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Human life lasts but an instant.

One should spend it doing what one pleases.

In this world, fleeting as a dream, to live in misery

doing only what one dislikes is foolishness.

Yukio Mishima
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Abstract

The growing penetration of renewable energies, which have a fluctuating na-

ture, requires the enhancement of energy system flexibility. This can be achieved

through sector integration, which encompasses the conversion of energy into the

most convenient vectors. Within this context, the utilization of highly integrated

energy systems, known as Multi-Energy Systems (MES), where different energy

vectors optimally interact with each other, becomes imperative. Power-to-Gas

(PtG) technologies, i.e. the production of gaseous fuels from electricity, emerge

as a promising solution when considering sector integration, by allowing surplus

renewable electricity to be directly transformed into green hydrogen or methane,

which can be utilized or stored. Furthermore, these fuels exhibit excellent long-

term storage capabilities, making them a promising option for seasonal energy

storage. However, the full potential of PtG systems can be unlocked only if the

waste heat released by electrolysis and methanation processes is recovered and

fed, for instance, into a district heating network to be supplied to an end-user.

A smart energy system, however, which includes these innovative solutions and

allows for full integration of the fuel, electrical, and heating sectors, requires ad-

vanced management and control tools for optimizing its operation. The scope

of this thesis is to investigate the operational strategies of energy systems inte-

grated with PtG solutions by developing novel planning and control tools that

enable optimal system management. The core of this research involves three main

analyzed problems.

First, an innovative optimization model for the system is introduced, formu-

lated as a Mixed-Integer Linear Programming (MILP) problem. The model tack-

les the uncertain nature of future disturbances, such as energy needs, generation,

and price through a two-stage stochastic programming approach. The algorithm

is tested on grid-connected and positive energy districts case studies, allowing for

more robust optimization compared to a deterministic approach. Furthermore,

the integration of PtG solutions ensures the energy security of the systems and
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acts as a buffer to forestall unpredictable behavior of the disturbances.

Second, a control strategy based on Model Predictive Control (MPC) is pre-

sented. The controller aims to operate the production of methane from a PtG

system and the supply of waste heat to a district heating network with minimal

cost. The MPC makes use of a detailed MILP algorithm, able to optimize the

system over a future time horizon. The feasibility of the controller is demon-

strated through a Model-in-the-Loop simulation platform, and its performances

are compared to those obtained with a conventional controller. The novel con-

troller enables a 54 % increase in operating margin and more than halves carbon

dioxide emissions. A better exploitation of renewable energy is also obtained

(+4.6 %), as well as an increase in the share of heat recovered from the PtG

plant.

Lastly, a novel control architecture is proposed that combines the first two

developed tools into a more comprehensive and exhaustive tool for coordinating

multiple MES integrated by means of a shared natural gas seasonal storage. Each

individual MES has its own short-term control logic based on MPC, managing

the day-ahead energy exchanges, while a long-term MPC controller, employing

a two-stage stochastic programming MILP algorithm, takes into account yearly

dynamics and the interactions among the different energy systems, managing the

seasonal storage. It provides additional constraints to the short-term controllers,

ensuring that yearly goals are met. With the developed control architecture, a

multi-temporal and multi-spatial control is obtained. The proposed management

is validated in a Model-in-the-Loop configuration, and the benefits of the novel

control strategy are quantified. Notably, a smart management for the system is

achieved, and the controller is able to optimally control the system by making use

of the seasonal storage to balance the seasonal mismatch between production and

demand. Indeed, the surplus renewable generation is stored when available, and

used in periods of shortage, resulting in a higher utilization of renewable energy

and lower emissions and costs.

Overall, the tools proposed in this thesis offer innovative solutions for the

effective integration of PtG systems and their optimal management. They are

versatile tools, and their utilization for different case studies is straightforward

as they were developed in a general way. By optimizing energy management,

enhancing efficiency, and ensuring sustainability of energy systems, the novel

proposed tools allow taking some steps forward in the realization of smarter and

more resilient energy systems for a sustainable future.
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Abstract

La crescente penetrazione delle energie rinnovabili, che hanno natura non pro-

grammabile, richiede il potenziamento della flessibilità del sistema energetico. Ciò

può essere ottenuto attraverso l’integrazione di diversi settori (sector coupling),

ovvero la conversione dell’energia nei vettori energetici più convenienti. In questo

contesto, diventa imperativo l’utilizzo di sistemi energetici altamente integrati,

noti come Sistemi Multi-Energia (Multi-Energy Systems - MES), in cui diversi

vettori energetici interagiscono in modo ottimale tra loro. Le tecnologie Power-

to-Gas (PtG), ovvero la produzione di combustibili gassosi a partire da energia

elettrica, emergono come una soluzione promettente quando si considera il sector

coupling, poiché consentono di trasformare direttamente l’elettricità rinnovabile

in eccesso in idrogeno verde o metano, che possono essere utilizzati o immagazzi-

nati. Inoltre, questi combustibili presentano eccellenti proprietà per lo stoccaggio

a lungo termine, il che li rende un’opzione promettente per lo stoccaggio stagionale

dell’energia. Tuttavia, il pieno potenziale dei sistemi PtG può essere sfruttato solo

se il calore di scarto generato dall’elettrolisi e dalla metanazione viene recuper-

ato e immesso, ad esempio, in una rete di teleriscaldamento per essere fornito a

un utente finale. Un sistema energetico intelligente, tuttavia, che include queste

soluzioni innovative e consente la piena integrazione di diversi settori energetici

quali i combustibili, l’elettricità e il riscaldamento, richiede strumenti avanzati di

gestione e controllo per ottimizzarne il funzionamento. Lo scopo di questa tesi è

quello di indagare strategie operative di sistemi energetici integrati con soluzioni

PtG sviluppando nuovi strumenti di pianificazione e controllo che consentano una

gestione ottimale del sistema. Il nucleo di questa ricerca coinvolge tre principali

problemi analizzati.

Innanzitutto viene introdotto un modello di ottimizzazione innovativo del sis-

tema, formulato come problema di Programmazione Lineare Intera Mista (MILP).

Il modello affronta la natura incerta dei disturbi futuri, come il fabbisogno en-

ergetico, la generazione e il prezzo attraverso un approccio di programmazione
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stocastica a due stadi. L’algoritmo è testato su diversi casi studio, che com-

prendono sia distretti energetici positivi, sia sistemi connessi alla rete elettrica,

consentendo un’ottimizzazione più robusta rispetto a un approccio determinis-

tico. Inoltre, l’integrazione di soluzioni PtG garantisce la sicurezza energetica dei

sistemi ed è in grado di mitigare gli effetti derivanti da comportamenti impreved-

ibili dei disturbi.

In secondo luogo, viene presentata una strategia di controllo basata sul Model

Predictive Control (MPC). Il controllore mira a gestire la produzione di metano da

un sistema PtG e la fornitura del calore di scarto a una rete di teleriscaldamento

con costi minimi. L’MPC si avvale di un algoritmo MILP dettagliato, in grado

di ottimizzare il sistema su un orizzonte temporale futuro. La fattibilità del

controllore viene dimostrata attraverso una piattaforma di simulazione Model-

in-the-Loop e le sue prestazioni vengono confrontate con quelle ottenute con un

controllore convenzionale. Il nuovo controllore consente un aumento del 54 % del

margine operativo e di ridurre di più della metà le emissioni di anidride carbonica.

Si ottiene inoltre un migliore sfruttamento delle energie rinnovabili (+ 4,6 %),

nonché un aumento della quota di calore recuperato dall’impianto PtG.

Infine, viene proposta una nuova architettura di controllo che utilizza i primi

due strumenti sviluppati, combinandoli in uno strumento più completo ed esaus-

tivo per il coordinamento di più MES integrati mediante uno stoccaggio stagionale

condiviso di gas naturale. Ogni singolo MES ha una propria logica di controllo a

breve termine basata sul MPC, che gestisce gli scambi di energia in tempo reale,

mentre un controllore MPC a lungo termine, che utilizza un algoritmo MILP

di programmazione stocastica a due stadi, tiene conto delle dinamiche annuali e

delle interazioni tra i diversi sistemi energetici, gestendo lo stoccaggio stagionale.

Esso fornisce ulteriori vincoli ai controllori a breve termine, che garantiscono il

raggiungimento degli obiettivi annuali. Con l’architettura di controllo svilup-

pata si ottiene un controllo multitemporale e multispaziale. La gestione proposta

viene validata in una configurazione Model-in-the-Loop e vengono quantificati i

vantaggi della nuova strategia di controllo. In particolare, si ottiene una ges-

tione intelligente del sistema e il controllore è in grado di controllare in modo

ottimale il sistema sfruttando lo stoccaggio stagionale per bilanciare lo squilibrio

stagionale tra produzione e domanda. Infatti, la produzione rinnovabile in ec-

cesso viene immagazzinata quando disponibile e utilizzata in periodi di carenza,

con conseguente maggiore utilizzo dell’energia rinnovabile e abbassamento delle

emissioni e dei prezzi.
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Nel complesso, gli strumenti proposti in questa tesi offrono soluzioni innova-

tive per l’efficace integrazione dei sistemi PtG e la loro gestione ottimale. Gli

strumenti sviluppati sono versatili e il loro adattamento a diversi casi di studio

è semplice perché sono stati sviluppati con un approccio generalizzato. Ottimiz-

zando la gestione energetica, migliorando l’efficienza e garantendo la sostenibilità

dei sistemi energetici, i nuovi strumenti proposti consentono di compiere alcuni

passi avanti nella realizzazione di sistemi energetici più intelligenti e resilienti per

un futuro sostenibile.
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Ḣ Enthalpy flow, (J/s)

xix



Nomenclature
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Chapter 1

Introduction

The complete decarbonization of the energy sector is one of the main challenges

faced today and, to address it, energy systems are becoming increasingly complex.

This thesis aims at taking some steps forward in the search for possible future

management strategies and new solutions to handle this complexity and help

the energy sector on the path towards decarbonization. This chapter outlines

the motivations and challenges that led to the formulation of this thesis, gives a

background of the tools employed, and delineates the contribution of the research

presented.

1.1 Motivation and challenges

Addressing environmental issues arising from the current use of fossil fuels is a

central concern within research. The ambitious goals set by Europe to combat

global warming entail a substantial reduction in greenhouse gas (GHG) emissions

in the coming decades, ultimately achieving a carbon-neutral economy by 2050.

To meet these targets, radical transformations must take place within the existing

energy sector [1]. The urgency of replacing fossil fuel-based energy sources is at

the center of the energy transition, and using Renewable Energy Sources (RES)

is seen as the most promising solution, primarily due to their capacity to pro-

vide an abundant and environmentally friendly energy supply. However, one of

the main challenges associated with renewable energy is its intermittent nature,

particularly evident in sources such as wind and solar. Managing this variability

is essential to maintain the stability of the electricity grid. Consequently, there

is a pressing need for long-term, high-capacity electricity storage solutions and
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backup production capacity [2]. Furthermore, the successful exploitation of RES

such as wind, solar, sustainable biomass and hydropower in decarbonizing the

power sector has been demonstrated, achieving promising results [3]. However,

there are other sectors, often referred to as hard-to-abate, where electrification

(i.e. the replacement of a different energy vector with electricity) is not a viable

option, presenting particular challenges in achieving decarbonization.

Within this context, emerging fuel technologies, such as electrofuels, have the

potential to assume a pivotal role. These fuels are a category of fuels synthe-

sized directly from electricity. The fundamental concept involves storing electri-

cal energy within the molecular structure of either gaseous or liquid fuels. When

produced using renewable electricity sources, these fuels can be considered to

be carbon-neutral. Electrofuels serve a dual purpose: they can be employed as

energy storage solution and subsequently converted back into electricity, or they

can be utilized in combustion systems such as conventional fuels. The production

process is based on water electrolysis, with which, by separating water molecule

in oxygen and hydrogen, it is possible to obtain pure hydrogen. However, there

are notable challenges associated with managing and utilizing hydrogen as a fuel,

and for this reason, molecular hydrogen is frequently employed to create more

easily manageable liquid or gaseous fuels. Examples include the synthesis of

methane and longer-chain hydrocarbons from carbon dioxide, or the generation

of ammonia from nitrogen [4].

When integrating the production of such fuels into existing energy systems,

besides being themselves a product, their production also involves additional

benefits [5]:

� Addressing power grid balancing : the transition to a low-carbon energy sys-

tem driven by the introduction in the system of RES involves technical

challenges linked to the fluctuating nature of their supply and their impact

on maintaining a balance between energy supply and demand across time

and space [1]. Electrofuels production presents an opportunity to enhance

the flexibility of the power grid, both spatially and temporally, thus miti-

gating the need to curtail renewable energy. Furthermore, when considering

the Power-to-Gas (PtG) process, which allows the conversion of electricity

into methane, and sector coupling of electricity and gas networks, a signif-

icant increase of renewable energy share in the overall energy generation

mix is allowed [6].
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� Carbon dioxide ’sequestration’ : when the carbon dioxide (CO2) used for

the production of electrofuels is captured from industrial processes or other

sources, it can be viewed as temporarily avoided emissions.

� Storing electrical energy into chemical form: countries facing intermittent

weather conditions, such as those with substantial renewable energy produc-

tion during the summer season and high electricity demand during winter

(or vice versa), necessitate large-scale energy storage solutions. Electro-

fuels offer a viable option for long-term storage of renewable energy and

provide a solution to this challenge [7]. Additionally, electrofuels can serve

as a storage solution when power generation is geographically distant from

end-users, such as offshore wind turbines or electricity production in remote

areas like deserts, as they can be transported for long distances. Figure 1.1

illustrates the advantages of electrofuel technology for storage, including its

substantial energy capacity and large discharge time at rated power com-

pared to other existing technologies [8]. These features make these fuels a

particularly suitable solution for seasonal energy storage.
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Figure 1.1: Mapping storage technologies according to performance character-
istics (CAES = Compressed Air Energy Storage, LAES = Liquid Air Energy
Storage).
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Technologies

The core of electrofuel production is the conversion of electrical into chemical

energy, primarily accomplished through water electrolysis. During this process,

water undergoes a split into its constituent elements, hydrogen and oxygen, by

the application of electrical current between two electrodes. The electrolyzer,

which is used for this process, consists of the following components: a cathode,

an anode, an electrolyte that conducts ions and a diaphragm or separator, crucial

for preventing the recombination of hydrogen and oxygen [9]. There are many ex-

isting electrolyzer technologies, that differs in terms of electrolyte, membrane and

operating conditions. The main characteristics of the most notable technologies

for electrolysis are shown in Table 1.1 [10–14].

Table 1.1: Main characteristics of different electrolyzer technologies.

AEC
(Alkaline
Electrolysis
Cell)

PEM
(Proton
Exchange
Membrane)

AEM
(Anion
Exchange
Membrane)

SOEC
(Solid
Oxide
Electrolysis
Cell)

PCEC
(Proton
Ceramic
Electrolysis
Cell)

State of
development

Mature Mature Under
developing

Under
developing

Research status

Electrolyte Alkaline
solution

Proton
exchange ionomer

Anion exchange
ionomer

Solid electrolyte Ceramic solid
electrolyte

Cell
separator

Diaphragm Electrolyte
membrane

Electrolyte
membrane

Electrolyte
membrane

Ceramic
membrane

Temperature
(°C)

65 to 100 [14] 70 to 90 [14] 50 to 70 [14] 700 to 1000 [10] 300 to 600 [12]

Advantages Available for
large plant
sizes, low costs,
long lifetime

High efficiency,
high dynamics

Low costs,
high dynamics

High efficiency,
possible integra-
tion of waste
heat

Dry hydrogen
produced,
low costs

Disadvantages Low current
density,
low dynamics,
corrosive
environment

Expensive,
low durability

Not mature
technology,
expensive,
low durability

Expensive,
low durability,
corrosive
environment,
low dynamics

Not mature
technology,
low durability

As previously mentioned, hydrogen can be further converted into more com-

plex fuels. For example, using methanation process, it is possible to generate

synthetic methane: by employing the exothermic Sabatier reaction, hydrogen

and carbon dioxide combine to generate methane (CH4). Methane, in compar-

ison to hydrogen, offers advantages in terms of transportation and utilization.

Indeed, by using existing infrastructures, its integration into the current energy

system is facilitated.

In addition, long-chain hydrocarbons can be generated through Power-to-

Liquid processes. With this approach, a portion of the renewable hydrogen pro-
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duced is used to convert carbon dioxide into carbon monoxide. This carbon

monoxide is then mixed with additional hydrogen to create syngas, which, in

turn, serves as the precursor for Fischer-Tropsch synthesis [4]. Alternatively, the

Power-to-Ammonia pathway offers a means to produce carbon-free liquid fuel.

This process relies on an abundant atmospheric component, nitrogen, which re-

acts with hydrogen via the Haber-Bosch reaction to produce ammonia. However,

it is worth mentioning that ammonia presents certain drawbacks, including a

relatively low energy density, as well as corrosive and toxic properties [4, 15].

Significant efforts are presently underway to develop new technologies and

cost-effective solutions for the generation of these fuels. Nevertheless, it is also

of paramount importance to investigate their integration into existing energy

systems. Indeed, if properly integrated, electrofuels have the potential to fully

harness the benefits of renewable energy sources. This integration not only en-

hances the stability of the energy grids but also reduces greenhouse gas emissions

by enabling the use of clean energy for various sectors, including transportation

and hard-to-abate industries. In addition, the integration of electrofuels can lead

to greater energy security of stand-alone energy systems, reducing the reliance on

fossil fuels. The ongoing research and development in this field, coupled with the

effective integration of these solutions into existing energy systems, are crucial

steps towards accelerating the transition to a cleaner and more sustainable energy

system.

Multi-Energy Systems

Achieving ambitious environmental targets while ensuring secure and affordable

energy for current and future generations requires comprehensive strategies that

address all energy sectors. Within this framework, the conversion of electricity

into fuels reveals to be a source of flexibility and gives the possibility to intercon-

nect several sectors. In particular, when considering the PtG pathway, numerous

possibilities emerge, including the sector coupling between electricity, gas and

heating sectors.

Traditionally, energy sectors have been treated separately in terms of oper-

ation and planning. Still, they are becoming increasingly interconnected. For

instance, electricity, heating, cooling, and gas networks often interact through

distributed technologies such as Combined Heat and Power (CHP), trigeneration

systems, Heat Pumps (HP) or PtG systems. Similarly, interactions between the

electricity sector and the transportation sector are growing, with the advent of
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electric vehicles. Therefore, there is a need to better understand and develop

systems that can tackle these challenges: the concept of Multi-Energy Systems

(MES) have gained prominence over the past decade as they offer a comprehensive

approach to decarbonizing the energy systems. A MES is an energy system that

allows the optimal interaction between different energy vectors such as electric-

ity, heat, cooling, fuels, and transportation at various geographical levels. This

approach aims to reduce carbon emissions while simultaneously mitigating the

economic impact and ensuring efficient energy utilization [16]. Compared to con-

ventional energy systems that treat each energy carrier independently, MES offer

notable advantages in terms of technical performance, economic viability, and

environmental sustainability. The identification of these benefits led to numerous

research efforts dedicated to exploring and advancing the concept of MES [17].

Nevertheless, given their complexity, when dealing with highly interconnected

MES, optimal strategies for their management, as well as smart controllers must

be investigated and developed, in order to fully exploit their potential [18].

1.2 Solutions employed

In this thesis, some of the available tools and methodologies to perform the opti-

mal management of highly integrated MES are investigated. These methodologies

include the Model Predictive Control strategy, the use of optimization algorithms

and the Model-in-the-Loop control verification. The tools employed are briefly

exposed in the following paragraphs, and they will be presented in detail in the

chapters of this thesis, together with applications in which they are tested and

verified.

Model Predictive Control

Model Predictive Control (MPC) is a smart control strategy, and its utilization

has been tested and evaluated for many applications, demonstrating to be a suc-

cessful tool [19]. Such controllers include three main steps: model prediction,

rolling optimization and feedback correction. Indeed, in these controllers an op-

timization algorithm is used, that is able to optimize the system to control, by

employing a simplified model of the system. Every time-step of the optimization,

the algorithm receives the necessary information on the actual behavior of the

system, and calculates an optimal trajectory for the control variables over a fu-

ture time-horizon, known as prediction horizon, which is discretized in a certain
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number of time-steps. From this trajectory, only the first control action is im-

plemented in the real system (e.g. as a set-point in low-level controllers). Then,

after a time-step is passed, the system states are estimated and given again, to-

gether with the forecast of the disturbances, to the controller, which repeats the

calculation for a new prediction horizon. In this way, through rolling the opti-

mization horizon and feedback correction, the controller can update the state of

the system in real time and the system error caused by inaccurate prediction is

minimized [20]. A schematic representation of this control strategy is displayed

in Figure 1.2.

Disturbances Optimal inputs

Multi-Energy System

System states

predicted
future state

Model Predictive Controller

a�empted
control strategy

MODEL ALGORITHM

Figure 1.2: Schematization of a Model Predictive Controller applied to a general
Multi-Energy System.

The advantages of using this technique, such as the possibility to handle

constraints, the consideration of the predicted disturbances and the concomitant

optimization make MPC a suitable control technique for MES. With this control

strategy, an optimal control of the system is allowed: the controller communicates

the optimal control actions to the system every time-step (e.g. 30 minutes), and

there is an implicit feedback and feed-forward on the disturbances. However, a

suitable algorithm is required to develop such controllers. Among the available

optimization algorithms, Mixed-Integer Linear Programming algorithms allow

obtaining an accurate result in a calculation time acceptable to the controller,

and therefore their utilization is suitable for the use in MPC controllers.

Optimization

As seen in the previous paragraph, an optimization algorithm is necessary when

developing MPC controllers. The application of optimization in the field of energy

system management is fundamental for the efficient use of resources and the

achievement of sustainability objectives. The primary purpose of optimization is

to determine the values of system variables that minimize or maximize a function,
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often referred to as objective function or cost function, and the selection of these

optimal values is influenced by a set of constraints, which represent the physical

or operational limitations of the system.

The optimal management of an energy system can be formulated as an opti-

mization problem, with all the power flows and energy stored being the decision

variables, while the constraints being the physical and operational limitations of

the system, such as energy conservation equations, which ensure that the solu-

tion aligns with the real-world boundaries, and the objective of the optimization

being for instance minimizing energy costs, maximizing efficiency, or achieving

other defined objectives. The optimization problems can be formulated in many

ways, being the constraints of the problems, as well as the optimization variables,

dependent on the problem considered. For instance, variables can be continuous

or integer, and the constraints can be linear equations or nonlinear ones. There-

fore, it is possible to obtain Linear Programming algorithms (LP), or Nonlinear

Programming ones (NLP) when using only continuous variables, while Mixed-

Integer Linear Programming (MILP) and Mixed-Integer Nonlinear Programming

(MINLP) algorithms are used if also integer variables are included in the problem.

When optimizing energy systems, the equations that describe them are intrin-

sically nonlinear, because of the inherent nonlinear nature of energy transforma-

tions and conversions. Nonlinearity comes into play when modeling components

like conversion units, which often exhibit nonlinear behavior at different load

levels. However, techniques such as piecewise linearization can be employed to

approximate the nonlinearities and reformulate them as linear or piecewise linear

problems. As outlined by Taccari et al. [21], for optimizing MES linear algo-

rihms, such as MILP, are preferred, since the linearized problems can generally

be solved more efficiently than their MINLP counterparts, and they appear to be

fairly accurate. Indeed, while the MILP formulation introduces a higher level of

approximation error when approximating the nonlinear aspects of the problems

using linearized correlations, it offers several advantages. First, the global op-

timality of the solution is guaranteed: indeed, MILP considers all time periods

simultaneously within a single, large-scale problem, providing global optimality

guarantees. Second, there are many available effective solvers, both open-source

solvers (e.g. CBC [22]) and commercial ones (e.g. Gurobi [23]) which are highly

efficient and capable of handling large-scale MILP problems with thousands of

variables, making them suitable for real-world applications. These solvers have

evolved to meet the demands of real-world energy systems, making them indis-
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pensable tools for engineers, energy analysts, and policymakers striving to design,

manage, and optimize energy systems in a rapidly changing and increasingly com-

plex framework.

The general formulation of a MILP problem comprises the minimization of a

linear objective function, subject to linear constraints, while the variables involved

being both continuous and integer. The formulation can be expressed in matrix

way as in Equation 1.1, with x0, ...xn being the variables of the problem:

minx


c0
...

cn


T 

x0

...

xn


s.t.
A00 . . . A0n

...
. . .

...

Am0 . . . Amn



x0

...

xn

 ≤


b0
...

bm


x0, ..., xi ∈ Z

xi+1, ..., xn ∈ R

. (1.1)

Model-in-the-Loop application

The novel control strategies need to be tested and verified before the application

on real-world case studies. One method to do that is to apply them in a Model-

in-the-Loop (MiL) configuration. This means to test the developed controllers

on a detailed model of the system, also known as digital-twin, that emulates

the behavior of the real system. By using this approach, a real system is not

affected during the testing phase of the controller, and it is possible to validate

the effectiveness of the control action, even by comparing it with traditional rule-

based strategies.

A schematization of this procedure is displayed in Figure 1.3 for an MPC con-

troller. Every time-step, the controller receives the forecast of the disturbances,

and the initialization variables from the model (e.g. the component or storage

states), it performs the optimization and returns to the system digital-twin the

control variables (e.g. set-points for low-level controllers).
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Figure 1.3: Schematization of a Model Predictive Controller applied in a Model-
in-the-Loop application.

1.3 Thesis contribution

As outlined above, due to the complexity of these systems, when designing, op-

erating and planning a MES, mathematical models, capable of reproducing the

behavior of the system and optimizing it, are essential. However, depending on

the purpose of the study, several approaches can be employed.

In this thesis, the integration of new fuel technologies into MES was investi-

gated, and in particular the PtG pathway. Indeed, the production of hydrogen

through water electrolysis, and its further transformation into methane was con-

sidered. On one hand, hydrogen generation is the most effective and the easiest

electrofuel pathway, since it only encompasses the electrolysis process, and the

long-term storage of hydrogen was investigated through the development of a

novel two-stage stochastic programming algorithm, capable of optimizing the op-

eration of the system over the year by considering the uncertain characteristics of

external disturbances such as energy prices, needs and renewable generation. The

algorithm was tested on different case studies, both grid-connected and positive

energy districts, located in regions with different weather conditions. In this way,

its ability to optimize the systems under several external conditions was verified.

However, when methane is generated, full integration of the electricity and

gas sectors is enabled, and in addition, if the heat recovery from the process

is exploited, the integration of the heating sector is also unlocked. Therefore,

this process was also studied and innovative control strategies are proposed for
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the smart management of the system. In particular, a novel controller based on

MPC is proposed for the optimal management of a PtG system integrated with

a DHN through waste heat recovery. The controller is developed and tested on a

case study in a MiL configuration, and the results obtained with the innovative

control strategy are compared with those obtained using a traditional rule-based

strategy, showing the ability of the innovative controller to outperform compared

to rule-based strategies.

In addition, an innovative control architecture for the management of a syn-

thetic methane seasonal storage is designed. It is composed of two MPC module

levels: a long-term supervisory module that communicates to short-term modules

additional information that allow the optimal management of a shared seasonal

storage, by taking into account future uncertainties in the disturbances. The

novel multi-temporal and multi-spatial control approach is tested in a MiL con-

figuration on two different periods of the year, and the architecture is validated.

The proposed solutions are based on MILP optimization algorithms which

were appositely developed: a long-term algorithm which uses two-stage stochas-

tic programming is developed to tackle the uncertain behavior of external dis-

turbances over the year and manage a seasonal storage, and a detailed MILP

algorithm is used for short-term MPC controllers, which aim at the real-time

optimal management of MES. The developed tools proved to be effective in effi-

ciently managing integrated PtG systems, both in the long-term and on shorter

time scales. Furthermore, by integrating the two time scales in a smart con-

trol architecture, an optimal management approach for the systems and seasonal

storage was achieved.

The thesis focuses on the integration of PtG solutions, nevertheless the ap-

proaches can be employed for general MES.

1.4 Outline of the thesis

The present thesis is structured as follows.

In Chapter 2, a research on European projects regarding electrofuel produc-

tion funded under the Horizon 2020 Framework Programme is first proposed,

which helped to define the key drivers that lead the integration of these fuels

in the energy framework. Second, it presents the literature which was relevant

for the drafting of this work, and in particular the current status on the optimal

planning and the smart control of MES is presented, with a focus on PtG optimal
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integration in such systems.

The remaining of the thesis regards the three problems analyzed:

� Chapter 3 presents the development and the application of a planning tool

for the optimal management of complex energy systems with hydrogen sea-

sonal storage, which considers uncertainties in the external optimization

parameters using two-stage stochastic optimization.

� In Chapter 4, a novel Model Predictive Control is presented, developed for

the optimal management of a Power-to-Gas system for synthetic natural gas

generation, integrated with a District Heating Network though waste heat

recovery. The controller is applied in a Model-in-the-Loop configuration

and the benefits of the novel control action are quantified by comparing it

with a traditional rule-based strategy.

� Chapter 5 introduces an innovative control architecture for managing in an

optimal way a natural gas seasonal storage, shared among multiple energy

systems. The control strategy is based on Model Predictive Control and it

is has a hierarchical architecture, with a double time-scale that allows for

the consideration of both yearly dynamics and day-ahead energy exchanges.

This application combines the methods used for the other two applications

to obtain a more complete tool.

Finally, the conclusions of this dissertation and the future possible develop-

ments of the research are presented in Chapter 6. The outline of the thesis is

presented in Figure 1.4.

Literature 
review

Conclusions

Chapter 6Chapter 2

Predictive control for integrated 
Power-to-Gas management

Stochastic optimization for
seasonal storage planning

Chapter 3

Multi-temporal and 
multi-spatial Model 
Predictive Controller

Chapter 4

Chapter 5

Figure 1.4: Outline of the present thesis.
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Chapter 2

Literature review

In this chapter, a literature review of the works which are relevant to this the-

sis is proposed. This preliminary study served to identify the key motivations

that guided the formulation and development of this thesis. First, a research on

projects funded by the European Union (EU) in the framework of the Horizon

2020 Programme for Research and Innovation is introduced to define the current

state-of-the-art of electrofuel technologies. Then, relevant papers regarding PtG

integration into MES are presented, with focus on the optimal management and

smart control of the systems. The aim is to identify research works that address

these topics and determine fields that require further advancement to improve

knowledge.

2.1 Research on European projects dealing with

electrofuels

A research has been carried out with the aim to make an overview of all the

projects funded under the Horizon 2020 Programme (the EU research and inno-

vation funding program for the period 2014-2020) which deal with the production

of electrofuels. The projects were selected, analyzed in terms of key features and

an overview of the European state-of-the-art concerning electrofuels production

has been achieved.

An extensive internet search was performed with the scope to find actions

dealing with electrofuel production, as a solution for decarbonizing different sec-

tors, for balancing the power grid or for storing surplus energy. The main tool

used for this search was the CORDIS (Community Research and Innovation Ser-
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2.1 Research on European projects dealing with electrofuels

vice) portal [24], which is the primary source of results of all projects funded

by the EU’s programs for research and innovation. It includes information such

as project factsheets, participants, deliverables, and links to open-access publi-

cations. In addition, also the Fuel Cell and Hydrogen Joint Undertaking (FCH

JU) [25] and the ERA-Net Smart Energy Systems (SES) [26] websites were used

for the research.

The investigation led to the selection of 56 projects, with the mentioned char-

acteristics. To evaluate them, a profile sheet was generated for each of them,

which reported the main characteristics of the projects: name, website, logo,

grant agreement ID, start and end date, EU contribution, coordinating country,

participants, funding scheme, goals, features, demonstration sites and current

status. An extensive explanation of the results obtained is available in [5]. Many

results have been drawn, and the most relevant are summarized below.

In Figure 2.1, the final utilization of the electrofuels in the selected projects

is depicted, namely the application for which the fuels are generated. Several

projects encompass multiple final utilizations for the fuel, demonstrating the po-

tential of these fuels to enhance flexibility and integration across diverse sectors.

For 18 projects, instead, the final utilization was unspecified: these projects typ-

ically involved technologies that were still at the development phase and not yet

mature enough for market deployment, such as Research and Innovation Actions

(RIAs).

It is notable that a significant number of projects consider transportation

as final utilization. Specifically, 17 projects focus on road transport, five on

marine transport, and an additional five on aviation. This reflects the substantial

effort directed towards decarbonizing the transportation sector. Moreover, 14

projects explore integration into industrial processes, particularly in sectors such

as steel, refineries, and fertilizer production. These industries, often referred to

as hard-to-abate sectors, see electrofuels as a promising solution for achieving

decarbonization. Finally, 13 projects consider re-electrification, underscoring the

viability of electrofuels as a storage solution. Sector coupling with the natural

gas grid is contemplated in seven projects, while another four projects leverage

electrofuels for heating systems.

Figure 2.2 presents the number of projects divided per type of electrofuel gen-

erated. Although hydrogen presents certain drawbacks in terms of transportation

and utilization, it remains a prevalent choice in the majority of projects, account-

ing for 39 projects (69.6 %). In these projects, hydrogen is generated through

14
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Figure 2.1: Number of projects per final utilization of the electrofuel produced.

water electrolysis and serves as ultimate product. Additionally, in eight projects,

hydrogen production is combined with the production of other electrofuels. In 25

projects (44.6 %) other electrofuels are considered, such as methane, ammonia,

methanol, kerosene/jetfuel.
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Figure 2.2: Number of projects per type of electrofuel produced.
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2.1 Research on European projects dealing with electrofuels

Figure 2.3: Number of projects per project purpose.

The distribution of projects based on their primary aim, which is in some

cases more than one for each project, is depicted in Figure 2.3. The majority

of projects (71.4 %) are centered around the development of new technologies.

Specifically, 22 projects are dedicated to developing novel electrolyzers, while

11 projects investigate alternative production technologies such the methanation

process. Additionally, seven projects are focused on pioneering new technologies

for the utilization of the fuels. This highlights that there is still a long way to

go for the commercialization and full market integration of such technologies.

Furthermore, 28 projects (50 %) are oriented towards demonstrating innovative

solutions and processes, and 10 projects involve the formulation of business mod-

els. The substantial number of projects focusing on business models underscores

the growing economic interest in these technologies. This emphasis reflects the

imperative to enhance the affordability and cost-effectiveness of electrofuels as a

decarbonization solution. Lastly, nine projects are dedicated to supporting future

developers and researchers, with the aim of providing guidance and potentially

drafting a roadmap for future developments.

In Figure 2.4, the distribution of projects concerning other identified out-

comes is illustrated. It is noteworthy that 22 projects (39.3 %) incorporate a

Life Cycle Assessment (LCA) or Life Cycle Cost (LCC) analysis, highlighting

the significance given to these assessments as valuable tools to better understand

the strengths and limitations of the studied technologies. Eight projects are dedi-
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Figure 2.4: Number of projects per outcomes.

cated to the development of control strategies, with three of them utilizing Model

Predictive Control (MPC), a notable technique emerging within the context of

energy system digitalization. Furthermore, eight projects involve the creation

of models, six projects a software or platform, and four projects contribute to

the development of optimization tools. Additionally, planning is considered in

four projects, retrofitting in three, and two projects yield databases as result.

These diverse outcomes collectively contribute to a comprehensive understanding

of electrofuel technology, and show that still big effort must be put in the devel-

opment of planning, optimization and control tools for the exploitation of these

technologies.

The presented study gives an overview on the status of European Research and

Innovation Actions on electrofuels, and led to the definition of four key drivers,

which can serve as guidelines for researchers and stakeholders to identify the

pathway to follow.

� Industrialization. Many of these technologies have achieved a low Tech-

nology Readiness Level (TRL), indicating that there is a substantial dis-

tance to cover before they become practical solutions for decarbonizing var-

ious sectors. It is of paramount importance to maintain ongoing research

17



2.2 Optimal management of integrated PtG systems

efforts to transform them into market-ready technologies.

� Barrier abatement. The absence of well-defined legislation regarding

the commercialization and recognition of electrofuels contributes to the dif-

ficulty to spread them. It is imperative that policymakers take action to

dismantle legal obstacles, facilitating the widespread adoption of these fuels

by offering incentives and actively promoting their utilization [27].

� Flexibility and sector coupling. Electrofuels, by serving as storage

solutions, grid-balancing tools, and enabling technology for sector-coupling,

inherently provide a valuable source of flexibility within the energy sector.

This flexibility should be recognized as an added value when planning a

future resilient and sustainable energy system.

� Smart management. On the road towards the ambitious goal of achiev-

ing carbon neutrality by 2050 and transition from fossil to renewable energy

sources, the energy systems will undergo substantial transformations. These

transformations will involve the implementation of various innovative solu-

tions, and an increasing complexity of the systems, that will need innovative

and intelligent management strategies to optimize their performance. This

necessitates further research and exploration within this field to develop

and refine the necessary tools and strategies.

These factors are intended to serve as guiding principles to help stakeholders

make more informed decisions. They are mainly directed at policymakers (who

have the ability to eliminate legal barriers and introduce incentives to promote

the adoption of electrofuels), to researchers (who are encouraged to persist in

their investigations in this field) and to industries (which need to study and put

efforts to raise the TRLs and achieve commercialization of these technologies).

2.2 Optimal management of integrated PtG sys-

tems

The previously exposed applied research projects provided insights into technolo-

gies that are on the verge of reaching commercialization, and highlighted the main

drivers that can be used by researchers and stakeholders to force the penetration

of these new technologies. The present dissertation falls within the scope of the
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last two drivers identified: flexibility and sector coupling and smart management.

Indeed, it aims at investigating new ways to enable the integration of PtG tech-

nologies for allowing a higher level of flexibility in the system, through the use of

novel smart management tools that rely on MILP optimization algorithms and

Model Predictive Control.

In the following, a scientific literature review is proposed, that shows the latest

advances and cutting-edge researches that served as starting point for the draft

of this thesis.

2.2.1 PtG integration in MES

In response to the imperative of reducing carbon dioxide emissions in the energy

sector, substantial efforts are currently underway to facilitate the adoption of

renewable energy sources, and this transformation is changing the structure of

current energy systems. Indeed, the mismatch between energy generation and

consumption presents challenges that introduce complexity and necessitates the

incorporation of novel technologies and technical solutions. Consequently, this

is modifying the traditional approach to energy system management and under-

scores the importance of exploiting the concept of MES. This entails viewing

energy systems as a whole and performing an overall optimization of energy ex-

changes, encompassing the integration of different sectors.

Within this context, PtG technologies have gained substantial importance by

enabling the integration of various sectors through the production of synthetic

fuels derived from renewable electricity [28]. These fuels can serve not only as

conventional energy sources but they can also be converted back into electricity

when needed, thus serving as an effective energy storage solution that mitigates

the wasteful curtailment of renewable energy resources. The integration of PtG

solutions into integrated energy systems further enhances this potential. This

approach facilitates bidirectional interconnections between the electrical and gas

networks, by using the excess renewable electricity to generate sustainable fu-

els [29]. Over the past years, numerous studies in the field of PtG have been

conducted, as well as pilot and demonstration projects [30, 31]. Concurrently,

there is a growing emphasis on improving the thermal management of these tech-

nologies to unlock opportunities for combined heat and power generation while

enhancing infrastructure interconnectivity. System-level investigations of these

systems have also been undertaken, highlighting their positive impacts on electri-

cal and gas transmission networks. These efforts not only facilitate the long-term
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2.2 Optimal management of integrated PtG systems

chemical storage of surplus renewable energy, thereby reducing the need for cur-

tailment and decarbonizing the gas sector, but also alleviate congestion in both

gas and electricity networks [32].

Despite the current lack of economic efficiency of PtG plants, advances in these

technologies and their operation within integrated energy systems are expected

to change this landscape. As global awareness of sustainable energy transfor-

mation grows, PtG technologies will benefit significantly from evolving energy

policies. Furthermore, multiple coordinated energy systems, with well-planned

PtG implementations, are promising in providing alternative solutions for future

decarbonized energy systems [33].

2.2.2 Planning and scheduling considering uncertainties

As highlighted, when integrating PtG solutions in MES, the optimal management

of the integrated system is possible only by employing strategies which include

the optimization of the system as a whole. Besides, in the process of modeling

and optimizing an energy system over a future time horizon, it is essential to take

into account the forecasts of the future external conditions in which the energy

system will operate. Typically, deterministic methods are employed, and the fore-

casts of future disturbances are considered as predetermined. Indeed, due to the

complexity of models and the higher computational effort needed to tackle un-

certainties, many models tend to give limited consideration to them. However, it

is of crucial importance to account for the inherently uncertain behavior of phys-

ical systems when forecasting future disturbances (such as user demands, energy

price or renewable energy generation) and when performing optimal scheduling.

Consequently, evaluating and addressing uncertainties has emerged as one of the

main challenges of energy system optimization models.

In the literature, there are many studies that focus on the development of

planning and scheduling tools for the management of MES, in which uncertainties

in energy needs, prices or production are considered, to obtain a more robust

result. Several techniques are used to include the uncertainty in planning and

optimization of energy systems: according to Chen et al. [34], the most popular

optimization methods are robust optimization [35], stochastic programming [36]

and chance constrained programming [37].

Stochastic programming takes the form of a scenario-based mathematical

model in which uncertainties are represented through their probability distri-

bution function (PDF). This approach allows for recourse actions to mitigate
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infeasibility. In contrast, robust optimization operates without requiring proba-

bility distribution information about uncertainties. Its key feature lies in ensuring

problem feasibility across all potential realizations of uncertain parameters within

a predefined uncertainty set. However, it is often criticized for its conservative

nature, as it considers the worst-case scenario within the set. Lastly, chance

constrained programming permits some degree of constraint violation without

penalizing the objective function, provided that the probability of meeting these

constraints is assured with a specified confidence level. To apply this method,

the PDF associated with uncertainties must be known [34]. Each method has

advantages and limitations, and the main features of them are exposed in Table

2.1 [34, 38].

Table 2.1: Main features of the three optimization methods presented.

Optimization
method

Stochastic programming Robust optimization Chance constrained
programming

PDF Needed Not needed Needed
Advantages Sequential decision making Computationally tractable Relaxation of constraints
Limitations Computationally expensive

if large number of scenarios
considered

Overconservative, cannot
provide unified strategy

Computationally challenging

Applications Long-term production
planning and design

Short-term scheduling Production planning,
design and operation

For the purpose of this thesis, to investigate the integration of PtG into a MES

for seasonal storage, it was decided to employ a two-stage stochastic programming

approach. The algorithm was developed with the final aim to be used in a MPC

which is able to calculate the best management strategy for a complex MES with

an integrated electrofuel seasonal storage. Indeed, with this type of algorithms, it

is possible to formulate a problem that considers long prediction horizons (e.g. one

year), which is computationally tractable if the number of scenarios is properly

selected. By using this approach, the algorithm can be embedded in a predictive

controller and run at each time-step, to update the control action in according to

current external conditions.

In two-stage stochastic programming models, decision variables are catego-

rized into two groups: first-stage and second-stage variables. The first-stage

variables have a deterministic behavior, and must be the same for all scenar-

ios considered, which represent diverse realizations of uncertain parameters. In

contrast, the management of second-stage variables is dependent on the specific

realization of the uncertain parameters. Some relevant studies that utilize this

technique for optimizing the operation and design of MES are presented below.
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2.2 Optimal management of integrated PtG systems

Two-stage stochastic programming is used in many studies to perform the

optimal design of MES, where multiple uncertainties are taken into account, such

as energy demand, price and production. In these studies, commonly the first-

stage variables represent the selection and size of technologies, while the second-

stage variables are associated with the operational aspects of the system. For

instance, linear formulations are used in [39], where the optimal design of PV

and battery is performed to minimize the economic cost, in [40], where the aim of

the optimization is to find optimal sizes for the installation of RES production,

and in [41], where the authors build a multi-region stochastic programming model

to generate the technology portfolio to be installed, minimizing the total cost over

a multi-year optimization horizon. Nonlinear formulations have been used in [42],

with the aim to find the optimal energy storage size and bilateral contracts to

sign, and in [43], where the optimal size of the system is found, with a 20-year

planning horizon. Nevertheless, none of these studies investigate the integration

of PtG or the possibility to use this technology to perform long-term seasonal

storage.

However, this technology has been included in other works, in which two-stage

stochastic optimization has been used, to perform day-ahead scheduling of MES

or microgrids, with the aim to find the optimal operation under multiple uncer-

tainties. For instance, Eghbali et al. [44] present a linear stochastic management

algorithm for the optimal operation of a smart microgrid, including a wind tur-

bine, photovoltaic unit, fuel cell, electrolyzer, microturbine, and energy storage

(such as battery and hydrogen storage tank), which considers the participation

of smart homes in demand response management. They include multiple un-

certainties that are modeled creating scenarios by discretizing their PDFs. PtG

technologies are also investigated in [45], where the authors propose a two-stage

linear stochastic programming problem, in which day-ahead scheduling for the

electricity system is modeled in a first-stage problem, and the scheduling for the

natural gas system is performed as a second-stage problem. They find that, with

the integration of PtG, more wind energy can be exploited, additional flexible

ramp capabilities are provided, and the gas supply from gas suppliers is reduced,

as well as gas load shedding.

In other works, two-stage stochastic programming is used to perform the op-

timization of MES under multiple uncertainties, even without considering the

integration of PtG technologies in the system. For instance, a linear formulation

is used in [46], where the authors develop a stochastic scheduling problem for a
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virtual power plant, with the aim to maximize the net profit, and they develop a

new approach for modeling the uncertainty in wind speed. A linear formulation

is also used in [47, 48], where the energy management of a microgrid is investi-

gated, including demand response programs and several system configurations,

and considering multiple uncertainties. The results of these activities include the

quantification of the benefits of using demand response strategies in terms of cost

reduction, and of using a stochastic approach for the optimization.

Shabazbegian et al. [49] use two-stage stochastic programming for the co-

ordinated operation of natural gas and electricity networks, creating a MINLP

problem, where the nonlinearities are due to the equations used to model the

gas systems. One of their results is to quantify the value of flexibility options,

namely the electrical storage systems, to tackle the uncertainties. Other non-

linear formulations exist in the literature to perform multi-objective optimization

of microgrids, minimizing both operational cost and voltage deviation [50] or costs

and emissions [51]. Finally, Correa et al. [52] analyze the interaction of different

sources of flexibility, such as electrical and thermal storages, taking the cycling

aging cost of the battery into account, and they show the benefits of using a

stochastic approach compared to a deterministic one.

Although many nonlinear formulations exist in the literature, as shown in

[21], in many cases it is beneficial to maintain problem linearity. Indeed, for

energy system scheduling and planning, nonlinear formulations may offer higher

accuracy, but they present a significantly higher computational burden compared

to their linear counterparts and it may fail struggle to identify a feasible solution.

In contrast, a well-designed linear formulation can reach a good level of accuracy

while an optimal solution is ensured.

In Table 2.2, the characteristics of the aforementioned papers are summarized,

namely the optimization algorithm used, the aim of optimization, the uncertain-

ties considered, the length of the optimization horizon, the scenario generation

method used and if the works also included PtG solutions.
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design planning needs RES prices

[40] MILP ✓ ✓ ✓ ✓ day-ahead roulette wheel mechanism

[43] NLP ✓ ✓ ✓ ✓ year Frank-Copula function

[42] NLP ✓ ✓ ✓ ✓ year moment matching1

[39] MILP ✓ ✓ ✓ year k-means clustering

[41] LP ✓ ✓ more years decision tree2 and

Monte Carlo simulation

[47] MILP ✓ ✓ ✓ ✓ day-ahead Kernel Density Estimation

[46] MILP ✓ ✓ ✓ ✓ day-ahead errors from PDF3

[44] MILP ✓ ✓ ✓ ✓ day-ahead errors from PDF3 ✓

[48] MILP ✓ ✓ ✓ ✓ day-ahead errors from PDF3 ✓

[45] MILP ✓ ✓ ✓ day-ahead Monte Carlo simulation ✓

[52] NLP ✓ ✓ ✓ day-ahead based on quantile4

[50] NLP ✓ ✓ ✓ ✓ day-ahead roulette wheel mechanism

[51] NLP ✓ ✓ ✓ day-ahead roulette wheel mechanism

[49] MINLP ✓ ✓ ✓ day-ahead Monte Carlo simulation

Table 2.2: Literature linked to two-stage stochastic optimization applied to MES or microgrids

1The set of scenarios generated must match the key statistical properties (e.g. mean or standard deviation) of the original distributions.
2The scenarios are generated using a set of nodes and branches. Each node is a possible state for the uncertainty at a specific time and a

position where a decision can be made. An arc starting from a node is a possible realization of the uncertainty from that state.
3To generate the scenarios, the forecasted data is considered as the average value and variable errors are added to the average value of each

variable to generate new scenarios.
4The median of the forecast is used to select a central value for the forecast. Quantiles 10 % and 90 % are taken as the lower and upper

bounds of forecast values. All central and deviated values of uncertainties are combined to form a set of scenarios, representative of all potential
combinations of minimum, maximum and central values according to realistic information from measurements and predictions.
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2.2.3 Smart control of the system

In light of the imperative to decarbonize existing energy systems, there is cur-

rently significant interest among researchers and industries in studying and ap-

plying new control strategies and optimization tools in practical systems. This is

crucial for enabling the integration of emerging technologies and facilitating sec-

tor coupling. Indeed, effectively managing the interaction among gas, electricity,

and district heating networks to achieve the decarbonization of energy systems

is not solely a matter of installing sufficient capacity. Instead, it is imperative

to coordinate and operate the various plants intelligently, since the way different

components are integrated into the system and how they are operated profoundly

influences their potential. Traditional controllers, based on fixed time schedules,

are not able to address these challenges, as they do not offer tailored solutions

adapted to real-time conditions and therefore smart control tools are needed.

According to Alabi et al. [53], the main innovative energy management tech-

niques that are able to consider the dynamic behavior of energy systems and con-

trol them are Model Predictive Control (MPC) and Deep Reinforcement Learning

(DRL). As aforementioned, MPC is an advanced control technique which allows

the optimal control of complex systems by making use of an optimization al-

gorithm that contains a simplified model of the system to control [54, 55]. DRL

instead, is a technique based on machine learning, recently emerged in the context

of managing MES [56]. It combines deep learning and reinforcement learning by

using a reinforcement learning agent to interpret the system, learn dynamically

using a deep learning approach and alter its action based on feedback from the

system. Usually, model-free approaches are used in the context of MES control,

and the algorithm learns through the interaction with the environment and up-

date its parameters. In this way, without the use of a system model, it is possible

to handle nonlinearities of the problems.

However, while DRL may seem advantageous compared to traditional optimal

controllers, its literature remains relatively undeveloped compared to MPC and

presents drawbacks such as the high offline computational cost for training it and

difficulties in handling constraints [57]. In Table 2.3, a comparison of the two

control methods identified is proposed [57,58].

DRL enables system optimization without relying on a model, but it requires

extensive training. Moreover, evaluating its performance and understanding the

decision-making processes used by the algorithm can be challenging. Conversely,

the implementation of a detailed model within an MPC algorithm allows for
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Table 2.3: Comparison of the two advanced control strategies identified.

Control technique Reinforcement Learning Model Predictive Control
Performance Close to optimal Optimal with perfect model
Model Not required Required
Online computational cost Low High
Offline computational cost High Low
Constraint handling Difficult Inherent

more straightforward evaluation. In addition, for complex systems, offline train-

ing of the reinforcement learning agent may require long computational time.

In contrast, model-based controllers like MPC can be easily customized for the

specific case study and, with the use of an appropriate optimization algorithm,

online computational efficiency can be achieved. For these reasons, the use of

MPC controllers was preferred in this thesis. Its implementation on several case

studies was investigated and the relevant literature regarding this technique is

presented in the following, in order to highlight the state-of-the-art and the ben-

efits of this technique for managing the integration of PtG processes in MES. To

enhance understanding of the optimal integration of these technologies into en-

ergy systems, particular emphasis has been placed on studying the heat recovery

from the process, and its utilization in DHN, as well as on exploring seasonal

energy storage optimal management.

MPC was proven to be an effective control method for optimizing the op-

eration of PtG technology, particularly when integrated in complex MES. Turk

et al. [59] explored the application of MPC in a system involving PtG and gas

storage to enhance system flexibility and address various uncertainties. Their

research demonstrated that MPC reduced wind curtailment and improved the

economic performance of the system when compared to traditional control strate-

gies. Additionally, they investigated how the prediction horizon length in MPC

influenced computational efficiency, suggesting that the selection should align

with the computational efficiency of the application and storage capacity. Ab-

delghany et al. [60] delved into the implementation of a two-stage MPC for in-

tegrating a PtG plant with a wind farm for hydrogen production, intended for

use in hydrogen-fueled vehicles or grid injection. Through the use of a two-stage

predictive controller, they effectively managed diverse objectives and different

time-scales while optimizing the interactions between the wind farm, end-users,

and the power grid. Similarly, Fischer et al. [61] successfully applied MPC to

enhance the operation of a PtG unit and on-site storage, while considering the

constraints of energy networks and fluctuating electricity prices.
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PtG for decarbonizing DHN

The studies presented above highlight the importance of employing intelligent

control strategies in managing PtG systems. However, the waste heat recovery

from PtG plants issue is little covered in the literature. Since the overall efficiency

of PtG processes is relatively low, their potential can be unlocked by making a

fruitful use of the waste heat generated by their components. Indeed, being an

exothermic process, a PtG plant can be integrated into an energy system to

provide additional heat that can be utilized by end-users.

Huang et al. [62] conducted research on waste heat recovery: they analyzed the

advantages of employing MILP-based economic MPC for real-time control of com-

plex MES integrated with hydrogen production. Specifically, they considered the

waste heat recovery from a high-temperature alkaline electrolyzer and its utiliza-

tion in a DHN. The MPC management led cost savings and improved utilization

of RES compared to traditional rule-based strategies. In another research [63], an

enhanced MPC is proposed, that incorporates a scheduling correction algorithm

into the basic MPC structure in order to achieve a superior trade-off between

the scheduling accuracy and the computational efficiency, making it a promising

solution for real-time control. The controller effectively optimizes the operation

of an hydrogen-based microgrid, with heat recovery from an alkaline electrolyzer,

under normal and emergency conditions.

A study conducted by Böhm et al. [64] examined the potential benefits of com-

bining Power-to-Hydrogen with a DHN. Their research revealed several synergies

and efficient interactions between these technologies. While high-temperature

electrolysis allows heat recovery in alignment with industrial waste heat, the inte-

gration of low-temperature electrolysis can be more complex. Nonetheless, mod-

ern low-temperature DHN systems provide an opportunity to capture and effec-

tively utilize the waste heat generated by such processes. Indeed, low-temperature

DHN are expected to play a pivotal role in the ongoing energy transition by

enhancing the energy efficiency of future sustainable energy systems, as many

district heating systems in Europe are still predominantly reliant on fossil fuels.

From the perspective of a district heating company, the use of a PtG plant

has multiple advantages. It acts as a fuel producer, a carbon dioxide sink, and

a valuable source of heat, as outlined in the study by Ikaheimo et al. [65]. In

a related study, Weiss et al. [66] demonstrate that it is feasible to decarbonize

energy systems when a sufficient capacity of Power-to-Heat and PtG is integrated

into the district heating system, and an adequate wind and solar power capacity
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2.2 Optimal management of integrated PtG systems

is installed to entirely replace the use of fossil fuels. Consequently, by fully

exploiting sector integration in the development of smart energy systems, there is

a promising potential for achieving complete decarbonization of DHNs and PtG.

However, to fully unlock the potential of these technologies, a smart management

for the system is needed.

PtG for seasonal storage

Numerous studies in the existing literature have highlighted the prospective en-

ergy savings that can arise from the employment of predictive controllers, that

allow the system to be optimally managed. A challenge in this framework is the

ability for the control action to incorporate information regarding the long-term

changes in external factors impacting the behavior of the system. This is of key

importance when a seasonal storage is included in the system, and it is clear that

effectively optimizing the seasonal storage capabilities of the system is a complex

task [67]. Nevertheless, the use of PtG technologies to perform seasonal storage

is promising and need to be investigated. For hydrogen storage, there are many

examples of MPC applications for MES, that focus on the electrical load and do

not consider seasonal unbalances of renewable energy production.

However, Thaler et al. [68] included the seasonal dynamics related to the hy-

drogen storage through the addition of an hydrogen cost term in the optimization

objective function. Indeed, when integrating a PtG system for seasonal storage it

is essential to take into consideration the yearly dynamics that regulate its man-

agement. Nonetheless, the computational effort of optimizing the whole year with

time-steps that allow the real-time control of the system is too large. For this

reason, Weber et al. [69] developed a control architecture based on MPC using

two controllers with different time scales for the management of a seasonal ter-

mochemical storage in buildings. The considered a higher-level annual scheduling

objective-based controller, and a lower-level tracking-MPC that flexibly track the

trajectory given by the high level controller. Similarly, in [70] the authors devel-

oped a novel control strategy for the optimal management of microgrids with high

penetration of renewable energy sources and different energy storage systems. A

supervisory MPC generates an optimal scheduling using a statistical approach to

tackle weather and load forecasting uncertainties. In particular, long-term opti-

mization of the various microgrid components is obtained by the adoption of an

optimal generation scheduling, while the real-time management of the system is

determined by a short-term MPC module, which uses the results obtained by the
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optimal generation scheduling in the optimization. In this way, both long and

short-term optimal planning scheduling are achieved by the usage of an MPC.

Zhang et al. [20] propose a multi time-scale optimization strategy, that in-

cludes both multi-day forecast information and an intra-day MPC. Within the

day, the MPC is performed considering multi-day forecasts, employing hierarchi-

cal rolling optimization to track and correct the day-ahead scheduling, and utiliz-

ing MPC to account for uncertainties in renewable energy sources and loads. Dari-

vianakis et al. [67] introduce a data-driven stochastic predictive control scheme

designed to efficiently manage energy hubs with seasonal storage capabilities.

This approach captures long-term system operation through a value function,

evaluating historical data to assess system uncertainties and building bounds,

that confine the optimal charging trajectory of seasonal storage devices. A multi-

stage stochastic optimization problem is formulated to minimize both total energy

consumption over a finite horizon and the value function of the seasonal storage

at the end of the horizon.

Addressing the challenge of optimizing both short-term and long-term deci-

sions, Cuisinier et al. [71] propose two innovative approaches that rely on adap-

tive time-step aggregation. These methods maintain continuity between state

variables over the long term while ensuring short computation times. The first

approach simplifies long-term data and decisions, aggregating them with a sim-

plified long-term model. The second approach incorporates long-term decisions

through cost functions, estimated using representative future data periods and

the original detailed model. Both approaches are evaluated in the context of a

heat production problem, demonstrating promising performance and potential

for integration into rolling horizon approaches.

Finally, Castelli et al. [72] introduce a novel approach based on an Affine

Adjustable Robust Optimization model, combining day-ahead scheduling, com-

mitment, and economic dispatch with real-time operation adjustments in a rolling

horizon algorithm. This model considers various inputs, including day-ahead fore-

casts, performance expectations, and target charge levels for seasonal storage,

optimizing over representative years derived from historical data. This approach

addresses the management of energy systems subject to yearly performance con-

straints and seasonal storage while accounting for short-term forecast uncertain-

ties. Results indicate the efficacy of the proposed rolling horizon algorithm in

meeting yearly constraints, managing seasonal storage, and ensuring energy de-

mand fulfillment.
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2.3 Novelties of the thesis

From the literature review exposed, it can be concluded that suitable management

tools are of key importance to carry out a transition towards a fully decarbonized

energy sector. When developing new tools, their versatility, i.e. their ability to be

easily adapted for various applications, is essential for their utilization in multiple

situations, encompassing energy systems of different sizes and configurations.

In light of this, this thesis aims to develop innovative tools for the optimal

management of integrated MES, with particular focus on the integration of PtG

solutions. Notably, the following novelties are introduced:

� A stochastic optimization algorithm able to tackle the uncertain behavior

of future external disturbances such as energy price, demand and renewable

production, that can serve as a valuable planning tool.

� A computationally fast MILP optimization algorithm, formulated for gen-

eral MES, easily adaptable to different case studies, and capable of com-

puting the optimal day-ahead energy schedule for the system.

� A scalable and adaptable MPC controller that can optimally control a MES

in which multiple energy carriers interact at various scales.

� A novelmulti-temporal and multi-spatial control architecture based on MPC,

which is able to take into account both yearly dynamics related to the

management of seasonal storage, and short-term unit commitment.

All these tools are exposed in the next Chapters, along with applications in

which they are implemented and tested.
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Chapter 3

Stochastic optimization for

seasonal storage planning

The first problem analyzed in this thesis regards the development of a stochastic

optimization algorithm, able to tackle the uncertain behavior of future distur-

bances by the use of a set of scenarios, and its application to various energy

systems with different architectures to test the benefits of using seasonal hydro-

gen storage [73]. In this chapter, the method used is firstly explained, then the

application is introduced, i.e. the case studies analyzed and how the method was

implemented, and finally the results are presented and discussed.

3.1 Method

This section outlines the mathematical model, the optimization technique, and

the method used to include the uncertainties in the optimization.

3.1.1 Optimization algorithm

As mentioned in Chapter 2, many algorithms exist, that can be used for the

optimization of MES. Nonetheless, it was found that linear programming (LP)

algorithms are preferred for these applications, compared to nonlinear models.

Indeed, the latter can be very challenging in terms of computational effort, and

linear algorithms, if properly tailored to the case study, appear to be fairly accu-

rate [21].

A MILP algorithm was used for this application, and it was developed in

python using the PuLP library [74]. In such problems, the constraints of the
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Figure 3.1: Schematic diagram of a general MES.

problem are linear relationships and the variables involved can be both continuous

and integer.

The algorithm was developed for a generic MES, as the one schematically

shown in Figure 3.1: in this way, it is straightforward to use it for different case

studies and applications, only by changing external files (such as .json and .csv

files) without modifying the main code. The components involved, which are

the different parts of the energy system that interact with each other, are listed

below.

Networks: the energy networks involved, for instance electricity grid or gas

network. In the model they are described as entities with which the system can

exchange energy, and the energy purchased from or injected into the networks

can be associated with a certain economic cost, or bounded to a maximum value.

End-users: all those who have a certain energy need in the energy system. They

are described as energy consumers, with the energy request given as input to the

algorithm, corresponding to the user needs that must be fulfilled.

RES: the renewable energy sources involved. They are described as energy pro-

ducers, and are associated with a certain amount of energy generated at each

time-step, which enters the MES without additional costs.

Conversion systems: all components involved in the system, which can convert

one or more energy vectors into one or more other energy vectors: for instance,

heat pumps, combined heat and power plants or absorption chillers. They are

described by linear equations that correlate the input and output energy flows
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3 Stochastic optimization for seasonal storage planning

of each plant, with specified performance parameters. The general equation that

describes the input-output performance curve of a generic conversion system is

the following:

Pout,j(t) = βjPin,l(t) , (3.1)

where j and l are different energy vectors, t is the time-step, and βj is the per-

formance parameter associated with the output energy vector j. In addition, the

input power at each conversion system is constrained between a maximum and

minimum value

Pin,lMIN
δ(t) ≤ Pin,l(t) ≤ Pin,lMAX

δ(t) , (3.2)

where δ(t) is the switch on/off binary variable related to the conversion system.

A binary variable is a variable of the problem that can only assume the value 0 or

1. In this case, when δ(t) = 0 the plant is switched off, while when δ(t) = 1 the

plant is on. It is worth noting that one conversion system can have more than

one output energy carrier, with different performance parameters (as in the case

of a cogeneration plant, which generates both electricity and heat and, therefore,

has electrical and thermal efficiencies).

Storages: all the components that can perform energy storage, such as thermal

storages, batteries or fuel storages. The energy stored at each time-step is related

with the energy stored at the previous time-step through the following linear

equation, which is valid for the energy vector l:

El(t) = ηsdEl(t− 1) +

(
ηcPin,l(t)−

Pout,l(t)

ηd

)
∆t , (3.3)

where El is the energy stored in the form l, ηsd is the self-discharge efficiency

of the storage, while ηc and ηd are the charge and discharge efficiencies, and they

model the energy losses when charging and discharging the storage, respectively.

For all the variables, lower and upper bounds are also set, according to the

design of the energy system modeled. In addition, other constraints of the model

are represented by the energy balances at each node of the system, indicated by

dots in Figure 3.1. For a general energy vector l, the balance is described by the

following equation:
Nin∑
n=1

Pin,l(n, t) =
Nout∑
m=1

Pout,l(m, t) , (3.4)

where Nin and Nout are the number of energy flows in the form l entering and

exiting the node, respectively. They also include the energy exchanged with the
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networks, the energy produced by the RES and the energy used by the end-users.

3.1.2 Two-stage stochastic programming

When optimizing the management of energy systems over a future period, the

optimization involves parameters, such as end-user needs, weather conditions,

energy prices, or renewable energy generation, which are to some extent uncertain.

Indeed, their future behavior can be forecasted, but it is clear that the forecasts

are not entirely precise. In this work, two-stage stochastic programming was used

to address these uncertainties.

Stochastic programming is a powerful framework for modeling optimization

problems that deal with uncertainty. It achieves this by creating a finite number

of scenarios that represent different realizations of the uncertain parameters over

the time-span considered, and each scenario is related with a probability of oc-

currence. In the case of two-stage stochastic programming problems, the decision

variables are divided into two groups: first-stage and second-stage decision vari-

ables. The first-stage variables are the same for all scenarios and must fulfill the

constraints for each of them. On the other hand, the second-stage variables are

repeated for each scenario, and their management depends on the specific sce-

nario being considered. The cost function in two-stage stochastic programming

is built by summing the costs associated with all the scenarios (f(x)) and those

associated with each possible future scenario considered (Q(y, ξs)). Each term in

the summation is multiplied by the probability of occurrence of the corresponding

scenario, as described in the following equation:

min g(x,y) =
Ns∑
s=1

Pr(s)[f(x) +Q(y, ξs)] = f(x) +
Ns∑
s=1

Pr(s)[Q(y, ξs)] , (3.5)

where ξs are the future scenarios, Pr(s) is the probability of occurrence of

scenario ξs, Ns is the total number of scenarios considered, x represent the first-

stage decision variables while y the second-stage decision variables.

For this application, since the initial deterministic problem is a MILP, the

resulting two-stage stochastic programming problem remains a MILP, with the

cost function being the one described in Eq. (3.5). In addition, the constraints

of the problem involve all the constraints related to the first- and second-stage

variables. In this way, all the stochastic parameters will be dependent on the
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3 Stochastic optimization for seasonal storage planning

considered scenario.

3.1.3 Uncertainty modeling

The optimization model can effectively handle uncertainties and provide mean-

ingful results for decision making regarding the optimal operation of the energy

system by employing scenarios. As introduced in Section 2.2.2, the scenarios

to use in these applications can be generated and reduced by means of several

methodologies. The methods used in this thesis are explained in the following

paragraphs.

Scenario generation

A scenario generation method based on Monte Carlo sampling combined with

the roulette wheel mechanism was utilized for the present application [51, 75].

This method requires knowledge of the probability density function (PDF) of the

uncertain parameters and their forecast over the prediction horizon. The steps

involved in scenario generation are the following:

� Discretization: each time-step, the PDF of each uncertain parameter is

discretized into a finite number of intervals, centered around the mean value,

which corresponds to the forecast of the uncertainty at the considered time-

step, as shown in Figure 3.2. The length of each interval is the standard

deviation of the distribution σ. For the purpose of this work, to model the

uncertain parameters, the normal PDF is used [48], which is described by

Eq. (3.6)

PDF (x) =
1

σ
√
2π

e

(
− (x−µ)2

2σ2

)
. (3.6)

� Probability calculation: for each interval k, an associated probability is

calculated by integrating the PDF within the interval:

pk(x) =

∫ xend

xstart

PDF (x)dx . (3.7)

� Probability normalization: the probabilities pk are normalized in such

a way that their summation becomes equal to one, and an accumulated

probability is associated with each interval, as depicted in Figure 3.2.
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Figure 3.2: Discretization of the PDF for the uncertain parameters, and accumu-
lative normalized probabilities.

� Scenario creation: for each time-step of the prediction horizon and for

each uncertain parameter, a random number in range [0, 1] is generated,

and the corresponding interval is consequently picked. The value for the

random parameter becomes equal to the mean value associated with the

interval selected, while the associated probability is set as equal to that of

the interval selected.

� Scenario probability: assuming that the uncertain parameters are inde-

pendent from each other, the probability of each scenario ξs is calculated

based on the probabilities of the selected intervals for all uncertain param-

eters, as follows

Pr(s) =

∏Nu

u=1

∏Nt

t=1 pk(u, t)∑Ns

s=1

∏Nu

u=1

∏Nt

t=1 pk(u, t)
, (3.8)

whereNt is number of time-steps, Nu is the number of uncertain parameters,

Ns is the total number of scenarios generated and pk(u, t) is the probability

associated with the value of the uncertain parameter u of the scenario at

the time-step t.
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Scenario reduction

To effectively represent uncertainties through scenarios and reproduce their prob-

abilistic behavior, a large number of scenarios is initially generated. However, for

the sake of tractability in the optimization problem, the number of scenarios

needs to be reduced while maintaining an accurate representation of the uncer-

tain behavior of the system, and an appropriate scenario-reduction method must

be chosen. In the present thesis, a simultaneous backward reduction method is

employed, which considers both the probability of the scenarios and their simi-

larity to other existing scenarios [51,76].

Considering Ns scenarios ξi (i = 1, ..., Ns), each with a probability equal to

Pr(i), let DT (i, j) indicate the distance between two different scenarios ξi and

ξj, calculated as follows

DT (i, j) =

√√√√ Nt∑
t=1

Nu∑
u=1

(
vit,u − vjt,u

)2
, (3.9)

where vit,u is the value of scenario ξi for the uncertain parameter u at the time-step

t, Nt is the number of time-steps and Nu is the number of uncertain parameters.

The scenario reduction method employed is shown in Figure 3.3, and it is com-

posed of the following steps:

Step 1: Let S be the initial set of scenarios to be reduced, which initially contains

all the scenarios. For all the scenario pairs (ξi, ξj), the distances DT (i, j)

are calculated.

Step 2: For each scenario ξk ∈ S, the scenario ξr with the minimum distance

DT (k, r(k)) from it is found.

Step 3: For each scenario ξk ∈ S, the value PD(k, r(k)) = Pr(k) ∗ DT (k, r(k))

is calculated and the scenario ξd with PD(d, r(d)) = minPD(k, r(k)) is

selected.

Step 4: The scenario ξd is deleted from the set of scenarios S and the probabilities of

the scenarios are updated, by adding the probability of the deleted scenario

ξd to the probability of ξr: Pr(r) = Pr(r) + Pr(d).

Step 5: The procedure from Step 2 to Step 4 is repeated until the desired number

of scenarios is reached.
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Figure 3.3: Simultaneous backward scenario reduction method.

A schematic representation of the process is displayed in Figure 3.4: here, the

circles represent the scenarios, and the distance among circles the distance among

scenarios. The scenarios are initially a large number (a), and they are are reduced

by incorporating the least probable ones with the most probable scenarios close

to them (b), resulting in a lower number of scenarios (c).

0       probability 1

a) b) c)

Figure 3.4: Schematic representation of the simultaneous backward scenario re-
duction method.
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By applying this scenario-reduction method, the number of scenarios is effec-

tively reduced while preserving a meaningful representation of uncertainties and

maintaining the probabilistic behavior of the system.

3.2 Application

This section presents the case studies to which the method described was applied,

and all the characteristics of the optimizations performed.

3.2.1 Case studies description

The MILP-based stochastic optimization algorithm presented in Section 3.1 was

tested on four case studies: two grid-connected and two positive energy districts.

These case studies served as virtual test benches to test the algorithm, and the

results were compared with the ones obtained using a deterministic approach,

with the same boundary conditions. In the following sections, the four case

studies are described.

Grid-connected case studies

The city of Väster̊as was chosen as a first case study, which is a municipality

in the south of Sweden. The energy system of the city can exchange electricity

with the electrical grid, therefore it is grid-connected (GC). The needs of the city

are fulfilled using three combined heat and power plants (CHPs), which convert

residential waste, biofuels and recycled fuels into heat and electricity. In addition,

an absorption chiller (AC) and two heat pumps (HPs) contribute to the supply

of the district heating network (DHN) of the city together with the CHPs, and

to the fulfillment of the cooling needs. The energy system is also equipped with

a water tank that serves as thermal energy storage (TES), while another bigger

underground thermal storage will be built in the near future (TES-u), to perform

seasonal storage, and it was included in the optimization model. This first case

study was called GC Väster̊as.

With the aim to analyze the impact of the introduction of hydrogen seasonal

storage on the existing MES, a second case study was developed starting from the

reference system (GC Väster̊as H2). It was assumed to install a PEM electrolyzer

(PEM), a hydrogen storage tank (HS) and a fuel cell (FC) to convert the hydrogen

into electricity and heat. The configuration of this second case study is displayed
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in Figure 3.5. It was also assumed to use part of the produced hydrogen to fulfill

the needs of a steel mill in the area (the Hallstahammar steel mill [77]). The

characteristics of the plants involved are listed in Table 3.1.

Table 3.1: Characteristics of the technologies of the GC case study.

Technology Nominal inlet power Performance parameters Reference

CHP 5 200 MW ηth = 63%, ηel = 27% [78]
CHP 6 167 MW ηth = 63%, ηel = 27% [78]
CHP 7 150 MW ηth = 63%, ηel = 27% [78]
HP 1 5 MW COP = 3, EER = 1.4 [79]
HP 2 4 MW COP = 3, EER = 2.5 [79]
AC 9 MW EER = 0.78 [79]
PEM 200 MW ηH2 = 60%, ηth = 16.1% [80]
FC 200 MW ηth = 25%, ηel = 55% [81]
HP-el 32.2 MW COP = 4 [82]

Technology Nominal capacity Performance parameters Reference

TES-u 13 000 MWh ηsd = 99.5%, ηc = ηd = 95% [83]
TES 1 200 MWh ηsd = 99.9%, ηc = 95%, ηd = 95% [83,84]
HS 66 644 MWh ηsd = ηc = ηd = 100% [84]

It needs to be mentioned that the PEM efficiency also includes the electric-

ity used by the compressor, needed to compress the hydrogen until the storage

pressure (max 100 bar) [85]. In addition, HP-el represents an additional heat

pump which is introduced in order to upgrade the temperature level of the heat

recovered from the electrolyzer (around 55 °C), to the temperature level needed

for the DHN of the city (80 °C). For a clearer representation, the HP-el is not

included in Figure 3.5. Moreover, given the state of knowledge and the purpose of

the analyzes performed, it was decided to consider a self-discharge efficiency ηsd

equal to one for the hydrogen storage, as it has been done in other works [84,86].

Although for some storage technologies, due to the small size of the hydrogen

molecule, the self-discharge efficiency might be lower, this assumption does not

affect the reliability of the developed algorithm.

The three CHPs of the city burn different fuels: CHP 5 uses biofuel, which

costs 19 EUR/MWh [87], CHP 7 uses renewable fuels, which have a cost of

9.5 EUR/MWh [87], while CHP 6 uses residential waste, which utilization entails

a revenue of about 16 EUR/MWh [88]. Indeed, the residential waste is also

imported from other cities in Europe, and it has a negative price since the plant

owners get a revenue for managing it. Part of the electricity demand of the

city is covered by the CHPs; nevertheless, the CHPs are heat-driven rather than
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Figure 3.5: Layout of the GC case studies (PEM, HS and FC are only present in
the GC Väster̊as H2 case study).

electricity-driven, therefore the remaining part of electricity needs are fulfilled

by using electricity from the national electrical grid. The prices of electricity in

Sweden are regulated by Nord Pool, which manages power exchange in the Nordic

countries [89].

The disturbances given to the optimization algorithm are the energy needs of

the entire city, namely electrical, thermal, cooling and hydrogen needs, (shown

in Figures 3.6a and 3.6b) and the energy prices (which are fixed for fuels and

variable for electricity). The electrical and thermal needs are estimated using

historical data, while the district cooling demand is calculated based on [90]. In

addition, the forecast over the year for the electricity price is estimated based on

historical price data and it is displayed in Figure 3.7.

In the stochastic optimization, the management of the first-stage variables is

defined a priori and cannot be changed depending on the future realization of

the scenario. Instead, the second-stage variables represent a source of flexiblity

for the system, as their behavior is calculated based on the realization of the

scenario. For this case study the variables associated with the PEM electrolyzer,

CHPs, and AC management are selected as first-stage variables, while the ones

related to the FC, HPs, storages and electricity bought are taken as second-stage

variables, and therefore the undesirable effects of the uncertain parameters can

be adjusted through their management.
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Figure 3.6: Forecast of the energy needs for the GC case studies (the hydrogen
need is only present in the GC Väster̊as H2).
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Figure 3.7: Forecast of the electricity prices for the GC case studies.
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Positive-energy district case studies

The other two case studies analyzed are taken from a study from Bahlawan et

al. [86]. They are two districts with the same architecture but different am-

bient conditions: in particular, the same MES was assumed to be located in

Italy and in China, respectively in Rome (PE Rome H2) and in Guangzhou

(PE Guangzhou H2). The layout of these case studies is shown in Figure 3.8.

They comprise a PEM electrolyzer (PEM), a gas turbine (GT), which works with

hydrogen, a photovoltaic plant (PV), a heat pump (HP), an absorption chiller

(AC), and storages for heat (TES), hydrogen (HS) and electricity (BES). The HS

is supposed to be used for seasonal storage, while TES and BES are meant for

daily energy fluctuations. The energy systems are designed in [86] and sized to

be stand-alone, i.e. not connected to the electrical grid. However, in this work,

it was assumed that the system can inject into the grid the surplus electricity

produced by the PV (although the electricity cannot be bought), in this way the

system can be considered as a positive-energy (PE) district. Table 3.2 displays

the sizes of the plants involved in the systems.

electricity

heat

cooling

hydrogen
HP

TES

AC
Electrical grid

End users

GT

PEM
HSPV

BES

Figure 3.8: Layout of the PE case studies.

It needs to be mentioned that in these case studies the waste heat of the

electrolyzer is not recovered, in order to allow the comparison of the results with

those obtained in [86], where this is not considered. In this way, it is possible to

test the quality of the solution of the novel algorithm.

Both case studies have an electricity demand of 10 GWh/year, that corre-

sponds to approximately 300 buildings, and the forecast of the energy needs for
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Table 3.2: Characteristics of the technologies of the PE case studies.

Technology Nominal inlet power Performance parameters
Rome Guangzhou Rome Guangzhou

GT 7.61 MW 5.28 MW ηel = 26% ηel = 25%
ηth = 60%

HP 5.5 MW 7 MW COP = 3.3, EER = 2.8
AC 0.8 MW 2 MW EER = 0.75
PEM 11 MW 13 MW ηH2 = 55%

Technology Nominal capacity Performance parameters
Rome Guangzhou Rome Guangzhou

HS 3314 MWh 2038 MWh ηsd = ηc = ηd = 100%
TES 92 MWh 66 MWh ηsd = ηc = ηd = 99.5%
BES 10 MWh 30 MWh ηsd = 100, ηc = ηd = 95%

the two locations is shown in Figures 3.9 and 3.10. The profiles were taken from

Bahlawan et al. [86], where the authors calculated the energy demands and the

renewable energy generation using the TRNSYS® software and monthly average

data.
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Figure 3.9: Forecast of the energy needs and production for the PE Rome H2
case study.

In these case studies, the energy stored in the BES and the management of

AC, PEM and HP are the first-stage variables in the stochastic approach, while

the energy stored in the HS and TES, the energy at the GT and the electricity

exported are selected to be second-stage variables and help to mitigate the effects

of the uncertainties.
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Figure 3.10: Forecast of the energy needs and production for the
PE Guangzhou H2 case study.

3.2.2 Implementation

This section presents how the optimization algorithm was applied to the case

studies and how the uncertain parameters were modeled. The deterministic

and stochastic optimization algorithms described in detail in Section 3.1.1 were

adapted to the four case studies, leading to the eight case studies listed in Table

3.3.

Table 3.3: Case studies simulated.

Case study Approach
GC Väster̊as Deterministic
GC Väster̊as Stochastic

GC Väster̊as H2 Deterministic
GC Väster̊as H2 Stochastic
PE Rome H2 Deterministic
PE Rome H2 Stochastic

PE Guangzhou H2 Deterministic
PE Guangzhou H2 Stochastic

The optimization algorithm was developed in the Python environment, using

the PuLP library and the problem was solved through the open-source solver

CBC [22]. The simulations time-span is one year, with a daily time-step. It is

worth pointing out the reason why such parameters have been chosen: although

this algorithm is now tested on virtual test-benches to test its performances, it
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was developed with the intent of being used to optimize and control real energy

systems, by being employed in a supervisory MPC module. Therefore, the al-

gorithm should have a long-term vision of the system to be optimized, with the

scope to give additional constraints to short-term controllers which operate the

real-time control of the system. In this way, it is possible to have a control which

also considers long-term objectives and performs better over time, as done e.g.

by Saletti et al. [91]. To use the algorithm in such application, it needs to be

fast, since it must be run every day and communicate the optimized strategy to

the real-time controllers. For this reason, the model was simplified and a daily

time-step was used. In addition, only an average efficiency was implemented for

each plant, as the daily average power is considered.

For the GC case studies, the cost function implemented is the minimization

of the total economic operating cost, which can be expressed for the stochastic

approach by the following equation:

min fobjGC
, (3.10)

with

fobjGC
=

Nt∑
t=1

[ Nf∑
f=1

cf,boPf,bo(t) +

Ns∑
s=1

Pr(s)

(
cel,bo,s(t)Pel,bo,s(t)− cel,so,s(t)Pel,so,s(t)

)]
∆t ,

(3.11)

where cf,bo is the cost of buying the fuel f , while cel,bo,s(t) and cel,so,s(t) are the

costs of purchasing and selling electricity at time-step t for scenario ξs, expressed

in EUR/MWh. In addition, Pf,bo(t) represents the amount of fuel f used by the

CHPs, Pel,bo,s(t) is the amount of electricity bought at time-step t for scenario ξs,

and Pel,so,s(t) is the electricity sold at time-step t for scenario ξs, in MW, Nt is

the total number of time-steps considered in the optimization, Nf is the number

of fuels involved, Ns is the number of scenarios, ξs is the scenario considered and

Pr(s) is its probability of occurrence.

In the PE case studies, it was supposed that the energy systems cannot buy

or sell energy with external networks. Instead, it was assumed that the energy

systems can export the surplus renewable electricity internally generated. The

objective implemented in the PE case studies represents the maximization of

the total electrical energy exported by the MES. By imposing this objective,

the system is forced to use the renewable energy in the most efficient way. The
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stochastic cost function is the following

max fobjPE
, (3.12)

with

fobjPE
=

Nt∑
t=1

Nscen∑
s=1

Pr(s)Pel,exp,s(t)∆t , (3.13)

where Pel,exp,s(t) is the amount of excess electrical power at time-step t for sce-

nario ξs, that can be exported and possibly injected into the grid, Pr(s) is the

probability of occurrence of scenario ξs, ∆t is the time-step length, Nt is the total

number of time-steps in the prediction horizon and Ns is the total number of

scenarios considered.

The cost function for the deterministic approaches is easily obtained starting

from the stochastic one, by considering a single scenario with probability equal

to one.

The uncertainties were accounted for by creating scenarios for the uncertain

parameters. First, the PDF of the uncertain parameters was divided into seven

intervals centered around the forecasted value, each interval having a width equal

to the standard deviation σ, as illustrated in Figure 3.2 [50, 51]. Subsequently,

a large number of scenarios was generated using the roulette wheel mechanism

(i.e. 2000 initial scenarios), and then this number was reduced to be used in

the optimization model, following the procedure outlined in Section 3.1.3. The

uncertain parameters considered in the GC case studies are the electricity price

and user needs, while in the PE case studies, PV production and user needs are

considered to be uncertain. These parameters were treated as independent of each

other, although, in real-life situations, this may not always be true. Nevertheless,

this assumption does not compromise the robustness of the approach.

Although Weibull or Beta PDFs are commonly used for wind speed and solar

irradiance, the roulette wheel scenario generation method generates scenarios

based on the difference between the forecasted and actual values, rather than the

quantity itself. Therefore, as previously mentioned, the normal PDF was adopted

to model the deviation in the forecasted value for all the uncertain parameters,

similarly to what it has been done in [50]. The standard deviation was estimated

from historical data.

As an example, Figure 3.11 shows the scenarios for electricity needs in the

GC case studies for a one-month period, alongside the deterministic forecast
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(represented by the black line).
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Figure 3.11: Scenarios for electricity needs over one month, for the GC case
studies.

3.3 Results

The novel stochastic algorithm was tested by applying it to the case studies

presented above. The simulations have been performed both with deterministic

and stochastic approaches, with the aim to compare the results obtained with

the two. This section presents the results of this study. First, the outcomes

of a sensitivity analysis are presented, performed to analyze the impact of using

different number of scenarios when employing the stochastic approach and find the

most appropriate one; second, the results obtained performing yearly simulations

and the comparison between the different case studies are discussed.

3.3.1 Sensitivity analysis

When solving a stochastic optimization problem, the more scenarios are em-

ployed, the more the solution is robust. However, the complexity of the problem

increases with high number of scenarios, as well as the computational effort to

find an optimal solution, since the number of decision variables increases, and

thus one key issue is to find a proper number of scenarios that allows a reliable

solution to be find in a appropriate computational time. For this reason, a sen-

sitivity analysis was performed for the case study of the city of Guangzhou, with
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the aim of determining the number of scenarios to use for further simulations.

The sensitivity analysis considered the computational time needed to find an op-

timal solution and the relevance of the solution, and the number of scenarios that

permits a compromise between the two was selected.
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Figure 3.12: Results of the sensitivity analysis for the PE Guangzhou H2 case
study.

The simulations have been run with 5, 10, 15, 20 and 25 scenarios and the

objective function value obtained, as well as the computational time needed to

find the optimal solution are displayed in Figure 3.12. The tests were performed

using a Core i7 system with 2.80 GHz CPU and 16 GB of RAM. The aim of the

analysis is to find the most suitable number of scenarios for the simulations with

the stochastic approach, taking into account both computational time needed to

find a solution and relevance of the solution.

By analyzing the results obtained, the best solution for the scope of this work

was found to be in the number of 10 scenarios for the stochastic simulations, which

allows to have a reasonable computational time for solution (around one hour).

Indeed, this time is acceptable if the algorithm is meant to be used for updating

every day the yearly scheduling, and it was noticed that even by increasing the

number of scenarios, the solution obtained was not affected in a relevant way.

3.3.2 Results for the grid-connected case studies

This section presents the results obtained from the simulations conducted for the

GC case studies. Figures 3.13a and 3.13b depict the amount of electricity bought
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Figure 3.13: Electricity bought from the grid in the (a) GC Väster̊as and (b)
GC Väster̊as H2 case studies in the deterministic and stochastic approach.

from the electrical grid in the two cases. The results obtained with the stochastic

approach are displayed in the form of bands, that represent the range of values ob-

tained with the different scenarios. In the GC Väster̊as case study, the imported

electricity exhibits some variations, but it remains consistently lower than 4000

MWh/day. Instead, in the GC Väster̊as H2 case study, there are peaks of elec-

tricity purchased when the electricity price is lower. This happens thanks to the

introduction of the electrolyzer in the system, that allows hydrogen production

during periods of low electricity prices. Consequently, the integration of hydrogen

production enhances flexibility within the energy system. Moreover, comparing

the deterministic and stochastic approaches, it can be observed that the deter-

ministic results are mostly contained within the stochastic bands, demonstrating

coherence between the two methods.

Given the considerable variability of electricity prices in this region of Sweden,

the integration of such technologies can be beneficial in cost savings and leveraging

the large availability of renewable energy in the country during certain periods

of the year, which leads to low electricity prices. As shown in Table 3.4, in the

GC Väster̊as H2 case study, the value of the objective function, i.e. the economic

cost for the system, is lower, despite part of the produced hydrogen being used

to meet additional hydrogen needs. It is worth mentioning that it was possible

to compare the results of the two approaches in terms of the value of the cost

function as the percentage difference between the data used for the deterministic

simulations and the weighted values obtained with the scenario approach over

the entire year was not significant.
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Figure 3.14: Economic analysis for the GC Väster̊as and GC Väster̊as H2 case
studies in the deterministic and stochastic approach.

In Figure 3.14, the cumulative costs and revenues of the system over the

course of the year in the four simulations are shown. For the stochastic approach,

a weighted value for the cost of electricity was calculated and the percentage

indicated refers to the total positive economic cost (excluding revenues). It can

be seen that the cost of electricity represents more than half of the total cost for

all simulations, followed by renewable fuels and biofuels. On the other side, great

savings are allowed by the use of residential waste, since the revenues deriving

from its usage cover more than half of the expenses. Moreover, it can be seen

that the cost of electricity is the main cost saving factor for the GC Väster̊as H2

case studies. Indeed, as already mentioned, it is possible to better exploit periods

of low electricity prices and avoid purchasing electricity at high prices with the

introduction of the electrolyzer.

Figure 3.15 shows the management of hydrogen storage in the GC Väster̊as H2

case study using both approaches. It is noteworthy that with the deterministic

approach, the storage is kept empty during the initial months of the year, when

it is not utilized, leading to reduced system flexibility. In addition, the hydrogen

stored is not always greater in the stochastic approach than in the deterministic

approach, indeed the system is connected to the power grid and therefore the

energy security of the system does not need to be guaranteed.
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Figure 3.15: Management of the hydrogen storage in the GC Väster̊as H2 case
study in the deterministic and stochastic approach.

Table 3.4: Objective function obtained for the GC case studies.

Simulation approach Cost function value (EUR) Cost reduction
GC Väster̊as GC Väster̊as H2

Deterministic 19 496 164 18 475 391 5.2 %
Stochastic 19 636 593 17 164 267 12.6 %

Among the other findings, it was observed that the HP-el, that recovers the

waste heat from the hydrogen production process, contributes 0.7 % of the heat

for the DHN supply in the deterministic approach, whereas this number increases

to 1.4 % in the stochastic approach. This demonstrates that the waste heat from

the PtG plant, although in modest quantities, also contributes to thermal energy

usage in the city DHN.

3.3.3 Results for the positive-energy case studies

Also for the PE case studies, simulations over one year have been performed,

and the results were analyzed. The electricity exported to the grid during the

simulated year is displayed in Figures 3.16 and 3.17: for the stochastic approach,

the results are shown in the form of bands of operation, as it was done for the GC

case study. It needs to be mentioned that the maximum amount of electricity

exported was constrained to be less than 24 MWh per day for two main rea-

sons: firstly, if the maximum amount of exported electricity is not constrained,

since maximization of exported electricity is the objective of the optimization,

the seasonal hydrogen storage could be used less, mainly with the deterministic
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Figure 3.16: Electricity exported in the PE Rome H2 case study in the determin-
istic and stochastic approach.
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Figure 3.17: Electricity exported in the PE Guangzhou H2 case study in the
deterministic and stochastic approach.

approach, reducing the energy security of the system; secondly, considering the

integration of these positive energy districts with the electrical grid, this allows

for a lower impact on the stability of the grid. The systems, in fact, are consid-

ered self-sufficient, with the possibility of feeding (if available) surplus renewable

electricity into the electrical grid. It is clear that, to integrate such positive

energy systems into the existing energy networks, they need to maintain their

self-sufficient characteristics while not impacting negatively on external networks.

The results show that in both cases the average amount of electricity sold using
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Figure 3.18: Management of the PEM electrolyzer in the PE Rome H2 case study
in the deterministic and stochastic approach.
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Figure 3.19: Management of the PEM electrolyzer in the PE Guangzhou H2 case
study in the deterministic and stochastic approach.

the stochastic approach (the dotted line) is lower than the electricity sold using

the deterministic approach, which also leads to a lower cost function value for the

stochastic approach (see Table 3.5). This management is due to the variability

added through the scenarios both in energy production and utilization, which

causes a more conservative behavior of the system, a lower export of electricity

and therefore the storage of a greater amount of energy.

By looking at Figures 3.18 and 3.19, where the management of the PEM elec-

trolyzer in both approaches is displayed, it can be seen that with the stochastic
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Figure 3.20: Management of the hydrogen storage in the PE Rome H2 case study
in the deterministic and stochastic approach.
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Figure 3.21: Management of the hydrogen storage in the PE Guangzhou H2 case
study in the deterministic and stochastic approach.

approach, a higher amount of hydrogen produced in both case studies is obtained,

leading to a higher amount of stored hydrogen (Figures 3.20 and 3.21). This

contributes to a more robust management of the system against uncertainties,

enhancing energy security by ensuring a fuller storage capacity to handle unpre-

dictable events (such as an unexpected high energy request from the end-user or

a sudden decrease in energy production).

Another noteworthy result is the different hydrogen storage management in

the two locations. In Rome, the storage is emptied during the spring (see Figure

3.20), in order to use the stored hydrogen to fulfill the thermal needs during the
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winter season. On the other hand, in Guangzhou, the storage is filled during the

winter and the hydrogen is used to meet high cooling demands during the summer

(see Figure 3.21). Especially, the seasonal storage is emptied rapidly during the

first half of October: here, as it is shown in Figure 3.10, the electrical and cooling

demands are high, while the renewable generation starts to decrease because of

the coming of the winter season. This demonstrates that the novel optimiza-

tion algorithm has successful results regardless of different geographical locations

and external conditions, which lead to varying energy demands, as displayed in

Figures 3.9 and 3.10.

Analyzing the management of the GT (shown in Figures 3.22 and 3.23), which

was considered a second-stage variable and behaves differently for each scenario,

it is observed that the results obtained with the deterministic approach are mostly

contained within the bands of operation derived from the stochastic approach.

However, a comparison between the two approaches reveals that the deter-

ministic solution can be misleading. Indeed, the stochastic approach, considering

uncertainties, results in less electricity sold to the grid, leading to a higher opera-

tional energy cost. This highlights the vulnerability of the deterministic approach

to uncertainty and the potential for unrealistic outcomes. On the contrary, if any

of the scenarios considered in the stochastic approach happen, the management

of the MES is possible with the solution obtained using the stochastic approach.

Furthermore, the results obtained using this optimization strategy align with

the findings of Bahlawan et al. [86]. Nonetheless, using both approaches, the
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Figure 3.22: Management of the GT in the PE Rome H2 case study in the de-
terministic and stochastic approach.
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Figure 3.23: Management of the GT in the PE Guangzhou H2 case study in the
deterministic and stochastic approach.

Table 3.5: Objective function obtained for the PE case studies.

Case study Cost function value (MWh) Difference
Deterministic Stochastic

PE Rome H2 7356 6443 -12.4 %
PE Guangzhou H2 8263 6847 -17.1 %

results show that part of the electricity is always exported and then that the

system is oversized. Additionally, the AC is not used in the PE Rome H2 case

study, indicating that it is more cost-effective to fulfill cooling needs through the

HP using renewable electricity. In the PE Guangzhou H2 case study, the AC is

used for around 25 days per year in both approaches, during April and October,

which is a relatively short amount of time. It is demonstrated that even when

the AC is removed from the energy system, its management remains feasible,

implying that it could be omitted from the system design in both locations.

3.4 Discussion

The method employed in this study involved the application of a novel MILP-

based stochastic optimization algorithm to four distinct case studies, encompass-

ing both grid-connected and positive energy district energy systems. These case

studies served as virtual test benches to evaluate the algorithm performance, by

comparing it with a deterministic approach under identical boundary conditions.
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The novelty of the study proposed is to introduce the uncertainty in various

external parameters in a conventional energy planning algorithm, to study the

integration of a PtG solution for seasonal storage. Indeed, deterministic models

have a notable limitation, as they are unable to account for uncertainties in opti-

mization parameters, which stochastic programming can effectively address. The

stochastic approach incorporated uncertainties by generating multiple scenarios

for external disturbances such as electricity prices, user needs, and renewable

energy production. A sensitivity analysis determined that the use of ten scenar-

ios achieved an optimal balance between computational efficiency and solution

reliability for the stochastic approach.

In the grid-connected case studies, the results demonstrated the potential ben-

efits of introducing hydrogen seasonal storage to enhance system flexibility. This

was particularly evident in the ability to take advantage of low electricity prices

for hydrogen production and subsequent use during high-demand periods. The

adoption of this technology can serve as a buffer against unpredictable distur-

bances, mitigating undesirable consequences arising from unexpected behavior.

As a result, the system flexibility increases, and the impact of uncertainties on

management is minimized.

In the positive energy district case studies, the stochastic approach demon-

strated its robustness by allowing a lower electricity exports compared to the

deterministic approach. This conservatism in electricity export, driven by the

consideration of various scenarios, resulted in a more secure system operation

with fuller hydrogen storage capacity. The study also highlighted the adaptabil-

ity of the optimization algorithm to different geographical locations and external

conditions, enabling effective long-term planning in diverse settings.

The algorithm has proven to be a reliable tools with different case studies and

external conditions. Indeed, the seasonal storage was managed in different ways

depending on external weather conditions and user demands, in order to exploit

the seasonal storage to meet the predominant needs in seasons with a lack of

renewable generation. In addition, even though the forecasting was not the focus

of the research, the algorithm showed its efficiency both using historical data as

forecasts, and using average monthly data and typical days for the reconstruction

of energy demand and generation.

The developed algorithm can be easily applied to various other case studies,

proving itself as a versatile tool for examining different applications at different

scales. Depending on the specific case study, different business models can be
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considered by adjusting goals and the implemented objective function. Overall,

these findings underscore the value of the MILP-based stochastic optimization

algorithm in addressing long-term planning challenges with seasonal storage, of-

fering a promising tool for enhancing the sustainability and resilience of energy

systems. Nevertheless, there are potential further improvements for the algo-

rithm, such as addressing the interdependence of uncertainties or implementing

multi-objective optimization to meet different objectives. In addition, it is ac-

knowledged that further research is required to investigate the economic aspects

of these systems, including investment costs, to provide a more comprehensive

understanding of their viability.

59



3.4 Discussion

60



Chapter 4

Predictive control for integrated

Power-to-Gas management

This chapter presents the second contribution of this thesis: the development and

validation in a Model-in-the-Loop (MiL) configuration of a smart controller based

on MPC, applied to a PtG system integrated with a DHN through waste heat

recovery. First, the methods used are described, i.e. the MPC concept and the

optimization algorithm employed, then the case study is introduced and finally

the application and the results are presented.

4.1 Method

This section presents the methods exploited in this work: the concept of MPC

and the optimization algorithm developed for its implementation are described.

4.1.1 Model Predictive Control

The smart control of complex energy systems allows the system to be optimally

managed, following the implemented objectives, which can be related to economic

cost or energy consumption minimization, and it is becoming more and more

common. As seen in Section 2.2.3, many advancements in the field of control of

energy systems are being carried out. Diverse advanced control strategies exist,

that help to manage and control in an optimal way energy systems, taking into

account their growing complexity [92].

As mentioned earlier, in this thesis the control of the energy systems was

achieved through the utilization of the Model Predictive Control (MPC) tech-
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nique. MPC is an intelligent and adaptive control strategy that employs an

optimization algorithm which is able to calculate the optimal trajectory for the

system initialization variables over a future time horizon, also known as predic-

tion horizon. The algorithm contains a simplified model of the system being con-

trolled and makes use of predictions of future external factors that may influence

the operation of the system. This approach allows for dynamic and forward-

looking management of the system, allowing it to respond effectively to changing

conditions and external disturbances, ultimately enhancing its performance and

efficiency. This strategy is described in detail in Section 1.2 of this thesis.

4.1.2 Optimization algorithm

As explained above, to develop an MPC controller, an optimization algorithm is

required, that calculates the optimal future trajectory for the control variables

over the prediction horizon. Among the existing optimization algorithms, MILP

algorithms have revealed to be successfully for optimizing the management of

MES, if properly tailored to the case study. Indeed, they allow the systems to be

optimized with a good accuracy and with a adequate computational complexity.

In addition, the global optimality of the solution is guaranteed and allowed by

the usage of available solvers. When using such approach, the equations that

describe the physical behavior of the system need to be linearized in order to

obtain linear constraints.

The constraints of the algorithm are able to model the dynamics of a general

MES, which is composed by the following components:

� Conversion units: they are all the plants present in the system, which are

able to convert energy from one (or more) form to another one (or more),

e.g. cogeneration plants, electrolyzers, heat pumps. To obtain a linear

model, the input-output relationship is linearized. Nevertheless, to take into

account variations in the efficiency with the load, piecewise linearization can

be used [93, 94]. Furthermore, each plant allows for the modeling of three

operating modes (on, off, and standby), with the option to define start-up

costs, as well as minimum up-time (UT), down-time (DT), and operating

ramps. This can be achieved by introducing additional equations and binary

variables into the problem.

� Energy storages: these encompass various energy storage methods, such

as batteries, thermal energy storage systems, and gas storage tanks. The
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equation governing these components relates the energy stored at the cur-

rent time-step with that stored in the previous one, accounting for charge,

discharge, and self-discharge efficiencies.

� Energy networks: these are depicted as energy sources or sinks, enabling

the energy system to exchange energy by purchasing or selling it at specific

costs. Examples include electricity grids and natural gas networks.

� End-users and RES: they are depicted as energy sources or sinks as well,

with specified energy requirements that must be met or production rates

that serve as disturbances to the algorithm.

� Energy nodes: while not representing physical nodes, energy nodes play

a crucial role in ensuring that the energy balance for each energy vector is

maintained during every time-step.

All power flows and energy stored constitute the optimization variables, and

the algorithm computes their optimal control for each time-step. This is done

with the aim of minimizing the defined objective function over the prediction

horizon.

Constraints

As previously explained, the models of energy system components need to be

implemented in the optimization algorithm as linear constraints. The details

regarding how these constraints were developed are presented in the following.

Conversion units modeling: to model the conversion units in a MILP

algorithm, the input-output relationship needs to be linearized. In order to tackle

the nonlinearities, which are intrinsic of these systems, piecewise linearization

was used for the components that needed it. This formulation needs the use of

auxiliary variables and constraints. When the output power of the conversion unit

only depends on the input power of the unit, a one-dimensional piecewise linear

approximation can be implemented, as shown in Figure 4.1 [95]. This means to

perform a piecewise linearization of a function of a single variable.

The mathematical formulation that describes the piecewise linearization of a

function f(x) of one variable is obtained by introducing a number n of coordinated

x1, ..., xn on the x axis, called breakpoints, on which the function is evaluated.

Then, the function is approximated using linear segments which connect the
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breakpoints [(xi, f(xi)), (xi+1, f(xi+1))], with i = 1, ..., n − 1. The equation that

describes this formulation is the following, with λ ∈ [0, 1] and xi ≤ x̄ ≤ xi+1.

x̄ = λxi + (1− λ)xi+1 . (4.1)

It follows that the approximated value of the function in a generic point x̄ can

be expressed as

f(x̄) = λf(xi) + (1− λ)f(xi+1) . (4.2)

To use this technique in a MILP algorithm, it is necessary to express it in terms

of constraints that bound the decision variables. Therefore, to use piecewise

linear approximations, it is necessary to introduce in the algorithm additional

constraints and variables. In particular, for each breakpoint a continuous variable

αi ∈ [0, 1] (i = 1, ..., n) is needed, and a binary variable hi is associated with

each i-th interval [xi, xi+1] (i = 1, ..., n− 1), with dummy values at the extremes

h0 = hn = 0. The piecewise linear approximation is formulated with the following

constraints:
n−1∑
i=1

hi = 1 , (4.3)

αi ≤ hi−1 + hi (i = 1, ..., n) , (4.4)

n∑
i=1

αi = 1 , (4.5)

x =
n∑

i=1

αixi , (4.6)

f(x) =
n∑

i=1

αif(xi) . (4.7)

Eq. (4.3) imposes that only one hi can be equal to 1 at the same time-step,

while Eq. (4.4) indicates that only αi and αi+1 can be different from zero. In

this way, a single interval is selected for the piecewise linearization. Finally, by

referring to the formulation in Eq. (4.1), it is possible to deduce that Eqs. (4.5),

(4.6) and (4.7) impose that αi = λ, while αi+1 = 1 − λ, leading to the same

formulation.

For modeling the conversion unit with this formulation, f(x) represents the

output power of the plant, while x is the input power. An additional feature was

added to this formulation, since it is necessary to consider minimum load when
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Figure 4.1: Representation of piecewise linearization in one dimension, with two
intervals and three breakpoints.

modeling energy system components. Indeed, each plant presents a minimum

load under which it is switched off, and this behavior was taken into account

by adding a binary variable for each plant. By using the formulation presented

above, α0 was set to be binary (and not continuous, as other αi variables), so

that when the input power drops below the minimum value x1, it follows that

α0 = 1 immediately, as well as the output power. Therefore, it follows that the

switch on/off variable for the plant at time t is

δ(t) = 1− α0(t) , (4.8)

where δ(t) = 1 when the plant is in operation while δ(t) = 0 when the plant is

switched off.

When the performance of a component depends on two external variables, the

piecewise linearization has been performed on two dimensions (e.g. the electrical

power used to drive the gas compressor depends both on the mass flow rate of

the gas and on the pressure ratio, which depends on the storage pressure). While

one-degree of freedom performance curves can be piecewise linearized relatively

straightforwardly, the situation becomes more complex when attempting to per-

form a piecewise linearization on two variables, leading to the existence of several

approaches for such piecewise linear approximations. Figure 4.2 schematically

represents the two-dimensional piecewise linearization [95]. The process of ap-

proximating a function with a piecewise linear approach in two variables is more
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Figure 4.2: Representation of the piecewise linearization in two dimensions, with
four rectangles and nine breakpoints.

complex than in one variable, and various methods can be employed. In this the-

sis, the triangle method was utilized, which is an extension of the one-dimensional

piecewise linearization method previously described, adapted for two variables.

Considering the general function on two variables f(x, y), it is assumed to

divide the domain in n coordinates on the x axes x1, ..., xn and in m coordinates

on the y axes y1, ..., ym. As for functions of one variable, the domain is discretized

using breakpoints (xi, yj) (x = 1, ..., n; y = 1, ...,m) and the function is evaluated

in each of them. For any given (x̄, ȳ) point, such that xi ≤ x̄ ≤ xi+1 and

yj ≤ ȳ ≤ yj+1, the rectangle and the triangle that contain it are used for the

approximation of the function in the point, as shown in Figure 4.3. Then, the

function value is approximated using a convex combination of the function values

at the vertices of the triangle containing (x̄, ȳ), similarly to what it has been done

for the piecewise linearization in one dimension.

For the formulation of this approach in the MILP algorithm, additional vari-

ables and constraints are added, as done for the linear approximation of functions

of one variable. In particular, n × m continuous variables αij ∈ [0, 1] are intro-

duced, one for each breakpoint, and the following constraints describe the triangle

approach:
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Figure 4.3: Schematization of the triangle method for the piecewise linearization
on two variables.

n∑
i=1

m∑
j=1

αij = 1 , (4.9)

x =
n∑

i=1

m∑
j=1

αijxi , (4.10)

y =
n∑

i=1

m∑
j=1

αijyj , (4.11)

f(x, y) =
n∑

i=1

m∑
j=1

αijf(xi, yj) . (4.12)

Where Eqs. (4.9) - (4.12) represent the formulation on two variables of Eqs.

(4.5) - (4.7), and therefore allow for the selection of one rectangle in the domain.

As mentioned above, for this formulation it is also necessary to identify the right

triangle to consider, in the rectangle selected, as shown in Figure 4.3. Therefore,

for each triangle, a binary variable is introduced. In particular, considering the

rectangle in Figure 4.3, the binary variables hu
ij and hl

ij are associated to the

upper and lower triangles, respectively. Additional constraints are added, that

impose that only the triangle in which the point (x̄, ȳ) is located is used for the

linearization. The additional constraints are the following
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n−1∑
i=1

m−1∑
j=1

(hu
ij + hl

ij) = 1 , (4.13)

αij ≤ hu
ij + hl

ij + hu
i,j−1 + hl

i−1,j−1 + hu
i−1,j−1 + hl

i−1,j (i = 1, ..., n; j = 1, ...,m) .

(4.14)

Similarly to what it has been done for the one-dimensional piecewise lineariza-

tion, an additional binary variable is added for the switch on/off.

When modeling the conversion units with the presented approach, f(x, y)

represents the output power of the conversion unit, x the input power, while y is

an external variable which the output power also depends on.

For each conversion unit, the possibility to model three operating modes (on,

off, standby) was added, as well as a cost to switch on the plant when is off (start-

up cost) due to the necessity, when present, to reach operating temperature or

pressure. The additional constraints introduced to model them are explained

below.

Being δ(t) the switch on/off binary variable at time-step t (δ(t) = 0 plant

switched off and δ(t) = 1 plant switched on), γ(t) the standby binary variable

(γ(t) = 0 plant not in standby and γ(t) = 1 plant in standby) and SU(t) the

start-up binary variable (SU(t) = 0 no start-up and SU(t) = 1 start-up at time

t) the constraints are the following

δ(t)− δ(t− 1)− γ(t− 1)− SU(t) ≤ 0 , (4.15)

δ(t) + γ(t) ≤ 1 , (4.16)

γ(t)− γ(t− 1)− δ(t− 1) ≤ 0 . (4.17)

Eq. (4.15) imposes that only when the plant switches from off to on there is a

start-up, Eq. (4.16) imposes that the system cannot be at the same time on and

in standby mode, while Eq. (4.17) avoids that the system operating mode passes

directly from off to standby. The operating ramps, which are impose to limit too

fast load changes, in according to the dynamics of the plants, are imposed using

the following constraints

Pin(t)− Pin(t− 1) ≤ rup , (4.18)

Pin(t)− Pin(t− 1) ≥ rdown . (4.19)
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Finally, a minimum UT and DT for each plant can be imposed, following the

method presented in [96]. For sake of brevity, these constraints are omitted here.

Storages modeling: to model the storages, a linear model was used, that

relates the energy stored at each time-step with the energy stored at the previous

time-step using the following equation, which is valid for the energy carrier l:

Estor,l(t) = ηsdEstor,l(t− 1) +

(
ηcPstorin,l

(t)−
Pstorout,l(t)

ηd

)
∆t , (4.20)

where Estor,l(t) is the energy stored at the current time-step, Estor,l(t − 1) the

energy stored at the previous time-step, ηsd is the self-discharge efficiency, Pstorin,l

and Pstorout,l are the amount of power entering and exiting the storage at the

current time-step, ηc is the charge efficiency and ηd is the discharge efficiency and

∆t is the time-step length. Depending on the physics of the storage, different

efficiencies can be used.

Energy balance equations: additional constraints which represent the en-

ergy balance for each energy carrier are set. When looking at Figure 4.4, each

energy carrier is represented by an horizontal line, and the balance is made among

input power flows to the line Pin,l(t) and output power flows Pout,l(t) at each time-

step t. For the energy carrier l the constraint is the following:

Nin∑
in=1

Pin,l(t) =
Nout∑
out=1

Pout,l(t) , (4.21)

where Nin and Nout are the number of power flows entering and exiting the node.

Variable bounds: additional constraints regard the upper and lower bounds

for the variables, which are set in according to the characteristics of the energy

system. For instance, the input and output power to/from each plant are bounded

between a minimum and a maximum value, the capacity of the storages is limited,

as well as the amount of energy exchanged with storages and networks.

4.2 Application

This section presents the case study to which the novel MPC controller previously

described was applied, and the characteristics of the simulations performed to test

it.
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4.2.1 Case study description

The case study analyzed consists of a PtG plant for the production of synthetic

methane, starting from the renewable electricity generated by a wind farm. The

system is integrated with a DHN through waste heat recovery from the exothermic

components of the PtG plant. A schematic representation of the energy system

is displayed in Figure 4.4 [97].

In Figure 4.4, all the energy flows involved are shown: the energy system is

interconnected with both the electrical grid and the natural gas network, allowing

for the exchange of electricity and gas through buying and selling energy. The

electricity generated by the wind farm can be used to meet the electrical de-

mands directly, it can be employed in the PEM electrolyzer (PEM) for hydrogen

production, or finally consumed by both the methane compressor and the HP.

The hydrogen produced by the PEM electrolyzer can be stored in the hydrogen

storage (HS) for later use or directed employed in the methanation reactor. The

methanation reactor produces methane at low pressure, specifically at 2.5 bar,

and before storage or further use, this methane needs to undergo compression.

Once compressed, the methane can serve various functions. It can be stored for

future use, sold to the grid, or supplied to the boiler, which generates heat for the

Electricity

High T heat 
(80 °C)

Hydrogen

Low T heat 
(55 °C)

High pressure 
methane

dissipation

dissipation

Low pressure 
methane End-user

HPBoiler

Gas grid

MS

Compressor

Methanator

PEM

HS

Electrical grid Wind farm

Figure 4.4: Schematization of the Multi-Energy System considered, which com-
prises the PtG and the DHN. (HS = Hydrogen Storage, MS = Methane Storage)
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end-user’s thermal demand. In addressing the thermal needs, the system relies

on a gas-fueled boiler and the recovery of waste heat from the PtG plant.

Thermal energy recovery involves two distinct hot water circuits: the Heat

Recovery Circuit (HRC) and the DHN. The HRC operates at lower tempera-

tures, between 40 °C and 55 °C and, within this circuit, three heat exchangers

recover waste heat from the PtG components, in particular from the electrolyzer

(available at 55 °C), condenser (at 80 °C), and methanation reactor (at 290 °C).

The DHN, on the other hand, operates at higher temperatures, ranging from

60 °C to 80 °C, and is used to provide heat directly to the end-user. An industrial

heat pump (HP) bridges the two circuits by upgrading the heat from 55 °C to

the required 80 °C for the DHN. The schematic representation of the novel heat

recovery configuration is displayed in Figure 4.5. Here, the two water circuits can

be seen, connected using the HP, together with the PtG components which are

used for the heat recovery.

Table 4.1 contains a comprehensive presentation of the specifications of the

system components.

4.2.2 Implementation

The main objective of this study is to test the novel MILP-based MPC and

evaluate its potentials. In order to do that, it was compared using a MiL platform

to a conventional rule-based strategy designed to run the PtG for producing

methane when renewable electricity is available. Therefore, the MPC controller

was applied to a so-called system digital twin, which is a dynamic model, built

by means of connecting in a proper way the models of the single components

PEM
low T heat

HP

CondenserMethanator

DHN

hydrogen

high T heat

methane

electricity

Figure 4.5: Schematization of the waste heat recovery from the Power-to-Gas
plant.
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Table 4.1: Characteristics of the plants involved.

Technology Parameter Value
Wind farm Number of turbines (-)

Nominal power (kW)
4
8000

Electrolyzer Nominal inlet power (kW)
Nominal operating temperature (°C)
Nominal operating pressure (bar)

3750
55
35

Methanator Nominal inlet power (kW)
Nominal operating temperature (°C)
Nominal operating pressure (bar)

2479
290
2.5

Boiler Nominal inlet power (kW)
Nominal efficiency (%)

4000
92.4

Heat pump Nominal inlet power (kW) 380
H2 storage Volume (m3)

Maximum pressure (bar)
Minimum pressure (bar)

100
35
2.5

Methane storage Volume (m3)
Maximum pressure (bar)
Minimum pressure (bar)

100
7.5
3.5

involved. The platform used for this application was developed in-house in the

MATLAB®/Simulink® environment and its components are described in detail

in [97, 98] and presented in the Appendix A of this thesis. A screenshot of the

system digital twin is represented in Figure 4.6.

By testing a controller in a MiL configuration, it is possible to evaluate its

benefits, without affecting the operation of a real system. The novel controller was

implemented in the system as a supervisory controller, which gives the values of

the control variables calculated by the optimization algorithm as input set-points

to low-level controllers (e.g. PID controllers) already implemented in the system.

The details regarding the application of the two control strategies is presented in

the next paragraphs.

MPC control

The novel controller was applied to the model of the case study, as previously

explained. At each time-step, the controller (i) gets the actual value of the system

initialization variables, (ii) updates the forecast of the disturbances and the initial

conditions and (iii) calls the MILP algorithm, which performs the optimization

and returns the optimal values for the control variables as a result. A schematic
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Figure 4.6: Simulink digital twin of the system analyzed.
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representation of the MiL application is displayed in Figure 4.7. Here, the initial-

ization and control variables, as well as the disturbances given to the algorithm

and to the system model are specified. The prediction horizon set in the algo-

rithm is two days, while to select the time-step length a sensitivity analysis was

performed, the results of which are presented in the results section.
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Actual heat demand
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Electrolyzer state
Methanator state
HP state
Boiler state
HS SoC
MS SoC

MILP

Heat demand forecast
Electricity demand forecast
Wind power production forecast

Figure 4.7: MPC setup in Model-in-the-Loop configuration. (SP = set-point,
SoC = State of Charge)

The objective function implemented in the algorithm aims to maximize the

overall operating margin, which encompasses the costs of purchasing and selling

electricity and natural gas to and from the networks, as follows

max fobj , (4.22)

with

fobj =

Nt∑
t=1

(
cel,so(t)Pel,so(t) + cng,so(t)Png,so(t)− cel,bo(t)Pel,bo(t)− cng,bo(t)Png,bo(t)

)
∆t ,

(4.23)

where Pel,so(t) and Png,so(t) are the amount of electricity and natural gas sold to

the networks at tome t, respectively, and cel,so(t), cng,so(t) the revenues related to

them, while Pel,bo(t) and Png,bo(t) are the amount of electricity and natural gas

bought from the networks, with cel,bo(t) and cng,bo(t) being their costs.

To achieve the optimization, the MILP algorithm described in Section 4.1.2
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was adapted to the presented case study. The characteristics of the linearization

process utilized to formulate the MILP algorithm are detailed in Table 4.2. This

table provides information on whether piecewise linearization was conducted, the

dimension of the linearization (linear, piecewise linearization 1D or piecewise

linearization 2D), the number of intervals employed, and whether the UT, DT,

and operating ramps were incorporated into the model. It also specifies which

operating modes have been considered in the formulation.

Table 4.2: Features of the model linearization for MILP formulation. (pl =
piecewise linearization)

Component Method Intervals Parameters UT/DT Ramps Op. modes
Electrolyzer pl 1D 1x3 PoutH2

, Poutth = f(Pinel
) no no on/off/standby

Methanator pl 1D 1x2 PoutM , Poutth = f(PinH2
) yes yes on/off/standby

Gas compressor pl 2D 2x2 Pinel
= f(Pinng , Estorng ) no no on/off

Boiler linear 1x1 ηB = 92.2% no no on/off
Heat pump linear 1x1 COP = 5.42 no no on/off
H2 storage linear 1x1 ηc = ηd = 95% - - -
Methane storage linear 1x1 ηc = 95%, ηd = 0.85% - - -

Rule-based control

The degree of improvement resulting from the implementation of the MPC control

strategy can vary depending on how the conventional control strategy is defined.

To address this variability and ensure efficiency, a well-suited rule-based control

strategy was developed. The set-points of the manipulated variables that were

previously defined by the MPC are now calculated by using the control logic

outlined in Table 4.3.

Table 4.3: Rule-based control strategy definition.

Variable Condition Set-point value
Electrolyzer SP SoCHS ≤ 80%

otherwise
min {Pnom, (Pwind − Peluser )}
0

Methanator SP SoCHS > 60% & SoCMS ≤ 95%
SoCHS > 60% & SoCMS > 95%
otherwise

Pnom

0.5 Pnom

0
Heat pump SP PtG system ON & Pthuser

> 0
otherwise

Pnom

0
Boiler SP − −
Methane sold SoCMS > 70%

30% ≤ SoCMS ≤ 70%
SoCMS < 30%

1200 kW
600 kW
0 kW

This control strategy is designed to operate the PtG system, taking advantage

of periods of renewable electricity availability. When renewable electricity is in
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excess, the PtG plant is activated to produce gas. The resulting gas can be either

stored for future use or sold to the network, depending on the current State of

Charge (SoC) of the gas storages. Additionally, the waste heat is recovered as a

by-product of the process when both the electrolyzer and methanator reactor are

switched on, while when waste heat is not required, it is dissipated.

It is worth noting that this control logic does not calculate the set-point for

the boiler. Instead, the input power for this component is regulated using a

PI controller, which aims at maintaining the supply temperature of the DHN

equal to 80 °C. Furthermore, the actual quantity of methane exchanged with the

network is determined by subtracting the methane required for the boiler from

the specified set-point for methane sold to the network.

4.2.3 Key Performance Indicators

To assess the outcomes achieved, an analysis of Key Performance Indicators

(KPIs) related to the cumulative results of the simulations was conducted. The

identified KPIs include:

� Operating Margin (EUR): this KPI measures the net revenue resulting from

the exchange of electricity and methane with external networks. It quanti-

fies the difference between the revenue generated from energy sales and the

expenditure incurred from energy purchases over the simulated period.

� CO2 Emissions (kgCO2): this KPI assesses the total carbon dioxide emis-

sions associated with the operation of the energy system. It considers emis-

sions related to both methane and electricity purchased from external net-

works. Emissions from renewable electricity generated by the wind farm

and synthetic methane production via the PtG plant are assumed to be

zero. Emissions from the electrical grid are calculated using a coefficient of

224 gCO2/kWh [99], while emissions from the gas network are calculated

using a coefficient of 200.8 gCO2/kWh [100].

� RES Usage (%): this KPI represents the percentage of renewable electricity

utilized within the system, thereby not sold to the electrical grid.

� Gas Production (kWh): this KPI quantifies the total amount of methane

produced by the PtG system.
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� Heat Recovered Share (%): this KPI measures the percentage of user ther-

mal demand met using the heat recovered from the PtG plant.

4.3 Results

The simulations have been run with both control strategies previously presented

and the results were analyzed. This paragraph exposes the main results obtained

by this investigation: first, a sensitivity analysis is presented in which several time-

steps for simulation are tested and compared, then the results and discussion on

the management of the system with the two control strategies are explained.

4.3.1 Sensitivity analysis

A sensitivity analysis was carried out with the aim to find the most suitable time-

step length for the current application. The simulations have been performed with

a prediction horizon of two days and a varying time-step length (one hour, 30

minutes and 15 minutes) and with two different solvers: the open source solver

CBC [22] and the commercial solver Gurobi [23]. In this way, by decreasing

the time-step length, the optimization problem is increasingly complex since the

number of time-steps in the prediction horizon increases, as well as the number

of optimization variables, as shown in Table 4.4.

Table 4.4: Optimization details with different time-step length.

Time-step length Prediction
horizon

Number of
time-steps

Number of
variables

1 hour 2 days 49 4802
30 minutes 2 days 97 9506
15 minutes 2 days 193 18914

This study was performed since it is essential to consider the potential for

future use in real-world applications when designing predictive controllers. Ob-

taining licenses for commercial solvers is straightforward for academics; however,

when it comes to companies, this is not always the case. This is especially true due

to the typically high costs associated with commercial solver licenses. Therefore,

it becomes imperative to ensure that optimization tasks can also be effectively
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carried out using open source solvers which are usually slower in terms of compu-

tational time [101]. The simulations have been run using a Core i7 system with

2.80 GHz CPU and 16 GB of RAM.

The controller was applied in MiL configuration as explained in section 4.2.2

and the time used to perform the optimization has been collected for every itera-

tion during a one-day simulation. In Figure 4.8, the comparison of computational

time employed with different time-step lengths is displayed, with the two afore-

mentioned solvers in box plots.

A box plot is a graph that provides a visual indication of how the distribution

of the 25th percentile, 50th percentile, 75th percentile, minimum, maximum, and

outlier values of a data set are distributed. A brief explanation on how to read

the graphs is presented below:

� The box is used to represent the interquartile range (IQR), or the 50 % of

data points lying above the first quartile (Q1) and below the third quartile

(Q3), in the given data set.

� The lower part of the box represents the first quartile (the 25th percentile)

of the data, while the upper part of the box is the third quartile (the 75th

percentile) of the data.

� The line in the middle of the box represents the median of the data, while

the cross is the mean of the data.

� The vertical lines, also known as whiskers, are used to represent the variabil-

ity of the minimum, maximum and any outlier data points in comparison

to the IQR: the lower whisker shows the minimum data value and its vari-

ability in comparison to the IQR inside the range (Q1 − 1.5 ∗ IQR), while

the upper whisker shows the maximum data value and its variability in

comparison to the IQR inside the range (Q3 + 1.5 ∗ IQR).

� The dots outside the whiskers represent the outliers.

It can be noticed how the time needed to find an optimal solution changes

with the two solvers, being considerably higher with the open source solver CBC.

It needs to be mentioned that a time limit of 240 seconds (i.e. 4 minutes) was im-

posed for the solution of the optimization process with a time-step of 15 minutes.

Indeed, if the optimization exceeds this time limit, it becomes impractical to im-

plement the control action in a real application. However, by setting a time limit,
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the optimal solution is not guaranteed, and the solver selects the best solution

found before the stopping time, which can reveal to be sub-optimal.
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Figure 4.8: Time needed to find a solution with time-step length of 15 minutes,
30 minutes and 1 hour with Gurobi and with CBC solvers.

The same results are also shown in Figure 4.9, where the computational time

is compared among the two different solvers, with same time-step length. With

the Gurobi solver, the solution time is evidently shorter, and the difference in the

solution time increases exponentially by decreasing the time-step length. With

this solver, it is possible to obtain an optimal result in less than one minute also

with time-step length of 15 minutes most of the time, and when using a time-

step of one hour the solution can be found in around one second. With CBC,

instead, the time-limit of 240 seconds is reached for almost all the calculations

with time-step of 15 minutes, and when using a time-step of 30 minutes, the

solution takes on average 30 seconds, but this time increased up to 90 seconds

for some iterations. Instead, using one hour time-step, the solution is found in

around 2.5 seconds, a time span that can increase up to 4 seconds.

Although the use of the commercial solver Gurobi demonstrated the ability

to achieve optimal results within a reasonable time span even with shorter time-

step length, it was chosen to adopt a one-hour time-step length for subsequent

simulations. This decision was motivated by the desire to assess the advantages

of the novel control strategy in scenarios where shorter time-steps might not be

feasible because of the high computational time of open source solvers. Indeed,

the aim of the investigation is to confirm whether the benefits of the novel control

strategy could still be realized in real-world case studies, that may require open
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Figure 4.9: Time needed to find a solution with time-step length of 15 minutes,
30 minutes and 1 hour with Gurobi and with CBC solvers.

source solvers. In addition, not significant differences in the management of the

system were evaluated, and therefore an increase in computational effort was not

justified by a notable improvement on the solution.

It was decided to further extend this analysis, by testing the controller with

different sampling intervals for the MPC. Specifically, attempts were made to

execute the optimization process every 30 minutes or 15 minutes, but maintaining

a time-step of one hour in the algorithm. This allows to have a computationally

fast algorithm, as exposed above, since its time-step is of one hour, but to update

the initialization variables and run it more frequently, since the sampling interval

of the MPC is shorter.

The results obtained by this investigation are displayed in Figure 4.10, where

1 h - 1 h means time-step of one hour for the algorithm and sampling interval of

one hour for the MPC, 1 h - 30 min stands for time-step equal to one hour for

the algorithm and sampling interval of 30 minutes for the MPC, and 1 h - 15 min

means time-step of one hour for the algorithm and sampling interval of 15 minutes

for the MPC. It was found that the solutions obtained do not differ significantly

in terms of KPIs and in particular the KPIs do not benefit from a decrease in

the MPC sampling time; instead, better results are obtained by using a sampling

time equal to one hour for most of the KPIs. In general, it was also evaluated

that the management of the system did not present significant differences with

different sampling times for the MPC controller.

For the aforementioned reasons, after performing the sensitivity analysis, it

was decided to simulate the model with a time-step length of one hour for the

optimization algorithm and a sampling time of one hour for the MPC. The results

are presented in the following section.
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Figure 4.10: Value of KPIs by changing the digital-twin time-step and keeping
the MILP time-step equal to one hour.

4.3.2 Simulation results

As previously mentioned, the purpose of the simulations is to assess the advan-

tages of a novel controller utilizing the MPC technique for a PtG plant inte-

grated with a DHN. To achieve this, the novel control approach was compared

to a conventional rule-based method (refer to Section 4.2.2). The simulations

were performed over a period of two days: nevertheless, the rule-based control

strategy was employed in both simulations on the first day, in order to have the

same initial conditions at the beginning of the second day, in which the two con-

trol strategies are compared. Consequently, the results were gathered exclusively

during the second day, and the discussion will focus solely on the outcomes from

this day.

81



4.3 Results

The disturbances given to the MPC encompasses forecasts of end-user de-

mands and electrical power generated by the wind farm, and they are illustrated

in Figure 4.11 for the second simulated day. It is essential to emphasize that

these forecasts differ from the disturbances imposed to the system digital-twin,

which represent the actual disturbances and are obtained by applying random

deviations to the ideal disturbances given to the controller. This methodology

allows for the evaluation of the performances of the predictive controller with

unexpected disturbances, a common occurrence in practical applications.
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Figure 4.11: Forecasts of the disturbances given to the MPC controller for the
second day.

Figure 4.12 displays how the electricity is managed with the two control strate-

gies during the second day: in this figure, the energy balance among production,

usage and exchange with the grid is shown. By comparing the management ob-

tained with the two control strategies, it can be noticed that less electricity is

exchanged with the grid using the MPC strategy, and it is possible to use more

renewable electricity to work the electrolyzer and the HP for heat recovery.

This behavior can also be seen in Figure 4.13: here, the total amount of en-

ergy exchanged with the networks during the entire day is displayed, using the

two different control strategies. In contrast, using the rule-based control logic,

a greater quantity of electricity is exported to the grid, and the system simulta-

neously necessitates for a larger procurement of methane from the gas network.

This is primarily due to the fact that during periods when the electrolyzer and

methanation reactor are inactive, it becomes essential to purchase the required

gas for operating the boiler, to meet the thermal demands of users. This out-

come underscores that to have a cost-effective operation of the system it is better

to exploit at the best way the self-generated energy resources and minimize the

reliance on external energy networks. Additionally, such an approach serves to

avoid grid unbalances and renewable energy resources curtailments.

Figure 4.14 presents both the set-point and the actual input power applied to
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Figure 4.12: Energy balance at the electricity node. (RES = wind power pro-
duced, Bought/Sold = exchanges with the power grid, HP = heat pump, PEM
= PEM electrolyzer, compr = compressor, User = user needs)

MPC rule-based
-30000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

E
n

er
g

y
 (

k
W

h
)

Electricity bought

Electricity sold

Natural gas bought

Natural gas sold

Figure 4.13: Bar plot with energy exchanged with the networks during the entire
day.

the methanation reactor. It needs to be mentioned that the displayed set-point

is the real one that emerges from the low-level proportional controller, and that

takes into account also an adjustment based on the hydrogen storage SoC to

prevent exceeding storage limits. The control strategies employed lead to notable
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differences in the management of the methanation reactor. Specifically, under

the rule-based control, the set-point remains predominantly constant at part load

operation. In contrast, the MPC allows for the definition of a more precise set-

point, enabling optimal system management to minimize the objective function.
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Figure 4.14: Input power set-point given to the methanation reactor with the two
control strategies and realized one.

Figure 4.15 illustrates the real-time input power given to the electrolyzer with

both control strategies and the hydrogen storage SoC. These two dimensions are

closely interconnected: indeed, it is evident that under the rule-based control

approach, there are periods in which the electrolyzer must be switched off due to

hydrogen storage reaching its capacity limit (e.g. during hours 11 and 12). Con-

versely, this issue is not observed with the MPC, which can efficiently manage the

operation of the electrolyzer, deactivating it only when the renewable generation

is not enough, as depicted in Figure 4.11.

Table 4.5 presents the values obtained for the KPIs identified in paragraph

4.2.3. As expected, when using the MPC, the operating margin of the system is

Table 4.5: Values of the KPIs with the two control strategies.

Value Rule-based control MPC Difference
Operating margin 996 EUR 1523 EUR - 527 EUR
CO2 emissions 2 004 kgCO2 423 kgCO2 - 1 581 kgCO2

RES usage 77.7 % 83.9 % + 6.2 %
Gas production 89 483 kWh 106 541 kWh + 17 103 kWh
Heat demand met 41.8 % 45.6 % + 3.8 %
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Figure 4.15: Actual input power of the electrolyzer and State of Charge of the
hydrogen storage with the two control strategies.

notably greater, resulting in a 53 % improvement (approximately 527 EUR) over

the course of a single day. Indeed, its maximization is the aim of the optimization

performed in the controller. Additionally, the MPC control yields superior out-

comes in terms of CO2 emissions, achieving a reduction of over 50 % compared to

those obtained using the rule-based control. Moreover, an examination of RES

utilization reveals that the MPC enables a 6.2 % increase in the exploitation of

renewable energy, consequently leading to higher methane production. Lastly, it

is also obtained that the recovery of heat is more efficient with the MPC, and

with this approach it is possible to meet 45.6 % of the thermal demand of the

end-user (a 3.8 % improvement compared to the rule-based control).

Figure 4.16 illustrates how the heat demand is met over the second simulated

day using the two different control strategies. Using the MPC strategy, the system

efficiently fulfills the heat demand without the need to purchase gas from the

network, relying solely on the heat recovered and the renewable gas produced by

the PtG plant. Conversely, 10.6 % of the demand is satisfied by purchasing gas

from the network when employing the rule-based controller. Furthermore, with

the MPC controller, 45.6 % of the end-user heat demand is supplied through

waste heat recovery, which is 3.8 % more than with the rule-based control. This

outcome highlights the potential for full decarbonization of a small DHN with

the integration of a properly sized and managed PtG system.
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Figure 4.16: Fulfillment of the heat demand over the entire simulated day with
the two control strategies.

4.4 Discussion

In this study, a PtG plant integrated with a DHN was analyzed, and the results

of two control strategies, namely a novel MPC and a rule-based approach, were

compared. The application involved a PtG plant that produces synthetic methane

from renewable electricity generated by a wind farm. The system was integrated

with a DHN, which make use of a gas-fueled boiler and of the waste heat recovered

from the PtG plant to provide heat to end-users.

The two control strategies were compared by applying them in a MiL config-

uration. Overall, the MPC strategy demonstrated superior performance in terms

of economic gains, carbon emissions reduction, renewable energy utilization, gas

production, and heat demand fulfillment. It effectively optimized the operation

of the PtG plant and DHN, highlighting its potential for decarbonization and ef-

ficient energy management in similar systems. These findings emphasize the ben-

efits of advanced control strategies, such as MPC, in achieving more sustainable

and economically viable energy systems, especially when integrating renewable

energy sources with heat recovery and gas production components.

The development and validation of a MPC controller in a MiL environment

paves the way for its real-world application, following the process outlined in

Figure 4.17. In addition, as the optimization algorithm has been designed for a

generic MES, the controller can be easily adapted to different case studies, and

it can also help in testing various energy system configurations.
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Figure 4.17: Procedure for development, validation and testing of controller pro-
totype.

Once the controller has been validated within the MiL framework, its appli-

cation to real-world case studies becomes a relatively straightforward process.

Indeed, the optimal control has been tested to be viable even with open source

solvers in adequate computational time. In addition, this can be achieved without

the need for new hardware installation, since it only involves the modification of

set-points within the existing low-level controllers in accordance with the MPC

logic. A similar methodology was employed in the DISTRHEAT project [102],

where an MPC controller was initially verified in a simulation platform and sub-

sequently applied to a real-world case study, resulting in intelligent and efficient

system management. This approach ensures that the operation of the real system

is not negatively affected during the testing phase.
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Chapter 5

Multi-temporal and multi-spatial

Model Predictive Controller

In this chapter, the third outcome of this thesis is presented, which regards the

development and validation of a multi-temporal and multi-spatial controller for

the optimal management of a synthetic natural gas seasonal storage, which is

shared among different energy systems. This application integrates the methods

previously introduced in Chapters 3 and 4 to enhance their overall functionality

and comprehensiveness.

First, the novel architecture is described, then an application is presented, in

which the controller is applied to a case study and lastly the simulation results

are presented for evaluation.

5.1 Method

As discussed in Paragraph 1.1, it is widely recognized that renewable fuels gen-

erated with PtG systems represent one of the most promising solutions for the

growing need of seasonal storages. Nonetheless, the smart management of an

energy system integrated with a seasonal storage is not straightforward: indeed,

yearly dynamics related to renewable generation as well as energy demands must

be taken into account. In addition, because of the high investments needed for

large seasonal storages, they can serve multiple small PtG systems, that generate

the fuel to be stored. When designing and developing smart controllers for such

systems, these dynamics must be considered. Therefore, a novel control architec-

ture that allows a shared natural gas seasonal storage to be optimally managed
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was developed for this application. The control action is able to manage the day-

ahead energy exchanges, by taking into account both daily and yearly dynamics.

The control architecture is schematized in Figure 5.1 for a natural gas seasonal

storage which is shared among three multi-energy systems.

The developed approach is multi-period and multi-spatial and it uses two

different control levels, based on MPC strategy:

� Supervisory long-term module: this module is an MPC with a predic-

tion horizon spanning a year and a time-step of one day. This setup enables

the system to account for the seasonality in production and demand that

occurs over the course of the year, as well as the management of seasonal

energy storage. Regardless of the number of energy systems considered, the

control architecture only necessitates one supervisory module, that regu-

lates the entire system. This module uses a stochastic MILP algorithm to

perform the optimization every day, taking into account the uncertainty in

the disturbance forecasts.

� Short-term modules: these modules are repeated for each of the multi-

energy systems in the application and they consider a prediction horizon of

few days. As the supervisory module, they were developed as MPC con-

trollers, and they use a detailed MILP algorithm for the optimization. They

short-term MPC

short-term MPC short-term MPC

Shared ng
seasonal storage

Supervisory 
long-term MPC

system 1

system 2 system 3

Figure 5.1: Multi-temporal and multi-spatial control architecture schematization.
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do not optimize the seasonal storage management, but instead they receive

additional information from the supervisory module regarding the amount

of energy to exchange with it each day. This information is elaborated by

the modules and transformed to long-term constraints.

In the following sections, the details regarding the architecture of the control

approach and the MPC modules are described.

5.1.1 Supervisory module

As mentioned above, every day the supervisory module is run and calculates the

amount of energy that the systems need to exchange with the seasonal storage

each day of the prediction horizon. The algorithm used in this module is a

stochastic MILP algorithm, as the one presented in Chapter 3. The uncertainties

are modeled through the generation of several scenarios every day, starting from

the future deterministic disturbances, using the roulette wheel mechanism, and

the number of scenarios is reduced by employing the scenario reduction method

proposed in 3.1.3.

The algorithm has been further refined to suit this particular application,

allowing it to efficiently coordinate the management of multiple MES collectively.

Basically, each MES is assumed to have its own energy carriers and cannot directly

exchange energy with other MES. However, they are interconnected through the

seasonal storage component, which enables every MES to exchange energy with

it. The equation describing the behavior of the seasonal storage is as follows:

Estor(t) = ηsdEstor(t− 1) +
Nz∑
i=1

(
ηcPstorin,i

(t)−
Pstorout,i(t)

ηd

)
∆t , (5.1)

with Nz being the number of MES in the application, that can exchange energy

with it. Estor(t) is the amount of energy stored at time-step t, Estor(t − 1) the

amount of energy stored at time-step t − 1, ηsd is the self-discharge efficiency,

ηc is the charge efficiency and ηd the discharge efficiency of the seasonal storage,

while Pstorin,i
(t) and Pstorout,i(t) are the power entering and leaving the storage,

respectively, at time-step t for the MES i, and ∆t is the time-step length. In

addition, it was set that the amount of energy stored at the beginning of the

prediction horizon must be equal to the energy stored at the end of the prediction

horizon (i.e. one year). In this way, the algorithm is consistent with the idea of

seasonal storage and prevents the system from using the storage to empty it in
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order to increase the revenues without foreseeing what will happen the following

year. Therefore, the following constraint was added for the seasonal storage,

being Nt the total number of time-steps (i.e. 365 for daily time-step and one year

of prediction horizon)

Estor(0) = Estor(Nt) , (5.2)

with t = 0 being the current time-step and t = Nt the last time-step of the

prediction horizon.

The two-stage stochastic programming algorithm was configured such that

the first-stage variables, namely the variables that present the same value for all

the scenarios, were set as all the variables associated with the seasonal storage

(i.e. the amount of natural gas entering and exiting the storage, and the energy

stored in the storage). Instead, all the variables related to the other components

were designated as second-stage variables, i.e. scenario specific. In this way, the

management of the seasonal storage is robust against the future behavior of the

uncertain parameters.

5.1.2 Short-term modules

The short-term modules have the same characteristics of the MPC module pre-

sented for the application in Chapter 4, and present hourly time-step with pre-

diction horizon of two days. Nonetheless, they have also been enhanced for this

application, making them able to consider the seasonal storage behavior. The

difference for this application is that every day at midnight, when the long-term

supervisory module is run, they receive information on the amount of energy to

exchange with the seasonal storage during the next two days. Specifically, they

use four values: Eday1in , Eday1out , Eday2in and Eday2out , which are respectively the

amount of energy to inject (in) and withdraw (out) from the storage during the

first day of prediction horizon (day1) and during the second day of prediction

horizon (day2). These are cumulative information over each day, and they can-

not be used as such by the modules, that instead have a shorter time-step length.

Therefore, they are elaborated and transformed into constraints for the problem,

which were named long-term constraints.

In Figure 5.2, a visual representation of the process is presented. This dia-

gram helps clarify the architecture: every day at midnight the long-term module

supplies information for the subsequent two days to the short-term modules. This

information is used differently by them depending on the time of the day. In-
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deed, at the beginning of the day (t = 0), the prediction horizon contains all

the time-steps of the two days, and therefore the value given from the long-term

module is used to constrain all the time-steps (in day 1 and day 2). Instead,

since the prediction horizon of the short-term module is of two days, when rolling

the horizon, for constraining the time-steps in the first day, cumulative data on

what happened during the past time-steps of the first day is needed. In addition,

as time advances throughout the day, the prediction horizon extends into the

third day, for which energy exchange information is unavailable. Nevertheless, it

is believed that the absence of constraints on the time-steps entering the third

day does not significantly impact the overall functionality of the control action.

Indeed, with the MPC strategy, only the first signal is applied to the real system,

which corresponds to the first time-step of the prediction horizon.

day 1 day 2 day 3

t = 0
t = Δt

t = 2Δt
t = 3Δt

unconstrained

Figure 5.2: Schematization of how long-term constraints are given to the short-
term modules and used by them.

The long-term constraints at time-step t are elaborated so that they impose

that the amount of energy injected to the storage (or withdrawn from it) during

each day must be equal to the amount of energy calculated by the long-term

module +/- an ϵ term, always positive. In order to force the result to be obtained,

the ϵ terms are inserted and minimized in the objective function. In this way,

if the system is not able to fulfill the constraints, the problem does not become

infeasible but instead these variables assume a value different than zero, making

them soft constraints. The constraints are elaborated as follows for the first day

of the prediction horizon

Nd−t∑
t̄=t

Pstorin(t̄)∆t ≤ Eday1in −
t−1∑
t̄=0

Pstorin(t̄)∆t+ ϵin1 , (5.3)

Nd−t∑
t̄=t

Pstorin(t̄)∆t ≥ Eday1in −
t−1∑
t̄=0

Pstorin(t̄)∆t− ϵin1 , (5.4)
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Nd−t∑
t̄=t

Pstorout(t̄)∆t ≤ Eday1out −
t−1∑
t̄=0

Pstorout(t̄)∆t+ ϵout1 , (5.5)

Nd−t∑
t̄=t

Pstorout(t̄)∆t ≥ Eday1out −
t−1∑
t̄=0

Pstorout(t̄)∆t− ϵout1 , (5.6)

where Pstorin(t̄) and Pstorout(t̄) represent the power injected and withdrawn from

the seasonal storage at time-step t̄, Eday1in and Eday1out are the total amount of en-

ergy that the long-term module imposes to inject and withdraw from the seasonal

storage during the first day, Nd is the number of time-steps in one day. Finally,

ϵin1 and ϵout1 are the additional variables added to make these constraints soft.

It is worth highlighting that the terms
∑t−1

t̄=0 Pstorin(t̄)∆t and
∑t−1

t̄=0 Pstorout(t̄)∆t

represent the cumulative amount energy exchanged with the storage during the

past time-steps of the day. These values are updated every time-step using actual

data from the real system (or from the digital-twin of the system).

For the second day of the prediction horizon, the term related to the amount

of energy already exchanged is not present because the current time never enters

the second day. The constraints are the following

2Nd−t∑
t̄=Nd−t+1

Pstorin(t̄)∆t ≤ Eday2in + ϵin2 , (5.7)

2Nd−t∑
t̄=Nd−t+1

Pstorin(t̄)∆t ≥ Eday2in − ϵin2 , (5.8)

2Nd−t∑
t̄=Nd−t+1

Pstorout(t̄)∆t ≤ Eday2out + ϵout2 , (5.9)

2Nd−t∑
t̄=Nd−t+1

Pstorout(t̄)∆t ≥ Eday2out − ϵout2 , (5.10)

where symbols are identical to those used in the constraints for the first day, but

they pertain to day 2 of the prediction horizon.

5.2 Application

The proposed approach was applied to a case study and its performance was eval-

uated by employing a MiL application. The case study and the implementation
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are described in the following sections.

5.2.1 Case study description

The case study comprises three MES, in which synthetic natural gas is generated

through a PtG process. Indeed, all the three systems comprise an electrolyzer

for hydrogen generation and a methanation reactor for the production of syn-

thetic natural gas. The generated natural gas can be then used internally in the

systems, or otherwise stored in a shared natural gas seasonal storage. The over-

all architecture is schematized in Figure 5.1. The three systems have different

architectures which are described in the following.

System 1: this energy system is schematized in Figure 5.3. Its architecture is

the same as the energy system studied for the application described in Chapter 4,

to which the reader can refer for more information. In this application, however,

an additional component is added, which is the shared natural gas seasonal stor-

age with which all the systems can exchange energy by injecting or withdrawing

natural gas.

System 2: the architecture of this system is identical to that of system 1

(see Figure 5.3), but the sizes of the plants are obtained by multiplying the sizes

of system 1 for a factor equal to 1.5. In this way, it was possible to validate the

benefits of the control strategy also with larger energy systems.

Electricity

High T heat 
(80 °C)

Hydrogen

Low T heat 
(55 °C)

High pressure 
methane

dissipation

dissipation

Low pressure 
methane End-user

HP
Boiler

Gas grid

MS

Compressor

Methanator

PEM
HS

Electrical grid Wind farm

Seasonal storage

Figure 5.3: Schematization of systems one and two.

System 3: the third system considered differs from the other two, and its
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architecture is presented in Figure 5.4. This system is connected both with the

electrical and gas network and can exchange energy with them by buying or

selling it, as the other two systems. Nevertheless, instead of having a wind farm

for renewable energy generation, a photovoltaic plant is present. In addition, for

this system the heat recovery from the PtG plant is not considered, as well as

the internal storage for natural gas. Instead, there is a thermal energy storage

(TES) for storing thermal energy in the form of hot water.

Electricity

High T heat 
(80 °C)

Hydrogen

High pressure 
methane

dissipation

Low pressure 
methane End-user

Boiler

Gas grid

Compressor

Methanator

PEM
HS

Electrical grid Photovoltaics

Seasonal storage

TES

Figure 5.4: Schematization of the third system considered.

By considering systems with different sizes and architectures, the strategy is

verified under different conditions that allow to evaluate the generality of the

developed approach. The specifications on the systems are presented in Table 5.1
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Technology Parameter System 1 System 2 System 3

Wind Farm Nominal power (kW) 8000 12000 –

Photovoltaics Nominal power (kW) – – 8000

Electrolyzer Nominal inlet power (kW) 3750 5625 3750

Nominal operating temperature (°C) 55 55 55

Nominal operating pressure (bar) 35 35 35

Methanator Nominal inlet power (kW) 2479 3718 2479

Nominal operating temperature (°C) 290 290 290

Nominal operating pressure (bar) 2.5 2.5 2.5

Boiler Nominal inlet power (kW) 4000 6000 4000

Nominal efficiency (%) 92.4 92.4 92.4

Heat Pump Nominal inlet power (kW) 380 570 –

H2 storage Volume (m3) 100 150 100

Maximum pressure (bar) 35 35 35

Minimum pressure (bar) 2.5 2.5 2.5

Methane storage Volume (m3) 100 150 –

Maximum pressure (bar) 7.5 7.5 –

Minimum pressure (bar) 3.5 3.5 –

Thermal energy storage Maximum capacity (kWh) – – 12 000

Table 5.1: Characteristics of the components of three systems analyzed.
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5.2.2 Implementation

The developed control architecture was tested by applying it in a MiL config-

uration. Similarly to what has been done in Chapter 4, a digital-twin of the

case study was developed in the MATLAB®/Simulink® environment by using

the in-house library of energy system components (refer to Appendix A for more

details).

The schematization of the MiL application is represented in Figure 5.5. Every

day, the long-term module (i) receives as initialization variables the SoC of all

the storages in the system, (ii) it performs the stochastic optimization and (iii)

returns to the short-term modules the amount of energy to exchange with the

seasonal storage each day. The short-term modules, instead, are run every hour,

and (i) they get as initialization variables the SoC of the storages in the systems

(except from the seasonal storage), (ii) perform the optimization using the MILP

algorithm and return the set-points calculated for the first time-step to the digital-

twin: the set-points for the conversion units, the gas to exchange with the gas

network and the gas to exchange with the seasonal storage.
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Figure 5.5: Schematization of the Model-in-the-Loop application of the control
architecture. (SoC = State of Chrge, SP = set-point)
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The long-term supervisory module was set with a prediction horizon of one

year and daily time-step. Every day, 500 scenarios are generated for renewable

energy production, electrical and thermal needs of the end-users, and these sce-

narios are reduced to the number of 30. The objective of the optimization is the

minimization of the total CO2 emissions, which are all the emissions related to

the electricity and gas bought from the networks. The objective function is there-

fore the sum of the energy bought from the networks multiplied by the related

emission factor, and it is expressed as follows

min fobjLT
, (5.11)

with

fobjLT
=

Nt∑
t=1

Nscen∑
s=1

Pr(s)

(
Pel,bo,s(t)eCO2,el + Png,bo,s(t)eCO2,ng

)
∆t , (5.12)

where Nt is the number of time-steps in the prediction horizon, Nscen is the

number of scenarios considered, Pr(s) is the probability of scenario ξs, Pel,bo,s(t)

and Pgn,bo,s(t) are the amount of electricity and natural gas bought form the

networks. The emissions related to the electrical grid are calculated using an

emission factor equal to eCO2,el = 224 gCO2/kWh [99], while for the gas network

a coefficient of eCO2,ng = 200.8 gCO2/kWh is used [100].

The short-term modules, instead, are set with a prediction horizon of two days,

and an hourly time-step. The objective function implemented is the maximization

of the total operating margin of the system, which encompasses the maximization

of revenues minus costs. In the cost function, the minimization of the ϵ variables

introduced for softening the long-term constraints is also added. The cost function

is expressed by the following expression

max fobjST
, (5.13)

with

fobjST
=

Nt∑
t=1

(
cel,so(t)Pel,so(t) + cng,so(t)Png,so(t)− cel,bo(t)Pel,bo(t)+

− cng,bo(t)Png,bo(t)

)
∆t−

(
ϵin1 + ϵin2 + ϵout1 + ϵout2

)
,

(5.14)
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where Pel,so(t) and Png,so(t) are the amount of electricity and natural gas sold to

the networks at time t, respectively, and cel,so(t), cng,so(t) the revenues related

to them, while Pel,bo(t) and Png,bo(t) are the amount of electricity and natural

gas bought from the networks, with cel,bo(t) and cng,bo(t) their costs at time t;

ϵin1 , ϵin2 , ϵout1 and ϵout2 are the variables introduced for softening the long-term

constraints and they are better explained in Paragraph 5.1.

To test the novel control architecture, it was decided to simulate two periods

of the year with different weather conditions: five days in May and five days

in November. It needs to be specified that for the simulations, the detailed

digital-twin in Simulink® was built only for system 1. Instead, the operational

characteristics of the other two systems were emulated using MILP models. These

models were run on an hourly basis to ensure a complete representation of the

system behavior. Additionally, a noise was added to the results, so that the

amount of gas exchanged with the storages is not exactly the one calculated by

the MILP algorithm. In this way, the model is closer to real-world applications

since a level of unpredictability similar to practical situations is introduced. For

this reason, only the results regarding system 1 will be shown. To calculate

the renewable generation over the year, for the photovoltaic production data

was taken from PVGIS [103], while for wind power generation the Wind Atlas

website [104] was used. The user energy demands are instead estimated starting

from historical data.

The deterministic forecasts of the disturbances given to the long-term super-

visory module for system 1 over the course of the year are displayed in Figure

5.6. This figure represents the average daily energy needs and renewable produc-

Figure 5.6: Forecast of yearly disturbances for system 1.
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tion. Starting from the deterministic forecast, the scenarios used in the stochastic

approach were generated.

While in the long-term module only the daily average values are needed, for

the short-term module a more detailed forecast is used. The forecasts given to

this module during the two simulated periods are displayed in Figure 5.7. It

is notable that the disturbances in the two seasons change significantly. While

in May the renewable energy is always in surplus with respect to the needs, in

November it is almost always in deficit, and higher thermal needs are present in

this season.

Figure 5.7: Forecast of disturbances given to the controller in the two simulated
periods for system 1.

5.3 Results

The simulations have been run for the two periods of the year, i.e. May and

November, and the results obtained were analyzed.

First, in Figure 5.8 the electricity balance is shown, being the positive values

related to generation (RES and electricity bought) and the negative values re-

lated to consumption (user needs, electricity used by PtG system and electricity

sold). It can be seen how the electricity is managed within the system during the

two simulated periods: in May, since there is always a surplus renewable electric-

ity, the system never buys electricity from the network, and it sells the surplus

electricity generated. In November instead, the electricity needs to be bought
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Figure 5.8: Electricity balance in the two simulated periods.

when it is in deficit, to fulfill the user needs, and it is almost never sold to the

grid. How the electrolyzer is operated is displayed in Figure 5.9, together with

the management of the hydrogen storage. Looking at the management during

the spring period, in May, it can be noticed that, due to the large availability

of renewable energy in this period, the electrolyzer is always switched on, and

that the hydrogen storage is used to balance daily energy fluctuations. Instead,

during November the electrolyzer is switched on only when there is a surplus

electricity. Nevertheless, on the second day, the MPC decides to keep it off and

sell the surplus electricity. As a matter of fact, switching on the electrolyzer also

leads to additional start-up costs related to the time needed for the system to

heat-up the electrolyzer stacks, and being the optimization based on economic

cost minimization, it was not convenient for the system to switch it on during

this day. Indeed, costs of purchasing and selling electricity and gas are variable

during the five simulated days and depending on them, the production of gas can

be more or less convenient using the PtG system. In addition, as shown in Figure

5.10, during November, the system uses the seasonal storage to withdraw natural

gas, being the renewable generation in deficit compared to needs. This helps the

system cover the thermal needs during the day and not need additional hydrogen

generation.

In Figure 5.10, it can also be noticed that while in November the seasonal

storage is only used to withdraw natural gas, the opposite situation happens in

May, when the seasonal storage is only used by the system to inject the surplus

natural gas generated. Even though simulating only five days for each season
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Figure 5.9: Electrolyzer and hydrogen storage management during the two sim-
ulated periods.

Figure 5.10: Amount of natural gas generated and exchanged with the seasonal
storage during the two simulated periods.

could seem not representative of the whole yearly management of the seasonal

storage, it is worth reminding that the long-term module has a yearly prediction

horizon, and it is imposed that the amount of energy stored at the current time-

step must be equal to the amount of energy stored at the end of the prediction

horizon, as expressed in Eq. (5.2). This means that the energy exchanges with

the storage are consistent to what happens during the rest of the year, and it is

not unrealistic that in November a large amount of energy stored in the previous
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months of the year is available. Additionally, the long-term module can adapt

the management based on the availability of natural gas in the storage, since it

receives as input the amount of energy stored in the seasonal storage each day.

How the thermal demand is fulfilled during the two seasons is displayed in

Figure 5.11. It can be noticed that during May, all the thermal needs are sat-

isfied using the renewable gas generated and the heat recovered from the PtG

process only, and therefore a full decarbonization of the heating sector is ob-

tained. Instead, in November part of the needs are fulfilled by using methane

bought from the gas network, particularly the 16 % of the total demand. Only

1 % is fulfilled using the heat pump that recovers the waste heat from the PtG

process, and 6 % by using renewable methane produced by the methanator. It is

noteworthy that 76 % of the needs are covered using the gas withdrawn from the

seasonal storage: also in this season the majority of thermal needs are fulfilled by

using renewable energy, and this result would not be possible without the use of

the seasonal storage. Indeed, the renewable generation was not enough to fulfill

the thermal and electrical loads in this season, and thanks to the use of seasonal

storage it was possible to utilize energy which was stored in periods of higher

renewable production.

Even though Systems 2 and 3 were not simulated in detail, their management

is updated every hour using the results of MILP algorithms, as mentioned in

section 5.2.2, and it is taken into account in the long-term module and for the

calculation of the energy stored in the seasonal storage. The amount of gas ex-

May

94%

6%0%< 1%
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1%6%

76%

16%

Heat recovered

Renewable gas- methanator

Renewable gas - seasonal storage

Gas bought

6%

94%

6% 1%
16%
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Figure 5.11: Pie with thermal demand fulfillment in the two simulated periods.
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changed with the seasonal storage by the three systems during the two simulated

periods is displayed in Figure 5.12. All the three systems use the seasonal storage

to inject natural gas during May, and they withdraw it during November, to use

it to cover the high thermal request in this season.

Figure 5.12: Power exchanges with the seasonal storage during the two simulated
periods.

A complete fulfillment of the long-term constraints set by the long-term su-

pervisory module was achieved across all three systems, confirming the effective

performance of the control architecture. This is illustrated in Figure 5.13 for sys-

tem 1, where the cumulative amount of gas exchanged with the seasonal storage

(injected in May and withdrawn in November) is displayed, together with the

long-term constraints (in gray), to be fulfilled each day.

The energy stored trend in the seasonal storage is shown in Figure 5.14. As

expected, it increases in May, when higher renewable generation is available and

part of it is stored, while it decreases during November, when the gas is used by

the three systems.

Some numerical cumulative results over the five simulated days are presented

in Table 5.2. It is worth highlighting that the operating margin, as expected,

is negative in May, when large amount of renewable electricity is exported, and

positive in November, when the system needs to buy part of the electricity to fulfill

the internal needs. The CO2 emissions, being related to the import of energy from

the networks, are also higher during November. An important result concerns
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Figure 5.13: Fulfillment of long-term constraints by system 1.

Figure 5.14: Energy stored in the seasonal storage during the two simulated
periods.

the amount of renewable energy utilized by the system in the two periods, and

therefore not injected into the electricity grid: in May, the 72% of the RES

production is used, and in November the 95%, almost all of it. In general, the

inclusion of a seasonal storage allows for a higher renewable energy utilization by

the system, even in seasons with high surplus renewable generation. In addition,

the amount of gas exchanged with the seasonal storage is displayed, and the

fulfillment of the long-term constraints, which, as aforementioned, are fulfilled by

100% in both seasons.
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Table 5.2: Values of relevant indicators obtained in the two simulated periods.

Value May November
Operating margin - 13 135 EUR 12 825 EUR
CO2 emissions 2 101 kgCO2 22 586 kgCO2

RES usage 72 % 95 %
Gas to seasonal storage 189 720 kWh –
Gas from seasonal storage – 193 473 kWh
Long-term constraints fulfillment 100 % 100 %

5.4 Discussion

A novel hierarchical control architecture based on two MPC modules with differ-

ent time- and space-scales was developed. The control architecture was developed

for managing a natural gas seasonal storage, integrated in a case study comprising

three different energy systems with integrated PtG solutions for the generation

of synthetic natural gas. The simulations were conducted during two distinct

periods of the year, May and November, providing valuable insights into the per-

formance of the system. The results were discussed for one of the three systems

considered.

The control strategy is particularly effective in managing the seasonal stor-

age. In May, it enables the injection of renewable gas into the storage, taking

advantage of excess renewable energy. In addition, by recovering the waste heat

from the PtG process and using renewable gas generated, a full decarbonization

of the heating sector in the simulated period was obtained. In November, instead,

renewable electricity generation is not sufficient to meet the energy demand of

the system. The control architecture allows the system to buy electricity and gas

from the networks when necessary, optimizing its operating costs. Nevertheless,

the seasonal storage plays a crucial role during this period, with a substantial

portion of the thermal demand being fulfilled by utilizing gas withdrawn from

storage, and only a small part being met using gas bought from the gas network.

The results highlight the effectiveness of the control architecture in optimally

utilizing seasonal storage, effectively managing the fluctuations in renewable en-

ergy generation, and ensuring a reliable supply of renewable energy. The short-

term modules effectively apply the long-term constraints imposed by the super-

visory module and are able to completely fulfill them. Furthermore, the innova-

tive control strategy, which views the entire system holistically, enables strategic

decision-making regarding energy sales and purchases, taking into account mar-
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ket conditions. This integrated approach to energy management is crucial for

achieving sustainability and maximizing the use of renewable resources.

In conclusion, the control architecture showed its adaptability and effective-

ness in managing energy systems with seasonal storage, providing flexibility to

adapt to changing renewable generation and demand patterns. This study ex-

emplifies the importance of multi-temporal and multi-spatial control strategies

in energy systems to enhance sustainability and efficiency, and the research con-

tributes to the development of more sustainable and efficient MES, paving the

way for a cleaner and more resilient energy future.
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Chapter 6

Conclusions

The primary objective of this thesis was to advance the research on future man-

agement strategies and novel solutions to address the increasing complexity of

energy systems, aiming at the complete decarbonization of the energy sector, and

it was achieved through the development of diverse smart management tools.

Concluding remarks

This thesis introduced innovative management and control tools, which were not

only proposed but also tested on various case studies to validate their function-

ality. These tools are summarized below:

� Long-term optimization: a stochastic MILP algorithm was developed and

applied to different case studies which comprised Power-to-Gas (PtG) solu-

tions and hydrogen seasonal storage. The algorithm addresses the inherent

uncertainty associated with future disturbances, such as energy demand,

generation, and price, by employing a two-stage stochastic programming ap-

proach. Through testing it on diverse case studies, both grid-connected and

positive energy districts, the algorithm demonstrated its ability to enhance

optimization robustness compared to deterministic methods. Additionally,

the incorporation of PtG solutions contributed to the energy security of

these systems.

� Short-term control : a control strategy based on Model Predictive Control

(MPC) was developed for the optimal management of Multi-Energy Sys-

tems (MES). The controller uses a MILP algorithm for the optimization

and it was tested on a case study that comprises a PtG system for the
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generation of synthetic natural gas from renewable electricity coupled with

a district heating network through waste heat recovery. The control per-

formances were compared to that obtained with a conventional rule-based

strategy through simulations in Model-in-the-Loop environment. The novel

smart controller has proven its superior performance in comparison to the

conventional strategy, enabling for a full decarbonization of the heating

sector and consistently cost and CO2 emissions reduction.

� Multi-temporal and multi-spatial control architecture: a control architecture

was introduced, which integrates the first two developed tools, creating a

more comprehensive solution for handling the interaction among multiple

MES that are connected via a shared natural gas seasonal storage. The

smart system management approach was successfully implemented, and the

controller efficiently regulated the system operation utilizing the seasonal

storage to balance the seasonal mismatch between production and demand.

The developed tools were tested in this thesis on specific applications, but their

utilization for different case studies is straightforward, as they were developed in

a general way.

Limitations

Despite the tools were successfully verified giving promising results, this work

presents some limitations. First, the MPC developed in this thesis were tested

in a Model-in-the-Loop environment, but they were not applied on real-world

case studies. Indeed, the transition from a simulation setting to actual opera-

tional conditions could lead to complexities which were not taken into account.

In addition, the technologies and case studies examined in this research may

not precisely represent the real-world scenarios in practical applications. Real

applications often involve a multitude of additional factors, regulations, and con-

straints that could not be fully considered in this study. Furthermore, even if

the controller was developed with the aim to define set-points for low-level con-

trollers, some difficulties can emerge in real applications in the communications

between controllers that could lead to reconsidering this setting. Another aspect

is represented by the capital costs associated with these technologies. As a matter

of fact, the thesis primarily focuses on evaluating the operating costs of PtG tech-

nologies and does not comprehensively assess their capital expenditures. While

they are not relevant when operating an MPC controller, when setting up new
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technologies in existing energy systems they become imperative. Therefore, a

broader evaluation would provide a more complete understanding of the financial

implications associated with the implementation of these technologies.

Future research

Future developments of this research will include the implementation and real-

world application of the novel control strategies proposed in the thesis. By testing

these strategies in real-world energy systems, it will be possible to evaluate their

practicality, effectiveness, and adaptability to unpredictable environments. This

empirical validation will offer valuable insights into the performance and robust-

ness of the control systems under actual conditions.

In addition, the development of advanced design tools will be evaluated. In-

deed, when integrating novel technologies in energy systems, it is crucial to en-

hance the sizing and selection of plants, considering not only their operational

efficiency but also the capital expenditures associated with their components.

By creating a comprehensive design tool, the selection of cost-effective, sustain-

able, and optimally-sized energy systems will be possible, contributing to more

informed decision-making in the planning and implementation stages.

Future researches should also explore innovative methods for improving fu-

ture disturbance forecasts, as well as online update of control parameters, taking

into account the degradation of components. These methods should be capable

of providing real-time updates at each control time-step. By incorporating more

accurate and up-to-date disturbance prediction and parameter update, the con-

trollers could respond to external events more effectively, enhancing the resilience

of energy systems.

Finally, researchers should investigate multi-objective optimization approaches

to address the complex and often conflicting goals within energy systems. This en-

tails finding the right balance between efficiency, cost-effectiveness, sustainability,

and reliability. This could help in simultaneously achieving multiple objectives,

ensuring a more holistic approach to energy system management and control.
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Appendix A: library of energy

system components

This appendix reports the characteristics of the in-house libraries of energy system

component models which were used to build the digital-twins of the case studies

for the Model-in-the-Loop applications analyzed in the thesis. The libraries were

developed in the MATLAB®/Simulink® environment and they are composed

by single energy system component models, which if properly connected and sized,

can be used to build the desired case study.

Each model has its own causality, and considers the physical inlet, outlet and

stored flows. The governing equations that describe their behavior include mass

and energy conservation and involve mass flow rate, temperature, composition

and pressure. Two libraries of energy system components were created so far for

modeling Multi-Energy Systems:

� DHN library: it is used for modeling district heating networks and it

is described in detail in [98]. The library is composed of the pumping

station blocks (pumps and expansion vassels), the thermal power unit blocks

(boilers, heat exchangers, CHPs), the heating network blocks (pipelines)

and the thermal energy storage (TES). This library was proved to be a

reliable tool for model different case studies in previous works [98,105].

� Electricity and gas network library: it is used for modeling inte-

grated energy systems in which electricity and gas generation and usage are

present. It is composed by a generation unit block (wind farm), Power-to-

Gas system blocks (electrolyzer, methanation reactor), heat pump block,

gas network blocks (pipelines, compressor, valve) and gas storage block.

These components were developed for the applications described in this

thesis and used for modeling Multi-Energy Systems, revealing to be effi-

cient tools [97].
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In the following, an overview of the main components of the electricity and

gas network library is provided, while for the DHN library the reader can refer

to [98]. The main features of all components are reported in Table 6.1, using the

following characteristics:

� Algebraic/Dynamic: the component is algebraic (Al) if it can be modeled

using algebraic relations, while it is Dynamic (Dy) if its behavior is described

by differential equations and therefore it allows a storage term (i.e. state).

� Inputs, Outputs and States: they are defined based on the chosen causality.

� Main governing equations: they are the equations embedded in the blocks,

and describe the physical behavior of the component.

Wind farm

The wind farm model is an algebraic model that calculates the output electrical

power produced, using as input the undisturbed wind velocity module and direc-

tion u0, the geometry of the wind turbines and their position in the wind farm.

The power generated by each turbine is calculated using the power curve of the

turbine, given the velocity of the wind. The total electrical power generated by

a wind farm with N wind turbines is calculated as

Pel =
N∑
i=1

Cp(uwind,i)Pwind,i =
N∑
i=1

Cp(uwind,i)Ar,iρuwind,i , (A.1)

where Pwind,i is the wind power reaching the i-th turbine of the wind farm, Ar,i is

the area of the i-th turbine rotor, ρ is the air density and Cp(uwind,i) is the power

coefficient with a wind velocity equal to uwind,i, which is the velocity of the wind

reaching the i-th turbine, corrected by taking into consideration the wake effect.

Indeed, in a wind farm with many turbines, the model considers the wake effect

between turbines by applying the Jensen wake model [106]. Using this method,

a correction is applied to the undisturbed wind velocity, to account for the wake

effect, when the turbine is located behind other turbines. For each turbine i, the

corrected wind velocity module uwind,i is calculated starting from the undisturbed

wind velocity u0 as follows

uwindi = u0 − umdef,i = u0 −

√√√√ N∑
j=1

udef,ij , (A.2)
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where the velocity deficit udef,ij caused by the upstream turbine j on the down-

stream turbine i is calculated as

udef,ij = u0(1−
√

1− Ct,j)

(
Dr,i

Dr,i + 2kw,ixij

)2
Aoverlap,ij

Ar,i

, (A.3)

with Dr,i being the downstream turbine rotor diameter and Ct,j the thrust co-

efficient of the upstream turbine. In addition, kw,i determines the size of the

expanded wake behind the wind turbine, xij is the distance between the two tur-

bines in the wind direction and Aoverlap is the overlap area between the expanded

wake area of the upstream turbine and the rotor area of the downstream wind

turbine Ar,i. The direction of the wind do not change because of the wake effect.

Once the corrected wind velocity uwind,i for each turbine of the wind farm is cal-

culated, the model uses the power curve of the turbines to calculate the electricity

generated [107].

PEM electrolyzer

The model of the PEM electrolyzer is an algebraic model that calculates the

amount of hydrogen and the thermal power generated by the electrolyzer, given

the electrical power supplied and the operating mode. It models three operating

mode: on, off (i.e. no consumption, no production, cold start-up needed to

switch on), standby (i.e. no production, consumption of a certain amount of

nominal electrical power, warm start-up needed to switch on). The relation for

the efficiency of the electrolyzer during the operation in production mode was

derived by interpolating operating data taken form the literature [108]. The

relationship obtained is the following

η = ρH2HHVH2f(Pel) , (A.4)

and it is used to calculate the hydrogen flow rate produced with the formula

V̇H2 =
1

ρH2HHVH2

ηPel , (A.5)

where ρH2 is the gas density, HHVH2 its high heating value of hydrogen and Pel

the electric power in input. The thermal power generated is calculated using the

following equation

Pth = (1− η)Pel − Ploss , (A.6)
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where Ploss represents the heat that cannot be recovered and it is calculated as

Ploss = αPnom + (βPel + γPnom). The first term represents the losses due to the

auxiliary systems, while the latter terms constitute the linear model of the power

losses in the conversion from AC to DC.

Methanation reactor

The methanation reactor model is an algebraic model and correlates the input

hydrogen flow to the output methane flow and thermal power generated. As

for the electrolyzer, three operating modes are modeled: on, off and standby.

During the operation in production mode, the output flow is calculated using the

chemical reaction for methane generation starting from water and carbon dioxide

4H2 + CO2 → yCH4 + y2H2O + (4− 4y)H2 + (1− y)CO2 . (A.7)

The yield of reaction y is calculated based on linear interpolation of experimental

data taken from the literature [109], as follows

y = f(GHSV ) , (A.8)

where GHSV (gas hourly space velocity) is the rate between the total volumetric

flow rate entering the reactor and the reactor volume, and evaluates the load of

the reactor:

GHSV =
ṁH2,in + ṁCO2,in

Vreactor

. (A.9)

Gas compressor

The compressor model is an algebraic model that calculates the output flow and

the electrical power consumption, given as inputs the rotational speed, the input

flow and the output desired pressure of the compressor. For the calculation of

the corrected mass flow rate ṁ and of the polytropic efficiency ηp the block

employs the performance maps of turbocompressor (Figures 6.1 and 6.2), using

the corrected rotational speed Nc and the pressure ratio Π as inputs. It is worth

mentioning that the corrected mass flow rate and the polytropic efficiency have

been considered constant in the choking area, since no data was available for that

operating region.
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Figure 6.1: Turbocompressor performance map for mass flow rate.

Figure 6.2: Turbocompressor performance map for polytropic efficiency.

Gas storage

The gas storage model is a dynamic model and it represents a node in which the

input gas flow is mixed with the gas inside the storage. In terms of causality,

incoming and outcoming flows are inputs to the model, and they are used to

calculate the pressure, temperature and composition of the gas contained in the

storage. The energy stored is estimated using the gas HHV and the gases are

described using the perfect gas equation of state.
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The mass balance equation for the gas is the following

dmg

dt
= ṁg,in − ṁg,out , (A.10)

and it allows the calculation of the mass and molar composition of gases in the

volume. The energy balance equation allows the calculation of the gas tempera-

ture and it is as follows

dTg

dt
=

∆Ḣg − cvTg
dmg

dt
−mgTg

∑
i
∂cv
∂wi

dwi

dt

cvmg +mgTg
∂cv
∂T

, (A.11)

with cv being the specific heat of the gas at constant volume, wi the mass fraction

of the i-th gas species and ∆Ḣg the power linked to the enthalpy flows of the gas

phase species and it is calculated as

∆Ḣg = Ḣg,in − Ḣg,out = [(ṁgcpT )in − (ṁgcpT )out] . (A.12)

Finally, the partial pressure for each species is calculated as

pi =
miRT

MiV
. (A.13)

Water condenser

The water condenser model is a dynamic model that calculates the pressure,

temperature, amount of water condensed and composition of the gas exiting the

condenser, using the incoming and outcoming flows. It models a wet mixture that

enters the condenser, is cooled and therefore the steam condenses by accumulating

liquid water at the base of a discharger. When the water reaches a certain level,

the drain opens and the water flows out in a liquid state, while the dry gas mixture

exits the condenser from another outlet.

The mass and molar composition of the gases in the volume are calculated

using the mass balance equation for gases, as follows

dmg

dt
= ṁg,in − ṁg,out − ṁH2O,cond , (A.14)

the volume of the condensed water is calculated using the mass balance equation

for the liquid water
dmh2O

dt
= ṁH2O,cond − ṁH2O,out , (A.15)
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and the temperature of the gases in the condensate discharger is estimated using

the energy balance equation for gases

dTg

dt
=

∆Ḣg − ḢH2O − P − Q̇sc − cvTg
dmg

dt
−mgTg

∑
i
∂cv
∂wi

dwi

dt

cvmg +mgTg
∂cv
∂T

, (A.16)

where wi is the mass fraction of the i-th gas species, P is the power due to the

work related to the volume change

P = p
dVg

dt
, (A.17)

and ∆Ḣg is the power linked to the enthalpy flows of the gas phase species. The

latter is calculated as

∆Ḣg = Ḣg,in−Ḣg,out = ṁg[(cpT )in−(c−pT )out]+ṁcondrv+[(ṁvcpT )in−(ṁvcpT )out] .

(A.18)

Finally, the Antoine’s law is used to determine the water steam flow rate that

condenses, using the saturation pressure value of water ps

log10 ps = A− B

T + C
, (A.19)

where A,B,C are constants, experimentally obtained, and T is the temperature

in degree Celsius. The partial pressure for each species is calculated as

dpi
dt

=
RT

MiV

∑
i

ṁi −
pi
V

dV

dt
+

pi
T

dT

dt
. (A.20)

Gas pipeline

The gas pipeline model is a dynamic model that returns the output mass flow rate

and temperature of the gas, given the inlet pressure, temperature and composi-

tion, and the outlet pressure. The mass flow rate is calculated with the following

equation

ṁ = sign(∆p)

√
|∆p|ρAin

fL
Din

+ Z
, (A.21)

where ∆p is the pressure drop in the pipeline, Ain the cross-section area of the

pipeline, ρ the gas density, f the friction factor, L the pipe length, Din the

inner diameter, Z represents the total concentrated pressure drop. The governing
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equation for the temperature is

dTout

dt
=

1

ρcvV

(
ṁ

[
(cpT )in − (cpT )out

]
−Q̇w

)
, (A.22)

where cp is the gas specific heat at constant pressure, cv the average gas specific

heat at constant volume, V the volume of the pipeline and Q̇w the heat exchanged

through the wall.

Heat pump

The heat pump model is an algebraic model that returns the thermal power

absorbed and supplied by the heat pump, given the temperature of the cold and

hot sources (Tcold and Thot) and the electrical power used Pel. The actual COP is

estimated using the following equation

COP =
COPnom

Cc(1− (1− Cc)

Pel,nom

Pel

, (A.23)

where Cc is a correction factor, which is usually declared by the manufacturer,

COPnom = COPmax

ηII
and ηII is the second principle efficiency and it is calculated

using a lookup table with ηII = f(Tcold, Thot).

Gas pressure reduction valve

The gas pressure reduction valve model is an algebraic model that returns the

mass flow rate through the valve, using as inputs the income and outcome pres-

sure, temperature and composition of the gas, and the opening ratio of the valve.

The mass flow rate is estimated using the expansion factor Y , which can be

calculated as

Y = 1− 1

3

(
X

FkXT

)
, (A.24)

where

X =
∆p

pin
, (A.25)

Fk is the ratio between the k of the gas and the k of air Fk = k/kair and XT is

the value of X when Y reaches its minimum value (Y = 2/3).

Then, if 2
3
≤ Y ≤ 1, namely when the gas is in sub-critical conditions, the
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mass flow rate is calculated as

ṁ = NxcvY
√

Xpinρin , (A.26)

where Nx is a coefficient introduced to match the measurement units used. When

Y = 2
3
, instead, the fluid is in super-critical conditions and, being X = XT , the

mass flow rate equation becomes

ṁ = Nxcv
2

3

√
XTpinρin . (A.27)
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Component Al/Dy Inputs Outputs States

Wind farm Al uwind Pel -

Electrolyzer Al Pel

Op. mode

ṁout, Tout, xout, pout

ṁH2O, Pth, Ploss

-

Methanation reactor Al ṁin, Tin, xin

Op. mode

ṁout, Tout, xout

Pth, Ploss

-

Gas compressor Al n, pin, pout, Tin, xin ṁ, Tout, xout, Pel -

Gas storage Dy ṁin, Tin, xin pstor, Tstor, xstor pstor, Tstor, xstor

Gas pipeline Dy pin, Tin, xin, pout ṁout, Tout, xout Tpipe

Heat pump Al Thot, Tcold, Pel Pthout , Pthin
-

Gas pressure reduction valve Al pin, Tin, xin

pout, Tout, xout

ϕ

ṁout, Tout, xout -

Water condenser Dy ṁin, Tin, xin pnode, Tnode, xnode pnode, Tnode, xnode

Boiler Al ṁf Pth -

Pump Al n, H ṁw -

Expansion vessel Dy ṁin, ṁout pw Vw

Water pipeline Dy ṁw,in, Tw,in, pout ṁw,out, Tw,out Tw,pipe

Heat exchanger Dy ṁw,in, Tw,in, pw,in, Pth pw,out, Tw,out Tw

Table 6.1: System components summary. (Al = Algebraic, Dy = Dynamic, Op. mode = Operating mode)
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