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Abstract

The future of urban mobility is undergoing changes with the development of
intelligent cities and the increased use of autonomous vehicles. The transi-
tion to this new paradigm is a gradual process over several years or decades,
but progress has been made through the implementation of smart sensors
and communication infrastructure. The development of Advanced Driver-
Assistance Systems (ADAS) with growing autonomy is also in progress.

In this thesis, two main aspects are addressed: coordination algorithms
to manage the smart city traffic flow and the perception-control pipeline of
autonomous vehicles with specific emphasis on the localization and planning
phases.

With regards to the first aspect, several novel algorithms are proposed
that exploit the new smart city capabilities to address typical problems such
as Traffic Lights and Intersection Management, Parking Management, and
Emergency Vehicles Management. The work proposed in this thesis is a
study of the current situation in which autonomous or able-to-communicate
vehicles and traditional vehicles that are not able to communicate with city
infrastructure co-exist. This is a crucial aspect since mixing ADAS and tra-
ditional vehicles impacts the algorithm design. The proposed algorithms are
tested in a simulated scenario in order to study unexpected behaviors since
traffic flow is a complex system and some events can trigger unpredictable
consequences. The results show that the proposed algorithms improve the
city’s livability by decreasing the waiting time at traffic lights, reducing the
parking search time, and the emergency vehicle response time.

In regards to the localization and planning stages, the emphasis is placed
on the execution time of the algorithms, as it is a critical aspect. If the
perception and control pipeline takes too long, the intended maneuver may
become outdated due to changes in the environment, potentially causing
safety risks. In light of this, novel implementations for localization and
planning algorithms are proposed, which make extensive use of the GPU as
an accelerator in order to reduce computational time. The GPU is leveraged
to parallelize the algorithm and minimize memory access. Additionally,
the use of different floating-point precision types is investigated to assess
the impact on the results. The proposed implementations of the ORB-
SLAM algorithm for the localization phase and the Frenet Path Planner
algorithm for the planning phase show a consistent speedup, compared to
the previously published CPU-based implementations of the algorithms.
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Chapter 1

Introduction

1.1 Motivation

The future of urban mobility is poised to undergo significant transforma-
tions, as the implementation of smart cities and the widespread adoption of
autonomous vehicles are expected to occur. This transition is likely to be
a gradual process, spanning several years or even decades. However, some
efforts have already been made in this direction, with the deployment of
smart sensors such as cameras for traffic monitoring and smart actuators
like traffic lights being implemented. Furthermore, efforts are being made
to develop infrastructure that enables the communication between vehicles
(V2V) and between vehicles and smart sensors or actuators (V2I) as shown
in Figure 1.1. While fully autonomous vehicles are not yet a reality, re-
cent advancements in technology have led to the development of Advanced
Driver-Assistance Systems (ADAS) that utilize embedded boards to run
algorithms that assist drivers during their trips. These systems can have
varying levels of autonomy, depending on the maneuvers they can perform
without human intervention.

The infrastructure that supports smart cities and autonomous vehicles,
such as the equipment used within urban environments and in-vehicle em-
bedded computational boards, is a critical element in the successful deploy-
ment of these technologies. However, the algorithms that govern these sys-
tems are also of paramount importance. Algorithms that are inadequately
designed can result in safety hazards and accidents in the case of autonomous
vehicles, or disruptions to city life and traffic flow in the case of smart city
management. As such, it is essential that the algorithms employed in these
dynamic and complex contexts possess robustness to handle unexpected sit-
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Figure 1.1: Communication between vehicles (V2V) and between vehicles
and city infrastructure (V2I).

uations.

In an imaginary scenario in which all vehicles are autonomous and have
the capability to communicate with each another, coordination algorithms
can be designed to take into account other vehicles’ behavior and thus derive
appropriate plans. However, such a scenario also presents the challenge of
incorporating unpredictable elements, such as pedestrians, into the decision-
making process. In reality, the situation becomes even more complex when
not all vehicles are autonomous and connected, as human-driven vehicles
introduce an additional layer of unpredictability. Furthermore, the traffic
flow system is highly complex, where a single event can initiate a cascade of
responses from other vehicles, making it difficult to develop algorithms that
can effectively prevent negative outcomes.

When focusing on the behavior of individual autonomous vehicles, it is
important to consider the control algorithms that plan and execute their
movements. The entire pipeline can be split into two phases that are more
focused on environmental perception and on actual control of the vehicle.
Vehicle movements are dependent on the current state of the environment,
thus perception algorithms must have the ability to perceive the environ-
ment, while control algorithms have to plan the vehicle movements based
on the current and potential future states of the environment. This entails
considering the actions and behaviors of other vehicles and pedestrians, both
in the present moment and in the foreseeable future, in order to guarantee
the safety of the intended movements.

To guarantee the safety and efficacy of coordination algorithms in smart
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Figure 1.2: Time Constraint in algorithms execution from the environment
perception to the planned maneuver execution.

cities and control algorithms in autonomous vehicles, it is essential to thor-
oughly test them in simulated environments before implementation in real-
world scenarios. Additionally, it is crucial that control algorithms are able
to perform their functions in a timely manner as the environment is dy-
namic and information that was relevant at one point may rapidly become
outdated. If a control algorithm has a large processing time, it may be
applied to a situation that has since changed, potentially reducing its effec-
tiveness. Hence, to ensure safety, control algorithms must be able to execute
efficiently and quickly or anyway at a frequency close to the actuator rate
(see Figure 1.2).

In summary, there are two main aspects of the security of smart cities
and the vehicles that inhabit them: coordination among vehicles, and the
time constraints of the single vehicle control algorithm execution. The first
aspect involves accounting for the unpredictable behavior of non-connected
vehicles and ensuring that the interactions enhance the livability of the city.
Thus, it is essential to test the effect of coordination algorithms in a simu-
lated urban environment. The second aspect is related to the optimization of
control algorithms and the capabilities of the hardware mounted inside the
vehicle. Due to space and weight limitations, vehicles cannot be equipped
with high-end hardware [1]. To address this, a possible solution is to use
embedded boards that are compact yet have limited resources, which implies
that execution times become a critical consideration. Therefore, control al-
gorithms must leverage the hardware capabilities of compute accelerators in
order to minimize execution times.
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1.2 Scopes

The primary objective of this thesis is to investigate the capabilities of Ad-
vanced Driver-Assistance Systems (ADAS) and connected vehicles within
the context of smart cities. The aim is to harness the city’s infrastructure
and embedded boards to improve both the livability of the city and the se-
curity of ADAS algorithms. The aforementioned considerations are taken
into account in the presented analysis and proposals.

The overall focus is on addressing two main areas: the development of
coordination algorithms for managing the flow of traffic in urban environ-
ments, and the optimization of control and perception algorithms for indi-
vidual vehicles. To achieve the aforementioned scopes the thesis is organized
into two parts: the first is dedicated to improve the livability of the smart
city using smart algorithms (Chapters 3 and 4); the second part is dedicated
to improve the security of ADAS algorithms (Chapters 6 and 7).

In the context of smart cities addressed in the first part of the thesis,
the focus is on addressing the co-existence of connected and non-connected
vehicles in the same scenario, and the proposed coordination algorithms are
evaluated in a simulated environment to assess their impact on traffic flow.

In the first portion of the thesis, the focus is on the smart city scenario
and the development of coordination algorithms among connected vehicles
to address common issues such as Parking Management, Traffic Light Man-
agement, Intersection Management, and Emergency Vehicle Management.

In the second part, the proposed solutions for Advanced Driver Assis-
tance Systems (ADAS) and autonomous vehicles are geared towards reduc-
ing the computational time of control and perception algorithms through the
utilization of parallelization and hardware acceleration on embedded boards.

In particular, the focus shifts to the individual vehicle, where specific
tasks within the perception and control pipeline, such as localization and
planning, are addressed with the goal of reducing execution time through
the use of accelerators in the algorithms used to address these tasks.

1.3 Methodologies

To achieve the fist scope, novel coordination algorithms to manage the smart
city crucial aspects are proposed. Moreover, they are tested in a simulated
scenario to see their effectiveness.
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In particular, a new auction-based system for Traffic Lights Management
is proposed (Section 3.2.1) and its effectiveness is evaluated by comparing it
to the traditional Fixed-Time traffic lights policy. The proposed system is
suitable to reduce the waiting time at traffic lights compared to the Fixed-
Time policy. Additionally, the system is tested in a simulated scenario in
which some vehicles are equipped with the proposed system while others are
not.

Similarly, for the Intersection Management problem, a novel manage-
ment system based on auction is proposed (Section 3.2.2). Several variants
that consider different strategies to bid and different policies to choose which
vehicle will pass the intersection are evaluated through various simulations.
Moreover, the system is designed to be easily adopted by human-driven ve-
hicles with minimal equipment, as it takes into account the limitations of
human capabilities to carry out very precise instructions.

With regards to Parking Management, a new, smart system is proposed
that enables vehicles to select and reserve parking spots (Section 4.2.1). The
system is engineered to monitor the utilization of parking areas and provide
vehicles with information about parking spot availability. Additionally, it
is capable of reserving the parking spot selected by the vehicle. The co-
existence of smart vehicles and traditional vehicles is also taken into account
in the design of the system. The system is resilient to the presence of
traditional vehicles and has been shown to reduce the time spent searching
for a parking spot by up to 76% when compared to baseline strategies utilized
by human drivers. The impact of the presence of reservable parking spots
is also investigated.

Considering Emergency Vehicle Management, a new system is proposed
that aims to decrease emergency vehicles response time by up to 36.7% with
respect to a scenario in which no such system exists (Section 4.2.2). The
system notifies other non-emergency vehicles to alter their routes in order to
avoid congestion on streets traversed by emergency vehicles. Additionally,
the system informs vehicles of accidents as they occur, allowing them to
reroute and avoid the accident site, resulting in a reduction of trip time by
up to 36.1% compared to the trip time of the same vehicle that does not
interact with the system.

To achieve the second scope, two important task (localization and plan-
ning) of ADAS vehicles are analyzed and optimized to achieve better exe-
cution times.

To optimize the performance of the localization task, the ORB-SLAM
algorithm is addressed and a novel GPU-based implementation using CUDA
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is proposed (Section 6.3). This new implementation demonstrates a signif-
icant increase in performance, with a speed-up of up to 3x compared to
the original baseline CPU-based implementation of ORB-SLAM, achieved
through the optimal utilization of concurrency and the implementation of
novel methods for the Pyramid construction and point filtering phases of
the algorithm.

With regards to the planning task, the proposed novel implementation
of the Frenet Path Planner algorithm, which is designed to exploit the
capabilities of a CUDA-capable GPU, demonstrates a significant increase
in computational efficiency (Section 7.3). Through the optimal utilization
of GPU resources, such as shared memory, the implementation achieves a
speed-up of up to 28x compared to the baseline CPU-based implementation.
Additionally, the impact of various types of floating-point precision on the
computational time and trajectory precision is also evaluated.

In Chapter 2 of this thesis, the concepts related to the analysis of smart
cities and connected vehicles are presented. The proposed algorithms for
addressing the coordination of vehicles at both a local level, such as Traffic
Light Management, and a global level, such as Emergency Vehicle Manage-
ment, are discussed in Chapters 3 and 4 respectively. These algorithms are
evaluated using an urban simulator and the extension implemented in the
simulator to enable the simulation of smart cities is described in Chapter 2
(Section 2.2). Chapter 5 shifts the focus to the individual vehicle, dis-
cussing the role of ADAS vehicles and the importance of control algorithm
execution time and embedded boards. In particular, the topics of localiza-
tion (Chapter 6) and planning (Chapter 7) in the perception and control
phases are examined, algorithms for these tasks are presented, and novel
implementations proposed. These implementations are evaluated on an em-
bedded board commonly used in ADAS and autonomous vehicles. Finally,
the thesis concludes with a summary of key findings and recommendations
in Chapter 8.
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Chapter 2

Connected and Autonomous
Vehicles in Smart Cities

2.1 Introduction

The rapid growth of the Internet of Things (IoT) [2] presents new oppor-
tunities for smart mobility [3, 4], which can be realized through the imple-
mentation of smart city infrastructure and systems. By leveraging these
services, the overall driving experience can be improved, resulting in re-
duced travel times, decreased traffic congestion, reduced pollution, and a
reduction in driver stress. Ultimately, these efforts aim to make cities more
efficient, safe, and livable for both residents and workers. V2I and V2V
communication will allow for the exchange of valuable information [5] and
the ability for vehicles to make autonomous decisions on the most efficient
routes based on factors such as distance, cost, driver needs, and real-time
traffic conditions [6].

However, the realization of smart mobility requires not only a robust
infrastructure that connects vehicles and the environment but also sophisti-
cated algorithms that effectively manage and coordinate the movements of
these vehicles [7].

Another important consideration in the implementation of smart mobil-
ity is the heterogeneity of vehicles, with some featuring advanced communi-
cation capabilities or driving assistance systems (ADAS) while many others
currently do not. It is likely that in the future, all vehicles will be equipped
with these advanced systems, however, in the present and near future, it is
necessary to account for scenarios where both connected and non-connected
vehicles exist. Furthermore, in the implementation of autonomous vehicles,
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it is also necessary to consider the co-existence of human-driven cars. This
means that it will be necessary to account for the interactions between both
connected and non-connected cars as well as autonomous and human-driven
cars. In the end, vehicles can be classified into four distinct groups (Fig-
ure 2.1):

• Equipped or connected: Vehicles able to communicate with city in-
frastructure or other vehicles;

• non-Equipped or non-connected: Vehicles not able to communicate
with city infrastructure or other vehicles;

• Autonomous or self-driving: Vehicles able to drive themselves with-
out human intervention;

• non-Autonomous or human-driven: Vehicles are not able to drive
themselves without human intervention.

It is important to note that a vehicle may be equipped to communicate, but
not necessarily be fully autonomous, and vice versa since an autonomous
vehicle can leak in the connection capabilities or not support the communi-
cation protocol adopted by the city infrastructure. This type of autonomous
vehicle must be treated as non-equipped since they are not able to exchange
information within the city infrastructure. In certain contexts, it is also com-
mon to refer to traditional vehicles, which encompasses both non-connected
and non-autonomous vehicles.

This heterogeneity of vehicles has implications for the design of solutions
for smart mobility. Solutions developed for scenarios in which all vehicles
are autonomous or connected may not be appropriate during the transition
period where non-connected and connected vehicles will coexist. It is impor-
tant to take into account that human drivers cannot be relied upon to follow
instructions as precisely as autonomous vehicles. For example, at intersec-
tions, human drivers may be able to execute simple instructions such as
”stop and wait for your turn” or ”go, it’s your turn”, but not more complex
sequences of instructions or precise maneuvers such as to pass close to other
vehicles with a few cm of precision or follow a precise speed or acceleration.
Additionally, it is not feasible to rely on human drivers to substitute for
sensors and cameras in collecting data for implementing coordination poli-
cies. Therefore, it is necessary to design algorithms that can account for the
co-existence of both types of vehicles and are able to take advantage of the
capabilities of smart cities.
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Figure 2.1: Vehicles Categories.

The implementation of new algorithms for traffic management has the
potential to revolutionize the way in which we experience the city. However,
due to the complexity of traffic flow, these algorithms may exhibit unex-
pected emergent behaviors that could have negative impacts on urban life.
To mitigate this risk, it is essential to thoroughly test proposed traffic man-
agement approaches before their implementation in real-life scenarios. This
necessitates the use of an accurate urban traffic simulator for the analysis
of the complex dynamics arising from the interactions between the smart
city infrastructure and vehicles. The unintended consequences of the im-
plementation of new algorithms can have serious negative impacts on the
city. Miscommunication with vehicles or improper management of traffic
lights, for instance, could lead to collisions. An inaccurate algorithm can
also create traffic congestion, resulting in increased travel times for drivers
and significantly hindering the ability of emergency vehicles to respond to
rescue operations. These examples serve to underscore the significance of
conducting a simulation phase prior to the actual deployment of systems and
algorithms in the city. For the use cases discussed in Chapters 3 and 4, the
MATSim urban simulator1 was used to perform the necessary testing. The
MATSim Simulator [8] is a mesoscopic simulation platform for urban trans-
portation that is based on the principles of Multi-Agent Systems (MAS) [9].

The standard version of MATSim is restricted in its ability to simulate in-

1https://www.matsim.org/
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teractions among road users, including communication between vehicles and
the surrounding infrastructure. To address this limitation, a new extension
to MATSim (described in Section 2.2) has been developed, which allows sys-
tem engineers to simulate the interactions among sets of connected vehicles
within a Smart City. This extension facilitates a more thorough evaluation
of proposed traffic management approaches before their implementation in
actual settings.

The Smart City MATSim extension is composed of multiple modules
that simulate cameras, sensors, servers, and communication systems. This
enables the simulation of algorithms that leverage smart city hardware.

Given the issues discussed above, in Chapter 3 and 4, the intersec-
tions, emergency vehicles, traffic lights, and parking problems are examined.
For each of these issues, a system that utilizes smart city infrastructure is
proposed. Furthermore, the aspect of vehicle heterogeneity is also taken
into consideration when testing the proposed systems in simulation environ-
ments.

2.2 MATSim extension

MATSim, or Multi-Agent Transport Simulation, is a sophisticated urban
simulation software that utilizes a multi-agent paradigm to simulate the
daily traffic of a city. The software evaluates the actions of individual ve-
hicles, taking into account the interactions between them as they share the
same traffic network. These interactions result in the emergence of traffic
flow patterns and potential congestion.

The simulation can be divided into two levels of abstraction: the micro-
scopic level, which pertains to the behavior and plans of individual vehicles,
and the macroscopic level, which pertains to the aggregate traffic flow pat-
terns that result from the interactions of these vehicles.

The primary goal of MATSim is to provide a comprehensive simulation
of traffic flow at the macroscopic level, using the daily plans of vehicles
as inputs. The resulting simulation is based on the collective behavior of
individual vehicles and their interactions, rather than relying solely on math-
ematical models.

Through this approach, MATSim allows for the testing of various scenar-
ios and the examination of how changes in the environment, vehicle plans,
and behavior can affect traffic flow patterns.

On the other hand, the basic form, MATSim does not cover the typical
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capabilities of a smart city. In the smart city scenario vehicles and infras-
tructure are able to exchange information, and the city is equipped with
sensors and actuators to perceive and manage crucial aspects such as traf-
fic flow or parking. In order to add the possibility to simulate a city with
these capabilities, the MATSim modularity is exploited. The new modules
are built without a specific algorithm in mind but they are designed to be
ready to permit the programmer to write algorithms that have to exploit
smart city capabilities. In particular, the new modules give the possibility to
change the vehicle’s route in response to other events (Section 2.2.1), design
custom smart algorithms for traffic lights and intersection management (Sec-
tion 2.2.4), and manage parking areas with smart algorithms (Section 2.2.5).
These modules require a substrate of simulated sensors and communication
stuff, for this reason, modules to add communication and perception ca-
pabilities to MATSim are built (Sections 2.2.2 and 2.2.3). Eventually, the
new MATSim extension adds to the basic form of the simulator the commu-
nication and perception capabilities and a smart structure that is used to
implement smart algorithms for parking, emergency vehicles, intersection,
and traffic lights management as in Chapters 3 and 4.

2.2.1 Dynamic Vehicle Routing

In its basic form, MATSim simulates vehicles that follow pre-determined
plans and routes without deviation. However, in the context of simulating a
smart city scenario, it is necessary to extend this concept by introducing the
notion of interconnected vehicles that are able to retrieve real-time traffic
information and adjust their routes accordingly.

Previous work has proposed extending MATSim to enable dynamic rout-
ing [10], which allows vehicles to change their routes at runtime in response
to events that occur during the simulation.

The new MATSim extension used in this thesis builds upon the previous
work mentioned above by extending MATSim to introduce dynamic behavior
for vehicles in a smart city scenario. This new extension allows for the
variation of vehicles’ behavior in response to real-time smart city events and
further enables vehicles to communicate with a central city server in order to
retrieve and utilize relevant information for decision-making and planning.

An example of the practical application of the new extension to MATSim
is presented in Figure 2.2. This use case pertains to the ability of vehicles
to dynamically reroute in response to congestion in urban traffic flow. In
the standard version of MATSim, when a vehicle reaches an intersection,
the simulator determines the next street (referred to as a ”link” in MATSim
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terminology) the vehicle will take based on the predefined route. However,
in this use case, the vehicle’s route is subject to change if the central server
notifies of congestion in the traffic flow. With the new extension, combined
with the communication extension described in Section 2.2.2, vehicles are
able to compute a new route using the information provided by the server,
allowing for real-time adjustments to their planned route when the simulator
requests the next link.

2.2.2 Communication

An integral component of smart city systems is the ability for vehicles to
communicate with one another and with city infrastructure. However, MAT-
Sim, as it currently stands, does not include this capability. To address this
limitation, a new extension has been developed to add communication func-
tionality to MATSim, enabling the simulation of smart city scenarios.

This extension is divided into two primary components: the communica-
tion functionality itself, and a discovery phase in which vehicles can identify
other communicating entities within their vicinity. The first component
is implemented through the use of a Java interface, which a vehicle class
must implement in order to be able to communicate. This interface defines
methods for sending and receiving messages, as well as for discovering other
reachable communicating entities.

The second component is implemented by leveraging events emitted by
the simulator engine. The goal is to maintain an up-to-date map of the
positions of vehicles and other communicating entities. This map is used to
identify reachable entities within communication range when a vehicle wishes
to communicate. To accomplish this, the extension includes a wrapper that
maintains the map as an internal state, updating it when the simulator
engine notifies of a vehicle movement. The wrapper also includes a method
that returns the reachable entities, which is called by a vehicle when it wishes
to initiate communication (Figure 2.3).

2.2.3 Perception

Another key aspect of smart cities is the use of smart sensors to gather
information about the city’s current state, which serves as the foundation
for decision-making. For example, smart cameras that are able to count the
number of vehicles present on a particular street can be used to monitor
traffic flow and detect congestion.

In its current form, MATSim does not include this concept, so a new
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Figure 2.2: Flow of events for a vehicle that dynamically adjusts its route
in response to congestion notifications received from the central server.
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Figure 2.3: Functionality of the communication wrapper in the MATSim
extension for smart city scenarios.
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extension was developed to simulate this type of sensor. The new exten-
sion was implemented using a wrapper as in the communication extension
(described in Section 2.2.2). The wrapper captures events emitted by the
simulator engine regarding the movement of vehicles, and in particular, is
interested in the information about when vehicles enter or leave a link. This
information is used to update the internal state of the wrapper, which con-
sists of a vehicle counter for each link present in the city. By incrementing
or decrementing the counters based on vehicle movement, the wrapper is
able to provide real-time information on the number of vehicles present on
each link. The wrapper can work in a passive or active way: it can notify
a change in a link but it exposes also a method to retrieve link information
by calling it.

To make the extension more realistic, a class representing a camera was
implemented. This class uses the wrapper’s information to retrieve the num-
ber of vehicles present on the street within its field of view, simulating the
behavior of a real-world camera. Additionally, by decoupling the wrapper
and camera concepts, it is possible to simulate areas of the city that are not
covered by sensors.

In particular, two types of cameras are implemented in the extension:
one passive and one active. The passive camera does not actively monitor
the street, it waits for a hypothetical city server to request information
about the street, at this point the camera retrieves the information from the
wrapper and sends it to the requester. The active camera actively monitors
the streets, using the active version of the wrapper to be notified of link
changes. When there is a change it notifies the change to the city server.
The two versions of the perception extension are illustrated in Figure 2.4.

2.2.4 Traffic Lights

A complementary concept to that of sensors in smart cities is the concept
of actuators, which are hardware devices capable of performing actions in
order to achieve a specific goal. In a smart city scenario, an example of an
actuator is a traffic light. While a standard traffic light can manage traffic
based on a predefined sequence of states (green and red), a smart traffic light
can dynamically adjust its behavior based on information about the status
of intersections and adjacent streets, or by receiving instructions from a city
server.

In its current form, MATSim does not include a concept of traffic lights.
A module for simulating standard traffic lights was added in [11, 12]. This
module implements a system that can be summarized in two main aspects:
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(a) Passive version.

(b) Active version.

Figure 2.4: Functionality of the perception MATSim extension for smart
city scenarios.
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it allows only vehicles on streets with a green light to pass through an
intersection, and it includes a class that represents the traffic light controller.
Each signalized intersection has its own controller, which defines the timing
of the green and red light phases.

To extend this functionality, a new extension has been developed to
simulate smart traffic lights. By integrating this class with the communi-
cation extension (described in Section 2.2.2), it is possible for the traffic
light controller to dynamically adjust its behavior in response to real-time
information about the city’s status. For example, by querying cameras for
information on street overcrowding or giving priority to emergency vehicles
as indicated by the city server (Figure 2.5). The extension allows the traffic
lights to change their behavior dynamically in response to the city’s status.
In the end, the new extension adds to the previous one described in [11, 12]
the possibility to change dynamically the traffic lights’ behavior exploiting
information that the smart city can give. Since the previous extension allow
only to implement statically defined algorithm for traffic lights management,
the new extension can be considered as the smart city version of the previous
one.

2.2.5 Parking

As reported in the MATSim book [8] the baseline version of the simulator
does not take into account the parking aspect. On the other hand in [13]
and [14] the authors have extended MATSim to simulate parking. Specifi-
cally, the baseline version assumes that a vehicle will always find a parking
spot near its destination. With the extensions mentioned above, a vehicle
is only able to end its trip if there is an available parking spot. Each link
can have an associated parking area with a specific capacity, and a vehicle
can park in that link only if the capacity has not been reached. There is a
manager that tracks the number of vehicles parked in each area and deter-
mines whether a vehicle can park in a particular link. Moreover, in [14], the
author proposes an algorithm for parking choice that uses static information
that the driver is supposed to know. This parking choice is performed before
the driver starts the trip and then is not changed. This is a limitation in
a smart context in which the vehicle can retrieve information from the city
infrastructure and can dynamically change the parking choice by reacting
to parking availability changes.

Indeed, in a smart city scenario, parking areas can be more complex
than traditional parking areas. They can have monitoring capabilities, such
as the ability to count the number of available spots, and they can control
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Figure 2.5: Illustration of a smart traffic light responding to a request from
the city server to give priority to an emergency vehicle.
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which vehicles are able to park in the area. Moreover, they can share with
the vehicles their parking availability to facilitate parking choice.

The new module for smart parking is built to allow these smart capabil-
ities to MATSim giving the programmer the possibility to implement more
advanced algorithms with respect to the parking extensions of [13] and [14]
exploring useful information that the smart parking areas can give. Similar
to the perception mechanism described in Section 2.2.3, a class was imple-
mented to represent a camera specifically for parking monitoring. It can
notify a hypothetical server of changes in parking occupancy, for example
when a vehicle enters or exits a parking area. To retrieve this information,
the camera interacts with the parking manager to get the current parking
occupancy. The manager is also extended to manage which vehicles are al-
lowed to park, simulating a smart city scenario in which parking spots can
be reserved, and only the vehicle that has reserved the spot is allowed to
park.
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Chapter 3

Local Coordination: Traffic
Lights and Intersections

In a hypothetical smart city where vehicles are able to communicate with
the city’s infrastructure, coordination algorithms can involve various entities
such as sensors, actuators, and vehicles themselves. In certain situations, the
interaction may be localized, as only entities within a certain communication
range can participate in the coordination algorithm. In these instances, the
algorithm can be designed to consider the sensors, actuators, and vehicles
within a specific area. This implies that the algorithm does not have a global
view of the city, making it difficult to design certain types of algorithms that
require such information. On the other hand, an algorithm designed in this
way is distributed and does not rely on a central server, which means that
there is no single point of failure for the entire city. A failure in a specific
area would only result in the inability to utilize the algorithm in that area.
Therefore, if the algorithm is designed to consider only the local area, it
minimizes the possibility that inefficiencies will affect the entire city.

In this chapter, two coordination algorithms that can be designed for
a local area are discussed. The first algorithm addresses the Management
of Traffic Lights, while the second algorithm addresses the Management of
vehicles at unsignalized Intersections.
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3.1 Local Coordination Related Work

3.1.1 Traffic Lights Related Work

Traditionally, traffic lights at signalized intersections were managed using
static and Fixed-Time Control (FTC) systems [15]. With the emergence
of smart cities and connected vehicles, there has been an opportunity to
improve the management of signalized intersections through the use of com-
munication. The proposed approach described in [16] and evaluated in [17],
builds on the concept of auctions and takes into account the co-existence
of vehicles that are capable of communicating with city infrastructure and
those that are not. This aspect, which has not been given much attention in
the literature, is crucial in scenarios where traditional and connected vehicles
will co-exist.

Moreover, the proposed system is distributed. Indeed, each traffic light
acts as a single entity and does not require a central server or other traffic
lights. This means that the system can be deployed in the whole city or only
in some critical intersections. In this manner, the city authorities of both
large and small cities can find an effective tradeoff between the cost of the
deployment of the new system and the benefit that can provide to the city.

Most of the research in this field has been focused on payment-based
strategies. For example, in [18], the authors propose a strategy to maximize
the utility function reported by drivers at intersections. In [19, 20] a differ-
ent approach is presented, in which two traffic lights compete to attain the
highest value of green time. Micro-auctions are used in a decentralized man-
ner to determine the next signal phase in [21]. However, these approaches
primarily rely on communication through smart city infrastructure and do
not involve vehicles in a central role. This is an important consideration
as drivers could provide information about their priorities and their value
of time (VOT) as in [22, 23]. Reinforcement learning is adopted in [24] to
obtain an optimal bidding strategy, and in [25] the goal is to minimize the
personal delay of drivers through an auction for green time. Another im-
portant aspect to consider is incentive compatibility, that is, ensuring that
drivers are incentivized to adopt the system and not cheat to gain a personal
benefit at the expense of overall performance [18, 26]. This has been demon-
strated in [27] where the authors show that overall performance degrades if
incentive compatibility is not considered.

Regarding the co-existence of traditional and connected vehicles, in [28],
the authors propose a method for coordinating the movements of autonomous
and human-driven vehicles through traffic lights using a First-Come-First-
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Served policy. Similarly, in [29], the authors examine the impact of the
penetration rate of an auction system for traffic lights, implying scenarios
in which connected and non-connected vehicles will co-exist, however, dif-
ferently from the proposed approach, they use a second-price auction i.e
the highest bid win but the winner has to pay only the price of the second
highest bid.

3.1.2 Intersection Related Work

Intersections present a significant challenge in the context of traffic flow [5].
Yield rules have traditionally been implemented to coordinate vehicles at
intersections, taking into account the characteristics of both human drivers,
such as unpredictable behaviors and reaction times, and the characteristics
of the intersections themselves, such as assigning priority to larger and highly
trafficked lanes.

However, the scenario changes significantly when vehicles are autonomous
and can communicate with one another and acquire information about their
surrounding environment. This opens up a wide range of possibilities for im-
proved traffic coordination, overcoming the limitations of traditional traffic
lights in allocating resources and preventing the starvation of vehicles on
roads without yield.

Several approaches have been proposed for the collaborative manage-
ment of intersections [30, 31]. One common method is to use auctions to
dynamically manage resources [32], as they allow for the pricing of goods
based on customer interest [33]. Auctions were largely exploited to manage
negotiations between autonomous entities modeled as agents [34].

A number of papers have been published on the use of auctions in In-
tersection Management, including [32], which uses a wallet system for au-
tomatic bidding based on trip characteristics, driver-specified budget, and
remaining distance to the destination. It also addresses the optimization of
overall traffic.

Another approach is proposed in [35], which uses a two-step auction
mechanism. In the first step, only the first vehicles of the lanes are involved.
They place the bid following the second-price sealed-bid auction rule [36]:
the system allocates the next time slot to the vehicle with the highest bid,
while this vehicle needed only to pay the second highest bid placed in the
auction. In the second step the winner of the first step can acquire a longer
time slot initiating another auction, in this auction also the vehicle following
the winner of the first step can bid with the other vehicles placed in the first
places of lanes.
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Finally, Vasirani and Ossowski [37] proposed a novel approach to man-
age urban intersections, utilizing a reservation-based intersection control
model [38] and on market-inspired rules. They evaluated two different sce-
narios, one with a single intersection and the other with a network of inter-
sections. The first scenario was used to analyze the performance of a policy
that employs combinatorial auctions to allocate slot reservations. The sec-
ond scenario was used to assess the impact of a traffic assignment strategy,
which is inspired by competitive markets, on drivers’ route choices. The
authors then combined these two strategies to propose an adaptive manage-
ment mechanism that combines the auction-based traffic control policy and
the competitive traffic assignment strategy.

More in general, have also been utilized to manage resources other than
intersections, such as parking slots and fleets. In particular, managing park-
ing spaces for private and individual vehicles is a challenging problem of
resource allocation coordination. Various solutions have been proposed [39],
including the use of auctions to implement a negotiation approach in which
each vehicle actively participates in the coordination process by advanc-
ing its proposals [40, 41]. Additionally, for fleets of special vehicles such
as emergency vehicles or taxis, which typically have a limited number of
units, auctions have been used to determine which users to serve first when
demand exceeds the available resources [42].

In this body of work, the presence of both human-driven and autonomous
or connected vehicles is taken into account. Specifically, the proposal de-
scribed in Section 3.2.2 accounts for the simultaneous presence of these
two types of vehicles, which is crucial in addressing the transition from
an exclusively human-driven vehicular environment to one that is fully au-
tonomous [38]. This co-presence of vehicles necessitates the consideration of
various constraints arising from the unpredictability and potential untrust-
worthiness of human-driven vehicles. Additionally, the proposed approach
in Section 3.2.2 allows for the participation of all vehicles present in a lane
in the auction, rather than just those at the head of the lane. This is a criti-
cal aspect in ensuring the efficient and effective management of intersections.

The approach presented in the subsequent section builds upon the re-
search presented in [43] and addresses the challenges associated with the
co-existence of human-driven and autonomous vehicles. The approach ac-
counts for the limitations of human-driven vehicles and outlines methods for
equipping these vehicles to interact with autonomous and connected vehicles.
Furthermore, the interactions and actions are designed to accommodate the
limitations of human-driven vehicles.
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3.2 Proposals for Local Coordination

3.2.1 Proposal for Traffic Lights Management

In the proposed scenario, it is assumed that both autonomous and human-
driven vehicles co-exist. The proposed crossing management system is de-
signed for intersections that are already equipped with traffic lights. The
system aims to convert the traditional functionalities of traffic lights into a
new, more efficient system. The decision to install a traffic light at a partic-
ular intersection can be based on the fact that the intersection is frequently
congested or poses a significant safety risk. Therefore, it is deemed beneficial
to implement a controlled crossing management system at the intersection.

Auctions

The proposed system utilizes an auction mechanism to regulate access to
a crossing for equipped vehicles. Each equipped vehicle approaching the
crossing participates in an auction to secure the next green light for its
lane. The system collects bids from all lanes throughout the duration of
the current green light period. The bids are then summed per lane, and
this value represents the lane’s bid bl. To ensure fairness, the module scales
down the total bid from the lane currently displaying the green light by a
factor σ. Formally, each bl is calculated as in eq. 3.1 where Bl is the set of
bids placed by vehicles in lane l.

bl =
∑
b∈Bl

b

σ
(3.1)

The lane with the highest bid is then selected as the winner of the auction
and is granted the next green light for a predefined period of time, denoted
as Γ.

Vehicles

The proposed system consider all the vehicles categories described in Sec-
tion 2.1. In particular, the difference between equipped and non-equipped is
important since the former are equipped by means of an integrated software
or a physical ad-hoc device, to autonomously participate in the proposed
auction mechanism without the intervention of a human, and will always
behave according to the mechanism. The latter will not directly intervene
in the auction and will behave by following the directions given by traffic
lights.
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Vehicle budgets

In this proposed system, equipped vehicles are given a budget in virtual
coins that will be used to place bids when approaching traffic lights. The
budget allocated to each trip is determined by the vehicle based on the im-
portance or urgency of the trip. The method of obtaining virtual coins and
the decision-making process for allocating the budget for a specific trip are
not the focus of this proposal. However, it can be noted that in a real-world
scenario, virtual coins can be implemented by local administrations using
various policies such as being bought with real money, given as an incen-
tive for good driving practices like driver’s adherence to driving regulations,
or even proportionally to the time the vehicle is idle to encourage the use
of alternative means of transportation, participation in carpooling, or the
adoption of low-emission or environmentally-friendly vehicles. Ultimately,
the implementation of virtual coins and budgets is a political, social, eco-
nomic, and ethical issue related to fair and equitable mobility regulations.

The choice of budget allocation for a specific trip can be made by drivers
based on their needs, such as time constraints or the need to make other
trips before obtaining more budget. Over time, drivers will learn to manage
their budget in a similar manner to managing data usage on smartphones.

Bids

Equipped vehicles, which have the capability to communicate with the city
infrastructure, participate in these auctions by computing their route and
allocating a budget for the trip analogously to [32]. The bid placed by
each equipped vehicle is determined by dividing the allocated budget by the
number of intersections on the route. Formally if the route goes through
I intersections for which a bid is necessary, and let Bt be the trip budget
allocated for a such route, then each bid is set to Bt

I . This ensures that
vehicles do not run out of budget before reaching their destination. The
number of intersections for which a bid is necessary is known at departure
time since the final destination is defined by the user and the route to the
destination is computed.

On the other hand, non-equipped vehicles, which lack the capability to
communicate with the city infrastructure, are unable to place bids them-
selves. Therefore, the system places bids for these vehicles and for au-
tonomous vehicles that have exhausted their budget. The system calculates
the average bid placed by equipped vehicles participating in a specific auc-
tion and uses this value as the bid for non-equipped vehicles. This allows
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non-equipped vehicles to behave as an average equipped vehicles. In case
there are only non-equipped vehicles at the crossing, the system selects the
lane with the larger number of vehicles as the winning lane.

Traffic Lights Management System

The proposed approach for managing signalized intersections in a smart city
scenario involves the use of an auction system described above, in which
vehicles make bids for the right to access the intersection. This approach is
designed to accommodate the co-existence of both autonomous and human-
driven vehicles.

Vehicles in the lanes make bids for the next green light based on the
budget allocated for their current trip. The lane with the highest total bid
is granted the next green light by the crossing management system. This
system is implemented on a physical device placed at the crossing site, which
controls the traffic light and regulates access to the crossing.

The proposed system comprises two main functions: the management
of the auction and the selection of the next green phase, and the manage-
ment of interactions between vehicles and traffic lights. The first function
is responsible for collecting bids placed by involved vehicles, placing bids
for non-equipped vehicles, processing this information, and determining the
next green lane based on predefined rules. The second function is responsi-
ble for receiving bids from vehicles, utilizing sensors to count the number of
vehicles in the lane (both equipped and non-equipped), and controlling the
traffic lights by setting the green light for the lane that has been selected as
the winner of the auction and setting the red light for all other lanes.

Traffic lights

The proposed system utilizes traffic lights as a key component. As in tradi-
tional traffic lights, the light turns green in a lane if vehicles in that line are
allowed to pass the crossing. However, it should be noted that the system
only allows one lane at a time to display the green light, while all other
lines display the red light. This ensures that vehicles in lanes with the red
light must wait until their turn to pass the crossing, avoiding any potential
conflicts or accidents. So the system does not take into consideration the
possibility of allowing vehicles from different lanes to pass simultaneously, as
is the case with the ”right turn on red” rule in the United States, as it is not
the focus of the proposed system and is not investigated in the experiments.

Both green and red lights are displayed even when all vehicles in the
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lanes are autonomous. This serves to inform passengers in autonomous
vehicles of their vehicle’s future behavior, as well as to provide guidance to
human-driven vehicles that may be approaching or are already in the lane.

The green light has a minimum display time, denoted as Γ, that is set to
ensure safe crossing for both autonomous and human-driven vehicles. The
minimum display time has been predetermined, and although it is possible
to establish a proportional relationship with the winning bid, investigating
the influence of this parameter on the system’s outcome is beyond the scope
of this thesis and will be examined in future research.

3.2.2 Proposal for Intersections Management

The proposed scenario involves the deployment of a management system at
each intersection, which is responsible for determining the priority of ve-
hicles crossing the intersection through the use of an auction mechanism.
Vehicles located at the front of each lane participate in the auction by sub-
mitting bids, the amount of which is based on their budget. Additionally,
the bid submitted by the front lane vehicle may be augmented through the
consideration of factors such as the number of vehicles in the lane or by
allowing vehicles in the rear of the lane to contribute to the bid.

In this scenario, the coexistence of autonomous and human-driven ve-
hicles is taken into account, and all vehicles are equipped to participate in
the intersection management mechanism through an auction process. The
vehicles at the front of each lane make bids, which are determined based on
factors such as their budget and the number of vehicles in the lane. Ad-
ditionally, the bids of vehicles at the back of the lane may also be taken
into consideration. Importantly, the participation of human-driven vehicles
in the auction process does not require direct human intervention, as they
are equipped with technology such as mobile apps or infotainment systems
that facilitate communication with the management system and provide in-
structions to drivers. In this scenario, the co-existence of human-driven
and autonomous vehicles is considered, and all vehicles are equipped to
participate in the intersection management mechanism through an auction
process. However, due to the unpredictable and untrustworthy nature of
human-driven vehicles, coordination mechanisms that assume knowledge of
vehicles’ trajectories or forecasts of behaviors cannot be implemented. This
includes policies that aim to make the clearing of intersections more effi-
cient by allowing multiple vehicles to access the intersection simultaneously
if their trajectories do not conflict, as previously proposed in literature such
as [32]. The lack of knowledge and trust in the behavior of human-driven
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vehicles makes such strategies infeasible.
Therefore, in the following, it is assumed that only one vehicle at a time

is granted access to the intersection and that the only instructions provided
to human drivers, upon reaching the start of a lane, are to either ”stop” or
”proceed” through the intersection.

The proposed system aims to improve latency at intersections by uti-
lizing auction mechanisms for autonomous vehicles. The system aims to
demonstrate the effectiveness of auction mechanisms in reducing vehicle la-
tencies compared to standard traffic yield rules. Additionally, the system
aims to investigate the feasibility of achieving differentiated latencies, where
higher bids result in smaller latencies. However, it is not immediately clear
that simply placing high bids will result in reduced latencies, as vehicles
must wait in a first-in-first-out (FIFO) manner to approach an intersection.

In the following of this section, it is introduced the mechanisms that are
used in the experiments.

Bidding Strategies

The proposed system utilizes virtual coins as a means for setting bids in an
auction-based approach for managing intersections. Vehicles are assigned
a budget in virtual coins upon joining the system. As for the traffic lights
scenario (specifically Section 3.2.1), the implementation of virtual coins and
the assignment of budgets is not the primary focus of the proposed system
and it can be influenced by various factors such as regulations set by local
authorities, social and economic considerations, and ethical considerations.

Two distinct bidding strategies have been formulated in the design of
the system:

• Randomized (Rand): vehicles place a random bid that falls inside
the range of their budgets. If a vehicle runs out of budget, the system
will let it make a minimal bid anyway.

• Route dependent (Prop): vehicles allocate their budgets by divid-
ing them by the total number of intersections they will pass through
during their trip. Bids are placed at each intersection based on this
calculation. It is assumed that if routes are fixed and do not change
during the trip, vehicles will not run out of budget. To ensure human-
driven vehicles adopt this strategy, it is required for them to input
their final destination into their navigation system at the start of their

37



trip. The auction mechanism will then calculate the shortest route
from the starting point to the destination, considering it the expected
route, and will compute the bid amount accordingly. If the driver
chooses to deviate from the expected route, the bid amount will be
adjusted accordingly.

In the experiments, it is assumed that virtual coins are indivisible, thus
bids placed by vehicles will be in integer form. However, if in a real-world
scenario, virtual coins are divisible, bids may be made with a precision that
reflects the number of decimal places of sub-multiples of virtual coins.

A budget recharge mechanism is also devised in which the amount of
the bid placed by the winner of an auction is redistributed among the other
vehicles that participated in the auction. This mechanism is designed to
prevent vehicles from running out of budget early in their trip, particularly
for the Rand bidding strategy, but it will also be tested for the Prop bidding
strategy. While it may seem unnatural or unfair to redistribute a vehicle’s
budget to others, particularly if budgets are acquired with real money, it
could be deemed worthwhile if there is a common benefit to doing so.

Auction Resolutions

It is devised two different approaches for auction resolution:

• Cooperative approach (COOP): all the vehicles at the front of the
lanes at the intersection make their bid, and all bidding vehicles will
go through the intersection according to the bid order (highest first).

• Competitive approach (COMP): all the vehicles at the front of the
lanes at the intersection make their bid, but only the vehicle that wins
the auction gets to pass the intersection. Vehicles that lost the auction
will have to attend and win a successive auction before being able to
go through the intersection. Note that this may imply starvation.

Moreover, it is considered two different methods for the bid payment:

• All-Pay (AP): All bidding vehicles are charged for their bid.

• Only-Winner-Pays (OWP): only the vehicle that wins the auction
will be charged for its bid, while vehicles that lost the auction are not
charged.

In a previous study presented in [44], the effectiveness of four strategies
resulting from all possible combinations of auction resolution approaches and
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payment methods was investigated, using simple randomized bidding strate-
gies. The study found that two of the four combinations, namely strategies
COOP-AP and COMP-OWP, were of particular interest and deemed more
natural to interpret. For this reason, the experiments will focus exclusively
on these two strategies. These strategies are complementary in nature, with
the first strategy requiring all vehicles to pay their bids in exchange for
the opportunity to proceed through the intersection after the auction is
complete. However, the order of passage through the intersection is not
determined in advance. This round-robin-like approach ensures that all
lanes proceed at each auction round. Conversely, in the second strategy, the
movement of lanes is dependent on the lane of the winning bid, thus result-
ing in different speeds for each lane. The effectiveness of these strategies
is evaluated by measuring the average time to clear intersections, calcu-
lated as the elapsed time from the moment vehicles reach the front of the
lane and the moment they exit the intersection, and the average waiting
time in the lane, under varying traffic conditions. The results of the study
demonstrated that the average time to clear the intersection was minimal for
the strategy COOP-AP, while it slightly increased for the strategy COMP-
OWP. Additionally, the variance of the average values for both strategies
was found to be small. With respect to the average waiting time in the lane
and its corresponding variances, there was no significant difference between
the strategies COOP-AP and COMP-OWP under the same traffic conditions,
with the latter being slightly higher than the former.

Finally, in the competitive approach, two mechanisms have been devised
to allow vehicles that are not at the front of a lane to participate in the
auctions: the ”enhancement” and ”sponsorship” mechanisms, which will be
described in the following paragraphs.

Enhancement. The enhancement mechanism aims to balance the waiting
times of lanes with a large number of vehicles in line with those of lanes with
a smaller number of vehicles in line. This is achieved by adjusting the bid
placed by the front vehicle of a lane based on the number of vehicles waiting
in that lane. Specifically, for each lane ℓ with nℓ vehicles in line and a bid
bℓ placed by the front vehicle, the enhancement en(ℓ), that is the actual bid
for the front vehicle, is mathematically defined in equation (3.2).

en(ℓ) = bℓ(lnnℓ + 1) (3.2)

The result of enhancement mechanism is a real number instead an integer
number as the bid since it is performed after the bid placing. It should be
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noted that the enhancement value is equal to the bid placed by the front
vehicle when there is only one vehicle in the lane. As the number of vehicles
waiting in the lane increases, the logarithmic multiplicative factor becomes
more significant. This mechanism allows for implicit vehicle involvement in
the auction, as their presence in a lane influences the bid placed by the front
vehicle without requiring them to place a bid themselves.

Sponsorship. The sponsorship mechanism allows vehicles behind in lanes
to contribute to the bid of the vehicle at the front of the lane. Vehicles that
are not at the front of the lane can place bids that will be added to the bid
of the front vehicle. Only the sponsored vehicle will be charged for the bid
if they win the auction. This mechanism is intended to allow vehicles to
speed up their lanes at the expense of others. In the cooperative approach,
enhancement and sponsorship are not used, as all vehicles are guaranteed
to pass through the intersections at each auction round, regardless of their
bid outcome. On the contrary, in the competitive approach, lanes may
experience starvation, thus these mechanisms are implemented to mitigate
this issue.

3.3 Local Coordination Experiments

3.3.1 Traffic Lights Management Experiments

The goal of the experiments is to evaluate the effectiveness of the proposed
system in reducing waiting times at crossing sites by incorporating the auc-
tion mechanism for traffic light control. This is accomplished by comparing
the performance of the proposed system with that of the traditional Fixed-
Time Control (FTC) approach [15] in managing the traffic flow at crossing
sites. The results of these experiments will provide insights into the feasibil-
ity and potential benefits of incorporating the auction mechanism for traffic
light control in smart cities.

The objective of the experiments is to quantitatively evaluate the time
vehicles spend traversing intersections controlled by traffic lights during their
trips. Specifically, the focus is on measuring the time duration between a
vehicle’s entry into a road segment immediately preceding an intersection
with a traffic light and its exit from the same segment. This approach enables
the assessment of the performance of the proposed coordination system in
terms of reducing waiting times at intersections, by comparing the results
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obtained from using traditional Fixed-Time Control against the proposed
auction-based system.

To understand how the approach performs, it is set up three experiments
within the scenario described in Section 3.3.1:

Experiment 1. In this experiment it is measured delays of 2000 equipped
and non-equipped vehicles when using our crossing management system and
varying the percentage of equipped vehicles. As a baseline it is considered
vehicle delays, under the same experimental settings, occurring when traffic
light systems use the FTC policy.

Experiment 1bis. Similar to Experiment 1 but the number of vehicles is
decreased to 500, so to be able to study the impact on traffic light waiting
times with a significantly lower number of road users.

Experiment 2. In this experiment it is studied how delays vary when
varying the budget of a population sample and the size of the population
with varied budgets, under different conditions:

1. 2000 vehicles, half equipped and half not equipped, with 200 equipped
vehicles getting their budget raised gradually up to twice the initial
budget;

2. 5000 agents half equipped and half not equipped, varying the percent-
age of agents that increase their budget and gradually double their
budget;

3. 2000 agents, gradually varying the percentage of agents that increase
their budget up to 40% and gradually increasing their budget up to
2000%.

Scenario

The proposed experiments take place within a 1-kilometer-wide smart urban
area located in the city of Modena, Italy. This area is part of the CLASS
Horizon 2020 project1 and is equipped with advanced smart sensors, actu-
ators, and communication infrastructure. The area’s infrastructure allows
for the collection and real-time processing of vast amounts of data on urban

1https://class-project.eu
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Figure 3.1: Modena Automotive Smart Area (MASA). The traffic light cir-
cled in blue is the only one really exists, those circled in red have been added
for the sake of experiments.

traffic, which is used to communicate with connected vehicles. These ve-
hicles are equipped with various sensors, actuators, and V2X connectivity,
which enhances both the driving experience and the overall safety of the
city. Advanced urban mobility applications are deployed to efficiently co-
ordinate vehicles and city resources through the use of data-in-motion and
data-at-rest analytics.

Map. The part of the city described above, and that will be considered for
the experiments, is depicted in Figure 3.1. From now on, this area will be
referred to with the acronym MASA (Modena Automotive Smart Area).In
order to study the agents’ behavior on a more complex scale, three traffic
lights that are not present in the considered area are artificially added (see
Figure 3.1), and it is reached a total of four traffic lights.
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Simulator. The MASA area was reproduced within the MATSim multi-
agent simulator for urban transportation [45]. Furthermore, it is imple-
mented and added to the MATSim simulator four additional modules for
enhancing its ability to simulate smart city related scenarios. In particular,
the communication module described in Section 2.2 is used in order to allow
agents to send bids to traffic lights, the perception module is used in order
to allow traffic lights to locate not equipped agents, and finally, an analysis
module is implemented to register values needed for the analysis.

Vehicles. The standard simulation population consists of 2000 agents with
departure times spread during the 24 hours of the day. Each vehicle performs
two trips a day, from home to work and back, and facilities (i.e. departure
and destination locations) are randomly distributed all over the MASA map.
Departure times follow a Gaussian distribution (when departing from home
the distribution has its peak at 9 AM and on the way back the rush hour is
set to 6 PM), to simulate variations in daily traffic.

Budget. Concerning vehicles’ individual budget, to simulate variability in
budget disposal, each vehicle is associated with a class of budget among the
following: low budget, with the interval of possible values [1..28]; average
budget, with the interval of possible values [38..65]; high budget, with the
interval of possible values [75..101]. In the simulations, it is set to 1/3 of the
vehicles in each budget class. The actual trip budget is randomly chosen
within the previously assigned budget class range. The scaling factor σ for
the bid of the lane with green light is set to 10.

3.3.2 Traffic Lights Management Results

Experiment 1. The graph in Figure 3.2a illustrates the results of an ex-
periment that measures the time spent by vehicles crossing intersections
with traffic lights during their trips. The x-axis of the graph represents the
percentage of equipped vehicles, and the y-axis indicates the average delay
caused by waiting in line before crossing intersections with traffic lights.
The blue line pertains to equipped vehicles, the orange line pertains to
non-equipped vehicles, and the red line represents the average delay when
traffic lights are managed using the Fixed-Time Control (FTC) policy. The
results indicate that, with the exception of situations in which the percent-
age of equipped vehicles is very low or very high, equipped vehicles experi-
ence shorter delays than non-equipped vehicles. Furthermore, the latency of
equipped vehicles in auction-managed crossings is shorter than when using
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(a) 2000 vehicles. (b) 500 vehicles.

Figure 3.2: Average delays (in sec) incurred by vehicles to cross the inter-
sections with traffic lights during their trip, by varying the rate of equipped
agents, grouped by Vehicles Type (equipped and non-equipped). The red
line indicates the average delay in the scenario with FTC policy. Bands
around average delays represent the average confidence.

the FTC policy. These findings suggest that during the transition from non-
equipped to equipped vehicles, it is advantageous to be equipped, providing
an incentive for vehicles to become equipped.

On the other hand, when the percentage of equipped vehicles is low, it
may be difficult to determine if there is a clear advantage to being equipped.
The delay experienced by equipped vehicles may be affected by various fac-
tors such as the positioning of the bidding vehicle within the lane, the pres-
ence of other actively bidding vehicles in the same lane, and so on. It is
important to note that in scenarios with a low percentage of equipped vehi-
cles, the results may be highly dependent on the specific traffic conditions
at the intersection sites.

In the case when the percentage of equipped vehicles is high, the results
show that the average delay for equipped vehicles is worse than when using
the Fixed-Time Control (FTC) policy. This is likely due to the fact that
the auction strategy may cause delays for a lane for more than one round of
green lights, which does not occur in the FTC strategy. Additionally, it can
be observed that in this scenario, the few non-equipped vehicles experience
significant advantages due to their small numbers. This outcome is not
unexpected, as the high number of vehicles in the simulation is likely to fill
all lanes at each intersection, leading to the aforementioned issues with the
auction strategy.
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Figure 3.3: Avg waiting time (in sec) at traffic lights (y-axes) during the
whole trip, when varying their budget (x-axes), for single vehicles.

Experiment 1bis. To test the last statement, the experiment was re-
peated with 1/4 of vehicles, namely 500, to see if intersection congestion
might be the cause of such a small difference between the two policies when
the percentage of equipped vehicles is high. Results in Figure 3.2b show
that, with lighter traffic, the auction policy always outperforms the FTC
approach. Moreover, there is no great difference between equipped and not
equipped vehicles. Motivation is to be sought in the fact that with light
traffic and auctions, vehicles do not have to wait for green lights whenever
the other lanes are empty.
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Experiment 2.1 Simulations were conducted by incrementally increasing
the budgets of 10% of vehicles and analyzing the variations in delays ex-
perienced by the same vehicle on the same trip at the same time of day.
Not completely unexpected, it was observed that only 10% of vehicles with
increased budgets experienced benefits in terms of reduced delays. It can be
inferred from the results that, even when a single vehicle has a high budget,
it is unable to gain priority at the intersection due to the serialized nature
of access. This is because, if other vehicles in the same lane have placed
low bids, a high bid alone may not be sufficient to win the auction against
other lanes, even if those lanes have no vehicles with a high budget. This
outcome suggests that devising bidding policies to ensure that vehicles trav-
eling with different levels of urgency are able to increase their travel speed
solely through increasing their bids may not be straightforward.

In order to ascertain the reasons for their favorable outcomes, the cases
in which delays were reduced were further investigated. Figure 3.3 presents
some representative examples of variations in delays. The x-axis of each plot
displays the trip budget, while the y-axis shows the average waiting time at
intersections with traffic lights.

The majority of plots not shown exhibit similar behavior to that of ve-
hicle 639, in which there is no significant variation. However, for some
vehicles, an increase in budget results in a reduction in delay, while for oth-
ers, the behavior does not stabilize as effectively. However, the results of
the experiments indicate that there are variations in the benefits obtained
by increasing the budget of vehicles. While it is observed that only a small
percentage of vehicles experience a reduction in delays, the reasons for this
phenomenon are not entirely clear. Further investigation of the number of
intersections, starting budget, and travel times may provide insights into
the underlying causes. However, it is noted that in situations where the
number of intersections is smaller, the behavior of the system becomes more
predictable and stable when the budget is increased. This is evident in the
cases of vehicles 257, 777, 954, and 528, which pass through only one in-
tersection per trip, compared to vehicles 364 and 276, which pass through
two and three intersections, respectively. Despite the fact that both vehicles
257 and 777 are traveling in heavy traffic (around 9 AM and 6 PM), their
starting and final budgets are vastly different (40 and 10, respectively). On
the other hand, vehicles 639 and 954 have similar initial budgets (9 and 8,
respectively) and depart at similar times of the day (leaving home at 11
AM and 10 AM, respectively, and leaving work at 3 PM and 4 PM, respec-
tively). Despite this, the former exhibits consistent behavior while the latter
receives a benefit. The only discernible difference is that vehicle 639 has one

46



Figure 3.4: % of increase of waiting time at traffic lights.

additional intersection to traverse.

Experiment 2.2 In the second experiment, the time a vehicle waits for
a green light during its trip and the total duration of the trip is measured.
The results of vehicles that traverse at least three traffic lights during their
trip are presented, as these intersections have the most substantial impact.
Figures 3.4 and 3.5 are heat maps that display the average percentages
of increase in waiting times of vehicles and the percentage of increase in
trip time, respectively, using a sample of 5000 vehicles over a 24-hour pe-
riod. The x-axis represents the percentage of agents that have an increased
budget, while the y-axis represents the percentage of budget increment. It
is observed that beyond 30%-40% of vehicles having an increased budget,
there is no significant benefit in further augmenting budgets. On the other
hand, when up to 30% of vehicles have an increased budget, an unexpected
outcome is observed. It appears that a small increase in budget leads to
increased waiting times and total trip times, while larger increments result
in some benefits. This may be due to the high traffic conditions in the sim-
ulation, the fact that the heat maps display average delays, or even that the
budget increase was not sufficient to produce a significant impact in certain
situations. As such, further experimentation is conducted to gain a deeper
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Figure 3.5: % of increase of trip time.

understanding of these results.

Experiment 2.3 The waiting times at traffic lights were further analyzed
by conducting experiments where up to 40% of vehicles have an increased
budget, and progressively increasing the budget up to 2000%. Subsequently,
the results for individual vehicles were examined. Figure 3.6 illustrates heat
maps for four representative samples of the results, each corresponding to a
different vehicle. It is apparent that various situations may arise, with no
clear patterns evident. Instead, the results appear to be random: (1) vehicles
with high budgets sometimes experience large positive delta delays (e.g.,
Figure 3.6c with 1800% budget increase); (2) vehicles with a small increase
experience large negative delta delays (e.g., Figure 3.6d with 200% budget
increase); (3) when a limited number of vehicles have increased budgets,
some vehicles may experience benefits (e.g., Figure 3.6b with 10% increase),
while others do not (e.g., Figure 3.6c with 30% increase). Similarly, when a
greater number of vehicles have increased budgets, some vehicles may benefit
(e.g., Figure 3.6d with 30% increase) while others do not (e.g., Figure 3.6a
with 30% increase). Further investigation will be needed, but these results
suggest that traffic conditions and vehicle routes are more determinants than
budget.
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(a) Sample 1. (b) Sample 2.

(c) Sample 3. (d) Sample 4.

Figure 3.6: Single vehicle heat map, with an increasing budget.
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3.3.3 Intersection Management Experiments

The experiments are conducted using MATSim urban simulator.

The study utilized a Manhattan grid map with 8× 8 intersections, each
having one lane for each direction. The routes for the vehicles were ran-
domly generated, with starting and ending points selected at random on the
map and the route being determined as the shortest path between the two
points. The departure times for the vehicles were modeled using two Gaus-
sian distributions, one peaking at 9 AM and the other at 6 PM, to simulate
daily traffic patterns. Each vehicle was assigned an initial budget with a
default value. The experiments were conducted with varying numbers of
vehicles to simulate different traffic conditions.

In each experiment, a specific scenario was defined by selecting one of
the two auction resolution approaches (COOP-AP or COMP-OWP) and one
bidding strategy (Rand or Rd), with or without budget redistribution. Addi-
tionally, for the COMP-OWP approach, the effectiveness of the enhancement
and sponsorship mechanisms were separately evaluated by enabling or dis-
abling them (respectively Enh and Spon). In order to provide a comparison,
experiments using only standard yield rules were also conducted (referred
to as Priority in figures). The waiting times were recorded in seconds.

For each experiment, the following measures are reported:

• Statistics on vehicles average waiting times at intersection before they
are given the right to pass the intersection: from the moment vehicles
reach the front of the lane, to the moment they win an auction, in the
COMP-OWP case, or to the moment it is their turn to pass through
after the auction is over, for the COOP-AP case.

• Statistics on average times vehicles spend waiting in lanes: compute
the average time each vehicle spends waiting in the lane, from the
moment it queues up, to the moment it has cleared the intersection.

In the considered scenario, if a vehicle’s destination lane is filled, the
vehicle is required to wait at the front of its current lane before crossing the
intersection, and no other vehicle is permitted to proceed. This is deemed
the safest solution, as it prevents any potential incidents that may arise
from human-driven vehicles deviating from predetermined trajectories. Al-
ternative solutions, such as allowing other vehicles to pass the intersection
even if they did not win the auction, may be viable when all vehicles are au-
tonomous, however, given the unpredictability of human-driven vehicles, it is
not feasible for the intersection management system to know in advance their
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trajectories. Furthermore, making real-time changes to the order in which
vehicles are permitted to pass through intersections may lead to confusion
and errors on the part of human drivers, increasing the risk of incidents.

3.3.4 Intersection Management Results

In this section, the results of the experiments outlined in the previous sec-
tion are presented. In Section 3.3.4, the results of the comparisons between
different scenarios and the latency experienced when using standard yield
rules are presented. In Section 3.3.4, results related to achieving differenti-
ated latencies are presented.

About reducing latencies

Simulations were conducted with 5,000 vehicles operating on the map to
simulate heavy daily traffic conditions. The results of the experiments are
presented in Figures 3.7, which show the average waiting times for vehicles
at the front of a lane, or the average time before being granted the right
to cross the intersection. The results are presented for two cases: when
the budget recharge mechanism is adopted and when it is not. The first
observation is that, for any combination of strategies, on average, vehicles
are able to cross the intersection faster than when using standard yield rules
(as indicated by ”Priority” in the figures).

As previously established in the preliminary experiments presented in [44],
it is expected that among all auction policies, the COOP-AP strategy would
result in the smallest waiting times across all alternatives. This is due to
the fact that under this strategy, vehicles only participate in one auction per
intersection and will never have to wait for more than one vehicle per lane.
This is evident in the results, as the variance in waiting times is observed
to be very small for all COOP-AP cases. In the case of the COMP-OWP
approach, it has been observed that the difference between redistributing or
not the budget is evident only in terms of absolute waiting times, with the
former resulting in smaller times. However, the relative behavior of different
policies remains unchanged. Additionally, it has been found that the aver-
age waiting times achieved with the Rand bidding strategy are slightly lower
than those achieved with the Prop strategy. This is due to the fact that the
bids of the same vehicle in the former strategy range across the entire bud-
get interval, leading to a lower likelihood of losing several auctions in a row.
In contrast, the bids of the same vehicle in the latter strategy are always
very similar. Finally, when implementing the enhancement and sponsorship
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(a) With budget redistribution.

(b) No budget redistribution.

Figure 3.7: Average waiting times at intersections before the right to pass is
granted, with 5k vehicles running on the map. Vertical black lines represent
the standard deviation. (a) Budget recharge mechanism is adopted. (b)
Budget recharge mechanism is not adopted.
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mechanisms, it is observed that there is a slight increase in average waiting
times compared to not implementing them. This is due to the fact that while
some vehicles experience lower latencies with the implementation of these
mechanisms, a larger number of vehicles experience longer waiting times.

The total waiting times on lanes, including the time spent queuing up
until clearing the crossing by entering the next lane, were also measured
for the cases where the budget is redistributed and not redistributed. The
results indicate that there is no significant difference between the two sce-
narios. Unexpectedly, any benefit exhibited when evaluating only auction
times at intersections is not reflected in the larger picture of the vehicles’
journey. The average, standard deviation, and maximum times for vehicles
to go from one lane to the successive are similar across all strategies. As
the differences are insignificant and not evident when plotted, no plots are
provided. One possible reason for this outcome could be that lane latencies
are more influenced by overall traffic conditions rather than the speed at
which a vehicle is able to go through intersections via auctions.

Hence, in subsequent experiments, the number of vehicles running on
the map varied. The results are shown in Figures 3.8 and Figure 3.9. The
plots in (a) and (b) refer to average traffic conditions (2500 vehicles), while
the plots in (c) and (d) refer to light traffic conditions (200 vehicles). It can
be observed that the overall trend does not change, with the exception of
the absolute values, which are smaller for lighter traffic conditions.

With light traffic conditions, a slight increase in standard deviation is
observed, indicating a larger variation in waiting times between different
configurations of lanes and vehicles at intersections. However, on average,
the waiting times are similar across all policies, as there are a limited number
of vehicles, and any policy works effectively. Additionally, it is observed
that all policies incur comparable maximum waiting times, which can be
attributed to the limited number of configurations that occur with light
traffic, resulting in similar worst-case scenarios.

As for the average traffic condition setting, it is observed that there
are some differences in maximum waiting times. These differences can be
explained by the fact that such values may be experienced by only one or a
few vehicles. For example, in the case of COOP-AP-Rand, it is possible that
a vehicle experienced a longer wait time due to a larger number of small
bids placed by the front vehicles in that lane. Similarly, for the COMP-
OWP with the enhancement mechanism, a longer maximum waiting time
may have occurred because a vehicle had to wait longer due to a long lane
that was advantaged by the mechanism. When analyzing average waiting
times, it can be observed that there is little variation among the different
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Figure 3.8: Average waiting times spent waiting in the lane, with 2500 (a)
and 200 (b) vehicles respectively.
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Figure 3.9: Maximum time spent waiting in the lane, with 2500 (a) and 200
(b) vehicles respectively. In both cases budget is not redistributed.
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scenarios. This is likely due to the fact that when traffic is heavy, the waiting
time is primarily determined by the time required to clear the lane ahead of
the vehicle. As the map used in the experiments is a grid, all lanes have the
same length, which would contribute to the similar average waiting times
across all scenarios.

It should be noted that similar results were obtained from a separate
set of experiments conducted using an independent simulator and a smaller
3× 3 Manhattan-style map. Specifically, in terms of total waiting times on
lanes, minor differences were observed only in the case of maximum waiting
times under average traffic conditions (with one hundred vehicles).

In conclusion, the results of the experiments indicate that none of the
proposed strategies result in significant improvements in terms of latency
when compared to the adoption of standard yield rules. These findings
suggest that simple auction mechanisms may not be an effective coordina-
tion policy for reducing vehicle latency during the transition period towards
exclusively autonomous vehicles, as traffic flow and lane congestion have a
greater impact on waiting times than the advantages introduced by auctions.

On the other hand, while the results of the experiments indicate that
auction mechanisms do not provide significant improvements in terms of
reducing latencies when compared to standard yield rules, they do offer
an advantage in terms of traffic coordination and the potential to reduce
the number of accidents among vehicles. The clear indication of which
vehicle has the right to pass through an intersection provided by auction
mechanisms eliminates misunderstandings and miscalculations that often
lead to accidents among human-driven vehicles under traditional yield rules.
However, it is important to note that auctions are not the only solution to
achieve this goal.

About differentiating latencies

In this section, the specific case of allowing a single vehicle, such as an
emergency vehicle, to definitively speed up its lane is addressed. In current
urban environments, where streets are primarily populated by human-driven
vehicles, emergency vehicles announce their urgency using colored flashing
lights and acoustic signals. Other vehicles on the street attempt to pull over
to allow the emergency vehicle to pass. It is important to understand if it is
possible to exploit the auction mechanism, without the need to implement
specific ad-hoc rules for such cases, in order to allow emergency vehicles to
speed up their lane.

Therefore, experiments were conducted in which there was only one ve-
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hicle with a potentially infinite budget, allowing it to place extremely large
bids that are incomparable to any other vehicle’s bids. The difference in
waiting times for the vehicle when endowed with an infinite budget and
when given a standard budget was measured, while always traveling at the
same time of day. Various measurements were made by varying traffic con-
ditions and the emergency vehicle’s trajectory. In particular, one trajectory
was convoluted and went through many intersections, while the other was a
straight route from one side of the map to the opposite side.

The results indicate that the intended outcome is not achieved under any
combination of strategies. The reasons for these results are subsequently
analyzed.

Cooperative approach. Under the assumption of the COOP-AP strat-
egy, there is no significant advantage in providing the emergency vehicle
with an infinite budget. This outcome is not surprising as this policy is
extremely fair and there is no way for a single vehicle with a high budget
to speed up its own lane. While the emergency vehicle may be fortunate
to have its lane cleared first at the intersection, all other vehicles must wait
for all vehicles at the front of their lanes to clear the intersection before the
next auction.

In more formal terms, the results indicate that under the COOP-AP
approach, providing the emergency vehicle with an infinite budget does not
yield a significant improvement in waiting times. This is because the COOP-
AP approach prioritizes fairness, and thus, even with an infinite budget, the
emergency vehicle must still wait for all other vehicles in the lane to clear
the intersection before proceeding, regardless of its position in the lane.
Furthermore, in the worst-case scenario where all lanes are crowded and the
emergency vehicle is at the back of its lane, the waiting time is determined
by the number of lanes (L), the average time required for a vehicle to clear
the intersection (∆), and the position of the emergency vehicle (p) in its
lane, resulting in a minimum waiting time of ∆ · L · p time units.

Competitive approach. Under the COMP-OWP approach, it was ex-
pected to see evidence of the benefits of providing an emergency vehicle
with a high budget. However, no significant improvements were observed.
When traffic is light, waiting times are generally low because many links are
free and, if not free, lines are always very short. As the emergency vehicle
also has to wait for vehicles ahead in the lane to pass the intersection be-
fore it, having a high budget is not decisive in achieving significantly lower
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waiting times. Therefore, the experiments were focused on heavy traffic
conditions, which is the real scenario in which one would like emergency
vehicles to be able to move faster than others.

The results of the experiments with the COMP-OWP approach and the
Rand bidding strategy did not demonstrate significant improvements in re-
ducing waiting times for the emergency vehicle, as the randomly chosen
bids were not consistently large enough to outweigh the benefits of having a
potentially infinite budget. In contrast, the Prop bidding strategy ensured
that the emergency vehicle’s bids were consistently much larger than those
of other vehicles, however, even this strategy did not result in significant
improvements in reducing waiting times.

Under the COMP-OWP approach, the use of the enhancementmechanism
did not result in significant improvements in reducing waiting times for the
emergency vehicle. This is due to the fact that the mechanism only takes
into account the number of vehicles in the lanes and not their budget. As
such, when lanes are crowded, the emergency vehicle is treated as any other
vehicle in the lanes, and the winner is determined based on the bid of the
front vehicle. To ensure that the emergency vehicle’s bids are taken into
consideration, even when it is located towards the back of the lane, the
sponsorship mechanism could be adopted.

When utilizing the budget recharge mechanism in combination with an
infinite budget for the emergency vehicle, it is observed that the emergency
vehicle experiences even longer waiting times. The reason for this is that
when the emergency vehicle wins an auction, all front lane vehicles are also
given an infinite budget, resulting in these vehicles also acting as emergency
vehicles and interfering with subsequent auctions involving the original emer-
gency vehicle. This effect is particularly pronounced in the experiments with
a convoluted emergency vehicle trajectory, as the emergency vehicle is re-
quired to cross multiple intersections, leading to repeat interactions with the
same vehicles at different intersections.

Finally, the most promising COMP-OWP approach, which includes the
use of the Prop bidding strategy, no recharge mechanism, and sponsorship,
did not demonstrate significant improvements in reducing waiting times for
emergency vehicles. The main issue is that, in heavy traffic conditions, even
if the emergency vehicle’s lane wins the auction, it is unable to clear the
intersection if its destination lane is occupied, and the emergency vehicle
has no ability to influence auctions at other intersections.

To conclude, none of the proposed combinations of bidding and auction
strategies effectively minimize latencies for vehicles with a potentially in-
finite budget under any traffic condition. The results of the experiments
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reveal that even the most promising approach, which is the COMP-OWP
strategy combined with the Prop bidding strategy, no recharge mechanism,
and sponsorship, fails to achieve the desired outcome. The reason for this
failure is rooted in the fact that heavy traffic can cause an emergency vehicle
to become stuck even when it is given an infinite budget. This situation is
not dependent on the specific auction policy adopted at the intersection,
but rather on the fact that each intersection acts independently and the
emergency vehicle is not able to overtake other vehicles in its line.

3.4 Conclusion

In this chapter, two key issues in smart mobility were addressed: Traffic
Light Management and Intersection Management. The proposed coordina-
tion algorithms leveraged smart city communication capabilities and sensors
to enable local decision-making, without the need for a centralized server.
This approach has the advantage of avoiding a single point of failure, but it
also has the limitation of not having a global view of the traffic flow.

Both algorithms were based on auction mechanisms, allowing vehicles to
bid based on their individual needs, such as a vehicle in a hurry bidding more
to prioritize its passage. However, due to the complexity of the traffic flow,
the results of the algorithms were not always predictable. To evaluate their
effectiveness, the algorithms were tested in a simulator to determine the
potential benefits for vehicles and the impact of different bidding strategies.

The experiments revealed that the proposed coordination algorithms
were able to reduce waiting times at intersections in most cases. However, in
high traffic scenarios, the benefits were limited due to the potential negative
impact on other vehicles. Additionally, it was found that a higher bid did
not always result in lower waiting times or trip times, as other factors such
as the overall traffic flow also played a significant role.

Overall, the results of the experiments highlighted the complexity of
traffic flow and the limitations of an algorithm designed as a local coordi-
nator, which is unable to consider the effects of its decisions on other areas
or take information from other systems. The conclusion is that, in order
to achieve optimal traffic management, a more holistic approach is needed,
which takes into account the entire city state, and communication and co-
operation among the different systems.
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Chapter 4

Global Coordination:
Parking and Emergency
Vehicles

In contrast to the coordination algorithms discussed in Chapter 3, some co-
ordination algorithms require a comprehensive understanding of the state
of the entire city and must be centrally managed. These algorithms can
involve entities from various areas of the city, thus the central server must
have knowledge of the state of all sensors and the ability to communicate
with all actuators and vehicles. This is necessary for the algorithm to make
decisions that affect the entire city, and thus the algorithm must be designed
with a global perspective.

In this chapter, two coordination algorithms that are designed with a
global perspective are discussed. The first algorithm addresses the Manage-
ment of Parking areas, while the second algorithm addresses the Manage-
ment of Emergency Vehicles.

4.1 Global Coordination Background

4.1.1 Parking Related Work

The problem of limited parking availability is classified as a resource-oriented
problem in [46]. The literature on smart city parking has extensively dis-
cussed various aspects such as implementation, metering, billing, and reser-
vation (e.g. [47, 48, 49]). Surveys such as [50] and [51] have focused on park-
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ing system algorithms and vehicle detection techniques. In [52], the authors
propose a smart parking system that manages reservations and simulates a
scenario in which all vehicles are IoT-capable. The system presented in Sec-
tion 4.2.1 suggests available parking options by taking into account reserved
but free slots and notifies vehicles if their destination parking space is taken
before they arrive. Furthermore, it studies the impact of the co-existence
of both IoT-capable vehicles and traditional vehicles and compares the pro-
posed smart system with traditional strategies commonly used by humans
to find parking.

4.1.2 Emergency Vehicles Background

The problem of limited parking availability is classified as a resource-oriented
problem in [46]. The literature on smart city parking has extensively dis-
cussed various aspects such as implementation, metering, billing, and reser-
vation (e.g. [47, 48, 49]). Surveys such as [50] and [51] have focused on park-
ing system algorithms and vehicle detection techniques. In [52], the authors
propose a smart parking system that manages reservations and simulates a
scenario in which all vehicles are IoT-capable. The system presented in Sec-
tion 4.2.1 suggests available parking options by taking into account reserved
but free slots and notifies vehicles if their destination parking space is taken
before they arrive. Furthermore, it studies the impact of the co-existence
of both IoT-capable vehicles and traditional vehicles and compares the pro-
posed smart system with traditional strategies commonly used by humans
to find parking.

4.2 Global Coordination Proposals

4.2.1 Parking Managment Proposal

The proposed strategy for smart parking is referred to as the Smart Short-
est Distance approach and is detailed in [53]. This strategy is specifically
designed for equipped vehicles, and its effectiveness will be evaluated in a
scenario where both equipped and non-equipped vehicles co-exist. The as-
sumption is that equipped vehicles have the capability to communicate with
IoT city infrastructure and a city server devoted to managing parking ar-
eas. On the other hand, non-equipped vehicles are not able to communicate
with these systems. Additionally, it is assumed that the drivers of equipped
vehicles will follow the recommendations provided by their equipment.
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The system utilizes a centralized city server infrastructure that is con-
stantly aware of the availability and occupancy of parking spots. This can
be achieved through the use of IoT-enabled on-site parking monitors that
communicate with the server. It is assumed that all parking spots are mon-
itored, however, further research can examine scenarios where only some
parking spots are monitored. Additionally, it is assumed that some parking
spots may be reserved for vehicles that are still en route, and once reserved,
these spots cannot be occupied by other vehicles. These types of parking
spots will be referred to as reservable parking spots. The reservation of
these spots can be implemented through the use of automatic road bollards
or signal lights at the spots, to prevent or discourage non-equipped vehicles
from parking there.

For parking spots that are not reservable, it is possible that other vehi-
cles may occupy a spot that was communicated as available to an equipped
vehicle by the centralized city server infrastructure. However, it can be
assumed that the city’s IoT-enabled systems will be able to detect this oc-
currence and promptly notify the equipped vehicle that the spot is no longer
available.

When an equipped vehicle starts searching for a parking spot, the fol-
lowing steps are performed:

1. The vehicle contacts the city server to get the positions of parking
areas with available spots. Let P the set off all parking, Pa ∈ P is the
subset of parking with available spots.

2. The vehicle computes its distance to each parking area p ∈ Pa then
selects the available one closest to the destination, communicates the
choice to the city server, and moves towards the selected parking area.
During the trip, the vehicle regularly checks for messages coming from
the city server.

3. The city server updates the parking occupancy and, if the spot is
reservable, signals that the parking spot is reserved. Meanwhile, it
waits for an ”end of trip” message from the vehicle. If the previously
chosen parking spot gets occupied by another vehicle, then the server
sends a notification to the traveling vehicle together with its current
knowledge of still available parking areas.

4. If the vehicle arrives at the destination with no further notification
from the city server, then it occupies the chosen parking spot and
notifies the city server with an ”end of trip” message. Otherwise, it will
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select a new parking spot using the new information sent by the city
server. Instead, if the vehicle receives a message from the server that
indicates that the parking destination was stolen by another vehicle,
it computes the new destination as in the first step.

In order to determine the proximity of parking spots, vehicles use the
Euclidean distance metric instead of the shortest paths as in eq. (4.1) where
dp is the resulting distance for the p parking, (g.x, g.y) is the destination
position and (p.x, p.y) is the parking position. This choice is made due to
its computational efficiency, which allows for quick computation even on
devices with limited processing power and memory, such as those commonly
used in equipped, non-autonomous vehicles.

dp =
√

(g.x− p.x)2 + (g.y − p.y)2 (4.1)

4.2.2 Emergency Simulation Model

The Smart City area of interest is represented as a network of interconnected
nodes, formally represented as a graph G = (V,E), where the vertices de-
note traffic intersections and the edges represent the connecting roads. The
graph is directed, allowing for the simulation of permitted flow directions.
Utilizing the MATSim extension, it is possible to enhance the baseline rep-
resentation of the urban area by incorporating turning bans and one-way
streets that reflect the actual area selected for simulation. Each link in the
road network is associated with a First In First Out (FIFO) queue, where
vehicles entering the link are automatically inserted. It is clear that a link
affected by an accident will quickly fill its queue, resulting in congestion
that will greatly reduce or even halt the speed of the vehicles involved (as
discussed in Section 4.2.2).

Vehicles categories

In the simulation scenario, various types of vehicles are considered, and
each vehicle is characterized by a starting location, one or more activities
(in terms of destinations to be reached within specific time intervals), and
a final location. More formally, each vehicle A is associated with a path
P ⊂ Γ.

The traditional vehicle in the scenario being considered is one that is un-
able to communicate with other vehicles or the surrounding infrastructure.
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These vehicles can only become aware of a traffic accident when they are in
close proximity to the location of the accident. In the scenario, traditional
vehicles are further classified as either autochthonous or allochthonous. Au-
tochthonous vehicles are those that are familiar with the city and are able to
find an optimal rerouting strategy without the need for assistance from the
Smart City infrastructure. This is achieved by using the Dijkstra algorithm
on the road network, with the accident link removed. In contrast, the al-
lochthonous user will attempt to find alternative routes by randomly trying
nearby roads. More specifically, if an allochthonous user with a specified
destination sees an accident at a particular location siteOfAccident, a list
of connected links from that site (listOfConnectedLinks) is constructed. A
random outgoing link is then selected from that list and checked against the
link corresponding to the accident’s location. If the selected link is different
from the accident link, the vehicle will move toward the selected link and
check if the new arrival link belongs to its original route to the destination.
If it does, the rerouting plan is complete. Otherwise, this process is repeated
until a suitable route is found. This process is explained in Algorithm 1.

Algorithm 1 Allochthonous user rerouting plan.

1: if destination == siteOfAccident then
2: enqueue(siteOfAccident)
3: return
4: end if
5: while true do
6: if siteOfAccident is the only member of listOfConnectedLinks

then
7: enqueue(siteOfAccident)
8: return
9: else

10: vehiclePosition← link ← pickRnd(listOfConnectedLinks)
11: update(listOfConnectedLinks)
12: if link ∈ originalPath then
13: return reroutingPlan
14: end if
15: end if
16: end while

The smart vehicle is able to communicate with the city infrastructure and
receive real-time updates about traffic conditions, including accidents. This
allows the smart vehicle to proactively plan an optimal rerouting strategy
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and avoid congestion caused by the accident. This approach results in a
faster response time for the smart vehicle compared to traditional vehicles,
which rely on visual cues or a pre-planned route. Algorithm 1 can be used
to describe the rerouting process for the smart vehicle, where the vehicle
receives updates about the accident location and computes the optimal route
in real-time.

The emergency vehicle represents a vehicle acting on behalf of a critical
emergency response organization, e.g. police, fire brigade, or ambulance.
In the considered scenario, the aim is to prioritize their ability to move
within the city during accidents. The emergency vehicle is able to receive
real-time updates on traffic conditions, including the location of accidents,
and can make informed decisions about the most efficient route to reach
its destination. Additionally, the smart vehicle and the city infrastructure
can make adjustments to traffic flow, such as rerouting other vehicles, to
make way for the emergency vehicle and minimize its response time. An
emergency vehicle entering a queue of a link is modeled as an occupant of
a Seepage queue. Instead of lining up [54], a Seepage queue model allows
the emergency vehicle to bypass congestion caused by accidents and reach
its destination as quickly as possible, increasing the chances of survival for
individuals involved in the emergency. Also, there is the assumption that
this vehicle can communicate with other smart vehicles and with the city’s
infrastructure.

Even if a smart vehicle can immediately reroute as soon as a central
authority is aware of an accident, V2V communication can be exploited
to avoid smart vehicle routes to conflict with the emergency vehicle routes
to/from the accident site. Given that the path of the emergency vehicle
(emergencyPath) is composed ofN links, it is defined a Look Ahead Window
(LAW) of links represented by the nextM links within the emergency vehicle
path starting from its current position. The LAW is communicated to the
nearby smart vehicles so that they can compare this newly received list of
links with a subset (P ∗) of their current plan (P ); such a subset is composed
of the first K subsequent element starting from the current position of the
smart vehicle. If a potential conflict is detected then the smart vehicle will
reroute (i.e. by removing the overlapping links and recomputing Dijkstra).
Implementation-wise, constraints in equation 4.2 apply.

66



M = |LAW |, N = |emergencyPath|
LAW ⊂ emergencyPath
K = |P ∗|, P ∗ ⊂ P
K ≤M ≪ N,M > ϵ
if P ∗ ∩ LAW ̸= ∅ then conflict is detected

(4.2)

The Look Ahead Window, as defined in equation 4.2, is constrained to
have a relatively small number of links compared to the entire emergency ve-
hicle path. This is done to minimize the unnecessary rerouting operations for
the smart vehicles while still providing enough information for path conflict
detection. However, it should be noted that the cardinality of the window
should not be so small that it would require an unrealistic level of precision
in terms of the vehicles’ location and timing. In a simulated environment,
this level of precision may be achievable, but it would be impractical to
expect the same level of accuracy in a real-world scenario.

Vehicles speed calculation

In order to model the speed of the cars within a queue, the Greenshield
Linear model (equation 4.3) is exploited.

v = max
(
vm − vm d

c ,minspeed

)
(4.3)

In equation 4.3, v is the current velocity, vm is the maximum velocity
for that category of vehicle, d is the current vehicle density of that link
[vehicles\mile or kilometer] and c is the link capacity (as in vehicle count).
According to Equation 4.3, if the link’s capacity is exceeded, vehicles are
required to set their velocities to zero (minspeed = 0) to reflect congestion.
The maximum speed, vm, is determined by the local traffic authority, which
allows emergency vehicles to travel at a higher speed than regular road users.
To simulate the tendency of emergency vehicles to ”seep” through traffic, a
minimum speed of minspeed > 0 is imposed for this class of vehicles. Addi-
tionally, non-emergency vehicles traveling on non-congested links decrease
their speed when an emergency vehicle is passing through, simulating the
likely behavior of road users to yield and move to the side of the road to al-
low emergency responders to pass more easily. This speed, v∗, is calculated
using Equation 4.4.

v∗ = min

(
R e

− R
llink , v

)
(4.4)

67



In equation 4.4, the speed v∗ of non-emergency vehicles is defined as the
minimum value between v as calculated in equation 4.3 and a decreasing
exponential function that is dependent on a constant value R, representing
a walking-pace speed, and the length of the link llink. This inverse propor-
tionality to the length of the road is intended to simulate that the effect of
an emergency vehicle passing through does not necessarily propagate to the
entirety of the affected street.

4.3 Global Coordination Experiments

4.3.1 Smart Parking Management Experiments and Results

The objective of these experiments is to evaluate the effectiveness of the
proposed smart parking strategy, referred to as Smart Shortest Distance,
and to compare it against other non-smart strategies in a mixed scenario
where both equipped and non-equipped vehicles co-exist. It is assumed
that non-equipped vehicles will utilize a non-smart strategy. The non-smart
strategies simulate the approaches that human drivers use to select the next
link to traverse in order to reach a parking spot close to their destination.
There are three non-smart strategies that are taken into consideration:

• Random. The Random strategy simulates the behavior of drivers who
have limited knowledge of the city or available parking areas, such as
a tourist in an unfamiliar city. At intersections, they make a Random
selection of the next road to follow, avoiding roads that have already
been traversed, unless all alternatives have been selected once. This
strategy will serve primarily as a baseline, as it is unlikely that drivers
travel without some form of a navigation system, whether integrated
or not.

• Benenson [55]. The Benenson strategy simulates the behavior of
drivers who possess some level of familiarity with the city and the
location of parking areas (i.e., drivers are able to orient themselves
in the area). At intersections, these drivers will choose the road that
gradually brings them closer to the parking areas.

• Shortest Distance. The Shortest Distance strategy simulates drivers
who have a clear understanding of the area, including their preferred
parking locations and the most efficient routes to reach them. How-
ever, they are not aware of the availability of parking spaces until
they arrive at the parking area. This strategy involves identifying the
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nearest parking area to their destination and searching for the closest
available parking spot. If the selected area is fully occupied, the driver
will proceed to the next closest parking area.

Illegal Parking. In this study, the scenario of illegal parking is also
addressed and simulated. Illegal parking refers to the situation in which
drivers, after a prolonged period of searching for an available parking spot,
decide to park in a convenient location outside of designated city parking
areas. This behavior can occur in both smart and non-smart strategies.
For instance, in a non-smart strategy, vehicles may continue to search for
parking in areas where the number of available parking spots is inadequate
for the number of vehicles looking for parking. Similarly, a smart strategy
may fail to find parking due to a lack of available spots or the potential for
a selected spot to be occupied by another vehicle.

Experimental set up

The experiments were conducted using the MATSim simulator, which was
extended with new functionalities to incorporate both smart and non-smart
parking strategies (see Section 2.2.5). The use of MATSim was deemed ap-
propriate as it is a flexible open-source platform that enables customization
to meet specific research needs.

Map In the experiments, a Manhattan-style map, shown in Figure 4.1,
was utilized to test the proposed system in a highly regular scenario. The
map is an artificially constructed representation and not a representation of
a real city area. Each intersection comprises four links, with eight horizontal
bidirectional links intersecting nine bidirectional vertical links, resulting in a
total of 72 four-way intersections. The parking areas were chosen arbitrarily,
with no regular pattern, in order to diversify traveling distances and simulate
a real scenario in which there are areas with more parking spots than others,
specifically, more parking areas on the upper and left side of the map than
on the bottom and right side.

Population Each vehicle is associated with two locations, namely the
driver’s residence and place of work, as well as two schedules consisting of a
departure time from home and a return time from work. The locations are
randomly selected on the map, with the constraint that a connecting path
exists in both directions. The departure and return times are generated
according to normal distributions with peaks at city rush hours, specifically
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Figure 4.1: Manhattan map: parking areas are highlighted in red.

09:00 AM for departure and 06:00 PM for return. Illegal parking is simulated
by setting a threshold of 26 minutes for the parking search time, which was
determined empirically to ensure that the simulations always terminate.

Experiments

The aim of the experiments is to measure the duration of time required
for vehicles to locate and reach an available parking spot. This duration is
measured as the time elapsed between the moment when a vehicle begins
its search for a parking spot and the moment it reaches an unoccupied spot.
The starting point for this measurement is considered to be the instant in
which a vehicle reaches its final destination and commences its search for a
parking spot.

The proposed smart parking strategy is evaluated and compared to non-
smart strategies in various scenarios. The impact of varying the number of
reservable spots and the co-existence of smart and non-smart vehicles on
the search time is also investigated.

Each scenario is evaluated through a series of 20 simulations, and the
results are reported as averages across these runs. For each simulation, the
initial conditions, such as the starting position, destination, and schedules
of the vehicles, are kept constant across all strategies being compared. This
allows for fair and comparable results to be obtained.

Experiment 1 In this experiment, the performance of the smart parking
strategy is evaluated by varying the percentage of reservable parking spots,
which are set to 0%, 25%, 50%, and 100%. The smart strategy is adopted by
all vehicles in the simulation, and two cases are considered: (1.1) when there
are more parking slots (1000) than vehicles (800); and (1.2) when there are
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Figure 4.2: Experiment 1. Smart strategy search time when varying the
percentage of reservable slots. There are 800 vehicles and on the left (resp.
on the right) 600 (resp. 1000) parking spots.

fewer parking slots (600) than vehicles (800). The results of this experiment
are presented in Figure 4.2.

It is evident from the results that the proposed smart parking strategy
demonstrates robustness across varying traffic and infrastructure conditions.

Specifically, the average search time and standard deviations remain rel-
atively consistent when the percentage of reservable parking spots is varied.
Specifically, the average search time is found to be within the range of [88,
89] seconds for experiment 1.1 and [103, 106] seconds for experiment 1.2.
Additionally, the standard deviation is found to be within the range of [40,
41] seconds for experiment 1.1 and [57, 66] seconds for experiment 1.2.

On the other hand, when analyzing the outliers, it can be observed that
the number of reservable spots does have an impact on the maximum search
times. In Experiment 1.1, the maximum search time was 440 seconds when
the percentage of reservable spots was 0%, 25%, and 50%, and 264 seconds
when it was 100%. Similarly, in Experiment 1.2, the maximum search time
was 550 seconds when the percentage of reservable spots was 0%, 25%, 418
seconds when it was 50%, and 318 seconds when it was 100%.

Furthermore, it is observed that the smart strategy performs better in
scenarios where there is an abundance of parking spots, with average search
times being 20% less, the standard deviation being 30-38% less, and maxi-
mum search times being 20-31% less, than when there is a lack of parking
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Figure 4.3: Experiment 2. Search time (in log scale) when varying the
parking strategy. There are 800 vehicles and on the right (resp. on the left)
1000 (resp. 600) parking spots.

spots.

The results obtained from the experiments are indeed encouraging, par-
ticularly in scenarios where the number of parking slots is limited. It was
observed that all vehicles were able to find a free parking spot within 9 min-
utes, thus avoiding the need for illegal parking. It is worth noting that the
vehicles do not circulate simultaneously, and this could explain why they
were able to find a parking spot even in scenarios where the number of
parking slots is less than the total number of vehicles.

Experiment 2 In this experiment, the performance of the proposed smart
parking strategy is compared against three non-smart strategies, under the
assumption that all vehicles adopt the same strategy. Two scenarios are
considered, where the number of available parking slots is 1000 (experiment
2.1) and 600 (experiment 2.2). For the smart strategy, it is assumed that
there are no reservable parking spots, which represents the worst-case sce-
nario. To ensure comparability, the same initial conditions are used for
each strategy in each run of the experiment. The results are presented in
Figure 4.3.

It is clear from the results of the experiment that the proposed smart
parking strategy outperforms the non-smart strategies in both scenarios of
ample and scarce parking availability. Specifically, when there is an abun-
dance of parking spots, the average search time for the smart strategy is 89
seconds, which is significantly lower than the average search times for the
Random, Benenson, and Shortest Distance strategies, which are 540 sec-
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onds, 155 seconds, and 117 seconds, respectively. Similarly, when there is a
scarcity of parking spots, the smart strategy still performs well with an av-
erage search time of 106 seconds, while the other strategies have an average
search time of 598 seconds, 472 seconds, and 513 seconds, respectively.

It is apparent from the results that the Smart Shortest Distance strategy
exhibits superior performance in comparison to other non-smart strategies.
Specifically, the results indicate that the Smart Shortest Distance strategy
leads to a reduction in searching time for 82% of the vehicles when compared
to the Random strategy, on average achieving a reduction of 76%. Similarly,
the strategy results in a reduction of searching time for 51% of the vehicles
when compared to the Benenson strategy, on average resulting in a 57%
reduction. Additionally, the strategy shows a 7% reduction in searching time
for vehicles when compared to the Shortest Distance strategy, on average
resulting in a 71% reduction in searching time.

As anticipated, when the availability of parking spots decreases, all
strategies perform worse, but the proposed Smart Shortest Distance strat-
egy still remains the most competitive. Specifically, the mean search time
increases from 540 to 598 seconds for the Random strategy, from 154 to 472
seconds for the Benenson strategy, from 117 to 513 seconds for the non-
smart Shortest Distance strategy, and from 89 to 106 seconds for the Smart
Shortest Distance strategy. Similarly, the maximum search time increases
from 1621 to 1632 seconds for the Random strategy, from 1650 to 5237 sec-
onds for the Benenson strategy, from 1617 to 1630 seconds for the non-smart
Shortest Distance strategy, and from 440 to 550 seconds for the Smart Short-
est Distance strategy. It’s worth noting that the Random strategy has the
smallest percentage increase among the non-smart strategies when reducing
the number of parking spots, while the Benenson and non-smart Shortest
Distance perform much worse in this scenario.

Experiment 3 In this experiment, a scenario is simulated in which equipped
and non-equipped vehicles co-exist, and the percentage of reservable park-
ing spots is varied. The simulation includes 800 vehicles, with 200 vehicles
adopting each strategy. The number of reservable parking spots varied at
0%, 25%, 50%, and 100%. The simulation is run with 1000 and 600 parking
slots. Non-equipped vehicles are only permitted to park in reservable spaces
if they have not been reserved. Results of this experiment are presented in
Figure 4.4.

It is observed that the smart parking strategy remains competitive even
when in the presence of non-equipped vehicles, particularly when there is a
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Figure 4.4: Experiment 3: Parking search time (in log scale) when smart
and non-smart strategies co-exist and vary the percentage of reservable park-
ing spots. There are 800 vehicles and on the right (resp. on the left) 1000
(resp. 600) parking spots.

lack of available parking spots. Notably, there is little variation in perfor-
mance when varying the percentage or number of reservable parking spots,
and the search times are comparable to those observed in the previous ex-
periment where all vehicles adopted the smart strategy.

Observe also that the smart strategy allows all vehicles to find a parking
spot in a timely manner, well before the point at which they would resort to
illegal parking. Furthermore, it is observed that all other strategies exhibit
a significant number of outliers, with very large searching times, particularly
in the case of the Random strategy. Additionally, non-smart strategies tend
to result in more instances of illegal parking. Even though the Benenson
strategy may perform better in certain situations, it still exhibits a notable
number of outliers, which are not present in the Smart Shortest Distance
strategy.

4.3.2 Emergency Experiments and Results

The initial representation of the MASA area street network was created by
importing data from the OpenStreetMap (OSM) database. This process
involved the use of several plugins to augment the network with additional
information such as capacities for the road links, turning bans, and parking
spaces. The MASA area, which is a 1-square kilometer wide area centered
around coordinates (44.65632, 10.93150) in OSM1, was chosen as the simula-

1https://www.openstreetmap.org/
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tion area. The simulated population size was estimated using regional traffic
flow data made available online2. The data indicated that the rush-hour
road users population in the area ranges between 10,000 and 20,000 users.
Constants in equations 4.3 and 4.4 were set to vm = 50 Km/h, minspeed = 0
for non-emergency vehicles, vm = 70 Km/h, and minspeed = 10 Km/h for
emergency vehicles, R = 5 Km/h. These values are in compliance with
Italian law. The Look Ahead Window (LAW) cardinality for smart vehicle
rerouting was set to 15, and K = 8 from equation 4.2.

The vehicles in the experimental scenarios are provided with initial plans,
which include their departure and arrival locations. These plans are set for
all the users in the different experimental scenarios so that the users’ plans
remain consistent while different behaviors are being simulated. The plans
are constructed by selecting two random locations on the MASA map as the
home and work locations for the vehicles. The vehicles perform two trips
per day, starting from home and ending at work in the morning, and then
reversing the route in the evening. The departure times are chosen based on
a normal distribution, with the peak during typical rush hours (8:00 AM-
9:00 AM for home departure and 06:00 PM-07:00 PM for departing from
work).

The goal of the traffic modeling in this simulation is to investigate the
mechanisms behind emergency response while varying the capabilities of the
involved vehicles within a specific city area. For this purpose, a representa-
tion of the MASA area street network was created, utilizing information from
the OpenStreetMap database and augmented with additional information
such as capacities for the road links, turning bans, and parking spaces. The
simulated population was estimated using regional traffic flow data, and the
vehicles’ routes were calibrated to depict realistic traffic situations [56, 57].
However, it should be noted that the objective of these simulations is not
to provide an accurate reconstruction of the traffic in the MASA area, but
rather to study the proposed emergency response strategies.

Emergency vehicles response time

In this set of experiments, the primary focus is on analyzing the response
time of emergency vehicles, specifically ambulances, when traveling to and
from the site of an accident within the MASA area. The simulation model
outlined in section 4.2.2 highlights that the travel time of emergency vehicles
can be influenced by the ratio of smart vehicles to the total number of road

2https://servizissiir.regione.emilia-romagna.it/FlussiMTS/
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Smart Vehicle
percentage

Ambulance
travel Time [s]

% difference
from Scenario 1

Scenario 1 0 109 -

Scenario 2 33 102 6.4

Scenario 3 50 89 18.3

Scenario 4 66 80 26.6

Scenario 5 100 69 36.7

Table 4.1: Ambulance average travel times with different kind of vehicles.

users in the simulation. This ratio serves as a parameter in the experiments
and can provide insight into the impact of smart vehicles on urban mobility
during the transitional period from traditional vehicles to fully equipped
vehicles. It is important to note that during this transition, both equipped
and non-equipped vehicles will coexist, and thus, understanding the effects
of varying this ratio is crucial for evaluating the feasibility and potential
benefits of smart vehicle deployment in urban environments.

To determine the ambulance travel time with an increasing number of
smart vehicles, multiple scenarios were run. In all these scenarios, it is
reported the average travel time over a set of 30 ambulance trips. The first
scenario consisted of 12000 users with a scaling number of smart vehicles
and results are depicted in table 4.1.

In summary, the results presented in table 4.1 indicate that the average
response time of emergency vehicles improves as the percentage of smart
vehicles increases. The improvement is particularly significant when the
percentage of smart vehicles exceeds 50%, with a decrease in response time
of up to 36.7%. Additionally, the results also suggest that the population size
of road users within the simulated area has an impact on the response time
improvement, with larger populations resulting in a smaller improvement.
Additional tests are performed increasing the number of vehicles to 16000,
hence getting closer to the inevitable congestion of the MASA. In such a
scenario, the response time improvement within a population characterized
by 75% of smart vehicles would range from 4.3% to 8.33% with respect to
the baseline scenario of no smart vehicles at all. Overall, the results suggest
that an increase in the percentage of smart vehicles in a population can
significantly improve the response time of emergency vehicles in the event
of an accident.
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Classic Allochthonous Autochthonous Smart
Accident Scenario

Prev. intersection has
multiple outgoing links

1 0.7385 0.6906 0.6724

Prev. intersection has no
other outgoing links

1 1 1 0.6392

Table 4.2: Normalized travel times of different kind of vehicles.

Accidents’ impact on non-emergency vehicles

In this section, the impact of accidents and related road closures on travel
times for vehicles within the MASA region is analyzed. As previously dis-
cussed in Section 4.2.2, regular road users are classified into different vehicle
categories, including traditional, allochthonous, autochthonous, and smart
vehicles. The traditional vehicles are modeled as the MATSim baseline im-
plementation of road users who will not attempt to circumvent the roadblock
caused by an accident. These vehicles serve as a baseline for the proposed
simulation. In this experiment, accidents are artificially introduced at ran-
dom locations within the MASA area and their effect on the travel plans
of vehicles is recorded. The average travel times for each vehicle category
are then calculated. It is assumed that the entire population of users be-
longing to the indicated categories is included in the experiments. Another
crucial aspect to consider in such an experiment is the number of outgoing
links from the link preceding the blocked road. If there is only one outgoing
link, it is likely that most road users will be stranded on the blocked road,
whereas having multiple options for rerouting can help drivers avoid being
blocked. The results of the experiment can be observed in Table 4.2.

Table 4.2 illustrates that when it is possible to reroute at the intersection
preceding the accident link, travel times can be improved by up to 33.6% for
smart vehicles and 26.1% for allochthonous vehicles. These results indicate
that a more realistic approach to modeling accidents leads to less pessimistic
traffic estimates compared to the MATSim baseline approach, particularly
for allochthonous vehicles. More specifically, traditional vehicles will at-
tempt to find alternative routes without the aid of smart city infrastructure,
even if it means risking getting lost. While the performance difference be-
tween allochthonous and autochthonous vehicles can be explained by the fact
that the latter category of vehicles cannot get lost, in a scenario where there
are multiple outgoing links, there is relatively little difference in travel time
improvements between autochthonous and smart vehicles (about 2The bene-
fits of smart vehicles become more pronounced in the second scenario, where
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the intersection preceding the accident site does not allow for last-minute
rerouting. Specifically, allochthonous and autochthonous vehicles can only
react to an accident after they see it, resulting in performance that is simi-
lar to traditional vehicles modeled in the MATSim simulations. In contrast,
smart vehicles, as modeled in the simulations, are immediately alerted to
the accident by the city’s infrastructure, leading to significant improvements
in performance.

4.4 Conclusion

In this chapter, the importance of a central server in a smart city is empha-
sized through two examples: Parking Management and Emergency Vehicle
Management. The proposed coordination algorithms for these two problems
are designed to exploit information about the entire city and are centrally
managed as a central entity must have knowledge of the entire city state in
order to effectively manage these issues and provide the necessary informa-
tion to vehicles.

The Parking Management algorithm is able to suggest parking areas with
available spots for vehicles and notify them if a chosen spot will be occupied
by another vehicle. Additionally, if the parking spot has the capability to
be reserved, the vehicle is able to reserve it.

The Emergency Vehicle Management algorithm is also centrally man-
aged, with a central server requesting non-emergency vehicles to change
their routes if they will pass through the emergency vehicle’s route, in order
to prevent congestion. The server also informs connected vehicles of the lo-
cation of any accidents that occur in the city, allowing them to adjust their
routes accordingly.

The results of these algorithms demonstrate that they are effective in
reducing parking search time and emergency vehicle response time, even in
situations of high traffic flow or limited available parking spots. Addition-
ally, non-emergency vehicles also benefit from information about accident
locations. Specifically, the time spent searching for a parking spot is re-
duced by up to 76% when compared to baseline strategies utilized by human
drivers and the proposed Emergency Vehicle Management System is able to
reduce both the Emergency Vehicle response time by up to 36.7% and non-
emergency Vehicle trip time by up to 36.1% with respect to the scenario in
which no such system exists.

It is important to note that the central design of these algorithms is
crucial for their effectiveness, as they rely on information about the entire
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city state. A distributed design would not be able to achieve the same
benefits. While a central design does present the potential for a single point
of failure, the benefits outweigh this potential drawback.
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Chapter 5

Hardware Accelerated
Planning and Localization

5.1 Introduction

In recent years, there has been a marked increase in interest and research
in the field of automotive technology, specifically in the areas of Advanced
Driver Assistance Systems (ADASs) and autonomous vehicles. Many re-
search and development efforts have been focusing on these areas.

ADAS are vehicles that require human supervision but can perform cer-
tain maneuvers such as steering or acceleration autonomously. The level
of autonomy of the system determines the type of maneuvers that can be
performed and the role of the human driver. The Society of Automotive
Engineers (SAE) defines different levels of autonomy:

• Level 0. The vehicle is not able to perform any maneuvers in itself.
The driver has to perform all maneuvers. Traditional, human-driven,
vehicles are examples of this level.

• Level 1. The vehicle can perform a single maneuver autonomously;
the driver must perform other maneuvers. An example of this level is
Cruise Control, which is a system that controls only vehicle accelera-
tion.

• Level 2. The vehicle can perform autonomously more maneuvers.
For example, the vehicle can both steer and accelerate.
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Autonomous vehicles are the evolution of ADAS, they do not need hu-
man intervention and can reach a destination independently. In the SAE
categorization, autonomous vehicles occupy the last three levels:

• Level 3. The vehicle can drive itself in some situations. The human
driver has to supervise the system and take control of the vehicle if
the system fails or if the system itself alerts that is not able to manage
the situation.

• Level 4. The vehicle can drive itself in a definite situation (such as a
specific area) without human intervention.

• Level 5. The vehicle can drive itself without human intervention, in
all situations.

The main distinction between Level 2 and Level 3 vehicles is that Level
2 systems primarily provide assistance to the human driver, who is still con-
sidered the primary operator of the vehicle. On the other hand, Level 3
systems are designed to be capable of performing most driving tasks, but
with the expectation that a human driver will be available to take over in
certain situations or scenarios.

Both ADAS and autonomous vehicles rely on the ability to perceive the
environment in order to control their maneuvers. The perception system
is responsible for determining the vehicle’s location and detecting obstacles.
The control system is responsible for planning and executing the maneuvers.

The input required by perception and control algorithms can be obtained
in two ways: through the use of sensors or by leveraging smart city infras-
tructure. The former method, which is the most commonly used, has sev-
eral advantages. It does not rely on external infrastructure and the sensors
can be selected and installed directly on the vehicle by the manufacturer.
However, the raw information obtained must be pre-processed, and it can
contain noise. By utilizing smart city infrastructure, vehicles can access
more reliable data, as other vehicles can communicate their exact position
and intended trajectory. The smart city authority can also provide precise
information about the environment, such as the location of static obstacles
or the roadway geometry. However, this approach also has its drawbacks,
such as the potential for data to arrive too late to be processed and not all
vehicles being equipped to share their position and intentions.

More specifically, perception algorithms require data to reconstruct the
environment, which includes the vehicle’s position, the roadway geometry,

82



and the location of obstacles. The rest of the pipeline, including the control
algorithm, then uses this reconstructed environment. It uses the recon-
structed environment in conjunction with other vehicles’ trajectories and
positions to avoid collisions. This data can be obtained from the smart
city infrastructure or by using sensors to reconstruct the environment. The
smart city authority can provide roadway information, obstacle positions,
and vehicle localization within the city. Other vehicles can also share their
position and intentions. Sensors such as GPS receivers or odometry systems
can be used for localization, and cameras and Lidar can be used to perceive
and reconstruct the environment to identify other vehicles and obstacles’
positions. However, it is challenging to infer the intentions of different vehi-
cles from sensors, as there is a degree of unpredictability in the maneuvers
of other vehicles that can only be estimated probabilistically. Some recent
studies have used deep learning techniques for this task [58, 59, 60], while dif-
ferent approaches have assumed that vehicles only follow physical rules [61]
or take into account the driver’s possible intentions [62, 63].

As previously stated, the most common method for retrieving informa-
tion is through the use of sensors. As a result, most algorithms are based
on sensor data. This thesis focuses on the localization and planning phases,
for which there are a variety of algorithms that use sensors. For example,
GPS [64] or odometry sensors [65] can be used to determine the vehicle’s
position. Other approaches, such as Simultaneous Localization and Map-
ping (SLAM) [66], use sensors such as Lidar or cameras to construct a map
of the environment, with the latter approach being referred to as Visual
SLAM [67]. Cameras can also be used to retrieve other data required for
the planning phase, such as reconstructing roadway geometry [68] and de-
tecting the positions of other objects [69].

The pipeline from perception to actuation must be completed in a timely
manner to avoid safety hazards. As the surrounding environment is con-
stantly changing, if the pipeline takes too long to complete, the selected
maneuver may no longer be appropriate. For example, if the pipeline takes
too long to complete, and an obstacle enters the scene, the new trajectory
that avoids the obstacle may be ready too late, resulting in a collision as the
vehicle is still following the original trajectory. It is crucial that the pipeline
is optimized to complete quickly in order to maintain safety.

For this reason, it is essential that the algorithms used in the pipeline
are optimized for speed. This can be achieved by improving the algorithms
themselves or by using hardware accelerators (such as a CUDA-enabled
GPU) as outlined in Section 5.2. This will help ensure that the pipeline
completes quickly and does not pose a safety hazard.
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The following chapters of this thesis will address the localization and
planning problems. It will elaborate on the specific algorithms and tech-
niques that can be used to achieve fast and accurate perception and control,
and the research on how to optimize them.

In particular, Chapter 6 is dedicated to the localization problem. The
chapter will provide an in-depth examination of the problem and will de-
scribe an algorithm for localization in Section 6.2. Additionally, in Sec-
tion 6.3, a novel implementation of this algorithm will be proposed to im-
prove its performance and efficiency.

In contrast, Chapter 7 will focus on the planning problem. It will de-
scribe an algorithm for addressing this problem in Section 7.2. And, similar
to localization, a novel implementation of the algorithm will be proposed in
Section 7.3 to enhance its performance and efficiency.

5.2 Hardware Accelerators

In recent years, the use of hardware accelerators has become increasingly
popular in the field of autonomous driving systems. Hardware accelera-
tors are specialized computer hardware that can perform certain operations
much faster than general-purpose processors. These accelerators are used
to speed up computationally intensive tasks, such as perception and control
algorithms, which are critical to the operation of autonomous vehicles.

There are several types of hardware accelerators that have been used in
autonomous driving systems. Graphics Processing Units (GPUs) are widely
used to accelerate the processing of sensor data, such as images and point
clouds. Field-Programmable Gate Arrays (FPGAs) are also used to accel-
erate the processing of sensor data and to perform tasks such as object
detection and tracking. Digital Signal Processors (DSPs) are used to per-
form tasks such as sensor fusion, and Neuromorphic processors are used to
accelerating deep learning-based algorithms.

The use of hardware accelerators can significantly improve the perfor-
mance and efficiency of autonomous vehicles, by reducing the computational
time of the perception and control pipeline. This allows the system to re-
spond more quickly to changes in the environment and make decisions in
real time, which is essential for maintaining the safety of the vehicle and its
passengers.

In particular, Nvidia embedded boards, due to their compact dimen-
sions, lightweight design, and low power consumption, are well-suited for
use in vehicles. These boards are equipped with various accelerators, such
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Figure 5.1: Illustration of a CUDA kernel launch configuration, where
threads within the same block access shared memory more efficiently com-
pared to global memory, and threads are grouped in warps that execute the
same instruction.

as the GPU, Deep Learning Accelerator (DLA), and Programmable Vision
Accelerator (PVA), which is specifically designed to accelerate visual algo-
rithms.

The Nvidia boards are used as reference hardware for the optimization
of the proposed algorithms. In particular, the Nvidia Xavier AGX board,
which has all the aforementioned accelerators, is used. The GPU serves as
the accelerator to enhance the performance of the algorithms.

In order to utilize the GPU accelerator for general-purpose computation
and accelerate the algorithms, the CUDA programming model is employed.
The usage and implementation of CUDA are thoroughly discussed in Sec-
tion 5.2.1.

5.2.1 GPU and CUDA

The GPU (Graphics Processing Unit) was originally designed to accelerate
graphic workloads, but it can now also be used for general-purpose com-
puting (GPGPU). A GPU is a SIMD (Single Instruction Multiple Data)
processor that is capable of processing large amounts of data in a highly
parallel manner. To execute a compute task on the GPU, it is necessary to
allocate memory in GPU-visible memory spaces, copy the input data from
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the host (CPU) to the GPU device memory, execute a kernel, which is a
program specifically coded for the GPU instruction set architecture, and
then copy the results back to the host memory.

Kernels are dispatched through a launch configuration, which is a grid
specified by the programmer in which parallel GPU threads are logically or-
ganized [70]. The launch configuration describes the degree of parallelism in
which the work must be computed over a grid of parallel threads. Depend-
ing on the type of problem and the size of the input data, a kernel may be
invoked with a launch configuration that spans the X, Y, and Z dimensions.
A grid is composed of blocks of threads, and threads within a single block are
grouped into warps, which are sets of 32 threads that can execute the same
instruction on different data items in a lock-step fashion (see Figure 5.1).
Divergence, or conditional instructions within a warp, causes serialization
of all the conditional branches.

Moreover, threads in the same block can access can synchronize themself
using the synchthread primitive, and share data using a special memory
called shared memory.

CUDA shared memory is a special type of memory that is shared among
threads within the same thread block as illustrated in Figure 5.1. It allows
threads to read and write to the same memory location, allowing them
to coordinate and communicate with each other. Shared memory is faster
than global memory (which is the memory in which data are copied from
the CPU), as it has lower access latency, and can be accessed by all threads
in a block simultaneously.

The syncthreads primitive is a CUDA primitive function that synchro-
nizes all threads within a thread block. When a thread reaches a sync-
threads instruction, it will wait until all other threads in the same block have
reached the same instruction. This allows for coordination and communica-
tion among threads, as they can be sure that all threads have completed a
certain operation before proceeding. It can also be used to implement barrier
synchronization, where all threads must wait at a barrier before proceeding.

Shared memory and syncthreads are powerful features that allow for
efficient data sharing and coordination among threads. They enable the op-
timization of parallelization and computation, particularly for applications
that require large amounts of data to be shared among threads, such as
image processing, machine learning, and scientific simulations.

To simplify the process of utilizing the GPU capabilities, NVIDIA devel-
oped a proprietary standard called CUDA (Compute Unified Device Archi-
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tecture). CUDA provides APIs and libraries that can be accessed through
high-level programming languages such as C++. In other words, CUDA ab-
stracts much of the hardware complexity that is typical of GPU applications,
making it easier for programmers to work with the GPU.

In addition, the CUDA programming model allows the programmer to
express an additional layer of parallelism through CUDA Streams. A CUDA
Stream is a sequence of commands (compute kernel invocations and memory
movements) that must be executed in the order in which they are enqueued.
As a result, a single program that manages multiple Streams is able to
submit copy and compute commands concurrently, so that their execution
overlaps in time. For instance, while a kernel is performing calculations for
a specific set of data, memory transfers can be overlapped with such kernels
in a buffered flow of execution. To synchronize the execution of commands
among different Streams, a mechanism called CUDA Events can be used.

The proposed implementation of the localization algorithm (Section 6.3)
heavily relies on CUDA Streams and Events. This approach was taken to
optimize performance by overlapping copies and kernel execution, as well
as processing multiple kernels launched in different Streams. By doing so,
according to the hardware features of the GPU, and depending on the re-
quirements (in terms of computing and memory resources) of each kernel,
it allows for parallel execution of the kernels.

The majority of the kernels used in the image processing phase of the
proposed implementations are invoked through a three-dimensional grid,
where the X and Y dimensions are associated with the width and height of
the input images. The Z dimension is used to access the differently scaled
versions of the input images. This will be discussed in more detail later in
section 6.3.1.

In regards to the proposed implementation of the planning algorithm
(Section 7.3), Streams are utilized to overlap memory copies and kernel
execution. Additionally, the grid dimensions are associated with different
parameters used to compute the trajectory points. The grid is also utilized
to group threads that need to synchronize themselves and use the shared
memory in the same block. The synchronization and shared memory are
used to compute the cost component in each thread and then combine the
values into a single result.
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Chapter 6

Localization - ORB-SLAM

6.1 Localization

One of the primary tasks for autonomous vehicles is navigation, and de-
termining the vehicle’s location is a crucial aspect of this task. The term
”autonomous vehicle” refers to all types of vehicles that are capable of per-
forming tasks involving locomotion with minimal human intervention. Ex-
amples of autonomous vehicles include Unmanned Aerial Vehicles (UAVs),
which are used in various fields such as structural inspection [71, 72], envi-
ronmental monitoring [73, 74], and surveillance [75], autonomous cars [76]
used for emergency response [77] and everyday city transportation [5], as
well as autonomous underwater vehicles (AUVs) [78] and autonomous sur-
face vehicles (ASVs) [79].
Autonomous vehicles must use sensors and algorithms to perceive the ex-
ternal environment to localize themselves in the world.

There are various types of sensors that can be used for localization in
autonomous vehicles, such as GPS receivers and Inertial Measurement Units
(IMUs) which are specifically designed for localization purposes. Other sen-
sors, such as Lidar and cameras, are primarily used for the perception of the
environment, but the data they collect can also be utilized by certain algo-
rithms to estimate the movement of the vehicle and determine its location.
These types of sensors are used to extract features from the environment
and use them as a reference for the localization problem.

The selection of sensors for autonomous vehicles is a complex process
that depends on multiple factors. The cost of the sensor is a significant
consideration, as it can have a significant impact on the overall cost of the
robot. The precision of the sensor is another important factor to consider, as
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(a) Points extracted to map and rec-
ognize the environment

(b) Reconstructed trajectory based
on localization of the vehicle

Figure 6.1: An example of ORB-SLAM system in UAVs.

different sensors have varying levels of precision, and even the same sensor
type can have different levels of precision based on construction quality. It
is also usually correlated with the sensor price, as more precise sensors tend
to be more expensive. Additionally, the sensor selection must be done in
light of the algorithms that will be used to achieve the desired results. The
algorithm’s computational and memory requirements must also be taken
into account, as not all algorithms can be run on all types of robots, which
typically have an embedded board to run the system. If the algorithm
required by a sensor is not compatible with the robot, it would be more
efficient to consider another sensor.

6.1.1 Simultation Localization And Mapping (SLAM)

The Simultaneous Localization and Mapping (SLAM) algorithm is a local-
ization technique that combines sensor data with mapping capabilities to
determine the vehicle’s location and construct a map of the environment.
This algorithm can be used to explore unknown environments and deter-
mine the vehicle’s location when it revisits a previously mapped area (see
Figure 6.1). SLAM is applicable to a wide range of scenarios such as auto-
mated parking [80], swarm systems [81], self-driving cars [82], and in rescue
or other extreme situations [83, 84].

SLAM algorithms can integrate a variety of sensors such as Lidar, IMU,
GPS, and cameras. Among these sensors, cameras have been extensively
studied in the context of SLAM, due to their low cost, compact size, and
ease of setup [85]. The visual information provided by cameras is particularly
useful for SLAM, as it can be used to extract features from the environment,
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which can be used to determine the vehicle’s location. Camera-based SLAM
systems are particularly useful in applications where cost, size, and ease of
installation are important considerations.

The Visual SLAM (V-SLAM) systems are camera-based SLAM systems
that utilize point features across consecutive images to recognize the envi-
ronment, making use of camera sensors as input. Additionally, by utilizing
stereo cameras, the system can extract depth information by processing two
images simultaneously, the left and the right image, providing the system
with additional information for the localization and mapping process. This
approach allows for a more robust and accurate localization and mapping.

Recently, there has been a significant amount of research on the SLAM
problem, with a particular focus on Visual SLAM (V-SLAM) systems. The
main objectives of a SLAM system are to estimate the camera pose and
construct a map of the environment. Different V-SLAM approaches tackle
these objectives in various ways, making use of different types of information
extracted from the input images. Some systems can handle both monocu-
lar and stereo camera configurations, while others are specifically designed
for monocular cameras. The choice of sensor type and the algorithm used
can have a significant impact on the performance and the accuracy of the
SLAM system, hence it is an important factor to consider when designing a
V-SLAM system. One of the main approaches used in V-SLAM systems is
Direct methods. These methods use the camera input image pixels directly
to estimate the motion of the camera and the structure of the environment
by minimizing a photometric error between two consecutive images. This
type of approach is based on the idea that by comparing the intensity of
the pixels in two images, it is possible to determine the relative motion of
the camera and the environment. The Direct method is considered to be
very efficient and can be used in real-time applications, but it is sensitive
to lighting variations and can be affected by changes in the texture and the
geometry of the environment. One example of a Direct method approach
is the LSD-SLAM algorithm [86, 87]. This algorithm is capable of build-
ing large-scale semi-dense maps using high gradient pixels and can work
with both monocular and stereo cameras. Another example is the DSM
algorithm [88] that focuses on the idea of map reusing and highlights the
importance of mid-term data association. However, it is only designed to be
used with monocular cameras. An alternative approach to Direct methods in
V-SLAM systems is feature-based methods. These methods extract specific
features from the images and use them to compute the estimated camera
pose. One of the first examples of this type of approach is the MonoSLAM
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algorithm [89, 90]. This algorithm tracks points in consecutive images by
performing a guided search based on correlation and, as the name suggests,
it is designed to work exclusively with monocular cameras. This type of ap-
proach is considered to be more robust to lighting variations and changes in
the environment, but it can be affected by the presence of repetitive patterns
or textures. Another type of Visual SLAM is the keyframe-based approach,
which estimates the map using only a select number of frames, commonly
referred to as keyframes, that are considered to be more informative. This
approach leads to more accurate results at the same computational cost [91]
compared to the previously mentioned approaches. One example of this
methodology is the PTAM algorithm [92], which separates the tracking and
mapping parts into different threads. Like MonoSLAM, PTAM is designed
to work exclusively with monocular cameras. Keyframe-based approaches
are known for their high accuracy, as it only uses salient frames.

Starting from the ideas above, the ORB-SLAM [93] system was built.
ORB-SLAM is a feature-based visual simultaneous localization and mapping
(SLAM) algorithm that uses ORB descriptors as features extracted from
images, so it is a feature-based SLAM. The algorithm is designed to construct
the map using only selected frames, making it a keyframe-based method. The
first version of ORB-SLAM was only able to manage monocular cameras.

Subsequently, the ORB-SLAM2 [94] system was proposed, which intro-
duces several improvements and new features to the original ORB-SLAM
algorithm. The system features a more robust and efficient loop closing
mechanism, and it also supports stereo and RGB-D cameras as input sen-
sors. Additionally, the ORB-SLAM3 [95] system was developed, which in-
tegrates Inertial Measurement Unit (IMU) data and allows for the use of
fish-eye cameras as input sensors. These advancements in the ORB-SLAM
algorithm further enhance its ability to accurately localize and map environ-
ments, making it a valuable tool for various applications such as autonomous
navigation and robotics. The detailed workings of the ORB-SLAM algo-
rithm will be further explored in Section 6.2 of the thesis.

A novel approach is proposed that builds upon the ORB-SLAM fam-
ily of algorithms. Specifically, Section 6.3 describes a method that utilizes
GPU acceleration and introduces novel methods for filtering the extracted
features and constructing image Pyramid, which differs from the methods
used in previous works. From the implementation point of view, the GPU
is exploited using an optimal task execution concurrency through CUDA
streams (Section 5.2.1) and a parallel GPU implementation of the more
computationally intensive task od ORB-SLAM, that, with a preliminary ex-
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periment, results to be in the Tracking phase (see Section 6.2).

To evaluate the performance of ORB-SLAM and other SLAM and Visual
Odometry systems, several commonly-used datasets are employed. One such
dataset is the KITTI [96] dataset, which is a road dataset that is used for
various purposes including Visual Odometry and SLAM systems. Another
dataset is the NewCollege [97] dataset, which is a stereo camera dataset that
also includes laser-scan data of the environment. The Euroc [98] dataset is
designed for use with UAVs and drones and is useful for evaluating Visual
Odometry and SLAM performance. Lastly, the TUM [99] dataset consists
of RGB-D images and ground truth data for evaluating SLAM systems.

The proposed novel implementation is evaluated against the state-of-
the-art CPU and GPU implementations, as well as on both versions of
ORB-SLAM 2 and 3. The experiments demonstrate that it achieves su-
perior performance in terms of execution latencies and trajectory errors,
with a latency speed-up of up to 3x compared to the original implemen-
tation. Given its improved performance over the initial CPU version, the
proposed solution establishes itself as a new benchmark for further research
in this field.

The rest of this chapter is organized as follows: in Section 6.1.2 are pre-
sented works that use accelerators to implement ORB-SLAM. In Section 6.2
the ORB-SLAM algorithm is presented, then in Section 6.3 the novel pro-
posed implementation is described and in Section 6.4 is evaluated. Finally,
in Section 6.5.

6.1.2 Use of Accelerators in ORB-SLAM

The timely retrieval of the autonomous vehicle’s position is a critical aspect
of the localization task, as it is closely related to the safety of the vehicle. The
localization information must be obtained within a reasonable time frame
to avoid becoming obsolete, as it is used in subsequent driving tasks such
as planning and actuation. An outdated position may result in incorrect
planning and pose a safety risk, such as a possible crash. To meet these real-
time requirements, various methods can be utilized such as utilizing powerful
multi-core CPUs, implementing compute accelerators, and fine-tuning the
algorithm’s parameters and implementation details. These performance-
related aspects play a crucial role in ORB-SLAM based approaches, which
is why several versions of ORB-SLAM that exploit accelerators have been
proposed in the literature, such as in references [100] and [101].

The computational time required for ORB-SLAM is a significant con-
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cern, particularly in the context of autonomous vehicles, where real-time
performance is essential for safety. To address this, various efforts have been
made to optimize the performance of ORB-SLAM by leveraging computa-
tional accelerators. In [102], a comparison of different acceleration meth-
ods for ORB-SLAM and other Visual Odometry techniques is presented,
using three CUDA-enabled devices: the Nvidia Jetson TX2, Xavier NX,
and Xavier AGX. However, it is worth noting that the process of adapt-
ing SLAM-based algorithms for use on GPU is not a straightforward task.
In [103], the authors proposed an acceleration method for ORB-SLAM2 us-
ing OpenCL for FPGA (Altera DE1-Soc board) and CUDA for NVIDIA
(Jetson TX1) platforms, with a focus on accelerating the Map Initialization
phase of the algorithm. Both OpenCL and CUDA are programming models
and languages that exploit the parallel computing capabilities of accelera-
tors. OpenCL is an open standard, while CUDA is a proprietary technology
developed by NVIDIA.

Similarly, in [101], the authors used CUDA to accelerate ORB-SLAM2 on
NVIDIA platforms by utilizing CUDA and OpenCV GPU versions to extract
and match features in Stereo camera systems. In [104], the authors employed
CUDA to accelerate the initial stages of feature extraction in the ORB-
SLAM algorithm and also utilized OpenVX to model the computational
graph and offload operations to the GPU accelerator. Additionally, in [100],
the authors used OpenCV to perform image scaling on the GPU, which is an
important phase of the ORB-SLAM approach, and only implemented GPU
acceleration on select parts of the feature extraction phase.

In summary, various works have proposed methods to accelerate ORB-
SLAM by utilizing various acceleration technologies such as CUDA, OpenCL,
and OpenVX on different platforms like FPGA, NVIDIA Jetson, and NVIDIA
GPU. All of these works aim to improve the performance of ORB-SLAM by
reducing its computational time.

The proposed novel approach builds upon the ORB-SLAM family of
algorithms and utilizes GPU acceleration to improve performance. It in-
troduces novel methods for filtering the extracted features and constructing
image Pyramids and is integrated into both ORB-SLAM2 and ORB-SLAM3.
It is designed to minimize data transfers between the CPU and GPU and
to optimally exploit CUDA features such as streams and events, which al-
lows the algorithm to minimize CPU-GPU interactions and fully exploit
the parallel compute potential of integrated GPU devices. This is in con-
trast to previous works that have focused on ORB-SLAM2 and have used
other acceleration methods such as OpenCL and OpenVX without explicitly
managing CUDA streams and events.
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Figure 6.2: ORB-SLAM flow diagram.

6.2 ORB-SLAM

As seen in Figure 6.2, the ORB-SLAMmethod consists of three main phases:
Tracking, Local Mapping, and Loop Closing. In the original ORB-SLAM
implementation, these three consistent parts of the algorithm are executed
in parallel by three different threads. This allows the system to establish
a pipeline where, while a new frame is being processed, the Local Mapping
and/or the Loop Closing operations are running on the data related to the
previous frame(s). Synchronization is performed using locks and variables
that indicate when the input used by a phase is ready to be processed by the
following step of the algorithm. These three phases are performed for both
the Monocular and the Stereo version of the ORB-SLAM; the difference lies
in the Tracking phase, particularly in the ORB Extraction phase. In the
Stereo version, the ORB Extraction phase is performed on both the left and
right input images and the results are then merged with an additional Stereo
Matching phase.

6.2.1 Tracking

The primary goal of the Tracking phase is to process each incoming im-
age, also known as a frame, from the camera and calculate the estimated
camera pose. Additionally, this phase determines whether or not to insert
a Keyframe into the system. A Keyframe is a data structure that stores
the camera pose and the salient image pixels, referred to as points, that
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(a) Initial Pose Estimation. (b) Track Local Map.

Figure 6.3: Tracking phase: schema of Initial Pose Estimation and Track
Local Map.

were extracted during the processing. Additionally, for each point, its ORB
descriptor [105] is recorded.

The ORB descriptor is a scale and rotation-invariant fingerprint of the
point, which is used to recognize the same point across different frames.
This enables the linking of different Keyframes that share points and the
construction of a co-visibility graph [106]. This graph can then be used
to extract a local map that is employed to localize the camera within the
environment.

The Tracking phase of ORB-SLAM is composed of three main proce-
dures: ORB Extraction, Initial Pose Estimation, and Track Local Map. The
first procedure involves extracting relevant points from the input image and
computing the ORB descriptor for each point. The second procedure uti-
lizes these extracted points to estimate the camera pose by matching them
with points from previous iterations and utilizing a velocity motion model,
as illustrated in Figure 6.3a. The final procedure, Track Local Map, uses the
estimated camera pose and extracted points to find additional correspon-
dences in the local map constructed from the co-visibility graph of previous
iterations, as shown in Figure 6.3b. The decision of whether to save new
information as a Keyframe to improve the co-visibility graph is made in
this phase. In cases where Initial Pose Estimation is unable to compute
the camera pose, due to occlusion for example, a global re-localization is
performed by querying all Keyframes to find the best match among the
extracted points.

The ORB Extraction phase is a crucial component of the Tracking phase,
and it is detailed in Section 6.2.4. The proposed implementation, presented
in Section 6.3, specifically focuses on optimizing this phase of the ORB-
SLAM algorithm.
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6.2.2 Local Mapping

The Local Mapping phase is activated when a newKeyframe is inserted. This
phase is responsible for maintaining and updating the co-visibility graph of
the environment. The first step is to insert the new Keyframe into the
graph and link it to other Keyframes that share similar points. To ensure
accurate associations, a point must be observed for three consecutive frames
before it is considered valid; otherwise, it is discarded. Next, the Map Points
Culling and New Points Creation phases are executed, where new points are
projected onto connected Keyframes and existing points are culled if they
are no longer valid.

A Local Bundle Adjustment (BA) [107] is then performed, where the new
Keyframe and connected Keyframes are used to minimize the re-projection
error of points. This results in the adjustment of the position of the points,
taking into account all the Keyframes in which they were detected. Finally,
the Keyframe Culling phase is executed, where redundant Keyframes are
identified and removed. A Keyframe is flagged for deletion if 90% of its
points are present in at least three other Keyframes.

6.2.3 Loop Closing

The Loop Closing phase is responsible for detecting when the camera reaches
an already visited location by searching for loops in the new Keyframes pro-
cessed by the Local Mapping phase. The process begins by extracting a set of
candidate Keyframes by comparing their similarity with the new Keyframe.
A candidate is considered valid if there are at least three other connected
Keyframes that have been detected consecutively. Next, a similarity trans-
formation is calculated between the new Keyframe and the candidates. If
there are candidates with sufficient common points, then it is considered a
loop Keyframe. The similarity function is then used to correct the current
pose of the new Keyframe and the connected Keyframe in order to align
both sides of the loop.

6.2.4 ORB Extraction Details

The ORB Extraction part, which is the main focus of the proposed imple-
mentation, is composed of six sub-parts: Pyramid, FAST, Distribute Octree,
Orientation, Gaussian Blur, and ORB Descriptor.
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Pyramid

The purpose of the Pyramid construction phase is to generate multiple ver-
sions of the input image at different levels of scaling, as described in [108].
Typically, this is achieved through a sequential scaling process, where each
level is constructed from the preceding one. For example, level 1 is gener-
ated from the original image scaled by a predefined factor, and level 2 is
constructed from level 1, and so forth. As a result, this phase produces a
set of scaled versions of the input image as its output.

FAST

The FAST algorithm [109] is a technique for detecting corners within an im-
age, which are defined as pixels that have significantly different luminance
values compared to their neighboring pixels. The algorithm assigns a score
to each detected corner based on the values of the surrounding pixels and
uses a threshold value to determine which pixels are considered corners. Ad-
ditionally, a non-maximum suppression step is applied to eliminate adjacent
pixels that are also flagged as corners, leaving only the one with the highest
score.

In the ORB-SLAM system, the FAST algorithm is applied to the im-
ages at each level of the pyramid, generated in the previous step. To handle
images with varying levels of luminosity, the system applies the FAST algo-
rithm multiple times, using decreasing threshold values if no high-threshold
points are found. The output of this phase is a set of points representing
the corners and their associated scores, one set for each level of the pyramid.

Distribute Octree

The ORB-SLAM method requires a minimum number of extracted features
for each level, as the features are the points with their descriptors, and it
is important to keep the number of these points to a minimum in order to
balance accuracy and computational load. To achieve this, a filter phase
is applied. The aim of the filter is to preserve isolated points and prune
less significant points in dense areas of the image. In other words, the
filter attempts to prune as many points as possible while still ensuring the
minimum number of points required by the system.

The ORB-SLAM system uses the Octree distribution [110] as a filtering
mechanism. This approach preserves the points distribution, meaning that
areas of the frame in which more points have been detected will still feature
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higher point counts after filtering. Additionally, if an area of the input image
only displays a single point, such a point will not be erased.

The method recursively divides the image into four areas and counts the
points in each area. If there is only one point, it will not be filtered out. If
there are more points, the area is recursively divided into four sub-areas. If
the minimum number of points required by the system is reached and there
are areas with more than one point, the point with the maximum score, as
computed in the FAST operation, is selected from each area.

The method is applied to each set of points (one for each level) returned
by the FAST operation. The sets containing the filtered points are then
returned as the result.

Orientation

The orientation is computed as the angle of the intensity centroid [111],
which is the mean direction of the gradient on the patch of pixels surrounding
the point. The intensity centroid is calculated as the first moment of the
gradient vector in that patch.

Considering a round patch of surrounding pixels on the considered point,
and considering the value of the pixel at (x, y) as p(x, y). the centroid is
computed as in eq. (6.1), where mpq is computed as in eq. (6.2).

θ = atan2(m01,m10) (6.1)

mpq =
∑
x,y

xpyqI(x, y) (6.2)

This orientation value is then assigned to the point, and it will be used
in the following steps of the ORB-SLAM pipeline, such as the computation
of the ORB descriptor.

Gaussian Blur

A blur filter is applied to the Pyramid images as required by the computation
of the further point descriptors.

ORB Descriptors

The ORB descriptor is based on the BRIEF descriptor [112], which is a
binary string representation of an image patch constructed from a set of
binary intensity comparisons. The ORB descriptor is generated by selecting
a set of pixel pairs, and for each pair comparing the intensity value of one
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pixel to the other. The result of these comparisons is concatenated to form
the final descriptor, which is a compact and efficient representation of the
image patch. Equation (6.3) shows the mathematical formulation of the
BRIEF binary test.

τ(p, k1, k2) =

{
1 : p(k1) < p(k2)

0 : p(k1) ≥ p(k2)
(6.3)

where p is the image patch around the point and p(k) denotes the intensity
of the pixel in such position k = (x, y). However, BRIEF descriptors have
a limitation in that they do not take into account point orientation, which
can result in failure to recognize the same point across multiple frames if it
is rotated even by a few degrees. To address this, the ORB descriptor [105]
includes a correction that considers the orientation θ computed during the
Orientation phase. This is done by using a rotation matrix Rθ and applying
it to a matrix composed of the coordinates of the selected points within the
patch used to compute the BRIEF descriptor. The rotated coordinates are
then used to compute τ , which is the string bit associated with the consid-
ered patch as a function of the considered pixel position and its intensity
value.

The ORB Descriptor phase computes a descriptor for each point, con-
sidering the orientation information obtained from the previous Orientation
phase. The computation is performed independently for each level of the
image pyramid, as produced by the Pyramid construction phase.

6.3 ORB-SLAM Proposed Implementation

The proposed GPU-based implementation [113] of the ORB Extraction
phase aims to improve computational efficiency by exploiting the parallel
processing capabilities of a GPU. As described in Section 5.2.1, many of
the operations within the ORB Extraction phase, such as the FAST corner
detection, Octree distribution filtering, and Orientation computation, can
be executed in parallel.

The implementation’s flow is structured to leverage this parallelism to
optimize the overall performance of the ORB Extraction phase, as illustrated
in Figure 6.4b that defers from the baseline sequential flow illustrated in
Figure 6.4a. Specifically, the Gaussian Blur task, which is only required
by the ORB descriptor task, is executed concurrently with the execution
of the FAST, Distribute Octree, and Orientation phases, thus allowing for
overlapping computation and reducing overall execution time.
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(a) Sequential Flow. (b) Concurrent Flow.

Figure 6.4: ORB Extraction flows.

Many tasks in the baseline, sequential CPU implementation such as
Pyramid, Gaussian Blur, FAST, Orientation, and ORB descriptor can be
implemented as CUDA kernels. However, the Distribute Octree task, which
is used to filter points and preserve their distribution, is not found to be
suitable for GPU implementation. This is because, while there are various
GPU implementations for Octree construction [114, 115], they have been
found to show performance benefits only for a large number of input points,
and the FAST corner detection with Non-max suppression returns signifi-
cantly fewer points in this specific application. Moreover, in the baseline
Octree implementation within ORB-SLAM, the Octree is constructed and
traversed at the same time: since the Octree construction must stop when
the desired number of features is reached (see Section 6.2.4), it is necessary
to introduce synchronization among GPU threads to signal the end event
and code divergence that would significantly hamper the GPU throughput,
i.e. causing violation to the lock-step execution model. An alternative would
be to complete the Octree construction to then traverse it at a later stage:
in this case, it must be forced the GPU to perform additional unnecessary
work. To conclude, the convenience of a parallel GPU implementation is
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lost.

Once potential CUDA kernels have been identified, it is possible to define
the optimal number of CUDA streams considering the tasks that can be
computed concurrently. At the end the resulting graph of CPU and GPU
interactions is shown in Figure 6.5. First, the input image is copied on the
device (GPU) memory; then a kernel constructs the pyramid image levels
(see Section 6.3.1 for more details); at this stage, three different CUDA
streams are used: one to compute the blurred images, one to copy the images
to the CPU host and the last one to perform the FAST algorithm. These
three tasks only depend on the pyramid construction so all of them can be
executed concurrently. After the FAST operation, the Orientation step can
be computed: the output of this phase as well as the blurred image will be
the input for the following ORB Descriptor phase. Synchronization for these
stages is achieved through CUDA events. After the ORB Descriptor task,
the extracted points must be copied to the Host memory and translated to
the OpenCV1 data structure used for the rest of the SLAM system; after
this phase, the Distribute Octree task is performed. Note that the sequence
of operations compared to the sequential flow is different, as the Distribute
Octree is now at the end of the extraction phase, whereas in the sequential
flow, it is just after the FAST algorithm. The reason for this change is that is
it more convenient to compute Orientation and ORB Descriptor before the
filtering operation operated by the Distribute Octree. This might be counter-
intuitive from the point of view of maximizing performance, as in this way,
we are forcing the system to process (at the Orientation and ORB Descriptor
stages) more points compared to the baseline implementation. However, by
proceeding with a different order of operations the number of data transfers
from CPU memory and GPU memory is minimized. This is a critical aspect
to consider when porting non-trivial CPU applications to GPU, as memory
copies might account for a non-negligible chunk of the total execution time.
Memory copies from GPU memory to CPU memory are necessary as, in this
version, Distribute Octree executes on the CPU whereas the other kernels
are on GPU. So looking at Figure 6.4b, and assuming there is a CUDA
kernel for both FAST and Orientation, two memory copies between CPU
and GPU address spaces are mandatory: one just after the FAST (copy
device to host) and one before the Orientation phase (copy host to device).
Conversely, in Figure 6.5, the only memory copy needed is a device to host
memory transfer operated at the end of the ORB Descriptors step.
Considering integrated GPU, in which the memory is shared between CPU

1https://opencv.org
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Figure 6.5: GPU Flow.

and GPU, CUDA UM (Unified Memory) can be exploited but, as reported
in different works [116] [117] [118], each application have different behavior,
so it is not guaranteed that UM improves the performances and it must be
investigated. This aspect can be investigated in the future but it is not the
focus of this proposal and relative experiments.

6.3.1 ORB-SLAM Kernels descriptions

In this section, the details of the individual ORB-SLAM operations that
have been ported to the GPU as CUDA kernels are discussed.

Image Pyramid

The GPU implementation of the image pyramid construction differs from
the baseline method in that it computes each level simultaneously, starting
from the original image. Each pixel of each level is assigned to a CUDA GPU
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Figure 6.6: CUDA Threads mapping: each pixel of each level is assigned to
one CUDA Thread.

thread, which computes its value independently, resulting in a reduction of
dependencies among the pyramid ’s subsequent levels. The scaling factor f
of the current pixel level is used to determine the reference pixels from the
original image, as specified in equation (6.4).

xup = ⌈x ∗ f⌉
xlow = ⌊x ∗ f⌋
yup = ⌈y ∗ f⌉
ylow = ⌊y ∗ f⌋

(6.4)

Using the reference pixels, the thread computes the new pixel value q as
in eq. 6.5.

q1 = v1 ∗
xup − (x ∗ f)
xup − xlow

+ v2 ∗
(x ∗ f)− xlow
xup − xlow

q2 = v3 ∗
xup − (x ∗ f)
xup − xlow

+ v4 ∗
(x ∗ f)− xlow
xup − xlow

q = q1 ∗
yup − (y ∗ f)
yup − ylow

+ q2 ∗
(y ∗ f)− ylow
yup − ylow

(6.5)

where v1, v2, v3 and v4 are respectively the pixel value at coordinates
(xlow, ylow), (xup, ylow), (xlow, yup) and (xup, yup) from the original image.
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Because each level is constructed from the input image, the results are
qualitatively equal with respect to the baseline method, however, by remov-
ing the chain of dependencies we gain in execution latencies and GPU re-
source utilization. Eventually, the main difference between the novel method
and the baseline method lies in the reference pixel selection. The impact on
the accuracy of this change will be discussed later in section 6.4.

Gaussian Blur

The Gaussian Blurring algorithm applies a filter to each pixel of an image.
To implement this operation on a GPU, it is straightforward to assign a
single thread to the computation of each pixel. Additionally, as the blurring
must be applied to images belonging to each level of the pyramidal image,
it is possible to compute each level concurrently. Therefore, a GPU kernel
is launched, with a thread assigned to each pixel of each image level, as
illustrated in Figure 6.6.

FAST

This kernel is based on the kernel implemented by [100] in which each ker-
nel block is a tile of image and GPU shared memory is exploited to check if
points are found and eventually decrease the threshold.
The proposed modified version introduces the concurrency also in the level
dimension and a limit to the number of detected points is not forced as au-
thors did in [100]. In the end, the launch configuration for this kernel remains
the same as that depicted in Figure 6.6, utilizing the same block configura-
tion as in [100] to take advantage of shared memory for point checking and
threshold decreasing.

Orientation

For each point extracted by the FAST algorithm (and filtered by the Dis-
tribute Octree phase), it is necessary to compute the Orientation. This
phase was implemented as a kernel that launches a thread for each point of
each level and computes the orientation (as illustrated in Figure 6.6). Each
thread computes the orientation associated with its point as described in
Section 6.2.4.
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ORB Descriptor

After the Orientation phase, the ORB Descriptor phase is executed.

To perform this computation, a CUDA kernel is implemented that launches
a thread to compute the descriptor for each point on each level of the pyra-
mid. The thread configuration follows the same pattern as previous kernels,
with a thread assigned to each point of each level, as illustrated in Figure 6.6.
The descriptor calculation is performed according to the method described
in Section 6.2.4.

6.3.2 Distribute Octree Variant: a novel clustering-based fil-
ter

A different approach for point filtering was implemented to achieve the same
properties as the Distribute Octree method, as it was deemed not suitable
for GPU implementation.
The purpose of this variant is to apply a filter to the detected points di-
rectly on GPU. By applying the filter on the GPU it is possible to save
data transfers (fewer points are copied from the device to host memory)
and computational time since the following phases Orientation and ORB
Descriptor have to compute fewer points. Indeed, in the flow shown in Fig-
ure 6.5, these phases compute all points and then the filter is performed on
the CPU; instead, filtering the points on GPU immediately after the FAST
phase results in a less load for Orientation and ORB Descriptor phases.

The final flow of this variant is shown in Figure 6.7.
The novel method is based on a clustering technique and it is articulated in
five phases:

Centroid The initial phase involves pre-computing the location of cen-
troids based on the size of the image. These centroids are evenly spaced
to cover the entire image surface, resulting in a uniform distribution across
the image. The number of centroids corresponds to the number of features
required for the given level, as discussed in Section 6.2.4.

Cluster Assignment In this phase, a kernel is launched with a thread for
each point extracted by the FAST algorithm for each level in parallel. The
kernel computes the distance of each point from every centroid and links
the point to the nearest centroid. As a result, each point is assigned to a
cluster, and multiple points can be assigned to the same cluster.
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Compute the max score For each cluster it is necessary to only take
the point with the highest score (calculated by FAST). In order to select the
point with the highest score from each cluster, a kernel is launched with a
thread for each point of each level in parallel. These threads are responsible
for performing a CUDA atomicMax operation, comparing the point’s score
with the current maximum score of the cluster to which it belongs. As a
result, the maximum score of all points within each cluster is obtained.

Max score point selection In order to determine the point with the
highest score for each cluster, a kernel is launched with one thread for each
point for each level in parallel. The thread retrieves the cluster assigned
to the point and the maximum score of that cluster. The point score is
then compared to the cluster’s maximum score. If the two values match,
the point is considered the best for that cluster. Otherwise, the point is
marked as not selected. It should be noted that there may be cases where
multiple points within a cluster have the same score, in which case a point
is randomly chosen among those with the same score, as there is no specific
tie-breaking mechanism in place at this stage.

Last Cluster Assignment In this phase, a mechanism is put in place to
handle the possibility that certain clusters may not have any points assigned
to them. This can occur, for example, if all corners in an image are located
in a small region, resulting in all points being assigned to a single cluster.
To ensure that the required number of features is met, an additional cluster
assignment procedure is implemented. A CUDA kernel is launched, with a
GPU thread for each cluster for each level. The thread checks if its corre-
sponding cluster has at least one point assigned to it. If this is the case, the
thread terminates. If the cluster does not have any points assigned, the GPU
thread will iterate through all remaining unassigned points and calculate the
distance between each point and the cluster centroid. The nearest point is
then assigned to the cluster. This process is repeated until all clusters have
at least one point assigned to them.

6.4 ORB-SLAM Experiments

In the experiments there are compared the two novel implementations (fig-
ures 6.5 and 6.7) with the implementations by [100]2 and [104]3, as authors of

2https://github.com/yunchih/ORB-SLAM2-GPU2016-final
3https://github.com/xaldyz/dataflow-orbslam
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Figure 6.7: Our improved GPU version with clustering-based filtering in-
stead of Octree.
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those contributions have made publicly available their source codes. Results
are reported in tables and figures as ORB-GPU for [100] implementation, as
ORB-dataflow [104] implementation, as O-nc for the proposed novel imple-
mentation represented figure 6.5 and as O-c for the proposed novel imple-
mentation represented figure 6.7. There are also reported measures regard-
ing the original ORB-SLAM2 4. The base code of all these implementations
is derived from ORB-SLAM2 [94] and all of these implementations exploit
the GPU acceleration, except for the original ORB-SLAM2 that is fully im-
plemented on the CPU. In the experiments, there are used sequences 04,
06, and 07 from the Kitti dataset [96] as tests scenarios and it is measured
the computational time needed by the Tracking phase of the ORB-SLAM
to process a single frame in the Monocular and Stereo version. The system
processes a single image in the first case, whereas there are two images in the
second case. Also, the trajectory errors are measured using the tool released
in [119] with the same scaling and alignment described in that paper (7dof
for Monocular and 6dof for Stereo): this tool measures the average transla-
tional error terr(%) and rotational error rerr(°/100m), the root-mean-square
error between predicted camera poses and ground truth ATE (m) and the
frame-to-frame relative pose error RPE both in terms of meters (m) and de-
grees (°). Sequences 04, 06, and 07 were chosen because they are captured
in very different situations: in sequence 04 there are mostly straight trajec-
tories; sequence 06 features a large number of close turns, whereas sequence
07 represents an urban scenario that mixes both straightforward and curvy
paths.

The two novel proposed implementations (O-nc and O-c) were also
tested using the ORB-SLAM3 [95]5 as base code and they have compared it
with the original version of ORB-SLAM3 using the first sequence of the Eu-
roc Dataset that is a scenario designed for autonomous drones. The baseline
ORB-SLAM3 implementation also runs exclusively on the CPU. In this case,
we have used the tool released with the code of ORB-SLAM3 to measure
the absolute translational error ATE(m) between predicted camera poses
and ground truth. We report the mean, the standard deviation, and the
root-mean-square error (RMSE).

6.4.1 Hardware setup

The experiments were run on the Nvidia Xavier AGX board. This embedded
board is equipped with a CUDA-capable GPU (512 NVIDIA CORE) and

4https://github.com/raulmur/ORB SLAM2
5https://github.com/UZ-SLAMLab/ORB SLAM3
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an ARM CPU (8 core); it has 32GB of memory. To get the maximum
performance, it was set the fan at maximum speed and it was used the
MAXN mode with the jetsonclock script. In this setting the board reaches
the frequency of 2265.6 MHz for CPU, 1377 MHz for GPU, and 2133 MHz
for memory; this is the maximum performance capabilities of this board.

6.4.2 ORB-SLAM2 Results

In Table 6.1 are reported the computation time results and in Table 6.2
the trajectory errors on the KITTI dataset in the Monocular version. In
Table 6.3 and Table 6.4 the same metrics have been reported for the Stereo
version. The ORB-dataflow version does not support Stereo mode so the
results using this implementation are not reported in Stereo version.
In Figure 6.8, the relative performance gain of the proposed implementa-
tions is illustrated by comparing their execution time with that of the orig-
inal ORB-SLAM2 implementation. The speedup is computed as the ratio
of the mean execution time of the original ORB-SLAM2 implementation
to that of the proposed implementations. The O-c implementation presents
the best mean and median time in all situations. Moreover, O-nc implemen-
tation shows a promising computational time: it is higher than O-c version
but still lower than all the other implementations. Comparing various GPU
implementations of ORB-SLAM2 with respect to the original one, in the
Stereo mode, the ORB-GPU implementation demonstrates a speedup of
1.48x, 1.13x, and 1.11x in the KITTI04, KITTI06, and KITTI07 sequences,
respectively. The O-nc implementation shows a speedup of 1.7x, 1.28x,
and 1.24x in the KITTI04, KITTI06, and KITTI07 sequences, respectively.
Lastly, the O-c implementation exhibits a speedup of 1.8x, 1.38x, and 1.34x
in the KITTI04, KITTI06, and KITTI07 sequences, respectively. In the
Monocular mode, the ORB-GPU implementation demonstrates a speedup of
2.38x, 2.13x, and 2.32x in the KITTI04, KITTI06, and KITTI07 sequences,
respectively. The ORB-dataflow implementation shows a speedup of 1.55x,
0.71x, and 0.74x in the KITTI04, KITTI06, and KITTI07 sequences, re-
spectively. The O-nc implementation exhibits a speedup of 2.74x, 2.77x,
and 2.80x in the KITTI04, KITTI06, and KITTI07 sequences, respectively.
Lastly, the O-c implementation demonstrates a speedup of 3.06x, 2.96x, and
3.05x in the KITTI04, KITTI06, and KITTI07 sequences, respectively. The
two novel implementations show the highest speed up in both modalities
(Monocular and Stereo.

As far as tracking errors are concerned, for the monocular version, the
original ORB-SLAM2 shows the best results for sequence 06 in ATE and terr,
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ORB-
SLAM2
[94]

ORB-
GPU
[100]

ORB-
dataflow
[104]

O-nc O-c

KITTI04

median 48.413 19.879 22.460 16.581 15.023
mean 49.039 20.568 31.556 17.870 15.979
std 6.701 8.065 138.247 10.928 7.752
min 42.156 14.983 33.752 11.935 11.900
max 145.387 141.620 44.609 131.922 28.566

KITTI06

median 47.514 20.167 21.253 14.845 14.556
mean 49.719 23.369 70.273 17.979 16.822
std 8.094 9.652 1628.210 11.571 8.399
min 40.599 15.053 12.405 10.601 10.802
max 207.565 214.655 194.517 235.658 164.536

KITTI07

median 49.120 19.739 21.193 16.776 15.353
mean 50.077 21.559 67.521 17.887 16.433
std 8.735 8.758 1535.450 8.047 8.107
min 39.392 14.271 12.372 12.753 11.160
max 260.271 240.451 276.189 229.278 235.644

Table 6.1: Computational time (ms) for KITTI dataset in Monocular ver-
sion.

ORB-dataflow in rerr and RPE(°), instead O-nc implementation show the
best result for RPE(m); for sequence 04 O-c implementation shows the best
results for two measures (terr and ATE ), for the other three measures the
best results are obtained by ORB-dataflow; for the sequence 07 O-nc shows
the best result only for RPE (m) measure, instead the original ORB-SLAM2
works better in RPE(°), the other best measures are obtained by ORB-GPU.
Also in the stereo version O-c implementation shows the best computational
times for all sequences and O-nc implementation keeps showing promising
results. In this case, the two novel implementations perform notably better
in trajectory errors: they achieve the best results in all metrics except for
terr and ATE in sequence 04 (that are achieved by ORB-GPU) and terr in
sequence 07 (that are achieved by original ORB-SLAM2).

6.4.3 ORB-SLAM3 Results

In Table 6.5 are reported the computational time comparison of the two
novel implementations O-nc and O-c (with ORB-SLAM3 as code base) with
the original ORB-SLAM3 and in Table 6.7 are reported the results errors
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ORB-
SLAM2
[94]

ORB-
GPU
[100]

ORB-
dataflow
[104]

O-nc O-c

KITTI04

terr(%) 1.672 0.668 0.743 0.628 0.570
rerr(°/100m) 0.286 0.404 0.222 0.293 0.299
ATE(m) 1.645 0.552 0.633 0.495 0.374
RPE(m) 0.060 0.069 0.023 0.039 0.034
RPE(°) 0.121 0.138 0.104 0.122 0.119

KITTI06

terr(%) 6.901 7.806 7.483 14.759 62.816
rerr(°/100m) 0.440 0.715 0.434 2.960 27.497
ATE(m) 13.443 16.172 16.229 22.953 110.478
RPE(m) 0.977 0.578 0.665 0.576 0.800
RPE(°) 0.138 0.196 0.131 0.367 0.912

KITTI07

terr(%) 6.686 6.509 6.701 7.437 7.541
rerr(°/100m) 2.299 2.279 2.301 2.687 2.691
ATE(m) 4.299 4.260 4.438 4.768 4.551
RPE(m) 0.463 0.464 0.569 0.424 0.471
RPE(°) 0.387 0.390 0.388 0.423 0.423

Table 6.2: Trajectory error for KITTI dataset in Monocular version.

ORB-
SLAM2 [94]

ORB-GPU
[100]

O-nc O-c

KITTI04

median 113.179 76.412 67.006 62.459
mean 113.471 76.560 67.189 62.904
std 6.338 4.592 5.920 5.763
min 101.737 68.430 58.278 53.602
max 178.186 110.765 137.335 129.732

KITTI06

median 90.276 76.817 69.316 64.874
mean 92.102 81.771 72.370 66.981
std 13.724 14.674 15.542 14.990
min 73.580 65.330 53.982 50.345
max 391.772 341.873 453.502 462.290

KITTI07

median 86.445 77.942 69.205 64.057
mean 87.546 79.150 70.828 65.256
std 7.692 10.236 12.751 10.496
min 72.527 67.656 57.499 53.741
max 238.742 360.060 424.848 343.366

Table 6.3: Computational time (ms) for KITTI dataset in Stereo version.
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(a) ORB-SLAM2 Monocular. (b) ORB-SLAM2 Stereo.

(c) ORB-SLAM3.

Figure 6.8: Speedup respect to original ORB-SLAM2 and ORB-SLAM3
implementation.
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ORB-
SLAM2 [94]

ORB-
GPU
[100]

O-nc O-c

KITTI04

terr(%) 0.444 0.376 0.387 0.479
rerr(°/100m) 0.233 0.226 0.238 0.155
ATE(m) 0.209 0.162 0.172 0.221
RPE(m) 0.018 0.018 0.016 0.017
RPE(°) 0.034 0.035 0.033 0.032

KITTI06

terr(%) 0.499 0.565 0.465 0.507
rerr(°/100m) 0.164 0.193 0.131 0.172
ATE(m) 0.727 0.920 0.609 0.774
RPE(m) 0.015 0.018 0.015 0.014
RPE(°) 0.035 0.038 0.035 0.035

KITTI07

terr(%) 0.483 0.514 0.493 0.578
rerr(°/100m) 0.282 0.297 0.253 0.311
ATE(m) 0.871 0.805 1.380 0.957
RPE(m) 0.014 0.014 0.013 0.014
RPE(°) 0.039 0.040 0.038 0.042

Table 6.4: Trajectory error for KITTI dataset in Stereo version.

for the Monocular version. In Table 6.6 and Table 6.8 there are reported
the same measures but for the Stereo version. The speedup (considering the
mean time) of the two novel implementations with respect to the original
ORB-SLAM3 is reported in Figure 6.8c.
O-c implementation shows the best results in terms of computational time
in both situations (Monocular and Stereo). The speedup with respect to
original ORB-SLAM3 implementation is 1.55x (Stereo) and 1.73x (Monoc-
ular) considering O-nc implementation; 1.61x (Stereo) and 1.83x (Monoc-
ular) considering O-c implementation. In terms of trajectory errors, O-nc
implementation shows the best results for the Monocular case; instead, for
the Stereo version, the original version shows the best results for two met-
rics: std and RMSE, O-c implementation shows the best result for the last
metric: mean.

6.4.4 Discussion

In the ORB-SLAM3 system, the two novel implementations perform well in
terms of computational time, the O-c version is the fastest but also O-nc
version is faster than the baseline version. In the Monocular case, the errors
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median mean std min max

ORB-SLAM3 [95] 28.377 29.555 8.427 19.388 118.630

O-nc 17.632 19.095 10.058 11.720 441.696

O-c 16.305 18.352 5.229 11.041 67.279

Table 6.5: Computational time (ms) for ORB-SLAM3 Monocular.

median mean std min max

ORB-SLAM3 [95] 55.767 57.068 5.473 44.941 62.634

O-nc 31.015 33.021 16.888 21.843 65.219

O-c 29.671 31.115 5.221 21.790 13.443

Table 6.6: Computational time (ms) for ORB-SLAM3 Stereo.

mean RMSE std

ORB-SLAM3 [95] 3.059 3.324 1.300

O-nc 1.101 1.195 0.465

O-c 3.170 3.444 1.347

Table 6.7: Error (m) for ORB-SLAM3 Monocular.

mean RMSE std

ORB-SLAM3 [95] 0.037 0.043 0.023

O-nc 0.064 0.073 0.035

O-c 0.035 0.045 0.041

Table 6.8: Error (m) for ORB-SLAM3 Stereo.
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are larger concerning the Stereo case; this is normal because with only one
image it is more difficult to perceive the third dimension. Indeed, also the
original version shows larger errors in the Monocular case. To summarize,
O-nc implementation seems to be the best compromise for the Monocular
case: it shows the best results in terms of trajectory errors and it is only
1ms slower than O-c version.
For the Stereo case, the O-c version seems to be preferable: it shows the
best computational times and the trajectory error differs from the original
version for just a few millimeters (ATE1 ) or centimeters (ATE3).

In the ORB-SLAM2 system, O-c implementation is preferable in terms
of computational time in both cases (Monocular and Stereo). On the other
hand, O-nc implementation is preferable in terms of trajectory error in the
Stereo case; its performance penalty concerning the O-c version accounts for
about 5 ms only. However, it is still faster than the other implementations.
It is important to notice that in the monocular scenario, no implementations
can clearly outperform the others in terms of accuracy and related errors.
Moreover, in the Monocular version, it is possible to see that the two novel
implementations suffer in sequence 07 and mostly in sequence 06; in these
sequences, there are many close turns (especially in sequence 06). In such
situations, it is evident the accuracy deterioration compared to the other
baseline approaches. A reason might be that there are intrinsic possibili-
ties of different points choice for consecutive frames because the two novel
methods are not deterministic in the choice of points with the same score
(both FAST and Octree variant phases are affected by this behavior). This
reduces the accuracy of the localization because a point extracted in the first
frame might not be extracted in the second. Moreover, in contrast to the
Cluster-filter method, which assumes that features in an image are equally
distributed, the octree method takes into account the actual distribution of
features by subdividing the image based on areas with higher concentrations
of features. This can lead to a more effective selection of points in the octree
method, as it ensures that the selected points come from the densest areas
and will present higher scores. The Cluster-filter method may result in a
sub-optimal feature selection, which can lead to larger errors when estimat-
ing the pose in the monocular version of the algorithm by comparison with
the following frame. However, this issue is mitigated in the stereo version, as
poorly selected features that do not match the other image are not consid-
ered. This effectively balances the overall accuracy of our proposed method,
as shown in our experiments. Another source of discrepancies between novel
approaches and the other baselines lies in the way in which it is optimized
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the image Pyramid construction: the produced scaled versions are bound
to be different compared to the serialized versions of the state-of-the-art
papers. The parallel approach to computing the pyramid tends to produce
less blurred scaled images. The results are good in a quality way but the
single pixels can be different, so this can cause a different ORB descriptor
that does not match the same point in the next frame.

It is also important to highlight that none of the above loss of accuracy
issues is present in the stereo versions of the two novel algorithms, while still
retaining better performance compared to the state-of-the-art papers.
In the end, the implementation choice is context-dependent: some imple-
mentations are better for situations in which it is possible to sacrifice preci-
sion over improved latencies; whereas in other situations it is preferable to
the opposite solution.

6.5 Conclusion

This chapter addresses the problem of localization for autonomous vehicles.
It highlights the various types of sensors that can be utilized to address this
problem and presents a variety of algorithms that have been proposed in the
literature to leverage these sensors. Of particular focus is the use of cameras
as sensors, as they are cost-effective and easily integrated into a vehicle. Ad-
ditionally, the need for optimizing these algorithms to reduce execution time
on embedded boards was emphasized. The algorithm that was specifically
targeted for optimization and utilizes cameras is ORB-SLAM.

In this chapter, two GPU-based implementations for the ORB extrac-
tion component of the Tracking phase in ORB-SLAM were proposed. These
implementations were integrated into the ORB-SLAM2 and ORB-SLAM3
algorithms. The proposed evolution consists of the porting of most of the
different steps of ORB-SLAM to the GPU. Additionally, the Pyramid al-
gorithm is modified to be more amenable to parallelization, and a novel
point filtering method is proposed. The proposed implementations are ca-
pable of supporting both Monocular and Stereo vision and are the first GPU
implementation of ORB-SLAM3.

The proposed implementations were compared to state-of-the-art ver-
sions of ORB-SLAM3, ORB-SLAM2, and a GPU-enabled version of ORB-
SLAM2. The results of this comparison demonstrate that the proposed
implementations outperform the others in terms of computational time and,
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in most cases, in terms of precision and accuracy. The improvements range
from a minimum speedup of 1.24x and 1.55x up to 3.06x and 1.83x in ORB-
SLAM2 and ORB-SLAM3 respectively. These performance improvements
with respect to the other tested algorithms are attributed to the optimiza-
tion of CUDA streams, leading to better utilization of GPU resources. Ad-
ditionally, novel implementations for the Pyramid construction and Point
filtering phases were proposed, which further contribute to the improved
performance. Specifically, the proposed Pyramid construction method leads
to a higher degree of parallelism within GPU threads, and the proposed
clustering-based approach for point filtering is more amenable to GPU par-
allelization compared to the baseline version.

The achieved speed-up makes ORB-SLAM a more efficient algorithm for
the localization problem and more suitable for real-time critical scenarios,
such as autonomous vehicles. The reduced execution time, in combination
with the use of simple sensors like cameras, makes it a viable candidate for
the localization component of autonomous vehicles.
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Chapter 7

Planning - Frenet

7.1 Planning

In the context of autonomous vehicles, the task of determining a safe and
efficient path from the current location to the destination is known as Plan-
ning. This process involves the generation of a path that the vehicle can
safely follow, which is typically represented as a list of discrete path points.
The path can also be represented as a continuous function that links the
starting point to the destination, following the road. This task is essential
for the safe navigation of autonomous vehicles, as it allows them to make
informed decisions about their movements and avoid potential hazards.

To accomplish this, the Path Planning phase is typically divided into
two macro phases: the Global Planner and the Local Planner.

The Global Planner generates a reference path, which serves as a guide
for the Local Planner. It is not detailed and does not take into account
obstacles on the road or vehicle constraints, such as speed or acceleration.

The Local Planner, on the other hand, generates a detailed path by con-
sidering the reference path generated by the Global Planner and taking into
account obstacles and vehicle constraints. Moreover, the generated path
contains information about the speed or acceleration that the vehicle should
try to follow.

7.1.1 Local Planner

There have been several Local Planner methods proposed in the literature.
In [120] and [121], a path is generated while taking into account kine-
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matic and dynamic constraints. The dynamic model is also considered in
[122] where a Spatio-temporal lattice with feasible vehicle states is proposed.
Similarly, in [123] and [124], kinematic quantities are optimized to find the
path. A more complex approach, using model predictive control methods, is
proposed in [125]; this approach is also used in [126] and [127]. In [128],
the problem is formulated as an optimization problem and it is solved using
the gradient descent method. In [129], the Euler spirals are used to describe
paths of non-holonomic vehicles. A new curvature parametrization for this
approach is presented in [130] and in [131] the model for generating velocity
profiles is changed. The Rapid Exploring Random Tree algorithm [132] is
used in [133] and [134]. In the first contribution, a closed loop system is
simulated to sample a tree of trajectories, whereas in the latter the state
space is explored along a given reference path. An alternative approach is
to generate a single path and repeatedly refine it as per the method pro-
posed in [135]. Other studies in the literature, such as [136, 137], focus on
generating multiple paths and subsequently selecting the most suitable one
based on predefined performance metrics.

The novel method presented in Section 7.3 also focuses on Local Planner.
Specifically, it is based on the Frenet Path Planner.

The Frenet Path Planner was developed to address the limitations of
previous works in specific situations, such as those related to nose-to-tail
traffic [138]. Additionally, earlier research also faced the inherent limitations
of working with complex formulations for curves and paths that arise when
using Cartesian coordinates. To overcome these issues, recent work has fo-
cused on methods that take into account the time dimension to improve Path
Planning algorithms, and also on the use of alternative coordinate systems
that simplify problem formulation. For example, Frenet Coordinates, also
known as Frenet Frame, can be used for this purpose. In [137] the authors
used Frenet Coordinates to split the generation of lateral and longitudinal
movements and also take into account obstacles to generate a collision-free
trajectory. More recently, in [139] the authors considered dynamic objects
in Frenet Frame. The novel implementation of Frenet Path Planner pre-
sented in Section 7.3 also considers obstacles as in the original Frenet Path
Planner method, but with a focus on performance optimization. Finally,
the novel implementation is tested across different data types (double, float,
and half ).
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7.1.2 Use of Accelerators in Local Planner

The Local Planner problem can be computationally demanding, particularly
for algorithms that generate multiple trajectories from which the best one
is selected, such as the Frenet Path Planner. These algorithms can have a
computational time that increases with the number of generated trajectories,
which can become excessive. Furthermore, a prolonged computational time
of this phase can negatively impact the entire autonomous driving pipeline.
If the Local Planner is not able to produce a trajectory in a reasonable
time frame, the vehicle may follow an outdated trajectory that does not
take into account new obstacles, potentially resulting in a safety hazard. To
address these issues, research has focused on optimizing the performance
of Local Planner methods. For instance, in [140], the authors emphasized
the importance of performance in the Local Planner. In [141], the authors
parallelized the path generation on the multi-core CPU, while [130] and [142]
used GPU acceleration for Path Planning. Other works have also used GPU
acceleration for the A* algorithm [143] and its randomized variant [144], as
well as for Unmanned Aerial Vehicle Path Planning [145] and [146]. In [147],
the authors accelerated the path generation on Frenet Coordinates using
GPU, but they did not consider obstacle avoidance. The novel proposed
method, on the other hand, is not only designed for path generation but
also for obstacle avoidance and it is accelerated on GPU. Moreover, it is
optimally designed to overlap memory copies and kernel execution using
CUDA Streams, and it exploits the GPU shared memory to compute the
path cost.

7.2 Frenet Path Planner

The Frenet Path Planner [137] is a method used to compute a trajectory for
an autonomous vehicle, by utilizing the Frenet Coordinates (Section 7.2.1).
This method starts by considering the reference path, as generated by a
Global Planner, represented by the blue line in Figure 7.1, which follows the
center of the road. The vehicle, represented by the red box, must reach one
of the possible endpoints (yellow dots).

The Frenet Coordinates are used to simplify the path generation process
(see Section 7.2.2), by generating a set of possible paths that connect the
current position of the vehicle to one of the endpoints.

Each path is then assigned a cost, which is a scalar value calculated
based on a function that takes into account the path points. A common
cost function is the cumulative jerk.
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Figure 7.1: Frenet Path Planner.

Once the costs have been assigned, the paths are converted to the original
World Coordinates, and checked for collisions with obstacles present in the
environment. The path that has the lowest cost and is not obstructed by
any collisions is then chosen as the final trajectory.

7.2.1 Frenet Coordinates

The Frenet Coordinates, introduced in [148, 149], describe the geometric
properties of a curve. In the context of this work, the curve in question is
the reference path that overlaps the road. By considering the position of a
point on the curve at time t, denoted as r⃗(t), and the arc length traveled
by the point at time t, denoted as l(t), it is possible to express the time as
a function of the arc length, t = f(l). This allows for the representation
of the position of the point on the curve, r⃗(t), to be rewritten as r⃗(f(l)),
eliminating the need for the time variable.

The Frenet Coordinates are composed of three unit vectors: the tangent
vector s, the normal vector d, and the bi-normal vector b (s × d). These
vectors are formally defined in equation (7.1).

s =
dr⃗
dl

∥dr⃗dl ∥
d =

ds
dl

∥dsdl ∥
(7.1)

In the Frenet Path Planner, the concept of Frenet Coordinates is used
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Figure 7.2: Frenet Coordinates Conversion.

to simplify the computation of the path. These coordinates provide a way
to describe the geometric properties of a curve, specifically the reference
path that overlaps the road. Using the Frenet Coordinates, the position of
a point on the curve at time t can be represented by the traveled distance
along the reference path, known as s, and the orthogonal displacement from
the projection of the point onto the reference path, known as d.

The conversion from the original World coordinates (x, y) to the Frenet
coordinates, as illustrated in Figure 7.2, is done by projecting a point Q onto
the reference path REF , which is represented as a 2D spline (REFx, REFy).
The projection U , as well as the value of s, can be computed using the
Newton Method. The value of d is then obtained as the distance between
the point and its projection on the reference path QU . This allows for a
simplified representation of the path in terms of the traveled distance and
the orthogonal displacement, making the computation of the path more
efficient.

7.2.2 Paths Generation

The generation of a single path in the Frenet Path Planner involves de-
termining a contiguous course that connects the current position of the
vehicle, represented in the Frenet Coordinates (s0,d0), to a final position
(sf ,df ). This path is represented as a curve, which can be defined by the
coefficients of a fifth-degree polynomial for the lateral component (d) and a
fourth-degree polynomial for the longitudinal component (s).

However, it is important to note that generating a single path is not
sufficient for the planner. In order to ensure optimal performance, a set of
paths that start from (s0,d0) and terminate at different possible endpoints
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(sf ,df ) should be generated. This set of paths can be generated by consid-
ering the initial state as defined in equation (7.2) and a possible endpoint
as defined in equation (7.3).

S0 =< s0, d0, ṡ0, ḋ0, d̈0 > (7.2)

Sf =< sf , df , ṡf , ḋf , d̈f > (7.3)

In the initial state, the variables ṡ0, ḋ0, and d̈0 represent the longitudinal
velocity, lateral velocity, and lateral acceleration, respectively. Similarly, in
the endpoint state, ṡf , ḋf , and d̈f represent the longitudinal velocity, lateral
velocity, and lateral acceleration, respectively.

Considering the set of defined parameters:

• Ds: road width sampling length

• Dmax: max road width

• Dmin: min road width

• Vs: velocity sampling length

• Vmax: max velocity

• Vmin: min velocity

• Vtarget: desirable speed

• Ts: prediction time sampling length

• Tmax: max prediction time

• Tmin: min prediction time

the possible endpoint states variables can lead in a range defined by the
aforementioned parameters. In particular, ṡf leads in the range [Vmin, Vmax]
and df leads in the range [Dmin, Dmax]. Moreover, it is known that this state
must be reached in the time tf that leads in the range [Tmin, Tmax]. The
sampling length of each of these values must be considered as in (7.4).

ṡf ∈ [Vmin, Vmax] | ṡf = a · Vs

df ∈ [Dmin, Dmax] | df = a ·Ds

tf ∈ [Tmin, Tmax] | tf = a · Ts

(7.4)
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where a ∈ N .

It is possible to construct a set of possible end states SSf that includes all
possible Sf subject to the constraints expressed in (7.4). For each Sf ∈ SSf ,
it is possible to compute a path that starts from S0 and ends in Sf by
resolving two different systems (one for d and one for s) as outlined in
equations (7.5) and (7.6).


d(t) = d0 + ḋ0t+

1
2 d̈0t

2 + a3t
3 + a4t

4 + a5t
5

ḋ(t) = ḋ0 + d̈0t+ 3a3t
2 + 4a4t

3 + 5a5t
4

d̈(t) = d̈0 + 6a3t+ 12a4t
2 + 20a5t

3

(7.5)

{
ṡ(t) = ṡ0 + s̈0t+ 3a3t

2 + 4a4t
3

s̈(t) = s̈0 + 6a3t+ 12a4t
2

(7.6)

The coefficients a3, a4, a5 in the first system and a2, a3 in the second
can be determined by considering the variations in position, velocity, and
acceleration from S0 to Sf , resulting in the resolution of linear systems
((7.7)) and ((7.8)).

 T 3 T 4 T 5

3T 2 4T 3 5T 4

6T 12T 2 20T 3

×
a3a4
a5

 =

df − (d0 + ḋ0T + 1
2 d̈0T

2)

ḋf − (ḋ0 + d̈0T )

d̈f − d̈0

 (7.7)

[
3T 2 4T 3

6T 12T 2

]
×

[
a3
a4

]
=

[
ṡf − (ṡ0 + s̈0T )

s̈f − s̈0

]
(7.8)

By utilizing these functions for the retrieval of position, velocity, and ac-
celeration for the lateral component d, as well as velocity and acceleration
for the longitudinal component s, it is possible to divide the path into dis-
crete points p and define the path as a sequence of these points, denoted as
P = [p0, p1, ...pf ], with a discretization interval of Ts. Ultimately, the set
of potential paths, PS, is computed through the implementation of Algo-
rithm 2.

Each path P = [p0, p1, ...pf ] has an associated cost C used to determine
the optimal path, which is computed according to equation (7.9).
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Algorithm 2 Frenet Path Generation.

Input: Initial state S0 =< s0, d0, ṡ0, ḋ0, d̈0 >
Output: Path set PS

1: for df ← range(Dmin, Dmax, Ds) do
2: for tf ← range(Tmin, Tmax, Ts) do
3: Ptmp = []
4: for t← range(0, tf , Ts) do
5: p = pathPoint()
6: p.t = t
7: a3, a4, a5 ← resolveLinearSystem(df , S0) ▷ Eq. (7.7)
8: p.d = d0 + ḋ0t+ d̈0t

2 + a3t
3 + a4t

4 + a5t
5

9: p.ḋ = ḋ0 + 2d̈0t+ 3a3t
2 + 4a4t

3 + 5a5t
4

10: p.d̈ = 2d̈0 + 6a3t+ 12a4t
2 + 20a5t

3

11: p.
...
d = 6a3 + 24a4t+ 60a5t

2

12: Ptmp ← p
13: end for
14: for ṡf ← range(Vmin, Vmax, Vs) do
15: P = []
16: for t← range(0, tf , Ts) do
17: p← Ptmp.get(t)
18: a3, a4 ← resolveLinearSystem(ṡf , S0) ▷ Eq. (7.8)
19: p.s = s0 + ṡ0t+ s̈0t

2 + a3t
3 + a4t

4

20: p.ṡ = ṡ0 + 2s̈0t+ 3a3t
2 + 4a4t

3

21: p.s̈ = 2s̈0 + 6a3t+ 12a4t
2

22: p.
...
s = 6a3 + 24a4t

23: P ← p
24: end for
25: PS ← P
26: end for
27: end for
28: end for
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Js =
∑
p∈P

p.
...
s 2

Jd =
∑
p∈P

p.
...
d

2

ds = (Vtarget − pf .ṡ)
2

Cd = kj · Jd + kt · tf + kd · pf .d2

Cs = kj · Js + kt · tf + kd · ds
C = Klat · Cd +Klon · Cs

(7.9)

The cost associated with each path P = [p0, p1, ...pf ] is calculated using
the function outlined in equation (7.9). The cost C is a combination of
several factors, including the longitudinal jerk Js, the lateral jerk Jd, the
squared difference between the end speed and the desired speed Vtarget, and
the distance of the final point pf from the reference path. Additionally, both
the lateral and longitudinal costs include a time component that penalizes
paths that take longer to complete. The weighting of each component of
the cost function can be adjusted through the use of multiplication factors,
such as kj for the jerk components, kt for the time components, and kd for
the displacement components. Furthermore, the overall importance of the
lateral and longitudinal costs can be adjusted with the use of multiplication
factors Klat and Klon.

The path P , represented in the Frenet Coordinates, must be transformed
back to the World coordinates. The conversion of each point p ∈ P , where
p ̸= pf , is done using the equation outlined in (7.10).

Ix = REFx(p.s)

Iy = REFy(p.s)

yaw = atan2(ṘEFy(p.s), ṘEFx(p.s))

x = Ix − (p.d · sin(yaw))
y = Iy − (p.d · cos(yaw))

(7.10)

Where REFx and REFy are the components of the reference curve as a
Spline.

7.2.3 Collision Check

The final step of the Frenet Planner is to conduct a Collision Check. This
involves determining whether a path P will collide with any obstacles in
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the environment. Given a set of obstacles OB = {ob1, ob2, ...obn} and an
obstacle radius OR, a path P is considered safe if and only if each point on
the path p ∈ P is farther than a safe distance SD from each obstacle, as
outlined in equation (7.11).

√
(p.x− ob.x)2 + (p.y − ob.y)2 −OR > SD p ∈ P, ob ∈ OB (7.11)

Finally, from the set of acceptable paths PS′ ⊆ PS, the path with the
lowest cost, as determined by the cost function outlined in equation (7.9),
is selected as the optimal path for the vehicle to follow.

7.3 Frenet Path Planner Proposed Implementa-
tion

In this section, a novel GPU-based implementation of the Frenet Planner is
proposed with the goal of reducing the computational time of the algorithm.
Since both the Path Generation and Collision Check involve different inde-
pendent data, it is reasonable to compute them in a parallel manner, utilizing
the capabilities of a GPU. To this end, two CUDA kernels are implemented:
one for Path Generation and one for Collision Check. Additionally, CUDA
Streams are employed to overlap the execution of the kernels and memory
copies as outlined in Figure 7.3a.

7.3.1 Paths Generation

The Path Generation phase presents several opportunities for parallel com-
puting. By constructing the set of paths PS, it is possible to compute each
path P ∈ PS independently. Additionally, each point p ∈ P can also be
computed independently as it does not rely on other points. This allows for
significant parallel computation and reduces the overall computational time.

Each path P ∈ PS is computed by starting from specific values of df , tf ,
and ṡf , as depicted in the three iterative constructs outlined in Algorithm 2
(lines 1, 2, and 14). The path P is composed of various points, each of
which is calculated at different t values, as indicated by the innermost for
loop in Algorithm 2 at lines 4 and 16. Given the independence of the values
and computations described, GPU parallelism is exploited to compute them
simultaneously, in order to optimize performance.

A CUDA kernel was configured with a three-dimensional launch grid that
allows for concurrent computation of each path (as shown in Figure 7.4).
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(a) Novel Implementation flow. (b) Baseline flow.

Figure 7.3: Implementation Flows.

The grid dimensions correspond to road width sampling df in the x-axis,
time sampling tf in the y-axis and velocity sampling ṡf in the z-axis. Each
block in the grid corresponds to a single path P , and the number of blocks
present in the grid is shown in equation (7.12).

Dmax −Dmin

Ds
· Tmax − Tmin

Ts
· Vmax − Vmin

Vs
(7.12)

Furthermore, the computation of the points of a path is mapped to a
different thread of the block associated with the path. This allows each
thread to compute a point of the path considering a different value of t.

Each thread is responsible for computing the values of d, ḋ, d̈,
...
d , s, ṡ,

s̈,
...
s , x, and y for its assigned point. Additionally, the thread calculates the

cost components of its associated point (p.
...
s 2 and p.

...
d

2
) which contribute

to the final cost C of the path.
Since all cost components p.

...
s 2 and p.

...
d

2
must be computed in order to

calculate Js and Jd, the GPU’s shared memory and the CUDA’s syncthreads
function are exploited. Each thread saves the p.

...
s 2 and p.

...
d

2
to shared

memory and, before performing the sum over all points, the syncthreads
function is called. After synchronization, it is guaranteed that all Js and Jd
parts are calculated, and thus it is possible to perform the sum. The sum is
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Figure 7.4: CUDA launch configuration - Paths Generation.

performed by a single thread, which is able to retrieve each part from shared
memory.

In more detail, a thread computes all point components d, ḋ, d̈,
...
d , s,

ṡ, s̈,
...
s , x and y (as outlined in Algorithm 2). In addition, it calculates

p.
...
s 2 and p.

...
d

2
. Then, the syncthreads function is called to ensure that all

threads have completed the computation of these components. Finally, a
designated thread performs the sum.

The use of shared memory to compute the cost allows for a reduction
in access to GPU global memory. As shared memory is faster than global
memory, this, combined with the parallelization described above, results in
a reduction in the computational time of the algorithm.

7.3.2 Collision Check

The Collision Check kernel offers two degrees of parallelization: path points
and obstacles. Each point in a path must be tested for collisions with every
obstacle. As each collision check is independent of the others, all tests can
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be computed by parallel GPU threads.

The kernel is launched by distributing all path points across different
threads; each block has a fixed dimension of 16 × 16 × 4 threads (on the
x, y, and z axes respectively), for a total of 1024 threads per block (TPB).
The grid is composed of an adequate number of blocks to cover the total
number of points (TNP) on the x and y axes, the z-axis is used to map
the obstacles (as seen in Figure 7.5). The number of blocks on the x and
y axes is expressed in equation (7.13). Since each block is responsible for
TPB points, in order to ensure that all points have an associated thread,
the number of blocks must be greater than TNP/TPB. However, it is
more efficient to distribute the needed blocks across both x and y axes, with
each axis addressing the square root of the number of needed blocks. By
rounding up the result, it is guaranteed that all points have an associated
thread. Additionally, the number of blocks on the z-axis is equal to the
number of obstacles.

⌈√⌈
TNP

TPB

⌉⌉
(7.13)

Each thread performs the collision test as detailed in equation (7.11)
for one point and one obstacle. If the check fails, then the path of the
point is marked as collided and the cost of the path is set to the maximum
value. Once all paths have been checked, the path with the smallest cost
is retrieved using the CUBlas API function call cublasI<T>amin1, where
T depends on the type of the array items: d for double and s for float and
half. This function takes an array of values as input and returns the index
of the smallest item.

7.4 Frenet Path Planner Results

Experiments were conducted to compare the novel implementation of the
Frenet Path Planner with a CPU implementation2 as a baseline. Various
variants of the novel implementation were considered, including different
precision types such as half, float, and double.

The CPU implementation was chosen as the baseline as its source code
is publicly available, it implements the algorithm described in the original

1https://docs.nvidia.com/cuda/cublas/index.html#cublasi-lt-t-gt-amin
2https://github.com/arvindjha114/frenet planner agv
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Figure 7.5: CUDA launch configuration - Collision Check.

Frenet Path Planner paper [137], and it is written in C++. Other implemen-
tations, such as the one reported in Table 7.1, cannot be fairly compared due
to the unavailability of their source code. The only other previous contribu-
tion for which the code is publicly available is [139]. However, in this case,
the code is written in Python, thus performance cannot be fairly compared
to the proposed C++/CUDA implementation.

It is not possible to compare the novel implementation to the state of the
art GPU implementation [147]. This is because they use a different board
and do not exploit the GPU for the Collision Check phase, making the
overall execution times not comparable. Additionally, the authors in [147]
split the Path Generation phase into three kernels: one for computing the
paths, one for computing the cost, and one for converting the path points
from Frenet Coordinates to World coordinates. They report the times of
each kernel separately. In contrast, the novel implementation uses only one
kernel to compute the paths, cost, and perform the coordinate conversion,
in order to reduce the overhead of kernel launch. As a result, the reported
times include all of these tasks. In conclusion, it is not possible to reproduce
and compare their work with the novel proposed implementation as they do
not share the implementation code and report times measured in a different
way and on a different board.

The tests are performed on an NVIDIA Xavier AGX. This embedded
board is equipped with a CUDA-capable GPU (512 NVIDIA CORE) and
an ARM CPU (8 core). It has 32GB of memory.

Two types of measures were performed. The first measure considered the
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[137] [139] [147] Novel proposal

Path Generation CPU CPU GPU GPU

Collision Check CPU CPU no GPU

Best path choice CPU CPU CPU GPU

Available code no yes no yes

Programming Language - Python C++/CUDA C++/CUDA

Table 7.1: Comparison of Frenet Frame based Path Planners.

overall time of the process, and the second measure considered distinct sub-
parts. Specifically, in the latter case, the time of the Path generation phase
and the time of the Collision check phase were measured separately. Since
the novel implementation’s kernel that computes the paths (Section 7.3.1)
also performs cost computation and conversion of coordinates to World co-
ordinates, it was compared to the union of these three tasks in the baseline
implementation.

For each test, 100 iterations were performed, and the average time was
reported in the plots. Two variants were performed, one varying the number
of generated paths with a fixed path length, and one varying the path length
with a fixed number of generated paths.

In Figure 7.6, the overall execution average time of two variants is pre-
sented: one where the number of generated paths is varied (Figure 7.6a) and
another where the path length is varied (Figure 7.6b). The results indicate
that the GPU implementation is faster than the CPU implementation. The
precision type used also impacts the execution time, with the use of double
precision resulting in longer execution times compared to the use of float or
half precision. Although the execution times for the latter two types are
similar, the use of half precision results in the lowest execution time. The
trend for all implementations is linear, with the CPU implementation show-
ing a steeper line. The first experiment (varying the number of generated
paths) results in a constant speed-up of around 10x for double precision, 27x
for float precision, and 28x for half precision (Figure 7.7a). In the second
experiment (varying the path length), the speed-up increases since a path
length of 288 and then reaches a plateau (Figure 7.7b).

The results of the execution time for the Path generation phase are con-
sistent with those of the overall execution time. As shown in Figure 7.8a and
Figure 7.8b, the GPU implementation is faster than the CPU implementa-
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(a) Varying numbers of generated paths. (b) Varying the path length.

Figure 7.6: Overall Average Execution Time (ms) - X-axis represents the
number of generated paths or the path length and the Y-axis represents the
average execution time.

(a) Varying numbers of generated paths. (b) Varying the path length.

Figure 7.7: Overall speedup - X-axis represents the number of generated
paths or the path length and the Y-axis represents the speedup.
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(a) Varying numbers of generated paths. (b) Varying the path length.

Figure 7.8: Average execution time (ms) of path generation phase - X-axis
represents the number of generated paths or the path length and Y-axis
represents the average execution time.

(a) Varying numbers of generated paths. (b) Varying the path length.

Figure 7.9: Path generation phase speedup - X-axis represents the number
of generated paths or the path length and the Y-axis represents the speedup.

tion. The speed-up for this phase is also higher than the overall speed-up,
with figures reaching 18x for double precision, 40x for float precision, and
46x for half precision when varying the number of generated paths, and
reaching a plateau at a path length of 288 when varying the path length (as
shown in Figure 7.9).

In regards to the Collision Check phase, the results show a similar trend
as the overall and Path Generation phases. Figures 7.10a and 7.10b demon-
strate the average execution time for this phase while varying the number
of generated paths and the path length respectively. The speed-up for this
phase is lower compared to the overall speed-up, as shown in Figure 7.11.
When varying the number of generated paths, the speed-up is around 6x for
double precision, 16x for float, and 17x for half precision. When varying the
path length, the speed-up increases as the path length grows to 192, then
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(a) Varying numbers of generated paths. (b) Varying the path length.

Figure 7.10: Average execution time (ms) of collision check phase - X-axis
represents the number of generated paths or the path length and Y-axis
represents the average execution time.

(a) Varying numbers of generated paths. (b) Varying the path length.

Figure 7.11: Collision check phase speedup - X-axis represents the number
of generated paths or the path length and the Y-axis represents the speedup.

decreases a bit reaching a plateau near a path length of 544.

In Table 7.2, the percentage of execution time for the individual phases
relative to the overall execution time is presented. It should be noted that
other phases, such as the selection of the optimal path based on its cost,
are also included in the overall execution time. The data shows that in the
CPU implementation, the majority of execution time is spent on the Path
generation phase, while in the GPU implementation, the highest percent-
age of execution time is allocated to the Collision check phase. The GPU
implementation of the Path generation phase utilizes shared memory and
minimizes critical operations, such as accessing global memory and branch
divergence. Additionally, the integration of World coordinates conversion
within the same kernel as the Path generation has reduced the overhead of
kernel launch, leading to a significant reduction in execution time compared
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Path Generation Collision Check Other

CPU 56.9 36.9 6.2

GPU DOUBLE 32.7 67.1 0.1

GPU FLOAT 38.1 61.7 0.2

GPU HALF 38.3 60.8 0.9

Table 7.2: Percentage of phases time over overall time.

to the CPU implementation. However, the kernel for the Collision check
phase inherently includes branch divergence due to the differing instruction
flow in cases of collision or non-collision and does not utilize shared memory.
As a result, the reduction in execution time for this phase is not as signifi-
cant compared to the Path generation phase. In conclusion, the reduction
in time for the Path Generation phase is particularly significant due to the
use of shared memory and minimizing critical operations. However, the re-
duction in time for the Collision Check phase is comparatively lower due
to the intrinsic branch divergence and lack of shared memory exploitation.
These observations are reflected in the percentage of execution time for each
phase as shown in Table 7.2.

Typically, when a task is ported to a GPU, there is typically an over-
head due to memory copies. In certain situations, such as on embedded
boards, this overhead can be mitigated through the use of CUDA Unified
Virtual Memory (UVM) or pinned memory [116, 117, 118]. However, this
depends on the specific application. This overhead is included in the Other
phases reported in Table 7.2. It should be noted that in the CPU imple-
mentation, this overhead is not present, and the Other phases are present
due to different operations that are not memory copies, for example, the
Other percentage includes the best path selection. The table shows that
the percentage of Other phases is lower in GPU implementation. This is in
contrast to what has just been said. This fact is due to two factors: first,
the memory copies are minimized in the implementation, and by exploiting
streams, they are done concurrently with the kernel computation. Second,
as just said, the Other phases include also the computation of the best path,
this is done by exploiting the CUDA cublas library and results in a better
performance compared to the CPU implementation.
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7.4.1 Precision error

In order to assess the impact of computation precision on the quality of the
generated trajectories, a comparison was conducted between the trajectories
generated by the CPU implementation (used as the baseline) and those
generated by the GPU implementation with different precision types. The
paths generated by the different precision types were compared while keeping
the same parameters (Ds, Dmax, Dmin, Vs, Vmax, Vmin, Vtarget, Ts, Tmax,
Tmin) and the Frenet algorithm was configured to generate 1024 different
paths, each with 1024 path points. To obtain a larger number of paths
to compare, a simulated vehicle was used which follows the selected path
and generates a new path when it reaches a new location. This simulates
the typical behavior of a vehicle that uses the Frenet Path Planner. The
generation process was repeated 300 times and each point of each selected
path was compared. The Average Trajectory Error (ATE) was used as the
measure of comparison, which calculates the average displacement error of
each point of the path, computed as the Euclidean Distance.

As expected that the ATE is 0m for double precision, indicating that
the hardware (CPU or GPU) does not impact the result. In contrast, the
use of half precision results in a larger error (0.7747m) due to the limited
precision of the data type. However, the error in the float precision version
is negligible (0.0005m). Furthermore, Figure 7.12 illustrates the errors for
each point of the path, from 0 to 1024, for each of the 300 paths. It can be
observed that the error within a trajectory increases as the vehicle moves
further from the path starting point, indicating that the precision error tends
to maximize towards the last points.

Given that the vehicle frequently re-computes its path based on its cur-
rent position, it is unlikely that it will reach the final points of the initially
generated path. This is an important consideration, as we have previously
noted that precision errors tend to increase towards the final points of the
path. To account for this, it is appropriate to measure the average error of
the path traveled by the vehicle using the sequence of selected paths com-
puted during the trip. By doing so, the Average Trajectory Error (ATE) of
the trajectory of the simulated vehicle was obtained as follows: 0.5993m for
half, 0.0001m for float, and always 0m for double.

It can be observed that the errors reported for float and half preci-
sion do not significantly impact the quality of the generated trajectory. In
Figure 7.13, the generated trajectory can be seen in two scenarios: one in-
volving a curve and one in the presence of obstacles. The trajectories are
almost identical, but a closer examination reveals negligible differences (see
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(a) All types

(b) Float and Double detail

Figure 7.12: Average Trajectory Error (ATE) in meters for each point of the
path - X-axis represents the point number and Y-axis represents the ATE.
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(a) Trajectory in the curve. (b) Trajectory in the curve - detail.

(c) Trajectory with the obstacle. (d) Trajectory with the obstacle - detail.

Figure 7.13: Generated trajectory: GPU with different data types vs. CPU.

figures 7.13 b and d). Given the small magnitude of the differences, it is
evident that even in the half precision case, the trajectory is followed and
the obstacle is avoided.

To conclude, by decreasing data precision in the GPU kernels we obtain
noticeable performance improvements in terms of execution times. This
comes at the cost of larger ATE values. The choice of precision within
data types depends on the context. However, the experiment results clearly
show how the float version represents the best choice, as it leads to an
extremely low ATE compared to the huge execution time reduction (60% of
time reduction with respect to double on GPU). The half version shows a
higher ATE error towards the final points of generated trajectories, but the
performance gain compared to the float version is not significant (only 4%
of time reduction respect to float on GPU).
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7.5 Conclusion

This chapter focuses on the problem of planning in autonomous vehicles,
specifically addressing the Local Planner phase which is responsible for de-
termining the most optimal trajectory for the vehicle to follow. The Frenet
Path Planner algorithm is selected to address this problem, as its coordinate
system facilitates the generation of a path based on various parameters. Ad-
ditionally, since the algorithm generates multiple paths from which to choose
the best, it is a suitable candidate for parallelization as it performs the same
operation on different data. Furthermore, the Collision Check phase is also
a valid candidate for parallelization for similar reasons.

In this chapter, a novel and optimized GPU implementation of the Frenet
Path Planner algorithm is presented. To the best of current knowledge,
there are no other existing implementations that have ported the entire
pipeline to the GPU, making this the first implementation that fully im-
plements the algorithm pipeline on GPU. The proposed implementation
leverages CUDA streams to overlap memory copies and kernel execution.
Additionally, it utilizes GPU shared memory and implements synchroniza-
tion among threads within the same block, to compute the cost of the path.
This is achieved through an optimized block construction, in which threads
that compute points of the same trajectory share the same block. These
enhancements contribute to a significant improvement in the execution time
of the algorithm. In this study, the execution time of the proposed imple-
mentation was analyzed in comparison to a baseline CPU implementation,
resulting in a speed-up of up to 28x. Additionally, the execution time was
evaluated using different data types (i.e., double, float, half ), and the impact
on trajectory precision was also investigated. The results indicate that using
float or half data types is advantageous as it leads to a 60% decrease in exe-
cution time compared to double data type, while the error in the trajectory
is not significant enough to compromise the effectiveness of the algorithm.

The significant speed-up achieved makes the Frenet Path Planner algo-
rithm more efficient for solving the planning problem, and more suitable for
real-time critical scenarios, such as autonomous vehicles. The decreased ex-
ecution time allows the algorithm to produce results faster, reducing the risk
of safety hazards caused by a slow response that could result in an ineffec-
tive maneuver. The improved performance of the algorithm makes it more
suitable for real-time scenarios where quick and accurate decision-making is
crucial.
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Chapter 8

Conclusion

In this thesis, two key areas of future mobility were explored: smart cities
and Advanced Driver-Assistance Systems (ADAS) or autonomous vehicles.

The first area of focus was on traffic flow management in smart cities.
Critical situations, such as Emergency Vehicle response, Parking Manage-
ment, Intersection Management, and Traffic Light Management were exam-
ined and algorithms were proposed to manage these situations by utilizing
the technologies and infrastructures present in smart cities, such as smart
sensors, smart actuators, and communication capabilities. Additionally, em-
phasis was placed on simulating the proposed algorithms prior to deployment
in the real city. This step was found to be crucial, as the results of the al-
gorithm’s decisions on the complex traffic flow system can be unpredictable
and may pose potential safety risks for the city’s inhabitants. By simulating
the algorithms beforehand, potential problematic behaviors can be identified
and addressed.

The proposed algorithms aim to optimize traffic flow in a smart city
context by addressing critical situations such as the aforementioned Emer-
gency Vehicle response, Parking Management, Intersection, and Traffic Light
Management. These algorithms leverage the infrastructures present in smart
cities to reduce waiting times at intersections and traffic lights, reserve park-
ing spots, and improve the response time of emergency vehicles in case of
accidents.

It is noteworthy that the proposed algorithms, while specifically tailored
to facilitate coordination among connected vehicles, are also designed to ac-
count for the presence of non-connected vehicles in the traffic flow. This
ensures that the algorithms can effectively manage traffic flow in a dynamic
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environment, irrespective of the level of connectivity among the vehicles
present in the city.

In particular, with regard to Traffic Lights Management problem, a novel
auction-based system was proposed and its effectiveness was investigated in
comparison to the standard Fixed-Time traffic light policy (FTC). The aim
of the proposed system was to reduce the waiting time at intersections and
achieve differentiated latencies. It was determined that there are advantages
for vehicles that participate in the proposed system, as the average waiting
time at traffic lights is reduced and the overall trip time is decreased with
respect to FTC policy. However, it was also observed that the system was
not able to attain differentiated latencies based on vehicle budgets. Fur-
ther research is needed to determine whether the limitations in achieving
differentiated latencies are due to the experimental settings or if the system
inherently does not allow for them.

With regard to Intersection Management, a comprehensive study was
conducted, focusing on the examination of various systems that utilize auction-
based approaches. These systems were evaluated and compared in terms of
their effectiveness in coordinating vehicles at intersections. The study also
included an analysis of the standard yield rule method for coordinating ve-
hicles at intersections, providing a point of comparison for the auction-based
systems. The study aimed to provide valuable insights into the effectiveness
and potential of auction-based approaches for managing and coordinating
the movement of vehicles at intersections The co-existence of human-driven
and autonomous vehicles was taken into account in the analysis of the pro-
posed vehicle coordination strategies. It was determined that this aspect
plays a crucial role in the design of such policies. The presence of human
drivers in traffic poses unique challenges and limitations that must be taken
into account when designing coordination policies. It was observed that
human drivers are not able to follow complex rules in the same way that
autonomous vehicles would, which precludes the adoption of many solu-
tions that can be exploited when vehicles are exclusively autonomous. This
highlights the importance of considering the co-existence of human-driven
and autonomous vehicles in the development of effective coordination poli-
cies. The study focused on investigating the effectiveness of the proposed
auction-based mechanisms for Intersection Management. These mechanisms
have been previously shown to bring several benefits, such as reductions in
latencies and the ability to differentiate latencies among vehicles according
to their needs. However, the results of the study were not favorable, as the
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experiments and the considered scenario did not yield any of these benefits
when using auctions. This was primarily due to the limitations in design
introduced by the presence of human drivers, which frustrated the potential
benefits of the auction system. The study concludes that further research is
needed to explore the potential benefits of auction-based mechanisms in a
mixed traffic environment where human-driven and autonomous vehicles co-
exist. In order to further understand the results of this study and to identify
potential areas for improvement, future work will focus on investigating the
motivations behind the results. This will include an examination of whether
the results are primarily dependent on the specific scenario that was consid-
ered, or whether the strategies employed were too simplistic. Additionally,
the study will investigate the impact of vehicles being necessarily serialized
when in lanes on the effectiveness of the auction-based mechanisms. Subse-
quently, alternative coordination policies for the scenario of human-driven
and autonomous vehicles co-existing will be studied.

As the results of Traffic Light Management were encouraging, it will be
worth exploring if the difference in management leads to different results. In
particular, it will be interesting to investigate if the longer green phase dura-
tion in traffic light management allows for more vehicles in the lane to pass,
as opposed to the proposed Intersection Management where only one vehicle
per lane can pass from one auction to the next. This could potentially be
a source of degradation in throughput. Moreover, more experiments will be
performed varying the number of vehicles present in the scenario in order to
see the variation of the results at different system utilization. More complex
algorithms can be designed, for example, traffic lights can consider, in addi-
tion to the auction, the load of other links to prevent congestion by denying
green lights to those vehicles that would reach links close to saturation. Fi-
nally, The benefit of Smart Traffic Light systems can be measured not only
against the FTC but also against other systems adopted in some cities, such
as systems that sense when a lane is empty and skip the green light phase
for this lane.

The study also examined the Parking Management problem in a smart
city context, with a particular emphasis on addressing the co-existence of
connected and non-connected vehicles. A system was proposed to effectively
manage both types of vehicles in the context of parking management. The
proposed approach was validated and benchmarked through the use of ex-
tensive simulations. The study aims to provide a solution that addresses
the challenges associated with managing the co-existence of connected and
non-connected vehicles in a smart city context, specifically in the context of
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Parking Management. The study found that managing the co-existence of
connected and non-connected vehicles in a smart city context is a complex
task and the presence of non-connected vehicles has a significant impact on
system design. Additionally, the presence of traditional vehicles also affects
the performance of the system. For instance, a parking spot can be chosen
by a connected vehicle, and then it can potentially be occupied by a non-
connected vehicle that is unaware that the spot has already been selected
by another vehicle. This situation does not occur in the scenario where only
connected vehicles are present since connected vehicles are informed about
which parking spots are free and which are already taken. Therefore, it is
important to simulate the co-existence of these two types of vehicles to fully
understand the challenges and design effective solutions. However, the pro-
posed smart system is able to reduce the parking search time by up to 76%
for the majority of vehicles that adopt it with respect to baseline strategies
utilized by human drivers. This is a good incentive for traditional vehicles
to switch to the smart system. In light of these findings, more sophisticated
systems can be designed for Parking Management. For example, incorporat-
ing traffic information into the Parking Management system can improve its
efficiency and effectiveness by suggesting the best parking spot for a vehicle
based on not only the availability of parking spots but also the traffic on
the surrounding roads and the likelihood of the spot being taken by another
vehicle. This can improve the overall performance of the system.

With regards to Emergency Vehicles Management, the study aimed to
investigate Emergency Vehicle Management in the context of a Smart City.
To achieve this, the MATSim urban traffic simulator was extended to en-
able the testing and experimentation of different viability models in case of
traffic accidents. While previous research on traffic congestion mitigation
techniques [150, 151] has assumed that all road users can be informed of
traffic disruptions in order to immediately reroute and avoid congestion, the
proposed mechanism has a two-fold objective. The first is to increase the
possibility of vehicles avoiding roads with accidents and rerouting before
reaching them. The second is to decrease the emergency vehicle response
time. To achieve this goal, the proposed system communicates with non-
emergency vehicles about the specific roads that will be traversed by emer-
gency vehicles in order to minimize congestion on the emergency vehicle’s
route. The non-emergency vehicles, upon receiving this information, are able
to adjust their routes accordingly to avoid these roads and thus contribute to
reducing congestion on the emergency vehicle’s route. The study examined
the impact of different types of agents with varying communication capabil-
ities. The proposed mechanisms were able to significantly reduce emergency
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vehicle response time by up to 36.7% with respect to a scenario in which
no such mechanisms exist. This is of paramount importance as it increases
the chance of survival for those involved in road accidents [152, 153]. Addi-
tionally, the proposed mechanism also resulted in a reduction in travel time
for non-emergency vehicles as they are able to avoid roads with accidents,
resulting in a decrease in trip time by 36.1% compared to the trip time of
the same vehicle that does not join the proposed mechanism.

The aforementioned challenges were addressed through the use of two
distinct types of algorithm design: local and global. The local design is a
distributed approach in which there is no central authority, while the global
design is a centralized approach where a central server possesses knowledge
of the entire state of the city. Both the local and global algorithm designs
have their own distinct advantages and disadvantages. It was observed that
the global design, due to the central server’s ability to manage the entire
city, can provide vehicles with more comprehensive information and enable
decision-making based on the overall state of the city. However, the central
server also serves as a single point of failure, meaning that if there is an issue
with the server or its connection, the entire system may become inoperable.
The local design, on the other hand, does not have a single point of failure.
However, the decision-making of the controller is based solely on local infor-
mation, such as the status of streets and vehicles in the immediate vicinity.
This can limit the decision-making capabilities of the controller. The study
has demonstrated that Parking and Emergency Vehicle Management can
benefit from a comprehensive view of the entire city, as it is important to
have knowledge of the parking or traffic state of all areas to make informed
decisions. On the other hand, Traffic Light or Intersection management can
be designed as a local algorithm, as decisions can be made based on the
status of the involved streets alone, thus avoiding the issue of a single point
of failure.

In future research in this field, it would be useful to investigate whether
a global design for Traffic Light and Intersection Management can improve
system decision-making, as knowledge of the overall state of the city could
facilitate the coordination of Traffic Lights. Additionally, it would be worth
exploring if local management of parking and emergency vehicle manage-
ment can be designed to mitigate the issue of a single point of failure.

When looking at the individual vehicle, i.e. ADAS and autonomous ve-
hicles, the focus was on computation time. Two tasks of the perception and
control pipeline were considered: localization and planning. For the local-
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ization part, the well-known ORB-SLAM algorithm was described, which
uses camera data to estimate the vehicle pose. For the planning part, the
Frenet Path Planner algorithm was described.

Different implementations of these two algorithms using GPU accelera-
tion have been proposed. The importance of fast execution is highlighted
and comparisons are made with the baseline implementation of the algo-
rithms, both in terms of execution time and precision of results.

The proposed implementation of ORB-SLAM uses CUDA streams and
events to manage concurrency between kernels execution and memory copies.
Moreover, the tasks inside the ORB Extraction phase have been parallelized
on the GPU. In addition, a novel method for the Pyramid construction task
and a novel cluster-based point filter method, more suitable for GPU par-
allelization, have been proposed. The combination of these improvements
results in a speedup of up to 3x over the original baseline CPU-based im-
plementation, as measured using the standard datasets in the localization
field. As future research, It is feasible to study the capabilities of the Unified
Memory feature on NVIDIA embedded boards and evaluate the potential
impact of deploying it on a discrete GPU in terms of memory copies. It is
also possible to quantify the energy consumption of the novel implementa-
tion and to create optimized GPU versions for the remaining algorithmic
steps associated with SLAM-based approaches, such as the Loop Closing
detection mechanism.

The proposed implementation Frenet Path Planner uses the CUDA streams
to overlap memory copies and kernel execution. In addition, the shared
memory and an optimal grid organization were designed to reduce access to
global memory. Finally, the computation was tested using different floating-
point precision types: double, float, and half. They were tested in the same
condition to verify the reduction in execution time of the algorithm and the
impact on the precision of the generated trajectories. The tests, performed
in the simulator, show that the precision is not much affected (especially
for float and double), while the execution time is consistently reduced, with
a speed-up of up to 28x compared to the baseline sequential CPU-based
implementation. In future work, it is possible to investigate, also in this
case, whether the use of CUDA Unified Virtual Memory (UVM) instead
of explicit memory copies can reduce the overhead of data transfers, since,
especially on embedded boards, the use of one approach rather than an-
other can reduce the overall execution time, but it depends on the specific
application [116, 117, 118]. It is also possible to integrate the Frenet Path
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Planner with a trajectory prediction for the surrounding vehicles to deal
with dynamic obstacles.

In conclusion, the potential of smart cities and autonomous vehicles can
be exploited to improve the quality of life of the city and its drivers. It is
important to consider the co-existence of other non-autonomous and non-
equipped vehicles, as the algorithm’s design must take into account their
unpredictability. In addition, the safety and consequently the execution time
of the algorithms is a crucial points to consider. In order to avoid safety-
threatening situations in the real scenario, it is a good practice to test the
algorithms in a simulated scenario, where it is possible to see unexpected
behaviors.
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