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1 CHAPTER 1 - INTRODUCTION 

1.1 BACKGROUND AND MOTIVATIONS 

In the last three decades photogrammetry has greatly benefited from advancements in 

computer vision, to the extent that the boundary between the two disciplines has become 

increasingly blurred. During the early 1990s, computer vision developed Structure from 

Motion (SfM) techniques [1] [2]. SfM refers to the automated reconstruction of a three-

dimensional object from images taken from multiple perspectives, without prior knowledge 

of the interior or exterior orientation parameters of the cameras [3]. SfM brought a great 

improvement to automatic photogrammetric block orientation and was soon adopted as 

standard in photogrammetric software packages, though the final estimation of the interior 

and exterior orientation parameters is still performed by the bundle block adjustment. The 

high degree of automation offered by computer vision algorithms, aided by the increasing 

processing power of modern computers, brought photogrammetry to a prominent position in 

various applications in civil and environmental engineering that require extensive use of 

digital metric data. Close-range photogrammetry has emerged as a powerful and efficient 

approach for 3D topographic modeling [4], as the reliability of data obtained from 

overlapping stereo pairs or larger image blocks have significantly improved [5] [6] also 

thanks to methodologies for the analytical calibration of non-metric cameras [7] [8]. 

The versatility of photogrammetry has long been widely recognized in the engineering field, 

and the geo-technical field was no exception. [9].Within the framework of geo-technical 

engineering, a particularly challenging environment are quarries. Since the 2000, with the 

introduction of rock stability analysis based on high resolution DTM [10] [11], 

photogrammetry and laser scanning have competed to become the most efficient technology 

to provide such DTMs [12]. In quarries, ensuring the safety and stability of walls and ceilings 

is a critical task; though the above-mentioned stability analysis aims to a global assessment 

of the rock face, this is not the only relevant information needed to ensure safety. In 

particular, rock collapses [13] [14] [15], [16] of various dimensions may pose a significant 

threat to both workers in the quarry and the surrounding environment. 

In dynamic workplace environments such as quarries and civil construction sites, workers 

are exposed to a wide variety of risks. Surveying and monitoring activities are necessary to 
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provide up-to-date data to design appropriate safety measures. Specifically, rockfalls are 

regarded as primary factors of human injury, fatalities, and damage to both personnel and 

equipment in quarries, as excavation walls often exhibit limited geo-mechanical stability as 

they are continuously evolving due to excavation processes. Moreover, rock excavation 

techniques employ highly intrusive methods such as blasting, which can potentially result in 

uncontrolled debris detachments, though providing cost reduction and improved efficiency 

[17]. Monitoring rock mass stability allows developing predictive models that can facilitate 

comprehensive risk assessments, supplying critical information [18].  

In this regard, photogrammetry and LiDAR have demonstrated to be a powerful 

investigation tools [19] [20] . 

Fixed stereo monitoring systems have been increasingly used for stability analysis in quarry 

environments [21]. They consist of two or more cameras installed at fixed locations in the 

quarry to capture stereo images of the area of interest. Compared to other methodologies 

(TLS for instance), they have the advantage of being a lower-cost solution but still entail 

other difficulties. The main issues (which is nonetheless shared with TLS) regards the 

reliability of autonomous operation [22]. Another is the careful geometric network design 

necessary to obtain reliable data, as the image-based 3D reconstruction cannot enjoy the 

same level of redundancy of observations of aerial blocks. In particular, ensuring an optimal 

base-to-distance ratio and the convergence of the optical axes (to ensure good overlap 

between images) is one of the most relevant points in designing a photogrammetric fixed 

monitoring system [22], [23]. Though to maintain stability of optical parameters (camera 

interior orientation parameters) has proven to be challenging, fixed systems have emerged 

as a viable option in the geoscience monitoring field, with a growing number of examples 

provided in different publications in the recent years [24] [25]. By comparing images and 

3D Digital Surface Models (DSM) over time, changes in the quarry environment, such as 

rock collapses, can be detected and quantified [26].  

However, detecting rockfalls from images or 3D models involves substantial effort, typically 

by skilled operators. Some degree of subjective evaluation of situations can be expected, 

given the constantly shifting and frequently unpredictable characteristics of collapses, which 

complicates their identification. Another concern arises from measurement noise, which can 

further hinder the accurate recognition of such phenomena in surveys spanning multiple time 

periods. 
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On the purpose of automating such tasks, neural networks, a type of machine learning 

algorithm, are considered to have the adequate potential to address this issue. They are 

capable of processing large amounts of data and identifying patterns that can be used to 

predict future events [27].  

In the context of rockfall hazard assessment, neural networks can help process and analyze 

data from various sources, to predict potential rock collapses [28]. This predictive capability 

can aid in the development of management strategies to mitigate the risks associated with 

rockfall hazards. 

However, the performance of neural networks in rockfall identification largely depends on 

the availability of high-quality, diverse, and representative datasets. One of the major 

challenges associated with neural networks is the (sometime) limited availability of data for 

the training and evaluation phases. Collecting training data is often a difficult and time-

consuming task, as all data of interest must be accurately labeled. Labeling data is a time-

consuming and costly process that requires experts and is prone to errors, especially in 

complex identification tasks. A recent study illustrated the development of a dataset for rock 

collapse classification in point clouds, which leverages five years of LiDAR acquired data 

for a single rock face in Canada [29]. This exemplifies the considerable time and effort 

necessary for manual classification and labeling of training datasets in specialized domains, 

where human error may even notably impact the accuracy of the expected results. 

To overcome these challenges, researchers have explored alternative methods for generating 

synthetic training data that are able to partially or fully replicate the phenomenon of interest 

[30]. The main advantage of simulated datasets is the ability to create different scenarios 

within a controlled environment, which is essential for validating and optimizing neural 

network models [31]. In addition, simulated datasets can be generated in large quantities, 

overcoming the limitations of real data, which can be expensive or difficult to obtain in 

certain circumstances [32] [33]. 

The process of simulating data sets to detect changes, nonetheless, presents numerous 

challenges. A major one is to ensure that the synthetic data are very similar to the real data 

in terms of complexity and diversity to ensure a proper generalization of the models [34] 

[35] [36] [37]. This requires the use of appropriate simulation methods and techniques able 

to mimic the characteristics of real-world phenomena as well as a deep analysis of the 

environment to be simulated. On the other hand, it is indeed important to balance the 
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diversity of the training datasets in order to properly allow the network to generalize the 

given problem. 

Various techniques have been proposed for simulating neural network datasets. As an 

example, Variational Autoencoders and Generative Networks have been used to generate 

realistic and diverse synthetic data [38] [39]: CycleGAN, a type of generative model, has 

been used to generate synthetic thermal images for remote sensing to train neural networks 

[40]. 

The simulation of data in the photogrammetric domain needs to consider the different 

sources of noise which may affect the accuracy and the reliability of the surveys, such as 

image acquisition, camera calibration, and image matching [41]. Noise may arise from 

different factors such as atmospheric conditions, sensor noise, and the presence of operating 

machines such as diggers and trucks, which may produce unexpected vibrations of the 

camera stations [42] in fixed photogrammetric systems operating in open pits. Furthermore, 

camera calibration errors, including inaccurate lens distortion models and interior orientation 

parameters estimation, can contribute to errors in the 3D reconstruction. Repetitive textures, 

occlusions, and illumination changes are other factors that can introduce noise during the 

image matching and point cloud generation stages [43]. 

This dissertation is dedicated to the development and implementation of a photogrammetric 

simulation framework for generating training data for neural networks applied to detect and 

localize rockfall events at multiple scales on excavation walls.  

The collapse identification and classification is founded upon the analysis of raster 

difference maps depicting the temporal variations in the 3D model of the wall derived from 

photogrammetric surveys. The simulated data for the neural network, therefore, must 

accurately represent real-world samples and its generation is a critical aspect from both a 

theoretical and practical standpoint. 

To ensure the effectiveness of the training dataset, the simulation must consider the actual 

conditions under which the photogrammetric monitoring system operates on the field. 

Consequently, it is essential to accurately represent the noise sources of the photogrammetric 

surveys. 

This project is carried out in collaboration with the Centre for Geotechnical Science and 

Engineering at the University of Newcastle (NSW, Australia), which is testing a fixed stereo 

photogrammetric system [22] for monitoring purposes in a quarry environment in several 
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sites (NSW, Australia). However, the methodology presented in this thesis may have wider 

implications in civil structural monitoring, for instance in the detection of cracks and spalling 

in various types of structures. 

 

1.2 STRUCTURE OF THE DISSERTATION 

This dissertation consists of five chapters. These chapter are structured as follows: 

1. Chapter 1 explains the motivation for the research together with an overview of the 

topics covered. 

2. Chapter 2 will provide the theoretical aspects and the state of the art of neural networks, 

with a deeper insight on convolutional neural networks and on their applicability to 

monitoring.  

3. Chapter 3 will present the framework for the simulation of rock collapses and will 

illustrate the detailed structure of the application.  

4. Chapter 4 will provide an overview on the methodologies carried for the calibration 

and validation of the simulation software, which will be compared with real 

photogrammetric surveys data carried in collaboration with the University of Newcastle 

(NSW, Australia). 

5. Chapter 5 will be dedicated to the training of the neural network on simulated datasets 

and the evaluation of the results obtained on different test datasets. 

6. Chapter 6 will conclude the manuscript with a general insight of the work carried out 

in this thesis and the scientific outcomes produced. Moreover, some suggestions on the 

future perspectives of this work will be presented. 

 

The appendix will feature the code for the neural network model used in this thesis as well 

as the Python code routines used to carry out the research work. 
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2 CHAPTER 2 - THEORETICAL ASPECTS AND STATE 

OF THE ART 

2.1 INTRODUCTION 

In recent years, advancements in computer technologies have led to the development of 

highly sophisticated neural networks. These advancements have contributed to the diffusion 

of neural networks, which now spans a wide range of scientific fields, including civil and 

environmental engineering (particularly in environmental monitoring) [44] [45] [46], 

medicine [47], finance [48]. Neural algorithms aim to emulate human cognitive capabilities 

to perform complex tasks and highlight patterns in data that would be hardly recognizable 

with other mathematical tools.  

Today, neural networks are primarily used to perform three fundamental tasks: prediction, 

classification, and regression [49].  

1. Prediction: Constructing a model that employs past data patterns to precisely anticipate 

the distribution of new equivalent data [50] . 

2. Classification: Identifying whether a particular observation pertains to a distinct group 

of observations [51]. 

3. Regression: Determining a continuous pattern that closely approximates a given 

distribution of discrete data [52]. 

 

Modern neural network algorithms possess the ability to efficiently perform one or more 

tasks simultaneously, making them highly adept at addressing various real-world challenges. 

Their capability to generalize non-linear problems has paved the way for their widespread 

application across a multitude of fields. 

One of the prime beneficiaries of the evolution of neural networks has been computer vision. 

This domain has witnessed remarkable growth in recent years, largely attributable to the 

advancements in convolutional neural networks (CNNs). These networks have demonstrated 

their efficacy in tasks ranging from facial recognition to autonomous vehicle navigation, the 

analysis of satellite imagery, and so on [53] [54] [55]. Although CNNs have been used to 

address various scientific problems since the late 1980s, their potential is only now being 
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fully realized with the increasing accessibility of advanced computing resources, such as 

GPUs and cloud computing. 

The advent of neural networks has also revolutionized the field of 3D reconstruction, 

enabling the creation of detailed three-dimensional models from 2D images with 

unprecedented accuracy and efficiency. One of the most notable tools in this area is the 

Neural Radiance Fields (NeRF) [56], [57], which utilizes a fully connected deep network to 

model a continuous volumetric scene function from a sparse set of 2D images. The strength 

of this approach lies in its ability to capture fine details and produce high-quality models 

from complex scenes, outperforming traditional methods and other neural network-based 

approaches. On the other hand, it's worth noting that while NeRF is a powerful tool for 3D 

reconstruction, it does have its limitations. For instance, it requires a large number of input 

images for training and can be computationally intensive. Moreover, it struggles with 

dynamic scenes where objects or lighting conditions change over time. 

The main interest in neural networks for this thesis lies however in object detection and 

instance segmentation procedures for the identification of rockfall events on 

photogrammetry-derived raster difference maps. Object detection aims to identify distinct 

objects within digital images by highlighting their positions with bounding boxes; instance 

segmentation is the pixel-by-pixel classification of image areas covered by specific objects. 

This research concentrates on models capable of performing both operations simultaneously 

through a single training cycle. 

 

2.2 LITERATURE REVIEW 

2.2.1 STATE OF THE ART OF NEURAL NETWORKS AND CNNS 

The evolution of neural networks lies in early attempts to understand the computational 

properties of the brain and the development of mathematical models that could imitate the 

information processing capabilities of biological nervous systems. The early days of neural 

network research were characterized by the development of simple models and their 

application to various problems such as binary classification (the task of categorizing input 

patterns into two classes) [58], linear function approximation, or regression [59] and simple 

pattern recognition (the task of identifying basic shapes such as squares and triangles, or 
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handwritten characters). These early problems provided a steppingstone for the research in 

the field of neural networks, as most of the concepts introduced to counter these problems 

have become the base for the following works in this field. 

Originally, the perceptron, a pioneering neural network model, was introduced by Rosenblatt 

[58]. This simple yet powerful model, inspired by human neurons, was capable of learning 

linearly separable patterns using an algorithm that adjusted the weights of the connections 

between input and output neurons. The perceptron's success in solving simple classification 

problems was considered an adequate solution to counter more complex tasks. However, in 

the following years, researchers proved this solution to be unable to solve non-linearly 

separable problems, such as the XOR problem [60]. The XOR problem (or Exclusive Or) is 

a binary logical operator that takes in Boolean inputs under binary format (0 or 1) and 

provides True values (1 in this case) if and only the two inputs are different. 

The XOR issue was a major hit to neural networks development, as research in this field 

experienced a long period of stagnation, often referred to as “AI winter”, during 1970s and 

80s. The perceptron limitation highlighted by the XOR problem, jointly with the competition 

from other techniques (such as decision trees) and computational constraints, greatly reduced 

interest (and therefore fundings) in the field. 

Some researchers continued however to explore the potential of neural networks, leading to 

the development of new learning algorithms and architectures. 

The early 1970s saw the emergence of a new class of neural networks known as radial basis 

function (RBF) networks, which countered the limitations of perceptrons by using nonlinear 

activation function [61] [62]. Radial basis function networks were able to approximate any 

continuous function to arbitrary precision, making them a powerful tool for various 

applications, such as function approximation, pattern recognition, and time series prediction. 

However, it was the development of the backpropagation algorithm [63] that truly 

revolutionized the field. This learning algorithm, based on the chain rule of derivative 

calculus, allowed for the efficient training of perceptrons enabling them to learn complex, 

non-linearly separable functions. In this context, the concept of Multi Layered Perceptrons 

(MLP) was introduced. MLPs are full arrays of one or more perceptron, arranged on 

independent layers. The backpropagation algorithm was a significant milestone in the 

evolution of neural networks, as it facilitated the development of more sophisticated 

architectures and learning techniques, starting a resurgence of interest in the field. 
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One of the key developments in the late 1980s and early 1990s was the introduction of 

recurrent neural networks (RNNs) [64]. In contrast to classical neural networks, RNNs have 

connections that go back on themselves, allowing them to process temporal sequences and 

maintain a form of internal memory. RNNs have been successfully applied to various tasks, 

such as time series prediction and natural language processing (NLP) [65]. 

In addition to the development of new architectures, researchers also focused on improving 

the learning capabilities of neural networks. For instance, the vanishing gradient problem, 

which occurs when the gradients of the error with respect to the weights become too small 

to effectively update the weights during backpropagation, was identified as a significant 

challenge in training deep neural networks [66]. To address this issue, various techniques, 

such as unsupervised pre-training and the development of activation functions with more 

interesting properties, such as rectified linear units (ReLU) [67], were proposed. 

Another critical development during this period was the exploration of regularization 

techniques to prevent overfitting and improve the generalization capabilities of neural 

networks. Techniques such as weight decay [68] were introduced, allowing neural networks 

to learn more robust representations of the data and perform better on unseen (i.e., 

completely new) examples. 

The late 1980s and early 1990s also saw significant advancements in the application of 

neural networks to real-world problems. One notable example is the development of 

convolutional neural networks (CNN) for image recognition tasks. In [69] the authors 

proposed a novel methodology for image classification that leverages a backpropagation 

algorithm to train a convolutional network. CNNs use shared weights to exploit the spatial 

structure of images, reducing the number of parameters to be learned and improving the 

network's ability to recognize patterns in image data. 

The reference CNN model introduced by LeCun was LeNet, a deep structure model 

characterized by the presence of MLPs placed in series and having mutual connections. As 

it can be seen, the MLP concept previously introduced by Rumelhart [63] remained the basic 

structure for the subsequent evolutions of neural networks for processing digital images. In 

his study, a completely innovative network training model was proposed that exploited a 

backpropagation algorithm which leveraged gradient descent algorithms. The results of this 

study, which first involved the recognition and classification of handwritten characters on 

digital images of the MNIST dataset (Modified National Institute of Standards and 
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Technology, which consists in 70.000 grayscale images of handwritten digits), started a very 

successful strand for neural network training methodologies. 

Meanwhile, between 1998 and 2010, several advancements were made in the field of 

machine learning. Support Vector Machines (SVM) [70] emerged as popular machine 

learning technique for classification and regression tasks. The core concept of SVMs is 

developed as input vectors undergo a non-linear transformation, projecting them into a high-

dimensional feature space. Within this feature space, a linear decision threshold is 

established. The distinctive attributes of this decision boundary guarantee an exceptional 

capacity for generalization in the learning process. SVMs demonstrated strong 

generalization performances in these tasks. Some key applications of SVMs include image 

and text classification [71] and time series forecasting in the financial field [72]. 

In 2001, Random Forests (RF) were introduced that provided strong performances in 

classification and regression tasks compared to the neural network models available at the 

time [73]. RF is a learning method that constructs multiple decision trees for the same task 

and combines their prediction to improve accuracy. This methodology allows to increase the 

redundancy within the model's forecasts, facilitating the minimization of potential 

inaccuracies in the given task. Some notable applications regarded the medical field, with 

particular attention to bioinformatics and medical diagnosis [74] [75]. In geomatics Random 

Forests have been used for remote sensing, in particular for land cover classification, 

identifying natural resources and monitoring environmental changes [76] [77] [78]. 

After 2010, shifting the computational burden from the CPU to the GPU made it possible to 

greatly speed up processing times, especially in the training of millions of parameters (or 

weights) that characterize the most complex neural network models. In [79] a simple 

implementation of a neural network for small images is presented, that based the convolution 

operations no longer on the CPU, but rather on CUDA technology [80], which was charged 

to the GPU. Experimental results showed an enormous performance advantage in this 

respect, with processing times drastically improved with respect to the CPU counterparts. 

In the same vein, in 2012 [81] illustrated a new convolutional network model for image 

classification, AlexNet, designed for the classification of the ImageNet dataset. This work 

represented a watershed for research activities on neural networks. 

The novelty of this network lays in the structure of the convolutional layers, interspersed 

with new type of intermediate layer [82]. These intermediate layers leveraged a max pooling 
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algorithm, which is a technique that allows a feature to be subsampled by reducing its size 

accounting for its maximum value only. In other words, the max pooling technique makes 

possible to significantly reduce the computational cost of operations on numerical matrices 

(and thus on digital images) and, at the same time, provide translation invariance in the 

network. A conceptually similar solution could be provided by the global average pooling 

technique [83], which implied the averaging of the elements within the search kernel. After 

each convolution-max pooling step, a dropout layer was chosen. Dropout [84] is a technique 

for regularizing the weights of the neural network that is applied exclusively during the 

training phases. This solution allows to avoid overfitting problems, which are common in 

neural networks characterized by millions of parameters. One of the main interests of this 

study was the evaluation of the network's performance as a function of the depth of the 

network itself. Compared to LeNet,  AlexNet could boast more than twice the number of 

convolutional layers. Thanks to the increased network depth, an overall improvement in 

performance was observed. The reason for this improvement lies mainly in the possibility 

of extracting meaningful features through convolution operations on the image. 

Various architectures derived from AlexNet were subsequently proposed. The main interest 

of the researchers concerned the optimization of convolution operations rather than the brutal 

increase in model depth. In this respect, one of the most successful solutions is ZF-Net, 

presented by [85] in 2013. This study was preliminarily oriented towards presenting a 

visualization model of the convolution operations that are processed within each neural 

layer. The motivations for this research were mainly to understand what happened at the 

transition between one neural layer and the next. In fact, until then, neural networks were 

considered black boxes, where there was no real knowledge of what might happen between 

input and output. In [86] the authors proposed a visualization method using a neural network 

with inverse behavior, based on deconvolution operations (DeconvNet). A DeconvNet is a 

network modelled with the same filtering and pooling parameters as the network on which 

it originally relies, but which develops its course in an inverse manner. If a convolutional 

network could map pixels into features while maintaining spatial correlations between them, 

the DeconvNet could perform the same task backwards. The solution presented requires that 

each layer of the convolutional network is connected to a layer of the DeconvNet, to have a 

reverse and direct tracking towards the pixels of the image. 
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The structure of ZF-Net roughly follows the one in AlexNet, the main changes concerning 

the size of the convolution window and the displacements associated with it. 

In 2015, [87] proposed a new CNN model characterized by an even greater depth than the 

neural networks on the market. The network, which was named VGG-16, was characterized 

by the presence of as many as 16 neural layers. The possibility of significantly increasing 

the depth of the network (i.e., the number of layers) is primarily due to the technological 

progress of calculation units, increasingly powerful and more affordable. 

The experiments on this new CNN model showed a considerable leap in feature extraction 

performance due to the presence of more neural layers. A further variant of VGG-16 was 

presented in the same work. The modification involved the integration of three additional 

neural layers, with the aim of assessing any performance gain achieved. In this respect, the 

authors concluded the study by pointing out the modest performance improvement of VGG-

19 over VGG-16, while confirming the importance of the depth of the neural networks in 

feature extraction processes. 

The possibility of increasing the depth of neural networks has revived an issue of 

considerable interest to researchers: the vanishing and exploding gradient. 

In[66] the concept of the vanishing gradient was introduced for the first time. The author 

defined this issue on a theoretical level by analyzing the error flow for learning methods 

based on gradient descent (GD) algorithms. 

In [88], a novel Google LeNet convolutional structure was presented that increased the depth 

of the network while simultaneously managing to reduce the computational burden of 

convolutional operations (reducing the number of parameters, or weights, involved in 

training operations). With the substantial increase in convolutional layers involved in the 

new neural models, the vanishing gradient problem illustrated above presented researchers 

with a new challenge. 

In [89], a research group belonging to Microsoft presented a new residual characteristic 

convolutional neural network (R-CNN) named ResNet. 

The innovative idea behind R-CNNs is to connect each convolutional layer not only with the 

next layer but also with the previous one, creating a shortcut connection. 

The structure of the convolutional blocks enriched by these mutual connections between 

layers has made it possible to exponentially increase the depth of the networks, bringing 
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great benefit to feature extraction operations for object detection while avoiding the 

problems of vanishing\exploding gradient. 

In this sense, the architecture proposed by the researchers in [89] brought about a 

considerable increase in the numerosity of the convolutional layers because of this solution. 

The first version of ResNet was characterized by the presence of 152 neural layers and was 

successful among researchers in different fields. The main reason for this success lies 

precisely in the concrete improvement of feature extraction tasks with its natural spin-off on 

object detection operations. Nowadays, residual feature convolutional networks occupy a 

place of primary importance in the field of machine learning aimed at object detection (and 

consequently instance segmentation). 

CNN Object detection is a direct extension of the feature extraction methodologies 

illustrated above. The main methodologies for object detection reported in the literature are 

two: two-level object detection and Single Shot Detectors (SSD). 

In this literature review, we chose to focus on two-level object detection solutions. This 

methodology has indicated a preferred route for subsequent architectures for semantic 

segmentation of digital images. 

Two-step object detection solutions extend previous feature extraction architectures with 

neural layers responsible for searching for regions of interest within the images. 

A first two-step solution was presented in [90]. Fast R-CNN was the very first architecture 

to use a Selective Search to generate regions of interest on the frame. Selective Search [91] 

is a region proposal method for object detection tasks. The main idea behind selective search 

is to efficiently generate a set of potential bounding boxes, called regions of interest (RoIs), 

which have high probability to contain objects within an image. These RoIs are then used as 

input for a classification algorithm to determine the presence of objects and to classify them 

in the image. 

Selective search is based on the observation that objects in an image can be distinguished by 

their color, texture, and size. The algorithm combines these features in a hierarchical manner 

to generate candidate RoIs. 

Experimental results conducted on different datasets, such as VOC2012 and COCO, showed 

excellent network performance in terms of both prediction accuracy and timing involved in 

training the network. The real bottleneck of Fast R-CNN, however, remained the 

performance in the image prediction phase. The promising object detection capabilities of 



27 

Fast R-CNN directed the researchers towards an optimization of the architecture in order to 

streamline the number of parameters involved and thus reduce the computational burden. In 

this sense [92], they proposed an architecture update that uses a Region Proposal Network 

(RPN) to perform the object detection tasks. 

In Faster R-CNN, the feature map obtained from the R-CNN network is directly shared with 

the RPN to determine its position within the frame. Thanks to this solution, the procedure 

for identifying regions of interest is almost completely computationally irrelevant. An 

inspection kernel of size 3x3 pixels is moved within the image and allows the regions of 

interest to be identified by means of anchor boxes. The anchor boxes are regions of interest 

with dimensions and proportions set a priori. This method assumes that each region of 

interest has a unique score in order to identify the best fit for detection. 

Advances in the field of object detection, mainly with the introduction of Faster R-CNN, 

have made it possible to explore the possibilities of integrating semantic segmentation 

algorithms into object detection procedures with a modest increase in computational 

demands. 

The problem of semantic segmentation in digital images can be traced back to the problem 

of pixel-to-pixel classification of a frame. 

In [93], a segmentation algorithm based on a fully convolutional network (FCN) was 

presented. This type of convolutional network makes it possible to circumvent certain 

limitations of classical FCNs, such as the fixed size of the input image. The architecture 

proposed in Long's work had the ability to process inputs of arbitrary dimensions and in turn 

generate segmentation maps with the same dimensionality. The advantage of this solution 

lays mainly in the speed of image processing due to the reduction in training parameters 

resulting from the use of an FCN network. 

In [94], an innovative algorithm for performing semantic image segmentation operations 

called U-Net was presented. U-Net exploits an FCN architecture with an encoder-decoder 

structure in which the encoding and decoding branch are completely mirrored. In the 

contraction branch, several convolutional layers are applied, interspersed with pooling layers 

that are used to subsample the features, whose maps double in number at each step. In the 

expansion branch, the same procedure is carried out in the opposite direction. The 

oversampling of the features finally aims to produce segmentation maps of the same size as 

the input data. 
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The simultaneous resolution of object detection and semantic image segmentation problems 

introduced the concept of instance segmentation. Where a specialized object detection 

system can approximate the location of an object within the image by means of a bounding 

box, and semantic segmentation produces a unique classification for each pixel belonging to 

the same class, the instance segmentation procedure reconciles the two methods, producing 

a segmentation map for each category and for each instance of a particular class. 

One of the first approaches to the problem was presented in [95] with the introduction of the 

DeepMask architecture. This framework aimed to generate possible segmentation masks for 

objects starting directly from image pixels. The algorithm operated at different scales on the 

image and generated segmentation proposals of different ranks, subsequently classified by a 

Fast R-CNN model. The authors illustrate promising results on both the COCO dataset and 

PASCAL VOC2007, both of which are characterized by the massive presence of features at 

different scales. 

Subsequently, the method presented in [96], named Mask R-CNN expanded the concept of 

Faster R-CNN [92] by adding a branch for the prediction of masks associated with regions 

of interest (RoIs). Segmentation is performed on each region pixel by pixel using an FCN 

(Fully Connected) neural network. The results on instance segmentation procedures were 

processed using several datasets, including the Cityscapes dataset [97]. This dataset 

comprises a series of cityscape sequences recorded in approximately 50 different cities and 

contains 5000 frames at high resolution with high quality annotations to evaluate the 

performance of instance segmentation algorithms. 

The motivations that led the authors to choose this dataset lie mainly in the variability of the 

features present in the frames, both in terms of morphology and scale of representation. As 

of today, Cityscapes dataset is involved in major CV projects regarding autonomous driving 

[98]. 

The results obtained by the authors in [97]using a ResNet-FPN-50 convolutional backbone 

(characterized by the presence of 50 convolutional layers for feature extraction) are superior 

to (or at least in line with) other solutions found in the literature. 

Today, Mask R-CNN and its evolutions still hold a prominent place in the state of the art of 

instance segmentation procedures thanks to the simplicity of application of the model to 

various fields of technical and scientific interest.  
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2.3 THEORETICAL ASPECTS FOR NEURAL NETWORKS 

2.3.1 NEURAL NETWORKS 

Neural networks are tools characterized by a repetitive structure consisting of an input layer 

(or input), one or more neural layers, commonly called hidden layers, and an output layer 

[99]. 

Each layer consists of nodes, called neurons. Each node in the n-th layer is directly connected 

to all nodes in the next n+1-th layer. 

 

 

Figure 2-1: NNs general structure 

 

The place where the mathematical operations are performed is the neural node, 

characterized by a function of the following type: 

 

𝑓(𝑥,𝑊, 𝑏) = 𝜎(𝑊 𝑥 + 𝑏) 

 

Where W denotes a weight value, b denotes a bias value and σ refers to an activation 

function. Activation functions play a key role in the representation of non-linear problems 

and are the reason why deep learning algorithms excel at processing extremely complex data 

sources such as digital images. 

Using inverse propagation (backpropagation) algorithms for training, a neural network can 

adapt its weights and biases to generalize a given problem through the minimization of a 

loss function [100]. 

A loss function, which is also known as cost function, quantifies the disparity between the 

predicted output generated by a neural network and the actual target output provided in the 
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training data. The loss function is essential during the training phases of a neural network, 

as it provides the measure of how well (or not) the network produces the correct prediction 

to match the ground truth training data, therefore providing the right direction to the learning 

process. 

A loss function is mathematically expressed as a scalar value that expresses the dissimilarity 

between the ground truth (y) and the prediction (𝑦̂): 

 

𝐿 (𝑦, 𝑦̂) = 𝑦 − 𝑦̂ 

 

There are different types of loss function which are adopted to tackle different tasks. For 

example, MSE (Mean Squared Error) loss functions are used in regression and prediction 

tasks [101], while for classification purposes the most common loss function is cross-entropy 

[102]. 

Backpropagation algorithms are widely used for training neural networks. Backpropagation 

involves computing the gradients of the loss function with respect to the network's 

parameters using the chain rule of derivative calculus. Activation functions are responsible 

for giving reasons for non-linear relationships.  Each node is capable of being trained to 

learn to recognize a specific feature and, consequently, the set of nodes in a neural network 

enables the identification of the set of features belonging to a specific class. 

The initialization of the weights is a procedure of crucial importance for neural algorithms, 

since excessively small weights (tending to 0 already in the first neural layers) or excessively 

large weights can lead the network to fail in training due to the problems of vanishing or 

exploding gradients. 

Vanishing gradient is a phenomenon where the gradients of the loss function with respect to 

the network's parameters become very small, causing the weights of earlier layers to be 

updated very slowly or not at all. This can lead to the degradation of the network's 

performance, as the early layers fail to learn meaningful representations of the input data. 

The vanishing gradient problem was first identified in the early days of neural networks and 

has been studied extensively ever since. In [63] the authors introduced the backpropagation 

algorithm and highlighted this potential issue. Different approaches have been proposed to 

avoid vanishing gradient issues in training, including the use of batch normalization [103] 
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which is a procedure that helps to stabilize the distribution of activations and gradients 

throughout the network by normalizing the activations of each layer across the mini batch 

of data, and then rescaling and shifting the normalized values using learnable parameters. A 

similar issue is the exploding gradient problem, in which the gradients of the loss function 

become very large, causing the weights to be updated in a way that overshoots the optimal 

solution. This can lead to the divergence of the training process, resulting in poor 

performance overall. Exploding gradient is less common than the vanishing gradient 

problem but it can still occur in certain types of networks characterized by recurrent 

connections. It has been studied extensively, and several techniques have been developed to 

address it. One approach is to use gradient clipping, which involves scaling down the 

gradients if their norm exceeds a certain threshold, to prevent the gradients from becoming 

too large. Other methods include weight regularization [104], which can help to constrain 

the magnitudes of the weights, and careful initialization of the network's parameters [105], 

which can help to prevent the gradients from growing too large. 

 

2.3.2 ACTIVATION FUNCTIONS 

Activation functions are fundamental in the modelling of a neural network. There are several 

functions to rely on, each with peculiarities that make them suitable for different needs. The 

main activation functions [106] reported in the literature are: 

Step function: this is the simplest activation function, where a neuron is activated depending 

on a threshold value. The equation that defines its behavior is: 

 

𝑓(𝑥) = 1, 𝑥 > 0  

𝑓(𝑥) =  0, 𝑥 < 0 

 

It is a function closely related to binary classification problems. It is not usually used in 

transition layers in a neural network as it hinder the back-propagation process on node 

weights as its derivative as a function of x is always zero. 

Sigmoid function: it is a non-linear function that returns a value between 0 and 1 from a 

coefficient in the real domain. It is widely used in the field of neural networks as it is 

derivable in the entire domain. It is defined by the equation: 
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𝑓(𝑥) =
1

1 − 𝑒−𝑥
 

 

A common problem related to this function concerns the vanishing gradient. The main 

reason for this lies in its asymmetry around zero, which makes it difficult to unambiguously 

identify the most effective direction for the gradient descent. Sigmoid functions are largely 

used in classification layers (i.e., the last layer of a neural network used for classification 

purposes) as it defines a continuous function in which classification intervals are defined.  

In tasks of machine learning, different classification problems pose distinct challenges and 

methodologies. For binary classification, where the objective is to differentiate between two 

classes, the sigmoid function is often employed. This function maps any real-valued number 

into a value between 0 and 1, which can be interpreted as the probability of the instance 

belonging to the positive class. Given a threshold, typically 0.5, outputs above this value 

indicate class 1, and below indicate class 0. 

Rectified Linear Unit (ReLU): is the most used function in the interleaving layers of 

convolutional neural networks. The ReLU function returns the maximum observed value 

between 0 and x, so all values greater than 0 retain their value while values less than 0 take 

on a null value. This methodology reduces the complexity of processing time. The function 

is defined by the equation: 

 

𝑓(𝑥) = max(0, 𝑥) 

 

The ReLU (Rectified Linear Unit) activation function is widely used in convolutional neural 

networks (CNNs) because of its efficiency and simplicity. This function, which replaces all 

negative values with zero and leaves positive values unchanged, has been shown to speed 

up convergence during training compared with other traditional activation functions such as 

sigmoid or hyperbolic tangent. In addition, ReLU helps mitigate the problem of gradient 

disappearance, which can occur with activation functions that compress the output into 

limited intervals. As CNNs increase in depth and complexity, the use of ReLU can help 

maintain stable and effective training while reducing training time. This function is able to 

switch off non-relevant neurons and therefore speed up the computational workflow for 
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training and inferencing processes. As negative values are not employed in the activation of 

the neuron by ReLU function, it is critical to refer to normalized inputs (i.e., changing the 

pixel intensity values in a range between 0 and 1) for convolutional networks. 

Leaky ReLU: is a variation of the classic ReLU function that allows the number of inactive 

nodes in the backpropagation process to be minimized. Instead of evaluating the contribution 

of the ReLU function to be zero, a small linear component is applied. The equation which 

defines the function is: 

 

𝑓(𝑥) = 0,01𝑥, 𝑥 < 0 

𝑓(𝑥) = 𝑥, 𝑥 > 0 

 

This function is the evolution of the previous ReLU function. Leaky ReLU allows for 

additional control in the activation of neurons across neural layers, possibly preventing 

vanishing gradient problems when the neural architecture is very deep. On the other hand, 

leaky ReLU usage implies longer processing time because most of the neurons are fully 

functional at each step (while possibly not heavily contributing to tasks). This function is 

very useful when nodes weights rapidly descend to null values in the training process. 

SoftMax function: it is the most exploited function in classification problems with rank 

greater than two (i.e., multi-class classification problems with three or more classes). It is a 

combination of several sigmoid functions and calculates a probability that the input belongs 

to an i-th class between 0 and 1. In this case, the network attempts to give classification 

intervals between 0 and 1. In this way, the result of the network's processing can be classified 

according to the output value calculated using the hidden layers. This function is usually 

used to process the output of the last neural layer using the following formulation: 

 

𝜎(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝐾
𝑖=1

 

 

Tanh function: it is a function that transforms the input x into a value between -1 and 1 with 

symmetry around 0. It is rarely used in convolutional neural networks as it presents vanishing 

gradient problems in deep-structure architectures. The reference equation is: 
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𝑓(𝑥) =  
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 

 

The choice of activation functions in a neural network is of crucial importance to maximize 

its performance [107] [108]. One could say that activation functions are the most important 

parameter in the research of peak performance of neural networks. The choice of activation 

functions is most of the time an experimental task, meaning that the user cannot know a 

priori if the solution adopted is suitable for a specific problem or not. Most modern 

convolutional neural networks use ReLU activation function for convolutional layers instead 

of traditional sigmoid functions. The motivation is that ReLU (and all of its variants like 

Leaky ReLU) promote sparsity in the neuron’s usage, meaning that it reduces considerably 

the activation of certain neurons. The empirical proofs show that training a neural network 

is much faster with ReLU [27] and its variants, which makes them particularly suitable for 

deep neural networks involving millions of neurons (or weights) to be computed 

simultaneously, like for example deep convolutional neural networks. 

 

2.3.3 CONVOLUTIONAL NEURAL NETWORKS (CNNS) 

Convolutional Neural Networks (CNNs) are a class of deep learning models that have gained 

significant popularity in recent years due to their exceptional performance in various 

computer vision tasks, such as image classification, object detection, and semantic 

segmentation [27]. These networks are designed to mimic the processing of visual 

information in the human visual system, where different neurons in the visual cortex are 

responsible for detecting specific features and patterns in the visual field [109]. 

The fundamental building block of CNNs is the convolutional layer, which leverages 

convolution operations. A convolution is a mathematical operation that combines two 

functions to produce a third, resulting in a measure of how one function is influenced by 

another. Each convolutional layer consists of multiple filters, also known as kernels (Figure 

2-2), that slide over the input data and perform element-wise multiplication followed by a 

sum of the results [38]. This operation can be interpreted as a measure of similarity between 

the filter and the local region of the input data, effectively capturing local patterns in the 
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data. Filters are learned by the network during the training process, allowing CNNs to 

automatically discover relevant features for the task at hand. 

Another essential component of CNNs is the pooling layer (which is nonetheless used in 

different neural network architectures as, for example, Recurrent Neural Networks), which 

is introduced to reduce the spatial dimensions of the feature maps produced by the 

convolutional layers. By performing a down sampling operation, the pooling layer helps the 

network achieve invariance to translations, making the model robust to variations in the input 

data [110]. Furthermore, reducing the spatial dimensions also reduces the computational 

complexity and memory requirements of the network, allowing for more efficient training 

of deeper models. Pooling layers are typically located between two consecutive 

convolutional layers. 

The three predominant types of pooling operations that are commonly employed are max 

pooling, average pooling, and min pooling. 

Max pooling is the most frequently used pooling technique, and its operation can be 

described as selecting the maximum value from each non-overlapping sub-region in the 

input feature map. For example, given a 2x2 region in the feature map A, the max pooling 

operation P is defined as: 

 

𝑃(𝐴) = max(𝑎𝑖,𝑗) 

 

Where ai,j is the feature map element in the i, j-th position. The core advantage of max 

pooling lies in its ability to preserve the most salient features in the input, effectively serving 

as a form of non-linear down-sampling. This robustness aids the network in achieving 

translation invariance, as the maximum value remains unchanged irrespective of minor 

translations within the sub-region. 

Average pooling computes the average value for each non-overlapping sub-region in the 

input feature map. As for the previous example, the average pooling operation is defined as: 

 

𝑃(𝐴) =
1

𝑛
 ∑𝑎𝑖,𝑗

𝑛

𝑖=1

 

 



36 

Unlike max pooling, average pooling maintains a representative value that accounts for all 

the elements within the sub-region, which can sometimes provide a smoother representation 

of the feature map. This operation is particularly useful when it is desirable to conserve the 

general context information in the feature map. 

Min pooling is less commonly used but operates by selecting the minimum value from each 

non-overlapping sub-region. The mathematical formulation is analogous to that of max 

pooling. Min pooling can be instrumental in scenarios where the smallest features in the data 

need to be emphasized, potentially serving as a form of outlier detection within the 

convolutional layers. 

A typical CNN architecture consists of multiple convolutional and pooling layers, followed 

by one or more fully connected layers. The fully connected layers, also known as dense 

layers, allow to integrate the features learned by the convolutional layers and map them to 

the desired output, such as class probabilities in the case of classification tasks [69]. To train 

the network, a loss function is employed to measure the discrepancy between the model's 

predictions and the ground truth labels, and an optimization algorithm, such as stochastic 

gradient descent, is used to update the model's parameters iteratively [111]. 

CNNs have also been extended and adapted for various other applications beyond computer 

vision, such as natural language processing and speech recognition. For instance, in natural 

language processing, one-dimensional CNNs can be used to capture local patterns in text 

data by performing convolutions over word embeddings[112]. 

On the other hand, CNNs also have some limitations and challenges. One of the main 

challenges is the requirement for large amounts of labeled data to train these models 

effectively. This limitation has led to the development of various data augmentation 

techniques, such as random transformations and cropping, to artificially increase the size of 

the training dataset and improve model generalization [113]. Furthermore, transfer learning 

techniques have been proposed to leverage pre-trained CNNs on large datasets as feature 

extractors or initializations for training on smaller datasets, significantly reducing the need 

for extensive labeled data [114]. Transfer learning is a machine learning technique that 

involves utilizing a model trained on a specific task or dataset to enhance the performance 

of a related task or dataset. Notably, researchers can access various open-source pre-trained 

weights (for example, COCO or ImageNet pre-trained weights), which offer the advantage 

of achieving faster and more reliable results in common object detection tasks.  
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2.3.4 TRAINING 

The training of neural networks is carried out in a supervised manner (generally called 

supervised learning) using the input information provided by a reference dataset. By means 

of back-propagation algorithms, the network proceeds to optimize the parameters to 

minimize the prediction error. The focus of operations concerns the minimization of a 

function that identifies the differences between the predicted (output) data 𝑌̂ and the ground 

truth 𝑌, this function is called the cost function (or loss function, or objective function). The 

relationship between a calculation node and the node in the next layer is mathematically 

identified by means of the "chain rule" (Leibnitz). Given a (loss) function: 

 

ℎ(𝑥) = 𝑓(𝑔(𝑥)) 

where x represents all the parameters (weights and biases) of the neural network, the 

variation of h(x) as a function of the variation of h deriving from a variation of the parameters 

x can be calculated as: 

 

∂h(x) =  
∂f ∂g

∂g ∂x
 ∂x 

 

The gradient descent procedure allows the operating parameters of the network to be updated 

by following the negative gradient of the objective function. To facilitate the calculations, 

an SGD (Stochastic Gradient Descent) procedure is generally used [115] in the modern 

neural network models. The Stochastic Gradient Descent (SGD) algorithm is a variant of the 

traditional Gradient Descent (GD) optimized to reduce computational time. While the 

standard GD computes the gradient using the entire training dataset, the SGD, as the name 

suggests, operates stochastically, randomly selecting a subset or minibatch of the training 

dataset. The process begins with the random selection of a minibatch from the dataset. Next, 

the gradient of the loss function with respect to the model parameters is calculated based on 

that minibatch. Once the gradient is obtained, it is used to update the model parameters. This 

updating is done by multiplying the gradient by a factor called the learning rate and 

subtracting the result from the current parameters. This step is crucial because it steers the 
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model in the direction in which the loss decreases most rapidly. It is important to note that 

due to the stochastic nature of the approach, the trajectory of parameter updates with SGD 

can be more erratic than with traditional GD. However, this can actually help the model 

avoid local minima and converge more quickly to a solution. 

This procedure is repeated for each minibatch in the dataset. Once all minibatches have been 

processed, an epoch is said to have been completed. The process is then repeated for a 

predefined number of epochs or until the loss converges to a minimum value. To reduce the 

model complexity, and to counter overfitting problems, various regularization techniques of 

the network are used in the training phase. The issue of overfitting was first addressed in 

[116] as the problem of a neural network that tends to fit exactly the data distribution on 

which it is trained rather than finding an appropriate generalization rule. There are two main 

regularization techniques: L2 regularization and dropout. L2 regularization [117], often 

simply referred to as "weight decay", introduces a penalty term to the objective (or loss) 

function to deter the magnitudes of the model parameters from becoming too large. 

Specifically, the penalty term is proportional to the sum of the squared values of the model 

parameters. This is achieved by implementing a λ hyperparameter as a penalty term on larger 

weights. The inclusion of this term serves multiple purposes. By penalizing large weights, 

the model is steered towards simpler, more generalized solutions that are less likely to overfit 

to the training data. The parameter λ acts as a tuning knob: when λ is set to zero, no 

regularization is applied, whereas a larger λ increases the regularization strength, pushing 

weights more aggressively towards smaller values. 

This method essentially adds a constraint to the optimization problem, where not only is the 

model trying to minimize the loss with respect to the training data, but it is also trying to 

keep its weights small. As a result, when weights are regularized with L2, they tend to be 

driven to values close to zero, especially if λ is set to a high value. This does not mean the 

weights become exactly zero but rather they are kept small, ensuring a certain level of 

simplicity in the model's learned representation. The second technique regards Dropout [84], 

which allows for the complete inhibition of a random portion of nodes in the network. This 

methodology enables significant simplification of calculations during neural network 

training by allowing for the deactivation of multiple nodes. This, in turn, reduces the number 

of equations required from one hidden layer to the next. Deactivating a node through dropout 

can lead to a reduction in the number of computations by a factor of "n" where "n" 
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corresponds to the ratio of the number of deactivated connections and the number of the total 

nodes. For instance, it is worth considering a scenario where a layer comprising 100 nodes 

is fully connected to a second layer, also containing 100 nodes. In this configuration, the 

total connections amount to 100 x 100 = 10000. Upon applying a dropout rate of 0.5, 

approximately half of these connections become inactive, resulting in the random 

deactivation of n = 5000 connections. 

 

2.4 MASK R-CNN – TOOL FOR INSTANCE SEGMENTATION 

2.4.1 INTRODUCTION TO THE NEURAL ARCHITECTURE 

One of the most popular solutions for performing instance segmentation tasks is Mask R-

CNN [96], developed within the FAIR (Facebook AI Research) research group. Mask R-

CNN belongs to the class of R-CNNs (Regional Convolutional Neural Networks) and is a 

direct extension of Faster R-CNN. Unlike traditional convolutional neural networks, which 

involve the progressive scanning of all areas of the image, regional neural networks allow 

the identification of areas of interest (called RoIs) where the presence of an object of interest 

is assumed. This procedure streamlines the network's computational burden, reducing 

training and inference times without affecting the model's achievable accuracies. However, 

an in-depth analysis of this neural network model is not the subject of this thesis, therefore 

only a general overview of the structure and special features of Mask R-CNN will be 

provided.  

 

2.4.2 MASK R-CNN STRUCTURE 

Mask R-CNN consists of three main components:  

1. Convolutional backbone to perform feature extraction operations. 

2. RPN (Region Proposal Network) to identify potentially relevant regions within the 

image depending on the presence of features. 

3. Mask Branch a derived convolutional neural network to generate the masks for the 

identified objects. 
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Figure 2-3 represents the basic structure of Mask R-CNN. 

 

 

Figure 2-2: Mask R-CNN structure as illustrated by authors in [96]. 

 

1. The backbone network in Mask R-CNN is responsible for extracting features from the 

input image that can be used for both object detection and instance segmentation, serving as 

a deep convolutional neural network (CNN) that extracts features from images. Typically, it 

is pre-trained on a large-scale image classification dataset, allowing the use of learnt general 

features useful for various subsequent tasks (e.g., object detection and/or instance 

segmentation). The choice of the backbone network plays a significant role in the model's 

overall performance. In the original Mask R-CNN research, the ResNet-101 backbone was 

used, which achieved state-of-the-art results on the COCO dataset for object detection and 

instance segmentation. This deep residual network has 101 layers and is effective for various 

computer vision tasks. Other backbone networks, such as VGG and Inception, have also 

been utilized. VGG is a well-known CNN architecture initially intended for image 
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classification, while Inception is a CNN family designed to be efficient and scalable. In 

recent years, there has been an increasing trend of using even more complex and more 

extensive backbone networks for object detection and instance segmentation. For instance, 

the recent DETR [118] model utilizes a transformer-based backbone network pre-trained on 

a vast dataset of natural captions, resulting in state-of-the-art performance on the COCO 

dataset. Although ResNet-101 is an excellent choice, other architectures might be more 

effective. Researchers continue to explore and develop new and more powerful backbone 

networks for object detection and instance segmentation, aiming to achieve even better 

results on challenging datasets. 

2. The Region Proposal Network (RPN) is responsible for generating potential object regions 

or proposals using the feature maps from the backbone network. The RPN is a small neural 

network that takes the feature maps as input and outputs a set of rectangular regions likely 

to contain objects. The RPN uses a sliding window approach to generate candidate regions. 

For each spatial location in the feature maps, the RPN predicts a set of k anchor boxes with 

different scales and aspect ratios. The anchor boxes define a set of potential regions, which 

are then filtered based on their score to produce the final proposals. The score reflects how 

probable is that an object exists in the proposed region and is calculated as the product of 

two terms: the probability that the anchor box contains an object (foreground score) and the 

probability that the anchor box is correctly aligned with an object in the image (background 

score). The background score is determined based on the intersection-over-union (IoU) 

between the anchor box and the ground truth objects in the image. The RPN is trained end-

to-end with the rest of the network using a multi-task loss that combines the object loss and 

the bounding box regression loss. The object loss trains the RPN to differentiate between 

foreground and background regions, while the bounding box regression loss trains the RPN 

to predict accurate bounding box coordinates for the object proposals. In the original Mask 

R-CNN paper, the RPN was constructed using a 3x3 convolutional layer with 256 channels, 

followed by two 1x1 convolutional layers for predicting the object score and the bounding 

box coordinates, respectively. 

3. The Mask Network, also known as the Mask Branch, is responsible for generating binary 

masks for each object proposal generated by the RPN. It takes each proposed region as input 

and generates a binary mask that highlights the pixels belonging to the object. The mask 

network is typically a fully convolutional neural network that takes the feature maps 
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produced by the backbone network and the proposed regions as input and outputs a binary 

mask of the same size as the input region. The mask network is trained to predict the binary 

mask of each object proposal. Its architecture is similar to the one  of the backbone network, 

but with additional layers for generating the binary mask. In the original Mask R-CNN paper, 

the mask head architecture was straightforward, comprising four 3x3 convolutional layers 

followed by a single 1x1 convolutional layer with a sigmoid activation. The mask network 

is trained using a binary cross-entropy loss, which measures the difference between the 

predicted mask and the ground-truth mask for each object proposal. The mask loss is added 

to the overall loss function of the model, which also includes the object detection loss and 

the RPN loss. 

The loss function in Mask R-CNN is a multi-task loss that combines losses corresponding 

to the different components of the model. It is defined by the formula: 

 

𝐿𝑜𝑠𝑠 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘𝑠 

 

where i) Lcls represents the classification loss of the prediction box, ii) Lbbox represents the 

regression loss for the predicted bounding box and iii) Lmasks represents the loss for the 

predicted masks. 

i) The classification loss aims to train the network to correctly identify the category of the 

object enclosed by the proposed bounding box. It is implemented using softmax loss for 

multiple categories. Given n categories, including the background, and assuming p as the 

predicted probability distribution and g as the ground truth distribution, the classification 

loss can be defined as: 

 

𝐿𝑐𝑙𝑠 = ∑𝑔𝑖 ∗  log (𝑝𝑖)

𝑛

𝑖=1

 

 

Where gi and pi correspond to the ground truth label and predicted probability of the i-th 

category. 

ii) The bounding box regression loss is meant to refine the coordinates of the initial object 

proposal generated by the Region Proposal Network (RPN). The used bounding box 
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regression loss is the Smooth L1 loss (which is shared with the first implementation of Faster 

R-CNN. Let t* = (Tx*, Ty*, Tw*, Th*) and t = (Tx, Ty, Tw, Th) be the ground truth and 

predicted parameterized coordinates of the bounding box, respectively. Tx and Ty are 

representative of the lower left corner of the bounding box, while Tw and Th are respectively 

the width and the height of the bounding box. The Smooth L1 loss can be defined as: 

 

𝐿𝑏𝑏𝑜𝑥 = ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 (𝑡𝑖
∗ − 𝑡𝑖)

𝑖 ∈(𝑥,𝑦,𝑤,ℎ)

 

 

where SmoothL1 is defined as: 

 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) =  {
0.5𝑥2𝑖𝑓 |𝑥| < 1

|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

iii) The mask loss is crucial for the pixel-level segmentation task. It employs per-pixel 

sigmoid activation followed by binary cross-entropy loss. Given M as the ground truth mask 

and 𝑀̂ as the predicted mask, the mask loss Lmask is computed as: 

 

𝐿𝑚𝑎𝑠𝑘 = ∑ ∑[𝑀(𝑤, ℎ) log (𝑀̂(𝑤, ℎ)) + (1 − 𝑀(𝑤, ℎ)) log (1 − 𝑀̂(𝑤, ℎ))

𝐻

ℎ=1

𝑊

𝑤=1

 

 

Where W and H are the width and height of the given mask. Such loss function is the per 

pixel adaptation of the sigmoid function expressed in section 2.3.4. The composite nature of 

this loss function allows Mask R-CNN to perform the tasks of object detection and instance 

segmentation jointly, thus enabling a unified framework for these different but related 

computer vision tasks. In other words, each term of this composite loss function helps in the 

end-to-end training of the network, ensuring that the model is proficient not only in 

categorizing objects but also in localizing and segmenting them at a pixel-level. 

Mask R-CNN produces three main types of outputs for each object in an image: 

1. Class label, a n-dimensional vector containing the class of each predicted element. 
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2. Bounding box coordinates (X, Y, B, H), a 4n dimensional vector containing the image 

coordinates of each prediction. X, Y are the coordinates of the upper left corner of the 

bounding box and B is the width and H is the height of the bounding box. 

3. Segmentation masks, each pixel of the object is classified through a binary mask that 

indicates the class in which the object belongs, the output of the model is a list of n 

elements, one for each mask. 

 

2.4.3 MASK R-CNN CODE ADAPTATIONS 

Mask R-CNN is an open-source project designed for general use in a variety of domains. A 

specific implementation can be found on a GitHub virtual repository 

(https://github.com/matterport/Mask_RCNN). This implementation is designed to work 

with various image formats, including JPEG and PNG. Different research papers proposed 

modification to Mask R-CNN original source code in order to fit to the specific purposes of 

the research [119]. This section discusses the changes made to the model to meet the needs 

of the research in this thesis. 

 

Input format adaptations 

The implementation available from the project repository is designed to handle compressed 

RGB images with 8-bit color depth. This format is very popular for image management on 

the Internet, since it provides a good balance between quality and file size. However, the 

purposes of this thesis require the processing of data that allows to exploit the full potential 

of the monitoring system involved in change detection processes.  The goal was to adapt the 

model to handle single-channel data recorded in 32-bit TIFF (Tagged Image File Format), 

where each pixel represents a 32-bit floating point value. To overcome this problem, it was 

necessary to intervene in the input layers of the convolutional kernel. In the original 

implementation, the latter accepts input in uint8 (unsigned 8-bit integer) format, and then 

converts it to a floating-point number only in subsequent processing layers. 

A second action regarding the input format concerns the image loading function in the neural 

model. The original implementation of Mask R-CNN involves receiving a three-channel 

image (usually in RGB or BGR order) that is subsequently treated as a vector of dimensions 
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[H, W, C] where H is the height of the original image, W is its width, and C is the number 

of channels associated with the image. For grayscale images (1 channel) or RGB-A images 

(where an alpha channel is added to the 3 RGB channels), the model is designed to still 

return an image with three channels by duplicating the grayscale channel or eliminating the 

alpha channel, respectively. However, this import routine is not compatible with the TIFF 

data format that was decided to be exploited in this thesis work and requires the definition 

of a new image loading function. Python libraries for reading images, such as Skimage or 

OpenCV-Python, produce output in vector form of the type [H, W] that is not dimensionally 

homogeneous with the input layers of Mask R-CNN. In fact, the latter are encoded to receive 

an input whose number of channels is uniquely and strictly defined during configuration. In 

this thesis work, we chose to work with single-channel images, consequently the final format 

of the input image is [H, W, 1]. 

 

Normalization algorithm 

In order to allow for faster convergence of neural models, it is common practice to normalize 

input data. Normalization is essential in machine learning because it ensures that inputs are 

scaled to a standard range. If inputs aren't normalized, they can land in a region of the 

activation function that doesn't change much, making learning difficult or even stagnant. 

Furthermore, without normalization, numerical problems can arise, further complicating the 

training process. Mask R-CNN’s algorithm for image normalization is designed to process 

3 channel images. The original process involves extracting the mean pixel value for each 

channel of the image, and then generating the normalized image by subtracting the mean 

value to the original value of each pixel associated to the channel and then dividing for the 

standard deviation. As the difference maps for the training sample only count one channel 

(which is recorded in 32-bit floating points values for better precision) an alternative 

normalization algorithm has been integrated that allows the model to operate with values in 

a range between 0 and 1. For each image, the maximum and minimum values are calculated, 

and then the contribution of each pixel is defined according to the following notation: 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖, 𝑗] =  
𝑝𝑖𝑥𝑒𝑙 [𝑖, 𝑗] − min

𝑖𝑚𝑎𝑔𝑒

max
image

− min
image

 



46 

 

This process maintains the same spatial correlations between pixels with respect to the 

original image. Similarly, the function for returning the original image from the normalized 

one was defined: 

 

𝑑𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖, 𝑗] = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖, 𝑗] ∗  (max
image

− min
image

 ) + min
image

 

 

This function is only used in inference mode as it allows the user to visually review the 

output of the neural network. 

 

Mask resolution output 

A second issue encountered with the current implementation of Mask R-CNN concerns the 

size (in pixels) of the output masks of the Mask branch. Specifically, the branch used for 

estimating segmentation masks is programmed by default to produce an output of 28 x 28 

pixels within the detection box. This low-resolution mask is then dynamically upscaled 

according to the size of the bounding box in which it is enclosed. In this way, the training 

procedure of the classifier is less onerous (i.e., fewer parameters are involved in the process) 

and the estimation at the prediction stage is found to be faster. The accurate definition of the 

collapse areas needs the resolution of the output masks to be as high as possible while 

maintaining computational feasibility. It was decided to add two additional convolutional 

layers in the mask prediction branch to increase the output resolution by two times the 

original resolution. This gives the model the ability to produce masks of size 56 x 56 pixels, 

which are useful for better approximation of the contours of the detachment niche. It is 

important to point out that while using a machine with enough memory  the user can increase 

the resolution of the output beyond this threshold by adding several additional convolutional 

layers to the mask branch network. 
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2.4.4 NEURAL NETWORK DATA FORMATTING 

The format of both input and output data plays an important role in the training and the 

evaluation of the neural model. Ensuring that data is structured consistently across the 

pipeline can significantly streamline model training, inference, and subsequent tasks. 

For training purposes, the input data is formatted to align with the style of the output data. 

Specifically, it employs the COCO (Common Objects in Context) [120] annotation 

framework, an industry standard in machine learning and computer vision tasks. The reason 

for adopting the COCO annotation style is its ability to robustly define object locations 

through bounding boxes and to facilitate semantic segmentation via object instance masks. 

The input data comprises high-resolution images along with corresponding annotations 

summarized in a JSON file. This file includes a structured collection of dictionaries and 

arrays, encompassing metadata such as image identifiers, object categories, and bounding 

box coordinates, similar to the output data. 

The output data from the Mask R-CNN model is also generated in a structured JSON file 

which strictly adheres to the COCO annotation style. Such a format encompasses key 

elements like image identifiers, object categories, and more critically, the segmentation 

masks which are encoded using Run-Length Encoding (RLE). The selection of RLE for 

mask encoding is motivated by the necessity for computational efficiency; it allows the 

model to compress the binary mask information into a more manageable size, particularly 

useful when dealing with high-resolution imagery. 

The symmetrical formatting between input and output data not only augments computational 

efficiency but also eliminates any need for data transformation or conversion steps in 

between the training and evaluation phases. This unified approach thus enables seamless 

integration with analytical pipelines and facilitates compatibility with a variety of evaluation 

metrics such as Intersection over Union (IoU), Precision, Recall, and F1 score which will 

later be introduced and explained for the model evaluation. 
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3 CHAPTER 3 – ROCKFALL SIMULATOR 

3.1 INTRODUCTION 

The simulation software was structured with the primary aim of replicating the steps of the 

photogrammetric process for a fixed monitoring system. In this thesis the application of the 

software focuses on the simulation of collapses on mine walls, however it could be utilized 

for various other purposes, as depicted in section 1.1, and therefore may provide a useful 

time-saving task when employing neural networks to detect changes in other different fields. 

The software package was developed in C# language. 

The simulation software produces (simulated) difference maps in raster format between the 

models of a reference epoch and those of subsequent epochs where rockfall events occur, 

knowing exactly all the event characteristics. Such difference maps are the input data for 

training the neural network used to automate the detection and evaluation of the rockfalls 

over time. 

This chapter describes the generation of a 3D model featuring different collapse events. The 

simulation starts with the generation of a set of tridimensional rock blocks, which are then 

“subtracted” to a copy of the original (reference) mesh producing detachment niches on the 

new (final) mesh. 

Once the wall collapse simulation is complete, the simulation of the photogrammetric 

pipeline is performed with the aim of reproducing all the noise sources that affect the 3D 

reconstruction and therefore to produce a realistic dataset. 

Rockfall Simulator photogrammetric pipeline, depending on the user's needs, can employ 

the three-dimensional reconstruction algorithms of Agisoft Metashape, or rely on 

purposedly-implemented original algorithms. Regardless of the method, the output is a 

simulated mesh. 

The first option uses the reconstruction routines from Agisoft Metashape, one of the most 

popular commercial software in the engineering photogrammetry sector. Leveraging 

Metashape’s algorithms, in this stage the simulation software produces an intermediate 

product of the 3D reconstruction pipeline, specifically the depth maps, as they were 

computed using dense matching algorithms. Depth maps encode three-dimensional 

information in a raster format, where each pixel represents the distance from the camera's 
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acquisition center to the object. After depth map simulation the remaining reconstruction 

stages are performed using Metashape. Although the user is not completely aware of the 

operations carried by the reconstruction algorithms in Metashape, as the developer clearly 

does not share algorithmic implementation details adopted in the software, in this way the 

processing pipeline is very much similar to the one adopted in a normal photogrammetric 

application relying on commercial software. 

The second option, to the contrary, allows for a complete simulation of the photogrammetric 

process (dense matching and tridimensional reconstruction), with some simplifications (e.g., 

in the depth map fusion) w.r.t. Metashape’s workflow. However, in this case, the user can 

keep track of every single detail on each phase of the reconstruction pipeline.  

The primary reason for using three-dimensional data to generate difference maps for collapse 

identification, instead of trying simulating new images of the detached blocks and run all the 

photogrammetric pipeline from the very beginning, is the actual difficulty of simulating 

realistically the images of the collapse. The identification of collapse phenomena on three-

channel (RGB) digital images may present considerable problems due to different factors 

such as illumination (and consequently on the presence of bulky shadows), reflections, and 

so on. The presence of areas that are totally in shadow (or, conversely, highly reflective) 

[121] could sometimes totally preclude the extraction of significant features for the 

identification of detachments. Starting the process from 3D data can overcome these 

limitations and potentially improve the accuracy and reliability of automatic identification 

procedures. 

Though for sake of simplicity it will be referred to as measurement noise, the uncertainties 

that affect all steps of the photogrammetric process - specifically not just the identification 

and position measurement of corresponding points but also the determination of interior and 

exterior orientation parameters - must be considered in the simulation process to produce 

realistic data. Uncertainties in the orientation parameters cause systematic effects that affect 

all tie points object coordinates [122]. Though in principle the effect of each parameter can 

be computed and studied separately, the reverse is hardly possible. One may expect the effect 

of image matching uncertainty to be specific to each tie point pair, being in principle 

equivalent to a measurement by the (human) operator. However, this depends on the type of 

image matching algorithm and is today safer to assume this stage to cause both random and 

pseudo-systematic effects as methods like the Semi-Global Matching (SGM) [123] [124] 
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don’t work with a local/individual matching strategy as, for instance, the least squares image 

matching [125] [126]. 

The following sections will provide an overview of the different routines implemented in 

the Rockfall Simulation software. 

 

3.2 INPUT DATA 

The input data required to start the simulation process is the reference epoch image block 

(for instance the user can provide a Metashape project with images already oriented and 

calibrated. The objective of this input phase is to obtain information on the project reference 

system and the calibration of the optics of the cameras of the monitoring system. Rockfall 

Simulator interacts with Metashape's API (Application Programming Interface) using 

Python language. Using a Python script, the following characteristics of the image block are 

exported: 

• Sensor characteristics (including camera model distortion coefficients). 

• EO parameters of the cameras of the fixed monitoring system. 

 

This information is used to generate a new Metashape project (i.e., a simulation image 

block). Opting to create a new project from scratch allows to define a new reference system 

better suited for the spatial localization of blocks within the three-dimensional model. The 

mesh obtained in this initial step is treated as ground truth data, which will be the basis of 

the subsequent collapse simulation and photogrammetric process simulation. 

The initial mesh (i.e., the ground truth mesh) is given in the Metashape project reference 

system (usually a local topographic reference system). To make the subsequent processing 

stages simpler a geometric transformation is computed such that the mean plane of the wall 

will lie in the XY plane of the new reference system. An example of such procedure is shown 

in the following images. Please note the directions of reference axes in the lower-right side 

of the image. 
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Figure 3-1: Front view of the original mesh (left), orthographic view of the original mesh in the original 

reference system (right). 

 

 

Figure 3-2: Orthographic view of the original mesh in the new reference system. 

 

The origin 𝑉0  =  [0 0 0]𝑇 of the new reference system is placed in the lower right vertex of 

the mesh in the original reference. Images 3-1 and 3-2 below illustrate the orthographic view 

of the mesh in the original and transformed reference system: 

The transformation matrix is expressed as: 
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𝑇 =  [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

]  

 

where r[i, j] are the rotation matrix R elements [139]and t[i] the translation vector T 

components.  

The software first estimates the best-fitting plane using all the reference mesh vertices by 

the Singular Value Decomposition (SVD) method [127].  

At the end of this step, the mesh is conveniently oriented for the rasterization process and 

for extracting the coordinates of the simulated collapses. 
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3.3 ROCK COLLAPSES SIMULATION 

The input data for the block simulation procedure is the reference mesh, i.e., the ground truth 

mesh oriented in the new reference system (i.e., approximately parallel to the XY plane). All 

difference maps at different simulated epochs will be produced from the reference one. 

Providing a safe zone for the simulation of collapses along the mesh border is desirable, in 

order to avoid placing simulated detachments on the edges of the mesh, often critical areas 

in 3D reconstruction processes. Moreover, photogrammetric software, such as Metashape, 

uses interpolation techniques to fill empty areas of the mesh [128].  

Figure 3-4 shows the hole-filling technique implemented in Metashape. Neighboring data 

are used to interpolate missing information. The software first identifies the edges of the 

holes and then uses geometry and texture information from the surrounding area to fill the 

gaps. Obviously, hole-filling techniques may not produce accurate results with large data 

gaps. On the edges of the 3D model such interpolation can oversimplify the actual shape of 

the model. 

 

 

Figure 3-3: lower-right border of the original mesh left: no hole-filling applied; right: hole-filling 

enabled. 

 

Figure 3-3 shows the lower-right border detail in the original mesh reconstruction quality. 

The mesh on the left has been produced by disabling any interpolation technique during the 

3D reconstruction while the image on the right has been processed by enabling the 

interpolation on the mesh vertices. The completeness of the model is crucial at this point of 
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the work, but the border information retrieved mainly by interpolation is unreliable. To 

overcome this issue, it was decided to exclude these areas from the simulation of the rock 

collapses on the wall. To this aim, a safe zone on the ground truth mesh is introduced through 

binary rasterization of the original mesh. Each pixel of the rasterized mask will assume an 

intensity value of 0 (black) if the pixel does not belong to the tridimensional mesh area while 

the safe area will be represented by pixels of intensity of 1 (white). The mask generated by 

this procedure spans the entire area of the mesh, including the interpolated edges. To 

effectively erode the edges of the mask (and thus shrink the effective area over which the 

simulation process takes place) it is necessary to impose an offset on the edge of the original 

mesh.  

 

  

Figure 3-4: original model mask (left), eroded safe zone (right) 

 

Figure 3-4 graphically illustrates the result of a portion of the mesh edge. The white portion 

of the image represents the binary mask associated with the mesh surface. As it can be 

observed from the right image, the edge is eroded according to a predefined offset value.  

The simulation of the collapses on the original mesh (i.e., the ground truth mesh) is 

performed generating a number of blocks chosen by the user. First the blocks meshes to be 

overlapped to the rock wall mesh are generated. The method generates the vertices and 

triangles that create a rock block tridimensional mesh (currently two different shapes can be 

selected: cubic or spherical). The coarse block resulting from this procedure must be 

appropriately transformed to have irregular shapes and sizes. For this reason, it is subjected 
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to a shape transformer that operates according to three different criteria, respectively applied 

in cascade: 

1. Scaling factor: the original block can be scaled in the three dimensions (length, height, 

and depth) according to random values extracted from a probability distribution (e.g., 

Gaussian). In this way, blocks of different sizes and proportions can be produced. 

2. Rotation factor: the original block is rotated randomly around each axis (X,Y,Z) by an 

angle randomly extracted from a probability distribution to simulate different 

orientations in space. 

3. Surface irregularity factor: this module adds random offsets to each vertex of the 

block, according to a probability distribution. The block therefore is not any more a 

simple parallelepiped or a sphere. 

 

To produce a simulated rockfall event each block must then be placed on the rock wall, in 

such a way that when it is removed a cavity will form in the wall itself. The block center 

of gravity is initially placed in a randomly generated position X and Y, bounded within 

the original mesh extent. 

The triangles of the wall mesh falling in the horizontal contour of the block projected 

over the wall mesh are searched for their maximum and minimum Z coordinate. The 

block altimetric offset is then calculated as: 

 

𝑜𝑓𝑓𝑠𝑒𝑡𝑍 = − 
𝐵𝑙𝑜𝑐𝑘 𝑚𝑎𝑥𝑍 + 𝐵𝑙𝑜𝑐𝑘 𝑚𝑖𝑛𝑍

2
− 𝑀𝑒𝑠ℎ max𝑍 

 

where Block maxZ and Block minZ are the maximum and the minimum Z coordinate of 

the block vertices respectively and Mesh maxZ is the maximum Z coordinate of the mesh 

vertices in the overlap area between the block and the mesh. With this height offset, the 

block center of gravity is placed at the point of maximum wall relief of the intersection 

area. 

The block location is validated by checking whether the calculated offsets are compatible 

with the safe zone or not. The coordinates of the blocks bounding box (rather than the 

detachment niche contours) are inspected. If at least one pixel inside the bounding box region 
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has value 0 (and thus is not contained within the safe zone), the block is eliminated, and the 

process is repeated. 

Once this first placement check has been completed, the block removal operations on the 3D 

mesh begin by computing the intersection between the two meshes (the rock wall and the 

detachment mesh). 

 

 

Figure 3-5: Rockfall bounding box region detail on the original mesh. 

 

The operations performed result in four new meshes: 

1. Mesh difference: is the portion of the rock wall with the hole generated by the 

intersection with the simulated block. 

2. Intersection mesh: is the portion of the mesh that is removed by the intersection with 

the simulation block. The union of the intersection mesh and the difference mesh is the 

initial rock wall area. 

3. Block difference: is the portion of the detachment block inside the wall, i.e., the 

detachment niche. Figure 3-6a shows the location of the lower portion of the block, 

which fills the gap obtained by removing the intersection mesh. 
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Figure 3-6: a) Mesh difference, b) Intersection mesh, c) Block difference, d) Final result 

 

4. Removed block: this is the portion of the simulated block protruding from the wall. As 

it does not contribute directly to the creation of the final detachment niche, it plays no 

role in the subsequent interaction steps and can therefore be discarded. 

 

  

Figure 3-7: Removed block. 

 

The process is repeated until the number of blocks defined by the user is reached. An 

additional check on the position of blocks is performed to prevent two or more blocks from 

intersecting, by comparing the horizontal coordinates of the bounding boxes, to which an 

offset value is added: in this way it is also verified that the blocks are not too close to each 
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other. This procedure results in a list of simulated blocks that are defined by their spatial 

position on the rock wall. 

 

  

Figure 3-8: left) Original mesh, right) example of a simulated rockfall event on the original mesh. 

 

The green textured space on the figure is the original mesh surface, while the blue/black area 

is the simulated rockfall event on the original mesh. The result of this procedure is the ground 

truth mesh with the simulated detachment niche for each collapse. This mesh will be 

subsequently processed by the photogrammetric simulation algorithm. 

 

3.4 PHOTOGRAMMETRIC PIPELINE SIMULATION 

The objective of this step is to simulate the dense matching pipeline in the photogrammetric 

workflow. This output a photogrammetric mesh (both for the reference epoch and the 

following epochs), which is affected by noise sources in its generation process. The first 

stages of the dense matching simulation are the same, while the final tridimensional 

reconstruction is processed by Agisoft Metashape algorithms (Method 1) or, alternatively, 

by Rockfall Simulator (Method 2). In the former case a black-box tool is used, since 

Metashape performs 3D reconstruction leveraging depth information stored in depth maps. 

In the latter one the user can interact and inspect the dense matching simulation in each major 

step. 

The following diagram summarizes the key steps of each of the two alternatives 

implemented in Rockfall Simulator. 

 



60 

 

Figure 3-9: Rockfall Simulation photogrammetry simulation pipeline. 

 

The simulation is carried both for the reference epoch and for the following ones. Simulating 

photogrammetric noise in each epoch assures consistency of the data (as the comparison 

products are both sourced by the same processing pipeline) and repeatability in the 

comparisons of the different photogrammetric meshes. 

Initially, the software retrieves the original image planes from the dual-camera 

photogrammetric system to allow for mesh reprojection. The goal here is to generate two 

images (mimicking a new photo acquisition) showcasing the rock wall after the rockfall 

event, to replicate the dense matching pipeline. 

In other words, each vertex of the initial mesh gets reprojected onto the image plane. This is 

done using the collinearity equations, using Interior (IO) and Exterior Orientation (EO) 

parameters. Using distortion parameters, distorted image coordinates are determined. This 

mimics the real-world scenario where images taken by cameras undergo lens distortion.  In 
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this stage the IO, EO and distortion parameters noise is applied. Noise simulation is executed 

separately for IO and EO, although the methodology remains consistent. An external 

function manages the probabilistic model, allowing the user to generate random 

measurement noise values from a gaussian distribution. The user may specify the mean and 

standard deviation of the probability distribution for each parameter included in the noise 

simulation (6 parameters for exterior orientation and 11 parameters for interior orientation 

and Brown-Conrady’s camera distortion model). The selection of a Gaussian distribution is 

motivated by empirical observations which highlight that non-systematic measurement 

errors frequently manifest as a bell-curved pattern, suggesting a Gaussian or near-Gaussian 

behavior. 

The two meshes reprojected on the image planes of the stereo-pair, represent a sort of image 

of the rock wall. However, it is important to understand that only the vertices coordinates 

are projected on image plane: no texture or RGB information are used in these stages. The 

stereo image pair is then epipolar rectified.  

This process modifies the images from both camera perspectives, ensuring that 

corresponding points on both the new images align on the same row, thereby simplifying 

parallax computation. These operations have been performed with the OpenCV library 

routines, that need the intrinsic matrix K for each camera as well as the distortion parameters 

vectors and the relative rotation and translation matrices. The intrinsic matrix contains 

information about the camera's internal characteristics such as focal length and principal 

point position. 

 

𝐾𝑖 = [

𝑓𝑖 0 𝑐𝑥𝑖

0 𝑓𝑖 𝑐𝑦𝑖

0 0 1

] 

 

where f is the focal length of the i-th camera of the stereo pair and cx and cy are the 

coordinates of the principal point of the respective camera. 

Similarly, the distortion coefficients of both cameras are stored in a distortion vector. 
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𝑑𝑖𝑠𝑡𝑖 = 

[
 
 
 
 
𝐾1
𝐾2
𝑃1
𝑃2
𝐾3]

 
 
 
 

 

 

where Ki are the radial distortion coefficients and Pi are the tangential distortion coefficients 

of each camera of the stereo pair. To apply the rectification, the relative rotation R and the 

baseline vector T between the two camera centers are necessary. 

The rectification transform is processed for each camera and is identified by a 3x3 rotation 

matrix R that brings points given in the unrectified coordinate system to points in the 

rectified camera coordinate system. The new (rectified) camera matrices (P) are as follows: 

 

𝑃1 = [

𝑓 0 𝑐𝑥1
0

0 𝑓 𝑐𝑦 0

0 0 1 0

] 

 

𝑃2 = [

𝑓 0 𝑐𝑥2
𝑇𝑥 ∗ 𝑓

0 𝑓 𝑐𝑦 0

0 0 1 0

] 

 

Where Tx is the horizontal shift between cameras. The disparity-to-depth matrix is calculated 

as follows: 

 

𝑄 =

[
 
 
 
 
1 0 0 −𝑐𝑥1

0 1 0 −𝑐𝑦

0 0 0 𝑓

0 0 −1/𝑇𝑥

𝑐𝑥1
− 𝑐𝑥2

𝑇𝑥 ]
 
 
 
 

 

 

At the end of this stage, a new epipolar (rectified) image pair is obtained. 

Given the estimated positions of the corresponding points (i.e., the projections of the mesh 

vertices) on the new epipolar image pair, it is possible to calculate the parallax values. 
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At this stage in the dense matching simulation pipeline, a second photogrammetric noise 

source is introduced: the parallax matching noise. The simulation of matching noise is 

carried out with two different contributions: 

1. Pixel noise: which directly simulates a parallax error [151]. 

2. Regularization noise: which simulates the errors characteristics of Semi Global 

Matching algorithms. 

 

Both noise contributions are governed by a distribution (gaussian) with zero mean and 

standard deviation to be specified by the user. 

The parallax noise is calculated pixelwise for each parallax value. 

The regularization term in the SGM can introduce local systematic effects that affect a 

certain group of adjacent pixels. To simulate this, a field of random values across the entire 

parallax map is considered: a grid over the entire parallax map with a step that can be set by 

the user is first set up. The noise value at each grid node is randomly extracted from a 

Gaussian distribution. The values to be assigned to each point on the parallax map are then 

calculated through interpolation as SGM algorithms handle image regions with low 

informational content, such as those caused by occlusion or significant contrast variations, 

by utilizing the values from neighboring depth map elements to estimate the undefined 

regions. 

Finally, the function computes a parallax value for each of the vertices of the original mesh.  

At this stage, the pipeline splits into Method 1 and Method 2 previously described. The 

former requires the computation of the depth maps that are subsequently loaded in the 

original Metashape project (i.e., the project with the original EO and IO parameters). The 

output resolution of such depth maps produced with Rockfall Simulator can be set to any of 

three levels (which are proposed based on the Metashape proprietary settings), namely: 

- High quality: the output depth map has half the resolution as the original frame. 

- Medium quality: the resolution of the depth map is 1/4 of the original frame. 

- Low quality: the depth map resolution is reduced to 1/8 of the original frame. 

 

The final 3D reconstruction is performed using Metashape. The latter method reprojects 

directly the estimated position of the corresponding points in object space generating the 

reconstructed final mesh. Regardless of the chosen method, the result is a photogrammetric 
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mesh that is then rasterized to compute the final raster difference maps between the first 

epoch and the i-th epoch. 

 

3.5 LASER SCANNER PIPELINE SIMULATION 

As alternative to photogrammetry, Rockfall Simulator can simulate a mesh from laser 

scanning. The starting point is the same original mesh of wall (reference) from which a 

simulated point cloud is extracted, which is later processed into a tridimensional mesh. 

Within this framework, the simulation is carried both for the first epoch tridimensional mesh 

(which is the reference epoch when producing raster difference maps) and for each later 

epoch mesh. The following flowchart resume the steps for the laser scanning simulation 

pipeline. 

 

 

Figure 3-10: Rockfall Simulator laser scanner simulation pipeline. 
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Initially, a virtual laser scanning station position and orientation are set according to 

positional parameters that can be defined by the user. At this point the 3D mesh is spatially 

oriented as described in section 3.2. 

The determination of the scanning window is based on the laser's Field of View (FoV) and 

the dimensions of the target 3D mesh. By defining the scanning window, the software sets 

the angular limits the laser scanner will operate within and the spatial and angular resolution 

parameters, which directly affect the quality of the data collected. 

Scanning initiates at a specified angular step, effectively scanning the continuous space of 

possible laser ray directions. During this process, the noise intrinsic to the angular 

measurement of the device (the azimuth and the zenith angles of the laser rays) is introduced 

into each scanning direction. In this step, angular noise is simulated with the same criteria 

illustrated for the photogrammetric pipeline simulation, which involves the random 

extraction of simulated noise values from a known zero-mean gaussian distribution. For each 

emitted laser ray, the intersection with the 3D mesh is computed to measure the range, i.e., 

the distance between the scanner and the ray-mesh points of intersection.  

The measured range is then corrupted based on a specific noise model for distance 

measurements in laser scanning. 

Finally, using the nominal scanning direction (without angular noise) and the noisy range 

(inclusive of distance noise), the three-dimensional coordinates of the intersection point are 

calculated. This iterative procedure results in the generation of a point cloud, which is 

subsequently processed to create a simulated mesh. This combination of methods ensures 

that the synthetically generated data is as representative as possible of actual operational 

conditions. 

At the end of this simulation step, a simulated mesh is produced, both for the reference mesh 

and for the following epochs meshes. For this work of thesis, it was decided to only rely on 

photogrammetry-derived data. 

 

3.6 MESH CO-REGISTRATION 

To obtain the best co-registration between reference and current epoch, an ICP alignment 

[130] can be executed prior to mesh rasterization and computation of the raster of 
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differences. An Iterative Closest Point (ICP) algorithm has been implemented in Rockfall 

Simulator. For this purpose, the ground truth mesh acts as the reference for the co-

registration procedure executed on the rockfall mesh. Rockfall Simulator provides several 

settings, thereby a tuning procedure is useful to get the best results. The ICP parameters 

implemented in Rockfall Simulator are the following: 

1. MaxIteration: sets the maximum number of iterations for the ICP algorithm, whether 

or not an optimal solution has been found. 

2. OutlierDistanceThreshold: sets the distance threshold for labelling outliers. Points in 

the moving mesh (i.e., the mesh which is being registered to the reference data) that are 

farther away than this threshold from their nearest neighbors in the reference mesh will 

be considered outliers. By adjusting this parameter, the user should take in consideration 

the noise levels expected in the photogrammetric block. 

3. OutlierThresholdDecayIteration: indicates how many iterations the algorithm should 

wait before reducing the outlier threshold. If set to 1, the threshold is used from the first 

iteration. 

4. RemoveOutlier: indicates if outliers’ rejection is used or not.  

5. Threshold: threshold for determining when the algorithm has converged, i.e., when the 

improvement (reduction in error) between iterations is less than the setup threshold. 

6. DeltaThreshold: minimum change in residuals between iterations. If the change is 

smaller than this value, the algorithm assumes it has converged and stops. 

7. SubsamplePoints: indicates whether to use a subset of points from the moving mesh 

for the computation. Typically, this approach is employed to expedite computational 

processes.  

8. SubsampleRatio: percentage of points to be excluded from computation of the 

transformation when subsampling is enabled.   

 

During the co-registration vertices having Not a Number (NaN) coordinate values where 

found, apparently due to the failure of the rock collapses simulation algorithm, in some cases, 

at computing the triangles vertices when subtracting the blocks from the original mesh 

surface. This is attributed to the libraries employed for manipulating the mesh products. 

Indeed, the procedures for mesh intersection have been found to generate the issues shown 

in Figure 3-11 along the perimeter of the block/mesh intersection: 
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Figure 3-11: Representation of the NaN values observed in the rasterized difference maps obtained from the 

errors in the intersection of the meshes. 
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The red circles in Figure 3-11 highlight the incorrect mesh vertices on the left, while the 

images on the right highlight the resulting issue on the rasterized difference map. Such 

vertices often create distinct discontinuities within the mesh, which can result in NaN values 

on the rasterized difference map. To address this problem, a routine has been incorporated 

into the simulation code to weld erroneous edges, eliminating NaN and duplicate vertices 

within the mesh. 

When exploiting the ICP algorithm incorporated with Rockfall Simulator, particular 

attention was given to the OutlierDistanceThreshold (2) parameter and the Subsample Ratio 

(8) parameter, as these are anticipated to yield the most significant improvements in the 

parameter set. Specifically, the Subsample Ratio is considered critical due to its direct impact 

on the selection of points for calculating the transformation with the ICP algorithm. By 

initially manipulating the ratio, the algorithm reduces the numerosity of the sample. Figure 

4-38 represents the Root Mean Square Error (RMSE) of the fit for the variation of the 

Subsample Ratio parameter in the interval from 0 to 0.99 in the application of the Iterative 

Closest Point (ICP) algorithm. 

 

 

Figure 3-12; Subsample ratio parameter variation results chart. 

 

Examination of Figure 3-12 shows that as the subsample ratio decreases (i.e., less points are 

being used), the RMS error generally increases. This result is as expected and underlines the 

benefits of using a larger number of points from the dataset in achieving more accurate 
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results. However, for intermediate values of the ratio, the RMSE is constant, an indication 

that savings in computing times using fewer points are possible. Of course, these findings 

might be specific to this dataset, and similar studies should be conducted for other datasets 

or different use cases to determine the most effective subsample ratio for each specific 

situation. 

A second assessment has been carried for the OutlierDistanceThreshold, which defines the 

distance of the nearest neighbors on the moving mesh that are labelled as outliers during the 

ICP computation. This means that the ICP algorithm discards all the points which fall above 

this threshold when computing the transformation. When calibrating this parameter, it is 

crucial to verify the expected levels of measurement noise. In order to search for the best 

threshold, it was decided to initially compute the transformation with an outlier threshold 

with the same value of the photogrammetric noise calculated (i.e., sigma = 3 cm) during the 

noise assessment carried in section 4.1.3. 

The following chart represents the results of the calibration of the outlier rejection threshold. 

 

 

Figure 3-13: Outlier Distance Threshold results chart. 

 

The above chart provides the Root Mean Square (RMS) error in millimeters for various 

OutlierDistanceThreshold settings of the Iterative Closest Point (ICP) algorithm (expressed 

in m). 
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Initially, the RMS starts at a relatively higher value of roughly 7 mm at an 

OutlierDistanceThreshold of 0.035 m. As the distance threshold increases to 0.05 m, the 

RMSE exhibits a noticeable decline, reaching its lowest point at 0.055 m with a RMSE value 

of around 1.5 mm. This suggests an optimal point for the threshold parameter where in the 

algorithm performs best. It would be reasonable to assess that at this particular threshold, the 

model is able to reject noise and erroneous correspondences effectively, thereby providing 

a transformation that yields the smallest discrepancy between the aligned point clouds. 

Beyond this minimum, the RMS begins to increase steadily, exhibiting a convex behavior 

until it reaches 25 mm at a threshold of 0.09m. This ascent indicates a progressive 

deterioration in the accuracy of the ICP algorithm, likely caused by including outliers as the 

threshold value increases.  

The non-linear behavior of RMS across the range of OutlierDistanceThreshold values 

implies that there exists a trade-off between robustness against outliers and the retention of 

true correspondences. Setting the threshold too low might make the algorithm too selective 

(i.e., discarding valid information and reducing too much the observation dataset) while 

setting it too high might result in including too many outliers, subsequently affecting the 

alignment's accuracy. 

 

3.7 RASTERIZED DIFFERENCE MAPS 

The final step of the simulation involves the generation of the difference maps between the 

reference epoch and the next ones, produced at a user-specified GSD. The method starts by 

extracting the bounding box of the reference mesh in order to create a new bidimensional 

bounding box that covers the same area. The reference and the simulated photogrammetric 

meshes are then rasterized within the limits of the bounding box. This is done to remove 

areas near the edges of the meshes, where the mesh data may be incomplete or noisy. The 

difference map is finally obtained subtracting (pixel by pixel) the reference and the simulated 

rasters: 

 

𝑑𝑖𝑓𝑓𝑓𝑖𝑛𝑎𝑙[𝑖, 𝑗] = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒[𝑖, 𝑗] − 𝐸𝑝𝑜𝑐ℎ𝑘[𝑖, 𝑗] 
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where Reference[i, j] is the pixel value for the reference raster and Epoch K[i,j] is the pixel 

value for the k-th epoch raster. This process can be iterated to a large number of samples 

(each one referred to a specific simulation epoch), which can be defined by the user based 

on the needs, in order to produce realistic and numerous datasets for training neural network 

models. 

The resolution of difference maps is a crucial parameter, especially when training deep 

neural networks. Such networks, given their potential to have millions of weights, demand 

vast system memory during training. Working with smaller images is a common strategy to 

tackle the problem. However, the loss in resolution can be detrimental. To retain information 

without blowing up computational demands, a solution is to further subdivide the difference 

raster resulting from mesh comparisons. An algorithm has been devised for this purpose, 

which breaks down the full raster map into smaller, more manageable tiles. 

 

3.8 SAMPLE ANNOTATION 

In order to complete the dataset information for neural network training (and validation), the 

raw image data (i.e., the difference map) needs to be labelled and categorized. This 

procedure is generally carried out by a human operator and requires expertise and, most of 

all, time. Annotations are essential for neural networks as they allow to associate labels and 

information to input data in order to produce the desired output.  

The coordinates of each simulated rockfall block  are stored in memory in order to be logged 

in an annotation file. One of the most popular annotation models for object detection and 

instance segmentation is Microsoft COCO annotations [120] which is based on the style of 

annotations presented for the Microsoft COCO dataset. In a COCO annotation file each 

object is represented as a JSON object. The JSON file for COCO-style annotations has the 

following structure: 

1. Image_id: the unique image ID in which the object is recognized. 

2. Category_id: the ID of the category the object belongs to (in this case only two 

categories are defined: a background class and a block class. All blocks share the same 

category. 

3. Bbox: the image coordinates of the bounding box [X, Y, B, H] surrounding the object. 
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4. Area: the number of the pixels belonging to the mask of the object. 

5. Iscrowd: A Boolean value which points out whether the object is a single object (0) or 

a group of objects (1). As a verification check in the niche-generation controls that no 

simulated blocks mutually intersect, , Iscrowd will always be 0 in this work. 

 

To compress the representation of the binary masks used for segmentation tasks, the Area 

contribution of the COCO structure is expressed as Segmentation instance. The encoding is 

carried out using RLE algorithms (Run Length Encoding) [131] which is a more compact 

and efficient methodology to provide and store binary mask data using a string of characters). 

RLE encoding describes for how long a certain color appears in a sequence of rows (or 

columns) in an image. The segmentation instance is expressed as: 

1. Size: which defines the height and width of the binary mask image. 

2. Counts: which is a list of integers that represents the encoding of the mask in the RLE 

format. 

 

An automatic annotation routine has been developed to extract the fundamental information 

from the rock collapse simulation process. This method is iterated on each element belonging 

to the simulated blocks list. 

First, the boundaries of the intersection mesh for each element (reported in section 3.3) are 

extracted and stored as the bounding box coordinates in the COCO JSON file. Subsequently, 

a binary mask for the intersection mesh is created and stored as RLE mask in the JSON file. 

Notice that the annotations need to account for the simulated noise introduced during the 

process and that change the position of the reconstructed rockfall. Alongside with the effect 

of noise on the rockfall coordinates, also the ICP algorithm introduces a roto-translation 

applied to the rockfall meshes. Its effect is accounted as well for annotation accurate 

localization. 

 



  



74 

4 CHAPTER 4 – SOFTWARE CALIBRATION AND 

EVALUATION 

The need to monitor and predict geological events has been a driving force for the 

evolution of photogrammetry, especially in close-range applications. The evaluation of 

small-scale phenomena of engineering interest has driven the development of different 

solutions in photogrammetry. More specifically, it has catalyzed the development of 

increasingly efficient monitoring systems, which are paramount for risk assessment for 

phenomena such as rockfalls. One key example of such solutions is fixed photogrammetric 

systems, which allow automated and high-frequency surveys. The efficiency of 

photogrammetric systems in geo-sciences has been pointed out considering the strengths 

and weaknesses of such methods [132] [133] [133] [19]. A specific topic regarding 

geomorphological analysis is the identification of rock deformations and rockfall events 

[134] [135] [136]. These geological phenomena pose a significant threat to human safety, 

and the techniques used for their detection and analysis have undergone significant 

changes in recent years, especially considering the constant growth of interest toward 

neural networks, which have been applied to a wide variety of scientific fields in the last 

decade. Currently, various lines of research have been proposed that leverage the power of 

neural networks to process different products of topographic nature, such as point clouds. 

Among these approaches, the neural network PointNet certainly stands out when dealing 

with point cloud classification tasks [137] [29]. 

The approach chosen for this thesis explores the possibility of identifying collapses on digital 

raster data using the acquisition capabilities of fixed dual-camera systems of 

photogrammetric nature. Raster differencing provides significant operational advantages in 

the processing of multi-temporal surveys of the same object of interest. Developing a raster 

of differences between two (or more) successive epochs allows for appreciating the 

variations that the excavation walls may undergo during the survey period. 

It is necessary, however, to consider that the stability (both geometric and optical) of the 

acquisition system is of vital importance in producing high-quality raster data. This is due 

to the possible variations in the camera configurations during the acquisition process, which 

could lead to distortions that may affect the procedures for recognizing rockfalls. 



75 

In this context, a primary objective of the thesis is to find an ideal configuration that allows 

for a reliable simulation of training data. This data is then used by the neural network to 

identify and classify collapses on the rock wall. 

In this chapter, the methodologies for testing the simulation software will be initially 

discussed, which should provide an insight whether the simulation software is able to 

produce results comparable to those obtained through other photogrammetry commercial 

software. For the purpose of comparison, Agisoft Metashape was chosen as the reference 

software. This is one of the most widely used solutions in the field of photogrammetric 

restitution and is also the primary processing software employed by the Geomatics group at 

the University of Parma. 

Similarly, the focus is on determining the working parameters for calibrating the simulation 

software, using available data collected from the monitoring system during the testing phase 

at quarries located at different sites. In this sense, the main characteristics of the fixed 

monitoring system deployed for the monitoring of these sites [138] will be illustrated. 

The main aspects to consider is the determination of operational thresholds concerning 

measurement noise, and the measurement of the size of collapses on the rock surface. The 

calibration procedure aims to provide a working configuration to the software to be used in 

later analysis on different rock walls. The necessity of calibrating the software relies on the 

available data gathered during the different survey campaigns carried out on different 

periods of time. For last, the methodology to evaluate the performances of the neural network 

will be briefly discussed. 

 

4.1 SOFTWARE TESTING 

4.1.1 SIMULATOR VS METASHAPE DEPTH MAPS COMPARISON 

Rockfall Simulator allows the user to directly exploit third party software (Metashape) 

reconstruction algorithms, as reported in section 3.4. The intermediate product of the 

photogrammetric pipeline involved in this process is the depth map. In order to exploit 

Metashape’s capabilities, the simulated depth maps produced with Rockfall Simulator 

should be as much as possible coherent to the ones produced by the SGM algorithms 

implemented in Metashape. 
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For this purpose, a comparison of the depth maps produced by Agisoft Metashape and 

Rockfall Simulator has been carried out.  

The original orientation parameters (EO and IO) from the Glendale block were maintained 

to further ensure the uniformity of conditions between the two software environments, 

therefore the comparisons are carried without any measurement noise on EO and IO 

parameters. The depth maps were processed without the presence of any external noise 

factors, thereby eliminating potential variables that might compromise the validity of the 

comparisons. Additionally, both depth maps also shared identical resolutions. 

The comparisons have been carried in a GIS environment after exporting the depth maps 

produced by Metashape and by Rockfall Simulator. At this stage, minor differences are 

expected due to the different approaches used to compute depth maps in Agisoft Metashape 

and Rockfall Simulator. 

To quantify these differences, both the mean and the standard deviation along with the 

maximum and minimal values of the difference map were calculated. 

 

 

Figure 4-1: Difference map of depth values (m) 

 

As can be observed, the predominant color on the difference map is green, indicative of 

values nearing zero. Differences of larger magnitude, that in a few pixels reach 70 cm (and 
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are highlighted on the image by the blue pixels) usually occur at rock wall shape 

discontinuities and seem suggesting that the Metashape SGM matching routine tends to 

smooth too much the disparity/depth map in those areas.  

 

Table 4-1: Statistical indices of the depth difference map. 

Min (m) Max (m) Mean (m) StD (m) RMS (m) 

-0.69 0.292 -0.0164 0.0264 0.0318 

 

Figure 4-2 shows the histogram of the difference map. 

 

 

Figure 4-2: Histogram of the difference values obtained from the depth maps. 

 

Overall, the agreement between Rockfall Simulator and Metashape's algorithms is good, 

with a mean difference around 1.5 cm and a StD of 2.5 cm. At this point, it must be noticed 

that Metashape deploys a proprietary algorithm for depth maps fusion, utilized during 3D 

reconstruction, which may (or may not) produce slight differences when comparing the 

depth maps. 
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4.1.2 SIMULATOR VS METASHAPE MESH RECONSTRUCTION COMPARISON 

As far as 3D reconstruction of the photogrammetric mesh, a comparison between the 

Metashape’s mesh, and the mesh created by the simulation process in Rockfall Simulator 

has been considered. Both meshes have been produced with the same set of EO and IO 

parameters, without any contribution of photogrammetric noise, therefore both meshes 

should be identical. Both meshes have been imported in CloudCompare and the Rockfall 

Simulator mesh has been finely registered to the reference mesh (the one produced with 

Metashape) in order to minimize any possible displacement. To compute the difference with 

the tool mesh-to-mesh difference, the Metashape mesh has been kept as the reference for 

this purpose. The following image illustrates the difference map obtained in CloudCompare. 

 

 

Figure 4-3: Representation of the mesh-to-mesh difference between the Metashape and the Rockfall Simulator 

meshes. 

 

The prevailing color in the difference mesh is green, which in the color scale used indicate 

mesh-to-mesh distances close to zero. Table 4-2 illustrates the mean and the standard 

deviation of the differences. 
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Table 4-2: Mesh-to-mesh difference basic statistics 

Mean (mm) StD (mm) 

0.12 1.091 

 

The statistics of Table 4-2 show that the deviation between the reference mesh from 

Metashape and the reconstructed mesh from Rockfall Simulator is on average negligible. 

However, when visually inspecting the meshes difference in CloudCompare, it is possible 

to observe red spots, that highlight presumably higher differences. Figure 4-4 shows a zoom 

over different parts of the mesh (from left to right) where these spots are highlighted in 

CloudCompare. 

 

   

Figure 4-4: a) Western portion of the difference mesh, b) central portion of the difference mesh, c) eastern 

portion of the difference mesh 

 

To delve into this issue more comprehensively, it was deemed necessary to conduct an 

examination of the vertices coordinates of the meshes. 

 

Table 4-3: Mean and standard deviation of the differences between the reference mesh and the reconstructed 

mesh 

Mean (mm) 0.00 0.00 0.00 

StD (mm) 0.004 0.0017 0.0062 

 

The situation depicted in Figure 4-4 could plausibly be associated with the rounding of the 

vertices' coordinates enacted by Metashape. 
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4.2 SOFTWARE NOISE CALIBRATION 

4.1.3 FIXED MONITORING SYSTEMS USED IN THE EXPERIMENTS 

The stereo monitoring system designed by Roncella et al. [138] has been deployed in 

different sites. The system consists of two units designed to guarantee autonomy and 

continuity of operation in the environmental working conditions and adequate stability of 

the installation over time, to preserve the calibration conditions as far as possible and thus 

ensures good repeatability of the acquisitions [139]. Each unit comprises a photogrammetric 

camera, a remote-control system, and a power supply system, housed in a IP66 protective 

case, which protects the internal parts from rain, moisture, and dust. 

 

  

Figure 4-5:a) IP66 box of the fixed monitoring system b) Monitoring system installation in front of the rock 

wall. 

 

The camera is a Nikon D810, with a sensor resolution of 36.3 MP (7360 x 4912 pixels) 

equipped with an f/1.8 lens with a focal length of 50 mm. The control system consists of a 

Raspberry Pi 3 microcontroller, which allows the camera's parameters to be set remotely, 

plan and control the status of the acquisitions and system conditions (temperature, power 

supply, etc.), and finally transmits the images via the Internet. The main power supply unit 

consists of two 26 Ah batteries connected to a photovoltaic system capable of producing 
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60W of energy. A further power supply module is located inside the box and is connected 

to both the camera and the logic unit, to protect the system from sudden power failures. 

The system is equipped with a retro-reflective topographic prism mounted above each 

camera unit. In this setup, the monitoring system is fastened to a steel pole, firmly anchored 

to the ground, thus any translational displacements of the cameras due to shocks, wind, or 

unforeseen events should be sufficiently safeguarded during the system's operational cycles. 

However, potential minor rotational movements might be expected due to severe weather 

conditions or unexpected vibrations from heavy-vehicle movements. 

 

Table 4-4 Nikon D810 specifications 

Nikon D810 

Sensor 36.3 MP 
Sensor size 35.9 x 24 mm 

Focal length (mm) 50 
Resolution 7360 x 4912 

ISO 64-12800 
 

The processing of images transferred via the Internet is carried out on a remote server using 

a software package developed at the University of Parma, called Slope Monitor [22]. This 

software allows for the automatic processing of the system's stereo pairs, exploiting 

Metashape's scripting capabilities to perform dense matching and 3D model reconstruction. 

The estimation of IO and EO parameters can be carried out by means of a BBA procedure 

[140] using ground control points (GCPs).  

In the case of an image block with limited amount of photographic data (in this case, only 

an image pair) and with minimal depth variations, it is very likely to witness strong 

correlations among the IO parameters.  For these reasons, the two-steps calibration 

methodology presented in [22] has been employed: firstly, the internal orientation 

parameters of the two cameras were estimated and, secondly, the external orientation 

parameters of the camera centers were determined by means of topographic surveys. 

 

Site 1 – Glendale (Australia) 

The first one is a mining quarry located near Glendale in Australia's Hunter Valley (NSW, 

Australia). The system acquires hourly information on the condition of the framed portion 
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of the sub-vertical wall (Figure 4-6), which has an extension of 70 x 45 m2 and is oriented 

North/North-West (dip direction of 255°). 

 

 

Figure 4-6: Glendale quarry rock wall 

 

The wall is geologically divided into three different horizontal strata. The upper layer (Figure 

4-7.a) consists of sedimentary rock (sandstone), with discontinuities mainly oriented on the 

vertical and sub-vertical face. Such condition makes this layer particularly prone to the 

detachment of large portions of rock. The medial layer of the wall (Figure 4-7.b), 

approximately 2.3 m thick, is characterized by the presence of coal. This layer is particularly 

fragmented, with discontinuities characterized by roughly perpendicular layering with 

respect to the excavation face. The lower layer (Figure 4-7.c)) is similar in morphology to 

the upper one, with strong vertical discontinuities parallel to the excavation face. 

 

 

Figure 4-7 a) upper portion of the rock wall b) medial portion c) lower portion of the rock wall 
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The face of the wall has an average slope of approximately 70° with respect to the horizontal 

plane. The combination of the slope and the geological characteristics of the wall (with 

frequent intersections of discontinuities in the direction of the face) makes it particularly 

vulnerable to major collapse events. Detachments from the outer sandstone layers 

(particularly the upper one) can be a major risk factor for mine personnel and excavation 

equipment. Within this environment, it was decided to deploy a fixed dual-camera 

photogrammetric system to allow for precise monitoring of the rock wall. 

To achieve the highest possible overlap between frames, the two cameras were aligned with 

a slight convergence of their optical axes [23]. The wall being imaged is situated at a distance 

of ca. 105 meters, while the distance between the centers of the two cameras (base-length) 

is approximately 28 meters. The a-priori precision of the stereo-pair system can be computed 

as: 

 

𝜎𝑍 = 
𝑍2

𝑐 𝐵
 𝜎𝑝ξ

= 2.7 𝑐𝑚 

 

where 𝜎Z is the theoretical precision, Z is the distance to the object, c is the principal distance, 

B is the base-length (i.e., the distance between the two camera centers) and finally 𝜎𝑝𝜉 is 

the theoretical precision of the parallax measurement between two homologous points. 

Assuming an image coordinate precision of 0.5 pixel the theoretical precision of stereo-

restitution in depth direction is therefore 2.7 cm. 
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Figure 4-8: Glendale image block geometry. 

 

Site 2 – Bulga (Australia) 

A second site is the Bulga rock wall (Figure 4-10), which exhibits a pronounced horizontal 

stratification. The wall is approximately 70 x 45 m2. The rock's texture appears 

predominantly fine-grained, although there are some patches that seem coarser, possibly 

indicating inclusions or varying sediment types within the layers. Additionally, there are a 

series of vertical fracture lines or joints, which may have resulted from tectonic activity, 

weathering, or other geological processes. The following images illustrate the stereo pair of 

the image block, with a GSD coherent to the one from Glendale (e.g., 2 cm per pixel). 

 

  

Figure 4-9: Bulga rock wall stereo pair acquired with the stereo fixed photogrammetric system illustrated in 

section 4.1.3. 
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As the image block geometry is structured as follows: 

 

 

Figure 4-10: Bulga image block geometry. 

 

Site 3 – Pietra di Bismantova (Italy) 

A third one (Pietra di Bismantova, Figure 4-12) has been acquired on 05/09/2020 with low 

light conditions and refers to an approximately 70 x 70 m2 wall. The Pietra di Bismantova is 

a striking rock formation located in the Emilia-Romagna region of Italy. The rock has 

undergone a variety of geological processes, including tectonic uplift, and erosion. In terms 

of its stratigraphy, the oldest layers are predominantly composed of calcareous rock [141]. 

The rock wall exhibits unique geomorphological features. It is defined by a series of 

discontinuity lines that predominantly orient vertically.  

In addition to these lines of discontinuity, the rock wall is further complicated by the 

presence of numerous erosional indentations or notches. These concave formations are the 

result of extended erosive processes that have acted upon the slope, likely attributable to a 

combination of atmospheric elements, water flow, and freeze-thaw dynamics. These 
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indentations provide a detailed portrait of erosion rates and may signify structural 

weaknesses that warrant further investigation for potential landslide or collapse risks. The 

following image pair has been exploited to generate the photogrammetric simulation block. 

 

  

Figure 4-11: Pietra di Bismantova rock wall image pair acquired with the stereo fixed photogrammetric 

system illustrated in section 4.1.3. 

 

As the geometry of the image block is reported in Figure 4-12. 

 

 

Figure 4-12: Pietra di Bismantova image block geometry, 
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Site 4 – Pilkington (Australia) 

The last image block has been acquired in Pilkington (Australia) (Figure 4-14). The rock 

face appears to have distinct layers of horizontal and sub-vertical strata, with approximately 

dimensions of 15 x 8 m2. These planes often represent zones of mechanical weakness and 

are characteristics of sedimentary rocks. There are zones on the rock wall where the rock 

strata exhibit offsets. Such offsets may indicate zones interest by rockfall events. 

 

  

Figure 4-13: Pilkington rock wall image pair acquired with the stereo fixed photogrammetric system illustrated 

in section 4.1.3. 

 

As the geometry of the image block is reported in Figure 5-18. 

 

 

Figure 4-14: Pilkington image block geometry. 
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4.1.4 QUANTIFICATION OF PHOTOGRAMMETRIC NOISE FROM REAL DATA 

To produce reference data for the evaluation of the photogrammetric noise and rockfall 

dimensions, the stereo pairs of eight acquisitions in the Glendale quarry over approximately 

two months (see Table 3) have been processed. The time window in which the acquisitions 

were carried out covers February and March 2018, as the system was temporarily installed 

for testing purposes. It was chosen to use the images taken around midday (12:00 A.M.) as, 

in a study over the same site [142], the best lighting conditions for the monitoring system 

were recognized to be between 12 A.M. and 2 P.M. when shadows are minimal or at least 

of little impact. Shadows may cause a strong alteration of the grey tones in the shaded area 

and, consequently, can affect the image matching procedures [143] and ultimately the 3D 

reconstruction accuracy. 

 

Table 4-5: List of surveys carried at Glendale quarry facility during the testing 

campaign. 

Survey Date 

Reference 09/02/2018 

Acquisition 1 11/02/2018 

Acquisition 2 22/02/2018 

Acquisition 3 06/03/2018 

Acquisition 4 11/03/2018 

Acquisition 5 16/03/2018 

Acquisition 6 24/03/2018 

Acquisition 7 27/03/2018 

 

All photogrammetric blocks were processed with Metashape Pro 1.8.5 [128] to obtain a 3D 

mesh model of the rock wall. The camera orientation parameters used in the processing are 

those obtained through the calibration procedures of the photogrammetric system described 

in the previous section. In particular, the internal orientation parameters used were obtained 

from a camera calibration carried out just after the reference campaign. Due to a blasting 

event that occurred in the middle of February 2018, the calibration of the stereo monitoring 

system had to be repeated in early March of 2018, on the 06/03/2018. It was observed that 

unexpected variations in the camera assets occurred, particularly a 2-degree rotation around 

the horizontal axis of the left camera. 
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The workflow employed to produce data for realistic noise estimation was as follow. 

Key points are selected from images. Based on similarity (matching) of descriptors, tie 

points are found, and, after the BBA, a sparse point cloud made by all tie points found is 

generated. To obtain a large number of tie points and to achieve the best accuracy, the images 

have been employed at their native resolution (Quality = “High” in Metashape terminology). 

Next, the dense matching procedure is carried out. To speed up the process, the images were 

subsampled by a factor 4 (Metashape's 'Medium' value). Finally, the 3D mesh of the wall is 

produced and imported in CloudCompareTM (in .obj format) to optimize the co-registration 

on the reference epoch using the Iterative Closest Point (ICP) algorithm [130], [144].  

Starting from the co-registered meshes, a DEM was produced for each processed epoch to 

be compared with the reference one. To best represent the detachments process, the DEM 

XY plane should coincide with the mean plane of the wall: to this aim, a plane has been 

fitted to the reference epoch point cloud. The projection plane origin has been placed in the 

lower left corner of the wall, with the y-axis oriented towards the upper left vertex of the 

wall and the x-axis oriented towards the lower right vertex of the wall. The DEMs of the 

processed epochs have been generated with a ground resolution of 0.02 m/px (ground 

sampling distance), which coincides with the GSD of the image blocks acquired by the 

monitoring system. 

 

 

Figure 4-15 Hillshaded DEM of the wall at the reference epoch  

 

The digital models are compared by means of a pixel-by-pixel subtraction of the 

reconstructed elevation values between the reference epoch and the following ones. 
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𝑧𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑎𝑝[𝑖, 𝑗] = 𝑧𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒[𝑖, 𝑗] − 𝑧𝑘−𝑡ℎ 𝑒𝑝𝑜𝑐ℎ[𝑖, 𝑗] 

 

where [i, j] is the position of the pixel on the raster and k denotes the k-the reconstructed 

epoch. Figure 4-16 shows a difference map obtained between the reference epoch (Reference 

in Table 4-5) and the next one. 

 

 

Figure 4-16: Difference map of the rock wall (Reference to Epoch01) 

 

The color scale shown on the right side of Figure 4-16 encompasses the range [-6 Z ; 6 Z] 

where Z = 0.027 m is the theoretical precision of the monitoring system in depth direction. 

In the figure above, pixels whose value falls outside the a priori established acceptance range 

are highlighted in red (holes) and blue (outcrops). Errors, and particularly outliers, can be 

expected in any automated photogrammetric process, which can cause gross or systematic 

errors in the coordinates of the object points. This condition occurs randomly due to errors 

in matching or due to too small intersection angles of the homologous rays (which are 

therefore almost parallel) and can lead to a forward (or backward) shift in the position of the 

point in object space [145]. Systematic errors might also be caused by the variation of IO 

parameters over time during the survey campaign. As the measurement noise estimation is 

carried out by a statistical analysis of the differences between the DTM of pairs of epochs, 

care must be taken to exclude areas affected by detachments between the various epochs, 

which could otherwise bias the estimates of noise. 
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At this stage, it is important to account for a both qualitative and quantitative evaluation of 

measurement noise, as it serves as a benchmark to the following simulation software 

calibration procedure. 

Variations in the IO parameters, particularly the focal length and radial distortion parameters 

in the Brown-Conrady camera model may cause a global deformation of the model and 

therefore in the difference map. To provide a clearer understanding of the global 

deformations observed by processing image blocks from actual data, out of the diverse 

outcomes Figure 4-17 is provided. 

 

 

Figure 4-17: Difference map produced for the real study case of Glendale. 

 

As depicted in Figure 4-17, excluding the deep red values, that potentially represent rock 

collapses, the central part of the difference map exhibits a consistent pattern that closely 

aligns with the reference model, as indicated by the green-colored areas representing 

differences near 0 m. In these areas, the model is accurately co-registered, demonstrating 

only minor discrepancies on the surface. 

Conversely, the left and right sides of the model are represented by blue-colored areas, 

indicating negative difference values (i.e., the compared model is positioned "above" the 

reference model). This discrepancy highlights a noticeable curvature on the sides of the 

compared model, likely attributable to variations in the IO parameters, which can introduce 

such effects. Analogously, a similar deformation with the opposite sign is observable, 

indicating that the sides of the model are positioned "below" the reference model, resulting 

in positive difference values in the same regions. 
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Two sections of the previously attached difference map are shown in Figure 4-18 to illustrate 

the concept more clearly: 

 

  

Figure 4-18: a) control window 1 b) control window 2 

 

In case a), a non-random spatial distribution of differences is observed in the central zone, 

quite different from the one theoretically expected from the distribution of model 

reconstruction errors obtained from the photogrammetric process. This pattern indicates 

morphological variations with respect to the reference and, consequently, plausibly a 

collapse event. Section b), on the other hand, shows a morphology that is entirely comparable 

between the two models (prevailing green/orange color), except some areas of discontinuity 

(light blue, all almost horizontal) that could be due to a slight change of the geometric and 

optical arrangements of the cameras between the different epochs that affect mostly 

horizontal discontinuities. The following images provide a more detailed qualitative analysis 

of these effects on the difference maps. 

 

  

Figure 4-19: Examples of difference maps along discontinuities 
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In the top left image of Figure 4-19 (left), the described effect appears as missing material 

along the discontinuities of the rock wall. In fact, the red areas highlight positive difference 

values, as the compared tridimensional model does not properly align with the reference 

model. Positive differences would on the other hand be wrongly recognized by the 

identification process as rock collapse. Actually, discontinuities are weak rock structures, so 

detachment of material may well be expected there. 

On the other hand, Figure 4-19 (right) shows that the difference maps may provide negative 

values along the discontinuity, meaning that there could be some sort of material 

accumulation in such areas. Such cases may originate for the same reasons, i.e., small 

variations of the orientation parameters in the following surveying epochs. As the sign of 

the difference values is opposite to what is observed in a real rock collapse, the identification 

system would make no commission errors. It may happen, however, that such areas hid or 

underestimate the amount of a true collapse nearby. In this case it is considered close to 

impossible to overcome such obstacle, as the automatic identification tools provide a 

compromise in such situations. 

Additionally, it is important to evaluate the presence of measurement errors on flat and 

untextured rock surfaces (see Figure 4-24), that are far from uncommon. In such areas, which 

also include shadows and reflections, the reliability of matching algorithms is often 

compromised due to missing information and the attempt to fill the gaps resorting to various 

interpolation techniques. 
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Figure 4-20: Flat untextured surface on the Glendale rock wall 

 

As depicted in Figure 4-20, flat and untextured surfaces present a challenge for matching 

algorithms due to the lack of well-defined features. The rocky surface is largely flat and 

lacks distinct characteristics, thereby contributing to measurement errors during the 

reconstruction phase. 

To illustrate the desired outcomes of the noise simulation, the ensuing figure showcases the 

difference map derived from manual processing of real survey data obtained in Glendale. 

The disparity map delineates the differences observed within this particular area, 

highlighting the challenges encountered when processing such data. 

 



95 

 

Figure 4-21: Difference map of the area in Figure 3-36 

 

As depicted in Figure 4-21, the difference map reveals a notable discrepancy between the 

smooth surface observed in the original photo and its absence in the mapped representation. 

This discrepancy manifests as a distinct pattern, where areas with green hues (differences 

close to 0 m) are interspersed with orange and red areas probably due to errors during image 

matching. 

When addressing quantitatively the real noise distribution, it must be considered the 

presence of collapses on the difference map, therefore it was necessary to restrict the noise 

analyses to areas possibly not affected by such phenomena. Three areas of approximately 5 

x 5 m2 (approximately 250 x 250 pixel each) were identified as stable across the whole-time 

span, by visually comparing the difference maps of all the epochs used for noise calibration. 

The three zones are shown in the blue boxes in the difference map (Figure 4-10) while Figure 

4-23 shows their images. 
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Figure 4-22: Inspection areas on difference map 

 

   

Figure 4-23 Area 1 (left), Area 2 (center), Area 3 (right) patches on the rock wall. 

 

The left portion of the rock wall, referred to as Area 1, is located on the western side and is 

situated in the upper region. The morphology of this area is relatively smooth and lacks 

texture, with discontinuities running parallel to the excavation face. The lower region of the 

imaging window encompasses the medial coal stratus, which is more uniformly textured and 

exhibits greater depth variations. Areas 2 and 3, located respectively in the center and eastern 

portions of the rock wall's lower region, are highly textured and often exhibit consistent 

shadows across multiple epochs [154]. 

These areas were considered stable during the acquisition period since no major movement 

could be clearly identified on them. This notwithstanding, it must be noted that the 

morphology (by means of possible occlusions) and the lighting conditions (by means of 

extended shadows) may provide an obstacle to 3D reconstruction. In fact, it can be 

challenging to achieve accurate and detailed results [41] as there may be several sources of 

disturbance for matching algorithms. Another issue that needs to be considered is that the 

stability of the rock wall cannot be assumed to be perfect from the outset. Consequently, 
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there may be some minor movements that are not clearly distinguishable as proper collapses, 

even in these supposedly stable areas. This may partially deviate the estimation of the real 

distribution of the noise. 

For each difference map, the three patches have been exported singularly and then 

aggregated in a 3-layered matrix. To summarize the magnitude and distribution of noise in 

these patches, basic statistical indices such as median, standard deviation and RMS of the 

differences have been computed together with the difference map histogram. In order to 

conveniently exclude data belonging to the tails of the distribution (and therefore attributable 

to potential rockfall events), it was decided to calculate the median value to exclude larger 

differences from the statistical analysis as they may refer to potential movements on the rock 

wall. The expected median value from such analysis should be relatively close to 0 when 

comparing the different models, suggesting that there are no systematic errors observed over 

time. 

In Table 4-6 the statistics are reported to enable the analysis of noise over time in case some 

trend is present. 

 

Table 4-6: Statistical indices for the different confrontation epochs 

 
Date Median (m) StD (m) RMSE (m) 

Acquisition 01 09/02/2018 -0.000139 0.020154 0.0208 

Acquisition 02 11/02/2018 0.00110 0.01951 0.0200 

Acquisition 03 22/02/2018 0.000906 0.019631 0.0205 

Acquisition 04 06/03/2018 0.001908 0.021768 0.0231 

Acquisition 05 11/03/2018 0.004397 0.021027 0.0214 

Acquisition 06 16/03/2018 0.003496 0.023944 0.0239 

Acquisition 07 24/03/2018 0.005387 0.026707 0.0267 

 

The following plots represent the data of Table 4-6. In these charts, the horizontal yellow 

line represents the mean value across all epochs, while the blue bars illustrate the median 

value (across the 3 different patches) calculated for each epoch. 
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Figure 4-24: the chart represents the median value of the differences w.r.t. the reference epoch calculated 

across the three inspection areas at each epoch (blue bar) and the mean value calculated over all the epochs 

(yellow line). 

 

The chart above highlights the median error across different epochs to detect any minor 

detachments and possible model deformations of the rock wall over time. The median error 

represents the vertical displacement (Z-axis) between the reference epoch and subsequent 

epochs. Notice that the Iterative Closest Point (ICP) algorithm is applied across the entire 

model, so a fraction of the median error may depend on the optimization not being restricted 

to the three boxes only. The median error is low in the initial three epochs, and the 

reconstructed models show no significant differences. However, as the time goes, small 

variations in the internal and external camera orientation parameters may affect the 3D 

model, which cannot completely be accounted for by the ICP algorithm in the registration. 

Consequently, this leads to an increase in median error values in subsequent epochs. 

Figure 4-25 shows the standard deviation of the differences at each epoch, a measure of the 

noise values. The horizontal yellow value is the mean value of the standard deviation across 

all epochs. 
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Figure 4-25: The chart represents the standard deviation of the noise for each epoch (blue chart) and the mean 

value across the different epochs (yellow line) 

 

The standard deviation of the differences exhibits a consistent pattern over time, with an 

average value of approximately 2.4 cm. The first five epochs are all just above or just below 

2 cm. An increase of the standard deviation is observed in Epoch 06 and 07; the latter, at 

2.6 cm, is about 30% higher than in Epoch 01. Overall, however, the standard deviations 

remain relatively stable over the epochs, averaging around 2 cm. Moreover, the average 

standard deviation is consistent with the theoretical block precision calculated in section 

4.1.3.  

 

Table 4-7: Noise simulation thresholds for Glendale mining site rock wall 

Median (mm) Mean StD (mm) Mean RMS (mm) 

2.6 21.8 2.23 

 

To faithfully simulate photogrammetric noise, the basic statistics alone are not enough, as it 

is also important to consider the distribution of errors, that should in principle be normal 

since theoretically the system is not subject of systematic errors. The following chart 

represent the relative frequency histograms of Epoch 07, as it is recognized as the most 

unfavorable case of the set. Epoch 07 shows the higher residuals in terms of mean error 

(meaning that there could be a possible systematism in the error distribution -for example a 

translation in the points coordinates or a curvature/variation in the model geometry due to 
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the variation of the distortion parameters over time). It must be noticed that Epoch 07’s 

acquisitions are gathered after 42 days from the deployment of the fixed system.  

 

 

Figure 4-26: Histogram of Epoch 07 differences. 

 

The relative frequency graphs demonstrate a pattern that roughly describes a bell-shaped 

distribution, typically associated with a Gaussian probability distribution. 
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4.1.5 SIMULATED NOISE CALIBRATION 

To ensure accurate replication of the conditions observed during the analysis of a real case, 

it is crucial to calibrate the noise parameters to obtain similar results in the simulated 

difference maps generated by Rockfall Simulator. Calibrating the noise parameters in 

Rockfall Simulator involves specifying the parameters of the probability distribution for the 

random noise generation of the following parameters: 

1. Exterior orientation: The variations in the orientation parameters of each camera, aim 

to reproduce the effect on the stability of the camera support structure of external 

disturbances (wind, vibrations, temperature changes, etc.). 

2. Interior orientation: The Brown-Conrady’s camera model parameters, can vary over 

time in response to temperature, lens deformations, and other factors affecting the optics. 

3. Depth maps: This pertains to errors encountered during depth map generation, 

including inaccuracies in parallax estimation and errors introduced during the SGM 

matching procedures. 

 

Although the goal of calibration is clear, i.e., to achieve error statistics and patterns similar 

to those found in 4.1.3, it is likely that many different combinations may be acceptable. Each 

parameter error has a specific effect that can be studied separately. However, determining 

the combination of these effects producing error maps similar to the empirical ones, when 

so many noise sources are involved, is not simple. An efficient approach for addressing the 

calibration procedure related to the simulation software might be the establishment of a cost 

function that accommodates for the empirical characteristics of errors. This cost function 

would serve as a mathematical representation of the divergence between observed empirical 

data and the corresponding simulated outputs. It should provide a quantifiable metric by 

which the optimization algorithms can iteratively adjust the orientation parameters to 

minimize the observed discrepancies. By effectively capturing the empirical characteristics 

of errors, the cost function would offer a more precise understanding of how each orientation 

parameter influences the overall system performance, thereby allowing for a more targeted 

calibration strategy. 
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A first assessment has been carried out on the stability of the exterior orientation parameters, 

in terms of translations on the position of each perspective center in the object space and the 

relative rotation of the optical axis of each camera.  

In such systems, a minute deviation in the relative or individual positions and orientations 

of the camera stations can result in apparent discrepancies when producing Digital Terrain 

Models (DTMs). Even a slight unaccounted rotation of the camera can lead to significant 

changes due to the distance from the object (around 100 m from the rock wall). While the 

likelihood of a change in the base-length (i.e., movement along the line connecting the two 

acquisition centers) is low due to the robust and securely anchored support structure of the 

protection box, other factors such as vibrations from the transit of operating quarry vehicles, 

unpredicted windstorms or rock wall blasting operations can induce rotational movements 

in the cameras' orientation. 

To assess the impact of rotations, it is preferable to apply the rotation to only one of the 

cameras. Figure 4-27 shows the effect of a Phi rotation of +0.01 degrees along the Y 

direction, with the Y-axis being vertically oriented in the image. In this sense, a rotation 

along Y will result in the camera to be inclined towards left (positive rotation) or right 

(negative rotation). 

 

 

Figure 4-27: Difference map with a Phi rotation of +0.01 degrees 
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As it can be observed, the rotation slightly contributes to recreating the gaps along the 

vertical discontinuities, with a rather inhomogeneous pattern. In particular, the red areas are 

highlighted on the outer side of the difference map. 

A similar rotation for the Omega angle, a rotation along the X-axis, is shown in Figure 4-28. 

 

 

Figure 4-28: Difference map with an Omega rotation of +0.01 degrees 

 

The deformation pattern exhibits a strong correlation with both sub-vertical and vertical 

discontinuities. Notably, the model demonstrates significant variations towards the sides of 

the model, which is a shared feature with the Omega rotation previously illustrated. 

Testing the effects of changes in the EO parameters has been restricted to modest entity 

rotations only, as the system characteristics should ensure enough stability of the camera 

projection centers. Therefore, any variation in the base-length has been ruled out. 

Assessing the amount and effects of changes in the IO parameters has been performed with 

reference to the acquisition campaigns of the monitoring system illustrated section 4.1.3. 

First each parameter has been changed independently of the others, starting with the focal 

length, a major parameter in the photogrammetric process as it is tied to the scale of 

representation of the reconstructed object.  

Additionally, there exists the possibility of stochastic correlations among these parameters, 

further increasing the complexity of the task. 

As the image block consists of only a pair of images, self-calibration can result in some 

interior orientation parameters to be highly correlated (see Table 4-8).  
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Table 4-8: Correlation matrix (Cxx) for Glendale image block when performing self-calibration task. 

 
F Cx Cy B1 B2 K1 K2 K3 K4 P1 P2 

F 1 -0.11 -0.96 -0.74 0.85 0.37 -0.25 0.1 0.03 -0.16 0.85 

Cx 
 

1 0.09 -0.56 0.41 -0.53 0.07 0.28 -0.59 1 -0.24 

Cy 
  

1 0.72 -0.85 -0.34 0.13 0.02 -0.14 0.15 -0.73 

B1 
   

1 -0.96 0.03 0.15 -0.26 0.35 -0.52 -0.53 

B2 
    

1 0.11 -0.2 0.24 -0.27 0.36 0.65 

K1 
     

1 -0.78 0.49 -0.16 -0.56 0.57 

K2 
      

1 -0.92 0.71 0.1 -0.48 

K3 
       

1 -0.93 0.27 0.3 

K4 
        

1 -0.59 -0.1 

P1 
         

1 -0.28 

P2 
          

1 

 

From Table 4-8 the parameter Cy is highly correlated with the focal length (F) and with P2. 

The same strong correlation can be observed between Cx and P1, and among the affinity 

parameters and the radial distortion parameters respectively. Such correlations are favored 

by the weakness of the block, and the low density of the ground natural points. Methods to 

improve the calibration accuracy in such scenarios have been presented in 4.1.1. 

As a result, it becomes increasingly unfeasible to exhaustively explore all possible parameter 

combinations in the search for the optimal calibration setup. 

To find a satisfactory solution that adequately depicts the real cases, both in a qualitative and 

in a quantitative manner, a heuristic approach has been preferred. Evaluation of the outcomes 

will be undertaken both quantitatively, in terms of reconstruction error metrics, and 

qualitatively, by examining whether the simulated data manifest patterns analogous to those 

observed in the empirical setting.  

In order to provide a starting point for the heuristic approach, it was decided to assess three 

distinct calibration sets for the Nikon D810 cameras estimated during the maintenance 

operations of the fixed monitoring system situated in Glendale. This strategy aims to provide 

preliminary insights that could guide the search for an optimal combination of parameters 

that most faithfully represent real-world scenarios. The deviations observed between the 

three calibration sets could offer a coarse evaluation of the parameter’s uncertainty. Table 9 

resumes the average IO difference values observed among the three calibration blocks 
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previously cited. These results are clearly not expected to provide an optimal solution to the 

IO noise simulation but may be useful as a starting point for the research of realistic Rockfall 

Simulator noise parameters. 

 

Table 5: Mean and StD from of the IO parameters from the different calibration campaigns of the fixed system. 

 
Mean StD 

F (px) 0.008 7.53 

Cx (px) -0.001 87.44 

Cy (px) -0.006 34.91 

b1 0.0023 4.29 

b2 -0.46 10.91 

k1 -0.0001 0.076 

k2 0.0047 0.68 

k3 -0.0537 1.46 

k4 0.1847 0.59 

p1 -0.000001 0.002 

p2 -0.000023 0.0004 

 

The standard deviations of each IO parameter presented in Table 4-8 have been imported in 

Rockfall Simulator to provide a first attempt solution to develop the calibration process on. 

A heuristic procedure has been devised that, like a greedy algorithm, minimizing in an 

iterative cycle the standard deviation of the original difference map, by changing a parameter 

value at a time, until the reference standard deviation (3 cm) is reached. 

Measurement has been generated by a normal distribution with zero mean and a tentative 

standard deviation, whose value is established based on the tests on single parameter changes 

and the precision estimates of the parameters from the system calibration.  

Figure 4-34 represents the results of the tests executed in search of the parameters error 

combination that better represent the difference maps in the real case study. The horizontal 

axis lists the iteration number while the vertical one reports the standard deviation (expressed 

in meters) of the Z error from the difference map. The blue line represents the simulated 



106 

tests, while the orange one the reference noise levels obtained from the survey image blocks 

in section 4.1.3.  

 

 

Figure 4-29: Noise Testing on Rockfall Simulator. 

 

All the tests are identified with an ID number which refers to a specific parameters’ dataset.  

The initial combination of parameters (Test #1) is the dataset obtained from the evaluation 

of the differences over time of the calibration campaigns parameters provided in Table 9. 

Such solution, which has been graphically represented in Figure 4-30, provides noise levels 

which are out of the margins of the real case, with standard deviation values of around 10 

cm (around 4 times exceeding the real cases). Additionally, the solution does not provide a 

qualitative outcome (spatial distribution of the Z error) comparable to the real study case. 

The principal point coordinates (Cx and Cy) have been varied first, obtaining a decrease of 

the noise levels to around 6 cm from Test #2 to Test#7. 
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Figure 4-30: Noise effects obtained by the variation of component Cx. 

 

More specifically, Cx has been varied from a value of around 80 pixels (estimated in the 

earlier calibration campaigns) to around 15 pixels in Test #7 by decrements of around 8 

pixels per iteration (roughly 10% of the initial value). The steep descent of the standard 

deviation (reduced by around 40%) confirms the importance of using an accurate value of 

Cx, as shown in the testing of single parameters. 

Introducing noise on the x component of the principal point results in a systematic vertical 

shift of the object points. Unaccounted changes in the position of the principal points could 

lead to misleading results if they are correlated to a translation of the acquisition center. For 

instance, if a translation vector Y0 is defined under such conditions, and a negative variation 

in Cx (the principal point coordinate) is applied, they would counterbalance each other's 

effects. This observation is important because the positions of the camera stations remain 

relatively fixed, as they are not subjected to significant variations due to the monitoring 

system's structure. Generating such scenario would results in the following difference map: 
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Figure 4-31: Difference map with negative Cx and positive Y0 changes  

 

The same Cx variation is directly applied while simulating a negative offset with an 

equivalent magnitude for the translation vector along the horizontal axis. 

The same pattern has been repeated for Cy from Test #8 to Test #15. The initial solution was 

characterized by a deviation of around 30 pixels in Cy, a value that, as for Cx, was estimated 

in the calibration campaigns. At each consecutive steps a variation of Cy by around 3 pixels 

has been applied, which resulted in a decrease of around 30% of the standard deviation of 

the difference maps.  

 

 

Figure 4-32: Noise effects obtained by the variation of component Cy. 
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From Test #16 to Test #24, an analysis was conducted to examine the influence of other 

internal orientation parameters, specifically radial distortion, tangential distortion, and the 

skew and affinity parameters. Test #17, which incorporated radial distortion parameters from 

calibration campaign assessments, initially demonstrated an increase in noise levels. 

However, Test #18, which reduced the intensity of radial distortion by 20%, indicated a 

minor decrease in noise levels. 

The introduction of tangential distortion parameters in this test phase resulted in a rise in 

noise levels by approximately 15%. This suggests a significant contribution from tangential 

distortion parameters to the simulated noise levels. However, it is important to note that the 

quantitative noise representation at this stage did not align with the actual distribution 

observed in the case study. 

In Test #21, the tangential contribution was incorporated into the noise simulation, using 

thresholds derived from the calibration. The swift rise in standard deviation highlighted the 

significant contribution of tangential distortion parameters to the noise levels, that resulted 

in a noise level increase of approximately 15%, signifying a secondary order increase 

relative to the radial distortion parameters. 

By Test #23, incorporating all parameters (principal point, radial and tangential distortion 

parameters, and rotations) yielded a standard deviation of around 3 cm in noise levels, 

consistent with the real case study results. The difference map generated from this parameter 

combination is depicted in Figure 4-35. 
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Figure 4-33: Difference map produced with Test #25 parameter dataset. 

 

The difference map resulting from the Test #23 parameter dataset showcases a pattern 

similar to those derived from the real-world case study. The most characteristic features, 

such as patterns along vertical and sub-vertical discontinuities and minor deformation on the 

raster's outer sides, are present. However, it's also crucial to simulate patterns observed on 

smooth textured areas, a characteristic outcome of imprecise matches via the Semi-Global 

Matching (SGM) algorithms. 

To simulate this component, Rockfall Simulator is equipped with a parallax noise and a 

regularization noise parameter, as discussed in section 3.4. 

Tests #24 to #27 were designed to provide moderate contributions to these parameters to 

further understand their impact on noise levels. As most image matching methods 

consistently achieve sub-pixel accuracy [146], the parallax and regularization noise levels 

were kept below 1 pixel. 

Initially, Test #24 introduced a 0.1-pixel parallax error. This marginally increased the noise 

levels by approximately 0.2 cm. To enhance this contribution, Test #25 assessed a 0.5-pixel 

error, which resulted in a further 0.2 cm increase in noise levels. This revealed a non-linear 

pattern for this noise parameter, achieving levels around 3.5 cm. In Tests #26 and #27, 

regularization noise of 0.5 and 0.25 pixels respectively were added to the process. The 

former amount resulted in noise levels around 4 cm, exceeding the desired range. However, 

halving the regularization noise contribution in the latter test drastically reduced the noise 
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levels to approximately 3.4 cm, aligning well with the observed real noise values. The 

qualitative result derived from Test #27 is demonstrated in the subsequent figure. 

 

 

Figure 4-34: Final test difference map. 

 

In Test #27 all error sources considered are present and produced a difference map similar 

to the one coming from real data. In this setting, the resulting thresholds for the simulation 

process may be summarized in the subsequent table. 

 

Table 4-9: Noise simulation thresholds. 

 

Noise thresholds 

Omega 0.04 K1 0.014 
Phi 0.01 K2 0.136 

Kappa 0 K3 0.28 
F 7.5 K4 0.12 

Cx 13.6 P1 0.00144 
Cy 5.44 P2 0.00024 
B1 2.52 Reg 0.25 
B2 6.54 Pix 0.6 

 

The specified thresholds are used to simulate the most severe case, identified processing 

different epochs collected by the fixed monitoring system during the 2018 survey campaign 
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at the Glendale quarry environment. These thresholds provide a solution that best aligns with 

the qualitative and quantitative study case. 

The worst-case scenario (Acquisition 07) was selected, as it provides the highest StD value. 

In this framework, it was assumed that this worst-case standard deviation covers almost all 

the noise (up to 99%). Then, it was decided to divide the standard deviation to three to get a 

'normal' level of noise, which it is considered to cover about 68% of the cases. 

This allows the software to comprehensively generate any random combination within this 

interval. The updated Rockfall Simulator parameters are reported in the following Table, 

defining the mean and standard deviation values used for the simulation processes. 

 

Table 4-10: Rockfall Simulator simulation thresholds 

Rockfall Simulator thresholds 

 Mean StD  Mean StD 

Omega 0 0.01 K1 0 0.005 
Phi 0 0.003 K2 0 0.04 

Kappa 0 0 K3 0 0.09 
F 0 2.5 K4 0 0.04 

Cx 0 4.5 P1 0 0.0005 
Cy 0 1.8 P2 0 0.00008 
B1 0 0.84 Reg 0.25 

B2 0 2.18 Pix 0.6 

 

Conventionally, the mean value of the gaussian probability distribution is consistently set to 

zero, thereby eliminating any systematic influence on the production of comparative meshes. 

However, the extent of variation or standard deviation values plays a significant role in 

regulating the noise simulation distributions. It must be noticed that regularization and 

parallax (pixel) noise are expressed only in standard deviation values, since the probability 

distribution is set to a zero-mean value by default. 
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4.2 NEURAL NETWORK EVALUATION 

4.2.1 FRAMEWORK 

The growing interest in deep learning has prompted the introduction of development 

environments with dedicated libraries for the implementation and application of neural 

models to various scientific problems. The use of these tools has also expanded among users 

who are not necessarily experts, so that flexible and easy-to-set-up development 

environments can be used effectively. 

The main characteristics to evaluate when choosing the ideal development environment for 

one's needs are: 

1. Extensibility: The ability to implement different types of neural architectures 

(convolutional, FCN, recurrent neural networks (RNN) (Giles et al., 1998)), and to carry 

out training according to different methodologies, e.g., supervised, or unsupervised. 

2. Hardware utilization: the ability to support computing procedures in a distributed 

manner on CPU and GPU. 

3. Adaptability: The versatility of the development tools provided by the environment to 

address the problems of interest. 

 

In the current research, TensorFlow (see the next sections) was selected as the primary 

development environment due to its extensibility, adaptability and the possibility of using 

high-level libraries for NN modelling, training and testing as Keras [147]. 

TensorFlow [148], developed by Google in 2015, is the most popular development 

environment in the community of researchers working with neural networks. It supports 

major programming languages such as Python and C++. The peculiarity of TensorFlow 

concerns the methodologies with which neural network calculations are approached. Each 

operation carried out by the model is broken down into several tensors, i.e., matrices 

developed on several levels of depth. 

The integrated libraries allow the required operations to be performed by relying on the GPU 

or the CPU. The parallelization of calculations enabled using the GPU results in considerably 

shorter training times. 

The most widely used high-level library in TensorFlow by the research community is Keras 

[147]. Keras makes it possible to greatly simplify the construction of customized neural 
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models due to the presence of several independent modules that can be appropriately 

combined. 

In this thesis work, the latter framework for the application of the neural models was 

involved in the research activity. The motivations behind this choice mainly concern the 

flexibility and simplicity of the application of the models combined with the possibility of 

customizing the model, which is superior to other solutions found in the literature. 

 

4.2.2 EVALUATION METRICS 

To evaluate the performances of the neural network, the predictions of the model are stored 

in a JSON file with the same formatting of the ground truth JSON file. To better understand 

the metrics used to evaluate the performances of the model, it is necessary to briefly 

introduce the following concepts involved in the computation of the model performance 

indices. When comparing the ground truth instances to the predicted instances it is possible 

to obtain different outcomes: 

True Positives (TP): True Positives represent instances where the model correctly predicts 

the positive class in alignment with the ground truth data. In this work it means that the 

model correctly labelled a rockfall event on the provided difference map. 

False Positives (FP): False Positives occur when the model predicts the positive class 

incorrectly or without matching the ground truth. In this work it means that the model 

erroneously detects non-existent objects or misclassified features. 

False Negatives (FN): False Negatives happen when the model fails to predict the positive 

class. This could occur if the model overlooks actual objects or features of interest. 

Such factors have direct contribution on the calculation of the performance metrics of the 

neural network. In particular, the following metrics have been considered: 

1. The mean average precision (mAP), which describes how well the model can predict 

true positives out of all positive predictions. The mAP is computed as: 

 

𝑚𝐴𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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A high mAP score means that the model is capable of correctly identifying and localizing 

objects with high reliability and across the classes. A low mAP, on the other hand, means 

that the network has lower reliability in the prediction (i.e., increased presence of false 

positives). 

2. The mean average recall (mAR), which describes how well the model can predict true 

positives out of all predictions. mAR is calculated as: 

 

𝑚𝐴𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

A high mAR value signifies that the model is adept at minimizing false negatives across 

the classes, thereby ensuring that most of the relevant instances are correctly identified. 

Conversely, a low mAR value can be indicative of a significant number of false 

negatives which implies that the model is failing to identify a substantial proportion of 

relevant features. 

3. The F1-Score serves as a harmonic mean of precision and recall, aiming to strike a 

balance between these two metrics.  

 

𝐹1 = 2 ∗
(𝑚𝐴𝑃 ∗  𝑚𝐴𝑅)

(𝑚𝐴𝑃 + 𝑚𝐴𝑅)
 

 

In practice, a high F1-Score suggests that the model not only identifies most of the 

positive instances (high recall) but also minimizes the inclusion of negative instances as 

positives (high precision). This harmonic balance ensures that the model's predictions 

are both exhaustive and exclusive, thereby maximizing its utility in applied contexts. On 

the other hand, a F1-Score close to 0 indicates that the model performs poorly in terms 

of either precision, recall, or both. This would mean that the model is producing a 

substantial number of false positives and/or false negatives, thereby rendering it 

unreliable for practical applications. 

4. The IntersArea ratio of overlapping pixels of the predicted and ground truth 

segmentation masks. This index is a value ranging from 0 (no overlapping between the 

ground truth and the predicted masks) and 1 (complete overlapping). 
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𝐼𝑛𝑡𝑒𝑟𝑠𝐴 =
𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐴𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
 

 

A low value of the area intersection parameter could result in substantial inaccuracies in 

the estimation of the volumes involved in such collapse events. Although the current 

dissertation does not aim to assess the volumes implicated, maximizing this parameter 

has considerable relevance in practical applications. 

 

To decide if a predicted object is actually a True or False Positive or a False Negative, an 

additional parameter should be computed. Intersection over Union (IoU), also known as the 

Jaccard index, has been selected as the metric of choice. This metric is mainly employed in 

computer vision tasks, such as object detection and semantic segmentation, to assess the 

degree of overlap between the predicted and the ground-truth instance. Mathematically, IoU 

is defined as the area of the intersection between the predicted and ground-truth entities, 

divided by the area of their union. The formula for IoU is thus: 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
  

 

IoU is a normalized parameter that lies in the interval [0, 1], thereby facilitating quantitative 

assessments of model performance. A value close to 1 indicates a high degree of overlap, 

suggesting a highly accurate detection or segmentation. A value close to 0 suggests minimal 

or no overlap, indicating a poor detection or segmentation. 

In the operational framework, the Intersection over Union (IoU) metric has been deployed 

to label the output data from the neural network. Practically speaking, the decision was made 

to analyze the vectors corresponding to the ground-truth annotations and compare them with 

the vectors of output annotations generated by the network. Selecting a specific threshold 

for the IoU score allows to label a predicted instance as a True or False Positive and, 

similarly, a ground truth instance to be associated with a True Positive or a False Negative. 

In the scientific literature, metrics corresponding to IoU levels of 0.25 and 0.75 are 

frequently reported. In the former scenario, a more relaxed overlap criterion is applied, 
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allowing instances that are not perfectly aligned with the ground truth to still be considered 

as true positives. Conversely, as the IoU value increases, the evaluation becomes more 

stringent and sensitive to deviations from the ground truth. 

In this framework, it is crucial to underscore the importance of uniqueness in the association 

between predicted and ground-truth bounding boxes. In this study, it was adopted a 

bidirectional approach for IoU analysis with the aim of mitigating any asymmetry or bias in 

the evaluation process. Specifically, each predicted object is matched, at most, with a single 

ground-truth object based on the highest IoU value, and vice versa. This methodology 

ensures a rigorous and unambiguous interpretation of performance indicators such as True 

Positives (TP), False Positives (FP), and False Negatives (FN), thereby contributing to a 

more robust and reliable evaluation of the model. 
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5 CHAPTER 5 - RESULTS 

5.1 INTRODUCTION 

This chapter illustrates the performance metrics of the Mask R-CNN model in rockfall event 

detection on synthetic data generated by the simulation software presented in Chapter 3. The 

testing methodology aims to address two main research questions (RQ):  

1. RQ1: What impact does the size of rockfall events impact on the neural network's 

detection capabilities? 

2. RQ2: What role does measurement noise play in the identification of rockfall events? 

 

Both research questions share a fundamental aspect: the detectable size of rockfall events is 

directly correlated to the entity of measurement noise as it becomes more and more difficult 

to identify rockfall events when they are substantially hidden by measurement noise. Hence, 

the goal is to assess the neural network's performance in detection across varying levels of 

measurement noise and different dimensional classes of rockfall events. 

The influence of collapse size on recognition capabilities (RQ1) has been a topic of interest 

in literature, as different methods may perform better for different size ranges [29]. This 

study seeks to determine how the size of collapses affects the neural network's ability to 

recognize them, in order to highlight the possible limitations of such tools. This investigation 

builds upon the work of previous researchers who have examined the impact of object size 

on the performance of object recognition algorithms in various domains, such as remote 

sensing and medical imaging [149] [150]. 

The influence of photogrammetric noise (RQ2) on the performance of the neural network is 

an essential consideration in the context of rockfall events recognition. Measurement noise 

comes from various sources, such as variations in internal and external orientation 

parameters, matching errors (due to shadows, differences in illumination and smooth 

texturing [146] [145].  
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5.2 NEURAL NETWORK TRAINING 

Addressing the learning process with neural networks can be tricky, with several challenges 

to overcome. Two key challenges are overfitting and underfitting, which are the two sides 

of the same coin. 

Overfitting occurs when a neural network learns too much from its training data. This means 

it becomes too tuned to that specific data and struggles to perform well on new, similar data. 

Essentially, it can't adapt well to new problems because it's too locked into what it already 

knows. In contrast, underfitting arises when the neural network doesn't have enough data to 

learn properly. This means it can't form a good understanding of the task at hand. 

Interestingly, both overfitting and underfitting end up with the same problem: the network 

isn't great at handling new tasks or problems due to the lack of generalization capabilities.  

Given the time and computational resources required to train deep neural networks on large 

datasets, transfer learning [151] emerged as a popular and efficient alternative. Transfer 

learning leverages the knowledge gained while training one task and applies it to a different, 

yet related, task (i.e., the transfusion of information from one domain to a related one) . 

Essentially, it involves taking a pre-trained model (a neural network trained on a large 

dataset, typically for a benchmark task like image classification on ImageNet [152]) and 

fine-tuning it on a smaller, task-specific dataset. This method boasts several advantages, 

including reduced training times and lower data requirements, making it especially appealing 

for tasks where data is scarce or computational resources are limited. 

However, the characteristics of transfer learning has also led to questions about its 

universality and applicability. While it can be an invaluable tool when the source and target 

tasks are closely related, problems arise when there's a significant divergence between the 

source and target domains [153], [154] , which may often result in negative transfer [155].  

[172] and [173] focus on the application of transfer learning in the context of medical 

imaging diagnostics. The authors found out that transfer learning in this specific domain 

often does not provide significant benefits compared to training from scratch, especially 

when the correlation between the source domain (generally natural images) and the target 

domain (medical images) is low. Based on such empirical outcomes, it was decided to 

perform training from scratch for the rockfall identification tasks. 
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Another issue is the limited dimensionality of the classes involved in the training process. 

The case of study, indeed, is only related to two classes, i.e., a binary classification task, 

which involves the presence of a “rockfall” class and a “background” class (which refers to 

the absence of any event). When one of the two classes is significantly overrepresented 

compared to the other, results might be skewed, as the model tends to favor the more 

represented class at the expense of the minority class (class imbalance [156]). 

If the model is trained on a dataset where the vast majority of images are normal and only a 

small fraction show rockfall, a problem could arise.  

Thankfully, there are several techniques developed to mitigate the adverse effects of class 

imbalance [157]. In this work, the authors provide an efficient tool to overcome class 

imbalance issues by leveraging an innovative methodology for oversampling, where the 

number of samples from the minority class is increased by replicating them or generating 

synthetic examples. This work of thesis followed this approach, as the density and number 

of rockfall samples in the simulated data can be set easily. 

The following sections will be dedicated to presenting the datasets used to train the network 

from scratch. Generally, when performing training with random weights initialization on 

deep architectures like Mask R-CNN, it is advisable to provide a wide variety (and 

numerosity) of samples, to allow the network to proficiently learn to recognize important 

features [27]. In this sense the capabilities of Rockfall Simulator comes useful when 

generating numerous and diverse samples for the synthetic datasets used for training the 

neural network. 

As levels of noise and rock size in the collapses are expected to affect the network 

performance, a systematic generation of samples with different noise levels and rock sizes 

have been generated in order to provide a wide range of examples to be learned. 

 

5.2.1 DATASETS 

A total of 9 different datasets have been produced with different noise levels and block 

dimensions. Each dataset has been provided with approximately 1700 images (with an 80/20 

split, leading to 1300 training images and 400 validation images, for a total of roughly 12000 

training images and 3500 validation images). For the purpose of simulating the training 

datasets, providing a single rock wall was considered a limiting choice, as the difference in 
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stratigraphy matters when detecting this kind of phenomena, due to interplay with 

measurement noise. For this purpose, the datasets have been simulated using two rock walls 

described in section 4, Glendale (Site 1) and Bulga (Site 2). Each rock wall has respectively 

contributed to 50% of the total sample numerosity. 

Each image in the datasets is a tile with a resolution of 512x512 pixels, extracted from an 

original high-resolution image of the entire rock wall measuring approximately 3500x1500 

pixels (which represent an approximately a 70 m x 30 m rock wall (GSD is equal to 2 cm)). 

For each simulated rock wall, approximately 1500 rockfall events have been modeled across 

the entire surface, resulting in an average of 40 to 50 instances of rockfall within each 

training tile. Figure 5-1 resumes the grouping of datasets as a function of the measurement 

noise and the dimensions of the blocks: 

 

 

Figure 5-1: Training datasets scheme for measurement noise (Y axis) and rockfall sizes (X axis) 

 

On the vertical axis of the chart three measurement noise thresholds are ranked: 

1. High noise: refers to the noise levels in Table 5-1, representing the maximum 

measurement noise levels observed during the software calibration procedure. 

2. Medium noise: 66% of the high noise simulation thresholds. 

3. Low noise: 33% of the high noise simulation thresholds. 

 

To check the noise level introduced by the simulation software, the standard deviation and 

the RMSE, observed on 45 raster samples of the simulated datasets per noise class are shown. 
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Table 5-1: Average noise values for the high noise dataset. 

Mean (mm) Mean StD (mm) Mean RMSE (mm) 

-0.1 23.8 24.4 

 

 

Figure 5-2: RMSE across difference maps for the high noise dataset. 

 

 Figure 5-2 shows the distribution of RMSE, which spans from 2.0 cm to 3.1 cm. The 

observed RMSE on the subset is approximately 2.4 cm.  

 

Table 5-2: Average noise values for the medium noise dataset. 

Mean (mm) Mean StD (mm) Mean RMSE (mm) 

0.94 14.0 14.6 
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Figure 5-3: RMSE across difference maps for the medium noise dataset. 

 

Figure 5-3 reports the statistics for a 45-sample dataset characterized by moderate noise 

levels. The RMSE is 1.4 cm, slightly below the 66% of the 2.5 cm benchmark established 

for higher noise class scenarios. 

 

Table 5-3: Average noise values for the low noise dataset. 

Mean (mm) Mean StD (mm) Mean RMSE (mm) 

0.6 7.8 8.5 

 

0

0.005

0.01

0.015

0.02

0.025

1 5 9 13 17 21 25 29 33 37 41 45

R
M

S
E

 (
m

)

Image ID

RMSE - Medium Noise Dataset

RMS (m)



125 

 

Figure 5-4: RMSE across difference maps for the low noise dataset. 

 

Figure 5-4 reports the statistics of the low noise subset. The observed RMSE is 0.78 cm, 

well in agreement with the 33% of the noise threshold for the simulations.  

It is an empirical fact that smaller rockfall events are more frequent [22] but less easily 

detected, thus posing a challenge for effective monitoring. Training the network to recognize 

these smaller events may possibly increase the chances of the neural network being able to 

detect them. 

In previous research, a comprehensive evaluation of the frequency distribution across 

various size classes of rockfall events observed on the Glendale (NSW, Australia) [22] 

quarry rock wall was presented. Therefore, such empirical distribution of the block sizes has 

been taken as target for the simulation. As Rockfall Simulator utilizes randomly generated 

parameters extracted from a Gaussian distribution, the actual simulated distribution, 

composed by the sum of several Gaussian distributions, will only approximate the target 

one. However, an exact match is unnecessary, being the target histogram just an example of 

rockfall in an open pit mine. 

Figure 5-5 shows the histogram of the relative frequencies of the rockfall dimensions for the 

simulated case.  

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 5 9 13 17 21 25 29 33 37 41 45

R
M

S
E

 (
m

)

Image ID

RMSE - Low Noise Dataset
RMS (m)



126 

 

Figure 5-5: Histogram of the frequencies of classes referred to the dimensions of blocks. 

 

Conversely, the simulation of larger rockfall blocks yields a sparser distribution of 

information within each image, thereby reducing the volume of training samples that can be 

generated. Given this, any practice to augment the number of images for datasets 

corresponding to larger rockfall blocks would be counterproductive, particularly when the 

primary aim of the research is devoted to the identification and classification of smaller 

rockfall blocks. 

 

5.3 MODEL TRAINING 

The training phase has been started with a random initialization of weights implemented in 

the Tensorflow library, drawing from a known distribution. A normal (Gaussian) distribution 

with mean value of 0 and standard deviation value of 1 have been used. The same 

initialization needs to be carried out for biases (as explained in section 2.3.1).  

The training has been carried for several epochs, involving all the layers in the neural 

network structure. This is crucial when performing a training routine from scratch, as every 

branch of the network needs to adjust its weights.  
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The training was facilitated by a CUDA accelerated GPU equipped with 8 GB of RAM. 

Starting from a fresh state, without pre-existing knowledge from other datasets, the Mask R-

CNN model was trained from scratch for ca. 350 epochs. A learning rate of 0.001 was 

selected for the training. Such a moderate learning rate strikes a balance - it's not too high to 

make the model converge chaotically, nor too low to drastically slow down training. It 

ensures stable convergence while allowing the model to learn meaningful patterns in the data 

over time. 

In the Mask R-CNN implementation used for the experiments two different feature 

extractors, namely ResNet101 and ResNet50, can be used. Theoretically, with its additional 

depth, ResNet101 can model more complex features and representations. This capability 

helps when the network must discern complex patterns improving feature extraction 

accuracy despite measurement noise. On the other hand, this network may be more sensitive 

to overfitting during training. For this purpose, the same training phase, with the same 

general settings, has been carried for both the feature extracts, to better evaluate their 

performances and possibly avoid overfitting. 

The training sample image size (i.e., 512x512 pixels) allows to accommodate multiple 

images in a single minibatch during training. Compared to using a single image, minibatch 

training offers several advantages: processing multiple samples allows the GPU to 

parallelize operations, leading to faster training. Gradients calculated from minibatches tend 

to be less noisy than those from single samples, making the training process smoother. 

Training with minibatches can introduce a slight regularization effect, potentially leading to 

a model with better generalization to unseen data. 

In the process of training deep learning models, especially those as intricate and specialized 

as Mask R-CNN, monitoring, and analyzing loss metrics is paramount. This section 

underscores the significance of observing loss and validation charts, particularly the total 

loss, bounding box (bbox) loss, classification loss and mask loss during the Mask R-CNN 

training process. 

At the most fundamental level, the decline of loss over epochs or iterations indicates that the 

model is learning – i.e., it's adjusting its weights based on the given data and its 

corresponding targets. A stabilized loss suggests convergence, telling us the model might 

not significantly improve with further training on the current dataset. In order to optimize 

the computational efficiency and prevent overfitting during model training, an early stopping 
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procedure has been implemented. Specifically, at the end of each epoch, the average gradient 

of the validation loss function over the most recent 10 epochs is computed. Should this 

average gradient descend below a user-specified threshold, the training process is 

terminated.  

By comparing the training loss with the validation loss, it is possible to gauge the model's 

generalization capabilities. A model that performs well on training data (low training loss) 

but poorly on validation data (high validation loss) may be overfitting, suggesting it might 

not perform well on unseen data. The following charts will report the training results for 

both Resnet-50 and ResNet-101 as features extractors in Mask R-CNN. 
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Figure 5-6: Total loss chart (training and validation) for Mask R-CNN model: above) ResNet-50, below) ResNet-

101. 

 

The blue line represents the training loss while the orange line represents the validation loss 

in Figure 5-6. Within this picture, the training loss shows a consistently descending pattern, 

meaning that the network is efficiently learning from the simulated data. 
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At first glance, the major difference between the two charts is certainly the slope of the 

curves. In the first case (ResNet-50), the training curve tends to stabilize at around 90 epochs, 

as a general flattening of the training loss is observed. The same pattern is not coherently 

replicated on the second case, as the training loss effectively stabilizes after around 150 

epochs. To get a better insight on the validation performances of the network, Figure 5-7 

illustrates the total loss comparison between the two ResNets. 

 

 

Figure 5-7: Total validation comparison for ResNet-50 (orange line) and ResNet-101 (blue line). 

 

In Figure 5-7, the orange curve represents ResNet-50 validation loss while the blue one 

represents its 101-layer variant.  

In this regard, ResNet-50's validation loss diminishes at a more accelerated rate during the 

initial epochs, implying a quicker adaptation to the training data compared to its 101-layer 

counterpart. This observation aligns with theoretical expectations. However, ResNet-50 

being a less complex model, has a total validation loss that is consistently 20% to 25% higher 

than that of ResNet-101. 

Notably, the validation loss curves intersect at approximately the 60-epoch mark, with a 

shared total loss value of around 0.9. Beyond this point, ResNet-101 maintains a more 

pronounced downward trajectory compared to the slower rate of decrease exhibited by 
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ResNet-50. In summation, ResNet-101, despite its initial higher loss, achieves a better 

performance (lower loss). 

To get a better understanding of the validation error behavior, the loss contributions for Mask 

R-CNN have been disaggregated.  

 

 

Figure 5-8: Bounding box regressor chart (validation) for Mask R-CNN model. 

 

Bounding box loss function calculates an overall displacement over the bounding box pixel 

coordinates (namely the image coordinates of the lower left corner of the bounding box and 

its height and width). The cumulative loss is the sum of all the contribution of the L1 Smooth 

Loss reported in section 2.4.2 which represent the difference  from the ground truth RoIs 

coordinates to the predicted instances bounding boxes. 

Analyzing figure 5-8, both models start their learning curve with a high loss. ResNet-101 

initiates with a slightly more elevated loss in comparison to ResNet-50. The initial phase of 

the training (up to approximately epoch 30) showcases a steep decline in the loss for both 

architectures. ResNet-50's trajectory in this phase is slightly steeper, suggesting a faster 

convergence rate during these initial epochs compared to ResNet-101. This is an expected 

behavior due to the different complexity of the two architectures. After the sharp descent in 

the initial epochs, both the architectures experience a phase where the loss starts to reach a 
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plateau. ResNet-101 stabilizes at a lower value than ResNet-50, thereby suggesting an 

advantage in terms of bounding box accuracy. In the end, the trend remains unaltered as the 

101-layer variant experiences lower loss values for the bounding box regressor. At this stage, 

the behavior heavily recalls the total loss function. 

 

 

Figure 5-9: Loss for the classifier (validation) in Mask R-CNN model. 

 

Figure 5-9 presents the analysis of the classification loss occurred during the training phase 

of two convolutional networks. Classification loss is calculated from the probability 

attributed to a positive anchor box being located on a ground truth instance. 

From the beginning, both architectures demonstrate a rapid decline in loss values, which is 

indicative of the model's adeptness in adjusting its weights efficiently in response to the 

presented training data. However, certain distinctions between the two models become 

palpable. ResNet101 manifests a slower descent in its validation loss during the initial 

epochs compared to ResNet50. This can be attributed to the more profound depth and 

complexity of ResNet101, which entails a more extensive set of parameters, possibly 

requiring higher quantity of data in order to achieve the same goal. 

On the other hand, around the 60th epoch, a noteworthy convergence of the loss curves is 

observable. Both models stabilize, showcasing minute fluctuations as the epochs advance. 
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This plateau suggests that both models, after substantial iterations, have potentially reached  

a point where no further improvements are experienced. It must be noticed that classification 

loss exhibits lower values with respect to the previous bounding box loss. The explanation 

lies in the nature of the given problem, as the network has been exploited for a simpler binary 

classification problem while its complexity may overcome classification problems of higher 

complexity. 

However, while both models maintain a similar trend, ResNet50's loss appears marginally 

higher compared to ResNet101. This persistent difference in loss values could be indicative 

of ResNet50's inherent limitations in capacity when compared to its deeper counterpart, 

ResNet101. 

 

 

Figure 5-10: Loss for the pixel classifier (validation) in Mask R-CNN model. 

 

The mask loss metric essentially quantifies the incongruences between predicted 

segmentation masks and their true annotations at a per-pixel level. 

Initially, both architectures exhibit a quick decline in mask loss. However, ResNet101's loss 

trajectory is characterized by a more pronounced initial decrease as opposed to ResNet50. 
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Approaching the 60th epoch, the loss trajectories for both architectures begin to manifest a 

trend of deceleration. The gradual attenuation in the rate of decline suggests that the models 

have reached a saturation point. 

While both trajectories taper off, ResNet50's mask loss remains consistently higher relative 

to ResNet101 throughout the latter epochs. This enduring disparity underscores ResNet101's 

superior ability in refining its per-pixel classification tasks over prolonged training, which 

may be resultant from its deeper architecture and greater parameter count, facilitating a better 

classification of each pixel. 

In summation, the mask loss comparison delineates the intrinsic advantages of ResNet101, 

particularly in the domain of image segmentation tasks. Nevertheless, it's pivotal to weigh 

these benefits against computational demands and the specific objectives of the 

segmentation task when electing an appropriate architecture for deployment. 

 

5.3.1 VALIDATION RESULTS 

To provide a more comprehensive understanding of the network's performance it was 

decided to further process the full validation dataset. Loss curves can be incomplete 

indicators of a model's generalization capacity as they fail to reveal the model's efficacy in 

an operational context. 

Consequently, the validation dataset was processed further through the performance 

evaluation code (section 2.4.4) to yield confusion matrices for each classification category. 

Confusion matrices are a fundamental diagnostic tool in supervised learning, providing a 

granular account of a classifier's performance across different classes [158]. Each confusion 

matrix is structured as a table, reporting, in this case, four essential elements: True Positives 

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). These elements 

allow for the computation of other metrics such as Precision, Recall, the F1-score, as well 

as aggregate metrics like mean Average Precision (mAP) and mean Average Recall (mAR), 

which are detailed in section 2.4.4. Computing the True Negatives in this context makes no 

sense since ground truth annotated data only highlights the actual rockfall events (Positives) 

as it does the output of the neural network. The statistical indices do not require TN in their 

computation.  
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Results have been considered on the base of different IoU (section 2.4.4) thresholds, namely 

0.25 and 0.75, and for different prediction confidence levels, namely 0.9, 0.95 and 0.99. 

In the context of object detection, the confidence threshold is a hyperparameter that controls 

the selection of bounding boxes and their associated object classes. Only predictions with a 

confidence score above the threshold are considered to be valid detections, therefore filtering 

out low-confidence predictions that are more likely to produce false positives. 

For this reason, a lower confidence threshold would increase the sensitivity of the model, 

allowing it to detect more objects, possibly including those that are harder to recognize. 

However, this comes at the cost of specificity, as the model would also produce more false 

positives. Conversely, a higher threshold improves specificity but may result in more false 

negatives. 

For the same reason, the confidence threshold has a direct impact on the Precision-Recall 

curve. Lowering the confidence threshold tends to increase recall but reduce precision, and 

vice-versa. Depending on the application, one may prioritize precision (minimizing false 

positives) over recall (minimizing false negatives), or vice versa. 

The following tables (Table 5-4 to Table 5-6) resume the comprehensive results on the 

validation datasets. Results have been reported for each of the 9 datasets, with different 

confidence levels and IoU thresholds. 
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Table 5-4: Validation results for the low noise datasets. Please note that each dataset is composed of a single 

dimensional class of blocks, as explained the previous section. 

LOW NOISE (STD = 1 CM) 
 

DATASET 1 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 1696 1676 1607 1569 1427 1375 

FP 129 189 124 162 111 145 

FN 79 99 168 206 348 400 

AP 92.93% 89.87% 92.84% 90.64% 92.78% 90.46% 

AR 95.55% 94.42% 90.54% 88.39% 80.39% 77.46% 

F1 94.22% 92.09% 91.67% 89.50% 86.15% 83.46% 

  
DATASET 2 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 3081 2912 3045 2888 2935 2810 

FP 90 221 36 195 32 171 

FN 77 246 113 270 223 348 

AP 97.16% 92.95% 98.83% 93.67% 98.92% 94.26% 

AR 97.56% 92.21% 96.42% 91.45% 92.94% 88.98% 

F1 97.36% 92.58% 97.61% 92.55% 95.84% 91.55% 

  
DATASET 3 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 2262 2259 2251 2248 2249 2245 

FP 2 3 2 3 1 9 

FN 4 7 15 18 17 21 

AP 99.91% 99.87% 99.91% 99.87% 99.96% 99.60% 

AR 99.82% 99.69% 99.34% 99.21% 99.25% 99.07% 

F1 99.87% 99.78% 99.62% 99.54% 99.60% 99.34% 
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Table 5-5: Validation results for the medium noise datasets. 

MEDIUM NOISE (STD = 1.5 CM) 
 

DATASET 4 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 6811 6479 6514 6214 5585 5287 

FP 610 942 360 660 75 273 

FN 477 809 774 1074 1703 1901 

AP 91.78% 87.31% 94.76% 90.40% 98.67% 95.09% 

AR 93.45% 88.90% 89.38% 85.26% 76.63% 73.55% 

F1 92.61% 88.10% 91.99% 87.76% 86.27% 82.95% 

  
DATASET 5 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 8318 8047 8418 7980 8027 7698 

FP 367 838 205 643 51 380 

FN 303 774 403 841 694 1123 

AP 95.77% 90.57% 97.62% 92.54% 99.37% 95.30% 

AR 96.49% 91.23% 95.43% 90.47% 92.04% 87.27% 

F1 96.13% 90.90% 96.51% 91.49% 95.57% 91.11% 

  
DATASET 6 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 2138 2136 2138 2137 2130 2129 

FP 7 11 5 7 5 4 

FN 12 14 12 13 20 21 

AP 99.67% 99.49% 99.77% 99.67% 99.77% 99.81% 

AR 99.44% 99.35% 99.44% 99.40% 99.07% 99.02% 

F1 99.56% 99.42% 99.60% 99.53% 99.42% 99.42% 
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Table 5-6: Validation results for the high noise datasets. 

HIGH NOISE (STD = 2.5 CM) 
 

DATASET 7 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 7047 6422 6674 6109 5620 5234 

FP 1561 2363 880 1439 208 590 

FN 479 1104 852 1417 1906 2292 

AP 81.87% 73.10% 88.35% 80.94% 96.43% 89.87% 

AR 93.64% 85.33% 88.68% 81.17% 74.67% 69.55% 

F1 87.36% 78.74% 88.51% 81.05% 84.17% 78.41% 

  
DATASET 8 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 7172 6701 7072 6634 6681 6352 

FP 889 1179 346 784 192 521 

FN 152 623 252 690 643 972 

AP 88.97% 85.04% 95.34% 89.43% 97.21% 92.42% 

AR 97.92% 91.49% 96.56% 90.58% 91.22% 86.73% 

F1 93.23% 88.15% 95.94% 90.00% 94.12% 89.48% 

  
DATASET 9 

CONFIDENCE 0.9 0.95 0.99 

IOU 0.25 0.75 0.25 0.75 0.25 0.75 

TP 2089 2088 2087 2085 2089 2088 

FP 11 18 10 16 11 18 

FN 27 28 29 31 27 28 

AP 99.48% 99.15% 99.52% 99.24% 99.48% 99.15% 

AR 98.72% 98.68% 98.63% 98.53% 98.72% 98.68% 

F1 99.10% 98.91% 99.07% 98.89% 99.10% 98.91% 
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Table 5-7: Aggregate results for the validation datasets. 

CONFIDENCE = 0.9 CONFIDENCE = 0.95 CONFIDENCE = 0.99 
 

IoU = 0.25 IoU = 0.75 IoU = 0.25 IoU = 0.75 IoU = 0.25 IoU = 0.75 

MAP 91.42% 86.38% 95.02% 90.04% 98.09% 93.93% 

MAR 97.16% 91.81% 94.74% 89.77% 87.42% 85.25% 

F1-SCORE 94.20% 89.02% 94.88% 89.91% 92.44% 89.38% 

 

Table 5-7 provides the aggregate results for the nine different datasets. If the higher 

confidence level (0.99) is used along with the less restrictive IoU threshold (0.25) the model 

seems exhibiting very good performances. With an Average Precision (AP) peaking at 98%, 

it is evident that, in this configuration, the model consistently produces precise object 

detections over a varied range of recall. The Average Recall (AR) of 87%, also underlines 

the model's does not produce too many false negatives regardless of the high confidence 

level. The F1-Score, a metric denoting the balance between precision and recall, 

corroborates this observation with a score of 93%. 

Increasing the IoU threshold (0.75) makes the labelling of True vs False Positive more 

restrictive. Here, the AP recedes to 95%. The associated AR value of 85%, is not 

significantly different from the previous results. This is further emphasized by the F1-Score 

of 89%, which suggests a slight trade-off between precision and recall under these 

parameters.  

While a lower IoU, such as 0.25, is more forgiving, allowing for moderate deviations 

between the predicted and ground truth bounding boxes, an IoU of 0.75 demands a 

substantial degree of accuracy in object localization. Furthermore, as the confidence 

threshold escalates, the model becomes more discerning, which, while amplifying precision, 

could also escalate the risk of false negatives, as observed in the AR values at the highest 

confidence level. 
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Figure 5-11: Comparison chart for the evaluation metrics on different confidence and IoU thresholds. 

 

Figure 5-11 offers a highlight on the relationship between mean Average Precision (mAP), 

mean Average Recall (mAR), Intersection over Union (IoU) thresholds, and confidence 

thresholds. 

As obviously the mean Average Precision (mAP) and mean Average Recall (mAR) curves 

intersect at a confidence level of 0.95, this can be taken as an equilibrium point between 

false positives and false negatives. 

Precision, which is significantly impacted by the rate of false positives, and recall, influenced 

by the count of false negatives, are mutually dependent metrics. The optimal operational 

point for the neural network is therefore reasonably chosen midway between a too strict and 

a too relaxed confidence level. 

The degree of overlap between prediction and ground truth can be employed to measure the 

goodness of the rockfall identification. This is encapsulated in the Intersection over Union 

(IoU) metric, which measures the extent of overlap between the predicted and ground truth 

bounding boxes.  

An IoU threshold of 0.75 was elected for subsequent analyses, ensuring a satisfactory 

overlap between the predicted and actual areas, serving as a robust, yet not overly stringent, 

criterion to account for noise-induced deviations. 
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Table 5-8: Cumulative results for the validation datasets with confidence level = 0.95 and IoU = 0.75. 

 
CONFIDENCE = 0.95 / IOU = 0.75 

 
DATASET 7 DATASET 8 DATASET 9 

MAP 80.94% 

81.17% 

81.05% 

89.43% 

90.58% 

90.00% 

85.03% 

89.65% 

87.28%i 
MAR 

F1  
DATASET 4 DATASET 5 DATASET 6 

MAP 90.67% 

88.01% 

89.32% 

92.71% 

92.73% 

92.72% 

86.58% 

91.01% 

88.74% 
MAR 

F1  
DATASET 1 DATASET 2 DATASET 3 

MAP 96.20% 

88.39% 

92.13% 

93.74% 

91.45% 

92.58% 

90.47% 

92.59% 

91.52% 
MAR 

F1 

 

 

Figure 5-12: Precision and recall trend for the small size datasets as a function of increased measurement 

noise. 
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Figure 5-13: Precision and recall trend for medium dimensions blocks. 

 

 

Figure 5-14: Precision and recall trends for larger dimension blocks class. 
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The above charts represent the performance of the neural network on the validation datasets 

in terms of block sizes and noise levels. he results are divided into three distinct categories 

based on the size of the blocks: small (7.5 to 15 cm), medium (15 to 50 cm), and large (50 

cm to 3.5 m). Each graph represents the mean Average Precision (mAP) and mean Average 

Recall (mAR) trends across increasing levels of noise, ranging from 1 cm to 2.5 cm in noise 

standard deviation. Please note the difference in terms of scale on the vertical axis. 

In the case of blocks with smaller dimensions, specifically those ranging from 7.5 cm to 15 

cm, a steep decrement is evident in both mAP and mAR as the noise level escalates. This 

tendency highlights the network's susceptibility to noise factors for this size class. The 

decline in mAP is indicative of an increasing rate of false positives, which occurs 

concomitantly with a reduction in true positives.  

Turning the attention to medium-sized blocks, which fall between 15 cm and 50 cm, a more 

resilient performance is observed. The mAR curve remains relatively invariant across an 

array of noise levels, suggesting that the rate of false negatives—directly influencing recall 

metrics—does not substantially increase. Nonetheless, a modest decline in precision is 

discernible at elevated noise levels. This can be attributed to a surge in false positives, 

presumably instigated by the perturbations of measurement noise. Importantly, the observed 

decrement in precision is less pronounced when compared to the data depicted in Figure 5-

12, owing to a less drastic reduction in the number of true positives. 

Finally, for blocks of larger dimensions, as shown in Figure 5-16, the AR curve manifests 

remarkable stability, with a minute 3% variation in mAR on the highest noise level, implying 

that the network's capability for block identification is largely impervious to noise 

interference at this size range. Conversely, the AP curve shows a less pronounced deviation, 

which can be described in the lower false positive count on higher noise levels. 
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5.4 TEST RESULTS ON SYNTHETIC DATASETS 

Testing is a critical phase in every neural network training process. While the training is 

dedicated to "teaching" the network how to perform its task and, through validation, 

simultaneously verifying the adjustments on an unseen dataset with similar structure, testing 

aims to test the network under "unknown" conditions, to evaluate its generalization 

capability. 

For this reason, in addition to the two previous rock walls used for training and validation, 

two additional test sites have been included, namely the Pilkington rock wall (NSW, 

Australia) and Pietra di Bismantova rock wall (Emilia-Romagna, Italy). The testing was 

structured to take in consideration higher levels of measurement noise, compared to the 

training phase. 

Feeding the network data with a different range of measurement noise levels compared to 

training phase facilitates a more comprehensive interpretation of the neural network's 

performance metrics under diverse and less-controlled conditions. 

Three levels of noise were defined: 

1. The first level reproduces the original conditions of the datasets as described in section 

4.2.3, with a standard deviation of around 2.5 cm. This condition serves as a baseline 

scenario and provides a point of union between validation and test of the neural 

network's performance. 

2. In the second level, the noise standard deviation is doubled to 5 cm.  

3. The third level is the most challenging condition and is defined by a standard deviation 

of 7.5 cm. The results have been processed with a prediction confidence of 0.95, which 

has been described in the previous section as the best compromise between precision 

(which is function of the TPs and FPs) and recall (which is function of TPs and FNs). 

Moreover, an IoU of 0.75 has been chosen for the purpose, as it provides a more stringent 

constraint to what is labelled as a TP. The following sections illustrates the results for 

the four different test sites. Please note that the tables are coherently formatted to Figure 

5.1, which illustrates the distribution of the datasets with regards to measurement noise 

levels and rockfall events dimensions. 
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Datasets 1, 2 and 3 refer to the first noise level reported in Table 5-4. Datasets 4, 5 and 6 

refer to the second noise level. Lastly, Datasets 7, 8 and 9 refer to the third noise level 

reported in table 5-6. 

 

5.4.1 TEST SITE 1 - GLENDALE 

The following section illustrates the results for the Glendale test site. Table 5-9 sums up the 

different indices for each dimensional block class and for each level of noise. 

 

Table 5-9: Synthetic results for Glendale (Site 1) test site. 

 
DATASET 7 DATASET 8 DATASET 9 

AP 
 

37.27% 

41.49% 

39.27% 

 
92.47% 

76.96% 

84.00% 

 
96.08% 

AR 
   

90.74% 

F1 
   

93.33%  
DATASET 4 DATASET 5 DATASET 6 

AP 
 

72.00% 

73.58% 

72.78% 

 
96.97% 

82.18% 

88.97% 

 
99.02% 

90.18% 

94.39% 
AR 

   

F1 
   

 
DATASET 1 DATASET 2 DATASET 3 

AP 
 

82.07% 

82.20% 

82.13% 

 
98.08% 

89.47% 

93.58% 

 
98.97% 

91.43% 

95.05% 
AR 

   

F1 
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Figure 5-15: mAP – mAR trend curves for the small blocks in Glendale test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 

 

The chart in Figure 5-15 provides the trends for mAP (blue line) and mAR (orange line) for 

the smaller dimensions of blocks. Starting with the lowest value of measurement noise (StD 

= 2.5 cm), it can be observed that the indices provide coherent values to the ones provided 

by the validation dataset. At this stage, doubling the measurement noise entity does not 

dramatically decrease the performances of the network, as only a 10% decrease in precision 

and recall is observed. On the other hand, with the highest level of noise (StD = 7.5 cm), the 

performance is highly impacted. The precision loss is larger, meaning that the increase in 

the false positive number is larger than  the increase in false negatives. This is attributable 

to the network being misled by measurement noise spatial distribution, which can be often 

confused as a possible small rockfall event. Within this picture, the decrease in precision 

from level 2 to level 3 measurement noise is almost triple (10% from level 1 to level 2, 30% 

from level 2 to level 4). 
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Figure 5-16: mAP – mAR trend curves for the medium blocks in Glendale test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 

 

A different trend can be observed for medium sized blocks. For this dimensional class, 

roughly a 10% decrease in precision is observed from level 1 to level 3 noise, meaning that 

the network is less sensitive to false positives in this class. A slightly more pronounced 

decline can be observed for the recall curve, which highlights a lower influence of the 

measurement noise in the identification of true positives. 
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Figure 5-17: mAP – mAR trend curves for the large blocks in Glendale test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 

 

Lastly, for the larger blocks, a somewhat constant trend is observed across the different noise 

levels, meaning that the influence for such class is relatively low. Comparing the mAP 

curves for the three-dimensional classes, it can be observed that the increase in the 

numerosity of false positives is higher on the smaller blocks class, which implies that the 

measurement noise is more easily mistaken as rockfall in such block size class. 
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5.4.2 TEST SITE 2 - BULGA 

The following section illustrates the results for the Bulga test site. 

 

Table 5-10: Synthetic results for Bulga (Site 2) test site. 

DATASET 7 DATASET 8 DATASET 9 

AP 43.78% 

49.10% 

46.28% 

 
93.12% 

77.42% 

84.55% 

 
95.65% 

90.72% 

93.12% 
AR 

  

F1 
  

DATASET 4 DATASET 5 DATASET 6 

AP 70.58% 

79.45% 

74.75% 

 
96.34% 

85.92% 

90.83% 

 
97.06% 

92.52% 

94.74% 
AR 

  

F1 
  

DATASET 1 DATASET 2 DATASET 3 

AP 85.39% 

88.11% 

86.73% 

 
98.33% 

94.90% 

96.58% 

 
99.04% 

89.57% 

94.06% 
AR 

  

F1 
  

 

 

Figure 5-18: mAP – mAR trend curves for the small blocks in Bulga test site, the horizontal axis represents the 

increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange curve) 

in percentage. 
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A roughly same pattern can be observed on the Bulga test site. With respect to test site 1 

(Glendale), there is a more pronounced divergence between the precision and recall curves. 

In this case, the mAP (blue curve) shows slightly lower values with respect to the test site 1. 

This implies that there is a higher numerosity of false positives in this case, which may be 

due to a different interaction of the measurement noise with the morphology of the rock wall. 

 

 

Figure 5-19: mAP – mAR trend curves for the medium blocks in Bulga test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 

 

Figure 5-19 highlights the trend for the mAP and mAR curves for the medium sized blocks. 

In this case, the delta between the two curves tends to increase, meaning that the numerosity 

of false negatives (the blocks that have not been correctly identified by the network) is 

proportionally larger to the increase in false positives. 
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Figure 5-20: mAP – mAR trend curves for the large blocks in Bulga test site, the horizontal axis represents the 

increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange curve) 

in percentage. 

 

In Figure 5-20, there is not a noticeably different pattern from the one observed in Figure 5-

17. The higher dimensional class of blocks is therefore not influenced by measurement noise, 

both in terms of false positives and false negatives. 
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5.4.3 TEST SITE 3 – PIETRA DI BISMANTOVA 

Table 5-11 summarizes the results for the Pietra di Bismantova rock wall. 

 

Table 5-11: Synthetic results for Pietra di Bismantova (Site 3) test site. 

 

 DATASET 7 DATASET 8 DATASET 9 

AP  
26.79% 

32.90% 

29.53% 

 
88.41% 

71.16% 

78.85% 

 
99.23% 

90.53% 

94.68% 

AR    

F1    

 DATASET 4 DATASET 5 DATASET 6 

AP  
62.10% 

60.03% 

61.05% 

 
93.91% 

80.96% 

86.96% 

 
99.62% 

93.62% 

96.53% 

AR    

F1    

 DATASET 1 DATASET 2 DATASET 3 

AP  
90.17% 

78.75% 

84.07% 

 
98.04% 

90.63% 

94.19% 

 
99.81% 

94.89% 

97.29% 

AR    

F1    

 

 

Figure 5-21: mAP – mAR trend curves for the small blocks in Pietra di Bismantova test site, the horizontal axis 

represents the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR 

(orange curve) in percentage. 
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In this wall, the most drastic decrease is observed for both the precision and recall curves. 

The precision decreases by more than 60% between noise level 1 and noise level 3 with a 

roughly linear trend. The recall curve, on the other hand, shows a less pronounced decrease 

in proportion, with a steeper decrease from level 2 to level 3 noise thresholds. In the simplest 

case, more than 20% of the simulated blocks are recognized by the network, while more than 

60% of the blocks are not detected under large noise conditions. Thus, a significant influence 

of noise on the recognition of smaller blocks can be observed, possibly due to a more 

articulated initial wall conformation that, in combination with measurement noise, produces 

results that are not obviously aligned with previous cases. As the Pietra di Bismantova test 

site is an unknow dataset to the network, it can be observed that the precision is less resilient 

to the increase of measurement noise, in particular, when analyzing the same conditions in 

the Glendale and Bulga datasets, it can be observed that the decrease is largely more 

pronounced toward the 5 cm noise case. Variations in neural network performance in the 

context of the Pietra di Bismantova rock wall could be attributed to the complex morphology 

of the geological structure that might have resulted in noise spatial configurations with 

different characteristics compared to those of the model training phase, which may result in 

the increase of false positives. 
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Figure 5-22: mAP – mAR trend curves for the medium blocks in Pietra di Bismantova test site, the horizontal 

axis represents the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and 

mAR (orange curve) in percentage. 

 

As for the medium-sized blocks, the decrease between noise level 1 and noise level 2 settles 

in about 10% on the precision curve and 20% on the recall curve between noise level 1 and 

noise level 3. In contrast to the small-sized datasets, the trend of the two curves follows a 

more concordant pattern to the other two tests, while still producing less accurate output 

overall. 
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Figure 5-23: mAP – mAR trend curves for the large blocks in Pietra di Bismantova test site, the horizontal axis 

represents the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR 

(orange curve) in percentage. 

 

For larger block sizes, as in the other previously observed cases, no significant influence of 

measurement noise on the identification of true positives and false positives is witnessed. 
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5.4.4 TEST SITE 4 - PILKINGTON 

The last test was conducted on Pilkington (Site 4) rock wall. 

 

Table 5-12: Synthetic results for Pilkington (Site 4) test site. 

 
DATASET 7 DATASET 8 DATASET 9 

AP 
 

35.32% 

46.41% 

40.11% 

 
83.88% 

68.70% 

75.54% 

 
98.85% 

89.12% 

93.73% 
AR 

   

F1 
   

 
DATASET 4 DATASET 5 DATASET 6 

AP 
 

58.31% 

59.71% 

59.00% 

 
91.77% 

77.78% 

84.20% 

 
99.44% 

90.72% 

94.88% 
AR 

   

F1 
   

 
DATASET 1 DATASET 2 DATASET 3 

AP 
 

86.71% 

79.76% 

83.09% 

 
97.61% 

90.64% 

94.00% 

 
99.72% 

90.86% 

95.09% 
AR 

   

F1 
   

 

 

Figure 5-24: mAP – mAR trend curves for the small blocks in Pilkington test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 
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In Figure 5-24 there is evidence of a significant reduction in true positives straddling the 

different levels of measurement noise, with a total decrease between level 1 and level 3 of 

around 50% on the precision curve (indicating that tendentially half of the identified 

instances belong is a false positive) and about 45% on the recall curve, indicating that more 

than half of the simulated blocks are not identified. While producing comparable outputs to 

the Pietra di Bismantova, it must be noticed that the recall indices  roughly decrease by 10% 

in this case, with comparable results to the test data produced with the same rock walls used 

in the training phase. 

 

 

Figure 5-25: mAP – mAR trend curves for the medium blocks in Pilkington test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 

 

The curve of medium-sized blocks tended to follow the pattern observed in test site 3, with 

a downward trend for both the precision and recall curves. 

 

60%

65%

70%

75%

80%

85%

90%

95%

100%

2.5 5 7.5

m
A

P
 -

m
A

R

Noise StD (cm)

MEDIUM BLOCKS

mAP mAR



158 

 

Figure 5-26: mAP – mAR trend curves for the large blocks in Pilkington test site, the horizontal axis represents 

the increasing measurement noise levels, the vertical axis summarizes the mAP (blue curve) and mAR (orange 

curve) in percentage. 

 

Lastly, the largest size class is less tangibly affected by the effects of measurement noise. 

As with the other tests, the recall curve has a substantially constant delta from the precision 

curve, an indication that the network does not tend to produce false positives belonging to 

this class. 

 

5.5 CONCLUDING REMARKS 

This chapter has been dedicated to the evaluation of the performance of the Mask R-CNN 

neural network in automatically detecting rockfall events in the context of open-pit mines. 

The study was structurally designed to address two main research questions: 

1. The impact of the size of rockfall events on the neural network's detection capabilities. 

2. The role of measurement noise in the identification of rockfall events. 

 

70%

75%

80%

85%

90%

95%

100%

2.5 5 7.5

m
A

P
 -

m
A

R

Noise StD (cm)

LARGE BLOCKS

mAP mAR



159 

The neural network's performance was evaluated using precision and recall curves. Three 

distinct classes of rock sizes—small, medium, and large—were analyzed under multiple 

noise conditions. A comparative analysis was also carried out using different reference 

models, namely the Pietra di Bismantova, Pilkington, Glendale, and Bulga datasets. 

The results yielded critical insights into the limitations and capabilities of the Mask R-CNN 

model in this application. For small-sized rockfall events, the impact of measurement noise 

was found to be significant, leading to a substantial decrease in both precision and recall 

metrics. This was exacerbated by the complex geological structure and wall conformation 

of the Pietra di Bismantova site, which resulted in the worst performing scenario for the 

neural network. Medium-sized blocks displayed a somewhat different pattern. While still 

affected by noise, they exhibited a more concordant trend between precision and recall 

curves, albeit with less accurate output overall compared to other sizes. 

Larger rockfall events demonstrated a resilience to measurement noise, with no significant 

impact on false positives or false negatives. As can be easily expected, the neural network is 

inherently more reliable in identifying larger block rockfall, irrespective of noise conditions. 
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6 CHAPTER 6 – GENERAL CONCLUSIONS AND 

RESEARCH PERSPECTIVES 

This concluding section provides a summary of the outcomes and implications of the 

research, with a particular focus on the simulation methodology of the rockfalls.  

The core of the thesis was divided into two primary strands: the structuring of 

photogrammetric process simulation software for generating synthetic rockfall datasets on 

rock walls, and the analysis of the Mask R-CNN neural network model’s performance in the 

automatic detection of rockfall events. 

One of the most significant methodological innovations of this thesis has been the use of 

synthetic data generated by simulation software, as presented in Chapter 3. This approach is 

novel in the field of rock wall monitoring and finds no similar examples in existing literature. 

The use of simulation software allowed for a controlled assessment of the neural network 

model’s performance, considering various levels of measurement noise and different size 

classes of rockfall events. 

The use of neural networks for the rockfall classification only finds one example in literature, 

as the research in [29] was carried using LiDAR derived data instead of photogrammetric 

derived data. The research focused on the definition of an extensive and representative 

rockfall detection database for point cloud classification purposes, which necessitated 

several years to be completed, and on the application of a deep neural model to proceed to 

automatic identification of such events. In this sense, such research appears to yield superior 

results in terms of classification accuracy; however, it is crucial to contextualize this 

observation. Notably, their work does not offer an extensive breakdown of results across 

different rockfall size classes, while this work of thesis focuses on such aspects. Given the 

importance of size classification in rockfall event assessment for risk assessment in 

prevention modeling ,this thesis adds a substantive layer of specificity in the analysis that is 

absent in the existing literature. For this purpose, it would be desirable to conduct a 

comparison using a common benchmark dataset, applying both LiDAR and 

photogrammetric techniques, to tease apart the intricacies and inherent biases of each 

approach. 
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Regarding the results obtained, a significant variation was observed in the neural network’s 

performance depending on the size of the rockfall events and the level of measurement noise. 

While larger events showed resilience to noise, smaller events were significantly influenced, 

especially when subjected to higher levels of measurement noise. 

Moreover, the testing over different rockfaces that those used for training and validations 

showed significant differences in performance, which should be further investigated. This 

finding underlines the importance of diversifying training datasets to include a range of 

geological formations and noise conditions for more robust generalizability. 

It must be noted that this research has been primarily tested in a simulated environment. 

While the application of synthetic data does offer a controlled setting for performance 

evaluation, the real-world applicability of the neural network model has yet to be empirically 

tested. Future research should incorporate the evaluation of your model against manually 

classified, real-world datasets. This would offer insights into the model's generalizability 

across various geological formations and under diverse environmental conditions, thus 

contributing to a more comprehensive validation of this research. 

In conclusion, the limits in performance of the neural network when noise and block size 

become comparable were expected. Improving this performance might require adding new 

information sources to the network. This could be by integration of digital images with 

geometric data in the neural network training process. The task will not be easy for the very 

same reasons that motivated the geometric approach of this work. Though high-resolution 

digital images can provide additional information such as texture, color, and variations in 

luminosity, they are often insufficient for accurate classification of these events and the 

training phase can be anticipated to be quite complex. These attributes could be used to 

improve the classification phase of the model, making it more sensitive to subtle variations 

that could be indicative of rockfall events. Most of all, adding image content to the network 

would render the simulation tool in its current form useless, resorting to building the training 

dataset from real data. 

The fusion of geometric data with digital images may necessitate an architectural 

modification of the neural network to effectively accommodate and process the 

heterogeneous data. 



163 

This integrated approach could have broad applicability, extending the robustness and 

accuracy of the neural network not just for rockfall event detection but also for other 

geospatial and environmental applications. 
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8 APPENDIX 

The specific description and the motivations of the core code modifications of the neural 

algorithm are introduced in Chapter 2. The code pack for training and saving model predicted 

outputs are provided below, as the results presented in Chapter 5 are produced using these 

reference codes. 

 

8.1 TRAINING_WITH_COCO_STYLE_DATASET.PY 

# load the libraries 

import os 

import json 

import string 

import warnings 

import tifffile 

import datetime 

import imgaug 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

from mrcnn import utils 

from datetime import datetime 

from imgaug import augmenters as iaa 

import mrcnn.model as modellib 

from mrcnn.config import Config 

from tensorflow.keras.callbacks import LearningRateScheduler 

 

 

############################################################# 

####                       TRAIN MASK RCNN MODEL                               #### 

############################################################# 

 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" 

print("TensorFlow version:", tf.__version__) 

warnings.filterwarnings('ignore') 

tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) 

 

ROOT_DIR = os.path.abspath(r'C:\Mask-RCNN-TF2') 

DEFAULT_LOGS_DIR = os.path.abspath(r'D:\MRCNN_Logs') 

DATASETS_DIR = os.path.abspath(r'C:\Datasets') 

DATASETS_PATH = [f"{DATASETS_DIR}\\Dataset{i}" for i in range(1, 8)] 

 

 

class BlocksConfig(Config): 
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    NAME = 'block' 

    GPU_COUNT = 1 

    FPN_CLASSIF_FC_LAYERS_SIZE = 1024 

    EPOCHS = 1 

    IMAGES_PER_GPU = 2 

    IMAGE_CHANNEL_COUNT = 1 

    BACKBONE = 'resnet101' 

    NUM_CLASSES = 1 + 1 

    USE_MINI_MASK = True 

    IMAGE_RESIZE_MODE = 'none' 

    IMAGE_MIN_DIM = 512 

    IMAGE_MAX_DIM = 512 

    LEARNING_RATE = 0.0001 

    MASK_SHAPE = [28, 28] 

    MAX_GT_INSTANCES = 50 

    RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) 

    RPN_ANCHOR_RATIOS = [0.5, 1, 2] 

    RPN_ANCHOR_STRIDE = 1 

    RPN_TRAIN_ANCHORS_PER_IMAGE = 256 

    ROI_POSITIVE_RATIO = 0.33 

    TRAIN_ROIS_PER_IMAGE = 150 

    STEPS_PER_EPOCH = 6000 

    TOP_DOWN_PYRAMID_SIZE = 256 

    VALIDATION_STEPS = 4500 

    WEIGHT_DECAY = 0.0035 

    DETECTION_MIN_CONFIDENCE = 0.65 

    LOSS_WEIGHTS = { 

        "rpn_class_loss": 1., 

        "rpn_bbox_loss": 1., 

        "mrcnn_class_loss": 1., 

        "mrcnn_bbox_loss": 1., 

        "mrcnn_mask_loss": 1. 

    } 

 

 

class BlocksDataset(utils.Dataset): 

    def __init__(self, class_map=None): 

        super().__init__(class_map) 

 

    def load_dataset(self, images_dir): 

        json_file_path = os.path.join(images_dir, "annotations.json") 

        with open(json_file_path, 'r') as json_file: 

            coco_json = json.load(json_file) 

 

        dataset_name = "object" 

        for category in coco_json['categories']: 

            class_id = category['id'] 

            class_name = category['name'] 

            if class_id < 1: 
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                print('Error: Class id for "{}" cannot be less than one. (0 is reserved for the 

background)'.format( 

                    class_name)) 

                return 

 

            self.add_class(dataset_name, class_id, class_name) 

 

        annotations = {} 

        for annotation in coco_json['annotations']: 

            image_id = annotation['image_id'] 

            annotations.setdefault(image_id, []).append(annotation) 

 

        seen_images = set() 

        for image in coco_json['images']: 

            image_id = image['id'] 

            if image_id in seen_images: 

                print("Warning: Skipping duplicate image id: {}".format(image_id)) 

                continue 

            seen_images.add(image_id) 

 

            try: 

                image_file_name = image['file_name'] 

                image_width = image['width'] 

                image_height = image['height'] 

                image_annotations = annotations.get(image_id, []) 

            except KeyError as key: 

                print("Warning: Skipping image (id: {}) with missing key: {}".format(image_id, key)) 

                continue 

 

            if not image_annotations: 

                continue 

 

            image_path = os.path.abspath(os.path.join(images_dir, image_file_name)) 

 

            self.add_image( 

                source=dataset_name, 

                image_id=image_id, 

                path=image_path, 

                width=image_width, 

                height=image_height, 

                annotations=image_annotations 

            ) 

 

    @staticmethod 

    def rle_decode(mask_rle, size): 

        mask = np.zeros(size[0] * size[1], dtype=np.uint8) 

        starts = mask_rle[::2] 

        lengths = mask_rle[1::2] 

        current_position = 0 

        for start, length in zip(starts, lengths): 
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            current_position += start 

            mask[current_position:current_position + length] = 1 

            current_position += length 

        return mask.reshape(size[::-1]).T 

 

    def load_image(self, image_id): 

        info = self.image_info[image_id] 

        image_file = tifffile.imread(info['path']) 

        image = image_file[..., np.newaxis] 

        return image 

 

    def image_reference(self, image_id): 

        info = self.image_info[image_id] 

        if info["source"] == "shapes": 

            return info["shapes"] 

        else: 

            super(self.__class__).image_reference(self) 

 

    def load_mask(self, image_id): 

        global mask 

        instance_masks = [] 

        class_ids = [] 

        annotations = self.image_info[image_id]["annotations"] 

 

        for annotation in annotations: 

            class_id = annotation['category_id'] 

 

            if class_id: 

                mask_rle = annotation["segmentation"]["counts"] 

                size = annotation["segmentation"]["size"] 

                mask = self.rle_decode(mask_rle, size) 

                instance_masks.append(mask) 

                class_ids.append(class_id) 

 

        if class_ids: 

            mask = np.stack(instance_masks, axis=2).astype(np.bool) 

            class_ids = np.array(class_ids, dtype=np.int32) 

 

        return mask, class_ids 

 

 

# Training function 

def train(model, config): 

    # Load and prepare training dataset 

    dataset_train = BlocksDataset() 

    dataset_train.load_dataset(images_dir=os.path.join(DATASETS_PATH, 'train')) 

    dataset_train.prepare() 

 

    # Load and prepare validation dataset 

    dataset_val = BlocksDataset() 
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    dataset_val.load_dataset(images_dir=os.path.join(DATASETS_PATH, 'val')) 

    dataset_val.prepare() 

 

    augmentation = iaa.Sequential([ 

        iaa.Fliplr(0.5), 

        iaa.Flipud(0.5) 

    ]) 

 

    # Fine-tune the model 

    print("Fine-tuning all layers") 

    model.train(dataset_train, dataset_val, 

                learning_rate=config.LEARNING_RATE, 

                epochs=config.EPOCHS * 500, 

                layers='all', 

                augmentation= augmentation) 

 

    # Save trained weights 

    output_model = os.path.join(DEFAULT_LOGS_DIR, "mask_rcnn_block_resnet101.h5") 

    model.keras_model.save_weights(output_model) 

 

 

# Main function 

def main(): 

    config = BlocksConfig() 

    config.display() 

    model = modellib.MaskRCNN(mode="training", config=config, 

model_dir=DEFAULT_LOGS_DIR) 

    train(model, config) 

 

 

if __name__ == '__main__': 

    main() 
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8.2 SAVE RESULT TO JSON 

#load the libraries 

import os 

import re 

import json 

import warnings 

import numpy as np 

import tifffile 

from itertools import groupby 

from mrcnn.config import Config 

from mrcnn import model as modellib 

import tensorflow as tf 

 

############################################################# 

####       SAVE RESULTS FROM MASK-RCNN TO JSON FILE      #### 

############################################################# 

 

MODEL_PATH = os.path.abspath(r'D:\MRCNN_Logs\MRCNN_Logs_2') 

DATASETS_PATH = r"C:\Dati\Pilkington" 

 

class InferenceConfig(Config): 

    NAME = 'block' 

    GPU_COUNT = 1 

    FPN_CLASSIF_FC_LAYERS_SIZE = 1024 

    IMAGES_PER_GPU = 1 

    IMAGE_CHANNEL_COUNT = 1 

    BACKBONE = 'resnet101' 

    NUM_CLASSES = 1 + 1 

    USE_MINI_MASK = False 

    IMAGE_RESIZE_MODE = 'none' 

    IMAGE_MIN_DIM = 512 

    IMAGE_MAX_DIM = 512 

    MASK_SHAPE = [28, 28] 

    RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) 

    RPN_ANCHOR_RATIOS = [0.5, 1, 2] 

    RPN_ANCHOR_STRIDE = 1 

    TOP_DOWN_PYRAMID_SIZE = 256 

 

def load_image(image_path): 

    image_file = tifffile.imread(image_path) 

    image = image_file[..., np.newaxis] 

    return image 

 

 

def binary_mask_to_rle(binary_mask): 

    rle = {'counts': [], 'size': list(binary_mask.shape)} 

    counts = rle.get('counts') 

    for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))): 

        if i == 0 and value == 1: 
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            counts.append(0) 

        counts.append(len(list(elements))) 

    return rle 

 

 

def process_images_with_confidence_level(confidence_level, folder): 

    class DynamicInferenceConfig(InferenceConfig): 

        DETECTION_MIN_CONFIDENCE = confidence_level 

 

    dynamic_config = DynamicInferenceConfig() 

    model = modellib.MaskRCNN(mode="inference", config=dynamic_config, model_dir="logs") 

    model.load_weights(model_path, by_name=True) 

 

    annotations = [] 

    for image_path in image_paths: 

        image_filename = os.path.basename(image_path) 

        image_id = int(re.search(r'\d+', image_filename).group()) 

        print("Processing", image_filename) 

 

        image = load_image(image_path) 

        result = model.detect([image])[0] 

 

        masks = result['masks'] 

        num_instances = masks.shape[2] 

 

        for i in range(num_instances): 

            binary_mask = masks[:, :, i] 

            rle_mask = binary_mask_to_rle(binary_mask) 

            annotations.append({ 

                "image_id": int(image_id), 

                "segmentation": rle_mask, 

                "area": int(np.sum(binary_mask)), 

                "iscrowd": 1, 

                "bbox": result['rois'][i].tolist(), 

                "category_id": int(result['class_ids'][i]), 

                "id": int(i + 1), 

                "scores": float(result['scores'][i]) 

            }) 

 

    confidence_str = str(confidence_level).replace(".", "_") 

    output_json_path = os.path.join(folder, f"annotations_pred_{confidence_str}.json") 

    with open(output_json_path, "w") as json_file: 

        json.dump({"annotations": annotations}, json_file, indent=4) 

 

 

model_path = os.path.join(MODEL_PATH, "mask_rcnn_block_resnet101.h5") 

dataset_paths = [f"{DATASETS_PATH}\\Dataset{i}" for i in range(1, 10)] 

 

for dataset_path in dataset_paths: 

    folder = os.path.join(dataset_path, "val") 
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    image_paths = [os.path.join(folder, fname) for fname in os.listdir(folder) if fname.endswith(".tif")] 

 

    print(f"Processing dataset: {dataset_path}") 

    print(f"  -> Using folder: {folder}") 

 

    for confidence_level in [0.9, 0.95, 0.99]: 

        print(f"    -> Processing with confidence level: {confidence_level}") 

        process_images_with_confidence_level(confidence_level, folder) 
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