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1 IntroducƟon 
The rapid advancements in Industry 4.0 are revoluƟonizing the food manufacturing sector 

(Mourtzis et al., 2022). One crucial technology in this transformaƟon is the implementaƟon of 

Digital Twin (DT) coupled with ML (ML). This thesis proposes an integrated approach using 

LabVIEW and Python to create a robust DT for process control in the food industry, enabling real-

Ɵme monitoring, opƟmizaƟon, and predicƟve analysis. This work emphasizes the importance of 

data acquisiƟon, modelling, control algorithms, and conƟnuous learning to enhance efficiency, 

quality, and safety in food producƟon. 

1.1 Background and MoƟvaƟon 

The food industry, a fundamental pillar of global economies, is undergoing a transformaƟve phase 

with the advent of Industry 4.0. This era of interconnected systems, digitalizaƟon, and automaƟon 

has the potenƟal to revoluƟonize food producƟon, from farm to fork. Key enabling technologies 

(KETs), such as the Internet of Things (IoT), ArƟficial Intelligence, and Data AnalyƟcs, have given 

rise to innovaƟve soluƟons for enhancing producƟvity, quality, and Safety in food manufacturing. 

However, this technological transformaƟon comes with its own set of challenges. The food 

industry is characterized by complex processes, rigorous quality and safety regulaƟons, and the 

need for precise control to ensure consistent product quality. TradiƟonal manufacturing 

approaches struggle to cope with the increasing demand for customizaƟon, real-Ɵme monitoring, 

and predicƟve insights that Industry 4.0 promises. In this context the paradigm of DTs (DT), 

represent a powerful tool which bridges the gap between the physical and digital realms. A DT is 

a virtual representaƟon of a physical system or process, allowing real-Ɵme monitoring, analysis, 

and opƟmizaƟon. By creaƟng a DT of food manufacturing processes, industries can gain valuable 

insights into their operaƟons, predict potenƟal issues, and opƟmize resource uƟlizaƟon, leading 

to improved efficiency, reduced waste, and enhanced product quality. In this context, the 

integraƟon of ML into DT works holds immense promise. ML techniques, which enable systems 

to learn from data and make informed decisions, can augment the capabiliƟes of DTs. By 

harnessing the vast amount of data generated in food producƟon processes, ML algorithms can 

provide predicƟve analyƟcs, anomaly detecƟon, and adapƟve control, leading to more resilient 

and responsive manufacturing. 
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1.2 Scope of the work 

The primary objecƟve of this proposed work is to design, develop, and implement a 

comprehensive DT system for the food industry, leveraging LabVIEW, integraƟng ML in Python, 

and adopt data communicaƟon protocol. The work aims to address key challenges faced by the 

food industry in the era of Industry 4.0, with a focus on process control, opƟmizaƟon, especially 

for industrial plants not ready for the 4.0. The specific target of this work can be summarized in 

Table 1. 

Table 1 Specific target of this work 

 

•Enable real-time monitoring of food manufacturing 
processes through the creation of a virtual DT, to visualize 

and analyze process data.

1. Real-time 
Monitoring

•Utilize ML algorithms to analyze historical and real-time 
process data, enabling predictive insights to anticipate 

potential issues, optimize resource allocation, and ensure 
consistent process reliability.

2. Predictive 
Analysis

•Implement control strategies within the DT to respond to 
dynamic process conditions, optimizing parameters in real-time 

to improve efficiency.

3. Control 
strategies

•Integrate data from various sources within the food production 
environment, including sensors and actuators, to provide a 

holistic view of the process.

4. Data 
Communication

•Provide real time information on the machine status and send 
alert to operators in case anomalies occurs 

5. Remote 
Monitoring

•Build up the paradigm of CPS  and M2M ommunication and 
data exchange between M2M and M2H, though the adoption 

of adequate softwares and data communication protocols
6.Interoperability

•Provide decision support data to operators and decision-
makers, allowing them to make informed choices in real-time.

7. Decision 
Support
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By achieving these objecƟves, this works aims to allow the food industry to harness the benefits 

of DTs and ML, driving efficiency, and innovaƟon in the ever-evolving landscape of Industry 4.0. 

1.3 Structure 

The scope of this work includes the development of a DT system for process control in the food 

industry, uƟlizing LabVIEW as the foundaƟon for data acquisiƟon and control, and integraƟng ML 

techniques in Python to enhance the system's capabiliƟes. The focus is primarily on real-Ɵme 

monitoring, predicƟve analysis, and adapƟve control of food manufacturing processes, with an 

emphasis on user safety and process efficiency. 

The work will address the following key components: 

i.Data AcquisiƟon: The work will cover the integraƟon of LabVIEW for real-Ɵme data acquisiƟon 

from sensors, actuators, and other relevant sources within the food producƟon environment. 

This component ensures the availability of accurate and Ɵmely data for analysis and control. 

ii.DT CreaƟon: The development of a DT will be a core aspect of the work. This virtual 

representaƟon of the physical food manufacturing process will enable real-Ɵme monitoring and 

control, providing insights into the process dynamics. 

iii.ML IntegraƟon: Python will be seamlessly integrated with LabVIEW to implement ML algorithms. 

This integraƟon will enable predicƟve analysis, anomaly detecƟon, and adapƟve control based on 

historical and real-Ɵme process data.  

iv.Decision Support: The work will provide acƟonable insights to operators and decision-makers, 

supporƟng informed choices during producƟon.  

v.Model ValidaƟon: Comprehensive validaƟon of the work will be conducted through simulaƟons 

and real-world experiments in food manufacturing seƫngs, demonstraƟng its effecƟveness in 

achieving the stated objecƟves.  

vi.DT Framework for process control: Outline a DT framework suitable to adopt adequate control 

strategies into food manufacturing processes, for fluid a granulated food. 

The work will be organized into the following main secƟons. SecƟon 1 provide an overview of the 

background, moƟvaƟon, objecƟves, and the significance of the work in the context of Industry 

4.0 and the food industry. SecƟon 2. DT shows the foundaƟonal concepts of DTs, their types, 

benefits, and challenges with a parƟcular focus on food manufacturing sector. It will exploit the 

state of the art of the “bricks” to build up a Digital Twin as we intended it, which are: 

I. SimulaƟon, i.e., the system modelling though the physical equaƟons and developer 

assumpƟons. 
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II. Process control strategies, 

III. Machine learning algorithms, providing an overview of ML basics, its relevance in the 

food industry, and the potenƟal benefits it brings. 

IV. Data communicaƟon protocols. 

SecƟon 3 shows the material and methods adopted providing descripƟon of the pilot plant, 

soŌware adopted LabVIEW as a Control Plaƞorm: This secƟon will explore the key role of 

LabVIEW into both models developed in term of, in data acquisiƟon, signals triggering, system 

modelling, process control, and data communicaƟon.  SecƟon 4 shows the descripƟon of the pilot 

plant invesƟgated in whit sork, the digital model developed, work ValidaƟon and Performance: 

Comprehensive validaƟon methods, experimental setups, performance metrics, and results 

obtained from simulaƟons and test carried out during the laboratory experiments. It will also 

describe the ML algorithm coded with Python and their integraƟon into the digital environment. 

Last secƟon regards future DirecƟons and Challenges: Discussion of results achieved, and 

challenges that arose in implemenƟng the work. The structure outlined above ensures a 

comprehensive exploraƟon of the DT work, from theoreƟcal foundaƟons to pracƟcal applicaƟon, 

while validaƟng its effecƟveness in addressing the unique challenges faced by the food industry 

in the industry 4.0 scene. 
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2 Literature Analysis 

2.1 Digital Twin in food industry 

The concept of a DT has emerged as a powerful paradigm in the context of Industry 4.0, 

represenƟng a virtual counterpart to a physical system or process (Semeraro et al., 2021). This 

digital representaƟon, or "twin," is more than just a simulaƟon; it is a living enƟty that mirrors the 

behaviour, aƩributes, and status of its physical counterpart in real-Ɵme (Singh et al., 2021). The 

DT concept holds great significance in various industries, with its potenƟal to enhance efficiency, 

enable predicƟve insights, and opƟmize operaƟons (Melesse et al., 2020). In the context of the 

food industry, DTs offer a transformaƟve approach to process control, quality assurance, and 

resource management (Henrichs et al., 2021a). A DT is a digital replica of an actual product., 

process, or system whose purpose is to simulate, predict and opƟmize the behaviours of the 

physical counterpart (Davila Delgado & Oyedele, 2021; M. Liu et al., 2021). The first definiƟon of 

this concept dates to the early 2000s, but already in the 60s the aerospace industry developed 

this technology using it during the Apollo 13 mission in 1970. Following the explosion of the 

oxygen tanks, the mission became a rescue operaƟon, and the keystone was the ability to test 

mulƟple soluƟons at ground level through a DT of the spacecraŌ (Hazrathosseini & Moradi 

Afrapoli, 2023). Only the advent of Industry 4.0, however, has made it possible to develop this 

technology from the aerospace sector to the industrial context and the management of buildings 

so that, thanks to the development of the Internet of Things, Gartner, a strategic consulƟng 

company, has included the DT among the ten technological trends in 2017 (Perno et al., 2022). 

Dr. Michael Grieves, who is currently Chief ScienƟst for Advanced Manufacturing at the Florida 

InsƟtute of Technology, first introduced the idea of the DT in 2002 while teaching a Product 

Lifecycle Management (PLM) course at the University of Michigan. He described the DT as the 

virtual, digital equivalent of a physical product. At the base of the model was the idea that each 

system was composed of a physical part present in real space and always existed, and a virtual 

counterpart containing the informaƟon of the previous one in virtual space. The connecƟon 

between the real and virtual part (mirroring or twinning) took place through a conƟnuous 

exchange of data and informaƟon (Grieves & Vickers, 2016). This concept was summarized by 

Grieves during the presentaƟon of the course through the image below and containing all the 

characterisƟc elements of the DT: real space, virtual space, data flow from real to virtual space 

and flow of informaƟon from virtual to real and virtual subspaces. The conceptual idea for 

Product Lifecycle Management, emphasized how the systems remained connected throughout 

the enƟre life cycle, creaƟng a dynamic model that could change over Ɵme through the four 
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phases of creaƟon, producƟon (manufacturing), operaƟon (support/support) and disposal.  In 

literature there are several definiƟons of DT; one of these, taken from the whitepaper "DT: 

MiƟgaƟng Unpredictable, Undesirable Emergent Behaviour in Complex Systems" by Michael 

Grieves and John Vickers, Principal Technologist at NASA, defines the DT as "a set of virtual 

informaƟon constructs that completely describes a potenƟal or actual manufactured physical 

product from the microtomic level to the level macro-geometric. At its opƟmal level, any 

informaƟon that could be obtained from the inspecƟon of a manufactured physical product can 

be obtained from its DT." The concept is then divided into different types; DT Prototype (DTP), DT 

Instance (DTI), and DT Aggregate (DTA). The first contains all the sets of informaƟon necessary to 

make a physical product while the second describes a specific physical product to which a digital 

model remains connected throughout its life cycle. The aggregaƟon of all DTIs consƟtutes the 

DTA which could be a computer construct capable of querying DTIs proacƟvely. They operate in 

the DT Environment (DTE) i.e., the cloud. While over the years the introducƟon of the concept of 

digital model the quality and quanƟty of informaƟon related to virtual and real space have 

progressed rapidly. Grieves, in the Whitepaper "DT: Manufacturing Excellence Through Virtual 

Factory ReplicaƟon", explains how focusing on the connecƟon between the real and the virtual 

allows conceptualizing, comparing, and collaboraƟng. Humans, unlike computers, do not process 

informaƟon sequenƟally, but conceptualize and contextualize the problem. This aspect, during 

the process of acquiring visual informaƟon, reducing to symbols and leƩers and visual 

reconceptualizaƟon, leads to a great loss of informaƟon and inefficiency over Ɵme (Melville et 

al., 2023). The use of the DT makes it possible to eliminate inefficient and counterproducƟve 

mental steps aimed at diminishing informaƟon and translaƟng it from visual to symbolic 

informaƟon and back to visually conceptual informaƟon. A powerful intellectual tool is 

confrontaƟon. However, it is inefficient because it involves analysing the physical and virtual 

product and idenƟfying differences (Li et al., 2022). With the digital model, you can idenƟfy the 

ideal feature, the tolerance corridor, i.e., the posiƟve or negaƟve deviaƟon allowed before a result 

is deemed unacceptable, and the actual trend line to determine whether the physical part is in 

line with the virtual one (VanDerHorn & Mahadevan, 2021).  

Finally, another fundamental and characterisƟc aspect of human beings is collaboraƟon. Thanks 

to the digital model and shared conceptualizaƟon, informaƟon about a product can be seen by 

an unlimited number of individuals without them having to share the same locaƟon (LyyƟnen et 

al., 2016). The DT, therefore, allows the transiƟon from the physical world, in which human beings 

operate inefficiently, to the virtual world, to put in place a common visualizaƟon and to idenƟfy 

the difference between what is and what should be by collaboraƟng (Boje et al., 2020). 
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2.1.1 Structure and conceptual architecture of a DT 

In the previous paragraphs, the DT has been defined as the virtual counterpart of an object or a 

physical process capable of opƟmizing business performance.  The building blocks of the digital 

model can be idenƟfied as: 

• a series of sensors distributed along the process able to capture operaƟonal and 

environmental data and actuators necessary to intervene directly on the physical process and 

opƟmize it  

• data, i.e., aggregaƟons of informaƟon detected by sensors from the physical world. These 

are part of the virtual world and can also contain design drawings, connecƟons to external data 

feeds, and logs made by devices in the field.  

• analysis techniques able to analyse data through rouƟne simulaƟons and visualizaƟons 

and to predict changes and improvements to opƟmize the process  

The conceptual architecture of the digital model, can be understood as a sequence of six steps 

able to create a closed-circuit connecƟon between the physical and virtual parts. The six basic 

steps are summarized below. 

• CreaƟon: IntroducƟon of sensors into the physical process that can perform 

measurements that are operaƟonal, performance-criteria, or external measurements that affect 

operaƟons   

• CommunicaƟon: helps the two-way real-Ɵme connecƟon between the physical and 

digital process  

• AggregaƟon: the data are aggregated and inserted into an archive to prepare the next 

analysis  

• Analysis: in this phase the data is analysed and visualized  

• Deepening: once the analysis has been carried out, the in-depth phase allows to highlight 

the unacceptable differences between the physical part and the virtual counterpart and evaluate 

changes and improvements  

• AcƟon: the informaƟon collected can proceed in the opposite direcƟon and be returned 

to the physical part with actuators which complete the interacƟon between the real and the 

virtual closing the cycle  
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The conƟnuous contrast with developing countries, characterized by low labour costs, has pushed 

the most advanced countries to innovate the concept of factory toward Smart Manufacturing 

aiming to opƟmize, through digital, products and processes (B. Wang et al., 2021). The DT Shop-

Floor is defined as the applicaƟon of the digital model to producƟon lines in the industrial field 

(H. Zhang et al., 2019). The tradiƟonal producƟon process begins with the generaƟon of a 

producƟon plan based on orders and historical data and is followed by the actual producƟon. At 

the end of this the products are inspected to verify that they are compliant for transport in the 

warehouse. All informaƟon generated during the process is kept in files for the next cycle. For 

this reason, the funcƟon of virtual space is limited and tends to overlap with the physical world 

by focusing on the collecƟon, storage, and control of data, but ignoring simulaƟon, opƟmizaƟon, 

and predicƟon informaƟon. What is missing is effecƟve synchronizaƟon between virtual space 

and real space (Tao et al., 2022). The DT Shopfloor consists of four main components: the Physical 

Shop-Floor (PS), the Virtual Shop-Floor (VS), the Shop-Floor Service System (SSS) and the Shop-

Floor DT Data (SDTD). The model sees at the center a database (SDTA) which receives and sends 

informaƟon to the other components present. The physical part (PS) and the virtual counterpart 

(VS) interact conƟnuously, and the exchanged data is sent to the central database, which in turn 

exchanges the informaƟon with the Shop-Floor Service System. The laƩer houses all the company 

informaƟon systems for the control, management, and planning of producƟon. AŌer that, the 

informaƟon returns to the physical part in the form of commands Product Design (DTPD) is used 

to create a DT of a product and use the informaƟon obtained to support the product design 

process. Nowadays the success of a product depends more and more on the ability to manage 

the data received relaƟng not only to the product, but also to the context in which it is used (Lee 

& Lee, 2015). The term Big Data refers to a very extensive collecƟon of data in terms of volumes, 

speed, and variety to require specific technologies and analyƟcal methods to be analyzed 

(Gandomi & Haider, 2015). Big Data analysis aims to extract useful informaƟon and process a 

mulƟtude of disconnected data. This allows you to create a product based on the Big Data 

collected and their analysis (Mikalef et al., 2018). In this way, data-driven product design differs 

from tradiƟonal product design for several reasons; Design is no longer based on designers' 

experience in idenƟfying relevant data, tradiƟonal methods are structured to process organized 

and clear data, and finally, they are unable to respond to changes in data of interest. The DTPD 

consists of three main parts: physical enƟƟes in real space, virtual enƟƟes in virtual space and 

connecƟon through a conƟnuous exchange of data in a bidirecƟonal way. During design and 

producƟon, virtual model parameters are transferred to the producƟon line, while virtual models 

are processed into real physical products generaƟng a closed loop. 
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The extension of the physical world, the world of atoms, to the virtual world, the world of bits, 

has led to the creaƟon of DTs capable of simulaƟng the behaviour of the physical counterpart. 

The usefulness of the DT is transversal to all manufacturing industries operaƟng in various 

industrial sectors up to the creaƟon of smart buildings and ciƟes (Novák & Vyskočil, 2022). With 

the DT, businesses can work to eliminate unplanned downƟme and reduce maintenance costs to 

improve producƟvity and efficiency (Errandonea et al., 2020). 

Virtual space analyƟcs offers a strategic opportunity to:  

• anƟcipate and prevent problems  

• carry out prevenƟve maintenance acƟviƟes based on real-Ɵme data provided by sensors  

• resolve issues promptly to ensure that the physical part works as intended  

• Improve physical twin performance by conƟnuing tesƟng in real-world situaƟons and 

updaƟng soŌware in the product  

• carry out durability tests by acceleraƟng the passage of Ɵme to evaluate several years of 

operaƟon in a few hours  

A DT is a dynamic, virtual representaƟon of a physical object, process, or system that is created 

and maintained through the conƟnuous exchange of data between the physical enƟty and its 

digital counterpart. The DT captures real-Ɵme informaƟon, behavior, and interacƟons of the 

physical enƟty, providing a plaƞorm for monitoring, analysis, simulaƟon, and control. It allows 

stakeholders to gain a deep understanding of the physical system's behavior, enabling real-Ɵme 

decision-making, opƟmizaƟon, and predicƟve insights (Jones et al., 2020). 

Real-Ɵme SynchronizaƟon: The DT concept relies on real-Ɵme synchronizaƟon between the 

physical system and its virtual counterpart. Data from sensors, actuators, and other sources in 

the physical world are conƟnuously fed into the DT, ensuring an up-to-date representaƟon. 

Two-Way CommunicaƟon: The DT is not a staƟc model but an interacƟve enƟty. Changes in the 

DT, such as simulaƟons, opƟmizaƟon algorithms, or control acƟons, can influence the physical 

system. Likewise, data from the physical system can impact the DT, leading to a conƟnuous 

feedback loop. 

SimulaƟon and Analysis: The DT enables simulaƟons and analysis of the physical system's 

behavior under different condiƟons. This capability allows operators to test scenarios, predict 

outcomes, and idenƟfy potenƟal issues before they occur in the real world. 
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PredicƟve Insights: By leveraging historical and real-Ɵme data, the DT can provide predicƟve 

insights. ML algorithms can analyze this data to idenƟfy paƩerns, detect anomalies, and forecast 

future behavior, helping operators make informed decisions. 

OpƟmizaƟon and Control: The DT serves as a plaƞorm for opƟmizaƟon and control strategies. 

Algorithms within the DT can adjust parameters in real-Ɵme to improve efficiency, quality, and 

resource uƟlizaƟon. 

MulƟ-Disciplinary ApplicaƟon: DTs are applicable across various industries, including 

manufacturing, energy, healthcare, and, in our case, the food industry. They offer a holisƟc 

approach to understanding complex systems and processes. In the context of the food industry, 

the DT concept holds immense potenƟal for improving producƟon processes, ensuring product 

quality, minimizing waste, and adapƟng to dynamic market demands. By creaƟng a DT that 

integrates seamlessly with LabVIEW for data acquisiƟon and control and harnesses the power of 

ML in Python, we aim to create a robust work that empowers the food industry in the era of I4.0. 

DTs come in various types, each tailored to specific applicaƟons and domains. Understanding 

these types is essenƟal for selecƟng the appropriate approach when creaƟng a DT work for the 

food industry. In our context, we will explore three primary types of DTs: product twins, process 

twins, with a focus on their relevance to the food manufacturing sector. A product twin focuses 

on creaƟng a virtual representaƟon of a specific physical product. It allows for detailed modelling, 

analysis, and simulaƟon of the product's behavior, design, and performance throughout its 

lifecycle. In the food industry, a product twin could be used to opƟmize the design and 

manufacturing process of a specific food product, ensuring it meets quality standards, nutriƟonal 

requirements, and consumer preferences. Recipe and FormulaƟon OpƟmizaƟon: A product twin 

can simulate different ingredient combinaƟons and processing techniques to opƟmize the taste, 

texture, and nutriƟonal content of a food product. Packaging Design: The twin can assess 

packaging materials' effecƟveness in preserving freshness and prevenƟng contaminaƟon. Quality: 

Product twins can be used to predict the shelf life of perishable food items and idenƟfy factors 

affecƟng product quality. Process twins focus on replicaƟng the behavior of a manufacturing or 

producƟon process. They enable real-Ɵme monitoring, analysis, and control of the process, 

allowing operators to opƟmize parameters, detect anomalies, and ensure efficiency. In the food 

industry, a process twin could be applied to opƟmize food processing, packaging, and distribuƟon 

processes. Real-Ɵme Monitoring: Process twins can monitor criƟcal parameters (e.g., 

temperature, humidity, pressure) during food processing to ensure that the process adheres to 

safety and quality standards. Energy Efficiency: By analysing process data, process twins can 

idenƟfy energy-intensive stages and suggest opƟmizaƟons to reduce energy consumpƟon. 
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PredicƟve Maintenance: Process twins can detect signs of equipment failure, enabling proacƟve 

maintenance to prevent producƟon disrupƟons. 

As the food industry embraces the transformaƟve wave of Industry 4.0, it encounters a mulƟtude 

of benefits that can revoluƟonize processes, enhance efficiency, and improve product quality. 

However, this journey is not without its challenges, especially in an industry with stringent 

regulatory requirements, complex supply chains, and the need for maintaining consumer trust 

(Leng et al., 2022). Let us explore both the benefits and challenges that the food industry faces 

in the era of Industry 4.0. Those can be summarized as follow: 

i. Improved process Control: Industry 4.0 technologies, such as DTs, enable real-Ɵme 

monitoring and analysis of producƟon processes. This results in beƩer quality control by 

detecƟng anomalies and ensuring that products meet stringent quality standards. 

ii. InnovaƟon: The integraƟon of emerging technologies like IoT, AI, and ML encourages 

innovaƟon in products.  

iii. Workforce Training: Industry 4.0 requires a skilled workforce capable of operaƟng, 

maintaining, and innovaƟng with new technologies. Upskilling exisƟng employees and 

aƩracƟng new talent are ongoing challenges.  

The benefits of Industry 4.0, parƟcularly when coupled with the DT work and ML, can significantly 

outweigh the challenges, leading to a more efficient, responsive, and robust food industry 

(Guruswamy et al., 2022). The introducƟon of Digital Twin (DT) models into the food processing 

industry represents a significant step forward in opƟmizing producƟon, enhancing product 

quality, and ensuring efficient resource uƟlizaƟon (Verboven et al., 2020). As we delve deeper 

into the pracƟcal applicaƟons of DT within this sector, it becomes evident that this technology 

has the potenƟal to revoluƟonize food manufacturing. While previous studies have explored the 

theoreƟcal benefits and challenges of DT models in the food industry, few have ventured into the 

realm of real-world implementaƟon. This thesis seeks to bridge that gap by presenƟng two 

compelling case studies that showcase the successful integraƟon of DT models with control works 

in actual food processing plants. These case studies provide concrete evidence of the posiƟve 

impact that DT technology can have on various aspects of food producƟon. In addiƟon to 

presenƟng these case studies, we offer a structured approach to assist food industry 

professionals in implemenƟng DT-enabled control systems effecƟvely. This approach draws from 

our experiences and observaƟons from the case studies and aims to explain the complexiƟes of 

incorporaƟng DT models into food processing operaƟons, aiming to promote a pracƟcal adopƟon 

of DT technology within the food industry. By providing real-world examples, guidance, and a 

work for implementaƟon, we aim to allow food manufacturers to embrace DT models and 
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leverage their potenƟal for transformaƟve change. As the industry conƟnues to evolve, those 

who harness the power of digital twin technology will undoubtedly lead the way towards a more 

efficient, agile, and quality-driven future in food producƟon. A mathemaƟcal model configured 

as a Single Input Single Output (SISO) to control the fluid level of a coupled tank process was 

developed by(Naha & Das, 2024). They have then applied both convenƟonal and advanced 

control systems, including PI, fuzzy, neuro and neuro-fuzzy models, which were designed and 

simulated for the plant under examinaƟon using MATLAB/Simulink. As a result, compared to 

other controllers applied to this nonlinear system, the developed fuzzy controller tracked the 

setpoint faster (Messai et al., 2011) reported an autonomous, mulƟ-farm, produce drying system, 

doubling as an oven using a Raspberry PI and an inexpensive PLC. In this case, the user can control 

both oven temperature and humidity from an easy-to-use web interface available on a mobile 

device, for example, or on the oven's human-machine interface (HMI). The results show that the 

system designed can successfully control both the temperature and humidity of the dehydrator. 

(M. Wang et al., 2023) analyses cooking, which is not a highly automated operaƟon, especially at 

the household level. They have designed a prototypical control system that uses PLCs, computers, 

and electromechanical devices to assist in cooking two typical Indian foods, including pancakes 

and rice cakes. Instead, (Rostam et al., 2023) developed a closed-loop PID control system with a 

self-tuning funcƟon for temperature monitoring using SCADA-integrated PLCs. This is difficult to 

achieve with tradiƟonal control methods. AlternaƟvely, the PLC is modelled using ladder logic 

(Alphonsus & Abdullah, 2016). As Industry 4.0 technology becomes more prevalent, data driven 

PID control systems are being superseded by more accurate types of control (H. Yu et al., 2020). 

PredicƟve models, in which process variables are analysed and opƟmized using predicƟve 

algorithms, have also been used in a model predicƟve controller (MPC) approach (Afram et al., 

2017). For example, (Bagyaveereswaran et al., 2016) use MATLAB to design a MPC algorithm that 

compares its performance with standard PIDs and cascading PIDs. Distributed MPCs, which aim 

to consider the inherent modularity of the process, have also been proposed for plant-wide 

control (Fortela & Mikolajczyk, 2023) These systems were designed to control each module with 

a dedicated controller which uses locally available informaƟon and relevant knowledge gained 

through interacƟon with the other controllers(van Niekerk et al., 2023).  

Recently, process control approaches with the general goal of opƟmizing manufacturing 

processes in real Ɵme (Stavropoulos et al., 2023) or opƟmizing quality control (Gao, 2023) have 

moved on to introducing DT models in several areas. DT models are effecƟve not only for 

implemenƟng model-based control, but also for creaƟng a closed-loop control system because 

they allow real-Ɵme integraƟon of sensor data, model predicƟons, and control algorithms. 

According to these issues, (C. Zhang et al., 2020) propose a comprehensive study for a 
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knowledge-based DT manufacturing cell to support autonomous manufacturing through an 

intelligent control policy that incorporates simulaƟon and predicƟon model features. 

(Karagiannopoulos et al., 2023) for instance, designed a DT control system with the goal of 

opƟmizing the manufacturing and remanufacturing processes typical of WEEE logisƟcs. Several 

researchers have proposed an outline of the potenƟal of DT for food process modeling in the 

food industry, the focus of this paper. For example, (SaranƟnoudis et al., n.d.) examined the 

applicaƟon of DT in the food processing industry, with a parƟcular focus on the potenƟal for using 

these models to opƟmize producƟon planning. It also highlights key challenges, opportuniƟes, 

and unique needs of food processing versus other process sectors.(Kannapinn et al., 2022) 

further suggested that DT systems had the potenƟal to improve convenƟonal control methods in 

heat-processing by simulaƟng a process in real Ɵme, thus replacing informaƟon collected by 

sensors when this was not available or effecƟve. In fact, their proposal was for a DT model for 

autonomous food processing. (Henrichs et al., 2021b) invesƟgated the possible use of DT in the 

food industry. They have provided a classificaƟon of the available implementaƟons as well as the 

challenges for the applicaƟon of DT in this sector. However, there are few studies describing the 

use of DT models in the food industry. For fruit digital models, the only significant case is provided 

by (Defraeye et al., 2021), who model the thermal properƟes of mango fruit during cold chain 

transport. Regarding the modelling of food processes, most of the exisƟng invesƟgaƟons have 

proposed mathemaƟcal or simulaƟon models having the capability to be turned into a DT tool for 

process control, but the implementaƟon part is oŌen missing. For example, (Bianco et al., 2022) 

designed semiempirical mass and heat transfer models for dehydraƟng and cooling green 

vegetables. As a result of their study, explaining how the proposed model can be used to develop 

a DT framework for this process in future development. Similar consideraƟons were made by (Gai 

et al., 2023); they proposed a mathemaƟcal model for the simulaƟon of circulaƟng fluidized bed 

gas-solid flow systems. Similarly, (Zewdie et al., 2022) developed a heat and mass transfer model 

to predict the distribuƟon of moisture and temperature during the ripening process of onions, 

which, if not managed appropriately, can lead to weight loss during storage. Finally, they 

suggested the future use of their results in a DT system model of the process. An excepƟon is 

(Maheshwari et al., 2022),who developed a DT model of a food processing plant producing ice 

cream. They found that DT increased the performance of the exisƟng system in many ways, such 

as plant availability, engineering effecƟveness, and worker effecƟveness. However, the study 

focused on evaluaƟng the ice cream company's KPIs using a DT model of the process, while the 

control was not embedded in the model. In a related example from the pharmaceuƟcal sector, 

(W. Yu et al., 2022) reported on DT modelling of drying processes. They provided a framework 

that incorporates machine learning strategies and collects data from mulƟple in-line sensors in 
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the equipment. This resulted in significant savings for the pharmaceuƟcal company, as the control 

system automaƟcally idenƟfied the opƟmal endpoint for the drying process. Therefore, the 

scienƟfic literature focused on the implementaƟon of DT models in food processing is limited. 

Furthermore, there are few examples of DT methods linked to process control systems. In this 

review, there is a consensus among the authors that the applicaƟon of DT in the food sector is 

sƟll at an early stage (Nychas et al., 2021). Notably, a limited number of applicaƟons have 

described how to retrieve data from physical to virtual objects (Jiang et al., 2021). Against this 

background, the work (Maheshwari et al., 2022) is the only study that has formalized an 

architectural work for the implementaƟon of a DT model in a food context. Based on a case study 

of an ice cream factory, the authors proposed a set of basic steps for designing and implemenƟng 

a DT model, focusing on management concerns and process producƟon metrics. Although there 

are other papers in the literature (Kober et al., 2023), these deal with more general aspects 

related to the potenƟal and acceptance of DT without addressing the concrete implementaƟon. 

However, due to the specific characterisƟcs of the food industry (Tancredi et al., 2022a) and the 

presence of specialized faciliƟes, a rigorous methodology for DT model implementaƟon is 

required. In pracƟce, DT models can also be difficult to implement independently, as they rely on 

accurate modelling of the real process. For effecƟve control of the system, (BoƩani et al., 

2020)real-Ɵme communicaƟon capabiliƟes should also be provided. The purpose of this paper is 

to present two case studies that illustrate the applicaƟon of DT systems in the food industry. In 

addiƟon, the DT models for the two food plants were integrated into a control system. Finally, a 

general approach for the implementaƟon of DT-based control systems in the food industry was 

outlined based on the results of the case studies. 

2.2 Food industry process control 

Several factors including the final product, technological procedures used in the food companies 

can differ (Earle, 1997). However, there is a common necessity for designing food process control 

systems, which includes defining the sensors, actuators, controllers, and soŌware (Morgan & 

Haley, 2019). Different forms of control systems, including feedback control, feedforward control, 

and model-based control, have been examined in the ground-breaking work by (McFarlane, 

1995). The first type is known as "closed loop" control and denotes a kind of control that uƟlizes 

comprehension of the system's behaviours or output for changing and adapƟng the input signals 

to produce the desired results.  The specific criteria and properƟes of the process being regulated 

determine the control system to be used. In fact, there are numerous applicaƟons of PID models 

and PLC uƟlized in the food sector for process control in the literature. A PID controller was 
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designed for a PLC controlled pasteurisaƟon system (Torres & Galvis, 2017). A Model PredicƟve 

Controller (MPC) for the process was created using MATLAB. A mathemaƟcal model for 

controlling the fluid level of a couple tank process has been developed using a Single Input Single 

Output configuraƟon (Lakshmi et al., 2022). PI, fuzzy, neuro, and neuro-fuzzy models developed 

and tested for use in control systems were then used alongside more sophisƟcated control 

systems (Weldcherkos et al., 2021). The simulaƟon results showed that the developed fuzzy 

controller can track setpoints more quickly than previous controllers used on this nonlinear 

system. (Oluwaleye et al., 2021) have concentrated on creaƟng a self-contained, mulƟ-farm 

produce dehydrator that doubles as an oven and uses a Raspberry PI. The user should be able to 

easily adjust the temperature and humidity of the drying chamber using a user-friendly online 

interface that may be accessed via a mobile device or the dehydrator's human-machine interface. 

They discovered that the developed system could successfully control the dehydrator's 

temperature and humidity. (Rao et al., 2021) have examined the cooking process as well, 

considering that it benefits from liƩle automaƟon, especially at the domesƟc level (household 

cooking). To facilitate the cooking of two common Indian food items, such as pancakes and rice 

cakes, they have created a prototype control system using PLCs, computers, and electro-

mechanical components. (Priyanka et al., 2021; Soyguder & Alli, 2010) , on the other hand, used 

PLC combined with SCADA to construct a closed-loop PID control system for temperature 

monitoring, which is difficult using convenƟonal control approaches. Data-driven PID control 

systems can be replaced by more precise forms of controllers at the cuƫng edge, concurrently 

with the adopƟon of Industry 4.0 technologies (Olaizola et al., 2022; Wakitani et al., 2019). The 

Model PredicƟve Controller (MPC) method, which uses a predicƟve algorithm to assess and 

opƟmize process variables, has also been used to implement predicƟve models (Maxim et al., 

2018). For instance, (Khan et al., 2017) developed a fuzzy logic model that is integrated into a PLC 

real-Ɵme interface for process variables in nonlinear domains. A MPC algorithm was created 

using MATLAB, and its performance is contrasted with that of convenƟonal PID and PID cascade 

controllers. 

2.3 Machine Learning in food industry 

The food industry is one of the most important and growing industries in the world, with a huge 

variety of products and producƟon processes that require strict control to ensure quality, food 

safety and efficiency (Trienekens & Zuurbier, 2008). In recent years, Machine Learning (ML) has 

emerged as a key technology for improving producƟon processes and opƟmizing operaƟons in 

the food industry (Kumar et al., 2021). This arƟcle will explore the different types of machine 
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learning used in this industry and their potenƟal uses in producƟon process control, predicƟve 

maintenance, and process monitoring. Figure 1shows the taxonomy of ML typologies: 

 

Figure 1 ML Taxonomy 

Supervised learning involves training machine learning models using labelled data. It requires the 

analysis of the data collected on field, by an analyst which assign a category or a status, i.e., the 

label to each row of the data frame collected, it can be used for predicƟon.  While unsupervised 

learning read the data collected and idenƟfy paƩerns, this kind of algorithm are useful to find 

relaƟonships between the collected parameters. Reinforced learning can be employed for 

opƟmizing decision-making processes. In the food industry, it can be used to opƟmally manage 

supply chains and product distribuƟons. ML can be used in producƟon process control in several 

ways, such as process opƟmizaƟon, ML-based control systems can automaƟcally adjust 

producƟon process parameters to maximize efficiency and reduce downƟme (Ayvaz & Alpay, 

2021). PredicƟve analysis is crucial to avoid costly downƟme and ensure producƟon conƟnuity 

(X. Han et al., 2021). ML can contribute in various way, such as: 

 CondiƟon Monitoring: by monitoring data collected on the filed thought sensors data 

allowing to have a real Ɵme machine status, rather than idenƟfy early signs of impending failures, 

enabling prevenƟve intervenƟons.  

 PredicƟve Maintenance: ML can be used to schedule the maintenance Ɵme in an opƟmal 

producƟon slot, such as machine format changes, to minimize downƟme. 

Machine learning 
Alghoritms

Reinforced 
Learning

Supervised

Classification Regression

Unsupervised

Clustering Association
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 Anomaly DetecƟon: algorithms can predict and display trigger alert to users, in case of 

deviaƟons from the established parameters occurs, helping to prevent process failure and or 

criƟcal issues. 

2.4 Data communicaƟon protocols 

Data communicaƟon protocols allows to create the linkage between the physical layer and the 

digital one (C. Han et al., 2013). A wide variety of data communicaƟon protocols can be adopted 

in the industrial field (Caro, 2016). Those are: 

 Modbus: A widely used serial protocol for communicaƟon between industrial automaƟon 

devices, such as PLC (Programmable Logic Controller) and sensors. 

 PROFINET: An industrial Ethernet protocol used for real-Ɵme control and monitoring of 

industrial devices, oŌen used in industrial automaƟon applicaƟons. 

 TCP/IP: An industrial Ethernet protocol based on open standards that enables 

communicaƟon between industrial devices from different vendors. 

 OPC UA (Unified Architecture): A communicaƟon protocol and interoperability 

framework used for sharing data and informaƟon between industrial devices and control systems. 

 CAN (Controller Area Network): A serial protocol used in automoƟve and industrial 

applicaƟons for connecƟng distributed devices. 

 Profibus: A serial communicaƟon protocol used for control and monitoring of industrial 

devices, oŌen used in process automaƟon applicaƟons. 

For the cases under examination, each pilot requires a specific data communication protocol, i.e., TCP/IP and Modbus. The 

choice of the proper protocol has been established to fit with the compatibility of the already-installed machine components. 

The TCP/IP protocol is a suite of communication protocols that regulate the transfer of data between devices within a 

computer network or between different networks. They provide commands and fundamental principles for the operation of 

the Internet. The protocol is composed of a layered structure, each of which has a specific task (King & Hunt, 2000). These 

layers, listed in  

Table 2 include: 
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Table 2 TCP/IP protocol layers 

 

This protocol enables communicaƟon between devices on the network through the transfer of 

data packets. These packets contain data, desƟnaƟon informaƟon, and other metadata. The IP 

protocol manages packet rouƟng, while the TCP protocol manages reliability and flow control 

during data transmission (Abdelsalam et al., 2017). 

  

This stratum oversees the physical transmission of data across a communication medium, such as cables or radio frequencies. It 
encompasses protocols like Ethernet and Wi-Fi, governing the tangible aspects of data transfer.

Link Layer:

This layer writes the navigation of data packets within a network, endowing devices with unique IP addresses and determining the
optimal route for their transit. The predominant protocol operating at this stratum is the Internet Protocol (IP), serving as the 
network's cartographer.

Network Layer:

This level delivers secure, connection-oriented correspondence between two devices. At this stratum, the Transmission Control 
Protocol (TCP) plays a pivotal role, managing error correction, data sequence, and the retransmission of information.

Transport Layer:

This layer hosts application-specific protocols, such as HTTP for the web, SMTP for email, and FTP for file transfer. These protocols 
define how applications communicate and exchange data.

Application Layer:
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3 Programming environment 

3.1 LabVIEW Environment 

NaƟonal Instruments developed the robust and popular graphical programming environment 

known as LabVIEW (Laboratory Virtual Instrument Engineering Workbench) (NI). It is a useful tool 

in many different industries, including research, engineering, manufacturing, and test 

automaƟon, because it is specifically made for developing custom measurement and automaƟon 

systems. In a visually intuiƟve environment, LabVIEW enables users to create applicaƟons that 

involve data acquisiƟon, instrument control, signal processing, data analysis, and system 

integraƟon. The use of graphical programming (G-Code) in LabVIEW is one of its disƟnguishing 

characterisƟcs. Users can build soŌware by dragging and connecƟng graphical nodes, also known 

as Virtual Instruments (VIs). The soŌware employs a dataflow model, which means that rather 

than following a set of sequenƟal instrucƟons, a VI’s execuƟon is determined by the availability 

of data. As a result, complex data processing pipelines can be represented more simply and 

efficiently in parallel. NI hardware, such as data acquisiƟon (DAQ) devices and instrument control 

modules, is frequently used in conjuncƟon with LabVIEW. Users can easily interface with a variety 

of sensors, actuators, and measurement devices thanks to this Ɵght integraƟon. Also possible is 

the creaƟon of reusable VIs. This modular approach encourages best pracƟces in soŌware 

engineering and speeds up development. Nevertheless, LabVIEW offers a variety of tools for data 

analysis, visualizaƟon, and signal processing. ApplicaƟons involving measurements, control 

systems, and scienƟfic research all require these capabiliƟes. Despite being known for its 

graphical programming, LabVIEW also supports the integraƟon of other programming languages, 

such as C, C++, and Python. Users can use pre-exisƟng code or benefit from specialized libraries 

thanks to this feature. The following is a summary of the key elements involved in the 

development of the DT discussed in this work: 

 Test and Measurement: LabVIEW is commonly used to create automated test systems 

for quality control, product tesƟng, and validaƟon. 

 Data AcquisiƟon: LabVIEW's data acquisiƟon capabiliƟes are ideal for gathering and 

analyzing data from sensors, instruments, and industrial processes. 

 Control Systems: It is used to design and implement real-Ɵme control systems for various 

industries, including manufacturing and roboƟcs. 

 Algorithm’s integraƟon: LabVIEW is a valuable tool in research seƫngs, enabling 

scienƟsts to prototype and experiment with different algorithms and models. 
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 Academic Use: LabVIEW is used in universiƟes and educaƟonal insƟtuƟons to teach 

principles of data acquisiƟon, control systems, and signal processing. 

LabVIEW's combinaƟon of visual programming, hardware integraƟon, and extensive libraries 

makes it a versaƟle plaƞorm for engineers, scienƟsts, and developers working on a wide range of 

measurement and automaƟon projects. 

Virtual Instruments are programs wriƩen in LabVIEW (VIs). The reason these programs are called 

"instruments" is that they operate by presenƟng the user with an interface comparable to a 

measuring instrument; on the other hand, the word "virtual" describes the interacƟon as taking 

place with a running program rather than a specific physical equipment. 

A VI consists of three fundamental parts: 

 Front Panel 
 Block Diagram 
 Icon/Connector 

To create a VI program, it is necessary to work on both the Front Panel and the Block Diagram to 

enable the soŌware to process inputs, execute the program, and provide output data. 

The window that serves as the interface between the user and the program is called the Front 

Panel, Figure 2, and it allows for interacƟon much like with a convenƟonal instrument. The Front 

Panel includes indicators, which are output variables whose values are set by the program and 

cannot be changed by the user, and controls, which are modifiable input variables through the 

Front Panel. Using a keyboard or mouse, users can interact with the Front Panel to enter 

numerical numbers, strings, or modify how buƩons and indicaƟons appear visually. 

 

Figure 2 Front Panel LabVIEW 

The Block Diagram,Figure 3, contains the code expressed in graphical language (G-Code) and 

consists of: 



 
24 

 Nodes: elements with inputs and outputs capable of performing operaƟons. Which are 

the funcƟons, instrucƟons, operators, and subrouƟnes in text-based programming 

languages, wriƩen in G-Code 

 Wires: lines connecƟng the nodes, allowing the exchange of informaƟon. These wires 

have different colours and thicknesses depending on the data being exchanged. If the 

informaƟon you want to connect is incompaƟble, the wires appear dashed. 

 

Figure 3 Block Diagram in LabVIEW 

In the VI, the Icon/Connector,Figure 4, is the final essenƟal component. To be more precise, the 

icon is a graphic symbol that turns the program into an item that complete the VI.  The connector 

creates the connecƟon between the icon's regions and the Front Panel's controls and indicators. 

Each VI can be used within another program to create a subrouƟne, i.e., a sub-VI. The sub-VI can 

be connected to other nodes, and in this case, the connector establishes a direct correspondence 

between an area of the icon and one of the input or output elements of the Front Panel 

associated with the sub-VI.  

 

Figure 4 Icon/Connectorin LabVIEW 

The Block Diagram, as menƟoned earlier, contains the code of the soŌware and is created using 

a graphical language. Right-clicking on the block diagram opens a window called the FuncƟons 

PaleƩe, which contains all the structures and funcƟons provided to create the program. These 

can be thought of as "blocks," which are graphical elements, each represenƟng a specific 

funcƟon. To create the code, it's necessary to connect various connectors and indicators to nodes 

or actual funcƟons through a wiring operaƟon. Measurement I/O funcƟons let the system to 

communicate with external devices like pressure or temperature sensors, as well as data 

acquisiƟon, data storage and data processing equipment like analog-to-digital converters (A/D). 

Measurement devices and soŌware can share informaƟon through input and output interface. 

In parƟcular, the data acquisiƟon/generaƟon driver, denoted by the icon "NI DAQmx" in the 
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Measurement I/O menu, can read input and sending output signals, among other funcƟons. The 

measurement, producƟon, and processing of data can be accomplished by programming these 

rouƟnes or by using a block called "DAQ Assistant," shown in Figure 5, which is included in the NI 

DAQmx secƟon's Measurement I/O menu. A window for iniƟalizing the Data AcquisiƟon block 

opens once users click and drag the DAQ Assistant symbol onto to the Block Diagram. This enables 

the configuraƟon of the measurement type, measurement channels, number of samples to be 

acquired, and signal of interest. 

 

Figure 5 DAQ Assistant block 

Once the informaƟon is inpuƩed, the DAQ proceeds with building the VI, which means creaƟng 

the programming code for the acquisiƟon/generaƟon of that specific signal. Through I/O 

measurement systems, it is possible to create code for reading and processing both input and 

output signals using a data acquisiƟon module, and controlled device, which are the hardware 

components of the LabVIEW environment.  

The main components are: 

 CompactDAQ. 

 Analog Input module 

 Analog Output module. 

NaƟonal Instruments created the PC-based modular data collecƟng plaƞorm known as 

CompactDAQ (cDAQ). On this PC, LabVIEW soŌware is loaded on a Windows embedded system 

operator.  This device allows to analyse and acquire data from different types of sensors, such as 

digital or analogue one, and trigger output signals useful to control drive. 

The cDAQ can be connected to a laptop or desktop which, in turn, will run the soŌware that 

configures, acquires/generates and records the data from the cDAQ itself. As already menƟoned, 

this plaƞorm is modular, and this allows configuraƟon with various modules for the 

acquisiƟon/generaƟon of different types of data relaƟng to different sensors such as 

thermocouples or RTD, pressure transmiƩer, accelerometers with dynamic acquisiƟon and an 

IEPE (Integrated Electronics Piezo-Electric) excitaƟon, current transmiƩer, whit 4-20mA signal 

output , or voltage transmiƩers with an output signal of 0-5V up to  0 –10V.  

cDAQ consists of two main components: 
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 Chassis: In charge of coordinaƟng data generaƟon and acquisiƟon from the modules, 

linking them, and interacƟng with a computer system.  

 I/O Modules (Moduli I/O): These modules facilitate the connecƟon between sensors and 

the cDAQ system. They are available with both digital and analogue inputs and outputs, 

as well as signal condiƟoning and integrated analog-to-digital converters. 

The CompactDAQ-9133 data collecƟng system, displayed in Figure 6, was employed in the 

creaƟon of the digital twin that is the subject of this paper. This system controls the Ɵming, 

synchronizaƟon, and data transfer between a computer integrated into the system itself and a 

series of I/O modules. It comes with 16 GB of non-volaƟle memory and a dual-core Intel Atom 

processor. A maximum of eight I/O modules featuring digital and analogue inputs and outputs, 

counter/Ɵmer capabiliƟes, and a Controller Area Network (CAN). 

 

 

Figure 6 CompactDAQ-9133 

For the data acquisiƟon of the signals from the fields, i.e., the sensors, the module used and 

connected to the cDAQ is the NI-9208, 4-20mA current input module, Figure 7.  

 

Figure 7 NI-9208 module and corresponding pinouts 
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While the module for the signal triggering is an AO voltage generator called NI 9263, it comes 

with four channels output with a digital to analogue converter capable of providing 0-10V signal 

output. 

 

Figure 8 NI-9263 module and corresponding pinouts 
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4 Case studies 

4.1 PasteurizaƟon pilot plant  

4.1.1 Plant DescripƟon 

The implementaƟons, simulaƟons and experiments analyzed in the following chapters refer to a 

pilot plant located at the Technopole of the University of Parma, the headquarters of the 

Interdepartmental Centers for Industrial Research (Tancredi et al., 2022b). The term pilot plant 

refers to a small-medium size process plant whose task is to replicate the behavior of large 

industrial plants. The size and capacity of these plants are intermediate laboratory scale and 

industrial plant. The transiƟon from laboratory scale to the industrial one, called scale-up, is 

performed with a view in reducing costs. A pilot plant is designed to simulate real machinery 

behavior and analyze processes from a predicƟve perspecƟve to prevent and solve issues that 

arise from the tests carried out. It also allows for modificaƟons, such as installing IoT sensors, 

data communicaƟon systems, internet connecƟons, and hardware components for a 4.0 plant. 

The plant examined in the project is a preheaƟng system for a food fluid, called process fluid, 

through the transfer of heat by a service fluid, in our case, water. The preheaƟng treatment is 

carried out before the microbial inacƟvaƟon, performed thought a Pulsed Electric Field (PEF) 

treatment which guarantees the organolepƟc characterisƟcs of the product avoiding a thermal 

shock and the degradaƟon of the food itself. The Figure 9 shows the Piping and InstrumentaƟon 

Diagram (P&ID), which is a drawing of the interconnecƟons between pipelines, equipment, and 

instrumentaƟons. 
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Figure 9 P&Id Pasteuritazation pilot plant 

Piping and instrumentaƟon diagrams play a key role during plant design, during the detailed 

design of control systems, and for operaƟonal and safety invesƟgaƟons, such as the Hazard and 

Operability study (HAZOP). 

P&ID shows the following plant components:  
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Table 3 P&ID components 

Each component has standardized symbols that are connected to each other through lines that 

represent piping and arrows that idenƟfy the fluid flow inside the piping itself. 

The symbols used can comply with diverse types of standards, among the most important are the 

ISA S5 (InstrumentaƟon, Systems, and AutomaƟon Society) and the BS 1646 (BriƟsh Standards 

InsƟtuƟon). It should be noted that this flow diagram differs from the actual pilot plant in that 

the treated product does not return to the storage tank as shown in the P&Id. 

Despite this, the P&ID shown shows the direcƟon of the mass flow and how the heat exchange 

between the food fluid and the service fluid takes place.  

The product, stored in a tank at room temperature (TK-01), is pumped through a tube in tube 

countercurrent heat exchanger via a double screw pump (P-01). The flow meter (FE-01), placed 

immediately aŌer the pump, has the task of measuring the flow rate of food fluid flowing inside 

the pipes. Subsequently, the product arrives inside the heat exchanger in which the preheaƟng 

takes place thanks to the counter-current passage of the service fluid, i.e., water previously 

heated by a steam generator and introduced into the system by a centrifugal pump. The product, 

once heated, reaches the next phase of microbial inacƟvaƟon, carried out through an electrical 

impulse treatment (PEF – Pulse Electric Fields). PEF technology has the advantage of killing 

microorganisms and, at the same Ɵme, maintaining the flavor, color, texture, and nutriƟonal 

values of unprocessed foods becoming an important alternaƟve to the heat treatments normally 

used. In the following paragraphs, the main components of the system will be analyzed in more 

detail, i.e., the product transfer pump, flow meter, centrifugal pump, steam generator, heat 

Mechanical equipment 

Control instrumentation 

Valves 

Piping 

Drainage, fittings, and purges 

Direction of mass flows 

Interconnections between systems 
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exchanger and temperature and pressure sensors. The following Figure 10 show a photograph of 

the plant present in the university and its design. 

  

Figure 10 Pilot plant located in Technopole. 

4.1.2 DescripƟon of the main components  

4.1.2.1 Twin screw pump  

The fluid food is manually introduced into the system and stored in a 300-liter storage tank. Then 

moved through the piping by a twin-screw pump. This type of pump can be classified as 

volumetric one, has a body that houses two rotaƟng screws. The chambers that are formed 

between the screws and the adjacent components allow the movement of the fluid from the 

sucƟon side to the exhaust one. Reverse flow can be achieved by switching the shaŌ's direcƟon.  

Figure 11 below shows the diagram of a double screw pump. The pump in the system is a 

Bornemann Screw Pump SLH4080. 
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Figure 11 Twin Screw Pump 

4.1.2.2 Heat exchanger   

The heat exchanger (HE) is the key component of the machine. It allows heat exchange between 

the food product and the water. The laƩer, aŌer being heated, releases heat to the product and 

exits the exchanger at a lower temperature than the iniƟal one. 

There are different types of heat exchangers: 

• mixing heat exchangers: the fluids are the same and mix with each other.  

• surface heat exchangers: the fluids are separated by an impermeable surface to avoids 

their mixing.  

The HE installed in the plant is part of the second category. It consists of six tubes formed, in turn, 

by two concentric ducts, (Figure 12); The service fluid flows into the annular secƟon, while fluid 

food flows into the inner secƟon of the HE. The heat is transferred through conducƟon to the 

wall that separates the fluids. 
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Figure 12 Tube in Tube Heat Exchanger 

Tube in tube heat exchangers can be classified as:  

• Equicurrent: fluids flow in the same direcƟon.  

• Countercurrent: fluids flow in the opposite direcƟon. 

In the case under examinaƟon, heat transfer takes place between fluids flowing in opposite 

direcƟons. Table 4 below, shows the main dimensions of the HE:  

Table 4 Tube in Tube Heat Exchanger Dimensions  

DescripƟon  Measure udm 

Pipe Length   4000  mm  

External Pipe: Outer diameter  76  mm  

External Pipe: Inner Diameter  73  mm  

Internal Pipe: Outer diameter  41  mm  

Internal Pipe: Inner diameter  38  mm  

Thickness  3  mm  

4.1.2.3 Flowmeter  

Then the product flows through a magneƟc flow meter (Figure 13). The operaƟon of this 

flowmeter is based on Faraday's law; The voltage induced by any conductor moving 
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perpendicularly through a magneƟc field is proporƟonal to the speed of the conductor itself. 

According to this principle it is necessary that the fluid to be measured is conducƟve. In the 

system under analysis, the flow meter is from the 1300 OPTIFLEX series of the KRONHE Group.  

 

Figure 13 Krohne Flowmeter 

4.1.2.4 Centrifugal pump  

The service fluid flows into the closed-loop system and is fed through a centrifugal pump. The 

movement of the fluid is induced by rotaƟng mechanical organs called impellers which allow the 

transformaƟon of mechanical energy into kineƟc energy and then into pressure energy. The 

pumped fluid enters the center of the impeller and is accelerated, thanks to the curvature of the 

blades, in a radial direcƟon increasing its average speed (kineƟc energy). The water is then slowed 

down thanks to the increasing secƟon of the pump body allowing the transformaƟon of kineƟc 

energy into pressure energy.  The plant involves the installaƟon of an SKB Etabloc monobloc 

centrifugal pump (Figure 14) with a maximum flow rate of 1200 kg/h. 

  

 

Figure 14 Centrifugal Pump 
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4.1.2.5 Heat Steam Generator 

The steam generator in the plant has the task of producing saturated steam necessary to heat 

the water. This consists of three 15 kW heaƟng element packs and a variable pressure range 

between 0 and 11 bar. In the front panel you can see two values, a green number corresponding 

to the real pressure and a red one equal to the set point value set by the operator. The water 

temperature is therefore not set directly but depends on the saturated steam pressure.  In 

general, a liquid consists of parƟcles moving with a certain velocity and therefore kineƟc energy. 

EvaporaƟon occurs when these parƟcles have sufficient energy to escape the aƩracƟve acƟon 

that is generated between the parƟcles themselves. These, meeƟng the liquid again, can return 

to be part of it thus generaƟng the condensaƟon phenomenon. Dynamic equilibrium is created 

when the number of evaporated parƟcles corresponds to the condensed ones.  The equilibrium 

condiƟon that is created between steam and liquid at a given temperature is called saturated 

steam. The saturated vapor pressure of a liquid increases with temperature as the kineƟc energy 

increases and therefore the tendency to evaporaƟon. The relaƟonship between pressure (𝑝௩) 

and temperature (𝑇[°௖]) is expressed using the following Clausius Clapeyron: 

 
𝑝௩ = 6.11 ∗ 10

଻.ହ்
ଶଷ଻.଻்[𝑚𝑏𝑎𝑟] 

 

(1) 

By seƫng a pressure on the steam generator, therefore, it is possible to obtain, through the 

inverse formula, the corresponding temperature value.  

 
𝑇[°௖] =

237.7(logଵ଴ 𝑝௩ − logଵ଴6.11)

7.5 − logଵ଴ 𝑝௩ + logଵ଴6.11)
 

 

(2) 

The following image (Figure 15)shows the heat steam generator.  

 

Figure 15 Heat Steam Generator 
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4.1.2.6 Sensors 

Pressure sensor  

The pressure sensors in the system are WIKA S-11 flush diaphragm pressure transmiƩers (Figure 

16). This type of sensor is characterized by an internal membrane, an inlet channel sealed by a 

second membrane exposed to the process and a transmission fluid having the task of transferring 

the pressure to the inner membrane. 

 

Figure 16 Flush diaphragm pressure sensor 

The fluid, flowing orthogonally to the sensor, compresses the membrane of a given ∆. The 

potenƟal difference that is generated is converted into a 4-20mA analog current signal which 

allows connecƟon to different control systems. The use of flush diaphragm pressure transmiƩers 

has the advantage of isolaƟng the measuring instrument from the process fluid, avoiding deposits 

by viscous or crystalline fluids and damage due to aggressive fluids. The facing membrane can be 

made of special materials or be coated to prevent fluid from entering the aƩachment and 

damaging the sensor. 

Temperature sensor 

The most used temperature sensors in the industrial field are plaƟnum resistance thermometers 

or thermometers with plaƟnum electric resistances. This metal is widely used as it has constant 

electrical characterisƟcs with varying temperatures. The most used resistance thermometers are 

Pt100 (Figure 17); this indicaƟon indicates the material used and the nominal resistance relaƟve 

to a temperature range from 0°C to 100°C. The operaƟon is based on the variaƟon of the 

electrical resistance of the metal as a funcƟon of the temperature detected. The two quanƟƟes 

are linked by a linear characterisƟc and as one increases, the other also increases. For the case 

under examinaƟon, PT100 has a current-loop 4-20 mA output. As described earlier, the PT100 is 

a resisƟve temperature sensor with resistance that varies linearly with temperature. The sensor 

measures the variaƟon of resistance, which is converted to current though the signal condiƟon 

system i.e., the Current TransmiƩer. This device converts the resistance variaƟon of the PT100 
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into a conƟnuous current (4-20 mA) proporƟonal to the detected temperature. The signal output 

is then connected to the DAQ hardware via 2 wires connecƟon. 

 

Figure 17 PT100: Temperature Sensor 

4.1.3 Digital model 

The digital environment has been developed considering the basic principles of the rheological 

properƟes of the fluid food and the pressure drop of the system, aiming to control and monitor 

the machine behavior thought the main parameters involved in the process, i.e., the fluids 

temperature (both fluid food and faciliƟes), pressure at the inlet and outlet secƟon of the HE, and 

the fluid food flow.  In accordance with the study's objecƟve, as menƟoned previously, this paper 

suggests incorporaƟng machine learning into (DT) framework which simulates the operaƟon of 

the pilot plant in examinaƟon. 

 

Figure 18 DT model 

DT’s model is composed by two layers, shown in (Figure 18), capable to interoperate and 

communicate each other: Those layers are: 



 
38 

1. The physical layer: which is represented by the plant itself, and all the components 

mounted, such are sensors, DAQ (Data AcquisiƟon) and a Wi-Fi antenna to provide 

internet connecƟon. 

2. The digital layer: which is the counterpart of the physical one. This has been developed 

thought LabVIEW and Python programming language. LabVIEW is Human Machine 

Interface (HMI), i.e., the control panel has been coded via "LabVIEW front panel," 

displayed in Figure 19, while the "block diagram," forms the soŌware's underlying code, 

wriƩen in G-language. As depicted in Figure 20), the system offers funcƟonality in four 

disƟnct ways.  

 

Figure 19 Digital Model Pasteurization plant 
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Figure 20 Pasteurization plant block diagram 

By selecƟng the first mode the system acts as a model simulaƟon environment. Here, the DT 

model's equaƟons replicate product's physical properƟes based on flow and temperature, 

providing an output that evaluates the heat exchanger's pressure drop considering the 

pasteurizaƟon system's geometry and fluid rheological properƟes. Users can also simulate 

machine condiƟons by adjusƟng process parameters or generate an AO (Analog Output) to 

control Pump’s motor, or adjust the setpoint of the controller, which is a proporƟonal-integral-

derivaƟve (PID) one. The second funcƟon involves "Real-Ɵme monitoring" where measures are 

acquired directly from the field. Based on these signals and manual PID setpoint adjustments, the 

digital environment generates an AO to control the product flow by driving the motor pump. 
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Figure 21 Digital Twin Architecture 

The system can also trigger an AO signal using the "Data comparison" tool, comparing the 

analyƟcally computed pressure drop via DT with the one evaluated with the-acquired values, and 

adjusƟng the pump speed accordingly. The third mode, labeled "Remote monitor and control," 

permits machine status control and voltage output generaƟon through remote connecƟon. In the 

fourth mode, the system is integrated with an ML-based algorithm to run the motor pump or 

show messages on the pilot plant's front panel (HMI) automaƟcally. As seen in Figure 21, this "ML 

algorithm" makes use of Python and G-Code. Three ML models—a linear regressor, a classifier, 

and a clustering algorithm—have been applied whit the aim of esƟmaƟng which one performs 

beƩer in terms and return valuable insights for users. 

4.1.3.1 Rheology  

The term rheology indicates a branch of physics specialized in the study of deformaƟons of solids 

and fluids because of the applicaƟon of external forces. For liquids, rheology deals with the 

relaƟonship between stress state and strain rate. This science plays an important role in the food 

sector and is useful for various reasons; It allows you to have a deeper knowledge of the 

molecular and microscopic structure, allows you to control the quality of products and processes, 

guarantees a suitable design of machinery with the characterisƟcs of the food and, finally, makes 

a product acceptable or not according to consumer needs. The following paragraphs deal with 

the relaƟonship between shear stress and strain rate for two different types of fluids; Newtonians, 

governed by Newton's law and not Newtonians, governed by the law of power. About the fluids 

present in the project, water is part of the first category, while most of the food fluids fall into the 

second. 
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4.1.3.1.1 Newtonian fluids  

Fluids are defined as Newtonians when the shear (or tangenƟal) stress is directly proporƟonal to 

the rate of deformaƟon (Malkin, 2013). We consider two parallel planes, one fixed and one 

movable, and a fluid moving between them according to parallel layers. The fluid velocity profile 

is shown in the image below (Figure 22). 

  

Figure 22 Velocity profile of the fluid moving between two plates, one of which is in motion; (b) extrapolation of a part of the 

velocity profile to the left and sliding deformation movement of an ABCD element to the right 

As it can be seen, the fluid adhering to the upper plane moves with the same speed, while the 

molecules in contact with the lower plate have zero velocity. To keep the upper plane moving 

with constant velocity ∆v, it is necessary to apply a force dependent on the speed, the area of the 

plate and the characterisƟcs of the fluid enclosed within a quanƟty called viscosity μ and inversely 

by the distance between the two ∆y planes. Dynamic viscosity [Pa ∗ s] measures the resistance 

of the fluid to creep and depends on the chemical-physical nature of the fluid, pressure (creep 

resistance increases with pressure, but since liquids are less compressible than gases, viscosity is 

considered independent of p), temperature (for liquids the raƟo is inversely proporƟonal), by the 

gradient of speed and Ɵme. 

4.1.3.1.2 Non-Newtonian fluids  

On the opposite, nonlinear correlaƟon between shear stress and strains rate idenƟfies non-

Newtonian fluids (de Souza Mendes, 2007). PseudoplasƟc fluids are the most recurrent among 

food fluids and correspond to aqueous suspensions of coarse parƟcles. Consider the experiment 

carried out for Newtonian fluids and imagine that between the parallel planes is placed a 

pseudoplasƟc fluid; If the speed is low, the cells create a laƫce that can reduce the flow and for 

this reason the fluid has a high viscosity. As the speed increases, however, the parƟcles are 

arranged in the direcƟon of moƟon and the viscosity decreases unƟl it seƩles at a constant value. 

The viscosity therefore decreases with increasing speed and vice versa. The law relaƟng shear 

stress and velocity gradient is called the Power Law:  
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𝜏 = 𝐾 ൬

𝛿𝑣

𝛿𝑦
൰

௡

 
(3) 

Where: 

τ = shear stress [Pa]  

K = consistency factor [Pa ∗ s−1]  

n = behavior index  

ఋ௩

ఋ௬
 =the velocity gradient 

Especially:  

• n = 1 we get Newton's law  

• n > 1 dilaƟng fluids  

• n < 1 pseudoplasƟc fluids  

As shown in Figure 23, another category of non-Newtonian fluids is that relaƟng to dilaƟng fluids; 

unlike the previous ones, the viscosity increases with increasing velocity gradient. In addiƟon to 

these there are fluids with Ɵme-dependent characterisƟcs; thixotropic, rheopecƟc and 

viscoelasƟc fluids.  

 

Figure 23 Non-Newtonian Fluid 

Thixotropic have a decrease in viscosity over Ɵme and a structure capable of disintegraƟng under 

the effect of tangenƟal forces. RheopecƟc, on the contrary, are characterized by an increase in 

viscosity over Ɵme, while viscoelasƟc, also called fluids with memory, recover the original shape 

once the force acƟng on them is released. Finally, the last category is represented by Bingham 

fluids or plasƟc behavior. These fluids begin to flow when the force exerted exceeds a τy flow limit 

and then conƟnue as a Newtonian, dilaƟng or pseudoplasƟc fluid.  
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4.1.3.2 Pressure Drop 

The primary factor to be considered for the system's evaluaƟon of pressure drop is directly 

connected to the fluid food's non-Newtonian behavior. The first step involved in the pressure 

drop evaluaƟon, deals with the calculaƟon of the generalized Reynolds Number (𝑅𝑒௚) which is a 

dimensionless number idenƟfy the flow regime. 

The equaƟon (4) for the 𝑅𝑒௚: 

 𝑅𝑒௚ = 8௡ ⋅ ቀ
𝑛

3𝑛 + 1
ቁ

௡

𝜔ଶି௡ 𝑅௡  
𝜌

𝑚
 (4) 

where: 

- ρ is the fluid density. 

- n is the flow index. 

- m is the fluid food consistency factor. 

- R is the piping radius of the tube side in the HE. 

- ω is the average velocity of the fluid. 

The fricƟon factor (f) refers to the energy losses brought on by fricƟon inside the tube. It can be 

evaluated with the following relaƟon (5): 

 
𝑓 =

64

𝑅𝑒௚
 

 

(5) 

Once fricƟon factor and Reynold has been calculated, it follows the pressure drop esƟmaƟon 

using Darcy-Weisbach equaƟon (Daneshvar 2023), which relates system geometry (tube length 

and diameter), fluid velocity, to 𝑓 as follows (6): 

 
ΔP =

𝑓

2

𝐿

𝐷
𝜔ଶ + ෍ 𝑘௜

𝜔ଶ

2௜
 

(6) 

 

where: 

- L is the length of the tube. 

- D is the hydraulic diameter of the tube. 

- ki is the resistance coefficient of the piping. 

The Block Diagram developed in G-Code incorporates all the above-menƟoned equaƟons. 
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4.1.3.3 Data communicaƟon system 

For the case under examinaƟon a TCP/IP data communicaƟon protocol has been implemented in 

the Digital Environment. This protocol enables communicaƟon between devices on the network 

through the transfer of data packets. These packets contain data, desƟnaƟon informaƟon, and 

other metadata. The IP protocol handles packet rouƟng, while the TCP protocol manages 

reliability and flow control during data transmission. This protocol enables data exchange 

between a host computer and the data acquisiƟon module (NI-9208) for data analysis. At this 

purpose, it has been coded two block diagram Figure 24, in parƟcular: one for data transmission 

on the data acquisiƟon module and another as a TCP/IP receiver (Figure 25). TCP/IP infrastructure 

has been specifically designed to enable real-Ɵme data collecƟon from the plant, store it on a 

client host, and enable output predicƟon using real-Ɵme input and ML algorithm.  

 

Figure 24 Block Diagram TCP/IP Sender 

 

Figure 25 Block Diagram TCP/IP Receiver 
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4.1.3.4 Process Control strategy 

Pant’s control strategy is a PID (ProporƟonal-IntegraƟve-DerivaƟve) based system. The coefficient 

of each controller parameter, which are, Kp for the proporƟonal, KI for the IntegraƟve and Kd for 

the derivaƟve one, are tuned using trial-and-error methodology. The HMI specifically displays the 

machine's behavior and pressure status: under normal working condiƟons, the model shows the 

components in blue and green colors, but in the event of an anomaly, the DT shows the 

components in red. The pressure difference between the machine's input and output determines 

whether it operates correctly or incorrectly. For example, if fluid contains foreign parƟcles (such 

as small stones, an increase in pressure at the HE's inlet secƟon could indicate piping obstrucƟon. 

To accurately represent this situaƟon, the pressure at the pump's outlet (which is at atmospheric 

pressure) must be monitored. Its value will be compared with the one provided by the DT model, 

which is based on the Navier Stokes equaƟons and fluid rheology. (Tancredi et al. 2022b). 

Nevertheless, the front panel's control buƩons allow the user to set the appropriate target for 

the desired parameters, such as the product temperature. The developed control device is a 

specialized system designed for processing informaƟon, with the purpose of regulaƟng physical 

process variables. It can communicate with the outside environment and includes a set of 

funcƟonaliƟes, such as closed-loop control, reference value esƟmaƟon (set points), management 

of warnings and occurrences, and machine to machine (M2M) or machine to user 

communicaƟon. In today's technological landscape, there exist numerous types of control 

systems, ranging from simple to highly sophisƟcated, constructed using various techniques. 

Although some control systems are implemented using computer-based tools, others persist in 

using convenƟonal hydraulic or pneumaƟc technologies. This work, consider ProporƟonal-

Integral-DerivaƟve (PID) control methodology. The PID strategy, show in Figure 26, involve three 

main gains, which trigger an output signal based on a proporƟonal relaƟon within the error and 

the proporƟonal, integraƟve, or derivaƟve part of the error, respecƟvely. In the ideal input/output 

relaƟonship, these errors components are mathemaƟcally represented as follows (7):  

 
θ୭୳୲ = k୮E (t) + k୧E (𝑡)dt + kୢ E

Et

𝑑𝑡
               

 

(7) 

Where: 

θ_out = output signal 

E (t) = input error 

kp = proporƟonal constant 
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ki = integraƟve constant 

kd = derivaƟve constant. 

A response that is proporƟonal to the input error (denoted as P), resulƟng in a proporƟonal 

control system, is an efficient strategy for implemenƟng the control system. However, increasing 

the proporƟonal gain's value, kp, may lead to difficulƟes in reaching a stable equilibrium at the 

reference value.  

To address this issue, a straighƞorward soluƟon is to adjust the output signal by incorporaƟng an 

addiƟonal term, denoted as r (referred to as reset). With this adjustment, the system can be 

stable at the set point value. Following the abovemenƟoned consideraƟons, the target output 

can be wriƩen as (8): 

 θ୮ = k୮E (t) + r 

 

(8) 

The Virtual Instruments PID (VI PID) and its corresponding G-Code, shown in Figure 27 are the 

main parts of the implemented control system. The posiƟon of the output signal generator at the 

PID output allows it to achieve the adequate output voltage for the automaƟc and manual 

funcƟons of the digital layer. 

 

Figure 27 G-CODE: PID and Signal Trigger 

Figure 26 PID scheme 
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A PID controller can be tuned using a variety of techniques, each with their own strategy. The 

Ziegler-Nichols method and the Tyreus Luyben's method are two widespread approaches: 

1. Ziegler-Nichols Method (Ziegler & Nichols, 1942): During the first stage of this method, the 

integral (ki) and derivaƟve (kd) gains are both set to zero, focusing on the proporƟonal component 

of the controller. The proporƟonal constant's value (Kp) is then gradually increased unƟl the 

system oscillates steadily around the desired setpoint. 

2. Tyreus Luyben's Method (Tyreus & Luyben, 1992): It uses process like the Ziegler-Nichols 

method described earlier. This approach prioriƟzes the integral component over the other ones.  

Both methods rely on approximate idenƟficaƟon of the system's dynamics through experiments, 

either in open or closed-loop configuraƟons. When operaƟng condiƟons change significantly or 

the system is Ɵme-varying, re-calibraƟon of the PID controller may be necessary. This can be 

accomplished using an auto-tuning method, where calibraƟon occurs automaƟcally or is iniƟated 

by user commands. 

Another simple approach to PID tuning is the trial-and-error method. In this method, the PID 

coefficients are adjusted iteraƟvely. 

 IniƟally, the focus is on the proporƟonal gain (kp) unƟl the control loop exhibits constant-rate 

oscillaƟons. Once stable oscillaƟons have been achieved, focus is directed toward fine-tuning 

the integral (ki) and derivaƟve (kd) components to reduce overshoot and produce a stable 

response. The developed control can be used in two ways: 

1. Remote Desktop ConnecƟon: This method involves using a remote desktop connecƟon 

enabled by the MicrosoŌ Windows suite. It allows a user to access and control the digital twin 

as if they were physically present at the machine. This is a common way to remotely control and 

monitor systems and applicaƟons on a Windows-based computer. 

2. Remote Data AcquisiƟon via LabVIEW Web Services: The second approach makes use of 

LabVIEW's built-in support for Web Services-based remote data acquisiƟon. The soŌware 

plaƞorm LabVIEW is uƟlized for automaƟon, instrument control, and data acquisiƟon. With the 

help of LabVIEW Web Services, any device connected to the server via Wi-Fi, Bluetooth, or 

Ethernet can communicate via HTTP. The PID controller's output value is transformed into an 

analog signal in the 0V–10V DC range in both techniques. The physical plant (where the control 

signals are applied) and the digital layer (where the PID controller operates) are connected 

thought a signal converter (PXU-20.924), and the output generator module (NI9263 by NaƟonal 

Instruments). This hardware configuraƟon ensures that the voltage output is converted into a 
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current signal that can be carried to the analog input port of the Danfoss inverter and ranges in 

value from 0 to 20 mA. By altering the motor's pump's rotaƟonal speed, the Danfoss inverter 

regulates the frequency of the power supplied to the motor. 

4.1.3.5 Machine learning algorithms 

For the case under examinaƟon, three ML models were developed using Python along with 

external libraries. Accessible at hƩps://scikit-learn.org/stable, the scikit-learn package (accessed 

on January 18, 2022) provided the seƫng for the development of ML. Each machine learning 

algorithm, especially the supervised ones like linear regression and arƟficial neural networks, has 

a specific structure that is divided into three main parts. A code that can import data from the 

dataset containing values gathered during the experiments makes up the first secƟon. To make 

the data suitable for the algorithms' processing, some preliminary data preprocessing steps are 

carried out. Data formats, for instance, are transformed into the appropriate type (data of the 

object type), and process parameter variables are changed into floaƟng-point data. The dataset 

is split into two subsets in the second secƟon of the script: the training set, which contains 70% 

of the original data, and the tesƟng set, which contains the remaining 30%. The data from the 

training subset is then used to train the ML model. The final secƟon of the script is used to make 

predicƟons using the model aŌer the algorithm has been trained. 

On the other hand, the third algorithm is an unsupervised clustering model, namely a k-means 

clustering.  

This type of model does not require a predefined output for training and does not involve a 

tesƟng phase. This algorithm's predicted result for our applicaƟon is the categorizaƟon of data 

triplets into one of three categories: "ok," "warning," or "alert." Since there is no tesƟng phase, 

the only way to determine whether the algorithm's conclusions are accurate is by contrasƟng the 

clusters it finds for data triplets with the precise machine status that was iniƟally entered into the 

database. The algorithm should ideally divide the triplets of data into three clusters that represent 

the "ok," "warning," or "alert" statuses. The potenƟal benefit of this approach is that, if the 

clustering algorithm correctly classifies the data, there would be no need to further categorize 

the data into "ok," "warning," or "alert" categories in subsequent applicaƟons. 

Three different fluids were used in a series of experiments to create the dataset needed to apply 

ML algorithms. In parƟcular, the machine was tested with three different materials: water 

(referred to as "Fluid 1"), two mixtures of water and a food addiƟve (Gellan Gum) in varying 

concentraƟons to mimic non-Newtonian food fluids, and a combinaƟon of water and both 

substances alone. Gellan Gum was present in "Fluid 2" at a mass composiƟon of 0.1 percent while 



 
49 

it was present in "Fluid 3" at a mass composiƟon of 0.15 percent. An average of one sample per 

second was used for sampling while the sensors conƟnuously recorded signals. To account for 

the addiƟve's temperature-dependent rheological properƟes, the machine's inverter frequency 

was changed during tesƟng in increments of 10% and three different operaƟng temperatures 

were set. 

Table 5 Temperatures and setting for data acquisition during testing. 

Description Test 1 Test 2 Test 3 

T [°C] 20 40 60 

Inverter Frequency [%] 0–100% 0–100% 0–100% 

Sample Rate [Hz] 1 1 1 

 

Table 5 presents the variaƟons in parameters for each data collecƟon run, including operaƟng 

temperature, inverter range, and sample rate. Data collecƟon involved altering one process 

parameter at a Ɵme while keeping the others constant. Adjustments were made to the inlet valve 

to allow the inlet pressure to be changed between 0 and 185 mbar without affecƟng the outlet 

pressure or product flow. A manual valve was used to gradually close the heat exchanger's outlet 

secƟon to alter the outlet pressure. To prevent machine malfuncƟon or harm to the operator, 

safety precauƟons were taken. The product flow was modified by closing the inlet product valve. 

The collected data from machine tests were first preprocessed with the following steps: 

1. ExaminaƟon of each set of collected data (flow, inlet pressure, and outlet pressure). 

2. AddiƟon of a "label" column to each set of values to describe the machine's status 

based on parameter values and the tesƟng scenario. Normal condiƟons were labeled as 

"ok," transiƟonal phases as "warning," and anomalies as "alert." 

3. DescripƟon of collected data by calculaƟng their average, standard deviaƟon, 

minimum, maximum, and percenƟles (25% and 75%). These staƟsƟcs are summarized in 

Table 6 for the three fluids. 

4. VisualizaƟon of data using 3D plots in Python to provide an iniƟal overview of data 

distribuƟon. 

The final preprocessed dataset for each fluid had 6256 rows and four columns. The machine's 

status and process parameters were represented in the columns. This data was saved in MicrosoŌ 

Excel 2016 as a.csv file. 
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Table 6 provides a summary of the collected data, including counts, means, standard deviaƟons, 

minimum and maximum values, as well as percenƟles. 

Table 6 Summary of the collected data 

 Count Mean Std Min 25% 50% 75% Max 

P1 Water 6256 70.30 40.7 0 50.01 50.02 50.03 182.38 

P1 Fluid2 6256 145.68 41.52 52.9 137.65 151.45 169.2 250 

P1 Fluid3 6256 154.8 47.21 49.07 141.14 162.27 185.9 250 

P2 Water 6256 14.08 21.31 3.27 3.36 3.40 3.42 68.54 

P2 Fluid2 6256 47.61 19.32 0.06 53.87 55.79 57.24 80.52 

P2 Fluid3 6256 51.87 27.33 0.49 53.81 56.78 58.82 250 

F Water 6256 0.29 0.58 0.007 0.008 0.009 0.011 1.55 

F Fluid2 6256 1.49 1.11 0 0.69 1.48 2.33 3.62 

F Fluid3 6256 1.51 1.11 0 0.56 1.53 2.33 3.53 

 

In the subsequent machine learning phase, three ML models were developed using Python and 

the scikit-learn package. These models included linear regression, arƟficial neural networks, and 

an unsupervised clustering (k-means) model. The machine learning process involved data import, 

preprocessing, spliƫng the dataset into training and tesƟng sets, model training, and predicƟon. 

The k-means model aimed to classify data into "ok," "warning," or "alert" categories without the 

need for training on labeled data. 

The predicƟon made by this layer depends on the processing and algorithm used, with two 

possible results. A product flow adjustment as outcomes of the regressor algorithm, and a 

message box displaying the machine's status produced by the classificaƟon and clustering one. 

The system's status can be classified into one of the following groups according to the evaluaƟon 

of flow rate (F), inlet pressure (P1), and outlet pressure (P2) combined: 

- Ok: The machine is operaƟng properly because the parameters are in the right range of 

values. The DT model defines "correct" operaƟon as values that deviate from the 

computed value of the pressure drop, by no more than 10% (in absolute terms). 

- Warning: One or more parameters deviate from the computed values of the DT by 10 to 

25 percent (in absolute terms), which is outside the defined correct funcƟoning range. 

This condiƟon could be an indicaƟon of operaƟonal anomalies, such as transiƟonal 

phases as the plant changes from one steady-state condiƟon to another and leads to 

parameter deviaƟons. 
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- Failure: The machine encounters a criƟcal issue requiring shutdown. This happens when 

the difference between the real and computed pressure drop is greater than 25%. 

There are no accepted standards, despite the classificaƟons of machine funcƟoning status 

proposed by various authors in the literature. In addiƟon, a wider range of values (75 percent of 

cases) have been assigned to the failure category in comparison to the warning and ok statuses 

to improve the detecƟon of plant malfuncƟons (i.e., failures) rather than the other categories. 

The TCP/IP receiver G-Code on the server transmits the perƟnent data, i.e., the detected status, 

to the front panel HMI. 

In contrast, the regressor model provides a value represenƟng the esƟmated output variable, i.e., 

pressure at the outlet secƟon of the HE. The setpoint of the controller can be modified using this 

value in accordance with the condiƟon of the machine. 

4.1.3.6 TesƟng phase 

The developed digital twin has been tested in all its components which are basically the control 

system and the anomaly predicƟon tool developed with the ML algorithms. SecƟons below 

describe the tesƟng setup, tesƟng methodology and model validaƟon carried out following 

specific metrics. 

4.1.4 PID Control Test and results 

The PID controller gains were determined through an iteraƟve trial-and-error method. IniƟal 

seƫngs for the integral (I) and derivaƟve (D) terms were zero, and the proporƟonal (P) gain was 

gradually increased unƟl the output displayed steady oscillaƟons within a range of values that 

was deemed acceptable. IniƟal seƫngs for the integral (I) and derivaƟve (D) terms were set to 

zero, while the proporƟonal (P) gain gradually increased unƟl the output displays steady 

oscillaƟons within an acceptable range. Increasing the proporƟonal gain allowed the system to 

respond more rapidly to changes in the process variable, resulƟng in clear oscillaƟons around the 

setpoint. Subsequently, the integral term was introduced to diminish steady-state errors and 

reduce these oscillaƟons. AŌer seƫng an appropriate P value to achieve the desired response, 

minor adjustments were made to the integral term to establish a steady state, all while 

considering the potenƟal increase in overshoot. Finally, the derivaƟve term was fine-tuned to 

ensure the feedback system remained stable throughout the control process. Following these 

steps, the PID gains were determined as follows in Table 7:  
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Table 7 PID Gain Coefficients 

Kp 0.045 

Ki 0.01 

Kd 0.001 

 

At this stage, follows a tesƟng phase which requires: 

1. Wi-Fi internet connecƟon at the plant's locaƟon, connected to the plant through a USB 

adapter. 

2. An external device, like a laptop, that is online and has a LabVIEW runƟme version that is 

compaƟble with the one installed on the pilot plant's data acquisiƟon module. 

3. A link to the appropriate web server tool 

The iniƟal test phase involves the using of the provided by the system administrator for the web 

service tool to connect to the digital twin Figure 28. 

 

Figure 28 LabVIEW Web Server Tools 

As an alternaƟve, seƫng up a secure login to access the remote desktop. AŌer successfully 

establishing the connecƟon, users gain control over the system and can monitor its status though 



 
53 

the digital twin. Using the remote control and monitoring web server tool, several tests were run 

to evaluate the PID controller's responsiveness, stability, and soŌware robustness. The following 

steps were part of the test sequence: 

Changing the inlet pressure setpoint from 0 mbar to 170 mbar to start the product pump. Once 

the system was operaƟng at the desired point, a disturbance was simulated by temporarily 

changing the setpoint to a higher required inlet pressure of 200 mbar and aŌerwards changing it 

back to 170 mbar. As shown in Figure 29, the outcomes of the gain tuning process showed its 

effecƟveness in achieving a quick response, slight oscillaƟon, and negligible overshoot. However, 

due to the soŌware restricƟons present in convenƟonal embedded systems when integraƟng 

new technologies, a few minor issues emerged during laboratory tests. 

 

Figure 29 Response from 200 mbar to 170 mbar. 

To ensure proper operaƟon of the remote-control system, several prerequisites and seƫngs are 

necessary: 

1. a network connecƟon at the plant. 

2. a laptop with LabVIEW runƟme for keeping track of the plant's condiƟon. 

3. the availability of a web server tool. 
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A Windows 7 Professional operaƟng system, which has some restricƟons on soŌware upgrades, 

is embedded in the controller. Inadequate hard drive space for installing a modernized browser 

is one of these restricƟons. 

Users must use Internet Explorer or a different browser that is not based on Chromium to access 

the web server (such as Google Chrome, MicrosoŌ Edge, or Opera). Chromium-based browser 

use may cause access problems. AlternaƟvely, for users who cannot meet the browser 

requirements, external access to the digital twin can be achieved by uƟlizing the MicrosoŌ 

Windows remote desktop applicaƟon, which is, however, limited to Windows users, or by using 

a virtual machine capable of emulaƟng a compaƟble Windows OS environment. 

Based on the tests conducted in this study, it becomes evident that future research endeavors 

should focus on improving the tools available for connecƟvity. Specifically, enhancements in the 

LabVIEW environment's internet connecƟvity can be explored. AddiƟonally, the implementaƟon 

of an automated procedure for tuning the controller's gains could significantly enhance the 

system's effecƟveness when deployed in real-world scenarios. 

4.1.5 ML Test and results 

4.1.5.1 MulƟple Linear Regression 

A mulƟple linear regression model is the first algorithm that has been developed. A staƟsƟcal 

method known as mulƟple linear regression is used to simulate the relaƟonship between a 

dependent variable (also known as the response) and several independent variables (also known 

as explanatory variables). The outlet pressure and product flow are represented, respecƟvely, by 

the independent variables x1 and x2, which are used in this case specifically. The inlet pressure is 

the dependent variable, that we want to make predicƟons for it (y). EquaƟon (9) presents the 

general linear model that explains how the dependent variable and the independent variables 

relate to one another. 

 𝑦 =  𝑎ଵ𝑥ଵ  +  𝑎ଶ𝑥ଶ +  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (9) 

 

The regression coefficients in the equaƟon are denoted by the symbols a1 and a2, whereas the 

intercept is the value where y is equal to 0. Table 8 include the outcomes in obtained to the three 

fluids analyzed: 
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Table 8 Outcomes for fluids analyzed. 

 a1 a2 Intercept MAE R2 

Water (fluid 1) 1.65 8.98 44.32 0.71 0.99 

Fluid 2 1.27 18.29 57.28 5.745 0.947 

Fluid 3 0.77 28.87 70.65 7.467 0.938 

 

We calculated the mean absolute error (MAE) and coefficient of determinaƟon as performance 

metrics for evaluaƟng the models' accuracy (R2). The MAE calculates the difference between two 

observaƟons that represent the same phenomenon. MAE stands for the mean of the absolute 

errors when contrasƟng the actual values in the dataset with those predicted by the linear 

regression model. And R2 shows how much of the variaƟon in the dependent variable can be 

predicted from the independent variables. With a maximum perfect fit score of R2 equal to 1, it 

measures how well the predicted values match the observed data. The findings in Table 8 

unmistakably show that R2 validates the created ML algorithm for the case under invesƟgaƟon, 

as it consistently produces R2 scores above 93 percent for each fluid. Regarding MAE, it is notable 

that the algorithm performs beƩer in the case of water compared to Fluid 2 and Fluid 3. The MAE 

for water is roughly 0.71 overall and peaks at 2.66 when the model determines the "warning" 

status. The effect of temperature on the rheological characterisƟcs of non-water fluids, where 

addiƟves are present and affect operaƟng pressures, is likely responsible for the regression 

model's inaccurate predicƟon results when applied to different fluids. The difficulty may come 

from the definiƟon of the "warning" status itself, which is expected to represent transiƟonal 

phases or deviaƟons (in a range between 10% and 25%) from typical plant parameters. This 

challenge may arise when focusing on the various performances in predicƟng the "warning" 

status. Notably, the MAE for evaluaƟng system parameters in the "warning" status consistently 

stays below 10% for all tested fluids, indicaƟng that the proposed approach performs with 

promise. Encouraged by these outcomes, we conducted an online test of the model using a 

specialized procedure. To simulate the three possible operaƟonal states of "ok," "warning," and 

"alert," the pilot plant was turned on and data were conƟnuously collected from sensors for the 

three fluids. UƟlizing data from the pilot plant, the ML model was used in real-Ɵme to evaluate 

its capacity to forecast the expected outlet pressure value and, if necessary, take acƟons within 

the plant. When used online, the regression model can produce results like those shown in Figure 

30, for instance. This image shows how the online applicaƟon of the regression model enables 

real-Ɵme calculaƟon of the P1 value (ML-predicted P1), allowing for comparisons with the actual 

value (Real P1) and the esƟmate provided by the plant's DT model (DT P1). AnalyƟcal calculaƟons 
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are used to compare the P1 value that the ML model predicted with the actual one ("Data 

comparison" value). 

 

Figure 30 Front panel: online testing of the regressor algorithm for fluid 1 

Figure 31 a–c displays the combined outcomes for the three fluids. These graphs, once more, 

contrast actual data obtained from the plant (P1 series) with predicƟons made by the ML 

algorithm (Predicted P1 series The x-axis labels show the machine's status, which reflects its 

operaƟng circumstances as previously explained. This was contrasted with the outcomes 

obtained using the DT model. Figure 31 shows that, with errors of less than 5%, the algorithm 

correctly predicts the inlet pressure when the machine is operaƟng in the "ok" condiƟon. On the 

other hand, for the other statuses, the algorithm forecasts the anƟcipated inlet pressure in real-

Ɵme using measurements of the process flow and outlet pressure. Since the machine is 

malfuncƟoning, it is only natural that the predicted value and observed value are different. 

Therefore, comparing the expected outlet pressure with the actual observed value makes it 

simple to spot anomalous operaƟon. This result demonstrates how well the ML implementaƟon 

within the system worked. 

 

(a) 
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(b) 

 
(c) 

Figure 31 Results for mulƟple linear regression model: (a) Water; (b) Fluid 2; 
(c) Fluid 3. 

 

4.1.5.2 ArƟficial Neural Network 

MLPC stands for MulƟ-Layer Perceptron Classifier, the chosen arƟficial neural network (MLPC). 

The main goal of MLPC implementaƟon is to offer a real-Ɵme classificaƟon of the machine's status 

based on the three parameters taken into consideraƟon. Since there are three predefined 

categories—"ok," "warning," and "alert"—the output of this algorithm is a string that uses those 

to describe the machine's status. AŌer preprocessing, the dataset used to train this model is the 

same as that described in SecƟon 2.3. This includes the fourth column, where labels are given to 

each set of parameters to indicate the status of the machine. Technically speaking, the MLPC is 

represented in Figure 32 as two hidden layers, each with 200 nodes. The Adam opƟmizer, a 

stochasƟc gradient-descent method that iteraƟvely updates network weights based on training 

data, was selected as the solver for weight opƟmizaƟon.  A confusion matrix was used to validate 

this machine learning model. This matrix evaluates the algorithm's alignment with actual data to 

provide a performance evaluaƟon. This means that it is possible to compute the crucial 

parameters recall and precision. Recall measures the proporƟon of correctly classified data points 

out of the enƟre set of actual data, while precision measures the raƟo of correct predicƟons to 

all predicƟons for each data category. The raƟo of correctly predicted samples to the total number 
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of tested samples is the final way to calculate the model's accuracy. The confusion matrix and 

precision values for the dataset pertaining to water are shown in Figure 33 and Table 9. The 

numerical results show that the model has a 96 percent accuracy rate. AddiƟonally, the weighted 

average precision value, which is calculated from the precision and recall values for each data 

class and weighted in accordance with the variety of instances in each class, has been used to 

evaluate the MLPC model. The score for this parameter for the case under consideraƟon is 97 

percent. 

 

Figure 32 Neural Network structure 

 

Table 9 Average precision values for water. 

Category  Precision  Recall  Average Precision  

Alert 1.00  1.00  0.83  

Warning  0.92  0.27  0.05  

Ok  0.74  0.99  0.09  

Weighted average precision  0.97  

Model Accuracy  0.96  
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Figure 33 Confusion Matrix for Fluid 1 

 

Table 9 shows that when used to determine the "ok" and "alert" statuses of the pilot plant, the 

MLPC algorithm exhibits excellent precision and recall. However, when aƩempƟng to predict the 

"warning" status, accuracy is noƟceably reduced. Despite the two approaches' divergent logic, 

this agrees with the outcomes of the linear regression model. The lower predicƟve performance 

for the "warning" status for the ML algorithm under consideraƟon may be explained by the 

relaƟvely small range of values assigned to this status (i.e., a 10–25% absolute deviaƟon from the 

normal condiƟon), as opposed to the larger range of the "alert" status (i.e., a 25–100% deviaƟon 

from the normal condiƟon).This disparity affect the rate of "alert" data in the dataset, which may 

have an effect on how well the algorithm performs. In fact, the ML algorithm must be extremely 

precise to accurately detect such cases because the range of "warning" data is constrained. 

Regarding the earlier findings, the MLPC displays impressive accuracy, averaging 99 percent for 

Fluid 2 (Figure 34 and Table 10), and an accuracy of 93 percent for Fluid 3. (Figure 35 and Table 

11). Due to the lack of data categorized in this category, the recall value score for Fluid 2's 

"warning" status is zero for the weighted average precision.  
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Table 10 Average precision values for Fluid 2. 

 

 

 

 

 

 

Figure 34 Confusion matrix for Fluid 2 

Table 11 Average precision values for Fluid 3. 

Category  Precision Recall Average Precision  

Alert 0.98  0.94  0.29  

Warning  0.93  0.23  0.06  

Ok 0.92  1.00  0.59  

Weighted average precision  0.94 

Model Accuracy  0.93  

 

Category  Precision Recall Average Precision  

Alert 0.95  1.00  0.11 

Warning  -  - - 

Ok  1.00  0.99  0.88  

Weighted average precision  0.99  

Model Accuracy  0.99  
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Figure 35 Confusion matrix for Fluid 3 

4.1.5.3 K-Means Clustering 

An unsupervised machine learning algorithm called clustering divides up a dataset into groups 

based on shared traits. A set of samples is grouped into disƟnct clusters by the k-means algorithm. 

Each cluster is idenƟfied by the mean value (centroid) of the components. Similarity between 

elements in k-means clustering is determined by how close they are to the centroid of their 

respecƟve clusters. The dataset used to apply the clustering algorithm is made up of three 

columns that list the essenƟal characterisƟcs of the examined plant, like the algorithms previously 

described (i.e., P1, P2, and F). The expected result of this strategy is the classificaƟon of the 

gathered triplets of data into the proper statuses of "ok," "warning," or "alert," in line with the 

earlier discussion regarding the applicaƟon of the clustering algorithm. This suggests that the 

algorithm is anƟcipated to divide the dataset's elements into three clusters in accordance with 

the operaƟonal statuses. The k-means procedure's number of clusters, however, is not 

predetermined. Finding the ideal number of clusters (k) for the dataset is the first step in puƫng 

this algorithm into pracƟce. The "elbow" method was used to accomplish this. The elbow point 

on the curve represents the ideal number of clusters to use in this method, which involves 

ploƫng the explained variaƟon as a funcƟon of the number of clusters chosen. As a result, with 

the number of clusters ranging from 1 to 6, the sum-of-squares error (SSE) between the data 

points and their assigned cluster centroids was calculated (in steps of 1). Figure 36-a- c show the 

elbow curve calculated for the dataset (Water, Fluid 2, and Fluid 3, respecƟvely). The findings 

suggest that three clusters would be a reasonable number for water and Fluid 2, as this number 

offers enough stability to explain the variance. The same does not hold true for Fluid 3, where a 
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greater number of clusters (six) are required to achieve stability in SSE. However, the number of 

clusters was set to three for all fluids to ensure the suitability of using the clustering algorithm in 

the examined system. The k-means algorithm was used to categorize the dataset's elements with 

this many clusters to test its ability to determine the system's "ok," "warning," and "alert" 

statuses. Figure 37 a–c shows a 3D plot of the fluid clusters for the three fluids. The algorithm 

also saved the classificaƟon in a new database column with the name "cluster," which was filled 

with the values expected by the k-means model. 

 

(a) 

 
(b) 
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(c) 

Figure 36 Elbow Grpah for the dataset of the tested fluids 

 

 

 

 

 

(a) 
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(b) 

 
(c) 

Figure 37 k-means 3D-plot:  Fluid 1 (a), Fluid 2 (b), and Fluid 3 (c). 

 

The accuracy of the k-means method was evaluated using the silhoueƩe score as a performance 

metric. A clustering technique's accuracy can be assessed using this method, which provides a 

succinct representaƟon of how well each element has been classified. The range of the score is -

1 to 1, where: 

 1 represenƟng clearly separated clusters. 

 A score of 0 denotes that there is no staƟsƟcally significant difference between the 

clusters. 

 Clusters with a score of -1 have been incorrectly assigned. 
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The models produced a silhoueƩe score for water of 0.92, fluid 2 of 0.91, and fluid 3 of 0.76. 

These results indicate that the algorithm can classify the data correctly even if the number of 

clusters is forced to be three. The clustering algorithm would not be able to categorize the clusters 

as "ok," "warning," or "alert," so it is crucial to remember that well-defined clusters do not 

necessarily imply that they accurately represent the potenƟal machine statuses. A comparison of 

the original machine status with the three clusters obtained aŌer classificaƟon was done to 

evaluate this aspect. Tables 9–11 present the findings. 

According to Table 12, the clusters for the water dataset that the k-means algorithm found can 

be summed up as follows: 

 

Clusters 1 and 3 are made up solely of "alert" data, each of which has unique properƟes. While 

cluster 1 "alert" situaƟons are characterized by liƩle to no product flow, cluster 3 "alert" situaƟons 

involve triplets of data where the inlet pressure is always zero. In either case, the algorithm 

appears to have correctly idenƟfied these "alert" circumstances. Cluster 2 consists of a mix of 

"ok" and "warning" condiƟons, with a small number of "alert" circumstances remaining. This 

suggests that, like the other ML algorithms put to the test, the clustering algorithm has trouble 

telling the difference between "ok" and "warning" circumstances, which again points to a 

problem with idenƟfying the "warning" status. Like this, the clustering of Fluid 2 (Table 13) shows 

that one cluster (i.e., cluster 2) is clearly defined and only includes typical plant operaƟons. 

Clusters 1 and 3 include a variety of potenƟal circumstances. Given that most of the data relate 

to the "ok" status, Cluster 3 is arguably acceptable in pracƟce. However, cluster 1's classificaƟon 

is not accurate enough for pracƟcal use because 24 percent of the anomalous circumstances are 

categorized as typical working circumstances, which could endanger the safety of those using the 

machine. Regarding Fluid 3 (Table 14), the clusters seem to accurately reflect many of the actual 

working condiƟons of the plant, even though the algorithm was forced to use three clusters 

rather than the ideal number of six: 

 Cluster 1: only contains "alert" circumstances. 

 Cluster 2: only contains "ok" funcƟoning.  

 -Cluster 3 consists primarily of "warning" situaƟons. 

This implies that the algorithm correctly idenƟfied and categorizes abnormal machine operaƟon. 

When examining cluster 2, it becomes clear that it contains all "ok" statuses with only minor 
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amounts of warning and alert circumstances. Once more, it appears that the "warning" status 

has been largely assimilated into the "ok" or "alert" circumstances. 

Table 12 Cluster composition vs. machine status for water 

 Cluster ComposiƟon 

Machine status 1 2 3 

OK - 58% - 

Warning - 28% - 

Alert 100% 14% 100.0% 

 

Table 13 Cluster composition vs. machine status for Fluid 2. 

 Cluster ComposiƟon 

Machine status 1 2 3 

OK 76% 100% 87% 

Warning - - 1% 

Alert 24% - 12% 

 

Table 14 Cluster composition vs. machine status for Fluid 3. 

 Cluster ComposiƟon 

Machine status 1 2 3 

OK 0% 83% 0% 

Warning - 7% 1% 

Alert 100% 10% 98% 

 

To develop a comprehensive tool for idenƟfying anomalies in the operaƟon of an industrial 

system, this study has proposed an applicaƟon that aims to integrate digital twin models, 

machine-learning algorithms, and Industry 4.0 technologies. The suggested method has been 
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developed for use in a tube-in-tube indirect pasteurizaƟon machine for fluid food. Four disƟnct 

operaƟng modes were created and put into use in the digital twin of the plant to get the best 

results possible with the technologies at hand. To ascertain which operaƟng mode most closely 

matches the system's actual condiƟon, several tests were carried out. The system can be 

monitored and controlled using the digital twin environment, which is furnished with tools 

created in earlier studies, both locally and over remote connecƟons. In contrast to fully 

automated systems, the requirement for manual controller setpoint and fluid characterisƟc 

adjustment in the soŌware can be a drawback. Three machine learning techniques (clustering, 

linear regression, and arƟficial neural networks) were incorporated into the created online plant 

monitoring soluƟon to address this issue. The system can be monitored and controlled in-person 

and over remote connecƟons using the digital twin environment, which is furnished with tools 

created in earlier studies. However, compared to fully automated systems, the need for manual 

adjustment of the controller setpoint and fluid characterisƟcs in the soŌware can be a drawback. 

The developed soluƟon for online plant monitoring included three machine learning techniques 

(clustering, linear regression, and arƟficial neural network) to address this problem. The mulƟ-

layer perceptron classifier (MLPC) algorithm demonstrated high accuracy in predicƟng anomalies 

for categorizing "ok" or "alert" statuses of various fluids tested but had less accuracy in 

categorizing the "warning" status. Similar conclusions were reached for the K-means clustering 

algorithm, which effecƟvely grouped "alert" and "ok" statuses but frequently conflated the 

"warning" status with regular plant operaƟon. This can be aƩributed to the "warning" status's 

definiƟon, which covers events that fall into a relaƟvely small range of values and makes accurate 

detecƟon difficult. Currently, only "ok" situaƟons, which are usually correctly detected, may be 

idenƟfied using clustering and classificaƟon algorithms. To facilitate employee intervenƟon at the 

plant, any deviaƟon from these operaƟng condiƟons would result in an alert being displayed on 

the HMI. However, these algorithms sƟll need to be improved and refined before they can be 

used online.  
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4.2 Bag Filter pilot plant 

A plant with a bag filter is a system employed for air purificaƟon from suspended parƟcles, dust, 

and other impuriƟes. For the case under examinaƟon the plant is composed by 31 bags, a main 

inlet pipe i.e., defined as manifold, a compressor, an outlet pipe which exhaust the cleaned air in 

the atmosphere and a branch connected to the manifold with collect he polluted air containing 

dust to be separated within the cyclone filter. 

4.2.1 Plant DescripƟon 

4.2.1.1 Main Piping 

At the beginning of the plant, there is a main inlet piping through which contaminated air enters 

the system. This piping is designed to direct polluted air into the filter’s chamber. 

4.2.1.2 Compressor 

The compressor is a criƟcal component of the plant. Its primary funcƟon is to increase the air 

pressure so that it can effecƟvely pass through the bag filter. This is parƟcularly important to 

ensure that the air is evenly distributed among all the bags of the filter. 

4.2.1.3 Bag Filter 

This is the core of the plant. The bag filter (Figure 38) consists of 31 bags (long, cylindrical tubes) 

aligned inside a sturdy structure. These bags are made of special materials designed to capture 

suspended parƟcles in the air as it passes through them. The bag filter retains the parƟcles and 

allows clean air to pass through the bag walls towards the outlet. 
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Figure 38 Bag Filter Pilot Plant 

4.2.1.4 Clean Air Outlet Piping:  

The air that has been purified through the bag filter exits the plant through a separate piping, 

ensuring that clean air is properly directed out of the system. This clean air can be released into 

the environment or used for other applicaƟons depending on the user's needs.  

Branch with Cyclone Filter: which collect the polluted air form the shop floor into the main piping 

to be separated within the cyclone filter. The cyclone filter is a device used to separate solid 

parƟcles, such as flour, from the air stream. It operates by creaƟng a vortex inside a cylinder, 

causing heavier parƟcles like flour to be pushed towards the walls and collected, while clean air 

conƟnues its path. 

4.2.1.5 Valve  

For the regulaƟon of the system flow, there is a buƩerfly valve posiƟoned downstream of the 

filter and preceding the fan, determining its intake secƟon. In addiƟon to this component, it is 

possible to adjust the fan's frequency using an inverter. The Endress Hauser Deltabar S PMD75 

(Figure 39) differenƟal pressure sensor, posiƟoned at the ends of the filter, measures the 

occurring pressure losses. 
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Figure 39 Endress Hauser Deltabar 

4.2.1.6 Stepper motor 

The buƩerfly valve mounted on the central secƟon of the manifold is coupled with a stepper 

motor which shaŌ is connected to the rotor of the motor. Stepper motor (Figure 40) is 

electromechanical device widely used in precision control applicaƟons, characterized by its ability 

to divide a full rotaƟon into a series of discrete steps. It operates based on the principle of 

converƟng electrical pulses into mechanical moƟon, with each pulse represenƟng one step. 

Stepper motors feature a rotor with teeth and a stator with coils, typically arranged in a bipolar 

or unipolar configuraƟon. The motor's movement is controlled by energizing specific coils in a 

sequenced manner, inducing magneƟc aƩracƟon and repulsion between the rotor and stator. 

This sequenƟal energizaƟon enables precise angular posiƟoning, making stepper motors suitable 

for applicaƟons requiring accurate and repeatable posiƟoning, such as 3D printers, CNC 

machines, roboƟcs, and automaƟon systems. Stepper motors exhibit disƟnct advantages, 

including simplicity, open-loop control capability, and immunity to feedback issues. However, they 

may exhibit limited speed and torque compared to other motor types, necessitaƟng careful 

consideraƟon of applicaƟon requirements. 

 

Figure 40 Stepper Motor 



 
71 

4.2.1.7 Sensors 

The pilot plant has been equipped with sensors able to acquire data and monitor the main 

parameters of the system which are: (i) Air flow; (ii) Air velocity; (iii) pressure drop measured at 

the inlet and outlet secƟon of the filtering chamber. The component dedicated to performing 

these measures are basically two types of sensors, in parƟcular: a differenƟal pressure transmiƩer 

called KIMO, and an anemometer. 

DifferenƟal pressure transmiƩer 

The Kimo, (Figure 41)is a parƟcular kind of sensor, known as a "density-compensated differenƟal 

pressure flow sensor".  This sensor measures air velocity based on differenƟal pressure 

measurement while considering the air. This type of sensor is used in environmental monitoring, 

HVAC (HeaƟng, VenƟlaƟon, and Air CondiƟoning), and other applicaƟons where precise 

measurement of air velocity is required. The principle of operaƟon of this sensor is based on 

Bernoulli's law, which describes the relaƟonship between fluid velocity, pressure, and fluid 

density in a steady flow. The sensor consists of two tubes or channels, one of which is exposed 

to the air flow to measure staƟc pressure, while the other is equipped with a differenƟal pressure 

sensor to measure the difference between dynamic and staƟc pressure. This pressure difference 

is directly related to air velocity. To account for air density, the sensor uses a compensaƟon 

method. Since air density can vary with temperature and atmospheric pressure, it is important 

to consider this variaƟon to obtain accurate air velocity measurements. Density compensaƟon 

typically involves using a temperature sensor to measure air temperature and then correcƟng the 

pressure difference based on this temperature, using the ideal gas law. 

 

Figure 41 Kimo 

While for the measure of the air velocity at the outlet secƟon of the filtering chamber it has been 

installed a hot-wire anemometer. This device is used to measure air velocity or its direcƟon within 

a flow. It is a type of thermal sensor that exploits temperature variaƟons caused by air velocity to 

calculate it.  

Hot-wire anemometer 
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The operaƟon of a hot-wire anemometer, (Figure 42)is based on the principle that a thin, heated 

wire exposed to the air will experience faster cooling due to the moving air. The wire is kept at a 

constant temperature using electrical resistance. When air flows over the wire, the wire's 

temperature decreases in proporƟon to the air velocity. The amount of cooling of the wire is 

directly related to the surrounding air's velocity. A temperature sensor conƟnuously measures 

the wire's temperature, and based on this temperature variaƟon, the device can calculate the air 

velocity. The higher the air velocity, the greater the temperature change of the hot wire. 

 

Figure 42 Hot Wire anemometer 

 

4.2.2 Digital model 

4.2.2.1 Plant characterisƟcs 

The purity level achieved in the exhaust air atmosphere is involvedly linked to the fluid velocity 

in the filtraƟon process. Given this premise, the implementaƟon of an advanced control strategy 

becomes imperaƟve to guarantee both product quality and operator safety. To regulate the 

velocity of contaminated air within the manifold and to provide real-Ɵme monitoring of process 

parameters, a specialized soŌware applicaƟon has been developed. This applicaƟon incorporates 

a Data Transmission model constructed using LabView, and its overall structure closely resembles 

that previously described for the pasteurizaƟon facility in the context of liquid food producƟon. 

The criƟcal parameters for this facility include air velocity and piping pressure. These parameters 

are monitored through dedicated sensors integrated into the plant. Specifically, air velocity is 

measured using a hot wire anemometer, while the air pressure within the pipe secƟons is 

measured using a differenƟal pressure transmiƩer. Each branch of the pilot plant is equipped with 

a hot wire anemometer capable of measuring air velociƟes of up to 30 meters per second and 

providing an analog output within the standard current loop range of 4-20 mA. 
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The differenƟal pressure transmiƩer calculates air flow based on the Bernoulli equaƟon (10), 

expressed as: 

 𝐴𝑖𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝐶௠ඥ(2𝛥𝑃/𝜌) 

 

(10) 

Here, Cm represents the differenƟal pressure device coefficient, which, in the case we are 

examining, is determined to be 0.84 (Kimo Instruments 2022). This device is posiƟoned at the 

center of the manifold and provides an analog output signal in the standard current loop format 

(marked as KIMO dP in Figure 43). 

 

Figure 43 Bag Filter Front Panel  

Valves 1 and 2 are actuated by stepper motors, specifically brushless synchronous DC motors with 

the model M60SH86-TO0512P24C. These motors uƟlize digital input and output signals for 

starƟng and stopping. Two of these devices are installed on the pilot plant, enabling adjustment 

of the piping secƟon for the air outlet manifold and air inlet 1 (as shown in Figure 43). 

Controlling the stepper motor requires a dedicated drive, which serves a dual purpose: it iniƟates 

the control signal and supplies power to the motor coils while respecƟng the defined sequence 

in the first block. The input interface of the drive communicates the desired command to the 

motor. The commercial drive employed in this system is the SMD1104LIE. 

A digital layer of the system has been developed, encompassing the Human-Machine Interface 

(HMI), system monitoring, control block diagram, and a virtual model of the machines and 



 
74 

sensors specific to this case. The system model follows an experimental approach. More precisely, 

the plant characterisƟcs have been determined by assuming that the air inlet velocity (AIV) varies 

with the valve posiƟon (VP). The characterisƟc curve was constructed by collecƟng various AIV 

data within a sampling Ɵme of 540 seconds (with a sampling rate of 1 Hz). These data were 

correlated with the valve opening angle, ranging from 0° (fully open) to 80° (almost closed) in 10° 

steps, sampled every 60 seconds. The resulƟng curve, (Figure 44) from the experimental data, ( 

 𝐴𝐼𝑉  =   0.0035𝑉௣
ଶ    +   0.0502𝑉௣   +   18.553 

 

 

(11) 

Table 15) can be summarized using the following empirical relaƟonship, equaƟon (11): 

 

 𝐴𝐼𝑉  =   0.0035𝑉௣
ଶ    +   0.0502𝑉௣   +   18.553 

 

 

(11) 

Table 15 Empirical relationship Valve Position-AIV 

Valve posiƟon 
[°] 

AIV 
[m/s] 

0 18.35 
5 18.832 

10 18.792 
15 18.582 
20 18.202 
25 17.652 
30 16.932 
35 16.042 
40 14.982 
45 13.752 
50 12.352 
55 10.782 
60 9.042 
65 7.132 
70 5.052 
75 2.802 
80 0.382 
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Figure 44 Bag Filetr operating points 

4.2.2.2 Data communicaƟon system 

While for the previous case study it has been adopted a TCP/IP protocol, for the case under 

examinaƟon, the choose falls into Modbus. This protocol is a widely used in industrial automaƟon 

and control systems. It facilitates communicaƟon between various devices, such as sensors, 

actuators, and controllers, allowing them to exchange data and control signals. In this case, it has 

been programmed to communicate with a stepper motor to adjust a valve posiƟon which adjust 

air flow into the manifold. Nonetheless, Modbus performs as a standardized way for a supervisory 

controller (such as a PLC or a computer) to communicate with the stepper motor 

driver/controller. It defines the rules and formats for data communicaƟon, including commands 

to set the desired valve posiƟon and queries to read the current valve posiƟon or other relevant 

parameters. The supervisory controller sends commands to the stepper motor controller, 

specifying the desired valve posiƟon or control parameters. These commands are typically sent 

in a structured format, such as MODBUS funcƟon codes, which the stepper motor controller 

understands. The code for this protocol has been implemented into LabVIEW environment 

considering the following steps: 

I. The establishment of a connecƟon between DAQ (Data AcquisiƟon) and the drive 

necessitates the development of a master-slave configuraƟon compliant with the Modbus 

protocol. The iniƟal step involves creaƟng Modbus library support to facilitate communicaƟon 

between the soŌware and hardware components. This protocol mandates a cyclic query-
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response mechanism between the host and the connected devices over the same network. To 

establish a proper connecƟon, a server is configured to communicate via serial ports with the 

hardware devices, referred to as "slaves." In this setup, the LabVIEW controller acts as the server, 

while the motor drives serve as the slaves. 

II. The server configuraƟon details, involve the use of IP addresses to represent the motor 

drive names, with assigned values (e.g., 125) as the starƟng addresses for Modbus slave registers. 

A refresh rate of 0.1 seconds is allocated for each call-response cycle. In the event of connecƟon 

errors, the master iniƟates a retry mechanism with up to four aƩempts to restore the correct 

linkage. Once the master setup is complete, users can communicate with the slave registers by 

reading the porƟon of the internal Modbus register of the client that contains specific commands 

or acƟons. The server can both read and write the holding register of the drive, which is in the 

fourth memory map of the register. For the specific case being examined, drive parameters and 

associated addresses required for control tasks are listed in Table 16, addressed at 400001. 

Notably, the third variable is a 16-bit unsigned word for seƫng the desired motor posiƟon via 

soŌware and is addressed at 400060. The fourth variable, known as "Target SD," is a 32-bit integer 

data addressed at SD400009 of the holding register, used to specify the desired motor posiƟon, 

as presented in Table 1. The final variable pertains to the command for shaŌ velocity, which 

ranges from -10000 to +10000, with the sign indicaƟng the rotaƟon direcƟon (posiƟve for 

clockwise and negaƟve for counterclockwise rotaƟon). Each command or posiƟon corresponds 

to a soŌware variable, organized within a library as sub-VIs (Virtual Instruments) in the digital 

layer. Similar precauƟons apply to the "TP1" and "TP" variables. To command a target setpoint, 

bit 7 of register 400009 can be wriƩen by entering 27 concatenated with the address. 

Table 16 Drive parameters and register addresses 

ID Variable Name Data Type AccessType Register Address 

CM1 CurrentMotor1 Boolean read only 400200.1 

ShP ShaŌ PosiƟon Int32 read/write 400001 

RS RotateShaŌ1 UInt16 read/write 400060 

TP TargetPosiƟon Int32 read/write SD400009 

ShV ShaŌ Velocity Int32 read/write SD400064 
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4.2.2.3 Process Control strategy 

The control approach in this case follows an open loop. Further steps in the control 

implementaƟon process involve the master adhering to a precise algorithm to communicate 

effecƟvely with each variable. Due to the mulƟple query-response cycles, the master must query 

the slave with specific Ɵme delays for each call response to prevent data communicaƟon overlap, 

leading to the development of a Ɵmed sequence block diagram. The delay between one query 

response and the next is set at 0.5 milliseconds. IniƟally, the master acƟvates the drive by 

querying the "RS" (RotateShaŌ1) address, located in the fourth secƟon of the Modbus memory 

map, at the second bit. This entails wriƟng an unsigned word of 2 into the register address. 

Subsequently, the master checks the status of the motor by querying the "CM1" (CurrentMotor1) 

address. The "ShP" (ShaŌ PosiƟon) variable can be read or wriƩen depending on the task at hand. 

During reading, the master queries the address and returns the motor posiƟon as a decimal value 

in the range of 0 to 10800, represenƟng the current posiƟon of the motor shaŌ in terms of 

clockwise rotaƟon, with a proporƟonal relaƟon of 30 between a full turn of the shaŌ and the 

round corner. To display the value appropriately, an adjustment is required by dividing the read 

word by 30. The control  system is composed of both hardware and soŌware component. In terms 

of the hardware, the DAQ module, which serves as the system's brain and is connected to the 

sensors and motor through various cables, has been used to read the analog output of the 

probes, which is offered in a standard current loop (4–20 mA). Instead, the motor drive is 

communicated with using a twisted pair ethernet cable. The user monitor shows the status of 

the process parameter as well as the behavior of the machine. Again, using LabVIEW, the soŌware 

tool supporƟng the system was created in G-Code. An open-loop control for the stepper motors 

has been developed in accordance with prior applicaƟons to flour milling plants, considering the 

peculiariƟes of the equipment, parƟcularly its low sensiƟvity to external factors. Twisted pair 

cable was used to establish the connecƟon between the RS232 port on the motor drive and the 

corresponding one on the DAQ. The Modbus RTU communicaƟon protocol is adopted by the 

communicaƟon layer. This is also generally used as a bridge between the field devices and the 

control systems and is quickly emerging as a go-to method for remote monitoring on the Internet 

of Things. It is necessary to create a master-slave connecƟon that complies with Modbus to 

connect the DAQ to the drive. To connect LabVIEW soŌware and hardware components, the first 

step is to develop support for the Modbus library. Such a protocol necessitates a cycle of query 

and response between hosts connected via the same web. A master must be set up to 

communicate with the host through serial ports to create the proper connecƟon (slave). The 

LabVIEW behavior as the master, and the motor drives serve as the slaves. Figure 45displays the 

server configuraƟon, where the IP address stands in for the motor drive name and its value (125), 
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respecƟvely, for the starƟng address of the Modbus slave registers. The duraƟon of each cycle of 

a call response is 0.1 seconds. The master may query the slave up to four Ɵmes to re-establish 

the linkage if a connecƟon error occurs. By reading the secƟon of the client's internal Modbus 

register where specific commands or acƟons are located, the user can communicate with the 

slave registers aŌer the master has been set. The holding registers of the drive, which is in the 

fourth memory map of the register, is accessible to the master for reading and wriƟng.  

 

Figure 45 Server configuration 

The control is supported by a code secƟon that, as seen in Figure 46, can minimize the 

overshooƟng of the controlled parameter. This code is made up of several "if" cycles with two 

parameters called manual and AIV creaƟng a hierarchy. The first box is based on the former 

parameter's Boolean (true/false) value, which enables manual control of the system when set to 

true or open-loop control when set to false (when set at false). There are in fact two subcases 

controlled by the air inlet velocity parameters, and they can be disƟnguished by comparing the 

AIV and the desired setpoint (SP), which has been modified to account for plant characterisƟcs. 

The following inputs must be set in the motor drive because the controller must slightly adjust 
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the valve posiƟon to reach the setpoint, specifically if AIV is not in the range SP1 m/s (Figure 48). 

 

Figure 46 Bag Filter Front Panel Control 

 

i. The motor shaŌ rotaƟon velocity. 

ii. The target task. 

iii. The command to achieve the setpoint. 

 

 

Figure 47 Block Diagram: Setpoint achievieng 
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Figure 48 Block Diagram Motro Stop in place  

The motor tends to reach the desired setpoint by checking the 7th bit of the Rotate ShaŌ (RS) 

register variable up unƟl the target task is in the range between 0-2700, which represents the 

angular posiƟon of the valve from 0° to 90°. The shaŌ velocity is also controlled according to a 

further comparison between the AIV and a constant value of 0.5 m/s, which allows for a higher 

velocity when the AIV is far from the desired value and a slight slowdown when it is geƫng close 

to the setpoint. By querying the third bit of the RS once the setpoint has been reached, the valve 

is stopped in place Figure 47. By querying the third bit of the RS once the setpoint has been 

reached, the valve is stopped in place (Figure 48). 

4.2.3 Machine learning algorithms 

Before developing a specific predicƟve model based on the collected data, it was necessary to 

study the input parameters and evaluate their relaƟonships.  

4.2.3.1 MulƟvariable Linear regression 

MulƟvariable Linear regression is a staƟsƟcal method used to study and model the relaƟonship 

between a conƟnuous dependent variable and one or more independent variables. The 

dependent variable, also known as the "response variable" or endogenous variable, is the 

variable that is predicted or explained by the model. It is the parameter you want to analyze or 

predict based on the values of the independent or predicƟve variables. In the formulaƟon of a 

linear regression model, the dependent variable is represented as a linear combinaƟon of the 

independent variables, mulƟplied by their respecƟve regression coefficients. The goal of linear 

regression is to find the best esƟmate of the coefficients that minimizes the discrepancy between 

the observed values of the dependent variable and the values predicted by the model. The choice 

of the dependent variable depends on the analysis's objecƟve and specific research quesƟons. It 

can be a conƟnuous variable, such as income or temperature, or a discrete variable, such as the 

number of children or the result of an exam (pass or fail). The independent variables, also called 

"predicƟve variables" or exogenous variables, are the variables used to explain or predict the 
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variaƟon in the dependent variable in the model. These represent the characterisƟcs or 

condiƟons believed to influence the dependent variable. In the formulaƟon of the linear 

regression model, independent variables are used to esƟmate the regression coefficients, which 

represent the effect of the independent variables on the dependent variable. Independent 

variables can be selected based on theoreƟcal hypotheses, previous studies, or empirical 

consideraƟons. It is essenƟal to choose them carefully to ensure their relevance to the dependent 

variable and their ability to provide adequate explanaƟon or predicƟon. In linear regression, the 

equaƟon (12) takes the following form:  

 

 𝑌 =  𝛽0 +  𝛽1𝑋"1" +  𝛽2𝑋2 +  ⋯ +  𝛽𝑛𝑋𝑛 +  𝜀  

 

 

(12) 

Where:  

- Y represents the dependent variable (response variable) that you want to predict or 

explain.  

- X1, X2, ..., Xn are the independent variables (predicƟve variables) used to explain the 

variaƟon in Y.  

- β0, β1, β2, ..., βn are the regression coefficients, represenƟng the effect of the 

independent variables on the dependent variable. β0 is the intercept term, while β1, β2, 

..., βn are the coefficients associated with each independent variable.  

- ε represents the residual error, which is the discrepancy between the observed values 

of the dependent variable and the values predicted by the model. It is due to unexplained 

or random factors.  

The goal of linear regression is to esƟmate the regression coefficients (β0, β1, β2, ..., βn) in a way 

that the linear equaƟon improves the accuracy of predicƟng the dependent variable Y based on 

the values of the independent variables (X1, X2, ..., Xn). In the case at hand, mulƟple regression 

is considered the most suitable for the study. It allows for examining the simultaneous effect of 

mulƟple independent variables on the dependent variable, considering their individual effects 

and possible interacƟons. Furthermore, it can provide a beƩer predicƟon of the dependent 

variable compared to simple linear regression because it considers mulƟple factors that could 

influence the dependent variable. This situaƟon clearly reflects the simulaƟon discussed in the 

study, as it involves parameters such as speed and pressure, and aims to evaluate their impact on 
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filter pressure drop. Specifically, it involves real-Ɵme analysis of the efficiency rate of zinc and 

lead extracƟon concerning selected parameters. The variables include temperature, pH, and 

parƟcle size, received from the IoT module connected to corresponding sensors. Through data 

analysis using supervised machine learning algorithms, a mulƟvariate regression model is 

formulated to predict future esƟmates related to zinc and lead extracƟon. In general, the 

assumed variables have predicted the efficiency of zinc and lead extracƟon staƟsƟcally 

significantly. Therefore, the predicted model fits well and can be applied in the mining industry 

to esƟmate extracƟon efficiency and performance. 

4.2.3.2 Gaussian Process Regression (GPR) 

In this work, to obtain an effecƟve predicƟve model, the chosen method is Gaussian Process 

Regression (GPR). A Gaussian process is a type of stochasƟc process used to model various 

random phenomena. It is fully described by its mean and covariance funcƟon. The mean defines 

the process's average value in the domain, while the covariance funcƟon specifies the correlaƟon 

between values of the process at different domain points. Gaussian processes are used in many 

machine learning algorithms, one of which is Gaussian regression. In this case, the Gaussian 

process is used to model the distribuƟon of possible regression funcƟons for a given set of 

training data. Generally, analyzing Gaussian processes requires some knowledge of probability 

theory and linear algebra. However, there are soŌware tools like Matlab that simplify their 

analysis and applicaƟon in machine learning problems. Gaussian Process Regression (GPR) is a 

type of regression analysis that uƟlizes Gaussian processes to model the relaƟonship between a 

set of input variables and a conƟnuous output variable. It is a powerful and flexible machine 

learning technique that can be used for a wide range of tasks, including predicƟon, interpolaƟon, 

and extrapolaƟon. A Gaussian process is a collecƟon of random variables, and any subset of these 

variables is jointly Gaussian. In GPR, it is assumed that the output variable is a sample from a 

Gaussian process with a mean funcƟon and a covariance funcƟon. The mean funcƟon describes 

the general trend of the data, while the covariance funcƟon describes the relaƟonship between 

different input values. When it comes to predicƟng outputs, the model is trained on a set of input-

output pairs. The model then uses the covariance and mean funcƟons to make predicƟons on 

new input values. The uncertainty of the predicƟons is expressed by the covariance matrix of the 

predicted values, providing a measure of how reliable the model is. One of the advantages of GPR 

is its ability to handle nonlinear relaƟonships between input and output variables, as well as its 

ability to provide uncertainty esƟmates for predicƟons making it suitable for both interpolaƟon 

and extrapolaƟon. The evaluaƟon is based on its flexibility and power, as well as the ability to 

provide both predicted results and confidence intervals (uncertainty esƟmates). This aspect is 

crucial for quanƟfying the reliability of predicƟons. The literature shows that GPR has been widely 
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used for data modeling in various systems. An example is the mulƟ-response GPR model 

proposed by Wang and Chen, who demonstrated its superiority through simulaƟons and 

modeling a chemical reacƟon's response. Aye and Heyns studied an integrated GPR model to 

predict the remaining useful life of low-speed bearings, achieving reduced predicƟon errors. 

Many arƟcles in the literature have focused on extending and improving the GPR model to make 

it more accurate. In contrast, there is limited aƩenƟon given to the analysis and improvement of 

confidence intervals, possibly because the presence of Gaussian noise has liƩle impact on the 

GPR predicƟon accuracy, as these noises can be quanƟtaƟvely modeled in the model. 

4.2.3.3 Neural Networks 

Neural networks, also known as arƟficial neural networks (ANN), consƟtute a subset of machine 

learning and derive their name from the way biological neurons communicate. They are 

composed of arƟficial neurons or nodes that receive inputs and send various outputs to connect 

with others. Each node has its associated weight and threshold and will send an output only if it 

exceeds a specific threshold value; otherwise, the connecƟon will be interrupted. ANN relies on 

training data to opƟmize accuracy. They are used in AI to organize high-speed data into clusters. 

Weights are assigned to each input level, determining the variables' importance. Weighted inputs 

are then summed, and the output is determined by an acƟvaƟon funcƟon, which will decide 

whether to proceed to the next level in the network if the obtained value surpasses the threshold. 

Normally, the mechanism underlying neural networks is feedforward, meaning there is a 

unidirecƟonal flow of informaƟon. Training can also be achieved through backpropagaƟon, 

associaƟng each node with its error. The type of ANN described represents the classic funcƟoning 

logic. However, there are other types, such as convoluƟonal neural networks (CNNs), mainly used 

for image recogniƟon, and recurrent neural networks (RNNs), consisƟng of feedback loops to 

predict future results. Neural networks represent a crucial classificaƟon system, thanks to their 

versaƟlity. They are parƟcularly suitable when problem instances are provided in pairs, and there 

are many training sets. However, they have some disadvantages. For instance, with a high number 

of neurons, the network can lose its ability to generalize results and require lengthy and expensive 

training. The applicaƟon of ANNs is found in various fields, such as the economic sector, where 

they have been used to predict bank failures. Another example is provided in arƟcle, which uses 

a convoluƟonal neural network (CNN) to calculate surface roughness in a milling process, training 

the model using LabVIEW combined with a Python algorithm. TesƟng the neural network with 

data like those used in the training set is one of the few methods used to verify the network's 

effecƟveness. In most cases, such tradiƟonal tesƟng techniques are adequate for accepƟng a 

neural network system. However, in more complex and criƟcal systems, the standard neural 

network training test approach is not sufficient to provide a reliable method for validaƟon. 
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4.2.4 ML TesƟng and results 

The tesƟng phase's objecƟves are to evaluate the predicƟve model's precision by analyzing the 

errors that have an impact on the algorithm's predicƟons, and the robustness of the cleaning 

system's on/off control. The control funcƟonality has been assessed by stressing the system into 

out-of-range points of funcƟoning and by observing the system behavior through user monitor 

while considering the measured and predicted pressure drop through the ML algorithm chosen 

aŌer the model validaƟon phase. The algorithm accuracy can be achieved by comparing the 

errors that were recorded during the tesƟng phase with those related to the data on which the 

model was trained. The approach involves acquiring data to train the ML algorithms. The data 

acquisiƟon tool in LabVIEW was used to control this process. The measurements were obtained 

in this phase by running tests at four different air inlet velociƟes: 15, 17. 5, 20, and 22.5 m/s with 

a tolerance of 1 m/s. As a result of this stage, the four data sets displayed in Figure 49 were 

compiled into a singular *.csv file used to train each Python algorithm. 

 

Figure 49 3D Plot Data acquired  

The model validaƟon score, which is the coefficient of determinaƟon R2, equaƟon (13) has been 

used to validate each algorithm. 

 
𝑅ଶ = 1 −

∑ (𝑥 − 𝑥ො)௡
௜ୀଵ

ଶ

∑ (𝑥 − 𝑥̅)௡
௜ୀଵ

ଶ 

 

(13) 

 
𝑀𝑆𝐸 =

∑ (𝑥 − 𝑥ො)௡
௜ୀଵ

ଶ

𝑛
 

 

(14) 

Where n is the number of samples, x is the average value of the tesƟng data, and x is the predicted 

value. As shown in equaƟon (14) the Mean Squared Error comes aŌer: 
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which is the proporƟon of R2 to the number of samples n. At this point, the collected data were 

cleaned up and sent to the Python environment, where three machine learning algorithms were 

programmed. MulƟvariable linear regression (MLR), Gaussian process regression (GPR), and 

arƟficial neural network (ANN) are the first two (ANN). Each algorithm consists of three secƟons: 

I the first where data is called into the code; (ii) the second where the dataset is split into a 

train/test subset, of 70% and 30% respecƟvely; (iii) it follows a third secƟon of the code, devoted 

to the model predicƟon; (iv) while the laƩer secƟon displays model scores and data distribuƟon 

plots on the screen. The outcomes of this stage's equaƟons (1) and (2) are displayed in Table 17.  

Table 17 Score of the ML algorithm developed 

Score MLR GPR NN 

R2  0.98 0.96 0.95 

MSE 0.032 0.002 0.002 

 

The MLR's higher R2 demonstrates that this algorithm has been integrated into the digital 

environment. To achieve this, a G-Code secƟon that evaluates the predicted value by solving the 

MLR funcƟon has been created.  

 𝑌 = 𝛼 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ 

 

 

(15) 

Where Y is the esƟmated pressure drop value, X1 denotes the V3 measurement, and X2 denotes 

the measured air inlet velocity. The MLR algorithms evaluate the coefficients, β1 and β2, and the 

intercept for each parameter, assuming the value shown in Table 18 aŌer the equaƟon (15) 

Table 18 MLR Coefficients β_1, β_2 and intercept α 

α 𝜷𝟏 𝜷𝟐 

-2.16244884 0.14941325 0.48836683 

 

Following the ML algorithm's integraƟon into the digital environment, a second tesƟng phase was 

conducted by adjusƟng the air inlet velocity, measuring the relevant parameters, and assessing 

the ML predicƟon. At this stage, the following formula was used to calculate the error between 

algorithm-esƟmaƟon and measured pressure drops: 
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𝑒𝑟𝑟𝑜𝑟 = ฬ1 −

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝

𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝
ฬ 

 

 

(16) 

Figure 50 presents the results obtained and illustrates the distribuƟon of the error evaluated 

based on the test performed using the equaƟon (16). The ordinate displays the frequency of each 

error percentage in a dataset of 4484 samples, and the abscissa displays the classes of error with 

1.25 percent steps. Notably, the graph demonstrates that most error percentages are lower than 

6%. In fact, under this threshold, errors are present in about 80% of the cases. This shows that, 

in many cases, the algorithm performs with a high level of accuracy. 

 

Figure 50 MLR Outcomes  

The value derived from equaƟon (15) at this point, i.e., the esƟmated value of pressure drops 

under specific condiƟons, can be compared in the data comparison block. The logic gate that 

produced the Digital Output used in the actual comparison, on which the control is based, can 

be used in the future to acƟvate the air-jet compressor. If the error is within the established range 

or not, the logic gate is based on three cases. No acƟon is planned if the range matches the error, 

and the error is less than 10%. On the other hand, the beginning of the cleaning cycle using the 

compressed air system is determined by an error value greater than 10% for a given duraƟon. as 

a test. 

4.2.5 Open loop control test and results 

Like the prior instance, plant operaƟng condiƟons have been used to test the open-loop control 

created for the bag filter. A constant compressor speed of 35 Hz has been set in the system, 

resulƟng in an air inlet velocity of roughly 19 m/s. The open-loop control is acƟvated once the 
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machine reaches that velocity by seƫng the manual parameter to false. This enables the soŌware 

to adjust the necessary setpoint by shiŌing the valve through five different posiƟons.  

Figure 51 illustrates the outcomes that were seen. As seen in that figure, once the control is 

engaged, the air flow tends to stabilize and get closer to the desired velocity. The pressure 

distribuƟon and velocity profile of the air movement in circular conduct, which has a non-unique 

value, are where the oscillaƟng trend of the air velocity is found. 

 

Figure 51 Front Panel: Open Loop results 

The main posiƟve finding from the tests is the quasi-stable state of air velocity when the control 

system is in operaƟon. In contrast, when the setpoint changes, the velocity displays a series of 

peaks, primarily because the rotor speed has been set using an experimental approach, achieving 

the desired setpoint while also prevenƟng damage to the valve. 
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5 Discussion for future research implementaƟon 
The two case studies under consideraƟon make it possible to emphasize that, depending on the 

specifics of the food process, the implementaƟon of a DT-based control system in the food 

processing industry involves several decisions and can be done in a variety of ways. As result of 

this work illustrates some important choices to be made and major issues to be addressed, 

regardless of the specific process. 

StaƟng the goal of the implementaƟon. Clearly defining the intended purpose of the DT model 

and control system usage is the first step in puƫng DT-enabled control of a food process into 

pracƟce. According to (Maheshwari et al., 2023), defining a DT model entail conducƟng a 

preliminary analysis of the process, such as by physically inspecƟng the plant, the machines, or 

other perƟnent resources. In the specific instance of the food processing industry, DT models can 

support ongoing process monitoring to improve product quality and worker safety. 

Both soluƟons put forth in this paper incorporate a simulaƟon tool that can use thermo-fluid 

dynamic equaƟons to digitally recreate the food processes. AddiƟonally, to exchange real data 

from the plant between LabVIEW (or other models/control boards) and the actuators, both 

soluƟons follow the fundamentals of a real DT as opposed to a digital shadow. Appropriate 

sensors are installed in various parts of the equipment (R. Liu et al., 2023). 

Modeling a system. The key to DT implementaƟon is reproducing the system in terms of variables 

and process parameters, but the models used for comparing the controlled parameters can 

change depending on the process characterisƟc and are obviously specific of the applicaƟon 

context (Semeraro et al., 2023). 

In fact, the digital model created for the liquid food plant includes several physical equaƟons that 

consider the rheological characterisƟcs of the process fluid, along with the thermal equaƟons 

and machine geometry, allowing for the evaluaƟon of the system's behavior and the predicƟon 

of the controlled parameters for various fluids. Contrarily, the model created for the bag filter 

was based on an experimentally discovered curve and required the creaƟon of a numerical 

simulaƟon using fluid dynamics for powders. 

Determine a control strategy: The best control strategy should be chosen while keeping in mind 

the characterisƟcs of the process under invesƟgaƟon. The control strategy to be used to act on 

the system aŌer noƟcing potenƟal incorrect operaƟon of the equipment with the set values 

differs between the two case studies. 
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In general, both closed-loop (feedback) and open-loop (feedforward) strategies can highlight 

benefits or drawbacks for processes. An open-loop control might be preferred over a closed-loop 

one way or another because it is a simple soluƟon that is simple to set up in systems where 

conƟnuous funcƟon points of the process can be disregarded. When the controlled parameters 

can be set in advance within a certain tolerance and within the operaƟng range of the machine, 

this method is proven to be effecƟve. 

Even so, when used for Ɵme-varying processes where the controlled parameters must be 

adjusted conƟnuously, open-loop systems can exhibit some limitaƟons; in this case, a closed-loop 

(i.e., feedback) system should be preferred. 

It goes without saying that, depending on the context, this framework for the implementaƟon of 

DT-based control systems in the food sector could be further improved by including some aspects 

of evaluaƟon. To keep this framework as general as possible for this industry, it has only been 

applied to a few specific decisions in this arƟcle.  

The fundamental mechanisms of bag filter clogging, such as parƟcle agglomeraƟon, cake 

formaƟon, and filter media properƟes, can be further explored in future studies. To predict 

clogging events, researchers can concentrate on creaƟng predicƟve models using ML and 

computaƟonal fluid dynamics (CFD). To forecast when and where clogging is likely to happen, 

these models could consider various factors like parƟcle size distribuƟon, airflow rates, and 

operaƟng condiƟons. InvesƟgaƟng intelligent cleaning techniques, such as enhancing pulse-jet 

cleaning Ɵming and frequency or applying adapƟve cleaning based on real-Ɵme data, can be 

advantageous. This might decrease energy use and increase filter life. 

In this essay, the implementaƟon of DT models for the regulaƟon of food processes was 

examined. Two actual cases—a plant for liquid foods and a large flour filter—are used as suitable 

examples to demonstrate the key steps in DT implementaƟon. The paper describes the DT models 

and outlines the main implementaƟon difficulƟes, the beƩer control strategy for process 

monitoring, and a brief evaluaƟon of that strategy. Finally, the findings from these case studies 

were compiled into a broad framework that reflected the essenƟal steps for DT development and 

applicaƟon for process control in the food industry. 

From the scienƟfic point of view, there are sƟll few real-world examples of DT model applicaƟons 

in the food industry, both generally and specifically for process control. As a result, this paper 

adds to the body of knowledge on the subject and directly contributes by offering two instances 

of the use and applicaƟon of DT-based control models. It is therefore anƟcipated that it will offer 

empirical examples to further support the growing interest in the DT paradigm.  
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However, comparisons between this study and the available literature are challenging due to the 

dearth of such pracƟcal implementaƟon. AddiƟonally, the case studies discussed are unique to 

food producƟon faciliƟes and processes, which makes it even more challenging to compare the 

results in a straighƞorward manner. These clearly show the work's limitaƟons, but hopefully 

future research will evaluate them more accurately.  

Notwithstanding, the implementaƟons made it possible to list the main benefits of DT-based 

control models in comparison to other control strategies that are available in literature and 

industry. The ability of the DT-based control system architecture to automaƟcally change the 

setpoint by comparing the expected delta pressure data with the experimental values is 

parƟcularly important for the pasteurizaƟon process. Looking instead at the milling plant, the 

quasi-stable state of the air velocity when the DT-based control system is acƟve, demonstraƟng 

good effecƟveness and prevenƟng damage to the valve, is the main strong point emerging from 

the tesƟng phase.  

From a pragmaƟc perspecƟve, the study's final product, the framework, was developed with the 

intenƟon of assisƟng and direcƟng plant managers who wished to approach the implementaƟon 

of the DT model for the control of food processes. This framework draws some of its inspiraƟon 

from more general DT architecture proposals found in the literature, but it also adopts different 

viewpoints from those proposals. Although the architectural characterisƟcs of DT models have 

been addressed in the literature that is currently available, their applicaƟon in the field of food 

has only been lightly studied. 

As a result, the proposed approach is unique to the food processing industry, which means that 

all aspects of the DT design are tailored to the specifics of the food processing industry. Second, 

since there are sƟll few DT models designed for process control, the control component is also 

incorporated into the framework. 

The proposed framework has been defined as being sufficiently general in nature so that it can 

be easily customized depending on the case being studied, even though it was built from the 

ground up using two real case studies. As a result, building on the findings of this study, addiƟonal 

food processes could be examined to assess the suitability of the framework created and to 

evaluate the effecƟveness of DT-based control models of food processes in various contexts.   

In summary, this work has introduced an applicaƟon aimed at the integraƟon of digital twin 

models, machine-learning algorithms, and Industry 4.0 technologies to create a comprehensive 

tool for control processes and provide anomaly detecƟon within industrial systems. The focus of 

this study has been the development and implementaƟon of a soluƟon tailored for use in a tube-
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in-tube indirect machine designed for fluid food pasteurizaƟon, and a bag filter pilot plant. To 

opƟmize the performance of this mulƟfaceted approach, four disƟnct operaƟonal modes were 

devised and integrated into the digital twin model of the plant. A series of empirical tests was 

conducted to ascertain which operaƟonal mode most accurately aligns with the real-world 

funcƟoning of the system.  

While the digital twin environment, coupled with tools from prior research, allows for both in-

situ and remote monitoring and control, it does present certain limitaƟons, parƟcularly in terms 

of manual setpoint adjustments and fluid characterisƟc configuraƟons. In response to this 

challenge, three disƟnct machine learning approaches, including a linear regression model, an 

arƟficial neural network, and a clustering algorithm, were incorporated into the soluƟon, 

primarily for online monitoring of the plant. This endeavour, exploratory in nature, sought to 

evaluate the efficacy of various machine learning algorithms for anomaly detecƟon within this 

specific applicaƟon, an area of research that remains relaƟvely unexplored. 

The outcomes from these machine learning tools indicate that the regression algorithm, once 

integrated into the digital twin environment, holds promise as a means of achieving automaƟc 

control over the system. This is aƩributed to its ability to predict the dependent variable (P1) 

based on mulƟple independent variables (P2 and F), subsequently providing a discrete value that 

can be employed as a setpoint for the PID controller. Simultaneously, the digital twin model 

operates as a vigilant senƟnel over the machine's behavior, overseeing its funcƟoning and capable 

of halƟng operaƟons upon detecƟng a "failure," while displaying the machine's status on the HMI. 

Conversely, the arƟficial neural network and clustering algorithms demonstrated marginally less 

impressive performance. Specifically, the MLPC algorithm exhibited a high accuracy in predicƟng 

"ok" or "failure" status but displayed lower precision in classifying the "warning" status. Similar 

conclusions were drawn regarding the k-means clustering algorithm, which exhibited the 

capability to disƟnguish between "failure" and "ok" statuses but struggled with the "warning" 

status, which encompasses a relaƟvely narrow range of values, making precise detecƟon 

challenging. 

It is important to note that false-negaƟve classificaƟons of the "failure" status, though relaƟvely 

infrequent, pose a significant concern, parƟcularly in terms of employee safety. Therefore, 

refinements are essenƟal for these algorithms to minimize false negaƟves in idenƟfying machine 

failures. AlternaƟvely, a pragmaƟc approach might involve the combined use of both methods, 

significantly reducing the likelihood of concurrent false negaƟves for "failure" status. 
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In pracƟcal applicaƟon, the use of clustering or classificaƟon algorithms for anomaly detecƟon 

would be best suited for idenƟfying "ok" condiƟons, where their performance is generally 

reliable. Any deviaƟon from this status would trigger alerts on the HMI, signalling the need for 

intervenƟon. AddiƟonally, real-world implementaƟon should account for the presence of outliers 

or noisy data, which could adversely affect the performance of clustering algorithms, 

necessitaƟng careful data preprocessing in pracƟcal scenarios. 

In conclusion, this research provides a promising foundaƟon for the development of an integrated 

digital twin-based system enhanced by machine learning algorithms for anomaly detecƟon in 

industrial seƫngs. The findings not only advance the knowledge in this domain but also 

underscore the importance of refining these methodologies to ensure the utmost safety and 

efficacy in industrial operaƟons. By invesƟgaƟng the possibility of integraƟng them with ML 

algorithms, future research acƟviƟes could also address further advancements in the applicaƟon 

and adopƟon of DT in the food processing industry. PredicƟve and prescripƟve analyƟcs will be 

used to analyze real-Ɵme data from the DT model to gain addiƟonal insights for improving food 

process controls. 

The monitoring, control, and maintenance opƟmizaƟon of pasteurizaƟon system and, a bag filter 

pilot plant, are addressed in this paper using an integrated Machine Learning soluƟon created 

with Python and LabVIEW. The suggested system employs a data comparison tool to acƟvate 

compressor filter cleaning or adjust product velocity in the pasteurizer. Three suitable algorithms 

for control management were chosen aŌer a thorough review of the literature. Using a Data 

AcquisiƟon System (DAQ) tool, a dataset was gathered and used for algorithm tesƟng and 

training. Based on the results of the model validaƟon, the implemented algorithm was chosen. 

To evaluate the performance of the chosen algorithms and the Data Comparison tool, real data 

acquisiƟon and validaƟon were carried out. The compressed air cleaning system is acƟvated when 

a significant difference is found by the control system developed in LabVIEW, which compares 

esƟmated pressure drops with directly recorded values.  

The difference between esƟmated and acquired values serves as a warning to the user that the 

filter sleeve needs to be replaced, or to control product flow. To assess the precision of the 

acquired and predicted data, various tests at various air inlet velociƟes were carried out. The 

findings show that in about 80% of the cases, the machine learning algorithm maintains an error 

distribuƟon below 5 percent. By implemenƟng Industry 4.0 principles and using digitalizaƟon for 

predicƟve maintenance, this research helps industrial plants cut costs and downƟme. The system 

architecture, which consists of both hardware and soŌware layers, makes it possible to effecƟvely 

monitor, control, and opƟmize maintenance of both plants. The created ML algorithms 
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demonstrate the potenƟal of predicƟve maintenance in enhancing plant performance, efficiency, 

and resource uƟlizaƟon aŌer being validated through performance metrics. The maintenance 

management of industrial plants can be improved by addiƟonal study and applicaƟon of 

Intelligent PredicƟve Maintenance (IPdM) and Industry 4.0 technologies. 
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6 Conclusions 
In summary, this academic endeavour has focused on the complex realm of predicƟve 

maintenance and process control within food industry manufacturing field. Through the 

integraƟon of ML in a DT environment, a comprehensive and innovaƟve soluƟon has been 

elucidated. This study has underscored the criƟcal importance of predicƟve maintenance in 

opƟmizing the process control and predicƟve mainentance of industrial processes. The results 

and insights presented here emphasize the potenƟal of employing ML algorithms within the 

digital twin environment for anomaly detecƟon and automated control. The integraƟon of ML 

algorithms, such as linear regression, arƟficial neural networks, and clustering, has shown as a 

promising avenue for enhancing process control and predicƟve maintenance. The findings reveal 

that the linear regression algorithm, when embedded within the digital twin, offers automated 

control capabiliƟes by predicƟng and directly seƫng parameters. However, it is crucial to 

acknowledge the need for conƟnuous refinement and improvement, parƟcularly in the context 

of accurately idenƟfying anomalies, a challenge that the arƟficial neural network and clustering 

algorithms have grappled with. 

The significance of this work extends beyond the theoreƟcal realm, as it has pracƟcal implicaƟons 

for industrial pilot plant operaƟons. The applicaƟon of Industry 4.0 principles and digitalizaƟon, 

alongside the amalgamaƟon of predicƟve maintenance and ML, offers a pragmaƟc soluƟon to 

cut costs, minimize downƟme, and enhance overall plant performance. The proposed system 

architecture, encompassing both hardware and soŌware layers, demonstrates its capacity for 

effecƟve monitoring, control, and maintenance opƟmizaƟon. This integrated approach provides 

the foundaƟon for improved industrial plant management, thus contribuƟng to advancements in 

IPdM and Industry 4.0 technologies. 

In conclusion, this study has highlighted the potenƟal of combining ML algorithms with the digital 

twin model, offering a holisƟc soluƟon for predicƟve maintenance and process control in 

industrial pilot plants. The findings not only enrich the exisƟng body of knowledge but also 

underscore the pracƟcal relevance of these integrated technologies in real-world industrial 

applicaƟons. As we move forward, it is our duty to conƟnue refining and expanding these 

methodologies, ensuring their seamless adaptaƟon to the evolving needs and complexiƟes of 

industrial systems. 
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