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1 Introduc on 
The rapid advancements in Industry 4.0 are revolu onizing the food manufacturing sector 

(Mourtzis et al., 2022). One crucial technology in this transforma on is the implementa on of 

Digital Twin (DT) coupled with ML (ML). This thesis proposes an integrated approach using 

LabVIEW and Python to create a robust DT for process control in the food industry, enabling real-

me monitoring, op miza on, and predic ve analysis. This work emphasizes the importance of 

data acquisi on, modelling, control algorithms, and con nuous learning to enhance efficiency, 

quality, and safety in food produc on. 

1.1 Background and Mo va on 

The food industry, a fundamental pillar of global economies, is undergoing a transforma ve phase 

with the advent of Industry 4.0. This era of interconnected systems, digitaliza on, and automa on 

has the poten al to revolu onize food produc on, from farm to fork. Key enabling technologies 

(KETs), such as the Internet of Things (IoT), Ar ficial Intelligence, and Data Analy cs, have given 

rise to innova ve solu ons for enhancing produc vity, quality, and Safety in food manufacturing. 

However, this technological transforma on comes with its own set of challenges. The food 

industry is characterized by complex processes, rigorous quality and safety regula ons, and the 

need for precise control to ensure consistent product quality. Tradi onal manufacturing 

approaches struggle to cope with the increasing demand for customiza on, real- me monitoring, 

and predic ve insights that Industry 4.0 promises. In this context the paradigm of DTs (DT), 

represent a powerful tool which bridges the gap between the physical and digital realms. A DT is 

a virtual representa on of a physical system or process, allowing real- me monitoring, analysis, 

and op miza on. By crea ng a DT of food manufacturing processes, industries can gain valuable 

insights into their opera ons, predict poten al issues, and op mize resource u liza on, leading 

to improved efficiency, reduced waste, and enhanced product quality. In this context, the 

integra on of ML into DT works holds immense promise. ML techniques, which enable systems 

to learn from data and make informed decisions, can augment the capabili es of DTs. By 

harnessing the vast amount of data generated in food produc on processes, ML algorithms can 

provide predic ve analy cs, anomaly detec on, and adap ve control, leading to more resilient 

and responsive manufacturing. 
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1.2 Scope of the work 

The primary objec ve of this proposed work is to design, develop, and implement a 

comprehensive DT system for the food industry, leveraging LabVIEW, integra ng ML in Python, 

and adopt data communica on protocol. The work aims to address key challenges faced by the 

food industry in the era of Industry 4.0, with a focus on process control, op miza on, especially 

for industrial plants not ready for the 4.0. The specific target of this work can be summarized in 

Table 1. 

Table 1 Specific target of this work 

 

•Enable real-time monitoring of food manufacturing 
processes through the creation of a virtual DT, to visualize 

and analyze process data.

1. Real-time 
Monitoring

•Utilize ML algorithms to analyze historical and real-time 
process data, enabling predictive insights to anticipate 

potential issues, optimize resource allocation, and ensure 
consistent process reliability.

2. Predictive 
Analysis

•Implement control strategies within the DT to respond to 
dynamic process conditions, optimizing parameters in real-time 

to improve efficiency.

3. Control 
strategies

•Integrate data from various sources within the food production 
environment, including sensors and actuators, to provide a 

holistic view of the process.

4. Data 
Communication

•Provide real time information on the machine status and send 
alert to operators in case anomalies occurs 

5. Remote 
Monitoring

•Build up the paradigm of CPS  and M2M ommunication and 
data exchange between M2M and M2H, though the adoption 

of adequate softwares and data communication protocols
6.Interoperability

•Provide decision support data to operators and decision-
makers, allowing them to make informed choices in real-time.

7. Decision 
Support
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By achieving these objec ves, this works aims to allow the food industry to harness the benefits 

of DTs and ML, driving efficiency, and innova on in the ever-evolving landscape of Industry 4.0. 

1.3 Structure 

The scope of this work includes the development of a DT system for process control in the food 

industry, u lizing LabVIEW as the founda on for data acquisi on and control, and integra ng ML 

techniques in Python to enhance the system's capabili es. The focus is primarily on real- me 

monitoring, predic ve analysis, and adap ve control of food manufacturing processes, with an 

emphasis on user safety and process efficiency. 

The work will address the following key components: 

i.Data Acquisi on: The work will cover the integra on of LabVIEW for real- me data acquisi on 

from sensors, actuators, and other relevant sources within the food produc on environment. 

This component ensures the availability of accurate and mely data for analysis and control. 

ii.DT Crea on: The development of a DT will be a core aspect of the work. This virtual 

representa on of the physical food manufacturing process will enable real- me monitoring and 

control, providing insights into the process dynamics. 

iii.ML Integra on: Python will be seamlessly integrated with LabVIEW to implement ML algorithms. 

This integra on will enable predic ve analysis, anomaly detec on, and adap ve control based on 

historical and real- me process data.  

iv.Decision Support: The work will provide ac onable insights to operators and decision-makers, 

suppor ng informed choices during produc on.  

v.Model Valida on: Comprehensive valida on of the work will be conducted through simula ons 

and real-world experiments in food manufacturing se ngs, demonstra ng its effec veness in 

achieving the stated objec ves.  

vi.DT Framework for process control: Outline a DT framework suitable to adopt adequate control 

strategies into food manufacturing processes, for fluid a granulated food. 

The work will be organized into the following main sec ons. Sec on 1 provide an overview of the 

background, mo va on, objec ves, and the significance of the work in the context of Industry 

4.0 and the food industry. Sec on 2. DT shows the founda onal concepts of DTs, their types, 

benefits, and challenges with a par cular focus on food manufacturing sector. It will exploit the 

state of the art of the “bricks” to build up a Digital Twin as we intended it, which are: 

I. Simula on, i.e., the system modelling though the physical equa ons and developer 

assump ons. 
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II. Process control strategies, 

III. Machine learning algorithms, providing an overview of ML basics, its relevance in the 

food industry, and the poten al benefits it brings. 

IV. Data communica on protocols. 

Sec on 3 shows the material and methods adopted providing descrip on of the pilot plant, 

so ware adopted LabVIEW as a Control Pla orm: This sec on will explore the key role of 

LabVIEW into both models developed in term of, in data acquisi on, signals triggering, system 

modelling, process control, and data communica on.  Sec on 4 shows the descrip on of the pilot 

plant inves gated in whit sork, the digital model developed, work Valida on and Performance: 

Comprehensive valida on methods, experimental setups, performance metrics, and results 

obtained from simula ons and test carried out during the laboratory experiments. It will also 

describe the ML algorithm coded with Python and their integra on into the digital environment. 

Last sec on regards future Direc ons and Challenges: Discussion of results achieved, and 

challenges that arose in implemen ng the work. The structure outlined above ensures a 

comprehensive explora on of the DT work, from theore cal founda ons to prac cal applica on, 

while valida ng its effec veness in addressing the unique challenges faced by the food industry 

in the industry 4.0 scene. 
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2 Literature Analysis 

2.1 Digital Twin in food industry 

The concept of a DT has emerged as a powerful paradigm in the context of Industry 4.0, 

represen ng a virtual counterpart to a physical system or process (Semeraro et al., 2021). This 

digital representa on, or "twin," is more than just a simula on; it is a living en ty that mirrors the 

behaviour, a ributes, and status of its physical counterpart in real- me (Singh et al., 2021). The 

DT concept holds great significance in various industries, with its poten al to enhance efficiency, 

enable predic ve insights, and op mize opera ons (Melesse et al., 2020). In the context of the 

food industry, DTs offer a transforma ve approach to process control, quality assurance, and 

resource management (Henrichs et al., 2021a). A DT is a digital replica of an actual product., 

process, or system whose purpose is to simulate, predict and op mize the behaviours of the 

physical counterpart (Davila Delgado & Oyedele, 2021; M. Liu et al., 2021). The first defini on of 

this concept dates to the early 2000s, but already in the 60s the aerospace industry developed 

this technology using it during the Apollo 13 mission in 1970. Following the explosion of the 

oxygen tanks, the mission became a rescue opera on, and the keystone was the ability to test 

mul ple solu ons at ground level through a DT of the spacecra  (Hazrathosseini & Moradi 

Afrapoli, 2023). Only the advent of Industry 4.0, however, has made it possible to develop this 

technology from the aerospace sector to the industrial context and the management of buildings 

so that, thanks to the development of the Internet of Things, Gartner, a strategic consul ng 

company, has included the DT among the ten technological trends in 2017 (Perno et al., 2022). 

Dr. Michael Grieves, who is currently Chief Scien st for Advanced Manufacturing at the Florida 

Ins tute of Technology, first introduced the idea of the DT in 2002 while teaching a Product 

Lifecycle Management (PLM) course at the University of Michigan. He described the DT as the 

virtual, digital equivalent of a physical product. At the base of the model was the idea that each 

system was composed of a physical part present in real space and always existed, and a virtual 

counterpart containing the informa on of the previous one in virtual space. The connec on 

between the real and virtual part (mirroring or twinning) took place through a con nuous 

exchange of data and informa on (Grieves & Vickers, 2016). This concept was summarized by 

Grieves during the presenta on of the course through the image below and containing all the 

characteris c elements of the DT: real space, virtual space, data flow from real to virtual space 

and flow of informa on from virtual to real and virtual subspaces. The conceptual idea for 

Product Lifecycle Management, emphasized how the systems remained connected throughout 

the en re life cycle, crea ng a dynamic model that could change over me through the four 
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phases of crea on, produc on (manufacturing), opera on (support/support) and disposal.  In 

literature there are several defini ons of DT; one of these, taken from the whitepaper "DT: 

Mi ga ng Unpredictable, Undesirable Emergent Behaviour in Complex Systems" by Michael 

Grieves and John Vickers, Principal Technologist at NASA, defines the DT as "a set of virtual 

informa on constructs that completely describes a poten al or actual manufactured physical 

product from the microtomic level to the level macro-geometric. At its op mal level, any 

informa on that could be obtained from the inspec on of a manufactured physical product can 

be obtained from its DT." The concept is then divided into different types; DT Prototype (DTP), DT 

Instance (DTI), and DT Aggregate (DTA). The first contains all the sets of informa on necessary to 

make a physical product while the second describes a specific physical product to which a digital 

model remains connected throughout its life cycle. The aggrega on of all DTIs cons tutes the 

DTA which could be a computer construct capable of querying DTIs proac vely. They operate in 

the DT Environment (DTE) i.e., the cloud. While over the years the introduc on of the concept of 

digital model the quality and quan ty of informa on related to virtual and real space have 

progressed rapidly. Grieves, in the Whitepaper "DT: Manufacturing Excellence Through Virtual 

Factory Replica on", explains how focusing on the connec on between the real and the virtual 

allows conceptualizing, comparing, and collabora ng. Humans, unlike computers, do not process 

informa on sequen ally, but conceptualize and contextualize the problem. This aspect, during 

the process of acquiring visual informa on, reducing to symbols and le ers and visual 

reconceptualiza on, leads to a great loss of informa on and inefficiency over me (Melville et 

al., 2023). The use of the DT makes it possible to eliminate inefficient and counterproduc ve 

mental steps aimed at diminishing informa on and transla ng it from visual to symbolic 

informa on and back to visually conceptual informa on. A powerful intellectual tool is 

confronta on. However, it is inefficient because it involves analysing the physical and virtual 

product and iden fying differences (Li et al., 2022). With the digital model, you can iden fy the 

ideal feature, the tolerance corridor, i.e., the posi ve or nega ve devia on allowed before a result 

is deemed unacceptable, and the actual trend line to determine whether the physical part is in 

line with the virtual one (VanDerHorn & Mahadevan, 2021).  

Finally, another fundamental and characteris c aspect of human beings is collabora on. Thanks 

to the digital model and shared conceptualiza on, informa on about a product can be seen by 

an unlimited number of individuals without them having to share the same loca on (Lyy nen et 

al., 2016). The DT, therefore, allows the transi on from the physical world, in which human beings 

operate inefficiently, to the virtual world, to put in place a common visualiza on and to iden fy 

the difference between what is and what should be by collabora ng (Boje et al., 2020). 
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2.1.1 Structure and conceptual architecture of a DT 

In the previous paragraphs, the DT has been defined as the virtual counterpart of an object or a 

physical process capable of op mizing business performance.  The building blocks of the digital 

model can be iden fied as: 

• a series of sensors distributed along the process able to capture opera onal and 

environmental data and actuators necessary to intervene directly on the physical process and 

op mize it  

• data, i.e., aggrega ons of informa on detected by sensors from the physical world. These 

are part of the virtual world and can also contain design drawings, connec ons to external data 

feeds, and logs made by devices in the field.  

• analysis techniques able to analyse data through rou ne simula ons and visualiza ons 

and to predict changes and improvements to op mize the process  

The conceptual architecture of the digital model, can be understood as a sequence of six steps 

able to create a closed-circuit connec on between the physical and virtual parts. The six basic 

steps are summarized below. 

• Crea on: Introduc on of sensors into the physical process that can perform 

measurements that are opera onal, performance-criteria, or external measurements that affect 

opera ons   

• Communica on: helps the two-way real- me connec on between the physical and 

digital process  

• Aggrega on: the data are aggregated and inserted into an archive to prepare the next 

analysis  

• Analysis: in this phase the data is analysed and visualized  

• Deepening: once the analysis has been carried out, the in-depth phase allows to highlight 

the unacceptable differences between the physical part and the virtual counterpart and evaluate 

changes and improvements  

• Ac on: the informa on collected can proceed in the opposite direc on and be returned 

to the physical part with actuators which complete the interac on between the real and the 

virtual closing the cycle  
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The con nuous contrast with developing countries, characterized by low labour costs, has pushed 

the most advanced countries to innovate the concept of factory toward Smart Manufacturing 

aiming to op mize, through digital, products and processes (B. Wang et al., 2021). The DT Shop-

Floor is defined as the applica on of the digital model to produc on lines in the industrial field 

(H. Zhang et al., 2019). The tradi onal produc on process begins with the genera on of a 

produc on plan based on orders and historical data and is followed by the actual produc on. At 

the end of this the products are inspected to verify that they are compliant for transport in the 

warehouse. All informa on generated during the process is kept in files for the next cycle. For 

this reason, the func on of virtual space is limited and tends to overlap with the physical world 

by focusing on the collec on, storage, and control of data, but ignoring simula on, op miza on, 

and predic on informa on. What is missing is effec ve synchroniza on between virtual space 

and real space (Tao et al., 2022). The DT Shopfloor consists of four main components: the Physical 

Shop-Floor (PS), the Virtual Shop-Floor (VS), the Shop-Floor Service System (SSS) and the Shop-

Floor DT Data (SDTD). The model sees at the center a database (SDTA) which receives and sends 

informa on to the other components present. The physical part (PS) and the virtual counterpart 

(VS) interact con nuously, and the exchanged data is sent to the central database, which in turn 

exchanges the informa on with the Shop-Floor Service System. The la er houses all the company 

informa on systems for the control, management, and planning of produc on. A er that, the 

informa on returns to the physical part in the form of commands Product Design (DTPD) is used 

to create a DT of a product and use the informa on obtained to support the product design 

process. Nowadays the success of a product depends more and more on the ability to manage 

the data received rela ng not only to the product, but also to the context in which it is used (Lee 

& Lee, 2015). The term Big Data refers to a very extensive collec on of data in terms of volumes, 

speed, and variety to require specific technologies and analy cal methods to be analyzed 

(Gandomi & Haider, 2015). Big Data analysis aims to extract useful informa on and process a 

mul tude of disconnected data. This allows you to create a product based on the Big Data 

collected and their analysis (Mikalef et al., 2018). In this way, data-driven product design differs 

from tradi onal product design for several reasons; Design is no longer based on designers' 

experience in iden fying relevant data, tradi onal methods are structured to process organized 

and clear data, and finally, they are unable to respond to changes in data of interest. The DTPD 

consists of three main parts: physical en es in real space, virtual en es in virtual space and 

connec on through a con nuous exchange of data in a bidirec onal way. During design and 

produc on, virtual model parameters are transferred to the produc on line, while virtual models 

are processed into real physical products genera ng a closed loop. 
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The extension of the physical world, the world of atoms, to the virtual world, the world of bits, 

has led to the crea on of DTs capable of simula ng the behaviour of the physical counterpart. 

The usefulness of the DT is transversal to all manufacturing industries opera ng in various 

industrial sectors up to the crea on of smart buildings and ci es (Novák & Vyskočil, 2022). With 

the DT, businesses can work to eliminate unplanned down me and reduce maintenance costs to 

improve produc vity and efficiency (Errandonea et al., 2020). 

Virtual space analy cs offers a strategic opportunity to:  

• an cipate and prevent problems  

• carry out preven ve maintenance ac vi es based on real- me data provided by sensors  

• resolve issues promptly to ensure that the physical part works as intended  

• Improve physical twin performance by con nuing tes ng in real-world situa ons and 

upda ng so ware in the product  

• carry out durability tests by accelera ng the passage of me to evaluate several years of 

opera on in a few hours  

A DT is a dynamic, virtual representa on of a physical object, process, or system that is created 

and maintained through the con nuous exchange of data between the physical en ty and its 

digital counterpart. The DT captures real- me informa on, behavior, and interac ons of the 

physical en ty, providing a pla orm for monitoring, analysis, simula on, and control. It allows 

stakeholders to gain a deep understanding of the physical system's behavior, enabling real- me 

decision-making, op miza on, and predic ve insights (Jones et al., 2020). 

Real- me Synchroniza on: The DT concept relies on real- me synchroniza on between the 

physical system and its virtual counterpart. Data from sensors, actuators, and other sources in 

the physical world are con nuously fed into the DT, ensuring an up-to-date representa on. 

Two-Way Communica on: The DT is not a sta c model but an interac ve en ty. Changes in the 

DT, such as simula ons, op miza on algorithms, or control ac ons, can influence the physical 

system. Likewise, data from the physical system can impact the DT, leading to a con nuous 

feedback loop. 

Simula on and Analysis: The DT enables simula ons and analysis of the physical system's 

behavior under different condi ons. This capability allows operators to test scenarios, predict 

outcomes, and iden fy poten al issues before they occur in the real world. 
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Predic ve Insights: By leveraging historical and real- me data, the DT can provide predic ve 

insights. ML algorithms can analyze this data to iden fy pa erns, detect anomalies, and forecast 

future behavior, helping operators make informed decisions. 

Op miza on and Control: The DT serves as a pla orm for op miza on and control strategies. 

Algorithms within the DT can adjust parameters in real- me to improve efficiency, quality, and 

resource u liza on. 

Mul -Disciplinary Applica on: DTs are applicable across various industries, including 

manufacturing, energy, healthcare, and, in our case, the food industry. They offer a holis c 

approach to understanding complex systems and processes. In the context of the food industry, 

the DT concept holds immense poten al for improving produc on processes, ensuring product 

quality, minimizing waste, and adap ng to dynamic market demands. By crea ng a DT that 

integrates seamlessly with LabVIEW for data acquisi on and control and harnesses the power of 

ML in Python, we aim to create a robust work that empowers the food industry in the era of I4.0. 

DTs come in various types, each tailored to specific applica ons and domains. Understanding 

these types is essen al for selec ng the appropriate approach when crea ng a DT work for the 

food industry. In our context, we will explore three primary types of DTs: product twins, process 

twins, with a focus on their relevance to the food manufacturing sector. A product twin focuses 

on crea ng a virtual representa on of a specific physical product. It allows for detailed modelling, 

analysis, and simula on of the product's behavior, design, and performance throughout its 

lifecycle. In the food industry, a product twin could be used to op mize the design and 

manufacturing process of a specific food product, ensuring it meets quality standards, nutri onal 

requirements, and consumer preferences. Recipe and Formula on Op miza on: A product twin 

can simulate different ingredient combina ons and processing techniques to op mize the taste, 

texture, and nutri onal content of a food product. Packaging Design: The twin can assess 

packaging materials' effec veness in preserving freshness and preven ng contamina on. Quality: 

Product twins can be used to predict the shelf life of perishable food items and iden fy factors 

affec ng product quality. Process twins focus on replica ng the behavior of a manufacturing or 

produc on process. They enable real- me monitoring, analysis, and control of the process, 

allowing operators to op mize parameters, detect anomalies, and ensure efficiency. In the food 

industry, a process twin could be applied to op mize food processing, packaging, and distribu on 

processes. Real- me Monitoring: Process twins can monitor cri cal parameters (e.g., 

temperature, humidity, pressure) during food processing to ensure that the process adheres to 

safety and quality standards. Energy Efficiency: By analysing process data, process twins can 

iden fy energy-intensive stages and suggest op miza ons to reduce energy consump on. 



 
14 

Predic ve Maintenance: Process twins can detect signs of equipment failure, enabling proac ve 

maintenance to prevent produc on disrup ons. 

As the food industry embraces the transforma ve wave of Industry 4.0, it encounters a mul tude 

of benefits that can revolu onize processes, enhance efficiency, and improve product quality. 

However, this journey is not without its challenges, especially in an industry with stringent 

regulatory requirements, complex supply chains, and the need for maintaining consumer trust 

(Leng et al., 2022). Let us explore both the benefits and challenges that the food industry faces 

in the era of Industry 4.0. Those can be summarized as follow: 

i. Improved process Control: Industry 4.0 technologies, such as DTs, enable real- me 

monitoring and analysis of produc on processes. This results in be er quality control by 

detec ng anomalies and ensuring that products meet stringent quality standards. 

ii. Innova on: The integra on of emerging technologies like IoT, AI, and ML encourages 

innova on in products.  

iii. Workforce Training: Industry 4.0 requires a skilled workforce capable of opera ng, 

maintaining, and innova ng with new technologies. Upskilling exis ng employees and 

a rac ng new talent are ongoing challenges.  

The benefits of Industry 4.0, par cularly when coupled with the DT work and ML, can significantly 

outweigh the challenges, leading to a more efficient, responsive, and robust food industry 

(Guruswamy et al., 2022). The introduc on of Digital Twin (DT) models into the food processing 

industry represents a significant step forward in op mizing produc on, enhancing product 

quality, and ensuring efficient resource u liza on (Verboven et al., 2020). As we delve deeper 

into the prac cal applica ons of DT within this sector, it becomes evident that this technology 

has the poten al to revolu onize food manufacturing. While previous studies have explored the 

theore cal benefits and challenges of DT models in the food industry, few have ventured into the 

realm of real-world implementa on. This thesis seeks to bridge that gap by presen ng two 

compelling case studies that showcase the successful integra on of DT models with control works 

in actual food processing plants. These case studies provide concrete evidence of the posi ve 

impact that DT technology can have on various aspects of food produc on. In addi on to 

presen ng these case studies, we offer a structured approach to assist food industry 

professionals in implemen ng DT-enabled control systems effec vely. This approach draws from 

our experiences and observa ons from the case studies and aims to explain the complexi es of 

incorpora ng DT models into food processing opera ons, aiming to promote a prac cal adop on 

of DT technology within the food industry. By providing real-world examples, guidance, and a 

work for implementa on, we aim to allow food manufacturers to embrace DT models and 
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leverage their poten al for transforma ve change. As the industry con nues to evolve, those 

who harness the power of digital twin technology will undoubtedly lead the way towards a more 

efficient, agile, and quality-driven future in food produc on. A mathema cal model configured 

as a Single Input Single Output (SISO) to control the fluid level of a coupled tank process was 

developed by(Naha & Das, 2024). They have then applied both conven onal and advanced 

control systems, including PI, fuzzy, neuro and neuro-fuzzy models, which were designed and 

simulated for the plant under examina on using MATLAB/Simulink. As a result, compared to 

other controllers applied to this nonlinear system, the developed fuzzy controller tracked the 

setpoint faster (Messai et al., 2011) reported an autonomous, mul -farm, produce drying system, 

doubling as an oven using a Raspberry PI and an inexpensive PLC. In this case, the user can control 

both oven temperature and humidity from an easy-to-use web interface available on a mobile 

device, for example, or on the oven's human-machine interface (HMI). The results show that the 

system designed can successfully control both the temperature and humidity of the dehydrator. 

(M. Wang et al., 2023) analyses cooking, which is not a highly automated opera on, especially at 

the household level. They have designed a prototypical control system that uses PLCs, computers, 

and electromechanical devices to assist in cooking two typical Indian foods, including pancakes 

and rice cakes. Instead, (Rostam et al., 2023) developed a closed-loop PID control system with a 

self-tuning func on for temperature monitoring using SCADA-integrated PLCs. This is difficult to 

achieve with tradi onal control methods. Alterna vely, the PLC is modelled using ladder logic 

(Alphonsus & Abdullah, 2016). As Industry 4.0 technology becomes more prevalent, data driven 

PID control systems are being superseded by more accurate types of control (H. Yu et al., 2020). 

Predic ve models, in which process variables are analysed and op mized using predic ve 

algorithms, have also been used in a model predic ve controller (MPC) approach (Afram et al., 

2017). For example, (Bagyaveereswaran et al., 2016) use MATLAB to design a MPC algorithm that 

compares its performance with standard PIDs and cascading PIDs. Distributed MPCs, which aim 

to consider the inherent modularity of the process, have also been proposed for plant-wide 

control (Fortela & Mikolajczyk, 2023) These systems were designed to control each module with 

a dedicated controller which uses locally available informa on and relevant knowledge gained 

through interac on with the other controllers(van Niekerk et al., 2023).  

Recently, process control approaches with the general goal of op mizing manufacturing 

processes in real me (Stavropoulos et al., 2023) or op mizing quality control (Gao, 2023) have 

moved on to introducing DT models in several areas. DT models are effec ve not only for 

implemen ng model-based control, but also for crea ng a closed-loop control system because 

they allow real- me integra on of sensor data, model predic ons, and control algorithms. 

According to these issues, (C. Zhang et al., 2020) propose a comprehensive study for a 
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knowledge-based DT manufacturing cell to support autonomous manufacturing through an 

intelligent control policy that incorporates simula on and predic on model features. 

(Karagiannopoulos et al., 2023) for instance, designed a DT control system with the goal of 

op mizing the manufacturing and remanufacturing processes typical of WEEE logis cs. Several 

researchers have proposed an outline of the poten al of DT for food process modeling in the 

food industry, the focus of this paper. For example, (Saran noudis et al., n.d.) examined the 

applica on of DT in the food processing industry, with a par cular focus on the poten al for using 

these models to op mize produc on planning. It also highlights key challenges, opportuni es, 

and unique needs of food processing versus other process sectors.(Kannapinn et al., 2022) 

further suggested that DT systems had the poten al to improve conven onal control methods in 

heat-processing by simula ng a process in real me, thus replacing informa on collected by 

sensors when this was not available or effec ve. In fact, their proposal was for a DT model for 

autonomous food processing. (Henrichs et al., 2021b) inves gated the possible use of DT in the 

food industry. They have provided a classifica on of the available implementa ons as well as the 

challenges for the applica on of DT in this sector. However, there are few studies describing the 

use of DT models in the food industry. For fruit digital models, the only significant case is provided 

by (Defraeye et al., 2021), who model the thermal proper es of mango fruit during cold chain 

transport. Regarding the modelling of food processes, most of the exis ng inves ga ons have 

proposed mathema cal or simula on models having the capability to be turned into a DT tool for 

process control, but the implementa on part is o en missing. For example, (Bianco et al., 2022) 

designed semiempirical mass and heat transfer models for dehydra ng and cooling green 

vegetables. As a result of their study, explaining how the proposed model can be used to develop 

a DT framework for this process in future development. Similar considera ons were made by (Gai 

et al., 2023); they proposed a mathema cal model for the simula on of circula ng fluidized bed 

gas-solid flow systems. Similarly, (Zewdie et al., 2022) developed a heat and mass transfer model 

to predict the distribu on of moisture and temperature during the ripening process of onions, 

which, if not managed appropriately, can lead to weight loss during storage. Finally, they 

suggested the future use of their results in a DT system model of the process. An excep on is 

(Maheshwari et al., 2022),who developed a DT model of a food processing plant producing ice 

cream. They found that DT increased the performance of the exis ng system in many ways, such 

as plant availability, engineering effec veness, and worker effec veness. However, the study 

focused on evalua ng the ice cream company's KPIs using a DT model of the process, while the 

control was not embedded in the model. In a related example from the pharmaceu cal sector, 

(W. Yu et al., 2022) reported on DT modelling of drying processes. They provided a framework 

that incorporates machine learning strategies and collects data from mul ple in-line sensors in 
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the equipment. This resulted in significant savings for the pharmaceu cal company, as the control 

system automa cally iden fied the op mal endpoint for the drying process. Therefore, the 

scien fic literature focused on the implementa on of DT models in food processing is limited. 

Furthermore, there are few examples of DT methods linked to process control systems. In this 

review, there is a consensus among the authors that the applica on of DT in the food sector is 

s ll at an early stage (Nychas et al., 2021). Notably, a limited number of applica ons have 

described how to retrieve data from physical to virtual objects (Jiang et al., 2021). Against this 

background, the work (Maheshwari et al., 2022) is the only study that has formalized an 

architectural work for the implementa on of a DT model in a food context. Based on a case study 

of an ice cream factory, the authors proposed a set of basic steps for designing and implemen ng 

a DT model, focusing on management concerns and process produc on metrics. Although there 

are other papers in the literature (Kober et al., 2023), these deal with more general aspects 

related to the poten al and acceptance of DT without addressing the concrete implementa on. 

However, due to the specific characteris cs of the food industry (Tancredi et al., 2022a) and the 

presence of specialized facili es, a rigorous methodology for DT model implementa on is 

required. In prac ce, DT models can also be difficult to implement independently, as they rely on 

accurate modelling of the real process. For effec ve control of the system, (Bo ani et al., 

2020)real- me communica on capabili es should also be provided. The purpose of this paper is 

to present two case studies that illustrate the applica on of DT systems in the food industry. In 

addi on, the DT models for the two food plants were integrated into a control system. Finally, a 

general approach for the implementa on of DT-based control systems in the food industry was 

outlined based on the results of the case studies. 

2.2 Food industry process control 

Several factors including the final product, technological procedures used in the food companies 

can differ (Earle, 1997). However, there is a common necessity for designing food process control 

systems, which includes defining the sensors, actuators, controllers, and so ware (Morgan & 

Haley, 2019). Different forms of control systems, including feedback control, feedforward control, 

and model-based control, have been examined in the ground-breaking work by (McFarlane, 

1995). The first type is known as "closed loop" control and denotes a kind of control that u lizes 

comprehension of the system's behaviours or output for changing and adap ng the input signals 

to produce the desired results.  The specific criteria and proper es of the process being regulated 

determine the control system to be used. In fact, there are numerous applica ons of PID models 

and PLC u lized in the food sector for process control in the literature. A PID controller was 



 
18 

designed for a PLC controlled pasteurisa on system (Torres & Galvis, 2017). A Model Predic ve 

Controller (MPC) for the process was created using MATLAB. A mathema cal model for 

controlling the fluid level of a couple tank process has been developed using a Single Input Single 

Output configura on (Lakshmi et al., 2022). PI, fuzzy, neuro, and neuro-fuzzy models developed 

and tested for use in control systems were then used alongside more sophis cated control 

systems (Weldcherkos et al., 2021). The simula on results showed that the developed fuzzy 

controller can track setpoints more quickly than previous controllers used on this nonlinear 

system. (Oluwaleye et al., 2021) have concentrated on crea ng a self-contained, mul -farm 

produce dehydrator that doubles as an oven and uses a Raspberry PI. The user should be able to 

easily adjust the temperature and humidity of the drying chamber using a user-friendly online 

interface that may be accessed via a mobile device or the dehydrator's human-machine interface. 

They discovered that the developed system could successfully control the dehydrator's 

temperature and humidity. (Rao et al., 2021) have examined the cooking process as well, 

considering that it benefits from li le automa on, especially at the domes c level (household 

cooking). To facilitate the cooking of two common Indian food items, such as pancakes and rice 

cakes, they have created a prototype control system using PLCs, computers, and electro-

mechanical components. (Priyanka et al., 2021; Soyguder & Alli, 2010) , on the other hand, used 

PLC combined with SCADA to construct a closed-loop PID control system for temperature 

monitoring, which is difficult using conven onal control approaches. Data-driven PID control 

systems can be replaced by more precise forms of controllers at the cu ng edge, concurrently 

with the adop on of Industry 4.0 technologies (Olaizola et al., 2022; Wakitani et al., 2019). The 

Model Predic ve Controller (MPC) method, which uses a predic ve algorithm to assess and 

op mize process variables, has also been used to implement predic ve models (Maxim et al., 

2018). For instance, (Khan et al., 2017) developed a fuzzy logic model that is integrated into a PLC 

real- me interface for process variables in nonlinear domains. A MPC algorithm was created 

using MATLAB, and its performance is contrasted with that of conven onal PID and PID cascade 

controllers. 

2.3 Machine Learning in food industry 

The food industry is one of the most important and growing industries in the world, with a huge 

variety of products and produc on processes that require strict control to ensure quality, food 

safety and efficiency (Trienekens & Zuurbier, 2008). In recent years, Machine Learning (ML) has 

emerged as a key technology for improving produc on processes and op mizing opera ons in 

the food industry (Kumar et al., 2021). This ar cle will explore the different types of machine 
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learning used in this industry and their poten al uses in produc on process control, predic ve 

maintenance, and process monitoring. Figure 1shows the taxonomy of ML typologies: 

 

Figure 1 ML Taxonomy 

Supervised learning involves training machine learning models using labelled data. It requires the 

analysis of the data collected on field, by an analyst which assign a category or a status, i.e., the 

label to each row of the data frame collected, it can be used for predic on.  While unsupervised 

learning read the data collected and iden fy pa erns, this kind of algorithm are useful to find 

rela onships between the collected parameters. Reinforced learning can be employed for 

op mizing decision-making processes. In the food industry, it can be used to op mally manage 

supply chains and product distribu ons. ML can be used in produc on process control in several 

ways, such as process op miza on, ML-based control systems can automa cally adjust 

produc on process parameters to maximize efficiency and reduce down me (Ayvaz & Alpay, 

2021). Predic ve analysis is crucial to avoid costly down me and ensure produc on con nuity 

(X. Han et al., 2021). ML can contribute in various way, such as: 

 Condi on Monitoring: by monitoring data collected on the filed thought sensors data 

allowing to have a real me machine status, rather than iden fy early signs of impending failures, 

enabling preven ve interven ons.  

 Predic ve Maintenance: ML can be used to schedule the maintenance me in an op mal 

produc on slot, such as machine format changes, to minimize down me. 

Machine learning 
Alghoritms

Reinforced 
Learning

Supervised

Classification Regression

Unsupervised

Clustering Association
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 Anomaly Detec on: algorithms can predict and display trigger alert to users, in case of 

devia ons from the established parameters occurs, helping to prevent process failure and or 

cri cal issues. 

2.4 Data communica on protocols 

Data communica on protocols allows to create the linkage between the physical layer and the 

digital one (C. Han et al., 2013). A wide variety of data communica on protocols can be adopted 

in the industrial field (Caro, 2016). Those are: 

 Modbus: A widely used serial protocol for communica on between industrial automa on 

devices, such as PLC (Programmable Logic Controller) and sensors. 

 PROFINET: An industrial Ethernet protocol used for real- me control and monitoring of 

industrial devices, o en used in industrial automa on applica ons. 

 TCP/IP: An industrial Ethernet protocol based on open standards that enables 

communica on between industrial devices from different vendors. 

 OPC UA (Unified Architecture): A communica on protocol and interoperability 

framework used for sharing data and informa on between industrial devices and control systems. 

 CAN (Controller Area Network): A serial protocol used in automo ve and industrial 

applica ons for connec ng distributed devices. 

 Profibus: A serial communica on protocol used for control and monitoring of industrial 

devices, o en used in process automa on applica ons. 

For the cases under examination, each pilot requires a specific data communication protocol, i.e., TCP/IP and Modbus. The 

choice of the proper protocol has been established to fit with the compatibility of the already-installed machine components. 

The TCP/IP protocol is a suite of communication protocols that regulate the transfer of data between devices within a 

computer network or between different networks. They provide commands and fundamental principles for the operation of 

the Internet. The protocol is composed of a layered structure, each of which has a specific task (King & Hunt, 2000). These 

layers, listed in  

Table 2 include: 
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Table 2 TCP/IP protocol layers 

 

This protocol enables communica on between devices on the network through the transfer of 

data packets. These packets contain data, des na on informa on, and other metadata. The IP 

protocol manages packet rou ng, while the TCP protocol manages reliability and flow control 

during data transmission (Abdelsalam et al., 2017). 

  

This stratum oversees the physical transmission of data across a communication medium, such as cables or radio frequencies. It 
encompasses protocols like Ethernet and Wi-Fi, governing the tangible aspects of data transfer.

Link Layer:

This layer writes the navigation of data packets within a network, endowing devices with unique IP addresses and determining the
optimal route for their transit. The predominant protocol operating at this stratum is the Internet Protocol (IP), serving as the 
network's cartographer.

Network Layer:

This level delivers secure, connection-oriented correspondence between two devices. At this stratum, the Transmission Control 
Protocol (TCP) plays a pivotal role, managing error correction, data sequence, and the retransmission of information.

Transport Layer:

This layer hosts application-specific protocols, such as HTTP for the web, SMTP for email, and FTP for file transfer. These protocols 
define how applications communicate and exchange data.

Application Layer:
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3 Programming environment 

3.1 LabVIEW Environment 

Na onal Instruments developed the robust and popular graphical programming environment 

known as LabVIEW (Laboratory Virtual Instrument Engineering Workbench) (NI). It is a useful tool 

in many different industries, including research, engineering, manufacturing, and test 

automa on, because it is specifically made for developing custom measurement and automa on 

systems. In a visually intui ve environment, LabVIEW enables users to create applica ons that 

involve data acquisi on, instrument control, signal processing, data analysis, and system 

integra on. The use of graphical programming (G-Code) in LabVIEW is one of its dis nguishing 

characteris cs. Users can build so ware by dragging and connec ng graphical nodes, also known 

as Virtual Instruments (VIs). The so ware employs a dataflow model, which means that rather 

than following a set of sequen al instruc ons, a VI’s execu on is determined by the availability 

of data. As a result, complex data processing pipelines can be represented more simply and 

efficiently in parallel. NI hardware, such as data acquisi on (DAQ) devices and instrument control 

modules, is frequently used in conjunc on with LabVIEW. Users can easily interface with a variety 

of sensors, actuators, and measurement devices thanks to this ght integra on. Also possible is 

the crea on of reusable VIs. This modular approach encourages best prac ces in so ware 

engineering and speeds up development. Nevertheless, LabVIEW offers a variety of tools for data 

analysis, visualiza on, and signal processing. Applica ons involving measurements, control 

systems, and scien fic research all require these capabili es. Despite being known for its 

graphical programming, LabVIEW also supports the integra on of other programming languages, 

such as C, C++, and Python. Users can use pre-exis ng code or benefit from specialized libraries 

thanks to this feature. The following is a summary of the key elements involved in the 

development of the DT discussed in this work: 

 Test and Measurement: LabVIEW is commonly used to create automated test systems 

for quality control, product tes ng, and valida on. 

 Data Acquisi on: LabVIEW's data acquisi on capabili es are ideal for gathering and 

analyzing data from sensors, instruments, and industrial processes. 

 Control Systems: It is used to design and implement real- me control systems for various 

industries, including manufacturing and robo cs. 

 Algorithm’s integra on: LabVIEW is a valuable tool in research se ngs, enabling 

scien sts to prototype and experiment with different algorithms and models. 
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 Academic Use: LabVIEW is used in universi es and educa onal ins tu ons to teach 

principles of data acquisi on, control systems, and signal processing. 

LabVIEW's combina on of visual programming, hardware integra on, and extensive libraries 

makes it a versa le pla orm for engineers, scien sts, and developers working on a wide range of 

measurement and automa on projects. 

Virtual Instruments are programs wri en in LabVIEW (VIs). The reason these programs are called 

"instruments" is that they operate by presen ng the user with an interface comparable to a 

measuring instrument; on the other hand, the word "virtual" describes the interac on as taking 

place with a running program rather than a specific physical equipment. 

A VI consists of three fundamental parts: 

 Front Panel 
 Block Diagram 
 Icon/Connector 

To create a VI program, it is necessary to work on both the Front Panel and the Block Diagram to 

enable the so ware to process inputs, execute the program, and provide output data. 

The window that serves as the interface between the user and the program is called the Front 

Panel, Figure 2, and it allows for interac on much like with a conven onal instrument. The Front 

Panel includes indicators, which are output variables whose values are set by the program and 

cannot be changed by the user, and controls, which are modifiable input variables through the 

Front Panel. Using a keyboard or mouse, users can interact with the Front Panel to enter 

numerical numbers, strings, or modify how bu ons and indica ons appear visually. 

 

Figure 2 Front Panel LabVIEW 

The Block Diagram,Figure 3, contains the code expressed in graphical language (G-Code) and 

consists of: 
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 Nodes: elements with inputs and outputs capable of performing opera ons. Which are 

the func ons, instruc ons, operators, and subrou nes in text-based programming 

languages, wri en in G-Code 

 Wires: lines connec ng the nodes, allowing the exchange of informa on. These wires 

have different colours and thicknesses depending on the data being exchanged. If the 

informa on you want to connect is incompa ble, the wires appear dashed. 

 

Figure 3 Block Diagram in LabVIEW 

In the VI, the Icon/Connector,Figure 4, is the final essen al component. To be more precise, the 

icon is a graphic symbol that turns the program into an item that complete the VI.  The connector 

creates the connec on between the icon's regions and the Front Panel's controls and indicators. 

Each VI can be used within another program to create a subrou ne, i.e., a sub-VI. The sub-VI can 

be connected to other nodes, and in this case, the connector establishes a direct correspondence 

between an area of the icon and one of the input or output elements of the Front Panel 

associated with the sub-VI.  

 

Figure 4 Icon/Connectorin LabVIEW 

The Block Diagram, as men oned earlier, contains the code of the so ware and is created using 

a graphical language. Right-clicking on the block diagram opens a window called the Func ons 

Pale e, which contains all the structures and func ons provided to create the program. These 

can be thought of as "blocks," which are graphical elements, each represen ng a specific 

func on. To create the code, it's necessary to connect various connectors and indicators to nodes 

or actual func ons through a wiring opera on. Measurement I/O func ons let the system to 

communicate with external devices like pressure or temperature sensors, as well as data 

acquisi on, data storage and data processing equipment like analog-to-digital converters (A/D). 

Measurement devices and so ware can share informa on through input and output interface. 

In par cular, the data acquisi on/genera on driver, denoted by the icon "NI DAQmx" in the 
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Measurement I/O menu, can read input and sending output signals, among other func ons. The 

measurement, produc on, and processing of data can be accomplished by programming these 

rou nes or by using a block called "DAQ Assistant," shown in Figure 5, which is included in the NI 

DAQmx sec on's Measurement I/O menu. A window for ini alizing the Data Acquisi on block 

opens once users click and drag the DAQ Assistant symbol onto to the Block Diagram. This enables 

the configura on of the measurement type, measurement channels, number of samples to be 

acquired, and signal of interest. 

 

Figure 5 DAQ Assistant block 

Once the informa on is inpu ed, the DAQ proceeds with building the VI, which means crea ng 

the programming code for the acquisi on/genera on of that specific signal. Through I/O 

measurement systems, it is possible to create code for reading and processing both input and 

output signals using a data acquisi on module, and controlled device, which are the hardware 

components of the LabVIEW environment.  

The main components are: 

 CompactDAQ. 

 Analog Input module 

 Analog Output module. 

Na onal Instruments created the PC-based modular data collec ng pla orm known as 

CompactDAQ (cDAQ). On this PC, LabVIEW so ware is loaded on a Windows embedded system 

operator.  This device allows to analyse and acquire data from different types of sensors, such as 

digital or analogue one, and trigger output signals useful to control drive. 

The cDAQ can be connected to a laptop or desktop which, in turn, will run the so ware that 

configures, acquires/generates and records the data from the cDAQ itself. As already men oned, 

this pla orm is modular, and this allows configura on with various modules for the 

acquisi on/genera on of different types of data rela ng to different sensors such as 

thermocouples or RTD, pressure transmi er, accelerometers with dynamic acquisi on and an 

IEPE (Integrated Electronics Piezo-Electric) excita on, current transmi er, whit 4-20mA signal 

output , or voltage transmi ers with an output signal of 0-5V up to  0 –10V.  

cDAQ consists of two main components: 
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 Chassis: In charge of coordina ng data genera on and acquisi on from the modules, 

linking them, and interac ng with a computer system.  

 I/O Modules (Moduli I/O): These modules facilitate the connec on between sensors and 

the cDAQ system. They are available with both digital and analogue inputs and outputs, 

as well as signal condi oning and integrated analog-to-digital converters. 

The CompactDAQ-9133 data collec ng system, displayed in Figure 6, was employed in the 

crea on of the digital twin that is the subject of this paper. This system controls the ming, 

synchroniza on, and data transfer between a computer integrated into the system itself and a 

series of I/O modules. It comes with 16 GB of non-vola le memory and a dual-core Intel Atom 

processor. A maximum of eight I/O modules featuring digital and analogue inputs and outputs, 

counter/ mer capabili es, and a Controller Area Network (CAN). 

 

 

Figure 6 CompactDAQ-9133 

For the data acquisi on of the signals from the fields, i.e., the sensors, the module used and 

connected to the cDAQ is the NI-9208, 4-20mA current input module, Figure 7.  

 

Figure 7 NI-9208 module and corresponding pinouts 
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While the module for the signal triggering is an AO voltage generator called NI 9263, it comes 

with four channels output with a digital to analogue converter capable of providing 0-10V signal 

output. 

 

Figure 8 NI-9263 module and corresponding pinouts 
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4 Case studies 

4.1 Pasteuriza on pilot plant  

4.1.1 Plant Descrip on 

The implementa ons, simula ons and experiments analyzed in the following chapters refer to a 

pilot plant located at the Technopole of the University of Parma, the headquarters of the 

Interdepartmental Centers for Industrial Research (Tancredi et al., 2022b). The term pilot plant 

refers to a small-medium size process plant whose task is to replicate the behavior of large 

industrial plants. The size and capacity of these plants are intermediate laboratory scale and 

industrial plant. The transi on from laboratory scale to the industrial one, called scale-up, is 

performed with a view in reducing costs. A pilot plant is designed to simulate real machinery 

behavior and analyze processes from a predic ve perspec ve to prevent and solve issues that 

arise from the tests carried out. It also allows for modifica ons, such as installing IoT sensors, 

data communica on systems, internet connec ons, and hardware components for a 4.0 plant. 

The plant examined in the project is a prehea ng system for a food fluid, called process fluid, 

through the transfer of heat by a service fluid, in our case, water. The prehea ng treatment is 

carried out before the microbial inac va on, performed thought a Pulsed Electric Field (PEF) 

treatment which guarantees the organolep c characteris cs of the product avoiding a thermal 

shock and the degrada on of the food itself. The Figure 9 shows the Piping and Instrumenta on 

Diagram (P&ID), which is a drawing of the interconnec ons between pipelines, equipment, and 

instrumenta ons. 
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Figure 9 P&Id Pasteuritazation pilot plant 

Piping and instrumenta on diagrams play a key role during plant design, during the detailed 

design of control systems, and for opera onal and safety inves ga ons, such as the Hazard and 

Operability study (HAZOP). 

P&ID shows the following plant components:  
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Table 3 P&ID components 

Each component has standardized symbols that are connected to each other through lines that 

represent piping and arrows that iden fy the fluid flow inside the piping itself. 

The symbols used can comply with diverse types of standards, among the most important are the 

ISA S5 (Instrumenta on, Systems, and Automa on Society) and the BS 1646 (Bri sh Standards 

Ins tu on). It should be noted that this flow diagram differs from the actual pilot plant in that 

the treated product does not return to the storage tank as shown in the P&Id. 

Despite this, the P&ID shown shows the direc on of the mass flow and how the heat exchange 

between the food fluid and the service fluid takes place.  

The product, stored in a tank at room temperature (TK-01), is pumped through a tube in tube 

countercurrent heat exchanger via a double screw pump (P-01). The flow meter (FE-01), placed 

immediately a er the pump, has the task of measuring the flow rate of food fluid flowing inside 

the pipes. Subsequently, the product arrives inside the heat exchanger in which the prehea ng 

takes place thanks to the counter-current passage of the service fluid, i.e., water previously 

heated by a steam generator and introduced into the system by a centrifugal pump. The product, 

once heated, reaches the next phase of microbial inac va on, carried out through an electrical 

impulse treatment (PEF – Pulse Electric Fields). PEF technology has the advantage of killing 

microorganisms and, at the same me, maintaining the flavor, color, texture, and nutri onal 

values of unprocessed foods becoming an important alterna ve to the heat treatments normally 

used. In the following paragraphs, the main components of the system will be analyzed in more 

detail, i.e., the product transfer pump, flow meter, centrifugal pump, steam generator, heat 

Mechanical equipment 

Control instrumentation 

Valves 

Piping 

Drainage, fittings, and purges 

Direction of mass flows 

Interconnections between systems 
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exchanger and temperature and pressure sensors. The following Figure 10 show a photograph of 

the plant present in the university and its design. 

  

Figure 10 Pilot plant located in Technopole. 

4.1.2 Descrip on of the main components  

4.1.2.1 Twin screw pump  

The fluid food is manually introduced into the system and stored in a 300-liter storage tank. Then 

moved through the piping by a twin-screw pump. This type of pump can be classified as 

volumetric one, has a body that houses two rota ng screws. The chambers that are formed 

between the screws and the adjacent components allow the movement of the fluid from the 

suc on side to the exhaust one. Reverse flow can be achieved by switching the sha 's direc on.  

Figure 11 below shows the diagram of a double screw pump. The pump in the system is a 

Bornemann Screw Pump SLH4080. 
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Figure 11 Twin Screw Pump 

4.1.2.2 Heat exchanger   

The heat exchanger (HE) is the key component of the machine. It allows heat exchange between 

the food product and the water. The la er, a er being heated, releases heat to the product and 

exits the exchanger at a lower temperature than the ini al one. 

There are different types of heat exchangers: 

• mixing heat exchangers: the fluids are the same and mix with each other.  

• surface heat exchangers: the fluids are separated by an impermeable surface to avoids 

their mixing.  

The HE installed in the plant is part of the second category. It consists of six tubes formed, in turn, 

by two concentric ducts, (Figure 12); The service fluid flows into the annular sec on, while fluid 

food flows into the inner sec on of the HE. The heat is transferred through conduc on to the 

wall that separates the fluids. 
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Figure 12 Tube in Tube Heat Exchanger 

Tube in tube heat exchangers can be classified as:  

• Equicurrent: fluids flow in the same direc on.  

• Countercurrent: fluids flow in the opposite direc on. 

In the case under examina on, heat transfer takes place between fluids flowing in opposite 

direc ons. Table 4 below, shows the main dimensions of the HE:  

Table 4 Tube in Tube Heat Exchanger Dimensions  

Descrip on  Measure udm 

Pipe Length   4000  mm  

External Pipe: Outer diameter  76  mm  

External Pipe: Inner Diameter  73  mm  

Internal Pipe: Outer diameter  41  mm  

Internal Pipe: Inner diameter  38  mm  

Thickness  3  mm  

4.1.2.3 Flowmeter  

Then the product flows through a magne c flow meter (Figure 13). The opera on of this 

flowmeter is based on Faraday's law; The voltage induced by any conductor moving 
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perpendicularly through a magne c field is propor onal to the speed of the conductor itself. 

According to this principle it is necessary that the fluid to be measured is conduc ve. In the 

system under analysis, the flow meter is from the 1300 OPTIFLEX series of the KRONHE Group.  

 

Figure 13 Krohne Flowmeter 

4.1.2.4 Centrifugal pump  

The service fluid flows into the closed-loop system and is fed through a centrifugal pump. The 

movement of the fluid is induced by rota ng mechanical organs called impellers which allow the 

transforma on of mechanical energy into kine c energy and then into pressure energy. The 

pumped fluid enters the center of the impeller and is accelerated, thanks to the curvature of the 

blades, in a radial direc on increasing its average speed (kine c energy). The water is then slowed 

down thanks to the increasing sec on of the pump body allowing the transforma on of kine c 

energy into pressure energy.  The plant involves the installa on of an SKB Etabloc monobloc 

centrifugal pump (Figure 14) with a maximum flow rate of 1200 kg/h. 

  

 

Figure 14 Centrifugal Pump 
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4.1.2.5 Heat Steam Generator 

The steam generator in the plant has the task of producing saturated steam necessary to heat 

the water. This consists of three 15 kW hea ng element packs and a variable pressure range 

between 0 and 11 bar. In the front panel you can see two values, a green number corresponding 

to the real pressure and a red one equal to the set point value set by the operator. The water 

temperature is therefore not set directly but depends on the saturated steam pressure.  In 

general, a liquid consists of par cles moving with a certain velocity and therefore kine c energy. 

Evapora on occurs when these par cles have sufficient energy to escape the a rac ve ac on 

that is generated between the par cles themselves. These, mee ng the liquid again, can return 

to be part of it thus genera ng the condensa on phenomenon. Dynamic equilibrium is created 

when the number of evaporated par cles corresponds to the condensed ones.  The equilibrium 

condi on that is created between steam and liquid at a given temperature is called saturated 

steam. The saturated vapor pressure of a liquid increases with temperature as the kine c energy 

increases and therefore the tendency to evapora on. The rela onship between pressure (𝑝 ) 

and temperature (𝑇[° ]) is expressed using the following Clausius Clapeyron: 

 
𝑝 = 6.11 ∗ 10

.
. [𝑚𝑏𝑎𝑟] 

 

(1) 

By se ng a pressure on the steam generator, therefore, it is possible to obtain, through the 

inverse formula, the corresponding temperature value.  

 
𝑇[° ] =

237.7(log 𝑝 − log 6.11)

7.5 − log 𝑝 + log 6.11)
 

 

(2) 

The following image (Figure 15)shows the heat steam generator.  

 

Figure 15 Heat Steam Generator 
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4.1.2.6 Sensors 

Pressure sensor  

The pressure sensors in the system are WIKA S-11 flush diaphragm pressure transmi ers (Figure 

16). This type of sensor is characterized by an internal membrane, an inlet channel sealed by a 

second membrane exposed to the process and a transmission fluid having the task of transferring 

the pressure to the inner membrane. 

 

Figure 16 Flush diaphragm pressure sensor 

The fluid, flowing orthogonally to the sensor, compresses the membrane of a given ∆. The 

poten al difference that is generated is converted into a 4-20mA analog current signal which 

allows connec on to different control systems. The use of flush diaphragm pressure transmi ers 

has the advantage of isola ng the measuring instrument from the process fluid, avoiding deposits 

by viscous or crystalline fluids and damage due to aggressive fluids. The facing membrane can be 

made of special materials or be coated to prevent fluid from entering the a achment and 

damaging the sensor. 

Temperature sensor 

The most used temperature sensors in the industrial field are pla num resistance thermometers 

or thermometers with pla num electric resistances. This metal is widely used as it has constant 

electrical characteris cs with varying temperatures. The most used resistance thermometers are 

Pt100 (Figure 17); this indica on indicates the material used and the nominal resistance rela ve 

to a temperature range from 0°C to 100°C. The opera on is based on the varia on of the 

electrical resistance of the metal as a func on of the temperature detected. The two quan es 

are linked by a linear characteris c and as one increases, the other also increases. For the case 

under examina on, PT100 has a current-loop 4-20 mA output. As described earlier, the PT100 is 

a resis ve temperature sensor with resistance that varies linearly with temperature. The sensor 

measures the varia on of resistance, which is converted to current though the signal condi on 

system i.e., the Current Transmi er. This device converts the resistance varia on of the PT100 
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into a con nuous current (4-20 mA) propor onal to the detected temperature. The signal output 

is then connected to the DAQ hardware via 2 wires connec on. 

 

Figure 17 PT100: Temperature Sensor 

4.1.3 Digital model 

The digital environment has been developed considering the basic principles of the rheological 

proper es of the fluid food and the pressure drop of the system, aiming to control and monitor 

the machine behavior thought the main parameters involved in the process, i.e., the fluids 

temperature (both fluid food and facili es), pressure at the inlet and outlet sec on of the HE, and 

the fluid food flow.  In accordance with the study's objec ve, as men oned previously, this paper 

suggests incorpora ng machine learning into (DT) framework which simulates the opera on of 

the pilot plant in examina on. 

 

Figure 18 DT model 

DT’s model is composed by two layers, shown in (Figure 18), capable to interoperate and 

communicate each other: Those layers are: 
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1. The physical layer: which is represented by the plant itself, and all the components 

mounted, such are sensors, DAQ (Data Acquisi on) and a Wi-Fi antenna to provide 

internet connec on. 

2. The digital layer: which is the counterpart of the physical one. This has been developed 

thought LabVIEW and Python programming language. LabVIEW is Human Machine 

Interface (HMI), i.e., the control panel has been coded via "LabVIEW front panel," 

displayed in Figure 19, while the "block diagram," forms the so ware's underlying code, 

wri en in G-language. As depicted in Figure 20), the system offers func onality in four 

dis nct ways.  

 

Figure 19 Digital Model Pasteurization plant 
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Figure 20 Pasteurization plant block diagram 

By selec ng the first mode the system acts as a model simula on environment. Here, the DT 

model's equa ons replicate product's physical proper es based on flow and temperature, 

providing an output that evaluates the heat exchanger's pressure drop considering the 

pasteuriza on system's geometry and fluid rheological proper es. Users can also simulate 

machine condi ons by adjus ng process parameters or generate an AO (Analog Output) to 

control Pump’s motor, or adjust the setpoint of the controller, which is a propor onal-integral-

deriva ve (PID) one. The second func on involves "Real- me monitoring" where measures are 

acquired directly from the field. Based on these signals and manual PID setpoint adjustments, the 

digital environment generates an AO to control the product flow by driving the motor pump. 
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Figure 21 Digital Twin Architecture 

The system can also trigger an AO signal using the "Data comparison" tool, comparing the 

analy cally computed pressure drop via DT with the one evaluated with the-acquired values, and 

adjus ng the pump speed accordingly. The third mode, labeled "Remote monitor and control," 

permits machine status control and voltage output genera on through remote connec on. In the 

fourth mode, the system is integrated with an ML-based algorithm to run the motor pump or 

show messages on the pilot plant's front panel (HMI) automa cally. As seen in Figure 21, this "ML 

algorithm" makes use of Python and G-Code. Three ML models—a linear regressor, a classifier, 

and a clustering algorithm—have been applied whit the aim of es ma ng which one performs 

be er in terms and return valuable insights for users. 

4.1.3.1 Rheology  

The term rheology indicates a branch of physics specialized in the study of deforma ons of solids 

and fluids because of the applica on of external forces. For liquids, rheology deals with the 

rela onship between stress state and strain rate. This science plays an important role in the food 

sector and is useful for various reasons; It allows you to have a deeper knowledge of the 

molecular and microscopic structure, allows you to control the quality of products and processes, 

guarantees a suitable design of machinery with the characteris cs of the food and, finally, makes 

a product acceptable or not according to consumer needs. The following paragraphs deal with 

the rela onship between shear stress and strain rate for two different types of fluids; Newtonians, 

governed by Newton's law and not Newtonians, governed by the law of power. About the fluids 

present in the project, water is part of the first category, while most of the food fluids fall into the 

second. 
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4.1.3.1.1 Newtonian fluids  

Fluids are defined as Newtonians when the shear (or tangen al) stress is directly propor onal to 

the rate of deforma on (Malkin, 2013). We consider two parallel planes, one fixed and one 

movable, and a fluid moving between them according to parallel layers. The fluid velocity profile 

is shown in the image below (Figure 22). 

  

Figure 22 Velocity profile of the fluid moving between two plates, one of which is in motion; (b) extrapolation of a part of the 

velocity profile to the left and sliding deformation movement of an ABCD element to the right 

As it can be seen, the fluid adhering to the upper plane moves with the same speed, while the 

molecules in contact with the lower plate have zero velocity. To keep the upper plane moving 

with constant velocity ∆v, it is necessary to apply a force dependent on the speed, the area of the 

plate and the characteris cs of the fluid enclosed within a quan ty called viscosity μ and inversely 

by the distance between the two ∆y planes. Dynamic viscosity [Pa ∗ s] measures the resistance 

of the fluid to creep and depends on the chemical-physical nature of the fluid, pressure (creep 

resistance increases with pressure, but since liquids are less compressible than gases, viscosity is 

considered independent of p), temperature (for liquids the ra o is inversely propor onal), by the 

gradient of speed and me. 

4.1.3.1.2 Non-Newtonian fluids  

On the opposite, nonlinear correla on between shear stress and strains rate iden fies non-

Newtonian fluids (de Souza Mendes, 2007). Pseudoplas c fluids are the most recurrent among 

food fluids and correspond to aqueous suspensions of coarse par cles. Consider the experiment 

carried out for Newtonian fluids and imagine that between the parallel planes is placed a 

pseudoplas c fluid; If the speed is low, the cells create a la ce that can reduce the flow and for 

this reason the fluid has a high viscosity. As the speed increases, however, the par cles are 

arranged in the direc on of mo on and the viscosity decreases un l it se les at a constant value. 

The viscosity therefore decreases with increasing speed and vice versa. The law rela ng shear 

stress and velocity gradient is called the Power Law:  
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𝜏 = 𝐾

𝛿𝑣

𝛿𝑦
 

(3) 

Where: 

τ = shear stress [Pa]  

K = consistency factor [Pa ∗ s−1]  

n = behavior index  

 =the velocity gradient 

Especially:  

• n = 1 we get Newton's law  

• n > 1 dila ng fluids  

• n < 1 pseudoplas c fluids  

As shown in Figure 23, another category of non-Newtonian fluids is that rela ng to dila ng fluids; 

unlike the previous ones, the viscosity increases with increasing velocity gradient. In addi on to 

these there are fluids with me-dependent characteris cs; thixotropic, rheopec c and 

viscoelas c fluids.  

 

Figure 23 Non-Newtonian Fluid 

Thixotropic have a decrease in viscosity over me and a structure capable of disintegra ng under 

the effect of tangen al forces. Rheopec c, on the contrary, are characterized by an increase in 

viscosity over me, while viscoelas c, also called fluids with memory, recover the original shape 

once the force ac ng on them is released. Finally, the last category is represented by Bingham 

fluids or plas c behavior. These fluids begin to flow when the force exerted exceeds a τy flow limit 

and then con nue as a Newtonian, dila ng or pseudoplas c fluid.  
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4.1.3.2 Pressure Drop 

The primary factor to be considered for the system's evalua on of pressure drop is directly 

connected to the fluid food's non-Newtonian behavior. The first step involved in the pressure 

drop evalua on, deals with the calcula on of the generalized Reynolds Number (𝑅𝑒 ) which is a 

dimensionless number iden fy the flow regime. 

The equa on (4) for the 𝑅𝑒 : 

 𝑅𝑒 = 8 ⋅
𝑛

3𝑛 + 1
𝜔  𝑅  

𝜌

𝑚
 (4) 

where: 

- ρ is the fluid density. 

- n is the flow index. 

- m is the fluid food consistency factor. 

- R is the piping radius of the tube side in the HE. 

- ω is the average velocity of the fluid. 

The fric on factor (f) refers to the energy losses brought on by fric on inside the tube. It can be 

evaluated with the following rela on (5): 

 
𝑓 =

64

𝑅𝑒
 

 

(5) 

Once fric on factor and Reynold has been calculated, it follows the pressure drop es ma on 

using Darcy-Weisbach equa on (Daneshvar 2023), which relates system geometry (tube length 

and diameter), fluid velocity, to 𝑓 as follows (6): 

 
ΔP =

𝑓

2

𝐿

𝐷
𝜔 + 𝑘

𝜔

2
 

(6) 

 

where: 

- L is the length of the tube. 

- D is the hydraulic diameter of the tube. 

- ki is the resistance coefficient of the piping. 

The Block Diagram developed in G-Code incorporates all the above-men oned equa ons. 
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4.1.3.3 Data communica on system 

For the case under examina on a TCP/IP data communica on protocol has been implemented in 

the Digital Environment. This protocol enables communica on between devices on the network 

through the transfer of data packets. These packets contain data, des na on informa on, and 

other metadata. The IP protocol handles packet rou ng, while the TCP protocol manages 

reliability and flow control during data transmission. This protocol enables data exchange 

between a host computer and the data acquisi on module (NI-9208) for data analysis. At this 

purpose, it has been coded two block diagram Figure 24, in par cular: one for data transmission 

on the data acquisi on module and another as a TCP/IP receiver (Figure 25). TCP/IP infrastructure 

has been specifically designed to enable real- me data collec on from the plant, store it on a 

client host, and enable output predic on using real- me input and ML algorithm.  

 

Figure 24 Block Diagram TCP/IP Sender 

 

Figure 25 Block Diagram TCP/IP Receiver 
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4.1.3.4 Process Control strategy 

Pant’s control strategy is a PID (Propor onal-Integra ve-Deriva ve) based system. The coefficient 

of each controller parameter, which are, Kp for the propor onal, KI for the Integra ve and Kd for 

the deriva ve one, are tuned using trial-and-error methodology. The HMI specifically displays the 

machine's behavior and pressure status: under normal working condi ons, the model shows the 

components in blue and green colors, but in the event of an anomaly, the DT shows the 

components in red. The pressure difference between the machine's input and output determines 

whether it operates correctly or incorrectly. For example, if fluid contains foreign par cles (such 

as small stones, an increase in pressure at the HE's inlet sec on could indicate piping obstruc on. 

To accurately represent this situa on, the pressure at the pump's outlet (which is at atmospheric 

pressure) must be monitored. Its value will be compared with the one provided by the DT model, 

which is based on the Navier Stokes equa ons and fluid rheology. (Tancredi et al. 2022b). 

Nevertheless, the front panel's control bu ons allow the user to set the appropriate target for 

the desired parameters, such as the product temperature. The developed control device is a 

specialized system designed for processing informa on, with the purpose of regula ng physical 

process variables. It can communicate with the outside environment and includes a set of 

func onali es, such as closed-loop control, reference value es ma on (set points), management 

of warnings and occurrences, and machine to machine (M2M) or machine to user 

communica on. In today's technological landscape, there exist numerous types of control 

systems, ranging from simple to highly sophis cated, constructed using various techniques. 

Although some control systems are implemented using computer-based tools, others persist in 

using conven onal hydraulic or pneuma c technologies. This work, consider Propor onal-

Integral-Deriva ve (PID) control methodology. The PID strategy, show in Figure 26, involve three 

main gains, which trigger an output signal based on a propor onal rela on within the error and 

the propor onal, integra ve, or deriva ve part of the error, respec vely. In the ideal input/output 

rela onship, these errors components are mathema cally represented as follows (7):  

 
θ = k E (t) + k E (𝑡)dt + k  E

Et

𝑑𝑡
               

 

(7) 

Where: 

θ_out = output signal 

E (t) = input error 

kp = propor onal constant 
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ki = integra ve constant 

kd = deriva ve constant. 

A response that is propor onal to the input error (denoted as P), resul ng in a propor onal 

control system, is an efficient strategy for implemen ng the control system. However, increasing 

the propor onal gain's value, kp, may lead to difficul es in reaching a stable equilibrium at the 

reference value.  

To address this issue, a straigh orward solu on is to adjust the output signal by incorpora ng an 

addi onal term, denoted as r (referred to as reset). With this adjustment, the system can be 

stable at the set point value. Following the abovemen oned considera ons, the target output 

can be wri en as (8): 

 θ = k E (t) + r 

 

(8) 

The Virtual Instruments PID (VI PID) and its corresponding G-Code, shown in Figure 27 are the 

main parts of the implemented control system. The posi on of the output signal generator at the 

PID output allows it to achieve the adequate output voltage for the automa c and manual 

func ons of the digital layer. 

 

Figure 27 G-CODE: PID and Signal Trigger 

Figure 26 PID scheme 
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A PID controller can be tuned using a variety of techniques, each with their own strategy. The 

Ziegler-Nichols method and the Tyreus Luyben's method are two widespread approaches: 

1. Ziegler-Nichols Method (Ziegler & Nichols, 1942): During the first stage of this method, the 

integral (ki) and deriva ve (kd) gains are both set to zero, focusing on the propor onal component 

of the controller. The propor onal constant's value (Kp) is then gradually increased un l the 

system oscillates steadily around the desired setpoint. 

2. Tyreus Luyben's Method (Tyreus & Luyben, 1992): It uses process like the Ziegler-Nichols 

method described earlier. This approach priori zes the integral component over the other ones.  

Both methods rely on approximate iden fica on of the system's dynamics through experiments, 

either in open or closed-loop configura ons. When opera ng condi ons change significantly or 

the system is me-varying, re-calibra on of the PID controller may be necessary. This can be 

accomplished using an auto-tuning method, where calibra on occurs automa cally or is ini ated 

by user commands. 

Another simple approach to PID tuning is the trial-and-error method. In this method, the PID 

coefficients are adjusted itera vely. 

 Ini ally, the focus is on the propor onal gain (kp) un l the control loop exhibits constant-rate 

oscilla ons. Once stable oscilla ons have been achieved, focus is directed toward fine-tuning 

the integral (ki) and deriva ve (kd) components to reduce overshoot and produce a stable 

response. The developed control can be used in two ways: 

1. Remote Desktop Connec on: This method involves using a remote desktop connec on 

enabled by the Microso  Windows suite. It allows a user to access and control the digital twin 

as if they were physically present at the machine. This is a common way to remotely control and 

monitor systems and applica ons on a Windows-based computer. 

2. Remote Data Acquisi on via LabVIEW Web Services: The second approach makes use of 

LabVIEW's built-in support for Web Services-based remote data acquisi on. The so ware 

pla orm LabVIEW is u lized for automa on, instrument control, and data acquisi on. With the 

help of LabVIEW Web Services, any device connected to the server via Wi-Fi, Bluetooth, or 

Ethernet can communicate via HTTP. The PID controller's output value is transformed into an 

analog signal in the 0V–10V DC range in both techniques. The physical plant (where the control 

signals are applied) and the digital layer (where the PID controller operates) are connected 

thought a signal converter (PXU-20.924), and the output generator module (NI9263 by Na onal 

Instruments). This hardware configura on ensures that the voltage output is converted into a 



 
48 

current signal that can be carried to the analog input port of the Danfoss inverter and ranges in 

value from 0 to 20 mA. By altering the motor's pump's rota onal speed, the Danfoss inverter 

regulates the frequency of the power supplied to the motor. 

4.1.3.5 Machine learning algorithms 

For the case under examina on, three ML models were developed using Python along with 

external libraries. Accessible at h ps://scikit-learn.org/stable, the scikit-learn package (accessed 

on January 18, 2022) provided the se ng for the development of ML. Each machine learning 

algorithm, especially the supervised ones like linear regression and ar ficial neural networks, has 

a specific structure that is divided into three main parts. A code that can import data from the 

dataset containing values gathered during the experiments makes up the first sec on. To make 

the data suitable for the algorithms' processing, some preliminary data preprocessing steps are 

carried out. Data formats, for instance, are transformed into the appropriate type (data of the 

object type), and process parameter variables are changed into floa ng-point data. The dataset 

is split into two subsets in the second sec on of the script: the training set, which contains 70% 

of the original data, and the tes ng set, which contains the remaining 30%. The data from the 

training subset is then used to train the ML model. The final sec on of the script is used to make 

predic ons using the model a er the algorithm has been trained. 

On the other hand, the third algorithm is an unsupervised clustering model, namely a k-means 

clustering.  

This type of model does not require a predefined output for training and does not involve a 

tes ng phase. This algorithm's predicted result for our applica on is the categoriza on of data 

triplets into one of three categories: "ok," "warning," or "alert." Since there is no tes ng phase, 

the only way to determine whether the algorithm's conclusions are accurate is by contras ng the 

clusters it finds for data triplets with the precise machine status that was ini ally entered into the 

database. The algorithm should ideally divide the triplets of data into three clusters that represent 

the "ok," "warning," or "alert" statuses. The poten al benefit of this approach is that, if the 

clustering algorithm correctly classifies the data, there would be no need to further categorize 

the data into "ok," "warning," or "alert" categories in subsequent applica ons. 

Three different fluids were used in a series of experiments to create the dataset needed to apply 

ML algorithms. In par cular, the machine was tested with three different materials: water 

(referred to as "Fluid 1"), two mixtures of water and a food addi ve (Gellan Gum) in varying 

concentra ons to mimic non-Newtonian food fluids, and a combina on of water and both 

substances alone. Gellan Gum was present in "Fluid 2" at a mass composi on of 0.1 percent while 
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it was present in "Fluid 3" at a mass composi on of 0.15 percent. An average of one sample per 

second was used for sampling while the sensors con nuously recorded signals. To account for 

the addi ve's temperature-dependent rheological proper es, the machine's inverter frequency 

was changed during tes ng in increments of 10% and three different opera ng temperatures 

were set. 

Table 5 Temperatures and setting for data acquisition during testing. 

Description Test 1 Test 2 Test 3 

T [°C] 20 40 60 

Inverter Frequency [%] 0–100% 0–100% 0–100% 

Sample Rate [Hz] 1 1 1 

 

Table 5 presents the varia ons in parameters for each data collec on run, including opera ng 

temperature, inverter range, and sample rate. Data collec on involved altering one process 

parameter at a me while keeping the others constant. Adjustments were made to the inlet valve 

to allow the inlet pressure to be changed between 0 and 185 mbar without affec ng the outlet 

pressure or product flow. A manual valve was used to gradually close the heat exchanger's outlet 

sec on to alter the outlet pressure. To prevent machine malfunc on or harm to the operator, 

safety precau ons were taken. The product flow was modified by closing the inlet product valve. 

The collected data from machine tests were first preprocessed with the following steps: 

1. Examina on of each set of collected data (flow, inlet pressure, and outlet pressure). 

2. Addi on of a "label" column to each set of values to describe the machine's status 

based on parameter values and the tes ng scenario. Normal condi ons were labeled as 

"ok," transi onal phases as "warning," and anomalies as "alert." 

3. Descrip on of collected data by calcula ng their average, standard devia on, 

minimum, maximum, and percen les (25% and 75%). These sta s cs are summarized in 

Table 6 for the three fluids. 

4. Visualiza on of data using 3D plots in Python to provide an ini al overview of data 

distribu on. 

The final preprocessed dataset for each fluid had 6256 rows and four columns. The machine's 

status and process parameters were represented in the columns. This data was saved in Microso  

Excel 2016 as a.csv file. 
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Table 6 provides a summary of the collected data, including counts, means, standard devia ons, 

minimum and maximum values, as well as percen les. 

Table 6 Summary of the collected data 

 Count Mean Std Min 25% 50% 75% Max 

P1 Water 6256 70.30 40.7 0 50.01 50.02 50.03 182.38 

P1 Fluid2 6256 145.68 41.52 52.9 137.65 151.45 169.2 250 

P1 Fluid3 6256 154.8 47.21 49.07 141.14 162.27 185.9 250 

P2 Water 6256 14.08 21.31 3.27 3.36 3.40 3.42 68.54 

P2 Fluid2 6256 47.61 19.32 0.06 53.87 55.79 57.24 80.52 

P2 Fluid3 6256 51.87 27.33 0.49 53.81 56.78 58.82 250 

F Water 6256 0.29 0.58 0.007 0.008 0.009 0.011 1.55 

F Fluid2 6256 1.49 1.11 0 0.69 1.48 2.33 3.62 

F Fluid3 6256 1.51 1.11 0 0.56 1.53 2.33 3.53 

 

In the subsequent machine learning phase, three ML models were developed using Python and 

the scikit-learn package. These models included linear regression, ar ficial neural networks, and 

an unsupervised clustering (k-means) model. The machine learning process involved data import, 

preprocessing, spli ng the dataset into training and tes ng sets, model training, and predic on. 

The k-means model aimed to classify data into "ok," "warning," or "alert" categories without the 

need for training on labeled data. 

The predic on made by this layer depends on the processing and algorithm used, with two 

possible results. A product flow adjustment as outcomes of the regressor algorithm, and a 

message box displaying the machine's status produced by the classifica on and clustering one. 

The system's status can be classified into one of the following groups according to the evalua on 

of flow rate (F), inlet pressure (P1), and outlet pressure (P2) combined: 

- Ok: The machine is opera ng properly because the parameters are in the right range of 

values. The DT model defines "correct" opera on as values that deviate from the 

computed value of the pressure drop, by no more than 10% (in absolute terms). 

- Warning: One or more parameters deviate from the computed values of the DT by 10 to 

25 percent (in absolute terms), which is outside the defined correct func oning range. 

This condi on could be an indica on of opera onal anomalies, such as transi onal 

phases as the plant changes from one steady-state condi on to another and leads to 

parameter devia ons. 
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- Failure: The machine encounters a cri cal issue requiring shutdown. This happens when 

the difference between the real and computed pressure drop is greater than 25%. 

There are no accepted standards, despite the classifica ons of machine func oning status 

proposed by various authors in the literature. In addi on, a wider range of values (75 percent of 

cases) have been assigned to the failure category in comparison to the warning and ok statuses 

to improve the detec on of plant malfunc ons (i.e., failures) rather than the other categories. 

The TCP/IP receiver G-Code on the server transmits the per nent data, i.e., the detected status, 

to the front panel HMI. 

In contrast, the regressor model provides a value represen ng the es mated output variable, i.e., 

pressure at the outlet sec on of the HE. The setpoint of the controller can be modified using this 

value in accordance with the condi on of the machine. 

4.1.3.6 Tes ng phase 

The developed digital twin has been tested in all its components which are basically the control 

system and the anomaly predic on tool developed with the ML algorithms. Sec ons below 

describe the tes ng setup, tes ng methodology and model valida on carried out following 

specific metrics. 

4.1.4 PID Control Test and results 

The PID controller gains were determined through an itera ve trial-and-error method. Ini al 

se ngs for the integral (I) and deriva ve (D) terms were zero, and the propor onal (P) gain was 

gradually increased un l the output displayed steady oscilla ons within a range of values that 

was deemed acceptable. Ini al se ngs for the integral (I) and deriva ve (D) terms were set to 

zero, while the propor onal (P) gain gradually increased un l the output displays steady 

oscilla ons within an acceptable range. Increasing the propor onal gain allowed the system to 

respond more rapidly to changes in the process variable, resul ng in clear oscilla ons around the 

setpoint. Subsequently, the integral term was introduced to diminish steady-state errors and 

reduce these oscilla ons. A er se ng an appropriate P value to achieve the desired response, 

minor adjustments were made to the integral term to establish a steady state, all while 

considering the poten al increase in overshoot. Finally, the deriva ve term was fine-tuned to 

ensure the feedback system remained stable throughout the control process. Following these 

steps, the PID gains were determined as follows in Table 7:  
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Table 7 PID Gain Coefficients 

Kp 0.045 

Ki 0.01 

Kd 0.001 

 

At this stage, follows a tes ng phase which requires: 

1. Wi-Fi internet connec on at the plant's loca on, connected to the plant through a USB 

adapter. 

2. An external device, like a laptop, that is online and has a LabVIEW run me version that is 

compa ble with the one installed on the pilot plant's data acquisi on module. 

3. A link to the appropriate web server tool 

The ini al test phase involves the using of the provided by the system administrator for the web 

service tool to connect to the digital twin Figure 28. 

 

Figure 28 LabVIEW Web Server Tools 

As an alterna ve, se ng up a secure login to access the remote desktop. A er successfully 

establishing the connec on, users gain control over the system and can monitor its status though 
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the digital twin. Using the remote control and monitoring web server tool, several tests were run 

to evaluate the PID controller's responsiveness, stability, and so ware robustness. The following 

steps were part of the test sequence: 

Changing the inlet pressure setpoint from 0 mbar to 170 mbar to start the product pump. Once 

the system was opera ng at the desired point, a disturbance was simulated by temporarily 

changing the setpoint to a higher required inlet pressure of 200 mbar and a erwards changing it 

back to 170 mbar. As shown in Figure 29, the outcomes of the gain tuning process showed its 

effec veness in achieving a quick response, slight oscilla on, and negligible overshoot. However, 

due to the so ware restric ons present in conven onal embedded systems when integra ng 

new technologies, a few minor issues emerged during laboratory tests. 

 

Figure 29 Response from 200 mbar to 170 mbar. 

To ensure proper opera on of the remote-control system, several prerequisites and se ngs are 

necessary: 

1. a network connec on at the plant. 

2. a laptop with LabVIEW run me for keeping track of the plant's condi on. 

3. the availability of a web server tool. 
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A Windows 7 Professional opera ng system, which has some restric ons on so ware upgrades, 

is embedded in the controller. Inadequate hard drive space for installing a modernized browser 

is one of these restric ons. 

Users must use Internet Explorer or a different browser that is not based on Chromium to access 

the web server (such as Google Chrome, Microso  Edge, or Opera). Chromium-based browser 

use may cause access problems. Alterna vely, for users who cannot meet the browser 

requirements, external access to the digital twin can be achieved by u lizing the Microso  

Windows remote desktop applica on, which is, however, limited to Windows users, or by using 

a virtual machine capable of emula ng a compa ble Windows OS environment. 

Based on the tests conducted in this study, it becomes evident that future research endeavors 

should focus on improving the tools available for connec vity. Specifically, enhancements in the 

LabVIEW environment's internet connec vity can be explored. Addi onally, the implementa on 

of an automated procedure for tuning the controller's gains could significantly enhance the 

system's effec veness when deployed in real-world scenarios. 

4.1.5 ML Test and results 

4.1.5.1 Mul ple Linear Regression 

A mul ple linear regression model is the first algorithm that has been developed. A sta s cal 

method known as mul ple linear regression is used to simulate the rela onship between a 

dependent variable (also known as the response) and several independent variables (also known 

as explanatory variables). The outlet pressure and product flow are represented, respec vely, by 

the independent variables x1 and x2, which are used in this case specifically. The inlet pressure is 

the dependent variable, that we want to make predic ons for it (y). Equa on (9) presents the 

general linear model that explains how the dependent variable and the independent variables 

relate to one another. 

 𝑦 =  𝑎 𝑥  +  𝑎 𝑥 +  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (9) 

 

The regression coefficients in the equa on are denoted by the symbols a1 and a2, whereas the 

intercept is the value where y is equal to 0. Table 8 include the outcomes in obtained to the three 

fluids analyzed: 
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Table 8 Outcomes for fluids analyzed. 

 a1 a2 Intercept MAE R2 

Water (fluid 1) 1.65 8.98 44.32 0.71 0.99 

Fluid 2 1.27 18.29 57.28 5.745 0.947 

Fluid 3 0.77 28.87 70.65 7.467 0.938 

 

We calculated the mean absolute error (MAE) and coefficient of determina on as performance 

metrics for evalua ng the models' accuracy (R2). The MAE calculates the difference between two 

observa ons that represent the same phenomenon. MAE stands for the mean of the absolute 

errors when contras ng the actual values in the dataset with those predicted by the linear 

regression model. And R2 shows how much of the varia on in the dependent variable can be 

predicted from the independent variables. With a maximum perfect fit score of R2 equal to 1, it 

measures how well the predicted values match the observed data. The findings in Table 8 

unmistakably show that R2 validates the created ML algorithm for the case under inves ga on, 

as it consistently produces R2 scores above 93 percent for each fluid. Regarding MAE, it is notable 

that the algorithm performs be er in the case of water compared to Fluid 2 and Fluid 3. The MAE 

for water is roughly 0.71 overall and peaks at 2.66 when the model determines the "warning" 

status. The effect of temperature on the rheological characteris cs of non-water fluids, where 

addi ves are present and affect opera ng pressures, is likely responsible for the regression 

model's inaccurate predic on results when applied to different fluids. The difficulty may come 

from the defini on of the "warning" status itself, which is expected to represent transi onal 

phases or devia ons (in a range between 10% and 25%) from typical plant parameters. This 

challenge may arise when focusing on the various performances in predic ng the "warning" 

status. Notably, the MAE for evalua ng system parameters in the "warning" status consistently 

stays below 10% for all tested fluids, indica ng that the proposed approach performs with 

promise. Encouraged by these outcomes, we conducted an online test of the model using a 

specialized procedure. To simulate the three possible opera onal states of "ok," "warning," and 

"alert," the pilot plant was turned on and data were con nuously collected from sensors for the 

three fluids. U lizing data from the pilot plant, the ML model was used in real- me to evaluate 

its capacity to forecast the expected outlet pressure value and, if necessary, take ac ons within 

the plant. When used online, the regression model can produce results like those shown in Figure 

30, for instance. This image shows how the online applica on of the regression model enables 

real- me calcula on of the P1 value (ML-predicted P1), allowing for comparisons with the actual 

value (Real P1) and the es mate provided by the plant's DT model (DT P1). Analy cal calcula ons 
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are used to compare the P1 value that the ML model predicted with the actual one ("Data 

comparison" value). 

 

Figure 30 Front panel: online testing of the regressor algorithm for fluid 1 

Figure 31 a–c displays the combined outcomes for the three fluids. These graphs, once more, 

contrast actual data obtained from the plant (P1 series) with predic ons made by the ML 

algorithm (Predicted P1 series The x-axis labels show the machine's status, which reflects its 

opera ng circumstances as previously explained. This was contrasted with the outcomes 

obtained using the DT model. Figure 31 shows that, with errors of less than 5%, the algorithm 

correctly predicts the inlet pressure when the machine is opera ng in the "ok" condi on. On the 

other hand, for the other statuses, the algorithm forecasts the an cipated inlet pressure in real-

me using measurements of the process flow and outlet pressure. Since the machine is 

malfunc oning, it is only natural that the predicted value and observed value are different. 

Therefore, comparing the expected outlet pressure with the actual observed value makes it 

simple to spot anomalous opera on. This result demonstrates how well the ML implementa on 

within the system worked. 

 

(a) 
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(b) 

 
(c) 

Figure 31 Results for mul ple linear regression model: (a) Water; (b) Fluid 2; 
(c) Fluid 3. 

 

4.1.5.2 Ar ficial Neural Network 

MLPC stands for Mul -Layer Perceptron Classifier, the chosen ar ficial neural network (MLPC). 

The main goal of MLPC implementa on is to offer a real- me classifica on of the machine's status 

based on the three parameters taken into considera on. Since there are three predefined 

categories—"ok," "warning," and "alert"—the output of this algorithm is a string that uses those 

to describe the machine's status. A er preprocessing, the dataset used to train this model is the 

same as that described in Sec on 2.3. This includes the fourth column, where labels are given to 

each set of parameters to indicate the status of the machine. Technically speaking, the MLPC is 

represented in Figure 32 as two hidden layers, each with 200 nodes. The Adam op mizer, a 

stochas c gradient-descent method that itera vely updates network weights based on training 

data, was selected as the solver for weight op miza on.  A confusion matrix was used to validate 

this machine learning model. This matrix evaluates the algorithm's alignment with actual data to 

provide a performance evalua on. This means that it is possible to compute the crucial 

parameters recall and precision. Recall measures the propor on of correctly classified data points 

out of the en re set of actual data, while precision measures the ra o of correct predic ons to 

all predic ons for each data category. The ra o of correctly predicted samples to the total number 
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of tested samples is the final way to calculate the model's accuracy. The confusion matrix and 

precision values for the dataset pertaining to water are shown in Figure 33 and Table 9. The 

numerical results show that the model has a 96 percent accuracy rate. Addi onally, the weighted 

average precision value, which is calculated from the precision and recall values for each data 

class and weighted in accordance with the variety of instances in each class, has been used to 

evaluate the MLPC model. The score for this parameter for the case under considera on is 97 

percent. 

 

Figure 32 Neural Network structure 

 

Table 9 Average precision values for water. 

Category  Precision  Recall  Average Precision  

Alert 1.00  1.00  0.83  

Warning  0.92  0.27  0.05  

Ok  0.74  0.99  0.09  

Weighted average precision  0.97  

Model Accuracy  0.96  
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Figure 33 Confusion Matrix for Fluid 1 

 

Table 9 shows that when used to determine the "ok" and "alert" statuses of the pilot plant, the 

MLPC algorithm exhibits excellent precision and recall. However, when a emp ng to predict the 

"warning" status, accuracy is no ceably reduced. Despite the two approaches' divergent logic, 

this agrees with the outcomes of the linear regression model. The lower predic ve performance 

for the "warning" status for the ML algorithm under considera on may be explained by the 

rela vely small range of values assigned to this status (i.e., a 10–25% absolute devia on from the 

normal condi on), as opposed to the larger range of the "alert" status (i.e., a 25–100% devia on 

from the normal condi on).This disparity affect the rate of "alert" data in the dataset, which may 

have an effect on how well the algorithm performs. In fact, the ML algorithm must be extremely 

precise to accurately detect such cases because the range of "warning" data is constrained. 

Regarding the earlier findings, the MLPC displays impressive accuracy, averaging 99 percent for 

Fluid 2 (Figure 34 and Table 10), and an accuracy of 93 percent for Fluid 3. (Figure 35 and Table 

11). Due to the lack of data categorized in this category, the recall value score for Fluid 2's 

"warning" status is zero for the weighted average precision.  
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Table 10 Average precision values for Fluid 2. 

 

 

 

 

 

 

Figure 34 Confusion matrix for Fluid 2 

Table 11 Average precision values for Fluid 3. 

Category  Precision Recall Average Precision  

Alert 0.98  0.94  0.29  

Warning  0.93  0.23  0.06  

Ok 0.92  1.00  0.59  

Weighted average precision  0.94 

Model Accuracy  0.93  

 

Category  Precision Recall Average Precision  

Alert 0.95  1.00  0.11 

Warning  -  - - 

Ok  1.00  0.99  0.88  

Weighted average precision  0.99  

Model Accuracy  0.99  
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Figure 35 Confusion matrix for Fluid 3 

4.1.5.3 K-Means Clustering 

An unsupervised machine learning algorithm called clustering divides up a dataset into groups 

based on shared traits. A set of samples is grouped into dis nct clusters by the k-means algorithm. 

Each cluster is iden fied by the mean value (centroid) of the components. Similarity between 

elements in k-means clustering is determined by how close they are to the centroid of their 

respec ve clusters. The dataset used to apply the clustering algorithm is made up of three 

columns that list the essen al characteris cs of the examined plant, like the algorithms previously 

described (i.e., P1, P2, and F). The expected result of this strategy is the classifica on of the 

gathered triplets of data into the proper statuses of "ok," "warning," or "alert," in line with the 

earlier discussion regarding the applica on of the clustering algorithm. This suggests that the 

algorithm is an cipated to divide the dataset's elements into three clusters in accordance with 

the opera onal statuses. The k-means procedure's number of clusters, however, is not 

predetermined. Finding the ideal number of clusters (k) for the dataset is the first step in pu ng 

this algorithm into prac ce. The "elbow" method was used to accomplish this. The elbow point 

on the curve represents the ideal number of clusters to use in this method, which involves 

plo ng the explained varia on as a func on of the number of clusters chosen. As a result, with 

the number of clusters ranging from 1 to 6, the sum-of-squares error (SSE) between the data 

points and their assigned cluster centroids was calculated (in steps of 1). Figure 36-a- c show the 

elbow curve calculated for the dataset (Water, Fluid 2, and Fluid 3, respec vely). The findings 

suggest that three clusters would be a reasonable number for water and Fluid 2, as this number 

offers enough stability to explain the variance. The same does not hold true for Fluid 3, where a 
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greater number of clusters (six) are required to achieve stability in SSE. However, the number of 

clusters was set to three for all fluids to ensure the suitability of using the clustering algorithm in 

the examined system. The k-means algorithm was used to categorize the dataset's elements with 

this many clusters to test its ability to determine the system's "ok," "warning," and "alert" 

statuses. Figure 37 a–c shows a 3D plot of the fluid clusters for the three fluids. The algorithm 

also saved the classifica on in a new database column with the name "cluster," which was filled 

with the values expected by the k-means model. 

 

(a) 

 
(b) 
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(c) 

Figure 36 Elbow Grpah for the dataset of the tested fluids 

 

 

 

 

 

(a) 
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(b) 

 
(c) 

Figure 37 k-means 3D-plot:  Fluid 1 (a), Fluid 2 (b), and Fluid 3 (c). 

 

The accuracy of the k-means method was evaluated using the silhoue e score as a performance 

metric. A clustering technique's accuracy can be assessed using this method, which provides a 

succinct representa on of how well each element has been classified. The range of the score is -

1 to 1, where: 

 1 represen ng clearly separated clusters. 

 A score of 0 denotes that there is no sta s cally significant difference between the 

clusters. 

 Clusters with a score of -1 have been incorrectly assigned. 
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The models produced a silhoue e score for water of 0.92, fluid 2 of 0.91, and fluid 3 of 0.76. 

These results indicate that the algorithm can classify the data correctly even if the number of 

clusters is forced to be three. The clustering algorithm would not be able to categorize the clusters 

as "ok," "warning," or "alert," so it is crucial to remember that well-defined clusters do not 

necessarily imply that they accurately represent the poten al machine statuses. A comparison of 

the original machine status with the three clusters obtained a er classifica on was done to 

evaluate this aspect. Tables 9–11 present the findings. 

According to Table 12, the clusters for the water dataset that the k-means algorithm found can 

be summed up as follows: 

 

Clusters 1 and 3 are made up solely of "alert" data, each of which has unique proper es. While 

cluster 1 "alert" situa ons are characterized by li le to no product flow, cluster 3 "alert" situa ons 

involve triplets of data where the inlet pressure is always zero. In either case, the algorithm 

appears to have correctly iden fied these "alert" circumstances. Cluster 2 consists of a mix of 

"ok" and "warning" condi ons, with a small number of "alert" circumstances remaining. This 

suggests that, like the other ML algorithms put to the test, the clustering algorithm has trouble 

telling the difference between "ok" and "warning" circumstances, which again points to a 

problem with iden fying the "warning" status. Like this, the clustering of Fluid 2 (Table 13) shows 

that one cluster (i.e., cluster 2) is clearly defined and only includes typical plant opera ons. 

Clusters 1 and 3 include a variety of poten al circumstances. Given that most of the data relate 

to the "ok" status, Cluster 3 is arguably acceptable in prac ce. However, cluster 1's classifica on 

is not accurate enough for prac cal use because 24 percent of the anomalous circumstances are 

categorized as typical working circumstances, which could endanger the safety of those using the 

machine. Regarding Fluid 3 (Table 14), the clusters seem to accurately reflect many of the actual 

working condi ons of the plant, even though the algorithm was forced to use three clusters 

rather than the ideal number of six: 

 Cluster 1: only contains "alert" circumstances. 

 Cluster 2: only contains "ok" func oning.  

 -Cluster 3 consists primarily of "warning" situa ons. 

This implies that the algorithm correctly iden fied and categorizes abnormal machine opera on. 

When examining cluster 2, it becomes clear that it contains all "ok" statuses with only minor 
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amounts of warning and alert circumstances. Once more, it appears that the "warning" status 

has been largely assimilated into the "ok" or "alert" circumstances. 

Table 12 Cluster composition vs. machine status for water 

 Cluster Composi on 

Machine status 1 2 3 

OK - 58% - 

Warning - 28% - 

Alert 100% 14% 100.0% 

 

Table 13 Cluster composition vs. machine status for Fluid 2. 

 Cluster Composi on 

Machine status 1 2 3 

OK 76% 100% 87% 

Warning - - 1% 

Alert 24% - 12% 

 

Table 14 Cluster composition vs. machine status for Fluid 3. 

 Cluster Composi on 

Machine status 1 2 3 

OK 0% 83% 0% 

Warning - 7% 1% 

Alert 100% 10% 98% 

 

To develop a comprehensive tool for iden fying anomalies in the opera on of an industrial 

system, this study has proposed an applica on that aims to integrate digital twin models, 

machine-learning algorithms, and Industry 4.0 technologies. The suggested method has been 
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developed for use in a tube-in-tube indirect pasteuriza on machine for fluid food. Four dis nct 

opera ng modes were created and put into use in the digital twin of the plant to get the best 

results possible with the technologies at hand. To ascertain which opera ng mode most closely 

matches the system's actual condi on, several tests were carried out. The system can be 

monitored and controlled using the digital twin environment, which is furnished with tools 

created in earlier studies, both locally and over remote connec ons. In contrast to fully 

automated systems, the requirement for manual controller setpoint and fluid characteris c 

adjustment in the so ware can be a drawback. Three machine learning techniques (clustering, 

linear regression, and ar ficial neural networks) were incorporated into the created online plant 

monitoring solu on to address this issue. The system can be monitored and controlled in-person 

and over remote connec ons using the digital twin environment, which is furnished with tools 

created in earlier studies. However, compared to fully automated systems, the need for manual 

adjustment of the controller setpoint and fluid characteris cs in the so ware can be a drawback. 

The developed solu on for online plant monitoring included three machine learning techniques 

(clustering, linear regression, and ar ficial neural network) to address this problem. The mul -

layer perceptron classifier (MLPC) algorithm demonstrated high accuracy in predic ng anomalies 

for categorizing "ok" or "alert" statuses of various fluids tested but had less accuracy in 

categorizing the "warning" status. Similar conclusions were reached for the K-means clustering 

algorithm, which effec vely grouped "alert" and "ok" statuses but frequently conflated the 

"warning" status with regular plant opera on. This can be a ributed to the "warning" status's 

defini on, which covers events that fall into a rela vely small range of values and makes accurate 

detec on difficult. Currently, only "ok" situa ons, which are usually correctly detected, may be 

iden fied using clustering and classifica on algorithms. To facilitate employee interven on at the 

plant, any devia on from these opera ng condi ons would result in an alert being displayed on 

the HMI. However, these algorithms s ll need to be improved and refined before they can be 

used online.  
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4.2 Bag Filter pilot plant 

A plant with a bag filter is a system employed for air purifica on from suspended par cles, dust, 

and other impuri es. For the case under examina on the plant is composed by 31 bags, a main 

inlet pipe i.e., defined as manifold, a compressor, an outlet pipe which exhaust the cleaned air in 

the atmosphere and a branch connected to the manifold with collect he polluted air containing 

dust to be separated within the cyclone filter. 

4.2.1 Plant Descrip on 

4.2.1.1 Main Piping 

At the beginning of the plant, there is a main inlet piping through which contaminated air enters 

the system. This piping is designed to direct polluted air into the filter’s chamber. 

4.2.1.2 Compressor 

The compressor is a cri cal component of the plant. Its primary func on is to increase the air 

pressure so that it can effec vely pass through the bag filter. This is par cularly important to 

ensure that the air is evenly distributed among all the bags of the filter. 

4.2.1.3 Bag Filter 

This is the core of the plant. The bag filter (Figure 38) consists of 31 bags (long, cylindrical tubes) 

aligned inside a sturdy structure. These bags are made of special materials designed to capture 

suspended par cles in the air as it passes through them. The bag filter retains the par cles and 

allows clean air to pass through the bag walls towards the outlet. 
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Figure 38 Bag Filter Pilot Plant 

4.2.1.4 Clean Air Outlet Piping:  

The air that has been purified through the bag filter exits the plant through a separate piping, 

ensuring that clean air is properly directed out of the system. This clean air can be released into 

the environment or used for other applica ons depending on the user's needs.  

Branch with Cyclone Filter: which collect the polluted air form the shop floor into the main piping 

to be separated within the cyclone filter. The cyclone filter is a device used to separate solid 

par cles, such as flour, from the air stream. It operates by crea ng a vortex inside a cylinder, 

causing heavier par cles like flour to be pushed towards the walls and collected, while clean air 

con nues its path. 

4.2.1.5 Valve  

For the regula on of the system flow, there is a bu erfly valve posi oned downstream of the 

filter and preceding the fan, determining its intake sec on. In addi on to this component, it is 

possible to adjust the fan's frequency using an inverter. The Endress Hauser Deltabar S PMD75 

(Figure 39) differen al pressure sensor, posi oned at the ends of the filter, measures the 

occurring pressure losses. 
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Figure 39 Endress Hauser Deltabar 

4.2.1.6 Stepper motor 

The bu erfly valve mounted on the central sec on of the manifold is coupled with a stepper 

motor which sha  is connected to the rotor of the motor. Stepper motor (Figure 40) is 

electromechanical device widely used in precision control applica ons, characterized by its ability 

to divide a full rota on into a series of discrete steps. It operates based on the principle of 

conver ng electrical pulses into mechanical mo on, with each pulse represen ng one step. 

Stepper motors feature a rotor with teeth and a stator with coils, typically arranged in a bipolar 

or unipolar configura on. The motor's movement is controlled by energizing specific coils in a 

sequenced manner, inducing magne c a rac on and repulsion between the rotor and stator. 

This sequen al energiza on enables precise angular posi oning, making stepper motors suitable 

for applica ons requiring accurate and repeatable posi oning, such as 3D printers, CNC 

machines, robo cs, and automa on systems. Stepper motors exhibit dis nct advantages, 

including simplicity, open-loop control capability, and immunity to feedback issues. However, they 

may exhibit limited speed and torque compared to other motor types, necessita ng careful 

considera on of applica on requirements. 

 

Figure 40 Stepper Motor 
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4.2.1.7 Sensors 

The pilot plant has been equipped with sensors able to acquire data and monitor the main 

parameters of the system which are: (i) Air flow; (ii) Air velocity; (iii) pressure drop measured at 

the inlet and outlet sec on of the filtering chamber. The component dedicated to performing 

these measures are basically two types of sensors, in par cular: a differen al pressure transmi er 

called KIMO, and an anemometer. 

Differen al pressure transmi er 

The Kimo, (Figure 41)is a par cular kind of sensor, known as a "density-compensated differen al 

pressure flow sensor".  This sensor measures air velocity based on differen al pressure 

measurement while considering the air. This type of sensor is used in environmental monitoring, 

HVAC (Hea ng, Ven la on, and Air Condi oning), and other applica ons where precise 

measurement of air velocity is required. The principle of opera on of this sensor is based on 

Bernoulli's law, which describes the rela onship between fluid velocity, pressure, and fluid 

density in a steady flow. The sensor consists of two tubes or channels, one of which is exposed 

to the air flow to measure sta c pressure, while the other is equipped with a differen al pressure 

sensor to measure the difference between dynamic and sta c pressure. This pressure difference 

is directly related to air velocity. To account for air density, the sensor uses a compensa on 

method. Since air density can vary with temperature and atmospheric pressure, it is important 

to consider this varia on to obtain accurate air velocity measurements. Density compensa on 

typically involves using a temperature sensor to measure air temperature and then correc ng the 

pressure difference based on this temperature, using the ideal gas law. 

 

Figure 41 Kimo 

While for the measure of the air velocity at the outlet sec on of the filtering chamber it has been 

installed a hot-wire anemometer. This device is used to measure air velocity or its direc on within 

a flow. It is a type of thermal sensor that exploits temperature varia ons caused by air velocity to 

calculate it.  

Hot-wire anemometer 
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The opera on of a hot-wire anemometer, (Figure 42)is based on the principle that a thin, heated 

wire exposed to the air will experience faster cooling due to the moving air. The wire is kept at a 

constant temperature using electrical resistance. When air flows over the wire, the wire's 

temperature decreases in propor on to the air velocity. The amount of cooling of the wire is 

directly related to the surrounding air's velocity. A temperature sensor con nuously measures 

the wire's temperature, and based on this temperature varia on, the device can calculate the air 

velocity. The higher the air velocity, the greater the temperature change of the hot wire. 

 

Figure 42 Hot Wire anemometer 

 

4.2.2 Digital model 

4.2.2.1 Plant characteris cs 

The purity level achieved in the exhaust air atmosphere is involvedly linked to the fluid velocity 

in the filtra on process. Given this premise, the implementa on of an advanced control strategy 

becomes impera ve to guarantee both product quality and operator safety. To regulate the 

velocity of contaminated air within the manifold and to provide real- me monitoring of process 

parameters, a specialized so ware applica on has been developed. This applica on incorporates 

a Data Transmission model constructed using LabView, and its overall structure closely resembles 

that previously described for the pasteuriza on facility in the context of liquid food produc on. 

The cri cal parameters for this facility include air velocity and piping pressure. These parameters 

are monitored through dedicated sensors integrated into the plant. Specifically, air velocity is 

measured using a hot wire anemometer, while the air pressure within the pipe sec ons is 

measured using a differen al pressure transmi er. Each branch of the pilot plant is equipped with 

a hot wire anemometer capable of measuring air veloci es of up to 30 meters per second and 

providing an analog output within the standard current loop range of 4-20 mA. 
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The differen al pressure transmi er calculates air flow based on the Bernoulli equa on (10), 

expressed as: 

 𝐴𝑖𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝐶 (2𝛥𝑃/𝜌) 

 

(10) 

Here, Cm represents the differen al pressure device coefficient, which, in the case we are 

examining, is determined to be 0.84 (Kimo Instruments 2022). This device is posi oned at the 

center of the manifold and provides an analog output signal in the standard current loop format 

(marked as KIMO dP in Figure 43). 

 

Figure 43 Bag Filter Front Panel  

Valves 1 and 2 are actuated by stepper motors, specifically brushless synchronous DC motors with 

the model M60SH86-TO0512P24C. These motors u lize digital input and output signals for 

star ng and stopping. Two of these devices are installed on the pilot plant, enabling adjustment 

of the piping sec on for the air outlet manifold and air inlet 1 (as shown in Figure 43). 

Controlling the stepper motor requires a dedicated drive, which serves a dual purpose: it ini ates 

the control signal and supplies power to the motor coils while respec ng the defined sequence 

in the first block. The input interface of the drive communicates the desired command to the 

motor. The commercial drive employed in this system is the SMD1104LIE. 

A digital layer of the system has been developed, encompassing the Human-Machine Interface 

(HMI), system monitoring, control block diagram, and a virtual model of the machines and 
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sensors specific to this case. The system model follows an experimental approach. More precisely, 

the plant characteris cs have been determined by assuming that the air inlet velocity (AIV) varies 

with the valve posi on (VP). The characteris c curve was constructed by collec ng various AIV 

data within a sampling me of 540 seconds (with a sampling rate of 1 Hz). These data were 

correlated with the valve opening angle, ranging from 0° (fully open) to 80° (almost closed) in 10° 

steps, sampled every 60 seconds. The resul ng curve, (Figure 44) from the experimental data, ( 

 𝐴𝐼𝑉  =   0.0035𝑉    +   0.0502𝑉   +   18.553 

 

 

(11) 

Table 15) can be summarized using the following empirical rela onship, equa on (11): 

 

 𝐴𝐼𝑉  =   0.0035𝑉    +   0.0502𝑉   +   18.553 

 

 

(11) 

Table 15 Empirical relationship Valve Position-AIV 

Valve posi on 
[°] 

AIV 
[m/s] 

0 18.35 
5 18.832 

10 18.792 
15 18.582 
20 18.202 
25 17.652 
30 16.932 
35 16.042 
40 14.982 
45 13.752 
50 12.352 
55 10.782 
60 9.042 
65 7.132 
70 5.052 
75 2.802 
80 0.382 
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Figure 44 Bag Filetr operating points 

4.2.2.2 Data communica on system 

While for the previous case study it has been adopted a TCP/IP protocol, for the case under 

examina on, the choose falls into Modbus. This protocol is a widely used in industrial automa on 

and control systems. It facilitates communica on between various devices, such as sensors, 

actuators, and controllers, allowing them to exchange data and control signals. In this case, it has 

been programmed to communicate with a stepper motor to adjust a valve posi on which adjust 

air flow into the manifold. Nonetheless, Modbus performs as a standardized way for a supervisory 

controller (such as a PLC or a computer) to communicate with the stepper motor 

driver/controller. It defines the rules and formats for data communica on, including commands 

to set the desired valve posi on and queries to read the current valve posi on or other relevant 

parameters. The supervisory controller sends commands to the stepper motor controller, 

specifying the desired valve posi on or control parameters. These commands are typically sent 

in a structured format, such as MODBUS func on codes, which the stepper motor controller 

understands. The code for this protocol has been implemented into LabVIEW environment 

considering the following steps: 

I. The establishment of a connec on between DAQ (Data Acquisi on) and the drive 

necessitates the development of a master-slave configura on compliant with the Modbus 

protocol. The ini al step involves crea ng Modbus library support to facilitate communica on 

between the so ware and hardware components. This protocol mandates a cyclic query-
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response mechanism between the host and the connected devices over the same network. To 

establish a proper connec on, a server is configured to communicate via serial ports with the 

hardware devices, referred to as "slaves." In this setup, the LabVIEW controller acts as the server, 

while the motor drives serve as the slaves. 

II. The server configura on details, involve the use of IP addresses to represent the motor 

drive names, with assigned values (e.g., 125) as the star ng addresses for Modbus slave registers. 

A refresh rate of 0.1 seconds is allocated for each call-response cycle. In the event of connec on 

errors, the master ini ates a retry mechanism with up to four a empts to restore the correct 

linkage. Once the master setup is complete, users can communicate with the slave registers by 

reading the por on of the internal Modbus register of the client that contains specific commands 

or ac ons. The server can both read and write the holding register of the drive, which is in the 

fourth memory map of the register. For the specific case being examined, drive parameters and 

associated addresses required for control tasks are listed in Table 16, addressed at 400001. 

Notably, the third variable is a 16-bit unsigned word for se ng the desired motor posi on via 

so ware and is addressed at 400060. The fourth variable, known as "Target SD," is a 32-bit integer 

data addressed at SD400009 of the holding register, used to specify the desired motor posi on, 

as presented in Table 1. The final variable pertains to the command for sha  velocity, which 

ranges from -10000 to +10000, with the sign indica ng the rota on direc on (posi ve for 

clockwise and nega ve for counterclockwise rota on). Each command or posi on corresponds 

to a so ware variable, organized within a library as sub-VIs (Virtual Instruments) in the digital 

layer. Similar precau ons apply to the "TP1" and "TP" variables. To command a target setpoint, 

bit 7 of register 400009 can be wri en by entering 27 concatenated with the address. 

Table 16 Drive parameters and register addresses 

ID Variable Name Data Type AccessType Register Address 

CM1 CurrentMotor1 Boolean read only 400200.1 

ShP Sha  Posi on Int32 read/write 400001 

RS RotateSha 1 UInt16 read/write 400060 

TP TargetPosi on Int32 read/write SD400009 

ShV Sha  Velocity Int32 read/write SD400064 
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4.2.2.3 Process Control strategy 

The control approach in this case follows an open loop. Further steps in the control 

implementa on process involve the master adhering to a precise algorithm to communicate 

effec vely with each variable. Due to the mul ple query-response cycles, the master must query 

the slave with specific me delays for each call response to prevent data communica on overlap, 

leading to the development of a med sequence block diagram. The delay between one query 

response and the next is set at 0.5 milliseconds. Ini ally, the master ac vates the drive by 

querying the "RS" (RotateSha 1) address, located in the fourth sec on of the Modbus memory 

map, at the second bit. This entails wri ng an unsigned word of 2 into the register address. 

Subsequently, the master checks the status of the motor by querying the "CM1" (CurrentMotor1) 

address. The "ShP" (Sha  Posi on) variable can be read or wri en depending on the task at hand. 

During reading, the master queries the address and returns the motor posi on as a decimal value 

in the range of 0 to 10800, represen ng the current posi on of the motor sha  in terms of 

clockwise rota on, with a propor onal rela on of 30 between a full turn of the sha  and the 

round corner. To display the value appropriately, an adjustment is required by dividing the read 

word by 30. The control  system is composed of both hardware and so ware component. In terms 

of the hardware, the DAQ module, which serves as the system's brain and is connected to the 

sensors and motor through various cables, has been used to read the analog output of the 

probes, which is offered in a standard current loop (4–20 mA). Instead, the motor drive is 

communicated with using a twisted pair ethernet cable. The user monitor shows the status of 

the process parameter as well as the behavior of the machine. Again, using LabVIEW, the so ware 

tool suppor ng the system was created in G-Code. An open-loop control for the stepper motors 

has been developed in accordance with prior applica ons to flour milling plants, considering the 

peculiari es of the equipment, par cularly its low sensi vity to external factors. Twisted pair 

cable was used to establish the connec on between the RS232 port on the motor drive and the 

corresponding one on the DAQ. The Modbus RTU communica on protocol is adopted by the 

communica on layer. This is also generally used as a bridge between the field devices and the 

control systems and is quickly emerging as a go-to method for remote monitoring on the Internet 

of Things. It is necessary to create a master-slave connec on that complies with Modbus to 

connect the DAQ to the drive. To connect LabVIEW so ware and hardware components, the first 

step is to develop support for the Modbus library. Such a protocol necessitates a cycle of query 

and response between hosts connected via the same web. A master must be set up to 

communicate with the host through serial ports to create the proper connec on (slave). The 

LabVIEW behavior as the master, and the motor drives serve as the slaves. Figure 45displays the 

server configura on, where the IP address stands in for the motor drive name and its value (125), 
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respec vely, for the star ng address of the Modbus slave registers. The dura on of each cycle of 

a call response is 0.1 seconds. The master may query the slave up to four mes to re-establish 

the linkage if a connec on error occurs. By reading the sec on of the client's internal Modbus 

register where specific commands or ac ons are located, the user can communicate with the 

slave registers a er the master has been set. The holding registers of the drive, which is in the 

fourth memory map of the register, is accessible to the master for reading and wri ng.  

 

Figure 45 Server configuration 

The control is supported by a code sec on that, as seen in Figure 46, can minimize the 

overshoo ng of the controlled parameter. This code is made up of several "if" cycles with two 

parameters called manual and AIV crea ng a hierarchy. The first box is based on the former 

parameter's Boolean (true/false) value, which enables manual control of the system when set to 

true or open-loop control when set to false (when set at false). There are in fact two subcases 

controlled by the air inlet velocity parameters, and they can be dis nguished by comparing the 

AIV and the desired setpoint (SP), which has been modified to account for plant characteris cs. 

The following inputs must be set in the motor drive because the controller must slightly adjust 
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the valve posi on to reach the setpoint, specifically if AIV is not in the range SP1 m/s (Figure 48). 

 

Figure 46 Bag Filter Front Panel Control 

 

i. The motor sha  rota on velocity. 

ii. The target task. 

iii. The command to achieve the setpoint. 

 

 

Figure 47 Block Diagram: Setpoint achievieng 
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Figure 48 Block Diagram Motro Stop in place  

The motor tends to reach the desired setpoint by checking the 7th bit of the Rotate Sha  (RS) 

register variable up un l the target task is in the range between 0-2700, which represents the 

angular posi on of the valve from 0° to 90°. The sha  velocity is also controlled according to a 

further comparison between the AIV and a constant value of 0.5 m/s, which allows for a higher 

velocity when the AIV is far from the desired value and a slight slowdown when it is ge ng close 

to the setpoint. By querying the third bit of the RS once the setpoint has been reached, the valve 

is stopped in place Figure 47. By querying the third bit of the RS once the setpoint has been 

reached, the valve is stopped in place (Figure 48). 

4.2.3 Machine learning algorithms 

Before developing a specific predic ve model based on the collected data, it was necessary to 

study the input parameters and evaluate their rela onships.  

4.2.3.1 Mul variable Linear regression 

Mul variable Linear regression is a sta s cal method used to study and model the rela onship 

between a con nuous dependent variable and one or more independent variables. The 

dependent variable, also known as the "response variable" or endogenous variable, is the 

variable that is predicted or explained by the model. It is the parameter you want to analyze or 

predict based on the values of the independent or predic ve variables. In the formula on of a 

linear regression model, the dependent variable is represented as a linear combina on of the 

independent variables, mul plied by their respec ve regression coefficients. The goal of linear 

regression is to find the best es mate of the coefficients that minimizes the discrepancy between 

the observed values of the dependent variable and the values predicted by the model. The choice 

of the dependent variable depends on the analysis's objec ve and specific research ques ons. It 

can be a con nuous variable, such as income or temperature, or a discrete variable, such as the 

number of children or the result of an exam (pass or fail). The independent variables, also called 

"predic ve variables" or exogenous variables, are the variables used to explain or predict the 
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varia on in the dependent variable in the model. These represent the characteris cs or 

condi ons believed to influence the dependent variable. In the formula on of the linear 

regression model, independent variables are used to es mate the regression coefficients, which 

represent the effect of the independent variables on the dependent variable. Independent 

variables can be selected based on theore cal hypotheses, previous studies, or empirical 

considera ons. It is essen al to choose them carefully to ensure their relevance to the dependent 

variable and their ability to provide adequate explana on or predic on. In linear regression, the 

equa on (12) takes the following form:  

 

 𝑌 =  𝛽0 +  𝛽1𝑋"1" +  𝛽2𝑋2 +  ⋯ +  𝛽𝑛𝑋𝑛 +  𝜀  

 

 

(12) 

Where:  

- Y represents the dependent variable (response variable) that you want to predict or 

explain.  

- X1, X2, ..., Xn are the independent variables (predic ve variables) used to explain the 

varia on in Y.  

- β0, β1, β2, ..., βn are the regression coefficients, represen ng the effect of the 

independent variables on the dependent variable. β0 is the intercept term, while β1, β2, 

..., βn are the coefficients associated with each independent variable.  

- ε represents the residual error, which is the discrepancy between the observed values 

of the dependent variable and the values predicted by the model. It is due to unexplained 

or random factors.  

The goal of linear regression is to es mate the regression coefficients (β0, β1, β2, ..., βn) in a way 

that the linear equa on improves the accuracy of predic ng the dependent variable Y based on 

the values of the independent variables (X1, X2, ..., Xn). In the case at hand, mul ple regression 

is considered the most suitable for the study. It allows for examining the simultaneous effect of 

mul ple independent variables on the dependent variable, considering their individual effects 

and possible interac ons. Furthermore, it can provide a be er predic on of the dependent 

variable compared to simple linear regression because it considers mul ple factors that could 

influence the dependent variable. This situa on clearly reflects the simula on discussed in the 

study, as it involves parameters such as speed and pressure, and aims to evaluate their impact on 



 
82 

filter pressure drop. Specifically, it involves real- me analysis of the efficiency rate of zinc and 

lead extrac on concerning selected parameters. The variables include temperature, pH, and 

par cle size, received from the IoT module connected to corresponding sensors. Through data 

analysis using supervised machine learning algorithms, a mul variate regression model is 

formulated to predict future es mates related to zinc and lead extrac on. In general, the 

assumed variables have predicted the efficiency of zinc and lead extrac on sta s cally 

significantly. Therefore, the predicted model fits well and can be applied in the mining industry 

to es mate extrac on efficiency and performance. 

4.2.3.2 Gaussian Process Regression (GPR) 

In this work, to obtain an effec ve predic ve model, the chosen method is Gaussian Process 

Regression (GPR). A Gaussian process is a type of stochas c process used to model various 

random phenomena. It is fully described by its mean and covariance func on. The mean defines 

the process's average value in the domain, while the covariance func on specifies the correla on 

between values of the process at different domain points. Gaussian processes are used in many 

machine learning algorithms, one of which is Gaussian regression. In this case, the Gaussian 

process is used to model the distribu on of possible regression func ons for a given set of 

training data. Generally, analyzing Gaussian processes requires some knowledge of probability 

theory and linear algebra. However, there are so ware tools like Matlab that simplify their 

analysis and applica on in machine learning problems. Gaussian Process Regression (GPR) is a 

type of regression analysis that u lizes Gaussian processes to model the rela onship between a 

set of input variables and a con nuous output variable. It is a powerful and flexible machine 

learning technique that can be used for a wide range of tasks, including predic on, interpola on, 

and extrapola on. A Gaussian process is a collec on of random variables, and any subset of these 

variables is jointly Gaussian. In GPR, it is assumed that the output variable is a sample from a 

Gaussian process with a mean func on and a covariance func on. The mean func on describes 

the general trend of the data, while the covariance func on describes the rela onship between 

different input values. When it comes to predic ng outputs, the model is trained on a set of input-

output pairs. The model then uses the covariance and mean func ons to make predic ons on 

new input values. The uncertainty of the predic ons is expressed by the covariance matrix of the 

predicted values, providing a measure of how reliable the model is. One of the advantages of GPR 

is its ability to handle nonlinear rela onships between input and output variables, as well as its 

ability to provide uncertainty es mates for predic ons making it suitable for both interpola on 

and extrapola on. The evalua on is based on its flexibility and power, as well as the ability to 

provide both predicted results and confidence intervals (uncertainty es mates). This aspect is 

crucial for quan fying the reliability of predic ons. The literature shows that GPR has been widely 
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used for data modeling in various systems. An example is the mul -response GPR model 

proposed by Wang and Chen, who demonstrated its superiority through simula ons and 

modeling a chemical reac on's response. Aye and Heyns studied an integrated GPR model to 

predict the remaining useful life of low-speed bearings, achieving reduced predic on errors. 

Many ar cles in the literature have focused on extending and improving the GPR model to make 

it more accurate. In contrast, there is limited a en on given to the analysis and improvement of 

confidence intervals, possibly because the presence of Gaussian noise has li le impact on the 

GPR predic on accuracy, as these noises can be quan ta vely modeled in the model. 

4.2.3.3 Neural Networks 

Neural networks, also known as ar ficial neural networks (ANN), cons tute a subset of machine 

learning and derive their name from the way biological neurons communicate. They are 

composed of ar ficial neurons or nodes that receive inputs and send various outputs to connect 

with others. Each node has its associated weight and threshold and will send an output only if it 

exceeds a specific threshold value; otherwise, the connec on will be interrupted. ANN relies on 

training data to op mize accuracy. They are used in AI to organize high-speed data into clusters. 

Weights are assigned to each input level, determining the variables' importance. Weighted inputs 

are then summed, and the output is determined by an ac va on func on, which will decide 

whether to proceed to the next level in the network if the obtained value surpasses the threshold. 

Normally, the mechanism underlying neural networks is feedforward, meaning there is a 

unidirec onal flow of informa on. Training can also be achieved through backpropaga on, 

associa ng each node with its error. The type of ANN described represents the classic func oning 

logic. However, there are other types, such as convolu onal neural networks (CNNs), mainly used 

for image recogni on, and recurrent neural networks (RNNs), consis ng of feedback loops to 

predict future results. Neural networks represent a crucial classifica on system, thanks to their 

versa lity. They are par cularly suitable when problem instances are provided in pairs, and there 

are many training sets. However, they have some disadvantages. For instance, with a high number 

of neurons, the network can lose its ability to generalize results and require lengthy and expensive 

training. The applica on of ANNs is found in various fields, such as the economic sector, where 

they have been used to predict bank failures. Another example is provided in ar cle, which uses 

a convolu onal neural network (CNN) to calculate surface roughness in a milling process, training 

the model using LabVIEW combined with a Python algorithm. Tes ng the neural network with 

data like those used in the training set is one of the few methods used to verify the network's 

effec veness. In most cases, such tradi onal tes ng techniques are adequate for accep ng a 

neural network system. However, in more complex and cri cal systems, the standard neural 

network training test approach is not sufficient to provide a reliable method for valida on. 
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4.2.4 ML Tes ng and results 

The tes ng phase's objec ves are to evaluate the predic ve model's precision by analyzing the 

errors that have an impact on the algorithm's predic ons, and the robustness of the cleaning 

system's on/off control. The control func onality has been assessed by stressing the system into 

out-of-range points of func oning and by observing the system behavior through user monitor 

while considering the measured and predicted pressure drop through the ML algorithm chosen 

a er the model valida on phase. The algorithm accuracy can be achieved by comparing the 

errors that were recorded during the tes ng phase with those related to the data on which the 

model was trained. The approach involves acquiring data to train the ML algorithms. The data 

acquisi on tool in LabVIEW was used to control this process. The measurements were obtained 

in this phase by running tests at four different air inlet veloci es: 15, 17. 5, 20, and 22.5 m/s with 

a tolerance of 1 m/s. As a result of this stage, the four data sets displayed in Figure 49 were 

compiled into a singular *.csv file used to train each Python algorithm. 

 

Figure 49 3D Plot Data acquired  

The model valida on score, which is the coefficient of determina on R2, equa on (13) has been 

used to validate each algorithm. 

 
𝑅 = 1 −

∑ (𝑥 − 𝑥)

∑ (𝑥 − �̅�)
 

 

(13) 

 
𝑀𝑆𝐸 =

∑ (𝑥 − 𝑥)

𝑛
 

 

(14) 

Where n is the number of samples, x is the average value of the tes ng data, and x is the predicted 

value. As shown in equa on (14) the Mean Squared Error comes a er: 
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which is the propor on of R2 to the number of samples n. At this point, the collected data were 

cleaned up and sent to the Python environment, where three machine learning algorithms were 

programmed. Mul variable linear regression (MLR), Gaussian process regression (GPR), and 

ar ficial neural network (ANN) are the first two (ANN). Each algorithm consists of three sec ons: 

I the first where data is called into the code; (ii) the second where the dataset is split into a 

train/test subset, of 70% and 30% respec vely; (iii) it follows a third sec on of the code, devoted 

to the model predic on; (iv) while the la er sec on displays model scores and data distribu on 

plots on the screen. The outcomes of this stage's equa ons (1) and (2) are displayed in Table 17.  

Table 17 Score of the ML algorithm developed 

Score MLR GPR NN 

R2  0.98 0.96 0.95 

MSE 0.032 0.002 0.002 

 

The MLR's higher R2 demonstrates that this algorithm has been integrated into the digital 

environment. To achieve this, a G-Code sec on that evaluates the predicted value by solving the 

MLR func on has been created.  

 𝑌 = 𝛼 + 𝛽 𝑋 + 𝛽 𝑋  

 

 

(15) 

Where Y is the es mated pressure drop value, X1 denotes the V3 measurement, and X2 denotes 

the measured air inlet velocity. The MLR algorithms evaluate the coefficients, β1 and β2, and the 

intercept for each parameter, assuming the value shown in Table 18 a er the equa on (15) 

Table 18 MLR Coefficients β_1, β_2 and intercept α 

α 𝜷𝟏 𝜷𝟐 

-2.16244884 0.14941325 0.48836683 

 

Following the ML algorithm's integra on into the digital environment, a second tes ng phase was 

conducted by adjus ng the air inlet velocity, measuring the relevant parameters, and assessing 

the ML predic on. At this stage, the following formula was used to calculate the error between 

algorithm-es ma on and measured pressure drops: 
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𝑒𝑟𝑟𝑜𝑟 = 1 −

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝

𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐷𝑟𝑜𝑝
 

 

 

(16) 

Figure 50 presents the results obtained and illustrates the distribu on of the error evaluated 

based on the test performed using the equa on (16). The ordinate displays the frequency of each 

error percentage in a dataset of 4484 samples, and the abscissa displays the classes of error with 

1.25 percent steps. Notably, the graph demonstrates that most error percentages are lower than 

6%. In fact, under this threshold, errors are present in about 80% of the cases. This shows that, 

in many cases, the algorithm performs with a high level of accuracy. 

 

Figure 50 MLR Outcomes  

The value derived from equa on (15) at this point, i.e., the es mated value of pressure drops 

under specific condi ons, can be compared in the data comparison block. The logic gate that 

produced the Digital Output used in the actual comparison, on which the control is based, can 

be used in the future to ac vate the air-jet compressor. If the error is within the established range 

or not, the logic gate is based on three cases. No ac on is planned if the range matches the error, 

and the error is less than 10%. On the other hand, the beginning of the cleaning cycle using the 

compressed air system is determined by an error value greater than 10% for a given dura on. as 

a test. 

4.2.5 Open loop control test and results 

Like the prior instance, plant opera ng condi ons have been used to test the open-loop control 

created for the bag filter. A constant compressor speed of 35 Hz has been set in the system, 

resul ng in an air inlet velocity of roughly 19 m/s. The open-loop control is ac vated once the 
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machine reaches that velocity by se ng the manual parameter to false. This enables the so ware 

to adjust the necessary setpoint by shi ing the valve through five different posi ons.  

Figure 51 illustrates the outcomes that were seen. As seen in that figure, once the control is 

engaged, the air flow tends to stabilize and get closer to the desired velocity. The pressure 

distribu on and velocity profile of the air movement in circular conduct, which has a non-unique 

value, are where the oscilla ng trend of the air velocity is found. 

 

Figure 51 Front Panel: Open Loop results 

The main posi ve finding from the tests is the quasi-stable state of air velocity when the control 

system is in opera on. In contrast, when the setpoint changes, the velocity displays a series of 

peaks, primarily because the rotor speed has been set using an experimental approach, achieving 

the desired setpoint while also preven ng damage to the valve. 
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5 Discussion for future research implementa on 
The two case studies under considera on make it possible to emphasize that, depending on the 

specifics of the food process, the implementa on of a DT-based control system in the food 

processing industry involves several decisions and can be done in a variety of ways. As result of 

this work illustrates some important choices to be made and major issues to be addressed, 

regardless of the specific process. 

Sta ng the goal of the implementa on. Clearly defining the intended purpose of the DT model 

and control system usage is the first step in pu ng DT-enabled control of a food process into 

prac ce. According to (Maheshwari et al., 2023), defining a DT model entail conduc ng a 

preliminary analysis of the process, such as by physically inspec ng the plant, the machines, or 

other per nent resources. In the specific instance of the food processing industry, DT models can 

support ongoing process monitoring to improve product quality and worker safety. 

Both solu ons put forth in this paper incorporate a simula on tool that can use thermo-fluid 

dynamic equa ons to digitally recreate the food processes. Addi onally, to exchange real data 

from the plant between LabVIEW (or other models/control boards) and the actuators, both 

solu ons follow the fundamentals of a real DT as opposed to a digital shadow. Appropriate 

sensors are installed in various parts of the equipment (R. Liu et al., 2023). 

Modeling a system. The key to DT implementa on is reproducing the system in terms of variables 

and process parameters, but the models used for comparing the controlled parameters can 

change depending on the process characteris c and are obviously specific of the applica on 

context (Semeraro et al., 2023). 

In fact, the digital model created for the liquid food plant includes several physical equa ons that 

consider the rheological characteris cs of the process fluid, along with the thermal equa ons 

and machine geometry, allowing for the evalua on of the system's behavior and the predic on 

of the controlled parameters for various fluids. Contrarily, the model created for the bag filter 

was based on an experimentally discovered curve and required the crea on of a numerical 

simula on using fluid dynamics for powders. 

Determine a control strategy: The best control strategy should be chosen while keeping in mind 

the characteris cs of the process under inves ga on. The control strategy to be used to act on 

the system a er no cing poten al incorrect opera on of the equipment with the set values 

differs between the two case studies. 
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In general, both closed-loop (feedback) and open-loop (feedforward) strategies can highlight 

benefits or drawbacks for processes. An open-loop control might be preferred over a closed-loop 

one way or another because it is a simple solu on that is simple to set up in systems where 

con nuous func on points of the process can be disregarded. When the controlled parameters 

can be set in advance within a certain tolerance and within the opera ng range of the machine, 

this method is proven to be effec ve. 

Even so, when used for me-varying processes where the controlled parameters must be 

adjusted con nuously, open-loop systems can exhibit some limita ons; in this case, a closed-loop 

(i.e., feedback) system should be preferred. 

It goes without saying that, depending on the context, this framework for the implementa on of 

DT-based control systems in the food sector could be further improved by including some aspects 

of evalua on. To keep this framework as general as possible for this industry, it has only been 

applied to a few specific decisions in this ar cle.  

The fundamental mechanisms of bag filter clogging, such as par cle agglomera on, cake 

forma on, and filter media proper es, can be further explored in future studies. To predict 

clogging events, researchers can concentrate on crea ng predic ve models using ML and 

computa onal fluid dynamics (CFD). To forecast when and where clogging is likely to happen, 

these models could consider various factors like par cle size distribu on, airflow rates, and 

opera ng condi ons. Inves ga ng intelligent cleaning techniques, such as enhancing pulse-jet 

cleaning ming and frequency or applying adap ve cleaning based on real- me data, can be 

advantageous. This might decrease energy use and increase filter life. 

In this essay, the implementa on of DT models for the regula on of food processes was 

examined. Two actual cases—a plant for liquid foods and a large flour filter—are used as suitable 

examples to demonstrate the key steps in DT implementa on. The paper describes the DT models 

and outlines the main implementa on difficul es, the be er control strategy for process 

monitoring, and a brief evalua on of that strategy. Finally, the findings from these case studies 

were compiled into a broad framework that reflected the essen al steps for DT development and 

applica on for process control in the food industry. 

From the scien fic point of view, there are s ll few real-world examples of DT model applica ons 

in the food industry, both generally and specifically for process control. As a result, this paper 

adds to the body of knowledge on the subject and directly contributes by offering two instances 

of the use and applica on of DT-based control models. It is therefore an cipated that it will offer 

empirical examples to further support the growing interest in the DT paradigm.  
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However, comparisons between this study and the available literature are challenging due to the 

dearth of such prac cal implementa on. Addi onally, the case studies discussed are unique to 

food produc on facili es and processes, which makes it even more challenging to compare the 

results in a straigh orward manner. These clearly show the work's limita ons, but hopefully 

future research will evaluate them more accurately.  

Notwithstanding, the implementa ons made it possible to list the main benefits of DT-based 

control models in comparison to other control strategies that are available in literature and 

industry. The ability of the DT-based control system architecture to automa cally change the 

setpoint by comparing the expected delta pressure data with the experimental values is 

par cularly important for the pasteuriza on process. Looking instead at the milling plant, the 

quasi-stable state of the air velocity when the DT-based control system is ac ve, demonstra ng 

good effec veness and preven ng damage to the valve, is the main strong point emerging from 

the tes ng phase.  

From a pragma c perspec ve, the study's final product, the framework, was developed with the 

inten on of assis ng and direc ng plant managers who wished to approach the implementa on 

of the DT model for the control of food processes. This framework draws some of its inspira on 

from more general DT architecture proposals found in the literature, but it also adopts different 

viewpoints from those proposals. Although the architectural characteris cs of DT models have 

been addressed in the literature that is currently available, their applica on in the field of food 

has only been lightly studied. 

As a result, the proposed approach is unique to the food processing industry, which means that 

all aspects of the DT design are tailored to the specifics of the food processing industry. Second, 

since there are s ll few DT models designed for process control, the control component is also 

incorporated into the framework. 

The proposed framework has been defined as being sufficiently general in nature so that it can 

be easily customized depending on the case being studied, even though it was built from the 

ground up using two real case studies. As a result, building on the findings of this study, addi onal 

food processes could be examined to assess the suitability of the framework created and to 

evaluate the effec veness of DT-based control models of food processes in various contexts.   

In summary, this work has introduced an applica on aimed at the integra on of digital twin 

models, machine-learning algorithms, and Industry 4.0 technologies to create a comprehensive 

tool for control processes and provide anomaly detec on within industrial systems. The focus of 

this study has been the development and implementa on of a solu on tailored for use in a tube-
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in-tube indirect machine designed for fluid food pasteuriza on, and a bag filter pilot plant. To 

op mize the performance of this mul faceted approach, four dis nct opera onal modes were 

devised and integrated into the digital twin model of the plant. A series of empirical tests was 

conducted to ascertain which opera onal mode most accurately aligns with the real-world 

func oning of the system.  

While the digital twin environment, coupled with tools from prior research, allows for both in-

situ and remote monitoring and control, it does present certain limita ons, par cularly in terms 

of manual setpoint adjustments and fluid characteris c configura ons. In response to this 

challenge, three dis nct machine learning approaches, including a linear regression model, an 

ar ficial neural network, and a clustering algorithm, were incorporated into the solu on, 

primarily for online monitoring of the plant. This endeavour, exploratory in nature, sought to 

evaluate the efficacy of various machine learning algorithms for anomaly detec on within this 

specific applica on, an area of research that remains rela vely unexplored. 

The outcomes from these machine learning tools indicate that the regression algorithm, once 

integrated into the digital twin environment, holds promise as a means of achieving automa c 

control over the system. This is a ributed to its ability to predict the dependent variable (P1) 

based on mul ple independent variables (P2 and F), subsequently providing a discrete value that 

can be employed as a setpoint for the PID controller. Simultaneously, the digital twin model 

operates as a vigilant sen nel over the machine's behavior, overseeing its func oning and capable 

of hal ng opera ons upon detec ng a "failure," while displaying the machine's status on the HMI. 

Conversely, the ar ficial neural network and clustering algorithms demonstrated marginally less 

impressive performance. Specifically, the MLPC algorithm exhibited a high accuracy in predic ng 

"ok" or "failure" status but displayed lower precision in classifying the "warning" status. Similar 

conclusions were drawn regarding the k-means clustering algorithm, which exhibited the 

capability to dis nguish between "failure" and "ok" statuses but struggled with the "warning" 

status, which encompasses a rela vely narrow range of values, making precise detec on 

challenging. 

It is important to note that false-nega ve classifica ons of the "failure" status, though rela vely 

infrequent, pose a significant concern, par cularly in terms of employee safety. Therefore, 

refinements are essen al for these algorithms to minimize false nega ves in iden fying machine 

failures. Alterna vely, a pragma c approach might involve the combined use of both methods, 

significantly reducing the likelihood of concurrent false nega ves for "failure" status. 
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In prac cal applica on, the use of clustering or classifica on algorithms for anomaly detec on 

would be best suited for iden fying "ok" condi ons, where their performance is generally 

reliable. Any devia on from this status would trigger alerts on the HMI, signalling the need for 

interven on. Addi onally, real-world implementa on should account for the presence of outliers 

or noisy data, which could adversely affect the performance of clustering algorithms, 

necessita ng careful data preprocessing in prac cal scenarios. 

In conclusion, this research provides a promising founda on for the development of an integrated 

digital twin-based system enhanced by machine learning algorithms for anomaly detec on in 

industrial se ngs. The findings not only advance the knowledge in this domain but also 

underscore the importance of refining these methodologies to ensure the utmost safety and 

efficacy in industrial opera ons. By inves ga ng the possibility of integra ng them with ML 

algorithms, future research ac vi es could also address further advancements in the applica on 

and adop on of DT in the food processing industry. Predic ve and prescrip ve analy cs will be 

used to analyze real- me data from the DT model to gain addi onal insights for improving food 

process controls. 

The monitoring, control, and maintenance op miza on of pasteuriza on system and, a bag filter 

pilot plant, are addressed in this paper using an integrated Machine Learning solu on created 

with Python and LabVIEW. The suggested system employs a data comparison tool to ac vate 

compressor filter cleaning or adjust product velocity in the pasteurizer. Three suitable algorithms 

for control management were chosen a er a thorough review of the literature. Using a Data 

Acquisi on System (DAQ) tool, a dataset was gathered and used for algorithm tes ng and 

training. Based on the results of the model valida on, the implemented algorithm was chosen. 

To evaluate the performance of the chosen algorithms and the Data Comparison tool, real data 

acquisi on and valida on were carried out. The compressed air cleaning system is ac vated when 

a significant difference is found by the control system developed in LabVIEW, which compares 

es mated pressure drops with directly recorded values.  

The difference between es mated and acquired values serves as a warning to the user that the 

filter sleeve needs to be replaced, or to control product flow. To assess the precision of the 

acquired and predicted data, various tests at various air inlet veloci es were carried out. The 

findings show that in about 80% of the cases, the machine learning algorithm maintains an error 

distribu on below 5 percent. By implemen ng Industry 4.0 principles and using digitaliza on for 

predic ve maintenance, this research helps industrial plants cut costs and down me. The system 

architecture, which consists of both hardware and so ware layers, makes it possible to effec vely 

monitor, control, and op mize maintenance of both plants. The created ML algorithms 
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demonstrate the poten al of predic ve maintenance in enhancing plant performance, efficiency, 

and resource u liza on a er being validated through performance metrics. The maintenance 

management of industrial plants can be improved by addi onal study and applica on of 

Intelligent Predic ve Maintenance (IPdM) and Industry 4.0 technologies. 
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6 Conclusions 
In summary, this academic endeavour has focused on the complex realm of predic ve 

maintenance and process control within food industry manufacturing field. Through the 

integra on of ML in a DT environment, a comprehensive and innova ve solu on has been 

elucidated. This study has underscored the cri cal importance of predic ve maintenance in 

op mizing the process control and predic ve mainentance of industrial processes. The results 

and insights presented here emphasize the poten al of employing ML algorithms within the 

digital twin environment for anomaly detec on and automated control. The integra on of ML 

algorithms, such as linear regression, ar ficial neural networks, and clustering, has shown as a 

promising avenue for enhancing process control and predic ve maintenance. The findings reveal 

that the linear regression algorithm, when embedded within the digital twin, offers automated 

control capabili es by predic ng and directly se ng parameters. However, it is crucial to 

acknowledge the need for con nuous refinement and improvement, par cularly in the context 

of accurately iden fying anomalies, a challenge that the ar ficial neural network and clustering 

algorithms have grappled with. 

The significance of this work extends beyond the theore cal realm, as it has prac cal implica ons 

for industrial pilot plant opera ons. The applica on of Industry 4.0 principles and digitaliza on, 

alongside the amalgama on of predic ve maintenance and ML, offers a pragma c solu on to 

cut costs, minimize down me, and enhance overall plant performance. The proposed system 

architecture, encompassing both hardware and so ware layers, demonstrates its capacity for 

effec ve monitoring, control, and maintenance op miza on. This integrated approach provides 

the founda on for improved industrial plant management, thus contribu ng to advancements in 

IPdM and Industry 4.0 technologies. 

In conclusion, this study has highlighted the poten al of combining ML algorithms with the digital 

twin model, offering a holis c solu on for predic ve maintenance and process control in 

industrial pilot plants. The findings not only enrich the exis ng body of knowledge but also 

underscore the prac cal relevance of these integrated technologies in real-world industrial 

applica ons. As we move forward, it is our duty to con nue refining and expanding these 

methodologies, ensuring their seamless adapta on to the evolving needs and complexi es of 

industrial systems. 
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