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Abstract

The advancement of autonomous navigation technology has enabled a wide range of
applications such as autonomous driving, industrial automation, and remote sensing.
One of the most important components of autonomous navigation technology is LI-
DAR odometry and mapping. Odometry involves estimating the movement of a mo-
bile platform, such as a self-driving car, in relation to its surroundings without using
measurements from a fixed reference point. This is particularly important in situa-
tions where a fixed reference point is not available, or when physical landmarks may
be obscured by other objects. Even when a fixed reference point is present, odometry
can still be used to improve position estimates by limiting the changes in position
over a short period of time. Odometry is essential for a wide range of mobile robotics
applications, including self-driving cars operating in GPS-denied environments.

In mobile robotics, both cameras and LIDAR sensors are often used for odometry.
LIDAR sensors measure the time it takes for laser pulses to travel to and reflect off
objects in the environment, allowing them to collect range and bearing information
about the scene. Despite their higher cost, LIDAR sensors are sometimes preferred
over cameras for certain applications because they are not affected by ambient light-
ing conditions and do not suffer from glare or motion blur in low-light situations. Ad-
ditionally, the direct range measurement capability of LIDAR sensors can simplify
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the odometry algorithm by eliminating the need to estimate distances from multiple
sensor measurements.

The main contribution in this thesis is features extraction for the LIDAR Odom-
etry and Mapping (LOAM) algorithm, which often rely on features extracted from
point clouds. This thesis proposes a novel detection algorithm SKIP-3D (SKeleton In-
terest Point) for extraction of features namely edges and planner patches from multi-
layer LIDAR scan. SKIP-3D make use of the organization of LIDAR measurements
to search for salient points in each layer through an iterative bottum-up procedure.
In the process it removes the low curvature points to find edges and classifies the
points from point clouds acquired from different view points are associated and used
for their alignment. Evaluation is carried out using the KITTI odometry metric on
the KITTI odometry dataset as well as a dataset collected at University of Parma and
demonstrated our method on several robotic datasets in both structured and unstruc-
tured large, three dimensional environments. Experimental results showed that Fast
LIDAR odometry and Mapping (F-LOAM) based on SKIP-3D feature extractor per-
forms at least better than original F-LOAM feature extractor. Additionally, this thesis
also addresses the issue of using heuristic procedures to exploit the organized point
cloud structure of LIDARs, and presents alternative methods for improving feature
point search. Presenting specific techniques for leveraging the structure of LIDAR
point clouds, and introduces two key contributions in this area: efficient range search
and nearest neighbor search. These methods allow for more effective exploitation of
the organized structure of LIDAR point clouds.

To summarize, the results of the evaluation indicate that incorporating geometric
information can improve the performance of the method. However, there is poten-
tial for further improvement through the development of a more sophisticated scene
appearance model and a more effective application of this model.
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1
INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Recently, in the area of mobile robotics three dimensional representations of our real
world has assumed high importance. Particularly, effective 3D mapping can advance
robotic systems in navigation and in a variety of related tasks like transportation,
surveillance, modeling of buildings, and environmental issues. Our surrounding is
characterized by natural and continuously changing processes. Developing fully au-
tonomous mobile robots is a challenging process that involves a range of tasks, in-
cluding navigation, motion planning, and control. Among these tasks, navigation is
often considered a critical aspect because it enables the robot to accurately perceive
and understand its surroundings and accurately determine its location. Simultaneous
localization and mapping (SLAM) is a key technology that helps with these tasks by
allowing the robot to create and maintain a map of its environment while simulta-
neously determining its location within that environment. SLAM involves creating a
map of an unknown environment and continuously updating it as the mobile robot
navigates through the environment. This computational problem involves two main
components: localization, or determining the robot’s location within the environment,
and mapping, or creating the map itself. There are many different types of SLAM al-
gorithms, and the most suitable one for a particular application depends on various
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factors such as the nature of the features in the environment, the resolution and time
constraints of the map, the sensors being used, and the available computation power.

Generally, to accomplish this objective, various set of sensors are deployed on
robots. Some of these sensors acquire measurements about the environment in the
form of points and ranges. This is the case of infrared or ultrasound range finders [1]
or of other sensors reading scanning in a plane (e.g, LIDARs). These types of sen-
sors data structure permits a safe movement of an autonomous robots in unknown
environment. The affordability of both monocular cameras and IMUs makes visual-
inertial algorithms quite popular in the literature [2]. Initially limited by computa-
tional power, online state estimation was mostly relying on filter-based methods such
as the one presented in [3]. Later frameworks like [4] and [5] combined both local and
global optimizations to estimate the system trajectory in real-time as well as creating
consistent maps with loop-closure detections.

LIDAR (Light Detection and Ranging) is a remote sensing technology that uses
lasers to measure the distance to an object or surface. LIDAR can be used for a variety
of applications, including mapping, surveying, and object detection. There are several
advantages to using LIDAR over other sensors for registration and mapping, which
are discussed in detail in the following sections. Multi-layer LIDARs have emerged
as an important sensing technology due to their capability to provide direct, dense,
active, and accurate depth measurements of 3D shapes. In the last decade, their role
has increased in many applications such as self-driving cars [11] and autonomous
unmanned aerial vehicle (UAVs) [12], [13]. In the context of visual odometry (VO),
it is common to simplify the brief exposure period of cameras as a single instant in
time and use a discrete-time state formulation. On the other hand, rotating LIDARs
like the Velodyne VLP-16 continuously sample the environment.

Despite advances in technology, it remains difficult to use LIDAR efficiently and
accurately for odometry and mapping tasks. To use LIDAR-based localization and
mapping in various applications, it is necessary to obtain precise and timely state
estimation and a detailed 3D map while using limited computational resources on
the device. It is necessary to overcome certain challenges in order to successfully use
LIDAR for odometry and mapping.
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• LIDAR sensors produce a significant amount of 3D points per second, with
some generating upwards of millions. These points can be used to create a
detailed 3D map of the environment, as well as to determine the position and
orientation of the sensor in the environment. However, processing such a large
volume of data in real-time can be challenging. To handle this large volume of
data in real-time on limited onboard computational resources, it is necessary
for the LIDAR odometry methods to be highly efficient in their calculations.

• There are several techniques that can be used to reduce the size of a LIDAR
point cloud data set: Sampling (this involves selecting a subset of points from
the original point cloud to represent the overall shape and structure), Filtering
(this involves removing points from the point cloud that are not necessary for
the task at hand). However, extracting feature points, such as edge points or
plane points, is often used to reduce the amount of processing needed. Yet, the
effectiveness of this feature extraction can be impacted by the environment.
As a result, using a LIDAR odometry method may require significant manual
adjustments to achieve optimal results.

• LIDAR point clouds can be distorted by motion for several reasons. One com-
mon cause is when the sensor is moving too quickly, causing points to be sam-
pled at different locations at different times. This can result in points being
displaced from their true positions, leading to inaccurate representations of the
environment. Additionally, if the sensor is mounted on a moving platform that
experiences significant acceleration or deceleration, the points may appear to
be distorted due to the motion of the platform. Other factors that can contribute
to motion distortion in LIDAR point clouds include vibrations, oscillations,
and changes in orientation. To mitigate these issues, it is important to ensure
that the LIDARs system is mounted securely and that the sensor is moving at
a consistent and controlled speed. In some cases, it may also be helpful to use
additional sensors, such as IMUs, to compensate for motion distortion.

• LIDAR sensors generate point cloud data that is often both dense and sparse
at the same time. The density of the point cloud refers to the number of points
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that are measured within a given area, while the sparsity refers to the distri-
bution of those points. One reason why LIDAR point clouds are often dense
is that the sensor is able to measure a large number of points in a short pe-
riod of time. LIDAR sensors use lasers to measure distances, and the speed at
which the laser beam is emitted and the speed at which the sensor rotates or
moves can affect the density of the point cloud. Additionally, the density of
the point cloud can be influenced by the configuration of the sensor, such as
the number of lasers and the size of the beam. At the same time, LIDAR point
clouds are often sparse because the resolution between scanning lines is rela-
tively low compared to other types of sensors. This means that the points are
not evenly distributed throughout the 3D space, and there may be large gaps
between points. The sparsity of the point cloud can also be affected by the en-
vironment in which the sensor is operating. For example, a LIDAR sensor may
be able to measure a dense point cloud in a flat, featureless environment, but a
more complex or cluttered environment may result in a sparser point cloud.

One of the primary challenges of using LIDAR for estimating the motion and
creating maps of a robot’s environment is the need for accurate and customized algo-
rithms. Without these algorithms, the measurements obtained from LIDAR may not
be effectively utilized for these purposes. The aim of this thesis is to address this chal-
lenge by developing and implementing algorithms that can accurately and effectively
utilize LIDAR measurements for robot motion estimation and mapping. Overall, the
primary motivation for using LIDAR over other sensors for registration and mapping
is the ability to produce high-resolution, accurate results over long ranges and in a
variety of weather conditions.

1.2 Overview of Sensing Technology

Robotic platforms that interact with and move through their environment are made up
of three main components: sensors for perceiving the external environment, hardware
for processing this information in real-time, and actuators for performing control
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actions. The optimal integration of these systems and components will determine the
capabilities and level of autonomy of the vehicle.

To ensure the safety of all individuals involved for instance, in industrial envi-
ronment, both inside and outside the vehicle, it is important to equip the robot with
multiple sensors that provide diverse and redundant information about the environ-
ment. In this context, we will review the advantages and disadvantages of commonly
used sensors on robotic platforms and autonomous vehicles, such as cameras, radars,
lasers, and ultrasounds.

1.2.1 Camera

Optical RGB sensors, which use computer vision techniques to analyze color images
for tasks such as object detection, segmentation, tracking, and optical flow, are a
common source of information due to their versatility and low cost. However, these
images can be compromised by external factors such as harsh weather conditions
or the changing appearance of a scene at different times of day. Additionally, in the
robotic context, the perception systems of a robot can be disrupted by other lights at
night. The use of deep learning technologies has significantly improved the accuracy
of camera-based perception systems in recent years.

1.2.2 Ultrasonic

Ultrasonic sensors measure distance based on the principle of reflected sound waves
and are commonly used in driving assistance applications such as obstacle warning
and parking distance measurement. However, their accuracy and robustness decline
with increasing distance, and their measurements can be greatly affected by atmo-
spheric conditions like pressure and humidity. This limits the use of ultrasonic sen-
sors to close range applications, preventing them from providing more detailed and
comprehensive information.
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1.2.3 Ultrasonic

Radar sensors emit radio signals and capture their echoes to obtain sparse measure-
ments of the dynamics of a scene using the Doppler effect. While these sensors are
useful for robots because they can detect dynamic elements that may pose a danger
to the vehicle, they have a short wavelength that limits their ability to detect small
objects and introduces noise. Additionally, radar sensors do not provide robust infor-
mation about the static structure of the nearby environment, which is also important
for robotic applications.

1.2.4 LIDAR

Early forms of Light Detection and Ranging (LIDAR) sensors were introduced over
60 years ago, with early detectors being more akin to today’s common household
laser based measuring tool. A common Light Detection and Ranging (LIDAR) sensor
emits light in the pattern of pulses into the surrounding environment and the reflected
light pulse reaches back to the original source. The sensor operation uses Time of
Flight (ToF) principles, where time is measured between the target object and the
reflected pulse after hitting the surface arrives back to the center of the sensor. The
distance between the object hitting and source can be measured using:

D =
ct f

2
(1.1)

In other words, assuming insignificant atmospheric attenuation distance D can be
measured by multiplying t f which is the time of flight and c which is the speed of
light and dividing by half to retrieve one way distance.

There are three levels of LIDAR Technologies. 1D, 2D and 3D and all of them
works with the same principle of ToF. 1D is the simplest form of LIDAR sensor,
a single laser emitter used in a static position and directed towards a certain target.
sensors that possess one-dimensional distances are categorized as 1D sensors. A 2D
LIDAR sensor uses a single emitter but in rotation or motion to capture information
in a planar environment. The source can be operated as a rotating or moving beam on
one level, this yields distance and angle so, the resultant captured information is in
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Figure 1.1: A scan from a Velodyne VLP-16 LIDAR mounted on pioneer 3DX robot

two dimension. Moreover, with the addition of third dimension to LIDAR technology
when the sensor is pivoted. This way the LIDAR provides information about the
distance and position along the x-axis, y-axis and z-axis. A 3D LIDAR operates the
same functionality as that of 2D LIDAR. However, in the 3D case multiple emitters
are positioned in the vertical axis of the sensor. This can be termed as multi-layer
scanner. Lets take the example of a 3D Velodyne Puck (VLP-16), This LIDAR is
composed of 16 vertical scan layers or rings. when the LIDAR rotates entire cycle
and completes a full revolution captures 360◦ view of its surrounding. A complete
revolution of the LIDAR scan is referred to as a sweep.

The sampling pattern of LIDAR sensors used in automotive applications can be
anisotropic, making it difficult to apply general scan matching algorithms.

Figure 1.1 is an example of a scan collected from a LIDAR. This type of LIDAR
sensor generates distinct rings using laser-detector pairs. The azimuthal resolution,
determined by the sensor’s rotation rate, is finer than the elevation resolution, which
is based on the number and arrangement of the laser-detector pairs. In addition to
displaying the distribution of points collected by LIDAR, the figure also illustrates the
quality of the data. The geometric features of the scene are clearly visible, especially
in areas with high elevation resolution. The figure also demonstrates the usefulness
of appearance information, as walls and sharp segments are easily distinguishable in
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the scan.
In terms of localization, LIDAR can be used to accurately determine the posi-

tion of an autonomous vehicle within a map of its environment. This is achieved by
continuously measuring the distance to nearby objects and landmarks using the laser
beams, and comparing these measurements to a pre-existing map of the environment.
By continuously updating its position based on these measurements, the autonomous
vehicle can maintain a high level of accuracy in its localization.

In terms of mapping, LIDAR can be used to create detailed and accurate 3D
maps of an environment. These maps can include information about the location and
shape of objects and features in the environment, as well as their reflectivity and other
physical properties. These maps can be used by autonomous vehicles to navigate and
make decisions about their surroundings, as well as by other applications such as
robotic inspection and maintenance of infrastructure.

Overall, LIDAR is an important technology for autonomous vehicle localization
and mapping due to its ability to provide accurate and detailed information about the
surrounding environment in real-time.

1.3 State of the Art

1.3.1 Robot Localization and Mapping

Localization is the process of determining the position of a robot or device within
an environment. Mapping is the process of creating a representation of the environ-
ment, often in the form of a map. These two processes are often used together in
robotics and autonomous systems to enable the system to navigate and understand its
surroundings.

SLAM algorithms can be classified into two main categories: online and offline.
Online algorithms operate in real time, continually updating the map and robot’s pose
as new sensor data becomes available. Offline algorithms, on the other hand, process
all the sensor data at once after the robot has completed its exploration of the environ-
ment. The problem is hard when estimation is achieved using only on-board sensors.
SLAM algorithms can use a variety of sensors, including laser rangefinders, vision
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systems, and inertial measurement units (IMUs). The choice of sensor depends on the
specific requirements of the application and the characteristics of the environment in
which the robot is operating. SLAM algorithms typically rely on probabilistic tech-
niques, such as Kalman filters and particle filters, to estimate the robot’s pose and
map the environment. These techniques allow the algorithm to account for uncertain-
ties and errors in the sensor data and make probabilistic predictions about the robot’s
position and the structure of the environment.

There are several formulations of localization and mapping, and the choice of
which approach to use depends on the specific requirements and constraints of the
system. Some common formulations include:

• Simultaneous localization and Mapping (SLAM): This approach involves us-
ing sensors and algorithms to simultaneously build a map of the environment
and determine the position of the robot within that environment. SLAM algo-
rithms can be used with a variety of sensor types, including laser rangefinders,
cameras, and inertial measurement units (IMUs).

• Marker-based Localization: This approach involves using distinct visual fea-
tures or markers within the environment to determine the position of the robot.
The robot can use these markers to determine its position by comparing its
observations to a pre-defined map of the markers.

• Dead Reckoning: This approach involves using sensors such as IMUs and en-
coders to track the movement and orientation of the robot as it moves through
the environment. This information can be used to determine the robot’s posi-
tion relative to its starting point.

• GPS: Global Positioning System (GPS) can be used to determine the position
of a robot or device in outdoor environments where satellite signals are avail-
able. GPS is not typically suitable for use in indoor environments.

There are many other approaches to localization and mapping, and the choice
of which approach to use depends on the specific requirements and constraints of the
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system. Some other approaches include visual odometry, map-based localization, and
beacon-based localization.

In the early days of SLAM, researchers used sensor data to identify features and
combined this information with motion controls to estimate the position and orien-
tation of a robot within an unknown environment using an Extended Kalman Fil-
ter (EKF) [6], [7]. These methods were implemented and tested by Moutarlier and
Chatila [8], who used laser scans to identify line segments as features, and Leonard
and Durrant-Whyte, [9] who used sonar to find unique geometric features. The EKF
linearizes the motion and sensor models, which can be problematic in highly non-
linear situations, such as when using range-only beacons to form a ring of probabil-
ity [10]. One advantage of the EKF is that it maintains a complete covariance matrix
and mean vector for all features, which is important for data association (determining
that two observations are of the same feature). However, updating the full covariance
matrix is computationally intensive, requiring O(n2) time, where n is the number of
features, limiting the use of EKF SLAM to environments with a few hundred fea-
tures. Researchers have devoted significant effort to developing efficient methods for
large-scale SLAM. These approaches can be classified according to their map rep-
resentation or estimation algorithm, but they all share the fundamental property of
handling spatial sparsity or independence [11].

To avoid the challenge of identifying features, Lu and Milios [12] developed a
featureless (non-Bayesian) approach for SLAM that utilizes odometry measurements
and raw sensor data to build a sparse network of constraints between robot poses.
This network can be solved using batch-iterative nonlinear optimization techniques.
Gutmann and Konolige [13] later extended this method to allow for incremental up-
dates to the constraint network, including the incorporation of loop closures. Duckett
et al [14] employed relaxation methods to create an iterative algorithm with O(n2)

updates, except for loop closures which required O(n3). Frese et al [15] further im-
proved this approach by using multilevel relaxation methods to perform updates to
the network in O(n2) time, even for loops. Hahnel et al [16] also contributed to the
efficiency of SLAM through the use of lazy data association, a technique in which the
maximum likelihood data association is determined while also tracking other associ-
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ation hypotheses in a tree that can be expanded to consider alternate data associations
if the map becomes inconsistent.

Features extraction is an essential function for UGVs to realize surrounding envi-
ronment and automate driving decision making in urban areas. This section surveys
several widely used feature extraction methods based on 3D point clouds to realize
fast and accurate object recognition. Depending on the environment, indoor, outdoor
or hybrid and performance requirement SLAM suffers in challenging environments.
The addition of cameras in odometry is rigorously studied as cameras being low
priced. System based on vision odometry [17] [18] [19] is precise in localization,
but on the other hand deteriorate features map. Cameras do not measure the depth
information while capturing the scene, as a result the obtained map is not observ-
able. The monocular visual odometry has the property of scale ambiguity, as the
camera capture features in multiple images chasing features over various frames, the
position of feature as well the camera motion both can not be recovered accurately.
This problem of recovery can be addressed by introducing inertial measurement unit
(IMU) with visual odometry (VO) which makes the system visual inertial odometry
(VIO). IMU can measure transient changes in the pose, which permits the recovery
of scale ambiguity. However, introducing more sensors to the system means more
precise coordination and accurate calibration among the sensors which leads to more
complexity.

One of the major limitation of cameras is that they are dependent of ambient
light. Each pixel in a photo depends on the exposure of impinging light to produce an
intensity measurement. Hence, it is not practical to adjust the intensity in a dynamic
environment, long exposure may produce blur in the image and VO can lose the track
of features.

1.3.2 Registration with Point Cloud

3D laser scanners are widely used for collecting data under static conditions and can
quickly generate large amounts of accurate 3D points. However, the post-processing
stage of point cloud registration, which involves aligning multiple point clouds, can
be laborious and time-consuming. This process typically involves manually gath-
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ering scans from different positions and using either common features or iterative
methods to register the data. Despite the advancements in 3D scanning technology,
point cloud registration remains a challenging and resource-intensive task. The in-
tegration of multiple point clouds is a critical aspect of 3D scanning and modeling,
as it allows for a comprehensive representation of an object or scene. Point cloud
registration, also known as surface registration, is a key technology that enables the
fusion of multiple point clouds into a single, unified point cloud with a common co-
ordinate system. This process involves analyzing point clouds to accurately represent
the real-world surface of an object and is essential for various applications, including
autonomous driving [20], [21], [22], [23]. 3D reconstruction [24], [25], [26], [27], si-
multaneous localization and mapping (SLAM) [28], [29], [30], [31], and virtual and
augmented reality (VR/AR) [32]. In order to perform effective point cloud registra-
tion, it is important to collect point clouds in an appropriate manner and to accurately
determine the orientation of the scanned object in its local coordinate system. This
typically involves matching a standard point cloud in the dataset with the scanned
point cloud.

The goal is to determine the transformation, including translation and rotation,
that is needed to bring these point clouds into a common coordinate system. There
are two main types of point cloud registration: pairwise registration, which involves
two point clouds and estimates the transformation between them, and multiview or
groupwise registration, which involves multiple point clouds and calculates the trans-
formation of each scan to a reference data set. Point cloud registration can also be
divided into two stages based on accuracy: coarse registration and fine registration.
Coarse registration is used to roughly align the point clouds, while fine registration is
used to achieve higher accuracy in the alignment.

The literature on registration is extensive and includes different formulations for
several (sometimes loosely) related problems. The application contexts (computer vi-
sion, navigation, etc.) and the formulation of registration (objective function, feature-
based or correlation, etc.) result into a variety of works. While there are several clas-
sification criteria, the categorization into local and global methods is suitable for
thoroughly discussing our contribution w.r.t. the literature.
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Iterative Closest Point (ICP) [33] is likely the most popular registration algorithm.
The estimation is achieved by iteratively alternating the point association and the esti-
mation of the rigid transform that better aligns the associated points. ICP is sensitive
to initial estimation and is prone to local minima. Over the years, several variants,
like ICP with soft assignment [34], ICP with surface matching [35], affine ICP [36],
KISS-ICP [37] have been proposed. Generalized Procrustes Analysis (GPA) has also
been proposed to simultaneously register multiple point sets in a single optimization
step [38, 39]. In some cases, the association among multiple point sets increases the
robustness of estimation.

Alternative representations to point sets have been proposed to avoid explicit as-
sessment of correspondences. Biber and Strasser [40] propose the Normal Distri-
butions Transform (NDT) to model the probability of measuring a point as a mix-
ture of normal distributions. Instead of establishing hard association, NDT estimates
the transformation by maximizing the probability density function of the point set
matched with the mixture distribution. The approach has been extended to 3D point
clouds [41] and, with ICP, is part of standard registration techniques [42]. Other reg-
istration techniques are based on GMMs computed on point sets [43–45].

Several registration algorithms exploit rigidity of isometric transformation for
selecting robust and consistent associations. The general procedure operates in two
steps. The first step establishes an initial set of putative associations based on ge-
ometric criteria (e.g., correspondence to closest neighbor) or similarity of descrip-
tors. The second step filters the outlier associations based on rigidity constraints.
RANSAC [46] and its many variants like MLESAC [47] implements this principle
through a heuristic random consensus criterion. Coherence point drift (CPD) algo-
rithm [48] represents point sets with a GMM and discriminates outliers by forcing
GMM centroids to move coherently as a group. Ma et al. [49] proposed more for-
mally consistent assessment of associations using Vector Field Consensus (VFC).
This method solves correspondences by interpolating a vector field between the two
point sets. Consensus approach has also been adopted to the non-rigid registration of
shapes represented as GMMs [50, 51]. The hypothesize-and-verify approach is often
successful in the estimation of associations, but it depends on the initial evaluation of
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putative correspondences. Moreover, it does not provide any guarantee of optimality
of the solution.

Global registration methods search the rigid transformation between two point
sets on the complete domain of solutions. Heuristic global registration algorithms are
based on particle swarm optimization [52], particle filtering [53], simulated anneal-
ing [54].

Another category includes the global registration methods that compare features,
descriptors and orientation histograms extracted from the original point clouds. Spin
Images [55], FPFH [42, 56], SHOT [57] and shape context [58] are descriptors that
could be matched according to similarity measure and used for coarse alignment of
point cloud. Similar histogram-based methods are applied to rotation estimation of
3D polygon meshes through spherical harmonics representation [59–63]. All these
techniques extend the searching domain and attenuate the problem of local minima,
but their computation is prone to failure or achieves extremely coarse estimation.
Moreover, the global optimality of the assessed solution is not guaranteed.

In planar registration problem, some effective global methods exploiting spe-
cific descriptors of orientation have been proposed. Hough spectrum registration [64]
assesses orientation through correlation of histogram measuring point collinearity.
The extension of this method to 3D space [65] suffers from observability issues due
to symmetry in rotation group. Reyes-Lozano et al. [66] propose to estimate rigid
motion using geometric algebra representation of poses and tensor voting. Angular
Radon Spectrum [67, 68] estimates the optimal rotation angle that maximizes corre-
lation of collinearity descriptors by performing one-dimensional BnB optimization.

BnB paradigm is the basis for most of global registration methods. Breuel [69]
proposes a BnB registration algorithm for several planar shapes in image domain. The
shapes are handled by a matchlist containing the shapes to be matched. The bounds
are computed using generic geometric properties, which partially exploit pixel dis-
cretization. No accurate management of lower bounds is presented. The BnB algo-
rithm in [70,71] computes the rigid transformation that matches two point sets, under
the hypothesis that the set of correspondences is given, although with outliers. To our
knowledge, Go-ICP [72] is the most general algorithm for the estimation of the glob-
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ally optimal registration based on BnB. Recently, other formally guaranteed methods
like TEASER [73] have been proposed to effectively estimate the relative pose with
high number of outlier associations, but they may still fail with highly inaccurate
initial correspondences.

Although effective and guaranteed in motion estimation, globally optimal regis-
tration methods cannot be applied to the odometry context due to their runtime lim-
itations. They are far from real-time when there is much overlap between the point
clouds, as in the odometry context.

1.3.3 LIDAR Odometry and Mapping

Multi-layer LIDARs acquire a large amount of range measurements in a single shot.
Such sensing technology is naturally suitable for robot localization and mapping. In
particular, registration of LIDAR scans allows estimation of robot motion, also called
sensor odometry, and map construction by merging multiple aligned scans. Standard
registration algorithms and specifically those relying on point correspondences, such
as those derived from ICP, poorly performs when applied to the sparse point clouds of
LIDARs. An effective approach based on customized geometric features for LIDAR
has been developed in the last years.

The original method was called LIDAR odometry and mapping (LOAM) [74,75]
and such denomination has been inherited by the derived methods. LOAM belongs
to the feature extraction and matching category. LOAM matches scan to scan points
based on their geometry. The IMU measurements are used to undistort the distortion
occured during a scan from non-zero acceleration. Lego-LOAM [76] is another vari-
ant of LOAM which, introduces loop closure to reduce the drift accumulated over
time. F-LOAM [77] is an extension to original LOAM, it brings improvement to the
system by performing double stage distortion compensation. Other variants like LIO
(Lidar Inertial Odometry) [78, 79] and IN2LAMA (INertial Lidar Localisation And
MApping) [80] combine registration and inertial sensors. An augmented version of
LOAM combines the geometric features with vision keypoint features [77].

While inertial measurements or vision features can effectively improve registra-
tion through an initial guess to the estimation, they also increase the constraints on
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the input data. The contribution of this thesis is to built on the simple and uncon-
strained approach represented by LOAM and F-LOAM. Thus, LOAM and F-LOAM
are accurately discussed in this section.

Since LIDAR odometry is always in motion, the system accumulate errors during
the process of integration. This accumulated error leads to a drift in odometry. The
LIDAR Odometry and Mapping in Real-time (LOAM), proposed an algorithm to
solve the problem of real-time odometry by feature extraction from a 3D point clouds
using 3D LIDAR and ultimately matching the scans. This is not a simple task as the
measurements received from multi-layer LIDAR are not at the same time. This can
give rise to miss-association while matching two consecutive point clouds hence,
results in a less accurate final map.

Previously this problem was only solved efficiently with off-line batch methods,
often using loop closure to correct for drift over time. The LOAM algorithm is able
to achieve both low-drift and low-computational complexity, without the requirement
of high accuracy ranging or inertial measurements. This level of performance comes
from the division of the complex problem of simultaneous localization and mapping
in two algorithms. Instead of optimizing a large number of variables simultaneously,
one algorithm performs odometry at a high frequency, with less accuracy, having
the objective of estimating the velocity of the LIDAR. The other algorithm runs at a
lower rate performing fine matching and registration of the point cloud. The combi-
nation of both algorithms allows the mapping in real-time. The problem addressed by
LOAM is commonly known as ego-motion estimation that is the motion estimation
using visual data. In this case, this data is a point cloud perceived by a 3D LIDAR,
where simultaneously a map for the traversed environment is built. It starts by assum-
ing that the LIDAR is pre-calibrated, the angular and linear velocities of the LIDAR
are smooth, continuous over time and without abrupt changes. The authors defined as
convention, a sweep as being one complete LIDAR scan, Where j indicates the indi-
vidual sweeps, and P j is the point cloud perceived during a sweep j. Two coordinate
systems are defined as follows;

• LIDAR coordinate system L : This is a 3D coordinate system with it’s origin
at the geometric center of the LIDAR. The x-axis is pointing to the left, the
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y-axis is pointing upward, and the z-axis is pointing forward. The coordinates
of a point i, i belongs to P j, in L j are denoted as XL

( j,i).

• World coordinate system W : It is also a 3D coordinate system coinciding with
R at the initial position. The coordinates of a point i, i belongs to P j , in W j are
Xw
( j,i).

After this, the LIDAR odometry and mapping problem can be better defined as:
given a sequence of LIDAR clouds P j, compute the ego-motion of the LIDAR during
each sweep j, and build a map with P j for the traversed environment.

1.3.4 LIDAR Odometry

LIDAR odometry is a technique for estimating the pose (position and orientation) of a
vehicle or robot using data from LIDAR sensor. LIDAR sensor measures the distance
to objects in the environment, and generates a 3D point cloud of the environment.
To perform LIDAR odometry using the 3D point cloud data to estimate the pose
of the sensor over time, the system must first align the current LIDAR scan with
a previous scan to determine the relative motion between them. Once the relative
motion between the scans has been estimated, the system updates the pose estimate
of the robot based on its motion. This process of estimation is repeated until the last
point cloud in the data. LIDAR odometry has several advantages over other methods
of pose estimation, for example relying on the wheel odometry or visual odometry. it
is less sensitive to errors caused by wheel slippage or changes in surface conditions.

LIDAR odometry can be used in a variety of applications, including autonomous
vehicles, robotics, and mapping. Building a high precision map for navigation re-
quires accurate odometry estimation. Moreover, odometry is fundamental in local-
ization and environment perception, which guarantees safety. considering dynamic
environment, odometry method should be vigorous to different environments includ-
ing indoor and outdoor [2]. In variation to methods of using video cameras [81], [82],
the odomtery of LIDAR is invariant to large changing in lightning conditions as the
sensor actively emits the laser beams.
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The odometry algorithm can be divided in three distinct steps; feature point ex-
traction, followed by feature Point Correspondence and motion estimation step.

3D mapping is a widely used technology, and one challenge that arises in laser
ranging is accurately aligning the resulting point cloud when the sensor is moving.
This is because the registration of the point cloud must take into account both the
internal kinematics of the LIDAR and the external motion of the sensor. A common
solution to this problem is to use an external method of pose estimation, such as a
GPS/INS system, to align the range data with a fixed coordinate frame. Alternatively,
when such measurements are not available, odometry techniques can be used to es-
timate the sensor’s position and orientation over time based on factors such as wheel
motion, gyroscopes, or tracking features in the range or visual images. High-rate pose
estimation is particularly important for lasers, which can take thousands of measure-
ments per second. The odometry block is responsible for the estimation of sensor
motion between two consecutive scans. Performing point-to-feature scan matching
yields the transformation between two scans.

After the segmentation each feature is labeled and the correspondence between
two scans is achieved by matching the same labeled features from two consecutive
scans. Edge labeled feature in current scan is compared with Edge labeled feature
in a previous scan. The same way planar features from current and previous scans
are compared. To find the minimum distance transformation, a two step optimization
method Levenberg-Marquardt (L-M) is applied to two consecutive scans. Finally, the
6D transformation is applied between the two neighboring scans.

Local odometry in LEGO-LOAM is achieved using a sliding window optimiza-
tion approach, in which the current LIDAR scan is aligned with a window of previous
scans to estimate the local motion of the sensor. The window size is adaptively ad-
justed based on the motion of the sensor, allowing the algorithm to handle changes in
the environment and maintain high accuracy over time.

To reduce the complexity of the problem, the motion during a sweep is modeled
with constant angular and linear velocities. This allows the use of linear interpola-
tion to calculate the pose transform, for points that are being received at different
times. The LIDAR 6-DOF pose transform is stored in a state vector, that contains
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the translations and rotations. This vector also encodes the motion of the LIDAR and
is represented by TR

j (t) = [T R
j (t),θ

R
j (t)], where t is the current time stamp, and as

stated before, t j represents the starting time of the current sweep j. The translations
are represented by T R

j (t) = [tx, ty, tz]T and the rotation by θ R
j (t) = [θx,θy,θz]

T in R j.
The rotations θ R

j (t) can be enconded in a rotation matrix, defined with the help of the
Rodrigues formula [41].

1.3.5 Key points Extraction

Scan matching and feature extraction are the two main approaches to build a complete
map of the surrounding with LIDARs data. Features or landmarks usually depend on
the environment: indoor settings, sharp structures, planar surfaces. For instance ex-
traction of lines, corners have already been used in [83], [84], [85]. The fact that 3D
LIDARs provide multiple scan lines, for a SLAM system, many applications uses
LIDAR sensor to detect the surrounding. Man, Ye [86] proposed corner feature ex-
traction method from 2D LIDAR data. To process LIDAR data Harris corner detector
is used by Li [87] and an algorithm to detect the roadway by detecting geometric fea-
tures is presented in [88]. Due to the high cost of 3D LIDARs a spinning or rotating
laser scan has been used to measure the environment [89], [90].

This step consists in the extraction of feature points present on the LIDAR cloud,
P j. The feature points are extracted from individual scans P j and selected depending
on their co-planar geometric relationships. The desired points to be selected, are the
ones present on sharp edges and planar surface patches. This process starts by ana-
lyzing the smoothness of the local surface, this is accomplished by sorting the points
present in a scan, using a defined threshold called C value. The feature points inside
the defined maximum threshold are labeled as edge points, in opposition the points
within the minimum threshold correspond to the planar points.

In LOAM the individual scans are divided into four identical sub-regions. Where
each one only can provide in maximum two edge points and four planar points. The
selection of these points needs to obey the following restrictions to ensure an even
distribution of the feature points in the environment;
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• The selected edge or planar points cannot exceed the maximum quantity de-
fined for the equivalent sub-region.

• The surrounding points were not selected yet.

• Cannot make part of a surface patch perpendicular within 10 degree to the laser
beam, or on the boundary of an obstructed region.

The selected points are used for feature extraction and the unwanted points are
discarded. Taking a set S of points pi from each row of range image and calculate the
roughness of each point pi in a continuous set S.

c =
1

|S| · ‖ri‖ ∑
j∈S, j 6=i

‖(r j− ri)‖ (1.2)

The range images are equally divided into multiple sub-images and sorted based on
the roughness values c. ri and r j are the range values associated with every point, rep-
resents the Euclidean distance from the corresponding point to the sensor. The same
criterion like LOAM is applied here to differentiate between the types of features,
which is basically to fix a threshold. Points with roughness c value greater then the
threshold are recognized as Edge features and points with roughness c value less then
the threshold are classifies as plane features.

The LEGO-LOAM algorithm consists of two main components: global registra-
tion and local odometry. Global registration estimates the global pose (position and
orientation) of the sensor based on the alignment of the current LIDAR scan with
a map of the environment. Local odometry estimates the local motion of the sensor
based on the changes in the LIDAR scan data over time. Global registration in LEGO-
LOAM is achieved using an efficient scan registration method that aligns the current
LIDAR scan with the map using a least-squares optimization approach. The method
is based on the Iterative Closest Point (ICP) algorithm, which iteratively minimizes
the distance between the points in the current scan and the points in the map.

LEGO-LOAM is an algorithm for real-time 3D LIDAR-based localization and
mapping. It was developed by researchers at the Robotics Institute of the Chinese
Academy of Sciences and the University of Oxford. LEGO-LOAM system is com-
posed of five different modules. A single point cloud scan obtained with 3D LIDAR
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is feed into the segmentation module and the segmented point cloud is forwarded to
the feature extraction stage. Point cloud acquired at time t is projected onto a range
image in the segmentation block, where each point is represented by a unique pixel.
Points are grouped into clusters and assigned with unique label. Clusters are removed
on a set threshold, based on minimum number of points. This way the noisy points are
filtered out and only the reliable points can be used for feature extraction. To further
refine the pose transformation and obtain a map the mapping block matches the ex-
tracted features at a low frequency. To obtain the final transformation L-M method is
used here again. A single surrounding map is achieved by saving all the previous fea-
tures from every scan and focusing just on the features sets that are in the pre-defined
range of the current sensor position.

LEGO-LOAM and LOAM are both algorithms for real-time 3D LIDAR-based lo-
calization and mapping. Both algorithms are widely used in robotics and autonomous
vehicle applications and have been demonstrated to achieve high accuracy and robust-
ness in a variety of environments.

One key difference between LEGO-LOAM and LOAM is the approach they use
for estimating the movement of the sensor. LEGO-LOAM uses a combination of
global registration and local odometry, while LOAM uses a single step scan matching
approach.

In the global registration of LEGO-LOAM , the current LIDAR scan is aligned
with the map using an optimization algorithm, such as the Iterative Closest Point
(ICP) algorithm, to estimate the global pose (position and orientation) of the sensor.
Local odometry estimates the local motion of the sensor based on the changes in the
LIDAR data over time.

In contrast, LOAM uses a single step scan matching approach, in which the cur-
rent LIDAR scan is directly aligned with the previous scan to estimate the movement
of the sensor. This approach is faster than global registration, but may not be as ac-
curate in environments with large changes or dynamic objects.

Another difference between LEGO-LOAM and LOAM is the way they handle
changes in the environment over time. LEGO-LOAM uses a sliding window opti-
mization approach, in which the current LIDAR scan is aligned with a window of
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previous scans to estimate the local motion of the sensor. The window size is adap-
tively adjusted based on the motion of the sensor, allowing the algorithm to handle
changes in the environment and maintain high accuracy over time. In contrast, LOAM
uses a combination of scan matching and map optimization to handle changes in the
environment. There are a few potential advantages of LOAM over LEGO-LOAM:

• Computational efficiency: LOAM uses a single step scan matching approach,
which may be faster than the global registration and local odometry approach
used by LEGO-LOAM. This can be particularly important in applications where
computational resources are limited.

• Robustness to large changes in the environment: LOAM uses a combination
of scan matching and map optimization to handle changes in the environment,
which may make it more robust to large changes than LEGO-LOAM, which
uses a sliding window optimization approach.

• Ease of implementation: LOAM has been widely used and studied, and there
are many existing implementations and resources available. This may make
it easier to implement and use than LEGO-LOAM, which may be less well-
known.

It’s worth noting that these potential advantages of LOAM over LEGO-LOAM may
not always hold true, and the choice of which algorithm to use will depend on the
specific requirements of the application and the trade-off between accuracy and com-
putational complexity.

Other techniques may involve the use descriptors for feature extraction from LI-
DAR point clouds [91], [56], which are mathematical representations of local features
in the point cloud. These descriptors can capture various properties of the point cloud,
such as shape, texture, and orientation. By computing descriptors at each point in the
point cloud, a set of high-dimensional feature vectors can be generated, which can
then be used for further analysis or classification.

Several types of descriptors have been proposed for LIDAR point clouds, includ-
ing spin images, 3D shape contexts, and spherical harmonics. These descriptors have
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been shown to be effective for various applications, such as object recognition, seg-
mentation, and registration.

1.4 Contributions

In this thesis, we introduce a novel detection algorithm SKIP-3D (SKeleton Inter-
est Point) for extraction of features from multi-layer LIDAR scans for large scale
scene understanding. The foundation of our approach is the LOAM pipeline proposed
by [77]. We extend the pipeline to new features, especially autonomous driving sce-
narios. Combined with the FLOAM algorithm we add our novel features detector.
Our approach acquires point level organization of LIDAR measurements to search
salient points in each layer. In order to assess the effectiveness of our approach, we
gathered a dataset of consecutive LIDAR point clouds using the Pioneer 3DX teleop-
erated robot fitted with the Velodyne VLP-16 sensor. To supplement this quantitative
analysis, we conducted a qualitative assessment on a real-world dataset to confirm
the validity of our methodology.

Additionally, Multi-layer 3D LIDAR allow acquiring 3D data in the shape of
dense point clouds composed of several thousand 3D points. Due to the irregularity
of collected points, this dense and complex point cloud put forward main challenges
on different types of structures in the observed scene. Nevertheless, the peculiar ar-
rangement of collected 3D data points for a particular structure it is enough to rec-
ognize geometric property of a surface. Consequently, we follow the exploration for
feature extraction from point clouds and focus on the use of geometric features. The
main reason behind the choice is that in a dense collection of points point-to-point
correspondences between structures relies locally on geometric descriptor. In this re-
gard, searching neighborhood for each 3D point and reconstruct structures based on
the arrangement of locally positioned points is more appealing to us humans.

Moreover, I presents two methods for exploiting the specific organization of LI-
DAR point clouds in order to improve the efficiency and accuracy of various tasks,
including efficient range search and nearest neighbor search. I also introduced Scan-
Context, a method for place recognition within 3D point cloud maps that leverages
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the spatial and temporal context of LIDAR scans to provide valuable information
about the location and orientation of the scanner within the environment, improv-
ing the accuracy of place recognition and the robustness of feature extraction. These
contributions represent important advances in the field of 3D point cloud analysis.

The main contributions of our proposed method are:

• Full exploitation of LIDAR point cloud structure and index for efficient neigh-
borhood search and for place recognition based on existing signatures.

• The novel geometric features SKIP-3D for better detect salient parts in LIDAR
point clouds based on bottom-up extraction procedure that preserves shapes.

• Extensive experiments using indoor and outdoor datasets of a F-LOAM using
the proposed SKIP-3D features.

This thesis is organized as follows: Chapter 2 discusses how LIDAR point clouds
can be exploited for efficient neighborhood search. It will explore techniques for
organizing and processing the point cloud data, with the aim of reducing computa-
tional resources required for searching and querying the data. Chapter 3 proposes a
novel feature detection method for LIDAR called SKIP-3D. This will describe the
principles behind SKIP-3D, and demonstrate its performance through a series of ex-
periments and comparisons with F-LOAM on several datasets. Finally, Chapter 4
summarizes the contributions of this thesis and presents thoughts for future research
in this area.



2
Organized Point Clouds from Multi-layer LIDAR

In chapter 1 the advantages and the potential applications of multi-layer LIDARs have
been extensively discussed. This sensing technology can guarantee robustness and
accuracy, occupancy information in 3D space, large range and scale measurements
along several directions. However, the acquired ranges are non-uniformly sampled
on all directions, since horizontal angular resolution is higher than the vertical one.
Hence, the resulting point clouds are generally sparse. The point clouds acquired by
multi-layer LIDARs are naturally organized in the form of polar depth map. Each
point is associated to a pair of indices, one corresponding to the elevation angle and
the other to azimuth angle. The organization of range measurements is related to the
physical structure of LIDARs that almost simultaneously fire vertical samples from
the rotating head. The organization of scan point clouds has been implicitly exploited
to efficiently perform operations involving the neighborhood of points. In [92], a
method for extracting features from 3D point clouds that are sparse, noisy, and unor-
ganized. The method is based on a two-stage process: first, a set of robust and stable
keypoints is identified in the point cloud; second, local features are extracted from
the keypoints. However, the exploitation of this polar structure is mostly limited to
heuristic procedures and it has not been formally treated. The main focus of this chap-
ter is on discussing the specific ways in which the organized point cloud structure of
LIDARs can be exploited to improve the search for feature points. The key contribu-
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tions of this chapter includes two ways to exploit the specific organized point cloud
of LIDARs i.e, efficient range and nearest neighbor search. In addition this chapter
also provides place recognition within 3D point cloud maps i.e. ScanContext. The
position and orientation of a LIDAR scan can provide valuable information about the
location and orientation of the scanner within the environment. This information can
be used to improve the accuracy of place recognition by providing additional context
about the spatial layout of the environment. Exploiting the scan context can also help
to improve the robustness of feature extraction, which is an important component of
place recognition. By using the spatial and temporal context of the scans, it may be
possible to extract more stable and reliable features, which can improve the accuracy
of place recognition.

2.1 Indexing Point Cloud Scan

Multi-layer 3D LIDAR caries multiple set of emitters and receivers, the data points
are the measurements of light energy in the shape of pulses fired from the laser
source and a reflected light energy returns to the LIDAR where the measurement
is recorded.The rotational angle of the sensor along its axis is the azimuth ϕ . The
sensor simultaneously register N number of rays with different elevation angles θ

w.r.t the rotation plane. The measurements are recorded in such a way that from each
emitter-receiver pair it belongs to the same ring or layer in a point cloud.

Let i be the ring index and i∈Rθ where the set of indices Rθ = {0,1, . . . ,N−1},
each ring is distinguished by the elevation angle θi. Furthermore, ring elevations are
equally spaced as

θi = ∆θ i+θmin (2.1)

For instance, considering the example of Velodyne VLP-16, θmin =−15 deg, ∆θ = 2 deg
and N = 16. Let j is any azimuth index and j ∈Rϕ = {0, . . . ,w−1}. Any point pi j

of the scan is identified by ring and azimuth indices. The azimuth ϕi j of each point is
defined as

ϕi j = ϕstart +∆ϕ j+ϕring,i (2.2)
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Where ϕstart is the azimuth of pivoted sensor when cloud acquisition begins, ∆ϕ

is the regular resolution, and ϕring,i the angular offsets of each ring. Several Velodyne-
like sensors provides the range measurements grouped in data packets, each including
p× h measurements. A point cloud covering at least a complete azimuth turn is ob-
tained by w = p d 2π

p∆ϕ
e azimuth samples. Thus, due to the packing of measurements,

a cloud usually covers more than an azimuth complete turn, i.e, w is s.t. ∆ϕ w > 2π .
The final part of a point cloud is overlapped (or “wrapped”) with the initial measure-
ments. Such wrapping requires specific treatment, since for some values of elevation
θ and azimuth ϕ there are two values of the indices. Moreover, the initial offset ϕstart

usually changes at each new acquisition, since the first measurement of the new point
cloud is not aligned with the azimuth of the previous cloud. The ring offsets ϕring,i

are set to avoid interference among rays firing simultaneously. In our analysis their
contribution is negligible ϕring,i ' 0. Given the distances ρi j corresponding to each
ray, the Cartesian coordinates of a point are equal to

pi j,x = ρi j cos(θi) cos(ϕi j)

pi j,y = ρi j cos(θi) sin(ϕi j)

pi j,z = ρi j sin(θi)

(2.3)

This equation straightforwardly shows that the indices i and j are directly related to
the point coordinates. Efficient neighbor search could be performed on reduced index
intervals, if there are bounds corresponding to spherical neighborhoods.

2.1.1 Index Bounds

Indexing data structures like kd-trees are often used to efficiently search neighbors in
a point cloud, since this primitive operation is required by several algorithms. How-
ever, the specific organization of scan point clouds described above can be exploited
to avoid external data structures. In particular, our goal is to limit the number of points
to be evaluated using proper bounds on indices i and j corresponding respectively to
elevation and azimuth. Let Dq,r ⊆ R3 be an open ball centered in query point q ∈ R3

with radius r > 0, s.t. pi j ∈ Dq,r if ‖pi j−q‖ < r. Let ρ̂ , θ̂ and ϕ̂ be the polar coor-
dinates of q, and (î, ĵ) the corresponding indices defined according to eq. (2.1)-(2.2).
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A point pi j of the point cloud C belongs to Dq,r if

r2 > ‖pi j−q‖2 = ρ
2
i j + ρ̂

2−2ρi jρ̂ cosαi j (2.4)

where αi j is the angle between vectors pi j and q. The cosine of αi j can be written
w.r.t. azimuths and elevations using spherical cosine law

cosαi j = cosθi j cos θ̂ cos(ϕi j− ϕ̂)+ sinθi j sin θ̂ (2.5)

Under the hypotheses ρi j, ρ̂ > 0, inequality (2.4) can be expressed w.r.t. cosαi j.
Moreover, cosαi j has maximum value 1 and, if also ρ̂ > r, another minimum bound
can be found as

0 6

√
ρ̂2− r2

ρ̂
6

ρ2
i j + ρ̂2− r2

2ρi jρ̂
< cosαi j 6 1 (2.6)

This condition enables to bound values of ρi j and αi j for the points pi j ∈Dq,r as

|ρi j− ρ̂|< r, |αi j|< ᾱi j = arccos

(√
ρ̂2− r2

ρ̂

)
(2.7)

Angle ᾱi j can also be computed as arcsin(r/ρ̂), which is equivalent to the above
expression. The condition on αi j can be used to find bounds on both θi j and φi j.
Since azimuth angles θi j and θ̂ belongs to interval

[
−π

2 ,
π

2

]
and the corresponding

cosines are positive, the inequalities (2.7) and (2.5) imply that

cos ᾱi j < cos
(
θi j− θ̂

)
(2.8)

Thus, the elevation angles in the set are |θi j − θ̂ | < ᾱi j. Under the hypothesis that
θi j, θ̂ 6=±π/2, ϕi j can be bound as

cos(ϕi j− ϕ̂)>
cos ᾱi j− sinθi j sin θ̂

cosθi j cos θ̂
>

cos ᾱi j

cos θ̂
(2.9)

The inequality (2.9) implies that

∣∣ϕi j− ϕ̂
∣∣< βi j = arccos

(√
ρ̂2− r2

ρ̂ cos θ̂

)
(2.10)
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Thus, the corresponding bounds on the elevation and azimuth indices are given by

|i− î|<
ᾱi j−θmin

∆θ
| j− ĵ|<

β̄i j−ϕstart

∆ϕ
(2.11)

These bounds on indices can be used to reduce the candidate points in the neighbor-
hood of query point as shown in the next section.

2.2 Radius and K-Nearest Neighbor Search

The index interval bounds derived before can be used to perform efficient neigh-
bor search. There are two main kinds of search: radius range search and k-nearest
neighbor search. The goal of radius range search is to find all the points distant from
a query point q less than a given radius r. An efficient procedure is obtained from
straightforward application of bounds on indices (2.11). The Algorithm 1 illustrates
the algorithm SearchWithinRadius. At line 6 it checks whether the condition
r < ρ̄ , necessary for the index bounds, holds. If this is the case, the search is limited
to a rectangular interval. Otherwise, it is equivalent to a brute-force search.

The k-nearest search is more articulated as shown in Algorithm 2. The critical
point is the choice of an anchor point a angularly close to the query point (lines 3-7).
The anchor point is used to limit the search of nearest points to a range search with
radius ‖a−q‖ around query point q. The idea is that, if there are no closer point than
a in this range, it is guaranteed that no closer point to q exists. To extend the same
reasoning to k > 1 points, the priority queue Qq is used. In particular, if the queue
already contains k items, other candidate points are compared with top(Qq), i.e, the
farthest point from q in the queue. The search domain Dcurr is expanded until there
are no other candidates and avoiding previously visited (in D prev).

The Pioneer 3DX robot equipped with the Velodyne VLP-16 sensor has been
teleoperated to collect a dataset of LIDAR point clouds. In particular, a point cloud
have been collected from the LIDAR sensor every time the robot travels about 0.50 m.
During the teleoperation the operator and other moving people have been captured in
the measurements. The acquired dataset consists of 384 scan clouds, each containing
29184 points (including the invalid measurements) organized into 16×1824 matrix.
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Algorithm 1 SearchWithinRadius (C , q, r)
Require: C : the input point cloud organized in w×h items;

1: ∆θ ,∆ϕ: elevation;
2: q: the query point;
3: r: the radius of spherical search domain;

Ensure: Q: the set of points in Dq,r;
4: Q← /0;
5: find indices of query point q: (î, ĵ);
6: if ρ̂ > r then
7: ∆i← (ᾱi j−θmin)/∆θ ; (see ineq. (2.11))
8: ∆ j← (ᾱi j−ϕmin)/∆ϕ; (see ineq. (2.11))
9: imin←max{0, î−∆i}, imax←min{h−1, î+∆i};

10: jmin←max{0, ĵ−∆ j}, jmax←min{w−1, ĵ+∆ j};
11: else
12: imin← 0, imax← h−1;
13: jmin← 0, jmax← w−1;
14: end if
15: for i← imin to imax do
16: for j← jmin to jmax do
17: if ‖pi j−q‖< b then
18: Q←Q∪{pi j};
19: end if
20: end for
21: visit wrapped parts, if any;
22: end for

The first set of experiments have been performed on a subset of 20 point clouds
acquired consecutively in order to assess the efficiency of the proposed searching al-
gorithms, SearchWithinRadius and SearchKNearest. Our approach, henceafter
referred as Lidar, has been compared with Brute-force search and the methods pro-
vided by Flann [93], a mainstream library for efficent approximate search based on
kd-tree. For each point q of cloud Ci both radius range and k-nearest searches have
been performed on the previous cloud Ci−1 (the travelled distance between the two
clouds is about 0.50 m). During the different tests the radius r and the number k of
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Algorithm 2 SearchKNearest (C , q, k)
Require: C : the input point cloud organized in w×h items;

1: q: the query point;
2: k: the number of neighbors to be found (if exist);

Ensure: Qq: the priority queue sorted with decreasing distance from q;
3: find indices of query point q: (î, ĵ);
4: if (î < 0 or î > h) or ( ĵ < 0 or ĵ > w) then
5: saturate î or ĵ s.t. inside domain;
6: end if
7: find anchor point a with indices (î, ĵ);
8: D prev← /0;
9: Dcurr← searchWithinRadius(C ,q,‖a−q‖);

10: if |Dcurr|< k then
11: expand Dcurr s.t. Dcurr contains at least k items;
12: end if
13: push a in Qq;
14: while Dcurr \D prev 6= /0 do
15: for all p ∈Dcurr \D prev do
16: if |Qq|< k then
17: push p in Qq;
18: else if ‖p−q‖< ‖top(Qq)−q‖ then
19: pop Qq and push p in Qq;
20: end if
21: end for
22: visit wrapped parts, if any
23: a← top(Qq);
24: new anchor
25: D prev←Dcurr;
26: Dcurr← searchWithinRadius(C ,q,‖a−q‖);
27: if |Dcurr \D prev|< k−|Qq| then
28: expand Dcurr s.t. Dcurr contains at least k−|Qq| items;
29: end if
30: end while
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Figure 2.1: Average times of radius search performed using different methods: Lidar, Flann
and Brute-force for different values of radius search.

nearest neighbors to find are varied. The times required for the two procedures are
shown respectively in Figures 2.1 and 2.2. It can be observed that the execution time
of Lidar is rather sensitive to the radius and for short distances it performs search
more efficiently than Flann. The k-nearest search is less sensitive to the number of
neighbors to be found, since it is essentially a spherical neighborhood search with
radius equal to the candidate nearests and the candidate are found approximately at
the same distance.

The proposed searching procedures are derived from bounds on the angular val-
ues intersecting a given spherical neighborhood. The points of the cloud in the neigh-
borhood and the k-nearest of a query point are efficiently found by limiting the inter-
val of the indices. The second contribution is the proposal a feature detector for the
identification of high-curvature interest points presented in chapter 3. Also the fea-
ture extraction algorithm exploits the organization of the LIDAR measurements. The
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Figure 2.2: Average times of radius search performed using different methods: Lidar, Flann
and Brute-force for different number of neighbors k.

proposed procedure operates according to the induced row-wise order of points to
select and score the cornerness of each point. Experiments on datasets have assessed
the efficiency of the proposed algorithms and the stability of the detected point of
interests.

2.3 Place Recognition with Multi-layer Lidar

Place recognition with 3D LIDAR involves using a 3D LIDAR sensor to scan the
environment and identify specific places or locations. This can be useful in a vari-
ety of applications, including autonomous vehicle navigation, building and facility
management, and virtual reality. Place recognition with 3D LIDAR can be used to
reduce drift in an autonomous system, such as an autonomous vehicle, by provid-
ing a means of accurately determining the location of the system in the environment.
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Drift refers to the accumulation of errors in the system’s position and orientation over
time, which can result in the system becoming misaligned with its surroundings. By
using 3D LIDAR to scan the environment and compare the resulting point cloud to
a database of known locations, the system can determine its position and orientation
with a high degree of accuracy. This can help to reduce drift by providing a more ac-
curate estimate of the system’s position and orientation, which can be used to correct
for any errors that may have accumulated over time. However, that place recogni-
tion with 3D LIDAR is not a complete solution to drift. Other factors, such as sensor
noise and errors, can also contribute to drift, and it may be necessary to use additional
techniques, such as inertial measurement units (IMUs) or odometry, to further reduce
drift.

Techniques for place recognition with 3D LIDAR include using visual features
such as texture, color, or shape, or using machine learning algorithms to classify the
scanned point clouds. Not only outdoor but the case of indoor place recognition with
3D LIDAR involves using a 3D LIDAR sensor to scan the interior of a building or fa-
cility and identify specific locations or places within the structure. This can be useful
for a variety of applications, such as facility management, indoor navigation, and vir-
tual reality. Some of the solutions for place recognition with 3D LIDAR, including:

• Database comparison: One common approach to place recognition with 3D LI-
DAR is to use a database of pre-scanned 3D LIDAR point clouds for compari-
son. The point cloud captured by the LIDAR sensor in the current environment
is compared to the point clouds in the database, and the location is identified
based on the closest match.

• Visual features: Another approach is to use visual features such as texture,
color, or shape to identify specific locations. These features can be extracted
from the 3D point cloud and used to classify the scanned data.

• Machine learning: Machine learning algorithms can be used to classify the 3D
point clouds and identify specific locations. This can be effective, particularly
when combined with other techniques such as database comparison or visual
feature extraction.
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• Fusion of multiple sensors: Place recognition with 3D LIDAR can be improved
by using multiple sensors, such as cameras or IMUs, to provide additional data
about the environment. This data can be fused with the 3D LIDAR data to
improve the accuracy and robustness of the place recognition system.

It is important to carefully evaluate any place recognition system using 3D LIDAR
data to ensure that it is accurate and robust enough for the intended application.

Place recognition with 3D LIDAR can be challenging due to the complexity of
the 3D data, the variability of the environment, and the need for robust algorithms
to handle noise and errors in the data. Therefore, it is important to carefully design
and evaluate any place recognition system using 3D LIDAR data. There are several
challenges involved in place recognition with 3D LIDAR, including:

• Complexity of 3D data: 3D LIDAR sensors capture a large amount of data in
the form of a point cloud, which can be difficult to process and analyze.

• Variability of the environment: The appearance of a location can change sig-
nificantly over time due to various factors such as lighting conditions, weather,
and the presence or absence of objects or people.

• Noise and errors in the data: LIDAR sensors can be affected by noise and errors
due to various factors such as reflections, occlusions, and hardware limitations.

• Lack of standardization: There is no standard format for storing and sharing 3D
LIDAR point clouds, making it difficult to compare data from different sensors
or systems.

To address these challenges, it is important to carefully design and evaluate any place
recognition system using 3D LIDAR data. This may involve using techniques such
as data filtering and noise reduction, using machine learning algorithms to classify
the data, or developing robust algorithms to handle the complexity and variability of
the 3D data.

There has been a significant amount of research on place recognition using LI-
DAR sensors. Here are a few examples of research papers that address place recog-
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nition using LIDAR data. Place recognition is a crucial problem in robotics that in-
volves identifying the location of a robot based on sensory data. This capability is
essential for the robot to navigate and complete tasks. Additionally, place recogni-
tion can be used in simultaneous localization and mapping (SLAM) [94], [95] [96]
systems to detect when a robot has returned to a previously visited location, which is
known as loop closure. This allows the robot to correct errors in its estimated pose
and improve the accuracy of its map. In large-scale environments, long-term simulta-
neous localization and mapping (SLAM) can suffer from error accumulation, which
leads to inconsistencies in the mapping results. To address this issue, the use of a
place recognition method to detect loop closures can be helpful. Loop closure de-
tection is the process of identifying when a robot has returned to a location it has
previously visited, and it is essential for eliminating accumulated errors in the SLAM
process.

As computer vision technology has advanced in recent years, image-based place
recognition has become a highly effective method for identifying locations. [97], [98],
[99], [100]. While image-based place recognition can be effective in many situations,
it can be challenged by changes in illumination and camera viewpoint. This can make
it difficult to use in challenging environments such as low light conditions. On the
other hand, 3D LIDAR sensors can directly capture geometric information about the
environment with high precision, and are less sensitive to changes in illumination.
They also have a wider field of view compared to cameras. As a result, there has been
a significant amount of research on using 3D LIDAR [101], [102], [103], [104] for
place recognition in various environments.

2.3.1 Scan Context

Inspired by the method Scan Context [105], the aim is to develop a method for place
recognition using multi-layer LIDAR. In this work, they introduced a new approach
for representing the location of a 3D scan using a matrix-based place descriptor called
Scan Context. This method builds upon the Shape Context technique [106] and is
specifically designed for use with 3D LIDAR scan data in place recognition tasks.
In urban areas, it is common for vehicles to make frequent revisits and lane changes
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due to the high traffic and busy nature of the environment or a robot moving in an
industrial setup. This can be a challenge for robots, as they need to be able to navigate
the complex and dynamic traffic patterns in these areas in order to operate safely
and efficiently. Scan Context is a place descriptor that has been proposed for use in
outdoor place recognition tasks. It is designed to encode a point cloud of a 3D scan
into a matrix, which can be used to represent the location of the scan. This method for
encoding the shape of a point cloud into an image differs from previous approaches in
that it uses the maximum height of points in each bin, rather than simply counting the
number of points. This allows us to more accurately capture the geometrical shape of
the point cloud around a local keypoint.

To begin the process of encoding a 3D scan into an image using this method, first
divide the scan into equally spaced bins in the sensor coordinate system. These bins
are separated in the azimuthal and radial dimensions. This allows us to evenly sample
the 3D scan and capture its shape in a more detailed and accurate manner. A 3D scan
using an image-based descriptor is based on the concept of a global keypoint, which
is located at the center of the scan. Because the descriptor is centered on this keypoint,
we refer to it as an egocentric place descriptor. This means that it encodes the shape
of the point cloud relative to the position of the keypoint, rather than using a fixed
reference frame. The scan is divided into a number of sectors Ri and rings RJ . These
divisions allow us to evenly sample the point cloud and capture its shape in a detailed
and accurate manner. The specific number of sectors and rings used will depend on
the characteristics of the scan and the desired level of detail in the resulting descriptor.
divide the scan into a grid of bins, each of which represents a specific region of the
point cloud. The points belonging to a particular bin Pi j are those that fall within the
region where the ith ring and jth sector overlap.

The Scan Context procedure takes two inputs: a point cloud P and a map M as in
Algorithm 3. The point cloud P is a set of 3D points, and the map M is a set of scans,
each of which is a subset of points from the point cloud. The procedure returns a list
F of features for the comparison between all scans in the map. The Scan Context
procedure first initializes an empty list Lp to store local features for each point, and
an empty list Ls to store scan context features for each scan. It then iterates through
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Algorithm 3 Scan Context for Place Recognition
1: function SCAN CONTEXT(P,M )
2: // Initialize empty list to store comparison features

3: F ← empty list
4: // Initialize empty list to store local features for each point

5: Lp← empty list
6: // Initialize empty list to store scan context features for each scan

7: Ls← empty list
8: // Compute local features for each point

9: for each point p ∈ P do
10: lp← COMPUTELOCALFEATURES(p)
11: // Append local features to list

12: Lp.append(lp)

13: end for
14: // Compute scan context for each scan

15: for each scan s ∈M do
16: ls← COMPUTESCANCONTEXT(s,Lp)
17: Ls.append(ls)
18: end for
19: // Compare each scan to all other scans in the map

20: for each scan s ∈M do
21: f ← COMPARESCANS(s,Ls)
22: F .append( f )
23: end for
24: return F

25: end function

each point p in the point cloud P , and calls the computeLocalFeatures()
procedure (Algorithm 4) to compute the local features for that point. The local fea-
tures may include, for example, the normal vector of the point, the range (distance
from the origin) of the point, and the angle between the point and its normal vector.
The local features are appended to the list Lp. Next, the Scan Context procedure iter-
ates through each scan s in the map M , and calls the computeScanContext()
procedure to compute the scan context for that scan. The scan context may include,
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Algorithm 4 Scan Context subroutines
1: function COMPUTELOCALFEATURES(p)
2: // Initialize empty list to store local features for point

3: lp← empty list
4: n← COMPUTENORMAL(p)
5: // Compute range (distance from origin) for point

6: r← COMPUTERANGE(p)
7: a← COMPUTEANGLE(p,n)
8: lp.append(n)
9: lp.append(r)

10: lp.append(a)
11: return lp

12: end function
13: function COMPUTESCANCONTEXT(s,Lp)
14: // Initialize empty list to store scan context features

15: ls← empty list
16: c← COMPUTECENTROID(s)
17: ls.append(c)
18: // Append all local features for points in scan to list

19: for each local feature lp ∈ Lp do
20: ls.append(lp)

21: end for
22: return ls
23: end function

for example, the centroid (center) of the scan, the local features of all points in the
scan, and a histogram of the local features. The scan context features are appended
to the list Ls. Finally, the Scan Context procedure iterates through each scan s in
the map M again, and calls the compare scans procedure to compare the scan to
all other scans in the map. The comparison features may include, for example, the
distance between the scans. The comparison features are appended to the list F .The
computeLocalFeatures() procedure takes a point p as input, and returns a
list lp of local features for that point. It first initializes an empty list lp. It then com-
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putes the normal vector n of the point using the computeNormal() function, the
range r of the point using the computeRange() function, and the angle a be-
tween the point and its normal vector using the computeAngle() function. It
appends the normal vector, range, and angle to the list lp, and returns the list. The
computeScanContext() procedure takes a scan s and a list Lp of local fea-
tures for each point in the scan as input, and returns a list ls of scan context features
for the scan. It first initializes an empty list ls. It then computes the centroid c of
the scan using the computeCentroid() function, and appends the centroid to
the list ls. It then iterates through each local feature lp in the list Lp and appends
it to the list ls. Finally, it computes a histogram h of the local features using the
computeHistogram() function.

2.4 Discussion

In this chapter, we have discussed algorithms for efficiently finding points and neigh-
bors within a LIDAR point cloud that is organized in a specific way. These algorithms
are designed to work effectively with point clouds that are sparse and organized, and
they take advantage of the angular values and indices of the points in the cloud to
perform efficient searches. One key aspect of the proposed algorithms is the use of
bounds on the angular values intersecting a given spherical neighborhood. By lim-
iting the interval of the indices within this neighborhood, it is possible to efficiently
locate points within the neighborhood and find the k-nearest points to a query point.
These algorithms have been designed specifically for use with LIDAR point clouds,
and they have the potential to significantly improve the efficiency of tasks such as
feature extraction and localization when applied to these types of point clouds. Over-
all, the algorithms presented in this chapter provide a useful tool for working with
organized and sparse LIDAR point clouds.

In this chapter, we have also discussed the potential of using scan context in place
recognition tasks involving 3D point cloud maps. One of the main contributions of
this chapter is the suggestion that scan context can improve the efficiency and ro-
bustness of place recognition. Specifically, using scan context can help to reduce
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the number of false positive matches, which can improve the efficiency of the place
recognition process by reducing the need for additional computations. In addition,
scan context can provide valuable temporal information about the dynamics of the
environment, which can be used to match scans that were collected at different times,
even if the environment has changed significantly between those scans. This can im-
prove the robustness of place recognition to changes in the environment, making it
more resistant to errors due to changes in lighting, moving objects, or other factors.

There are still many open questions and challenges related to the use of scan
context for place recognition, such as how to effectively incorporate this information
into place recognition algorithms, and how to handle scenarios where the scan context
is noisy or incomplete. However, the results of the studies presented in this chapter
suggest that scan context has the potential to be a powerful tool for improving the
accuracy and robustness of place recognition in 3D point cloud maps.

Future research in this area could focus on developing more advanced algorithms
for incorporating scan context into place recognition, as well as exploring new ap-
plications and scenarios in which scan context could be useful. Overall, the use of
scan context as an egocentric spatial descriptor for place recognition within 3D point
cloud maps represents a promising direction for future research and development.





3
Novel Geometric Features for Multi-layer LIDAR

3.1 LIDAR Features: Curvature-based Keypoints and SKIP

The main contribution of this thesis lies in the SKIP-3D features extracted from the
point clouds acquired through 3D LIDARs. Multi-layer LIDARs acquire range mea-
surements by almost simultaneously firing laser beams at different vertical angles,
while the sensor head rotates on its axis. The vertical angle of each beam is usually
referred to as altitude, whereas the horizontal angle of the head is the azimuth. The
altitude resolution is fixed so that the sampling resolution and the FoV are rather
limited (usually about 1◦− 2◦ and 30◦− 50◦ respectively). Conversely, the azimuth
resolution is higher and the FoV covers completely the whole 360◦ turn angle. Thus,
the point clouds acquired by 3D LIDARs are sparse and organized in vertical layers.
This means that their points are organized in a matrix-like structure. In particular,
the rows of said matrix, vertically covering the FoV of the sensor, are called rings.
Thus, the point cloud collected by a 3D LIDAR is partitioned into layers that can be
processed independently.

This structure of LIDAR data strongly influences the feature algorithms proposed
to detect salient regions in sensor data. The underlying assumption is that the points of
a layer are samples of a continuous curve. Inside each layer the points are sufficiently
dense for shape description and, moreover, can be radially sorted. If the point cloud



48 Chapter 3. Novel Geometric Features for Multi-layer LIDAR

is properly sorted and all the measurements including the invalid ones are kept, then
the partitioning into layers is implicit.

F-LOAM exploits layer-based processing to detect points in high curvature and in
flat regions, which are called respectively edges and surfaces. The former are found
by thresholding a smoothness parameter computed on a sliding window interval of
2 w+1 beams (with fixed w = 5). Let P = {pi}i=0,...,nl−1 be the points of one layer
(the layer index is omitted for simplicity). The smoothness of a point pi is defined as

σi =
1

2w

w

∑
j=−w
‖pi+ j−pi‖ (3.1)

The classification of points according to their σi is performed on section of nl/6
consecutive measurements. The points with σi greater than a threshold (set to 0.1)
are marked, but only the first 20 with largest curvature in the sector are labeled as
edges. The unmarked points are classified as surfaces. Although such features are not
used to directly build feature-based maps, this simple criterion enables classification
of points that is effectively exploited by the registration algorithm in point-to-point
association, depending on the label.

This smoothness parameter used to discriminate features has several disadvan-
tages. First, its value depends only on the relative distance between the point and its
neighbors without taking into account the global shape of the layer. Second, it over-
looks that high value of σi may be caused by occlusions or other sensor limitations
rather than high curvature. Occlusion produces discontinuity in range values or gaps
that violate the implicit assumption that points are sampled from a continuous curve.

3.2 Edge and Planar Feature Point Extraction

The proposed SKIP-3D algorithm [107] addresses these issues. SKIP-3D algorithm
exploits the multi-layer structure to extract interest point. SKIP operates on layers and
searches for salient points, but it implements additional criteria. First, the sequence
of points in a layer are split in correspondence to gaps which are due to occlusion or
in a region of strong discontinuity and limitation of the FoV. The splitting criterion
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Algorithm 5 Removal of gaps in a point cloud ring
1: function REMOVEGAP(R = {pi}i=1...n, qgap, mgap)
2: Q← /0
3: i f irst ←−1, ilast ←−1
4: for pi ∈ 1 . . .n do
5: if pi = nan then
6: continue
7: end if
8: prev(i)← ilast

9: if 0 6 ilast 6 n then
10: next(ilast)← i
11: rcurr←‖pi‖, rlast ←‖pilast‖
12: rmid ← (rcurr + rlast)/2
13: if |rcurr− rlast |< qgap +mgap rmid then
14: score(pilast )← dist(pprev(ilast ),pilast ,pi)

15: Q← push(Q,pilast )

16: else
17: G ← G ∪{pilast}
18: end if
19: else
20: i f irst ← i
21: end if
22: ilast ← i
23: end for
24: if 0 6 ilast , i f irst 6 n then
25: prev(i f irst)← ilast

26: next(ilast)← i f irst

27: rcurr←‖pilast‖, rlast ←‖pi f irst‖
28: if |rcurr− rlast |< qgap +mgap rmid then
29: score(pilast )← dist(pprev(ilast ),pilast ,pi f irst )

30: Q← push(Q,pilast )

31: else
32: G ← G ∪{pilast}
33: end if
34: end if
35: return priority queue Q, gap points G

36: end function
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Algorithm 6 Detection of SKIP-3D features
1: function DETECTSKIP(R = {pi}i=1...n, dth, qgap, mgap)
2: (Q,G )← RemoveGap(R,(qgap,mgap))

3: while not empty(Q) and score(top(Q)< dth do
4: pi← pop(Q)

5: // Removal of i: scores of its next and prev are changed

6: if changed(pi) then
7: score(pi)← dist(pprev(i),pi,pnext(i))

8: changed(pi)← f alse, Q← push(Q,pi)

9: else
10: next(prev(i))← next(i)
11: prev(next(i))← prev(i)
12: changed(prev(i))← true
13: changed(next(i))← true
14: end if
15: end while
16: // Points still in queue are edges E

17: E ← copy(Q)

18: // Surface points S as flat points between edge or gap points

19: U ← E ∪G

20: sort U by point index
21: for pi j ∈U do
22: define segment pi j pi j+1

23: for k = i j +1 . . . i j+1−1 do
24: if dist(pk,pi j pi j+1)< sth then S ←S ∪{pk}
25: end if
26: end for
27: end for
28: return edges E , surfaces S

29: end function
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is rather simple and based on a threshold of difference between consecutive ranges.
The threshold increases with the magnitude of ranges to adapt its value.

The salient points are obtained through bottom-up simplification of the polyline
according to the procedure inspired by [108]. The input data consists of a single laser
scan with field-of-view of 360 deg represented as a curve connecting adjacent points.
Each point pi, except for invalid ranges or gap points, has a previous and next point,
respectively ppi and pni , according to the radial order holding in each LIDAR layer.
The procedure to split the ring into intervals at gap points is illustrated by Algo-
rithm 5. The exceptions are the gap points, i.e points in strong range discontinuities
due to occlusion and limitation of the FoV. A layer is not represented by a closed
curve and the points laying on the gaps are removed from the list of potential points.
The saliency of a measurement/point is given by a score. The cornerness score of
each point is defined as

κi = ‖pni−pi‖+‖pi−ppi‖−‖pni−ppi‖ (3.2)

This score increases with the sharpness and saliency of points. SKIP points are esti-
mated by iteratively removing the points with lowest values of cornerness κi in order
to further refine and obtain more meaningful measurements. Every time a point pi is
removed from a particular ring, its previous and next points ppi and pni respectively
changes. At this stage the score is re-calculated in order to put back the consecu-
tive points in relation. The cornerness values evolve during the procedure and are
less and less dependent from local neighborhood. Thus, the remaining points at the
end of the procedure provide a faithful representation of global shape. Lines 3-15
of Algorithm 6 illustrates the procedure for computation of SKIP points from the
ring intervals previously computed. The procedure extracts intervals from a priority
queue according to cornerness score. The main data structure is the priority queue Q

containing the points pi ordered by increasing score.
The edge points correspond to the SKIP points computed as described above. The

points pi are classified as surface if the following conditions hold:

1. the radial index i of pi belongs to an interval f 6 i 6 l where p f ,pl are either
edge points or gaps;
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Figure 3.1: SKIP based feature points. The left side shows planar feature point and on the
right edge feature is shown

2. the distance between pi and segment p f pl is less than a threshold sth;

3. the number of points pi satisfying the previous conditions on interval [ f , l] is
greater than a threshold snum.

This very concept of edge and planar feature extraction handles point cloud data
which contain limited number of feature points with most of the required information
instead of considering a whole point cloud and thus reduce the computation load. This
idea is explained below with the help of Figure 3.1.

Lets consider the simplified expression of smoothness c of point pi on a single
scan ring as below

c = ∑
p jP, j 6=i

‖pi−p j‖ (3.3)

Where P = {p j} j=0,...,nl−1 a collection of j points and pi is current point in a layer.
After calculating the score value for each point the points are sorted with regards to
c value. An Edge point is chosen with the highest value of c and planar points with
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lower c value. In order to find a smooth or planar surface Pp formed by three planar
points on two nearest single scan ring like Pp = {Pp1 ,Pp2 ,Pp3}. Among the three
points, along with the surface normal one of the point is refereed as a planar feature.
The edge feature Pe can be extracted by considering two nearest edge points on two
close by rings for example Pe = {Pe1 ,Pe2}. This process is repeated for all scan rings
to collect features.

In summary, surface patches consist of a sufficiently numerous sequence of smooth
(aligned) points between two salient points. The classification achieved by F-LOAM
original features and SKIP is homogeneous, but the criteria to compute edges and
surfaces are significantly different.

3.3 LIDAR Odometry and Mapping

Zhang [74] proposed a real-time solution to LOAM by using LIDAR odometry to es-
timate velocity at a higher frequency, while the mapping performs fine processing to
create maps at a lower frequency, also using feature matching to ensure fast compu-
tation in the odometry algorithm, and to enforce accuracy in the mapping algorithm.

F-LOAM [77] is presented as an extension of the original LOAM, as it aims to be
a lightweight system for estimation of sensor odometry and mapping, willing to use
faster computational approaches, specifically while compensating the distortion of
previously extracted features. These features can belong to edge or surface sets, ac-
cording to their computed local curvature smoothness. The improvements regarding
computational complexity become particularly interesting when noting that modern
LIDARs can produce point clouds with frequencies close to 20 Hz.

Both LOAM and F-LOAM are used to estimate motion and position of the sensor,
which are then used to estimate mutual poses. They also produce the complete map
through registration, accumulation and refinement of previous LIDAR measurements.
Figure 3.2 shows a diagram illustrating the different steps of F-LOAM, also including
steps that will be analyzed in the following section. The algorithm can be split into
separate blocks. The LIDAR yields a raw point cloud P . The point cloud is then
organized by a property called sweep. A sweep is 360 degrees rotation produces a
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Structured Data
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(local smoothness)
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SKIP-3D gaps
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Figure 3.2: (F-)LOAM algorithm steps, including SKIP-3D addition

Figure 3.3: The pose on the map, T K−1
w (tk), is depicted by the blue curve belonging to the

sweep k− 1. In the same way, the LiDAR motion estimated by the odometry algorithm is
represented with the orange curve, equivalent to an entire sweep k, T K

L (tk+1). Having the
pose on the map T K−1

w (tk), the odometry motion T K
L (tk+1), the undistorted point cloud P̄k can

be published on the map, represented by ρ̄K and the green segments. Finally, this cloud is
matched to the existing cloud from the map, ρK−1 depicted by the black segments. adapted
from [Zhang, J. and Singh, S.] [74].

point cloud. As the Velodyne LIDARs are collection of different independent lasers
(VLP-16, HDL-32, HDL-64), a single scan is collection of points returned by a single
laser. Subsequently, the features belonging to successive 3D scans are compared in
order to find the optimal transform between two consecutive point clouds. This is
the core task of the system and its accuracy depends on stability and number of the
estimated features. The LIDAR Mapping block repeatedly receives data at 1 Hz from
the LIDAR odometry block. This frequency indicates how fast the map is generated.

The mapping process is shown in Figure 3.3. The LIDAR pose on the map is
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characterized by the curve. In comparison to LIDAR odometry module the mapping
module is called once per sweep and runs at a frequency 10 times lower. After a
complete sweep an un-distorted point cloud is generated

3.4 Pose Estimation and Distortion Compensation

This section addresses the estimation of poses between the current LIDAR scan and
the map built accumulating previous scans based on features. LIDAR points are la-
belled as edge or surface features as discussed in the next section. The distortion in
LOAM [74] is corrected from one point cloud to another point cloud by comparing
and estimating the transformation among them. To find the transformation between
successive scans a frequent computation is needed which is not so efficient. In oppo-
sition to LOAM the distortion compensation in F-LOAM is double stage distortion
compensation which enables the algorithm to minimize the computational cost. The
scanning time of 3D LIDARs are very short as they are capable to scan the surround-
ing at higher frequency (10 Hz) resulting often short time between two consecutive
scans. considering constant velocities at the first stage between two scans. Estimate
the motion and correct the distortion. During the second stage after the pose estima-
tion the distortion is re-calculated and the corrected features are added to the final
map. The un-distort features are used for pose estimation. The pose estimation takes
the obtained corrected features after finding the transform between two successive
scans aligns them with global feature map. It is important to minimize the searching
computational cost, for this reason the features map are stored in KD-trees.

For each cluster of neighbor edge points the algorithm computes a covariance
matrix and the edge direction ne is equal to the largest eigenvalue of that covariance
matrix. Each edge point pe is associated to an edge point pg

e with its edge direction
ng

e in the global map (superscript g refers to the reference frame of the global map).
Hence, the distance between edge point pe and its corresponding global map feature
pg

e is defined as
Fe(pe) = p>n · ((Tk pe−pg

e)×ng
e) (3.4)

where Tk is the transformation matrix representing the k-th robot pose with respect
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to the global frame and the unit vector pn is given by

pn =
(Tk pe−pg

e)×ng
e

‖ (Tk pe−pg
e)×ng

e‖
(3.5)

Similarly, each cluster of surface points ps has a covariance matrix and plane norm
ns corresponding to the eigenvector associated to its smallest eigenvalue. The surface
points and plane norm in the global map are labeled respectively as pg

s and ng
s . The

distance between a planar feature ps and its associated map feature pg
s is equal to

Fs(ps) = (Tkps−pg
s )
> ·ng

s (3.6)

The transformation Tk is found by minimizing the sum of the distances of edge and
surface features between the current scan and the global map.

When the transnational or rotational change is greater than already set threshold a
new keyframe is obtained. Each new keyframe is used to update the global map which
consist of edge global map and planar global map. As mentioned in the beginning of
this section the key improvement regarding the computational cost is reduced with
the help of keyframed map rather than comparing frame by frame update.

The motion estimation part of the system is kept less complicated by assuming
that the LIDAR sensor is moving with constant velocity. Transformation matrix is
obtained for the end point of a data frame relative to the start point. Each point in the
data frame can be obtained by time interpolation which allows to estimate the pose
transform for points that are being received at different time. The interpolation can
be found by using the following equation;

TR
( j+1,i) =

ti− t j +1
t− t j +1

TR
j +1 (3.7)

Where the TR
j+1 is the pose transform between T j+1 and t, it also carries the rigid

motion in 6-DOF. A time stamp with a given point is denoted by ti. Since the LIDAR
pose is in continuous motion the interpolation method take into account the current
time t transform.

Hence, the correspondence between points in current data frame and previous
data frame is obtained by equation

XR
( j+1,i) = RX̃R

( j+1,i)+TR
( j+1,i) (3.8)
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R represents rotation matrix and a translation matrix is represented by T. Rotation
matrix is expanded with the help of Rodrigues formula as shown

R = eω̂θ = P+ ω̂ sinθ + ω̂
2(1− cosθ) (3.9)

where, R is the rotation matrix and θ is the magnitude of rotation. The sensor
rotation direction is given by ω , which is a unit vector and ω̂ is the skew symmetric
matrix of ω . Once the rotation matrix is derived, the follow up step is to calculate
the relevant distances. In the data frame distance from any specific point-to-line and
distance from point-to-surface is obtained.

As a complete sweep of 3D LIDAR collects data points in a point cloud and fea-
ture points are extracted from the acquired point cloud. For this reason in equation 3.8
X̃R
( j+1,i)

represent the coordinates of a point P in a collection of feature points (edge
and plane points). In the collection of points X̃R

( j+1,i)
are the re-projected correspond-

ing points to the beginning of a sweep. In the translation part this TR
( j+1,i) corresponds

to the coordinates of feature points.
For optimization a non linear error function is obtained taking into consideration

LIDAR motion and Levenberg Marquardt (LM) method.

f (TR
(l+1)) = d (3.10)

Here, every rows of the function f contains a feature point. Each row in f represents
a feature point, and the Jacobian matrix is calculated as

TR
(l+1)→ TR

(l+1)− (JT J+λdiag(JT J)−1JT d) (3.11)

where, J is the jacobian matrix and can be calculated as J = ∂ f
∂T R

j+1
and λ is LM

factor adjusted at each iteration.

3.5 Experiments

The experiments presented in this section has been designed to assess the perfor-
mance of the registration algorithm with the proposed features. Tests have been per-
formed on both datasets either indoor or outdoor.
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Figure 3.4: Environment where the indoor dataset DIA used in the experiments have been
obtained.

The indoor dataset UNIPR-DIA has been acquired by the authors in the main
hallway of the Dipartimento di Ingegneria e Architettura of the University of Parma,
which consists of a long corridor with branches and tables (see Figure 3.4).
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Figure 3.5: Pioneer 3DX robot equipped with the Velodyne VLP-16.

The Pioneer 3DX robot equipped with the Velodyne VLP-16 sensor can be seen
in Figure 3.5 has been teleoperated and collected a dataset of consecutive LIDAR
point clouds. During the teleoperation the operator and other moving people have
been captured in the measurements.
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Figure 3.6: Point Cloud obtained with Pioneer 3DX robot equipped with Velodyne VLP-16.

The acquired dataset consists of 384 scan clouds, each containing 29184 points
(including the invalid measurements) organized into 16× 1824 matrix. Figure 3.6
shows a single scan of VLP-16 (sixteen layers) collected with Pioneer 3DX.

KITTI dataset [109], along with several other datasets that will be mentioned,
have been utilized for testing in outdoor settings. We only used the data collected by
Velodyne HDL-64, a multi-layer LIDAR with 64 layers. The dataset also provides
accurate groundtruth. Henceafter, the F-LOAM algorithm using its original feature
extractor will be referred to as orig algorithm and the F-LOAM algorithm using the
SKIP feature extractor as skip. The experiments have used the implementation of
F-LOAM provided by the authors* and the implementation of SKIP-3D feature de-
tector.

*https://github.com/wh200720041/floam.

https://github.com/wh200720041/floam
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3.5.1 Indoor datasets

(a)

(b)

(c)

Figure 3.7: Overview of F-LOAM with SKIP-3D features: (a) Yellow points represents an
example of SKIP-3D edge points; (b) example of SKIP-3D surface points shown with green
points; (c) the complete map of indoor DIA dataset estimated using F-LOAM and SKIP-3D.
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These experiments qualitatively compare the trajectory obtained with orig and skip
in indoor environments, where we expect to achieve effective registration due to reg-
ularity of building structures. Figures 3.7(a) and 3.7(b) show example of respectively
SKIP-3D edge and surface points obtained in UNIPR-DIA. Edges are often detected
on pillar borders or other sharp structures whereas surfaces lies on concrete and glass
walls. The complete map of UNIPR-DIA obtained with algorithm skip is displayed
in Figure 3.7(c).
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Figure 3.8: Estimated trajectories obtained with F-LOAM original and FLOAM-SKIP are
plotted in red and green color respectively

There is no groundtruth to compare the path estimated by orig and skip, but the
two outcomes can be qualitatively compared as shown in Figure 3.8. The paths of
orig (red line) and skip (green line) largely overlap and are almost indistinguishable.
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3.5.2 Outdoor datasets

The performance of F-LOAM with orig and skip has also been assessed on several
outdoor datasets.

1. KITTI is a benchmark largely used by robotic and computer vision commu-
nity. We selected the sequences 01, 02, 05 and 07 and used only the data related
to point clouds acquired by the LIDAR sensor. The point clouds have been pub-
lished with rate 10 Hz comparable to the acquisition rate to simulate the online
execution of simultaneous odometry and mapping tasks. KITTI dataset also
provide the groundtruth of the trajectories.

2. ICSENS. The i.c.sens Visual-Inertial-LIDAR [110] † is provided by a group
from the University of Hannover. It has been acquired using Velodyne HDL-
64 LIDAR (64 layers, vertical resolution 0.5◦) at 10 Hz rate. The sensor is
mounted on a car vehicle with axis x facing forward driving direction, axis y
toward left and axis z upward. The eight sequences labeled as ICENS-01/08
are the result of a 15 minutes drive.

3. ITU. The ITU dataset [111] ‡ provided by Istanbul Technical University is
collected using a Husky A200 mobile robot equipped with a Velodyne VLP-16
Puck (16 layers, vertical resolution 2◦). The ground vehicle traveled in between
trees about 174 meters to record the data. We used the first 3 sequences.

4. STEVENS. The Stevens-VLP16 dataset [76] provided by Stenvens Institute of
Technology is collected using a Clearpath Jackal robot equipped with a Velo-
dyne VLP-16 Puck. The robot has been manually guided on a setting consisting
of buildings, trees, roads and sidewalks. We used 3 sequences acquired on June
15th 2017 §.

As for indoor datasets, we compared F-LOAM orig and skip in two consecutive trials
for each sequence.
†https://data.uni-hannover.de/dataset/i-c-sens-visual-inertial-LIDAR-dataset
‡https://doi.org/10.25835/0026408
§https://tinyurl.com/2p87t9w2

https://data.uni-hannover.de/dataset/i-c-sens-visual-inertial-LIDAR-dataset
https://doi.org/10.25835/0026408
https://tinyurl.com/2p87t9w2
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Figure 3.9: Robot trajectories estimated using F-LOAM with Original (red), SKIP features
(green) and Groundtruth (blue) for the following KITTI sequences: (a) KITTI-01, (b) KITTI-
02, (c) KITTI-05 and (d) KITTI-07. The distances are measured in meters.

KITTI dataset is distributed with the information about groundtruth and allows
more significant comparison. The paths obtained on KITTI sequences are illustrated
in Figure 3.9. In particular, each subfigure displays the path estimated with orig (red
line) and skip (green line) as well as the groundtruth (blue line), which is provided
with KITTI dataset. In these experiments, the robot travels longer paths (magnitude
order of unit kilometers) than indoor datasets and F-LOAM only estimates using reg-
istration without loop closure. A slight rotation error at some point of the trajectory
results in irretrievable propagation of the error to all the next poses. Hence, the drift
among orig, skip and groundtruth can be readily observed in the latter segments of
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each path, but they are still rather consistent for most part of the robot path. In se-
quence 07 (Figure 3.9(d)) the path estimated with orig prematurely interrupted.

Dataset F-LOAM orig F-LOAM skip
ATE [%] ARE [10−2◦/m] ATE [%] ARE [10−2◦/m]

KITTI-01 2.58 0.67 2.34 0.59
KITTI-02 8.56 4.11 5.12 1.97
KITTI-05 9.89 4.11 63.72 27.20
KITTI-07 2.68 1.74 9.99 5.32

Table 3.1: Average Translational Error (ATE) and Average Rotational Error (ARE) obtained
by F-LOAM with features orig and skip on the given sequences of KITTI dataset.

Table 3.1 reports the ATE (average transnational error) and ARE (average rota-
tional error) [77] obtained from orig and skip. The groundtruth and estimated paths
are aligned according to the travelled distance from initial frame instead of the un-
available sampling time. ATE and ARE are computed on path slices of lengths 100,200, . . . ,800 m
sampled with steps of 10 m. We observe that ATE and ARE are singificantly smaller
with skip than with orig. The only exception refers to sequence 05. We have inves-
tigated the reasons for such large ATE and ARE, which seem inconsistent with the
paths in Figure 3.9(c). It appears that the reason for potential deviation is the im-
proper alignment of sub-paths based on distances (path slices), but further analysis is
required.
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(a) (b)

Figure 3.10: Complete maps of (a) ICSENS-01 and (b) ICSENS-02 datasets estimated using
F-LOAM and SKIP-3D

The tests on datasets ICSENS, ITU and STEVENS further confirmed the perfor-
mance of SKIP-3D over the original features. Figure 3.10(a)-(b) displays the maps
in the form of point clouds obtained with F-LOAM + SKIP-3D respectively from
datasets ICSENS-01 and ICSENS-02. We have computed the paths estimated by F-
LOAM with either its original features (hence labelled as orig and plotted in red
color) and the proposed SKIP-3D (hence labelled as skip and plotted in green color).
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Figure 3.11: Robot trajectories estimated using F-LOAM with Original (red), SKIP features
(green) for the following i.c.sens Visual-Inertial-LIDAR Dataset sequences: (a) icsens-01,
(b) icsens-02, (c) icsens-03 and (d) icsens-04 (e) icsens-05 (f) icsens-06 (g) icsens-07 (h)
icsens-08. Distances are measured in meters.
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Figure 3.12: Robot trajectories estimated using F-LOAM with Original (red), SKIP features
(green) for the following ITU sequences: (a) ITU-01, (b) ITU-02, (c) ITU-03. Distances are
measured in meters.
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Figure 3.13: Robot trajectories estimated using F-LOAM with Original (red), SKIP features
(green) for the following STEVENS sequences: (a) STEVENS-01, (b) STEVENS-02, (c)
STEVENS-03. Distances are measured in meters.

Figures 3.11, 3.12 and 3.13 show the outcomes on datasets ICSENS, ITU and
STEVENS. In most of cases the paths estimated with orig and skip largely overlap.
An exception is obtained for ICSENS-06 (Figure 3.11(f)) where the path estimated
with orig breaks up ahead of time and a failure of orig is observed. In the STEVENS
dataset the environment varies to better assess the performance of features extraction
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algorithm namely Edges and Planar surfaces. In these sequences, the points are re-
turned from tree leaves, which are not stable features in the edge features. However,
as the robot moves to the building area features become more clear and consistent in
the skip by adjusting the threshold.

Table 3.2: Average Translational Difference (ATD) and Average Rotational Difference (ARD)
obtained by F-LOAM with features skip w.r.t. features orig.

Dataset ATD Translation [%] ARD Rotation [10−2◦/m] Step [m]

ICSENS 01 1.691 1.025 100

ICSENS 02 0.974 1.133 100

ICSENS 03 3.563 1.984 100

ICSENS 04 1.548 0.9971 100

ICSENS 05 1.681 1.064 100

ICSENS 06 1.600 1.369 100

ICSENS 07 1.099 0.698 100

ICSENS 08 1.226 0.7573 100

ITU 01 11.600 15.288 100

ITU 02 9.662 8.863 60

ITU 03 4.963 8.586 20

STEVENS 01 4.783 6.694 40

STEVENS 02 21.178 25.276 40

STEVENS 03 4.159 4.770 40

Table 3.2 reports the ATD (average translational difference) and ARD (average
rotational difference) obtained from orig and skip which indicates to discrepancies
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in the estimated paths. In particular, higher ATD and ARD have been noticed with
ICSENS-03, ITU-01 and STEVENS-02 which are evident from the Figures 3.11(c),
3.12(a), 3.13(b) as the orig and skip slightly diverge.

In (STEVENS, ICSENS and ITU) cases, ground truth data are not available and
difficult to obtain. This is particularly true for these datasets that involve real-world
environments, such as LIDAR point clouds. In many outdoor environments, it can be
challenging to accurately label all of the objects in the scene due to factors such as
occlusions, lighting variations, and complex object geometries.

3.6 Discussion

In this chapter, I have proposed the novel feature detector SKIP-3D integrated in
sensor odometry system F-LOAM for LIDARs. The proposed features effectively es-
timates points belonging to sharp items and planar patches in the scene, which can
substitute the original F-LOAM feature extractor. The input point cloud is processed
layer by layer exploiting the organization of multi-layer LIDARs. Salient point de-
tection is obtained by removing less significant points so that at each iteration the
general shape of the layer is maintained. SKIP-3D features are processed online and
have been integrated with F-LOAM. The proposed and the original features have
been compared in robot odometry and mapping tasks performed in indoor and out-
door environments. F-LOAM with SKIP performs similarly or better than the version
with the original features and achieves generally lower position and rotation errors.





4
Conclusion

Odometry and mapping are critical elements in all modern SLAM systems, and LI-
DAR is likely to be a key component in SLAM systems for self-driving vehicles.
LIDAR sensors are reliable in a wide range of lighting conditions, making them
well-suited for self-driving systems that need to ensure safety. Additionally, com-
petition among LIDAR manufacturers has made these sensors more affordable for
this application. This thesis presents feature extraction algorithm for lidar odometry
and mapping algorithm and exploits the organizaion of multi-layer LIDAR scan for
better key points association to achieve a consistent global map. A novel geometric
feature detector is presented SKIP-3D and integrated with sensor odometry system
F-LOAM for LIDARs.

Feature extraction through 3D LIDAR is a powerful technique that allows for the
identification and characterization of important features in a given environment. By
utilizing the high-resolution point cloud data provided by a 3D LIDAR system, it
is possible to accurately detect and analyze various types of features, such as edges
and planes. This information can then be used in a variety of applications, such as
autonomous navigation, object recognition, and scene understanding. Overall, the
use of 3D LIDAR for feature extraction has proven to be a reliable and effective
method for gaining a detailed understanding of the surroundings. This demonstrates
the general-purpose applicability of the method on benchmark indoor and outdoor
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dataset.

To summarize, the use of geometric feature extraction from LIDAR data has the
potential to significantly improve the accuracy and reliability of odometry and map-
ping in a wide range of applications, including self-driving cars, drones, and robotic
assistants. By extracting and using these features, it is possible to build more detailed
and accurate maps of the environment and to enable more sophisticated and intelli-
gent navigation through the environment. This thesis covered the following points:

• Research aimed to improve understanding and exploitation of 3D LIDAR point
clouds for efficient motion estimation and mapping.

• Focused on reducing data and verifying effectiveness of salient points in im-
proving environment understanding.

• Maximizing the use of the LIDAR point clouds organizational structure and
indices to efficiently locate neighboring points and perform place recognition
using pre-existing signatures.

• Proposed feature extraction algorithm, SKIP-3D, demonstrated improved per-
formance in odometry and mapping tasks with F-LOAM.

• The proposed geometric features effectively estimate points belonging to sharp
items and planar patches in the scene.

4.1 Future Work

Feature extraction from LIDAR data has been a popular research topic in the field of
robotics for odometry, mapping, and place recognition. In this section, I will discuss
some of the current challenges and potential future directions in this area. One current
challenge in feature extraction from LIDAR data is to design robust and discrimina-
tive features that can be extracted from the noisy and sparse point clouds. Traditional
feature extraction methods, such as SIFT or SURF, are designed for image data and
may not be directly applicable to LIDAR data. Some researchers have proposed to use
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geometric features, such as normals and curvatures, as the basis for feature extraction,
which I addressed in this thesis in the form of SKIP-3D algorithm. while others have
proposed the use of non-geometric features, such as Deep Learning-based features,
which can be trained on a large dataset of LIDAR scans.

Another challenge is to efficiently extract and match features across different LI-
DAR scans. This is important for odometry, as it requires matching features between
consecutive scans to estimate the robot’s motion. It is also important for mapping and
place recognition, as it requires matching features between different scans taken at
different times or locations to build a consistent map of the environment or to rec-
ognize previously visited places. Efficient feature extraction and matching methods
are essential to enable real-time performance and to reduce the computational cost of
these tasks.

One potential future direction in feature extraction from LIDAR data is to in-
corporate additional information, such as the robot’s motion or the structure of the
environment, to design more robust and discriminative features. For example, the
robot’s motion can be used to filter out moving objects or to align the scans to a com-
mon reference frame, which can improve the accuracy and robustness of the features.
Similarly, the structure of the environment can be used to guide the selection and
extraction of features, for example, by focusing on features that are more informative
or more discriminative for the task at hand.

Another potential future direction is to explore the use of more advanced machine
learning techniques, such as deep learning, to extract and match features from LIDAR
data. These techniques have shown great promise in a variety of applications, and they
may also be useful for feature extraction from LIDAR data. However, there are also
challenges to be addressed, such as the need for large and diverse datasets to train
the models and the need for efficient and effective ways to incorporate the learned
features into the odometry, mapping, and place recognition algorithms.

In conclusion, feature extraction from LIDAR data is a field of active research
with ongoing challenges and opportunities. Future work may involve the develop-
ment of more robust features, the use of additional information and advanced ma-
chine learning techniques, and efficient extraction and matching of features across
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LIDAR scans. These efforts will help to enable more accurate and robust odometry,
mapping, and place recognition using LIDAR data.
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