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Abstract

In this work, we are concerned with the regularity theory of strongly degenerate Kolmogorov equa-

tions and we also study a relativistic generalization of such equations. The Kolmogorov equation

was first introduced by Kolmogorov in 1934 to study the time evolution of the density of a Brownian

test particle in the phase space. It is a linear strongly degenerate second order PDE whose diffusion

part is governed by the Laplace operator in a subset of the variables (velocity variables) coupled with

a transport term that contains the directions of missing ellipticity (position variables). Such a drift

term makes the equation non-symmetric, but at the same time it is responsible for the hypoelliptic

properties of the operator.

The first part of this thesis is devoted to the investigation of Kolmogorov-type operators with

regular coefficients. In Chapter 1, we revise some results on the classical regularity theory for

Kolmogorov operators with constant or continuous coefficients, with a particular emphasis on their

connection to Hörmander’s theory of hypoellipticity. In Chapters 2 and 3, the regularity theory

introduced in Chapter 1 is developed in two unexplored directions. On one hand, in Chapter 2 we

extend a fundamental result of the classical regularity theory, namely Schauder estimates. More

precisely, we prove that, if the operator satisfies Hörmander’s hypoellipticity condition, and the

right-hand side and the diffusion coefficients are Dini continuous, then the second order derivatives

of the solution are Dini continuous as well. Additionally, we establish a new Taylor formula for

classical solutions under minimal regularity assumptions. On the other hand, Chapter 3 is devoted

to the proof of new pointwise regularity results for solutions to degenerate second order partial

differential equations with constant coefficients.

The second part of this dissertation focuses on the weak regularity theory of degenerate Kol-

mogorov equations with discontinuous coefficients, which is nowadays the main focus of the research

community. As the most recent developments in this framework have been established in the par-

ticular case of the kinetic Kolmogorov-Fokker-Planck equation, the aim of Chapter 4 is to extend

some of these results to the ultraparabolic setting. More precisely, in Chapter 4 we prove a Harnack

inequality and the Hölder continuity for weak solutions to the Kolmogorov equation with measurable

coefficients, integrable lower order terms and nonzero source term. We then introduce a functional

space, suitable for the study of weak solutions to Kolmogorov-type equations, that allows us to prove

a new (weak) Poincaré inequality. The Harnack inequality contained in Chapter 4 is also crucial in

Chapter 5, where we prove the existence of a fundamental solution Γ associated to the Kolmogorov

operator, together with Gaussian upper and lower bounds for Γ.

Finally, in the last part of this work, we address a possible generalization of the kinetic Kolmogorov-

Fokker-Planck equation, which is in accordance with the theory of special relativity. In particular,

we explain why the operator proposed is the suitable relativistic generalization of the Fokker-Planck

operator and we describe it as a Hörmander operator which is invariant with respect to Lorentz

transformations. We subsequently start its systematic study in its appropriate framework of PDE

and Hörmander’s theory. The main results of this part are a Lorentz-invariant Harnack-type inequal-

ity and accurate asymptotic lower bounds for positive solutions to the equation. As a consequence,

we finally obtain a lower bound for the density of the stochastic process associated to the relativistic

operator.





Riassunto

In questa tesi ci concentriamo sulla teoria della regolarità di equazioni di Kolmogorov degeneri e

studiamo una possibile generalizzazione relativistica di tali equazioni. L’equazione di Kolmogorov

è stata introdotta da Kolmogorov nel 1934 per studiare l’evoluzione temporale della densità di una

particella Browniana nello spazio delle fasi. Si tratta di una equazione differenziale alle derivate

parziali lineare e fortemente degenere la cui diffusione è governata dal Laplaciano in un insieme

di variabili (le cosiddette variabili velocità) accoppiato con un termine di trasporto che contiene

le direzioni non ipoellittiche (le cosiddette variabili posizione). Tale termine di trasporto rende

l’equazione non simmetrica ma è allo stesso tempo responsabile dell’ipoellitticità dell’operatore.

La prima parte di questo elaborato si concentra sullo studio di equazioni di tipo Kolmogorov con

coefficienti regolari. Nel Capitolo 1, richiamiamo alcuni risultati riguardanti la teoria della regolarità

classica di equazioni di Kolmogorov con coefficienti costanti o continui, con particolare enfasi sulla

loro connessione alla teoria dell’ipoellitticità di Hörmander. In questa tesi, sviluppiamo tale teoria

della regolarità in due direzioni inesplorate. Nel Capitolo 2, estendiamo un risultato fondamentale

della teoria della regolarità classica, ossia le stime di Schauder. Più precisamente, dimostriamo

che, se l’operatore verifica la condizione di ipoellitticità di Hörmander, e il membro di destra e i

coefficienti di diffusione sono Dini continui, allora le derivate seconde della soluzione sono anch’esse

Dini continue. Stabiliamo inoltre una nuova formula di Taylor per soluzioni classiche nelle ipotesi

di regolarità minime. Il Capitolo 3 è invece dedicato alla dimostrazione di nuove stime di regolarità

puntuale per soluzioni di equazioni di Kolmogorov con coefficienti di diffusione costanti.

La seconda parte di questa tesi si concentra sulla teoria della regolarità debole per equazioni di

Kolmogorov con coefficienti discontinui, teoria che è al centro della ricerca attuale. Poiché i principali

sviluppi in questo ambito riguardano il caso particolare dell’equazione di Fokker-Planck, l’obiettivo

del Capitolo 4 è estendere tali risultati al caso dell’equazioni ultraparaboliche. In particolare, nel

quarto capitolo, dimostriamo una disuguaglianza di Harnack e l’Hölderianità delle soluzioni deboli

dell’equazione di Kolmgorov con coefficienti misurabili, termini del primo ordine integrabili e mem-

bro di destra non nullo. Successivamente, introduciamo uno spazio funzionale, appropriato per lo

studio di soluzioni deboli di equazioni di tipo Kolmogorov, che ci permette di dimostrare una nuova

disuguaglianza di Poincarè debole. La disuguaglianza di Harnack dimostrata nel Capitolo 4 si rivela

cruciale anche nel capitolo successivo, dove dimostriamo l’esistenza di una soluzione fondamentale

Γ associata all’operatore di Kolmogorov, insieme a stime gaussiane dal basso e dall’alto per Γ.

Nell’ultima parte di questo elaborato, studiamo infine una possibile generalizzazione dell’equazione

di Fokker-Planck, che è in accordo con la teoria della relatività speciale. In particolare, speghi-

amo perché l’operatore proposto rappresenta l’appropriata controparte relativistica dell’operatore

di Fokker-Planck e lo descriviamo come un operatore di Hörmander che risulta essere invariante

rispetto alle trasformazioni di Lorentz. Successivamente cominciamo lo studio sistematico di tale

operatore nel contesto appropriato della teoria delle equazioni differenziali alle derivate parziali. I

risultati principali di questa ultima parte sono una disuguaglianza di Harnack e un’accurata stima

dal basso per soluzioni positive dell’equazione. Come conseguenza, otteniamo una stima dal basso

per la densità del processo stocastico associato all’operatore relativistico.
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Introduction

In this thesis, we study a class of degenerate Partial Differential Equations of Kolmogorov-

type employing new techniques. The simplest class of equations we are interested in was

introduced by Kolmogorov [67] in the following form

K u(p, y, t) := ∆pu(p, y, t)− 〈p,Dyu(p, y, t)〉 − ∂tu(p, y, t) = 0, (1)

to describe the density u of particles having position y ∈ R
m and momentum p ∈ R

m at

time t. Equation (1) is usually referred to as kinetic Kolmogorov equation or frictionless

Fokker-Planck equation in the kinetic literature. It is derived from Langevin dynamics, as it

is the partial differential equation satisfied by the transition density of the stochastic process

solving 



dPt =
√
2 dWt,

dYt = Pt dt,
(2)

where (Wt)t≥0 denotes an m−dimensional Wiener process.

The kinetic Kolmogorov equation (1) is a linear strongly degenerate second order PDE

whose diffusion part is governed by the Laplace operator in some set of variables (the velocity

variables) coupled with a transport term that contains the directions of missing ellipticity

(the position variables). Such a drift term makes the equation non-symmetric, but at the

same time it is responsible for the hypoelliptic properties of the operator.

In this thesis, we consider several generalizations of the operator in (1), which have

applications in research areas as diverse as kinetic theory, probability theory and finance

(see [16, 58, 97]).

In addition, the study of the above mentioned Kolmogorov-type operators is also very

interesting from a mathematical point of view because of their connection to Hörmander

theory, which establishes a link between the regularity of the operator and the Lie Group

structure that leaves the operator invariant. Indeed, the prototype operator (1) lies in the

class of Hörmander operators [54], which have been widely studied in the literature since the

’60s. More precisely, the operators considered by Hörmander in his seminal work [54] are of

the kind

L =
m∑

k=1

X2
k + Y, (3)

1



INTRODUCTION

where m is a natural integer and Xk are smooth vector fields of the form

Xk =
N+1∑

j=1

bjk(z) ∂zj , Y =
N+1∑

j=1

bjm+1(z) ∂zj k = 1, . . . ,m, (4)

with bjk ∈ C∞(Ω) for every j = 1, . . . , N + 1, k = 1, . . . ,m + 1 and Ω is any open subset of

R
N+1.

The main result of [54] is a sufficient condition for the hypoellipticity of (3), which has

a quite intuitive geometric interpretation and can be understood as follows: If the missing

directions in operator L can be recovered by the commutators of the generators Xi and Y ,

then, if the right-hand side of L u = f is smooth, the generators ensure that the solution u is

also smooth in every direction. As the regularity properties of Hörmander’s operators (3) are

related to a Lie algebra, it became clear that the natural framework for the regularity theory of

such operators is the non-Euclidean setting of Lie groups. After the work of Kolmogorov [67]

where (1) was introduced, and Hörmander’s celebrated article [54] on the hypoellipticity of

second order degenerate linear operators, the regularity theory for operators that are invariant

with respect to a Lie group structure has been widely developed by many authors. We

quote here the seminal works by Folland [45], Folland and Stein [46], Rotschild and Stein

[107], Nagel, Stein and Wainger [90]. We refer to the more recent monograph by Bonfiglioli,

Lanconelli and Uguzzoni [20] for a comprehensive treatment of the recent achievements of the

theory.

Another property that is essential for the study of the operator K in (1) is the invariance

with respect to the non-commutative translation

(p, y, t) ◦ (p0, y0, t0) = (p0 + p, y0 + y + tp0, t0 + t), (p, y, t), (p0, y0, t0) ∈ R
2m+1. (5)

Indeed, if w(p, y, t) = u(p0+p, y0+y+ tp0, t0+ t) and g(p, y, t) = f(p0+p, y0+y+ tp0, t0+ t, ),

then

K u = f ⇐⇒ K w = g for every (p0, y0, t0) ∈ R
2m+1. (6)

In several applications, where the couple (p, y) denotes the momentum and the position of a

particle, the above operation is also known as Galilean change of variable.

Another remarkable property of operator K is its dilation invariance. More precisely, the

operator L is invariant with respect to the following family of dilations

δr(p, y, t) := (rp, r3y, r2t), r > 0, (7)

in the following sense: if we define w(p, y, t) = u(rp, r3y, r2t) and g(p, y, t) = f(rp, r3y, r2t)

we have that

K u = f ⇐⇒ K w = r2g for every r > 0.

We remark that the dilatation in (7) has also a quite natural physical interpretation. Indeed,

2



INTRODUCTION

as in classical mechanics the velocity is proportional to the momentum, the term r3 in front

of y is due to the fact that the velocity v is the derivative of the position y with respect to

time t.

As we will see in the sequel, this underlying invariance property plays a fundamental role

in the study of operator K , even though it does not hold true for every Kolmogorov operator

(see Chapter 1), in contrast to what happens in the family of uniformly parabolic operators.

For a more exhaustive description of the mathematical properties of Kolmogorov opera-

tors, and of their applications, we refer to the survey article [8] by Anceschi and Polidoro and

to its bibliography. Summarizing the above, the study of Kolmogorov-type operators is not

only worthwhile because of their important applications but it is also highly interesting from

a mathematical point of view, as discussed in Chapter 1.

In the first part of this thesis, which is constituted by Chapters 1-3, we mainly focus on

the following class of Hörmander’s operator

L u :=
m∑

j,k=1

ajk∂
2
xjxk

u(x, t) +
N∑

j,k=1

bjkxk∂xju(x, t)− ∂tu(x, t), (8)

where z = (x, t) = (x1, . . . , xN , t) ∈ R
N+1, A = (ajk)j,k=1,...,m and B = (bjk)j,k=1,...,N are real

valued matrices with constant coefficients, with A symmetric and strictly positive. In this

thesis, we are mainly interested in the genuinely degenerate setting, i.e. in the case where

m < N . Moreover, throughout this work, we will always assume that Hörmander’s condition

is satisfied. As we will see in Chapter 1, this boils down to assuming that the matrix B takes

a suitable block form. Some other known results about Kolmogorov operators of the form (8)

and their underlying Lie Group structure are presented in Chapter 1.

Constant-coefficients Kolmogorov operators like the one in (8) are naturally associated to

linear stochastic differential equations. Specifically, let σ be a N ×m constant matrix, B as

in (8), and let (Wt)t≥0 be as above a m-dimensional Wiener process. Then, if we denote by

(Xt)t≥0 the solution to the following N -dimensional Stochastic Differential Equation (SDE in

short) 


dXt = −BXt dt+ σ dWt

Xt0 = x0,

the backward Kolmogorov operator Kb of (Xt)t≥0 acts on sufficiently regular functions u as

follows

Kbu(y, s) = ∂su(y, s) +
N∑

i,j=1

aij∂
2
yiyju(y, s)−

N∑

i,j=1

bijyi∂yju(y, s).

where

A = 1
2σσ

T .

3
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Moreover, the forward Kolmogorov operator Kf of (Xt)t≥0 is the adjoint K∗
b of Kb, that is

Kfv(x, t) = −∂tv(x, t) +
N∑

i,j=1

aij∂
2
xixjv(x, t) +

N∑

i,j=1

bijxi∂xjv(x, t) + tr(B)v(x, t),

for sufficiently regular functions v. Note that Kf operator agrees with L in (8) up to a

multiplication of the solution by exp(t tr(B)).

The regularity theory for classical solutions to Kolmogorov equations with regular coeffi-

cients like the one in (8) had been widely developed during the years, starting from the work

by Lanconelli and Polidoro in [73]. In this thesis, we develop such a regularity theory in two

unexplored directions.

On one hand, in Chapter 2, we deal for the first time with Dini continuous diffusion

coefficients and Dini continuous right-hand side. In this setting, we derive Schauder estimates

that extend the classical ones, where intrinsic Hölder continuous functions are considered.

Moreover, we establish an instrinsic Taylor formula for solutions to L u = f , which, besides

being a key step in proving our Schauder estimates, is of independent interest, since it is

derived under minimal regularity assumptions on u. In particular, we show that, in order to

be approximated by its intrinsic Taylor polynomial of degree 2, u needs to satisfy the following

requirements.

Space C2
L
(Ω). Let Ω be an open subset of RN+1. We say that a function u belongs to

C2
L
(Ω) if u, its derivatives ∂xiu, ∂xixju (i, j = 1, . . . ,m) and the Lie derivative Y u defined in

(1.1.5) are continuous functions in Ω. We also require, for i = 1, . . . ,m, that

lim
s→0

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t)

|s|1/2 = 0, (9)

uniformly for every (x, t) ∈ K, where K is a compact set K ⊂ Ω.

We remark that (9) can be interpreted as a condition on the second order mixed deriva-

tive of the form Y 1/2∂xiu, since, mirroring the uniformly parabolic case, we regard the time

derivative, here generalized by the Lie derivative Y , as a second order operator. It is clear

that, if the derivative Y ∂xiu exists, then the fractional derivative Y ∂
1/2
xi u is equal to 0.

Besides their intrinsic interest, the regularity estimates presented in Chapter 2 will also

play a crucial role in proving the existence of a weak fundamental solution in the second part

of this work. Finally, we remark that the results contained in Chapter 2 were presented for

the first time by the author, Stroffolini and Polidoro in the paper [105].

On the other hand, in Chapter 3 we establish new pointwise regularity results for solu-

tions to equation (8) in the case where the diffusion term is simply the Laplacian in veloc-

ity, following the recent paper [62] by the author and Ipocoana. In particular, for the first

time in the ultraparabolic literature, we introduce a pointwise modulus of mean oscillation

and we show that if the modulus of Lp-mean oscillation of L u at a point z ∈ R
N+1 is

Dini, then z is a Lebesgue point of continuity in Lp average for the second order derivatives
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∂2xixju, i, j = 1, . . . ,m, and the Lie derivative Y u. The method we follow in Chapter 3 has

the advantage of being quite flexible, as shown in [77,86], where it was applied to study new

regularity results for obtacle problem for the Laplace equation and the heat equation. The

obstacle problem associated to (8) is not only fascinating for theoretical purposes but also

for multiple applications. For example, this comes as an interest in mathematical finance to

determine the arbitrage free price of options of American-type (see [96]). In recent years,

many attempts have been made to study the existence and regularity of solutions to the ob-

stacle problem in the framework of PDE (see [92] and the references therein). However, in

the promising aforementioned results, they could only deal with classical solutions and con-

tinuous obstacles. For this reason, the results established in Chapter 3 aim at constituting a

first step towards developing the weak regularity theory for solutions to the obstacle problem

associated to Kolmogorov-type equations.

Besides its interesting mathematical structure and its connection to Hörmander’s theory,

operator (1) is also important as it serves as a prototype for a family of evolution equations

arising in the kinetic theory of gases which take the following general form

m∑

j=1

pj∂yju(p, y, t) + ∂tu(p, y, t) =: Y u(p, y, t) = J (u). (10)

In this case, Y u is the so called total derivative with respect to time in the phase space and

J (u) is the collision operator, which can be either linear or non-linear. For instance, in the

usual Fokker-Planck equation (cf. [37]) we have a linear collision operator of the form

J (u) =
m∑

i,j=1

aij(p, y, t) ∂
2
pi,pju(p, y, t) +

m∑

i=1

bi(p, y, t) ∂piu(p, y, t) + c(p, y, t)u(p, y, t). (11)

In the second part of my thesis, which consists of Chapters 4-5, we focus on more general

Kolmogorov operators which also include the usual Fokker-Planck equation, i.e. the collision

operator (11). Specifically, we study Kolmogorov equations of the form

L u(x, t) : =
m∑

i,j=1

∂xi
(
aij(x, t)∂xju(x, t)

)
+

N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t)

+
m∑

i=1

bi(x, t)∂xiu(x, t) + c(x, t)u(x, t) = f(x, t),

(12)

where z = (x, t) = (x1, . . . , xN , t) ∈ R
N+1 and 1 ≤ m ≤ N . We remark that we recover the

Fokker-Planck equation from (12) by choosing N = 2m and

B =

(
O O

−Im O

)
.
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Another step, with which we further generalize the setting of the first part of this dissertation,

is that we consider weak solutions to equation (12) in the sense of the following definition.

Weak solution. We denote by x(0) the hypoelliptic variables and we let Ω = Ωm ×
ΩN−m+1 ⊂ R

N+1, where Ωm is a bounded Lipschitz domain of Rm and ΩN−m+1 is a bounded

Lipschitz domain of RN−m+1. We define H1
x(0)

as the Sobolev space of functions u ∈ L2(Ωm)

with distribution gradient Dmu lying in (L2(Ωm))
m, i.e.

H1
x(0) :=

{
u ∈ L2(Ωm) : Dmu ∈ (L2(Ωm))

m
}
,

and we let W denote the closure of C∞(Ω) in the norm

‖u‖2W = ‖u‖2
L2

(
ΩN−m0+1;H1

x(0)

) + ‖Y u‖2
L2

(
ΩN−m0+1;H

−1

x(0)

). (13)

A function u ∈ W is a weak solution to (12) with source term f ∈ L2(Ω) if for every non-

negative test function ϕ ∈ C∞
c (Ω), we have

∫

Ω

−〈ADu,Dϕ〉 − uY ϕ+ 〈b,Du〉ϕ+ cuϕ =

∫

Ω

fϕ,

where the operator L is written in its compact form, given that

• the matrix A(x, t) = (aij(x, t))1≤i,j≤N has real measurable entries, where aij, for every

i, j = 1, . . . ,m, are the coefficients appearing in (12), while aij ≡ 0 whenever i > m or

j > m;

• the vector b(x, t) := (b1(x, t), . . . , bm(x, t), 0, . . . , 0) contains the coefficients appearing in

front of one of the lower order terms and the drift is defined as above, namely Y =∑N
i,j=1 bijxj∂xi − ∂t.

The analysis of the regularity theory of degenerate Kolmogorov equations in divergence

form with discontinuous coefficients has been an open problem for decades and is nowadays the

main focus of the research community. The most recent developments in this framework have

been established in the particular case of the kinetic Kolmogorov-Fokker-Planck equation.

The aim of Chapter 4 is to extend some of these results to the ultraparabolic setting. In

particular, following the results presented by the author and Anceschi in [11], we prove a

Harnack inequality and the Hölder continuity for weak solutions to the Kolmogorov equation

(12) with measurable coefficients, integrable lower order terms and nonzero source term. To

the best of our knowledge, the Harnack inequality contained in Chapter 4 is the first result of

this kind available for weak solutions to (12). We then introduce a suitable functional spaceW
(see (13)), which mirrors the classical H1 space for uniformly elliptic equations and therefore

seems to be the most natural framework for studying the weak regularity theory for operator

L . In particular, we extend the functional setting first formally proposed by Armstrong

and Mourrat in [3] for the study of the kinetic Kolmogorov-Fokker-Planck equation. To be

6
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more precise, we show that it is sufficient to require that the drift term Y u belongs to the

space L2
y,tH

−1
x(0)

to derive a new (weak) Poincaré inequality. Here x(0) denotes, as above, the

hypoelliptic variables, while y describes the directions of missing hypoellipticity. In this sense,

we extend the classical ultraparabolic literature, where the drift Y u was always assumed to

be in L2.

Another motivation behind our studies is the need to determine which are the lowest

possible integrability assumptions for c, b and f that allow us to prove L2 − L∞ estimates

and a Harnack inequality for weak solutions. Indeed, it is still an open problem in the

ultraparabolic literature whether the optimal regularity for c, b and f is the hypoelliptic

counterpart of the parabolic homogeneous dimension N
2 , namely Q+2

2 where Q is defined in

(1.1.17). In particular, our attention is focused on the behavior of the term b, which plays an

important role in some applications, such as the Mean Field Games theory. Indeed, a Harnack

inequality for weak solutions is the fundamental ingredient in the analysis of the maximal Lp

regularity and well-posedness theory for Mean Field systems with degenerate diffusion, which

were studied in the parabolic setting [34] and only very recently there has been a first attempt

to consider the ultraparabolic setting [44].

Harnack inequalities are also important due to their connection to Gaussian lower bounds

for the fundamental solution. Indeed, since the work of Moser [87], it became clear that the

proof of the lower bound relies on the repeated application of the Harnack inequality. In

Chapter 5, we therefore take advantage of the Harnack inequality established in Chapter 4

to prove Gaussian lower bounds for a fundamental solution Γ associated to operator L . Fol-

lowing then Aronson’s method [14], we establish the corresponding Gaussian upper bound.

Finally, we conclude Chapter 5 by proving the existence of a weak fundamental solution rel-

evant to operator (12). Our approach is based on a limiting procedure whose convergence is

ensured by the Schauder types estimates obtained in Chapter 2. The results are obtained by

the author in collaboration with Anceschi and are contained in the recent paper [12].

Finally, in the last part of this work, namely Chapter 6, we address a possible relativistic

generalization of equation (1), namely

L u(p, y, t) =
√

|p|2 + 1divp (DDpu)− 〈p,Dyu〉 −
√

|p|2 + 1 ∂tu = 0, (14)

where (p, y, t) ∈ R
2m+1 and D is the relativistic diffusion matrix given by

D =
1√

|p|2 + 1
(Im + p⊗ p) .

Here and in the following, Im denotes the m×m identity matrix and p⊗ p = (pipj)i,j=1,...,m.

Indeed, a questionable feature of (1) is that its diffusion term ∆pu operates with infinite

velocity, as in classical mechanics the velocity is proportional to the momentum. In this case, if

the initial distribution u(p, y, 0) is compactly supported in y, there would be instantaneously a

7
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non-zero probability to find particles everywhere in space. This feature is clearly incompatible

with the law that prevents particles from moving faster than light.

We believe that the operator introduced in (14) is the suitable generalization of (1) in view

of its invariance properties. Indeed, mirroring the invariance of the non-relativistic operator

with respect to Galilean transformations (5), operator L in (14) is invariant with respect to

the equivalent relativistic transformations, namely the Lorentz transformations.

As a complete mathematical characterization of the operator in (14) is not yet available,

Chapter 6 is dedicated to its systematic study in the appropriate framework of PDE theory.

In particular, we place for the first time operator (14) in Hörmander’s theory and construct

its invariance group. Relying on classical results for operator (1), we are then able to de-

rive asymptotic bounds for the fundamental solution associated to (14). Those results are

presented by the author, Anceschi and Polidoro in the recent preprint [10].
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Regular coefficients
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The first part of this thesis addresses the study of Kolmogorov operators of the form

L u :=
m∑

i,j=1

aij(x, t)∂
2
xixju(x, t) +

N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t), (I.1)

where z = (x, t) = (x1, . . . , xN , t) ∈ R
N+1 and 1 ≤ m ≤ N , B := (bij)i,j=1,...,N has real

constant entries and the coefficients aij ’s are regular, meaning that they are at least Dini

continuous. Moreover, we always assume that B takes a suitable block form (see equation

(1.1.2)) that ensures that the first order part of L induces a strong regularizing property,

namely that L is hypoelliptic.

When the right-hand side of (I.1) is continuous, the solutions to L u = f are called clas-

sical because their degree of regularity corresponds to the one imposed by the equation. The

study of the classical regularity theory of the class of operators (I.1) was investigated in depth

over the years. In Chapter 1, we revise some known results about operators of the form (I.1)

that will be useful in the forthcoming chapters. In particular, we explain how to write the

operators in (I.1) with constant coefficients as Hörmander’s operators (3) and we construct

their invariance group. Finally, Section 1.2 of Chapter 1 collects some classical results about

Kolmogorov-type operators in the more general case where the coefficients aij(x, t) are as-

sumed to be Hölder continuous. As in the parabolic setting, the classical regularity theory

was developed for coefficients belonging to suitable Hölder spaces (see Definition 1.2.1 below).

In Chapter 2, we relax the regularity assumptions on the second order coefficients, by

introducing a new definition of Dini continuity naturally associated to the Lie Group struc-

ture that leaves operator (I.1) invariant. Under these assumptions, we extend a fundamental

result of the classical regularity theory, namely Schauder estimates. To be more precise, we

prove that, if operator L satisfies Hörmander’s hypoellipticity condition, and f and aij ’s are

Dini continuous functions, then the second order derivatives of the solution u to the equa-

tion L u = f are Dini continuous functions as well. Additionally, we establish a new Taylor

formula for classical solutions to L u = f under minimal regularity assumptions on u. These

results are the outcome of a scientific collaboration that started in 2020 between the author,

Polidoro and Stroffolini and are published in [105].

In Chapter 3, we present some regularity results obtained in collaboration with Ipocoana.

In contrast to Chapter 2, we assume the coefficients to be constant but we relax the regularity

of the right-hand side, allowing it to be in Lp. More precisely, we establish new pointwise

regularity results for solutions to degenerate second order partial differential equations of the

form (I.1), when A is the identity matrix. In particular, we show that if the modulus of Lp-

mean oscillation of L u at the origin is Dini, then the origin is a Lebesgue point of continuity

in Lp average for the second order derivatives ∂2xixju, i, j = 1, . . . ,m, and the Lie derivative(∑N
i,j=1 bijxj∂xi − ∂t

)
u. Moreover, we provide a Taylor-type expansion up to second order

10



with an estimate of the rest in Lp norm. We observe that, although we consider the regularity

problem for weak solutions to Kolmogorov operators in the framework of the Sobolev spaces,

our procedure is basically pointwise and our approach follows the lines of regularity theory

for classical solutions rather than the ones for weak solutions. We finally remark that the

results of Chapter 3 are presented in the paper [62].
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Chapter 1

Kolmogorov-type operators: an overview and

some classical results

This introductory chapter collects some known results about degenerate Kolmogorov-type

equations and provides an insight into their applications. Moreover, we explain the impor-

tance of Kolmogorov-type operators in connection to Hörmander’s theory of hypoellipticity.

Throughout this chapter, we mainly focus on Kolmogorov operators with constant diffusion

coefficients. Indeed, such operators, together with their invariant Lie group structure, are

the starting point to study operators with variables coefficients, which will be the content

of the forthcoming chapters. Finally, we recall some known results about Kolmogorov-type

operators with Hölder continuous coefficients.

The simplest Kolmogorov equation was introduced by Kolmogorov [67] in 1934 as follows

1

2
σ2
∂2u

∂p2
(p, y, t) = p

∂u

∂y
(p, y, t) +

∂u

∂t
(p, y, t), (p, y, t) ∈ R

3, (1.0.1)

and it is strongly degenerate as the second order derivative is only taken with respect to the

momentum variable. In the Introduction of this work, we have already introduced equation

(1.0.1) for σ =
√
2 and discussed its link to kinetic theory of gases. We here explain in more

detail its physical meaning and its connection to Langevin processes. From the physical point

of view, Fokker-Planck equations like the one in (1.0.1) provide a continuous description of the

dynamics of the distribution of Brownian test particles immersed in a fluid in thermodynami-

cal equilibrium. More precisely, the distribution function u of a test particle evolves according

to the linear Fokker-Planck equation defined in (1.0.1), provided that the test particle is much

heavier than the molecules of the fluid and that there is no friction. In particular, equation

(1.0.1) is the backward Kolmogorov equation of the Langevin process, i.e. the particle whose

12
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location in the phase space is (Pt, Yt) evolves as





Pt = p0 + σWt,

Yt = y0 +
t∫
0

P (s)ds,
(1.0.2)

where (Wt)t≥0 denotes a 1−dimensional Wiener process. We recall that (1.0.2) is usually

referred to as time-integrated Brownian motion.

In his seminal paper [67], Kolmogorov provided us with the explicit expression of the

density Π = Π(t, p, y, p0, y0) of (1.0.1)

Π(t, p, y, p0, y0) =
√
3

2πt2 exp
(
− (p−p0)2

t − 3 (p−p0)(y−y0−tp0)
t2 − 3 (y−y0−ty0)2

t3

)
t > 0, (1.0.3)

and pointed out that it is a smooth function despite the strong degeneracy of equation (1.0.1).

As suggested by the smoothness of the density Π, operator L associated to equation (1.0.1)

L := 1
2σ

2∂vv − v∂y − ∂t, (1.0.4)

is hypoelliptic, in the sense of the following definition, that we state for a general second order

differential operator L acting on an open subset Ω of RN .

Definition 1.0.1 (Hypoellipticity). An operator L is hypoelliptic if, for every distributional

solution u ∈ L1
loc(Ω) to equation L u = f , we have that

f ∈ C∞(Ω) ⇒ u ∈ C∞(Ω). (1.0.5)

Hörmander considered the operator L defined in (1.0.4) as a prototype for the family of

hypoelliptic operators studied in his seminal work [54]. Specifically, the operators considered

by Hörmander are the ones that can be written in form (3), i.e. as a sum of squares of

smooth vector fields plus a drift term. As already mentioned in the Introduction of this

work, in [54] Hörmander studied a sufficient condition for the hypoellipticity of L . We here

recall its precise statement, which requires some notation. Given two vector fields Z1, Z2, the

commutator of Z1 and Z2 is the vector field:

[Z1, Z2] = Z1 Z2 − Z2 Z1.

Moreover, we recall that Lie(X1, . . . , Xm, Y ) is the Lie algebra generated by the vector fields

X1, . . . , Xm, Y and their commutators.

Hörmander’s Rank Condition. Suppose that

rank Lie(X1, . . . , Xm, Y )(z) = N + 1 for every z ∈ Ω. (1.0.6)

13
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Then the operator L defined in (3) is hypoelliptic in Ω,

Let us consider again the operator L defined in (1.0.4) with σ =
√
2 to simplify the

notation. L can be written in the form (3) if we choose

X = ∂p ∼ (0, 1, 0)T , Y = −p∂y − ∂t ∼ (−1, 0, p)T ,

and the Hörmander’s rank condition is satisfied, as

[X, Y ] = XY − Y X = ∂y ∼ (0, 0, 1)T .

1.1 Kolmogorov-type operators with constant coefficients

In the first part of this thesis, we consider Kolmogorov-type operators with constant coeffi-

cients of the form

L :=
m∑

i,j=1

aij∂
2
xixj +

N∑

i,j=1

bijxj∂xi − ∂t, (1.1.1)

where (x, t) ∈ R
N+1, and 1 ≤ m ≤ N . The matrices A := (aij)i,j=1,...,m and B := (bij)i,j=1,...,N

have real constant entries.

As in the simplest case (1.0.1), operator L can be strongly degenerate, meaning m < N .

The hypoellipticity of the more general operator L in (1.1.1) can be stated in terms of

suitable structural conditions on the matrices A and B. Indeed, by [73, Propositions 2.1 and

2.2], Hörmander’s rank condition (1.0.6) is equivalent to the following assumption.

[H.1] The matrix A is symmetric and strictly positive, up to a change of basis the matrix B

has the form

B =




B0,0 B0,1 . . . B0,κ−1 B0,κ

B1 B1,1 . . . B1,κ−1 B1,κ

O B2 . . . B2,κ−1 B2,κ

...
...

. . .
...

...

O O . . . Bκ Bκ,κ




=




∗ ∗ . . . ∗ ∗
B1 ∗ . . . ∗ ∗
O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗




(1.1.2)

where every block Bj is an mj ×mj−1 matrix of rank mj with j = 1, 2, . . . , κ. Moreover, the

mjs are positive integers such that

m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1, and m0 +m1 + . . .+mκ = N.

We agree to let m0 := m to have a consistent notation, moreover O denotes a block matrix

whose entries are zeros, whereas the coefficients of the blocks “∗” are arbitrary.

We remark that, if L is uniformly parabolic (i.e. m = N and B ≡ O), then assumption

[H.1] is clearly satisfied. Indeed, in this case operator L is simply the heat operator, which is
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known to be hypoelliptic. However, in this thesis, we are mainly interested in the case where

m < N and B is non-trivial.

Under assumption [H.1], operator L in (1.1.1) can be written in the form (3). Indeed, if

the constant matrix A is symmetric and positive, then there exists a symmetric and positive

matrix A1/2 = (aij)i,j=1,...,m such that A = A1/2A1/2. As a consequence, we can write L in

terms of vector fields as follows

L =
m∑

i=1

X2
i + Y, (1.1.3)

where

Xi :=
m∑

j=1

aij∂xj , i = 1, . . . ,m, Y :=
N∑

i,j=1

bijxj∂xi − ∂t = 〈Bx,D〉 − ∂t. (1.1.4)

Here and in the sequel, Y u will be understood as the Lie derivative

Y u(x, t) := lim
s→0

u(exp(sB)x, t− s)− u(x, t)

s
. (1.1.5)

We observe that Y u is the derivative of u along the characteristic trajectory of Y , if we

identify the directional derivative Y with the vector valued function Y (x, t) = (Bx,−1). In

the sequel, Y will also be regarded as drift term.

1.1.1 Lie Group Invariance

In this subsection, we focus on the non-Euclidean structure associated to hypoelliptic Kol-

mogorov operators of the form (1.1.1). Indeed, it is known that the natural geometry when

studying operator L is determined by a suitable homogeneous Lie group structure on R
N+1.

More precisely, as first observed by Lanconelli and Polidoro in [73], operator L is invariant

with respect to left translation in the group K = (RN+1, ◦), where the group law is defined

by

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ), (x, t), (ξ, τ) ∈ R
N+1, (1.1.6)

and

E(s) = exp(−sB), s ∈ R. (1.1.7)

Then K is a non-commutative group with zero element (0, 0) and inverse

(x, t)−1 = (−E(−t)x,−t). (1.1.8)

For a given ζ ∈ R
N+1 we denote by `ζ the left traslation on K = (RN+1, ◦) defined as follows

`ζ : R
N+1 → R

N+1, `ζ(z) = ζ ◦ z. (1.1.9)
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Then the vector fields X1, . . . , Xm and Y are left-invariant, with respect to the group law

(1.1.6), in the sense that

Xj (u(ζ ◦ · )) = (Xju) (ζ ◦ · ), j = 1, . . . ,m, Y (u(ζ ◦ · )) = (Y u) (ζ ◦ · ), (1.1.10)

for every ζ ∈ R
N+1 and every u sufficiently smooth. Hence, in particular,

L ◦ `ζ = `ζ ◦ L or, equivalently, L (u(ζ ◦ · )) = (L u) (ζ ◦ · ).

Among the class of Kolmogorov operators satisfying assumption [H.1], a central role is

played by the ones which are additionally invariant with respect to a certain family of dilations

(δr)r>0. We say that an operator L satisfying assumption [H.1] is invariant with respect to

(δr)r>0 if

L (u ◦ δr) = r2δr (L u) , for every r > 0, (1.1.11)

for every function u sufficiently smooth. As with the hypoellipticity, this invariance property

can also be read in the expression of the matrix in B in (1.1.2). More precisely, in [73,

Proposition 2.2], it is proved that operator L is invariant with respect to (δr)r>0 if, and only

if, the matrix B in (1.1.2) agrees with B0 defined as:

B0 =




O O . . . O O

B1 O . . . O O

O B2 . . . O O

...
...

. . .
...

...

O O . . . Bκ O




(1.1.12)

In other words, every block denoted by ∗ in (1.1.2) has zero entries. In this case, the dilation

is defined for every positive r as

δr := diag(rIm, r
3
Im1 , . . . , r

2κ+1
Imκ , r

2), (1.1.13)

where Ik, k ∈ N, is the k-dimensional unit matrix. It is also useful to denote by
(
δ0r
)
r>0

the

family of spatial dilations defined as

δ0r = diag(rIm, r
3
Im1 , . . . , r

2κ+1
Imκ) for every r > 0. (1.1.14)

In the sequel, we also work with operators which are invariant with respect to (1.1.13), namely

with operators that satisfy the following assumption.

[H.2] L0 is hypoelliptic and δr-homogeneous of degree two with respect to the family of
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dilations (δr)r>0 defined in (1.1.13).

Owing to (1.1.13), we now recall the definition of Homogeneous Lie group.

Definition 1.1.1 (Homogeneous Lie group.). If the matrix B has the form (1.1.12), we say

that the following structure

K0 =
(
R
N+1, ◦, (δr)r>0

)
(1.1.15)

is a homogeneous Lie group. In this case, the following distributive property holds

δr(ζ ◦ z) = (δr(ζ)) ◦ (δr(z)), δr(z
−1) = (δr(z))

−1. (1.1.16)

Remark 1.1.2. The presence of the exponents 1, 3, . . . , 2κ+ 1, 2 in the matrix δr in (1.1.13)

can be understood as follows. The dilation is clearly uniformly parabolic in the first m

coordinates of RN and in time, as L is non-degenerate with respect to x1, . . . , xm. The

exponents relevant to the other coordinates can be explained while checking Hörmander’s

condition. For instance, let us consider the Kolmogorov operator

L = ∂2x1x1 + x1∂x2 + x2∂x3 − ∂t = X2
1 + Y.

Hörmander condition is satisfied if we have κ = 2 commutators ∂x2 = [X1, Y ] = X1Y − Y X1

and ∂x3 = [[X1, Y ], Y ]. Because Y needs to be considered as a second order derivative, we

have that ∂x2 and ∂x3 are derivatives of order 3 and 5, respectively. On the other hand, the

matrices A, B and δ0r associated to this operator are

A =



1 0 0

0 0 0

0 0 0


 , B =



0 0 0

1 0 0

0 1 0


 , δ0r =



r 0 0

0 r3 0

0 0 r5


 .

The same argument can be applied to operators that need κ > 2 steps to satisfy Hörmander’s

rank condition.

Example 1.1.3. A very simple example of a Kolmogorov operator which is not dilation

invariant is given by the Ornstein-Uhlenbeck operator L = ∆− 〈x,D〉 − ∂t. In this case, we

usually take advantage of the parabolic dilations δr(x, t) = (rx, r2t).

The integer numbers

Q := m0 + 3m1 + . . .+ (2κ+ 1)mk, and Q+ 2 (1.1.17)

will be named spatial homogeneous dimension of RN with respect to (δ0r )r>0, and homogeneous

dimension of RN+1 with respect to (δr)r>0, because we have that

det δ0r = rQ and det δr = rQ+2 for every r > 0.
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We remark that the homogeneous dimension Q in (1.1.17) is the hypoelliptic counterpart of

the space dimension N usually considered in the parabolic setting, see for instance [91].

We conclude this subsection introducing a semi-norm associated to the family of dilations

(δr)r>0 in (1.1.13) and a quasi-distance which is invariant with respect to the group operation

in (1.1.6). We first rewrite the matrix δr with the equivalent notation

δr := diag(rα1 , . . . , rαN , r2), (1.1.18)

where α1, . . . , αm0 = 1, αm0+1, . . . , αm0+m1 = 3, αN−mκ , . . . , αN = 2κ+ 1.

Definition 1.1.4. For every (x, t) ∈ R
N+1 we set

‖(x, t)‖K := max
{
|x1|

1
α1 , . . . , |xN |

1
αN , |t| 12

}
. (1.1.19)

We observe that the semi-norm is homogeneous of degree 1 with respect to the family

of dilations (δr)r>0, namely ‖δr(x, t)‖K = r‖(x, t)‖K for every r > 0 and (x, t) ∈ R
N+1.

Moreover, the following pseudo-triangular inequality holds: for every bounded set H ⊂ R
N+1

there exists a positive constant cH such that

‖(x, t)−1‖K ≤ cH‖(x, t)‖K, ‖(x, t) ◦ (ξ, τ)‖K ≤ cH(‖(x, t)‖K + ‖(ξ, τ)‖K), (1.1.20)

for every (x, t), (ξ, τ) ∈ H. Starting from the homogeneous norm in (1.1.19), we now want to

define a quasi-distance dK which is invariant with respect to the left translation (1.1.9). To

this end, we set

dK((x, t), (ξ, τ)) := ‖(ξ, τ)−1 ◦ (x, t)‖K, (x, t), (ξ, τ) ∈ R
N+1. (1.1.21)

It is clear that, by definition, the distance in (1.1.21) satisfies

dK((x, t), (ξ, τ)) = dK((y, s) ◦ (x, t), (y, s) ◦ (ξ, τ)), (y, s), (x, t), (ξ, τ) ∈ R
N+1,

i.e. it is left invariant with respect to translations on the group K. In addition, we remark

that, from (1.1.20), it directly follows

dK((x, t), (ξ, τ)) ≤ cH(dK((x, t), (y, s)) + dK((y, s), (ξ, τ))),

for every (x, t), (ξ, τ), (y, s) ∈ R
N+1.

Remark 1.1.5. Since every norm is equivalent to any other in R
N+1, other definitions have

been used in the literature. For instance, in [82], the following one is chosen. For every

z = (x1, . . . , xN , t) ∈ R
N+1 \ {0} the norm of z is the unique positive solution r to the

18
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following equation
xα1
1

r2α1
+
xα2
2

r2α2
+ . . .+

xαN

N

r2αN
+
t2

r4
= 1, (1.1.22)

where the numbers αj were defined in (1.1.18).

Another equivalent definition is the following: for every z = (x, t) ∈ R
N+1 we set

‖z‖K = |t| 12 + |x|K, |x|K =
N∑

j=1

|xj |
1
αj . (1.1.23)

In the sequel, we make use of these equivalent definitions of semi-norm ‖ · ‖K, choosing the

one which is more suitable to the context.

Remark 1.1.6. An important property linking the two structures (translations and dilations)

is the following (see [73, Remark 2.1])

E0(r
2t) = δ0r E0(t) δ

0
1/r, ∀r > 0, t ∈ R,

where E0(s) = exp(−sB0) with B0 defined in (1.1.12). The previous equality implies that

detE0(r
2t) = detE0(t), ∀r > 0, t ∈ R,

and, for r → 0, we have

1 = detE0(0) = detE0(t), ∀t ∈ R.

Then it is straightforward to see that, for a fixed ζ, the mappings

z 7→ z ◦ ζ
z 7→ ζ ◦ z
z 7→ z−1

have Jacobian determinant equal to 1 and therefore preserve the Lebesgue measure.

Example 1.1.7. We show how the kinetic Kolmogorov operator (1) presented in the Intro-

duction of this work belongs to the class of operators (1.1.1). Indeed, we can write operator

(1) as follows

K :=
m∑

j=1

∂2xj −
m∑

j=1

xj∂xm+j − ∂t = ∆p − 〈p,Dy〉 − ∂t, (1.1.24)

for (x, t) = (p, y, t) ∈ R
m × R

m × R. It is then clear that operator K can be written in the

form (1.1.1) with κ = 1,m1 = m, and

A =

(
Im O

O O

)
, B =

(
O O

−Im O

)
(1.1.25)
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In this setting, the Lie group introduced in (1.1.6) has a quite natural intepretation, as the

composition law (1.1.6) agrees with the Galilean change of variables (5).

Moreover, the matrix B in (1.1.25) is in the form (1.1.12) and therefore K is invariant

with respect to the dilation δr(v, y, t) := (rp, r3y, r2t) in (7). We remark that the dilation

acts as the usual parabolic scaling with respect to the variable p and t.

1.1.2 Principal part operator

In this subsection, we show that dilation-invariant operators are the blow-up limit of operators

satisfying assumption [H.1]. This technique will be fundamental in the forthcoming Chapter

2, where we consider a general operator L satisfying [H.1].

Here and in the sequel, we denote by L0 the principal part operator of L , obtained from

L by replacing its matrix B with B0 in (1.1.12). As stated in Subsection 1.1.1 above, L0

satisfies (1.1.11).

As in the proof of the main result of Chapter 2 we rely on a blow-up argument, we will

also apply dilation (1.1.13) to the general operator L satisfying [H.1]. Specifically, we define

Lr as the scaled operator of L in terms of (δr)r>0 as follows

Lr := r2(δr ◦ L ◦ δ 1
r
), (1.1.26)

and we write its explicit expression in terms of the matrix B and (δr) as

Lr =
m∑

i,j=1

aij∂
2
xixj + Yr, r ∈ (0, 1] (1.1.27)

where

Yr := 〈Brx,D〉 − ∂t (1.1.28)

and Br := r2δrBδ 1
r
, i.e.,

Br =




r2B0,0 r4B0,1 . . . r2κB0,κ−1 r2κ+2B0,κ

B1 r2B1,1 . . . r2κ−2B1,κ−1 r2κB1,κ

O B2 . . . r2κ−4B2,κ−1 r2κ−2B2,κ

...
...

. . .
...

...

O O . . . Bκ r2Bκ,κ



. (1.1.29)

Clearly, Lr = L for every r > 0 if and only if B = B0, and the principal part operator L0

is obtained as the limit of (1.1.26) as r → 0.

Setting Er(t) = exp(−tBr), we define the translation group related to Lr as

(x, t) ◦r (ξ, τ) = (ξ + Er(τ)x, t+ τ), (x, t), (ξ, τ) ∈ R
N+1. (1.1.30)
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Remark 1.1.8. As it will be useful in the blow-up limit procedure in Chapter 2, we point out

that the composition law defined in (1.1.30) depends continuously on r ∈ (0, 1]. Moreover,

taking r = 0 in (1.1.29) we find the matrix B0 and “ ◦r” in (1.1.30) simply becomes the

composition law related to the dilation-invariant operator L0. Thus, “ ◦r” is a continuous

function on the compact set [0, 1].

1.1.3 Fundamental Solution

In this subsection, we collect some known results concerning the fundamental solution Γ of L .

First, we recall that, under the hypothesis of hypoellipticity, Hörmander in [54] constructed

the fundamental solution of L as

Γ(z, ζ) = Γ(ζ−1 ◦ z, 0), ∀z, ζ ∈ R
N+1, z 6= ζ,

where

Γ((x, t), (0, 0)) =





(4π)−
N
2√

detC(t)
exp

(
−1

4〈C−1(t)x, x〉 − t tr(B)
)
, if t > 0,

0, if t < 0,
(1.1.31)

and

C(t) =

∫ t

0

E(s)

(
A O

O O

)
ET (s) ds. (1.1.32)

We recall that assumption [H.1] implies that C(t) is strictly positive for every t > 0 (see [73,

Proposition A.1]) and therefore Γ in (1.1.31) is well-defined.

As a fundamental solution to L , the following representation formula holds true: for every

u ∈ C∞
0 (RN+1) we have

u(z) = −
∫

RN+1

[Γ(z, ·)L (u)](ζ)dζ. (1.1.33)

In order to state another crucial property of the fundamental solution, we recall the following

definition.

Definition 1.1.9 (Homogeneous function). We say that a function u defined on R
N+1 is

homogeneous of degree α ∈ R if

u(δr(z)) = rαu(z) for every z ∈ R
N+1.

A differential operator X will be called homogeneous of degree β ∈ R with respect to (δr)r≥0

if

Xu(δr(z)) = rβ (Xu) (δr(z)) for every z ∈ R
N+1,

and for every sufficiently smooth function u. Note that, if u is homogeneous of degree α and
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X is homogeneous of degree β, then Xu is homogeneous of degree α− β.

As far as we are concerned with the vector fields of the Kolmogorov operator L0 under

the invariance assumption (1.1.11), we have that X1, . . . , Xm are homogeneous of degree 1

and Y is homogeneous of degree 2 with respect to (δr)r≥0. In particular, L0 =
∑m

j=1X
2
j + Y

is homogeneous of degree 2, and its fundamental solution Γ0 is a homogeneous function of

degree −Q, that is

Γ0(δr(z)) = r−QΓ0(z), for every z ∈ R
N+1 \ {0}, r > 0. (1.1.34)

As a direct consequence, the estimate Γ0(z, ζ) ≤ c

‖ζ−1◦z‖Q
K

holds for every z, ζ ∈ R
N+1,

with z 6= ζ. Analogous bounds hold for the first order and second order derivatives of Γ0, as

they are homogeneous of degree −Q− 1 and −Q− 2, respectively.

Concerning the fundamental solution Γ of the non-dilation-invariant operator L , we recall

the following estimates (see [41, Proposition 2.7]). We assume that all the eigenvalues of the

matrix A belong to some interval [λ,Λ] ⊂ R
+. Then for every T > 0, there exists a positive

constant c, only depending on T, λ,Λ and on the matrix B, such that the following bounds

hold

Γ(z, ζ) ≤ c

‖ζ−1 ◦ z‖Q
K

, (1.1.35)

|∂xjΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+1
K

, |∂ξjΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+1
K

,

|∂xixjΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+2
K

, |∂ξiξjΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+2
K

, (1.1.36)

|Y Γ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

, |Y ∗Γ(z, ζ)| ≤ c

‖ζ−1 ◦ z‖Q+2
K

,

for every i, j = 1, . . . ,m, z, ζ ∈ R
N × [−T, T ] with z 6= ζ. Here Y ∗ denotes the transposed

operator of Y , defined as follows

∫

RN+1

ϕ(x, t)Y ∗ψ(x, t) dxdt =

∫

RN+1

ψ(x, t)Y ϕ(x, t) dxdt,

for every ψ, ϕ ∈ C∞
0 (RN+1).

A similar result holds for the derivatives ∂xjΓ(z, ζ) and ∂ξjΓ(z, ζ) for j = m + 1, . . . , N .

These functions need to be considered as derivatives of order αj , where the integer αj has

been introduced in (1.1.18). We have

|∂xjΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+αj

K

, |∂ξkΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+αk

K

,

|∂xj∂ξkΓ(z, ζ)| ≤
c

‖ζ−1 ◦ z‖Q+αj+αk

K

,
(1.1.37)
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for every j, k = 1, . . . , N , z, ζ ∈ R
N × [−T, T ] with z 6= ζ. Note that, as α1 = · · · = αm = 1,

the bounds in the first line of (1.1.37) agree with the first line of (1.1.36). The proof of

(1.1.37) directly follows from the bound (2.59) and (2.60) in [41].

1.2 Kolmogorov operators with Hölder continuous co-

efficients

In this section, we show how to take advantage of the Lie Group structure introduced in

Subsection 1.1.1 to study more general Kolmogorov-type operators. In particular, we consider

Kolmogorov operators in trace form in R
N+1

L =
m∑

i,j=1

aij(x, t)∂
2
xixj +

m∑

j=1

bj(x, t)∂xj + 〈Bx,D〉 − ∂t, for (x, t) ∈ R
N+1 (1.2.1)

with variable coefficients aij ’s and bj ’s. As in the parabolic case, the classical theory for

degenerate Kolmogorov operators is developed for spaces of Hölder continuous functions.

As we rely on the non-Euclidean structure defined in Subsection 1.1.1, we need to consider

functions which are Hölder continuous with respect to the quasi-distance in (1.1.21), i.e.

functions which are Hölder continuous intrinsically. More precisely, here and in the sequel we

rely on the following definition.

Definition 1.2.1 (Intrinsic Hölder continuous functions). Let α be a positive constant, α ≤ 1,

and let Ω be an open subset of RN+1. We say that a function f : Ω −→ R is Hölder continuous

with exponent α in Ω with respect to the group K = (RN+1, ◦), defined in (1.1.6), (in short:

Hölder continuous with exponent α) if there exists a positive constant M > 0 such that

|f(z)− f(ζ)| ≤M dK(z, ζ)
α for every z, ζ ∈ Ω, (1.2.2)

where dK is the distance defined in (1.1.21). If a function f satisfies (1.2.2) we write f ∈
Cα
L(Ω), where the subscript L refers to the fact that we deal with functions which are Hölder

continuous with respect to the group law that leaves operator L invariant.

To every bounded function f ∈ Cα
L(Ω) we associate the semi-norm

[f ]Cα(Ω) = sup
z,ζ∈Ω
z 6=ζ

|f(z)− f(ζ)|
dK(z, ζ)α

.

Moreover, we say a function f is locally Hölder continuous, and we write f ∈ Cα
L,loc(Ω), if

f ∈ Cα
L(Ω

′) for every compact subset Ω′ of Ω.

We remark that Definition 1.2.1 relies on the Lie group K in (1.1.6), that is an invariant

structure for the constant-coefficients operators. Even though the non-constant-coefficients

operator in (1.2.1) is not invariant with respect to K, we rely on the Lie group invariance of

23



CHAPTER 1. KOLMOGOROV-TYPE OPERATORS: AN OVERVIEW AND SOME CLASSICAL RESULTS

the model operator

∆m + Y =
m∑

j=1

∂2xj + 〈Bx,D〉 − ∂t, (1.2.3)

associated to L . Indeed, this is a standard procedure in the study of uniformly parabolic

operators. We observe that, in the uniformly parabolic setting, the model operator (1.2.3) is

replaced by the heat operator and we have that dK
(
(ξ, τ), (x, t)

)
= |ξ−x|+ |τ − t|1/2, so that

we are considering the parabolic modulus of continuity.

In this section, we always rely on the following assumption.

(C) We always assume that hypothesis [H.1] holds. In addition, we assume that the

matrix A satisfies the following uniform ellipticity condition: there exist two positive constants

λ and Λ such that

λ

m∑

i=1

|ξi|2 ≤
m∑

i,j=1

aij(z)ξiξj ≤ Λ
m∑

i=1

|ξi|2

for every (ξ1, . . . , ξm) ∈ R
m and z ∈ R

N+1. Finally, we require that the coefficients aij ’s and

bj ’s belong to the space Cα
L introduced in Definition 1.2.1, for every i, j = 1, . . . ,m.

We now introduce the definition of classical solutions to equation L u = 0.

Definition 1.2.2. A function u is a classical solution to equation L u = 0 in a domain Ω

of RN+1 under assumption (C) if the derivatives ∂xiu, ∂
2
xixju, for i, j = 1, . . . ,m, and the Lie

derivative Y u exist as continuous functions in Ω, and the equation L u(x, t) = 0 is satisfied

at any point (x, t) ∈ Ω. Finally, we say that u is a classical super-solution to L u = 0 if

L u ≤ 0. We say that u is a classical sub-solution if −u is a classical supersolution.

The natural functional setting to study classical solutions to equation L u = 0, with L

as in (1.2.1), is the space

C2,α
L (Ω) =

{
u ∈ Cα

L(Ω) | ∂xiu, ∂2xixju, Y u ∈ Cα
L(Ω), for i, j = 1, . . . ,m

}
, (1.2.4)

where Cα
L(Ω) is given in Definition 1.2.1. Moreover, if u ∈ C2,α

L (Ω), we define the norm

|u|2+α,Ω := |u|α,Ω +
m∑

i=1

|∂xiu|α,Ω +
m∑

i,j=1

|∂2xixju|α,Ω + |Y u|α,Ω. (1.2.5)

Clearly, the definition of C2,α
L,loc(Ω) follows straightforwardly from the definition of Cα

L,loc(Ω).

A definition of the space Ck,α
L (Ω) for every positive integer k is given and discussed in the

work [93] by Pagliarani, Pascucci and Pignotti, where a proof of the Taylor expansion for

Ck,α
L (Ω) functions is given. It is worth noting that the authors of [93] require weaker regular-

ity assumptions for the definition of the space C2,α
L than the ones considered here in (1.2.4).

Finally, we recall that a complete characterization of the intrinsic Hölder spaces is provided
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by Pagliarani, Pascucci and Pignotti in [93].

As in the uniformly elliptic and parabolic case, Schauder estimates constitute a funda-

mental result in the classical regularity theory. As Schauder-type estimates will be one of the

main results of Chapter 2, we here revise the current literature on this subject. In partic-

ular, we recall that Schauder estimates for the dilation-invariant Kolmogorov operator (i.e.

where the matrix B = B0) with Hölder continuous coefficients were proved by Manfredini

in [82, Theorem 1.4]. Manfredini’s result was then extended by Di Francesco and Polidoro

in [41, Theorem 1.3] to the non-dilation invariant case as follows.

Theorem 1.2.3. Let us consider an operator L of the type (1.2.1) satisfying assumption

(C) with α < 1. Let Ω be an open subset of RN+1, f ∈ Cα
L,loc(Ω) and let u be a classical

solution to L u = f in Ω. Then for every Ω
′ ⊂⊂ Ω

′′ ⊂⊂ Ω there exists a positive constant

C, depending only on the constants λ,Λ, on the Hölder-norm of the coefficients of L and on

the diameter of Ω, such that

|u|2+α,Ω′ ≤ C
(
supΩ′′ |u| + |f |α,Ω′′

)
.

A more precise estimate taking into account the distance between the point and the

boundary of the set Ω can be found in [82, Theorem 1.4] for the dilation invariant case. We

omit here this statement because it requires the introduction of further notation.

We also recall that Schauder estimates in the framework of semigroup theory have been

proved by Lunardi [81], Lorenzi [79], Priola [106]. We also quote analogous results obtained

in the framework of stochastic theory (see Menozzi [84] and its bibliography). Schauder

estimates for linear kinetic Fokker–Planck equations were obtained by Imbert and Mouhot

in [56] and by Henderson and Snelson in [53], while the Boltzmann fractional framework was

recently studied by Imbert and Silvestre in [60]. For a comparison between the different types

of Hölder spaces considered in literature we refer the reader to [60, 93].

We now present some known results concerning the fundamental solution of operator L

in (1.2.1) with the additional term c, namely

L =
m∑

i,j=1

aij(x, t)∂
2
xixj +

m∑

j=1

bj(x, t)∂xj + c(x, t) + 〈Bx,D〉 − ∂t, for (x, t) ∈ R
N+1.

(1.2.6)

These results will be useful in Chapter 5, when dealing with the weak fundamental solution

associated to operators of the form (1.2.6) with measurable coefficients.

We recall that, in some particular cases, variable-coefficients Kolmogorov operators were

first studied by Weber [120], Il’In [55] and Sonin [111], who used the parametrix method to

construct a fundamental solution. However, the authors of the aforementioned papers worked

under unnecessary restrictive conditions, i.e. they required an Euclidean regularity on the
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coefficients aij ’s, bj ’s and c. Later on, Polidoro applied in [102] the Levi parametrix method

for the dilation-invariant operator L (i.e. under the additional assumption that B has the

form (1.1.12)), then Di Francesco and Pascucci and Di Francesco and Polidoro removed this

last assumption in [40, 41].

The Levi’s parametrix method is a constructive argument to prove existence and bounds

for the fundamental solution (see [75]). For every ζ ∈ R
N+1, the parametrix Z( · , ζ) is the

fundamental solution, with pole at ζ, of the following operator

Lζ =
m∑

i,j=1

aij(ζ) ∂
2
xixj + 〈Bx,D〉 − ∂t.

The method is based on the following property: if the coefficients aij ’s are continuous and

the coefficiens bj ’s are bounded, then Z is a good approximation of the fundamental solution

of L at least as z is close to the pole ζ, since

LZ(z, ζ) =
m∑

i,j=1

(aij(z)− aij(ζ)) ∂
2
xixjZ(z, ζ) +

m∑

j=1

bj(z) ∂xjZ(z, ζ).

We look for the fundamental solution Γ as a solution of the following Volterra equation

Γ(x, t, ξ, τ) = Z(x, t, ξ, τ) +

∫ t

τ

∫

RN

Z(x, t, y, s)G(y, s, ξ, τ)dy ds,

where the unknown function G is obtained by a fixed point argument. It turns out that

G(z, ζ) =
+∞∑

k=1

(LZ)k(z, ζ),

where (LZ)1(z, ζ) = LZ(z, ζ) and, for every k ∈ N,

(LZ)k+1(x, t, ξ, τ) =

∫ t

τ

∫

RN

LZ(x, t, y, s)(LZ)k(y, s, ξ, τ)dy ds.

We conclude this section stating the existence result for a classical fundamental solution

for an operator L of the form (1.2.6) proved in [40, Theorem 1.4-1.5]. The upcoming Theorem

also provides us with an equivalent result for the fundamental solution Γ∗ associated to the

adjoint operator of (1.2.6). To this end, we recall that the formal adjoint of operator L in

(1.2.6) is defined as

L
∗v(ξ, τ) =

m∑

i,j=1

∂ξi
(
aij(ξ, τ)∂ξjv(ξ, τ)

)
−

m∑

i=1

∂ξi(bi(ξ, τ)v(ξ, τ)) (1.2.7)

+ (c− Tr(B))v(ξ, τ) + Y ∗v(ξ, τ)
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where

Y ∗v(ξ, τ) := −
N∑

i,j=1

bijξj∂ξiv(ξ, τ) + ∂τv(ξ, τ).

We are now in a position to recall the following fundamental result.

Theorem 1.2.4. Let us consider an operator L of the form (1.2.6) under assumption (C).

Then there exists a fundamental solution Γ : RN+1 × R
N+1 → R for L with the following

properties:

1. Γ(·, ·; ξ, τ) ∈ L1
loc(R

N+1) ∩ C(RN+1 \ {(ξ, τ)} for every (ξ, τ) ∈ R
N+1;

2. Γ(·, ·; ξ, τ) is a classical solution of L u = 0 in R
N+1 \ {(ξ, τ)} for every (ξ, τ) ∈ R

N+1

in the sense of Definition 1.2.2;

3. let ϕ ∈ C(RN ) such that for some positive constant c0 we have

|ϕ(x)| ≤ c0e
c0|x|2 for every x ∈ R

N , (1.2.8)

then there exists

lim
(x,t)→(x0,τ)

t>τ

∫

RN

Γ(x, t; ξ, τ)ϕ(ξ)dξ = ϕ(x0) for every x0 ∈ R
N ;

4. let ϕ ∈ C(RN ) satisfying (1.2.8). Then, for every positive 0 < T0 < T1, there exists

T ∈ (T0, T1] such that the function

u(x, t) =

∫

RN

Γ(x, t; ξ, T0)ϕ(ξ) dξ dτ (1.2.9)

is a classical solution to the Cauchy problem





L u = 0 in ST0,T ,

u(·, T0) = ϕ in R
N ;

(1.2.10)

5. the reproduction property holds. Indeed, for every x, ξ ∈ R
N and t, τ ∈ R with τ < s < t:

Γ(x, t; ξ, τ) =

∫

RN

Γ(x, t; y, s) Γ(y, s; ξ, τ) dy;

6. for every (x, t), (ξ, τ) ∈ R
N+1 with t ≤ τ we have that Γ(x, t; ξ, τ) = 0;

7. if c(x, t) = c is constant, then

∫

RN

Γ(x, t; ξ, τ) dξ = e−c(t−τ), ∀x ∈ R
N , τ < t;
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8. for every λ+ > λ and for every positive 0 < T0 < T1, there exists a constant C+ , only

dependent on λ, B and T such that

Γ(x, t; ξ, τ) ≤ C+ Γ+(x, t; ξ, τ) (1.2.11)

|∂xiΓ(x, t; ξ, τ)| ≤
C+

√
t− τ

Γ+(x, t; ξ, τ)

|∂2xixjΓ(x, t; ξ, τ)| ≤
C+

t− τ
Γ+(x, t; ξ, τ)

|Y Γ(x, t; ξ, τ)| ≤ C+

t− τ
Γ+(x, t; ξ, τ)

for any i, j = 1, . . . ,m and (x, t), (ξ, τ) ∈ R
N × (T0, T1), and where Γ+ denotes the

fundamental solution of L λ+, defined as follows

L
λ+u(x, t) :=

λ+

2

m0∑

i=1

∂2xiu(x, t) +
N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t).

Owing to (1.1.31), it is clear that the explicit expression of Γ+ is given by

Γ+((x, t); (ξ, τ)) = Γ+((ξ, τ)−1 ◦ (x, t); 0, 0),

for every (x, t), (ξ, τ) ∈ R
N+1, with (x, t) 6= (ξ, τ) and

Γ+(x, t; 0, 0) =





(2πλ+)−
N
2√

detC(t)
exp

(
− 1

2λ〈C−1(t)x, x〉 − t tr(B)
)
, if t > 0,

0, if t ≤ 0.
(1.2.12)

Moreover, there exists a fundamental solution Γ∗ to L ∗ (1.2.7) satisfying the dual proper-

ties of this statement and such that Γ∗(x, t; ξ, τ) = Γ(ξ, τ ; x, t) for every (x, t), (ξ, τ) ∈ R
N+1,

(x, t) 6= (ξ, τ).

1.3 Applications of Kolmogorov equations

We conclude this chapter discussing some applications of Kolmogorov-type equations. First

of all, as mentioned in the Introduction, the process (1.0.2) is the solution to the Langevin

equation 


dVt = dWt

dYt = Vt dt,

and therefore Kolmogorov equations are connected to every stochastic process satisfying

Langevin equation. In particular, several mathematical models involving linear and non

linear Kolmogorov-type equations have also appeared in finance [5], [15] and [38]. Indeed,

equations of the form (1.0.1) appear in various models for pricing of path-dependent financial

28



CHAPTER 1. KOLMOGOROV-TYPE OPERATORS: AN OVERVIEW AND SOME CLASSICAL RESULTS

instruments (cf., for instance, [16]). For example the equation

∂tP + 1
2σ

2S2∂2SP + (log S)∂AP + r(S∂SP − P ) = 0, S > 0, A, t ∈ R (1.3.1)

arises in the Black and Scholes option pricing problem




dSt = µStdt+ σStdWt

dAt = St dt,

where σ is the volatility of the stock price S, r is the interest rate of a riskless bond and

P = P (S,A, t) is the price of the Asian option depending on the price of the stock S, the

geometric average A of the past price and the time to maturity t. For the applications of op-

erators in the form L to finance and to the stochastic theory we refer to the monograph [97]

by Pascucci.

Moreover, as already mentioned in the introduction of this work, the Kolmogorov equation

is the prototype for a family of evolution equations arising in kinetic theory of gases of the

form

∂tu+ 〈p,Dyu〉 = J (u). (1.3.2)

Beside the collision operator (11) already considered in the introduction, J (u) can also occur

in divergence form

J (u) =
n∑

i,j=1

∂pi(aij ∂pju+ biu) +
n∑

i=1

ai∂piu+ au.

In particular, we mention the following nonlinear kinetic Fokker-Planck equation

∂tu+ 〈p,Dyu〉 = ρ[u]divp (Dpu+ p u) , (1.3.3)

with periodic condition with respect to the space variable and where ρ[u] :=
∫
Rm u(p, y, t)dp.

We refer the reader to [49, 56] for a recent treatment of the nonlinear operator in (1.3.3), in

particular in connection to the linear Fokker-Planck operator.

Equation (1.3.3) plays an important role in kinetic theory as it shares some similarities

with the equation introduced by Landau [74] in 1936 to describe plasmas made up of ions

and electrons which interact by Coulombian forces. In the case of the Landau equation, the

collision operator J (u) in (1.3.2) takes the following form

J (u) = divp(A[u]Dpu+B[u]u),
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where

A[u](v) = αm,γ

∫

Rm

(
Im − w

|w| ⊗
w

|w|

)
|w|γ+2u(v − w)dw,

B[u](v) = βm,γ

∫

Rm

|w|γwu(v − w)dw, γ ∈ [−m, 0] and αm,γ > 0,

(1.3.4)

as described in the article [49]. The collision operator in (1.3.3) clearly corresponds the case

where the coefficients in (1.3.4) take the simpler form A[u] = ρ[u]Im and B[u] = ρ[u] p. In

particular, the integral quantities involving the solution appearing in (1.3.4) are replaced by

their averages in the nonlinear model (1.3.3). It is worth mentioning that, even if it has a

simpler structure, the nonlinear model in (1.3.3) shares the same Gaussian steady state as the

Landau collision operator. For further applications of kinetic theory to the Landau equation,

we also refer the reader to [28], [89] and [110].

Finally, for the description of wide classes of stochastic processes and kinetic models

leading to equations of the previous type, we refer to the classical monographies [29], [30]

and [36] and to the recent survey article [58] by Imbert and Silvestre, and to its bibliography.
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Chapter 2

Schauder-type estimates for degenerate

Kolmogorov equations with Dini continuous

coefficients

2.1 Statement of the problem

In this chapter, we study the local regularity of solutions to the second order linear differential

equation

L u :=
m∑

i,j=1

aij(x, t)∂
2
xixju+

N∑

i,j=1

bijxj∂xiu− ∂tu = f, (2.1.1)

where (x, t) ∈ R
N+1, and 1 ≤ m ≤ N and f is Dini continuous. Our final aim is to

extend a fundamental result of the classical regularity theory, namely Schauder estimates. In

particular, we prove that, if operator L satisfies Hörmander’s hypoellipticity condition, and

f and aij ’s are Dini continuous functions, then the second order derivatives of the solution u

to the equation L u = f are Dini continuous functions as well. A key step in our proof is a

Taylor formula for classical solutions to L u = f that we establish under minimal regularity

assumptions on u. We finally remark that the results presented in this chapter are published

in [105] and are obtained in collaboration with Polidoro and Stroffolini.

2.1.1 Assumptions

Throughout this chapter, we require that the matrices A and B satisfy the structural assump-

tion [H.1] in (1.1.2), which implies that operator L is hypoelliptic, as discussed in Chapter 1.

We point out that we do not need the more restrictive assumption [H.2] to derive our main

theorems, i.e. all the results presented in this chapter hold true for non-dilation-invariant

Kolmogorov operators.

As the problem we address here is the regularity of solutions to (2.1.1), we require as few

conditions as possible for the definition of L u. In particular, in this chapter, we rely on the

following definition of classical solutions to equation (2.1.1).
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Definition 2.1.1. Let Ω be an open subset of RN+1. We say that a function u belongs to

C2
L
(Ω) if u, its derivatives ∂xiu, ∂xixju (i, j = 1, . . . ,m) and the Lie derivative Y u defined in

(1.1.5) are continuous functions in Ω. We also require, for i = 1, . . . ,m, that

lim
s→0

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t)

|s|1/2 = 0, (2.1.2)

uniformly for every (x, t) ∈ K, where K is a compact set K ⊂ Ω.

Let f be a continuous function defined in Ω. We say that a function u is a classical solution

to L u = f in Ω if u belongs to C2
L
(Ω), and the equation L u = f is satisfied at every point

of Ω.

As it is customary in the heat operator framework, we regard the time derivative, here

generalized by the Lie derivative Y (see (1.1.5)), as a second order operator (we refer to

Definition 1.1.9 for a formal justification of this fact). As a consequence, (2.1.2) can be

interpreted as a condition on the second order mixed derivative of the form Y 1/2∂xiu. Indeed,

if the derivative Y ∂xiu exists, then the fractional derivative Y ∂
1/2
xi u is equal to 0. Thus,

condition (2.1.2) is not demanding and it is the weakest assumption we need in order to

prove that u is approximated by its intrinsic Taylor polynomial of degree 2 (see Theorem

2.1.2 below). Indeed, in order to carry out the proof of Theorem 2.1.2, the regularity of

the derivatives ∂xiu, ∂xixju, for i, j = 1, . . . ,m, and of the Lie derivative Y u is not enough.

Additionally, we need to require that the first order derivatives ∂xiu, i, j = 1, . . . ,m, are

continuous along the integral curve of the drift Y . Without this additional requirement, it

is not possible to carry out the proof of Theorem 2.1.2 (see in particular equation (2.3.14)

below). On the other hand, condition (2.1.2) seems natural as it mirrors the one found in [93],

where the authors additionally require that the first order derivatives ∂xiu, i, j = 1, . . . ,m,

are Hölder continuous functions with respect to Y to ensure the existence of the second order

polynomial of u.

2.1.2 Main results

Our first main result, and a key step in proving the Schauder estimates presented in Theorem

2.1.4, concerns the intrinsic second order Taylor polynomial. We recall that the nth-order

intrinsic Taylor polynomial of a function u (differentiable up to order n) around the point z

is defined as the unique polynomial function P n
z u of order n such that

u(ζ)− P n
z u(ζ) = o(dK(ζ, z)

n) as ζ → z,

where dK denotes the quasi-distance defined in (1.1.21).

We are now in a position to state the following result.

Theorem 2.1.2. Let L be an operator of the form (2.1.1) satisfying hypothesis [H.1]. Let

Ω be an open subset of RN+1 and let u be a function in C2
L
(Ω). For every z := (x, t) ∈ Ω we
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define the second order Taylor polynomial of u around z as

T 2
z u(ζ) := u(z) +

m∑

i=1

∂xiu(z)(ξi − xi)

+
1

2

m∑

i,j=1

∂2xixju(z)(ξi − xi)(ξj − xj)− Y u(z)(τ − t),

(2.1.3)

for any ζ = (ξ, τ) ∈ Ω. Indeed, we have

u(ζ)− T 2
z u(ζ) = o(dK(ζ, z)

2) as ζ → z. (2.1.4)

In order to expose our next results, we first need to introduce some preliminary notation.

As a first step, we introduce the sets where our local results hold true. To this end, we take

advantage of the invariant structure of the principal part operator L0 in the study of the

regularity of L . This fact is quite natural as L0 is the blow-up limit of L , as explained in

Subsection 1.1.2. In particular, owing to the quasi-distance introduced in (1.1.21), we define

the boxes

Qr(x0, t0) := {(x, t) ∈ R
N+1 | dK((x, t), (x0, t0)) < r}. (2.1.5)

We now a provide a definition of modulus of continuity and Dini continuity which are

suitable for operator L . More precisely, we define the modulus of continuity of a function f

defined on any set H ⊂ R
N+1 as follows

ωf (r) := sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|f(x, t)− f(ξ, τ)|. (2.1.6)

Definition 2.1.3. A function f is said to be Dini-continuous in H if

∫ 1

0

ωf (r)

r
dr < +∞.

We are now in position to state our main result.

Theorem 2.1.4. Let L be an operator of the form (2.1.1) satisfying hypothesis [H.1]. Let

u ∈ C2
L
(Q1(0, 0)) be a classical solution to L u = f . Suppose that f is Dini continuous and

the coefficients aij are constant. Then there exists a positive constant c, only depending on

the operator L , such that:

i)

|∂2u(0, 0)| ≤ c

(
sup

Q1(0,0)

|u|+ |f(0, 0)|+
∫ 1

0

ωf (r)

r
dr

)
;
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ii) for any points (x, t) and (ξ, τ) ∈ Q 1
4
(0, 0) we have

|∂2u(x, t)− ∂2u(ξ, τ)| ≤ c

(
d sup
Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |+
∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr

)
.

where d := dK((x, t), (ξ, τ)) and ∂2 stands either for ∂2xixj , with i, j = 1, . . . ,m, or for

Y .

We emphasize that Theorem 2.1.4 fails even in the simplest Euclidean setting if we do not

assume any regularity condition on the function f . Consider for instance the function

u(x, y) = xy(log(x2 + y2))α, with 0 < α < 1.

A direct computation shows that

∆u(x, y) = 8α
xy

x2 + y2
(log(x2 + y2))α−1 + 4α(α− 1)

xy

x2 + y2
(log(x2 + y2))α−2,

so that f(x, y) := ∆u(x, y) extends to a continuous function on R
2, which is not Dini contin-

uous at the point (0, 0). On the other hand, the derivative ∂x∂yu(x, y) is unbounded near the

origin. We also point out that, when α = 1, the function u is a counterexample for the L∞

bounds of the second order derivatives of weak solutions to ∆u = f . 1

We finally consider the non-constant coefficients operator L̃ defined as follows

L̃ :=
m∑

i,j=1

aij(x, t)∂
2
xixj +

N∑

i,j=1

bijxj∂xi − ∂t. (2.1.7)

We assume that the coefficients aij are Dini continuous functions and, in order to simplify

the notation, we write

ωa(r) := max
i,j=1,...,m

sup
(x,t),(ξ,τ)∈H

dK((x,t),(ξ,τ))<r

|aij(x, t)− aij(ξ, τ)|. (2.1.8)

We assume that the following condition on the matrix A(x, t) := (aij(x, t))i,j=1,...,m is satisfied.

[H.2] For every (x, t) ∈ R
N+1, the matrix A(x, t) is symmetric and satisfies

λ|ξ|2 ≤ 〈A(x, t)ξ, ξ〉 ≤ Λ|ξ|2, for every ξ ∈ R
m, (2.1.9)

for some positive constants λ,Λ.

1We acknowledge that this counterexample was pointed out to one of the authors by Andreas Minne during
the Workshop “New trends in PDEs”, held in Catania on 29-30 May 2018.
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Theorem 2.1.5. Let L̃ be an operator in the form (2.1.7) satisfying hypotheses [H.1] and

[H.2]. Let u ∈ C2
L
(Q1(0, 0)) be a classical solution to L̃ u = f . Suppose that f and the

coefficients aij, i, j = 1, . . . ,m, are Dini continuous. Then for any points (x, t) and (ξ, τ) ∈
Q 1

2
(0, 0) the following holds:

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c
(
d sup
Q1(0,0)

|u|+ d sup
Q1(0,0)

|f |+
∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr
)

+c

( m∑

i,j=1

sup
Q1(0,0)

| ∂2xixju|
)(∫ d

0

ωa(r)

r
dr + d

∫ 1

d

ωa(r)

r2
dr
)
.

where d = dK((x, t), (ξ, τ)) and ∂
2 stands either for ∂2xixj ,i, j = 1, . . . ,m, or for Y .

2.1.3 Comparison with existing results

Taylor polynomial

We compare Theorem 2.1.2 with the existing literature. We specifically refer to the results

proved by Pagliarani, Pascucci and Pignotti in [93, 94, 101]. The authors of the above men-

tioned papers considered a suitable functional space Cn,α
B (Ω), with n nonnegative integer and

α ∈ (0, 1], and prove that

u(ζ)− T nz u(ζ) = O(dK(ζ, z)
n+α) as ζ → z. (2.1.10)

In order to compare this assertion with (2.1.4), we need to consider the case where n+α = 2.

We point out that the above articles do not cover the case n = 2 and α = 0, while they cover

n = 1 and α = 1. Thus, their main results apply to the space C1,1
B (Ω) of functions u that have

Lipschitz continuous first order derivatives ∂x1u, . . . , ∂xmu along the directions x1, . . . , xm and

satisfy

∂xiu(exp(sB)x, t− s)− ∂xiu(x, t) = O(|s|1/2), as s→ 0, (2.1.11)

for every (x, t) ∈ Ω and i = 1, . . . ,m. Moreover, the functions u ∈ C1,1
B (Ω) are required to

Lipschitz continuous along the direction of the vector field Y . In this setting, (2.1.10) reads

as follows

u(ζ)− T 1
z u(ζ) = O(dK(ζ, z)

2) as ζ → z.

We emphasize that, since the assumption u ∈ C1,1
B (Ω) does not imply the existence of the

second order derivatives of u, C1,1
B (Ω) differs substiantially from our space C2

L
(Ω). For this

reason, the proof of Theorem 2.1.2 requires slightly different arguments and the additional

condition (2.1.2), which is slightly stronger than (2.1.11).
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Schauder estimates

As we rely on less regular coefficients, we now compare our regularity results with the current

literature on this subject, which was revised in Chapter 1, Section 1.2. In particular, as a

direct consequence of Theorem 2.1.5 we have the following corollary.

Corollary 2.1.6. Let u ∈ C2
L
(Q1(0, 0)) be a classical solution to L̃ u = f . Suppose that f

and the coefficients aij, i, j = 1, . . . ,m, belong to C0,α
L (Q1(0, 0)). Then for any points (x, t)

and (ξ, τ) ∈ Q 1
2
(0, 0) the following holds:

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c dα
(

sup
Q1(0,0)

|u|+
‖f‖Cα

L(Q1(0,0))

α(1− α)

+
m∑

i,j=1

sup
Q1(0,0)

| ∂2xixju|
‖a‖Cα

L(Q1(0,0))

α(1− α)

)
, if α < 1,

|∂2u(x, t)− ∂2u(ξ, τ)| ≤c d
(

sup
Q1(0,0)

|u|+ ‖f‖C0,1
L (Q1(0,0))

| log d|

+

( m∑

i,j=1

sup
Q1(0,0)

| ∂2xixju|
)
‖a‖C0,1

L (Q1(0,0))
| log d|

)
, if α = 1.

We observe that, for α < 1, Corollary 2.1.6 recovers the Schauder estimates contained

in Theorem 1.2.3. Note that, in this case, an interpolation inequality allows us to state a

bound for the Cα
L norm of the derivatives ∂2u in terms of ‖a‖Cα

L(Q1(0,0)), ‖f‖Cα
L(Q1(0,0)), and

supQ1(0,0) |u| only.
Theorems 2.1.4 and 2.1.5 improve Theorem 1.2.3 and the results presented in Section 1.2 in

two directions. First of all, we weaken the regularity assumption on f and on the coefficients

aij ’s. Second, we are able to establish Schauder estimates for α = 1, extending the results of

the aforementioned articles, where α < 1.

Moreover, in the case of one commutator and Hölder continuous coefficients and right-

hand side, Imbert and Mouhot prove in [56] Schauder estimates for linear kinetic Fokker–

Planck equations, as well as well for a toy nonlinear kinetic model. Schauder estimates for

kinetic equations (and in particular for linear kinetic Fokker-Planck equations in trace-form)

are also obtained by Henderson and Snelson in [53], where they are crucial in proving that

weak solutions of the inhomogeneous Landau equation immediately become smooth.

Finally, we recall the following results. Wei, Jiang, and Wu adapt in [121] the method

introduced by Wang [119] and prove Schauder estimates for hypoelliptic degenerate operators

on the Heisenberg group. The Taylor formula used in [121] is proved by Arena, Caruso

and Causa in [13]. In a different framework, Wang’s method has been used by Bucur and

Karakhanyan [26] in the study of fractional operators.
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2.1.4 Idea of the proof

The proof of our main results is based on the method introduced by Safonov in [108] for the

parabolic case, explained in Krylov’s book [69]. The core idea of Safonov’s argument was

adopted by Wang [119] for the study of the Poisson equation with Dini continuous right-hand

side and by Imbert and Mouhot for the study of kinetic Fokker–Planck equations with Höder

continuous coefficients. As we also work under the assumption of Dini continuity, we briefly

sketch the proof contained in [119].

Spefically, Wang considers in [119] a solution u to the equation ∆u = f in some open set Ω.

Without loss of generality, he assumes that the unit ball B1(0) is contained in Ω and considers

a sequence of Dirichlet problems as follows. Let Brk(0) be the Euclidean ball centered at the

origin and of radius rk =
1
2k
, and let uk be the solution to the Dirichlet problem

∆uk = f(0), in Brk(0), uk = u in ∂Brk(0).

Quantitative information on the derivatives of every solution uk is obtained by using only

the elementary properties of the Laplace equation, namely the weak maximum principle, and

the standard a priori estimates of the derivatives, that are obtained in [119] via mean value

formulas. The bounds for the derivatives of u are obtained as the limit of the analogous

bounds for uk. The Taylor expansion in this step is fundamental to conclude the proof.

More precisely, following Safonov’s argument, it is crucial to show that the oscillation of the

remainder of the second-order Taylor polynomial of the solution decays at rate r2k in a ball of

radius rk.

In this chapter, we apply the method described above to degenerate Kolmogorov opera-

tors L , by adapting Wang’s approach to the non-Euclidean structure defined in (1.1.6). In

particular, the ball Brk(0) is replaced by the box Qrk(0, 0) defined through the dilation δrk
introduced in (1.1.13). Concerning the Taylor expansion, we recall the results due to Bon-

figlioli [18] and the ones proved by Pagliarani, Pascucci and Pignotti [93]. We emphasize that

the authors of the above articles assume that the second order derivatives of the function u

are Hölder continuous, while we only require that u belongs to the space C2
L
(Ω) introduced

in Definition 2.1.1. As the regularity of the second order derivatives of u is the very subject

of this chapter, we do not assume extra conditions on them and we prove in Theorem 2.1.2

the Taylor approximation under the minimal requirement that u ∈ C2
L
(Ω).

2.1.5 Outline of the chapter

This chapter is structured as follows. In Section 2.2 we prove some preliminary results. In

particular, we obtain some a priori estimates of the derivatives of the solutions u to L u = 0

in terms of the L∞ norm of u. We subsequently prove a mean-value formula for u. In Section

2.3 we prove our main result on the Taylor approximation of any function u ∈ C2
L
(Ω). Section

2.4 contains the proof of Theorem 2.1.4, while Section 2.5 contains the proof of Theorem 2.1.5.
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2.2 Preliminary results

In this section we list some preliminary facts, which are useful in proving our main results.

As a first step, we prove a corollary of estimates (1.1.35), (1.1.36) and (1.1.37), which will be

useful in the sequel. Secondly, we prove a priori estimates for the derivatives of u solution

to the Kolmogorov equation with right-hand side equal to 0. To this end, we represent

solutions to L u = 0 as convolutions with the fundamental solution Γ of L and its derivatives

∂x1Γ, ..., ∂xNΓ. We then prove a mean-value formula for u, which is based on the Euclidean

mean-value theorem and on the homogeneity of the fundamental solution.

As the estimates in (1.1.35), (1.1.36) and (1.1.37) play a crucial role in the proof of the

forthcoming Lemma 2.2.2, we briefly explain how to obtain them and we refer the reader

to [41, Proposition 2.7] and [40, Theorems 1.4-1.5] for further details. We firstly observe that

the estimate in (1.1.35) holds true in virtue of the homogeneity of the fundamental solution

Γ0, see (1.1.34). Indeed, as already explained in Subsection 1.1.2, homogeneous operators

provide a good approximation of the non-homogeneous ones. In particular, the following

result holds true.

Theorem 2.2.1. Let L be an operator of the form (1.1.1) and let L0 be its principal part

(see Subsection 1.1.2). As above, we denote by Γ (resp. Γ0) the fundamental solution with

pole at the origin of L (resp. L0). Then for every b > 0, there exists a positive constant a

such that
1

a
Γ0(z) ≤ Γ(z) ≤ aΓ0(z) (2.2.1)

for every z ∈ R
N+1 such that Γ0(z) ≥ b. Moreover, a = a(b) → 1 as b→ +∞.

Proof. Let C(t) and C0(t) be the matrix defined in (1.1.32) corresponding to L and L0,

respectively. Then, by [73, Equation (3.14)], we have

detC(t) = detC0(t)(1 + tO(1)), as t→ 0+, (2.2.2)

where O(1) denotes a bounded function on R
N × (0, 1]. On the other hand, (see [73, Lemma

3.3]), there holds

exp

(
−1

4
〈C−1(t)x, x〉

)
= exp

(
−1

4
〈C−1

0 (t)x, x〉
)
exp

(
t〈C−1(t)x, x〉O(1)

)
. (2.2.3)

Thus, if Γ0(z) ≥ b, we get

〈C−1
0 (t)x, x〉 ≤ 2Q log

((cN
b

)2/Q 1

t

)
, (2.2.4)

where cN = (4π)−N/2(detC(1))−1/2. The thesis follows at once from (1.1.31), (2.2.2), (2.2.3)

and (2.2.4).
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We now focus on the first estimate in (1.1.36) that involves the first derivatives of Γ. The

other estimates in (1.1.36) can be obtained in a similar way and the detailed computations

can be found in [41, Proposition 2.7]. As a first step, we set ζ = (ξ, τ) = w−1 ◦ z so that

Γ(z, w) = Γ(ξ, τ) and we compute

∂xjΓ(ξ, τ) = −1

2

(
C−1(τ)ξ

)
j
Γ(ξ, τ), j = 1, . . . N. (2.2.5)

We now claim that ∣∣∣
(
C−1(τ)ξ

)
j

∣∣∣ ≤ c

ταj/2

∣∣∣δ01/τ (ξ)
∣∣∣ j = 1, . . . N, (2.2.6)

where the numbers αj were defined in (1.1.18) and the constant c only depends on T and on

the matrix B. Indeed, we have

∣∣∣
(
C−1(τ)ξ

)
j

∣∣∣ ≤
∣∣∣
(
(C−1(τ)− C−1

0 (τ))ξ
)
j

∣∣∣+
∣∣∣
(
C−1

0 (τ)ξ
)
j

∣∣∣

=
1

ταj/2

∣∣∣∣∣

(
δ0√τ

(
C−1(τ)− C−1

0 (τ)
)
δ0√τ

(
δ0√

1/τ
(ξ)

))

j

∣∣∣∣∣

+
1

ταj/2

∣∣∣∣∣

(
δ0√τ

(
C−1

0 (τ)
)
δ0√τ

(
δ0√

1/τ
(ξ)

))

j

∣∣∣∣∣

≤ 1

ταj/2

∥∥∥δ0√τ
(
C−1(τ)− C−1

0 (τ)
)
δ0√τ

∥∥∥
∣∣∣∣δ

0√
1/τ

(ξ)

∣∣∣∣+
1

ταj/2

∣∣∣∣C
−1
0 (1)δ0√

1/τ
(ξ)

∣∣∣∣ .

(2.2.7)

Moreover, we recall that, by [73, Remark 2.1], for any given T > 0, there exists a positive

constant cT such that

∥∥∥∥δ
0√

1/τ

(
C−1(τ)− C−1

0 (τ)
)
δ0√

1/τ

∥∥∥∥ ≤ cT τ‖C0(1)‖. (2.2.8)

Hence, combining (2.2.7) and (2.2.8), we infer

∣∣∣
(
C−1(τ)ξ

)
j

∣∣∣ ≤ 1 + cT τ

ταj/2

∥∥C−1
0 (1)

∥∥
∣∣∣∣δ

0√
1/τ

(ξ)

∣∣∣∣ ,

which yields (2.2.6). On the other hand, in virue of the homogeneity of the norm ‖ · ‖K, we
have

‖(ξ, τ)‖K =
√
τ‖(δ0√

1/τ
(ξ), 1)‖K ≤ c

√
τ

(
|δ0√

1/τ
(ξ)|K + 1

)
,

where c is a constant that only depends on B. Combining the previous inequality with (2.2.6),

we obtain

‖(ξ, τ)‖αj

K

∣∣∣
(
C−1(τ)ξ

)
j

∣∣∣ ≤ c

(
|δ0√

1/τ
(ξ)|K + 1

)αj+1

, (2.2.9)
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where c is a constant that only depends on B. Then, taking advantage of (1.2.11), we get

‖(ξ, τ)‖αj

K

∣∣∂xjΓ(ξ, τ)
∣∣ ≤ cΓ+(ξ, τ), j = 1, . . . , N,

where Γ+ was defined in (1.2.12). In particular, for j = 1, . . . ,m, we can rewrite the previous

estimate as follows

‖(ξ, τ)‖K
∣∣∂xjΓ(ξ, τ)

∣∣ ≤ cΓ+(ξ, τ), j = 1, . . . ,m.

The desired estimate in (1.1.36) finally follows from (1.1.35).

We are now in a position to state and prove the following result.

Lemma 2.2.2. Assume that all the eigenvalues of the matrix A belong to some interval

[λ,Λ] ⊂ R
+. Then there exist two positive constants C, only depending on λ,Λ and on the

matrix B, such that the following holds true. For every R ∈ (0, 1] we have that

sup
{
Γ(z, ζ) : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ
. (2.2.10)

Moreover

sup
{∣∣∂xj∂ξkΓ(z, ζ)

∣∣ : z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ+αj+αk
. (2.2.11)

and

sup
{
|Y ∂ξkΓ(z, ζ)| : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ C

RQ+2+αk
. (2.2.12)

for every j, k = 1, . . . , N .

Proof. We want to apply (1.1.35), (1.1.36) for two points z, ζ ∈ QR0(0), where R0 > 0 is a

constant such that ‖ζ−1 ◦ z‖K ≤ R0 whenever z ∈ Q 1
2
(0), and ζ ∈ Q1(0). The existence of

such a positive number R0 follows from the pseudo-triangular inequality (1.1.20). With this

choice of R0, we apply (1.1.35), and we find

sup
{
Γ(z, ζ) : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤

c
(
inf
{
‖ζ−1 ◦ z‖K : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
})−Q

.
(2.2.13)

We therefore need to estimate the infimum of ‖ζ−1 ◦ z‖K for z ∈ QR
2
(0) and ζ ∈ QR(0) \

Q 3R
4
(0). We first consider the points z̄ := δ 1

R
(z) and ζ̄ := δ 1

R
(ζ) which belong to Q 1

2
(0) and

Q1(0) \ Q 3
4
(0), respectively. We now define the function g(z̄, ζ̄) := ‖ζ̄−1 ◦R z̄‖K, which is

continuous on the compact set E := Q 1
2
(0) × Q1(0) \ Q 3

4
(0) × [0, 1], as observed in Remark

1.1.8. Thus, by Weierstrass’s Theorem, g attains a minimum m on E, i.e.,

‖ζ̄−1 ◦R z̄‖K ≥ m, ∀z̄ ∈ Q 1
2
(0), ∀ζ̄ ∈ Q1(0) \ Q 3

4
(0), ∀R ∈ [0, 1].
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Going back to the box of radius R, i.e. applying dilation δR to the points z̄ and ζ̄ yields

‖ζ−1 ◦ z‖K ≥ mR, z ∈ QR
2
(0), ζ ∈ QR(0) \ Q 3R

4
(0), (2.2.14)

and therefore (2.2.13) becomes

sup
{
Γ(z, ζ) : z ∈ QR

2
(0), ζ ∈ QR(0) \ Q 3R

4
(0)
}
≤ c

mQRQ
=:

C

RQ
(2.2.15)

where the constant C does not depend on R.

To obtain (2.2.11) and (2.2.12), we use the bounds for the derivatives of Γ in (1.1.36) and

apply the same arguments as above.

In order to state our next result, we recall the notation introduced in (1.1.18), that is

δr = diag(rα1 , . . . , rαN , r2). In the sequel we assume that all the eigenvalues of the constant

matrix A belong to some interval [λ,Λ] ⊂ R
+. We are now in position to state our result.

Proposition 2.2.3. Let u be a solution to L u = 0 in QR(z0), with R ∈]0, 1]. Then

|∂xju|(z) ≤
C

Rαj
‖u‖L∞(QR(z0)), for every z ∈ QR

2
(z0), j = 1, . . . , N,

for some positive constant C only depending on λ,Λ and on the matrix B.

Proof. Without loss of generality, we can assume z0 = 0. Let ηR ∈ C∞
0 (RN+1) be a cut-off

function such that

ηR(x, t) = χ(‖(x, t)‖K), (2.2.16)

where χ ∈ C∞([0,+∞), [0, 1]) is such that χ(s) = 1 if s ≤ 3R
4 , χ(s) = 0 if s ≥ R and |χ′| ≤ c

R ,

|χ′′| ≤ c
R2 . Then, for every z ∈ QR(0) and for i = 1, . . . , N , there exists a constant c, only

depending on B, such that

|∂xiηR(z)| ≤
c

Rαi
, |∂t ηR(z)| ≤

c

R2
. (2.2.17)

Consequently, for every z ∈ QR(0) and i, j = 1, . . . ,m, we have |∂2xixjηR(z)| ≤ c
R2 and

therefore we obtain a bound for the second order part of |L ηR(z)|.
Since ηR ≡ 1 in ∈ Q 3R

4
(0), for every z ∈ QR

2
(0) we represent a solution u to L u = 0 as

follows

u(z) = (ηRu)(z) = −
∫

QR(0)

[Γ(z, ·)L (ηRu)](ζ)dζ. (2.2.18)
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Since L = div(ADm) + Y and L u = 0 by assumption, (2.2.18) can be rewritten as

u(z) = (ηRu)(z) = −
∫

QR(0)

[Γ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫

QR(0)

[Γ(z, ·)Y (ηR)u](ζ)dζ

− 2

∫

QR(0)

[Γ(z, ·)〈Dmu,ADmηR〉](ζ)dζ.

(2.2.19)

Integrating by parts the last integral in (2.2.19), we obtain, for every z ∈ QR
2
(0)

u(z) = (ηRu)(z) =

∫

QR(0)

[Γ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫

QR(0)

[Γ(z, ·)Y (ηR)u](ζ)dζ

+ 2

∫

QR(0)

[〈Dζ
mΓ(z, ·), ADmηR〉u](ζ)dζ,

(2.2.20)

where Dm is the gradient with respect to x1, . . . , xm and the superscript in Dζ
m indicates that

we are differentiating w.r.t the variable ζ.

Since z ∈ QR
2
(0) and ∂xiηR, Y (ηR) = 0 (i = 1, . . . ,m) in Q 3R

4
(0), after differentiating

under the integral sign (2.2.20), we find

∂xju(z) = ∂xj (ηRu)(z) =

∫

QR(0)\Q 3R
4
(0)

[∂xjΓ(z, ·)div(ADm(ηR))u](ζ)dζ

−
∫

QR(0)\Q 3R
4
(0)

[∂xjΓ(z, ·)Y (ηR)u](ζ)dζ

+ 2

∫

QR(0)\Q 3R
4
(0)

[〈∂xjDζ
mΓ(z, ·), ADmηR〉u](ζ)dζ,

for every j = 1, ..., N . Thus, we obtain

|∂xju(z)| = |∂xj (ηRu)(z)| ≤
∫

QR(0)\Q 3R
4
(0)

∣∣[∂xjΓ(z, ·)div(ADm(ηR))u](ζ)
∣∣dζ

+

∫

QR(0)\Q 3R
4
(0)

∣∣[∂xjΓ(z, ·)Y (ηR)u](ζ)
∣∣dζ

+ 2

∫

QR(0)\Q 3R
4
(0)

∣∣[〈∂xjDζ
mΓ(z, ·), ADmηR〉u](ζ)

∣∣dζ

=: Ĩ1(z) + Ĩ2(z) + Ĩ3(z),
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We estimate Ĩ1(z) and Ĩ2(z), for z ∈ QR
2
(0). We have

Ĩ1(z) ≤ ‖u‖L∞(QR(0)) sup
QR(0)\Q 3R

4
(0)

|div(ADm(ηR))|meas(QR(0)) sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4
(0)

∣∣∂xjΓ(z, ζ)
∣∣,

Ĩ2(z) ≤ ‖u‖L∞(QR(0)) sup
QR(0)\Q 3R

4
(0)

|Y (ηR)|meas(QR(0)) sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4
(0)

∣∣∂xjΓ(z, ζ)
∣∣.

We now apply Lemma 2.2.2 and obtain

sup
z∈QR

2
(0),

ζ∈QR(0)\Q 3R
4
(0)

∣∣∂xjΓ(z, ζ)
∣∣ ≤ C̃

RQ+αj
. (2.2.21)

Moreover, by our choice of the cut-off function ηR, we have

|div(ADm(ηR))| ≤
Λ c

R2
in QR(0), (2.2.22)

where Λ is the largest eigenvalue of A. Finally, combining inequalities (2.2.21) and (2.2.22)

with meas(QR(0)) = RQ+2meas(Q1(0)), we obtain

Ĩ1(z) ≤
C

Rαj
‖u‖L∞(QR(0)), z ∈ QR

2
(0), (2.2.23)

We now estimate |Y (ηR)| ≤ |〈Bx,DηR〉| + |∂tηR| in QR(0) \ Q 3R
4
(0). The bound for the

derivative with respect to time of ηR is obtained using (2.2.17). Moreover

|〈Bx,DηR(ζ)〉| ≤
N∑

i,k=1

|bik||xk||∂xiηR(ζ)| ≤ c

N∑

i,k=1

|bik|Rαk−αi , (2.2.24)

where ζ ∈ QR(0)\Q 3R
4
(0). Notice that in sum (2.2.24) the exponent αk−αi is always greater

or equal to −2, because of the form of the matrix B. Since by assumption R ≤ 1, we estimate

(2.2.24) as follows

|〈Bx,DηR〉| ≤
C ′

R2
, in QR(0) \ Q 3R

4
(0), (2.2.25)

where C ′ is a constant that only depends on the matrix B and on the constant c in (2.2.17).

Finally, using again meas(QR(0)) = RQ+2meas(Q1(0)), together with (2.2.21) and (2.2.25),

we obtain

Ĩ2(z) ≤
C

Rαj
‖u‖L∞(QR(0)), z ∈ QR

2
(0), (2.2.26)

where C depends only on the constants c and C̃ in (2.2.17) and (2.2.21) and on the matrix
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B.

By the same argument we prove that, for a point z ∈ QR
2
(0), we have

Ĩ3(z) ≤ ‖u‖L∞(QR(0))
c

R
meas(QR(0)) sup

z∈QR
2
(0),

ζ∈QR(0)\Q 3R
4
(0)

∣∣∂xjDζ
mΓ(z, ζ)

∣∣ ≤ C

Rαj
‖u‖L∞(QR(0)).

where C denotes once again a constant depending only on c, C̃ and B. Combining the

inequality above with (2.2.23) and (2.2.26), we finally obtain

‖∂xju‖L∞(QR
2
(0)) ≤

C

Rαj
‖u‖L∞(QR(0)), j = 1, ..., N.

We state a result analogous to Proposition 2.2.3, written in terms of the vector fields

X1, . . . , Xm, Y introduced in (1.1.4).

Proposition 2.2.4. Let u be a solution to L u = 0 in QR(0), for R ∈]0, 1[, then for any

Xi, Xj ∈ {X1, ..., Xm}, there exists a constant C, only depending on λ,Λ and on the matrix

B, such that

|Xiu|(z) ≤
C

R
‖u‖L∞(QR(0)), z ∈ QR

2
(0),

|XiXju|(z) ≤
C

R2
‖u‖L∞(QR(0)), z ∈ QR

2
(0).

Similarly, we have that

|Y u|(z) ≤ C

R2
‖u‖L∞(QR(0)), z ∈ QR

2
(0).

Proof. The estimate of X1, . . . , Xm has been proved in Proposition 2.2.3. The proof of the

remaining estimates is obtained by reasoning as in Proposition 2.2.3, and using estimates

(2.2.11) and (2.2.12), respectively. We omit the details here.

In the sequel, we will need to estimate the second order derivatives of a solution to L u = g,

where g is a polynomial of degree at most two. To this end, we let

g1(z) = 〈v, x〉, g2(z) = 〈Mx, x〉, (2.2.27)

be two polynomial functions, where v and M denote a constant vector of RN and a N × N

constant matrix, respectively.

Lemma 2.2.5. Let ηR be the cut-off function introduced in (2.2.16) and let g1 and g2 be the

functions defined in (2.2.27). Then there exists a positive constant C, only depending on λ,Λ
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and on the matrix B, such that

∣∣∣∣∂
2
xixj

∫

QR(0)

Γ(z, ζ)ηR(ζ)dζ

∣∣∣∣ ≤ C, (2.2.28)

∣∣∣∣∂
2
xixj

∫

QR(0)

Γ(z, ζ)ηR(ζ)g1(ζ)dζ

∣∣∣∣ ≤ CR, (2.2.29)

∣∣∣∣∂
2
xixj

∫

QR(0)

Γ(z, ζ)ηR(ζ)g2(ζ)dζ

∣∣∣∣ ≤ CR2, (2.2.30)

for every z ∈ QR
2
(0), R ∈]0, 1] and for any i, j = 1, . . . ,m.

Proof. Reasoning as in the proof of Proposition 2.11 in [41], we write the right-hand side of

(2.2.28) as

∂2xixj

∫

QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)dζ = lim
ε→0

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z)ηR(ζ)dζ

+ ηR(z)

∫

‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

=: lim
ε→0

I01 (ε, z) + I02 (z).

(2.2.31)

We rewrite I01 (ε, z) as

I01 (ε, z) =

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

+ ηR(z)

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z)dζ.
(2.2.32)

By the definition of ηR, we have

0 ≤ ηR ≤ 1, ηR(ζ)− ηR(z) = 0, for any ζ ∈ Q 3R
4
(0), z ∈ QR

2
(0). (2.2.33)

Thus, taking advantage of Lemma 2.2.2, we infer

∣∣∣∣
∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

∣∣∣∣

=

∣∣∣∣
∫

QR(0)\Q 3R
4 (0)

∂2xixjΓ(ζ
−1 ◦ z) (ηR(ζ)− ηR(z)) dζ

∣∣∣∣ ≤
C

RQ+2
RQ+2 = C

(2.2.34)

Thus we find

I02 (z) + lim
ε→0

ηR(z)

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z)dζ = C. (2.2.35)

Combining estimates (2.2.34) and (2.2.35) we conclude the proof of (2.2.28).
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We now prove (2.2.29). Reasoning as in (2.2.31) and exploiting the definition of g1, we

can rewrite the right-hand side of (2.2.29) as

∂2xixj

∫

QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)〈v, ξ〉dζ = lim
ε→0

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z)ηR(ζ)〈v, ξ〉dζ

+ 〈v, x〉ηR(z)
∫

‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

=: lim
ε→0

I11 (ε, z) + I12 (z).

(2.2.36)

We prove that the first integral in (2.2.36) uniformly converges as ε → 0+. To this end, we

first rewrite I11 (ε, z) as follows

I11 (ε, z) =

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z) (ηR(ζ)− ηR(z)) 〈v, ξ〉dζ

+

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z) (ηR(z)) 〈v, ξ − x〉dζ

+ 〈v, x〉ηR(z)
∫

QR(0)∩{‖ζ−1◦z‖K≥ε}
∂2xixjΓ(ζ

−1 ◦ z)dζ

=: I ′1(ε, z) + I ′2(ε, z) + I ′3(ε, z).

(2.2.37)

To estimate I ′1(ε, z) we use the same argument as in (2.2.34), with the only difference that now

in the integral we have the additional term 〈v, ξ〉. We find a bound for this term observing

that

|〈v, ξ〉| ≤ |v| · ‖ζ‖K ≤ |v| ·R, (2.2.38)

where |v| denotes the norm of v in R
N . Therefore, we obtain

|I ′1(ε, z)| ≤ C

∫

QR(0)∩{‖ζ−1◦z‖K≥ε}

dζ

‖ζ−1 ◦ z‖Q+1
K

≤ cR, (2.2.39)

where C is a constant that depends only on λ,Λ, B and v.

We now show that the same bound holds for I ′2(ε, z). We first observe that

|〈v, x− ξ〉| ≤ |v| · ‖ζ−1 ◦ z‖K, (2.2.40)

As a consequence, using again (2.2.33) and (1.1.36), we infer

|I ′2(ε, z)| ≤
∫

QR(0)∩{‖ζ−1◦z‖K≥ε}

dζ

‖ζ−1 ◦ z‖Q+1
K

≤ c(R− ε) ≤ cR. (2.2.41)

46



CHAPTER 2. SCHAUDER-TYPE ESTIMATES

Using (2.2.39) and (2.2.41) we obtain

lim
ε→0+

I ′1(ε, z) = O(R), lim
ε→0+

I ′2(ε, z) = O(R), as R → 0. (2.2.42)

Finally, as for I ′3(ε, z), we compute

lim
ε→0

∫

QR(0)∩{ε≤‖ζ−1◦z‖K≤cR}
∂2xixjΓ(ζ

−1 ◦ z)dζ

= lim
ε→0

∫

QR(0)∩{ε≤‖ζ−1◦z‖K≤cR}
∂2wiwj

Γ(w)e−τ trBdw

= − lim
ε→0

∫

‖w‖K=ε
∂wiΓ(w)e

−τ trBνjdσj(w) + lim
ε→0

∫

‖w‖K=cR

∂wiΓ(w)e
−τ trBνjdσj(w)

= −
∫

‖w‖K=1

∂wiΓ0(w)νjdσj(w) +

∫

‖w‖K=cR

∂wiΓ(w)e
−τ trBνjdσj(w).

We then obtain,

I12 (z) + lim
ε→0

I ′3(ε, z) = 〈v, x〉ηR(z)
∫

‖ζ‖K=1

∂xiΓ0(ζ)νjdσ(ζ)

− 〈v, x〉ηR(z)
∫

‖w‖K=1

∂wiΓ0(w)νjdσj(w)

+ 〈v, x〉ηR(z)
∫

‖w‖K=cR

∂wiΓ(w)e
−τ trBνjdσj(w)

= 〈v, x〉ηR(z)
∫

‖w‖K=cR

∂wiΓ(w)e
−τ trBνjdσj(w).

Keeping in mind that

lim
R→0

∫

‖w‖K=cR

∂wiΓ(w)e
−τ trBνjdσj(w) =

∫

‖w‖K=1

∂wiΓ0(w)νjdσj(w) = c′,

we finally find

I12 (z) + lim
ε→0

I ′3(ε, z) = O(R), as R → 0. (2.2.43)

Identity (2.2.29) follows from (2.2.39), (2.2.41) and (2.2.43).

By the same argument, we obtain

∂2xixj

∫

QR(0)

Γ(ζ−1 ◦ z)ηR(ζ)〈Mξ, ξ〉dζ = O(R2). (2.2.44)

We omit the details here as the procedure is analogous.

From Proposition 2.2.3 and Lemma 2.2.5, we derive the following result.

Lemma 2.2.6. Let w be a solution to Lw = 〈v, ξ〉+ 〈Mξ, ξ〉 in QR(0), where v and M are
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as in (2.2.27). Then

|∂2xixjw(z)| ≤
C

R2
‖w‖L∞(QR(0)) + CR, (2.2.45)

for every i, j = 1, . . . ,m, 0 < R ≤ 1 and for any z ∈ QR
2
(0).

Proof. Reasoning as in Proposition 2.2.3, we obtain

|∂2xixjw(z)| ≤
∫

QR(0)\Q 3R
4
(0)

∣∣[∂2xixjΓ(z, ·)div(ADm(ηR))w](ζ)
∣∣dζ

+

∫

QR(0)\Q(3/4)%k (0)

∣∣[∂2xixjΓ(z, ·)Y (ηR)w](ζ)
∣∣dζ

+ 2

∫

QR(0)\Q 3R
4
(0)

∣∣[∂2xixjΓ(z, ·)〈Dmw,ADmηR〉](ζ)
∣∣dζ

+

∣∣∣∣
[
∂2xixj

∫

QR(0)

[Γ(z, ·)ηR](ζ)〈v, ξ〉dζ
]∣∣∣∣

+

∣∣∣∣
[
∂2xixj

∫

QR(0)

[Γ(z, ·)ηR](ζ)〈Mξ, ξ〉dζ
]∣∣∣∣

=: I1(z) + I2(z) + I3(z) + I4(z) + I5(z).

(2.2.46)

The terms I1(z), I2(z), I3(z) were already estimated in Proposition 2.2.3 as

I1(z), I2(z), I3(z) ≤
C

R2
‖w‖L∞(QR(0)), z ∈ QR

2
(0).

Additionally, I4(z) and I5(z) are O(R) in virtue of Lemma 2.2.5 and thus (2.2.45) is proved.

We now prove a mean value theorem for solutions u to L u = 0 in cylinders QR(ζ).

Proposition 2.2.7 (Scale invariant Lipschitz estimate). Let ζ be any point of RN+1, and let

u be a solution to L u = 0 in QR(ζ), with R ∈ (0, 1]. Then the following estimate holds

|u(z)− u(ζ)| ≤ C

R
dK(z, ζ)‖u‖L∞(QR(ζ)), (2.2.47)

for every z ∈ QR
2
(ζ). Here C is a constant that only depends on λ,Λ and on the matrix B.

Proof. Thanks to the left-invariance of operator L , it is not restrictive to assume ζ = 0, then

we need to prove

|u(z)− u(0)| ≤ C

R
‖z‖K‖u‖L∞(QR(0)).
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Consider z = (x, t) ∈ QR
2
(0), and apply the standard mean-value theorem

|u(z)− u(0)| = |u(x1, . . . , xN , t)− u(0, . . . , 0, 0)|

≤
N∑

i=1

|xi| |∂xiu(ϑ1x1, . . . , ϑNxN , t)|+ |t| |Y u(0, . . . , 0, ϑt),
(2.2.48)

where ϑ1, . . . , ϑN , ϑ ∈ (0, 1[. For every i = 1, . . . , N , we have |xi| ≤ ‖z‖αi

K
≤ Rαi , and

(ϑ1x1, . . . , ϑNxN , t) ∈ QR
2
(0). Then, by Proposition 2.2.3, we find

|∂xiu(ϑ1x1, . . . , ϑNxN , t)| ≤
c

Rαi
‖u‖L∞(QR(0)).

so that

|xi| |∂xiu(ϑ1x1, . . . , ϑNxN , t)| ≤
c

R
‖z‖K‖u‖L∞(QR(0)).

Analogously, we have that |ϑt| ≤ |t| ≤ ‖z‖2
K
≤ R2, and from Proposition 2.2.4 it follows that

|Y u(0, . . . , 0, ϑt)| ≤ c

R2
‖u‖L∞(QR(0)),

thus

|t| |Y u(0, . . . , 0, ϑt)| ≤ c

R
‖z‖K‖u‖L∞(QR(0)).

The proof of the proposition can be obtained by combining the above estimates.

2.3 Taylor formula

In this section, we prove Theorem 2.1.2. The proof is based on the method introduced by

Pagliarani, Pascucci and Pignotti in [93] for the dilation-invariant operator L0 and then

generalized by Pagliarani and Pignotti in [94] and by Pignotti in [101] to the not dilation-

invariant one.

We want to emphasize the main differences with respect to the previous approaches in the

literature. The first result about a Taylor inequality in homogeneous groups goes back to the

seminal book of Folland and Stein, [47]. In the proof, they used a quantitative version of the

Carathéodory-Chow-Rashevsky connectivity result and a Mean Value Theorem. A slightly

improved version of this result has been proved by Bonfiglioli [18] who was able to derive also

a Taylor formula with integral remainder. Both approaches were assuming, for a polynomial

of degree n, the differentiability up to order n in the Euclidean sense. A more intrinsic point of

view has been introduced in the paper [93], where the authors considered functions regular in

the intrinsic sense, i.e. with respect to the Lie Group structure introduced in Subsection 1.1.1.

In order to prove Theorem 2.1.2, we follow the same procedure introduced in [93] and
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[94,101] and we point out the modifications needed to deal with our slightly different situation.

We next introduce some further notation. We define the spaces V0, . . . , Vκ as the vector

subspaces of RN which are invariant with respect to dilation (δr)r>0 introduced in (1.1.13).

Specifically, for n = 0, . . . , κ, we set

Vn := {0}m̄n−1 × R
mn × {0}N−m̄n ,

where m̄n := m0 + . . .mn, with m−1 ≡ 0. Moreover, we let x[n] be the projection of x ∈ R
N

on Vn. Note that

R
N =

κ⊕

n=0

Vn, x = x[0] + · · ·+ x[κ], (2.3.1)

for every x ∈ R
N . Moreover, in accordance with the dilation (δr)r>0, we have

δr(x
[n]) = r2n+1x[n], ∀x[n] ∈ Vn, (2.3.2)

for every n = 0, . . . , κ. In virtue of assumption [H.1], the linear application Bn : V0 → Vn is

surjective; however, it is in general not injective. Thus, we define the subspaces V0,n ⊂ V0 as

follows

V0,n := ker(Bn)⊥.

The linear map Bn : V0,n → Vn is now bijective.

The method of the proof relies on the construction of a finite sequence of points which

connect z = (x, t) and ζ = (ξ, τ) and are located along suitable trajectories. More precisely,

we start from z and choose z1 = (x1, t1) as the point along the integral curve of the drift Y

satisfying the condition t1 = τ . We then move along the integral paths of X1, . . . , Xm to a

point z2 = (x2, t2) such that x
[0]
2 = ξ[0] and t2 = τ . This allows us to exploit the regularity of

u along the vector fields X1, . . . , Xm, Y and estimate the remainder in (2.1.4) in terms of the

homogeneous norm of the new points.

Since we have no apriori regularity of u with respect to other vector fields, we increment the

higher level coordinates x[1], . . . , x[κ] by moving along trajectories defined as concatenations

of integral curves of X1, . . . , Xm, Y . Specifically, for any z ∈ R
N+1 and s ∈ R we define

iteratively the family of trajectories (γ
(n)
v,s (z))n=0,...,κ as follows

γ(0)v,s(z) = esXv(z) = (x+ sv, t)

γ(n+1)
v,s (z) = e−s

2Y (γ
(n)
v,−s(e

s2Y (γ(n)v,s (z)))),
(2.3.3)

where v is a suitable vector in V0, and Xv = v1∂x1 + · · ·+ vm∂xm .

At this point we need to distinguish the dilation-invariant operators from the non dilation-

inviariant ones. In the first case, the trajectories (γ
(n)
v,s (z))n=0,...,κ have the remarkable property
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of modifying the components x[n] + · · ·+ x[κ] leaving unchanged the components x[0] + · · ·+
x[n−1]; thus, we reach the point ζ after κ steps. The proof of Theorem 2.1.2, for dilation-

invariant operators, follows by exploiting the regularity of u with respect to X1, . . . , Xm, Y , as

we connect z to ζ along integral curves of the vector fields X1, . . . , Xm, Y . The next example

illustrates the geometric construction in the simplest case, corresponding to κ = 1.

Example 2.3.1. We consider the degenerate Kolmogorov operator

K0 := ∂2xx + x∂y − ∂t

and show how to use the trajectories defined in (2.3.3) to connect an arbitrary point z ∈ R
3

with the origin. In this case, we have

B =

(
0 0

1 0

)

and thus

esX(x, y, t) = (x+ s, y, t), esY (x, y, t) = (x, y + sx, t− s).

Moreover,

R
2 = V0 ⊕ V1 = span{e1} ⊕ span{e2}, V0,0 = V0,1 = span{e1}.

Let z = (x, y, t) be a point in R
3, and consider for simplicity ζ = (0, 0, 0). We first adjust the

temporal component by moving along the drift Y , and we reach the point

z1 = etY (z) = (x, y + tx, 0).

We then move along the integral curve of the vector field X to make x equal to 0:

z2 = es0X(z1) = (x+ s0, y + tx, 0) = (0, y + tx, 0), by choosing s0 = −x.

We reached the point z2 ∈ V1 and we plan to steer it to (0, 0, 0). We move along a curve

defined as concatenation of integral paths of X and Y as follows:

z3 = es1X(z2) = (s1, y + tx, 0),

z4 = es
2
1Y (z3) = (s1, y + tx+ s31,−s21),

z5 = e−s1X(z4) = (0, y + tx+ s31,−s21),
z6 = e−s

2
1Y (z5) = (0, y + tx+ s31, 0),

(2.3.4)

and we reach the point ζ = (0, 0, 0) if we choose s1 = (−tx− y)
1
3 .

When considering a not dilation-invariant operator L , the method illustrated above fails.
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Indeed, in this case the trajectory (γ
(n)
v,s (z)) may affect the components x[0] + · · ·+ x[n−1], as

the following example shows.

Example 2.3.2. We consider the degenerate Kolmogorov operator

K := ∂2xx + x∂y + x∂x − ∂t. (2.3.5)

In this case, B takes the form

B =

(
1 0

1 0

)
.

and therefore the operator K is not dilation-invariant. Let us emphasize the differences with

the dilation-invariant case studied in Example 2.3.1. We denote again the points in R
3 by

z = (x, y, t) and consider ζ = (0, 0, 0). The first two steps of the procedure used in Example

2.3.1 allow us to move from z to some point z1 = (x1, y1, 0), then to some other point

z2 = (0, y2, 0). The difference with the homogeneous case arises in the third step, i.e. when

we are dealing with the y-variable.

Let us suppose we want to move from any point z = (0, y, 0) ∈ V1 to the origin (0, 0, 0).

If we reproduce the same construction as in (2.3.4), we find:

z1 = esX(z) = (s, y, 0),

z2 = es
2Y (z1) = (ses

2

,−s+ ses
2

+ y,−s2),
z3 = e−sX(z2) = (ses

2 − s,−s+ ses
2

+ y,−s2),
z4 = e−s

2Y (z3) = (s(1− e−s
2

), s(1− e−s
2

) + y, 0).

(2.3.6)

If we choose s such that s(1 − e−s
2
) = −y, we obtain z4 = (−y, 0, 0), so that its second

component is zero but, in constrast with the previous Example 2.3.1, we have that z4 doesn’t

agree with our target point ζ = (0, 0, 0).

In order to reach the point ζ = (0, 0, 0) also in the case of not dilation-invariant operators,

we rely on the method introduced by Pagliarani and Pignotti in [94] and by Pignotti in [101].

In the case of the operator K in (2.3.5) it is sufficient to use once more the integral curve of

the vector field X = ∂x. In the case of more general operators a further topological argument

is needed to conclude the construction. We refer to [94,101] for a detailed description of this

construction. This step is needed as the invariance properties of operator L are related to

the structure of the matrix B in (1.1.2). For this reason, to generalize the proof of Theorem

2.1.2 to the not dilation-invariant case is necessary also when treating the constant-coefficients

operator L (and thus Theorem 2.1.4).

We are now ready to prove our result.

Proof of Theorem 2.1.2. Let z = (x, t), ζ = (ξ, τ) be two given points of Ω. As explained

above, the proof relies on a finite sequence of integral paths of the vector fieldsX1, . . . , Xm and

Y connecting z to ζ. We use the construction made by Pagliarani, Pascucci and Pignotti [93]
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for a dilation-invariant operator L . In this case the trajectories (γ
(n)
v,s (z))n=0,...,κ defined in

(2.3.3) are explicitly given and we prove that (2.1.4) holds. We then discuss the modifications

needed to deal with any not dilation-invariant operator L , as introduced by Pagliarani and

Pignotti in [94] and by Pignotti in [101].

As a preliminary result, we prove our claim (2.1.4) under the assumption that the points

z = (x, t) and ζ = (ξ, τ) have the same temporal component t = τ , by a finite iteration on

n = 0, . . . , κ. We remove this assumption in the last part of the proof.

Base case n = 0. In this case, we are only changing the variables xi, for i = 1, . . . ,m, moving

along the direction es0Xv0 where v0 = (v0,1, . . . , v0,m, 0 . . . , 0) is a suitable unit vector in V0.

Thus, equation (2.1.3), with z = (x, t) and ζ = (x+ s0v0, t), rewrites as

T 2
z u(ζ) = u(x, t) +

m∑

i=1

∂xiu(x, t)s0v0,i +
s20
2

m∑

i,j=1

∂2xi,xju(x, t)v0,iv0,j . (2.3.7)

We observe that ‖z−1 ◦ ζ‖2K = |s0|2 and therefore we want to show that

u(ζ)− T 2
z u(ζ) = o(|s0|2) as s0 → 0. (2.3.8)

By the multidimensional Euclidean mean-value theorem, there exist (v̄i,j)1≤i,j≤m, with

v̄i,j ∈ span{e1, . . . , em} and |v̄i,j | ≤ |v0| such that

u(ζ)− T 2
z u(ζ) =

s20
2

m∑

i,j=1

(∂2xi,xju(x+ s0v̄i,j , t)v0,iv0,j − ∂2xi,xju(x, t))v0,iv0,j

= o(|s0|2) as s0 → 0,

(2.3.9)

where we have used the continuity of the second order derivatives of u. Thus, we have proved

(2.3.8) and we are done.

Let us remark that we do not need the dilation-invariance property for Y , as we do not

make use of the vector field Y in this part of the construction.

Inductive step. Suppose that the thesis is true for a given nonnegative n < κ. We prove it

for n+ 1. For every z, ζ ∈ R
N+1 we set

T̃ 2
z u(ζ) := T 2

z u(ζ)− u(z). (2.3.10)

We define the points

z = (x, t), z1 = γ(n)v,s (z), z2 = es
2Y (z1)

z3 = γ
(n)
v,−s(z2), z4 = e−s

2Y (z3) = γ(n+1)
v,s (z)

where v is the unique unitary vector in V0,n+1 ⊂ V0, defined as v = w
|w| , where w is the vector
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in V0,n+1 such that Bn+1w = ζ [n+1] − z[n+1] and s = |w|
1

2(n+1)+1 . We aim to prove that

u(z4)− T 2
z u(z4) = o(‖z−1 ◦ z4‖2K) = o(|s|2) as s→ 0. (2.3.11)

We now rewrite (2.3.11) by using the notation (2.3.10) as follows

u(z4)− T 2
z u(z4) = u(z4)− u(z3)

(1)

+ u(z3)− u(z2)− T̃ 2
z2u(z3) (2)

+ u(z2)− u(z1)
(3)

+ T̃ 2
z1u(z) + u(z1)− u(z)

(4)

+ T̃ 2
z2u(z3)− T̃ 2

z1u(z) (5)

− T̃ 2
z u(z4) (6)

. (2.3.12)

By the inductive hypothesis, the second and the forth difference are o(|s|2) as s → 0.

Moreover, recalling (2.1.3), we have that T̃ 2
z u(z4) ≡ 0, being x

[0]
4 = x[0] and t4 = t.

We next apply definition (2.1.3) to the fifth difference, and we find

T̃ 2
z2u(z3)− T̃ 2

z1u(z) =− s

m∑

i=1

(∂xiu(z2)− ∂xiu(z1))vi

− s2

2

m∑

i,j=1

(∂2xixju(z2)− ∂2xixju(z1))vivj .

(2.3.13)

As an immediate consequence of condition (2.1.2), we obtain the following equation

∂xiu(z2)− ∂xiu(z1) = ∂xiu(e
s2Y (z1))− ∂xiu(z1) = o(|s|). (2.3.14)

Using the previous equation and the continuity of second order derivatives of u, we find that

(2.3.13) is equal to o(|s|2).
We now observe that

u(z4)− u(z3) = u(e−s
2Y (z3))− u(z3).

By applying the mean value theorem along the direction of the drift, we find that there exists

s̄ such that

u(e−s
2Y (z3))− u(z3) = −s2Y u(es̄Y (z3)),
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where |s̄| ≤ |s|. Similarly we obtain that

u(z2)− u(z1) = s2Y u(es̃Y (z1)),

where again s̃ verifies |s̃| ≤ |s|.
By letting s→ 0, we find that s̄, s̃→ 0, and therefore, using the continuity of Y u, we have

shown that the sum of the first and the third difference in (2.3.12) is again equal to o(|s|2) as
s→ 0. This proves (2.3.11) and therefore concludes the proof of the inductive step.

As already pointed out, the construction of the trajectories in the case of not dilation-

invariant operators requires the adjustments introduced in [94,101], to deal with the fact that

the term T̃ 2
z u(z4) in (2.3.12) fails to vanish. Indeed, with the notation (2.3.1), x writes as

x = x[0] + x[1] + · · · + x[κ], and we have T̃ 2
z u(z4) 6= 0 whenever x

[0]
4 6= x[0]. To overcome this

problem, we define a new point z5 = (x5, t5) as follows:

x
[0]
5 = x[0], x

[1]
5 = x

[1]
4 , . . . , x

[κ]
5 = x

[κ]
4 , t5 = t4.

Note that in [94, 101] it is proved that

∣∣∣x[0] − x
[0]
4

∣∣∣ ≤ C‖z−1 ◦ ζ‖K,

for some positive constant C only depending on the matrix B. Then

u(z5)− u(z4) = o(‖z−1 ◦ ζ‖2K) as ζ → z. (2.3.15)

With this modification, expression (2.3.12) is replaced by

u(z5)− T 2
z u(z5) = u(z5)− u(z4)− T̃ 2

z u(z5) + o(‖z−1 ◦ ζ‖2K) as ζ → z.

Moreover, x
[0]
5 = x[0] and t5 = t yield T̃ 2

z u(z5) = 0. From (2.3.15) it then follows that

u(z5)− T 2
z u(z5) = o(‖z−1 ◦ ζ‖2K) as ζ → z.

We are now in position to prove (2.1.4). We first consider the point z̄ = e(t−τ)Y (z) =

(e(t−τ)Bx, τ) and write

u(ζ)− T 2
z u(ζ) = u(ζ)− T 2

z̄ u(ζ) + T 2
z̄ u(ζ)− T 2

z u(ζ). (2.3.16)

Thanks to the previous steps, the first difference is o(‖z̄−1 ◦ ζ‖2K) = o(‖z−1 ◦ ζ‖2
K
)

as ‖z−1 ◦ ζ‖2
K
→ 0, since ζ and z̄ have the same temporal component τ . At the same time,

the second difference in (2.3.16) can be rewritten as
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T 2
z̄ u(ζ)− T 2

z u(ζ) = u(z̄)− u(z) +
m∑

i=1

(∂xiu(z̄)− ∂xiu(z)) (ξi − xi)

+
1

2

m∑

i,j=1

(
∂2xixju(z̄)− ∂2xixju(z)

)
(ξi − xi)(ξj − xj) + Y u(z)(τ − t).

(2.3.17)

Using the mean value theorem along the drift, we can rewrite difference u(z̄)−u(z) in (2.3.17)

as

u(e(t−τ)Y (z))− u(z) = (t− τ)Y u(eδY (z)), (2.3.18)

where δ is such that |δ| ≤ |t− τ |. Hence, we obtain

u(z̄)− u(z)− Y (z)(t− τ) = (t− τ)(Y u(eδY (z))− Y (z)), (2.3.19)

which is o(|t− τ |) = o(‖z−1 ◦ ζ‖2
K
) as ‖z−1 ◦ ζ‖2

K
→ 0, thanks to the continuity of Y u.

We observe that we can apply condition (2.1.2) to the point z, which is not fixed, thanks

to the fact that such a condition holds locally uniformly. Hence, using the aforemention

condition (2.1.2), together with the continuity of the second derivatives of u, we obtain that

the second and third difference in (2.3.17) are also o(|t−τ |) = o(‖z−1◦ζ‖2
K
) as ‖z−1◦ζ‖2

K
→ 0.

Combining all the previous estimates, we obtain

T 2
z̄ u(ζ)− T 2

z u(ζ) = o(‖z−1 ◦ ζ‖2K), as ‖z−1 ◦ ζ‖2K → 0. (2.3.20)

and therefore (2.3.16) is equal to o(‖z−1 ◦ ζ‖2
K
) as ‖z−1 ◦ ζ‖2

K
→ 0. This concludes the

proof.

2.4 Proof of Theorem 2.1.4

We first prove a preliminary lemma, which is a straightforward consequence of the maximum

principle.

Lemma 2.4.1. Given ϕ ∈ C(∂QR(z0)) and g ∈ Cb(QR(z0)), we assume that v solves the

following Dirichlet problem {
L v = g, in QR(z0),

v = ϕ, in ∂QR(z0).

Then, the following holds

‖v‖L∞(QR(z0)) ≤ ‖ϕ‖L∞(QR(z0)) + (t0 − t1)‖g‖L∞(QR(z0)), (2.4.1)
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where t1 = t0 −R2 is the time coordinate of the basis of the cylinder QR(z0).

Proof. We introduce the function w(x, t) := (t− t1)‖g‖L∞(QR(z0)) + ‖ϕ‖L∞(QR(z0)) and we let

u := v − w. Clearly, u satisfies L u = g + ‖g‖L∞(QR(z0)) ≥ 0 in QR(z0). Moreover, as v ≡ ϕ

on the boundary of QR(z0), we have u = ϕ − (t − t1)‖g‖L∞(QR(z0)) − ‖ϕ‖L∞(QR(z0)) ≤ 0 in

∂QR(z0). By the strong maximum principle, it follows that u(x, t) ≤ 0 in QR(z0). Replacing

v by −v, estimate (2.4.1) follows at once.

Proof of Theorem 2.1.4. We first prove assertion (ii). We denote Qk = Q%k(0), % =
1
2 and we

consider the following sequence of Dirichlet problems:

{
L uk = f(0), in Qk

uk = u, in ∂Qk

(2.4.2)

For any point z = (x, t) satisfying ‖z‖K ≤ 1
2 , we want to estimate the quantity

I(z) := |∂2u(z)− ∂2u(0)|,

where ∂2u(z) stands for either ∂2xixju(z), with i, j = 1, . . . ,m, or Y u(z). To this end, we write

I as the sum of three terms:

I(z) ≤ |∂2uk(z)− ∂2uk(0)|+ |∂2uk(0)− ∂2u(0)|+
+ |∂2u(z)− ∂2uk(z)| =: I1(z) + I2(z) + I3(z).

We first estimate I2. Following [119], we prove that
(
∂2uk(0)

)
k∈N is a Cauchy sequence and

that its limit agrees with ∂2u(0). The same assertion holds for I3 of course.

First, we let vk := u − uk and we observe that vk satisfies the Dirichlet boundary value

problem {
L vk = f − f(0), in Qk

vk = 0, in ∂Qk

(2.4.3)

From Lemma 2.4.1 it follows that

‖vk‖∞ ≤ 4%2k‖f − f(0)‖∞ ≤ 4%2kωf (%
k). (2.4.4)

Moreover, since L (uk − uk+1) = 0 in Qk+1, we apply Proposition 2.2.4 and Lemma 2.4.1,

and we find

‖∂xi(uk − uk+1)‖L∞(Qk+2) ≤ C%−k−2 sup
Qk+1

|uk − uk+1|

≤ C%−k
(
sup
Qk+1

|vk|+ sup
Qk+1

|vk+1|
)

≤ C%−k%2kωf (%
k) = C%kωf (%

k), (2.4.5)
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for any i = 1, . . . ,m. In the same way, we obtain

‖∂2xixj (uk − uk+1)‖L∞(Qk+2) ≤ C%−2k−4 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2kωf (%
k) = Cωf (%

k) (2.4.6)

for i, j = 1, . . . ,m, and

‖Y (uk − uk+1)‖L∞(Qk+2) ≤ C%−2k−4 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2kωf (%
k) = Cωf (%

k). (2.4.7)

Let k ≥ 1 such that %k+4 ≤ ‖z‖K ≤ %k+3 , then we have:

∞∑

l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C
∞∑

l=k

ωf (%
l) ≤ C

∫ ‖z‖K

0

ωf (r)

r
dr. (2.4.8)

We next identify the sum of the series
∑∞

l=k

(
∂2ul(0)− ∂2ul+1(0)

)
as

∞∑

l=k

(
∂2ul(0)− ∂2ul+1(0)

)
= ∂2uk(0)− ∂2u(0). (2.4.9)

To this end, we first consider the derivative ∂2xixjuk and we prove that

lim
k→+∞

∂2xixjuk(0) = ∂2xixjT
2
0 u(0), (2.4.10)

where T 2
0 u(ζ) is the second-order Taylor polynomial of u around the origin, computed at some

point ζ = (ξ, τ) ∈ Qk:

T 2
0 u(ζ) = u(0) +

m∑

i=1

∂xiu(0)ξi +
1

2

m∑

i,j=1

∂2xixju(0)ξiξj − Y u(0)τ.

Thus, by applying Theorem 2.1.2 to u ∈ C2
L
(Q1(0)), we obtain from (2.4.10) that

lim
k→+∞

∂2xixjuk(0) = ∂2xixju(0). (2.4.11)

We compute L T 2
0 u in ζ = (ξ, τ) as

L T 2
0 u(ζ) =

m∑

i,j=1

aij∂
2
ξiζju(0)− ∂tu(0) +

N∑

j=1

( m∑

i=1

bij∂ξiu(0)

)
ξj +

N∑

l,j=1

( m∑

i=1

bil∂
2
ξjξiu(0)

)
ξlξj

=
m∑

i,j=1

aij∂
2
ξiζju(0)− ∂tu(0) + 〈v, ξ〉+ 〈Mξ, ξ〉,
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where v = (vj)j=1,...,N = (
∑m

i=1 bij∂ξiu(0))j=1,...,N is a constant vector of R
N and M =

(mlj)l,j=1,...,N =
(∑m

i=1 bil∂
2
ξjξi

u(0)
)
l,j=1,...,N

is a N ×N constant matrix.

In addition, as L u = f in Qk, we have that

m∑

i,j=1

aij∂
2
ξiζju(0)− ∂tu(0) = L0u(0) = L u(0) = f(0) (2.4.12)

and thus

L T 2
0 u(ζ) = f(0) + 〈v, ξ〉+ 〈Mξ, ξ〉. (2.4.13)

Thus, the definition of uk in (2.4.2) gives us

L
(
T 2
0 u− uk

)
(ζ) = 〈v, ξ〉+ 〈Mξ, ξ〉, ζ ∈ Qk. (2.4.14)

We now apply Lemma 2.2.6 to T 2
0 u− uk for R = %k and infer

|∂2xixj (uk − T 2
0 u)(0)| ≤ C%−2k sup

Qk

|uk − T 2
0 u|+O(%k). (2.4.15)

Moreover, since T 2
0 u is the second-order Taylor polynomial of u, we have u(ζ) = T 2

0 u(ζ)+

o(‖ζ‖2
K
). It follows that

sup
ζ∈Qk

|u− T 2
0 u| = o(%2k) (2.4.16)

Thus, from estimates (2.4.16) and (2.4.4), we obtain

sup
Qk

|uk − T 2
0 u| ≤ sup

Qk

|vk|+ sup
Qk

|u− T 2
0 u| ≤ 4ωf (%

k)%2k + o(%2k) ≤ o(%2k). (2.4.17)

Estimates (2.4.15) and (2.4.17) finally yield

|∂2xixj (uk − T 2
0 u)(0)| ≤ C%−2k sup

Qk

|uk − T 2
0 u|+O(%k) ≤ C%−2ko(%2k) +O(%k) ≤ o(1),

where, as usual, the indexes i and j range from 1 to m. Thus, for any i, j = 1, . . . ,m we have

showed that (2.4.10) holds true. Repeating the same argument for the vector field Y , and

using again Theorem 2.1.2, we obtain:

lim
k→+∞

Y uk(0) = Y T 2
0 u(0) = Y u(0).

In conclusion, using (2.4.8), we obtain:

I2 ≤
∞∑

l=k

|∂2ul(0)− ∂2ul+1(0)| ≤ C

∫ ‖z‖K

0

ωf (r)

r
dr, (2.4.18)
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for k ≥ 1 such that %k+4 ≤ ‖z‖K ≤ %k+3. Similarly, we can estimate I3 through the solution

of L v = f(z) in Qj(z) and v = u on ∂Qj(z) and obtain

I3 ≤
∞∑

l=k

|∂2ul(z)− ∂2ul+1(z)| ≤ C

∫ ‖z‖K

0

ωf (r)

r
dr. (2.4.19)

Finally, let us estimate I1. Since hk = uk − uk+1 ∈ C∞(Qk+2), we can apply Proposition

2.2.7 to the functions ∂2xixjhk and Y hk:

|∂2xixjhk(z)− ∂2xixjhk(0)| ≤
C

%k
‖z‖K‖∂2xixjhk‖L∞(Qk+1)

and

|Y hk(z)− Y hk(0)| ≤
C

%k
‖z‖K‖Y hk‖L∞(Qk+1),

for i, j = 1, . . . ,m. We can now apply once again (2.4.6) to obtain

|∂2xixjhk(z)− ∂2xixjhk(0)| ≤
C

%k
‖z‖K‖∂2xixjhk‖L∞(Qk+1) ≤ C‖z‖K%−kωf (%k).

In addition, thanks to (2.4.7), we infer

|Y hk(z)− Y hk(0)| ≤
C

%k
‖z‖K‖Y hk‖L∞(Qk+1) ≤ C‖z‖K%−kωf (%k).

Hence, since uk(z)− uk(0) = u0(z)− u0(0) +
∑k−1

j=0 (hj(0)− hj(z)), we have

I1 ≤ |∂2u0(z)− ∂2u0(0)|+
k−1∑

j=0

|∂2hj(z)− ∂2hj(0)|

≤ C‖z‖K
(
‖u0‖L∞(Q0) + C

k−1∑

j=0

%−jωf (%
j)
)

≤ C‖z‖K
(
‖u‖L∞(Q1(0)) + ‖f‖L∞(Q1(0)) + C

∫ 1

‖z‖K

ωf (r)

r2
)
.

Combining the above estimate with (2.4.18) and (2.4.19), we complete the proof of (ii).

We now prove assertion (i). We consider u1 solution to the following Dirichlet problem

{
L u1 = f(0), in Q1/2(0)

u1 = u, in ∂Q1/2(0)

Then, we have

|∂2u(0)| ≤ |∂2u(0)− ∂2u1(0)|+ |∂2u1(0)|. (2.4.20)
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Thanks to (2.4.18), we can estimate the first term in (2.4.20) as

|∂2u(0)− ∂2u1(0)| ≤ C

∫ 1

0

ωf (r)

r
dr. (2.4.21)

To estimate the second term in (2.4.20), we consider the function v(z) := u1(z)η1/2(z), where

η1/2 is the cut-off function introduced in (2.2.16) with R = 1
2 . Reasoning as in the proof of

Proposition 2.2.3, we obtain

u(z) = v(z) =

∫

Q 1
2
(0)

[Γ(z, ·)div(ADm(η1/2))u1](ζ)dζ

−
∫

Q 1
2
(0)

[Γ(z, ·)Y (η1/2)u1](ζ)dζ

−
∫

Q 1
2
(0)

[Γ(z, ·)η1/2L (u1)](ζ)dζ

+ 2

∫

Q 1
2
(0)

[〈Dζ
mΓ(z, ·), ADmη1/2〉u1](ζ)dζ,

where z ∈ Q 1
4
(0). Thanks to Lemma 2.4.1, we estimate

sup
Q 1

2
(0)

|u1| ≤ sup
Q 1

2
(0)

|u|+ 4|f(0)|.

As the derivatives of η1/2 vanish in Q3/8(0), for any i, j = 1, . . . ,m, we obtain

|∂2xixju1(z)| ≤
∫

Q 1
2
(0)\Q 3

8
(0)

∣∣[∂2xixjΓ(z, ·)div(ADm(η1/2))u1](ζ)
∣∣dζ

+

∫

Q 1
2
(0)\Q 3

8
(0)

∣∣[∂2xixjΓ(z, ·)Y (η1/2)u1](ζ)
∣∣dζ

+ 2

∫

Q 1
2
(0)\Q 3

8
(0)

∣∣[〈∂2xixjDζ
mΓ(z, ·), ADmη1/2〉u1](ζ)

∣∣dζ (2.4.22)

+

∣∣∣∣f(0)
[
∂2xixj

∫

Q 1
2
(0)

[Γ(z, ·)η1/2](ζ)dζ
]∣∣∣∣

=: I1(z) + I2(z) + I3(z) + I4(z).

Moreover, as the derivatives of η1/2 are bounded, we estimate the first and second integral in

(2.4.22) as

I1(z) ≤ C
[
sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
,

I2(z) ≤ C
[
sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
,
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I3(z) ≤ C
[
sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
.

Finally, by taking advantage of (2.2.28), we obtain that I4(z) is bounded by a constant C

that only depends on B, λ and Λ.

By using the same argument we can estimate |Y u1(0)| and thus

|∂2u1(0)| ≤ C
[
sup
Q 1

2
(0)

|u|+ 4|f(0)|
]
. (2.4.23)

Combining estimates (2.4.20) and (2.4.23), we conclude the proof of Theorem 2.1.4.

Remark 2.4.2. We observe that the iteration step in (2.4.8) is needed in order to conclude

the proof and to obtain the integrals appearing on the right-hand side of Theorem 2.1.4 i)-ii).

Indeed, letting k go to infinity in (2.4.6), (2.4.7) would not allow us to conclude the argument

as we do not know how the modulus of continuity of f decays when k → ∞.

2.5 Dini continuous coefficients

This section is devoted to the proof of Theorem 2.1.5. We therefore consider a solution u to

the equation

L̃ u = f,

where the operator L̃ does satisfy the hypotheses [H.1] and [H.2] and f is assumed to be

Dini continuous, and we proceed as in the proof of Theorem 2.1.4. Specifically, we denote

Qk = Q%k(0), % =
1
2 and we consider the following sequence of Dirichlet problems:





m∑
i,j=1

aij(0, 0)∂
2
xixjuk + Y uk = f(0), in Qk

uk = u, on ∂Qk.

(2.5.1)

Note that the bounds given in Propositions 2.2.3, 2.2.4 and 2.2.7 only depend on the constants

λ,Λ in [H.2] and on the matrix B. Keeping in mind this fact, the proof of Theorem 2.1.5 is

given by the same argument used in the proof of Theorem 2.1.4.

Proof of Theorem 2.1.5. Consider, for every k ∈ N, the auxiliary function vk := u − uk, and

note that it is a solution to the boundary value problem





m∑
i,j=1

aij(0, 0)∂
2
xixjvk + Y vk

= f − f(0) +
m∑

i,j=1

(aij(0)− aij(x, t))∂
2
xixju, in Qk

vk = 0, in ∂Qk

(2.5.2)
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In order to simplify the notation, we let

η := max
i,j=1,...,m

‖∂2xixju‖L∞(Q1). (2.5.3)

From Lemma 2.4.1 it follows that

‖vk‖L∞(Qk) ≤ C%2k[ωf (%
k) + ωa(%

k)η].

Hence

‖uk − uk+1‖L∞(Qk+1) ≤ C%2k[ωf (%
k) + ωa(%

k)η].

As already observed, we can apply Corollary 2.2.4 and obtain estimates for the second

order derivatives of vk. In fact, for any i, j = 1, . . . ,m, we have

‖∂2xixj (uk − uk+1)‖L∞(Qk+2) ≤ C(%k)−2 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2k[ωf (%
k) + ωa(%

k)η] = C[ωf (%
k) + ωa(%

k)η] (2.5.4)

and

‖Y (uk − uk+1)‖L∞(Qk+2) ≤ C(%k)−2 sup
Qk+1

|uk − uk+1|

≤ C%−2k%2k[ωf (%
k) + ωa(%

k)η] = C[ωf (%
k) + ωa(%

k)η] (2.5.5)

To estimate the second order derivatives of the function u, we apply Theorem 2.1.2 and

proceed as in the proof of Theorem 2.1.4. Since there are no significant differences, we omit

the details here.

63



Chapter 3

Pointwise estimates for degenerate

Kolmogorov equations with Lp-source term

3.1 Statement of the problem

In this chapter, we study the pointwise regularity of solutions u belonging to the Sobolev

space Sp(Ω) (see Section 3.2) to the following Cauchy problem





L0u = f in Q−
1

f ∈ Lp(Q−
r ) and f(0) = 0,

(3.1.1)

where 1 < p <∞ and Q−
r = Br × (−r2, 0) is the past cylinder defined through the open ball

Br = {x ∈ R
N : |x|K ≤ r} and | · |K is the semi-norm, due to the nature of operator L0,

defined in (1.1.23). More precisely, we show that if the modulus of Lp-mean oscillation of L0u

at the origin is Dini, then the origin is a Lebesgue point of continuity in Lp average for the sec-

ond order derivatives ∂2xixju, i, j = 1, . . . ,m, and the Lie derivative
(∑N

i,j=1 bijxj∂xi − ∂t

)
u.

Moreover, we are able to provide a Taylor-type expansion up to second order with an estimate

of the rest in Lp norm. We point out that the results of this chapter are presented in the

paper [62] and are obtained in collaboration with Ipocoana.

3.1.1 Assumptions and mathematical preliminaries

We suppose here that 1 < p < ∞ and that the origin 0 = (0, 0) is a Lebesgue point of f , so

that we are able to define f(0) if needed.

Moreover, we denote by L0 the model Kolmogorov operator of the form

L0 :=
m∑

i,j=1

∂2xixj +
N∑

i,j=1

bijxj∂xi − ∂t, (3.1.2)

where (x, t) ∈ R
N+1, and 1 ≤ m ≤ N . In this case, the diffusion matrix A in (1.1.1) is simply

the identity matrix Im.
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In this chapter, we require that assumption [H.2] of Chapter 1, Subection 1.1.1 holds true.

We recall that, by [73, Propositions 2.1 and 2.2], the second assertion in hypothesis [H.2] is

equivalent to assume that, for some basis on R
N , the matrix B takes the block form (1.1.12).

Hence, in the following of this chapter, we shall always assume that B has the canonical form

(1.1.12).

We now define a class of polynomials that are homogeneous of degree 2 with respect to

the dilations in (1.1.13). According to Definition 1.1.9, it is clear that the polynomials which

are homogeneous of degree two with respect to dilation (1.1.13) are those of degree two in the

first m spatial variables and one in time. For this reason, it is natural to define the following

class of polynomials, which will be greatly used in the sequel. Namely,

P̃ = {P : polynomials of degree less or equal to two in x1 . . . xm

and less or equal to one in t} . (3.1.3)

P : =
{
P ∈ P̃ : L0P = 0

}
. (3.1.4)

Pc : =
{
P ∈ P̃ : L0P = c

}
. (3.1.5)

In particular, we take P∗ such that L0P∗ = 1 and set Pc = cP∗ + P .

Finally, owing to the instrinsic geometry introduced in Chapter 1, Subsection 1.1.1, and in

particular to the definition of semi-norm in (1.1.23), we introduce the unit past cylinder

Q−
1 = {(x, t) ∈ R

N+1 | |x|K < 1, t ∈ (−1, 0)}.

For every (x0, t0) ∈ R
N+1 and r > 0, we set

Q−
r (x0, t0) := z0 ◦ δr(Q−

1 ) = {(x, t) ∈ R
N+1 | (x, t) = (x0, t0) ◦ δr(ξ, τ), (ξ, τ) ∈ Q−

1 },

where ”◦” is the composition law defined in (1.1.6) and δr denotes the family of dilations in

(1.1.13). We also observe that, as shown in Remark 1.1.6, the Lebesgue measure is invariant

with respect to the translation group associated to L0, since the matrix B takes the form

(1.1.12). Moreover, we have

meas
(
Q−
r (x0, t0)

)
= rQ+2meas

(
Q−

1 (x0, t0)
)
, ∀ r > 0, (x0, t0) ∈ R

N+1.

3.1.2 Main results

In order to introduce the main results of this chapter, we need to give an appropriate defini-

tion of modulus of continuity. Indeed, the previous results in literature, including the ones

contained in the former chapter, were derived assuming a modulus of continuity defined on

some open set Q− ⊂ R
N+1 (see (2.1.6)).
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On the other hand, we here introduce a pointwise modulus of mean oscillation.

More precisely, following [86], for p ∈ (1,+∞), we define the following modulus of Lp-mean

oscillation for the function f at the origin as

ω̃(f ; r) := inf
c∈R

( 1

|Q−
r |

∫

Q−
r

|f(x, t)− c|p
) 1

p
. (3.1.6)

We now set

Ñ(u; r) := inf
P∈P̃

( 1

rQ+2+2p

∫

Q−
r

|u− P |p
) 1

p
, (3.1.7)

where Q is the homogeneous dimension defined in (1.1.17) and P̃ is the class of polynomials

introduced in (3.1.3).

Owing to (3.1.6), let cr be the unique constant such that

ω̃(f ; r) = inf
c∈R

( 1

|Q−
r |

∫

Q−
r

|f(x, t)− c|p
) 1

p
=
( 1

|Q−
r |

∫

Q−
r

|f(x, t)− cr|p
) 1

p
. (3.1.8)

If u is a solution of (3.1.1), we let

N̂(u, f ; r) = inf
P∈Pcr

( 1

rQ+2+2p

∫

Q−
r

|u− P |p
) 1

p
. (3.1.9)

Moreover, for 0 < a < b, we define

N̂(u, f ; a, b) = sup
a≤ρ≤b

N̂(u, f ; ρ) (3.1.10)

ω̃(f ; a, b) = sup
a≤ρ≤b

ω̃(f ; ρ) (3.1.11)

In the sequel, we will also make use of the following notation. For a given λ ∈ (0, 1), we set

N(r) = N̂(u, f ;λr, r), (3.1.12)

ω(r) = ω̃(f ;λ2r, r). (3.1.13)

For readers’ convenience, we eventually recall the following definition.

Definition 3.1.1. A modulus of continuity ω is said Dini if it satisfies the following integral

condition

∫ 1

0

ω(r)

r
dr < +∞.

This chapter is devoted to prove the following theorem.

Theorem 3.1.2. Let p ∈ (1,∞). Then there exist constants β, r∗ ∈ (0, 1], λ ∈ (0, 1) and

C > 0, such that the following holds. If u ∈ Lp(Q−
1 ) satisfies (3.1.1) with the associated ω̃

defined in (3.1.6), then we have
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i) Pointwise BMO estimate

sup
r∈(0,1]

Ñ(u; r) ≤ C





(∫

Q−
1

|u|p
) 1

p

+

(∫

Q−
1

|f |p
) 1

p

+ sup
r∈(0,1]

ω̃(f ; r)



 . (3.1.14)

ii) Pointwise VMO estimate

(
ω̃(f ; r) → 0 as r → 0+

)
⇒

(
Ñ(u; r) → 0 as r → 0+

)
. (3.1.15)

iii) Dini continuity of Ñ(u; ·)
If ω̃(f ; ·) is Dini, then Ñ(u; ·) is Dini. In particular, for every ρ ∈ (0, λ4 ), the following

holds

∫ 4ρ

0

Ñ(u; r)

r
dr ≤

C

{(
4ρ

λ

)β (
Ñ(u; 1) + ω̃(f ; 1)

)
+

∫ 4ρ

0

ω̃(f ; r)

r
dr + ρβ

∫ 1

4ρ

ω̃(f ; r)

r1+β
dr

}
.

where C is a constant that does not depend on f , u and ρ.

iv) Pointwise control on the solution

Let ω̃(f ; ·) be Dini. Then there exists a unique polynomial P0 ∈ P, namely a solution

to equation L0P0 = 0, with

P0(x, t) = a+ 〈b, x〉+ 1

2
〈cx, x〉+ d t,

where b is a vector in R
N such that bj = 0 when j > m and c is a N ×N matrix such

that cij = 0 when i > m ∨ j > m, such that for every r ∈ (0, r∗4 ] there holds

(
1

|Q−
r |

∫

Q−
r

∣∣∣∣∣
u(x, t)− P0(x, t)

r2

∣∣∣∣∣

p) 1
p

≤ C

{
M̃0

(
4r

λ

)β
+

∫ 4r

0

ω̃(f ; s)

s
ds+ rβ

∫ 1

4r

ω̃(f ; s)

s1+β
ds

}
,

(3.1.16)

with

M̃0 =

∫ 1

0

ω̃(f ; s)

s
ds+

(∫

Q−
1

|u|p
) 1

p

+

(∫

Q−
1

|f |p
) 1

p

.

Moreover, we have

|a|+ |b|+ |c|+ |d| ≤ CM̃0.
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The proof of Theorem 3.1.2 is non-constructive and it is based on decay estimates, which

we achieve by contradiction, blow-up and compactness results.

We observe that from Theorem 3.1.2 iv) (inequality (3.1.16)), the next result follows

straightforwardly.

Corollary 3.1.3. If the modulus of Lp-mean oscillation of L0u at the origin is Dini, then the

origin is a Lebesgue point of continuity in Lp average for the second order derivatives ∂2xixju,

i, j = 1, . . . ,m, and the Lie derivative Y u.

We observe that a simple consequence of Theorem 3.1.2 is that the second order derivatives

∂2xixju, i, j = 1, . . . ,m, and the Lie derivative Y u are Hölder continuous in some open set

Ω ⊂ R
N+1, when L0u is Hölder continuous with respect to the distance introduced in (1.1.21).

Moreover, let us remark that Theorem 3.1.2 provides us with a Taylor-type expansion up to

second order with an estimate of the rest in Lp norm. We finally emphasize that, although we

consider the regularity problem for weak solutions to Kolmogorov operators in the framework

of the Sobolev spaces, our procedure is basically pointwise. Indeed, we consider some Lp

norm of the function u − P0 on a cylinder of radius r and we obtain our result by letting r

going to zero. Thus, this approach follows the lines of regularity theory for classical solutions

rather than the ones for weak solutions, which does not seem to be usual when dealing with

Kolmogorov-type operators.

3.1.3 Comparison with existing results

The results contained in Theorem 3.1.2 may be seen as a generalization of [86] and [77], where

this kind of results are obtained for elliptic and parabolic equations, respectively. However,

up to our knowledge, the case of Kolmogorov-type operators has not been investigated.

The main difficulty with respect to the previous literature lies in the fact that the regularity

properties of the Kolmogorov equations on R
N+1 depend strongly on the geometric Lie group

structure introduced in (1.1.6). In particular, this reflects on the family of dilations we con-

sider. Furthermore, according to (3.1.2), we here take into account also the case wherem < N

and therefore L0 is strongly degenerate. We emphasize that when m = N and B ≡ O, our

result recovers the one contained in [77].

Regarding the classical regularity theory of Kolmogorov operators, we recall the Schauder

type estimates listed in Chapter 1, Section 1.2.

Moreover, in [99] and then in [32], a pointwise estimate for weak solutions to Kolmogorov

equations with right-hand side equal to zero was proved. In order to do so, the authors

adapted the Moser iterative method to the non-Euclidean framework of the (homogeneous

and non-homogeneous, respectively) Lie groups. Finally, the regularity of strong solutions

to the Cauchy-Dirichlet and obstacle problem for a class of Kolmogorov-type operators was

studied in [64] using a blow-up technique.
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3.1.4 Outline of the chapter

The structure of the chapter is the following. Some general control results are contained in

Section 3.2, some from the literature and a Caccioppoli-type estimate we prove ad hoc for

our problem. Finally, Section 3.3 is devoted to proving our main result Theorem 3.1.2. In

particular, for sake of semplicity, we first derive some preliminary estimates in Subsection

3.3.1 in order to finally give a shorter proof of Theorem 3.1.2 in Subsection 3.3.2.

3.2 Preliminary results

We here list some general ultraparabolic estimates. Some of them are well-know from the

literature, so for their proofs we will refer to source.

First, for Ω open set in R
N+1, p ∈ (1,+∞), we define the Sobolev space

Sp(Ω) = {u ∈ Lp(Ω) : ∂xiu, ∂
2
xixju, Y u ∈ Lp(Ω), i, j = 1, . . . ,m}.

If we set

‖u‖pSp(Ω) = ‖u‖pLp(Ω) +
m∑

i=1

‖∂xiu‖pLp(Ω) +
m∑

i,j=1

‖∂2xixju‖
p
Lp(Ω) + ‖Y u‖pLp(Ω)

we have the following local a priori estimates in Sp(Ω) for solutions to L0u = f (see [24]).

Theorem 3.2.1. (Ultraparabolic interior Lp-estimates)

Assume [H] holds and let u be a solution to L0u = f in Ω, where Ω is now a bounded open

set in R
N+1. If Ω1 ⊂⊂ Ω, then we can find a constant c, only depending on B, p, Ω and Ω1,

such that

‖u‖Sp(Ω1) ≤ c(‖f‖Lp(Ω) + ‖u‖Lp(Ω)). (3.2.1)

We now state a general compactness result proved in [27].

Theorem 3.2.2. Let Ω be an open set of RN+1 and let u ∈ Sp(Ω) be a weak solution to

L0u = f in Ω with f ∈ Lploc(Ω). Then, for every z0 ∈ Ω and ρ, σ > 0 such that Q−
ρ (z0) is

contained in Ω and σ < ρ
2cH

, with cH defined in (1.1.20), we have that

if 1 < p < Q+ 2 and p < q < p∗ then there exists a positive constant C̃p,q such that

‖u(· ◦ h)− u‖Lq(Q−
σ (z0))

≤ C̃p,q(‖u‖Lp(Q−
ρ (z0))

+ ‖f‖Lp(Q−
ρ (z0))

)‖h‖(Q+2)( 1
q
− 1

p∗ )

where
1

p∗
=

1

p
− 1

Q+ 2
.

As a preliminary result, we state and prove the following Caccioppoli-type estimate which

we obtain ad hoc for our problem.
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Lemma 3.2.3. (Caccioppoli-type estimate)

Let P ∈ Pcr and let u be a solution to (3.1.1) in Q−
r . Let p ∈ (1,+∞) and let ρ, r such that

1 ≤ ρ < r. Then, for W := (u− P )|u− P | p2−1, the following estimate holds:

2(p− 1)

p2

∫

Q−
ρ

|DmW |2

≤
(

2

(p− 1)

c22
(r − ρ)2

+
2

p
c1
r2κ+1

r − ρ

)∫

Q−
r

W 2 + ω̃(f ; r) |Q−
r |
( 1

|Q−
r |

∫

Q−
r

η2p
′
W 2
) 1

p′
,

where c1, c2 are dimensional constants, p′ is such that 1
p +

1
p′ = 1 and Dm denotes the partial

gradient in the first m variables, that is

Dm := (∂x1 , . . . , ∂xm).

Proof. On the past cylinder Q−
r , we have

−L0u+ f = 0, and − L0P + cr = 0, (3.2.2)

since u is a solution to (3.1.1) and P ∈ Pcr . We set ϕ := η2w|w|p−2, where w := u − P and

η is a C∞−function with compact support, to be chosen later. Taking the difference of the

two equations in (3.2.2) and multiplying it by ϕ, we obtain

−
∫

Q−
r

η2w|w|p−2
L0w = −

∫

Q−
r

η2w|w|p−2 (f(x)− cr) . (3.2.3)

An integration by parts shows that

−
∫

Q−
r

η2w|w|p−2
L0w =

∫

Q−
r

〈ADmw,Dm(η
2w|w|p−2)〉 −

∫

Q−
r

η2w|w|p−2Y (w)

=: I1 + I2,

(3.2.4)

where Dm denotes the gradient with respect to x1, . . . , xm. We now observe that

Dmϕ = 2ηDmη w|w|p−2 + η2(p− 1)|w|p−2Dmw

and therefore we can rewrite the term I1 on the right-hand side of (3.2.4) as

I1 = 2

∫

Q−
r

〈ADmw,Dmη〉ηw|w|p−2 + (p− 1)

∫

Q−
r

η2|w|p−2〈ADmw,Dmw〉.

Taking advantage of DmW = p
2 |w|

p
2
−1Dmw, forW = w|w| p2−1, the previous equation rewrites

as

I1 =
4(p− 1)

p2

∫

Q−
r

η2〈ADmW,DmW 〉+ 4

p

∫

Q−
r

ηW 〈ADmW,Dmη〉. (3.2.5)
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We now take care of the term I2 in (3.2.4). We first notice that

Y (W ) =
p

2
|w| p2−1Y (w),

which, together with the divergence theorem and the identity

Y (W 2η2) = 2ηW 2Y (η) + 2η2WY (W ),

yields

I2 =
2

p

∫

Q−
r

ηW 2Y (η). (3.2.6)

Thus, combining (3.2.5) and (3.2.6), we can rewrite identity (3.2.3) as

0 =
4(p− 1)

p2

∫

Q−
r

η2〈ADmW,DmW 〉+ 4

p

∫

Q−
r

ηW 〈ADmW,Dmη〉

+
2

p

∫

Q−
r

ηW 2Y (η) +

∫

Q−
r

η2w|w|p−2 (f(x)− cr) .

Now, setting ε = p−1
2p and using the estimate

η |W | |〈ADmW,Dmη〉| ≤ εη2〈ADmW,DmW 〉+ W 2

4ε
〈ADmη,Dmη〉,

we finally obtain

2(p− 1)

p2

∫

Q−
r

η2〈ADmW,DmW 〉

≤ 2

(p− 1)

∫

Q−
r

W 2〈ADmη,Dmη〉+
2

p

∫

Q−
r

W 2η|Y (η)|+
∫

Q−
r

|f − cr|η2|W |
2(p−1)

p

≤ 2

(p− 1)

∫

Q−
r

W 2〈ADmη,Dmη〉+
2

p

∫

Q−
r

W 2η|Y (η)|

+ |Q−
r | ω̃(f ; r)

(
1

|Q−
r |

∫

Q−
r

η2p
′ |W |

2p′(p−1)
p

) 1
p′

≤ 2

(p− 1)

∫

Q−
r

W 2〈ADmη,Dmη〉+
2

p

∫

Q−
r

W 2η|Y (η)|

+ |Q−
r | ω̃(f ; r)

(
1

|Q−
r |

∫

Q−
r

η2p
′ |W |2

) 1
p′

.

(3.2.7)

where p′ is such that 1
p+

1
p′ = 1. The thesis follows by making a suitable choice of the function

η in (3.2.7). More precisely, we set

η(x, t) = χ (‖(x, 0)‖K)χt(t)
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where χ ∈ C∞([0,+∞)) is the cut-off function defined by

χ(s) =

{
0, if s ≥ r,

1, if 0 ≤ s ≤ ρ,
|χ′| ≤ 2

r − ρ
,

and χt ∈ C∞((−∞, 0] is defined by

χt(s) =

{
0, if s ≤ −r2,
1, if −ρ2 ≤ s ≤ 0,

|χ′
t| ≤

2

r − ρ
,

with r
2 ≤ ρ < r. We observe that

|Y η| ≤ c1
r2κ+1

r − ρ
, |∂xjη| ≤

c2
r − ρ

for j = 1, . . . ,m0,

where c1 and c2 are dimensional constants. Then, accordingly to (3.2.7), we finally obtain

2(p− 1)

p2

∫

Q−
ρ

|DmW |2

≤ 2

(p− 1)

c22
(r − ρ)2

∫

Q−
r

W 2 +
2

p
c1
r2κ+1

r − ρ

∫

Q−
r

W 2

+ |Q−
r | ω̃(f ; r)

(
1

|Q−
r |

∫

Q−
r

η2p
′ |W |2

) 1
p′

and this concludes the proof.

3.3 Pointwise estimates for the Kolmogorov equation

This section is the core of the chapter and it is devoted to prove our main result, Theorem

3.1.2. Since the proof is rather convoluted, we have decomposed it in intermediate results

proved in Subsection 3.3.1, which will be combined in Subsection 3.3.2 in order to give a

simpler proof of Theorem 3.1.2.

3.3.1 Preliminary estimates

The following result is a useful tool in order to prove Lemma 3.3.3 below, as it allows us to

rescale the Lp-norm of a given polynomial from a cylider of radius r (for a large r) to a unit

cylider.

Lemma 3.3.1 (Larger cylider/smaller cylider). The following statements hold:

(i) there exists a constant C2 = C2(p,Q) > 0 s.t. for every polynomial P ∈ P̃, for any
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r ≥ 1 it holds
(

1

rQ+2+2p

∫

Q−
r

|P |p
) 1

p

≤ C2

(∫

Q−
1

|P |p
) 1

p

;

(ii) there exists a constant C̃2 = C̃2(p,Q) > 0 s.t. for every polynomial P ∈ P̃, for any

r < 1 it holds (∫

Q−
1

|P |p
) 1

p

≤ C̃2

(
1

rQ+2+2p

∫

Q−
r

|P |p
) 1

p

.

Proof. We only carry out the proof of assertion (i), since case (ii) is totally analogous. We

start by writing the polynomial P as P (x, t) = a + 〈b, x〉 + 1
2〈cx, x〉 + d t, where b is a

vector in R
N such that bj = 0 when j > m and c is a N ×N matrix such that cij = 0 when

i > m∨j > m. We moreover recall thatQ−
r = Br×(−r2, 0), where Br = {x ∈ R

N : |x|K ≤ r},
with | · |K as defined in (1.1.23). Then, owing to ‖(x, t)‖K = |x|K + |t|1/2 with in particular

|xi| ≤ r for i = 1 . . .m and |t| ≤ r2, there exists a constant C > 0 s.t.

(
1

rQ+2+2p

∫

Q−
r

|P |p
) 1

p

≤ C

( |a|
r2

+
|b|
r

+ |c|+ |d|
)
. (3.3.1)

On the other hand it is possible to show by contradiction that

|a|+ |b|+ |c|+ |d| ≤ C

(∫

Q−
1

|P |p
) 1

p

. (3.3.2)

In order to prove (3.3.2), we first observe that, for a given polynomial P (x, t) = a + 〈b, x〉 +
1
2〈cx, x〉+ d t, it is not restrictive to assume that

|a|+ |b|+ |c|+ |d| = 1. (3.3.3)

Indeed, if (3.3.3) is not satisfied, it is sufficient to observe that, for a given r > 0, we have

(∫

Q−
1

|ra+ 〈rb, x〉+ 1

2
〈rcx, x〉+ d rt|p

) 1
p

= r

(∫

Q−
1

|a+ 〈b, x〉+ 1

2
〈cx, x〉+ d t|p

) 1
p

.

(3.3.4)

Then the proof for general coefficients (a, b, c, d) 6= (0, 0, 0, 0) which do not satisfy (3.3.3)

immediately follows by setting r = 1
|a|+|b|+|c|+|d| .

We are now in a position to prove (3.3.2) by contradiction. Indeed, if (3.3.2) is false,

we have that, for every constant K > 0, there exists a polynomial PK with coefficients
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(aK , bK , cK , dK), that, without loss of generality satisfy (3.3.3), such that

1 = |aK |+ |bK |+ |cK |+ |dK | >
1

K

(∫

Q−
1

|PK |p
) 1

p

. (3.3.5)

Therefore, for K → 0+, it follows that while the right hand side of (3.3.5) goes to infinity,

the left hand side remains constant. This implies a contradiction, as the sum of the norms

of the coefficients of PK would be both a constant and infinity. The thesis follows by the

combination of (3.3.1) and (3.3.2), with r ≥ 1.

Remark 3.3.2. We propose an alternative proof of inequality (3.3.2) which does not require

a contradiction argument. As a first step, we fix 1 < p <∞ and we observe that the function

(a, b, c, d) 7→
(∫

Q−
1

|P |p
) 1

p

=: F (a, b, c, d)

is continuous and strictly positive in R × R
N × R

N×N × R. Then, in virtue of Weierstrass’

theorem, F admits a strictly positive minimum on the compact set

A := {(a, b, c, d) ∈ R× R
N × R

N×N × R : |a|+ |b|+ |c|+ |d| = 1}.

The proof for the general case of (a, b, c, d) 6= (0, 0, 0, 0) that do not satisfy (3.3.3) follows

reasoning as in the proof of Lemma 3.3.1. In particular, (3.3.4) yields F (ra, rb, rc, rd) =

rF (a, b, c, d) and we just need to choose r = 1
|a|+|b|+|c|+|d| .

We now prove the following Lemma.

Lemma 3.3.3. (Estimates on larger cylinders)

Let u be solution of L0u = f in Q−
R for R > 2. Then for any ρ ∈ [1, R/2], there exists a

positive constant C1 = C1(p,Q) s.t.

( 1

ρQ+2+2p

∫

Q−
ρ

|u− P1|pdx dt
) 1

p ≤ C1

∫ 4ρ

1

N̂(u, f ; s) + ω̃(f ; s)

s
ds, (3.3.6)

where P1 ∈ P1 is the polynomial realizing the infimum in definition (3.1.9) at level one.

Proof. We start working on the left hand side of (3.3.6). Namely, for any ρ ≥ 1

( 1

ρQ+2+2p

∫

Q−
ρ

|u− P1|p
) 1

p

≤
( 1

ρQ+2+2p

∫

Q−
ρ

|u− Pρ|p
) 1

p
+
( 1

ρQ+2+2p

∫

Q−
ρ

|Pρ − P1|p
) 1

p
= N̂(u, f ; ρ) + I1. (3.3.7)

where in the last line we recalled (3.1.9), and Pρ ∈ P̃cρ is a polynomial realizing the infimum
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in the definition of N̂(u, f ; ·) at the level ρ. We now estimate I1 as follows

I1 ≤
( 1

ρQ+2+2p

∫

Q−
ρ

|Pr − P1|p
) 1

p
+

k∑

j=1

( 1

ρQ+2+2p

∫

Q−
ρ

|P2jr − P2j−1r|p
) 1

p
=: I2 + I3, (3.3.8)

where we have written ρ ≥ 1 as ρ = 2kr for an integer k ≥ 1 and r ∈ [1/2, 1). In order to

control I2 and I3 we need to achieve a more general estimate. For an arbitrary γ > 1, for any

α ∈ [1, γ] we have that

( 1

rQ+2+2p

∫

Q−
r

|Pαr − Pr|p
) 1

p

≤
( 1

rQ+2+2p

∫

Q−
r

|u− Pr|p
) 1

p
+
( 1

rQ+2+2p

∫

Q−
r

|u− Pαr|p
) 1

p

≤
( 1

rQ+2+2p

∫

Q−
r

|u− Pr|p
) 1

p
+ α

Q+2+2p
p

( 1

(αr)Q+2+2p

∫

Q−
αr

|u− Pαr|p
) 1

p

≤α
Q+2+2p

p (N̂(u, f ; r) + N̂(u, f ;αr))

≤γ
Q+2+2p

p (N̂(u, f ; r) + N̂(u, f ;αr)). (3.3.9)

We take care of I2 choosing αr = 1, for r ∈
[
1
γ , 1
)
in (3.3.9). Namely, applying both case

(i) and (ii) from Lemma 3.3.1, we get

I2 :=
( 1

ρQ+2+2p

∫

Q−
ρ

|Pr − P1|p
) 1

p ≤ C2

(∫

Q−
1

|P1 − Pr|p
) 1

p

≤ C
( 1

rQ+2+2p

∫

Q−
r

|P1 − Pr|p
) 1

p ≤ γ
Q+2+2p

p (N̂(u, f ; r) + N̂(u, f ; 1)). (3.3.10)

Exploiting again (3.3.9) together with case (i) from Lemma 3.3.1, we infer that for every

ρ ≥ 1, which we write as ρ = 2kr with r ∈
[
1
γ , 1
)
, there holds

I3 ≤ C
k∑

j=1

N̂(u, f ; 2jr). (3.3.11)

Now, collecting bounds (3.3.8), (3.3.10) and (3.3.11), we have that (3.3.7) reads

( 1

ρQ+2+2p

∫

Q−
ρ

|u− P1|p
) 1

p

≤C


N̂(u, f ; 1) + N̂(u, f ; r) +

k∑

j=1

N̂(u, f ; 2jr)


 , (3.3.12)

where C = C(p,Q, γ) is a positive constant. We now want to estimate the right hand side of
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(3.3.12), in particular for any γ > 1 and for α ∈ [1, γ] it follows that

N̂(u, f ;αr) ≤
( 1

(αr)Q+2+2p

∫

Q−
αr

|u− Pαr|p
) 1

p

≤
( 1

(γr)Q+2+2p

∫

Q−
γr

|u− Pγr|p
) 1

p
(γ
α

)Q+2+2p
p

+
( 1

(αr)Q+2+2p

∫

Q−
αr

|Pγr − Pαr|p
) 1

p

≤ γ
Q+2+2p

p N̂(u, f ; γr) + C2|cαr − cγr|
(∫

Q−
1

|P∗|p
) 1

p

(3.3.13)

where in the last line we used case (i) of Lemma 3.3.1 and we introduced P∗ as a solution to

equation L0P∗ = 1. In particular, from (3.1.8), we obtain

|cαr − cγr| =
(

1

|Q−
αr|

∫

Q−
αr

|cαr − cγr|p
) 1

p

≤
(

1

|Q−
αr|

∫

Q−
αr

|f − cαr|p
) 1

p

+ γ
Q+2
p

(
1

|Q−
γr|

∫

Q−
γr

|f − cγr|p
) 1

p

≤ ω̃(f ;αr) + γ
Q+2
p ω̃(f ; γr) ≤ 2γ

Q+2
p ω̃(f ; γr). (3.3.14)

Thus, combining (3.3.14) with (3.3.13) we infer that for any γ > 1 there esists a positive

constant Cγ = Cγ(p,Q, γ) s.t. for any α ∈ [1, γ] it holds

N̂(u, f ;αr) ≤ Cγ

(
N̂(u, f ; γr) + ω̃(f ; γr)

)
,

ω̃(f ;αr) ≤ Cγω̃(f ; γr). (3.3.15)

Eventually, putting together (3.3.12) and (3.3.15) and choosing γ = 2 we finally obtain

( 1

ρQ+2+2p

∫

Q−
ρ

|u− P1|p
) 1

p ≤ 3C
k∑

j=1

(
N̂(u, f ; 2j+1r) + ω̃(f ; 2j+1r)

)

≤ 6C
k∑

j=1

N̂(u, f ; 2j+1r) + ω̃(f ; 2j+1r)

2j+1

(
2j+2r − 2j+1r

)

≤ 6C

∫ 4ρ

1

N̂(u, f ; s) + ω̃(f ; s)

s
ds.

As a consequence, we can prove the decay estimate below.

Proposition 3.3.4. (Basic decay estimate)

Given p ∈ (1,+∞), there exist constants C0 = C0(p,Q) > 0 and λ = λ(p,Q), µ = µ(p,Q) ∈
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(0, 1) such that for every function u and f satisfying (3.1.1), ∀r ∈ (0, 1], the following esti-

mates hold

N̂(u, f ;λ2r, λr) < µ N̂(u, f ;λr, r) or N̂(u, f ;λ2r, λr) < C0 ω̃(f ;λ
2r, r). (3.3.16)

Proof. The proof is carried out by contradiction. Namely, if (3.3.16) is not true, we can find

the sequences Ck → ∞, rk ∈ (0, 1], λk → 0 and µk → 1 such that

N̂(uk, fk;λ
2
krk, λkrk) ≥ µkN̂(uk, fk;λkrk, rk) (3.3.17)

N̂(uk, fk;λ
2
krk, λkrk) ≥ Ckω̃(fk;λ

2
krk, rk), (3.3.18)

where (fk)k and (uk)k satisfy (3.1.1). Let us consider ρk ∈ [λ2krk, λkrk] such that, according

to (3.1.10)

N̂(uk, fk;λ
2
krk, λkrk) = N̂(uk, fk; ρk) =: εk. (3.3.19)

Moreover, owing to (1.1.13), we define the rescaled functions

vk(x, t) =
uk(δρk(x, t))

ρ2k

and

wk(x, t) =
uk(δρk(x, t))− Pk(δρk(x, t))

εkρ2k
(3.3.20)

where Pk ∈ Pcρk is the homogeneous polynomial realizing the infimum at the level ρk.

Now we want to control wk in order to pass to the limit. We first notice that

inf
P∈P

(∫

Q−
1

|wk − P |p
) 1

p
= 1. (3.3.21)

Indeed, first exploiting the definition of wk in (3.3.20) and then using the change of

variables y = δ0ρk(x), s = ρ2kt, owing to (1.1.14), we infer

inf
P∈P

(∫

Q−
1

|wk − P |p
) 1

p

= inf
P∈P

(∫

Q−
1

∣∣∣∣∣
uk(δ

0
ρk
(x), ρ2kt)− Pk(δ

0
ρk
(x), ρ2kt)− εkρ

2
kP (x, t)

εkρ2k

∣∣∣∣∣

p

dx dt
)1/p

=
1

εk
inf
P∈P

( 1

ρQ+2+2p
k

∫

Q−
ρk

∣∣∣∣uk(y, s)− Pk(y, s)− εkρ
2
kP

(
δ01

ρk

(y),
1

ρ2k
s

)∣∣∣∣
p

dy ds
)1/p

.

Now, since L0(Pk + εkρ
2
kP ) = L0Pk + εkρ

2
kL0P = cρk by (3.1.4) and (3.1.5), the identity

(3.3.21) follows from (3.3.19).
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In addition it holds

N̂(vk, fk; 1) =
( 1

ρQ+2+2p
k

∫

Q−
ρk

|uk − Pk|p
) 1

p
.

We now apply Lemma 3.3.3 to vk, for s ∈
[
1, rk2ρk

]

( 1

(sρk)
Q+2+2p

∫

Q−
sρk

|uk − Pk|p
) 1

p
=
( 1

sQ+2+2p

∫

Q−
s

∣∣∣∣
uk(δρk(y, s))− Pk(δρk(y, s))

ρ2k

∣∣∣∣
p ) 1

p

≤ C1

∫ 4s

1

N̂(vk, gk; τ) + ω̃(gk; τ)

τ
dτ

≤ C1

∫ 4s

1

N̂(uk, fk; τρk) + ω̃(fk; τρk)

τ
dτ, (3.3.22)

where in the second line we defined gk(x, t) = fk(δρk(x, t)) and in the third line we used

the identities N̂(vk, gk; s) = N̂(uk, fk; sρk) and ω̃(gk; s) = ω̃(fk; sρk). As a consequence, for

s ∈
[
1, rk2ρk

]
, the following holds

( 1

sQ+2+2p

∫

Q−
s

|wk|p
) 1

p ≤ C1

εk

∫ 4s

1

N̂(uk, fk; τρk) + ω̃(fk; τρk)

τ
dτ

≤ C1

εk

∫ 4s

1

N̂(uk, fk;λ
2
krk, rk) + ω̃(fk;λ

2
krk, rk)

τ
dτ. (3.3.23)

On the other hand, combining (3.3.17) with (3.3.19), we obtain

N̂(uk, fk;λ
2
krk, rk) ≤

εk
µk

and

ω̃(fk;λ
2
krk, rk) ≤

εk
Ck
. (3.3.24)

These two bounds together with (3.3.23), yield to

( 1

sQ+2+2p

∫

Q−
s

|wk|p
) 1

p ≤ C2 ln 4s (3.3.25)

where s ∈
[
1, rk2ρk

]
and C2 is a positive constant depending on C1, Ck and µk.

Now, according to the dilation invariance of L0 with respect to δr (see (1.1.11)) and

(3.3.24), we find

( 1

|Q−
s |

∫

Q−
s

|L0wk|p
) 1

p ≤ 1

εk
ω̃(fk; sρk) ≤

1

εk
ω̃(fk;λ

2
krk, rk) ≤

1

Ck
→ 0 (3.3.26)

The contradiction follows from passing to the limit. In order to do so, we need a com-

pactness argument.
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Applying Lemma 3.2.3 to Wk = wk|wk|
p
2
−1, we obtain that for every R ∈

[
1, rkρk

)

2(p− 1)

p2

∫

Q−
R

|DmWk|2

≤
(

2

(p− 1)

c22
(r − ρ)2

+
2

p
c1
r2κ+1

r − ρ

)∫

Q−
r

W 2
k + ω̃(f ; r) |Q−

r |
( 1

|Q−
r |

∫

Q−
r

η2p
′
W 2
k

) 1
p′
,

for r = rk
ρk
. As a consequence, for every R ∈

(
0, rkρk

)
, we have

‖ Wk ‖S2(Q−
R)≤ CR.

Thus, we can extract a non-relabelled subsequence Wk such that

Wk ⇀W∞ = w∞|w∞| p2−1 weakly in S2
loc(Q−

R),

where we denoted by w∞ the limit of the sequence wk. Moreover, from the compact embedding

provided by Theorem 3.2.2 it follows that

Wk → W∞ = w∞|w∞| p2−1 in L2
loc(Q−

R).

We now observe that

‖ wk ‖pLp(Q−
R)
=‖ Wk ‖2L2(Q−

R)
, ‖ w∞ ‖p

Lp(Q−
R)
=‖ W∞ ‖2

L2(Q−
R)
,

and therefore we have the following convergence result for every R ∈
(
0, rkρk

)

wk → w∞ in Lploc(Q−
r ).

In particular, from (3.3.21), w∞ satisfies

inf
P∈P

(∫

Q−
1

|w∞ − P |p
) 1

p
= 1. (3.3.27)

Similarly, according to (3.3.25),

( 1

sQ+2+2p

∫

Q−
s

|w∞|p
) 1

p ≤ C2 ln 4s.

Hence, w∞ is a function that grows quadratically in space and linearly in time up to a

logarithmic correction. Moreover, in virtue of (3.3.26), it follows that w∞ a. e. belongs to P .

This contradicts (3.3.27) and therefore concludes the proof.

We now establish a sort of monotonicity result for N and ω, defined in (3.1.12) and

(3.1.13), respectively.
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Proposition 3.3.5. (Dini estimate)

Let N : (0, 1] → [0,+∞), ω : (0, 1] → [0,+∞) be two functions that satisfy

∀r ∈ (0, 1], N(λr) < µN(r) or N(λr) < C ω(r), (3.3.28)

and

∀r ∈ (0, 1] ∀α ∈ [λ, 1],

{
N(αr) ≤ C (N(r) + ω(r)),

ω(αr) ≤ C ω(r)
(3.3.29)

for some constants C > 0 and for λ, µ ∈ (0, 1). Moreover, we assume that ω is Dini. Then

for every ρ ∈ (0, λ4 ) and for β = lnµ
lnλ we have

∫ 4ρ

0

N(r)

r
dr ≤

C
1

β

{(
4ρ

λ

)β
(N(1) + ω(1)) + C ′

(∫ 4ρ

0

ω(r)

r
dr + ρβ

∫ 1

4ρ

ω(r)

r1+β
dr

)}
.

(3.3.30)

where C ′ = C ′(λ, µ) = 1
µ

1
(1−λ)λβ .

Proof. We first prove that for all r ∈ (0, λ], we have

N(r) ≤ max

(
C1r

β, C
1

µ
rβ sup

ρ∈[r,λ]

ω(ρ)

ρβ

)
, (3.3.31)

where C1 is given by

C1 = C λ−β (N(1) + ω(1)) . (3.3.32)

If r ≤ λ, we write it as r = λkr1 with k ≥ 1 and r1 ∈ (λ, 1]. Then, taking advantage of

(3.3.28), we infer

N(r) ≤ max
(
C ω

( r
λ

)
, µN

( r
λ

))

≤ max
(
C ω

( r
λ

)
, C µω

( r
λ2

)
, µ2N

( r
λ2

))
(3.3.33)

≤ max
(
C ω

( r
λ

)
, C µω

( r
λ2

)
, C µ2 ω

( r
λ3

)
, . . . ,

C µk−2 ω
( r

λk−1

)
, µkN

( r
λk

))
.

Now, if we set β = lnµ
lnλ and ρ = r

λj+1 for j = 0, . . . , k − 2, we deduce

µj ω
( r

λj+1

)
= ej lnµω(ρ) = µ−1 eln(r/ρ)β ω(ρ) = µ−1ω(ρ)

ρβ
rβ. (3.3.34)
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On the other hand, according to (3.3.29) and (3.3.32), we have

µkN
( r
λk

)
≤ µkC(N(1) + ω(1)) = C1 µ

kλβ ≤ C1 µ
krβ1 = C1 µ

k
( r
λk

)β
≤ C1 r

β. (3.3.35)

Finally, using estimates (3.3.34) and (3.3.35) in (3.3.33), we get (3.3.31).

We now want to estimate supρ∈[r,λ]
ω(ρ)
ρβ

. To this end, for some ρ0 ∈ [r, λ], we write

sup
ρ∈[r,λ]

ω(ρ)

ρβ
=
ω(ρ0)

ρβ0

≤ 1

ρβ0

1

tρ0

∫ ρ0+tρ0

ρ0

C ω(ρ)dρ

≤ C

tλ1+β

∫ ρ0/λ

ρ0

ω(ρ)

ρ1+β
dρ

≤ C2

∫ 1

r

ω(ρ)

ρ1+β
dρ,

where in the second line we have used the monotonicity of ω according to (3.3.29) and the

constants t and C2 appearing in the second and forth line are equal to (1−λ)/λ and C/((1−
λ)λβ) respectively.

Combining the previous inequality with (3.3.31) and setting C ′ := 1
µ C2, we obtain for

any ρ ∈
(
0, λ4
)

∫ 4ρ

0

N(r)

r
dr ≤ C1

∫ 4ρ

0

rβ−1dr + C C ′ J, (3.3.36)

with

J : =

∫ 4ρ

0

rβ−1dr

(∫ 1

r

ω(τ)

τ 1+β
dτ

)

≤
∫ 4ρ

0

rβ

β

ω(r)

r1+β
dr +

[
rβ

β

(∫ 1

r

ω(τ)

τ 1+β
dτ

)]4ρ

0

=
1

β

∫ 4ρ

0

ω(r)

r
dr +

(4ρ)β

β

(∫ 1

4ρ

ω(τ)

τ 1+β
dτ

)
,

(3.3.37)

where in the second line we have integrated by parts and in the third we have applied the

dominated convergence theorem.

Inequality (3.3.36), together with (3.3.37) and the definition of C1 in (3.3.32), yields

∫ 4ρ

0

N(r)

r
dr ≤C

(
4ρ

λ

)β 1

β
(N(1) + ω(1))

+ CC ′
(
1

β

∫ 4ρ

0

ω(r)

r
dr +

(4ρ)β

β

(∫ 1

4ρ

ω(τ)

τ 1+β
dτ

))
,

which concludes the proof.
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Remark 3.3.6. We observe that hypothesis (3.3.29) could be substituted by (3.3.15) and

therefore owing to Proposition 3.3.4, the previous result Proposition 3.3.5 holds in parti-cular

for N̂ and ω̃.

Remark 3.3.7. We notice that:

1. the quantities N and ω defined in (3.1.12) and (3.1.13) satisfy (3.3.28) in virtue of

Proposition 3.3.4. Moreover, (3.3.15) with γ = 1
λ implies that N and ω also satisfy

(3.3.29);

2. we chose the limits of integration in order to combine effortlessly this result with the

following Lemma 3.3.8.

We now focus on the following result, which differs from Lemma 3.3.3 in the choice of

the polynomial and of ρ. More precisely, in Lemma 3.3.3, we derive an estimate on large

cylinders, while we here consider smaller radii.

Lemma 3.3.8. (Estimates on smaller cylinders)

If u is defined in Q−
1 , then there exist a unique polynomial P0 ∈ P̃ such that for every

ρ ∈ (0, 14), we have

(
1

ρQ+2+2p

∫

Q−
ρ

|u− P0|p
) 1

p

≤ C1

∫ 4ρ

0

N̂(u, f ; r) + ω̃(f ; r)

r
dr. (3.3.38)

Proof. We suppose that u is a solution to L0u = f in Q−
1 . Applying Lemma 3.3.3 to a

rescaled function

v(x, t) =
u(δr(x, t))

r2

it follows that for r ≤ 1
4γ , with γ ≥ 1

(
1

γQ+2+2p

∫

Q−
γ

|v − P v|p
) 1

p

≤ C1

∫ 4γ

1

N̂(v, f ; s) + ω̃(f ; s)

s
ds

where P v realises the infimum in the definition of N̂(v, f ; 1). Now performing a change of

variables with ρ = γr, we infer

(
1

ρQ+2+2p

∫

Q−
ρ

|u− Pr|p
) 1

p

≤ C1

∫ 4ρ

r

N̂(u, f ; s) + ω̃(f ; s)

s
ds, (3.3.39)

where we notice that P v(x, t) = Pr(δr(x,t))
r2 and N̂(v, f ; s) = N̂(u, f ; rs). Hence, fixing ρ ∈

(0, 1/4), we may pass to the limit in (3.3.39) for r → 0. Therefore up to extracting a
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subsequence, we can assume that Pr tends to a polynomial P0 ∈ P̃ , namely

(
1

ρQ+2+2p

∫

Q−
ρ

|u− P0|p
) 1

p

≤ C1

∫ 4ρ

0

N̂(u, f ; s) + ω̃(f ; s)

s
ds.

We now show that the Taylor-type polynomial P0 is unique. In fact, if P1 ∈ P̃ is another

polynomial satisfying (3.3.38), then for every ρ ∈ (0, 14) we have

(
1

ρQ+2+2p

∫

Q−
ρ

|P1 − P0|p
) 1

p

≤ 2C1

∫ 4ρ

0

N̂(u, f ; r) + ω̃(f ; r)

r
dr.

On the other hand, as P1 − P0 ∈ P̃ , assertion (ii) of Lemma 3.3.1 yields

(∫

Q−
1

|P1 − P0|p
) 1

p

≤ C̃2

(
1

ρQ+2+2p

∫

Q−
ρ

|P |p
) 1

p

,

for any ρ < 1. Combining the previous two inequalities, infer

‖P1 − P0‖Lp(Q−
1 ) ≤ 2C1

∫ 4ρ

0

N̂(u, f ; r) + ω̃(f ; r)

r
dr. (3.3.40)

As the quantity on the right-hand side of (3.3.40) is finite and goes to 0 as ρ→ 0, we finally

obtain P1 ≡ P0, which concludes the proof.

We notice that, in Lemma 3.3.8 and the upcoming Proposition, we have P0 belonging to

the set P̃ . Hence, in the proof of assertion (iii) of Theorem 3.1.2 it is only left to show that

P0 belongs in particular to P (i.e. L0P0 = 0) in order to prove (3.1.16).

Proposition 3.3.9. (Modulus of continuity of the solution up to second order)

Let us assume that ω̃ is Dini continuous and let us set β = lnµ/ lnλ. There exist a unique

polynomial P0 ∈ P̃ and a constant C ′ = C ′(C, λ, µ) such that for every ρ ∈ (0, ρ
∗

4 ), we have

(
1

ρQ+2+2p

∫

Q−
ρ

|u− P0|p
) 1

p

≤ C
1

β

{(
4ρ

λ

)β (
N̂(u, f ; 1) + ω̃(f ; 1)

)
+ C ′

(∫ 4ρ

0

ω̃(f ; r)

r
dr + ρβ

∫ 1

4ρ

ω̃(f ; r)

r1+β
dr

)}
.

(3.3.41)

Proof. The proof simply follows from the combination of Proposition 3.3.5 with N ≡ N̂ and

ω ≡ ω̃ and Lemma 3.3.8, where we remark that we reabsorbed the modulus of continuity in

the right hand side of (3.3.30). We observe that the uniqueness of P0 follows from Lemma

3.3.8.
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Remark 3.3.10. We observe that Proposition 3.3.9 holds, more generally, for two functions

N and ω satisfying the assumptions of Proposition 3.3.5.

3.3.2 Proof of Theorem 3.1.2

(i) We first observe that from definitions (3.1.9) and (3.1.7), it holds that

Ñ(u; r) ≤ N̂(u, f ; r). (3.3.42)

The right hand side of (3.3.42) can be estimated combining (3.3.31) with (3.3.32), which

yields for r ∈ (0, λ]

N(r) ≤ C

(
N(1) +

1

µ
sup
ρ∈(0,1]

ω(ρ)

)
,

where we recall thatN and ω were defined respectively in (3.1.12) and (3.1.13). Moreover

owing to the motonicity-type estimate (3.3.15) for γ = 1
λ and r ∈ (0, 1]

N̂(u, f ; r) ≤ C

(
N̂(u, f ; 1) + sup

ρ∈(0,1]
ω̃(f ; ρ)

)
,

with C = C(λ, µ, p,Q). On the other hand, from definition (3.1.9) we get

N̂(u, f ; 1) ≤ C
(
‖u‖Lp(Q−

1 ) + ‖f‖Lp(Q−
1 )

)
.

Therefore, combining the estimates above, we conclude the proof of statement (i).

(ii) Assertion (ii) follows directly from estimate (3.3.31).

(iii) We observe that Proposition 3.3.5 with N ≡ N̂ and ω ≡ ω̃ yields statement (iii).

(iv) We recall that we have already proved estimate (3.1.16) in the case where P0 ∈ P̃ ,

according to Proposition 3.3.9 and namely to (3.3.41). Furthermore, we notice that the

coefficients of P0 are bounded by choosing ρ = λ
4 in (3.3.41).

Therefore it is only left to show that P0 belongs in particular to P , i.e. P0 satisfies

equation L0P0 = 0.

To this end, we define the function

uε(x, t) =
u(δε(x, t))− P0(δε(x, t))

ε2

which converges in Lp to a function v ≡ 0 by (3.3.41) for ε→ 0. Moreover from

L0(u
ε) = ε2

L0u(δε(x, t))

ε2
− ε2

L0P0(δε(x, t))

ε2

= f(δε(x, t))− L0P0(δε(x, t))
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and according to (3.2.1), it follows that for ε→ 0,

0 = L0v = f(0)− L0P0.

Since by assumption f(0) = 0, then we have showed that P0 satisfies equation L0P0 = 0.

This concludes the proof.
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Part II

Rough coefficients
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The second part of this dissertation is devoted to the study of the regularity of weak

solutions to Kolmogorov-type equations with rough coefficients. The study of the regularity

theory of degenerate Kolmogorov equations in divergence form with discontinuous coefficients

has been an open problem for decades. Indeed, such an investigation started only at the end

of the 1990s with [24,83,103,104] and is nowadays the main focus of the research community.

Starting from the aforementioned papers, where vanishing-mean-oscillations (VMO) diffusion

coefficients were considered, the weak regularity theory for Kolmogorov operators was devel-

oped in at least the following four directions.

Moser iteration. As far as rough coefficients aij ’s are concerned, Pascucci and Polidoro

proved in [99] that weak (sub)-solutions are locally bounded from above. Later on, Cinti,

Pascucci and Polidoro extended this result to the non-dilation invariant case (see [32]). The

non-dilation invariant case with lower order coefficients and positive divergence was eventu-

ally addressed by Anceschi, Polidoro and Ragusa in [9]).

Poincaré inequality and Hölder regularity. A weak Poincaré inequality and the

Hölder continuity of weak solutions were proved by Wang and Zhang in [117] for the dilation-

invariant case and in [116] for the non-dilation invariant one. Related results have been

recently proved in a rather new functional setting by Armstrong and Mourrat (see [3]) for the

kinetic Kolmogorov-Fokker-Planck equation

∆pu(p, y, t) = 〈p,Dyu(p, y, t)〉+ ∂tu(p, y, t), (II.1)

where u : Rm ×R
m ×R → R. Very recently, Litsgard and Nystrom in [78] took advantage of

the same functional setting of [3] to prove existence and uniqueness of solutions to the Cauchy

Dirichlet problem associated to equation (II.1) with rough coefficients.

Harnack inequality. Prior to this dissertation, the only results in this weak framework

have been established in the particular case of the kinetic Fokker-Planck operator (II.1).

In particular, Golse, Imbert, Mouhot and Vasseur proved the Hölder continuity and a

Harnack inequality for weak solutions to the kinetic Kolmogorov-Fokker-Planck equation

(see [49]). The Harnack inequality established in [49] is quite a remarkable result as it comes

more than sixty years after the analogous one for uniformly parabolic equations. The reason

for this delay lies in the fact that we the classical regularity techniques cannot be applied to

degenerate equations like the one in (II.1). To overcome this technical difficulty, the authors

of [49] adopted an approach based on velocity averaging method. Based on the results of [49],

Anceschi, Eleuteri and Polidoro established a geometric statement for the Harnack inequal-

ity (see [6]). More recently, a weak Harnack inequality for kinetic Fokker-Planck equations

with essentially bounded coefficients was proved by Guerand and Imbert in [51]. Moreover,

in [52], Guerand and Mouhot gave new proofs of weak Harnack and Harnack inequalities, as
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well as the De Giorgi intermediate-value lemma. Finally, it is worth mentioning the recent

preprint [42], where a weak Harnack inequality for hypoelliptic equations including (II.1) was

derived.

Gaussian bounds for the fundamental solution. An upper bound for the fundamen-

tal solution of Kolmogorov-type operators with measurable bounded coefficients is obtained

by Pascucci and Polidoro in [98] and by Lanconelli and Pascucci [71] adapting Aronson’s

method. Moreover, starting from the invariant Harnack inequality in [49], Lanconelli, Pas-

cucci and Polidoro proved Gaussian bounds for the fundamental solution of (II.1).

In the next chapters, we aim at developing the study of the weak regularity theory for

Kolmogorov operators even further. The results we present here are part of a project which

started in 2021. The project emerged from the scientific collaboration with Anceschi. The

final aim of the project was to provide a complete characterization of the De Giorgi-Nash-

Moser weak regularity theory in a suitable functional space for very general Kolmogorov

equations of the form

L u(x, t) : =
m0∑

i,j=1

∂xi
(
aij(x, t)∂xju(x, t)

)
+

N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t)

+
m0∑

i=1

bi(x, t)∂iu(x, t) + c(x, t)u(x, t) = f(x, t),

(II.2)

where z = (x, t) = (x1, . . . , xN , t) ∈ R
N+1 and 1 ≤ m0 ≤ N .

More precisely, in Chapter 4, we prove a Harnack inequality and the Hölder continuity

for weak solutions to the Kolmogorov equation (II.2) with measurable coefficients, integrable

lower order terms and nonzero source term. We then introduce a functional space W , suit-

able for the study of weak solutions to L u = f , that allows us to prove a weak Poincaré

inequality. Our analysis is based on a weak Harnack inequality, a weak Poincaré inequality

combined with an L2 −L∞ estimate and a classical covering argument (Ink-Spots Theorem).

The results we present in Chapter 4 are contained in the paper [11].

As a second step, we then prove the existence of a fundamental solution associated to

the Kolmogorov equation L u = f , with bounded measurable coefficients. Finally, we prove

Gaussian upper and lower bounds for the fundamental solution, and other related properties.

These results will be presented in Chapter 5 and are the content of the recent paper [12].
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Chapter 4

De Giorgi-Nash regularity theory

4.1 Motivation

This chapter is devoted to the study of the De Giorgi-Nash-Moser regularity theory for weak

solutions to the second order partial differential equation of Kolmogorov-type of the form

L u(x, t) : =
m0∑

i,j=1

∂xi
(
aij(x, t)∂xju(x, t)

)
+

N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t)

+
m0∑

i=1

bi(x, t)∂iu(x, t) + c(x, t)u(x, t) = f(x, t),

(4.1.1)

where z = (x, t) = (x1, . . . , xN , t) ∈ R
N+1 and 1 ≤ m0 ≤ N . In particular, following the

lines of [11], we prove a Harnack inequality and the Hölder continuity for weak solutions to

equation (4.1.1) under the hypotheses (H1)-(H2)-(H3) listed below.

First of all, we require that the matrices A0 = (aij(x, t))i,j=1,...,m0 and B = (bij)i,j=1,...,N

satisfy the following structural assumption.

(H1) The matrix A0 is symmetric with real measurable entries. Moreover, there exist two

positive constants λ and Λ such that

λ|ξ|2 ≤
m0∑

i,j=1

aij(x, t)ξiξj ≤ Λ|ξ|2 (4.1.2)

for every (x, t) ∈ R
N+1 and ξ ∈ R

m0 . The matrix B has constant entries.

In order to state assumption (H2), let us consider the principal part operator

L0u(x, t) :=
m0∑

i=1

∂2xiu(x, t) +
N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t)

= ∆m0u(x, t) + Y u(x, t),

(4.1.3)
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where (x, t) ∈ R
N+1 and, as usual, Y u denotes the Lie derivative introduced in (1.1.5).

Operator L0 in (4.1.3) belongs to the class of constant-coefficients operators we introduced in

Chapter 1, Section 1.1. In particular, it is known that, if the matrix B takes the block form

(1.1.12), then L0 is hypoelliptic and invariant with respect to a certain family of dilations.

In the sequel, we will therefore rely on the following assumption.

(H2) The principal part operator L0 of L is hypoelliptic and homogeneous of degree 2 with

respect to the family of dilations (δr)r>0 introduced in (1.1.13).

In the following of this chapter, we will therefore assume that B has the canonical form

(1.1.12) and we will also make use of the following notation, which allows us to introduce a

compact formulation for operator L . More precisely, here and in the sequel

D = (∂x1 , . . . , ∂xN ), 〈·, ·〉, div

respectively denote the gradient, the inner product and the divergence in R
N . In addition,

Dm0 = (∂x1 , . . . , ∂xm0
), divm0

denote as usual the partial gradient and the partial divergence in the first m0 components,

respectively. Moreover, we introduce the matrix

A(x, t) = (aij(x, t))1≤i,j≤N ,

where aij , for every i, j = 1, . . . ,m0, are the coefficients appearing in (4.1.1), while aij ≡ 0

whenever i > m0 or j > m0, and we let

b(x, t) := (b1(x, t), . . . , bm0(x, t), 0, . . . , 0) . (4.1.4)

Now, we are able to rewrite operator L in the following compact form

L u = div(ADu) + Y u+ 〈b,Du〉+ cu. (4.1.5)

We are now in a position to state our assumption on the integrability of b, c and of the

source term f in terms of the homogeneous dimension defined in (1.1.17).

(H3) c, f ∈ Lqloc(Ω), with q >
Q+2
2 , and b ∈ (L∞

loc(Ω))
m0 .

4.1.1 Main results

In order to expose our main results, we first need to introduce some preliminary notation.

From now on, we consider a set Ω = Ωm0 × ΩN−m0+1 of RN+1, where Ωm0 is a bounded

Lipschitz domain of Rm0 and ΩN−m0+1 is a bounded Lipschitz domain of RN−m0+1. This
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is not restrictive since the cylinders Q that we consider in our local analysis (see (4.1.12))

satisfy the Lipschitz boundary assumption. Then we split the coordinate x ∈ R
N as

x =
(
x(0), x(1), . . . , x(κ)

)
, x(0)∈ R

m0 , x(j)∈ R
mj , j ∈ {1, . . . , κ}, (4.1.6)

where we have that in accordance with the scaling of the differential equation (see (1.1.13))

every mj is a positive integer such that

κ∑

j=1

mj = N and N ≥ m0 ≥ m1 ≥ . . . ≥ mκ ≥ 1.

We denote by D(Ω) the set of C∞ functions compactly supported in Ω and by D′(Ω) the set

of distributions in Ω. From now on, H1
x(0)

denotes the Sobolev space of functions u ∈ L2(Ωm0)

with distribution gradient Dm0u lying in (L2(Ωm0))
m0 , i.e.

H1
x(0) :=

{
u ∈ L2(Ωm0) : Dm0u ∈ (L2(Ωm0))

m0
}
,

and we set

‖u‖2H1

x(0)
:= ‖u‖2L2(Ωm0 )

+ ‖Dm0u‖2L2(Ωm0 )
.

We let H1
0 denote the closure of C∞

c (Ωm0) in the norm of H1
x(0)

and we recall that C∞
c (Ωm0)

is dense in H1
x(0)

since Ωm0 is a bounded Lipschitz domain by assumption. Moreover, H1
0 is a

reflexive Hilbert space and thus we may consider its dual space

(
H1

0

)∗
= H−1

x(0)
and

(
H−1
x(0)

)∗
= H1

0 ,

where the notation we consider is the classical one. Hence, from now on we denote by H−1
x(0)

the dual of H1
0 acting on functions in H1

0 through the duality pairing 〈·, ·〉 := 〈·, ·〉H1

x(0)
,H1

0
.

In a standard manner, see for instance [3, 78], we let W denote the closure of C∞(Ω) in the

norm

‖u‖2W = ‖u‖2
L2

(
ΩN−m0+1;H1

x(0)

) + ‖Y u‖2
L2

(
ΩN−m0+1;H

−1

x(0)

), (4.1.7)

where the previous norm can be explicitly computed as follows:

‖u‖2W =

∫

ΩN−m0+1

‖u(·, y, t)‖2H1

x(0)
dy dt+

∫

ΩN−m0+1

‖Y u(·, y, t)‖2
H−1

x(0)

dy dt,

where y = (x(1), . . . , x(κ)). In particular, W is a Banach space and we remark that the dual

of L2(ΩN−m0+1;H
1
0 ) satisfies

(
L2(ΩN−m0+1;H

1
0 )
)∗

= L2(ΩN−m0+1;H
−1
0 ) and

(
L2(ΩN−m0+1;H

−1
0 )
)∗

= L2(ΩN−m0+1;H
1
0 ).
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From now on, we consider the shorthand notation L2H−1 to denote

L2
(
ΩN−m0+1;H

−1
0

)
.

The space of functions W is the most natural framework for the study of the weak regu-

larity theory for operator L . Still, to the best of our knowledge it has never been considered

in literature in the ultraparabolic setting. In particular, it is an extension of the functional

setting firstly formally proposed by Armstrong and Mourrat in [3] for the study of the kinetic

Kolmogorov-Fokker-Planck equation, that can be recovered from (4.1.1) by choosing N = 2d,

κ = 1, m0 = m1 = d and c ≡ 0. We refer the reader to Subsection 4.1.2 for an overview on

the existing literature.

We refer to [78, Section 2] for some properties of the space W . Lastly, we remark that

the major issue when dealing with the space W is that it requires to handle the duality

pairing between L2H1 and L2H−1. To this end, we take advantage of the following remark,

see [65, Chapter 4].

Remark 4.1.1. For every open subset A ⊂ R
n and for every function g ∈ H−1(A) there

exist two functions H0, H1 ∈ L2(A) such that

g = divm0H1 +H0 and ‖H0‖L2(A) + ‖H1‖L2(A) ≤ 2‖g‖H−1(A).

Now, we introduce the definition of weak solutions we consider in this dissertation.

Definition 4.1.2. A function u ∈ W is a weak solution to (4.1.1) with source term f ∈ L2(Ω)

if for every non-negative test function ϕ ∈ D(Ω), we have

∫

Ω

−〈ADu,Dϕ〉 − uY ϕ+ 〈b,Du〉ϕ+ cuϕ =

∫

Ω

fϕ. (4.1.8)

In the sequel, we will also consider weak sub-solutions to (4.1.1), namely functions u ∈ W
that satisfy the following inequality

∫

Ω

−〈ADu,Dϕ〉 − uY ϕ+ 〈b,Du〉ϕ+ cuϕ
(≤)

≥
∫

Ω

fϕ, (4.1.9)

for every non-negative test function ϕ ∈ D(Ω). A function u is a super-solution to (4.1.1) if

it satisfies (4.1.9) with (≤).

As mentioned above, the aim of this chapter is to prove the local Hölder continuity and

a Harnack inequality for solutions to (4.1.1) in the sense of Definition 4.1.2. Our method is

based on the combination of three fundamental ingredients - boundedness of weak solutions,

weak Poincaré inequality and Log-transformation - in the same spirit of the recent paper [51]

for the Fokker-Planck equation. First, we carry out a local study with Q0 at unit scale. For

some reasons we expose below in Section 4.5, Q0 takes the form BR0×BR0×. . .×BR0×(−1, 0]

for some large constant R0 only depending on the dimension Q and on the ellipticity constants

λ,Λ in (H1).
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As we rely on the Lie group structure associated to operator L0 in (4.1.3), the suitable

geometry when dealing with operator L is given by the non-Euclidean structure defined in

(1.1.6). Our results naturally reflect this non-Euclidean setting. Here and in the following of

the chapter, we denote by Q1 and Q̃1 the unit past cylinders

Q1 := B1 × B1 × . . .× B1 × (−1, 0),

Q̃1 := B1 × B1 × . . .× B1 × (−1, 0],
(4.1.10)

defined through the open balls

B1 = {x(j)∈ R
mj : |x| ≤ 1}, (4.1.11)

where j = 0, . . . , κ and | · | denotes the euclidean norm in R
mj . Now, for every z0 ∈ R

N+1

and r > 0, we set

Qr(z0) := z0 ◦ (δr (Q1)) = {z ∈ R
N+1 : z = z0 ◦ δr(ζ), ζ ∈ Q1}, (4.1.12)

where “◦′′ denote the composition law introduced in (1.1.6) and (δr)r>0 the family of dilations

defined in (1.1.13). Moreover, we introduce

Q+ = δω

(
Q̃1

)
= Bω × Bω3 × . . .× Bω2κ+1 × (−ω2, 0] and

Q̃− = (0, . . . , 0,−1 + 2ρ2) ◦ δρ (Q1) = Bρ × Bρ3 × . . .× Bρ2κ+1 × (−1 + ρ2,−1 + 2ρ2).

We are now in a position to state one of our main results, namely the following Harnack

inequality.

Figure 4.1: Geometric setting of the Harnack inequality for the degenerate kinetic Kolmogorov
operator. The radius ω is small enough to ensure that, when stacking cylinders over a small
one contained in Q−, the future cylinder Q+ is captured, see Lemma 4.B.1 and Figure 4.B.
On the other hand, the radius R0 of Q0 is large enough to allow us to apply Lemma 4.5.8 to
every stacked cylinder.
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Theorem 4.1.3 (Harnack inequality). Let u be a non-negative weak solution to L u = f in

Ω ⊃ Q̃1 under assumptions (H1)-(H2)-(H3). Then we have

sup
Q̃−

u ≤ C

(
inf
Q+

u+ ‖f‖Lq(Q0)

)
, (4.1.13)

where 0 < ω < 1 is given by Theorem 4.5.1 and 0 < ρ < ω√
2
. Finally, the constants C, ω, ρ

only depend on the homogeneous dimension Q defined in (1.1.17), on the ellipticity constants

λ, Λ in (4.1.2) and on the norms ‖b‖L∞(Qext) and ‖c‖Lq(Qext).

To the best of our knowledge, this is the first Harnack inequality available for weak solu-

tions to (4.1.1), since in [118] the authors proved the local Hölder continuity for weak solutions

only. It is obtained by combining Theorem 4.3.1 (L2−L∞ estimate) and Theorem 4.5.1 (weak

Harnack inequality) and it is an extension of the analogous result for the particular case of

the Fokker-Planck equation presented in [49].

Moreover, the weak Harnack inequality proved in Theorem 4.5.1 also implies the Hölder

regularity of weak solutions in the sense of Definition 1.2.1. Specifically, the following result

holds true.

Theorem 4.1.4 (Hölder regularity). There exists α ∈ (0, 1) only depending on dimension Q,

λ, Λ such that all weak solutions u to (4.1.1) under assumption (H1)-(H2)-(H3) in Ω ⊃ Q1

satisfy

[u]Cα(Q 1
2
) ≤ C

(
‖u‖L2(Q1) + ‖f‖Lq(Q1)

)
,

where the constant C only depends on the homogeneous dimension Q defined in (1.1.17), on

the ellipticity constants λ, Λ in (4.1.2) and on the norms ‖b‖L∞(Qext) and ‖c‖Lq(Qext).

The estimates presented in Theorem 4.1.3 and Theorem 4.1.4 can be stated and scaled in

any arbitrary cylinder Qr(z0), thanks to the to translation and scaling invariance of the class

of equations of the form (4.1.1), (see Chapter 1, Subsection 1.1.1).

4.1.2 Comparison with existing results

We now compare the main results of this chapter with the current literature concerning the

weak regularity theory of solutions to (4.1.1).

The first results concerning weak solutions to (4.1.1) were obtained in the space of “strong”

weak solutions (i.e. Y u ∈ L2) proposed by Pascucci and Polidoro in [99] and, for some time,

only concerned Moser’s iterative scheme, see [32, 99]. Later on, Wang and Zhang proved

the local Hölder continuity for the particular case of the Kolmogorov-Fokker-Planck equation

[117]. Subsequently, in 2017 the same authors extended their procedure to the ultraparabolic

case in the preprint [118]. Such procedure is based on the combination of Sobolev and

Poincaré inequalities for “strong” weak solutions to (4.1.1), combined with the properties of

a suitably chosen G function. The authors finally recover the local Hölder continuity of the

94



CHAPTER 4. DE GIORGI-NASH REGULARITY THEORY

“strong” weak solution by providing an estimate of the oscillations following Kruzkhov’s level

set method.

As in [118], we prove that weak solutions to equation (4.1.1) are Hölder continuous, but we

rely on a different method that also allows to prove a Harnack inequality. Indeed, we extend

the techniques employed by Guerand and Imbert in [51] for the study of the particular case of

the Kolmogorov-Fokker-Planck equation in two different directions: we allow a higher number

κ of commutators (this corresponds to a higher step property for the underlying Lie group

structure) and we deal with possibly unbounded lower order coefficients and right-hand side.

Our approach is based on the combination of a weak Poincaré inequality (Theorem 4.4.1)

for functions belonging to the space W (so only depending on the geometrical structure of

the underlying Lie group and not on the structure of the operator L , i.e. on the lower

order coefficients), with a L2 − L∞ estimate (Theorem 4.3.1) for weak sub-solutions and a

weak Harnack inequality (Theorem 4.5.1) for weak super-solutions, see Remark 4.5.3. This

approach based on a weak Harnack inequality was considered for the first time by Moser

[87] and Trudinger [112] in the setting of parabolic equations. Later on, Di Benedetto and

Trudinger [39] extended it to non-negative functions in the elliptic De Giorgi’s class, which

correspond to super-solutions to elliptic equations. Eventually, Wang proved in [115] a weak

Harnack inequality for the corresponding parabolic De Giorgi’s class. Concerning De Giorgi

Hölder regularity theory, we also mention the recent work [50].

The main motivation behind our studies is to provide the reader with a Harnack inequality

for weak solutions to (4.1.1). To our knowledge, it is the first time such result is explicitly

stated and proved for equation (4.1.1) in the framework W . Indeed, prior to [51], a Harnack

inequality for weak solutions for Kolmogorov-Fokker-Planck equations with rough coefficients

was already proved in [49]. Still, it has never been extended to the more general framework

of our interest since the argument is based on a priori fractional estimates only available for

the particular case of the Fokker-Planck equation, see [23].

Another motivation behind our studies is the need to determine which are the lowest

possible integrability assumptions for c, b and f that allow us to prove L2 − L∞ estimates

and a Harnack inequality for weak solutions. In particular, our attention is mainly focused

on the behavior of the first order term b, which plays an important role in some applications,

such as the Mean Field Games theory. Indeed, a Harnack inequality for weak solutions is

the fundamental ingredient in the analysis of the maximal Lp regularity and well-posedness

theory for Mean Field systems with degenerate diffusion, which were studied in the parabolic

setting [34] and only very recently there has been a first attempt to consider the ultraparabolic

setting [44].

As far as the L2 − L∞ estimates are concerned, we were able to work under the following

assumption

(M) c, f ∈ Lqloc(Ω) and b ∈ (Lqloc(Ω))
m0 for some q > 3

4 (Q+ 2). Moreover, we assume

div b ≥ 0 in Ω,

which is clearly less restrictive than (H3). Moreover, we observe that our assumption (M)
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is less restrictive on the term b then the one proposed in [118], which reads as follows:

c, f ∈ Lq(Ω) for some q > Q+2
2 and b ∈ (Lq(Ω))m0 for some q > Q+ 2 in Ω.

A scaling argument and the analogous parabolic case suggest that the optimal regularity for

the coefficients is b ∈ (Lq(Ω))m0 , c ∈ Lq(Ω) for some q > Q+2
2 .

Moreover, the physical interpretation of the sign of the divergence of b in assumption (M)

can be understood by considering the Vlasov-Poisson-Fokker-Planck equation, e.g. [63], for

which the lower order term b represents the electrostatic or gravitational forces. Equations

whose term b satisfies the structural assumption div b ≥ 0 arise also in some other applications,

like the ones presented in [66, 109]. Moreover, the sign assumption on the divergence of b is

also quite relevant in the case of parabolic equations, since it has several applications. For

instance, we recall the applications to incompressible flows and magnetostrophic turbulence

models for the Earth’s fluid core, e.g. [85]. In particular, nowadays it is known that the

sign (or the divergence free, i.e. div b = 0) assumption can be used to relax the regularity

assumptions on b under which it is possible to prove a Harnack inequality and other results,

see for instance [109]. Nevertheless, in our case as in the parabolic setting presented in [109],

one still has to require that the divergence of b exists in the sense of distributions and that b

is at least locally integrable up to a certain power (see also [9, 91]).

However, to prove our Harnack inequality Theorem 4.1.3, we had to require more restric-

tive assumption on the regularity of b, namely (H3). This is due to a delicate step in the

proof of Lemma 4.5.8 below.

Eventually, we point out that the main difficulties when dealing with weak solutions to

(4.1.1) arise from the non-standard structure of the space W . Indeed, it has been since the

paper [99] that the classical Sobolev embedding and the Poincaré inequality required for the

derivation of the Harnack inequality were replaced by specific inequalities for (sub or super)

solutions to (4.1.1). Because of this need, it is not possible to lower the integrability require-

ments on the term b up to Q+2
2 (the hypoelliptic counterpart of the parabolic homogeneous

dimension N
2 ) nor in our framework nor in the one of [118]. See [9, 91] and the references

therein for further information on this fact in the parabolic and hypoelliptic setting, respec-

tively. Hence, the proof of such classical results for functions simply belonging to space W
would provide us with the necessary tools to carry out an elegant study of the weak regularity

theory, that would also be independent of the structure of the operator L appearing in (4.1.1)

and more specifically on the lower order coefficients b and c.

A first step towards this direction is represented by our extension of two interesting tools,

which may be considered among the main novelties of this chapter: a weak Poincaré in-

equality (Theorem 4.4.1) for functions u ∈ W ; the Ink Spots Theorem (Theorem 4.A.1 in

Appendix 4.A) on R
N equipped with the non-Euclidean geometry introduced in Section 4.2.

The Poincaré inequality stated in Theorem 4.4.1 is called weak because it allows us to es-

timate the L2 norm of the function with respect to a certain error, which replaces the role

of the mean in our framework. Nevertheless, it provides us with enough information to con-

clude our argument and, differently from the one proposed in [118], it holds for functions
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belonging to W . Hence, it is not subjected anymore to the structure of L . As far as the Ink

Spots Theorem is concerned, it allows us to recover a spreading of positivity result from a

measure-to-pointwise estimate when used in combination with a suitable covering argument

(see Appendix 4.B). The proof we propose in Appendix 4.A of this result is an extension of

the one proposed by Imbert and Silvestre in [59] for a Lie group structure of step 1. We also

complete our analysis by proving a Lebesgue differentiation theorem and introducing a family

of cylinders suitable to carry out a covering argument in our setting (see Appendices 4.A and

4.B).

Since the structure of the newly introduced space W differs from the space of “strong”

weak solutions considered in the existing literature, also the already established results (such

as the Moser’s iterative scheme) need to be analyzed again under this new light. Moreover,

whenever the method allows it, we carry out a quantitative analysis explicitly computing the

constants involved in our analysis. For these reasons, in the forthcoming sections all of the

computations are explicitly stated providing the reader with a self-sufficient analysis.

4.1.3 Outline of the chapter

In Section 4.2 we recall some known facts about operators L and we state some preliminary

results. The proofs of some intermediate theorems (a Sobolev-type and a Caccioppoli-type

inequality), together with the Moser’s iterative method, are presented in Section 4.3. Section

4.4 is devoted to the proof of a weak Poincaré inequality. In Section 4.5 we derive the weak

Harnack inequality by combining the expansion of positivity and a covering argument known

as Ink Spots theorem, whose proof is contained in Appendix 4.A. Moreover, in Section 4.6,

we derive our main results Theorem 4.1.3 and Theorem 4.1.4 . Finally, in Appendix 4.B we

state a technical lemma regarding stacked cylinders.

4.2 Preliminaries

Since L0 is dilation-invariant with respect to (δr)r>0, also its fundamental solution Γ is a

homogeneous function of degree −Q, namely Γ satisfies (1.1.34). This property implies a Lp

estimate for Newtonian potentials (see for instance [45]).

Theorem 4.2.1. Let α ∈ (0, Q+2) and let G ∈ C(RN+1\{0}) be a δλ−homogeneous function

of degree α−Q− 2. If f ∈ Lp(RN+1) for some p ∈ (1,+∞), then the function

Gf (z) :=

∫

RN+1

G(ζ−1 ◦ z)f(ζ)dζ,

is defined almost everywhere and there exists a constant c = c(Q, p) such that

‖Gf‖Lq(RN+1 ≤ c max
‖z‖K=1

|G(z)|‖f‖Lp(RN+1),
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where q is defined by
1

q
=

1

p
− α

Q+ 2
.

Now, we are able to define the Γ−potential of the function f ∈ L1(RN+1) as follows

Γ(f)(z) =

∫

RN+1

Γ(z, ζ)f(ζ)dζ, z ∈ R
N+1. (4.2.1)

We also remark that the potential Γ(Dm0f) : RN+1 −→ R
m0 is well-defined for any f ∈

Lp(RN+1), at least in the distributional sense, that is

Γ(Dm0f)(z) := −
∫

RN+1

D(ξ)
m0

Γ(z, ξ) f(ξ) dξ,

where D
(ξ)
m0Γ(x, t, ξ, τ) is the gradient with respect to ξ1, . . . , ξm0 . Based on Theorem 4.2.1,

we derive the following explicit potential estimates by substituting α = 1 and α = 2 when

considering the Γ-potential for f and D0f , respectively. For the proof of this corollary we

refer to [32, 99].

Corollary 4.2.2. Let f ∈ Lp(Qr). There exists a positive constant c = c(T,B) such that

‖Γ(f)‖Lp∗∗(Qr) ≤ c‖f‖Lp(Qr), (4.2.2)

‖Γ(Dm0f)‖Lp∗(Qr) ≤ c‖f‖Lp(Qr), (4.2.3)

where 1
p∗ = 1

p − 1
Q+2 and 1

p∗∗ = 1
p − 2

Q+2 .

Lastly, we show that it is possible to use the fundamental solution Γ as a test function in the

definition of sub and super-solution. The following result extends [99, Lemma 2.5], [32, Lemma

3] and [9, Lemma 2.6] to the functional setting W .

Lemma 4.2.3. Let (H1)-(H2) hold. Let c ∈ Lq(Ω) and b ∈ (Lq(Ω))m0 for some q > Q+2
2

and let f ∈ L2(Ω). Moreover, let us assume that div b ≥ 0 in Ω. Let v be a non-negative weak

sub-solution to L v = f in Ω. For every ϕ ∈ D(Ω), ϕ ≥ 0, and for almost every z ∈ R
N+1,

we have

∫

Ω

−〈ADv,D(Γ(z, ·)ϕ)〉+ Γ(z, ·)ϕY v + 〈b,Dv〉Γ(z, ·)ϕ+ cvΓ(z, ·)ϕ− Γ(z, ·)ϕf ≥ 0.

An analogous result holds for weak super-solutions to L u = f .

Proof. For every ε > 0, we set

ψε(z, ζ) = 1− χε,2ε
(
‖ζ−1 ◦ z‖

)
(4.2.4)
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where χρ,r ∈ C∞([0,+∞)) is the cut-off function defined by

χρ,r(s) =

{
0, if s ≥ r,

1, if 0 ≤ s ≤ ρ,
|χ′
ρ,r| ≤

2

r − ρ
, (4.2.5)

with 1
2 ≤ ρ < r ≤ 1. As v is a weak-sub-solution, for every ε > 0 and z ∈ R

N+1, we have

0 ≤ −I1,ε(z) + I2,ε(z)− I3,ε(z) + I4,ε(z) + I5,ε(z) + I6,ε(z)

where

I1,ε(z) =

∫

Ω

[〈ADv,DΓ(z, ·)〉ϕψε(z, ·)](ζ)dζ

I2,ε(z) =

∫

Ω

[Γ(z, ·)ψε(z, ·)(−〈ADv,Dϕ)〉+ ϕY v)](ζ)dζ

I3,ε(z) =

∫

Ω

[〈ADv,Dψε(z, ·)〉ϕΓ(z, ·)](ζ)dζ

I4,ε(z) =

∫

Ω

〈b,Dv〉Γ(z, ·)ϕψε(z, ·)](ζ)dζ

I5,ε(z) =

∫

Ω

[cvΓ(z, ·)ϕψε(z, ·)](ζ)dζ

I6,ε(z) = −
∫

Ω

[Γ(z, ·)ϕψε(z, ·)f ](ζ)dζ.

Keeping in mind Corollary 4.2.2, it is clear that the integrals that define Ii,ε(z), i = 1, 2, 3 are

potentials and therefore convergent for almost every z ∈ R
N+1. Thus, by a similar argument

to the one used in [99] in the proof of Lemma 2.5, we infer that for almost every z ∈ R
N+1

lim
ε→0+

I1,ε(z) =

∫

Ω

[〈ADv,DΓ(z, ·)〉ϕ](ζ)dζ lim
ε→0+

I3,ε(z) = 0

lim
ε→0+

I2,ε(z) =

∫

Ω

[Γ(z, ·)(−〈ADv,Dϕ)〉+ ϕY v)](ζ)dζ,

where the passage to the limit for the term I2,ε is possible thanks to Remark 4.1.1 combined

with the Lebesgue dominated convergence theorem.

We now take care of the term I4,ε. Integrating by parts and taking advantage of the

assumption divb ≥ 0, we obtain

I4,ε(z) = −
∫

Ω

[divbΓ(z, ·)ϕψε(z, ·)v](ζ)dζ −
∫

Ω

[〈b,D (Γ(z, ·)ϕψε(z, ·))〉 v](ζ)dζ

≤ −
∫

Ω

[〈b,D (Γ(z, ·)ϕψε(z, ·))〉 v](ζ)dζ.

We are left with the estimate of a potential and therefore we exploit once again Corollary
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4.2.2. Since we have b ∈ (Lq(Ω))m0 and v ∈ L2(Ω), we get

|Γ(z, ·)||ϕ||b||Dv| ∈ L2α(Ω),

where

α = α(q) =
q(Q+ 2)

q(Q− 2) + 2(Q+ 2)
> 1 if and only if q >

Q+ 2

2
.

Hence, |〈b,D (Γ(z, ·)ϕψε(z, ·))〉v| ≤ |〈b,D (Γ(z, ·)ϕ)〉v| ∈ L1(Ω). Thus, the Lebesgue conver-

gence theorem yields

lim
ε→0+

I4,ε(z) = lim
ε→0+

−
∫

Ω

[〈b,D (Γ(z, ·)ϕψε(z, ·))〉 v](ζ)dζ

=

∫

Ω

[〈b,DΓ(z, ·)ϕ〉v](ζ)dζ.

Similarly, we can estimate the term I5,ε noting that |c||v||Γ(z, ·)||ϕ| ∈ L2α(Ω) with α as above.

As a consequence, we have

|cvΓ(z, ·)ϕψε(z, ·)| ≤ |cvΓ(z, ·)ϕ| ∈ L1(Ω), thus lim
ε→0+

I5,ε(z) =

∫

Ω

[cvΓ(z, ·)ϕ](ζ)dζ.

Now, we are left with the estimate of term I6,ε, which is again a Γ-potential such that

|Γ(z, ·)||ϕ||f | ∈ L2κ(Ω),

where κ = Q+2
Q−2 . Thus, we infer |Γ(z, ·)ϕψε(z, ·)f | ≤ |Γ(z, ·)ϕf | ∈ L1(Ω). Therefore we

conclude the proof by applying the dominated convergence theorem to I6,ε(z).

We conclude this section by recalling the following lemma, for the proof of which we refer

to [32, Lemma 6].

Lemma 4.2.4. There exists a positive constant c ∈ (0, 1) such that

z ◦ Qc(r−ρ) ⊆ Qr, for every 0 < ρ < r ≤ 1 and z ∈ Qρ. (4.2.6)

Remark 4.2.5. We recall that for every cylinder Qr(z0) defined in (4.1.12) there exists a

positive constant c [117, equation (21)] such that

Br1(x
(0)
0 )× Br31(x

(1)
0 )× . . .× Br2κ+1

1
(x

(κ)
0 )× (t0 − r21, t0]

⊂ Qr(z0) ⊂ Br2(x
(0)
0 )× Br32(x

(1)
0 )× . . .× Br2κ+1

2
(x

(κ)
0 )× (t0 − r22, t0],

where r1 = r/c and r2 = cr. From now on, by abuse of notation we will sometimes consider

the newly introduced ball representation instead of the definition of cylinder in (4.1.12).
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4.3 Local boundedness for weak solutions to L u = f

This section is devoted to the proof of the local boundedness of weak solutions to (4.1.1).

As pointed out in Section 4.1, we provide the reader with the full computations because the

functional framework considered here is weaker than the one proposed in the already existing

literature, see [9, 32, 99, 118].

The procedure we follow here was first introduced by Moser in [88] and it is based on

the iterative combination of a Caccioppoli and a Sobolev inequality. When dealing with the

classical uniformly elliptic and parabolic settings, the Caccioppoli inequality provides us with

an a priori estimate for the L2 norm of the complete gradient of the solution in terms of the

L2 norm of the solution. This allows us to consider the classical Sobolev embedding to obtain

a gain of integrability for the solution.

This is not the case when dealing with operator (4.1.1). Indeed, the degeneracy of the

diffusion part allows us to estimate only the partial gradient Dm0u of the solution to L u = f

(see Theorem 4.3.4). In addition, according to our definition of weak solution, u does not lie

in a classical Sobolev space. In order to overcome these issues, we adopt a technique based

on the representation of a solution u to L u = f in terms of the fundamental solution Γ (see

(1.1.31)) of the principal part operator L0. Indeed, following the idea presented for the first

time in [99] and later on applied in [9, 32, 118], we have that if u is a solution to L u = f ,

then

L0u = (L0 − L ) u+ f = divm0 ((Im0 − A)Dm0u) + f. (4.3.1)

Hence, as pointed out at [99, p. 396], it seems quite natural to consider a representation

formula in terms of the fundamental solution of the principal part operator L0 ”[...] since the

classical Sobolev inequality can be proved by representing any function u ∈ H1 as a convolution

with the fundamental solution of the Laplace operator.”

Theorem 4.3.1. Let z0 ∈ Ω and 0 < r
2 ≤ ρ < r ≤ 1, be such that Qr(z0) ⊆ Ω. Let u be a non-

negative weak solution to L u = f in Ω under assumptions (H1)-(H2)-(M). Then for every

p ≥ 1 there exists two positive constants C = C
(
p, λ,Λ, Q, ‖ b ‖Lq(Qr(z0)), ‖ c ‖Lq(Qr(z0))

)
, such

that

sup
Qρ(z0)

upl ≤ C

(r − ρ)
Q+2
β

‖upl ‖Lβ(Qr(z0)),

where β = q
q−1 , q introduced in (M) and ul := u + ‖f‖Lq(QR). The same statement holds

true if u is a non-negative weak sub-solution to (4.1.1) for p ≥ 1; if u is a non-negative

weak super-solution to (4.1.1) for 0 < p < 1
2 . In particular, by choosing p = 1, for every

sub-solution to (4.1.1) it holds

sup
Qρ(z0)

u ≤ C

(r − ρ)
Q+2
β

(
‖u‖Lβ(Qr(z0)) + ‖f‖Lq(Qr)

)
,

In literature, we find various proofs of the Moser’s iterative scheme for a Kolmogorov
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operator of the type L , see for instance [32,99,118]. Nevertheless, the functional framework

proposed in those works is stronger than ours.

Remark 4.3.2. Theorem 4.3.1 holds true under the assumptions of [118], see Subsection

4.1.2. In particular, in this case, the constant α is replaced by α = 1 + 2
Q , that was firstly

obtained in [99]. This is due the fact that the Sobolev inequality, Theorem 4.3.3, holds true

with a greater exponent if we assume more integrability for the coefficient b. Thus, this allows

us to obtain the local boundedness for weak solutions to L u = f with lower integrability for

c and f , i.e. c, f ∈ Lq(Ω), with q > Q+2
2 .

Finally, Theorem 4.3.1 holds true also for weak sub and super solutions, but not for

the same values of the exponent p. This is due to the technique adopted for the proof

of the Caccioppoli-type inequality (Theorem 4.3.4), see also [99, Remark 1.3], and it is a

classical feature of all the local boundedness results appearing in the existing literature, see

for instance [99, 118].

4.3.1 Sobolev-type Inequality

This subsection is devoted to the proof of a Sobolev-type inequality for weak solutions to

L u = f . Our approach is inspired by the paper [99] and allows us to construct an “ad hoc”

Sobolev embedding for weak solutions to L u = f by overcoming the difficulties due to the

degeneracy of the second order part of L . However, the disadvantage of this method is that

we are forced to lower the Sobolev exponent, that in our case depends on q and it is defined

as

α :=
q(Q+ 2)

q(Q− 2) + 2(Q+ 2)
. (4.3.2)

We remark that the following statement holds true under lower integrability assumption than

the one required in (H3).

Theorem 4.3.3. Let (H1)-(H2) hold. Let c ∈ Lq(Ω), b ∈ (Lq(Ω))m0 for some q > Q+2
2 with

div b ≥ 0 and let f ∈ L2(Ω). Let v be a non-negative weak sub-solution of L v = f in Q1.

Then there exists a constant C = C(Q, λ,Λ) > 0 such that v ∈ L2α(Q1), and the following

inequality holds

‖ v ‖L2α(Qρ(z0))≤C

(
‖ b ‖Lq(Qr(z0)) +

r − ρ+ 1

r − ρ

)
‖ Dm0v ‖L2(Qr(z0)) +

+ C

(
‖ c ‖Lq(Qr(z0)) +

ρ+ 1

ρ(r − ρ)

)
‖ v ‖L2(Qr(z0)) +C ‖ f ‖L2(Qr(z0))

for every ρ, r with 1
2 ≤ ρ < r ≤ 1 and for every z0 ∈ Ω, where α = α(q) is defined as (4.3.2).

The same statement holds for non-negative super-solutions.

Proof. Let v be a non-negative weak sub-solution to L v = f . We represent v in terms of the

fundamental solution Γ. To this end, we consider the cut-off function χρ,r defined in (4.2.5)
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for 1
2 ≤ ρ < r ≤ 1. Then, if we consider the test function

ψ(x, t) = χρ,r(‖ (x, t) ‖), (4.3.3)

the following estimates hold true

|Y ψ| ≤ c0
ρ(r − ρ)

, |∂xjψ| ≤
c1

r − ρ
for j = 1, . . . ,m0 (4.3.4)

where c0, c1 are dimensional constants. For every z ∈ Qρ, we have

v(z) = vψ(z) =

∫

Qr

[〈Im0D(vψ), DΓ(z, ·)〉 − Γ(z, ·)Y (vψ)] (ζ)d(ζ) (4.3.5)

= I0(z) + I1(z) + I2(z) + I3(z)

where

I0(z) =

∫

Qr

[〈b,Dv〉Γ(z, ·)ψ] (ζ)dζ +

∫

Qr

[cvΓ(z, ·)ψ] (ζ)dζ −
∫

Qr

[Γ(z, ·)ψf ](ζ)dζ

I1(z) =

∫

Qr

[〈Im0Dψ,DΓ(z, ·)〉v] (ζ)dζ −
∫

Qr

[Γ(z, ·)vY ψ] (ζ)dζ = I
′
1 + I

′′
1 ,

I2(z) =

∫

Qr

[〈(Im0 − A)Dv,DΓ(z, ·)〉ψ] (ζ)dζ −
∫

Qr

[Γ(z, ·)〈ADv,Dψ〉] (ζ)dζ

I3(z) =

∫

Qr

[〈ADv,D(Γ(z, ·)ψ)〉] (ζ)dζ −
∫

Qr

[(Γ(z, ·)ψ)Y v] (ζ)dζ

−
∫

Qr

[〈b,Dv〉Γ(z, ·)ψ] (ζ)dζ −
∫

Qr

[cvΓ(z, ·)ψ] (ζ)dζ +
∫

Qr

[Γ(z, ·)ψf ](ζ)dζ.

Since v is a non-negative weak sub-solution to L v = f , it follows from Lemma 4.2.3 that

I3 ≤ 0, then

0 ≤ v(z) ≤ I0(z) + I1(z) + I2(z) for a.e. z ∈ Qρ.

To prove our claim is sufficient to estimate v by a sum of Γ−potentials. We start by estimating

I0. In order to do so, we recall that

〈b,Dv〉, cv ∈ L2 q
q+2 for b, c ∈ Lq, q >

Q+ 2

2
and v ∈ L2.

Thus by Corollary 4.2.2 we get

Γ ∗ 〈b,Dv〉,Γ ∗ (cv) ∈ L2α,

where α = α(q) is defined in (4.3.2). In addition, for f ∈ L2, we have

Γ ∗ f ∈ L2κ, κ =
Q+ 2

Q− 2
.
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Observing that κ > α, we obtain that Γ ∗ f ∈ L2α and therefore

‖ I0(ζ) ‖L2α(Qr) ≤ Γ ∗ (〈b,Dm0v〉ψ) + Γ ∗ (cvψ) ‖L2α(Qr) + ‖ Γ ∗ f ‖L2α(Qr)

≤ C ·
(
‖ b ‖Lq(Qr)‖ Dm0v ‖L2(Qr) + ‖ c ‖Lq(Qr)‖ v ‖L2(Qr) + ‖ f ‖L2(Qr)

)
.

We now deal with the I1. I
′
1 can be estimated by (4.2.3) of Corollary 4.2.2 as follows

‖ I ′1 ‖L2α(Qρ)≤ C ‖ I ′1 ‖L2∗ (Qρ)≤ C ‖ vDm0ψ ‖L2(RN+1)≤
C

r − ρ
‖ v ‖L2(Qr),

where the last inequality follows from (4.3.4). To estimate I ′′1 we use (4.2.2)

‖ I ′′1 ‖L2α(Qρ) ≤ C ‖ I ′′1 ‖L2∗ (Qρ)≤ meas(Qρ)
2/Q ‖ I ′′1 ‖L2∗∗ (Qr)

≤ C ‖ vY ψ ‖L2(RN+1)≤
C

ρ(r − ρ)
‖ v ‖L2(Qr) .

We can use the same technique to prove that

‖ I2 ‖L2α(Qρ)≤ C

(
1 +

1

r − ρ

)
‖ Dv ‖L2(Qρ),

for some constant C = C(Q, λ,Λ). A similar argument proves the thesis when v is a super-

solution to L v = f . In this case we introduce the following auxiliary operator

L0 = ∆m0 + Ỹ , Ỹ ≡ −〈x,BD〉 − ∂t . (4.3.6)

Then we proceed analogously as in [99], Section 3, proof of Theorem 3.3.

4.3.2 Caccioppoli-type inequality

As a second step, we prove a Caccioppoli-type inequality for powers of non-negative sub-

solutions to L u = f . In order to introduce the auxiliary function ul that will play a relevant

role in the proof of the Moser’s iterative scheme, we hereby report the complete proof of this

result, which can also be found with zero right-hand side in [9, 32, 99].

Theorem 4.3.4. Let (H1)-(H2)-(M) hold and u be a non-negative weak sub-solution to

L u = f in Qr, with 0 < ρ < r ≤ 1. For any p ∈ (12 ,+∞) such that up ∈ L2(Qr) the following

estimate holds

2p− 1

p
λ‖Dm0u

p
l ‖2L2(Qρ)

≤
(

c1
(r − ρ)2

p

2p− 1

Λ

λ
+

c0
ρ(r − ρ)

)
‖upl ‖2L2(Qr)

+

(
c0

r − ρ
‖b‖2Lq(Qr)

+ p‖c‖2Lq(Qr)
+ p

)
‖upl ‖2L2β(Qr)

where ul = u+ ‖f‖Lq(Qr), β = β(q) = q
q−1 , and c0, c1 are defined in (4.3.4).

104



CHAPTER 4. DE GIORGI-NASH REGULARITY THEORY

Proof. Let us consider 0 < ρ < r ≤ 1 and the test function ψ introduced in (4.3.3). The idea

is to test the definition of weak sub-solution (4.1.9) against the test function

ϕ = pψ2u2p−1
l , with p ≥ 1

2
, and ul := u+ l,

where l > 0 is chosen such that l = ‖f‖Lq(Qr). For the sake of clarity, from now on we assume

u is a bounded weak sub-solution to (4.1.1) such that u ∈ C∞
c (Qr). This assumption is not

restrictive thanks to the definition of the space W and if u where not bounded, then we would

consider the test function

ϕ = pψ2u2p−1
l,M , where ul,M = min{ul,M} and let M go to infinity.

Hence, we test (4.1.9) against ϕ as defined above:

∫

Qr

〈ADu,Dϕ〉
A

≤ −
∫

Qr

uY ϕ

Y

+

∫

Qr

〈b,Du〉ϕ
B

+

∫

Qr

cuϕ

C

−
∫

Qr

fϕ

F

. (4.3.7)

We begin estimating the boxed term A:

∫

Qr

〈ADu,Dϕ〉 = p(2p− 1)

∫

Qr

〈ADu,Dul〉u2p−2
l ψ2 + 2p

∫

Qr

〈ADu,Dψ〉u2p−1
l ψ

=
2p− 1

p

∫

Qr

〈ADupl , Du
p
l 〉ψ2 + 2

∫

Qr

〈ADupl , Dψ〉u
p
l ψ

≥ 2p− 1

p
λ

∫

Qr

|Dm0u
p
l |2ψ2 − 2

∫

Qr

|〈ADupl , Dψ〉|u
p
l ψ

≥ 2p− 1

p
λ

∫

Qr

|Dm0u
p
l |2ψ2 − Λε1

∫

Qr

|Dm0u
p
l |2ψ − 1

ε1

∫

Qr

|Dm0ψ|2|upl |2ψ

where in the first line we considered Dul = Du; in the third line we applied (H1); in the last

line we employed Young inequality with ε1 > 0 that will be chosen later on.

Next, we proceed by estimating the boxed term Y :

−
∫

Qr

uY ϕ

Y

= −p
∫

Qr

uY (u2p−1
l ψ2) =

1

2

∫

Qr

Y u2pl ψ2

= −
∫

Qr

u2pl Y ψ ψ ≤ c0
ρ(r − ρ)

‖upl ‖2L2(Qr)

where we integrated by parts and we applied estimate (4.3.4) for the derivatives of the function

ψ. As far as we are concerned with the term B:

∫

Qr

〈b,Du〉ϕ
B

= p

∫

Qr

〈b,Dul〉ψ2u2p−1
l =

1

2

∫

Qr

〈b,Du2pl 〉ψ2

= −1

2

∫

Qr

divb u2pl ψ
2 −

∫

Qr

〈b,Dψ〉u2pl ψ
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≤ −
∫

Qr

〈b,Dψ〉u2pl ψ ≤ c0
(r − ρ)

‖b‖Lq(Qr)‖upl ‖2L2β(Qr)

where we applied assumption (M), Hölder’s inequality and we defined β := q
q−1 . Lastly, we

are left with he estimates of the terms C and F :

∫

Qr

cuϕ

C

≤ p

∫

Qr

|c||u|ψ2u2p−1
l ≤ p

∫

Qr

|c|u2pl ψ2 ≤ p‖c‖Lq(Qr) ‖upl ‖2L2β(Qr)

−
∫

Qr

fϕ

F

≤ p

∫

Qr

|f |u2p−1
l ψ2 = p

∫

Qr

Cfu2pl ψ2 ≤ p‖Cf‖Lq(Qr) ‖upl ‖2L2β(Qr)
≤ p‖upl ‖2L2β(Qr)

,

where we set Cf = |f |
‖f‖Lq(Qr)

so that we have |f |
ul

≤ Cf and ‖Cf‖Lq(Qr) ≤ 1. By choosing

ε1 =
2p−1
2p2

λ
Λ , we conclude the proof.

4.3.3 Proof of Theorem 4.3.1

First of all, we consider a weak solution u to (4.1.1) and without loss of generality we assume

z0 = 0. As in Theorem 4.3.4, we set ul := u+ l = u+ ‖f‖Lq(Qr) and we remark from now on,

l needs to be regarded as a constant. Our aim is to show there exists a positive constant c

only depending on q, Q, λ and Λ such that

sup
Qρ

upl ≤
C

(r − ρ)
Q+2
β

‖upl ‖Lβ(Qr). (4.3.8)

To this end, we show that it is sufficient to prove that

sup
Q 1

2

upl ≤ c1‖upl ‖Lβ(Q1), (4.3.9)

where c1 is a constant not depending on r. We briefly explain how to infer (4.3.9) from (4.3.8)

and we refer to [32] for further details. Indeed, by Lemma 4.2.4, if we set θ = C(r − ρ) we

obtain that (4.3.8) is equivalent to

sup
Q θ

2

vp ≤ c
Q+2
β

θ
Q+2
β

‖vp‖Lβ(Qθ). (4.3.10)

Then, we recall that if uθ is a solution to L ul = (f + cl) and θ > 0, then we have that

v := u ◦ δθ + l solves L θv = f θ + cθl in Q1, see [32], where

L
θv := L

θu(δθ(z)) =
(
div(AθDu) + 〈Bθx,Du〉 − ∂tu+ θ〈bθ, Du〉+ θ2cu

)
(z),

with Aθ(z) = A(δθ(z)), B
θ = θ2DθBD 1

θ
, bθ(z) = θb(δθ(z)) , cθ(z) = θ2c(δθ(z)), f

θ(z) =

θ2f(δθ(z)). Hence, by performing the change of variable w(ζ) = v(z ◦ δθ(ζ)), with ζ ∈ Q1, we
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imply (4.3.9).

We are now in a position to address the proof of (4.3.8). First of all, if we set 1
2 = ρ and

r = 1, the following estimates hold

1

(ρ(r − ρ))
1
2 (r − ρ)

≤ 1

(r − ρ)2
,

1

ρ(r − ρ)
≤ 1

(r − ρ)2
,

1

(ρ(r − ρ))2
≤ 1

(r − ρ)2
, r2 ≤ 1

(r − ρ)2
.

(4.3.11)

Combining Theorems 4.3.3 and 4.3.4 for a non-negative sub-solution u, we obtain the following

estimate. If s > 1, δ > 0 verify the condition

∣∣∣s− 1

2

∣∣∣ ≥ δ,

then we have

‖ usl ‖L2α(Qρ)≤ C̃
(
s, λ,Λ, Q, ‖ b ‖Lq(Qr), ‖ c ‖Lq(Qr)

)
‖ usl ‖L2β(Qr), (4.3.12)

where C̃ is a positive constant that we estimate as follows

C̃(s, λ,Λ, Q, ‖ b ‖Lq(Qr), ‖ c ‖Lq(Qr)) ≤
K(λ,Λ, Q, ‖ b ‖Lq(Qr), ‖ c ‖Lq(Qr))

√
s

(r − ρ)2
, (4.3.13)

thanks to (4.3.11). Then we set v = u
p
2

l . Fixed a suitable δ > 0, that we will specify later on,

and a suitable p ≥ 1 such that

∣∣∣p
2

(
α

β

)n
− 1

2

∣∣∣ ≥ 2δ, ∀n ∈ N ∪ {0}, (4.3.14)

we iterate inequality (4.3.12) by choosing

ρn =
1

2

(
1 +

1

2n

)
, pn =

(
α

β

)n p

2
, n ∈ N ∪ {0}.

Thus, by combining (4.3.12) and (4.3.13), for every n ∈ N ∪ {0} the following holds

‖ v(αβ )n ‖L2α(Qρn+1)
≤K(λ,Λ, Q, ‖ b ‖Lq(Qr), ‖ c ‖Lq(Qr))

√
p

(ρn − ρn+1)
2 ‖ v(αβ )n ‖L2β(Qρn )

.

From now on we denote K = K(p, λ,Λ, Q, ‖ b ‖Lq(Qr), ‖ c ‖Lq(Qr)). Since

‖ v(α
β )

n

‖L2κ=
(
‖ v ‖

L
2α(α

β )
n

)(α
β )

n

and ‖ v(α
β )

n

‖L2β=
(
‖ v ‖

L
2β(α

β )
n

)(α
β )

n
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we are able to rewrite the previous estimate in the following form for every n ∈ N ∪ {0}

‖ v ‖
L

2α(α
β )

n

(Qρn+1)
≤
(

K
√
p

(ρn − ρn+1)
2

)( β
α)

n

‖ v ‖
L

2β(α
β )

n

(Qρn )
.

Iterating this inequality and letting n go to infinity, we get

sup
Qρ

v ≤ K̃ ‖ v ‖L2β(Qr), where K̃ =
+∞∏

j=0

[
K
√
p22(j+2)

]( β
α)

j

is a finite constant, since the product over j corresponds to a converging series, only depending

on universal quantities Q, and q. This proves inequality (4.3.9) for p satisfying condition

(4.3.14).

We now make a suitable choice of δ > 0, only dependent on the homogeneous dimension

Q, and on q in order to show that (4.3.14) holds for every p ≥ 1. We notice that, if p is a

number of the form

pm =
1

2

(
α

β

)m(α
β
+ 1

)
, m ∈ Z,

then (4.3.14) is satisfied with the following choice of δ for every m ∈ Z

δ =
α− β

8β
.

Therefore (4.3.9) holds for such a choice of p, with K̃ only dependent on Q, q, λ, Λ and

‖ b ‖Lq(Qr), ‖ c ‖Lq(Qr). On the other hand, if p is an arbitrary positive number, we consider

m ∈ Z such that

pm ≤ p < pm+1

and conclude the proof thanks to the monotonicity of the Lp means, see for instance [99].

Hence, the proof is complete. �

4.4 Weak Poincaré inequality

This section is devoted to the proof of a weak Poincaré inequality (see Theorem 4.4.1) for

functions u ∈ W . As one immediately understands, this Poincaré inequality is independent

of the equation L u = f and only relies on the structure of the space W . Its importance lies

in the fact that it is a crucial tool in the proof of the Harnack inequality (see Theorem 4.1.3)

and of the local Hölder continuity (see Theorem 4.1.4) of a solution u to (4.1.1). In order to

state our result, we first need to introduce the following sets

Qzero = {(x, t) : |xj | ≤ ηαj , j = 1, . . . , N,−1− η2 < t ≤ −1}, (4.4.1)

Qext = {(x, t) : |xj | ≤ 2αjR, j = 1, . . . , N,−1− η2 < t ≤ 0},
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where R > 1, η ∈ (0, 1) and the exponents αj , for j = 1, . . . , N , are defined in (1.1.18).

Thanks to Remark 4.2.5, Qzero and Qext are completely equivalent to (4.1.12), but in this

form they are more convenient for the construction of the cut-off function ψ1 introduced in

Lemma 4.4.3. Now, we state our weak Poincaré inequality.

Theorem 4.4.1 (Weak Poincaré inequality). Let η ∈ (0, 1) and let Qzero and Qext be defined

as in (4.4.1). Then there exist R > 1 and ϑ0 ∈ (0, 1), that only depend on Q and η, such that

for any non-negative function u ∈ W such that u ≤M in Q1 = B1 ×B1 × . . .×B1 × (−1, 0)

for a positive constant M and

|{u = 0} ∩ Qzero| ≥
1

4
|Qzero| , (4.4.2)

we have

‖(u− ϑ0M)+‖L2(Q1) ≤ CP
(
‖Dm0u‖L2(Qext) + ‖Y u‖L2H−1(Qext)

)
, (4.4.3)

where C > 0 is a constant only depending on Q.

Figure 4.2: Geometric setting of the Poincaré inequality (in the kinetic case).

The notation we consider here needs to be understood in the sense of (4.1.7). In particular,

we have that L2H−1(Qext) is short for

L2(B23R × . . .× B22κ+1R × (−1− η2, 0], H−1
x(0)

(B2R)), (4.4.4)

where we split x =
(
x(0), x(1), . . . , x(κ)

)
according to (4.1.6).

A Poincaré inequality was already introduced by Wang and Zhang specifically for strong

weak sub-solutions of ultraparabolic equations, i.e. u ∈ L2H1 and Y u ∈ L2, in the preprint

[116, Lemmata 3.3 and Lemma 3.4] and the corresponding lemmata in [117]. This statement

differs from our weak Poincaré inequality in three substantial aspects. First, the result we

present here holds true for function u belonging to the space W , and thus does not require

the additional assumption for u to be a weak sub-solution to (4.1.1). Secondly, in our setting

the transport operator Y u is merely assumed to be in L2H−1. Finally, the proof we propose

here differs from the ones in [116, 117], as we avoid using repeatedly the exact form of the

109



CHAPTER 4. DE GIORGI-NASH REGULARITY THEORY

fundamental solution of L and exploit arguments closer to the classical theory of parabolic

equations (developed, for instance, in [76]).

In order to prove Theorem 4.4.1, the idea is to first derive a local Poincaré inequality in

terms of an error function h defined as the solution to a suitable Cauchy problem. We then

explicitly control the error function h through the L∞ norm of the function u (see Lemma

4.4.4). This allows us to forget about the equation under study and to obtain a purely

functional result. Since in the definition of our functional space W only the partial gradient

Dm0 and the Lie derivative Y appear, we are allowed to work with the following Kolmogorov

operator

L̃0u(x, t) := −
m0∑

i=1

∂2xiu(x, t)−
N∑

i,j=1

bijxj∂xiu(x, t) + ∂tu(x, t), (x, t) ∈ R
N+1

:= −∆m0u(x, t) + Ỹ u(x, t),

(4.4.5)

with zero first order terms and constant coefficients. Thus, following an approach similar to

the one proposed in [51, 116], the error function h is defined as the solution to the Cauchy

problem {
L̃0h = uL̃0ψ, in R

N × (−ρ2, 0)
h = 0, in R

N × {−ρ2} (4.4.6)

where L̃0 is the operator defined in (4.4.5) and ψ is a given cut-off function.

Lemma 4.4.2. Let Qext be as defined in (4.4.1) and let ψ : RN+1 → [0, 1] be a C∞ function,

with support in Qext and such that ψ = 1 in Q1. Then for any u ∈ W, the following holds

‖(u− h)+‖L2(Q1) ≤ C
(
‖Dm0u‖L2(Qext) + ‖Y u‖L2H−1(Qext)

)
(4.4.7)

where h is the solution to (4.4.6), C is a constant only depending on |ρ2| and ‖Dm0ψ‖L∞(Qext),

and the notation we consider needs to be intended in the sense of (4.4.4).

This local weak Poincaré inequality is an extension to operator L and to space W of the one

proved in [51] and a simplification of the one proved in [116,117]. Moreover, the result holds

true for any cylinder of the form Qext = BR0 × . . .×BRκ × (−ρ2, 0], provided that Q1 ⊂ Qext.

The proof of Lemma 4.4.2 is mainly based on the properties of the principal part operator

L0 and of W .

Proof of Lemma 4.4.2. As u ∈ W , Ỹ u ∈ L2H−1 and therefore, in virtue of Remark 4.1.1,

there exist H0, H1 ∈ L2(Qext) such that

Ỹ u = divm0H1 +H0, (4.4.8)

with ‖H0‖L2(Qext) + ‖H1‖L2(Qext) ≤ 2‖Ỹ u‖L2H−1 . Thus, the function g := uψ satisfies the
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following equation in the sense of distributions

L̃0g = uL̃0ψ + divm0H̄1 + H̄0, in D′(RN × (−ρ2, 0)),

where H̄1 = (H1 −Dm0u)ψ and H̄0 = H0ψ − 〈H1, Dm0ψ〉 − 〈Dm0ψ,Dm0u〉. Thus, owing to

(4.4.6), we obtain

L̃0(g − h) = divm0H̄1 + H̄0 =: H̄, in D′(RN × (−ρ2, 0)). (4.4.9)

Now, choosing 2(g − h)+ψ
2 as a test function in (4.4.9) and integrating on the domain D =

R
N × [−ρ2, 0], we get

2

∫

D

|Dm0((g − h)+)|2 ψ2 + 4

∫

D

ψ(g − h)+〈Dm0((g − h)+), Dm0(ψ)〉
A

+ 2

∫

D

(g − h)+ψ
2Ỹ ((g − h)+)

B

− 2

∫

D

(g − h)+ψ
2Dm0 · H̄1

C

− 2

∫

D

(g − h)+ψ
2H̄0

D

= 0.

(4.4.10)

We estimate the boxed term A by applying Young’s inequality and choosing ε = 1. As far as

we are concerned with the boxed term B, we rewrite it as

2

∫

D

(g − h)+ψ
2Ỹ ((g − h)+)

B

= −
∫

D

ψ2Ỹ0((g − h)2+) +

∫

D

ψ2∂t((g − h)2+)

= −
∫

D

[ψ2Ỹ0((g − h)2+)

+

∫

D

∂t((g − h)2+ψ
2)− (g − h)2+∂t(ψ

2)]

=

∫

D

(g − h)2+Ỹ (ψ2) +

∫

D

∂t((g − h)2+ψ
2),

where in the first line we defined Ỹ0 = 〈Bx,D〉, in the second line we used the equality

∂t((g−h)2+)ψ
2 = ∂t((g−h)2+ψ

2)− ∂t(ψ
2)(g−h)2+ and in the third we integrated by parts the

term involving Y0. Finally, we take care of the boxed term C and D using Young’s inequality

as follows

− 2

∫

D

(g − h)+ψ
2Dm0 · H̄1

C

= 2

∫

D

〈Dm0((g − h)+ψ
2), H̄1〉

≤ 1

2
‖ψDm0(g − h)+‖2L2(D) +

1

2
‖(g − h)+Dm0ψ‖2L2(D)

+ 10‖H̄1‖2L2(D),
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− 2

∫

D

(g − h)+ψ
2H̄0

D

≤ 2ε‖(g − h)+‖2L2(D) +
1

2ε
‖H̄0‖2L2(D).

Combining the previous estimates, for every T ∈ (−ρ2, 0) and ε > 0 to be chosen later,

we rewrite (4.4.10) as

∫ T

−ρ2

∫ N

R

∂t((g − h)2+ψ
2)dxdt+ 2

∫

D

|Dm0(g − h)+|2 ψ2 +

∫

D

(g − h)2+Ỹ (ψ2)

≤ 1

2
‖Dm0(g − h)+ψ‖2L2(D) + 10‖H̄1‖2L2(D) + 2ε‖(g − h)+‖2L2(D) +

1

2ε
‖H̄0‖2L2(D).

We now apply the fundamental theorem of calculus to the term involving the time derivative

and we infer

∫ N

R

((g − h)2+ψ
2)(x, T )dx+ 2

∫

D

|Dm0(g − h)+|2 ψ2 +

∫

D

(g − h)2+Ỹ (ψ2) (4.4.11)

≤ 1

2
‖Dm0(g − h)+ψ‖2L2(D) + 10‖H̄1‖2L2(D) + 2ε‖(g − h)+‖2L2(D) +

1

2ε
‖H̄0‖2L2(D).

We then integrate in T from −ρ2 to 0 and we obtain

‖(g − h)+ψ‖2L2(D) (4.4.12)

≤ −3

2
ρ2‖Dm0(g − h)+ψ‖2L2(D) + 10ρ2‖H̄1‖2L2(D) + 2ρ2ε‖(g − h)+‖2L2(D) +

ρ2

2ε
‖H̄0‖2L2(D)

≤ 10ρ2‖H̄1‖2L2(D) + 2ρ2ε‖(g − h)+‖2L2(D) +
ρ2

2ε
‖H̄0‖2L2(D),

as (g − h)+ψ equals (u− h)+ and Ỹ (ψ2) equals 0 in Q1. In addition, the following estimates

hold

‖H̄0‖L2(D) ≤ ‖H0‖L2(Qext) + ‖Dm0ψ‖L∞(Qext)

(
‖Dm0u‖L2(Qext) + ‖H1‖L2(Qext)

)
, (4.4.13)

‖H̄1‖L2(D) ≤ ‖H1‖L2(Qext) + ‖Dm0u‖L2(Qext).

By combining (4.4.11), (4.4.12) and (4.4.13) and choosing ε = 1
4ρ2 the claim is proved. �

Given the local Poincaré inequality proved in Lemma 4.4.2, we just need to estimate

the error function h defined in (4.4.6) in order to complete the proof of Theorem 4.4.1. In

particular, our aim is to show that the error function h is bounded from above by ϑ0M , where

ϑ0 ∈ (0, 1) is a constant only depending on Q, λ and Λ. In order to prove this result, we

first need to explicitly construct an appropriate cut-off function, that differs from the one

considered in [51, Lemma 3.3] due to the more involved structure of our drift term Y . We

observe that our construction of the suitable cut-off function is constructive, in contrast with

the one proposed in [51]. More precisely, the cut-off function used in [51] is obtained as

the product of three smooth functions that are not constructed explicitly but have the right

dependency on velocity, space and time. However, in our case, it is necessary to explicitly
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contruct the smooth functions in the aforementioned product to make sure that the obtained

cut-off function behaves nicely when applying the Lie derivative Y . This is the reason why

we consider rather convoluted smooth functions in the proof of Lemma 4.4.3 (see (4.4.15) and

(4.4.16) below).

Lemma 4.4.3. Given η ∈ (0, 1] and T ∈ (0, η2), there exists a smooth function ψ1 : RN ×
[−1− η2, 0], supported in {(x, t) : |xj | ≤ 2αj , j = 1, . . . , N, t ∈ [−1− η2, 0]}, equal to 1 in Q1,

and such that the following conditions hold

Ỹ ψ1 ≥ 0 everywhere

Ỹ ψ1 ≥ 1 if t ∈ (−1− η2,−1− T ].
(4.4.14)

Proof. Let us consider the cut-off function χ1 ∈ C∞([0,+∞)) defined by

χ1(s) =

{
0, if s > 2√

2
,

1, if 0 ≤ s ≤ C + 1,
χ′
1 ≤ 0, (4.4.15)

where C > 1 is a constant we shall specify later on.

Now, we introduce a second cut-off function χ2 ∈ C∞(RN+1) defined as

χ2(x, t) = χ1




N∑

j>m0

2x2j

22αj
√
2
− C t


 , (4.4.16)

which is supported in Qext and equal to 1 in Q1.

Finally, we consider a smooth function Φt : [−1− η2, 0] → [0, 1] equal to 1 in [−1, 0], with

Φt(0) = 1, Φ′
t ≥ 0 in [−1− η2, 0] and Φ′

t = 1 in [−1− η2,−1− T ]. We are now in a position

to define the cut-off function ψ1 as follows

ψ1(x, t) = χ1(‖(x1, . . . , xm0)‖K)χ2(x, t)Φt(t).

We only have to check that conditions (4.4.14) hold, as the other desired properties immedi-

ately follow from the definition of ψ1. To this end, we compute the following derivative

Ỹ χ2 = χ′
1((...))


−

N∑

i=1

∑

j>m0

2xibijxj2
−2αj−1/2 − C


 ,

where (...) denotes
(∑N

j=m0

2x2j
22αj

√
2
− C t

)
. It can be shown (see [117, Lemma 3.2]) that there

exists a constant C > 1 such that

C ≥

∣∣∣∣∣∣

N∑

i=1

∑

j>m0

2xibijxj2
−2αj−1/2

∣∣∣∣∣∣
,
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for every (x, t) ∈ Qext. Thus, with such a choice of C and keeping in mind that Φ′
t ≥ 0 in

[−1− η2, 0] and Φ′
t = 1 in [−1− η2,−1− T ], we have

Ỹ ψ1 = χ1Φt Ỹ χ2 + χ1 χ2Φ
′
t ≥ 0 everywhere,

Ỹ ψ1 = χ1Φt Ỹ χ2 + χ1 χ2Φ
′
t ≥ 1 if t ∈ (−1− η2,−1− T ].

Thus, we are now in a position to state and prove the following result regarding the control

of the localization term h defined in (4.4.6).

Lemma 4.4.4. Let η ∈ (0, 1] and let Qext be as defined in (4.4.1). Then there exist R =

R(Q, η) > 1, ϑ0 = ϑ0(Q, η) ∈ (0, 1) and a C∞ cut-off function ψ : RN+1 → [0, 1], with support

in Qext and equal to 1 in Q1, such that for all u ∈ W non-negative bounded functions defined

on Qext and satisfying

|{u = 0} ∩ Qzero| ≥
1

4
|Qzero| , (4.4.17)

the function h solution to the Cauchy problem (4.4.6) with ρ2 = 1 + η2 satisfies

h ≤ ϑ0‖u‖L∞(Qext), in Q1. (4.4.18)

Proof. We assume that u is not identically vanishing in Qext. Indeed, if u = 0 in Qext, then

h = 0 and inequality (4.4.18) is trivially satisfied. Moreover, we can reduce to the case of a

function u with L∞- norm equal to 1 by taking u/‖u‖L∞(Qext).

We now fix T = η2/8 and we introduce a time lap T between the top of the cylinder Qzero

and the bottom of the cylinder Q1. As |Qzero ∩ {t ≥ −1− T}| = 1
8 |Qzero| by definition of T ,

inequality (4.4.17) yields the following inequality

|Qzero ∩ {t ≤ −1− T} ∩ {u = 0}| ≥ 1

8
|Qzero|. (4.4.19)

We now consider the cut-off function

ψ(x, t) = ψ1(x/R, t),

whew R > 1 is a constant we will specify later and ψ1 is given by Lemma 4.4.3. We observe

that, by definition of ψ1, ψ is supported in Qext and equal to 1 in {(x, t) : |xj | ≤ R, j =

1, . . . , N, t ∈ (−1, 0]}. In addition, it satifies

L̃0ψ(x, t) = −R−2∆m0ψ1(x/R, t) + Ỹ ψ1(x/R, t).

We now consider the function h solution to the Cauchy problem (4.4.6). Thus, by definition
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of h, we have

L̃0(h− ψ) =
1− u

R2
∆m0ψ(x, t) + (u− 1)Ỹ ψ(x, t).

We now rewrite the difference h− ψ as

h− ψ = ER − PR, (4.4.20)

where ER and PR stand respectively for error and positive term and are solutions in R
N ×

(−1− η2, 0) to the following Cauchy problems

{
L̃0ER = 1−u

R2 ∆m0ψ(x, t), in R
N × (−1− η2, 0)

ER = 0, in R
N × {−1− η2} ,

{
L̃0PR = (1− u)Ỹ ψ(x, t), in R

N × (−1− η2, 0)

PR = 0, in R
N × {−1− η2} .

Our aim is to show that there exist two positive constants C ′ = C ′(Q, λ,Λ, η) and δ0 =

δ0(Q, λ,Λ, η) such that

ER ≤ C ′

R2
and PR ≥ δ0, in Q1. (4.4.21)

First, we focus on the term involving ER, and we remark that

L̃0ER ≤ C ′

R2
, (4.4.22)

where C ′ = ‖∆m0ψ1‖L∞ is a constant only depending on Q, λ, Λ and η. We then obtain the

desidered estimate for ER applying the maximum principle.

As far as the term involving PR is concerned, we recall that, owing to the definition of ψ,

there holds Ỹ ψ ≥ 1 for t ∈ (−1 − η2,−1 − T ). Moreover, as we restricted ourselves to the

case ‖u‖L∞(Qext) = 1, we have 1− u ≥ 0. Thus, the following inequality holds true

L̃0PR ≥ IZ , in R
N × (−1− η2, 0),

where IZ is the indicator function of the set Z := Qzero ∩ {t ≤ −1 − T} ∩ {u = 0}. Let us

now consider P solution to the following Cauchy problem

{
L̃0P = IZ , in R

N × (−1− η2, 0)

P = 0, in R
N × {−1− η2} (4.4.23)

Then, the maximum principle [21] for the principle part operator L̃0 yields

P ≤ PR, in R
N × (−1− η2, 0).

115



CHAPTER 4. DE GIORGI-NASH REGULARITY THEORY

As Q1 ⊂ R
N × (−1− η2, 0), the previous inequality implies in particular that P ≤ PR in Q1.

Owing to (4.4.23), we represent P using the fundamental solution Γ̃ of L̃0. More precisely,

there exists −1− η2 ≤ T0 < 0 such that

P (x, t) =

∫ 0

t

∫

RN

Γ̃(x, t; ξ, τ)IZ(ξ, τ)dξdτ,

for every (x, t) ∈ R
N × (T0, 0). In particular, for every (x, t) ∈ Q1, there holds

P (x, t) =

∫ 0

t

∫

RN

Γ̃(x, t; ξ, τ)IZ(ξ, τ)dξ dτ =

∫

Z
Γ̃(x, t; ξ, τ)dξd τ

≥ min
Q1×Qzero
∩{t≤−1−T}

Γ̃

∫

Z
dξ dτ

= min
Q1×Qzero
∩{t≤−1−T}

Γ̃ |Qzero ∩ {t ≤ −1− T} ∩ {u = 0}|

≥ 1

8
min

Q1×Qzero
∩{t≤−1−T}

Γ̃ |Qzero| := δ0,

where in the last line we have used inequality (4.4.19). We remark that the fundamental

solution Γ̃ is bounded from above and below by Gaussian bounds, see for instance [8, Theorem

1.6]. As a consequence,

PR ≥ P ≥ δ0, in Q1 (4.4.24)

and claim (4.4.21) is now proved. Using estimates (4.4.22) and (4.4.24) in (4.4.20), we finally

obtain

h ≤ 1− δ0 +
C ′

R2
, in Q1.

We now observe that for R large enough we have C ′/R2 ≤ δ0/2. Thus, setting ϑ0 = 1−δ0/2 <
1, we get the desired inequality (4.4.18).

We remark that the proof (and therefore the statement) of Lemma 4.4.4 remains un-

changed if we replace (4.4.17) with the less restrictive assumption |{u = 0}∩Qzero| ≥ γ0|Qzero|
for some constant γ0 such that 0 < γ0 < 1.

Proof of Theorem 4.4.1. The proof follows immediately combining Lemmata 4.4.2 and 4.4.4.

�

4.5 Weak Harnack inequality

This section is devoted to the proof of a weak Harnack inequality, an intermediate result

necessary to prove Theorem 4.1.3. The approach we present here is an extension of the

116



CHAPTER 4. DE GIORGI-NASH REGULARITY THEORY

classical method proposed in [68] for the elliptic and parabolic setting, and later on followed

by Guerand and Imbert in [51] for the kinetic Kolmogorov-Fokker-Planck equation. This

approach is very convenient for the study of the weak regularity theory, since it only relies

on the functional structure of the space W and on the non-Euclidean geometrical setting

presented in Section 4.2.

Theorem 4.5.1 (Weak Harnack inequality). Let R0 and ω be two given positive constants.

Let Q0 = BR0×BR0× . . .×BR0×(−1, 0] and let u be a non-negative weak solution to L u = f

in Ω ⊃ Q0 under assumptions (H1)-(H2)-(H3). Then we have

(∫

Q−

up
) 1

p

≤ C

(
inf
Q+

u+ ‖f‖Lq(Q0)

)
, (4.5.1)

where Q+ = Bω×Bω3×. . .×Bω2κ+1×(−ω2, 0] and Q− = Bω×Bω3×. . .×Bω2κ+1×(−1,−1+ω2].

Moreover, the constants C, p, ω and R0 only depend on the homogeneous dimension Q defined

in (1.1.17), q and on the ellipticity constants λ and Λ in (4.1.2). Additionally, if the term c

is of positive sign, the statement holds true also for non-negative super-solutions to (4.1.1).

Remark 4.5.2. As in [51], the radius ω is small enough so that when “stacking cylinders”

over a small initial one contained in Q−, the cylinder Q+ is captured, see Lemma 4.B.1. As

far as we are concerned with R0, it is large enough so that it is possible to apply the expansion

of positivity lemma (see Lemma 4.5.8) to every stacked cylinder.

Finally, in order to carry out the proof of Theorem 4.5.1, we also require that the quantity

R0/ω is large enough. This condition is due to the fact that we want to apply the expansion

of positivity Lemma 4.5.10 to cylinders which are contained in Q− and therefore are of radius

smaller than ω. To this end, we need to impose that R0 ≥ Cω, where C is a constant that

only depends on Q, λ and Λ and is explicitly computed in (4.5.16).

Remark 4.5.3. Differently from the weak Harnack inequality presented in [51], our statement

holds true in general for weak solutions and not for weak super-solutions, hence the claim

“Such a weak Harnack inequality can be generalized to the ultraparabolic equations with rough

coefficients” stated in [51, Remark 4, p.2] is only partially true. This discrepancy is due to the

presence of the lower order term cu in our analysis, which wasn’t considered by the authors

of [51]. Indeed, when c ≥ 0 we exactly recover the statement proposed in [51], but if we only

consider assumption (H3) we are forced to restrict ourselves to the case of weak solutions.

This is mainly due to the methodology we follow to prove the expansion of positivity, Lemma

4.5.8, which is based on our local boundedness result Theorem 4.3.1, that holds true when the

right-hand side is in Lqloc, with q >
(Q+2)

2 . The extension of this result to weak super-solutions

to (4.1.1) without any sign assumption on the term c will be the content of a forthcoming

paper.

The proof of the weak Harnack inequality is obtained combining the fact that super-

solutions to (4.1.1) expand positivity along times (Lemma 4.5.8) with the covering argument

presented in Appendix 4.B.
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We observe that, in contrast with parabolic equations, it is not possible to apply a classical

Poincaré inequality in the spirit of [87]. Indeed, in our case there is a positive quantity

replacing the average in the usual Poincaré inequality (see the statement of Theorem 4.4.1).

Moreover, the lower order term involving c presents additional difficulties to the ones already

addressed in [51], see Remark 4.5.3 above. We circumvent these difficulties by establishing a

weak expansion of positivity result for solutions (respectively, for super-solutions when c ≥ 0)

to (4.1.1). More precisely, given a small cylider Qpos lying in the past of Q1 (see Definition

(4.5.6)), we show that the positivity of a non-negative (super-)solution u lying above 1 in a

“big” part of Qpos is spread to the whole Q1 (see Lemma 4.5.8). In other words, a positivity

in measure in a smaller cylinder Qpos is transformed into a pointwise positivity in a bigger

cylinder Q1.

First of all, we introduce a convex function whose properties parallel the ones of the less

regular function max(0,− ln). Such a function was first constructed by Kruzhkov in [68] and

later used in [51,118]. For a proof of its existence we refer the reader to [118, Lemma 5.1].

Definition 4.5.4. Let G : (0,+∞) → (0,+∞) be a non-increasing and C2 convex function

such that

• G′′ ≥ (G
′
)2 and G

′ ≤ 0 in (0,+∞),

• G is supported in (0, 1],

• G(t) ∼ − ln t as t→ 0+,

• −G′
(t) ≤ 1

t for t ∈ (0, 14 ],

• G(t) = 0 for t ≥ 1.

Our first aim is to show that, given a non-negative weak super-solution u to (4.1.1), the

function G transforms it into a non-negative weak sub-solution to a suitably defined equation.

Lemma 4.5.5. Let ε ∈
(
0, 14
]
and u be a non-negative weak super-solution to (4.1.1) under

the assumptions (H1)-(H2)-(H3) in a cylindrical shaped open set Qext = BR0 ×BR1 × . . .×
BRκ × (t0, T ] ⊂ Ω, where Ri > 0 for i = 0, . . . , κ. Then g := G(u + εγ), for γ > 0, is a

non-negative weak-sub-solution to the following equation:

div(ADg) + Y g + 〈b,Dg〉 − λ|Dm0g|2 = −ε−γ |cu− f |. (4.5.2)

Proof. We consider g = G(u+εγ), whereG is the convex function defined above. In particular,

we have that |G′(u + εγ)| ≤ |G′(εγ)| ≤ ε−γ as u is non-negative and G′(u + εγ) ≤ 0 by

assumption. For this reason, we test the definition of super-solution u against the function

ϕ = −G′(u+ εγ)ψ, where ψ is a non-negative test function belonging to D(Ω):

∫

Qext

〈ADu,D(G′(u+ εγ)ψ)〉 − Y u(G′(u+ εγ)ψ)
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− 〈b,Du〉(G′(u+ εγ)ψ)− cu(G′(u+ εγ)ψ)

≤ −
∫

Qext

f(G′(u+ εγ)ψ).

Now, owing to Dm0g = G′(u+εγ)Dm0u and Y g = G′(u+εγ)Y u, we can rewrite the previous

inequality as follows:

∫

Qext

〈ADg,Dψ〉 − Y g ψ − 〈b,Dg〉ψ +

∫

Qext

〈ADu,Du〉G′′(u+ εγ)ψ

≤
∫

Qext

cuG′(u+ εγ)ψ −
∫

Qext

fG′(u+ εγ)ψ.

Hence, we are left with the estimate of the terms appearing on the right-hand side. Let us

begin with the first one:

∫

Qext

〈ADu,Du〉G′′(u+ εγ)ψ ≥ λ

∫

Qext

〈Dm0u,Dm0u〉(G′(u+ εγ))2ψ = λ

∫

Qext

|Dm0g|2ψ,

where we employed assumption (H1) and G′′(u + εγ) ≥ (G′(u + εγ))2. As far as we are

concerned with the second and third term, we observe that

∫

Qext

cuG′(u+ εγ)ψ −
∫

Qext

fG′(u+ εγ)ψ ≤
∫

Qext

|cu− f ||G′(u+ εγ)|ψ ≤ ε−γ
∫

Qext

|cu− f |ψ,

where the right-hand side is well-posed, since by definition of super-solution u ∈ W and by

assumption (H3) the term c ∈ Lqloc, with q >
(Q+2)

2 . Eventually, the function g satisfies the

following inequality

∫

Qext

−〈ADg,Dψ〉+ Y g ψ + 〈b,Dg〉ψ − λ|Dm0g|2ψ ≥ −ε−γ
∫

Qext

|cu− f |ψ, (4.5.3)

hence g is a non-negative weak-sub-solution to (4.5.2).

We are now in a position to provide an estimate of the L2-norm of the gradient Dm0g.

Lemma 4.5.6. Let Qext = BR0 × BR1 × . . . × BRκ × (t0, T0] ⊂ Ω and Qint = Br0 × Br1 ×
. . .× Brκ × (t1, T1], where 0 < ri < Ri for every i = 0, . . . , κ and t0 < t1 < T1 < T0. Let g be

a non-negative weak sub-solution to (4.5.2) under assumptions (H1)-(H2)-(H3), then

λ

2

∫

Qint

|Dm0g|2 ≤ CG

∫

Qext

g + ε−γ
(
‖c‖L2(Qext)‖u‖L2(Qext) + ‖f‖L1(Qext)

)
, (4.5.4)

where CG = CG(‖b‖L∞(Qext),Λ, Q, C1, C2) is a positive constant and C1, C2 are defined in
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(4.5.5).

Proof. Let us consider a test function ψ ∈ C∞
0 valued in [0, 1], supported in Qext and equal

to 1 in Qint. Moreover, we assume that the following estimates hold

|Dm0ψ| ≤ C1, |Y ψ| ≤ C2 (4.5.5)

for two non-negative constants C1, C2. Now, we may test (4.5.3) against ψ2:

∫

Qext

〈ADg,Dψ2〉 − Y g ψ2 − 〈b,Dg〉ψ2 + λ|Dm0g|2ψ2 ≤ ε−γ
∫

Qext

|cu− f |ψ2.

Let us begin by estimating the term involving the matrix A through the Young’s inequality:

−
∫

Qext

2ψ〈ADg,Dψ〉 ≤ ε

∫

Qext

|〈ADg,Dg〉|ψ +
1

ε

∫

Qext

|〈ADψ,Dψ〉|ψ

≤ εΛ

∫

Qext

|Dm0g|2ψ +
Λ

ε

∫

Qext

|Dm0ψ|2ψ.

Now, let us address the term involving c, u and f :

ε−γ
∫

Qext

|cu− f |ψ2 ≤ ε−γ
∫

Qext

|c||u|ψ2 + ε−γ
∫

Qext

|f |ψ2

≤ ε−γ‖c‖L2(Qext)‖u‖L2(Qext) + ε−γ‖f‖L1(Qext).

As far as we are concerned with the term b, we integrate by parts and by assumption (H3)

we have:

∫

Qext

〈b,Dg〉ψ2 = −
∫

Qext

divb gψ2 − 2

∫

Qext

bgψDψ ≤ 2

∫

Qext

|b||g||Dm0ψ|ψ

≤ 2C1‖b‖L∞(Qext)

∫

Qext

g.

Lastly, the term involving the transport operator can be treated as

∫

Qext

Y g ψ2 ≤ 2

∫

Qext

g |Y ψ|ψ ≤ 2C2

∫

Qext

g.

Hence, by combining the above estimates we obtain

(λ− εΛ)

∫

Qint

|Dm0g|2 ≤
Λ

ε

∫

Qext

|Dm0ψ|2ψ + ε−γ‖c‖L2(Qext)‖u‖L2(Qext) + ε−γ‖f‖L1(Qext)
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+ C1

∫

Qext

g + 2C2

∫

Qext

g.

By choosing ε = λ/(2Λ) we get the desired estimate.

We observe that assumption b ∈ (L∞
loc(Ω))

m0 was necessary to obtain the L1-norm of g on

the right-hand side of inequality (4.5.4). The presence of such a norm in the aforementioned

inequality plays a crucial role in the proof of the upcoming Lemma 4.5.8.

Remark 4.5.7. A cut-off function satisfying the requirements stated in (4.5.5) exists. Indeed,

we may for example consider a family of cut-off functions of the form

χiri,Ri
(s) =

{
0, if s ≥ Ri,

1, if 0 ≤ s ≤ ri,
|χ′
ri,Ri

| ≤ 2

Ri − ri
, i = 1, . . . , κ,

χt0,t1(s) =

{
0, if s ≤ t0, or t ≥ T0,

1, if t1 ≤ s ≤ T1,
|χ′
t0,t1 | ≤ max

{
2

t1 − t0
,

2

T0 − T1

}
,

with 0 < ri < Ri for every i = 1, . . . , κ and t0 < t1 < T1 < T0. Then, we define

ψ(x, t) = χt0,t1(t)
κ∏

i=0

χiri,Ri
(‖x(i)‖),

where the norm we consider is the Euclidean one. Eventually, the following estimates hold:

|∂xjψ| ≤
c0

R0 − r0
for j = 1, . . . ,m0 |Y ψ| ≤

κ∑

i=0

ci
Ri − ri

+max

{
2

t1 − t0
,

2

T0 − T1

}
.

Now, we are in a position to study how equation (4.1.1) spreads positivity of (super-

)solutions. More precisely, we state the upcoming Lemma 4.5.8 in terms of the cylinders

Qpos = Bθ × Bθ3 × . . .× Bθ2κ+1 × (−1− θ2,−1], (4.5.6)

Q̃ext = B3R × B33R × . . .× B32κ+1R × (−1− θ2, 0],

where R = R(θ,Q, λ,Λ) is the constant given by Lemma 4.4.4 and θ ∈ (0, 1] is a parameter

we will choose later on. In particular, θ will be chosen such that the stacked cylinder Qm
pos (see

definition (4.A.1)) is contained in Q1. To stress the dependence of R on θ, we will sometimes

write Rθ instead of R.

Lemma 4.5.8. Let θ ∈ (0, 1] and Qpos, Q̃ext be the cylinders defined in (4.5.6). Then there

exist a small positive constant η0 = η0(θ,Q, λ,Λ) ∈ (0, 1) such that for any non-negative

weak solution u of (4.1.1) under assumptions (H1)-(H2)-(H3) in some cylindrical open set

Ω ⊃ Q̃ext such that

|{u ≥ 1} ∩ Qpos| ≥
1

2
|Qpos| , (4.5.7)
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we have u ≥ η0 in Q1. If, additionally, c ≥ 0 the statement holds true for non-negative weak

super-solutions to (4.1.1).

Proof. Let us consider g = G(u + εγ) for ε ∈
]
0, 14
]
and γ = 1

8 . By Definition 4.5.4, g is

non-negative and a sub-solution to (4.5.2). Since G is non-increasing and ε ∈
]
0, 14
]
we also

have g ≤ G(ε
1
8 ) ≤ G(ε). Now, let us introduce two parameters η ∈ (0, θ2) and ι > 0, both

depending on a parameter θ we will choose later on.

The idea of the proof is to apply Theorem 4.3.1 to the function g (with Q1 as the small

cylinder and Q1+ι as the big cylinder with an accurate choice of ι) combined with Theorem

4.4.1 scaled on the cylinder Q1+ι = δ1+ι(Qext). Finally, we estimate the L2-norm of the

diffusive gradient of g via the square root of the square of its mass on a larger cylinder.

First of all, we need to show that we can choose ι small enough such that Qext ⊂ Q1+ι ⊂
δ(1+ι)2Qext ⊂ Q̃ext, where Qext is defined in (4.4.1). In particular, ι needs to be chosen such

that

(1 + ι)4(1 + η2) ≤ 1 + θ2 and 22j+1(1 + ι)2(2j+1) ≤ 32j+1 for j = 1, . . . , κ,

where the above inequalities take into consideration the scaling introduced in (1.1.13), (4.4.1)

and (4.5.6). In particular, this holds true if we assume

ι = min
{

4(1+θ2)
4+θ2 − 1,

(
3
2

) 1
2 − 1

}
. Moreover, by recalling the definition of Qzero, see (4.4.1),

we then pick η ∈ (0, 1) such that

|Qpos \ δ(1+ι)(Qzero)| ≥
1

4
|δ(1+ι)(Qzero)|.

Thanks to the geometry underlying operator L , it is enough to pick η = (2κ+ 1)−1/(2κ+1) (1+

ι)−1θ. Combining this fact with our assumption (4.5.7) we obtain

| {u ≥ 1} ∩ δ(1+ι)(Qzero)| ≥
1

4
|δ(1+ι)(Qzero)|. (4.5.8)

Now, we want to check if we retrieve enough information on the function g. In particular,

the set in which g = 0 needs to be at least of the same measure of the set where the function

u ≥ 1, i.e. we want to show that the inclusion

{u ≥ 1} ⊂ {g = 0} (4.5.9)

holds true. The function g = G(u+ ε
1
8 ), by definition, is equal to zero if

u+ ε
1
8 > 1 ⇐⇒ u > 1− ε

1
8 .

Inclusion (4.5.9) follows immediately from the previous inequality observing that 1− ε
1
8 < 1
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for every ε ∈]0, 14 ]. Hence, equation (4.5.8) and inclusion (4.5.9) imply that

| {g = 0} ∩ δ(1+ι)(Qzero)| ≥ | {u ≥ 1} ∩ δ(1+ι)(Qzero)| ≥
1

4
|δ(1+ι)(Qzero)| (4.5.10)

Thus, the function g satisfies inequality (4.4.3) with δ(1+ι)(Qzero) taking the role of Qzero and

we are therefore allowed to apply Theorem 4.4.1.

Now, our aim is to estimate g−θ0G(ε), where θ0 ∈ (0, 1) is the constant given in Theorem

4.4.1 only depending on η and θ (since the dimension of the cylinders involved in our analysis

depends on them). We now want to apply Theorem 4.3.1 to (g − θ0G(ε))+. To this end, we

first observe (g − θ0G(ε))+ is still a non-negative sub-solution to (4.5.2) and

g − θ0G(ε) ≤ (g − θ0G(ε))+ ≤ sup
Q1

(g − θ0G(ε))+.

We are not yet in a position to apply Theorem 4.3.1 to (g−θ0G(ε))+, as this result was derived
for non-negative weak solutions to equation (4.1.1), where in particular the term −λ|Dm0u|2
does not appear. For this reason, we briefly explain how to take care of the additional term

in the proof of the Sobolev-type and Caccioppoli-type inequalities presented in Section 4.3.

In particular, in the proof of Theorem 4.3.3, we have additionally

λ

∫

Qr

[〈Dm0v,Dm0v〉Γ(z, ·)ψ](ζ)dζ,

which clearly satisfies

λ

∫

Qr

[〈Dm0v,Dm0v〉Γ(z, ·)ψ](ζ)dζ ≤ C‖Dm0v‖2L2(Qr)
,

and can be treated like I2. On the other hand, in the proof of Theorem 4.3.4, we get an

additionally term of the form
λ

p

∫

Qr

|Dm0u
p
l |2ψ2

on the left-hand side of (4.3.7). By choosing ε1 = 2λ/Λ, we get exactly the inequality stated

in Theorem 4.3.4.

Eventually, we are able to provide the following chain of estimates

sup
Q1

(g − θ0G(ε))+ ≤ CιCM ‖ (g − θ0G(ε))+ ‖Lβ(Q1+ι)

+ CιCMε
− 1

8 ‖ cu− f‖Lq(Q1+ι) Theorem 4.3.1

≤ CιCM ‖ (g − θ0G(ε))+ ‖L2(Q1+ι)

+ CιCMε
− 1

8 ‖ cu− f‖Lq(Q1+ι) β :=
q

q − 1
< 2

≤ CPCιCM‖Dm0(g − θ0G(ε))+‖L2(Qext) Theorem 4.4.1

+ CPCιCM‖Y (g − θ0G(ε))+‖L2H−1(Qext)
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+ CιCMε
− 1

8 ‖ cu− f‖Lq(Q1+ι)

≤ C (CPCιCMCG)
1
2



∫

Qext

g




1
2

Lemma 4.5.6

+ C (CPCιCMCG)
1
2 ε−

1
16

(
‖c‖L2(Qext)‖u‖L2(Qext) + ‖f‖L1(Qext)

) 1
2

+ CιCMε
− 1

8 ‖ cu− f‖Lq(Q1+ι)

≤ C1

√
G(ε) + C2ε

− 1
8 G is non-increasing

where Cι is a constant due to the scaling on the cylinder Q(1+ι) and, as C1, C2, only depends

on Q, Λ, λ, ‖b‖L∞(Qext), ‖c‖2L2(Qext)
, ‖f‖Lq(Qext) and ι and we used inequality ε−

1
16 ≤ ε−

1
8 for

ε sufficiently small.

Thus, we obtain the following inequality

G(u+ ε
1
8 )− θ0G(ε) ≤ C1

√
G(ε) + C2ε

− 1
8 in Q1.

As G(ε) ∼ − ln(ε) as ε → 0+ and ε−
1
8 ≤

√
− ln(ε) for every ε sufficiently small (for

instance, ε ∈]0, 15 ]), we have

G(u+ ε
1
8 ) ≤ θ0G(ε) + C

√
G(ε), (4.5.11)

where C = C(C1, C2) is a constant that does not depend on ε.

Since G(ε) → +∞ as ε→ 0+, there exists ε̄ ∈]0, 15 ] such that for every ε ∈]0, ε̄] we have

θ0G(ε) + C
√
G(ε) ≤ 1 + 7θ0

8
G(ε). (4.5.12)

Indeed, we can rewrite (4.5.12) as follows

C
√
G(ε) ≤ 1− θ0

8
G(ε). (4.5.13)

As both sides of (4.5.13) are positive, we can raise the square and get

C2G(ε) ≤
(
1− θ0

8

)2

(G(ε))2.

Hence, dividing by G(ε), we infer

C2 ≤
(
1− θ0

8

)2

G(ε).
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In order to obtain (4.5.12), it is therefore sufficient to choose ε small enough such that

G(ε) ≥
(

8C

1− θ0

)2

.

Combining (4.5.11) and (4.5.12), we finally get

g = G(u+ ε
1
8 ) ≤ 1 + 7θ0

8
G(ε).

Taking advantage again of G(ε) ∼ − ln(ε) for ε → 0+, for every ε sufficiently small the

previous inequality implies

ln(u+ ε
1
8 ) ≥ 1 + 7θ0

8
ln(ε).

Hence, we for every ε sufficiently small we infer

u+ ε
1
8 ≥ ε

1+7θ0
8 =⇒ u ≥ ε

1+7θ0
8 − ε

1
8 =: η0.

We remark that η0 > 0 for every ε sufficiently small, since 1+7θ0
8 < 1

8 for θ0 ∈ (0, 1). This

concludes the proof.

Remark 4.5.9. We observe that our function g = G(u+ ε
1
8 ) differs from the one considered

in [51,118]. This is due to the fact that in the proof of the weak Harnack inequality below we

cannot reduce to the case where the right-hand side is equal to zero. This condition is imposed

by our weaker integrability assumption on the right-hand side and lower order coefficients,

namely c, f ∈ Lq with q possibly less than +∞.

As a straightforward consequence of Lemma 4.5.8 we have the following result, which is

the extension of [51, Lemma 4.2] to our case.

Lemma 4.5.10. Let m ≥ 3 and let R be the constant given in Lemma 4.5.8 for θ = m−1/2.

Then there exists a constantM =M(m,Q, λ,Λ) > 1 such that for any non-negative solution u

to (4.1.1) under assumptions (H1)-(H2)-(H3) satisfying |{u ≥M} ∩ Q1| ≥ 1
2 |Q1|, we have

u ≥ 1 in Qm
1 (see (4.A.1)). If, additionally, c ≥ 0 the statement holds true for non-negative

weak super-solutions to (4.1.1).

Proof. Since θ = m−1/2, we have that Qm
1 ⊂ Bθ−1 ×Bθ−3 × . . .×Bθ−2κ−1 ×(0, θ−2], see (4.A.1).

We observe that u/M is a non-negative weak solution to (4.1.1) with right-hand side equal

to f/M and satisfying assumption (4.5.7). Therefore we are in a position to apply Lemma

4.5.8 to this function. In this case Q1 and Bθ−1 ×Bθ−3 × . . .×Bθ−2κ−1 × (0, θ−2] take the roles

of the cylinders Qpos and Q1, thanks to a rescaling argument. Hence, we obtain inequality

u ≥ η0M in Bθ−1 × Bθ−3 × . . . × Bθ−2κ−1 × (0, θ−2] and therefore in Qm
1 . Thus, to conclude

the proof it is sufficient to choose M = 1/η0 > 1.
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Before proving the weak Harnack inequality, we need to show that we can spread positivity

along “suitable” cylinders. More precisely, recalling the definition of the open ball in (4.1.11),

we set

Q+ = Bω ×Bω3 × . . .×Bω2κ+1 × (−ω2, 0], Q− = Bω ×Bω3 × . . .×Bω2κ+1 × (−1,−1 + ω2],

(4.5.14)

where ω is a small positive constant. In particular, we will choose ω small enough so that,

when expanding positivity from a given cylinder Qr(z0) in the past, the union of the stacked

cylinders where the positivity is spread includesQ+. Moreover, we will choose the radius R0 in

the statement of Theorem 4.5.1 so that Lemma 4.5.8 can be applied to every stacked cylinder.

The two previous statements are specified in Lemma 4.B.1. The staking cylinders Lemma

4.B.1, combined with Lemma 4.5.8, implies the following result regarding the expansion of

positivity for large times.

In the sequel, we will largely use the cylinders Qr[k], for k = 1, . . . , N and QRN+1
[N + 1],

whose definition and properties are presented in Appendix 4.B.

Lemma 4.5.11. Let R1/2 be the constant given by Lemma 4.5.8 for θ = 1/2 and let u be any

non-negative solution to (4.1.1) in Ω ⊃ Q under assumptions (H1)-(H2)-(H3) such that

|{u ≥M} ∩ Qr(z0)| ≥ 1
2 |Qr(z0)| for some M > 0 and for some cylinder Qr(z0) ⊂ Q−. Then

there exists a positive constant p0, only depending on Q, λ, Λ, such that

u ≥M

(
r2

4

)p0
, in Q+. (4.5.15)

If, additionally, c ≥ 0 the statement holds true for non-negative weak super-solutions to

(4.1.1).

Proof. We apply Lemma 4.5.8 for θ = 1
2 to the function u/M , with Qr(z0) and Qr[1] taking

the role of Qpos and Q1 (this is achieved through a rescaling argument) and obtain u/M ≥ η0

in Qr[1]. We then apply it to u/(Mη0) and get u ≥ Mη20 in Qr[2]. Reasoning by induction

on k = 1, . . . , N we infer u ≥Mηk0 in Q[k].

By exploiting Lemma 4.5.8 again, we get u ≥MηN+1
0 in QRN+1

[N+1], which implies that

the same inequality holds true in Q+. As TN ≤ −t0 < 1, we have in particular 4Nr2 ≤ 1.

Picking p0 > 0 so that η0 =
((

1
4

) N
N+1

)p0
, we finally obtain

u ≥M

((
(1/4)

N
N+1

)N+1
)p0

=M
(
(1/4)N

)p0
≥M

(
r2/4

)p0 ,

which concludes the proof.

From now on we will assume ω < 1/102, where κ is defined in (4.1.6). We are in a position

to prove the main result of this Section, Theorem 4.5.1.

Proof of Theorem 4.5.1. We start the proof by fixing the parameters ω and R0 in order

to select the appropriate geometric setting. More precisely, we choose ω so that we capture

126



CHAPTER 4. DE GIORGI-NASH REGULARITY THEORY

Q+ when applying Lemma 4.B.1, namely we fix ω < 1
102 . In addition, we choose the radius

R0 so that the stacked cylinders do not leak out of Q0, i.e. R0 ≥ 6 (2κ+ 1)R1/2, where R1/2

is the constant given by Lemma 4.5.8 when θ = 1/2. As we want to apply Lemma 4.5.10 to

cylinders contained in Q−, we also assume

R0 ≥ 3(2κ+ 1)Rm−1/2m(2κ+1)/2ω2κ+1, (4.5.16)

where Rm−1/2 is the constant given by Lemma 4.5.8 for θ = m−1/2.

We first restrict ourselves to the case where

inf
Q+

u ≤ 1. (4.5.17)

Indeed, if infQ+ u > 1 we can simply consider ū = u/
(
infQ+ u+ 1

)
and reduce to the case

where infQ+ u ≤ 1.

We now want to prove that for all k ∈ N, the following inequality holds

∣∣{u > Mk} ∩ Q1

∣∣ ≤ C̃(1− µ̃)k, (4.5.18)

for some constants µ̃ ∈ (0, 1) M > 1 and C̃ > 0 that only depend on Q, λ and Λ. The proof

of this fact is carried out by induction. For k = 1 it is sufficient to choose µ̃ ≤ 1
2 and C̃ such

that |Q−| ≤ 1
2C̃. We now assume that (4.5.18) holds true for k ≥ 1 and we prove it for k+1.

To this end, we consider the sets

E := {u > Mk+1} ∩ Q−, F := {u > Mk} ∩ Q1. (4.5.19)

We observe that E and F satisfy the assumptions of Corollary 4.A.3 with Q1 replaced by

Q− and µ = 1/2. Indeed, by definition E and F are bounded measurable sets such that

E ⊂ Q− ∩ F . We now consider a cylinder Q = Qr(z) ⊂ Q− such that |Q ∩ E| > 1
2 |Q|, i.e.

|{u > Mk+1} ∩ Q| > 1

2
|Q|.

We show that r needs to be small, that is to say r is less than some parameter r0 =

r0(Q, λ,Λ, k). Indeed, applying Lemma 4.5.11 to u, we obtain u ≥ Mk+1(r2/4)p0 in Q+.

Thus, owing to infQ+ u ≤ 1, we infer 1 ≥Mk+1(r2/4)p0 and therefore it is sufficient to choose

r0 ≤ 2M−k−1/2p0 . In order to apply Corollary 4.A.3, we are left with proving that Qm ⊂ F ,

which holds true if Qm ⊂ {u > Mk}. To this end, we apply Lemma 4.5.10 to u/Mk after

rescaling the cylinder Q in Q1.

In virtue of Corollary 4.A.3, there exist cis ∈ (0, 1) and Cis > 0 such that

|E| =
∣∣{u > Mk+1} ∩ Q−

∣∣ ≤ m+ 1

m

(
1− cis

2

) (∣∣{u > Mk} ∩ Q1

∣∣+ Cismr
2
0

)

≤
(
1− cis

4

) (∣∣{u > Mk} ∩ Q1

∣∣+ Cismr
2
0

)
,
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provided that we chose m ∈ N so that m+1
m

(
1− cis

2

)
≤ 1 − cis

4 . Thanks to the induction

assumption and our choice of r0 we get

|E| ≤
(
1− cis

4

)(
C̃(1− µ̃)k + Cismr

2
0

)

≤
(
1− cis

4

)(
C̃(1− µ̃)k + CismM

− k+1
p0

)
.

Picking then µ̃ small enough so that M−1/p0 ≤ (1− µ̃) and µ̃ ≤ cis
4 , we obtain

|E| ≤ C̃
(
1− cis

4

)
(1− µ̃)k

(
1 + C̃−1mM

− 1
p0

)

≤ C̃(1− µ̃)k+1
(
1 + C̃−1mM

− 1
p0

)
.

Picking C̃ large enough so that
(
1 + C̃−1mM

− 1
p0

)
≤ 2 we conclude the proof of (4.5.18). By

extending estimate (4.5.18) to the continuous case (i.e. k ∈ R and k ≥ 1) and applying the

layer cake formula to
∫
Q−

up for some exponent p, we obtain that
∫
Q−

up is bounded from

above by a constant that only depends on Q, λ and Λ. �

4.6 Proof of main results

Proof of Theorem 4.1.3. The full Harnack inequality is a direct consequence of the combination

of the local boundedness of weak sub-solutions proved in Theorem 4.3.1 and the weak Harnack

inequality of Theorem 4.5.1. The only delicate point in this proof is given by the size of the

cylinders we consider. Indeed, when applying Theorem 4.3.1, one needs to consider a cylinder

Qρ that is fully contained in Q− introduced in the statement of Theorem 4.5.1, which plays

the role of Qr in Theorem 4.3.1. This is the reason behind the peculiar choice of the cylinder

Q̃− of the statement of the Harnack inequality. �

Proof of Theorem 4.1.4. The Hölder continuity of weak solutions is classically obtained

by proving that the oscillation of the solution decays by a universal factor. This can be

achieved in two different ways. Either by applying Lemma 4.5.8 with θ = 1 in the same spirit

of [51, Appendix B], or by directly applying the weak Harnack inequality, Theorem 4.5.1,

following a standard argument, for further reference see [48]. �
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Appendix

4.A The Ink-Spots Theorem

For the sake of completeness, we provide here the proof of the Ink Spots Theorem for the case

of ultraparabolic equations. This theorem involves a covering argument in the spirit of Krylov

and Safonov [70] growing Ink Spots theorem, or the Calderón-Zygmund decomposition, and

it is a fundamental ingredient for the proof of the weak Harnack inequality contained in this

Chapter (see Theorem 4.5.1). In order to give its statement in our setting, we introduce the

delayed cylinder

Qm
r (z0) =

(
(0, . . . , 0,mr2) ◦ Qr(z0)

)
∩
(
R
N+1 × (t0,+∞)

)
(4.A.1)

where z0 = (x0, t0) = (x
(0)
0 , . . . , x

(κ)
0 , t0) ∈ R

N+1. We remark that Qm
r (z0) starts immediately

at the end of Qr(z0), with which it shares the same values for x(0), and its structure follows

the non-Euclidean geometry presented in Subsection 1.1.1 associated to the principal part

operator L0. The aim of this appendix is to prove the following statement.

Theorem 4.A.1. Let E ⊂ F be two bounded measurable sets. We assume there exists a

constant µ ∈ (0, 1) such that

• E ⊂ Q1 and |E| < (1− µ)|Q1|;

• moreover, there exist an integerm such that for any cylinder Q ⊂ Q1 such that Qm ⊂ Q1

and |Q ∩ E| ≥ (1− µ)|Q|, we have that Qm ⊂ F .

Then for some universal constant cis ∈ (0, 1) only depending on N , there holds

|E| ≤ m+ 1

m
(1− cisµ)|F |.

Remark 4.A.2. Theorem 4.A.1 still holds true if we replace Q1 with Q− defined in (4.5.14).

As it has already been pointed out by Imbert and Silvestre in [61], there is no chance to

adapt the Calderón-Zygmund decomposition to this context, because it would require to split

a larger piece into smaller ones of the same type and this is impossible due to the non Euclidean

nature of our geometry. What we do is a generalization of the procedure proposed in [61],

that is in fact an adaptation of the growing Ink Spots theorem, whose original construction

in the parabolic case dates back to Krylov and Safonov [70, Appendix A].
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Moreover, when we need to confine both E and F to stay within a fixed cylinder, the

following corollary directly follows.

Corollary 4.A.3. Let E ⊂ F be two bounded measurable sets. We assume

• E ⊂ Q1;

• there exist two constants µ, r0 ∈ (0, 1) and an integer m such that for any cylinder

Q ⊂ Q1 of the form Qr(z0) such that |Q ∩ E| ≥ (1− µ)|Q|, we have Qm ⊂ F and also

r < r0.

Then for some universal constants cis and Cis only depending on N

|E| ≤ m+ 1

m
(1− cisµ)

(
|F ∩ Q1|+ Cismr

2
0

)
.

4.A.1 Stacked cylinders

First of all we recall some important properties of the following family of stacked cylinders

kQr =

(
0, . . . , 0,

k2 − 1

2
r2
)
◦ Qkr and kQr(x0, t0) =

(
0, . . . , 0,

k2 − 1

2
r2
)
◦ Qkr(x0, t0),

where (x0, t0) ∈ R
N+1, that are defined starting from the unit cylinder (4.1.10) for a certain

k > 0. By definition, it is clear that |kQr(x0, t0)| = kQ+2|Qr(x0, t0)|, and that the cylinders

Qr(x0, t0) are not the balls of any metric. Thus, the important properties of the cylinders are

explicitly given by the following lemmata.

Lemma 4.A.4. Let Qr0(x0, t0) and Qr1(x1, t1) be two cylinders with non empty intersection,

with (x0, t0), (x1, t1) ∈ R
N+1 and 2r0 ≥ r1 > 0. Then

Qr1(x1, t1) ⊂ kQr0(x0, t0)

for some universal constant k.

Proof. Without loss of generality, we may assume (x0, t0) = (0, 0). Then we need to choose the

constant k in order to satisfy our statement. In particular, if we consider the ball associated

to the first m0 variables we get that Br1(x
(0)
1 ) ⊂ Bkr0 if

kr0 ≥ r0 + 2r1 =⇒ k ≥ 5.

By repeating the same argument for all the κ blocks of variables, we get that k must satisfy

the following conditions:

k2j+1 ≥ 1 + 2 · 22j+1 for j = 0, . . . , κ.
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As far as we are concerned with the condition regarding the time interval, we need k to be

such that

−k
2 + 1

2
r20 ≤ −r0 − 2r21 =⇒ k2 ≥ 9.

All of these inequalities are satisfied when the first one, i.e. the one corresponding to j = 0,

is satisfied. We choose k to be the smallest parameter satisfying these inequalities.

Lemma 4.A.5. Let {Qj}j∈J be an arbitrary collection of slanted cylinders with bounded

radius. Then there exists a disjoint countable subcollection {Qji}i∈I such that

⋃

j∈J
Qj =

∞⋃

i=1

kQji .

The proof of Lemma 4.A.5 is the same as the classical proof of the Vitali covering lemma,

where we employ Lemma 4.A.4 instead of the fact that in any metric space Br1(x1) ⊂ 5Br0 ,

if Br1(x1) ∩Br0 6= ∅ and r1 ≤ 2r0.

4.A.2 A generalized Lebesgue differentiation theorem

For the reader’s convenience, we also recall the definition of maximal function:

Mf(x, t) = sup
Q:(x,t)∈Q

1

|Q|

∫

Q∩Ω

|f(y, s)| dy ds,

where the supremum is taken over cylinders of the form (y, s) +RQ1.

Lemma 4.A.6. For every λ > 0 and f ∈ L1(Ω) , we have

|{Mf < λ} ∩ Ω| ≤ C

λ
‖f‖L1(Ω).

Proof. Let us consider (x, t) ∈ {Mf < λ} ∩ Ω. Then there exists a cylinder Q such that

(x, t) ∈ Q and ∫

Q∩Ω

|f(y, s)| dy ds ≥ λ

2
|Q ∩ Ω|.

Then {Mf < λ} ∩ Ω is covered with cylinders {Qj} such that the previous inequality holds.

From Lemma 4.A.5, there exists a disjoint countable subcollection {Qji} so that

{Mf < λ} ∩ Ω =
∞⋃

j=1

Qj ⊂
∞⋃

i=1

kQji ,
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for some integer k. Thus, we get

‖f‖L1(Ω) ≥
∫

Ω∩∪iQji

|f | ≥ λ

2

∞∑

i=1

|Qji ∩ Ω| = λ

2kQ+2

∣∣∣
∞⋃

i=1

kQji ∩ Ω
∣∣∣ ≥ λ

2kQ+2

∣∣∣{Mf < λ} ∩ Ω
∣∣∣.

Thus, the claim is proved when C = 2kQ+2.

The following generalized version of the Lebesgue differentiation theorem holds.

Theorem 4.A.7 (Genaralized Lebesgue Differentiation Theorem). Let f ∈ L1(Ω, dx ⊗ dt),

where Ω is an open subset of RN+1. Then for a.e. (x, t) ∈ Ω

lim
r→0+

1

|Qr(x, t)|

∫

Qr(x,t)

|f(y, s)− f(x, t)| dy ds = 0.

Theorem 4.A.7 is obtained from the following Lemma 4.A.6 exactly as in [57, Theorem 2.5.1]

by considering Lemma 4.A.6.

4.A.3 Ink Spots theorem without time delay

Lemma 4.A.8. Let E ⊂ F ⊂ Q1 be two bounded measurable sets. We make the following

assumptions for some constant µ ∈ (0, 1):

• E < (1− µ)|Q1|;

• if for any cylinder Q ⊂ Q1 such that |Q ∩ E| ≥ (1− µ)|Q|, then Q ⊂ F .

Then |E| ≤ (1− cµ)|F | for some universal constant c only depending on N .

Proof. Thanks to Theorem 4.A.7, for almost all points z ∈ E there is some cylinder Qz

containing z such that |Qz ∩E| ≥ (1−µ)|Qz|. Thus, for all Lebesgue points z ∈ E we choose

a maximal cylinder Qz ⊂ Q1 that contains z and such that |Qz ∩ E| ≥ (1 − µ)|Qz|. Here

Qz = Qr(x, t) for some r > 0 and (x, t) ∈ Q1. In particular, we have that Qz differs from Q1

and Qz ⊂ F by our assumption.

First of all we prove that |Qz ∩ E| = (1 − µ)|Qz|. By contradiction, let us suppose that

is not true. Then there exists δ > 0 small enough and Q such that Qz ⊂ Q ⊂ (1 + δ)Qz,

Q ⊂ Q1 and |Q ∩E| > (1− µ)|Qz|, and this contradicts the maximality of the choice of Qz.

Then we recall that the family of cylinders {Qz}z∈E covers the set E. Thanks to Lemma

4.A.5 and considering that E is a bounded set, we can extract a finite subfamily of non

overlapping cylinders Qj := Qzj such that E ⊂ ∪nj=1kQj . Since Qj ⊂ F and |Qj ∩ E| =
(1− µ)|Qj |, we have that |Qj ∩ F \ E| = µ|Qz|. Therefore,

|F \ E| ≥
n∑

j=1

|Qj ∩ F \ E| ≥
n∑

j=1

µ|Qj | = k−(Q+2)µ

n∑

j=1

|kQj | ≥ k−(Q+2)µ|E|.
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Thus, we get that |F | ≥ (1 + cµ)|E|, with c = k−(Q+2). Since cµ ∈ (0, 1), we complete the

proof by choosing c = c/2.

4.A.4 Proof of Theorem 4.A.1 and Corollary 4.A.3

In order to proceed with the proof of the Ink Spots Theorem, we first need to recall two

preliminary results.

Lemma 4.A.9. Consider a (possibly infinite) sequence of intervals (aj − hk, aj ]. Then

∣∣∣
⋃

k

(ak, ak +mhk]
∣∣∣ ≥ m

m+ 1

∣∣∣
⋃

k

(ak − hk, ak]
∣∣∣.

The proof of Lemma 4.A.9 can be found in [59, Lemma 10.8]. Here, we only report the proof

of the following lemma, that is an extension of Lemma 10.9 [59].

Lemma 4.A.10. Let {Qj} be a collection of slanted cylinders and let Qm
j be the corresponding

versions as in (4.A.1). Then

∣∣∣
⋃

j

Qm
j

∣∣∣ ≥ m

m+ 1

∣∣∣
⋃

j

Qj

∣∣∣.

Proof. Because of Fubini’s Theorem we know that for any set Ω ⊂ R
N+1

|Ω| =
∫

|{(x(1), . . . , x(κ), t) : (x(0), x(1), . . . , x(κ), t) ∈ Ω}| dx(0).

Therefore, in order to prove our statement it is sufficient to show that for every x(0) ∈ R
m0

∣∣∣
{
(x(1), . . . , x(κ), t) : (x(0), x(1), . . . , x(κ), t) ∈

⋃

j

Qm
j

}∣∣∣

≥ m

m+ 1

∣∣∣
{
(x(1), . . . , x(κ), t) : (x(0), x(1), . . . , x(κ), t) ∈

⋃

j

Qj

}∣∣∣.

From now on, let us consider a fixed x ∈ R
m0 . Any cylinder Qj is a cylinder with center

(x
(0)
j , x

(1)
j , . . . , x

(κ)
j , tj) ∈ R

N+1

and radius rj > 0. Qm
j is its delayed version (4.A.1), that thanks to Remark 4.2.5 can

equivalently be represented as follows

Qm
j = (t0, t0 +mr2j ]× Br(x

(0)
j )× B(m+2)r3j

(x
(1)
j )× . . .× B(mκ+2

∑κ
i=0m

i)r2κ+1
j

(x
(κ)
j ).

On one hand, when |x− x
(0)
j | ≥ rj the set

{
(x(1), . . . , x(κ), t) : (x(0), x(1), . . . , x(κ), t) ∈ Qm

j

}
is empty.
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On the other hand, when |x− x
(0)
j | < rj we have that

{
(x(1), . . . , x(κ), t) : (x, x(1), . . . , x(κ), t) ∈ Qm

j

}

⊃ Q̃j := (tj , tj +mr2j ]× B2r3j
(x

(1)
j )× . . .× B2

∑κ−1
i=0 m

ir2κ+1
j

(x
(κ)
j ).

Based on these last observations, we have that

∣∣∣
{
(x(1), . . . , x(κ), t) : (x(0), x(1), . . . , x(κ), t) ∈

⋃

j

Qm
j

}∣∣∣ ≥
∣∣∣

⋃

j:|x−x(0)j |<rj

Q̃j

∣∣∣.

Now, thanks to Fubini’s Theorem and Lemma 4.A.9 we have

∣∣∣
{
(x(1), . . . , x(κ), t) : (x(0), x(1), . . . , x(κ), t) ∈

⋃

j

Qm
j

}∣∣∣

≥ m

m+ 1

∣∣∣
⋃

j:|x−x(0)j |<rj

(tj − r2j , 0]× B2r3j
(x

(1)
j )× . . .× B2

∑κ−1
i=0 m

ir2κ+1
j

(x
(κ)
j )
∣∣∣

≥ m

m+ 1

∣∣∣
⋃

j:|x−x(0)j |<rj

(tj − r2j , 0]× Br3j (x
(1)
j )× . . .× Br2κ+1

j
(x

(κ)
j )
∣∣∣

=
m

m+ 1

∣∣∣
{
(x(1), . . . , x(κ), t) : (x, x(1), . . . , x(κ), t) ∈

⋃

j

Qj

}∣∣∣.

Combining all of the above results, the proof is complete.

Proof of Theorem 4.A.1. Let Q be the collection of all cylinders Q ⊂ Q1 such that

|Q ∩ E| ≥ (1 − µ)|Q|. Let G := ∪Q∈QQ. By construction, the sets E and G satisfy the

assumptions of Lemma 4.A.8. Therefore (1 − cisµ)|G| ≥ |E|. Combining the assumptions of

the theorem with Lemma 4.A.10 we conclude the proof. �

Proof of Corollary 4.A.3. The condition |E| ≤ (1 − δ)|Q1| is implied by the second

assumption when r0 < 1. Moreover, the result is trivial when r0 ≥ 1 choosing C sufficiently

large. Let Q be the collection of all cylinders Q ⊂ Q1 such that |Q ∩ E| ≥ (1 − µ)|Q|.
Let G := ∪Q∈QQm

. From Theorem 4.A.1 we have that |E| ≤ m
m+1(1 − cµ)|G|. Moreover,

our assumptions tell us G ⊂ F . In order to conclude the proof is sufficient to estimate the

measure G \ Q1 by considering that each cylinder Q = Qr(x, t) ⊂ Q1 has radius bounded by

r0 (see [59, Corollary 10.2]). �

4.B Stacked cylinders

In addition to the paper [59], a covering argument was already proposed in [1] for the case

of the Fokker-Planck equation in trace form with Cordes-Landis assumptions. For the sake

of completeness, we here state the stacking cylinders lemma for our operator L , that is a
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generalization of the one proposed in [59]. Such a result is used when applying the Ink-Spots

Theorem in the proof of the weak Harnack inequality, Theorem 4.5.1.

Lemma 4.B.1. Let ω < 1
102 and ρ = ((3κ+ 1)ω)

1
2κ+1 . We consider any non-empty cylinder

Qr(z0) ⊂ Q− and we set Tk =
∑k

j=1(2
kr)2. Let N ≥ 1 such that TN ≤ −t0 < TN+1 and let

Qr[k] := Q2kr(zk), k = 1, . . . , N

QRN+1
[N + 1] := QRN+1

(zN+1),

where zk = z0 ◦ (0, . . . , 0, Tk) and R = |t0 + TN |
1
2 , RN+1 = max(R, ρ), and

zN+1 =

{
zN ◦ (0, . . . , 0, R2), if R ≥ ρ

(0, 0), if R < ρ

These cylinders satisfy

Q+ ⊂ QRN+1
[N + 1], ∪N+1

k=1 Qr[k] ⊂ (−1, 0]× B2, Q̃[N ] ⊂ Qr[N ],

where Q̃[N ] = QRN+1/2

(
zN+1 ◦ (0, . . . , 0,−R2

N+1)
)
.

Figure 4.3: Stacking cylinders above an initial one contained in Q−

Proof. As our derivation of the previous lemma follows very closely the one contained in [51,

Appendix C], we here simply sketch the proof. Indeed, the proof of the result is merely

geometric and the main difference with [51] lies in the fact that in our case we exploit the

more general composition law and dilations defined in (1.1.6) and in (1.1.13), respectively.

This explains why here the constants ω and ρ differ from the ones in [51].

We first check that the sequence of cylinders we consider is well-defined whenever ω < 1
102 .

As, by definition, r ≤ ω, we have that t0 + T1 ≤ −1 + ω2 + 4r2 < 0; moreover, there exists

N ≥ 1 such that TN < −t0 ≤ TN+1.
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We now check that Q+ ⊂ QRN+1
[N + 1]. We first observe that, if R < ρ, then RN+1 = ρ

and therefore the desidered inclusion simply follows from the inequality ω ≤ ρ. If, on the

other hand, R ≥ ρ, we have that RN+1 = R and we can rewrite the desidered inclusion as

Qω(z
−1
N+1) ⊂ QR. In this case, in virtue of the definition of zN+1 and of the group law (1.1.6),

we have zN+1 = (E(R2 + TN )x0, t0 + TN +R2) = (E(R2 + TN )x0, 0), since R
2 = |t0 + TN | =

−t0 − TN . Hence, owing to (1.1.8), we obtain z−1
N+1 = (E(R2 + TN )x0, 0)

−1 = (−E(t0)x0, 0)
and for every z ∈ Qω, we have

z−1
N+1 ◦ z = (x− E(t+ t0)x0, t) ∈ QR

whenever 2ω ≤ R, 4ω3 ≤ R3, . . . , (3κ + 1)ω2κ+1 ≤ R2κ+1 and ω2 ≤ R2. The previous

inequalities are clearly satisfied if (3κ+ 1)ω ≤ R2κ+1, i.e. if ρ ≤ R.

We now show that the inclusion Qr[k] ⊂ B2 × . . . B2 × (−1, 0] holds true for every k ∈
{1, . . . , N+1}. As far asQRN+1

[N+1] is concerned, i.e. as far as k = N+1, we take advantage

of the inequalities R = |t0 + TN | ≤ 1 and ρ = ((3κ+ 1)ω)
1

2κ+1 ≤ 1 to infer RN+1 ≤ 1. In

addition, zN+1 ∈ Q1 and therefore QRN+1
[N +1] ⊂ B2× . . . B2× (−1, 0]. We now address the

case k ≤ N . To this end, we observe that TN ≤ −t0 ≤ 1 as t0 ∈ (−1,−1 + ω2] with ω ≤ 1.

As a consequence, by construction (2Nr)2 ≤ TN ≤ 1 and therefore 2Nr ≤ 1. Moreover, if

z̄k = (xk, tk), then there exists (x, t) ∈ Q1 such that z̄k = (x0, t0) ◦ (0, Tk) ◦ (δ02kr(x), (2kr)2t),
where (δ0r )r>0 denotes the family of spatial dilations introduced in (1.1.14). In particular, this

implies that xk,i =
∑N

j=1(E((2
kr)2t+ Tk))ijx0,j + (2kr)2i+1xi and therefore

∣∣∣x(0)k
∣∣∣ ≤

∣∣∣x(0)0

∣∣∣+
∣∣∣2krx(0)

∣∣∣ ≤ ω + 1 ≤ 2,
∣∣∣x(1)k

∣∣∣ ≤
∣∣∣x(1)0

∣∣∣+ 2
∣∣∣((2kr)2t+ Tk)x

(0)
0

∣∣∣+
∣∣∣(2kr)3x(1)

∣∣∣ ≤ ω3 + 2ω + 1 ≤ 3ω + 1 ≤ 2

...
∣∣∣x(κ)k

∣∣∣ ≤
∣∣∣x(κ)0

∣∣∣+ 2κ
∣∣((2kr)2t+ Tk)

∣∣ω +
∣∣∣(2kr)2κ+1x(κ)

∣∣∣ ≤ ω2κ+1 + 2κω + 1 ≤ 2

(4.B.1)

where we split x = (x(0), . . . , x(κ)), x0 = (x
(0)
0 , . . . , x

(κ)
0 ), xk = (x

(0)
k , . . . , x

(κ)
k ) according

to (4.1.6). We remark inequalities (4.B.1) hold true in virtue of the assumption ρ2κ+1 =

(3κ + 1)ω ≤ 1, which in turn implies that 3ω ≤ 1, . . . , (2κ + 1)ω ≤ 1. In addition, in the

above inequalities, we made use of
∣∣(2kr)2j+1x(j)

∣∣ ≤ 1 as (2kr)2j+1 ≤ 2kr ≤ 2Nr ≤ 1 for

every k ∈ {1, . . . , N + 1} and x(j) ∈ B1. Finally, we observe that inequalities (4.B.1) implies

Qr[k] ⊂ B2 × . . . B2 × (−1, 0] for every k ≤ N .

We are now left with proving Q̃[N ] ⊂ Qr[N ], to conclude the proof of our lemma. If

R ≥ ρ, then the conclusion simply follows from R/2 ≤ 2Nr. On the other hand, if R ≤ ρ, we

want to show that

Qρ/2(z̄) ⊂ Q2Nr, (4.B.2)

where z̄ = (0,−TN )◦(x0, t0)−1◦(0,−ρ2). In order to prove inclusion (4.B.2), we first estimate

the quantity 2Nr from below. From t0 + TN+1 > 0 and −t0 ≥ 1 − ω2, we obtain that
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4
3

(
4N+1 − 1

)
r2 ≥ 1−ω2, which implies 4Nr2 ≥ 1

4

(
3
4 − 7

4ω
2
)
≥ 1

8 . As a consequence, we infer

that

2Nr ≥ 1

2
√
2
. (4.B.3)

We now observe that, by definition, z̄ = (−E(−ρ2 − t0)x0,−TN − t0 − ρ2) = (−E(−ρ2 −
t0)x0, R

2−ρ2). Thus, for every z ∈ Qρ/2, we compute z̄◦z = (x−E(−ρ2−t0+t)x0, R2−ρ2+t)
and we observe that

∣∣∣
(
x− E(−ρ2 − t0 + t)x0

)(i)∣∣∣ ≤ ω2i+1+(2i+1)ω+(ρ/2)2i+1 ≤ (3κ+1)ω+

(ρ/2)2i+1 = ρ2κ+1 + (ρ/2)2i+1 ≤ ρ2i+1 + (ρ/2)2i+1 ≤ 2ρ2i+1 ≤ (2ρ)2i+1, for every i = 0, . . . , κ.

Moreover, we have −(2ρ)2 ≤ −2ρ2 < R2 − ρ2 − t0 and therefore z̄ ◦ z ∈ Q2ρ. Hence, owing

to (4.B.3), it is sufficient to choose ω such that ρ ≤ 1
2
√
2
(i.e. ω ≤ 1

102 ) to get the desidered

inclusion (4.B.2).
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Chapter 5

Weak fundamental solution

5.1 Statement of the problem

In this chapter, we take advantage of the Schauder estimates contained in Chapter 2 to

prove the existence of a fundamental solution associated to the Kolmogorov equation (4.1.1).

Moreover, thanks to Moser’s estimate and to the Harnack inequality established in the pre-

vious Chapter 4, we are able to prove Gaussian upper and lower bounds for the fundamental

solution. We eventually remark that these results are published in [12].

In the following of this chapter, we therefore deal with weak solutions to equation (4.1.1)

in the sense of Definition 4.1.2. Moreover, we always assume that hypothesis (H1)-(H2) of

Chapter 4 hold true. Concerning the regularity of the coefficients aij , bi and c, for i, j =

1, . . . , N , we mainly rely on assumption (H3-ii) below.

In order to expose the main results of this chapter, we first need to give the definition of

weak fundamental solution for operator L . To this end, we recall that the formal adjoint of

operator L in (4.1.1) is defined as in (1.2.7).

Definition 5.1.1. A weak fundamental solution for L is a continuous positive function

ΓL = ΓL(x, t; ξ, τ) defined for t ∈ R, 0 ≤ T0 < τ < t < T1 and any x, ξ ∈ R
N such that:

1. ΓL = ΓL(·, ·; ξ, τ) is a weak solution to L u = 0 in R
N × (τ, T1) and ΓL = ΓL(x, t; ·, ·) is a

weak solution of L ∗v = 0 in R
N × (T0, t);

2. for any bounded function ϕ ∈ C(RN ) and any x, ξ ∈ R
N we have





L u(x, t) = 0 (x, t) ∈ R
N × (τ, T1),

lim
(x,t)→(ξ,τ)

t>τ

u(x, t) = ϕ(ξ) ξ ∈ R
N ,

(5.1.1)





L ∗v(ξ, τ) = 0 (ξ, τ) ∈ R
N × (T0, t),

lim
(ξ,τ)→(x,t)

t>τ

v(ξ, τ) = ϕ(x) x ∈ R
N ,
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where the above equations need to be satisfied in the weak sense and

u(x, t) :=

∫

RN

ΓL(x, t; ξ, τ)ϕ(ξ) dξ, v(ξ, τ) :=

∫

RN

ΓL(x, t; ξ, τ)ϕ(x) dx.

We remark that Definition 5.1.1 was first introduced by Lanconelli, Pascucci and Polidoro

in [72, Definition 2.2].

Now, we are in a position to state our main results. First, we address and give answer

to [72, Remark 2.3] by proving the existence of a weak fundamental solution for operator L

in the sense of Definition 5.1.1 under the following assumptions on the coefficients of L .

(H3-ii) The coefficients aij , bi, c ∈ L1(ST0T1) ∩ L∞
loc(ST0T1) for i, j, k = 1, . . . , N , i.e. for any

given compact subset K of ST0T1 there exists a positive constant M such that

|aij(x, t)|, |bi(x, t)|, |c(x, t)| ≤M, ∀(x, t) ∈ K, ∀i, j = 1, . . . , N.

Moreover, the diffusion coefficients aij are such that

divAj0 = 0 ∀j = 1, . . . ,m0 in the distributional sense,

where Aj0 denotes the jth-column of the matrix A0 introduced in assumption (H1).

Note that the divergence free assumption on the columns of the matrix A0 is required

to address technical issues arising in the proof of the forthcoming Theorem 5.1.2. Indeed,

the existence of the weak fundamental solution is achieved by combining a regularization

procedure with a diagonal argument. In particular, we perform a regularizing procedure

on the coefficients aij , bi, c and we then prove that the newly defined coefficients are Dini

continuous. This allows us to apply Theorem 2.1.5 to the constructed regularized operator

Lε under the following assumption

(C’) The matrix A0 satisfies assumption (H1), while the matrix B has constant entries. The

principal part operator L0 satisfies assumption (H2). Finally, the coefficients aij , bi,

c, and ∂xkaij , for i, j, k = 1, . . . , N , are bounded and Hölder continuous of exponent

α ∈ (0, 1] in the sense of Definition 1.2.1.

The proof of the existence of a fundamental solution associated to operator (4.1.1) finally

follows from Theorem 1.2.4.

Hence, the reason why we work under assumption (C’) is that we want to take advantage

of Theorem 1.2.4, which, as discussed in Section 1.2, holds true under hypothesis (C). The

only difference between assumption (C) of Section 1.2 and our assumption (C’) is that we

here require the Hölder continuity of the derivatives of aij , i, j = 1, . . . , N . This additional

requirement is simply due to the fact that the operator we consider in (4.1.1) is in divergence
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form, whereas Theorem 1.2.4 is proved for a trace form Kolmogorov operator, namely operator

(1.2.6).

It is our belief that this additional assumption can be dropped by considering more refined

analytical techniques, such as the ones recently proposed in the preprint [80] for the case of

measurable in time and Hölder continuous in space diffusion coefficients. Finally, we point

out that it is possible to replace the diverge free assumption on the diffusion coefficients

with the following, more restrictive, one: the coefficients aij are measurable, doubly (weakly)

differentiable with respect to the first m0 components and such that ∂2lkaij ∈ L∞
loc(ST0T1),

for every l, k = 2, . . . ,m0. Indeed, this last assumption is enough to ensure that also the

first order derivatives ∂kaij are Lipschitz continuous on ST0T1 , with a uniform modulus of

continuity not depending on the set we are considering.

Theorem 5.1.2 (Existence of the weak fundamental solution). Let us consider operator L

under assumptions (H1)-(H2)-(H3-ii). Then there exists a fundamental solution ΓL of L

in the sense of Definition 5.1.1 and the following reproduction property holds. Indeed, for

every x, ξ ∈ R
N and every t, τ ∈ R with τ < s < t such that τ, t ∈ (T0, T1):

ΓL(x, t; ξ, τ) =

∫

RN

ΓL(x, t; y, s) ΓL(y, s; ξ, τ) dy.

Moreover, the function ΓL
∗(x, t; ξ, τ) = ΓL(ξ, τ ; x, t) is the fundamental solution of L ∗ and

verifies the dual properties of this statement.

The existence of a classical fundamental solution is a problem that has been thoroughly

addressed over the years. In particular, we refer to the works by Hörmander [54] and Kol-

mogorov [67] for the analysis of the case with constant, or smooth coefficients. Among others,

we recall the paper [102] for the proof of the existence of a classical fundamental solution

through the Levi parametrix method (see [75]) and we refer to the last part of Section 1.2 for

further reference.

To our knowledge, Theorem 5.1.2 is the first existence result available for the weak funda-

mental solution to (4.1.1) in the sense of Definition 5.1.1. The proof we propose here is based

on a limiting procedure combined with Schauder type estimates and a diagonal argument.

This procedure was first proposed in [7] to prove the existence of a classical fundamental

solution when the coefficients of (4.1.1) are locally Hölder continuous. The main difficulties

we encounter when adapting this argument to the weak case are given by the low regularity

of the coefficients, hence a new regularizing procedure is introduced in Section 5.3.

We emphasize that the PDE approach adopted in this work improves the previously

known results in that it allows us to consider differential operators with bounded measurable

coefficients in both time and space, which is a milder assumption than the ones considered in

the most recent literature. Indeed, on the one hand, in [25] the authors considered the case

of bounded measurable time-depending coefficients, with a proof that is based on explicit
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computations involving the fundamental solution. On the other hand, in [80] the case of

Hölder continuous in space and bounded measurable in time coefficients was addressed.

As a second issue, we extend [72, Theorem 1.3] providing Gaussian upper and lower bounds

for the weak fundamental solution Γ of L under assumptions (H1)-(H2)-(H3-ii).

As far as Gaussian upper bounds are concerned for the fundamental solution Γ associated

to L with Hölder continuous coefficients, a first result dates back to [102], where the author

proves Gaussian upper bounds depending on the Hölder norm of the coefficients a, b and

c. Later on, Di Francesco and Pascucci [40], Di Francesco and Polidoro [41] proved upper

and lower bounds for the classical fundamental solution, where also in this case the involved

constants depend on the Hölder norm of the coefficients. A first result regarding Gaussian

upper bounds independent of the Hölder norm of the coefficients is due to Pascucci and

Polidoro, who studied operator (4.1.1) with b = c = 0 (see [98, Theorem 1.1]). Later on,

Lanconelli, Pascucci [71] and Lanconelli, Pascucci, Polidoro [72] extended Nash upper bounds

to non-homogeneous operators of the form (4.1.1) with bounded measurable coefficients.

On the other hand, if we consider Gaussian lower bounds independent of the Hölder norm

of the coefficients, a first result is due to Lanconelli, Pascucci and Polidoro [72, Theorem 1.3]

for the particular case of the kinetic Kolmogorov-Fokker-Planck equation. The proof of this

result is based on the construction of a Harnack chain, alongside with the study of the control

problem associated to the principal part operator L0. The authors of [72] already suggested

this type of result could be extended to the general non-homogeneous Kolmogorov operator

of step κ in (4.1.1), once a suitable Harnack inequality is established. The present work is

a first step in this direction as it handles the homogeneous case, the only one for which a

Harnack inequality is available, see Theorem 4.1.3.

Theorem 5.1.3 (Gaussian bounds). Let L be an operator of the form (4.1.1) under as-

sumptions (H1)-(H2)-(H3-ii). Let I = (T0, T1) be a bounded interval, then there exist four

positive constants λ+, λ−, C+, C− such that

C− ΓK
λ−(x, t; ξ, τ) ≤ ΓL(x, t; ξ, τ) ≤ C+ ΓK

λ+(x, t; ξ, τ) (5.1.2)

for every (x, t), (ξ, τ) ∈ R
N × (T0, T1) with τ < t. The constants λ+, λ−, C+, C− only depend

on B, (T1 − T0), M . Note that ΓK
λ− and ΓK

λ+ denote the fundamental solution of L λ−
0 and

L λ+
0 , where

L
λ
0 u(x, t) :=

λ

2

m0∑

i=1

∂2xiu(x, t) +
N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t), (5.1.3)

and the explicit expression of ΓK
λ± is given by

ΓK
λ((x, t); (ξ, τ)) = ΓK

λ((ξ, τ)−1 ◦ (x, t); 0, 0),
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for every (x, t), (ξ, τ) ∈ R
N+1, with (x, t) 6= (ξ, τ) and

ΓK
λ(x, t; 0, 0) =





(2πλ)−
N
2√

detC(t)
exp

(
− 1

2λ〈C−1(t)x, x〉
)
, if t > 0,

0, if t ≤ 0.
(5.1.4)

Remark 5.1.4. As the Harnack inequality 4.1.3 holds true under the less restrictive assump-

tion (H3) in Chapter 4, the lower bounds in (5.1.2) still holds if we assume c, f ∈ Lqloc(Ω),

with q > (Q+2)
2 , and b ∈ (L∞

loc(Ω))
m0 . In this case, the constants appearing on the left-hand

side of inequality (5.1.2) will depend on B, (T1 − T0), ‖b‖q, ‖c‖q.

Remark 5.1.5. Since the proof of the upper bound in (5.1.2) does not rely on the Harnack

inequality stated in Theorem 4.1.3, the rightmost inequality of (5.1.2) holds true for the more

general operator

L̃ u(x, t) :=
m0∑

i,j=1

∂xi
(
aij(x, t)∂xju(x, t)

)
+

m0∑

i=1

bi(x, t)∂xiu(x, t)+ (5.1.5)

−
m0∑

i=1

∂xi (ai(x, t)u(x, t)) +
N∑

i,j=1

bijxj∂xiu(x, t)− ∂tu(x, t) + c(x, t)u(x, t),

with a ∈ (L∞
loc(ST ))

m0 .

5.1.1 Outline of the chapter

This chapter is organized as follows. In Section 5.2 we prove Gaussian lower and upper bounds

for the fundamental solution associated to operator L . In Section 5.3 we prove the existence

of a weak fundamental solution for operator L under assumptions (H1)-(H2)-(H3-ii).

5.2 Proof of Theorem 5.1.3

This section is devoted to the proof of Gaussian bounds (Theorem 5.1.3) for the weak funda-

mental solution defined in Definition 5.1.1. All the results proved in Subsections 5.2.1-5.2.3

are obtained under assumptions (H1)-(H2)-(H3), while the Gaussian upper bound in Sub-

section 5.2.2 still holds true when considering the more general operator L̃ .

5.2.1 Harnack inequalities

The starting point in proving the Gaussian lower bound is an invariant Harnack inequality,

which, prior to this work, was not avalaible in the ultraparabolic setting. For this reason, in

this subsection we take advantage of Theorem 4.1.3. As Theorem 4.1.3 was established under

assumptions (H1)-(H2)-(H3), all the results in this subsection and in Subsection 5.2.3 hold

true under these less restrictive assumptions.
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Remark 5.2.1. When considering the more restrictive assumption (H3-ii) the constants

appearing in the statement of Theorem 4.1.3 only depend onM , since we assume |b(x, t)| ≤M ,

|c(x, t)| ≤M for every (x, t) ∈ R
N+1.

We recall the following result, which will be useful in the proof of the upcoming Lemma

5.2.3.

Remark 5.2.2. Let u be a weak solution to L u = 0 and r > 0. Then v := u ◦ δr solves

equation L (r)v = 0, where

L
(r)v := div(A(r)Du)− div(a(r)v) + 〈b(r), Dv〉+ c(r)v + 〈Bx,Dv〉 − ∂tv

with A(r) = A ◦ δr, a(r) = r(a ◦ δr), b(r) = r(b ◦ δr) and c(r) = r2(c ◦ δr).

Moreover, if u is a solution to L u = 0, then, for any ζ ∈ R
N+1, v := u ◦ `z solves equation

(L ◦ `z)v = 0, where L ◦ `z is the operator obtained by L via a `z-translation of the

coefficients.

For β, r, R > 0 and z0 ∈ R
N+1, we define the cones

Pβ,r,R := {z ∈ R
N+1 : z = δρ(ξ, β), |ξ|K < r, 0 < ρ ≤ R},

and we set Pβ,r,R(z0) := z0 ◦ Pβ,r,R. We are now in a position to derive the following Lemma,

which is a consequence of Theorem 4.1.3.

Lemma 5.2.3 (Local Harnack inequality). Let z ∈ R
N+1 and R ∈ (0, 1]. Moreover, let u

be a continuous and non-negative weak solution to L u = 0 in QR(z) under the assumptions

(H1)-(H2)-(H3). Then we have

sup
P1,ω,R/R0

(z)

u ≤ Cu(z),

where C, R0 and ω are the constants appearing in Theorem 4.1.3 and they only depend on Q,

λ, Λ and q.

Proof. Let w ∈ P1,ω,R(z), i.e. w = z ◦ δσ(ξ, 1) for some σ ∈ (0, R] and |ξ|K < ω. We now

define the function uz,σ := u ◦ `z ◦ δσ, which is a continuous and non-negative solution to

L (σ)uz,σ = 0 in QR0(0, 0) ⊂ QR/σ(0, 0) in virtue of Remark 5.2.2. Thus, we can apply the

Harnack inequality (4.1.3) and infer

u(w) = uz,σ(ξ, 1) ≤ sup
Q−

uz,σ ≤ C inf
Q+

uz,σ ≤ Cuz,σ(0, 0) = Cu(z).

�

We next state a global version of the Harnack inequality, which is a crucial step in proving

the Gaussian lower bound (see Theorem 5.2.14 below).
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Theorem 5.2.4 (Global Harnack inequality). Let t0 ∈ R and τ ∈ (0, 1]. If u is a continuous

and non-negative weak solution to L u = 0 in R
N+1 × (τ − t0, τ + t0) under the assumptions

(H1)-(H2)-(H3), then we have

u(ξ, t) ≤ c0e
c0〈C−1(t−t0)(ξ−e(t−t0)Bx),ξ−e(t−t0)Bx〉u(x, t0),

where t ∈ (t0, τ + t0), x, ξ ∈ R
N , C is the matrix introduced in (1.1.32) and c0 is a positive

constant only depending on Q, λ, Λ and q.

The proof of Theorem 5.2.4 is based on a classical argument that makes use of the so-

called Harnack chains, alongside with control theory. Moreover, the proof of this theorem

follows the one of [72, Theorem 3.6], with the only difference that we here apply Theorem

4.1.3 and Lemma 5.2.3 instead of Theorem 3.1 and Lemma 3.5 of [72]. Indeed, the method

we rely on has the advantage of highlighting the geometric structure of the operator L

and can be therefore automatically extended to more general operators. Finally, we remark

that a detailed contruction of Harnack chains through the repetition of an invariant Harnack

inequality will be presented in Chapter 6 in a new relativistic setting.

Before proving Theorem 5.2.4, we recall that (see, for instance, [97, Section 9.5]) Hörman-

der’s rank condition (1.0.6) is equivalent to the following property: for any two points

(y, t0), (x, t) ∈ R
N+1 with t > t0, we can find a control ω ∈ L2(Rm0 ; [t0, t]) such that there

exists a solution to the system




γ′(s) = Bγ(s) + σω(s),

γ(t0) = y, γ(t) = x,
(5.2.1)

where B is the matrix defined in (1.1.12) and

σ =

(
Im0

O

)
.

In the proof of Theorem 5.2.4 we will take advantage of the following result.

Lemma 5.2.5. Let γ be the solution to




γ′(s) = Bγ(s) + σω(s), s ∈ [t0, t]

γ(t0) = y,
(5.2.2)

with t− t0 ≤ 1, x ∈ R
N and ω ∈ L2(Rm0 ; [t0, t]). Then we have

(γ(s), s) ∈ P1,c‖ω‖L2([t0,t])
,
√
t−t0 , s ∈ [t0, t], (5.2.3)

where c is a constant that only depends on the matrix B.

We refer the reader to [72, Lemma 3.7] for the proof of the previous result. As the L2-
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norm of the control ω explicitly appears in (5.2.3), among the paths satisfying (5.2.2), we are

interested in the one that minimizes the total cost

‖ω‖2L2([t0,t])
=

∫ t

t0

|ω(s)|2ds.

Classical control theory provides us with an explicit expression of the optimal control and of

the associated the optimal cost (see, for instance, [97, Theorem 9.55]).

Lemma 5.2.6. The optimal cost Ψ(y, t0; x, t) associated to problem (5.2.1) is given by

Ψ(y, t0; x, t) = 〈C−1(t− t0)
(
ξ − e(t−t0)Bx

)
, ξ − e(t−t0)Bx〉.

Proof of Theorem 5.2.4. As we want to make use of the Harnack inequality Lemma 5.2.3, we

first observe that, for every (x, t) ∈ R
N × (t0, t0 + τ), with τ > 0, u is a continuous, non-

negative solution to (4.1.1) (with f ≡ 0) in Q√
τ (x, t). We now fix x, y ∈ R

N , t ∈ (t0, t0 + τ)

and we consider the solution γ to (5.2.1) corresponding to the optimal cost Ψ(y, t0; x, t).

Additionally, we set c̃ =
(
ω
c

)2
, where ω and c are the constants given by Theorem 4.1.3 and

Lemma 5.2.5, respectively.

If Ψ(y, t0; x, t) ≤ c̃, we can straightforwardly apply Lemma 5.2.5 and obtain

(x, t) ∈ P
1,c
√

Ψ(y,t0;x,t),
√
t−t0(x, t) ⊂ P1,ω,

√
τ (x, t).

Hence, we apply Lemma 5.2.3 and infer

u(x, t) ≤ Cu(y, t0),

where C is the constant given by Theorem 4.1.3. On the other hand, if the above inequality

is not satisfied, we set

tj+1 = inf{s ∈ [tj , t] : Ψ(γ(tj), tj ; γ(s), s) ≥ c̃}.

Clearly, for j ≥ Ψ(γ(tj),tj ;γ(s),s)
c̃ , we have that tj = t, while, if tj < t, there holds

(γ(tj+1), tj+1) ∈ P1,ω,
√
τ (γ(tj), tj).

Thus, we are now in a position to apply Lemma 5.2.3, which yields

u(γ(tj+1), tj+1) ≤ Cu(γ(tj), tj),

where, once again, C is the constant given by Theorem 4.1.3. As an immediate consequence

of the previous inequalities, we get

u(x, t) ≤ C
Ψ(y,t0;x,t)

c̃ u(y, t0).
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The thesis then follows thanks to the explicit expression of the optimal cost provided by

Lemma 5.2.6.

�

5.2.2 Gaussian upper bound

As in the proof of the lower bound for the fundamental solution we make use of the upper

bound provided by Theorem 5.2.12, we first focus our attention on proving this result.

The proof we propose in this subsection follows Aronson’s method [14] and relies on the

local boundedness of weak solutions to L̃ u = 0 in (5.1.5). As the detailed derivation of

the local boundedness of weak solutions was already provided in Chapter 4 through Moser’s

iterative method, we here just recall the main result, which in our setting reads as follows.

Theorem 5.2.7. Let z0 ∈ Ω and 0 < r
2 ≤ ρ < r ≤ 1, be such that Qr(z0) ⊆ Ω. Let L̃ be an

operator of the form (5.1.5) and let u be a non-negative weak solution to L̃ u = 0 in Ω under

assumptions (H1)-(H2)-(H3-ii). Then for every p ≥ 1 there exists two positive constants

C = C (p, λ,Λ, Q), such that

sup
Qρ(z0)

up ≤ C

(r − ρ)Q+2

∫

Qr(z0)

up. (5.2.4)

Proof. The argument relies on the combination of a Caccioppoli-type inequality and a Sobolev-

type inequality (see Chapter 4, Section 4.3). The only difference with the proof presented

in Chapter 4 is that here we handle the more general operator L̃ in (5.1.5) and we rely

on the more restrictive assumption (H3-ii). Thus, to carry out the proof in the present

setting, we just need to show how to deal with the additional term
m0∑
i=1

∂xi (ai(x, t)u(x, t)) in

the Caccioppoli-type inequality and the Sobolev-type inequality proved in Chapter 4. More

precisely, we consider the Caccioppoli inequality Theorem 4.3.4 and we focus on the new term

involving the coefficient a ∈ (L∞
loc(Ω))

m0 , which is handled as follows

(2p− 1)

∫

Qr

〈a,Dm0u
p〉ψ2up + 2p

∫

Qr

〈au2p, Dm0ψ〉ψ

≤ |2p− 1|
∫

Qr

|a| |Dm0u
p|ψ2up + 2p

∫

Qr

u2p |〈a,Dm0ψ〉| |ψ|

≤ |2p− 1|
εa

∫

Qr

|a|2 ψ2u2p + |2p− 1|εa
∫

Qr

|Dm0u
p|2ψ2 + 2p

∫

Qr

u2p |〈a,Dm0ψ〉| |ψ|

≤ |2p− 1|
εa

‖a‖2L∞(Qr)
‖up‖2L2(Qr)

+ |2p− 1|εa
∫

Qr

|Dm0u
p|2ψ2 +

|2p| c1
(r − ρ)

‖a‖L∞(Qr)‖up‖2L2(Qr)
.

From this point, we obtain the Caccioppoli inequality reasoning as in the proof of Theorem

4.3.4.

As far as the Sobolev inequality is concerned, we find two extra terms in the representation

formula of sub-solutions. More precisely, following the notation of Theorem 4.3.3, the term
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I0(z) here becomes

I0(z) =

∫

Qr

[−〈a,D(ψΓ(z, ·))〉v] (ζ)dζ +

+

∫

Qr

[〈b,Dv〉Γ(z, ·)ψ] (ζ)dζ +

∫

Qr

[cvΓ(z, ·)ψ] (ζ)dζ.

Since

〈a,Dv〉 ∈ L2 q
q+2 for a ∈ Lq, q >

Q+ 2

2
and v ∈ L2,

reasoning as in Theorem 4.3.3 we infer

‖ I0(ζ) ‖L2α(Qρ) ≤‖ Γ ∗ (〈a,Dm0v〉ψ) + Γ ∗ (〈b,Dm0v〉ψ) + Γ ∗ (cvψ) ‖L2α(Qρ)

≤ C · (‖ a ‖Lq(Qρ) + ‖ b ‖Lq(Qρ)‖ Dm0v ‖L2(Qρ) +

+ ‖ c ‖Lq(Qρ)‖ v ‖L2(Qρ))),

where

α =
q(Q+ 2)

q(Q− 2) + 2(Q+ 2)
.

In addition, the term I3(z) here becomes

I3(z) =

∫

Qr

[〈ADv,D(Γ(z, ·)ψ)〉] (ζ)dζ −
∫

Qr

[(Γ(z, ·)ψ)Y v] (ζ)dζ

+

∫

Qr

[〈a,D(Γ(z, ·)ψ)〉v] (ζ)dζ −
∫

Qr

[〈b,Dv〉Γ(z, ·)ψ] (ζ)dζ

−
∫

Qr

[cvΓ(z, ·)ψ] (ζ)dζ

and can be treated exactly as the analogous one in Theorem 4.3.3. The rest of the proof of

the Sobolev inequality follows the one contained in Theorem 4.3.3.

We now prove the following result, which is an important consequence of Moser’s estimate

(5.2.4).

Theorem 5.2.8 (Nash upper bound). Let L̃ be an operator of the form (5.1.5) satisfying

assumptions (H1)-(H2)-(H3-ii). Then there exists a positive constant C0, only dependent

on Q, λ and Λ, such that

Γ(x, t; y, t0) ≤
C0

(t− t0)
Q
2

, (5.2.5)

for any 0 < t− t0 ≤ 1 and x, y ∈ R
N .

Proof. We apply Theorem 5.2.7, with ρ = 1
2

√
t− t0 and r =

√
2ρ, and we find

Γ(x, t; y, t0) ≤ sup
Qρ(y,t0)

Γ(x, t; ·, ·)
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≤ C

(t− t0)
Q+2
2

∫

Qr(y,t0)

Γ(x, t; ξ, s) dξ ds

≤ C

(t− t0)
Q+2
2

∫ t0

t0− 1
2
(t−t0)

∫

RN

Γ(x, t; ξ, s) dξ ds

≤ C0

(t− t0)
Q
2

,

where in the last step we have used inequality
∫
RN Γ(x, t; ξ, s) dξ, ds ≤ e(t−t0)‖c‖∞ .

As a straightforward consequence of Theorem 5.2.8, we obtain the following corollary.

Corollary 5.2.9. Under the assumptions of Theorem 5.2.8, there exists a positive constant

C0, only dependent on Q, λ and Λ, such that

∫

RN

Γ2(x, t; y, t0) dx ≤ C0

(t− t0)
Q
2

,

for any 0 < t− t0 ≤ 1 and y ∈ R
N , and

∫

RN

Γ2(x, t; y, t0) dy ≤ C0

(t− t0)
Q
2

,

for any 0 < t− t0 ≤ 1 and x ∈ R
N .

Another crucial tool in proving the Gaussian upper bound is provided by the following

theorem.

Theorem 5.2.10. Let y ∈ R
N , σ > 0 and let u0 ∈ L2(RN ) be such that u0(x) = 0 whenever

|x− y|K < σ. Let L̃ be an operator of the form (5.1.5) satisfying assumptions (H1)-(H2)-

(H3-ii). Moreover, we assume that u is a bounded solution to L̃ u = 0 in (η, η + σ2] with

initial value u0(x, η) = u0(x). Then, there exist two positive constants k and C, only depending

on M , such that for any τ satisfying η ≤ τ ≤ η + 1∧σ2

k , we have

|u
((
e−ηBy, 0

)
◦ (0, τ)

)
| = |v(0, τ)| ≤ C

(τ − η)
Q
4

exp

(
− σ2

C(τ − η)

)
‖u0‖2L2(RN ).

Proof. Let us first prove the theorem for y = 0. We fix s such that 0 ≤ s − η ≤ 1 ∧ σ2 and

we define

h(x, t) = − |x|2
K

2(s− η)− k(t− η)
+ α(t− η), η ≤ t ≤ η +

s− η

k
, x ∈ R

N , (5.2.6)

where α and k are positive constants we shall fix later on. In addition, for a radius R ≥ 2,

we consider a cut-off function γR ∈ C∞
0 (RN ; [0, 1]) such that γR(x) ≡ 1 for |x|K ≤ R − 1,

γR(x) ≡ 0 for |x|K ≥ R with |DγR| bounded by a constant that does not depent on R. Now,
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multiplying both sides of equation L̃ u = 0 by γ2Re
2hu and integrating over R

N × [η, τ ], we

obtain

∫

RN

γ2Re
2hu2|t=η − 2

∫ ∫

RN×[η,τ ]

γ2Re
2hu2 (3〈ADm0h,Dm0h〉 − Y h− 2〈a,Dm0h〉+ µ〉) dx dt

≤
∫

RN

γ2Re
2hu2|t=τdx+ 2

∫ ∫

RN×[η,τ ]

e2hu2 (3Λ|Dm0γR|2 + |Y γR|2 − 2〈a,Dm0γR〉γR) dx dt,

(5.2.7)

where µ = 3
2λ‖a‖2∞+ 3

2λ‖b‖2∞+‖c‖∞ is a positive constant only depending onM in assumption

(H3A). Since u is bounded by assumption and e2h(x,t) ≤ e
−|x|2

K

s−η
+α(s−η), if we let R go to infinity

in (5.2.7), the last integral tends to zero and we obtain

∫

RN

e2hu2|t=η − 2

∫ ∫

RN×[η,τ ]

γ2Re
2hu2 (3〈ADm0h,Dm0h〉 − Y h− 2〈a,Dm0h〉+ µ〉) dx dt

≤
∫

RN

e2hu2|t=τdx.

(5.2.8)

We now make a suitable choice of k and α in (5.2.6), only dependent on M and B, we get

3〈ADm0h,Dm0h〉 − Y h− 2〈a,Dm0h〉+
3

2λ
‖a‖2∞ +

3

2λ
‖b‖2∞ + ‖c‖∞ ≤ 0, (5.2.9)

where η ≤ t ≤ η + s−η
k , x ∈ R

N . We now set δ = 2(s− η)− k(t− η), and we compute

3〈ADm0h,Dm0h〉 − Y h− 2〈a,Dm0h〉+ µ

≤ 12Λ|x|2
K

δ2
+

2‖B‖|x|2
K

δ
− k|x|2

K

δ2
− α +

4〈a, x〉
δ

+ µ

≤ |x|2
K

δ2
(12Λ + 2δ‖B‖ − k + 2)− α + 2‖a‖2∞ + µ

≤ |x|2
K

δ2
(12Λ + 4‖B‖ − k + 2)− α2‖a‖2∞ + µ,

and therefore inequality (5.2.9) holds true provided that we choose α = 2‖a‖2∞+µ. Combining

inequalities (5.2.8) and (5.2.9), we obtain

max
t∈]η,η+ s−η

k [

∫
∣∣∣δ0

2
√
k/

√
s−η

(x)
∣∣∣
K

≤1

e2h(x,t)u2(x, t) dx ≤ max
t∈]η,η+ s−η

k [

∫

RN

e2h(x,t)u2(x, t) dx

≤
∫

|x|K≥σ
e2h(x,η)u20(x, t) dx,

(5.2.10)

We now want to bound the two exponents appearing on the left-hand side and on the right-

hand side of (5.2.10). We first take care of the lower bound and we observe that, be definition
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(5.2.6), for every η ≤ t ≤ η + s−η
k , we have

2h(x, t) ≥ −2
|x|2

K

s− η
= −2

∣∣δ0r
(
δ0r−1(x)

)∣∣2

s− η
. (5.2.11)

We now set r =
√
s−η
2
√
k

and we observe that, if

∣∣∣∣δ02√k√
s−η

(x)

∣∣∣∣
K

=
∣∣δ0r−1 (x)

∣∣
K
≤ 1, then we have

−2
∣∣δ0r
(
δ0r−1(x)

)∣∣2

s− η
≥ −2‖δ0r (x)‖2

s− η
≥ − 2r2

s− η
=

1

2k
, (5.2.12)

where in the first inequality we used the fact that δ < 1 by assumption. Combining inequalities

(5.2.11) and (5.2.12), we therefore obtain

2h(x, t) ≥ 1

2k
, for every η ≤ t ≤ η +

s− η

k
. (5.2.13)

On the other hand, if |x|K ≥ σ, we infer

− 2h(x, η) =
2|x|2

K

2(s− η)
≥ σ2

s− η
. (5.2.14)

Combining inequalities (5.2.10), (5.2.13) and (5.2.14), we get

max
t∈]η,η+ s−η

k [

∫
∣∣∣δ0

2
√
k/

√
s−η

(x)
∣∣∣
K

≤1

e2h(x,t)u2(x, t) dx ≤ e
1
2k exp

(
− σ2

s− η

)
‖u0‖2L2(RN ). (5.2.15)

To conclude the proof of Theorem 5.2.10, we rely once again on Theorem 5.2.7. More precisely,

we let τ = η+ s−η
k and therefore τ ∈

[
η, η + 1

k

]
, s− η = k(τ − η). As a consequence, in virtue

of Theorem 5.2.7, we have

|u(0, τ)|2 ≤ sup
Q√

s−η

4
√
k

(0,τ)

|u|2 = ≤ C

(s− η)
Q+2
2

∫ ∫

Q√
s−η

4
√

k

(0,τ)

u2(x, t) dx dt

=
C

(s− η)
Q+2
2

∫ τ

τ− s−η
4k

∫
∣∣∣δ0

2
√
k/

√
s−η

(x)
∣∣∣
K

≤1

u2(x, t) dx dt.

We now apply (5.2.15) and we obtain

C

(s− η)
Q+2
2

∫ τ

τ− s−η
4k

∫
∣∣∣δ0

2
√
k/

√
s−η

(x)
∣∣∣
K

≤1

u2(x, t) dx dt ≤ C

(s− η)
Q
2

exp

(
− σ2

C(s− η)

)
‖u0‖2L2(RN )

=
C

k
Q
2 (τ − η)

Q
2

exp

(
− σ2

Ck(τ − η)

)
‖u0‖2L2(RN ),

where C is a constant that only depends onM and k. Combining the two previous inequalities
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we obtain

|u(0, τ)|2 ≤ C

k
Q
2 (τ − η)

Q
2

exp

(
− σ2

Ck(τ − η)

)
‖u0‖2L2(RN ), (5.2.16)

which concludes the proof in the case y = 0.

We now address the general case y ∈ R
N . For any u, u0 and (η, y) as in the statement,

we set

v(x, τ) := u
((
e−ηBy, 0

)
◦ (x, τ)

)
, τ < η, x ∈ R

N ,

and we observe that be definition v(x, η) = u(x+ y, η) = u0(x+ y) = 0 if |x|K ≤ σ. Moreover,

as the vector field Y is invariant with respect to the left translation `z in (1.1.9), we have that

(L ◦ `z) v = 0, where z =
(
e−ηBy, 0

)
. Hence, taking advantage of (5.2.16), we infer

|u (z ◦ (0, τ)) | = |v(0, τ)| ≤ C

(τ − η)
Q
4

exp

(
− σ2

C(τ − η)

)
‖u0‖2L2(RN )

and we conclude the proof of the general statement.

As a simply consequence of Theorem 5.2.10, we obtain the following corollary.

Corollary 5.2.11. Under the same assumptions of Theorem 5.2.10, there exist two constants

k and C, only depending M , such that for every σ > 0 and η ∈ R, we have

∫

|ξ−e(η−t)Bx|
K
≥σ

Γ2(x, t; ξ, η)dξ ≤ Ce
− σ2

C(t−η)

(t− η)
Q
2

, (x, t) ∈ R
N ×

(
η, η +

1 ∧ σ2
k

)
, (5.2.17)

and

∫

|x−e(η−t)Bξ|
K
≥σ

Γ2(x, t; ξ, η)dx ≤ Ce
− σ2

C(t−η)

(t− η)
Q
2

, (x, t) ∈ R
N ×

(
η, η +

1 ∧ σ2
k

)
. (5.2.18)

Proof. We only show how to prove inequality (5.2.17), as (5.2.18) is proved similarly. As a

first step, we observe that

∫

|ξ−e(η−t)Bx|
K
≥σ

Γ2(x, t; ξ, η)dξ =

∫

|ξ−y|K≥σ
Γ2
(
e(η−t)By, t; ξ, η

)
dξ

=

∫

|ξ−y|K≥σ
Γ2
((
e−tBy, 0

)
◦ (0, η) ; ξ, η

)
dξ.

We now define the function

v(w, s) :=

∫

|ξ−y|K≥σ
Γ(w, s; ξ, η)Γ

((
e−tBy, 0

)
◦ (0, η) ; ξ, η

)
dξ,

which is a non-negative solution to (4.1.1) for s > η, with initial condition v(w, η) = 0 if
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|w − y|K < σ and v(w, η) = Γ
((
e−tBy, 0

)
◦ (0, η) ;w, η

)
if |w − y|K ≥ σ. Setting (w, s) =(

e−tBy, 0
)
◦ (0, η) and applying Theorem 5.2.10, we get

∫

|ξ−y|K≥σ
Γ2
((
e−tBy, 0

)
◦ (0, η) ; ξ, η

)
dξ = v

((
e−tBy, 0

)
◦ (0, η)

)

≤ Ce
− σ2

C(t−η)

(t− η)
Q
4

‖Γ
((
e−tBy, 0

)
◦ (0, η) ; ·, η

)
‖L2(RN ),

and the proof of inequality (5.2.17) follows from Corollary 5.2.9.

We are now in a position to state and prove the following result concerning the upper bound

for the fundamental solution. We remark that the exponent Q
2 appearing in estimate (5.2.19)

is optimal, as we can easily see in the case of constant coefficients Kolmogorov operators,

whose fundamental solution is explicit and given by formula (1.1.31).

Theorem 5.2.12 (Gaussian upper bound). Let L̃ be an operator of the form (5.1.5) satisfy-

ing assumptions (H1)-(H2)-(H3-ii). Then there exists a positive constant C, only depen-

dent on Q, λ, Λ and q, such that

Γ(x, t; y, t0) ≤
C

(t− t0)
Q
2

exp

(
− 1

C

∣∣∣δ01/√t−t0
(
x− e(t−t0)By

)∣∣∣
2

K

)
, (5.2.19)

for any 0 < t− t0 ≤ 1 and x, y ∈ R
N .

Proof. We split the proof into four steps.

Step 1. We first prove the statement for y = 0 and t − t0 = 1
k , where k is the constant

given by Theorem 5.2.10. For a fixed x ∈ R
N , we set

σ(x) =
|x|K

2
∥∥∥e

(t−t0)

2
B
∥∥∥
.

If σ(x) ≤ 1 and thus |x|K ≤ 2
∥∥∥e

(t−t0)

2
B
∥∥∥, then the thesis simply follows from Theorem 5.2.8,

as t− t0 =
1
k , with k only depending on M .

On the other hand, if σ(x) > 1, then we set η = t + t0−t
2 and we apply the reproduction

property

Γ(x, t; 0, t0) =

∫

RN

Γ(x, t; ξ, η)Γ(ξ, η; 0, t0)dξ = J1 + J2,

where

J1 :=

∫
∣∣∣∣ξ−e

(t−t0)B
2 x

∣∣∣∣
K

≥σ(x)
Γ(x, t; ξ, η)Γ(ξ, η; 0, t0)dξ,

J2 :=

∫
∣∣∣∣ξ−e

(t−t0)B
2 x

∣∣∣∣
K

<σ(x)

Γ(x, t; ξ, η)Γ(ξ, η; 0, t0)dξ.
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By the Cauchy-Schwarz inequality, we have

(J1)
2 ≤

∫
∣∣∣∣ξ−e

(t−t0)B
2 x

∣∣∣∣
K

≥σ(x)
Γ2(x, t; ξ, η)dξ

∫
∣∣∣∣ξ−e

(t−t0)B
2 x

∣∣∣∣
K

≥σ(x)
Γ2(ξ, η; 0, t0)dξ. (5.2.20)

Applying inequality (5.2.17) and Corollary 5.2.9 to the right-hand side of (5.2.20), we infer

(J1)
2 ≤ Ce

− σ2(x)
C(t−t0)

(t− t0)Q
= CkQ exp

(
− k|x|2

K

4C‖e 1
2k
B‖2

)
.

As far as J2 is concerned, we observe that, if
∣∣∣ξ − e

(t−t0)

2
Bx
∣∣∣
K

< σ(x), in virtue of the definition

of σ(x), we have

|ξ|K ≥
∣∣∣e−

(t−t0)

2
Bx
∣∣∣
K

−
∣∣∣ξ − e−

(t−t0)

2
Bx
∣∣∣
K

≥ |x|K
‖e (t−t0)

2
B‖

− σ(x) = σ(x). (5.2.21)

Owing to (5.2.21) and applying once again the Cauchy-Schwarz inequality, inequality (5.2.18)

and Corollary 5.2.9, we obtain

(J2)
2 ≤

∫

|ξ|K≥σ(x)
Γ2(x, t; ξ, η)dξ

∫

|ξ|K≥σ(x)
Γ2(ξ, η; 0, t0)dξ

≤ Ce
− σ2(x)

C(t−t0)

(t− t0)
Q
2

∫

RN

Γ2(x, t; ξ, η)dξ

≤ C

(t− t0)Q
e
− σ2(x)

C(t−t0) = CkQ exp

(
− −k|x|2

K

4C‖e 1
2k
B‖2

)
.

This concludes the proof of the statement in the case where σ(x) ≥ 1, that is

Γ(x, t; 0, t0) ≤ Ce−
|x|2
C , t− t0 =

1

k
, x ∈ R

N , (5.2.22)

where the constant C only depends on M and B.

Step 2. In order to generalize estimate (5.2.22) to the case 0 < t − t0 ≤ 1
k , we use a

scaling argument. For r ∈ [0, 1], we set Γr(x, t; 0, t0) = rQΓ (δr(x, t); δr(0, t0)) and we observe

that it is a fundamental solutions of operator L (r) in Remark 5.2.2. We now fix a time t such

that 0 < t− t0 ≤ 1
k and set r = k(t− t0). Then we have

Γ(x, t; 0, t0) = r−
Q
2 Γ(

√
r)

(
δ01/

√
r(x),

t

r
; 0,

t0
r

)
≤ Cr−

Q
2 e

− 1
C

∣∣∣δ0
1/

√
r
(x)

∣∣∣
2

K

where in the last inequality we took advantage of (5.2.22). To summarize, we have proved

that

Γ(x, t; 0, t0) ≤
C

(t− t0)
Q
2

e
− |x|2

K

C(t−t0) , 0 < t− t0 ≤
1

k
, x ∈ R

N . (5.2.23)
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Step 3. We now remove the restriction y = 0. We set z = (e−t0By, 0) and we denote

by Γ(z) the fundamental solution of operator L (z) := L ◦ `z, where `z is the left translation

defined in (1.1.9). Γ(z) satisfies inequality (5.2.23) and therefore we have

Γ(x, t; y, t0) = Γ(z)
(
z−1 ◦ (x, t); 0, t0

)
≤ C

(t− t0)
Q
2

exp

(
− 1

C
|δ01/√t−t0

(
x− e(t−t0)By

)
|2
)

for every x, y ∈ R
N and 0 < t− t0 ≤ 1

k .

Step 4. To prove the general statement, we are only left with relaxing the condition on

the length of the time interval. As a first step, we suppose that 0 < t − t0 ≤ 2
k and we set

τ = t−t0
2 . We now apply the reproduction property and infer

Γ(x, t; y, t0) =

∫

RN

Γ(x, t; ξ, t0 + τ)Γ(ξ, t0 + τ ; y, t0)dξ

≤ C

τQ

∫

RN

e−
1
C |δ1/√τ (x−e−τBξ)|2

Ke−
1
C |δ1/√τ (ξ−e−τBy)|2

Kdξ

≤ C

τQ

∫

RN

e−
1
C |δ1/√τ (x−e−τBξ)|2

Ke−
1
C |δ1/√τ (e

−τBξ−e−(t−t0)By)|2
Kdξ

≤ C

(t− t0)
Q
2

e−
1
C |δ1/√τ (x−e−(t−t0)By)|2

K ,

where in the last line we exploited the reproduction property for a standard Gaussian kernel.

By iterating this procedure, we can extend estimate above to any bounded domain in time

and therefore conclude the proof.

5.2.3 Gaussian lower bound

Lemma 5.2.13. Let L be an operator of the form (4.1.1) satisfying assumptions (H1)-

(H2)-(H3). Then there exist two positive constants R and c2, only dependent on Q and B,

such that ∫
∣∣∣∣δ0(√t−t0)

(y−e(t−t0)Bx)
∣∣∣∣
K

≤R
Γ(x, t; y, t0)dx ≥ c2, (5.2.24)

for any 0 < t− t0 ≤ 1 and y ∈ R
N .

Proof. We first notice that for a small enough constant c3, which depends only on Q and B,

the function

v(y, t0) :=

∫

RN

Γ(x, t; y, t0)− e−c3(t−t0), t > t0, y ∈ R
N ,

is a weak super-solution of the Cauchy problem





L ∗v(y, t0) = −e−c(t−t0)(c− Tr(B) + c3) ≤ 0, t > t0, y ∈ R
N ,

v(y, t) = 0, y ∈ R
N ,
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where L ∗ is the adjoint operator defined in (1.2.7). Hence, in virtue of the maximum principle

we infer v ≥ 0, that is

∫

RN

Γ(x, t; y, t0) ≥ e−c3(t−t0), t > t0, y ∈ R
N . (5.2.25)

We now observe that

∫
∣∣∣∣δ0(√t−t0)

(y−e(t−t0)Bx)
∣∣∣∣
K

≥R
Γ(x, t; y, t0)dx (5.2.26)

≤ c1

(t− t0)
Q
2

∫
∣∣∣∣δ0(√t−t0)

(y−e(t−t0)Bx)
∣∣∣∣
K

≥R
exp

(
− 1

c1

∣∣∣∣δ
0

(t−t0)−
1
2

(
y − e(t−t0)Bx

)∣∣∣∣
2

K

)
dx

= c1

∫

|z|
K
≥R

exp

(
− 1

c1
|z|2K

)
dz,

where in the second line we have used the upper bound (5.2.19) and in the third line we

have performed the change of variables z = δ0
(
√
t−t0)

(
y − e(t−t0)Bx

)
. Combining (5.2.25) and

(5.2.26) and choosing c3 small enough we obtain the thesis. �

We are now in a position to state and prove the following result concerning the Gaussian

lower bound of the fundamental solution.

Theorem 5.2.14 (Gaussian lower bound). Let L be an operator of the form (4.1.1) satisfying

assumptions (H1)-(H2)-(H3). Then there exists a positive constant c4, only dependent on

Q, λ, Λ and q, such that

Γ(x, t; y, t0) ≥
c4

(t− t0)
Q
2

e−c4〈C
−1(t−t0)(y−e(t−t0)Bx),y−e(t−t0)Bx〉 (5.2.27)

for any 0 < t− t0 ≤ 1 and x, y ∈ R
N .

Proof. We restrict ourselves to the case where x = 0, as the general statement can be obtained

from the dilation and translation-invariance of the operator L . Then, for every y ∈ R
N and

R > 0, we set

DR :=
{
ξ ∈ R

N :
∣∣∣δ0√τ (y − eτBξ)

∣∣∣
K

≤ R
}

and we compute

meas(DR) =

∫

DR

dξ = RQ
∫
∣∣∣δ0√

τ
(y−eτBξ)

∣∣∣
K

≤1

dξ = RQτQ/2
∫

|(y−eτBξ)|
K
≤1

dξ

= RQτQ/2
∫

|ξ|K≤1

dξ = RQτQ/2meas(B1(0)) = c5τ
Q/2,

where the constant c5 only depends on B and R. We also note that the function 〈C−1(t −
t0)
(
y − e(t−t0)Bx

)
, y − e(t−t0)Bx〉 is bounded by a constant M in DR (see [73, Lemma 3.3]).

Lastly, we now set τ = t−t0
2 and apply to Γ the global Harnack inequality stated in Theorem
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5.2.4, which yields

Γ(y, t; y, t0) ≥ c0e
−c0〈C−1(τ)(ξ−eτBx),ξ−eτBx〉Γ(ξ, t+ τ ; y, t0), y, ξ ∈ R

N . (5.2.28)

Hence, integrating inequality (5.2.28) over DR, we infer

Γ(y, t; y, t0) =
c6
τQ/2

∫

DR

Γ(y, t; y, t0)dξ

≥ c6 c0
τQ/2

∫

DR

e−c0〈C
−1(τ)(ξ−eτBx),ξ−eτBx〉Γ(ξ, t+ τ ; y, t0)dξ

≥ c6 c0
τQ/2

∫

DR

e−MΓ(ξ, t+ τ ; y, t0)dξ

≥ c7
(t− t0)Q/2

,

where the last inequality is a direct consequence of Lemma 5.2.13 and the constant c7 only

depends on Q, λ, Λ, q and B.

Setting τ = 3
4(t− t0) and x = 0, we apply once again Theorem 5.2.4 and we get

Γ(0, t; y, t0) ≥ c0e
−c0〈C−1(τ)y,y〉Γ(y, t+ τ ; y, t0)

≥ c8
(t− t0)Q/2

e−c0〈C
−1(τ)y,y〉 ≥ c9

(t− t0)Q/2
e−c9〈C

−1(t−t0)y,y〉,

where the last inequality is a consequence of a property of the covariance matrix C (see [72,

Remark 4.5]). This concludes the proof. �

5.3 Proof of Theorem 5.1.2

This section is devoted to the proof of our existence result, Theorem 5.1.2, under assumptions

(H1)-(H2)-(H3-ii). Our idea is to adapt the limiting procedure proposed in [7] to the case

of our interest.

Let us consider the operator L in (4.1.1) under the assumptions (H1)-(H2)-(H3-ii). Our

first aim is to build a sequence of operators (Lε)ε satisfying assumptions (C) of Theorem

1.2.4. Without loss of generality we restrict ourselves to the case of (T0, T1) = (0, T ), with

T > 1 and hence we denote ST := S0T . Thus, we may consider ρ ∈ C∞
0 (R) and ψ ∈ C∞

0 (RN )

such that

∫

R

ρ(t) dt = 1, supp ρ ⊂ B

(
T

2
,
T

4

)
, and

∫

RN

ψ(x) dx = 1, suppψ ⊂ B(0, 1),

where by abuse of notation B
(
T
2 ,

T
4

)
denotes the Euclidean ball on R of radius T

4 and center
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T
2 of suitable dimension and B(0, 1) denotes the Euclidean ball of RN of radius 1 and center

0 of suitable dimension. Then, for every ε ∈ (0, 1] we classically construct two families of

mollifiers

ρε(t) =
1

ε
ρ

(
t− T

2

ε

)
, ψε(x) =

1

εN
ψ
(x
ε

)
.

Lastly, for every ε ∈ (0, 1], for every t ∈ (0, T ) and x ∈ R
N we define

(aij)ε(x, t) :=

∫

R

∫

RN

aij(x− y, (1− ε)t+ τ)ψε(y) ρε(τ) dy dτ, ∀i, j = 1, . . . , N,

(bi)ε(x, t) :=

∫

R

∫

RN

bi(x− y, (1− ε)t+ τ)ψε(y) ρε(τ) dy dτ, ∀i = 1, . . . , N,

cε(x, t) :=

∫

R

∫

RN

c(x− y, (1− ε)t+ τ)ψε(y) ρε(τ) dy dτ.

These newly defined coefficients are smooth and such that (aij)ε → aij , (bi)ε → bi, (c)ε → c

in L1(ST ). Hence, the L1 convergence implies the pointwise convergence a.e. Moreover, for

every ε ∈ (0, 1] the coefficients (aij)ε, (bi)ε and (c)ε are bounded from above by the same

constant appearing in assumption (H3-ii). Indeed, for every (x, t) ∈ K, with K ⊂ R
N+1

compact,

|(aij)ε(x, t)| ≤ sup
(x,t)∈K

|aij(x, t)| ≤ M,

for every i, j = 1, . . . , N . The same statement holds true for the coefficients cε and (bi)ε, with

i = 1, . . . , N and ε ∈ (0, 1].

In addition, given assumption (H3-ii) and our definition of the family of mollifiers we

have

∣∣∣ ∂
∂xk

( bi)ε(x, t)
∣∣∣ =

∣∣∣∣∣∣

∫

R

∫

RN

bi(y, (1− ε)t+ τ)∂ψε

∂xk
(x− y) ρε(τ) dy dτ

∣∣∣∣∣∣

≤M

∫

B(T
2
,ε)

|ρε(τ)|dτ
∫

B(0,ε)

|∂ψε

∂xk
(x− y)| dy ≤MC1

for every i = 1, . . . ,m0 and for every k = 1, . . . ,m0, where C1 is a constant depending on ψ.

Indeed, for every y ∈ B(0, ε), we have

∣∣∣∂ψε

∂xk
(x− y)

∣∣∣ ≤ 1

εN+1

∥∥∥ ∂ψ
∂xk

∥∥∥
L∞(B(0,ε))

≤ 1

εN+1

(
2

e

)2

sup
[−ε,ε]

|2y| ≤ C1

εN
,

where C1 is a constant that does not dependent on ε.

157



CHAPTER 5. WEAK FUNDAMENTAL SOLUTION

The same statement holds true also for ∂xk(aij)ε and ∂xkcε, with k = 1, . . . ,m0 and

ε ∈ (0, 1]. Hence, thanks to the mean value theorem along the direction of the vector fields

∂xk , the coefficients (aij)ε,cε and (bi)ε, with i = 1, . . . , N and ε ∈ (0, 1], are uniformly Lipschitz

continuous (i.e. Hölder continuous of exponent α = 1), and therefore Dini continuous.

Hence, we can apply Theorem 2.1.5 to (ΓL
ε)ε for every ε ∈ (0, 1]. Thus, there exists a

sequence of equibounded fundamental solutions (ΓL
ε)ε, in the sense that each of them satisfies

Theorem 5.1.3, i.e. for every (x, t), (ξ, τ) ∈ ST , with 0 < τ < t < T

C− ΓK
λ−(x, t; y, τ) ≤ ΓL

ε(x, t; y, τ) ≤ C+ ΓK
λ+(x, t; y, τ).

We point out that, since the coefficients of Lε are uniformly bounded by M , the coefficients

of Theorem 5.1.2 do not depend on ε.

First of all, for every fixed (ξ, τ) ∈ ST our aim is to show there exists a converging

subsequence (ΓL
ε(·, ·; ξ, τ))ε, from now on simply (ΓL

ε)ε, in every compact subset of
(
R
N \ {ξ}

)
×

(τ, T ).

For this reason, we define a sequence of open subsets (Ωp)p∈N of ST

Ωp :=

{
x ∈ R

N : |x|2 < p2, |x− ξ|2 > 1

2p

}
×
(
τ +

1

p
, T − 1

p

)
.

Note that Ωp ⊂⊂ Ωp+1 for every p ∈ N. Moreover, ∪+∞
p=1Ωp =

(
R
N \ {ξ}

)
× (τ, T ). Since

ΓL
λ+ is a bounded function in Ωp, we have that (ΓL

ε)ε is an equibounded sequence in every

Ωp. Then, as the sequence (ΓL
ε)ε is equibounded in Ω2, it is equicontinuous in Ω1 thanks to

Theorem 2.1.5. Moreover, by Theorem 1.2.4 and Theorem 2.1.5, we also have that

(
∂ΓL

ε

∂x

)
ε
,
(
∂ΓL

ε

∂ξ

)
ε
,
(
∂2ΓL

ε

∂x2

)
ε
,
(
∂2ΓL

ε

∂ξ2

)
ε
, (Y ΓL

ε)ε ,

are bounded sequences in C0(Ω1), where Y is the Lie derivative defined in (1.1.5). Thus,

there exists a subsequence (ΓL
1,ε1)ε1 that converges uniformly to some function Γ1 that satisfies

(5.1.3) in Ω1. Moreover, Γ1 ∈ C2(Ω1) and the function u(x, t) := Γ1(x, t; ξ, τ) is a.e. a classical

solution to L u = 0 in Ω1, and hence a weak solution in the set Ω1.

We next apply the same argument to the sequence (ΓL
1,ε1)ε2 on the set Ω2, and obtain a

subsequence (ΓL
2,ε2)ε2 that converges in C2(Ω2) to some function Γ2, that belongs to C

2(Ω2)

and satisfies the bounds of Theorem 5.1.3 in Ω2. Moreover, the function u(x, t) := Γ2(x, t; ξ, τ)

is a. e. a classical solution to L u = 0 in the set Ω2, and hence a weak solution, to L u = 0

in the set Ω2.

We next proceed by induction. Let us assume that the sequence (ΓL
q−1,εq−1)εq−1 on the set

Ωq has been defined for some q ∈ N. We extract from it a subsequence (ΓL
q,εq)εq converging

in C2(Ωq) to some function Γq, satisfying Theorem 5.1.3 in Ωq and it agrees with Γq−1 on the

set Ωq−1.

Next, we define a function ΓL in the following way: for every
(
R
N \ {ξ}

)
×(τ, T ) we choose
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q ∈ N such that (x, t) ∈ Ωq and we set ΓL(x, t; ξ, τ) := Γq(x, t; ξ, τ).

This argument can be repeteadly applied to any choice of (ξ, τ) ∈ ST . Hence, it provides

us with a non ambiguous definition of ΓL. Indeed, for any given choice of (ξ, τ) ∈ ST , if

(x, t) ∈ Ωp, then Γp(x, t; ξ, τ) = Γq(x, t; ξ, τ) for every choice of p, q ∈ N. In particular, we

proved that ΓL
ε converges compactly uniformly on ST to a function Γ on a compactly generated

space. Hence, Γ(·, ·; ξ, τ) is continuous on R
N×(τ, T )\{(ξ, τ)} and a weak solution to L u = 0

on R
N×(τ, T ). Finally, Theorem 5.1.3 holds true for ΓL because it is a weak solution to (4.1.1)

in the sense of Definition 4.1.2.

Secondly, we verify that for any bounded function ϕ ∈ C(RN ) and any x, ξ ∈ R
N the

function

u(x, t) =

∫

RN

ΓL(x, t; ξ, τ)ϕ(ξ) dξ (5.3.1)

verifies the corresponding weak Cauchy problem in (5.1.1), hence it is a weak solution to

(4.1.1) in R
N × (τ, T ) and takes the initial datum when t → τ , with t > τ . Note that u is

well-defined given the Gaussian bounds of Theorem 5.1.3 and property 7. of Theorem 1.2.4.

Then, considering that for every ε ∈ (0, 1]

uε(x, t) :=

∫

RN

ΓL
ε(x, t; ξ, t0)ϕ(ξ) dξ. (5.3.2)

satisfies Lεuε = 0 in the classical sense, see Theorem 1.2.4, thanks to the Dominated Lebesgue

convergence theorem we get u defined in (5.3.1) is a weak solution to (4.1.1) in R
N × (τ, T ).

Thus, we are left with the proof of the limiting property. By applying property 3. of

Theorem 1.2.4 to the regularized operator Lε, we have that for every ε ∈ (0, 1] and for every

(ξ, τ) ∈ R
N × (0, T ) the following holds

lim
(x,t)→(ξ,τ)

t>τ

uε(x, t) = ϕ(ξ),

where uε is defined as above in (5.3.2). Now, thanks to Theorem 5.1.3 we are able to apply

the Lebesgue Dominated Convergence Theorem, and thus for every (ξ, τ) ∈ R
N × (0, T ) we

have

ϕ(ξ) = lim
ε→0

lim
(x,t)→(ξ,τ)

t>τ

uε(x, t) = lim
(x,t)→(ξ,τ)

t>τ

u(x, t).

Finally, we are left with the proof the reproduction property listed in Theorem 5.1.2.

For every ε > 0, x, ξ ∈ R
N and 0 < τ < s < t < T we get

ΓL
ε(x, t; y, s)ΓL

ε(y, s; ξ, τ) ≤ C+ ΓL
λ+(x, t; y, s)C+ ΓL

λ+(y, s; ξ, τ),

where the right-most inequality is obtained by applying the Gaussian upper bound in Theorem

5.1.3 to the fundamental solution Γε. Hence, by applying the reproduction property of the
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fundamental solution ΓL
λ+ we get

∫

RN

ΓL
λ+(x, t; y, s)ΓL

λ+(y, s; ξ, τ) dξ dτ = ΓL
λ+(x, t; ξ, τ),

which allows us to use the Lebesgue Dominated Convergence theorem. Thus, the property

holds true.

We complete the proof by adapting these arguments to the adjoint operator L ∗ when

considering the function v. �
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Part III

Relativistic generalization
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In the last part of this thesis, we consider a class of second order degenerate kinetic

operators L in the framework of special relativity. More precisely, we address the problem

that particles are allowed to move faster than light in the model described by

K u(p, y, t) =
∂2u

∂p2
(p, y, t)− p

∂u

∂y
(p, y, t)− ∂u

∂t
(p, y, t) = 0 (p, y, t) ∈ R

3, (III.1)

even though this is inconsistent with the theory of special relativity. The possible relativistic

generalization of (III.1) that we study in this work is the following

L u(p, y, t) =
√
p2 + 1 ∂

∂p

(√
p2 + 1 ∂u

∂p

)
− p∂u∂y −

√
p2 + 1 ∂u

∂t = 0, (p, y, t) ∈ R
3. (III.2)

In the next chapter, we explain why we believe that (III.2) is the suitable relativistic counter-

part of (III.1) and we describe L as an Hörmander operator which is invariant with respect to

Lorentz transformations. Then we prove a Lorentz-invariant Harnack type inequality, and we

derive accurate asymptotic lower bounds for positive solutions to L u = 0. As a consequence,

we obtain a lower bound for the density of the relativistic stochastic process associated to L .

Throughout the part, we are only concerned with classical solutions to equation (III.2). These

results are presented in Chapter 6 below and were obtained in collaboration with Anceschi

and Polidoro in [10].
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Chapter 6

Relativistic Fokker-Planck operator

6.1 Motivation

This chapter is devoted to the study of the following second order partial differential equation

L u(p, y, t) =
√
|p|2 + 1divp (DDpu)− 〈p,Dyu〉 −

√
|p|2 + 1 ∂tu = 0, (6.1.1)

where (p, y, t) ∈ R
2m+1 and D is the relativistic diffusion matrix given by

D =
1√

|p|2 + 1
(Im + p⊗ p) .

Here and in the following, Im denotes, as usual, the m × m identity matrix and p ⊗ p =

(pipj)i,j=1,...,m. In this context, a solution u = u(p, y, t) to (6.1.1) denotes the density of

particles in the phase space with momentum p and position y, at time t.

We observe that L is a strongly degenerate differential operator, since only second order

derivatives with respect to the momentum variable p ∈ R
m appear. However, the first order

part of L induces a strong regularizing property. More precisely, L is hypoelliptic in the

sense of Definition 1.0.1, as we will prove in Appendix 6.A. As a consequence, we only need

to consider classical solutions to L u = 0. Indeed, as we will show in Appendix 6.A, we can

write L in the form

L :=
m∑

j=1

X2
j +Xm+1, (6.1.2)

with

Xj =
m∑

k=1

(
δjk +

pjpk

1+
√

|p|2+1

)
∂
∂pk

, j = 1, . . . ,m, and Xm+1 =
m∑

k=1

ck(p)Xk − Y, (6.1.3)

where c1, . . . cm are smooth functions and

Y = 〈p,Dyu〉+
√

|p|2 + 1 ∂
∂t . (6.1.4)
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Moreover, L does satisfy the Hörmander’s rank condition (1.0.6), which in the present setting

reads as follows

rankLie {X1, . . . , Xm, Xm+1} (p, y, t) = 2m+ 1, ∀(p, y, t) ∈ R
2m+1, (6.1.5)

and it is a well-known criterion for the hypoellipticity of an operator in the form (6.1.2) (see

Chapter 1).

The aforementioned regularity property of operator L is related to a non-Euclidean struc-

ture on the space R
2m+1 and its study needs to be addressed via an ad hoc approach. In

particular, as we will see in the sequel, L is the relativistic version of a kinetic diffusion

operator and it is invariant with respect to Lorentz transformations. Moreover, L is the

Kolmogorov equation of a suitable relativistic stochastic process (Ps, Ys, Ts)s≥0, that is intro-

duced in (6.1.12) below. Our main result is a lower bound for the density of the stochastic

process (Ps, Ys, Ts)s≥0. This is the first step in developing a systematic study of L within the

theory of PDEs. Indeed, our final aim is to extend the classical theory considered in [8] to

the relativistic case. In particular, we plan to prove asymptotic results such as [12,72,73,95]

in this more general setting.

As we will see in Appendix 6.A, the treatment of operator L in dimension m > 1 involves

cumbersome notation and computations. Thus, for the sake of simplicity, we restrict ourselves

to the one-dimensional case. The corresponding generalization of our main result to higher

dimension follows the same strategy but requires cumbersome computations and for this

reason will be the content of a forthcoming work. In the one-dimensional case L writes in

the following form

L u(p, y, t) =
√
p2 + 1 ∂

∂p

(√
p2 + 1 ∂u

∂p

)
− p∂u∂y −

√
p2 + 1 ∂u

∂t , (p, y, t) ∈ R
3, (6.1.6)

and takes the Hörmander’s form L = X2 − Y if we set

X =
√
p2 + 1 ∂

∂p and Y = p∂f∂y +
√
p2 + 1 ∂f

∂t . (6.1.7)

6.1.1 Physical interpretation

Operator L is the relativistic version of the kinetic Fokker-Planck equation (1.0.1) with

σ =
√
2, namely equation

K u(p, y, t) =
∂2u

∂p2
(p, y, t)− p

∂u

∂y
(p, y, t)− ∂u

∂t
(p, y, t) = 0 (p, y, t) ∈ R

3. (6.1.8)

In this chapter, we address a possible improvement of the model described in (6.1.8) which

is in accordance with special relativity. Indeed, a questionable feature of (6.1.8) is that its

diffusion term ∂2u
∂p2 (p, y, t) operates with infinite velocity, as in classical mechanics the velocity
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is proportional to the momentum. In particular, it is known that, if we consider a continuous,

non-negative and compactly supported initial distribution u(p, y, 0), then the unique non-

negative solution u(p, y, t) to the Cauchy problem relevant to (6.1.8) is strictly positive for

every positive t (see, for instance, Theorem 1.2.4). In this scenario, there would be therefore a

non-zero probability to find particles everywhere in space. This feature is clearly incompatible

with the physical law that prevents particles from moving faster than light. To overcome this

issue, we rely on the relativistic velocity

v =
p√
p2 + 1

, (6.1.9)

which clearly satisfies ∣∣∣∣∣
p√
p2 + 1

∣∣∣∣∣ < 1 for every p ∈ R,

in accordance with the relativity principles1. We consider the finite velocity Langevin process

analogous to (1.0.2) 



Pt = p0 +
√
2
t∫
0

√
P 2
s + 1dWs

Yt = y0 +
t∫
0

Ps√
P 2
s +1

ds,

(6.1.10)

and we recall that, by applying the relativistic Itô calculus, Dunkel and Hänggi find in [43]

the Kolmogorov equation

L̃ u(p, y, t) =
∂

∂p

(√
p2 + 1

∂u

∂p
(p, y, t)

)
− p√

p2 + 1

∂u

∂y
(p, y, t)− ∂u

∂t
(p, y, t) = 0 (6.1.11)

satisfied by the density of the stochastic process (Pt, Yt)t≥0 in (6.1.10). We refer the reader

to [35, 43] for an overview to the relativistic theory of Brownian motions and corresponding

relativistic kinetic equations.

Alcàntara and Calogero find the same equation (6.1.11) in [4] following a different ap-

proach, i.e. by merely requiring that some relevant properties of the non-relativistic equation

are preserved in the relativistic setting. More precisely, as the non-relativistic operator is

known to be Galilean invariant, the first requirement is the invariance with respect to the

equivalent relativistic transformations, namely the Lorentz transformations. In addition, the

authors of [4] impose that the relativistic Maxwellian distribution (or Jüttner distribution)

e−γ
√
p2+1, γ > 0, needs to be a stationary solution of equation (6.1.1) with friction, mirroring

the fact that the Maxwellian distribution is a stationary solution of (6.1.8) with friction.

We emphasize that u is a solution to L̃ u = 0 if, and only if, it is a solution to L u = 0 with L

defined in (6.1.6). We prefer to focus our attention on the differential operator L because it

is invariant with respect to Lorentz transformations, as we will see in the following Subsection

1Here, we adopt a natural unit system with c = 1, where c is the speed of light.
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6.1.2. We finally observe that (6.1.6) is the relativistic deterministic equation describing the

density of the following stochastic process





Ps = p0 +
√
2
s∫
0

√
P 2
τ + 1 dWτ ,

Ys = y0 +
s∫
0

Pτdτ,

Ts = t0 +
s∫
0

√
P 2
τ + 1 dτ,

(6.1.12)

where the third component is the time, which is not an absolute quantity in the relativistic

setting.

6.1.2 Invariance properties

As it will be widely used in the sequel, we now focus on the invariance properties of operators

L and K . As discussed in the Introduction of this work, it is well known that K is invariant

with respect to the Galilean change of variables (5).

In a natural way, operator L satisfies the relativistic analogue of property (6), i.e. it is

invariant under Lorentz transformations. To show that, let us first summarize basic definitions

and a few properties of those transformations. We recall that the relativistic momentum p(t)

and energy E(t) of a particle with position y(t) and velocity v(t) = dy(t)/dt are given by

p(t) = vγ(v(t)) =
v(t)√

1− v(t)2
, E(t) =

√
p(t)2 + 1 =

1√
1− v(t)2

= γ(v(t)), 2

respectively, with γ denoting the Lorentz factor

γ(v) =
1√

1− v2
.

We combine time with position, and energy with momentum, to obtain the contravariant

four-vectors3 (
t

y

)
, and

(
E

p

)
.

The above definitions refer to the intertial lab frame Σ, defined as the rest frame of the fluid.

We now consider a second intertial frame Σ̃, moving with constant velocity β with respect to

Σ. According to Einstein’s theory of special relativity, values of physical quantities in Σ̃ can

be related to those in Σ by means of the Lorentz transformations. In the one-dimensional

2We here assume that the rest mass of the test particle is one.
3We use the term “four-vector” independently of the actual number of spatial dimensions.
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case, the Lorentz transformation matrix reads as follows

Λ(β) = γ(β)

(
1 −β
−β 1

)
,

and its inverse is Λ(−β). The matrices are representations of the Lorentz group acting on the

four-vectors. The transformation law of arbitrary four-vectors is computed as follows

(
t̃

ỹ

)
= γ(β)

(
t− βy

y − βt

)
,

(
Ẽ

p̃

)
= γ(β)

(
E − βp

p− βE

)

(
t

y

)
= γ(β)

(
t̃+ βỹ

ỹ + βt̃

)
,

(
E

p

)
= γ(β)

(
Ẽ + βp̃

p̃+ βẼ

)
.

(6.1.13)

Let us consider the function, v(p̃, ỹ, t̃) = u(p(p̃), y(t̃, ỹ), t(t̃, ỹ)) that represents the one-particle

phase space probability density function measured in the moving frame Σ̃, which, according to

[113], transforms as a Lorentz scalar. If we set w(p, y, t) := u(p̃, ỹ, t̃) and g(p, y, t) := f(p̃, ỹ, t̃),

then, applying the chain rule, we obtain

∂w

∂p
(p, y, t) = γ

(
1− βp

E

)
∂u

∂p̃
(p̃, ỹ, t̃)

∂w

∂y
(p, y, t) = γ

(
∂u

∂ỹ
(p̃, ỹ, t̃)− β

∂u

∂t̃
(p̃, ỹ, t̃)

)

∂w

∂t
(p, y, t) = γ

(
−β∂u

∂ỹ
(p̃, ỹ, t̃) +

∂u

∂t̃
(p̃, ỹ, t̃)

)
.

Then, the vector fieldX defined in (6.1.6) is invariant with respect to Lorentz transformations,

since

X(u(p̃, ỹ, t̃)) = E
∂w

∂p
(p, y, t) = γ (E − βp)

∂u

∂p
(p̃, ỹ, t̃)

= Ẽ
∂u

∂p̃
(p̃, ỹ, t̃) = (Xu)(p̃, ỹ, t̃).

(6.1.14)

From (6.1.14), it immediately follows that the diffusion term X2u in (6.1.6) is also invariant

with respect to Lorentz transformations. As far as we are concerned with the drift term Y in

(6.1.6), we obtain

Y (u(p̃, ỹ, t̃)) = p
∂w

∂y
(p, y, t) + E

∂w

∂t
(p, y, t)

= γ (p− βE)
∂u

∂ỹ
(p̃, ỹ, t̃) + γ(−βp+ E)

∂u

∂t̃
(p̃, ỹ, t̃)

= p̃
∂u

∂ỹ
(p̃, ỹ, t̃) + Ẽ

∂u

∂t̃
(p̃, ỹ, t̃) = (Y u)(p̃, ỹ, t̃).

(6.1.15)

In virtue of (6.1.14) and (6.1.15), operator L is invariant with respect to the Lorentz trans-
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formations (6.1.13), i.e.

L u = f ⇐⇒ Lw = g, for every (p̃, ỹ, t̃) ∈ R
3. (6.1.16)

Hence, owing to (6.1.16), operator L is invariant with respect to the following group

operation on R
3

(p0, y0, t0)◦L (p, y, t) =
(
p
√
p20 + 1 + p0

√
1 + p2, y0 + y

√
p20 + 1 + p0t, t0 + t

√
p20 + 1 + p0y

)
.

(6.1.17)

We remark that for small velocities
√
1 + p20 ≈ 1, and therefore (6.1.17) becomes precisely

the non-relativistic composition law (5) for variables p and y.

Moreover, G := (R3, ◦L) is a Lie group with identity e and inverse (p, y, t)−1 defined as:

e = (0, 0, 0), (p, y, t)−1 =

(
−p, pt− y√

p2 + 1
− p2y√

p2 + 1
,−t
√
p2 + 1 + py

)
.

Then, in particular, we have that

(p0, y0, t0)
−1 ◦L (p, y, t)

=

(
p
√
p20 + 1− p0

√
p2 + 1,

√
p20 + 1(y − y0)− p0(t− t0),

√
p20 + 1(t− t0)− p0(y − y0)

)
,

so that (6.1.16) is equivalent to

u(p, y, t) = w((p0, y0, t0)
−1 ◦L (p, y, t)). (6.1.18)

To avoid confusion between the Galilean and the Lorentz change of variables, in this section

we denote by ◦G the composition law (5), i.e. we write

(p0, y0, t0) ◦G (p, y, t) = (p0 + p, y0 + y + tp0, t0 + t) for every (p0, y0, t0), (p, y, t) ∈ R
3.

(6.1.19)

We conclude this section with a remark concerning operator L̃ in (6.1.11). As already

noticed, L̃ u = 0 if, and only if, L u = 0. Moreover, L̃ looks simpler than L , as the derivative

with respect to the time variable ∂u
∂t appearing in L is multiplied by the coefficient

√
p2 + 1,

unlike L̃ . However, operator L̃ is not invariant with respect to Lorentz transformations. To

see this, we rewrite L̃ in the form L̃ = X̃2 − Ỹ , with

X̃ = 4
√
p2 + 1 ∂p and Ỹ = p√

p2+1
∂p +

p√
p2+1

∂y + ∂t. (6.1.20)

We now define w(p, y, t) := u(p̃, ỹ, t̃) as above and we check if the vector field X̃ is invariant

with respecto to Lorentz transformations. To this end, we perform the same computations as
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in (6.1.14) and we find

X̃(u(p̃, ỹ, t̃)) =
√
E
∂w

∂p
(p, y, t) =

√
E γ

(
E − βp

E

)
∂u

∂p
(p̃, ỹ, t̃)

=
Ẽ√
E

∂u

∂p̃
(p̃, ỹ, t̃) 6= (X̃u)(p̃, ỹ, t̃).

A similar computation shows that Ỹ in (6.1.20) is also not invariant with respect to Lorentz

transformations.

In a more formal way, we can prove that L̃ is not invariant with respect to (6.1.13) by

taking advantage of a general result contained in [19]. Specifically, Bonfiglioli and Lanconelli

prove in [19] a theorem for operators in the form (6.1.2), where X1, . . . , Xm+1 are analytic

Hörmander’s vector fields, with the property that, for every z ∈ R
N , the integral curves 4

exp(tX1)z, . . . , exp(tXm+1)z are defined for every t ∈ R. They prove that operator L is

invariant with respect to the left translation of some Lie group G =
(
R
N , ◦

)
if, and only if,

the Lie algebra generated by X1, . . . , Xm+1, as a linear subspace of the smooth vector fields

in R
N , has dimension N . The same result was extended to C∞ vector fields by Biagi and

Bonfiglioli in [17].

If we apply this condition to operator L = X2 − Y , with X and Y defined in (6.1.7), we

find

[X, Y ] =
√
p2 + 1 ∂y + p ∂t, [X, [X, Y ]] = Y and [Y, [X, Y ]] = 0,

so that the dimension of the Lie algebra generated byX and Y equals 3, which is the dimension

of the space R3. On the other hand, if we write L̃ in the form L̃ = X̃2− Ỹ , with X̃ and Ỹ as

in (6.1.20), a direct computation shows that the dimension of the Lie algebra generated by X̃

and Ỹ is infinite. For this reason, we believe that L is the suitable relativistic generalization

of (6.1.8).

6.1.3 Main results

Our main result is a lower bound for the density of the stochastic process (6.1.12). Since we

prove it via an approach in the framework of PDE theory, it is natural to express it in terms

of the fundamental solution Γ. We observe that a purely PDEs construction of a fundamental

solution of L u = 0 is given in Theorem 1.3 of [19]. In order to expose the main result of this

chapter, we therefore recall the definition of Γ below.

Definition 6.1.1. We say that a function Γ : R3 × R
3 → R is a fundamental solution of

operator L in (6.1.6) if it satisfies the following conditions:

1. for every (p0, y0, t0) ∈ R
3, the function (p, y, t) 7→ Γ(p, y, t; p0, y0, t0) belongs to L

1
loc(R)∩

C∞(R3 \ {(p0, y0, t0)}) and it is a classical solution to L u = 0 in R
3 \ {(p0, y0, t0)};

4The integral curve γ : I → R
N of a vector field X on R

N is defined by γ′(s) = X(γ(s)) for every s ∈ I.
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2. for every ϕ ∈ Cb(R
2), the function

u(p, y, t) =

∫

R3

Γ(p, y, t; ξ, η, t0)ϕ(ξ, η)dξ dη

is a classical solution to the Cauchy problem





L u(p, y, t) = 0, in R
2 × (t0,+∞)

f(p, y, t0) = ϕ (p, y) , in R
2;

In the statement of the following theorem, which is the main result of this chapter, the

function Ψ is the value function of a suitable optimal control problem and is defined in

equation (6.3.15) below.

Theorem 6.1.2. Let Γ be the fundamental solution of L in (6.1.6). Then for every T > 0

there exist three positive constants θ, cT , C with θ < 1, such that

Γ(p0, y0, t0; p1, y1, t1) ≥
cT

(t0 − t1)2
exp

{
−C Ψ

(
p0, y0, y0; p1, y1, θ

2t1 + (1− θ2)t0
)}

for every (p0, y0, t0), (p1, y1, t1) ∈ R
3 such that 0 < t0 − t1 < T . The constants θ and C only

depend on L , while cT also depends on T .

As far as the analogous upper bound is concerned, we believe it can be achieved by means

of control theory in the same spirit of [31, 33]. As this problem needs to be studied in a

different framework, this issue will be addressed in future research.

6.1.4 Outline of the chapter

This chapter is organized as follows. Section 6.2 is devoted to the proof of an invariant Harnack

inequality for solutions to L u = 0. Section 6.3 collects useful results on the optimal control

problem associated to Ψ, while in Section 6.4 we give proof of our main result. Finally, in

Appendix 6.A, we show how the higher dimensional operator (6.1.1) is related to Hörmander’s

theory.

6.2 Harnack inequality

This section is devoted to the proof of a scale-invariant Harnack inequality for solutions

to (6.1.1), which is invariant with respect to Lorentz transformations. We introduce some

notation necessary to state this result. For every positive r we introduce the cylinders

Hr(0) :=
{
(p, y, t) ∈ R

3 | |p| < r, |y| < r3,−r2 < t < 0
}
,

Sr(0) :=
{
(p, y, t) ∈ R

3 | |p| < r, |y| < r3,−r2 ≤ t ≤ −r2/2
}
.

(6.2.1)
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Owing to (6.1.17), for every z0 = (p0, y0, t0) ∈ R
3, we set

HL
r (z0) := z0 ◦L Hr(0), SL

r (z0) := z0 ◦L Sr(0). (6.2.2)

We are now in a position to state the following result.

Theorem 6.2.1. There exist two constants CH > 0 and θ ∈ (0, 1), only depending on L ,

such that

sup
SL
θr(z0)

u ≤ CHu(z0),

for every z0 ∈ R
3, r ∈ (0, 1/2], and for every non negative solution u to L u = 0 in HL

r (z0).

The proof of Theorem 6.2.1 is obtained from the analogous Harnack inequality for the

non-relativistic kynetic operator K̃ acting as

K̃ u = a(p, y, t)
∂2u

∂p2
+ b(p, y, t)

∂u

∂p
− p

∂u

∂y
− ∂u

∂t
. (6.2.3)

In the following, HG
r (z0) = z0 ◦G Hr(0) = {z ∈ R

3 : z = z0 ◦G ζ, ζ ∈ Hr(0)} and SG
r (z0) =

z0 ◦G Sr(0) = {z ∈ R
3 : z = z0 ◦G ζ, ζ ∈ Sr(0)}, where ◦G is the composition law defined in

(6.1.19). We remark that, in contrast to the variable-coefficients operators studied in Chapters

4-5, operator K̃ in (6.2.3) is in trace form. For this reason, we recall the statement of the

Harnack inequality for classical solutions to trace-form operators like (6.2.3) proved in [41].

Theorem 6.2.2. Suppose that the coefficients a and b in (6.2.3) are Hölder continuous func-

tions satisfying

(H) There exist two constants λ−, λ+ > 0 such that

λ− ≤ a(p, y, t) ≤ λ+, |b(p, y, t)| ≤ λ+ for every (p, y, t) ∈ R
3.

Then there exist two constants CH > 0 and θ ∈ (0, 1), only depending on λ− and λ+ such

that

sup
SG
θr(z0)

u ≤ CHu(z0).

for every z0 ∈ R
3, r ∈

(
0, 12
)
, and for every non negative solution u to K̃ u = 0 in HG

r (z0).

6.2.1 Change of variable

In order to prove Theorem 6.2.1, we perform an appropriate change of variable that allows

us to write solutions to L̃ u = 0 (and therefore to L u = 0) in the form (6.2.3). To this end,

we denote by ϕ the function defined as follows

ϕ(p) :=
p√

1 + p2
, p ∈ R, (6.2.4)
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where we remark that ϕ(p) is actually the relativistic velocity defined in (6.1.9). By a direct

computation, we easily obtain

ϕ′(p) :=
1

(1 + p2)3/2
, ϕ′′(p) := − 3p

(1 + p2)5/2
. (6.2.5)

Moeover, it is easy to verify the function

ψ(x) :=
x√

1− x2
(6.2.6)

is the inverse of ϕ, and the following identity holds

1− ϕ2(p) =
1

1 + p2
, p ∈ R. (6.2.7)

We are now in a position to state and prove the following preliminary result.

Lemma 6.2.3. Let u be a solution to L u = 0. For every (x, y, t) ∈ (−1, 1)×R
2 , we define

the function

v(x, y, t) := u (ψ (x) , y, t) , (6.2.8)

where ψ was defined in (6.2.6). Then v is a solution to the following equation

∂v

∂t
(x, y, t) + x

∂v

∂y
(x, y, t) =

(
1− x2

)5/2 ∂2v
∂x2

(x, y, t)− 2x
(
1− x2

)3/2 ∂v
∂x

(x, y, t). (6.2.9)

Proof. By inverting the change of variable in (6.2.8) we find that

x = ϕ(p), (6.2.10)

and therefore

u(p, y, t) = v (ϕ(p), y, t) .

Hence, from the chain rule it follows immediately

p√
1 + p2

∂u

∂y
(p, y, t) +

∂u

∂t
(p, y, t) = ϕ(p)

∂v

∂y
(x, y, t) +

∂v

∂t
(x, y, t). (6.2.11)

Moreover, exploiting identities (6.2.5), (6.2.7) and (6.2.10), we obtain

∂u

∂p
(p, y, t) = ϕ′(p)

∂v

∂x
(x, y, t),

∂2u

∂p2
(p, y, t) = (ϕ′(p))2

∂2v

∂x2
(x, y, t) + ϕ′′(p)

∂v

∂x
(x, y, t)

=
1

(1 + p2)3
∂2v

∂x2
(x, y, t)− 3p

(1 + p2)5/2
∂v

∂x
(x, y, t) (6.2.12)

172



CHAPTER 6. RELATIVISTIC FOKKER-PLANCK OPERATOR

=
(
1− ϕ2(p)

)3 ∂2v
∂x2

(x, y, t)− 3ϕ(p)
(
1− ϕ2(p)

)2 ∂v
∂x

(x, y, t)

=
(
1− x2

)3 ∂2v
∂x2

(x, y, t)− 3x
(
1− x2

)2 ∂v
∂x

(x, y, t).

As a consequence, the diffusion term in equation (6.1.11) becomes

√
p2 + 1

∂2u

∂p2
(p, y, t) +

p√
p2 + 1

∂u

∂p
(p, y, t)

=
(
1− x2

)5/2 ∂2v
∂x2

(x, y, t)− 3x
(
1− x2

)3/2 ∂v
∂x

(x, y, t) + x
(
1− x2

)3/2 ∂v
∂x

(x, y, t)

=
(
1− x2

)5/2 ∂2v
∂x2

(x, y, t)− 2x
(
1− x2

)3/2 ∂v
∂x

(x, y, t).

(6.2.13)

The claim then follows combining (6.2.11) and (6.2.13) and observing that L u = 0 if and

only if L̃ u = 0.

6.2.2 Proof of Theorem 6.2.1

We observe that the operator appearing in (6.2.9) writes in the form (6.2.3) if we choose

a(x, y, t) =
(
1− x2

)5/2
, and b(x, y, t) = −2x

(
1− x2

)3/2
. (6.2.14)

Moreover, we remark that condition (H) is satisfied only on compact subsets of (−1, 1)×R
2

as we have

inf
−1<x<1

a(x, w, t) = 0.

Proof of Theorem 6.2.1. Since L is invariant with respect to the Lorentz transformations

(6.1.17), we first restrict ourselves to the case where z0 = (p0, y0, t0) = (0, 0, 0). As a conse-

quence, owing to (6.2.10), we have also (x0, y0, t0) = (0, 0, 0). We then observe that for every

p ∈
[
−1

2 ,
1
2

]
, there holds (

1

2

)5/2

≤
(

1

1 + p2

)5/2

≤ 1. (6.2.15)

We now apply the change of variable (6.2.8) and we observe that a(0, 0, 0) = 1, where

a(x, y, t) is the coefficient in (6.2.14). Keeping in mind that x = ϕ(p), we find that for every

point (p, y, t) ∈ HL
r (0), the following inequality

|x| =
∣∣∣∣∣

p√
1 + p2

∣∣∣∣∣ ≤ |p| ≤ r (6.2.16)

holds true. Thus, (ϕ(p), y, t) ∈ HG
r (0) for every (p, y, t) ∈ HL

r (0) and for every r ∈
(
0, 12
)
.
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Furthermore, from definition (6.2.14) it follows that

a(ϕ(p), y, t) =

(
1

1 + p2

)5/2

,

and therefore

(
1

2

)5/2

≤ a(x, y, t) ≤ 1, |b(ϕ(p), y, t)| = 2
|p|√
1 + p2

1

(1 + p2)3/2
≤ 2,

for every (x, y, t) = (ϕ(p), y, t) with (p, y, t) ∈ HL
r (0). Thus, the coefficients appearing in

(6.2.9) satisfy assumption (H) with λ− =
(
1
2

)5/2
and λ+ = 2. Since (ϕ(p), y, t) ∈ HG

r (0) for

every (p, y, t) ∈ SL
r (0) and for every r ∈

(
0, 12
)
, our claim is proven for z0 = (0, 0, 0).

In order to prove our claim for an arbitrary point z0 ∈ R
3, we rely on the invariance of L

with respect to (6.1.17). In particular, we apply the Lorentz change of variables (6.1.18) to a

solution u to L u = 0 in HL
r (z0) and we observe that the function w in (6.1.18) is a solution

to Lw = 0 in HL
r (0). Then the Harnack inequality holds for g and implies that

u(p, y, t) = w((p0, y0, t0)
−1 ◦L (p, y, t)) ≤ CHw(0, 0, 0) = CHu(p0, y0, t0),

where CH does not depend on z0. This concludes the proof.

Remark 6.2.4. We observe that the “cylinders” defined in (6.2.2) are the most natural

geometric sets which can be defined starting from (6.2.1) and using the invariance group

of L . Finally, let us remark that, in virtue of (6.1.17), the sets (6.2.2) can be explicitely

computed as follows

HL
r (z0) :=

{
(p, y, t) ∈ R

3 |
∣∣∣∣p
√

1 + p20 − p0
√
1 + p2

∣∣∣∣ < r,

∣∣∣∣
√

1 + p20(y − y0)− p0(t− t0)

∣∣∣∣ < r3,

−r2 <
√
1 + p20(t− t0)− p0(y − y0) < 0

}
,

SL
r (z0) :=

{
(p, y, t) ∈ R

3 |
∣∣∣∣p
√

1 + p20 − p0
√
1 + p2

∣∣∣∣ < r,

∣∣∣∣
√

1 + p20(y − y0)− p0(t− t0)

∣∣∣∣ < r3,

−r2 ≤
√
1 + p20(t− t0)− p0(y − y0) ≤ −r2/2

}
.

(6.2.17)

However, we do not need the explicit expression (6.2.17) in our treatment, as it is sufficient

to rely on definition (6.2.2) and on the invariance properties of L .
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6.3 Optimal control problem

This section is devoted to the proof of Theorem 6.1.2. In order to provide a clear treatment,

we first recall some fundamental definitions from control theory and prove an equivalent

statement of the Harnack inequality, more suitable to the construction of Harnack chains

(see Proposition 6.3.6). We then prove an estimate for positive solutions to L u = 0 (see

Proposition 6.3.7) depending on the norm of the control. Finally, we conclude this section

with a preliminary study of the optimal control problem associated to L .

6.3.1 L -admissible paths and Harnack chains

Along with the Harnack inequality Theorem 6.2.1, the main tool in the proof of our asymptotic

estimates for the fundamental solution are Harnack chains, whose definition we recall below.

Definition 6.3.1 (Harnack chain). Let Ω be an open subset of R3. We say that a finite set

of points {z0, z1, . . . , zk} ∈ Ω is a Harnack chain connecting z0 to zk if there exist positive

constants C1, . . . , Ck such that

u(zj) ≤ Cju(zj−1) j = 1, . . . , k,

for every positive solution u to L u = 0.

In the present setting, we construct Harnack chains by connecting points belonging to

appropriate trajectories, which naturally substitute segment lines in our non-Euclidean setting

and are defined as follows.

Definition 6.3.2 (L –admissible path). A curve γ(s) = (p(s), y(s), t(s)) : [0, T ] → R
3 is said

to be a L –admissible path if it is absolutely continuous and solves the following differential

equation

γ′(s) = ω(s)X(γ(s)) + Y (γ(s)), (6.3.1)

for almost every s ∈ [0, T ], where X and Y are defined in (6.1.7). Moreover, we say that γ

steers (p0, y0, t0) to (p1, y1, t1), with t0 > t1, if

γ(0) = (p0, y0, t0), γ(T ) = (p1, y1, t1). (6.3.2)

In the definition of L –admissible path we assume ω ∈ L2([0, T ]) and we refer to the

function ω as the control of problem (6.3.1). Let us remark that, owing to (6.1.7), equation

(6.3.1) can be explicitly written as follows





p′(s) = ω(s)
√
p2(s) + 1,

y′(s) = −p(s),
t′(s) = −

√
p2(s) + 1,

(6.3.3)
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for almost every s ∈ [0, T ].

Moreover, we observe that such optimal control problem is invariant with respect to the

group operation (6.1.17). Indeed, let us consider a control ω(·) steering (p0, y0, t0) to (p1, y1, t1)
with trajectory (p(s), y(s), t(s)). Then, it is easy to prove the trajectory (p̃(s), ỹ(s), t̃(s)) :=

(p0, y0, t0)
−1 ◦L (p(s), y(s), t(s)) is a solution to (6.3.1)-(6.3.2) with the same control ω(·). Ad-

ditionally, the newly defined trajectory (p̃(s), ỹ(s), t̃(s)) satisfies the properties (p̃(0), ỹ(0), t̃(0)) =

(0, 0, 0).

Finally, we introduce the standard definition of attainable set from control theory.

Definition 6.3.3 (Attainable set). For every z0 ∈ Ω ⊂ R
3, the attainable set Az0 of z0 in Ω

is defined as follows:

Az0 =
{
z ∈ Ω : there exists t̄ ∈ R

+ and a L -admissible path γ : [0, t̄] → Ω

such that γ(0) = z0, γ(t̄) = z} .

Now, our aim is to derive from Theorem 6.2.1 a statement of the Harnack inequality which

is useful for the construction of Harnack chains. First of all, we define the positive cone

Pr(0) =
{
(p, y, t) ∈ R

3 : |p| < t
1
2 , |y| < t

3
2 , −θ2r2 ≤ t < 0

}
. (6.3.4)

Moreover, in analogy with the definition of HL
r (z0) and S

L
r (z0) in (6.2.2), we set PL

r (z0) :=

z0 ◦L Pr(0). We are now in a position to state the following result, whose proof can be found

in [100, Proposition 3.2].

Theorem 6.3.4. Let Ω be an open set in R
3 containing Hr(z0) for some z0 ∈ R

3 and

r ∈
(
0, 12
)
. Then

u(z0 ◦L z) ≤ CHu(z0)

for every non negative solution u of L u = 0 in Ω and for every z ∈ Pr(0).

Next, we show that the trajectories defined in (6.3.1) belong to a certain positive cone

provided a suitable choice of the parameter s ∈ [0, T ].

Lemma 6.3.5. Let s ∈ [0, T ], ω ∈ L2([0, T ]) be a control and let γ(s) = (p(s), y(s), t(s)) be

an L -admissible path starting from z0 = (p0, y0, t0) ∈ R
3. Then for every r ∈

(
0, 12
)
there

exist two positive constants k0 := 2 ln
(
3
2

)
and θ ∈ (0, 1), only depending on operator L , such

that

γ(s) ∈ PL
r (z0),

for every s ∈
[
0,
√

2
3θ

2 r2
]
such that

∫ s

0

|ω(τ)|2dτ ≤ k20.
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Proof. Without loss of generality, we fix z0 = (0, 0, 0) and we give proof of this result for a

given L -admissible path starting from (0, 0, 0). The general case directly follows from the

translation invariance with respect to the group law (6.1.17).

Thus, we begin by considering the first component of γ(s). In virtue of (6.3.3), for every

s > 0, we have
s∫

0

p′(τ)dτ =

s∫

0

ω(τ)
√
p2(τ) + 1 dτ

and therefore

s∫

0

ω(τ) dτ =

s∫

0

p′(τ)√
p2(τ) + 1

dτ = sinh−1(p(s)) = ln
(
p(s) +

√
p2(s) + 1

)
. (6.3.5)

Now, we apply Hölder’s inequality and we estimate the L2 norm of the control with k0 to

get

∣∣∣∣∣∣

s∫

0

ω(τ) dτ

∣∣∣∣∣∣
≤




s∫

0

|ω(τ)|2 dτ




1
2 √

s ≤ k0
√
s ≤ ln(1 +

√
s), ∀s ∈

[
0,

1

4

]
, (6.3.6)

We observe that the last inequality follows from our choice of k0 and the concavity of ln(1+x),

which in particular implies that ln(1+x) ≥ 2 ln(3/2)x for every x ∈ [0, 1/2]. As a consequence,

∣∣∣e
∫ s
0
ω(τ) dτ − 1

∣∣∣ ≤ e|
∫ s
0
ω(τ) dτ| − 1 ≤ √

s, ∀s ∈
[
0,

√
2

3
θ2 r2

]
. (6.3.7)

Then, combining (6.3.5), (6.3.6) and (6.3.7), we obtain

|p(s)| ≤ |p(s) +
√
p2(s) + 1− 1| ≤ √

s, ∀s ∈
[
0,

√
2

3
θ2 r2

]
. (6.3.8)

Next, we consider the second component of γ(s), that is

y(s) = −
s∫

0

p(τ) dτ.

Owing to (6.3.8), we immediately get

|y(s)| ≤
s∫

0

√
τ dτ =

2

3
s

3
2 < s

3
2 , ∀s ∈

[
0,

√
2

3
θ2 r2

]
. (6.3.9)
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By combining the above inequality, with (6.3.8), we obtain

0 ≤ −t(s) =
s∫

0

√
p2(τ) + 1 dτ ≤

s∫

0

√
τ + 1dτ ≤

√
3

2
s ≤ θ2r2, ∀s ∈

[
0,

√
2

3
θ2 r2

]
.

(6.3.10)

Hence,

|p(s)| ≤ s
1
2 , |y(s)| ≤ s

3
2 , −θ2r2 ≤ t(s) ≤ 0, ∀s ∈

[
0,

√
2

3
θ2 r2

]
.

This concludes the proof.

Finally, we are in a position to prove a more suitable statement of the Harnack inequality

for points of an admissible trajectory.

Proposition 6.3.6. Let T > 0, R > 0 and z0 = (p0, y0, t0) ∈ R
3. Let s ∈ [0, T ], ω ∈

L2([0, T ]) be a control and let γ(s) = (p(s), y(s), t(s)) be an L -admissible path starting from

z0. Then, for every non negative solution u to L u = 0 in HL
R(z0), there exist three positive

constants k0 := 2 ln
(
3
2

)
, CH and θ ∈ (0, 1), only depending on operator L , such that

u(γ(s)) ≤ CHu(z0),

for every s ∈
[
0,
√

2
3 θ

2r2
]
such that

∫ s

0

|ω(τ)|2dτ ≤ k20.

Proof. The result directly follows by combining Theorem 6.2.1 with Proposition 6.3.5.

6.3.2 Optimal control problem

We state and prove an useful intermediate result, which provides us with an estimate for any

positive solution u to L u = 0 at any point of a given L -admissible path in terms of the L2-

norm of the control. Results of this kind are usually referred as non local Harnack inequalities.

In particular, our result is an extension of [100, Theorem 1.1] and [22, Proposition 1.1]. For

this reason, we hereby report only a sketch of the proof and for further details we refer the

reader to [22, 100].

Proposition 6.3.7. Let z0 = (p0, y0, t0) ∈ R
2 × (T0, T1] and let ω ∈ L2([0, T ]) be a con-

trol and γ(s) = (p(s), y(s), t(s)) be the corresponding L -admissible path starting from z0 =

(p0, y0, t0) ∈ R
3. Moreover, let us fix T0 < t(s) < t0 < T1 , with t0 − t(s) ≤ θ2(t0 − T0) ≤ θ4

4 .

Then, for every non negative solution u to L u = 0 in R
2 × (T0, T1], there exist three positive
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constants k0, θ, CH , only depending on operator L , such that

u(γ(s)) ≤ C

Φ(ω)

k20
+1

H u(z0), (6.3.11)

where

Φ(ω) =

∫ s

0

|ω(τ)|2dτ. (6.3.12)

Proof. Let k0, CH and θ be the constants of Proposition 6.3.6. We first observe that, if

∫ s

0

|ω(τ)|2dτ ≤ k20,

then

γ(s) ∈ PL
r (z0), r :=

√
t0 − T0 ≤

1

2
,

in virtue of Proposition 6.3.5 and assumption t0 − t(s) ≤ θ2(t0 − T0). Since HL
r (z0) ⊂

R
2 × ×(T0, T1) thanks to our choice of r, Proposition 6.3.6 can be applied and there holds

u(p, y, t) ≤ CH u(z0), where CH is the constant given by Theorem 6.2.1.

If the above inequality is not satisfied, we set

k = max

{
j ∈ N :

∫ s

0

|ω(τ)|2dτ > jk20

}
(6.3.13)

and define recursively a sequence of times starting from σ0 ≡ 0 as follows.

σj = min

{
s, inf

{
σ > 0 :

∫ σ

0

|ω(τ)|2dτ > jk20

}}
, (6.3.14)

for every j = 1, . . . , k + 1. Thanks to (6.3.13), the sequence in (6.3.14) ends after a finite

number of steps when the upper bound σk+1 ≡ s is reached. Moreover, for every j = 0, . . . , k+

1, we define the sequence tj = t(σj), which satisfies t(s) ≡ tk+1 < tk < tk−1 < . . . t1 < t0. We

now observe that

HL
rj (γ(σj)) ⊂ R

2 × (T0, T1), for rj =

√
tj − tj+1

θ
, j = 1, . . . , k.

In addition, we clearly have tj− tj+1 ≤ θ2 r2j and rj ≤ 1
2 , since

tj−tj+1

θ2 ≤ t0−T0
θ2 ≤ 1

4 . Finally, as∫ σ1
0 |ω(τ)|2dτ ≤ k20, we can apply Proposition 6.3.6 and get u(γ(σ1)) ≤ CHu(γ(0)) = CHu(z0).

Similarly, owing to
∫ σ2
σ1

|ω(τ)|2dτ ≤ k20 and applying again Proposition 6.3.6 to the trajectory

steering (p1, y1, t1) := γ(σ1) to (p2, y2, t2) := γ(σ2), we obtain u(γ(σ2)) ≤ CHu(γ(σ1)) ≤
C2
Hu(z0). We then iterate the above argument until at step k + 1 and we obtain

u(γ(s)) ≤ Ck+1
H u(z0).

We point out that the points (γ(σj))
k
j=1, chosen along the trajectory γ(·), define a Harnack
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chain. Finally, from (6.3.13), it follows that

k <

∫ s
0 |ω(τ)|2dτ

k20
,

and this concludes the proof of Proposition 6.3.7.

Estimate (6.3.11) provides us with a bound dependent on the choice of the L -admissible

path steering z0 to γ(s). Hence, we introduce the value function

Ψ(p0, y0, t0; p1, y1, t1) := inf
ω∈L2([0,T ])

Φ(ω), (6.3.15)

where the infimum is taken over all the L -admissible paths steering z0 := (p0, y0, t0) ∈ R
3

to z1 := (p1, y1, t1) ∈ R
3. Then, as a straightforward consequence of Proposition 6.3.7, we

obtain

u(γ(s)) ≤M
Ψ(p0,y0,t0;p(s),y(s),t(s))

k20
+1
u(z0), (6.3.16)

whenever u satisfies the assumptions of Proposition 6.3.7. As it will be clear in the following

of this section, equation (6.3.16) is a key step in proving the lower bound for the fundamental

solution of L . Thus, in order to characterize the minimizing cost Ψ, and hence to obtain the

best exponent in (6.3.11), we formulate the natural optimal control problem, i.e. we consider

the function ω as the control of the path γ in (6.3.1) and we look for the one minimizing

the total cost Φ defined in (6.3.12). As observed above, given a solution to (6.3.1)-(6.3.2),

the same control steers (0, 0, 0) to (p0, y0, t0)
−1 ◦L (p1, y1, t1). As the cost Φ depends on the

control only, the two trajectories have the same cost. Hence,

Ψ(p0, y0, t0; p1, y1, t1) = Ψ
(
0, 0, 0; (p0, y0, t0)

−1 ◦L (p1, y1, t1)
)
.

As a consequence, we will fix the initial condition (p0, y0, t0) = (0, 0, 0) in (6.3.1)-(6.3.2) and

then use the invariance property to solve it with a general initial condition. Thus, our aim is

to study the optimal control problem

inf
ω∈L2([0,T ])

∫ T

0

ω2(τ)dτ subject to the constraint





p′(s) = ω(s)
√
p2(s) + 1,

y′(s) = −p(s), 0 ≤ s ≤ T,

t′(s) = −
√
p2(s) + 1,

(6.3.17)

with (p, y, t)(0) = (0, 0, 0), (p, y, t)(T ) = (p1, y1, t1), with t1 < 0.

To solve problem (6.3.17), one possible approach could be to apply the Pontryagin Maxi-

180



CHAPTER 6. RELATIVISTIC FOKKER-PLANCK OPERATOR

mum Principle (see [114, Chapter 6]) and to compute the Hamiltonian

H(p, y, t, λ1, λ2, λ3,m0, ω) =

λ1(s)ω(s)
√
p2(s) + 1− λ2(s)p(s)− λ3(s)

√
p2(s) + 1 +m0ω

2(s),
(6.3.18)

where λ1, λ2 and λ3 are the coordinates of the covector λ.

We recall the first order optimality condition is ever considered to be sufficient, unless the

normality condition holds, that is when the Lagrange multiplier m0 is not vanishing, see [2].

Hence, we first show the normality condition holds true in the case of our interest.

Proposition 6.3.8. Problem (6.3.17) admits no abnormal extremals.

Proof. We argue by contradiction by assuming m0 = 0 in (6.3.18). Given this choice of m0,

(6.3.18) now reads as follows

H(p, y, t, λ1, λ2, λ3, 0, ω) = λ1(s)ω(s)
√
p2(s) + 1− λ2(s)p(s)− λ3(s)

√
p2(s) + 1.

In this case, the maximization of the Hamiltonian reads as follows

∂H

∂ω
(p, y, t, λ1, λ2, λ3, 0, ω) = λ1(s)

√
p2(s) + 1 = 0 ⇒ λ1(s) = 0, ∀s ∈ [0, T ].

Moreover, owing to λ1(s) = 0, for every s ∈ [0, T ] there holds

λ′1(s) = −∂H
∂p

(p, y, λ1, λ2, λ3, 0, ω) = λ2(s) +
λ3(s)p(s)√
p2(s) + 1

= 0 ⇒ λ2(s) = − λ3(s)√
p2(s) + 1

.

Additionally, as λ′2(s) = −∂H
∂y = 0 and λ′3(s) = −∂H

∂t = 0, we directly compute λ′2(s) and we

obtain

λ′2(s) = − λ3(s)

(p2(s) + 1)3/2
= 0 ⇒ λ3(s) = 0 ⇒ λ2(s) = 0, ∀s ∈ [0, T ].

Thus, we conclude that

(λ1(s), λ2(s), λ3(s),m0) = (0, 0, 0, 0), ∀s ∈ [0, T ],

which contradicts the fact that (λ1(s), λ2(s), λ3(s),m0) is never vanishing.

Since no abnormal extramals occur, we choose m0 = −1
2 and we compute the optimal

control ω∗ as the unique minimizer of H(p, y, t, λ1, λ2, λ3,−1
2 , ω), i.e.

ω∗(s) = λ1(s)
√
p2(s) + 1. (6.3.19)
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As a consequence, the maximized Hamiltonian H∗ is

H∗(p, y, t, λ1, λ2, λ3,−
1

2
, ω∗) =

1

2
λ21(s)(p

2(s) + 1)− λ2(s)p(s)− λ3(s)
√
p2(s) + 1, (6.3.20)

and the corresponding Hamiltonian system reads as follows





p′(s) = λ1(s)
(
p2(s) + 1

)
,

y′(s) = −p(s),
t′(s) = −

√
p2(s) + 1

λ′1(s) = −p(s)λ21(s) + λ2(s) +
λ3(s)√
p2(s)+1

,

λ′2(s) = 0

λ′3(s) = 0.

(6.3.21)

We observe that, from the last equation in (6.3.21), it follows

λ2(s) = c2, λ3(s) = c3, ∀s ∈ [0, T ].

Moreover, we choose the parameter k := λ1(0) as the initial condition for the first extremal,

which is the unique solution to (6.3.21), with initial condition

(p, y, t, λ1, λ2, λ3)(0) = (0, 0, 0, k, c2, c3).

Furthermore, as the Hamiltonian is a constant of motion, we set

E := λ21(s)
(
p2(s) + 1

)
− 2λ2(s)p(s)− 2λ3(s)

√
p2(s) + 1 = k2 − 2c3. (6.3.22)

Moreover, in virtue of (6.3.19) and equations y′(s) = −p(s), t′(s) = −
√
p2(s) + 1, we can

compute the cost for extremals as follows

C(ω(·)) =
∫ T

0

ω2(τ)dτ =

∫ T

0

λ21(τ)
(
p2(τ) + 1

)
dτ

=

∫ T

0

(E − 2c2y
′(τ)− 2c3t

′(τ)) dτ = ET − 2c2y1 − 2c3t1.

(6.3.23)

Remark 6.3.9. Since solving analytically (6.3.21) is a real challenge, we are not able to

further proceed in our characterization of the optimal control. For this reason, the statement

of Theorem 6.1.2 explicitly reports the value function Ψ. In the future, it will be interesting

to study this problem from a numerical perspective, as already proposed in [95] for the pricing

problem for Asian Options.
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6.4 Proof of Theorem 6.1.2

In this section, we prove the main result of this chapter, i.e. a lower bound for the fundamental

solution Γ of L . We follow the approach proposed in [31], where an analogous result is proved

about an operator arising in Finance. A key tool in this argument is a lower bound for a

Green function G for operator K̃ introduced in (6.2.3).

First of all, we consider the functions a and b in (6.2.14) and we modify them for |x| > 1
2

in order to have continuous coefficients satisfying assumption (H). It is sufficient to set

a(x, y, t) =
(
1− x2

)5/2
and b(x, y, t) = −2x

(
1− x2

)3/2
, for − 1

2 ≤ x ≤ 1
2 ,

a(x, y, t) =
(
3
4

)5/2
and b(x, y, t) = −sign(x)

(
3
4

)3/2
, for |x| ≥ 1

2 .
(6.4.1)

Then, [102, Theorem 1.1] provides us with a fundamental solution Γ
K̃

of the Kolmogorov

operator K̃ introduced in (6.2.3). We are now in a position to define a Green function for

operator K̃ in a suitable cylinder H defined as follows.

H = S × (0, T ), with S = B((1, 0), 3/2) ∩B((−1, 0), 3/2),

where B((x0, w0), r) denotes the the Euclidean ball of R2 centered at (x0, w0) and of radius

r, and T is a positive constant. In [41, Section 4] it is proved that the Dirichlet problem for

K̃ is well-posed on H, i.e. for every bounded continuous function f defined on H and for

every bounded continuous function ϕ defined on ∂H, there exists a unique classical solution

u to equation K̃ u = f in H. Moreover, f attains continuously the boundary condition at

every point of the parabolic boundary ∂PH of H, that is

∂PH = (S × {0}) ∪ (∂S × [0, T ]).

The Green function for K̃ on H is defined as the function G : H×H → [0,+∞) such that

G(x, y, t; ξ, η, τ) := Γ
K̃
(x, y, t; ξ, η, τ)− h(x, y, t; ξ, η, τ),

where h(x, y, t; ξ, η, τ) is the solution to the Dirichlet problem:





K̃ u = 0 in H,
u = Γ

K̃
(x, y, t; ξ, η, τ) in ∂PH.

(6.4.2)

We now recall the most important property of function G. For every g ∈ C∞
0 (H) and

ϕ ∈ C∞
0 (S), the function

v(x, y, t) :=

∫

H

G(x, y, t; ξ, η, τ)f(ξ, η, τ) dξ dη dτ +

∫

S

G(x, y, t; ξ, η, 0)ϕ(ξ, η) dξ dη
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is a classical solution to the Dirichlet problem





K̃ u = −f in H,
u = ϕ in S × {0},
u = 0 in ∂S × [0, T ].

(6.4.3)

We point out that the above property is stated in [41, Section 4] only for ϕ = 0. The validity

of (6.4.3) follows from well-known properties of the fundamental solution Γ
K̃
. We finally

recall the statement of a local lower bound for the Green function given in [41, Theorem 4.3].

Lemma 6.4.1. There exists two positive constants cG > 0 and δG ∈ (0, 1], only depending on

the constants appearing in assumption (H), such that

G(0, 0, t; 0, 0, 0) ≥ cG
t2
, ∀t ∈ (0, δG) .

We are now in a position to prove a local lower bound for the fundamental solution Γ of

the relativistic operator L . The proof of this result is an adaptation of [31, Lemma 4.3] to

the case of our interest.

Lemma 6.4.2. For every positive constant T , there exists a psitive constant κT , only depend-

ing on the constants appearing in assumption (H), such that

Γ(0, 0, t; 0, 0, 0) ≥ κT
t2
, ∀t ∈ (0, T ) .

Proof. In order to prove our claim, we just need to show that there holds

Γ(p, y, t; ξ, η, τ) ≥ G(p, y, t; ξ, η, τ) ∀(p, y, t; ξ, η, τ) ∈ H ×H. (6.4.4)

Indeed, if (6.4.4) holds true, then the result for 0 < t < δG is a straightforward consequence of

Lemma 6.4.1. The result for any T > δG follows from the fact that Γ is a continuous strictly

positive function.

Thus, it is only left to prove inequality (6.4.4). To this end, for every non-negative

ϕ ∈ C∞
0 (S) and for every (p, y, t) ∈ H, we set

v(p, y, t) :=

∫

S

G(p, y, t; ξ, η, 0)ϕ(ξ, η) dξ dη,

w(p, y, t) :=

∫

S

Γ(p, y, t; ξ, η, 0)ϕ(ξ, η) dξ dη,

where Γ is the fundamental solution of L and G is the Green function of K̃ in H. By

Definition 6.1.1 and (6.4.3), both v and w are solution to L u = 0 in H, or equivalently to
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K̃ u = 0. Then by (6.4.3) and comparison principle we find w ≥ v in H. Hence, this implies

∫

S

(Γ(p, y, t; ξ, η, 0)−G(p, y, t; ξ, η, 0))ϕ(ξ, η) dξ dη ≥ 0

for every non-negative ϕ ∈ C∞
0 (S) and for every (p, y, t) ∈ H. This concludes the proof.

Proof of Theorem 6.1.2. By choosing T0 = 0 and T = T1 = t0, we apply Proposition 6.3.7

and Lemma 6.4.2 and obtain

Γ(p0, y0, t0; 0, 0, 0) ≥ C
−Ψ(p0,y0,t0;0,0,(1−θ2)t0)

k20
−1

H Γ
(
0, 0, (1− θ2)t0; 0, 0, 0

)

≥ C
−Ψ(p0,y0,t0;0,0,(1−θ2)t0)

k20
−1

H

κT
(1− θ2)2t20

for every (p0, y0, t0) ∈ R
3 such that t0 ≤ θ2

2 . This proves Theorem 6.1.2 for (p1, y1, t1) =

(0, 0, 0), where

cT = C−1
H

κT
(1− θ2)2

.

The statement for a general point (p1, y1, t1) ∈ R
3 follows from the traslation invariance of

L with respect to (6.1.17).
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Appendix

6.A Higher dimensional case

6.A.1 Hörmander’s operators

In this section, we check that the m-dimensional operator L in (6.1.1) can be written] in the

form (6.1.2) and satisfies the Hörmander’s condition (6.1.5).

We first explain how to choose the vector fields X1, . . . , Xm in (6.1.3). As a first step, we

observe that equation (6.1.1) can be written in its non-divergence form

L u(p, y, t) = Tr
(
(Im + p⊗ p)D2

pu
)
+ 〈mp,Dpu〉 − Y u = 0. (6.A.1)

We consider the m×m symmetric matrix X

X(p) = (X1(p), . . . , Xm(p)) ,

whose columns are the coefficients of the vector fields X1, . . . , Xm. We have

m∑

j=1

Xju = XDpu, and
m∑

j=1

X2
j u = X2D2

pu+ 〈c̃, Dp〉u,

for some vector c̃ = c̃(p). We then determine X such that X2 = Id + p ⊗ p. To do this, we

recall that, for any given q ∈ R
m, we have

(Im + q ⊗ q)2 = Im + (2 + |q|2) q ⊗ q.

Then,

(Im + q ⊗ q)2 = Im + p⊗ p (6.A.2)

if we choose

q = α p for some α such that (2 + |q|2)|q|2 = |p|2. (6.A.3)

Direct computations show that the second equality in (6.A.3) implies that

1 + |q|2 =
√
|p|2 + 1 (6.A.4)
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and therefore

α = 1√
1+
√

|p|2+1
. (6.A.5)

Hence, by choosing

X = Im + q ⊗ q, q = 1√
1+
√

|p|2+1
p

we find the vector fields X1, . . . , Xm introduced in (6.1.3). Moreover, the components of c̃ are

c̃j(p) =
m∑

i,k=1

(δik + qiqk)
∂(qjqk)
∂pi

, j = 1, . . . ,m. (6.A.6)

Thus, from (6.A.1) and (6.A.2) we obtain the following identity

L =
m∑

j=1

X2
j + 〈(mp− c̃(p)), Dp〉 − Y.

In order to conclude that L writes in the form (6.1.2), we observe that the matrix Im −
1

1+|q|2 q ⊗ q is the inverse of Im + q ⊗ q. As a consequnce, we have

(
Im − 1

1+|q|2 q ⊗ q
)
(X1(p), . . . , Xm(p)) = Dp.

This concludes the proof of (6.1.2), where the vector c(p) = (c1(p), . . . , cm(p)) is defined as

c(p) = (mp− c̃(p))T
(
Im − 1

1+|q|2 q ⊗ q
)

and has smooth coefficients, in virtue of (6.A.3) and (6.A.5).

We next prove that L does satisfy the Hörmander’s condition (6.1.5). We first note that

the Lie algebra generated by X1, . . . , Xm, Xm+1 agrees with the Lie algebra generated by

X1, . . . , Xm, Y , and then we claim that

rank Lie {X1, . . . , Xm, Y } (p, y, t) = 2m+ 1, ∀(p, y, t) ∈ R
2m+1. (6.A.7)

We compute the commutator [Xj , Y ] for j = 1, . . . ,m. We find that

[Xj , Y ]u := XjY u− Y Xju =
m∑

k=1

(δjk + qjqk)
∂u
∂yk

+ pj
∂u
∂t .

We now consider the (2m + 1) × (2m + 1) matrix M whose columns are the coefficients of

X1, . . . , Xm, [X1, Y ], . . . , [Xm, Y ], Y and we prove that

detM =
√

|p|2 + 1. (6.A.8)
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We have

M =
(
X1, . . . , Xm, [X1, Y ], . . . , [Xm, Y ], Y

)
=



Im + q ⊕ q Om 0m

Om Im + q ⊕ q p

0Tm pT
√

|p|2 + 1


 ,

where Om is the m×m matrix whose entries are zeros, and 0m is the zero column vector of

R
m. Up to a change of basis in R

m, it is not restrictive to assume that q = |q| em, being em

the m-th vector of the canonical basis of Rm. Then the matrix M takes the simpler form

M =




D 02m−1 02m−1

0T2m−1 1 + |q|2 |p|
0T2m−1 |p|

√
|p|2 + 1


 ,

where D = I2m−1+(1+ |q|2) em⊗em. Thus, (6.A.8) follows from the first equality in (6.A.5).

6.A.2 Lorentz invariance

The invariance with respect to Lorentz transformations is also preserved in the higher di-

mensional case. Indeed, it is sufficient to observe that the diffusion operator in (6.1.1) is

the Laplace-Beltrami operator over the Riemannian manifold (Rm, g), where g is the metric

induced by the Minkonwski metric over the hyperboloid g = {(E, p) : E =
√
|p|2 + 1}. We

recall that the Laplace-Beltrami operator is invariant with respect to isometries. Then, the

invariance with of L follows from the fact that the Lorentz transformation in the momentum

component corresponds to a translation over g. Moreover, the invariance of the drift term

Y in (6.1.1) follows immediately from (6.1.15), which clearly still holds true in the higher

dimensional case.

We conclude this appendix by remarking that, as already mentioned in Section 6.1, we

expect that Theorem 6.1.2 holds true also in higher dimension. However, the proof of this

result in this more general setting would require some cumbersome calculations and for this

reason it will be the content of a forthcoming paper.
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versità e Politecnico di Torino. Seminario Matematico. Rendiconti, volume 52, pages

29–63, 1994. Partial differential equations, II (Turin, 1993). 4, 14, 15, 16, 19, 21, 38,

39, 65, 155, 164

[74] L.V. Landau. The transport equation in the case of Coulomb interactions – Die kinetis-

che Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjetunion, 10,

1936. 29

[75] E.E. Levi. Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. Circ.

Matem. Palermo, 24:275–317, 1907. 26, 140

[76] G.M. Lieberman. Second Order Parabolic Differential Equations. World Scientific, 1996.

110

[77] E. Lindgren and R. Monneau. Pointwise estimates for the heat equation. Application to

the free boundary of the obstacle problem with Dini coefficients. Indiana Univ. Math.

J., 62(1):171–199, 2013. 5, 68

[78] M. Litsgard and K. Nyström. The Dirichlet problem for Kolmogorov-Fokker-Planck

type equations with rough coefficients. J. Funct. Anal., 281(10), 2021. 87, 91, 92

[79] L. Lorenzi. Schauder estimates for degenerate elliptic and parabolic problems with

unbounded coefficients in R
N . Differential Integral Equations, 18(5):531–566, 2005. 25

[80] G. Lucertini, S. Pagliarani, and A. Pascucci. Optimal regularity for degenerate Kol-

mogorov equations with rough coefficients. ArXiv e-prints, 2022. 140, 141

[81] A. Lunardi. Schauder estimates for a class of degenerate elliptic and parabolic operators

with unbounded coefficients inRn. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24(1):133–

164, 1997. 25

[82] M. Manfredini. The Dirichlet problem for a class of ultraparabolic equations. Adv.

Differential Equations, 2(5):831–866, 1997. 18, 25

194



BIBLIOGRAPHY

[83] M. Manfredini and S. Polidoro. Interior regularity for weak solutions of ultraparabolic

equations in divergence form with discontinuous coefficients. Boll. Un. Mat. Ital., 8(1-

B):651–675, 1998. 87

[84] S. Menozzi. Parametrix techniques and martingale problems for some degenerate Kol-

mogorov equations. Electron. Commun. Probab., 16:234–250, 2011. 25

[85] H. K. Moffatt. Magnetostrophic turbulence and the geodynamo. In IUTAM Sympo-

sium on Computational Physics and New Perspectives inTurbulence, IUTAM Bookser,

volume 4, pages 339–346. Springer, Dordrecht, 2008. 96

[86] R. Monneau. Pointwise estimates for Laplace equation. Applications to the free bound-

ary of the obstacle problem with Dini coefficients. J. Fourier Anal. Appl., 15(3):279–335,

2009. 5, 66, 68

[87] J. Moser. A Harnack inequality for parabolic differential equations. Commun. Pure

Appl. Math., 17:101–134, 1964. 7, 95, 118

[88] J. Moser. A rapidly convergent iteration method and non-linear partial differential

equations - I. Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ser. 3, 20(2):265–315, 1966. 101

[89] C. Mouhot. De Giorgi–Nash–Moser and hörmander theories: new interplays. In Pro-
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