
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in

“Tecnologie dell’Informazione"

Ciclo XXXVI

Trajectory Generation Strategies for Safe

Autonomous Driving in Urban Scenario

Coordinatore:

Chiar.mo Prof. Marco Locatelli

Tutor:

Ph.D. Ing. Alessandro Rucco

Chiar.mo Prof. Massimo Bertozzi

Dottorando: Francesco Laneve

Anni Accademici 2020/2021 - 2022/2023

Alla mia famiglia

“Suppose that we are wise enough to learn and know – and yet not wise
enough to control our learning and knowledge, so that we use it to

destroy ourselves? Even if that is so, knowledge remains better than
ignorance. It is better to know? even if the knowledge endures only for
the moment that comes before destruction? than to gain eternal life at

the price of a dull and swinish lack of comprehension of a universe that
swirls unseen before us in all its wonder. That was the choice of

Achilles, and it is mine, too."

– Isaac Asimov

Abstract

In this dissertation we develop novel strategies based on nonlinear opti-
mal control techniques for trajectory generation of autonomous vehicles.
These strategies are designed to enable the development of autonomous
vehicles that navigate dynamic environments while enhancing safety and
passenger comfort.

In the first part of the work, we introduce a family of reduced-order
car models suited for trajectory generation strategies. We derive the equa-
tions of motion for both kinematic and dynamic bicycle models, the latter
of which includes tire modeling for a more realistic representation of ve-
hicle behavior. We re-write the kinematic model in terms of longitudinal
and lateral coordinates, aligning them with the way humans perceive and
control vehicle motion.

In the second part, we propose an optimization-based strategy to
address merging maneuvers in busy intersections. We describe vehicle
dynamics in terms of longitudinal and transverse coordinates and intro-
duce a "virtual target vehicle" constrained to move within the target lane
for merging. We formulate an optimal control problem in terms of lon-
gitudinal and lateral coordinates, including the kinematic position error
between the autonomous vehicle and the virtual target vehicle. We also
use obstacle predictions to enforce suitable kinematic constraints for gen-
erating collision-free trajectories. We show the efficacy of the proposed
strategy through a set of numerical computations and highlight the main
features of the generated trajectories.

In the third part, we present a real-time maneuver generation algo-
rithm. Given a planar road geometry with static and moving obstacles
along it, we are interested in finding collision-free maneuvers that satisfied

the vehicle dynamics and subject to physical and comfort limits. Based
on longitudinal and transverse coordinates, we propose a novel collision
avoidance constraint and formulate a suitable optimal control problem.
The optimization problem is solved by using a nonlinear optimal control
technique that generates (local) optimal trajectories. We demonstrate
the efficacy of the proposed algorithm by providing numerical compu-
tations on a simulated scenario. Experimental results are presented to
demonstrate the efficiency of the proposed algorithm both in terms of
computational effort and dynamic features captured.

In the fourth part, we address the lane change maneuver using a
parametric model predictive control approach. We recognize that suc-
cessful lane changes involve both the decision of when to initiate these
maneuvers and the generation of collision-free trajectories. Our approach
combines decision-making and planning tasks, guiding the low-level pol-
icy through upper-level policy search. Additionally, we incorporate self-
supervised learning techniques to adapt to dynamic, online scenarios,
ensuring the vehicle can handle unexpected changes in its environment.
We provide numerical results that highlight the effectiveness of this ap-
proach in improving vehicle maneuvering in dynamic environments.

Keywords: Nonlinear optimal control, trajectory generation, model
predictive control, reinforcement learning, autonomous vehicles

Contents

Introduction 1

List of Symbols 9

1 Vehicle Models 11
1.1 Introduction . 11
1.2 Coordinate Systems . 13

1.2.1 Longitudinal and Transverse Coordinates 15
1.2.2 Virtual Target Vehicle 17

1.3 Kinematic Bicycle Model 18
1.3.1 Longitudinal and Transverse Coordinate Formulation 23
1.3.2 Virtual Target Vehicle Formulation 25
1.3.3 Spatial Formulation 26

1.4 Dynamic Bicycle Model 28
1.4.1 Tire model . 33

2 Optimal Control-based Strategy for Merging Maneuvers 37
2.1 Introduction . 37
2.2 Problem Formulation . 40

2.2.1 The Motivating Scenario 40
2.2.2 Constrained Ego-vehicle Model 42

ii Contents

2.2.3 Longitudinal and Transverse Coordinates and Vir-
tual Target Vehicle 43

2.3 Optimal Control Problem Formulation 45
2.4 Numerical Computations 48

2.4.1 Merging with one obstacle 50
2.4.2 Merging into traffic 52

3 Real-time Maneuvers Generation Algorithm 57
3.1 Introduction . 57
3.2 Problem Formulation . 59

3.2.1 Ego-vehicle Model and Longitudinal Coordinate Pa-
rameterization . 59

3.2.2 Obstacle Avoidance Formulation 60
3.3 Maneuver Generation Strategy 65
3.4 Numerical Computations 69

3.4.1 Lateral Dynamic Avoidance Maneuver 71
3.4.2 Longitudinal Dynamic Avoidance Maneuver . . . 73

3.5 Validation . 75
3.5.1 Simulation Results 76
3.5.2 Experimental Results 79

3.6 Discussion . 82

4 Upper-level Policy Search and MPC for Lane Change 83
4.1 Introduction . 83
4.2 Problem Formulation . 86

4.2.1 Ego-Vehicle Motion 87
4.2.2 Model Predictive Control Formulation 88

4.3 Upper-level Policy Learning 90
4.3.1 Deep Upper-Level Policy 95

4.4 Numerical Computations 97

Contents iii

4.4.1 Upper-level policy for Lane Change Trajectory Gen-
eration . 99

4.4.2 Deep Upper-level Policy for Online Scenarios . . . 102

Conclusions 107

A The Projection Operator-based Newton Method 109

B Multiple Shooting Method for Optimal Control 113

Bibliography 117

Acknowledgements 127

List of Figures

1.1 Inertial and vehicle body frames. The inertial frame, rep-
resented in North East Down (NED) convention, serves as
a fixed reference frame relative to the Earth. The vehicle
body frame is attached to the vehicle represented by the
bold triangle. 14

1.2 Local coordinates around the geometry path. The bold
triangle represents the ego-vehicle, while the solid line de-
notes the center-line of the lane. 16

1.3 Local coordinates around the geometry path. The bold
and the empty triangles indicate the ego-vehicle and the
VTV, respectively. The solid line indicates the center-line
of the target lane. 17

1.4 Kinematic bicycle model. The vehicle is represented as a
simplified bicycle model with two wheels. The reference
point, A, is located on the rear axle. The variables (x, y)

and ψ denote the position and orientation of the vehicle,
while δ and v represent the steering angle and velocity,
respectively. The wheelbase is denoted as L. 19

vi List of Figures

1.5 Instantaneous Center of Rotation (ICR). The ICR is the
point around which the vehicle’s motion can be approxi-
mated as pure rotation at a specific moment in time. The
ICR is denoted by the blue dot, and its location changes
as the vehicle moves and steers. 21

1.6 Dynamic bicycle model. The vehicle is represented as a
simplified bicycle model with two wheels. The variables
(x, y, ψ)CoG denote the longitudinal position, lateral po-
sition, and heading of the vehicle, while (ẋ, ẏ, ψ̇)CoG rep-
resent the longitudinal velocity, lateral velocity, and yaw
rate, respectively. F f,r

l and F f,r
c represent the longitudinal

and cornering (lateral) tire forces acting on the wheels.
The components of these forces along the longitudinal and
lateral vehicle’s axes are denoted as F f,r

x and F f,r
y . The

parameter δ denotes the front wheel steering angle, and
a and b are the distances from the CoG to the front and
rear axles, respectively. 29

1.7 Tire model. 31

2.1 The merging scenario. The ego-vehicle is approaching an
intersection where it has to yield the right-of-way to the
obstacles. Travel directions are indicated by light blue ar-
rows. 41

2.2 Local coordinates around the ego and target path. The
bold triangle and the empty triangle indicate the ego-
vehicle and the V TV , respectively. The solid lines indicate
the center-line of the ego and target lane. 44

List of Figures vii

2.3 Merging with one obstacle: pass after behavior. The op-
timal (green solid line), the desired (blue dash-dot line)
trajectories, and constraints (red dash lines) are shown.
Obstacle initial position (xobs(0), yobs(0)) = (35,−10). . . 51

2.4 Merging with one obstacle: pass before behavior. The op-
timal (green solid line), the desired (blue dash-dot line)
trajectories, and constraints (red dash line) are shown.
Obstacle initial position (xobs(0), yobs(0))=(35,−15). . . . 53

2.5 Merging with four obstacles: Pass among behavior. The
optimal (green solid line), the desired (blue dash-dot line)
trajectories, and constraints (red dash line) are shown. . 55

3.1 Obstacle avoidance constraint representation in Cartesian
coordinate system. The lane, the obstacle and the ellipse
constraint are depicted in gray, blue, and red, respectively.
In order to satisfy the constraint, the ego-vehicle (green
bold triangle) must be outside the red boundaries. 61

3.2 Obstacle avoidance constraint representation in longitudi-
nal and transverse coordinate system. The lane, the ob-
stacle and the ellipse constraint are depicted in gray, blue,
and red, respectively. In order to satisfy the constraint,
the ego-vehicle (greed bold triangle) must be outside the
red boundaries. 62

3.3 Avoidance maneuver scenario. The ego-vehicle (green tri-
angle), the obstacle (solid blue rectangle) and its predic-
tions (empty blue rectangles) are shown. The avoidance
maneuvers obtained by using (3.7) and (3.8) are depicted,
respectively, in dashed red line and solid green line. . . . 63

viii List of Figures

3.4 Obstacle avoidance constraint representation. The lane,
the obstacle and the ellipse constraint are depicted in gray,
blue, and red, respectively. In order to satisfy the con-
straint, the ego-vehicle must be outside the red boundaries. 64

3.5 Avoidance maneuver. The ego-vehicle (bold green trian-
gle) and the obstacle (blue rectangle) are shown. The ego-
vehicle and the obstacle trajectories are indicated with
solid triangular green line and solid triangular blue line,
respectively. 71

3.6 Lateral avoidance scenario. The intermediate (dashed black
lines) and optimal maneuvers (solid green line) are shown.
The desired maneuver is depicted in dash-dotted blue line,
while constraints are in dashed red line. 72

3.7 Avoidance maneuver. The ego-vehicle (bold green trian-
gle) and the obstacle (blue rectangle) are shown. The ego-
vehicle and the obstacle trajectories are indicated with
solid triangular green line and solid triangular blue line,
respectively. 73

3.8 Longitudinal avoidance scenario. The intermediate (dashed
black lines) and optimal maneuvers (solid green line) are
shown. The desired maneuver is depicted in dash-dotted
blue line, while constraints are in dashed red line. 74

3.9 Simulation scenario. The ego-vehicle (gray car) shares the
road with a static obstacle (green rectangle), and a dy-
namic obstacle (purple rectangle). The generated trajec-
tory by the maneuver regulation algorithm, is visually in-
dicated by a series of white dots. The road boundaries are
indicated by the green corridor. 77

List of Figures ix

3.10 Comparison between the reference maneuver (green solid
line) generated by the proposed algorithm and actual ma-
neuver of the simulated dynamic vehicle (black dashed line). 78

3.11 Comparison between the reference maneuver (green solid
line) generated by the proposed algorithm and actual ma-
neuver of the autonomous vehicle (black dashed line). . . 80

4.1 2D representation of lane change scenario. 87
4.2 Graphical representation of upper-lever policy search as a

probabilistic inference problem. 91
4.3 Learning progress of the upper-level policy. The top sub-

figure depicts the return curve with a temperature param-
eter β = 3.0, while the bottom sub-figures illustrate the
policy distribution at various iteration stages (0, 3, 6, and 9).100

4.4 Lane change maneuver. The ego-vehicle’s optimal maneu-
ver (solid green line) is shown, while the maneuvers of the
FV and the LV are depicted in dash-dotted blue and black
lines, respectively. The optimal θ∗ = 6.7 s is highlighted
by the vertical orange line. 101

4.5 Double lane change maneuver. The ego-vehicle’s optimal
maneuver is shown in solid green line. The maneuvers of
the FV and the LV are in dash-dotted blue and black
lines, respectively. 104

4.6 Longitudinal avoidance maneuver. The ego-vehicle’s opti-
mal maneuver is shown in solid green line. The maneuvers
of the FV and the LV are in dash-dotted blue and black
lines, respectively. 105

A.1 Geometric representation of the projection operator [1]. . 111

List of Tables

2.1 Set of constraints parameters for merging trajectory gen-
eration strategy. The parameters include the minimum
and maximum velocities denoted as vmin and vmax, respec-
tively. Furthermore, the minimum and maximum acceler-
ations, are represented by amin and amax. Lateral motion
is addressed through the parameter alatmax , denoting the
maximum lateral acceleration. Maximum curvature is en-
capsulated by the parameter κmax. The parameter wmax
designates the maximum width of the lane. Additionally,
the collision distance, denoted as dcollision, outlines the dis-
tance within which collision detection mechanisms must
operate to ensure the safety. 49

xii List of Tables

3.1 Set of constraints parameters of the maneuver regulation
strategy. The maximum width (wmax) parameter speci-
fies the maximum lateral extent of the lane. The veloc-
ity constraints are encapsulated by the parameters vmin
and vmax, respectively. Acceleration limits are established
through amin and amax, denoting the minimum and max-
imum accelerations, respectively. The curvature of trajec-
tory paths is addressed by the parameter κmax, quantify-
ing the maximum allowable curvature. Lateral motion is
further constrained by the maximum lateral acceleration,
alatmax . Safety considerations are incorporated through the
parameters tsafety and dsafety, representing the safety time
and distance. 70

List of Tables xiii

4.1 Set of constraints parameters for the nonlinear MPC to
address the lane change problem. The maximum velocity
(vmax) sets the upper limit for translational motion, while
the minimum velocity (vmin) establishes a baseline. Accel-
eration parameters, encompassing minimum acceleration
(amin) and maximum acceleration (amax), dictate the sys-
tem’s capability for deceleration or acceleration. Trajec-
tory curvature is bounded by the parameter κmax, guiding
the feasibility of navigating through curved paths. Lateral
offsets, denoted as wmin and wmax, represent the minimum
and maximum lateral distances from a reference point.
Safety considerations are incorporated through obstacle
distances. The obstacle longitudinal safe distance (s̃) de-
lineates the required distance in the longitudinal direction
from obstacles, while the obstacle lateral safe distance (w̃)
establishes the minimum lateral distance for safety. . . . 98

Introduction

Motivation of the Work

Autonomous vehicles represent a groundbreaking innovation in the field
of transportation, poised to transform the way we move people and
goods. The promise of autonomous vehicles lies in their ability to of-
fer a multitude of benefits, ranging from enhancing safety on the roads,
to significantly reducing travel times, and even contributing to a more
sustainable future by minimizing energy consumption. These potential
advantages underscore the transformative power of autonomous vehicles
in reshaping our mobility landscape. However, navigating through the
complex and dynamic environments of real-world roads is not a sim-
ple task. To achieve these ambitious goals, autonomous vehicles must
perform different challenge maneuvers. For example, these maneuvers in-
clude: lane changes, overtaking slower vehicles, and merging into traffic.
Achieving these tasks necessitates the development and implementation
of advanced algorithms that empower an autonomous vehicle to interact
with its environment intelligently and safely. Typically, at the heart of
this autonomous driving capability lies a chain of sub-tasks. First, the
autonomous vehicle needs to perceive its surroundings. This perception is
not limited to static objects like road signs and traffic lights but extends
to dynamic entities such as pedestrians, cyclists, and other vehicles. Then,

2 Introduction

the autonomous vehicles must predict the future intentions and actions
of these various traffic agents. This predictive capability is crucial for
anticipating potential hazards and ensuring a smooth and safe driving.
With this information in hand, the autonomous vehicle’s high-level plan-
ning module comes into play. It is responsible for generating a feasible
trajectory that allows the autonomous vehicle to navigate its surround-
ings while avoiding obstacles, maintaining safe distances, and adhering
to traffic rules. This planning phase is a critical step, as it determines
the vehicle’s path through the environment. Once the high-level plan is
established, the autonomous vehicle’s low-level controller module takes
over. This module is responsible for executing the planned trajectory,
ensuring that the vehicle stays on course and responds dynamically to
any unexpected changes in the environment. Together, these components
of perception, prediction, planning, and control form the intricate web
of capabilities that enable an autonomous vehicle to operate effectively
and safely in real-world driving scenarios. The ultimate goal is to achieve
human-level reliability, where autonomous vehicles navigate with a level
of safety and efficiency that rivals or surpasses human drivers. In this
dissertation, we aim to develop efficient tools for designing autonomous
vehicles in dynamic environments and assess their effectiveness through
simulation and real field tests. We follow three perspectives, aimed at
reaching the aforementioned objectives.

First, we focus on the development of a family of car vehicle models.
These models serve as the foundational building blocks for designing tra-
jectory generation strategies and evaluating their effectiveness through
simulation. In order to do that, it is crucial to find the right balance
between mathematical complexity and the model’s ability to capture dy-
namic effects.

Introduction 3

Second, we are interested in enhancing safety and passenger comfort
by generating reference trajectories that can be used as reference for
low-level controllers. We propose trajectory generation strategies based
on nonlinear optimal control techniques. These strategies are designed to
compute collision-free maneuvers, which are critical for the safe operation
of autonomous vehicles, especially when encountering dynamic obstacles
such as human-driven vehicles or pedestrians. These trajectory genera-
tion techniques are useful when navigating through complex scenarios
like busy intersections or overtaking slower-moving vehicles. It is worth
noticing that our strategies incorporate vehicle dynamics and appropri-
ate constraints, ensuring that the generated trajectories are not only safe
but also dynamically feasible.

Third, we are interested in improving human-level reliability in au-
tonomous vehicles. To accomplish this, we combine the advantages of
model-based optimal control with model-free reinforcement learning. This
integration allows us to develop a decision-making and planning schema
that combine predictability of deterministic modeling with the flexibility
and adaptability of learning-based techniques. This integration empow-
ers autonomous vehicles to make informed decisions, thus increasing their
ability to navigate in dynamic environments.

Contributions

The main contributions of this dissertation are as follows.

Trajectory optimization strategy for merging maneuvers. We develop
an optimization-based trajectory generation strategy, based on nonlin-
ear optimal control technique introduced in [2], to compute collision-free
merging maneuvers. Based on the idea detailed in [3], we introduce the

4 Introduction

concept of virtual target vehicle, which is constrained to move along the
target lane into which the autonomous vehicle intends to merge. Our
strategy exploits the extra degree of freedom of the virtual target vehicle
to generate a time parametrized reference. This reference trajectory helps
to find the optimal space-time gap necessary for a safe merging maneu-
ver. Moreover, based on the obstacles’ predictions, we enforce suitable
kinematic coordinates constraints to take into account dynamic obsta-
cles. To show the effectiveness of the proposed method, we present a
set of numerical computations and highlighting the main features of the
generated trajectories.

Real-time collision-free maneuver generation As main contribution of
this dissertation, we develop an optimal control based strategy for com-
puting collision-free maneuvers. Based on the idea in develop in [4], our
approach involves rewriting the system dynamics in terms of longitudinal
and transverse coordinates, with the longitudinal coordinate use as the in-
dependent variable, instead of the time. Then, we embed the time variable
into the problem formulation and introduce a novel collision avoidance
constraint within this new set of variables. The main advantages with re-
spect to the original problem are: we avoid the need for approximations
for describing road geometry and we handle both static and dynamic
obstacles. The proposed strategy is based on the constrained Projection
Operator Newton method for Trajectory Optimization, [1]. The main idea
is the following. We start with a feasible vehicle maneuver that satisfy
the vehicle’s dynamics and state/input constrains. These constraints are
handled through a barrier function approach. Then, we iteratively apply
the Projection Operator Newton method to solve the relaxed optimal
control problem. In each iteration, we adjust the barrier function param-
eter, effectively increasing the barrier’s influence and pushing the optimal
maneuvers towards the constraint boundaries. One notable advantage of

Introduction 5

our approach is that it leads to convergence towards optimal maneuvers
in an interior point fashion. This means that even in scenarios where
computational resources are limited, our algorithm can reliably produce
sub-optimal (intermediate) solutions. To validate the effectiveness of our
algorithm, we provide numerical simulations that demonstrate its perfor-
mance in various scenarios. Furthermore, we integrate our algorithm into
an autonomous driving stack developed by Ambarella1 to highlighting its
practical applicability in real-world scenarios.

Combining policy search and model predictive control for lane change
maneuvers. We design a strategy for lane change maneuvers based on
model predictive control combined with reinforcement learning policy
search. In contrast to existing methodology, which often decouple decision-
making and planning tasks, leading to performance bottlenecks and con-
servative solutions, our approach takes a hybrid perspective. Specifically,
we address the challenge of capturing the lane change decision through
an upper-level policy search. This upper-level policy then guides the
low-level policy of the model predictive control. Our proposed method
employs a weighted maximum likelihood approach for policy learning,
thereby effectively optimizing the lane change strategy. Furthermore, we
integrate self-supervised learning techniques to adapt to dynamic, on-
line scenarios, enhancing the autonomous vehicle’s capacity to respond
effectively to unexpected changes in its environment

1https://www.ambarella.com/applications/automotive/

6 Introduction

Outline

The dissertation is structured as follows.

In Chapter 1 we provide a family of car-like vehicle models. First,
we introduce the well-known bicycle model, which serves as fundamen-
tal framework for predicting the vehicle’s motion for trajectory planning
strategies. Then, we re-write the model using curvilinear coordinates,
which are particularly useful when dealing with curved or complex tra-
jectories. Second, we develop a dynamic bicycle model, which includes tire
modeling. This model provides a more realistic representation of vehicle
behavior during simulation, accounting for tire forces and their influence
on vehicle dynamics.

In Chapter 2 we address the merging problem and present an opti-
mization based strategy for generating optimal collision-free trajectory.
The proposed strategy leverages the extra degree of freedom of a virtual
target vehicle to generate a time-parametrized reference, which helps to
find the right space-time gap to perform a safe merging maneuver. We
show the efficacy of the proposed strategy through a set of numerical
computations and highlighting the main features of the generated trajec-
tories.

In Chapter 3 we develop a real-time collision-free maneuver gener-
ation algorithm. Based on longitudinal and transverse coordinates, we
propose a novel collision avoidance constraint and formulate a suitable
maneuver regulation optimal control problem. The optimization problem
is solved by using a nonlinear optimal control technique that generates
(local) optimal trajectories. We validate the proposed algorithm through
experimental results, demonstrating its efficiency in terms of computa-
tional effort and its ability to capture dynamic features.

Introduction 7

In Chapter 4 we address the lane change problem and introduces
a parametric model predictive control formulation for decision-making
and generating these maneuvers. This formulation combines upper-level
policy search with model predictive control policies to generate collision-
free lane change maneuvers. We illustrate the efficiency of this approach
and highlight important characteristics of the executed maneuvers.

In the appendices, we provide supplementary material to enhance the
understanding of the content presented in this work.

• Appendix A. We recall the projection operator-based Newton method,
which is the fundamental framework for the strategies developed in
Chapter 3.

• Appendix B. We delve into the direct multiple shooting method,
which is a tool for solving optimal control problems. This method
plays a crucial role in the generation of optimal maneuvers as dis-
cussed in Chapter 2 and is also essential for solving parametric
model predictive control in Chapter 4.

Symbols

The following symbols are consistently used throughout this disserta-
tion. A rigorous definition of the symbols will be given in the following
chapters.

x, y [m] vehicle longitudinal, later position point rear wheel

ψ [rad] vehicle heading

ψ̇ [rad/s] vehicle yaw rate

x̄cl(s), ȳcl(s) [m] archlength parametrized centre-line

κ̄cl [1/m] centre-line curvature

ψ̄cl [rad] centre-line heading

s, w [m] centre-line longitudinal, transverse coordinates

µ [rad] relative course heading , µ = ψ − ψ̄cl
x̄tl(stl), ȳtl(stl) [m] archlength parametrized virtual target vehicle

stl [m] virtual target vehicle longitudinal coordinate

κ̄tl [1/m] virtual target vehicle curvature

ψ̄tl [rad] virtual target vehicle heading

ex, ey [m] virtual target vehicle longitudinal, lateral error coordinates

eψ [rad] virtual target vehicle relative heading , eψ = ψ − ψ̄tl

10 List of Symbols

r [m] instantaneous center of rotation radius

L [m] vehicle wheelbased

δ [rad] front wheel steer angle

v [m/s] vehicle velocity point rear wheel

κ [1/m] vehicle curvature point rear wheel

xGoG, yCoG [m] vehicle logitudinal, lateral position Center of Gravity

ẋCoG, ẏCoG [m/s] vehicle longitudinal, lateral velocity Center of Gravity

F f,r
x , F f,r

y , F f,r
z [N] longitudinal, lateral ,and normal tire forces Center of Gravity

Iz, Iw [kg m2] wheel inertia (w.r.t z-axis)

rw [m] vehicle wheels radius

ωf,r [rad/s] front, rear wheel angular velocity

T f,r [N m] front, rear wheel torque

F f,r
l , F f,r

c [N] front, rear wheel tire force

a, b [m] distance bettween front wheel and Center of Gravity

βf,r [rad] distance bettween rear wheel and Center of Gravity

vf,rc , vf,rl [m/s] lonfitudinal, laterl wheels velocity

vf,rx , vf,ry [m/s] longitudinal, lateral components wheels velocity

g [m/s2] gravity acceleration

a [m/s2] vehicle longitudinal acceleration point rear wheel

κ̇ [1/m s] vehicle curvature rate point rear wheel

vvtv [m/s] virtual target vehicle velocity

Chapter 1

Vehicle Models

In this chapter, we present a family of car-like vehicle models that we
will use throughout this dissertation. These models play a crucial role in
generating feasible trajectories and validating the proposed approaches
through simulation. We start introducing the well-known bicycle model,
which provides a simplified representation of a vehicle’s motion. Then,
we develop a dynamic bicycle model designed specifically for simulation
purposes.

1.1 Introduction

Accurate vehicle modeling plays a crucial role in various applications
such as trajectory generation [5, 6, 7], real-time model predictive control
[8, 9, 10], and simulation [11]. The level of detail in a model requires a

12 1. Vehicle Models

trade-off between the dynamics features one wants to capture and the
computational efficiency required for practical implementation.

In the literature, various models with different levels of complexity
have been introduced to capture the vehicle’s behavior [12, 13, 14]. Typ-
ically, there are two approaches to modeling vehicle motion: kinematic
modeling and dynamic modeling.

Kinematic modeling focuses on the geometric constraints that define
the vehicle’s motion, making it particularly suitable for capturing motion
at low velocities where accelerations are negligible. On the other hand,
dynamic modeling takes into account the forces and moments acting on
the vehicle, offering more accurate estimation of vehicle motion through-
out its operating range. However, employing highly complex vehicle mod-
els often results in intensive computation, leading to high computation
times.

The next part of the chapter is dedicated to the development of two
reduced-order car vehicle models, namely the kinematic bicycle model
and the dynamic bicycle model. The kinematic bicycle model will be
used to generate feasible trajectories in Chapters 2, 3 and 4, while the
dynamic bicycle model will be used to validate the proposed maneuver
generation approach through simulation in Chapter 3.

In Section 1.2, we introduce different types of coordinate frames used
throughout this dissertation. In Section 1.3, we present the kinematic
bicycle model and then we rewrite the vehicle model with respect to the
newly introduced coordinate frames. In Section 1.4, we develop a dynamic
bicycle model.

1.2. Coordinate Systems 13

1.2 Coordinate Systems

Before we present the vehicle models, it is important to introduce the
different coordinate frames used throughout this dissertation.

The first coordinate frame we consider is the body frame, which is
positioned at a key location on the vehicle, such as the center of gravity
(CoG) or the center point of the rear axle. As the vehicle moves, the body
frame undergoes both translational and rotational motion with respect
to a fixed inertial frame.

The second coordinate frame we define is the inertial or global coor-
dinate frame. We introduce three different inertial coordinate frames.

First, we introduce the Cartesian frame, which is a fixed reference
frame attached to the Earth. Common representations include the East
North Up (ENU) or North East Down (NED) frame, with respect to
a nearby reference point. In order to provide a visual representation of
these concepts, Figure 1.1 illustrates a Cartesian coordinate system with
the body frame attached to the vehicle.

Next, we introduce alternative inertial frame coordinates. Especially
for trajectory generation, it is often more convenient and practical to
describe the motion of the vehicle using curvilinear coordinate systems
instead of traditional Cartesian coordinates [15]. Curvilinear coordinate
systems are particularly useful when dealing with motion along a curved
path, as they align with the natural geometry of the motion.

Specifically, we focus on the Serret-Frenet coordinate system [16, 17],
which is a widely used framework for describing motion along a path.
The Serret-Frenet coordinate system provides a local, tangent-based rep-
resentation of the motion, allowing to capture the vehicle’s position, ori-
entation, and curvature with respect to a desired path. One significant
advantage of using curvilinear coordinate systems, such as the Serret-

14 1. Vehicle Models

Figure 1.1: Inertial and vehicle body frames. The inertial frame, repre-
sented in North East Down (NED) convention, serves as a fixed reference
frame relative to the Earth. The vehicle body frame is attached to the
vehicle represented by the bold triangle.

Frenet coordinate system, is that they naturally handle the vehicle’s
motion along curved paths, enabling simplified descriptions of vehicle
dynamics. Taking into account this new frame, we can transform com-
plex motion equations into simpler, more intuitive forms, which facilitate
the development of the proposed trajectory generation approaches.

Furthermore, we introduce the concept of the Virtual Target Vehi-
cle (VTV), a powerful tool used to address certain constraints and sin-
gularities that may arise in trajectory planning and control. The VTV
coordinate system allows us to treat the vehicle as if it is following a
virtual target point with specific motion characteristics, which provides

1.2. Coordinate Systems 15

more flexibility in generating feasible trajectories.

1.2.1 Longitudinal and Transverse Coordinates

As mentioned above, it is convenient to introduce a new coordinate sys-
tem, namely the Serret-Frenet frame, to describe the vehicle’s position
with respect to a given curve, usually the lane center-line. This setup is
particularly well-suited for urban road environments, allowing for an op-
portune representation of the vehicle’s dynamics in relation to the road
geometry instead of using Cartesian coordinates.

As shown in Figure 1.2, the longitudinal coordinate s represents the
position along the center-line, while the lateral coordinate w denotes the
displacement transverse to the center-line. The angle µ is the vehicle’s
heading with respect to the center-line direction. It is defined positively
clockwise with µ = 0 when the x-axis is aligned with the tangent of the
center-lane.

Given the road geometry, we assume that the lane has a reasonably
smooth (at least C2) arc-length parametrized center-line, (x̄cl(s), ȳcl(s)).
The course heading ψ̄cl(s) and the curvature κ̄cl(s) are related by differ-
entiation:

dx̄cl(s)

ds
= x̄′cl(s) = cos ψ̄cl(s) ,

dȳcl(s)

ds
= ȳ′cl(s) = sin ψ̄cl(s) ,

dψ̄cl(s)

ds
= ψ̄′cl(s) = κ̄cl(s) ,

(1.1)

where the bar symbol indicates that the variable is expressed as a function
of the longitudinal coordinate s, and the prime symbol denotes differen-
tiation with respect to s. Using the longitudinal coordinates s and the
lateral displacement w, each point in the environment is then of the form:

16 1. Vehicle Models

Figure 1.2: Local coordinates around the geometry path. The bold trian-
gle represents the ego-vehicle, while the solid line denotes the center-line
of the lane.

[
x(t)

y(t)

]
=

[
x̄cl(s)

ȳcl(s)

]
+

[
− sin ψ̄cl(s)

cos ψ̄cl(s)

]
w(t)

=

[
x̄cl(s)

ȳcl(s)

]
+Rz(ψ̄cl(s))

[
0

w(t)

] , (1.2)

where

Rz(ψ̄cl(s)) =

[
cos ψ̄cl(s) − sin ψ̄cl(s)

sin ψ̄cl(s) cos ψ̄cl(s)

]
is the rotation matrix transforming vectors from the velocity frame into
the inertial frame.

1.2. Coordinate Systems 17

Figure 1.3: Local coordinates around the geometry path. The bold and
the empty triangles indicate the ego-vehicle and the VTV, respectively.
The solid line indicates the center-line of the target lane.

Equation (1.2) is used to re-write the vehicle’s kinematic using the
new coordinates frame in Section 1.3.1.

1.2.2 Virtual Target Vehicle

The Serret-Frenet coordinate system, as previously described, is attached
to the point on the path closest to the vehicle. In certain scenarios, it
can be convenient to relax this assumption by introducing the concept of
VTV. In such a case, the Serret-Frenet coordinate system, which can be
viewed as the body frame of a “virtual vehicle", moves along the desired
path according to a desired velocity, see Figure 1.3.

18 1. Vehicle Models

Following the idea described in [3] for unmanned aerial vehicles, we
assume that the desired target reference path has a smooth arc-length
parametrized center-line, (x̄tl(stl), ȳtl(stl)) and we constrain the VTV to
move along the center-line of this target lane, see Figure 1.3, so that
the VTV’s position can be described by simply integrating its velocity
vvtv, i.e., ṡtl = vvtv. Similarly to (1.1), we can relate the heading of the
target center-line, i.e., ψ̄tl(stl) and the curvature κ̄tl(stl), by the following
differential equations:

x̄′tl(stl) = cos ψ̄tl(stl) ,

ȳ′tl(stl) = sin ψ̄tl(stl) ,

ψ̄′tl(stl) = κ̄tl(stl) .

Given the VTV’s position along the target lane, stl, we can now relate
Cartesian and VTV coordinates as follows,[

x(t)

y(t)

]
=

[
x̄tl(stl)

ȳtl(stl)

]
+Rz(ψ̄tl(stl))

[
ex(t)

ey(t)

]
, (1.3)

where ex and ey are the longitudinal and lateral error coordinates, re-
spectively, and Rz(ψ̄tl),

Rz(ψ̄tl(stl)) =

[
cos ψ̄tl(stl) − sin ψ̄tl(stl)

sin ψ̄tl(stl) cos ψ̄tl(stl)

]
is the rotation matrix transforming vectors from the error frame into the
inertial frame. We use (1.3) in Section 1.3.2 to derive the vehicle’s motion
with respect to the VTV.

1.3 Kinematic Bicycle Model

The well-known kinematic bicycle model has long been used as a suitable
control-oriented model for representing vehicles because of its simplicity,

1.3. Kinematic Bicycle Model 19

see, e.g., [18, 19]. Such a model mimics well the vehicle dynamics under
mild driving conditions where wheel slip can be neglected and without
considering the forces that affect the vehicle. Indeed, the equations of
motion are derived from the geometric relationships that govern the sys-
tem.

Next we describe the vehicle’s motion using Cartesian coordinate in-
troduced in Section 1.2. Let us consider a bicycle model of a car-like
vehicle as shown in Figure 1.4. We assume the vehicle operates on a 2D
horizontal plane. In the proposed model, the front wheel at point A rep-
resents the front right and left wheels of the vehicle. Similarly, the rear
wheel at point B represents the rear right and left wheels. Such a model
is called front-wheel-only steering vehicle, as the front wheel orientation

Figure 1.4: Kinematic bicycle model. The vehicle is represented as a sim-
plified bicycle model with two wheels. The reference point, A, is located
on the rear axle. The variables (x, y) and ψ denote the position and ori-
entation of the vehicle, while δ and v represent the steering angle and
velocity, respectively. The wheelbase is denoted as L.

20 1. Vehicle Models

can be controlled relative to the vehicle’s heading ψ. In order to derive
the equations of motion, we need to define some additional variables. Let
us define δ as the steering angle for the front wheel, measured relative to
the forward bicycle’s direction. The wheelbase of the vehicle, namely the
distance between the two wheels, is denoted by L. Moreover, in order to
analyze the kinematics of the bicycle model, we need to select a refer-
ence point, (x, y), on the vehicle. This point can be located at the center
of gravity (CoG), at the center of the rear axle, or at the center of the
front axle. Such a choice affect the kinematic equations. We locate the
reference point on the rear wheel for convenience. The velocity is denoted
with v.

Now we are ready to derive the kinematic model starting form the fol-
lowing observation: the vehicle is constraint to move forward because its
wheels point in this direction. This constraint, namely the non-holonomic
constraint, restricts the rate of change of the vehicle’s position. Specifi-
cally, the non-holonomic constraint impose that the vehicle cannot move
sideways without performing a turning maneuver. We use this constraint
to derive the vehicle’s equation of motion.

First, we write expression for the nonholonomic constraint equation
as follows,

ẋ(t) sinψ(t)− ẏ(t) cosψ(t) = 0 . (1.4)

In the following equations, we will omit the explicit time dependency
when it is evident from the context that the variable is time-dependent.

Second, by rearranging (1.4) we can construct a the system of equa-
tions for the vehicle’s motion:

ẋ = v cosψ ,

ẏ = v sinψ .
(1.5)

Third, we need to relate the rate of change of the heading ψ and the
steering angle δ. The main assumption is that the velocity at A and B

1.3. Kinematic Bicycle Model 21

Figure 1.5: Instantaneous Center of Rotation (ICR). The ICR is the point
around which the vehicle’s motion can be approximated as pure rotation
at a specific moment in time. The ICR is denoted by the blue dot, and
its location changes as the vehicle moves and steers.

aligns with the orientation of the front and rear wheels, respectively. This
is equivalent to assume that the slip angles at both the front and rear
wheels are zero. This is a reasonable assumption at low velocities, where
the later forces generated by the tires are small. Enforcing the no-slip
condition implies that the vehicle can moves only in the direction normal
to the axis of the driving wheel. In other words, the vehicle satisfies the
pure rolling and no-slip condition. By considering this assumption, we
can establish a relationship between the rotational rate of the bicycle ψ̇
and the velocity v. Specifically, ψ̇ is equal to the velocity over by the
instantaneous center of rotation ICR, which has a radius r:

ψ̇ =
v

r
. (1.6)

22 1. Vehicle Models

As depicted in Figure.1.5, the similar triangles formed by L and r, and
v and δ, result in the relationship:

tan δ =
L

r
. (1.7)

By combining (1.6) and (1.7), we derive the relation that holds between
the rotation rate of the vehicle, ψ̇, and the steering angle, δ, as follows:

ψ̇ =
v

r
=
v tan δ

L
. (1.8)

Finally, we can now write kinematic bicycle model for the rear axle
reference point, using (1.5) and (1.8), as follows:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ =
v tan δ

L
.

(1.9)

In order to reduce nonlinear terms in (1.9), it is convenient to use the
curvature κ instead of the steering angle δ. By knowing that

κ =
1

r
=

tan δ

L
,

we can rewrite the previous (1.9) as follows:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ = vκ .

(1.10)

In this formulation, the state of the system, x = [x, y, ψ], includes the
positions x, y, and the orientation ψ, while the input vector, u = [κ, v],
includes the curvature κ and the velocity v. These equations satisfy the
pure rolling and no-slip conditions, which are fundamental assumptions
in deriving the proposed vehicle model.

1.3. Kinematic Bicycle Model 23

1.3.1 Longitudinal and Transverse Coordinate For-
mulation

Next, we rewrite the kinematic bicycle model (1.10) with respect to lon-
gitudinal and transverse coordinates (s, w).

We know that each point in the environment can be expressed as
follows, see Section 1.2.1:[

x

y

]
=

[
x̄cl(s)

ȳcl(s)

]
+Rz(ψ̄cl(s))

[
0

w

]
. (1.11)

First, following the calculation in [15], we differentiate (1.11) and we
get:[

ẋ

ẏ

]
= Rz(ψ̄(s))

[
ṡ

0

]
+Rz(ψ̄(s))

[
0

ẇ

]
+R′z(ψ̄(s)κ̄(s)ṡ

[
0

w

]

= Rz(ψ̄(s))

[
ṡ

0

]
+Rz(ψ̄(s))

[
0

ẇ

]

+

[
− sin ψ̄(s) − cos ψ̄(s)

cos ψ̄(s) − sin ψ̄(s)

]
κ̄cl(s)ṡ

[
0

w

]

= Rz(ψ̄(s))

[
ṡ

0

]
+Rz(ψ̄(s))

[
0

ẇ

]
−Rz(ψ̄(s))κ̄cl(s)ṡ

[
0

w

]
.

(1.12)

Equation (1.12) can be rewritten in compact form as follows:[
ẋ

ẏ

]
= Rz(ψ̄(s))

[
(1− wκ̄cl(s))ṡ

ẇ

]
. (1.13)

Second, by using (1.10) and (1.13) , we obtain:[
ẋ

ẏ

]
= Rz(ψ̄(s))

[
(1− wκ̄cl(s))ṡ

ẇ

]
= Rz(ψ)

[
v

0

]
,

24 1. Vehicle Models

from which we find that:[
(1− wκ̄cl(s))ṡ

ẇ

]
= Rz(ψ − ψ̄(s))

[
v

0

]
. (1.14)

It is important to highlight that (1.14) expresses the rotational invariance
of the planar kinematics (a result well-known in differential geometry):
only the relative heading ψ − ψ̄(s) and the center-lane curvature k̄cl(s)
are needed to fully capture and describe the vehicle’s motion using lon-
gitudinal and transverse coordinate system. This rotational invariance
property simplifies the representation and calculation of the vehicle’s
dynamics, making it more efficient and easier to work with in various
trajectory planning and control tasks.

Finally, we describe the ego-vehicle position with respect to the (s, w)

coordinates.

ṡ =
v cosµ

1− wκ̄cl(s)
,

ẇ = v sinµ ,

µ̇ = vκ− κ̄cl(s)ṡ ,

(1.15)

where µ = ψ − ψ̄cl(s) is the local heading error.
It is worth noting that the inverse of the map (s, w) 7→ (x, y) is well-

defined only if the following condition is satisfied:

1− wκ̄cl(s) > 0 ,

which means that the ego-vehicle position must lie inside a tube around
the center-line of the lane. This condition ensures the validity of the
mapping between road-compliant coordinates and Cartesian coordinates
and is essential to guarantee that the transformation is meaningful and
accurate for the vehicle’s position within the lane.

1.3. Kinematic Bicycle Model 25

1.3.2 Virtual Target Vehicle Formulation

In this section, we rewrite the vehicle kinematics (1.10) using the VTV
formulation introduced in Section 1.2.2.

We know that each point in the environment can be expressed as[
x

y

]
=

[
x̄tl(stl)

ȳtl(stl)

]
+Rz(ψ̄tl(stl))

[
ex

ey

]
. (1.16)

First, we differentiate (1.16) with respect to the time t and we obtain[
ẋ

ẏ

]
=

[
x̄tl

x̄tl

]
ṡtl +

[
− sin ψ̄tl − cos ψ̄tl

cos ψ̄tl − sin ψ̄tl

][
ex

ey

]
κ̄tl(stl)ṡtl +Rz(ψ̄tl)

[
ėx

ėy

]
.

By using the kinematic of the vehicle (1.10) and VTV local coordinates
(1.16), we can re-arrange the previous equation as follows:

Rz(ψtl)

[
v

0

]
= Rz(ψ̄tl)

[
ṡtl

0

]
−Rz(ψ̄tl)

[
ey

−ex

]
κ̄tl(stl)ṡtl +Rz(ψ̄tl)

[
ėx

−ėy

]
,

that is [
(1− eyκ̄tl(stl))ṡtl + ėx

exκ̄tlṡtl + ėy

]
= Rz(ψ̄tl)

TRz(ψ)

[
v

0

]
.

Defining the local heading error as eψ = ψ− ψ̄tl, now it is straightforward
to compute the expressions for ėx and ėy:

ėx = v cos eψ − (1− eyκ̄tl(stl))vvtv ,
ėy = v sin eψ − exκ̄tl(stl)ṡtl .

Finally, we can describe the ego vehicle dynamics (1.10) as follows

ṡtl = vvtv ,

ėx = v cos eψ − (1− eyκ̄tl(stl))vvtv ,
ėy = v sin eψ − exκ̄tl(stl)vvtv ,
ėψ = vκ− κ̄tl(stl)vvtv ,

26 1. Vehicle Models

where x = [stl, ex, ey, eψ] and u = [κ, v, vvtv] represent the state and
control vectors, respectively.

It is important to highlight that in (1.15), the longitudinal error be-
tween the vehicle and the Serret-Frenet frame is equal to 0 for all t
because the point on the desired path is defined by the projection of the
actual vehicle on the path. As a result, the velocity of the VTV is given
by

ṡ =
v cosµ

1− wκ̄cl(s)
.

However, a singularity appears when w = 1
κ̄cl

. This singularity imposes
a constraint on the position of the actual vehicle to be inside a "tube"
around the desired path. Such a constraint can be overly conservative and
may restrict the exploration of trajectories for the vehicle. To overcome
this limitation, the VTV formulation can be employed. By considering
the velocity of the virtual target vvtv as a new control input, the VTV
approach effectively eliminates the singularity and enables more flexi-
bility in trajectory planning and exploration. This allows the vehicle to
navigate a wider range of paths, enhancing its maneuverability and path-
following capabilities.

1.3.3 Spatial Formulation

In this section, we rewrite the vehicle’s kinematics using the longitudinal
coordinate s as the independent variable.

First, we recall that the vehicle kinematics with respectn to trans-
verse and longitudinal coordinates has the following expression, see Sec-

1.3. Kinematic Bicycle Model 27

tion 1.3.1,

ṡ =
v cosµ

1− wκ̄cl(s)
,

ẇ = v sinµ ,

µ̇ = vκ− κ̄cl(s)ṡ .

(1.17)

Then, let us denote with t̄(s) : R+
0 7−→ R+

0 the inverse of s(t) : R+
0 7−→

R+
0 , which satisfies t̄(s(t)) = t. Given that s(t) is invertible, any function

of time α(t) can be expressed as a function of s as α(t̄(s)). By defining
ᾱ = α(t̄), we have α(t) = ᾱ(s(t)) and thus, in our case, it holds the
following equivalences:

t = t̄(s), w = w̄(s), µ = µ̄(s),

v = v̄(s), k = k̄(s), a = ā(s) .
(1.18)

By differentiating with respect to time (1.18), we see that

t = t̄′(s), w = w̄′(s)ṡ, w = w̄′(s)ṡ

v = v̄′(s)ṡ, k = k̄′(s)ṡ, a = ā′(s)ṡ .

Thus following that (1.17) became

w̄′(s) =
v sinµ

ṡ
,

µ̄′(s) =
vκ

ṡ
− κ̄cl(s) ,

so that now variables depend on time only through s(t). In this way, we
can obtain a description of the vehicle kinematics as a function of the
longitudinal coordinates s.

Formally, we obtain the spatial vehicle kinematics in terms of longi-

28 1. Vehicle Models

tudinal coordinate s, as follows:

w̄′(s) = (1− κ̄cl(s)w̄(s)) tan µ̄(s) ,

µ̄′(s) =
1− κ̄cl(s)w̄(s)

cos µ̄(s)
κ̄(s)− κ̄cl(s) ,

v̄′(s) =
1− κ̄cl(s)w̄(s)

v̄(s) cos µ̄(s)
ā(s) ,

(1.19)

which requires that the vehicle moves with v̄ > 0 and |µ̄| < π/2. In (1.19)
the state and the control vector are x̄=[w̄, µ̄] and ū=[κ̄, v̄] respectively.
For the sake of notational simplicity, from now on we will neglect the
explicit dependence from s if it is clear from the context.

1.4 Dynamic Bicycle Model

The dynamic bicycle model is a fundamental representation of a vehicle’s
motion, accounting for both the translational and rotational dynamics.
It provides a more detailed description of a vehicle’s behavior compared
to the kinematic bicycle model, as it considers the forces and moments
acting on the vehicle during its motion. As a result, it offers a more
accurate description of a vehicle’s behavior, making it a crucial tool in
various applications, particularly for vehicle simulation.

In the dynamic bicycle model, see Figure 1.6, the vehicle is typically
represented as a rigid body with a fixed center of mass. The model con-
siders the longitudinal and lateral forces acting on the vehicle’s Center
of Gravity (CoG), as well as the rotating moment around the vertical
axis. As for the kinematic bicycle model in Section 1.3, we assume a sim-
plified representation where the vehicle’s front wheels and the two rear
wheels are lumped into a single wheel located at the points A and B,
respectively. The variables (x, y, ψ)CoG denote the longitudinal position,

1.4. Dynamic Bicycle Model 29

Figure 1.6: Dynamic bicycle model. The vehicle is represented as a simpli-
fied bicycle model with two wheels. The variables (x, y, ψ)CoG denote the
longitudinal position, lateral position, and heading of the vehicle, while
(ẋ, ẏ, ψ̇)CoG represent the longitudinal velocity, lateral velocity, and yaw
rate, respectively. F f,r

l and F f,r
c represent the longitudinal and cornering

(lateral) tire forces acting on the wheels. The components of these forces
along the longitudinal and lateral vehicle’s axes are denoted as F f,r

x and
F f,r
y . The parameter δ denotes the front wheel steering angle, and a and
b are the distances from the CoG to the front and rear axles, respectively.

lateral position, and heading of the vehicle, while (ẋ, ẏ, ψ̇)CoG represent
the longitudinal velocity, lateral velocity, and yaw rate, respectively. In
this model, we consider the forces F f,r

l and F f,r
c that represent the lon-

gitudinal and cornering (lateral) tire forces acting on the wheels. The
components of these forces along the longitudinal and lateral vehicle’s
axes are denoted as F f,r

x and F f,r
y . The variable δ denotes the front wheel

steering angle, and a and b are the distances from the CoG to the front
and rear axles, respectively. The vehicle dynamics can be derived by con-

30 1. Vehicle Models

sidering the equation of motion about the CoG and the coordinate trans-
formation between the body frame and the inertial frame. The equations
are as follows:

ẋCoG = ẋCoG cosψ − ẏCoG sinψ ,

ẏCoG = ẋCoG sinψ + ẏCoG cosψ ,

ψ̇CoG = ω ,

mẍCoG = mvyψ̇CoG + 2F f
x + 2F r

x ,

mÿCoG = −mvxψ̇CoG + 2F f
y + 2F r

y ,

Izω̇ = 2aF f
y − 2bF r

y ,

Iwω̇
f = T f + rwF

f
x ,

Iwω̇
r = T r + rwF

r
x ,

(1.20)

where m and Iz represent the vehicle mass and the moment of inertia
about the vertical axis, respectively, while Iw denotes the wheel iner-
tial.The wheel angular velocity is represented by ωf,r, while rw denotes
the wheel radius. T f and T r are the tractive and braking torques applied
to the front and rear wheels, respectively. Positive torque denotes driving
torque, while negative torque represents braking torque.

Under the assumption that only the steering angle at the front wheel
can be controlled (i.e., δf = δ and δr = 0), the longitudinal and lateral
component of the tire force can be computed as follows:

F f
x = F f

l cos δ − F f
c sin δ, F f

y = F f
l sin δ + F f

c cos δ ,

F r
x = F r

l , F r
y = F r

c .

The longitudinal and cornering tire forces F f,r
l and F f,r

c can be effec-
tively modeled using Pacejka’s magic formula [20]. This complex, semi-
empirical formula is well-suited for capturing the tire behavior across a
wide range of operating conditions, including linear and nonlinear ranges

1.4. Dynamic Bicycle Model 31

Figure 1.7: Tire model.

of slip ratio sf,rr and tire slip angle βf,r. The tire forces can then be
expressed as:

F f,r
l = fl(β

f,r, sf,rr , F f,r
z) ,

F f,r
l = fc(β

f,r, sf,rr , F f,r
z) ,

where F f,r
z represents the normal force acting on the front and rear tires.

The functions fl(·) and fl(·) in the magic formula incorporate multiple
coefficients that are determined through experimental tire testing. As
shown in Figure 1.7, the tire slip angles βf,r represent the angle between
the tire velocity and its longitudinal direction. They can be computed as
follows:

βf,r = arctan
vf,rc

vf,rl
,

32 1. Vehicle Models

where vf,rl and vf,rc are the longitudinal and cornering wheel velocities,
respectively. These velocities are then transformed in the wheel frame as
follows:

vfl = vfy cos δ + vfx cos δ, vrl = vfy ,

vfc = vfy cos δ − vfx sin δ, vrc = vfy ,

where vf,rx and vf,ry are the longitudinal and lateral components of the
wheels velocity, respectively. These velocities can be expressed as a func-
tion of the CoG velocity and yaw rate as follows:

vfx = ẋCoG, vrx = ẋCoG ,

vfy = ẏCoG + aψ̇ẋCoG, vrx = ẏCoG + bψ̇CoG .

The slip ration ss,rr is a critical parameter that characterizes the in-
teraction between the tires and the road surface. It is defined by

sf,rr =

rwωf,r

vf,rl

− 1, if vlf,r > rwω
f,r, vf,rl 6= 0 for breaking ,

1− vf,rl

rwωf,r , if vf,rl < rwω
f,r, ωf,r 6= 0 for throttle

,

where ωf,r is the rotational velocity of the wheel and rf,r represent the
wheel radius.

Finally, in order to estimate the normal forces acting on the front and
real wheels, we use a static weight distribution approach to approximate
these forces as follows:

F f
z =

bmg

(a+ b)
, F r

z =
amg

(a+ b)
,

where g is the acceleration due to gravity.
In (1.20), x = [xCoG, yCoG, ψCoG, ẋCoG, ẏCoG, ψ̇CoG, ω

f , ωr]T represents
the state vector and it is composed of longitudinal and lateral coordinates

1.4. Dynamic Bicycle Model 33

in inertial frame (x, y)CoG, the heading angle ψCoG, the longitudinal and
lateral velocities in the body frame (ẋ, ẏ)CoG, the yaw rate ψ̇CoG and
the rotational velocities at the two wheels, (ωf , ωr). The input vector
is denoted as u = [δ, T f , T r]T , where δ is the steering angle, T f,r are
the tractive and braking torques applied to the front and rear wheels,
respectively. Positive torque denotes driving torque, while negative torque
represents braking torque.

1.4.1 Tire model

In this section we give more details about the Pacejka’s magic formula
used in Section 1.4 for tire modeling. As mentioned in the previous sec-
tion, the tire forces F f,r

l and F f,r
c depend on the the slip angles βf,l, the

slip ratio sf,lr , and the normal tire forces F f,l
z . In order to compute the

tire forces, we make the following reasonable assumption: F f,r
l and F f,r

c

depend linearly to the normal forces F f,l
z , that is

F f,r
l = F f,r

z µf,rl (βf,r, sf,rr) ,

F f,r
c = F f,r

z µf,rc (βf,r, sf,rr) ,

where µf,rl and µf,rc are the combined longitudinal and cornering force
coefficients, respectively.

We model the tire force by using a suitable version of Piajeka’s magic
formula, [21]. The combined longitudinal and corning force coefficient are
give by:

µf,rl (βf,r, sf,rr) = µl0(sf,rr)gl,β(βf,r, sf,rr) ,

µf,rc (βf,r, sf,rr) = µc0(βf,r)gc,β(βf,r, sf,rr) .

The pure longitudinal slip is given by

µl0(sr) = dl sin{cl arctan[blk − el(blsr − arctan blsr)]} ,

34 1. Vehicle Models

and the pure cornering slip by

µc0(β) = dc sin{cc arctan[bcβ − ec(bcβ − arctan bcβ)]} .

The pure longitudinal and lateral slip are then combined by functions
gl,sr and gc,β defined as follows:

gl,β(β, sr) = cos

[
cl,β arctan

(
β

hbl1
1 + h2

bl2
s2
r

)]
,

gc,β(β, sr) = cos

[
cc,β arctan

(
sr

hbc1
1 + h2

bc2
β2

)]
.

1.4. Dynamic Bicycle Model 35

We have developed a family of reduced-order car models designed for
different applications. These models include a kinematic bicycle model,
which enables us to predict vehicle dynamics for trajectory generation.
Notably, we have provided this kinematic bicycle model in three differ-
ent coordinate sets to accommodate various needs. Additionally, we have
developed a dynamic bicycle model that takes into account both transla-
tional and rotational dynamics, providing a more detailed description of
a vehicle’s behavior. This dynamic model considers the various forces and
moments acting on the vehicle and incorporates a nonlinear tire model
based on the well-established Pacejka model. We plan to utilize the re-
formulated models (1.15) and (1.3) in Chapter 2 to develop a merging
strategy. Additionally, Chapter 4 will rely on Model (1.15) to formulate
effective lane change strategies. In the context of Chapter 3, the refor-
mulated model presented in Equation (1.19) will play a key role in the
proposed maneuver generation algorithm. Furthermore, Model (1.20) will
be used in the same chapter to validate the proposed algorithm through
simulation.

Chapter 2

Optimal Control-based Strategy
for Merging Maneuvers

In this chapter we address the merging problem for Autonomous Vehi-
cles and develop an optimal control-based strategy in order to generate
feasible trajectories.

2.1 Introduction

In the context of autonomous driving, one of the most critical maneuvers
is the merging maneuver. As an Autonomous Vehicle (AV) approaches a
busy intersection, it needs to perceive the presence of surrounding vehi-
cles, predict their future intentions, and find the right space-time gap for
a successful merge. However, accomplishing this task makes the analysis
and design of the planning strategies particularly challenging. Finding
the “right" space-time gap requires a suitable strategy to ensure safe and
efficient merges under dynamic traffic conditions.

38 2. Optimal Control-based Strategy for Merging Maneuvers

Many approaches have been proposed in the literature to tackle the
challenging problem of autonomous merging on various road layouts.
These methods range from lane changes along straight lanes, as demon-
strated in [22], to more complex scenarios involving intersections with
turning maneuvers, as investigated in [23], and merging into roundabouts,
as proposed in [24].

A common assumption in these approaches is their reliance on inter-
vehicle communications, enabling vehicles to exchange information and
coordinate their actions efficiently. While this communication-based
paradigm offers promising results in well-connected environments, it fails
in handling situations where vehicles are partially or fully disconnected.

Addressing this limitation, [7] presents a Model Predictive Control
(MPC) scheme tailored for the merging problem in a partially discon-
nected motorway scenario. This approach optimizes the longitudinal mo-
tion of the merging vehicle by generating smooth acceleration and de-
celeration profiles. Additionally, in order to take into account the un-
predictability of the main lane vehicle’s motion (the obstacle from the
merging vehicle’s perspective), the MPC scheme utilizes a penalty func-
tion for collision avoidance.

Recently, the coordination of autonomous vehicles (AVs) at intersec-
tions was presented in [25], specifically focusing on fixed-order crossing
scenarios. The proposed algorithm addresses several critical challenges,
including handling nonlinear dynamics, economic objective functions,
and scenarios involving turning vehicles. In order to generate merging
maneuvers, the algorithm formulates the problem as a constrained opti-
mal control problem (OCP). By doing so, it ensures that each AV can
traverse conflict zones in a mutually exclusive fashion, taking into ac-
count fixed-order crossing and collision avoidance. Notably, the proposed
algorithm is designed to work even in situations where inter-vehicle com-

2.1. Introduction 39

munication is limited or absent. Instead of relying on communication-
dependent coordination, the authors model non-cooperative agents as
uncertain systems. The addition of suitable constraints to the optimiza-
tion problem, as previously explored by the same authors in [6] and [26],
further enhances the algorithm’s ability to manage uncertainties and en-
sure safety. This enables the algorithm to handle scenarios where vehicles
might not be connected.

In this chapter, the merging problem is addressed from a different per-
spective. We assume there is no inter-vehicle communication and we focus
on the trajectory generation of the AV: we propose an optimization-based
strategy in order to compute collision-free merging trajectories with the
right trade-off between trajectory-tracking and maneuver-regulation be-
haviors. Trajectory tracking refers to the control strategy employed to
follow a predefined trajectory. A trajectory typically consists of a series
of desired positions and velocities parametrized over time. Maneuver reg-
ulation is a path-following problem that is concerned with the design of
control laws to reach and follow a geometric path. A secondary goal is
to satisfy some additional requirements such as to follow the path with
some desired velocity. Please refer to [27, 28, 29] for a discussion on these
two approaches.

The rest of this chapter is dedicated to the development of a trajectory
generation strategy for merging maneuvers. In Section 2.2 we describe
the merging problem and describe how to use curvilinear coordinate, see
Chapter 1.2.1, and Virtual Target Vehicle (V TV), see Chapter 1.2.2 to
formulate this problem. Specifically, given the nominal road geometry, the
vehicle dynamics is initially described in terms of longitudinal and lateral
coordinates. Then, we introduce the use of the V TV that is constrained
to move along the lane into which the ego-vehicle has to merge. In Section
2.3, we formulate the OCP. In particular, we set up a constrained OCP

40 2. Optimal Control-based Strategy for Merging Maneuvers

in terms of the longitudinal and lateral coordinates and the kinematic
position error between the ego-vehicle and the V TV . Moreover, based
on the obstacles’ predictions, we enforce suitable kinematic coordinates
constraints to generate collision-free trajectories. Finally, in Section 2.4,
we provide numerical computations highlighting some interesting features
captured by the proposed strategy.

2.2 Problem Formulation

In the following section, we present the merging scenario, the car vehicle
model (slightly modified in comparison to the one discussed in Chap-
ter 1.3), and formulate the merging problem in terms of longitudinal and
transverse coordinates and V TV .

2.2.1 The Motivating Scenario

Let us consider the merging scenario represented in Figure 2.1. The in-
tersection is composed of two incoming lanes, called the “ego lane" and
the “target lane", and a crossing zone, i.e., the merging zone.

The ego-vehicle is traveling along the ego lane and is supposed to
merge into the target lane while performing a right turn. Moreover, the
ego-vehicle must yield the right-of-way to (human-driven) vehicles trav-
eling along the target lane. From now on, we call “obstacles" the (human-
driven) vehicles.

We assume that

(i) the obstacles do not cooperate with the ego-vehicle, meaning they
do not adjust their paths to facilitate merging. The ego-vehicle must
find a suitable time-space gap to cross the intersection without caus-
ing a collision with any obstacles.

2.2. Problem Formulation 41

Figure 2.1: The merging scenario. The ego-vehicle is approaching an in-
tersection where it has to yield the right-of-way to the obstacles. Travel
directions are indicated by light blue arrows.

(ii) the ego-vehicle has access to the current state (position and ve-
locity) of the obstacles as well as their predicted future positions,
typically obtained from a motion forecasting module.

In such a scenario, we are interested in generating a feasible trajec-
tory for the ego-vehicle that best approximates a desired one with road
boundary, collision avoidance, and input control constraints. It is worth
noting that, in a typical hierarchical motion planner framework, the gen-
erated trajectory can be used as a reference trajectory for a low-level
controller.

42 2. Optimal Control-based Strategy for Merging Maneuvers

2.2.2 Constrained Ego-vehicle Model

The equations of motion are based on the kinematic bicycle model we
developed in Chapter 1.3 and recapitulated below for reference:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ = vκ ,

where (x, y) are the longitudinal and lateral coordinates with respect to
the inertial frame and ψ is the heading angle. The control inputs are the
velocity v and the curvature κ.

In practical application, direct manipulation of the velocity v and
curvature κ of the ego-vehicle may not always be possible. Instead, control
is typically exerted through acceleration a and the curvature rate uκ. In
order to take this into account, we expand the model to include v and κ
as state variables and adopt a and uκ as modified inputs:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ = vκ ,

κ̇ = uκ ,

v̇ = a .

(2.1)

It is worth noting that we consider such a simple vehicle model for the
following reasons. First, this model has no parameters, thus allowing
to focus on the trajectory generation approach. Second, for urban au-
tonomous driving, the kinematic bicycle model has comparable accuracy
with a dynamic one, [18], especially for low acceleration values.

Given this consideration, the vehicle model (2.1) is subject to sev-
eral constraints that ensure both safety and comfort. In particular, the

2.2. Problem Formulation 43

velocity is bounded by two constants vmin, vmax, i.e.,

vmin ≤ v ≤ vmax . (2.2)

The curvature and its rate are bounded in module as follows,

|κ| ≤ κmax ,

|uκ| ≤ uκmax .
(2.3)

Finally, in order to take into account passenger comfort, the longitudinal
acceleration a and the lateral acceleration, v2κ, are coupled by the ellipse
constraint, [23],(

2a− (amax + amin)

(amax − amin)

)2

+

(
v2κ

alatmax

)2

≤ 1 . (2.4)

2.2.3 Longitudinal and Transverse Coordinates and
Virtual Target Vehicle

Given a geometric path for the ego lane, we describe the ego-vehicle
kinematics, as outlined in (2.1), with respect to the longitudinal and
transverse coordinates (s, w), see Figure 2.2. Following the derivations
in Chapter 1.3.1, we can express the ego-vehicle kinematics with these
transformed coordinates as follows:

ṡ =
v cosµ

1− wκ̄cl(s)
,

ẇ = v sinµ ,

µ̇ = vκ− κ̄cl(s)ṡ .

Next, by considering the target lane also to be arc-length parametrized
with a smooth center-line, we introduce the use of the V TV that is con-
strained to move along this center-line, as depicted in Figure 2.2. As

44 2. Optimal Control-based Strategy for Merging Maneuvers

Figure 2.2: Local coordinates around the ego and target path. The bold
triangle and the empty triangle indicate the ego-vehicle and the V TV ,
respectively. The solid lines indicate the center-line of the ego and target
lane.

the ego-vehicle approaches the target lane, its objective is to track the
V TV . For the sake of presentation, we restrict our attention to the case
of a straight target lane, as the one depicted in Figure 2.1. Given this
assumption, the position of the ego vehicle relative to the V TV , defined
in Chapter (1.3.2), is simplified to:

ėx = v cos eψ − vvtv ,
ėy = v sin eψ .

Finally, bringing these elements together, we re-write the non-linear

2.3. Optimal Control Problem Formulation 45

system (2.1) in terms of the newly defined coordinate sets:

ṡ =
v cosµ

1− wκ̄cl(s)
,

ẇ = v sinµ ,

µ̇ = vκ− κ̄cl(s)ṡ ,
ṡtl = vvtv ,

ėx = v cos eψ − vvtv ,
ėy = v sin eψ ,

κ̇ = uκ ,

v̇ = a .

(2.5)

Here, x=[s, w, µ, κ, v, stl, ex, ey] and u=[uκ, a, vvtv] represent the state and
control vectors, respectively.

2.3 Optimal Control Problem Formulation

In order to formulate the OCP, in this section we specify additional state-
input constraints and define the cost function to be optimized.

We start by defining two additional constraints. First, the ego-vehicle
is required to satisfy the road boundaries. In the transformed coordinate
system, this constraint simplifies to bounding the lateral displacement w
as follows:

|w| ≤ wmax . (2.6)

Second, to generate a collision-free trajectory, we impose that, at any
time t, the ego-vehicle must be at a distance greater than dcollision from
any obstacles. Such a distance takes into account the safety distance
between the ego-vehicle and the obstacles, and an additional distance to
model the right-of-way of obstacles (as required in the merging problem,

46 2. Optimal Control-based Strategy for Merging Maneuvers

Section 2.2.1). This constraint can be formulated by defining a circle
centered at the obstacle front axes, with radius dcollision. Specifically, given
the front axis position of the i-th obstacle and its future predictions,
(xiobs(t), y

i
obs(t)), we impose that the constraint1

(x− xiobs)2 + (y − yiobs)2 ≥ d2
collision , (2.7)

is satisfied for all times t. In order to include this constraint in the new
proposed formulation, we re-write (2.7) with respect to the new set of
coordinates. Given the longitudinal coordinate of the ego-vehicle, s(t),
we can express the obstacle position as[

xiobs
yiobs

]
=

[
x̄cl(s)

ȳcl(s)

]
+Rz(ψ̄cl(s))

[
siobs − s
wiobs

]
, (2.8)

where siobs and wiobs are the longitudinal and lateral coordinates of ob-
stacle i, respectively. Next, by subtracting (2.8) from (1.11), we have[

x− xiobs
y − yiobs

]
= Rz(ψ̄cl(s))

[
s− siobs
w − wiobs

]
. (2.9)

Substituting (2.9) in (2.7), we get the collision avoidance in the equivalent
form

(s− siobs)2 + (w − wiobs)2 ≥ d2
collision . (2.10)

Now we are ready to define the cost function. We start giving an
informal idea of the proposed strategy, which is based on the following
two observations. First, when the ego-vehicle is far away from the merging
zone, we are interested to follow a desired path (i.e., the center-line of
the ego lane) with a desired velocity assigned to it (i.e., a space-varying

1For the sake of presentation, we consider only circular boundary shapes, although
other shapes can be taken into account.

2.3. Optimal Control Problem Formulation 47

velocity). Such a behavior can be captured by minimizing the following
cost,

Jel(x) = q1w
2 + q2µ

2 + q3κ
2 + q4(v − vd(s))2

where q1, q2, q3, q4 ≥ 0.
Second, when the ego-vehicle is approaching the merging zone, we

are interested to track a time parameterized path (i.e., the center-line of
the target lane) defined by a desired velocity vd(stl). Here, we employ a
quadratic cost term with respect to the kinematic position error between
the ego-vehicle and the V TV , and the velocity of the V TV with respect
to the desired one

Jtl(x,u) = q5e
2
x + q6e

2
y + r1(vvtv − vdvtv(stl))2

where q5, q6 ≥ 0, and r1 > 0.
We define the cost function as a convex combination of the previous

function terms and an additional quadratic term in order to take into
account the control effort:

J(x,u) = (1− α)Jel(x) + αJtl(x) + r2u
2
k + r3a

2 , (2.11)

where α ∈ [0, 1] is a switch cost function based on the distance between
the ego-vehicle and the V TV . In particular, we use a sigmoid function

α(ex, ey) =
1

1 + exp
(√

e2
x + e2

y − γ
) ,

where γ is a given parameter that specifies the distance from the merging
zone.

We highlight that in [3], the weighting term associated with the
V TV ’s velocity can be used to “morph" between trajectory tracking and
maneuver regulation features. In contrast to the previous approach, we

48 2. Optimal Control-based Strategy for Merging Maneuvers

embed such a morphing feature into the optimization process by propos-
ing a suitable cost function.

We are ready to formulate the optimal control problem as follows

min
x(·),u(·)

∫ tf

0

J(x(τ),u(τ)) dτ +m(x(tf))

s.t. ẋ(t) = f(x(t),u(t)) , x(0) = x0

h(x(t),u(t)) ≤ 0

(2.12)

where tf > 0 is fixed, ẋ = f(x,u) describes the nonlinear equations (2.5),
J(x,u) is the cost function as in (2.11), h(x,u) are the state/input con-
straints (2.2),(2.3), (2.4), (2.6), (2.10) and m(x(tf)) is the Mayer term.

We highlight that the obstacle avoidance collision constraint (2.10)
makes the optimization problem nonconvex and computationally chal-
lenging. In particular, we solve (2.12) by using the ACADO toolkit, [30].
The multiple-shooting discretization (see Appendix B), is employed with
a Runge-Kutta integrator of order 4 and a sampling time of 0.2 s. The
underlying Quadratic Programs (QP) are condensed and solved using an
online active set strategy implemented in the software qpOASES, [31].

2.4 Numerical Computations

In this section we provide numerical computations showing the effective-
ness of the proposed approach. We start with a relatively simple scenario:
the ego-vehicle is traveling along the ego lane and is approaching the
target lane, where an obstacle is moving. Then, as a more challenging
scenario, we increase the number of obstacles. The ego lane is modeled
as a 90◦ right turn with a radius of 20 m. The space-varying desired
velocity is equal to 7.2 m/s along the two straight sections and 5.2 m/s

along the turn. The desired V TV velocity is constant along the entire

2.4. Numerical Computations 49

target lane and equal to 7.2 m/s. The constraints parameters are based
on [18] and on driving experience, as reported Table 2.1.

Parameter Value Units

Minimum velocity (vmin) 0 m/s
Maximum velocity (vmax) 10 m/s
Minimum acceleration (amin) −1.5 m/s2

Maximum acceleration (amax) 1 m/s2

Maximum lateral acceleration (alatmax) 2 m/s2

Maximum curvature (κmax) 0.2 m−1

Maximum width (wmax) 1.5 m
Collision distance (dcollision) 10 m

Table 2.1: Set of constraints parameters for merging trajectory generation
strategy. The parameters include the minimum and maximum velocities
denoted as vmin and vmax, respectively. Furthermore, the minimum and
maximum accelerations, are represented by amin and amax. Lateral mo-
tion is addressed through the parameter alatmax , denoting the maximum
lateral acceleration. Maximum curvature is encapsulated by the param-
eter κmax. The parameter wmax designates the maximum width of the
lane. Additionally, the collision distance, denoted as dcollision, outlines
the distance within which collision detection mechanisms must operate
to ensure the safety.

We use a planning horizon of 20 s which allows the ego-vehicle to
perform a merging maneuver for the entire set of numerical computations.
We encourage the reader to refer to the video attachment2 related to the
2D-plane trajectories of the numerical computations presented below.

2https://youtu.be/jyvSBll2uWA?si=BOIHhASkTG6YxlVK

https://youtu.be/jyvSBll2uWA?si=BOIHhASkTG6YxlVK

50 2. Optimal Control-based Strategy for Merging Maneuvers

2.4.1 Merging with one obstacle

The ego-vehicle initial position is (x0, y0) = (0, 0), with heading ψ0 = 0,
and velocity v0 = 26 km/h (i.e., almost 7.2 m/s). The obstacle is in
position (xobs(0), yobs(0)) = (35,−10) and is traveling along the target
lane with a constant velocity of vobs = 10 km/h (2.78 m/s). We solve the
optimization problem (2.12), a set of weighting cost terms are selected
(obtained after a trial and error process combined with our experience
in the nonlinear system (2.5)): q1 = 5.0, q2 = 0.1, q3 = 0.5, q4 = 10.0,
q5 = 0.01, q6 = 0.01, r1 = 0.01, r2 = 1.0, and r3 = 0.1. The resulting
optimal trajectory is shown in Figure 2.3. Next, we analyze some inter-
esting features of the generated trajectory. At first glance, we can identify
a “pass after" behavior. Basically, the ego-vehicle decelerates, thus giving
the way to the obstacle (see Fig.2.3f).

In the generated optimal trajectory, we can identify two phases. First,
at the beginning, the ego-vehicle is far away from the merging area and
the cost Jel is minimized: the ego-vehicle is following the center-line (the
lateral displacement is almost zero), and decreases its velocity to face
the right turn. Second, at about t = 5 s, the ego-vehicle is close to the
V TV and the cost Jtl is minimized: the ego-vehicle applies a positive
curvature and moves toward the outside edge of the right-turn to mini-
mize the kinematic error with respect to the V TV . Moreover, a stronger
deceleration is applied (satisfying the ellipse constraint, see Figure 2.3e),
thus giving the way to the obstacle. Finally, we analyze the (local) op-
timal V TV velocity profile, see Figure 2.3d. In the beginning, the V TV
has zero velocity, which means that the V TV is “waiting" the ego-vehicle
while is traveling along the ego lane. As the ego-vehicle approaches the
target lane, the V TV accelerates and its velocity reaches the value of
2.78 m/s, which is exactly the velocity of the obstacle. Consequently, the
ego-vehicle “tracks" the V TV position, because the Jtl is minimized.

2.4. Numerical Computations 51

0 5 10 15 20

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

0 5 10 15 20

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

0 5 10 15 20

0

2

4

6

8

10

12

(c)

0 5 10 15 20

0

2

4

6

8

10

12

(d)

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e)

0 5 10 15 20

0

5

10

15

20

25

30

(f)

Figure 2.3: Merging with one obstacle: pass after behavior. The op-
timal (green solid line), the desired (blue dash-dot line) trajectories,
and constraints (red dash lines) are shown. Obstacle initial position
(xobs(0), yobs(0)) = (35,−10).

52 2. Optimal Control-based Strategy for Merging Maneuvers

It is interesting to investigate how the initial obstacle position affects
the generated trajectory. We set (xobs(0), yobs(0)) = (35,−15) and solve
the optimization problem. The optimal trajectory is shown in Figure 2.4.
In the initial stage, the ego-vehicle follows the path of the ego lane, main-
taining the desired velocity. As the ego-vehicle approaches the target lane,
the optimization algorithm finds a spatial and temporal gap, affording the
opportunity for performing a “pass before" relative to the obstacle. This
behavior entails that the V TV increases its velocity, achieved through a
sharp acceleration. In particular, the ego-vehicle starts to track the V TV .
Two distinct phases can be identified. Initially, the ego-vehicle moves to-
ward the inner edge of the upcoming turn. This behavior is motivated by
the intention to minimize the curvature, thereby complying with the im-
posed acceleration constraint. This phase culminates with the ego-vehicle
nearing the the so-called apex point of the curve – the point closest to
the inside of the corner, also referred to as the clipping point. During
the latter phase, the ego-vehicle accelerates in a smooth fashion. This
sequential interaction of these phases translates the ego-vehicle’s trajec-
tory form one characterized by the ego lane following to a trajectory that
follows the path of the V TV enabling the ego-vehicle to perform a safe
merging manuever.

2.4.2 Merging into traffic

We introduce a higher level of complexity by considering the presence of
four obstacles traveling along the target lane, simulating a more challeng-
ing scenario. The coordinates (xobs1 (0), yobs1 (0))=(35, 5), (xobs2 (0), yobs2 (0)) =

(35,−13), (xobs3 (0), yobs3 (0)) = (35,−29) and (xobs4 (0), yobs4 (0)) = (35,−51)

define the position of these obstacle, each moving with a constant velocity
of 3.3 m/s (12 km/h) along the target lane. The initial position,

2.4. Numerical Computations 53

0 5 10 15 20

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

0 5 10 15 20

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

0 5 10 15 20

0

2

4

6

8

10

12

(c)

0 5 10 15 20

0

2

4

6

8

10

12

(d)

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e)

0 5 10 15 20

0

10

20

30

40

50

60

(f)

Figure 2.4: Merging with one obstacle: pass before behavior. The op-
timal (green solid line), the desired (blue dash-dot line) trajectories,
and constraints (red dash line) are shown. Obstacle initial position
(xobs(0), yobs(0))=(35,−15).

54 2. Optimal Control-based Strategy for Merging Maneuvers

orientation and velocity of the ego-vehicle are (x, y) = (0, 0), ψ = 0 and
v0 = 26 km/h(7.2 m/s), respectively. The optimal trajectory is shown
in Figure 2.5. The ego-vehicle starts the maneuver by following the ego
lane reference velocity, see Figure 2.5c, for t ∈ [0, 2] s. As time advances
to approximately 3 s, the ego-vehicle approaches the target lane. Here,
the optimization problem minimizes the Jtl objective function.

Indeed, we highlight that:

(i) the ego-vehicle decelerates to achieve a complete halt before enter-
ing the intersection, ensuring that the collision avoidance is always
satisfied,

(ii) slightly moves toward the inner edge of the right turn to gain the
best position for the merging,

(iii) the V TV moves toward to minimize the kinematic error (mainly
because the projection of the ego-vehicle to the target lane corre-
sponds to a point which is slightly moving forward). Indeed, there
is no space-time gap to perform a merging maneuver.

Subsequently, as obstacle1 safely crosses the the intersection zone, the
ego-vehicle, having come to a complete stop, accords right-of-the-way to
obstacle2 and obstacle3 (see Figure 2.5f). At about t = 10 s, the right
space-time gap is found: the V TV accelerates and the starts tracking the
V TV position. This behavior culminates in a safely execution of a “pass
before" maneuver relative to obstacle4.

2.4. Numerical Computations 55

0 5 10 15 20

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

0 5 10 15 20

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

0 5 10 15 20

0

2

4

6

8

10

12

(c)

0 5 10 15 20

0

2

4

6

8

10

12

(d)

-3 -2 -1 0 1 2 3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e)

0 5 10 15 20

0

10

20

30

40

50

60

70

80

90

100

(f)

Figure 2.5: Merging with four obstacles: Pass among behavior. The opti-
mal (green solid line), the desired (blue dash-dot line) trajectories, and
constraints (red dash line) are shown.

Chapter 3

Real-time Maneuvers
Generation Algorithm

In this chapter we develop a novel maneuver generation algorithm, based
on nonlinear optimal control technique introduced in [1], to generate
collision-free trajectories for Autonomous Vehicles.

3.1 Introduction

Several approaches have been proposed in the literature to solve the
collision-free trajectory generation problem, see [32] for a survey. In
the last years, optimization-based methods have received increasing at-
tention thanks to the availability of efficient numerical techniques, as,
e.g., [1, 2, 33, 34, 35], and the possibility to systematically include vehi-

58 3. Real-time Maneuvers Generation Algorithm

cle dynamics and suitable constraints in the formulation. The design of
optimal collision-free trajectories is challenging mainly because the colli-
sion avoidance constraint is non-convex and computationally difficult to
handle, see, e.g., [36]. For these reasons, appropriate approximations are
introduced. For example, in [10], a linear time-varying constraint on the
lateral displacement is proposed. In [37], a non-convex (ellipse-shaped)
constraint is taken into account. In [38], an exact reformulation of the
collision avoidance constraint is proposed. However, such a reformula-
tion implies the introduction of additional optimization variables and
constraints. Once the avoidance constraint has been formulated, it can
be embedded into

(i) a constrained optimization problem, as in [9, 4, 39],

(ii) an appropriate unconstrained optimization problem in which the
objective function is augmented with an artificial potential field
representing the distance to the obstacle, see e.g., [40, 41].

With the collision avoidance formulation in hand, a classical approach
used in the literature to design a trajectory is trajectory tracking, aiming
to force the vehicle to reach and track a time-parametrized path. How-
ever, the requirement of tracking a time-parametrized reference has the
following main limitation: poor tracking of the reference path in presence
of external disturbances and unmodeled dynamics, see, e.g., [29] and [42].
An alternative approach is maneuver-regulation, [43], namely, converge
and follow a desired path with the additional requirement to satisfy a
velocity profile along it.

The next part of the chapter is dedicated to the development of the
proposed real-time collision-free maneuver generation algorithm, to ef-
ficiently solve the collision-free trajectory generation problem. In Sec-
tion 3.2, we describe the system dynamics with respect to the new set

3.2. Problem Formulation 59

of coordinates and formulate the collision-free avoidance constraint. In
Section 3.3, we describe our real-time strategy to compute collision-free
maneuvers. Finally, in Section 3.4 and Section 3.5.2, we provide numerical
computations and an experimental test, highlighting the main features
of the proposed strategy.

3.2 Problem Formulation

In this section we briefly describe the system dynamics with respect to
the longitudinal and transverse coordinates and formulate the collision
avoidance constraint.

3.2.1 Ego-vehicle Model and Longitudinal Coordi-
nate Parameterization

In this subsection, we describe the steps necessary for deriving the new
formulation for the vehicle dynamics.

First, we describe the ego-vehicle model. Previously we discussed the
characterization of the ego-vehicle’s 2D motion in typical urban scenar-
ios, where low acceleration values are applied, see Chapter 1. In order
to capture this motion accurately, we use a kinematic model, as outlined
in equation (1.10). For the proposed formulation, we aim to improve the
presented ego-vehicle model by incorporating acceleration as a control-
lable input. The augmented ego-vehicle model can be expressed as:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ = vκ ,

v̇ = a ,

(3.1)

60 3. Real-time Maneuvers Generation Algorithm

where (x, y) are the longitudinal and lateral coordinates with respect to
the inertial frame, ψ is the heading angle, and v is the velocity. The
control inputs are the curvature κ and the acceleration a.

Second, given the road geometry, we assume that the path has a
reasonably smooth (at least C2) arc-length parametrized center-line, de-
noted as (x̄cl(s), ȳcl(s)). Following the derivation detailed in Section 1.3.3,
we re-write the ego-vehicle dynamics (3.1) using the longitudinal coordi-
nates s as the independent variable:

w̄′(s) = (1− κ̄cl(s)w̄(s)) tan µ̄(s) ,

µ̄′(s) =
1− κ̄cl(s)w̄(s)

cos µ̄(s)
κ̄(s)− κ̄cl(s) ,

v̄′(s) =
1− κ̄cl(s)w̄(s)

v̄(s) cos µ̄(s)
ā(s) ,

t̄′(s) =
1− κ̄cl(s)w̄(s)

v̄(s) cos µ̄(s)
,

(3.2)

In (3.2) the state and the control vector are x̄=[w̄, µ̄, v̄, t̄] and ū=[κ̄, ā]

respectively.

Remark 3.1 We highlight that we include t̄ into the dynamics with
reference to (3.2). Such additional state variable will be exploited for the
formulation of the avoidance constraint, as will be shown in the next
subsection.

3.2.2 Obstacle Avoidance Formulation

A typical formulation for obstacle avoidance involves the imposition of a
security distance, denoted as d̃, between the ego-vehicle and the obstacle.
This approach is commonly found in the literature, as exemplified in [44].
The security distance accounts for factors such as the size of both the

3.2. Problem Formulation 61

ego-vehicle and the obstacle, along with an added safety margin. Specif-
ically, given the coordinate center of the obstacle and its future predic-
tions, (xobs(·), yobs(·)), we have that the following inequality constraint

(
x− xobs

d̃

)2

+

(
y − yobs

d̃

)2

≥ 1 (3.3)

must be satisfied for all times t, see Figure 3.1. In order to include such
a constraint in our maneuver regulation problem, we first re-write (3.3)
with respect to the (s, w) coordinates. Given the longitudinal coordinate
s of the ego-vehicle, we can express the obstacle position as

[
xobs

yobs

]
=

[
x̄cl

ȳcl

]
+Rz(ψ̄cl)

[
sobs − s
wobs

]
, (3.4)

where sobs and wobs(s) are the obstacle’s longitudinal and lateral coordi-
nates, respectively.

Figure 3.1: Obstacle avoidance constraint representation in Cartesian co-
ordinate system. The lane, the obstacle and the ellipse constraint are
depicted in gray, blue, and red, respectively. In order to satisfy the con-
straint, the ego-vehicle (green bold triangle) must be outside the red
boundaries.

62 3. Real-time Maneuvers Generation Algorithm

Next, by subtracting (3.4) from (1.11), we have[
x− xobs
y − yobs

]
= Rz(ψ̄cl)

[
s− sobs
w − wobs

]
. (3.5)

Substituting (3.5) in (3.3), we get the following equivalent formulation,
see Figure 3.2, (

s− sobs
d̃

)2

+

(
w − wobs

d̃

)2

≥ 1 . (3.6)

By transforming (3.6) from a t-dependent to s-dependent description,
the constraint can be written as(

w̄(s)− w̄obs(s)
d̃

)2

≥ 1 . (3.7)

The avoidance formulation as in (3.7) captures the case of static obsta-
cles: at a given curvilinear coordinate s, the relative (lateral) distance
between the ego-vehicle and the obstacle must be greater than d̃. How-
ever, it is very conservative (or, in some case, it fails) when dealing with

Figure 3.2: Obstacle avoidance constraint representation in longitudinal
and transverse coordinate system. The lane, the obstacle and the ellipse
constraint are depicted in gray, blue, and red, respectively. In order to
satisfy the constraint, the ego-vehicle (greed bold triangle) must be out-
side the red boundaries.

3.2. Problem Formulation 63

moving obstacles. For example, let us consider the scenario illustrated in
Figure 3.3: the ego-vehicle is moving along a lane (with w = 0) and has to
avoid a moving obstacle which is on the right-side of the center-line. By
using the avoidance formulation (3.7), the ego-vehicle will satisfy (if pos-
sible) the security distance d̃ for all s, thus providing a too conservative
collision-free maneuver. This is due to the fact that the formulation (3.7)
does not take into account the time evolution of the ego-vehicle and the
obstacle. In order to overcome this limitation, we propose a novel con-
straint formulation as follows. We start from the following (somehow)
simple idea: in order to avoid collision with a moving obstacle, the ego-
vehicle and the obstacle must not be at the same longitudinal coordinate
s at the same time instant t. Based on this idea, we introduce the time
variable into (3.7), as follows:(

t̄(s)− t̄obs(s)
t̃

)2

+

(
w̄(s)− w̄obs(s)

d̃

)2

≥ 1 , (3.8)

where t̄obs(s) is the time at which the obstacle is at the longitudinal
coordinates s and t̃ is a temporal safety margin parameter. In Figure 3.4

Figure 3.3: Avoidance maneuver scenario. The ego-vehicle (green trian-
gle), the obstacle (solid blue rectangle) and its predictions (empty blue
rectangles) are shown. The avoidance maneuvers obtained by using (3.7)
and (3.8) are depicted, respectively, in dashed red line and solid green
line.

64 3. Real-time Maneuvers Generation Algorithm

Figure 3.4: Obstacle avoidance constraint representation. The lane, the
obstacle and the ellipse constraint are depicted in gray, blue, and red,
respectively. In order to satisfy the constraint, the ego-vehicle must be
outside the red boundaries.

we provide a 3D representation of the proposed avoidance constraint. We
point out that the inequality constraint (3.8) is based on the coordinate
center of the obstacle. Such formulation can be easily extended in order
to take into account the obstacle’s size (i.e., by using the projection of
the rear and front axes along the road geometry).

Remark 3.2 It is worth noting that the inequality constraint (3.8)
is well-defined if unique values of w̄obs(s) and t̄obs(s) are determined for
a given s. This is not the case for a static obstacle, because it has the
same longitudinal coordinate s for all time values. For this reason, when
dealing with static obstacles, we impose a sufficient large value for t̃.

3.3. Maneuver Generation Strategy 65

3.3 Maneuver Generation Strategy

In this section, we describe the optimal control-based strategy used to
compute real-time collision-free maneuvers.

First, we define additional constraints. Specifically, the ego-vehicle is
required to satisfy the road boundaries. This constraint assumes a very
simple form with respect to the new set of coordinates, that is,

|w̄(s)| ≤ wmax .

To have a smooth function defining the constraint, we rewrite it in the
equivalent form (

w̄(s)

wmax

)2

− 1 ≤ 0 . (3.9)

In order to take into account the operational limits of the kinematics
model and the comfort of the passenger, we impose state and input con-
straints on (3.2) as follows. The velocity is bounded by two constants,
i.e., (

2v̄(s)− (vmax + vmin)

vmax − vmin

)2

− 1 ≤ 0 . (3.10)

while the longitudinal acceleration a and the lateral acceleration, v2κ,
are coupled by the ellipse constraint, [23],(

2ā(s)− (amax + amin)

(amax − amin)

)2

+

(
v̄(s)2κ̄(s)

alatmax

)2

− 1 ≤ 0 . (3.11)

Moreover, in order to take into account the limited wheel steer angle, the
curvature is bounded in module as follows,(

κ̄(s)

κmax

)2

− 1 ≤ 0 . (3.12)

Second, we need to define the cost function to be optimized. Specifically,
we are interested to follow the center-line of the road with a given velocity

66 3. Real-time Maneuvers Generation Algorithm

profile, v̄cl, assigned on it, and, at the same time, minimize the control
effort. Such a behavior can be captured by minimizing the following cost
function,

J(x̄, ū) = (x̄− x̄d)T Q (x̄− x̄d) + (ū− ūd)T R (ū− ūd) , (3.13)

where x̄d = [0, 0, v̄cl, 0], ūd = [κ̄cl, 0] is the desired maneuver,
Q = diag(q1, q2, q3, q4) are a positive-semidefinite matrix, while
R = diag(r1, r2) is positive-definite one. Now we are ready to formulate
the optimal control problem:

min
x̄(·) ū(·)

∫ sf

0

J(x̄(τ), ū(τ)) dτ +m(x̄(sf))

s.t. x̄′(s) = f(x̄(s), ū(s), s) , x̄(0) = x0

h(x̄(s), ū(s)) ≤ 0 ,

(3.14)

where sf > 0 is a fixed horizon, x̄′ = f(x̄, ū, s) describes the nonlin-
ear equations (3.2), h(x̄, ū) are the state/input constraints (3.8), (3.9),
(3.10), (3.11), (3.12), J(x̄, ū) is the stage cost as in (3.13) and m(x̄(sf))

is the terminal cost which minimizes the L2 distance between the ego-
vehicle state and the desired end state x̄(sf).

We solve (3.14) by using PRONTO, [1], see Appendix A. PRONTO
is a direct method for solving continuous-time optimal control problems.
It exhibits a second-order convergence rate to a local minimizer satisfy-
ing second-order sufficient conditions of optimality. The key point is the
design of a projection operator, denoted as P , which maps state-input
curves ξ = (ᾱ(·), µ̄(·)) to trajectories τ = (x̄(·), ū(·)). This projection
operator P : ξ → τ can be formally defined by a space-varying control
low, as follows:

x̄(s) = f ′(x̄, ū, s), x̄(0) = x0 ,

ū(s) = µ̄(s) +K(s)(ᾱ(s)− x̄(s)) .

3.3. Maneuver Generation Strategy 67

It is worth to notice that the definition of P relies on the solution of
a suitable linear quadratic optimal control problem providing the pro-
jection operator with a stability like property. Following [1], we handle
constraints using a barrier function approach. In particular, the state-
input constraints are relaxed by adding them to the cost functional. A
barrier function can be defined as

bδ(x̄, ū) =

∫ sf

0

∑
j

βδ(−hj((x̄(τ), ū(τ))))dτ ,

where

βδ(z) =

− log z for z > δ

1
2

(
z−2δ
δ
− 1
)
− log δ otherwise

. (3.15)

Using the barrier function βδ, the problem (3.14) becomes:

min
x̄,ū

∫ sf

0

J(x̄(τ), ū(τ)) + εbδ(x̄(τ), ū(τ)) dτ

s.t. x̄′(s) = f(x̄(s), ū(s), s) , x̄(0) = x0 ,

(3.16)

for ε > 0. The strategy to find an approximated solution to (3.14)
can be summarized as follows. Starting with a reasonable large ε and δ,
Problem (3.16) is iteratively solved by reducing the parameters at each
iteration and thus pushing the trajectory toward the constraint bound-
aries. PRONTO, being a Newton descent method, can only guarantee
convergence to a local minimum. We choose the initial guess as follows.
Given the reference state-input desired reference, (x̄, ū)d, which is not a
maneuver (it does not satisfy the dynamics), we use the projection op-
erator [45] to project the state-input desired reference into the feasible
maneuvers manifold to obtain a suitable initial guess. Now, with an ini-
tial maneuver for the initialization and a desired reference, the algorithm
iterates the following step:

68 3. Real-time Maneuvers Generation Algorithm

Algorithm 1 Real-time Collision-free Maneuver Generation

Input: road geometry (x̄cl, ȳcl, ψ̄cl, κ̄cl, v̄cl),
bounds (wmax, vmaxmin , kmax, amaxmin , alatmax),
obstacles data (xobs(t), yobs(t))

Initialization:

• compute x0 (i.e., project (x, y, ψ)0 wrt the road geometry)

• setup dynamics x̄′ = f(x̄, ū, s), x(0) = x0

• compute (w̄obs, t̄obs) (i.e., project (xobs, yobs) w.r.t the road geom-
etry)

• setup constraints h(x̄, ū) with bounds and w̄obs, t̄obs

• desired maneuver x̄d = [0, 0, v̄cl, 0], ūd = [κ̄cl, 0]

Set: ε = 1, δ = 1

for k = 1, 2, ... do
compute: (x̄, ū)k = PRONTO((x̄, ū)k−1, ε, δ)

update ε, δ: ε← ε/6, δ ← δ/6

end for
Output: (x̄, ū)opt = (x̄, ū)k

(i) compute the optimal collision-free maneuver by using PRONTO,

(ii) use the previous optimal maneuver as initial guess for the next step,

(iii) update the constraints parameters, ε and β,

(iv) solve (3.16) with an updated barrier function.

Algorithm 1 gives a pseudocode description of the real-time maneuver
generation strategy. We want to stress that PRONTO ensures the recur-
sive dynamics and constraints feasibility of intermediate solutions. As a

3.4. Numerical Computations 69

result, our algorithm can reliably use sub-optimal (intermediate) solu-
tions in cases of overhead computations.

It is worth noticing that the approximate log barrier function (3.15)
handle efficiently constraints (3.9), (3.10), (3.11), and (3.12). For exam-

ple, (3.9) translates to the strongly convex function βδ
(

1−
(

w̄
wmax

)2
)
.

At σ = 1, this function simplifies to
(

w̄
wmax

)2

+
(

w̄
wmax

)4
/

2. A crucial

aspect here is that the chosen constraint function, is bounded below by
−1. This property ensures that βδ(−c(w̄)) is non-negative for all values of
w̄ and for any δ in the range (0, 1]. In contrast, constraint (3.8) aimed at
avoiding obstacles presents a noteworthy challenge due to its absence of a
lower bound. Consequently, it rewards maintaining a significant distance
from the obstacle even when the primary goal is simply to avoid it. In or-
der to address this issue, we introduce a saturation step to the argument
of βδ(·) before its application. Specifically, we replace βδ(−c(t̄, w̄)) with
βδ(σ(−c(t̄, w̄))). This modification leads us to the concept of the “hockey
stick" function [1], as defined below:

σ(z) =

tanh(z), z ≥ 0

z, otherwise
.

This adjustment allows us to effectively disregard obstacles that are suf-
ficiently distant.

3.4 Numerical Computations

In this section, we present numerical computations in order to show the
effectiveness of both the proposed avoidance formulation and the pro-
posed algorithm. We start our analysis with the following scenario: the
AV is traveling along a straight path and an obstacle is moving with a

70 3. Real-time Maneuvers Generation Algorithm

low velocity on the right side of the lane. We refer to this scenario as the
lateral dynamic avoidance case. Then, we consider the longitudinal dy-
namic avoidance case: a moving obstacle cuts-off the ego-vehicle’s path.
For both the scenarios, the dynamic obstacles are moving with constant
velocity and their future positions are known (by simple integrating the
velocity). We set the constraints parameters based on [18] and on driving
experience, as reported Table 3.1.

Parameter Value Units

Maximum width (wmax) 1.25 m
Minimum velocity (vmin) 0.1 m/s
Maximum velocity (vmax) 19.4 m/s
Minimum acceleration (amin) −1.5 m/s2

Maximum acceleration (amax) 1 m/s2

Maximum curvature (κmax) 0.2 m−1

Maximum lateral acceleration (alatmax) 2.0 m/s2

Safety time (tsafety) 3 s
Safety distance (dsafety) 2.5 m

Table 3.1: Set of constraints parameters of the maneuver regulation strat-
egy. The maximum width (wmax) parameter specifies the maximum lat-
eral extent of the lane. The velocity constraints are encapsulated by the
parameters vmin and vmax, respectively. Acceleration limits are estab-
lished through amin and amax, denoting the minimum and maximum ac-
celerations, respectively. The curvature of trajectory paths is addressed
by the parameter κmax, quantifying the maximum allowable curvature.
Lateral motion is further constrained by the maximum lateral accelera-
tion, alatmax . Safety considerations are incorporated through the param-
eters tsafety and dsafety, representing the safety time and distance.

3.4. Numerical Computations 71

3.4.1 Lateral Dynamic Avoidance Maneuver

In the first scenario, the ego-vehicle is traveling with a constant ve-
locity v0 = 50 km/h (13.88 m/s) along a straight lane and has to
avoid an obstacle moving on the same lane with a constant velocity of
20 km/h (about 5.55 m/s). After a trial and error process, we choose the
following cost for the cost function: q1 = 0.1, q2 = 0.1, q3 = 1.0, q4 = 0.0,
r1 = 100.0 and, r2 = 0.1. The optimal maneuver is shown in Figures 3.5
and 3.6. Next we highlight some important features of the computed
maneuver. Specifically, we identify three phases. First, at the beginning,
the ego-vehicle is following the reference path: the lateral displacement
w̄ is zero (Figure 3.6a), and the velocity v̄ is equal to the reference one
(Figure 3.6b). Second, the ego-vehicle executes a very smooth avoidance

0 10 20 30 40 50 60 70 80 90

10

8

6

4

2

0

-2

-4

-6

-8

-10

Figure 3.5: Avoidance maneuver. The ego-vehicle (bold green triangle)
and the obstacle (blue rectangle) are shown. The ego-vehicle and the
obstacle trajectories are indicated with solid triangular green line and
solid triangular blue line, respectively.

72 3. Real-time Maneuvers Generation Algorithm

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

0 20 40 60 80 100

0

2

4

6

8

10

12

14

16

18

(b)

0 20 40 60 80 100

-0.01

-0.005

0

0.005

0.01

(c)

0 20 40 60 80 100

-1

-0.5

0

0.5

1

1.5

2

(d)

Figure 3.6: Lateral avoidance scenario. The intermediate (dashed black
lines) and optimal maneuvers (solid green line) are shown. The desired
maneuver is depicted in dash-dotted blue line, while constraints are in
dashed red line.

maneuver by applying first a negative curvature, Figure 3.6c, thus moving
toward the left boundaries of the lane, Figure 3.6a, to avoid the obstacle.
Note that the avoidance constraint, see Figure 3.6d, is active at about
s = 42 m which is the curvilinear coordinate where the ego-vehicle comes

3.4. Numerical Computations 73

alongside the obstacle, as depicted in Figure 3.5. Third, once the ego-
vehicle overtakes the obstacle, it goes back in following the center-line. It
is interesting to note that the projection of the initial guess is infeasible
for the avoidance constraint. Nevertheless, intermediate trajectories are
all feasible, see dashed black lines in Figure 3.6.

3.4.2 Longitudinal Dynamic Avoidance Maneuver

In the second scenario, a moving obstacle cuts off the ego-vehicle’s path.
Specifically, the ego-vehicle is traveling along a straight path with v0 =

13.9 m/s (similarly in Figure 3.5), the moving obstacle pulls out from
the right-side of the path, at the longitudinal coordinate of s = 40 m and
at vobs = 2.8 m/s. The cost function weights (3.13) penalize deviation

0 10 20 30 40 50 60 70 80 90 100

-15

-10

-5

0

5

10

15

Figure 3.7: Avoidance maneuver. The ego-vehicle (bold green triangle)
and the obstacle (blue rectangle) are shown. The ego-vehicle and the
obstacle trajectories are indicated with solid triangular green line and
solid triangular blue line, respectively.

74 3. Real-time Maneuvers Generation Algorithm

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a)

0 20 40 60 80 100

0

2

4

6

8

10

12

14

16

18

(b)

0 20 40 60 80 100

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c)

0 20 40 60 80 100

-1

-0.5

0

0.5

1

1.5

2

(d)

Figure 3.8: Longitudinal avoidance scenario. The intermediate (dashed
black lines) and optimal maneuvers (solid green line) are shown. The
desired maneuver is depicted in dash-dotted blue line, while constraints
are in dashed red line.

from center-line more than deviation to reference velocity: q1 = 10.0,
q2 = 10.0, q3 = 0.1, q4 = 0.0, r1 = 100.0 and, r2 = 0.1. The optimal
generated maneuver is depicted in Figure 3.7 and 3.8. At beginning of
the maneuver, the ego-vehicle applies the minimum longitudinal acceler-

3.5. Validation 75

ation, Figure 3.8c, in order to decrease its velocity, Figure 3.8b, and thus
to let the obstacle pass. At about s = 40 m, the avoidance constraint
becomes active, Figure 3.8d, and the ego-vehicle applies the maximum
acceleration to reach the desired velocity. The lateral displacement, Fig-
ure 3.8a, is zero, as we expect for the longitudinal avoidance maneuver.
Furthermore, we point out that only the initial trajectory is infeasible,
see Figure 3.8d. Finally, we highlight that, by using the avoidance con-
straint (3.7) instead of (3.8), the optimal control problem has no (feasi-
ble) solution, thus confirming the importance of the proposed avoidance
constraint formulation.

3.5 Validation

In order to validate our collision-free maneuver generation algorithm, we
have employed a two-fold approach. First, we integrated it into a high-
fidelity autonomous driving simulator. Second, we tested its performance
on a real self-driving vehicle. Both the simulator and the self-driving ve-
hicle have been developed by Vislab. Specifically, our real-time maneuver
generation algorithm has been embedded into the planning module of the
VisLab Autonomous Driving stack. It is worth noting that the accuracy
of obstacle predictions is ensured through a motion forecasting module.
At each time step, this module provides us with information regarding
both the current positions of obstacles and their future predictions. For
a more comprehensive understanding of the entire architecture of our au-
tonomous vehicle system, we encourage interested readers to explore the
detailed descriptions provided in the references [46] and [47]. The pro-
posed algorithm has been implemented in c++ (in order to integrate the
differential equations required by PRONTO, we use integrators based on
boost odeint, [48]), and it is applied in a receding horizon fashion during

76 3. Real-time Maneuvers Generation Algorithm

the tests. We use a fixed space horizon of 100 m, a space discretization of
1 m, and updated our planning every 100 ms. The optimal collision-free
maneuvers generated by our algorithm are used as reference trajectories
for the low-level controller.

3.5.1 Simulation Results

The output of the low-lever controller serves as input to a simulated
dynamic vehicle model. This model, elaborated upon in Chapter 1.4,
encompasses various subsystems typically found in a vehicle, such as
the chassis and both front and rear tires. It is important to note that
the vehicle chassis has 6 degrees of freedom (DOF), while each wheel
has 1 DOF. Furthermore, the steering and torque systems of the vehicle
are related to acceleration and curvature through lookup tables, while a
Pacejka magic formula tire model is used to accurately model the tire-
ground interaction, see Section 1.4.1.

We conducted the simulated test in a simplified urban scenario fea-
turing a static parked car and a dynamic obstacle, specifically a bicycle,
see Figure 3.9. We invite the reader to watch the video1 attachment cor-
responding to the discussed simulated test.

In Figure 3.10, we compare the lateral displacement, yaw-rate, and
velocity of the simulated dynamic vehicle and the ones generated by our
algorithm at the actual longitudinal coordinate s [m]. Next, we highlight
two maneuvers generated by the proposed algorithm and successfully
executed by the simulated vehicle.

First, at the beginning of the simulated test, the ego-vehicle starts
with zero velocity and accelerates smoothly in order to reach the de-

1https://drive.google.com/file/d/1EK8g-CUaJeo_

iapLcvaWJPi-E7EnpXA8/view?usp=sharing

https://drive.google.com/file/d/1EK8g-CUaJeo_iapLcvaWJPi-E7EnpXA8/view?usp=sharing
https://drive.google.com/file/d/1EK8g-CUaJeo_iapLcvaWJPi-E7EnpXA8/view?usp=sharing

3.5. Validation 77

Figure 3.9: Simulation scenario. The ego-vehicle (gray car) shares the
road with a static obstacle (green rectangle), and a dynamic obstacle
(purple rectangle). The generated trajectory by the maneuver regula-
tion algorithm, is visually indicated by a series of white dots. The road
boundaries are indicated by the green corridor.

sired velocity of 13.9 m/s. Along the straight lane, a static car parked
on the right side of the lane is detected. As expected, the ego-vehicle
avoids the static car in a smooth fashion as shown in the first highlighted
section of Figure 3.10. It is worth noting that, during this dynamic avoid-
ance maneuver, the constraint (3.8) is always satisfied, and the executed
maneuver is very smooth as shown in the first highlighted section of Fig-
ure 3.10. Second, after about 160 m, a bicycle moving along the center of
the lane, crosses the road and riding near the right-side of the lane. The
ego-vehicle first decreases its velocity, then moves on the left side of the

78 3. Real-time Maneuvers Generation Algorithm

(a)

(b)

(c)

Figure 3.10: Comparison between the reference maneuver (green solid
line) generated by the proposed algorithm and actual maneuver of the
simulated dynamic vehicle (black dashed line).

3.5. Validation 79

lane (thus avoiding the moving bicycle), and finally merge back to its own
lane. Again, the safety distance imposed by the avoidance constraints is
satisfied and the ego-vehicle’s velocity matches the one generate by the
algorithm.

3.5.2 Experimental Results

The experimental test has been carried out in Parma, Italy, on the cam-
pus area (urban roads) open to regular traffic. The main objective of the
test is to demonstrate the efficacy of the proposed algorithm in gener-
ating real-time feasible maneuvers. We invite the reader to watch the
video2 attachment corresponding to the discussed test.

In Figure 3.11, we compare the actual lateral displacement, yaw-rate,
and velocity of the actual ego-vehicle and the ones generated by our
algorithm at the actual longitudinal coordinate s [m]. Next, we highlight
three maneuvers generated by the proposed algorithm and successfully
executed by the ego-vehicle.

First, at the beginning of the test, the ego-vehicle starts with zero
velocity and accelerates smoothly (i.e., the acceleration constraint (3.11)
is not active) in order to reach the desired velocity of 13.9 m/s. Along
the straight lane, a bicycle (coming from a side road) crosses the road
and starts riding on the right-side of the lane. As soon as the bicycle
is detected, the ego-vehicle first decreases its velocity, then moves on
the left side of the lane (thus avoiding the moving bicycle), and finally
merge back to its own lane. It is worth noting that, during this dynamic
avoidance maneuver, the constraint (3.8) is always satisfied, and the ex-
ecuted maneuver is very smooth as shown in the first highlighted section
of Figure 3.11. Second, after about 300 m, a static car parked along the

2https://youtu.be/x1glAcRP1TM

https://youtu.be/x1glAcRP1TM

80 3. Real-time Maneuvers Generation Algorithm

(a)

(b)

(c)

Figure 3.11: Comparison between the reference maneuver (green solid
line) generated by the proposed algorithm and actual maneuver of the
autonomous vehicle (black dashed line).

3.5. Validation 81

right side of the lane is detected. As expected, the ego-vehicle avoids
the static car in a smooth fashion as shown in the second highlighted
section of Figure 3.11. Again, the safety distance imposed by the avoid-
ance constraints is satisfied and the ego-vehicle’s velocity matches the
one generated by the algorithm. Third, in the last highlighted section of
Figure 3.11, the ego-vehicle needs to avoid six parked cars and a pedes-
trian. Similarly to the previous case, the ego-vehicle successfully avoid
the obstacles by tracking the generated maneuver.

Overall, we observe a good trajectory matching, even though some
differences can be noticed. First, when the vehicle is driving in the round-
about (thus making a U-turn, refer to the video attachment), the ego-
vehicle’s position slightly deviates from the generated path, see Fig-
ure 3.11a at about s = 1100 m, and the actual yaw-rate differs from
the generate one, see Figure 3.11b. Since the low-level controller (which
is out of the scope of this work) is designed in order to penalize maneu-
vers close to the lane boundaries, the actual lateral displacement becomes
lower than the reference one and the actual yaw rate becomes greater than
the reference one (notice that the velocity is well-matched in this segment
of the road). A similar behavior can be observed when the ego vehicle is
executing a 90-degree turn (see Figure 3.11 at about s = 330 m). Second,
we observe that the actual velocity does not perfectly match the gener-
ated one in steady-state, see Figure 3.11c for v = 13.9 m/s. Based on
the generated velocity and acceleration profiles, the low-level controller
generates the throttle (or braking) commands. However, it does not take
into account aerodynamic and resistance forces and, consequently, the
actual velocity becomes slightly lower than the generated one. In both
cases, the actual trajectory satisfies the constraints and well-matches the
generated one. Finally, we provide the CPU time needed for the execution
of the proposed algorithm. Specifically, the average computation time of

82 3. Real-time Maneuvers Generation Algorithm

the proposed algorithm in the case of no obstacles is 36 ms. For the
avoidance scenarios (i.e., for the three highlighted zones in Figure 3.11)
the average computation time is 54 ms.

3.6 Discussion

These results confirm that the proposed trajectory generation algorithm
allows to compute feasible collision-free maneuvers with a computation
times below 100 ms, thus enabling a real-time implementation at 10 Hz.
We highlight that the approaches most closely related to our problem
setup and constraints formulation are the ones proposed in [37], [9],
and [4]. Next, we highlight the main differences. In [37], a maneuver reg-
ulation perspective is adopted for generating collision-free trajectories.
The independent variable of the optimization problem is the time and a
suitable approximation (based on Bezier curves) is introduced in order
to describe the road geometry (i.e., centerline of the road, road bound-
aries, target velocity). In contrast to the previous approach, we tackle
the optimization problem using the longitudinal coordinate as the inde-
pendent variable and thus we do not resort to approximations for the
(reformulated) vehicle system. In [9] and [4], the model dynamics is de-
scribed using the curvilinear coordinate. In order to generate obstacle
collision-free trajectory, the road-boundaries (which are functions of the
curvilinear coordinate) are re-shaped by taking into account the obsta-
cles’ position and size. However, such a constraint formulation becomes
too conservative when dealing with moving obstacles, mainly because
the time variable is neglected. On the contrary, we embed the time vari-
able into vehicle dynamics and propose the collision avoidance constraint
with respect to the new set of variables, thus handling both static and
dynamic obstacles.

Chapter 4

Upper-level Policy Search and
MPC for Lane Change

In this chapter we propose a hybrid approach that combine reinforcement
learning policy search with model predict control framework to generate
lane change maneuvers.

4.1 Introduction

Lane change maneuver has gained significant attention within the re-
search community, as indicated by a growing body of literature (see,
e.g. [49, 50, 51]). Executing a successful lane change is particularly chal-
lenging due to the requirement for generating collision-free trajectories.
Moreover, determining the “right" time to perform a lane change to avoid

84 4. Upper-level Policy Search and MPC for Lane Change

other moving vehicles adds an additional layer of complexity to the design
of decision-making and planning schemes. Typical approaches to address
this challenge have often decoupled decision-making and planning tasks.
The most common solution employs rule-based lane change models for
decision-making and then integrates the decision logic into a trajectory
planning module.

In rule-based models, AVs determine lane change decisions based on
predefined rules, such as lane preference or the feasibility of the ma-
neuver (see, e.g., [52]). However, a notable limitation of such models is
their performance bottleneck. They may lack accuracy and fail to cap-
ture all relevant influencing factors when applied only through threshold-
based conditions to assess driving intentions. Other approaches address
the problem of finding the optimal time to execute a lane change as a
classification problem. In this context, common classification algorithms
are based on machine learning techniques such as, e.g., Support Vec-
tor Machines (SVM), Bayesian classifiers, and decision trees. In [53], a
data-driven approach is used to “mimic" human driver behavior during
lane changes. Real-world data are collected in typical lane change sce-
narios and a SVM classifiers is employed in order to predict when a lane
change should be initiated based on a specific driver’s preferences. How-
ever, feature selection and transformation are required to achieve good
performance.

After the AV has determined its driving intention, generating a tra-
jectory becomes crucial for ensuring safety before executing it. Among
various control techniques available, Model Predictive Control (MPC)
has gained popularity for trajectory generation due to its capacity to
handle nonlinear dynamics and state-input constraints, see e.g. [1, 6].
For instance, in [54] an MPC-based lane change algorithm is proposed
to integrate the path planning and path following layers together with a

4.1. Introduction 85

utility function, which helps to automatically determine the target lane.
However, the MPC closed-loop performance is sensitive to the design
choices of this heuristic decision function. As a result, a series of approx-
imations are employed and may produce conservative solutions. On the
other hand, Reinforcement Learning (RL), in particular policy search ap-
proaches [55], has recently emerged as an innovative method for learning
driving policies, as demonstrated in [56, 57]. The key concept behind RL
involves training a policy through iterative trial and error, with the aim
of maximizing a performance function, namely the “return". This ap-
proach directly translates sensor inputs into actuation commands for the
AV. However, it is important to note that RL-based methods are char-
acterized by several challenges. First, it exhibits a high degree of data
inefficiency, requiring large amounts of training data to achieve satisfac-
tory results. Second, RL models often suffer from poor generalization,
struggling to adapt to unseen situations effectively. Furthermore, one
critical concern is the limited safety and stability guarantees offered by
RL methods, which can be particularly problematic when applied to AVs.

Various approaches have been explored to integrate learning and con-
trol in autonomous systems. For instance, in [58], a sampling-based MPC
approach was developed for autonomous driving, with a particular fo-
cus on the obstacle avoidance task. However, a notable challenge arises
from the need to generate a large amount of samples in real-time, often
achieved through parallel processing, which is computationally expensive.
In [59] an approach was introduced that integrates machine learning and
MPC within an imitation learning framework, applied to lane-keeping
maneuvers. Nevertheless, this method involves training deep neural net-
work policies through supervised learning, which necessitates the avail-
ability of ground-truth labels, potentially posing limitations in certain
scenarios.

86 4. Upper-level Policy Search and MPC for Lane Change

The next part of the chapter is dedicated to the development of the
hybrid MPC strategy to efficiently deciding when to initiate lane change
maneuvers and generate collision-free trajectories.

In Section 4.2, we describe the system dynamics and formulate the
lane change problem as a parametric MPC problem. The parameter
within this framework determines whether to remain in the current lane
or transition to an adjacent one. In Section 4.3, we address the challenge
of finding the parameter to execute the lane change maneuver by formu-
lating it as a probabilistic policy search problem. Our approach employs
a weighted maximum likelihood method for learning the policy parame-
ter, offering a closed-form solution for policy updates. Then, inspired by
the work outlined in [60, 61], which focused on maneuvering a quadrotor
through the center of a rapidly moving gate, we employ a self-supervised
learning approach. This enables to generate online the parameter to gen-
erate the maneuver based on observations of the surrounding environ-
ment. This strategy is evaluated through numerical computations and
illustrated in Section 4.4.

4.2 Problem Formulation

Let us consider the scenario depicted in Figure 4.1. The road is composed
of two parallel lanes, called the “ego lane” and the “target lane". The AV
(from now on, referred as the ego-vehicle) is traveling along the ego lane,
while a front vehicle, indicated as the FV , is moving on the same lane.
We assume that the FV is traveling slower than the ego-vehicle, which
motivates a lane change maneuver. In such a scenario, we are interested
in generating a lane change maneuver by designing an MPC with an
upper-level decision variable. This variable selects the “right time" to
execute the maneuver while avoiding the “ lateral vehicle", indicated as

4.2. Problem Formulation 87

Figure 4.1: 2D representation of lane change scenario.

the LV , moving on the target lane.

4.2.1 Ego-Vehicle Motion

For the given scenario, we describe the 2D motion of a car-like vehicle
using the set of equations describe in Chapter 1.3 and recalled below:

ẋ = v cosψ ,

ẏ = v sinψ ,

ψ̇ = vκ ,

v̇ = a ,

(4.1)

where the variables (x, y) represent the longitudinal and lateral coordi-
nates in the inertial frame, ψ denotes the heading angle, and v represents
the velocity. Control over the ego-vehicle’s motion is achieved by manip-
ulating the curvature κ and the acceleration a. We recall also that this
simplified model is particularly suitable for scenarios with relatively low
acceleration inputs and closely approximates the behavior of more com-
plex dynamic models, as detailed in [18].

Next, we re-write (4.1) in terms of the longitudinal and lateral coordi-
nates (s, w), where s represents the position along the center-line of the

88 4. Upper-level Policy Search and MPC for Lane Change

ego lane, while w indicates the displacement transverse to this center-
line. This coordinate system is particularly useful when considering lane
changes, where it is more intuitive to think in terms of lateral distance
from the desired lane position, rather than Cartesian coordinates (x, y).

We assume that the ego lane has a reasonably smooth (at least C2)
arc-length parametrized center-line, denoted as (x̄cl(s), ȳcl(s)). Following
the derivation in Section 1.3.1 we can write (4.1) in (s, w) coordinates
system as follows:

ṡ =
v cosµ

1− wκ̄cl(s)
,

ẇ = v sinµ ,

µ̇ = vκ− κ̄cl(s)ṡ ,
v̇ = a ,

(4.2)

where µ = ψ−ψ̄cl represents the local heading error. In equation (4.2) the
state and the control vector are denotes as x = [s, w, µ, v] and u = [κ, a],
respectively.

4.2.2 Model Predictive Control Formulation

In order to address the lane change problem, we set up a parametric
nonlinear MPC problem. In this section, we define state-input constraints
and formulate the cost function for optimization.

First, we define constraints. The ego-vehicle is required to satisfy the
road boundaries, which, in the new coordinate system, take a simple
form:

wmin ≤ w ≤ wmax . (4.3)

Additionally, we account for the operational limits of the kinematics
model and the passenger comfort by imposing state and input constraints

4.2. Problem Formulation 89

on (4.2) as follows. The velocity is bounded by two constants, i.e.,

vmin ≤ v ≤ vmax , (4.4)

while the longitudinal acceleration is bounded as follows,

amin ≤ a ≤ amax . (4.5)

Moreover, in order to take into account the limited wheel steer angle, the
curvature is bounded in module as follows,

|κ| ≤ κmax . (4.6)

We design the cost function J as follows. The ego-vehicle is supposed to
travel on the ego lane. In order to execute the lane change maneuver,
it needs to minimize the distance from the target lane. Hence, the ego-
vehicle needs to stop following the ego lane and start following the target
lane. Thus, we design the cost function as a sum of three components as
follows:

J(x,u) = Jel(x,u) + Jtl(x,u) + Ju(u) , (4.7)

where Jel penalizes deviance from the ego lane:

Jel = (1− γ(θ))(q1s
2 + q2w

2 + q3(v − vel)2) ;

Jtl penalizes the deviance from the target lane:

Jtl = γ(θ)(q4s
2 + q5(w − wtl)2 + q6(v − vtl)2) ;

and Ju penalizes the control effort:

Ju = r1κ
2 + r2a

2 .

90 4. Upper-level Policy Search and MPC for Lane Change

The time-varying switch term γ(θ) is defined as:

γ(θ) =
1

1 + exp(α(t− θ))

where α ∈ R+ controls the temporal spread, and θ determines the time
to execute the lane change. For t ≤ θ, γ ≈ 0, indicating the ego-vehicle
should follow the ego lane, while for t > θ, γ ≈ 1, which implies following
the target lane.

We are ready to formulate the MPCθ(x,u) problem:

min
x(·) u(·)

∫ tf

0

J(x(τ),u(τ), θ) dτ +m(x(tf))

s.t. x′(t) = f(x(t),u(t)) , x(0) = x0

h(x(t),u(t)) ≤ 0 ,

(4.8)

where tf > 0 is the time horizon, ẋ = f(x,u) represents the nonlinear
dynamics (4.2), h(x,u) denotes state and input constraints (4.3), (4.4),
(4.5), (4.6), J(x,u, θ) is the stage cost as in (4.7), andm(x(sf)) minimizes
the L2 distance between the ego-vehicle state and the desired end state
x(tf).

It is important to highlight that a key requirement to solve the prob-
lem is to determine optimal θ in advance. We determine θ through a
probabilistic policy search approach, which will be detailed in the follow-
ing section.

4.3 Upper-level Policy Learning

We formalize the problem of finding parameter θ by introducing the
concept of learning an upper-level policy πω(θ) responsible for selecting
the parameter of the MPCθ(x,u) policy. This selection process can be

4.3. Upper-level Policy Learning 91

captured by modeling πω(θ) as a Gaussian distribution:

πω(θ) = N (θ|ω) ,

where ω = [χ, σ2] represent the mean χ and the variance σ2 of the dis-
tribution. In order to address the upper-level policy search problem, we
approach it as a probabilistic inference problem, see Figure 4.2. To this
end, we introduce the “return event" as the observable variable. The prob-
ability of observing the return event is expressed as p(R = 1|θ) = p(R|θ).
Our objective is to find the optimal ω that maximizes the probability of
this return event. In other words, we aim to solve the following maximum
likelihood problem:

max
ω

log pω(R) = log

∫
θ

p(R|θ)πω(θ) dθ . (4.9)

We solve (4.9) by using the Monte Carlo Expectation Maximization (MC-
EM) algorithm [53, 62], a well-known technique for finding maximum
likelihood solutions. Before introducing the algorithm, we need to define
the return R. Unlike the cost function used in (4.8), the design of R offers
more flexibility. Next, we specify the different contributions that concur
to define the task of performing a lane change when necessary.

Figure 4.2: Graphical representation of upper-lever policy search as a
probabilistic inference problem.

92 4. Upper-level Policy Search and MPC for Lane Change

First, the ego-vehicle needs to avoid collision with obstacles. In order
to penalize collisions, we employ a trajectory evaluation mechanism in
which we assign negative rewards to collision states. This evaluation is
expressed as follows:

Nc(x) =

−p1, if c(x,xobs) > 0, obs ∈ {FV, LV }

0, otherwise
, (4.10)

where p1 is a positive constant that weighs the penalty. By assigning neg-
ative values to collision states, the ego-vehicle is effectively discouraged
from entering such states and encouraged to prioritize safe trajectories
that avoid collisions. On the other hand, non-collision trajectories are as-
signed zero values, indicating their neutrality in terms of collision risk. In
(4.10), the function c(x,xobs) evaluates whether a collision occurs between
the ego-vehicle and the obstacles. This function is defined by considering
an ellipse centered at the axes of the obstacle relative to the new set of
coordinates (s, w). Specifically, given the positions and future predictions
of the obstacles, xobs = [sobs, wobs], we evaluate the collision avoidance as
follows,

c(x,xobso) = −1 +

(
s− sobs

s̄

)2

+

(
w − wobs

w̄

)2

. (4.11)

In this formulation, we leverage the properties of the ellipse to determine
if the ego-vehicle’s current state, represented by (s, w), falls within its
boundary. If (s, w) lies inside the ellipse, it indicates a collision between
the ego-vehicle and the obstacle, triggering a collision evaluation function
with an appropriate outcome.

Second, in order to discourage unnecessary lane changes, we introduce
a contribution penalizing trajectories in which a change in the lateral
coordinate w occurs. The formulation of this contribution is presented

4.3. Upper-level Policy Learning 93

below:

Nlc(x) =

−p2, if |w(t)− w(t+ 1)| > 0

0, otherwise
, (4.12)

where p2 is a positive constant. If the absolute difference in lateral de-
viation is greater than zero, it indicates a lane change and a penalty
of p2 is assigned. This penalty discourages such lane changes that do
not contribute to the ego-vehicle’s overall objective or safety. By incor-
porating this term into the return function, we guide the ego-vehicle’s
decision-making process to reduce unnecessary lane changes.

Third, in order to discourage trajectories that anticipate changing the
lane to avoid the FL, we penalize lateral coordinates w that deviate from
the ego lane center-line. The lateral displacement penalty is defined as:

Nw(x) =

−p3, if w < 0

0, otherwise
, (4.13)

where p3 is a positive constant. This contribution encourages trajecto-
ries that stay closer to the ego-lane center-line while allowing a smooth
increase in penalty as the lateral displacement deviates from the center-
line.

Finally, we can formulate our return R as the sum of the previously
presented contributions (4.10),(4.12),(4.13), resulting in the following ex-
pression:

R(x) =

∫ tf

0

(Nc(x) +Nlc(x) +Nw(x)) dt . (4.14)

Maximizing this return guides the upper-level policy πω(θ) to select pa-
rameter θ that enable the ego-vehicle to successfully avoid the FV and
the LV by performing lane changes when necessary.

We are now ready to describe the MC-EM algorithm. Similar to the
standard EM algorithm, we begin by decomposing (4.9) into two terms

94 4. Upper-level Policy Search and MPC for Lane Change

with the introduction of a variational distribution q(θ):

log pω(R) = Lω(q(θ)) +KL(q(θ)||πω(θ)) ,

where with KL(·) we denote the Kullback-Leibler divergence. Since the
KL-divergence is always larger or equal to zero, the term Lω(q(θ)) is
a lower bound of the log marginal-likelihood log pω(R). The two update
steps in EM correspond to maximizing the lower bound L and minimizing
the KL-divergence term. In the MC version of EM algorithm we use a
sample-based approximation for the variational distribution q(θ), i.e., in
the E-step, we minimizes the KL-divergence by using samples

θi ∼ π(θi|ωk) .

Then, these samples θi are used in the M-step to estimate the expectation
of the complete data log-likelihood by maximizing the following objective:

ωk+1 = arg max
ω

∑
i

wi log π(θi|ωk) , (4.15)

where wi = f(Ri) are the wights. In order to transform the return R

into an improper probability distribution, we employ the exponential
transformation [63]:

wi = exp(βk(Ri −maxRk)) , .

The parameter β serves as the “temperature" of the distribution and can
be determined using the following heuristic [64]:

βk =
β0

maxRk −minRk

.

It is worth noting that higher values of higher values of β lead to more
greedy policy updates. The MC-EM algorithm iteratively refines the

4.3. Upper-level Policy Learning 95

upper-level policy, until convergence is achieved. Convergence is typi-
cally indicated when parameter estimates stabilize. The MC-EM algo-
rithm has a closed-form solution for a Gaussian policy. Algorithm 2 gives
a pseudocode description of the strategy.

Algorithm 2 Upper-level Policy Learning
Input: initial policy parameters ω0,

initial temperature parameter β0,
initial traj (x0,u0), k = 0

repeat
for i = 1 to I do

Sample θi from π(θi|ωk)
Solve (x,u)i = MPCθi(x0,u0)

Evaluate Ri = R(xi)

end for
Construct Rk = [R1, ..., RN]

Calculate weights:
wi = exp(βk(Ri −maxRk)), i = 1 to I . E-step

Maximize objective:
ωk+1 ← arg maxω

∑
iwi log π(θi|ωk) . M-step

Update temperature: βk+1 ← β0
maxRk−minRk

until Convergence criteria met
Output: Optimized policy parameters ω

4.3.1 Deep Upper-Level Policy

In order to address dynamic scenarios where the environment rapidly
change, we combine the MC-EM algorithm with a self-supervised learning
approach to adaptively select the parameter θ based on the environment’s

96 4. Upper-level Policy Search and MPC for Lane Change

observation.
First, we characterize the observation vector. At any given time t,

the observation vector, ot, captures relevant information about the ego-
vehicle and surrounding obstacles. Specifically, it includes the ego-vehicle’s
position and velocity, oegot = [s, ey, eψ, v]t, as well as the positions and ve-
locities of obstacles, oobst = [s, ey, eψ, v]obst . Formally, the observation ot is
defined as:

ot = [oegot − oFVt ,oegot − oLVt] .

Second, we collect a dataset D by simulating various scenarios as fol-
lows. Each scenario begins with random initial states for the ego-vehicle
and the two obstacles. This randomization is crucial as it allows us to
explore a wide range of possible situations. Then, we record the obser-
vation vector ot. In order to identify the optimal time for executing a
lane change, we employ the MC-EM algorithm, which finds the optimal
parameter θ∗t . With the optimal parameter θ∗t in hand, we solve (4.8),
yielding the first optimal control input, applied to the ego-vehicle. After
executing the first optimal control input, we record the next observation
ot+1. We repeat this process until either the scenario reaches its maxi-
mum simulation steps or no collision-free lane change maneuver is found.
This systematic approach constructs our dataset D, which includes ob-
servations and corresponding optimal parameters (ot, θ∗t) from different
scenarios.

Third, we use dataset D to train a general-purpose neural network,
denoted as fφ, with φ representing the network’s parameters. We opti-
mize φ using the following Mean Squared Error (MSE) loss function:

arg min
φ
|fφ(ot)− θ∗t |2

which minimizes the difference between the neural network’s predictions,
fφ(ot), and the optimal parameter θ∗t for a given observation ot.

4.4. Numerical Computations 97

Finally, once the neural network is trained, it can be employed on-
line in the inference phase to handle unseen situations. Given the cur-
rent observations, the model predicts the optimal time to execute a lane
change. It is important to note that the MPC control policy (4.8), used
to construct dataset D, do not take into account explicitly avoidance
constraints. As a consequence, the neural network is trained to provide
an upper-level parameter θ even when generating a collision-free lane
change is impossible. In order to ensure collision-free maneuvers in the
inference phase, the (4.8) is augmented with avoidance constraints (4.11),
providing safety if the lane change maneuver cannot be executed.

4.4 Numerical Computations

In this section, we present numerical computations that demonstrate the
effectiveness of the proposed approach.

First, we consider a setup where all vehicles involved start from fixed
initial conditions. Given the vehicle’s dynamic, we want to plan a trajec-
tory over a fixed time horizon, such that the planned lane-change maneu-
ver is collision-free. To achieve this, we leverage CasADi, an open-source
tool for nonlinear optimization and algorithm differentiation, for imple-
menting problem (4.8). We employ a discretization step of dt = 0.1 s and
a planning horizon tf = 10 s.

Second, we incorporate observation vectors and train an upper-level
policy capable of adaptively generating a lane change maneuver when
feasible. This scenario mimics real-world driving situations where vehicles
must assess the traffic conditions and make dynamic decisions for safe
lane changes. We use a simulation time of ts = 20 s and apply the same
planning settings as in the first setup.

The constraint parameters of problem (4.8) we consider are based on

98 4. Upper-level Policy Search and MPC for Lane Change

[18] and practical driving experience, see Table 4.1.

Parameter Value Units

Maximum velocity (vmax) 13.9 m/s
Minimum velocity (vmin) 0 m/s
Minimum acceleration (amin) −2.0 m/s2

Maximum acceleration (amax) 1.5 m/s2

Maximum curvature (κmax) 0.02 m−1

Minimum lateral offset (wmin) −3.75 m
Maximum lateral offset (wmax) 1.25 m
Obstacle longitudinal safe distance (s̃) 10 m
Obstacle lateral safe distance (w̃) 0.5 m

Table 4.1: Set of constraints parameters for the nonlinear MPC to ad-
dress the lane change problem. The maximum velocity (vmax) sets the
upper limit for translational motion, while the minimum velocity (vmin)
establishes a baseline. Acceleration parameters, encompassing minimum
acceleration (amin) and maximum acceleration (amax), dictate the sys-
tem’s capability for deceleration or acceleration. Trajectory curvature is
bounded by the parameter κmax, guiding the feasibility of navigating
through curved paths. Lateral offsets, denoted as wmin and wmax, repre-
sent the minimum and maximum lateral distances from a reference point.
Safety considerations are incorporated through obstacle distances. The
obstacle longitudinal safe distance (s̃) delineates the required distance in
the longitudinal direction from obstacles, while the obstacle lateral safe
distance (w̃) establishes the minimum lateral distance for safety.

4.4. Numerical Computations 99

4.4.1 Upper-level policy for Lane Change Trajectory
Generation

The ego-vehicle’s initial position is set at (x0, y0) = (80, 0), with heading
angle ψ0 = 0, and a velocity of v0 = 35 km/h (i.e., almost 9.7 m/s). The
FV obstacle starts at the position (xFV (0), yFV (0)) = (130, 0) and moves
along the ego lane at a constant velocity of vFV = 11 km/h (3 m/s),
while the LV obstacle starts at position (xLV (0), yLV (0)) = (37, 2.5)

and travels along the target lane with at a constant velocity of vLV =

30 km/h (8.3 m/s).

In order to provide an example of finding the parameter θ using the
MC-EM algorithm, let us consider the learning progress of the upper-
level policy πω using a fixed value of β = 3, see Figure 4.3. As discussed
before, the algorithm starts by randomly generating a list of I samples of
θi. In the example, I is set to 20. Each θi is drawn from the upper-level
policy πω(θ), which is modeled as Gaussian distribution with parameters
ω = (µ, σ2). In the first iteration, see Figure 4.3b, the variance σ2 is
set to a large value. This high variance encourages a wide exploration of
the θ domain. Then, a set of predicted trajectories (x,u) are obtained
by solving I optimization problems (4.8). These trajectories represent
different potential lane change maneuvers based on the sampled values
of θi. The quality of these sampled trajectories is evaluated using the
return (4.14). Next, the parameters ω (mean and variance) are updated
solving (4.15), see Fig 4.3c and 4.3d. This update process is repeated
until the return no longer converges, see Figure 4.3a.Once convergence is
achieved, the policy can be represented by the bell-shaped distribution
as the one shown in Figure 4.3e (in this case, convergence is achieved
after 9 iterations).

The optimal trajectory is depicted in Figure 4.4. Next, we highlight

100 4. Upper-level Policy Search and MPC for Lane Change

0 2 4 6 8 10 12 14 16 18

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

(a)

(b) (c)

(d) (e)

Figure 4.3: Learning progress of the upper-level policy. The top sub-figure
depicts the return curve with a temperature parameter β = 3.0, while the
bottom sub-figures illustrate the policy distribution at various iteration
stages (0, 3, 6, and 9).

4.4. Numerical Computations 101

0 50 100 150 200 250

-2

-1

0

1

2

3

4

(a)

0 2 4 6 8 10

20

40

60

80

100

120

140

160

180

(b)

0 2 4 6 8 10

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

0 2 4 6 8 10

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(d)

0 2 4 6 8 10

-0.5

0

0.5

1

1.5

(e)

Figure 4.4: Lane change maneuver. The ego-vehicle’s optimal maneuver
(solid green line) is shown, while the maneuvers of the FV and the LV are
depicted in dash-dotted blue and black lines, respectively. The optimal
θ∗ = 6.7 s is highlighted by the vertical orange line.

102 4. Upper-level Policy Search and MPC for Lane Change

some interesting features of the generated trajectory. At first glance, we
can identify the planning of a lane change maneuver. The ego-vehicle
trajectory transitions from its current lane to the target lane, in order
to avoid the FV obstacle, which is moving at a slower velocity. At the
same time, it avoids a potential collision with the LV , which is travel-
ling on the target lane (it is worth noting that the collision avoidance
constraint is always satisfied, see Figure 4.4e). Next, we highlight three
distinct phases. First, at the beginning, the ego-vehicle is positioned a
considerable distance away from the FV . During this phase, the pri-
mary objective is to minimize the cost function Jel, which is associated
with keeping the ego-vehicle aligned with the center-line of its current
lane. The lateral displacement from the center-line is almost zero, see
Figure 4.4c. Second, as depicted by the vertical line in Figure 4.4b, at
around t = 6.7 s, the upper-level policy triggers a lane-change, thus min-
imizing the cost function Jtl. During this phase, the ego-vehicle steers
by applying a negative curvature, see Figure 4.4d, and moves towards
the center-line of the target lane, see Figure 4.4a. Finally, the ego-vehicle
approaches the center-line of the target lane and proceeds along it, thus
confirming the successful execution of the lane change.

4.4.2 Deep Upper-level Policy for Online Scenarios

Next, we want to find an upper-level policy that enables to select online
the parameter for executing a lane change based on the environment
observations. To do this, we leverage a combination of MC-EM algorithm
and self-supervised learning technique as follows.

In order to construct D, we collect 100.000 samples of (ot, θ
∗
t) pairs.

Then, we use D to train a MultiLayer Perceptron (MLP) model. We
employ TensorFlow [65], a versatile machine learning framework, to im-

4.4. Numerical Computations 103

plement the MLP. We chose an architecture that consists of 32 hidden
layers, each comprising 32 units. Rectified Linear Unit (ReLU) nonlin-
earities are applied to these layers to enhance the model’s capacity to
learn and generalize from the data. Finally, ADAM optimization is then
used to update the weights during the backpropagation phase.

We encourage the reader to refer to the video attachment1 related to
the execution of 20 random maneuvers. Next, we highlight some inter-
esting features related to the first two maneuvers of the attached video.

In the first example, depicted in Figure 4.5a, we can identify two
consecutive lane change maneuvers. The scenario begins with both the
ego-vehicle and the FV positioned on the same lane, as illustrated in
Figure 4.5b. However, there is a significant difference in their velocities:
the ego-vehicle and the FV are traveling at 9.7 m/s and at 3.8 m/s,
respectively, see Figure 4.5c. As a result, a decision is made by the deep
upper-level policy at time t = 0 s, leading to a lane change maneuver,
as depicted in Figure 4.5a. After such a lane change, the ego-vehicle is
traveling along the target lane. However, the LV is also traveling on
the same lane (i.e., the target lane) with a velocity of 6.5 m/s. In this
situation, the deep upper-level policy once again intervenes by selecting
an appropriate θ parameter for the MPC. This decision allows the ego-
vehicle to perform another lane change maneuver at about t = 10 s,
effectively avoiding a collision with the LV . It is important to highlight
that during the execution of this maneuver, the avoidance constraint is
always satisfied, see Figure 4.5e. In the second example, illustrated in
Figure 4.6, we can observe a different behavior compared to the previous
case.

1https://www.youtube.com/watch?v=oJjOMCAav7I&ab_channel=

FrancescoLaneve

https://www.youtube.com/watch?v=oJjOMCAav7I&ab_channel=FrancescoLaneve
https://www.youtube.com/watch?v=oJjOMCAav7I&ab_channel=FrancescoLaneve

104 4. Upper-level Policy Search and MPC for Lane Change

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

4

(a)

0 5 10 15

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

0 5 10 15

0

2

4

6

8

10

12

14

16

18

(c)

0 5 10 15

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(d)

0 5 10 15

-0.5

0

0.5

1

1.5

(e)

Figure 4.5: Double lane change maneuver. The ego-vehicle’s optimal ma-
neuver is shown in solid green line. The maneuvers of the FV and the
LV are in dash-dotted blue and black lines, respectively.

4.4. Numerical Computations 105

0 50 100 150 200 250 300 350

-2

-1

0

1

2

3

4

(a)

0 5 10 15

60

80

100

120

140

160

180

200

220

240

260

(b)

0 5 10 15

0

2

4

6

8

10

12

14

16

18

(c)

0 5 10 15

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d)

0 5 10 15

-0.5

0

0.5

1

1.5

(e)

Figure 4.6: Longitudinal avoidance maneuver. The ego-vehicle’s optimal
maneuver is shown in solid green line. The maneuvers of the FV and the
LV are in dash-dotted blue and black lines, respectively.

106 4. Upper-level Policy Search and MPC for Lane Change

In this case, the initial positions (see Figure 4.6b) and velocities (see
Figure 4.6c) of the ego-vehicle and the two obstacles do not allow the
generation of a collision-free lane change trajectory. Indeed, there is no
sufficient time-space gap available in order to perform a safe lane change
maneuver. In such a case, in order to keep a safety distance from the FV ,
the ego-vehicle decreases its velocity by applying a negative acceleration,
see Figure 4.6d. As expected, also in this case, the safety distance imposed
by the avoidance constraint is always satisfied, see Figure 4.6e.

This last scenario highlights the essential requirement to include hard
collision avoidance constraints in our proposed formulation. This con-
straint becomes particularly crucial in situations where the upper-level
policy cannot feasibly determine an appropriate θ to ensure collision-free
maneuver.

Conclusions

In this dissertation we developed novel methods based on nonlinear opti-
mal control techniques for trajectory generation of autonomous vehicles.
These methods have been developed to enhance the capabilities of au-
tonomous vehicles in navigating dynamic environments, with a primary
focus on improving safety and passenger comfort.

In the first part of the dissertation, we introduced a family of reduced-
order car models that were tailored to facilitate trajectory planning strate-
gies and evaluate these strategies in simulation. We derived the equations
of motion for both kinematic and dynamic bicycle models, where the lat-
ter included tire modeling for a more realistic representation of vehicle
behavior. Furthermore, we redefined the kinematic model in terms of
longitudinal and lateral coordinates, simplifying the equations of motion
and aligning them with human perception and control of vehicle motion.

In the second part we proposed a strategy for the trajectory genera-
tion in a merging scenario with non-cooperative obstacles. The proposed
formulation takes advantage of the use of transverse coordinates and the
virtual target vehicle approach to capture interesting dynamics features.
In particular, an optimization strategy based on optimal control problem
has been developed to generate a feasible merging trajectory, and at the
same time, guarantees collision avoidance in the presence of obstacles.
We evaluated the proposed strategy in a simulated scenario and showed

108 Conclusions

that the proposed approach can successfully generate a merging trajec-
tory, allowing the autonomous vehicle to perform a safe merging even in
presence of multiple obstacles.

As the main contribution of this dissertation, we proposed a real-time
strategy to address the problem of generating feasible trajectories for au-
tonomous vehicles in presence of obstacles. In particular, we i) re-write
the vehicle dynamics with respect to the transverse coordinates, ii) pro-
pose a novel avoidance constraint formulation and, iii) set up a maneuver
regulation-based optimal control strategy in the transverse coordinates.
We proved the effectiveness of the proposed approach in a simulated sce-
nario and showed that the proposed constraint is able to avoid moving
obstacles. Moreover, the optimal maneuvers are used as reference for a
low-lever controller of a real vehicle. The integration of the proposed
collision-free maneuver generation strategy on a real vehicle shows the
feasibility of the computed maneuvers even in presence of unmodeled
dynamic effects.

Finally we presented a novel approach to tackle the lane change ma-
neuver challenge by framing it as a parametric model predictive control
problem. Unlike conventional methods that decouple decision-making
and planning, our approach integrates upper-level policy search with
model predictive control-based low-level policy generation to optimize the
lane change strategy effectively. We employed a weighted maximum likeli-
hood approach for policy learning and incorporated self-supervised learn-
ing techniques to adapt to dynamic, online scenarios, ensuring adapt-
ability to unexpected environmental changes. The numerical results pre-
sented demonstrate the efficacy of our approach, underscoring its poten-
tial to enhance vehicle maneuvering in dynamic environments.

The results of this dissertation were presented in the following publi-
cations [39, 66, 67].

Appendix A

The Projection Operator-based
Newton Method

We recall the Projection Operator-based Newton method for trajectory
optimization [45] and [68], used to generate optimal maneuvers for the
collision-fee algorithm presented in Chapter 3. The problem under con-
sideration is an optimal control problem, which can be formulated as
follows:

min
x̄,ū

`(x̄, ū) :=

∫ sf

0

J(x̄(s), ū(s), s)ds+m(x̄(sf))

s.t x̄′ = f(x̄, ū, s) x̄(0) = x0 .

(A.1)

The optimal control problem (A.1) can be reformulated as an uncon-
strained optimization problem by introducing a projection operator P :

P : ξ = (ᾱ(·), µ̄(·)) 7→ τ = (x̄(·), ū(·)) .

This operator maps curves ξ = (ᾱ(·), µ̄(·)), that may not satisfy the vehi-
cle dynamic, to bounded trajectories τ = (x̄(·), ū(·)) of a given manifold
T . This operator allows the original constrained optimization problem

110 A. The Projection Operator-based Newton Method

(A.1) to be transformed into an equivalent unconstrained optimization
problem, expressed as follows:

min
ξ∈T

`(ξ) = min
ξ
`(P(ξ)) . (A.2)

The projection operator is defined as follows:

x̄(s) = f(x̄, ū, s), x̄(0) = x0

ū(s) = µ̄(s) +K(s)(ᾱ(s)− x̄(s)) .
(A.3)

The constrained and unconstrained optimization problems are equiv-
alent in the sense that if a trajectory ξ represents an unconstrained local
minimum of (A.1), then ξ∗ = P (ξ) is a constrained local minimum of
the modified problem (A.2), see [45]. When applying standard numerical
optimization techniques, such as the Newton method or quasi-Newton
methods, within finite-dimensional spaces, a descent method for trajec-
tory optimization is employed to minimize the cost functional. In this
context, the cost functional ˜̀(ξ) is defined as follows:

˜̀(ξ) := `(P (ξ)) (A.4)

A geometric representation of the projection operator is shown in Fig-
ure A.1. The process of minimizing the trajectory functional involves an
iterative approach as presented in Algorithm 3. In this context, ξi de-
notes the current trajectory iterate, ξ0 represents the initial trajectory,
and ζ 7→ ∇˜̀(ξi) · ζ and ζ 7→ ∇2 ˜̀(ξi) · (ζ, ζ) are respectively the first and
second Fréchet differentials of the functional ˜̀(ξ) = `(P (ξ)) evaluated at
the trajectory ξi.

The algorithm has the structure of a standard Newton method used
for minimizing unconstrained functions. Its core components include the
formulation of the projection operator through the design of the matrix

111

(a) trajectory manifold (b) search direction

(c) line search (d) update

Figure A.1: Geometric representation of the projection operator [1].

K and the computation of derivatives for ˜̀(·) in order to determine a de-
scent direction. Notably, these crucial steps entail solving linear quadratic
optimal control problems, as extensively discussed in [45].

Algorithm 3 Projection Operator Newton Method
Initialize: Choose initial guess ξ0 ∈ T
while not converged do

Solve the LQR for Ki defining P about ξi
Search for descent direction

ζi = arg min
ζ∈TξiT

∇˜̀(ξi) · ζ +
1

2
∇2 ˜̀(ξi) · (ζ, ζ)

Compute step size via line search γi = arg minγ∈(0,1]
˜̀(ξi + γζi)

Project and update ξi+1 = ξi + P(ξi + γζi)

end while

Appendix B

Multiple Shooting Method for
Optimal Control

We recall the multiple shooting method [2], a powerful numerical tech-
nique, used for solving optimal control problems in Chapter 2 and 4. The
key to the multiple shooting method lies in dividing the continuous time
interval of the optimal control problem into smaller sub-intervals, effec-
tively transforming the problem into a nonlinear programming problem.

Let us begin with a general form of the optimal control problem:

min
x(·) u(·)

∫ tf

0

J(x(τ),u(τ)) dτ +m(x(tf))

s.t. x′(t) = f(x(t),u(t)) , x(0) = x0 .

(B.1)

The Multiple Shooting Method proceeds as follows, see Algorithm 4.
The first step is to divide the continuous-time interval, usually de-

noted as [0, tf], into a finite number of subintervals, typically denoted as
N . This results in a sequence of time points, such as t0, t1, . . . , tN . These
time points serve as the key nodes where the trajectory of the system
will be approximated.

114 B. Multiple Shooting Method for Optimal Control

Next, the original optimal control problem (B.1), is reformulated as
an nonlinear programming problem over the sub-intervals. For each sub-
interval i (ranging from 0 to N − 1), a local trajectory (xi(·), ui(·)) is
defined. These local trajectory aims to approximate the system’s behavior
within the corresponding sub-interval.

To ensure the continuity of the trajectory, shooting constraints are
introduced. These constraints link the final state of one sub-interval to
the initial state of the next sub-interval. Mathematically, for each i from
0 to N − 1, constraints are imposed as:

xi(ti+1) = xi+1(ti+1) .

An objective function for the nonlinear programming problem is con-
structed based on the cost function J from the original optimal control
problem. This objective function is typically the sum of costs over all
sub-intervals, aiming to minimize the overall cost.

In order to initiate the optimization process, an initial guess for the
initial trajectory is required. This initial guess is critical, as the opti-
mization process will iteratively refine it to approach the true optimal
solution.

Then, the nonlinear programming problem, with shooting constraints
and the constructed objective function, is solved for each sub-interval.
The goal is to find trajectories (xi,ui) that minimize the cost while
satisfying the continuity constraints.

After solving the problem for each sub-interval, the obtained solution
is used to update the overall trajectory (x,u). This iterative update
refines the approximation of the optimal trajectory.

Finally, convergence criteria are established to determine when to
terminate the iterations. Common criteria include monitoring the change
in the objective function or ensuring that the shooting constraints are

115

satisfied within a predefined tolerance. Once these criteria are met, the
optimization process is considered converged, and the obtained solution
represents an approximation of the optimal trajectory.

Algorithm 4 Multiple Shooting Method for Optimal Control
Divide the time interval [0, T] into N sub-intervals.
Initialize an approximation for the trajectory: (x0,u0).
Formulate the optimal control problem as a nonlinear programming
problem over sub-intervals.
for i = 0 to N − 1 do

Define local state and control trajectories: (xi,ui).
Introduce shooting constraints to ensure continuity:

xi(ti+1) = xi+1(ti+1)

end for
Construct the objective function based on the cost function.
Solve the nonlinear programming problem for each sub-interval to find
(xi,ui).
repeat

Update the trajectory (x,u) using the nonlinear programming
problem solutions.

Solve the nonlinear programming problem problem again to refine
the trajectories.
until Convergence criteria are met.

Bibliography

[1] A Pedro Aguiar, Florian A Bayer, John Hauser, Andreas J Häusler,
Giuseppe Notarstefano, Antonio M Pascoal, Alessandro Rucco, and
Alessandro Saccon. Constrained optimal motion planning for au-
tonomous vehicles using PRONTO. In Sensing and control for au-
tonomous vehicles, pages 207–226. Springer, 2017.

[2] Moritz Diehl, Hans Georg Bock, Holger Diedam, and P-B Wieber.
Fast direct multiple shooting algorithms for optimal robot control.
In Fast motions in biomechanics and robotics, pages 65–93. Springer,
2006.

[3] Alessandro Rucco, A. Pedro Aguiar, and John Hauser. Trajec-
tory optimization for constrained UAVs: A virtual target vehicle
approach. In 2015 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 236–245. IEEE, 2015.

[4] Sara Spedicato and Giuseppe Notarstefano. Minimum-time tra-
jectory generation for quadrotors in constrained environments.
IEEE Transactions on Control Systems Technology, 26(4):1335–
1344, 2017.

[5] Alessandro Rucco, Giuseppe Notarstefano, and John Hauser. An
efficient minimum-time trajectory generation strategy for two-track

118 Bibliography

car vehicles. IEEE Transactions on Control Systems Technology,
23(4):1505–1519, 2015.

[6] Ivo Batkovic, Mario Zanon, Mohammad Ali, and Paolo Falcone.
Real-time constrained trajectory planning and vehicle control for
proactive autonomous driving with road users. In 2019 18th Euro-
pean Control Conference (ECC), pages 256–262. IEEE, 2019.

[7] Wenjing Cao, Masakazu Mukai, and Taketoshi Kawabe. Merging
trajectory generation method using real-time optimization with en-
hanced robustness against sensor noise. Artificial Life and Robotics,
24(4):527–533, 2019.

[8] Francesco Borrelli, Paolo Falcone, Tamas Keviczky, Jahan Asgari,
and Davor Hrovat. Mpc-based approach to active steering for
autonomous vehicle systems. International journal of vehicle au-
tonomous systems, 3(2-4):265–291, 2005.

[9] Mario Zanon, Janick V Frasch, Milan Vukov, Sebastian Sager, and
Moritz Diehl. Model predictive control of autonomous vehicles. In
Optimization and optimal control in automotive systems, pages 41–
57. Springer, 2014.

[10] Valerio Turri, Ashwin Carvalho, Hongtei Eric Tseng, Karl Henrik Jo-
hansson, and Francesco Borrelli. Linear model predictive control for
lane keeping and obstacle avoidance on low curvature roads. In 16th
international IEEE conference on intelligent transportation systems,
pages 378–383. IEEE, 2013.

[11] Alessandro Beghi, Mattia Bruschetta, and Fabio Maran. A real time
implementation of mpc based motion cueing strategy for driving

Bibliography 119

simulators. In 2012 IEEE 51st IEEE conference on decision and
control (CDC), pages 6340–6345. IEEE, 2012.

[12] Rajesh Rajamani. Vehicle dynamics and control. Springer Science
& Business Media, 2011.

[13] Thomas Gillespie. Fundamentals of vehicle dynamics. SAE interna-
tional, 2021.

[14] William F Milliken, Douglas L Milliken, and L Daniel Metz. Race
car vehicle dynamics, volume 400. SAE international Warrendale,
1995.

[15] Florian Bayer and John Hauser. Trajectory optimization for vehicles
in a constrained environment. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pages 5625–5630. IEEE, 2012.

[16] J-A Serret. Sur quelques formules relatives à la théorie des courbes
à double courbure. Journal de mathématiques pures et appliquées,
16:193–207, 1851.

[17] F Frenet. Sur les courbes à double courbure. Journal de mathéma-
tiques pures et appliquées, 17:437–447, 1852.

[18] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Bor-
relli. Kinematic and dynamic vehicle models for autonomous driving
control design. In 2015 IEEE intelligent vehicles symposium (IV),
pages 1094–1099. IEEE, 2015.

[19] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud
de La Fortelle. The kinematic bicycle model: A consistent model for
planning feasible trajectories for autonomous vehicles? In 2017 IEEE
intelligent vehicles symposium (IV), pages 812–818. IEEE, 2017.

120 Bibliography

[20] Egbert Bakker, Lars Nyborg, and Hans B Pacejka. Tyre modelling
for use in vehicle dynamics studies. SAE Transactions, pages 190–
204, 1987.

[21] Hans Pacejka. Tire and vehicle dynamics. Elsevier, 2005.

[22] Carlos Hidalgo, Ray Lattarulo, Carlos Flores, and Joshué Pérez
Rastelli. Platoon merging approach based on hybrid trajectory plan-
ning and cacc strategies. Sensors, 21(8):2626, 2021.

[23] Robert Hult, Mario Zanon, Sébastien Gros, and Paolo Falcone. Op-
timal coordination of automated vehicles at intersections with turns.
In 2019 18th European Control Conference (ECC), pages 225–230.
IEEE, 2019.

[24] Ezequiel Gonzale Debada and Denis Gillet. Virtual vehicle-based
cooperative maneuver planning for connected automated vehicles at
single-lane roundabouts. IEEE Intelligent Transportation Systems
Magazine, 10(4):35–46, 2018.

[25] Robert Hult, Mario Zanon, Sébastien Gros, and Paolo Falcone. A
semidistributed interior point algorithm for optimal coordination of
automated vehicles at intersections. IEEE Transactions on Control
Systems Technology, 2021.

[26] Ivo Batkovic, Mohammad Ali, Paolo Falcone, and Mario Zanon.
Safe trajectory tracking in uncertain environments. arXiv preprint
arXiv:2001.11602, 2020.

[27] A. Pedro Aguiar and Joao P Hespanha. Trajectory-tracking and
path-following of underactuated autonomous vehicles with paramet-
ric modeling uncertainty. IEEE transactions on automatic control,
52(8):1362–1379, 2007.

Bibliography 121

[28] A. Pedro Aguiar, Joao P Hespanha, and Petar V Kokotović. Per-
formance limitations in reference tracking and path following for
nonlinear systems. Automatica, 44(3):598–610, 2008.

[29] Alessandro Saccon, John Hauser, and Alessandro Beghi. A vir-
tual rider for motorcycles: Maneuver regulation of a multi-body ve-
hicle model. IEEE Transactions on Control Systems Technology,
21(2):332–346, 2012.

[30] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimiza-
tion. Optimal Control Applications and Methods, 32(3):298–312,
2011.

[31] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka,
Hans Georg Bock, and Moritz Diehl. qpoases: A parametric active-
set algorithm for quadratic programming. Mathematical Program-
ming Computation, 6(4):327–363, 2014.

[32] David González, Joshué Pérez, Vicente Milanés, and Fawzi
Nashashibi. A review of motion planning techniques for automated
vehicles. IEEE Transactions on intelligent transportation systems,
17(4):1135–1145, 2015.

[33] Steven Diamond and Stephen Boyd. CVXPY: A python-embedded
modeling language for convex optimization. The Journal of Machine
Learning Research, 17(1):2909–2913, 2016.

[34] Andrea Zanelli, Alexander Domahidi, Juan Jerez, and Manfred
Morari. FORCES NLP: an efficient implementation of interior-point
methods for multistage nonlinear nonconvex programs. Interna-
tional Journal of Control, 93(1):13–29, 2020.

122 Bibliography

[35] Michael A Patterson and Anil V Rao. GPOPS-II: A MATLAB soft-
ware for solving multiple-phase optimal control problems using hp-
adaptive gaussian quadrature collocation methods and sparse non-
linear programming. ACM Transactions on Mathematical Software,
41(1):1–37, 2014.

[36] John Canny. The complexity of robot motion planning. MIT press,
1988.

[37] Ugo Rosolia, Stijn De Bruyne, and Andrew G Alleyne. Autonomous
vehicle control: A nonconvex approach for obstacle avoidance. IEEE
Transactions on Control Systems Technology, 25(2):469–484, 2016.

[38] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli.
Optimization-based collision avoidance. IEEE Transactions on Con-
trol Systems Technology, 29(3):972–983, 2020.

[39] Francesco Laneve, Alessandro Rucco, and Massimo Bertozzi. A tra-
jectory optimization strategy for merging maneuvers of autonomous
vehicles. In APCA International Conference on Automatic Control
and Soft Computing, pages 3–14. Springer, 2022.

[40] Michael T Wolf and Joel W Burdick. Artificial potential functions
for highway driving with collision avoidance. In IEEE International
Conference on Robotics and Automation, pages 3731–3736, 2008.

[41] Yong Koo Hwang, Narendra Ahuja, et al. A potential field approach
to path planning. IEEE transactions on robotics and automation,
8(1):23–32, 1992.

[42] Sara Spedicato, Antonio Franchi, and Giuseppe Notarstefano. From
tracking to robust maneuver regulation: An easy-to-design approach

Bibliography 123

for VTOL aerial robots. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 2965–2970. IEEE, 2016.

[43] John Hauser and Rick Hindman. Maneuver regulation from tra-
jectory tracking: Feedback linearizable systems. IFAC Proceedings
Volumes, 28(14):595–600, 1995.

[44] Andreas J Häusler, Alessandro Saccon, António Pedro Aguiar, John
Hauser, and António M Pascoal. Energy-optimal motion planning
for multiple robotic vehicles with collision avoidance. IEEE Trans-
actions on Control Systems Technology, 24(3):867–883, 2015.

[45] John Hauser. A projection operator approach to the optimization of
trajectory functionals. IFAC Proceedings Volumes, 35(1):377–382,
2002.

[46] Alberto Broggi, Stefano Debattisti, Paolo Grisleri, and Matteo Pan-
ciroli. The deeva autonomous vehicle platform. In 2015 IEEE In-
telligent Vehicles Symposium (IV), pages 692–699. IEEE, 2015.

[47] Alberto Broggi, Paolo Medici, Paolo Zani, Alessandro Coati, and
Matteo Panciroli. Autonomous vehicles control in the vislab in-
tercontinental autonomous challenge. Annual Reviews in Control,
36(1):161–171, 2012.

[48] Karsten Ahnert and Mario Mulansky. Odeint–solving ordinary dif-
ferential equations in c++. In AIP Conference Proceedings, volume
1389, pages 1586–1589. American Institute of Physics, 2011.

[49] Wen Hu, Zejian Deng, Dongpu Cao, Bangji Zhang, Amir Khajepour,
Lei Zeng, and Yang Wu. Probabilistic lane-change decision-making
and planning for autonomous heavy vehicles. IEEE/CAA Journal
of Automatica Sinica, 9(12):2161–2173, 2022.

124 Bibliography

[50] Xuting Duan, Chen Sun, Daxin Tian, Jianshan Zhou, and Dongpu
Cao. Cooperative lane-change motion planning for connected and
automated vehicle platoons in multi-lane scenarios. IEEE Transac-
tions on Intelligent Transportation Systems, 2023.

[51] Juqi Hu, Youmin Zhang, and Subhash Rakheja. Adaptive lane
change trajectory planning scheme for autonomous vehicles under
various road frictions and vehicle speeds. IEEE Transactions on
Intelligent Vehicles, 8(2):1252–1265, 2022.

[52] Suiyi He, Jun Zeng, Bike Zhang, and Koushil Sreenath. Rule-based
safety-critical control design using control barrier functions with ap-
plication to autonomous lane change. In 2021 American Control
Conference (ACC), pages 178–185. IEEE, 2021.

[53] Charlott Vallon, Ziya Ercan, Ashwin Carvalho, and Francesco Bor-
relli. A machine learning approach for personalized autonomous lane
change initiation and control. In 2017 IEEE Intelligent vehicles sym-
posium (IV), pages 1590–1595. IEEE, 2017.

[54] Zhaolun Li, Jingjing Jiang, and Wen-Hua Chen. Automatic lane
change maneuver in dynamic environment using model predictive
control method. In 2020 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 2384–2389. IEEE, 2020.

[55] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A
survey on policy search for robotics. Foundations and Trends® in
Robotics, 2(1–2):1–142, 2013.

[56] Shuojie Mo, Xiaofei Pei, and ChaoxianWu. Safe reinforcement learn-
ing for autonomous vehicle using monte carlo tree search. IEEE

Bibliography 125

Transactions on Intelligent Transportation Systems, 23(7):6766–
6773, 2021.

[57] Jun Chen, Xiangyu Meng, and Zhaojian Li. Reinforcement learning-
based event-triggered model predictive control for autonomous ve-
hicle path following. In 2022 American Control Conference (ACC),
pages 3342–3347. IEEE, 2022.

[58] Arun Muraleedharan, Hiroyuki Okuda, and Tatsuya Suzuki. Real-
time implementation of randomized model predictive control for
autonomous driving. IEEE Transactions on Intelligent Vehicles,
7(1):11–20, 2021.

[59] Flavia Sofia Acerbo, Herman Van der Auweraer, and Tong Duy Son.
Safe and computational efficient imitation learning for autonomous
vehicle driving. In 2020 American Control Conference (ACC), pages
647–652. IEEE, 2020.

[60] Yunlong Song and Davide Scaramuzza. Learning high-level policies
for model predictive control. In 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 7629–7636.
IEEE, 2020.

[61] Yunlong Song and Davide Scaramuzza. Policy search for model pre-
dictive control with application to agile drone flight. IEEE Trans-
actions on Robotics, 38(4):2114–2130, 2022.

[62] Jens Kober and Jan Peters. Policy search for motor primitives in
robotics. Advances in neural information processing systems, 21,
2008.

126 Bibliography

[63] Jan Peters and Stefan Schaal. Applying the episodic natural actor-
critic architecture to motor primitive learning. In ESANN, pages
295–300, 2007.

[64] Gerhard Neumann and Jan Peters. Fitted q-iteration by advantage
weighted regression. Advances in neural information processing sys-
tems, 21, 2008.

[65] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. {TensorFlow}: a system for {Large-
Scale} machine learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages 265–283, 2016.

[66] Francesco Laneve, Alessandro Rucco, and Massimo Bertozzi. A real-
time collision-free maneuver generation algorithm for autonomous
driving. European Journal of Control, page 100865, 2023.

[67] Francesco Laneve, Alessandro Rucco, and Massimo Bertozzi. A hy-
brid approach combining upper-level policy search and mpc for lane
change of autonomous vehicles. In 2024 European Control Confer-
ence (ECC) (under review), 2024.

[68] John Hauser and David G Meyer. The trajectory manifold of a non-
linear control system. In Proceedings of the 37th IEEE Conference
on Decision and Control (Cat. No. 98CH36171), volume 1, pages
1034–1039. IEEE, 1998.

Acknowledgements

I would like to express my deepest gratitude to who have played instru-
mental roles in my journey towards completing my Ph.D.

First and foremost, I extend my heartfelt thanks to my Ph.D advisor,
Dr. Alessandro Rucco, for his unwavering support, guidance, and men-
torship throughout my doctoral research. Your expertise, patience, and
dedication have been invaluable, and I am profoundly grateful for the
opportunities you provided to me.

I have also to express my gratitude to my tutor, Prof. Massimo
Bertozzi, for his support throughout my academic journey.

I would like to acknowledge VisLab, the company where I conducted
my research, for their invaluable resources and collaborative environment.
The opportunities to work on real-world pioneer research and engage
with industry professionals have enriched my academic experience and
provided a broader perspective on my research.

To my parents, Giuseppe and Maria Letizia, my siblings, Eleonora,
Giovanni, and Federica, and my sister form another mother, Miriana, I
extend my sincere appreciation for always believing in me and providing
the encouragement and stability I needed. You have been my constant
source of love and support throughout this challenging journey.

To Erika, I am deeply grateful for your unwavering love, patience,
and understanding. Your emotional support and belief in me have been a

128 Acknowledgements

driving force during the most trying moments of my Ph.D. I look forward
to our shared future and the adventures we’ll embark on together.

Lastly, I would like to thank all the friends and colleagues who have
been a part of my academic and personal life, offering support, cama-
raderie, and shared experiences that have enriched my journey.

This journey would not have been possible without your collective
support. I am sincerely grateful for your contributions to my academic
and personal growth.

	Introduction
	List of Symbols
	Vehicle Models
	Introduction
	Coordinate Systems
	Longitudinal and Transverse Coordinates
	Virtual Target Vehicle

	Kinematic Bicycle Model
	Longitudinal and Transverse Coordinate Formulation
	Virtual Target Vehicle Formulation
	Spatial Formulation

	Dynamic Bicycle Model
	Tire model

	Optimal Control-based Strategy for Merging Maneuvers
	Introduction
	Problem Formulation
	The Motivating Scenario
	Constrained Ego-vehicle Model
	Longitudinal and Transverse Coordinates and Virtual Target Vehicle

	Optimal Control Problem Formulation
	Numerical Computations
	Merging with one obstacle
	Merging into traffic

	Real-time Maneuvers Generation Algorithm
	Introduction
	Problem Formulation
	Ego-vehicle Model and Longitudinal Coordinate Parameterization
	Obstacle Avoidance Formulation

	Maneuver Generation Strategy
	Numerical Computations
	Lateral Dynamic Avoidance Maneuver
	Longitudinal Dynamic Avoidance Maneuver

	Validation
	Simulation Results
	Experimental Results

	Discussion

	Upper-level Policy Search and MPC for Lane Change
	Introduction
	Problem Formulation
	Ego-Vehicle Motion
	Model Predictive Control Formulation

	Upper-level Policy Learning
	Deep Upper-Level Policy

	Numerical Computations
	Upper-level policy for Lane Change Trajectory Generation
	Deep Upper-level Policy for Online Scenarios

	Conclusions
	The Projection Operator-based Newton Method
	Multiple Shooting Method for Optimal Control
	Bibliography
	Acknowledgements

