
UNIVERSITÀ DEGLI STUDI DI PARMA
DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

Dottorato di Ricerca in Tecnologie dell’Informazione
XXXVI Ciclo

Gabriele Penzotti

An Edge-to-Cloud Framework for Privacy-aware
Management of Geospatial Data

DISSERTAZIONE PRESENTATA PER IL CONSEGUIMENTO

DEL TITOLO DI DOTTORE DI RICERCA

ACADEMIC YEARS 2020/2021 - 2022/2023

UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXXVI Ciclo

An Edge-to-Cloud Framework for Privacy-aware

Management of Geospatial Data

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Chiar.mo Prof. Stefano Caselli

Dottorando: Gabriele Penzotti

Academic Years 2020/2021 - 2022/2023

To my wife Manuela
To my family

Abstract

In today’s fast-paced technological landscape, characterized by rapid innovation and
transformation across sectors, a compelling demand emerges for sophisticated and
adaptable systems within Smart Environments. These dynamic settings, marked by an
influx of data from diverse sources and intricate distributed systems, offer remarkable
opportunities alongside distinct challenges.

This Thesis responds to the need for a flexible, scalable framework that adeptly
navigates the complexities of modern distributed data aggregation and processing
systems, while upholding the paramount principles of data privacy and security.

At its core, the framework introduces a distributed architecture, housing a service
placement algorithm that seamlessly spans from the Edge to the Cloud, meticulously
crafted in accordance with the tenets of Fog Computing. This architectural approach
indispensably relies on data privacy, significantly influencing applications and prior-
itizing reliable data management.

A second pivotal contribution is the Seamless Data Acquisition Protocol (SEAM-
DAP), a standard-based and modern approach designed to facilitate data collection
within distributed systems. Engineered to be both user-friendly and highly customiz-
able, SEAMDAP streamlines the intricate process of gathering data from a multitude
of sources, reducing friction, and enhancing flexibility.

Lastly, the Thesis ventures deeply into the critical realms of data integrity and se-
curity, acutely acknowledging the inherent importance of georeferenced data and lo-
cation verification. A robust architecture is proposed within the framework’s toolkit,
ensuring that data remains secure during transmission, storage, and processing, and

ii

culminating in the exploration of advanced processing techniques such as Homomor-
phic Encryption and Multi-Party Computation.

Crucially, the direction taken with this framework is firmly anchored in the pur-
suit of standardizing the realm of smart environments while proactively address-
ing identified issues. Several tools presented herein have undergone rigorous testing
in Smart Farming environments, each accompanied by compelling use cases. The
framework holds particular promise in settings characterized by high heterogeneity,
an abundance of georeferenced data, a critical need for interoperability among sys-
tems operated by diverse stakeholders, and a strong commitment to data privacy.

Summary

Introduction 1

1 Towards Smart Environments 3
1.1 Preliminary Definitions . 5

1.1.1 Paradigms . 5

1.2 Data Management in Smart Farming 11

1.2.1 Data Sources . 11

1.2.2 Data Collection . 12

1.2.3 Data Orchestration . 13

1.2.4 Data Exploitation . 14

1.3 Framework: Description and Motivations 16

1.3.1 Framework Composition 17

1.3.2 Research Questions . 20

1.3.3 Main Aspects Covered . 21

2 Edge-to-Cloud Distributed Architecture 23
2.1 Motivation and References . 24

2.1.1 Reference Works . 25

2.2 Architecture Description . 27

2.2.1 Fog Tiers Organizations 30

2.2.2 Fog Protocols . 32

2.3 Service Placement Scenarios . 33

iv Summary

2.3.1 Quantitative Model . 34
2.4 Service Placement Algorithm . 36
2.5 Simulation Analysis . 39
2.6 Smart Farming Applications . 41

3 Scalable Protocol for Sensor Data Acquisition 47
3.1 Data Diffusion in the Edge-to-Cloud Continuum 48

3.1.1 Related Work . 49
3.2 Preliminaries . 50

3.2.1 Definitions . 51
3.2.2 Adopted Standards . 52

3.3 Protocol Description . 56
3.3.1 Phase 1: Data Interface Registration 57
3.3.2 Phase 2: Single-Instance Registration 59
3.3.3 Phase 3: Data acquisition 60
3.3.4 Analysis . 61

3.4 SEAMDAP-based System Deployment 63
3.5 Experimental Evaluation . 69

4 Secure Management of Georeferenced Data 73
4.1 Data Protection and Location-Based Services 74
4.2 Related Works . 76
4.3 Functional Architecture . 77
4.4 Subsystems Interactions . 82

4.4.1 Security Analysis . 86
4.5 Location Verification . 87

4.5.1 Adapting the Algorithm for Homomorphic Encryption Exe-
cution . 88

4.6 Performance Evaluation . 91
4.6.1 Configuration . 91
4.6.2 TPGI Creation and Storage 92
4.6.3 Test of HE-based Location Verification 95

Summary v

4.6.4 Test of MPC-based Location Verification 97
4.7 Considerations . 99
4.8 Use Cases Specification . 100

4.8.1 Sport Race Competition 100
4.8.2 Smart Irrigation and Fertigation 103

Conclusion 107

Bibliography 111

Acknowledgements 121

List of Figures

2.1 Schematic representation of the proposed N-tier fog architecture, lo-
cated between the Cloud layer and the IoT layer. For simplicity, Edge
layer can be transposed as the lowest Fog tier. 29

2.2 Performance of the total requests (in purple) in the system compared
with the requests performed meeting the deadline during the simula-
tion with dynamic node failure strategy (orange). 41

2.3 a. Resource usage for each node. Vertical red lines indicate the tier
boundaries (note that services are not placed into gateways, and there
is only one cloud node that is not loaded at all). b. Average resource
usage per fog tier. 42

2.4 Instances of the satellite remote sensing for decision support (upper
scheme) and weather information aggregation (lower scheme). . . . 43

3.1 SEAMDAP-based system with Sensor Nodes, Gateways, and E2C
Nodes playing the role of clients and/or servers. 53

3.2 Execution of the SEAMDAP data interface registration phase. Two
alternative sequences are shown; in the second one, a TD repository
takes care of storing and making available the TD documents. . . . 58

3.3 Interactions between client and server during the single-instance reg-
istration phase. The message sent by the client can be customized
according to domain-specific needs. 60

viii List of Figures

3.4 Interactions between client and server during data acquisition. This
phase may be repeated sporadically or periodically, until the sens-
ing activity ends. In most cases, the client submits sensor data to the
server, but it is also possible that the sensor data are acquired by the
server from an external E2C node playing the role of broker. 62

3.5 Simplified architecture of the POSITIVE Information Systems. SEAMDAP-
based interactions (highlighted in red) are for sending raw sensor data
to the POSITIVE Server, and for uploading processed sensor data to
the IRRIFRAME service. GIS user interfaces provide farm-related
visual information, including sensor node deployments. 65

4.1 Proposed architecture. 78
4.2 Detailed interactions between subsystems of the proposed architecture. 82
4.3 Sequence Diagram for the LSS type peer-to-peer. 84
4.4 2D Ray casting algorithm. 89
4.5 Polynomial approximation of the step function using truncated series

of Chebyshev polynomial functions. 90
4.6 Emulation software deployment. 91
4.7 Conceptual modeling of the interactions of a TE in a sports com-

petition. Go through its path a TE will encounter different location
systems to establish its position. Depending on the type of use case,
some of them may or may not be present (for example, GNSS may
not be available for indoor situations), and with different visibility
frequencies. 93

4.8 Specialized architecture for sport race tracking use case. 101
4.9 Specialized architecture for precise irrigation or fertigation use case. 105

List of Tables

2.1 Values of the parameters used in the simulations 40

3.1 Main messages characteristics used in the simulations. 70
3.2 Parameters of the two simulation configurations. 71
3.3 Simulation results. Number, total size and average latency of the mes-

sages exchanged in each experiment, grouped by phase. 71

4.1 Execution time of the ray casting algorithm with increasing number
of points and different polynomial degrees for a square polygon, us-
ing Palisade. 96

4.2 Execution time with increasing number of vertices using SCALE-
MAMBA. 98

4.3 Execution time with increasing number of vertices using MP-SPDZ. 98

Introduction

In an era where technological innovation is driving a rapid transformation of produc-
tive sectors, the adoption of complex and dynamic systems, as found in environments
like Smart Farming and Smart Cities, necessitates a highly adaptable and sophisti-
cated approach. These contexts are characterized by a vast amount of information
from a complex variety of heterogeneous data sources, such as sensors, IoT devices,
and advanced communication networks. This wealth of data offers extraordinary op-
portunities to enhance the efficiency, sustainability, and quality of various "smart"
processes, but it also proposes unique challenges that demand innovative solutions.

In this perspective, this Thesis responds to the need for a versatile and intelligent
framework for optimal data processing and information distribution. This framework
must be capable of handling the complexity of modern distributed data aggregation
and processing systems, where each component is interconnected and influences the
performance of the entire system.

One of the most central and overarching features of this framework is its focus on
addressing data privacy and security challenges. With the growing concern for protec-
tion of personal data and the need to comply with increasingly stringent regulations,
secure and reliable data management becomes essential. It is, therefore, crucial to
implement security measures that not only protect sensitive data but also ensure that
the data owner has full control over its storage and processing.

Another important characteristic is that the framework has been designed to be
highly adaptable, capable of evolving with technological changes and integrating new
data sources and emerging technologies. To this end, the tools provided by the frame-

2 Introduction

work offer varying degrees of freedom to users, enabling them to modularly incorpo-
rate additional technologies.

Thesis Organization

This Thesis aims to explore and outline a key approach to address these challenges
by introducing a framework designed to operate in such dynamic contexts. A crucial
aspect of this framework is its modular nature, allowing the flexible adoption of tools
and technologies to tackle the various facets of the proposed scenario.

The dissertation is organized into four chapters as follows.

• Chapter 1 introduces the context and discusses the main concepts of the Thesis,
briefly commenting on the framework tools and the motivations behind the
design choices.

• Chapter 2 presents a distributed architecture that can be used in systems adher-
ing to Fog Computing.

• Chapter 3 describes SEAMDAP, an operational protocol for the integration of
sensory data along the Edge-to-Cloud Continuum.

• Chapter 4 discusses the aspects related to the security of geolocated data in
transmission and processing, through techniques such as Homomorphic En-
cryption and Multi Party Computation.

Chapter 1

Towards Smart Environments

Within increasingly connected and digitalized environments, complex distributed sys-
tems are necessary to address emerging challenges and leverage the opportunities that
characterize modern life.

Currently, the vision is of a not so distant future where distributed devices and
sensors will be widely deployed in urban, rural, and industrial settings. In urban con-
texts, these distributed systems will give rise to what we call Smart Cities. For exam-
ple, they will be responsible for real-time traffic monitoring, adjusting public lighting
based on human presence, optimizing building energy consumption, and managing
security through intelligent video surveillance systems. Simultaneously, in rural ar-
eas, these systems will integrate into Smart Farming, supervising and coordinating
agricultural operations from seeding to harvesting, with the aim of improving crop
yields and reducing the use of resources like water and fertilizers. The deployment of
sensors in industrial environments, under the banner of Smart Industry, will enable
continuous monitoring of production processes, detecting anomalies and allowing for
immediate interventions, facilitating full production planning.

The interconnection of these distributed systems, along with their ability to ex-
change data and information in real-time, will be crucial for addressing complex
challenges such as climate change, population growth, natural resource management,
and urban security. Collecting data from thousands, if not millions, of distributed

4 Chapter 1. Towards Smart Environments

monitoring points will provide a deeper understanding of environmental and social
dynamics, enabling informed decision-making and the ability to anticipate and miti-
gate potential issues.

Simultaneously, the intelligent use of data generated by these distributed systems
will pave the way for new opportunities for innovation in sectors such as artificial
intelligence and data analytics. This evolution will foster new applications in areas
like personalized healthcare, autonomous mobility, water resource management, and
advanced industrial production, significantly expanding the horizon of technological
possibilities.

While there are various manifestations of so-called "smart" environments, some
of the main common features that distinguish them can be outlined. In particular, the
following three overarching themes are highlighted and briefly commented upon, as
they are pervasive in the scientific debate and should be considered in the develop-
ment of the distributed systems operating within them:

• Data Management and Technologies. Smart environments will become in-
creasingly data and knowledge-driven, meaning that decisions will be more
informed and significantly based on data collection and analysis. Themes such
as connectivity and interoperability are key to ensuring that all devices and sys-
tems can efficiently collaborate, creating an interconnected network of isolated
but communicating subsystems. This leads to a greater automation of deci-
sions, eventually resulting in intelligent actuation and, in certain situations,
requiring real-time monitoring to enable control and operation optimization
with minimal latency.

• Sustainability and Optimization. Regarding processes, there is a shared focus
on sustainability and resource optimization. The goal is to maximize system ef-
ficiency, reduce waste, and optimize the use of available resources. Therefore,
sustainability is a common concern, both in environmental terms (for example,
reducing environmental impact and responsibly utilizing natural resources) and
in terms of ethics or morality.

• Participation and Security. Here, the importance of the human aspect in smart

1.1. Preliminary Definitions 5

environments is clearly emphasized, as people should be the primary benefi-
ciaries of sustained technological efforts. One of the main aspects concerns
community engagement and involvement. Actively involving people (such as
citizens, farmers, or employees) in the planning and implementation of solu-
tions is crucial. Fundamental aspects include raising awareness about data shar-
ing, which could benefit the entire community, but primarily the data provider
(similar to the Open Innovation approach). At the same time, data security is
a critical concern because sensitive data is typically managed and must be pro-
tected from threats and breaches. These aspects are interconnected: security is
essential to instill trust in data providers, providing assurances that data is used
responsibly, sometimes complying with stringent privacy constraints.

These topics are characterized by various and complex sub-topics which, some-
times, do not only concern IT aspects.

1.1 Preliminary Definitions

In this section, the necessary elements for a comprehensive and informed understand-
ing of the proposed framework are introduced and briefly discussed, along with the
key concepts that guided its design and implementation.

Crucial concepts, such as Fog Computing and Edge Computing, will be described
in the following of this Section. Then, the concepts of data privacy and georeferenced
data will be commented upon, since these are fundamental elements to ensure that the
proposed framework meets data security and ownership requirements while provid-
ing an optimal and personalized data processing service.

1.1.1 Paradigms

Modern distributed systems are designed with a clear focus on and orientation toward
specific models of distributed computing, data collection, and service delivery. These
paradigms have become established thanks to the ever-increasing adoption by both
the scientific community and device manufacturers and users.

6 Chapter 1. Towards Smart Environments

In particular, the proposed framework adheres to the paradigm of resource distri-
bution that is increasingly gaining prominence, namely the Internet of Things (IoT).
The framework does not provide specific solutions for implementing IoT solutions
but integrates tools capable of operating in environments characterized by a high and
widespread presence of smart objects with sensory, computational, and actuation ca-
pabilities, possibly generating a vast amount of heterogeneous data.

From a computational perspective, the framework offers solutions to address is-
sues encountered in the paradigm of Fog Computing, and by extension, in Cloud and
Edge Computing. The efforts in this regard aim to achieve comprehensive solutions
that provide full control over data and processing in the Edge-to-Cloud Continuum.

Next, we will further discuss the paradigms of distributed systems and how the
proposed framework adopts their concepts.

Internet of Things (IoT)

The Internet of Things (IoT) is a concept that refers to the connection of physical de-
vices to the Internet, from sophisticated industrial sensors and actuators to everyday
objects, enabling them to communicate, exchange data, and interact with each other.
The IoT approach is widely used in various sectors, including Smart Farming, Smart
Cities, and many others, Smart Objects are increasingly pervasive. IoT devices gener-
ate data that can be collected, analyzed, and used to enhance efficiency, automation,
and final decision-making.

This abundance of intelligent nodes brings many advantages, which from a sys-
temic perspective can be summarized in the ability to generate large volumes of data
in a short period, causing the design of distributed systems to consider the fact that
they are dealing with Big Data environments.

While the proliferation of IoT nodes brings about numerous benefits, it is crucial
to acknowledge that these advantages do not come without challenges and requi-
site technical trade-offs. In practice, the capabilities of smart objects across various
implementations tend to be quite modest. These limitations manifest in several key
areas: computational power, persistence, and energy resources are available in more
or less restricted quantities, and external communications may not be available all the

1.1. Preliminary Definitions 7

time.
The framework, in fact, does not address specific issues in the IoT domain, such

as low-power communication and the battery life of devices, as the framework solu-
tions are intended to operate from the upper level of the network. While it does not
offer specific IoT implementation solutions, the framework provides tools to manage
and process IoT data efficiently, and some of them can also be adopted by resource-
constrained devices.

Indeed, the tools of the framework have been designed to build distributed sys-
tems that deal with data sampling performed by IoT devices, accommodating the
handling of large volumes of diverse data generated by smart objects, aiming to im-
prove and optimize certain aspects of data management and processing in the upper
layers.

In the upcoming chapters, terms like "IoT node" are used to refer to any Smart
Object with typically low processing and storage capabilities, but which, in most
cases, performs sensing or actuation activities. Additionally, the term "IoT Layer" is
used to describe the collection of IoT nodes within the system at hand.

Cloud Computing

Cloud Computing refers to a method of delivering computing services over the Inter-
net, allowing users to access computer resources such as servers, storage, databases,
networks, software, and more without the need to own or manage the local physi-
cal infrastructure. This level offers high computing capabilities, extensive scalability
in storage, and sophisticated data analysis tools. It is particularly suitable for inten-
sive analysis tasks that require significant computing power and long-term resources,
without the need to physically own or manage the hardware and software. This ap-
proach offers scalability, flexibility, and ease of management, allowing organizations
to focus on their core activities without worrying about the underlying infrastructure.

In the context of this Thesis, Cloud Computing problems are not addressed. In-
stead, a Cloud Node considered as a high-capacity node at the extreme end of the
network hierarchy, and as such, framework tools could be used by its node. From
a computational perspective, any instance of Cloud Computing can be included and

8 Chapter 1. Towards Smart Environments

considered as a network element without delving significantly into its specificities,
such as particular deployment methods, vertical scalability, and more. It is regarded
as an area of processing and storage that is always available and with virtually unlim-
ited capacity.

However, when considering issues related to data privacy, ownership, efficiency,
and data location, a Cloud Computing node is considered for deployment only when
necessary.

Edge Computing

Edge Computing refers to a data processing model where computation and processing
are moved closer to the data source, rather than being performed on remote servers in
data centers or the Cloud. This approach could move all the data processing towards
sensors and actuators, or only an initial part, involving filtering, aggregation, and
preliminary data analysis to identify the most relevant information. In practice, Edge
Computing is based on the ideas of bringing computing and data processing as close
as possible to the devices or sensors that generate the data, and minimizing latency
on delivery of processed results to the end-users.

This approach is particularly advantageous when a rapid, real-time response is re-
quired, as it reduces the latency compared with sending data to the Cloud for process-
ing. In contexts with high data flows, such as IoT, Edge Computing avoids flooding
the network with useless data: preliminary data analysis, filtering, and data synthesis
could be performed directly on the devices or local nodes before sending only the
relevant information to the Cloud for further processing.

Another important factor is geographical proximity. Performing processing closer
to the source offers several advantages, such as the ability of using short-range com-
munication protocols, limiting the capacity of potential attackers to intercept data,
avoiding increased noise in the network and reducing latency. Moreover, using solu-
tions for the spatial limitation of data can support correct data governance policies,
ensuring that data are physically confined to the place (e.g., a node or a group of
nodes) of interest, and thus also satisfy privacy requirements.

The concept of Edge Computing appears in various nuanced interpretations. In

1.1. Preliminary Definitions 9

this Thesis, a distinction is made between Edge nodes and IoT nodes: Edge nodes
are typically considered as those closest to IoT nodes, distinguished by the fact that
Edge nodes do not perform sensing or actuation. In practical examples, gateways and
sensor data hubs can be classified as Edge nodes.

These nodes occupy the lowest part of the network hierarchy that the framework
works with. For instance, in Chapter 2, it is discussed how certain algorithms are
preferably deployed on Edge nodes, which are considered to have lower latency.

Fog Computing

One of the most advanced manifestations of distributed system models is considered
to be Fog Computing. This is a data processing model that does not limit itself to
considering only the nodes in the Cloud and Edge layer, but also everything lying
between them. In practice, Fog Computing extends the concept of Edge Computing
by moving data processing from the data source (IoT devices, sensors, etc.) to dis-
tributed servers in the "fog" of the network infrastructure. Bridging the gap between
the Cloud and end devices facilitates operations like computation, storage, network-
ing, decision-making, and data management on network nodes situated in close prox-
imity to IoT devices.

This approach provides greater computing and storage capacity compared to edge
devices, while maintaining closer proximity to the data than centralized Cloud data
centers, and ensures that these critical functions occur nearest to data sources and
actuators.

Fog computing, as defined by the OpenFog Consortium [1], represents a hori-
zontal system-level architecture that distributes computing, storage, control, and net-
working functions closer to end-users across a continuum extending from the Cloud
to IoT devices.

Fog computing allows computing functions to be distributed across various do-
mains, fostering a collaborative environment, enabling the realization of "horizontal"
platforms. An horizontal platform is a comprehensive architectural solution, obtain-
able from a synergistic collaboration of multi-purpose services, also belonging to dif-
ferent actors, which are integrated to offer results to different users for different pur-

10 Chapter 1. Towards Smart Environments

poses. In contrast, a "vertical" platform is more specialized, offering strong support
for a single type of application (a silo) but lacks the capacity for inter-platform in-
teractions with other vertically focused platforms. Indeed, horizontal platforms have
more valuable advantages in scenarios like Smart Farming, such as greater scalabil-
ity and reduction of adoption times and costs, but are burdened by a high complexity
and possible lack of specialization. However, Fog Computing is seen as an element
capable of simplifying and making this solution effective.

In addition to promoting a horizontal architecture, Fog Computing offers a flexi-
ble platform that can adapt to the data-driven requirements of operators and users. Its
primary goal is to provide robust support for the IoT, enabling efficient and responsive
operations in the rapidly evolving landscape of connected devices.

An important concept associated with Fog Computing is that of geographically
limited network. In applications where data and nodes are managed in territorial
groups (e.g. local, regional), Fog Computing, as will be discussed in Chapter 2, is
well suited to take into account these characteristics.

While various interpretations exist, in this Thesis "Fog Layer" (and its corre-
sponding "Fog nodes") are assumed to be nodes that occupy any intermediate position
between the Edge and the Cloud.

Edge to Cloud Continuum

The Edge to Cloud Continuum encompasses a perspective on data processing that
emphasizes the continuity and complementarity between Edge Computing and Cloud
Computing. In this context, these two approaches are not seen as exclusive alterna-
tives but rather as extremes of a continuous spectrum of computational and storage
resources.

Therefore, the concept of the Edge to Cloud Continuum underscores the impor-
tance of viewing data processing as a scalable and continuous process that adapts to
the specific needs of an application. Data can be processed in various ways along
this continuum, taking into account considerations such as latency, scalability, ana-
lytical complexity, and other factors. This approach allows for the optimal utilization
of available resources and the optimization of computing solutions’ effectiveness in

1.2. Data Management in Smart Farming 11

scenarios like Smart Farming and Smart Cities, where data processing requirements
can vary significantly.

In this work, Fog computing is considered as the reference paradigm of an Edge
to Cloud Continuum data management, capable of enabling the seamless integration
and synergy between Edge Computing and Cloud Computing.

1.2 Data Management in Smart Farming

In this section a description of the data management challenges, that are encountered
in Smart Farming, is reported. The insight reported below was gained in interactions
and researches, especially within the POSITIVE project, that allowed the ideas ex-
change with many stakeholders who gravitate around modern agriculture.

POSITIVE [2] [3] has been a project of the Emilia-Romagna region for the cre-
ation of a consultancy and implementation service for irrigation and fertigation by
efficiently processing data from satellites and sensors in the field. Among the main
results, POSITIVE has developed open operational protocols for the interconnection
of components in the irrigation ecosystem, and designed a farm information system
that supports all precision irrigation activities in an integrated manner. Some of these
protocols will be detailed in Section 3.4.

The monitoring and digitalisation of agricultural processes is not a trivial chal-
lenge. Farming presents intrinsic difficulties that hinder IT solutions, due to the type
of activities carried out and due to legacies and common practices that are not bene-
ficial for a smart approach.

1.2.1 Data Sources

To build an information system capable of bringing a solid advantage to the farm, op-
timizing farming practices and achieving sustainable yields, it is essential to identify
the sources of information. In Smart Farming there is an abundance of different data
sources [4], including sensors, satellite imagery, weather stations, drones, and more.
These sources provide data about different characteristics of the environment, as for
example soil conditions, weather patterns, and crop health.

12 Chapter 1. Towards Smart Environments

These characteristics can be obtained by external organizations or farms, such as
weather stations openly available to the public. In that case, it is necessary to relate
to it, otherwise it is necessary to start a "sensorisation" process. Smart Farming is
marked by an increasingly broad presence of commercial sensors and actuators [4],
and thanks to the availability and affordability of IoT devices, the number of sensors
and actuators deployed in agriculture is expected to grow significantly [5].

However, this leads to modern scenarios where agricultural applications require
data from diverse sources, often provided by different manufacturers. For instance,
a farmer may use soil moisture data from one manufacturer’s sensors, weather data
from another source, and crop health data from a completely different vendor. Inte-
grating and making sense of data from these distinct sources is a significant challenge
but is essential to create comprehensive insights.

This variety of information paths, has effects on various data management ac-
tivities, starting from the simplest raw data acquisition, up to the most complex and
intelligent information processing, and highlight the need for tools and structures
capable of enabling data fusion from multiple sources.

1.2.2 Data Collection

One of the most relevant and crucial, but at the same time most limiting aspects
regarding the circulation of information, concerns standardization of data dissemina-
tion. In fact, if at low IT levels there are protocols that have a greater adoption [6],
going up to the application level there is a wider range of choices.

Confronting with the array of commercially available sensors, it is evident that
they are highly heterogeneous. From an IT perspective, this variety is related to the
technical characteristics of the product (e.g., environmental sampling characteristics,
area of interest for data acquisition, digital or analog interfaces) and in how data is
collected and communicated (e.g., data accuracy, format, collection frequency, vol-
ume), and sometimes in the presence or absence of open access modes to the product.
Sometimes these characteristics are inherently tied to the product’s construction, in-
trinsic to the developed system, while at other times, they are choices made by the
manufacturer.

1.2. Data Management in Smart Farming 13

The deployment sensor networks also often exhibits a diverse approach [7]. Con-
fronting with farmers, often ad hoc solutions are in place: it is possible to find nodes
already equipped with integrated sensors capable of autonomously transmitting data
externally, or sensors connected (maybe in non standard ways) to nodes with lim-
ited data storage and transmission capabilities. These nodes can implement different
communication protocols and interfaces with varying data transmission intervals.

Many attempts have been made to establish ordered taxonomies and ontologies
to standardize sensor data collection [8], but these have been often limited to cer-
tain network levels or specific use cases. In summary, what was lacking during our
researches was a modern data collection approach, oriented towards the emerging
architectures in distributed systems.

1.2.3 Data Orchestration

In Smart Farming it is necessary to design the system which maintains and processes
data, in order to obtain an advantage from them. The heterogeneity of information
to be orchestrated, the lack of systemic standardization and the dynamism of the
environment are some of the factors that bring non-trivial organizational challenges
in the design of the system.

To deal with all the above characteristics of Smart Farming scenarios, common
approaches for building systems are to develop ad hoc systems, often designing a
data management solution different from another. However, this approach is very
limited in terms of distributed processing, often relying on sensing at the IoT level and
then uploading and processing data in public Cloud, typically without an architectural
organization optimized for the provided services [9, 10, 11].

A classic IoT-cloud system obviously poses challenges in terms of scalability and
performance, instead highlighting the potential solutions based on modern paradigms
such as Edge and Fog Commuting [12] [13]. A distributed system based on these
paradigms brings many advantages and allows the creation of solutions that better
respond to the problems of Smart Farming.

Indeed, one of the factors that differentiates Smart Farming from other environ-
ments is the strong presence of interrelated phenomena. For example, changes in

14 Chapter 1. Towards Smart Environments

weather conditions can affect water sources, which, in turn, impact crop irrigation
needs, and furthermore, tracking pollution levels and pest infestations may require
information on weather patterns and soil conditions. An integrated approach to col-
lecting and analyzing data from these interrelated phenomena can lead to more effec-
tive decision-making, but brings new challenges, for example the ability to interact
with different services that travel at different speeds and affect different application
domains.

This highlight the need for architectures enabling interoperability and scalability,
allowing data sharing with other actors for collaborative solutions.

1.2.4 Data Exploitation

In the contemporary landscape of agriculture, application development operates within
a unique and complex environment characterized by a confluence of distinctive at-
tributes. This scenario offers a distinct set of challenges and opportunities, giving
rise to a novel paradigm in application development.

First and foremost, applications in this context necessitate copious volumes of
data, effectively positioning themselves within the realm of Big Data. A tendency of
aggregating data from various sources into a central repository, such as a data lake,
could be observed [14]. This data collector can store information from multiple farms,
regions, and sources, allowing for comprehensive analysis. It serves as a foundation
for advanced analytics and long-term trend analysis, enabling the identification of
patterns and the development of predictive models.

The vast array of sensors, geographical sources, and dynamic inputs necessitates
systems capable of processing and analyzing data at large scales. Indeed, a relevant
approach by consortia, associations, administrations or other entities is to create and
make available (free of charge or not) expert systems [3] [15] in order to provide
agricultural insights and recommendations (e.g., Decision Support System). These
systems rely on large datasets, ingested and processed from various farms and re-
gions, and complex algorithms to generate valuable insights and offer customized
guidance. For instance, they can suggest optimal planting times, irrigation schedules,
and pest control strategies.

1.2. Data Management in Smart Farming 15

Concerning the user-side usability of applications, direct consultation tools are
essential for farmers and other agricultural stakeholders. These tools include dash-
boards and applications that provide near real-time information. Farmers can use
them to monitor crop conditions, track weather forecasts, and make immediate deci-
sions regarding irrigation, pest control, and more. Data at this level should be highly
responsive and available in a user-friendly format. Furthermore, applications may be
capable of automating some processes, although in this case the presence of intelli-
gent actuators capable of remote programming and/or activation is required [3].

In literature, there is a tendency towards the creation of farming applications with
distributed approach [16, 17]. Unlike centralized systems, which are generally pre-
ferred for vertical applications, distributed systems can decentralize data persistence
and processing. Moreover, data can be managed near to the edge, closer to the data
source, suitable for real-time applications. However, nodes will come in different
forms, from high-capacity servers to resource-constrained, low-power edge devices.
The data management system must efficiently utilize these varied resources based on
the context and needs of each application.

Collaborative services could be able to handle the dynamic and heterogeneous
scenarios that Smart Farming is going to, with continuous additions of new actors
(both public and private), sensor types, and applications. New services could be de-
ployed and made available more easily compared to other environments: in fact, many
of the phenomena affecting agriculture can be openly sampled or information could
be used by everyone, for example meteorological data or satellite observations. These
new entrants may bring their proprietary data formats and communication protocols,
increasing the heterogeneity of data sources, unless a structured approach to the data
acquisition problem is adopted.

Distributed system orchestration could lead to integrated platforms [18], ambi-
tious tools for which some attempts can be found, although often vertical and created
on non-open protocols. These platforms incorporate a wide range of functionalities,
from monitoring and analysis to automation and decision support. They offer a holis-
tic view of the farming operation and often feature intelligence capabilities. Indeed,
artificial intelligence plays a critical role at various levels of data management in agri-

16 Chapter 1. Towards Smart Environments

culture [19]. Machine learning algorithms can analyze vast datasets to identify trends
and make predictions. For instance, AI can predict crop yields, disease outbreaks,
and optimal harvesting times. AI-powered systems can continuously learn from new
data, improving their accuracy over time.

Crucially, these applications must contend with the multifaceted nature of data. In
an agricultural setting, data streams flow from diverse origins (e.g, sensors, satellite
imagery, weather stations) that differ not only in their nature but also in their temporal
and spatial dimensions.

Indeed, geographical data, forms the foundation upon which these applications
operate. The spatial dimension is integral to agriculture, as it influences everything
from soil composition to weather patterns. Applications must adeptly handle geodata,
incorporating precise geolocation information to tailor recommendations and actions
based on specific field conditions.

Privacy and security emerge as paramount considerations in this landscape [20].
The wealth of personal and sensitive data, from proprietary farming practices to
location-specific details, necessitates robust security measures. Users entrust applica-
tions with their data, and it is incumbent upon developers to ensure the highest levels
of data protection. Simultaneously, maintaining privacy is crucial: data anonymiza-
tion and controlled access are key components of responsible application develop-
ment.

Both the topic of geographic data and that of data privacy and security are very
relevant, especially when combined together (see Chapter 4). Various efforts integrate
both concepts, but what is missing is a fundamental and harmonious integration with
development tools, which on the contrary in this framework is seen as a founding
element.

1.3 Framework: Description and Motivations

The developed framework is a collection of tools and operational practices designed
for the creation of distributed systems with a focus on Edge-to-Cloud data manage-
ment. These tools are particularly effective in dynamic environments characterized by

1.3. Framework: Description and Motivations 17

the presence of Geospatial Big Data and a strong emphasis on privacy considerations.

The framework was developed incrementally, with elements added during the
PhD journey, to address various challenges encountered.

In this section, some general features of the framework are commented. Subse-
quently, a brief summary of its constituent elements is provided.

1.3.1 Framework Composition

The framework is designed as a set of tools and practices to enable efficient and
secure processing of georeferenced data in dynamic smart scenarios. The designed
tools can be used individually or integrated together. The key elements are described
below.

E2C Distributed Architecture

In literature, particularly in Smart Farming, approaches building systems that are
often ad hoc, with distributed processing primarily limited to data upload and pro-
cessing in the Cloud and few Edge processing approaches, as will be discussed in
Chapter 2.

The first contribution of the proposed framework is about architectural aspects,
identifying and addressing the needs emerging from the operational environment. In
this regard, a distributed architecture that extends along the Edge-to-Cloud contin-
uum is introduced in Chapter 2. The primary design focus has been to ensure reli-
able and secure data management, as well as smooth data acquisition and processing
throughout their journey from the source to higher levels of analysis. The architecture
defines a well-structured hierarchy adhering to the Fog Computing paradigm [1], en-
abling efficient management of computational and storage resources and optimized
data processing distribution based on specific requirements at each level. Great atten-
tion has been paid make the architecture applicable in various contexts.

18 Chapter 1. Towards Smart Environments

Seamless Data Acquisition Protocol

Beyond architecture, another significant challenge emerged during sensor data acqui-
sition. Many attempts were made to establish ordered taxonomies and ontologies to
standardize sensor data collection, but these were often limited to certain network lev-
els or specific use cases, as will be described in Chapter 3. A data collection method,
oriented towards the emerging architectures in distributed systems, was lacking.

Therefore, the second element of the proposed framework consist in the devel-
opment of an application protocol for seamless data acquisition, offering a standard
seamless approach at every level from Edge to Cloud. This protocol establishes for-
mats and operational phases, allowing room for customization for specific use cases.

A major design goal has been to be enough generic to be independently adopted
by sensor manufacturers or installers, promoting an active community participation
perspective, but with several possibilities for extension and customization, in order to
adapt to specific contexts. The primary innovation lies in its design for modern dis-
tributed systems, so that the protocol can be adopted with minimal effort and without
substantial modifications in existing systems. The protocol’s features are described
in Chapter 3.

Secure Data Processing and Exchange in Untrusted Environments

Particular attention was given to issues related to data privacy and the security of
processing and communications. An increasing sensitivity towards personal data can
be observed among users. This sensitivity can be broken down into two aspects.

The first aspect concerns data security in the strict sense, which includes pro-
tection in terms of integrity and confidentiality during both data transmission and
storage. This is achieved through the use of appropriate encryption systems, which
are almost always applicable to devices from the Edge upward. While these classical
techniques are not directly addressed within the framework, they are often mentioned,
and none of this work proposed solutions precludes their adoption. The protection
of processing in untrusted environments (where full trust cannot be placed both in
servers or participants involved in the process), especially concerning data containing

1.3. Framework: Description and Motivations 19

geolocation, is discussed in Chapter 4. In particular, the possibilities of integrating so-
lutions based on techniques such as Homomorphic Encryption (HE) and Multi-Party
Computation (MPC) are discussed.

The second aspect is more related to the concepts of privacy and data ownership.
Data privacy involves the protection of personal and sensitive information from unau-
thorized access and improper use. This concept is even more significant, especially
for applications with high population participation. The entity responsible for ag-
gregating such data could potentially access a large amount of personal information
without the users awareness. This issue can be resolved through data collection and
aggregation procedures that allow for a high level of user information anonymization,
where possible. Data ownership refers to the rights, responsibilities, and value of the
data itself. As data owners, individuals should have the ability to consciously and
conscientiously share their data, with the capacity to decide where and how their data
is stored and processed. These latter two themes are addressed within the framework
as cross-cutting characteristics of the various tools.

Another relevant theme is georeferenced data, which includes spatial location in-
formation allowing data to be associated with specific points on the Earth’s surface.
This subject is becoming increasingly important in modern systems, which use lo-
cation data for various purposes, primarily to provide effective and precise results to
end-users.

Location-based services (LBS) and the concept of Proof of Location, which refers
to the ability to securely and accurately verify the location of an object or device at
a given moment, are often discussed in this context. This is particularly significant
when working with spatial information, as errors or uncertainties in determining lo-
cation can negatively impact the accuracy of analyses and decisions.

This theme is also highly relevant in the paradigms of modern distributed sys-
tems, such as Fog Computing, where, for example, territorial clustering of nodes
with regional result aggregation on dedicated nodes is designed. All these aspects
are discussed broadly across various tools and a particular approach is discussed in
Chapter 4.

20 Chapter 1. Towards Smart Environments

1.3.2 Research Questions

The research documented in this Thesis was conducted to address several issues dis-
cussed in general terms in the sections above. The research themes expressed are
very complex and broad to satisfy entirely, but some specific aspects were more com-
pelling and guided this Thesis work. Some of them arose after discussions with farm-
ing stakeholders, but the resulting solution was designed with a broad scope for all
smart environments.

The most relevant key research questions that stood out are listed below.

RQ1 Can a stakeholder fully trust a distributed, E2C smart system? In particular,
are data safely managed under the owner’s control, sharing only the desired
information with the desired recipients?

This requirement is often expressed directly by stakeholders (e.g.,farmers),
who must rely on service providers that manage farm data. These data can
have a high value, therefore strong and structural guarantees must be given to
the owners.

RQ2 What is the best strategy to develop a data reliable management system for
Smart Farming?

This question is more relevant for application and system developers, facing
the necessities of smart farming. This question concerns the development of
the entire system (rather then the individual services), the interactions between
the nodes, and the methods for carrying out complex tasks.

RQ3 Are E2C system beneficial and able to effectively satisfy the requirements of
Smart Farming?

Specifically, the response should be a reference way to create, position and ef-
fectively connect the various components, respecting domain constraints. The
difficulty of this challenge is aggravated by the lack of tools applicable in
generic situations and capable of managing complex data flows. The frame-
work itself is intended to be a response to some aspects of the design process
of a system.

1.3. Framework: Description and Motivations 21

RQ4 How can existing and new systems work in environments with high sensor data
heterogeneity?

Referring mainly at the sensors panorama (broader and more varied than the
actuators one), a problem emerges regarding heterogeneity and the so-called
technological silos. Often, those who pay the price are stakeholders with less
technical skills (e.g., farmers), since they have to deal with isolated and non
communicating environments.

RQ5 In a collaborative scenario, how to obtain and disseminate data, respecting
data privacy and data ownership?

Modern applications demand a significant amount of data to work, and those
data need to flow efficiently, respecting every actor’s needs. Especially in Smart
Farming, events can be correlated between farms (e.g., weather) and sharing
data in a collaborative way can bring advantages to everyone.

1.3.3 Main Aspects Covered

As previously commented, the framework operates in a context characterized by a
wide variety of aspects. Some of these aspects could be easily found in a different
smart environments.

However, the framework tools focus only on a subset of these aspects, which are
most relevant in Smart Farming as well as other context. The main covered aspects
are:

• Massive Data Presence and Non-Uniform Aggregation. At the heart of this
scenario is the pervasive presence of sensor data generated by a variety of
sources. These data require intelligent and non-uniform aggregation across dif-
ferent nodes of the system, considering the heterogeneous nature of available
resources.

• Scalable Multilevel Processing. Data processing can occur at various levels of
resources, requiring efficient planning and optimal management of information

22 Chapter 1. Towards Smart Environments

flows between system nodes so that each node can act as a provider and/or con-
sumer of data or services. The criteria influencing the placement of processing
services include the presence of intelligent nodes capable of consuming both
high-level information and low-latency data.

• Data Privacy and Ownership. The presence of multiple data owners with
varying degrees of attention on their personal information, emphasizes the im-
portance of ensuring data privacy and integrity, as well as enabling selective
and secure information sharing.

• Georeferenced Data and LBS. The use of georeferenced data is essential for
working in extensive geographical spaces with high positioning accuracy. The
integration of LBS adds an additional layer of complexity and opportunities to
enrich information but also brings additional challenges related to data privacy
and security.

Chapter 2

Edge-to-Cloud Distributed
Architecture

In this chapter, the reference architecture is presented and discussed. It is derived from
the research paper "An N-Tier Fog Architecture for Smart Farming" [21] authored by
Penzotti G., Caselli S. and Amoretti M.. The paper makes two main contributions:
an N-tier fog architecture and a service placement algorithm implementation and
simulation, that considers data privacy constraints.

This distributed architecture was designed considering the characteristics and
needs of Smart Farming systems. The examples and considerations that follow will
therefore be related to systems in the Smart Farming field, as well as the compari-
son that was made with the literature works during the first phases of the research.
However, it is important to note that the design was carried out by abstracting and
generalizing the problems in such a way as to make the architecture suitable for use
in other smart environments as well, therefore to bring advantages and create effec-
tive systems in situations with needs similar to those described in this chapter.

This tool was designed as a response mainly to RQ1, allowing the design of
a system that by design offers various guarantees to data owners. It also partially
answers RQ2, promoting the use of a multi-level paradigm rather than a Cloud-IoT
dualism.

24 Chapter 2. Edge-to-Cloud Distributed Architecture

The subsequent sections of this chapter are structured as follows. Section 2.1 of-
fers an overview of related work on Fog Computing in the context of Smart Farming.
Section 2.2 provides an in-depth illustration of the proposed architecture. Section 2.3
delves into the service placement scenarios, while Section 2.4 elucidates the proposed
service placement strategy. Section 2.5 presents the findings from the simulation anal-
ysis.

2.1 Motivation and References

The advent of the digital agricultural revolution [22] is poised to revolutionize every
facet of farming, ushering in more productivity, efficiency, sustainability, inclusivity,
and resilience in agricultural systems. Achieving this integration of digitalization in
agriculture hinges upon the maturation and intricacy of technologies encompassing
precision agriculture, remote sensing, Big Data, analytics, cloud computing, cyber-
security, mobile devices, and intelligent systems [23].

While various solutions have emerged in the realm of Smart Farming, they remain
in an early stage, offering limited intelligence. Many of these solutions are bound by
automation constraints, with sensors and actuators transmitting data to private gate-
ways isolated from the Internet [22]. Such an approach restricts the scope and scale
of available data processing services. In some cases, data are routed to and processed
in public clouds [9, 10, 11]. However, this practice of sending all data to the cloud
proves costly and resource-intensive, especially in terms of bandwidth requirements
[24]. Furthermore, the physical and virtual distances between sensors/actuators and
the cloud substantially impact latency, leading to the degradation of service quality.

Yet another major challenge associated with the all-in-cloud approach pertains to
data privacy. The lack of legal and regulatory frameworks governing the collection,
sharing, and use of agricultural data [25] adds to the array of challenges faced by
farmers contemplating the adoption of Internet-based Smart Farming technologies.

Hence, rather than transferring substantial volumes of agricultural data to the
cloud, a more practical approach is to embrace Fog Computing [16, 17]. This ap-
proach entails moving computation from the cloud closer to the edge and, poten-

2.1. Motivation and References 25

tially, directly to IoT devices. The constituent components of this model, encompass-
ing computation, networking, storage, and acceleration, are denoted as "fog nodes,"
situated between the cloud layer and the IoT layer [1].

Intermediate Fog nodes enable a seamless integration between IoT/Edge and
Cloud, presenting fundamental characteristics, such as: greater proximity of comput-
ing and storage capacities, reducing latency, network traffic, bandwidth waste, and
ensuring that time-sensitive decisions can be made closer to the edge; increased load
distribution between collaborative nodes, not centralizing everything in a few cloud
nodes and allowing rapid offloading to nearby nodes; capacity to implementing more
secure data governance policies, respecting data privacy; increased reliability of net-
works, reducing the points of failure.

Another aspect that emerged as very relevant concerns the management of users’
data. Based on interactions with stakeholders [26], increasingly sensitivity and at-
tention protection and controlled dissemination of personal data is emerging among
users in Smart Farming domain. This has emerged in two main trends. The first con-
cerns the will to not disclose sensitive personal data, often choosing not to provide
information externally, unless in anonymous and certified way. The second aspect
concerns a growing awareness of the value of data, economic and not, and therefore
a desire not to make them available unless in expectation of a return (such as, for
example, a better service) and a certification of a clear data management plan.

The data privacy topic is currently very relevant [20], but not broadly investigated
in Smart Farming architectures literature. In order to create privacy–aware systems,
the architecture proposed in this chapter includes among its design principles the
concept of "data privacy", i.e., the protection of a user’s sensitive data from access by
third parties.

2.1.1 Reference Works

O’Grady et al. [12] provide a comprehensive survey of the current state of research
employing the edge computing model in agriculture. This study highlights the poten-
tial of edge computing in various agricultural domains, but it outlines that much of
the research remains in the prototype stage. While the potential benefits are evident,

26 Chapter 2. Edge-to-Cloud Distributed Architecture

there are several systemic challenges that need to be addressed to translate these con-
cepts into meaningful impacts at the farm level. Two fundamental issues that continue
to impede progress are interoperability and scalability, factors that have inspired this
exploration of N-tier fog architectures.

In our perspective, the effectiveness of an architecture hinges on the applicability
of service placement scenarios to real-world use cases. For instance, insights from
solutions like the one presented by Angelopoulos et al. [27] have been drawn, which
addresses smart strawberry irrigation in greenhouses by keeping relevant data at the
network’s edge. The authors concluded that their smart irrigation approach signifi-
cantly outperforms traditional methods, both in terms of soil moisture control and
water consumption.

Evaluating the efficiency of a fog-based solution, Ribeiro et al. [13] proposed an
approach for collecting and storing data in smart agriculture environments, along with
two distinct methods for data filtering within the fog layer to reduce the volume of
data transmitted from the fog to the cloud. In a similar vein, Gia et al. [28] integrated
artificial intelligence at the local network layer (Edge AI) to introduce a system archi-
tecture and implementation expanding the capabilities of smart agriculture and farm-
ing applications through edge and Fog Computing, coupled with LPWAN technology
for large area coverage. While focusing on a different application context, Taneja et
al. [29] introduced SmartHerd, a Fog Computing-assisted end-to-end IoT platform
for animal behavior analysis and health monitoring in dairy farming scenarios. The
platform adheres to a microservices-oriented design to support distributed computing
and addresses the significant challenge of constrained Internet connectivity in remote
farm locations. With fog-based computational assistance in the SmartHerd setup, the
authors observed an 84% reduction in the volume of data transmitted to the cloud
compared to conventional cloud-based approaches.

In a recent endeavor, Malik et al. [30] introduced a distributed toolkit facilitating
users to simulate custom farming scenarios, encompassing sensor placement iden-
tification, data gathering, mobility models for mobile nodes, energy models for on-
ground sensors and airborne vehicles, and backend computing support using the Fog
Computing paradigm. The proposed framework also offers benchmarking capabili-

2.2. Architecture Description 27

ties related to transmission delay, packet delivery ratio, energy consumption, and sys-
tem resource utilization. The simulation toolkit builds upon FogNetSim++, although
that platform is no longer actively maintained. In this research, a more versatile and
efficient tool for simulating Fog Computing systems was required, leading us to adopt
YAFS [31], whose support for dynamic network configurations offers intriguing op-
portunities for studying realistic service placement scenarios.

2.2 Architecture Description

In this section, the proposal for an N-tier fog architecture enabling large scale Smart
Farming with performance and data privacy guarantees is presented. The architecture
leverages the general concepts and philosophy of the IEEE 1934-2018 standard [1]
proposed by the OpenFog consortium (merged in 2019 with the Industrial Internet
Consortium).

Smart farming is characterized by many different and highly heterogeneous ac-
tivities, considering both direct and support ones, as part of the global production
chain. Driven by the need to reach ever higher standards in terms of quality, quantity
and low environmental impact of the final product, but also by the requirement to
deal with constantly changing environmental situations, these activities are increas-
ingly computerized and automated, in the context of general greater accessibility to
the most advanced technologies.

The main Smart Farming activities that are characterized by a growing adoption
of IT technologies are listed below.

• Monitoring of production sites (e.g., terrain), irrigation water deposits and the
crops themselves.

• Monitoring and forecasting of weather conditions (to predict high-impact events,
such as drought and frost).

• Planning, automation and refinement of fertigation and irrigation activities.

28 Chapter 2. Edge-to-Cloud Distributed Architecture

• Reliable and safe traceability of products and process for compliance with mar-
ket and law standards.

• Campaign diary management.

Current distributed solutions mostly rely on IoT nodes for sensing/actuation, and
cloud services for storing and processing data. In the following, a summary of the
main features of these two layers is reported, since the proposed fog architecture lies
between them and interacts with them.

At the IoT layer, an huge amount of data is generated from the observation of the
variables of interest, such as humidity, temperature, wind intensity and size of crops.
Furthermore, at this layer it is possible to intervene and modify the surrounding en-
vironment through the actuators. IoT nodes generally have a limited and specialized
processing capacity, which has an impact also on security (complex cryptographic
functions cannot be executed). Some of them are provided with basic fog functions
(i.e., they expose services to the upper layers, usually corresponding to data pre-
processing functions). Last but not least, the IoT layer is widely characterized by
different connectivity solutions, including wired and wireless protocols.

Regarding the cloud layer, a partial list of Smart Farming services, without dis-
tinction between public or private ones, is given below.

• Decision Support Systems for the assistance of the farmer in all phases of the
crops life.

• Weather monitoring or forecasting services.

• Sensor data collection and consultation services.

• Services for control and monitoring of actuators for soil processing or irriga-
tion.

• Remote sensing data (e.g., satellites) consultation services.

Clearly, the effectiveness of these services depends on the quality and amount of
data they are fed with. Some of them are data-intensive, others are compute-intensive.

2.2. Architecture Description 29

The main advantage of having them in cloud is resource elasticity. On the other hand,
deadline satisfaction and data privacy cannot be fully guaranteed.1

To cope with these issues, an assumption is that the services that could be placed
in cloud, can be horizontally scaled by creating stateless instances in the fog layer.
The latter has N tiers, with different features.

Figure 2.1: Schematic representation of the proposed N-tier fog architecture, located
between the Cloud layer and the IoT layer. For simplicity, Edge layer can be trans-
posed as the lowest Fog tier.

It is important to note that, in order to simplify the discussion of the topics, the
concept and features of Edge Computing are not relevant. In fact, from the point of
view of the service placement algorithm (Section 2.4), the characteristics of Edge
nodes (such as accessibility and the low if not total absence of services externally
offered) can be considered specific cases of Fog nodes, by appropriately setting the

1In this work, the cloud is assumed to be untrusted. In the literature, this assumption is quite common
[32, 33, 34, 35].

30 Chapter 2. Edge-to-Cloud Distributed Architecture

parameters of configuration of the quantitative model (Section 2.3.1). Therefore, the
Edge Layer can be transposed as the lowest Fog tiers.

2.2.1 Fog Tiers Organizations

A schematic representation of the N-tier fog architecture is depicted in Figure 2.1.
Notably, the cost associated with implementing this infrastructure can be distributed
between private and public entities.

The configuration of fog tiers and the allocation of fog nodes within each tier are
contingent upon the particular application context [1]. A pivotal factor is the quan-
tity of sensors and actuators within the IoT domain: a greater density of these com-
ponents necessitates a higher number of fog nodes for effective management. An
equally critical consideration is geographical dispersion: fog nodes situated in lower
tiers must maintain close proximity to sensors to ensure minimal latency, enabling
enhanced control of user data. Furthermore, the spectrum of service typology needs
careful attention. As previously mentioned, aside from data aggregation, storage, and
remote control of actuators, the array of services in the Smart Farming domain can
be diverse and computationally intensive. Consequently, a commensurate number of
nodes within the uppermost fog tiers becomes imperative.

In this conceptualization, the composition of Smart Farming-oriented fog tiers is
primarily delineated by four key dimensions: data/information, services, resources,
and geographic coverage. These discerning elements are detailed below.

Processed data and produced information. Processed data and produced infor-
mation are characterized by granularity and sensitivity. Fine grain, highly sensitive
data are treated at the lower tiers. Coarse grain, less sensitive data are handled at
the higher tiers. More specifically, at the lower tiers there are countless activities of
raw data generation and processing, while at the higher levels there is a considerable
production of more sophisticated information. In order to be able to realize Smart
Farming functions such as precision irrigation, IoT data must be associated with con-
text information such as geolocation, type of crop, owner, etc. At the higher tiers, this
information must be either not presented at all or presented to the minimum neces-
sary degree (obfuscated, aggregated), depending on the type of high-level activities

2.2. Architecture Description 31

or political/investment decisions that such information should support.

Provided services. Across the fog tiers, nodes engage in communication and
data exchange to facilitate the provision and requests of application services. These
services might encompass the dissemination of comprehensive information to under-
lying layers or actively participate in extensive data processing workflows.

Conventionally, the selection and sophistication of services increase towards the
uppermost tiers. Within the lower tiers, a restricted array of service types is available,
primarily concerning sensor data collection and actuator control.

Progressing up the hierarchical network layers, each node assumes an augmented
awareness of the overarching network state. This heightened awareness arises from
the node’s ownership of a "wider" and larger amount of data, and increased pro-
cessing capabilities. Consequently, this progression culminates in the emergence of
"intelligent" services at the highest tiers.

Resource capacity. Fog tiers also exhibit distinct attributes based on the resource
availability within their nodes, encompassing CPU, memory, and storage capacities.
The processing potential afforded to a fog node augments as one ascends the tier
hierarchy.

The service types that a given fog node can accommodate is intrinsically tied
to its resource capacity. Fog nodes characterized by limited resources excel in tasks
such as sensor data acquisition, data normalization, and the orchestration of sensor
and actuator commands. Especially, these activities are often performed at the edge
of the IoT layer, in edge nodes operating over a limited geographical area.

Moving to nodes with intermediate resources, spanning coverage across cities or
provinces, their focus shifts toward functions like data filtering, compression, and
transformation. Such nodes might also facilitate rudimentary edge data analytics to
facilitate real-time or near-real-time processing.

In contrast, high-capacity fog nodes, responsible for broader regions, primarily
serve functions involving data aggregation and the extraction of knowledge from the
a very huge amount data.

Geographical coverage. Another feature that changes contingent on the tier is
the geographical coverage of the fog nodes, ranging from small scale areas, to city-

32 Chapter 2. Edge-to-Cloud Distributed Architecture

wide, provincial, and regional extents. Geographical coverage denotes the area of
interest that a given fog node encompasses. Notably, the territorial jurisdiction of a
fog node, particularly within the lower tiers, is influenced by the network topology.
This topology can render a node accessible solely from neighboring nodes situated
within close geographical proximity. This phenomenon is especially notable within
edged nodes, whose incoming communications leverage prevalent protocols tailored
for limited short-range connections (e.g., IEEE 802.15.4 standard).

Implicitly related with this notion is the aspect of data privacy. Indeed, a fog node
that covers a specific small area will exclusively store and process data attributed
to that particular zone, avoiding interference with other data owners. Furthermore,
the extent of geographical coverage also intersects with data granularity. In specific
terms, a fog node targeting a very small area domain will predominantly manage raw
data. Conversely, a fog node responsible for a broader regional span will engage with
data that has undergone transformations, such as filtering and aggregation.

2.2.2 Fog Protocols

As previously outlined, fog nodes serve as pivotal components encompassing com-
putational, networking, storage, and acceleration capabilities. These nodes bridge the
gap between the cloud layer and the IoT layer [1]. Depending on the tier they belong
and the services they host, fog nodes employ distinct protocols and message for-
mats for communication. There is relevant difference between application-specific
protocols and network protocols. While the subsequent discourse is by no means ex-
haustive, it centers on network protocols due to their standardization, as opposed to
application-specific ones.

Within the cloud layer and higher fog tiers, the prevalent technology for imple-
menting (micro)services is REST [36]. Consequently, the primary network protocol
employed is HTTP, inclusive of its secure counterpart, HTTPS. Other well known
protocols are suited for this kind of communications, as gRPC and WebSockets. In-
formation exchange takes place through formats like JSON2 (alongside related di-

2https://www.json.org/

2.3. Service Placement Scenarios 33

alects such as GeoJSON3), XML, and CSV.

In the context of lower fog tiers and the IoT layer, the adoption of publish/-
subscribe messaging transport protocols is common, with MQTT [37] standing as
a prominent example. A typical MQTT system encompasses one or more publishers
and subscribers, engaging in communication facilitated by a broker node responsible
for message dispatching.

Given the resource limitations of IoT devices compared to fog nodes, the se-
lection of network protocols must prioritize efficiency. Noteworthy options include
6LowPAN4, LoRaWAN5, and CoAP6.

To convey and structure IoT metadata, several key initiatives have emerged: Sen-
sor Markup Language (SenML) [38], IPSO Alliance Framework [39], and the oneM2M
Base ontology [40]. For the delineation of IoT devices, the Web of Things initiative
by the W3C has introduced the W3C Thing Description (TD)7. This format caters to
processing by applications in non-constrained environments, often found within the
cloud and fog tiers. It serves as the foundation for sophisticated discovery and search
services.

Nevertheless, these protocols remain disjoint and exhibit limited functionality
within the broader context of the Edge-to-Cloud continuum. This deficiency has
prompted the development of a inclusive solution called SEAMDAP, using SenMl
and W3C TD as message descriptor, which will be comprehensively examined in
Chapter 3.

2.3 Service Placement Scenarios

As discussed in Section 2.2, the framework operates under the assumption that the
designated application objectives are formulated as a collection of interconnected
(micro)services. Within this context, certain services are accessible within the cloud

3https://tools.ietf.org/html/rfc7946
4https://tools.ietf.org/html/rfc4944
5https://lora-alliance.org/about-lorawan/
6https://tools.ietf.org/html/rfc7252
7https://www.w3.org/TR/wot-thing-description

34 Chapter 2. Edge-to-Cloud Distributed Architecture

environment, permitting horizontal scaling via the creation of stateless instances dis-
tributed across fog nodes. Conversely, some services remain confined to fog nodes
exclusively due to data privacy imperatives.

In this analysis, a user is for simplicity an individual IoT node, denoted as USa,
being a sensor or an actuator. This assumption is substantiated by the conceptualiza-
tion of a service as a set of activities geared towards either the acquisition and reten-
tion of domain-specific environmental data or the dynamic manipulation of its state.
It is important to note that what presented in the subsequent sections can be easily
extended even if a user’s role is situated at a tier distinct from the IoT layer. More-
over, it is pertinent to underscore that the scope of all these consideration is restricted
to stationary IoT node, thereby excluding mobile users from current competence.

2.3.1 Quantitative Model

To model the proposed architecture in a quantitative fashion, an extension of the
notation proposed by Lera et al. [31] has been used.

A cloud or fog node is represented as Di, with its defining attributes encapsulated
within the vector ARi, which encompasses the capacities of each physical component.
These capacities are expressed as scalar values, quantified in general resource units.
The CPU’s capacity is measured in terms of the number of cores it possesses, while
the storage memory capacity is denoted in terabytes (TB), and so forth. It is notewor-
thy that cloud nodes are presumed to possess virtually infinite resources. Alongside
these attributes, nodes are also characterized by their processing speed denoted as
IPTi, measured in instructions per unit of time.

The network link between two interconnected nodes is symbolized as NLi j, with
bidirectional communication inherently assumed (NLi j = NL ji). These network links
are characterized by attributes such as the propagation delay PRNLi j and the network
bandwidth BWNLi j . Hence, the network delay incurred during the transmission of a
packet between connected nodes is mathematically expressed as follows:

NDNLi j = PRNLi j +
size

BWNLi j

(2.1)

2.3. Service Placement Scenarios 35

A user possesses the ability to invoke any instance of a service in the system,
although the common practice is to generally opt for the closest one. In this con-
ceptualization, each application APPx is encapsulated as a directed graph, wherein
the edges represent requests and the nodes represent services. Every application is
delineated by a stipulated deadline DLAPPx .

Each distinct service Su is characterized by the resource consumption it induces
upon the allocated node. Analogous to resource capacity, resource consumption is
articulated as a vector CRSu featuring scalar values that quantify the consumption of
individual physical components. Importantly, the execution prompted by a request
is contingent not only on the service itself but also on the specifics of the request
message. This message, designated as MSSuSv , is denoted by the originating and target
services.

Additionally, the size of the message is denoted as SZMSSuSv
, while the message’s

data privacy requisites are indicated by DPMSSuSv
, taking values between 1 and N. The

workload exerted upon the node corresponds to the number of instructions necessi-
tated for processing a given request message, denoted as EIMSSuSv

.
In order to describe the services placement across the entire system, we define

a placement matrix denoted as P, featuring dimensions |S | × |D |, signifying the
product of the number of services and the number of nodes. Within this matrix, an
entry pui holds a value of 1 if service Su is deployed within node Di, and it holds a
value of 0 otherwise.

The first constraint necessitates that the sum of resources consumed by the allo-
cated services must not exceed the available resources within the node:

∑
u

puiCRSu ≤ ARi ∀Di (2.2)

The second constraint pertains to data privacy concerns. The placement of ser-
vices must consider the data privacy requirements associated with request messages,
delimiting the diffusion of sensible data:

pvi = 1 iff FTDi ≤ N −DPMSSuSv
+1 ∀Di,∀v (2.3)

Here, FTDi denotes the fog tier of node Di.

36 Chapter 2. Edge-to-Cloud Distributed Architecture

Two optimization objectives as quantities to be maximized have been established.
The first objective concern the deadline satisfaction ratio, defined as:

deadline(USa,APPx) =
|RTRQn

USaAPPx
≤ DLAPPx |

|RQn
USaAPPx

|
(2.4)

In this equation, |RQn
USaAPPx

| represents the count of times a request for APPx is dis-
patched from user USa, while |RTRQn

USaAPPx
≤ DLAPPx | signifies the count of those re-

quests that successfully meet the application’s stipulated deadline. The maximization
of this quantity across all users and requests within the system is required.

The second objective pertains to the service availability ratio, which is defined
as:

availability(APPx) =
|USa s.t. ∃ path USa to APPx|
|USa s.t. USa requests APPx|

(2.5)

In this equation, the denomination quantifies the number of users that solicit APPx,
while the numeration counts the number of users capable of reaching APPx. The
optimization objective requires the maximization of this quantity for all applications
within the system.

2.4 Service Placement Algorithm

Service placement serves as the mechanism for selecting suitable execution zones to
place instances of services [41]. In this section, a centralized service placement algo-
rithm, designed to function within a static instance of the previously defined N-tier
fog architecture, is introduced. The algorithm fulfills two primary objectives: the pri-
oritization and safeguarding of user data privacy, along with the timely availability of
application outcomes. The proposed algorithm employs a greedy approach to allocate
applications based on intrinsic, static attributes such as service graphs. Notably, this
service placement algorithm can be employed in both offline and online scenarios. In
either cases, the overall assumption is that a set of applications needs to be allocated
across the available nodes.

From a range of potential optimization strategies [42], the chosen approach is the
first-fit decreasing greedy approach, despite its not being the most efficient heuristic.

2.4. Service Placement Algorithm 37

The rationale behind this choice is rooted in our aim to mainly underscore the ad-
vantages conferred by the N-tier fog architecture, especially when addressing diverse
and multifaceted constraints.

An application is assumed to be composed by an assemblage of cooperating ser-
vices, organized in accordance with a specific directed acyclic graph (DAG). For the
sake of simplicity, it is assumed that a service cannot concurrently belong to multiple
applications. 8 In cases where two services hosted by separate nodes necessitate di-
rect communication, these nodes must possess a direct connection, implying mutual
knowledge through name or IP address, enabling message exchange. Furthermore, a
single node has the capacity to host services belonging to different applications.

As delineated in Section 2.2.1, the hierarchy of fog tiers and data privacy levels
exhibits an inverse correlation. In other words, the sensitivity of processed data aligns
with the tiers: higher sensitivity data necessitate lower-tier processing. The applica-
tion modeling presented in Section 2.3 establishes that messages exchanged between
services possess data privacy levels (DPMSSuSv

). Consequently, it becomes possible to
indirectly assign privacy levels to services (DPSu , DPSv). This is accomplished by in-
ferring that if a message traverses from a sender service to a recipient service, both
services must be allocated within tiers compliant with the data privacy level of the
message. Therefore, if a service engages in the processing of data with a privacy level
of p, it is restricted to placement within fog tiers spanning the range {1, .., p}.

In situations where a service engages in message exchange with multiple services,
its assigned privacy level equates the highest level among those associated with the
exchanged messages. This could potentially lead to a low-tier placement for the ser-
vice, which might prove incompatible with the computational limitations of nodes
at that tier. To mitigate this concern, a recommended strategy involves fragmenting
service activities into several microservices that can be effortlessly placed.

The services hosted within a node will invariably consume its resources. For sim-
plicity, we assume that introducing a new service to an already resource-exhausted
host is not feasible.

8This assumption does not preclude the modeling of scenarios where distinct instances of the same
service concurrently pertain to multiple applications.

38 Chapter 2. Edge-to-Cloud Distributed Architecture

Furthermore, each service is characterized by specific resource prerequisites for
its execution. These requirements are adjusted in relation to the overall resource bud-
get accessible within the host node.

The central thrust of the service placement algorithm is to allocate applications
in close proximity to users (IoT layer), aiming to minimize latency and support local
and distributed information management capabilities.

The order by which applications are allocated plays a pivotal role in shaping the
final outcome. Thus, the initial step entails sorting applications in ascending order
based on the minimum privacy level required by the services composing them. This
leads to the establishment of a "privacy index" for each application, governed by the
following rule:

index(APPx)⩽ index(APPy)

iff

min
Su∈APPx

DPSu ⩽ min
Sv∈APPy

DPSv

(2.6)

In situations where two applications share the same privacy index, their subse-
quent ordering is determined by their respective deadlines (earliest deadline first).

This arrangement serves to grant delay-sensitive services a greater likelihood of
placement within nodes that are geographically closer to the IoT layer, thereby min-
imizing latency. With the list of applications sorted, the algorithm for service place-
ment initiates the allocation process by sequentially placing the services of the first
application on the list. Services directly connected to users in the IoT layer receive
priority placement, followed by services interacting with these, and so on.

In addition with respecting privacy, resource, and connectivity constraints, the
service placement algorithm also strives to minimize the overall application latency.
It does so by favoring the placement of services in nodes that are proximate to each
other, considering the transmission time between two services within the same node
as negligible. Consequently, this methodology ensures that each application is allo-
cated within fog layers closest to IoT nodes, maximizing the proximity of processing
tasks to end users.

2.5. Simulation Analysis 39

In instances where certain services cannot be placed within fog layers due to an
absence of suitable nodes, they are instead allocated within the cloud, provided they
lack privacy restrictions. An application is deemed allocable only if all its constituent
services can be placed. Applications that do not meet this criterion are discarded, and
the algorithm proceeds to handle the next applications in subsequent iterations of the
service placement algorithm.

2.5 Simulation Analysis

An evaluation of the proposed N-tier fog architecture and the accompanying service
placement algorithm was conducted employing the YAFS simulator [31]. This sim-
ulator’s capacity to accommodate dynamic network configurations offers valuable
ways for exploring practical service placement scenarios within Fog Computing en-
vironments. The implemented software is available as open source. 9

To ensure a comprehensive assessment, random yet realistic attributes were as-
signed to nodes, applications, services, requests, and users. These elements were pa-
rameterized using uniform distributions, with their respective minimum and maxi-
mum values detailed in Table 2.1, thereby facilitating a generalized evaluation.

The network topology was meticulously constructed in accordance with the ar-
chitectural principles outlined in Section 2.2.1. More specifically, the arrangement
features nodes called "gateways" at the lowest layer. These gateways symbolize col-
lectives of sensors and actuators (i.e., users) engaged in interactions with the system.

The fog layer accommodates the allocation of applications, while the gateways
generate requests for one or multiple instances of applications. The fog layer is parti-
tioned into N = 4 tiers. As the tier number ascends, the quantity of nodes decreases,
while the average processing capacity per node increases. Positioned beyond the fog
layer is the cloud layer, represented by a solitary node endowed with unrestricted
processing capacity. This cloud node maintains communication links with all nodes
within the fog and IoT layers.

9https://github.com/gPenzotti/FogComputingFarmPlacement

https://github.com/gPenzotti/FogComputingFarmPlacement

40 Chapter 2. Edge-to-Cloud Distributed Architecture

Table 2.1: Values of the parameters used in the simulations
Parameter min-max

Number of fog tiers N 4
User
Request rate (1/ms) {1/1000,..,1/200}
Fog node
Fog tier (number) FTDi {1,..,N}
Resources (res. units) ARi {15+2t,..,19+2t}, t∈{0,..,N-1}
Speed (instr/ms) IPTi {100,..,1000}
Application
Deadline (ms) DLAPPx {1000,..,150000}
Services (number) {2,..,7}
Resources (res. units) CRSu {1,..,5}
Execution (instr/req) EIMSSuSv

{20000,..,60000}
Message size (bytes) SZMSSuSv

{1500000,..,4500000}
Data privacy (number) DPMSSuSv

{1,..,N}
Network
Propagation time (ms) PRNLi j {5,..,30}
Bandwidth (bytes/ms) BWNLi j {50000,..,75000}

The node graph within each fog tier demonstrates small-world properties, char-
acterized by a few highly connected hubs and a nearly uniformly distributed connec-
tions. The nature of the links varies across tiers to replicate the territoriality of nodes.
Specifically, connections between nodes of the same tier exhibit lower latency than
those across different tiers. Additionally, the average bandwidth increases as the tier
number rises.

In this particular scenario, the network comprises a total of 176 nodes, encom-
passing 20 gateways and 1 cloud node. Excluding the cloud layer, the collective net-
work resources sum up to 2912 units. A number of 20 distinct application classes
has been defined, randomly associating them with gateways, yielding 54 application
instances and 231 assigned services within the network. The cumulative resource de-
mand of these services amounts to 562 units. The privacy index is randomly allocated
to each application, with 20% of the services designated for handling sensitive data.

Two scenarios were considered: one with fog node failures and one without. In
the first scenario, fog nodes were randomly chosen for failure (with uniform dis-

2.6. Smart Farming Applications 41

Figure 2.2: Performance of the total requests (in purple) in the system compared
with the requests performed meeting the deadline during the simulation with dynamic
node failure strategy (orange).

tribution) and were deactivated in a manner that resulted in 90% of the fog nodes
becoming inactive. The evolution of request satisfaction is depicted in Figure 2.2. In
the absence of fog node failures, all deadlines were consistently met. The purple plot
indicates the total count of generated requests, aligning with the number of requests
satisfied within the set deadlines. However, with the occurrence of fog node failures,
the quality of service (QoS) exhibits rapid degradation. In this case, the orange plot
illustrates the temporal progression of the number of requests that were successfully
met within the stipulated deadlines.

In Figure 2.3, the resource distribution utilized by the placed services is repre-
sented. The resource consumption per node and the average resource consumption
per fog tier corroborate that the service placement algorithm predominantly encour-
ages allocation to the lower tiers.

2.6 Smart Farming Applications

In Smart Farming, different application scenarios can be identified in which the adop-
tion of an advanced distributed architecture for data processing and storage would
bring advantages to the individual user and the entire production.

The first application example we consider is satellite remote sensing for decision
support. Currently, there are several services that provide data from ground multi-

42 Chapter 2. Edge-to-Cloud Distributed Architecture

Figure 2.3: a. Resource usage for each node. Vertical red lines indicate the tier bound-
aries (note that services are not placed into gateways, and there is only one cloud node
that is not loaded at all). b. Average resource usage per fog tier.

spectral sampling performed by satellites in continuous orbit around the planet, such
as Copernicus, the Earth monitoring space program by ESA.10 From these data, it is
possible to extract vegetation indices (NDVI is one of the most popular) that allow to
determine the state of the health of a specific crop. The vegetation indices can then be
used by a Decision Support System (DSS) for agriculture in order to produce special-
ized support in some farmers’ activities, such as irrigation, based on the information
of each cultivated plot (crop, water balance, etc.) [3, 18].

The second application example is weather information aggregation. Weather
monitoring is one of the most important agricultural activities, because it consists
in observing fundamental parameters for the development of crops. Currently this
activity is done by strategically positioning public weather stations by public bod-
ies or small private stations installed by farms, which may or may not make such
data publicly available. These data can be used to create and nurture a highly precise
and specialized climate model for small areas, designed to counter adverse phenom-

10http://www.esa.int/Applications/Observing_the_Earth/Copernicus

2.6. Smart Farming Applications 43

Figure 2.4: Instances of the satellite remote sensing for decision support (upper
scheme) and weather information aggregation (lower scheme).

ena, such as violent rains or droughts, or harmful, such as frost and hailstorm. It is
therefore possible to monitor key parameters by zones, in order to avoid the harmful
effects of such events, and to intervene very quickly thanks to the locality and low
latency of the nearest fog nodes. For example, if the measured values are a signal for
possible frosts in a specific area, antifreeze systems connected to the network could
be quickly activated. This process may involve sensitive farm data such as crops,

44 Chapter 2. Edge-to-Cloud Distributed Architecture

surfaces, sunlight exposure, etc., without exposing them to cloud services.

For these application scenarios, the following nodes and services can be identi-
fied. Examples of their composition are illustrated in Figure 2.4.

Actuators and control systems (IoT layer). Some technologically advanced
farming machines (tractors, irrigation systems, etc.) are networked, thus able to re-
ceive data/commands and carry out part or all of their specific activities automatically,
based on the output of the DSS and the experience of the farmer. Moreover, some ad-
vanced control systems are able to make urgent critical decisions (such as suspending
an activity in case a problem is detected) based on continuous feedback.

Farm and climate sensors (IoT layer). Some sensors may provide data at the
level of the single field, while other sensors (such as climatic stations) may cover
larger areas and serve multiple farms.

Farm data management service (Fog layer). For one or more farms, it is possi-
ble to identify services that deal with maintaining and processing their data, such as
land, crops, production cycles, processing, etc. Considering the high sensitivity of the
data processed and the low geographical competence, the service will be localized to
the lowest tiers of the fog network.

DSS services (Fog and Cloud layers). Modern DSSs usually leverage multiple
services that belong to different stakeholders. These services implement various func-
tionalities and communicate with each other. Some computational intensive services
can be placed into higher fog tiers or in cloud. For example, let us consider services
that deal with maintaining the decision-making model, or that run or train machine
learning models. Other services can instead be deployed at lower fog tiers, like the
services that deal with geographical information of the land (position, perimeter of
the crop subdivisions, etc.) or tilling information. These data can be used by the DSS
at different tiers, by properly removing sensitive information.

Climate monitoring services (Fog and Cloud layers). Raw data collection ser-
vices should be placed closer to the nodes, at lower fog tiers, in order to preserve
data privacy. Instead, climate models and other resource-consuming algorithms can
be executed at higher fog tiers or in cloud.

Satellite data services (Cloud layer). These services are usually placed in cloud,

2.6. Smart Farming Applications 45

like the one of the Copernicus mission. Generally, satellite data are provided in an
aggregate fashion, and need processing and refinement at the level of single farm,
using lower fog tiers.

Chapter 3

Scalable Protocol for Sensor Data
Acquisition

This chapter is derived from the research paper titled "Seamless Sensor Data Ac-
quisition for the Edge-to-Cloud Continuum" [43] authored by Penzotti G., Taras-
coni D., Caselli S. and Amoretti M.. The paper introduces an innovative application
protocol known as SEAMDAP (SEAMless Data Acquisition Protocol), specifically
designed for the seamless acquisition of sensor data across the Edge-to-Cloud con-
tinuum. SEAMDAP offers a range of benefits. Firstly, it is built upon existing and
consolidate standards such as JSON, W3C Thing Description, and SenML, simplify-
ing its implementation and deployment through the use of readily available software
libraries. Secondly, it streamlines human intervention by primarily focusing on speci-
fying the data collected by sensor nodes and defining how and where this data should
be transmitted. Lastly, SEAMDAP enables automatic data aggregation and special-
ization throughout the entire Edge-to-Cloud continuum, rendering it a unique and
versatile protocol.

Concerning data collection for smart farming and similar domains, SEAMDAP
is designed as a solution enabling collaborative and non-collaborative data sharing,
thereby outlining a vision that responds to RQ3, through standard multilevel inter-
faces, and to RQ4, proposing customizable and data oriented operational practices.

48 Chapter 3. Scalable Protocol for Sensor Data Acquisition

The sections of this chapter are structured as follows. Section 3.1 offers a brief
overview of the problem and related work data acquisition along the E2C, Section 3.3
provides an overall description of main protocol characteristics of the proposed pro-
tocol, Section 3.4 delves into the implementation details, while Section 3.5 describes
and comments results and insights from a simulation analysis.

3.1 Data Diffusion in the Edge-to-Cloud Continuum

The distributed and heterogeneous nature of smart environments has created signifi-
cant challenges, including effectively managing data dissemination across the Edge-
to-Cloud (E2C) continuum. In the context of the E2C continuum, data is generated
and requested at different levels and with different frequency. This diversity is one
of the key challenges in effectively processing and disseminating data in scenarios
such as Smart Farming and Smart Cities. Each tier contributes data that varies in its
nature, origin, and purpose, leading to its own set of challenges. At the Edge, the
data generated often represent "raw" information coming directly from the sensors.
These data are often unprocessed and contain detailed measurements, such as tem-
perature, humidity, pressure readings, and more. The raw nature of these data makes
them valuable for in-depth analysis, but also more challenging to process and trans-
mit due to their size and to the presence of constrained devices. In Fog layers, the
data can undergo preliminary aggregations and synthesis. This process is particularly
useful for reducing the amount of data to be transmitted to the Cloud and improving
overall system efficiency. Processing may involve statistical aggregation, filtering of
insignificant data, or the creation of key performance indicators. These operations can
help in reduce the load on the network and improve response times. In the Cloud, data
can undergo further levels of analysis and synthesis to obtain high-level indicators.
Here, the aggregated data can be subjected to machine learning models or advanced
analytic techniques to extract meaningful insights. For example, in Smart Farming
contexts, the analysis can lead to forecasting weather conditions, crop management
or detecting anomalies. These indicators provide greater context and higher business
value than raw data or lower-level aggregations.

3.1. Data Diffusion in the Edge-to-Cloud Continuum 49

This diversity of layers brings a number of challenges, including the need to en-
sure smooth and reliable communication, despite the differences in computing power
and network capabilities of the various nodes. Furthermore, the absence of an estab-
lished standard for data dissemination creates additional complexity in orchestrating
data processing and transmission.

There is a lack of effective application-layer protocols that provide comprehen-
sive control over sensor data flows within distributed systems (see Section 3.1.1) .
Effective orchestration of data require a well-defined strategy that takes into account
the complex and heterogeneous spectrum of data and applications.

3.1.1 Related Work

While the advantages of edge computing have been explored in various works (e.g.,
[44, 45]), limited attention has been given to its integration with IoT systems. No-
tably, there has been a lack of focus on the registration of unknown data sources,
which is a recurring challenge.

Del Gaudio and Hirmer [46] introduced a life cycle method for device man-
agement in Industry 4.0 settings. This approach facilitates the integration of newly
emerging devices into Smart Factory applications and offers solutions for dealing
with failing devices. It involves the use of two non-standard metamodels: one to de-
scribe device communication in smart factory environments (the processing model)
and another to specify the structure of smart factory environments (the environment
model). Instances of these models are represented as JSON documents. While this
method is effective in controlled environments, it faces scalability issues when ap-
plied to heterogeneous, open settings.

The work that is most comparable with SEAMDAP is that of Zanzi et al. [8], who
proposed a multi-access edge computing (MEC) paradigm enabling the seamless in-
tegration of existing and future IoT platforms. Their architecture extends the multi-
vendor edge environment defined by the MEC Industry Specification Group under the
European Telecommunications Standards Institute (ETSI). While this solution is in-
tegrated with an industry-driven MEC architecture, it does require non-MEC adopters
to add a middleware layer for bridging IoT systems with edge computing systems.

50 Chapter 3. Scalable Protocol for Sensor Data Acquisition

In contrast, SEAMDAP introduces a lightweight protocol that can be adopted with
minimal impact on existing systems.

3.2 Preliminaries

The SEAMDAP protocol represents an effective solution towards order and efficiency
in the dissemination of data within the Edge-to-Cloud continuum.

SEAMDAP is an application level, client-server oriented protocol, and can be
also termed as an "operational protocol". Instead of primarily focusing on defining
precise interactions and establishing fixed sequences of messages, its main aim is to
standardize the operational phases that must be executed between the nodes. Subse-
quently, within each of these phases, it delves into specifying the formats, operational
methods, and use cases in detail. The overarching objective is not only to standard-
ize communication between the involved parties but, more importantly, to foster a
scalable approach to distribute data in the design of the system.

Unlike rigidly standardized approaches, SEAMDAP embraces a semi-open phi-
losophy, which allows for the flexibility to adapt to the specific needs of different ap-
plication environments. This flexible approach is crucial in scenarios such as Smart
Farming and Smart Cities where requirements can vary greatly. In fact, it works well
in environments with the presence of non-homogeneous sensors, based however on a
common modeling of the entities that participate in the protocol interations.

Moreover, the chosen design allows the protocol to be configured to meet the
specific needs of different levels of the continuum and various types of data. In fact,
SEAMDAP has been designed to accommodate various requirements, among the
most relevant:

• transmission efficiency and performance, to improve the speed of data collec-
tion and distribution, enabling faster responses to data requests and processing;

• customization, in data description, phase implementation and so on, in order to
accommodate specific use case requirements;

3.2. Preliminaries 51

• ease of use and readability, to simplify phases that require a minimum of con-
figuration by the user (whether owner or manufacturer of the sensor) and so
improve community participation, in order to obtain large-scale adoption and
therefore wide availability of data.

3.2.1 Definitions

Definitions of common terms used for SEAMDAP description are provided below,
beginning with the physical entities within the considered IoT and Edge-to-Cloud
context.

The SEAMDAP protocol, as previously mentioned, serves as an operational pro-
tocol tailored for the extensive collection of sensors data. It is designed to work ef-
fectively within environments featuring a variety of non-uniform sensors, based in a
shared model of the physical and abstract entities involved in the protocol’s interac-
tions.

Definition 3.2.1 (Sensor) A sensor is a device designed to detect events or changes
in its environment. The data it retrieves might be raw, often requiring minimal pro-
cessing before diffusion.

Definition 3.2.2 (Sensor Node) A sensor node is a device housing one or more sen-
sors, presenting a unified external interface. It accumulates sensor data, processes
them if necessary, and transmits them to a gateway or an E2C node (defined below).
Positioned typically at the edge of the Edge-to-Cloud continuum, it exhibits limited
storage and processing capabilities.

Definition 3.2.3 (E2C Node (Edge-to-Cloud Node)) Within the Edge-to-Cloud con-
tinuum, an E2C node is a modular, scalable unit tasked with storing and processing
data collected directly from nearby nodes. It exploits the collected data to provide
services to end users or other E2C nodes. This node can belong independently to the
edge, fog or cloud layer.

52 Chapter 3. Scalable Protocol for Sensor Data Acquisition

Definition 3.2.4 (Gateway) In the Edge-to-Cloud continuum, a gateway serves as
a nearby element capable of collecting sensors data and forwarding them to E2C
nodes, potentially applying filters.

SEAMDAP outlines the interactions between the subsequent abstract entities.

Definition 3.2.5 (Client) A client pertains to an end node responsible for uploading
a dataset into another node called server, utilizing SEAMDAP’s mechanism. The
manner by which this client gathers data is irrelevant. Physically, a client can be
any node, except for sensors due to performance considerations. As an example, a
gateway that collects sensor data using a standard or proprietary low-power wide-
area network (LPWAN) protocol, and subsequently uploads this data to a server via
SEAMDAP, is a client.

Definition 3.2.6 (Server) A server denotes an end node that receives data from one
or more clients using SEAMDAP. This type of node possesses the capability to system-
atically store data and often offer services. It can also transmit data to other servers,
functioning as a client in relation to them.

Definition 3.2.7 (TD Repository (Thing Description Repository)) A TD repository
denotes a node tasked with retaining static documents adhering to the W3C Thing
Description protocol (as detailed in Section 3.2.2). The method through which this
node acquires these descriptors is not relevant.

An illustration of a SEAMDAP-based system is presented in Figure 3.1.

3.2.2 Adopted Standards

This section introduces the embraced standards and formats, alongside the guiding
principles considered during the design of SEAMDAP. Notably, the discussion ex-
clusively revolves around application-level standards, without involving specific pro-
tocols and mechanisms concerning the lower layers of the Internet stack.

As previously mentioned, SEAMDAP’s design focused on enabling seamless in-
tegration of sensor data into the Edge-to-Cloud continuum, emphasizing high data

3.2. Preliminaries 53

Figure 3.1: SEAMDAP-based system with Sensor Nodes, Gateways, and E2C Nodes
playing the role of clients and/or servers.

control, distributed storage, and edge processing. An overarching requirement has
been the creation of a protocol that is both highly scalable and straightforward, fa-
cilitating manufacturers in integrating their specifications for describing sensed data,
specifying transmission details, conveying manufacturer information, and enabling
the aggregation of sensor data from diverse devices.

Moreover, the potential use cases for deploying large-scale IoT systems include
a wide spectrum of data types and acquisition methods. This necessitates that the
proposed protocol ensures both scalability and adaptability to diverse environments,
accommodating different degrees of customization.

As a result, the selected formats must exhibit extensibility and the capability to
adapt to numerous contexts, even though this adaptability might render them less suit-
able for extremely resource-constrained devices such as LPWAN nodes. Such nodes
typically handle messages with reduced memory footprints and minimal payloads,

54 Chapter 3. Scalable Protocol for Sensor Data Acquisition

often relying on binary protocols.
Consequently, JSON [47] has been chosen as the fundamental format for the pro-

tocol’s messages. JSON stands out as one of the most extensively employed open
standards for message formatting, enjoying implementation across major program-
ming languages. JSON aligns seamlessly with the protocol’s requisites, offering ben-
efits like compactness, ease of parsing, human readability, and self-descriptive nature.

W3C Thing Description (TD) [48] stands as a W3C Recommendation for the
abstract depiction of entities within IoT systems, encompassing sensors, actuators,
sensor nodes, and smart objects in general. A TD document delineates the attributes
of a given entity and outlines the actions it could potentially perform. This document
can either be stored within the entity itself or within an external storage device, a
particularly useful approach for resource-constrained environments. A TD document
has the flexibility to describe a single entity or a collection of entities and can be
formulated using various formats or markup languages (e.g., JSON).

Moreover, a TD document is constructed with four distinct vocabularies, which
are expounded upon below:

• Data Schema: This vocabulary encompasses a metadata set designed to eluci-
date the attributes of entities.

• Core: The core vocabulary characterizes interactions with entities. These in-
teractions are devoid of protocol constraints and can manifest as: Properties,
signifying the entity’s status and enabling optional status updates; Actions, de-
tailing the tasks the entity can undertake; or Events, elucidating asynchronous
interactions.

• WoT Security: This vocabulary addresses security identification and configu-
ration, as well as data exchange mechanisms.

• Hypermedia Control: The hypermedia control vocabulary exposes web links
for interacting with entities or accessing external documentation.

Leveraging these vocabularies, it becomes feasible to detail the types of data an
entity deals with, as well as its pertinent information such as manufacturer name,

3.2. Preliminaries 55

model name, and a short description. TD metadata further facilitates the delineation
of an entity’s internal status, its exposed functions (typically applicable to actuators,
but also relevant for sensors with remote configuration capabilities), and the events
that might be triggered through sporadic asynchronous communications.

By employing JSON-LD [49], it is feasible to devise and implement new vocabu-
laries tailored to specific domains. JSON-LD serves as a JSON extension designed to
facilitate Linked Data. This extension allows the establishment of links to vocabular-
ies available on the web, effectively crafting standard domain-specific vocabularies.
This aids in the creation of a consistent means for exchanging readable data across
various applications that comprehend the content. When coupled with TD, JSON-LD
enables the generation and deployment of domain-specific vocabularies intended to
describe distinct types of entities.

SenML [38] is a lightweight standard designed to represent sets of measurements,
resulting from one or more sensors, in a self-descriptive manner. It can be imple-
mented in various formats depending on the most suitable representation for the
employed communication protocol (e.g., JSON, XML, EXI, or CBOR). SenML is
structured to enable systems with limited processing capabilities to encode and trans-
mit data via straightforward communication protocols such as HTTP or CoAP. This
standard permits servers to manage vast volumes of data effectively.

Within SEAMDAP, TD is employed to define interfaces of sensor nodes, offering
general insights into their models, manufacturers, sensed data, and whether external
server connectivity is required. Once the sensor nodes are characterized, SenML fa-
cilitates the acquisition and formatting of data significance. This method enables the
creation of collections containing TD-described and periodically sensed data. Addi-
tionally, the protocol allows the consolidation of multiple SenML documents while
retaining the identification of the specific sensor associated with a given data collec-
tion.

The proposed protocol’s adaptability extends to accommodating various formats
to work in different contexts. For instance, in a Smart Farming application, while TD
may be used for describing sensor nodes, it might fall short. When a new sensor node
is deployed, it’s essential to document its position, coverage area, and ownership.

56 Chapter 3. Scalable Protocol for Sensor Data Acquisition

This is where the GeoJSON format help satisfy this requirement. A GeoJSON object
is constructed using a specialized vocabulary that enables the delineation of shapes
and positions for one or more geographical areas, thus providing a means of geo-
locating them. This is accomplished using longitude and latitude coordinates of the
vertices constituting the area (with polygons being the sole allowable shape). Geo-
JSON goes beyond geo-localization, allowing supplementary information about the
covered area to be provided. Consequently, when registering a new sensor node with
a hub, this registration message could encompass both the sensor node’s TD and its
corresponding geographical coverage, all encapsulated within a GeoJSON object.

3.3 Protocol Description

In this section, we delve into the details of SEAMDAP, specifically concentrating
on the interactions occurring between clients responsible for providing sensor data
(e.g., sensor nodes, gateways, E2C nodes) and servers (i.e., E2C nodes). Notably,
the protocol does not encompass the interactions between sensor nodes and gate-
ways, as there are already established and effective standards to address that aspect.
SEAMDAP is structured around three distinct phases, which are enumerated below
and subsequently elaborated upon in the following subsections:

1. Data Interface Registration (Section 3.3.1): During this phase, clients, includ-
ing sensor nodes, gateways, and E2C nodes, initiate their interaction by regis-
tering their data interface. This process enables them to declare different infor-
mation about data they can provide and the corresponding metadata.

2. Single-Instance Registration (Section 3.3.2):In this phase, the clients proceed
to register themselves as instances of their respective data interface. This in-
volves providing information such as location, descriptive information, and
data acquisition process details.

3. Data Acquisition (Section 3.3.3): The final phase revolves around the actual
acquisition of data. Clients share sensor data with servers according to the ca-
pabilities and specifications outlined during the previous phases.

3.3. Protocol Description 57

For each data interface registration, multiple single-instance registrations can be
made. For each single-instance registration, potentially infinite data acquisition steps
can be performed.

3.3.1 Phase 1: Data Interface Registration

During the first phase of the SEAMDAP protocol, which is illustrated in Figure 3.2,
the client initiates the interaction by sharing its data interface structure with the server.
The data interface is essentially a description of the types of data that the client can
transmit, and it is represented using a TD document. This document specifies the
different properties of data that will be transmitted and associated metadata, includ-
ing names, units of measurement, and validity ranges. The TD document effectively
guides the subsequent data transmission process.

SEAMDAP offers two mechanisms for sharing the data interface with the server:

• Direct Sharing: the client sends its data interface directly to the server as part
of the communication. The server receives and processes the data interface to
understand the structure and capabilities of the client’s data.

• Retrieval via URL or Semantic Identifier: Alternatively, the client can provide
the server with a URL or a semantic identifier [50] that points to a public or
private location where the data interface is stored. The server then retrieves the
data interface from this location, allowing the decoupling between the client
and the server.

Once the server obtains the data interface, it can read, validate, and interpret the
incoming data correctly.

When a data interface is distributed, it essentially defines the schema for the data
that will be transmitted by a client. This means that any node that comes into pos-
session of the transmitted data can use the associated data interface to understand
the meaning of the data. In this way, data interfaces play a role in identifying how
and where the data should be interpreted and processed. This approach should not be

58 Chapter 3. Scalable Protocol for Sensor Data Acquisition

understood as a data integrity mechanism, but only as an extra layer of data distribu-
tion control (o privacy control), letting authorized entities have access to the full data
interpretation, and make it difficult for the other nodes.

After the successful registration of the data interface, the server assigns a unique
ID to it. This ID is communicated back to the client as a confirmation of the registra-
tion process. The server can decide whether to make this ID public or restrict access
based on its policies. The data interface ID serves as a reference for subsequent in-
teractions and data transmission.

This phase is crucial for enabling the server to interpret and handle incoming data
accurately and efficiently.

Figure 3.2: Execution of the SEAMDAP data interface registration phase. Two alter-
native sequences are shown; in the second one, a TD repository takes care of storing
and making available the TD documents.

3.3. Protocol Description 59

3.3.2 Phase 2: Single-Instance Registration

In the second phase of SEAMDAP (Fig. 3.3) , the focus is on the interaction between
a sensor data provider (client) and the server. This phase involves the client notifying
the server of its presence and providing meta-information about the samples it will
provide.

The purpose of the single-instance registration message is to convey important
contextual and operational information about the client and the data it will transmit.
This information helps the server to better understand the nature of the incoming
data, its source, and how it should be processed and interpreted. Some of the meta-
information that can be included in the single-instance registration message includes:

• Geographical Position: The geographical location of the sensor node or client.

• Construction and Technological Details: Details about the sensor types, tech-
nologies used, and any specific characteristics of the client.

• Time Interval: The time interval between two data uploads, indicating the fre-
quency of data transmission.

• Preprocessing/Aggregation Activities: Any preprocessing or aggregation activ-
ities performed on the data before transmission.

The single-instance registration message is customized for the specific use case
and does not have a strict predefined format in the protocol. This flexibility allows
the message to capture relevant information that is specific to the client and the ap-
plication. An example is illustrated in Section 3.4.

During this phase, the client is assigned a unique ID by the server, which the
client will use to identify itself in subsequent interactions. Additionally, the client
must indicate the data interface it registered earlier using the interface ID assigned by
the server. This linking of the data interface and the client instance is crucial for the
server to correctly interpret the incoming data.

Furthermore, the method of data acquisition is established during this phase. The
server and the client agree on how the data will be exchanged. There are two main
approaches:

60 Chapter 3. Scalable Protocol for Sensor Data Acquisition

• Server Listening to Submissions: The client directly submits data to the server,
which listens for incoming data submissions from the client.

• Server Requesting Data: The server requests data from the location indicated
by the client when needed. The server can also specify the collection period for
which it needs data.

Due the customizability of this phase, other exchange approaches are possible.

By establishing the method of data acquisition and exchanging relevant meta-
information, the client and the server prepare for the actual data transmission phase,
which is the next step in the SEAMDAP protocol.

Figure 3.3: Interactions between client and server during the single-instance registra-
tion phase. The message sent by the client can be customized according to domain-
specific needs.

3.3.3 Phase 3: Data acquisition

In the third and final phase of SEAMDAP (Fig. 3.4), the focus is on the transmission
of sensor data from a client to a server. During this phase, the client transmits the

3.3. Protocol Description 61

actual sensor data to the server. The data transmission is based on the information
established in the previous two phases.

This phase is distinct from the previous two phases. Indeed, the preceding phases
are characterized by single interactions. Specifically, the registration of a data inter-
face is a one-time occurrence for each distinct interface, and the client’s registration
transpires as a solitary event per instance. In contrast, the third phase is the iterative
interaction of the process, reoccurring over time, and thereby constituting the primary
network traffic load.

In this phase, it is very common (but not necessary) that a direct data exchange
takes place directly between a sensor node and a server. However, the sensor node
may have stringent constraints spanning hardware resources, software capabilities,
and power availability. These restrictions have directed our preference toward adopt-
ing the SenML data format [38]. SenML’s salient attributes of compactness, alongside
its versatile capacity for conveying comprehensive sensor data, facilitates an effective
and efficient information interchange.

It is important to note that while SEAMDAP does not specifically address se-
curity aspects, it does not restrict the implementation of security mechanisms. The
protocol focuses on the seamless integration of sensor data into the Edge-to-Cloud
continuum and provides a framework for data exchange. Security measures can be
implemented using established mechanisms for Edge-to-Cloud communication and
processing. However, IoT security is a much more open research field [51]. Notable
solutions have been proposed, such as IoTChain [52] and ELIB [53].

Overall, the third phase of SEAMDAP completes the data acquisition process,
enabling the continuous transmission of sensor data from the client to the server,
supporting a variety of use cases and application scenarios in the IoT and Edge-to-
Cloud domain.

3.3.4 Analysis

The proposed protocol exhibits a high degree of efficiency with regard to communi-
cation complexity.

62 Chapter 3. Scalable Protocol for Sensor Data Acquisition

Figure 3.4: Interactions between client and server during data acquisition. This phase
may be repeated sporadically or periodically, until the sensing activity ends. In most
cases, the client submits sensor data to the server, but it is also possible that the sensor
data are acquired by the server from an external E2C node playing the role of broker.

Claim: In scenarios involving the deployment of n sensor nodes, where there are
m ≪ n distinct node types (distinguished by the data types they gather), the volume
of automatic messages exchanged between the client and the server adheres to the
complexity of O(n).

Proof. To initiate m data interface registrations, the client is required to create and
forward m Thing Description (TD) documents to the server. Depending on the client’s
nature, these documents might either be pre-established by the sensor node manufac-
turer or specified by the owner of the gateway/E2C node. As illustrated in Figure
3.2, the amount of automatic messages shared between the client and the server is
bounded by O(m). Following the successful registration of all data interfaces, the
sensor nodes can be deployed. For every activated sensor node, the client transmits a
single-data registration message to the server, subsequently receiving a response that

3.4. SEAMDAP-based System Deployment 63

encompasses the instance’s unique ID (as depicted in Figure 3.3). Thus, during this
phase, the count of automatic messages exchanged between the client and the server
is O(n). Given that m ≪ n, it can be concluded that the overall volume of automatic
messages between the client and the server aligns with O(n). □

3.4 SEAMDAP-based System Deployment

In this section, we delve into the POSITIVE information system, an operational frame-
work introduced by the POSITIVE project [2], which is geared towards providing
scalable sensor/satellite-driven services in the domain of Smart Farming. We specif-
ically spotlight the incorporation of the SEAMDAP protocol within the POSITIVE
information system for the collection of sensor data.

The overarching aim of the POSITIVE initiative is to establish operational pro-
tocols that render agronomically relevant information accessible to a diverse array of
users, facilitating the execution of Smart Farming endeavors such as precision irriga-
tion and crop monitoring. This objective is achieved by orchestrating a multifaceted
data flow among disparate entities situated within the Edge-to-Cloud continuum.

Outlined below are the pivotal entities constituting the POSITIVE information
system:

• Sensors, Sensor Nodes, and Gateways. Positioned at the edge of the POS-
ITIVE information system, a variety of sensor types play a role in the sys-
tem’s operation. These encompass ground sensors, responsible for monitoring
attributes like soil water content and chemical composition; atmospheric sen-
sors, tasked with capturing parameters such as temperature, humidity, and solar
exposure; and in-vivo sensors, which directly interact with crops by measuring
variables like ion flow in sap to assess water requirements [54]. The data pro-
duced by these sensors must be conveyed to the information system. This is
achieved through two primary methods: either by directly connecting sensors
to sensor nodes with adequate processing capacity and power supply, enabling
independent utilization of SEAMDAP, or via gateways communicating with
sensor nodes using specific protocols.

64 Chapter 3. Scalable Protocol for Sensor Data Acquisition

• POSITIVE Server. The POSITIVE Server forms the backbone of the POSI-
TIVE information system, encompassing a suite of core services. Its primary
responsibilities include processing diverse data sources, managing user requests,
orchestrating precision irrigation activities, and controlling remote agricultural
machinery. These services can be consolidated within a singular server or
distributed across a group of servers, positioned at the edge (e.g., on-farm
premises), within a fog layer, or even in the cloud. Services delivered by the
POSITIVE Server draw on geolocalized sensor data, such as local crop moni-
toring information, or harness aggregated sensor data stemming from dispersed
spatial sources.

• IRRIFRAME: IRRIFRAME [55] is an advanced cloud-based decision sup-
port system tailored for Smart Farming. Its array of services encompasses pre-
cision irrigation guidance, derived from an amalgamation of data including
satellite imagery and sensor data. The role of the POSITIVE Server revolves
around supplying these data, complete with requisite preprocessing, and trans-
lating IRRIFRAME outputs into actionable insights for farmers.

Satellite data, though not gathered through SEAMDAP, are a pivotal component
of the system, typically accessed via specialized standard protocols.

A visual representation of the POSITIVE Information System architecture is
shown in Figure 3.5. Some entities have been omitted from the depiction for con-
ciseness, as they are not directly pertinent to the current exposition.

Below, two illustrative scenarios involving the POSITIVE information system
are considered, each showcasing how the adoption of SEAMDAP delivers distinct
benefits to users. For each one, the interactions within each case and relative message
examples are reported.

Case 1: Uploading Sensor Data. In this scenario, we delve into a group of farm-
ers who possess a diverse range of sensors and seek to upload their sensor data to
the POSITIVE Server. Firstly, each user determines the approach for transmitting
sampled data from their sensors. Subsequently, a Thing Description (TD) document
is devised for each configuration, encapsulating the specifications of the data be-

3.4. SEAMDAP-based System Deployment 65

Figure 3.5: Simplified architecture of the POSITIVE Information Systems.
SEAMDAP-based interactions (highlighted in red) are for sending raw sensor data to
the POSITIVE Server, and for uploading processed sensor data to the IRRIFRAME
service. GIS user interfaces provide farm-related visual information, including sensor
node deployments.

ing collected and the intended communication methodology. The POSITIVE Server,
aware of the users’ data transmission configurations through the previously shared
TD documents and after the single-instance registration message, initiates dynamic
data acquisition based on the provided context

Two considerations must be done. Within the agricultural domain, accessing sen-
sor data isn’t always straightforward or guaranteed. Indeed, manufacturers often im-
pose limitations on direct data access, offering proprietary channels like cloud ser-
vices for data retrieval. In cases where manufacturers do not provide alternatives,
users are required to develop custom applications that fetch data in a timely manner
and consolidate them according to prescribed formats.

Moreover, different users opt for varying data transfer approaches. Some may
transmit intricate sets of raw data, such as information pertaining to soil and atmo-
spheric conditions. These datasets necessitate subsequent verification and processing
within the POSITIVE Server. On the other hand, certain users solely convey the out-
come of processing tasks performed within their own Sensor Node, streamlining the
server-side processing burden.

As previously said, these TD documents are then shared with the POSITIVE
Server (an illustrative example is presented in Listing 3.1). For the purpose, several

66 Chapter 3. Scalable Protocol for Sensor Data Acquisition

approaches can be employed to transmit the TD. Typically, TD transmission occurs
through a dedicated private TD Repository, responsible for storing the document and
providing it to the POSITIVE Server upon request. Alternatively, the client delivering
sensor data may also provide the accompanying TD document.

The POSITIVE Server mandates that each client undertakes a single instance reg-
istration for every sensor node. Additionally, the POSITIVE Server manages spatial
data, encompassing terrain geometries. Consequently, the spatial validity of sensed
data and the precise location are linked to each sensor node. Notably, these data per-
tain to sensor nodes installed in specific locations, rather than individual sensors.

0 {
1 " i d " : "SENSOR_NODE_ID" ,
2 " t i t l e " : " s e n s _ h t _ v 1 . 5 " ,
3 " d e s c r i p t i o n " : " Humidi ty and t e m p e r a t u r e d a t a i n t e r f a c e " ,
4 " model " : "MODEL_ID" ,
5 " m a n u f a c t u r e r " : " Names " ,
6 " p r o p e r t i e s " : {
7 " h u m i d i t y " : {
8 " t y p e " : " number " ,
9 " d e s c r i p t i o n " : {

10 " name " : " hum"
11 " u " : " kg / m3"
12 } ,
13 " minimum " : 0 . 0 ,
14 "maximum" : 100 . 0
15 } ,
16 " t e m p e r a t u r e " : {
17 " t y p e " : " number " ,
18 " d e s c r i p t i o n " : {
19 " name " : " temp " ,
20 " u " : " Cel "
21 } ,
22 " minimum " : −30 . 0 ,
23 "maximum" : 60 . 0
24 }
25 }
26 }

Listing 3.1: Simplified example of TD message for data interface recording. Two
types of data are defined, with relative measurement units and validity range.
Some domain-specific words have been used to describe all the characteristics of
interest to the prototype.

For the depicted scenario, the single instance registration employs a customized
format comprising a simple list of (key, value) pairs. This list encompasses the unique
ID of the data interface coupled with its corresponding TD document. Alternatively,

3.4. SEAMDAP-based System Deployment 67

the repository address from which the TD document can be retrieved can be indicated.
Upon successful retrieval, the POSITIVE Server communicates the registered TD
document’s ID. Furthermore, a range of data pertinent to the registering user must be
specified for authentication purposes. This includes the identification of the relevant
cultivated plot (if applicable), geographic coordinates of the sensor node’s location,
and the validity area for the forthcoming sensor data provision.

Lastly, the data acquisition mode can also be specified, enabling the POSITIVE
Server to request sensor data from an E2C node. This mode additionally includes
parameters like the minimum time interval between two requests. In response to
this registration, the POSITIVE Server returns a unique ID to the client for self-
identification. Moreover, pertinent information such as the communication endpoint
is provided. An exemplary representation of this process is depicted in Listing 3.2.

0 {
1 "TD" : "TD_UUID" ,
2 " UserID " : 12345 ,
3 " P l o t I D " : 56789 ,
4 "Name" : " name " ,
5 " P o s i t i o n " : [44 . 7658599 , 10 . 3101259]
6 " Area " : <GeoJSON_Object > ,
7 " S e r v e r " : {
8 " Ur l " : "< s e r v e r _ a d d r e s s >" ,
9 " P e r i o d " : 3600

10 }
11 }

Listing 3.2: Example of message used for single instance registration of a sensor node
to the POSITIVE Server.

0 { " senml " : [
1 { " bn " : " s e n s _ h t _ v 1 . 5 " , " b t " : 1 . 6 1 3 5 6 1 2 8 6 e +09 , " v " : 1 2 0 , " u " : " hum " } ,
2 { " v " : 27 , " u " : " temp " } ,
3 { " b t " : 1 . 613647686 e+09 , " v " : 35 , " u " : " hum " } ,
4 { " v " : 100000 , " u " : " temp " } ,
5 { " b t " : 1 . 613734086 e+09 , " v " : 64 , " u " : " hum " } ,
6 { " v " : 21 , " u " : " temp " } ,
7 { " b t " : 1 . 613820486 e+09 , " v " : 87 , " u " : " hum " } ,
8 { " v " : 22 , " u " : " temp "}
9]

10 }

Listing 3.3: SenML message in contract form, comprising a series of records sent by
the client. The message structure complies with the TD message, indicating the type
of data and a sampling time for each record.

68 Chapter 3. Scalable Protocol for Sensor Data Acquisition

Upon the successful registration of instances and TD documents, the POSITIVE
Server is endowed with the capability to interpret the received sensor data. Each trans-
mission can encapsulate multiple samples, each aligning with the stipulated interface
structure. An illustrative instance is presented in Listing 3.3. Notably, the measure-
ment units, as predetermined by the TD, are already established. However, for sit-
uations demanding variability, units can be explicitly specified within each SenML
record.

Case 2: Uploading More Complex Information Shifting focus to the second
case, it pertains to the transfer of "Soil Water Content" information from the POS-
ITIVE Server to IRRIFRAME. For managing various Smart Farming activities, IR-
RIFRAME constructs and updates diverse soil and crop models. This includes utiliz-
ing insights garnered from sensor measurements, provided either directly by sensor
nodes or processed by the POSITIVE Server from a multitude of sources.

In these interactions, SEAMDAP takes center stage. Here, IRRIFRAME assumes
the server role, while multiple instances of the POSITIVE Server function as clients.
Consequently, the number of TD documents remains limited and pre-registered, ob-
viating the need for a single instance registration phase. Since specialized data on
individual instances is superfluous, this phase is omitted. As customary, data acquisi-
tion adheres to the SenML standard, integrating tokens and IDs to accurately attribute
sensor data to respective users. This process is exemplified in Listing 3.4.

0 { " senml " : [
1 { " bn " : " s w c _ f i e l d _ i d _ 1 0 " , " t " : 1 . 6 1 3 5 6 1 2 8 6 e +09 , " v " : 3 0 , " u " : " swc " } ,
2 { " t " : 1 . 613647686 e+09 , " v " : 35 , " u " : " swc " } ,
3 { " t " : 1 . 613734086 e+09 , " v " : 33 , " u " : " swc "}
4]
5 }

Listing 3.4: SenML message to be used for uploading processed data to
IRRIFRAME. The Soil Water Content (SWC) value is computed by the POSITIVE
Server.

In summary, SEAMDAP plays a pivotal role within the POSITIVE information
system by facilitating the collection of sensor data from a diverse array of stake-
holders. This process is bifurcated into two distinctive scenarios, each unfolding at
distinct layers of the Edge-to-Cloud continuum.

3.5. Experimental Evaluation 69

In the first scenario, clients occupy positions within the Edge layer. These clients
sometimes establish direct connections with the sensor nodes situated in the IoT layer.
In contrast, servers are represented by E2C nodes located at intermediary to higher
layers, characterized by medium to high processing capabilities.

Conversely, the second scenario is characterized by E2C nodes playing the role
of clients. In this capacity, they transmit sensor data to a Cloud node endowed with
augmented processing and storage capabilities.

3.5 Experimental Evaluation

As detailed in Section 3.4, the practical implementation and evaluation of SEAM-
DAP are performed within a comprehensive Smart Agriculture system. To ensure
thorough and controlled assessments of SEAMDAP’s functionalities, we employed
a publicly available demo, whose code is accessible at https://github.com/
SEAMDAP/Demo. This approach allowed us to meticulously analyze SEAMDAP’s
operational aspects, taking advantage of complete control over both client and server
entities. Consequently, we could precisely configure parameters such as workload
size, random delays, and error simulations.

The demo comprises a dynamic assembly of SEAMDAP clients, each repre-
senting a distinct sensor node instance to be registered. Additionally, a SEAMDAP
HTTP-based RESTful server is part of the setup. Our evaluation was executed on a
machine equipped with two Intel Xeon Silver 4210 CPU boasting a clock frequency
of 2.20GHz and 10 physical cores. This machine also featured a maximum available
RAM of 64 GB. The performance assessment was executed using the widely-utilized
network protocol analyzer, Wireshark 2.6.10.

Throughout all conducted experiments, the TD file was directly registered on the
server by the clients. These clients also registered varying numbers of sensor nodes
with the server. Each instance communicated sampled data at regular intervals, with
the inter-instance intervals varying randomly. The bounds of these random intervals,
as well as other settings such as inactivity periods, were configurable.

It’s noteworthy that network-level security mechanisms were omitted from these

https://github.com/SEAMDAP/Demo
https://github.com/SEAMDAP/Demo

70 Chapter 3. Scalable Protocol for Sensor Data Acquisition

Table 3.1: Main messages characteristics used in the simulations.

Phase Phase 1 Phase 2 Phase 3

Message Format TD custom SenML

Size Range [B] [310 - 920] [370 - 520] [75, 150]

Size Range [B] (gzip lvl.6) [220 - 340] [270 - 340] [75, 140]

experiments. The objective was to gauge the pure impact of SEAMDAP, excluding
the potential overhead introduced by security protocols like Transport Layer Security.

To emulate genuine and coherent data flow communication, the exchanged mes-
sages were randomly generated from a pre-defined list of authentic and well-structured
messages. The sizing ranges of the messages dispatched by the clients are indicated in
Table 3.1. Additionally, the compressed sizes of these messages (gzip) are presented.

The demo has been evaluated under two distinct configurations, each defined
by varying values for the number of registered data interfaces (TD files transmit-
ted during phase 1) and the number of registered instances for each data interface.
These numerical selections were based on the agricultural scale and dimensions of
the Emilia-Romagna region. This region, based on surveys conducted by the Italian
national statistical institute (Istat), encompasses approximately 60,000 agricultural
enterprises.

The specifics of the two configurations are outlined in Table 3.2. Although the two
configurations exhibit different ratios between interfaces and instances, they share an
equivalent total instance count. As this instance count increases, so does the number
of messages exchanged during the execution of the demo. Other parameters, such as
inactivity intervals and the time elapsed between two uploads in phase 3, are deter-
mined randomly within predefined intervals that remain consistent across all config-
urations.

Regarding timing considerations, we emulated the behaviour of real users from
the implemented system outlined in Section 3.4. These users typically upload one or
two samples per registered sensor instance every hour. To ensure reasonable execu-
tion times for each test (capped at 120 minutes), we established the communication

3.5. Experimental Evaluation 71

Table 3.2: Parameters of the two simulation configurations.

A B

Data Interfaces 60000 10000

Instances per Data Interface 5 30

Data Interfaces over Instances per Data Interface 12000 333.33

Table 3.3: Simulation results. Number, total size and average latency of the messages
exchanged in each experiment, grouped by phase.

Configuration A Configuration B

Number (Size) Ph. 1 60000 (34.44 MB) 10000 (5.74 MB)

Number (Size) Ph. 2 300000 (130.08 MB) 300000 (130.08 MB)

Number (Size) Ph. 3 8041563 (855.62 MB) 8035996 (855.03 MB)

Avg Latency Ph. 1 39.230 ms 43.833 ms

Avg Latency Ph. 2 230.612 ms 265.910 ms

Avg Latency Ph. 3 54.135 ms 52.720 ms

Avg Total Latency 60.372 ms 59.730 ms

period for each sensor instance within a random interval spanning from 75 to 150
seconds. This approach aligns the demo with the realistic usage patterns observed in
the actual implementation.

The experimental results, presented in Table 3.3, confirm the property stated in
Claim 4.1 of Section 4. This claim asserts that the number of automatic messages
in phases 1 and 2 is proportional to the number of sensor nodes, as the number of
registered data interfaces is much smaller than the number of sensor nodes.

Observing the results, it becomes evident that the most significant data flow arises
from the sample uploads, directly correlated to the number of registered instances
and the upload period. Phases 1 and 2 contribute minimally to the overall load. These
phases are executed at most once per instance and necessitate user involvement.

Regarding latency, when accounting for random experiment fluctuations, all val-

72 Chapter 3. Scalable Protocol for Sensor Data Acquisition

ues resulted by simulation are consistent. Phase 1 exhibits the lowest latency due to
its early execution, when network traffic and server message queues are minimal. In
contrast, phase 2 displays higher latency due to traffic volume and longer processing
time to verify message reliability and instance registration. Phase 3, involving small-
sized messages necessitating minimal server processing, demonstrates low latency
despite heavy network activity.

Concerning user manual interventions, the worst-case scenario involves generat-
ing descriptor files for phase 1 and configuring instance registration parameters for
phase 2. Importantly, TD descriptor files used in phase 1 may require hardware exper-
tise for accurate preparation, suggesting that manufacturers could facilitate integra-
tion by providing these descriptions. Additionally, phase 2, while flexible, could be
executed by advanced devices or bypassed entirely with a more sophisticated server
capable of autonomous content recognition and integrity evaluation for SenML mes-
sages. Thus, we may conclude that SEAMDAP minimizes user involvement, often
requiring only minimal configurations.

Chapter 4

Secure Management of
Georeferenced Data

The content of this chapter is derived from the paper "Enabling Location Based
Services with Privacy and Integrity Protection in Untrusted Environments through
Blockchain and Secure Computation", by Amoretti M, Budianu A., Caparra G., D’Agruma
F., Ferrari D., Penzotti G., Veltri L., and Zanichelli F..

In this Chapter, secure data management in non-fully trusted environments is
discussed, especially considering application in which PNT (Position, Navigation
and Timing) data are involved. This topic takes on ever greater importance with the
increase and proliferation of Internet-connected devices, generating an high demand
of services. The request for a service from a node, whether it is at the Smart Farming
level or closer to the edge of the network, is always an operation that brings significant
challenges, particularly in the realms of security and data confidentiality.

The aspects that are covered concern secure communications (not at the applica-
tion level), secure processing and position verification. The proposed mechanisms are
therefore integrable on a system created with the tools presented in Section 2 (for the
system architecture aspect), and also with those presented in Section 3 (concerning
data collection from multiple sources).

The considerations and tools in this chapter mainly satisfy the requirements of

74 Chapter 4. Secure Management of Georeferenced Data

RQ5, establishing strong constraints for respecting user privacy. In this way, the re-
quirements of RQ2 about the integrity of data in communication are also partially
satisfied.

Section 4.1 introduces the problem of protecting user location data. In Section
4.2, some related work are explored and commented. In Section 4.3, a functional ar-
chitecture that facilitates Location-Based Services while ensuring privacy and data
integrity in untrusted environments is detailed. Section 4.4 delves into the interac-
tions between its subsystems, accompanied by a comprehensive security analysis.
Section 4.5 focuses on the location verification scheme, while Section 4.6 presents
the performance evaluation of the proposed architecture.

4.1 Data Protection and Location-Based Services

In the context of modern digital services, a critical concern revolves around security
and privacy of user data. As commented in Chapter 3, management of users is a
complex growing theme that needs attention on the protection and dissemination of
sensible and personal data, in order to preserve the privacy and the economic value
of those data.

This issue becomes particularly intricate in services that hinge on geographic
information, notably Location-Based Services (LBS). Typically, users share their lo-
cation and contextual information with LBS providers in exchange for access to re-
sources or facilities. The quality and utility of these services returns are intricately
tied to the precision and accuracy of such data. However, the assumption of a trusted
relationship between users and service providers may no longer be considered true
in the some scenarios, due, for example, to the incidence of data breaches events that
expose user data to attackers.

In fact, typically, service providers are external entities to a user’s system, and
cannot always be deemed entirely reliable, potentially making the exchange of sen-
sitive information a precarious endeavor. This inherent vulnerability opens up the
potential for data breaches that might compromise user information, thereby casting
a shadow of doubt on the trustworthiness of service providers.

4.1. Data Protection and Location-Based Services 75

In addition to these security concerns, there is also the pressing matter of privacy
breaches and the looming possibility of location data misuse [20]. The fear of one’s
location information falling into the wrong hands or being exploited without consent
poses a substantial hurdle to the widespread adoption of these location-dependent
services.

On the flip side, there are scenarios where users may intentionally provide false
location data to gain an advantage. For example, in activities like racing competitions
or transportation services, the user could be tempted to communicate forge location
data, advantaging itself by falsifying the path taken. In response, service providers
must possess the capability to verify the accuracy of location data and promptly iden-
tify any malicious user activities. This entails a delicate balance between maintaining
data integrity and ensuring user privacy in a world where the concept of a trusted
service-provider-user relationship has grown increasingly complex.

The pivotal challenge in this landscape revolves around the secure management of
user data. It is imperative to ensure the authenticity, integrity, and privacy of user data
while eliminating the need for unconditional trust. Various approaches to eradicating
trust dependencies can be explored.

One of the main issues concerns the protection of communications. The adoption
of appropriate communication techniques and protocols is essential to guarantee an
adequate level of data integrity protection, but also to identify the correct sequence of
interactions to guarantee the properties sought by the system, without disseminating
unnecessary data.

Regarding data processing, preserving user privacy can be achieved by integrat-
ing advanced techniques and specific interaction patterns. Some of these techniques
are Private Computation, Zero Knowledge Proof, Homomorphic Encryption, and
Multi Party Computation [56, 57, 58, 59, 60]. Each of them brings specific advan-
tages, but also refers to a particular scenario, bound by their requirements.

Also data persistence is a relevant topic in this scenario, both to resist exter-
nal attacks (unwanted readings, tampering, deletions, etc.), and to maintain shared,
non-alienable and non-repudiable evidence. In this case many classic security poli-
cies can be used, integrating elements of redundancy and access control, but also

76 Chapter 4. Secure Management of Georeferenced Data

adopting more recent solutions. For instance, position, navigation, and timing (PNT)
information, as well as georeferenced data from one or multiple users associated with
specific events, can be collected and stored in a decentralized, immutable storage sys-
tem, such as a blockchain (BC) [61, 62, 63]. In cases where third-party verification
is required, users may selectively disclose certain information. Attempts to tamper
with the data can be detected through consistency checks between current data and
previous records.

The novel aspect of this architecture lies in its simultaneous utilization of blockchain
and secure computation technologies. Homomorphic Encryption and Multi Party
Computation will be covered, as they are more mature solutions (especially from an
IT point of view) and are better suited to the topic to be addressed. Mechanisms for
sharing and processing user PNT data and georeferenced data are defined, along with
a detailed exposition of the cryptographic schemes and algorithms employed. As an
illustrative example, a strategy for implementing a location verification scheme based
on ray casting is proposed, demonstrating how both MPC and HE can contribute to
data processing in a privacy-preserving manner. The effectiveness of the proposed
architecture has been validated through an emulation-based testbed.

4.2 Related Works

The design and prototypical implementation of the proposed architecture emerged
from the need to address a gap in the literature concerning the safeguarding of privacy
and data integrity in Location-Based Services (LBS).

PASPORT [64] is a framework tailored for secure and private location verifica-
tion, employing collaborative strategies and fundamental cryptographic tools such as
public key encryption and digital signatures. In PASPORT, mobile users supply a
location proof (LP) to service providers to validate the accuracy of their submitted
location. These LPs are generated by other mobile users who act as witnesses. PAS-
PORT offers robust defenses against various fraudulent activities, including distance
frauds, mafia frauds, terrorist frauds, LP forgery attempts, and sybil frauds. How-
ever, it’s worth noting that some aspects of the collaborative procedures in PASPORT

4.3. Functional Architecture 77

hinge on optimistic assumptions regarding short-range communications between the
prover and the witnesses. In practical tests, utilizing Bluetooth Low Energy, it was
found that these assumptions do not hold.

Horton et al. [65] introduced Geoffdnet, a network of GNSS (Global Navigation
Satellite System) receivers that operates based on a public blockchain and utilizes
token incentives. This network comprises GNSS Miners, Validator Nodes, and Ser-
vice Provider Nodes. Validator Nodes engage in a Proof of Stake (PoS) consensus
protocol to validate transactions in the Geodnet blockchain, which includes obser-
vation data (e.g., space weather data) generated by GNSS Miners. This consensus
protocol determines which node generates a new block at a given time point. GNSS
Miners also transmit observation data to Service Provider Nodes, which are directly
connected to end users. The concept is intriguing, but the absence of a comprehensive
performance evaluation limits our ability to reach a conclusive judgment.

Awadallah et al. [66] proposed a scheme aimed at circumventing the ultimate au-
thority that cloud service providers (CSPs) have over data. Their approach relies on
Byzantine Fault Tolerance consensus to establish a distributed network of processing
CSPs, which is constructed in accordance with client requirements. Following spe-
cific homomorphic encryption (HE)-based computations executed by all CSPs, they
produce a master hash value for their database. To ensure the immutability of the pro-
duced data, these master hash values are preserved within the Bitcoin or Ethereum
blockchain networks. The scheme is accompanied by an informal security analysis
and an initial performance assessment.

4.3 Functional Architecture

The architecture presented in this Section is called functional because all the consid-
eration about entities regards the functionality implemented, like receiving input mes-
sages and performing a transformation on the received data and serving the result to
another entity. These entities are tasked with specific functions and differentiate from
another based only on the role it assumes in the interaction that will be presented.
For some task, a node necessitates a specific hardware and software requirements to

78 Chapter 4. Secure Management of Georeferenced Data

ensure their proper operation, but there are not considerations on the node position
in the network. In fact, the positioning of these entities within the network architec-
ture is highly flexible and not subject to strict restrictions. They can be strategically
located at any layer of the network, offering adaptability to various operational needs
and resource availability.

The proposed architecture is illustrated in Fig. 4.1, where LSS stands for Loca-
tion Service System, P for Publisher, LBSS for location based service system, Pr for
processing, St for storage system, SC for Service Consumer.

Figure 4.1: Proposed architecture.

Below the functional characteristics of the nodes that make up a system adhering
to this architecture are discussed.

Location Service System (LSS)

An LSS is a system designed to implement Location Service functionalities. It serves
the critical role of providing Location Data (LD) – including coordinates and, if avail-
able, error estimates – pertaining to a Traced Entity (TE). This LD is then transmitted
to a Publisher (P), which, in turn, processes and conveys this data to the Location-
Based Service System (LBSS). The LSS is flexible in its approach and can employ

4.3. Functional Architecture 79

various communication mechanisms.
Passive Communication Mechanism: With the passive communication mecha-

nism, a TE’s device acquires location information from a spatial or terrestrial location
systems. Examples of such systems include GNSS-like systems, and location detec-
tion is based on physically located active devices, such as Wi-Fi Access Points (APs),
PLMN or WMAN base stations, or any other radio or optical beacons.

Active Communication Mechanism: Contrastingly, the active communication
mechanism operates on the basis of detecting the presence of the TE, or the TE’s
device, through one or more entities. These entities can be classified as follows:

1. Trusted Devices (TD): These devices are integral components of the LSS in-
frastructure, such as totems or base stations. They validate the location infor-
mation.

2. Untrusted Devices: These are devices belonging to other TEs that come into
proximity with the first TE within a specified time interval. In both cases, the
location information is "certified" by the nearby device(s). In the second case,
the assurance of location relies on the correctness of other TEs. To prevent
potential collusive behaviors, a distributed trust and reputation management
mechanism can be employed.

Depending on the chosen communication mechanism, the LD may or may not be
certified, as follows:

• Passive Communication: LD cannot be certified (i.e., it cannot be signed by
the LSS). However, if the LSS can utilize multiple devices, whether trusted or
untrusted, it may attain a certain level of protection by conducting consistency
checks on proximity measurements.

• Active Communication with Trusted Device: LD can be certified (i.e., it can
be signed by the LSS).

• Active Communication with Untrusted Device: LD can be certified, pro-
vided that measures are in place to prevent collusive behaviors.

80 Chapter 4. Secure Management of Georeferenced Data

In cases of active communication, its possible to assume that a form of distance
bounding [67] [68] is employed to prevent physical layer attacks on proximity mea-
surements.

An LSS with passive communication continuously provides LD, allowing the
Publisher (P) to periodically activate the receiver and acquire incoming LD items.
In the case of active communication with trusted devices, the Publisher (P) must
explicitly request LD. The response from the LSS includes digitally signed LD.

Publisher (P)

The Publisher (P) is closely associated with the Traced Entity (TE) and plays a piv-
otal role in the system. It receives TE-related Location Data (LD) from the Location
Service System (LSS) as described in the previous subsection. From these LD, the
Publisher (P) derives Timestamped Position and Georeferenced Information (TPGI).

The Publisher (P) then forwards these TPGI to the Location-Based Service Sys-
tem (LBSS). The communication pattern is straightforward, with the LBSS con-
stantly listening for messages generated by the Publisher (P). These messages must
be encrypted and signed by the Publisher (P). Upon receipt by the LBSS, the TPGI
is stored in the Storage system, as detailed in the next subsection.

Location-Based Service System (LBSS)

The Location-Based Service System (LBSS) is a comprehensive system that imple-
ments Location-Based Service (LBS) functionalities. In essence, the LBSS receives
TPGI messages from the Publisher (P) and performs LBS functions through process-
ing (Pr) operations. Both input and output data can be securely recorded in a storage
system (St).

In this proposed LBSS, the writing of TPGI items to the Storage system (St) is
directly carried out by the Publisher (P), which employs this Storage (St) as a secure
mechanism to transmit TPGI data to the LBS. The write operation is conducted in
such a manner that it is always possible to verify that TPGI has been sent and to au-
thenticate the source of the data. Collusive attacks with repudiation of the received

4.3. Functional Architecture 81

TPGI are only feasible if both the LBSS and the third-party storage system are ma-
licious. However, such attacks become practically unfeasible if the Storage (St) is
implemented using a highly decentralized mechanism, such as a Blockchain (BC).

The Storage (St) subsystem within the LBSS has a dual structure. It comprises a
database for storing the TPGI and a Blockchain (BC) for permanently storing TPGI-
derived data, like digests of the TPGI computed using a Cryptographic Hash Func-
tion. All data stored within the system are encrypted.

The Processing (Pr) subsystem of the LBSS can execute a wide range of op-
erations. While the specific business logic varies for each LBS-based application,
fundamental operations are common across all applications. A prominent example is
location verification, as discussed in Section 4.5. Another shared aspect is the need
to protect processed data from malicious Pr providers.

Homomorphic Encryption (HE) [69] encrypts the entire input before submitting
it to a single Processing (Pr) unit. HE demands a high-performance Pr unit to process
the encrypted input and produce the correct encrypted output. Notably, the input can
be encrypted by the Publisher (P) before it is submitted to the Storage (St) subsystem.
The encrypted output generated by the Pr unit is then returned to the Storage (St)
subsystem for retrieval by authorized users possessing the decryption key, typically
the Publisher (P) and the Service Consumer (SC).

Secure Multi-Party Computation (MPC) [58] divides the input into N fragments,
each sent to a distinct Processing (Pr) unit owned by a different provider. These N
Pr units compute specific functions on the inputs while preserving key security prop-
erties, including privacy and correctness. Privacy guarantees data confidentiality, en-
suring that nothing leaks from the protocol execution except the computed output.
Correctness assures the integrity of computations made by parties, with honest par-
ties receiving the correct output. MPC computations per Pr unit are typically less
computationally intensive than HE. However, MPC is viable when at least N ≥ 2 Pr
providers are involved, and at least one party is honest. A larger N increases commu-
nication overhead.

82 Chapter 4. Secure Management of Georeferenced Data

Service Consumer (SC)

The Service Consumer (SC) holds the privilege of decrypting and accessing the data
provided by the Publisher (P) to the Location-Based Service System (LBSS). This
access allows the SC to retrieve TPGI items from the database and TPGI-derived
items from the Blockchain (BC). Furthermore, the SC has the capability to decrypt
and review data produced by the Processing (Pr) subsystem of the LBSS. However,
the SC is only authorized to perform a limited number of verifications to maintain the
privacy of the Traced Entities (TEs).

4.4 Subsystems Interactions

Figure 4.2: Detailed interactions between subsystems of the proposed architecture.

Figure 4.2 provides a detailed illustration of the interactions between subsystems
within the proposed architecture. This configuration represents the most comprehen-
sive and general setup, encompassing all possible Location Service System (LSS)
and Storage types. It highlights the primary messages exchanged between subsys-
tems, with these interactions and messages varying based on the LSS type (GNSS,
trusted device, or peer-to-peer) and the Processing (Pr) type (Homomorphic Encryp-

4.4. Subsystems Interactions 83

tion - HE or Secure Multi-Party Computation - MPC). The Service Consumer (SC),
assumed to be honest, receives application-specific notifications from the Location-
Based Service System (LBSS) and is authorized to conduct verification activities on
stored data.

To elucidate these interactions and messages, the most challenging scenario, which
involves a peer-to-peer LSS type, is commented. The corresponding sequence dia-
gram is delineated in Figure 4.3. In this scenario, the Publisher (P) is associated with
Traced Entity 1 (TE1). The Publisher (P) generates the Timestamped Position and
Georeferenced Information (TPGI) and dispatches it to the Location Service System
(LSS), which is associated with another traced entity, namely TE2. Upon verify-
ing the correctness of the TPGI, the LSS signs and returns it to the Publisher (P).
Subsequently, the Publisher (P) divides the signed TPGI into two messages for the
Location-Based Service System (LBSS) – one for storage in the database for future
processing and the other for inclusion in the Blockchain (BC). Notably, in this bidi-
rectional system, the LSS can interchangeably assume the role of the Publisher (P),
and vice versa, certifying each other’s positions reciprocally.

In the context of Homomorphic Encryption (HE), the P, to communicate data
securely, sends a specific messages to the LBSS depicted as follows:

• MPeer = {IDT E1; IDT E2;{T PGI}KHeT E1;
SigT E1({T PGI}KHeT E1)}KeT E1

• MPeerBC = {IDT E1; IDT E2;Hash(T PGI);
SigT E2(T PGI)}KeT E1

where:

• KeT E1 is a symmetric key owned by the P and the LBSS used for encrypting
the whole payload for preserving its confidentiality

• IDT E1 is TE1’s identifier

• IDT E2 is TE2’s identifier

84 Chapter 4. Secure Management of Georeferenced Data

Figure 4.3: Sequence Diagram for the LSS type peer-to-peer.

• KHeT E1 is a symmetric key owned by the P and the SC (the encrypted TPGI
is the input to the HE Pr)

• Hash(x) is a Cryptographic Hash Function

• SigT E1(x) is TE1’s signature, meaning {Hash(x)}K prT E1, where K prT E1 is a
private key owned by the P

• SigT E2(x) is TE2’s signature, meaning {Hash(x)}K prT E2, where K prT E2 is a
private key owned by the LSS

When Secure Multi-Party Computation (MPC) is employed with N Processing
Units (Pr), the Publisher (P) sends the following message with the LBSS:

• MPeer = {{MPeer1}KPr1

...

4.4. Subsystems Interactions 85

{MPeerN}KPrN

{MPeer1}KSCeT E1

...

{MPeerN}KSCeT E1}KeT E1

• MPeerBC = {IDT E1; IDT E2;Hash(T PGI);
SigT E2(T PGI)}KBCeT E1

where

• MPeeri is the specific message for to the i-th Pr

• KPri is a symmetric key owned by the P and the i-th Pr

• KeT E1 is a symmetric key owned by the P and the LBSS

• KSCeT E1 is a symmetric key owned by the P and the SC

• KBCeT E1 is a symmetric key owned by the P and the blockchain

• IDT E1 is TE1’s identifier

• IDT E2 is TE2’s identifier

• Hash(x) is a Cryptographic Hash Function

• SigT E1(x) is TE1’s signature, meaning {Hash(x)}K prT E1, where K prT E1 is a
private key owned by the P

• SigT E2(x) is TE2’s signature, meaning {Hash(x)}K prT E2, where K prT E2 is a
private key owned by the LSS

The specific message for to the i-th Pr unit has the following structure:

• MPeeri = {IDT E1, IDT E2,T PGIi,

SigT E1(T PGI)}

86 Chapter 4. Secure Management of Georeferenced Data

where T PGIi is the TPGI piece assigned to the i-th Processing unit.
The symmetric keys listed above can be ephemeral/session keys derived via a

standard key agreement based on public keys (which is omitted for the sake of sim-
plicity).

4.4.1 Security Analysis

The communication between TE1 and TE2 is assumed to be secured using standard
techniques, such as:

• Secret Key Cryptography: Also known as symmetric-key cryptography, it
uses a single shared secret key for both encryption and decryption. This method
is efficient for securing communication between two parties who already pos-
sess the shared key.

• Cryptographic Hash Functions and MAC Functions: Cryptographic hash
functions are mathematical algorithms that take an input (or ’message’) and
produce a fixed-size string of characters, which is typically a hexadecimal
number. They are used to verify data integrity. MAC (Message Authentication
Code) functions are used to verify both the data integrity and the authenticity
of a message.

• Public Key Cryptography (PKC): Also known as asymmetric-key cryptog-
raphy, it involves a pair of keys: a public key for encryption and a private key
for decryption. It is widely used for secure data transmission and digital signa-
tures.

• Digital Signatures: Digital signatures provide a way to verify the authenticity
and integrity of a message or document. They are created using the private key
of the sender and can be verified using the sender’s public key.

• Collaborative Techniques: Witness-Prover Schemes: These cryptographic
schemes involve interactions between two parties, a prover and a verifier. They
are used to prove the truth of a statement without revealing the actual data
involved, ensuring privacy.

4.5. Location Verification 87

• Data Storage Security Policies: These policies define rules and procedures
for securing data at rest, including encryption, access controls, and data backup
strategies.

• Access Control (AC): Access control mechanisms determine who can access
or modify data or resources in a computing environment. This includes authen-
tication, authorization, and auditing to ensure data security.

In the case of Homomorphic Encryption (HE) usage, the Timestamped Position
and Georeferenced Information (TPGI) is encrypted with a secret key (KHeT E1)
shared between the Publisher (P) and the Service Consumer (SC), who are the end
users of the system. These encrypted data are processed by the Location-Based Ser-
vice System’s (LBSS) Processing Unit (Pr) without revealing information to the
LBSS owner. The communication between the P and the LBSS is secured through
the shared secret key KeT E1. Storing the hash of the TPGI in the blockchain serves
two purposes: i) creating an indelible, timestamped record of the TPGI, and ii) en-
abling the P to verify the integrity of the TPGI stored at the LBSS.

When Secure Multi-Party Computation (MPC) is employed, the TPGI is divided
into N pieces, with each piece being encrypted using a secret key (KPri) shared be-
tween the P and the i-th Pr unit. This approach secures the communication between
the P and the Pr units. The same messages are stored in the LBSS’ Storage system
(St), encrypted using a secret key (KSCeT E1) shared between the P and the Ser-
vice Consumer (SC). To ensure traceability and data integrity, both the hash and the
signature of the pieces are stored in the blockchain.

4.5 Location Verification

In the context of the Location-Based Service System (LBSS), one of the fundamental
processing tasks is the dynamic checking of a position. This verification could be
very complex, using specific interactions between P and LBSS. The position could
be verified as instantaneous information, verifying boundaries requirements, or could
includes spatial and kinetic constraints, considering either the current position or a

88 Chapter 4. Secure Management of Georeferenced Data

combination of current and previous positions.

For the sake of simplicity, in this work, the location verification task is considered
as a simply 2D point inclusion problem. Consider a geometric shape presentable as
a polygon with n edges e1, e2, ..., en. This polygon is defined by a set of vertices V1,
V2, ..., Vn, where each edge ei is determined by its endpoints Vi and Vi+1.

In this problem, the aim is to determine whether a given point lies within the
interior of a geometric shape. While this simplification may not capture all real-world
scenarios, it provides a foundational understanding of location verification within the
LBSS.

Among various algorithms for solving point-in-polygon problems, the Ray Cast-
ing method stands out for its effectiveness and efficiency. For each given point p, the
Ray Casting approach works by selecting a semi-infinite ray that extends from point
P in an arbitrary direction. This ray’s path must intersects with the polygon. As the
ray encounters the polygon’s edges, it alternates between entering and exiting, until
the ray extends infinitely. Now, if the number of crossings between the ray and the
polygon is odd, point P lies within the polygon’s interior. Conversely, if the number
of crossings is even, point P resides outside the polygon.

The Ray Casting method is visually represented in Figure 4.4, and a possible
implementation is detailed in Algorithm 1.

In practical applications, LBSS may need to verify whether a mobile entity’s
current position aligns with specific spatial or kinetic constraints. This verification
can be crucial in ensuring that services are delivered accurately based on the entity’s
location.

4.5.1 Adapting the Algorithm for Homomorphic Encryption Execution

Literature and preliminary tests have highlighted the varying performance of current
Homomorphic Encryption (HE) implementations based on the types of functions they
employ. Notably, when operations are limited to addition and multiplication, an algo-
rithm working on real numbers and implemented using the CKKS scheme [70] can
exhibit strong performance. However, when an algorithm relies on emulated binary

4.5. Location Verification 89

Figure 4.4: 2D Ray casting algorithm.

circuits (employing logical operators), such as the TFHE scheme [71], its perfor-
mance can degrade rapidly.

For this reason, it is desirable to explore the implementation of inclusion verifi-
cation using only polynomial functions. Unfortunately, the Ray Casting algorithm,
like many other point inclusion algorithms, relies on operations beyond addition and
multiplication, including comparisons and IF-THEN-ELSE instructions.

A potential solution involves transforming the algorithm into a sequence of alge-
braic operations, preferably using only additions and multiplications. This solution
was explored in two steps:

• First, the point inclusion algorithm (Ray Casting) was converted into a se-
quence of mathematical functions, replacing IF-THEN-ELSE instructions with
the step function. For instance, IF (a < b) T HEN f 1() ELSE f 2() becomes
step(b−a)∗ f 1()+ step(a−b)∗ f 2().

• Second, the step(x) function was substituted with a polynomial approximation.
In this context, a truncated series of Chebyshev polynomial functions was con-
sidered as a suitable polynomial approximation within a given interval of the x
axis.

90 Chapter 4. Secure Management of Georeferenced Data

Algorithm 1: Ray Casting algorithm
1: P.x = the x-coordinate of the point
2: P.y = the y-coordinate of the point
3: rc = 0
4: for each edge ei=(V1,V2) do
5: if P.y >V 1.y1 and P.y <V 2.y then
6: Q = crossing point between the horizontal line y = P.y and the edge ei

7: if x < Q.x then
8: rc++
9: end if

10: end if
11: end for
12: return (rc mod 2) = 1

In Figure 4.5, three different truncated series of Chebyshev polynomial functions,
with degrees 10, 20, and 40, are illustrated. The Chebyshev coefficients were calcu-
lated to approximate the step(x) function between -1 and 1. As shown in Figure 4.5
(b), the choice of the interval for computing the Chebyshev coefficients is crucial, as
the resulting polynomial significantly diverges outside this interval.

Figure 4.5: Polynomial approximation of the step function using truncated series of
Chebyshev polynomial functions.

An implementation of the Ray Casting algorithm based on the use of the step(x)
function and its 40-degree Chebyshev polynomial approximation was tested with dif-

4.6. Performance Evaluation 91

ferent shapes and trajectories. The results indicated accurate in-shape detection, ex-
cept when the point was precisely on the shape’s border.

4.6 Performance Evaluation

The proposed architecture has been implemented in an emulation-based testbed. This
evaluation assesses data exchange, computational cost, communication overhead, and
robustness.

4.6.1 Configuration

Two emulations have been configured and tested. The first one focuses on interactions
between the LSS, the P, and the St part of the LBSS. The second emulation tests the
Pr part of the LBSS. The respective testbeds are depicted in Fig. 4.6.

Figure 4.6: Emulation software deployment.

92 Chapter 4. Secure Management of Georeferenced Data

The first testbed, presented in Section 4.6.2, emulates interactions of a specific
Traced Entity (TE) with other nodes, particularly Trusted Devices (TDs), other TEs,
and the LBSS St part. This includes an emulated conventional database and the Algo-
rand blockchain [72], known for its speed and efficiency. An Algo node runs locally
(in a Docker environment) to connect to the Algorand testnet. The software for this
testbed is primarily written in Java.

The second testbed executes the Ray Casting algorithm using Homomorphic En-
cryption (HE) and Multi-Party Computation (MPC) libraries and frameworks. Most
of this software is written in C++ and Python.

Most entities are executed on Nemo1 nodes, aiming to emulate a real network.
These nodes are hosted by an Ubuntu 18.04.6 server featuring two Intel Xeon Silver
4210 CPUs with a clock frequency of 2.20GHz and 10 physical cores, and a maxi-
mum available RAM of 64 GB.

4.6.2 TPGI Creation and Storage

The interactions between one Traced Entity (TE) and several Location Service Sys-
tems (LSSs), including a GNSS system and an arbitrary number of trusted peers
and P2P entities, has been emulated. Each simulation comprises a preliminary set-
tings phase, an execution phase, and a potential results analysis. The settings phase
involves configuring parameters of the simulation, including network settings, ad-
dresses, IDs, and the number of peers the TE interacts with.

In each execution of the simulation, all the processing and communications in-
volving a single Traced Entity (TE) are performed, while other nodes are emulated
as communication and processing interfaces. The TE initially acts as a Peer during
the creation of Timestamped Position and Georeferenced Information (TPGI), com-
municating with Trusted Device (TD) nodes and other TE nodes. It then takes on the
role of a Publisher when sending the results to the LBSS Storage, communicating
with the main storage node and an Algorand node.

All nodes execute their routines and communicate according to a pre-calculated

1https://netsec.unipr.it/project/nemo/

https://netsec.unipr.it/project/nemo/

4.6. Performance Evaluation 93

Figure 4.7: Conceptual modeling of the interactions of a TE in a sports competition.
Go through its path a TE will encounter different location systems to establish its
position. Depending on the type of use case, some of them may or may not be present
(for example, GNSS may not be available for indoor situations), and with different
visibility frequencies.

schedule, called "peer visibility model". To model interactions between peers and a
TE, an algorithm was developed to generate a visibility schedules. This algorithm
determines when and for how long a peer remains within the communication range
of the TE. Figure 4.7 presents a graphical representation of this concept: TE follows a
trajectory, encountering other peers and infrastructure devices (TD). Simultaneously,
TE may or may not have GNSS signal coverage, allowing it to self-determine its
position.

In order to simplify the process, the interaction scheduling is generated without
modeling the underlying movement of peers: in fact, the encounters of the TE with
other entities are modeled as a Poisson process, and encounter probabilities were

94 Chapter 4. Secure Management of Georeferenced Data

modeled using exponential distributions. All the process is customizable through the
tuning of various configuration parameters, like simulation and sampling time, peers
speed and acceleration, visibility ranges, etc.

The result of this algorithm is a schedule file, where for each time instant (deter-
mined by the sampling time) it is indicates the visibility of nodes in various location
systems (GNSS, TD, and peer-to-peer).

After TE has established its position LD (Location Data) and created the TPGI
items, this is sent and then further enriched by the Publisher (P). In the emulation
environment, the Publisher P coincides with the TE.

Subsequent interactions occur between P and the Storage part of the Location-
Based Service System (LBSS), within the emulation environment described earlier.
Specifically, each TPGI creation leads to two communications: one with a conven-
tional database and another with the blockchain (BC). The structure of these mes-
sages varies based on the Processing (Pr) type (HE or MPC).

The node hosting the conventional database receives the message, validates it,
and writes it into a log file, making the data directly accessible to the Pr. For the
blockchain, P contacts the Algorand node responsible for writing the message into
the Algorand Testnet and awaits block consolidation.

Communications take place on Stream Sockets, which are connection-oriented
and based on the TCP protocol. Messages at the application layer are constructed
from scratch following the descriptions in Section 4.4, differentiating HE and MPC
executions. This approach avoids constraints imposed by specific communication
standards, ensuring results free of additional overhead. One exception is communica-
tions with the local Algorand node, which uses a REST API over the HTTP protocol,
the official method for communicating with it.

The discrete-time dynamics of each entity has been implemented as isolated ob-
jects that operate concurrently. In particular, each entity represented in the simulation
runs on different Java threads, maintaining consistency with the simulation’s activity.

Random events, such as communication interruptions, were also emulated. Using
the profiling tool for Java "YourKit", some performance data have been measured. In
a 30-minute simulation conducted in Homomorphic Encryption (HE) mode, where

4.6. Performance Evaluation 95

messages are tailored for HE processing and active logs are stored in files, the TE
threads utilized the CPU for approximately 27316 ms. In terms of memory usage,
all threads, including TE and other peers, collectively reached a peak heap memory
occupancy of about 150MB and non-heap memory occupancy of 47MB, both well
below the 200MB threshold.

It’s essential to consider that providing highly detailed information on memory
consumption and CPU usage in this case is challenging due to the inherent complexi-
ties introduced by Java, which includes various overheads and randomness stemming
from the Java Virtual Machine (JVM) components, notably the Garbage Collector.
Furthermore, the simulation software encompasses multiple nodes beyond the TE,
making it difficult to segregate and analyze individual executions.

However, it’s worth noting that despite the substantial volume of interactions in
this simulation, the processing demands placed on the Publisher component are not
particularly high. This suggests that the system can run efficiently even on hardware
with relatively modest resources, easy to deploy this functionality in different level
of an Edge-to-Cloud architecture.

4.6.3 Test of HE-based Location Verification

The objective of these tests is to evaluate the effectiveness of Homomorphic Encryp-
tion (HE) techniques in implementing the Pr system securely, ensuring the confiden-
tiality of processed location data (LD). This is particularly crucial when LD should
only be accessible to the Traced Entity (TE) and the Service Consumer (SC), exclud-
ing all other entities. So it’s vital that the Location-Based Service System (LBSS),
especially its Pr entities, cannot access the actual LD, using HE.

Two HE schemes have been tested: the Cheon-Kim-Kim-Song (CKKS) [70] scheme
for real-number arithmetic, capable of handling floating-point operations, and the
Chillotti-Gama-Georgieva-Izabachene (TFHE) [71] scheme for logical circuit-based
operations, selected for its potential universality.

For these tests, the Palisade [73] library was used for the CKKS scheme, while
the Google Transpiler [74] with the Palisade implementation of TFHE was employed.
The choice of these libraries was based on factors like developer reputation, user

96 Chapter 4. Secure Management of Georeferenced Data

community size, ongoing source code development, quality of documentation, and
available support.

Major details are reported below.

• Palisade

The feasibility of implementing an HE algorithm was evaluated using the Pal-
isade library, primarily due to its CKKS scheme support. A simplified scenario
was considered, focusing on a rectangular area with limited IF-THEN-ELSE
instructions to compare point coordinates with boundaries. The implemented
C++ software computed resulting polynomials (Px() and Py()) as functions of
the rectangular area. These polynomials were then used to evaluate their values
on a sequence of HE-encrypted input coordinates (X and Y). The resulting se-
quences of Px(xi) and Py(yi) are HE-decrypted, and combined through simple
multiplication. The result is then compared to 0 (indicating being outside) or 1
(indicating being inside the shape). Due to computational limitations, Cheby-
shev polynomial functions of degrees 10 and 20 is used to approximate the step
function. Table 4.1 presents the time required to compute the evaluation of 10,
100, 1000, and 10000 points when using 10-degree or 20-degree Chebyshev
polynomial functions to approximate the step function.

#Points 10 100 1000 10000

Mean Time [s]
Degree 10 0.716 0.724 0.744 0.739
Degree 20 1.618 1.617 1.592 1.627

Table 4.1: Execution time of the ray casting algorithm with increasing number of
points and different polynomial degrees for a square polygon, using Palisade.

• Google Transpiler

This tool was assessed for compatibility with floating-point operations. How-
ever, it was found to support only basic arithmetic operations like addition,

4.6. Performance Evaluation 97

subtraction, and multiplication. The execution time for a single operation was
about 15 seconds. A ray casting algorithm was applied, requiring oprations
equal to 10 times the number of vertices. Its execution time was significantly
slower than the Palisade-based approach.

4.6.4 Test of MPC-based Location Verification

This test evaluates the MPC-based Processing (Pr) architecture using SCALE-MAMBA [75]
and MP-SPDZ [76, 77] software libraries, selected for several reasons, including rep-
utation of their developers and the quality of documentation and support. The ray
casting algorithm was implemented for five Pr entities,configured as follows:

• Pr0 provides no input.

• Pr1 provides the x coordinates of the polygon’s vertices.

• Pr2 provides the y coordinates of the polygon’s vertices.

• Pr3 provides the x coordinate of the point.

• Pr4 provides the y coordinate of the point.

• The result, either 0 (indicating an outside point) or 1 (indicating an inside
point), is revealed to Pr0.

The algorithm was executed using Shamir’s secret sharing-based protocol for
honest majority in the actively secure with abort security setting for malicious par-
ties. In this setting, parties may deviate from the protocol, leading to execution failure,
with notifications sent to all parties involved.

The top system monitor was used to To collect statistics on CPU load and RAM
consumption. Execution time was recorded using the libraries’ internal timers. The
same applies to CPU load, which is cumulative over all used cores in a multi-core
CPU. The values presented in the following charts have been proportionally scaled
according to the number of cores available on the test machine. Traffic analysis be-
tween Pr units was done using Nemo.

Major consideration are reported below.

98 Chapter 4. Secure Management of Georeferenced Data

#Vertices 3 4 5 6 7 8 9 10

Mean Time [s] 5.379 5.478 5.384 5.480 5.402 5.484 5.582 5.683

Table 4.2: Execution time with increasing number of vertices using SCALE-
MAMBA.

• SCALE-MAMBA

The CPU load is evenly distributed across all Pr units, not exceeding 15%.
RAM consumption is also uniformly distributed, with no unit consuming more
than 500MB. Regardless of the number of vertices in the polygon, the execu-
tion time remains approximately 5 seconds, although there is a slight increase
as the number of vertices grows (refer to Table 4.3).

Network traffic analysis shows that the total data exchanged between the Pr
units is very consistent reaching over 2GB, including all packets.

• MP-SPDZ

CPU load is uniformly distributed among all processing units (Pr units) and
seldom exceeds 8%. RAM consumption is uniformly spread across all Pr units
and does not exceed 25 MB, significantly lower than SCALE-MAMBA’s RAM
usage. Regardless of the number of vertices in the polygon, execution time
consistently falls within the range of 0.3 to 0.5 seconds, as shown in Table 4.3.
This performance indicates that MP-SPDZ outperforms SCALE-MAMBA in
terms of speed.

The overall network traffic is significantly lower than in the case of SCALE-
MAMBA, with only 160MB compared to 2GB.

#Vertices 3 4 5 6 7 8 9 10

Mean Time [s] 0.310 0.320 0.336 0.347 0.444 0.460 0.542 0.538

Table 4.3: Execution time with increasing number of vertices using MP-SPDZ.

4.7. Considerations 99

4.7 Considerations

The emulations demonstrate that the proposed functional architecture could enable
the secure management (transmission, store and elaboration) of georeferenced data
for LBS. It is possible to conclude that the privacy and integrity protection in un-
trusted environments, can be effectively implemented. This includes standard en-
cryption and authentication mechanisms, as well as more advanced strategies such
as Multiparty Computation and Homomorphic Encryption.

Among the evaluated software libraries, MP-SPDZ for MPC stands out for its
impressive results, driven by its reduced memory footprint and processing speed.
Concerning HE, the processing speed can be unsatisfactory with current technologies,
especially when employing HE schemes supporting arbitrary Boolean circuits.

In the creation of a real system, however, it is necessary to also take into ac-
count the overhead introduced by the security mechanisms, which for some nodes
located at the edge of the network may be too burdensome, therefore taking into con-
sideration other approaches more suitable for networks of low-capacity nodes . To
protect processing, more complex reasoning must be done, as not all tasks can be
easily converted into operations adaptable to the technologies used (HE and MPC).
Furthermore, they introduce a strong overhead, which currently makes them difficult
to implement for edge processing, but more suitable for large data aggregations at the
fog or Smart Farming level.

Regarding the use of operational protocols, such as the one described in Section 3,
the considerations outlined in this chapter concerning communication protection do
not pose significant issues since they treat the payload in an agnostic manner. In the
development of an actual system, it is imperative to account for the overhead intro-
duced by security mechanisms. For certain nodes located at the network’s periphery,
this overhead may become excessively burdensome. In such cases, it becomes neces-
sary to explore alternative approaches more suitable for networks with low-capacity
nodes.

When it comes to protecting data elaborations, a more complex analysis is re-
quired, as not all tasks can be easily transformed into operations adaptable to the

100 Chapter 4. Secure Management of Georeferenced Data

tested technologies - Homomorphic Encryption (HE) and Multiparty Computation
(MPC). Furthermore, these mechanisms introduce a substantial overhead that presently
renders them challenging to implement for edge processing. Instead, they are better
suited for large data aggregations at the Fog or Cloud level.

4.8 Use Cases Specification

In this section, two use cases are specified ad analyzed following the functional archi-
tecture indicate in Section 4.3, commenting how both could benefit from the adoption
of a secure location verification approach.

4.8.1 Sport Race Competition

This use case involves managing a sports competition, such as a running marathon,
cycling race, or motor race, using a location-based system for tracking contestant
positions and ensuring fair competition.

Contestants are mandated to adhere to a predetermined race route, which may be
composed of multiple laps, commencing from the beginning of the competition until
they successfully cross the finish line. Throughout the event, each contestant’s loca-
tion is consistently tracked through the utilization of positioning devices, equipped
with different technologies. These devices determine the exact whereabouts of the
contestants and furnish the Competition Management System (CMS) with critical
data in the form of TPGI.

In the course of the competition, as well as in its aftermath, the CMS fulfills a
pivotal role by actively monitoring the contestants’ positions. Should any contestant
transgress the established competition rules, such as deviating from the prescribed
route or employing unauthorized means, the CMS promptly notifies the competition
officials. This notification is substantiated by the received location data, which serves
as irrefutable evidence of the infraction. In effect, the CMS delivers a proof of rule
violation to any contestant found in breach.

Importantly, the inherent design of this use case ensures that contestant privacy is
not compromised, at least in the context of TPGI shared during the competition. Con-

4.8. Use Cases Specification 101

testants willingly share this information with the CMS for the sole purpose of corrob-
orating their adherence to the competition’s regulations. This collaborative approach
underlines the trust and transparency that characterizes this sport race management
system.

Involved actors are:

• Contestants: Individuals participating in the sports competition.

• Competition Management System (CMS): An LBS (Location-Based Service)
platform utilizing internal or cloud storage for managing the competition.

• Officials: Competition judges or organizers responsible for monitoring and en-
suring the integrity of the competition.

Figure 4.8: Specialized architecture for sport race tracking use case.

102 Chapter 4. Secure Management of Georeferenced Data

The specialized architecture, depicted in Figure 4.8, comprises several integral
modules, each serving a distinct function:

• Location Service: Location data (LD) is gathered from an array of sources, in-
cluding proximity sensors and anchor points like RFID gates and access points.
Additionally, LD may be acquired from global navigation satellite systems
(GNSS) such as GPS, GLONASS, and Galileo. Collaborative P2P localiza-
tion may also occur among mobile devices equipped by contestants to enhance
accuracy and reliability.

• Publisher: Each contestants are equipped with tracking devices, such as RFID
tags, Bluetooth low-energy devices, or mobile GPS trackers. TPGI messages
are periodically generated by LS sources and publish to the St.

• Storage: The Storage System employs a public blockchain, used in conjunc-
tion with a traditional database incorporating Access Control policies. The
blockchain is employed to immutably and transparently store contestants’ TPGI,
thus ensuring indisputable evidence of their positions and rankings. In addition,
it is used to record any potential misbehavior. The traditional database retains
detailed TPGI, and Access Control policies are implemented to enable the au-
ditability of the data life-cycle within the database.

• Processing: In the context of this distributed architecture, the Processing sys-
tem is overseen by one or more Competition Management System Providers.
Secure Multi-Party Computation (MPC) is used in scenarios where a collective
of mutually untrusting entities collaboratively compute the processing func-
tions on their inputs (TPGI fragments) without disclosing any information be-
yond the resultant output. Alternatively, Homomorphic Encryption (HE) may
be employed, either cooperatively or competitively. In the former case, the Pub-
lisher subdivides the TPGI into multiple fragments, encrypts them, and dis-
patches them to the Storage system, where they are processed by multiple Pr
providers. Standard Access Control policies are enforced to ensure the security
of the processing.

4.8. Use Cases Specification 103

• Service Consumer: Contestant and Official are both consumer. In the event of a
rule violation, a notification is promptly transmitted to the competition official.
The verification results, computed by the Pr, can be documented in the Storage
system, and the competition official is granted access to them. Contestants also
possess the option to request a "proof of rule violation", underpinned by the
unalterable record stored within the public blockchain.

To bolster the security of data flows between these entities, a combination of
message authentication and encryption mechanisms is applied, tailored to the specific
communication channels in use, as depicted in Section 4.4.

4.8.2 Smart Irrigation and Fertigation

This use case regards the tracking of Smart Farming activities, in particular concern-
ing precise irrigation or fertigation.

Farmers can utilize a Decision Support System (DSS), which functions as a pub-
lic or commercial service. DSSs provide scientifically accurate irrigation and ferti-
gation advice, acting as an LBS. The advice is personalized to the farmers’ fields
based on biophysical parameters and vegetation indices derived from satellite and/or
ground sensor data (TPGI). Typically, a specialized agronomic DSS is employed for
this purpose [3].

The DSS generates its advice based on publicly available agronomic research
and is subject to verification by the scientific community. This open approach allows
other entities to validate the DSS’s outputs. In some cases, farmers may be required to
furnish report data regarding their irrigation activities (Consumed Resources, RC) to
the Authority, such as a government agency. This reporting serves as proof that they
have adhered to the irrigation prescription and is often necessary to access economic
incentives.

For instances where farmers deviate from the prescriptions, the Authority should
receive notifications (NRV). These data could be verified using a Prescription Veri-
fier System (PVS), a service that operates in parallel with the DSS. The PVS is re-
sponsible for ensuring that users have correctly applied the specified quantities of

104 Chapter 4. Secure Management of Georeferenced Data

resources, adhering to the spatial and quantitative parameters essential for gaining
economic concessions. It’s important to note that the PVS does not need access to
the proprietary algorithms or "industrial secrets" of the DSS but requires capabilities
to verify adherence to constraints. The PVS may be provided by the Authority or
another designated PVS provider.

Data provided by farmers typically includes georeferenced information about the
plot (e.g., position and perimeter) and other relevant characteristics (soil composition,
slope, etc.). Information about cultivation and farm activities in relation to the plot
is also supplied. Sampling activities, facilitated by ground sensors, encompass the
collection of atmospheric, soil, and crop parameters.

In addition to ground sensor data, information from remote sensing sources is in-
corporated. Remote sensing data is primarily acquired through satellite-based moni-
toring, either from a public Earth monitoring service like the Copernicus mission or
a commercial service. This information provides a fundamental overview of a plot,
which can be further enhanced by ground sensor data.

Before sharing, user-provided data might undergo obfuscation or aggregation,
depending on the system’s requirements. Such processing can be carried out by the
farmers themselves or by other stakeholders involved in the process.

The actors involved are:

• Farmer: a user requiring irrigation and fertigation advice for his crops. These
activities need actuators for precise resource distribution and may have sensors
for ground sampling.

• DSS Provider: entity providing Resource Prescription (RP) advice.

• Prescription Verifier System (PVS) Provider: Service that runs in parallel with
the DSS. It is tasked with verifying that users have applied resources in ac-
cordance with RP advice. PVS does not require access to the proprietary algo-
rithms of the DSS but needs functions to verify compliance with constraints.
This service may be provided by the same entity as the Authority.

• Authority: An actor responsible for offering economic concessions, such as a

4.8. Use Cases Specification 105

Regional Government, after a demonstrate compliance with the RP.

Figure 4.9: Specialized architecture for precise irrigation or fertigation use case.

The specialized architecture depicted in Figure 4.9 is dedicated to the DSS and is
composed of the following key modules:

• Location Service: Location Data (LD) is primarily sourced from a Global Nav-
igation Satellite System (GNSS), which includes satellite systems like GPS,
GLONASS, and Galileo. These location data are collected directly from ground
sensors or, in some cases, are hard-coded during the sensor installation.

• Publisher: Farmer’s intelligent actuators generate TPGI as a combination of
LD, augmented with biophysical parameters and vegetation indices obtained
through ground sensors and remote sensing samples. These TPGI messages
are periodically published to the DSS storage.

106 Chapter 4. Secure Management of Georeferenced Data

• Storage: The Storage System encompasses a blockchain, used in tandem with
a conventional database, incorporating Access Control policies. Blockchain
component serves to store control data related to the TPGI sent to the DSS,
such as hash values, ensuring an immutable and distributed control entity that
safeguards against malicious data manipulation. Meanwhile, the traditional
database handles daily changes within the storage system and implements Ac-
cess Control policies to facilitate the audit trail of the data’s lifecycle.

• Processing: Within this distributed architecture, the Processing system is un-
der the ownership of one or more DSS Providers. In scenarios where secure
Multi-Party Computation (MPC) is employed, a group of mutually distrust-
ing entities collaborates to jointly compute the processing function on their
respective inputs (TPGI fragments), with a strict focus on not revealing any
information beyond the output. Due to the complexity of the models used for
computing Resource Prescriptions (RP), Homomorphic Encryption (HE) may
not be a feasible option. However, alternative mechanisms, such as multiple
redundant DSS systems or validation against historical data, are employed to
ensure the accuracy of the provided RPs. Access Control policies are standard
practice to further bolster the security of the processing.

• Service Consumer: Ultimately, the Resource Prescription (RP) is furnished to
the farmer by the DSS. The DSS results can be recorded in the Storage System,
granting the farmer and other authorized entities access to this data.

As a critical issue, it is highlighted that the use of a passive positioning system
such as GNSS is often the only available choice, which makes the positioning data
unreliable. Dedicated hardware, advanced GNSS systems (for example using RTK)
or active positioning systems are to be considered in the creation of a physical system,
in order to obtain reliable positioning data and correspondent applied resource.

Conclusion

In the ever-evolving landscape of technology, where innovation continues to reshape
various sectors, the demand for sophisticated and adaptable systems for Smart En-
vironment is both pressing and evident. These settings, characterized by a profusion
of data from diverse sources and complex distributed systems, propose remarkable
opportunities as well as unique challenges. In response to these demands, this Thesis
has sought to address the need for a flexible and effective framework that can deal
with some aspects of the intricate panorama of modern distributed data aggregation
and processing systems, while safeguarding data privacy and security.

The proposed framework has been designed to thrive in dynamic and intercon-
nected contexts, and revolves around the core idea of being able to adapt to an ever-
changing technological landscape. It embraces modularity, enabling the integration
of tools and technologies that can efficiently address the multifaceted aspects of the
explored scenarios.

An essential facet of our framework is its unique E2C Distributed Architecture,
extending service placement from the edge to the cloud, designed with the princi-
ples of Fog Computing. It strongly prioritizes reliable data management, enabling
the respect of data privacy as a paramount requirement, and offering scalability and
adaptability to diverse contexts.

Another significant contribution is the Seamless Data Acquisition Protocol (SEAM-
DAP), a standardized approach designed for modern distributed systems. It allows for
seamless data collection from a variety of sources while being user-friendly and cus-
tomizable.

108 Conclusion

Eventually, the work has also delved into the critical subjects of data privacy and
security. Acknowledging the importance of georeferenced data and Location-Based
Services (LBS), the framework provides a foundation for addressing the challenges
of secure data management for the topic of location verification. These features open
up new possibilities for enriched data analysis, yet simultaneously introduce ad-
ditional complexities. In this context, the significance of safeguarding data during
transmission, memorization and processing is addressed. The potential integration of
advanced processing techniques has been explored. Homomorphic Encryption and
Multi-Party Computation could be used to address privacy and security concerns,
especially in untrusted environments.

The direction taken with this framework is to bring standardization to the field
of smart environments, and to address some issues identified. Some of the presented
tools were tested in Smart Farming environments, and for each one, a use case has
been proposed. In fact, the framework could bring advantages in environments char-
acterized by high heterogeneity (e.g., in data, interfaces, applications), using a lot of
geo-referenced data, demanding interoperability between systems belonging to dif-
ferent actors, and in a strong sensitivity to respect for privacy.

The tools and techniques presented lay the groundwork for future research to
build upon. By further exploring these areas, it is possible to advance efficiency, se-
curity, and sustainability of smart environments, enhancing the quality of service and
resource management.

In terms of future research, the Thesis sets the stage for several avenues:

• Interoperability and Standardization. There are several scenarios that would
benefit from introducing a standard approach, such as for data collection in this
framework. For example, it is possible to introduce protocols for the manage-
ment of intelligent actuators, such as irrigation machines in the Smart Farming
field.

• Privacy-Preserving Techniques. It is possible to expand the scenario of solu-
tions that can be adopted for data protection. For example, architectural so-
lutions that involve the use of techniques such as Private Computation and

Conclusion 109

Zero Knowledge Proof can be studied and implemented. Federated Learning
techniques could be explored to enable secure and privacy-preserving Machine
Learning algorithm.

• Scalability and Resource Management. Exploring techniques that allow to im-
prove the scalability of systems, seeing microservices as the currently most rel-
evant element for the implementation of services. For example, online service
placement algorithms with fault tolerance and load balancing features could be
explored.

• Environmental and Ethical Considerations. Exploring tools and practices that
promote environmental sustainability and ethical practices, aligning with the
current focus on sustainability. The service placement could be done taking
into account the energy consumption of a node and its environmental impact,
conditioned by the availability of electricity produced from renewable sources.

• AI-based solutions. Implement solutions based on Machine Learning and AI in
general for the management of various processes, such as application deploy-
ment or general data exploitation.

Bibliography

[1] COM/EdgeCloud-SC. IEEE 1934-2018 - IEEE Standard for Adoption of Open-
Fog Reference Architecture for Fog Computing, 2018.

[2] POSITIVE Project Team. POSITIVE project homepage.
http://www.progettopositive.it/, 2022.

[3] Michele Amoretti, Dario Lodi Rizzini, Gabriele Penzotti, and Stefano Caselli.
A scalable distributed system for precision irrigation. In Proc. IEEE Interna-
tional Conference on Smart Computing (SMARTCOMP 2020), pages 338–343,
Bologna, Italy, September 2020.

[4] Sandya De Alwis, Ziwei Hou, Yishuo Zhang, Myung Hwan Na, Bahadorreza
Ofoghi, and Atul Sajjanhar. A survey on smart farming data, applications and
techniques. Computers in Industry, 138:103624, 2022.

[5] Muhammad Shoaib Farooq, Shamyla Riaz, Adnan Abid, Kamran Abid, and
Muhammad Azhar Naeem. A survey on the role of iot in agriculture for the
implementation of smart farming. IEEE Access, 7:156237–156271, 2019.

[6] Hichem Mrabet, Sana Belguith, Adeeb Alhomoud, and Abderrazak Jemai. A
survey of iot security based on a layered architecture of sensing and data analy-
sis. Sensors, 20(13), 2020.

[7] Vasileios Moysiadis, Panagiotis Sarigiannidis, Vasileios Vitsas, and Adel Khe-
lifi. Smart farming in europe. Computer Science Review, 39:100345, 2021.

112 Bibliography

[8] Lanfranco Zanzi, Flavio Cirillo, Vincenzo Sciancalepore, Fabio Giust, Xavier
Costa-Perez, Simone Mangiante, and Guenter Klas. Evolving Multi-Access
Edge Computing to Support Enhanced IoT Deployments. IEEE Communica-
tions Standards Magazine, 3(2):26–34, 2019.

[9] Foodie Consortium. Foodie project. https://www.foodie-project.eu/, 2017.

[10] Mehdi Roopaei, Paul Rad, and Kim-Kwang Raymond Choo. Cloud of things in
smart agriculture: Intelligent irrigation monitoring by thermal imaging. IEEE
Cloud Computing, 4(1):10–15, 2017.

[11] Miguel A. Zamora-Izquierdo, José Santa, Juan A. Martínez, Vicente Martínez,
and Antonio F. Skarmeta. Smart farming iot platform based on edge and cloud
computing. Biosystems Engineering, 177:4–17, 2019.

[12] M.J. O’Grady, D. Langton, and G.M.P. O’Hare. Edge computing: A tractable
model for smart agriculture? Artificial Intelligence in Agriculture, 3:42–51,
2019.

[13] Franklin Magalhães Ribeiro, Ronaldo Prati, Reinaldo Bianchi, and Carlos
Kamienski. A nearest neighbors based data filter for fog computing in iot smart
agriculture. In 2020 IEEE International Workshop on Metrology for Agriculture
and Forestry (MetroAgriFor), pages 63–67, 2020.

[14] Olivier Debauche, Mahmoudi Saïd, Pierre Manneback, and Frederic Lebeau.
Cloud and distributed architectures for data management in agriculture 4.0 :
Review and future trends. Journal of King Saud University - Computer and
Information Sciences, 33, 10 2021.

[15] Konstantinos Perakis, Fenareti Lampathaki, Konstantinos Nikas, Yiannis Geor-
giou, Oskar Marko, and Jarissa Maselyne. Cybele–fostering precision agri-
culture & livestock farming through secure access to large-scale hpc enabled
virtual industrial experimentation environments fostering scalable big data ana-
lytics. Computer Networks, 168:107035, 2020.

Bibliography 113

[16] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proc. of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, page 13–16, 2012.

[17] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh
Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All one needs to
know about fog computing and related edge computing paradigms: A complete
survey. Journal of Systems Architecture, 98:289–330, 2019.

[18] Zhaoyu Zhai, José Fernán Martínez, Victoria Beltran, and Néstor Lucas
Martínez. Decision support systems for agriculture 4.0: Survey and challenges.
Computers and Electronics in Agriculture, 170:105256, 2020.

[19] Yaganteeswarudu Akkem, Saroj Kumar Biswas, and Aruna Varanasi. Smart
farming using artificial intelligence: A review. Engineering Applications of Ar-
tificial Intelligence, 120:105899, 2023.

[20] Susanne Barth and Menno D.T. de Jong. The privacy paradox – investigating
discrepancies between expressed privacy concerns and actual online behavior
– a systematic literature review. Telematics and Informatics, 34(7):1038–1058,
2017.

[21] Gabriele Penzotti, Stefano Caselli, and Michele Amoretti. An n-tier fog archi-
tecture for smart farming. In 2021 IEEE Symposium on Computers and Com-
munications (ISCC), pages 1–7, 2021.

[22] N.M. Trendov, S. Varas, and M. Zeng. Digital technologies in agriculture and
rural areas - status report. Technical report, Nations Food and Agriculture Or-
ganization of the United, 2019.

[23] Angelita Rettore de Araujo Zanella, Eduardo da Silva, and Luiz Carlos Pessoa
Albini. Security challenges to smart agriculture: Current state, key issues, and
future directions. Array, 8:100048, 2020.

114 Bibliography

[24] Mohamed Baghrous, Abdellatif Ezzouhairi, and Nabil Benamar. Smart farming
system based on fog computing and lora technology. In Embedded Systems and
Artificial Intelligence, pages 217–225, Singapore, 2020. Springer Singapore.

[25] Leanne Wiseman, Jay Sanderson, Airong Zhang, and Emma Jakku. Farmers and
their data: An examination of farmers’ reluctance to share their data through the
lens of the laws impacting smart farming. NJAS - Wageningen Journal of Life
Sciences, 90-91:100301, 2019.

[26] Emma Jakku, Bruce Taylor, Aysha Fleming, Claire Mason, Simon Fielke, Chris
Sounness, and Peter Thorburn. “if they don’t tell us what they do with it, why
would we trust them?” trust, transparency and benefit-sharing in smart farming.
NJAS - Wageningen Journal of Life Sciences, 90-91:100285, 2019.

[27] Constantinos Marios Angelopoulos, Gabriel Filios, Sotiris Nikoletseas, and
Theofanis P. Raptis. Keeping data at the edge of smart irrigation networks: A
case study in strawberry greenhouses. Computer Networks, 167:107039, 2020.

[28] T. Nguyen Gia, L. Qingqing, J. Peña Queralta, Z. Zou, H. Tenhunen, and
T. Westerlund. Edge ai in smart farming iot: Cnns at the edge and fog com-
puting with lora. In 2019 IEEE AFRICON, pages 1–6, 2019.

[29] Mohit Taneja, Nikita Jalodia, John Byabazaire, Alan Davy, and Cristian Olariu.
Smartherd management: A microservices-based fog computing–assisted iot
platform towards data-driven smart dairy farming. Software: Practice and Ex-
perience, 49(7):1055–1078, 2019.

[30] Asad Waqar Malik, Anis Ur Rahman, Tariq Qayyum, and Sri Devi Ravana.
Leveraging fog computing for sustainable smart farming using distributed sim-
ulation. IEEE IoT Journal, 7(4):3300–3309, 2020.

[31] I. Lera, C. Guerrero, and C. Juiz. Yafs: A simulator for iot scenarios in fog
computing. IEEE Access, 7:91745–91758, 2019.

Bibliography 115

[32] Dan Boneh, Divya Gupta, Ilya Mironov, and Amit Sahai. Hosting services on
an untrusted cloud. In Advances in Cryptology - EUROCRYPT 2015, pages
404–436, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[33] Florian Kelbert, Franz Gregor, Rafael Pires, Stefan Köpsell, Marcelo Pasin, Au-
rélien Havet, Valerio Schiavoni, Pascal Felber, Christof Fetzer, and Peter Piet-
zuch. Securecloud: Secure big data processing in untrusted clouds. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, pages 282–
285, 2017.

[34] Lei Xu, JongHyuk Lee, Seung Hun Kim, Qingji Zheng, Shouhuai Xu, Taeweon
Suh, Won Woo Ro, and Weidong Shi. Architectural protection of application
privacy against software and physical attacks in untrusted cloud environment.
IEEE Transactions on Cloud Computing, 6(2):478–491, 2018.

[35] Jingxian Cheng, Saiyu Qi, Wenqing Wang, Yuchen Yang, and Yong Qi. Fast
consistency auditing for massive industrial data in untrusted cloud services. In
Proc. of the 2020 on Great Lakes Symposium on VLSI, GLSVLSI ’20, page
381–386, New York, NY, USA, 2020. ACM.

[36] Roy Thomas Fielding and Richard N. Taylor. Architectural Styles and the De-
sign of Network-Based Software Architectures. PhD thesis, University of Cali-
fornia, Irvine, 2000.

[37] A. Banks, E. Briggs, K. Borgendale, and R. Gupta. MQTT Version 5.0 - OASIS
Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html, 2019.

[38] Internet Engineering Task Force (IETF). Sensor Measurement Lists (SenML).
RFC 8428, 2018.

[39] IPSO. IPSO Alliance Framework. http://www.ipso-alliance.org/wp-
content/media/draft-ipso-app-framework-04.pdf.

[40] Mahdi Ben Alaya, Samir Medjiah, Thierry Monteil, and Khalil Drira. To-
ward Semantic Interoperability in oneM2M Architecture. IEEE Commun. Mag.,
53(12):35–41, 2015.

116 Bibliography

[41] Farah Aït Salaht, Frédéric Desprez, and Adrien Lebre. An overview of ser-
vice placement problem in fog and edge computing. ACM Computing Surveys,
53(3), 2020.

[42] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung
Chung, and Yun Li. Cloud computing resource scheduling and a survey of its
evolutionary approaches. ACM Comput. Surv., 47(4), 2015.

[43] Gabriele Penzotti, Davide Tarasconi, Stefano Caselli, and Michele Amoretti.
Seamless sensor data acquisition for the edge-to-cloud continuum. In 2022
IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress (DASC/Pi-
Com/CBDCom/CyberSciTech), pages 1–8, 2022.

[44] Hesham El-Sayed, Sharmi Sankar, Mukesh Prasad, Deepak Puthal, Akshansh
Gupta, Manoranjan Mohanty, and Chin-Teng Lin. Edge of Things: The Big
Picture on the Integration of Edge, IoT and the Cloud in a Distributed Comput-
ing Environment. IEEE Access, 6:1706–1717, 2018.

[45] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, Anthony Si-
monet, and Manish Parashar. Towards a computing continuum: Enabling edge-
to-cloud integration for data-driven workflows. The Int.l J. of High Performance
Computing Applications, 33(6):1159–1174, November 2019.

[46] Daniel Del Gaudio and Pascal Hirmer. Seamless integration of devices in in-
dustry 4.0 environments. Internet of Things, 12:100321, 2020.

[47] ECMA Int.l. The JSON data interchange syntax. ECMA-404, 2017.

[48] W3C WoT Working Group. Web of Things (WoT) Thing Description.
https://www.w3.org/TR/wot-thing-description/, 2020.

[49] W3C JSON-LD Working Group. Json-LD. https://json-ld.org/, 2022.

Bibliography 117

[50] Simon Fernandez, Michele Amoretti, Fabrizio Restori, Maciej Korczyński, and
Andrzej Duda. Semantic Identifiers and DNS Names for IoT. In 2021 In-
ternational Conference on Computer Communications and Networks (ICCCN),
pages 1–9, Piscataway, USA, 2021. IEEE.

[51] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav Goyal, and
Biplab Sikdar. A Survey on IoT Security: Application Areas, Security Threats,
and Solution Architectures. IEEE Access, 7:82721–82743, 2019.

[52] Olivier Alphand, Michele Amoretti, Timothy Claeys, Simone Dall’Asta, An-
drzej Duda, Gianluigi Ferrari, Franck Rousseau, Bernard Tourancheau, Luca
Veltri, and Francesco Zanichelli. IoTChain: A blockchain security architecture
for the Internet of Things. In 2018 IEEE Wireless Communications and Net-
working Conference (WCNC), pages 1–6, Piscataway, USA, 2018. IEEE.

[53] Sachi Nandan Mohanty, K.C. Ramya, S. Sheeba Rani, Deepak Gupta,
K. Shankar, S.K. Lakshmanaprabu, and Ashish Khanna. An efficient
Lightweight integrated Blockchain (ELIB) model for IoT security and privacy.
Future Generation Computer Systems, 102:1027–1037, 2020.

[54] Filippo Vurro, Michela Janni, Nicola Coppedè, Francesco Gentile, Riccardo
Manfredi, Manuele Bettelli, and Andrea Zappettini. Development of an In Vivo
Sensor to Monitor the Effects of Vapour Pressure Deficit (VPD) Changes to
Improve Water Productivity in Agriculture. Sensors, 19:46–67, 2019.

[55] IRRIFRAME Team. IRRIFRAME. https://www.irriframe.it, 2022.

[56] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

[57] Hua Sun and Syed Ali Jafar. The capacity of private computation. 2018 IEEE
International Conference on Communications (ICC), pages 1–6, 2018.

118 Bibliography

[58] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-Scale Secure Multi-
party Computation. In ACM SIGSAC Conf. on Computer and Communications
Security, 2017.

[59] H. Zhu, R. Lu, C. Huang, L. Chen, and H. Li. An efficient privacy-preserving
location-based services query scheme in outsourced cloud. IEEE Transactions
on Vehicular Technology, 65(9):7729–7739, 2016.

[60] H. Shen, M. Zhang, H. Wang, F. Guo, and W. Susilo. A lightweight privacy-
preserving fair meeting location determination scheme. IEEE Internet of Things
Journal, 7(4):3083–3093, 2020.

[61] Michele Amoretti, Giacomo Brambilla, Francesco Medioli, and Francesco
Zanichelli. Blockchain-based proof of location. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C),
pages 146–153, 2018.

[62] B. Li, R. Liang, D. Zhu, W. Chen, and Q. Lin. Blockchain-based trust man-
agement model for location privacy preserving in vanet. IEEE Transactions on
Intelligent Transportation Systems, 22(6):3765–3775, 2021.

[63] Y. Xudong, G. Ling, L. Yan, Z. Hairong, G. Quanli, Z. Jie, and W. Hai. A
blockchain-based location privacy-preserving scheme in location-based service.
Mobile Information Systems, 2022, 2022.

[64] Mohammad Reza Nosouhi, Keshav Sood, Shui Yu, Marthie Grobler, and Jing-
wen Zhang. PASPORT: A Secure and Private Location Proof Generation and
Verification Framework. IEEE Transactions on Computational Social Systems,
7(2):293–307, 2020.

[65] M. Horton, D. Chen, Y. Yi, and W. Xiaohua. Global Earth Observation Decen-
tralized Network. Technical report, GeoDAO, 2021.

[66] Ruba Awadallah, Azman Samsudin, Je Sen Teh, and Mishal Almazrooie. An
Integrated Architecture for Maintaining Security in Cloud Computing Based on
Blockchain. IEEE Access, 9:69513–69526, 2021.

Bibliography 119

[67] Stefan Brands and David Chaum. Distance-Bounding Protocols. In EURO-
CRYPT ’93. 1994.

[68] Mridula Singh, Patrick Leu, and Srdjan Capkun. UWB with Pulse Reordering:
Securing Ranging against Relay and Physical-Layer Attacks. In Network and
Distributed System Security Symposium, 2019.

[69] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
STOC ’09, page 169–178, 2009.

[70] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Advances in Cryptol-
ogy – ASIACRYPT 2017, pages 409–437, Cham, 2017. Springer International
Publishing.

[71] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In Advances in Cryptology – ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[72] Algorand Team. Algorand. https://www.algorand.com/, 2022.

[73] PALISADE Teams. PALISADE. https://palisade-crypto.org/software-library/,
2022.

[74] Google. FHE C++ Transpiler. https://github.com/google/fully-homomorphic-
encryption, 2022.

[75] KU Leuven. SCALE MAMBA. https://homes.esat.kuleuven.be, 2022.

[76] Marcel Keller. MP-SPDZ: A Versatile Framework for Multi-Party Computation,
page 1575–1590. Association for Computing Machinery, New York, NY, USA,
2020.

[77] Marcel Keller. MP-SPDZ. https://github.com/data61/MP-SPDZ, 2022.

Acknowledgments

This thesis represents the conclusion of a complex journey, full of challenges that I
was able to overcome thanks to many people who, fortunately, surround me.

I want to express my gratitude, first and foremost, to my supervisor, Professor
Stefano Caselli. What I have learned from his valuable advice, although it represents
only a small part of his vast experience, has been of immense help to me. His human-
ity has made the journey even smoother.

Similarly, I want to thank with affection Professor Michele Amoretti, who played
a key role in my research, guiding and assisting me. I have always admired his pro-
fessionalism and efficiency in his work, and I hope to one day reach his standards.

In the workplace, we spend most of our time, and it would be extremely more
challenging without colleagues and friends capable of creating an environment in
which we feel comfortable. I want to thank those who have contributed to creating
this atmosphere.

No one is useless in this world if they are capable of lightening the burden of an-
other person. I want to thank all the friends from Lunigiana and Parma (and beyond)
for the time and joy they have given me, even though I feel less affection for half of
them half as well as them deserve.

One of the things I have learned from living far from home is a real and persistent
desire to return. Without a doubt, this is partly due to the charm that the Apennines
and its woods have on me. However, it is mainly because my family resides there. I
want to thank everyone for their support and unconditional love.

Finally, I want to express my gratitude to a person who, every time I think of

122

them, makes me smile because I feel that they have completed my life. To my wife
Manuela, to whom I owe my desire to breathe: I would prefer to share a single life
with you rather than face all the ages of this world alone.

* * *
Questa Tesi rappresenta la conclusione di un percorso complesso, pieno di diffi-

coltà che ho potuto sormontare grazie a molte persone che per fortuna mi circondano.
Desidero esprimere la mia gratitudine, in primo luogo, al mio tutor, il Professor

Stefano Caselli. Ciò che ho imparato dai suoi preziosi consigli, anche se rappresenta
solo una piccola parte della sua vasta esperienza, è stato di immenso aiuto per me. La
sua umanità ha reso il percorso ancora più agevole.

Allo stesso modo, desidero ringraziare con affetto il Professor Michele Amoretti,
che ha svolto un ruolo chiave nella mia ricerca, guidandomi e aiutandomi. Ho sempre
ammirato la sua professionalità ed efficienza nel lavoro, e spero un giorno di poter
raggiungere i suoi standard.

Nel luogo del lavoro, trascorriamo la maggior parte del nostro tempo, e sarebbe
estremamente più difficile senza colleghi ed amici in grado di creare un ambiente in
cui ci sentiamo a nostro agio. Desidero ringraziare coloro che hanno contribuito a
creare e sempre ravvivano questa atmosfera.

Nessuno è inutile in questo mondo se è capace di alleviare il peso di un’altra
persona. Voglio ringraziare tutti gli amici della Lunigiana e di Parma (e oltre) per il
tempo e le gioie che mi hanno donato, nonostante io nutra per meno della metà di
loro metà dell’affetto che meritano.

Una delle cose che ho imparato vivendo lontano da casa è una reale e persis-
tente voglia di tornare. Senza dubbio, questo è dovuto in minor parte al fascino che
l’appennino e i suoi boschi hanno su di me. Però, per la maggior parte è dovuto al
fatto lì c’è la mia famiglia. Desidero ringraziare tutti loro per il sostegno e l’amore
incondizionato.

Infine, voglio esprimere la mia gratitudine a una persona che, ogni volta che ci
penso, mi fa sorridere, perché sento che ha completato la mia vita. A mia moglie
Manuela, a cui devo la mia voglia di respirare: preferirei condividere una sola vita
con te piuttosto che affrontare tutte le ere di questo mondo da solo.

	Introduction
	Towards Smart Environments
	Preliminary Definitions
	Paradigms

	Data Management in Smart Farming
	Data Sources
	Data Collection
	Data Orchestration
	Data Exploitation

	Framework: Description and Motivations
	Framework Composition
	Research Questions
	Main Aspects Covered

	Edge-to-Cloud Distributed Architecture
	Motivation and References
	Reference Works

	Architecture Description
	Fog Tiers Organizations
	Fog Protocols

	Service Placement Scenarios
	Quantitative Model

	Service Placement Algorithm
	Simulation Analysis
	Smart Farming Applications

	Scalable Protocol for Sensor Data Acquisition
	Data Diffusion in the Edge-to-Cloud Continuum
	Related Work

	Preliminaries
	Definitions
	Adopted Standards

	Protocol Description
	Phase 1: Data Interface Registration
	Phase 2: Single-Instance Registration
	Phase 3: Data acquisition
	Analysis

	SEAMDAP-based System Deployment
	Experimental Evaluation

	Secure Management of Georeferenced Data
	Data Protection and Location-Based Services
	Related Works
	Functional Architecture
	Subsystems Interactions
	Security Analysis

	Location Verification
	Adapting the Algorithm for Homomorphic Encryption Execution

	Performance Evaluation
	Configuration
	TPGI Creation and Storage
	Test of HE-based Location Verification
	Test of MPC-based Location Verification

	Considerations
	Use Cases Specification
	Sport Race Competition
	Smart Irrigation and Fertigation

	Conclusion
	Bibliography
	Acknowledgements

