x, ∥x − x∗∥∞ > R. (3.4)

In the following, we denote with B∞r (x) the closed ℓ∞-ball centered in x ∈Rd of radius
r > 0. The quantitative version of the Laplace principle then reads:

Proposition 3.2. [42, Proposition 1] Let infE = 0, f ∈ P (Rd) and fix α > 0. For any r > 0 we
define Er := supx∈B∞r (x∗)E(x). Then, under Assumption 3.1, for any r ∈ (0,R] and q > 0 such that
q+ Er < E∞, we have

|mα[f ]− x∗| ≤ c1

√
d(q+ Er )1/p1 +

√
dexp(−αq)
f (B∞r (x∗))

∫
|x − x∗|df (x) .

Thanks to this quantitative estimate, authors in [41, 42] are able to identify, for a given
accuracy ε > 0 and initial data f0, a sufficiently large time horizon T ∗ and α such that

min
t∈[0,T ∗]

Err[ft] ≤ ε .

Also, the error Err[ft] exponentially decays until the desired accuracy is reached. We
remark that assumption infE = 0 can be dropped without loss of generality, as mα[f ] is
invariant under translations of E.

In the next sections, we show to obtain the same convergence result for the finite-
difference mean-field model.
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Remark 3.3. The dependence on the dimension d in Proposition 3.2 is a consequence of the use
of ℓ∞-norms in the growth conditions (3.3) and (3.4). Bounds in terms of ℓ2-norms do not lead
to such an explicit dependence on the problem dimension, see [41, Proposition 21]. We include
the above result as it is more suitable to analyze the CBO dynamics with anisotropic exploration.

3.2 Convergence analysis in mean-field law

To study the convergence properties of the mean-field model (3.1) (or (2.13) if memory
effects are considered) we follow the proof technique introduced in [41, 42]. The proof for
anisotropic CBO requires the following steps:

1. study time evolution of the error Err[f(k)] for k ≥ 0;

2. provide a lower-bound on the mass around the neighborhood of the minimizer
f(k)(B∞r (x∗)), for some small radius r > 0;

3. apply the quantitative Laplace principle (Proposition 3.2) to show that |mα[f(k)]−x∗| =
O(ε) for large α > 0;

4. use the collected estimates to prove Err[f(K)] = O(ε) for some large K > 0.

As we will see, steps 1, 3 and 4 can be adapted with no effort to the semi-discrete
settings. In case of CBO without memory effects, we provide a lower bound on the
probability mass around the minimizer (step 2) by relying on computations performed
for the time continuous mean-field model. As a result, we require a rather strict upper
bound on the step size τ . With the introduction of memory effects, though, we follow a
new approach to address step 3 which does not require any strict assumption on τ .

3.2.1 CBO without memory effects

In this subsection, we consider the sequence of probability measures (f(k))k∈Z+
where

f(k) = Law(X(k)) ∈ P2(Rd) with X(k) defined by (3.1). We start the analysis by studying the
evolution of the mean-squared error.

Proposition 3.4 (Error evolution). For all k = 0,1, . . . and λτ < 1, it holds

Err[f(k+1)] ≤
(
1− τ 2λ− σ2 −λ2τ

2

)
Err[f(k)] + τ

2λ+ σ2 +λ2τ
2

|mα[f(k)]− x∗|2 . (3.5)

Proof. By definition of Err[f(k)] and the weak formulation (2.10), it holds

Err[f(k+1)] =
∫
|x − x∗|2df(k+1)(x) = Eθ∼µ

∫
|x′ − x∗|2df(k)(x) ,
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with x′ = CCBO(x,f(k),θ), as in (2.9). For the sake of notational semplicity, we will simply
use E[·] to denote Eθ∼µ[·] in the following computations.

We rewrite x′ − x∗ as

x′ − x∗ = x+ (λτ + σ
√
τθ)⊙ (mα[f(k)]− x)− x∗

= (1− (λτ + σ
√
τθ))⊙ (x − x∗) + (λτ + σ

√
τθ)⊙ (mα[f(k)]− x∗)

to obtain

E

[
|x′ − x∗|2

]
= E

[
|(1− (λτ + σ

√
τθ))⊙ (x − x∗) + (λτ + σ

√
τθ)⊙ (mα[f(k)]− x∗)|2

]
=

d∑
ℓ=1

E

[(
(1− (λτ + σ

√
τθℓ))(x − x∗)ℓ + (λτ + σ

√
τθℓ)(m

α[f(k)]− x∗)
)2

ℓ

]

=
d∑

ℓ=1

E

[(
S1(θℓ)(x − x∗)ℓ + S2(θℓ)(m

α[f(k)]− x∗)ℓ
)2

]
,

where we used the definition of S1,S2 given in Lemma 2.5. By applying now Lemma 2.5
one further obtains for all coordinates ℓ = 1, . . . ,d

E

[(
S1(θℓ)(x − x∗)ℓ + S2(θℓ)(m

α[f(k)]− x∗)ℓ
)2]

= E

[
S2

1 (θℓ)(x − x∗)2
ℓ + 2S1(θℓ)S2(θℓ)(x − x∗)ℓ(mα[f(k)]− x∗)ℓ

+ S2
2 (θℓ)(m

α[f(k)]− x∗)2
ℓ

]
= E[S2

1 (θℓ)](x − x∗)2
ℓ + 2E[S1(θℓ)S2(θℓ)](x − x∗)ℓ(mα[f(k)]− x∗)ℓ

+E[S2
2 (θℓ)](m

α[f(k)]− x∗)2
ℓ

= (1− (2λτ − σ2τ −λ2τ2))(x − x∗)2
ℓ + 2

(
λτ − (σ2τ +λ2τ2)

)
(x − x∗)ℓ(mα[f(k)]− x∗)ℓ

+ (σ2τ +λ2τ2)(mα[f(k)]− x∗)2
ℓ

≤
(
1−

(
λτ − σ2τ +λ2τ2

2

))
(x − x∗)2

ℓ +
(
λτ +

σ2τ +λ2τ2

2

)
(mα[f(k)]− x∗)2

ℓ ,

where in the last step we used inequality ab ≤ 1
2a

2 + 1
2b

2 for any a,b ∈ R to bound the
second term.

Finally, we sum over all coordinates ℓ = 1, . . . ,d and integrate x with respect to f(k) to
get the desired estimate

E

∫
|x′ − x∗|2df(k)(x) ≤

(
1− τ

(
λ− σ2 +λ2τ

2

))∫
|x − x∗|2df(k)(x)

+ τ

(
λ+

σ2 +λ2τ
2

)
|mα[f(k)]− x∗|2 .
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It is clear from Proposition 3.4 that if one can bound the term |mα[f(k)] − x∗|, then a
suitable choice of λ,σ ,τ leads to exponential decay of Err[f(k)]. We will do that by applying
the quantitative Laplace principle (Proposition 3.2) over a sufficiently large time window.
This requires to provide a lower bound on

f(k) (B∞r (x∗)) = f(k)

({
x : ∥x − x∗∥∞ < r

} )
for any r > 0.

To do so, we follow [42] and consider the mollifier

φr(x) =


∏d

ℓ=1 exp
(
1− r2

r2−(x−x∗)2
ℓ

)
, if ∥x − x∥∞ < r,

0, else,
(3.6)

which satisfies Im(φr ) = [0,1], supp(φr ) = B∞r (x∗), φ ∈ C∞c (Rd). Hence, the expected value
of φr gives us a lower bound on the mass around the minimizer

f(k) (B∞r (x∗)) ≥
∫

φr(x)df(k)(x) .

Lemma 3.5 (Lower bound on mass around x∗). For a given T > 0 and r > 0, let

max
k,kτ≤T

|mα[f(k)]− x∗| ≤ B

for some B > 0.
Provided τ > 0 is sufficiently small, there exists a positive constant a = a(r,d,B,λ,σ ) (inde-

pendent on τ) such that

f(k) (B∞r (x∗)) ≥
(

1
2

∫
φr(x)df(0)(x)

)
exp(−akτ) ∀k : kτ ≤ T .

The proof of the lemma is rather technical and it is given at the end of the chapter in
Section 3.5. Now, we are ready to present and tackle the main convergence theorem.

Theorem 3.6. Fix an accuracy ε > 0 and assume the objective function E satisfies Assumption
3.1. Consider an initial distribution f(0) ∈ P2(Rd) such that x∗ ∈ supp(f(0)) and parameters
{λ,σ } ⊂R+ satisfying λ > σ2. Define the time horizon T ∗ > 0

T ∗ :=
4

λ− σ2 log
(

Err[f(0)]

ε

)
.

Let f(k) = Law(X(k)) with X(k) updated according to (3.1). Provided α > 0 is sufficiently
large and the step-size τ > 0 is sufficiently small, it holds

min
k :kτ≤T ∗

Err[f(k)] ≤ ε . (3.7)
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Moreover, as long as Err[f(k−1)] > ε, it holds

Err[f(k)] ≤ exp
(
−kτ λ− σ

2

4

)
Err[f(0)] . (3.8)

Proof. We start by defining suitable τε,αε such that for all τ ≤ τε and α ≥ αε we have
convergence in the sense of (3.7). To this end, we introduce

Cλ,σ :=

√
λ− σ2

2(3λ+ σ2)

and qε, rε given by

qε :=
1
2

min
{

1

c1
√

d

(√
εCλ,σ

)p1
, E∞

}
, rε := max

s∈[0,R]

{
max

x∈B∞s (x∗)
E(x) ≤ qε

}
,

such that, thanks to this choice, it holds

c1

√
d(qε + Erε )

1/p1 <

√
εCλ,σ

2
(3.9)

(recall Er is defined as Er := supx∈B∞r (x∗)E(x) in Proposition 3.2).
Then, we pick a step-size τε > 0 such that λτε < 1 and such that Lemma 3.5 holds

with r = rε, B := Cλ,σ

√
Err[f(0)], and T = T ∗. In this way, we obtain an exponential decay

of f(k)(B∞rε (x∗)) with exponent a > 0. We remark that the definition of τε, ultimately, only
depends on ε,f(0)λ,σ and it does not depend on any choice of α.

Next, we consider any αε satisfying
√

dexp(−αεqε + aT ∗)∫
φrε(x)df(0)(x)

√
Err[f(0)] <

Cλ,σ

2

√
ε .

These particular choices of τε,αε will allow us to apply both Lemma 3.5 and Proposition
3.2 as long as |mα[f(k)]− x∗| ≤ B.

Now, for any fixed τ ≤ τε and α ≥ αε, we consider the iterative step K

K := sup
{
k : Err[f(h)] > ε and |mα[f(h)]− x∗| < Cλ,σ

√
Err[f(h)] ∀h ≤ k

}
. (3.10)
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By applying Proposition 3.4 and since λτ ≤ λτε < 1, we obtain that for all k ≤ K

Err[f(k)] ≤
(
1− 2λτ − σ2τ −λ2τ2

2

)
Err[f(k−1)] +

2λτ + σ2τ +λ2τ2

2
|mα[f(k−1)]− x∗|2

≤
(
1− τ λ− σ

2

2

)
Err[f(k−1)] + τ

3λ+ σ2

2
|mα[f(k−1)]− x∗|2

≤
(
1− τ λ− σ

2

2

)
Err[f(k−1)] + τ

3λ+ σ2

2
C2
λ,σErr[f(k−1)]

≤
(
1− τ λ− σ

2

4

)
Err[f(k−1)] ,

where the last two inequalities follow from the definition of K and Cλ,σ , respectively. By
iterating the above argument, we obtain for all k ≤ K

Err[f(k)] ≤
(
1− τ λ− σ

2

4

)k
Err[f(0)] ≤ exp

(
−kτ λ− σ

2

4

)
Err[f(0)] .

We note that the right-hand-side above is decreasing due to the assumption λ > σ2. There-
fore, Err[f(k)] and |mα[f(k)]− x∗| can be bounded as following:

max
0≤k≤K

Err[f(k)] ≤ Err[f(0)]

max
0≤k≤K

|mα[f(k)]− x∗| ≤ Cλ,σ max
0≤k≤k̄

√
Err[f(k)] ≤ Cλ,σ

√
Err[f(0)] = B.

where, again, we used that |mα[ρ(k)]− x∗| < Cλ,σErr[f(k)] as long as k ≤ K .
To show Err[f(k)] ≤ ε for some k, we check three different cases.
Case K ≥ T ∗/τ. Thanks to the definition of T ∗ and the error exponential decay up to

iteration K , we have

Err[f(K)] ≤ exp
(
−Kτ

λ− σ2

4

)
Err[f(0)] ≤ exp

(
−T ∗λ− σ

2

4

)
Err[f(0)] ≤ ε .

Case K < T ∗/τ and Err[f(K)] ≤ ε. Nothing to prove here.

Case K < T ∗/τ , Err[f(K)] > ε and |mα[f(K)]− x∗| ≥ Cλ,σ

√
Err[f(K)].

We prove that, due to our choice α ≥ αε and τ ≤ τε it holds |mα[f(K)]−x∗| < Cλ,σ

√
Err[f(K)]

and therefore we are led to a contradiction.
By applying Proposition 3.2 with q = qε, r = rε, and Jensen’s inequality we obtain

|mα[f(K)]− x∗| ≤ c1

√
d(qε + Erε )

1/p1 +

√
dexp(−αqε)
f (B∞rε (x∗))

∫
|x − x∗|df(K)(x)

<

√
εCλ,σ

2
+

√
dexp(−αqε)
f(K)(B∞rε (x∗))

√
Err[f(K)] ,
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thanks to our choice of qε, rε satisfying (3.9).
To bound the second term, we recall that Err[f(K)] ≤ Err[f(0)]. Thanks to the choice

τ ≤ τε, we can also apply Lemma 3.5 with rε to obtain a lower bound on the mass around
the minimizer which decays exponentially with the exponent a > 0:

|mα[f(K)]− x∗| ≤
√
εCλ,σ

2
+

√
dexp(−αqε + aT ∗)∫
φrε(x)df(0)(x)

√
Err[f(0)] .

Now, we note that αε was chosen exactly to bound the second term on the right-hand side
above. In particular, for any α ≥ αε it holds

√
dexp(−αqε + aT ∗)∫
φrε(x)df(0)(x)

√
Err[f(0)] ≤

Cλ,σ

2

√
ε .

Altogether, since the considered case assumes ε ≤ Err[f(K)], it holds

|mα[f(K)]− x∗| < Cλ,σ
√
ε ≤ Cλ,σ

√
Err[f(K)] ,

which is the desired contradiction.

3.2.2 CBO with memory effects

We saw how one of the key requirements in the application of the Laplace principle is
ensuring that the mass around the minimizer does not vanish completely. The proof has
required a strict condition on the step-size τ and the use of rather technical arguments.
This may sound paradoxical as we expect, on the contrary, dynamics where particles do
not leave promising areas of the search space.

Such expected behavior can be prescribed by including memory effects in the CBO
dynamics, as illustrated in Section 2.4. This is also interesting for modeling purposes, as
it allows to recover a key mechanism of PSO methods. We recall here the corresponding
mean-field dynamics of the particle X(k) and its personal best Y (k)

X(k+1) = X(k) +λτ
(
mα[f y

(k)]−X(k)

)
+ σ
√
τ
(
mα[f y

(k)]−X(k)

)
⊙θ(k) ,

Y (k+1) =

X(k+1) if E(X(k+1)) < E(Y (k)) ,

Y (k) else ,

(3.11)

together with its weak formulation in terms of f(k) = Law(X(k)),Y (k)) ∈ P (Rd ×Rd)∫
φ(x,y)df(k+1)(x,y)

=
" (

φ(x′ ,x′)1{E(x′)<E(y)} +φ(x′ , y)1{E(x′)≥E(y)}

)
df(k)(x,y)dµ(θ) (3.12)
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with x′ = x+λτ(mα[f y
(k)]− x) + σ

√
τ(mα[f y

(k)]− x)⊙θ = CCBO(x,f y
(k),θ), as before.

Thanks to the personal bests, it becomes easier to provide a lower bound on the mass
around the minimizer x∗.

Lemma 3.7. Assume E to be continuous and to attain a unique global minimum x∗. At every
step k and for any radius r > 0, there exists r0 ∈ (0, r] such that

f
y

(k) (B∞r (x∗)) ≥ f
y

(0)

(
B∞r0

(x∗)
)
.

Proof. For δ > 0, we consider the objective function level set

Lδ := {x : E(x) ≤ E(x∗) + δ} .

As we would expect due to the personal best mechanism, the probability mass of every
level set is non-decreasing during the computation. Indeed, by considering the indicator
function on the level set φ(x,y) = 1{E(y)≤E(x∗)+δ} in (3.12) we have

f
y

(k+1) (Lδ) =
∫

1{E(y)≤E(x∗)+δ}df(k+1)(x)

=
" (

1{E(x′)≤E(x∗)+δ}1{E(x′)<E(y)} + 1{E(y)≤E(x∗)+δ}1{E(x′)≥E(y)}
)
df(k)(x,y)dµ(θ) .

Thanks to the inclusion

{E(y) ≤ E(x∗) + δ} ∩ {E(x′) < E(y)} ⊆ {E(x′) ≤ E(x∗) + δ} ∩ {E(x′) < E(y)} ,

we can bound the above as

f
y

(k+1) (Lδ) ≥
" (

1{E(y)≤E(x∗)+δ}1{E(x′)<E(y)} + 1{E(y)≤E(x∗)+δ}1{E(x′)≥E(y)}
)
df(k)(x,y)dµ(θ)

=
" (

1{E(y)≤E(x∗)+δ}
(
1{E(x′)<E(y)} + 1{E(x′)≥E(y)}

))
df(k)(x,y)dµ(θ)

=
" (

1{E(y)≤E(x∗)+δ}
)
df(k)(x,y)dµ(θ) = f

y
(k) (Lδ) .

By continuity of E and by uniqueness of the global minimizer, for all r > 0 there
exists δ > 0 such that Lδ ⊆ B∞r (x∗). Similarly, for any δ > 0 there exists a r0 > 0 such that
B∞r0

(x∗) ⊆ Lδ, leading to
B∞r0

(x∗) ⊆ Lδ ⊆ B∞r (x∗) .

Therefore, thanks to preservation of mass property of the level sets, we can conclude by
noting that

f
y

(k) (B∞r (x∗)) ≥ f
y

(k) (Lδ) ≥ f
y

(0) (Lδ) ≥ f
y

(0)

(
B∞r0

(x∗)
)
.
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As for the case without personal bests, we study convergence by looking at the expected
squared error (3.2) of the mean-field particle location X(k), that is, Err[f x

(k)]. We note
that the estimates we provided in Proposition 3.4 still hold when the consensus point is
computed among the personal bests. Therefore, we have

Err[f x
(k+1)] ≤

(
1− τ 2λ− σ2 −λ2τ

2

)
Err[f x

(k)] + τ
2λ+ σ2 +λ2τ

2
|mα[f y

(k)]− x
∗|2 . (3.13)

Next, we briefly adapt the convergence proof for CBO with memory effects

Theorem 3.8. Fix an accuracy ε > 0 and assume the objective function E satisfies Assumptions
2.2 and 3.1. Consider an initial distribution f x

(0) ∈ P2(Rd) such that x∗ ∈ supp(f x
(0)) and

parameters {λ,σ ,τ} ⊂R+ satisfying 2λ− σ2 −λ2τ > 0. Define the time horizon T ∗ > 0

T ∗ =
4

2λ− σ2 −λ2τ
log

Err[f x
(0)]

ε

 .
Let f(k) = Law(X(k),Y (k)) with X(k),Y (k) updated according to (3.11). Provided α is suffi-

ciently large, it holds
min

k :kτ≤T ∗
Err[f x

(k)] ≤ ε . (3.14)

Moreover, as long as Err[f x
(k−1)] > ε, it holds

Err[f x
(k)] ≤ exp

(
−kτ 2λ− σ2 −λ2τ

4

)
Err[f x

(0)] . (3.15)

Proof. We start by defining suitable αε such that for all α ≥ αε we have convergence in the
sense of (3.14). Let Cλ,σ ,τ be given by

Cλ,σ ,τ :=

√
2λ− σ2 −λ2τ

2(2λ+ σ2 +λ2τ)
.

We start by applying the quantitative Laplace principle (Proposition 3.2) with f = f
y

(k) and
pick, as in the proof of Theorem 3.6, qε and rε given by

qε :=
1
2

min
{

1

c1
√

d

(√
εCλ,σ ,τ

)p1
, E∞

}
, rε := max

s∈[0,R]

{
max

x∈B∞s (x∗)
E(x) ≤ qε

}
.

We obtain

|mα[f y
(k)]− x

∗| ≤ c1

√
d(qε + Erε )

1/p1 +

√
dexp(−αqε)

f
y

(k)(B
∞
rε (x∗))

∫
|y − x∗|df y

(k)(y)

≤
√
εCλ,σ ,τ

2
+

√
dexp(−αqε)

f
y

(k)(B
∞
rε (x∗))

∫
|y − x∗|df y

(k)(y) . (3.16)
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Next, we recall from Lemma 3.7 that there exists rε,0 > 0 such that f
y

(k)(B
∞
rε (x∗)) ≥

f
y

(0)(B
∞
rε,0(x∗)). Thanks to Jensen’s inequality and the bound (2.15) for the second moments

derived in Proposition 2.7, it also holds∫
|y − x∗|df y

(k)(y) ≤ |x∗|+
∫
|y|df y

(k)(y)

≤ |x∗|+
(∫
|y|2df y

(k)(y)
)1/2

≤ |x∗|+Rl +
1
cl

(∫
(E(y)−E(x∗))df y

(0)(y)
)1/2

=: CE ,0 .

Therefore, from (3.16) we obtain

|mα[f y
(k)]− x

∗| ≤
√
εCλ,σ ,τ

2
+

√
dexp(−αqε)

f
y

(0)(B
∞
rε,0(x∗))

CE ,0 .

We can now pick αε large enough such for all α ≥ αε it holds

|mα[f y
(k)]− x

∗| < Cλ,σ ,τ
√
ε .

We remark that this choice of αε is independent on k and on time horizon T ∗. This is
different from the proof of the analogous convergence result for CBO without memory
effects.

Let us couple the above estimate with the error evolution (3.13) to note that, as long as
Err[f x

(k)] > ε, the error decays exponentially:

Err[f x
(k+1)] ≤

(
1− τ 2λ− σ2 −λ2τ

2

)
Err[f x

(k)] + τ
2λ+ σ2 +λ2τ

2
|mα[f y

(k)]− x
∗|2

≤
(
1− τ 2λ− σ2 −λ2τ

2

)
Err[f x

(k)] + τ
2λ− σ2 −λ2τ

4
ε

≤
(
1− τ 2λ− σ2 −λ2τ

4

)
Err[f x

(k)]

≤ exp
(
−2λ− σ2 −λ2τ

4
kτ

)
Err[f x

(0)] ,

Since the upper bound is smaller than ε for kτ > T ∗, the result follows.

Corollary 3.9. Under the settings of Theorem 3.8, assume the parameter α is increased during
the computation such that α(k)→∞ as k→∞. It holds

inf
k≥0

Err[f(k)] = 0 .
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Proof. As noted, the choice of αε in the proof of Theorem 3.8 is independent on k and T ∗.
Therefore, for all ε > 0 there exists k large enough such that α(k) ≥ αε. This leads to

inf
k≥0

Err[f(k)] ≤ min
k,kτ<T ∗

Err[f(k)] ≤ ε .

3.3 Mean-field approximation error for bounded domains

In this section, we consider CBO dynamics where the particles are constrained into a
set D ⊂ R

d, which is assumed to be closed, bounded, and convex. For such constrained
dynamics, we provide quantitative error estimates of the mean-field approximation. We
also couple this result with the mean-field convergence analysis to prove convergence of
the CBO algorithm with a finite number N of particles.

Let ΠD : Rd→D be the projection operator into D

ΠD(x) = argmin
z∈D

|z − x|2 .

The projection is well-defined because the minimum is attained uniquely due to the
convexity of D. The projected CBO dynamics (without memory effects) simply adds a
projection step after the particles update to ensure that the system remains confined over
D. The update rule reads for all i = 1, . . . ,N ,

Xi
(k+1) = ΠD

(
Xi

(k) +λτ
(
mα[f N

(k)]−X
i
(k)

)
+ σ
√
τ
(
mα[f N

(k)]−X
i
(k)

)
⊙θi

(k)

)
. (3.17)

The corresponding mean-field difference equation is then given by

X(k+1) = ΠD
(
X(k) +λτ

(
mα[f(k)]−X(k)

)
+ σ
√
τ
(
mα[f(k)]−X(k)

)
⊙θ(k)

)
(3.18)

with, as before, f(k) = Law(X(k)) and θ(k) ∼N (0, Id).

Theorem 3.10. Assume E satisfies Assumption 2.2. Let {Xi
(k)}

N
i=1 be given by (3.17) and consider

N copies of the mean-field dynamics (3.18) {Xi
(k)}Ni=1 with same initial data Xi

(0) = X
i
(0) and

random vectors θi
(h) = θ

i
(h) for all h ≤ k.

It holds

E

 1
N

N∑
i=1

|Xi
(k) −X

i
(k)|2

 ≤ CMFAN
−1

with CMFA = CMFA(k,diam(D),α,E ,λ,σ ,τ).

Before providing a proof, we first recall some auxiliary results.
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Lemma 3.11. [16, Lemma 3.2] Let E satisfy Assumption 2.2 and f , f̂ ∈ P2(Rd) with∫
|x|4df (x) ,

∫
|x|4df̂ (x) ≤ K .

Then the following estimates holds

|mα[f ]−mα[f̂ ]| ≤ C0W2(f , f̂ ) ,

for a constant C0 depending only on α,LE ,K .

Lemma 3.12. Let E satisfy Assumption 2.2. Let {Xi
(k)}Ni=1, for k = 0,1, . . . , be N copies of the

mean-field process (3.17), which are i.i.d. with common distribution f(k) ∈ P (D). Then, there
exists a constant C1 depending only on diam(D) and Cα := exp(α(supx∈D E − infx∈D E)) such
that

sup
k∈Z+

E

[
|mα[f

N
(k)]−m

α[f(k)]|2
]
≤ C1N

−1 .

where f
N
(k) is the empirical random measure given by f

N
(k) := (1/N )

∑N
i=1 δXi

(k)
.

Thanks to the boundedness of D, a proof can be given by following step-by-step the
proof of Lemma 3.1 in [40] for CBO mean-field dynamics over hypersurfaces in time-
continuous settings.

Proof of Theorem 3.10. For the sake of notational simplicity, let Xi
(k+1/2),X

i
(k+1/2) be the

random variables before the projection step in (3.17) and (3.18), respectively. We note that
ΠD is non-expansive thanks to the convexity of D. Namely, for any x,y ∈Rd, it holds

|ΠD(x)−ΠD(y)| ≤ |x − y| .

Therefore, we have

|Xi
(k+1) −X

i
(k+1)|2 =

∣∣∣ΠD(Xi
(k+1/2)

)
−ΠD

(
X

i
(k+1/2)

)∣∣∣2 ≤ |Xi
(k+1/2) −X

i
(k+1/2)|2

for all i = 1, . . . ,N . Next, we bound the expected value as following

E

[
|Xi

(k+1/2) −X
i
(k+1/2)|2

]
≤ 2E

[
|(1−λτ − σ

√
τθi

(k))⊙ (Xi
(k) −X

i
(k))|2

]
+ 2E

[
|(λτ + σ

√
τθi

(k))⊙ (mα[f N
(k)]−m

α[f(k)])|2
]

= 2
(
1− τ(2λ− σ2 −λ2τ)

)
E

[
|Xi

(k) −X
i
(k)|2

]
+ 2τ(λ2τ + σ2)E

[
|mα[f N

(k)]−m
α[f(k)]|2

]
,
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where we used Lemma 2.5 to compute the expected values with respect to θi
(k). To bound

the second term, we consider f
N
(k) = (1/N )

∑N
i=1 δXi

(k)
and apply the triangular-like inequality

|mα[f N
(k)]−m

α[f(k)]|2 ≤ 2|mα[f N
(k)]−m

α[f
N
(k)]|

2 + 2|mα[f
N
(k)]−m

α[f(k)]|2 . (3.19)

Thanks to Assumption 2.2, we are able to apply Lemma 3.11 with K = diam(D)4 to get for
some constant C0 = C0(diam(D),α,LE ) > 0

|mα[f N
(k)]−m

α[f
N
(k)]|

2 ≤ C2
0W

2
2

(
f N

(k), f
N
(k)

)
≤

C2
0

N

N∑
i=1

|Xi
(k) −X

i
(k)|2 .

For the second term in (3.19), we apply Lemma 3.12 to obtain

E

[
|mα[f

N
(k)]−m

α[f(k)]|2
]
≤ C1N

−1

for some constant C1 > 0 depending on M = diam(D) and Cα = exp(α(supE − infE)), but
independent on k.

We collect the computed estimates and sum over all particles i = 1, . . . ,N to obtain

E

 1
N

N∑
i=1

|Xi
(k+1) −X

i
(k+1)|2

 ≤ 2(1 + τC2)E

 1
N

N∑
i=1

|Xi
(k) −X

i
(k)|2

+ τC1C3N
−1

for some constants C2,C3 depending on λ,σ ,τ as well as on diam(D),α,LE . By iterating
the argument for all h = 1, . . . , k one obtains

E

 1
N

N∑
i=1

|Xi
(k) −X

i
(k)|2

 ≤ 2k(1 + τC2)kE

 1
N

N∑
i=1

|Xi
(0) −X

i
(0)|2

+
τC1C3

N

k∑
h=1

2h(1 + τC2)h .

Thanks to assumption Xi
(0) = X

i
(0) for all i = 1, . . . ,N we conclude that

E

 1
N

N∑
i=1

|Xi
(0) −X

i
(k)|2

 ≤ CMFAN
−1

for some positive constant CMFA = CMFA(k,C1,C2,C3).

Theorem 3.13. Assume the objective E satisfies Assumption 3.1 with the unique global minimum
belonging to the bounded search space, x∗ ∈ D.

Statements of Theorem 3.6 also hold for the projected mean-field dynamics (3.18).

Proof. We recall that the key ingredients to prove convergence are given by:
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• estimates on evolution of Err[f(k)] (Proposition 3.4);

• lower bound on probability mass around the minimizer x∗ (Lemma 3.5);

• application of the quantitative Laplace principle (Proposition 3.2).

First, we note that the Laplace principle holds independently on the projection strategy
if x∗ ∈ D. Therefore, we only need to ensure that estimates provided in Proposition 3.4 and
Lemma 3.5 still hold for the projected dynamics. As we will see, this is the case thanks to
the non-expansive property of the projector operator ΠD.

As above, let X(k+1/2) be the particle before the projection step, that is, the argument
of ΠD in (3.18), and let f(k+1/2) be its law. We note that the same estimates we derived for
the non-projected dynamics still hold for f(k+1/2), which is the law before the projection
step. Consider the expected mean squared error Err[f(k+1)] after the projection step. Since
x∗ = ΠD(x∗) it holds

Err[f(k+1)] =
∫
|ΠD(x′)− x∗|2df(k)(x) ≤

∫
|x′ − x∗|2df(k)(x) = Err[f(k+1/2)].

Therefore, the bound on the error evolution given by Proposition 3.4 still holds when
projection is performed.

Similarly, when looking at the mass around the global minimizer, f(k+1)(B∞r (x∗)), due to
x∗ ∈ D it holds

ΠD(B∞r (x∗)) ⊆ B∞r (x∗) ,

from which follows B∞r (x∗) ⊆Π−1
D (B∞r (x∗)). This leads to

f(k+1) (B∞r (x∗)) = f(k+1/2)

(
Π−1
D (B∞r (x∗))

)
≥ f(k+1/2) (B∞r (x∗)) .

Given that we have a lower bound for f(k+1/2) (B∞r (x∗)) thanks to Lemma 3.5, the same
estimates hold for the projected CBO dynamics.

Now that we have proved quantitative error estimates of the mean-field approximation
and convergence of the mean-field dynamics, we can couple the two results to obtain an
error estimate for the N particle system.

Theorem 3.14. Let the objective function E satisfy Assumptions 2.2 and 3.1 with global
minimum x∗ ∈ D. Consider a particle system {Xi

(k)}
N
i=1 updated according to the projected CBO

dynamics (3.17) with Xi
0 ∼ f(0) such that x∗ ∈ supp(f(0)). Let the parameters {τ,λ,σ } ⊂ R+

satisfy λ > σ2.
Fix an accuracy ε > 0 and define the time horizon T ∗ > 0

T ∗ =
4

λ− σ2 log
(

2Err[f(0)]

ε

)
.
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Provided α is sufficiently large and the step-size τ is sufficiently small, it holds

min
k :kτ≤T ∗

Err[f N
(k)] ≤ CMFAN

−1 + ε , (3.20)

with CMFA = CMFA(T ∗/τ,diam(D),α,E ,λ,σ ,τ).

Proof. Let {Xi
(k)}Ni=1 be independent mean-field processes evolving according to (3.18) with

Xi
(0) = X

i
(0) and θi

(k) = θ
i
(k) for all k ≥ 1, i = 1, . . . ,N . We decompose the mean squared error

of the particle system as

Err[f N
(k)] = E

 1
N

N∑
i=1

|Xi
(k) − x

∗|2


≤ 2E

 1
N

N∑
i=1

|Xi
(k) −X

i
(k)|2

+ 2E

 1
N

N∑
i=1

|Xi
(k) − x∗|2

 . (3.21)

Given that the mean-field processes are independent we have

E

 1
N

N∑
i=1

|Xi
(k) − x∗|2

 = Err[f(k)] ,

with f(k) being their common law. By applying Theorem 3.13 with accuracy ε/2 we get

min
k :kτ≤T ∗

Err[f N
(k)] ≤ ε/2 ,

provided α is sufficiently large and τ is sufficiently small. Next, we apply Theorem 3.10 to
bound the first term as

2E

 1
N

N∑
i=1

|Xi
(k) −X

i
(k)|2

 ≤ CMFAN
−1

for some CMFA = CMFA(T ∗/τ,diam(D),α,E ,λ,σ ,τ). By plugging the collected estimates in
(3.21) we obtain (3.20).

Remark 3.15. One could wonder if a similar mean-field error estimates holds when projection
is applied in presence of memory effects. To follow the proof strategy of Theorem 3.10, we should
be able to provide stability estimates for the dynamics of the personal bests. This is a non-trivial

task as the update rule for {Y i
(k)}

N
i=1 and {Y i

(k)}Ni=1 is non-Lipschitz, see, for instance, (3.11).
A workaround suggested in [43] consist of relaxing the memory mechanism as following. Let

Sβ(x,y) be a Lipschitz approximation of 1{E(x)<E(y)} as β→∞ with Im(Sβ) ⊆ [0,1] and ν > 0 be
an additional parameter satisfying ντ ∈ [0,1]. The relaxed personal bests update reads

Y i
(k+1) = Y i

(k) + ντSβ(Xi
(k+1),Y

i
(k))(X

i
(k+1) −Y

i
(k)) . (3.22)
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Due to the convexity of D, no projection is needed in the above update rule as Y i
(k+1) is a convex

combination of random variables taking values inD. We note that as β→∞ and for ν = 1/τ , the
above dynamics converges to the original memory mechanism (2.12). Mean-field approximation
errors for (3.22) can than be derived following the steps of Theorem 3.10. Convergence towards
the global solution x∗ in mean-field law for (3.22) can also be proved under stricter assumptions
on the objective function. This is done in [7] by assuming local convexity of E around x∗ and
in [74] by adding a stochastic component to the update rule (3.22).

3.4 Discussion

We have seen in this chapter that the quantitative Laplace principle is a powerful tool
to study CBO dynamics. In mean-field law, this result allows to virtually place mα[f(k)]
as close as one wants to the global minimizer x∗ by only assuming large values of α.
Considering then an iterative update, rather than time-continuous dynamics, does not
make much of a difference when it comes to tracking the evolution of the error, or of the
moments.

Assuming boundedness of the search space further allows us to provide quantitative
estimates of the mean-field approximation error in terms of number of particles N . We
note that such approximation error can be provided with high probability also in the case
of unbounded search domains, see [41].

Finally, it is important to remark that the above convergence analysis only focuses
on the expected outcome of the CBO algorithm. By definition of Err[f ], indeed, we are
averaging the error among all the possible realizations. One could wonder, how far
does a single CBO run deviate from the expected performance? While many numerical
experiments show that CBO algorithms are reliable in this sense, a theoretical answer to
this question is still missing.

3.5 Proof of Lemma 3.5

Proof of Lemma 3.5. Taylor’s expansion around x′ with Lagrange remainder, gives us for
some ξ ∈ B∞r (x∗)

φr(x
′)−φr(x) = ∇φr(x)(x′ − x) +

1
2

(x′ − x)⊤∇2φr(x)(x′ − x)

+
d∑

ℓ,i,j=1

∂3
ℓijφr(ξ)

3!
(x′ − x)ℓ(x

′ − x)i(x
′ − x)j

=: T (1)(x′ ,x) + T (2)(x′ ,x) + T (3)(x′ ,x) .

To bound T (1),T (2),T (3) we exploit computations done for the time-continuous dynamics
for the terms of order O(τ), while we derive new bounds for the higher order terms.
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Let T (1)
ℓ (x′ ,x) := ∂ℓφr(x)(x′−x)ℓ such that T (1) =

∑d
ℓ=1T

(1)
ℓ . We take the expectation with

respect to θℓ to obtain

E[T1ℓ(x
′ ,x)] = E[∂ℓφr(x)(x′ − x)ℓ]

= E

[
∂ℓφr(x)(λτ + σ

√
τθℓ)(m

α[f(k)]− x)ℓ
]

= λτ(mα[f(k)]− x)ℓ∂ℓφr(x) ,

since E[θℓ] = 0 for all ℓ = 1, . . . ,d.
Now, let T (2) =

∑d
ℓ,i=1T

(2)
ℓ,i with T

(2)
ℓ,i (x′ ,x) = (1/2)∂2

ℓiφr(x)(x′−x)ℓ(x′−x)i . For the diagonal
terms it holds

E

[
T

(2)
ℓℓ (x′ ,x)

]
= E

[1
2
∂2
ℓℓφr(x)(x′ − x)2

ℓ

]
= E

[1
2
∂2
ℓℓφr(x)(λτ + σ

√
τθℓ)

2(mα[f(k)]− x)2
ℓ

]
=

1
2
∂2
ℓℓφr(x)(λ2τ2 + σ2τ)(mα[f(k)]− x)2

ℓ

given that

E[(λτ + σ
√
τθℓ)

2] = E[λ2τ2 + 2λτσ
√
τθℓ + σ2τθ2

ℓ ] = λ2τ2 + σ2τ

due to E[θℓ] = 0, E[θ2
ℓ ] = 1. Non-diagonal terms, instead, are purely of order O(τ2):

E

[
T

(2)
ℓi (x′ ,x)

]
= E

[1
2
∂2
ℓiφr(x)(x′ − x)ℓ(x

′ − x)i
]

= E

[1
2
∂2
ℓiφr(x)(λτ + σ

√
τθℓ)(λτ + σ

√
τθi)(m

α[f(k)]− x)ℓ(m
α[f(k)]− x)i

]
=

1
2
∂2
ℓiφr(x)λ2τ2(mα[f(k)]− x)ℓ(m

α[f(k)]− x)i ,

due to E[θℓ] = 0, and E[θℓθi] = 0 whenever ℓ , i.
Before having a look at T (3)(x′ ,x), we apply the estimates derived in [42, Proposition 2]

for the terms of order O(τ) of the expansion to obtain∫
E

[
T

(1)
ℓ (x′ ,x) + T

(2)
ℓℓ (x′ ,x)

]
df(k)(x) ≥ −τ a

d

∫
φr(x)df(k)(x) (3.23)

where a > 0 is given by

a = 2dmax{a1 + a2, a3}

with a1 =
λ(cr +B

√
c)

(1− c2)r
, a2 =

(λ2τ + σ2)(cr2 +B2)(2c+ 1)
(1− c)4r2 , a3 =

2λ2

(2c − 1)σ2

(3.24)
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with c ∈ (1/2,1) being any constant satisfying (1− c2) ≤ (2c − 1)c. We note that, differently
from [42, Proposition 2], the term λ2τ appears in the definition of a2, making the above
definition dependent on τ . The decay rate a, though, can be made independent on τ by
simply assuming τ ≤ 1.

To bound the higher order terms, we note that

φr(x) = φ
(x − x∗

r

)
with φ ∈ C∞0 (Rd) independent on r. Therefore, there exists C1 > 0 independent on r such
that

∂2
ℓiφr(x) =

1
r2∂ℓiφ

(x − x∗
r

)
≥ −C1

r2

∂3
ℓijφr(x) =

1
r3∂

3
ℓijφ

(x − x∗
r

)
≥ −C1

r3

for all x ∈Rd.
For ℓ , i, therefore, we have

E

[
T

(2)
ℓi (x′ ,x)

]
=

1
2
∂2
ℓiφr(x)λ2τ2(mα[f(k)]− x)ℓ(m

α[f(k)]− x)i

≥ −1
2
C1

r2 λτ2|(mα[f(k)]− x)ℓ ||(mα[f(k)]− x)i |

≥ −1
2
C1

r2 λτ2(B+ r)2

≥ −C2
τ2

d(d− 1)r2 (3.25)

with C2 = C2(d,λ,B) for r ≤ 1. Similarly, for the remainder T (3) =:
∑d

ℓ,i,j=1T
(3)
ℓij we have

E[T (3)
ℓij (x′ ,x)] = E

∂3
ℓℓℓφr(ξ)

3!
(x′ − x)ℓ(x

′ − x)i(x
′ − x)j


≥ − C1

3!r3 |(m
α[f(k)]− x)ℓ ||(mα[f(k)]− x)i ||(mα[f(k)]− x)j | ·

·E
[
|(λτ + σ

√
τθℓ)(λτ + σ

√
τθi)(λτ + σ

√
τθj )|

]
We bound the expectation term above as following

E

[
|(λτ + σ

√
τθℓ)(λτ + σ

√
τθi)(λτ + σ

√
τθj )|

]
≤ E

[
(λτ + σ

√
τ |θℓ |)(λτ + σ

√
τ |θi |)(λτ + σ

√
τ |θj |)

]
≤ λ3τ3 + 3λτσ2τ + 3λ2τ2σ

√
τ + σ3τ

√
τ ,
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leading to

E[T (3)
ℓij (x′ ,x)] ≥ − C1

3!r3 (B+ r)3(λ3τ3 + 3λτσ2τ + 3λ2τ2σ
√
τ + σ3τ

√
τ)

≥ −C3
τ
√
τ

d3r3
(3.26)

for some constants C3, with C3 = C3(d,λ,σ ,B) independent of τ for τ, r ≤ 1.
By putting together estimates (3.23), (3.25), and (3.26), we obtain∫

φr(x)df(k+1)(x)−
∫

φr(x)df(k)(x) =
∫

E

[
T (1)(x′ ,x) + T (2)(x′ ,x) + T (3)(x′ ,x)

]
df(k)(x)

=
∫ d∑

ℓ=1

E

[
T

(1)
ℓ (x′ ,x) + T

(2)
ℓℓ (x′ ,x)

]
df(k)(x)

+
∫

E

 d∑
ℓ,i=1,ℓ,i

T
(2)
ℓi (x′ − x) +

d∑
ℓ,i,j=1

T
(3)
ℓij (x′ ,x)

df(k)(x)

≥ −τa
∫

φr(x)df(k)(x)− τ2

r2 C2 −
τ
√
τ

r3 C3

≥ −τa
∫

φr(x)df(k)(x)− τ
√
τ

r3 C

for some C = C(d,λ,σ ,B) independent of τ, r for τ, r ≤ 1.
Now, we can iterate the above estimate for all h = 1, . . . , k to get∫

φr(x)f(k)(x) ≥ (1− τa)
∫

φr(x)df(k−1)(x)− τ
√
τ

r3 C

≥ (1− τa)k
∫

φr(x)df(0)(x)− τ
√
τ

r3 C
k−1∑
h=0

(1− τa)k−h

≥ (1− τa)k
∫

φr(x)df(0)(x)− kτ
√
τ

r3 C .

Let us consider τ sufficiently small such that for all kτ < T

kτ
√
τ

r3 C ≤ 1
2
e−aT

∫
φr(x)df(0)(x) .
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This leads to the desired lower bound∫
φr(x)df(k)(x) ≥ (1− τa)k

∫
φr(x)df(0)(x)− kτ

√
τ

r3 C

≥ e−akτ
∫

φr(x)df(0)(x)− 1
2
e−aT

∫
φr(x)df(0)(x)

≥ 1
2
e−akτ

∫
φr(x)df(0)(x)

where we used that (1− τa)k ≤ e−akτ .

Remark 3.16. The fact that x∗ is the global minimizer of the objective function E does not play
a role in the above proof. Therefore, Lemma 3.5 holds for any point x̂ ∈Rd. In particular, this
means that if x̂ ∈ supp(f(0)), then x̂ ∈ supp(f(k)) for all k ≥ 0. This is an important property that
we will use for the analysis of CBO algorithms in constrained and multi-objective settings.
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Chapter 4

Constrained optimization problems

Optimization problems in applications typically require solutions to satisfy certain
admissibility criteria. Such criteria are mathematically modeled as equality or inequality
constraints, leading to a problem formulation of the type

minimize E(x)

subject to

gℓ(x) ≤ 0 , ℓ = 1, . . . ,m,

hȷ(x) = 0 , ȷ = 1, . . . ,n ,

(4.1)

for an objective function E ∈ C(Rd) and constraint functions gℓ,hȷ ∈ C(Rd).
In this chapter, we discuss a variant of the Consensus-Based Optimization (CBO)

algorithm which takes into account such additional requirements and ensures that the
computed solution belongs to the feasible set

M = {x ∈Rd : gℓ(x) ≤ 0, hȷ(x) = 0, ∀ℓ = 1, . . . ,m, ∀ȷ = 1, . . . ,n} .

In Section 3.3 we already discussed a modification of the CBO dynamics where particles
are constrained within a given convex search space through a projection step. Such simple
mechanism can clearly be extended to any feasible setM for which a projection operator
is well-posed and explicitly available, at least in a neighborhood ofM. Authors in [38–40]
extended CBO methods to implicitly defined hyper-surfaces, with a focus on the case of
the sphere which is particularly relevant for applications.

It may happen, though, that the projection map towards the feasible set M is not
explicitly known, or it is difficult to compute. In these cases, therefore, it is not possible
to constrain the dynamics via projection. A common approach to deal with this scenario
is to allow the algorithm to search for solutions on the entire space R

d but to modify the
objective function in way that unfeasible points are, loosely speaking, less likely to be
picked by the method. This is known in the literature as penalization approach and it
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allows to reformulate the original constrained optimization problem into an unconstrained
one:

minimize Pβ(x) := E(x) + βr(x) , (4.2)

where the added penalty term βr satisfies

β ∈R+ and r(x)

= 0 , ifx ∈M ,

> 0 , else .

The new objective function Pβ , therefore, coincides with E over the feasible setM, and the
mechanism is regulated via a positive parameter β. Choosing r(x) = +∞ for all x <M, for
instance, makes the penalized problem (4.2) equivalent to (4.1), but this is typically of little
use for designing algorithms. On the other hand, penalization terms which continuously
depend on the constraint functions gℓ,hȷ such as ℓp-penalization for some p > 0

r(x) =
m∑
ℓ=1

(max{0, gℓ(x)})p +
n∑
ȷ=1

|hȷ(x)|p ,

allow to preserve the continuity of the objective function and are commonly used by
optimizing routines. Continuity, though, is paid at a price: when ℓp-penalization is used,
the penalized problem (4.2) may not be equivalent to (4.1), in the sense that the respective
set of global solutions may not coincide anymore.

Let us consider for instance a problem with smooth, convex objective and constraints.
When ℓ2-penalization is employed, it is well-known that the global solution to (4.2) does
not satisfy for finite β the constraints if they are active, see, for instance, [81]. In this case,
the solution to (4.2) converges to the true solution to (4.1) only asymptotically as β→∞.
On the other hand, in these settings, the non-smooth ℓ1-penalization ensures equivalence
between the problems provided the penalization parameter β is sufficiently large: β ≥ β for
some finite β ∈R+ [81]. The threshold value β depends on the corresponding Lagrangian
multiplier and, so, it is problem-dependent and unknown.

Penalization techniques which allow to reach equivalence between of the penalized
problem for finite values of β, are called exact. In the following, we show how to couple the
CBO dynamics with exact penalization in order to find the optimal penalization parameter
β and, hence, to solve (4.1). We note that a CBO method which makes use of non-exact
penalization has been proposed in [21].

The remaining part of the chapter is organized as follows. In Section 4.1, we present a
CBO algorithm for exact penalization. Via mean-field approximation of the dynamics, we
analyze the convergence properties of the proposed algorithm in Section 4.2. In Section 4.3,
we illustrate the results of numerical experiments where the algorithm is tested against
several constrained benchmark problems in different dimensions of the search space.
Finally, Section 4.4 collects additional remarks.
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4.1 Adaptive exact penalization strategy

In this section, we propose and algorithm which aims to solve the constrained opti-
mization problem (4.1) by considering the penalized sub-problems (4.2). In particular, we
assume the penalization strategy to be exact in the following sense.

Assumption 4.1. The penalty term r is exact, that is, the set of global solutions to problems
(4.2) and (4.1) coincide if β is sufficiently large. Moreover, we set

β := inf
{
β > 0 : problem (4.2) is equivalent to (4.1)

}
.

Without loss of generality, we assume that for β = β, the two problems are also not equivalent.

Exact penalization is a well-known strategy in constrained optimization and we refer
to [6, 7, 15, 81] for more details on the topic. As already mentioned, ℓ1-penalization is a
common choice. As a further example, consider a constrained problem with E , gℓ being
twice differentiable and without equality constraints. Assume the Karush-Kuhn-Tucker
(KKT) conditions hold at the global solution x∗ with Lagrangian multiplier λ∗. If the weak
second-order sufficient optimality conditions also hold, then ℓ1-penalization is exact for
β ≥ ∥λ∗∥∞ [7].

The simplest way to couple the CBO solver with exact penalization would consist in
solving, iteratively, the penalty problem (4.2) for different values of β. If we increase β
each time we solve the penalty problem, eventually we reach the threshold value β and
obtain a feasible solution. This procedure therefore may require to solve many similar
sub-problems before finding a feasible solution. To save computational time, we suggest
an algorithmic strategy where the penalty parameter β is adapted during the computation
depending on the constraint violation of the current particle system.

To do so, we introduce in the CBO dynamics the following evolving parameters:

• β(k) > 0 : penalty parameter which determines the objective function Pβ(k)
;

• ϑ(k) > 0 : parameter which determines the tolerance for the constraint violation;

• ηβ ,ηϑ > 1 : update rate for β(k) and ϑ(k), respectively.

As for the particle dynamics, we consider for simplicity the anisotropic CBO particle
system

Xi
(k+1) = Xi

(k) +λτ
(
mα

β(k)
[f N

(k)]−X
i
(k)

)
+ σ
√
τ
(
mα

β(k)
[f N

(k)]−X
i
(k)

)
⊙θi

(k) , (4.3)

where, as in the previous chapters, τ,λ,σ > 0 are fixed during the computation and
θi

(k) ∼ N (0, Id) is sampled from the standard normal distribution. We recall that the
objective function enters the dynamics via the computation of the consensus point. As
the objective Pβ(k)

now depends on β(k), we underlined this dependency in (4.3) by writing

mα
β(k)

[f N
(k)].
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To measure the constraint violation of the particle system, we introduce the functional
R : P (Rd)→ [0,∞]

R[f ] :=
∫

r(x)df (x) , (4.4)

where r is the exact penalty term given by Assumption 4.1.
Let f N

(k) be the empirical measure associated with the particle system (4.3). At each step
k, we then check the following feasibility condition

R[f N
(k+1)] ≤

1√
ϑ(k)

. (4.5)

If the condition is satisfied, then the tolerance is decreased (by increasing ϑ(k)). If the
condition is not satisfied, instead, we increase both the penalty parameter β(k) and ϑ(k).
The use of the square root in the feasibility check (4.5) is arbitrary and not necessary
for the algorithm implementation, but it simplifies the computations in the theoretical
analysis. This is because we will assume the constrained violation to be the distance from
the feasible set (see Assumption 4.3 later), while the error will be given by the squared
distance from the global minimizer.

The overall optimization method is described by Algorithm 1.

Set λ,σ ,τ > 0,ηβ ,ηϑ > 1 ;
Initialize {Xi

(0)}
N
i=1 and β(0),ϑ(0) > 0 ;

for k = 0,1, . . . do
Compute Xi

(k+1) according to (4.3) for all i = 1, . . . ,N ;

if R[f N
(k+1)] ≤ 1/

√
ϑ(k) then

#feasibility check satisfied#;
ϑ(k+1) = ηϑϑ(k);
β(k+1) = β(k)

else
#feasibility check violated#;
ϑ(k+1) = min{ϑ(k)/ηϑ ,ϑ(0)};
β(k+1) = ηββ(k)

end
end

Algorithm 1: CBO adaptive algorithm for exact penalization.

In CBO methods, the Boltzmann-Gibbs distribution is used to compute the consensus
point and, in general, to guide the particle system. We also propose to check the feasibility
condition with

Rα
β [f ] :=

∫
r(x)exp(−αPβ(x))df (x)∫

exp(−αPβ(x))df (x)
, (4.6)
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for β,α > 0, that is, the weighted counter-part of (4.4). For an empirical distributions
f N , Rα

β [f N ] converges as α → ∞ to the constraint violation of the best particle of the
ensemble in terms of the objective function Pβ . Therefore, in the limit case α = +∞,
the feasibility check is performed directly at the algorithm’s candidate solution. The
numerical experiments presented in Section 4.3 will show that using the Boltzmann-Gibbs
distribution typically makes the adaptive mechanism more accurate.

Similar strategies have been introduced in [53,77] for quadratic programming prob-
lems in the context of finite-dimensional optimization. Methods suggested in [53, 77]
additionally include smooth approximation of the ℓ1-penalty term. This is not needed in
our settings because CBO methods do not require any smoothness of the objective function.
We also note that similar adaptive strategies have been extended to infinite-dimensional
settings [45, 46].

In the next section, we analyze the convergence properties of Algorithm 1 by relying
on the mean-field approximation of the CBO dynamics.

4.2 Convergence analysis in mean-field law

The idea behind adaptive strategy can be summarized as follows. In a first stage of
the computation, we expect the penalty parameter β(k) to be smaller than the threshold
value β̄. Therefore, being the penalization strength not sufficient, particles are likely to
concentrate in an unfeasible area of the search space and, as a consequence, to violate the
feasibility check (4.5). Eventually, β(k) becomes larger than β̄, leading to the second stage
of the computation where the penalized problem (4.2) is equivalent to the constrained one
(4.1). Ideally, β(k) should stop increasing at this point in order to avoid the term β(k)r to
overwhelm E in the penalized objective. In this section, we analytically investigate under
which conditions Algorithm 1 follows such expected behavior.

To do so, we recall the mean-field approximation of (4.3) which we already introduced
in the previous chapters:

X(k+1) = X(k) +λτ
(
mα

β(k)
[f(k)]−X(k)

)
+ σ
√
τ
(
mα

β(k)
[f(k)]−X(k)

)
⊙θ(k) , (4.7)

where f(k) = Law(X(k)). The feasibility check, in the mean-field dynamics, is then performed
by using R[f(k+1)], see Algorithm 2.

As for the case where the objective is fixed (see Proposition 2.3), f(k) ∈ P2(Rd) follows
from f(0) ∈ P2(Rd) provided the penalty sub-problems satisfy the following assumptions.

Assumption 4.2. The penalized objective function Pβ satisfies

• P β := infPβ > −∞ ;
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Set λ,σ ,τ > 0,ηβ ,ηϑ > 1 ;
Initialize X(0),β(0),ϑ(0) ;
for k = 0,1, . . . do

Compute X(k+1) according to (4.7);
if R[f(k+1)] ≤ 1/

√
ϑ(k) then

#feasibility check satisfied#;
ϑ(k+1) = ηϑϑ(k);
β(k+1) = β(k)

else
#feasibility check violated#;
ϑ(k+1) = min{ϑ(k)/ηϑ ,ϑ(0)};
β(k+1) = ηββ(k)

end
end

Algorithm 2: Mean-field CBO adaptive algorithm for exact penalization.

• there exists LPβ , cu , cl ,Rl > 0 such that
|Pβ(x)− Pβ(y)| ≤ LPβ (1 + |x|+ |y|)|x − y| ∀ x,y ∈Rd ,

Pβ(x)− P β ≤ cu(1 + |x|2) ∀ x ∈Rd ,

Pβ(x)− P β ≥ cl |x|2 ∀ x : |x| > Rl .

(4.8)

We note that the constants in the above estimates may depend on β, but this does not
affect the computation of moment estimates for f(k). Indeed, during a run of Algorithm 2,
only a finite number of penalized sub-problems corresponding to β(h),h ≤ k are relevant to
the CBO dynamics up to time k.

Furthermore, we simplify the analytical investigation by considering a specific penalty
term. For a given set A ⊂ R

d, let dist(·,A) denote the set distance, that is, dist(x,A) =
infy∈A |x − y|, for any x ∈Rd. We assume:

Assumption 4.3. The penalty term is given by r(x) = dist(x,M), withM being the feasible set.

As previously discussed, this choice r is not strictly necessary for the penalized sub-
problems to be exact, and other penalization terms, like ℓ1-penalization, can be used. On
the other hand, this assumption makes the constraint violation r(x) = dist(x,M) a lower
bound for the error |x − x∗| for any feasible solution x∗ ∈M. This property will be useful to
theoretically control the feasibility check in terms of expected mean-squared error.

To analyze the algorithm, we rely on the convergence properties of the CBO dynamics
and, in particular, on Theorem 3.6. The convergence result needs to be applied to every
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sub-problem (4.2) in order for us to be able to study Algorithm 2. To this end, we introduce
the following inverse continuity assumption on Pβ :

Assumption 4.4 (Growth conditions around minimizer of Pβ). There exists a unique global
minimizer x∗β of Pβ and c1,p1,> 0,R > 0 such that

c1∥x − x∗β∥
p1
∞ ≤ Pβ(x)− Pβ(x∗β) ∀x, ∥x − x∗β∥∞ ≤ R (4.9)

and lower bound C∞ > 0 such that

C∞ < Pβ(x)− Pβ(x∗β) ∀x, ∥x − x∗β∥∞ > R. (4.10)

Similarly to the analysis for the unconstrained CBO method, we track the convergence
towards the minimizer x∗β , by studying the evolution of the expected ℓ2-error

Errβ[f ] :=
∫
|x − x∗β |

2df (x)

for any f ∈ P2(Rd). We note that, whenever penalization is exact (β > β), x∗β corresponds to
the solution to the constrained problem (4.1) which we simply indicate as x∗. We indicate
the error with respect to x∗ as

Err[f ] :=
∫
|x − x∗|2df (x) . (4.11)

We are now ready to enunciate the main convergence result.

Theorem 4.5. Let Assumptions 4.1, 4.3 hold for r and let Pβ satisfy Assumptions 4.2, 4.4 for
all β > 0. Consider any X(0) with supp(f(0)) = R

d, β(0) > 0 and parameters ηβ ,ηϑ > 1, λ,σ > 0
with λ > σ2.

Let X(k) be constructed according to Algorithm 2, and f(k) = Law(X(k)). For any accuracy
ε > 0, there exists a choice of parameters {α,τ,ϑ(0)} such that the mean-field mono-particle
process constructed via Algorithm 2 satisfies

min
k:kτ≤T ∗

Err[f(k)] ≤ ε

for some time horizon T ∗ > 0 sufficiently large.

To prove the above convergence result, we consider two different scenarios. When
penalization is not exact β(k) ≤ β, we show that the feasibility check will be necessary
violated until the threshold value is reached, provided ϑ(0) is sufficiently large. The second
scenario corresponds to the exact penalization case, where β(k) > β at some iteration k. If
this happens, we show that the CBO mean-field process converges to the true solution up
to the given accuracy ε.
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4.2.1 Convergence for exact penalization (case β(k) > β)

We start by analyzing the algorithm behavior in the case where, at some step k0 of the
computation, β(k0) > β. First, we show that the mean-field distribution concentrates around
the minimizer x∗ to (4.1), provided x∗ ∈ supp(f(k0)). We recall that for all β > β, x∗β = x∗ and
so Err[·] = Errβ[·].

Proposition 4.6. Under the settings of Theorem 4.5, assume at some algorithmic step k0 it holds
β(k0) > β and x∗ ∈ supp(f(k0)).

Then, there exists α,T ∗ sufficiently large and τ sufficiently small such that

min
k≥k0,kτ≤T ∗

Err[f(k)] ≤ ε.

Proof. If Err[f(k0)] ≤ ε the result is trivially true, so we assume Err[f(k0)] > ε. Thanks to the
assumptions considered, we can apply Theorem 3.6 for the objective Pβ(k0)

and obtain that

Err[f(k0+1)] ≤ exp
(
−τ λ− σ

2

4

)
Err[f(k0)]

due to the exponential decay estimates (3.8), provided α > αk0
, τ < τk0

for some αk0
, τk0

> 0.
Next, as β(k) is non-decreasing, it holds β(k0+1) > β, and so the global minimum of the
penalized sub-problem corresponding to β(k0+1) is still given by x∗. We also note that,
thanks to Lemma 3.5, x∗ ∈ supp(f(k0+1)). As consequence, we can iteratively apply Theorem
3.6 for k ≥ k0 to obtain

Err[f(k)] ≤ exp
(
−(k − k0)τ

λ− σ2

4

)
Err[f(k0)] (4.12)

until the desired accuracy ε is reached.
We remark that the choice of α,τ may become more and more restrictive at each

iteration. Since the decay estimate is independent on α and τ , though, only a finite number
of iterations is required to reach the desired accuracy ε. Therefore, there exists a suitable
choice of parameters α,T ∗ <∞ large enough and τ > 0 sufficiently small such that

min
k≥k0,kτ≤T ∗

Err[f(k)] ≤ ε.

It is clear from the above proof that the feasibility condition does not play a role in the
convergence analysis once β(k) has reached the threshold value β. In practice, though, a
penalty parameter which is too large with respect to β makes the optimization problem
more challenging for the CBO particle system (see numerical experiments in Section 4.3).
Next, we derive conditions under which β(k0) stop increasing after reaching β.
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Proposition 4.7. Under the settings of Proposition 4.6, if ηϑ ,ϑ(k0−1) satisfy

ηϑ ≤ exp
(
τ
λ− σ2

4

)
and Err[f(k0)] ≤

1
ϑ(k0−1)

,

then the feasibility condition is satisfied until Err[f(k)] ≤ ε.

Proof. Given that x∗ is solution to the constrained problem, it necessarily belongs to the
feasible spaceM. This means that the error is an upper bound to the constraint violation:
r(x) = dist(x,M) ≤ |x − x∗| for any x ∈ Rd. As a consequence, for any f ∈ P (Rd), we can
bound the constraint violation with the expected mean-squared error as following:

R[f ] =
∫

dist(x,M)df (x) ≤
∫
|x − x∗|df ≤

(∫
|x − x∗|2df

) 1
2

=
√

Err[f ] (4.13)

where we also used Jensen’s inequality.
Intuitively, the assumption on ηϑ ensures the that the decay rate of the tolerance is

faster than the decay of the error square root. Thus, the tolerance will continue to be larger

than
√

Err[f(k)] and, in particular, of R[f(k)] due to (4.13). Thanks to the choice of ηϑ , it

holds indeed

exp
(
−(k + 1− k0)τ

λ− σ2

4

)
≤ η
−(k+1−k0)
ϑ .

We now plug the above estimate into the decay rate (4.12) provided in the proof of
Proposition 4.6. Together with the assumption Err[f(k0)] < 1/ϑ(k0−1), we obtain

Err[f(k+1)] ≤ exp
(
−(k + 1− k0)τ

λ− σ2

4

)
Err[f(k0)] ≤ η

−(k+1−k0)
ϑ Err[f(k0)] ≤

1

η
(k+1−k0)
ϑ ϑ(k0−1)

for all k ≥ k0, up until the desired accuracy is reached. Given that ϑ(k) ≤ η
(k+1−k0)
ϑ ϑ(k0−1), we

further obtain
R[f(k+1)] ≤

√
Err[f(k+1)] ≤

1√
θ(k)

,

that is, the feasibility check is satisfied for any k ≥ k0 until Err[f(k)] ≤ ε.

In the next section, we will analyze instead the algorithm’s behavior when the penalty
parameter is not sufficiently large for the penalization technique to be exact.
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4.2.2 Violation of feasibility check (case β(k) ≤ β) and proof of Theorem 4.5

As we assumed all penalized objectives Pβ to satisfy the inverse continuity assump-
tion (Assumption (4.4)) required by Theorem 3.6, we can use the convergence estimates
provided by the theorem to study the CBO dynamics. Intuitively, if β(k) ≤ β for all k, the
particle system will eventually concentrate in a ε-neighborhood of an infeasible solution.
If the feasibility tolerance (which depends on ϑ(0)) is sufficiently small, then the feasibil-
ity check will be violated, leading to a contradiction. In the following, we make these
statements more precise and finally provide a proof to Theorem 4.5.

Proposition 4.8. Under the settings of Theorem 4.5, assume at some algorithmic step k0 > 1 to
hold β(k0) ≤ β and x∗βk0

∈ supp(f(k0)). If condition

r
(
x∗βk0

)
>

1
√
ϑ0

, (4.14)

is satisfied, then the feasibility condition will be violated at some finite k > k0, provided α,T ∗ are
sufficiently large and τ is sufficiently small.

Proof. For notational simplicity, in the following we set x∗0 = x∗β(k0)
. Seeking a contradiction,

suppose the feasibility check is always satisfied and, so, β(k) = β(k0) for all k ≥ k0. Given
that the objective function is fixed and x∗0 ∈ supp(f(k0)), we can directly apply Theorem 3.6
for some arbitrary accuracy ε′ > 0.

We obtain that there exists α0,T
∗
0 , τ0 such that

min
k≥k0 :kτ≤T ∗0

Errβ(k0)
[f(k)] ≤ ε′ . (4.15)

We show that for ε′ sufficiently small, we are lead to a contradiction.
By the choice of r (Assumption 4.3) and the triangular inequality, we have

r(x∗0) = dist(x∗0,M) ≤ dist(x,M) + |x − x∗0| = r(x) + |x − x∗0|

and we can bound for any f ∈ P (Rd) the constraint violation from below as

R[f ] =
∫

r(x)df (x) ≥ r(x∗0)−
∫
|x − x∗0|df (x) ≥ r(x∗0)−

√
Errβ(k0)

[f ]

where we also used Jensen’s inequality in the last step. As a consequence of (4.15), at some
k∗ ≥ k0 it holds

R[f(k∗)] ≥ r(x∗0)−
√
ε′ .

At the same time, since we supposed the feasibility check to be satisfied at all k ≥ k0, we
also have

R[f(k∗)] ≤
1√

ϑ(k∗−1)
≤ 1√

ϑ(0)
.
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By combining the inequalities together, we obtain

r(x∗0) ≤ 1√
ϑ(0)

+
√
ε′ ,

which contradicts the given assumption r(x∗0) > 1/
√
ϑ(0) for ε′ sufficiently small.

Proof of Theorem 4.5. If the initial penalty parameter already satisfies β(0) > β, we can
directly apply Proposition 4.6 and conclude that there exists α,T ∗ sufficiently large and τ
sufficiently small such that the desired error estimate holds.

If this is not the case, let us consider the set of global solutions x∗β(k)
for the penalized

sub-problems β(k), k ≥ 0
S∗ := {x∗β(k)

: k ≥ 0} .

We note that S∗ is a finite collection of points since x∗β = x∗ for all β > β. Given that the
mass around any point can be bounded from below as in Lemma 3.5 (as noted in Remark
3.16), we have that

S∗ ⊂ supp(f(k)) for all k ≥ 0 (4.16)

thanks to supp(f(0)) = R
d.

To apply Proposition 4.8 for all β(k) ≥ β we additionally assume ϑ(0) to satisfy

r(x∗β(k)
) >

1√
ϑ(0)

for all k ≥ 0 . (4.17)

Thanks to (4.16) and (4.17), we can iteratively apply Proposition 4.8 (a finite number
of times) to obtain that there exists an iteration K ′ such that β(K ′) > β for some α′ ,T ′

sufficiently large and τ ′ sufficiently small. Finally, since x∗ ∈ supp(f(K ′)) and we are in the
exact penalization case, we can conclude by applying Proposition 4.6: there exists T ∗ > T ′,
α > α′ and τ < τ ′ such that

min
k:kτ≤T ∗

Err[f(k)] ≤ ε .

Remark 4.9.

• Contrary to the unconstrained settings, the above analysis does not provide an explicit
definition for T ∗ in terms of initial conditions f(0) and accuracy ε. This is because when
applying Proposition (4.8) we do not know when exactly the feasibility check will be
violated, but only that it will be violated at some time.

• The use of a discrete-in-time description of the CBO dynamics greatly simplifies the
analytical investigation with respect to [7], where the CBO dynamics is continuous, but
the parameters tuning happens at discrete times. In particular, we can avoid proving the
stability of the constraint violation through the mollification procedure (see [7, Section
3.4]).
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4.3 Numerical experiments

In this section, we test Algorithm 1 against different benchmark problems. We start
by performing numerical experiments with numerous particles to validate the mean-field
analysis performed in Section 4.2. Then, we show how the algorithm performs with a
relatively small number of particles by testing it against benchmark problems in search
spaces of dimension up to d = 20. We will focus, in particular, on understanding how
sensible the algorithm is with respect to its parameters and if the suggested adaptive
strategy is able to identify the optimal penalty parameter value. As suggested by the
analysis, we set the parameter α to α = 106: a relatively large value with respect to the
objective functions considered.

4.3.1 Simulation of mean-field regime

Being the theoretical analysis based on a mean-field approximation of the CBO dy-
namics, we start by running the algorithm with a large number of particles N (large with
respect to the amount needed for a comparable performance). Therefore, we employ in the
following N = 106 particles.

Let us consider the constrained problem given by:

min
x∈R2

E(x) :=
1
2

2∑
ℓ=1

x4
ℓ

5
− 2x2

ℓ + xℓ

+ 10

subject to g(x) = R(z) =
1
2

2∑
i=1

z2
ℓ − 10cos(2πzℓ) + 5 ≤ 0 ,

(4.18)

where the affine change of variable x 7→ z is determined by

z =
(
cos(π/6) −sin(π/6)
sin(π/6) cos(π/6)

)
(x − (1,1)⊤) .

The problem is illustrated in Figure 4.1. We note that E attains a non-feasible global
minimum x̂ and that the feasible set is made of disjoint sets of different areas. The solution
to the constrained problem x∗ is not a local minimum of E and so the constraint is active.
To penalize infeasible points, we use ℓ1-penalization, r(x) = |g(x)|. Being the constraint
function g an affine transformation of the Rastrigin function [63], the penalized functions
Pβ are highly non-convex and attain several local minima, see for instance Figure 4.1b. The
precise threshold value β is unknown, but numerical experiments suggest that β ∈ [4,5].

Because of the low dimensionality of the search space, we use isotropic exploration in
the CBO particles update rule. We set the initial penalty parameter to β(0) = 0.1, so that is
holds β(0) < β. The remaining algorithm parameters are set to λ = 1,σ = 0.5, τ = 0.1. Figure
4.2 shows the evolution of the particle distribution f(k) with parameters ηϑ = 1.1,ηβ = 1.1
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(a) Contour values of the objective function E
and the feasible setM (in gray)

(b) Contour values of the penalty function Pβ
with β = 5.

Figure 4.1: Illustration of the constrained problem (4.18) (left) and an equivalent penalty
sub-problem (right). The global solution to the constrained problem x∗ in shown in red,
while the infeasible minimum x̂ of E is shown in black.

and initial tolerance ϑ(0) = 2. Given that the initial penalty parameter is not sufficiently
large, β(0) < β, the particles initially converge around the infeasible minimum of the
objective function, see Figures 4.2a, 4.2b, and 4.2c. After a sufficient number of iterations,
it holds β(k) > β due to the adaptive mechanism and the particles move towards the solution
of the constrained problem, see Figures 4.2e, 4.2f. We note that, between these two phases,
there is an intermediate step (Figure 4.2d) where particles are still located around the
infeasible minimum, but the mass is partially redistributed over the search space.

Figure 4.3a shows the evolution of three quantities: the constraint violation R[f(k)] (4.4),
the feasibility check tolerance 1/

√
ϑ(k), and the penalty parameter β(k). We note that, even

though β(k) reaches the threshold value β already around time t = kτ = 5, the feasibility
check is violated up after t = 12. This choice of the initial tolerance ϑ(0) = 2 satisfies
requirement (4.14) of Proposition 4.8, that is, the constraint violation of infeasible minima
(only x̂ in this case) is larger than the initial tolerance. Indeed, we have r(x̂) ≈ 0.88, while
1/

√
ϑ(0) = 1/

√
2 ≈ 0.71. If we increase the initial tolerance by setting ϑ(0) = 0.25, on the

other hand, condition (4.14) is not satisfied anymore and the particles concentrate around
the infeasible minimum, see Figure 4.3b.

Proposition 4.7 suggests that, in order for β(k) not to increase during the entire compu-
tation, ηϑ should not exceed the convergence rate of the CBO dynamics. This is the case
of the first experiment performed, with ηϑ = 1.1, where indeed the tolerance decreases
faster than then constraint violation, see Figure 4.3a. If we increase the update rate for
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(a) t = 1,β/β ≃ 0.05 (b) t = 2,β/β ≃ 0.14 (c) t = 4,β/β ≃ 0.95

(d) t = 5,β/β ≃ 2.47 (e) t = 8,β/β ≃ 43 (f) t = 10,β/β ≃ 289

Figure 4.2: Evolution of the particle distribution at different times. Plot shows a density
constructed via Gaussian kernel, starting from the empirical distribution made of N = 106

particles. CBO dynamics with isotropic diffusion is used. Algorithm parameters are set to
λ = 1,σ = 0.5, τ = 0.1,ϑ(0) = 2,β(0) = 0.1,ηϑ = 1.1,ηβ = 1.1. The time psudo-time t is given
by t = kτ .
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(a) 1/
√
ϑ(0) = 0.25, ηϑ = 1.1, unweighted con-

straint violation R. Err[f N
(k∗)] ≃ 1.66× 10−4

(b) 1/
√
ϑ(0) = 2, ηϑ = 1.1, unweighted constraint

violation R. Err[f N
(k∗)] ≃ 9.26

(c) 1/
√
ϑ(0) = 0.25, ηϑ = 1.5, unweighted con-

straint violation R. Err[f N
(k∗)] ≃ 1.66× 10−4

(d) 1/
√
ϑ(0) = 0.25, ηϑ = 1.1, weighted constraint

violation Rα
β . Err[f N

(k∗)] ≃ 1.66× 10−4

Figure 4.3: Evolution of the constraint violation (in blue), the tolerance 1/
√
ϑ(k) and the

penalty parameter β(k) in the simulation of the mean-field algorithm applied to problem
(4.18) in four different settings. Only in Figure 4.3d the constraint violation is calculated
using Rα

β which uses the Boltzmann-Gibbs distribution, see (4.6). The average ℓ2-error

Err[f N
(k∗)] (4.11) shows the reached accuracy at the final step k∗ = 15/τ of the computation.
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ϑ(k) to ηϑ = 1.5, we have that the feasibility check is violated also when the particles are
concentrating at the true solution of the constrained problem, see Figure 4.3c.

Finally, we perform a last experiment where we use ϑ(0) = 2 and ηϑ = 1.1, as in the first
one, but compute the feasibility check with the weighted constraint violation Rα

β (given by
(4.6)) instead of R. While the accuracy obtained is comparable with the first experiment,
we note that the feasibility check is satisfied soon after the threshold value β is reached. As
a consequence, the final penalty parameter computed is much closer the optimal value, see
Figure 4.3d. We will show in the next sections that using the weighted constraint violation
Rα
β has a strong impact on the algorithm performance when a smaller number of particles

is used.

4.3.2 Benchmark problems in d = 5

We now perform experiments in a higher dimension, d = 5, where we employ a smaller
number of particles, that is, N = 200.

The problems we consider are given by combinations between two objective functions,

E1(x) =
1
d

d∑
i=1

x4
i

5
− 2x2

i + xi

+ 10

E2(x) = −20exp

−0.2

√√√
1
d

d∑
i=1

(x − o)2
i

− exp

1
d

d∑
i=1

cos(2π(x − o)i)

+ 20 + e

where o = (1.76̄,1.53̄,1.3̄,1.06̄,0.83̄) ,

and two admissible sets, the sphereM1 = S
4, and the torus,M2 = T

4. Therefore, the four
constrained optimization problems are

min
x∈R5
El(x) subject to x ∈Mi for l = 1,2 , i = 1,2 . (4.19)

As assumed in the theoretical analysis (Assumption 4.3), we use the corresponding
distance functions to penalize the objectives:

r1(x) = dist(x,S4) = | |x| − 1 |

r2(x) = dist(x,T4) =

∣∣∣∣∣∣∣∣
√(√

|x|2 − x2
d − 1

)2
+ x2

d − 0.5

∣∣∣∣∣∣∣∣ ,
where xd indicates the d-th component of x. Both objectives are non-convex and attain
several local minima. We note that the first one coincides with the objective function of
problem (4.18), while E2 is the Ackley function, a well-known benchmark function in
global optimization [63].
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In the following experiments, we set the algorithm parameters to: λ = 1,σ = 0.6,ϑ(0) =
4,ηϑ = 1.1,ηβ = 1.1. Particles evolve with isotropic diffusion. We consider different values
of β(0) to simulate the scenario where the magnitude of the optimal penalty parameter β
is unknown. For the considered problems, it holds β ∈ [1,10], and so we initialize β in a
range between 10−5β and 103β, approximately. To measure the algorithm performance,
we consider a run successful if

∥mα[f N
(k∗)]− x

∗∥∞ < 0.1 ,

where k∗ = 300 is the last iteration, and x∗ is, as before, the global solution to the constrained
problem. The 200 particles are initially sampled from the uniform distribution over
[−2,2]d.

In the first two experiments, we compare the use of the constraint violation R (4.4)
and its weighted counterpart Rα

β in the evaluation of the feasibility check. As shown
in Figures 4.4a and 4.4b, the use of Rα

β drastically improves the algorithm success rate

when β(0) < β. When the initial guess overshoots the optimal value, β(0) > β, the algorithm
performance is rather poor in both cases. To improve the algorithm performance in this
scenario, we propose an additional adaptive strategy: β(k) is decreased with rate ηβ up
until the first feasibility check is violated. With this additional heuristic strategy, the
algorithm performance considerably improves, see Figure 4.4c. To remark, once again,
the importance of the correct tuning of β, we also perform experiments with no adaptive
strategy at all. As expected, particles concentrate around the solution to the constrained
problem only if β(0) > β, see Figure 4.4d.

As already observed in the simulation of the mean-field regime, the use of the weighted
constraint violation Rα

β speeds up the adaptive mechanisms, in the sense that the feasibility

check is satisfied sooner after the β(k) reaches the threshold β. This can be shown by
looking at the final value β reached at the end of the computation, see Figures 4.5a and
4.5b. Decreasing the penalty parameter at the beginning of the computation makes the
final value β(k∗) reached by the algorithm almost independent on the initialization of the
penalty parameter, see Figure 4.5c.

Finally, Figure 4.6 shows the accuracy reached in the third experiment, where Rα
β and

decreasing strategy are used. When a relatively small number of particles is used, N = 200,
the average ℓ2-error seems to be sensitive to outliers, whereas the performance with respect
to the ℓ∞-error ∥mα[f N

(k∗)]− x
∗∥∞ seems to be more stable with respect to the choice of β(0).

The best performance in terms of accuracy are obtained when β(0) is approximately equal
to β, or slightly larger.

4.3.3 Benchmark problems in higher dimensions

In this section, we consider benchmark constrained problems scalable to any search
space dimension d. So far, we have employed isotropic diffusion in the CBO dynamics for
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(a) Feasibility check with R (b) Feasibility check with Rα
β

(c) Feasibility check with Rα
β and initial decreas-

ing strategy for β
(d) No adaptive strategy

Figure 4.4: Success rate obtained for different initialization of β(0) normalized with respect
to the threshold value β. The proposed method is tested against problems (4.19) and
results are averaged over 1000 runs.
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(a) Feasibility check with R (b) Feasibility check with Rα
β

(c) Feasibility check with Rα
β , de-

creasing strategy for β

Figure 4.5: Final value of β obtained for different initialization of β(0), normalized with
respect to the threshold value β. The proposed method is tested against problems (4.19)
and results are averaged over 1000 runs.

(a) Final average ℓ2-error Err[f N
(k∗)] (b) Final ℓ∞-error ∥mα[f N

(k∗)]− x
∗∥∞

Figure 4.6: Accuracy obtained for different initialization of β(0) normalized with respect to
the threshold value β. Feasibility check with Rα

β and decreasing strategy for β are used in
the computation. The proposed method is tested against problems (4.19) and results are
averaged over 1000 runs, but only successful runs are considered in the statistics.
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Figure 4.7: Illustration of a constrained optimization problem of type (4.21) with d = 2.
The figure shows: the objective function E, the solution x∗, the set of points satisfying the
equality constraint h(x) = H⊤x+ h0 = 0 and the inequality constraint x > 0.

which the convergence rate is known to be dimension dependent [16,41]. Therefore, in this
section, we also employ anisotropic exploration and compare the algorithm performance
between the two strategies. We investigate, in particular, how sensitive the algorithm per-
formance is with respect to the choice of the parameter σ , which regulates the exploration
strength in the CBO dynamics.

The constrained optimization problems we consider are non-convex and randomly
generated. We follow the procedure suggested in [77] and start by constructing a quadratic
optimization problem of the form

min
x∈Rd

1
2
x⊤Ax − b⊤x subject to H⊤x+ h0 = 0, x ≥ 0 , (4.20)

with A ∈ Rd×d,H ∈ Rd×p,h ∈ Rp, for which the solution x∗ is known by construction. The
number p of equality constraint is given by p = ⌊d/2⌋. In order to make the problem
non-convex, we add local minima belonging to the feasible set. Let y⊥ and y∥ be the
projection of y ∈Rd to ker(H⊤) and span(H⊤) respectively. We introduce

γ(x) =
cos(2π|(x − x∗)⊥|)

2
+

cos(π+ 2π|(x − x∗)∥ |)
2

and consider the new constrained problem with same global solution x∗

min
x∈Rd

1
2
x⊤Ax − b⊤x+γ(x) subject to H⊤x+ h0 = 0, x ≥ 0 . (4.21)
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(a) Isotropic exploration (b) Anisotropic exploration

Figure 4.8: Success rate as a function of the diffusion parameter σ for the two different
exploration processes. The tests are run 500 times to solve problems (4.21).

We refer to Figure 4.7 for an illustration of a problem generated with the above procedure
for d = 2 and p = 1.

For the penalization strategy we use ℓ1-penalization r = ∥H⊤x+ h0∥1, which is known
to be exact with threshold value β ≈ 1. We use the same algorithmic parameters as
in the previous section, but test the algorithm for different values of σ . We initialize
N = 500 particles uniformly sampled over [0,2]d and consider a run successful whenever
∥mα[f N

(k∗)]− x
∗∥∞ ≤ 0.25, k∗ = 300 being the total number of iterations. In the following, we

fix β(0) = 10−2.
In the first experiment, we consider three different space dimensions, d = 5,10,15 and

test the algorithm with different values for σ : σ ∈ [0,0.7] for anisotropic diffusion and
σ ∈ [0,5.25] for anisotropic diffusion. As already noted in [19], the optimal value for σ
depends on the space dimension when isotropic diffusion is used, whereas employing
anisotropic diffusion in CBO dynamics allows for a less restrictive choice of σ , see Figure
4.8. We note that anisotropic diffusion also leads to a better performance in terms of
success rate for the problem considered.

Finally, we observe that the algorithm performance decreases as the problem dimension
increases. A final experiment with anisotropic diffusion and σ = 2, shows that the success
rate decreases sensibly for d > 10, see Figure 4.9. In particular, as shown in Figure 4.9b,
the adaptive mechanism for the penalty parameter β becomes less effective.

4.4 Discussion

In this chapter, we showed how the CBO dynamics can be coupled to an additional
adaptive strategy for an algorithm parameter in the context of exact penalization. Being
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(a) Success rate (b) Final penalty parameter (c) Accuracy for successful runs

Figure 4.9: Algorithm performance obtained for different dimensions d of the search space
for problem (4.21). Anisotropic exploration is used and σ = 2. Results are averaged over
1000 runs.

the optimal value of the penalty parameter unknown, the adaptive strategy leverages the
information given by the whole particle ensemble to tune the penalty parameter during a
single algorithm run.

We adapted the mean-field convergence analysis performed for the CBO dynamics to
the proposed algorithm. Thanks to the CBO convergence rate, we have also been able to
analytically study the properties of the adaptive strategy. We validated the performance
of the suggested algorithm and the theoretical analysis by testing the algorithm against
several benchmark problems. For moderate search space dimension d ≤ 10, the algorithm
performs well and is able to adapt the penalty parameter to a suitable value, without
overshooting the threshold β.

In the next chapter, we show how to leverage the ensemble information not to adapt a
single parameter, but to solve many optimization problems in parallel in the context of
multi-objective optimization.
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Chapter 5

Multi-objective optimization
problems

In real-life applications, optimization problems often require considering two or more
objectives at the same time, which may be in conflict with each other. While designing
an engine, for instance, maximizing performances and minimizing fuel consumption are
two opposing aims. The optimization procedure must balance these two objectives and
return a solution that is a compromise between best performance and engine efficiency.
Also, such solution is typically not unique as it depends on how important we consider
one objective with respect to the other (or others).

To formulate a multi-objective problem mathematically, we introduce the notion of
Edgeworth-Pareto optimality. Assume Eℓ : Rd→ R, ℓ = 1, . . . ,m to be the m ≥ 2 objective
functions given, and that we aim to minimize. A solution to

minimize E(x) := (E1(x), . . . ,Em(x))⊤ (5.1)

is intended to be the set of points satisfying the following notion of optimality.

Definition 5.1 (Edgeworth-Pareto optimality). A point x∗ is (strongly) Edgeworth-Pareto
(EP) optimal if and only if there is no other point x such that

Eℓ(x) ≤ Eℓ(x∗) for all ℓ = 1, . . . ,m.

A multi-objective problem may have an infinite number of EP optimal point. In
practice, solving (5.1) only requires to find a finite subset of EP optimal points which is
representative of the entire solution set. Going back to our initial example, the aim is to
find a finite number of different optimal designs, covering the spectrum between best
engine performance and smallest fuel consumption. To qualitative estimate how well
a finite set of computed solutions describes the entire set of EP optimal points, we will
introduce later a concept known in the literature as diversity [32, 61]. It is essential to bear
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Figure 5.1: Illustrative example of Edgeworth-Pareto optimality among a set of points
on a two-dimensional objective space. In the first three pictures, from left to right, the
black dot indicates a point which is, respectively, non EP optimal, strongly EP optimal,
and weakly EP optimal (see Definitions 5.1 and 5.2). On the last illustration, the set of
three EP optimal points forming the so-called Pareto front is highlighted.

in mind that, from the multi-objective prospective, all EP optimal points are equally good
and that, ultimately, we do not seek to find just one single solution.

Optimization routines for (5.1) either compute one EP solution at the time, or attempt
to compute an entire set of optimal points at once. The latter is the case of popular
heuristics in multi-objective optimization like NSGA-II [26] and MOEA/D [83]. We refer to
the recent survey [23] for more details on such particle-based heuristics and, in particular,
on Evolutionary Algorithms. Many classical mathematical programming routines such as
descend methods, Newton’s method, and trust region methods have been adapted in the
settings of multi-objective problems, and they typically compute one single EP optimal
point per run [37, 44]. For more details on deterministic mathematical programming
algorithms in multi-objective optimization we refer to the survey [30].

Following the strategy of the mentioned heuristics, we adapt in this chapter the CBO
iteration to compute a set of EP optimal points with a single run. This is done by partially
distributing the optimization task among the particle system. Through a scalarization
procedure, we first translate (5.1) into a set of parameterized, scalar sub-problems which
are then solved simultaneously by the ensemble. An efficient communication strategy
makes the proposed method computationally more efficient than performing several
independent runs of the single-objective CBO optimizer. To seek diversity, we also couple
the CBO dynamics with an additional adaptive strategy in the parameters space.

The chapter is organized as follows. In Section 5.1 we illustrate the scalarization strat-
egy and introduce a quantitative notion of diversity based on two-body energy potentials.
Next, we propose in Section 5.2 different CBO dynamics and parameters adaptive strate-
gies to solve (5.1). Section 5.3 is devoted to the theoretical analysis of the methods via
mean-field approximation. Numerical experiments for bi- and tri-objective benchmark
optimization problems are illustrated in Section 5.4. Finally, in Section 5.5 we collect
additional remarks and recall the most important ideas and results of the chapter.
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5.1 Scalarization strategy and energy-based diversity measures

Scalarization is a popular technique in multi-objective optimization because it allows
to trace back the problem to the well-studied single-objective settings. Among the different
scalarization techniques available in the literature, see, for instance, [62], we consider for
simplicity the weighted semi-norm approach. This is because, unlike other strategies such
as the ε-Constraint Method [29], scalarization by means of weighted semi-norms leads to
unconstrained single objective sub-problems.

Let Ωm denote the m-dimensional unit simplex,

Ωm =

w ∈Rm : wℓ ≥ 0 for all ℓ = 1, . . . ,m, and
m∑
ℓ=1

wℓ = 1

 .

We will assume throughout the chapter to know a lower bound of the objective functions.
Without loss of generality, in particular, we assume E(x) > 0 component-wise for all x ∈Rd.
Let w ∈Ωm be a vector of weights. For any p ∈ [1,∞] we define the scalarized (by means of
weighted semi-norm) objective Ep(w; ·) : Rd→R as

Ep(w;x) :=


(∑m

ℓ=1wℓ |Eℓ(x)|p
)1/p

if p ∈ [1,∞) ,

supℓ=1,...,mwℓ |Eℓ(x)| if p =∞ .
(5.2)

For a given p ∈ [0,∞], the scalar sub-problem corresponding to w ∈Ωm then reads

minimize Ep(w;x) subject to x ∈Rd . (5.3)

Before showing the relation between (5.1) and (5.3) we introduce a weaker version of EP
optimality.

Definition 5.2 (Weak Edgeworth-Pareto optimality). A point x∗ is weakly Edgeworth-Pareto
(EP) optimal if and only if there is no other point x such that

Eℓ(x) < Eℓ(x∗) for all ℓ = 1, . . . ,m.

Clearly, weakly EP optimality follows from EP optimality. We recall from [62] the
following classical results.

Theorem 5.3 ( [62, Theorem 5.25, Corollary 11.21]). Assume E to be component-wise positive.

a) Let p ∈ [1,∞]. If x∗ is a solution to (5.3) for some w ∈Ωm, then x∗ is a weakly EP optimal
point.

b) Let p =∞. A point x∗ is weakly EP optimal if and only if x∗ is a solution to (5.3) for some
w ∈Ωm.
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c) Let p =∞ and assume all sub-problems (5.3) attain a unique minimum. Then, x∗ is EP
optimal if and only if x∗ is the solution to (5.3) for some w ∈Ωm.

Therefore, by solving (5.3) for different vectors of weights we can find weakly EP
optimal points. Since the aim is to compute a finite set of EP optimal points which
approximates the entire (possibly uncountable) set of solutions, a natural choice is to pick
p = ∞ due to the if-and-only-if statement in Theorem 5.3 (also known and Chebyschev
scalarization strategy). Despite this, oftentimes this is not the preferred choice as E∞(w; ·)
is in general non-differentiable, see (5.2). Exactly as in the context of exact penalization,
being CBO methods gradient-free allows us to choose p = ∞ and, so, to use the most
convenient scalarization strategies. We remark that the common choice p = 1 does not
allow to recover the full set of EP optimal points for general non-convex multi-objective
problems.

Assume we are allowed to solve N ∈ N scalarized sub-problems (5.3). Which sub-
problems should we choose? Or, equivalently, which vectors of weights {wi}Ni=1 ⊂ Ωm

should we pick? To answer this question, let us go back to the concept of diversity. The
aim of the multi-objective algorithm consist of providing the decision maker a set of EP
optimal solutions which represents at best all the possible optimal objective values one
can reach. To be more precise, let F ⊂R

m be the so-called Pareto front

F :=
{
E(x∗) : x∗ is EP optimal

}
. (5.4)

The best choice of parameters wi would than be the one such that the image of the obtained
solutions well approximates the Pareto front. Qualitatively, this choice corresponds to
the points {x∗,i}Ni=1 whose images {E(x∗,i)}Ni=1 are uniformly distributed over F. The optimal
choice of parameters is therefore problem-dependent as it depends on the Pareto front
geometry, see Figure 5.2.

To quantify how well the computed solutions cover the front, or, are diverse, many
metrics have been proposed in the literature and there is no unique agreement on which
one is the most convenient. Among the many, we mention hypervolume contribution [84],
crowding distance [26] and the Riesz s-energy [32, 68]. The choice of a diversity metric is
important not only to assess the algorithm performance in benchmark problems, but also to
design the algorithm itself. Recently, particular attention has been drawn to energy-based
diversity measures thanks to their flexibility and theoretical properties [23, 32]. Since
energy functionals naturally fit into the CBO particle framework, and, in particular, into
its mean-field analysis, we mathematically quantify the concept of diversity in terms of
energy-based diversity metrics.

Assume the computed solution to (5.1) comprises N points {x∗,i}Ni=1 ⊂ R
d with ρ∗,N =

(1/N )
∑N

i=1 δx∗,i ∈ P (Rd) being the associated empirical measure. For a given interaction
kernel U : R

m→ (−∞,∞] we define the functional U : P (Rm)→ (−∞,∞] as

U [ζ] :=
1
2

"
U (z − y)dζ(z)dζ(y) . (5.5)
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(a) High-energy configuration (b) Low-energy configuration

Figure 5.2: Illustration of two particle systems in the image space. Each of the systems
comprises solutions of N = 20 scalarized problems (5.3). On the left, the problems’
parameters are taken uniformly over the simplex, while, on the right, the parameters are
taken such that the Riesz 1-energy is minimized. The histograms illustrate the parameters
distribution on the simplex. As expected, the low-energy configuration better describes
the Pareto front (in red), that is, the low-energy configuration is more diverse.

Provided continuity of E, we consider the push-forward measure E#ρ
∗,N ∈ P (Rm) of ρ∗,N ,

which is defined by:

E#ρ
∗,N (A) := ρ∗,N

(
E −1

(A)
)

for any Borel set A ⊂R
m.

We note that, if U models a repulsive potential, the total energy of the particle system
in the image space, that is, U [E#ρ

∗,N ], will be larger if particles are close to each other in
the image space. On the other hand, the more the particle are distanced from one another,
the smaller the total energy is. Therefore, quantity U [E#ρ

∗,N ] can be considered as a metric
for the diversity of sets of points {x∗,i}Ni=1, see also Figure 5.2 for an illustrative example.
The already mentioned Riesz s-energy

UR(z) =
1
|z|s

, for s > 0

is an example of a short-range repulsive potential. Another choice, which is non-singular,
is given for instance by the Morse potential

UM(z) = e−C|z| for some C > 0 .

Restricting the probability measure to be supported on the set of EP optimal points
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Fx := E−1
(F), the best set of N ∈N EP optimal points is the solution of the problem

minimize U [E#ρ
N,∗] subject to ρ∗,N = (1/N )

N∑
i=1

δx∗,i , with {x∗,i}Ni=1 ⊂ Fx . (5.6)

In the following, we propose a strategy to solve (5.6) via consensus-based optimization.

5.2 Consensus-based optimization and adaptive strategies

In this section, we present several CBO dynamics that leverage the particle system
to solve N different sub-problems simultaneously. We will first assume to the vector of
weights of the scalar sub-problems to be fixed, and then couple the suggested dynamics
with an adaptive strategy for the parameters to improve the diversity of the system. The
aim, in particular, is to select a set of scalarized sub-problems whose corresponding set of
solutions attains low energy U value. We derive an adaptive strategy which approximates
the energy gradient flow for bi-objective problems and, then, we suggest a second adaptive
strategy which can be applied to general multi-objective problems.

5.2.1 CBO for parameterized sub-problems

Assume we want to solve N ∈ N scalar sub-problems (5.3) determined by the set
of parameters {wi}Ni=1 ⊂ Ωm. We aim of doing that with a single system of N particles
{Xi

(k)}
N
i=1 ⊂ R

d. To distribute the task among the particles, we couple each of them with

a problem and consider the tuples (Xi
(k),w

i) so that every particle has its own scalarized

objective Ep(wi ; ·) to minimize. In single-objective CBO methods, the update rule drives
each particle towards a consensus point which is considered to be in a good location for
the objective function. Now, since every particle targets a different scalarized objective,
the consensus point should differ for each particle (talking about consensus seems not
appropriate anymore, but we keep this term to stress the parallelism with the single-
objective settings).

Let ρ ∈ P (Rd) be a particle probability measure. For any problem w ∈Ωm, we define
the corresponding consensus point as

mα
w[ρ] :=

∫
xexp(−αEp(w;x))dρ(x)∫
exp(−αEp(w;x))dρ(x)

, (5.7)

for some parameter α > 0. At step k ≥ 0, we denote the empirical measure associated with
the particle system {Xi

(k)}
N
i=1 as ρN(k). The Multi-objective Consensus Based Optimization

(M-CBO) update rule with anisotropic diffusion reads

Xi
(k+1) = Xi

(k) +λτ
(
mα

wi [ρ
N
(k)]−X

i
(k)

)
+ σ
√
τ
(
mα

wi [ρ
N
(k)]−X

i
(k)

)
⊙θi

(k) , (5.8)
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with θi
(k) ∼N (0, Id) for all i = 1, . . . ,N , as in the single-objective CBO dynamics.

According to (5.8), every particle moves towards a possibly different area of the search
space. Communication between the particles happens via the computation of the consensus
points. Indeed, the consensus-point for the i-th particle is computed by taking into account
the whole particle system. Thanks to the Boltzmann-Gibbs weights in (5.7), particles
attaining large values of the i-th objective E(wi ; ·) have little impact in the computation of
the i-th objective point.

Remark 5.4. It is interesting to note that the proposed M-CBO update rule can be applied to
any task where it is required to solve many parameterized sub-problems at the same time. Indeed,
update rule (5.8) does not make use of the particular structure of sub-problems (5.3). In practice,
though, the heuristic derivation implicitly assumes the following scenarios.

• For updating the N particles, we are required to compute Ep(wi ;Xj
(k)) for all i, j = 1, . . . ,N ,

possibly leading to an update step of complexity O(N2). Therefore, the evaluation of
the sub-objective should be computationally cheap. This is the case of the considered
sub-objectives (5.2), as we only need to evaluate the multi-objective function E N times
per iteration, once per particle.

• Loosely speaking, the sub-problems should not differ too much from one another. By using
(5.7), we implicitly assume that the i-th particle can obtain valuable information from the
rest of the ensemble. For the scalarized sub-objectives (5.2), we can expect continuity with
respect to the parameter w. Therefore, particles with similar parameters can share valuable
information regarding their objective function landscapes.

5.2.2 Parameters adaptation for bi-objective problems

A classical strategy to reduce the energy of a particle system is to let the particles
evolve according to the associated vector field. We now derive an adaptive strategy for the
parameters which aims to approximate a gradient flow dynamics in the image space. When
it comes to gradient-based dynamics, working with continuous-in-time systems is the
most convenient choice. Therefore, during the following formal derivation, we assume the
vector of weights to be continuous-in-time processes. To this end, we introduce W i

t ∈Ωm

for all i = 1, . . . ,N and t ≥ 0. The algorithm’s update rule for W i
(k) will be given by a suitable

discretization of the continuous dynamics.
Let {Z i

t }Ni=1 ⊂ F be a set of particles in the objective space evolving over the Pareto front,
with ζNt = (1/N )

∑N
i=1 δZ i

t
. For the sake of the formal derivation, let us assume U to be

smooth and F sufficiently regular such that the projection ΠT (z,F) towards the tangential
space T (z,F) at z ∈ F is well-defined. Recall that, to obtain a diverse approximation of
the Pareto front F, particles should reach a low-energy configuration over F. In theory,
following the particles’ descent directions, we can lower the energy of the system. Recall
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that U [ζNt ] takes the form of

U [ζNt ] =
1
2

"
U (z − y)dζNt (z)dζNt (y) =

1
2N2

N∑
i,j=1

U (Z i
t −Z

j
t ) .

The point Z i
t ∈Rm, in particular, is subject to the potential∫

U (Z i
t − y)dζNt (y) =

1
N

N∑
j=1

U (Z i
t −Z

j
t ) ,

with associated vector field at Z i
t given by∫

∇U (Z i
t − y)dζNt (y) =

1
N

N∑
j=1

∇U (Z i
t −Z

j
t ) .

We obtain in this way the (projected) descent dynamics

d
dt

Z i
t = ΠT (Z i

t ,F)

− 1
N

N∑
j=1

∇U (Z i
t −Z

j
t )

 . (5.9)

For Chebyshev scalarization (p =∞) and assuming solution uniqueness, Theorem 5.3 (c)
allows us to associate to any scalarized sub-problem w ∈Ωm an EP optimal point x∗(w).
This gives a parameterization of the Pareto front via z∗ : Ωm→ F, with z∗(w) := E(x∗(w)). In
our settings, Z i

t is to be interpreted as the image of the exact solution of the i-th problem
W i

t , that is, Z i
t = z∗(W i

t ). In a situation where, again, the solution operator z∗ is sufficiently
regular, we can finally perform a change of variable and obtain from (5.9) an adaptive
strategy for W i

t :

d
dt

W i
t =

(
Dz∗(W i

t )
)+

ΠT (Z i
t ,F)

− 1
N

N∑
j=1

∇U (Z i
t −Z

j
t )

 (5.10)

where M+ is the pseudo inverse of M and Dz∗(w) is the differential at w ∈Ωm. We refer
to [51, Ch. IV, Sec. 5] for more details on differential equations and numerical integration
on manifolds via projection.

Since the parameterization z∗ as the well the tangential spaces T (z,F) are unknown,
in practice (5.10) needs to be approximated. We do that by considering the simple case
where m = 2 and the front is a linear segment coinciding with the unit simplex Ω2 itself.
For Chebyshev scalarization, one can show that the parameterization mapping the simplex
into the front is linear and given by

z∗L(w) =
(
0 1
1 0

)
w

72



(a) Problem Lamé γ = 0.5 (b) Problem Lamé γ = 0.25

Figure 5.3: Final configuration over the objective space Z i
t = z∗(W i

t ) of N = 20 particles
evolved according to (5.10) (exact dynamics) and (5.11) (approximated dynamics) under
1-Riesz binary potential. The arrows indicate the total potential forces acting on the
particles. Two different types of fronts are taken into account. Numerical experiments
are performed by means of an explicit Euler scheme with ∆t = 10−8,T = 0.01. Histograms
show the final distribution over the unit simplex Ω2. Despite the many approximations,
dynamics (5.11) allows us to recover good descriptions of the Pareto fronts.

Similarly, if F = Ω2, the projection to the tangential space for z ∈Ω2, z , (1,0)⊤, (0,1)⊤ is
explicitly known and given for any u ∈R2 by

ΠT (z,Ω2)(u) =
(

1 −1
−1 1

)
u .

We note that for m > 2, under assumption F = Ωm the mapping z∗ is non-injective as for
the case m = 2. Therefore, we cannot apply for m > 2 the change of variable which we used
to obtain (5.10) from (5.9). For bi-objective problems, performing approximations z∗ ≈ z∗L
and ΠT (z,F) ≈ΠT (w,Ω2) then leads to

d
dt

W i
t = ΠT (W i

t ,Ω2)

 1
N

N∑
j=1

∇U (Z i
t −Z

j
t )

 (5.11)

where we used that for u ∈R2

(Dz∗L(w))⊤ΠT (z,Ω2)(−u) = −
(
0 1
1 0

)⊤ (
1 −1
−1 1

)
u =

(
1 −1
−1 1

)
u = ΠT (z,Ω2)(u) .

Numerical experiments performed in the settings where the parameterization z∗ : Ω2→
F is explicitly known show that (5.11) can be a valid approximation to obtain diverse
distributions over the Pareto front, see Figure 5.3.
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Finally, we discretize (5.11) to derive an update rule for {W i
(k)}

N
i=1. We do that via

explicit, projected Euler scheme with time step τ . Moreover, to compute the vector fields
in the image space, we substitute the image of the true solution Z i

t of the i-th problem with
the current multi-objective value of the i-th particle E(Xi

(k)). The update rule derived with
the above procedure reads

W i
(k+1) = ΠΩ2

W i
(k) + ν

τ
N

N∑
j=1

∇U
(
E(Xi

(k))−E(Xj
(k))

) (5.12)

where the additional parameter ν > 0 is introduced to tune the velocity of the adaptive
procedure with respect to the CBO dynamics (5.8).

Remark 5.5. We note that the projection step may in principle be avoided in the update
rule (5.12) and used only in the evaluation of the scalarized objective E(w; ·). This would
allow, though, {W i

(k)}
N
i=1 to evolve far from the simplex, with potentially a negative effect on

the dynamics due to long-range interactions. We leave this alternative strategy for future
investigations.

5.2.3 Parameters adaptation for general multi-objective problems

In the previous section, we showed how to simulate a gradient flow dynamics in the
objective space by making use of the Chebyshev parameterization given by Theorem 5.3 (c).
This was possible for the case m = 2 where a suitable linearization allowed to approximate
the gradient flow evolution. To derive an update rule for general multi-objective problems
m ≥ 2, we now take a different perspective and focus on repulsive dynamics taking place,
directly, on the unit simplex Ωm. We follow here the literature on active particle systems
and consider a time-continuous adaptation of the parameters {W i

t }Ni=1, t ≥ 0. The update
rule for {W i

(k)}
N
i=1 is then obtained through an explicit numerical method applied to the

continuous dynamics.
As before, let z∗ : Ωm→ F be the map associating to any problem w the image of the

corresponding EP optimal point z∗(w) = E(x∗(w)). The map existence is ensured under
settings of Theorem 5.3 (c), but it is typically not bijective for m > 2. From the definition
of the scalarized sub-problems (5.3) we can expect z∗(w) to depend continuously on w.
To reach a uniform distribution over the front, we derive binary repulsive dynamics
which distance two particles’ parameters W i

t ,W
j
t whenever the corresponding solutions

Z i
t = z∗(W i

t ) and Z
j
t = z∗(W j

t ) (or an approximation of them) are too close in the objective
space. We recall the dynamics is constrained to the unit simplex Ωm, and so the vector
field needs to be projected into the tangential space T (W i

t ,Ωm).
For an interaction kernel K : Ωm×Ωm×Rm×Rm→R

m (which we will define explicitly
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later), the paradigmatic model then reads for all i = 1, . . . ,N

d
dt

W i
t = ΠT (W i

t ,Ωm)

 1
N

N∑
j=1

K
(
W i

t ,W
j
t ,Z

i
t ,Z

j
t

)
(W i

t −W
j
t )

 . (5.13)

System (5.13) is a first-order microscopic model sharing many features with swarming and
opinion models which have been extensively studied in the last decades [1,3, 17, 25,71].
For more references in swarming models in bounded domains we refer in particular
to [4, 20, 34]. To describe short-range repulsion that depends on the binary potential U , we
suggest an interaction kernel of the form

K
(
W i

t ,W
j
t ,Z

i
t ,Z

i
j

)
= −|∇U (Z i

t −Z
j
t )||W i

t −W
j
t |−1 . (5.14)

Due to the normalizing factor |W i
t −W

j
t |−1, the strength of the displacement between the

i-th and the j-th particle has exactly magnitude |∇U (z∗(W i
t )− z∗(W j

t ))|. This corresponds
to the gradient flow-like dynamics (5.11) derived in the previous section for bi-objective
problems. Here, though, the displacement direction is simply determined by W i

t −W
j
t .

We note that a generalization of the well-known Cucker-Smale model [25] with nonlinear
velocity coupling has been investigated in [47]. In particular, settings of [47] cover the
case where the velocities are normalized, similarly to (5.13) equipped with (5.14). The
suggested choice of K is made under the assumption of U being purely repulsive. If
U models, for instance, long-range attraction effects, (5.14) can be modified to possibly
assume negative values when particles should attract each other.

Finally, we derive from (5.13), (5.14) an update rule for W i
(k) by means of an explicit

Euler discretization with step size τ > 0. As we did for the case m = 2, the unknown exact
solution Zt = z∗(W i

t ) of the i-th scalarized sub-problem is substituted in the algorithm by
the i-th particle location in the objective space E(Xi

(k)). The adaptive strategy for general
multi-objective problems then reads

W i
(k+1) = ΠΩm

W i
(k) − ν

τ
N

N∑
j=1

∣∣∣∣∇U(
E(Xi

(k))−E(Xj
(k))

)∣∣∣∣ W i
(k) −W

j
(k)

|W i
(k) −W

j
(k)|

 (5.15)

where, ν > 0, again, is an additional parameter which will allow us to regulate the time
scale of the adaptive procedure (5.15) with respect to the CBO dynamics.

Remark 5.6. In [35], authors perform a mean-field analysis of particle systems subject to
potentials in bounded domains, i.e. settings similar to (5.12) and (5.15). The authors show that
the system can evolve towards a non-optimal equilibrium in which a certain amount of particles,
or mass, is concentrated at the boundary of the domain. Inspired by [36], where a diffusive
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component is added to overcome this effect, we may modify the proposed dynamics to include a
stochastic component.

Let Φ = Φ(Xi
(k),X

j
(k),W

i
(k),W

j
(k)) denote the right-hand side of either of the suggested update

rule (5.12) and (5.15), the perturbed adaptive strategy then readsW i
(k+1/2) = Φ(Xi

(k),X
j
(k),W

i
(k),W

j
(k))

W i
(k+1) = ΠΩm

(
W i

(k+1/2) + σ̂ξ i
(k)

) (5.16)

where σ̂ > 0 is a parameter controlling the variance and ξ i
(k) ∼ N (0, Im). In Section (5.4) we

will see how this stochastic behavior allows, indeed, to reach lower energy configurations in the
performed numerical experiments.

5.3 Convergence analysis in mean-field law

In multi-objective optimization, a common metric to assess the performance of an
optimizer is given by the Generation Distance (GD) [82]. When the exact Pareto front F
is available, GD measures the squared distance between the image of every EP optimal
point computed and F. Let ρ ∈ P (Rd) encode the computed set of solutions, the metric
GD : P (Rd)→ [0,∞] is defined as

GD[ρ] :=
(∫

dist(E(x),F)2dρ(x)
) 1

2

. (5.17)

In this section, we perform a mean-field analysis of the proposed algorithms to investigate
their convergence properties. In particular, we derive conditions on the multi-objective
function E and on the scalarized sub-problems (5.3) which lead to an exponential decay of
GD up to a certain pre-fixed accuracy ε > 0.

5.3.1 Mean-field approximation of the coupled dynamics

Let us start by deriving mean-field approximations of the dynamics introduced in
the previous sections. We recall each particle is characterized by its location Xi

(k) on the

search space R
d and the vector of weights W i

(k) taking values in the simplex Ωm. We denote

the (random) empirical probability measure associated to {Xi
(k)}

N
i=1 with ρN(k), while the

one associated to the parameters {W i
(k)}

N
i=1 with µN(k). Also, we introduce the empirical

distribution f N
(k) = (1/N )

∑N
i=1 δXi

(k)
⊗ δW i

(k)
of the coupled system {(Xi

(k),W
i
(k))}

N
i=1.

Following the procedure illustrated in Chapter 2, we derive the mean-field model
under the propagation of chaos assumption. For large ensemble sizes, N ≫ 1, we assume fac-
torization of the marginals, leading to f N

(k) ≈ f(k) for some f ∈ P (Rd×Ωm). As a consequence,
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it also holds ρN(k) ≈ ρ(k) ∈ P (Rd) and µN(k) ≈ µ(k) ∈ P (Ωm) with ρ(k),µ(k) being the marginal
distributions of f(k) with respect to the first and second component, respectively. Let the
initial particle distribution be given by f(0) ∈ P (Rd ×Ωm). Under such approximation, the
multi-objective CBO update rule (5.8) becomes independent on the index i and reads

X(k+1) = X(k) +λτ
(
mα

W (k)
[ρ(k)]−X(k)

)
+ σ
√
τ
(
mα

W (k)
[ρ(k)]−X(k)

)
⊙θ(k) , (5.18)

with θ(k) ∼N (0, Id) for all i = 1, . . . ,N , as in the single-objective CBO dynamics.
If there is no interaction between the parameters {W i

(k)}
N
i=1, the mean-field dynamics

over the simplex is simply given by

W (k+1) = W (k) (5.19)

for all k ≥ 0. When the adaptive mechanism is employed, the binary interaction between
the particles is also approximated by an interaction of mean-field type.

Consider update rule (5.12) for bi-objective problems. In this case, if we assume
ρN(k) ≈ ρ(k) we obtain

1
N

N∑
j=1

∇U
(
E(Xi

(k))−E(Xj
(k))

)
≈

∫
∇U

(
E(Xi

(k))−E(x)
)
dρ(k)(x)

for all i = 1, . . . ,N , leading to the mean-field dynamics

W (k+1) = ΠΩm

(
W (k) + ντ

∫
∇U

(
E(X(k))−E(x)

)
dρ(k)(x)

)
. (5.20)

Similarly, by inserting f N
(k) ≈ f(k) in the update rule (5.15) for general multi-objective

problems we obtain

1
N

N∑
j=1

∣∣∣∣∇U(
E(Xi

(k))−E(Xj
(k))

)∣∣∣∣ W i
(k) −W

j
(k)

|W i
(k) −W

j
(k)|
≈

∫ ∣∣∣∣∇U(
E(Xi

(k))−E(x)
)∣∣∣∣ W i

(k) −w

|W i
(k) −w|

df(k)(x,w) .

Under the above mean-field approximation, the adaptive dynamics (5.15) finally reads

W (k+1) = ΠΩm

W (k) − ντ
∫ ∣∣∣∣∇U(

E(X(k))−E(x)
)∣∣∣∣ W (k) −w
|W (k) −w|

df(k)(x,w)

 . (5.21)
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5.3.2 Convergence to the Pareto front

We consider now a mean-field approximation (X(k),W (k)) of the M-CBO particles
system, where the parameter W (k) is iteratively defined according to either (5.19), (5.20)
or (5.21). With f(k) ∈ P (Rd ×Ωm) we indicate the law of (X(k),W (k)), while ρ(k) ∈ P (Rd),
µ(k) ∈ P (Ωm) indicate the law of X(k) and W (k), respectively. In the following, we collect
the necessary assumptions to prove convergence towards the Pareto front with respect to
the GD metric (5.17).

The first assumption concerns the solvability of the scalarized sub-problems (5.3) via
the CBO dynamics. From the analysis of single-objective CBO methods, we recall that
well-conditioning around the minimizer is required to apply the quantitative Laplace
principle (see Chapter 3). In the context of multi-objective optimization, we need to apply
the quantitative Laplace principle with same parameter α > 0 for all w ∈Ωm. Therefore,
we require a uniform behavior around the minimizers of the different sub-problems by
assuming common lower and upper bounds.

Assumption 5.7 (Inverse continuity around minimizer). Let p ∈ [1,∞] be fixed. For all
w ∈Ωm, the scalarized function Ep(w; ·) is continuous and admits a unique minimizer x∗(w).

There exist constants c1, c2, c3,p1,p2 > 0 and R > 0 independent on w, such that

c1∥x − x∗(w)∥p1
∞ ≤ Ep(w;x)−Ep(w;x∗(w)) ≤ c2∥x − x∗(w)∥p2

∞ ∀x, ∥x − x∗(w)∥∞ ≤ R, (5.22)

and such that
c3 < Ep(w;x)−Ep(w;x∗(w)) ∀x, ∥x − x∗(w)∥∞ > R. (5.23)

Another necessary assumption for the application of the quantitative Laplace principle
is having a lower bound on the mass around the minimizer. Again, in the multi-objective
settings, we require a lower bound for the different minimizers x∗(w) which is uniform
with respect to w ∈Ω. This will be achieved through the following assumption on the set
of minimizers and on the initial data.

Assumption 5.8 (Boundedness and initial datum). The set of EP optimal points is bounded.
Furthermore, let H ⊂ R

d be a bounded, open set containing them. The initial particle
distribution ρ(0) is given by the uniform distribution over H , that is, ρ(0) = Unif(H).

We note that, under Assumption 5.7 and for E component-wise positive, the minimizers
of the scalarized sub-problems x∗(Ωm) = {x∗(w) : w ∈Ωm} are also EP optimal points [62].
Therefore, by definition of the Pareto front F, we have that the pre-image of F is contained
by the set of minimizers of the scalarized sub-problems:

x∗(Ωm) ⊆ E−1
(F) .

The two set coincides only when Chebyshev scalarization is used (choice p = ∞), see
Theorem 5.3 (c).
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Finally, we assume Lipschitz regularity of the minimizers with respect to parameter
w ∈Ωm.

Assumption 5.9. The map x∗ : Ωm→R
d is globally Lipschitz continuous.

Before checking convergence in the objective space, we show that the mean-field
particle system converges to EP optimal points in the search space R

d. Similarly to the
single-objective case, we consider to this end the mean-squared error defined now as
Err : P (Rd ×Ωm)→ [0,∞] with

Err[f ] :=
∫
|x − x∗(w)|2df (x,w) . (5.24)

Theorem 5.10 (Convergence towards EP optimal points). Fix an accuracy ε > 0 and let
Assumptions 5.7, 5.8, and 5.9 hold. Assume U to be differentiable with ∇U bounded. Consider
parameters λ,σ > 0, ν ≥ 0 satisfying

δ := λ− σ2 − 4C
ν
√
ε
− 4C2ν

2

ε
> 0, where C = Lip(x∗) sup

z∈Rm
|∇U (z)| . (5.25)

Define the time horizon T ∗ > 0

T ∗ =
4
δ

log
(

Err[f(0)]

ε

)
.

Provided α > 0 is sufficiently large and the step-size τ > 0 is sufficiently small, it holds

min
k :kτ≤T ∗

Err[f(k)] ≤ ε . (5.26)

Moreover, as long as Err[f(k−1)] > ε, it holds

Err[f(k)] ≤ exp
(
−kτ δ

4

)
Err[f(0)] . (5.27)

Before providing a proof in the next section, we show how to apply this result to prove
decay of the GD metric. Recall ρ(k) = Law(X(k)).

Corollary 5.11. Under the settings of Theorem 3.6, further assume that the multi-objective
function E is globally Lipschitz continuous and component-wise positive.

It holds
min

k :kτ≤T ∗
GD[ρ(k)] ≤ Lip(E)

√
ε .

Moreover, as long as Err[f(k−1)] > ε, it holds

GD[ρ(k)] ≤ exp
(
−kτ δ

4

)
Lip(E)

√
Err[f(0)] . (5.28)
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Remark 5.12. In order to be satisfied, condition (5.25) requires a choice of the parameter ν
such that ν = O(

√
ε). Therefore, convergence towards the Pareto front is guaranteed only if the

sub-problems parameters are adapted slowly with respect to the CBO dynamics. This suggests
that the two evolutionary dynamics should have a different time scale. Numerically, one can
simulate such behavior by either choosing a relatively small parameter ν, or by adapting the
sub-problems parameters W i

(k) less frequently with respect to the particles’ positions Xi
(k). We

will experiment both approaches in the numerical tests performed in Section 5.4.

5.3.3 Proof of Theorem 5.10

For the sake of notational simplicity, we introduce the following notation to indicate
the particles after the update rule. For a given x ∈Rd,w ∈Ωm, f(k) ∈ P (Rd ×Ωm) with first
marginal ρ(k) ∈ P (Rd), and θ(k) ∼N (0, Id) we define x′ ,w′ as

x′ = CCBOw(x,w,ρ(k),θ(k)) := x+ (λτ + σ
√
τθ(k))⊙ (mα

w[ρ(k)]− x) (5.29)

w′ = CA(w,x,f(k)) :=


w if (5.19) is used ,

ΠΩm

(
w+ ντ

∫
∇U (g(x)− g(y))dρ(k)(y)

)
if (5.20) is used ,

ΠΩm

(
w − ντ

∫
|∇U (g(x)− g(y))| w−v|w−v|df(k)(y,v)

)
if (5.21) is used .

With this notation, the law f(k) of (X(k),W (k)) satisfies for any φ ∈ C(Rd ×Ωm)∫
φ(x,w)df(k+1)(x,w) = E

∫
φ(x′ ,w′)df(k)(x,w) . (5.30)

where the expectation is taken with respect to the sampling procedure θ(k) ∼N (0, Id).
To prove Theorem 5.10, we follow the proof strategy used for the single-objective CBO

algorithm without memory effects in Chapter 3. Therefore, we start by studying the error
evolution.

Proposition 5.13 (Error evolution). Under the settings of Theorem 5.10, let λ,τ be such that
λτ ≤ 1. Until the desired accuracy ε is reached, it holds

Err[f(k+1)] ≤
(
1− τ δ

2

)
Err[f(k)] + 2τC

ν
√
ε

√
Err[f(k)] sup

v∈Ωm

|mα
v [ρ(k)]− x∗(v)|

+ τ
3λ+ σ2

2
sup
v∈Ωm

|mα
v [ρ(k)]− x∗(v)|2 .
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Proof. We apply (5.30) with φ(x,w) = |x − x∗(w)|2 to obtain∫
|x − x∗(w)|2f(k+1)(x,w) = E

∫
|x′ − x∗(w′)|2df(k)(x,w)

= E

∫
|x′ − x∗(w) + x∗(w)− x∗(w′)|2df(k)(x,w)

= E

∫
|x′ − x∗(w)|2df(k)(x,w)

−E
∫

2(x′ − x∗(w)) · (x∗(w)− x∗(w′))df(k)(x,w)

+E

∫
|x∗(w)− x∗(w′)|2df(k)(x,w) =: I1 + I2 + I3 .

We note that, in the computation of x′, the consensus point corresponding to problem w is
used. Therefore, in I1, there is agreement between the consensus mα

w[ρ(k)] point and x∗(w),
as they both depend on the pre-update parameter w. This is the same situation we had in
the single-objective case, and so the same computations done in the proof of Proposition
3.4 hold here too. This leads to the estimate

I1 ≤
(
1− τ 2λ− σ2 −λ2τ

2

)
Err[f(k)] + τ

2λ+ σ2 +λ2τ
2

∫
|mα

w[ρ(k)]− x∗(w)|2dµ(k)(w) .

By using assumption λτ < 1, the above further simplifies to

I1 ≤
(
1− τ λ− σ

2

2

)
Err[f(k)] + τ

3λ+ σ2

2
sup
v∈Ωm

|mα
v [ρ(k)]− x∗(v)|2 . (5.31)

Next, let us bound I3. Thanks to the Lipschitz continuity of x∗ (Assumption 5.9), bounded-
ness of ∇U , and the non-contractivity of the projection ΠΩm

, it holds

|x∗(w)− x∗(w′)| ≤ Lip(x∗)|w −w′ | ≤ ντ Lip(x∗) sup
z∈Rm
|∇U (z)| = ντC (5.32)

leading to
I3 ≤ ν2τ2C2 .

By multiplying by Err[f(k)]/ε ≥ 1, we further get an estimate in terms of the error

I3 ≤
ν2

ε
τ2C2Err[f(k)] . (5.33)

To bound I2 we use will use similar arguments. First of all, we note that the integrand in I2
is linear in θ(k). By using E[θ(k)] = 0, we obtain

E[x′] = x+λτ(mα
w[ρ(k)]− x) = (1−λτ)x+λτmα

w[ρ(k)] ,
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which allows us to rewrite I2 as

I2 = −E
∫

2(x′ − x∗(w)) · (x∗(w)− x∗(w′))df(k)(x,w)

= −(1−λτ)
∫

2(x − x∗(w)) · (x∗(w)− x∗(w′))df(k)(x,w)

−λτ
∫

2(mα
w[ρ(k)]− x∗(w)) · (x∗(w)− x∗(w′))df(k)(x,w) .

An application of Chauchy-Schwarz inequality and of (5.32) further leads to the estimate

I2 ≤ (1−λτ)2
√

Err[f(k)]
(∫
|x∗(w)− x∗(w′)|2dµ(k)(w)

) 1
2

+ 2λτ sup
v∈Ωm

|mα
v [ρ(k)]− x∗(v)|

∫
|x∗(w)− x∗(w′)|dµ(k)(w)

≤ (1−λτ)2ντC
√

Err[f(k)] + 2λτντC sup
v∈Ωm

|mα
v [ρ(k)]− x∗(v)| .

As before, we derive an estimate in terms of Err[f(k)] by multiplying by
√

Err[f(k)]/
√
ε > 1,

and by using λτ ∈ (0,1)

I2 ≤ 2τC
ν
√
ε

Err[f(k)] + 2τC
ν
√
ε

√
Err[f(k)] sup

v∈Ωm

|mα
v [ρ(k)]− x∗(v)| . (5.34)

The desired upper bound for Err[f(k+1)] follows after collecting estimates (5.31), (5.33),
(5.34), and the definition of δ given in (5.25).

Next, we aim to bound |mα
w[ρ(k)]− x∗(w)| uniformly in w ∈Ωm by means of the Laplace

principle. Thanks to the assumptions on the sub-problems, we are able, in particular, to
adapt Proposition 3.2 such that the estimate provided by the quantitative Laplace principle
is independent on the sub-problem w ∈Ωm considered.

Proposition 5.14 (Quantitative Laplace principle for parameterized sub-problems). Let
Assumptions 5.7, 5.8, 5.9 be satisfied and let f ∈ P (Rd ×Ω) be such that its first marginal
ρ ∈ P (Rd) satisfies H ⊆ supp(ρ).

For any r ∈ [0,R], q > 0 such that q + c2r
p2 ≤ c3 (constants introduced in Assumption 5.7) it

holds

sup
v∈Ωm

|mα
v [ρ]− x∗(v)| ≤ c1

√
d(q+ c2r

p2)1/p1 +

√
dexp(−αq)

infv∈Ωm
ρ(B∞r (x∗(v)))

(√
Err[f ] + diam(H)

)
.
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Proof. Without loss of generalization, we can assume infx∈Rd Ep(w;x) = 0 for all w ∈Ωm.
Since x∗(w) ∈H ⊂ supp(ρ), we apply Proposition 3.2 for all w ∈Ωm. As a consequence, for
any r ∈ (0,R] and q > 0 such that q+ supx∈B∞r (x∗(w))Ep(w;x) < c3 the following upper bound
holds

|mα
w[ρ]− x∗(w)| ≤ c1

√
d(q+ sup

x∈B∞r (x∗(w))
Ep(w;x))1/p1 +

√
dexp(−αq)

ρ(B∞r (x∗(w)))

∫
|x − x∗(w)|dρ(x) . (5.35)

We aim now to make the above bound independent on w ∈Ωm. Thanks to Assumption
5.7, we note that supx∈B∞r (x∗(w))Ep(w;x) ≤ c2r

p2 for all r ∈ (0,R] and therefore we can make
a feasible choice of q,r which is common among all w ∈ Ωm. By boundedness of H
(Assumption 5.8) and continuity of x∗ (Assumption 5.9) it holds infw∈Ωm

ρ(x∗(w)) > 0 since
H ⊆ supp(ρ). Finally, the last term we need to bound in (5.35) is

∫
|x − x∗(w)|dρ(x). By

triangular and Jensen’s inequalities we have∫
|x − x∗(w)|dρ(x) ≤

∫
(|x − x∗(v)|+ |x∗(v)− x∗(w)|)df (x,v) ≤

√
Err[f ]−diam(H) .

The estimates we collected lead to the desired upper bound for |mα
w[ρ]− x∗(w)| which is

independent on the choice of w ∈Ωm.

With the purpose of applying Proposition 5.14 with f = f(k), we require to prove
that H ⊆ supp(ρ(k)) for k ≥ 0. Moreover, it is desirable to have a lower estimate on
infv∈Ωm

ρ(k)(B∞r (x∗(v))) in terms of the initial data ρ(0). Analogously to the single-objective
case, we study the mass around a EP optimal point x∗(w) via the mollifier φr,w ∈ C∞c (Rd)

φr,w(x) :=


∏d

ℓ=1 exp
(
1− r2

r2−(x−x∗(w))2
ℓ

)
, if ∥x − x∥∞ < r,

0, else,
(5.36)

for which holds

ρ(k) (B∞r (x∗(w))) ≥
∫

φr,w(x)dρ(k)(x) .

We do that through the following lemma, which is the multi-objective equivalent of Lemma
3.5.

Lemma 5.15 (Lower bound on mass around EP optimal points.). For a given T > 0 and
r > 0, let

max
k,kτ≤T

sup
w∈Ωm

|mα
w[ρ(k)]− x∗(w)| ≤ B

for some B > 0.
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Provided τ > 0 is sufficiently small, there exists a positive constant a = a(r,d,B,λ,σ ,diam(H))
(independent on τ) such that

inf
w∈Ω

ρ(k) (B∞r (x∗(w))) ≥mr,0 exp(−akτ) ∀k : kτ ≤ T ,

with mr,0 := (1/2) infw∈Ωm

∫
φr,w(x)dρ(0)(x) .

Proof. For any arbitrary, but fixed v ∈ Ωm, the proof can be carried out exactly as the
proof of Lemma 3.5, by considering the Taylor expansion of φr,v = φr,v(x) around x at
x′ = CCBOw(x,w,ρ(k),θ) and the estimates provided for the time-continuous dynamics
in [7, Lemma 4.2].

We also remark the importance, here, of Assumption 5.8. The boundedness of the set
of EP optimal points, in particular, allows us to use the following triangular estimate

|mα
w[ρ(k)]− x∗(v)| ≤ |mα

w[ρ(k)]− x∗(w)|+ |x∗(w)− x∗(v)| ≤ |mα
w[ρ(k)]− x∗(w)|+ diam(H) .

for any w,v ∈Ωm, which is essential to bound the displacement |x′ − x∗(v)| for the particle
(x,w).

Finally, we provide a proof of the main theorem.

Proof of Theorem 5.10. We start by defining suitable τε,αε such that for all τ ≤ τε and
α ≥ αε we have convergence in the sense of (5.26). To this end, we introduce

Cδ := min

1
8

δ

2C(ν/
√
ε)
,

√
1
8

2δ
3λ+ σ2


and qε, rε given by

qε :=
1
2

min
{

1

c1
√

d

(√
εCδ

)p1
, c3

}
, rε :=

1
c2
q

1/p2
ε .

Then, we pick a step size τε > 0 such that λτε < 1 and such that Lemma 5.15 holds with

r = rε, B = Cδ

√
Err[f(0)] and T = T ∗. We remark that the definition of τε, ultimately, only

depends on ε,f(0),λ,σ ,ν and it does not depend on any choice of α.
Next, we consider any αε satisfying

√
dexp(−αεqε + aT ∗)

mrε ,0

(√
Err[f(0)] + diam(H)

)
< Cδ
√
ε , (5.37)

with a > 0 being the exponent determined by Lemma 5.15.
This particular choices of τε,αε will allow us to apply Lemma 5.15 and Proposition

5.14 as long as supw∈Ωm
|mα

w[ρ(k)]− x∗(w)| ≤ Cδ

√
Err[f(0)].
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Now, for any fixed τ ≤ τε and α ≥ αε, we consider the iterative step K

K := sup

k : Err[f(h)] > ε and sup
w∈Ωm

|mα
w[ρ(h)]− x∗(w)| < Cδ

√
Err[f(h)] ∀h ≤ k

 . (5.38)

By applying Proposition 5.13 and since λτ ≤ λτε < 1, we obtain that for all k ≤ K

Err[f(k+1)] ≤
(
1− τ δ

2

)
Err[f(k)] + 2τC

ν
√
ε

√
Err[f(k)] sup

v∈Ωm

|mα
v [ρ(k)]− x∗(v)|

+ τ
3λ+ σ2

2
sup
v∈Ωm

|mα
v [ρ(k)]− x∗(v)|2

≤
(
1− τ δ

2

)
Err[f(k)] + 2τC

ν
√
ε

√
Err[f(k)]Cδ

√
Err[f(h)] + τ

3λ+ σ2

2
C2
δErr[f(h)]

≤
(
1− τ δ

2

)
Err[f(k)] + τ

δ
8

Err[f(h)] + τ
δ
8

Err[f(h)] ≤
(
1− τ δ

4

)
Err[f(k)]

where we also applied the definition of K and Cδ. By iterating the above argument, we
obtain for all k ≤ K

Err[f(k)] ≤
(
1− τ δ

4

)k
Err[f(0)] ≤ exp

(
−kτ δ

4

)
Err[f(0)] .

We note that the right-hand-side above is decreasing due to the assumption δ > 0. Therefore,
Err[f(k)] and supw∈Ωm

|mα
w[ρ(k)]− x∗(w)| can be bounded as following:

max
0≤k≤K

Err[f(k)] ≤ Err[f(0)]

max
0≤k≤K

sup
w∈Ωm

|mα
w[ρ(k)]− x∗(w)| ≤ Cδ max

0≤k≤k̄

√
Err[f(k)] ≤ Cδ

√
Err[f(0)] = B.

where, again, we used that supw∈Ωm
|mα

w[ρ(k)]− x∗(w)| < CδErr[f(k)] as long as k ≤ K .
To show Err[f(k)] ≤ ε for some k, we check three different cases.
Case K ≥ T ∗/τ. Thanks to the definition of T ∗ and the error exponential decay up to

iteration K , we have

Err[f(K)] ≤ exp
(
−Kτ

δ
4

)
Err[f(0)] ≤ exp

(
−T ∗ δ

4

)
Err[f(0)] ≤ ε .

Case K < T ∗/τ and Err[f(K)] ≤ ε. Nothing to prove here.

Case K < T ∗/τ , Err[f(K)] > ε and supw∈Ωm
|mα

w[f(K)]− x∗(w)| ≥ Cδ

√
Err[f(K)].

We prove that due to our choice of α,τ it holds supw∈Ωm
|mα

w[f(K)]−x∗(w)| < Cδ

√
Err[f(K)]

and therefore we are led to a contradiction.
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By applying Proposition 5.14 with q = qε, r = rε, we obtain thanks to our previous
choice of qε, rε

sup
v∈Ωm

|mα
v [ρ(K)]− x∗(v)| ≤ c1

√
d(q+ c2r

p2)1/p1 +

√
dexp(−αq)

infv∈Ωm
ρ(K)(B∞r (x∗(v)))

(√
Err[f(K)] + diam(H)

)
<

√
εCδ

2
+

√
dexp(−αqε)

infv∈Ωm
ρ(K)(B∞r (x∗(v)))

(√
Err[f(K)] + diam(H)

)
.

To bound the second term, we use that Err[f(K)] ≤ Err[f(0)]. Thanks to the choice τ ≤ τε,
we can also apply Lemma 5.15 with r = rε and obtain a lower bound on the mass around
the minimizers with the exponent a > 0

inf
v∈Ωm

ρ(K)(B
∞
r (x∗(v))) ≥mr,0 exp(−aKτ) .

This leads to

sup
v∈Ωm

|mα
v [ρ(K)]− x∗(v)| ≤

√
εCδ

2
+

√
dexp(−αqε + aT ∗)

mrε ,0

(√
Err[f(0)] + diam(H)

)
.

Now, we note that αε was chosen exactly to bound the second term on the right-hand side
above. In particular, due to the choice (5.37) and α ≥ αε , we have

√
dexp(−αqε + aT ∗)

mrε ,0

(√
Err[f(0)] + diam(H)

)
≤
√
εCδ

2
.

Altogether, since the considered case assumes ε ≤ Err[f(K)], it holds

|mα[f(k)]− x∗| < Cδ
√
ε ≤ Cδ

√
Err[f(K)] ,

which is the desired contradiction.

5.4 Numerical experiments

In this section, we test the proposed methods against bi-objective and tri-objective
optimization problems using Chebyshev scalarization (p =∞ in (5.3)). We are particularly
interested in verifying if the additional adaptive strategies allow the algorithm to reach
a low-energy description of the Pareto front and in validating the theoretical analysis
performed in Section 5.3.

To quantitatively assess the algorithms’ performance, we will use different metrics. We
recall from Section 5.1 that short-range repulsive potentials can be used to measure the
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diversity of a computed solution. We consider in the following three different potentials:
the Riesz (m−1)-energy, the Morse potential and the Newtonian one, given respectively by

UR(z) =
1
|z|m−1 , UM(z) = e−C|z| , UN (z) =

− log |z| if m = 2

1/ |z|m−2 if m > 2

for some C > 0. To measure how close the computed solution is to the Pareto front, we
use the Generational Distance (GD) which was already introduced and studied in Section
5.2. The metric GD is numerically computed via a reference approximation FM the Pareto
front made of a collection of M = 100 points FM = {zj}Mj=1. We use the same notation for
simplicity:

GD[ρN(k)] :=

 1
N

N∑
i=1

dist(E(Xi
(k)),F

M )2


1
2

. (5.39)

We further introduce two common performance metrics: the Inverted Generational Dis-
tance (IGD) and the hyper-volume contribution (S) [22, 84]. The metric IGD is defined
similarly to GD, but the roles of the computed and the reference solutions are inverted:

IGD[ρN(k)] :=

 1
M

M∑
j=1

dist(yj ,E(k))
2


1
2

with E(k) := {E(Xi
(k))}

N
i=1 . (5.40)

While GD only measures how close the computed solution is to the Pareto front, IGD
also takes into account whether the output is well-spread over the front (assuming the
reference solution is itself well-spread). For this reason, IGD is considered to be a good
metric to quantitative assess the overall performance of a multi-objective algorithm [22].
The hyper-volume contribution, instead, measures the amount of points that are dominated
(a dominates b, written a ≺ b, if a < b component-wise) by the computed solution. Let E∗ be
an upper bound for the Pareto front and Lm denote the Lebesgue measure over Rm. The
hyper-volume contribution is defined by

S[ρN(k)] := Lm
 N⋃
i=1

{
y ∈Rm | E(Xi

(k)) ≺ y ≺ E∗
} . (5.41)

We note that, differently from GD and IGD, the computation of S does not require to have
a reference solution, but only an upper bound of the front.

In the following, we qualitatively and quantitatively test the proposed adaptive CBO
dynamics against several bi- and tri-objective benchmark problems. The problems’ defini-
tions are provided in Section 5.4.3.
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Figure 5.4: Shown in gray are the positions of the particles in the image space after a single
run. The reference solution is shown in red. Four different adaptive strategies are used: no
interaction, interaction with Riesz, Newtonian, and Morse potential. Histograms show the
final distribution over the simplex Ω2 (blue) and the optimal one (red).
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5.4.1 Bi-objective problems

In this section, we focus on the adaptive strategy (5.12) inspired by the gradient-
flow dynamics. We start by qualitatively and quantitative investigating the algorithm
performance for different shapes of the Pareto front. Then, we check how sensitive the
suggested strategy is with respect to the parameters’ choice and to the search space
dimension d.

Test problems. We test the algorithms in 4 different settings:

1. no parameters’ adaptation (ν = 0);

2. Adaptation through Riesz potential with ν = 10−5;

3. Adaptation through Newtonian potential with ν = 10−3;

4. Adaptation through Morse potential with ν = 10−1,C = 20.

The choice of ν has been optimized for each settings. We note how, the stronger the
singularity at the origin is, the slower the adaptive process should be. The remaining
parameters are chosen as following: λ = 1,σ = 4,α = 106, τ = 10−2. We use N = 100
particles. Their initial positions Xi

(0) are uniformly sampled from [0,1]d, Xi
(0) ∼Unif([0,1]d),

while the initial sub-problems parameters W i
(0) are uniformly and deterministically taken

over Ω2. The algorithm runs for a total of kmax = 5000 iterations. The search-space
dimension is set to d = 10.

Figure 5.4 illustrates the particle configuration over the objective space for the different
settings considered and for 5 benchmark problems. The plots also include a histogram il-
lustrating the final distribution of the sub-problems’ parameters {W i

(k)}
N
i=1 over the simplex

Ω2.
When tested against problem Lamé γ = 0.25, the CBO dynamics alone (stategy ν =

0) is not able to recover a good approximation of the front. This was expected as a
uniform distribution over Ω2 is not suitable for multi-objective problems with Pareto
fronts much different from the simplex Ω2 itself. For this problem, we note that the best
front approximation is reached by the algorithm run using Morse potential. The Riesz
potential seems to be too strong here, as many particles did not converge towards the
front. For the problem Lamé γ = 1, the different adaptive strategies return similar results.
Even though the choice of uniform distribution is optimal in this case, since F = Ω2, it
is interesting to note that strategy ν = 0 returns a worse approximation of the front. We
conjecture that the additional adaptive dynamics improves the CBO algorithm (even when
it is not needed) by further adding stochasticity to the evolution. The adaptive mechanism
seems to improve the algorithm output also when the Pareto front is discontinuous, see
problem DO2DK k = 4, s = 2 in Figure 5.4. In this case, though, we note that a certain
number of particles keep moving from one disconnected set to the other during the
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computation. While this behavior cannot be avoided due to the repulsive dynamics,
such sub-optimal points can be easily discarded by adding a post-processing step to the
algorithm.

The algorithm quantitative performance in the different settings is provided in Table
5.1. Results obtained via the well-known NSGA-II [26] algorithm are added for compar-
ison. Algorithm NSGA-II is tested with the implementation provided in [69] with same
number of iterations kmax = 5000, same number of particles N = 100 and default choice
of parameters (mutation strength ms = 0.05, mutation probability pm = 0.5, crossover
probability pc = 0.9).

As expected from the theoretical analysis, in particular from Theorem 5.10 and Corol-
lary 5.11, the lowest value of GD are usually attained when no adaptive dynamics is
used (ν = 0). On the other hand, we obtain lower energy configurations when there is
short-range interaction between the particles. As already noticed from Figure 5.4, Morse
potential is oftentimes the best choice for the benchmark problems considered. The
adaptive mechanisms improve the CBO method also with respect to the IGD metric.

Figure 5.5 shows how the different performance metrics evolve during the computation
for two of the benchmark problems considered. We can recognize two different stages in
the evolution. During the first stage, GD decreases quickly, indicating that the particles
converge towards EP optimal points, and so towards the Pareto front in the image space.
As a consequence, the energy of the particles’ configuration increases too. The second stage
is characterized, instead, by a slow decrease of the potential energies. This is particularly
evident for the Morse energy. The presence of two-different time scales was already noticed
during the theoretical analysis (see Remark 5.12) and it is further confirmed here by the
numerical experiments. The decrease of the potential energies was also expected due to
the formal derivation of the adaptive strategy (5.12) from a gradient flow dynamics. It
is interesting to note that the multi-swarm CBO approach proposed in [66] leads to the
opposite behavior, where the sub-problems’ parameters adapt first and the particles reach
a consensus afterwards.

Effect of the parameter ν and scalability. We test the algorithm for different values of ν,
keeping the other parameters fixed, in order to experimentally investigate the importance
of ν. The remaining algorithm parameters are taken as in the previous tests.

Figures 5.6a and 5.6b show the final values of GD and IGD when different binary
potentials are used in the computation. As can be expected, relatively large values of ν
lead to a strong interaction in the parameter space, which affects the CBO mechanism.
Therefore, the GD metric increases for large values of ν. Interestingly, the lowest GD values
are not always achieved for the smallest values of ν. This is an indication that the additional
dynamics of the weight vectors may help the CBO mechanism in the optimization of the
sub-problems.

The optimal value of ν is different for each test case, as shown by the IGD metrics in
Figure 5.6b. In particular, a strong interaction in the parameter space benefits the DO2DK

90



Problem Interaction GD UR UN UM S IGD
Lamé ν = 0 2.33e-02 1.00e+10 2.41e+00 4.86e-01 9.69e-01 1.31e-01
γ = 0.25 Riesz 8.74e+00 5.65e+00 -1.94e-01 9.62e-02 7.77e-01 4.06e-02

Newtonian 1.11e+01 8.23e+00 -3.53e-01 1.14e-01 8.38e-01 4.25e-02
Morse 1.49e+01 1.81e+04 -1.36e+00 3.40e-02 7.45e-01 2.64e-02
NSGA-II 6.99e-03 7.98+00 9.00e-01 7.45e-01 9.84e-01 4.19e-03

Lamé ν = 0 9.88e-02 9.60e+09 9.96e-01 1.26e-01 3.74e-01 8.28e-02
γ = 1 Riesz 1.63e-01 6.54e+00 8.57e-01 1.23e-01 4.59e-01 1.56e-02

Newtonian 9.81e-01 8.39e+00 5.77e-01 9.47e-02 4.62e-01 1.91e-02
Morse 6.83e-01 8.97e+05 4.41e-01 7.95e-02 4.48e-01 1.78e-02
NSGA-II 2.48e-02 5.86e+00 1.03e+00 1.06e-01 4.71e-01 4.33e-03

Lamé ν = 0 1.93e-02 8.40e+09 9.56e-01 1.30e-01 8.45e-02 2.18e-02
γ = 3 Riesz 5.64e-02 7.06e+00 7.68e-01 1.14e-01 1.01e-01 1.32e-02

Newtonian 2.34e-01 6.33e+00 5.74e-01 9.10e-02 1.03e-01 1.11e-02
Morse 3.02e-01 9.57e+06 5.04e-01 7.84e-02 1.02e-01 1.29e-02
NSGA-II 3.64e-02 4.65e+00 9.16e-01 8.10e-02 9.68e-02 5.28e-03

DO2DK ν = 0 1.80e-01 1.00e+10 -3.30e-01 6.94e-02 8.84e+01 2.82e-01
k=2,s=1 Riesz 5.03e-02 1.58e+00 -6.04e-01 4.18e-02 8.94e+01 1.18e-01

Newtonian 6.48e-02 1.77e+01 -5.98e-01 3.85e-02 8.94e+01 1.07e-01
Morse 9.59e-02 7.67e+08 -5.64e-01 3.75e-02 8.94e+01 9.33e-02
NSGA-II 9.97e-02 9.44e-01 -9.18e-01 1.85e-02 8.91e+01 3.42e-02

DO2DK ν = 0 6.60e-02 1.00e+10 2.69e+00 2.64e-01 8.66e+01 1.36e-01
k=4, s=2 Riesz 8.95e-01 3.34e+00 -1.27e-01 7.08e-02 8.40e+01 2.61e-02

Newtonian 1.50e+00 2.18e+01 -2.26e-01 7.52e-02 8.44e+01 3.61e-02
Morse 9.85e+00 1.94e+09 -1.56e-01 9.09e-02 7.63e+01 3.45e-02
NSGA-II 7.80e-02 2.36e+00 9.85e-02 4.19e-02 8.66e+01 1.11e-01

Table 5.1: Performance of the algorithm for different settings and problems. The per-
formance of the NSGA II algorithm is also shown as a reference for comparison with
well-established heuristics. Green boxes show the proposed algorithm’s best results. The
results are averaged over a set of 25 runs.
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(a) Problem Lamé γ = 0.25

(b) Problem DO2DK k = 2, s = 1

Figure 5.5: Performance metrics evolution. The results are averaged over a set of 25 runs.
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(a) Generational Distance (GD) (5.39)

(b) Inverted Generational Distance (IGD) (5.40)

Figure 5.6: Performance metrics as a function of ν for all problems under consideration.
The results are averaged over a set of 10 runs.

problems. This can be explained by the geometry of the front (Figure 5.4): the length
of the front is longer and, as a consequence, the particles tend to be further apart in the
image space, which makes the interaction of the binary potential weaker. Larger values
of ν mitigate this effect and lead to a better performance of the algorithm. This issue
could be addressed by estimating the length of the front and choosing the parameter ν
accordingly, if the extrema of the Pareto front are known in advance. We also note that the
proposed algorithm seems to perform better when the Morse potential is used to compute
the adaptive mechanism.

As mentioned above, the adaptive strategy in Ωm adds stochasticity to the particle
evolution in R

d. Therefore, the stochastic component in the position dynamics (5.8) may
not be necessary. However, assuming σ = 0 leads to bad approximations of the Pareto
front, see Figure 5.7b. This is an indication that the diffusion term is still of paramount
importance for the exploratory behavior of the particles and their statistical independence.
From Figure 5.7a it is clear that the optimal diffusion parameter σ is larger the smaller ν is.
Specifically, for ν = 0 the particles do not deviate from the EP optimal points until σ > 10.
Also, for some problems, when σ is too small, larger values for ν improve convergence to
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(a) GD

(b) IGD

Figure 5.7: Metrics as functions of σ , for different values of ν. Results are averaged over a
set of 5 runs using Morse interaction.

optimal points.
Finally, with the same choice of parameters, we test the performance of the algorithm

for different dimensions d of the search space. If the same number N = 100 of particles
is used, the IGD of the computed solutions increases with the increase of the dimension
d of the space, see Figure 5.8 (left). This effect can be mitigated by simply increasing the
number of particles linearly with the space dimension, see Figure 5.8 (right).

5.4.2 Tri-objective problems

For tri-objective problems, m = 3, we have suggested the adaptive dynamics (5.15), with,
eventually, the addition of noise as in (5.16). Being tri-objective objective optimization
problems more challenging than bi-objective ones, we experiment in this section a different
implementation of the particle systems (5.8) and (5.15) to improve performance.

First of all, the two-scale behavior of the system is obtained by updating the sub-
problem parameters W i

(k) less frequently than the particles’ positions Xi
(k). Specifically,

we update the parameters every 50 updates of the positions. Secondly, we assign to
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Figure 5.8: Metric IGD as a function of the search space dimension d. Morse interaction is
used and results are averaged over a set of 20 runs.

each sub-problem n ∈ N particles’ positions. Therefore, we do not have a one-to-one
correspondence between sub-problems and particles. With these changes, we are allocating
more computational resources to each scalarized sub-problem and, so, we expect the CBO
dynamics to obtain more accurate solutions. The detailed algorithmic strategy is outlined
in Algorithm 3.

We test Algorithm 3 against the tri-objective problems: Lamé with γ = 0.5,2, and
the inverted DTLZ1 problem. We use Nw = 66 sub-problems and n = 10 particles per
sub-problem. The adaptive dynamics is computed via Morse binary potential with C = 30
and parameter ν = 10−2. The remaining algorithm parameters are set to λ = 1,σ = 1, τ =
10−2,α = 105, kmax = 1000. Search space dimension is set to d = 3. When used, the
stochastic component in the adaptive dynamics has strength σ̂ = 10−6.

Figures 5.9, 5.10, and 5.11 show the image of the computed EP optimal points and the
final configuration over the simplex Ω3. As for the bi-objective case, we note that without
adaptive dynamics the algorithm is able to compute EP optimal points, but that their
image is not well-distributed among the Pareto front. Remarkably, the adaptive dynamics
allow to reach, in the case of the inverted DTLZ1 problem, an almost uniform distribution
over the front, even though this corresponds to a non-trivial distribution over the simplex,
see Figures 5.9b and 5.9c. The addition of stochasticity typically reduces the total energy
of the system in the image space, as expected.

The evolution of the potential energies and of the IGD metric are illustrated in Figure
5.12. For the considered Lamé problems, the addition of noise significantly improves
the quality of the solution with respect to both measures, while for the inverted DTLZ1
problem, the noise does not play a significant role. The adaptive strategies allow better
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Set λ,σ ,ν,τ > 0, kmax ∈N ;
Set number of sub-problems Nw ∈N and number of particles per sub-problem
n ∈N;

Initialize X
i,j
(0) for all i = 1, . . . ,Nw, j = 1, . . . ,n uniformly over [0,1]d;

Initialize W i
(0) for all i = 1, . . . ,Nw, equispaced over Ωm;

for k = 0,1, . . . , kmax do
ρN(k) = 1/(nNw)

∑
i,j δXi,j

(k)
;

θ
i,j
(k) ∼N (0,Id) for all i, j ;

X
i,j
(k+1) = CCBOw(Xi,j

(k),W
i
(k),ρ

N
(k),θ

i,j
(k)) for all i, j (see (5.29))

if mod (k,50) = 0 then
Z i

(k) = E(mα
W i

(k)
[ρN(k)]) for all i = 1, . . . ,Nw ;

W i
(k+1/2) = W i

(k) −ν(τ/Nw)
∑Nw

j=1

∣∣∣∇U(
Z i

(k) −Z
j
(k)

)∣∣∣ W i
(k)−W

j
(k)

|W i
(k)−W

j
(k)|

for all i = 1, . . . ,Nw ;

W i
(k+1) = ΠΩm

(W i
(k+1/2)) for all i = 1, . . . ,Nw

else
W i

(k+1) = W i
(k) for all i = 1, . . . ,Nw ;

end
end

Algorithm 3: Adaptive M-CBO, modified. The two-scale behavior of the method is
reached by updating the sub-problems parameters only every 50 CBO iterations. For
every sub-problem, n different particles are used. Since there is not one-to-to corre-
spondence between particles’ positions and sub-problems, we compute the potential
vector field in the objective space via the consensus points mα

W i
(k)

[ρN(k)], i = 1, . . . ,Nw (cf.

(5.15)). The total number of particles is given by N = n ·Nw. Noise may be also added
in the update of {W i

(k)}
Nw
i=1, as in (5.16). We note that the use of many particles per

sub-problem makes the algorithm similar to the multi-swarm CBO approach suggested
in [66].
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(a) No update,
U [ρN(k)] = 1.92e − 02

(b) Update (5.15),
U [ρN(k)] = 1.23e − 02

(c) Update (5.15) with noise
(5.16), U [ρN(k)] = 1.26e − 02

Figure 5.9: Tri-objective inverted DTLZ1 problem.

(a) No update,
U [ρN(k)] = 6.31e − 02

(b) Update (5.15),
U [ρN(k)] = 6.20e − 02

(c) Update (5.15) with noise
(5.16), U [ρN(k)] = 1.30e − 02

Figure 5.10: Tri-objective Lamé problem with γ = 0.5.

(a) No update,
U [ρN(k)] = 4.83e − 02

(b) Update (5.15),
U [ρN(k)] = 4.39e − 02

(c) Update (5.15) with noise
(5.16), U [ρN(k)] = 3.89e − 03

Figure 5.11: Tri-objective Lamé problem with γ = 2.
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Figure 5.12: Evolution of two performance metrics: the Morse potential and the IGD as
functions of the iteration step k with different repulsive dynamics for the tri-objective
problems considered.

solutions in terms of IGD in all cases.

5.4.3 Problems definition

We report here the definition of the benchmark problems, together with the penaliza-
tion strategy and a known parameterization of F. The Lamé [31] and the DO2DK [14]
problems were originally formulated as constrained multi-objective optimization problems
where the search space is given by H = [0,1]d. The set of EP optimal points corresponds
to [0,1]× {0}d−1. Adding a projection step to H has a significant impact on the dynamics
of the algorithm, as any point belonging to R×Rd−1

≤0 is projected to an EP optimal point.
Therefore, we make use of an exact penalization strategy to ensure that particles stay in
the feasible region. We use a ℓ1-penalty term of the form βdist(x,H), β > 0, which we add
the original objective functions.

Let x ∈Rd,x = (x1, . . . ,xd) for d ≥ 1 the objective functions are given by

• Lamé [31] with γ ∈R>0. Let r(x) =
√∑d

i=2 x
2
i , for m = 2 the objectives read

E1(x) =
∣∣∣∣∣cos

(π
2
x1

)∣∣∣∣∣ 2
γ

(1 + r(x)) +
π
γ

dist(x,H)

E2(x) =
∣∣∣∣∣sin

(π
2
x1

)∣∣∣∣∣ 2
γ

(1 + r(x)) +
π
γ

dist(x,H) ,

98



while, for m = 3,

E1(x) =
∣∣∣∣∣cos

(π
2
x1

)∣∣∣∣∣ 2
γ

(1 + r(x)) +
π
γ

dist(x,H)

E2(x) =
∣∣∣∣∣sin

(π
2
x1

)
cos

(π
2
x2

)∣∣∣∣∣ 2
γ

(1 + r(x)) +
π
γ

dist(x,H)

E2(x) =
∣∣∣∣∣sin

(π
2
x1

)
sin

(π
2
x2

)∣∣∣∣∣ 2
γ

(1 + r(x)) +
π
γ

dist(x,H) .

• DO2DK [14] with k ∈N, s ∈R>0, for m = 2 the objectives reads

E1(x) = sin
(
π
2
x1 +

(
1 +

2s − 1
2s+2

)
π+ 1

)
ra(x)rb(x) + 10dist(x,H)

E2(x) =
(
cos

(π
2
x1 +π

)
+ 1

)
ra(x)rb(x) + 10dist(x,H)

with

ra(x) = 1 +
9

d− 1

d∑
i=2

xi

rb(x) = 5 + 10
(
x1 −

1
2

)2
+

2
s
2 cos(2kπx1)

k
.

• Inverted DTLZ1 [61]. For m = 3, the objectives read

E1(x) = (1− x1x2)
1 + r(x)

2
+ 10dist(x,H)

E2(x) = (1− x1(1− x2))
1 + r(x)

2
+ 10dist(x,H)

E3(x) = −x1
1 + r(x)

2
+ 10dist(x,H)

with
r(x) = 100(d−m+ (xd − 0.5)2 − cos(20πxd)) .

The parameterization used to construct reference solutions is given by

h : [0,1]→ F , h(r) = g (r,0, . . . ,0) .
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5.5 Discussion

In this chapter, we proposed a CBO algorithm for multi-objective optimization prob-
lems. Via scalarization, the multi-objective problems is translated into several parame-
terized sub-problems which are efficiently solved in parallel by the system. This is done
by assigning to every particle (or to a small group of particles) a different sub-problem.
The particles exchange information through the computation of the consensus points. Via
mean-field analysis, we proved that the particles converge towards EP optimal solutions,
provided the scalarized objectives share common lower and upper bounds around their
global minimizers.

We also suggested different adaptive strategies to choose the scalarized sub-problems
leading to a uniform approximation of the Pareto front. Such adaptive dynamics make
use of short-range repulsive potentials to distance the particles over the objective space
so that they are well-spread over the front. Several numerical experiments validated the
suggested strategy both in case of bi- and tri-objective problems. As indicated by the
theoretical mean-field analysis, convergence to EP optimal points is ensured only if the
adaptive dynamics have a slower time-scale with respect to the CBO one.

We remark that the suggested strategy where the work is distributed among the parti-
cles can be applied to any optimization problem where one needs to solve two or more
minimization problems in parallel.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, we proposed a new mean-field model to study the convergence properties
of the time-discrete CBO particle dynamics. The model consists of a difference equation
of McKean type which approximates the algorithm update rule for a large number of
particles N . Thanks to the simplicity of the consensus dynamics, we adapted the analysis
developed for the time-continuous mean-field model to such semi-discrete settings. With
this approach, we have been able to simplify the theoretical analysis of CBO by avoiding
an unnecessary approximation step. In the case of bounded domains, we have been
able to quantity in terms number of particles N the error introduced by the mean-field
approximation.

Next, we suggested a novel strategy to solve constrained optimization problems. Via
exact penalization and a suitable adaptive strategy for the penalty parameter, we proved
convergence towards the constrained global minima in mean-field law. In this context,
avoiding a time-continuous description has allowed us to include the additional mechanism
in the theoretical analysis.

With the same methodology, we designed a CBO algorithm for multi-objective opti-
mization problems. In this context, we proposed to distribute the computational effort
among the particles, leading to a highly efficient algorithm where a different parameterized
scalar sub-problem is associated with every particle. Inspired by many recent works on
repulsive dynamics over bounded domains, we also suggested an additional adaptive
mechanism to select the parameters of the sub-problems. The aim here was to provide a
good approximation of the Pareto front by computing low-energy configurations of the
particle system. During the computation, the energy is decreased by updating the parame-
ters with gradient-flow-like dynamics. Therefore, taking the point of view of mathematical
physicists has not only allowed us to theoretically analyze CBO algorithms, but also served
as an inspiration to design novel, mathematically sound, optimizing dynamics.
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6.2 Outlook

As shown in Section 2.1, CBO is closely related to Particle Swarm Optimization (PSO)
methods. Time-continuous mean-field models for PSO have been proposed in [43] and
further studied in [59]. The approach suggested in this thesis may also be applied in this
context to derive a semi-discrete description of the PSO dynamics. What about other
heuristics? In the work [13] we focus on deriving a kinetic description of the popular
Genetic Algorithm (GA). We note that preliminary work has been conducted in [2]. In [2],
though, authors suggest a single-parent approach that does not model the crossover
mechanism which is typical of GA methods. Thus, further investigations are needed to
fully explain the success of such heuristics.

Another promising research direction consists of extending stochastic particle methods,
like CBO, to infinite-dimensional settings. Robust, global optimization algorithms in
general Hilbert, Banach, or even just metric spaces could be applied in any different
areas such as optimal control problems or learning problems. As we have seen, the core
idea of the CBO methods is made of a rather simple consensus dynamics, which may
be generalized to spaces with a weaker structure than the Euclidean one. Ongoing work
investigates multi-agent consensus dynamics in Wasserstein spaces of probability measures
with possible application in the training of Generative Models, Neural Networks or in the
numerical simulation of Gradient Flows.
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