
UNIVERSITA’ DEGLI STUDI DI PARMA

DOTTORATO DI RICERCA IN
"MATEMATICA"

CICLO XXXV

A comprehensive analysis of vision deep learning methods for object
detection and 6D pose estimation: Real-time applications.

Coordinatore:
Chiar.ma Prof.ssa Alessandra Lunardi

Tutore:
Chiar.mo Prof. Marko Bertogna

Correlatore:
Chiar.ma Prof. Giorgia Franchini

Dottorando: Davide Sapienza

Anni Accademici 2019/2020 – 2021/2022

iii

UNIVERSITY OF PARMA

Abstract
Mathematics

Department of Mathematical, Physical and Computer Sciences

Doctor of Philosophy

A comprehensive analysis of vision deep learning methods for object detection
and 6D pose estimation: Real-time applications.

by Davide SAPIENZA

The popularity of Artificial Intelligence (AI) systems is growing rapidly, both in
academia and society. In recent years, advances in computer vision and machine
learning have enabled AI systems to be applied to a variety of scenarios, such as au-
tonomous driving, robotics, and augmented reality applications. An obstacle detec-
tion system allows a car to detect and avoid potential hazards, or to brake in time to
prevent an accident. Augmented reality can assist a surgeon in finding the most ef-
ficient way to make an incision, leading to better outcomes for patients. Automation
of industrial processes can help reduce the risk of on-the-job injuries, by reducing
the amount of wear and tear work.These applications require the detection, identi-
fication and pose estimation of objects, to improve people’s quality of life. In order
to obtain a working system, many factors must be taken into account, including the
choice of data in the learning process, the choice of the learning method, and the
choice of hardware platforms. The current research focuses on examining various
techniques to enhance accuracy, speed, and stability in two key applications: Object
Detection and 6D Pose Estimation. This thesis will mainly delve into deep learning
methods, which have led to breakthroughs in these fields.

i) We will analyze the difficulties and characteristics of embedded Object Detec-
tion methods in detail, focusing on latencies, throughput, accuracy, memory and
power consumption. We will evaluate the impact of each of these factors on the
performance of the object detection system.

ii) We will discuss the challenges and biases related to datasets and methods, as
well as the possible solutions to address them. The importance of awareness of the
inherent limitations of a given problem will be addressed.

iii) Finally, a real-world case study of Object Detection and 6D Pose Estimation
in underwater environments is presented, highlighting the challenges, pitfalls, and
best choices for this particular scenario. The results of the experiments, on both sim-
ulated and real-world scenarios, will demonstrate that the proposed solutions are
reliable and effective in detecting objects and estimating their 6D pose.

The findings of this research could be used to improve accuracy and efficiency for
2D Object Detection and 6D Pose Estimation methods.

HTTPS://WWW.UNIPR.IT/EN
https://corsi.unipr.it/en/cdlm-mate
https://smfi.unipr.it/en

v

Contents

Abstract iii

1 Introduction 1
1.1 Contribution and Organization . 4

2 Background 7
2.1 2D Object Detection . 7

2.1.1 Problem . 7
2.1.2 Datasets . 8
2.1.3 Metrics . 10
2.1.4 Neural Networks . 12

2.2 6D Pose Estimation . 16
2.2.1 Problem . 17
2.2.2 Datasets . 18
2.2.3 Metrics . 20
2.2.4 Neural Networks . 23

2.3 Platforms . 30
2.3.1 GPGPU-Accelerated Platforms: NVIDIA 31
2.3.2 FPGA-Accelerated Platforms: Xilinx 32

3 Object Detection NNs on embedded platforms 35
3.1 Platforms . 36

3.1.1 GPGPU-NVIDIA . 36
3.1.2 FPGA-Xilinx . 37
3.1.3 PC-Based Platform: Intel . 38

3.2 Neural Networks . 39
3.3 Test Data . 41
3.4 Experiments . 41

3.4.1 Experimental setup . 41
3.4.2 Metrics . 41
3.4.3 Results and Discussion . 43

Confidence Threshold and its Effects 43
Platforms Comparison . 43
Networks Comparison . 45
Multiple stream . 45
General considerations . 46

4 6D pose estimation explainability 51
4.1 Overview . 53
4.2 Methodology . 55

4.2.1 Dataset Masking strategy . 56
4.2.2 Saliency maps . 57
4.2.3 Evaluated Task metrics . 58

vi

4.2.4 Proposed Evaluations . 58
4.3 Results and Discussion . 59

4.3.1 Quantitative analysis . 59
4.3.2 Qualitative analysis . 61
4.3.3 Consequences . 64

5 Underwater 6D pose estimation 65
5.1 Problem statement . 66
5.2 Datasets . 67

5.2.1 Existing data collection methods 68
5.2.2 Objects of interest . 69
5.2.3 Proposed dataset . 70

5.3 Methodology choices . 73
5.4 Results . 75

5.4.1 Method comparison . 76
5.4.2 Experimental setup . 79
5.4.3 Performances . 80
5.4.4 On edge . 82

6 Conclusions and Open Problems 89
6.1 Conclusions . 89
6.2 Open Problems . 91

Bibliography 95

vii

List of Abbreviations

SOTA State Of The Art
RGB Red Green Blue color
RGBD Red Green Blue Depth color
2D 2Dimensions
3D 3Dimensions
6D 6Dimensions
NN Neural Network
ANN Artificial Neural Network
DNN Neep Neural Network
CNN Convolutional Neural Network
OD Object Detection
ODCNN Object Detection Convolutional Neural Network
BB Bounding Boxes
TP True Positive
TN True Negative
FP False Positive
FN False Negative
IoU Intersection over Union
AP Average Precision
mAP mean Average Precision
FPS Frame Per Second
MR Mean Recall
SSD Single-Shot Detectors
Yolo You Only Look Once
ADD Average Distance to the Corresponding Model Point
ADI Average Distance to the Closest Model Point
VSD Visible Surface Discrepancy
COU Complement Oover Union
PnP Perspective-n-Point
RANSAC RANdom SAmple Consensun
ICP Iterative Closest Point
6DoF 6 Degree of Freedom
LM LineMod
AF-LM ArUco Free-LineMod
CAD Computer Aided Design
AAE Augmented Autoencoder
EP EfficientPose
GPU Graphic Processing Uunit
GPGPU General Purpose Graphic Processing Uunit
FPGA Field-Programmable Gate Array
ASIC Application-Specific Integrated Circuit
PS Processing System

viii

PL Programmable Logic
TRD Target Reference Design
ROV Remote-Operated Vehicle
USV Unmanned Surface Vehicle
LRAUV Long-Range Autonomous Underwater Vehicle
AUV Autonomous Underwater Vehicle
CAMERA Context-Aware MixEd ReAlity
NOCS Normalized Object Coordinate Space

1

Chapter 1

Introduction

The technological revolution of the past few years has presented us with a world
that was once only imaginable in science fiction. We now use electronic devices in
almost every facet of our lives. The speed of progress is unprecedented.

In 1865, James Clerk Maxwell published his famous Maxwell’s equations related
to electromagnetism at the conference "A Dynamical Theory of the Electromagnetic
Field". Soon after, Thomas Edison invented the incandescent light bulb and the ra-
dio, disputed between Nikola Tesla and Giuseppe Marconi, was developed in the
late 1800s. The early 1900s saw the invention of the internal combustion engine,
television, and other household appliances, yet it wasn’t until the second half of the
twentieth century, roughly 60-70 years ago, that these items became widely avail-
able.

The development of information technology began in 1944 with Alan Turing’s
invention of the switch-programmable digital computer, Colossum, which had no
operating system. A few years later, in 1948, Claude Elwood Shannon introduced the
concept of the "bit". The 1950s saw the emergence of various calculators, although
they were always of considerable size. It wasn’t until the 1970s that home computing
became a reality, with the introduction of the IBM Personal computer in 1981, which
had an Intel 8088 microprocessor running at a clock frequency of 4.77 MHz and a
maximum of 64 kB of primary memory on the motherboard. In 1991, Tim Berners
Lee invented the World Wide Web, and today we are already seeing the emergence of
distributed computing, edge-cloud computing, robotics and Artificial Intelligence.

This rapid growth of technology has given rise to the new discipline of Computer
Science, which seeks to meet the needs of the new subject area by developing new
hardware and software technologies. Through high-level programming, we are able
to abstract complex operations and manage the low-level operations that interface
with the memory, processor and peripherals.

Computer Science has also had a major impact on other disciplines, particularly
mathematics. Areas such as Machine Learning and Deep Learning would not have
been possible without the developments in Computer Science. The relationship be-
tween the two is strong and ranges from the management of databases to the coding
of algorithms to train artificial neural networks. All of these techniques are enabled
by the technologies available today and the ability to process huge amounts of data
in a very short time.

Artificial Intelligence First coined in 1956, Artificial Intelligence (AI) is a subfield
of Computer Science that seeks to replicate human intelligence and behavior. AI can
also be seen as a branch of Cognitive Science, as it focuses on understanding and
reproducing intelligent mechanisms. This leads us to the question: what is intelli-
gence? Alan Turing believed it was too difficult to give a definitive answer, so he
proposed the Turing test instead. Despite this, the Turing test does not adequately

2 Chapter 1. Introduction

measure human-level Artificial Intelligence and is not sufficient to form an appro-
priate or useful criterion.

In order to create machines able of intelligent mechanisms, AI attempts simula-
tion and extension of human intelligence through the use of artificial methodology
and technology.

Our brain takes in various inputs, such as images, sounds, and smells, through
our senses, and then processes them with cognitive systems. All of this data, along
with the cognitive systems’ intuitions, provides ample information. Although these
tasks are completed in real-time, they involve a range of complex procedures that
are difficult to replicate artificially.

Human intelligence is characterized by the ability to learn through experience.
This has led to the development of a new field, known as Machine Learning (ML).
Unlike traditional machines, which simply follow instructions given by humans,
ML algorithms are designed to learn from data alone. A subfield of ML, known
as deep learning, has proved to be particularly successful over the past decade. It
is based on artificial neural networks, non-linear mathematical models inspired by
the human brain and neurons, and is considered a form of parallel and distributed
processing. Deep learning pipelines are numerical models that optimize each stage
of the processing by searching for parameters that minimize the error computed by
the training loss function.

The application of deep learning is vast and can be used in a variety of fields.
It is used in computer vision and natural language processing, allowing machines
to understand and interpret images and text. It can also be used for robotics, as
robots can use deep learning algorithms to learn how to move and interact with
their environment. Deep learning can also be used for autonomous vehicles, as it
enables the vehicles to recognize and classify objects in their environment, as well as
detect and avoid obstacles.

This thesis will explore the ability of machines to understand images. This in-
cludes tasks such as classification, localization and pose prediction, which are rela-
tively simple for humans, but extremely complex for machines. The Szeliski book
"Computer Vision: Algorithms and Applications" [92] is a comprehensive guide to
the latest techniques and algorithms in computer vision. The book covers topics
such as Convolutional Neural Networks (CNNs), which are artificial neural net-
works inspired by the convolution operation in mathematics. The idea of convo-
lutional neural networks was popularized by LeCun, Bottou et al. (1998) [47], where
the first CNN-based architecture for digit recognition was introduces. These net-
works are able to extract feature maps from an image, while also preserving spatial
information. In 2015, Convolutional Neural Networks (CNNs) outperformed hu-
mans in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), for the
first time in the history of the competition (Figure 5.40 in [92]). This marked a major
milestone in the development of CNNs not only for image classification. This unex-
pected outcome, achieved for one of the most researched tasks, namely classification,
was enabled by scientific advancements in this field as well as the abundance of data
collected over time for the classification task. Deep neural networks rely heavily on
data quality and quantity to reach increasingly high accuracy. The better the qual-
ity of the data, the more the expressive power of the trained model will increase,
although the network will be unable to identify something it has not been trained to
recognize. The greater the amount of data, the higher the probability that all cases
of interest will be subjected to network training. Over the years, it is anticipated that
for other research areas such as 6D pose estimation, as well as for classification, the

Chapter 1. Introduction 3

boost in accessible trainable data will also enhance the effectiveness of these meth-
ods in outperforming humans. In the near future, we will no longer be confined to
utilizing single networks for single tasks, but as some techniques are now exploring,
there will be the potential of having multi-task models that amalgamate multiple
tasks that are managed separately at present.

2D object detection and 6D pose estimation Two main topics will be addressed
in this thesis: 2D object detection and 6D pose estimation problems. The 2D ob-
ject detection is a computer vision task that involves locating and identifying objects
in a two-dimensional image. This task is widely used in a variety of applications,
such as facial recognition to quickly identify individuals in footage from traffic cam-
eras; anomalous detection to spot manufacturing defects in a production chain; and
obstacle avoidance for autonomous vehicles, to detect pedestrians, bicycles, or any
other obstacle. The 6D pose estimation problem is another type of computer vision
task that involves estimating the 3D pose of an object in a 6-dimensional space. This
is usually done by using a camera to capture an image of the object and, then, using
a computer vision algorithm to estimate the object’s position and orientation in the
6-dimensional space. 6D pose estimation is used in a variety of applications, such
as in augmented reality for medical applications, allowing surgeons to simulate pro-
cedures in 3D virtual environments to search for the best course of action; and in
robotics to assemble or disassemble objects that might be dangerous or tedious for
humans to handle.

When considering these two topics, it is important to remember that the real-time
embedded domain plays an important role in the application examples described
above.

Real-time applications Real-time computing is a form of computing that empha-
sizes the completion of tasks within a specific timeframe. It is typically used in appli-
cations that require data to be processed immediately or within relatively short pe-
riods of time. Real-time programs must guarantee response within specified dead-
lines. Examples of real-time computing include military radar systems, air traffic
control systems, and stock market trading systems. Real-time computing requires
specialized hardware and programming techniques in order to produce timely re-
sults.

In Artificial Intelligence, real-time can be referred to as those deep learning tech-
niques that need little time to execute and do not require supercomputers to exe-
cute. Real-time Artificial Intelligence techniques should be light and fast, taking up
little memory space and requiring low computational powers. For example, an AI
application on video processing can be profanely defined as real-time if it is able
to run on smartphones without flickering. In AI applications, the term "real-time"
does not have the same rigorous and formal meaning as it does in the real-time
computing community. It should be more accurate to use the term "embedded" in
this context.For example, the sub-discipline corresponding to 2D object detection is
"real-time object detection", which specifies Frame-Per-Second (FPS) in addition to
accuracy, but does not directly address the issue of time constraints. A sub-field of
2D object detection that is of particular interest is "real-time object detection". This
research area places emphasis not only on accuracy, but also on latency, measured
by frames per second (FPS). However, this does not address the issue of time con-
straints directly. Artificial Intelligence for embedded domains is applicable to many

4 Chapter 1. Introduction

areas, such as robotics, autonomous vehicles, industrial automation and surveillance
systems.

Generally, these kinds of applications require running on embedded platforms.
Embedded platforms are computer systems typically designed to be compact, low-
power, and resource-efficient. Embedded platforms are designed to perform a spe-
cific task, rather than being a general-purpose computer for multiple tasks. They
are used when performance constraints such as safety and usability must be met or
simply to reduce cost.

The subfields of Computer Science concerning Artificial Intelligence for real-time
embedded domains involve the design of neural networks to meet the time, memory
and power constraints, as well as specific hardware and software solutions to keep
up with innovation. For the design of a new DNN architecture, computer scien-
tists and analysts, mathematicians, and other specialists must consider the number
of layers, the number of neurons per layer, and many more hyperparameters of the
network. In addition, software and electronic engineers, computer scientists, and
other experts must design new hardware platforms and software solutions to accel-
erate the DNN solution on those platforms.

1.1 Contribution and Organization

This thesis is an exploration of the Artificial Intelligence (AI) and Deep Learning
approaches to 2D object detection and 6D pose estimation problems. By explor-
ing the current state-of-the-art algorithms and models, we aim to better understand
the challenges associated with these tasks and propose novel domains. Although
mainly NNs-related topics will be covered, the focus is always on embedded tech-
niques and applications as well. The topics covered in this thesis are only a part of
the activities carried out during the doctoral program.

In order to make the thesis fluent to read, the most interesting topics and those
that have been most deeply explored in the past three years. However, more infor-
mation on the other topics which have been covered during this period can be found
in:

• A systematic assessment of embedded neural networks for object detection
[99];

• All You Can Embed: Natural Language based Vehicle Retrieval with Spatio-
Temporal Transformers [81];

• Deep Image Prior for medical image denoising, a study about parameter ini-
tialization [79];

• Deep learning-assisted analysis of automobiles handling performances [80];

• [submitted] Uncovering the Background-Induced bias in RGB based 6-DoF
Object Pose Estimation;

• [into submission] Model-based Underwater Object 6D Pose Estimation.

In this thesis, the main contributions are organized as follows:

• a thorough survey of the literature on real-time object detection and 6D pose
estimation methods is provided in Chapter 2. For both topics, the discussion
includes an exploration of the problem statement, an explanation of metrics, an

1.1. Contribution and Organization 5

investigation of literature datasets, and a presentation of neural network meth-
ods. Finally, a brief overview of the embedded platform solutions is given;

• an exhaustive study of two main axes is presented in the chapter 3. On the
one hand, convolutional neural networks for object detection (ODCNN) and
on the other hand, heterogeneous embedded platforms. For each branch un-
der analysis, several insights related to floating-point data representation, ac-
curacy and latency results, power consumption, and memory utilization are
discussed. All to finally identify the best platform and network with the best
trade-off.

• In Chapter 4, an intriguing first study is introduced under the big hat of the
explainability of the 6D pose estimation method. Surprising results are pre-
sented for the most recent 6D pose estimation problem, showing a bias that
plagues the best of the RGB-based 6D pose estimation methods and the most
common and widely used dataset for this task.

• a novel domain and its corresponding application in 6D pose estimation is
presented in Chapter 5: objects recovery in underwater environments. Vari-
ous well-known and common problems, such as symmetries, occlusions, and
self-occlusion, are addressed, and new ones are added to directly address real-
world domain applications. The methodological choices made in this new
domain have been based on multi-constraint lines, in an attempt to meet real-
time limitations, low-level camera resolutions, poor degree of object detail, and
poor visibility quality of the environment under investigation.

Conclusions and open problems are discussed in Chapter 6.

7

Chapter 2

Background

2D object detection and 6D pose estimation problems, with a particular focus on
real-time scenarios, are the main topic covered in the thesis. This chapter presents
an overview of these subjects, focusing on problem definition, datasets, metrics,
and some state-of-the-art methods. Specifically, the 2D object detection problem is
discussed in section 2.1 and an argumentation limited to real-time methods is pre-
sented. An overview of the 6D pose estimation solution, focused on RGB methods
only, is presented in section 2.2. Finally, a description of some real-time embedded
platforms is provided in section 2.3.

2.1 2D Object Detection

Object Detection (OD) is an important computer vision task consisting of detecting
instances of objects in an image, Fig. 2.1. Detection means both identifying a specific
class for each instance in the scene (e.g., cat, dog, person, car, ...) and locating that
instance in the image. The goal of this research area is to develop a computational
model that is able to answer the following question: "What and where are the objects
located within the RGB frame?".

The importance of the Object Detection research stems from its use in various
other computer vision tasks, such as Instance Segmentation, Object Tracking, Image
Captioning, and even in 6D pose estimation problems.

2.1.1 Problem

The 2D Object Detection problem can be formalized as: given an input image I and
a predefined list of object types or classes C = {c1, c2, ..., cm}, where m is the number
of classes, an algorithm A, also called object detection model, not only classifies the
objects’ type depicted in the image but also identifies each object’s location. The al-
gorithm hence should return i) a predicted class ĉi, and its corresponding score (or
confidence score) si, for each depicted object i = 1, 2, ..., n where n is the number of
objects present in the scene, and ii) the location of each object in the form of bound-
ing boxes (BBs) {B1, B2, ..., Bn} (one per object) where Bi = {(x1, y1), (x2, y2)} is the
set containing bounding-box top-left and bottom-right coordinates, which encodes
2D translation and scale [77, 19]. The algorithm A can be defined as:

A(I, C) = {(o, B̂, ĉ, s) : o ∈ O, ĉ ∈ C, s ∈ (0, 1]} (2.1)

where O is the set of depicted objects in the image I, and B̂ is the predicted bounding
box of each object. The elements in the scene are not necessarily different objects, but
they could also be different instances of the same object. In the following discussion,
only the deep learning algorithms will be treated. Deep learning Object Detectors are

8 Chapter 2. Background

FIGURE 2.1: Object detection problem. [76]

divided into single-stage and two-stage algorithms, and typically both of them are
composed by two principal elements: a feature extractor hereafter, backbone) and
a detection head. The backbone is usually a CNN-based network that extracts the
most prominent representations of a scene (from low to high-level features). Most
backbones use pooling/convolution layers with strides to gradually reduce the size
of feature maps and increase the receptive field of the network. Backbone networks
are typically designed originally from image classification and pre-trained on exist-
ing datasets, as written in the following sections. They are fundamental for a better
performance of the head procedure because their feature maps outputs are the detec-
tion head inputs. Then the head performs classification and regression to determine
the label/class and location of the object instances.

2.1.2 Datasets

The success of deep learning object detectors can be attributed to the large Datasets
available in literature used for training this kind of models. These Datasets are the
same ones on which the methods evaluate various canonical benchmarks. Sample
images of some datasets are shown in the Figure 2.2

The most common datasets used for the object detection task include MS COCO
[55], PASCAL VOC [19], ImageNet [77], BDD100k [110], Waymo [87] [18].

The Pascal VOC dataset has 11k training images and more than 27k labeled ob-
jects for 20 different classes. This dataset today in addition to being used for classifi-
cation and object detection tasks is also used for segmentation and action detection
tasks.

2.1. 2D Object Detection 9

FIGURE 2.2: Sample images of some of the most common datasets
for object detection. On the top left is Pascal VOC, on the top right
is COCO, on the bottom left is Imagenet, and on the bottom right is

BDD100K.

The ImageNet dataset is particularly known as benchmark dataset for evaluat-
ing algorithm performances. This dataset was originally created for the classifica-
tion task, and is now widely used to train the backbone networks of object detectors.
The dataset size was scaled up to more than a million images consisting of 1000 ob-
ject classification classes. 200 of these classes were hand-picked for object detection
tasks, constituting more than 500k images. ImageNet also updated the evaluation
metric by relaxing the IoU threshold to help include smaller object detection.

The MS-COCO dataset is one of the most challenging datasets available. It has
91 common objects found in their natural context which a 4-year-old human can eas-
ily recognize. It has more than two million instances and an average of 3.5 categories
per image. Furthermore, it contains 7.7 instances per image, comfortably more than
other popular datasets. MS COCO comprises images from varied viewpoints as
well. It also introduced a more stringent method to measure the performance of
detectors.

The BDD100k is the largest driving video dataset available. It has 100,000 videos
for 10 different tasks to evaluate the latest advances in image recognition algorithms
for autonomous driving. The dataset has geographic, environmental, and weather
diversity, which makes it useful for training models that are more resilient to new
conditions. This dataset is used for the traffic object detection task.

The Waymo dataset is composed of two different datasets: the Perception dataset
[87] with high resolution sensor data and labels for 2,030 scenes, and the Motion
dataset [18] with object trajectories and corresponding 3D maps for 103,354 scenes.
The Perception dataset contains 2,030 segments of 20 seconds each, collected at 10Hz

10 Chapter 2. Background

Actual class
Positive Negative

Predicted class
Positive True Positive False Positive
Negative False Negative True Negative

TABLE 2.1: Confusion matrix.

(390,000 frames) in diverse conditions and geographical areas, while the Motion
dataset contains 103,354 segments of 20 seconds each are mined to find interesting
interactions, collected at 10Hz (over 20 million frames).

2.1.3 Metrics

A key aspect of deep learning methods is measuring their performances. The perfor-
mances allow methods to be compared with each other, creating a ranking based on
results and decreeing one method as better than another. Metrics are mathematical
formulations used to measure the model’s performance. They can be used to com-
pare different models, as well as different versions of the same model by fine-tuning
the artificial neural networks. This is the concept behind the strategy of exploring
a field of research inherent to DNNs: the Neural Architecture Search (NAS). It is
the process of automating architecture engineering in the neural networks: from the
search space (connection weights, number of layers, number of neurons for layer
and learning rules), to search strategy (generational evolutionary algorithms [33], to
Randomly Wired Neural Networks [108]), and performance estimation strategy [27]
[17].

To evaluate the performance of an object detector a lot of criteria are used.
Among the simplest metrics are precision and recall, defined as:

precision =
TP

TP + FP
(2.2)

recall =
TP

TP + FN
(2.3)

In these two formulations, precision can be described as the percentage of the True
Positives over all observations, while the recall as the ratio of the True Positives over
all ground truth. The confusion matrix with all possibilities is shown in Table 2.1.

Intersection over Union (IoU), on the other hand, is a specific metric for the object
detection problem, evaluating location instead of classification, and is defined as
the ratio of the overlap area to the union area between the ground truth and the
estimated bounding box, defined as:

sIOU(B̂, B) = area(B̂ ∩ B)/area(B̂ ∪ B) (2.4)

where B̂ and B are the predicted and ground truth bounding boxes respectively. A
threshold γ ∈ [0, 1] is used to determine if the detection is correct or not:

results =

{
TP i f sIOU(B̂, B) > γ

FP otherwise
(2.5)

If the sIOU(B̂, B) is more than the threshold γ, the predicted bounding box is con-
sidered correct and classified as True Positive (TP). Otherwise, it is incorrect and is

2.1. 2D Object Detection 11

classified as False Positive (FP). In case of the object detector fails to detect an object
present in the ground truth it is classified as False Negative (FN).

Another most common metric based on the above equations is the Average Pre-
cision (AP). AP wants to combine both classification and localization performance.
To define the AP, one must first understand the precision-recall curve. This curve,
denoted by p(r), is constructed by plotting precision (on the y-axis) against recall
(on the x-axis) at various thresholds γ. The threshold γ is used in Equation 2.1.3
to determine correct detections. Adjusting the threshold alters the number of TPs
and FPs detected, and consequently affects precision and recall in different ways. A
higher threshold will lead to higher precision but lower recall, while a lower thresh-
old will lead to higher recall but lower precision. The precision-recall curve p(r)
often takes on a "zigzag" shape. The general definition of AP is the area under the
precision-recall curve:

AP =
∫ 1

0
p(r)dr (2.6)

Before computing AP for object detection, the recall-curve function is often smoothed
to eliminate the zigzag pattern. The Pascal Visual Object Classes Challenge [20] in-
troduced the interpolation of precision at each recall level:

pinterp(r) = max
r̃≥r

p(r̃) (2.7)

where p(r̃) is the measured precision at recall r̃. At each recall level, the precision
value takes the maximum precision value to the right of that recall level. As written
in [20], this interpolation has the goal of reducing the impact of the "wiggles" in the
precision-recall curve, due to small variations in the ranking of examples.

As precision and recall values, also AP values are between 0 and 1. Since only
discrete values are available, AP is described as the mean precision at a set R of
equally spaced recall levels, usually {0.0 : 0.1 : 1.0} for a total of 11 values.

Finally, the AP could be approximated as follows:

AP(c, Γ, R) =
1
|Γ|

1
|R| ∑

γ∈Γ
∑
r∈R

APr =
1
|Γ|

1
|R| ∑

γ∈Γ
∑
r∈R

pinterp(r) =
1
|Γ|

1
|R| ∑

γ∈Γ
∑
r∈R

max
r̃≥r

p(r̃)

(2.8)

where Γ is the set of thresholds used in sIoU and the common values on which is
set are {0.50 : 0.05 : 0.95}, while R is the set of the discretised recall values. So, the
AP is the mean over γ and the discretized recall r of the area under the precision-
recall curve. The AP is calculated for a single class c, while the Mean Average Preci-
sion (mAP) is the mean over all classes of the AP:

mAP(C, Γ, R) = avgc∈C AP(c, Γ, R) (2.9)

The mean Average Precision (mAP) at 0.5 IoU to evaluate the performance of the
models was introduced by the PASCAL VOC challenge [19]. Unlike the Pascal VOC
and Imagenet, MS COCO challenge [55] calculates the IoU from 0.5 to 0.95 in steps
of 0.05, then uses a combination of these 10 values as a final metric, also referred
Average Precision (AP).

As discussed earlier, another important element of this treatment is the real-time
component. For this reason, the generic network cannot be evaluated only in terms

12 Chapter 2. Background

of accuracy but must consider other aspects, such as the speed of response in the
inference phase. These metrics depend not only on the network, but also on the
combination of the network and the platform it is running on. For particular scenar-
ios, it will not be enough to choose the most accurate or the fastest method, but the
best trade-off between the two metrics must be found. In this sense, a useful metric
is the Frame-per-second (FPS), which counts the number of test images processed in
a single time unit (second):

FPS(A, I , ∆t) =
#I preprocessed by A : I ∈ I

∆t
(2.10)

where ∆t is a time interval expressed in seconds, while I is the set of input im-
ages. FPS represents the average number of images that the algorithm A processes
in a single second. Two other FPS variants are useful: the worst-case FPS and the
best-case FPS which are the min and max of the single calculation of FPS formula
respectively. In particular, in real-time applications, the worst-case is very impor-
tant because it represents the method speed’s minimum bound and the maximum
response delay. Other important concepts, dealing with real-time applications, are
those of latency and throughput. Latency, measured in milliseconds, is the amount
of time it takes for a method to complete one iteration, consisting of three phases:
preparing the data in pre-processing, performing the calculation in inference, and
cleaning up the output in post-processing. Throughput is a measure of the rate at
which a neural network can process data. It is usually expressed as the number of
images processed per second or the number of images per second on which infer-
ence has been made. Higher throughput usually implies faster performance, but
there are other factors such as model complexity and data set size that can also affect
throughput. The trade-off between latency and throughput is an important factor in
determining the overall performance of a deep neural network.

2.1.4 Neural Networks

In the Object Detection Convolutional Neural Network (ODCNNs) the backbone ar-
chitecture is one of the most important components, as mentioned above. This kind
of network aims to extract the most representative features from the input image.
An object detector usually relies on one of the backbones discussed below and uses
it to extract the most important representative features of an image; then the detec-
tor postposes a detection head to classify and regress the bounding boxes search.
Among the most famous backbone, there are:

• AlexNet [45] is a CNN for classification task. It has 8 layers: five convolutional
layers and three fully connected ones. At the end of the architecture, a soft-
max classifier is used to obtain a probability distribution over the number of
classes. AlexNet won the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) challenge in 2012 and breathed new life into Convolutional Neural
Networks.

• VGG [85] is a CNN with a variable number of convolutional layers (from 8 to
16), followed by three fully connected layers and a softmax layer. Small convo-
lutional filters are used. The authors showed that a set of small convolutional
filters could capture a larger receptive field despite the reduction of network
parameters, while maintaining high accuracy.

2.1. 2D Object Detection 13

• GoogleNet [89] is a DNN with 22 layers based on multiple Inception modules
[89] [90] [91]. Inception is a network that has multiple size filters at the same
level. Input feature maps pass through these filters and are concatenated at
the end, before being forwarded to the next layer. To regularize the gradient,
in the intermediate layers, the network uses auxiliary classifiers. GoogleNet
allows to have a sparsely connected architecture instead a fully connected one,
reducing the number of parameters and still achieving state-of-the-art perfor-
mances.

• ResNet [24] introduced the skip connections to mitigate performance decay
due to continued networks growth. Resnet has typically 34 layers with large
(7x7) convolutional filters followed by 16 bottleneck modules and a fully con-
nected layer. The bottleneck module has typically two convolutional layers
with a 3x3 filter. Other versions of ResNet exist and they have a higher num-
ber of layers (ResNet101, ResNet152). In ResNetV2 [25], batch normalization
and ReLU layers are added in the blocks.

• ResNeXts [107] is an elegant and concise network based on ResNet architec-
ture. The ResNeXT blocks are inspired by both VGG/ResNet-like block stacks
and the inception modules.

• EfficientNet [93] is a simple and efficient neural network founded by a Neural
Architecture Search (NAS) technique. NAS is a research field with the goal
of iteratively finding the optimal architecture of a network without extensive
trainings. In EfficientNet the authors proposed a compound coefficient that
can uniformly scale the network depth, the network resolution increase, and
the model scales.

• Hourglass [65] is a CNN born for the human pose estimation task. The ar-
chitecture is based on the hourglass module, a set of convolutional and max-
pooling layers combined in a symmetrical way. At each max pooling step,
the network branches off and applies more convolutions at the original pre-
pooled resolution. After reaching the lowest resolution, the network begins the
top-down sequence of upsampling and combination of features across scales.
Good network performance comes from the repetition of bottom-up and top-
down processing.

• DLA backbone [111] is a CNN for classification that augments ResNet and
ResNeXT with the Deep Layer Aggregation. This aggregation follows two
different strategies: Iterative Deep Aggregation (IDA) and Hierarchical Deep
Aggregation (HDA). DLA is a staged network, which groups blocks by spa-
tial resolution, with residual connections within each block. There is a total
of six stages, and at the end of each stage, the resolution is halved. The first
stage maintains the input resolution and the last stage is 32x downsampled.
By a global average pooling the feature maps are collapsed and then linearly
scored. At the end of the network, a softmax is applied.

The detectors can be divided in two-stage and single-stage detectors. In the first
case, the networks have a distinct module to generate region proposals. First, they
try to find a number of object proposals and, secondly, classify and localize them. In
the second case, for single-stage ones, the networks try to classify and localize the
objects in a single shot using dense sampling. To localize objects they use predefined
keypoints/boxes of several scales and aspect ratios.

14 Chapter 2. Background

The two-stage detectors typically have a more complex architecture and require
more computational resources to compute than the single-stage detectors. For this
reason, single-shot ODCNNs are usually used in real-time applications.

• two-stage detectors: R-CNN, Fast R-CNN, SPP-net, Faster R-CNN, FPN, R-
FCN, Mask R-CNN, DetectoRS;

• single stage detectors: YOLO, SSD, YoloV2 and YOLO9000, RetinaNet, YoloV3,
EfficientDet, YoloV4, CenterNet, PPYolo, YoloV5, YoloV6, YoloV7.

In the following, only some 2D detectors are summarised, some of which will be
discussed in Chapter 3.

YoloV3 YoloV3 [75] is a one-stage detector that divides images into grid cells and
predicts bounding boxes using dimension clusters as anchor boxes. It adopts inde-
pendent logistic classifiers to output an object score for each BB. The BBs are pre-
dicted at three different scales through extracting features from these scales. YoloV3
uses a backbone network, named Darknet-53, for performing feature extraction,
which is a residual network with 53 convolutional layers. Due to the introduction
of Darknet-53 and multi-scale feature maps, YoloV3 achieves great speed improve-
ment and improves the detection accuracy of small-sized objects when compared
with YoloV2 [74].

YoloV3-tiny YoloV3-tiny is a lighter version of YoloV3. It uses the same concepts
(independent logistic and anchors), but the backbone is composed of only 10 con-
volutional layers and there are only two scales (therefore 6 anchors rather than 9).
Due to its compactness, it achieves high inference speed, although it performs worse
than its full version.

Mobilenetv2-SSDLite MobileNetv2 [78] is an efficient CNN model with depth-
wise convolution layers that have fewer weights compared with ordinary convolu-
tion layers. It is one of the most used models for embedded systems because it is
lightweight, and it can achieve high FPS also on mobile devices. SSD [58] is a one-
stage detector which divides images into grid cells, and for each grid cell, uses a
pre-generated set of anchors with multiple scales and aspect-ratios to discretize the
output space of BBs. SSD predicts objects on multiple feature maps, and each of
them is responsible for detecting a certain scale of objects, according to its receptive
fields.

CenterNet CenterNet [112] proposes modelling an object as a single point. It uses
key point estimation to find center points and regresses all other object properties
including 3D location, pose orientation, and size. In this model, an image is fed to a
CNN which generates a heatmap, whose maximum values represent the centers of
the objects in the image. The objects’ size and pose are regressed from features of the
image at the center location. CenterNet was tested with four different backbones, i.e.
ResNet18, ResNet101, DLA34 and Hourglass, substituting the convolutional layers
with deformable convolutional layers v2 [113]. Deformable convolutional networks
(DCN) [13] are detectors able to adapt to the geometric variations of objects. Regular
convolutional networks can only focus on features of fixed square size (according to
the kernel), thus the receptive field does not properly cover each pixel of a target
object to represent it. The DCN produces a deformable kernel and the offset from
the initial convolution kernel (of fixed size) is learned during training.

2.1. 2D Object Detection 15

EfficientDet EfficientDet [94] is a scalable and efficient single-shot object detection
network. Tan et al. introduce Bi-directional FPNs (BiFPNs) based on the Feature
Pyramid Networks (FPNs)[54], which use inherent multi-scale hierarchical pyra-
mids of feature maps in order to detect objects at different scales in different scenes.
In BiFPN the authors overcome the one-way information flow limitation allowing
top-down and bottom-up paths between feature network layers. EfficientDet has
EfficientNet [93] as the backbone network and BiFPN as the feature network.

YoloV4 YoloV4 [4] has been introduced by Bochkovskiy et al. as an evolution of
YoloV3. The authors changed both the architecture, the training and the data aug-
mentation methods to achieve better accuracy performance, but still having real-
time performances. YoloV4 has CSPDarknet53 as backbone, with 29 convolutional
layers, a spatial pyramid pooling (SPP) additional module [26], Path Aggregation
Network (PANet) neck [57], and YoloV3 (anchor based) head at three scales.

CSPDarknet53 is their developed feature extractor. The SPP is a layer that re-
moves the fixed-size constraint of the network. The SPP layer pools the features (us-
ing a maxpool in this case) and generates fixed-length outputs, which are then fed
into the fully-connected layers (or other classifiers). On the other hand, the PANet is
used to perform parameter aggregation from different backbone levels for different
detector levels, instead of the FPN used in YoloV3. Moreover, besides Leaky ReLu
and ReLu, in YoloV4 the mish activation function[62] is also widely used.

YoloV4-tiny The lighter version of YoloV4 has a backbone composed of 15 convo-
lutional layers and there are only two scales. A particular feature of this network is
the grouped route layer: it does not refer to a full layer output, but only to part of it,
in this case the second half.

In Chapter 3 a systematic assessment of these detectors is discussed. The compared
methods are evaluating on latency, accuracy, and power consumption on several
embedded platforms.

PPYolo PPYolo [59], proposed in 2020, uses YoloV3 as head. The backbone is
ResNet50-vd [24] and some convolutional layers are replaced with deformable ones
[13]. Its performance, albeit slightly, exceeds that of yoloV4.

YoloV5 YoloV5, released in 2021, is based on YoloV3. It is a custom implementa-
tion developed on pytorch instead of darknet and does not belong to the original
authors of Yolo. Despite this, it achieves better performance than YoloV4 and is
available in different versions to achieve the desired trade-off between accuracy and
latency. There is no published paper for YoloV5.

Yolov7 YoloV7 [101], released in July 2022, is proposed by authors of the Yolo se-
ries. YoloV7 supports instance segmentation, classification, object detection, and
pose estimation. The method is based on Efficient Layer Aggregation Network
(ELAN) [102]. ELAN uses expand, shuffle, and merge cardinality to improve the
model learning ability without destroying gradient flow paths. YoloV7 proposes
a modified ELAN, the Extended ELAN. There is also a lighter version of YoloV7,
namely YoloV7-tiny, which achieves lower accuracy but has very high throughput.

16 Chapter 2. Background

YoloV6 YoloV6, as well as YoloV5, is not part of the official Yolo series. Li et al.
[49], developed a one-stage object detector in different versions. The authors dif-
ferentiate the adopted backbone for light or large models, using RepBlock [15] and
CSPStackRep Block [103] respectively. YoloV6 adopts PAN topology [57] following
YoloV4 and YoloV5. YoloV6 adopts the anchor point-based paradigm [96] [22] in or-
der to be an anchor-free detector. YoloV6, counterintuitively to the name, is the most
recent network among those analyzed that has been released (September 2022).

2.2 6D Pose Estimation

The 6D-pose estimation problem differs from the 2D object detection one in terms of
the desired model output.

Whereas in the case of a 2D object detection problem it is sufficient to identify
the object only in its two (x, y) coordinates, in 6D pose estimation it is necessary to
provide the pose of the object itself, described by its 6 degrees of freedom. The axes
x, y, z describe the position within the image, also called translation, while δx, δy, δz
describe the angles of the three axes, which together explain the rotation. For the
6d-pose estimation problem, however, it is first necessary to distinguish the meth-
ods according to the type of data used. RGB images are one of the most widely
used data types in computer vision applications and thus also in the 6D-pose es-
timation problem. In literature, many 6D-pose methods have been developed for
RGB input data only, and this direction is also the most challenging. In some other
cases, methods are proposed that also use depth information (RGBD). This type of
data is produced by an RGBD camera, a type of depth camera that provides depth
(D) and color (RGB) data in the same output. Depth information can be obtained
from the depth map/image, created by a 3D depth sensor. These sensors are usually
time-of-flight or other sensors, such as STEREO cameras, LIDAR, etc. The depth is
a single-channel image, the same size as the RGB image, whose values correspond
to the distance of each point/pixel represented in the image from the sensor, the
reference camera.

RGB methods have a number of advantages, such as the use of commonly avail-
able data types, no need for special hardware sensors, and greater compatibility with
existing applications. However, their accuracy is lower than that of methods using
depth data. By contrast, RGBD image-based methods have been demonstrated to be
more effective. The depth information is essential to accurately and easily predict
the third component of translation.

In order to compare the different models in the literature, a distinction must first
be made between these two scenarios. Nevertheless, many existing RGB image-
based methods also have the option of integrating depth data. In these cases, this is
referred to as refinement, an operation that follows 6d pose estimation phase and
is performed at a non-zero cost to achieve better performances. Then there are
also stand-alone refinement methods in the literature, and native methods based
on RGBD images. In this discussion, only RGB-based methods will be covered. As
mentioned before the focus is on those methods for real-time applications.

In the 6D pose estimation problem, several metrics are used to calculate the per-
formance of the models, which will be explained below. Common datasets in the
literature are then described. Finally, an overview of the best performing methods
for only the two scenarios of end-to-end and two-stage methods based on RGB im-
ages are provided.

2.2. 6D Pose Estimation 17

2.2.1 Problem

To address the problem of 6D pose estimation, it is necessary to give a mathematical
formulation of it. Let be m a generic object, it can be represented by a model M,
which is typically a mesh given by a set of points in R3 and a set of triangles. Every
element xm of the model M is a specific 3D point expressed in the model coordinate
system. In the 6d-pose estimation problem, a pose of a 3D object is described by:

P = [R, t; 0,1], P ∈ R4x4 (2.11)

where R ∈ R3×3 is the rotation matrix, t ∈ R3×1 is the translation vector. The matrix
P transforms the point xm, expressed in its coordinate system Sm, in a new 3D point
xc with a new coordinate system Sc, the camera coordinate system. In other words,
applying the rotation and translation on the 3D point xm, a new 3D point xc is ob-
tained:

P[xm; 1] = Rxm + t = [xc; 1] (2.12)

In a generic 6D-pose estimation task more than one object can be considered.
Let be M = {mi|i ∈ N, i ≤ n} where n is the number of objects, every object is
represented by a model Mi and an algorithm A has to estimate the pose of some of
those objects grouped in the subset M̂, with M̂ ⊆ M and M̂ ̸= ∅.

Let be D a Dataset defined as:

D = { f j|j ∈ N, j ≤ |D|} (2.13)

where f j is a single image RGB or RGBD of the dataset, every input image f j can
depict more than one object mi and more than one instance of the same object mi: mk

i
with k = 1, 2, ..K, where K is the number of occurrences of the object mi in the image
f j. Each object instance depicted in the images has the same model Mi but differs
from 6D pose to 6D pose Pk

i . Based on the object pose given by P, only part of the
object mi is visible, some or some parts of the object surface, and it defines the object
view vi,j of the model mi in the image f j. Multiple instances of the same object and
single instances of other objects can be managed independently. In that case, given
an image f j, a set of generic object instances can be defined: O = {o1, o2, ..., ol}. The
algorithm A for each image f j will have to provide a set of pose predictions, one for
each object depicted in the image through the following structure:

E f j = {(oh, P̂h, sh)|h ∈ N, h ≤ |O|} (2.14)

where P̂h is the estimated 6D pose of an object instance oh ∈ O depicted in the image
with a confidence sh ∈ (0, 1]. In the same way, for each image the 6D-pose ground
truth can be defined as:

GTf j = {(og, Pg)|g ∈ N, g ≤ |O|} (2.15)

Given these formulations, two different types of problems can be identified. In
the first one, called 6D Localization Problem, the size of the output is fixed with
respect to the dataset and the algorithm has the |O| in input. Here |E f j | = |GTf j |. In
the second one instead, the output size depends on the estimator A and the number
of the depicted objects in the image is not known a priori. In that case it is called 6D
Detection Problem.

18 Chapter 2. Background

There are several ways to represent rotation matrices in 6D pose estimation prob-
lems. These include using Euler angles, quaternions, axis-angle representations, and
rotation matrices. Each of these representations has its own advantages and disad-
vantages depending on the application. Additionally, the rotation matrix can be
decomposed into a set of orthogonal basis vectors, which can also be used to repre-
sent the 6D pose. Quaternions are composed of four elements, each representing an
axis of rotation. They are usually represented as four-dimensional vectors, with the
elements being the x, y, z, and w components of the quaternion. The w component
is used to represent the angle of rotation. Quaternions can be converted to and from
rotation matrices and can be combined to form a single rotation matrix.

2.2.2 Datasets

As mentioned earlier, DNN methods for object pose estimation can be divided into
two subsets, RGB-based and RGBD-based methods. For both, typically classified
as supervised methods, labeled data, which are both bounding boxes (2D or 3D)
and the counterpart of pose information, must be provided in the training phase.
This means that for each object represented in the scene, translation and rotation
must be provided. This information is not present in the known datasets for the
object detection task, but needs specific datasets. Sample images of some datasets
are shown in the Figure 2.3

FIGURE 2.3: Sample images of some of the most common datasets for
6D pose estimation. On the top left is LineMod, on the top right is
T-LESS, on the bottom left is MVTec ITOD, and on the bottom right is

HomebrewedDB.

2.2. 6D Pose Estimation 19

LineMod The most commonly used dataset for training and evaluation 6D pose
estimation methods is LineMod [29]. LineMod is a dataset consisting of real im-
ages with 15 classes or object models, acquired from different views. Each class
has ∼1200/1300 RGB, DEPTH, and MASK images for a total of 18273 test images
and 19695 training images. For each object class, ground truth 6D pose labels are
provided only for the target object, which is placed around the center of a custom-
made work plane and surrounded by other cluttering objects that cause only mild
occlusion. The target object is easily distinguishable, taking on typical sizes and col-
ors, different from those of surrounding objects. The working plane consists of a
chessboard-like structure delineated by custom-made ArUco markers, used to re-
trieve the ground truth labels. The ground truth object pose is retrieved by deploy-
ing geometric algorithms which use markers to recover first the board’s pose in cam-
era coordinates, and, successively, the object pose in the same coordinate system.

LineMod-Occluded Another version of LineMod, called LineMod-Occluded [5]
tries to address the occlusion limitation of the previous dataset. In this case the au-
thors added an extra ground truth, extra information about occluded objects present
in the scene. The ground truth annotations are introduced for all modeled objects
in one of the test sets, incorporating various levels of occlusion, resulting in a more
challenging pose estimation task.

T-LESS Another dataset is T-LESS [32] created for industry-relevant objects, which
lack texture or discernible color. That dataset has 30 classes, the training set is com-
posed of 37584 real images and 76860 rendered images, while the test set is com-
posed by 10080 real images for each of the 3 sensors. The real images come from
20 RGB-D scenes that were recorded through three synchronized cameras. The sen-
sors are i) Primesense CARMINE 1.09 (a structured-light RGB-D sensor) ii) Microsoft
Kinect v2 (a time-of-flight RGB-D sensor) iii) Canon IXUS 950 IS (a high-resolution
RGB camera), and they are synchronized. The objects featured in the dataset present
some symmetries and mutual similarities, with some being a combination of multi-
ple objects.

HomebrewedDB Structurally similar to T-LESS, HomebrewedDB [42] covers a wider
range of objects and provides more challenging occlusions. It consists of 33 highly
accurate 3D models of toys, household objects, and low-textured industrial objects
of varying sizes, along with 13 sequences containing 1340 frames filmed with two
RGB-D sensors. The scenes range from simple (three objects on a plain background)
to complex (highly occluded with eight objects and extensive clutter). Interestingly,
a chessboard-like pattern similar to the one used in LineMod is clearly visible also
in HomebrewedDB.

MVTec ITODD MVTec ITODD [16] contains industry-relevant objects, containing
also objects with reflective surfaces.

HOPE NVIDIA HOPE (Household Objects for Pose Estimation) [97] introduced a
new dataset of toy grocery objects. The annotations for this dataset were obtained
manually, through the identification of point correspondences between images and
3D textured object models. During the acquisition phase, ten different environments,
with five object arrangements/camera poses per environment, were used. These 50
different scenes exhibit a wide variety of backgrounds, clutter, poses, and lighting.

20 Chapter 2. Background

To provide additional clutter and partial occlusion, objects are also placed in other
containers, such as bags or boxes. Of significance in the scope of this work, the
dataset is advantageous as it does not utilize markers or ArUco markers during
acquisition. Moreover, the different environments permit to better generalize. In
total, the dataset contains 50 unique scenes, 238 images and 914 object poses. Once
set the camera and the object position, some light effects are applied, in order to have
more images with little differences in shadows and change colors, thereby resulting
in more static images that did not need to be annotated.

2.2.3 Metrics

In order to determine the correctness of an algorithm A some specific metrics have
been introduced. To simplify the notation, let be considered a generic input image
I with a single depicted object instance o, the estimation can be defined as (o, P̂, s)
while the ground truth is (o, P). An estimation is considered correct with respect to
the ground truth if the error e(P, P̂,M, I) ≤ θ where θ is a threshold of a pose error
function e.

FIGURE 2.4: Examples of well-known problems in 6d pose estima-
tion: symmetry, occlusion and self-occlusion.

The threshold permits a definition of a set of matchable estimated poses as cor-
rect with respect to the ground truth, but the threshold itself is not sufficient for some
specific scenarios. These scenarios can be grouped into the indistinguishable pose
problem. It is referred to some objects that are ambiguous, for example symmetric,
occluded or self-occluded objects, such as a cup, bowl, box, glue, and so on (Figure
2.4). These objects, from a specific point of view and a subset of rotation and transla-
tion pairs, are invariant with respect to a specific object axis or more than one axes.
In particular, let be M the model of an ambiguous object, the set of poses that are
ϵ-indistinguishable from pose P can be defined as:

PM,I,ϵ = {P
′

: d(vI , v
′
I) ≤ ϵ, vI = ψ(P,M), v

′
I = ψ(P

′
,M)} (2.16)

The visible portions of model surface M in image I are represented by vI and v
′
I ,

which are obtained by applying the function ψ to two distinct poses, P and P
′
, re-

spectively. The distance function d and tolerance ϵ are used to determine which
poses in PMi ,I,ϵ produce the same visible object view, up to the specified tolerance.
For instance, when considering a bottle and restricting rotations to its longitudinal
axis, different poses P may produce distinct orientations, but the resulting visible
object view remains unchanged.

2.2. 6D Pose Estimation 21

In that scenario, the pose error e(P, P̂,M, I) should consider it into account and
the threshold itself is not sufficient. For this reason, in the following, some metrics
will be investigated to address this problem.

Hinterstoisser et al. [29] proposed two different pose error functions: the Aver-
age Distance to the Corresponding Model Point (ADD) and the Average Distance to
the Closest Model Point (ADI). These are the most widely used. For one 3D point
of the object model M, ADD error compares the resulting 3D point given from the
estimation with its exactly corresponding one given from the ground truth:

eADD(P̂, P,M) = avgx∈M∥P̂x − Px∥ (2.17)

On the other hand, to overcome the problem of indistinguishable views the au-
thors proposed the ADI error:

eADI(P̂, P,M) = avgxi∈Mminxj∈M∥P̂xi − Pxj∥ (2.18)

This error is more permissive than the previous one. In this case, it is possible to
select two different 3D points used for the estimation pose and the ground truth one
in order to evaluate the correctness of the algorithm when the model is symmetric,
occluded, or self-occluded.

Hodan et al. [31] introduced a new error only over the visible part of an object
model: The Visible Surface Discrepancy (VSD). In order to define VSD, one must
first introduce the concept of a visibility mask. This mask comprises pixels where
the surface of M is either in front of the scene surface or at most δ behind it. The
visibility mask V is obtained by intersecting valid image pixels XI with valid object
pixels X. The difference between the distance images obtained by rendering the
model with the ground truth pose D and the distance image of the test scene DI
must not exceed a threshold of δ. The formal definition is as follows:

V = p : p ∈ XI ∩ X ∧ D(p)− DI(p) ≤ δ (2.19)

When the predicted pose is used, the corresponding visibility mask V̂ could be
quite different. In this case, instead of considering the valid object pixels X given
by the ground truth, the valid object pixel X̂ given by the prediction will be consid-
ered. Similarly, instead of considering the distance images obtained by rendering
the model with the ground truth pose D, the distance images given by the predicted
pose D̂ will be used. An additional condition is required for V̂ to ensure that the
visible surface of the sought object does not occlude the object model surface: all
object pixels included in V are added to V̂, regardless of the surface distance at these
pixels:

V̂ = p : (p ∈ XI ∩ X̂ ∧ D̂(p)− DI(p) ≤ δ) ∨ p ∈ V ∩ X̂ (2.20)

The Visible Surface Discrepancy (VSD) can be defined as the average of the matching
costs for each pixel p present in both visibility masks:

eVSD(P̂, P,M, I, δ, τ) = avgp∈V̂∪V

{
d/τ i f p ∈ V̂ ∩ V ∧ d < τ

1 otherwise
(2.21)

The matching cost is determined by the following criteria: if p exists in the in-
tersection of the two visibility masks and the distance d between the corresponding

22 Chapter 2. Background

points is less than the misalignment tolerance τ, then the error for that pixel is d/τ.
If this condition is not met, the matching cost is set to the maximum value of 1. The
distance d is computed as |D̂(p)− D(p)|, where D̂ and D are the previously defined
distance images.

Another popular pose error function is the Complement over Union (eCOU) [19].
This cost function is used for detection and segmentation methods in 2D domain:

eCOU(B̂, B) = 1 − sIOU(B̂, B) = 1 − area(B̂ ∩ B)/area(B̂ ∪ B) (2.22)

where sIOU is the Intersection over Union introduced in [19] and represents the
detection accuracy in 2D domain. Depending on the task, B̂ and B can be rectangu-
lar regions (given by bounding boxes) or segmentation masks, and B̂ (correspondent
to P̂) and B (correspondent to P) are the estimated and ground truth 2D region re-
spectively. In the 6D scenarios, the 2D regions are obtained by projection of the
object model M in the two poses, the estimated and ground truth ones. This error
function addresses the ambiguity problem and it is ambiguity invariant, but since it
works with the projection of the model, it provides only weak information about the
fitness of the object surface alignment. With respect to the measuring pose errors,
also performance scores are used. In that case, Hinterstoisser et al. [29] suggest the
Mean Recall (MR) and Mean Average Precision (MAP) to measure performance in
the 6D pose estimation problem. In particular, the MR is:

MR = avgo∈O
∑I |{(o

′
, P̂, s) ∈ Ec

I : o
′
= o}|

∑I |{(o
′ , P) ∈ GI : o′ = o}|

(2.23)

where I is an input image, O is the set of objects depicted in I, (o
′
, P̂, s) is the output

of the algorithm A and (o
′
, P) is the ground truth.

On the other hand, the MAP, calculated as the mean of the Average Precision
(AP) for each object is:

MAP = avgo∈Oavgr∈So

∑I |{(o
′
, P̂, s) ∈ Ec

I : o
′
= o, r ≤ s}|

∑I |{(o
′ , P̂, s) ∈ EI : o′ = o, r ≤ s}|

(2.24)

where So is the estimation confidence values set that are considered correct. The
Precision-Recall curve is effectively described by the AP rate.

Several metrics have been presented to summarize the heterogeneity of the scores
and errors used in the literature. The eADD and eADI are the most widely used cost
function, one for the pose-distinguishable objects and one for the pose-ambiguity
ones. However, these two pose error functions are not comparable to each other
because eADI produces relatively small errors even for distinguishable views and
is therefore more permissive than eADD. This is because in eADI the many-to-one
correspondence of vertices, established by finding the nearest vertex, is easier to ob-
tain. On the other hand, the eVSD error is calculated over the only visible part of the
object’s surface and it works for both symmetric and asymmetric objects. It is able
to treat the ϵ-indistinguishable poses of an object because is Ambiguity-invariant:
those poses are considered approximately equivalent.

2.2. 6D Pose Estimation 23

2.2.4 Neural Networks

For 6D-pose estimation methods, a first distinction that can be made is between
RGB-based and RGBD-based methods. For the color-based approaches, only the
three color channels are used to compute the pose estimation, while in the depth-
based ones also the depth information is used to improve the performances and in
particular the scale estimation of the object’s pose. Section 2.2 briefly discussed the
pros and cons of RGBD image-based methods versus RGB image-based ones. While
the former yield better performance, they require dedicated hardware and datasets,
whereas the latter provide greater flexibility and reduce the need for specialized
equipment and datasets. Additionally, Chapter 5 will show that in certain scenarios,
acquiring depth information may not be possible due to environmental limitations
and noise inherent in the use case. Consequently, this discussion will focus solely on
RGB image-based methods, which pose a more challenging and interesting problem
due to the absence of depth information.

The best-performing RGB image-based methods at the beginning were methods
relying on local or global gradient-based image features. Template matching tech-
niques were used, but they’re not robust to cluttered images, noise, or light effects.
Nowadays, with the rapid improvements in the Deep Learning field, they have been
outperformed by trainable Convolutional Neural Networks (CNN).

In that case, several methods have been developed in recent years, and gener-
ally, they can be grouped into two categories: holistic methods and feature-based
methods.

Holistic methods Given an image, these methods generally aim to estimate the 6D
pose of an object in a single shot. Traditional methods rely on template-matching
approaches. These approaches construct rigid templates and scan through the im-
age, computing the similarity score at each image location. Then, comparing the
similarity scores, the best match is obtained [28] [29] [7]. In the recent CNN archi-
tectures, the template is usually obtained directly from the object, by rendering the
corresponding 3D model. Belonging to the Holistic category, both end-to-end and a
sort of two-stage methods are included. With the advent of the CNNs architecture,
due to their significant robustness to environment variations, the most trivial way
to estimate 6D pose in an end-to-end manner is to regress it [43]. However, in RGB
scenarios the lack of depth information for pose estimation with this approach still
makes the task too difficult. In that case, a lot of methods are proposed splitting the
problem into two different tasks: localize the objects in the 2D dimension in the im-
age, inferring from this the depth, and then predict the object poses. PoseCNN [106]
does exactly this, by decoupling the translation and rotation predictor, and regress-
ing translation and rotation. However, directly estimating the 3D rotation is also
difficult, since the non-linearity of the rotation space. To overcome this problem,
other methods have proposed discretizing the rotation space to turn the regression
task into a classification task [88].

The holistic methods typically are sensitive to cluttered environments and ap-
pearance change due to the low similarity score if objects are occluded. On the other
hand, template-based methods are useful in detecting texture-less objects.

Feature-based methods Given an image and an object model, the features-based
approaches try to establish the 2D-3D correspondences between the visual repre-
sentation of the object in the image and the 3D object model, by extracting the local

24 Chapter 2. Background

features from both. Specifically, the correspondences are established by matching lo-
cal features extracted from either points of interest or every pixel with the 3D model
features. From these 2D-3D correspondences the 6D pose estimation can be recov-
ered [71]. Keypoint-based methods are also part of this category. First, the 2D model
keypoints are predicted from the image, and second, their 2D-3D correspondences
with respect to the model features are computed. Keypoints could be chosen directly
on the surface of the object or also they could represent eight 2D projections of the
3D model’s cuboid corners. Keypoints detection traditional methods appear to have
difficulties, especially in handling texture-less objects and processing low-resolution
images. To solve it, recently CNNs were introduced also in this phase. For example,
BB8 [73] uses segmentation to identify objects’ image regions and, then, regresses
keypoints. In addition, Tekin et al. [95] choose the YOLO architecture to estimate the
objects’ keypoints. Though they are based on low-resolution feature maps, they are
not robust with respect to occlusions. Another quite different method is PVNET [72],
which consists of predicting the corresponding 3D model point from each 2D pixel
of the object. In this case, the network tries to overcome the problems in occluded
and truncated scenarios. The authors directly regress pixel-wise vectors pointing
to the keypoints and use these vectors to vote for keypoint locations. This kind of
method is also called dense method, which consists of predicting the corresponding
3D model point from each 2D pixel of the object. Therefore, every pixel belonging
to the depicted object produces a prediction and then casts a vote for the final result
[23], [52], [86]. In other cases, to extract features and predict the corresponding 3D
object coordinates for each pixel can be used random forest [5] [61] or CNNs [51].

These methods hence try to extract the relevant features directly from the image,
using keypoints, coordinates, or informative pixels. To predict the final 6D pose of
the objects instead they generally use a Perspective-n-point (PnP) strategy [69].

FIGURE 2.5: PnP problem. [69]

The PnP problem. illustrated in Fig. 2.5, is generally referred to estimation prob-
lems of a calibrated camera pose. In 6D pose estimation problem, PnP refers to the

2.2. 6D Pose Estimation 25

estimation of the relative pose between objects and the camera, given a set of corre-
spondences between 3D points and their projections onto the image. Let be:

P = {P1, P2, ..., Pn}, (2.25)

PI = {PI
1 , PI

2 , ..., PI
n} (2.26)

where P is a set of n known 3D points and PI is the respective set of the pro-
jections of the points in P. The points P are in a world reference frame, while the
points PI are in a camera reference frame. Given O to be the camera’s optical center,
the PnP algorithm aims to find the coordinates of each 3D point in P in the camera
frame. Specifically, the PnP problem can be formalized as:

PI
i = RPi + t i = 1, ..., n (2.27)

where R and t are the rotation and translation respectively. Both are the rela-
tive transformation that PnP tries to solve to recover the positions of the 3D points
in the frame. In the formulation described above the camera is considered already
calibrated. Several methods have been proposed in the literature, differing first of
all in the number of points considered. The P3P algorithm manages the smallest
subset of points in PnP problems and is, presumably, the most studied. Along with
P4P and P5P, P3P is part of the Special PnP problems. In general, in the PnP prob-
lem, several method strategies are adopted: iterative [12], non-iterative [48], [50].
Typically, the PnP methods can obtain multiple solutions. To choose a particular so-
lution, post-processing steps could be required. Another common practice is to use
Random Sample Consensus (RANSAC) algorithm [37] with a PnP method to make
the solution robust to outliers in the set of point correspondences. The time perfor-
mance of PnP depends on a few factors. Firstly, the complexity of the 3D geometry
of the object being tracked affects the time performance. More complex objects take
longer to track as the algorithm needs to process more data. Secondly, the camera
resolution also affects time performance, as higher resolution cameras require more
processing time. Finally, the distance from the camera to the object also affects time
performance, as objects farther away from the camera take longer to track. On the
other hand, the time performance of RANSAC depends on the size of the data set,
the number of iterations of the algorithm, and the accuracy of the model being fit
all affect the time performance. Additionally, the quality of the initial random sam-
pling of the data points also affects the time performance, as the quality of the initial
sample will determine the quality of the model to fit. In general, PnP offers good
time performance, making it a popular choice for augmented reality applications. It
is able to track objects in real time. However, some PnP algorithms, which need a
RANSAC-based scheme to eliminate outliers, take a lot of time.

The feature-based methods typically are able to handle occlusions between objects
and work fine also in truncated scenarios. However, they require textures on the
objects in order to compute the local features.

These approaches could be divided into two categories: direct estimation of the
6D pose or two-stage estimation, one for the 2D keypoint detection and the other for
solving a Perspective-n-point (PnP) problem for 6D pose.

Another common pose refinement, also in the 6D pose estimation problem, is the
Iterative Closest Point (ICP) [2] [11]. ICP is a popular algorithm for registering

26 Chapter 2. Background

two point clouds, which involves finding the best alignment between a source point
cloud and a target point cloud. The algorithm iteratively refines an initial estimate of
the relative pose of the two point clouds by minimizing the distance between their
corresponding points:

• i) An initial estimate of the two point clouds’ relative pose is provided.

• ii) Corresponding points between the two point clouds are identified (point
clouds centroids are used in some algorithm variants),

• iii) Weights are assigned to the corresponding points based on their proximity
and other factors.

• iv) The relative pose of the two point clouds is estimated using a weighted
method such as Singular Value Decomposition (SVD).

• v)The source point cloud is transformed based on the estimated pose.

• vi)The algorithm checks if the relative pose estimate has converged. If not, the
algorithm returns to step 2.

The algorithm iterates until a given convergence criterion is met. For the 6D pose
estimation problem, ICP is generally applied between the point clouds obtained
from the CAD model and the RGBD image. The following discussion will focus
solely on 6d pose estimation RGB-based methods; however, it’s worth noting that
some of these methods may use depth information outside the model for applying
an ICP refinement.

BB8 Red et al. [73] introduced BB8, a novel method to predict directly the 6D pose
of an object after its previous 2D detection. Given the object region, they first use the
segmentation to better fit the occlusions and cluttered background. Hence, BB8 is a
two-stage 6D-pose detector belonging to holistic approaches. Their CNN does not
directly predict the translation and rotation, but the 2D projections of the corners of
the object’s bounding box, which consist of eight 2D corners. Then, BB8 computes
the 3D pose via PnP algorithm [48] from the 2D-3D correspondences. Their method
suffers with symmetric object views because it tries to learn a mapping from the
image space to the pose space. For those objects that are perfectly symmetrical over
an axis, for two or more poses their views look identical. To solve this problem, Red
et al. train BB8 using images of the object under rotation in a restricted range, so the
training set does not contain ambiguous images. For symmetrical poses that have
rotation near the edges of the range, the model does not perform well. They also
need Iterative Closest Point algorithm (ICP) for more accurate estimation. However,
this approach can also not deal with pose ambiguities without additional measures.
And this strategy depicts a tedious, manual way to filter out object symmetries in
advance, but the treatment of ambiguities due to self-occlusion and occlusions is
harder to address. For this reason, these types of methods have limitations in their
applicability.

Coordinates-based Disentangles Pose Network (CDPN) Li et al. [51] proposed
Coordinates-based Disentangles Pose Network (CDPN) to achieve highly accurate
and robust pose estimation by disentangling the pose to predict rotation and transla-
tion separately. First, they employ a lightweight detector based on tiny YoloV3 [75]
used for the next fixed-size segmentation to extract the object pixels. The translation

2.2. 6D Pose Estimation 27

is predicted from the detected object region instead of the 2D-3D correspondences,
while the rotation is solved by PnP from predicted 3D coordinates. They merged
translation and rotation tasks in a unified network. They were able to reach good
results also for occlusion and cluttered domains thanks to finding dense correspon-
dences with their coordinates-based approach. The usage of these cropped image
patches subsequently serves as the input of the actual 6D pose estimation approach
which means that the whole method needs to be applied for each detected object
separately. For these reasons, those approaches are often not well suited for use
cases with multiple objects and runtime limitations, which inhibit their deployment
in many real-world scenarios.

Real-Time Seamless Single Shot (YOLO6D) Tekin et al. [95] proposed a single-
shot approach to detect the 2D projections of the 3D bounding vox vertices to the
objects. Their method, based on YoloV2 [74], is end-to-end trainable and works fine
also without any post-refinement. This single-shot deep CNN directly predicts the
2D projections of the 3D bounding box vertices from the image. With the 2D-3D
correspondence, the 6D pose can be algebraically computed with a PnP algorithm
[48], to which they pass only 9 control points. The idea is similar to the one intro-
duced in BB8 [73], but Red et al. first find a 2D segmentation mask for a single object
in a cropped image. Takin et al. instead work with the entire image. In this case,
the number of objects in the scene does not affect the computational time to pro-
cess the image itself, while it increases the computation time for the PnP part. Their
networks make predictions based on a low-resolution feature map. However, these
approaches can also not deal with pose ambiguities without additional measures. A
disadvantage of this method is that it uses real labeled images, which can only be
obtained within pose-annotated datasets.

Pixel-wise Voting Network (PVNet) Peng et al. [72] introduced a novel approach
for overcoming the sensitivity to occlusion and truncation that the feature-based ap-
proaches suffer. Instead of directly deriving the keypoints to a given image, they
consider every pixel of a cropped image referred to an object, and every pixel takes
part in the keypoints identification. In particular, PVNet regresses pixel-wise vec-
tors and uses these vectors to vote for keypoint locations. The vectors represent the
directions from each pixel of the object toward the keypoints. Using the RANSAC
algorithm [37], the directions then vote for the keypoint locations. RANSAC per-
mits also pruning outliers predictions and gives a spatial probability distribution for
each keypoint. In that way, this dense output permits to obtain better results in the
PnP algorithm [48]. Using a pixel-wise RANSAC-based voting scheme, the method
can be very time-consuming: the detection of the needed keypoints must be done
separately for each object.

PoseCNN Xiang et al. [106] proposed PoseCNN, a new end-to-end semantic seg-
mentation network that estimates the translation of an object by localizing its cen-
ter in the image and predicting the depth from the camera, and the object rotation
is regressed in the quaternion representation. PoseCNN decoupled the translation
and rotation predictors to avoid the need to balance the training hyper-parameters
needed in case of merged loss terms. Due to the behavior of the semantic segmenta-
tion, PoseCNN for estimating the translation suffers scenarios with multiple identi-
cal objects in the same image. On the other hand, directly estimating the 3D rotation
is also difficult, since the non-linearity of the rotation space makes PoseCNN less

28 Chapter 2. Background

generalizable. Xiang et al. proposed also a novel loss function called ShapeMatch-
Loss to handle symmetric objects. Due to their ambiguities, the network can be pe-
nalized unnecessarily during training when not taking their symmetry into account.
PoseCNN reached great results over public datasets present in literature, but in real
scenarios, where data are not pose-annotated this method is not easily usable.

FIGURE 2.6: Schematic representation of our EfficientPose architec-
ture. [6]

EfficientPose (EP) Bukschat et al. [6] developed a novel holistic end-to-end method
called EfficientPose, depicted in Figure 2.6. This network extends the state-of-the-art
object detection architecture family EfficientDets [94], based on the popular convo-
lutional backbone EfficientNet [93], to deal with the 6D pose estimation problem.
The authors add two extra subnetworks to EfficientDet, one for the rotation and one
for the translation task, analogous to the classification and bounding box regression
subnetworks. The rotation subnetwork predicts the rotation vector r ∈ R3, in an
axis-angle representation. The translation network shares a similar structure. In-
stead of regressing directly (tx, ty, tz), the translation architecture predicts separately
(cx, cy), which represents the object center in the image, and tz. After this, tx and ty
are obtained from (cx, cy) and fixed camera parameters, as done in [106]. Its archi-
tecture is similar to the class and bounding box regression, with the addition of an
iterative refinement module. EfficientPose is capable to detect multiple object types
and multiple instances of the same object in a single shot. The Loss function used
is based on ShapeMatch-Loss introduced by PoseCNN [106]. Like the EfficientDet
architectures, also EfficientPose is able to maintain scalability. The whole network,
and also the two new subnetworks for translation and rotation, controls the size by
scaling hyperparameter ϕ. The two new subnetworks are relatively small and share
the computation of the input feature maps with the existing subnetworks for classi-
fication and bounding box regression. For the rotation task, the authors chose axis
angle representation, while for the translation task, they adopted the same method
used in PoseCNN [106], splitting the task into predicting the 2D center point and the
distance separately. They also introduced a 6D-augmentation, a novel data augmen-
tation procedure for the 6D pose, increasing performance and generalization. This
proposed augmentation technique allows to augment also image rotation and scal-
ing, moreover classical augmentation related to brightness, contrast, saturation, and
hue. With respect to other methods, EfficientPose can work with the entire image,

2.2. 6D Pose Estimation 29

for both multi-class and multi-instance scenarios, with negligible increase in com-
putational time. It reaches Very good results on LineMod dataset and outperforms
a lot of state-of-the-art methods.

Augmented Autoencoder (AAE) Sundermeyer et al. [88] proposed a real-time
RGB-based pipeline for object detection and 6D pose estimation. Augmented Au-
toencoder (AAE) is their novel 3D orientation estimator based on a variant of the
Denoising Autoencoder [100]. This Deep Neural Network differs from the other
deep methods because it does not explicitly learn the 3D pose from data annotations
but it implicitly learns the representations from the rendered 3D model views. For
this reason, the AAE is classified as a self-supervised method, it does not require
pose-annotated training data. The Augmented Autoencoder is trained with a novel
Domain Randomization strategy. Domain Randomization (DR) consists of train-
ing a model on rendered views with several data augmentation techniques, such
as random lighting conditions, different backgrounds, different levels of saturation,
contrast, hue, square occlusion, and gaussian blurring. Such training permits to gen-
eralize on different backgrounds and also to real images.

Furthermore, the structure of a generic Autoencoder (AE) consists of two parts:
an Encoder and a Decoder, both arbitrary learnable function approximators which
are usually neural networks. Given an input image, the AE is supposed to learn
how to reconstruct it while it passes through a low-dimensional bottleneck (latent
space). If noise is added to the input image, AE is able to reconstruct the denoised
image, due to noise invariance of the latent space. Sundermeyer et al. demonstrated
that, as the Denoising Autoencoder is invariant against the noise, their method can
be invariant against different input augmentations. This AAE invariance property
solves the gap between reality and simulation.

Directly estimating the 3D rotation is difficult, since the non-linearity of the ro-
tation space makes CNNs less generalizable. The authors to avoid this problem
discretize the rotation space and cast the 3D rotation estimation into a classification
task.

FIGURE 2.7: At the bottom, object detection and 3D orientation esti-
mation utilizing the nearest neighbor(s) with the maximum cosine
similarity from the codebook; whereas, at the top, constructing a
codebook from the encodings of discrete synthetic object views. [88]

Due to their methodological choices, the AAE overcomes some well-known prob-
lems that affect other 6D-pose methods. AAE is independent from the object-pose

30 Chapter 2. Background

representations, it does not suffer from ambiguity poses given by symmetric views,
and it is robust against occlusion and different environments. In detail, first, AAE
applies a random augmentation faug to input x and reconstructs the original im-
age. Then, an encoder-decoder training reconstructs the original input. Parame-
ters are learned during the backpropagation phase, based on the per-sample loss:
l2 = ∑i∈D ∥xi − x̂i∥2.

After training, a codebook is created by generating a latent representation zi ∈
Rl of each possible object view and its corresponding rotation matrix, as shown in
Figure 2.7.

At test time, first the object is detected and cropped with an external detector.
Secondly, the AAE gives its latent space features ztest ∈ Rl . Then, cosine similar-
ity is computed between the input latent representation code and all codes in the
codebook:

cosi =
ziztest

∥zi∥∥ztest∥
(2.28)

The highest similarity is chosen and the corresponding rotation matrix from the
codebook is returned as 3D object orientation.

Only at inference time, a pose refinement can be done with the depth information
and applying the ICP algorithm.

2.3 Platforms

The performance improvement allowed by modern deep neural networks and un-
derlying computing platforms is paving the way toward new applications leverag-
ing an improved understanding of the surrounding environment. This is partic-
ularly relevant for autonomous systems in the automotive, avionics or industrial
robotics domains, where embedded domain controllers are adopted to perform in-
ferencing workloads in real-time, while meeting strict timing, weight and power
constraints.

The advent of DNNs considerably increased the complexity of designing and
engineering embedded solutions, due to the many conflicting goals, the abundance
of tunable parameters and configurable points, and the fragmented literature on the
matter. When characterizing the performance of an object detection network for an
embedded system, two main metrics are adopted: latency, i.e. the time needed for
a single frame to be processed, and accuracy, i.e. the quality of the output given the
input. Both metrics are of paramount importance to address the safety and timing
guarantees of industrial applications. They represent a well-known bi-dimensional
trade-off, as improving one metric often worsens the other. Heavier networks are
typically avoided for embedded systems, as their improved precision is obtained
by sacrificing latency guarantees, potentially affecting the detection reactivity of the
system. Conversely, faster networks better fit the limited resources of an embed-
ded system, but they pay a higher penalty in detection accuracy. A third important
metric for embedded systems is represented by power consumption, which directly
correlates with the attainable precision and latency, hence compelling the system de-
sign to a third trade-off dimension. Power consumption is a key factor to keep under
control for industrial systems, especially in the automotive and avionics domains, to
avoid the need for heavier batteries and heat sinks, allowing improved autonomy in
a wider range of thermal conditions. Energy efficiency is often obtained by reducing
operating frequencies, or by leveraging domain-specific parallel accelerators that are

2.3. Platforms 31

able to improve performances at a smaller energy footprint than classic computing
cores. In this section, only GPGPU (general-purpose computing on graphics process-
ing units) and FPGA (Field Programmable Gate Array) families will be presented.
Their embedded solutions are the best known state-of-the-art for real-time neural
networks. The following is an excerpt of these embedded platforms. There is also an
emerging class of AI-dedicated accelerators implemented with Application-Specific
Integrated Circuits (ASICs), e.g. Google TPU, Huawei NPU, and Intel Nervana NNP.
Their design is tuned to provide the best inference efficiency for the supported work-
loads. However, only specific networks can be supported by these accelerators, due
to their limited programmability.

FIGURE 2.8: An example of a working table can be seen with a
NVIDIA Xavier AGX enclosed in a green circle. Its shapes are much
smaller than those of a laptop or desktop PC, demonstrating its small

size and compactness.

2.3.1 GPGPU-Accelerated Platforms: NVIDIA

Orin AGX The Orin AGX is the currently best performing NVIDIA SoC. It is re-
leased in two versions: 32GB and 64GB; it is composed by 8 and 12 NVIDIA Cor-
tex CPU cores for the two versions respectively. Orin AGX has an integrated GPU,
which is based on the Ampere architecture, and sports 1792 CUDA cores and 56
Tensor cores for the 32GB version, while 2048 CUDA cores and 64 Tensor cores for
the 64GB version. Both available versions have 2 second-generation Deep-Learning
Accelerators.

Orin NX The Orin NX is on the second step of the podium for performance among
NVIDIA SoC. It employs an SoC design that incorporates 6 and 8 NVIDIA Cortex
CPU cores for the two versions of 8GB and 16GB respectively. For both versions,
the integrated GPU is based on the Ampere architecture and sports 1024 CUDA
cores and 32 Tensor cores. Both available versions have 1 second-generation Deep-
Learning Accelerator.

32 Chapter 2. Background

Orin Nano As the name suggests, the Orin Nano is the lightest version of the
NVIDIA Orin category. It is composed by 6 NVIDIA Cortex CPU cores for both
two versions, 4GB and 8GB respectively. Orin Nano has an integrated GPU, which
is based on the Ampere architecture, and sports 512 CUDA cores and 16 Tensor cores
for the 4GB version, while 1024 CUDA cores and 32 Tensor cores for the 8GB version.
The Orin Nano board does not include any deep-learning-specific accelerator. The
4GB version can work in two power modes at 5W or 10W, while The 8GB version at
7W and 15W.

Xavier AGX Xavier AGX was NVIDIA’s best-performing SoC until 2021; now,
it stands in third place in terms of performance among NVIDIA SoC. It is com-
posed by 8 NVIDIA Carmel CPU cores, and an integrated GPU. This is based on
the Volta architecture and sports 512 CUDA cores and 64 tensor cores. They are pro-
grammable fused matrix-multiply-and-accumulate units that execute concurrently
alongside CUDA cores and implement HMMA (Half-Precision Matrix Multiply and
Accumulate) and IMMA (Integer Matrix Multiply and Accumulate) instructions for
accelerating various applications and, in our interest, deep learning inference. In
spite of their availability, we had to ignore the presence of the 2 first-generation
Deep-Learning Accelerators, whose support appears to be still immature—we ob-
tained a considerable performance degradation when enabling them.

Xavier NX The Xavier NX is a lighter version of Xavier AGX. It employs an SoC de-
sign that incorporates 6 NVIDIA Carmel CPU cores, and an integrated GPU, which
is based on the Volta architecture and has 384 CUDA cores and 48 tensor cores. As
the Xavier AGX, also Xavier NX has 2 first-generation Deep-Learning Accelerators.

TX2 The Jetson TX2 has been the most powerful embedded board by NVIDIA until
2018, nd today it has been largely exceeded. It employs an SoC design that incor-
porates a quad-core ARMv8 A57 processor, a dual-core superscalar ARMv8 Denver
processor, and an integrated Pascal GPU. There are two 2-MiB L2 caches: one shared
by the four A57 cores, and one by the two Denver cores. The GPU has two stream-
ing multiprocessors (SMs), each providing 128 1.3-GHz cores that share a 512-KiB
L2 cache. The six CPU cores and integrated GPU share 8 GiB of 1.866-GHz DRAM
memory.

Nano Nano is NVIDIA’s cheapest and lowest performing product. It features a
Maxwell GPU with a peak performance of 472 GFLOPs. The Nano board does not
include any deep-learning-specific accelerator, and can work in two power modes
at 5W or 10W. It does not take advantage of Tensor cores and NVDLA engines for
inference acceleration.

2.3.2 FPGA-Accelerated Platforms: Xilinx

XCZU9EG As a point of reference for FPGA-based System-on-Chip, the SoC be-
longing to the ZCU102 development board1 is the most powerful Xilinx evaluation
board for the Zynq UltraScale+ family, yet the oldest launched hardware in our in-
terest. The SoC is composed of a Processing System (PS) with four ARM A53 CPU
cores and two ARM R5 cores for hard real-time usage, and a 600K-logic-cells FPGA
Programmable Logic (PL). In neural network applications, typically the FPGA is

1https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

2.3. Platforms 33

configured to host a Target Reference Design (TRD) of the Deep-learning Process-
ing Unit2 (DPU) with a number of processing soft cores for executing DNN-related
tasks, e.g. such as convolutions, pooling, etc. The maximum available working fre-
quencies for this architecture are 666 MHz for the DSPs, 333 MHz for the DPU cores.

XCZU7EV The smaller SoC is featured in the ZCU104 development board, equipped
with 2 GiB of LPDDR4. The SoC shares the same PS as the XCZU9EG, but has only
504K PL cells.

2https://github.com/Xilinx/Vitis-AI/tree/master/DPU-TRD

https://github.com/Xilinx/Vitis-AI/tree/master/DPU-TRD

35

Chapter 3

Object Detection NNs on
embedded platforms

This chapter offers a systematic assessment of neural networks for 2D object detec-
tion in a real-time scenario, with a survey of multiple embedded platforms. The
results reported below arise from a project in collaboration with Tetrapak s.p.a. in
2020. The goal was to identify the best trade-off between the most accurate object
detector and the best performing platform in terms of latency, accuracy, and power
consumption available when the study was done. Both ODCNN and the embedded
platform should be integrated into the production line to solve the problem of de-
fective items. To do so, the object detector is adopted only for the inference phase
and its training phase is not relevant.

Regarding fast inference on-device computation, three major axes have been
identified [8] to maximize performances or to contain power consumption.

Network Model Design There has recently been an increasing interest in deriving
faster deep learning methods to be adopted for real-time embedded systems. New
models are being investigated with a reduced number of parameters, a lower la-
tency, and/or an improved accuracy. Some examples of these novel models include
MobileNets [35], Single-Shot Detectors (SSD) [58], Yolo [76], and SqueezeNet [38].
In this work, at the time of writing (the year 2020), the best performing networks
along the considered metrics were YoloV3 and YoloV3-tiny [75], YoloV4 and YoloV4-
tiny [4], Mobilenetv2-SSDLite [78], CenterNet-Resnet101 and CenterNet-DLA34 [112].

Model Compression Quantization, parameter pruning, and knowledge distilla-
tion are popular methods used to reduce the DNN model size while sacrificing ac-
curacy compared with the original model, in order to improve performance. In this
work, quantization is adopted as a model compression method in order to achieve
faster performance. Quantization is supported on many modern embedded plat-
forms and involves converting parameters to lower precision formats, such as half-
floating point precision (FP16) or INT8 inference.

Platforms Classic x86 CPU architectures have long been dominating the high-end
segment of the industrial automation domain for central control systems, as they
offer the best sequential performances (throughput and response time) and the eas-
iest programmability. General-Purpose computing on Graphics Processing Units
(GPGPUs) provides order-of-magnitude improvements in parallel throughput and
in power usage, at a reasonable programming cost. Field-Programmable Gate Ar-
ray (FPGA) platforms share a similar ambition, requiring a higher programming

36 Chapter 3. Object Detection NNs on embedded platforms

cost, but providing a more flexible communication paradigm with simpler com-
putational units. There is also an emerging class of AI-dedicated accelerators im-
plemented with Application-Specific Integrated Circuits (ASICs), e.g. Google TPU,
Huawei NPU, and Intel Nervana NNP. Their design is tuned to provide the best
inference efficiency for the supported workloads. However, only specific networks
can be supported by these accelerators, due to their limited programmability. For
this reason, these platforms were not considered.

In this project, some original contributions are delivered, and an extension of a pre-
vious work [99] is presented below:

• in Section 3.1 the description of the platform-optimized reference deployment
setup for hosting ODCNN workload for 3 hardware families and 6 platforms:
an industrial PC (Intel i7-7700), NVIDIA (TX2, Xavier AGX, and Nano), and
Xilinx (Zynq Ultrascale+ ZCU102 and ZCU104).

• in Section 3.2 the reference selection and implementation of 7 different SOTA
ODCNNs, with free and open-source access to the code for NVIDIA1 and Xil-
inx platforms2.

• in Section 3.3, 3.4 the systematic and fair comparison of the 7 ODCNNs, in
terms of mean Average Precision (mAP), latency, throughput, and power con-
sumption on the 6 embedded boards. The setup is uniform on the input size,
training dataset, and threshold for bounding boxes’ (BBs) confidence, while
the software stack setup and ODCNN implementation are designed to be the
best available on each hardware platform.

Given the wideness of optimization means currently employed, and the num-
ber of conflicting and diversely-relevant goals, the existing reviews of the literature
did not dare to address a comprehensive inspection of such a fragmented state-of-
the-art (SOTA) in embedded object detection. This work goes beyond by provid-
ing a systematic assessment, evaluating all the combinations of the aforementioned
networks, compressions and platforms, against all the aforementioned evaluation
metrics.

3.1 Platforms

Aiming at considering representative exponents of the latest and best solutions avail-
able at the time of writing, six different hardware platforms ranging from embed-
dable x86 processors for industrial PC, to Arm-based SoC, including acceleration
from GPGPU and FPGA are selected. To extend the scope of the comparison and
maximize its fairness, for each (sub-group of) platform, what appears to be the best
DNN framework and runtime available in 2020 is selected and configured. The
salient features and details of the selected six DNN platforms are reported in Ta-
ble 3.1. The remainder of the section highlights and motivates the rest of the plat-
form features–hardware, system software and DNN framework.

3.1.1 GPGPU-NVIDIA

From the latest NVIDIA platforms, three boards have been chosen, widely span-
ning the price/performance trade-off offerings: TX2, Xavier AGX, Nano, already

1https://github.com/ceccocats/tkDNN
2https://git.hipert.unimore.it/gbrilli/dpunn

https://github.com/ceccocats/tkDNN
https://git.hipert.unimore.it/gbrilli/dpunn

3.1. Platforms 37

TABLE 3.1: Details of the considered boards. N.U. stands for Not
Used for the implementation.

Intel i7-7700 Xilinx XCZU7EV Xilinx XCZU9EG
CPU Intel i7-7700 4 cores @3.60GHz Arm Cortex-A53 (v8) 4 cores @1.2GHz Arm Cortex-A53 (v8) 4 cores @1.2GHz
GPU – Mali-400 [N.U] Mali-400 [N.U]

Memory 16 GiB RAM 2 GiB DDR4 64-bit SODIMM w/ ECC 4 GiB DDR4 64-bit SODIMM w/ ECC
Power 65 W ≈25 W ≈30 W
Board Industrial PC Zynq UltraScale+ ZCU104 Zynq UltraScale+ ZCU102

DNN Accelerators – 2× DPUv1.4@250MHz 3× DPUv1.4@330MHz
Data types FP32 INT8 INT8

Operating system Windows 10 Enterprise LTSC 1809 Debian Buster 10.0 Debian Buster 10.0
Framework used ONNX Runtime DNNDK v3.0 DNNDK v3.0

Release year 2017 2014 2014

Nvidia Jetson Nano Nvidia Jetson TX2 Nvidia Jetson Xavier AGX

CPU 4-core Arm A57 @ 1.43 GHz
4-core Arm Cortex-A57 @ 2 GHz,

2-core Denver2 @ 2 GHz
8-core Arm Carmel v.8.2 @ 2.26 GHz

GPU 128-core Maxwell @ 921 MHz 256-core Pascal @ 1.3 GHz 512-core Volta @ 1.37 GHz
Memory 4 GiB LPDDR4, 25.6 GiB/s 8 GiB 128-bit LPDDR4, 58.3 GiB/s 16 GiB 256-bit LPDDR4, 137 GiB/s

Tensor cores – – 64
Power 5W / 10W 7.5W / 15W 10W / 15W / 30W
Board Jetson Nano Jetson TX2 Jetson Xavier AGX

DNN Accelerators – – 2× Deep Learning Accelerators [N.U.]
Data Types FP32, FP16 FP32, FP16 FP32, FP16, INT8

Operating system Ubuntu 18.04.4 LTS, Jetpack 4.4 Ubuntu 18.04.2 LTS, Jetpack 4.4 Ubuntu 18.04.3 LTS, Jetpack 4.3
Framework used tkDNN with TensorRT tkDNN with TensorRT tkDNN with TensorRT

Release year 2019 2017 2018

explained in Section 2.3.1. For the NVIDIA boards, the DNN frameworks TensorRT
and tkDNN were used:

TensorRT The reference NVIDIA framework3 is written in CUDA and optimizes
the inference of deep learning models on their GPU. Using TensorRT allows one
to reduce the precision data type, performing inference at 8-bit integer (INT8), or
at half-precision floating-point (FP16) to replace the single-precision floating-point
(FP32) in representing the weights and parameters of deep learning models. A com-
mon result [44, 34, 109] is that the overall latency of the model can be dramatically
reduced, though the final accuracy could be degraded. Exploiting this framework
is not always trivial, especially if the networks that need to be ported have unusual
layers (e.g. deformable convolutional layers), in which case the effort of the pro-
grammer is not negligible and several plugins need to be implemented.

tkDNN The open-source Deep Neural Network library by the HiPeRT Lab4 is built
with cuDNN and tensorRT primitives, specifically thought to work on NVIDIA Jet-
son boards, whose main goal is to exploit those boards as much as possible to obtain
the best inference performance. It is indeed confirmed as the currently fastest run-
time by YOLO authors5.

3.1.2 FPGA-Xilinx

From the Zynq UltraScale+ family by Xilinx, two exponents of development boards
have been chosen: XCZU9EG and XCZU7EV explained in Section 2.3.2.

For the XCZU9EG platform, the FPGA is configured to host a Target Reference
Design (TRD) of the Deep-learning Processing Unit(DPU) with a number of process-
ing soft cores for executing DNN-related tasks. In the Programmable Logic (PL) of
the XCZU9EG SoC, three DPU cores of the FA4096 family, and one Softmax core
were instantiated. In the setup used, the A53 cores do not strictly behave under

3https://developer.nvidia.com/tensorrt
4https://github.com/ceccocats/tkDNN
5https://github.com/AlexeyAB/darknet/blob/master/README.md

https://developer.nvidia.com/tensorrt
https://github.com/ceccocats/tkDNN
https://github.com/AlexeyAB/darknet/blob/master/README.md

38 Chapter 3. Object Detection NNs on embedded platforms

the ideal offloading paradigm, as it happens in the GPU-based platforms, where it
deals only with pre-/post-processing operations, image transmission to the DPU,
and task code transmission, but it needs also to execute DNN layers, when they are
not supported by the accelerator.

For the XCZU7EV, as described in Section 2.3.2, due to the intrinsic constraints
of this architecture with respect to the previous one, the configured DPU for the
experiments was obtained by reducing the ZCZU9EG TRD with: only 2 DPU cores,
no Softmax core, only 35 UltraRAM blocks per core, and lower frequencies for the
DSPs and DPUs respectively at 500 and 250 MHz.

The DNN frameworks DNNDK and Vitis-AI have been used for the two Xilinx
boards.

DNNDK and Vitis-AI In order to help users create custom NN models, Xilinx
provides the DNNDK6 framework and the Vitis-AI7 development suite. These col-
lect some commonly-used NN models in the Model zoo repository, as well as tools
for network quantization and deployment. These suites are integrated with the
Caffe [40] and TensorFlow [1] frameworks, through which it is possible to define
the model of a NN and export the trained weights. Other NN engines for FPGA
exist, e.g.: Neuraghe, presented by Meloni et al. [60]; FINN, proposed by Umuroglu
et al. [98] (natively supported for SoCs that integrate the Pynq framework e.g. Avnet
Ultra96); or CHaiDNN, once developed by Xilinx8. However, DNNDK, which as-
sumes DPU, was selected because: (i) it is directly supported by Xilinx; (ii) it is
well documented both for hardware design and drivers API; (iii) it is easier to use,
thanks to the NN repository, which includes a wide range of object-detection DNNs
like YoloV3 and YoloV3-Tiny.

3.1.3 PC-Based Platform: Intel

x86 architecture dominates the market of central control platforms for industrial
automation and is battling to penetrate the high-performance embedded segment.
With respect to ARM competition, PC-based platforms often offer lower costs, main-
tainability, tried and true hardware with extensive processor power and nearly un-
limited memory. The Intel i7-7700 is an exponent of the CPU that can be found
in current Industrial PC (IPC) that combines high performance and a compact size9,
thus comparable to the other reference platforms. In that case, the DNN frameworks
used are the ONNX Runtime and Pytorch library:

ONNX Runtime The chosen development framework10is a cross-platform, high-
performance inference engine for ONNX (Open Neural Network Exchange)11for
Machine Learning and Deep Learning models.

6https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html#
dnndk

7https://github.com/Xilinx/Vitis-AI
8https://github.com/Xilinx/CHaiDNN
9See products from, e.g., Advantech, Beckhoff, B&R.

10https://microsoft.github.io/onnxruntime/
11https://github.com/onnx/onnx

https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html#dnndk
https://www.xilinx.com/products/design-tools/ai-inference/edge-ai-platform.html#dnndk
https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/CHaiDNN
https://microsoft.github.io/onnxruntime/
https://github.com/onnx/onnx

3.2. Neural Networks 39

It allows integration of models trained from a variety of frameworks, and a con-
venient deployment on different platforms, including some optimization for the spe-
cific hardware accelerators and runtimes available, all using a single inference en-
gine. To guarantee good performances during the pre-processing and post-processing
of the images, the C++ API has been exploited.

PyTorch DNN models have been exported from PyTorch 1.4 [70], which natively
supports ONNX layer export supporting the Constant Folding graph optimization
technique. A smooth conversion is guaranteed if PyTorch operators are supported
by ONNX. Custom PyTorch operators can be still registered as ONNX operators
through the ONNX Registration API. ONNX stable opset supported by PyTorch 1.4
is version 9. We have encountered no problem exploiting opset version 11 for the
conversion of the model studied.

3.2 Neural Networks

The selection of the ODCNNs under analysis has been driven by the sake of excel-
lence and currentness. An exhaustive analysis has been conducted to look for the
best performance in terms of execution time, mean average precision, or trade-off
between the two. The Object detectors chosen in this analysis are CenterNet, YoloV4
and its tiny version, YoloV3 and the tiny counterpart and Mobilenetv2-SSDLite, al-
ready explained in the section 2.1.4.

Several survey articles [105][41][115] review OCDNN, but all of them focus only
on the mAP metric. The four kinds of NNs chosen are : designed for real-time appli-
cations, well-established in the literature, lead to the best results12. Table 3.2 shows,
for every selected ODCNN model: the number of parameters (# Params) – read-only
data expressed in Millions of elements (M); the intra-layer Input/Output tensor size
(I/O Tensors) – read-write data expressed in Millions of elements (M); the computa-
tional complexity (# MACCs) expressed in Billions of operations (G).

TABLE 3.2: Selected ODCNN Models Specification

Network # Params I/O Tensors # MACCs
YoloV3 61.9 M 16.8 M 49.9 G
YoloV3-tiny 8.8 M 8.49 M 4.2 G
Mobilenetv2-SSDLite 4.3 M 12.6 M 2.1 G
CenterNet-ResNet101 49.0 M 12.6 M 47.7 G
CenterNet-DLA34 19.0 M 8.4 M 30.8 G
YoloV4 64.3 M 16.8 M 45.5 G
YoloV4-tiny 6.0 M 4.1 M 5.2 G

For YoloV3 the porting of the original network, as it is, was possible on the
NVIDIA, Xilinx and i7-7700 boards. On the NVIDIA platforms, For YoloV3-tiny the
porting of the original model was possible. On the other hand, a small change has
been required for the XCZU9EG and XCZU7EV implementation. Precisely, the last
max-pool layer has been removed as it was not supported during the deployment
phase of the model on the Xilinx DPU platform. The issue is caused by a mismatch
between how Darknet and Caffe frameworks handle max-pooling layers of stride

12https://paperswithcode.com/sota/real-time-object-detection-on-coco

https://paperswithcode.com/sota/real-time-object-detection-on-coco

40 Chapter 3. Object Detection NNs on embedded platforms

1, with input size equal to output size. However, removing this single layer did
not affect too much the performance of the network. The mAP of the network has
been measured with and without the aforementioned layer and the tests showed a
negligible accuracy drop (from a mAP of 11, 9% to 11, 7%, computed on the Xavier
AGX). The conversion of YoloV3 and YoloV3-tiny to ONNX has been done automat-
ically by the PyTorch to ONNX exporter, without adding new operators. Also for
Mobilenetv2-SSDLite the porting of the original model was possible on the NVIDIA
platforms. Instead, to obtain the original model on ONNX Runtime, it is necessary
to highlight the switch from the ReLU6 PyTorch operator to the Clip ONNX operator
with a minimum value of 0 and a max value of 6.

On XCZU9EG and XCZU7EV, whose AI library ecosystem does not currently
support the PyTorch framework, a model conversion to Caffe [40] through an open-
source tool13 has been necessary. This also forced us to replace the final Reshape
layers, which are not supported by the DPU architecture, with Flatten type layers.
In addition, the final Softmax layer has been removed from the model and imple-
mented in software and accelerated with OpenMP, because the memory movements
between the Programmable Logic and Processing System would have been ineffi-
cient. The time achieved with OpenMP-accelerated Softmax is 9.56ms compared
with the FPGA-based implementation that can achieve at most 13.64ms.

For CenterNet, due to the particular structure of this model, the porting on the
NVIDIA platforms required a great implementation effort, while the porting on the
Xilinx platforms was not possible. Indeed, at the moment of writing, the instruction
set of the DPU microarchitecture does not support deformable convolutional layers.
Although the DNNDK / Vitis-AI ecosystem supports the integration of software-
implemented layers, the resulting network could not achieve satisfactory perfor-
mance due to the inefficiency of the A53 cores in carrying out convolution opera-
tions with respect to the DPU cores, and due to the continuous shift of weights and
activations from PS to PL. Neither was it possible to convert and properly port Cen-
terNet on ONNX Runtime. According to our research in 2020, there is no supported
DCNv2 operator for PyTorch, ONNX, and ONNX Runtime for CPU. Further work
involves the implementation of DCNv2 as PyTorch custom operator for CPU, its
registration as a custom ONNX operator and as an ONNX Runtime operator.

Also for the YoloV4 the porting of the original model was possible on the NVIDIA
platforms. For the Xilinx platforms instead, the porting was not possible14 due to
the maxpool of the SPP module. It was the same problem as for YoloV3-tiny, but
in this case, removing those maxpool layers would have changed the core of the
network, leading to a different architecture. On the i7-7700 platform, an available
ONNX model has been tested, but this test led to very poor results. Latencies are
very high, more than 3 times the expected, and precision very low. Probably, not the
model nor the ONNX-RT implementation of the mish layer are mature enough to
fairly compare this porting with the others, which is why its results are not reported
here.

Finally, for YoloV4-tiny the porting of the original model was possible on the
NVIDIA platforms and on the i7-7700, but not on Xilinx boards, where the peculiar
grouped route layer was not representable.

13https://github.com/xxradon/PytorchToCaffe
14https://forums.xilinx.com/t5/AI-and-Vitis-AI/Yolov4-support-to-DNNDK/td-p/1103325

https://github.com/xxradon/PytorchToCaffe

3.3. Test Data 41

3.3 Test Data

Dataset To properly compare ODCNNs performances, network configurations must
be as uniform as possible. It would be unfair to compare, e.g., the latency if input
sizes are different, or the accuracy when input image resolution used for training is
different. Hence, one of the most widely used datasets in object detection has been
adopted, i.e. COCO [55]. Input size and training set were chosen after the newer
networks (CenterNet, YoloV4), using COCO2017 with input size 512x512. This in-
put size allows discriminating more clearly the differences between the latencies,
while achieving good accuracy. With respect to the 2014 version, COCO2017 is di-
vided in a 118K-images training set, and a 5K-images validation set, but it preserves
the same 80 semantic classes.

Training For CenterNet and YoloV4 networks, the weights from the original im-
plementations were used, already fitting our requirements. Instead, YoloV3, YoloV3-
tiny and MobileNetv2-SSDLite were trained, performing a single, full-precision train-
ing per network, and then exporting the obtained weights for the different frame-
works. YoloV3 and YoloV3-tiny were trained using darknet, their original frame-
work, on the selected dataset, with input size 512x512, using the default hyperpa-
rameters. MobileNetv2-SSDLite was also trained from the original implementation
(PyTorch 1.3), on the selected dataset and input size, using default hyperparameters
except for the number of epochs that was set to 400.

3.4 Experiments

3.4.1 Experimental setup

All the tests were performed on the COCO2017 validation tests, counting 5K im-
ages. Best-, average- and worst-case were measured for end-to-end latency, average
power consumption and mAP. For the NVIDIA platforms, all supported data types
were considered: FP32, FP16 for TX2, Xavier AGX and Nano, INT8 for Xavier AGX
only. XCZU9EG and XCZU7EV supported only INT8, and only FP32 is supported
by the i7-7700. The INT8 quantizations have been obtained on 1000 images of the
COCO2017 training set, both on Xilinx and NVIDIA boards. To maximize NVIDIA
platforms’ performance, the mode has been set to MAX N and jetson_clocks has been
launched before the tests. To model an industrial setup with external workload, e.g.
a central control platform with real-time motion tasks, only two cores of the i7-7700
have been exploited. Henceforth the acronyms used are: CNet(D34) for CenterNet-
DLA34, CNet(R101) for CenterNet-ResNet101, Yolo3 for YoloV3, Yolo3tiny for YoloV3-
tiny, Yolo4 for YoloV4, Yolo4tiny for YoloV4-tiny, Mv2(SSD) for MobileNetv2-SSDLite.

3.4.2 Metrics

Mean Average Precision The mean Average Precision (mAP) 0.5:0.95 is the “de
facto” metric for object detection [77] [56] and depends on two thresholds: (i) con-
fidence threshold tc, taking into account only BBs with a confidence score greater
than tc; and (ii) the IoU thresholds tIoU to discriminate two BBs representing the
same object if their classes match and if their IoU is greater than tIoU .

End-to-end Latency The execution time can be divided in: (i) pre-processing to
convert the image in the NN input, (ii) NN inference, (iii) post-processing to convert

42 Chapter 3. Object Detection NNs on embedded platforms

the output of a NN into BBs. The end-to-end latency is the time elapsed between
feeding an image to the detector and obtaining the BBs. In each board, the pre-
processing and the post-processing is performed in full-precision (FP32), while the
inference can be quantized (FP16 or INT8). Pre-/post-processing are performed on
the CPU, except for NVIDIA boards, where pre-processing of every network and
post-processing of CNet(D34) and CNet(R101) were optimized on GPU, implement-
ing a CUDA version of the corresponding (slower) OpenCV functions. The tests
were performed on 5k images, and maximum, minimum and average end-to-end
latency over those 5k latency records were computed. The first value of each mea-
surement series has been filtered out, because it would pessimistically account for
code and network weights memory movements and cold caches. This is a behavior
of the first iteration. This situation won’t repeat in these kinds of recurrent tasks,
and this justifies our choice.

Efficiency Efficiency was measured as Frame Per Seconds (FPS) over the power
consumption (W). The power usage has been sampled at 40 Hz on the NVIDIA and
Xilinx boards using powerapp tool15, at 1 Hz on the i7-7700 using Open Hardware
Monitor 0.9.2.

Parallelization Lastly, the performance of the embedded platforms has been eval-
uated in a multi-stream scenario, comparing the behavior of the various method
using 1, 2, 4 and 8 images at a time, in terms of end-to-end latency and FPS. The
network-level parallelism considered in this work is quite different comparing NVIDIA
and Xilinx implementations.

Batching Within the NVIDIA board, the classical neural network batching can be
exploited. Working with more than one image means adding a dimension to the
inference tensor. In tkDNN, as well as in many other frameworks, the tensor shape
is (N, C, H, W), which stands for (number of batches, number of channels, height, width).
A bigger tensor, comprising N images, is fed in inference at one time: the latency
for a single image will increase, but, thanks to the better exploitation of all the GPU
resources, also the throughput will. However, pre-processing and post-processing
need to be performed as well, and it is important to mention that those instructions
are not batched but, in this implementation, run sequentially.

Multi-core For the Xilinx counterpart, the DPU ecosystem allows to efficiently ex-
ploit its multi-core architecture by replicating the full computing pipeline of the
DNN. In the implementation proposed in our open-source repository, a multithreaded
program has been developed that, based on the number of streams considered,
spawns an equal number of tasks that offload the inference on the least loaded DPU
core. For the sake of comparisons, a Master Task scatters the images of the validation
set across the Slave Tasks which in turn offload the computation to the DPU cores,
but in a general scenario, it is possible to have also different DNN models running
in parallel on top of different DPU cores. This solution could in principle allows
for a complete parallelization across the replicated components of the FPGA. Our
setup cannot fully exploit it, though, due to the constrained PS that host pre/post-
processing phases load—a linear jitter increase is expected.

15https://git.hipert.unimore.it/tetra-pak/dl-arch/powerapp

https://git.hipert.unimore.it/tetra-pak/dl-arch/powerapp

3.4. Experiments 43

3.4.3 Results and Discussion

Only a selection of the obtained results is presented below. The entire results are
available at https://git.hipert.unimore.it/edbench/edbench/.

Confidence Threshold and its Effects

The confidence threshold tc is a ODNCC parameter used at post-processing time
to heuristically exclude possible false positives. To showcase high mAP results, tc is
usually set to 0 (or 0.05, if the method does not allow 0, as for YOLO and SSD), while
0.3 is preferred in real world applications. For the sake of fairness and realism, we
let tc ∈ {0.05, 0.3}. Fig. 3.1 shows the results focusing on three aspects: (i) the mAP
of the network (y-axis); (ii) the worst-case post-processing latency of the network (x-
axis); (iii) the number of detections (radius of the points). When changing the con-
fidence threshold, more or less BBs are returned, affecting only the post-processing
time. Varying the threshold affects the mAP and number of detections in all three
platforms: when tc = 0.05, mAP and number of detections are higher, increasing the
post-processing latency to a different extent on the considered platforms.

Platform Differences The NVIDIA platforms have the highest variance in the post-
processing phase. For example, considering Mv2(SSD), lowering the threshold makes
AGX, TX2 and Nano respectively score a slowdown of 85×, 135×, 400× on the max-
imum latency. The latency distributions in these cases exhibit an extremely wide tail,
e.g. for Xavier AGX we recorded these values (ms): 595 max, 10.1 3rd quartile and
only 4.96 median. The i7-7700 platform is considerably stabler, showing only a 3×
slowdown in the same example. This is due to the fact that, post-processing oper-
ation being sequential and executed on CPU, where the i7-7700 scales considerably
better than Nvidia’s Arm CPUs. Xilinx platforms, instead, are the slowest ones for
tc = 0.3, but are also modestly sensible to threshold variation, since the multithread
implementation allows core parallelization. Considering mAP at full precision, it
can be noticed that NVIDIA obtains higher values than the i7-7700. We suppose
that the small accuracy gap (under 1-2%) using identical models and the weights
can be ascribed to the different runtimes and instruction sets architecture adopted—
ONNX-RT over x86-64 Intel’s Kaby Lake, and TensorRT over PTX NVIDIA’s Volta.

Networks differences YOLO methods produce fewer BBs than the others, even
with small thresholds, while the number of detections for Mv2(SSD) explodes when
using tc = 0.05. CNet(D34) and CNet(R101) have stabler post-processing times,
thanks to the fact that the method always returns at a maximum of 100 BBs for image
and it is optimized on GPU.

In the rest of the assessment, tc = 0.3 is used.

Platforms Comparison

Latency Against Precision It is explored in Fig. 3.2 (top), where grey, dashed lines
suggest Pareto-optimality curves. For any network and precision, we first observe
that mAPs are expectedly very similar on the various platforms. The highest mAPs
for all networks are achieved by the NVIDIA boards, except for Mv2(SSD) at INT8,
where a higher mAP is obtained on the XCZU9EG and the XCZU7EV. Where dif-
ferent precisions are considered, we unsurprisingly noticed that mAP can be ex-
changed for latency reduction by varying from FP16 to INT8. The same holds also

https://git.hipert.unimore.it/edbench/edbench/

44 Chapter 3. Object Detection NNs on embedded platforms

TABLE 3.3: Best/Worst measured mean power consumption. In
brackets, the respective data-type and ODCNN model.

Platform Best [W] Worst [W]
Jetson Nano 8.61 (FP16, Mv2(SSD)) 13.57 (FP32, Yolo3)
Jetson TX2 7.86 (FP16, Mv2(SSD)) 15.585 (FP32, Yolo3)
Jetson Xavier AGX 13.11 (INT8, Mv2(SSD)) 38.43 (FP32, Yolo3)
Intel i7-7700 32.42 (FP32, Mv2(SSD)) 39.86 (FP32, Yolo3)
Xilinx XCZU9EG 17.86 (INT8, Mv2(SSD)) 22.77 (INT8, Yolo3)
Xilinx XCZU7EV 18.43 (INT8, Mv2(SSD)) 22.29 (INT8, Yolo3tiny)

when changing from FP32 to FP16, but not on NVIDIA platforms, where remarkably
a minor or negligible mAP variation can buy a significant latency reduction.
The Xavier AGX is the platform that clearly Pareto-dominates the others in terms of
both metrics. Following, there is the TX2, which dominates the rest, but no domi-
nance relation can be established between the remaining four platforms.

Latency Breakdown Pre-processing, inference, and post-processing latency are sep-
arated in Fig. 3.3 using the worst-case. On Intel and NVIDIA platforms, the longest
phase is clearly inference. For the Xilinx boards, instead, pre- and post-processing
are longer. This can be firstly ascribed to the A53 being the slowest performing CPU
of the considered platforms. Furthermore, the load of the post-processing phase
has been augmented so to include the final normalization steps of the NN, which
could not be executed on the DPU because of missing API (i.e. sigmoid for Yolo3
and Yolo3tiny) or unacceptably slow implementation (i.e. softmax for Mv2(SSD)).
Also relevant is the fact that inference on Xilinx platforms is quite fast: beside Xavier
AGX, it is shorter than Nano, TX2 and Intel, which all are at FP32 precision. Consid-
ering only NVIDIA, the Xavier AGX always dominates the other two and the TX2
always dominates the Jetson Nano. The latter has similar results to the i7-7700, and
for the Mv2(SSD) is even slower.
When considering average-case latencies in Fig. 3.4 the time spent in pre- and post-
processing is smaller, while the inference latency is similar to the worst-case. Be-
sides, considering Jetson Nano for the average-case, it performs better than i7-7700
for Yolo3, and worse for the Yolo3tiny model.

Efficiency Against Precision This tradeoff is depicted in Fig. 3.2 (bottom). The
i7-7700 is the platform that consumes the most (up to 39.86 W). Being also slow, it
is therefore the least efficient board according to this metric. Xilinx platforms are
instead the ones that consume less. However, due to the low FPS achieved, those
are not the most efficient. Xavier AGX configured at FP16 dominates the rest of
the platforms except for the INT8 configuration. After these the Pareto-dominance
orderly ranks: TX2, Nano, XCZU9EG, XCZU7EV, and i7-7700.

Table 3.3 shows, for every platform, the best and worst mean power consumption
(in Watt) measured during the execution of all the different ODCNN inferences. For
each power consumption case presented, the table displays also the linked model
and data-type. Excluding the x86 architecture, the Jetson Xavier AGX is the most
power-hungry embedded device (up to 38.43 W for FP32, Yolo3). Instead, the Jetson
Nano and TX2 are the boards draining the least power among the platforms under
test, both consuming approximately the same amount of power (from ≈ 8 W to 15
W). The Xilinx boards sit in the middle, with power consumption ranging between
18 W and 22 W.

3.4. Experiments 45

Networks Comparison

Latency Against Precision Fig. 3.2 (top) shows that Yolo4 always achieves the
highest mAP, even when quantized at INT8. Yolo3tiny has always the lowest la-
tency in each board, for each precision, but also the lowest mAP. There are only few
Pareto-dominance relations to highlight because the selected networks widely span
the latency/precision trade-off. We can remark only that CNet(D34) is dominated
by all other networks, and that same happens also for Yolo3 in the restricted case of
Xavier AGX.

Efficiency From Fig. 3.2 (bottom), it can be noticed that Yolo3tiny and Yolo4tiny are
always the most efficient networks, with the former dominating the others in terms
of efficiency. Yolo3 is again dominated by CNet(R101), and is the least efficient one
on all platforms.

Multiple stream

Fig. 3.5 reports average-case end-to-end latency (x-axis) versus average FPS (y-axis).
For each board and network, a line connects performance with N ∈ {1, 2, 4, 8}
images. For the sake of readability, the chart reports only tests with a significant
throughput improvement—at least of 5% when comparing N = 1 with N = 8.

It can be noticed that the throughput visibly increases only for the three boards
at INT8 precision: XCZU9EG, XCZU7EV and Xavier AGX.

In general, however, the behavior of the boards in this scenario is not excellent.
Two factors need to be considered to achieve better performances when using more
images: (i) the dimension of the NN model, and (ii) the input size of the network.
In the reported results, better improvement results can be seen for the three lighter
networks (i.e. Yolo3tiny, Yolo4tiny and Mv2(SSD)) with precision INT8. On the TX2
and the Nano this effect cannot be appreciated because those boards do not support
INT8, have the poorest GPUs with respect to Xavier AGX and have smaller memory.
Using a smaller input size would help to achieve better results on those small boards.

However, focusing on the overall view, the Xavier AGX is again confirmed as the
best board among all the considered.

Fig. 3.6 offers an insight into the latency phases’ performance when using multi-
stream, showing all the boards but only the networks supported by them all. The
chart reports pre-processing (top row), inference (middle row) and post-processing
(bottom row) behaviors for single stream, when N ∈ {2, 4, 8}, normalizing the val-
ues with the N = 1 case. This helps understanding where is the bottleneck when
using more streams. First of all, the bottleneck does not depend on the network
model, but only on the platform. For the NVIDIA platforms, the heaviest part is
definitely the inference, which, in these cases, grows linearly with N. This is due to
the batched inference: you have to pay the total computation of N images even to
obtain single stream results. On the opposite, the pre-/post processing phases are
constant with respect to N = 1. This behavior is similar for the Xavier AGX, the TX2
and the Nano, and it is not influenced by the data type (INT8 or FP16).

On the other side, for the Xilinx boards, the inference phase is almost constant
for each considered N: in this case, the hardware is parallelized (there are 3 DPUs)
and the inferences are independent. However, these boards do suffer the pre-/post-
processing phases, due to CPU contention of the various threads.

46 Chapter 3. Object Detection NNs on embedded platforms

General considerations

The best real-time object detection networks at the time of writing have been consid-
ered and deployed on six representative cutting-edge embedded boards, exploiting
the corresponding ML frameworks. For the CenterNet and YoloV4 models, only the
porting on the NVIDIA boards was possible, due to limitations of DPU and ONNX
APIs. For this reason, it would be very helpful having also on Xilinx an easy way to
write and add not supported layers, to smooth the porting of a model (as TensorRT
plugins).

An exhaustive evaluation of networks performance shows that the Pareto-optimality
curve intercepts four of the seven considered DNNs. YoloV4 is the one achieving
the highest accuracy, while YoloV3-tiny is the best network in terms of latency and
power consumption, but also the one achieving the smallest mAP. YoloV3 is domi-
nated by other models and it is the most power greedy. MobileNetv2-SSDLite is the
most affected by the confidence threshold.

About platforms, Xavier AGX is the clear winner in almost all considered as-
pects, achieving the best power efficiency, as well as the highest mAP. Among the
NVIDIA boards, clearly, the Xavier AGX dominates the TX2, which dominates the
Jetson Nano. The Xilinx platforms have a very stable power consumption for all
considered networks, and dominate the i7-7700 in terms of efficiency and inference
latency. The i7-7700 is the least efficient board, but it is also the one with better se-
quential performance, leading to a smaller post-processing latency variance. More-
over, it has comparable performance with respect to the Jetson Nano.

When considering multi-stream, Xilinx boards have better results in terms of
inference with respect to all the other boards but suffer the pre-/post- processing
phases; opposite behavior can be found in NVIDIA boards, regardless of the data
type or of the selected board. When considering end-to-end latency and total through-
put, Xavier AGX is again the winning board. However, when dealing with multi-
image detection, to obtain a good throughput boost it is recommended using (i) light
models (e.g. YoloV3-tiny, YoloV4-tiny or MobileNetv2-SDDLite), (ii) small input size
(the smaller the better, but recalling that the mAP will decrease with the size).

Finally, considering data types, FP16 only negligibly deteriorates the accuracy of
the considered networks, but obtaining much better real-time performance, always
laying on the Pareto-optimality curve. A significant accuracy deterioration is instead
experienced with INT8. Therefore, FP16 represents our recommended choice for
platforms that support this precision.

Although ODCNNs and embedded platforms have come a long way in terms
of performance over the years, the methodological analysis for a fair intra- and
inter-networks/platforms comparison highlighted in this chapter remains a valid
and useful approach to follow.

3.4. Experiments 47

1 10 50 100 200 500 1000
0

10

20

30

40

50

60

70

(A) Xavier AGX (FP32)

1 10 50 100 200 500 3000
0

10

20

30

40

50

60

70

(B) Jetson TX2 (FP32)

1 10 50 100200 500 2000 10000
0

10

20

30

40

50

60

70

(C) Jetson Nano (FP32)

1 10 50 100 200 500
0

10

20

30

40

50

(D) XCZU9EG (INT8)

1 10 50 100 200 500
0

10

20

30

40

50

(E) XCZU7EV (INT8) (F) i7-7700 (FP32)

FIGURE 3.1: Comparison of mAP (y-axis) versus worst case post-
processing latency (x-axis) using confidence threshold tc = 0.05 (∗)
or tc = 0.3 (+). The radius of the point is proportional to the number

of detections.

48 Chapter 3. Object Detection NNs on embedded platforms

FIGURE 3.2: Comparison of the different networks on the three plat-
forms considering average-case latency and power.

FIGURE 3.3: Worst-case execution time divided in pre-processing, in-
ference and post-processing with respect to the end-to-end latency. ∗

stands for INT8, † for FP32.

3.4. Experiments 49

FIGURE 3.4: Average-case execution time divided in pre-processing,
inference and post-processing with respect to the end-to-end latency.

∗ stands for INT8, † for FP32.

FIGURE 3.5: FPS vs end-to-end latency on average for N ∈ {1, 2, 4, 8}
images. Results such that FPSN=8/FPSN=1 < 0.05 are omitted.

50 Chapter 3. Object Detection NNs on embedded platforms

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

FIGURE 3.6: Multi-streaming speed up: N-images single-stream aver-
age latency relative to N = 1, for N ∈ {2, 4, 8}. Pre-processing (top),
inference (middle) and post-processing (bottom). ∗ stands for INT8,

+ for FP16.

51

Chapter 4

6D pose estimation explainability

In the 6D pose estimation domains, recent learning-based techniques that use CNN,
based on RGB data, have proven to achieve very high performance scores in the
6D object pose estimation, achieving state-of-the-art results. These types of meth-
ods generally require huge amounts of labeled training examples and pay the cost
of being extremely data-driven. While for other computer vision tasks the dataset
acquisition and labeling are easy to obtain, resorting to manual labeling, this is not
the case for 6D object pose, since identifying ground truth translations and rotations
from real images is not easily feasible for a human annotator. The research commu-
nity has resorted to either relying on large datasets obtained from a photorealistic
simulation [32] or to smaller datasets of real-world images labeled by relying on
fiduciary markers [29, 5].

In this Chapter two interrelated aspects will be discussed. On the one hand, the
real-world datasets will be analyzed, for those real-world datasets that rely on mark-
ers to extract the object pose ground truth. The interesting aspect is to analyze if the
presence of easily recognizable shapes of markers might bring about a bias in the
learning procedure, resulting in an improved success in the 6D pose estimation. In
this sense, LineMod dataset [29], the most common one in the 6D object pose prob-
lem, will be investigated. On the other hand, an attempt will be made to understand
which methods could be subject to such bias.

A brief methods review will be addressed, and then EfficientPose [6] will be ana-
lyzed since i) it achieves the best state-of-the-art performance on LineMod 1, and ii)
it meets the architectural standards for suffering from bias. The aim of this chapter
is to present an analytical analysis of the problem previously highlighted and, con-
sidering a specific use case, pose some general questions about constructing datasets
for the 6D pose estimation task and determining the most suitable methods for the
application-specific scenario.

Annotation induced Bias Commonly used 6D pose estimation methodologies, as
introduced above, use the LineMod dataset [29]. This dataset, described in Section
2.2.2, is labeled by fixing the target objects to a rectangular board that is surrounded
by ArUco markers [21]. The ground truth object pose is then retrieved by deploying
geometric algorithms which use markers to recover first the board’s pose in cam-
era coordinates, and, successively, the object’s pose in the same coordinate system.
Utilizing simple image processing algorithms and geometry, the tags are utilized to
recover the board’s pose in camera coordinates, and finally the object pose is then
calculated by applying the known fixed offset from the board’s coordinates system
to the object’s origin.

1https://paperswithcode.com/sota/6d-pose-estimation-on-linemod

52 Chapter 4. 6D pose estimation explainability

The ArUco chessboard used to recover the ground truth pose is visible in the
training and evaluation images. Therefore, it is interesting to research the effect that
the background and markers have on a similar model to the one detailed in Section
4.1 when predicting the 6D pose from the whole image. Additionally, the arrange-
ment of the objects on the board could cause the model to learn a shortcut or induce
unintended behavior. As LineMod is a dataset for single-object, only the pose for
the object in the middle of the board is provided for training. The hypothesis is that
some models could leverage the aspect of other visible objects to infer the 6D pose
for the target object in an unintended way.

When assessing the efficacy of a proposed method based on LineMod, or sim-
ilar datasets, it is important to consider its generalization capabilities. This entails
evaluating the performance of the method when applied to different scenarios and
practical applications, such as robotic manipulation or object tracking for trajectory
planning purposes. Furthermore, factors such as changing backgrounds or the lack
of ArUco markers or other types of markers should also be taken into account.

To this end, the following factors should be taken into account:

• How beneficial is it to have the target object positioned in the center of the
board?

• To what extent is the method affected by a static or semi-static background?

• Does the network utilize 6D pose information from visible markers and the
objects surrounding it?

Methodology overview In the 6D pose estimation problem, the methodologies
proposed in the literature can be divided into two different groups as described in
Section 2.2.4. Some methods perform the calculation over the entire image frame to
directly infer the depicted objects’ pose, while others must be performed a number
of times equal to the number of objects in the scene. The former can be considered
more general and complex, while the latter take a simpler approach, dividing the
problem into subproblems. For the latter, the computational time increases as the
number of depicted objects increases.

In order to identify the 6D pose estimation methods that perform better in real-
time applications, considering the possible biases mentioned above, some consider-
ations about methods should be made.

Basically, to define a method as real-time, the architecture complexity plays one
of the main roles. Currently, there is no real real-time community for the 6D pose
estimation domain. In any case, a 6D pose estimation method that depends on the
number of objects appearing in the scene is clearly not suitable for real-time do-
mains. Going in this direction, two-stage methods have been chosen not to be con-
sidered. Also, methods that work on cropped images may not be suitable for this
study.

Regarding the possible annotation bias introduced in real-world datasets, it is
intuitive that some methods working with the croped scenes depicting the target
object are less susceptible to the ArUco markers’ presence in the RGB image than
the full RGB-based methods.

For this reason, a qualitative and quantitative analysis of EfficientPose [6] will
be presented, which was chosen as an ideal candidate for attempting to answer the

4.1. Overview 53

aforementioned questions due to its state-of-the-art performance on LineMod 2 and
its ability to operate on the full image. The purpose of this analysis is to illustrate
a possible process to assess the generalization properties of a model, which is an
essential requirement for any real-world application.

In addition, the significance of selecting a proper dataset when training new
models will be emphasized below. In fact, relying on a dataset that introduces some
bias could lead to deceptive outcomes. Besides the ArUco marker bias discussed in
this chapter, it is important to consider another significant one which is related to the
bad division of the training and validation/test sets. In many real-world datasets,
such as LineMod, the validation set comprises a random selection of frames from
the dataset. Consequently, the neural network is trained on some frames and subse-
quently evaluated on some contiguous frames that are presumably similar to those
seen during training, with the target object’s pose being identical or nearly identical.
Instead, A fair approach would be to split the training and validation sets sharply to
ensure that the samples are significantly different.

The work presented in this chapter could further be situated within the field of
6D pose explainability, an area which, to the best of my knowledge, has not been
discussed previously. Given the prevalence of CNNs in computer vision and their
tremendous power, it is essential to use interpretable models which can explain their
predictions. This is important for identifying failure modes, enabling researchers to
concentrate on the most promising directions. Furthermore, to ensure the reliability
of CNNs in real-world applications, it is necessary to set up appropriate confidence
and trust.

4.1 Overview

LineMod As mentioned in chapter 2, LineMod [30] is the most common dataset
used both for training and evaluating the 6d methods in the literature (depicted in
Figure 4.1).
LineMod is a real dataset consisting of 15 classes or object models, each of which
has ∼1200/1300 different views. The objects are not occluded, located around the
image center, and easily distinguishable. In particular, for each object class, a sin-
gle instance of the item is placed on the working plane’s center. The working plane
is bounded by custom-made aruco markers, typically used to calibrate the camera
which were used to provide the object pose ground truth. Inside this kind of chess-
board are placed several other objects surrounding the target one, that cause only
mild occlusion, and which could indirectly contribute to distinguishing the target
object’s pose. Some other objects are placed outside the chessboard and placed hap-
hazardly on the desk. The ∼1200/1300 images are collected by shooting the same
camera at different angles to differentiate the view from one acquisition to the next.
In this way, from one image to another, a change in pose is referred to both the target
object and also to all other objects, including the ArUco chessboard.

EfficientPose EfficientPose [6], as described in Section 2.2.4, is an extension of a
widely used 2D detector, EfficientDet (ED) [94], based on the popular convolutional
backbone EfficientNet [93]. In a single shot, the architecture is able to predict the
class, the 2D bounding box, rotation, and translation of one or more objects, given

2https://paperswithcode.com/sota/6d-pose-estimation-on-linemod

54 Chapter 4. 6D pose estimation explainability

FIGURE 4.1: Samples from the LineMod dataset

an RGB image as input. In detail, two analogous to the classification and bounding
box regression subnetworks are added to EfficientDet, modeled after the classifica-
tion and bounding-box regression of the original model. The rotation subnetwork
predicts the rotation vector r ∈ R3, in an axis-angle representation. Its architecture
is similar to the class and bounding box regression, with the addition of an iterative
refinement module. The final rotation is then the sum r = rinit + ∆r where rinit is the
initial estimate for the rotation, while ∆r is the iterative refinement module, given as
output of separable convolutional layers, group normalization and activation func-
tions. The translation network on the other side shares a similar structure. Instead
of regressing directly (tx, ty, tz), the t-architecture predicts separately (cx, cy), which
represents the object center in the image, and tz. After this, tx and ty are obtained
from (cx, cy) and fixed camera parameters, as done in [106].

A transformation loss function is added to the original ED loss function, with a
regularization parameter λ. The final loss function is then composed by:

• Smooth L1 as regression loss function

• Focal loss as classification loss function

• Transformation loss as pose loss function. This is added to the original Effi-
cienDet loss function and is described as follows:

Ltr =
1
m ∑

x∈M
∥P̂x − Px∥ if M not symmetric

Ltr =
1
m ∑

x1∈M
min

x2∈M
∥P̂x1 − Px2∥ if M symmetric

where P is the ground truth pose and P̂ is the estimated pose.

FIGURE 4.2: Output of saliency methods for the class Mastiff. Source
[67]

Saliency Maps Interpretable Machine Learning (IML) [63] has experienced rapid
growth in the Machine Learning domain, primarily focusing on elucidating the pro-
cess behind a model’s specific prediction. While some models, such as Decision

4.2. Methodology 55

Trees and Rule Based Classifiers, are inherently interpretable, DNNs cannot be in-
terpreted in the same manner and are generally considered to be a black-box pre-
dictor after training. Pixel attribution is a family of attribution methods designed to
interpret the prediction of models that operate on images, with the aim to produce a
saliency map which highlights the importance of individual (or groups of) pixels in
the input image for the model’s specific output. One of the simple methods to gen-
erate saliency maps, introduced in [84] is sometimes referred to as Vanilla-Gradient,
and it consists of computing the gradient of the output prediction with respect to the
input image. More formally,

Given s = Ψ(I), where Ψ(·) denotes the (trained) neural network, the gradient
∂Ψ
∂I can be easily obtained via standard backpropagation. Grad-CAM [82] is a more
recent method to produce saliency maps: differently from the vanilla gradient, the
gradient of the output ys, that is the class score before the softmax, is computed with
respect to the output feature map Ak of a convolutional layer (ideally, the last one
before the global average pooling of traditional classification models). The gradient
tensor is then averaged across the spatial dimensions indexed by i, j to obtain a single
vector αs

k ∈ Rc where c denotes the number of channels:

αs
k =

1
Z ∑

i
∑

j

∂ys

∂Ak
ij

(4.1)

Finally, the saliency maps are obtained by weighting each channel of the feature
map Ak with the corresponding value of αk:

LGC = ReLU

(
∑

k
ak Ak

)
(4.2)

4.2 Methodology

The potential for bias to be introduced into the model due to the presence of vis-
ible artifacts, particularly markers employed in the data collection process, is to
be explored by this research. The LineMod dataset, a well-known non-synthetic
dataset, and the EfficientPose model, which is currently the most effective fully-
convolutional network for LineMod, will be focused on for experimentation. A
mixed evaluation of qualitative observations, utilizing the attribution methods dis-
cussed in Section 4.1, and quantitative experimentation, involving the evaluation of
results obtained from modified versions of the LineMod dataset, is proposed to as-
sess the validity of the hypothesis.
The proposed methodology can be briefly summarized as follows:

• The pre-processing of LineMod by deliberately masking the visible markers
and the use of the new version of the dataset for the training of EfficientPose is
proposed. The 6D pose estimation task is then compared between the late and
the original training of EP.

• A generalization of pixel attribution methods for a regression problem is also
introduced, and it is shown that the saliency maps produced with the extended
version of Grad-CAM support the hypothesis that the model’s predictions are
contingent upon the presence of fiduciary markers on LineMod.

In the remainder of this section the building blocks of the proposed methodol-
ogy will be explored, then in Section 4.3 the conducted analysis is proposed and
discussed in detail.

56 Chapter 4. 6D pose estimation explainability

4.2.1 Dataset Masking strategy

In this analysis, two datasets have been used. One is the original LineMod dataset.
The other is a modified LineMod Dataset, where ArUco markers are covered with
black squares to verify if the ArUco markers impact pose predictability. The process
of deleting ArUco markers is based on geometrical tools and on the objects’ ground
truth. Considering the 3D origin point [0, 0, 0] as the object’s pivot, when no trans-

FIGURE 4.3: Three steps of our geometric procedure in order to re-
move ArUco markers.

lation and rotation are applied, the positions of the black square’s four corners can
be identified. The four corners correspond to the upper-left, upper-right, lower-left
and lower-right corners of the ArUco chessboard. Each corner is represented by a
3D point defined as [±δx,±δy,±δz], where δx, δy, δz are the axis offsets between the
corners and the origin. Corners are identified only once for each object. Then, for
each object image, the corresponding rotation and translation are applied to accu-
rately project the black square at its correct image position (see Figure 4.3). At this
stage, it is sure that the target object is not obscured, through the use of the target ob-
ject’s mask image provided in the original LineMod dataset. ArUco-Free LM Dataset
adopts a simple strategy in order to show and discuss how the ArUco markers in-
fluence final results. However, in the ArUco-Free Linemod Dataset, another bias is
introduced when a black square is positioned in alignment with the object’s pose,
resulting in a similar but narrow bias. Across frames, the network may be able to
infer the object’s pose directly from the black square. Nonetheless, due to the nature
of the square, a fixed view of the square corresponds to four different possible rota-
tions. Additional, advanced methods could be utilized such as masking the ArUco
markers with random patterns (varying in form and hue) rather than using a black
square, or utilizing image restoration techniques, such as image inpainting methods
[64].

In addition, ArUco masks were used also for computing a density map, able to
highlight their presence. The images in Figure 4.4 indicate for each object which
areas are ArUco markers concentrations. It is evident that these markers are not
equally distributed, instead they focus on the same areas.

FIGURE 4.4: Density maps based on masks. From left to right: object
1, object 5, object 11.

4.2. Methodology 57

4.2.2 Saliency maps

Inspired by the domain of interpretable AI, qualitative analysis was sought to inter-
pret and extract information about how the network learns. This is a fundamental
phase in order to assess the capabilities of 6D methods in other real-world scenarios,
since metrics are limited in providing insight into a network’s comprehension.
Saliency methods are mainly developed for multi-class classification problems [77],
and are thus sometimes referred to as Class Activation Maps (CAM) methods. At in-
ference time, classification models output a probability score for each possible class,
and the highest scoring class is selected as the predicted one. However, in this study,
a regression problem is investigated: this is pertinent as the gradient-based methods
that are planned to be used, Vanilla Saliency [84] and Grad-CAM [82], suppress the
negative part of the gradient since it corresponds to a decrease in the score for the
class of interest. In a scenario similar to ours (i.e, regression of rotation values in
[−π, π]), the magnitude of the gradient is clearly of interest. Hereafter, the exact
formulation of the saliency methods used in the work is formalized.

Vanilla Saliency It is straightforward to adapt the vanilla saliency for the regres-
sion. The Rotation head of EfficientPose outputs a tensor R ∈ RN×3 of N candidate
regressions. In a single-object scenario, as in this case, the rotation vector r for the tar-
get object is recovered as the one with the highest confidence. An identical approach
can be adopted also for the translation regression. The gradient of r computed with
respect to the input image I is a tensor with the same shape as the input image, which
is reduced to a single channel by averaging. Unlike the original formulation, both
the negative and positive values of the gradient are retained for the reasons men-
tioned above. For visualization, the saliency map (single-channel) is normalized to
the interval [0, 255] using min-max.

Grad-CAM Adapting Grad-CAM to this problem is far more challenging. The
original formulation operates on the feature map produced by the last convolutional
layer of a classification model; however, the structure of the regression head of EP
(simplified in Figure 4.5) makes it difficult to choose the correct feature map. There-
fore, a feature map obtained as the combination of the three convolutional layers
that precede the output of the initial prediction rinit is opted to be used, as the refine-
ment module is used to predict small additive offsets to the initial prediction, which
may be Identity mappings if the initial prediction does not require refinement.

C1 C3 C3… …… IR Itera�ve
Refinement

FIGURE 4.5: Rotation subnetwork for EfficientPose. The Translation
subnetworks share an identical structure.

Let F1, F2 and F3 ∈ RW×H×C, with W, H, C ∈ N be the three intermediate
feature maps, an aggregated featuremap Ft ∈ RW×H×3C = {F1 ⊕ F2 ⊕ F3} are
constructed, where ⊕ denotes the concatenation on the channel axis. Equation 4.1 is
adapted by replacing Ak with Ft and replacing the average pooling with L2 norm,
in order to avoid opposing gradient values to elide each other in the sum. The new

58 Chapter 4. 6D pose estimation explainability

formulation for the pooled gradient becomes:

αt =

√√√√ W

∑
i=1

H

∑
j=1

(
∂r

∂F ij
t

)2

∈ R3C

The computation of the saliency maps is obtained by weighting each channel of
Ft with the corresponding value of αk and accumulating over the channel axis to
obtain a single matrix. Differently from Equation 4.2 the ReLU is removed and the
absolute value of the weighed feature map is instead taken:

LGC =
3C

∑
t=1

|αtFt|

The produced saliency map is normalized and interpolated to the input image
shape for visualization. The formulation, derived from simple but solid mathemati-
cal observations, results in an ideal generalization of Grad-CAM to our case.

4.2.3 Evaluated Task metrics

Two metrics, described in detail in Section 2.2.3, are used to test the networks:

• ADD: the average distance computes the mean distance between each point
of the 3D model obtained by the pose matrices P̂ = [Rest, test; 0, 1] and P =
[Rgt, tgt; 0, 1]

Given the model M, the estimated pose P̂ and the ground truth P

eADD = avgx∈M∥P̂x − Px∥

• ADI: the average closest point distance computes the mean distance between
each point of the 3D estimated model and its closest neighbor on the ground
truth model:

eADI = avgx1∈M min
x2∈M

∥P̂x1 − Px2∥

It is preferred if the model M has indistinguishable views.

• Criterion of Correctness The estimated pose is considered correct if e < θAD =
kmd
where km constant generally equal to 0.1, d = object diameter

4.2.4 Proposed Evaluations

For the experimental analysis reported here, the rotation subtask of EP is investi-
gated, since the translation regression is based on an identical structure, as intro-
duced in Section 4.1, the same principles are agnostic to the regression subtask. The
results, both qualitatively and quantitatively, obtained by two architecturally iden-
tical instances of EP will been compared: the original model trained on the official
LineMod dataset and an alternative version trained on the ArUco-Free dataset in-
troduced in Section 4.2.1. Since the focus is on single-class EP, the evaluation proce-
dure is independently performed for three distinct representative object classes from
LineMod.

4.3. Results and Discussion 59

To summarize, a total of 6 distinct versions of EP are trained: the standard ver-
sion of EP (ϕ = 0) is picked, and trained on subsets of objects 1 (Ape), 5 (Can) and 11
(Glue) of both original (LM) and ArUco-Free (AF-LM) datasets. The Ape and Can
objects are asymmetrical: the former is one of the smallest objects and the latter is
one of the largest objects in the dataset. The glue, on the other hand, is a symmetrical
object. For each trained model, the 6D-pose metrics (Section 4.2.3) and saliency maps
(Section 4.2.2) are computed on both the validation subsets of LM and AF-LM for the
corresponding object. In the following section, the complete analysis is provided.

4.3 Results and Discussion

4.3.1 Quantitative analysis

Three objects are considered: one with symmetric views (object 11, glue) and the
other two asymmetric (object 1, ape and object 5, can). Considering ADD(-S) as a
metric, the following rule is used:

ADD(−S) =

{
ADI, if obj sym
ADD, if obj asym

Object 1: the ape Table 4.1 shows how EfficientPose performs on the two different
datasets. It can be observed that in both training (with and without ArUco markers),
the networks learn from the background. In fact, if the test dataset is different from
the train one, the pose estimation accuracy collapses. The cause of this outcome can
also be attributed to the bias discussed at the beginning of this chapter regarding the
unfair division of the training and validation sets. Figure 4.6 compares estimated
(blue) with ground truth (green) bounding boxes, with weights learned on the Orig-
inal LM Dataset. When ArUco-Free Dataset is used, in some cases the rotation is
wrong, in others the object is not even detected. Probably, when the ArUco mark-
ers are covered, the network still learns from the black square around the object, as
stated earlier in the Section 4.2.1. Object 1 achieves the worst performances on both
datasets.

Test

Original LM training
Original LM

0.8771
ArUco-Free LM

0.0162
0.4467

ArUco-Free LM training
ArUco-Free LM

0.8848
Original LM

0.0
0.4424

TABLE 4.1: This is object 1. ADD is computed on the two datasets
with the two types of weights available (trained with ϕ = 0). Then,
in the right column, for each training, the two test results’ averages
are computed, in order to observe which experiment performs better
both on the test images of the same image type seen during training,

and on the test images of the type never seen.

Object 5: the can For object 5, the can, the trained EfficientPose weights with ϕ = 0
on the Original LM Dataset and on the ArUco-Free Dataset are used. The object is
not symmetric, therefore ADD is used. For this object, we noticed that the results are
similar to the ones of object 1, and confirm the thesis of background-induced bias.

60 Chapter 4. 6D pose estimation explainability

FIGURE 4.6: These images are used during the test phase on object
1 with weights downloaded from the available Efficient Pose train-
ing (ϕ = 0). The green box represents the ground truth pose, while
the blue one represents the estimated pose. On the first and third
rows there are test images from the original LineMod dataset, while
on the second and fourth rows there are the correspondent images
from ArUco-Free dataset. We observed that the boxes are all wrong

and, in some cases, the network doesn’t even detect the object.

However, in this case, EfficientPose with our ArUco-Free Dataset performs better in
both cases (Original LM and ArUco-Free LM datasets), as shown in Table 4.2.

Object 11: the glue The third object analyzed is a symmetric object, for this reason,
ADI results are shown in Table 4.3. They are higher since ADI is more relaxed than
ADD. In this case, while performances on the same dataset of the training (first col-
umn of Table 4.3) are almost perfect, with an accuracy of 100%, the training without
ArUco performs better than the other with the opposite dataset (second column of
Table 4.3). Therefore, the average accuracy is better. From these metrics it is evident
that the network learns from the background. However, accuracies don’t give us in-
formation about which background areas are more relevant than others. To explain
better these results, the saliency maps are used in the next section.

In Table 4.4, both mAP and ADD(-S) metrics are reported for the considered ob-
jects. The rows specify the tests performed, with details of the training set and the
test set on which the metrics are calculated. In the first and third rows, the two

4.3. Results and Discussion 61

Test

Original LM training
Original LM

0.9852
ArUco-Free LM

0.0315
0.5083

ArUco-Free LM training
ArUco-Free LM

0.9921
Original LM

0.1673
0.5797

TABLE 4.2: This is object 5. ADD is computed on the two datasets
with the two types of weights available(trained with ϕ = 0). Then, in
the right column, for each training, the averages of the two test results
are computed, in order to observe which experiment performs better
both on the test images of the same type of the images seen during

training, and on the test images of the type never seen.

Test

Original LM training
Original LM

1.0000
ArUco-Free LM

0.3031
0.6516

ArUco-Free LM training
ArUco-Free LM

1.0000
Original LM

0.4083
0.7042

TABLE 4.3: This is object 11. ADI is computed on the two datasets
with the two types of weights available (trained with ϕ = 0). Then,
in the right column, for each training, the two test results’ averages
are computed, in order to observe which experiment performs better
both on the test images of the same image type seen during training,

and on the test images of the type never seen.

different trained models are tested on the test set of the same type as their training
set. the ADD values for object 1 and object 5, and ADI for object 11 respectively, are
comparable by observing these two experiments, while the mAP is always equal to
one. On the other hand, for the second and fourth rows, in which the two experi-
ments are evaluated on two test set following different distribution with respect to
the corresponding training set, some changes can be observed. In general, the model
trained on LineMod ArUco-Free performs better than the model trained on original
LineMod in terms of both mAP and ADD. For object 1, the model trained on Original
LineMod gets the lowest mAP value and a very low ADD value, while the model
trained on ArUco-Free LineMod achieves the highest mAP value, but its ADD is
equal to 0. As described in Equation 2.1.3, the mean Average Precision measures
both classification and localization performance. In this case, a high mAP value
represents good performance of the two EP subnetworks, for the classification and
bounding-box tasks. However, the predictive capability of the rotation subnetwork
is very poor, as can be deduced from the low ADD(-S) values.

4.3.2 Qualitative analysis

Figure 4.7 shows Vanilla Saliency maps. They are computed with respect to two
Original LM images. The weights are given by EfficientPose code for object 1, with
ϕ = 0. The map represents the gradient magnitude for each pixel. Since EP has a first
common feature extraction phase and, then, is divided into different subnetworks
with their own output (classification, bounding boxes, rotation, and translation),
two saliencies for each image have been compared. The ’rotation’ image represents
vanilla saliency map based on the rotation subnetwork, while the ’classification’ im-
age comes from the classification subnetwork. The differences for object 1 in this

62 Chapter 4. 6D pose estimation explainability

mAP & ADD(-S) results
Obj 1 Obj 5 Obj 11

Original LM training

Original LM test

mAP

1.0
ADD

0.8771
mAP

1.0
ADD

0.9852
mAP

1.0
ADI

1.0
Original LM training

ArUco-Free LM test

mAP

0.8295
ADD

0.0162
mAP

1.0
ADD

0.0315
mAP

0.9739
ADI

0.3031
ArUco-Free LM training

ArUco-Free LM test

mAP

1.0000
ADD

0.8848
mAP

1.0
ADD

0.9921
mAP

1.0
ADI

1.0
ArUco-Free LM training

Original LM test

mAP

0.999
ADD

0.0
mAP

1.0
ADD

0.1673
mAP

0.9962
ADI

0.4083

TABLE 4.4: mAP and ADD(-S) are reported for each experiment. On
the rows, the couples of the training dataset and the test dataset are re-
ported. The first two rows belong to training with Original LineMod
dataset, while the other two rows belong to training with the ArUco-
Free LineMod dataset (trained with ϕ = 0). The results are reported

for the three objects tested.

FIGURE 4.7: Vanilla Saliency applied on two images of the Original
LineMod dataset. Weights are trained on the same dataset. The gra-
dient is computed given two different outputs: in the second image it
is based on the regressor, in the third image it is based on the classifi-

cator.

image are significant. In fact, while the saliency for classification is grouped into the
principal object, the ape, instead the rotation saliency is more scattered and goes also
on the marker chessboard. It probably means what is expected: that, for the position
output, a bias is induced by background, which plays a fundamental role. In order
to improve our study with a more sophisticated and explainable saliency method,
the saliency maps with GradCAM method are also computed. Moreover, sometimes
Vanilla Saliency could have a saturation problem, as shown by [83] and [63].

In Figure 4.8, different results for the three objects can be observed. The weights
are learned on the Original LM, while the tests are computed on both datasets. For
example, for object 1 (on the left), pixels with higher saliency values are, on the Orig-
inal LM (top), distributed on the object and the markers, whereas on the ArUco-Free
LM, they do not put focus on markers, in fact they are covered. It means that, when
ArUco values collapse to zero, they are not anymore interesting for the rotation esti-
mation.

For object 5, in the center, the focus is on a large area which includes also the can.
Therefore, the network uses not only the principal object, but also the background
one, to estimate the final pose. This is possible since background objects do not
change their position with respect to the can.

Similar to the ape behavior, for object 11’s pose estimation EP focuses on marker
chessboard, not even observing the principal object. When markers are zeroed,

4.3. Results and Discussion 63

FIGURE 4.8: On the top: saliency maps with weights provided by Ef-
ficientPose on the original LineMod Dataset. On the bottom: saliency
maps with the same weights, applied to our ArUco-Free LineMod

dataset. From left to right: object 1, object 5, object 11.

FIGURE 4.9: On the bottom: saliency maps with weights learned on
the ArUco-Free LineMod Dataset, applied to the Original LM dataset.
On the top: saliency maps with the same weights, applied to our
ArUco-Free LineMod dataset. From left to right: object 1, object 5,

object 11.

saliency is distributed in not well-defined areas. These images prove the fact that
there is a background-bias during EfficientPose training with ArUco markers.

Figure 4.9 represents saliency maps obtained from our weigths, learned on the
ArUco-Free LM. These results are quite different from the previous ones.

For object 1 the saliency is not on the markers, however, the network doesn’t
focus on the ape, looking for information in other background objects. Attention
does not change a lot: it means that markers are not the central keypoints for pose
estimation. Nevertheless, the network on the Original LM dataset has the worst
performance accuracy.

Also, in object 5 (in the center) images saliency maps seem to remain the same
for both tests.

An interesting phenomenon happens with object 11 (on the right). The most
plausible interpretation is that weights on the ArUco-Free dataset predict the pose
based on the square edges. When these edges are not so strongly highlighted due to
the presence of ArUco markers, the prediction is wrong. For this reason, covering the
ArUco markers is useful for better understanding the network, but it’s not enough
for obtaining a more generalized dataset.

An interesting observation concerns object 11 compared to the other two. The
saliency maps for this object show quite different behavior in both Figure 4.8 and
Figure 4.9. The network focuses on both marker chessboard and black square edges.
A plausible motivation can be traced back to the object’s symmetry. In this case, the
network would not be able to estimate the correct object’s pose except by learning
from the background.

A remarkable result emerges from the saliency maps calculated for the model
trained on the Original LM dataset. For the original LineMod images, the saliency

64 Chapter 4. 6D pose estimation explainability

maps focus on both the ArUco markers and the area close to the target object, as
described above and depicted in Figure 4.8 (top). In contrast, for the ArUco-Free
LineMod images, the saliency maps are sometimes zeroed out. This observation can
be explained by the fact that, for ArUco-Free LineMod images, some pixels were
zeroed for each RGB channel. The zeroing of these pixels, which refer to the ArUco
markers considered essential for the EP model, causes the gradients to be zeroed
as well. It is as if these null values made that part of the hyperplane on which the
gradients were calculated constant. Indeed, the gradient is zero for any constant
value, as well as for a minimum or maximum point. Furthermore, for these specific
images, the last activations before the last convolutional layer used for the Grad-
CAM calculation have been checked and found to be nonzero.

4.3.3 Consequences

Finally, some advice for avoiding background-induced bias in 6-DoF object pose
estimation are provided. Although in real-time applications it is preferable to use
single-shot full-frame methods to provide 6D pose estimation of different objects
and instances with a negligible increase in inference cost, testing them on real-world
datasets, like LineMod, typically used to evaluate which method performs best, as
detailed above, could lead to misleading results. In this case, with those datasets,
networks are preferable which first detect the object, and then predict the pose of the
cropped image. On the other hand, the dataset choice is perhaps more fundamen-
tal. To avoid biasing the learning method, it is important to change the background
from training frames. In particular, different lights, views and background objects
are helpful to overcome this issue. For example, HOPE [97], as written in section
2.2.2, presents images in different scenarios, changing also the lights. In addition,
an alternative could be to change the markers to avoid repetitive appearances across
consecutive frames. Furthermore, as previously stated, for validating the models,
the target dataset should consist of a noticeably distinct training set and validation
set.

The analysis explained is limited to one dataset, LineMod, and focuses on Eff-
cientPose, but it is generalizable to other dataset-network of the same type: datasets
that use fiduciary markers to retrieve the ground truth information, and full-RGB-
based methods.

65

Chapter 5

Underwater 6D pose estimation

This chapter presents a novel and challenging scenario. In collaboration with the
Technology Innovation Institute (TII) and Spinitalia s.r.l., the focus is on a use case
involving object manipulation in underwater environments. This work examines
the 6D pose estimation problem for underwater scenarios, a challenging topic that
requires careful consideration.
The entire use case includes several parts. First, an autonomous Unmanned Sur-
face Vehicle (USV) [68] travels on the sea surface, avoiding obstacles and following
a specific path. Then, a Long-Range Autonomous Underwater Vehicle (LRAUV),
anchored to the USV, detaches and is tasked with scanning the seabed for objects.
Finally, an Autonomous Underwater Vehicle (AUV), an underwater drone, departs
from the USV to approach the objects, and a robotic arm, the manipulator of the
AUV, retrieves the objects.

FIGURE 5.1: Underwater use case. The Unmanned Surface Vehicle
(USV) is shown on the left, the Long-Range Autonomous Underwater
Vehicle (LRAUV) on the top right, and the Autonomous Underwater

Vehicle (AUV) on the bottom right.

This scenario requires the use of Artificial Intelligence (AI) solutions. For exam-
ple, an object detector is utilized for obstacle avoidance by the USV, while a path
planner is employed to adjust its optimal trajectory. Additionally, sonar sensors are
used to scan and detect objects on the seafloor. Finally, the 6D pose estimation is
used to identify and retrieve objects from the seabed by the AUV’s manipulator.

In this treatment, only the 6D pose estimation task will be analyzed.

66 Chapter 5. Underwater 6D pose estimation

5.1 Problem statement

The 6D pose estimation problem, as described in Chapter 2, is one of the most re-
cent and challenging problems in artificial intelligence. It involves predicting the
6-dimensional pose detection of an object in a 3D space, going to accurately estimate
the position, orientation, and size of the object in a scene. 6D pose estimation is a
challenging problem because of the complexity of the scene, the variability of the
object, and the need to estimate the pose from multiple views.

Common applications of 6D pose estimation include autonomous vehicles, robotics,
augmented reality and medical imaging. Various algorithms, such as deep learning
and computer vision techniques, are used to accurately estimate 6D poses. These
algorithms are used to detect object features in the scene, such as edges, corners and
textures, in order to accurately estimate the pose of the object.

In underwater scenarios, and also in the one adopted in this chapter, the 6D pose
estimation problem complexity is higher. The more difficulties regard the camera
limitations, the challenging object and environment domains and the inherent limi-
tations of the DNN models.

Object domain As described earlier, in Section 2.2.1, many challenging problems
are commonly known in 6D pose estimation scenarios. In particular, the most com-
mon ones involve symmetric objects, occlusion and self-occlusion scenarios, trun-
cated object recognition, and cluttered environments. In general, these challenging
domains affect the 6D pose estimator performances due to the increased complexity
introduced. An object without its discriminating parts is more difficult to recognize,
such as a handle hidden behind a cup, a bottle that is symmetric with respect to its
z axis, or if only a small part is visible because the object is submerged or outside of
the scene edges.

The various datasets, and consequently methods, proposed in the literature at-
tempt to address one or more of these open problems. Regarding instead other real
world object domains, such as reflective and transparent objects, those without tex-
ture, and all cases where visible features are sparse, very few datasets and methods
exist.

In underwater scenarios, and certainly in the one addressed in this project, most
of these domains are investigated. Specifically, the objects used are textureless,
monochromatic and mostly symmetrical. Due to the environmental characteristics,
the objects are subject to poor visual conditions that make their recognition even
more difficult. The objects can be partially submerged in the seafloor and partially
illuminated. Directly irradiated surfaces are visible, while side surfaces may be in
the dark. Therefore, occlusions, self-occlusions and truncations must be also man-
aged.

Camera limitation In common datasets for 6D pose estimation, the scenarios an-
alyzed represent industrial objects or toys placed in protected, enclosed rooms or
environments. Data acquisitions are typically made with a camera circling around
objects, such as in LineMod. Usually, light conditions are constant and not taken
into account. However, in the underwater environment, the lighting conditions are
very unfavorable and need to be taken into consideration. Two types of light sources
are allowed: the natural one, the sun, which filters the water fluid, and the artificial
one, placed near the camera sensor that has a limited operating range. Hence, the
light source illuminates a small part of the scene, while the remaining environment

5.2. Datasets 67

is blurred. The camera sensor must be placed in a water-proof transparent box and,
once the box is submerged in water, it suffers distortion due to different fluid densi-
ties.

Environment domain As mentioned above, in common 6D pose datasets, the het-
erogeneity of the environment background is not taken into account. Generally, the
background can be considered constant; it is almost the same throughout the dataset.
Depending on the dataset and method, in some cases it may help to generalize the
scenarios investigated. It is precisely the example of LineMod and EfficientPose,
where a more diversified environment should have helped the method to general-
ize. As shown in Chapter 4, this is not the case. Other methods, instead, that use the
image crop of the target objects, can not benefit from this attempt to generalize. In
real underwater scenarios, however, the background could play an important role
because of its high variability. The underwater environment can be very heteroge-
neous. In some cases, the seabed might be rough or agitated, reducing visibility and
compromising the frame quality. It can be not visible because it is too deep, simu-
lating a dark scenario. The seabed can be sandy or have marine flora, which greatly
diversifies the background. The water can be clear or cloudy. Some floating particles
may occlude objects or be reflective.

Method’s challenge The ideal method for our scenario should cover all the afore-
mentioned domains, regarding the object, light conditions and environment con-
straints. The Deep Neural Network should be robust enough and reach high perfor-
mances with low-resolution and low-quality RGB images. Feature-based methods
are not applicable because they are more sensitive to image quality, and full-frame
approaches are preferable because they are agnostic to the number of objects in the
scene. Due to the textureless objects, poor light conditions and intrinsic environ-
ment characteristics, the low quality of the visual features compromised most of the
known methods.

These are the reasons that make underwater scenarios, and then this project, so in-
teresting.

In the following, in Section 5.2 an overview of the existing data collection meth-
ods in underwater tasks is explained, then the considered objects are presented, and
subsequently, the newly created datasets are discussed. In Section 5.3 the method-
ology choices regarding the 6D pose estimator are motivated. Finally, in Section 5.4
the experimental results are shown. A method comparison is done. The YoloV4 and
Augmented Autoencoder performances are detailed for quantitative and qualitative
results, and the on-edge performances are presented.

5.2 Datasets

In order to create a dataset for training and testing a pose estimator, in addition
to the usual best practice regarding balancing on classes, background generaliza-
tion and general case coverage techniques, in underwater scenarios some domain-
specific constraints should be considered. For real data acquisition, there are some
limitations related to the environment itself, such as the location of objects, their
records, and label annotation techniques. To create a real dataset for the 6D pose
estimation task, the frame RGB or RGBD must be associated with the corresponding

68 Chapter 5. Underwater 6D pose estimation

6D labels. The labels must describe both the translations and rotations, a very ex-
pensive piece of information to collect. Real data acquisition and also data labeling
is complicated, and in some cases impossible. In a controlled environment, such as a
swimming pool or tank, where the working conditions are easier, real data labeling
can be also possible. However, in other real scenarios, like a real lake, they are more
complicated and, consequently, a more general acquisition method should be con-
sidered. Therefore, since underwater data acquisition presents many difficulties, so
various types of sensors are used and many state-of-the-art ones have been recently
developed to facilitate data extraction. Collecting depth information requires the
use of specialized devices such as stereo cameras, LiDAR, lasers, SONAR, or fusion
sensors that combine different types of sensors.

As mentioned in Section 2.2.2, public datasets are available for the 6D pose es-
timation problem, and many of them are based on RGB images. To obtain more
insights about the object’s pose, particularly for the third component of translation,
depth information can be used. Unfortunately, there are few real-world datasets that
handle 6D pose estimation in dry environments and almost none for underwater en-
vironments. In addition, there is a lack of trained models for submerged objects, as
they require data collection in hard-to-reach locations and can be difficult to per-
form. In underwater environments, only a few works, described in the next section,
have been published on dataset generation or real-data collection.

5.2.1 Existing data collection methods

Autonomous object manipulation in underwater scenarios is a very complex task,
still little studied, but with a growing interest in recent years. The first step is def-
initely to create datasets for this task, and indeed the need for underwater datasets
has been addressed by some research.

Jeon et al. [39] recognized the challenges to obtain underwater labeled data. Ac-
quiring underwater object data is more complex than acquiring data from ground
environments. Even when the data is gathered, manual annotation is expensive
and errors due to human mistakes are inevitable. Additionally, underwater camera
images should have various variations including intensity degradation and color
distortion. Jeon et al. proposed an approach for making a synthetic dataset using
a 3D CAD model. Their approach automatically annotates view points, bounding
boxes, and segmentation labels for use in underwater environments. They also in-
troduced a simple deep learning pipeline to validate their data generation method,
achieving promising results. This pipeline consists to apply a Mask R-CNN net-
work, which detects the object’s mask, bounding boxes and class, and then a sim-
ple orientation estimation network, combined with DenseNet [36], Dense block and
Fully Connected network, is applied to extract the quaternion representation of the
object’s orientation from the cropped images resulting from the Mask R-CNN.

Billings et al. [3] introduced a fisheye image dataset, called UWHandles, col-
lected in natural underwater environments, that contains three types of grab han-
dles from different natural environments. UWHandles has both 6D object pose and
2D bounding box annotations. AprilTag fiducials were used to obtain ground truth
camera poses in the image sequences. The data were collected by placing a remotely-
operated vehicle (ROV) on the seafloor near the objects and dispersing the fiducial
markers in a manner similar to the method used in this letter. The handles also had
fiducial markers attached to mounting plates at the base of the handle.

5.2. Datasets 69

Previous research efforts are still insufficient to address the 6D pose estimation
problem in a general way. Such research is very specific to subdomains of the prob-
lem.

Our scenario’s goal is to develop a training dataset for CAD and RGB sources,
and then evaluate the results on RGB source only, to predict multiple underwater
objects’ poses. It is therefore necessary for the training dataset to be both diverse
and accurate. To collect the data, getting also the depth information, a stereo camera
is used.

5.2.2 Objects of interest

FIGURE 5.2: 3D objects: box, cup, jug and hotstab.

In the studied scenario, four objects are considered, depicted in Figure 5.2. The
chosen object categories represent common use cases for underwater intervention
tasks. The box, hotstab and cup are considered symmetrical, while the jug is not.
Symmetry means that there are two or more equal views that correspond to differ-
ent poses (and clearly distinguishable) of the object itself. The hotstab is symmetrical
for each pose and for its corresponding pose to 180◦ over its z axis, the box is sym-
metrical for 360◦ in every its axes, and the cup is only symmetrical for those angles of
the x, y, z axes where the handle is hidden. In a second version of the object models,
an embossed text is placed on some objects surfaces, for cup, jug, and box objects as
depicted in Figure 5.2. The text, of the same color and material as the objects, should
help the 6d pose estimator distinguish symmetry.

The objects were printed on a 3D printer with a gray and rather dark matt plastic
material. Hence the objects can be considered textureless.

diameter minx miny minz sizex sizey sizez

box 183.5974 -51.18766 -54.2683 -59.69242 106 106 106

cup 291.7259 -111.3848 -65.5387 -72.14373 219.7151 126.8602 143.9991

jug 440.0625 -141.406 -83.63377 -156.1391 286.3683 177.3268 283.202

hotstab 542.8955 -56.0085 -125.035 -247.5889 111.9975 250.6408 468.3709

TABLE 5.1: Objects information expressed in mm.

The four objects have different sizes, listed in Table 5.1, to cover scenarios with
different object shapes, which pose a challenge for deep learning methods.

Among the 4 objects under analysis, the box is the only convex one, while the
cup, jug and hotstab are concave. A solid is called convex if, given two points on its
surface, all points of the two target points’ conjunctive segment remain within the

70 Chapter 5. Underwater 6D pose estimation

solid. This is the case for the box object. For others, however, such as the cup or
jug, some elements such as the handle make them concave: taken one point on the
handle and one on the main building, some points of the conjunctive segment can
be outside the object.

Intuitively, considering a pose invariant metric, a convex object can be consid-
ered as more simple one than a concave object and it might be more easily distin-
guishable in the pose. Depending on the benchmark metrics, a convex object could
achieve better performances, as shown in Section 5.4.3. In our scenario, a further
distinction can be made in order to categorize objects as more or less distinguishable
by pose.

Considering a simple object like a box, where the three axes’ shapes are equal,
and for example the COU metric, defined in 2.2.3, where only the segmentation
masks are considered to evaluate the goodness of a predicted pose, any object ro-
tation on any axis produces nearly the same segmentation mask. On the other hand,
for a more complex object, like a hotstab, a little rotation variation produces an equal
variation in its corresponding mask.

In other words, given an image and the object selection rectangle, pose invariant
metrics achieve greater results when more pixels of the cropped image belong to the
object than to the background.

From a practical point of view, a new measure will be useful: the 6D-sphericity
degree. Given a target object and the smallest sphere in which that object is com-
pletely inscribed for each of its possible rotations, the object’s 6D-sphericity is the
ratio between its volume and the sphere’s volume. Intuitively, if the target object is
a sphere, the 6D-sphericity will be one. For the considered objects, the box, cup, jug,
and hotstab, respectively, have decreasing values of 6D-sphericity.The COU metric
will reach higher values the more the object is 6D-spherical: the segmentation masks
will be similar.

5.2.3 Proposed dataset

Our dataset comprises RGB-annotated frames of four different object categories,
seen from different points of view, alongside the 3D models. The chosen object cat-
egories, described above, were selected to reflect common use cases for underwater
intervention tasks. This dataset is meant to continuously grow with various object
representations that are useful for underwater intervention purposes and to foster
the development of robust underwater object pose estimation methods.

The dataset consists of synthetic and real data:

• Data generation: starting from the Computer-Aided-Design (CAD) models,
the RGBD images have been generated,

• Data acquisition: using 3D printed objects, records of several environmental
types have been collected.

Data generation Due to the higher cost of real-world data recording, to overcome
the low data heterogeneity, intended both for sufficiently large data of color intensity
and distortion, and for variation with respect to the underwater environment type,
synthetic data play a central role to try to apply deep learning techniques.

Through synthetic data, we potentially can generate infinitive images, applying
all the data augmentation techniques, while ensuring the exact ground-truth label.

Specifically, using Unity, we are able to generalize between different background
images, each of which is augmented by several techniques:

5.2. Datasets 71

• Regarding the light, it is possible to add light distortion to simulate reflections,
change the light source’s position, change the light breadth and intensity. Color
lights change randomly, with values chosen in specific ranges to avoid black
lights. In detail: a light color is defined by hue (in a range of (0, 265)), saturation
(in a range of (0, 128)) and value/brightness (which is constantly equal to 1).
There are 265 × 128 × 1 possible light colors.

• Regarding the background plane, it is possible to rotate, translate, and tilt. It
is also possible to switch between 2D and 3D backgrounds. For the 3D back-
grounds also the proximity and amplitude of terrain gradients can be changed,
while for the 2D one a similar effect can be reached with a simply visible effect.
The background plane can be placed at various distances with respect to the
point of view. Different homogeneous and heterogeneous backgrounds can be
also simulated.

• Regarding the objects, it is possible to force them to be inside the scene, not
occluded and not submerged. On the other hand, also occlusions, truncations,
and background immersions are permitted. The objects can be placed onto
the background or can be fluctuating. Moreover, the objects can be placed at
different distances with respect to the camera position, they can be placed at
the same distance between themselves, or at different distances to simulate the
perspective. The objects can have shadows.

Some of the results are depicted in Figure 5.3.

FIGURE 5.3: These are some examples of underwater Unity-
simulated scenes.

Data collection Even though the simulated dataset reaches promising results, to
improve the performances of an artificial neural network (ANN), the real-world
samples are usually determinants to better learn and perform in real-world domains.

3D-printed objects made it possible to harvest data in realistic scenes. The dataset
is collected using a d455 realsense camera inside a waterproof container, designed
by Spinitalia s.r.l., which simultaneously captured color and depth images at 640 ×
480 resolution at 30 frames per second. Video sequences have been recorded for
each of the four object categories in 10 different setups, both individually and in

72 Chapter 5. Underwater 6D pose estimation

various category combinations. The different scenes have been recorded across two
countries, in a variety of real environments both underwater 5.4b and dry 5.4a.

(A) Real world underwater scenes.

(B) Real world dry scenes.

FIGURE 5.4: These are some examples of real images acquired in dif-
ferent scenarios. (A) images present dry backgrounds: on the left
objects are on the asphalt, on the centre they are on a pier, on the right
they are on the asphalt during night. (B) images present underwater
backgrounds: they are all acquired at Nemi Lake (RM) with different

degrees of depth.

In our underwater scenes, challenging visibility conditions expected at sea are
considered, including object occlusions, heterogeneous backgrounds, shadow or di-
rect light conditions, natural or artificial light, and night recordings. Figure 5.4 pro-
vides examples of real scenarios. For each recording, the object has been freely ro-
tated within the camera’s field of view at varying distances up to 3m from the cam-
era.

To obtain the ground truth of the object pose, an AprilTag [66] bundle has been
designed, which maps to the geometric center of the object of interest.

FIGURE 5.5: Example of object pose ground truth estimation.

An example is illustrated in Fig. 5.5. Namely, given that the object base frame by
its 3D model, Op, was known and the bundle pose, Bp, was detectable, the transform
between the object and the bundle, TO

B , was calculated offline.

5.3. Methodology choices 73

The AprilTag presence in a scene permits to derive the ground truth pose of the
object attached to it, thanks to methods that can detect the tags and determine their
pose.

The scene acquisitions have been made both with and without the AprilTag.
For the dataset with the AprilTag, as just described, the exact translations and

rotations of the depicted objects are associated with each image. In this way, a real
6D pose estimation dataset can be collected. However, the AprilTag presence in
the scene could alter some deep learning methods’ performances, as described in
Chapter 4. Moreover, the AprilTags are applied to the object’s appendixes. The
objects are then altered in shape and size. However, in order not to use the AprilTag
bundle, if the 6D labels are set in a human full-hand method the risk of bad label
data is very high.

On the other hand, the dataset without AprilTag is useful both to create a real
test set, and to overcome the possible aforementioned problems due to the AprilTag
presence in the scene. Such test set is able to perfectly simulate a real scenario, in
which the AprilTags are not present. The AprilTag-less datasets will not be anno-
tated with the translation and rotation ground truth information. The real-world
acquisitions, despite are not 6D pose labeled, are however useful to create a real
dataset for the 2D detection tasks. With automatic 2D labeling tools, widely used
in recent years, such as LabelIMG 1, and the simple annotation procedure of such
information, optimal labels can be obtained from real-world images.

In our scenario, three stages have been considered in the 2D annotation process.
First, approximately 1% of the data across scenes was labeled by a human annotator.
Second, an auto-labeling tool, based on Yolov4 [4], was designed and used to find
the bounding boxes for the remaining data through the 1% of manually annotated
data. Finally, to ensure the quality of the annotated region of interest, three different
human annotators checked the created bounding boxes in a sequential fashion. The
real-world 2D annotated dataset has 87, 100 real RGB images.

This type of dataset is especially important for dealing with an unexplored or
semi-explored domain, such as underwater. A specific data format would be re-
quired for any of the 6D pose estimation methods investigated, even at the experi-
mental stage alone. On the other hand, with a dataset labeled for 2D detection tasks,
all the 2D detectors and other methods based on the same type of dataset, can be
easily approached.

5.3 Methodology choices

To address the problem of 6d pose estimation in underwater scenarios, from the
method’s point of view, it is first necessary to distinguish and identify the prob-
lems to be overcome. As mentioned before, in underwater environments some light
conditions make more sensitive deep learning models. These concern both envi-
ronment’s intrinsic characteristics and the camera limitations, which result in low
quality images. The chosen image resolution is 640 × 480 to meet the latency con-
straints: the whole 6D pose pipeline should be run onto an embedded board placed
on the AUV. Low image resolution afflicts deep learning methods even more.

Moreover, 3D object models without textures and their characteristics of symme-
try, occlusion, self-occlusion and truncation make learning the pose more arduous.
For these reasons, the adoption of the major part of existing methods is not the best
choice.

1https://github.com/heartexlabs/labelImg

74 Chapter 5. Underwater 6D pose estimation

Feature-based approaches would risk very low performance and other methods
might be more suitable. To overcome the problem listed before, we chose to adopt a
holistic two-stage method, based on a YoloV4 [4] for the object detection task and an
Augmented Autoencoder (AAE) [88] for the rotation estimation.

YoloV4: object detector Regarding the object detection task, and hence the choice
to use the YoloV4 detector, the motivations concern the results shown in Chapter
3. YoloV4 is a network that performs very well in heterogeneous environments,
with an excellent tradeoff between accuracy and latency. In the underwater scenario
under analysis, the need of selecting a real-time and rather lightweight deep learning
solution is a requirement imposed by hardware constraints. Indeed, YoloV4 allows
the desired FPS requirements to be achieved while at the same time respecting the
power constraints. In underwater scenarios, with the robotic arm mounted on the
AUV, physical space is right limited. In this case only a compact embedded board is
allowed.

Another reason for choosing YoloV4, and also for dividing the whole task into
two different tasks (object detection and rotation estimation) is due to the ease of
the OD data collection procedure. For object detectors, which are more investigated
networks, there are several automatic labeling solutions, and yet even for manual
labeling methods, the definition of only the 2D bounding boxes containing an object
is easier and less prone to human error than the full 6D labeling task. 2D labeling is
also cheaper and therefore more data can be collected.

Moreover, in underwater light-poor conditions and noisy acquisition conditions,
the YoloV4 performs better than other singe-shot methods. YoloV4 permits to dis-
tinguishes also both near and far objects, for both sunny and shadow environments
(see Table 5.2 the mAP values).

Although there are other methods that are newer and better performing than
YoloV4, an already well-known network has been chosen. Often the installation
and the first use of new deep methods require a lot of initial effort. Methods are
not yet established and may hide some bugs. Additionally, some methods, such
as YoloV6 and YoloV7, have not yet been published by the time the pipeline was
consolidated. For YoloV4, the training process is well-defined and supported by
OpenCV for inference. In our case, the detector has never been the bottleneck, and
for only four objects there is no need to improve performance. The mAP achieved is
already close to 1, so there is no need to further enhance performance.

Augmented Autoencoder: rotation estimator For the 6D pose task, the choice
of AAE is driven by similar reasons. The authors [88], in addition to the method,
also introduced the Domain Randomization (DR) strategy. DR consists of training a
model on rendered views with several data augmentation techniques. This data gen-
erator makes it possible to train the network without real data, and instead use only
the 3D CAD model. During the network’s pre-processing stage, the CAD model
is used directly to create a training dataset. Therefore, a labeled 6D dataset is not
necessary, which facilitates its use.

Assuming to have sufficient 6D annotated data, the applicability of other well-
known 6D pose methods could not be safe. As described in Section 2.2.4, the features-
based methods need to extract the 2D-3D correspondences from the image and 3D
model. On one hand, the images theoretically should be captured with ad high res-
olution, in constant light conditions, and with a fine-graned characterization regard-
ing the depicted object of interest. On the other hand, instead, the 3D model used

5.4. Results 75

should have the texture associated with it. The texture permits giving more visual
details of the objects, such as color, shadows and shapes. With texture-less objects
instead, the detail accuracy degree is not sufficient to apply this kind of method.

In Domain Randomization, the considered data augmentation techniques are
random lighting conditions, different backgrounds, different levels of saturation,
contrast, hue, square occlusion, and gaussian blurring. Such training permits to
generalize on different backgrounds and also to real images, meeting the project
requirements on the environment generalization. In our case, we specified to use
custom real background images in addition to VOC images to better fit our scenario.
Based directly on the CAD model, even if 3D printed objects have poor visual fea-
tures, AAE is able to fit our scenarios better than other methods. In addition, the
method directly addresses the problem of symmetries, occlusion and self-occlusion.
This is due to the property of representing the orientation not on a fixed parametriza-
tion, but on the appearance of an object. The disadvantage of this choice is that
the AAE does not scale with respect to the number of instances in the scene, but
it still achieves good results with the required input resolution while maintaining
relatively high quality.

Utilizing pose refinement techniques or other post-processing methods would
not produce satisfactory outcomes due to the absence of reliable visual characteris-
tics. The ICP algorithm, which depends on depth data, is not feasible in this scenario
owing to the inherent constraints of the sensors in capturing adequate depth infor-
mation in an underwater setting. Poor depth data will generate an untrustworthy
point cloud.

Other holistic methods, both for one-shot and two-stage methods, require a real-
world annotated dataset and may suffer from instability. EfficienPose(EP), for exam-
ple, was tested in a preliminary phase but did not obtain satisfactory results. This
may be explained by the findings in Chapter 4. In our scenario, several factors make
the EP unsuitable for 6D pose estimation. The distance range of the objects varies
from a few centimeters to 3 meters, which is significantly different from the LineMod
dataset where the objects are close to a restricted distance range. Additionally, the
objects appear in all corners of the scene, rather than being close to the center of
the image as in LineMod. Furthermore, the objects are textureless and symmetri-
cal, unlike the majority of objects in LineMod which are colored and convex. Lastly,
there are no other useful objects or visual tags present that could help the 6D method
distinguish the poses, thus making EP unsuitable.

The YoloV4 and AAE pipeline adoption came out from a comparison with other
two state-of-the-art methodologies: EfficientPose and Yolo-6D. The results are shown
in Section 5.4.1.

5.4 Results

In this Section, the experiments and results will be discussed. To evaluate the good-
ness of a model, some metrics explained in Section 2.2.3 and Section 2.1.3 have been
adopted. In particular, the ADD and ADI metrics are used to evaluate asymmetric
(jug) and symmetric (box, cup and hotstab) objects respectively. For both these met-
rics, the estimated pose is considered correct if e < θ = kmd
where km constant is generally equal to 0.1, d = object diameter. In Section 5.4.3 three
different km values will be considered: km = 0.1, 0.2, 0.3. Regarding the detection
metric, the AP metric is used in order to evaluate the goodness of the detection and
classification parts. Due to the ambiguity of the considered objects, also the COU

76 Chapter 5. Underwater 6D pose estimation

and VSD metrics are taken into consideration. The COU error function is ambiguity
invariant; however, since it relies on the projection of the model, it provides only
limited information about the accuracy of the object surface alignment. In this direc-
tion, also the VSD error function can be used with ambiguity poses. It works with
the 2D masks of the object model’s visible part in order to compare directly pixels.

5.4.1 Method comparison

In this Section a DNN model comparison is proposed. Three different neural net-
works are chosen to cover the range of methodologies present in the state-of-the-art
that differ both in problem approach and learning strategy:

• EfficientPose [6]. It has been chosen because reaches the SOTA performances
in 6D pose estimation problem 2. As described in the previous Chapters, it is a
full-frame, single-shot method. It is multi-instance and multi-object invariant,
as the number of objects in the image increases, the computation time does not
change.

• Yolo-6D [95]. As described in Section 2.2.4, Yolo-6D has a feature-based ap-
proach to firstly detect the 3D bounding box vertices from the image, and sec-
ondly, apply the PnP algorithm [48] to estimate the object pose in O(n). The
network is multi-instance invariant for the 3D detection task. It requires a cus-
tom labeled dataset, but its format is similar to that of darknet (Yolo family).

• Augmented Autoencoder [88]. It is a one-shot method for the rotation esti-
mation task that works on cropped images. It does not scale with respect to
the number of objects and instances in the scene. On the other hand, it does
not require a custom labeled dataset and directly addresses the symmetry and
occlusion problems. In this case, YoloV4 has been chosen to perform the 2D
object detection task and extract the cropped images for the objects’ regions of
interest.

The results shown below are referred to only one object class dataset in order
to make a fair analysis. Indeed, the AAE is trained on a single object instance. In
multi-object scenarios, as described before, AAE does not scale with the number of
objects. EP and Yolo-6D instead could work also for multi-class dataset, but to com-
pare with AAE they are trained on the single target object. The chosen target object
is the hotstab, which is the most significant one in underwater scenarios between the
available objects.

The method comparison is made on three different datasets, each of them refer-
ring to an approach. EfficientPose needs to have a dataset in a LineMod-like for-
mat, with a specific directory structure and with specific ground truth information.
Yolo-6D instead, needs to have labels in a darknet-like format. With respect to the
YoloV4 label, Yolo-6D needs to have a ground truth with the 3D bounding box cor-
ners. Finally, Augmented Autoencoder does not need any kind of dataset, but it
directly generates the training images from the CAD model. The datasets used in
EfficientPose and Yolo-6D are generated with Unity with the same degrees of free-
dom, regarding distance range (from 50cm to 3m), light condition range, and all the
techniques described in Section 5.2.3. For AAE the VOC images are used as back-
ground in the Domain Randomization strategy, instead of a generated dataset with

2https://paperswithcode.com/sota/6d-pose-estimation-on-linemod

5.4. Results 77

Unity. However, for the YoloV4, used for the 2D object detection sub-task, a similar
dataset generated in the same way as the other two methods is used.

Although the three methods are trained on these different datasets, they can be
considered comparable thanks to the same generation procedure used to create the
corresponding dataset. Moreover, the methods are evaluated on the same validation
dataset on which the metrics are computed.

Setup EfficientPose is trained on a dataset containing 2500 images, for 500 epochs
and a learning rate fixed to 1e−4. The hyperparameter Φ has been set to zero, in order
to use the most lightweight network version of the EfficientDet backbones family.

Yolo-6D is trained on a dataset containing 2500 images for 10000 epochs with
an initial learning rate of 0.0001 and batch size of 32. The learning rate has been
changed in 0.001, 0.0001, 0.0001 for the steps 1000, 60000, 70000.

YoloV4 is trained on a dataset with 10000 images for 50000 epochs. The batch
size has been set to 64 with a subdivision of 64. The learning rate starting from 0.001
has been decreased to a factor of ten for the steps 20000, 25000.

Augmented Autoencoder is trained for a render resolution of 640 × 480 in order
to decrease the network parameter, using directly the CAD model and generating
20000 training images through the Domain Randomization strategy

The results shown below are referred to only the generated-like evaluation dataset
and not to the real-world one.

ADD ADI mAP
EfficientPose 1.32% 8.65% 0.7521

Yolo-6D 9.58% 36.71% 0.77
YoloV4+AAE 11.4% 44.0% 0.99

TABLE 5.2: The table shows the results of EfficientPose, Yolo-6D and
YoloV4+Augmented Autoencoder pipeline in terms of ADD, ADI
and mAP metrics for the hotstab object. The ADD and ADI are com-
puted with a threshold km = 0.1. The mAP is computed with an

Intersection-over-Union threshold of 0.5.

Comparison In Table 5.2, the results of ADD, ADI and mAP metrics are reported.
The considered object is partially symmetric, hence the ADI is the most significant
metric compared to the others. Also ADD is reported for comprehensiveness. ADD
and ADI describe the estimation performance of network laying, but also marginally
considering the detection part. The mAP metric is referred to only the 2D detection
part: the detection subnetworks for EP, the 2D detection deriving from the 3D BBs
projection for Yolo-6D, while in the YoloV4 and AAE pipeline is referred only to
the YoloV4 network. A good 2D detector could improve the final pose estimation
performance. The considered threshold in ADD and ADI computation is km = 0.1.
This threshold is referred to the 3D model’s diameter at which a 6D pose is consid-
ered correct. If the average distance between the 3D model points transformed with
the GT pose and estimated pose, respectively, is lower than this threshold the pose is
considered to be correct. The threshold used in mAP computation instead is referred
to the Intersection-over-Union threshold of 0.5 computed in all precision-recall func-
tion points. See details explained in Section 2.1.3.

YoloV4 and AAE pipeline reaches the best porfomances across all metrics, com-
pared with the others two methods. This indicates that the YoloV4’s 2D object de-
tection is extremely accurate and provides the AAE with well-cropped images that

78 Chapter 5. Underwater 6D pose estimation

accurately encapsulate the objects, allowing it to accurately predict the objects’ pose.
On the other hand, EfficientPose and Yolo-6D reach lower mAP values and as the
accuracy in object detection decreases, then the pose is also more difficult to predict.
The motivation can be various:

• the EfficientPose model chosen has the Φ = 0 hyperparameter. This architec-
ture is the most lightweight among all EfficientDet models and it reaches lower
performances compared to the others;

• in contrast, Yolo-6D is based on YoloV2, which achieves much lower perfor-
mance than its descendant YoloV4.

The large gap in ADI values between EfficientPose and Yolo-6D, despite the fact
that the mAP values are very similar, can be attributed to the experiments shown
in the previous chapter. As mentioned in Chapter 4, EfficientPose performs very
well on the LineMod dataset because, in addition to the fact of ArUco presence, the
target objects are placed near the image center and clearly distinguishable, and the
distance range between the camera sensor and the target object is more restricted
than in our case. Such good performance given by the use of a simplified dataset
covered all EfficientPose’s subnetworks, but mainly the rotation one, which is why
that subnetwork was analyzed in the previous chapter. Indeed, looking at the results
it can be seen that the BBs are positioned correctly in the images, with quite correct
translation, but rotated incorrectly (top-left in Figure 5.6). An example of EP, Yolo-6D
and YoloV4+AAE predictions is shown in Figure 5.6.

FIGURE 5.6: Methods comparison results. At the top left, the pre-
diction of EfficientPose is displayed, Yolo6D at the top right, and

YoloV4+AAE at the bottom.

In addition, looking at both Table 5.2 and Table 4.4, it can be observed a 20% de-
crease in mAP values, justifiable by the increase in problem complexity, and a more

5.4. Results 79

90% decrease in ADI values. The 90% decrease represents the low representative
power of the EP’s rotation subnetwork.

On the other hand, the small gap in ADI values between Yolo-6D and the AAE-
YoloV4 pipeline can be motivated by the PnP method used in pose estimation for
the Yolo-6D network. The dataset used to calculate the metrics is a dataset gener-
ated with Unity. Although some data augmentation techniques have been used to
generalize the synthetic dataset to reach the quality of the real underwater dataset,
it is quite clean compared to the real scenario. Thus, in this case, the PnP algo-
rithm achieves good performance, but in a real-world underwater scenario, where
the quality of frames decreases, a drop in performance is expected.

The YoloV4-AAE pipeline results shown in Table 5.2 are collected without any
kind of post-processing. In AAE, the native use of ICP refinement is planned to im-
prove the pose estimation. In our scenarios, using a d455 realsense in an underwa-
ter environment, the depth information collected would be of poor quality, further
invalidating the pose estimation itself. For this reason, not only the result didn’t
improve, but also the prediction took more time and, then, efficiency decreased.

5.4.2 Experimental setup

In the following, only the YoloV4-AAE pipeline results are reported. The adopted
solution is composed by:

• YoloV4. It is trained for multi object detection to cover all four objects simulta-
neously: box, cup, jug, and hotstab. The dataset is composed of 10000 images
for the training set and 2500 images for the validation set, generated via unity
with sandy background and with the data augmentation technique described
in Section 5.2.3. Every image contains the four objects in the scene with their
BB ground truths. The network hyperparameters used are: an input network
resolution of 512 × 512, batch size and subdivision at 64, learning rate of 0.001
with a decreasing scale factor of ten in steps 20000, 25000, maximum number
of epochs of 50000.

• Augmented Autoencoder. One network for each object model, for a total of
four distinct AAE models. Each model is trained for a render resolution of
640 × 480 in order to decrease the network parameter and meet the physical
latency constraints. The training is made using directly the CAD model and
generating 20000 training images through the Domain Randomization strat-
egy starting from VOC images as a background. For each object model, an
independent exploration of the best hyperparameters has been carried out to
customize training on the target object and achieve the best performance for
it. AAE training presents many hyperparameters, as written in the paper [88].
They could be divided into two groups: the ones which modify the structure
and optimization of the network (learning rate, latent space dimension, batch
normalization, etc.) and the ones which act on the data augmentation (occlu-
sion percentage, inversion, multiplication, drop, gaussian blurring addition,
etc.). Because of the large number of hyperparameter configurations, it is not
possible to explore all of them, so heuristics are needed to choose only the most
promising configurations. The results are shown in Table 5.3.

80 Chapter 5. Underwater 6D pose estimation

- Box Cup Jug Hotstab
Data Augmentation Hyperparameters

Perspective Transform

Crop And Pad ✓ ✓ ✓
Affine ✓ ✓ ✓ ✓

Coarse Dropout ✓ ✓ ✓
Gaussian Blur ✓ ✓

Invert ✓ ✓ ✓ ✓
Multiply ✓ ✓ ✓ ✓

Contrast Normalization ✓ ✓
Square Occlusion 0.6 0.4 0.4 0.4

Architecture-Hyperparameters
Learning Rate 2e − 4 2e − 4 2e − 4 2e − 4

Optimizer Adam Adam Adam Adam
Latent Space Dimension 256 256 128 256

Epochs 50000 70000 70000 70000
Batch Size 32 32 64 64

TABLE 5.3: The chosen hyperparameters for each object’s training.

Objects km = 0.1 km = 0.2 km = 0.3

Box
ADD

1, 0%
ADI

21, 6%
ADD

1, 4
ADI

51, 0%
ADD

2, 0
ADI

60, 4%

Cup
ADD

19, 8%
ADI

55, 0%
ADD

37, 2
ADI

77, 8%
ADD

49, 2
ADI

85, 8%

Jug
ADD

29, 2
ADI

72, 2%
ADD

56, 6
ADI

86, 6%
ADD

68, 6
ADI

93, 0%

Hotstab
ADD

11, 4
ADI

44, 0%
ADD

40, 4
ADI

64, 4%
ADD

56, 0
ADI

73, 8%

Average Perc.:
ADD

15, 35
ADI

48, 2%
ADD

33, 90
ADI

69, 95%
ADD

43, 95
ADI

78, 25%

TABLE 5.4: Table of recall percentages based on the errADI and
errADD for different threshold values km.

5.4.3 Performances

Quantitative results In the considered datasets, three objects (box, cup and hot-
stab) present symmetric views, while one object (jug) is asymmetrical, therefore eADI
is chosen for the first three objects and eADD is chosen for the last one. Results for
both eADI and eADD with different thresholds of correctness are represented in Ta-
ble 5.4.

As described in Section 5.2.2, the box is symmetrical for 360◦ in each of its axes,
the cup is only symmetrical for those angles of the x, y, z axes where the handle is
hidden, and the hotstab is symmetrical for each pose and for its corresponding pose
to 180◦ over its z axis. In other words, the box is completely symmetric on all axes,
the hotstab is symmetric only on the z axis, and the cup is symmetric only for those
rotations where the handle is not visible. In this order, moving from the most sym-
metrical object to the least symmetrical object, even varying by threshold km, gives
increasing ADI results. For the jug, however, being an asymmetrical object, the ADD
metric has been used. In fact, its ADD results are higher than the others.As written

5.4. Results 81

in Chapter 2, ADI yields relatively small errors even for views that are distinguish-
able, and is thus more permissive than ADD, ADI is in fact the lower bound of ADD
as written in [31]). The objects evaluated with ADI are therefore advantaged.

The limitations of these metrics are that they are not pose-ambiguity invariant.
Consequently, the four taken objects are very disadvantaged, since they present
many ambiguous poses. This is an unusual dataset, due to simple objects which
complicate the problem. For objects such as boxes, cups, and hotstabs, this is due
to their symmetrical nature. For instance, the box object has three symmetrical axes
and it is texture-less. This makes it difficult for the network to distinguish one face
of the box from the other. In the second version of the object model, a unique texture
has been placed on each face of the object. For example, the box has inscriptions
on each of its faces, which are the same color as the object and are not enough to
differentiate the pose of the object itself. The jug, on the other hand, not being a
symmetrical object, is easily distinguishable in poses when the handle is visible. For
poses in which the handle is hidden, only the spout of the jug can be used to dis-
tinguish the pose, making the task more arduous. Despite these disadvantages, the
AAE is able to predict a good rotation, which allows the object to overlap with the
one depicted in the image, but not with the correct object face.

Objects COU VSD
Box 94.6% 24.4%
Cup 94.2% 32.6%
Jug 79.6% 45.2%

Hotstab 20.2% 10.8%
Average Percentages: 72.15% 28.25%

TABLE 5.5: Table of COU and VSD recall percentages based on the
errCOU and errVSD respectively. In both metrics the threshold θ is set

to 0.3.

To give a correctness indicator of visual object matching, other two metrics can
be considered. In Table 5.5, the Complement over Union (COU) and Visible Surface
Discrepancy (VSD) results are presented.

The COU is based solely on object segmentation masks and does not take into
consideration the poses or distances of the objects, unlike ADD and ADI metrics.
Intuitively, regardless of the pose, a convex object will be able to obtain higher COU
recall values than a concave object. As defined in section 5.2.2, following our def-
inition of 6D-sphericity, the greater the object’s 6D-sphericity, the more likely it is
to have a higher COU value. Given a cropped image, derived from the predicted
bounding box, and considering that it depicts an almost 6D-spherical object, then
the main part of the cropped image will refer to the object. The COU metric, work-
ing on the object’s segmentation mask and not considering the pose at all.

For example, the box, which is an almost completely 6D-spherical object with
respect to those under analysis, achieves the higher COU recall value, nevertheless,
as shown in Table 5.4, its ADD value is very small (with km = 0.1 the ADD values
is 1%). The AAE is unable to predict the correct pose, but, as mentioned before, is
able to predict a good rotation, which allows the rendered object to overlap with the
one depicted in the image, but not with the correct box face. Even the cup and jug
objects, minus the handles, can be considered roughly 6D-spherical as well, while
the hotstab can be considered not 6D-spherical at all. Notwithstanding the hotstab
achieves good results in pose estimation (5.4), due to its shape, a small AAE’s pre-
diction mistake produces a COU value degradation.

82 Chapter 5. Underwater 6D pose estimation

Similar considerations can be made by observing the VSD metric, which, as de-
scribed in Section 2.2.3, considers the 2D corresponding masks of the object model’
visible parts and the distance matrices. VSD is inherently invariant under pose am-
biguity. As shown in Equation 2.2.3, if the pixel p is in the intersection of the two
visibility masks and the distance d is less than a misalignment tolerance τ, then the
error for that pixel is d/τ; otherwise, the matching cost takes the maximum value
1. The hostab model achieves the worst performance, also caused by small errors in
AAE prediction. On the other hand, the jug, being asymmetrical, gets a better result
than the other objects.

Qualitative results These observations can be further seen in Figure 5.7. YoloV4
predictions are shown on the left and pose estimates and corresponding object ren-
derings are shown on the right. Remarkably, even though the light conditions and
water clarity are very unfavorable, the results are very good. In Figure 5.7a all the
predicted rotation seems correct. However, the cup has a wrong rotation, it is over-
turned. In this case, the ADD metric reaches a very low value, while the COU, one of
the highest. In Figure 5.7b, despite the box’s rotation being completely wrong, inde-
pendently of its symmetry, the COU will have an high value. In Figure 5.7c instead,
the hotstab has a good rotation and a slightly wrong translation. Due to its handle,
which does not match with the corresponding one depicted in the image, the COU
and VSD values will be low.

For the sake of completeness, also the worst results are shown in Figure 5.8.
YoloV4 predictions are shown on the left and pose estimates and corresponding ob-
ject renderings are shown on the right. The objects are placed at a distance close to
the 3 meters limit to test the method’s robustness. YoloV4 is mainly responsible for
the poor results. When YoloV4 misses or fails to detect an object correctly, the Aug-
mented Autoencoder cannot remedy it in any way. In Figure 5.8a, the YoloV4 detects
a box instead of hotstab and the AAE, which needs the object class and the cropped
image, only tries to estimate the box rotation. Therefore, the major responsibility lies
with the YoloV4 detections, but also the AAE fails to predict some poses, such as the
jug pose in Figure 5.8c. These scenarios are very disadvantageous, objects are placed
far away, cluttered, and environmental conditions unfavorable.

5.4.4 On edge

The project constraints, as described before, dictated the choices of the real-time,
lightweight deep learning solutions and the input camera source, declining it by the
selected resolution, FPS frequency and so on. The YoloV4 is the ideal choice for the
2D object detection sub-task since it can achieve the desired FPS while still adhering
to the power constraints. The Augmented Autoencoder, on the other hand, is the
ideal choice for the 6D pose estimation task. It is the best trade-off between accuracy
and latency, as written in Section 5.3. Given that only four objects are considered in
our scenario, AAE has been chosen over other solutions, despite not being able to
scale with the number of objects.

Since the robotic arm mounted on the AUV requires a compact embedded board
due to the limited physical space, Nvidia Xavier AGX was chosen for its better re-
sults than other Nvidia embedded boards or Xilinx boards, as shown in Chapter
3. The analysis indicates that Xavier AGX is the clear winner in almost all aspects,
achieving the best power efficiency, highest mAP, lowest end-to-end latency, and
highest total throughput.

5.4. Results 83

(A)

(B)

(C)

FIGURE 5.7: Selection of frame in real-world video recordings. These
data are collected in Nami lake, Rome. YoloV4 detections are shown
on the left, and the Augmented Autoencoder results are shown on the
right. The green objects are the CAD models that have been rendered

on the images with the predicted rotation and translation.

Therefore, an Nvidia Xavier AGX is considered in this section to report the end-
to-end times of DNN solutions.

Setup About the platform, the Xavier AGX is configured with an operative sys-
tem Ubuntu 20.04.5 LTS, with Nvidia Jetpack 5.0.2. To maximize NVIDIA Xavier
AGX’s performance, the power mode has been set to MAXN and jetson_clocks has

84 Chapter 5. Underwater 6D pose estimation

(A)

(B)

(C)

FIGURE 5.8: Selection of frame showing the worst results in real-
world video recordings. These data are collected in Nami lake, Rome.
YoloV4 detections are shown on the left, and the Augmented Autoen-
coder results are shown on the right. The green objects are the CAD
models that have been rendered on the images with the predicted ro-

tation and translation.

been launched before the tests. The Jetson Clock is a feature of the NVIDIA embed-
ded platform that enables the user to adjust the GPU clock frequency and memory
clock frequency. This allows users to optimize their system for maximum perfor-
mance. Additionally, the NVIDIA embedded platform also offers a maximum N
power mode which is designed to provide the highest performance available.

5.4. Results 85

The NVIDIA Xavier AGX embedded platform supports three types of data preci-
sion: FP32, FP16, and INT8. Data precision refers to the number of bits used to repre-
sent data. FP32, or single-precision floating point, is the most precise type available
and is used for applications that require higher precision and accuracy. FP16, or
half-precision floating point, is a less precise type and is used for applications that
require less precision or accuracy. INT8, or 8-bit integer, is the least precise type and
is used for applications that require the least precision or accuracy.

In this preliminary test, the single-precision floating point FP32 is considered.
As for the networks, YoloV4 and Augmented Autoencoder, they have been de-

veloped with python3.7. Yolov4 running with the OpenCV API, while AAE with
Tensorflow 2.6. As shown in Section 3.1.1, some frameworks, such as TensorRT, are
written in CUDA to optimize the inference on GPU of the deep learning models.
These optimizations are not currently being considered, but will be studied at a later
stage.

In the following the end-to-end latency, FPS, and the details for the three phases
of pre-processing, inference and post-processing are reported for YoloV4 and Aug-
mented autoencoder networks.

pre inf post tot

single object
min 3,09 68,00 209,25 280,35
max 15,87 100,80 224,22 340,89
avg 4,93 72,23 215,02 292,19

multi objects
min 3,25 68,10 212,46 283,80
max 16,27 97,72 247,72 361,72
avg 6,33 80,38 219,18 305,90

TABLE 5.6: Inference times (in milliseconds) for the YoloV4 phases:
pre-processing, inference and post-processing. These results are
taken from 500 images, so this table shows the statistics of 500 in-
ference times. The first time has been discarded not to consider the
weight load and memory levels initialization. The rows show both
YoloV4 running on a single class and Yolov4 running with multi ob-
jects. In particular, for the first experiment, only an hotstab is depicted
in every image. In contrast, in the second experiment, the box, cup,

jug and hotstab are always present in each scene.

In Table 5.6 the YoloV4’s times are shown for two different experiments:

• The first experiment reports statistics over 499 images, depicting only one ob-
ject, the hotstab. In each image there is only one instance of the hotstab and no
other objects are present in the scene.

• The second experiment reports statistics over 499 images, depicting four ob-
jects per scene. Each scene shows one instance of each object type, the box,
cup, jug and hotstab respectively.

In both experiments, 500 images are considered, but due to the weight load and
memory levels initialization, which could alter the statistics, the first times have been
discarded. Indeed, limited to the inference phase, considering the first time acquisi-
tion, the values for the two experiments are 3, 727.60 and 3, 851.41 respectively.

From the table 5.6, looking at the last column showing the total times, one can
see a negligible increase in time between the two experiments, with one instance and
with four objects.

86 Chapter 5. Underwater 6D pose estimation

Independently of the experiment, post-processing is the heavier phase in terms
of latency. The discrepancy between these results and the ones shown in Figure 3.3
and Figure 3.4 is due to the different frameworks used, and different optimizations
of some operations. In the previous work described in Chapter 3, a huge effort had
been made to speed up as much as possible both the inference phase and the pre
and post-processing phases, which are routinely run on CPUs. In these preliminary
tests, the difference is just that.

pre inf post tot

single object Hotstab
min 61,40 61,37 0,02 122,79
max 79,21 77,59 0,08 156,89
avg 67,32 66,99 0,03 134,33

multi objects

Box
min 64,40 66,40 0,02 130,81
max 107,24 123,31 0,16 230,71
avg 71,86 73,01 0,02 144,89

Cup
min 64,07 65,30 0,02 129,39
max 134,07 107,46 0,07 241,60
avg 72,17 72,61 0,02 144,80

Jug
min 65,27 65,92 0,01 131,21
max 96,30 109,42 0,20 205,92
avg 71,85 72,97 0,02 144,84

Hotstab
min 64,24 65,61 0,01 129,86
max 99,72 96,66 0,08 196,45
avg 71,74 73,17 0,02 144,94

Total
min 272,11 274,63 0,06 546,80
max 388,75 393,71 0,28 782,74
avg 287,76 291,90 0,10 579,76

TABLE 5.7: Inference times (in milliseconds) for the Augmented
Autoencoder phases: pre-processing, inference and post-processing.
These results are taken from 500 images, so this table shows the statis-
tics of 500 inference times. The first time has been discarded not to
consider the weight load and initialization memory levels. On the
rows are shown both single object scenario and multi objects scenario.
In particular, in the first experiment, only an AAE model runs over an
image, while in the second experiment, four AAE models run on the
same image, one for each object: box, cup, jug and hotstab. In the
second group of rows also the total time, referred to as the time spent

on an image is shown.

Regarding the 6D pose estimation part, the Augmented Autoencoder, as de-
scribed before, works with single class. In the second experiment, the one with 4
objects per scene, four different AAE networks are required, one for each object. In
Table 5.7 indeed, for the second experiment also the statistics of each AAE model are
reported. In contrast to the Yolov4, the time for each phase of the scenario with four
objects grows linearly with respect to the times with one object.

For the AAE models, the pre-processing and inference phases are equally heavy
in terms of latency. As described earlier, optimization techniques, such as CPU par-
allelization and/or transferring computation to GPUs, are also not adopted here.

In Table 5.8, the end-to-end latency and FPS for YoloV4, Augmented Autoen-
coder and the sum of the two NNs are summarized. With a single object per scene,
exactly two frames per second can be processed in the worst case. On the other

5.4. Results 87

YoloV4 AAE TOT
tot FPS tot FPS tot FPS

single object
min 280,35 3,57 122,79 8,14 403,13 2,48
max 340,89 2,93 156,89 6,37 497,78 2,01
avg 292,19 3,42 134,33 7,44 426,51 2,34

multi objects
min 283,80 3,52 546,80 1,83 830,61 1,20
max 361,72 2,76 782,74 1,28 1.144,46 0,87
avg 305,90 3,27 579,76 1,72 885,66 1,13

TABLE 5.8: This table shows the total inference times, as the sum of
pre-processing, inference and post-processing times, for both single
object and multi objects scenarios with the corresponding FPS value.
The first two columns with tot labels are equal of the corresponding
columns shown in Table 5.6 and 5.7. On the right, the sum of these

two columns is computed, and then the total FPSs are shown.

hand, the corresponding worst case in a multi-object scenario does not allow even
one frame per second.

89

Chapter 6

Conclusions and Open Problems

6.1 Conclusions

Deep learning methods have made significant advancements in recent years, allow-
ing for more accurate and efficient solutions to a variety of complex problems. How-
ever, in the application field, it is important to consider more than just the efficiency
and accuracy of deep methods. Unexpected bias may be introduced depending on
the use case, resulting in unexpected outcomes.

The focus of this thesis, due to the vast variety of sub-fields in AI, is limited to the
treatment of the 2D object detection and then the 6D pose estimation with particular
interest on real-time scenarios.

This study wants to give some insights of the two problems under analysis in
order to make a further step into the street of progress.

Chapter 2 This Chapter gives a well-organized survey of object detection and 6D
pose estimation problems. A definition of a mathematical problem is provided for
both topics, describing the goals and challenges of the two topics. A description of
the history and the details of the datasets in the literature is provided. In addition,
for each problem discussed, a formal definition of known metrics is presented, de-
scribing the cases in which they can be applied. Furthermore, a detailed review of
the most common methods has been made available. For the object detection task,
the described methodologies refer to the real-time subfield: real-time object detec-
tor. On the other hand, for the 6D pose estimation task, the presented methodologies
refer only to RGB-based methods. A brief presentation of the GPGPU and FPGA ar-
chitecture is described at the end of the chapter.

Chapter 3 This Chapter proposed a fair comparison of the heterogeneous embed-
ded platforms and object detection convolutional neural networks, as a result of a
collaboration with Tetrapak s.p.a.. The results were twofold: for the company, it was
a matter of finding the best combination of platform and networks for its needs for
anomaly detection in the production chain; from an academic perspective, it was a
matter of finding the best trade-off for selecting the best object detector versus the
best embedded platform from the different and metric-driven point of views. In
particular, in addition to analyzing Tetrapak’s industrial PC, already present in their
production chain, also a lot of boards for both the GPGPU and FPGA platform fami-
lies are considered into the analysis. For the GPGPU Nvidia Jetson family, the Xavier
AGX, TX2 and Nano have been considered. Instead, for the FPGA Xilinx family, the
XCZU7EV and XCZU9EG have been analyzed. Regarding the Neural Networks,
a set of seven different real-time object detectors have been analyzed: YoloV3 and

90 Chapter 6. Conclusions and Open Problems

its tiny version, Mobilenetv2-SSDLite, two versions of CenterNet differing in back-
bone architecture, ResNet101 and DLA34 respectively, and finally YoloV4 and its
tiny version. To completely fair compare boards and methods, different floating
point data representations can also be considered. For example, the Xilinx boards
support only INT8 representation. On the other hand, the industrial PC supports
only the FP32 precision. However, Nvidia TX2 and Nano support both FP32 and
FP16 representation, while Xavier AGX support also the INT8 in addition to the
other NVIDIA boards. The discrepancy of the data representation between boards
affects obviously the memory usage to represent the methods and also its process-
ing speed. The processing speed affects the power consumption of a given task.
In addition, the method’s accuracy and end-to-end latency are affected by different
representation precision. End-to-end latency is the set of pre-processing, inference
and post-processing times. Obviously, the hardware platform itself affects all the
metrics described above.

The conducted study has demonstrated Nvidia Xavier AGX as the unquestion-
able winner of the compared boards. Xavier AGX is the best embedded platform in
terms of end-to-end latency, and throughput. For the networks, YoloV4 is the best
network among those under analysis.

Chapter 4 This Chapter is focused on one of the less explored themes in the 6D
pose estimation domain: explainability. The best performing 6D method, Efficient-
Pose(EP) [6] 1, and the most widely used state-of-the-art dataset, LineMod (LM)
[30], are analysed. Thanks to some techniques in state-of-the-art for understanding
the decision-making processes, for example saliency maps such us Vanilla-Gradient
[84] and Grad-CAM [82], our experiments uncover a surprising bias introduced in
LineMod.

EP is particularly suitable in our study for its operation. This is a full RGB-
based end-to-end 6D method and differs from most others in that it does not use the
cropped image. In fact, the bias discovered relates to the data acquisition methodol-
ogy itself; where the objects are placed on a desk, and insight a custom chessboard
delimitated from ArUco tags. The presence of those markers is a common technique
in 6D data acquisition in order to derive the exact ground truth objects’ pose. How-
ever, as shown in the Chapter, the presence of ArUco markers in the scenes distorts
the method’s predicting capabilities.

Furthermore, in LineMod also another bias is discovered. Acquiring real-world
data in static or semi-static scenes entails a simpler scenario for the candidate method.
Such method, in order to identify the pose of a target object, could also see the sur-
rounding objects that rotate and translate in the same manner as the target one.

These are the reason why the EfficientPose, which works with the entire frame,
is particularly prone to these biases.

The severity of these biases, especially in a dataset like LineMod, which has be-
come the de facto standard in the 6D pose literature datasets, resides in the fact that
it distorts the rankings of the best performing 6D methods, such as EfficientPose,
which is evidence of this. On these datasets, the methods’ expressive capacity can
be falsely evaluated.

In this Chapter, we also introduced a new dataset without the ArUco markers,
showing better results. In the future, our idea is to improve our data generalization
technique in order to present a new bias-less dataset similar to LineMod.

1https://paperswithcode.com/sota/6d-pose-estimation-on-linemod

6.2. Open Problems 91

Chapter 5 Finally, in this Chapter a new use case is presented: the underwater
one. The new, almost completely unknown, underwater domain has been investi-
gated thanks to a collaboration with the Technology Innovation Institute (TII). The
goal of the project was to develop a 6D pose estimation pipeline to pick objects on
the seabed with robotic harm mounted on an underwater drone. This use case was a
sub-task of a bigger use case that involves several other artificial intelligence compo-
nents, such as autonomous driving, obstacle avoidance, trajectory computation, and
so on. We compared several state-of-the-art methods and finally proposed a robust
pipeline, consisting into split the problem into two different tasks: object detection
via YoloV4 and pose estimation via Augmented Autoencoder. This choice is widely
motivated, because of the difficult object domain, mostly symmetrical and not easily
distinguishable in pose, the novel challenging problems related to the heterogeneous
environment, light conditions and low visibility states.

The proposed methodologies are largely evaluated with the common 6D metrics,
considering symmetries and asymmetries developed ones.

The remarkable contribution is also in the dataset’s field. We collected a new real-
world underwater dataset for the four considered objects and also we developed a
new tool to collect synthetic, but near realistic, data via Unity.

Finally, the end-to-end latency and FPS, with details for each sub-phase of pre-
processing, inference and post-processing, are detailed. The tests are computed on
an Nvidia Xavier AGX board to give a first contribution to the real-time 6D pose
research area.

Finally, I put into practice the knowledge acquired in the previous chapters by
implementing a robotic manipulator project in underwater scenario that utilizes the
concepts of 6D pose estimation and real-time computing. The results achieved have
been satisfactory, and this study stands to be a first step for community growth.

6.2 Open Problems

While working in depth on the various issues just described, some not intuitive chal-
lenging problems are discovered, regarding both methodological approaches and
missing questions.

Fairness comparison For what concerns the Real-Time Computing, the discrep-
ancy of platforms used to evaluate or develop deep learning methods is one of the
most common issues in the field of artificial intelligence. Different platforms can
have different hardware and software configurations, which can lead to discrepan-
cies in results when comparing the performance of AI methods on those platforms.
This can make it difficult to draw fair comparisons between different AI methods on
different platforms.

Regarding the hardware sphere, different architecture types, such as x86, aarch64,
power9 and so on, could compute the same simple processor operations in different
ways, changing a bit the final results, especially in deep methods where there are a
lot o operations and a little error can be propagated a lot of times. As mentioned
before, also different data representations could obviously alter the final accuracy
results.

At the same time, also the software stack affects the performance computation. In
this case, different operating systems, different DNN framework versions, or simply
different library versions could alter the results.

92 Chapter 6. Conclusions and Open Problems

The use of different hardware and software configurations across various plat-
forms for evaluating AI methods can create discrepancies in the results. For instance,
when using deep learning methods, the development programming language is typ-
ically Python and the solutions are usually run in one environment. However, the
versions of Anaconda and other packages available on different platforms may vary,
making it difficult to maintain the same configuration across platforms, resulting in
an unfair comparison of results

Therefore, a new deep learning method developed today, with updated versions
of software and new architectures, could find advantages over older methods, being
better in both accuracy and latencies.

Explainability Another important issue, especially when working with compa-
nies, is that of explainability. For a long time, deep learning methods were viewed
as black boxes. With the motivation of being data-driven methods, we were limited
to seeing the performance achieved. Today, partly because of the many biases intro-
duced, knowing how these kinds of methods work is increasingly important. It was
primarily through the knowledge provided by saliency maps that we were able to
identify the bias described in Chapter 4.

The importance of this lies not only in checking that no bias is introduced into
the learning process, but especially in understanding and improving the predictive
ability of the methods. Knowing how the learning process can be affected would
also allow specific and precise improvements to be made to a part of it, reducing the
computational costs and workload of designers of a new network. Since training a
network is also a very costly operation in terms of resources and time, one could
identify that minimal subset of input data that would achieve the same or improved
performance.

Category-level 6d pose estimation Although the research field of 6D pose estima-
tion is quite recent, there are both RGB-based and RGBD-based subfields that have
achieved good results for some particular working scenarios. Some methods are
capable of learning multiple objects at once, such as EfficientPose [6], while others
need a trained model for each individual object, such as Augmented Autoencoder
[88]. However, their greatest limitation is that they must have the CAD of the object
in both training and testing, which makes them unable to recognize the pose of an
unknown object or, more simply, a meta-cup, a cup other than the one they are able
to recognize and for which they have the CAD model. These methods belong to
the family defined as instance-level 6D pose estimation. Instance-level 6D pose es-
timation approaches have numerous limitations. As mentioned above, they cannot
recognize objects other than known objects; therefore, they do not work with unseen
objects and meta-objects. These methods are very dependent on the dataset. They
can estimate only the objects present in the dataset. The effort to learn a new object
is enormous: both the CAD model and the dataset are needed.

In the literature, some novel methods are proposed in order to generalize the
object concept. For example, MegaPose [46] tries to estimate the 6D pose of a novel
object, although starting from classical CAD-based training.

Furthermore, recently a paper [104] proposed in 2019 the first method of category-
level 6d pose estimation, giving birth to this new challenging subfield. The goal is to
create a technique for general settings and objects that have never been seen before
and do not have CAD models. They overcome this problem by defining a shared
canonical representation for all possible object instances within a category, called

6.2. Open Problems 93

Normalized Object Coordinate Space. In addition, they introduce the first category-
level 6d pose estimation dataset-generation approach, called Context-Aware MixEd
ReAlity (CAMERA). Few other works have tried to solve the same challenge, follow-
ing the same idea of NOCS, or completely changing approach [10] [114] [14] [53] [9].
However, they mostly focused on RGB-D inputs, since RGB features are sensitive
to color variations. Therefore, this subfield remains an open challenge, especially
for RGB image inputs, but it is advancing rapidly and has the potential to enable a
wide range of new applications in areas such as augmented reality, robotics, and 3D
scene understanding. It should be included in a wider and broader purpose, that an
algorithm in the future will be able to generalize the concept of 6D pose estimation
for every object.

95

Bibliography

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[2] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”. In:
Sensor fusion IV: control paradigms and data structures. Vol. 1611. Spie. 1992,
pp. 586–606.

[3] Gideon Billings and Matthew Johnson-Roberson. “SilhoNet-fisheye: Adap-
tation of a ROI based object pose estimation network to monocular fisheye
images”. In: IEEE Robotics and Automation Letters 5.3 (2020), pp. 4241–4248.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: arXiv preprint arXiv:2004.10934
(2020).

[5] Eric Brachmann et al. “Learning 6d object pose estimation using 3d object co-
ordinates”. In: European conference on computer vision. Springer. 2014, pp. 536–
551.

[6] Yannick Bukschat and Marcus Vetter. “EfficientPose: An efficient, accurate
and scalable end-to-end 6D multi object pose estimation approach”. In: arXiv
preprint arXiv:2011.04307 (2020).

[7] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee. “Real-time scalable
6DOF pose estimation for textureless objects”. In: 2016 IEEE International con-
ference on Robotics and Automation (ICRA). IEEE. 2016, pp. 2441–2448.

[8] Jiasi Chen and Xukan Ran. “Deep learning with edge computing: A review”.
In: Proceedings of the IEEE 107.8 (2019), pp. 1655–1674.

[9] Wei Chen et al. “Fs-net: Fast shape-based network for category-level 6d object
pose estimation with decoupled rotation mechanism”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 1581–
1590.

[10] Xu Chen et al. “Category level object pose estimation via neural analysis-by-
synthesis”. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVI 16. Springer. 2020, pp. 139–
156.

[11] Dmitry Chetverikov et al. “The trimmed iterative closest point algorithm”. In:
2002 International Conference on Pattern Recognition. Vol. 3. IEEE. 2002, pp. 545–
548.

[12] Edwin KP Chong and Stanislaw H Zak. An introduction to optimization. Vol. 75.
John Wiley & Sons, 2013.

[13] Jifeng Dai et al. “Deformable convolutional networks”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 764–773.

https://www.tensorflow.org/
https://www.tensorflow.org/

96 Bibliography

[14] Yan Di et al. “Gpv-pose: Category-level object pose estimation via geometry-
guided point-wise voting”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2022, pp. 6781–6791.

[15] Xiaohan Ding et al. “Repvgg: Making vgg-style convnets great again”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion. 2021, pp. 13733–13742.

[16] Bertram Drost et al. “Introducing mvtec itodd-a dataset for 3d object recogni-
tion in industry”. In: Proceedings of the IEEE international conference on computer
vision workshops. 2017, pp. 2200–2208.

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural architecture
search: A survey”. In: arXiv preprint arXiv:1808.05377 (2018).

[18] Scott Ettinger et al. “Large scale interactive motion forecasting for autonomous
driving: The waymo open motion dataset”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision. 2021, pp. 9710–9719.

[19] Mark Everingham et al. “The pascal visual object classes challenge: A retro-
spective”. In: International journal of computer vision 111.1 (2015), pp. 98–136.

[20] Mark Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”.
In: International Journal of Computer Vision 88 (2010), pp. 303–338.

[21] Sergio Garrido-Jurado et al. “Automatic generation and detection of highly
reliable fiducial markers under occlusion”. In: Pattern Recognition 47.6 (2014),
pp. 2280–2292.

[22] Zheng Ge et al. “Yolox: Exceeding yolo series in 2021”. In: arXiv preprint
arXiv:2107.08430 (2021).

[23] Daniel Glasner et al. “aware object detection and pose estimation”. In: 2011
International Conference on Computer Vision. IEEE. 2011, pp. 1275–1282.

[24] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[25] Kaiming He et al. “Identity mappings in deep residual networks”. In: Euro-
pean conference on computer vision. Springer. 2016, pp. 630–645.

[26] Kaiming He et al. “Spatial pyramid pooling in deep convolutional networks
for visual recognition”. In: IEEE transactions on pattern analysis and machine
intelligence 37.9 (2015), pp. 1904–1916.

[27] Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A Survey of the State-of-
the-Art. 2019. arXiv: 1908.00709 [cs.LG].

[28] Stefan Hinterstoisser et al. “Gradient response maps for real-time detection
of textureless objects”. In: IEEE transactions on pattern analysis and machine
intelligence 34.5 (2011), pp. 876–888.

[29] Stefan Hinterstoisser et al. “Model based training, detection and pose estima-
tion of texture-less 3d objects in heavily cluttered scenes”. In: Asian conference
on computer vision. Springer. 2012, pp. 548–562.

[30] Stefan Hinterstoisser et al. “Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes”. In: 2011 international confer-
ence on computer vision. IEEE. 2011, pp. 858–865.

https://arxiv.org/abs/1908.00709

Bibliography 97

[31] Tomáš Hodaň, Jiří Matas, and Štěpán Obdržálek. “On evaluation of 6D object
pose estimation”. In: European Conference on Computer Vision. Springer. 2016,
pp. 606–619.

[32] Tomáš Hodan et al. “T-LESS: An RGB-D dataset for 6D pose estimation of
texture-less objects”. In: 2017 IEEE Winter Conference on Applications of Com-
puter Vision (WACV). IEEE. 2017, pp. 880–888.

[33] Jonas Dominik Homburg et al. “Constraint Exploration of Convolutional Net-
work Architectures with Neuroevolution”. In: Advances in Computational In-
telligence. Ed. by Ignacio Rojas, Gonzalo Joya, and Andreu Catala. Cham:
Springer International Publishing, 2019, pp. 735–746. ISBN: 978-3-030-20518-
8.

[34] Sabir Hossain and Deok-jin Lee. “Deep Learning-Based Real-Time Multiple-
Object Detection and Tracking from Aerial Imagery via a Flying Robot with
GPU-Based Embedded Devices”. In: Sensors 19.15 (2019), p. 3371.

[35] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv:1704.04861 (2017).

[36] Gao Huang et al. “Densely connected convolutional networks”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 4700–
4708.

[37] Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge.
“Comparing images using the Hausdorff distance”. In: IEEE Transactions on
pattern analysis and machine intelligence 15.9 (1993), pp. 850–863.

[38] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

[39] MyungHwan Jeon et al. “Underwater object detection and pose estimation
using deep learning”. In: IFAC-PapersOnLine 52.21 (2019), pp. 78–81.

[40] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[41] Licheng Jiao et al. “A Survey of Deep Learning-Based Object Detection”. In:
IEEE Access 7 (2019), pp. 128837–128868.

[42] Roman Kaskman et al. “Homebreweddb: Rgb-d dataset for 6d pose estima-
tion of 3d objects”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops. 2019, pp. 0–0.

[43] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “Posenet: A convolu-
tional network for real-time 6-dof camera relocalization”. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 2938–2946.

[44] Chloe Eunhyang Kim et al. “A comparison of embedded deep learning meth-
ods for person detection”. In: arXiv preprint arXiv:1812.03451 (2018).

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks”. In: Communications of the
ACM 60.6 (2017), pp. 84–90.

[46] Yann Labbé et al. “MegaPose: 6D Pose Estimation of Novel Objects via Ren-
der & Compare”. In: arXiv preprint arXiv:2212.06870 (2022).

[47] Y. Lecun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. DOI: 10 . 1109 / 5 .
726791.

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

98 Bibliography

[48] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “Epnp: An accu-
rate o (n) solution to the pnp problem”. In: International journal of computer
vision 81.2 (2009), pp. 155–166.

[49] Chuyi Li et al. “YOLOv6: A single-stage object detection framework for in-
dustrial applications”. In: arXiv preprint arXiv:2209.02976 (2022).

[50] Shiqi Li, Chi Xu, and Ming Xie. “A robust O (n) solution to the perspective-n-
point problem”. In: IEEE transactions on pattern analysis and machine intelligence
34.7 (2012), pp. 1444–1450.

[51] Zhigang Li, Gu Wang, and Xiangyang Ji. “Cdpn: Coordinates-based disen-
tangled pose network for real-time rgb-based 6-dof object pose estimation”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2019, pp. 7678–7687.

[52] Joerg Liebelt, Cordelia Schmid, and Klaus Schertler. “independent object class
detection using 3d feature maps”. In: 2008 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE. 2008, pp. 1–8.

[53] Haitao Lin et al. “SAR-Net: shape alignment and recovery network for category-
level 6D object pose and size estimation”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2022, pp. 6707–6717.

[54] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 2117–2125.

[55] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

[56] Li Liu et al. “Deep learning for generic object detection: A survey”. In: Inter-
national Journal of Computer Vision 128.2 (2020), pp. 261–318.

[57] Shu Liu et al. “Path aggregation network for instance segmentation”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 8759–8768.

[58] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference on
computer vision. Springer. 2016, pp. 21–37.

[59] Xiang Long et al. “PP-YOLO: An effective and efficient implementation of
object detector”. In: arXiv preprint arXiv:2007.12099 (2020).

[60] Paolo Meloni et al. “Neuraghe: Exploiting cpu-fpga synergies for efficient
and flexible cnn inference acceleration on zynq socs”. In: ACM Transactions
on Reconfigurable Technology and Systems (TRETS) 11.3 (2018), pp. 1–24.

[61] Frank Michel et al. “Global hypothesis generation for 6D object pose esti-
mation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 462–471.

[62] Diganta Misra. “Mish: A self regularized non-monotonic neural activation
function”. In: arXiv preprint arXiv:1908.08681 (2019).

[63] Christoph Molnar. “A guide for making black box models explainable”. In:
URL: https://christophm. github. io/interpretable-ml-book (2018).

[64] Kamyar Nazeri et al. “Edgeconnect: Generative image inpainting with adver-
sarial edge learning”. In: arXiv preprint arXiv:1901.00212 (2019).

Bibliography 99

[65] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks
for human pose estimation”. In: European conference on computer vision. Springer.
2016, pp. 483–499.

[66] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system”. In:
2011 IEEE international conference on robotics and automation. IEEE. 2011, pp. 3400–
3407.

[67] Utku Ozbulak. PyTorch CNN Visualizations. https://github.com/utkuozbulak/
pytorch-cnn-visualizations. 2019.

[68] Èric Pairet et al. “Nukhada USV: a Robot for Autonomous Surveying and
Support to Underwater Operations”. In: OCEANS 2022 - Chennai. 2022, pp. 1–
6. DOI: 10.1109/OCEANSChennai45887.2022.9775538.

[69] Shiye Pan and Xinmei Wang. “A Survey on Perspective-n-Point Problem”. In:
2021 40th Chinese Control Conference (CCC). IEEE. 2021, pp. 2396–2401.

[70] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035.

[71] Georgios Pavlakos et al. “6-dof object pose from semantic keypoints”. In: 2017
IEEE international conference on robotics and automation (ICRA). IEEE. 2017,
pp. 2011–2018.

[72] Sida Peng et al. “Pvnet: Pixel-wise voting network for 6dof pose estima-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 4561–4570.

[73] Mahdi Rad and Vincent Lepetit. “Bb8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects without
using depth”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 3828–3836.

[74] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 7263–7271.

[75] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiv:1804.02767 (2018).

[76] Joseph Redmon et al. “You only look once: Unified, real-time object detec-
tion”. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, pp. 779–788.

[77] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.
In: International journal of computer vision 115.3 (2015), pp. 211–252.

[78] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4510–4520.

[79] Davide Sapienza et al. “Deep Image Prior for medical image denoising, a
study about parameter initialization”. In: Frontiers in Applied Mathematics and
Statistics 8 (2022).

[80] Davide Sapienza et al. “Deep learning-assisted analysis of automobiles han-
dling performances”. In: Communications in Applied and Industrial Mathematics
13.1 (2022), pp. 78–95.

https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://doi.org/10.1109/OCEANSChennai45887.2022.9775538

100 Bibliography

[81] Carmelo Scribano et al. “All You Can Embed: Natural Language based Vehi-
cle Retrieval with Spatio-Temporal Transformers”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 4253–4262.

[82] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep
networks via gradient-based localization”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 618–626.

[83] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning im-
portant features through propagating activation differences”. In: International
conference on machine learning. PMLR. 2017, pp. 3145–3153.

[84] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside con-
volutional networks: Visualising image classification models and saliency
maps”. In: arXiv preprint arXiv:1312.6034 (2013).

[85] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[86] Min Sun et al. “Depth-encoded hough voting for joint object detection and
shape recovery”. In: European Conference on Computer Vision. Springer. 2010,
pp. 658–671.

[87] Pei Sun et al. “Scalability in perception for autonomous driving: Waymo open
dataset”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. 2020, pp. 2446–2454.

[88] Martin Sundermeyer et al. “Implicit 3d orientation learning for 6d object de-
tection from rgb images”. In: Proceedings of the european conference on computer
vision (ECCV). 2018, pp. 699–715.

[89] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015, pp. 1–9.

[90] Christian Szegedy et al. “Inception-v4, inception-resnet and the impact of
residual connections on learning”. In: Thirty-first AAAI conference on artificial
intelligence. 2017.

[91] Christian Szegedy et al. “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 2818–2826.

[92] Richard Szeliski. Computer vision: algorithms and applications. Springer Nature,
2022.

[93] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for con-
volutional neural networks”. In: International conference on machine learning.
PMLR. 2019, pp. 6105–6114.

[94] Mingxing Tan, Ruoming Pang, and Quoc V Le. “Efficientdet: Scalable and ef-
ficient object detection”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 10781–10790.

[95] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. “Real-time seamless single
shot 6d object pose prediction”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2018, pp. 292–301.

[96] Zhi Tian et al. “Fully convolutional one-stage 3D object detection on LiDAR
range images”. In: arXiv preprint arXiv:2205.13764 (2022).

[97] Stephen Tyree et al. “6-DoF pose estimation of household objects for robotic
manipulation: An accessible dataset and benchmark”. In: arXiv preprint arXiv:2203.05701
(2022).

Bibliography 101

[98] Yaman Umuroglu et al. “Finn: A framework for fast, scalable binarized neu-
ral network inference”. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 2017, pp. 65–74.

[99] Micaela Verucchi et al. “A systematic assessment of embedded neural net-
works for object detection”. In: 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). Vol. 1. IEEE. 2020, pp. 937–
944.

[100] Pascal Vincent et al. “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion.” In: Journal of
machine learning research 11.12 (2010).

[101] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. “YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detec-
tors”. In: arXiv preprint arXiv:2207.02696 (2022).

[102] Chien-Yao Wang, Hong-Yuan Mark Liao, and I-Hau Yeh. Designing Network
Design Strategies Through Gradient Path Analysis. 2022. DOI: 10.48550/ARXIV.
2211.04800. URL: https://arxiv.org/abs/2211.04800.

[103] Chien-Yao Wang et al. “CSPNet: A new backbone that can enhance learn-
ing capability of CNN”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops. 2020, pp. 390–391.

[104] He Wang et al. “Normalized object coordinate space for category-level 6d
object pose and size estimation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 2642–2651.

[105] Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. “Recent advances in deep
learning for object detection”. In: Neurocomputing (2020).

[106] Yu Xiang et al. “Posecnn: A convolutional neural network for 6d object pose
estimation in cluttered scenes”. In: arXiv preprint arXiv:1711.00199 (2017).

[107] Saining Xie et al. “Aggregated residual transformations for deep neural net-
works”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 1492–1500.

[108] Saining Xie et al. “Exploring randomly wired neural networks for image
recognition”. In: arXiv preprint arXiv:1904.01569 (2019).

[109] Xiaowei Xu et al. “Dac-sdc low power object detection challenge for uav ap-
plications”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2019).

[110] Fisher Yu et al. “Bdd100k: A diverse driving dataset for heterogeneous mul-
titask learning”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020, pp. 2636–2645.

[111] Fisher Yu et al. “Deep layer aggregation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 2403–2412.

[112] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. “Objects as points”.
In: arXiv preprint arXiv:1904.07850 (2019).

[113] Xizhou Zhu et al. “Deformable convnets v2: More deformable, better results”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2019, pp. 9308–9316.

[114] Lu Zou et al. “6d-vit: Category-level 6d object pose estimation via transformer-
based instance representation learning”. In: IEEE Transactions on Image Pro-
cessing 31 (2022), pp. 6907–6921.

https://doi.org/10.48550/ARXIV.2211.04800
https://doi.org/10.48550/ARXIV.2211.04800
https://arxiv.org/abs/2211.04800

102 Bibliography

[115] Zhengxia Zou et al. “Object detection in 20 years: A survey”. In: arXiv preprint
arXiv:1905.05055 (2019).

