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Introduction

The simulation of the properties of dyes in condensed phase is a
daunting but rewarding task with enormous practical implications.
For example, in the őeld or organic opto-electronics, a thorough
understanding of the interplay between the active organic dye
and the host material may lead to the optimal tuning of the
properties of the device, in a smart matrix approach. By its nature,
the computational study of large disordered systems requires
reliable approximations. To this aim, effective models for the dye
and the medium are useful to rationalize the behaviour of complex
systems.

Chapter 1 of this work addresses a general issue: how the electronic
degrees of freedom of the medium, i.e. the medium polarizability,
affect the properties of the dye. In line with widespread effective
solvation models, approaches are sought for, where the environ-
mental degrees of freedom are renormalized away towards effective
molecular Hamiltonians implicitly accounting for the interaction
with the environment. The separation of the solute and environ-
mental degrees of freedom relies on the different time scales of
relevant motions. Two limiting cases can be considered. The adia-
batic coupling neglects the kinetic energy associated to the medium
degrees of freedom. The antiadiabatic coupling instead considers
an instantaneous response of the medium degrees of freedom to
relevant events occurring in the dye. The adiabatic and antiadia-
batic approaches allow to renormalize away the medium degrees
of freedom leading to effective solvation models and quite naturally
apply when the medium degrees of freedom are much slower and
faster, respectively, than the relevant degrees of freedom of the dye.
The non-adiabatic approach corresponds to the complete quantum
mechanical treatment of the system and the medium, but, apart
from its computational cost, it requires a detailed knowledge of
the dynamics of the medium.

The reaction őeld model, introduced in Section 1.2, is used as
a basis to deőne the Hamiltonian for the solute-solvent system
(Section 1.3). When modelling polarizable non-polar solvents, the
electronic degrees of freedom of the solvent, falling in the far
UV re much faster than the electronic degrees of freedom of the
dye, whose transitions fall in the UV-visible region. Therefore,
in Section 1.4, the antiadiabatic approximation is introduced on
electronic degrees of freedom of the environment, yielding a
renormalized antiadiabatic Hamiltonian. In Section 1.4.1, few-state
models are adopted for representative dipolar and quadrupolar
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dyes, and the antiadiabatic approach is validated against the
numerically exact non-adiabatic results.

Despite their widespread use, current implementations of effective
solvation models struggle to accurately describe the phenomenon,
leading to a proliferation of approaches, that often yield widely
different, and sometimes unphysical, results. Indeed, in current
implementations, the electronic degrees of freedom of the medium
are treated in the adiabatic approximation, failing to properly
account for the medium polarizability, as demonstrated comparing
spectroscopic properties computed in the adiabatic and the antia-
diabatic limit. In Section 1.5, the issue of electronic solvation of
thermally-activated delayed ŕuorescence (TADF) emitters is tack-
led, showing how the adiabatic approaches to electronic solvation
can lead to spurious results, such as the solvent-induced breaking
of the Hund’s rule. In Section 1.6 electronic solvation of (multi)polar
dyes is discussed more generally, describing several molecular sys-
tems (dipolar, quadrupolar and octupolar chromophores) with
a family of parametric Hamiltonians, called essential state mod-
els. In particular, the antiadiabatic approach and the adiabatic
approaches to fast solvation are compared paying attention to
absorption and ŕuorescence spectra, and to the phenomenon of
symmetry breaking.

Chapter 2 focuses on modelling TADF dyes in liquid solvents and
amorphous matrices. A computational analysis at the DFT and
TD-DFT level (Section 2.3.1) and an experimental characterization
(Section D.1) on a representative system for twisted donor-acceptor
TADF emitters set the bars for a reliable description of the com-
plex TADF photophysics. In Section 2.3.2, the the two-state model
presented in Section 1.6 is extended to account for triplet states,
an effective molecular vibration and an effective conformational
mode. The model is then parametrized against őrst principle cal-
culations and validated against experimental spectra in solution
(Section 2.3.3).

In Section 2.4.1, the subtle problem of the calculation of photophys-
ical rates is attacked. The non-adiabaticity and anharmonicity of
the molecular modes, like the torsion around the donor-acceptor
bond, are important to achieve reliable estimates of transitions
rates involving spin-crossover between excited states that are close
in energy. To this aim, the model discussed in Section 2.3.2 is solved
accounting for the torsional coordinate as a quantum coordinate.
The transition rates between eigenstates of different spin multi-
plicities are then computed using Fermi’s golden rule, and the
overall rate from initial to őnal manifolds are obtained as thermal
averages, assuming that internal conversion is much faster than the
transition of interest. The effect of different molecular parameters
and of the solvent polarizability is then studied.
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Finally, in Section 2.6, the dynamical response of the medium is con-
sidered with great care. Orientational relaxation in liquid solvents
occurs on a faster time scale (picoseconds) than the transitions
occurring in the solute (from nanoseconds, in case of ŕuorescence
and non-radiative decay, to the micro- or millisecond in case of
spin-ŕip processes) and the solvent is therefore always in equilib-
rium with the dye (Section 2.6.1). In organic matrices, most, but not
all, orientational relaxation pathways are hindered, giving rise to
an intricate dynamics characterized by static and dynamic disorder
(Section 2.6.2). The model presented in Section 2.3.2 allows for the
calculation of the photophysical rates and the simulation of time
resolved emission spectra in both liquid solvent and amorphous
matrix.
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1.1 Introduction

The őeld of theoretical and computational chemistry greatly bene-
őted from the rapid increase in computational power that occurred
over the last century. Indeed, while the őrst chemistry-related prob-
lems dealt by quantum mechanical approaches just involved a few
atoms, today quantum chemistry is a widespread tool in research,
allowing scientists to gain precious and often experimentally not
accessible insights on large systems of up to thousands of atoms.[1,
2] However, a full quantum-mechanical description of macroscopic
systems is only possible in crystals, where lattice symmetry can
be exploited. Moreover, if the sample is disordered (e. g. in liq-
uid solvents, organic matrices or biological environments) a full
quantum-mechanical description of macroscopic systems is not
currently, if ever, possible.

A őrst step to approach the issue is to partition the macroscopic
sample into system and environment. The deőnition of the boundary
between the two requires some chemical intuition and strictly
depends on the problem at hand. Of course, the system must
contain the chemical species responsible for the phenomenon of
interest, and is described with relatively high accuracy, while the
environment consists of everything else that may affect the physics
of the phenomenon, and it is described with lower accuracy.

In this work, optical spectroscopy in condensed phase is addressed.
Speciőcally, the system of interest is the solute, i. e. the chro-
mophore(s) responsible for optical transitions, and the environ-
ment describes the disordered medium in which the solute is
dispersed, which will be called solvent, irrespective of its speciőc
nature of liquid, organic matrix or biological environment.

The development of practical and reliable approaches to simulate
how the solvent affects the optical properties of the solute is
desirable in many őelds of research, from bio-imaging to materials
science, and has signiőcant practical implications. For example,
the photophysics of dyes used in opto-electronic devices (e. g.
organic light emitting devices, organic photovoltaics, etc. . . ) is
deeply affected by the environment in which they are dispersed,
making it possible, in principle, the concurrent optimization of
sought properties in a smart matrix approach.

Once a proper approach is selected to describe the solute, an
approach must be deőned to treat the solute-solvent interaction,
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1: Some implicit solvation mod-
els, like the SMD model, are
parametrized to account for some
speciőc interactions, like hydrogen
bonding.

2: This comes naturally from the
Kramers-Krönig equations, that re-
late the real and imaginary parts of
the dielectric function:

Re {𝜖 (𝜈)} = 1

𝜋
−
∫ ∞

−∞

Im {𝜖 (𝜈′)}
𝜈′ − 𝜈

𝑑𝜈′

Im {𝜖 (𝜈)} = − 1

𝜋
−
∫ ∞

−∞

Re {𝜖 (𝜈′)}
𝜈′ − 𝜈

𝑑𝜈′

where 𝜖 is the complex dielectric
function, 𝜈 is the frequency, and −

∫
denotes the Cauhy principal value
integral.[3]

3: Of course, the dielectric function
is weakly frequency dependent in
the UV-visible region of interest. By
convention the refractive index, 𝜂2,
is measured at 589 nm, correspond-
ing to the D-line of sodium.

compromising between accuracy and computational cost. Inter-
molecular interactions are commonly classiőed in speciőc (hydro-
gen bonds, halogen bonds, 𝜋-𝜋 interactions, etc) and non-speciőc
(dielectric interactions, Van der Waals forces, London dispersion,
etc.). When speciőc interactions are involved, the most straight-
forward approach includes the interacting solvent molecules into
the system subspace, effectively considering the chromophore and
these molecules as a single entity.1 When speciőc interactions can
be neglected, the solvent is described by its dielectric properties,
as electrostatic forces dominate its interplay with the solute.

The dielectric response function of a generic material is strictly
related to the transitions it undergoes when it is subjected to
an oscillating electromagnetic őeld. Each transition generates
a peak in the absorption spectrum (the imaginary part of the
dielectric response) at the frequency of resonance (Figure 1.1).
According to the frequency of the electromagnetic őeld, different
modes of the material are involved in the transition: high energy
electronic transitions, such as core electron excitations, fall in
the far UV, low energy electronic transitions typically occur in
the UV-visible region, vibrational transitions fall in the infrared
(IR) and rotational transitions in the microwave region. The real
part of the dielectric function is characterized by discontinuities
at the resonance frequencies and plateaus in the transparency
windows.

Each transition contributes to the real value of the dielectric func-
tion in the plateau, based on its intensity. 2 Electronic transitions
contribute to the optical dielectric constant, 𝜖𝑜𝑝𝑡 , which amounts to
the squared refractive index, 𝜂.[4] Vibrational transitions are weak
and give small contributions to the dielectric constant.3 Rotational
motion is responsible for the low frequency region of the dielectric
function: nonpolar solvents are optically silent and the dielectric
function stays constant down to its static value, so that 𝜖𝑠𝑡 ∼ 𝜖𝑜𝑝𝑡 .
In polar solvents instead, the rotational motion of polar solvent
molecules in liquid phase is optically active and gives a large
contribution to the static dielectric constant that increases with
polarity of the solvent, so that 𝜖𝑠𝑡 > 𝜖𝑜𝑝𝑡 .[4] In solid matrices the
rotational motion is hindered and its contribution to the static
dielectric constant is reduced.

As already stated, this work focuses on solute electronic transitions
that resonate in the visible region. Good solvents must be transpar-
ent in the spectroscopic region of interest, i.e. the near UV-visible
regions (∼ 1 eV − 4 eV). The electronic degrees of freedom of the
solvent, typically in the far UV, are therefore faster than electronic
degrees of freedom of the solute. On the other hand, vibrational
and orientational degrees of freedom of the solvent, in the infrared
and microwave regions respectively, are slower - in the picosecond
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Figure 1.1: Real and imaginary
parts of the dielectric function of a
generic polar solvent with one elec-
tronic, one vibrational and one rota-
tional transition, each modelled as a
Lorentzian:

𝜖 (𝜔) = 1+ 𝑁𝑒2

𝜖0𝑚𝑒𝑉

∑
𝑗

𝑓𝑗

𝜔2
𝑗
− 𝜔2 + 𝑖𝜔Γ𝑗

where 𝑁/𝑉 is the density (number
of molecules in unit volume), 𝑒 is the
electron charge, 𝑚𝑒 is the electron
mass, 𝜖0 is the vacuum permittiv-
ity, 𝑓𝑗 , 𝜔𝑗 and Γ𝑗 are respectively
the oscillator strength, transition fre-
quency and width associated to the
𝑗-th transition.

4: One harmonic mode is associated
to electronic degrees of freedom, the
other to orientational degrees of free-
dom. While this approximation may
seem drastic, the details obtained if
additional modes are considered is
lost as soon as either the adiabatic or
the antiadiabatic approximations are
made.

timescale for liquid solvents, and longer in solid matrices. The
different timescales for the solute and solvent response justify the
system-environment separation between solute and solvent.

1.2 The reaction őeld model

The laws of electrostatics that govern solute-solvent interactions are
well-known. In the following sections, the solute-solvent interaction
is described in the dipolar approximation: the solute is described
as a point dipole occupying a cavity in the solvent, which is
described as a dielectric continuum. Due to the presence of the
solute, the solvent generates an electric őeld, called the reaction

őeld, proportional to the solute dipole moment. In a self-consist
way, the reaction őeld polarizes the solute and the solute dipole
moment polarizes the solvent.[5, 6]

The vastly different response timescale of electronic and orienta-
tional degrees of freedom of the solvent allows for a separation
between the electronic and orientational components of the re-
action őeld, 𝐹𝑒𝑙 and 𝐹𝑜𝑟 respectively. Modelling the solvent as a
bi-modal elastic medium,4 the total Hamiltonian is

H = H𝑔𝑎𝑠 +
[
1

2
𝐾𝑒𝑙 ®𝐹2

𝑒𝑙 + 𝑇𝑒𝑙 − ®̂𝜇 · ®𝐹𝑒𝑙
]
+
[
1

2
𝐾𝑜𝑟 ®𝐹2

𝑜𝑟 + 𝑇𝑜𝑟 − ®̂𝜇 · ®𝐹𝑜𝑟
]

(1.1)
where H𝑔𝑎𝑠 is the gas phase molecular Hamiltonian, ®̂𝜇 is the
molecular dipole moment operator, 𝑇𝑒𝑙 (𝑇𝑜𝑟) is the kinetic energy
associated to electronic (orientational) solvent degrees of freedom,
and 𝐾𝑒𝑙 (𝐾𝑜𝑟) the relevant force constant. At the equilibrium, the
energy is at a minimum for both 𝐹𝑒𝑙 and 𝐹𝑜𝑟 and, exploiting the
Hellmann-Feynman theorem:

0 =
𝜕⟨H⟩
𝜕𝐹𝑒𝑙

= 𝐾𝑒𝑙 ⟨𝐹𝑒𝑙⟩ − ⟨𝜇⟩ (1.2)

0 =
𝜕⟨H⟩
𝜕𝐹𝑜𝑟

= 𝐾𝑜𝑟 ⟨𝐹𝑜𝑟⟩ − ⟨𝜇⟩ (1.3)

So that, at the equilibrium, the reaction őeld is proportional to the
dipole moment. The following relations are obtained:

𝐹𝑒𝑙 = 𝑟𝑒𝑙 ⟨𝜇⟩ 𝑟𝑒𝑙 =
1

𝐾𝑒𝑙
(1.4)

𝐹𝑜𝑟 = 𝑟𝑜𝑟 ⟨𝜇⟩ 𝑟𝑜𝑟 =
1

𝐾𝑜𝑟
(1.5)
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Eq. 1.1 can be rewritten as

H = H𝑔𝑎𝑠 +
[ ®𝐹2

𝑒𝑙

2𝑟𝑒𝑙
+ 𝑇𝑒𝑙 − ®̂𝜇 · ®𝐹𝑒𝑙

]
+
[
®𝐹2
𝑜𝑟

2𝑟𝑜𝑟
+ 𝑇𝑜𝑟 − ®̂𝜇 · ®𝐹𝑜𝑟

]
(1.6)

The proportionality constants 𝑟𝑒𝑙 and 𝑟𝑜𝑟 between the őeld and the
dipole moment depend on the dielectric function of the solvent,
and on speciőc solute-solvent pair properties, such as the shape
and size of the cavity occupied by the solute. For a spherical
cavity, 𝑟𝑒𝑙 and 𝑟𝑜𝑟 have a simple analytical form, as proposed by
Onsager:[5]

𝑟𝑒𝑙 =
1

2𝜋𝜖0𝑎3
𝑓
(
𝜖𝑜𝑝𝑡

)
(1.7)

𝑟𝑜𝑟 =
1

2𝜋𝜖0𝑎3

[
𝑓 (𝜖𝑠𝑡) − 𝑓

(
𝜖𝑜𝑝𝑡

) ]
(1.8)

where 𝑎 is the radius of the cavity, 𝜖0 is the vacuum permittivity
and 𝑓 (𝜖) = 𝜖−1

2𝜖+1 .

Orientational degrees of freedom of the solvent are much slower
than the relevant degrees of freedom of the solute, so that the kinetic
energy of the orientational motion, 𝑇̂𝑜𝑟 , can be neglected, makingH

parametrically dependent on 𝐹𝑜𝑟 . In other words, 𝐹𝑜𝑟 can be treated
as a classical mode. This is known as the adiabatic approximation, at
the basis of well-established theories that rationalize the behaviour
of dyes solvated in polar media (solvatochromism).[5, 7, 8] On
the other hand, electronic solvent degrees of freedom are more
delicate: they are faster than electronic transitions of the solute,
therefore the kinetic energy, 𝑇𝑒𝑙 , is non-negligible. In the following
sections, approaches to electronic solvation are discussed.

Since polar solvation is well understood, the focus of this work is
only on electronic solvation, as relevant to non-polar solvents, so
that the Hamiltonian of interest reduces to:

H = H𝑔𝑎𝑠 +
[ ®𝐹2

𝑒𝑙

2𝑟𝑒𝑙
+ 𝑇𝑒𝑙 − ®̂𝜇 · ®𝐹𝑒𝑙

]
(1.9)

In Section 1.3 the numerically exact non-adiabatic approach to
electronic solvation is discussed. In Section 1.4 the antiadiabatic
approximation is imposed, and the antiadiabatic Hamiltonian is
derived from the non-adiabatic one. In Section 1.4.1 the antiadia-
batic approximation is numerically evaluated by comparison with
non-adiabatic and adiabatic approaches.
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5: The solute basis is truncated to
a few low-energy electronic excita-
tions. Convergence on the number of
solvent quanta is rapidly achieved
(typically 1 to 3 quanta), as ℏ𝜔𝑒𝑙 ,
falling in the UV, is larger than
electronic excitations of the solute,
falling in the near UV or visible re-
gions.

6: Hermiticity of H is exploited to
avoid writing the lower triangle of
the Hamiltonian matrix. The solvent
basis is truncated to the lowest three
eigenstates of the harmonic oscilla-
tor, so that the basis is

| 𝑓1 , 0⟩ , | 𝑓2 , 0⟩ , | 𝑓3 , 0⟩ ,
| 𝑓1 , 1⟩ , | 𝑓2 , 1⟩ , | 𝑓3 , 1⟩ ,
| 𝑓1 , 2⟩ , | 𝑓2 , 2⟩ , | 𝑓3 , 2⟩ .

1.3 The non-adiabatic approach

In the non-adiabatic approach, both solute and solvent are treated
at the quantum level. The solvent operators are expressed in second
quantization, setting

𝐹𝑒𝑙 = 𝑔
(
𝑏† + 𝑏

)
(1.10)

𝑇𝑒𝑙 =

[
𝑖

√
ℏ𝜔𝑒𝑙

2

(
𝑏† − 𝑏

)]2

(1.11)

where 𝑏 (𝑏†) is the bosonic annihilation (creation) operator, 𝑔 =√
ℏ𝜔𝑒𝑙𝑟𝑒𝑙/2 is the strength of the coupling, and 𝜔𝑒𝑙 is the frequency

assigned to the electronic polarization of the solvent, typically in
the far UV. Substituting eq. 1.10 and 1.11 into eq. 1.9 gives the second
quantized Hamiltonian:

H = H𝑔𝑎𝑠 − 𝑔𝜇̂
(
𝑏† + 𝑏

)
+ ℏ𝜔𝑒𝑙

(
𝑏†𝑏 + 1

2

)
(1.12)

where the őrst term on the right side is the gas phase Hamiltonian
of the solute, the second term is the solute-solvent interaction
Hamiltonian, and the last term is the Hamiltonian of the harmonic
oscillator associated to the solvent. The most convenient basis is
obtained as the direct product of the solute basis times the solvent
basis, where the solvent basis consists of the eigenstates of the
harmonic oscillator. Of course, the solute and the solvent basis
must be truncated to numerically solve the problem by direct
diagonalization of the Hamiltonian.5

For the sake of clarity, a molecular system described in terms
of three electronic states ( 𝑓1, 𝑓2, 𝑓3) is considered. If the matrix
elements ℎ𝑖 𝑗 = ⟨ 𝑓𝑖 |H𝑔𝑎𝑠

�� 𝑓𝑗〉 and 𝜇𝑖 𝑗 = ⟨ 𝑓𝑖 | 𝜇̂
�� 𝑓𝑗〉 are known, the

non-adiabatic Hamiltonian matrix can be written on the product
basis as6

H =

©­­­­­­­­
«

ℎ11 ℎ12 ℎ13 −𝑔𝜇11 −𝑔𝜇12 −𝑔𝜇13 0 0 0
· ℎ22 ℎ23 −𝑔𝜇21 −𝑔𝜇22 −𝑔𝜇23 0 0 0
· · ℎ33 −𝑔𝜇31 −𝑔𝜇32 −𝑔𝜇33 0 0 0

· · · ℎ11+ℏ𝜔𝑒𝑙 ℎ12 ℎ13 −
√

2𝑔𝜇11 −
√

2𝑔𝜇12 −
√

2𝑔𝜇13

· · · · ℎ22+ℏ𝜔𝑒𝑙 ℎ23 −
√

2𝑔𝜇21 −
√

2𝑔𝜇22 −
√

2𝑔𝜇23

· · · · · ℎ33+ℏ𝜔𝑒𝑙 −
√

2𝑔𝜇31 −
√

2𝑔𝜇32 −
√

2𝑔𝜇33

· · · · · · ℎ11+2ℏ𝜔𝑒𝑙 ℎ12 ℎ13

· · · · · · · ℎ22+2ℏ𝜔𝑒𝑙 ℎ23

· · · · · · · · ℎ33+2ℏ𝜔𝑒𝑙

ª®®®®®®®®
¬

(1.13)
The diagonalization of this non-adiabatic Hamiltonian is of course
possible, at least for not too large numbers of solute and solvent
states, and would lead to a numerically exact non-adiabatic solution.
However, this treatment would require a detailed knowledge of
the solvent dielectric response. Moreover, it is computationally
expensive as the product basis rapidly increases in size as the
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7: If 𝑛 is the number of solute elec-
tronic states, 𝑁 is the number of
electronic polarization modes of the
solvent, 𝑚𝑖 is the number of bo-
son states associated to the 𝑖-th
mode, the size of the basis becomes
𝑛
∏𝑁
𝑖
𝑚𝑖

8: e. g. the solvent is accounted for
as a continuum dielectric, its elec-
tronic polarization is modelled as
a single harmonic mode, its dielec-
tric response is condensed into one
parameter 𝜖𝑜𝑝𝑡 , etc. . .

description of solute and solvent becomes more detailed.7

To conclude this section, it must be noted that the non-adiabatic
approach presented here does not account for the solvent as
being strictly implicit. While certain aspects are omitted,8 some
knowledge of the solvent dielectric function is required. In other
words, the non-adiabatic approach is more akin to full QM methods,
where the solute together with a number of solvent molecules are
treated at the QM level, than to implicit solvation methods.

1.4 The antiadiabatic approximation

While achieving numerically exact solutions to the solute-solvent
problem is appealing, a true implicit solvation model is desired,
that does not require a detailed description of the solvent leading
at the same time to a more computationally manageable problem.
In the following, the antiadiabatic approximation is adopted, where
an instantaneous electronic polarization is assumed for the solvent,
resonating in the UV, with respect to charge ŕuctuations in the
solute, resonating in the visible region.

To proceed towards the antiadiabatic Hamiltonian, the effective
electronic states are written according to őrst order perturbation
theory:

˜| 𝑓𝑖⟩ = | 𝑓𝑖⟩ |0⟩ +
𝑔

ℏ𝜔𝑒𝑙

∑
𝑘

𝜇𝑖𝑘 | 𝑓𝑘⟩ |1⟩ (1.14)

where, in line with the antiadiabatic approximation, the coupling to
states with more than a single oscillator quantum is neglected and
molecular energies are disregarded with respect to ℏ𝜔𝑒𝑙 . The matrix
elements of the antiadiabatic Hamiltonian are the matrix elements
of the non-adiabatic Hamiltonian on the effective antiadiabatic
states:

˜⟨ 𝑓𝑖 |H ˜�� 𝑓𝑗〉 = ℎ𝑖 𝑗−2
𝑔2

ℏ𝜔𝑒𝑙

∑
𝑘

𝜇𝑖𝑘𝜇𝑘 𝑗+
𝑔2

ℏ2𝜔2
𝑒𝑙

∑
𝑘𝑚

𝜇𝑖𝑘𝜇𝑗𝑚 ⟨1| ⟨ 𝑓𝑚 |H | 𝑓𝑘⟩ |1⟩
(1.15)

To calculate ⟨1| ⟨ 𝑓𝑚 |H | 𝑓𝑘⟩ |1⟩, it is noted that the contribution

from the interaction part in the Hamiltonian, −𝑔𝜇̂
(
𝑏† + 𝑏

)
goes

higher order and is neglected. The only relevant contribution is then
⟨1| ⟨ 𝑓𝑚 |H𝑔𝑎𝑠 | 𝑓𝑘⟩ |1⟩. Off-diagonal elements are ⟨1| ⟨ 𝑓𝑚 |H𝑔𝑎𝑠 | 𝑓𝑘⟩ |1⟩ =
ℎ𝑚𝑘 , so that resulting corrections to the renormalized Hamiltonian

are proportional to 𝑔2

ℏ2𝜔2
𝑒𝑙

and therefore negligible in the ℏ𝜔𝑒𝑙 → ∞
limit. Diagonal elements instead are ⟨1| ⟨ 𝑓𝑚 |H𝑔𝑎𝑠 | 𝑓𝑚⟩ |1⟩ = ℎ𝑚𝑚+
ℏ𝜔𝑒𝑙 ∼ ℏ𝜔𝑒𝑙 . Corresponding terms turn out proportional to 𝑔2

ℏ𝜔𝑒𝑙
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9: In this section, the CAM-B3LYP
functional and the 6-31G(d) basis set
are used for all DFT and TD-DFT
calculations.[13]

10: Results in Figure 1.3 show that
the results marginally depend on
the truncation of the solute basis.

and must be retained, leading to

˜⟨ 𝑓𝑖 |H ˜�� 𝑓𝑗〉 = ℎ𝑖 𝑗 −
𝑔2

ℏ𝜔𝑒𝑙

∑
𝑘

𝜇𝑖𝑘𝜇𝑘 𝑗 (1.16)

Having deőned 𝑔 =
√
ℏ𝜔𝑒𝑙𝑟𝑒𝑙/2, the above equation reduces to

Hantiadiabatic = H𝑔𝑎𝑠 −
𝑟𝑒𝑙
2
𝜇̂2 (1.17)

The antiadiabatic Hamiltonian is obtained via a perturbative ex-
pansion on 1/𝜔𝑒𝑙 and therefore is the exact Hamiltonian in the
𝜔𝑒𝑙 → ∞ limit, irrespective of the strength of the solute-solvent
interaction.

1.4.1 Numerical evaluation of the antiadiabatic

approximation

In the following Section, a few-state model (FSM) is deőned and
applied to a set of organic dyes (Figure 1.2) to numerically vali-
date the antiadiabatic approximation.[9] First the comparison is
made against the numerically exact non-adiabatic results. Then,
approaches based on the adiabatic approximation to the elec-
tronic solvation, as implemented in quantum chemistry codes, are
critically evaluated.

Comparison with the non-adiabatic approach

A few state model (FSM) is deőned for the four molecules in
Figure 1.2, following a similar procedure as in Ref. [10]. DANS and
RD are polar dyes showing positive and negative solvatochromism,
respectively.[7, 11] Q1 and Q2 are quadrupolar dyes: both have
negligible polarity but Q1, of interest for non-linear optics, has a
sizable transition dipole moment to the őrst excited state, while
Q2, of interest for thermally-activated delayed ŕuorescence, has a
negligible transition dipole moment.[12]

Gas phase density functional theory (DFT) is adopted to optimize
each molecule in the ground state. On each equilibrium geometry,
gas phase time-dependent DFT (TD-DFT) was run to obtain excited
state properties.9 The őrst three singlets (the ground state and
the őrst two excited singlets) are selected as the molecular basis,
so that the gas phase Hamiltonian, H𝑔𝑎𝑠 , is diagonal, its matrix
elements being the excitation energies of each singlet state (setting
the energy of the ground state as zero).10 The matrix elements of
the main component of dipole moment operator (indicated by the
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Figure 1.2: The molecules con-
sidered in Section 1.4.1: DANS

(dimethylamino-nitrostylbene)
and RD (the Reichardt dye) are
dipolar dyes; Q1 (a ŕuorinated
bis-alkylaminos-tyryl derivative)
and Q2 (3,7-bis(10H-phenothiazin-
10-yl)dibenzo[b,d]thiophene-S,S-
dioxide) are quadrupolar dyes.
Top: Kekulè structures. Bottom:
optimized geometries (CAM-
B3LYP/6-31G(d) level). The arrows
mark the direction of the main
component of the dipole moment
operator.

NO2

N(CH3)2

N(CH3)2

N(CH3)2

FF

F F
N+

O-

S

NN
SS

O O

DANS RD Q1 Q2

DANS RD Q1 Q2

arrows in Figure 1.2) are calculated using the multiwfn software.
Table 1.1 displays all parameters entering the FSM.
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Table 1.1: Molecular parameters en-
tering the FSM

DANS RD Q1 Q2

ℎ11 (eV) 0.00 0.00 0.00 0.00

ℎ22 (eV) 3.52 1.67 3.37 3.66

ℎ33 (eV) 4.00 2.51 4.15 3.68

𝜇11 (D) 9.38 14.82 0.00 0.00

𝜇22 (D) 25.95 −3.75 0.00 0.00

𝜇33 (D) 5.75 3.45 0.004 0.00

𝜇12 (D) 9.64 6.55 14.08 0.00

𝜇13 (D) −0.03 0.00 0.00 0.00

𝜇23 (D) 0.04 0.38 14.44 21.97

𝑎 (Å) 5.33 6.33 5.85 6.12

Figure 1.4 compares the molecular properties (excitation energy,
transition dipole moment and, for dipolar dyes, ground state
permanent dipole moment) calculated in the antiadiabatic ap-
proximation and upon exact diagonalization of the non-adiabatic
Hamiltonian (Eq. 1.12), setting ℏ𝜔𝑒𝑙 ∼ 6 eV or 20 eV and accounting
for three boson states. Molecular properties are plotted against
𝑓
(
𝜖𝑜𝑝𝑡

)
= (𝜖𝑜𝑝𝑡 − 1)/(2𝜖𝑜𝑝𝑡 + 1), estimated for each molecule

setting 𝑎 to the relevant Onsager radius. The region correspond-
ing to most organic solvents and amorphous matrices is in the
0.175 < 𝑓 (𝜖𝑜𝑝𝑡) < 0.225 range, as highlighted by the gray region
in Figures 1.4, 1.5 and 1.6. Results in Figure 1.4 conőrm that the
antiadiabatic Hamiltonian in Eq. 1.17 represents the 𝜔𝑒𝑙 → ∞
limit of the non-adiabatic Hamiltonian in Eq. 1.12. Moreover, with
the notable exception of Q1, results are marginally affected by
the 𝜔𝑒𝑙 value, suggesting that the effective solvation model ob-
tained imposing the antiadiabatic approximation is reliable even
for solvents with comparatively low-energy excitations. Indeed,
6 eV represents the absorption cutoff for most organic media, but
absorption maxima are typically located at much higher energies.
For Q1, a highly polarizable dye, the solute-solvent separation
is more delicate and should be considered with care in largely
polarizable environments.

The ground state dipole moment of the two polar dyes, DANS

and RD, smoothly increases with 𝑓
(
𝜖𝑜𝑝𝑡

)
, due to the stabiliza-

tion of polar states in condensed media. For DANS, a polar dye
with a mostly neutral ground state, this implies an increase of
the transition dipole moment and a decrease of the transition
frequency, while the opposite occurs for RD, a dye with a mostly
zwitterionic ground state. Quadrupolar dyes, Q1 and Q2, have
vanishing permanent dipole moment, but the solvent polarizability
is responsible for a sizable decrease of the transition frequency.

Comparison with adiabatic approaches

The adiabatic approximation, introduced in Section 1.1 to tackle
orientational degrees of freedom of the solvent, is adopted in
current implementations of effective solvation models to address
electronic solvation as well. Under the adiabatic approximation,
the kinetic energy term, 𝑇𝑒𝑙 is neglected in eq. 1.12, so that the
Hamiltonian acquires a parametric dependence on 𝐹𝑒𝑙 , that in turn
becomes a classical solvent mode.

For comparison purposes, the Hamiltonian in Eq. 1.12 is solved
in the adiabatic approximation, adopting the same strategies as
implemented in gaussian16.[14ś18]
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Figure 1.3: Comparing non-
adiabatic (NA, left panels) and
antiadibatic (AA, right panels)
transition energies calculated in the
FSM accounting for 2, 3 and 4 states.
The 2-state results are not reported
for Q1 and Q2, since at least three
states are needed to capture the
physics of quadrupolar dyes.

Figure 1.4: Validation of the an-

tiadiabatic approach. Top panels:
for the two polar dyes the ground
state dipole moment 𝜇11, the tran-
sition dipole moment 𝜇12 and
the transition energy Δ𝐸 are re-
ported vs 𝑓 (𝜖𝑜𝑝𝑡 ). Bottom panels:
for quadrupolar dyes the transition
dipole moment 𝜇12 and the tran-
sition energy Δ𝐸 are reported vs
𝑓 (𝜖𝑜𝑝𝑡 ). Black lines refer to antiadia-
batic results, magenta lines show ex-
act diagonalization (ED) results ob-
tained by diagonalization of the non-
adiabatic Hamiltonian for 𝜔𝑒𝑙 = 6
and 20 eV (dotted and dashed lines,
respectively). For Q2 all lines are su-
perimposed. The shaded area marks
the region where most organic sol-
vents are located.
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In PCM, the cavity occupied by the solute is formed as the super-
position of interlocked spheres centered on the solute atoms, with
radii close to the Van Der Waals radii. The surface is then subdi-
vided in tesserae each bearing a partial charge. The solute-solvent
interaction is electrostatic in origin and generates an intrinsically-
self consistent problem, with the charge distribution of the solute
polarizing the surrounding solvent and being in turn polarized by
the solvent.[19]

When it comes to electronic transitions in solution, PCM accounts
for the dynamical response of the solvent partitioning the apparent
surface charges between a fast component, governed by the optical
dielectric constant, and a slow component, governed by the static
dielectric constant.

Several approaches have been proposed to address non-equilibrium
solvation as relevant to electronic solvation. In this work, the lin-
ear response (LR), corrected linear response (CLR) and external
iteration (EI) approaches available in the gaussian16 suite are dis-
cussed.[15, 17, 20] In all cases, a reference electronic state must be
deőned, that is self-consistently equilibrated to both fast and slow
apparent surface charges. This state is selected as the ground state
for absorption, or the lowest excited state for emission.

LR is arguably the most used approach, due to its simplicity. In
LR, excitation energies are determined directly as singularities of
the frequency-dependent linear-response functions of the solvated
molecule in the ground state, avoiding explicit calculations of the
excited state wavefunctions, leading to a fast and computationally
convenient approach.[15] Speciőcally, deőning the frozen-solvent
transition energy as the transition energy calculated maintaining
the fast and slow solvent degrees of freedom equilibrated to the
reference state (the ground state for absorption, the excited state
for emission), LR corrections are applied that only depend on
the transition density between the reference and the őnal state.
While computationally convenient, LR does not account for the
variation of the charge distribution in the solute upon excitation,
and therefore its use for CT transitions is not recommended.[16]

State-speciőc approaches were then proposed, accounting for
the variation of the solute charge distribution upon excitation.
Speciőcally, in EI, the fast degrees of freedom of the solvent are
equilibrated to the excited state charge density, in a self-consistent
procedure. The non-equilibrium transition energy is then com-
puted as the difference between the energy of the őnal state and
of the initial state, both states being obtained with the fast solvent
degrees of freedom equilibrated to the relevant state (for polar
solvents slow solvent degrees of freedom are maintained őxed
to the equilibrium value for the ground state, when referring to
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absorption processes, and to the excited state when referring to
emission).[17] It is important to underline that in EI two different
potentials for the ground and the excited states are considered in
an effort to account for the fast relaxation of the solvent degrees of
freedom. However, the approach is still strictly adiabatic, as each
Hamiltonian is deőned and diagonalized for a speciőc őxed poten-
tial. Moreover, since transitions are computed between eigenstates
obtained from the diagonalization of different Hamiltonians, the
calculation of fundamental spectroscopic properties such as the
transition dipole moment is precluded.

CLR bridges the gap between LR and EI and represents a perturba-
tive approximation to EI. As in LR, the zero-order transition energy
is calculated as the frozen-solvent transition energy. Corrections are
then applied that depend on the variation of the charge distribution
upon excitation. According to Ref. [20], the correction is computed
by considering the orbital response to the excitation of interest, in
turn obtained as the solution of the KohnśSham Z-vector equations
(relaxed density). CLR relies on a őrst order perturbative approach,
so that corrections only apply to the energies, while wavefunctions
are not affected. Transition dipole moments are therefore accessible
and coincide with those obtained in LR. However, CLR represents
just a linear perturbative approximation to the complete EI calcula-
tion, and, apart from computational convenience, it is unclear why
a linear perturbative treatment should be preferred to a nominally
exact calculation.

For the sake of comparison, the adiabatic calculation is set up for
DANS, RD, Q1 and Q2. The őrst step is the calculation of the
ground state obtained upon diagonalization of the adiabatic Hamil-
tonian with 𝐹𝑒𝑙 őxed at the ground state equilibrium. Top panels
of Figure 1.5 compare the adiabatic and antiadiabatic estimates of
the permanent dipole moments of DANS and RD. The permanent
dipole moments of the quadupolar dyes, Q1 and Q2 are vanishing
and therefore are not shown. The adiabatic approximation fails
already in the calculation of the ground state. In particular, the
adiabatic approximation underestimates the increase of the ground
state dipole moment of DANS in condensed media. Indeed, the
ground state dipole moment of DANS is smaller than its excited
state dipole moment. The reaction őeld equilibrated at the ground
state is therefore small and more polar states than the ground
state are less stabilized in the adiabatic approximation than in
the antiadiabatic approach where each state is stabilized by the
interaction with its own reaction őeld. The opposite occurs for RD,
whose dipole moment is larger in the ground than in the excited
state.

Turning attention to spectral properties, in the LR approach[15] the
transition energy is calculated from the vertical transition energy,
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Δ𝐸
(0)
21

as follows:[16]

Δ𝐸𝐿𝑅21 = Δ𝐸
(0)
21

− 𝑟𝑒𝑙 |𝜇21 |2 (1.18)

The LR transition energy in Figure 1.5 compares well with the
antiadiabatic result only for DANS. In general, LR energies are not
accurate since they do not account for the variation of the solute po-
larity upon excitation. To improve on LR, state speciőc approaches
were introduced. Among them, the EI approach equilibrates the
fast solvation őeld around the excited state and calculates the
transition energy as the energy difference between the equilibrated
excited and ground states (Figure 1.5). Calculated EI energies al-
ways deviate considerably from antiadiabatic results.[17] More
fundamentally, EI suffers from a basic ŕaw when applied to fast
solvation, since the optimized ground and excited states are eigen-
states of two different adiabatic Hamiltonians, thus precluding
the calculation of transition dipole moments. The CLR approach
circumvents this problem only accounting for perturbative correc-
tions to transition energies, while maintaining the wave funtions
unperturbed.[20] In CLR the correction to the transition energy is
proportional to the square of the variation of the dipole moment
upon excitation:[16]

Δ𝐸𝐶𝐿𝑅21 = Δ𝐸
(0)
21

− 𝑟𝑒𝑙
2

(𝜇22 − 𝜇11)2 (1.19)

The CLR estimate of the transition energies is good for the two polar
dyes, whose solvatochromic shifts are governed by the variation
of the molecular dipole moment upon excitation. Some amount
of error cancellation on the ground and excited state permanent
dipole moments enters into play here, since, as discussed above,
the adiabatic estimate of the ground state dipole moment is poor.

Adiabatic approaches fail in the most striking way for the quadrupo-
lar dyes, Q1 and Q2. These dyes have a negligible polarity and
therefore have vanishing CLR corrections. The sizable transition
dipole moment of Q1 leads to a sizable LR correction, largely
deviating from antiadiabatic results. Q2 instead has a negligible
transition dipole moment, then for this dye both LR and CLR
corrections vanish. Neither LR nor CLR reproduce the excited
state stabilization of Q2 due to the medium refractive index. The
solvent polarizability stabilizes instantaneous charge ŕuctuations
in the solute, an effect that cannot be appreciated in any adiabatic
approach to fast solvation.
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Figure 1.5: Adiabatic vs. antiadia-

batic results. The same as in Fig-
ure 1.4 but comparing antiadiabatic
results (black line) with adiabatic
results (colored lines). The ground
state dipole moment 𝜇11 (red line
with dots) is the same in all adi-
abatic implementations. The transi-
tion dipole moment𝜇12 is undeőned
in EI, and is the same for LR and
CLR approaches. For transition en-
ergies, the dotted red lines show the
vertical excitation energy, the contin-
uous red lines show LR results, the
continuous red lines with dots show
CLR results, the blue line show the
EI results. For DANS, LR and CLR
energies are almost superimposed.
For Q1 the vertical excitation energy,
CLR and EI energies are coincident.
For Q2 all adiabatic energies but
EI are superimposed. The shaded
area marks the region relevant for
organic solvents and matrices.
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Validation of the adiabatic FSM

To validate the proposed FSM, adiabatic results, already reported
in Figure 1.5, are compared with analogous results from TD-DFT
calculations for solvated dyes adopting the adiabatic implemen-
tations of the polarizable continuum model (PCM) in gaussian16

(Figure 1.6).[16, 19] In order to only account for the effect of solva-
tion, TD-DFT calculations are run for the dyes of interest keeping
the molecular geometry őxed to the gas phase ground state ge-
ometry. Fictitious solvents with 𝜖𝑠𝑡 = 𝜖𝑜𝑝𝑡 are used, in order to
avoid any effect due to solvent polarity. In analogy with Figure 1.5,
results are plotted against 𝑓

(
𝜖𝑜𝑝𝑡

)
.

Overall, the comparison between FSM and TD-DFT conőrms
that the adopted FSM captures the basic physics modelled by
PCM for the systems of interest. The most interesting observation
is that sizable CLR corrections to the transition energies of the
two quadrupolar dyes are calculated in TD-DFT. Since Q1 and
Q2 are nonpolar, these corrections are due to quadrupolar and
higher order terms in the solute-solvent interactions, that are fully
disregarded in the FSM. However, the important point here is not
the quality of the dipolar approximation. The results presented
here demonstrate that the adiabatic approximation fails in the
most dramatic way to describe fast solvation as it cannot properly
account for the őrst order (dipolar) corrections to the transition
energy of nonpolar dyes.
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Figure 1.6: Adiabatic results for DANS, RD, Q1 and Q2. Left panels: FSM results. Right panels: TD-DFT results.
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Figure 1.7: Molecules considered
in this Section 1.5 (A1) PO-
TXO2. (A2) DPO-TXO2. (B1) 2-
PTZ-DBTO2. (B2) DPTZ-DBTO2.
(C1) PTZ-DBTO2. (C2) 3,7-DPTZ-
DBTO2. In all molecules, red and
blue colors mark the electron donor
and acceptor groups, respectively.

1.5 Electronic solvation and the singlet-triplet

gap

In this Section, the focus is on electronic solvation of emitters
showing thermally-activated delayed ŕuorescence (TADF), a triplet
harvesting phenomenon of great interest in the őeld of organic light-
emitting devices that is discussed in greater detail in Chapter 2.
The early chemical design of TADF emitters was focused on the
minimization of the singlet-triplet gap, Δ𝐸𝑆𝑇 , by space-separation
of the HOMO and LUMO. To this aim, electron-donor and electron-
acceptor moieties were connected in a twisted conformation.[21ś
24] The inherent synthetic ŕexibility of organic compounds makes
it possible to synthesize a large collection of dyes, which differ
not just in the nature of the donor and acceptor units but also in
the ways these units are connected: other than dipolar emitters,
quadrupolar and octupolar emitters have been synthesized and
studied, as well as more exotic systems with through-space CT
interaction.[24ś27]

Quantum chemical calculations are a useful tool to explore this
vast chemical space, allowing for a systematic in silico screening of
a large amount of chemical structures to select a limited number
of promising compounds to be subjected to detailed experimental
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11: All DFT and TD-DFT calcula-
tions in this Section are performed
using gaussian16.[14] The optimized
ground state structures of A2, B2

and C2 are obtained at the B3LYP/6-
31G(d) level. Ground state geome-
tries for A1, B1 and C1 are obtained
substituting one of the donor units
with an hydrogen atom. TD-DFT
calculations are performed at the
M06-2X/6-31G(d) level imposing
the Tamm-Dancoff approximation.

and theoretical characterizations. To this effect, cheap, fast, and
reliable computational approaches are needed. TD-DFT arguably
represents one of the most effective computational tools in this
respect, thanks to the favorable trade-off between accuracy and
computational cost. Once the proper functional is selected, reliable
TD-DFT results can be obtained for isolated (gas phase) dyes, but
material scientists need to address the properties of the dyes in con-
densed phases (either in solution or in a matrix). Implicit solvation
models, like PCM or COSMO, are computationally inexpensive,
but, as demonstrated in the previous section, adopt an adiabatic
approximation for the electronic degrees of freedom of the solvent,
leading to a proliferation of approximation schemes (LR, CLR and
EI) and to somewhat unreliable results.[15, 17ś19, 28]

In this section, with reference to TADF dyes, current implemen-
tations of continuum solvation models are discussed, showing
that they do not properly address environmental effects on the
singletśtriplet gap, with results that depend on the adopted ap-
proximation scheme and lead, in some cases, to an inversion of the
order of the lowest singlet and triplet states.[29]

In particular, three dipolar emitters (A1, B1 and C1) and their
quadrupolar counterparts (A2, B2 and C2 respectively) are consid-
ered, as shown in Figure 1.7.[23ś25] For each emitter, single point
TD-DFT calculations on the optimized ground state geometry are
performed to obtain excitation energies (in the Tamm-Dancoff
approximation[30]),[31] both in gas phase and accounting for non-
equilibrium solvation in PCM. The electronic nature of the states is
evaluated using the natural transition orbitals (NTOs) associated
to each transition. NTOs are collected in Appendix C.11

As discussed in Section 1.4, the ground state properties of the solute
are not properly addressed when the adiabatic approximation is
adopted to fast solvation. Since in current PCM implementations
the ground state geometry is optimized in this approximation,
leading to unreliable results, all data below are obtained for the
optimized geometry in gas phase. Moreover, in order to exclude
any contribution from polar solvation, custom non-polar solvents
are considered, setting the static dielectric constant equal to the
squared refractive index. Calculations are repeated for different
values of the refractive index, 𝜂. Results (Figure 1.8 and Figure 1.11)
are displayed as a function of 𝑓 (𝜂2) = (𝜂2 − 1)/(2𝜂2 + 1), the
region corresponding to most organic solvents and polymeric
hosts covering the 0.175 < 𝑓

(
𝜂2
)
< 0.225 interval. The three

approaches to non-equilibrium solvation discussed in Section 1.4.1
(LR, CLR and EI) are adopted to obtain transition energies to be
compared with antiadiabatic results.
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Figure 1.8: Top panels: excitation energies vs 𝑓 (𝜂2) for states 1CT (blue), 3CT (red), 3LEA (black),3LED (green). Bottom
panels: the calculated energy gap between the lowest singlet and triplet states. In all panels solid lines refer to LR, symbols
refer to CLR, dashed lines refer to EI.

A1 and A2 dyes

A1 and A2 are TADF emitters with dipolar (D-A) and quadrupolar
(D-A-D) structure, respectively, where A is 9,9-dimethylthioxanthene-
S,S-dioxide (TXO2) and D is the phenoxazine (PO) group. The
optimized ground state structure has the D and A moieties almost
orthogonal. Both A1 and A2 have a negligible permanent dipole
moment. Figure 1.8a shows the 𝑓 (𝜂2)-dependence of the transition
energies for the őrst few excitations of both molecules, calculated in
the different implementations of PCM, discussed above. The nature
of each state is deőned with reference to the natural transition
orbital (NTO), displayed in Figure C.1 and C.3.

In gas phase, the lowest triplet excitation of A1 at 3.389 eV is fully
localized on the donor. The state, labeled 3LED, has negligible
permanent dipole moment. The second triplet at 3.487 eV and the
lowest singlet at 3.504 eV are instead almost pure CT states, labeled
3CT and 1CT, respectively, and have a large permanent dipole
moment oriented along the CT axis (see Table C.1). Increasing
𝑓 (𝜂2), LR excitation energies marginally increase due to the solvent
stabilization of the ground state, without any signiőcant effect on
the energies of the excited states. CLR and EI give qualitatively
different results than LR: indeed already in non-polar solvents both
approaches point to a different nature of the lowest excited triplet
that becomes a CT state rather than an LE state. This has enormous
spectroscopic consequences,[32ś34] and it is important to realize
that LR, the default approach to solvation, gives the wrong order
of excited states for TADF dyes. In fact, not accounting for the large
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charge reorganization upon CT excitation, LR does not capture
the large stabilization of CT states when going from gas-phase to
condensed phases, leading to unreliable results already in non-
polar media. On the other hand, CLR and EI lead to wildly different
results, with energy differences ≈ 0.5 eV for typical 𝑓

(
𝜂2
)

values
for organic media. CLR and EI results for the energy gap between
the lowest singlet and triplet states,Δ𝐸𝑆𝑇 , are similar, even if largely
different from the LR result.

In A2, the number of relevant excited states doubles with respect
to A1, as symmetric and antisymmetric CT and LED states enter
into play. In gas phase, the lowest triplets (≈ 3.39 eV) are two
degenerate states localized on the donors, 3LED, while CT states
are at higher energies: a pair of almost degenerate triplets, 3CT,
at ≈ 3.42 eV and a pair of singlets, 1CT, at 3.428 eV and 3.436 eV.
Despite the different structure and higher number of excited states,
the dependence of LR, CLR and EI transition energies on 𝑓 (𝜂2)
(Figure 1.8a, right panel) can be explained in a similar way as
for A1, with the caveat that EI and CLR corrections are due to
the variation of the molecular quadrupolar moment of A2 upon
excitation. Once again, Δ𝐸𝑆𝑇 results from CLR and EI calculations
are similar but largely different from LR results.

B1, B2, C1 and C2

B1 and B2 have been extensively studied both from a theoretical
and experimental perspective.[32, 33] The D and A units (phe-
nothiazine, PTZ, and dibenzo[b,d]thiophene 5,5-dioxide, DBTO,
respectively) are connected as shown in Figure 1.7. In the optimized
ground state, D and A moieties lie on nearly orthogonal planes.
Results for B1 and B2 are displayed in Figure 1.8b. Several states
must be considered for these systems. In fact the gas phase NTO
and MO analysis (Figure C.4 and C.5) reveals that B1 lowest triplet
(3.493 eV) has a predominant CT character, so that it is dubbed 3CT,
but with a non-negligible contribution from a local excited state.
The next triplet, 3LEA, at 3.604 eV, is almost entirely localized on
the acceptor unit. The lowest singlet state at 3.607 eV, 1CT, is a pure
CT state, with a large permanent dipole moment aligned approxi-
mately along the DA axis. The third triplet at 3.753 eV is a localized
excited state on the D unit, 3LED state, with a non-negligible CT
character. As before, the LR corrections to the excitation energies
are minor for all states, in view of the very small transition dipole
moments of relevant excitations. On the opposite, CT states are
largely stabilized in CLR and EI but, as before, the two approaches
yield very different results.

B2 is the quadrupolar counterpart of B1 and more states enter into
play. However, the nature and relative energies of the states in gas
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phase is similar in B1 and B2. The lowest triplets (≈ 3.41 eV) are
mostly 3CT, but have a non-negligible LE component, as shown
from the NTO analysis (Figure C.6). Interestingly, the low energy
triplet in B2 has a larger CT character than in B1. The next triplet
at 3.580 eV is localized on the acceptor. The pair of degenerate
3LED states at ≈ 3.70 eV has a non-negligible CT component. The
lowest singlets, 1CT, at 3.473 eV and 3.484 eV are essentially pure
CT states.

As already discussed, LR corrections are negligible due to the very
small transition dipole moments in TADF dyes. In CLR, corrections
to the 3LEA and 3LED states are also negligible. On the other hand,
3CT and 1CT states are stabilized as the transitions occur with a
signiőcant change in the charge distribution. However, another
serious problem emerges: both CLR and EI show an inversion in
the order of the lowest singlet and triplet states. In other terms,
according to these calculations, the lowest excited state of both
B1 and B2 dissolved in an organic non-polar medium would
correspond to a singlet and not to a triplet state. As discussed
below, this result originates from the mishandling of fast solvation.
In B1, the lowest triplet has dominant CT character but with a
sizable contribution from the triplet excitation localized on the
acceptor, while the lowest singlet state is an almost pure CT state.
The variation of the charge distribution upon excitation is therefore
larger for the lowest singlet than for the lowest triplet excitation,
leading to a larger stabilization of the singlet state with respect to
the triplet state, with an effect that is most apparent in CLR. Indeed,
in CLR the nature of the states is frozen, while in EI the nature of
the states changes in the iterative process. Speciőcally, in our case,
during the EI iterations the weight of the LE component in the
lowest triplet state decreases, reducing Δ𝐸𝑆𝑇 , that stays small but
negative. In any case, the three implementation of the solvation
model lead to very different values for Δ𝐸𝑆𝑇 . Due to the larger CT
component in 3CT states in B2 with respect to the same state in B1,
the singlet-triplet inversion occurs at larger 𝑓

(
𝜂2
)

values.

C1 and C2 are very similar to B1 and B2, respectively, as they share
the same D and A units, even if connected in a different way. Result
in Figure 1.8c are interpreted in the same way as for B1 and B2.
NTOs (see Figure C.7 and C.9) show a smaller mixing of local and
CT triplet states than observed in B1/B2. Accordingly, for both C1

and C2, 3CT states have a larger weight of CT character than for B1

and B2, resulting in larger charge separation. However, negative
Δ𝐸𝑆𝑇 are observed again with most prominent effects in CLR.
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Figure 1.9: Antiadiabatic transition
energies of excited singlet (black)
and triplet (red) states of B1 as a
function of 𝑓

(
𝜂2
)
. The three panels

refer to results obtained truncating
the electronic basis to the őrst (a) 10
singlet and 10 triplet states; (b) 10
singlets and 20 triplets; (c) 17 singlet
and 26 triplets.
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Figure 1.10: Antiadiabatic Δ𝐸𝑆𝑇 as a
function of 𝑓
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for different num-
ber of excited singlet and triplet
states as denoted in the legend.

The FSM approach

The scattering of the results obtained in the three current PCM
implementations available in gaussian16 package, the impossibility
to calculate the transition dipole moment in the formally exact
EI approach, addressed by limiting the analysis to őrst order
perturbation theory in CLR, clearly point to some fundamental
problem in solvation models, that can be traced back to the adiabatic
approximation, as discussed in Ref. [9] and in section 1.4.1. To
demonstrate that also the singlet-triplet inversion calculated in
CLR and EI for some dyes in non-polar solvents is a spurious result
of the adiabatic approach to fast solvation, the B1 dye is selected as
a model system to compare adiabatic and antiadiabatic results.

To address the antiadiabatic problem the same FSM approach is
adopted as described in Section 1.4. Speciőcally, the Hamiltonian
in Eq. 1.17 is written on the basis of the eigenstates of the gas-phase
Hamiltonian, as obtained from TD-DFT calculations. The matrix
elements of the dipole moment operator on the same basis are
extracted using the multiwfn software.12

Results of course depend on the number of states included in
the basis sets and, since the diagonalization is performed inde-
pendently in the singlet and triplet subspaces, it is important to
consistently choose the number of states in the two subspaces.
Setting the same number of states in both subspaces (see Figure 1.9
and Figure 1.10) gives rise to the crossing of singlet and triplet
states. The reason for this result is easily recognized in a basis that
spans a much wider energy interval for the singlet vs the triplet
subspace. Increasing the number of triplet states, so that the same
energy window is roughly spanned in both subspaces, leads to
more reliable results. Data in Figure 1.9 and Figure 1.10 show that
spanning a range of ∼ 6 eV with 17 singlets and 26 triplets leads
towards convergence.

Right panels of Figure 1.11 collect antiadiabatic results for B1,
obtained setting the cavity radius to the Onsager’s radius, 𝑎 =

5.44 Å. These results clearly point to an excitation spectrum where
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Figure 1.11: Comparison between
adiabatic and antiadiabatic results
(left and right panels, respectively)
for B1 in the few state model ac-
counting for 17 singlet and 26 triplet
states. Top panels: Calculated exci-
tation energies vs 𝑓 (𝜂2) for states
1CT (blue), 3CT (red), 3LEA (black),
3LED (green). Bottom panels: the
calculated energy gap between the
lowest singlet and triplet states. In
left panels (adiabatic results) solid
lines refer to LR, symbols refer to
CLR, dashed lines refer to EI.

the transition energies for the state with CT character (either singlet
or triplet) are lowered due to the medium polarizability while
LE states are less affected. As expected, LR results are completely
off for CT states. On the other hand, EI largely overestimates the
stabilization of CT states and CLR underestimates it (cf. Figure 1.8b).
At variance with EI and CLR, antiadiabatic results point to a normal
order of excited states, with the lowest being a triplet.

Comparing antiadiabatic results in the right panels of Figure 1.11
with PCM results in Figure 1.8b may however be misleading due
to the approximations introduced to build the FSM adopted to
run antiadiabatic calculations. For a more stringent comparison
of antiadiabatic and adiabatic approximations, left panels of Fig-
ure 1.11 show results obtained in the adiabatic approximation, and
speciőcally in its LR, CLR and EI variants, as done in Section 1.4.

The őrst observation is that adiabatic results in Figure 1.11 com-
pare favourably with PCM results in Figure 1.8b, suggesting that
the adopted approximations capture most of the relevant physics.
More important is however the comparison between adiabatic and
antiadiabatic results in Figure 1.11, relevant to the same model.
Solvation effects on LE states are marginal, but, as for CT states,
neither EI nor CLR properly capture the stabilization of either the
singlet or triplet states with differences in the estimated transition
energies of several tenths of eV at 𝑓 (𝜂2) ∼ 2, as relevant to com-
mon organic media. Moreover, the antiadiabatic singlet-triplet gap
decreases considerably as a result of the medium polarizability,
but at variance with CLR and EI results, it stays positive. Quite
irrespective of the quality of the proposed molecular model, re-
sults in Figure 1.11 unambiguously demonstrate that the adiabatic
approach, when applied to describe the spectroscopic effect of the
medium polarizability, leads to unreliable results.
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Figure 1.12: Sketch of the struc-
tures of dipolar, quadrupolar
and octupolar 𝜋-conjugated chro-
mophores. The sketch for quadrupo-
lar and octupolar chromophores
with electron-donating core and
electron-accepting outer groups are
not shown.

1.6 Essential state models

Essential-state models (ESM) are a family of parametric Hamiltoni-
ans, that offer a reliable theoretical tool to address optical properties
of 𝜋-conjugated dyes, whose low-energy photophysics is governed
by charge-transfer (CT) transitions. In the ESM framework, CT
dyes are described in terms of electron donor (D) and electron
acceptor (A) groups linked by 𝜋-conjugated bridges. Accordingly,
the minimal electronic basis is obtained from the main charge
resonance structures.

Minimal models for CT interactions date back to the 50s, when
Mulliken proposed a two-state model to describe the optical prop-
erties of CT complexes of benzene and iodine in solution.[35] The
same model is at the core of Marcus theory for electron trans-
fer.[36] More recently, ESMs have been developed to describe
dipolar, quadrupolar and octupolar CT organic dyes, where elec-
tron donor and electron acceptor moieties are connected by a
𝜋-conjugated bridge.[12, 37ś40] The coupling with nuclear degrees
of freedom and the effect of polar solvation can be accounted for in
a straightforward way to describe the linear and non-linear optical
properties of these dyes.[37, 41] Moreover ESM offer a solid basis
to address aggregation, energy transfer and relaxation dynamics
in real-time.[11, 42ś44]

In the following section, ESMs are adopted to critically address the
effect of different theoretical approaches to electronic solvation.[45]
In Chapter 2, the two-state model for push-pull chromophores
will be extended to tackle the photophysics of thermally-activated
delayed ŕuorescence emitters, where triplet states, conformational
degrees of freedom and the surrounding environment play a
pivotal role.

1.6.1 Essential State Models for multipolar dyes

In this subsection the ESMs for dipolar, quadrupolar and octupolar
𝜋-conjugated chromophores (Figure 1.12) are described, addressing
the electronic problem and then extending the Hamiltonian to
account for molecular vibrations and solvation, using the models
discussed in Section 1.4. In Subsections 1.6.2, 1.6.3, 1.6.4, electronic
solvation of dipolar, quadrupolar and octupolar chormophores,
respectively, is discussed in detail.

The minimal basis for ESM is built from states that correspond
to the main charge resonance structures of the chromophore: one
neutral state, |𝑁⟩, and one zwitterionic state per each molecular
branch, |𝑍𝑖⟩, where 𝑖 counts the molecular branch. In quadrupolar
and octupolar dyes, the molecular branches are equivalent and
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13: The minimal basis used in ESM
corresponds to the diabatic basis, that
is composed of states with a def-
inite electronic character. For the
sake of generality, the basis used
in this subsection is unsymmetrized.
Using a symmetrized basis is con-
venient (and elegant) when deal-
ing with quadrupolar and octupo-
lar chromophores, revealing which
states couple under the action of the
Hamiltonian, and whether the tran-
sition between the eigenstates are
optically allowed or forbidden.

the zwitterionic states are degenerate, separated from |𝑁⟩ by a
gap of 2𝑧 and each coupled to |𝑁⟩ through the hopping integral
𝜏.[46]13

The electronic Hamiltonian is given by

Ĥ = 2𝑧𝜌̂ − 𝜏𝜎̂ (1.20)

where the ionicity and hopping operators, 𝜌̂ and 𝜎̂ respecively, are
deőned as

𝜌̂ =

𝑛∑
𝑖

|𝑍𝑖⟩ ⟨𝑍𝑖 | (1.21)

𝜎̂ =

𝑛∑
𝑖

|𝑍𝑖⟩ ⟨𝑁 | + ℎ.𝑐. (1.22)

where 𝑖 runs on the 𝑛molecular branches. The electronic properties
of the dye are fully determined in terms of the ionicity, deőned as
the expectation value of 𝜌̂ on the ground state:

𝜌 =
1

2

(
1 − 𝑧√

𝑧2 + 𝑛𝜏2

)
(1.23)

The ionicity measures the degree of charge separation and the
dipolar, quadrupolar or octupolar character of a chromophore in
its ground state.

In order to address spectroscopy, the dipole moment operator, 𝜇̂,
is deőned on the diabatic basis assuming that the only sizeable
term is the dipole moment of the zwitterionic states, 𝜇0. In the
reference frame deőned in Figure 1.12, the dipole moment operator
for different structures reads

𝜇̂𝑥 = 𝜇0𝜌̂ 𝜇̂𝑦 = 0 𝜇̂𝑧 = 0 dipolar (1.24)

𝜇̂𝑥 = 𝜇0 𝛿̂ 𝜇̂𝑦 = 0 𝜇̂𝑧 = 0 quadrupolar (1.25)

𝜇̂𝑥 = 𝜇0 𝛿̂𝑥 𝜇̂𝑦 = 𝜇0 𝛿̂𝑦 𝜇̂𝑧 = 0 octupolar (1.26)

where for quadrupolar chromophores the auxiliary operator is[12]

𝛿̂ = |𝑍1⟩ ⟨𝑍1 | − |𝑍2⟩ ⟨𝑍2 | (1.27)

Analogously, for octupolar chromophores the auxiliary operators
are[47]

𝛿̂𝑥 =

√
3

2
(|𝑍2⟩ ⟨𝑍2 | − |𝑍3⟩ ⟨𝑍3 |) (1.28)

𝛿̂𝑦 = − |𝑍1⟩ ⟨𝑍1 | +
1

2
(|𝑍2⟩ ⟨𝑍2 | − |𝑍3⟩ ⟨𝑍3 |) (1.29)

The auxiliary operators measure the charge unbalance in symmetric
structures.
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14: Generally, reaching convergence
in optical spectra requires 𝑀 ∼ 10.

The coupling between electronic and nuclear motion strongly af-
fects optical properties of 𝜋-conjugated chromophores, and is the
origin of the vibronic structure of optical spectra, of the Stoke’s
shift, and of relaxation phenomena and symmetry breaking in
quadrupolar and octupolar structures. In ESMs, one effective molec-
ular coordinate per molecular branch is taken into account.[37]
Assuming displaced harmonic potentials with the same force con-
stant for each diabatic state (linear electron-vibration coupling),
the vibrational Hamiltonian reads

Ĥ𝑣 = −
√

2𝜖𝑣𝜔𝑣
𝑛∑
𝑖=1

𝑞̂𝑖 |𝑍𝑖⟩ ⟨𝑍𝑖 | +
1

2

𝑛∑
𝑖=1

(
𝜔2
𝑣 𝑞̂

2
𝑖 + 𝑝̂2

𝑖

)
(1.30)

where 𝜔𝑣 is the frequency associated to the vibrational modes,
𝜖𝑣 is the vibrational relaxation energy and 𝑝̂𝑖 is the conjugated
momentum to 𝑞̂𝑖 mode. Vibrational modes are treated as quantum
coordinates in a non-adiabatic approach. In second quantization:

𝑞̂𝑖 =

√
ℏ

2𝜔𝑣

(
𝑎̂†𝑖 + 𝑎̂𝑖

)
(1.31)

𝑝̂𝑖 = 𝑖

√
ℏ𝜔𝑣

2

(
𝑎̂†𝑖 − 𝑎̂𝑖

)
(1.32)

where 𝑎̂†
𝑖

(𝑎̂𝑖) is the bosonic creation (annihilation) operator acting
on the states of the 𝑖-th oscillator.

The coupled electron-nuclear problem is then solved writing and
diagonalizing the total Hamiltonian on the basis spanned by the
product of the electronic and vibrational basis. To this aim, the
vibrational basis must be truncated to a sufficiently large number
𝑀 of vibrational states to achieve convergence of the properties of
interest, yielding a 𝑛𝑀𝑛-dimensional basis.14 The diagonalization
of the non-adiabatic Hamiltonian yields the numerically exact
vibronic eigenstates. Permanent and transition dipole moments
are computed rotating on the eigenstate basis the dipole moment
operator written on the diabatic basis, allowing the calculation of
absorption and emission spectra using the procedure described in
Appendix A. In particular, the absorption spectrum is computed
assuming that only the lowest vibronic eigenstate is populated at
ambient temperature, while the emission spectrum is computed
assuming that only the lowest vibronic eigenstate of the excited state
manifold, i.e. the Kasha’s state, is populated, implicitly considering
that the internal conversion rate is much faster than the emission
rate.

Interaction with the dielectric solvent is accounted for in the
reaction őeld approach discussed in Section 1.2.[48] The reaction
őeld couples to the dipole moment operator, therefore only one of
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its components must be taken into account for linear chromophores
(dipolar and quadrupolar), co-linear with the CT direction. Two
components must be taken into account for octupolar dyes, as
shown in Figure 1.12.

The antiadiabatic correction, which introduces two-electron in-
tegrals, has a very simple form and a clear physical meaning in
ESM. Indeed, for dipolar, quadrupolar and octupolar dyes one
őnds that ®̂𝜇2 = 𝜇2

0𝜌̂ and the electronic solvation Hamiltonian in
the antiadiabatic approximation (eq. 1.17) reads

Ĥ𝑒𝑙 = −𝜖𝑒𝑙 𝜌̂ (1.33)

where 𝜖𝑒𝑙 = 𝜇2
0𝑟𝑒𝑙/2 is the electronic solvent relaxation energy,

which measures the amount of energy gained by the system in a
zwitterionic state due to the relaxation of the electronic clouds of
the solvent molecules. In other words, when going from gas phase
to solution, the energy of the zwitterionic states, 2𝑧, is renormalized
by the electronic solvent relaxation energy, so that 𝑧 → 𝑧 − 𝜖𝑒𝑙/2.
This result is general as it does not depend on the solvation model,
aside from the dipolar approximation. Eq. 1.7 can be used to relate
𝜖𝑒𝑙 with the refractive index of the solvent in the assumption of a
spherical cavity. Due to the small variability of refractive indices
in typical liquid organic solvents used in UV-vis spectroscopy, the
relevant range of 𝜖𝑒𝑙 values is narrow, and antiadiabatic corrections
are generally accounted for intrinsically in the 𝑧 parameter when
ESMs are parametrized against experimental spectra.

The adiabatic approximation is adopted to treat orientational
solvation, neglecting the kinetic energy operators associated to the
components of the orientational őeld. The orientational solvation
Hamiltonian reads

Ĥ𝑜𝑟 =

3∑
𝛼=1

𝐹𝑜𝑟,𝛼
𝜇̂

𝜇0
+

3∑
𝛼=1

𝐹2
𝑜𝑟,𝛼

4𝜖𝑜𝑟
(1.34)

where the sums run on the𝑁𝛼 = 𝑥, 𝑦, 𝑧 components of the reaction
őeld (effectively one component for linear chromophores and two
for octupolar chromophores), and the dipole moment 𝜇0 has been
collapsed into 𝐹𝑜𝑟 , so that the reaction őeld is expressed in energy
units.

In the adiabatic approximation, 𝐹𝑜𝑟 is a classical coordinate, so
that the total Hamiltonian is diagonalized for different values of
𝐹𝑜𝑟 . The energy of the electronic (or vibronic) states depends on
𝐹𝑜𝑟 , deőning the so called potential energy surfaces (PES). For
each 𝐹𝑜𝑟 value, the matrix elements of the molecular Hamiltonian
are renormalized according to eq. 1.34, and all the properties
relevant to spectroscopy, such as the permanent dipole moments
and the transition dipole moments, are computed rotating on
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the adiabatic basis the relevant operators written on the diabatic
basis. For a given vibronic eigenstate, the minimum in the 𝐹𝑜𝑟-
dependent PES is the equilibrium position. In macroscopic samples,
thermal ŕuctuations create a distribution of 𝐹𝑜𝑟 values around
the equilibrium position, so that the properties originate from
a Boltzmann distribution of chromophores in equilibrium with
the solvent molecules that surround them, and can be effectively
computed as thermal averages over the population of the relevant
electronic (or vibronic) state of the solute.

Absorption spectra are computed for each value of 𝐹𝑜𝑟 , assuming
that only the lowest vibronic state is populated at ambient tempera-
ture. The total absorption spectrum is then obtained weighting the
𝐹𝑜𝑟-dependent spectra by the thermal distribution of the lowest
vibronic eigenstate. Analogously, emission spectra are computed
for each value of 𝐹𝑜𝑟 , assuming that only the lowest vibronic
eigenstate of the excited state manifold (i.e. the Kasha’s state) is
populated at ambient temperature. The total emission spectrum is
then obtained weighting the 𝐹𝑜𝑟-dependent emission spectra by
the thermal distribution of the Kasha’s state.

Since 𝜖𝑜𝑟 enters eq. 1.34 as the inverse force constant of the restoring
harmonic potential, broader thermal distributions are expected as
the polarity of the solvent increases, leading to inhomogeneous
broadening of absorption and emission spectra. Moreover, for
different values of 𝜖𝑜𝑟 , different equilibrium positions along 𝐹𝑜𝑟
may be obtained for the ground and the emissive (Kasha) states,
giving rise to solvatochromism. In symmetric systems, such as
quadrupolar and octupolar chromophores polar solvation can drive
symmetry breaking.[12] In the following subsections, electronic
solvation is discussed and purely non-polar solvents are taken into
account, effectively neglecting orientational degrees of freedom of
the solvent. However, notions related to polar solvation are useful
to understand the effect that an adiabatic treatment has on the
system when electronic degrees of freedom are mistakenly treated
with the same approximation as orientational degrees of freedom,
i.e. under the adiabatic approximation.

1.6.2 Two-state model for dipolar dyes

Neglecting electron-vibration coupling (𝜖𝑣 = 0 in eq. 1.30), the
molecular properties of polar Dś𝜋śA dyes only depend on the 𝑧/𝜏
ratio. In the following sections, units are used so that ℏ = 1 and
𝜏 is set as the energy unit. The actual 𝜏 value for most CT dyes
is in the order of 1 eV, even if for dyes of interest for thermally
activated delayed ŕuorescence, the typical 𝜏 values are one order
of magnitude smaller. All properties of interest can be expressed as
a function of 𝜌, the ground state ionicity (eq. 1.23). The transition
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dipole moment, 𝜇𝐶𝑇 =
√
𝜌 (1 − 𝜌), shows a maximum at 𝜌 =

0.5. The transition frequency is 𝜔𝐶𝑇 = 𝜏/
√
𝜌 (1 − 𝜌), showing a

minimum at 𝜌 = 0.5. The ground state permanent dipole moment
is 𝜇G = 𝜇0𝜌 and the excited state one is 𝜇E = 𝜇0 (1 − 𝜌). The
mesomeric dipole moment, 𝜇E − 𝜇G = 𝜇0 (1 − 2𝜌), is positive for
mostly neutral dyes (𝜌 < 0.5) and negative for mostly zwitterionic
dyes (𝜌 > 0.5). Accordingly, mostly neutral dyes show a normal
solvatochromic behavior (the absorption band redshifts upon
increasing the solvent polarity), while mostly zwitterionic dyes
show inverse solvatochromism (the absorption band blueshifts
upon increasing the solvent polarity), so that simple spectroscopic
data allow to discriminate between the two classes of polar dyes.

Figure 1.13 shows results for a mostly neutral dye (𝑧 = 0.75,
corresponding to 𝜌𝑔𝑎𝑠 = 0.2) and a mostly zwitterionic dye (𝑧 =

−0.75, 𝜌𝑔𝑎𝑠 = 0.8). The analytic results for the purely electronic
model (𝜖𝑣 = 0) in panels aśc and fśh show the evolution of the
molecular properties when 𝜖𝑒𝑙 increases from 0, as relevant to the
gas phase, to larger values, typical of organic media. In all cases,
the ionicity 𝜌 increases with 𝜖𝑒𝑙 , as a result of the stabilization
of charge-separated states by the electronic polarizability of the
environment. The adiabatic results (blue lines in Figure 1.13) show
sizable deviation from the antiadiabatic results (black curves),
but the most clear failure of the adiabatic approach is recognized
in having two different sets of results, corresponding to the two
different adiabatic Hamiltonians obtained upon őxing the reaction
őeld to the equilibrium value for the ground state (blue continuous
lines) or for the excited state (blue dotted lines). This is clearly
unphysical, since the electronic clouds of the solvent molecules
readjust quickly (instantaneously in the antiadiabatic limit) to the
charge reorganization in the solute. In any case, taking the adiabatic
results at face value, one should use the adiabatic Hamiltonian
with 𝐹𝑒𝑙 equilibrated to the ground state or to the excited state
to simulate absorption or ŕuorescence processes, respectively. A
spurious red-shift of the ŕuorescence band with respect to the
absorption band would then be observed.

Current implementations of continuum solvation models in quan-
tum chemical packages recognize the problem and address the fast
nature of electronic solvation imposing that the fast component
of the reaction őeld 𝐹𝑒𝑙 is instantaneously equilibrated to each
state. Accordingly, absorption and ŕuorescence involve the same
two states: the ground state obtained diagonalizing the adiabatic
Hamiltonian with 𝐹𝑒𝑙 equilibrated to the ground state, and the
excited state obtained diagonalizing the adiabatic Hamiltonian
with 𝐹𝑒𝑙 equilibrated to the őrst excited singlet. Along these lines,
the spurious adiabatic Stokes shift disappears but another major
problem arises as optical transitions are calculated between two
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states obtained from the diagonalization of two different adia-
batic Hamiltonians. The unphysical nature of this approach is best
demonstrated in the so-called state-speciőc implementations of con-
tinuum solvation models where the calculation of transition dipole
moments, and hence of spectral intensities, is impossible. This issue
is circumvented in the perturbative CLR approach (corrected linear
response approach) that adopts őrst-order perturbation theory to
correct the state energies, leaving the wavefunctions unaffected.
However, a perturbative treatment deőnitely represents a low-
quality approach, if compared with the formally exact adiabatic
results of the state-speciőc approach. More generally, the major is-
sue of current implementations of solvation models, relying on the
adiabatic treatment of fast degrees of freedom, cannot be relieved
by degrading the results via a low-order perturbative approach.

To address vibronic bandshapes in ESMs, electron-vibration cou-
pling is accounted for in a non-adiabatic calculation. Speciőcally,
the molecular Hamiltonian (modiőed as in eq. 1.33 to account for
fast solvation in the antiadiabatic limit, or account for the static
corrections due to the equilibrated 𝐹𝑒𝑙 in the adiabatic limit) is
solved by writing the corresponding matrix on the basis deőned
as the direct product of the electronic basis states times the eigen-
states of the harmonic oscillator(s) in the last term of eq. 1.30. Of
course, the vibrational basis is truncated to a large enough number
of vibrational states as to obtain convergence. Once the molecu-
lar Hamiltonian is diagonalized, the absorption and ŕuorescence
spectra are calculated from the transition energies and transition
dipole moments assigning each vibronic transition a Gaussian
lineshape with a őxed linewidth (in this work it is set to 0.04),
as explained in the previous section and in Appendix A. In the
antiadiabatic approach to fast solvation, the eigenstates obtained
upon diagonalization of a single effective Hamiltonian enter the
calculation of both the absorption and ŕuorescence spectra. On
the other hand, in the adiabatic approach to fast solvation, two
different Hamiltonians with 𝐹𝑒𝑙 equilibrated either to the ground
or to the excited state are used for the calculation of the absorption
and ŕuorescence spectra, respectively. As shown in Figure 1.13,
the rightmost panels relevant to each dye show an example of
vibronic bandshapes calculated for the absorption and emission
spectra setting 𝜖𝑣 = 0.3. Since band shape are to be compared, all
normalized spectra are translated to set the origin of the energy
axis at the 0ś0 transition energy. The calculated absorption and
ŕuorescence bandshapes in the adiabatic approximation for fast
solvation are marginally different from the antiadiabatic results.

1.6.3 Quadrupolar dyes and symmetry-breaking
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Figure 1.13: Fast solvation effects on the properties of polar chromophores with 𝜌𝑔𝑎𝑠 = 0.2 (left side) or 𝜌𝑔𝑎𝑠 = 0.8 (right
side). On each side, right panels show properties (ground-state ionicity, transition dipole moment, transition frequency)
as a function of 𝜖𝑒𝑙 for a system with 𝜖𝑣 = 0 . The right panels show vibronic bandshapes calculated for a system with
𝜏 = 0.3 and 𝜖𝑣 = 0.32. Antiadiabatic (antiadiabatic) results: black lines; Adiabatic (AD) results with 𝐹𝑒𝑙 equilibrated with
the ground state (full blue lines) or with the optically-allowed excited state (dotted blue lines)
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Figure 1.14: Sketch of the essential
states of class I, II and III quadrupo-
lar chromophores

Symmetry is exploited to address the electronic problem of quadrupo-
lar dyes, combining the two degenerate basis states |𝑍1⟩ and |𝑍2⟩
as |𝑍±⟩ = (|𝑍1⟩ ± |𝑍2⟩) /

√
2. The mixing between |𝑍+⟩ and |𝑁⟩

results in a ground state |G⟩ and an excited state |E⟩. The excited
state |E⟩ cannot be reached upon one-photon absorption and is
located at higher energy than the optically active state |C⟩ = |𝑍−⟩.
The mixing between |𝑁⟩ and |𝑍+⟩, measured by 𝜌, only depends
on the 𝑧/𝜏 ratio. As sketched in Figure 1.14, the systems with large
mixing (𝜌 ∼ 0.5) are characterized by large energy gaps among
all states (class II dyes), while the systems with small mixing
(𝜌 → 0 or 𝜌 → 1 class I or III dyes, respectively) show a pair of
quasi-degenerate eigenstates, either in the excited or ground state
regions, signalling a conditional instability.

By studying the problem for the isolated molecule in the gas
phase, valuable information can be collected about the tendency
of the dye towards symmetry breaking, adopting an adiabatic
approximation to treat molecular vibrations. Along these lines,
the potential energy surfaces (PESs) for the ground and excited
states can be drawn and analytical results may be obtained for the
phase diagram of quadrupolar dyes (Fig 1.15). In the (𝜖𝑣 ,𝜌) plane,
the black curves mark the boundaries between the three different
classes: for class I dyes the PES associated with the őrst excited
state shows a double minimum along the antisymmetric mode,
suggesting a tendency to symmetry breaking for this state. Class II
dyes are characterized by well-behaved PES for all the three states,
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Figure 1.15: Phase diagram for
quadrupolar dyes. The black line
show antiadiabatic (antiadiabatic)
results, the blue lines show adiabatic
(AD) results for 𝜖𝑒𝑙 = 0.3

1.00.50.0
0.0

0.5

1.0

1.5

I

II

III

AA

AD

and are therefore not prone to symmetry breaking. Finally, class III
dyes are characterized by a bi-stable ground state. It is important to
underline at this stage that symmetry breaking cannot be observed
in an isolated molecule.[49] The double minimum in the excited or
ground state of the systems in class I or III, respectively, does not
necessarily imply a symmetry breaking phenomenon and őnite-
size systems will oscillate between the two minima recovering
the full symmetry in a sort of dynamical JahnśTeller effect.[50] Of
course, a genuine symmetry breaking may be observed if the dye
is dissolved in a polar solvent. Polar solvation, corresponding to an
extremely slow motion, can be described accurately in the adiabatic
approximation, and the relevant relaxation energy, 𝜖𝑜𝑟 = 𝜇2

0𝑟𝑒𝑙/2,
enters the picture summing up to 𝜖𝑣 in the phase diagram shown
in Figure 1.15, thus widening the region where either ground or
excited state instability occurs. Even more importantly, the slow
motion associated with polar solvation basically freezes the system
in one of the minima not allowing the tunneling in the time window
of relevance to optical spectroscopy. Symmetry breaking driven
by polar solvation in the excited state of class I polar dyes quite
naturally explains the large positive solvatochromism observed in
the ŕuorescence spectra of these systems, while the ground-state
symmetry breaking in class III dyes is the key to understand the
anomalous absorption solvatochromism observed in long cyanine
dyes, in spite of their nominally symmetric structure.[51ś53]

The phase diagram in Figure 1.15 is not affected if fast solvation
is accounted for. Indeed in the antiadiabatic approximation, the
electronic polarizability of the solvent lowers the energy gap 2𝑧, as
discussed in Section 1.6.2, leading to an increase of 𝜌. However, the
phase diagram in Figure 1.15 relies on 𝜌 and hence still applies: the
black lines separating the different regions in the phase diagram are
not affected by the variation of the medium refractive index. Instead,
if the adiabatic approximation is incorrectly enforced to describe
fast solvation, the relevant relaxation energy 𝜖𝑒𝑙 would enter the
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picture much as in the case of polar solvation, hence summing
up to 𝜖𝑣 , as shown in Figure 1.15, favoring symmetry breaking.
In other words, as illustrated in the phase diagram in Figure 1.15
for the speciőc case 𝜖𝑒𝑙 = 0.3 (blue lines), the boundaries between
the different regions in the phase diagram would be downshifted
by 𝜖𝑒𝑙 , artiőcially widening the instability regions associated with
class I and class III dyes.

Figure 1.16 show analytical results for the electronic model (𝜖𝑣 =
𝜖𝑜𝑟 = 0) relevant to the three quadrupolar systems with 𝑧 adjusted
to have 𝜌𝑔𝑎𝑠 = 0.2, 0.5 and 0.8, as representative of class I, II
and III dyes, respectively. In all cases, the antiadiabatic results
(black lines) predict an increase of 𝜌 upon increasing the medium
polarizability. This always implies an increase of the transition
dipole moment 𝜇𝐶𝑇 for the allowed G → C transition. For the class
I system (𝜌𝑔𝑎𝑠 = 0.2), the two transition frequencies (G → C and
G → E) decrease considerably with the medium refractive index,
while the effects are less pronounced in the other two systems, with
the lowest (highest) transition decreasing (increasing) in energy
with 𝜖𝑒𝑙 .

Enforcing the adiabatic approximation for fast solvation leads to
different Hamiltonians, depending on the reference state selected
to equilibrate the reaction őeld. The continuous and dotted blue
lines shown in Figure 1.17 refer to the adiabatic results obtained
by őxing 𝐹𝑒𝑙 to the equilibrium value relevant to the ground state
or to the optically-allowed (C) excited state, respectively. Since
the ground-state dipole moment vanishes as long as the ground
state symmetry is conserved, the adiabatic results obtained for
𝐹𝑒𝑙 equilibrated to the ground state do not vary at all with 𝜖𝑒𝑙 as
long as the ground-state symmetry is preserved. This is the case
for the quadrupolar dye with 𝜌𝑔𝑎𝑠 = 0.2 (left panels), where no
variation of either 𝜌G or 𝜇𝐶𝑇 or 𝜔𝐶𝑇 is obtained in the ground-state
adiabatic approximation (full blue lines) when 𝜖𝑒𝑙 is increased. On
the other hand, the adiabatic results obtained for 𝐹𝑒𝑙 equilibrated
to the optically-allowed excited state do not vary at all with 𝜖𝑒𝑙 as
long as the excited-state symmetry is preserved. This is the case
of the quadrupolar dye with 𝜌𝑔𝑎𝑠 = 0.8 (right panels), where no
variation of either 𝜌G or 𝜇𝐶𝑇 or 𝜔𝐶𝑇 is obtained in the excited state
adiabatic approximation (dotted blue lines) when 𝜖𝑒𝑙 is increased.
The adiabatic results contrast sharply with the antiadiabatic results
that instead properly account for the effect of solvent polarizability
on the molecular properties.

However, the most striking failure of the adiabatic approximation to
fast solvation in quadrupolar systems is the prediction of spurious
symmetry-breaking phenomena. The class II system in the middle
panels of Figure 1.16 (𝜌𝑔𝑎𝑠 = 0.5) is a paradigmatic example:
if electronic solvation is properly described in the antiadiabatic
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Figure 1.16: Fast solvation effects on
the properties (ground-state ionic-
ity, transition dipole moment, transi-
tion frequency) of quadrupolar dyes
belonging to different classes and
with 𝜖𝑣 = 0. Two transition ener-
gies are shown corresponding to the
C and E states (lower and higher
transition energy, respectively). The
transition dipole relevant to the tran-
sition from the ground to the E state
vanishes and is not shown. Antiadi-
abatic (antiadiabatic) results: black
lines; Adiabatic (AD) results with
𝐹𝑒𝑙 equilibrated with the ground
state (full blue lines) or with the
optically-allowed excited state (dot-
ted blue lines). The abrupt changes
observed in adiabatic results mark
the occurrence of symmetry break-
ing.
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approximation, the system is not prone to symmetry breaking,
but if a ground state adiabatic approach is enforced, the ground
state undergoes symmetry breaking at 𝜖𝑒𝑙 ∼ 0.75, as shown by the
abrupt variation of the molecular properties (full blue lines). At
the same time, the symmetry is preserved in the excited state, so
that in the adiabatic approximation, when 𝐹𝑒𝑙 is equilibrated to the
C state, 𝜖𝑒𝑙 does not affect the molecular properties (dotted blue
lines). For the system with 𝜌𝑔𝑎𝑠 = 0.8, the ground-state adiabatic
approximation predicts symmetry breaking in the ground state for
𝜖𝑒𝑙 ∼ 0.25, while the symmetry is preserved in the C state. For the
system with 𝜌𝑔𝑎𝑠 = 0.2, the excited state adiabatic approximation
predicts symmetry breaking in the C state for 𝜖𝑒𝑙 ∼ 0.30, while the
symmetry is preserved in the ground state.

The vibronic bandshapes are shown in Figure 1.17 for the same three
representative systems, but őxing 𝜖𝑣 = 0.3 and 𝜖𝑒𝑙 = 0.32. Marginal
differences between the antiadiabatic and adiabatic results are
found as long as the symmetry is conserved in the adiabatic
calculation, while sizable deviations are of course observed for
emission spectra of class I dyes and huge deviations are seen for
the absorption spectra of class III dyes, due to spurious symmetry-
breaking effects obtained in the adiabatic picture.

1.6.4 Octupolar dyes and symmetry-breaking

The three-fold rotation axis in octupolar chromophores implies the
presence of doubly degenerate states, which leads to instabilities,
precluding the presence of class II dyes, as shown in the phase
diagram in the bottom panel of Figure 1.18. As in the case of
quadrupolar chromophores, the phase diagram, plotted against
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Figure 1.17: Vibronic absorption
(top) and ŕuorescence (bottom) spec-
tra for quadrupolar dyes of different
classes, for 𝜖𝑣 = 0.3 and 𝜖𝑒𝑙 = 0.32𝜏.
Black lines: antiadiabatic results;
Blue lines: adiabatic results.

the ground-state ionicity, is independent of 𝜖𝑒𝑙 in the correct antia-
diabatic limit (black line). In the adiabatic approximation instead
the boundary is lowered along the ordinate by 𝜖𝑒𝑙 (blue line). Class
I octupolar chromophores are characterized by a symmetry break-
ing in the őrst excited state, while class III octupolar chromophores
show symmetry breaking both in the ground state and őrst excited
state.

The left panels of Figure 1.18 show the molecular properties cal-
culated for an octupolar dye with 𝜌𝑔𝑎𝑠 = 0.2 (to the best of our
knowledge there are no examples of octupolar dyes of class III).
The antiadiabatic calculation predicts, as expected, an increasing
contribution of zwitterionic states into the ground state (increas-
ing 𝜌) when 𝜖𝑒𝑙 is increased. Concomitantly, the transition dipole
moment towards the optically-allowed state, corresponding to
a doubly degenerate state, increases while the excitation energy
towards either the lowest-energy (allowed) or the highest-energy
(forbidden) excited states decreases. The system remains stable,
preserving its symmetry, as long as slow degrees of freedom do not
enter into play. The adiabatic calculation instead predicts no effect
of the medium polarizability when 𝐹𝑒𝑙 is equilibrated to the ground
state. On the other hand, when the reaction őeld is equilibrated
to the lowest excited state, clear signatures of a spurious symme-
try breaking appear. As for vibronic bandshapes, the results in
Figure 1.18d and Figure 1.18e for the dye with 𝜌𝑔𝑎𝑠 = 0.2, 𝜖𝑣 = 0.3

and 𝜖𝑒𝑙 = 0.32 show marginal differences between the spectra
calculated in the adiabatic vs the antiadiabatic approximation.
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Figure 1.18: Top panels: fast solvation effects on an octupolar chromophore with 𝜌𝑔𝑎𝑠 = 0.20. Black lines show antiadiabatic
(antiadiabatic) results; blue lines show adiabatic (AD) results with 𝐹𝑒𝑙 equilibrated with the ground state (continuous
lines) or with the optically-allowed excited state (dotted lines). Panels (a-c) show the electronic properties (ground-state
ionicity, transition dipole moment, transition frequencies) as a function of 𝜖𝑒𝑙 for a system with 𝜖𝑣 = 0. Panels (d) and (e)
show vibronic absorption and ŕuorescence spectra, respectively, calculated for 𝜖𝑒𝑙 = 0.32 and 𝜖𝑣 = 0.3. Bottom panel:
phase diagram (𝜖𝑒𝑙 = 0.3 for the adiabatic, AD, result).

1.7 Conclusion

Solvation is a complex phenomenon involving several degrees of
freedom characterized by different timescales. In particular, a slow
component of solvation is driven by the orientational motion of
polar solvent molecules around the solute, and is only relevant
in polar solvents. Another component is instead always present,
irrespective of the solvent polarity, and is related to the solvent
electronic polarizability, as measured by the solvent refractive index.
This component is related to the rearrangement of the electronic
clouds of solvent molecules and therefore corresponds to a fast
motion, since the electronic excitation of the solvent typically falls
in the mid/far-UV region, i.e. at signiőcantly higher frequencies
than the relevant degrees of freedom of organic dyes. The slow
orientational component of solvation can be safely dealt with in
the adiabatic approximation, but the same approximation is not
suitable to treat fast solvation, as it does not account for the fast
response of the solvent electronic clouds in response to the charge
ŕuctuations in the solute.

Explicit-solvent approaches[54ś63] relying on QM-MM methods
are often adopted to investigate solvent effects on the spectroscopic
properties of organic dyes. Even more popular are continuum
solvation models, like PCM, COSMO, etc. . . [54, 58, 64ś80] As
extensively discussed in this chapter, none of these approaches
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properly accounts for the electronic polarizability of the medium,
leading to results that need a careful consideration. Several variants
of continuum solvation models are discussed in the literature,[16,
17, 19, 81ś83] that face the problem of fast solvation from slightly
different perspectives, however, with the notable exception of early
attempts,[84, 85] all approaches rely on the diagonalization of a
molecular Hamiltonian obtained for a őxed potential from envi-
ronmental charges. Whatever choice is made for the deőnition of
the excited states of interest for absorption and emission processes,
these methods are bound to fail, since the actual molecular states
for a molecule in a polarizable environment should all be obtained
diagonalizing a single Hamiltonian where the environmental po-
larizability affects in different ways the energy of the states of
the systems and their coupling. Similarly quantum-classical ap-
proaches with explicit solvent models (QM-MM approaches) do
not properly account for the solvent polarizability, even when a
polarizable environment is considered. In fact in polarizable models,
one allows the charges on the solvent molecules to reorganize in
response to the solute perturbation, but the molecular Hamiltonian
is always deőned accounting for a frozen potential generated by
the surrounding charges.

In this chapter, the adiabatic approximation on electronic degrees
of freedom of the solvent is critically discussed, and several short-
comings are revealed. In section 1.4.1, with reference to widely
studied dipolar and quadrupoar dyes, the main quantities relevant
to spectroscopy are adressed describing the solute in terms of
a few-state electronic basis. A more general approach has been
adopted in section 1.6, where dipolar, quadrupolar and octupolar
dyes are modelled using essential state models and addressing
electronic properties as well as spectral bandshape, extending the
model to account for electron-vibration coupling through effective
molecular coordinates. In these cases, the adiabatic approximation
leads to an incorrect description not only of the transition prop-
erties, but of the molecular ground state itself (Section 1.4.1 and
1.6.2). For example, in polar dyes with a largely neutral ground
state, the adiabatic approximation underestimates the increase of
the ground state dipole moment as due to the polarizability of the
environment, simply because the equilibrium reaction őeld for a
largely neutral ground state is small and cannot account for the
large stabilization of polar charge ŕuctuations.

Moreover, when applied to quadrupolar and octupolar dyes, the
adiabatic approximation to fast solvation can drive symmetry
breaking in systems where it cannot possibly occur (section 1.6.3
and 1.6.4). Speciőcally, genuine symmetry breaking can never
occur in isolated (gas phase) molecular systems, nor can it be
induced by fast solvation. Only polar solvation, associated with an
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extremely slow, classical coordinate may drive a bona őde symmetry
breaking in a molecular system. Symmetry breaking phenomena
as often discussed in the chemical literature in the gas phase or
in non-polar solvents are actually artifacts associated with the
adiabatic treatment of vibrational degrees of freedom and/or of
fast solvation.

In section 1.5, electronic solvation of TADF dyes is discussed. TADF
dyes are particularly delicate to model since the subtle interplay
between localized and CT states makes environmental or matrix
effects crucial in the deőnition of the tiny energies, the singlet-
triplet gap and the spin-orbit coupling, that deőne the system
performance.[32ś34, 45, 56, 65, 78, 80, 86] Of special concern is
the inversion of the lowest singlet and triplet states calculated
in the adiabatic CLR and EI implementations of PCM for some
TADF-dyes. Indeed the breaking of the Hund rule was reported in
so called multi-resonant CT systems, a family of strongly correlated
molecular systems, typically with highly symmetric structures,
exhibiting a characteristic spatial separation of HOMO and LUMO
orbitals that are delocalized on the whole molecular structure.[87ś
91] The molecules discussed here do not show these characteristics.
Moreover, the singlet-triplet inversion observed in multi-resonant
CT systems requires high quality ab initio calculation, involving at
least double excitations.[87, 88] The inclusion of a standard TADF
dye in a polarizable environment was also suggested as a possible
origin for singlet-triplet inversion.[56, 87] However these results
were obtained and discussed treating the medium polarizability in
the adiabatic approximation and deserve a careful reconsideration,
either adopting the more adequate antiadiabatic approximation or
possibly addressing both the solute and its surrounding medium
in a fully quantum mechanical approach.

Since the adiabatic approximation is not valid for the electronic
degrees of freedom of the solvent, models that allow to properly
account for the dynamical response of the solvent must be de-
veloped. In this Chapter, as a proof-of-concept the reaction őeld
model is adopted to describe the solute-solvent interaction. It is
much simpler than implicit solvation models like COSMO or PCM,
but it aims at the same physics (i.e. dielectric solvation) and rep-
resents a good starting point to address the core concept of this
work: solvent and solute electronic degrees of freedom related
to the electronic polarizability must be coupled accounting for
the relative dynamics, with electronic degrees of freedom of the
solvent being faster than solute degrees of freedom.

The non-adiabatic approach discussed in section 1.3 describes
the solvent electronic polarization as an explicit quantum mode,
leading to a Hamiltonian written on the basis spanned by the
direct product of solute and solvent basis, that can be diagonalized
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to achieve numerically exact results. The non-adiabatic approach,
however, is not an implicit solvation model, as knowledge of the
solvent excitations is required. Since the electronic degrees of
freedom of the solvent resonate at higher frequencies with respect
to electronic degrees of freedom of the solute, the antiadiabatic
approximation is adopted, that assumes that the solvent electronic
polarization responds instantaneously to charge ŕuctuations in
the solute. The antiadiabatic approximation leads to a proper
implicit solvation model, not requiring any detailed knowledge of
the solvent dielectric response. The solvent electronic degrees of
freedom are renormalized away in the antiadiabatic limit, leading
to an effective Hamiltonian with the same size as the gas phase
Hamiltonian.

In the early 90’s antiadiabatic approaches were proposed for fast
solvation, but never gained traction.[84, 85] Most probably, this is
related to the choice of a wrong name for the approximation that
was called Born-Oppenheimer rather than antiadiabatic. Indeed
the Born-Oppenheimer approximation is a speciőc ŕavor of the
most general adiabatic approximation that allows to separate slow
degrees of freedom from relevant electronic degrees of freedom,
through the deőnition of an electronic Hamiltonian that paramet-
rically depends on slow coordinates.[92] It is true that also slow
degrees of freedom are őnally treated in the adiabatic approx-
imation, but this is only possible after the adiabatic electronic
Hamiltonian (deőned for frozen slow coordinates) is diagonalized.
Using the name Born-Oppenheimer to address an antiadiabatic
approximation, where instead a single electronic Hamiltonian is
deőned, was therefore unfortunate and may be the reason why
the strategy was not recognized as the only viable approach to
renormalize out the of the problem the degrees of freedom related
to fast solvation.

The term antiadiabatic, borrowed from the physics community
working on polarons and superconductivity,[93] was used in the
context of fast solvation in 1999,[37] with reference to semiempirical
model Hamiltonians, and was proposed again in the context
of quantum chemical approaches.[9] Other authors have also
recently recognized the value of the antiadiabatic approach to treat
fast solvation.[94] Unfortunately, these authors stick on the Born-
Oppenheimer notation, that obscures the qualitatively different
nature of the antiadiabatic approach with respect to the adiabatic
approximation. As extensively discussed here, the antiadiabatic
approximation can be applied to solute degrees of freedom slower
than the electronic degrees of freedom of the solvent, typically
located deep in the UV (energies much larger than 6 eV): applying
it to all electronic excitations in the solute is bound to fail, as
also demonstrated in Ref. [94]. However, a clever choice of the
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15: This is the case for some matrices
used in TADF applications

basis states can be made as to renormalize only relevant degrees
of freedom, and, as the results in Figure 1.9 show for a speciőc
example, converged antiadiabatic results can be obtained working
in an energy window well within the critical threshold for common
solvents.

While the adiabatic approximation can never be applied to elec-
tronic solvation, whose dynamics is faster than the relevant solute
degrees of freedom, the antiadiabatic approximation works well
when the solvent degrees of freedom are much faster than the
solute ones. The antiadiabatic approximation therefore should be
considered with care when the solvent excitation spectrum comes
very close in energy to the solute spectrum.15 For common solvents
and polymeric matrices used in spectroscopy, the UV-cutoff is
typically larger (and often much larger) than 4 eV. Moreover, it
must be recognized that the UV cutoff signals the frequency where
the solvent absorption starts, the relevant absorption bands being
located at much larger energy (just as an example, the water cutoff
is at 6.5 eV, but the absorption spectrum peaks at ∼ 15 eV[95], with
a large UV tail that moves the central frequency to ∼ 24 eV[9]). In
systems where the antiadiabatic approximation to fast solvation
breaks down, due to similar timescales of the solute and solvent
motions, the adiabatic approximation still does not represents a
viable alternative. Rather, solute and solvent degrees of freedom
cannot be disentangled and one must resort to a full quantum
mechanical approach to the solute and the solvent. Along these
lines, the beautiful work reported in ref. [96] for water solvated
dyes, offers another independent demonstration of the failure of
the adiabatic approximation to fast solvation. In that work, a QM-
MM approach is adopted, where the potential generated in the
QM region by the charges on water molecules in the MM region
is described (as usual) in the adiabatic approximation. In order to
get reliable results, the solvation sphere described by QM must
include a large number of water molecules (of the order of at least
200, depending on the solute and on the state of interest).

Once fast solvation is accounted for in the antiadiabatic approxi-
mation, polar solvation can be dealt with in the adiabatic approxi-
mation. For this application EI, leading to formally exact results, is
more accurate than either LR or CLR approaches, based on pertur-
bative expansions. Optical transitions occur vertically with respect
to slow degrees of freedom. Accordingly, the eigenstates involved
in the absorption process are obtained diagonalizing the adiabatic
Hamiltonian with the potential due to slow solvation őxed to the
ground state equilibrium value. Similarly, the states involved in
ŕuorescence are obtained diagonalizing the adiabatic Hamiltonian
with the slow-solvation potential equilibrated to the lowest excited
singlet. In either case, transitions are calculated between states that
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are obtained from the diagonalization of the same EI Hamiltonian.
The issue of incongruent eigenstates, affecting EI when applied to
fast solvation, does not show up in dealing with polar solvation,
for which the adiabatic approximation works well.

In this Chapter, electronic solvation is addressed with success
adopting of the reaction őeld model. The model relies however
on several approximations: the solute-solvent interaction is trun-
cated to the dipolar term. The solute is treated as a point dipole
that occupies the center of a spherical cavity. Indeed, the com-
puted properties of the dyes studied here with the reaction őeld
model qualitatively agree with those obtained with PCM, that,
along with other implicit solvation models like COSMO and SMD,
aim at the same photophysics, i.e. dielectric solvation, with much
more detailed description of the solute-solvent interaction. How-
ever, current implementations of PCM, COSMO and SMD lack an
antiadiabatic approach to electronic solvation. An antiadiabatic
approach that goes beyond the limits of the reaction őeld model is
therefore desirable to study atomistic systems in realistic surround-
ings, described either as a continuum with solute-adapted cavity
or explicitly with molecular mechanics. Speciőcally, there are some
cases where the reaction őeld model is expected to fail, such as for
solutes with large dimensions, that cannot be described as point
dipoles, and ionic species, where the monopole term is the leading
term in the multipole expansion. First steps in this direction have
been made during my secondment at the Institut Néel in Grenoble,
under the supervision of Dr. Gabriele D’Avino.
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2.1 Introduction

Arguably, organic light emitting diodes (OLED) represent the most
successful application in the őeld of plastic optoelectronics. Indeed
OLED entered the market of displays and are currently exploited
in several commercial devices. This boosted research activities
in science and technology, in a multidisciplinary effort involving
chemists, physicists, and engineers. The simplest OLED device is
composed of a thin layer of ŕuorescent organic material, called the
active layed, sandwiched between an anode and a cathode. When a
sufficient potential is applied, electrons and holes are injected in the
material from the electrodes and migrate in the active layer under
the action of the electric őeld. The charge carrier recombination
generates bound electron-hole pairs, excitons, that can then decay
radiatively (Figure 2.1).[97] The internal quantum efficiency of
an OLED depends on many factors, such as the ease of charge
injection and the ratio of emissive excitons over the total number
of formed excitons. Devices of increasing complexity, in terms
of electrode engineering [98] and/or with structured, multilayer
active interfaces [99], were successfully devised to improve the
device efficiency. On the other hand, chemists gave a valuable
contribution to the design and synthesis of new active materials
that show excellent luminescence quantum yields [100, 101].

However, there is an intrinsic limitation in the efficiency of ŕuores-
cent OLED, also referred to as őrst generation OLED, (Figure 2.2),
that is traced back to the inability to control the spin orientation
of the charge carriers injected in the active material. Simple spin-
statistics suggests that out of the excitons formed upon charge

Figure 2.1: Sketch of an OLED. The
zoomed region shows the amor-
phous nature of the active layer,
composed of emitter molecules (ma-
genta) dispersed host molecules
(blue). In some case, the matrix is
constituted by the emitter itself.
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Figure 2.2: Schematic representation
of the states and main photophysical
processes involved in őrst, second
and third generation OLED.

recombination, the emissive singlet excitons are formed in a 1:3
ratio with respect to the triplet excitons, posing a 25% limit to the
maximum internal efficiency. Therefore triplet harvesting, namely
converting triplet states into emissive states, is an attractive way to
increase the efficiency of OLEDs [102]. The most direct way to ap-
proach triplet harvesting exploits phosphorescent materials. This
lead to the development of phosphorescent OLEDS (PHOLEDS),
also referred to as second generation OLED, that can reach 100% in-
ternal quatum efficiency (Figure 2.2).[103] However this approach
has serious limitations. First, in order to facilitate intersystem
crossing (ISC), heavy atoms such as Pt and Ir are generally needed,
considerably increasing the cost of production. Moreover, and
more importantly, achieving efficient blue phosphorescence is
intrinsically difficult. Indeed, phosphorescence originates from
the radiative decay of the lowest triplet state of the emitter, that
generally resonates at much lower energies than the lowest en-
ergy singlet state. Finally, the long lifetime of phosphorescent
states makes PHOLEDs inadequate for applications where high
frequency modulation of the emission is needed. As a consequence,
modern OLED RGB displays rely on efficient second generation
devices for the red and green emissive units, while inefficient őrst
generation devices are used for the blue emissive unit, with serious
consequences on device lifetime and energy consumption.

A more promising way to harvest triplet states implies transferring
the excitation from the triplet to a singlet state. Triplet-triplet anni-
hilation (TTA) was őrst discovered in anthracene derivatives [104]
and has been exploited to convert two triplet states into a singlet
state in OLEDs [105]. This has some advantages over phospheres-
cence since it does not require heavy atoms, but still limits the
maximum internal quantum efficiency to 62.5%, due to the 2:1
ratio of triplet-to-singlet conversion.

Thermally-Activated Delayed Fluorescence (TADF) breaks this
limit bringing the internal quantum efficiency to a theoretical
100%. TADF was őrst observed more than őfty years ago in eosin
molecules [106] and has been recently proposed as a promising
triplet harvesting method for OLEDs, in the pioneering work of
Adachi [107]. At variance with organic molecules, where the lowest
singlet (S1) and triplet (T1) states are separated by energy gaps of
the order of 0.5 − 1.0 eV, in TADF emitters the S1-T1 energy gap
is comparable to the thermal energy (Figure 2.2). Under these
conditions, the excitation can be transferred from triplet to singlet
states in a process called reverse intersystem crossing (RISC). As
a result, delayed ŕuorescence is obtained, in addition to prompt

ŕuorescence. Ideally, TADF offers several advantages over other
triplet harvesting methods, allowing, with pure organic molecules,
internal quantum efficiencies comparable to the ones of PHOLEDs,
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1: A fourth generation of OLED has
also been proposed, where TADF
dyes őrst allow triplet harvesting,
then tranfer the excitation thorugh
energy transfer mechanisms to ŕu-
orescent dyes with a high quantum
yield.

with faster decay rates. Moreover, it is advantageous over TTA for
its 1:1 singlet-to-triplet conversion ratio. Finally, delayed ŕuores-
cence has the same spectral characteristics of prompt ŕuorescence,
ideally making the design of efficient blue emitters easier. OLEDs
based on TADF emitters show clear and undisputed advantages
over PHOLED, and are therefore referred to as third generation
OLED.1

Despite the hype, at present third generation OLED technology
(speciőcally blue TADF OLED) is not ready for commercial appli-
cations, due to the poor operational lifetime. Indeed, blue TADF
emitters require to relatively high operational voltages that promote
decomposition reactions of the emitter, often involving reactions
with the host molecules. Moreover, the lifetime of triplet excitons
is generally too long, favouring degradation reactions or inefficient
TTA. Experimental and theoretical characterization of degradation
mechanisms is intrinsically difficult, even more so since the current
understanding of TADF photophysics is not developed enough to
allow the rational design from the emitter to the device.[108]

The őrst design of TADF emitters [21] was based on the reduction of
the S1-T1 energy gap, using intramolecular charge transfer (CT) in
systems containing spatially separated electron donor and electron
acceptor moieties. In the classical design, heteroaromatic fragments
are connected in a twisted conformation around the donor-acceptor
bond.[21] Because of the large dihedral angle between the donor
and acceptor units, efficient charge separation and low electron-
hole overlap is achieved in CT states, resulting in a low S1-T1

exchange interaction energy and, consequently, reduced singlet-
triplet energy gaps. This initial approach gave good results in terms
of device efficiency, stimulating the interest towards further study
of TADF.

It was soon suggested that the mechanism behind TADF is actually
more intricate than initially proposed. Indeed, the spin-ŕip transi-
tion between states of the same character, such as pure CT triplet
and singlet states, is forbidden by the El Sayed rule.[109]For this rea-
son, the key role of triplet local excited states, 3LE, i.e. states where
the excitation is localized on either the donor or the accepetor units,
has been proposed for efficient RISC [24]. The triplet manifold is
inherently more complex than the singlet manifold: due to the
stabilization of triplet states by the exchange interaction, 3LE states
are generally lower in energy than their singlet counterpart, 1LE, so
that, in some systems, 3LE and 3CT states are close in energy. Being
3LE-1CT transitions El Sayed allowed, low energy 3LE states may
indeed play an important role in RISC, facilitating the singlet-triplet
upconversion either as mediators between 3CT and 1CT, through a
multi-step mechanism, or through a mixing with CT triplet states.
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Moreover, strictly orthogonal (non-conjugated) systems have van-
ishingly small transition dipole moments from the excited singlet
to the ground state,[35] strongly suppressing emission intensity.
Indeed, the prompt ŕuorescence lifetime in TADF emitters, typ-
ically in the ∼ 10−8 − 10−7 s is longer than in common organic
ŕuorescent probes, typically in the 10−9 s timeframe. Despite the
obvious intrinsic drawbacks, many twisted donor-acceptor sys-
tems show TADF activity, suggesting that the aforementioned
considerations on the magnitude of transition dipole moments
and spin-orbit couplings are based on an incomplete picture of the
TADF process.

Indeed, conformational ŕexibility modulates the donor-acceptor
conjugation, affecting most properties that govern TADF efficiency,
like the singlet-triplet gap, the spin-orbit couplings and the transi-
tion dipole moment, often turning transitions that are forbidden
in a łfrozen molecule picturež into allowed transitions.[33, 34, 110]
Adding to the complexity of the phenomenon, the ever-present
effects of the environment are expected to be signiőcant on TADF
emitters, where both localized and charge transfer states play a role.
Modelling the environment is of paramount importance as TADF
emitters in the őnal device are dispersed in amorphous matrices
composed of small organic molecules or polymers, as sketched
in Figure 2.1. On the other hand, spectroscopic characterization
is also carried out on samples in condensed phase, typically in
solution, meaning that even in the most controlled conditions,
the medium in which the dye of interest is dissolved must be
considered with great care. In this work, donor-acceptor TADF
dyes are considered, with a focus on molecular modelling and
calculation of the photophysical rate constants related to the TADF
process.[45, 111, 112]

For the sake of completeness, this introductory section is con-
cluded with a discussion on other approaches towards efficient
TADF. The intrinsic drawbacks of donor-acceptor TADF emitters
stimulated research towards novel TADF emitters. The őrst natural
development over the donor-acceptor design was using multipolar
structures composed of multiple donor and acceptor units, in an
effort to increase the electronic density of states in the singlet and
triplet manifolds, in turn allowing for multiple non-radiative path-
ways for ISC and RISC.[23, 24] In principle, the models developed
and discussed in this chapter are applicable to multipolar emitters
as well, at the cost of an increased complexity in terms of molecular
structure as well as number of excited states involved in the photo-
physics. Another promising design is based on through space CT
complexes, i.e. systems composed of electron donor and electron
acceptor moieties not directly connected through a chemical bond,
but still experiencing electron hopping through space.[27, 113] A
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different strategy aims to achieve small singlet-triplet gaps, as well
as high ŕuorescence quantum yields and narrow emission bands,
exploiting multiresonant TADF emitters. Multiresonant emitters
are planar conjugated organic molecules that include nitrogen
and/or boron atoms to achieve spatial separation between HOMO
and LUMO and therefore small singlet-triplet gaps.[87ś91] One of
the most intriguing developments on multiresonant TADF systems
occurred when it was realized that special heteroatomic conjugated
systems, like heptazine and its derivatives, break the Hund’s rule,
showing a negative singlet-triplet gap. Strictly speaking, these sys-
tems cannot be classiőed as TADF emitters, as thermal activation
is not required for RISC when the S1 is lower in energy than T1.
Negative singlet-triplet gap emitters open new challenges in mod-
elling, as high quality quantum chemical methods are required
to account for the strong electron correlation responsible for the
breaking of the Hund’s rule.[91]

2.2 Theoretical modelling and challenges

As already hinted in the previous section, modelling donor-
acceptor TADF emitters requires methods to address the pho-
tophysics of electronic states with different spin and electronic
character. Moreover, the role of vibrational and conformational
motions cannot be neglected, opening the issues of identifying the
relevant molecular modes and strategies to deal with the coupling
between electronic and nuclear degrees of freedom. The excited
state landscape in TADF emitters is generally rather crowded, with
many states cohexisting in a narrow energy window. The adiabatic
and Born-Oppenheimer approximations at the basis of modern
quantum chemistry must therefore be applied with care, and in
some cases are expected to fail, as, for example, when degeneracy
or near degeneracy occurs between the 1CT and 3CT states. Ad-
ditionally, the surrounding environment plays an important role,
affecting the relative energy of the excited states and the dynamics
of molecular motion, also giving rise to broadening phenomena
that in turn call for a statistical description of the macroscopic
sample to meaningfully simulate experiments.

Parametric Hamiltonians have been proposed and are extensively
adopted in the host laboratory, in particular Essential-State Models
(ESMs) that successfully describe the spectroscopic properties of
CT chromophores.[39, 46, 114, 115] In ESM, CT dyes are described
in terms of a reduced number of electronic states, usually corre-
sponding to the main resonating structures. Molecular vibrations
are introduced leading to a vibronic Hamiltonian that can be di-
agonalized in a non-adiabatic approach. The interaction with the
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environment can also be accounted for in terms of electrostatic
interactions. This versatile approach has successfully described
the photophysics of multipolar dyes in solution[40, 114] and in
aggregates [116, 117] The comparative simplicity and low computa-
tional cost make ESMs a good starting point to describe complex
phenomena, such as relaxation dynamics of systems in excited
states [118]. In Section 1.6, ESMs describing dipolar, quadrupolar
and octupolar dyes are discussed. In this Chapter, and in particular
in Section 2.3.2, the two-state ESM for dipolar dyes is extended
to account for triplet states in order to model dipolar TADF emit-
ters. ESMs are semi-empirical methods and are usually validated
against experimental data, namely optical spectra. This poses an
interesting issue when they are applied to TADF emitters, since
parameters for triplet states need to be deőned. Triplet states are
inherently more difficult to characterize experimentally than sin-
glet states, since the main source of information is represented by
phosphorescence spectra, and thus are relevant only to the excited
triplet state in its relaxed geometry. Moreover, phosphorescence is
only typically observed at low temperature and in rigid matrix.

One promising way to overcome these problems is offered by őrst

principle calculations, that give speciőc information on triplet states,
(e.g. vertical excitation energies) that are not accessible experimen-
tally. First principle methods are widely used by theoreticians
to study TADF emitters and among those, TD-DFT is the most
popular, as it offers a good compromise between low computa-
tional cost and accuracy [108]. However, TD-DFT has some intrinsic
limitations when used to study systems where both localized and
CT states play a role [119]. As discussed in Appendix A, some of the
issues are traced back to the fact that the most common functionals
are accurate in computing either localized or CT transitions, but
not both [120]. This problem is faced in Section 2.3.1, where the
validation of ESMs against TD-DFT calculations is described.

As for the environment, the polarizable continuum model [19] offers
a computationally accessible way to account for dielectric solvent
effects in őrst principle methods, while QM/MM and molecular
dynamics methods, at a higher computational cost, allow to model
speciőc interactions also addressing matrix rigidity. However, as
discussed in Chapter 1, in excited state calculations this brings
to a fairly intricate theoretical problem, since the phenomena of
interest are intrinsically dynamic and solvent degrees of freedom
respond differently to electronic transitions. In this Chapter this
issue will be discussed in detail and the results for TD-DFT calcu-
lations accounting for the solvent will be discussed. The concerted
optimization of the active dye and its matrix requires a detailed
understanding of several interconnected features and concurrent
forces towards the precise control of the tiny energy gaps, and of
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the tiny interactions that govern TADF efficiency. This challenging
endeavor must rely on a careful and critical exploitation of several
tools available to the theoretician, validating against a large body of
experimental data the adopted approaches and relevant results.

As a őrst step in this direction, in this Chapter a representative
TADF dye is studied, DMAC-TRZ in Figure 2.3a.[121, 122] An
extensive spectroscopic characterization of the dye in several sol-
vents and in a frozen matrix, performed in the host laboratory,
is reported in Appendix D.1. Spectroscopy studies (performed
by prof. Monkman’s group in Durham Unversity) in degassed
solution and typical host matrices is reported in Appendix D.2. A
critical analysis of TD-DFT results is then presented that, together
with the large body of experimental data, is exploited to build
and validate an ESM for DMAC-TRZ, accounting for low-lying
electronic excited states, a conformational degree of freedom and
a coupled molecular vibration while addressing environmental
effects (Section 2.3).

In Section 2.4, the model developed for DMAC-TRZ is used to
calculate photophysical rates. To this aim, a complete non-adiabatic
solution of the molecular Hamiltonian is adopted and the rates are
computed using the state-by-state Fermi Golden rule. The role of
different model parameters on the rates is discussed, as well as the
role of the medium polarizability.

In Section 2.6, the discussion is extended to polar environments.
Both liquid solvents, as relevant to spectroscopic characterization,
and amorphous organic matrices, as relevant to devices, are simu-
lated, in terms of their different dielectric and mechanical responses,
allowing the calculation of time-resolved emission spectra.

2.3 Modelling TADF: parametrization and

validation

In this section, an effective model is developed to describe the
photophysics of DMAC-TRZ, a prototypical donor-acceptor TADF
dye. In analogy with many TADF dyes of this family, the two
subunits, 9,9-dimethyl-9,10-dihydroacridine (DMAC) and 2,4,6-
triphenyl-1,3,5-triazine (TRZ), are connected in a twisted confor-
mation around the donor-acceptor bond, in order to minimize
the energy gap between the 1CT and 3CT states through spatial
separation of electron and hole densities.

Speciőcally, in Section 2.3.1 a computational analysis is őrst carried
out using DFT and TD-DFT methods, in order to characterize the
electronic states of interest, as well as the molecular modes respon-
sible for the photophysics. In Section 2.3.2, an essential state model
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2: DMAC-TRZ is optimized in the
ground state at the B3LYP/6-31G(d)
level. Excited states are modelled
using TD-DFT under the Tamm-
Dancoff approximation, as sug-
gested in Ref. [31], using the
6-31G(d) basis set and testing
different functionals: B3LYP,[123]
CAM-B3LYP[124], M06-2X function-
als[125] and LC-𝜔∗PBE.[126]. Spin-
orbit coupling (SOC) is computed
at the M06-2X/6-31G(d) level using
the Breit-Pauli Hamiltonian as im-
plemented in Orca 4.1 package.[127,
128] All other calculations are per-
formed in the Gaussian 16 B.10 pack-
age. [14]

3: Despite this well-known issue,
TD-B3LYP calculations in gas phase
with a LR solvent achieve good
agreement with the experiment, due
to cancellations of errors, coming
from the lack of solvent stabiliza-
tion.[129]

is proposed for DMAC-TRZ, and parameters are extracted from
gas phase őrst principle calculations. The surrounding environ-
ment is accounted for using the reaction őeld model, discussed in
Section 1.2. The solvent response dynamics are taken into account
partitioning the solvent degrees of freedom in a fast component,
related to the electronic response, and in a slow component, related
to the orientational response, as discussed in Section 1.4. In Sec-
tion 2.3.3, the model is validated by comparison with experimental
spectra. To this aim, absorption, emission and excitation spectra in
liquid and frozen solvent are taken into account. The spectroscopic
characterization of DMAC-TRZ and its sub-units is discussed in
Appendix D.1.

2.3.1 Computational analysis

In the optimized ground state geometry of DMAC-TRZ (Fig-
ure 2.3d), the dihedral angle (𝜃 in Figure 2.3a) amounts to 90◦,
suggesting a negligible delocalization of electrons between the
donor (DMAC) and acceptor (TRZ) units. To address excited states
in such a large molecule, TD-DFT is the method of choice and, be-
ing interested in both singlet and triplet states, the Tamm-Dancoff
approximation is adopted. [31]2

The choice of the functional is arguably very important when
modelling excitations in TD-DFT, as it deeply affects the order of
the excited states. The most widely used hybrid functionals, like
B3LYP and PBE0, have a low percentage of exact exchange, leading
to an overstabilization of CT states.3 Range-separated functionals,
like CAM-B3LYP and functionals with large component of exact
exchange, like M06-2X, are considered more suitable to model
CT states, but yield different a different order of excited states
for DMAC-TRZ (Figure 2.3b). Recent studies propose the use of
optimally tuned range-separated exchange functionals, where the
range-separation parameter, 𝜔, is optimized for each molecule
of interest.[126, 130, 131] Fairly reliable results for TADF-dyes are
obtained in the optimal long-range corrected PBE (LC-𝜔∗PBE).[126]

Excitation energies of DMAC-TRZ, reported in Figure 2.3b for the
lowest singlet and triplet states, are obtained for the optimized
𝜔 = 0.195 value and are compared with results obtained with
B3LYP,[123] CAM-B3LYP[124] and M06-2X functionals[125] (the
𝜔-tuning procedure is described in Appendix B.0.3). While all
functionals őnd almost degenerate singlet and triplet states with a
dominant CT character, the relative energies of CT and LE states
change, with B3LYP and PBE0 largely underestimating the energy
of CT states and CAM-B3LYP overestimating it. M06-2X slightly
overestimates all transition energies, but gives a very similar
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Figure 2.3: (a) a sketch of DMAC-TRZ, showing the dihedral angle, (b) Excitation energies for the three lowest excited
states calculated at the equilibrium geometry with different functionals. (c) The energy of the ground (black), lowest
excited singlet (blue) and triplet (red) states calculated as a function of 𝜃 in TD-DTF (symbols) and ESM (lines). The
green dashed line shows the effective LE triplet introduced in the ESM. (d) Natural transition orbitals of the lowest singlet
excited state and of the two-lowest triplet states. (e) Energies of the four lowest states as a function of the applied őeld (f)
The singlet-triplet gap (black) and the spin-orbit coupling (orange) between the lowest singlet and triplet states vs 𝜃.
Symbols and lines refer to TD-DFT and ESM results, respectively. (g) The weight of the CT state in the lowest triplet as
estimated in ESM.

trend as LC-𝜔*PBE functional for the excitation energies of singlet
and triplet states. Results in Figure 2.3b refer to the equilibrium
geometry, 𝜃 = 90◦, but similar results were obtained for few
selected values of the dihedral angle (Figure B.1 and Table B.1). On
this basis, M06-2X is adopted as functional of choice.

Figure 2.3 summarizes main TD-DFT results. At the equilibrium
geometry, the planes of DMAC and TRZ moieties are mutually
orthogonal (𝜃 = 90◦) and the lowest lying singlet and triplet states
(S1 and T1, respectively) are almost degenerate. The next excited
state T2, at 3.75 eV (not shown in the őgure), is again a triplet. Based
on relevant natural transition orbitals (Figure 2.3d) the two lowest
and almost degenerate singlet and triplet states are CT states (1CT
and 3CT, respectively), while the next excited state is a triplet state
localized on donor unit (3LED). To further conőrm the nature of
the states, Figure 2.3e shows the evolution of the energies of the
lowest states vs an electric őeld applied along the D-A axis. The
energy of the ground (S0) and of the T2 state marginally depends
on the applied őeld, suggesting that the two states have a very
small permanent dipole moment, conőrming the local nature of
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T2. On the opposite, the large and almost linear dependence of the
energy of S1 and T1 states on the applied őeld, points to a large
and almost constant dipole moment for both states, conőrming
their CT nature.

To better understand the physics of TADF in DMAC-TRZ, the
energies of the relevant states are calculated upon varying the
dihedral angle, while keeping the geometry of the two fragments
őxed. Results in Figure 2.3c are interesting in several respect. First
of all, the potential associated to the ground state and to the őrst
singlet state are fairly ŕat, suggesting considerable conformational
disorder. Moreover, a double-minimum structure is observed for
the lowest triplet state: the equilibrium conformation for the relaxed
triplet has a twist angle 𝜃 ∼ 60◦ or 120◦. As it will be discussed
in the next section, this variation of conformation in the triplet
state can only be rationalized accounting for the coupling with
some higher energy (local) excited triplet state. Figure 2.3f őnally
summarizes results of interest for TADF: the 𝜃-dependence of the
singlet-triplet gap and of the corresponding spin-orbit coupling.
As expected, the singlet-triplet gap increases when the mutual
orientation of the D and A planes deviates from orthogonality, and
at the same time the spin-orbit coupling őrst increases, to decrease
again for 75◦ < 𝜃 < 105◦.

The comparison with experiment requires a careful analysis of
solvation effects, typically dealt with approximating the solvent
as a continuum dielectric medium.[19] However, as discussed in
Chapter 1 and speciőcally for TADF dyes in section 1.5, current
implementations of continuum solvation models in quantum chem-
ical packages do not properly account for the role of the solvent
electronic polarizability, leading to results that wildly depend on
the speciőc approximation scheme adopted, already in the com-
paratively simple case of a non-polar solvent. Therefore, in the
following Section a minimal model is developed for DMAC-TRZ
that will allow us to discuss solvation and matrix effects in a simple
and reliable approach.

2.3.2 Setting up the model

In this section, a model for DMAC-TRZ is set up on the basis of the
computational results (section 2.3.1) and experimental data (sec-
tion D.1). In the spirit of essential state models (ESM) (Section 1.6) a
minimal set of electronic diabatic basis states is selected to describe
the ground and the low-energy excited states.[39, 132ś134] As for
singlet states, the two-state model, proposed and extensively vali-
dated for D-A dyes, [11, 39, 132] and discussed in section 1.6.2, also
applies to DMAC-TRZ. In the singlet subspace, the electronic basis
states are selected as the neutral DA state, 𝑁 , and the zwitterionic
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DMAC-TRZ

Figure 2.4: Top: Kekulé structure of
DMAC-TRZ. Left panel: a schematic
view of the four diabatic states and
of the relevant mixing matrix ele-
ments. Right panel: the four elec-
tronic adiabatic states, the arrows
mark the relaxation processes of in-
terest.

D+A- state, 𝑍. The two states are separated by an energy difference
2𝑧 and are mixed by a matrix element −𝜏, as sketched in Figure 2.4.
As discussed above, the orthogonal conőguration of the D and
A planes, suggests a vanishing 𝜏 at the equilibrium so that the
ground state S0 and the őrst excited state S1 basically coincide with
𝑁 and 𝑍, respectively.

To account for the lowest triplet state, the basis must be extended
to account for the zwitterionic triplet state 𝑇. As a consequence of
the exact charge separation in the zwitterionic states, the states 𝑍
and 𝑇 are degenerate. Moreover, according to the El-Sayed rule,
the spin-orbit coupling between the two states vanishes. A őnite
spin-orbit coupling 𝑉𝑠𝑜𝑐 instead mixes 𝑇 with 𝑁 .

To reproduce the 𝜃 dependence of the calculated energies of the
excited singlet and triplet states in Figure 2.3c, the spin-orbit
coupling 𝑉𝑠𝑜𝑐 is treated as a minor perturbation, so that, at the
lowest order, only two electronic parameters enter the three state
model: 2𝑧whose marginal𝜃-dependence is neglected, and 𝜏whose
dependence on 𝜃 is deőnitely relevant. Information on the 𝜏(𝜃)
dependence can be extracted mapping TD-DFT results on ESM.
Speciőcally, in ESM the product between the transition frequency,
ℏ𝜔𝐶𝑇 = 𝜏(𝜃)/

√
𝜌(1 − 𝜌), and the transition dipole moment, 𝜇𝐶𝑇 =

𝜇0/
√
𝜌(1 − 𝜌) is proportional to 𝜏:[135]

𝜇𝐶𝑇ℏ𝜔𝐶𝑇 = 𝜇0𝜏(𝜃) (2.1)

The dependence of 𝜏(𝜃) is obtained őtting the values of 𝜇𝐶𝑇ℏ𝜔𝐶𝑇

predicted using TD-DFT calculations for different values of 𝜃 with
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Figure 2.5: TD-DFT results for
𝜇𝐶𝑇ℏ𝜔𝐶𝑇 (symbols) őtted with the
function 𝐴| cos𝜃 | (line) with 𝐴 as
őtting parameter.

Figure 2.6: Energy of the ground
and lowest excited singlet and triplet
states calculated as a funcion of 𝜃 in
TD-DFT (symbols) in the three-state
ESM (lines).

the function 𝑓 (𝜃) = 𝐴| cos(𝜃)| (Figure 2.5).

Of course, a restoring potential for 𝜃 must be introduced, equal
for all states, in the hypothesis that state-speciőc features can be
reproduced by the ESM, provided the relevant physics is properly
accounted for. The restoring potential is set via an expansion to the
fourth order around the equilibrium 𝑉(𝛿) = 𝑎2𝛿2 + 𝑎4𝛿4, where
𝛿 = 𝜃 − 90◦. The relevant three-state Hamiltonian on the |𝑁⟩, |𝑍⟩,
|𝑇⟩ basis reads:

Ĥ =
©­
«

0 −𝜏0 | sin 𝛿 | 𝑉𝑠𝑜𝑐
−𝜏0 | sin 𝛿 | 2𝑧 0

𝑉𝑠𝑜𝑐 0 2𝑧

ª®
¬
+ 𝑎2𝛿

2 + 𝑎4𝛿
4 (2.2)

Irrespective of model parameters, in the three-state model the
triplet state only marginally mixes with the singlet state and
therefore the relevant potential energy curve cannot reproduce the
double minimum calculated in TD-DFT, as shown in Figure 2.6.

A TD-DFT analysis of the nature of the lowest triplet state shows
that it is a pure CT state at 𝜃 = 90◦, but it acquires some local
character when the system deviates from orthogonality (Figure 2.7).
Indeed, several local triplet states enter into play and including all
of them would lead to an impractical ESM, prone to overőtting. On
the other hand, a detailed modelling of high-energy triplet states is
not strictly required, as the interest is in capturing the effect of their
mixing on T1. A four-state model is therefore set up, that, besides
the three states |𝑁⟩, |𝑍⟩ and |𝑇⟩, described above, also includes
an effective local triplet state |𝐿⟩ whose energy, 2𝑘 is a free őtting
parameter. As for the 𝐿-𝑇 mixing matrix element, 𝛽, the same
angular dependence is assumed as for 𝜏, setting 𝛽(𝜃) = 𝛽0 | cos𝜃 |
(Figure 2.4). The relevant Hamiltonian, on the |𝑁⟩, |𝑍⟩, |𝑇⟩ and
|𝐿⟩ basis, reads:

Ĥ =

©­­­
«

0 −𝜏0 | sin 𝛿 | 𝑉𝑠𝑜𝑐 0

−𝜏0 | sin 𝛿 | 2𝑧 0 𝑊𝑠𝑜𝑐

𝑉𝑠𝑜𝑐 0 2𝑧 −𝛽0 | sin 𝛿 |
0 𝑊𝑠𝑜𝑐 −𝛽0 | sin 𝛿 | 2𝑘

ª®®®
¬
+

+ 𝑎2𝛿
2 + 𝑎4𝛿

4 (2.3)

=H𝑒𝑙 (𝛿) + 𝑎2𝛿
2 + 𝑎4𝛿4

The spin-orbit coupling elements, 𝑉𝑆𝑂𝐶 and𝑊𝑆𝑂𝐶 , are very small
and do not appreciably affect the calculated potential energy curves.
To reproduce TD-DFT results, model parameters are set to the
values in Table 2.1. The agreement is very satisfactory (Figure 2.3c),
suggesting that the proposed ESM properly captures the low-
energy physics of the system. Quite interestingly, the lowest triplet
state, the one relevant to TADF, has a pure CT character at 90◦,
but it acquires a partial local character at its equilibrium geometry
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Figure 2.7: Natural transition or-
bitals calculated for T1 state for dif-
ferent 𝜃 values.

Table 2.1: ESM parameters extracted
from the őt of the potential energy
curves in Figure 2.3c

z (eV) 1.72
𝜏0 (eV) 0.75
𝑘 (eV) 1.96
𝛽0 (eV) 0.85
𝑎2 (eV) 6.00 × 10−5

𝑎4 (eV) 1.43 × 10−7

(Figure 2.3g), as also conőrmed by the analysis of the evolution
with the dihedral angle of the natural transition orbitals calculated
for T1 state in Figure 2.7.

Since in the ground state equilibrium geometry the states S0 and T1

practically coincide with |𝑁⟩ and |𝑇⟩, respectively, 𝑉𝑠𝑜𝑐 = 3.84 ×
10−4 eV is set equal to the TD-DFT value for the spin-orbit coupling
between S0 and T1 states. Finally, the value of𝑊𝑠𝑜𝑐 = 1.74×10−4 eV

is adjusted as to best reproduce the 𝜃-dependence of the S1-T1 SOC
(Figure 2.3f and black line in Figure 2.8). In this case, it is implicitly
imposed that𝑉𝑆𝑂𝐶 and𝑊𝑆𝑂𝐶 have the same sign. However, while
the absolute signs of 𝑉𝑆𝑂𝐶 and𝑊𝑆𝑂𝐶 is irrelevant, having the two
with the same or opposite sign leads to different results. The red
curves in Figure 2.8 are obtained imposing opposite sign for the
two SOC matrix elements: it is clear that results are untenable as
they lead to a monotonous increase of | ⟨𝑆1 |H𝑆𝑂𝐶 |𝑇1⟩ |2 with |𝛿 |.

2.3.3 Validating the model against steady-state spectra

In this section, the model parametrized against TD-DFT is val-
idated by comparison against experimental spectra reported in
Section D.1. Towards this aim, the model must be extended to
account for electron-vibration coupling and for solvation effects, as
to address the observed vibronic structure and solvatochromism.
As already discussed in Section 1.6, ESMs for D-A dyes describe
electron-vibration coupling in terms of a single effective coordinate
𝑄 that accounts for the different geometry of the neutral and
charge-separated diabatic states.[11, 39, 132] For DMAC-TRZ, the
frequency of the effective coordinate is easily estimated as 𝜔𝑣 ∼
0.18 eV from the partially resolved vibronic structure of optical
spectra in non-polar solvents (Figure D.3). The strength of the
coupling is measured by the vibrational relaxation energy, 𝜖𝑣 , the
energy gained by the charge separated (either 𝑍 or 𝑇) states upon
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Figure 2.8: The square modulus of
the ⟨𝑆1 |H𝑆𝑂𝐶 |𝑇1⟩ as a function
of 𝛿. Black circles show TD-DFT
results. The black line show the
best őt obtained setting 𝑉𝑆𝑂𝐶 =

3.84 × 10−4 eV and 𝑊𝑆𝑂𝐶 = 1.74 ×
10−4 eV. Red lines show results for
the same 𝑉𝑆𝑂𝐶 value, but for neg-
ative 𝑊𝑆𝑂𝐶 . Speciőcally: 𝑊𝑆𝑂𝐶 =

−1.5 × 10−4 eV (continuous line),
𝑊𝑆𝑂𝐶 = −1.0 × 10−4 eV (dotted
line), 𝑊𝑆𝑂𝐶 = −0.5 × 10−4 eV
(dashed line), 𝑊𝑆𝑂𝐶 = −0.1 ×
10−4 eV (dot-dashed line).
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4: The vibrational relaxation energy,
𝜖𝑣 , is estimated through DFT energy
calculations on the isolated donor
(D) and acceptor (A) and the respec-
tive ionized species, D+ and A-:

𝜖𝑣 =

(
𝐸
(𝐷)
𝐷+ + 𝐸(𝐴)

𝐴−

)
−
(
𝐸
(𝐷+)
𝐷+ + 𝐸(𝐴

−)
𝐴−

)

where 𝐸
(𝑗)
𝑖

is the energy of 𝑖 in
in the equilibrium structure of 𝑗
(See Table 2.2). Calculations involv-
ing the open-shell systems D+ and
A- adopted unrestricted M06-2X/6-
31G(d).

SCF Energy (a.u.)

𝐸
(𝐷)
𝐷+ -634.873448021
𝐸
(𝐷+)
𝐷+ -634.875775452
𝐸
(𝐴)
𝐴− -973.174499157
𝐸
(𝐴−)
𝐴− -973.178453857

Table 2.2: SCF energies of D+ and
A- used to estimate 𝜖𝑣 .

relaxation. A value of 𝜖𝑣 ∼ 0.17 eV is extracted from DFT energies
of the isolated D and D+ and A and A- species.4

Introducing electron-vibration coupling, the molecular Hamilto-
nian is written as

Ĥ𝑚𝑜𝑙 = Ĥ +
[
−
√
ℏ𝜔𝑣𝜖𝑣𝑄̂ (|𝑍⟩ ⟨𝑍 | + |𝑇⟩ ⟨𝑇 |) + ℏ𝜔𝑣

4

(
𝑄̂2 + 𝑃̂2

)]
(2.4)

Where H is the Hamiltonian in eq. 2.3 and the square bracket
groups the vibrational terms, 𝑃̂ being the momentum operator
associated to the coordinate 𝑄̂.

The reaction őeld model, discussed in Section 1.2, is adopted to
account for interactions between DMAC-TRZ and the surrounding
environment, that is described as a continuum elastic medium that
responds to the presence of a solute molecule generating at the
solute location an electric őeld, called the reaction őeld, whose
equilibrium value is proportional to the solute dipole moment.
As extensively discussed in Section 1.2, two components of the
reaction őeld must be considered, a fast component associated to
the electronic polarizability of the solvent and a slow component,
of interest for polar solvents, associated with the orientational
motion of the solvent molecules. The fast solvation component can
be treated in the antiadiabatic approximation (Section 1.4) leading
to a renormalization of the 𝑧 parameter.[9] In the hypothesis that
the solute occupies a spherical cavity of radius 𝑎 inside the solvent,
the renormalized 𝑧 reads:

𝑧 → 𝑧 −
𝜇2

0

8𝜋𝜀0𝑎3

𝜂2 − 1

2𝜂2 + 1
(2.5)

where 𝜀0 is the vacuum dielectric constant,𝜂 is the solvent refractive
index at optical frequencies, 𝑎 is the cavity radius and 𝜇0 is the
dipole moment associated with zwitterionic (𝑍 and 𝑇) states. This
corresponds exactly to eq. 1.33 derived in the case of the generic

ESM, with 𝜖𝑒𝑙 = 𝜇2
0𝑟𝑒𝑙/2 =

𝜇2
0

4𝜋𝜀0𝑎3

𝜂2−1

2𝜂2+1
being the electronic solvent

relaxation energy.

The Onsager radius is set to 𝑎 = 6.44 Å (0.5 Å larger than the
radius corresponding to the computed molecular volume inside a
contour of 0.001 electrons/Bohr3 density).[14] In order to estimate
𝜇0, the dependence of the excited states with CT character (S1 and
T1) on an applied external electric őeld is exploited, as shown in
Figure 2.3e. More precisely, to get rid of the small 𝐹-dependence
of the ground and local excited states, a value of 𝜇0 ∼ 22.71 D is
estimated from a linear őt of the S1 and T1 transition energies.

The slow component of the reaction őeld 𝐹𝑜𝑟 enters the model as a
slow coordinate and can be treated in the adiabatic approximation.
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solvent 𝜖𝑜𝑝𝑡 𝜖𝑠𝑡

Cyclohexane 2.03 2.03
Toluene 2.24 2.38
Chloroform 2.09 4.81
2MeTHF 1.98 6.97
2MeTHF (77K)a 2.03 30.5

Table 2.3: Solvent dielectric proper-
ties at ambient conditions. The re-
quired dielectric parameters for the
solvents are taken from the literature
(except for 2MeTHF at 77 K) and are
listed in Table 2.3.
a: literature data for 𝜖𝑠𝑡 and 𝜖𝑜𝑝𝑡 of
glassy 2MeTHF at 77 K are not avail-
able. Since the refractive index of or-
ganic solvents increases linearly un-
pon decreasing temperature,[136],
a value of 𝜖2MeTHF

𝑜𝑝𝑡 (77 K) = 2.016

is set. As for the static dielectric
constant, the effective polarity of
2MeTHF increases with decreas-
ing temperature and, for glassy
2MeTHF at 77 K it is comparable
to that of liquid EtOH or DMF,[137]
so 𝜖2MeTHF

𝑠𝑡 (77 K) = 30.5.

5: Typically 𝑀 = 10 ensures conver-
gence.

The total Hamiltonian then reads

Ĥ𝑡𝑜𝑡 = Ĥ
𝜂

𝑚𝑜𝑙
+
[
−𝜇0𝐹𝑜𝑟 (|𝑍⟩ ⟨𝑍 | + |𝑇⟩ ⟨𝑇 |) + 1

2𝑟𝑜𝑟
𝐹2
𝑜𝑟

]
(2.6)

where Ĥ
𝜂

𝑚𝑜𝑙
is the molecular Hamiltonian in Eq. 2.4 with renor-

malized 𝑧 as in Eq. 2.5 to account for fast solvation, and the square
bracket collects polar solvation terms, with 𝑟𝑜𝑟 deőned as

𝑟𝑜𝑟 =
2

4𝜋𝜖0𝑎3

[
𝜖𝑠𝑡 − 1

2𝜖𝑠𝑡 + 1
− 𝜂2 − 1

2𝜂2 + 1

]
(2.7)

where 𝜖𝑠𝑡 is the static dielectric constant of the solvent. The values
of 𝜂 and 𝜖𝑠𝑡 of the solvents of interest are listed in Table 2.3.

The above equations, derived in Ref. [37], were extensively adopted
to describe linear and non-linear spectral properties of polar dyes
in different environments. In particular, the relation between the

restoring force for 𝐹𝑜𝑟 and the relaxation energy, 𝜖𝑜𝑟 =
𝜇2

0

2 𝑟𝑜𝑟 is őxed
by imposing that, in each state, the equilibrium 𝐹𝑜𝑟 is proportional
to the molecular dipole moment, and in turn proportional to the
weight of the zwitterionic states, |𝑇⟩ and |𝑍⟩:

(𝐹𝑜𝑟)𝑒𝑞 = 2𝜖𝑜𝑟 ⟨|𝑍⟩ ⟨𝑍 | + |𝑇⟩ ⟨𝑇 |⟩ (2.8)

The model Hamiltonian in Eq. 2.6 is solved for őxed 𝐹𝑜𝑟 and 𝛿

values, writing the corresponding Hamiltonian matrix on the basis
obtained as the direct product of the 4-dimensional electronic basis
states times the őrst 𝑀 states of the harmonic oscillator associated
to the vibrational coordinate 𝑄̂.5 The Hamiltonian matrix is then
diagonalized numerically to get vibronic eigenstates. Absorption
and ŕuorescence spectra are computed as described in Appendix A,
assigning to each vibronic transition a Gaussian bandshape with
a half-width at half-maximum of Γ = 0.08 eV. Spectra calculated
for different 𝐹𝑜𝑟 and 𝛿 values are then summed over accounting
for their Boltzmann weight with reference to the energy of the
ground state for absorption spectra, and of the lowest singlet
and triplet states for ŕuorescence and phosphorescence spectra,
respectively.[133]

Calculated absorption and ŕuorescence spectra in solvents of
different polarity are shown in the central panel of Figure 2.9a,
while the central panel of Figure 2.9b shows computed ŕuores-
cence and ŕuorescence excitation spectra of DMAC-TRZ in frozen
2MeTHF at 77 K. Absorption and excitation spectra agree well
with experimental results (Figure D.3 or top panels of Figure 2.9a
and Figure 2.9b) showing negligible solvatochromism. Emission
spectra qualitatively agree with experiment, reproducing the ob-
served solvatochromism and the bandshape evolution with solvent
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(a) Normalized absorption and ŕuorescence spectra
(continuous and dashed lines, respectively) of DMAC-
TRZ in different solvents. Top panel: experimental
data as in Figure D.3. Middle panel: calculated spec-
tra (298 K) with 𝜖𝑜𝑟 estimated using eq. 2.7 . Bottom
panel: calculated spectra (298 K) adjusting 𝜖𝑜𝑟 as free

őtting parameter: 𝜖Cyclohexane
𝑜𝑟 =0.10 eV; 𝜖Toluene

𝑜𝑟 =0.22 eV;
𝜖Chloroform
𝑜𝑟 =0.40 eV, and assigning a HWHM of Γ =

0.03 eV to each transition.
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(b) Emission and excitation spectra of DMAC-TRZ in
frozen 2MeTHF. Top panel: experimental spectra as in
Figure D.3. Middle panel: calculated spectra as in Figure
4(b) main text. Bottom panel: the same as in the middle
panel, but with phosphorescence spectra calculated only
accounting for the contribution from the CT state.

Figure 2.9: Comparison between theoretical and experimental spectra in (a) liquid and (b) frozen solvent.

polarity. The Stokes shift is however underestimated with respect
to experiment, possibly suggesting the presence of other sources of
conformational disorder. Quantitative agreement can be obtained
if 𝜖𝑜𝑟 is treated as an adjustable parameter, accounting for all
relaxation phenomena and relaxing the crude approximation of a
spherical solvent cavity (Figure 2.3a).

The calculation of phosphorescence and phosphorescence exci-
tation spectra is more delicate. Phosphorescence is a forbidden
process that occurs because spin-orbit coupling generates a very
small mixing of singlet and triplet states. As a result, the triplet
state borrows tiny intensity from the singlet states. The lowest
triplet state in DMAC-TRZ is described as the CT triplet plus a
minor but non-neglibible contribution from a local triplet state.
Phosphorescence intensity then has a contribution from the (tiny)
transition dipole moments associated with CT and LE triplets.
Since the transition dipole moments associated with CT states are
orders of magnitude smaller than the transition dipole moments
associated with LE states, the contribution to phosphorescence
from the LE state is assumed to dominate over the contribution
from the CT state. This hypothesis is also supported by experi-
mental observation of a decrease of the emission anisotropy at
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Figure 2.10: Comparison of ESM
model results for DMAC-TRZ in
the gas phase (left) and in a non-
polar matrix with refractive index
𝜂 = 2 (right). Top panels show
the 𝜃-dependence of the energies
of the lowest excited singlet (blue)
and triplet (red) states. The dotted
line show the Boltzmann distribu-
tion calculated for the lowest triplet
state. Bottom panels show the 𝜃-
dependence of the spin-orbit cou-
pling between the lowest excited sin-
glet and triplet states. The shaded
areas mark the regions where the
singlet-triplet gap is larger than ther-
mal energy at ambient conditions.

very long delay times (Figure D.4a). Accordingly, phosphorescence
and phosphorescence excitation spectra in Figure 2.9b (middle
panel) are calculated only accounting for the LE contribution to
the transition dipole moment. Spectra calculated accounting only
for the CT contribution in Figure 2.9b (bottom panel) are in any
case very similar. Calculated spectra in Figure 2.9b (middle and
bottom panels), referring to glassy 2MeTHF matrix at 77 K, com-
pare well with experimental results (Figure D.3 or top panel of
Figure 2.9b). As discussed in the previous section for absorption
and ŕuorescence in liquid solvents, the calculated Stokes shifts are
again somewhat underestimated, but a good agreement with ex-
perimental results in Figure D.4a is obtained in terms of bandshape
and band positions. Phosphorescence intensity is not addressed
since it is not accessible experimentally.

The effect of polar solvation on steady state optical spectra of polar
dyes are well documented experimentally,[7] well understood in
terms of simple solvation models[7, 37, 39, 138] and are reliably ad-
dressed in current implementations of continuum solvation models
in quantum chemical calculations.[19, 81, 139] On the other hand,
as discussed in Chapter 1, the role of the electronic polarizability of
the solvent (including liquid solvents and rigid matrices) is more
delicate. The marginal variability of the refractive index in common
organic matrices makes an experimental analysis very difficult,
while available implementations of continuum solvation models
in quantum chemical approaches do not treat the correspond-
ing solvation contribution properly, as discussed in the previous
Chapter.[9] However a sound understanding of the effects of the
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environmental polarizability on TADF-dyes is important in order
to concurrently optimize the dye in its matrix, in the so called smart

matrix approach. Speciőcally, the important information extracted
from quantum chemical calculations for a dye in the gas phase
cannot be transferred directly to a solvated dye, not even to a dye
in a comparatively simple environment like a non-polar solvent.

To illustrate this issue we estimate how the properties of DMAC-
TRZ vary when going from gas phase to a non-polar matrix. To
this aim, a non-polar matrix with 𝜂 = 2 is taken as and upper limit,
with typical refractive index of common organic matrices in the
1.5 - 1.7 range.

Speciőcally, Figure 2.10 shows the evolution with the dihedral
angle, 𝜃, of the energy of the őrst excited triplet and singlet and of
the corresponding spin-orbit coupling. The most apparent effect
of the solvent polarizability is a considerable stabilization of CT
states. However, the most important effect of the environmental
polarizability is expected on the properties that govern TADF.
Indeed, since environmental effects are minor for LE states, the
energy gap between CT and LE triplet increases, so that overall the
spin-orbit coupling decreases, an effect that is clearly unfavorable
for TADF applications. There is however another effect of the
environmental polarizability: the potential energy curve associated
to the lowest triplet is ŕatter in the matrix than in gas phase.
Accordingly, a larger region is found where the singlet-triplet gap
is thermally-accessible (the shaded areas in the őgure mark the
inaccessible regions, those where the gap is larger than thermal
energy at ambient conditions). Even more important, because of
the shallower potential energy curve for the lowest triplet state,
the distribution of 𝜃 equilibrated to the lowest triplet state is much
broader in the matrix than in the gas phase. This is relevant, since
TADF occurs from the equilibrated lowest triplet state and in gas-
phase the population of conformations with thermally accessible
RISC is marginal, while it becomes sizable in the matrix. Therefore,
the overall effect of the solvent polarizability is difficult to assess
from a purely qualitative analysis, due to the competition between
the decrease of the relevant SOC, and the widening of the thermally-
accessible population. In the following section, the effect of the
solvent polarizability is quantitatively assessed, through estimates
of the rates of interest to the TADF process.

2.4 Calculation of rate constants

The role of molecular vibrations in the TADF process was rec-
ognized since the early stages of theoretical research in the őeld.
Indeed, it is well accepted since the 60s, with the work of Marcus,
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6: The sign of the mixing matrix
elements, 𝜏 and 𝛽 is irrelevant and
the absolute value in Eq. 2.3 can be
neglected.

that non-radiative electron transfer processes occur due to the cou-
pling between the electronic and vibrational degrees of freedom
(including molecular vibrations and polar solvation).[36]

In Section 2.3.2, the solution of the molecular Hamiltonian in
Eq. 2.4 is obtained treating the vibrational coordinate, 𝑄, in a
non-adiabatic approach, while the conformational coordinate, 𝛿 is
treated in the adiabatic approximation as a classical coordinate. In
other terms, the kinetic energy associated with the 𝛿 coordinate is
neglected, and the coupled electronic-vibrational Hamiltonian is
solved for őxed 𝛿 values. This approximation is perfectly adequate
to address optical spectra, since relevant electronic energies are
order of magnitudes larger than conformational energies. However,
the tiny singlet-triplet gap of TADF dyes makes the adiabatic
treatment of the conformational degree of freedom untenable to
address RISC and ISC processes.

Therefore, a full non-adiabatic calculation is set up, rewriting the
molecular Hamiltonian for DMAC-TRZ in Eq. 2.4 as

Ĥ𝑚𝑜𝑙 = Ĥ𝑒𝑙 +
ℏ𝜔𝑐

4

(
𝛿̂2 + 𝑃𝑐

2
)
+ 𝑎4 𝛿̂

4 + ℏ𝜔𝑣
4

(
𝑄̂2 + 𝑃𝑣

2
)

(2.9)

where Ĥ𝑒𝑙 is the 𝛿-independent part of electronic Hamiltonian
deőned in eq. 2.3, and the expansion coefficient 𝑎2 in the restoring
potential associated to 𝛿 is related to the frequency of the mode
ℏ𝜔𝑐 as 𝑎2 = ℏ𝜔𝑐/4. Moreover, the momentum, 𝑃̂𝑐 , associated to the
conformational coordinate 𝛿, is introduced to account explicitly for
the kinetic energy of the 𝛿 mode. The Hamiltonian in eq. 2.9 is writ-
ten on the basis obtained as the direct product of the four electronic
diabatic states times the eigenstates of the harmonic oscillator asso-
ciated with the vibrational coordinate times the eigenstates of the
harmonic part of the potential associated with the conformational
motion. To this aim, the dimensionless conformational coordinate
𝛿̂ is expressed in second quantization as

𝛿̂ = (𝑎̂† + 𝑎̂) (2.10)

where 𝑎̂† (𝑎̂) is the creation (annihilation) operator of a vibrational
quantum. In the implementation of the calculation, in order to write
the Hamiltonian in terms of the creation and annihilation operators,
| sin(𝛿)| is expanded up to the third order, to be consistent with
the quartic expansion of the potential.6 Speciőcally:

sin 𝛿 ∼ 𝛿 + 1

6
𝛿3 (2.11)

Of course, the inőnite harmonic oscillator basis associated with
𝛿 and 𝑄 must be truncated to a large enough number of states as
to get convergence on the quantities of interest. As for vibrational
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7: Generally, the vibrational basis
associated with 𝑄 is truncated to 10
bosonic states, while the one asso-
ciated to 𝛿 is truncated to 500-1000
states, for an overall basis dimension
of 20000 − 40000.

states, the relevant number of states is reasonably small, but the
very small frequency associated with the conformational mode
requires using a very large number of states, 500-1000, leading to a
large overall dimension.7

2.4.1 RISC and ISC rates

Having a model for DMAC-TRZ and a complete non-adiabatic
solution of the relevant Hamiltonian, the calculation of the relax-
ation rates can now be faced. An elegant approach relies on open
quantum systems, coupling the molecular system to a thermal
bath, to simulate the energy degradation of the system due to the
interaction with the environment. The Redőeld bath, a bath of
harmonic oscillators, would nicely do the job, allowing to estimate
all relaxation energies in a single shot, as discussed for a simpler
system in ref. [118]. However the presence of a vibrational and a
conformational coordinate, with distinctively different frequencies
would require the introduction of two different coupling channels
between the molecule and the bath, one for each coordinate. Ac-
cordingly, two different spectral densities should be introduced:
the relative strength of the couplings and the speciőc form of the
two spectral densities would affect calculated rates in an uncon-
trolled way. In the lack of speciőc information on the two spectral
densities, this approach cannot provide reliable estimates of the
rates of interest for TADF. Therefore, here a step by step approach
is adopted, őrst discussing estimates of RISC and ISC rates and
then, in the next section, addressing radiative rates.

RISC and ISC processes are driven by the tiny SOC interactions that
can be treated perturbatively. The unperturbed states are therefore
obtained from the non-adiabatic diagonalization of the molecular
Hamiltonian in Eq. 2.6, setting 𝑉𝑆𝑂𝐶 and 𝑊𝑆𝑂𝐶 to zero. In these
conditions, the singlet and triplet subspaces are decoupled and
the two problems can be treated separately. Red and black lines in
Figure 2.11 show the energy levels relevant to the vibronic states in
the T1 and S1 manifolds, respectively. Since internal conversion is
a very fast process (with typical relaxation times ∼ 100 fs), RISC
is assumed to occur from the thermally equilibrated T1 states, the
relevant distribution being shown in the right panel of Figure 2.11.
The Fermi golden rule (FGR) can then be used to calculate the rate
of the transition between states 𝑖 and 𝑗 in the two subspaces:

𝑣𝑖 𝑗 =
2𝜋

ℏ

��⟨𝑖 | 𝐻̂𝑆𝑂𝐶 | 𝑗⟩
��2𝑆𝑖 𝑗 (2.12)

where Ĥ𝑆𝑂𝐶 is the SOC part of the Hamiltonian in Eq. 2.6. The
energy conserving Dirac-𝛿 in the FGR expression[4] is replaced
by 𝑆𝑖 𝑗 , to account for a őnite spread in energy of each state, or,
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Figure 2.11: A schematic view of
the non-adiabatic calculation of ISC
(left panel) and RISC (right panel).
Red and black lines show the energy
levels of the vibronic eigenstates of
T1 and S1, respectively. In the left
panel, the gaussian shape assigned
to a speciőc vibronic state in the S1
manifold is shown, and the arrows
indicate the transition to speciőc vi-
bronic eigenstates in the T1 mani-
fold. The global ISC rate is calcu-
lated summing on all S1 eigenstates,
accounting for their thermal popu-
lation (black dashed line in the left
panel). RISC rates (right panel) are
calculated in a similar way, but sum-
ming on all T1 eigenstates, account-
ing for their thermal population (red
dashed line in the right panel).

equivalently, for the őnite lifetime of each state. Speciőcally, each
state is assigned a Gaussian lineshape, whose width, 𝜎, is related
to the inverse relaxation time 𝜏𝑟 as follows:

𝜎 =
1

2𝜋
√

2 ln 2𝜏𝑟
(2.13)

and 𝑆𝑖 𝑗 measures the overlap between the two Gaussians. ISC
rates are calculated along the same lines, but starting with vibronic
eigenstates in the S1 manifold, whose thermal distribution is shown
as a black dashed line in the left panel.

Figure 2.12 shows RISC and ISC rates calculated as a function of
temperature assigning three different values to the lifetime of the
vibronic eigenstates: 50 fs, 100 fs and 200 fs, spanning the relevant
range. Calculated rates moderately increase with decreasing relax-
ation time (increasing the width of the energy interval assigned to
each vibronic state), but the observed variation is modest. There-
fore, results obtained for the intermediate 100 fs relaxation time
are discussed in the following Sections. As expected, the RISC
rate decreases fast upon decreasing temperature, while ISC rate
moderately increases. The singlet triplet gap, Δ𝐸𝑆𝑇 , measured as
the energy difference between the lowest vibronic state in each
subspace, amounts to 0.0513 eV. The microscopic reversibility con-
dition relates the RISC and ISC rates: the dashed line in Figure 2.11
shows the RISC rate evaluated from the ISC rate upon imposing
the microscopic reversibility condition:

𝑘𝑅𝐼𝑆𝐶 = exp

{
−Δ𝐸𝑆𝑇
𝑘𝐵𝑇

}
𝑘𝐼𝑆𝐶 (2.14)

where 𝑘𝐵 is the Boltzmann constant. The rates computed using
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Figure 2.12: Temperature depen-
dence of calculated RISC and ISC
rates. Blue, black and red symbols
refer to results obtained imposing
a relaxation time for vibronic eigen-
states 𝜏𝑟 = 50 fs, 100 fs and 200 fs, re-
spectively. Black open symbols show
RISC rates calculated from ISC rates,
upon imposing the reversibility con-
dition.
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Figure 2.13: Temperature depen-
dence of RISC and ISC rates cal-
culated with model parameters in
Table 2.1 (black curve), and multi-
plying by a factor of 2 either the vi-
brational frequency 𝜔𝑣 (blue curve)
or the 𝑎4 parameter (red curve).
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the non-adiabatic FGR approach marginally deviate from the
reversibility condition, suggesting that, while the proposed model
is very simple, as it only accounts for a single low-frequency mode,
the spacing between vibronic level is small enough to accommodate
a thermodynamic behavior.

Figure 2.13 shows the temperature dependence of the RISC and
ISC rates calculated with the standard model (black symbols) and
imposing hardened vibrational or conformational frequencies (blue
and black symbols, respectively). The effect on ISC rates is modest,
but a hardened frequency of the conformational mode favors
RISC, in good qualitative agreement with recent experimental
results.[140]

More interesting and intriguing is the dependence of RISC and ISC
rates on the energy of the |𝐿⟩ state, as deőned by the parameter 𝑘.
Results in Figure 2.14 show a fairly complex and non-monotonic be-
havior, suggesting that optimizing the ISC and RISC rates requires
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Figure 2.14: The dependence of the
RISC and ISC rates calculated for
the standard model (black symbols)
and by setting either𝑉𝑆𝑂𝐶 or𝑊𝑆𝑂𝐶

to zero (blue and red symbols, re-
spectively).

a őne tuning of the position of the local excited state, in a way that
may strongly depend on the details of the molecular system at
hand. Indeed this behaviour, and speciőcally the valley observed
in either RISC and ISC rates at 𝑘 ∼ 2.35 eV, originates from the
competing contribution from the two SOC channels, mixing 𝑁
and 𝑇 states and𝑊𝑆𝑂𝐶 , mixing 𝑍 and 𝐿 states, as made evident by
results obtained imposing either 𝑉𝑆𝑂𝐶 = 0 or𝑊𝑆𝑂𝐶 = 0 (red and
blue lines in Figure 2.14).

2.4.2 Radiative rates

Fluorescence is an allowed radiative process, occurring from the
relaxed excited singlet, S1 towards vibronic states in the S0 manifold.
The probability of the ŕuorescence process from state 𝑖 to state 𝑓
is calculated again using the FGR, as follows:[4]

𝑘 𝑓 𝑖 =
𝜔3
𝑓 𝑖
𝜇2
𝑓 𝑖

3𝜋𝜖0ℏ𝑐3
(2.15)

where 𝜔 𝑓 𝑖 and 𝜇 𝑓 𝑖 are the transition frequency and dipole mo-
ment,respectively.

The above equation can be exploited in two different approaches
to the ŕuorescence rate. In the őrst approach, the complete non-
adiabatic diagonalization of the Hamiltonian in Eq. 2.6 identiőes
𝑖 and 𝑓 into vibronic states (accounting for both vibrational and
conformational motions) of the S1 and S0 manifold, respectively.
The overall contribution of the ŕuorescence rate from state 𝑖 in 𝑘 𝑓 𝑙𝑢𝑜
is then obtained summing over all decay rates towards the 𝑓 states
in the vibronic manifold of S0. Finally, the overall ŕuorescence rate
is obtained accounting for the thermal distribution of the 𝑖 states
in the equilibrated S1 manifold. This approach is fairly expensive,
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since the full non-adiabatic Hamiltonian must be diagonalized and,
to get convergence, it requires including ∼ 10 vibrational states
and ∼ 600 conformational states. Of course calculations may be
limited to the two electronic states in the singlet subspace, but the
total basis is fairly large, with ∼ 104 states. In an easier approach
the conformational mode is dealt with in the adiabatic approxima-
tion: neglecting the kinetic energy of the conformational motion,
the vibronic Hamiltonian accounting for the coupled electronic
and vibrational motions is diagonalized for őxed values of the
conformational coordinate 𝛿. The calculation implies the diago-
nalization of the vibronic Hamiltonian on a basis with dimension
∼ 20 on a grid of 𝛿 values. For each 𝛿 only the lowest eigenstate of
the S1 vibronic manifold, the ŕuorescent state, is populated (the
vibrational energy is very large versus thermal energy). For each 𝛿

value, the rate from Eq. 2.15 is summed over the 𝑓 vibronic states
in the S0 manifold to get the corresponding ŕuorescence rate, that
is őnally averaged over the thermal distribution accounting for
the 𝛿-dependence of the ŕuorescent state energy. As expected,
since ŕuorescence occurs between states separated by large energy
gaps, the non-adiabatic and adiabatic approaches yield the same
results.

The temperature-dependence of calculated ŕuorescence rates is
reported in the bottom panel of Figure 2.17: the calculated rate, of
the order of 106 s−1, is fairly small, as expected for S1 state with
dominant CT character. Its decrease with decreasing temperature
can be rationalized since the S1 equilibrium geometry has 𝛿 =

0, where the transition dipole moment and hence the radiative
rates vanish. As temperature increases, states with őnite 𝛿 are
progressively populated, leading to a progressive increase of the
ŕuorescence rate.

2.4.3 The Marcus model

The Marcus equation is often adopted to calculate RISC rates.[80,
108, 141] However, attention must be payed to the basic approxima-
tion underlying the Marcus model. Speciőcally, the original Mar-
cus model[36, 142] or its generalization to include high frequency
molecular vibrations (Marcus-Levich-Jortner, MLJ model[143, 144]),
apply to the calculation of transfer rates between two diabatic states,
whose energy depends on one or more vibrational and/or confor-
mational and/or solvation coordinates. Relevant potential energy
surfaces are usually set as harmonic, with the same frequency
but displaced minima (spin-boson model with linear coupling).
But the most stringent approximation is that the matrix element
that mixes the two diabatic states is constant.[142] However, when
applied to RISC rates calculations, the Marcus model is exploited
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with reference to adiabatic singlet and triplet states as obtained
from quantum chemical calculations. In the adiabatic picture the
state-to-state FGR, at the heart of the Marcus model, requires the
calculation of the following matrix elements:

⟨𝜓𝑖(𝑟,𝑄)𝜒𝑖 ,𝑣(𝑄)|Ĥ𝑆𝑂𝐶 |𝜓 𝑓 (𝑟,𝑄)𝜒 𝑓 ,𝑢(𝑄)⟩=⟨𝜒𝑖 ,𝑣(𝑄)|H𝑆𝑂𝐶
𝑖 𝑓

(𝑄)|𝜒 𝑓 ,𝑢(𝑄)⟩ (2.16)

where 𝜓𝑖/ 𝑓 (𝑟, 𝑄) is the electronic wavefunction relevant to the ini-
tial/őnal state and 𝜒𝑖/ 𝑓 ,𝑣/𝑢 is the 𝑣/𝑢th vibrational wavefunction
relevant to the 𝑖/ 𝑓 electronic manifold. The electronic wavefunction
describes the motion of electronic coordinates 𝑟, and parametri-
cally depends on the nuclear coordinates 𝑄, while the vibrational
wavefunctions only depend on 𝑄. In the second term of the above
equation an integral over the electronic coordinates allows to deőne
the relevant matrix element of the interaction Hamiltonian:

H𝑆𝑂𝐶
𝑖 𝑓 (𝑄) = ⟨𝜓𝑖(𝑟, 𝑄)|H𝑆𝑂𝐶 |𝜓 𝑓 (𝑟, 𝑄)⟩𝑟 (2.17)

where ⟨...⟩𝑟 stands for the integral on the electronic coordinates.
If H𝑆𝑂𝐶

𝑖 𝑓
(𝑄) is weakly dependent on 𝑄 it can be Taylor-expanded

around the equilibrium geometry. The zeroth order term (the
Condon term) brings the problem back to the 𝑄-independent
interactions characteristic of the Marcus model, so that the Marcus
or MLJ equations can be safely applied. However if the 𝑄 depen-
dence of H𝑆𝑂𝐶

𝑖 𝑓
(𝑄) cannot be disregarded, the factorization of the

electronic and vibrational problems is more delicate and leads to
additional terms (Herzberg-Teller, etc. . . ) well beyond the Marcus
model.

In the case of DMAC-TRZ as modelled in this Chapter, the Marcus
approach relies on the adiabatic solution of the molecular Hamil-
tonian in Eq. 2.6. The diagonalization of the adiabatic Hamiltonian
leads to 𝛿 and 𝑄-dependent energies for the four electronic states.
Figure 2.15 shows the resulting potential energy surfaces for the
S1 and T1 states. The two surfaces are degenerate at 𝛿 = 0◦ where
the SOC vanishes, | ⟨S1 |𝐻𝑆𝑂𝐶 |T1⟩ | = 0. The equilibrium position
for the triplet state is found at 𝛿 = 22◦ and 𝑄 = 1.68 with en-
ergy 𝐸𝑇 = 3.2217 eV. The singlet minimum is found at 𝛿 = 0◦ and
𝑄 = 1.92 with energy 𝐸𝑆 = 3.2700 eV. The singlet-triplet minimum
Δ𝐸𝑆𝑇 = 0.0485 eV coincides with the relaxation energy and the
activation energy, so that

𝑘𝑅𝐼𝑆𝐶 =
2𝜋

ℏ

| ⟨𝑆1 |𝐻𝑆𝑂𝐶 |𝑇1⟩ |2√
4𝜋Δ𝑆𝑇 𝑘𝐵𝑇

exp

{
−Δ𝐸𝑆𝑇
𝑘𝐵𝑇

}
(2.18)

where 𝑘𝐵 is the Boltzmann constant. Corresponding ISC rates
are then estimated imposing the detailed balance. The delicate
point is the SOC matrix elements.[56, 80] Indeed the Marcus
model is deőned on diabatic states, with constant interaction.
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Figure 2.15: Contour plots of the adi-
abatic potential energy surfaces (eV)
relevant to T1 (red) and S1 (black)
states.

Figure 2.16: The temperature depen-
dence of the RISC and ISC rates
calculated for the standard model
(black symbols) and in the Marcus
model őxing the SOC matrix ele-
ments to the value relevant to the
equilibrium geometry for the triplet
state (red symbols). Setting the SOC
matrix element to the value relevant
to the singlet-triplet crossing point
both RISC and ISC rate would van-
ish.
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Here instead,the model is applied to the adiabatic states and
| ⟨S1 |𝐻𝑆𝑂𝐶 |T1⟩ | varies with the molecular geometry. Speciőcally,
at the crossing point | ⟨S1 |𝐻𝑆𝑂𝐶 |T1⟩ | = 0, while at the equilibrium
geometry for the triplet state | ⟨𝑆1 |𝐻𝑆𝑂𝐶 |𝑇1⟩ | = 2.66× 10−5 eV. Of
course the RISC rate vanishes exactly if the SOC is őxed at the
value relevant to the crossing point. Figure 2.16 shows RISC rates
calculated with the above equation setting the SOC matrix element
to the value calculated at the triplet geometry.

In TADF systems, and speciőcally in DMAC-TRZ (see Figure 2.8),
𝐻𝑆𝑂𝐶
𝑖 𝑓

shows a quite impressive 𝛿-dependence as it vanishes at
𝛿 = 0, where the singlet-triplet gap closes, and becomes sizeable at
intermediate angles and speciőcally at the triplet equilibrium geom-
etry. Applying the Marcus or MLJ expressions in these conditions
represents a strong approximation, explaining the observation in
recent literature of wildly different results for RISC rates estimates.
Indeed, őxing the 𝐻𝑆𝑂𝐶

𝑖 𝑓
(𝑄) to the value relevant to 𝛿 = 0 (or

in any case to the value obtained where the singlet-triplet gap
vanishes) leads to vanishing RISC rates.[141] On the opposite, if
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the SOC is set to the value relevant to the equilibrium geometry
for the triplet state as in ref. [80] and [145], sizable RISC rates are
obtained, that for the speciőc case of DMAC-TRZ are roughly one
order of magnitude larger than in our non-adiabatic calculation
(Figure 2.16).

The importance of properly accounting for spin-vibronic terms,
well beyond the Marcus or MLJ models, has been very clearly
expressed by Penfold et al.[146] In their approach, using a diabatic
basis, with𝑄 independent SOC among basis states, they regain the
𝑄-dependence of the adiabatic SOC matrix elements accounting
for the non-adiabatic mixing of different diabatic states, getting
closed formulas thanks to a perturbative treatment. In our essential
state model[29] the mixing between the CT and the LE triplets,
is parametrized to reproduce the adiabatic 𝑄-dependent SOC
interaction and singlet-triplet gap, as obtained from TD-DFT.

2.5 TADF and medium polarizability

TADF phenomena involve molecular excitation in the visible por-
tion of the electromagnetic spectrum. As discussed in Chapter 1, the
dielectric response of a generic matrix can therefore be partitioned
in two contributions with distinctively different dynamics. The
electronic degrees of freedom of the matrix are characterized by
timescale in the far-UV region, faster than the molecular degrees of
freedom of interest. On the opposite, vibrational and orientational
motions of the matrix are much slower. These slow motions only
contribute to the dielectric response of the medium in polar ma-
trices, whose role on the photophysics of DMAC-TRZ is analyzed
in detail in Section 2.6. In this Section, only the effect of the fast
dielectric response is addressed.

Matrices of interest for OLED applications have 𝜀𝑜𝑝𝑡 spanning a
very narrow range comprised between 2.6 and 3.0. Setting the
cavity radius to the Onsager radius as done in Section 2.3.3, the
renormalized 𝑧 varies between 1.57 eV and 1.55 eV. Figure 2.17
shows the temperature-dependent rates (ISC, RISC, radiative)
calculated in the gas phase (𝑧 = 1.72 eV) and for the two limiting
values of the effective 𝑧 = 1.57 eV and 1.55 eV. Radiative rates are
marginally affected by the matrix polarizability, while both RISC
and ISC rates decrease considerably when going from gas phase
to the matrix, suggesting that gas-phase computational results
must be considered with care. On the other hand, the variability of
𝜀𝑜𝑝𝑡 in common organic media is very limited, so that addressing
the effects of the medium polarizability from the experimental
perspective is difficult.
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Figure 2.17: Temperature depen-
dence of calculated ISC, RISC and
ŕuorescence rates. Black symbols re-
fer to gas phase results (𝜀𝑜𝑝𝑡 = 1),
blue, and red symbols refer to re-
sults for matrices with 𝜀𝑜𝑝𝑡 = 2.6
and 3.0, respectively. RISC and ISC
rates are obtained setting 𝜏𝑟 = 100 fs.
Normalized non-radiative rates cal-
culated for different 𝜀𝑜𝑝𝑡 are super-
imposed in the scale of the őgure.
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As discussed in Section 2.3.1, RISC and ISC rates are calculated
based on SOC matrix elements computed using the Breit-Pauli
Hamiltonian as implemented in the ORCA 4.1.[127, 128] Out of
the three spin states, őnite SOC is computed for only one state, so
that a single channel is available for either ISC or RISC. Calculated
rates refer to this channel. However, in the hypothesis that the
population of the three triplet states is instantaneously equilibrated,
the effective RISC rate, to be compared with experiment, must
be divided by a factor of 3.[147] Accordingly, the effective RISC
rate for DMAC-TRZ in a non-polar matrix is estimated in the
7× 104 − 2× 105 s−1 range, in line with experimental results falling
in the range 2−5×105 s−1 in non polar matrices (Zeonex and UGH)
as well as in toluene solution.[148] ISC rates are estimated of the
order of 2 × 106 s−1 approximately one order of magnitude smaller
than experimental results (∼ 2 × 107 s−1). Calculated radiative
rates ∼ 2 × 106 s−1 are again roughly one order of magnitude
smaller than the experimental ŕuorescence rates, that are however
also affected by the non-radiative decay. In any case, the overall
agreement is satisactory, considering that a model is exploited,
deőned and parametrized against TD-DFT results and validated
against absorption an ŕuorescence spectra (Section 2.3.2).[29]

2.6 Disorder and polarity in condensed phase

A dye inserted in a dielectric medium (a solvent or a matrix)
is affected by the electric potential generated by the medium in
response to the presence of the dye. Solvatochromism, i.e. the
dependence of the spectral properties of dyes on the solvent, is
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Figure 2.18: 𝐹𝑜𝑟 -dependent distri-
butions of S0, S1 and T1 states of
DMAC-TRZ in hypotetical solvents
with 𝜖𝑒𝑙 = 0 and 𝜖𝑜𝑟 as speciőed in
each panel.

the most obvious manifestation of the phenomenon.[7] Models
accounting for normal and inverse solvatochromism in polar dyes
are known since decades[7, 149] and more detailed treatments
also accounting for the evolution of spectral bandshapes have
been proposed.[37, 39, 150] In TADF dyes, the phenomena are
more complex, since not just the spectra depend on the dielectric
properties of the medium,[45, 111] but the ST gap and the SOC
interactions are also affected with important and highly non-trivial
consequences on the TADF photophysics.[108, 145, 151] To make
the issue more complex, delayed ŕuorescence occurs on very long
timescales that, in solid matrices, are possibly comparable to the
matrix relaxation times, resulting in a highly non-trivial interplay
of interactions.

In this section, the role of a polar environment on the photophysics
of TADF is addressed. Relevant degrees of freedom include orienta-
tional, conformational and vibrational modes of the environment,
that are slow and can be treated in the adiabatic approximation.
In the reaction őeld framework, this amounts to neglecting the
kinetic energy associated with 𝐹𝑜𝑟 , in the Hamitonian in eq. 2.6 that
describes the dye in a dielectric environment. In DMAC-TRZ the S0

state is largely neutral and at the equilibrium 𝐹𝑜𝑟 ∼ 0 in all solvents
or matrices. In S1 instead the molecular dipole moment is large
and a sizable equilibrium 𝐹𝑜𝑟 value is expected, that increases with
the polarity of the medium (at least as long as the environment can
relax after the photoexcitation of the dye). There is however another
important effect of polar solvation. Indeed at őnite temperature,
not just the 𝐹𝑜𝑟-equilibrated state is populated, but a distribution
of 𝐹𝑜𝑟 is expected that can be calculated in terms of a Boltzmann
distribution of 𝐹𝑜𝑟-dependent energies. This distribution is re-
sponsible for inhomogeneous broadening phenomena in polar
solvents.[37, 39] Indeed in non-polar or weakly polar solvents 𝜖𝑜𝑟 is
close to zero, so that the restoring force for 𝐹𝑜𝑟 is very large, leading
to narrow distributions around the equilibrium: inhomogeneous
broadening due to polar solvation is marginal in these conditions,
explaining the partially resolved structure of CT absorption and
ŕuorescence bands of polar dyes in non-polar environments.[39]
As the solvent polarity increases, the 𝐹𝑜𝑟-restoring force decreases
and the resulting broader 𝐹𝑜𝑟-distributions are responsible for the
gradual broadening of CT absorption and emission bands with
increasing the polarity of the environment.[39] In the speciőc case
of DMAC-TRZ with a largely neutral ground state the distribution
is always centered around 𝐹𝑜𝑟 ∼ 0, but it becomes broader and
broader with increasing 𝜖𝑜𝑟 , spanning regions with positive and
negative 𝐹𝑜𝑟 (Figure 2.18). S1 and T1 states have similar polarity
and similar distributions centered at 𝐹𝑜𝑟 values that increase with
𝜖𝑜𝑟 .
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8: To this aim, studies on the early
solvation dynamics have been per-
formed using pump-probe tech-
niques, as in ref. [152]

9: To this aim, the solvent relaxation
energy 𝜖𝑜𝑟 is considered as a free őt
parameter, as done in the bottom
panel of Figure 2.9a

10: The area normalized popula-
tions of S0, S1 and T1 (Figure 2.19)
are calculated as a function of 𝛿 for
different values of 𝐹𝑜𝑟 at 300 K, ac-
counting for 𝛿 as either an adiabatic
or a non-diabatic mode.
In the adiabatic limit, the distribu-
tion is obtained as

𝑃𝑖 (𝛿)=
exp

(
− 𝐸𝑖 (𝛿)
𝑘𝑏𝑇

)
∫ +∞
−∞ 𝑑𝛿 exp

(
− 𝐸𝑖 (𝛿)
𝑘𝑏𝑇

)

where 𝐸𝑖(𝛿) is the potential energy
surface, with 𝑖 running on S0, S1 and
T1, the lowest vibronic eigenstates
of each respective manifold.
In the non-adiabatic limit, a generic
eigenfunction 𝑘 of eq. 2.9 is:

Ψ𝑘 (𝑟,𝑄,𝛿)=
∑
𝑖 ,𝑣,𝑝 𝑐𝑘𝑖𝑣𝑝𝜙𝑖 (𝑟)𝜒𝑣 (𝑄) 𝑓𝑝 (𝛿)

where 𝑐𝑖𝑣𝑝 is the coefficient. 𝜙𝑖(𝑟)
is an electronic basis function and
𝜒𝑣(𝑄) ( 𝑓𝑝(𝛿)) is the vibrational wave
function associated to the 𝑄 (𝛿)
mode. The non-adiabatic distribu-
tions (dotted lines) are computed
as:

𝑃(𝛿)=∑𝑘 𝑝𝑘
∑
𝑖𝑣𝑝𝑝′ 𝑐∗𝑘𝑖𝑣𝑝 𝑐𝑘𝑖𝑣𝑝′ 𝑓

∗
𝑖𝑣𝑝

(𝛿) 𝑓𝑖𝑣𝑝′ (𝛿)

where

𝑝𝑘=exp
(
𝐸𝑘
𝑘𝑏𝑇

)
/∑𝑘 exp

(
𝐸𝑘
𝑘𝑏𝑇

)

is the population of the 𝑘-th non-
adiabatic eigenstate in the manifold
of interest.

2.6.1 TADF in liquid solvents

The numerically exact, non-adiabatic solution of the molecular
HamiltonianH

𝜂

𝑚𝑜𝑙
in Eq. 2.9 is obtained diagonalizing the Hamilto-

nian matrix written on the basis direct product of the four diabatic
states times the eigenstates of the harmonic oscillators associated
with the vibrational and conformation motions.[111] Of course, the
oscillator basis must be large enough to reach convergence. As for
the vibrational mode, 10-20 basis states are enough, but the very
low frequency of the conformational mode requires 600 or more
states, for an overall dimension exceeding 20,000 states.

Once the Hamiltonian is diagonalized, the transition frequencies
and dipole moments among the vibronic states (the Hamiltonian
eigenstates) are calculated to address optical spectra. Speciőcally, to
calculate absorption spectra the lowest vibronic states of the ground
state manifold are populated accounting for the Boltzmann dis-
tribution. Accordingly, 𝐹𝑜𝑟-dependent energy and 𝐹𝑜𝑟-dependent
absorption are obtained. Finally, the global absorption spectrum
is obtained averaging 𝐹𝑜𝑟-dependent spectra accounting for the
Boltzmann distribution relevant to the 𝐹𝑜𝑟 dependent energy.

To address ŕuorescence, it must be recognized that in liquid sol-
vents the dynamics associated with slow solvation typically occur
in the picosecond time window and is therefore not experimentally
accessible through standard time-resolved emission techniques.8

In any case, solvent relaxation is much faster than ŕuorescence
lifetimes (typically in the nanosecond regime) and steady state
ŕuorescence is dominated by the signal from the excited dye sur-
rounded by the equilibrated solvent. Therefore, the calculation of
ŕuorescence spectra goes along the same lines as absorption spec-
tra, but accounting, for each 𝐹𝑜𝑟 , for the emission resulting from
each vibronic state in the excited singlet subspace and averaging
over the relevant 𝐹𝑜𝑟 distribution.

Figure 2.9a shows calculated spectra for DMAC-TRZ in different
solvents. Table 2.4 lists, for the three solvents, the values of 𝜖𝑒𝑙 ,
obtained from Eq. 2.5, and of 𝜖𝑜𝑟 , adjusted to best reproduce
experimental spectra.9 While not perfect, the agreement with the
experiment is good, in view of the simplicity of the adopted model.
Speciőcally, calculated absorption spectra do not account for high
frequency absorption bands that, partly superimposed to the low-
frequency band may alter its shape. Absorption spectra calculated
treating the conformational mode in the adiabatic approximation
coincide with the spectra in Figure 2.9a. Indeed, even if the non-
adiabatic calculation does not rely on a static 𝛿-distribution, it
implicitly accounts for the disorder on the (dynamical) 𝛿 variable
(Figure 2.19).10
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Figure 2.19: Distributions as a func-
tion of 𝛿 of the S1, T1 and S0
states, accounting for 𝛿 as a adia-
batic mode (continuous lines) and a
non-adiabatic mode (dotted lines),
for different values of an external
őeld.

The adiabatic treatment of 𝛿, that works well for absorption and
ŕuorescence spectra, fails when applied to RISC and ISC calcula-
tions since the singlet-triplet gap is comparable to conformational
energies. Therefore, as discussed in Section 2.4.1, the complete
non-adiabatic Hamiltonian is diagonalized for each 𝐹𝑜𝑟 value and
rates among each pair of vibronic states are calculated using the
state-by-state Fermi golden rule.[111] The overall rate is őnally
obtained as the thermal average over the initial state population
(the lowest triplet state for RISC and the lowest excited singlet state
for ISC). Again the calculations are repeated for different values
of 𝐹𝑜𝑟 , to get 𝐹𝑜𝑟-dependent RISC and ISC rates, relevant results
being shown as red and black dashed lines in the three panels of
Figure 2.20.

In liquid solvents, the orientational relaxation times are faster
than all photophysical processes of interest (ŕuorescence, non-
radiative decay, RISC and ISC). Accordingly, the solvent is always
equilibrated with the solute and the overall rate for the generic
process from state 𝑖 to state 𝑓 can be calculated as the thermal
average over the 𝐹𝑜𝑟 distribution equilibrated to the 𝑖 state.[142]
The overall 𝑘𝑅𝐼𝑆𝐶 rate in each solvent is then calculated summing
over the 𝐹𝑜𝑟 dependent RISC rates, weighted by the 𝐹𝑜𝑟 distribution
equilibrated to T1. The same calculation is done for the ISC rates,
accounting for the 𝐹𝑜𝑟 distribution relevant to S1 state. Continuous
lines in Figure 2.20 show the 𝐹𝑜𝑟-distribution relevant to T1 (the
S1 distribution being marginally different). Upon increasing the
solvent polarity, the distribution moves towards 𝐹𝑜𝑟 values where
both RISC and ISC rates increase, explaining the overall increase
of both rates upon increasing the solvent polarity.

Table 2.4 compares calculated RISC and ISC rates with experimental
RISC, ISC and ŕuorescence rates obtained from the biexponential
őt of the integrated luminescence intensity measured from diluted
(0.8 mM) degassed solutions of DMAC-TRZ in methylcyclohexane,
toluene and chloroform (Figure D.9). RISC rates are well in line
with experimental results, showing a progressive increase with the
solvent polarity. As for ISC, the rates are somewhat underestimated
in non-polar solvents and a steady increase of ISC rates is predicted
with the solvent polarity, while experimental results point to a
marginal dependence of ISC rates on the solvent polarity. Indeed,
the model proposed for DMAC-TRZ, and used here as a basis
to compute rates, accounts for two effective molecular modes
implicitly assuming that the most relevant relaxation mode for
both RISC and ISC is the dihedral torsion angle 𝛿. The different
trend between between experimental and computed ISC rates with
solvent polarity may hint at other efficient relaxation pathways for
the S1→T1 transition, that may involve other molecular motions
or electronic states that are not explicitly taken into account in the
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Table 2.4: Solvent parameters (from
Ref. [45]), and estimated 𝑘𝑅𝐼𝑆𝐶 and
𝑘𝐼𝑆𝐶 (s−1 units).

Cyclohexane Toluene Chloroform

𝜖𝑒𝑙 (eV) 0.246 0.242 0.253

𝜖𝑜𝑟 (eV) 0.10 0.22 0.40

𝑘𝑅𝐼𝑆𝐶 4.87 × 104 3.10 × 105 2.19 × 106

𝑘
𝑒𝑥𝑝

𝑅𝐼𝑆𝐶
6.05 × 104 2.71 × 105 2.69 × 106

𝑘𝐼𝑆𝐶 4.18 × 105 1.78 × 106 1.11 × 107

𝑘
𝑒𝑥𝑝

𝐼𝑆𝐶
1.33 × 107 2.63 × 107 1.77 × 107

Figure 2.20: Normalized triplet dis-
tribution of DMAC-TRZ vs 𝐹𝑜𝑟
(continuous lines) in cyclohexane,
toluene and chloroform, superim-
posed to 𝑘𝐼𝑆𝐶 and 𝑘𝑅𝐼𝑆𝐶 (red and
black dashed lines respectively).
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Figure 2.21: Kekulè structures of the
hosts considered in this section.

model.

Since in solution all molecular and solvent relaxation processes
are much faster than photophysical processes of inerest, emission
spectra do not show any appreciable time-dependence (Figure D.8),
and the luminescence intensity decay follows a well-behaved
biexponential curve, the tail observed at long delays in toluene
being ascribed to phosphorescence (Figure D.9).

2.6.2 TADF in organic matrices

Conformational and polar disorder The photophysics of TADF
dyes dispersed in organic matrices (see Figure 2.21 for represen-
tative structures) is far more complex than in liquid solutions.
Fairly extensive studies are available for DMAC-TRZ in several
matrices (Figure D.11).[148] Time resolved emission spectra of
DMAC-TRZ in organic amorphous matrices measured at room
temperature show a redshift in the őrst 80-90 ns (prompt ŕuores-
cence regime). The magnitude of this initial redshift increases with
the host polarity. Moreover, the emission spectrum measured at
the őrst accessible time, 𝑡 ∼ 2.3 ns, moves to the red with the host
polarity, suggesting a partial host rearrangement in a time scale
not experimentally accessible. During delayed ŕuorescence, the
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emission band strongly blueshifts in DPEPO, weakly blueshifts in
Zeonex and mCPCN and does not move in mCBPCN (Figure D.11).
Moreover, in all matrices a clear non-exponential tail is observed in
the time evolution of the emission intensity. This complex behavior
points to inhomogeneous broadening effects as well as to a com-
plex interplay between the concurrent dynamics of processes that
include ŕuorescence, phosphorescence, non-radiative decay, RISC,
ISC, the conformational motion and the dynamics of the matrix
itself. Quite interestingly, non-exponential decays are typically
observed in dynamical processes where different species concur
to the observed ŕuorescence or when a slow dynamical process
affects the system dynamics.[153ś155]

There are two main sources of quasi-static disorder for dyes in
matrices. In the őrst place, the conformational motion of the dye is
hindered in rigid matrices and a static distribution of the dihedral
angle must be accounted for, rather than a dynamic distribution, as
it was the case in liquid solutions. Moreover, in polar matrices, static
disorder in the local electric őeld generated by the conőguration
of polar groups in the matrix molecules around the dye is an
important source of inhomogeneous broadening. In this subsection,
the two sources of disorder are addressed separately, in order to
understand their role. In the next subsection, the complete system
is described in an effort to address experimental data.

Organic matrices are rigid structures that do not allow for the
full conformational relaxation of the dye upon relaxation.[54, 56]
Moreover, the dye entrapped in the matrix may be frozen in non-
equilibrium geometries. To account for the reduced conformational
freedom of the dye inside the matrix, the conformational potential
in Eq. 2.9 is modiőed. Speciőcally, the quartic constant 𝑎4 is set to
zero, restoring the harmonic potential, which represents a good
approximation for small amplitude motions. Moreover, a stiff po-
tential with a larger 𝜔𝑐 than in solution is imposed. To account for
conformational disorder, for each dye in the matrix, small oscilla-
tions of the dihedral angle around different equilibrium positions
are assumed, so that the conformational potential reads:

ℏ𝜔𝑐

4
(𝛿 − 𝛿0)2 (2.19)

Gaussian distributions of 𝛿0 are assumed, in line with results from
molecular dynamics calculations,[59] and, to account for the matrix
rigidity, the distribution is maintained frozen upon excitation. In
the following, results are reported for 𝜔𝑐 = 4.0 × 10−3 eV, that
corresponds to average 𝛿 oscillations of about ±3° at ambient
temperature. Rates computed for different values of 𝜔𝑐 are shown
in Appendix E. Varying𝜔𝑐 leads to small variations of ISC and RISC
rates (Figure E.1), which marginally affect the overall simulation
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reported in the next subsection.

Dielectric disorder is more subtle. In liquid solvents the main
contributions to polar solvation arises from the tumbling of the
polar molecules around the solute. This orientational motion is
very fast in liquid solvents (picosecond timescale) but it becomes
slow and possibly totally hindered inside the solid matrices of
interest. However, partial rearrangements (torsion of small groups
or lateral chains, vibrational relaxation) can still occur in matrices
in the timescale of interest for the TADF photophysics. Indeed, in
polymeric matrices the so-called 𝛽-relaxation, related to rotation
of polar group around C-C bonds, is typically observed in the
nanosecond timescale.[156, 157] Moreover, the vibrational con-
tribution, recently estimated for several matrices from ab initio

vibrational intensities, accounts for approximately one unit of the
dielectric constant and is deőnitely related to comparatively fast
vibrational motions.[158] Accordingly, the orientational reaction
őeld due to polar solvation in matrices is partitioned in two com-
ponents. The őrst one is a dynamic component 𝐹𝑑𝑦𝑛𝑜𝑟 that, after
photoexcitation, will readjust in response to the charge distribution
in the dye in a timescale spanning the őst few nanoseconds, shorter
than the timescale of interest for RISC and ISC processes. A second
static component 𝐹𝑠𝑡𝑜𝑟 will instead be considered frozen, at least in
the timescale of interest. While showing different dynamics, and
then affecting the time-resolved properties in different ways, at
each speciőc time the properties of the system are deőned by the
total reaction őeld 𝐹𝑜𝑟 = 𝐹𝑠𝑡𝑜𝑟 + 𝐹

𝑑𝑦𝑛
𝑜𝑟 .

The 𝐹𝑜𝑟 and 𝛿0-dependent RISC and ISC rates are calculated
following the same strategy discussed in section 2.4.1, setting
𝜖𝑒𝑙 = 0.28 eV for all matrices. The radiative rate 𝑘𝑟𝑎𝑑 is őnally
calculated as a function of 𝐹𝑜𝑟 using eq. 2.15.[4] The color maps in
Figure 2.22 show the 𝛿0 and 𝐹𝑜𝑟 dependence of the singlet-triplet
gap and of the rates of RISC ISC and radiative decay. As expected,
sizable RISC rates are only calculated in a narrow region of 𝛿0

whose width varies with 𝐹𝑜𝑟 , but never extends beyond 𝛿0 = ±20°.
This region corresponds to the region where the ŕuorescence rate
is minimal. The ŕuorescence rate shows a monotonic behavior vs
𝐹𝑜𝑟 , while both the RISC and ISC rates show a well-pronounced
minimum at 𝐹𝑜𝑟 ∼ 0.3 eV. The other rates entering the dynamical
model in Figure 2.4 are set to constant values. Speciőcally, the non-
radiative rate is set as 𝑘𝑛𝑟 = 5 × 107 s−1 and the phosphorescence
rate as 𝑘𝑝ℎ = 1 × 103 s−1.
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Figure 2.22: The color maps show as a function of 𝐹𝑜𝑟 and 𝛿0 the singlet triplet gap (leftmost panel) and in a logarithmic
scale the calculated rates for ℏ𝜔𝑐 = 4.0 × 10−3 eV
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Figure 2.23: Normalized ŕuores-
cence spectra. In each row, referring
to a different 𝛿0 value, spectra cal-
culated for different 𝐹𝑜𝑟 are shown,
colour-coded as deőned in the leg-
end.

11: In this case, an equally-spaced
monodimensional grid of 𝛿0 val-
ues is used. Analogously, when the
role of 𝐹𝑜𝑟 is discussed, a monodi-
mensional grid of 𝐹𝑠𝑡𝑜𝑟 values is ac-
counted for. Finally, when the two
static modes are both taken into ac-
count, a two-dimensional grid on
the {𝐹𝑠𝑡𝑜𝑟 , 𝛿0} space is considered. In
all case, uniform spacings of Δ𝐹𝑠𝑡𝑜𝑟 =
0.10 eV and Δ𝛿0 = 2.5° are used

Figure 2.23 shows ŕuorescence spectra calculated for different 𝐹𝑜𝑟
values, each row corresponding to results obtained for different 𝛿0

values. Normalized spectra are shown, since 𝑘𝑟𝑎𝑑 in Figure 2.22
conveys information about the probability of the ŕuorescence
process. The spectra markedly redshift upon increasing 𝐹𝑜𝑟 , moving
from ∼ 400 nm to ∼ 750 nm. This is of course due to the lowering
of the energy of S1 state, an almost pure CT state, with the őeld.
The concomitant widening of the band is simply related to the
choice of showing the spectra against the wavelength. The dihedral
angle has a smaller effect on the spectra than 𝐹𝑜𝑟 , but it largely
affects the rates (Figure 2.22).

It must be pointed out that neither the rates in Figure 2.22 nor the
spectra in Figure 2.23 can be compared directly with experimental
data. Indeed, either in solution or inside an organic matrix, confor-
mational and dielectric disorder is present, so that to estimate rates
and spectra one must average 𝐹𝑜𝑟 and 𝛿0-dependent quantities
accounting for the relevant 𝛿0 and 𝐹𝑜𝑟 distributions. Speciőcally, to
simulate the complex photophysics of DMAC-TRZ in matrices, an
instantaneous excitation at 𝑡 = 0 is assumed and the time-resolved
photophysics of the system is calculated as governed by the dy-
namical model in Figure 2.4. The calculation is non-trivial due to
inhomogeneous broadening and even more due to the presence of
a dynamic component of the reaction őeld.

Therefore, time-resolved emission spectra in organic matrices are
computed deőning a grid on the static coordinates.11 In each point
of the grid, the time-dependent populations of S0, S1 and T1 states
are calculated integrating the dynamical equations:




¤[𝑆1] = − (
𝑘𝑛𝑟 + 𝑘 𝑓 𝑙𝑢𝑜

)
[𝑆1] + 𝑘𝑅𝐼𝑆𝐶 [𝑇1]

¤[𝑇1] = 𝑘𝐼𝑆𝐶 [𝑆1] −
(
𝑘𝑅𝐼𝑆𝐶 + 𝑘𝑝ℎ𝑜𝑠𝑝ℎ𝑜

)
[𝑇1]

¤[𝑆0] =
(
𝑘 𝑓 𝑙𝑢𝑜 + 𝑘𝑛𝑟

)
[𝑆1] + 𝑘𝑝ℎ𝑜𝑠𝑝ℎ𝑜 [𝑇1]

(2.20)

where, in the cases where 𝜖
𝑑𝑦𝑛
𝑜𝑟 > 0, in each point of the grid the

rates are obtained as thermal averages over the 𝐹𝑑𝑦𝑛𝑜𝑟 distribution.
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The integration is performed using the fourth order Runge-Kutta
method. Time-resolved emission spectra are then obtained sum-
ming relevant (𝐹𝑜𝑟 and 𝛿0 dependent) spectra weighted for the
instantaneous population of the S1 state.

To start with, a hypothetical, non-polar medium is considered,
where the orientational components of the reaction őeld vanish.
Conformational disorder is then the only source of inhomoge-
neous broadening. Results in Figure 2.24 are obtained setting a
Gaussian distribution of dihedral angles with a standard deviation
𝜎 = 15°. While arbitrary, this distribution compares favorably
with the distribution of conformations obtained by a molecular
dynamics simulations of DMAC-TRZ in an organic matrix.[59] For
comparison, Figure E.2 shows results for a broader distribution.

Panel (b) in Figure 2.24 shows the evolution of the singlet popula-
tions calculated for selected 𝛿0 values. As expected, for large angles
(𝛿0 > 15°) the singlet population decays with a single exponential,
associated with prompt ŕuorescence. For smaller dihedral angles,
the typical biexponential decay is observed, with delayed ŕuores-
cence showing up at long times. The largest RISC rates are seen at
small angles, indeed 𝑘𝑅𝐼𝑆𝐶 of similar magnitude are calculated for
𝛿0 =0 and 5 degrees. The sizable 𝑘𝑅𝐼𝑆𝐶 value calculated at 𝛿0=0 (i.e.
fully orthogonal D and A) strikingly contrasts with the widespread
Marcus estimate of RISC rates. Indeed, the SOC matrix element
connecting the singlet and triplet states vanishes at 𝛿0 = 0°, i.e.
in the orthogonal conformation, so that the Marcus RISC rate
should vanish there. However, the Marcus equation applies in
the hypothesis that the SOC matrix element is independent of
𝛿, while in DMAC-TRZ (and more generally in TADF dyes) it
shows a large 𝛿-dependence. In these conditions, the non-Condon
terms, neglected in the Marcus model, give a large contribution to
RISC.[111]

Panel (c) shows the overall singlet population (proportional to the
ŕuorescence intensity) calculated as a function of time, accounting
for the initial Gaussian 𝛿0-distribution shown in panel (a). Inde-
pendent dynamics are calculated in each point on a grid in the
𝛿0-distribution in panel (b) and are then summed up account-
ing for the evolving singlet population in each point. The most
striking result is the non-exponential decay at long times that is
safely ascribed to the inhomogeneous broadening due to the static
distribution of the dihedral angle.

Panel (e) shows corresponding time-dependent emission spectra.
Here and in the following, the 𝑡 = 0 spectrum is shown, i.e. the
spectrum calculated before any relaxation takes place. This spec-
trum is not experimentally accessible, but it serves as a reference
to understand how big the effect of the relaxation is in the different
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Figure 2.24: The photophysics of DMAC-TRZ in a hypothetical strictly non-polar matrix. (a) the 𝛿0 static gaussian
distribution, with standard deviation of 𝜎 = 15°. (b) the population of the singlet state (proportional to the ŕuorescence
intensity) as a function of time, calculated for selected 𝛿0 values. (c) the time evolution of the overall singlet state
population. (d) the evolution with time of the frequency of the maximum of the ŕuorescence spectrum. (e) time-resolved
ŕuorescence spectra.

environments. The spectra in Figure 2.24e show a resolved vibronic
structure, as expected for an ideal non-polar matrix. The spectra
show only marginal shifts in frequency, in line with the minor
effect of the dihedral angle on the position of ŕuorescence spectra,
as best appreciated by the data in panel (d) that shows how the
maximum of the emission band evolves with time. Results for
broader 𝛿0 distributions are shown in Figure E.2.

Accounting for the dielectric disorder is trickier, as both static
and dynamic components must be considered. Figure 2.25 shows
results for a hypothetical matrix with 𝛿0 = 0 and no conformational
disorder. As for the static dielectric contribution, a small value is set
for the relevant relaxation energy, 𝜖𝑠𝑡𝑜𝑟 = 0.05 eV: Figure 2.25a shows
the corresponding 𝐹𝑠𝑡𝑜𝑟 distribution. RISC occurs from T1 and ISC
from S1. However, the 𝐹𝑜𝑟 distributions relevant to the two states
are very similar, so that for each (𝐹𝑠𝑡𝑜𝑟 , 𝐹

𝑑𝑦𝑛
𝑜𝑟 ) values, the distribution

is equilibrated to the triplet state, and the rates are averaged along
this distribution. Then, for each 𝐹𝑠𝑡𝑜𝑟 , the speciőc dynamics are
computed, as shown in Figure 2.25b. The őrst observation is that
TADF becomes more efficient at large őelds, even if the global
effect of the orientational őeld is smaller than the effect of the
angle. The resulting smaller inhomogeneous broadening reŕects
in a quasi-biexponential decay of the singlet state population
in Figure 2.25c. Therefore, the non-exponential tail seen at long
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Figure 2.25: The photophysics of DMAC-TRZ in a hypothetical polar matrix with 𝜖
𝑑𝑦𝑛
𝑜𝑟 = 0.25 eV and 𝜖𝑠𝑡𝑜𝑟 = 0.05 eV and

without conformational disorder 𝛿0 = 0. (a) the static 𝐹𝑠𝑡𝑜𝑟 distribution. (b) the population of the singlet state as a function
of time, calculated for selected 𝐹𝑠𝑡𝑜𝑟 values. (c) the time evolution of the overall singlet state population. (d) the evolution
with time of the frequency of the maximum of the ŕuorescence spectrum. (e) time-resolved ŕuorescence spectra.

times in the experimental emission intensity arises mainly from
conformational disorder.

Due to dielectric disorder, time-resolved emission spectra in Fig-
ure 2.25e are broad and the vibronic structure is lost. The 𝑡 = 0

spectrum, calculated before the relaxation of the dynamic compo-
nent of the orientational őeld, has no experimental counterpart.
The őrst experimentally accessible spectra, typically at few nanosec-
onds, are collected when the dynamical component of the dielectric
őeld is partially or totally relaxed. In the lack of speciőc informa-
tion about the timescale of the dielectric relaxation, the calculated
spectra at 𝑡 = 0 and 𝑡 ∼ 3.16 × 10−9 s refer to a system where the
dynamical component of the reaction őeld is unrelaxed and fully
relaxed, respectively. The spectral shifts that follow are due to
dielectric disorder. As shown in panel Figure 2.25d, minor shifts of
the maximum of the emission band are observed during prompt
ŕuorescence. A large redshift is observed at the onset of delayed
ŕuorescence. The anomalous very large blueshift observed at long
times, is due to the dominance of states with a large negative 𝐹𝑠𝑡𝑜𝑟 ,
showing largely blueshifted band.

In conclusion, two sources of inhomogeneous broadening must be
considered to understand the TADF photophysics in organic matri-
ces: conformational disorder that mainly governs the redshift dur-
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ing prompt ŕuorescence and the appearance of a non-exponential
decay tail, and static dielectric disorder that mainly contributes
to the spectral shifts during delayed ŕuorescence. The dynamic
dielectric component instead mainly affects the position and shape
of emission spectra.

Experimental validation A detailed comparison with experi-
ment requires speciőc estimates of matrix parameters. In the lack
of dielectric relaxation data for relevant matrices, steady-state
spectra of DMAC-TRZ give useful information. Top panel of Fig-
ure 2.26 shows steady-state absorption and emission spectra of
DMAC-TRZ in different matrices (from Ref. [148]). Absorption
spectra are marginally solvatochromic, as expected for a dye with a
largely neutral ground state:[7, 37, 39] due to the negligible dipole
moment of the dye in the ground state, the reaction őeld distribu-
tion is centered around zero, irrespective of the solvent polarity.
Instead, emission spectra progressively redshift with increasing the
matrix polarity from Zeonex, to mCBPCN, mCPCN and DPEPO.
In DMAC-TRZ the delayed ŕuorescence represents a marginal
fraction (less than 1%) of the emitted light and steady-state spec-
tra are dominated by prompt ŕuorescence (see Figure D.10). The
progressive redshift of the emission band with increasing matrix
polarity demonstrates that within the time-window of prompt
ŕuorescence the matrix readjusts at least partially in response to
the variation of the dye polarity upon photoexcitation, lowering
the excited state energy. Steady-state spectra in Figure 2.26 can
then be őtted as in the bottom panel of Figure 2.26 to estimate 𝜖

𝑑𝑦𝑛
𝑜𝑟

for each matrix, as shown in Table 2.5.
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Figure 2.26: Top: experimental ab-
sorption (dashed lines) and emis-
sion spectra (continuous lines) of
DMAC-TRZ in different matrices
(from Ref. [148]). Bottom: theoret-
ical absorption (dashed lines) and
emission spectra (continuous lines)
computed using the solvent param-
eters as in Table 2.5.

The parametrization of 𝜖𝑠𝑡𝑜𝑟 is more delicate. The amount of static
disorder depends on the matrix and its preparation (efficiency
of packing, freedom to rearrange, amount of disorder, etc. . . )
and on the speciőc emitter-matrix interaction (uniformity of the
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Table 2.5: Model parameters for or-
ganic matrices considered in this
work. Theoretical RISC rates from
őtting of emission decays in Fig-
ure 2.27 and 2.29 following the pro-
cedure described in Ref. [159]

ZEONEX mCBPCN mCPCN DPEPO

𝜖𝑒𝑙 (eV) 0.28 0.28 0.28 0.28

𝜖
dyn
𝑜𝑟 (eV) 0.13 0.18 0.20 0.25

𝜖st
𝑜𝑟 (eV) 0.01 0.001 0.05 0.05

𝑘𝑅𝐼𝑆𝐶 (s−1) 9.4 × 104 2.9 × 105 4.4 × 105 6.9 × 105

𝑘
𝑒𝑥𝑝

𝑅𝐼𝑆𝐶
(s−1) 1.7 × 105 9.3 × 105 9.6 × 105 1.1 × 106

Figure 2.27: Simulation of the pho-
tophysics of DMAC-TRZ in Zeonex
matrix, assuming a gaussian dis-
tribution for 𝛿0 with 𝜎 = 15° (re-
sults for a wider distribution and
for different 𝜔𝑐 are shown in Ap-
pendix E (Figure E.5, E.6, E.9). (a)
time-evolution of the singlet popu-
lation (b) time-evolution of the max-
imum of the ŕuorescence spectra
(c) time-resolved emission spectra.
Time expressed in seconds.
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distribution of cavity shape and size).[108, 160] Therefore, 𝜖𝑠𝑡𝑜𝑟
is introduced as a free őtting parameter. In all spectra, the 𝛿0

distribution is set as a Gaussian centered at 𝛿 = 0 and with width
𝜎 = 15◦ (Figure 2.24a). Results for a broader distribution are shown
in Appendix E.

To begin with, results relevant to the Zeonex matrix (Figure 2.27)
are discussed. Zeonex is non-polar, but, as discussed above, a
small dynamical contribution to 𝜖𝑜𝑟 must be introduced. Since the
precise timescale of the relevant dynamics, that may be comprised
between few picosecond to few nanosecond, is unknown, the
initial dynamics is not simulated. The black curve in Figure 2.27c,
shown for reference, refers to the emission spectrum at time zero,
originating from the population in the left panel of Figure 2.28,
that corresponds to a system where no matrix relaxation has yet
occurred. This spectrum is not experimentally accessible and only
deőnes an upper limit for the early time emission spectrum. All
other spectra are calculated allowing the dynamical part of the
dielectric őeld to rearrange to the relevant equilibrium distribution
(right panel of Figure 2.28). Calculated spectra agree well with
the experiment (Figure D.11),[148] showing marginal frequency
shifts in time, while the decay curve shows the characteristic
non-exponential tail.

Results for DPEPO matrix in Figure 2.29 also agree well with
experiment (Figure D.11).[148] The presence of a sizable static
dielectric disorder (Figure 2.30) is responsible for a sizable redshift
of the emission band, while the conformational disorder deőnes
the non-exponential tail of the emission decay at long time.

The good agreement between calculated and experimental results
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Figure 2.28: Projection of the S1 pop-
ulation of DMAC-TRZ in Zeonex on
the planes spanned by the 𝛿0, 𝐹𝑠𝑡𝑜𝑟
and 𝐹

𝑑𝑦𝑛
𝑜𝑟 coordinates. Left: immedi-

ately after excitation. Right: after the

dielectric relaxation along 𝐹
𝑑𝑦𝑛
𝑜𝑟 .
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Figure 2.29: Simulation of the pho-
tophysics of DMAC-TRZ in DPEPO
matrix, assuming a gaussian dis-
tribution for 𝛿0 with 𝜎 = 15° (re-
sults for a wider distribution and
for different 𝜔𝑐 are shown in Ap-
pendix E, Figure E.7, E.8, E.10). (a)
time-evolution of the singlet popu-
lation (b) time-evolution of the max-
imum of the ŕuorescence spectra
(c) time-resolved emission spectra.
Time expressed in seconds.

collected at room temperature in non polar (zeonex) and polar
(DPEPO) matrices validates the model and speciőcally conőrms
the role of conformational and polar disorder in the deőnition
of the intriguing spectral behavior of DMAC-TRZ in matrices.
Similar results can be obtained in other matrices as well, but a
detailed modeling of matrices requires speciőc hypothesis on the
distribution of the dihedral angle, that, in the lack of detailed
information, is maintained őxed in all calculation to a Gaussian
centered at 𝛿0 = 0 and 𝜎 = 15°. Similarly, an educated guess
is made for the amount of static polar disorder. The amount of
conformational and polar disorder actually depends not only on
the speciőc matrix, but also on the sample preparation, hindering
a detailed modelization. Simulating temperature effects is also
very delicate: polar and conformation disorder are affected by
temperature, and the dielectric properties of the matrix itself are
temperature dependent.

−60 −40 −20 0 20 40 60
δ0 (deg)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fd
yn

or
 (e

V)

−0.25 0.00 0.25
Fst
or (eV)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fd
yn

or
 (e

V)

−60 −40 −20 0 20 40 60
δ0 (deg)

−0.2

0.0

0.2

Fs
t or
 (e

V)

−60 −40 −20 0 20 40 60
δ0 (deg)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fd
yn

or
 (e

V)

−0.25 0.00 0.25
Fst
or (eV)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fd
yn

or
 (e

V)

−60 −40 −20 0 20 40 60
δ0 (deg)

−0.2

0.0

0.2

Fs
t or
 (e

V)

Figure 2.30: Projection of the S1 pop-
ulation of DMAC-TRZ in DPEPO on
the planes spanned by the 𝛿0, 𝐹𝑠𝑡𝑜𝑟
and 𝐹

𝑑𝑦𝑛
𝑜𝑟 coordinates. Left: immedi-

ately after excitation. Right: after the

dielectric relaxation along 𝐹
𝑑𝑦𝑛
𝑜𝑟 .
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2.7 Conclusions

In this chapter, a thorough theoretical analysis of DMAC-TRZ, a
prototypical dye for TADF applications, is given and supported by
experimental characterization (Appendix D). Experimental results
unambiguously demonstrate that a state with predominant CT
nature is responsible for ŕuorescence and delayed ŕuorescence.
Phosphorescence occurs in the same spectral region as ŕuores-
cence, from a triplet state with dominant CT character. Extensive
gas-phase TD-DFT calculations, run in the presence of an applied
electric őeld and for different conformations, conőrm the exper-
imental analysis and are exploited to build and parametrize a
reliable ESM for DMAC-TRZ. The model accounts for few elec-
tronic states, as needed to describe the low-energy properties of the
dye, for the coupling to a molecular vibration, needed to simulate
the vibronic structure of absorption and ŕuorescence bands, and
for the conformational degrees of freedom associated with the
torsional angle that modulates spin-orbit coupling. In Section 2.3.3,
environmental effects are addressed to simulate steady-state spec-
tral properties in liquid solution and frozen solvent, accounting
for the different role of polar solvation and of the electronic po-
larizability of the environment. The resulting picture, extensively
validated against experiment, offers a sturdy and ŕexible toy model
to investigate TADF.

The approach proposed here for a speciőc dye is general and
can be applied to set up reliable few-state models for other dyes,
including multipolar dyes, with multiple D and A groups. The
enormous variability of the properties of these dyes, depending on
the number and strength of the D and A groups, on bridging units
and geometry,[161] calls for the deőnition of practical models to
deőne reliable structure-properties relationships for the large and
technologically relevant family of TADF dyes. The power of few-
state models stays in the possibility to account for a large number
of interactions that range from vibrational coupling, to be treated
in a truly non-adiabatic approach, conformational motion, that can
be treated adiabatically to address optical spectra (Section 2.3.3) or
non-adiabatically to address ISC and RISC rates (Section 2.4.1), and
the interaction with the local environment, accounting for both
the dielectric response in terms of polarizability and polarity, and
the rigidity, that enter into play when TADF dyes are dispersed in
amorphous organic matrices.

In principle, the model also sets the basis to build an open-quantum
model[118, 162] for TADF dyes able to address ISC and RISC
processes, together with other competitive relaxation processes
without introducing additional approximations. However, the
deőnition of spectral densities, governing the coupling between the
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system and the bath, is challenging and at present mostly arbitrary.
To this aim, classical molecular dynamics offers a promising tool
towards the calculation of spectral densities. However, current
approaches stem from the őeld of photosynthetic complexes, so
that the system to be coupled with the bath is purely electronic.[163]
As discussed at length in this Chapter, molecular modes must be
explicitly modelled in TADF dyes, and a highly non-trivial work is
needed to properly deőne the spectral density entering the model
for TADF.

Instead of relying on open quantum system approaches, in Sec-
tion 2.4.1 an alternative approach to the calculation of the rates
is proposed, relying on the direct diagonalization of the non-
adiabatic Hamiltonian in the singlet and triplet subspaces and the
calculation of state-by-tate rates using Fermi’s golden rule. The
effective model developed for DMAC-TRZ opens the way to a
nominally exact calculation of RISC, ISC and radiative rates fully
accounting for anharmonicity and non-adiabaticity. It also allows
to investigate the effects of a őne-tuning of model parameters.
For example it is shown that a softening of the conformational
modes has detrimental effects on TADF. Surprising results are also
obtained in terms of the dependence of ISC and RISC rates as a
function of the relative energies of the |𝑍⟩ and |𝐿⟩ states, that is
highly non-monotonic, suggesting that the common principle of
minimizing the energy gap between 3LE and 1CT states may not
always lead to an increase of RISC and ISC.

More importantly, we are in the position to address environmental
effects on TADF systems. TADF is governed by a subtle interplay
of singlet and triplets, LE and CT states: environmental effects, and
speciőcally the medium polarity and polarizability have different
effects on the different states affecting the singlet-triplet gap as well
as the mixing between the LE and CT triplets with large effects on
SOC. A rationalization of these highly non trivial effects is how-
ever difficult as several protocols are presently available leading
to contrasting results, as recently well illustrated by Mewes.[145]
The origin of the contrasting results for environmental effects on
TADF (and more generally on the deőnition of spectral properties
of molecules in condensed media) can be traced back to the im-
proper treatment of the medium polarizability. Speciőcally, either
continuum solvation models (including PCM, COSMO, etc. . . ) or
atomistic solvation models treat the environmental polarizability
in an adiabatic approach, solving the molecular Hamiltonian for
őxed environmental charges.[9, 29] This approximation is well
suited for polar solvation, related to very slow degrees of freedom,
but fails when applied to the environmental polarizability, related
to the very fast electronic motion in the medium. This leads to
a variety of solvation models, none of which is able to properly
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address the effect of the medium polarizability. The problem is
overcome here adopting an antiadiabatic approach to address the
medium polarizability.[9]

In Section 2.5, the role of the matrix polarizability is addressed, as
measured by the refractive index at the optical frequencies. The
marginal variability of the refractive index in common organic
solvents and matrices suggests that it is impossible to optimize
the TADF behavior of a dye acting on the medium refractive
index. However it is extremely important to recognize that when
going from gas phase to an organic medium, the large variation
of the refractive index has enormous effects on the energies of the
excited state and more generally on TADF. It is therefore of little
use to compare results obtained from gas-phase calculations with
experimental data in condensed phases. As already recognized by
Mewes[145], indeed, RISC rates may vary by orders of magnitude
when going from gas phase to a non-polar organic medium. Quite
interestingly, for DMAC-TRZ, RISC and ISC rates decrease by
approximately one order of magnitude when going from gas phase
to the organic medium, even if the singlet triplet gap decreases.
The reason for less effective RISC in the medium can be traced
back to the stabilisation of CT states, that leading to a decoupling
of the CT and LE triplet and hence to a decrease of SOC. Quite
interestingly, the opposite behavior is observed by Mewes, with
RISC rates increasing by a few order of magnitude from gas phase
to condensed media. Apart from the use of a different solvation
model, we believe that this contrasting result is indeed related to
the different nature of excited states in the molecules investigated
by Mewes with respect to DMAC-TRZ.[145] In the molecules
investigated by Mewes,[145] in fact, in gas phase, the LE triplet lays
lower in energy than the CT triplet, but the order is reversed in
non-polar matrices, leading to a large ampliőcation of RISC when
accounting for the medium polarizability.

In section 2.6, the model developed in Section 2.3.2 and the ap-
proach proposed to calculate the rates described in Section 2.11,
are exploited in an effort to paint a comprehensive picture that
rationalizes in a single unifying theoretical scheme the TADF pho-
tophysics of the dye dispersed in liquid solvents and in organic
matrices of different polarity.

As already discussed, polarizability and polarity effects are related
to degrees of freedom with distinctively different timescales, and
must be treated accordingly.[9] Polarizability, related to the fast
electronic degrees of freedom of the medium, alters the molecular
properties but is not a source of inhomogeneity. The environmental
polarity instead, associated to slow vibrational and conformational
motions, is a powerful source of inhomogeneity. In liquid solvents,
the dielectric relaxation is faster than prompt ŕuorescence and is
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easily addressed, with inhomogeneous broadening phenomena
only showing up in the progressive broadening of spectral features
with the solvent polarity.

In organic matrices the problem is much more complex. Spectra
collected in diluted samples are discussed, where we can neglect
aggregation phenomena as well as self-absorption, also in view of
the small extinction coefficient of DMAC-TRZ. Spectral diffusion
due to energy transfer can also be excluded at these concentrations.
Optical spectra collected in these conditions then clearly show that
organic matrices do relax in the timescale of prompt ŕuorescence.
Of course, this relaxation is only partial and is most probably
slower than in liquid solvents, but, the progressive redshift of
steady-state emission spectra with the matrix polarity (Figure 2.26)
offers a clear indication in this direction.

More delicate are the two sources of static disorder, related to
dielectric disorder in polar matrices and to conformational disor-
der.[164, 165] These two sources of disorder concur to deőne highly
non-trivial inhomogeneous broadening phenomena in the TADF
photophysics in organic matrices: the non-exponential tail of the
emission decay at long delays is essentially due to conformational
disorder. The complex temporal evolution of the spectra position
and shape is due to the intertwined effect of static conformational
and dielectric disorder.

Overall, the excellent agreement with experimental data suggests
that the proposed model fully addresses the basic physics of TADF,
and is able to capture the subtle interplay between electronic, spin,
vibrational and conformational degrees of freedom of the molecule
embedded in a polar and polarizable (partially) rigid matrix, as to
explain subtle dynamical phenomena.

This work sets a solid basis for a detailed modeling of TADF-
OLED, offering reliable information about the variation of the
RISC, ISC and ŕuorescence rates with the local environment and
opening a new perspective about the need to account for static
and dynamic conformational and dielectric disorder whose highly
non-trivial effects must be properly addressed to govern the device
behavior.





Conclusions and future outlook

The problem of assessing the effect of the surrounding environment on the properties of a molecule
is ubiquitous in materials science. Moreover, in the őeld of optical spectroscopy, with the exception
of crystals and liquid crystals, dyes are typically dispersed in a disordered environment, be it a
liquid solvent, an amorphous matrix of organic molecules, or a biological environment. To describe
these systems, implicit solvation models proved particularly valuable, allowing for the prediction of
the properties of solvated dyes at a moderate computational cost. This thesis discusses the behaviour
of organic dyes in condensed phase, focusing the attention on dyes capable of thermally-activated
delayed ŕuorescence (TADF). TADF is a rare phenomenon that occurs in systems where singlet
and triplet states sit very close in energy (the gaps being comparable to the thermal energy), so
that a system in an excited triplet state can undergo a spin-crossover process, called RISC, and be
converted in an emissive singlet state. The main application for TADF dyes is as emitters in OLED,
where the TADF activity can be exploited to harvest light from the triplet population of excitons, to
overcome the limit of 25% internal quantum efficiency dictated by spin recombination statistics.
In OLEDs, TADF dyes are dispersed in amorphous matrices, and understanding how the matrix
affects the properties of the dye is not only interesting for basic research, but is also desirable for the
optimization of the device, as the performance of the dye may be enhanced or deteriorated by the
environment in which the dye is dispersed.

In this thesis, and in particular in Chapter 1, a very fundamental issue is addressed: the response
of electronic degrees of freedom of the environment, i.e. the medium polarizability, to electronic
transitions occurring in the solute. Electronic solvation is not only a general topic, but also an
ubiquitous one, as the environment electronic degrees of freedom are ever present, so that the
properties of the solute are expected to be altered when going from gas phase, where calculations
are reliable, to condensed phase. In this work, the electronic solvent degrees of freedom are coupled
to the solute electronic degrees of freedom in an antiadiabatic approach. In contrast, current
implementations of quantum-classical solvation models adopt the adiabatic approximation to
electronic solvation, leading to the proliferation of approximation schemes, that often lead to
spurious results, as is the case of some TADF emitters, where a negative singlet-triplet gap is
predicted (Section 1.5), or in symmetric systems, where spurious symmetry breaking phenomena
are wrongly predicted (Section 1.6). The antiadiabatic approach presented in this work is built on
the well-known reaction őeld model. The reaction őeld model relies on several approximations:
(1) the solvent is a continuum elastic medium (2) the solute is treated as a point dipole occupying
a cavity; and (3) the solute-solvent interaction is truncated to the dipolar term. An antiadiabatic
approach that goes beyond the limits of the reaction őeld model is therefore desirable to study
atomistic systems in realistic surroundings, described either as a continuum with solute-adapted
cavity or explicitly with molecular mechanics. Speciőcally, there are some cases where the reaction
őeld model is expected to fail, such as for solutes with large dimensions, that cannot be described
as point dipoles, and ionic species, where the monopole term is the leading term in the multipole
expansion. In collaboration with Dr. Gabriele D’Avino, we are developing an antiadiabatic approach
that can be applied on atomistic systems.

In Chapter 2, TADF is directly addressed by modelling a prototypical TADF emitter, DMAC-TRZ. An
essential state model that accounts for four electronic states, a vibrational mode and a conformational
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mode is parametrized on őrst principle calculations and validated against experiment. The model is
extended to account for dielectric solvation adopting the reaction őeld model and the antiadiabatic
and adiabatic approximation for electronic and orientational degrees of freedom of the environment
respectively. An approach to the calculation of RISC and ISC that relies on the full non-adiabatic
solution of the model Hamiltonian is developed, that overcomes the limits of the Marcus and
Marcus-Levich-Jortner models. Finally, the role of the environment is tackled considering two
regimes: the liquid solvent regime, and the amorphous matrix regime. Orientational dynamics
in liquid solvents is straightforward, as it occurs on a timescale much faster than RISC, ISC and
radiative decay. Amorphous matrices are instead more complex, as two mechanisms affect the
properties of the emitter and must be taken into account. (1) Solid state solvation is due to the
dielectric response of the matrix spanning different timescales: the rotation of the host molecules is
hindered, but small conformational changes can still undergo on timescales comparable or faster
than RISC, ISC and radiative decay. (2) The rigidity of the matrix can hinder some internal motions
of the emitter, leading to conformational disorder. Both solid state solvation and matrix rigidity must
be taken into account to properly address the photophysics of DMAC-TRZ in matrices. The model
proposed to address TADF in solution and amorphous matrices, validated against experiment for
DMAC-TRZ will be applied to other TADF systems also with the support of MD simulations to
more accurately address the role of the matrix rigidity.



Details on the calculation of

steady-state spectra A
In this appendix, the calculation of absorption and emission spectra
is discussed. The approach is generic and applies for the calculation
of spectra involving transitions between purely electronic states,
as well as vibronic states.

A Gaussian bandshape with half-width at half maximum, Γ =√
2 ln 2𝜎 is assigned to each transition to simulate homogeneous

broadening that originates from the őnite lifetime of excited states
and intrinsic instrumental factors. The extinction coefficient (𝜖)
and ŕuorescence intensity (𝐼) are computed as a function of the
wavenumber (𝜈̃ in cm-1) as:

𝜖 (𝜈̃) = 10𝜋𝑁𝐴𝜈̃

3 ln 10ℏ𝑐𝜖0
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(A.2)

where𝑁𝐴 is the Avogadro’s number, 𝑐 is the speed of light, 𝜖0 is the
vacuum permittivity, 𝜈̃𝑖𝑛 and 𝜇𝑖𝑛 are the transition wavenumber
and transition dipole moment associated to the transition between
vibronic states 𝑖 and 𝑛. In absorption, 𝑖 = 𝑔 is the ground state
and the summation runs over all other eigenstates. In ŕuorescence
𝑖 = 𝑓 is the ŕuorescent state and the summation runs over all the
eigenstates having lower energy than the ŕuorescent state. The
ŕuorescent state is generally chosen as the őrst excited singlet
with a sizeable transition dipole moment towards the ground state.
When the transition dipole moment is vanishing, as for TADF dyes
where 𝜌 → 0, the ŕuorescent state is chosen as the őrst excited
state with a sizeable ⟨𝜌̂⟩. Phosphorescence spectra are computed
using eq. A.2, where 𝑓 is the phosphorescent state, chosen as the
lowest triplet state.

If the chormophore is dissolved in a polar solvent, this process is
repeated for each value of 𝐹(𝑖)𝑜𝑟 where 𝑖 counts the components of
the orientational őeld, being 𝑖 = 1 for linear molecules, or 𝑖 = 1, 2

for bent quadrupolar or octupolar dyes. Finally, the spectrum is
obtained as the weighted sum of the 𝐹𝑜𝑟-dependent spectra, ac-
counting for the Bolzmann 𝐹𝑜𝑟-distribution relevant to the ground
or ŕuorescent states for absorption and ŕuoresecence spectra,
respectively.





Quantum chemical techniques B
B.0.1 Density functional theory

Density Functional Theory (DFT) is an alternative approach to
older computational methods, such as Hartree-Fock and post-
HF theories. DFT gained popularity mainly because of its low
computational cost when compared to the accuracy of the results.
DFT only addresses the ground state, but its time-dependent
extension, TD-DFT, also gives information on excited states (see
Section B.0.2.

The theoretical basis of DFT was set well before its practical
implementation, with the Hohenberg-Kohn theorems stating that
(1) the energy of the ground state is a unique functional of the
electron density and (2) the exact electron density of the ground
state minimizes the energy functional:

𝐸0 = 𝐸[𝜌0] (B.1)

𝐸[𝜌0] ⩽ 𝐸[𝜌̃] (B.2)

where 𝜌0 and 𝜌̃ are the exact and approximate electron densities of
the ground state, respectively. The energy functional is expressed
as

𝐸[𝜌] = 𝑉𝑛𝑒[𝜌] + 𝑇[𝜌] +𝑉𝑒𝑒[𝜌] (B.3)

where 𝑉𝑛𝑒[𝜌] is the functional that describes the interaction po-
tential between electrons and nuclei, 𝑇[𝜌] is the kinetic energy
functional and𝑉𝑒𝑒[𝜌] is the electron-electron interaction functional.
The last two terms are problematic to compute and are grouped in
the Hohenberg-Kohn functional, 𝐹𝐻𝐾[𝜌], that is to be determined.
The approximate solution is given by the Kohn-Sham method
which introduces an auxiliary system (AS) of non-interacting elec-
trons, whose wavefunction, Ψ𝐾𝑆 is a single Slater determinant of
spin orbitals 𝜒𝑖 :

Ψ𝐾𝑆 =
1√
𝑁

det |𝜒1(x1), 𝜒2(x2), . . . , 𝜒𝑁 (x𝑁 )| (B.4)

with known electron density, 𝜌𝑠(x) and kinetic energy 𝑇𝑠 :

𝜌𝑠(x) =
𝑁∑
𝑖=1

|𝜒𝑖(r)|2 (B.5)

𝑇𝑠 = ⟨Ψ𝐾𝑆 | 𝑇̂ |Ψ𝐾𝑆⟩ . (B.6)

where𝑁 is the total number of electrons. The independent electrons
of the AS are solution of an effective single-electron Hamiltonian,
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ℎ̂𝐾𝑆, as follows

ℎ̂𝐾𝑆 =
1

2
∇2 − 𝑣𝐾𝑆(r) (B.7)

where the single-electron potential, 𝑣𝐾𝑆(r), is determined in order
to make 𝜌𝑠 equal to the electron density of the real system made
up of multually interacting electrons.

The energy of the real system can be expressed as

𝐸𝐾𝑆[𝜌] = 𝑇𝑠[𝜌] +𝑉𝑛𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌] (B.8)

where the őrst three terms are known and represent respectively
the kinetic energy of AS, the electron-nuclei potential energy and
the classical electron-electron repulsion energy. The last term is
given by

𝐸𝑋𝐶[𝜌] = (𝑇[𝜌] − 𝑇𝑠[𝜌]) + (𝐸𝑒𝑒[𝜌] − 𝐽[𝜌]) (B.9)

and includes Coulomb and exchange correlation terms (second
term) as well as the kinetic correlation energy (őrst term), that is
often negligible. The energy of the AS is variationally minimized
by determining the appropriate set of orthogonal orbitals, via
an iterative procedure to obtain the Kohn-Sham orbitals. The
Kohn-Sham Hamiltonian in eq. B.7 can be expressed as

ℎ̂𝐾𝑆 = 𝑇𝑠[𝜌] + 𝑣𝑛𝑒[𝜌] +
𝑁∑
𝑖

𝐽𝑖[𝜌] + 𝑣𝑋𝐶[𝜌] (B.10)

where the effective potential operator has been written in terms
of the nuclear contribution, the classical electron repulsion and
the exchange-correlation potential, obtained as the derivative of
𝐸𝑋𝐶[𝜌] with respect to the electron density. While the őrst three
terms of eq. B.10 are known, the expression for the functional
𝐸𝑋𝐶[𝜌] and consequently 𝑣𝑋𝐶[𝜌] are unknown.

Therefore, when performing a DFT calculations, one must select
a speciőc functional, as well as the basis set for the expansion of
molecular orbitals. Regardless of the type of functional, 𝐸𝑋𝐶[𝜌] is
expressed as

𝐸𝑋𝐶[𝜌] = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌] (B.11)

where 𝐸𝑋[𝜌] and 𝐸𝐶[𝜌] account for the correlation of electrons
with parallel and antiparallel spin, respectively. A more detailed
discussion on density functionals used for studying TADF emitters
is given in Section 2.3.1.
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B.0.2 Time-Dependent density functional theory

To address excited states a time-dependent version of the Hohenberg-
Kohn theorems, the Runge-Gross theorem, has been formulated,
paving the way to the TD-DFT calculations [166]. Its derivation
is beyond the scope of this work, we just mention that it has a
similar meaning as the őrst Hohenberg-Kohn theorem [119]. Specif-
ically the Runge-Gross theorem states that (a) the time-dependent
wave function is a functional of the electron density and therefore
(b) the expectation values of quantum mechanical operators are
functionals of the electron density. A time-dependent AS of non-
interacting electrons is deőned and it is described by a single Slater
determinant, Φ(r, 𝑡). The relevant density is

𝜌𝑠(r, 𝑡) =
𝑁∑
𝑖

|𝜙𝑖(r, 𝑡)|2 (B.12)

where 𝜙(r, 𝑡) are the spin-orbitals, solutions to the time-dependent
Kohn-Sham equations

𝑖
𝜕

𝜕𝑡
𝜙𝑖(r, 𝑡) =

(
−∇2

2 + 𝑣𝑒𝑥𝑡(r, 𝑡) + 𝑣𝐻[𝜌](r, 𝑡) + 𝑣𝑋𝐶[𝜌](r, 𝑡)
)
𝜙𝑖(r, 𝑡)

(B.13)
where 𝑣𝑒𝑥𝑡(r, 𝑡) is the external potential, 𝑣𝐻[𝜌](r, 𝑡) is the Hartree
potential, that includes the electron-nuclei and electron-electron
classical interaction and 𝑣𝑋𝐶[𝜌](r, 𝑡) is the exchange-correlation
potential, that has similar meaning to the one in eq. B.10, collecting
all exchange and correlation effects; it is expressed as

𝑣𝑋𝐶[𝜌](r, 𝑡) =
𝜕𝐴𝑋𝐶[𝜌]
𝜕𝜌(r, 𝑡) (B.14)

where 𝐴𝑋𝐶[𝜌] is the unknown exchange-correlation action func-
tional, often referred to as xc kernel. The adiabatic local density

approximation (ALDA) is based on the assumption that the density
varies slowly with time, allowing the use of the same exchange
correlation functionals used in time-independent DFT.

When the time-dependent perturbation is treated in the linear
response limit, the excitation energies and transition densities
are obtained as eigenvalues and eigenvectors of the following
non-Hermitian eigenvalue equation (derivation in [119]):

[
A B

B* A*

] [
X

Y

]
= 𝜔

[
1 0

0 −1

] [
X

Y

]
(B.15)

The matrix elements of A and B are expressed in the Mulliken
notation with the indices 𝑖 , 𝑗 referring to occupied spin-orbitals,
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and 𝑎, 𝑏 referring to virtual orbitals:

𝐴𝑖𝑎,𝑏 𝑗 = 𝛿𝑖 , 𝑗𝛿𝑎,𝑏(𝜖𝑎 − 𝜖𝑖) + (𝑖𝑎 | 𝑗𝑏) + (𝑖𝑎 | 𝑓𝑋𝐶 | 𝑗𝑏)
𝐵𝑖𝑎, 𝑗𝑏 = (𝑖𝑎 |𝑏 𝑗) + (𝑖𝑎 | 𝑓𝑋𝐶 |𝑏 𝑗).

(B.16)

The leading term of the A matrix is the energy difference of orbitals
𝑎 and 𝑖, the second and őrst terms of A and B respectively are
the two-electron integrals derived from the linear response of the
Coulomb and exchange operators, while the last terms correspond
to the linear response of the xc potential to the perturbation. In the
case of hybrid functionals such as the ones discussed in Section 2.3.1,
the time-dependent Kohn-Sham operators include a component,
𝑐𝐻𝐹 , of Hartree-Fock exchange in the xc potential and eq B.16 can
be written as

𝐴𝑖𝑎,𝑏 𝑗 =𝛿𝑖 , 𝑗𝛿𝑎,𝑏(𝜖𝑎 − 𝜖𝑖) + (𝑖𝑎 | 𝑗𝑏) − 𝑐𝐻𝐹(𝑖 𝑗 |𝑎𝑏)
+ (1 − 𝑐𝐻𝐹)(𝑖𝑎 | 𝑓𝑋𝐶 | 𝑗𝑏)

𝐵𝑖𝑎, 𝑗𝑏 =(𝑖𝑎 |𝑏 𝑗) − 𝑐𝐻𝐹(𝑖𝑏 |𝑎 𝑗) + (1 − 𝑐𝐻𝐹)(𝑖𝑎 | 𝑓𝑋𝐶 |𝑏 𝑗).
(B.17)

The above equation is general and applies to pure TD-DFT when
𝑐𝐻𝐹 = 0 and to time-dependent Hartree-Fock when 𝑐𝐻𝐹 = 1.

In the Tamm-Dancoff approximation (TDA-DFT) the B matrix is
neglected leading to an Hermitian eigenvalue equation:

AX = 𝜔𝑇𝐷𝐴X (B.18)

that is the TD-DFT analogous of the Conőguration Interaction Sin-
gles (CIS) method in Hartree-Fock. Generally, the Tamm-Dancoff
approximation works reasonably well in TD-DFT since the ne-
glected terms, B and Y, are a measure of missing correlation in
the ground state, that in DFT is already (partially) included by
the exchange-correlation functional. TDA-DFT is widely adopeted
for calculations on TADF dyes [108] because it cures triplet insta-
bilities, allowing improved values for transition energy of triplet
states [167]. Moreover in the case of CT transitions, the effect of
the approximation is negligible, since for charge-separated states
the spatial overlap 𝜙𝑖(r)𝜙𝑎(r) tends to vanish, making 𝐵𝑖𝑎, 𝑗𝑏 ≃ 0

[30]. For all TD-DFT calculations of this work, the Tamm-Dancoff
approximation has been imposed.

B.0.3 Long range 𝜔-tuned functional

TD-DFT calculations based on different functionals lead to wildly
different results for the excitation spectrum of TADF dyes, partic-
ularly with reference to the Δ𝐸𝑆𝑇 value and, more generally, in
terms of relative order of CT and local excited (LE) states.[168]
Range-separated exchange functionals were suggested to solve
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Dihedral angle 𝜔

90◦ 0.195
75◦ 0.195
60◦ 0.190
45◦ 0.185

Table B.1: Optimal 𝜔 values esti-
mated for different geometries

the issue. In this approach, the range-separated parameter (𝜔) is
optimally tuned to to get the exact exchange (eX) according to the
interelectron distance, 𝑟12:[168]

1

𝑟12
=

1 − [𝛼 + 𝛽 erf(𝜔 · 𝑟12)]
𝑟12

+ 𝛼 + 𝛽 erf(𝜔 · 𝑟12)
𝑟12

= 𝑆𝑅 + 𝐿𝑅
(B.19)

where erf(𝑥) = 2√
𝑥

∫ 𝑥

0
exp

(−𝑡2)𝑑𝑡 and 𝜔 is range-tuning parame-
ter.

The őrst term is the short-range (SR) component which is evaluated
by DFT derived from local-density or generalized-gradient approx-
imations. The second term is the long-range (LR) component which
is evaluated by Hatree-Fock (HF). The 𝛼 parameter quantiőes the
amount of eX in the SR limit, and 𝛼 + 𝛽 quantiőes the amount of
eX in the LR limit. The range-separation parameter 𝜔 deőnes the
inverse distance at which exchange terms switch from DFT to HF.
For any functional, 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1 and 0 ≤ 𝛼+𝛽 ≤ 1. We use
CAM-B3LYP (𝛼 = 0.19, 𝛼 + 𝛽 = 0.65), M06-2X (56% eX), B3LYP
(20% eX) and LC-𝜔PBE (𝛼 = 0, 𝛼+𝛽 = 1) for comparison.[168, 169]
By deafult LC-𝜔PBE has a 𝜔 value of 0.4 Bohr−1.[170, 171] Now
we tune this parameter to get the optimal 𝜔 (𝜔∗) using LC-𝜔PBE
functional.

Baer et al. proposed a nonempirical method to get optimal 𝜔

by enforcing Koopman’s theorem,[172] stating that the negative
HOMO energy, −𝜖𝐻(𝑁), of the N-electron system should be equal
to the molecular vertical ionization potential, 𝐼𝑃(𝑁).

−𝜖𝜔𝐻(𝑁) = 𝐼𝑃𝜔(𝑁) (B.20)

Since, TADF molecules are donor-acceptor systems, it is useful
to focus on ionization potential (related to donor component) as
well as on electron affinity (related to acceptor component). The
vertical electron affinity of N-electron system, 𝐸𝐴(𝑁) should be
equal to the negative energy of HOMO energy of anion system,
−𝜖𝐻(𝑁 + 1).

−𝜖𝜔𝐻(𝑁 + 1) = 𝐸𝐴𝜔(𝑁) (B.21)

In optimal range-separated method, the goal is to minimize 𝐽(𝜔)
deőned as:

𝐽(𝜔) = |𝜖𝜔𝐻(𝑁) + 𝐼𝑃𝜔(𝑁)| + |𝜖𝜔𝐻(𝑁 + 1) + 𝐸𝐴𝜔(𝑁)| (B.22)

We have performed our study using LC-𝜔PBE and found 19.5% as
optimal 𝜔 for the ground state equlibrium structure. We őnd the
optimal 𝜔 gives qualitatively similar result with M06-2X compared
to CAM-B3LYP and B3LYP for relative position among LE and CT
states.
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Figure B.1: Excitation energies of the
four lowest excited states calculated
with different functionals and for
different 𝜃 values.

Optimal 𝜔 is geometry dependent.[173] The dihedral angle of
ground state equilibrium structure is 90◦. We calculated the optimal
𝜔 for dihedral angles of 75◦, 60◦, 45◦ and compare with other
functionals. Optimal 𝜔 values are listed in Table B.1 and plots
for transition energy calculated for different dihedral angles and
functionals are shown in Fig. B.1.



Computational analysis of TADF dyes (A1, A2, B1,

B2, C1, C2)C
In this appendix, computational details for the systems described in Section 1.5 (Figure 1.7) are
presented.

Molecular Orbitals Analysis

State HONTO LUNTO HONTO-1 LUNTO+1

3LED

3.389 eV

0.931−−−→

3CT
3.487 eV

0.996−−−→

1CT
3.504 eV

0.998−−−→

Figure C.1: NTOs of A1 molecule.

Figure C.2: Molecular Orbitals of A1
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State HONTO LUNTO HONTO-1 LUNTO+1

3LED

3.389 eV

0.506−−−→ 0.428−−−→

3LED

3.390 eV

0.494−−−→ 0.439−−−→

3CT
3.416 eV

0.702−−−→ 0.281−−−→

3CT
3.421 eV

0.707−−−→ 0.280−−−→

1CT
3.428 eV

0.745−−−→ 0.253−−−→

1CT
3.436 eV

0.738−−−→ 0.261−−−→

Figure C.3: NTOs of A2 molecule (DPO-TXO2).
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State HONTO LUNTO HONTO-1 LUNTO+1

3CT
3.493 eV

0.942−−−→

3LEA

3.604 eV

0.911−−−→

1CT
3.607 eV

0.994−−−→

3LED

3.753 eV

0.913−−−→

Figure C.4: NTOs of B1 molecule.



104 C Computational analysis of TADF dyes (A1, A2, B1, B2, C1, C2)

Figure C.5: Molecular Orbitals of B1
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State HONTO LUNTO HONTO-1 LUNTO+1

3CT
3.407 eV

0.810−−−→ 0.157−−−→

3CT
3.415 eV

0.802−−−→ 0.165−−−→

1CT
3.473 eV

0.913−−−→

1CT
3.484 eV

0.910−−−→

3LEA

3.580 eV

0.909−−−→

3LED

3.702 eV

0.554−−−→ 0.345−−−→

3LED

3.705 eV

0.559−−−→ 0.342−−−→

Figure C.6: NTOs of B2 molecule.
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State HONTO LUNTO HONTO-1 LUNTO+1
3CT

3.514 eV

0.961−−−→

1CT
3.559 eV

0.996−−−→

3LEA

3.582 eV

0.914−−−→

3LED

3.662 eV

0.913−−−→

Figure C.7: NTOs of C1 molecule.

Figure C.8: Molecular Orbitals of C1
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State HONTO LUNTO HONTO-1 LUNTO+1
3CT

3.420 eV

0.888−−−→

3CT
3.438 eV

0.877−−−→

1CT
3.445 eV

0.934−−−→

1CT
3.465 eV

0.932−−−→

3LEA

3.549 eV

0.914−−−→

3LED

3.636 eV

0.535−−−→ 0.374−−−→

3LED

3.640 eV

0.538−−−→ 0.372−−−→

Figure C.9: NTOs of C2 molecule.
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Additional TD-DFT results

Selected TD-DFT results for the considered dyes (gas-phase result, M06-2X/6-31G(d)). TD-DFT
analysis are obtained using gaussian16 B.01.[14] Transition dipole moment (TDM) and permanent
dipole moments (PDM) of excited states are obtained using multiwfn software.[174]

Table C.1: TD-DFT outputs for A1 and A2. Molecules are shown with axis alongside (hydrogens are hided for simplicity).

A1 Excitation Energy PDM (Debye) TDM (Debye)
(eV) (x y z) (x y z)

𝑆0 ś (0.037, 2.413, 4.056) ś
1𝐶𝑇 3.389 (-17.686, 4.430, 7.033) (-0.559, 0.041, 0.069)
3𝐶𝑇 3.487 (-17.214, 4.325, 6.945)

3𝐿𝐸𝐷 3.389 (0.147, 2.402, 4.080)

A2 Excitation Energy PDM (Debye) TDM (Debye)
(eV) (x, y, z) (x, y, z)

𝑆0 ś (0.000, 2.179, -2.226) ś
1𝐶𝑇 3.428 (0.085, 10.628, -8.565) (-0.731, 0.000, 0.001)

3.436 (-0.085, 10.638, -8.555) (0.003, -0.313, 0.250)
3𝐶𝑇 3.416 (0.038, 9.261, -7.625)

3.421 (-0.022, 9.612, -7.862)
3𝐿𝐸𝐷 3.389 (0.039, 3.319, -3.061)

3.390 (-0.054, 2.961, -2.801)
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Table C.2: TD-DFT outputs for B1 and B2. Molecules are shown with axis alongside (hydrogens are hided for simplicity).

B1 Excitation Energy PDM (Debye) TDM (Debye)
(eV) (x y z) (x y z)

𝑆0 ś (-2.501, 0.000, 2.647)
1𝐶𝑇 3.607 (1.570, 0.000, 22.306) (0.000, -0.048, 0.000)
3𝐶𝑇 3.493 (-1.028, 0.000, 12.950)

3𝐿𝐸𝐴 3.604 (-3.039, 0.000, 2.615)
3𝐿𝐸𝐷 3.753 (-0.734, 0.000, 12.745)

B2 Excitation Energy PDM (Debye) TDM (Debye)
(eV) (x y z) (x y z)

𝑆0 ś (1.673, 0.029, 0.000) ś
1𝐶𝑇 3.473 (16.503, 1.970, 0.000) (0.000, 0.000, 0.065)

3.484 (16.570, -1.980, 0.000) (0.000, 0.000, 0.001)
3𝐶𝑇 3.407 (13.131, 1.465, 0.000)

3.415 (12.978, -1.420, 0.000)
3𝐿𝐸𝐴 3.580 (1.921, 0.013, 0.000)
3𝐿𝐸𝐷 3.702 (6.017, 0.433, 0.000)

3.705 (6.250, -0.433, 0.000)

Table C.3: TD-DFT outputs for C1 and C2. Molecules are shown with axis alongside (hydrogens are hided for simplicity).

C1 Excitation Energy PDM (Debye) TDM (Debye)
(eV) (x y z) (x y z)

𝑆0 ś (2.157, -0.002, 4.834)
1𝐶𝑇 3.559 (-20.043, -0.001, 2.547) (-0.002, -0.106, 0.000)
3𝐶𝑇 3.514 (-13.705, -0.002, 3.461)

3𝐿𝐸𝐴 3.582 (2.283, -0.001, 4.985)
3𝐿𝐸𝐷 3.662 (-6.139, -0.002, 4.937)

C2 Excitation Energy PDM (Debye) TDM (Debye)
(eV) (x y z) (x y z)

𝑆0 ś (0.000, -0.001, -3.832) ś
1𝐶𝑇 3.445 (-0.134, -0.001, -2.144) (0.003, 0.000, 0.000)

3.465 (0.134, -0.001, -2.192) (0.000, 0.146, -0.001)
3𝐶𝑇 3.420 (-0.140, -0.002, -2.373)

3.438 (0.141, -0.001, -2.468)
3𝐿𝐸𝐴 3.549 (0.001, 0.000, -3.883)
3𝐿𝐸𝐷 3.636 (-0.163, -0.002, -4.659)

3.640 (0.162, -0.002, -4.623)





1: Measurements reported in this
section were performed in the
host laboratory at the university of
Parma by Francesco Bertocchi and
prof. Cristina Sissa.

Figure D.1: Time resolved emission
spectra of DMAC-TRZ in chloro-
form.

Figure D.2: Fluorescence intensity
(excitation 375 nm, detection at the
maximum of emission for each sol-
vent) vs time for DMAC-TRZ in dif-
ferent solvents.

Spectroscopic characterization of

DMAC-TRZ D
D.1 Optical spectroscopy

Technical details 1 DMAC, TRZ and DMAC-TRZ were acquired
from Merck, and used without further puriőcation. Spectroscopic
data were collected in solution using HPLC-grade solvents from
Merck. Absorption spectra were recordered with a Perkin Elmer
Lambda 650 spectrophotometer. Steady-state and time-resolved
luminescence spectra (including anisotropy) were recordered on
dilute solutions (absorbance lower than 0.1) with a FLS1000 Ed-
inburgh Fluorometer equipped with a gated PMT detector. Low-
temperature measurements were collected on glassy matrices of
2MeTHF at 77 K (the solvent was stored over molecular sieves for
one night, and őltered before use), that were fastly cooled using
an Oxford Instrument OptistatDN cryostat.

Room temperature absorption and ŕuorescence spectra of DMAC-
TRZ, and of the two subunits, DMAC and TRZ (Figure D.3),
dissolved in solvents of different polarity (cyclohexane, toluene,
chloroform and DMSO) are shown in the central panels of Fig-
ure D.3 and relevant data are summarized in Table D.1. TRZ is
not emissive at room temperature. Both DMAC and TRZ are trans-
parent at 𝜆 > 350 nm, so that the weak DMAC-TRZ absorption
band (molar extinction coefficient ∼ 2000 Lmol−1cm−1, Table D.1)
observed at 380 nm is safely assigned to a CT band. Its marginal
solvatochromism points to a very small permanent dipole moment
for DMAC-TRZ,[7] in line with a largely neutral ground state (i. e a
ground state where the contribution from the charge-separated
zwitterionic DMAC+-TRZ- structure is negligible). On the oppo-
site, DMAC-TRZ emission shows a large red-shift upon increasing
the solvent polarity: the emission is therefore ascribed to a CT
state, a state with a largely zwitterionic character and hence a
large permanent dipole moment. The emission is safely ascribed
to ŕuorescence, in view of its lifetime ∼ 10 ns (Table D.1 and Fig-
ure D.2). Indeed an emission component with longer lifetime is
observed, with a sizable weight in chloroform, suggesting a possi-
ble delayed ŕuorescence contribution, as also supported by time
resolved emission spectra (Figure D.1) whose shape and position
are time-independent.

The different emission bandshapes observed in polar and non-polar
solvents are sometimes ascribed to an emissive state whose nature
changes from LE to CT. This is easily ruled out by ŕuorescence
excitation spectra (Figure D.5): it is clear that, in all solvents,
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emission comes from the same CT state responsible for absorption.
Indeed, the broadening of the emission band with increasing
solvent polarity is due to the inhomogeneous broadening related
to polar solvation.[39, 132, 175]

Figure D.3: Left: molecular structures of 9,9-dimethyl-9,10-dihydroacridine (DMAC), 2,4,6-triphenyl-1,3,5-triazine (TRZ)
and DMAC-TRZ. Central panels: absorption (continuous lines) and emission spectra (dashed lines) of DMAC, TRZ and
DMAC-TRZ in solvents of different polarity. Toluene, with a cut-off wavelength of 285 nm, is not suitable for DMAC and
TRZ. Moreover, DMAC is not stable in chloroform, while the emission of DMAC-TRZ in DMSO is very weak. Right
panels: excitation (black) and emission (red) spectra of DMAC-TRZ in 2MeTHF at 77 K. Dashed lines in the bottom panel
report gated measurements, collected with a gate delay of 1 s and a gate width of 7 s.

To address long-lived emission, including delayed ŕuorescence
and phosphorescence, spectra were collected in a glassy 2MeTHF
matrix at 77 K, as shown in Figure D.3 (right panels). DMAC shows
two separate emission bands: the short wavelength band (lifetime:
5.2 ns (38%) and 15.4 ns (62%) is due to ŕuorescence, while the
long-wavelength band (lifetime 4 s) is ascribed to phosphorescence.
A single long-lived emission (lifetime 1 s) is observed for TRZ, in
the blue-green spectral region, again ascribed to phosphorescence.
The emission observed for DMAC-TRZ at 485 nm, in a spectral
region where neither DMAC nor TRZ emit, is clearly CT in nature.
The emission decay (Figure D.4b) shows a short (of the order of
ns) and a long (of the order of s) lifetime component in the same
spectral region. Time resolved emission spectra are reported in
Figure D.6. After a marginal red shift in the őrst few tenths of
ns, the emission proőle is constant in time over several order of
magnitudes, as expected for TADF. Then, at ∼0.1 s the emission
bandshape narrows appreciably. Dashed lines in the bottom right
panel of Figure D.3 show emission and excitation spectra obtained
collecting photons reaching the detector 1 s after the excitation
(gated measurements, collected with a gate delay of 1 s and a
gate width of 7 s). These long-delayed emission spectra are again
superimposed to steady-state emission, even if with narrower
bandshape, suggesting either a delayed ŕuorescence (even if with
an unusually long lifetime) or a phosphorescence occurring in the
same spectral region as ŕuorescence. Irrespective of the nature of
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Table D.1: Spectroscopic data of DMAC, TRZ and DMAC-TRZ
𝑎 maximum absorption wavelength, 𝑏 maximum emission wavelength

Compound Solvent 𝜆𝑎𝑏𝑠[nm]𝑎 𝜆𝑒𝑚[nm]𝑏 Quantum Yield Lifetime [ns]

DMAC Cyclohexane 280 332 - 2.1 (10.1%)
3.9 (89.9%)

DMSO 291 361 - 3.6 (4.6%)
7.8 (95.4%)

TRZ Cyclohexane 269 - - -
Chloroform 271 - - -
DMSO 274 - - -

DMAC-TRZ Cyclohexane 380 442 0.22 9.8 (99.6%)
84.5 (0.4%)

Toluene 382 510 0.18 12.7 (97.5%)
62.1 (2.5%)

Chloroform 382 571 0.23 14.4 (75%)
120.1 (25%)

this long-lived emission, the relevant excitation spectrum peaks in
the same spectral region as the steady state excitation spectrum of
DMAC-TRZ, i.e. in a region where neither DMAC nor TRZ show
any absorption feature, demonstrating a dominant CT nature for
the long-lived emission.

To gain more information on the nature of the long-lived states,
Figure D.4a shows time resolved ŕuorescence anisotropy spectra
collected up to 2 s. Anisotropy remains constant at ∼ 0.25 up to at
least 10 ms, and then decreases. The constant and large value of the
emission anisotropy over 6 orders of magnitude in time (from ns to
ms), and the invariance of emission spectra in the same temporal
windows (Figure D.6) unambigously point to the observation of
delayed ŕuorescence up to ∼ 10 ms. At longer times, the anisotropy
decreases (Figure D.4a bottom panel), and the shape of emission
spectra (but not their position) changes (Figure D.6, and Figure
D.3), offering a clear evidence of the involvement of a different
emissive state, corresponding to a very long-lived triplet state.
As discussed above, this triplet state has a CT nature, since the
corresponding excitation spectrum (black dashed line in Figure D.3)
is distinctively red-shifted with respect to the absorption spectra
of either DMAC or TRZ subunits. The marked decrease of the
anisotropy for the phosphorescence signal can be understood in
terms of a small mixing of the CT triplet state with an LE triplet.
Transition dipole moments associated with (weak) CT transitions
are orders of magnitude smaller than those relevant to LE states:
even a weak LE contribution to the phosphorescent state would
dominate the observed transition dipole moment, being therefore
responsible for its rotation with respect to the CT direction.
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(a) Time-resolved anisotropy of DMAC-TRZ collected
in 2MeTHF at 77 K in different time ranges (excitation
wavelength 405 nm, emission wavelength 485 nm).
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(b) Fluorescence intensity (excitation: 405 nm, emission
485 nm) collected for DMAC-TRZ in 2MeTHF at 77 K on
different time ranges.

Figure D.4: Time-resolved ŕuroescence decay and anisotropy of DMAC-TRZ in 2MeTHF at 77 K.

Figure D.6: Time resolved emission spectra of DMAC-TRZ in 2-Me-THF at 77K in different time ranges.
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Figure D.5: Absorption and ŕuores-
cence excitation spectra of DMAC-
TRZ in different solvents.

2: The measurements in this Section
have been performed by the group
of prof. A. P. Monkman in Durham
University.

Figure D.7: Photoluminescence
spectra of DMAC-TRZ in methylcy-
clohexane (MCH), toluene (PhMe)
and chloroform (CHCl3) at 0.8 mM
concentration. All measurements
were performed at room temper-
ature, using a 365 nm excitation
source.

D.2 Spectroscopy in degassed environments

Technical details Degassed solutions of DMAC-TRZ for photo-
physical characterisation were prepared at 0.8 mM concentration
in methylcyclohexane (MCH), toluene (PhMe), and chloroform
(CHCl3). Degassed solutions were obtained by 5 freeze-pump-thaw
cycles to remove all dissolved oxygen. Steady state emission spectra
in Figure D.7 were acquired using a Horiba Jobin Yvon Fluorolog-3
spectroŕuorometer. Time-resolved photoluminescence spectra in
Figure D.8 and the luminescence decay proőles in Figure D.9 were
recorded using an ultra-fast 4 PICOS iCCD camera (Stanford Com-
puter Optics) with a pulsed (10 Hz) Nd:YAG laser (EKSPLA-SL312)
excitation source at 355 nm.2

As discussed in the previous section (D.1), optical spectroscopy
in solution and frozen solvent is valuable to characterize the
low-energy electronic states involved in the TADF process in
terms of their relative energy and nature. In particular, liquid
solvent measurements performed at ambient conditions allow
the characterization of the singlet manifold, while measurements
in frozen solvent, performed at 77 K are exploited to acquire
information on the lowest triplet excited state, by means of its
phosphorescence. Indeed, phosphorescence in DMAC-TRZ can
only be observed in low temperature regime, where radiationless
decay pathways and RISC are hindered.

Regardless, the direct determination of the TADF efficiency requires
degassed samples to avoid triplet quenching due to the presence
of dissolved oxygen.

As shown in Figure D.7, steady-state photoluminescence in de-
gassed liquid solvents (methylcyclohexane, toluene and chloro-
form) shows strong positive solvatochromism, with spectra that
are superimposable to the ŕuorescence spectra measured in non-
degassed environment (Figure D.3). Time resolved emission spectra
(Figure D.8) in liquid solvents are time-invariant and the emission
decays (Figure D.9 show the typical behaviour of TADF emitters,
characterized by a the prompt ŕuorescence regime, in the tens
of nanoseconds time range, and a delayed ŕuroescence regime,
up to the microseconds. Moreover, the emission decays follow a
biexponential behaviour, suggesting high sample homogeneity.

Figure D.10 and D.11, collect spectra collected at room tempera-
ture in 1% w/w concentrated degassed őlms of DMAC-TRZ in
ZEONEX, mCBPCN, mCPCN or DPEPO, prepared as in Ref. [148].
Steady-state absorption, emission, excitation spectra (top and mid-
dle panels of Figure D.10) show negligible absorption/exictation
solvatochromism, and positive emission solvatochromism. The
progressive redshift of the emission band with increasing matrix
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Figure D.8: Time resolved emission spectra of DMAC-TRZ in (a) methylcyclohexane (MCH), (b) toluene (MePh) and (c)
chloroform (CHCl3) solutions. All measurements were performed in degassed solutions at room temperature, using a
355 nm excitation source.

Figure D.9: Kinetic decays of DMAC-TRZ in (a) methylcyclohexane (MCH), (b) toluene (MePh) and (c) chloroform (CHCl3)
solutions, at 0.8 mM concentration. All measurements were performed in degassed solutions at room temperature, using
a 355 nm excitation source. The data are őtted using a biexponential function.

polarity demonstrates that within the time-window of prompt
ŕuorescence the matrix readjusts at least partially in response to
the variation of the dye polarity upon photoexcitation, lowering
the excited state energy. Time-resolved spectra and emission in-
tensity (Figure D.11) show clear signs of disorder in condensed
phase. Emission decays show a peculiar non-eponential tail at
long times (microseconds), while TRES show the same qualitative
behaviour in all matrices, a blueshift during prompt ŕuroescence,
and a redshift during delayed ŕuorescence. The quantitative dif-
ferences observed in different matrices are due to the interplay
between matrix rigidity and polarity, as thoroughly discussed in
Section 2.6.
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Figure D.10: Top panel: experimen-
tal absorption (dashed lines) and
emission spectra (continuous lines)
of DMAC-TRZ in different matrices
from Ref. [148]. Middle panel: experi-
mental excitation (dashed lines) and
emission spectra (continuous lines)
measured in ambient conditions.
Bottom panel: theoretical absorp-
tion (dashed) and emission (contin-
uous) spectra computed using the
solvent parameters as in legend. The
marginal differences between exper-
imental emission spectra collected
in degassed (top) and ambient con-
ditions (middle) can be ascribed to a
contribution from the host material.
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Figure D.11: Room temperature ex-
perimental time-resolved emission
(left column) and emission decay
(right column) of DMAC-TRZ in dif-
ferent matrices at 1% w/w concen-
tration from Ref. [148].



Additional details on the

simulation time-resolved spectra

of DMAC-TRZ E
In this appendix, additional details for the simulations of DMAC-
TRZ in amorphous matrices discussed in Section 2.6 are collected.

ℏ𝜔𝑐 (eV) Zeonex mCBPCN mCPCN DPEPO

2 × 10−3 7.9 × 104 2.4 × 105 3.8 × 105 5.9 × 105

4 × 10−3 9.4 × 104 2.9 × 105 4.4 × 105 6.9 × 105

8 × 10−3 1.2 × 105 3.4 × 105 4.9 × 105 7.4 × 105

Table E.1: Computed 𝑘𝑅𝐼𝑆𝐶 values
(s-1) of DMAC-TRZ in amorphous
matrices for different values of ℏ𝜔𝑐
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Figure E.1: The color maps show as
a function of 𝐹𝑜𝑟 and 𝛿0 the singlet
triplet gap (leftmost panel) and in a
logarithmic scale the the calculated
rates for ℏ𝜔𝑐 = 2.0 × 10−3 eV (top)
and ℏ𝜔𝑐 = 8.0×10−3 eV (bottom). To
be compared with results in Fig. 2.22
for ℏ𝜔𝑐 = 4.0 × 10−3 eV.
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Figure E.2: Same as Fig. 2.24, but
using a broader distribution (𝜎 =

20°) to simulate a higher degree of
conformational disorder.
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Figure E.3: Simulation of the photo-
physics of DMAC-TRZ in mCPCN
matrix. (a) time-evolution of the sin-
glet population (b) time-evolution
of the maximum of the ŕuorescence
spectra (c) time-resolved emission
spectra. Time expressed in seconds.
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Figure E.4: Simulation of the photo-
physics of DMAC-TRZ in mCBPCN
matrix. (a) time-evolution of the sin-
glet population (b) time-evolution
of the maximum of the ŕuorescence
spectra (c) time-resolved emission
spectra. Time expressed in seconds.
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Figure E.5: Simulation of the pho-
tophysics of DMAC-TRZ in Zeonex
matrix, with ℏ𝜔𝑐 = 2.0×10−3 eV. (a)
time-evolution of the singlet popu-
lation (b) time-evolution of the max-
imum of the ŕuorescence spectra
(c) time-resolved emission spectra.
Time expressed in seconds.
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Figure E.6: Simulation of the pho-
tophysics of DMAC-TRZ in Zeonex
matrix, with ℏ𝜔𝑐 = 8.0×10−3 eV. (a)
time-evolution of the singlet popu-
lation (b) time-evolution of the max-
imum of the ŕuorescence spectra
(c) time-resolved emission spectra.
Time expressed in seconds.
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Figure E.7: Simulation of the pho-
tophysics of DMAC-TRZ in DPEPO
matrix, with ℏ𝜔𝑐 = 2.0×10−3 eV. (a)
time-evolution of the singlet popu-
lation (b) time-evolution of the max-
imum of the ŕuorescence spectra
(c) time-resolved emission spectra.
Time expressed in seconds.
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Figure E.8: Simulation of the pho-
tophysics of DMAC-TRZ in DPEPO
matrix, with ℏ𝜔𝑐 = 8.0×10−3 eV. (a)
time-evolution of the singlet popu-
lation (b) time-evolution of the max-
imum of the ŕuorescence spectra
(c) time-resolved emission spectra.
Time expressed in seconds.
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Figure E.9: Same as Fig. 2.27, but
using a broader distribution (𝜎 =

20°) to simulate a higher degree of
conformational disorder.
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Figure E.10: Same as Fig. 2.29, but
using a broader distribution (𝜎 =

20°) to simulate a higher degree of
conformational disorder.
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