
Università degli Studi di Parma

Dottorato di Ricerca in Tecnologie dell’Informazione

Ciclo XXXVI

Geometry and Learning
for Efficient 3D Perception

Coordinatore
Chiar.mo Prof. Marco Locatelli
Tutore
Chiar.mo Prof. Massimo Bertozzi
Dott. Paolo Zani
Dott. PaoloMedici

Dottorando
MarcoOrsingher

Anni Accademici
2020/2021 - 2022/2023

ii

AGiulia

iv

Abstract

Building a 3D representation of the world is a longstanding challenge in computer vision and
machine learning, with applications in virtual and augmented reality, autonomous driving, in-
dustrial site scanning, cultural heritage preservation, and more. The main goal of this thesis is
to develop efficient algorithms for processing 3D data, by combining classical geometry-based
methods with modern deep learning approaches. Efficiency is a crucial aspect of 3D percep-
tion, since data are typically acquired by low-cost noisy sensors and must be processed on mo-
bile platforms with limited computational budget. Furthermore, the exponential growth of
3D data sources calls for scalable and efficient processing pipelines.

Our first contribution is a novel framework for multi-view 3D reconstruction in urban sce-
narios. We significantly improve a state-of-the-art classical approach for dense reconstruction,
by designing a local-to-global optimization strategy that leads to geometrically consistent sur-
faces. Moreover, we showhow to scale it up to arbitrarily large sceneswith a divide and conquer
procedure that combines view clustering and view selection, thus allowing for a massive paral-
lelization of the 3D reconstruction process.

Secondly, we present two algorithmic advances in efficient training of neural representation
for novel view synthesis. We propose to speed up the learning process by focusing on infor-
mative rays, which are defined in the 2D image space by high-entropy pixels and in the 3D
object space by a sparse set of cameras that ensures scene coverage, while keeping optimal rela-
tive baseline. Additionally, we leverage multi-view geometry as pseudo-ground truth to guide
the neural implicit field towards high-fidelity 3Dmodels.

We also tackle the point cloud upsampling task, with the aim of refining noisy and low-
resolution data from cheap range sensors into dense and uniformpoint clouds. To this end, we
formulate the first learning-based approach that allows 3D upsampling with arbitrary scaling
factors, including non-integer values, with a single trained model. The main idea is to convert
the input to a probabilistic representation and to train a Transformer network tomap between
samples from such domain and points on the underlying object surface. This flexibility is cru-
cial in real-world applications with computational and bandwidth constraints.

Finally, we propose two novel methods for neural network compression. We first show
that feature-based knowledge distillation can be improved by complementing the direct feature
matching baseline with a teacher features-driven regularization loss, thus enabling the student
model to learn more robust latent representations. Then, we introduce a neural compression
approach that combines network pruning with self-distillation and significantly improves the
sparsity-accuracy tradeoff for several perception tasks. This allows to deploy neural architec-
tures on constrained hardware for fast inference with unprecedented performances.

v

vi

Acknowledgments

This thesis has been developed in collaboration with Ambarella Inc. I would like to start by
expressingmy deepest gratitude toAlberto Broggi for answering the cold email of an unknown
software engineer in July 2020 and for allowing me to join the company. Three years later, we
had the chance to know each other better while drinking a (fake!) bubble tea in Taipei, and I
ammore than happy to keep working with him after this experience.

Moreover, I was extremely lucky to have Paolo Zani and Paolo Medici as technical supervi-
sors. You taught me everything I know about 3D computer vision and you shaped my mind
as a researcher, while letting me free to explore my own scientific interests. I cannot thank you
enough for your constant and valuable feedback.

This PhD was made joyful by my two partners in crime, Francesco and Anthony. Thank
you for your support and your friendship. I would also like to extend this gratitude to all the
other colleagues atAmbarella, especially toAlessandro,Gabriele, Giulio, Pierpa, Lucky,Mu-Ti,
George, Emily, Momo, Julian, Tihao, and to the amazing people I met in Parma and Hsinchu.

My heartfelt thanks also go to Massimo Bertozzi for supervising the university side of my
doctoral studies and for helping me to navigate safely in academia. Thank you for reviewing
my papers, suggesting conferences and choosing amazing restaurants in Lecce.

Beside the scientific achievements, I was fortunate to have the chance of fillingmy PhDwith
several life-changing experiences. To everyone I met in Lecce, Aachen, Sicily, Prague, Taiwan
and Gran Canaria: you are part of this thesis as well.

Ci tengo a ringraziare particolarmente la mia famiglia, i miei genitori Daniele e Laura, mia
sorella Elena emio fratelloMatteo. Grazie anche a Raffaele e Laura, per tutti i momenti che ab-
biamo passato e che passeremo insieme: siete parte della mia famiglia. Infine, il ringraziamento
più importante va a Giulia, per starmi a fianco ogni giorno, per ascoltarmi, amarmi e comple-
tarmi. Il vostro supporto emotivo e la fiducia che avete riposto in me sono stati fondamentali
per affrontare questo percorso.

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2

1.2.1 3D Perception . 2
1.2.2 Multi-View Geometry . 5
1.2.3 Deep Learning . 9

1.3 Contributions . 13
1.4 Thesis Structure . 14
1.5 Publications . 15

2 Multi-View 3DReconstruction 17
2.1 Introduction . 17
2.2 3D Reconstruction Pipeline . 18

2.2.1 Correspondence Search . 18
2.2.2 Sparse Reconstruction . 20
2.2.3 Dense Reconstruction . 24

2.3 Revisiting PatchMatchMVS for Urban Scenes 29
2.3.1 Motivation . 29
2.3.2 RelatedWork . 30
2.3.3 Method . 32
2.3.4 Experiments . 36

2.4 Scaling to Entire Cities . 41
2.4.1 Motivation . 41
2.4.2 RelatedWork . 42
2.4.3 Method . 44
2.4.4 Experiments . 48

2.5 Conclusion . 53

3 Novel View Synthesis 55
3.1 Introduction . 55
3.2 Neural Radiance Fields . 56

ix

3.2.1 3D Representation . 56
3.2.2 Volumetric Rendering . 57
3.2.3 Training Loop . 59
3.2.4 Geometry Extraction . 61
3.2.5 Recent Advances and Applications 62

3.3 Informative Rays Selection for Few-Shot NeRF 63
3.3.1 Motivation . 63
3.3.2 RelatedWork . 64
3.3.3 Method . 65
3.3.4 Experiments . 68

3.4 Learning NeRF fromMulti-View Geometry 77
3.4.1 Motivation . 77
3.4.2 RelatedWork . 78
3.4.3 Method . 79
3.4.4 Experiments . 81

3.5 Conclusion . 83

4 Point CloudUpsampling 87
4.1 Introduction . 87
4.2 RelatedWork . 89

4.2.1 Canonical Primitives in Point Cloud Auto-Encoders 89
4.2.2 Learning-based Point Cloud Upsampling 89
4.2.3 Arbitrary Point Cloud Upsampling 89
4.2.4 Transformers for Point Clouds . 90

4.3 Method . 90
4.3.1 Network Architecture . 91
4.3.2 Spherical Mixture of Gaussians . 92
4.3.3 Loss Function . 96

4.4 Experiments . 97
4.4.1 Implementation Details . 97
4.4.2 Quantitative Results . 98
4.4.3 Ablation Studies . 99
4.4.4 Qualitative Results . 100
4.4.5 Generalization and Robustness . 101

4.5 Conclusion . 105

5 Neural Network Compression 109
5.1 Introduction . 109
5.2 RelatedWork . 112

5.2.1 Logit-based Knowledge Distillation 112
5.2.2 Feature-based Knowledge Distillation 112

x

5.2.3 Neural Network Pruning . 113
5.3 Teacher Features-Driven Regularization . 113

5.3.1 Method . 114
5.3.2 Experiments . 116
5.3.3 Ablation Studies . 121
5.3.4 Analysis . 122

5.4 Sparse Self-Distillation . 126
5.4.1 Method . 126
5.4.2 Experiments . 127

5.5 Conclusion . 127

6 Conclusion 129

References 131

xi

xii

1
Introduction

1.1 Motivation

Understanding the physical and semantic properties of the 3D world is essential for the large-
scale deployment of embodied artificial intelligence. The increasing relevance of 3D percep-
tion stems from the exponential growth of 3D data sources, including smartphones, wearable
devices, mobile robots, scanning sensors and self-driving cars. The goal of 3D perception al-
gorithms is to analyze and process these data with both classical geometry-based methods and
modern deep learning approaches, with applications in autonomous driving, industrial site
scanning, healthcare, virtual and augmented reality, cultural heritage preservation, and more.

Crucially, 3D perception pipelines are typically deployed onmobile and wearable platforms
with limited memory and computational budget. Furthermore, input data from low-cost sen-
sorsmight be noisy or incomplete. For these reasons, we especially focus on the development of
efficient 3D perception algorithms from cheap acquisition devices, such as cameras and sparse
LiDARs or radars. We tackle efficiency in terms of scalability and massive parallelization for
geometry-based methods, we design learning-based approaches that can be trained fast and de-
ployed efficiently on target hardware, and we propose how to optimally combine both worlds.

In the following sections, we first give some technical background in computer vision and
machine learning, which serves as the theoretical foundations for the rest of the manuscript.
Then, we define the goal of our research and outline the original contributions.

1

Figure 1.1: Visualization of a depth map computed by a neural network [1]. Darker colors mean farther objects.

1.2 Background

In this section, we start by providing an overview of 3D perception in terms of data representa-
tion, processing paradigms and open challenges. Then, we describe multi-view geometry prin-
ciples and formalize the relationship between the 3Dworld and its 2D projections. Finally, we
introduce the deep learning architectures that will be used throughout the rest of this thesis.

1.2.1 3D Perception

3DData Representation

Images are conveniently represented as 2D grids of pixels. This representation is universally
accepted as both efficient to process and expressive, since it explicitly stores the visual content.
On the other hand, 3Ddatamight be stored in different formats, according to their acquisition
system and their role in the processing pipeline:

RGB-D data represents the 3D world with a view-dependent depth map, which associates a
depth value to each pixel in the image plane as an additional color channel (D stands
for depth). Depth maps can be obtained either from the sensor directly, from (possibly
multi-view) stereo algorithms [2, 3] or as the output of a neural network [4, 1]. An
example is visualized in Figure 1.1.

Voxels are the naive extension of pixels to 3D, as shown in Figure 1.2a. Theworld is discretized
into a fixed grid of sizeW×H×D and a voxel properties can be accessed by querying its
indices (i, j, k). Despite recent algorithmic efforts [5], the main disadvantage of voxels is
their cubic memory footprint, even in empty areas.

2

(a) Voxel grid. (b) Point cloud. (c)Mesh. (d) Implicit function.

Figure 1.2: Comparison of different ways for representing 3D data [9].

Point Clouds model the world as an unordered list of points, as shown in Figure 1.2b. Each
point typically stores its position, but it can be extended to include the unit normal vec-
tor to the surface, the color and the semantic class. Point clouds are expressive and can ei-
ther come from range sensors, such as LiDARor radar, or computed by back-projecting
multiple depth maps in 3D.However, they lack geometric connectivity between points,
which might be needed for practical applications.

Meshes extend point clouds by connecting points with polygons. Figure 1.2c shows that a
mesh approximates the actual surface of the object shape, whereas a point cloud can be
seen as a set of discrete samples from such surface. For real-world data, this representa-
tion is typically obtained with surface reconstruction algorithms [6, 7] from an input
point cloud, and it is the most common data format for computer graphics [8].

Implicit Functions represent a 3D shape as the set of points X ∈ R
3 that satisfy f(X) = 0

(see Figure 1.2d). In simple cases such as common geometric shapes, the function f has
a well-known closed formula, while a recent trend is to approximate it with a neural
network for more complex objects and scenes [9, 10, 11]. Implicit representations have
arbitrary resolution, since they can be queried at continuous spatial locations. Moreover,
the marching cubes algorithm [12] allows seamless conversion to polygonal meshes.

3

3D Perception Tasks

A3Dperception task is broadly defined as any computational pipeline that operates on3Ddata,
in order to infer physical and semantic properties of the world. These tasks can be classified
according to their inputs and desired outputs.

The wide availability of low-cost cameras in smartphones, autonomous vehicles and surveil-
lance systems has motivated a longstanding effort in image-based 3D perception, with the goal
of understanding the 3D world from its 2D observations. The link between 2D and 3D is
typically performed by depth estimation algorithms, which assign a depth value to each pixel
in the image, such that the corresponding 3D points can be computed via back-projection. In
the classicalmulti-view 3D reconstruction pipeline presented inChapter 2, depthmaps are com-
puted from calibrated cameras with multi-view stereo [3, 13, 14]. However, neural networks
can also be trained to directly map colors to depth [4, 1] and binocular stereo geometry can be
exploited to generate disparity values natively from the sensor, if available [2].

Furthermore, much research has been devoted to point cloud processing. Since we mainly
focus on 3D data from cheap sensors, we assume that the input point cloud is sparse or noisy
and we tackle point cloud upsampling in Chapter 4. Once the input has been converted to a
dense and uniform representation, the resulting point cloud can be further analyzed by classi-
fication [15, 16], segmentation [15, 16] or detection [17] algorithms.

A more recent trend is to learn an implicit 3D representation of the scene directly from
images [11, 18, 19], without depthmaps or point clouds as an intermediate step. The goal is to
obtain differentiable and compact models, that can be easily rendered for novel view synthesis.
We will show in Chapter 3 that this approach has unique advantages over the classical graphics
pipeline, which focuses on explicit triangular meshes.

Finally, in some cases, 3D data might be converted back to 2D, in order to exploit standard
computer vision algorithms. For example, a common solution in LiDAR-based perception for
autonomousdriving is to convert the rawpoint cloud into a bird’s-eye-viewof the scene [20], or
to a range image [21]. Similarly, explicit semantic reasoning in 3D can be avoided by rendering
multiple views of the object and analyzing each view independently [22]. This approach is
beyond the scope of this thesis, aswe focus on 3Dperception from low-cost acquisition devices,
which do not generate sufficiently dense data to be rendered. For the same reason, we refer the
reader to [8] for a detailed overview of classical graphics algorithms, that directly operates on
triangular meshes and are not considered in this thesis.

4

Challenges andOpen Problems

Perceiving the world in 3D from sensors’ observations has several challenges, which may vary
according to the processing paradigm. In this thesis, we will focus on the following challenges
and propose our original contributions to solve them, as presented in Section 1.3:

• Classical approaches based on multi-view geometry have solid mathematical founda-
tions, but they typically assume a static scene with constant illumination in all the views.
Moreover, these methods struggle with complex materials and textureless areas.

• Deep learning in 3D is promising, as it can potentially exploit geometric priors on large-
scale data and leverage the expressive power of neural networks. On the other hand,
ground truth data in 3D are complex to obtain, costly to store and their representation
highly influences the design of the network.

• Even when learning-based methods are successful at the given task, the final trained
model might be too heavy and slow for inference on edge devices. A possible solution is
to compress the neural network before deployment with quantization, pruning or dis-
tillation algorithms. However, the best sparsity-accuracy tradeoff might be hard to find.

• The ideal approachwouldbe to combine thebest of bothworlds and to injectmulti-view
geometry constraints into learning-based frameworks. In this case, themain challenge is
the design of geometry-aware loss functions and architectures, which is an open issue.

• Modern approaches that represent 3D scenes with implicit functions have several advan-
tages over classical graphics, but they are slow to both render and train, and they are not
forced to infer multi-view consistent representations.

1.2.2 Multi-ViewGeometry

Several 3D perception tasks, such as 3D reconstruction or monocular depth estimation in
Chapter 2, assume to have a set of 2D images as input. Multi-view geometry [23] provides
a set of formal tools to compute the relationship between 2D pixels on the image plane and
their corresponding 3D point X ∈ R

3 in the real world. In this thesis, we assume an ideal
pinhole model for all the cameras, where all the light rays pass through a single pointC ∈ R

3,
as shown in Figure 1.3. We now present some basic mathematical relationships based on such
camera model, and we refer the interested reader to [23] for more details.

5

Figure 1.3: Single‐view geometry of an ideal pinhole camera [24].

Single-ViewGeometry

LetR ∈ SO(3) and t ∈ R
3 be the rotationmatrix and the translation vector, respectively, that

describe the transformation between the world and the camera frames. Using homogeneous
coordinates, the projection of a 3D point to a 2D pixel can be formulated as:

x =

u
v
1

 = K

[
R t

]

x
y
z
1

 = PX (1.1)

Such projection can be understood as follows. The 3D point X is first transformed from the
world frame to the camera frame with extrinsic parameters (R, t). Then, this point is observed
by the camera with intrinsic parametersK:

K =

f s cu
0 af cv
0 0 1

 (1.2)

where (cu, cv) ∈ R
2 is the location of the principal point, f is the focal length with anisotropy

a and s is a shearing factor due to possibly non-rectangular pixels (s ≃ 0 in modern cameras).
Both extrinsic and intrinsic parameters can be recovered with camera calibration algorithms
[23, 25] and the 3× 4 matrix P is known as projection matrix.

6

Figure 1.4: Two‐view geometry with homography, that maps points between image planes of a purely rotating camera (left)
or two cameras observing a planar scene (right) [24].

Two-ViewGeometry

In order to recover the 3D structure of the scene from its 2D projections, we need to invert
the image formation process. However, depth information is lost in Equation 1.1, as any point
along the same optical ray would project to the same pixel. For this reason, the only way to
recover the position of a 3D point from images is by combining multiple observations of such
point on at least two different cameras. Assuming generic cameras with unknown extrinsic
and intrinsic parameters, there are two ways of describing the geometric relation between two
images, depending on the camera motion: homography and epipolar geometry [23].

Homography The homography maps points between two different planes. Therefore, it
applies when the camera is purely rotating or is observing a planar scene. In the first case, the
projection center and the viewing rays are shared by the two views, and the homography simply
describes the mapping between the two image planes. In the second case, wemust concatenate
an homography from the first image plane to the planar scene with another homography from
the scene plane to the second image. Both cases are depicted in Figure 1.4. Mathematically, the
observations x1 and x2 in homogeneous coordinates are linked by the homography matrixH.
Without loss of generality, ifR1 = I and t1 = 0, such matrix can be decomposed as:

H = K2

(
R2 −

t2n⊤

d

)
K−1

1 (1.3)

7

Figure 1.5: Epipolar geometry describing the relationship between two cameras with arbitrary relative motion [24].

Here, the parameters (n, d) are the unit normal vector and the orthogonal distance of the scene
plane, respectively. In the common case of a singlemoving camerawith known intrinsics, Equa-
tion 1.3 can be further simplified as K1 = K2. SinceH has 8 degrees of freedom, due to the
projective ambiguity, it can be estimated with direct linear transform (DLT) from aminimum
of 4 image correspondences [23].

Epipolar Geometry When two images depict a generic scene or the camera undergoes a
generic motion, the homography does not apply and we need to introduce epipolar geometry.
Let e1 = P1C2 and e2 = P2C1 be the epipoles, which are the projections of the principal point
of the other camera in the current image. For a given point X observed as x1 and x2 on the
two image planes, we can define the epipolar lines l1 = e1 × x1 and l2 = e2 × x2. Moreover,
the plane defined by X and the two projection centers (C1,C2) is called the epipolar planeΠ.
This abstraction is visualized in Figure 1.5. Note that l2 = P2Π is also the intersection of the
epipolar plane with the second image plane and the observation x2 must lie on such line. This
relationship is known as the epipolar constraint, which is formalized as:

x⊤2 l2 = 0 =⇒ x⊤2 P2Π = x⊤2 P2P+
1 l1 = x⊤2 P2P+

1 [e1]×x1 = 0 (1.4)

8

where P+
1 is the pseudo-inverse of P1 and [e1]× is a skew-symmetric matrix representing the

cross product. Such constraint can be expressed in terms of the relative pose between the two
cameras. LetR12 = R2R⊤

1 and t12 = t2 −R12t1:

x⊤2 P2P+
1 [e1]×x1 = x⊤2 K−

2
⊤[t12]×R12K−1

1 x1 = x⊤2 Fx1 = 0 (1.5)

ThematrixF is called the fundamentalmatrix and itmaps points fromone image to lines in the
other image. When the intrinsic parameters of the cameras are known, the epipolar constraint
can be simplified and enforced by the essential matrix E:

F = K−
2
⊤[t12]×R12K−1

1 = K−
2
⊤EK−1

1 ⇐⇒ E = K⊤
2 FK1 = [t12]×R12 (1.6)

Both the fundamental and the essential matrix can be estimated from a non-minimal set of 8
correspondences by rearranging Equation 1.4 [23, 26, 27].

1.2.3 Deep Learning

Machine Learning (ML) is a subfield of artificial intelligence that focuses on the development
of algorithms and models capable of learning and making predictions from raw data, without
being explicitly programmed for the task of interest. Given a dataset of input-output pairs
D = {xi, yi}Ni=1 and a parametricmodel ŷi = fθ(xi), such model is trained to minimize a loss
functionL that measures the quality of current predictions:

θ∗ = argmin
θ

∑

(xi,yi)∈D

L(fθ(xi), yi) (1.7)

The parametricmodel is typically a neural network and its optimal parameters θ∗ are computed
with stochastic gradient descent [28]. In recent years, themassive amount of available data and
compute allowed to train increasingly biggermodels on huge datasets. For this reason, modern
ML is also called deep learning, due to the depth of current neural networks, which enables
them to learn complex and hierarchical representations from data. This capability is essential
for the success of deep learning across multiple domains, such as image understanding [29],
natural language processing [30], speech recognition [31], and 3D reconstruction [4, 11].

In the remainder of this section, we provide an overview of network architectures used in
thesis to achieve state-of-the-art results in 3D perception tasks. We refer the interested reader
to [32, 33] for a broader coverage of deep learning systems.

9

(a) Connectivity pattern of linear regression. (b) A biological neuron.

Figure 1.6: Linear regression can be seen as a single‐layer neural network [32].

Multi-Layer Perceptrons

The simplest way tomodel an input-output relationship is to assume a linear dependence, such
that the parameters θ are just the weightsw and bias b of a linear regression model:

ŷ = w⊤x+ b (1.8)

Linear regression can be seen as a single-layer neural network, in which every input is directly
connected to every output, as shown in Figure 1.6a. The term neural network has its histor-
ical roots in the analogy of this representation with the biological neuron visualized in Fig-
ure 1.6b. The information from other neurons is received in the dendrites and weighted by
synaptic weights. Then, such information is aggregated in the nucleus as a weighted sum and
sent via the axon to the axon terminals, where it is fed into another neuron.

In order to model complex nonlinear relationships, neural networks need nonlinear com-
ponents in their computational graphs. The affine transformation in Equation 1.8 is typically
followed by an activation function σ that operates elementwise on its arguments:

ŷ = σ(w⊤x+ b) (1.9)

Finally, we can stack multiple layers of computations, each implementing Equation 1.9 on its
inputs, thusproducing evenmore expressivemodels. The resultingmodel is calledMulti-Layer
Perceptron (MLP) and visualized in Figure 1.7, while the intermediate layers between input and
output are referred to as hidden layers. Despite their simple structure, it can be shown that
MLPs with a single hidden layer can approximate any function, given enough nodes [34].

In this thesis, MLPs are used to model neural radiance fields in Chapter 3, as well as funda-
mental building blocks of convolutional networks inChapter 5 andTransformers inChapter 4.

10

Figure 1.7: A multi‐layer perceptron with a single hidden layer [32].

Convolutional Neural Networks

When the input data are defined on a spatial grid, such as 2D images or 3D voxels, the fully
connected layers inMLPs have two key issues: (i) they are inefficient in terms of both time and
memory, and (ii) they ignore the inherent local structure of regular grids. In order to process
such data efficiently and effectively, we need a translation-invariant operator that focuses on
local regions of the image (or the voxel grid). Inspired by classical image processing, such opera-
tor is a convolution. Convolutional layers compute the elementwise product of the input with
a learnable kernel and add a scalar bias to produce the output.

Since these layers only capture the local structure of the input by design, information about
the global context of the image is lost in their computation. In order to balance local and global
information, pooling layers are interleaved with convolutional layers along the network. Note
that these layers are used to aggregate local information progressively, but they do not involve
any learnable parameter, as they compute local statistics of their inputs.

Given these fundamental building blocks, we can define a Convolutional Neural Network
(CNN) as a network architecture which is composed by stacking multiple blocks of convolu-
tional layers, elementwise nonlinearity and a pooling layer. These blocks are essentially hierar-
chical feature extractors [35] for a finalMLP classifier, as shown in Figure 1.8 for a basic CNN
implementation [36]. Modern CNNs also include residual connections in order to propagate
further the inputs during the forward pass and the gradients during the backward pass [37].
In this thesis, we use CNNs as the main source of comparison for monocular depth estima-

tion in Chapter 2, as well as the architecture of choice for developing efficient compression
algorithms in Chapter 5 for image classification, object detection and semantic segmentation.

11

Figure 1.8: The pioneering LeNet‐5 architecture for handwritten zip code recognition [36].

Transformers

In recent years, deep learning has been revolutionized by the introduction of the Transformer
architecture [30]. While this model was originally introduced for natural language processing
applications, several other fields are progressively converging towards this network architecture,
including computer vision [38] and 3D perception [39, 40]. The core idea behind the Trans-
former is the attention mechanism. Given a database D = {ki, vi}mi=1 of keys and values, the
attention value of a query q overD is defined as:

Attention(q,D) =
m∑

i=1

α(q, ki)vi (1.10)

where α(q, ki) ∈ R are scalar attentionweights, which are typically computed as a dot product
and normalized via softmax [30]. The name derives from the fact that this operation generates
a linear combination of the values and paysmore attention to the termswhereweights are large.

In practice, the same set of queries, keys and values is transformed with h independently
learned linear projections, in order to capture different patterns in the input data. This design
is called multi-head attention, as the outputs of different heads are concatenated for further
processing. The key intuition behind the Transformer model is to remove convolutional lay-
ers and to rely only on multi-head attention and MLPs. The full architecture with positional
encoding, layer normalization [41] and residual connections [37] is shown in Figure 1.9a.

This architecture was designed to process text sequences, where the databaseD is composed
by subwords, also known as tokens. In order to process visual data, the Vision Transformer in
Figure 1.9b proposed to convert an image into a sequence of patches, which can be processed as
tokens in text. Similarly, we will use an attention-based architecture in Chapter 4 for efficient
point cloud upsampling, by enabling each point to attend to its nearest neighbors.

12

(a) Natural language processing [30].

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 9

0Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+
L x

+

Transformer Encoder

(b) Vision Transformer for image inputs [38].

Figure 1.9: Deep learning research is converging towards the Transformer architecture for multiple modalities [30, 38].

1.3 Contributions

Themain goal of this thesis is to develop efficient algorithms for processing 3Ddata from cheap
sensors, by combining classical geometry-based methods with machine learning. To this end,
we present the following contributions to existing literature:

• We propose a novel pipeline for multi-view 3D reconstruction in urban scenarios [14],
by improving the core components of a state-of-the-art geometrical approach [13, 42].
Furthermore, we enable our method to scale up to arbitrarily large scenes with a divide
and conquer procedure that combines view clustering and view selection [43]. This
allows tomassively parallelize the 3D reconstruction process, with practical applications
in autonomous driving and urban simulation.

• We present two algorithmic advances in efficient training of neural representation for
novel view synthesis [18]. Firstly, a sparse set of cameras is computed to ensure scene
coverage and optimal relative baseline. Secondly, pixels in the camera plane are sampled
based on their local entropy, in order to focus on relevant informative rays. Moreover, we
design a framework that generates pseudo-ground truth in3Dwithmulti-viewgeometry
[19], thus allowing to extract high-fidelity 3Dmodels from the implicit representation.

• We formulate the first learning-based approach for point cloud upsamplingwith arbitrary
scaling factors, including non-integer values, with a single trained model [44]. The key
intuition is to map the low-resolution input to a probability distribution on a canonical
domain. High-resolution samples from such distribution are then mapped back to the

13

surface by a Transformer decoder. This flexibility is crucial in real-world applications
with computational and bandwidth constraints.

• We propose two novel methods for neural network compression [45]. Firstly, we show
that feature-basedKnowledgeDistillation (KD) can be improved by complementing the
direct feature matching baseline with a teacher features-driven regularization loss, thus
enabling the student model to learn more robust latent representations. Secondly, we
introduce a neural compression approach that combines network pruningwithKD and
significantly improves the sparsity-accuracy tradeoff for several perception tasks.

1.4 Thesis Structure

Chapter 1 In this chapter, we have introduced the motivation of our research, and we have
provided the technical background inboth computer vision andmachine learning,which
is needed to understand the remainder of the manuscript. The rest of the thesis is orga-
nized per task and presents our original contributions.

Chapter 2 After an introduction on a classical image-based 3D reconstruction pipeline from
multiple views, we describe a novel approach for monocular reconstruction in urban
scenarios [14] and an algorithm to scale it up to entire cities [43].

Chapter 3 We start by presenting the neural radiance fields framework for novel view synthe-
sis, especially focusing on the training loop and the geometry extraction phase. Then, we
show how to speed up training by selecting informative rays [18] and how to compute
clean surface meshes with explicit multi-view constraints [19].

Chapter 4 This chapter provides a detailed literature review on point cloud upsampling, as
well as neural point processing with Transformers. Then, we propose a learning-based
approach for arbitraryupsampling [44] andvalidate itwith extensive experiments against
state-of-the-art, highlighting its robustness and generalization capabilities.

Chapter 5 Firstly, we introduce the topic of neural network compression, by covering the re-
lated work in architectural pruning and knowledge distillation. Secondly, we describe
a novel regularization loss for feature-based KD and a neural compression method to
combine pruning with KD [45], in order to deploy efficient and accurate models.

Chapter 6 This chapter concludes the thesis and suggests future work directions.

14

1.5 Publications

The original contributions and the content in this thesis are based on thematerial published in
the following peer-reviewed papers:

• Orsingher M., Zani P., Medici P., and Bertozzi M.,Revisiting PatchMatchMulti-View
Stereo for Urban 3D Reconstruction, IEEE Intelligent Vehicles Symposium (IV), 2022.

• Orsingher M., Zani P., Medici P., and Bertozzi M., Efficient View Clustering and Selec-
tion for City-Scale 3D Reconstruction, International Conference on Image Analysis and
Processing (ICIAP), 2022.

• Orsingher M., Dell’Eva A., Zani P., Medici P., and Bertozzi M., Informative Rays Se-
lection for Few-Shot Neural Radiance Fields, International Conference on Computer
Vision Theory and Applications (VISAPP), 2024.

• Orsingher M., Zani P., Medici P., and Bertozzi M., Learning Neural Radiance Fields
fromMulti-View Geometry, Learning to Generate 3D Shapes and Scenes Workshop at
European Conference on Computer Vision (ECCV), 2022.

• Dell’Eva A.∗,OrsingherM.∗, and BertozziM.,Arbitrary Point CloudUpsampling with
Spherical Mixture of Gaussians, International Conference on 3D Vision (3DV), 2022.
∗ Equal contribution.

• Dell’Eva A.∗,Orsingher M.∗, Lee Y.M., and Bertozzi M., Teacher Features-Driven Reg-
ularization for Knowledge Distillation, IEEE/CVF International Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2024 (currently under review). ∗ Equal
contribution.

15

16

2
Multi-View 3DReconstruction

2.1 Introduction

This chapter focuses on the multi-view 3D reconstruction problem, where the goal is to com-
pute a dense 3D model of the scene from a set of images. The 2D observations can be cap-
tured by multiple cameras at different time instants, such as tourists’ smartphones taking pic-
tures of famous landmarks [46, 47, 48] or by a single camera moving in the environment, e.g.
mounted on a self-driving car [49, 4, 50]. Specifically, we target scalable 3D reconstruction
for autonomous driving, with the aim of building a detailed representation of the vehicle’s sur-
roundings at scale, from arbitrary camera configurations. This task is typically solved with a
geometry-based pipeline [51, 3], which is briefly described in Section 2.2 as the underlying the-
oretical framework for our original contributions [52, 53]. While end-to-end 3D reconstruc-
tion frameworks [54, 55, 56] and learning-based components have been proposed at various
stages of the pipeline [57, 58, 59], classical methods still dominate the leaderboards [60, 61] in
complex outdoor scenarios. To this end, we propose a novel dense reconstruction algorithm in
Section 2.3 and present a way to efficiently scale it up to entire cities in Section 2.4.

17

Figure 2.1: Overview of the classical image‐based 3D reconstruction pipeline with correpondence search, sparse modeling
with structure from motion and dense reconstruction with multi‐view stereo [24].

2.2 3D Reconstruction Pipeline

This sectionprovides a general overviewon the classical image-based3Dreconstructionpipeline
shown in Figure 2.1 and serves as foundation to understand the contributions presented in the
remainder of the chapter. Specifically, we review the three main components of a system that
models the 3D world from images: (i) searching for corresponding features between multiple
views (Section 2.2.1), (ii) computing camera poses with sparse keypoints (Section 2.2.2) and
(iii) reconstructing the dense 3D surface (Section 2.2.3).

2.2.1 Correspondence Search

In Chapter 1, we showed that the two-view geometry between any pair of cameras can be es-
timated from a set of corresponding pixels. We now present how to establish such correspon-
dences among multiple views. This process can be typically decomposed in three steps. Firstly,
distinctive features are extracted and described independently for each image. Then, a match-
ing algorithm is required to associate similar images that observe the same points. Finally, ge-
ometric verification allows to build a scene graph with images as nodes and pairwise two-view
geometry as edges. These steps are visualized in Figure 2.2.

Feature Extraction

An image feature is a locally distinct region of pixels that should be distinctive and invariant
under both geometric and radiometric changes. The goal is to describe the whole image with
a sparse set of features that can be recognized repeatably in different views of the same scene.
Such features can be either computed by classical algorithms [62, 63, 64] or learned by neural
networks [57, 65, 66]. We refer the reader to [67] for an in-depth review of existing methods
and a comparisonbetween the twoapproaches. Inboth cases, each feature is identifiedby its 2D
pixel coordinates and described by aN-dimensional vector d ∈ R

N that encodes information

18

Figure 2.2: During the correspondence search phase, features are extracted for each image and matched against all the
other views. Then, geometric verification produces the scene graph as intermediate representation [24].

about local geometry and appearance. Given a collection of images I , the first step of the 3D
reconstruction pipeline is to associate each image Ii with the corresponding set of featuresFi.

FeatureMatching

Once each image is describedby its featuresFi, thenext step is tofindwhichpairs of images have
scene overlap. This process is called feature matching, and it aims at finding image pairs with
a sufficient number of local features with similar descriptors. In principle, the naive approach
would be to compare each local feature of each image against all the features of all the other
images. The inherently quadratic complexity of this method is prohibitively expensive in real-
world scenarios, and efficient methods exist to tackle this problem in a scalable way [68, 46,
47]. The output of this step is a set C of potentially overlapping image pairs (Ia, Ib) and their
correspondencesMab ⊂ Fa ×Fb.

Geometric Verification

The feature matching phase might produce wrong associations, as it does not guarantee that
corresponding features actually map to the same scene point. Therefore, an additional veri-
fication step is required to find a valid geometric transformation between image pairs. Such
transformation can be either a homography or a fundamental/essential matrix, depending on
the spatial configuration of the two cameras [23]. We consider a mapping to be geometrically
valid if a sufficient number of features can be matched with a robust estimation technique,
such as RANSAC [69]. The final output of the correspondence search module is a verified
set C̄ = {Ia, Ib,Mab¯ ,Gab} of image pairs with inlier correspondences and their geometric re-
lationGab ∈ {H, F,E}, which can be chosen by minimizing the GRIC score [70]. Moreover,
pairwise 3DpointsXab can be computed by triangulating the inlier correspondences. This geo-

19

Figure 2.3: The different stages of incremental sparse reconstruction [24].

metrically verified set can be visualized as a graphwith images as nodes and edges with two-view
geometry to indicate scene overlap.

2.2.2 Sparse Reconstruction

The scene graph C̄ contains pairwise relative poses between image pairs with scene overlap, as
well as 3D points corresponding to matching features. The goal of the sparse reconstruction
phase is to compute globally consistent camera poses and sparse keypoints in a common ref-
erence frame. This problem is called Structure-from-Motion (SfM), as it deals with estimat-
ing 3D points (structure) from images at different viewpoints (motion). Formally, the out-
put of the sparse reconstruction phase is a set of 3D points X and the calibration matrices
P = {(Kc,Rc, tc)} for each image in Ic ∈ I .

Incremental Reconstruction

The SfM problem can be solved with three fundamentally different approaches:

1. Hierarchical methods apply a divide and conquer scheme by reconstructing multiple
subgraphs in parallel and merging them afterward [71].

2. Globalmethods formulate the problem as a joint optimization over all the relative two-
view geometries [72, 73, 74, 75]. This approach is typically efficient, but not robust.

3. Incrementalmethods allow to repeatedly enhance and refine the solution, thus ensuring
robustness against outliers and wrong estimates from previous steps [76, 77, 68, 46].

We now focus on the steps of incremental reconstruction, which is the default choice for
large-scale scenarios. The process is visualized Figure 2.3: it starts from a sufficiently good pair
of cameras and iteratively alternates between triangulating features and registering new views.

20

Figure 2.4: Bundle adjustment is the problem of jointly refining the position of 3D points and the camera poses to minimize
the reprojection errors for the optical rays corresponding to image features [24].

Initialization Iterative optimization procedures strongly rely on a good initial solution.
Incremental SfM algorithms are typically initialized with a carefully selected image pair having
a sufficientlywide baseline and belonging to a densely connected region of the scene graph [78].
This results in a metric reconstruction of the two images, as well as a set of 3D points obtained
by triangulating inlier correspondences.

Registration At each iteration, a new image is selected and registered against the current
metric reconstruction. This requires to establish 2D-3D correpondences between features in
the new image and the 3D points belonging to the currently estimated scene structure. Given
such correspondences, the Perspective-n-Point (PnP) problem can be solved with RANSAC
[79, 69] to find the corresponding camera calibration (Kc,Rc, tc) of the selected view, in a com-
mon reference frame.

Triangulation The camera added to the reconstruction in the registration stepmight ob-
serve scene points that are not yet reconstructed. If such points are seen by at least another
image, then they can be triangulated to extend the 3DmodelX .

Bundle Adjustment

In the incremental reconstruction process, registration and triangulation are performed alter-
nately, as they rely on each other’s outputs. This means that uncertainty in both steps propa-

21

gate across iterations and the solution might quickly drift to a non-recoverable State. For this
reason, a joint non-linear refinement of both cameras and points is required.

Such refinement is known as bundle adjustment (BA), since the goal is to adjust a bundle of
optical rays by minimizing the reprojection errors of 3D points on image planes:

P∗,X ∗ = argmin
P,X

∑

Pi∈P

∑

Xj∈X

||xij − PiXj||2 = argmin
P,X

∑

Pi∈P

∑

Xj∈X

||eij||2 (2.1)

where eij is the error in pixel space between the observationon cameraPi of pointXj (known)
and its projection based on the current estimate of the 3D scene (unknown). The shape of this
cost function is highly non-linear and it cannot be optimizedwith standard global optimization
methods. The typical approach is to iteratively approximate the cost function and tominimize
it with gradient descent or the Levenberg-Marquardt algorithm [80, 81].

To sum up, incremental SfM starts from two carefully selected images and iteratively regis-
ters new cameras, while adding new points to the scene structure via triangulation. After each
iteration, bundle adjustment is solved to refine the current solution. The procedure endswhen
all the cameras have been registered and the output is a sparse 3D reconstruction of the scene,
along with calibration and poses, in a globally consistent reference frame.

Visual SLAM

The incremental reconstruction approach described in the previous section assumes that an
unstructured collection of images is available offline. However, in practical applications, such
as robotics and autonomous driving, images are acquired sequentially by a moving camera at-
tached to the robot or the vehicle. This setting is usually referred to as visual Simultaneous Lo-
calization andMapping (SLAM) [82], where localization is the process of recovering camera
poses and mapping means to reconstruct sparse 3D points, which must be performed simul-
taneously. There are two main differences with respect to the classical SfM problem presented
before. Firstly, the sequential nature of data greatly simplifies the correspondence search phase,
since the search for matching features can be reduced to nearby frames. Secondly, points and
posesmust be estimated in real-time and continuously updated to allow a safe navigation of the
agent. In this section, we briefly review the general architecture of a SLAM system as shown in
Figure 2.5 and refer the interested reader to [83] for more details.

VisualOdometry The core of any SLAMalgorithm is the visual odometrymodule, which
estimates the robot poses sequentially by examining the changes that the motion induces on

22

Figure 2.5: General architecture of a modern SLAM system: a front‐end performs visual odometry with loop closure
detection at high frequency, while the back‐end solve non‐linear map optimization at low frequency [83].

the images acquired by its camera [84]. This is performed by the front-end at high frequency.
Without loss of generality, letR0 = I and t0 = 0 at iteration k = 0. Then, for k > 0, as soon
as a new image Ik is available:

1. Features are extracted and matched between Ik−1 and Ik.

2. The relative motion (Rk,k−1, tk,k−1) between the two frames is estimated by computing
the essential matrix based on feature correspondences.

3. The current pose (Rk, tk) is computed recursively by concatenating all the relative trans-
formations.

At each iteration, 3D points can be triangulated from feature correspondences to simulta-
neously build a representation of the environment.

LoopClosureDetection Visual odometry is consistent only locally, since it accumulates
drift over time due to its incremental nature. The general solution to restore global consistency
is to detect when the robot visits the same location multiple times, such that an additional
pose constraint can be added to the optimization problem. Loop closures are computed by the
front-end, typically using the bag-of-words approach [85].

SLAM Backend The last key component of modern SLAM systems is a back-end module
that runs at lower frequency and computes a non-linear optimization of both 3D points and

23

Figure 2.6: The dense reconstruction phase aims at computing a complete 3D model of the scene, starting from posed
images and sparse keypoints [24].

camera poses, in order to produce a globally consistent solution. This refinement can be for-
mulated either as a full bundle adjustment or as a motion-only BA, which is also known in
literature as pose graph optimization [86], when mapping is not required.

2.2.3 Dense Reconstruction

At this stage of the 3D reconstruction pipeline, the scene structure is composed by sparse key-
points corresponding to triangulated image features, while each camera has been calibrated
and located in a global reference frame. The goal of the dense reconstruction phase is to con-
vert this approximate representation into a complete 3Dmodel, such as a dense point cloud or
a textured surface mesh. Figure 2.6 shows that the problem can be solved in three steps. Firstly,
amulti-view stereo (MVS) algorithm computes a depth value and a normal vector for each pixel
of each image. Then, multi-view consistent estimates are back-projected in 3D to generate a
dense point cloud with normals, which can be finally meshed into a textured surface.

Multi-View Stereo

The goal of the multi-view stereo stage is to assign a valid depth value d and a normal vector
n to each pixel of each image. While many paradigms for MVS exist, we focus here on the
PatchMatch approach [87, 13, 42, 3] shown in Algorithm 2.1, which produces state-of-the-
art results on most benchmarks [60, 61] and serves as baseline for the original contributions
presented in Section 2.3. We refer the reader to [88] for a detailed review of MVS algorithms.
Since the same steps are repeated independently for each pixel of each image, we now consider
a generic pixel p of a reference image Iref ∈ I and let Isrc = I \ {Iref}.

24

Algorithm 2.1 PatchMatchMulti-View Stereo
Input→ Images I = {Ii}with calibration parametersP = {(Ki,Ri, ti)} from SfM
for all images Iref ∈ I do

Isrc = I \ {Iref}
for all pixels p ∈ Iref do

(d, n) = Initialization()
forNiter iterations do

S = Propagation()
(d, n) = Evaluation(I,P ,S)
S̄ = Perturbation()
(d, n) = Evaluation(I,P , S̄)

end for
end for

end for
Output→ Pixelwise depthsD = {Di} and normalsN = {Ni}

Initialization PatchMatch is an iterative optimizationmethod, which needs an initial so-
lution to progressively refine. The depth value is initialized randomly within a given range
d ∈ [dmin, dmax], while a random normal vector n is generated by following [89]. Then, the
following three steps are performed for a given number of iterations.

Propagation In this phase, a set ofK new hypothesis S = {(dk, nk)}Kk=1 is sampled from
neighboring pixels. Several propagation schemes have been proposed and they are visualized in
Figure 2.7. Sequential propagation [3] traverses pixels in parallel scanlines, while checkerboard
approaches [89, 87] allow to simultaneously update half of the pixels by dividing them in a red-
black diffusion scheme. In general, the former tends to be more robust in challenging cases,
while the latter are much more efficient and parallelizable. In modern GPU implementations
[89, 87], each red (or black) pixel can be assigned to aCUDAcore and processed independently
at each iteration.

Evaluation Each hypothesis in S represents the local tangent plane to the scene surface at
the 3D point corresponding to the current pixel p. This allows to compute the corresponding
pixels on all the images inIsrcwith the plane-induced homography in Equation 1.3, as shown in
Figure 2.8. At this point, weneed away to compute a cost for eachhypothesis and to update the
current one. The cost cik of projecting thepixelpon the image Ii according to the hypothesis k is
usually givenby a robust statistics of a local patch aroundp, such asnormalized cross-correlation

25

(a) Sequential propagation along
parallel scanlines [3].

(b) Symmetric checkerboard
propagation [89].

(c) Adaptive checkerboard
propagation [87].

Figure 2.7: Overview of different propagation schemes for PatchMatch MVS. In (b) and (c), the black point represents the
current pixel, while orange points are the pixels where the new hypotheses are sampled.

(NCC) or sum-of-squared-differences (SSD) [3]. Then, such cost is aggregated across multiple
views in Isrc to produce a single cost per hypothesis as follows:

ck =
∑

Ii∈Isrc w(Ii)cik∑
Ii∈Isrc w(Ii)

= Lphoto(dk, nk) (2.2)

wherew(Ii) is a weighting function to account for occlusions and visibility. The current depth
and normal solution for p is updated with the solution minimizing such cost:

(d, n) = argmin
(dk,nk)∈S

Lphoto(dk, nk) (2.3)

We will see in Section 2.3 that the purely photometric loss function in Equation 2.3 can be
extended to include terms about multi-view geometric consistency [13] and planar priors [42].

Perturbation After propagation and evaluation, a refinement step is needed to escape bad
local minima and enrich the diversity of solution space. Let (dc, nc) be the current hypothesis,
(dp, np) a randomly perturbed hypothesis and (dr, nr) a randomly generated depth and normal.
Then, a small set of new candidate solutions is defined as:

S̄ = {(dp, nc), (dr, nc), (dc, np), (dc, nr), (dr, nr), (dp, np)} (2.4)

Each new hypothesis is tested against the current one by following Equation 2.3 and the final
estimate is assigned to the pixel p.

26

Figure 2.8: Depth hypotheses are evaluated based on their photometric consistency when the pixel is projected onto
source views with plane‐induced homography [24].

Multi-View Fusion

Givenpixelwise depths andnormals (D,N) frommulti-view stereo, the goal of this second step
is to lift these estimates from the image planes to a dense, consistent point cloud in scene space.
Let (d, n) be the MVS output for a pixel p in a camera with known intrinsicsK and extrinsics
(R, t). This pixel can be back-projected in 3D by inverting Equation 1.1 with known depth d:

X = R⊤

(
dK−1

[
p
1

]
− t

)
(2.5)

Then, such point is observed by all the other images, and it is marked as valid if the following
three conditions hold for a minimum number of views: the reprojection error, the relative
depth difference and the angle between normals must all be lower than a given threshold. This
can be repeated for each pixel of each image, and the result is a list of multi-view consistent
points with 3D position, color and surface normal [87, 3]. Note that the same procedure can
be used to generate consistent 3D semantics if a segmentation of each image is available [90].

Surface Reconstruction

A dense point cloud is a rich and complete description of the 3D scene structure. However, it
lacks connectivity between points, and some applications in computer graphics or video games

27

Level of Detail

Figure 2.9: Triangular meshes extracted with marching cubes at different levels of detail from the input point cloud (left),
using the implicit surface reconstruction method NKSR [91].

typically require amore compact and continuous representation, such as a texturedmesh. This
can be achieved with surface reconstruction algorithms, that approximate the geometry of a
scene with locally planar surfaces, such as triangles.

Classical approaches, such as [6, 7], try to find an implicit function whose value is 0 at the
given points and whose gradient equals the local normal vector. The key idea is to solve for
the indicator function of the shape ΙΩ(X) = 1 if X ∈ Ω, and 0 otherwise. The solution is
computed from Poisson equation that links the normal field at the shape boundary and the
gradient of this indicator function. The zero-level set of the resulting implicit function defines
the surface of the shape, and a mesh is obtained by extracting the corresponding isosurface.

On the other hand, learning-basedmethods [9, 10, 91, 92, 93] model an implicit occupancy
field by learning tomap a query pointX either to its binary occupancy or its signed distance to
the shape Ω. This mapping is built by fitting a simple MLP to the input point cloud. Given a
neural implicit field fθ : R3 → {0, 1}, themarching cubes algorithm [12] canbeused to extract
a triangularmesh. The algorithmworks by iterating over a uniformgrid of cubes superimposed
with a spatial region and testing each vertex of each cube. For a given cube, if the vertices are
all positive or all negative, then it is either completely inside or outside the surface, respectively.
Otherwise, the cube intersects the surface and a triangle is generated. The smaller the cubes,
the better the resulting mesh will approximate the actual shape and capture intricate details, as
shown in Figure 2.9 for the ears of the bunny.

28

2.3 Revisiting PatchMatchMVS for Urban Scenes

This section is based on the original contributions published in [52]:
Orsingher M., Zani P., Medici P., and Bertozzi M.,Revisiting PatchMatchMulti-View Stereo
for Urban 3D Reconstruction, IEEE Intelligent Vehicles Symposium (IV), 2022.

2.3.1 Motivation

One of the main challenges in autonomous driving is to build a complete and reliable 3D rep-
resentation of the environment around the vehicle. Since the classical sensor fusion approach
requires a complex sensor suite that is both expensive and challenging to calibrate, recently
there is a growing interest towards image-based 3D reconstruction in urban scenarios. This
is motivated by practical applications, such as photorealistic offline simulation, ground truth
generation for neural networks and semantic 3D understanding [94, 95, 96]. Moreover, self-
driving cars are typically equippedwith an array of cameras. Here we consider the simplest case
of a single forward-facing camera, and we generalize to a multi-camera setup in Section 2.4.

The 3D reconstruction pipeline described in Section 2.2 dominates the leaderboards for
complex outdoor scenes [60, 61], but tends to fail in textureless areas and non-Lambertian sur-
faces. In such regions, matching pixels acrossmultiple views and computing their photometric
consistency is prone to errors, thus leading to artifacts and noise in the final 3D model. Fur-
thermore, the local optimization procedure of PatchMatch fails to propagate good solutions
in degenerate cases. In this section, we build on recent algorithmic advances in PatchMatch
MVS [13, 42, 97] and we propose three key improvements to tackle its failure modes in urban
scenarios:

1. The initialization step in Algorithm 2.1 is augmented with approximate 3D geometry
information from sparse keypoints.

2. A novel geometric loss function is introduced to ensure consistency between estimated
depths and normals, leading to more accurate geometry.

3. A multi-scale interaction between the local optimization of PatchMatch and a global
refinement algorithm [98] is proposed to regularize the solution.

The resulting MVS algorithm, coupled with a state-of-the-art visual SLAM system [99],
leads to a reliable framework for outdoor monocular 3D reconstruction from images, which is
shown in Figure 2.10.

29

Visual
SLAM

Input Images

Keypoints

Keypoint-based
Initialization

Camera Poses

Depths, Normals and Confidences

Large-Scale 3D Reconstruction

PatchMatch MVS
with Geometric

Consistency

Depth and Normal
Refinement

Point Cloud
Generation

Upsampling and
Detail Restoring

Figure 2.10: Overview of the proposed approach for large‐scale 3D reconstruction of urban environments from images [52].

2.3.2 RelatedWork

Monocular DepthNetworks

Monocular depth estimation (MDE) is inherently an ill-posed problemusing classical geometry-
based methods, since depth information is lost in the 3D-2D projection described by Equa-
tion 1.1. However, neural networks can be trained to predict depth from a single image, by ex-
ploiting the relationship between appearance and geometry in large-scale datasets. Early works
in learning-based MDE proposed simple convolutional architectures, trained in a fully super-
vised way from additional LiDAR sensors [101, 102]. Despite showing promising results, ac-
quiring ground truth data for depth is expensive and the resulting supervision is still sparse,
since LiDAR rays do not have a one-to-one mapping with camera pixels.

In order to avoid this issue, Zhou et al. [100] pioneered a fully self-supervised approach to
jointly learn depth and pose by using view synthesis as a proxy task. Recent improvements in
network architectures and loss functions [4, 103, 1] have shown performances almost on par
with supervisedmethods. The basic idea is that source views inIsrc canbe differentiablywarped
onto the reference image plane Iref by using the depth and the relative pose predicted by two
separate neural networks. If the predicted depth and pose are correct, then this warping should
generate exactly Iref, up to occlusions, that can be used a self-supervision (see Figure 2.11).

The main advantage of these methods is that they learn a direct image-to-depth mapping,
which can be directly deployed for real-time navigation of autonomous vehicles. Moreover,
they usually deal effectively with known problems of classical methods, such as moving objects

30

Target view

Nearby views

Depth CNN

Pose CNN

R, t

Figure 2.11: Self‐supervised monocular depth estimation networks are trained to predict a depth and a relative pose that
allow to warp source views onto the reference image plane [100].

that break multi-view photometric consistency. However, neural networks are usually limited
in the input resolution and they require fine-tuning on unseen data, as they do not general-
ize zero-shot to different camera configurations. Furthermore, pixelwise normals are typically
not handled, despite few notable exceptions [104, 105]. This is a critical issue when the down-
stream task is 3D reconstruction, since the joint estimation of depth and normals improves the
geometric consistency of the resulting model.

Advances in PatchMatchMVS

The PatchMatch MVS algorithm presented in Algorithm 2.1 is based on seminal papers [3,
89, 87] that progressively improved its building blocks and allowed for an efficient GPU im-
plementation with massive parallelization. Recently, several works proposed to enhance the
framework by introducing multi-scale estimation [13], geometric consistency [3, 13], planar
priors [42] and semantic information [90, 106].

In order to deal with textureless areas, Xu et al. [13] pioneered the idea of estimating geome-
try on multiple scales. When using image pyramids, patches at coarser scales have significantly
more texture if the patch size is fixed, andphotometric consistency canbemeasuredwith higher
fidelity. Depths and normals at finer scales are then initialized with upsampled outputs of pre-
vious levels [107]. Three hierarchy levels are typically enough for improved results.

Anotherway to improve the geometry produced byPatchMatchMVS is to explicitly enforce
geometric consistency between depth estimates. This is done by extending Equation 2.3 to

31

include a geometric cost, which is typically the forward-backward reprojection error [3, 13]. A
pixel pref in the reference image is back-projected in 3D according to its current depth estimate
by following Equation 2.5 and observed in each source image as the pixel pi. Then, it is warped
again onto the reference view with the source depth hypothesis as p̂i and the following cost is
computed, for each image Ii and each depth hypothesis dk:

cik = min
(
||pref − p̂i||2, τ

)
(2.6)

where τ is a robust threshold against occlusions. This cost is aggregated acrossmultiple views
with the same weights of Equation 2.2 and the termLgeo(dk) is added to Equation 2.3.

Furthermore, since textureless areas usually correspond to piecewise planar surfaces in the
scene, planar priors can be added to PatchMatch optimization to regularize the solution in
those regions [42]. Such priors are derived by building aDelaunay triangulation on pixels with
sparse but reliable correspondences, i.e. having a matching cost lower than a given threshold.
The vertices of each triangle are then projected in 3D and the parameters of the plane through
these three points are computed. This gives a prior depth and normal for all the pixels inside a
given triangle. Equation 2.3 is extended to include Lplane(d, n) and we refer the reader to [42]
for its detailed formulation.

We combine all these elements in a unified multi-scale framework with planar priors and
geometric consistency, which we refer to as our baseline. Note that this combination has also
beenproposed in [108],whichwaspublishedafter ourwork [52]. Moreover,wedonot include
semantic information [90, 106], as it would require an additional output from a segmentation
network for each frame, and we only rely on raw images as input.

2.3.3 Method

Keypoint-based Initialization

The usual practice in existing literature [89, 51, 87, 13, 42] is to start from a random initial
solution, as presented in the initialization phase of Algorithm 2.1. However, it is common to
have a depth guess for at least a sparse subset of pixels. For example, a set of well-triangulated
2D features and corresponding 3D keypoints are a by-product of SfM algorithms and SLAM
systems. This is essentially a free approximation of the scene geometry that is currently over-
looked in 3D reconstruction pipelines. We propose to reproject this sparse point cloud onto
each image and use the corresponding depth values to bootstrap the optimization.

32

Figure 2.12: Examples of the proposed PatchMatch initialization with densified visual SLAM keypoints (left) and
triangulated sparse LiDAR points (right) for the input image (top) [52].

A possible way to integrate sparse 3D points into the initialization phase is to compute a
Delaunay triangulation on the valid pixels and fit plane parameters to each triangle, as done
for estimating the planar priors in [42]. This approach assumes that features are regularly dis-
tributed in the image, which is the case for classical MVS datasets [61, 60] with wide baselines
and well-textured scenes [109]. On the other hand, keypoints from visual SLAM in urban
scenarios suffer from very low triangulation angles between frames and they are usually con-
centrated in specific areas, while being almost absent in large textureless regions, such as roads.
Moreover, noisy and erroneousmatches aremuchmore frequent in real-worldmonocular out-
door data, thus making this approach unstable and unreliable.

Therefore, in our framework we simply densify the initial solution by propagating each
depth value in a local support region of 5 × 5 pixels, as shown in Figure 2.12 (left). These
hypotheses are then perturbed with random Gaussian noise to promote diversification, while
pixels too far from any keypoint are still randomly initialized. For the sake of completeness,
we also show in Figure 2.12 (right) that the Delaunay triangulation method is well-suited for
urban data when sparse measurements from a LiDAR sensor are available.

33

Figure 2.13: Visualization of the self‐consistency between a depth value and a normal vector, which must be locally
perpendicular to the 3D surface in scene space.

Improved Geometric Consistency

The geometric consistency term inEquation2.6 does not fully exploit the local planar geometry
of the scene, since such consistency is enforced only of depth estimates and not for normal
vectors. To this end, we draw inspiration from recent monocular depth estimation literature
[110, 111] and propose to add another geometric loss function that ensures self-consistency
between the depth value and the normal vector of a given pixel p.

Formally, a normal vector n is consistent with the corresponding depth value d if it is locally
perpendicular to the surface at the corresponding 3D pointX, which is computed with Equa-
tion 2.5. This constraint, which is visualized in Figure 2.13, can be enforced by back-projecting
in 3D a set Ω of pixels around p and formulating the following cost function:

Lcons(d, n) =
∑

q∈Ω

wq · n⊤(Xq − X) (2.7)

where Xq is the 3D point corresponding to pixel q and wq = e−||I(q)−I(p)|| downweights
pixels with different color values, which are less likely to belong to the same surface. Note that
this formulation optimizes self-consistency between depths and normals within the reference
frame and does not require to warp pixels on source views.

Finally, the overall loss at each evaluation phase in our framework is the sum of all the previ-
ously introduced terms, including photometric, geometric and planar consistency:

(d, n) = argmin
(dk,nk)∈S

(
Lphoto(dk, nk) + Lplane(dk, nk) + Lgeo(dk) + Lcons(dk, nk)

)
(2.8)

34

Figure 2.14: Visualization of pixelwise confidence (right) for an example input frame (left) [52].

Global Refinement

Despite the efforts in optimizing consistency terms for both multi-view appearance and geom-
etry in Equation 2.8, the output depth and normal maps might still contain errors that can
harm the accuracy and the completeness of the resulting 3Dmodel. Existing works [13, 42, 3]
partially solve this issue by performing a simple median filtering after each iteration, in order
to remove outliers. However, the root cause of most errors is the inherently local nature of
the PatchMatch algorithm, since the global context is never considered during optimization.
Therefore, we propose to leverage a confidence-based global refinement algorithm [98] at each
scale to regularize the predicted geometry.

Let (D,N) be the pixelwise depths and normals of the reference image at the current scale
andC a confidencemapwith values cp ∈ [0, 1] for each pixelp, where 0means that the estimate
is unreliable and 1 that we can strongly rely on it. We define such confidence as a smooth
function of the forward-backward reprojection error ep:

cp = exp
(
−
(ep
ē

)2)
(2.9)

where ē is the mean error over the entire set of observations. A visualization of the resulting
confidence map is given in Figure 2.14 (right), where it can be seen that pixels with low confi-
dence correspond to textureless regions or areas with non-Lambertian illumination, while high
confidence is assigned to distinctive pixels.

The refinement procedure optimizes both unary terms that penalizes deviations from reli-
able input values and a binary term that promotes globally smooth solutions:

D∗,N∗ = argmin
D,N

(
Lunary(D,C) + Lunary(N,C) + Lbinary(D,N,C)

)
(2.10)

The global smoothness is guaranteed by building a graph with reliable pixels as nodes. Each
edge of the graph is then associated with a weight that takes into account the distance between
the nodes in image space and the likelihood of belonging to the same surface in scene space.

35

Figure 2.15: Comparison of raw (left) and refined (right) depths (top) and normals (bottom) for the input image in
Figure 2.14 [52].

We refer the reader to [98] for a detailed description of such weights and the loss terms for
regularization. Figure 2.15 shows a comparison between raw geometry from PatchMatch and
the outputs refined by the proposed algorithm.

Note thatwhile a previouswork [97] adopted the same refinement approach toMVSoutput,
the key improvements of the presentedmethod are (i) amuch simpler confidencemetric and (ii)
the use of the algorithm at each scale of the pyramid, rather than a single time at the end. This
means that the multi-view consistency of refined solutions is further enforced at finer scales,
thus producing more complete and accurate 3Dmodels.

2.3.4 Experiments

Implementation Details

The whole framework has been implemented in C++/CUDA and the code runs on a single
NVIDIA GTX 1080Ti GPU. Camera poses and sparse keypoints for initialization are com-
puted with the visual SLAM system DVSO [99], in order to enable 3D reconstruction from
images alone. PatchMatch optimization is performed forNiter = 8 iterations and the reprojec-
tion error is clamped at τ = 2 pixels, which is also the threshold formarking a 3Dpoint as valid
during the point cloud generation step. Moreover, a 3D point must also have a relative depth
difference lower than 0.01 m and an angle between normals below 10 for at least two views.

36

Method Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

MonoDepth2 [4] 0.115 0.882 4.701 0.190 0.879 0.961 0.982
PackNet [103] 0.107 0.882 4.538 0.186 0.889 0.962 0.981

ManyDepth [112] 0.087 0.685 4.142 0.167 0.920 0.968 0.983
DORN [102] 0.077 0.290 2.723 0.113 0.949 0.988 0.996
BTS [113] 0.059 0.245 2.756 0.096 0.956 0.993 0.998
MiDAS [1] 0.062 - 2.573 0.092 0.959 0.995 0.999
Colmap [51] 0.099 3.451 5.632 0.184 0.952 0.979 0.986
ACMM [13] 0.042 0.498 2.871 0.166 0.982 0.989 0.992
ACMP [42] 0.034 0.381 1.930 0.152 0.987 0.992 0.994

DeepMVS [114] 0.088 0.644 3.191 0.146 0.914 0.955 0.982
DeepTAM [115] 0.053 0.351 2.480 0.089 0.971 0.990 0.995
MonoRec [50] 0.050 0.295 2.266 0.082 0.973 0.991 0.996

Ours 0.025 0.201 1.459 0.069 0.992 0.996 0.998

Table 2.1: Quantitative results on the KITTI dataset. Best and second results are marked bold and underlined, respectively.
Yellow columns are error metrics where lower is better, orange columns are accuracy metrics where higher is better [101].

Quantitative Evaluation

We evaluate the proposed framework on the KITTI dataset [116], which is captured in the
city of Karlsruhe, Germany, with an autonomous driving platform equipped with a LiDAR
sensor to provide ground truth geometry and two front cameras with resolution 1382 × 512
pixels. Depthmaps are computed at full resolution and clamped at 80m for computingmetrics.
Consistently with recent literature, the improved ground truth from [117] and the metrics
from [101] are used for evaluation. Let dgt be the ground truth value for a predicted depth d
in a depth mapDwith sizeW×H. The following metrics are averaged across all the frames:

Abs Rel =
1

WH
∑

d∈D

|d− dgt|
dgt

Sq Rel =
1

WH
∑

d∈D

||d− dgt||2
dgt

RMSE =

√
1

WH
∑

d∈D

||d− dgt||2

RMSElog =

√
1

WH
∑

d∈D

|| log d− log dgt||2

(2.11)

37

Method MS KP GC Ref Abs Rel Sq Rel RMSE RMSElog
Baseline [108] ✗ ✗ ✗ ✗ 0.034 0.381 1.930 0.152

Baseline (ref) [97] ✓ ✗ ✗ ✓ 0.031 0.284 1.716 0.074
Ours ✓ ✗ ✗ ✗ 0.033 0.321 1.882 0.102
Ours ✓ ✓ ✗ ✗ 0.032 0.305 1.603 0.081
Ours ✓ ✓ ✓ ✗ 0.032 0.273 1.586 0.076

Ours (full) ✓ ✓ ✓ ✓ 0.025 0.201 1.459 0.069

Table 2.2: Ablation studies on the KITTI dataset. Best and second results are marked bold and underlined, respectively. In
all the metrics, lower is better. Legend: MS ‐ Multi‐Scale, KP ‐ KeyPoint‐based initialization, GC ‐ our Geometric

Consistency, Ref ‐ global Refinement.

Finally, the δ parameter in orange boxes of Table 2.1 is defined as:

δ = max
(

d
dgt

,
dgt
d

)
(2.12)

Previous works typically perform quantitative evalutation on the Eigen test split [101], but
MVS methods require temporally adjacent frames with estimated poses. Therefore, we gener-
ate the results on the intersection between the KITTI odometry benchmark and the Eigen test
split, following [50]. This procedure leads to 8634 images for testing.

We compare our approach to a broad range of methods, including both classical [51, 13,
42] and learning-based [50, 114, 115] MVS algorithms. In addition, we selected both self-
supervised [103, 4, 112] and fully supervised state-of-the-art monocular depth networks [102,
113], as well as a recent vision transformer-based approach [1]. Quantitative results are shown
in Table 2.1, where it can be seen that our contributions significantly boost the performances
of concurrent methods. Moreover, note that the gap with respect to monocular networks is
shared by most MVS approaches, due to their ability of exploiting information about camera
poses and adjacent frames, rather than directly trying to map images to depth.

Ablation Studies

In order to quantify separately the effect of each contribution on the predicted geometry, ab-
lation studies are presented in Table 2.2, showing that all our novel components consistently
increase the depth estimation metrics compared to the baseline [108]. The two elements with
the greatest influence are the global refinement algorithm and themulti-scale estimation frame-
work. This can also be noticed when comparing the baseline to another work [97] that makes

38

0 20 40 60 80 100
Percentage of keypoints for initialization [%]

1.5

1.6

1.7

1.8

1.9

RM
SE

 m
et

ric
LiDAR scans
Visual SLAM

Figure 2.16: RMSE as a function of the number of input depth values for both LiDAR data and visual SLAM keypoints.

use of the same refining step. Moreover, keypoint-based initialization and the novel depth-
normal consistency term allow to further boost the performances of the proposed method.

We also performed additional experiments to investigate deeper the influence of the quantity
and the quality of initial depth values on the final results. While our framework is designed to
workwith raw images as input, theKITTI dataset provides sparse LiDAR scans aligned to each
frame, and this is a fairly common setup in autonomous driving. For this reason, Figure 2.16
shows the RMSE metric as a function of the number of points for both LiDAR and visual
SLAM input data. Intuitively, adding more initial guesses keeps improving the results, and in
general LiDAR points give a better initialization than SLAM keypoints. This is motivated by
the fact that laser scanners can provide depth in textureless regions where SLAM typically fails
to extract keypoints, which are also the same areas in whichMVS struggles the most.

Qualitative Results

We provide a qualitative comparison against state-of-the-art in Figure 2.17, which shows the
depthmaps computed by two self-supervisedmonocular networks [4, 103], the baselinemulti-
scale PatchMatch MVS with planar priors [108], and the proposed approach. While learning-
basedmethods provide smooth and visually pleasant results, they alsomiss out ondetails in fine-
grained structures, such as light poles and traffic signals, which are crucial for safe autonomous
navigation. Moreover, note how the local-only optimization strategy of [108] leads to noise
and artifacts in large textureless areas. Our method can effectively deal with both issues, by
combining strong geometric consistency and global regularization.

39

(a) Input image (b)MonoDepth2 [4] (c) Baseline [108] (d)Ours

Figure 2.17: Qualitative results on the KITTI dataset. Bounding box legend: Green ‐ traffic signals detail, Cyan ‐ textureless
areas, Red ‐ moving objects. Differences are best viewed when zoomed in.

Figure 2.18: 3D reconstruction results from sequence 05 of the KITTI odometry dataset: individual snapshots (left) of the
large‐scale point cloud (right, top), which is consistent with the estimated camera trajectory (right, bottom).

40

Figure 2.17 also shows that both our approach and the baseline [108] fail to recover the
correct depth of amoving object. This is a typical failure case ofMVS algorithms, as the under-
lying assumption of static environment is not satisfied. On the other hand, the direct image-
to-depth mapping learned by monocular networks can still predict a reliable result. While a
recent work [50] proposed an effective way to deal with dynamic objects in MVS systems, this
issue is mitigated when depth is used for 3D reconstruction as downstream task, for two main
reasons. Firstly, moving objects violate themulti-view consistency needed for a pixel to be back-
projected in 3D, therefore those pixels are implicitly masked away. Secondly, the perception
stack of self-driving cars typically includes a segmentation network [118], that can be used to
skip those areas explicitly.

Finally, the 3D reconstruction of a complete sequence from the KITTI odometry dataset is
shown in Figure 2.18. The extremely dense and large-scale point cloud has been obtained by
computing pixelwise depths and normals with the proposed improvedMVS algorithm, which
are then back-projected in 3D with Equation 2.5. The resulting 3D model (right, top) is con-
sistent with the estimated trajectory (right, bottom) and individual snapshots (left) show the
density and the texture richness of the point cloud. The incomplete parts aremainly due to the
severely limited field of view of the frontal camera in the dataset. Additional reconstructions
in urban scenarios with a full array of cameras are shown in Section 2.4.

2.4 Scaling to Entire Cities

This section is based on the original contributions published in [53]:
Orsingher M., Zani P., Medici P., and Bertozzi M., Efficient View Clustering and Selection
for City-Scale 3D Reconstruction, International Conference on Image Analysis and Processing
(ICIAP), 2022.

2.4.1 Motivation

In the previous section, we presented a complete pipeline formonocular 3D reconstruction of
urban environments from images acquired by the frontal camera of a self-driving car. However,
modern autonomous vehicles are usually equipped with a multi-camera array on top [119], in
order to cover the full 360° visible range. A naive way to exploit this additional information
would be to run 3D reconstruction independently for each camera and merge the resulting

41

point clouds. This is inefficient and suboptimal, since strongmulti-viewconstraints exist across
both different cameras at the same time instant and the same camera at different frames.

Another frequent situation overlooked by the framework presented in Section 2.3 is when
the front-left (or front-right) camera at time t shares visibility with the back-left (or back-right)
camera at time t+ k (for some k > 0). Optimal viewpoints for triangulating 3D points might
be acquired by different sensors at very different time instants. Furthermore, considering only
temporally adjacent frames as Isrc in Algorithm 2.1 is flawed when the vehicle revisits the same
place multiple times, since the same geometry would be re-computed unnecessarily. Finally,
scaling 3D reconstruction up to entire cities whenmultiple cameras generate data at high frame
rate poses several efficiency challenges.

In this section, we modify the proposed framework to support city-scale 3D reconstruction
fromarbitrary camera configurations. We still assume to have calibrated images as input, aswell
as a sparse set of keypoint computed by either SfM or SLAM. Then, we present two original
contributions to enable such scaling:

1. A view clustering algorithm is designed to identify local clusters of images with shared
visibility and to allow for parallelization across such clusters.

2. A view selection procedure is proposed to select a representative subset of the input im-
ages, thus further boosting the efficiency.

2.4.2 RelatedWork

Nowadays, arbitrarily large datasets of high-resolution images have become available thanks to
almost unlimited sources of data, such as Internet pictures uploaded by millions of users on
Social Media. While this large amount of data can be used to effectively reconstruct a precise
3D view of the world, the increasing size and high redundancy introduce both feasibility and
efficiency challenges.

Most approaches in the literature have been developed to reconstruct large buildings using
community photo collections [46, 48, 121]. These works rely on unique and recurrent archi-
tectonic features that belong to the building of interest, when computing shared visibility in-
formation among images. Furukawa et al. [48] propose to performglobal view selection on the
whole set of images to remove redundancy and to build a visibility graph with the remaining
cameras. These similarities are collected in a similarity matrix that represents the adjacency
matrix of the visibility graph. Then, an optimization procedure is applied to iteratively divide

42

(a) Sensor suite of the nuTonomy self‐driving car, with six cameras covering 360° around the vehicle [120].

(b) Visibility of a typical multi‐camera array and reprojected LiDAR scans [119].

Figure 2.19: Modern autonomous vehicles have multiple sensors with cross‐view constraints and full coverage of their
surroundings.

43

the graph into clusters using normalized-cuts, enforcing a size constraint, and add cameras back
if a coverage constraint is violated. This process is repeated until convergence.

Several other methods are based on this visibility graph formulation. Ladikos et al. [122]
apply spectral graph theory and usemean shift to select the number of clusters, whileMauro et
al. [123] employ the game theoretic model of dominant sets to find regular overlapping clus-
ters. In a subsequentwork [124], they propose to place selection after clustering and formulate
an Integer Linear Programming (ILP) problem with cameras as binary variables. The goal is
to select the minimum number of views, such that coverage and matchability are guaranteed.
We adopt the same approach, but provide a more efficient alternative by exploiting the fact
that neighboring keypoints are likely to share the same camera subgraph, while their formula-
tion requires to execute the expensive Bron-Kerbosch algorithm [125] for each keypoint in the
cluster.

Furthermore, all the methods presented so far cluster images according to their relative visi-
bility information and without considering the 3D structure of the scene. Zhang et al. [121]
suggest performing joint camera clustering and surface segmentation, which are formulated
as a constrained energy minimization problem. Similarly, we propose a clustering algorithm
which operates directly in 3D by exploiting the approximately uniform distribution of poses
and geometry as produced by a moving vehicle.

Existingworks designed for architectural Internet datasets fail to tackle efficiently the unique
set of challenges posed by large-scale urban 3D reconstruction. Firstly, they strongly rely on
well-distributed keypoints from SLAM/SfM, which are difficult to extract in urban scenarios
due to the presence of large portions of textureless surfaces, such as roads, vegetation or sky, as
we already discussed. Secondly, moving vehicles provide an unprecedented amount of data and
existing algorithms are limited to significantly smaller datasets, thus making them impractical
in the considered setting.

2.4.3 Method

An overview of our approach for city-scale 3D reconstruction is shown in Figure 2.20. We pro-
pose to interleave SfM/SLAMandMVSwith a view clustering algorithm that operates directly
on the output of sparse reconstruction to find independent local clusters of images, followed
by a view selection step that reduces visibility redundancies. In this way, dense reconstruction
can be performed in parallel for each cluster, thus enabling unbounded scaling. Finally, local
point clouds are merged to a large-scale 3Dmodel.

44

Structure From
Motion

View
Clustering View Selection Multi-View

Stereo
Large-Scale

3D Reconstruction

Figure 2.20: Overview of the proposed approach for city‐scale 3D reconstruction from multi‐camera systems [43].

ViewClustering

LetP be a set of calibrated images acquired by amoving vehicle withNcams cameras in arbitrary
configuration, each with frame rate f. Calibration parameters have been obtained by either
SfM [51] or SLAM [99], which also generates a sparse set of keypointsX . The view clustering
algorithm starts by building a street-level 2D grid with fixed block size (xb, yb) and a degree
of overlap doverlap, within the range of the sparse keypoints. Figure 2.21 (left) shows that this
procedure generates lots of empty clusters, as well as several blocks with noisy keypoints far
from the vehicle trajectory. Therefore, we adopt a filtering step to remove redundant clusters
and assign each keypoint to the corresponding block by projecting it onto the (x, y) plane, as
visualized in Figure 2.21 (center). In this way, the approximate 3D geometry of the scene is
divided into partially overlapping regions that can be processed independently and in parallel.

At this point, we need to associate each camera to its visible clusters. Such visibility could be
naively based on the number and the quality of keypoints seen by each camera for each cluster.
However, due to their high sparsity and irregular distribution in urban scenarios, we propose
to augment the 3D information of each non-empty cluster by sampling uniform points with
resolution rwithin the boundaries of the corresponding block. As r → 0, this is effectively an
approximation of the intersection between the viewing frustum of the camera and the cluster
itself, thus allowing to associate cameras to clusters within their field of view, even if keypoints
were not extracted at that specific location.

Specifically, for each block, we project the augmented 3D points onto each camera within a
givendistance from its centroid and associate to the cluster all the cameraswith at least one valid
projection. Then, clusters with less than 10 views are iteratively merged with their neighbors,
in order to provide enough information for theMVS phase. The output of the view clustering

45

Figure 2.21: View clustering example: the raw 2D grid built from SfM (left), the full sequence clustered and filtered (center)
and overlapping clusters in more detail (right). Each cluster is represented with its borders and in a different color [43].

algorithm is a set of C independent clusters of cameras with shared visibility, shown in detail
in Figure 2.21 (right). This divide and conquer approach makes city-scale 3D reconstruction
tractable and efficient, while guaranteeing the completeness of the final geometry with a suffi-
cient degree of overlap doverlap > 0.

From an algorithmic point of view, our main contribution is to avoid the computation of
complex pairwise relationships between cameras for the whole dataset [48, 124], which scales
quadratically asO(N2), whereN is the total number of images. In urban scenarios, up toN =

60 × f × Ncams frames are acquired every minute and the similarity matrix approach would
become quickly impractical. On the other hand, our clustering algorithm can assign the same
view to at most K neighboring blocks, independently from the size of the scene. Even in the
worst case scenario where each cluster hasNc = KN

C cameras associated, computingC separate
and smaller visibility graphs is still significantly cheaper. More formally, this would require
O
(∑C

c=1N2
c

)
operations:

C∑

c=1

N2
c =

K2N2

C
< N2 ⇐⇒ K <

√
C (2.13)

In practical cases,K ≤ 8 by design, since a camera is associated atmost to a cluster and its im-
mediate neighbors, whileC can easily grow to several hundreds or even thousands as the vehicle
explores new areas of the world. Moreover, this improvement gap expands as the dataset size
increases, and this is the key reason why the proposed approach can scale up to arbitrarily large

46

scenarios. While this analysis holds true even when each block is reconstructed sequentially,
we underline that the proposed clustering procedure enables a high degree of parallelization,
since each cluster can be reconstructed independently.

View Selection

In the view clustering phase, we associate a camera to each cluster where at least a single point
is visible. On one hand, this ensures that depth maps during MVS will be computed with all
the information available. On the other hand, it is also likely to produce a highly redundant set
of cameras for each block, which is in contrast with our efficiency needs. To this end, we also
design a view selection algorithm to choose the optimal subset of views for each cluster. In this
context, optimalmeans the smallest subset of cameras that satisfy the following constraints:

• Visibility→ Each point in the cluster must be seen by at leastNvis cameras.

• Matchability→ Each camera must have at leastNmatch other cameras to be successfully
matched with. Two cameras are considered to bematchable if they see a sufficient num-
ber of common points.

Differently from previous literature [48, 124], we avoid using the mean Gaussian-weighted
triangulation angle between the two cameras and their shared features as a similarity measure.
In the considered settings, keypoints are too sparse for this to be a reliable metric andGaussian
parameters would need to be tuned separately for each block. Therefore, an ILP problem is
formulated for each cluster, with binary variables xi ∈ {0, 1} representing cameras:

min
Nc∑

i=1

xi

s.t.
Nc∑

i=1

xi ≥ Nmin

A⊤
i x ≥ 0 ∀i = 1, . . . ,Nc

B⊤
j x ≥ Nvis ∀j = 1, . . . ,Pc

(2.14)

A linear formulation for the first constraint can be derived from the visibility graph Sc of the
considered cluster as follows. Let S̃c = Sc > 0 be a binary matrix with s̃c,ij = 1 if cameras i and
j share common keypoints, 0 otherwise. The constraint vectors Ai are computed as the rows
of the matrixA = S̃c −Nmatch · I, being I the identity matrix of sizeNc ×Nc. This effectively
activates the constraint only for the selected cameras, ignoring the others.

47

Similarly, we can build the visibility constraint vectors Bj for each point in the cluster with
binary coefficients bij = 1 if the point j is visible in camera i, 0 otherwise. This is a crucial
improvement with respect to [124], where each point must be seen by at least one clique in the
visibility subgraph associated to that point. Their formulation requires to execute the Bron-
Kerbosch algorithm [125] for findingmaximal cliques separately for each point, which is both
inefficient and redundant, since the same cameras are likely to see several points.

Moreover, we further boost the efficiency of our algorithm by providing a good initial guess
to the ILP solver. Since a minimum number of camerasNmin must be selected for each cluster,
we sort them by the number of visible points and force the solver to select the Nmin cameras
with the highest visibility. This threshold is adaptively selected according to the cluster size and
clamped between boundary valuesNlow andNhigh.

2.4.4 Experiments

Implementation Details

To the best of our knowledge, the existing large-scale urban datasets with multi-camera arrays
[120, 119] contain relatively short sequences (5-20 s) at a low frame rate (≈ 10Hz). Thismakes
it difficult to evaluate our approach on those data. Therefore, we acquired custom sequences
in Parma, Italy, with a vehicle equipped withNcams = 7 cameras with resolution 3840 x 1920
and frame rate f = 30 Hz, in order to represent diverse real-world situations.

The software stack of the vehicle provides camera poses and sparse keypoints with a cus-
tom SfM algorithm, which constitute the input to our framework. The dense reconstruction
phase is executed by the MVS algorithm presented in Section 2.3, while we rely on the open-
source library OR-Tools [126] for solving the ILP problem in the view selection step. The
algorithms presented in this section have been implemented in C++ and tested on a consumer
Intel Core i5-5300U 2.30 GHz CPU. The following set of parameters has been used for exper-
iments: block size (xb, yb) = (20, 20) m, with doverlap = 2 m; sampling resolution r = 1 m;
Nvis = Nmatch = 2,Nlow = 10 andNhigh = 30 for view selection.

Quantitative Evaluation

Table 2.3 provides a quantitative description of the input sequences and the algorithm results
for each stage of the pipeline. The first thing to note is that urban data contain relatively few
keypoints (|X |), when compared to architectural image sets with similar size [48]. This justi-
fies the choices of sampling additional points for each cluster and avoiding similarity measures

48

Dataset Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5
views (N) 5131 6782 8477 9912 11956

keypoints (|X |) 389621 321696 349616 372434 393246
clusters (C) 156 173 200 261 324

N after clustering 27103 32757 39014 49758 58364
K after clustering 5.28 4.83 4.60 5.02 4.88

Avg. Nc after clustering 173.75 189.34 195.07 190.64 180.13
tclustering (s) 22.35 28.52 32.7 37.32 40.89

N after selection 4951 5842 6266 8411 10138
K after selection 0.96 0.86 0.74 0.84 0.85

Avg. Nc after selection 31.73 33.76 31.33 32.22 31.29
tselection (s) 50.54 76.13 92.4 124.85 144.02
ttot (s) 72.89 104.65 125.1 162.17 184.91

Table 2.3: Quantitative results for each sequence and each stage of the pipeline.

based on the triangulation angle. Secondly, the clustering phase produces extremely redundant
data (N after clustering), with each view assigned to approximately 5 different clusters (K after
clustering), on average.

Most of the clustering time (tclustering) is spent for the camera association procedure, since
several hundreds of views must be tested for each cluster. When processing extremely large
sequences with millions of images, this phase can be naturally parallelized since each cluster is
independent from the others, after the sampling step. Moreover, the optimization algorithm
during view selection exploits the clustering redundancy to automatically remove useless views.
The number of output views (N after selection) is consistently lower than the input for each
sequence, even considering that some cameras covering the overlap between two clusters are
assigned to both. Finally, the efficiency condition imposed in equation (2.13) (K <

√
C) is

satisfied for each sequence by a large margin, and this gap increases with the dataset size.
Direct quantitative comparisonwith state-of-the-art approaches is difficult, since they all tar-

get a substantially different scenario [48, 121], where the assumption of uniformly distributed
poses is violated. In terms of the running time as a function of the input number of images,
Figure 2.22 shows that the proposed method is much faster and scales linearly with the dataset
size, while [48, 121] both require several hours to process a few thousands of images. This
demonstrates that they are not suited for urban applications, where thousands of images are
acquired every minute by the vehicle. The considered ILP baseline [124] shares the same issue
and numerical performances are available only for datasets smaller by an order of magnitude.

49

0 2000 4000 6000 8000 10000 12000
Number of images

100

101

102

Ru
nn

in
g

tim
e

[m
in

]
Furukawa et al.
Zhang et al.
Ours

Figure 2.22: Running time comparison between proposed method and state‐of‐the‐art solutions [48, 121]. The Y axis is in
log‐scale for better visualization [43].

The reported runtime for 706 images divided into 36 clusters is around 3 minutes. However,
the Bron-Kerbosch algorithm scales exponentially asO(3N

3)with the number of camerasN. In
the collected sequences, an instance of such algorithm with N ≈ 102 would be executed for
each keypoint of each cluster, making the approach impractical even for very short scenes. On
the other hand, the proposed framework can approximately process 4000 images per minute.

Qualitative Evaluation

Figure 2.23 provides a visualization of clustered cameras, before and after view selection, in
order to show how redundancy is exploited and reduced by the optimization algorithm. Three
main situations arise in urban data: (i) when all the views lie along a straight line outside the
cluster boundaries (Figure 2.23a, left), the ILP solver selects awell-distributed subset of cameras
(Figure 2.23a, left); (ii) when the vehicle trajectory intersects the cluster (Figure 2.23b, center),
twodisjoint sets of cameras are selected (Figure 2.23b, center); (iii) for complex trajectories such
as roundabouts (Figure 2.23a, right), the framework generalizes well by selecting cameras from
diverse viewpoints (Figure 2.23b, right).

Furthermore, Figure 2.24 shows that the proposed method effectively cluster images based
on shared visual content, which allows to produce a detailed 3D reconstruction of the world.
Each point cloud has been cropped at the corresponding cluster boundaries. Only qualitative
evaluation of the resulting reconstruction is provided, since performances depend solely on the

50

(a) Clustering: basic (left), intersecting (center) and complex (right).

(b) Selection: basic (left), intersecting (center) and complex (right).

Figure 2.23: Each cluster has black dashed borders, blue keypoints and cameras with red viewing direction [43].

choice of MVS algorithm, which has been evaluated in Section 2.3. The goal of the presented
approach is to show that 3D reconstruction can be achieved in very large-scale scenarios where
processing all the images in a single batch is not practically feasible.

Finally, a shorter dataset with N = 1000 images is considered, in order to have a relatively
small instance of the problem where full reconstruction in a single batch is still possible. The
proposed algorithm selects a subset of 786 views (21.4% less than N), divided into C = 26
clusters. Then, MVS is executed separately for each cluster and results are combined into a
global 3Dmodel. Figure 2.25 shows a comparison of the point clouds obtained by considering
the whole set of images at once (left) and by merging multiple clusters (right). From a quanti-
tative point of view, the full point cloud contains 3.08 × 106 points, which is approximately
7.8% more than the 2.84 × 106 points belonging to the result of the presented framework.
This variation is lower than the difference between the input data size, and it is mostly concen-
trated in ambiguous regions, such as the rotary center with identical trees, whereMVS benefits
from higher redundancy. Furthermore, increasing theNmin parameter always reduces this gap.
While ground truth for numerical evaluation in 3D is not available, it can be seen that our di-
vide and conquer approach maintains a good reconstruction quality, while being able to scale
up to entire cities, where batch reconstruction is not an option.

51

Figure 2.24: Clusters of images (left) and corresponding 3D point cloud (right) [43].

52

Figure 2.25: Qualitative point cloud comparison between batch reconstruction (left) and merged local clusters computed
with the proposed algorithm (right) [43].

2.5 Conclusion

In this chapter, we presented several key improvements towards a scalable and efficient multi-
view 3D reconstruction system for autonomous vehicles. Specifically, our contribution to the
classical geometry-basedpipeline described in Section2.2 is twofold. Firstly, we revisit the dense
reconstruction phase by (i) augmenting theMVS initialization step with keypoints from visual
SLAM, (ii) optimizing a novel geometric consistency loss, and (iii) regularizing geometry with
a confidence-based global refinement approach (Section 2.3). Secondly, we enable city-scale
3D reconstruction with arbitrary camera configurations in Section 2.4. This is achieved by a
view clustering algorithm that builds a set of partially overlapping clusters with shared visibility
over the vehicle trajectory, followed by a view selection step that computes the optimal subset
of views to reconstruct a local 3D model. The novel contributions are evaluated both on the
KITTI dataset and on custom sequences acquired by a real self-driving car, showing better
performances compared to state-of-the-art methods.

53

54

3
Novel View Synthesis

3.1 Introduction

This chapter focuses on the novel view synthesis (NVS) task, where the goal is to render high-
quality photorealistic images of a scene from arbitrary viewpoints, given a set of input views.
The typical setup is shown in Figure 3.1: an intermediate 3D representation is fit to training
data, and it can be queried at test time to generate novel views. At a high level, this problem is
similar to multi-view stereo, as it maps calibrated 2D images to their underlying 3D structure.
However, NVS algorithms do not compute the explicit geometry of the scene as a mesh or a
point cloud, but they aim for a representation that can be rendered effectively. In recent years,
this field has been revolutionized by neural radiance fields (NeRF) [11], which combine differ-
entiable volumetric rendering with a neural implicit representation to learn both the geometry
and the appearance of a 3D scene. A detailed overview of NeRF is provided in Section 3.2,
which serves as a theoretical foundation for our original contributions [18, 19]. Then, we
presentKeyNeRF [18] in Section 3.3, a novel approach to speed upNeRF training by focusing
on the most informative camera rays and a sparse set of input views. Finally, in Section 3.4 we
propose MVGNeRF [19]: multi-view geometry constraints can be explicitly enforced when
fitting a NeRF, by relying on the 3D reconstruction algorithms from Chapter 2, in order to
produce high-fidelity 3Dmodels, along with the renderable representation.

55

Input Images Optimize NeRF Render novel views

Figure 3.1: Novel view synthesis is the task of optimizing a 3D representation of the scene from a set of calibrated input
images, such that other views can be rendered from arbitrary viewpoints [11].

3.2 Neural Radiance Fields

In this section, we provide a detailed literature review of neural radiance fields, covering both
the basics in representing (Section 3.2.1) and rendering (Section 3.2.2) scenes withNeRF, how
to train such implicit representation (Section 3.2.3) and how to extract an explicit geometry
from it (Section 3.2.4) as well as more recent improvements to the original idea (Section 3.2.5).
These concepts lay the foundations for our original contributions [18, 19], that will be pre-
sented in the remainder of the chapter.

3.2.1 3D Representation

The set of all visible things in the world can be modeled by the plenoptic function [127], which
measures the radiance at any point x = (x, y, z) ∈ R

3, observed from the viewpoint d =

(φ,ψ) ∈ S
2 at wavelength λ and time t. If we average over the wavelengths of the visible spec-

trum and assume a static scene, then the following mapping can be established:

(c, σ) = f(x, d) (3.1)

where c is the RGB color of the point x as seen from an optical ray with direction d and σ is
its density. This functionmodels a radiance field, and it is an implicit volumetric representation
of a 3D scene, which is approximated as a cloud of tiny colored particles. The key intuition in
NeRF [11] is to express the plenoptic function as a neural networkwith learnable parameters θ.
In practice, such a network is a simpleMLP that is trained to render a set of calibrated training
views. Given input imagesI with calibrationparametersP fromSfM[51], optimal parameters

56

θ∗ are found by minimizing a reconstruction loss L between the rendered and ground truth
images at training viewpoints:

θ∗ = argmin
θ

L(I,P) (3.2)

At test time, this 3D representation is then queried with an arbitrary set of camera rays to
render images from novel viewpoints.

3.2.2 Volumetric Rendering

Let’s consider a generic ray r that crosses the scene. For a given camera with origin o ∈ R
3 and

intrinsicsK, the direction of a ray through the pixel (u, v) can be computed as follows:

d =

(u− cu)/f
(v− cv)/af

1

 (3.3)

Then, each point along such ray can be expressed as r(t) = o + td. If at distance t the ray
hits a particle, we return its color c(t). However, this notion is probabilistic, and wemodel the
chance that r hits a particle in a small interval around t as σ(t)dt, where σ is the volume density.
In order to determine the color corresponding to the ray, we also need to know if t is the first hit
along the ray. The probability that the ray did not hit anything before t is called transmittance
T(t), and it can be expressed as a function of σ by exploiting the following physical relationship:

T(t+ dt) = T(t)× (1− σ(t)dt) (3.4)

Using the Taylor expansion for T(t), Equation 3.4 becomes a differential equation that can
be solved by integrating both sides:

T(t) + T′(t)dt = T(t)− T(t)σ(t)dt) =⇒ T′(t)
T(t)

dt = −σ(t)dt

=⇒ logT(t) = −
∫ t

t0
σ(s)ds

=⇒ T(t) = exp
(
−
∫ t

t0
σ(s)ds

)
(3.5)

57

Figure 3.2: Visualization of the volumetric rendering model in NeRF [11] for a given ray through the scene.

In this way, the probability that a ray terminates at t can be expressed as a function of only
the volume density σ as T(t)σ(t)dt. This means that the color corresponding to the ray r is the
expected value computed across a given range of t ∈ [tn, tf]:

c(r) =
∫ tf

tn
T(t)σ(t)c(t)dt (3.6)

This nested integral is solved in practice by approximating it with numerical quadrature
[128]. The ray is split up into n segments with endpoints {t0, t1, . . . , tn+1} and lengths δi =
ti+1 − ti. By assuming that density and color are roughly constant within each interval, Equa-
tion 3.6 can be broken into a sum of analytically tractable integrals:

∫ tf

tn
T(t)σ(t)c(t)dt ≈

n∑

i=1

∫ ti+1

ti
T(t)σicidt (3.7)

Note that piecewise constant density and color do not imply constant transmittance. There-
fore, we need to evaluate at continuous values that can lie partway through an interval. For any
t ∈ [ti, ti+1]:

T(t) = exp
(∫ ti

tn
σids
)
exp
(∫ t

ti
σids
)

= exp

−

i−1∑

j=1

σjδj

 exp (−σi(t− ti))

= Ti exp (−σi(t− ti))

(3.8)

58

Thefirst termmeasures howmuch light is blockedby all previous segments, while the second
term expresses how much light is blocked partway through the current segment. Substituting
Equation 3.8 into Equation 3.7 and simplifying:

∫ tf

tn
T(t)σ(t)c(t)dt ≈

n∑

i=1

Tiσici
∫ ti+1

ti
exp (−σi(t− ti)) dt

=
n∑

i=1

Tiσici
exp (−σi(t− ti))− 1

−σi

=
n∑

i=1

Tici exp (−σi(t− ti))

=
n∑

i=1

Tiαici

(3.9)

To sum up, Ti represents how much light is blocked earlier along the ray, while αi measures
howmuch light is contributed by the segment i, as shown in Figure 3.2. The rendering model
for a generic ray r expressed by Equation 3.9 is trivially differentiable with respect to both c and
σ, thus allowing for end-to-end training of NeRF.

3.2.3 Training Loop

Given a set of input images with calibration parameters, a NeRF representation can be fit to
a specific scene by following the procedure in Algorithm 3.1, which is visualized in Figure 3.3.
At each training iteration, a batch of B rays is shot from input cameras and the corresponding
estimated color is rendered volumetrically with Equation 3.9. The ground truth color values
corresponding to the rays are then used in a simple L2 loss:

L =
B∑

i=1

||ĉ(ri)− c(ri)||2 (3.10)

After training, the same procedure can be used to generate novel views from arbitrary view-
points. Camera rays can be shot through the scene and rendered to produce the full image.
However, the NeRF formulation presented in Algorithm 3.1 is not sufficient for generating
photorealistic renderings of complex, high-resolutions scenes. The seminal paper [11]describes
three implementation details to achieve state-of-the-art quality.

59

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume
Rendering

Ray 1σ

σ

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

(b)(a) (c) (d)

Ray 2

Figure 3.3: NeRF is trained by shooting rays through the scene, sampling a set of points, querying the MLP for color and
density, and composing these values volumetrically to optimize a rendering loss [11].

Firstly, the density σ in Equation 3.1 is a function only of the physical point x and not of the
viewing direction d. This allows the MLP to predict multi-view consistent geometry, which
does not depend on the camera observing the scene. Practically, the network is split in two
stages: the first stage outputs σ and a high-dimensional feature vector z, while the second stage
predicts the color c as a function of (z, d).

Furthermore, neural networks are known to be biased towards learning low-frequency func-
tions [129]. For novel view synthesis, this results in blurry renderings that fail to capture high-
frequency variations in color and geometry. The issue can be solved by mapping the input
coordinates to a higher dimensional space [130, 30]. For any p ∈ {x, y, z,φ,ψ}, the MLP is
queried with γ(p) : R → R

2L, which is defined as follows:

γ(p) =

[
sin(20πp), . . . , sin(2L−1πp)
cos(20πp), . . . , cos(2L−1πp)

]
(3.11)

Finally, densely evaluating the radiance field at all the query points along each ray is ineffi-
cient, since free space and occluded regions are sampled repeatedly, despite not contributing to
the final rendering. To this end, the volume is represented hierarchically by optimizing a coarse
and a fine network. The coarse network is evaluated by sampling Nc points uniformly along
each ray. The rendering weight wi = Tiαi of each point is computed, and a piecewise constant
probability distribution is defined by normalizing such weights for each ray. Then, a second
set ofNf locations is sampled from this distribution with inverse transform sampling and the
fine network is evaluated using all theNc +Nf points. In this way, more samples are allocated
to regions containing more visible content.

60

Algorithm 3.1 Training Neural Radiance Fields
Input→ Images I = {Ii}with calibration parametersP = {(Ki,Ri, ti)} from SfM
Initialize NeRF parameters θ randomly
forNiter iterations do

Sample a batch of B pixels from input cameras
Compute rays from pixels (Equation 3.3)
SampleN points along each ray
Query the color and density of each point (Equation 3.1)
Render volumetrically each ray (Equation 3.9)
Compute the lossL between ground truth and rendered colors (Equation 3.10)
Optimize NeRF parameters θwith gradient descent

end for
Output→Trained NeRF θ∗ as implicit volumetric 3D representation

3.2.4 Geometry Extraction

The way NeRF represents a 3D scene is both implicit, meaning that the underlying geometry
must be converted to a dense point cloud or a textured mesh for further processing, and volu-
metric, since there is not a well-defined surface being optimized. The density σ is a probabilistic
concept, i.e. σ ≈ 0 means that the point is likely to be empty and σ → 1 indicates an occupied
location. The typical pipeline to extract an explicit geometry fromNeRF is to query theMLP
with a dense grid of points and threshold the density at a given value (usually σ = 0.5). In
this way, the 3D scene is represented as a discrete grid of voxels with binary occupancy and the
marching cubes [12] algorithm can be used to extract a triangular mesh.
Another approach is to define a smooth camera trajectory across the scene and to render

a depth map from a dense set of cameras along this path. Then, depth maps can be back-
projected in 3D by following the multi-view fusion procedure in Section 2.2 to obtain a dense
point cloud. The expected depth value of a camera ray can be rendered volumetrically by sub-
stituting the color cwith the ray termination t in Equation 3.9:

d(r) =
n∑

i=1

Tiαiti (3.12)

This procedure is more popular when computing the geometry of large-scale scenes, while
the former approach is the default choice in object reconstruction and bounded scenarios.

Recently, several works [131, 132, 133] have concurrently proposed to predict a signed dis-
tance function instead of a volume density, in order to represent a well-defined neural surface.

61

Figure 3.4: Images acquired from tourists and uploaded to social media [134] exhibit significant appearance changes.
Training a NeRF on these pictures requires optimizing a per‐image embedding vector [135].

The main advantage is to avoid specifying an arbitrary threshold for σ when converting it to
binary occupancy for marching cubes. However, these methods typically trade a smoother ge-
ometry for lower quality renderings, thus making themmore appealing for 3D reconstruction
than for novel view synthesis.

3.2.5 Recent Advances and Applications

The original NeRF formulation [11] has been a breakthrough in vision and graphics for allow-
ing self-supervised 3D scene representation at unprecedented quality. However, it is also slow
to render and sensitive to the accuracy of input poses, it relies on the assumption of a static
scene with constant lighting and fixed exposure between frames, it does not generalize across
scenes, and it assumes dense sampling of cameras in a bounded region of the world. To this
date, the NeRF literature has flourished with methods that tackle each of these problems.

The speedof training and inference has been greatly improvedbyhybrid scene representations
[136, 137, 138], where a set of scene features is jointly learnedwith the network parameters and
fed into theMLP to produce color and density. The key idea is to store part of the scene infor-
mation into a hierarchical voxel grid of features that can be queried continuously with trilinear
interpolation. In this way, a much smaller MLP is sufficient to decode such information and
the whole pipeline in Algorithm 3.1 becomes significantly faster.

When dealing with unconstrained photo collections, such as images scraped online from
social media, the same physical location might be affected by multiple appearance changes due
to different exposures, lighting changes between day and night, or different weather conditions
(see Figure 3.4). To adapt NeRF to these photometric variations, Martin-Brualla et al. [135]
pioneered the use of generative latent optimization [139], in which each image is assigned a
latent embedding vector to model image-dependent appearance. This vector is trained jointly

62

with the MLP parameters, thus allowing for smooth interpolation of appearances at test time.
Another issue in practical scenarios is the accuracy of calibration parameters, since noise and

inconsistencies can degrade the visual quality of novel renderings. Some early methods [140,
141, 142] proposed to learn camera poses and intrinsics from scratch, which is an ambiguous
problem and hard to initialize correctly. A more recent approach [143, 144] is to refine the
camera poses by backpropagating the loss gradients to the parameters estimated from SfM [51].
Following this idea for NeRF-based pose estimation, several neural implicit SLAM systems
have been developed as well [145, 146, 147].

All these improvements with respect to the baseline presented in [11] contributed to make
NeRF a widespread and mature approach for 3D perception tasks. Its applications nowadays
include urban simulation [143, 148], human modeling [149, 150, 151, 152], semantic scene
decomposition [153, 154, 155], image super-resolution [156] and visual effects for advertising
[157]. We refer the interested reader to a recent survey [158] formore details, while a thorough
review of NeRFwith sparse input views and explicit geometry as supervision will be presented
in Section 3.3 and Section 3.4, respectively.

3.3 Informative Rays Selection for Few-ShotNeRF

This section is based on the original contributions currently under review at [18]:
OrsingherM., Dell’Eva A., Zani P., Medici P., and BertozziM., Informative Rays Selection for
Few-Shot Neural Radiance Fields, International Conference on Computer Vision Theory and
Applications (VISAPP), 2024.

3.3.1 Motivation

The lengthy per-scene optimization of NeRF is one of the main limits towards its practical
usage, especially in resource-constrained settings. The hybrid representations [136, 137, 138]
presented in Section 3.2 tackle this issue by reducing the size of theMLP, whichmakes it faster
to be queried. However, the long training and inference times stem also from the fact that each
pixel of each input view must be seen repeatedly until convergence. GivenN cameras withM
pixels each, an epoch needs NM

B iterations for batch size B and Algorithm 3.1 requires multiple
epochs. In this section, we presentKeyNeRF, a simple yet effective method for training NeRF
by focusing on the most informative cameras and pixels, thus reducing bothN andM.

63

Existing few-shot approaches all assume to be given a random set of viewpoints, without
control on how such cameras are selected, and propose to regularize the volumetric density
learned by NeRF with new loss functions [159, 160] and additional inputs [161, 162, 163,
164, 165], thus introducing complexity in the pipeline. However, in common use cases, such
as object scanning from videos acquired by a user with handheld devices, the input data consist
of a dense and redundant set of frames with a known acquisition trajectory. Our insight is to
better exploit such information in the input views.

Firstly, we select the best input views by finding a minimal set of cameras that ensure scene
coverage. Secondly, this initial set is augmentedwith a greedy algorithm that promotes baseline
diversity. Finally, we choose themost informative pixels for each view, in terms of their local en-
tropy in the image. The proposed approach outperforms state-of-the-art methods on standard
benchmarks in the considered scenario, while not requiring additional inputs and complex loss
functions. Therefore, our contribution to existing literature is threefold:

1. We present a view selection algorithm that starts from the minimal set of cameras cover-
ing the scene and iteratively adds the next best view in a greedy way.

2. We propose to sample pixels in a given camera plane by following a probability distribu-
tion induced by the local entropy of the image.

3. To the best of our knowledge, our framework is the first few-shot NeRF approach that
operates at input level, without requiring additional data or regularization losses.

3.3.2 RelatedWork

The original formulation of NeRF [11] requires a large set of cameras to converge, thus lead-
ing to long training times. For this reason, several methods [165, 159, 166, 164, 161, 162] have
been proposed to allow learning radiance fields from few sparse views. All these approaches
introduce new loss functions to regularize the underlying volumetric representation. How-
ever, such losses might be difficult to balance, and they are in contrast with one of the main
advantages of NeRF, which can be trained in a self-supervised way from images with a simple
rendering loss. On the other hand, our rays selection procedure is extremely flexible, as it oper-
ates directly at input level, and it can be implemented by only changing two lines of any existing
NeRF codebase. This means it can be seamlessly integrated with other fast NeRF approaches,
since it is orthogonal to improvements in loss functions or field representations [136, 137, 138].

64

Moreover, most of these works further assume to have additional inputs, such as depthmea-
surements [162, 163] or other pre-trained networks [161, 165, 164]. Specifically, DS-NeRF
[162] andDDP-NeRF [163] require sparse depthmeasurements to guide sampling along each
ray and optimize rendered depth. DietNeRF [161] enforces high-level semantic consistency be-
tween novel view renderings with pre-trained CLIP embeddings [167], while RegNeRF [165]
and DiffusioNeRF [164] maximize the likelihood of a rendered patch according to a given
normalizing flow or diffusion model, respectively.

Another shortcoming of the aforementioned few-shot approaches is that they treat all pixels
equally for a given input image and sample a random batch at each iteration. Other methods
[145, 168] pioneered the use of uncertainty-based sampling of rays and estimate such uncer-
tainty online, which leads to a computational overhead. On the other hand, we propose to
compute the local entropy of the image offline a single time and to draw pixels from such dis-
tribution, which represents by definition the most informative rays.

3.3.3 Method

We present a framework, based on NeRF [11], for novel view synthesis from a given set of cal-
ibrated cameras. We assume to have a dense and redundant set of views, such as the frames
of a video acquired by a user for object scanning. Our method, named KeyNeRF, identifies
the key information in the given set of views by greedily selecting a subset of relevant cameras
and choosing the most informative pixels within such cameras with entropy-based sampling.
The proposed approach significantly improves the efficiency of NeRF, while requiring mini-
mal code changes to its implementation. The first step of batch sampling in Algorithm 3.1 is
typically implemented with NumPy [169] as follows:

pose_idx = np.random.choice(num_poses)
rays_idxs = np.random.choice(num_rays, size = B, p = None)

Note that both the camera and the rays to be optimized in the current iteration are drawn
uniformly. In KeyNeRF, we simply reduce the set of input views and change the probablity
distribution for sampling pixels:

pose_idx = np.random.choice(selected_cams)
rays_idxs = np.random.choice(num_rays, size = B, p = entropy)

65

Figure 3.5: Illustration of the view selection procedure [18]. The new camera (red, right) has the most diverse baseline with
respect to the set of current cameras (blue, left). A proxy geometry of the scene is shown for reference.

View Selection Algorithm

The goal of a view selection procedure is to sample K views from a dense set of N available
cameras (K ≪ N) for efficient 3D scene representation, while (i) maintaining the visibility of
the whole scene and (ii) ensuring diversity within the selected subset. Following Section 2.4
[43], we propose to satisfy the first constraint by solving a simple optimization problem to find
the minimal set of cameras that guarantee scene coverage. Then, a greedy algorithm iteratively
adds the camera with the most diverse baseline, until all the views have been scheduled.

Scene Coverage Constraint In the first phase, cameras are represented by binary vari-
ables xi ∈ {0, 1} as in [43], and the scene is approximated with a uniform 3D grid ofM points
within bounds (pmin, pmax). We do not assume to have sparse keypoints, but they can be added
to the scene approximation if available. LetAj ∈ R

N be a visibility vectorwith elements aij = 1
if point j is visible in camera i, 0 otherwise. The following ILP problem is then formulated:

min
N∑

i=1

xi

s.t. A⊤
j x > 0 ∀j = 1, . . . ,M

(3.13)

The set of cameras selected in this way ensures scene visibility, but some regions of interest
might not be fully covered with sufficient baseline for 3D understanding (see Figure 3.5, left).

66

Baseline Diversity Constraint In order to promote baseline diversity, we design a
greedy view selection algorithm to choose the next best camera among the available ones with
respect to the currently selected set. We generate aN×N symmetric baseline matrix B, where
bij = bji is the angle between the optical axes of cameras i and j:

bij = arccos
(

z⊤i zj
|zi| · |zj|

)
(3.14)

Then, at each iteration step, until the desired number of cameras has been reached, we add
to the selected subset the camera with the highest relative angle with respect to all currently
selected cameras, as shown in Figure 3.5 (right). Practically, for each remaining view, we query
from B its smallest score against the selected views and add to the subset the camera with the
highest smallest score. Assume NumPy [169] imported as np and let selected_cams be the
output of the first stage:

while remaining_cams:
sub_matrix = B[remaining_cams][:, selected_cams]
idx = np.argmax(np.min(sub_matrix, axis = 1))
selected_cams.append(remaining_cams[idx])
remaining_cams.remove(remaining_cams[idx])

This formulation is different from [43], where matchability is a hard constraint. Moreover,
the iterative nature of the greedy procedure induces an implicit ranking on the set of cameras
and allows the user to choose flexibly the desired K. This is a significant improvement with
respect to [43], where baseline diversity is not explicitly enforced, and a different optimization
problemmust be solved from scratch for different values ofK. Wewill show in the experiments
that any K ≥ Kmin leads to good results, where Kmin is the cardinality of the minimal scene
coverage set. Intuitively,more views progressively improve the performances, with diminishing
returns towards the end, when cameras have large overlaps with the current set and do not add
relevant information.

Entropy-Based Rays Sampling

At each training iteration, NeRF [11] samples a pose in the dataset and a batch ofB pixels from
such camera. Typically, rays are sampledwith uniformprobability from thewhole set ofH×W
available pixels. However, we observe that not all rays are equally informative about the scene
to reconstruct. For example, the background or large textureless regions in the image could

67

Figure 3.6: Probability distribution over pixels (right) for an example input image (left), induced by the local entropy of the
image when sampling a batch of rays for training NeRF [18].

be sufficiently covered with fewer samples, exploiting the implicit smoothing bias of MLPs
[170, 129]. We propose to define a probability distribution over pixels and to focus on high-
frequency details during training, in order to converge faster, especially in few-shot scenarios.
The amount of information of a pixel p can be quantified by computing its local entropy as:

e(p) = −
∑

(u,v)∈W

huv log huv (3.15)

whereW defines a local window the pixel and h is the normalized histogram count. In order to
allow random sampling based on such measure, we normalize it to a probability distribution,
which is then used as input to np.random.choice(). An example is shown in Figure 3.6.

3.3.4 Experiments

Implementation Details

Dataset We perform our experiments on two common benchmarks to validate KeyNeRF
on both controlled and real-world scenarios. The Realistic Synthetic 360◦ dataset was intro-
duced by NeRF [11] and it contains 8 scenes of different objects with diverse materials and
complex illumination, rendered by Blender from 400 random viewpoints. Moreover, we ran-
domly select a subset of 8 scenes from the CO3D dataset [171], which contains 18619 real
object-centric videos from 50 different categories, acquired by handheld devices. Due to the
unavailability of pre-trained checkpoints of baseline methods on such data, a complete evalua-

68

Category Sequence ID N◦ of images Resolution (W×H)

Ball 123_14363_28981 202 1062× 1889
Cake 374_42274_84517 202 1893× 1064

Hydrant 167_18184_34441 202 703× 1251
Pizza 586_87341_172687 102 1016× 1807
Plant 247_26441_50907 198 1065× 1895

Remote 195_20989_41543 201 679× 1209
Teddybear 34_1479_4753 202 1066× 1896
Toaster 416_57389_110765 202 712× 1267

Table 3.1: Details of the selected scenes in the CO3D subset [171].

tion on this large-scale benchmark would require a huge amount of computational resources,
well beyond what we can realistically access. To mitigate this issue, we perform experiments
on a subset of 8 diverse scenes and present their details in Table 3.1. The scenes are randomly
selected both in terms of object category and individual sequence within each category. The
rationale behind the choice of 8 scenes is to establish a real-world equivalent of the synthetic
dataset introduced in [11], with different objects, various aspect ratios and noisy camera poses
from SfM [51].

Parameters For a givenbatch sizeB, at each iteration,we sampleB/2 rays fromthe entropy-
based distribution and B/2 rays at random to ensure full coverage. All the methods are trained
forNiter = 50000 iterations withK = 16 poses. Note that this is a slightly different setup than
the typical few-shot scenario, whereK ≤ 8 and training is much longer (Niter ≥ 200000). We
argue that this setup is overlooked in the literature, despite having significant practical relevance.
In the commoncase of object scanning fromvideos, it is reasonable to assume tohavemore than
8 frames and the actual goal is training efficiency. However, existing few-shot methods tend to
saturate their contributionswhenK > 8 [159], as shown inTable 3.2, while ourmethod shows
improved results over a wide range of values of K (see Figure 3.7a). The influence of both the
number of posesK and iterationsNiter is discussed and ablated in the remainder of this section.

Software The training code is based on a reference PyTorch [172] version of NeRF [173].
For the rays selectionprocedure,we solve the ILPwith theOR-Tools library [126] and compute
the image entropy with the default implementation in scikit-image [174].

69

Method PSNR ↑ LPIPS ↓ SSIM ↑ Avg. ↓
NeRF [11] 24.424 0.132 0.878 0.055
DietNeRF [161] 24.370 0.127 0.878 0.054
InfoNeRF [159] 24.950 0.117 0.884 0.050

KeyNeRF (w/o entropy) 25.568 0.109 0.895 0.046
KeyNeRF (ours) 25.653 0.106 0.898 0.045

Table 3.2: Quantitative results on the Blender dataset [11]. Best and second results are bold and underlined, respectively.

Method PSNR ↑ LPIPS ↓ SSIM ↑ Avg. ↓
NeRF [11] 20.708 0.491 0.744 0.128
DietNeRF [161] 19.994 0.511 0.728 0.138
InfoNeRF [159] 20.143 0.576 0.714 0.143

KeyNeRF (w/o entropy) 21.853 0.470 0.759 0.114
KeyNeRF (ours) 22.183 0.463 0.762 0.109

Table 3.3: Quantitative results on the CO3D dataset [171]. Best and second results are bold and underlined, respectively.

Quantitative Results

Following standard practice [11, 161, 159, 175], we evaluate the proposed approach in terms
of the image quality of novel views. For a rendered image I with ground truth values Igt, such
quality can be measured by three commonmetrics:

1. The Peak Signal-to-Noise Ratio (PSNR) measures pixelwise errors over all color chan-
nels:

PSNR(I, Igt) = −10 log10(||I− Igt||2) (3.16)

2. TheStructural Similarity IndexMeasure (SSIM) [176] gives an estimate of theperceived
change in structural information:

SSIM(I, Igt) =
(2μIμIgt + CI)(2σI,Igt + CIgt)

(μ2I + μ2Igt + CI)(σ2I + σ2Igt + CIgt)
(3.17)

whereCI = (0.01 ·L)2 andCIgt = (0.03 ·L)2, withL the dynamic range of the pixels (i.e.
255 for 8-bit integers). The local statistics (μ, σ) for both images are computed patch-
wise and averaged over the entire image. We refer the interested reader to the original
paper [176] for more details.

70

3. The Learned Perceptual Image Patch Similarity (LPIPS) [177] uses learned convolu-
tional features and measures the similarity between the activations across L layers of a
pre-trained network:

LPIPS(I, Igt) =
L∑

l=1

||φl(I),φl(Igt)||2 (3.18)

While the seminal work [177] presents a detailed comparison between different architec-
tures, we follow [11] and use AlexNet [29] to extract features.

Moreover, as introduced in [175], we report the geometric mean of LPIPS,
√
1− SSIM and

10−PSNR/10 to combine them in a single metric for easier comparison (reported as Avg. in Ta-
ble 3.2 and Table 3.3). We compare our KeyNeRF in two different versions (i.e. with andwith-
out entropy-based rays sampling) against the original NeRF [11] and two state-of-the-art few-
shot methods [161, 159]. Table 3.2 and Table 3.3 show that both versions of KeyNeRF out-
perform existing approaches on synthetic and real-world data, respectively, while being much
simpler to implement andmore flexible to integrate with anyNeRFbackbone. Moreover, note
that the concurrent few-shot approaches fall behind the vanilla NeRF on real-world data (see
Table 3.3), thus highlighting the complexity of loss weighting in such methods beyond con-
trolled scenarios. On the other hand, KeyNeRF consistently outperforms them, even without
entropy-based rays sampling. For the sake of completeness, we also provide a detailed per-scene
breakdown of the quantitative results on both datasets in Table 3.4 and Table 3.5.

Ablation Studies

In this section, we analyze the impact of the number of poses K and the number of training
iterationsNiter on the image quality metrics, as well as the separate role of selecting views and
selecting informative rays. We perform such ablations on the Blender dataset [11].
Figure 3.7a shows that the proposed view selection method has more influence for low val-

ues of K and progressively decreases, as expected. In order to clearly visualize this difference,
we provide a qualitative comparison for K = 8 in Figure 3.8 and as a function of the number
of poses K in Figure 3.9. It can be seen that the proposed approach converges faster and with
better stability. Since the coverage constraint is satisfied optimally by the view selection algo-
rithm, KeyNeRF allows to reconstruct an approximate scene even when K = 8. Crucially,
our improvement is still significant up toK = 48, whereas concurrent few-shot methods only
target the lowest end of this spectrum (K ≤ 8).

71

Method Chair Drums Lego Mic Materials Ficus Hotdog Ship

PSNR ↑

NeRF [11] 27.331 19.026 25.061 24.457 24.272 21.478 29.748 24.019
DietNeRF [161] 25.339 21.330 25.328 26.671 23.478 22.521 27.180 23.115
InfoNeRF [159] 27.167 21.271 24.522 27.761 24.245 23.170 28.176 23.292

KeyNeRF (w/o entropy) 28.045 21.637 27.245 25.068 24.416 22.060 30.881 25.193
KeyNeRF (ours) 28.911 21.545 27.453 24.030 24.186 22.796 30.940 25.364

LPIPS ↓

NeRF [11] 0.099 0.236 0.087 0.118 0.084 0.121 0.071 0.242
DietNeRF [161] 0.141 0.135 0.100 0.073 0.098 0.091 0.117 0,263
InfoNeRF [159] 0.100 0.148 0.094 0.064 0.086 0.077 0.113 0.256

KeyNeRF (w/o entropy) 0.088 0.129 0.062 0.116 0.079 0.106 0.066 0.226
KeyNeRF (ours) 0.077 0.135 0.057 0.134 0.083 0.083 0.065 0.220

SSIM ↑

NeRF [11] 0.910 0.814 0.881 0.924 0.894 0.870 0.945 0.792
DietNeRF [161] 0.881 0.867 0.867 0.943 0.885 0.889 0.921 0.772
InfoNeRF [159] 0.906 0.864 0.867 0.950 0.892 0.899 0.923 0.778

KeyNeRF (w/o entropy) 0.921 0.874 0.908 0.927 0.898 0.884 0.949 0.805
KeyNeRF (ours) 0.929 0.874 0.912 0.919 0.895 0.899 0.951 0.808

Table 3.4: Per‐scene breakdown of the Blender dataset [11]. Best and second result are bold and underlined, respectively.

Method Ball Cake Hydrant Pizza Plant Remote Teddybear Toaster

PSNR ↑

NeRF [11] 20.954 20.312 20.917 19.624 20.991 27.101 18.834 16.935
DietNeRF [161] 21.802 20.301 20.152 18.552 20.347 19.573 19.119 20.108
InfoNeRF [159] 23.826 20.042 18.078 18.189 21.159 25.449 16.776 17.625

KeyNeRF (w/o entropy) 24.073 19.278 21.016 19.565 22.708 28.511 20.697 18.977
KeyNeRF (ours) 24.235 19.565 21.164 20.140 22.326 29.590 20.763 19.682

LPIPS ↓

NeRF [11] 0.472 0.635 0.527 0.442 0.641 0.197 0.469 0.549
DietNeRF [161] 0.479 0.639 0.570 0.457 0.616 0.346 0.481 0.507
InfoNeRF [159] 0.467 0.703 0.673 0.575 0.664 0.304 0.530 0.692

KeyNeRF (w/o entropy) 0.437 0.603 0.554 0.434 0.610 0.187 0.416 0.525
KeyNeRF (ours) 0.421 0.624 0.516 0.428 0.603 0.177 0.438 0.502

SSIM ↑

NeRF [11] 0.753 0.722 0.605 0.765 0.651 0.929 0.797 0.731
DietNeRF [161] 0.762 0.698 0.604 0.754 0.648 0.847 0.783 0.733
InfoNeRF [159] 0.775 0.710 0.560 0.700 0.652 0.887 0.765 0.665

KeyNeRF (w/o entropy) 0.771 0.746 0.627 0.765 0.678 0.961 0.808 0.723
KeyNeRF (ours) 0.784 0.722 0.634 0.773 0.673 0.944 0.816 0.756

Table 3.5: Per‐scene breakdown of the CO3D dataset [171]. Best and second results are bold and underlined, respectively.

72

(a) Ablation on the choice ofK. (b) Ablation on the choice ofNiter.

Figure 3.7: Quantitative comparison between our KeyNeRF and the original NeRF [11] as a function of the number of
poses (left) and iterations (right). Lower is better.

Since we mainly focus on training efficiency, Figure 3.7b visualizes the convergence speed
in steps of 5000 iterations each. Both versions of KeyNeRF show significant improvements
across the whole training runs. Moreover, note how entropy-based sampling of rays is more
effective in early iterations and then saturates after around 30000 steps. This confirms that
selecting themost informative rays is important, especially with a limited training budget. The
quantitative results in Table 3.2 andTable 3.3 underestimate the effect of this component. The
lower quantitative impact is due to the fact that entropy-based sampling ismost effective in fine-
grained details and intricate structures, which are not well captured by numericalmetrics. This
is shown in Figure 3.10: sampling pixels uniformly discards crucial information, which leads
to oversampling textureless areas and undersampling image regions with a lot of details.

Qualitative Results

The performance improvement of the proposed KeyNeRF in terms of rendering quality is vi-
sualized in Figure 3.11 for the Blender dataset and in Figure 3.12 for the CO3D dataset. The
qualitative comparison against state-of-the-art methods shows that our informative rays selec-
tion strategy allows to render novel views with better details, especially in intricate structures
such as the bulldozer wheels or the ship mast in Figure 3.11, and less hallucinated geometries
(e.g. the teddybear and the hydrant in Figure 3.12). Moreover, our outputs are less blurry and
preserve better the original colors of the scene. Finally, these results confirm that both Diet-
NeRF [161] and InfoNeRF [159] tend to saturate their improvements over the original NeRF
[11] in the considered setup, while our approach presents significant advantages.

73

Figure 3.8: Qualitative comparison between choosing poses at random (top row) and using the proposed algorithm (bottom
row) in a very few‐shot setting (K = 8) [18].

(a)K = 8 (b)K = 16 (c)K = 24 (d)K = 32 (e)K = 48

Figure 3.9: Qualitative comparison between choosing poses at random (top row) and using the proposed algorithm (bottom
row), as a function of the number of posesK [18]. Zoom in for a better view.

Figure 3.10: Qualitative comparison between sampling rays at random (top row) and using entropy‐based sampling (bottom
row) for different frames of the same scene [18]. Zoom in for a better view.

74

(a) NeRF [11] (b) DietNeRF [161] (c) InfoNeRF [159] (d)Ours (e) Ground Truth

Figure 3.11: Qualitative results on the Blender dataset [11]. Zoom in for a better view [18].

75

(a) NeRF [11] (b) DietNeRF [161] (c) InfoNeRF [159] (d)Ours (e) Ground Truth

Figure 3.12: Qualitative results on the CO3D dataset [171]. Zoom in for a better view [18].

76

3.4 LearningNeRF fromMulti-ViewGeometry

This section is based on the original contributions published in [19]:
Orsingher M., Zani P., Medici P., and Bertozzi M., Learning Neural Radiance Fields from
Multi-View Geometry, Learning to Generate 3D Shapes and Scenes Workshop at European
Conference on Computer Vision (ECCV), 2022.

3.4.1 Motivation

One of themain issues of theNeRF formulation presented in [11] is that the underlying geom-
etry of the scene is not explicitly constrained during training. The only inductive bias towards
learning a multi-view consistent representation in Algorithm 3.1 is the dependency of the vol-
ume density σ only on the physical point x, but the actual optimization objective is a L2 loss
on the rendered appearance. The ability of NeRF to model view-dependent colors leads to an
inherent ambiguity between the 3D shape of the scene and its radiance. Without regulariza-
tion or explicit geometric constraints, it has been shown that this can lead to degenerate solu-
tions where NeRF perfectly explains the training images, but generalizes poorly to novel test
views [178]. Furthermore, even when the shape-radiance ambiguity is resolved during training
and novel view synthesis generates high-quality renderings, the triangular mesh extracted with
marching cubes might be noisy and incorrect, as shown in Figure 3.13c.

In Chapter 2, we presented a classical geometry-based 3D reconstruction framework that
computes a 3D model of the scene from a set of input images. The typical output of this
pipeline is a discrete representation as a dense point cloud, that must be converted to a contin-
uous mesh with surface reconstruction algorithms [6, 7], when the downstream task requires
such conversion. While point clouds fromMVS are generally very accurate, they are also locally
sparse, meaning that some areas of the scene might be empty or contain very few points (see
Figure 3.13a). This usually happens in textureless regions and non-Lambertian surfaces, where
MVS struggles themost. We show in Figure 3.13b that, in this case, themeshing procedure fails
to generate the correct geometry and hallucinate incorrect shapes.

In this section, we propose to combine the best of both worlds and present a framework,
calledMVGNeRF, that allows to computehigh-fidelity 3Dmeshes from images (seeFigure 3.13d,
while retaining the photorealistic novel view synthesis ability of NeRF. The key idea is to lever-
age pixelwise depths and normals fromMVS as pseudo-ground truth for constraining the un-
derlying geometry of NeRF during training. This supervision is softly activated only for rays

77

(a) Point cloud from MVS [3]. (b)Mesh computed from point cloud with [6, 7].

(c)Mesh extracted from NeRF [11]. (d)Mesh extracted from our framework [19].

Figure 3.13: In complex structures such as the back of the truck, classical algorithms [3, 6, 7] fail by hallucinating incorrect
geometry, while the mesh from NeRF [11] is very noisy. Our approach combines them to get a clean 3D model [19].

with a high confidence value, which is computed based on the reprojection error. Differently
from recent works that include depth priors in NeRF [162, 163, 179], we show that the joint
optimization of normal vectors is crucial to improve the quality of the underlying surface. This
is due to the fact that RGB and normals are complementary, meaning that normals can be es-
timated reliably in textureless regions where photometric consistency fails, while color supervi-
sion is effective in textured structures with ambiguous normals.

3.4.2 RelatedWork

Several works have explored the possibility of introducing geometric priors while optimizing
NeRF. DS-NeRF [162] pioneered the idea of exploiting sparse keypoints from SfM and pro-
posed to add a probabilistic depth supervision term in the loss function. Specifically, the depth
along each keypoints’ ray is modeled as a Gaussian distribution around its estimated 3D posi-
tion. In this way, the KL divergence [180] between this normal distribution and the one com-
puted from NeRF can be minimized. Following this insight, NerfingMVS [179] and DDP-
NeRF [163] trained a monocular depth estimation and completion network, respectively, in
order to have dense depth information for NeRF. These methods have shown to reduce both

78

the number of views required for convergence and the overall processing time. However, train-
ing a scene-specific network is a significant computational overhead, and they do not exploit
the full geometry of the scene in terms of local surface normals.

Inspired by these approaches, we instead propose to leverage pixelwise depths and normals
from a classical 3D reconstruction pipeline as dense and geometrically accurate pseudo-ground
truth. MonoSDF [181] is a concurrent work that shows the importance of including normals
as a geometric prior in the context of neural signed distance fields, but it relies on pretrained
models for generating such priors. While these models [1, 182] are becoming readily available
and generalize zero-shot to novel scenarios, they also output geometry without metric scale,
which is recovered by fitting scale and shift parameters with least squares at test time.

3.4.3 Method

Wepresent a framework that generates a triangularmesh of the scene from a set of input images
I , by combining classical geometry-based 3D reconstruction [51, 3] with NeRF [11]. The
pipeline is visualized in Figure 3.14. Camera poses and calibration parametersP are computed
with SfM [51] and used as additional input for bothNeRF [11] andMVS [3]. Then, pixelwise
depthsD and normalsN are computed for each image withMVS and used to superviseNeRF
training with confidence weights C. At the end of the training process, a 3D mesh is extracted
from the density field with marching cubes [12].

Rendering Geometry fromNeRF

The color rendering procedure in Equation 3.9 can be extended to render volumetrically any
other quantity, including semantics [155], deep features [183] and the underlying geometry
that is learned during training. We showed how to compute the expected depth along a ray in
Equation 3.12. Similarly, the surface normal for the ray r can be rendered as follows:

n(r) = Tiαini (3.19)

whereni is the unit normal vector corresponding to the i-th sample along r. For a givenpoint
x ∈ R

3 in a density field fθ, such vector is given by the gradient of the field at that point:

ni =
∇xifθ(xi)

||∇xifθ(xi)||
(3.20)

79

Multi-View
Stereo

Volume
Rendering

Structure From
Motion

Classical 3D Reconstruction

Neural Radiance Field

Marching
Cubes

Rendered Image

3D Mesh

Estimated Geometry

Rendered Geometry

Confidence
Estimation

Input Images

Figure 3.14: An overview of the proposed approach [19]: NeRF training is guided by a confidence‐aware geometric
pseudo‐ground truth from classical 3D reconstruction. Pixelwise depths and normals are computed from NeRF [11] with

volume rendering and optimized with novel geometry losses.

Modern deep learning frameworks [172] provide an automatic differentiation engine that
can be queried to provide the precise gradient of the density field. However, we found in our
experiments that a simple central difference approximation is more accurate and efficient. Let
Δh be a small step size:

∇xfθ(x) ≈
fθ(x+ Δh)− fθ(x− Δh)

Δh
(3.21)

Confidence-aware Geometric Loss Functions

At each training iteration in Algorithm 3.1, a random batch of rays R is sampled from the
dataset and differentiable volumetric rendering is used to produce both colors and geometry
by integrating along the ray. Then, we propose to optimize NeRFwith the sum of three losses:

L =
∑

r∈R

Lrgb(c(r), ĉ(r)) + λdepthLdepth(d(r), d̂(r)) + λnormLnorm(n(r), n̂(r)) (3.22)

80

where λdepth and λnorm areweighting parameters to balance the contribution of geometry over
appearance. Consistently with the original NeRF formulation [11], the first term is the stan-
dard L2 loss on rendered colors, as in Equation 3.10. Moreover, we guide the optimization
procedure by penalizing errors between the rendered geometry and the pseudo-ground truth.
For both depths and normals, each ray is weighted by the corresponding confidence value to
softly activate the supervision only in reliable pixels. We follow Section 2.3 and define a con-
tinuous confidence value with Equation 2.9. Then, both Ldepth and Lnorm are formulated as a
Huber loss between the estimated quantity x̂ and the reference x, weighted by confidence c:

Huber(x, x̂, c) =

1
2 c(x− x̂)2 if |x− x̂| < δ

δ · c(|x− x̂| − δ
2) otherwise

(3.23)

The choice of the Huber loss over a standard L2 loss is an additional step towards a more ro-
bust optimization. This function is quadratic for small errors and linear for large errors,making
it less sensitive to outliers.

3.4.4 Experiments

Implementation Details

Dataset We demonstrate the effectiveness of MVGNeRF on the Truck scene from the
Tanks&Temples dataset [61], as a proxy for real-world outdoor data. The scene is captured by
250 full HD images with resolution 1920 × 1080, as well as a high-precision laser scanner for
acquiring 3D ground truth. The training set for NeRF is built by randomly selecting 90% of
the images, with the remaining 10% being the test set. Similarly, only the training set of NeRF
is used as input for classical 3D reconstruction.

Parameters NeRF is optimized forNiter = 250000 iterations and a random batch of B =

1024 rays is selected at each training step. For each ray, 64 and 128 points are sampled for the
coarse and fine stage of hierarchical sampling, respectively. The radiance field is approximated
by an 8-layerMLP with 256 neurons each, and the geometric losses are weighted with λdepth =
λnorm = 0.1. Finally, during the mesh extraction phase, a uniform grid of 2563 points is fed to
the marching cubes algorithm [12] and the density is thresholded at τ = 50 for generating the
binary occupancy field.

81

Method PSNR ↑ SSIM ↑ LPIPS ↓ CD×10−3 ↓
NeRF [11] 21.2384 0.6526 0.3819 2.3823
NeRF [11] w/ depth 20.8911 0.6383 0.4318 1.9701
MVGNeRF (ours) 21.0013 0.6468 0.3971 1.8865

Table 3.6: Quantitative results of NeRF with different geometric supervisions. For each metric, best and second results are
bold and underlined, respectively.

Software The framework has been tested on a singleNvidiaV100GPUwith 32GBRAM,
but it can be adapted to run on lower tier devices with lessmemory. The calibration parameters
forNeRF are computedwith SfM [184], while the geometric pseudo-ground truth is estimated
by the MVS algorithm presented in Section 2.3. As for KeyNeRF in Section 3.3, NeRF opti-
mization follows an open-source PyTorch implementation [173], with custom modifications
to support our confidence-aware geometric losses. After training, the mesh is extracted with a
publicly available marching cubes algorithm [12] from the PyMCubes library.

Quantitative Results

In this section, we provide a numerical comparison of our approach against the baselineNeRF
[11] and a hybrid version with only pixelwise depth as supervision. We measure the perfor-
mances of both methods in terms of the resulting 3D geometry and novel view synthesis re-
sults. Consistently with existing literature, the image quality of novel renderings is measured
with the PSNR, SSIM [176] and LPIPS [177]metrics, as introduced in Section 3.3. Moreover,
the Chamfer distance between the point cloud from the laser scanner Pgt and themesh vertices
P after marching cubes is computed to quantify the geometric output:

CD(P,Pgt) =
1
|P|
∑

x∈P

min
y∈Pgt

||x− y||2 + 1
|Pgt|

∑

y∈Pgt

min
x∈P

||x− y||2 (3.24)

The quantitative results are shown in Table 3.6, where it can be seen that our approach
provides a better 3D geometry, while remaining competitive on the novel view synthesis task.
Moreover, note that the supervision of dense depth without normals already improves signif-
icantly the quality of the underlying shape, but adding information about the local surface
normal leads to the best results. This is consistent with findings in [181] about neural surface
reconstruction methods with geometric priors.

82

Qualitative Results

The improvement in 3D scene representation obtained by MVGNeRF is also shown in quali-
tative results. Despite the differences in perceptual metrics (see Table 3.6), the novel rendered
views from our approach shown in Figure 3.15match closely the output of basicNeRF.More-
over, Figure 3.16 and Figure 3.17 show the pixelwise depths and normals obtained after vol-
umetric rendering, respectively. It can be clearly seen that the proposed approach produces
much smoother results, especially in terms of normal vectors. When compared to the geomet-
ric priors used as pseudo-ground truth, the geometry rendered fromMVGNeRF is consistent
even in textureless regions, where the pixels have low confidence and the explicit supervision
from MVS is not active. This consistency is confirmed also by the meshes visualized in Fig-
ure 3.18. We obtain the cleanest 3D model, without the noise of NeRF [11] and the halluci-
nated geometry of classical surface reconstruction [6, 7] after MVS.

3.5 Conclusion

In this chapter, we introduced the task of novel view synthesis and provided a general overview
of neural radiance fields in Section 3.2, a learning-based state-of-the-art solution to the problem.
Then, we presented two original improvements to the basic formulation [11], in order to tackle
some of its main issues: training efficiency, the requirement of a large set of densely sampled
views as input, and the lack of multi-view geometry constraints during optimization.

Specifically, in Section 3.3 we proposed a novel method, called KeyNeRF [18], to select in-
formative samples for training a few-shot NeRF. This allows Algorithm 3.1 to focus on rele-
vant information in early iterations, thus significantly speeding up convergence with a limited
training budget. Moreover, MVGNeRF [19] was presented in Section 3.4 as a framework that
effectively supervises NeRF geometry with classical 3D reconstruction during training, in or-
der to generate cleaner and smoother 3D shapes. Both approaches were evaluated on synthetic
and real-world data, showing state-of-the-art performances.

As future work, we plan to explore other ways to define a probability distribution on the
image plane for sampling rays in KeyNeRF.Moreover, some recent works [185, 186] proposed
to enforcemulti-viewgeometry constraints bywarpingpatches or deep features as an additional
loss. This idea could be integrated in MVGNeRF, especially for pixels with low confidence.
Finally, it is promising to combine both our contributions in a single strong baseline and to
test it on driving data, in order to compare the results with the pipeline described in Chapter 2.

83

(a) NeRF [11] (b) NeRF [11] w/ depth (c)Ours (d) Ground Truth

Figure 3.15: Qualitative comparison when rendering colors from novel views [19].

(a) NeRF [11] (b) NeRF [11] w/ depth (c)Ours (d) (Pseudo‐)Ground Truth

Figure 3.16: Qualitative comparison when rendering depth from novel views [19].

84

(a) NeRF [11] (b) NeRF [11] w/ depth (c)Ours (d) (Pseudo‐)Ground Truth

Figure 3.17: Qualitative comparison when rendering normals from novel views [19].

(a) NeRF [11] (b) NeRF [11] w/ depth (c)Ours (d)Mesh [6, 7] after MVS

Figure 3.18: Qualitative comparison of the resulting 3D mesh [19]. Our approach removes both the noise of NeRF and the
hallucinated geometry of the classical pipeline.

85

86

4
Point Cloud Upsampling

4.1 Introduction

This chapter is based on the original contributions published in [44]:
Dell’Eva A.∗,Orsingher M.∗, and Bertozzi M.,Arbitrary Point Cloud Upsampling with Spher-
icalMixture of Gaussians, International Conference on 3D Vision (3DV), 2022.
∗ Equal contribution.

Point clouds are a common way to represent 3D data as an unordered list of points, which
can be thought of as discrete samples from the underlying object surface. In recent years, the
wide availability of low-cost scanning sensors has driven the research towards 3D point clouds
analysis for several applications such as augmented reality, robotics and autonomous driving
[187, 188, 189, 190]. However, the sparsity and the noise level in raw data from such sensors
pose key challenges in point cloud processing for downstream tasks, such as classification and
segmentation. To this end, in this chapter we focus on point cloud upsampling, which consists
in generating a dense and uniform set of points from a sparse and noisy input.

Building on pioneering works for neural point processing [15, 16], learning-based methods
achieve state-of-the-art results in point cloud upsampling [191, 192, 193, 194] and outperform
classical optimization-based techniques [195, 196, 197]. One of the main limitations of cur-
rent approaches is the tight coupling between the upsampling ratio and the network architec-

87

(a) Input (b) r = 2.34 (c) r = 4.93 (d) r = 9.51 (e) r = 22.86 (f) Ground Truth

Figure 4.1: Our approach can upsample a sparse input withN points to a high‐resolution output with r×N points. The
upsampling ratio r ∈ R can be specified arbitrarily at test time, even if the model is trained only with r = 4 [44].

ture. Typically, this value must be specified in advance and different models must be re-trained
from scratch for different rates. Despite recent efforts on designing flexible networks with a
user-defined upsampling factor at test time, existing works still limit its value to be integer and
lower than a given bound [198, 199, 200], or reconstruct the whole surface with ground truth
normals as an intermediate step [201]. Our main goal is to remove these limitations and to
enable arbitrary upsampling from raw point clouds with a uniquemodel, trained a single time,
as shown in Figure 4.1. The key intuition of the presented method is to split the upsampling
procedure in two steps: (i) the input point cloud is firstly mapped to a probability distribu-
tion on a canonical domain, then (ii) an arbitrary number of points are sampled from such
distribution and mapped back to the target surface. Inspired by recent works on point cloud
autoencoders [202, 203, 204], we propose to use the unit sphere as intermediate representation,
and we define a SphericalMixture of Gaussians (SMOG) distribution on such domain. In this
way, each input point is associated with a mixture weight and a bivariate Gaussian in spherical
coordinates, whose parameters are estimated by a neural network. The inverse mapping from
the samples on the unit sphere to the desired shape is implemented by querying the decoder of
a Transformer model [30] with an arbitrary number of points, which effectively decouples the
network architecture and the upsampling ratio. Therefore, our contributions are threefold:

• We present a novel approach for point cloud upsampling with arbitrary scaling factors,
including non-integer values, with a single trained model.

• We propose to learn a mapping from the low-resolution input point cloud to a proba-
bility distribution on the unit sphere. This distribution can then be sampled arbitrarily,
and the inverse mapping is learned to generate the high-resolution output.

• We design a network architecture fully based on local self-attention, which has proved
to learn powerful representations on point cloud data [17, 205, 39].

88

4.2 RelatedWork

4.2.1 Canonical Primitives in Point Cloud Auto-Encoders

In the context of point cloud auto-encoders, a common procedure to generate the output is
to feed the decoder with a global latent vector encoding the input and a canonical primitive
(e.g. a 2D grid [206]), which is deformed to match the target surface. Following the insights
in [202], several works use the unit sphere with uniform sampling as an intermediate represen-
tation [203, 204]. Recently, TearingNet [207] proposed to learn topology-friendly represen-
tations by additionally estimating pointwise offsets on the 2D domain. We take a step further
by directly learning amean vector on the unit sphere and 2D variances in spherical coordinates
for each point in the input shape. This allows to define a distribution fromwhich an arbitrary
number of points are sampled and mapped back to the surface.

4.2.2 Learning-based Point CloudUpsampling

Point cloud upsampling is an inherently ill-posed problem, since a finite number of samples
correspond to many underlying surfaces and viceversa. For this reason, PU-Net [191] pio-
neered the idea of learning geometric priors from data and outperformed previous classical
methods [197, 196, 195]. Building on this seminal idea of learning and expanding multi-scale
point features, MPU [208] proposes a patch-based progressive strategy for upsampling at dif-
ferent levels of detail, while PU-GAN [192] casts the upsampling procedure in a generative
adversarial framework. PU-GCN [193] introduces several modules built upon graph convolu-
tional network that can be integrated into other architectures, whereas Dis-PU [194] disentan-
gles the upsampling task into two cascaded subnetworks for dense point generation and spatial
refinement. Despite showing promising results, all theseworks require a fixedupsampling ratio
r and train different models for varying values of r. This strategy does not adapt to real-world
point clouds with different quality and it increases the training time significantly.

4.2.3 Arbitrary Point CloudUpsampling

Recently, a few works [199, 198, 200] emerged with the goal of decoupling the upsampling ra-
tio and the network architecture, thus achieving flexible upsampling. Meta-PU [200] employs
meta-learning to predict the weights of residual graph convolution blocks dynamically for dif-
ferent values of r. However, the model first generates a set of rmax ×N points, which are then

89

downsampled to the desired ratio using farthest point sampling (FPS). MAFU [198] and PU-
EVA [199] exploit the local geometry of the tangent plane at each point to sample a variable
number of candidate points in its neighborhood, but they are limited to integer upsampling
factors within a predefined range. In addition, the former requires normal vectors information
to be trained. On the other hand, our approach is designed to support any value of r ∈ R.
Neural Points [201] is a concurrent work that performs upsampling with unconstrained ratios
by first encoding the continuous underlying surface with neural fields and then sampling an
arbitrary number of points from it. Their main limitation is the requirement of ground truth
normals for training, which are difficult to estimate for real-world noisy inputs. Conversely,
our model operates in a discrete-to-discrete way on raw point clouds without normals.

4.2.4 Transformers for Point Clouds

The Transformer model has revolutionized both natural language processing [30] and com-
puter vision [38], thanks to the attentionmechanismat its core. Since theTransformer architec-
ture is permutation invariant by design and thus naturally suited for 3Ddata, earlyworks in the
field focused on adapting its modules to point cloud processing [39, 40, 209, 210]. Attention-
based methods have achieved state-of-the-art results in many 3D tasks, such as point cloud
completion [205], object detection [17] and classification [211]. In this work, we propose to
combine the Transformer architecture with an attention-based refinement module for point
cloud upsampling. To the best of our knowledge, there is only one concurrent work on this
aspect [212]. However, they solely leverage the Transformer encoder, while we also exploit the
possibility of querying the Transformer decoder for arbitrary upsampling.

4.3 Method

Denoting by P = {pi ∈ R
3}Ni=1 the unordered sparse input point cloud ofN 3D points, our

objective is to generate an arbitrarily denser point set Qr = {qi ∈ R
3}Mi=1 withM = r × N

points, where r ∈ R is the upsampling factor. Note that point cloud upsampling is an ill-posed
task, since there is not a single feasible correct output. This means that Q should represent
the same underlying surface S , while not being necessarily a superset of P . To this end, we
design a fully attention-based end-to-endnetwork for arbitrary point cloudupsampling, taking
advantage of Gaussian mixture sampling and Transformer queries to enable flexible ratios. An
overview of our framework is shown in Figure 4.2.

90

Transformer
Encoder

Transformer
Decoder

Feature
Extraction

Residual
Refinement +

Sec. 3.3

SMOG Sampling

Sec. 3.1

Sec. 3.2

Sec. 3.4

Figure 4.2: A high‐level overview: the low‐resolution input point cloud with sizeN× 3 is firstly mapped to a probability
distribution on the unit sphere, with a mean vector and covariance matrix associated to each point. Then, this distribution is
sampled to produce the high‐resolution output with sizeM× 3, withM = r×N and r the desired upsampling ratio [44].

4.3.1 Network Architecture

Feature Extraction

The first step of our pipeline is to extract point-wise features fi ∈ R
D from the input point

cloud. Differently frompreviousmethods [193, 191, 192] that employ eitherPointNet [15, 16]
or DGCNN [213] as backbone, we design a lightweight network based on Point Transformer
[39]. For each input point pi ∈ P , its associated feature is computed as:

fi =
∑

pj∈N (pi)

ρ(γ(β(pi)− ψ(pj) + δ))⊙ (α(pj) + δ) (4.1)

whereN (pi) is the set of k nearest neighbors of pi, δ = η(pi − pj) is the positional encoding
and the symbol⊙ denotes the element-wise product. In this Point Transformer Layer (PTL),
the mappings α, β and ψ are simple linear layers, γ and η are two-layers MLP, while ρ is the
softmax function. In the context of the classical interpretation of the Transformer model [30],
α generates the values, β the queries and ψ the keys.

TransformerModel

Thefirst core intuitionofour approach is thepossibility ofquerying theTransformermodel [30]
with an arbitrary number of points. Inspired by the 3DETRarchitecture [17], the set ofN×D
features produced by our backbone is fed to an encoder to produce a new feature map of di-

91

(a) Input (N = 2048) (b) Coarse Output (r = 4) (c) Refined Output (r = 4)

Figure 4.3: Visualization of coarse points after the Transformer decoder and the corresponding refined output from the
residual refinement module [44].

mensionN×D. The Transformer encoder has a single layer with a four-headed attention and
an MLP with two layers. These features, along with a set of r × N queries, are processed by
the two-layers Transformer decoder to generate r × N 3-dimensional Euclidean coordinates,
which represent the coarse upsampled point cloud. The queries are obtained by embedding
with Fourier positional encoding [130] the points sampled from the unit sphere manifold.

Residual Refinement

The coarse output from theTransformer decodermight be noisy, non-uniformdistributed and
have several outliers. Motivated by other works [194, 198], we design an attention-based resid-
ual refinement with a similar architecture as the feature extractor described previously. In par-
ticular, we employ a singlePoint Transformer Block (PTB) [39] composed by a PTL, two linear
layers, a ReLU activation function and a residual connection. Differently from Equation 4.1,
in this case the PTL takes as input the local features extracted from the backbone, while the
positional encodings are computed with the 3D coarse coordinates. The D-dimensional vec-
tor produced by the PTB is finally projected to a 3-dimensional space with a two-layers MLP
that computes the residual for each point, which is added to the coarse prediction to obtain the
refined result. Figure 4.3 visualizes a typical example. It can be seen that he coarse points are
already close to the underlying shape, but refinement helps in adjusting outliers.

4.3.2 SphericalMixture of Gaussians

The second key intuition which underpins our work is to map the input point cloud into a
probability distribution on a canonical domain which can be conveniently sampled. To this
end, we estimate the parameters of aGaussianMixtureModel (GMM)on the unit sphere from
thedeep features extractedby thePTL.The choice of this domainover a 2D square ismotivated
by the fact that the unit sphere is a manifold without boundaries, which avoids the truncation

92

Input Point Cloud

Surface-to-Sphere
Mapping

SMOG Sampling

Sphere-to-Surface
Mapping

Output Point Cloud

Figure 4.4: The sampling process shown in detail [44]. Red points are the Gaussian means on the unit sphere for each input
point, while green points are the arbitrary samples from the SMOG. Red points on the right are just for visualization.

of theGaussian distributions in theGMM.More specifically, we define aK componentsGMM
Γ = {wi, μi,Σi}Ki=1, wherewi, μi andΣi are themixtureweight, mean and covariance of the i-th
Gaussian and K = N. Therefore, the likelihood of a point z on the unit sphere is given by a
weighted combination of individual components ui(z):

uΓ(z) =
N∑

i=1

wiui(z) (4.2)

Each component is weighted equally (i.e. wi =
1
N) and its parameters (μi,Σi) are estimated by

a MLP ξ, that predicts the mean vector μi in Cartesian coordinates and the covariance matrix
Σi in spherical coordinates. In particular, Σi is built by exploiting the constraint of symmetry:

Σi =

[
σ2θ σθφ
σθφ σ2φ

]
(4.3)

where σ2θ , σ2φ and σθφ are the outputs of the covariance head of the MLP corresponding to the
azimuth angle θ ∈ [0, 2π] and the elevation angle φ ∈ [0, π], respectively. In order to generate
a dense output point cloud, we sample an arbitrary number of points from the distribution
and learn the inverse mapping from the spherical domain to the target surface. This process is
illustrated in Figure 4.4. In the implementation of SMOG sampling, we have to ensure that the
covariance matrix is positive semi-definite, in order for it to be well-defined. The simplest way

93

(a) Input Point Cloud (b) Spherical Projection

Figure 4.5: The proposed sphere parameterization learns a meaningful mapping and preserves the shape topology [44].

to impose this condition is to clamp the covariance value σθφ between the following bounds:

−σθσφ ≤ σθφ ≤ σθσφ (4.4)

To prove this, consider a real symmetric 2× 2 matrix:

A =

[
a b
b c

]
(4.5)

Such amatrix is positive semi-definite if and only if its eigenvalues are non-negative. The eigen-
values of a 2× 2 matrix can be computed in closed form as the solutions to:

det(A− λI) = (a− λ)(c− λ)− b2 = 0 (4.6)

We can immediately apply the well-known formula for solving quadratic equations:

λ1,2 =
a+ c±

√
(a+ c)2 − 4(ac− b2)

2
(4.7)

The argument of the square root is always non-negative, as it can be rewritten as the sum of
two positive numbers:

4b2 + (a− c)2 ≥ 0 (4.8)

Since a > 0 and c > 0 by construction, the first solution is also guaranteed to be non-negative
as the sum of three non-negative components:

λ1 =
a+ c+

√
(a+ c)2 − 4(ac− b2)

2
≥ 0 (4.9)

94

Let’s analyze the second solution:

λ2 =
a+ c−

√
(a+ c)2 − 4(ac− b2)

2
≥ 0 (4.10)

It can be rewritten as follows:

a+ c ≥
√

(a+ c)2 − 4(ac− b2) (4.11)

Since both sides are non-negative, we can square them and we can expand the right-hand side:

a2 + 2ac+ c2 ≥ a2 + c2 − 2ac+ 4b2 (4.12)

With simple computations, this becomes:

4ac ≥ 4b2 =⇒ |b| ≤ √
ac =⇒ −√

ac ≤ b ≤ √
ac (4.13)

Note that this finding is confirmed by noting that the correlation value ρθφ is bounded between
[−1, 1] and by definition:

ρθφ =
σθφ√
σ2θσ2φ

=⇒ −1 ≤ σθφ√
σ2θσ2φ

≤ 1 =⇒ −σθσφ ≤ σθφ ≤ σθσφ (4.14)

From an implementation point of view, we ensure this conditionwith the torch.clamp func-
tion in PyTorch [172]. Even if this naive approach sets the gradients and the related update sig-
nal to zero outside the acceptance region, we have found experimentally that very few values lie
outside this range during training. An alternative approach for imposing the same constraint
is to decompose the covariance matrix as follows:

Σ = R(α)DR(α)⊤ (4.15)

whereR(α) is the 2D rotation matrix for a given angle α andD is a diagonal matrix with vari-
ances as diagonal elements. The resulting covariance matrix is symmetric and positive definite
as required, with the additional advantage of predicting a continuous value for the angle α as the
output of the network, instead of clamping and zeroing the gradients. We have implemented
and tested this strategy, but we did not notice any significant improvement. Figure 4.5 shows
an example of our surface-to-sphere mapping, which preserves the shape topology.

95

4.3.3 Loss Function

Let Q̃r = {q̃i ∈ R
3}rNi=1 be the coarse prediction generated by the Transformer with upsam-

pling rate r, Qr = {qi ∈ R
3}rNi=1 the refined prediction and Yr = {yi ∈ R

3}rNi=1 the ground-
truth upsampled point cloud. For training, we adopt a similar strategy as in [201] to define a
distance between two generic point cloudsX = {xi ∈ R

3}Xi=1 andZ = {zi ∈ R
3}Zi=1 as:

dΠ(X ,Z) =
1
X

X∑

i=1

∥xi −Π(xi,Z)∥22 (4.16)

where Π(·, ·) is the projection of a 3D point to a point cloud. This term is computed as the
weighted combination of the nearest points to x inZ , with indicesN (x,Z):

Π(x,Z) =

∑
k∈N (x,Z) wkzk∑
k∈N (x,Z) wk

(4.17)

The weights wk are given by:

wk = e−α∥x−zk∥22 , k ∈ N (x,Z) (4.18)

with α = 103. The corresponding loss is then defined by the following bidirectional sum:

LΠ(X ,Z) = dΠ(X ,Z) + dΠ(Z,X) (4.19)

Our arbitrary upsampling network is trained with the sum of three losses:

L = LΠ(Q̃4,Y4) + LΠ(Q4,Y4) + LACD(Q̃1,P) (4.20)

where the last term is the Augmented Chamfer Distance (ACD) between the reconstructed
point cloud and the input, defined for two generic point clouds as follows:

LACD(X ,Z) = max

{
1
X
∑

x∈X

min
z∈Z

∥x− z∥22,
1
Z
∑

z∈Z

min
x∈X

∥x− z∥22

}
(4.21)

In practice, each training iteration consists of two forward passes and a single backward pass.
During the upsampling forward pass, the Transformer decoder is queried with 4 × N points

96

sampled from the SMOG and the projection loss components for both the coarse and refined
upsampled outputs are computed. On the other hand, in the reconstruction phase, the esti-
mated means of the SMOG components are fed to the decoder and the ACD with respect to
the input point cloud is evaluated. This additional term is required to learn the proper posi-
tions of theGaussianmeans on the unit sphere, which acts effectively as an intermediate proba-
bilistic representation of the input shape. The ablation studies in Section 4.4 prove this insight
with numerical evidence.

4.4 Experiments

4.4.1 Implementation Details

Datasets

In order to compare the proposed method with state-of-the-art fixed-ratio methods, we em-
ploy the challenging PU1K dataset [193], which contains 1147 synthetic 3Dmodels of various
shapes, split into 1020 training samples and 127 testing samples. Consistently with existing lit-
erature [193, 194, 192, 208], 50 patches are extracted from each training shapewith 256 points
as input to themodel and 1024 points as ground truth (r = 4). During testing, 2048 points are
sampled from the original mesh with Poisson disk sampling. We employ a similar strategy as in
[214] to extract overlapping patches with 256 geodesically close points. The network predicts
the upsampled outputs at patch level and the final result is given by combining the overlapping
patches with FPS to obtain 8192 points.

Moreover, we evaluate our approach against flexible-ratiomethods on the widely used PU-
GANdataset [192],which is composedby 147 shapes collected fromthePU-Net [191],MPU[208]
and Visionair [215] repositories. The same patch-based training and testing procedure is fol-
lowed with 2048 points as input, but ground truth point clouds with different sizes are gener-
ated to adapt to the values of the scaling factor r. Finally, we test the generalization capabilities
of our approach on real-world LiDAR point clouds from the KITTI dataset [116].

Parameters

Our framework is implemented in PyTorch [172]. The features dimension is set toD = 128.
The MLPs in the Transformer model has hidden dimension equal to 64 in the encoder and
128 in the decoder. For the local feature extractor and the refinement module, the number of

97

neighboring points are set to 32 and 4r, respectively. The projection components in the loss
function are weighted with λ1 = λ2 = 0.01, while the reconstruction component weight is set
to λ3 = 1. In the Π(·, ·) computation, k is equal to 4. The model is trained with a batch size
of 64 for 100K iterations on a single V100 GPU with 32GB of RAM, using random rotation
and perturbation as data augmentation techniques to avoid overfitting. The AdamW [28] op-
timizer is used with a learning rate decay following a cosine schedule [216] from 5e−4 to 1e−6,
a weight decay of 0.1 and a gradient L2 norm clipping of 0.1.

Baselines

For the task of upsampling with a fixed ratio r = 4 on the PU1K dataset, we provide quantita-
tive comparison against the state-of-the-artmodels PU-Net [191],MPU[208], PU-GAN[192],
PU-GCN [193] and Dis-PU [194]. On the other hand, the flexible methods MAFU [198],
PU-EVA [199] and Neural Points [201] are used as baselines for arbitrary upsampling on the
PU-GAN dataset. For a fair comparison, we used the official pre-trained models when avail-
able and re-trained the other ones with the official published code. Following previous works,
the results are quantitatively evaluated with the Chamfer Distance (CD), Hausdorff Distance
(HD) and Point-to-Surface (P2F) distancemetrics. The CD is the sum of squared distances be-
tween nearest neighbor correspondences of the input and ground truth point clouds, while the
HD effectively measures the influence of outliers in the predicted results. On the other hand,
the P2F distance is computed against the underlying surface, thus estimating the quality of the
upsampled point cloud as an approximation of the real shape. All the metrics are averaged on
the whole test set and a lower value indicates better upsampling performance.

4.4.2 Quantitative Results

The quantitative evaluation of the method on the PU1K test set and a fixed upsampling ratio
r = 4 for point clouds with N = 2048 points is presented in Table 4.1. It can be noticed
that we achieve the lowest HD value, indicating that APU-SMOG performs upsampling with
fewer outliers with respect to state-of-the-art models, as well as the lowest P2F distance, show-
ing a better approximation of the underlying surface. Our approach falls behindDis-PU [194]
in terms of the CD metric by a slight margin. Nevertheless, this quantity measures the con-
sistency of the result with the ground truth point cloud, rather than with the target shape: two
different sets of points sampled from the samemesh have a non-zeroChamfer distance, despite
belonging to the same surface by definition.

98

Method CD↓ HD↓ P2F μ↓ P2F σ↓
PU-Net [191] 1.155 11.626 4.834 6.799
MPU [208] 0.935 10.298 3.551 5.971
PU-GAN [192] 0.885 16.539 3.717 5.746
PU-GCN [193] 0.584 5.822 2.499 4.441
Dis-PU [194] 0.511 4.104 2.013 2.926

Ours 0.528 2.549 1.667 2.075

Table 4.1: Quantitative comparison with state‐of‐the‐art methods on the PU1K dataset and r = 4. The units are all 10−3

and lower is better. Best and second results are bold and underlined [44].

Furthermore, the numerical performances as a function of the ratio r on the PU-GAN test
set are provided in Table 4.2. In order to be able to compare against state-of-the-art flexible
methods [198, 199], we constrain r to be an integer value smaller than 16, even if we can gener-
ate predictions with any r ∈ R. Our approach achieves the best CD value, as well as the best
HD value by a significant margin, along the whole spectrum of ratios. Note that bothMAFU
[198] and Neural Points [201] have a lower P2F metric since they require ground truth nor-
mals at training time, which helps in finding the correct surface. On the other hand, our ap-
proach consistently outperforms PU-EVA [199], which is trained from raw point clouds. For
completeness, we include the comparison against fixed-ratiomodels as reference. To generate
predictions for r ∈ {8, 12, 16}, each network is queried iteratively with r = 4 and the desired
number of points is obtained with FPS.

4.4.3 Ablation Studies

We perform a set of ablation studies in Table 4.3 to evaluate the contribution of each module
to our pipeline. The results have been obtained with different versions of our model trained
on the PU1K dataset with fixed ratio r = 4. In order to measure the influence of the SMOG
representation, we replace it with a FoldingNet-like [206] strategy, i.e. sampling the unit sphere
uniformly. The quantitative results confirm that our approach is able to generate better predic-
tions, as it adaptively learns a local probability distribution around each point. Furthermore,
we investigate the influence of the number of GMM components on the output point clouds,
reducing it to K = N/4. The numerical evaluation exhibits decent performances, suggesting
that the model associates each Gaussian distribution to a local neighborhood of points. How-
ever, having a single component for each input point leads to the best results overall.

99

Method
r = 4 r = 8 r = 12 r = 16

CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓

Fi
xe
d PU-GAN [192] 0.274 4.694 1.943 0.489 6.985 2.621 0.233 6.093 2.548 0.209 6.055 2.556

PU-GCN [193] 0.304 2.656 2.541 0.256 4.175 2.825 0.204 4.157 2.737 0.195 4.176 2.716
Dis-PU [194] 0.360 5.133 2.868 0.352 7.028 3.338 0.291 6.694 3.258 0.271 6.645 3.240

Fl
ex
ib
le

MAFU [198] 0.322 2.116 1.721 0.195 2.389 2.037 0.164 2.392 2.034 0.158 2.367 1.971
NePs [201] 0.368 4.556 1.875 0.254 10.146 1.928 0.203 10.018 1.922 0.159 9.263 1.957

PU-EVA [199] 0.394 7.676 2.915 0.322 7.951 3.148 0.290 8.191 3.234 0.286 8.390 3.269

Ours 0.276 1.909 2.634 0.194 1.628 2.613 0.162 1.626 2.635 0.149 1.948 2.666

Table 4.2: Quantitative comparison with state‐of‐the‐art methods on the PU‐GAN dataset [192] and flexible upsampling
ratios. The units are all 10−3 and lower is better. Best and second results among flexible methods are bold and underlined.

Fixed methods are included as reference [44].

The third row inTable 4.3 proves the effectiveness of the attention-based residual refinement
step. The significantly higher HD value indicates that the raw output from the Transformer
decoder contains several outliers, which are correctly positioned closer to the surface by this
module. Moreover, we train our model without the reconstruction loss and notice a perfor-
mance drop. This implies that LACD is a strong bias towards learning the correct positions of
the Gaussianmeans on the unit sphere. Finally, the advantage of the projection loss for upsam-
pling over ACD is shown in the last row. The remarkable difference in all the metrics justifies
the choice ofLΠ in the final design.

4.4.4 Qualitative Results

Figure 4.6 shows qualitative upsampling results in comparison with state-of-the-art methods.
These results have been obtained under the same settings as Table 4.1, namely with all themod-
els trained on the PU1K dataset with fixed upsampling ratio r = 4 for input point clouds
having sizeN = 2048. Close-up views show that our approach is particularly effective in pre-
serving fine-grained structures, such as the piano’s pole and the motorcycle mirror, and dis-
ambiguating complex shape (see the bag’s handle). It can be noticed that other models fail to
distinguish between different details of the surface and tend to merge them together, thus pro-
ducing noisy point clouds. Moreover, the proposed attention-based residual refinement block
generates refined outputs with fewer outliers (e.g. the plane motors). Moreover, we investigate
the upsampling results on the PU-GANdataset [192] against concurrent flexible architectures
for different ratios r ∈ {4, 8, 12, 16}. Close-up views in Figure 4.7 show that our framework
produces cleaner shapes along the whole range of upsampling factors, even when compared
with methods requiring ground truth normals at training time [198, 201].

100

Ablation CD↓ HD↓ P2F↓
FoldingNet-like [206] 0.558 2.761 1.700
N/4 SMOG components 0.564 2.803 1.686
w/o refinement 0.572 8.536 2.182
w/o rec. loss,LΠ ups. 0.561 2.843 1.726
w/o rec. loss,LACD ups. 0.816 6.459 2.694

Ours 0.528 2.549 1.667

Table 4.3: Quantitative ablation studies. The units are all 10−3 and bold denotes the best performance [44].

Finally, we present the qualitative results of our approachwhen the upsampled point clouds
are used to extract a continuous mesh, using an open-source implementation of the Poisson
surface reconstruction [6, 7] algorithm available in the Open3D library [217]. The outputs
of our method allow to reconstruct better shapes with respect to state-of-the-art, as shown in
Figure 4.8 (e.g. the index finger in the hand and the human arm in the statue). Furthermore,
we provide additional surface reconstruction results as a function of the upsampling ratio in
Figure 4.9. In this case, the input point cloud has size N = 1024 and the ratios are chosen
randomly in awide range to further demonstrate the ability of handling arbitrary factors r ∈ R.
Note that the ground truth mesh is the actual synthetic shape from the PU1K dataset, while
the ground truth point cloud is generated for reference by Poisson disk sampling. The quality
of the resultingmesh consistently improveswith increasing values of the upsampling ratio, thus
proving the effectiveness of our method for the downstream 3D reconstruction task.

4.4.5 Generalization and Robustness

We conduct further experiments to demonstrate the robustness and generalization capabilities
of the proposed approach. Firstly, we provide qualitative results on real-world point clouds
from the KITTI dataset [116]. This task is particularly challenging, since street-level LiDAR
data with noise and occlusions are very different from synthetic training samples. Figure 4.10
shows the generalizationpowerof our approachondifferenturban elements such as cars, trucks
and pedestrians. Additional examples on real-world objects point clouds from the ScanOb-
jectNN dataset [218] are provided in Figure 4.11. In both cases, it can be seen that our model
is robust to domain shifts, without any fine-tuning.

Furthermore, since the previous qualitative results in Figure 4.6 and Figure 4.7 have been
generated with point clouds havingN = 2048 points, we show in Figure 4.12 that the predic-

101

(a) Input (b) PU‐GAN [192] (c) PU‐GCN [193] (d) Dis‐PU [194] (e)Ours (f) Ground Truth

Figure 4.6: Qualitative comparison with state‐of‐the‐art methods on the PU1K dataset [193]. Inputs with 2048 points
(left) are upsampled to 8192 points (right), with upsampling ratio r = 4. Details are best viewed when zoomed in [44].

102

r = 4 r = 8 r = 12 r = 16
In
pu

t
M
A
FU

[1
98
]

PU
-E
VA

[1
99
]

N
eP
s[
20
1]

O
ur
s

G
ro
un

d
Tr
ut
h

Figure 4.7: Qualitative comparison with state‐of‐the‐art methods on the PU‐GAN dataset [192] and flexible upsampling
ratios. Inputs with 2048 points are upsampled with r ∈ {4, 8, 12, 16}. Details are best viewed when zoomed in [44].

103

(a) Input (b) PU‐GAN (c) PU‐GCN (d) Dis‐PU (e)Ours (f) Ground Truth

Figure 4.8: Qualitative comparison when the upsampled point clouds are used to compute a mesh [44].

(a) Input (b) r = 1.98 (c) r = 3.45 (d) r = 7.72 (e) r = 18.11 (f) Ground Truth

Figure 4.9: Qualitative comparison with arbitrary upsampling ratios when computing a mesh [44].

104

Method CD↓ HD↓ P2F μ↓ P2F σ↓
Dis-PU [194] 1.392 12.382 4.050 7.216
Ours 1.315 7.883 5.582 4.857

Table 4.4: Quantitative comparison when the input point cloud is corrupted with Gaussian noise (σ = 0.01) [44].

tions of ourmethod closely follow theunderlying surfaces for awide variety of input sizes. Even
for the sparsest input with 256 points, thin structures such as the horse’s legs are upsampled
correctly. We also study the effect of input point cloud size on the upsampling results from a
different point of view. Whereas in Figure 4.12we show the differences in the upsampled point
clouds for a fixed ratio r = 4, in Figure 4.13 the output size is maintained fixed atM = 8192
and the upsampling factor varies in r ∈ {16, 8, 4} for different input sizes. It can be seen that
our method achieves satisfying results also for the sparsest input N = 512. This robustness,
combined with the flexibility of our method, provides a full control on the input and output
sizes for real-world upsampling scenarios, where the number of points might need to adapt to
computational and bandwidth constraints.

Finally, in order to simulate real noisy point clouds from scanning sensors, Figure 4.14 shows
the upsampling results for three different levels of additive Gaussian noise. It can be noticed
that the duck shape is successfully maintained for both the clean and the corrupted inputs. We
also present a quantitative comparison for with the best concurrentmethod [194] in Table 4.4,
showing that we outperform it in most metrics. The input is corrupted with Gaussian noise
having standard deviation σ = 0.01.

4.5 Conclusion

In this chapter, we presented a novel approach for point cloud upsampling with arbitrary scal-
ing factors. A Transformer-based architecture is designed to decouple the upsampling process
in two key steps: (i) firstly, the sparse input is mapped to an intermediate representation as
a Spherical Mixture of Gaussians; (ii) then, such distribution is sampled arbitrarily, and the
Transformer decoder learns tomap each sample back to the surface. The predictions are further
improved by an attention-based residual refinement module, which allows to achieve state-of-
the-art results on different benchmarks. This strategy enables arbitrary upsampling, since the
model is trained a single timewith a fixed ratio and it can be queried at test timewith any desired
value. Future research directions would be to depart from the patch-based training procedure
and to learn the weights of the GMM jointly with the Gaussian parameters.

105

(a) Input Point Cloud (b)Output Point Cloud

Figure 4.10: Qualitative upsampling results on the real‐world KITTI dataset [116, 44].

106

Figure 4.11: Qualitative upsampling results on the real‐world ScanObjectNN dataset [218, 44].

(a)N = 256 (b)N = 1024 (c)N = 4096

Figure 4.12: Effect of input point cloud size on the upsampling results [44].

107

(a) 512× 16 (b) 1024× 8 (c) 2048× 4

Figure 4.13: Effect of input point cloud size on the upsampling results while keeping the output size fixed [44].

(a) σ = 0.00 (b) σ = 0.01 (c) σ = 0.02

Figure 4.14: Effect of additive Gaussian noise on the upsampling results [44].

108

5
Neural Network Compression

5.1 Introduction

This chapter is based on the original contributions currently under review at [45]:
Dell’Eva A.∗, Orsingher M.∗, Lee Y. M., and Bertozzi M., Teacher Features-Driven Regular-
ization forKnowledgeDistillation, IEEE/CVF International Conference onComputer Vision
and Pattern Recognition (CVPR), 2024.
∗ Equal contribution.

The widespread diffusion of mobile and wearable devices requires efficient network infer-
ence on hardware with limited resources. However, modern deep learning models benefit
from large architectures [37, 38, 30, 219, 220] that fail tomeet the computational andmemory
requirement of such devices. In order to bridge this gap, three main neural compression ap-
proaches have been proposed: distilling the knowledge from large networks to smaller models
[221, 222, 223, 224], pruning redundant parameters [225, 226, 227, 228, 229] and quantizing
the weights to low-precision [230].

Knowledge Distillation (KD) is a model compression technique in which a lightweight stu-
dent network is trained to mimic the outputs [221, 224, 231] or the intermediate representa-
tions [222, 223, 232, 233] of a much larger teacher model. This allows the knowledge learned
by the teacher to be effectively transferred to the student, thus achieving a higher accuracy

109

Feature-based KD TeaFeD KD (ours)

Layer

Layer
Frozen Teacher Layer
Trainable Student Layer
Loss Function
Gradient Flow

Layer

Layer

Layer +1

Figure 5.1: Overview of the proposed regularization loss for KD. We inject the student features at layer ℓ to the next frozen
teacher layer ℓ+ 1 and match them with the corresponding teacher features [45].

than training it from scratch. Existing KD methods fall into two main categories: logit-based
[221, 224, 231] and feature-based [222, 223, 232, 233]. KD was originally proposed in [221]
for the classification task, as a method to match the output logits of two models with differ-
ent capacity. The logits are converted to pseudo-probabilities with a softmax with rescaled
temperature, and the KL divergence between the two distributions is minimized. Recently,
feature-basedmethods have emerged by following the insights in [222]. The key idea is to align
the intermediate representations of the student to those of the teacher, in order to boost the
distillation performances.

However, directly matching the feature maps of the teacher is not a sufficient condition for
the student to predict the correct output. Moreover, it is a hard optimization constraint to
satisfy when the two models have different architectures or capacity. To this end, we propose
TeaFeD, a novel Teacher Features-Driven regularization approach for KD, which is visualized
in Figure 5.1. The key idea is to train a generic student layer ℓ to produce a latent represen-
tation for the next teacher layer ℓ + 1 that matches the corresponding teacher features. Since
network layers typically implement non-injective functions, different features at level ℓmight
produce the same output at level ℓ + 1. Our approach allows for gradients to be propagated
from a higher level of abstraction, thus providing more flexibility to the student in learning in-
termediate representations. The effect of this regularization loss on the features learned by the

110

Features Projection

Teapot Sea Slug

Banana Banana Mantis

Bus Bus Organ

Input Teacher Ours Baseline

Teapot

Ours

Baseline

Teacher
Teapot

Banana

Bus

Figure 5.2: Visualization of the representations learned by the student with the baseline method [222] and our approach
[45]. UMAP projections [234] (right) show that the baseline produces closer features to the teacher, but fails to classify
inputs correctly as it focuses on irrelevant pixels, while our approach matches the teacher’s attention. Activation maps are

computed with Grad‐CAM [235].

student network is shown in Figure 5.2. Even if the direct matching baseline [222] produces
closer representations to the teacher (visualized as UMAP projections [234] on the right), it
fails to classify correctly the input images. The activation maps on the left, computed with
Grad-CAM [235], prove that these errors stem from the focus on irrelevant pixels, while our
approach allows the student to concentrate on the same image regions as the teacher.

Furthermore, we present a novel neural compression strategy, called sparse self-distillation,
that combines network pruning with KD. After the pruning process, the pruned model is typ-
ically fine-tuned for a few epochs, in order to partially retrieve the accuracy lost due to the
removed parameters. However, in practice, there is a tradeoff between the desired reduction
rate and the bound on accuracy loss. To this end, we propose to integrate KD in the pruning
and fine-tuning loop, by setting the original unpruned model as the teacher. In this way, the
accuracy gap of the student (i.e. the pruned network) can be significantly reduced, and model
compression can be pushed further. While this approach works across different network ar-
chitectures, pruning strategies and distillation methods, we show that the proposed TeaFeD
regularization is particularly effective also in this setting.

Therefore, our contributions to existing literature can be summarized as follows:

• We propose a novel approach for feature-based KD that complements direct matching
with a teacher features-driven regularization loss.

111

• We show that relaxing the feature matching constraint at corresponding layers by dis-
tilling knowledge from a higher level of abstraction enables the student model to learn
more robust and generalizable latent representations.

• We prove the effectiveness of our regularizer on standard benchmarks, showing state-of-
the-art results for a wide variety of vision tasks, including image classification, seman-
tic/instance segmentation and object detection.

• We also introduce sparse self-distillation, a neural compression method that combines
network pruning with KD and significantly improves the sparsity-accuracy tradeoff.

5.2 RelatedWork

5.2.1 Logit-based Knowledge Distillation

Logit-based methods distill the knowledge only at output level, by minimizing the divergence
between the logits predicted by the teacher and the student model [221, 224, 231, 236, 237].
The seminal KDpaper [221] proposed to rescale the temperature parameter in the last softmax
layer, in order to smooth the output distribution and focus on negative logits [238]. Recently,
DKD [224] showed that reformulating the distillation loss into a weighted sum for positive
and negative logits effectively decouples their contributions and further boosts performances.
On the other hand, DML [236] employed a mutual learning paradigm to train both models
simultaneously, while TAKD [231] introduced an intermediate teacher assistant to reduce the
capacity gap between the teacher and the student. Finally, Lin et al. [237] presented a multi-
level framework to distill logits across instances, batches and categories. Logit-based methods
are efficient in terms of both memory and compute, but they typically achieve lower results
with respect to state-of-the-art feature-based approaches.

5.2.2 Feature-based Knowledge Distillation

Feature-based methods aim at transferring intermediate representations from the teacher to
the student, in order to provide a richer supervision [222, 223, 239, 240, 241, 233, 242, 243,
244, 245, 232, 246, 247, 248, 249, 250]. Following the idea presented in [222] to mimic the
teacher features via a simple L2 loss, several approaches have been developed to improve differ-
ent aspects of the pipeline. Some works [232, 223, 243] proposed to mask the feature maps,

112

thus allowing the student to focus on relevant parts of the image. Popular masking strategies
include learnable tokens [232], randommasks reconstructed with generative layers [223], and
fixed separation of background and foreground for object detection [243]. Another approach
to alleviate the constraint of direct feature matching is to transform the raw features into atten-
tionmaps [248, 242, 243, 244] or to compute local statistics, such as pairwise similarities [249]
and the Pearson correlation coefficient [246]. Furthermore, cross-level distillation has been
explored in [239, 241], with the goal of sharing features across different network layers, thus
integrating knowledge frommultiple learning stages. Inspired by these methods, we propose a
simple approach to complement direct feature matching with a novel regularization term that
forces each student layer to learn meaningful features from the subsequent teacher layers.

5.2.3 Neural Network Pruning

The goal of network pruning is to remove redundant parameters from a givenmodel, thusmak-
ing it faster for inference. Unstructured pruning approaches [226, 227, 251, 252, 253] directly
zero out specific weights based on their magnitude, without altering the network architecture.
Despite being a generic and straightforward strategy, unstructured pruning typically requires
dedicated hardware that supports sparse matrix multiplication. On the other hand, structured
pruning methods [225, 228, 229, 254, 255] physically remove entire channels or layers from
the network and allow to exploit standard GPU acceleration. In both cases, the pruning ratio
is practically limited by the accuracy lost due to the removed parameters, even after fine-tuning
the remaining ones. We propose to push further this sparsity limit by self-distilling the dense
(unpruned) model to the sparse (pruned) network, during the pruning and fine-tuning loop.

5.3 Teacher Features-Driven Regularization

In this section, we formally describe and evaluate our proposed teacher features-driven regu-
larization loss. We start by deriving the vanilla logit-based and feature-based KD methods, in
order to provide the required technical background. Then, we present our solution to improve
the features learned by the student. Finally, we extensively test our strategy on multiple vision
tasks and provide a detailed analysis of its main components.

113

5.3.1 Method

Preliminaries

The fundamental baseline inKD research is the vanilla logit-basedmethod introduced in [221].
Given a model trained on a classification task, the output logits z ∈ R

C can be converted to
pseudo-probabilities using the softmax activation as:

yj =
ezj/t

∑C
c=1 ezc/t

, (5.1)

where zj and yj are the logit and probability values for j-th category, respectively. In the KD
context, the temperatureparameter t is often larger than 1, producing softer distributionswhich
alleviate the over-confidence problem in neural networks [25] (t = 1 yields the vanilla softmax
output). To transfer knowledge from complex to compact models, the original logit-based
technique minimizes the KL divergence [180] between teacher and student outputs as:

LLog = KL
(
yT||yS

)
=

C∑

j=1

yTj log

(
yTj
ySj

)
, (5.2)

where the superscripts T and S indicate whether the outputs originate from the teacher or the
student, respectively. As a result, the dark knowledge is transferred via soft labels from the
teacher, improving the prediction of the student.

On the other hand, the distillation approaches based on features are versatile and mostly
agnostic with respect to themodel architecture, which can vary considerably for different tasks.
The basic feature-based method [222] can be formulated as:

Lℓ
Feat = ∥FTℓ −Aℓ(FSℓ)∥22. (5.3)

Here, FTℓ ∈ R
CTℓ×HTℓ×WTℓ and FSℓ ∈ R

CSℓ×HSℓ×WSℓ correspond to the teacher and student fea-
ture maps extracted from layer ℓ, whileAℓ denotes the convolutional adaptation layer needed
to align the student features dimensions with those of the teacher. The approach forces the
student to directly imitate the teacher features, which may not be optimal if the models’ archi-
tectures diverge significantly or their capacities are widely different. To address the issue, we
introduce a novel feature-based regularization, which employs a straightforwardL2 loss to steer
the student toward a more robust solution space.

114

Overview

Given a teacher network with a structured hierarchy of layers denoted as {T1, T2, . . . , TL}, and
a parallel student network denoted as {S1,S2, . . . ,SL}, our TeaFeD method regularizes the
learning process at matching layers. At each stage ℓ, the aligned student features Aℓ(FSℓ) are
propagated to the corresponding subsequent frozen teacher stage Tℓ+1, which provides new
features on a higher level of abstraction. Thus, the loss is formulated as:

Lℓ
TeaFeD = ∥FTℓ+1 − Tℓ+1

(
Aℓ(FSℓ)

)
∥22. (5.4)

Due to non-linear mappings and pooling transformations, the teacher layer implementing the
loss function is typically non-injective. This suggests that different inputs might produce iden-
tical latent representations, allowing for more flexibility in the features derived by the student.
Therefore, our penalization term effectively acts as a powerful regularizer, promoting better
generalization.

Loss Function

We employ a simple exponentially increasing weighting scheme on the sequence of features for
both our loss and the vanilla feature-based loss. The aggregated losses can be expressed as:

LFeat =
L∑

ℓ=1

γ−ℓ
1 Lℓ

Feat. (5.5)

LTeaFeD =
L∑

ℓ=1

γ−ℓ
2 Lℓ

TeaFeD, (5.6)

Student models are trained with the following cumulative loss:

L = LTask + LLog + α LFeat + β LTeaFeD, (5.7)

where α and β are hyperparameters to balance the losses and LTask represents the task-specific
loss (e.g., for classification, the cross-entropy computed between student outputs and ground
truth labels). In practice, we set α = β and γ1 = γ2 = γ ∈ (0, 1] to halve the number of
hyperparameters to be tuned. The core steps of our approach are delineated in Algorithm 5.1.

115

Algorithm 5.1 TeaFeD Regularization in PyTorch [172]
(img, y): Input and Label
(S, T): Student and Teacher
num_layers: Number of Layers
[adapt]: Adaptation Layers
(g1, g2, a, b): Loss Hyperparameters
import torch.nn.functional as F
y_S, feat_S = S(img)
y_T, feat_T = T(img)
L_task = F.cross_entropy(y_S, y)
L_log = F.kl_div(y_S, y_T)
L_feat = 0.
L_teafed = 0.
for l in range(num_layers):

F_S = adapt[l](feat_S[l])
l2_feat = F.mse_loss(F_S, feat_T[l]) # Equation 5.3
l2_teafed = F.mse_loss(T[l+1](F_S), feat_T[l+1]) # Equation 5.4
L_feat += (g1 ** -l) * l2_feat # Equation 5.5
L_teafed += (g2 ** -l) * l2_teafed # Equation 5.6

L = L_task + L_log + a * L_feat + b * L_teafed # Equation 5.7

5.3.2 Experiments

Image Classification

We employ two standard image classification datasets for our experiments. CIFAR-100 [256]
consists of 60k images (50k for training and 10k for validation) from 100 classes, with an im-
age resolution of 32 × 32. TinyImageNet [257] is a subset of ImageNet [258] and comprises
90k images from 200 categories, divided into 80k for training and 10k for validation, with res-
olution 64 × 64. In addition to the basic KD method [221], we reproduce various state-of-
the-art strategies for comparison, including FitNet [222], CRD [233], SRRL[240], SemCKD
[241], ReviewKD [239], and CAT-KD [242]. Note that all the approaches, except for KD
itself, incorporate the vanilla KD loss (Equation 5.2). Following [37, 259], we employ stan-
dard data augmentation and normalize all images based on channel means and standard devi-
ations. For CIFAR-100, the total training epochs are 240, the batch size is set to 64, and the
base learning rate for SGD optimizer to 0.05. The hyperparameters for our loss are config-
ured as {α = 20, γ = 0.8}. For TinyImageNet, the models are trained for 200 epochs, the

116

Student ResNet-116 VGG-8 ResNet-8x4 WRN-40-1
73.70 71.00 73.30 72.17

KD [221] 76.26 73.43 74.66 74.12
FitNet [222] 76.48 73.54 74.46 73.86
CRD [233] 76.83 74.37 75.72 74.44
SRRL [240] 76.79 73.85 75.51 74.78

SemCKD [241] 77.07 74.35 76.00 74.39
CAT-KD [242] 77.39 74.46 76.78 75.10

Ours 77.54 75.01 76.64 75.18

Teacher ResNet-110x2 VGG-13 ResNet-32x4 WRN-40-2
78.17 75.14 79.21 76.53

Table 5.1: Top‐1 test accuracy (%) of homogeneous teacher‐student pairs on CIFAR‐100 [256], averaged over 4 runs.

Student VGG-8 ShuffleNetV1 MobileNetV2 ShuffleNetV2
71.00 71.15 65.94 73.33

KD [221] 72.51 75.27 69.35 75.84
FitNet [222] 72.82 75.36 69.49 75.91
CRD [233] 73.80 75.88 70.05 76.40
SRRL [240] 73.49 75.59 69.96 76.19

SemCKD [241] 75.33 75.78 70.26 77.97
CAT-KD [242] 75.66 75.43 69.84 77.01

Ours 75.74 76.36 70.94 78.84

Teacher ResNet-32x4 VGG-13 WRN-40-2 ResNet-32x4
79.21 75.14 76.53 79.21

Table 5.2: Top‐1 test accuracy (%) of heterogeneous teacher‐student pairs on CIFAR‐100 [256], averaged over 4 runs.

batch size is 128 and the base learning rate is 0.1, while the settings for the loss parameters are
{α = 5, γ = 0.8}. For classification, distillation is performed on the backbone features. The
ablation study on losses and features employed can be found in Section 5.3.3.

The classification results are shown in Table 5.1, Table 5.2 and Table 5.3, with evaluations
based on Top-1 accuracy. It can be noticed that we consistently outperform other state-of-the-
art approaches for nearly every pair on both datasets, includingReviewKD[239] andCAT-KD
[242] which require careful hyperparameter tuning for each teacher-student combination. Re-
markably, we improve accuracy by a considerablemargin in several cases. For example, with the
ShuffleNetV2/ResNet-32x4 pair on CIFAR-100, we achieve a 1% accuracy increase compared

117

Architecture Homogeneous Heterogeneous

Student VGG-8 ResNet-8x4 ShuffleNetV1 VGG-8
55.83 55.53 58.64 55.83

KD [221] 60.36 58.16 61.25 60.52
FitNet [222] 60.35 58.21 61.47 60.69
CRD [233] 61.72 59.62 63.50 61.81
SRRL [240] 61.41 59.72 62.74 62.02

SemCKD [241] 61.41 57.50 62.53 62.57
CAT-KD [242] 61.52 58.13 63.70 62.59

Ours 62.24 60.28 64.21 63.75

Teacher VGG-13 ResNet-32x4 VGG-13 ResNet-32x4
61.34 64.53 61.34 64.53

Table 5.3: Top‐1 test accuracy (%) of multiple teacher‐student pairs on TinyImageNet [257], averaged over 3 runs.

to the second-bestmethod. Similarly, in the VGG-8/VGG-13 combination onTinyImageNet,
the student surprisingly exceeds even the teacher performance. The outcomes prove that the
introduced regularization term facilitates flexible feature learning, enhancing the student ro-
bustness regardless of dataset and architecture types.

Object Detection and Instance Segmentation

The experiments are conducted with MMDetection [260] on the COCO2017 dataset [261],
which comprises 120k training images and 5k validation images divided in 80 object categories.
We compare our approachwith recent distillationmethods for detectors, including FKD [262],
CWD [244], FGD [243], MGD [223], andMasKD [232]. We train the models for 24 epochs
with SGD optimizer (momentum = 0.9, weight decay = 10−4). When the student and teacher
share the same head structure, we adopt the inheriting strategy [243, 223] to initialize the stu-
dentwith the teacher’s neck andheadparameters. Thehyperparameters are{α = 5×10−5, γ =
1} for one-stage detectors and {α = 5× 10−7, γ = 1} for two-stage detectors. The distillation
loss is computed on the feature maps extracted from the neck.

The experiments for the object detection task include three different models, namely the
one-stage detector RetinaNet [263], the anchor-free one-stage detector RepPoints [264] and
the two-stage detector Faster RCNN [265]. The evaluation metrics are the mean bounding
box Average Precision (mAP) and the variants APS, APM, and APL, corresponding to small,
medium and large object sizes, respectively. In the context of instance segmentation, we focus

118

Teacher Student mAP APS APM APL

O
ne
-st
ag
e

RetinaNet
ResNeXt101

41.0

RetinaNet-Res50 37.4 20.6 40.7 49.7
FKD [262] 39.6 22.7 43.3 52.5
CWD [244] 40.8 22.7 44.5 55.3
FGD [243] 40.7 22.9 45.0 54.7
MGD [223] 41.0 23.4 45.3 55.7
MasKD [232] 41.0 22.6 45.3 55.3

Ours 41.3 23.4 45.9 54.6

A
nc
ho

r-f
re
e

RepPoints
ResNeXt101

44.2

RepPoints-Res50 38.6 22.5 42.2 50.4
FKD [262] 40.6 23.4 44.6 53.0
CWD [244] 42.0 24.1 46.1 55.0
FGD [243] 42.0 24.0 45.7 55.6
MGD [223] 42.3 24.4 46.2 55.9
MasKD [232] 42.5 24.9 46.1 56.8

Ours 42.9 24.8 47.1 56.3

Tw
o-
sta

ge Cascade
Mask RCNN
ResNeXt101

47.3

Faster RCNN-Res50 38.4 21.5 42.1 50.3
FKD [262] 41.5 23.5 45.0 55.3
CWD [244] 41.7 23.3 45.5 55.5
FGD [243] 42.0 23.8 46.4 55.5
MGD [223] 42.1 23.7 46.4 56.1
MasKD [232] 42.4 24.2 46.7 55.9

Ours 42.4 24.4 46.3 56.4

Table 5.4: Knowledge distillation results for object detection on COCO [261].

Teacher Student mAP APS APM APL

O
ne
-st
ag
e

SOLO-Res101
3x, MS
37.1

SOLO-Res50-1x 33.1 12.2 36.1 50.8
FGD [243] 36.0 14.5 39.5 54.5
MGD [223] 36.2 14.2 39.7 55.3

Ours 36.4 15.3 40.1 55.2

Tw
o-
sta

ge Cascade
Mask RCNN
ResNeXt101

41.1

Mask RCNN-Res50 35.4 16.6 38.2 52.5
FGD [243] 37.8 17.1 40.7 56.0
MGD [223] 38.1 17.1 41.1 56.3

Ours 38.1 17.8 41.0 56.5

Table 5.5: Knowledge distillation results for instance segmentation on COCO [261].

119

Architecture Homogeneous Heterogeneous

Student PspNet-Res18 DeepLabV3-Res18
69.85 73.20

SKDS [245] 72.70 73.87
CWD [244] 73.53 75.93
MGD [223] 74.10 76.31

Ours 74.87 76.44

Teacher PspNet-Res101 PspNet-Res101
78.34 78.34

Table 5.6: Knowledge distillation results for semantic segmentation on Cityscapes [268].

on SOLO [266] and Mask RCNN [267] models, which are evaluated with the mean mask
AveragePrecisionmetric (mAP). From the results presented inTable 5.4 andTable 5.5, it canbe
noticed that ourmethod achieves better performances with respect to the other state-of-the-art
approaches for both tasks. For instance, our TeaFeD regularization boosts the RepPoints and
Mask RCNN students, leading to 4.3 and 2.7 mAP improvement, respectively. Additionally,
RetinaNet and SOLO obtain a remarkable 2.8 and 3.1 improvement on the APS metric.

Semantic Segmentation

Semantic segmentation is evaluated on Cityscapes dataset [268], consisting of 5k urban scenes
images divided in 3k for training, 500 for validation and 1.5k for testing. We compare our
method with recent approaches, such as SKDS [245], CWD [244] andMGD [223]. We train
the student models with SGD (momentum = 0.9, weight decay = 5 × 10−4) for 128 epochs
with batch size equal to 16. Following [223], our loss is computed only on the last backbone
feature and the corresponding parameters are set to {α = 2× 10−5, γ = 1}. The experiments
are conducted withMMSegmentation [269].

We evaluate the segmentation task on both homogeneous and heterogeneous distillation
settings, using mean Intersection over Union (mIoU) as the quantitative metric. Specifically,
we employ PspNet-Res101 [270] as the teacher, while PspNet-Res18 [270] and DeepLabV3-
Res18 [271] as students. The results inTable 5.6 confirm that ourmethod is the best among the
state-of-the-art approaches. In detail, the two students register a 5.02 and 3.24 improvement
with respect to the original model trained without distillation, respectively.

120

Architecture Homogeneous Heterogeneous

Student VGG-8 ShuffleNetV2
71.00 73.33

ℓ ∈ {1, 2, 3} 74.55 78.79
ℓ ∈ {1, 2} 74.49 78.64
ℓ = 4 73.41 76.74
ℓ = 3 73.53 76.12
ℓ = 2 74.11 77.81
ℓ = 1 74.21 77.27

withoutLLog 74.53 78.73
withoutLFeat 74.70 78.09
withoutLTeaFeD 74.49 78.07

Ours 75.01 78.84

Teacher VGG-13 ResNet-32x4
75.14 79.21

Table 5.7: Ablation studies on different versions of the student for both homogeneous and heterogeneous settings. Layers
are numbered in descending order. Ours is equivalent to ℓ ∈ {1, 2, 3, 4}. Results are averaged over 3 runs.

5.3.3 Ablation Studies

We conduct several ablation studies to assess the contribution of distinct layers and losses on
the model predictions. The results in Table 5.7 are obtained by training a homogeneous and a
heterogeneous classification network pair on CIFAR-100 with different configurations.

In order to evaluate the influence of layers, we perform distillation while removing them
sequentially. Note that, in this context, layers are enumerated from highest to lowest, with
ℓ = 1 corresponding to the last layer of the backbone. Two observations emerge from the
accuracy values: firstly, integrating more layers is beneficial for the student, as demonstrated
by training the model with only a limited subset; secondly, the final layers contribute more to
the network performance, as highlighted by the improved numerical evaluations at ℓ = 1 and
ℓ = 2. This justifies the choice of applying exponential weighting to the feature-based losses.

Moreover, we investigate the impact of the different losses. The last rows of Table 5.7 con-
firm that our regularization objective plays a crucial role in the distillation process, as removing
it leads to the most significant performance drop. Additionally, the results show that our loss
outperforms the vanilla feature-based approach, when evaluated independently. Nonetheless,
the best accuracy is achieved through joint training.

121

VGG-8 ShuffleNetV2
A
cc
ur
ac
y(
%)

0.1 0.4 0.7 1.0
40

50

60

70

Ours

SemCKD

SRRL

Baseline

0.1 0.4 0.7 1.0

40

60

80

Ours

SemCKD

SRRL

Baseline

Dataset Reduction Rate

Figure 5.3: Analysis on the data efficiency of different KD methods when trained with different amounts of data [45].

5.3.4 Analysis

In this section, we provide an extensive analysis of our KD approach in terms of data and train-
ing efficiency, sensitivity to hyperparameters, student feature transferability and impact of the
adaptation layer. We also present an extension for adapting it to any logit-guided approach.
All the experiments are conducted for the classification task on CIFAR-100 [256] for a Shuf-
fleNetV2 student distilled from a ResNet-32x4 teacher, except where stated otherwise.

Data Efficiency

We evaluate the dependency of different distillation approaches [241, 240] on the amount of
training data, by reducing the training set of CIFAR-100 [256] to various ratios. Table 5.3
shows that we consistently outperform other methods across the whole spectrum of dataset
reductions, for both ShuffleNetV2 and VGG-8 (with VGG-13 as teacher) architectures. This
result proves that the proposed regularization loss can transfer knowledge from the teacher
more efficiently.

Training Efficiency

While adding ourLTeaFeD as a learning objective leads to improved classification accuracy, it also
increases the overall training time of the student network. We study this aspect by structurally
pruning [225] the teacher atmultiple sparsity values and analyzing the accuracy-efficiency trade-
off. Figure 5.4a compares our results with the baseline feature matching approach [222]. It

122

0.0 0.2 0.4 0.6 0.8 1.0

Teacher Sparsity

-20

-15

-10

-5

0

R
el

at
iv

e
T

ra
in

in
g

T
im

e
(%

)

Approx. same
training time

-1.2

-0.8

-0.4

0.0

R
el

at
iv

e
A

cc
u
ra

cy
L

o
ss

(%
)

3x less
accuracy loss

(a) Pruning the teacher allows to reduce the training time
almost to the baseline, while keeping more accuracy.

5 10 20 50 100

α

75

76

77

78

79

80

A
cc

u
ra

cy
(%

)

∆acc < 1%

γ = 0.7 γ = 0.8 γ = 0.9

(b) Effect of varying the hyperparameters required to tune
our regularization loss.

Figure 5.4: Analysis on the training efficiency and hyperparameters sensitivity of the proposed KD approach [45].

can be seen that distilling from a lighter teacher with our KD method allows to achieve ap-
proximately the same training time, while losing only 0.35% accuracy, which is almost 3× less
than the baseline 0.98% accuracy loss. Moreover, all the intermediate sparsity levels provide a
substantial efficiency gain with a bounded performance loss, allowing to adapt the method to
custom computational constraints.

Hyperparameters Sensitivity

The proposed approach depends on twomain hyperparameters, namely the weights γ ∈ (0, 1]
of each feature layer and α ∈ R for the feature-basedKD losses. We show inFigure 5.4b that the
performances of our regularization term are minimally affected by the choice of such parame-
ters. By letting γ ∈ {0.7, 0.8, 0.9} and α ∈ {5, 10, 20, 50, 100}, the accuracy difference be-
tween the best andworst configuration is less than 1%. Moreover, notewe avoid cherry-picking
a specific set of good hyperparameters, as our choice in Section 5.3.2, i.e. {α = 20, γ = 0.8},
is not even the optimal one.

Features Transferability

As we are interested in which features are learned by the student during the distillation proce-
dure, we also analyze how such features transfer to datasets unseen at training time. To this end,
the student trained onCIFAR-100 [256] is used as a frozen representation extractor for images
from STL-10 [272] and TinyImageNet [257]. Then, we train a linear classifier on these repre-

123

Architecture Homogeneous Heterogeneous

Teacher ResNet-110x2 VGG-13
Student ResNet-116 ShuffleNetV1

CIFAR-100→ STL-10 TinyImg STL-10 TinyImg

KD [221] 63.67 29.59 67.70 36.00
FitNet [222] 64.22 30.64 67.94 36.30
SRRL [240] 64.22 31.59 69.15 37.58

SemCKD [241] 66.42 34.32 69.17 38.63
CRD [233] 66.11 32.69 69.03 38.66

CAT-KD [242] 65.73 32.75 70.82 39.36

Ours 66.68 34.11 70.86 39.52

Table 5.8: Features transferability from CIFAR‐100 [256] to other classification datasets [257, 272]. A linear classifier is
trained on features extracted from a frozen student distilled with different KD methods.

sentations and evaluate the accuracy on both datasets. Table 5.8 shows the results against mul-
tiple baselines for homogeneous and heterogeneous teacher-student pairs. The regularization
effect introduced by our proposed loss allows the student to learn more transferable features
with respect to concurrent KDmethods, thus proving its effectiveness.

Adaptation Layer

We compare several implementations of the adaptation layerA, which aligns the student fea-
tures with those of the teacher. The first rows of Table 5.9 suggest that any straightforward
single-layer design is beneficial for the knowledge transfer procedure, providing comparable per-
formances. Notably, the highest accuracy is achieved with a 3× 3 convolutional layer followed
by a batch normalization. This configuration is employed in every experiment across all tasks.
Conversely, aligning the features with a three-layer transformation mitigates the distillation ef-
fectiveness. We conjecture this is due to the additional capacity provided by the multi-layer
structure. In this case, the adaptation module can learn to transform any student represen-
tation into any complex teacher representation, preventing the student model from receiving
useful feedback and thus learning robust intermediate features.

124

Layer Accuracy

Conv 1× 1 - BatchNorm 78.75
Conv 3× 3 - BatchNorm - ReLU 78.60

Conv 1× 1 - Conv 3× 3 - Conv 1× 1 78.34
Conv 1× 1 - Depth-wise Conv 3× 3 - Conv 1× 1 78.46

Ours (Conv 3× 3 - BatchNorm) 78.84

Table 5.9: Comparison of adaptation layers, where ConvN×N indicates a convolutional layer with aN×N. Each
convolution in the multi‐layer configurations is followed by BatchNorm and ReLU non‐linearity.

Student Ours Ours+ Teacher

H
om

og
. ResNet-116 77.54 77.65 ResNet-110x2

VGG-8 75.01 74.81 VGG-13
ResNet-8x4 76.64 76.63 ResNet-32x4
WRN-40-1 75.18 75.26 WRN-40-2

H
et
er
og
. VGG-8 75.74 75.41 ResNet-32x4

ShuffleNetV1 76.36 76.16 VGG-13
MobileNetV2 70.94 70.77 WRN-40-2
ShuffleNetV2 78.84 78.43 ResNet-32x4

Table 5.10: Top‐1 test accuracy (%) of homogeneous and heterogeneous teacher‐student pairs on CIFAR‐100 [256]
obtained with our extended method, denoted as+.

Student KD DKD Ours+
w/ KD

Ours+
w/ DKD Teacher

ShuffleNetV2
73.33 75.84 77.02 78.43 78.70 ResNet-32x4

79.21

Table 5.11: Top‐1 test accuracy (%) on CIFAR‐100 [256] with our extended method and different logit‐based approaches.

Logit-Guided Extension

We extend ourmethod bymodifying the design of the loss. In this setting, the features at layer ℓ
are propagated to all the corresponding subsequent layers of the teacher, i.e. until the final layer
L. Thus, our regularization term is computed on the output logits using Equation 5.2. As pre-
sented in Table 5.10, the accuracy values from this strategy are on par with our feature-driven
loss, adding no significant advantages. Moreover, the primary limitation of this approach is the
extended training time, which increases by 30% compared to our original configuration.

125

Additionally, in this revisited setup, we train the student with a different logit-based loss,
applying DKD [224] to both LLog and LTeaFeD. As expected, the adoption of a more effective
training objective on the logits enhances the results, which can be found in Table 5.11. Despite
thepoor training efficiency, the setting canbe leveraged as a pure logit-baseddistillationmethod
(removingLFeat), boosting the student trained exclusively withLLog when the features are not
available. Furthermore, this configuration is adaptable to any logit-based technique.

5.4 Sparse Self-Distillation

5.4.1 Method

The proposed regularization loss allows to train an efficient studentmodel with comparable ac-
curacy with respect to the teacher network. To further enhance the deployment performances
of the student, we also present a novel compression strategy, called sparse self-distillation, which
integrates the distillation procedure in the pruning and fine-tuning loop.

Let S be the student network after KD training, Pr a generic pruning algorithm [225, 226,
227] with sparsity r and Ŝr = Pr(S) the resulting model when applyingPr to S. Typically, Ŝr is
fine-tuned for a few epochs with ground truth data and the task-specific lossLTask(Ŝr), in order
to partially retrieve the accuracy lost during pruning. However, in practice, there is a trade-
off between the target sparsity and the bound on accuracy loss, especially for small networks
already compressed with KD.

We propose to alleviate this constraint by setting the original unpruned student S as the
teacher and to self-distill it during the pruning process. This means that Ŝr is fine-tuned with
the sum of two loss terms:

L = LTask(Ŝr) + LKD(Ŝr, S) (5.8)

The distillation loss LKD forces the sparse student Ŝr to follow the output distribution and
the learned representations of the original dense student S. In this way, the sparsity r can be
pushed further, leading to the deployment of smaller and faster models with competitive ac-
curacy. Note that this strategy is agnostic to the distillation method implemented by LKD.
However, our regularization loss is particularly effective in this setting, for both structured and
unstructured pruning algorithms.

126

5.4.2 Experiments

We test our sparse self-distillation procedure on the CIFAR-100 classification dataset [256],
with different network architectures, including VGG-8, ResNet-116 and MobileNetV2, as
well as various distillation algorithms [222, 240, 241]. We also compare the proposed method
against the baseline approach of iterative pruning and fine-tuning on ground truth data, with-
out KD. Unstructured pruning is applied with the built-in PyTorch [172] utility, while we
rely on the state-of-the-art DepGraph [225] algorithm for structured pruning. In all the exper-
iments, the remaining parameters of the pruned network Ŝr are fine-tuned for 50 epochs. The
quantitative results in Table 5.5 show two key results. Firstly, integrating KDwithin the prun-
ing and fine-tuning loop is consistently better than the baseline approach, for any distillation
method. Secondly, our proposed TeaFeD regularization is particularly effective in this setting,
outperforming all the other KD losses. Such results find evidence across different architectures
and pruning algorithms. This allows to push the network sparsity further, with amuch smaller
accuracy loss, thus leading to faster models for the inference stage.

5.5 Conclusion

In this chapter, we show that feature-based knowledge distillation can be improved by comple-
menting the direct feature matching baseline with a teacher features-driven regularization loss,
which enables the student model to learn robust intermediate representations. We extensively
evaluate and ablate the proposed approach, outperforming state-of-the-art distillation meth-
ods on several vision tasks and benchmarks. Furthermore, we also introduce a novel neural
compression strategy that effectively combines KDwith network pruning, in order to improve
the sparsity-accuracy tradeoff when deploying the student model on inference devices. The
main limitation of our approach is the need for accessing the teacher weights at training time.
As future work, we plan to tackle this limitation in order to support more general black-box
teachers and to apply our method on non-convolutional architectures.

127

Structured Pruning Unstructured Pruning

VG
G
-8

0.1 0.2 0.3 0.4 0.5
Sparsity

−4

−3

−2

−1

0

A
cc

u
ra

cy
L

o
ss

(%
)

FitNet

SRRL

SemCKD

Ours

Baseline

0.1 0.2 0.3 0.4 0.5
Sparsity

−1.0

−0.5

0.0

A
cc

u
ra

cy
L

o
ss

(%
)

FitNet

SRRL

SemCKD

Ours

Baseline

R
es
N
et
-1
16

0.1 0.2 0.3 0.4 0.5
Sparsity

−6

−4

−2

0

A
cc

u
ra

cy
L

o
ss

(%
)

FitNet

SRRL

SemCKD

Ours

Baseline

0.1 0.2 0.3 0.4 0.5
Sparsity

−1.5

−1.0

−0.5

0.0
A

cc
u

ra
cy

L
o

ss
(%

)

FitNet

SRRL

SemCKD

Ours

Baseline

M
ob

ile
N
et
V
2

0.1 0.2 0.3 0.4 0.5
Sparsity

−8

−6

−4

−2

0

A
cc

u
ra

cy
L

o
ss

(%
)

FitNet

SRRL

SemCKD

Ours

Baseline

0.1 0.2 0.3 0.4 0.5
Sparsity

−2.0

−1.5

−1.0

−0.5

0.0

A
cc

u
ra

cy
L

o
ss

(%
)

FitNet

SRRL

SemCKD

Ours

Baseline

Figure 5.5: Quantitative results of our sparse self‐distillation method for image classification on CIFAR‐100. The baseline
pruning and fine‐tuning approach (without KD) is consistently outperformed by integrating KD in the loop. Moreover, our

TeaFeD regularization loss provides the lowest accuracy loss across the whole sparsity spectrum [45].

128

6
Conclusion

In this thesis, we focused on several 3D perception tasks, with the aim of improving the effi-
ciency of both geometry-based and learning-based processing pipelines. The main goal was
to develop efficient algorithms to analyze the ever-increasing amount of 3D data from mo-
bile devices, including smartphones, low-cost scanning sensors and autonomous vehicles. We
presented several algorithmic advances to push the state-of-the-art in multi-view 3D recon-
struction, novel view synthesis and point cloud upsampling, as well as neural compression ap-
proaches for the deployment on constrained hardware.

In Chapter 2, we proposed a scalable and efficient multi-view 3D reconstruction system for
self-driving cars. We first revisited the classical geometric pipeline by introducing sparse priors
from visual SLAM, locally optimizing the depth-normal consistency and globally regularizing
the resulting geometry based on estimated confidence. Moreover, we enabled city-scale 3D re-
construction with a view clustering algorithm that builds a set of partially overlapping clusters
with shared visibility over the vehicle trajectory, followed by a view selection step that computes
the optimal subset of views to reconstruct a local 3Dmodel. Our procedure has a significantly
better asymptotic scaling law with respect to concurrent approaches and allows for massive
hierarchical parallelization.

In Chapter 3, we improved the state-of-the-art neural radiance fields formulation for novel
view synthesis. Specifically, we presented KeyNeRF to select informative samples at training
time and speed up the learning process. Given a limited computational budget, we select the
optimal camera rays in both2Dand3Dspace, thus converging faster to high-quality renderings.

129

Then, we also designed a framework, called MVG-NeRF to supervise the implicit volumetric
field with explicit 3D information frommulti-view geometry, in order to generate cleaner and
smoother 3D shapes. Extensive evaluation on both synthetic and real-world data confirm the
effectiveness of our methods against related work.

In Chapter 4, we introduced a novel approach for point cloud upsampling with arbitrary
scaling factors. Our intuition was to decouple the upsampling process in two steps: the sparse
input is firstly mapped to an intermediate probabilistic representation, which is then sampled
arbitrarily, and a Transformer network learns to map each sample back to the surface. The pre-
dictions are further improved by an attention-based residual refinement module, which allows
to achieve state-of-the-art results on different benchmarks. This method was the first in the lit-
erature to allow 3Dupsamplingwith arbitrary ratios, while not requiring ground truthmeshes
at training time, which are available only for synthetic data.

In Chapter 5, we showed how to efficiently deploy neural models on target hardware, while
keeping their accuracy unharmed. In knowledge distillation, we showed that regularizing the
student features with the teacher intermediate representations allows to learn more robust la-
tents, which in turn leads to higher accuracy on downstream tasks. Furthermore, we also in-
troduced a novel neural compression strategy that effectively couples distillation with network
pruning, in order to improve the sparsity-accuracy tradeoff at inference time.

To conclude the thesis, wewould like to give some insights about open challenges and future
work. An interesting research direction would be to leverage the proposed methods for novel
view synthesis (Chapter 3) and point cloud upsampling (Chapter 4) into the multi-view 3D
reconstruction pipeline of Chapter 2. A possible way would be to combine KeyNeRF and
MVGNeRF in a single strong baseline, that can be used to model dynamic objects, reflective
materials and occluded areas, which are notoriously difficult to handle with classical geometric
methods. Moreover, raw point clouds from sparse radars and LiDARs could be upsampled
at arbitrary resolution and provided as priors to either augment or complete the resulting 3D
model. Finally, it might be worth to extend the neural compression approaches in Chapter 5
to support non-convolutional architectures, such that the NeRF MLPs and the upsampling
Transformer can be efficiently deployed, as well.

130

References

[1] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,”
IEEE Transactions on Pattern Analysis andMachine Intelligence (TPAMI), 2020.

[2] H.Hirschmuller, “Stereo processing by semiglobal matching andmutual information,”
IEEE Transactions on pattern analysis andmachine intelligence, vol. 30, no. 2, pp. 328–
341, 2007.

[3] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4104–4113.

[4] C.Godard,O.MacAodha,M. Firman, andG. J. Brostow, “Digging into self-supervised
monocular depth prediction,” October 2019.

[5] W. Dong, Y. Lao, M. Kaess, and V. Koltun, “Ash: A modern framework for parallel
spatial hashing in 3d perception,” PAMI, 2022.

[6] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Proceed-
ings of the fourth Eurographics symposium on Geometry processing, vol. 7, 2006, p. 0.

[7] M. Kazhdan andH.Hoppe, “Screened poisson surface reconstruction,”ACMTransac-
tions on Graphics (ToG), vol. 32, no. 3, pp. 1–13, 2013.

[8] M. Pharr, W. Jakob, and G. Humphreys, Physically based rendering: From theory to
implementation. MIT Press, 2023.

[9] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy net-
works: Learning 3d reconstruction in function space,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4460–4470.

[10] S. Peng,M.Niemeyer, L.Mescheder,M. Pollefeys, andA.Geiger, “Convolutional occu-
pancynetworks,” inComputerVision–ECCV2020: 16thEuropeanConference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 2020, pp. 523–540.

131

[11] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng,
“Nerf: Representing scenes as neural radiance fields for view synthesis,” in European
conference on computer vision. Springer, 2020, pp. 405–421.

[12] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface con-
struction algorithm,” in Seminal graphics: pioneering efforts that shaped the field, 1998,
pp. 347–353.

[13] Q. Xu and W. Tao, “Multi-scale geometric consistency guided multi-view stereo,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019.

[14] M. Orsingher, P. Zani, P. Medici, and M. Bertozzi, “Revisiting patchmatch multi-view
stereo for urban 3d reconstruction,” in 2022 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2022, pp. 190–196.

[15] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 652–660.

[16] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space,” Advances in neural information processing systems,
vol. 30, 2017.

[17] I.Misra, R. Girdhar, andA. Joulin, “An end-to-end transformermodel for 3d object de-
tection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 2906–2917.

[18] M. Orsingher, D. Anthony, P. Zani, P. Medici, and M. Bertozzi, “Informative rays se-
lection for few-shot neural radiance fields,”Under Review, 2024.

[19] M.Orsingher, P. Zani, P.Medici, andM.Bertozzi, “Learningneural radiance fields from
multi-view geometry,” European Conference on Computer Vision, Learning to Generate
3D Shapes and ScenesWorkshop, 2022.

[20] S. Mohapatra, S. Yogamani, H. Gotzig, S. Milz, and P. Mader, “Bevdetnet: bird’s eye
view lidar point cloud based real-time 3d object detection for autonomous driving,” in
2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE,
2021, pp. 2809–2815.

132

[21] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range image-based lidar local-
ization for autonomous vehicles,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 5802–5808.

[22] H. Su, S.Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional neural
networks for 3d shape recognition,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 945–953.

[23] R. Hartley and A. Zisserman,Multiple view geometry in computer vision. Cambridge
university press, 2003.

[24] J. L. Schönberger, “RobustMethods for Accurate and Efficient 3DModeling fromUn-
structured Imagery,” Ph.D. dissertation, ETH Zürich, 2018.

[25] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on pat-
tern analysis and machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[26] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two
projections,”Nature, vol. 293, no. 5828, pp. 133–135, 1981.

[27] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 26, no. 6, pp. 756–770, 2004.

[28] I. Loshchilov and F.Hutter, “Decoupled weight decay regularization,” in International
Conference on Learning Representations, 2019.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
2017.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[31] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust
speech recognition via large-scale weak supervision,” 2022. [Online]. Available:
https://arxiv.org/abs/2212.04356

133

https://arxiv.org/abs/2212.04356

[32] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola,Dive into Deep Learning, 2020, https:
//d2l.ai.

[33] I. Goodfellow, Y. Bengio, and A. Courville,Deep learning. MIT press, 2016.

[34] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedforward networks are uni-
versal approximators,”Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[35] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I 13. Springer, 2014, pp. 818–833.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[38] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” ICLR, 2021.

[39] H.Zhao, L. Jiang, J. Jia, P.H.Torr, andV.Koltun, “Point transformer,” inProceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp. 16 259–16 268.

[40] N. Engel, V. Belagiannis, andK.Dietmayer, “Point transformer,” IEEEAccess, vol. 9, pp.
134 826–134 840, 2021.

[41] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[42] Q. Xu andW. Tao, “Planar prior assisted patchmatchmulti-view stereo,” in Proceedings
of the AAAI Conference on Artificial Intelligence, 2020.

[43] M. Orsingher, P. Zani, P. Medici, and M. Bertozzi, “Efficient view clustering and
selection for city-scale 3d reconstruction,” in Image Analysis and Processing–ICIAP
2022: 21st International Conference, Lecce, Italy, May 23–27, 2022, Proceedings, Part
II. Springer, 2022, pp. 114–124.

134

https://d2l.ai
https://d2l.ai

[44] A. Dell’Eva, M. Orsingher, and M. Bertozzi, “Arbitrary point cloud upsampling with
spherical mixture of gaussians,” in 2022 International Conference on 3D Vision (3DV).
IEEE, 2022, pp. 465–474.

[45] A. Dell’Eva, M. Orsingher, Y.-M. Lee, and M. Bertozzi, “Teacher features-driven regu-
larization for knowledge distillation,” Currently under review at IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024.

[46] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen,
E. Dunn, B. Clipp, S. Lazebnik et al., “Building rome on a cloudless day,” in Computer
Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, September 5-11, 2010, Proceedings, Part IV 11. Springer, 2010, pp. 368–381.

[47] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” Communications of the ACM, vol. 54, no. 10, pp. 105–112,
2011.

[48] Y. Furukawa, B. Curless, S.M. Seitz, andR. Szeliski, “Towards internet-scalemulti-view
stereo,” in 2010 IEEE computer society conference on computer vision and pattern recog-
nition. IEEE, 2010, pp. 1434–1441.

[49] A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P. Merrell,
M. Phelps, S. Sinha, B. Talton et al., “Towards urban 3d reconstruction from video,” in
Third International Symposium on 3D Data Processing, Visualization, and Transmis-
sion (3DPVT’06). IEEE, 2006, pp. 1–8.

[50] F.Wimbauer, N. Yang, L. von Stumberg, N. Zeller, andD. Cremers, “MonoRec: Semi-
supervised dense reconstruction in dynamic environments from a single moving cam-
era,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[51] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise view selec-
tion for unstructured multi-view stereo,” in European Conference on Computer Vision.
Springer, 2016.

[52] M. Orsingher, P. Zani, P. Medici, and M. Bertozzi, “Revisiting patchmatch multi-view
stereo for urban 3d reconstruction,” in 2022 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2022, pp. 190–196.

135

[53] ——, “Efficient view clustering and selection for city-scale 3d reconstruction,” in Inter-
national Conference on Image Analysis and Processing. Springer, 2022, pp. 114–124.

[54] L.Koestler,N.Yang,N.Zeller, andD.Cremers, “Tandem: Tracking anddensemapping
in real-time using deep multi-view stereo,” in Conference on Robot Learning. PMLR,
2022, pp. 34–45.

[55] Z. Teed and J. Deng, “Deepv2d: Video to depth with differentiable structure frommo-
tion,” arXiv preprint arXiv:1812.04605, 2018.

[56] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao, “NeuralRecon: Real-time coherent 3D
reconstruction frommonocular video,” CVPR, 2021.

[57] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised interest
point detection and description,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition workshops, 2018, pp. 224–236.

[58] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue: Learning
feature matching with graph neural networks,” in CVPR, 2020. [Online]. Available:
https://arxiv.org/abs/1911.11763

[59] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference for unstructured
multi-view stereo,” European Conference on Computer Vision (ECCV), 2018.

[60] T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler, M. Pollefeys, and
A. Geiger, “A multi-view stereo benchmark with high-resolution images and multi-
camera videos,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[61] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples: Benchmarking
large-scale scene reconstruction,” ACMTransactions on Graphics, vol. 36, no. 4, 2017.

[62] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of
the seventh IEEE international conference on computer vision, vol. 2. Ieee, 1999, pp.
1150–1157.

[63] E.Rublee, V.Rabaud, K.Konolige, andG. Bradski, “Orb: An efficient alternative to sift
or surf,” in 2011 International conference on computer vision. Ieee, 2011, pp. 2564–
2571.

136

https://arxiv.org/abs/1911.11763

[64] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Com-
puter Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria,
May 7-13, 2006. Proceedings, Part I 9. Springer, 2006, pp. 404–417.

[65] Z. Luo, T. Shen, L. Zhou, S. Zhu, R. Zhang, Y. Yao, T. Fang, and L. Quan, “Geodesc:
Learning local descriptors by integrating geometry constraints,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 168–183.

[66] M. Tyszkiewicz, P. Fua, and E. Trulls, “Disk: Learning local features with policy gradi-
ent,” Advances in Neural Information Processing Systems, vol. 33, pp. 14 254–14 265,
2020.

[67] Y. Jin,D.Mishkin,A.Mishchuk, J.Matas, P. Fua, K.M.Yi, andE.Trulls, “ImageMatch-
ing across Wide Baselines: From Paper to Practice,” International Journal of Computer
Vision, 2020.

[68] J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm, “Reconstructing the world*
in six days*(as captured by the yahoo 100 million image dataset),” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 3287–3295.

[69] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography,” Communications
of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[70] P. H. Torr, “An assessment of information criteria for motion model selection,” in Pro-
ceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 1997, pp. 47–52.

[71] R. Gherardi, M. Farenzena, and A. Fusiello, “Improving the efficiency of hierarchical
structure-and-motion,” in 2010 IEEE computer society conference on computer vision and
pattern recognition. IEEE, 2010, pp. 1594–1600.

[72] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher, “Discrete-continuous op-
timization for large-scale structure from motion,” in CVPR 2011. IEEE, 2011, pp.
3001–3008.

[73] P. Moulon, P. Monasse, and R. Marlet, “Global fusion of relative motions for robust,
accurate and scalable structure from motion,” in Proceedings of the IEEE international
conference on computer vision, 2013, pp. 3248–3255.

137

[74] C. Sweeney, T. Sattler, T.Hollerer,M.Turk, andM. Pollefeys, “Optimizing the viewing
graph for structure-from-motion,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 801–809.

[75] K. Wilson and N. Snavely, “Robust global translations with 1dsfm,” in Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part III 13. Springer, 2014, pp. 61–75.

[76] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4104–4113.

[77] C. Wu, “Towards linear-time incremental structure from motion,” in 2013 Interna-
tional Conference on 3D Vision-3DV 2013. IEEE, 2013, pp. 127–134.

[78] C. Beder and R. Steffen, “Determining an initial image pair for fixing the scale of a
3d reconstruction from an image sequence,” in Joint Pattern Recognition Symposium.
Springer, 2006, pp. 657–666.

[79] V. Lepetit, F.Moreno-Noguer, andP. Fua, “Epnp: An accurate o(n) solution to the pnp
problem,” International journal of computer vision, vol. 81, pp. 155–166, 2009.

[80] K. Levenberg, “A method for the solution of certain non-linear problems in least
squares,”Quarterly of applied mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[81] D.W.Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”
Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–
441, 1963.

[82] S. Thrun, “Probabilistic robotics,”Communications of the ACM, vol. 45, no. 3, pp. 52–
57, 2002.

[83] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J.
Leonard, “Past, present, and future of simultaneous localization andmapping: Toward
the robust-perception age,” IEEETransactions on robotics, vol. 32, no. 6, pp. 1309–1332,
2016.

[84] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE robotics & au-
tomation magazine, vol. 18, no. 4, pp. 80–92, 2011.

138

[85] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place recognition in
image sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188–1197, 2012.

[86] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based
slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43,
2010.

[87] Q. Xu andW. Tao, “Multi-view stereo with asymmetric checkerboard propagation and
multi-hypothesis joint view selection,” arXiv preprint arXiv:1805.07920, 2018.

[88] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and eval-
uation of multi-view stereo reconstruction algorithms,” in 2006 IEEE computer society
conference on computer vision and pattern recognition (CVPR’06), vol. 1. IEEE, 2006,
pp. 519–528.

[89] S. Galliani, K. Lasinger, and K. Schindler, “Massively parallel multiview stereopsis by
surface normal diffusion,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 2015.

[90] E.K. Stathopoulou andF.Remondino, “Multi view stereowith semantic priors,” arXiv
preprint arXiv:2007.02295, 2020.

[91] J. Huang, Z. Gojcic, M. Atzmon, O. Litany, S. Fidler, and F. Williams, “Neural kernel
surface reconstruction,” inProceedings of the IEEE/CVFConference on Computer Vision
and Pattern Recognition, 2023, pp. 4369–4379.

[92] A. Boulch and R.Marlet, “Poco: Point convolution for surface reconstruction,” in Pro-
ceedings of the IEEE/CVFConference onComputerVision andPatternRecognition, 2022,
pp. 6302–6314.

[93] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson,
M.McGuire, and S. Fidler, “Neural geometric level of detail: Real-time rendering with
implicit 3D shapes,” 2021.

[94] Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun,
“Unisim: A neural closed-loop sensor simulator,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2023, pp. 1389–1399.

139

[95] S. Suo, K. Wong, J. Xu, J. Tu, A. Cui, S. Casas, and R. Urtasun, “Mixsim: A hierar-
chical framework for mixed reality traffic simulation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp. 9622–9631.

[96] S. Tan, K.Wong, S.Wang, S.Manivasagam,M.Ren, andR.Urtasun, “Scenegen: Learn-
ing to generate realistic traffic scenes,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 892–901.

[97] A. Kuhn, C. Sormann, M. Rossi, O. Erdler, and F. Fraundorfer, “Deepc-mvs: Deep
confidence prediction formulti-view stereo reconstruction,” in 2020 InternationalCon-
ference on 3D Vision (3DV), 2020.

[98] M.Rossi,M.E.Gheche,A.Kuhn, andP. Frossard, “Joint graph-baseddepth refinement
and normal estimation,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020.

[99] N. Yang, R. Wang, J. Stueckler, and D. Cremers, “Deep virtual stereo odometry: Lever-
aging deep depth prediction for monocular direct sparse odometry,” in European Con-
ference on Computer Vision (ECCV), 2018.

[100] T. Zhou,M. Brown, N. Snavely, andD. G. Lowe, “Unsupervised learning of depth and
ego-motion from video,” inProceedings of the IEEEConference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[101] D.Eigen,C. Puhrsch, andR. Fergus, “Depthmapprediction froma single image using a
multi-scale deep network,” inAdvances inNeural Information Processing Systems, 2014.

[102] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep Ordinal Regression
Network for Monocular Depth Estimation,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[103] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3d packing for self-
supervised monocular depth estimation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[104] Z. Yang, P.Wang, Y.Wang,W.Xu, andR.Nevatia, “Lego: Learning edgewith geometry
all at once by watching videos,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

140

[105] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He, “Depth and surface normal esti-
mation frommonocular images using regression on deep features and hierarchical crfs,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[106] M. Lv, D. Tu, X. Tang, Y. Liu, and S. Shen, “Semantically guided multi-view stereo
for dense 3d road mapping,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), 2021.

[107] J. Kopf, M. F. Cohen, D. Lischinski, andM. Uyttendaele, “Joint bilateral upsampling,”
ACMTransactions on Graphics (ToG), 2007.

[108] Q. Xu, W. Kong, W. Tao, and M. Pollefeys, “Multi-scale geometric consistency guided
and planar prior assistedmulti-view stereo,” IEEETransactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 4, pp. 4945–4963, 2022.

[109] Z. Xu, Y. Liu, X. Shi, Y. Wang, and Y. Zheng, “Marmvs: Matching ambiguity reduced
multiple view stereo for efficient large scale scene reconstruction,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[110] H. Zhan, C. S. Weerasekera, R. Garg, and I. Reid, “Self-supervised learning for sin-
gle view depth and surface normal estimation,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019.

[111] Z. Yang, P.Wang,W. Xu, L. Zhao, andR.Nevatia, “Unsupervised learning of geometry
from videos with edge-aware depth-normal consistency,” in 32nd AAAI conference on
artificial intelligence, 2018.

[112] J.Watson, O.M.Aodha, V. Prisacariu, G. Brostow, andM. Firman, “TheTemporalOp-
portunist: Self-Supervised Multi-Frame Monocular Depth,” in Computer Vision and
Pattern Recognition (CVPR), 2021.

[113] J. H. Lee, M.-K. Han, D. W. Ko, and I. H. Suh, “From big to small: Multi-scale local
planar guidance for monocular depth estimation,” arXiv preprint arXiv:1907.10326,
2019.

[114] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs: Learning
multi-view stereopsis,” in IEEEConference onComputerVision andPatternRecognition
(CVPR), 2018.

141

[115] H. Zhou, B. Ummenhofer, and T. Brox, “Deeptam: Deep tracking and mapping,” in
European Conference on Computer Vision (ECCV), 2018.

[116] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI
dataset,” International Journal of Robotics Research, 2013.

[117] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity in-
variant cnns,” in 2017 international conference on 3D Vision (3DV), 2017.

[118] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with
atrous separable convolution for semantic image segmentation,” in Proceedings of the
European conference on computer vision (ECCV), 2018.

[119] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3d packing for self-
supervised monocular depth estimation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[120] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, andO. Beijbom, “nuscenes: Amultimodal dataset for autonomous driving,”
arXiv preprint arXiv:1903.11027, 2019.

[121] R. Zhang, S. Li, T. Fang, S. Zhu, and L. Quan, “Joint camera clustering and surface
segmentation for large-scalemulti-view stereo,” inProceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2084–2092.

[122] A. Ladikos, S. Ilic, and N. Navab, “Spectral camera clustering,” in 2009 IEEE 12th In-
ternational Conference on Computer VisionWorkshops, ICCVWorkshops. IEEE, 2009,
pp. 2080–2086.

[123] M. Mauro, H. Riemenschneider, L. Van Gool, and R. Leonardi, “Overlapping camera
clustering through dominant sets for scalable 3d reconstruction,” Proceedings BMVC
2013, vol. 2013, pp. 1–11, 2013.

[124] M. Mauro, H. Riemenschneider, A. Signoroni, R. Leonardi, and L. Van Gool, “An in-
teger linear programming model for view selection on overlapping camera clusters,” in
2014 2nd International Conference on 3D Vision, vol. 1. IEEE, 2014, pp. 464–471.

[125] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,”
Communications of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

142

[126] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available: https://developers.
google.com/optimization/

[127] E. H. Adelson, J. R. Bergen et al., “The plenoptic function and the elements of early
vision,” Computational models of visual processing, vol. 1, no. 2, pp. 3–20, 1991.

[128] N.Max, “Opticalmodels for direct volume rendering,” IEEETransactions onVisualiza-
tion and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995.

[129] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and
A. Courville, “On the spectral bias of neural networks,” in International Conference on
Machine Learning. PMLR, 2019, pp. 5301–5310.

[130] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,
R. Ramamoorthi, J. T. Barron, and R. Ng, “Fourier features let networks learn high
frequency functions in low dimensional domains,”NeurIPS, 2020.

[131] P.Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, andW.Wang, “Neus: Learning neural
implicit surfaces by volume rendering for multi-view reconstruction,”NeurIPS, 2021.

[132] L.Yariv, J.Gu, Y.Kasten, andY.Lipman, “Volume renderingofneural implicit surfaces,”
in Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

[133] M. Oechsle, S. Peng, and A. Geiger, “Unisurf: Unifying neural implicit surfaces and
radiance fields formulti-view reconstruction,” in International Conference onComputer
Vision (ICCV), 2021.

[134] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo collections in
3d,” in SIGGRAPHConference Proceedings. New York, NY, USA: ACMPress, 2006,
pp. 835–846.

[135] R. Martin-Brualla, N. Radwan, M. S. M. Sajjadi, J. T. Barron, A. Dosovitskiy, and
D. Duckworth, “NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo
Collections,” in CVPR, 2021.

[136] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt, “Neural sparse voxel fields,”
NeurIPS, 2020.

143

https://developers.google.com/optimization/
https://developers.google.com/optimization/

[137] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance fields,” in
European Conference on Computer Vision (ECCV), 2022.

[138] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with
a multiresolution hash encoding,” ACMTransactions on Graphics (ToG), vol. 41, no. 4,
pp. 1–15, 2022.

[139] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing the latent space of
generative networks,” arXiv preprint arXiv:1707.05776, 2017.

[140] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey, “Barf: Bundle-adjusting neural radi-
ance fields,” in Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion, 2021, pp. 5741–5751.

[141] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF−−: Neural radiance
fields without known camera parameters,” arXiv preprint arXiv:2102.07064, 2021.

[142] Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, and J. Park, “Self-calibrating neu-
ral radiance fields,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 5846–5854.

[143] M. Tancik, V. Casser, X. Yan, S. Pradhan, B.Mildenhall, P. Srinivasan, J. T. Barron, and
H.Kretzschmar, “Block-NeRF: Scalable large scene neural view synthesis,” arXiv, 2022.

[144] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang, A. Kristoffersen, J. Austin,
K. Salahi, A. Ahuja, D. McAllister, and A. Kanazawa, “Nerfstudio: A modular frame-
work for neural radiance field development,” in ACM SIGGRAPH 2023 Conference
Proceedings, ser. SIGGRAPH ’23, 2023.

[145] E. Sucar, S. Liu, J. Ortiz, and A. Davison, “iMAP: Implicit mapping and positioning in
real-time,” in Proceedings of the International Conference on Computer Vision (ICCV),
2021.

[146] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Pollefeys,
“Nice-slam: Neural implicit scalable encoding for slam,” inProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2022.

[147] A.Rosinol, J. J. Leonard, and L.Carlone, “Nerf-slam: Real-time densemonocular slam
with neural radiance fields,” arXiv preprint arXiv:2210.13641, 2022.

144

[148] K. Rematas, A. Liu, P. P. Srinivasan, J. T. Barron, A. Tagliasacchi, T. Funkhouser, and
V. Ferrari, “Urban radiance fields,” CVPR, 2022.

[149] C.-Y. Weng, B. Curless, P. P. Srinivasan, J. T. Barron, and I. Kemelmacher-Shlizerman,
“HumanNeRF: Free-viewpoint rendering ofmoving people frommonocular video,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2022, pp. 16 210–16 220.

[150] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz, and R. Martin-
Brualla, “Nerfies: Deformable neural radiance fields,” ICCV, 2021.

[151] Y.Hong, B. Peng,H.Xiao, L. Liu, and J. Zhang, “Headnerf: A real-timenerf-basedpara-
metric headmodel,” in IEEE/CVFConference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022.

[152] R. Li, J. Tanke, M. Vo, M. Zollhofer, J. Gall, A. Kanazawa, and C. Lassner, “Tava:
Template-free animatable volumetric actors,” 2022.

[153] M. Niemeyer and A. Geiger, “Giraffe: Representing scenes as compositional generative
neural feature fields,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2021.

[154] C. Wang, M. Chai, M. He, D. Chen, and J. Liao, “Clip-nerf: Text-and-image driven
manipulation of neural radiance fields,” arXiv preprint arXiv:2112.05139, 2021.

[155] A.Kundu, K.Genova, X. Yin, A. Fathi, C. Pantofaru, L.Guibas, A. Tagliasacchi, F.Del-
laert, and T. Funkhouser, “Panoptic Neural Fields: A Semantic Object-Aware Neural
Scene Representation,” in CVPR, 2022.

[156] C. Wang, X. Wu, Y.-C. Guo, S.-H. Zhang, Y.-W. Tai, and S.-M. Hu, “Nerf-sr: High-
quality neural radiance fields using super-sampling,” arXiv, 2021.

[157] “Luma labs ai.” [Online]. Available: https://lumalabs.ai/

[158] K.Gao, Y.Gao,H.He,D. Lu, L. Xu, and J. Li, “Nerf: Neural radiance field in 3d vision,
a comprehensive review,” arXiv preprint arXiv:2210.00379, 2022.

[159] M. Kim, S. Seo, and B. Han, “Infonerf: Ray entropy minimization for few-shot neural
volume rendering,” in CVPR, 2022.

145

https://lumalabs.ai/

[160] J. Yang, M. Pavone, and Y.Wang, “Freenerf: Improving few-shot neural rendering with
free frequency regularization,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[161] A. Jain, M. Tancik, and P. Abbeel, “Putting nerf on a diet: Semantically consistent few-
shot view synthesis,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2021, pp. 5885–5894.

[162] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-supervised NeRF: Fewer views
and faster training for free,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022.

[163] B. Roessle, J. T. Barron, B. Mildenhall, P. P. Srinivasan, and M. Nießner, “Dense
depth priors for neural radiance fields from sparse input views,” in Proceedings of the
IEEE/CVFConference onComputerVision andPatternRecognition (CVPR), June 2022.

[164] J. Wynn and D. Turmukhambetov, “Diffusionerf: Regularizing neural radiance fields
with denoising diffusion models,” in ArXiV, 2023.

[165] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger, and N. Radwan,
“Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2022.

[166] S. Seo, D.Han, Y. Chang, andN.Kwak, “Mixnerf: Modeling a raywithmixture density
for novel view synthesis from sparse inputs,” in ArXiV, 2023.

[167] A. Radford, J.W. Kim, C.Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language
supervision,” in International conference on machine learning. PMLR, 2021, pp.
8748–8763.

[168] X. Pan, Z. Lai, S. Song, and G. Huang, “Activenerf: Learning where to see with un-
certainty estimation,” in Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIII. Springer, 2022, pp. 230–
246.

[169] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,

146

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W.Weckesser, H. Abbasi, C. Gohlke, and
T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp.
357–362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[170] S. Ramasinghe, L. E. MacDonald, and S. Lucey, “On the frequency-bias of coordinate-
mlps,” in Advances in Neural Information Processing Systems, 2022.

[171] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny,
“Common objects in 3d: Large-scale learning and evaluation of real-life 3d category re-
construction,” in International Conference on Computer Vision, 2021.

[172] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019, pp. 8024–8035. [Online]. Available: https://proceedings.
neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[173] L. Yen-Chen, “Nerf-pytorch,” https://github.com/yenchenlin/nerf-pytorch/, 2020.

[174] S.VanderWalt, J. L. Schönberger, J.Nunez-Iglesias, F. Boulogne, J.D.Warner,N.Yager,
E.Gouillart, andT.Yu, “scikit-image: imageprocessing inpython,”PeerJ, vol. 2, p. e453,
2014.

[175] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srini-
vasan, “Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,”
ICCV, 2021.

[176] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600–612, 2004.

147

https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://github.com/yenchenlin/nerf-pytorch/

[177] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effec-
tiveness of deep features as a perceptual metric,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 586–595.

[178] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Analyzing and improving
neural radiance fields,” arXiv preprint arXiv:2010.07492, 2020.

[179] Y.Wei, S. Liu, Y. Rao, W. Zhao, J. Lu, and J. Zhou, “Nerfingmvs: Guided optimization
of neural radiance fields for indoor multi-view stereo,” in ICCV, 2021.

[180] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathe-
matical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[181] Z. Yu, S. Peng, M. Niemeyer, T. Sattler, and A. Geiger, “Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction,” Advances in Neural In-
formation Processing Systems (NeurIPS), 2022.

[182] A. Eftekhar, A. Sax, J. Malik, and A. Zamir, “Omnidata: A scalable pipeline for mak-
ing multi-task mid-level vision datasets from 3d scans,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 10 786–10 796.

[183] V. Tschernezki, I. Laina, D. Larlus, and A. Vedaldi, “Neural Feature Fusion Fields: 3D
distillation of self-supervised 2D image representations,” in Proceedings of the Interna-
tional Conference on 3D Vision (3DV), 2022.

[184] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[185] Q. Fu, Q. Xu, Y.-S. Ong, andW. Tao, “Geo-neus: Geometry-consistent neural implicit
surfaces learning for multi-view reconstruction,” Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

[186] F.Darmon, B. Bascle, J.Devaux, P.Monasse, andM.Aubry, “Improving neural implicit
surfaces geometry with patch warping,” 2022.

[187] Y. Zhao and T. Guo, “Pointar: Efficient lighting estimation for mobile augmented real-
ity,” in European Conference on Computer Vision. Springer, 2020, pp. 678–693.

148

[188] D. Cattaneo,M. Vaghi, and A. Valada, “Lcdnet: Deep loop closure detection and point
cloud registration for lidar slam,” IEEE Transactions on Robotics, 2022.

[189] C. Luo, X. Yang, and A. Yuille, “Self-supervised pillar motion learning for autonomous
driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 3183–3192.

[190] K. Yabuuchi, D. R. Wong, T. Ishita, Y. Kitsukawa, and S. Kato, “Visual localization
for autonomous driving using pre-built point cloud maps,” in 2021 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2021, pp. 913–919.

[191] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point cloud upsam-
pling network,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 2790–2799.

[192] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-gan: a point cloud upsam-
pling adversarial network,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 7203–7212.

[193] G. Qian, A. Abualshour, G. Li, A. Thabet, and B. Ghanem, “Pu-gcn: Point cloud up-
sampling using graph convolutional networks,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021, pp. 11 683–11 692.

[194] R. Li, X. Li, P.-A. Heng, and C.-W. Fu, “Point cloud upsampling via disentangled re-
finement,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 344–353.

[195] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consolidation of unorga-
nized point clouds for surface reconstruction,” ACM transactions on graphics (TOG),
vol. 28, no. 5, pp. 1–7, 2009.

[196] Y. Lipman, D. Cohen-Or, D. Levin, andH. Tal-Ezer, “Parameterization-free projection
for geometry reconstruction,”ACMTransactions on Graphics (TOG), vol. 26, no. 3, pp.
22–es, 2007.

[197] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. Zhang, “Edge-aware
point set resampling,” ACM transactions on graphics (TOG), vol. 32, no. 1, pp. 1–12,
2013.

149

[198] Y.Qian, J.Hou, S. Kwong, and Y.He, “Deepmagnification-flexible upsampling over 3d
point clouds,” IEEE Transactions on Image Processing, vol. 30, pp. 8354–8367, 2021.

[199] L. Luo, L. Tang, W. Zhou, S. Wang, and Z.-X. Yang, “Pu-eva: An edge-vector based
approximation solution for flexible-scale point cloud upsampling,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 16 208–16 217.

[200] S. Ye, D. Chen, S. Han, Z. Wan, and J. Liao, “Meta-pu: An arbitrary-scale upsampling
network for point cloud,” IEEE Transactions on Visualization and Computer Graphics,
2021.

[201] W. Feng, J. Li,H.Cai, X. Luo, and J. Zhang, “Neural points: Point cloud representation
with neural fields,” arXiv preprint arXiv:2112.04148, 2021.

[202] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A papier-mâché ap-
proach to learning 3d surface generation,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2018, pp. 216–224.

[203] R. Li, X. Li, K.-H. Hui, and C.-W. Fu, “SP-GAN:sphere-guided 3d shape generation
and manipulation,” ACMTransactions on Graphics (Proc. SIGGRAPH), vol. 40, no. 4,
2021.

[204] A.-C. Cheng, X. Li, M. Sun, M.-H. Yang, and S. Liu, “Learning 3d dense correspon-
dence via canonical point autoencoder,”Advances inNeural Information Processing Sys-
tems, vol. 34, 2021.

[205] X. Yu, Y.Rao, Z.Wang, Z. Liu, J. Lu, and J. Zhou, “Pointr: Diverse point cloud comple-
tion with geometry-aware transformers,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 12 498–12 507.

[206] Y. Yang, C. Feng, Y. Shen, andD. Tian, “Foldingnet: Point cloud auto-encoder via deep
grid deformation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 206–215.

[207] J. Pang, D. Li, and D. Tian, “Tearingnet: Point cloud autoencoder to learn topology-
friendly representations,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021.

150

[208] W. Yifan, S.Wu,H.Huang, D.Cohen-Or, andO. Sorkine-Hornung, “Patch-based pro-
gressive 3d point set upsampling,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 5958–5967.

[209] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu, “Pct: Point
cloud transformer,” Computational VisualMedia, vol. 7, no. 2, pp. 187–199, 2021.

[210] K.Mazur andV. Lempitsky, “Cloud transformers: A universal approach to point cloud
processing tasks,” inProceedings of the IEEE/CVFInternationalConference onComputer
Vision, 2021, pp. 10 715–10 724.

[211] J. Yang, Q. Zhang, B. Ni, L. Li, J. Liu, M. Zhou, and Q. Tian, “Modeling point clouds
with self-attention and gumbel subset sampling,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2019, pp. 3323–3332.

[212] S. Qiu, S. Anwar, and N. Barnes, “Pu-transformer: Point cloud upsampling trans-
former,” arXiv preprint arXiv:2111.12242, 2021.

[213] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph cnn for learning on point clouds,” ACMTransactions on Graphics (TOG), 2019.

[214] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Ec-net: an edge-aware point
set consolidation network,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 386–402.

[215] “Visionair,” http://www.infra-visionair.eu/, accessed: 2022-05-20.

[216] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,” in
International Conference on Learning Representations, 2017.

[217] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data process-
ing,” arXiv:1801.09847, 2018.

[218] M. A. Uy, Q.-H. Pham, B.-S. Hua, D. T. Nguyen, and S.-K. Yeung, “Revisiting point
cloud classification: A new benchmark dataset and classification model on real-world
data,” in International Conference on Computer Vision (ICCV), 2019.

[219] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for
the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 11 976–11 986.

151

http://www.infra-visionair.eu/

[220] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International conference on machine learning. PMLR, 2019, pp. 6105–
6114.

[221] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” in
NIPS Deep Learning and Representation LearningWorkshop, 2015.

[222] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
“Fitnets: Hints for thin deep nets,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6550

[223] Z. Yang, Z. Li, M. Shao, D. Shi, Z. Yuan, and C. Yuan, “Masked generative distillation,”
in European Conference on Computer Vision. Springer, 2022, pp. 53–69.

[224] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang, “Decoupled knowledge distillation,”
in Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition,
2022, pp. 11 953–11 962.

[225] G. Fang, X. Ma, M. Song, M. B. Mi, and X.Wang, “Depgraph: Towards any structural
pruning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 16 091–16 101.

[226] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” Advances
in neural information processing systems, vol. 29, 2016.

[227] V. Sanh, T.Wolf, andA. Rush, “Movement pruning: Adaptive sparsity by fine-tuning,”
Advances in Neural Information Processing Systems, vol. 33, pp. 20 378–20 389, 2020.

[228] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks,” Advances in neural in-
formation processing systems, vol. 32, 2019.

[229] L. Liu, S. Zhang, Z. Kuang, A. Zhou, J.-H. Xue, X. Wang, Y. Chen, W. Yang, Q. Liao,
and W. Zhang, “Group fisher pruning for practical network compression,” in Interna-
tional Conference onMachine Learning. PMLR, 2021, pp. 7021–7032.

152

http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550

[230] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A sur-
vey of quantization methods for efficient neural network inference,” arXiv preprint
arXiv:2103.13630, 2021.

[231] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh,
“Improved knowledge distillation via teacher assistant,” in Proceedings of the AAAI con-
ference on artificial intelligence, vol. 34, no. 04, 2020, pp. 5191–5198.

[232] T. Huang, Y. Zhang, S. You, F. Wang, C. Qian, J. Cao, and C. Xu, “Masked distillation
with receptive tokens,” in The Eleventh International Conference on Learning Represen-
tations, 2023. [Online]. Available: https://openreview.net/forum?id=mWRngkvIki3

[233] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,” in
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online]. Available: https:
//openreview.net/forum?id=SkgpBJrtvS

[234] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and
projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[235] R.R. Selvaraju,M.Cogswell, A.Das,R.Vedantam,D.Parikh, andD.Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 618–626.

[236] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4320–
4328.

[237] Y. Jin, J. Wang, and D. Lin, “Multi-level logit distillation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24 276–
24 285.

[238] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” in International conference on machine learning. PMLR, 2017, pp. 1321–
1330.

[239] C. Pengguang, L. Shu, Z. Hengshuang, and J. Jia, “Distilling knowledge via knowl-
edge review,” in IEEEConference on Computer Vision and Pattern Recognition (CVPR),
2021.

153

https://openreview.net/forum?id=mWRngkvIki3
https://openreview.net/forum?id=SkgpBJrtvS
https://openreview.net/forum?id=SkgpBJrtvS

[240] J. Yang, B. Martínez, A. Bulat, and G. Tzimiropoulos, “Knowledge distillation via soft-
max regression representation learning,” in 9th International Conference on Learning
Representations, ICLR2021, Virtual Event, Austria,May3-7, 2021. OpenReview.net,
2021. [Online]. Available: https://openreview.net/forum?id=ZzwDy_wiWv

[241] D. Chen, J. Mei, Y. Zhang, C. Wang, Z. Wang, Y. Feng, and C. Chen, “Cross-layer dis-
tillation with semantic calibration,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2021, pp. 7028–7036.

[242] Z. Guo, H. Yan, H. Li, and X. Lin, “Class attention transfer based knowledge distil-
lation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 11 868–11 877.

[243] Z. Yang, Z. Li, X. Jiang, Y. Gong, Z. Yuan, D. Zhao, and C. Yuan, “Focal and global
knowledge distillation for detectors,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 4643–4652.

[244] C. Shu, Y. Liu, J. Gao, Z. Yan, and C. Shen, “Channel-wise knowledge distillation for
dense prediction,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 5311–5320.

[245] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, and J. Wang, “Structured knowledge distilla-
tion for semantic segmentation,” inProceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 2604–2613.

[246] W.Cao, Y. Zhang, J. Gao, A.Cheng, K.Cheng, and J. Cheng, “Pkd: General distillation
framework for object detectors via pearson correlation coefficient,”Advances in Neural
Information Processing Systems, vol. 35, pp. 15 394–15 406, 2022.

[247] B.Heo, J. Kim, S. Yun,H. Park,N. Kwak, and J. Y. Choi, “A comprehensive overhaul of
feature distillation,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2019, pp. 1921–1930.

[248] S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer,” in ICLR, 2017.
[Online]. Available: https://arxiv.org/abs/1612.03928

154

https://openreview.net/forum?id=ZzwDy_wiWv
https://arxiv.org/abs/1612.03928

[249] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in Proceedings of
the IEEE/CVF international conference on computer vision, 2019, pp. 1365–1374.

[250] D. Chen, J.-P. Mei, H. Zhang, C. Wang, Y. Feng, and C. Chen, “Knowledge distilla-
tion with the reused teacher classifier,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 933–11 942.

[251] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A far-sighted alternative of magnitude-
based pruning,” in ICLR, 2020.

[252] N. Lee, T. Ajanthan, S. Gould, and P. H. S. Torr, “A signal propagation perspective for
pruning neural networks at initialization,” in ICLR, 2020.

[253] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks via layer-
wise optimal brain surgeon,”Advances in neural information processing systems, vol. 30,
2017.

[254] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets,” in ICLR (Poster), 2017.

[255] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal sgd for pruning very deep convolu-
tional networks with complicated structure,” inProceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019, pp. 4943–4953.

[256] A. Krizhevsky, G.Hinton et al., “Learningmultiple layers of features from tiny images,”
2009.

[257] Y. Le andX. Yang, “Tiny imagenet visual recognition challenge,”CS 231N, vol. 7, no. 7,
p. 3, 2015.

[258] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[259] S. Zagoruyko andN.Komodakis, “Wide residual networks,” inProceedings of theBritish
Machine Vision Conference 2016, BMVC. BMVA Press, 2016.

[260] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,
Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai,

155

J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open mmlab de-
tection toolbox and benchmark,” arXiv preprint arXiv:1906.07155, 2019.

[261] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft COCO: common objects in context,” inECCV, ser. LectureNotes
in Computer Science, vol. 8693. Springer, 2014, pp. 740–755.

[262] Z. Shen and E. Xing, “A fast knowledge distillation framework for visual recognition,”
in European Conference on Computer Vision. Springer, 2022, pp. 673–690.

[263] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detec-
tion,” in Proceedings of the IEEE international conference on computer vision, 2017, pp.
2980–2988.

[264] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set representation for
object detection,” in The IEEE International Conference on Computer Vision (ICCV),
Oct 2019.

[265] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks,”Advances in neural information processing systems,
vol. 28, 2015.

[266] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “SOLO: Segmenting objects by loca-
tions,” in Proc. Eur. Conf. Computer Vision (ECCV), 2020.

[267] K.He, G.Gkioxari, P.Dollár, andR.Girshick, “Mask r-cnn,” inProceedings of the IEEE
international conference on computer vision, 2017, pp. 2961–2969.

[268] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 3213–3223.

[269] M. Contributors, “MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark,” https://github.com/open-mmlab/mmsegmentation, 2020.

[270] H. Zhao, J. Shi, X.Qi, X.Wang, and J. Jia, “Pyramid scene parsing network,” inProceed-
ings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2881–
2890.

156

https://github.com/open-mmlab/mmsegmentation

[271] L.-C. Chen, G. Papandreou, F. Schroff, andH. Adam, “Rethinking atrous convolution
for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[272] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised
feature learning,” in Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
215–223.

157

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Background
	3D Perception
	Multi-View Geometry
	Deep Learning

	Contributions
	Thesis Structure
	Publications

	Multi-View 3D Reconstruction
	Introduction
	3D Reconstruction Pipeline
	Correspondence Search
	Sparse Reconstruction
	Dense Reconstruction

	Revisiting PatchMatch MVS for Urban Scenes
	Motivation
	Related Work
	Method
	Experiments

	Scaling to Entire Cities
	Motivation
	Related Work
	Method
	Experiments

	Conclusion

	Novel View Synthesis
	Introduction
	Neural Radiance Fields
	3D Representation
	Volumetric Rendering
	Training Loop
	Geometry Extraction
	Recent Advances and Applications

	Informative Rays Selection for Few-Shot NeRF
	Motivation
	Related Work
	Method
	Experiments

	Learning NeRF from Multi-View Geometry
	Motivation
	Related Work
	Method
	Experiments

	Conclusion

	Point Cloud Upsampling
	Introduction
	Related Work
	Canonical Primitives in Point Cloud Auto-Encoders
	Learning-based Point Cloud Upsampling
	Arbitrary Point Cloud Upsampling
	Transformers for Point Clouds

	Method
	Network Architecture
	Spherical Mixture of Gaussians
	Loss Function

	Experiments
	Implementation Details
	Quantitative Results
	Ablation Studies
	Qualitative Results
	Generalization and Robustness

	Conclusion

	Neural Network Compression
	Introduction
	Related Work
	Logit-based Knowledge Distillation
	Feature-based Knowledge Distillation
	Neural Network Pruning

	Teacher Features-Driven Regularization
	Method
	Experiments
	Ablation Studies
	Analysis

	Sparse Self-Distillation
	Method
	Experiments

	Conclusion

	Conclusion
	References

