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Abstract

Nonlinear models are a fundamental tool related to mathematical analysis. This is due

to the wideness of problems which might be formulated according to them and the cor-

responding questions which arise concerning e.g. existence, uniqueness and regularity of

solutions. In fact, they are often tied hand in glove to nonlinear PDEs. Although they

have been studied for quite a long time, an infinite number of different assumptions can

unlock different problems, which require unknown strategies and are fascinating for theo-

retical purposes, but not only. Indeed, nonlinear models have largely been used as a tool

to describe and validate multiple phenomena and theories about what surrounds us, for

example physics, biology and medicine.

The aim of this thesis is to present three different problems in this framework, whose

study involves different techniques and approaches. This work is therefore divided into

three Parts.

In Part I, we present two non-isothermal Cahn-Hilliard models. The first one is a two-

dimensional PDE system describing the phase separation behaviour of a two-component

fluid in a bounded domain. In particular, we are interested in studying the existence,

uniqueness and regularity of solutions. This is a starting point to introduce a second

model, namely a three-dimensional non-isothermal Cahn-Hilliard system describing tumor

growth.

Part II is devoted to study the mechanism of breathing. In particular, we consider the

lungs as a viscoelastic deformable porous medium and breathing as an isothermal periodic

process, which also takes into account the phenomenon of hysteresis.

Eventually, in Part III we move to the field of Calculus of Variations and in particular to

the study of obstacle problems. Namely, we focus on higher differentiability properties of

solutions to obstacle problems with nonstandard growth conditions. Our analysis takes

into account a particular class of double phase functionals. These are a useful tool to study

the behaviour of strongly anisotropic materials whose hardening properties are strongly

dependent on the point and connected to the exponent ruling the growth of the gradient

variable.
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model for breathing, ESAIM: Mathematical Modelling and Numerical Analysis 54 255–

271, (2020)

Eventually, Part III gathers the main results obtained in

▶ A.G. Grimaldi and E. Ipocoana, Higher differentiability results in the scale of Besov

spaces to a class of double-phase obstacle problems, ESAIM: COCV 28 51, (2022)

▶ A.G. Grimaldi and E. Ipocoana, Higher fractional differentiability for solutions to a

class of obstacle problems with non-standard growth conditions, Adv. Calc. Var. (2022)

In fact, these are not the only products of my research. Indeed, during my Ph.D. I also

worked on regularity results for the Kolmogorov equation, namely

▶ E. Ipocoana and A. Rebucci, Pointwise estimates for degenerate Kolmogorov equations

with Lp-source term, J. Evol. Equ. 22(1), 2 (2022)

and other currently ongoing projects whose content is not part of this thesis.

ii



Contents

I Non-isothermal Cahn-Hilliard models 1

1 Two-component fluid in a 2D-domain 4

1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Conserved order parameter approach . . . . . . . . . . . . . . . . . 8

1.2.2 Gurtin’s microforces approach . . . . . . . . . . . . . . . . . . . . . 13

1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Well posedness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Initial regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 Further regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.4 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 An application to tumor growth 40

2.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.2 Weak sequential stability . . . . . . . . . . . . . . . . . . . . . . . . 56

II A model for assisted periodic breathing 59

3 Viscoelastic porous medium model 62

3.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Comparison with previous model . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Preisach operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

iii



CONTENTS

4 Proof of Theorem 3.1.3 69

4.1 Approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Galerkin approximations . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Limit as m→ ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Estimates independent of δ and ε . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 L∞-bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Uniform estimates of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

III Obstacle problems applied to anisotropic materials 94

5 Notation and background 97

5.1 Besov-Lipschitz spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Difference quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Preliminary results on standard growth conditions . . . . . . . . . . . . . . 101

6 Higher differentiability for lagrangians F̃ (x,Du) 102

6.1 Approximation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Proof of Theorem 6.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 A priori estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Passage to the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Higher differentiability for double-phase lagrangians F (x, u,Du) 122

7.1 Higher integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Higher differentiability for comparison maps . . . . . . . . . . . . . . . . . 133

7.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.1 Proof of Theorem 7.0.1 . . . . . . . . . . . . . . . . . . . . . . . . . 151

Appendix 156

A Sobolev embeddings and interpolation theory 156

A.1 2D results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B Topological degree 159

iv



Part I

Non-isothermal Cahn-Hilliard

models
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The first Part of this work is devoted to present models in the Cahn-Hilliard framework.

The Cahn-Hilliard equation was first formulated by J.W Cahn and J.Hilliard in [18, 19]

and it describes phase separation of multi-component mixtures, that is the segregation of

the system into spatial domains.

The Cahn-Hilliard equation reads

φt = div

[

M(φ)∇
[

1

ε
F ′(φ)− ε∆φ

]]

, (x, t) ∈ Ω× IR+ (I.1)

complemented with appropriate initial and boundary conditions.

The process of phase separation is described by the order parameter φ = φ(x, t), which

represents the concentration of one of the two components in a binary system occupying

a volume Ω. M =M(φ) is a mobility coefficient and F (φ) is the free homogeneous energy

function. We remark that we here stand in the case of the so-called diffuse interface

models. Namely, we allow a partial mixing of components in a narrow interfacial region,

whose thickness is represented by a (small) parameter ε.

In the main part of our discussion, we assume the domain Ω to be bounded and with a

boundary ∂Ω smooth enough. We will explain in details the needed regularity according

to the different cases we consider in Chapters 1 and 2 respectively. Besides, in our analysis

we suppose that the mobility coefficient M is constant. In this particular case, the Cahn-

Hilliard equation (I.1) can be formulated as the system

φt = ∆µ (I.2)

µ =M

(

−ε∆φ+
1

ε
F ′(φ)

)

, (I.3)

where we introduced the auxiliary variable µ, known in the literature as chemical poten-

tial.

According to both the formulations (I.1) and system (I.2)-(I.3), we notice that the tem-

perature does not appear in the Cahn-Hilliard equation. This is because in general this

phase separation model is isothermal, so it does not consider the possible variation of

temperature during the process.

However, following the spirit of [46, 47, 39] we here also take into account the effects of the

(absolute) temperature θ. Indeed, the analysis of non-isothermal models has been used

to describe the evolution of several types of substances, such as, e.g., plastic materials,

shape memory alloys and liquid cristals [41, 42, 50].

In particular, in Chapter 1 we model the phase separation occurring in a two-component

fluid occupying a bounded spatial domain. The first issue we address is the derivation of
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the model. We present two different approaches. The first one follows the lead of a more

general case, presented in [46], based on the strategy proposed in [55]. In the second one,

we adapt the method based on the balance of microforces in [69] to the non-isothermal

case. The existence and uniqueness of the solution to a more general system were estab-

lished respectively in [47] and [39]. However, we here focus on proving further regularity

results for the solution, which allows us to give a simpler proof of the uniqueness. The

well-posedness results presented in Chapter 1 are published in [77].

In Chapter 2 we use Cahn-Hilliard equations to describe tumor growth. In the context

of diffuse interface models, the tumor is seen as a mass of cells surrounded by healthy

tissue, with a thin layer separating the tumoral and healthy regions. The main novelty

of this model is that we here consider the effects of temperature variations on the tumor.

After presenting a thermodynamically consistent derivation of our system, we prove the

existence of a weak (entropy) solution. The main results of Chapter 2 are published in

[75].
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Chapter 1

Two-dimensional non-isothermal

Cahn-Hilliard model

We aim to establish new regularity properties for a non-isothermal Cahn-Hilliard model

describing the phase separation of a two-component fluid occupying a bounded domain

Ω ⊆ R
2. The model we consider consists of a PDE system describing the evolution of

the unknown variables, namely the order parameter φ, chemical potential µ and absolute

temperature θ. That is

φt = ∆µ, (1.1)

µ = −∆φ+ F ′(φ)− θ, (1.2)

θt + θφt − div (κ(θ)∇θ) = |∇µ|2, (1.3)

and it corresponds to the Cahn-Hilliard system for phase separation (cnfr. system (I.2)-

(I.3)) coupled with the internal energy equation describing the evolution of temperature.

This is a nonlinear system whose main source of difficulty is directly related to the ter-

modynamic consistency of the model. Namely, it is represented by the quadratic term

in the right-hand side of (1.3). The analysis is carried out in the 2-dimensional torus

Ω = [0, 1]× [0, 1], therefore we choose periodic boundary conditions for all the unknowns.

The function F, whose derivative appears in (1.2), is a possibly non-convex potential

whose minima represent the least energy configuration of the phase variable. Here, we

assume that F is smooth and with power-like growth at ∞. Moreover the function κ(θ)

in (1.3) denotes the heat conductivity coefficient, assumed to grow at ∞ as a power of θ,

as it has been recently considered in several contributions, for instance [47].
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CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

Our system is part of the more general model

divu = 0, (1.4)

ut + u · ∇u+∇p = ∆u− div(∇φ⊗∇φ), (1.5)

φt + u · ∇φ = ∆µ, (1.6)

µ = −∆φ+ F ′(φ)− θ, (1.7)

θt + u · ∇θ + θ
(

φt + u · ∇φ
)

− div(κ(θ)∇θ) = |∇u|2 + |∇µ|2 (1.8)

where the Cahn-Hilliard equation and the internal energy equation are coupled with a

Navier-Stokes equation. This model has been derived and studied in [46] where the ex-

istence of solutions was shown in the 3D case (under some slightly different assumptions

on the coefficients) in a very general and weak formulation. Then in [47] also the 2D case

was analyzed, obtaining the existence of strong solutions. Eventually in [39] the authors

were able to improve the previous results by defining a class of slightly smoother solutions

and by proving that uniqueness holds in that class (and therefore well-posedness results

have been proved). The key point on which these well-posedness results are proved is the

following. The right hand side of (1.8) lies exactly in L2(0, T ;L2(Ω)) and this informa-

tion apparently does not seem to be sufficient to get additional regularity for θ, which is

essential in order to be able, for instance, to test the equation for the temperature by θt.

In particular, a L∞-bound is lacking because Moser iterations do not work for L2 on the

right hand side and this would be crucial in order to manage some coefficients growing like

powers of θ. Therefore much efforts have been adopted in the already mentioned papers

[47, 39] to overcome this difficulty and be able anyway to get a control of the gradient of

θ in L2(Ω), uniformly in time.

Motivated by these works, we aim to show that, assuming a null velocity vector field, the

Moser iteration scheme works, so that the crucial L∞-estimate for θ is now available. As a

consequence, we are thus able to present a simplified proof of uniqueness for the solution

to our non-isothermal Cahn-Hilliard model (1.1)-(1.3).

The main results concerning further regularity and uniqueness of solutions presented

in this Chapter are contained in the published paper [77].

Chapter 1 is then structured as follows. After introducing the suitable notation in Section

1.1, we proceed showing a thermodynamically consistent derivation of the model. In

particular, in Section 1.2 we show two different approaches on how to derive our system.

Namely, on one hand in Section 1.2.1 we present a first strategy based on the fact that

the spatial mean of the order parameter φ is conserved in time. On the other hand, in

Section 1.2.2 we follow Gurtin’s approach based on microforces, which does not need the
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CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

condition on mass conservation. Then we focus on proving the well-posedness results.

Thus, Section 1.3 provides the assumptions for our mathematical problem. The core of

this Chapter is presented in Section 1.4, where the main result, Theorem 1.4.1, namely

existence and uniqueness of a solution for our problem (1.1)-(1.3), together with the

additional regularity for θ, is proved.

1.1 Setting

Let us introduce some notation which will be useful in Section 1.2 and then adapted and

extended in Section 1.4 to study the well-posedness results.

We suppose that a two-component fluid occupies a bounded spatial domain Ω ⊂ IR2,

with a sufficiently regular boundary ∂Ω. We let n denote the outer normal unit vector

to ∂Ω. Moreover, φ(x, t) is the order parameter, representing the concentration difference

of the fluid, or the concentration of one component, and θ(x, t) is the absolute temperature.

The symbol ∥·∥X will denote the norm in a generic Banach space. We set H := L2(Ω)

and V := H1(Ω), (·, ·) stands for the usual standard product in H. For any function

v ∈ H, we set

vΩ =
1

|Ω|

∫

Ω

vdx =

∫

Ω

vdx,

to indicate the spatial mean of v, being |Ω| = 1, where ⟨·, ·⟩ denotes the duality pairing

between V ′ and V and |Ω| stands for the Lebesgue measure of Ω. We note as H0, V0 and

V ′
0 the closed subspaces of functions (or functionals) having zero mean value in H, V, and,

respectively, in V ′. If the integral is replaced with the duality, the above can be extended

to v ∈ V ′. We denote as H0, V0 and V ′
0 the closed subspaces of functions (or functionals)

having zero mean value in H, V, and, respectively, in V ′. Then

∥v∥V0 :=
(∫

Ω

|∇v|2dx
)1/2

represents a norm on V0, which is equivalent to the norm inherited from V by the sub-

sequent Poincaré-Wirtinger inequality (A.1f). In particular ∥·∥V0 is a Hilbert norm and

we can introduce the associated Riesz isomorphism mapping J : V0 → V ′
0 by setting, for

u, v ∈ V0,

⟨Ju, v⟩ := ((u, v))V0 :=

∫

Ω

∇u · ∇vdx. (1.9)

For f ∈ H0 it is easy to check that u = J−1f ∈ H2(Ω). Actually, u is the (unique) solution
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CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

to the elliptic problem

u ∈ H0, −∆u = f, ∇u · n|∂Ω = 0.

Moreover, if u is as above, then

⟨J(u− uΩ), v⟩ = −
∫

Ω

v∆udx

for all v ∈ V0. Finally, we can identify H0 with H ′
0 by means of the scalar product on H

obtaining the Hilbert triplet V0 ⊂ H0 ⊂ V ′
0 , where inclusions are continuous and dense.

In particular, if z ∈ V and v ∈ V0, it holds that

∫

Ω

∇z · ∇(J−1v)dx =

∫

Ω

(z − zΩ)vdx =

∫

Ω

zvdx. (1.10)

1.2 Derivation of the model

We suppose that a two-component fluid occupies an open spatial domain Ω ⊂ R
2. We

denote by φ(x, t) the concentration of one of the components of the fluid and θ(x, t) is

the absolute temperature.

We present here two different thermodynamically consistent approaches to derive our

model. The first one relies on the fact that the scalar function φ = φ(x, t) satisfies

the mass conservation constraint. The second strategy is on the other hand based on a

microforces balance and does not require the condition on the conservation of mass.

We recall and collect here some general considerations, which will be exploited in both

approaches.

According to the Ginzburg-Landau theory for phase transitions, we postulate the free

energy density ψ and the energy functional Ψ respectevely in the form

ψ =
ε

2
|∇φ|2 + 1

ε
F (φ) + f(θ)− θφ (1.11)

Ψ =

∫

Ω

ψdx. (1.12)

Here, ε is a positive constant depending on the interface thickness. The function F in

(1.11) penalizes the deviation of the length |φ| from its natural value 1. We refer for

instance to the double-well potential and the logarithmic potential. The term f in (1.11)

describes the part of free energy which is purely caloric and is related to the specific heat
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CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

cV (θ) = Q′(θ) through relation

Q(θ) = f(θ)− θf ′(θ),

where Q is the entropy flux. In this Chapter (and in Chapter 2 as well) we assume that

the specific heat is such that cV ≡ 1. Assuming it constant is reasonable since in many

materials the specific heat has small fluctuations around a single value. Moreover, we

recall that it holds

q = Qθ, (1.13)

where q denotes the heat flux. The internal energy density of the system is given by

Gibbs’s relation

e = ψ + θs. (1.14)

Here, s denotes the entropy of the system, which has the following expression, according

to (1.11)

s = −∂ψ
∂θ

= −f ′(θ) + φ. (1.15)

Combining the expression of internal energy density (1.14) and entropy formula (1.15),

we infer

∂e

∂t
=
∂ψ

∂t
+ θ

∂s

∂t
+ s

∂θ

∂t
=
∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

+ θ
∂s

∂t
(1.16)

and consequently

∂ψ

∂t
+ s

∂θ

∂t
=
∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

. (1.17)

Both of the approaches rely on the use of the thermodynamic principles. In particular, we

exploit the second law of thermodynamics in the form of the Clausius-Duhem inequality

θ

(

∂s

∂t
+ divQ

)

≥ 0. (1.18)

1.2.1 Conserved order parameter approach

We here follow the general approach presented in [55]. We note that our case can be

interpreted as a particular one of [46]. However, for sake of completeness, we report here
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CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

all the details.

We denote by

E = (φ,∇φ, θ)

the set of the state variables, which characterize the configuration of the material. On

the other hand, the path along which the system tends to dissipate energy is described

by the set of dissipative variables

δE = (φt,∇θ).

The free energy density ψ(E) and the energy functional Ψ(E) are given respectevely in

the form (1.11) and (1.12).

As already mentioned, the approach we present here is based on the mass conservation of

the order parameter. In order to impose this constraint, we write

φ = φ0 +m0, (1.19)

where m0 denotes the mean value of the initial datum φ0. Then, the conservation of mass

corresponds to prescribe φ0 to take its values in H0 during the whole evolution of the

system. The conservation of mass φ(t, ·) = φ(0, ·) a.e. for t ∈ (0, T ) implies

D

Dt

∫

Ω

φdx =

∫

Ω

φtdx = 0, (1.20)

where we remark that in our case the material derivative and time derivative coincide

because we assume the fluid to have zero velocity.

We also notice that condition (1.20) translates into φt having zero spatial mean.

Supposing that φ has a suitable regularity such that φt ∈ V ′
0 a.e. in time, we define

µ0 := −J−1φt, so that φt = −Jµ0 = ∆µ0 in V ′
0 , (1.21)

which entails µ0 ∈ V0.

Moreover, if φt ∈ H0, then, by elliptic regularity, we have

µ0 ∈ V0 ∩H2(Ω) and ∇µ0 · n|∂Ω = 0.

This setting allows us to introduce the pseudo-potential of dissipation Φ. This functional

characterizes the evolution of the system and it is supposed to be non-negative and convex

9



CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

with respect to the dissipative variables. Its expression is given by

Φ(δE,E) =

∫

Ω

ϕ(δE,E)dx+ ⟨φt, J−1φt⟩, (1.22)

where the “local component” ϕ of this dissipation density is given by

ϕ(δE,E) =
κ(θ)

2θ
|∇θ|2, (1.23)

where κ(θ) > 0 is the heat conductivity.

The last term in (1.22), which is linked to the mass conservation, is nonstandard. In fact,

it corresponds to a squared V ′
0− norm of the partial derivative of φ and thus depends in

a nonlocal way on the dissipative variable.

We notice that we can equivalently rewrite the pseudo-potential Φ as follows

Φ(δE,E) =

∫

Ω

ϕ̃(δE,E)dx, where ϕ̃(δE,E) = ϕ(δE,E) +
1

2
|∇µ0|2. (1.24)

Indeed, integrating by parts in space and using the definition of J , it turns out that

∫

Ω

|∇µ0|2dx = −
∫

Ω

∆µ0µ0dx =

∫

Ω

J(µ0)µ0dx = ⟨φt, J−1(φt)⟩.

We also remark that we define the functionals Φ and Ψ for all sets of variables E and

δE for which they make sense. Namely, the class of admissible state variables is given by

the condition of finiteness of Ψ and Φ.

Balance equations and constitutive relations.

According to [55], by the principle of virtual power it follows that

divH− B = 0, (1.25)

where the energy density B and the energy flux H are assumed to decompose as their

non-dissipative and dissipative components. That is

B = Bnd +Bd,

H = Hnd +Hd

where, taking to account (1.11), we have

Bnd =
∂ψ

∂φ
=

1

ε
F ′(φ)− θ, (1.26)
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CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

Bd = δH0,φtΦ = J−1(φt), (1.27)

According to (1.27), Bd is defined as the sub-differential of Φ with respect to φt in the

space H0. This coincides in particular with J−1(φt). Indeed, for any v ∈ H0, we have

(

J−1(φt), v − φt
)

= ⟨v − φt, J
−1(φt)⟩ = ((v − φt, φt))V ′

0

≤ 1

2
∥v∥2V ′

0
− 1

2
∥φt∥2V ′

0
=

1

2
⟨v, J−1v⟩ − 1

2
⟨φt, J−1φt⟩.

Moreover,

Hnd =
∂ψ

∂∇φ = ε∇φ

Hd ≡ 0.

Analogously, we decompose the heat flux q and the entropy flux Q as

q = qd + qnd,

Q = Qd +Qnd,

with qd = θQd and qnd = θQnd, where, in view of (1.23),

qd = θQd = θ
∂ϕ

∂∇θ = κ(θ)∇θ, (1.28)

while the non-dissipative component is determined a posteriori in order to comply with

the second law of themodynamics.

In the sequel we also ask the heat conductivity to grow as a power of the absolute tem-

perature. This choice is mainly motivated by mathematical reasons, however it is also

coherent with physical interpretations (see [108]).

The order parameter equation (1.1) is derived according to the virtual power principle

(1.25). In fact, we need to include the boundary conditions and the conservation mass

constraint. Therefore we first rewrite Ψ, according to (1.12) , as

Ψ(E) =

∫

Ω

(

ε

2
|∇φ0|2 + 1

ε
F (φ0 +m0) + f(θ)− θ(φ0 +m0)

)

dx,

where we used the decomposition φ = φ0 + m0 introduced in (1.19). Thus we express

(1.25) as a generalized gradient flow problem in H0, namely

Bd + δH0,φ0Ψ = δH0,φtΦ + δH0,φ0Ψ = 0. (1.29)

11
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We remark that requiring φ0 to lie in the domain of the differential δH0,φ0Ψ means that

there exists a (unique) function z ∈ H0 such that δH0,φ0Ψ(φ0) can be represented by z

in the scalar product of H0 (and so of H). This leads to the fact that (1.29) contains

both the homogeneous Neumann boundary conditions for φ and the mass conservation

constraint.

Additionally, we observe that such a function z must be of the form

z = −ε∆φ0 +
1

ε

(

F ′(φ0 +m0)− F ′(φ0 +m0)Ω
)

− θ + θΩ. (1.30)

Now, putting together (1.29) and (1.30) with (1.27), we then obtain

J−1(φt) = ε∆φ0 − 1

ε

(

F ′(φ0 +m0)− F ′(φ0 +m0)Ω
)

+ θ − θΩ.

Eventually, we apply the distributional Laplace operator to both hand sides, recalling that

−∆J−1v = v for any v ∈ H0, as stated in Section 1.1. Then we introduce the auxiliary

variable µ such that µ0 = µ− (µ)Ω, in accordance with (1.21). This entails

φt = ∆µ, (1.31)

µ = −ε∆φ+
1

ε
F ′(φ)− θ. (1.32)

Therefore, choosing ε = 1, we then recover system (1.1)-(1.2).

By the first law of thermodynamics, it follows that

∂e

∂t
+ divq = Bφt +H · ∇φt +Π. (1.33)

The last term in (1.33) does not appear in the standard theory proposed in [55]. Indeed,

Π is needed to balance the nonlocal dependence with respect to the dissipative variable

φt of the last term appearing in the expression (1.22) of the psudopotential of dissipation

Φ.

We now aim to determine the expressions of Π and the nondissipative component of the

heat flux qnd. This is done exploiting the second law of thermodynamics in the form of

Clausius-Duhem inequality (1.18).

Before doing so, we need to gain some useful relations. We first notice that, combining

(1.11), (1.14) and (1.15) we infer

e = ψ + θs =
1

ε
F (φ) +

ε

2
|∇φ|2 +Q(θ). (1.34)

12
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We also remark that the latter term in (1.17) is given by

∂ψ

∂∇φ(∇φ)t = Hnd · (∇φt) . (1.35)

Besides, by (1.30)-(1.32), we get that

φtJ
−1 (φt) = −∆µ(µ− µΩ) = −1

2
∆(µ− µΩ)

2 + |∇µ|2. (1.36)

We are now ready to focus on the second law of thermodynamics. Developing the left

hand side of (1.18), we get

θ (st + divQ)
(1.34),(1.13)

= et + divq − ∂ψ

∂φ
− θts−Q · ∇θ

(1.15)
= et + divq − ∂ψ

∂φ
φt −

∂ψ

∂∇φ · (∇φ)t −Q · ∇θ

(1.33),(1.26),(1.28)
= Bφt +H · (∇φ)t +Π− ∂ψ

∂∇φ · (∇φ)t

− Bndφt +
κ(θ)

θ
|∇θ|2 −Qnd · ∇θ

(1.27),(1.35),(1.36)
= |∇µ|2 − 1

2
∆(µ− µΩ)

2 +Π+
κ(θ)

θ
|∇θ|2 −Qnd · ∇θ.

Then, in order to obtain the non-negativity of the right hand side of (1.18), we can assume,

e.g., the following constitutive relations

qnd = 0, Π =
1

2
∆(µ− µΩ)

2. (1.37)

With these choices, we get
∫

Ω
Π(x)dx = 0, as expected. Moreover, rewriting the internal

energy balance (1.33) as

(Q(θ))t + θφt − div(κ(θ)∇θ) = |∇µ|2, (1.38)

and choosing the specific heat equal to one, we recover the temperature equation (1.3).

Notice that the dissipation terms on the right hand side are perfectly in agreement with the

expression (1.24) of the pseudo-potential of dissipation Ψ. Indeed, as already mentioned,

one has µ0 = µ− µΩ due to (1.31)-(1.32).

1.2.2 Gurtin’s microforces approach

In this Section, we follow Gurtin’s approach proposed in [69] in order to derive our system

(1.1)-(1.3). Namely, we treat separately the balance laws and the constitutive relations,

13
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moreover we consider the following balance law for internal microforces

div ζ + π = 0, (1.39)

where ζ is a vector representing the microstress and π is a scalar corresponding to the

internal microforces. Microforces describe the forces associated with microscopic configu-

rations of atoms, differently from standard forces, which are associated with macroscopic

length scales. These different length scales are the reason why a separate balance law for

microforces is needed. Besides, since in Cahn-Hilliard models the kinematics is associated

with the order parameter, it is natural to infer that the working of microforces has effects

on φ. Such interatomic forces may be mirrored on the macroscopic level by fields which

perform work when the order parameter undergoes changes. Therefore this working can

be described in terms of φt, which explains why the microforces are scalar rather than

vector quantities.

We complement the balance law for microforces with the fundamental balance laws.

Since we do not consider external mass sources, the mass balance law reads

φt = − div h, (1.40)

where h is the mass flux.

The derivation of our system is based on the first and second fundamental laws of

thermodynamics. We proceed showing first the derivation of the Cahn-Hilliard system

(1.1)-(1.2) and then the one of the temperature equation (1.3).

Cahn-Hilliard system.

According to [69], we write the first law in the form

d

dt

∫

R

edx = −
∫

∂R

q · νdη +W(R) +M(R), (1.41)

where R is the control volume, ν is the outward unit normal to ∂R and

W(R) =

∫

∂R

(ζ · ν)∂φ
∂t

dη, (1.42)

M(R) = −
∫

∂R

µh · νdη (1.43)

are the rate of working and the rate at which free energy is added to R (assuming no heat

14
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supply) respectively. Using Green’s formula, we can rewrite (1.41) as

∂e

∂t
= − div q +

∂φ

∂t
div ζ + ζ · ∇∂φ

∂t
− h · ∇µ− µ div h, (1.44)

where we introduced the heat flux q in (1.13). Since the control volume R is arbitary,

exploiting the mass balance (1.40) and the microforce balance (1.39), we infer

∂e

∂t
= − div q + (µ− π)

∂φ

∂t
+ ζ · ∇∂φ

∂t
− h∇µ. (1.45)

We now impose the validity of the second law of thermodynamics in the form of the

Clausius-Duhem inequality (1.18). We develop the left hand side of (1.18) as follows

θ

(

∂s

∂t
+ divQ

)

(1.14)
=

∂e

∂t
− ∂ψ

∂t
− s

∂θ

∂t
+ θ divQ

(1.13)
=

∂e

∂t
− ∂ψ

∂t
− s

∂θ

∂t
+ div q −Q · ∇θ

(1.45)
= (µ− π)

∂φ

∂t
+ ζ · ∇∂φ

∂t
− h∇µ− ∂ψ

∂t
− s

∂θ

∂t
−Q · ∇θ

(1.17)
=

(

µ− π − ∂ψ

∂φ

)

∂φ

∂t
+

(

ζ − ∂ψ

∂∇φ

)

∂∇φ
∂t

− h∇µ−Q · ∇θ.

In order to satisfy relation (1.18), we impose

µ− π − ∂ψ

∂φ
= 0, (1.46)

ζ =
∂ψ

∂∇φ, (1.47)

h∇µ+Q · ∇θ ≤ 0, (1.48)

where in particular in order for (1.48) to hold, we exploited Fourier’s law

q = −κ(θ)∇θ, (1.49)

with κ = κ(θ) > 0 heat conductivity.

The combination of (1.11) and (1.47) straightly gives

ζ = ε∇φ, (1.50)

15
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which leads to, according to (1.11), (1.39) and (1.46),

µ = −ε∆φ+
1

ε
F ′(φ)− θ. (1.51)

Eventually, inequality (1.48) can be satisfied choosing h = −∇µ, which is a suitable

assumption according to [69]. Therefore equation (1.40) reads

φt = ∆µ. (1.52)

Temperature equation.

We start from the internal energy equation (1.45), taking advantage of (1.47) and of the

expression for the chemical potential (1.46), therefore

∂e

∂t
= − div q +

∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

− h∇µ.

Now, exploiting the assumption h = −∇µ and Fourier’s law (1.49), we infer

∂e

∂t
= div (κ(θ)∇θ) + ∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

+ |∇µ|2

and by identity (1.16),

θ
∂s

∂t
− div (κ(θ)∇θ) = |∇µ|2. (1.53)

From (1.15), we might write

θ
∂s

∂t
= θ(−f ′(θ))t + θφt.

On the other hand, according to the definition of Q, it holds (Q(θ))t = (−f ′(θ))t, with

in particular (Q(θ))t = Q′(θ)θt. Since we supposed that we are considering the case in

which the specific heat cV = 1, it follows that Q′(θ) = 1. This implies that

θst = θt + θφt.

Thus, equation (1.53) reads

θt + θφt − div (κ(θ)∇θ) = |∇µ|2. (1.54)
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1.3 Assumptions

In this Section we expand and adapt the notation presented in Section 1.1, in order to

study the well-posedness of our system (1.1)-(1.3).

We consider our PDE system taking place in the two-dimensional flat torus with pe-

riodic boundary conditions, namely Ω = [0, 1] × [0, 1] and φ|xi=0 = φ|xi=1 i = 1, 2 ∀t ∈
(0, T ).

We denote as H := L2
per(Ω) the space of functions in L2(IR2) which are Ω-periodic (i.e.,

1-periodic both in x1 and x2). Analogously, we set V := H1
per(Ω). The spaces H and V

are endowed with the norms of L2(Ω) and H1(Ω), respectively. For brevity, the norm of H

will be simply indicated by ∥·∥. Still for brevity, we omit the variables of integration. We

will specify them when there could be a misinterpretation. The symbol ⟨·, ·⟩ will indicate
the duality between V ′ and V and (·, ·) will stand for the standard product of H. We also

write Lp(Ω) instead of Lpper(Ω), and the same for other spaces; indeed, no confusion should

arise since periodic boundary conditions are assumed to hold for all unknowns. We denote

Hm
per(Ω) the space of functions which are Hm

loc(Ω) and Ω-periodic, for m ∈ IR,m ≥ 0. In

particular, for m = 0 we have H0
per(Ω) = L2

per(Ω).

We now focus on the mathematical hypotheses needed on the nonlinear terms.

We ask the configuration potential F to satisfy:

F ∈ C3(IR; IR), lim inf
|r|→∞

F (r)

|r| > 0, (1.55)

F
′′

(r) ≥ −λ for some λ ≥ 0, and all r ∈ IR, (1.56)

|F ′′′

(r)| ≤ c̃F (1 + |r|pF−1) for some c̃F ≥ 0, pF ≥ 1, and all r ∈ IR. (1.57)

We remark that (1.57) implies

|F ′′

(r)| ≤ cF (1 + |r|pF ) for some cF ≥ 0, pF ≥ 0, and all r ∈ IR.

Assumption (1.55) postulates regularity and coercivity of F , (1.56) is λ-convexity and

(1.57) prescribes a polynomial growth at infinity. Note that (1.55) implies that

F (s) ≥ −c0 ∀s ∈ IR

for some constant c0 > 0. We assume moreover the heat conductivity to be given by

κ(r) = 1 + rq, q ∈ [2,∞), r ≥ 0. (1.58)
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Correspondingly, we define

K(r) :=

∫ r

0

κ(s)ds = r +
1

1 + q
r1+q, r ≥ 0. (1.59)

We aim to estimate the norm ∥K(θ)∥2V , since it will be needed in the sequel. We observe

that, for some kq > 0,

∫

Ω

κ(θ)2|∇θ|2 dx = ∥∇K(θ)∥2 ≥ ∥∇θ∥2 + kq
∥

∥∇θq+1
∥

∥

2
. (1.60)

Then, by (A.2) with p = 2, we infer

∥K(θ)∥2V ≤ cq

(∫

Ω

(θ + θq+1) dx

)2

+ cq

(

∫

Ω

∣

∣

∣

∣

∇θ +∇
(

θq+1

q + 1

)∣

∣

∣

∣

2

dx

)

=: I + II (1.61)

for some cq > 0. From (A.2), choosing p = 2(q + 1), it holds

I = cq

(∫

Ω

θ +

∫

Ω

θq+1

)2

≤ cq∥θ∥2L1(Ω) + cq

(

∥θ∥2(q+1)

L1(Ω) + ∥∇θq+1∥2
)

≤ cq

(

1 + ∥θ∥2(q+1)

L1(Ω) + ∥∇θq+1∥2
)

. (1.62)

We then estimate II according to (1.60). Therefore we get

∥K(θ)∥2V ≤ C

(

1 + ∥θ∥2(q+1)

L1(Ω) +

∫

Ω

κ2(θ)|∇θ|2
)

, (1.63)

for some C depending on q.

Complying with the boundary conditions and the lack of external forces, we have the

conservation of mass and of the total energy E that will be rigourously defined in (1.69),

namely

φ(t)Ω = φ(0)Ω E(φ(t), θ(t)) = E(φ(0), θ(0)).

It comes natural to define the “energy-entropy space” of data as:

H =
{

z = (φ, θ) ∈ V × L1(Ω) : θ > 0 a.e. in Ω, log θ ∈ L1(Ω)
}

.

In our space we omitted the chemical potential µ, in view of the fact that µ can be

regarded as an auxiliary variable, and sometimes, depending on the situation, it will

be more convenient to “exclude” µ. This can be easily achieved rewriting the system

(1.1)-(1.2) as a single equation where µ no longer appears.
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Now, in agreement with [47] and [39], we define the set

V :=
{

z = (φ, θ) ∈ H ∩
(

H3(Ω)× V
)

: K(θ) ∈ V, 1/θ ∈ L1(Ω), θ > 0 a.e.
}

,

where the requirement K(θ) ∈ V yields θ ∈ V .

Eventually, we recall here a result which will be useful in order to reach regularity in

Section 1.4.2. The proof of this Lemma can be found in [47].

Lemma 1.3.1. Let O a smooth bounded domain in R
2. Then, there exists c > 0 depending

only on O such that

∥ξ∥H1(O)′ ≤ c
(

1 + ∥ξ∥L1(O) log
1/2
(

e+ ∥ξ∥L2(O)

)

)

(1.64)

for any ξ ∈ L2(O).

1.4 Well posedness results

1.4.1 Main result

We are now ready to present the main result of this Chapter, namely

Theorem 1.4.1. Let us assume (1.55)-(1.57) and (1.58). Let also T > 0. Then given

z0 ∈ V there exists a unique solution to our problem, namely a triple (φ, µ, θ) with the

regularity

φ ∈ W 1,∞(0, T ;V ′) ∩H1(0, T ;V ) ∩ L∞(0, T ;H3(Ω)), (1.65)

µ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)), (1.66)

θ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;V ), (1.67)

θ > 0 a.e. in (0, T )× Ω,

K(θ) ∈ L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;V ), (1.68)

satisfying equations (1.1)-(1.3) a.e. in (0, T )×Ω and complying with the initial conditions

φ|t=0 = φ0, θ|t=0 = θ0

almost everywhere in Ω.

An existence result for our model can be proved by means of the solution of an approx-

imating problem and then on the application of Schauder’s fixed point theorem. The

complete proof can be found in [47].
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Here, we focus o regularity and uniqueness results. Concerning the regularity, in Section

1.4.2, we recover the basic regularity already shown in [47] for the general model, while

in Section 1.4.3 we obtain further regularity with respect to [39]. We then exploit the

regularity obtained to prove the uniqueness of the solution in Section 1.4.4.

1.4.2 Initial regularity

In this section we recover the basic regularity already obtained for the general model in

[47] and we sketch the main points. We observe that, considering here null velocity, as

one may expect, also this part of the proof turns to be simplified. In particular this is

evident in two points: in the complementary estimates (1.82) and (1.84), that can be

easily derived one from the other (due to the absence of convective terms) and in the key

estimate of the term (θt, φt). This last achievement is obtained by means of the control

of two terms: the estimate of
∫

κ2(θ)|∇θ|2 follows exactly as in [47] while the estimate

of the term
∫

|∇µ|2φt can be heavily simplified, even if the idea of relying on conjugate

functions still is necessary, for the presence of the quadratic term in the right hand side

of (1.3).

Energy and entropy estimates

The energy estimate is obtained by testing (1.1) by µ, (1.2) by −φt, (1.3) by 1 and then

integrating over Ω. We then sum up all the obtained relations. Therefore we infer

d

dt
E(φ, θ) = 0, where E(φ, θ) :=

∫

Ω

(

1

2
|∇φ|2 + F (φ) + θ

)

(1.69)

which is the total energy of the system, given by the sum of the interfacial, configuration,

and thermal energies (the three terms in E). From relation (1.69) we infer the following

a priori estimates

∥φ∥L∞(0,T ;V ) ≤ c, (1.70)

∥θ∥L∞(0,T ;L1(Ω)) ≤ c, (1.71)

where we exploited (1.55) in order to obtain (1.70) and we used the nonnegativity of θ to

get (1.71) from (1.69). Moreover, from (1.70) and Sobolev’s embeddings, we also have

∥φ∥L∞(0,T ;Lp(Ω)) ≤ cp for all p ∈ [1,∞). (1.72)
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On the other hand, integrating (1.1) over Ω, and using the periodic boundary conditions,

we observe
d

dt

∫

Ω

φ = 0 a.e. in (0, T ). (1.73)

The entropy estimate corresponds to the entropy production principle. In order to obtain

it, we test (1.3) by −θ−1 and integrate over Ω, namely

d

dt

∫

Ω

(− log θ − φ) +

∫

Ω

1

θ
|∇µ|2 +

∫

Ω

div(κ(θ)∇θ)
θ

= 0.

The last term on the left hand side can be written as

∫

Ω

div(κ(θ)∇θ)
θ

=

∫

Ω

div(∇θ)
θ

+

∫

Ω

div(θq∇θ)
θ

=

∫

Ω

∆θ

θ
+

∫

Ω

qθq−1|∇θ|2 + θq∆θ

θ

=

∫

Ω

|∇ log θ|2 + kq|∇θq/2|2.

Therefore we infer

d

dt

∫

Ω

(− log θ − φ) +

∫

Ω

1

θ
|∇µ|2 +

∫

Ω

(

|∇ log θ|2 + kq|∇θq/2|2
)

= 0, (1.74)

with kq > 0 only depending on the exponent q introduced in (1.58). We now integrate in

time. Recalling that | log r| ≤ r − log r ∀r > 0 and owing to (1.70) and (1.71), we get

the a priori bounds

∥ log θ∥L∞(0,T ;L1(Ω)) + ∥ log θ∥L2(0,T ;V ) ≤ c, (1.75)

∥∇θq/2∥L2(0,T ;H) ≤ c. (1.76)

In particular, from (1.75) we see that the strict positivity of θ is preserved a.e. in (0, T )×Ω

also in the limit. Moreover, the combination of inequality (A.2) with estimates (1.71) and

(1.76) gives

∥θq/2∥L2(0,T ;V ) ≤ c,

which implies in particular

∥θ∥L2(0,T ;H) ≤ c

and, being q ≥ 2, according to (1.58),

∥θ∥L2(0,T ;V ) ≤ c. (1.77)
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First estimates for µ, φ and φt

From equation (1.3) and periodic boundary conditions, we get

∫

Ω

|∇µ|2 = d

dt

∫

Ω

θ +

∫

Ω

θφt. (1.78)

Our aim is to control the terms on the right hand side.

In order to do so, we first integrate in time, and then we estimate the first one thanks

to (1.71). On the other hand, by using (1.1) and Hölder’s and Young’s inequalities, the

second integral can be controlled as follows

∫

Ω

θφt =

∫

Ω

θ∆µ = −
∫

Ω

∇θ · ∇µ ≤ 1

2

(

∥∇µ∥2 + ∥∇θ∥2
)

. (1.79)

The first term on the right hand side is absorbed by the corresponding one on the left

hand side of (1.78), while we use (1.77) to estimate the latter. Hence, we obtain

∥∇µ∥L2(0,T ;H) ≤ c. (1.80)

We now integrate (1.2) in space, combine (1.57), (1.71) and (1.72) and then take the

(essential) supremum with respect to time; we infer

∥µΩ∥L∞(0,T ) ≤ c. (1.81)

This estimate, combined with (1.80), gives

∥µ∥L2(0,T ;V ) ≤ c. (1.82)

Now, testing (1.1) by nonzero v ∈ V , we can notice that

⟨φt, v⟩ = −
∫

Ω

∇µ · ∇v ≤ ∥∇µ∥∥∇v∥ ≤ c∥∇µ∥∥v∥V . (1.83)

Hence, dividing by ∥v∥V , passing to the supremum with respect to v ∈ V \ {0}, squaring,
integrating in time, and using (1.82), we infer

∥φt∥L2(0,T ;V ′) ≤ c. (1.84)

On the other hand, we test equation (1.1) by −µ and note that ⟨φt, µΩ⟩ = 0, since φt has
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zero (generalized) mean. Therefore the use of the Poincaré-Wirtinger inequality yields

∥∇µ∥2 = −
∫

Ω

φtµ = −
∫

Ω

φt(µ− µΩ) ≤ ∥µ− µΩ∥V ∥φt∥V ′

≤ 1

2
∥∇µ∥2 + c∥φt∥2V ′ ,

which allows us to get

∥∇µ∥2 ≤ c∥φt∥2V ′ . (1.85)

Finally, if we test (1.2) by ∆2φ and integrate over Ω, by recalling (1.57), we get

∥∇∆φ∥2 ≤ c
(

1 + ∥∇θ∥2 + ∥∇µ∥2
)

Integrating this inequality in time and using (1.77) and (1.80), we then obtain

∥φ∥L2(0,T ;H3(Ω)) ≤ c. (1.86)

Key estimate: control of the term (θt, φt)

First of all we take (1.1), differentiate it with respect to time, and test the result by Jφt,

where J was first introduced in (1.9). Correspondingly, we differentiate (1.2) in time and

test the result by −φt. Therefore we have

〈

φtt, Jφt
〉

= ⟨∆µt, Jφt⟩
⟨µt,−φt⟩ = ⟨−∆φt,−φt⟩+

〈

F ′′(φ)φt,−φt
〉

+ (θt, φt)

Summing the obtained relations, noting that a couple of terms cancel in view of

⟨∆µt, Jφt⟩ = −
〈

(−∆)(µt − (µt)Ω), (−∆)−1φt
〉

= −
〈

µt − (µt)Ω, φt
〉

= −⟨µt, φt⟩, (1.87)

by (A.3) and (1.73), we then get

1

2

d

dt
∥φt∥2V ′ + ∥∇φt∥2 +

∫

Ω

(F ′′(φ) + λ)|φt|2

=λ∥φt∥2 + (θt, φt) ≤
1

8
∥∇φt∥2 + c∥φt∥2V ′ + (θt, φt). (1.88)

Reabsorbing, this is equivalent to

1

2

d

dt
∥φt∥2V ′ +

7

8
∥∇φt∥2 +

∫

Ω

(F ′′(φ) + λ)|φt|2 ≤ c∥φt∥2V ′ + (θt, φt). (1.89)
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On the other hand, testing (1.3) by φt yields

(θt, φt) +

∫

Ω

θφ2
t =−

∫

Ω

κ(θ)∇θ · ∇φt +
∫

Ω

|∇µ|2φt (1.90)

≤ 1

16
∥∇φt∥2 + 4

∫

Ω

κ2(θ)|∇θ|2 +
∫

Ω

|∇µ|2φt.

To treat the term in ∇θ, we test (1.3) by 6K(θ) introduced in (1.59) (the coefficient 6 is

suitable for reabsorbing the second term in the right hand side of the previous inequality

by the left hand side) and working exactly as in [47] we deduce the following estimate

6
d

dt

∫

Ω

J (θ) + 5

∫

Ω

κ2(θ)|∇θ|2

≤c(1 + ∥φt∥4V ′) +
1

8
∥∇φt∥2 + 6

∫

Ω

K(θ)|∇µ|2. (1.91)

where we set

J (r) :=

∫ r

0

K(s) ds =
r2

2
+

1

(q + 1)(q + 2)
rq+2, r ≥ 0. (1.92)

Summing (1.90) and (1.91) we get

(θt, φt) +

∫

Ω

θφ2
t + 6

d

dt

∫

Ω

J (θ) +

∫

Ω

κ2(θ)|∇θ|2

≤c
(

1 + ∥φt∥4V ′

)

+
3

16
∥∇φt∥2 +

∫

Ω

(6K(θ) + φt)|∇µ|2. (1.93)

Then, adding together (1.89) and (1.93) we obtain

1

2

d

dt
∥φt∥2V ′ + 6

d

dt

∫

Ω

J (θ) +
11

16
∥∇φt∥2 +

∫

Ω

(F ′′(φ) + λ)|φt|2

+

∫

Ω

θφ2
t +

∫

Ω

κ2(θ)|∇θ|2

≤c∥φt∥2V ′ + c
(

1 + ∥φt∥4V ′

)

+

∫

Ω

(6K(θ) + φt)|∇µ|2. (1.94)

Neglecting some positive terms in the left hand side and rearranging, we then arrive at

1

2

d

dt
∥φt∥2V ′ + 6

d

dt

∫

Ω

J (θ) +
11

16
∥∇φt∥2 +

∫

Ω

κ2(θ)|∇θ|2

≤c(1 + ∥φt∥2V ′)2 +

∫

Ω

(6K(θ) + φt)|∇µ|2. (1.95)

We now focus on controlling of the last term in the right hand side of (1.95), which
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represents the most difficult part of our argument. In order to do so, we use the embedding

inequality (1.64) setting ξ = |∇µ|2. Then, exploiting (1.63), (1.73) and the Poincaré-

Wirtinger inequality, we infer

∫

Ω

(6K(θ) + φt)|∇µ|2 ≤c
(

∥K(θ)∥V + ∥∇φt∥
)∥

∥|∇µ|2∥V ′

≤c+ 1

2

∫

Ω

κ2(θ)|∇θ|2 + 1

8
∥∇φt∥2 + c

∥

∥|∇µ|2∥2V ′

≤c+ 1

2

∫

Ω

κ2(θ)|∇θ|2 + 1

8
∥∇φt∥2

+ c
∥

∥|∇µ|2
∥

∥

2

L1(Ω)
log
(

e+
∥

∥|∇µ|2
∥

∥

L2(Ω)

)

. (1.96)

Next, we consider the functions ψ(r) = er, r ∈ R and ψ∗(s) = s(log s − 1), s > 0

(extended by continuity to s = 0 by setting ψ∗(0) = 0), which are convex conjugate. This

means that ∀r ∈ R, s ≥ 0, it holds rs ≤ ψ(r) + ψ∗(s), as we can see for example in [10,

Sec. 1.4]. If we now set r = log
(

e+∥|∇µ|2∥L2(Ω)

)

and s = c
∥

∥|∇µ|2
∥

∥

2

L1(Ω)
, we can estimate

the last term in (1.96) as follows

c
∥

∥|∇µ|2
∥

∥

2

L1(Ω)
log
(

e+
∥

∥|∇µ|2
∥

∥

L2(Ω)

)

≤c
∥

∥|∇µ|2
∥

∥

2

L1(Ω)

(

log
(

c
∥

∥|∇µ|2
∥

∥

2

L1(Ω)

)

− 1
)

+ e+
∥

∥|∇µ|2
∥

∥

L2(Ω)

≤c+ c∥∇µ∥4 log
(

e+ ∥∇µ∥2
)

+ ∥∇µ∥2L4(Ω), (1.97)

where we used the fact that
∥

∥|∇µ|2
∥

∥

2

L1(Ω)
= ∥∇µ∥4 and elementary inequalities concerning

logarithms.

The first non-constant term on the right hand side of (1.97) can be estimated by using

(1.85) as follows

c∥∇µ∥4 log
(

e+ ∥∇µ∥2
)

≤c
(

1 + ∥φt∥4V ′

)

log
(

e+ c
(

1 + ∥φt∥2V ′

)

)

≤c(1 + ∥φt∥2V ′)2 log
(

e+ ∥φt∥2V ′

)

(1.98)

while the second one can be controlled by using equation (1.1) and inequalities (A.1a)

and (A.3) as

∥∇µ∥2L4(Ω) ≤c∥∇µ∥∥µ∥H2(Ω) ≤ c∥∇µ∥
(

∥µ∥V + ∥∆µ∥
)

≤c∥µ∥2V + c∥φt∥2 ≤ c∥µ∥2V +
1

8
∥∇φt∥2 + c∥φt∥2V ′ . (1.99)

Then, setting M(t) := c∥µ∥2V , plugging (1.97)-(1.99) in (1.96) and in turn the result
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into (1.95) we finally deduce

1

2

d

dt
∥φt∥2V ′ + 6

d

dt

∫

Ω

J (θ) +
7

16
∥∇φt∥2 +

1

2

∫

Ω

κ2(θ)|∇θ|2

≤c(e+ ∥φt∥2V ′)2[1 + log
(

e+ ∥φt∥2V ′

)

] +M(t) (1.100)

≤c(e+ ∥φt∥2V ′)2 log
(

e+ ∥φt∥2V ′

)

+M(t).

Let us now set

Φ(t) := e+
1

2
∥φt∥2V ′ , Θ(t) := 6

∫

Ω

J (θ(t)). (1.101)

Hence, (1.100) reads

Φ′(t) + Θ′(t) ≤ c [Φ(t)]2 log(Φ(t)) +M(t). (1.102)

We define Z(t) := e+Φ(t) + Θ(t), then we divide both hand sides of (1.102) by Z logZ,

d

dt
log logZ(t) =

Z ′(t)

Z(t) logZ(t)

≤M(t)
Φ(t)

(e+ Φ(t) + Θ(t)) log(e+ Φ(t) + Θ(t))
+

M(t)

Z(t) logZ(t)

+ cΦ
Φ log(e+ Φ(t))

(e+ Φ(t) + Θ(t)) log(e+ Φ(t) + Θ(t))

≤M(t) +
M(t)

Z(t) logZ(t)
+ cΦ(t).

Thus we get

d

dt
log logZ(t) =

Z ′(t)

Z(t) logZ(t)
≤ Φ(t) +

M(t)

Z(t) logZ(t)
, (1.103)

where we recall that ∥Φ∥L1(0,T )+∥M(t)∥L1(0,T ) ≤ c in view of the a-priori estimates (1.82)

and (1.84). Moreover, working in a similar way as in [47] in order to estimate the initial

condition, we have Z(0) <∞, hence we can integrate (1.103) over (0, T ) to obtain

∥Z∥L∞(0,T ) ≤ c. (1.104)

Consequences

From (1.92), (1.104) reads

∥φt∥L∞(0,T ;V ′) ≤ c, (1.105)

∥θ∥L∞(0,T ;Lq+2(Ω)) ≤ c. (1.106)
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Combining (1.1) with (1.81), we get

∥µ∥L∞(0,T ;V ) ≤ c. (1.107)

According to the above relations and using (1.59), (1.73), after integrating (1.100) over

(0, T ), we infer

∥φt∥L2(0,T ;V ) ≤ c, (1.108)

∥K(θ)∥L2(0,T ;V ) ≤ c. (1.109)

Now we read (1.1) as a time-dependent family of elliptic problems. Combining standard

regularity results with (1.108), we have

∥µ∥L2(0,T ;H3(Ω)) ≤ c. (1.110)

We conclude by providing some estimates for the terms µt and φt. We (formally) differ-

entiate (1.2) with respect to time and use (1.3), therefore we infer

µt = −∆φt + F ′′(φ)φt + θφt −∆K(θ)− |∇µ|2. (1.111)

We now test the above relation by nonzero v ∈ V . Recalling the boundary conditions, we

obtain

⟨µt, v⟩ =
∫

Ω

∇(φt +K(θ)) · ∇v +
〈

F ′′(φ)φt + θφt − |∇µ|2, v
〉

≤∥v∥V
(

∥

∥∇(φt +K(θ))
∥

∥+
∥

∥F ′′(φ)φt + θφt − |∇µ|2
∥

∥

L3/2(Ω)

)

. (1.112)

Then, dividing by ∥v∥V , passing to the supremum with respect to v ∈ V \ {0}, squaring,
and integrating in time, we get

∥µ∥H1(0,T ;V ′) ≤ c. (1.113)

Indeed, according to (1.108)-(1.109), it holds

∥

∥∇(φt +K(θ))
∥

∥

L2(0,T ;H)
≤ c. (1.114)

and moreover it holds

∥

∥F ′′(φ)φt + θφt − |∇µ|2
∥

∥

L2(0,T ;L3/2(Ω))
≤ c (1.115)

where the exponent 3/2 is chosen just for simplicity (any number strictly greater than 1

would be allowed, indeed).
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This last inequality can be proved considering each term in the norm separately. We

know that F ′′(φ) grows as a power of φ, whose regularity is given by (1.70) and (1.86).

Hence, integrating in time and exploiting (1.70) and (1.108) we infer

∥F ′′(φ)φt∥L2(0,T ;L3/2(Ω)) ≤ c.

On the other hand, integrating in time, from (1.106) and (1.108), we obtain

∥θφt∥L2(0,T ;L3/2(Ω)) ≤ c.

For the last term, integrating once more in time and taking advantage of (1.110) we get

∥

∥|∇µ|2
∥

∥

L2(0,T ;L3/2(Ω))
≤ c.

Combining the previous bounds we eventually gain (1.115).

Eventually, testing (1.3) by a nonzero v ∈ V and proceeding similarly as above, it follows

∥θ∥H1(0,T ;V ′) ≤ c.

1.4.3 Further regularity

Thanks to the estimates obtained in the previous section, we are now able to prove the

regularity presented in Theorem 1.4.1.

First of all we focus our attention on the estimate

θ ∈ L∞(0, T ;L∞(Ω)) (1.116)

obtained by a Moser’s iteration technique, as in [87].

We start multiplying (1.3) by θp, where p is a positive exponent which will be specified

later on, and then we integrate over Ω. Therefore, we have, in view of (1.58),

1

p+ 1

d

dt

∫

Ω

θp+1 +
4p

(p+ 1)2

∫

Ω

∣

∣∇θ p+1
2

∣

∣

2
+

4p

(p+ q + 1)2

∫

Ω

∣

∣∇θ p+q+1
2

∣

∣

2

≤
∫

Ω

|∆µ|θp+1 +

∫

Ω

|∇µ|2θp. (1.117)

This entails, using (A.2),

d

dt

∫

Ω

θp+1 +
4p

cp(p+ 1)

∥

∥

∥
θ

p+1
2

∥

∥

∥

2

V

≤ 4p

(p+ 1)
∥θ∥p+1

L1(Ω) + (p+ 1)

∫

Ω

|∆µ|θp+1 + (p+ 1)

∫

Ω

|∇µ|2θp
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≤(p+ 1)

∫

Ω

(|∆µ|+ 1)θp+1 + (p+ 1)

∫

Ω

|∇µ|2θp =: I1 + I2, (1.118)

where we observed that 4p
p+1

≤ p+1 and where cp denotes the Poincaré constant in (A.2).

Now,

I1 :=(p+ 1)

∫

Ω

(|∆µ|+ 1)θp+1 = (p+ 1)

∫

Ω

θ
(p+1)

2 (|∆µ|+ 1)θ
(p+1)

2

≤(p+ 1)
∥

∥

∥
θ

p+1
2

∥

∥

∥

V

∥

∥

∥
θ

(p+1)
2 (|∆µ|+ 1)

∥

∥

∥

V ′

≤ 2p

cp(p+ 1)

∥

∥

∥θ
p+1
2

∥

∥

∥

2

V
+ C(p+ 1)2

∥

∥

∥θ
p+1
2 (|∆µ|+ 1)

∥

∥

∥

2

L6/5(Ω)

where the positive constant C is allowed to vary from line to line.

At this point we use Hölder’s inequality with exponents 5 and 5/4, therefore we get

∥

∥

∥θ
p+1
2 (|∆µ|+ 1)

∥

∥

∥

2

L6/5(Ω)
=

(∫

Ω

θ
3
5
(p+1)(|∆µ|+ 1)

6
5

) 5
3

≤∥|∆µ|+ 1∥2L6(Ω)

(∫

Ω

θ
3
4
(p+1)

) 4
3

≤c(1 + ∥µ∥2H3(Ω))

(∫

Ω

θ
3
4
(p+1)

) 4
3

.

Eventually we deduce

I1 ≤
2p

cp(p+ 1)

∥

∥

∥
θ

p+1
2

∥

∥

∥

2

V
+ C(p+ 1)2(1 + ∥µ∥2H3(Ω))

(∫

Ω

θ
3
4
(p+1)

) 4
3

, (1.119)

On the other hand, observing that θp ≤ θp+1 + 1 and recalling Sobolev’s embedding

theorem, thanks to (1.107) we are led to

I2 :=(p+ 1)

∫

Ω

|∇µ|2θp ≤ (p+ 1)

∫

Ω

|∇µ|2θp+1 + (p+ 1) ∥∇µ∥2L2(Ω)

≤c(p+ 1)
∥

∥

∥
θ

p+1
2

∥

∥

∥

V

∥

∥

∥|∇µ|2θ p+1
2

∥

∥

∥

V ′
+ C(p+ 1)

≤ 2p

cp(p+ 1)

∥

∥

∥
θ

p+1
2

∥

∥

∥

2

V
+ C(p+ 1)2

∥

∥

∥
|∇µ|2θ p+1

2

∥

∥

∥

2

L5/4(Ω)
+ C(p+ 1).

Now, applying Hölder’s inequality with exponents 6/5, 6 and interpolation inequality

(A.1e) we obtain

∥

∥

∥
|∇µ|2θ p+1

2

∥

∥

∥

2

L5/4(Ω)
=

(∫

Ω

θ
5
8
(p+1)|∇µ| 52

) 8
5

≤ ∥∇µ∥4L15(Ω)

(∫

Ω

θ
3
4
(p+1)

) 4
3
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≤C ∥µ∥2H3(Ω)

(∫

Ω

θ
3
4
(p+1)

) 4
3

.

Therefore, we have the following inequality for I2:

I2 ≤
2p

cp(p+ 1)

∥

∥

∥
θ

p+1
2

∥

∥

∥

2

V
+ C(p+ 1)2 ∥µ∥2H3(Ω)

(∫

Ω

θ
3
4
(p+1)

) 4
3

+ C(p+ 1). (1.120)

Using (1.118), (1.119) and (1.120) yields

d

dt

∫

Ω

θp+1 ≤ C(p+ 1)2
(

1 + ∥µ∥2H3(Ω)

)

(∫

Ω

θ
3
4
(p+1)

) 4
3

+ C(p+ 1),

then, by a further integration over (0, t), t ∈ (0, T ],

∫

Ω

θp+1(t) ≤ C (p+ 1)2

(

sup
[0,T ]

(∫

Ω

θ
3
4
(p+1)

) 4
3

+Kp,T

)

, (1.121)

where we took advantage of (1.110) and where with Kp,T we denote a term cointaining

the information on the initial datum θp+1(0) which possibly depends on T . This term

depends exponentially on p, but this difficulty is later overcome taking the (1/p)-power.

In order to apply Moser’s iteration, we consider the sequence (pk)k of real numbers defined

by

p0 = 3, pk+1 =
4

3
pk, k ∈ N.

Let us take p = pk+1 − 1 in (1.121). We then have

∫

Ω

θpk+1(t) ≤ C p2k+1

(

sup
[0,T ]

(∫

Ω

θpk
) 4

3

+Kp,T

)

,

hence

sup
[0,T ]

∫

Ω

θpk+1 ≤ C p2k+1 max

{

sup
[0,T ]

(∫

Ω

θpk
) 4

3

, Kp,T

}

.

Thanks to (1.106), we already have θ ∈ L∞(0, T ;Lq+2(Ω)), where q was introduced in

(1.58). Therefore, we can apply the Moser lemma and get

∀k ∈ N, sup
[0,T ]

∥θ∥Lpk (Ω) ≤ C.

Taking the limit as k goes to infinity leads to (1.116). This also immediately entails that

K(θ) ∈ L∞(0, T ;L∞(Ω)).

We are now able to prove that θ ∈ L∞(0, T ;V ). In order to do so, we formally multiply

30



CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

(1.3) by ∂tK(θ) = κ(θ)θt. We obtain

∫

Ω

∣

∣

∣

√

κ(θ)θt

∣

∣

∣

2

+
1

2

d

dt

∫

Ω

|∇K(θ)|2

=−
∫

Ω

θ∆µκ(θ)θt +

∫

Ω

|∇µ|2κ(θ)θt =
∫

Ω

κ(θ)θt[|∇µ|2 − θ∆µ] dx

Owing to (1.116), (1.107) and (A.1a), the right hand side can be controlled as

∫

Ω

κ(θ)θt[|∇µ|2 − θ∆µ] dx

=

∫

Ω

√

κ(θ)
√

κ(θ)θt
(

θ∆µ+ |∇µ|2
)

≤∥
√

κ(θ)∥L∞(Ω)∥
√

κ(θ)θt∥
(

∥θ∥L∞(Ω)∥∆µ∥+ ∥∇µ∥2L4(Ω)

)

≤c∥
√

κ(θ)θt∥∥µ∥H2(Ω) ≤
1

2
∥
√

κ(θ)θt∥2 + c∥µ∥2H2(Ω),

where in the last row we controlled ∥∇µ∥2L4(Ω) by (A.1a) and (1.107). Then, on account

of (1.110), we get

θ ∈ H1(0, T ;L2(Ω)) K(θ) ∈ L∞(0, T ;V )

and this last estimate entails the desired result θ ∈ L∞(0, T ;V ).

Finally, by reading (1.2) as

−∆φ+ F ′(φ) = θ + µ ∈ L∞(0, T ;V ),

we deduce the thesis using (1.65), that is φ ∈ L∞(0, T ;H3(Ω)).

1.4.4 Uniqueness

We now address the uniqueness of solution in Theorem 1.4.1. Let z0 ∈ V and let

(φi, µi, θi), i = 1, 2, be a couple of (stable) solutions both emanating from z0 over the

interval (0, T ). Taking (φ, µ, θ) := (φ1 − φ2, µ1 − µ2, θ1 − θ2), we can readily obtain

φt = ∆µ, (1.122)

µ = −∆φ+ F ′(φ1)− F ′(φ2)− θ, (1.123)

θt + θ1∆µ+ θ∆µ2 −∆[K(θ1)−K(θ2)] = (∇µ1 +∇µ2) · ∇µ (1.124)

coupled with null initial data. This guarantees e.g. φΩ(t) = 0 ∀t ≥ 0. By the regularity

(1.65)-(1.67), we observe

∥φi(t)∥H3(Ω) + ∥µi(t)∥V + ∥θi(t)∥V ≤ c, t ∈ (0, T )
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∥µi∥L2(0,T ;H3(Ω)) + ∥θi∥L∞(0,T ;L∞(Ω)) ≤ c (1.125)

for some positive constant c depending on T and on the initial data. These properties

will be frequently used in the following.

The proof we show is based on the application of Gronwall’s Lemma to the functional

Z(t) := ε ∥∇φ(t)∥2 − 2ε ⟨θ(t)− θΩ(t), φ(t)⟩+ ∥θ(t)− θΩ(t)∥2V ′ + θΩ(t)
2, (1.126)

which is zero for t = 0. We notice that for ε > 0 small enough,

Z(t) ≥ cε(∥∇φ(t)∥2 + ∥θ(t)− θΩ(t)∥2V ′ + θΩ(t)
2). (1.127)

Therefore we need to estimate the terms d
dt
∥∇φ(t)∥2 , d

dt
∥θ(t)− θΩ(t)∥2V ′ and d

dt
θΩ(t)

2.

The first one will be addressed in Section 1.4.4, the second in Section 1.4.4 and the third

in Section 1.4.4.

Preliminary estimates

First of all we control ∆φ by testing (1.123) by −∆φ:

∥∆φ∥2 =− ⟨µ− µΩ,∆φ⟩ − ⟨θ − θΩ,∆φ⟩+ ⟨F ′(φ1)− F ′(φ2),∆φ⟩
≤c ∥∆φ∥ (∥∇µ∥+ ∥θ − θΩ∥+ ∥F ′(φ1)− F ′(φ2)∥)

Exploiting Hölder’s inequality with exponents 3 and 3/2 and recalling (1.57), (1.125), we

obtain

∥F ′(φ1)− F ′(φ2)∥2 ≤c
〈

(1 + |φ1|2pF + |φ2|2pF ), φ2
〉

≤c ∥φ∥2L3(Ω) ≤ c ∥φ∥2V .

Eventually, according to (1.85), we conclude that

∥∆φ∥2 ≤ c(∥∇µ∥2 + ∥θ − θΩ∥2 + ∥φ∥2V ) ≤ c(∥φt∥2V ′ + ∥θ − θΩ∥2 + ∥φ∥2V ). (1.128)

Difference in order parameters for Gronwall’s argument (1.126)

Testing (1.122) by J−1φt, we get

∥φt∥2V ′ + ⟨µ, φt⟩ = 0,

where, multiplying (1.123) by φt, we can write the second term as
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⟨µ, φt⟩ =
1

2

d

dt
(∥∇φ∥2 − 2 ⟨θ − θΩ, φ⟩) + ⟨F ′(φ1)− F ′(φ2), φt⟩+ ⟨θt, φ⟩ .

Combining the previous relations we infer

∥φt∥2V ′ +
1

2

d

dt
(∥∇φ∥2 − 2 ⟨θ − θΩ, φ⟩)

= −⟨F ′(φ1)− F ′(φ2), φt⟩ − ⟨θt, φ⟩ . (1.129)

We take care of second term on the right hand side by multiplying (1.124) by φ:

⟨θt, φ⟩ = ⟨K(θ1)−K(θ2),∆φ⟩+ ⟨∇µ,∇θ1φ⟩+ ⟨∇µ, θ1∇φ⟩
− ⟨θ∆µ2, φ⟩+ ⟨(∇µ1 +∇µ2) · ∇µ, φ⟩ .

We notice that a direct estimate of the first term in the right hand side could have been

provided due to (1.128) and the regularity achieved on K(θ). However in this way, it

turns to be difficult to reabsorb the term C∥φt∥V ′ in the left hand side. Therefore the

gain of regularity in θ apparently does not simplify this part of the proof and we need to

proceed as in [39].

We notice that, exploiting (1.123) two times, the first term on the right hand side reads

⟨K(θ1)−K(θ2),∆φ⟩
= ⟨K(θ1)−K(θ2),−µ+ µΩ + F ′(φ1)− F ′(φ2)− θ + θΩ⟩

− (µΩ + θΩ)

∫

Ω

[K(θ1)−K(θ2)]

= ⟨K(θ1)−K(θ2),−µ+ µΩ + F ′(φ1)− F ′(φ2)− (F ′(φ1)− F ′(φ2))Ω⟩
− ⟨K(θ1)−K(θ2), θ − θΩ⟩ .

Therefore we have,

⟨θt, φ⟩
= ⟨K(θ1)−K(θ2),−µ+ µΩ + F ′(φ1)− F ′(φ2)− (F ′(φ1)− F ′(φ2))Ω⟩
− ⟨K(θ1)−K(θ2), θ − θΩ⟩+ ⟨∇µ,∇θ1φ⟩+ ⟨∇µ, θ1∇φ⟩ − ⟨θ∆µ2, φ⟩
+ ⟨(∇µ1 +∇µ2) · ∇µ, φ⟩ .

Owing (1.129) and combining the above relations, we obtain

∥φt∥2V ′ +
1

2

d

dt

(

∥∇φ∥2 − 2 ⟨θ − θΩ, φ⟩
)

− ⟨K(θ1)−K(θ2), θ − θΩ⟩
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=− ⟨F ′(φ1)− F ′(φ2), φt⟩
− ⟨K(θ1)−K(θ2),−µ+ µΩ + F ′(φ1)− F ′(φ2)− (F ′(φ1)− F ′(φ2))Ω⟩
− ⟨∇µ,∇θ1φ+ θ1∇φ⟩+ ⟨θ∆µ2, φ⟩
− ⟨(∇µ1 +∇µ2) · ∇µ, φ⟩ =: I3 + I4 + I5 + I6 + I7. (1.130)

First of all using (1.57), we have

∥∇(F ′(φ1)− F ′(φ2))∥ (1.131)

≤c
∥

∥|∇φ|(1 + |φpF1 |) + |φ|(1 + |φ1|pF−1 + |φ2|pF−1)|∇φ2|
∥

∥ ≤ c ∥φ∥V .

Therefore, as ⟨φt, 1⟩ = 0, we deduce

I3 :=− ⟨F ′(φ1)− F ′(φ2), φt⟩
≤C ∥∇(F ′(φ1)− F ′(φ2))∥ ∥φt∥V ′ ≤ c ∥φ∥V ∥φt∥V ′ .

On the other hand, by (1.116),

∥K(θ1)−K(θ2)∥3/2 ≤ c(∥θ − θΩ∥+ |θΩ|),

and, according to (1.131), it follows

I4 :=− ⟨K(θ1)−K(θ2), µ− µΩ − F ′(φ1)− F ′(φ2)− (F ′(φ1)− F ′(φ2))Ω⟩
≤ ∥K(θ1)−K(θ2)∥L3/2(Ω) (∥µ− µΩ∥L3(Ω)

+ ∥F ′(φ1)− F ′(φ2)− (F ′(φ1)− F ′(φ2))Ω∥L3(Ω))

≤c(∥θ − θΩ∥+ |θΩ|)(∥∇µ∥+ ∥φ∥V ).

Owing to (A.1a), (A.1b) and (A.1f)

I5 :=− ⟨∇µ,∇θ1φ+ θ1∇φ⟩
≤c ∥∇µ∥ (∥∇θ1∥ ∥φ∥L∞(Ω) + ∥∇φ∥L4(Ω) ∥θ1∥L4(Ω))

≤c ∥∇µ∥
(

∥φ∥1/2 ∥φ∥1/2H2(Ω) + ∥∇φ∥1/2 ∥φ∥1/2H2(Ω)

)

≤c ∥∇µ∥ ∥∇φ∥1/2 ∥φ∥1/2H2(Ω) .

Now, using (A.1f) and the injection V ⊂ Lp(Ω), for p ≥ 1,

I6 := ⟨θ∆µ2, φ⟩ = θΩ ⟨∆µ2, φ⟩+ ⟨(θ − θΩ)∆µ2, φ⟩
≤c|θΩ| ∥∇µ2∥ ∥∇φ∥+ c ∥θ − θΩ∥ ∥∆µ2∥L4(Ω) ∥φ∥L4(Ω)
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≤c|θΩ| ∥∇φ∥+ c ∥θ − θΩ∥ ∥µ2∥H3(Ω) ∥∇φ∥ .

Finally combining the previous strategy with (A.1a), we get

I7 :=− ⟨(∇µ1 +∇µ2) · ∇µ, φ⟩ ≤ ∥∇µ1 +∇µ2∥L4(Ω) ∥∇µ∥ ∥φ∥L4(Ω)

≤
(

∥µ1∥1/2H2(Ω) + ∥µ2∥1/2H2(Ω)

)

∥∇µ∥ ∥∇φ∥ .

Eventually, the above computations and Young’s inequality yield

I3 + I4 + I5 + I6 + I7

≤c ∥φt∥V ′ ∥φ∥V + c(∥θ − θΩ∥+ |θΩ|)(1 + ∥µ2∥H3(Ω)) ∥φ∥V
+ c ∥∇µ∥ ∥∇φ∥1/2 ∥φ∥1/2H2(Ω) + c(∥θ − θΩ∥+ |θΩ|) ∥∇µ∥

+ c
(

1 + ∥µ1∥1/2H2(Ω) + ∥µ2∥1/2H2(Ω)

)

∥∇µ∥ ∥∇φ∥

≤1

2
∥φt∥2V ′ +

α

2
∥∇µ∥2 + c

α
∥θ − θΩ∥2 +

α

2
∥∆φ∥2 + g(t)(∥φ∥2V + θ2Ω)

≤
(

1

2
+ cα

)

∥φt∥2V ′ + c

(

1

α
+ α

)

∥θ − θΩ∥2 + g(t)(∥φ∥2V + θ2Ω).

Where in the last passage we took advantage of (1.128) to estimate the term depending

on ∆φ. Moreover, we have defined

g(t) := c[1 + ∥µ1∥2H3(Ω) + ∥µ2∥2H3(Ω)], (1.132)

with (large) constant c > 0 also depending on the choice of the small constant α > 0

Combining the previous estimates with (1.130), we finally get

∥φt∥2V ′ +
d

dt
(∥∇φ∥2 − 2 ⟨θ − θΩ, φ⟩)− 2 ⟨K(θ1)−K(θ2), θ − θΩ⟩

≤
(

1

2
+ cα

)

∥φt∥V ′ + c

(

1

α
+ α

)

∥θ − θΩ∥2 + g(t)(∥φ∥2V + θ2Ω). (1.133)

As mentioned before, the aim of these calculations is to apply Gronwall’s Lemma to a

specific functional already introduced. In order to do that, we are trying to obtain the

derivative of such functional on the left-hand side and the functional itself on the right.

Thus all terms arising from that must be either integrable over (0, T ) (which is the g(t))

or they must be balanced with some term on the left side as ∥φt∥2V ′ or ∥θ − θ2Ω∥ (which

will arise from ⟨K(θ1)−K(θ2), θ − θΩ⟩).
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Difference of temperatures for Gronwall’s argument (1.126).

We test (1.124) by J−1(θ − θΩ) and integrate by parts, therefore we obtain

1

2

d

dt
∥θ − θΩ∥2V ′ + ⟨K(θ1)−K(θ2), θ − θΩ⟩

=
〈

∇θ1 · ∇µ, J−1(θ − θΩ)
〉

+
〈

θ1∇µ,∇J−1(θ − θΩ)
〉

−
〈

(θ − θΩ)∆µ2, J
−1(θ − θΩ)

〉

+ θΩ ⟨µ2 − (µ2)Ω, θ − θΩ⟩
+
〈

(∇µ1 +∇µ2) · ∇µ, J−1(θ − θΩ)
〉

=: I8 + I9 + I10.

First of all we have

I8 :=
〈

θ1∇µ,∇J−1(θ − θΩ)
〉

≤c ∥∇µ∥
∥

∥∇J−1(θ − θΩ)
∥

∥ ≤ c ∥∇µ∥ ∥θ − θΩ∥V ′ .

From (A.1b),
∥

∥J−1(θ − θΩ)
∥

∥

L∞(Ω)
≤ c ∥θ − θΩ∥1/2V ′ ∥θ − θΩ∥1/2 .

Thus, we infer

I9 :=−
〈

∇θ1 · ∇µ− (θ − θΩ)∆µ2, J
−1(θ − θΩ)

〉

+
〈

(∇µ1 +∇µ2) · ∇µ, J−1(θ − θΩ)
〉

≤
∥

∥J−1(θ − θΩ)
∥

∥

L∞ [∥θ1∥V ∥∇µ∥
+ ∥∆µ2∥ ∥θ − θΩ∥+ (∥∇µ1∥+ ∥∇µ2∥) ∥∇µ∥]

≤c ∥θ − θΩ∥1/2V ′ ∥θ − θΩ∥1/2 ∥∇µ∥+ c ∥µ2∥H2(Ω) ∥θ − θΩ∥1/2V ′ ∥θ − θΩ∥3/2 .

Eventually,

I10 :=θΩ ⟨µ2 − (µ2)Ω, θ − θΩ⟩
≤c|θΩ| ∥µ2 − (µ2)Ω∥V ∥θ − θΩ∥V ′ ≤ c|θΩ| ∥θ − θΩ∥V ′ .

Combining the estimates of I8, I9, I10 and exploiting Young’s inequality, we finally have

1

2

d

dt
∥θ − θΩ∥2V ′ + ⟨K(θ1)−K(θ2), θ − θΩ⟩ ≤ δε ∥θ − θΩ∥2 (1.134)

+αε ∥∇µ∥2 + C∗(1 + ∥µ2∥2H2(Ω)) ∥θ − θΩ∥2V ′ + c|θΩ|2,

with the (large) constant C∗ depending on the small constants α, δ, ε which will be specified

at the end.
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Difference of temperatures’ means for Gronwall’s argument (1.126)

Integrating (1.124) over Ω we obtain

|Ω|(θΩ)t = ⟨∇θ1,∇µ⟩ − ⟨θ − θΩ,∆µ2⟩+ ⟨(∇µ1 +∇µ2),∇µ⟩ , (1.135)

and by (1.125) it yields

|(θΩ)t| ≤ c(∥∇µ∥+ ∥µ2∥H3(Ω) ∥θ − θΩ∥V ′).

Moreover, multiplying (1.135) by θΩ we have, for (small) α > 0 we will choose later and

corresponding (large) c > 0,

1

2

d

dt
θ2Ω ≤c|θΩ|(∥∇µ∥+ ∥µ2∥H3(Ω) ∥θ − θΩ∥2V ′) (1.136)

≤αε ∥∇µ∥2 + c(θ2Ω + ∥µ2∥2H3(Ω) ∥θ − θΩ∥2V ′). (1.137)

Conclusion

We recall the definition of the functional we want to use

Z(t) := ε ∥∇φ∥2 − 2ε ⟨θ − θΩ, φ⟩+ ∥θ − θΩ∥2V ′ + θ2Ω,

Summing (1.134), (1.136) and ε
2
times (1.133), we obtain

1

2

d

dt
Z + (1− ε) ⟨K(θ1)−K(θ2), θ − θΩ⟩+

ε

2
∥φt∥2V ′

≤ε(c+ cα2 + δ) ∥θ − θΩ∥2 + 2αε ∥∇µ∥2 + g(t)Z,

where g was introduced in (1.132).

Next, we take care of the second term in the left hand side. From (1.59), we obtain

⟨K(θ1)−K(θ2), θ − θΩ⟩ = ∥θ − θΩ∥2 +
1

q + 1
⟨l(θ1)− l(θ2), θ − θΩ⟩

where l(θi) = θq+1
i , i = 1, 2. Now

l(θ1)− l(θ2) =

∫ 1

0

d

ds
l(sθ1 + (1− s)θ2)ds

=

∫ 1

0

l′(sθ1 + (1− s)θ2)(θ1 − θ2)ds = ω(θ1, θ2)θ,
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where we set

ω(θ1, θ2) :=

∫ 1

0

l′(sθ1 + (1− s)θ2)ds.

We observe that it holds ω(θ1, θ2) ≥ 0 almost everywhere. Moreover, we notice that

(1.116) implies,

|ω(θ1, θ2)| ≤ c (1.138)

Therefore we infer

⟨K(θ1)−K(θ2), θ − θΩ⟩ = ∥θ − θΩ∥2 +
1

1 + q
⟨l(θ1)− l(θ2), θ − θΩ⟩

= ∥θ − θΩ∥2 +
1

q + 1

∫

Ω

ω(θ1, θ2)θ(θ − θΩ)

= ∥θ − θΩ∥2 +
1

q + 1

∫

Ω

ω(θ1, θ2)|θ − θΩ|2

+
1

q + 1

∫

Ω

ω(θ1, θ2)θΩ(θ − θΩ)

≥∥θ − θΩ∥2 +
1

q + 1

∫

Ω

ω(θ1, θ2)θΩ(θ − θΩ).

Hence, exploiting (1.138), we get

∣

∣

∣

∣

1

q + 1

∫

Ω

ω(θ1, θ2)θΩ(θ − θΩ)

∣

∣

∣

∣

≤ c|θΩ| ∥θ − θΩ∥ ≤ 1

2
∥θ − θΩ∥2 + cθ2Ω,

and moreover

⟨K(θ1)−K(θ2), θ − θΩ⟩ ≥
1

2
∥θ − θΩ∥2 − cθ2Ω.

Putting everything together we finally have

1

2

d

dt
Z +

1− ε

2
∥θ − θΩ∥2 +

ε

2
∥φt∥2V ′

≤ε(c+ cα2 + δ) ∥θ − θΩ∥2 + 3αε ∥∇µ∥2 + g(t)Z
(1.85)

≤ ε(c+ cα2 + δ) ∥θ − θΩ∥2 + 3αεc ∥φt∥2V ′ + g(t)Z. (1.139)

The constant c on the right hand side of (1.139) only depends on the regularity proper-

ties of the solutions collected in (1.125). In particular, it is independent of the parameters

α, δ, ε. Therefore, chosing α > 0 small enough, the second term on the right hand side

of (1.139) can be absorbed the corresponding quantities in the left hand side. Moreover,

taking ε sufficiently small (it might depend on other parameters), the first term on the

right hand side can be absorbed, too. As a matter of fact, we are able to semplify (1.139)
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as follows
d

dt
Z + κ0(∥θ − θΩ∥2 + ∥φt∥2V ′) ≤ g(t)Z,

where κ0 > 0 and g was defined in (1.132), hence, exploiting (1.125), it is summable over

the interval (0, T ). Since Z(0) = 0, then by Gronwall’s Lemma and (1.127) we eventually

see that Z is identically 0 over (0, T ), which gives us the assert.
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Chapter 2

Non-isothermal Cahn-Hilliard model

for tumor growth

The study of tumor growth processes has become of great interest also for mathemati-

cians in recent years [5, 9, 21, 28, 92, 104, 118]. Indeed, mathematical models might be

able to give further insights in tumor growth behaviour. In particular, the framework of

diffuse interface modeling with Cahn-Hilliard equations [19] has received increasing at-

tention. In this context, the tumor is seen as an expanding mass surrounded by healthy

tissues. Its evolution is assumed to be governed by mechanisms such as proliferation of

cells via nutrient consumption, apoptosis [56, 78, 102] and, in more complex models like

[58, 59, 60, 72], also chemotaxis and active transport of specific chemical species effects.

Moreover it is possible to include the effects of fluid flow into the evolution of the tumor,

which brings to the so-called Cahn-Hilliard-Darcy models (see [60, 78]). However, up to

our knowledge it seems that even if the effects of variations of temperature have been stud-

ied for Cahn-Hilliard equations [39, 46, 77], they have been neglected so far in the analysis

of tumor growth. From the medical point of view, the effects of temperature on tumor

growth have not been completely understood yet, although they have been investigated

since the very beginning of the 20th century [110]. The general tendency of the scientific

community seems to support the thesis that hyperthermia can lead to partial or complete

destruction of tumor cells [15, 98, 109, 115]. In fact, it has also been observed that low

ambient temperature influences the production of particular nutrients for the tumor [88].

Nevertheless, we focus here on the case which does not take into account the production

of a nutrient due to temperature. In this work we introduce a new diffuse interface model

for tumor growth, taking into account proliferation of cells, nutrient consumption and

apoptosis and moreover temperature effects. Our aim consists in proving an existence

result for weak entropy solutions (cnfr. Definition 2.1) to our model. We remark that

a rigorous mathematical theory of well-posedness results has been addressed in multiple
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works, such as [56, 58, 102]. From the biological point of view, we assume that tumor

cells only die by apoptosis, therefore we do not take into account the possibility of tumor

necrosis (differently e.g. from [59]). We also suppose that the healthy cells surrounding

the tumor do not interact with the tumor itself, neglecting the possible response of the

immune system.

According to these considerations, we will derive the following PDE system, describing

the behaviour of a two-component mixture consisting of healthy cells and tumor cells

φt = ∆µ+ (Pσ −A)h(φ) (2.1)

µ = −ε∆φ+
1

ε
F ′(φ)− θ − χφσ (2.2)

θt + θφt − div (κ(θ)∇θ) = |∇µ|2 (2.3)

σt = ∆σ − Cσh(φ) + B(σB − σ). (2.4)

We carry out our analysis in Ω× (0,∞), where Ω ⊂ R
3 is a smooth domain. According to

the derivation of the model shown in Section 2.1, we suppose that the system is isolated

from the exterior. This condition translates in no-flux boundary conditions (i.e. homoge-

neous Neumann) for all the unknowns.

The evolution of the tumor is described by the order parameter φ which represents the lo-

cal concentration of tumor cells, φ ∈ [−1, 1], with {φ = 1} representing the tumor phase

and {φ = −1} the healthy one. Moreover µ denotes the chemical potential of phase

transition from healthy to tumor cells, θ is the absolute temperature, κ(θ) represents the

heat conductivity and ε is a small parameter related to the thickness of interfacial layers.

We denote by σ the concentration of a nutrient consumed (only) by the tumor cells (e.g.

oxygen and glucose). The parameter χφ ≥ 0 is linked to transport mechanisms such as

chemotaxis and active uptake. Although we will show in Section 2.1 how this parameter

is included in the model, for sake of simplicity we will neglect it throughout the math-

ematical analysis, with the aim of including it in future works. The positive constant

parameters P ,A, C and B indicate respectively the tumor proliferation rate, apoptosis

rate, nutrient consuption rate and nutrient supply rate. The function h is chosen as

monotone increasing, nonnegative in [−1, 1] and such that h(−1) = 0 and h(1) = 1. The

tumor growth is thus described by the term Pσh(φ), which reasonably increases propor-

tionally to the concentration of tumor cells, while the death of tumor cells is modelled by

the term Ah(φ). Therefore, according to (2.1), if Pσ − A > 0, then the tumor expands

and it happens faster when the concentration of tumor cells is already high. If otherwise

Pσ−A < 0 then the tumor reduces and the tumor cells die faster when the concentration

of tumor cells is large. The term Cσh(φ) represents the consumption of the nutrient by
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the tumor cells. The term B(σ − σB) is due to the fact that we consider here the case

where the tumor has its own vasculature (as in e.g. [16], [102]), where the threshold

σB ∈ (0, 1) is the constant nutrient concentration in the pre-existing vasculature. In par-

ticular, if σB > σ, B(σB − σ) models the supply of nutrient from the blood vessels, on

the other hand if σB < σ, B(σB − σ) represents the transport of nutrient away from the

domain. Eventually, the function F (s) represents a polynomial potential having at least

cubic growth at infinity, whose assumptions will be specified in Section 2.2. A simple

choice might be a double-well potential with equal minima at s = ±1 penalizing the devi-

ation of the length |φ| from its natural value 1. This more general potential allows φ to

take values also outside of the significance interval [−1, 1], therefore we will carry out our

analysis also in the case |φ| > 1 and correspondingly extend function h. We also remark

that although among Cahn-Hilliard literature the singular potentials, such as logarithm

type (see e.g. [20]), are very common, the growth conditions that the problem requires

make them unsuitable for our case, as it will be clear in Section 2.3.1.

In this work we derive a new phase field model according to the laws of thermodynam-

ics describing the tumor growth, published in [75]. The novelty of [75] with respect to the

pre-existing literature is to include possible variations of temperature in the tumor growth

model. The presence of nutrient concentration σ in the system implies that here the spa-

tial mean of φ is not conserved in time (as we can see from equation (2.1)), therefore the

derivation of the model cannot follow the techniques proposed in Section 1.2.1. However,

we are able to gain enough regularity for the quadruple (φ, µ, θ, σ) in order to prove the

existence of weak (entropy) solutions to the initial-boundary value problem associated to

(2.1)–(2.4).

The structure of this Chapter is the following. In Section 2.1 we derive system (2.1)–

(2.4) according to the approach proposed by Gurtin in [69]. Then we proceed with the

mathematical analysis of our problem in the case ε = 1, χφ = 0. In particular, Section

2.3 is devoted to give the setting and to present the main result of this Chapter (which is

Theorem 2.3.1) concerning the existence of weak entropy solutions to our problem. The

proof is carried out in two steps. In Section 2.3.1 we gain a priori bounds for (φ, µ, θ, σ).

In Section 2.3.2 we use the weak sequential stability argument to prove the existence of

weak entropy solutions. Namely, we exploit the a priori bounds obtained for a sequence

of weak entropy solutions together with standard compactness results to pass to the limit.
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2.1 Derivation of the model

We suppose that a two-component mixture consisting of healthy cells and tumor cells

occupies an open spatial domain Ω ⊂ R
3. We denote by φ(x, t) the tumor phase concen-

tration, θ(x, t) is the absolute temperature and σ(x, t) is the concentration of a nutrient

for the tumor cells. According to the Ginzburg-Landau theory for phase transitions, we

postulate the free energy density ψ in the form

ψ =
ε

2
|∇φ|2 + 1

ε
F (φ) + f(θ)− θφ+N(φ, σ). (2.5)

We observe that (2.5) differs from (1.11), because of the presence of the term N . This

latter term describes both the chemical energy of the nutrient and the energy contribu-

tions given by the interactions between the tumor tissues and the nutrient.

One of the main difficulties we have to face in the derivation of our model is that, dif-

ferently from standard Cahn-Hilliard models, such as the one studied in Chapter 1, the

spatial mean of the tumor phase concentration φ is not conserved. Indeed the tumor may

grow or shrink according to the right hand side of (2.1). Because of this issue, we cannot

derive this model according to strategy proposed in Section 1.2.1. Indeed, we follow the

approach presented in Section 1.2.2, proposed by Gurtin in [69], which relies on the bal-

ance law for internal microforces (1.39). The pivotal concepts behind Gurtin’s strategy

are described in Section 1.2.2. However, the main difference between this case and the

one presented in Chapter 1 occurs in the mass balance equation.

Indeed, we are here considering the case where the tumor grows or reduces according to

a source term. Therefore relation (1.40) is not suitable to describe this phenomenon. In

this case the mass balance law thus reads

φt = − div h+m, (2.6)

where h is the mass flux and m is the external mass supply. The derivation procedure

follows the same steps as the one in Section 1.2.2 is based on the first and second laws of

thermodynamics.

Cahn-Hilliard system.

According to [69], we might write the first law in the form

d

dt

∫

R

edx = −
∫

∂R

q · νdη +W(R) +M(R), (2.7)
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that coincides with (1.44), but we recall here for convenience. In particular

W(R) =

∫

∂R

(ζ · ν)∂φ
∂t

dη, (2.8)

M(R) = −
∫

∂R

µh · νdη +
∫

R

µmdx (2.9)

are the rate of working and the rate at which free energy is added to R (assuming no heat

supply) respectively. We remark that (2.9) presents an extra term with respect to (1.43),

given by the external mass supply m. From Green’s formula, we can rewrite (2.7) as

∂e

∂t
= − div q +

∂φ

∂t
div ζ + ζ · ∇∂φ

∂t
− h · ∇µ− µ div h+ µm. (2.10)

Because the control volume R is arbitary, exploiting the mass balance (2.6) and the

microforce balance (1.39), we infer

∂e

∂t
= − div q + (µ− π)

∂φ

∂t
+ ζ · ∇∂φ

∂t
− h∇µ. (2.11)

Since we here consider the free energy density ψ in (2.5) to be possibly dependent also on

the nutrients, the combination of (1.14) and (1.15) leads to

∂e

∂t
=
∂ψ

∂t
+ θ

∂s

∂t
+ s

∂θ

∂t
=
∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

+
∂ψ

∂σ

∂σ

∂t
+ θ

∂s

∂t
, (2.12)

hence

∂ψ

∂t
+ s

∂θ

∂t
=
∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

+
∂ψ

∂σ

∂σ

∂t
. (2.13)

We now impose the validity of the second law of thermodynamics in the form of the

Clausius-Duhem inequality (1.18). We develop the left hand side of (1.18) as follows

θ

(

∂s

∂t
+ divQ

)

(1.14)
=

∂e

∂t
− ∂ψ

∂t
− s

∂θ

∂t
+ θ divQ

(1.13)
=

∂e

∂t
− ∂ψ

∂t
− s

∂θ

∂t
+ div q −Q · ∇θ

(1.45)
= (µ− π)

∂φ

∂t
+ ζ · ∇∂φ

∂t
− h∇µ− ∂ψ

∂t
− s

∂θ

∂t
−Q · ∇θ

(2.13)
=

(

µ− π − ∂ψ

∂φ

)

∂φ

∂t
+

(

ζ − ∂ψ

∂∇φ

)

∂∇φ
∂t

− ∂ψ

∂σ

∂σ

∂t
− h∇µ−Q · ∇θ.

In order to satisfy relation (1.18), we impose

µ− π − ∂ψ

∂φ
= 0, (2.14)
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ζ =
∂ψ

∂∇φ, (2.15)

∂ψ

∂σ
= 0, (2.16)

h∇µ+Q · ∇θ ≤ 0, (2.17)

where in particular in order for (2.17) to hold, we exploited Fourier’s law (1.49). The

combination of (2.5) and (2.15) straightly gives

ζ = ε∇φ, (2.18)

which leads to, according to (2.5), (1.39) and (2.14),

µ = −ε∆φ+
1

ε
F ′(φ)− θ +

∂N

∂φ
. (2.19)

Eventually, inequality (2.17) can be satisfied choosing h = −∇µ, which is a suitable

assumption according to [69]. Therefore equation (2.6) reads

φt = ∆µ+m. (2.20)

Temperature equation.

We start from the internal energy equation (2.11), taking advantage of (2.15) and of the

expression for the chemical potential (2.14), therefore

∂e

∂t
= − div q +

∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

− h∇µ.

Now, exploiting the assumption h = −∇µ and Fourier’s law (1.49), we infer

∂e

∂t
= div (κ(θ)∇θ) + ∂ψ

∂φ

∂φ

∂t
+

∂ψ

∂∇φ
∂∇φ
∂t

+ |∇µ|2

and by identity (2.12), taking into account (2.16),

θ
∂s

∂t
− div (κ(θ)∇θ) = |∇µ|2. (2.21)

From (1.15), we might write

θ
∂s

∂t
= θ(−f ′(θ))t + θφt.

On the other hand, according to the definition of Q, it holds (Q(θ))t = (−f ′(θ))t, with in
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particular (Q(θ))t = Q′(θ)θt. Since we suppose, as in Chapter 1, the specific heat to be

cV = 1, it follows that Q′(θ) = 1. This implies that

θst = θt + θφt.

Thus, equation (2.21) reads

θt + θφt − div (κ(θ)∇θ) = |∇µ|2. (2.22)

We remark that, even though the temperature equation (2.22) reads exactly like (1.54),

the expressions of φt and µ are different.

Nutrient equation.

We postulate the nutrient balance equation in the form

σt = − div J − S, (2.23)

where J is the nutrient flux and S denotes a source/sink term for the nutrient. Choosing

J = −∇σ, equation (2.23) reads

σt = ∆σ − S. (2.24)

2.1.1 Constitutive relations

Owing to [16, 60, 102], we now make the following constitutive assumptions.

• m = (Pσ −A)h(φ),

where h(φ) is a monotone increasing, nonnegative function in [−1, 1] and such that

h(−1) = 0 and h(1) = 1. Hence this relation states that on one hand the tumor

growth is proportional to the nutrient supply in the tumoral region. This assumption

reflects the fact that it often happens that tumors bring mutations which switch off

certain growth inhibiting proteins. Therefore the tumor cells increasing is limited

only by the supply of nutrients, despite of healthy cells where the mitotic cycle

regulates the growth. On the other hand, when we are in the healthy region, this

equation shows that the proliferation rate of the tumor is greater than the one of

healthy cells.

• ∂N

∂φ
= −χφσ, in fact, we take χφ = 0.

Indeed, this equation is due to the mechanism of chemotaxis, which we exclude in

our analysis.
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• S = Cσh(φ)− B(σB − σ).

We here assume that the sink/source of nutrient is regulated by consumption of

nutrients and the term B(σB − σ) which models the fact that we here consider the

case in which the tumor has its own vasculature. In particular the threshold σB

indicates whether the nutrient is supplied to the tumor or transported away.

2.2 Assumptions

In order to carry out a mathematical analysis of our problem, let us introduce some

notation we will use in the sequel. We recall that Ω is a smooth domain of R3 and we

denote by ∂Ω its boundary. For sake of semplicity, let us assume |Ω| = 1. We denote

by (0, T ) an assigned but otherwise arbitrary time interval. We set H := L2(Ω) and

V := H1(Ω) and we will use these symbols also referring to vector valued functions. The

symbol (·, ·) will indicate the standard scalar product in H, while ⟨·, ·⟩ will stand for the

duality between V ′ and V . We denote by ∥ · ∥X the norm in the generic Banach space X.

For brevity we will write ∥ · ∥ instead of ∥ · ∥H . Still for brevity, we omit the variables of

integration. We will specify them when there could be a misinterpretation.

For any function v ∈ V , we define

vΩ :=
1

|Ω|

∫

Ω

v =

∫

Ω

v, (2.25)

where the last equality holds since we assumed |Ω| = 1.

We recall the Poincaré-Wirtinger inequality

∥v − vΩ∥ ≤ cΩ∥∇v∥ ∀v ∈ V (2.26)

and the non-linear Poincaré inequality

∥v p
2∥2V ≤ cp

(

∥v∥pL1(Ω) + ∥∇v p
2∥2
)

, (2.27)

which holds ∀v ∈ L1(Ω) s.t. ∇v p
2 ∈ L2(Ω) and ∀p ∈ [2,∞).

We assume the coefficients P ,A,B and C to be strictly positive and σB ∈ (0, 1). Next,

we suppose that the derivative of potential F ∈ C1
loc(R,R) decomposes as a sum of a

monotone increasing part β and a linear perturbation, namely

F ′(r) = β(r)− λr λ ≥ 0, r ∈ R. (2.28)
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Moreover we normalize β s.t. β(0) = 0 and we require

∃cβ > 0 s.t. |β(r)| ≤ cβ(1 + F (r)) ∀r ∈ R, (2.29)

|β(r)| ≥ k|r| for some k > 0, (2.30)

where (2.29) means that F has at most an exponential growth at infinity, while (2.30)

states that β has superlinear growth. Moreover, we assume potential F to be strictly

positive.

Next, we assume h ∈ C1(R) increasingly monotone s.t.

i) h(−1) = 0, h(r) ≡ 1 ∀r ≥ 1.

ii) ∃ h ≥ 0 and φ ≤ −1 s.t. h(r) ≡ −h ∀r ≤ φ.

Therefore h is globally Lipschitz continuous and there exists a constant c > 0 s.t.

|h(r)|+ |h′(r)| ≤ c ∀r ∈ R. (2.31)

Moreover we assume the thermal conductivity to depend on the absolute temperature θ

as follows

κ(θ) = 1 + θq, q ∈ [2,∞), θ ≥ 0. (2.32)

Eventually, we require the initial data to be such that

φ|t=0 = φ0, φ0 ∈ V, F (φ0) ∈ L1(Ω)

θ|t=0 = θ0, θ0 ∈ L1(Ω), θ0 > 0 a.e. in Ω, log θ0 ∈ L1(Ω)

σ|t=0 = σ0, σ0 ∈ L∞(Ω), 0 ≤ σ0 ≤ 1 a.e. in Ω (2.33)

where the last assumption on σ0 is due to the interpretation of σ as a nutrient concen-

tration. We also recall that we couple our system with homogeneus Neumann boundary

conditions for all the unknowns.

2.3 Existence of solutions

In this section we present the main result of this Chapter, concerning the existence of

solutions for the tumor growth model (2.1)–(2.4) for χφ = 0 and ε = 1. Namely, we work

on system

φt = ∆µ+ (Pσ −A)h(φ) (2.34)

48



CHAPTER 2. AN APPLICATION TO TUMOR GROWTH

µ = −∆φ+ F ′(φ)− θ (2.35)

θt + θφt − div (κ(θ)∇θ) = |∇µ|2 (2.36)

σt = ∆σ − Cσh(φ) + B(σB − σ). (2.37)

We here present what will be called a weak entropy solution, already used for example

in [97], which is in fact weaker than other corresponding notions appearing in related

contexts. This is due to the fact that we do not get enough regularity to pass to the limit

in some non-linear terms in the temperature equation (2.36). In particular, the definition

stated here does not include (a weak formulation of) the conservation of internal energy,

differently from e.g. [14, 46].

Multiplying (2.36) by 1
θ
, we have

(Λ(θ) + φ)t − div

(

κ(θ)∇θ
θ

)

=
κ(θ)

θ2
|∇θ|2 + |∇µ|2

θ
, (2.38)

with

Λ(θ) :=

∫ θ

1

1

s
ds = log θ. (2.39)

We remark that in our case Λ(θ) is a very well-known function, but we stick with this

notation in order to be coherent with the literature [46, 97], where Λ(θ) might be a more

generic function. Testing (2.38) by ξ ∈ C∞([0, T ]×Ω), ξ ≥ 0, ξ(T, ·) = 0 and integrating

by parts we infer

∫ T

0

∫

Ω

(Λ(θ) + φ)ξtdxdt+

∫ T

0

∫

Ω

κ(θ)

θ
∇θ · ∇ξdxdt

= −
∫ T

0

∫

Ω

|∇µ|2
θ

ξdxdt−
∫ T

0

∫

Ω

κ(θ)

θ2
|∇θ|2dxdt−

∫

Ω

(Λ(θ0) + φ0)ξ(·, 0)dx.

Setting δ(θ) :=
∫ θ

1
κ(s)
s
ds = ln θ + 1

q
(θq − 1) according to (2.32), we get

∫ T

0

∫

Ω

(Λ(θ) + φ)ξtdxdt+

∫ T

=

∫

Ω

δ(θ)∆ξdxdt

= −
∫ T

0

∫

Ω

|∇µ|2
θ

ξdxdt−
∫ T

0

∫

Ω

κ(θ)

θ2
|∇θ|2dxdt−

∫

Ω

(Λ(θ0) + φ0)ξ(·, 0)dx. (2.40)

Definition 2.1. We say that (φ, µ, θ, σ) is a weak entropy solution to our non-isothermal

Cahn-Hilliard model if it sastisfies the following equations

⟨φt, ξ⟩ = −
∫

Ω

∇µ · ∇ξdx+
∫

Ω

(Pσ −A)h(φ)ξdx a.e. in (0, T ) and ∀ξ ∈ V,

µ = −∆φ+ F ′(φ)− θ a.e. in (0, T )× Ω,
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⟨σt, ξ⟩ = −
∫

Ω

∇σ · ∇ξdx−
∫

Ω

Cσh(φ)ξdx+
∫

Ω

B(σB − σ)ξdx

a.e. in (0, T ) and ∀ξ ∈ V,

complying a.e. in Ω with the initial conditions (2.33), homogeneus Neumann boundary

conditions and the entropy production inequality

∫ T

0

∫

Ω
(Λ(θ) + φ)ξtdxdt+

∫ T

0

∫

Ω
δ(θ)∆ξdxdt

≤ −
∫ T

0

∫

Ω

|∇µ|2
θ

ξdxdt−
∫ T

0

∫

Ω

κ(θ)

θ2
|∇θ|2dxdt−

∫

Ω
(Λ(θ0) + φ0)ξ(·, 0)dx (2.41)

∀ξ ∈ C∞([0, T ]× Ω), ξ ≥ 0, ξ(T, ·) = 0.

Theorem 2.3.1. Suppose that the assumptions in Section 2.2 hold and let T > 0. Then

there exists at least one weak solution to our model problem, namely a quadruple (φ, µ, θ, σ)

with regularity

φ ∈ C([0, T ];V ) ∩H1(0, T ;V ′) ∩ L2(0, T ;H2(Ω))

β(φ) ∈ L2(0, T ;H)

µ ∈ L2(0, T ;V )

θ ∈ L2(0, T ;V ) ∩ L∞(0, T ;L1(Ω)) ∩ Lq(0, T ;L3q(Ω)), q ≥ 2, θ > 0 a.e. in Ω

σ ∈ C([0, T ];H) ∩H1(0, T ;V ′) ∩ L∞((0, T )× Ω) ∩ L2(0, T ;V )

satisfying system (2.34)–(2.37) in the sense of Definition 2.1.

2.3.1 A priori estimates

This section is devoted to gain the suitable regularity for the quadruple (φ, µ, θ, σ) to

prove the existence of solutions in Section 2.3.2. These a priori bounds are obtained

formally, working directly on our system (2.34)-(2.37). We remark that the existence (of

weak entropy solutions) argument might be made rigorous by the Faedo-Galerkin method

that we decided not to detail here.

Nutrient estimate

We first search for a priori bounds for the nutrient following [102]. Therefore we give here

only a sketch of the main steps.

Testing (2.37) by −σ−, where σ− ≥ 0 represents the negative part of the nutrient σ,
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exploting the initial conditions on σ and applying the Gronwall lemma, we gain

σ(t, x) ≥ 0 for a.e. t ≥ 0, x ∈ Ω.

Now, testing (2.37) by (σ − σ̄)+ (where σ̄ ≥ 1 is a suitable constant) using the Gronwall

lemma and our assuptions on h and σB, it is possible to obtain

∥σ∥L∞((0,T )×Ω) ≤ cT , (2.42)

where cT is a constant depending on time.

Energy estimate

We test (2.34) by µ, (2.35) by φt and (2.36) by 1 and then sum up. This yields, taking

into account the boundary conditions,

d

dt

(

1

2
∥∇φ∥2 +

∫

Ω

F (φ) +

∫

Ω

θ

)

=

∫

Ω

(Pσ −A)h(φ)µ. (2.43)

We take care of the right hand side, in particular

∫

Ω
(Pσ −A)h(φ)µ

(2.35)
= −

∫

Ω
(Pσ −A)h(φ)∆φ+

∫

Ω
(Pσ −A)h(φ)F ′(φ)−

∫

Ω
(Pσ −A)h(φ)θ

(2.28)
=

∫

Ω
(Pσ −A)h′(φ)|∇φ|2 +

∫

Ω
Ph(φ)∇σ · ∇φ+

∫

Ω
β(φ)(Pσ −A)h(φ)

+

∫

Ω
λφ(A− Pσ)h(φ) +

∫

Ω
(A− Pσ)h(φ)θ.

Thus (2.43) reads

d

dt

(

1

2
∥∇φ∥2 +

∫

Ω
F (φ) +

∫

Ω
θ

)

=

∫

Ω
(Pσ −A)h′(φ)|∇φ|2

+

∫

Ω
(Pσ −A)β(φ)h(φ)

+

∫

Ω
λ(A− Pσ)h(φ)φ+ P

∫

Ω
h(φ)∇σ · ∇φ

+

∫

Ω
(A− Pσ)h(φ)θ

:=I + II + III + IV. (2.44)

We now estimate each term on the right hand side separately. The estimate on the

nutrient (2.42) is a key point for all these bounds. In particular this is where a time-
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dependent constant cT comes from. Exploting the assumption (2.31), we infer

I ≤ cT∥∇φ∥2. (2.45)

According to (2.29) it is straightforward that

II ≤ cT

(

1 +

∫

Ω

F (φ)

)

. (2.46)

Moreover, using once again the assumption (2.31) on h and Young’s inequality, we get

III ≤ 1

2
∥∇σ∥2 + cT

(

1 + ∥φ∥L1(Ω) + ∥∇φ∥2
)

. (2.47)

Eventually, by the same tools used to estimate III, it holds

IV ≤ cT∥θ∥L1(Ω). (2.48)

Combining estimates (2.45)–(2.48), (2.44) reads

d

dt

(

1

2
∥∇φ∥2 +

∫

Ω

F (φ) +

∫

Ω

θ

)

(2.49)

≤ 1

2
∥∇σ∥2 + cT

(

1 + ∥φ∥L1(Ω) + ∥∇φ∥2 +
∫

Ω

F (φ) + ∥θ∥L1(Ω)

)

Our aim is to apply Gronwall’s lemma in order to gain the energy estimate. Therefore we

estimate and reabsorb the term ∥φ∥L1(Ω) according to (2.30). Moreover we test (2.37) by

σ which yields

1

2

d

dt
∥σ∥2 + ∥∇σ∥2 ≤ c(1 + ∥σ∥2). (2.50)

Hence, summing this last estimate to (2.49) we finally get

d

dt

(

1

2
∥∇φ∥2 +

∫

Ω

F (φ) +

∫

Ω

θ +
1

2
∥σ∥2

)

+
1

2
∥∇σ∥2

≤ cT

(

1 + ∥∇φ∥2 +
∫

Ω

F (φ) + ∥θ∥L1(Ω) + ∥σ∥2
)

. (2.51)

We are now able to apply Gronwall’s lemma to (2.49), therefore we obtain the following

a priori estimates

∥∇φ∥L∞(0,T ;H) ≤ cT (2.52)

∥F (φ)∥L∞(0,T ;L1(Ω)) ≤ cT (2.53)
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∥θ∥L∞(0,T ;L1(Ω)) ≤ cT (2.54)

∥σ∥L∞(0,T ;H)∩L2(0,T ;V ) ≤ cT . (2.55)

In particular, combining (2.29) and (2.30) with (2.53), we gain

∥φ∥L∞(0,T ;L1(Ω)) ≤ cT (2.56)

Entropy estimate

We now derive the entropy estimate testing (2.36) by −1

θ
. Therefore

d

dt

∫

Ω

(− log θ − φ) +

∫

Ω

1

θ
|∇µ|2 +

∫

Ω

(

|∇ log θ|2 + kq|∇θq/2|2
)

= 0, (2.57)

where kq > 0 is a suitable constant only depending on the exponent q ≥ 2, introduced in

(2.32).

Now, integrating in time, owing to (2.54) and (2.56) and recalling that | log r| ≤ r −
log r ∀r > 0, we infer

∥ log θ∥L∞(0,T ;L1(Ω)) + ∥ log θ∥L2(0,T ;V ) ≤ cT , (2.58)

∥∇θq/2∥L2(0,T ;H) ≤ cT . (2.59)

Then, combining (2.27) with (2.54) and (2.59), it holds

∥θ q
2∥L2(0,T ;V ) ≤ cT (2.60)

which implies in particular, since q ≥ 2

∥θ∥L2(0,T ;V ) ≤ cT . (2.61)

On the other hand, using Sobolev embedding theorems, (2.60) also implies

∥θ q
2∥L2(0,T ;L6(Ω)) ≤ cT

and hence

∥θ∥Lq(0,T ;L3q(Ω)) ≤ cT . (2.62)
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Chemical potential estimate

Integrating (2.36) over Ω and exploiting boundary conditions together with Gauss-Green

formula, we infer

∥∇µ∥2 = d

dt

∫

Ω

θ +

∫

Ω

θφt. (2.63)

We now rewrite the latter term according to (2.34), then using (2.31) and (2.42), it follows

that (2.63) reads

1

2
∥∇µ∥2 ≤ d

dt

∫

Ω

θ +
1

2
∥∇θ∥2 + cT∥θ∥L1(Ω). (2.64)

Thus from (2.54) and (2.61), we obtain

∥∇µ∥L2(0,T ;H) ≤ cT . (2.65)

Now we integrate (2.35) over Ω, then

|µΩ|
(2.25),(2.28)

=
∣

∣

∣

∫

Ω

(β(φ)− λφ)−
∫

Ω

θ
∣

∣

∣
(2.66)

≤
∫

Ω

|β(φ)|+
∫

Ω

|λφ|+ ∥θ∥L1(Ω) (2.67)

(2.29),(2.54),(2.56)

≤ cβ

(

1 +

∫

Ω

F (φ)

)

+ cT . (2.68)

Using now the bound (2.53), we get

∥µΩ∥L∞(0,T ) ≤ cT . (2.69)

Combining this last bound with the Poincaré inequality (2.26) and the previous estimate

(2.65), we achieve

∥µ∥L2(0,T ;V ) ≤ cT . (2.70)

φ-dependent estimates

We start testing (2.34) by φ, which leads to

d

dt

∫

Ω

|φ|2 = −
∫

Ω

∇µ · ∇φ+

∫

Ω

(Pσ −A)h(φ)φ. (2.71)
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Exploiting Young’s inequality, the uniform bounds on h and (2.42) we infer

d

dt
∥φ∥2 ≤ 1

2
∥∇µ∥2 + 1

2
∥∇φ∥2 + cT∥φ∥L1(Ω).

Thus, integrating in time and using (2.65), (2.52) and (2.56) we get

∥φ∥L∞(0,T ;H) ≤ cT ,

whence estimate (2.52) gives

∥φ∥L∞(0,T ;V ) ≤ cT . (2.72)

Next we test (2.35) by β(φ) and we obtain

∫

Ω

|β(φ)|2 +
∫

Ω

β′(φ)|∇φ|2 =
∫

Ω

µβ(φ) +

∫

Ω

λφβ(φ) +

∫

Ω

θβ(φ)

Now, from (2.70), (2.72), (2.61) and the monotonicity of β, it follows

∥β(φ)∥L2(0,T ;H) ≤ cT . (2.73)

Taking advantage of this last estimate with (2.29) and again of (2.72) and (2.61), a direct

comparison within equation (2.35) yields

∥φ∥L2(0,T ;H2) ≤ cT . (2.74)

Further regularity

We start testing (2.34) by a nonzero test function v ∈ V and we infer

⟨φt, v⟩ = −
∫

Ω

∇µ · ∇v +
∫

Ω

(Pσ −A)h(φ)v.

Now, according to estimates (2.42), (2.65) and (2.72) it follows

∥φt∥L2(0,T ;V ′) ≤ cT . (2.75)

Taking advantage of this last estimate and exploting (2.74) together with (2.72), we infer

(for example from [90])

φ ∈ C([0, T ];V ). (2.76)

Similarly, multiplying equation (2.37) by a nonzero test function v ∈ V and exploiting
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the bound (2.55), it holds

∥σt∥L2(0,T ;V ′) ≤ cT . (2.77)

From standard embedding results (see e.g. [12]), combining (2.77) and (2.55), we gain

the additional regularity for the nutrient

σ ∈ C([0, T ];H). (2.78)

2.3.2 Weak sequential stability

We assume to have a sequence of weak solutions (φn, µn, θn, σn) which satisfies the a priori

estimates obtained in Section 2.3.1 uniformly with respect to n ∈ N.

We then show that, by weak compactness arguments, up to the extraction of a subse-

quence, (φn, µn, θn, σn) converges in a suitable way to an entropy solution to our problem,

i.e., to a limit quadruple (φ, µ, θ, σ) solving (2.34)–(2.37) in the sense of Theorem 2.3.1.

Indeed, exploiting the above bounds (2.42), (2.54), (2.55), (2.61), (2.62), (2.70), (2.72),

(2.74), (2.75) and (2.77), together with standard weak compactness results, it is possible

to extract a nonrelabelled subsequence such that

φn → φ weakly star in L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;V ′) (2.79)

µn → µ weakly in L2(0, T ;V ) (2.80)

θn → θ weakly star in L2(0, T ;V ) ∩ L∞(0, T ;L1(Ω)) ∩ Lq(0, T ;L3q(Ω)) (2.81)

σn → σ weakly star in L∞(0, T )× Ω)) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′) (2.82)

Moreover, combining (2.75) and (2.77) with (2.79) and (2.82) respectively and applying

the Aubin-Lions lemma, we infer that

φn → φ and σn → σ strongly in L2(0, T ;H). (2.83)

Furthermore, convergence (2.81) and interpolation theory for Lp spaces imply that

θn → θ strongly in Lp(0, T ;Lp(Ω)), p ∈
[

1, q +
2

3

)

. (2.84)

Indeed, from Proposition A.2.1, with s = ∞ and p = q, it holds

1

r
=
γ

q
. (2.85)

We then apply the general interpolation result to the space-spaces L1 and L3q, from which
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it follows
1

r
=

γ

3q
+

1− γ

1
. (2.86)

Since (2.85) and (2.86) must hold simultaneously, we infer that r = q +
2

3
.

Now, according to Theorem A.2.6 with s = r = 0, it follows that

L∞(0, T ;L1(Ω)) ∩ Lq(0, T ;L3q(Ω)) ↪→↪→ Lp(0, T ;Lp(Ω)) p ∈
[

1, q +
2

3

)

.

Therefore it is possible to pass to the limit also in the nonlinear terms, according to

the continuity of κ, β and h. Indeed, by a generalized version of Lebesgue’s dominated

convergence theorem it holds

κ(θn) → κ(θ) strongly in Lp(0, T ;Lp(Ω)), p ∈
[

1, 1 +
2

3q

)

(2.87)

β(φn) → β(φ) weakly in L2(0, T ;H). (2.88)

We now want to pass to the limit in the balance of entropy. Namely let us assume

that (2.38) is satisfied by the approximate solution (φn, µn, θn, σn), ∀n ∈ N. Testing it by

ξ ∈ C∞([0, T ]× Ω), ξ ≥ 0, ξ(T, ·) = 0 and integrating by parts we infer

∫ T

0

∫

Ω
(Λ(θn) + φn)ξtdxdt+

∫ T

0

∫

Ω
δ(θn)∆ξdxdt

= −
∫ T

0

∫

Ω

|∇µn|2
θn

ξdxdt−
∫ T

0

∫

Ω

κ(θn)

θ2n
|∇θn|2dxdt−

∫

Ω
(Λ(θ0) + φ0)ξ(·, 0)dx, (2.89)

where δ(θn) :=
∫ θn
1

κ(s)
s
ds.

We first take care of the terms on the left hand side. According to (2.39), by (2.58) and

(2.84),

Λ(θn) → Λ(θn) strongly in L1+(0, T )× Ω). (2.90)

Moreover, from (2.58) and (2.84), it follows that

δ(θn) → δ(θ) strongly in L1+((0, T )× Ω), (2.91)

hence in particular
∫ T

0

∫

Ω

δ(θn)∆ξ →
∫ T

0

∫

Ω

δ(θ)∆ξ.

Then the first row of (2.89) passes to the desired limit not only as a supremum limit,

but as a true limit. In order to deal with the first two terms in the right hand side we

recall a useful lower semicontinuity result by Ioffe.
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Theorem 2.3.2 (Ioffe). Let O ⊂ R
d be a smooth bounded open set and f : O×R

n×R
m →

[0,+∞], d, n,m ≥ 1, be a measurable non-negative function such that

f(x, ·, ·) is lower semicontinuous on R
n × R

m for every x ∈ O,

f(x, u, ·) is convex on R
m for every (x, u) ∈ O × R

n.

Let also (uk, vk), (u, v) : O → R
n × R

m be measurable functions s. t.

uk(x) → u(x) in measure in O, vk ⇀ v weakly in L1(O;Rm).

Then,

lim inf
k→+∞

∫

O

f(x, uk(x), vk(x)) ≥
∫

O

f(x, u(x), v(x)).

We start considering the first term in the right hand side. We exploit this result

setting O = Ω × (0, T ), f : O × R
+ × R

3 → [0,∞] s.t (x, t) × w × v 7→ w|v|2. Such f

satisfies Ioffe’s assumptions. putting wn = ξ
θ
, vn = ∇µn, ∀n ∈ N. Hence, by (2.80) it

holds {∇µn}n ⇀ ∇µ in L1(O). Therefore by Ioffe’s theorem,

lim inf
n→+∞

∫ T

0

∫

Ω

|∇µn|2ξ ≥
∫ T

0

∫

Ω

|∇µ|2ξ. (2.92)

In a similar way, from (2.84) and (2.87),

lim inf
n→+∞

∫ T

0

∫

Ω

ξ

θn

κ(θn)

θn
|∇θn|2 ≥

∫ T

0

∫

Ω

ξ

θ

κ(θ)

θ
|∇θ|2. (2.93)

Furthermore, assuming that θn(0, ·) converges in a suitable way to θ0, putting together

(2.83), (2.90), (2.91), (2.92) and (2.93), it follows that we eventually recover (2.40). It is

worth noting that the inequality sign is due to the application of Ioffe’s theorem. This

concludes the procedure and so the proof of existence of weak entropy solutions.

Remark 1. We notice that we have assumed throughout the proof that the absolute

temperature is a.e. positive. This is crucial in order for estimates in Section 2.3.1 to make

sense. In particular it should be shown that the solution θn of the discretized problem

(for instance in a Faedo-Galerkin scheme) is positive. Anyway, taking the initial datum

θ0 > 0, according to (2.58) the strict positivity of θn will be preserved a.e. in (0, T ) × Ω

also in the limit.
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Part II

A model for assisted periodic

breathing
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We represent the lungs as a nonhomogeneous deformable viscoelastic porous body

and breathing as an isothermal time-periodic process modelled by a PDE system with

hysteresis. In particular, Part III contains the results obtained in [76], where we extended

the model proposed in [40] taking into account nonconstant and possibly degenerate per-

meability of the lungs.

As pointed out in [99], the first measurements which showed a hysteretic pressure-

volume characteristic in mammalian lungs were obtained in [23] in 1913. There exist

different hypotheses about the nature of the forces which originate the hysteresis behav-

ior by opposing the lung distension, but up to now, there is no theory which could explain

both small and large volume excursions, as reported in [117].

The process of breathing has been studied from a mathematical point of view first for cats

[73] and dogs [91] and later also for humans [86]. Understanding the relationship between

pressure and volume in lungs is important for controlling the ventilation of patients with

lung diseases [4, 33, 71]. In order to set up the ventilator correctly and so to prevent

the possibility of damaging the patient’s lungs, it is crucial to test how the healthy lungs

respond to mechanical ventilation. In [103] such a ventilation study simulating hysteretic

pressure-volume relationships in the lungs of a healthy individual is shown. Moreover,

the knowledge of the pressure-volume hysteresis loops were used to develop a new tech-

nique for treating patients with Acute Lung Injury (ALI). This procedure gave the same

levels of oxygen but with lower airway pressures and less over-inflation than other tech-

niques [3]. Furthermore, [3] also shows that this kind of strategy reduces trauma and

increases the probability of survival with respect to methods which do not take into ac-

count pressure-volume curves. We also remark that such studies are useful not only for

treating damaged lungs; indeed, e. g., cerebrospinal pressure-volume curve might be of

interest for hydrocephalus symptoms [79].

Our aim is to further develop the model proposed in [40], motivated by the analysis

carried out in [52], where the Preisach operator is shown to be an appropriate model for the

pressure-volume hysteresis relationship in lungs. The process of breathing is assumed to

be isothermal and driven by a periodic muscle activity and, possibly, by a periodic external

ventilation. Our model is represented by a PDE system consisting of a momentum balance

equation and a mass balance equation coupled with boundary conditions prescribing the

mechanical reaction between lungs and their surroundings. The mathematical problem

consists in proving that the PDE system with a degenerating pressure-mass content term

under the time derivative admits a periodic solution for every periodic boundary forcing

with a given regularity. The novelty of [76] with respect to [40] is that we expand the

previous model considering the permeability of the lungs depending also on the pressure
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and possibly degenerate. This is, on the one hand, a realistic hypothesis from the physi-

cal and biological point of view. On the other hand, this condition produces considerable

difficulties in the mathematical problem. Indeed, the additional degenerate nonlinear-

ity requires to choose a multi-parameter approximation technique involving several steps

with a series of regularizing terms in the system which have to vanish in the limit. The

main ingredient of the proof is a time-periodic parameter-dependent variant of the Moser

iterations.

The structure of this Part is the following. In Section 3.1 we present our model and

state the main result of this work, which is Theorem 3.1.3 stating the existence and

regularity of the resulting PDE system with hysteresis. In Section 3.3 we recall the main

properties of the Preisach operator which are needed in the analysis of the problem. The

proof of Theorem 3.1.3 is given in several steps in Sections 4.1–4.4. In order to get the

nonlinearities under control, we introduce in Section 4.1 a regularized problem with a

large cut-off parameter R and with some higher order regularizing terms depending on

small parameters δ and ε. For the regularized system, we construct a periodic solution by

Galerkin approximations and a fixed point argument. In Sections 4.2 and 4.3, we derive

suitable a priori bounds independent of the parameters δ and ε. These estimates are used

in Section 4.4, where according to a Moser-type technique we obtain L∞-estimates of the

pressure which allow us to remove the cut-off parameter and eventually let δ and ε tend

to zero and prove Theorem 3.1.3.
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Chapter 3

Viscoelastic porous medium model

3.1 Statement of the problem

As proposed in [40], we represent the lungs as a deformable viscoelastic porous medium,

and breathing as a periodic isothermal process of gas exchange between the inside and the

outside of the body. The mathematical model is based on a momentum balance equation

ρutt = div σ, (3.1)

where ρ is the solid mass density, u is the displacement vector in the solid and σ is the

stress tensor, and a gas mass balance equation

st + div q = 0, (3.2)

where s is the gas mass content in the pores and q is the mass flux.

We also consider three constitutive relations. The first one represents the mechanical

interaction, namely

σ = B(x)∇sut +A(x)∇su− p1, (3.3)

where B(x) (viscosity), A(x) (elasticity) are symmetric positive definite space-dependent

tensors of order 4, the symbol ∇s denotes the symmetric gradient, p is the air pressure,

and 1 in the Kronecker tensor.

The second one assumes the pressure-volume relation in the form

f(x, p) +G[p] =
1

ρa
s− div u, (3.4)

where ρa > 0 is the referential air mass density at standard pressure, f : Ω×R → (0,∞)

is a function increasing in p, and G is a Preisach operator defined in Section 3.3.
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We can interpret (3.4) as follows. Assuming that the volume of the solid phase remains

constant during the process, the term div u represents the void volume difference with

respect to the reference state. At constant pressure p, if div u increases, then s/ρa in-

creases at the same rate. At constant void volume, the mass content s is an increasing

function (with different inflation and deflation curves) of the pressure. At constant gas

mass content, the pressure increases if the void volume decreases.

Note that the mass content s cannot be negative, so that, e. g., at constant volume, the

pressure-dependent term f(x, p) + G[p] must be bounded from below. In particular, the

partial derivative fp(x, p) of f with respect to p has to degenerate as p→ −∞.

As the third constitutive relation, we assume the validity of Darcy’s law for the mass

flux q in (3.2)

q = −ρaµ(x, p)∇p (3.5)

where we underline that, as a novelty with respect to [40], the permeability µ(x, p) is

allowed to depend both on the space variable and on the pressure, and degenerate as

p→ ±∞.

The combination of (3.1)–(3.5) leads to the following PDE system

ρutt = div (B(x)∇sut +A(x)∇su)−∇p , (3.6)

(f(x, p) +G[p])t = − div ut + div µ(x, p)∇p , (3.7)

for x in a bounded connected Lipschitzian domain Ω ⊂ R
3 and for t ≥ 0.

We couple system (3.6)–(3.7) with the following boundary conditions on ∂Ω

−σ · n
∣

∣

∂Ω
= β(x)(C(x)u+D(x)ut − g) + pn , (3.8)

1

ρa
q · n

∣

∣

∂Ω
= α(x)(p− p̄)− ut · n , (3.9)

where n is the unit outward normal vector, g = g(x, t) is a given external force acting on

the body Ω, p̄ = p̄(x, t) is the given outer air pressure possibly supplied by the ventila-

tor, C(x),D(x) are symmetric positive definite 3 × 3 matrices, β(x) ≥ 0 is the relative

elasticity modulus of the boundary at the point x ∈ ∂Ω, and α(x) ≥ 0 is the boundary

permeability at the point x ∈ ∂Ω.

The first boundary condition (3.8) describes the mechanical interaction between the in-

side and the exterior of the body on the boundary, which is controlled by β. The second

boundary condition (3.9), on the other hand, describes the gas exchange between the

inside and the exterior of the body on the boundary, which is controlled by α (see [40]).
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We denote

X3 = W 1,2(Ω;R3) , X = W 1,2(Ω) . (3.10)

Then, the full PDE system in variational form for all test functions ϕ ∈ X3 and ψ ∈ X

reads as follows:

∫

Ω

(

ρuttϕ+ (B(x)∇sut +A(x)∇su) : ∇sϕ+∇p ϕ
)

dx

+

∫

∂Ω

β(x)(C(x)u+D(x)ut − g)ϕds(x) = 0 , (3.11)
∫

Ω

(

(f(x, p) +G[p])tψ + (µ(x, p)∇p− ut)∇ψ
)

dx+

∫

∂Ω

α(x)(p− p̄)ψds(x) = 0 . (3.12)

We fix a period T > 0 and denote by LqT the Lq-space of T -periodic functions v : R → R

for q ≥ 1, by W 1,q
T the associated Sobolev space, and by CT the space of continuous

real T -periodic functions on R. Similarly, we deal with the spaces LqT (Y ) of T -periodic

Lq-functions v : R → Y with values in a Banach space Y , as well as with the spaces

Lq(Ω;CT ) and L
q(Ω;W 1,q

T ).

Hypothesis 3.1.1. We assume that

(i) f : Ω × R → R is such that f(·, p) is bounded and measurable for all p ∈ R,

f(x, ·) is continuously differentiable in R for a. e. x ∈ Ω, and there exist constants

0 < f ♭ < f ♯ and 1
2
< η < 1 with the property

f ♭(1 + p2)−η ≤ ∂pf(x, p) ≤ f ♯ a. e. ∀p ∈ R .

(ii) The permeability coefficient µ(x, p) is positive and continuous. Moreover, putting

µ0(x) = µ(x, 0), µ̄(x, p) = µ(x,p)
µ0(x)

, and M(x, p) =
∫ p

0
µ̄(x, p′)dp′ we assume that there

exist constants µ♭, µ♯, γ such that

0 ≤ γ <
1

6
e−1, γ + η ≤ 1, (3.13)

and for a. e. (x, p) ∈ Ω× R we have

µ♯ ≥ µ(x, p) ≥ µ♭(1 + p2)−γ, (3.14)

|∇xµ̄(x, p)| ≤ µ♯(1 + p2)−η/2, (3.15)

|∇xM(x, p)| ≤ µ♯, (3.16)

where the symbol ∇x denotes the partial gradient with respect to x.

(iii) The nonnegative functions α and β belong to L∞(∂Ω) and we have
∫

∂Ω
β(x)ds(x) >
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0,
∫

∂Ω
α(x)ds(x) > 0.

(iv) The functions g, gt belong to L2
T (L

2(∂Ω;R3)), p̄, p̄t belong to L2
T (L

2(∂Ω)), and there

exists a constant p♯ such that

|p̄(x, t)| ≤ p♯ for a. e. (x, t) ∈ ∂Ω× (0, T ).

(v) The symmetric positive definite tensors A,B ∈ L∞(Ω;R3×3
s ×R

3×3
s ), where R

3×3
s is

the space of real symmetric tensors of order 3× 3, and symmetric definite matrices

C,D ∈ L∞(∂Ω;R3 × R
3) are given and there exists a constant c̄, independent of x,

such that

{

A(x)ξ : ξ ≥ c̄(ξ : ξ), B(x)ξ : ξ ≥ c̄(ξ : ξ) a. e. ∀ξ ∈ R
3×3
s

C(x)v · v ≥ c̄|v|2, D(x)v · v ≥ c̄|v|2 a. e. ∀v ∈ R
3.

Note that in the case µ(x, p) = µ1(x)µ2(p) we have µ̄(x, p) = µ2(p)/µ2(0), hence

∇xµ̄(x, p) = 0 and the conditions (3.15)–(3.16) are trivially satisfied.

The Preisach operator G is characterized by its density function ψ, see Definition 3.3.1

below. We suppose that it has the following properties.

Hypothesis 3.1.2. A function ψ ∈ L∞(Ω×(0,∞)×R) is given, and there exist constants

Ψ♯ > 0, B > 0 such that

0 ≤ ψ(x, r, v) ≤ Ψ♯ a. e., ψ(x, r, v) = 0 for r + |v| ≥ B. (3.17)

We are then ready to state the main result of this Part, concerning the existence of a

time-periodic solution to our model.

Theorem 3.1.3. Let Hypotheses 3.1.1, 3.1.2 hold. Then there exists a solution (u, p) to

(3.11)–(3.12) such that u, ut,∇p ∈ L2
T (L

2(Ω;R3)) ∩ L∞
T (L2(Ω;R3)), utt ∈ L2

T (L
2(Ω;R3)),

pt ∈ L2
T (L

2(Ω)), p ∈ L∞(Ω× (T, 2T )), ∇su,∇sut ∈ L2
T (L

2(Ω;R3×3)) ∩ L∞
T (L2(Ω;R3×3)).

We remark that the reason why [T, 2T ] is chosen to be the referential interval for

T -periodic functions is related to the delayed periodicity of the operator G stated in

Proposition 3.3.2.

The main issue to face in order to prove Theorem 3.1.3 is the degenerate character

of the functions f and µ and of the operator G, which makes the analysis difficult. The

proof will therefore be carried out in several steps. In Section 4.1 we regularize the critical

terms by means of small parameters ε and δ and a large cut-off parameter R, propose a
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Galerkin discretization scheme in dimension m ∈ N, and pass to the limit as m → ∞ to

obtain a solution to the regularized problem. In Sections 4.2–4.4 we show the existence of

estimates independent of ε, δ, and R which enable us to pass to the limit as ε→ 0, δ → 0,

and R → ∞. In particular, the estimates independent of R follow from a time-periodic

variant of the Moser iteration scheme.

3.2 Comparison with previous model

As already mentioned, the system presented in Section 3.1 is a further development from

the modellistic point of view of the one in [40], namely

ρutt = div (B(x)(x)∇sut +A(x)(x)∇su)−∇p , (3.18)

(f(p) +G[p])t = − div ut + div µ(x)∇p , (3.19)

where we considered a permeability µ only dependent on the position.

Although in [40] we were able to prove the existence of periodic solutions (u, p) with the

same regularity stated in Theorem 3.1.3, the assumptions needed to be refined and so

were several steps of the proof.

Concerning the hypotheses, the main focus is of course on µ. Indeed, even though in [40]

we only asked for the permeability coefficient to belong to L∞(Ω) and to be positively

bounded from below, the dependence on p in [76] introduces a nonlinearity. Therefore,

we need stronger assumptions, namely Hypotheses 3.1.1 (ii). Moreover, as a consequence

of this new nonlinearity, we cannot follow the Galerkin approximations proposed in [40].

As a matter of fact, we here want to test our PDE system by a nonlinear expression v of

pressure p, which is its Kirchhoff transform introduced in Hypothesis 3.1.1. This leads to

considering the approximations of u and v, since the Galerkin method allows testing only

by linear functions and their derivatives. Furthermore we need to regularize the critical

terms by means of small parameters ε and δ. This adds an ulterior complexity to our

proof, since the estimates must be independent of these parameters. According to these

technicalities, also the Moser-type iteration scheme had to be revised.

3.3 Preisach operator

We recall here the basic theory of hysteresis operators, in particular of the Preisach op-

erator G, which is needed in the sequel.

The detailed proofs of the statements of this Section can be found in [84].
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We fix some T̂ > 2T and construct the Preisach operator G in terms of the play

operator, which is defined as a solution to the following variational inequality



















|p(t)− ξr(t)| ≤ r ∀t ∈ [0, T̂ ],

(ξr(t))t(p(t)− ξr(t)− z) ≥ 0 a. e. ∀z ∈ [−r, r],
p(0)− ξr(0) = max{−r,min{p(0), r}}.

(3.20)

It is well known (see [83, 116]) that for any given input function p ∈ W 1,1(0, T̂ ) and each

parameter r > 0, there exists a unique solution ξr ∈ W 1,1(0, T̂ ) of the variational inequality

(3.20). The mapping fr : W 1,1(0, T̂ ) → W 1,1(0, T̂ ) which with each p ∈ W 1,1(0, T̂ )

associates the solution ξr = fr[p] ∈ W 1,1(0, T̂ ) of (3.20) is called the play operator and the

parameter r > 0 can be interpreted as a memory parameter.

Proposition 3.3.1. For each r > 0, the mapping fr : W
1,1(0, T̂ ) → W 1,1(0, T̂ ) is Lipschitz

continuous and admits a Lipschitz continuous extension to fr : C[0, T̂ ] → C[0, T̂ ], in the

sense that for every p1, p2 ∈ C[0, T̂ ] and for every t ∈ [0, T̂ ] we have

|fr[p1](t)− fr[p2](t)| ≤ ∥p1 − p2∥[0,t] := max
τ∈[0,t]

|p1(τ)− p2(τ)|. (3.21)

Besides, for every p ∈ W 1,1(0, T̂ ), the energy balance equation

fr[p]tp−
1

2
(f2r[p])t = |rfr[p]t| (3.22)

and the identity

fr[p]tpt = (fr[p]t)
2 ≥ 0 (3.23)

hold almost everywhere in (0, T̂ ).

Proposition 3.3.2. Let p ∈ W 1,1
loc (0,∞) be periodic with period T > 0. Then fr[p](t+T ) =

fr[p](t) for all t ≥ T , namely fr[p] is periodic for t ≥ T for all r > 0.

In what follows, we consider input functions p which depend on x ∈ Ω and t > 0. For

r > 0, q ≥ 1 and p ∈ Lq(Ω;CT ), we interpret the play fr[p](x, t) as

fr[p](x, t) = fr[p(x, ·)](t).

Definition 3.3.1. Let ψ be given and satisfy Hypothesis 3.1.2. We define the Preisach

operator

G[p](x, t) =

∫ ∞

0

∫ ξr(x,t)

0

ψ(x, r, v)dvdr, (3.24)

where ξr(x, t) = fr[p](x, t) is the output of the play operator applied to p(x, ·).
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From the properties of the play operator in Proposition 3.3.1, namely (3.21) and (3.23),

we can prove the Lipschitz continuity and local monotonicity of the Preisach operator.

Proposition 3.3.3. Let ψ be a function fulfilling Hypothesis 3.1.2. Then, there exists a

constant Ψ♯ > 0 such that for q ∈ [1,∞] and for all p1, p2 ∈ Lq(Ω;CT ) and t ≥ 0, it holds

|G[p1](x, t)−G[p2](x, t)| ≤ Ψ♯B max
τ∈[0,t]

|p1(x, τ)− p2(x, τ)| a. e. in Ω. (3.25)

In particular, the mapping G is Lipschitz continuous in Lq(Ω;CT ) for every q ∈ [1,∞].

Proposition 3.3.4. Let the Preisach operator G from Definition 3.3.1 satisfy Hypothesis

3.1.2. Then G is locally monotone, i. e. ∀p ∈ Lq(Ω;W 1,1
T ), G[p] belongs to Lq(Ω;W 1,1

T ),

and

G[p]t(x, t)pt(x, t) ≥ 0 a. e. (3.26)

Moreover, as a consequence of the energy identity (3.22), we have fr[p]t(p− fr[p]) ≥ 0

a. e. Hence the inequality fr[p]t(h(p) − h(fr[p])) ≥ 0 holds almost everywhere for every

nondecreasing function h : R → R. We then easily conclude that the following Preisach

energy inequality holds.

Proposition 3.3.5. Let h : R → R be nondecreasing, h(0) = 0. Then for every p ∈
Lq(Ω;W 1,1

T ) and a. e. (x, t) ∈ Ω× (0,∞) it holds

(

d

dt
G[p]

)

h(p)− d

dt
Vh[p] ≥ 0 (3.27)

where Vh[p](x, t) =
∫∞

0

∫ ξr
0
ψ(x, r, v)h(v)dvdr is the h-energy potential. If moreover Hy-

pothesis 3.1.2 holds, then

0 ≤ Vh[p](x, t) ≤ Ψ♯B2 max{h(B),−h(−B)} a. e. (3.28)
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Proof of Theorem 3.1.3

4.1 Approximation scheme

We choose a cut-off parameter R > 1 and consider the truncations

fR(x, p) =















f(x,−R) + ∂pf(x,−R)(p+R) for p ≤ −R,
f(x, p) for p ∈ (−R,R),
f(x,R) + ∂pf(x,R)(p−R) for p ≥ R,

QR(p) = max{−R,min{p,R}},
µR(x, p) = µ(x,QR(p)),

µ̄R(x, p) = µ̄(x,QR(p)) =
µ(x,QR(p))

µ0(x)
.

(4.1)

Instead of (3.11)–(3.12), we further choose (small) parameters δ > 0, ε > 0 and for all

test functions ϕ ∈ X3, ψ ∈ X, and λ ∈ L∞
T we consider the approximate system

∫ 2T

T

∫

Ω

(

(ρutt + δ|ut|ut)ϕ+ (B(x)∇sut +A(x)∇su+ εB(x)∇sutt) : ∇sϕ+∇p ϕ
)

λ(t)dxdt

+

∫ 2T

T

∫

∂Ω

β(x)(C(x)u+D(x)ut − g)ϕλ(t)ds(x)dt = 0, (4.2)

∫ 2T

T

∫

Ω

(

(

(fR(x, p) +G[p])t + δ|p|p)ψ + (µR(x, p)∇p− ut)∇ψ
)

λ(t)dxdt

+

∫ 2T

T

∫

∂Ω

α(x)(p− p̄)ψλ(t)ds(x)dt = 0. (4.3)

The strategy is the following. We first prove the solvability of (4.2)–(4.3) for fixed δ >

0, ε > 0, R > 0 via a Galerkin scheme. Then, we derive estimates for the solution
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to (4.2)–(4.3) independent of the regularizing parameters δ, ε, R. Further, we apply a

time-periodic Moser-Alikakos iteration scheme (see [1]) which yields an upper bound for

sup(x,t)∈Ω×R
|p(x, t)| and will allow us to remove the R-truncation of p by choosing R

sufficiently large. Finally, we prove that passing to the limit as δ → 0 and ε → 0 we

obtain a solution to the original problem (3.11)–(3.12).

The remaining part of this section is devoted to the proof of the following result.

Proposition 4.1.1. Let Hypotheses 3.1.1, 3.1.2 hold. Then there exists a solution (u, p)

to (4.2)–(4.3) such that u, ut,∇p ∈ L∞
T (L2(Ω;R3)), u, ut, utt ∈ L2

T (W
1,2(Ω;R3)), pt ∈

L2
T (L

2(Ω)).

4.1.1 Galerkin approximations

We choose orthonormal bases {ϕl}∞l=0 in L2(Ω) and {ek}∞k=−∞ in L2
T as

−∆ϕl = λlϕl in Ω , ∇ϕl · n = 0 on ∂Ω,

ek(t) =



















2
T
sin 2πk

T
t for k ≥ 1 ,

1
T

for k = 0 ,

2
T
cos 2πk

T
t for k ≤ −1 .

(4.4)

Note that for every k ∈ Z we have

ėk(t) =
2πk

T
e−k(t), (4.5)

where the dot denotes here and in the sequel the derivative with respect to t.

For a fixed m ∈ N we consider Galerkin approximations

u
(m)
j (x, t) =

m
∑

k=−m

m
∑

l=0

ujklϕl(x)ek(t) ,

v(m)(x, t) =
m
∑

k=−m

m
∑

l=0

vklϕl(x)ek(t) .

(4.6)

We denote by

MR(x, p) =

∫ p

0

µ̄R(x, p
′)dp′ (4.7)

the Kirchhoff transform associated with µ̄R, and byM−1
R its partial inverse defined by the

identity M−1
R (x,MR(x, p)) = p for (x, p) ∈ Ω× R. We put

p(m) =M−1
R (x, v(m)) (4.8)
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and consider the scalars ujkl, vkl the unknowns of the problem

∫ 2T

T

∫

Ω

(

(ρu
(m)
tt + δ|u(m)

t |u(m)
t )ϕlηj + (B(x)∇su

(m)
t +A(x)∇su

(m) + εB(x)∇su
(m)
tt ) : ∇s(ϕlηj)

+∇p(m) ϕlηj
)

e−k(t)dxdt+

∫ 2T

T

∫

∂Ω

β(x)(C(x)u(m) +D(x)u
(m)
t − g)ϕlηje−k(t)ds(x)dt = 0,

(4.9)
∫ 2T

T

∫

Ω

(

(

(fR(x, p
(m)) +G[p(m)])t + δ|p(m)|p(m)

)

ϕl

+
(

µ0(x)
(

∇v(m) −∇xMR(x, p
(m))

)

− u
(m)
t

)

∇ϕl
)

ek(t)dxdt

+

∫ 2T

T

∫

∂Ω

α(x)(p(m) − p̄)ϕlek(t)ds(x)dt = 0, (4.10)

for j = 1, 2, 3, l = 0, . . . ,m, and k = −m, . . . ,m, where ηj are the vectors

η1 =







1

0

0






, η2 =







0

1

0






, η3 =







0

0

1






.

Notice that we used in (4.10) the identity µ̄R(x, p
(m))∇p(m) = ∇v(m) − ∇xMR(x, p

(m))

according to (4.8).

The existence of a solution to (4.9)–(4.10) will be proved by a topological degree

argument (see Appendix B). The left-hand side of (4.9)–(4.10) defines a mapping H :

R
4(m+1)(2m+1) → R

4(m+1)(2m+1), and we look for a solution z ∈ R
4(m+1)(2m+1) to the equa-

tion H(z) = 0. We define a homotopy Hχ for χ ∈ [0, 1] such that H1 = H and H0 is an

odd mapping, and find a sufficiently large ball B ⊂ R
4(m+1)(2m+1) such that the equation

Hχ(z) = 0 has no solution on ∂B for any χ ∈ [0, 1]. Since the topological degree of H0

with respect to B is odd, we conclude that also the degree of H1 is odd, and this will

enable us to conclude that the equation H1(z) = 0 has a solution.

The mapping Hχ is defined as the left-hand side of the system

∫ 2T

T

∫

Ω

(

(ρu
(m)
tt + δ|u(m)

t |u(m)
t )ϕlηj + (B(x)∇su

(m)
t +A(x)∇su

(m) + εB(x)∇su
(m)
tt ) : ∇s(ϕlηj)

+ χ∇p(m) ϕlηj
)

e−k(t)dxdt

+

∫ 2T

T

∫

∂Ω

β(x)(C(x)u(m) +D(x)u
(m)
t − χg)ϕlηje−k(t)ds(x)dt = 0, (4.11)

∫ 2T

T

∫

Ω

(

((

χ(fR(x, p
(m))+G[p(m)]) + (1− χ)v(m)

)

)t + δ|p(m)|p(m)
)

ϕl
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+
(

µ0(x)(∇v(m)−χ∇xMR(x, p
(m)))− u

(m)
t

)

∇ϕl
)

ek(t)dxdt

+

∫ 2T

T

∫

∂Ω

α(x)
(

χ(p(m) − p̄) + (1− χ)v(m)
)

ϕlek(t)ds(x)dt = 0, (4.12)

for j = 1, 2, 3, l = 0, . . . ,m, and k = −m, . . . ,m.

Testing (4.11) by 2kπ
T
ujkl and (4.10) by vkl, and using the fact that the integral over

the period of the time derivative of a periodic function vanishes, we obtain

∫ 2T

T

∫

Ω

(

δ|u(m)
t |3 +B(x)∇su

(m)
t : ∇su

(m)
t + χ∇p(m)u

(m)
t

)

dxdt

+

∫ 2T

T

∫

∂Ω

(

β(x)(D(x)u
(m)
t · u(m)

t − χgu
(m)
t

)

ds(x)dt = 0, (4.13)

∫ 2T

T

∫

Ω

(

G[p(m)])tv
(m)+δ|p(m)|p(m)v(m)+

(

µ0(x)(∇v(m)−χ∇xMR(x, p
(m)))+u

(m)
t

)

·∇v(m)

)

dxdt

+

∫ 2T

T

∫

∂Ω

(α(x)
(

χ(p(m) − p̄) + (1− χ)v(m)
)

v(m))ds(x)dt = 0. (4.14)

In order to deal with the term G[p(m)]tv
(m), we introduce the modified Preisach potential

VM,R[p] :=

∫ ∞

0

∫ fr[p]

0

MR(x, v)ψ(x, r, v)dvdr ≥ 0, (4.15)

which satisfies the inequality

G[p]tMR(p)− VM,R[p]t ≥ 0 a. e. (4.16)

in agreement with Proposition 3.3.5. We also have

1

C(R)
(|v(m)|2 + |p(m)|2) ≤ v(m)p(m) ≤ C(R)(|v(m)|2 + |p(m)|2)

with a constant C(R) depending only on R. More generally, in all the estimates below,

c and C denote some non-specified constants, possibly different in different estimates,

independent of δ, ε, m and R. Similarly, C(R) and C(R, δ) denote constants which may

possibly depend only on R, or only on R and δ, respectively.

Summing up (4.13)–(4.14) and exploiting Hypothesis 3.1.1 (ii) we thus get

∫ 2T

T

∫

Ω

(

|∇v(m)|2 +B(x)∇su
(m)
t : ∇su

(m)
t + δ(|u(m)

t |3 + |p(m)|3)
)

dxdt

+

∫ 2T

T

∫

∂Ω

(α(x)|v(m)|2 + β(x)D(x)u
(m)
t u

(m)
t )ds(x)dt
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≤ C(R)

(

1 +

∫ 2T

T

∫

Ω

(|u(m)
t |+ |p(m)|)|∇v(m)|

)

dxdt. (4.17)

Using Hölder’s inequality with exponents 3, 2 and 6 and then Young’s inequality with

exponents 3 and 3/2 we have

∫ 2T

T

∫

Ω

|u(m)
t ||∇v(m)|dxdt

≤ δ
1
3

(∫ 2T

T

∫

Ω

|u(m)
t |3dxdt

)1/3

δ−
1
3

(∫ 2T

T

∫

Ω

|∇v(m)|2dxdt
)1/2(∫ 2T

T

∫

Ω

1dxdt

)1/6

≤ 1

3
δ

∫ 2T

T

∫

Ω

|u(m)
t |3dxdt+ 2

3
C3/2δ−

1
2

(∫ 2T

T

∫

Ω

|∇v(m)|2dxdt
)3/4

and similarly for the term
∫ 2T

T

∫

Ω
|p(m)||∇v(m)|dxdt. From (4.17) we thus deduce the in-

equality

∫ 2T

T

∫

Ω

|∇v(m)|2dxdt ≤ C

(

1 + δ−
1
2

(∫ 2T

T

∫

Ω

|∇v(m)|2dxdt
)3/4)

,

which is an inequality of the form

V ≤ C(R)

(

1 +
1√
δ
V

3
4

)

(4.18)

for V =
∫ 2T

T

∫

Ω
|∇v(m)|2dxdt. From Young’s inequality (with exponents 4 and 4

3
) it follows

that

C(R)√
δ
V 3/4 ≤ 1

4

C(R)4

δ2
+

3

4
V.

Then from (4.18), we infer

1

4
V ≤ C(R) +

1

4

C(R)4

δ2
,

therefore

V ≤ 4C(R) +
C(R)4

δ2
=: C(R, δ).

Putting everything together, (4.17) gives the following estimate

∫ 2T

T

∫

Ω

|∇v(m)|2 +B(x)∇su
(m)
t : ∇su

(m)
t + δ

(

|u(m)
t |3 + |p(m)|3

)

dxdt

+

∫ 2T

T

∫

∂Ω

(

α(x)|v(m)|2 + β(x)|u(m)
t |2

)

ds(x)dt ≤ C(R, δ). (4.19)
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We see that all possible solutions of the equation Hχ(z) = 0 remain bounded indepen-

dently of χ ∈ [0, 1]. Hence, the topological degree of H1 with respect to a sufficiently

large ball is the same as the topological degree of H0, which is odd. We conclude that a

solution to (4.9)–(4.10) exists, see [119, § 13.6]. In the next subsection, we derive further

estimates which will enable us to pass to the limit as m→ ∞.

4.1.2 Limit as m→ ∞

We now test (4.9) by −
(

2πk

T

)2

uj(−k)l and get

∫ 2T

T

∫

Ω

(

ρ|u(m)
tt |2 + εB(x)|∇su

(m)
tt |2dxdt

=

∫ 2T

T

∫

Ω

(A(x)∇su
(m)
t : ∇su

(m)
t −∇p(m) u

(m)
tt )dxdt

+

∫ 2T

T

∫

∂Ω

β(x)
(

C(x)u
(m)
t · u(m)

t + gtu
(m)
t

)

ds(x)dt

which leads to

∫ 2T

T

∫

Ω

(

ρ|u(m)
tt |2 + εB(x)∇su

(m)
tt : ∇su

(m)
tt dxdt ≤ C(R, δ), (4.20)

where we used Hypothesis 3.1.1 and the estimate (4.19). Testing (4.9) by uj(−k)l we infer

∫ 2T

T

∫

Ω

(

δ|u(m)
t |2u(m) +A(x)∇su

(m) : ∇su
(m) + u(m)∇p(m)

)

dxdt

−
∫ 2T

T

∫

Ω

(

ρ|u(m)
t |2 + εB(x)∇su

(m)
t : ∇su

(m)
t

)

dxdt

+

∫ 2T

T

∫

∂Ω

β(x)
(

C(x)u(m) · u(m) − g u
(m)
t

)

dsdt = 0.

The terms ρ|u(m)
t |2 and εB∇su

(m)
t : ∇su

(m)
t are under control because of (4.19), Hypothesis

3.1.1 and the Poincaré inequality. Moreover, we can handle the term δ|u(m)
t |2u(m) thanks

to the embedding inequality

(∫ 2T

T

∫

Ω

|u(m)
t |4dxdt

)1/4

≤ C

[

(∫ 2T

T

∫

Ω

|utt|2dxdt
)1/2

+

(∫ 2T

T

∫

Ω

|∇su
(m)
t |2dxdt

)1/2
]

(4.21)
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Thus it holds

∫ 2T

T

∫

Ω

A(x)∇su
(m) : ∇su

(m)dxdt+

∫ 2T

T

∫

∂Ω

β(x)C(x)u(m) · u(m)ds(x)dt ≤ C(R, δ).

(4.22)

Finally, we test (4.10) by −2πk

T
v−kl and obtain

∫ 2T

T

∫

Ω

fR(p
(m))tv

(m)
t dxdt

≤ C(R, δ)

(∫ 2T

T

∫

Ω

(|p(m)
t |+ |u(m)

tt |)|∇v(m)|dxdt+
∫ 2T

T

∫

∂Ω

α(x)|p̄t| |v(m)|ds(x)dt
)

.

From the previous estimates we get

∫ 2T

T

∫

Ω

|v(m)
t |2dxdt ≤ C(R, δ). (4.23)

The estimates (4.19), (4.20), (4.22), and (4.23) are sufficient for using the compactness

argument and pass to the limit in (4.9)–(4.10) as m → ∞, and get a solution to the

regularized system (4.2)–(4.3), completing thus the proof of Proposition 4.1.1.

4.2 Estimates independent of δ and ε

System (4.2)–(4.3) can be equivalently written as

∫

Ω

(

(ρutt + δ|ut|ut)ϕ+ (B(x)∇sut +A(x)∇su+ εB(x)∇sutt) : ∇sϕ+∇p ϕ
)

dx

+

∫

∂Ω

β(x)(C(x)u+D(x)ut − g)ϕds(x) = 0, (4.24)
∫

Ω

(

(

(fR(x, p) +G[p])t + δ|p|p
)

ψ + (µR(x, p)∇p− ut)∇ψ
)

dx

+

∫

∂Ω

α(x)(p− p̄)ψds(x) = 0 (4.25)

for almost all t ∈ (T, 2T ), and therefore admits a solution with the regularity stated in

Proposition 4.1.1. In order to derive estimates independent of δ and ε, We test (4.24) by

ϕ = ut and (4.25) by ψ = p and obtain, using (3.27) with h(p) = p, that

∫ 2T

T

∫

Ω

(

δ|ut|3 +B(x)∇sut : ∇sut +∇p · ut
)

dxdt
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+

∫ 2T

T

∫

∂Ω

β(x) (D(x)ut · ut − gut) ds(x)dt = 0,

∫ 2T

T

∫

Ω

(

µR(x, p)|∇p|2 + δ|p|3 −∇p · ut
)

dxdt+

∫ 2T

T

∫

∂Ω

(

α(x)p2 − α(x)p̄p
)

ds(x)dt ≤ 0.

Summing up the two above relations we get

∫ 2T

T

∫

Ω

(

δ(|ut|3 + |p|3) +B(x)∇sut : ∇sut + µR(x, p)|∇p|2
)

dxdt

+

∫ 2T

T

∫

∂Ω

(

β(x)D(x)ut · ut + α(x)p2
)

ds(x)dt ≤ C (4.26)

as a consequence of Hypothesis 3.1.1 and Hölder’s inequality. As a next step, we test

(4.24) by ϕ = utt. Integrating by parts we infer

∫ 2T

T

∫

Ω

(

ρ|utt|2 + εB(x)∇sutt : ∇sutt
)

dxdt (4.27)

=

∫ 2T

T

∫

Ω

(A(x)∇sut : ∇sut − utt∇p) dxdt+
∫ 2T

T

∫

∂Ω

(β(x)C(x)ut · ut − β(x)gt ut) ds(x)dt.

Put

ΓR := (1 +R2)γ. (4.28)

We have by (4.1), (4.26), and Hypothesis 3.1.1 (ii) that

∫ 2T

T

∫

Ω

|∇p|2dxdt ≤ 1

µ♭
ΓR

∫ 2T

T

∫

Ω

µR(x, p)|∇p|2dxdt ≤ CΓR, (4.29)

and (4.26)–(4.27) yield that

∫ 2T

T

∫

Ω

(

ρ|utt|2 + εB(x)∇sutt : ∇sutt
)

dxdt ≤ CΓR . (4.30)

The next estimate is obtained by testing (4.24) by ϕ = u and integrating by parts in time:

∫ 2T

T

∫

Ω

A(x)∇su : ∇sudxdt+

∫ 2T

T

∫

∂Ω

β(x)C(x)u · uds(x)dt

≤
∫ 2T

T

∫

Ω

(

δ|ut|2|u|+ |u| |∇p|+ ρ|ut|2 + εB(x)∇sut : ∇sut
)

dxdt+

∫ 2T

T

∫

∂Ω

β(x)guds(x)dt,

(4.31)
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and from (4.26) and Hölder’s inequality we get

∫ 2T

T

∫

Ω

A(x)∇su : ∇sudxdt+
1

2

∫ 2T

T

∫

∂Ω

β(x)C(x)u · uds(x)dt

≤
∫ 2T

T

∫

Ω

(

δ|ut|2|u|+ |u| |∇p|
)

dxdt+ C. (4.32)

To estimate the right hand side of (4.32), we rewrite δ|ut|2|u| as δ2/3|ut|2δ1/3|u|, and use

Hölder’s inequality to obtain

∫ 2T

T

∫

Ω

δ|ut|2|u|dxdt ≤
(∫ 2T

T

∫

Ω

δ|ut|3dxdt
)2/3(∫ 2T

T

∫

Ω

δ|u|3dxdt
)1/3

≤ C

(∫ 2T

T

∫

Ω

δ|u|3dxdt
)1/3

(4.33)

by virtue of (4.26). In order to estimate the remaining term on the right-hand side of

(4.32), we exploit Hypothesis 3.1.1 and Hölder’s inequality, namely

∫ 2T

T

∫

Ω

|u| |∇p|dxdt ≤ C

∫ 2T

T

∫

Ω

√

µR(x, p)|∇p||u|(1 + p2)γ/2dxdt

≤ C

(∫ 2T

T

∫

Ω

µR(x, p)|∇p|2dxdt
)

1
2
(∫ 2T

T

∫

Ω

|u|2(1 + p2)γdxdt

)1/2

≤ C

(∫ 2T

T

∫

Ω

|u|4dxdt
)1/4(∫ 2T

T

∫

Ω

(1 + p2)2γdxdt

)1/4

where the term
∫ 2T

T

∫

Ω
µR(x, p)|∇p|2dxdt was estimated according to (4.26). By the Sobolev

embedding theorem, we have

(∫ 2T

T

∫

Ω

|u|4dxdt
)1/4

≤
(∫ 2T

T

∫

Ω

A(x)∇su : ∇sudxdt+
1

2

∫ 2T

T

∫

∂Ω

β(x)C(x)u · uds(x)dt
)1/2

+

(∫ 2T

T

∫

Ω

|ut|2dxdt
)1/2

,

and a similar estimate holds for the right-hand side of (4.33). From the above computa-

tions, Young’s inequality, and (4.32) we thus get

∫ 2T

T

∫

Ω

A(x)∇su : ∇sudxdt+

∫ 2T

T

∫

∂Ω

βC(x)u · udsdt ≤ C

(

1 +

∫ 2T

T

∫

Ω

(1 + p2)2γdxdt

)1/2

.

(4.34)
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To estimate the right-hand side of (4.34), we define an auxiliary function

h(p) := p(1 + p2)−γ/2. (4.35)

We have 0 ≤ h′(p) ≤ (1 + γ)(1 + p2)−γ/2 ≤ C
√

µR(x, p) for all p ∈ R. Hence, by Sobolev

embedding and by (4.26) we have

∫ 2T

T

∫

Ω

|h(p)|2dxdt ≤ C

(∫ 2T

T

∫

Ω

|∇h(p)|2dxdt+
∫ 2T

T

∫

∂Ω

α(x)|h(p)|2ds(x)dt
)

≤ C

(∫ 2T

T

∫

Ω

µR(x, p)|∇p|2dxdt+
∫ 2T

T

∫

∂Ω

α(x)|p|2ds(x)dt
)

≤ C.

We thus have

∫ 2T

T

∫

Ω

(1 + p2)1−γdxdt ≤
∫ 2T

T

∫

Ω

(1 + |h(p)|2)dxdt ≤ C.

Since (1− γ) > 2γ by (3.13), we conclude from (4.34) that

∫ 2T

T

∫

Ω

A(x)∇su : ∇sudxdt+

∫ 2T

T

∫

∂Ω

βC(x)u · udsdt ≤ C. (4.36)

4.3 L∞-bounds

Testing (4.24) again by ϕ = ut we get

∫

Ω

(

ρutt · ut + δ|ut|3 +B(x)∇sut : ∇sut +A(x)∇su : ∇sut + εB(x)∇sutt : ∇sut +∇p · ut
)

dx

+

∫

∂Ω

(β(x)C(x)u · ut + β(x)D(x)ut · ut − β(x)g · ut) ds(x) = 0

which can be rewritten as

1

2

d

dt

(∫

Ω

(

ρ|ut|2 +A(x)∇su : ∇su+ εB(x)∇sut : ∇sut
)

dx+

∫

∂Ω

β(x)C(x)u · uds(x)
)

+

∫

Ω

(

δ|ut|3 +B(x)∇sut : ∇sut
)

dx+

∫

∂Ω

β(x) (D(x)ut · ut) ds(x)

=

∫

Ω

−∇p · utdx+
∫

∂Ω

β(x)g · utds(x) a. e. in (T, 2T ). (4.37)

Let y(t) denote the expression under the time derivative in (4.37), and let z(t) denote the

remaining terms. According to (4.26), (4.36), and Hypothesis 3.1.1, Eq. (4.37) is of the
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type ẏ(t) = z(t) with y, z ∈ L1
T , and

∫ 2T

T

|z|dt ≤ C +

(∫ 2T

T

∫

Ω

|∇p|2dxdt
)1/2(∫ 2T

T

∫

Ω

|ut|2dxdt
)1/2

≤ C
√

ΓR.

by virtue of (4.26) and (4.29). From the identity

y(t) =
1

T

∫ t

t−T

(y(s) + (T + s− t)z(s))ds

it follows that the L1-norm of y and z control the L∞-norm of y and so it follows in

particular that

sup ess
t∈(T,2T )

∫

Ω

(

|ut|2 + |∇su|2 + ε|∇sut|2
)

dx+

∫

∂Ω

β(x)|u|2ds(x) ≤ C
√

ΓR. (4.38)

Then we test (4.24) by ϕ = utt. The term
√
εutt belongs to L

2
T (W

1,2(Ω)), so that it is an

admissible choice. This yields for a. e. t ∈ (T, 2T ) that

d

dt

∫

Ω

(

1

2
B(x)∇sut : ∇sut +A(x)∇su : ∇sut +

δ

3
|ut|3

)

dx

+
d

dt

∫

∂Ω

β(x)

(

C(x)u · ut +
1

2
D(x)ut · ut

)

ds(x) +

∫

Ω

(

ρu2tt + εB(x)∇sutt : ∇sutt
)

dx

=

∫

Ω

(−∇p · utt −A(x)∇sut : ∇sut) dx+

∫

∂Ω

β(x) (−gt · ut +C(x)ut · ut) ds(x)

Arguing similarly as above and using (4.26), (4.29)–(4.30) and (4.38), we get

sup ess
t∈(T,2T )

∫

Ω

|∇sut|2dx+
∫

∂Ω

β(x)|ut|2ds(x) ≤ CΓR. (4.39)

By Sobolev embedding of W 1,2(Ω) into L6(Ω) we obtain from (4.39) that

sup ess
t∈(0,T )

|ut(t)|26 ≤ CΓR. (4.40)

The next strategy is to test (4.25) by vt with

v =MR(x, p), (4.41)

see (4.7). However, there is no evidence that vt(·, t) ∈ W 1,2(Ω), so that this is not an

admissible choice. Instead, we therefore test (4.25) by v̂(x, t) = 1
τ
(v(x, t)−v(x, t−τ))λ(t),

where τ > 0 is a small time shift, and λ is a positive Lipschitz continuous T -periodic
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function. We get

∫

Ω

(

(fR(x, p) +G[p])t + δ|p|p
)1

τ
(v(x, t)−v(x, t−τ)λ(t)dx

+

∫

Ω

µR(x, p)∇p · ∇
(

v(x, t)− v(x, t− τ)

τ
λ(t)

)

dx

−
∫

Ω

ut · ∇
(

v(x, t)− v(x, t− τ)

τ
λ(t)

)

dx+

∫

∂Ω

α(x)(p− p̄)
v(x, t)− v(x, t− τ)

τ
λ(t) = 0

(4.42)

We now treat separately each of the four integrals on the left hand side of (4.42), which

we write for simplicity as I + II + III + IV . In order to evaluate the term I, we note

that for a general function v0 ∈ W 1,2
T we have

∫ 2T

T

∣

∣

∣

∣

v̇0(t)−
1

τ
(v0(t)− v0(t− τ))

∣

∣

∣

∣

2

dt =

∫ 2T

T

∣

∣

∣

∣

v̇0(t)−
1

τ

∫ t

t−τ

v̇0(s)ds

∣

∣

∣

∣

2

dt

=
1

τ 2

∫ 2T

T

∫ t

t−τ

(|v̇0(t)− v̇0(s)|ds)2 dt ≤
1

τ

∫ 2T

T

∫ t

t−τ

|v̇0(t)− v̇0(s)|2dsdt

≤ 1

τ

∫ 2T

T

∫ τ

0

|v̇0(t)− v̇0(t− h)|2dhdt = 1

τ

∫ τ

0

∫ 2T

T

|v̇0(t)− v̇0(t− h)|2dtdh

where v̇0(t) is defined as the time derivative of v0(t). From Lusin’s Theorem it follows that
1
τ
(v0(t) − v0(t − τ)) converge strongly to v̇0 in L2

T as τ → 0. Hence, v̂ converge strongly

in L2
T (L

2(Ω)) to vtλ(t), with vt = µ̄(x, p)pt, and we get

lim
τ→0+

∫ 2T

T

Idt = lim
τ→0+

∫ 2T

T

∫

Ω

(

(fR(x, p) +G[p])t + δ|p|p
)1

τ
(v(x, t)− v(x, t− τ))λ(t)dxdt

=

∫ 2T

T

∫

Ω

(

(fR(x, p) +G[p])t + δ|p|p
)

vtλ(t)dxdt. (4.43)

Put

M∗
R(x, p) =

∫ p

0

µ̄(x, s)|s|sds. (4.44)

Then (4.43) can be rewritten by integration by parts as

lim
τ→0+

∫ 2T

T

Idt =

∫ 2T

T

∫

Ω

(fR(x, p) +G[p])tvtλ(t)dxdt− δ

∫ 2T

T

∫

Ω

M∗
R(x, p)λ̇(t)dxdt. (4.45)

Let us pass to the integral II. We have by definition of v that

µR(x, p)∇p = µ0(x) (∇v −∇xMR(x, p)) .
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We split the integral into two parts. On the one hand we have

1

τ

∫ 2T

T

∫

Ω

µ0(x)∇v(x, t) ·
(

∇v(x, t)−∇v(x, t− τ)
)

λ(t)dxdt

=
1

2τ

∫ 2T

T

∫

Ω

µ0(x)
(

|∇v(x, t)|2 − |∇v(x, t− τ)|2 + |∇v(x, t)−∇v(x, t− τ)|2
)

λ(t)dxdt

≥ 1

2τ

∫ 2T

T

∫

Ω

µ0(x)|∇v(x, t)|2(λ(t)− λ(t+ τ))dxdt,

hence,

lim inf
τ→0+

1

τ

∫ 2T

T

∫

Ω

µ0(x)∇v(x, t) ·
(

∇v(x, t)−∇v(x, t−τ)
)

λ(t)dxdt

≥ −
∫ 2T

T

∫

Ω

µ0(x)

2
|∇v(x, t)|2λ̇(t)dxdt. (4.46)

On the other hand,

∫ 2T

T

∫

Ω

µ0(x)∇xMR(x, p) ·
(

∇v(x, t)−∇v(x, t− τ)
)

λ(t)dxdt

= −
∫ 2T

T

∫

Ω

µ0(x)(∇xMR(x, p(x, t+ τ))λ(t+ τ)−∇xMR(x, p(x, t))λ(t)) · ∇v(x, t)dxdt,

hence,

lim
τ→0+

1

τ

∫ 2T

T

∫

Ω

µ0(x)∇xMR(x, p) ·
(

∇v(x, t)−∇v(x, t− τ)
)

λ(t)dxdt

= −
∫ 2T

T

∫

Ω

µ0(x)
(

∇xµ̄R(x, p)ptλ(t) +∇xMR(x, p)λ̇(t)
)

∇vdxdt. (4.47)

Combining (4.46) with (4.47) we obtain

lim inf
τ→0+

∫ 2T

T

IIdt ≥−
∫ 2T

T

∫

Ω

µ0(x)

2
|∇v(x, t)|2 λ̇(t)dxdt

+

∫ 2T

T

∫

Ω

µ0(x)
(

∇xµ̄R(x, p)ptλ(t) +∇xMR(x, p)λ̇(t)
)

∇vdxdt.

(4.48)

We integrate III in time and get

− 1

τ

∫ 2T

T

∫

Ω

ut(x, t) (∇v(x, t)−∇v(x, t− τ))λ(t)dxdt

= −1

τ

∫ 2T

T

∫

Ω

(∇v(x, t)u(x, t)λ(t)−∇(x, t)ut(x, t+ τ)λ(t+ τ)) dxdt
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− 1

τ

∫ 2T

T

∫

Ω

∇v(x, t)
(

ut(x, t)λ(t)− ut(x, t+ τ)λ(t+ τ)
)

dxdt.

Hence,

lim
τ→0

∫ 2T

T

IIIdt =

∫ 2T

T

∫

Ω

∇v(x, t)
(

utt(x, t)λ(t) + ut(x, t) λ̇(t)
)

dxdt. (4.49)

Finally, in order to handle the term IV , we consider the function M̂R(x, v) =
∫ v

0
M−1

R (x, v′)dv′,

where M−1
R is as in (4.8). Then p = M−1

R (x, v). The function M̂R is convex in v because

M−1
R is an increasing function of v. This means that the inequality M̂R(x, v)−M̂R(x, ṽ) ≤

M−1
R (v)(v − ṽ) holds for all v, ṽ ∈ R, in particular

1

τ

(

M̂R(x, v(x, t))− M̂R(x, v(x, t− τ))
)

≤ 1

τ
M−1

R (x, v(x, t))(v(x, t)− v(x, t− τ)).

We thus have

1

τ

∫ 2T

T

∫

∂Ω

α(x)
(

M̂R(x, v(x, t))− M̂R(x, v(x, t− τ))
)

λ(t)ds(x)dt

≤ 1

τ

∫ 2T

T

∫

∂Ω

α(x)p(x, t)
(

v(x, t)− v(x, t− τ)
)

λ(t)ds(x)dt, (4.50)

hence

lim inf
τ→0+

1

τ

∫ 2T

T

∫

∂Ω

α(x)p(x, t)
(

v(x, t)−v(x, t−τ)
)

λ(t)ds(x)dt

≥ −
∫ 2T

T

∫

∂Ω

α(x)M̂R(x, v(x, t)) λ̇(t)ds(x)dt.

In a similar way,

lim
τ→0+

1

τ

∫ 2T

T

∫

∂Ω

α(x)p̄(v(x, t)− v(x, t− τ))λ(t)ds(x)dt

= −
∫ 2T

T

∫

∂Ω

α(x)(p̄tλ(t) + p̄ λ̇(t))v(x, t)ds(x)dt.

Subtracting these two limits we get

lim inf
τ→0+

∫ 2T

T

IV dt ≥
∫ 2T

T

∫

∂Ω

α(x)
(

(

p̄tλ(t) + p̄ λ̇(t)
)

v(x, t)− M̂R(x, v(x, t)) λ̇(t)
)

ds(x)dt.

(4.51)

Combining (4.42) with (4.45), (4.48), (4.49), and (4.51) yields

∫ 2T

T

∫

Ω

(fR(x, p) +G[p])tvtλ(t)dxdt− δ

∫ 2T

T

∫

Ω

M∗
R(x, p)λ̇(t)dxdt
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−
∫ 2T

T

∫

Ω

µ0(x)

2
|∇v|2 λ̇(t)dxdt+

∫ 2T

T

∫

Ω

µ0(x)
(

∇xµ̄R(x, p)ptλ(t)+∇xMR(x, p) λ̇(t)
)

· ∇vdxdt

+

∫ 2T

T

∫

Ω

(

utt(x, t)λ(t) + ut(x, t) λ̇(t)
)

· ∇vdxdt

+

∫ 2T

T

∫

∂Ω

α(x)
(

(

p̄tλ(t) + p̄ λ̇(t)
)

v − M̂R(x, v) λ̇(t)
)

ds(x)dt ≤ 0.

This is an inequality of the form

−
∫ 2T

T

A(t)λ̇(t)dt+

∫ 2T

T

B(t)λ(t)dt ≤ 0 (4.52)

with

A(t) =

∫

Ω

(

µ0(x)

2
|∇v|2 + δM∗

R(x, p)− µ0(x)∇xMR(x, p) · ∇v − ut · ∇v
)

(x, t)dx

+

∫

∂Ω

α(x)
(

M̂R(x, v)− p̄v
)

(x, t)ds(x),

B(t) =

∫

Ω

(

(fR(x, p) +G[p])tvt + (utt + µ0(x)pt∇xµ̄R(x, p)) · ∇v
)

dx+

∫

∂Ω

α(x)p̄tvds(x) .

We have G[p]tvt ≥ 0 a. e. and

fR(x, p)tvt = ∂pf(x, p)µ̄R(x, p)|pt|2 ≥
µ♭

µ♯
(1 +R2)−γ∂pfR(x, p)|pt|2 =

µ♭

µ♯
ΓR∂pfR(x, p)|pt|2

according to (3.14), (4.1) and (4.28). On the other hand, by Hypothesis 3.1.1 (i)–(ii), we

have |∇xµ̄R(x, p)| ≤ C(∂pfR(x, p))
1/2. In particular,

|µ0(x)pt∇xµ̄R(x, p) · ∇v| ≤ C (fR(x, p)tpt)
1/2 |∇v|. (4.53)

Furthermore, by (4.41) we have |∇v| ≤ |∇xMR(x, p)|+ µ̄R(x, p)|∇p|, hence, by (4.26),

∫ 2T

T

∫

Ω

|∇v(x, t)|2dxdt ≤ C

(

1 +

∫ 2T

T

∫

Ω

µR(x, p)|∇p|2dxdt
)

≤ C. (4.54)

Using (4.53)–(4.54), Hölder’s inequality, and the inequality az2− bz ≥ a
2
z2− b2

2a
for a > 0,

b > 0, and z ∈ R we conclude that

∫ 2T

T

∫

Ω

(

(fR(x, p) +G[p])tvt + µ0(x)pt∇xµ̄R(x, p) · ∇v
)

dxdt

≥ µ♭

µ♯ΓR

∫ 2T

T

∫

Ω

∂pfR(x, p)|pt|2dxdt− C

(∫ 2T

T

∫

Ω

∂pfR(x, p)|pt|2dxdt
)1/2
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≥ µ♭

2µ♯ΓR

∫ 2T

T

∫

Ω

∂pfR(x, p)|pt|2dxdt−
Cµ♯ΓR
2µ♭

(4.55)

with a constant C > 0 independent of R, δ, and ε. The remaining terms in B(t) can be

estimated using (4.26), (4.30), and (4.54) as follows.

∫ 2T

T

∫

Ω

|utt| |∇v|dxdt ≤ CΓ
1/2
R ,

∫ 2T

T

∫

∂Ω

α(x)|p̄t||v|ds(x)dt ≤ C.

Hence,
∫ 2T

T

B(t)dt ≥ c

ΓR

∫ 2T

T

∫

Ω

∂pfR(x, p)|pt|2dxdt− CΓR (4.56)

with constants C > c > 0 independent of R, δ, and ε. Using the relations 0 ≤ M̂R(x, v) =
∫ p

0
µ̄R(x, p

′)p′dp′ ≤ (µ♯/2µ♭)p2 and 0 ≤ M∗
R(x, p) ≤ (µ♯/µ♭)|p|3, we similarly obtain from

(4.26) that

∫ 2T

T

|A(t)|dt ≤ C

(

1 +

∫ 2T

T

∫

Ω

|∇v|2dxdt+
∫ 2T

T

∫

∂Ω

α(x)p2ds(x)dt

)

≤ C. (4.57)

We now choose arbitrary points 2T < r < 3T and T < s < r such that r − s < T . Then

for each ε < r−s
2

we set in (4.52)

λ(t) =
1

ε
(t− s) for t ∈ (s, s+ ε), λ(t) =

1

ε
(r − t) for t ∈ (r − ε, r),

choosing λ constant and continuous otherwise, T -periodically extended to the whole real

line. All functions under the integrals in (4.52) are T -periodic. We thus can replace the

integration domain [T, 2T ] with [s, s+ T ], which yields that

1

ε

∫ r

r−ε

A(t)dt ≤ 1

ε

∫ s+ε

s

A(t)dt−
∫ 2T

T

B(t)dt.

Integrating the above inequality over s from r − T to r − 2ε we obtain

1

ε

∫ r

r−ε

A(t)dt ≤ 1

T − 2ε

∫ 2T

T

|A(t)|dt−
∫ 2T

T

B(t)dt. (4.58)

At each of its Lebesgue points t = r, the function A(t) admits therefore a pointwise bound

given by the right hand side of (4.58), which is in turn estimated by (4.56)–(4.57), that
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is,
c

ΓR

∫ 2T

T

∫

Ω

∂pfR(x, p)|pt|2dxdt+ sup ess
t∈[T,2T ]

A(t) ≤ CΓR. (4.59)

To estimate A(t) from below, we first notice that

M̂R(x, v)− p̄v =

∫ p

0

(p′ − p̄)µ̄R(x, p
′)dp′ ≥ µ♭

2µ♯ΓR
(p2 − C),

and

|∇v|2 = µ̄2
R(x, p)|∇p|2 ≥

(

µ♭

µ♯ΓR

)2

|∇p|2.

The above computations yield that

A(t) ≥ c

(

1

Γ2
R

∫

Ω

|∇p|2(x, t)dx+ 1

ΓR

∫

∂Ω

α(x)p2ds(x)

)

− C.

From (4.59) we thus obtain that

cΓR

∫ 2T

T

∫

Ω

∂pfR(x, p)|pt|2dxdt+ sup ess
t∈(T,2T )

(∫

Ω

|∇p|2(x, t)dx+
∫

∂Ω

α(x)p2ds(x)

)

≤ CΓ3
R.

(4.60)

4.4 Uniform estimates of p

To remove the cut-off parameter R, we proceed by Moser iterations and define Lipschitz

continuous functions aR,k(p) and their antiderivatives AR,k(p) with indices k ≥ 1 and with

R > 1 by the formula

aR,k(p) = p(1 + min{p2, R2})k, AR,k(p) = 1 +

∫ p

0

aR,k(s)ds . (4.61)

We have

a′R,k(p) =

{

(1 + p2)k−1(1 + (2k + 1)p2) for |p| < R ,

(1 +R2)k for |p| ≥ R,
(4.62)

and

AR,k(p) =







1
2k+2

(1+p2)k+1 for |p| < R,

1
2k+2

(1+R2)k+1 + 1
2
(p2−R2)(1+R2)k ≥ 1

2k+2
(1+p2)(1+R2)k for |p| ≥ R.

(4.63)
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Put

Fk(x, p) =
f ♭

2k
+

∫ p

0

∂pfR(x, s)aR,k(s)ds,

Vk[p] =

∫ ∞

0

∫ fr[p]

0

aR,k(v)ψ(x, r, v)dvdr.

(4.64)

Then

G[p]taR,k(p)− Vk[p]t ≥ 0 a. e. (4.65)

by Proposition 3.3.5, and testing (4.25) by aR,k(p) we obtain

d

dt

∫

Ω

(Fk(·, p) + Vk[p])(x, t)dx+

∫

Ω

µR(x, p)|∇p|2a′R,k(p)dx+
∫

∂Ω

α(x)(p− p̄)aR,k(p)ds(x)

≤
∫

Ω

(ut · ∇p)a′R,k(p)dx ≤ 1

2

∫

Ω

|ut|2
a′R,k(p)

µR(x, p)
dx+

∫

Ω

µR(x, p)

2
|∇p|2a′R,k(p)dx.

(4.66)

We have omitted the positive δ-term on the left-hand side which does not bring any

relevant information. The boundary term will be estimated from below as follows. We

first notice that the function aR,k is increasing, hence

(p− p̄)aR,k(p) ≥ AR,k(p)− AR,k(p̄).

Since the function p̄ is bounded, we may take

R > sup ess p̄ (4.67)

and finally get the estimate

d

dt

∫

Ω

(Fk(·, p) + Vk[p])dx+ c

∫

Ω

|∇p|2µR(x, p)a′R,k(p)dx+
∫

∂Ω

α(x)AR,k(p)ds(x)

≤ C2k+2 + C

∫

Ω

|ut|2
a′R,k(p)

µR(x, p)
dx (4.68)

with constants c, C independent of δ, ε, R and k. The last term on the right-hand side of

(4.68) will again be estimated by Hölder’s inequality and (4.40) as follows:

∫

Ω

|ut|2
a′R,k(p)

µR(x, p)
dx ≤ |ut(t)|26

(

∫

Ω

(

a′R,k(p)

µR(x, p)

)3/2

dx

)2/3

≤ CΓR

(

∫

Ω

(

a′R,k(p)

µR(x, p)

)3/2

dx

)2/3

.

Then (4.68) can be reduced to

d

dt

∫

Ω

(Fk(·, p) + Vk[p])dx+ c

∫

Ω

|∇p|2µR(x, p)a′R,k(p)dx+
∫

∂Ω

α(x)AR,k(p)ds(x)
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≤ C2k+2 + CΓR

(

∫

Ω

(

a′R,k(p)

µR(x, p)

)3/2

dx

)2/3

. (4.69)

Put

wk =

{

(1 + p2)
k+1−η

2 for |p| < R,

(1 + p2)
1
2 (1 +R2)

k−η
2 for |p| ≥ R,

ŵk =

{

(1 + p2)
k+γ
2 for |p| < R,

(1 +R2)
k+γ
2 for |p| ≥ R,

(4.70)

Using the hypothesis γ + η ≤ 1 from (3.13) we obtain the pointwise bounds almost

everywhere

0 ≤ ŵk ≤ wk ,

a′R,k(p)

µR(x, p)
≤ 1

µ♭
(2k + 1)|ŵk|2 ,

|wk|2 ≤ (2k + 2)AR,k(p) ,

|∇wk|2 ≤
1

µ♭
(k + 1)|∇p|2µR(x, p)a′R,k(p) .

(4.71)

From (4.69) we thus obtain

d

dt

∫

Ω

(Fk(·, p) + Vk[p])dx+
c

k + 1

(∫

Ω

|∇wk|2dx+
∫

∂Ω

α(x)|wk|2ds(x)
)

≤ C2k+2 + C(k + 1)ΓR

(∫

Ω

|ŵk|3dx
)2/3

, (4.72)

where c and C are similarly as before constants independent of δ, ε, k and R. For

simplicity, put

Fk(t) =

∫

Ω

Fk(x, p(x, t))dx, Vk(t) =

∫

Ω

Vk[p](x, t)dx. (4.73)

Using the symbols | · |q and ∥ · ∥1,q for 1 ≤ q ≤ ∞ to denote the norms in Lq(Ω) and in

W 1,q(Ω), respectively, we have the interpolation inequality

|ŵk(t)|3 ≤ |ŵk(t)|1/33/2 |ŵk(t)|
2/3
6 ≤ |ŵk(t)|1/33/2 |wk(t)|

2/3
6 , (4.74)

and by embedding of W 1,2(Ω) into L6(Ω),

|wk(t)|6 ≤ C∥wk(t)∥1,2.
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The right-hand side of (4.72) can thus be estimated from above by

C2k+2 + C(k + 1)ΓR|ŵk(t)|2/33/2 ∥wk(t)∥
4/3
1,2 . (4.75)

We now use Young’s inequality

a2/3b4/3 ≤ 1

3ω3
a2 +

2ω3/2

3
b2

with a = (C(k + 1)ΓR)
3/2|ŵk(t)|3/2, b = ∥wk(t)∥1,2, and ω = ( c

k+1
)2/3. This yields (note

that k ≥ 1)

d

dt
(Fk(t) +Vk(t)) +

c

k
∥wk(t)∥21,2 ≤ C2k+2 + Ck5Γ3

R|ŵk(t)|23/2. (4.76)

By (3.28) we have

0 ≤ Vk(t) ≤ CB2k+2, (4.77)

for all t ≥ 0, and from Hypothesis 3.1.1 we get the lower bound for Fk

Fk(t) ≥
f ♭

2k
|wk(t)|22. (4.78)

An upper bound for Fk(x, p) for |p| ≤ R is still straightforward, namely

Fk(x, p) ≤
f ♭

2k
+

∫ p

0

f ♯s(1 + s2)kds ≤ f ♯

2k
(1 + p2)k+1. (4.79)

The case p > R or p < −R is more delicate. For p > R we have

Fk(x, p) ≤ f ♭

2k
+

∫ R

0

f ♯s(1 + s2)kds+

∫ p

R

f ♯s(1 +R2)kds

≤ f ♯

2k
(1 +R2)k

(

1 +R2 + k(p2 −R2)
)

≤ f ♯

2
(1 + p2)(1 +R2)k

≤ f ♯

2
|wk|qk (4.80)

for a. e. (x, t) ∈ Ω× (T, 2T ) with

qk =
2(k + 1)

k + 1− η
. (4.81)

Indeed, (4.80) holds for p < −R as well by symmetry. By virtue of (4.70) and (4.78)–(4.80)

we thus have
c

k
|wk(t)|22 ≤ Fk(t) ≤ C|wk(t)|qkqk . (4.82)
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Note that qk ≤ 4 for all k ≥ 1. It follows from (4.82)–(4.82) and from the embedding

W 1,2(Ω) into L6(Ω) that
1

k
∥wk(t)∥21,2 ≥

c

k
F

2/qk
k

with some constant c > 0. From (4.76) we thus obtain (note that 2/qk < 1) that

d

dt
(Fk(t) +Vk(t)) +

c

k
(Fk(t) +Vk(t))

2/qk ≤ C2k+2 + Ck5Γ3
R|ŵk(t)|23/2

≤ Ck5Γ3
Rmax{Ck, |ŵk(t)|3/2}2 =:MR,k(t).

(4.83)

Put M∗
R,k = sup esst∈[T,2T ]MR,k(t). Then (4.83) is of the form

Ẏ (t) + bY κ(t) ≤M (4.84)

with a T -periodic function Y = Fk + Vk and with constants b = c/k, κ = 2/qk, and

M = M∗
R,k. Let H be the Heaviside function H(s) = 1 for s > 0, H(s) = 0 for s ≤ 0.

Multiplying (4.84) by H(Y κ(t)− (M/b)) we obtain

d

dt

(

Y (t)− (M/b)1/κ
)+

+ (bY κ(t)−M)+ ≤ 0.

Integrating from T to 2T and using the fact that Y is periodic, we thus have

∫ 2T

T

(bY κ(t)−M)+dt ≤ 0,

which is only possible if Y (t) ≤ (M/b)1/κ a. e. Hence, (4.83) yields that

Fk(t) ≤ C(kM∗
R,k)

qk/2. (4.85)

Referring again to (4.82) (note that qk ≤ 4) we thus conclude that

sup ess
t∈[T,2T ]

|ŵk(t)|22 ≤ sup ess
t∈[T,2T ]

|wk(t)|22 ≤ Ck13Γ
3qk/2
R max{Ck, sup ess

t∈[T,2T ]

|ŵk(t)|3/2}qk . (4.86)

Putting for q ≥ 1

∥ŵk∥∗q = sup ess
t∈[T,2T ]

|ŵk(t)|q,

we can reformulate (4.86) as

(

∥ŵk∥∗2
)2 ≤ Ck13Γ

3qk/2
R

(

max{Ck, ∥ŵk∥∗3/2}
)qk (4.87)
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with a constant C independent of k and R.

The Moser iteration technique will be applied to the new variable

w := 1 + min{p2, R2}. (4.88)

By (4.70), inequality (4.87) can be rewritten as

(

∥w∥∗rk
)rk ≤ Qk13Γ

3qk/2
R max{Lrk ,

(

∥w∥∗3rk/4
)rk/2}qk (4.89)

with rk = k + γ and with some constants Q ≥ 1, L ≥ 1 that we keep fixed from now on.

We thus have

∥w∥∗rk ≤ (Qk13)1/rkΓ
3qk/2rk
R max{L, ∥w∥∗3rk/4}

qk/2. (4.90)

We are ready now to start the Moser iterations. We now choose k in (4.90) to be the

sequence {kj} for j ∈ N ∪ {0}

kj = 3

(

4

3

)j

− γ, (4.91)

and put

ρj = rkj = kj + γ = 3

(

4

3

)j

, Pj = max{L, ∥w∥∗ρj}, δj =
qkj
2

− 1 =
η

kj + 1− η
.

Then, by virtue of (4.81), the inequality (4.90) is of the form

Pj ≤ (ρ13j Q)
1/ρjΓ

3(1+δj)/ρj
R P

1+δj
j−1 for j = 1, 2, . . . (4.92)

The logarithm applied to (4.92) yields

logPj − (1 + δj) logPj−1 ≤
1

ρj

(

log(313Q) + 3(1 + δj) log ΓR + 13 log

(

4

3

)j
)

=
1

3

(

3

4

)j (

log(313Q) + 3(1 + δj) log ΓR + 13j log
4

3

)

,

(4.93)

or, equivalently, for j ∈ N,

logPj
∏j

i=0(1 + δi)
− logPj−1
∏j−1

i=0 (1 + δi)
≤ 1

3

(

3

4

)j
log(313Q) + 3(1 + δj) log ΓR + 13j log(4/3)

∏j
i=0(1 + δi)

≤ 1

3

(

3

4

)j
log(313Q) + 3 log ΓR + 13j log(4/3)

1 + δ0
. (4.94)
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The sequence on the right-hand side of (4.94) forms a convergent series, more precisely,

∞
∑

j=1

(

3

4

)j

= 3,
∞
∑

j=1

j

(

3

4

)j

= 12.

Hence,

sup
j≥1

logPj
∏j

i=1(1 + δi)
≤ logP0 + log(313Q) + 3 log ΓR + 52 log

(

4

3

)

. (4.95)

We have by virtue of (4.60) that P0 ≤ CΓ3
R. We thus have

sup
j≥1

logPj
∏j

i=1(1 + δi)
≤ 6 log ΓR + C (4.96)

with a constant C > 0 independent of j and R. Note that

δi =
η

ki + 1− η
≤ 1

ki + γ
=

1

3

(

3

4

)i

.

We thus have

∞
∏

i=1

(1 + δi) = exp
(

∞
∑

i=1

log(1 + δi)
)

≤ exp
(

∞
∑

i=1

δi

)

≤ e,

hence, by definition (4.28) of ΓR,

sup
j≥1

logPj ≤ 6γe log(1 +R2) + C∗ (4.97)

with a constant C∗ > 0 independent of j and R, that is,

sup
j≥1

Pj ≤ eC
∗

(1 +R2)σ =: P ∗(R). (4.98)

with

σ = 6γe < 1

by Hypothesis (3.13). We see that the norms ∥w∥∗k are bounded by P ∗(R) independent

of k. We now easily prove that

w(x, t) ≤ P ∗(R) for almost all (x, t) ∈ Ω× (T, 2T ). (4.99)

Indeed, assume that there exist a > 0 and a set A ⊂ Ω × (T, 2T ) such that w(x, t) ≥
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P ∗(R) + a for a. e. (x, t) ∈ A. Then

(P ∗(R) + a)q|A| ≤
∫∫

A

wqdxdt ≤
∫ 2T

T

∫

Ω

wqdxdt ≤ T sup ess
t∈[T,2T ]

∫

Ω

wqdx ≤ TP ∗(R)q.

(4.100)

We conclude from (4.100) that

|A| ≤ T

(

P ∗(R)

P ∗(R) + a

)q

for all q > 1. This is only possible if |A| = 0. Hence, w(x, t) ≤ P ∗(R) a. e. in agreement

with (4.99). We can summarize the above computations as follows.

Proposition 4.4.1. Let R̄ > 0 be chosen such that 1 + R̄2 > eC
∗/(1−σ) with C∗ and σ as

in (4.98). Let (u, p) be the solution to (4.24)–(4.25) given by Proposition 4.1.1 for R = R̄.

Then we have |p(x, t)| ≤ R̄ for a. e. (x, t) ∈ Ω× (T, 2T ), and (u, p) is the solution to the

system

∫ 2T

T

∫

Ω

(

(ρutt + δ|ut|ut)ϕ+ (B(x)∇sut +A(x)∇su+ εB(x)∇sutt) : ∇sϕ+∇p ϕ
)

λ(t)dxdt

+

∫ 2T

T

∫

∂Ω

β(x)(C(x)u+D(x)ut − g)ϕλ(t)ds(x)dt = 0, (4.101)

∫ 2T

T

∫

Ω

(

(

(f(x, p) +G[p])t + δ|p|p
)

ψ + (µ(x, p)∇p− ut)∇ψ
)

λ(t)dxdt

+

∫ 2T

T

∫

∂Ω

α(x)(p− p̄)ψλ(t)ds(x)dt = 0 (4.102)

for all ϕ ∈ X3, ψ ∈ X, and λ ∈ L2
T with the regularity as in Proposition 4.1.1.

Proof. Assuming that for some (x, t) we have |p(x, t)| > R̄ would imply that w(x, t) =

1 + min{p2(x, t), R̄2} = 1 + R̄2. By virtue of (4.99) we have

1 + R̄2 = w(x, t) ≤ P ∗(R̄) = eC
∗

(1 + R̄2)σ

which contradicts the choice of R̄. Hence, the solution satisfies the condition |p| ≤ R̄ a. e.

and the proof is complete.

We are now ready to finish the proof of Theorem 3.1.3.

Proof of Theorem 3.1.3.

Solutions to (4.101)–(4.102) satisfy, by virtue of (4.26), (4.29), (4.30), (4.36), (4.60) the
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following estimates independent of δ and ε

∫ 2T

T

∫

Ω

(

|utt|2 + δ|ut|3 + εB(x)∇sutt : ∇sutt +B(x)∇sut : ∇sut +A(x)∇su : ∇su
)

dxdt

+

∫ 2T

T

∫

∂Ω

β(x) (D(x)ut · ut +C(x)u · u) ds(x)dt ≤ C,

sup ess
(x,t)∈Ω×(T,2T )

|p(x, t)|+
∫ 2T

T

∫

Ω

(

δ|p|3 + |pt|2 + |∇p|2
)

dxdt+

∫ 2T

T

∫

∂Ω

α(x)p2ds(x) ≤ C.

The term δ|p|p converges strongly to 0 in L∞(Ω × (T, 2T )) as δ → 0 due to the uniform

upper bound for p. Similarly, ut are bounded in L4
T (L

4(Ω)) by Sobolev embeddings, hence

δ|ut|ut converge strongly to 0 in L2
T (L

2(Ω)). Furthermore, for ϕ ∈ X3 and λ ∈ L2
T we

have

∫ 2T

T

∫

Ω

εB(x)∇sutt ϕλ(t)dxdt

≤ Cε1/2
(∫ 2T

T

∫

Ω

εB(x)∇sutt : ∇suttdxdt

)1/2(∫

Ω

|ϕ(x)|2dx
)1/2(∫ 2T

T

|λ(t)|2dt
)1/2

≤ Cε1/2
(∫

Ω

|ϕ(x)|2dx
)1/2(∫ 2T

T

|λ(t)|2dt
)1/2

.

In the linear terms in (4.101)–(4.102), we pass to the limit as δ → 0 and ε → 0 by weak

convergence. In the nonlinear terms in (4.102), we use the compactness of the embedding

of W 1,2
T (L2(Ω)) ∩ L2

T (X) ∩ L∞(Ω × (T, 2T )) into Lq(Ω;CT ) for every q > 1 to check

that p = pδ,ε converge pointwise almost everywhere, and use the strong continuity of the

operator G as well as the Lebesgue Dominated Convergence Theorem. Hence, for every

fixed ϕ ∈ X3, ψ ∈ X, and λ ∈ L2
T we can pass to the limit as δ → 0 and ε → 0 and

conclude thus the proof of Theorem 3.1.3.
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Part III

Obstacle problems applied to

anisotropic materials
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The aim of Part III is to focus on the analysis of higher differentiability results for

solutions to a class of double phase obstacle problems in the scale of Besov spaces. In

particular, this third part of the thesis contains the results published in [67, 68]. It is

worth noticing that double phase functionals are a useful tool to study the behaviour

of strongly anisotropic materials whose hardening properties are strongly dependent on

the point and connected to the exponent ruling the growth of the gradient variable. The

coefficient a(·) (see (7.1)) regulates the mixture between two different materials, with p

and q hardening, respectively (see, for instance, [121, 122]).

The obstacle problem appeared in the mathematical literature in the work of Stam-

pacchia [111] in the special case ψ = χE and related to the capacity of a subset E ⋐ Ω; in

an earlier independent work, Fichera [51] solved the first unilateral problem, the so-called

Signorini problem in elastostatics.

It is usually observed that the regularity of solutions to the obstacle problems is in-

fluenced by the one of the obstacle; for example, for linear obstacle problems, obstacle

and solutions have the same regularity [11, 17, 80]. This does not apply in the nonlinear

setting, hence along the years, there have been intense research activities for the regular-

ity of the obstacle problem in this direction. The regularity theory for obstacle problems

driven by quasilinear operators of the p-Laplacian type started with the contributions of

Duzaar and Fuchs [37], Duzaar [36], Chloe and Lewis [22] and Fuchs [57].

In the case of standard growth conditions, Eleuteri and Passarelli di Napoli [43] proved

that an extra differentiability of integer or fractional order of the gradient of the obstacle

transfers to the gradient of the solutions, provided the partial map x 7→ DξF̃ (x, ξ) pos-

sesses a suitable differentiability property, where F̃ is a general integrand independent of

the w−variable.

Recently, it was proved in [61, 62] that the weak differentiability of integer order of the

partial map x 7→ DξF̃ (x, ξ) is a sufficient condition to prove that an extra differentiability

of integer order of the gradient of the obstacle transfers to the gradient of the solutions

to obstacle problems with p, q-growth conditions. This property was generalized also for

fractional differentiability, connected to Besov spaces in [67].

The intermediate case of higher differentiability in the setting of variable exponents case

has been carried out in the paper [54].

The regularity properties of local minimizers to double phase functionals have recently

been investigated for unconstrained problems. In particular, we quote the work [26] by

Colombo and Mingione where the functional H(x,Du) has been considered (see (7.3)),

[8] by Baroni, Colombo and Mingione who studied the integrand defined in (7.2) and [27]
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by Coscia, who dealt with the functional defined by

F(w,Ω) :=

∫

Ω

b(x, w)[|Dw|p + a(x)|Dw|plog(e+ |Dw|)]dx.

Furthermore, a higher fractional differentiability [120] and a Lipschitz continuity result

[32] have been proved for solutions to double phase elliptic obstacle problems. We also

recall that when referring to p, q-growth conditions, in order to ensure the regularity of

minima, a smallness condition on the gap q/p > 1 is necessary (see, for instance, the

counterexamples in [53, 63, 96]).

Part III is structured as follows. In Chapter 5 we recall some notation and preliminary

results. In Chapter 6, we study of the higher differentiablity properties of solutions to

(6.3) in case of p, q-growth conditions. We assume that both the gradient of the obstacle

and the partial map x 7→ A(x, ξ) belong to a suitable Sobolev class of fractional order.

The results contained in Chapter 6 are crucial to then prove the main result of Part III

in Chapter 7, which is Theorem 7.0.1, namely, higher differentiability properties for a

solution to a class of double phase functionals in the scale of Besov spaces.
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Chapter 5

Notation and background

In what follows, B(x, r) = Br(x) = {y ∈ R
n : |y − x| < r} will denote the ball centered

at x of radius r. We shall omit the dependence on the center and on the radius when no

confusion arises. For a function u ∈ L1(B), the symbol

uB :=

∫

B

u(x)dx =
1

|B|

∫

B

u(x)dx.

will denote the integral mean of the function u over the set B.

It is convenient to introduce an auxiliary function

Vd(ξ) = |ξ| d−2
2 ξ

defined for all ξ ∈ R
n. One can easily check that

|ξ|d = |Vd(ξ)|2. (5.1)

For the auxiliary function Vd, we recall the following estimate (see the proof of [64, Lemma

8.3]):

Lemma 5.0.1. Let 1 < d < +∞. There exists a constant c = c(n, d) > 0 such that

c−1(|ξ|2 + |η|2) d−2
2 ≤ |Vd(ξ)− Vd(η)|2

|ξ − η|2 ≤ c(|ξ|2 + |η|2) d−2
2

for any ξ, η ∈ R
n, ξ ̸= η.

Now we state a well-known iteration lemma (see [64, Lemma 6.1] for the proof).

Lemma 5.0.2. Let Φ : [R
2
, R] → R be a bounded nonnegative function, where R > 0.

Assume that for all R
2
≤ r < s ≤ R it holds

Φ(r) ≤ θΦ(s) + A+
B

(s− r)2
+

C

(s− r)γ
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where θ ∈ (0, 1), A, B, C ≥ 0 and γ > 0 are constants. Then there exists a constant

c = c(θ, γ) such that

Φ

(

R

2

)

≤ c

(

A+
B

R2
+

C

Rγ

)

.

5.1 Besov-Lipschitz spaces

Let v : Rn → R be a function. As in [70, Section 2.5.12], given 0 < α < 1 and 1 ≤ p, q <

∞, we say that v belongs to the Besov space Bα
p,q(R

n) if v ∈ Lp(Rn) and

∥v∥Bα
p,q(R

n) = ∥v∥Lp(Rn) + [v]Bα
p,q(R

n) <∞,

where

[v]Bα
p,q(R

n) =

(∫

Rn

(∫

Rn

|v(x+ h)− v(x)|p
|h|αp dx

)
q
p dh

|h|n
) 1

q

<∞.

Equivalently, we could simply say that v ∈ Lp(Rn) and τhv
|h|α

∈ Lq
(

dh
|h|n

;Lp(Rn)
)

. As usual,

if one simply integrates for h ∈ B(0, δ) for a fixed δ > 0 then an equivalent norm is

obtained, because

(∫

{|h|≥δ}

(∫

Rn

|v(x+ h)− v(x)|p
|h|αp dx

)
q
p dh

|h|n
) 1

q

≤ c(n, α, p, q, δ)∥v∥Lp(Rn).

Similarly, we say that v ∈ Bα
p,∞(Rn) if v ∈ Lp(Rn) and

[v]Bα
p,∞(Rn) = sup

h∈Rn

(∫

Rn

|v(x+ h)− v(x)|p
|h|αp dx

) 1
p

<∞.

Again, one can simply take supremum over |h| ≤ δ and obtain an equivalent norm.

By construction, Bα
p,q(R

n) ⊂ Lp(Rn). One also has the following version of Sobolev

embeddings (a proof can be found at [70, Proposition 7.12]).

Lemma 5.1.1. Suppose that 0 < α < 1.

(a) If 1 < p < n
α
and 1 ≤ q ≤ p∗α = np

n−αp
, then there is a continuous embedding Bα

p,q(R
n) ⊂

Lp(Rn).

(b) If p = n
α
and 1 ≤ q ≤ ∞, then there is a continuous embedding Bα

p,q(R
n) ⊂ BMO(Rn),

where BMO denotes the space of functions with bounded mean oscillations [64, Chapter

2].

For further needs, we recall the following inclusions ([70, Proposition 7.10 and Formula

(7.35)]).
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Lemma 5.1.2. Suppose that 0 < β < α < 1.

(a) If 1 < p <∞ and 1 ≤ q ≤ r ≤ ∞, then Bα
p,q(R

n) ⊂ Bα
p,r(R

n).

(b) If 1 < p <∞ and 1 ≤ q, r ≤ ∞, then Bα
p,q(R

n) ⊂ Bβ
p,r(R

n).

(c) If 1 ≤ q ≤ ∞, then Bα
n
α
,q(R

n) ⊂ Bβ
n
β
,q(R

n).

Combining Lemmas 5.1.1 and 5.1.2, we get the following Sobolev type embedding

theorem for Besov spaces Bα
p,∞(Rn).

Lemma 5.1.3. Suppose that 0 < α < 1 and 1 < p < n
α
. There is a continuous embedding

Bα
p,∞(Rn) ⊂ Lp

∗
β(Rn), for every 0 < β < α. Moreover, the following local estimate

∥F∥
L

np
n−βp (Bϱ)

≤ c(R− ϱ)−δ(∥F∥Lp(BR) + [F ]Bα
p,q(BR)) (5.2)

holds for every ball Bϱ ⊂ BR, with c = c(n, p, q, α, β) and δ = δ(n, p, q).

Given a domain Ω ⊂ R
n, we say that v belongs to the local Besov space Bα

p,q,loc if

φ v ∈ Bα
p,q(R

n) whenever φ ∈ C∞
c (Ω). It is worth noticing that one can prove suitable

version of Lemma 5.1.1 and Lemma 5.1.2, by using local Besov spaces.

The following Lemma and its proof can be found in [6].

Lemma 5.1.4. A function v ∈ Lploc(Ω) belongs to the local Besov space Bα
p,q,loc if, and

only if,
∥

∥

∥

∥

τhv

|h|α
∥

∥

∥

∥

Lq
(

dh
|h|n

;Lp(B)
)

<∞

for any ball B ⊂ 2B ⊂ Ω with radius rB. Here the measure dh
|h|n

is restricted to the ball

B(0, rB) on the h-space.

It is known that Besov-Lipschitz spaces of fractional order α ∈ (0, 1) can be character-

ized in pointwise terms. Given a measurable function v : Rn → R, a fractional α-Hajlasz

gradient for v is a sequence {gk}k of measurable, non-negative functions gk : Rn → R,

together with a null set N ⊂ R
n, such that the inequality

|v(x)− v(y)| ≤ (gk(x) + gk(y))|x− y|α

holds whenever k ∈ Z and x, y ∈ R
n \ N are such that 2−k ≤ |x − y| < 2−k+1. We say

that {gk}k ∈ lq(Z;Lp(Rn)) if

∥{gk}k∥lq(Lp) =

(

∑

k∈Z

∥gk∥qLp(Rn)

) 1
q

<∞

The following result was proved in [81].
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Theorem 5.1.5. Let 0 < α < 1, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Let v ∈ Lp(Rn). One

has v ∈ Bα
p,q(R

n) if, and only if, there exists a fractional α-Hajlasz gradient {gk}k ∈
lq(Z;Lp(Rn)) for v. Moreover,

∥v∥Bα
p,q(R

n) ≃ inf ∥{gk}k∥lq(Lp),

where the infimum runs over all possible fractional α-Hajlasz gradients for v.

5.2 Difference quotient

We recall some properties of the finite difference quotient operator that will be needed in

the sequel. Let us recall that, for every function F : Rn → R the finite difference operator

is defined by

τs,hF (x) = F (x+ hes)− F (x)

where h ∈ R
n, es is the unit vector in the xs direction and s ∈ {1, ..., n}.

We start with the description of some elementary properties that can be found, for ex-

ample, in [64].

Proposition 5.2.1. Let F and G be two functions such that F,G ∈ W 1,p(Ω), with p ≥ 1,

and let us consider the set

Ω|h| = {x ∈ Ω : dist(x, ∂Ω) > |h|}.

Then

(i) τhF ∈ W 1,p(Ω|h|) and

Di(τhF ) = τh(DiF ).

(ii) If at least one of the functions F or G has support contained in Ω|h|, then
∫

Ω

FτhGdx =

∫

Ω

Gτ−hFdx.

(iii) We have

τh(FG)(x) = F (x+ h)τhG(x) +G(x)τhF (x).

The next result about finite difference operator is a kind of integral version of Lagrange

Theorem.

Lemma 5.2.2. If 0 < ρ < R, |h| < R−ρ
2
, 1 < p < +∞ and F, DF ∈ Lp(BR), then

∫

Bρ

|τhF (x)|pdx ≤ c(n, p)|h|p
∫

BR

|DF (x)|pdx.
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Moreover,
∫

Bρ

|F (x+ h)|pdx ≤
∫

BR

|F (x)|pdx.

We conclude this subsection recalling the following Lemma (see [85]), which can be

seen as a consequence of Lemmas 5.1.1 and 5.1.2.

Lemma 5.2.3. Let F ∈ L2(BR). Suppose that there exist ρ ∈ (0, R), 0 < α < 1 and

M > 0 such that
n
∑

s=1

∫

Bρ

|τs,hF (x)|2dx ≤M2|h|2α,

for every h such that h < R−ρ
2

. Then F ∈ L
2n

n−2β (Bρ) for every β ∈ (0, α) and

∥F∥
L

2n
n−2β (Bρ)

≤ c(M + ∥F∥L2(BR)),

with c = c(n,N,R, ρ, α, β).

5.3 Preliminary results on standard growth condi-

tions

For sake of clarity, we would like to recall the following regularity result (see [43] for the

proof), which will be used in order to prove Theorem 6.0.1.

In the case of a regularity of the type Bα
p,∞, which is the weakest one in the scale of

Besov spaces, both on the coefficients and on the gradient of the obstacle, we have the

following

Theorem 5.3.1. Assume that A(x, ξ) satisfies (A1)-(A3) for an exponent 2 ≤ p = q < n
α

and let u ∈ Kψ(Ω) be the solution to the obstacle problem (6.3). If there exists a non-

negative function k ∈ L
n
α
loc
(Ω) such that

|A(x, ξ)−A(y, ξ)| ≤ |x− y|α(k(x) + k(y))(µ2 + |ξ|2) p−1
2 ,

for a.e. x, y ∈ Ω and for every ξ ∈ R
n, then the following implication

Dψ ∈ Bγ
p,∞,loc(Ω) ⇒ (µ2 + |Du|2) p−2

4 Du ∈ Bα
2,∞,loc(Ω),

holds, provided 0 < α < γ < 1.
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Chapter 6

Higher differentiability in the case of

lagrangians F̃ (x,Du)

In this chapter we study of the higher fractional differentiability properties of the gradient

of solutions u ∈ W 1,p(Ω) to obstacle problems of the form

min

{∫

Ω

F̃ (x,Dw)dx : w ∈ Kψ(Ω)

}

, (6.1)

where Ω is a bounded open set of Rn, n ≥ 2. The function ψ : Ω → [−∞,+∞), called

obstacle, belongs to the Sobolev class W 1,p(Ω) and the class Kψ(Ω) is defined as follows

Kψ(Ω) = {w ∈ W 1,p(Ω) : w ≥ ψ a.e. in Ω}. (6.2)

Note that the set Kψ(Ω) is not empty since ψ ∈ Kψ(Ω).

We here assume that F̃ : Ω × R
n → [0,+∞) is a Carathéodory function such that there

exists a function F̄ : Ω× [0,+∞) → [0,+∞) satisfying the following equality

F̃ (x, ξ) = F̄ (x, |ξ|) (F̃1)

for a.e. x ∈ Ω and every ξ ∈ R
n.

Moreover, we also assume that there exist positive constants ν̃, L̃, l̃, exponents 2 ≤ p <

q < +∞ and a parameter µ ∈ [0, 1], that will allow us to consider in our analysis both

the degenerate and the non-degenerate situation, such that the following assumptions are

satisfied:
1

l̃
(|ξ|2 − µ2)

p
2 ≤ F̃ (x, ξ) ≤ l̃(µ2 + |ξ|2) q

2 (F̃2)

⟨DξξF̃ (x, ξ)λ, λ⟩ ≥ ν̃(µ2 + |ξ|2) p−2
2 |λ|2 (F̃3)
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|DξξF̃ (x, ξ)| ≤ L̃(µ2 + |ξ|2) q−2
2 (F̃4)

for a.e. x, y ∈ Ω and every ξ ∈ R
n.

Very recently, in [31] it has been proved that (F̃3) and (F̃4) imply (F̃2), i.e. if p < q,

the functional F̃ has non-standard growth conditions of p, q-type, as initially defined and

studied by Marcellini [94, 95, 96].

We remark that assumption (F̃1) is known in the literature as Uhlenbeck structure and

it was showed in [114] that it prevents the irregularity phenomenon in problems with

non-standard growth.

We say that function F̃ satisfies assumption (F̃5) if there exist a non-negative function

k ∈ Lrloc(Ω), with r >
n
α
and 0 < α < 1, such that

|DξF̃ (x, ξ)−DξF̃ (y, ξ)| ≤ |x− y|α(k(x) + k(y))(µ2 + |ξ|2) q−1
2 (F̃5)

for a.e. x, y ∈ Ω and every ξ ∈ R
n.

On the other hand, we say that assumption (F̃6) is satisfied if there exists a sequence of

measurable non-negative functions gk ∈ Lrloc(Ω) such that

∞
∑

k=1

∥gk∥σLr(Ω) <∞,

and at the same time

|DξF̃ (x, ξ)−DξF̃ (y, ξ)| ≤ |x− y|α(gk(x) + gk(y))(µ
2 + |ξ|2) q−1

2 (F̃6)

for a.e. x, y ∈ Ω such that 2−kdiam(Ω) ≤ |x− y| < 2−k+1diam(Ω) and for every ξ ∈ R
n.

It is worth observing that, in the case of standard growth conditions, i.e. p = q,

u ∈ W 1,p(Ω) is a solution to the obstacle problem in Kψ(Ω) if, and only if, u ∈ Kψ(Ω)

solves the variational inequality

∫

Ω

⟨A(x,Du), D(φ− u)⟩dx ≥ 0 (6.3)

for all φ ∈ Kψ(Ω), where we set

A(x, ξ) = DξF̃ (x, ξ). (6.4)

This equivalence has been proved successfully in the case non-standard growth conditions

by Eleuteri and Passarelli di Napoli in [45].

103



CHAPTER 6. HIGHER DIFFERENTIABILITY FOR LAGRANGIANS F̃ (x,Du)

From conditions (F̃2)–(F̃4), we deduce the existence of positive constants ν, L, l such

that the following p-ellipticity and q-growth conditions are satisfied by the map A:

|A(x, ξ)| ≤ l(µ2 + |ξ|2) q−1
2 (A1)

⟨A(x, ξ)−A(x, η), ξ − η⟩ ≥ ν|ξ − η|2(µ2 + |ξ|2 + |η|2) p−2
2 (A2)

|A(x, ξ)−A(x, η)| ≤ L|ξ − η|(µ2 + |ξ|2 + |η|2) q−2
2 (A3)

for a.e. x, y ∈ Ω, for every ξ, η ∈ R
n, where we recall that 0 < α < 1.

Furthermore, if condition (F̃5) or (F̃6) holds, then A satisfies assumptions (A4) or (A5),

respectively, that is

|A(x, ξ)−A(y, ξ)| ≤ |x− y|α(k(x) + k(y))(µ2 + |ξ|2) q−1
2 (A4)

for a.e. x, y ∈ Ω and every ξ ∈ R
n, or

|A(x, ξ)−A(y, ξ)| ≤ |x− y|α(gk(x) + gk(y))(µ
2 + |ξ|2) q−1

2 (A5)

for a.e. x, y ∈ Ω such that 2−kdiam(Ω) ≤ |x− y| < 2−k+1diam(Ω) and for every ξ ∈ R
n.

Our analysis comes from the fact that the regularity of the solutions to the obstacle

problem (6.3) is strictly connected to the analysis of the regularity of the solutions to

partial differential equations of the form

divDξF̃ (x,Du) = divDξF̃ (x,Dψ),

whose higher differentiability properties have been widely investigated (see for example

[6, 24, 65, 106, 107]). We also notice that previous regularity results concerning local

minimizers of integral functionals of the Calculus of Variations, under the assumption

(A4), have been obtained by Kristensen and Mingione [85].

The main result of this chapter is a higher differentiability result, which can be seen

as an extension of the [43] (see Theorem 5.3.1 in Section 5.3) to the case of functionals

with p, q–growth.

Theorem 6.0.1. Let A(x, ξ) satisfy (A1)-(A4) for exponents 2 ≤ p < n
α
< r, p < q such
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that
q

p
< 1 +

α

n
− 1

r
. (6.5)

Let u ∈ Kψ(Ω) be the solution to the obstacle problem (6.3). Then we have

Dψ ∈ Bγ
2q−p,∞,loc(Ω) ⇒ (µ2 + |Du|2) p−2

4 Du ∈ Bα
2,∞,loc(Ω), (6.6)

provided 0 < α < γ < 1.

This Chapter is structured as follows. In order to prove the main result, Theorem 6.0.1,

the strategy is to establish the a priori estimate for an approximating solution and then

pass to the limit in the approximating problem. Therefore, we present our approximation

results in Section 6.1, namely we are able to prove the existence of a sequence of functions

with p-growth conditions that monotonically converges to our initial problems. Then in

Section 6.2, are able to prove our result. Namely, we derive the a priori estimates in

Section 6.2.1 for an approximating problem satisfying standard growth conditions. Then,

in Section 6.2.2 we exploit the results of Sections 6.1 and 6.2.1 and using compactness,

strictly convexity and weak lower semi-continuity of functional F̃ , we are able to prove

Theorem 6.0.1.

6.1 Approximation results

We here collect some results which will be used to prove the passage to the limit in

Theorems 6.0.1.

We first recall the following Theorem, whose complete version can be found in [30] and

which will be used to prove Lemma 6.1.2.

Theorem 6.1.1. Let F̃ : Ω × R
n → [0,+∞), F̃ = F̃ (x, ξ), be a Carathéodory function.

Then, assumptions (F̃2) and (F̃3) imply that there exist c0(p, q, ν, R, l, L), c1(p, ν) > 0

and a Carathéodory function g : Ω × R
n → [−c0,+∞) s.t. for a.e. x ∈ Ω and every

ξ ∈ R
n,

F̃ (x, ξ) = c1(µ
2 + |ξ|2) p

2 + g(x, ξ).

In the next lemma, we adapt a well known approximation result, which can be found

in [30], to the case when the map x 7→ DξF̃ (x, ξ) has a Besov regularity.

Lemma 6.1.2. Let F̃ : Ω × R
n → [0,+∞), F̃ = F̃ (x, ξ), be a Carathéodory function,

convex with respect to ξ, satisfying assumptions (F̃1), (F̃2), (F̃3) and (F̃5). Then there

exists a sequence (F̃j) of Carathéodory functions F̃j : Ω × R
n → [0,+∞), convex with

respect to the last variable, monotonically convergent to F̃ , such that
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(i) for a.e. x ∈ Ω and every ξ ∈ R
n, F̃j(x, ξ) = F̄j(x, |ξ|),

(ii) for a.e. x ∈ Ω, for every ξ ∈ R
n and for every j, F̃j(x, ξ) ≤ F̃j+1(x, ξ) ≤ F̃ (x, ξ),

(iii) for a.e. x ∈ Ω and every ξ ∈ R
n, we have ⟨DξξF̃j(x, ξ)λ, λ⟩ ≥ ν̄(µ2 + |ξ|2) p−2

2 |λ|2,
with ν̄ depending only on p and ν,

(iv) for a.e. x ∈ Ω and for every ξ ∈ R
n, there exist L1, independent of j, and L̄1,

depending on j, such that

1/L1(µ+ |ξ|)p ≤ F̃j(x, ξ) ≤ L1(µ+ |ξ|)q,
F̃j(x, ξ) ≤ L̄1(j)(µ+ |ξ|)p,

(v) there exists a constant C(j) > 0 such that

|DξF̃j(x, ξ)−DξF̃j(y, ξ)| ≤ |x− y|α(k(x) + k(y))(µ2 + |ξ|2) q−1
2 ,

|DξF̃j(x, ξ)−DξF̃j(y, ξ)| ≤ C(j)|x− y|α(k(x) + k(y))(µ2 + |ξ|2) p−1
2

for a.e. x, y ∈ Ω and for every ξ ∈ R
n.

Proof. According to Theorem 6.1.1, which holds under hypotheses (F̃2) and (F̃3), there

exist the positive constants c0 = c0(p, q, ν, R, l, L) and c1 = c1(p, ν) and a function g :

Ω× R
n → [−c0,+∞) s.t.

F̃ (x, ξ) = c1(µ
2 + |ξ|2) p

2 + g(x, ξ) (6.7)

with g convex. Moreover there exists g̃ : Ω× [0,+∞) → [−c0,+∞) s.t. g̃(x, |ξ|) = g(x, ξ)

for any ξ ∈ R
n. Since n ≥ 2, for a.e. x ∈ Ω, t 7→ g̃(x, t) is convex and increasing. For any

j ∈ N, we might then define g̃j : Ω× [0,+∞) → [−c0,+∞) as

g̃j(x, t) = g̃(x, t) ∀(x, t) ∈ Ω× [0, j],

g̃j(x, t) = g̃(x, j) +Dtg̃(x, j)(t− j) ∀(x, t) ∈ Ω× (j,∞)

We notice that, by definition, for a.e. x ∈ Ω, t 7→ g̃j(x, t) is convex and increasing in

[0,+∞) and g̃j(x, t) ≤ g̃j+1(x, t) ≤ g̃(x, t). Combining assumption (F̃2), the definition of

g̃j(x, t) and (6.7), we infer

g̃j(x, t) ≤ l(µ+ t)q,

g̃j(x, t) ≤ c(q, l, j)(µ+ t)p. (6.8)
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We now want to show that Dtg̃j has a (F̃5)-type growth. It is easy to see that Dtg̃j(x, t) =

Dtg̃(x, j) for t ≥ j. In particular, assumption (F̃5) yields |Dtg̃(x, j) − Dtg̃(y, j)| ≤ |x −
y|α(k(x) + k(y))(µ+ j)q−1. Hence, for a.e. x ∈ Ω and every t > 0,

|Dtg̃(x, t)−Dtg̃(y, t)| ≤ |x− y|α(k(x) + k(y))(µ+ t)q−1. (6.9)

Moreover, for t ≤ j, according to (6.7) and (6.9), we obtain

|Dtg̃(x, t)−Dtg̃(y, t)| ≤|x− y|α(k(x) + k(y))(µ+ t)p−1(µ+ t)q−p

≤|x− y|α(k(x) + k(y))(µ+ t)p−1(µ+ j)q−p

≤c(j)|x− y|α(k(x) + k(y))(µ+ t)p−1.

On the other hand, in the same way, for t > j, we get

|Dtg̃(x, t)−Dtg̃(y, t)| ≤|x− y|α(k(x) + k(y))(µ+ j)p−1(µ+ j)q−p

≤|x− y|α(k(x) + k(y))(µ+ t)p−1(µ+ j)q−p

≤c(j)|x− y|α(k(x) + k(y))(µ+ t)p−1.

Eventually, for any j, we define gj : Ω× R
n → [−c0,+∞) as

gj(x, ξ) = g̃j(x, |ξ|).

Statements (i), (ii), (iii), (v) directly follow by setting F̃j : Ω× R
n → [0,+∞)

F̃j(x, ξ) := c1(µ
2 + |ξ|2) p

2 + gj(x, ξ).

Property (iv) is obtained combining (6.7) with (6.8) and the definition of F̃j.

Remark 2. It is worth noting that an analogous version of Lemma 6.1.2 can be proved

similarly, supposing (F̃6) instead of (F̃5). In particular, statement (v) would change as

follows.

(v) There exists a constant C(j) > 0 such that

|DξF̃j(x, ξ)−DξF̃j(y, ξ)| ≤ |x− y|α(gk(x) + gk(y))(µ
2 + |ξ|2) q−1

2 ,

|DξF̃j(x, ξ)−DξF̃j(y, ξ)| ≤ C(j)|x− y|α(gk(x) + gk(y))(µ
2 + |ξ|2) p−1

2

for a.e. x, y ∈ Ω such that 2−kdiam(Ω) ≤ |x − y| < 2−k+1diam(Ω) and for every

ξ ∈ R
n.
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6.2 Proof of Theorem 6.0.1

In order to prove Theorem 6.0.1, we use the following strategy. In Section 6.2.1, we derive

a suitable a priori estimate for minimizers of obstacle problems with p-growth conditions.

Then, in Section 6.2.2, we conclude showing that the a priori estimate is preserved when

passing to the limit.

6.2.1 A priori estimate

Let us consider

min

{∫

Ω

F̃j(x,Dw)dx : w ∈ Kψ(Ω)

}

, (6.10)

where F̃j : Ω × R
n → [0,+∞), F̃j = F̃j(x, ξ), was set in Lemma 6.1.2 and Kψ(Ω) was

defined in (6.2).

Setting

Aj(x, ξ) = DξF̃j(x, ξ),

one can easily check that Aj satisfies (A1)–(A4) and the following assumptions:

|Aj(x, ξ)| ≤ l1(j)(µ
2 + |ξ|2) p−1

2 (6.11)

|Aj(x, ξ)−Aj(x, η)| ≤ L1(j)|ξ − η|(µ2 + |ξ|2 + |η|2) p−2
2 (6.12)

|Aj(x, ξ)−Aj(y, ξ)| ≤ Θ(j)|x− y|α(k(x) + k(y))(µ2 + |ξ|2) p−1
2 (6.13)

for a.e. x, y ∈ Ω, for every ξ, η ∈ R
n. It is well known that uj ∈ Kψ(Ω) is a minimizer of

problem (6.10) if, and only if, the following variational inequality holds

∫

Ω

⟨Aj(x,Duj), D(φ− uj)⟩dx ≥ 0, ∀φ ∈ Kψ(Ω). (6.14)

The following result holds:

Theorem 6.2.1. Let Aj(x, ξ) satisfy (A1)–(A4) and (6.12)– (6.13) for exponents 2 ≤
p < n

α
< r, p < q satisfying (6.5). Let uj ∈ Kψ(Ω) be the solution to the obstacle problem

(6.14). Suppose that k ∈ Lrloc(Ω) and Dψ ∈ Bγ
2q−p,∞,loc(Ω), for 0 < α < γ < 1. Then, the

following estimate

∫

BR/4

|τhVp(Duj)|2dx ≤ C|h|2α
{∫

BR

(1 + |Duj|p)dx+ ∥Dψ∥Bγ
2q−p,∞(BR)

}κ

, (6.15)
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holds for all balls BR/4 ⊂ BR ⋐ Ω, for positive constants C := C(R, n, p, q, r, β), κ :=

κ(n, p, q, r, β), both independent of j, and for some 0 < β < α.

Proof. We start by observing that, since p < 2q − p, we have

Dψ ∈ Bγ
2q−p,∞,loc(Ω) ⇒ Dψ ∈ Bγ

p,∞,loc(Ω),

thus an application of Theorem 5.3.1 implies

(µ2 + |Duj|2)
p−2
4 Duj ∈ Bα

2,∞,loc(Ω),

which yields, by applying Lemma 5.2.3,

Duj ∈ L
np

n−2β

loc (Ω),

for all 0 < β < α. Thus, the integral

∫

Ω′

(1 + |Duj|)
np

n−2β dx

is finite, for every Ω′
⋐ Ω and β ∈ (0, α).

In the sequel we will profusely use the following inequality:

2q − p ≤ r(2q − p)

r − 2
≤ np

n− 2β
, (6.16)

for β ∈ ( αnr
nr+2(αr−n)

, α). The first part of inequality (6.16) is trivial, while the second part

comes from (6.5). Namely,

r(2q − p)

r − 2
≤ np

n− 2β
⇔ q

p
≤ nr − n− βr

r(n− 2β)

and

1 +
α

n
− 1

r
<
nr − n− βr

r(n− 2β)
⇔ β >

αnr

nr + 2(αr − n)
.

Fix 0 < R
4
< ρ < s < t < t′ < R

2
such that BR ⋐ Ω and a cut-off function η ∈ C1

0(Bt)

such that 0 ≤ η ≤ 1, η = 1 on Bs, |Dη| ≤ C
t−s

.

Now, for |h| ≤ t′ − t, we consider functions

v1(x) = η2(x)[(uj − ψ)(x+ h)− (uj − ψ)(x)]
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and

v2(x) = η2(x− h)[(uj − ψ)(x− h)− (uj − ψ)(x)].

Then

φ1(x) = uj(x) + tv1(x), (6.17)

φ2(x) = uj(x) + tv2(x) (6.18)

are admissible test functions for all t ∈ [0, 1).

Inserting (6.17) and (6.18) in (6.14), we obtain

∫

Ω

⟨Aj(x,Duj),D(η2τh(uj − ψ))⟩dx+
∫

Ω

⟨Aj(x,Duj), D(η2(x− h)τ−h(uj − ψ))⟩dx ≥ 0

(6.19)

By means of a simple change of variable, we can write the second integral on the left hand

side of the previous inequality as follows

∫

Ω

⟨Aj(x+ h,Duj(x+ h)), D(−η2τh(uj − ψ))⟩dx (6.20)

and so inequality (6.19) becomes

∫

Ω

⟨Aj(x+ h,Duj(x+ h))−Aj(x,Duj(x)), D(η2τh(uj − ψ))⟩dx ≤ 0 (6.21)

We can write previous inequality as follows

0 ≥
∫

Ω

⟨Aj(x+ h,Duj(x+ h))−Aj(x+ h,Duj(x)), η
2Dτhuj⟩dx

−
∫

Ω

⟨Aj(x+ h,Duj(x+ h))−Aj(x+ h,Duj(x)), η
2Dτhψ⟩dx

+

∫

Ω

⟨Aj(x+ h,Duj(x+ h))−Aj(x+ h,Duj(x)), 2ηDητh(uj − ψ)⟩dx

+

∫

Ω

⟨Aj(x+ h,Duj(x))−Aj(x,Duj(x)), η
2Dτhuj⟩dx

−
∫

Ω

⟨Aj(x+ h,Duj(x))−Aj(x,Duj(x)), η
2Dτhψ⟩dx

+

∫

Ω

⟨Aj(x+ h,Duj(x))−Aj(x,Duj(x)), 2ηDητh(uj − ψ)⟩dx

=:I1 + I2 + I3 + I4 + I5 + I6, (6.22)
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that yields

I1 ≤|I2|+ |I3|+ |I4|+ |I5|+ |I6| (6.23)

The ellipticity assumption (A2) implies

I1 ≥ ν

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx (6.24)

From the growth condition (A3), Young’s and Hölder’s inequalities and assumption on

Dψ, we get

|I2| ≤L
∫

Ω

η2|τhDuj|(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
q−2
2 |τhDψ|dx

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L)

∫

Ω

η2|τhDψ|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
2q−p−2

2 dx

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L)

(∫

Bt

|τhDψ|2q−pdx
) 2

2q−p
(∫

Bt′

(1 + |Duj|)2q−pdx
)

2q−p−2
2q−p

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L, n, p, q)|h|2γ[Dψ]2Bγ
2q−p,∞(BR)

(∫

Bt′

(1 + |Duj|)2q−pdx
)

2q−p−2
2q−p

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L, n, p, q)|h|2γ[Dψ]2q−pBγ
2q−p,∞(BR)

+ Cε(L, n, p, q)|h|2γ
∫

Bt′

(1 + |Duj|)2q−pdx.

Therefore, from (6.16), we infer

|I2| ≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L, n, p, q)|h|2γ[Dψ]2q−pBγ
2q−p,∞(BR)

+ Cε(L, n, p, q)|h|2γ
(∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r

.

(6.25)

Arguing analogously, we get

|I3| ≤2L

∫

Ω

|Dη|η|τhDuj|(1 + |Duj(x+ h)|2 + |Duj(x)|2)
q−2
2 |τh(uj − ψ)|dx
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≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+
Cε(L)

(t− s)2

∫

Bt

|τh(uj − ψ)|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
2q−p−2

2 dx

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+
Cε(L)

(t− s)2

(∫

Bt

|τhψ|2q−pdx
) 2

2q−p
(∫

Bt′

(1 + |Duj|)2q−pdx
)

2q−p−2
2q−p

+
Cε(L)

(t− s)2

(∫

Bt

|τhuj|2q−pdx
) 2

2q−p
(∫

Bt′

(1 + |Duj|)2q−pdx
)

2q−p−2
2q−p

.

Using Young’s inequality and Lemma 5.2.2, we obtain

|I3| ≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+
Cε(L, n, p, q)

(t− s)2
|h|2
(∫

BR

|Dψ|2q−pdx
) 2

2q−p
(∫

Bt′

(1 + |Duj|)2q−pdx
)

2q−p−2
2q−p

+
Cε(L, n, p, q)

(t− s)2
|h|2

∫

Bt′

(1 + |Duj|)2q−pdx

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+
Cε(L, n, p, q)

(t− s)2
|h|2

∫

BR

|Dψ|2q−pdx

+
Cε(L, n, p, q)

(t− s)2
|h|2

∫

Bt′

(1 + |Duj|)2q−pdx. (6.26)

Recalling the first inequality of (6.16), we can write

|I3| ≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+
Cε(L, n, p, q)

(t− s)2
|h|2

∫

BR

|Dψ|2q−pdx

+
Cε(L, n, p, q)

(t− s)2
|h|2
(∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r

. (6.27)

In order to estimate the integral I4, we use assumption (A4), and Young’s and Hölder’s

inequalities as follows

|I4| ≤
∫

Ω

η2|τhDuj||h|α(k(x+ h) + k(x))(1 + |Duj(x)|)
q−1
2 dx

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx
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+ Cε|h|2α
∫

Bt

(k(x+ h) + k(x))2(1 + |Duj|)2q−pdx

≤ε
∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε|h|2α
(∫

BR

krdx

) 2
r
(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r

. (6.28)

We now take care of I5. Similarly as above, exploiting assumption (A4) and Hölder’s

inequality, we infer

|I5| ≤
∫

Ω

η2|τhDψ||h|α (k(x+ h) + k(x))
(

1 + |Duj|2
)

q−1
2 dx

≤|h|α
(

∫

Bt′

krdx

) 1
r (∫

Bt

|τhDψ|
r

r−1 (1 + |Duj|)
r(q−1)
r−1 dx

)
r−1
r

≤|h|α
(∫

BR

krdx

) 1
r
(∫

Bt

|τhDψ|2q−pdx
) 1

2q−p
(∫

Bt

(1 + |Duj|)
r(q−1)(2q−p)
(r−1)(2q−p)−r dx

)
(r−1)(2q−p)−r

r(2q−p)

.

Now, we observe

r(q − 1)(2q − p)

(r − 1)(2q − p)− r
≤ r(2q − p)

r − 2
⇔ p− 2 + r(q − p) ≥ 0, (6.29)

which is true by assumption, that is p ≥ 2, r > n
α
> 2 and q > p. Hence

|I5| ≤ |h|α+γ
(∫

BR

krdx

) 1
r

[Dψ]Bγ
2q−p,∞(BR)

(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
(r−2)(q−1)
r(2q−p)

. (6.30)

From assumption (A4), hypothesis |Dη| < C
t−s

and Hölder’s inequality, we infer the

following estimate for I6.

|I6| ≤
C

t− s
|h|α

∫

Bt

|τhψ|(k(x+ h) + k(x))(1 + |Duj|2)
q−1
2 dx

+
C

t− s
|h|α

∫

Bt

|τhuj|(k(x+ h) + k(x))(1 + |Duj|2)
q−1
2 dx

≤ C

t− s
|h|α

(∫

BR

krdx

) 1
r
(∫

Bt

|τhψ|2q−pdx
) 1

2q−p

·
(∫

Bt

(1 + |Duj|)
r(q−1)(2q−p)
(r−1)(2q−p)−r dx

)
(r−1)(2q−p)−r

r(2q−p)

+
C

t− s
|h|α

(

∫

Bt′

krdx

) 1
r (∫

Bt

|τhuj|
r

r−1 (1 + |Duj|)
r(q−1)
r−1 dx

)
r−1
r

.
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Using once again Hölder’s inequality, we have

|I6| ≤
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r

(

∫

Bt′

|Dψ|2q−pdx
) 1

2q−p

·
(∫

Bt

(1 + |Duj|)
r(q−1)(2q−p)
(r−1)(2q−p)−r dx

)
(r−1)(2q−p)−r

r(2q−p)

+
C

t− s
|h|α

(∫

BR

krdx

) 1
r
(∫

Bt

|τhuj|
rq
r−1dx

)
r−1
rq
(∫

Bt

(1 + |Duj|)
rq
r−1dx

)
(r−1)(q−1)

rq

.

Using Lemma 5.2.2, we infer

|I6| ≤
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r
(∫

BR

|Dψ|2q−pdx
) 1

2q−p

·
(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
(q−1)(r−2)
r(2q−p)

+
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r

(

∫

Bt′

(1 + |Duj|)
rq
r−1dx

)
r−1
rq

.

We remark that
rq

r − 1
≤ r(2q − p)

r − 2
⇔ p+ r(q − p) ≥ 0, (6.31)

which is true by assumption, that is p ≥ 2, r > n
α
> 2 and q > p. Hence

|I6| ≤
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r
(∫

BR

|Dψ|2q−pdx
) 1

2q−p

·
(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
(q−1)(r−2)
r(2q−p)

+
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r

(

∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
q(r−2)
r(2q−p)

. (6.32)

Inserting estimates (6.24), (6.25), (6.27), (6.28), (6.30) and (6.32) in (6.23), we infer

ν

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

≤3ε

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L, n, p, q)|h|2γ[Dψ]2q−pBγ
2q−p,∞(BR)

+ Cε(L, n, p, q)|h|2γ
(∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r
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+
Cε(L, n, p, q)

(t− s)2
|h|2

∫

BR

|Dψ|2q−pdx

+
Cε(L, n, p, q)

(t− s)2
|h|2
(∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r

+ Cε|h|2α
(∫

BR

krdx

) 2
r
(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r

+ |h|α+γ
(∫

BR

krdx

) 1
r

[Dψ]Bγ
2q−p,∞(BR)

(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
(r−2)(q−1)
r(2q−p)

+
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r
(∫

BR

|Dψ|2q−pdx
) 1

2q−p

·
(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
(q−1)(r−2)
r(2q−p)

+
C

t− s
|h|α+1

(∫

BR

krdx

) 1
r

(

∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
q(r−2)
r(2q−p)

. (6.33)

We now introduce the following interpolation inequality

∥Dw∥ r(2q−p)
r−2

≤ ∥Dw∥δp∥Dw∥1−δnp
n−2β

, (6.34)

where 0 < δ < 1 is defined through the condition

r − 2

r(2q − p)
=
δ

p
+

(1− δ)(n− 2β)

np
(6.35)

which implies

δ =
nr(p− q)− np+ βr(2q − p)

βr(2q − p)
, 1− δ =

n[r(q − p) + p]

βr(2q − p)
.

Hence we get the following inequalities

(∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
r−2
r

≤
(∫

Bt′

(1 + |Duj|)pdx
)

δ(2q−p)
p

·
(∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
(n−2β)[r(q−p)+p]

βpr

, (6.36)

(∫

Bt

(1 + |Duj|)
r(2q−p)

r−2 dx

)
(r−2)(q−1)
r(2q−p)

≤
(∫

Bt

(1 + |Duj|)pdx
)

δ(q−1)
p

·
(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
(n−2β)(q−1)p′

p

, (6.37)
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(∫

Bt′

(1 + |Duj|)
r(2q−p)

r−2 dx

)
q(r−2)
r(2q−p)

≤
(∫

Bt′

(1 + |Duj|)pdx
)

δq
p

·
(∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
(n−2β)q[r(q−p)+p]

βpr(2q−p)

, (6.38)

where p′ = r(q−p)+p
βr(2q−p)

.

Inserting (6.36), (6.37) and (6.38) in (6.33), and exploiting the bounds

n[r(q − p) + p]

βpr
< 1,

n(q − 1)[r(q − p) + p]

βrp(2q − p)
< 1,

nq[r(q − p) + p]

βpr(2q − p)
< 1, (6.39)

which hold by assumption (6.5) and for β ∈ (n[r(q−p)+p]
pr

, α), from Young’s inequality, we

infer

ν

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

≤3ε

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ Cε(L, n, p, q)|h|2γ[Dψ]2q−pBγ
2q−p,∞(BR)

+ Cε,θ(L, n, p, q)|h|2γ
(∫

BR

(1 + |Duj|)pdx
)

δ(2q−p)p̃
p

+ θ|h|2γ
(∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+
Cε(L, n, p, q)

(t− s)2
|h|2

∫

BR

|Dψ|2q−pdx

+ θ|h|2
(∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+
Cε,θ(L, n, p, q)

(t− s)2p̃
|h|2
(∫

BR

(1 + |Duj|)pdx
)

p̃δ(2q−p)
p

+ Cε,θ(n, p, q)|h|2α
(∫

BR

krdx

)
2p̃
r

·
(∫

BR

(1 + |Duj|)pdx
)

p̃δ(2q−p)
p

+ θ|h|2α
(∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ Cθ|h|α+γ
(∫

BR

krdx

)
p′′

r

· [Dψ]p′′
Bγ

2q−p,∞(BR)

116



CHAPTER 6. HIGHER DIFFERENTIABILITY FOR LAGRANGIANS F̃ (x,Du)

·
(∫

BR

(1 + |Duj|)pdx
)

δ(q−1)(2q−p)p′′

p

+ θ|h|α+γ
(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+
Cθ

(t− s)p′′
|h|α+1

(∫

BR

krdx

)
p′′

r
(∫

BR

|Dψ|2q−pdx
)

p′′

2q−p

·
(∫

BR

(1 + |Duj|)pdx
)

δ(q−1)p′′

p

+ θ|h|α+1

(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+
Cθ

(t− s)p∗
|h|α+1

(∫

BR

krdx

)
p∗

r
(∫

BR

(1 + |Duj|)pdx
)

p∗δq
p

+ θ|h|α+1

(

∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

. (6.40)

for some constant θ ∈ (0, 1), where we set p̃ = βpr
βpr−n[r(q−p)+p]

, p′′ = βrp(2q−p)
βrp(2q−p)−(q−1)n[r(q−p)+p]

,

p∗ = p
p−(1−δ)q

.

For a better readability we now define

A =Cε(L, n, p, q)[Dψ]
2q−p
Bγ

2q−p,∞(BR)
+ Cε,θ(L, n, p, q)

(∫

BR

(1 + |Duj|)pdx
)

δ(2q−p)p̃
p

+ Cε,θ(n, p, q)

(∫

BR

krdx

)
2p̃
r
(∫

BR

(1 + |Duj|)pdx
)

p̃δ(2q−p)
p

+ Cθ

(∫

BR

krdx

)
p′′

r

[Dψ]p
′′

Bγ
2q−p,∞(BR)

(∫

BR

(1 + |Duj|)pdx
)

δ(q−1)(2q−p)p′′

p

B1 =Cε(L, n, p, q)

∫

BR

|Dψ|2q−pdx,

B2 =Cε,θ(L, n, p, q)

(∫

BR

(1 + |Duj|)pdx
)

p̃δ(2q−p)
p

,

B3 =Cθ

(∫

BR

krdx

)
p′′

r
(∫

BR

|Dψ|2q−pdx
)

p′′

2q−p
(∫

BR

(1 + |Duj|)pdx
)

δ(q−1)p′′

p

,

B4 =Cθ

(∫

BR

krdx

)
p∗

r
(∫

BR

(1 + |Duj|)pdx
)

p∗δq
p

,
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so that we can rewrite the previous estimate as

ν

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

≤3ε

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

+ θ(|h|2α + |h|α+γ + |h|α+1)

(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ θ(|h|2 + |h|2γ + |h|α+1)

(

∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ (|h|2γ + |h|2α + |h|α+γ)A+ |h|2 B1

(t− s)2
+ |h|2 B2

(t− s)2p̃

+ |h|α+1 B3

(t− s)p
′′ + |h|α+1 B4

(t− s)p∗
.

Choosing ε = ν
6
, we can reabsorb the first integral in the right hand side of the previous

estimate by the left hand side, thus getting

∫

Ω

η2|τhDuj|2(µ2 + |Duj(x+ h)|2 + |Duj(x)|2)
p−2
2 dx

≤3θ|h|2α
(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ 3θ|h|2α
(

∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ |h|2αA+ |h|2 B1

(t− s)2
+ |h|2 B2

(t− s)p̃
+ |h|2α B3

(t− s)p
′′ + |h|2α B4

(t− s)p∗
,

where we used the fact that α < γ. Using Lemma 5.0.1 in the left hand side of the

previous inequality, recalling that η = 1 on Bs, we get

∫

Bs

|τhVp(Duj)|2dx ≤ |h|2α
{

3θ

(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ 3θ

(

∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ A+
B1

(t− s)2
+

B2

(t− s)p̃
+

B3

(t− s)p
′′ +

B4

(t− s)p∗

}

. (6.41)

Lemma 5.2.3 and inequality (5.1) imply

(∫

Bs

|Duj|
np

n−2β dx

)
n−2β

n

≤3θ

(∫

Bt

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ 3θ

(

∫

Bt′

(1 + |Duj|)
np

n−2β dx

)
n−2β

n

+ A+
B1

(t− s)2
+

B2

(t− s)2p̃
+

B3

(t− s)p
′′ +

B4

(t− s)p∗
, (6.42)
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for all β ∈ (0, α).

Setting

Φ(r) =

(∫

Br

|Duj|
np

n−2β dx

)
n−2β

n

,

we can write inequality (6.42) as

Φ(s) ≤ 3θΦ(t) + 3θΦ(t′) + A+
B1

(t− s)2
+

B2

(t− s)2p̃
+

B3

(t− s)p
′′ +

B4

(t− s)p∗
. (6.43)

By virtue of Lemma 5.0.2, choosing 0 < θ < 1/3, we obtain

Φ(ϱ) ≤ c

(

3θΦ(t′) + A+
B1

R2
+
B2

R2p̃
+

B3

Rp
′′ +

B4

Rp∗

)

, (6.44)

for some constant c := c(n, p, q, r, β, θ). Then, applying Lemma 5.0.2 again, we get

Φ

(

R

4

)

≤ c̃

(

A+
B1

R2
+
B2

R2p̃
+

B3

Rp
′′ +

B4

Rp∗

)

, (6.45)

with c̃ := c̃(n, p, q, r, β, θ).

Now, recalling the definition of Φ, we obtain

(∫

BR/4

|Duj|
np

n−2β dx

)
n−2β

n

≤ c̃

{∫

BR

(1 + |Duj|p)dx+ ∥Dψ∥Bγ
2q−p,∞(BR)

}κ

, (6.46)

thus, using Lemma 5.2.3, from inequalities (6.46) and (6.41), we deduce the a priori

estimate

∫

BR/4

|τhVp(Duj)|2dx ≤ C|h|2α
{∫

BR

(1 + |Duj|p)dx+ ∥Dψ∥Bγ
2q−p,∞(BR)

}κ

, (6.47)

for some β < α, where C := C(R, n, p, q, r, β) and κ := κ(n, p, q, r, β).

6.2.2 Passage to the limit

Let u ∈ Kψ(Ω) be a solution to (6.3), and let F̃j be defined as in Lemma 6.1.2. From

Theorem 6.1.1, there exists c1 > 0 such that

|ξ|p ≤ c1(1 + F̃j(x, ξ)), ∀j ∈ N. (6.48)
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Fixed BR ⋐ Ω, let uj be the solution of the problem

min

{∫

BR

F̃j(x,Dw)dx : w ≥ ψ a.e. in BR, w ∈ u+W 1,p
0 (BR)

}

.

From (6.48), the minimality of uj implies

∫

BR

|Duj|pdx ≤c1
∫

BR

(1 + F̃j(x,Duj))dx

≤c1
∫

BR

(1 + F̃j(x,Du))dx

≤c1
∫

BR

(1 + F̃ (x,Du))dx, (6.49)

where in the last inequality we used Lemma 6.1.2 (ii). Thus, up to subsequences,

uj ⇀ ũ in u+W 1,p
0 (BR) (6.50)

and

uj → ũ in Lp(BR). (6.51)

For any j, F̃j satisfies the assumptions of Theorem 6.2.1. Combining (6.46) and (6.49)

we get

∥Duj∥
L

np
n−2β (BR/4)

≤ c̃

{∫

BR

(1 + F̃ (x,Du))dx+ ∥Dψ∥Bγ
2q−p,∞(BR)

}κ̃

, (6.52)

thus, by (6.50), (6.52) and weak lower semicontinuity, we infer

∥Dũ∥
L

np
n−2β (BR/4)

≤ lim inf
j→∞

∥Duj∥
L

np
n−2β (BR/4)

≤c̃
{∫

BR

(1 + F̃ (x,Du))dx+ ∥Dψ∥Bγ
2q−p,∞(BR)

}κ̃

. (6.53)

Let j0, j ∈ N s.t. j0 < j. Then, by Lemma 6.1.2 (ii) and the fact that uj is a minimum

for F̃j, we might write

∫

BR

F̃j0(x,Duj)dx ≤
∫

BR

F̃j(x,Duj)dx

≤
∫

BR

F̃j(x,Du)dx ≤
∫

BR

F̃ (x,Du)dx.
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Now from weak lower semicontinuity of F̃j0 and (6.50), it holds, for every j0 ∈ N,

∫

BR

F̃j0(x,Dũ)dx ≤ lim inf
j→+∞

∫

BR

F̃j0(x,Duj)dx ≤
∫

BR

F̃ (x,Du)dx.

Combining these last inequalities, we get

∫

BR

F̃ (x,Dũ)dx = lim
j0→+∞

∫

BR

F̃j0(x,Dũ)dx ≤
∫

BR

F̃ (x,Du)dx, (6.54)

where we also applied the monotone convergence theorem, according to Lemma 6.1.2 (ii).

Moreover, by the weak convergence (6.50), the limit function ũ still belongs to Kψ(BR),

since this set is convex and closed. Thus, we can conclude that

ũ = u a.e. in BR (6.55)

by strict convexity of F̃ , and, recalling estimate (6.53),

∥Du∥
L

np
n−2β (BR/4)

≤ c̃

{∫

BR

(1 + F̃ (x,Du))dx+ ∥Dψ∥Bγ
2q−p,∞(BR)

}κ̃

. (6.56)

Finally, we can repeat the proof of Theorem 6.2.1 obtaining Vp(Du) ∈ Bα
2,∞,loc(Ω).
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Chapter 7

Higher differentiability in the case of

double-phase lagrangians F (x, u,Du)

According to the results presented in Chapter 6, we here study the higher fractional

differentiability properties of the gradient of the solutions u ∈ W 1,p(Ω) to variational

obstacle problems of the form

min

{∫

Ω

F (x, w,Dw)dx : w ∈ Kψ(Ω)

}

, (7.1)

where the energy density F : Ω× R× R
n → R is defined by

F (x, w, z) = b(x, w)H(x, z), (7.2)

being

H(x, z) = |z|p + a(x)|z|q, (7.3)

where 2 ≤ p < q.

Here Ω is a bounded open set of Rn, n ≥ 2, the obstacle function ψ is the one defined in

Chapter 6, as well as the set Kψ(Ω) (see (6.2)).

We assume that the coefficients a(x) and b(x, w) satisfy the following assumptions:

Assumption 1

(i) a : Ω → [0,+∞) is a bounded and measurable function such that

|a(x)− a(y)| ≤ ωa(|x− y|),

for all x, y ∈ Ω, where ωa : R+ → [0, 1] is defined by ωa(ρ) = min{ρα, 1}, for some

α ∈ (0, 1);

(ii) the function b : Ω × R → (0,+∞) is a bounded Carathéodory function, i.e. there
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exist 0 < ν ≤ L such that

0 < ν ≤ b(x, w) ≤ L <∞.

Assumption 2

(i) there exists a function ωb : R+ → [0, 1] defined by ωb(ρ) = min{ρβ, 1}, for some

β ∈ (0, 1), such that

|b(x, u)− b(y, v)| ≤ ωb(|x− y|+ |u− v|),

for all x, y ∈ Ω and every u, v ∈ R.

The energy density given by (7.2) is a model case of functions F satisfying the following

set of conditions

ν1|z|p ≤ F (x, w, z) ≤ L1(1 + |z|q) (F1)

ν2|z|p−2|λ|2 ≤ ⟨DzzF (x, w, z)λ, λ⟩ ≤ L2(1 + |z|q−2)|λ|2 (F2)

|F (x1, w1, z)− F (x2, w2, z)| ≤ l1ωδ(|x1 − x2|+ |w1 − w2|)(1 + |z|q) (F3)

for all x, x1, x2 ∈ Ω, w,w1, w2 ∈ R and every z, λ ∈ R
n, where 0 < ν1 ≤ L1, 0 < ν2 ≤ L2,

l1 ≥ 1 are fixed constants and ωδ : R
+ → [0, 1] is a function defined by ωδ(ρ) = min{ρδ, 1},

for some δ ∈ (0, 1) depending on α and β introduced in Assumption 1 and 2 respectively.

We point out that the choice of stating Assumption 1 and 2 separately is due to the fact

that they are needed independently.

The main difficulty here is the dependence of our double phase functional both on the

x−variable and the w−variable, where the map w 7→ b(x, w)H(x, z) is non-differentiable.

In order to deal with this issue, we follow the strategy proposed in [85] and later used

in [44]. Namely, we introduce the so-called ”freezed” functional defined in (7.4) and the

solution to the corresponding obstacle problem (see (7.5)) for which we prove a higher

differentiability result in the scale of Besov spaces following the argument in [67]. The

idea is to compare the solution u to the original obstacle problem (7.1) and the solution v

to the ”freezed” one (7.5). More precisely, we estimate the fractional difference quotients

of u and v, in an integral sense, gaining a Besov regularity for u. In order to do so,

we also have to derive some ad hoc higher integrability results, both at the interior and

up to boundary, that is for the solution u of the original obstacle problem (7.1) and the

solution v to the freezed one (7.5) respectively. The first one is obtained adapting the
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argument in [38], while the second one generalizes the result by Cupini, Fusco and Petti in

[29]. Eventually, we use a boot-strapping argument to get the maximal higher fractional

differentiability.

The main result of this Chapter is the following.

Theorem 7.0.1. Let u ∈ W 1,p(Ω) be the solution to the obstacle problem (7.1), with F

defined by (7.2), under Assumptions 1 and 2, for exponents 2 ≤ p < n
α
, p < q verifying

q

p
< 1 +

α

n
.

If Dψ ∈ Bγ
2q−p,∞,loc(Ω), for 0 < α < γ < 1, then there exists σ̃ := σ̃(p, q, n, α, β) ∈ (0, 1)

s.t.

Vp(Du),
√

a(x)Vq(Du) ∈ Bt
2,∞,loc(Ω), ∀t ∈ (0, σ̃).

The chapter is organized as follows. In Section 7.1, we show that the solution to the

freezed obstacle problem (7.5) satisfies a variational inequality and moreover we present

interior and up to the boundary higher integrability properties, which will be crucial for

the comparison argument, as already mentioned. In Section 7.2, we exploit the results

obtained in Chapter 6 in order to prove the higher fractional differentiability of the solution

to the freezed obstacle problem (7.5). We remark that the procedure used in order to do

so requires the assumption p ≥ 2. The comparison argument is presented in Section 7.3.

Finally, in Section 7.4, we show that a suitable fractional differentiability property on the

gradient of the obstacle transfers to a higher fractional differentiability for the gradient

of the minimizer, so that we are eventually able to prove Theorem 7.0.1.

We point out that, in order to prove the higher integrability of the solution to the orig-

inal obstacle problem (see Theorem 7.1.2) and the higher differentiability of the solution

to the freezed obstacle problem in Section 7.2, Assumption 1 (ii) is the only one needed

on the function b(x, w). On the other hand, in order to prove the comparison lemma (see

Lemma 7.3.2), we require Assumption 2 on the coefficient b(x, w).

7.1 Higher integrability

The results contained in this section will be crucial for the comparison argument presented

in Section 7.3.

Let u be a solution to the obstacle problem (7.1) and fix a ball B = BR
2
(x0) ⋐ Ω, for

a given radius R > 0 and x0 ∈ Ω. Let us consider the so-called ”freezed” functional

∫

B

F̃ (x,Dw)dx =

∫

B

b(x0, uB)H(x,Dw)dx, (7.4)
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where H was defined in (7.3), and let v ∈ u+W 1,p
0 (B) be the solution to

min

{∫

B

F̃ (x,Dw)dx : w ∈ Kψ(Ω), w = u on ∂B

}

. (7.5)

Now, we show that a local minimizer of functional (7.4) satisfies a variational inequality.

More precisely, we have

Proposition 7.1.1. A function v ∈ u +W 1,p
0 (B) is a solution to (7.5) if and only if it

satisfies the following variational inequality

∫

B

⟨DzH(x,Dv), D(φ− v)⟩dx ≥ 0, (7.6)

for every φ ∈ u+W 1,p
0 (B) ∩ Kψ(Ω) such that H(x,Dφ) ∈ L1(B).

Proof. We set g = v + ε(φ− v) for ε ∈ (0, 1), which belongs to the obstacle class, indeed

g = v + ε(φ− v) = εφ+ (1− ε)v ≥ ψ.

We first notice that H(x,D(v + ε(φ− v))) ∈ L1. Moreover,

∫

B

H(x,Dv)dx ≤
∫

B

H(x,Dv + εD(φ− v))dx,

which leads to

∫

B

H(x,Dv + εD(φ− v))dx−
∫

B

H(x,Dv)dx ≥ 0.

From Lagrange’s theorem, for θ ∈ (0, 1) it holds

∫

B

⟨DzH(x,Dv + εθD(φ− v)), εD(φ− v)⟩dx ≥ 0.

Since ε > 0,

∫

B

⟨DzH(x,Dv + εθD(φ− v)), D(φ− v)⟩dx ≥ 0. (7.7)

According to [27, Lemma 2.2], it holds

|⟨DzH(x, z), λ⟩| ≤ C (H(x, z) +H(x, λ)) .
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Therefore,

|⟨DzH(x,Dv + εθD(φ− v)), D(φ− v)⟩|
≤C (H(x,Dv + εθD(φ− v)) +H(x,D(φ− v)))

≤C (H(x,Dv) +H(x, εθD(φ− v)) +H(x,Dφ) +H(x,Dv))

≤C (H(x,Dv) + (εθ)pH(x,Dφ) + (εθ)pH(x,Dv) +H(x,Dφ)) , (7.8)

where in the last passage we also used the direct property H(x, εθz) ≤ (εθ)pH(x, z). For

ε → 0, the second and the third term on the right hand side of (7.8) go to zero. Hence,

the right hand side tends to C (H(x,Dv) +H(x,Dφ)) in L1. Then, we can pass to the

limit for ε → 0 in (7.7) applying the Dominated convergence theorem, which concludes

the proof.

If u is a solution to (7.1), then we are able to establish for u a higher integrability

result.

Theorem 7.1.2. Let u be a solution to the obstacle problem (7.1) where the integrand

satisfies Assumption 1, for exponents 2 ≤ p < q verifying

q

p
≤ 1 +

α

n
.

If the function ψ is s.t. H(x,Dψ) ∈ Lm1
loc

(Ω), for some m1 > 1, then there exist an

exponent m1 > m2 > 1 and a positive constant C s.t. it holds





∫

BR
2

(H(x,Du))m2dx





1
m2

≤ C

[

∫

BR

H(x,Du)dx+

(∫

BR

(H(x,Dψ))m1dx

) 1
m1

]

.

for all balls BR
2
⊂ BR ⋐ Ω.

Proof. Let
R

2
≤ t < s ≤ R ≤ 1 and let η ∈ C∞

0 (BR) be a cut-off function s.t. 0 ≤ η ≤

1, η ≡ 1 on Bt, η ≡ 0 outside Bs, |Dη| ≤
2

s− t
. We set φ = η(x)(u(x)−uBR

)−η(x)(ψ(x)−
ψBR

) and g = u − φ ∈ Kψ(Ω). We observe that g = u on ∂Bs and g = ψ − ψBR
+ uBR

on Bt, therefore Dg = Dψ on Bt. Using Assumption 1 (ii) and the fact that u is a local

minimizer, we have

∫

Bt

H(x,Du(x))dx

≤ C

∫

Bt

F (x, u(x), Du(x))dx
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≤ C

∫

Bs

F (x, g(x), Dg(x))dx

≤ C

∫

Bs

|Dg(x)|p + a(x)|Dg(x)|qdx

≤ C

∫

Bs

[|Dη(x)|(ψ(x)− ψBR
) + η(x)|Dψ(x)|+ |Dη(x)|(u(x)− uBR

) + (1− η(x))|Du(x)|]p

+ a(x) [|Dη(x)|(ψ(x)− ψBR
) + η(x)|Dψ(x)|+ |Dη(x)|(u(x)− uBR

) + (1− η(x))|Du(x)|]q dx

≤ C

∫

Bs

(1− η(x))p (|Du|p + a(x)|Du|q) dx

+ C

∫

Bs

[∣

∣

∣

∣

u(x)− uBR

s− t

∣

∣

∣

∣

p

+ a(x)

∣

∣

∣

∣

u(x)− uBR

s− t

∣

∣

∣

∣

q]

dx

+ C

∫

Bs

[∣

∣

∣

∣

ψ(x)− ψBR

s− t

∣

∣

∣

∣

p

+ a(x)

∣

∣

∣

∣

ψ(x)− ψBR

s− t

∣

∣

∣

∣

q]

dx

+ C

∫

Bs

(|Dψ(x)|p + a(x)|Dψ(x)|q) dx

≤ C

∫

Bs\Bt

H(x,Du(x))dx

+
C

|s− t|p
∫

BR

|u(x)− uBR
|pdx+ C

|s− t|q
∫

BR

a(x)|u(x)− uBR
|qdx

+
C

|s− t|p
∫

BR

|ψ(x)− ψBR
|pdx+ C

|s− t|q
∫

BR

a(x)|ψ(x)− ψBR
|qdx

+ C

∫

BR

H(x,Dψ(x))dx.

Adding the quantity C
∫

Bt
H(x,Du(x))dx to both sides of the previous estimate, by

Lemma 5.0.2 we get

∫

BR
2

H(x,Du(x))dx ≤C
[

1

Rp

∫

BR

|u(x)− uBR
|pdx+ 1

Rq

∫

BR

a(x)|u(x)− uBR
|qdx

+
1

Rp

∫

BR

|ψ(x)− ψBR
|pdx+ 1

Rq

∫

BR

a(x)|ψ(x)− ψBR
|qdx

+

∫

BR

H(x,Dψ(x))dx

]

.

Setting H̃(x, u(x)) := |u(x)|p + a(x)|u(x)|q and H̃(x, ψ(x)) := |ψ(x)|p + a(x)|ψ(x)|q, we
can write the previous inequality as

∫

BR
2

H(x,Du(x))dx
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≤
∫

BR

H̃

(

x,
u(x)− uBR

R

)

dx+

∫

BR

H̃

(

x,
ψ(x)− ψBR

R

)

dx+

∫

BR

H(x,Dψ(x))dx.

(7.9)

According to [105, Theorem 2.13] and Hölder’s inequality, it holds

∫

BR

H̃

(

x,
u(x)− uBR

R

)

dx ≤
(

∫

BR

(

H̃

(

x,
u(x)− uBR

R

))d1

dx

) 1
d1

≤
(∫

BR

(H(x,Du(x)))d2 dx

) 1
d2

, (7.10)

where d2 < 1 < d1 depend on n, p, q, α. Analogously,

∫

BR

H̃

(

x,
ψ(x)− ψBR

R

)

dx ≤
(

∫

BR

(

H̃

(

x,
ψ(x)− ψBR

R

))d1

dx

) 1
d1

≤
(∫

BR

(H(x,Dψ(x)))d2 dx

) 1
d2

. (7.11)

Inserting (7.10) and (7.11) in (7.9) and exploiting Hölder’s inequality, we infer

∫

BR
2

H(x,Du(x))dx ≤ C

[

(∫

BR

(H(x,Du(x)))d2
) 1

d2

+

∫

BR

H(x,Dψ(x))dx

]

. (7.12)

Since H(x,Dψ(x)) ∈ Lm1 , for m1 > 1, from Gehring’s lemma proved in [64] it follows

that there exists m1 > m2 > 1 s.t. H(x,Du(x)) ∈ Lm2 . Then, holding to d2 < 1, we

might write

∫

BR
2

(H(x,Du(x)))m2dx ≤ C

[(∫

BR

H(x,Du(x))dx

)m2

+

∫

BR

(H(x,Dψ(x)))m2dx

]

≤ C

[

(∫

BR

H(x,Du(x))dx

)m2

+

(∫

BR

(H(x,Dψ(x))m1dx

)

m2
m1

]

.

Hence,





∫

BR
2

(H(x,Du(x)))m2dx





1
m2

≤ C

[

∫

BR

H(x,Du(x))dx+

(∫

BR

(H(x,Dψ(x))m1dx

) 1
m1

]

.

The higher integrability of the minimizer u stated in Theorem 7.1.2 allows us to prove
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the following higher integrability up to the boundary result for the solution to the freezed

obstacle problem (7.5).

Theorem 7.1.3. Let v ∈ u+W 1,p
0 (BR

2
) be a solution to the obstacle problem (7.5) where

the integrand F̃ satisfies Assumption 1, for exponents 2 ≤ p < q verifying

q

p
≤ 1 +

α

n
.

If the function ψ is s.t. H(x,Dψ) ∈ Lm1
loc

(Ω), for some m1 > 1, then H(x,Du) ∈ Lm2
loc

(Ω),

for some m1 > m2 > 1, and there exist a constant C and an exponent m3, with m1 >

m2 > m3 > 1, s.t. H(x,Dv) ∈ Lm3
loc

(Ω) and





∫

BR
2

(H(x,Dv))m3 dx





1
m3

≤ C

[

(∫

BR

(H(x,Du))m2dx

) 1
m2

+

(∫

BR

(H(x,Dψ))m2dx

) 1
m2

]

.

Proof. We start setting

w(x) :=

{

v(x) if x ∈ BR
2
,

u(x) if x ∈ BR \BR
2

(7.13)

We first consider Bρ(x1) ⊂ BR
2
. In this case the Caccioppoli inequality (7.12) holds,

namely

∫

B ρ
2

H(x,Dv)dx ≤ C





(

∫

Bρ

(H(x,Dv))d2dx

) 1
d2

+

∫

Bρ

H(x,Dψ)dx



 . (7.14)

Let us now focus on the case Bρ(x1) ⊂ BR, with x1 ∈ ∂BR
2
. Fix ρ

2
≤ t < s ≤ ρ

and a cut-off function η between Bs(x1) and Bt(x1), with |Dη| ≤ 2

t− s
. Let us set

g(x) := (1− η(x))v + η(x)u(x). It is straightforward that g ∈ u+W 1,p
0 and g(x) ≥ ψ(x).

Since v is a minimizer, according to the definition of H and Assumption 1 (ii), we have

∫

Bt∩BR
2

H(x,Dv)dx ≤ C

∫

Bt∩BR
2

F̃ (x,Dv)dx

≤ C

∫

Bs∩BR
2

F̃ (x,Dg)dx.
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Therefore, from the definitions of g and η, we get

∫

Bt∩BR
2

H(x,Dv)dx

≤C





∫

Bs∩BR
2

(

1

(t− s)p
|u− v|p + a(x)

1

(t− s)q
|u− v|q

)

dx

+

∫

(Bs\Bt)∩BR
2

H(x,Dv)dx

+

∫

Bs

H(x,Du)dx

]

.

As before, adding the quantity C
∫

Bt∩BR
2

H(x,Dv)dx to both sides of the previous in-

equality, by Lemma 5.0.2 we get

∫

B ρ
2
∩BR

2

H(x,Dv)dx

≤C





∫

Bρ∩BR
2

(

1

ρp
|u− v|p + a(x)

1

ρq
|u− v|q

)

dx

+

∫

Bρ

H(x,Du)dx

]

. (7.15)

We set

H̃

(

x,
u− v

ρ

)

:=
1

ρp
|u− v|p + a(x)

1

ρq
|u− v|q.

Adapting the argument in [26, Remark 2] and [105, Theorem 2.13] and exploiting Hölder’s

inequality, we have

∫

Bρ∩BR
2

H̃

(

x,
u− v

ρ

)

dx ≤





∫

Bρ∩BR
2

(

H̃

(

x,
u− v

ρ

))d1

dx





1
d1

≤





∫

Bρ∩BR
2

(H(x,Du−Dv))d2 dx





1
d2

, (7.16)
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where d2 < 1 < d1 depend on n, p, q, α. Inserting (7.16) in (7.15), it yields

∫

B ρ
2
∩BR

2

H(x,Dv)dx ≤C





(

∫

Bρ

(H(x,Du(x))d2 dx

) 1
d2

+





∫

Bρ∩BR
2

(H(x,Dv))d2 dx





1
d2

+

∫

Bρ

H(x,Du(x))dx

]

≤C











∫

Bρ∩BR
2

(H(x,Dv))d2 dx





1
d2

+

∫

Bρ

H(x,Du(x))dx






.

Therefore, from the definition of w in (7.13), we infer

∫

B ρ
2

H(x,Dw(x))dx ≤C
[

(

∫

Bρ

(H(x,Dw(x)))d2 dx

) 1
d2

+

∫

Bρ

H(x,Du(x))dx

+

∫

Bρ

H(x,Dψ(x))dx

]

. (7.17)

Hence, by (7.14) it follows that (7.17) holds not only if Bρ(x1) ⊂ BR
2
or Bρ(x1)∩BR

2
̸= ∅,

but also when Bρ(x1) ⊂ BR and x1 ∈ ∂BR
2
.

We now take care of the case Bρ(x1) ∩ ∂BR
2

̸= ∅ and B4ρ ⊂ BR. We fix x2 ∈
Bρ(x1) ∩ ∂BR

2
.

∫

B ρ
2
(x1)

H(x,Dw)dx

≤ 3N
∫

B 3ρ
2
(x2)

H(x,Dw)dx

≤ C





(

∫

B3ρ(x2)

(H(x,Dw))d2dx

) 1
d2

+

∫

B3ρ(x2)

H(x,Du)dx+

∫

B3ρ(x2)

H(x,Dψ)dx





≤ C





(

∫

B4ρ(x1)

(H(x,Dw))d2dx

) 1
d2

+

∫

B4ρ(x1)

H(x,Du)dx+

∫

B4ρ(x1)

H(x,Dψ)dx



 .

Since this estimate holds for every B ρ
2
such that B4ρ ⊂ BR, by a covering argument

it follows that inequality (7.17) holds for every B ρ
2
such that Bρ ⊂ BR. Now, since

H(x,Dψ) ∈ Lm1 , m1 > 1, Theorem 7.1.2 yields that there exists m2, with 1 < m2 < m1,
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s.t. H(x,Du) ∈ Lm2 . Therefore, according to Gehring’s lemma, there exists m3, with

1 < m3 < m2 < m1, such that,

(

∫

B ρ
2
(x1)

(H(x,Dw))m3 dx

) 1
m3

≤C
[

∫

Bρ(x1)

H(x,Dw(x))dx

+

(

∫

Bρ(x1)

(H(x,Du(x)))m2dx

) 1
m2

+

(

∫

Bρ(x1)

(H(x,Dψ(x)))m2dx

) 1
m2



 .

In particular, for ρ ≡ R and x1 = x0, recalling the definition of w we have





∫

BR
2

(H(x,Dv))m3 dx





1
m3

≤C





∫

BR
2

H(x,Dv)dx+

∫

BR\BR
2

H(x,Du(x))dx

+

(∫

BR

(H(x,Du(x)))m2dx

) 1
m2

+

(∫

BR

(H(x,Dψ(x)))m2dx

) 1
m2

]

≤C





∫

BR
2

H(x,Dv)dx

+

(∫

BR

(H(x,Du(x)))m2dx

) 1
m2

+

(∫

BR

(H(x,Dψ(x)))m2dx

) 1
m2

]

.

Since v is a minimizer and recalling that m2 > 1, it holds





∫

BR
2

(H(x,Dv))m3 dx





1
m3

≤ C

[

(∫

BR

(H(x,Du(x)))m2dx

) 1
m2

+

(∫

BR

(H(x,Dψ(x)))m2dx

) 1
m2

]

,

i.e. the conclusion.
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Remark 3. We point out that Theorems 7.1.2 and 7.1.3 hold true also under the more

general hypothesis q > p > 1. However, they are stated for q > p ≥ 2 for later purpose in

Section 7.4.

7.2 Higher differentiability for comparison maps

In Chapter 6 we established in Theorem 6.0.1 the higher differentiability of the solution v

to (7.5) under more general assumptions on the coefficients. Indeed, the result presented

in this Section recalls Theorem 6.0.1 with r = ∞. Here, we only give the proof of the a

priori bounds, focusing on the differences with respect to the proof carried out in Section

6.2.1. This is crucial in order to establish precise estimates on the difference quotient

that will be pivotal for the comparison argument. On the other hand, the approximation

procedure is achieved using the same arguments in Section 6.2.2, therefore it will not be

presented.

Before stating the result, it is worth noticing that Assumption 1 implies that there exist

positive constants l̃, ν̃, L̃ such that the following conditions are satisfied:

|DξF̃ (x, ξ)| ≤ l̃(|ξ|p−1 + a(x)|ξ|q−1) (Ā1)

⟨DξF̃ (x, ξ)−DξF̃ (x, η), ξ−η⟩ ≥ ν̃(|ξ−η|2(|ξ|2+|η|2) p−2
2 +a(x)|ξ−η|2(|ξ|2+|η|2) q−2

2 ) (Ā2)

|DξF̃ (x, ξ)−DξF̃ (x, η)| ≤ L̃(|ξ − η|(|ξ|2 + |η|2) p−2
2 + a(x)|ξ − η|(|ξ|2 + |η|2) q−2

2 ) (Ā3)

|DξF̃ (x, ξ)−DξF̃ (y, ξ)| ≤ |x− y|α|ξ|q−1 (Ā4)

for every x, y ∈ Ω and every ξ, η ∈ R
n.

The following lemma holds:

Lemma 7.2.1. Let v ∈ u +W 1,p
0 (B) be the solution to (7.5) under Assumption 1, for

exponents 2 ≤ p < n
α
, p < q satisfying

q

p
< 1 +

α

n
. (7.18)

If

Dψ ∈ Bγ
2q−p,∞(B),

for 0 < α < γ < 1, then

Vp(Dv) ∈ Bα
2,∞,loc(B)
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and the following estimate

∫

Br/4

(|τhVp(Dv)|2 + a(x+ h)|τhVq(Dv)|2)dx

≤C|h|2α
{

1

r2p̃

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ

+ [Dψ]2q−p
Bγ

2q−p,∞(Br)

}

, (7.19)

holds for all balls Br/4 ⊂ Br ⋐ B, for some µ < α, with C := C(n, p, q, µ, ∥a∥∞, ∥Dψ∥Bγ
2q−p,∞

),

p̃ := p̃(n, p, q, µ) > 1 and κ := κ(n, p, q, µ) < p̃.

Proof. We a priori assume that Dv ∈ L
np

n−2µ

loc (B), for all αn
n+2α

< µ < α.

In the sequel we will profusely use the following inequality:

2q − p ≤ np

n− 2µ
, (7.20)

for µ ∈ [ αn
n+2α

, α). Indeed,

2q − p ≤ np

n− 2µ
⇔ q

p
≤ n− µ

n− 2µ

and

1 +
α

n
≤ n− µ

n− 2µ
⇔ µ ≥ αn

n+ 2α
.

Fix 0 < r
4
< ρ < s < t < t′ < r

2
such that Br ⋐ B and a cut-off function η ∈ C1

0(Bt) such

that 0 ≤ η ≤ 1, η = 1 on Bs, |Dη| ≤ C
t−s

.

Now, for |h| < r
4
, we consider functions

w1(x) = η2(x)[(v − ψ)(x+ h)− (v − ψ)(x)]

and

w2(x) = η2(x− h)[(v − ψ)(x− h)− (v − ψ)(x)].

Then

φ1(x) = v(x) + tw1(x), (7.21)

φ2(x) = v(x) + tw2(x) (7.22)

are admissible test functions for all t ∈ [0, 1).

Arguing analogously as in the proof of Theorem 6.2.1, we obtain the following estimate

0 ≥
∫

Ω

⟨DξH(x+ h,Dv(x+ h))−DξH(x+ h,Dv(x)), η2Dτhv⟩dx
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−
∫

Ω

⟨DξH(x+ h,Dv(x+ h))−DξH(x+ h,Dv(x)), η2Dτhψ⟩dx

+

∫

Ω

⟨DξH(x+ h,Dv(x+ h))−DξH(x+ h,Dv(x)), 2ηDητh(v − ψ)⟩dx

+

∫

Ω

⟨DξH(x+ h,Dv(x))−DξH(x,Dv(x)), η2Dτhv⟩dx

−
∫

Ω

⟨DξH(x+ h,Dv(x))−DξH(x,Dv(x)), η2Dτhψ⟩dx

+

∫

Ω

⟨DξH(x+ h,Dv(x))−DξH(x,Dv(x)), 2ηDητh(v − ψ)⟩dx

=:I1 + I2 + I3 + I4 + I5 + I6, (7.23)

that yields

I1 ≤|I2|+ |I3|+ |I4|+ |I5|+ |I6|. (7.24)

The ellipticity assumption (Ā2) and the properties of a(x) imply

I1 ≥ν̃
∫

Ω

η2|τhDv|2(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 dx

+ ν̃

∫

Ω

η2a(x+ h)|τhDv|2(|Dv(x+ h)|2 + |Dv(x)|2) q−2
2 dx

≥ν̃
∫

Ω

η2(|τhVp(Dv)|2 + a(x+ h)|τhVq(Dv)|2)dx. (7.25)

From the growth condition (Ā3), the boundedness of a(x) and Young’s inequality, we get

|I2| ≤L̃
∫

Ω

η2|τhDv|(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 |τhDψ|dx

+ L̃

∫

Ω

η2a(x+ h)|τhDv|(|Dv(x+ h)|2 + |Dv(x)|2) q−2
2 |τhDψ|dx

≤L̃
∫

Ω

η2|τhDv|(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 |τhDψ|dx

+ L̃∥a∥∞
∫

Ω

η2|τhDv|(|Dv(x+ h)|2 + |Dv(x)|2) q−2
2 |τhDψ|dx

≤ε
∫

Ω

η2|τhDv|2(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 dx

+ Cε(L̃, ∥a∥∞)

∫

Ω

η2|τhDψ|2(1 + |Dv(x+ h)|2 + |Dv(x)|2) 2q−p−2
2 dx.

The calculations performed in Theorem 6.2.1 and Lemma 5.0.1 lead us to the following
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estimate for the integral I2

|I2| ≤ε
∫

Ω

η2|τhVp(Dv)|2dx

+ Cε(L̃, p, q, ∥a∥∞)|h|2γ[Dψ]2q−p
Bγ

2q−p,∞(Br)

+ Cε(L̃, p, q, ∥a∥∞)|h|2γ
∫

Bt′

(1 + |Dv|)2q−pdx. (7.26)

Now, we consider the integral I3. From assumption (Ā3), hypothesis |Dη| ≤ C
t−s

and

Young’s inequality, we get

|I3| ≤2L̃

∫

Ω

|Dη|η|τhDv|(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 |τh(v − ψ)|dx

+ 2L̃∥a∥∞
∫

Ω

|Dη|η|τhDv|(1 + |Dv(x+ h)|2 + |Dv(x)|2) q−2
2 |τh(v − ψ)|dx

≤ε
∫

Ω

η2|τhDv|2(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 dx

+
Cε(L, ∥a∥∞)

(t− s)2

∫

Bt

|τh(v − ψ)|2(|Dv(x+ h)|2 + |Dv(x)|2) 2q−p−2
2 dx,

where we also used the boundedness of function a(x).

Arguing analogously as in the proof of Theorem 6.2.1, we can estimate the integral I3 as

follows

|I3| ≤ε
∫

Ω

η2|τhVp(Dv)|2dx

+
Cε(L̃, n, p, q, ∥a∥∞)

(t− s)2
|h|2

∫

Br

|Dψ|2q−pdx

+
Cε(L̃, n, p, q, ∥a∥∞)

(t− s)2
|h|2

∫

Bt′

(1 + |Dv|)2q−pdx. (7.27)

In order to estimate the integral I4, we use assumption (Ā4), Young’s inequality and

Lemma 5.0.1 as follows

|I4| ≤
∫

Ω

η2|τhDv||h|α|Dv|q−1dx

≤ε
∫

Ω

η2|τhDv|2(|Dv(x+ h)|2 + |Dv(x)|2) p−2
2 dx

+ Cε|h|2α
∫

Bt

|Dv|2q−pdx

≤ε
∫

Ω

η2|τhVp(Dv)|2dx
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+ Cε|h|2α
∫

Bt

|Dv|2q−pdx. (7.28)

We now take care of I5. Similarly as above, exploiting assumption (Ā4) and Hölder’s

inequality, we infer

|I5| ≤
∫

Ω

η2|τhDψ||h|α|Dv|q−1dx

≤|h|α
(∫

Bt

|τhDψ|2q−pdx
) 1

2q−p
(∫

Bt

|Dv|
(q−1)(2q−p)

2q−p−1 dx

)
2q−p−1
2q−p

.

Now, we observe

(q − 1)(2q − p)

2q − p− 1
< 2q − p⇔ p < q. (7.29)

Hence

|I5| ≤|h|α+γ[Dψ]Bγ
2q−p,∞(Br)

(∫

Bt

|Dv|2q−pdx
)

q−1
2q−p

≤C(q)|h|α+γ[Dψ]q
Bγ

2q−p,∞(Br)

+ C(q)|h|α+γ
(∫

Bt

|Dv|2q−pdx
)

q
2q−p

. (7.30)

From assumption (Ā4), hypothesis |Dη| ≤ C
t−s

and Hölder’s inequality, we infer the fol-

lowing estimate for I6.

|I6| ≤
C

t− s
|h|α

∫

Bt

|τhψ||Dv|q−1dx

+
C

t− s
|h|α

∫

Bt

|τhv||Dv|q−1dx

≤ C

t− s
|h|α

(∫

Bt

|τhψ|2q−pdx
) 1

2q−p
(∫

Bt

|Dv|
(q−1)(2q−p)

2q−p−1 dx

)
2q−p−1
2q−p

+
C

t− s
|h|α

(∫

Bt

|τhv|2q−pdx
) 1

2q−p
(∫

Bt

|Dv|
(q−1)(2q−p)

2q−p−1 dx

)
2q−p−1
2q−p

.

Using Lemma 5.2.2, (7.29) and Hölder’s and Young’s inequality, we have

|I6| ≤
C(n, p, q)

t− s
|h|α+1

(

∫

Bt′

|Dψ|2q−pdx
) 1

2q−p (∫

Bt

|Dv|
(q−1)(2q−p)

2q−p−1 dx

)
2q−p−1
2q−p
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+
C(n, p, q)

t− s
|h|α+1

(

∫

Bt′

|Dv|2q−pdx
) 1

2q−p (∫

Bt

|Dv|
(q−1)(2q−p)

2q−p−1 dx

)
2q−p−1
2q−p

≤C(n, p, q)
t− s

|h|α+1

(∫

Br

|Dψ|2q−pdx
) 1

2q−p
(∫

Bt

|Dv|2q−pdx
)

q−1
2q−p

+
C(n, p, q)

t− s
|h|α+1

(

∫

Bt′

|Dv|2q−pdx
)

q
2q−p

≤C(n, p, q)
t− s

|h|α+1

(∫

Br

|Dψ|2q−pdx
)

q
2q−p

+
C(n, p, q)

t− s
|h|α+1

(

∫

Bt′

|Dv|2q−pdx
)

q
2q−p

. (7.31)

Inserting estimates (7.25), (7.26), (7.27), (7.28), (7.30) and (7.31) in (7.24), we infer

ν

∫

Ω

η2(|τhVp(Dv)|2 + a(x+ h)|τhVp(Dv)|2)dx

≤3ε

∫

Ω

η2|τhVp(Dv)|2dx

+ Cε(L̃, p, q, ∥a∥∞)|h|2γ[Dψ]2q−p
Bγ

2q−p,∞(Br)

+ Cε(L̃, p, q, ∥a∥∞)|h|2γ
∫

Bt′

(1 + |Dv|)2q−pdx

+
Cε(L̃, n, p, q, ∥a∥∞)

(t− s)2
|h|2

∫

Br

|Dψ|2q−pdx

+
Cε(L̃, n, p, q, ∥a∥∞)

(t− s)2
|h|2

∫

Bt′

(1 + |Dv|)2q−pdx

+ Cε|h|2α
∫

Bt

|Dv|2q−pdx

+ C(q)|h|α+γ[Dψ]q
Bγ

2q−p,∞(Br)
+ C(q)|h|α+γ

(∫

Bt

|Dv|2q−pdx
)

q
2q−p

+
C(n, p, q)

t− s
|h|α+1

(∫

Br

|Dψ|2q−pdx
)

q
2q−p

+
C(n, p, q)

t− s
|h|α+1

(

∫

Bt′

|Dv|2q−pdx
)

q
2q−p

. (7.32)

We now introduce the following interpolation inequality

∥Dw∥2q−p ≤ ∥Dw∥δp∥Dw∥1−δnp
n−2µ

, (7.33)
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where 0 < δ < 1 is defined through the condition

1

(2q − p)
=
δ

p
+

(1− δ)(n− 2µ)

np
(7.34)

which implies

δ =
n(p− q) + µ(2q − p)

µ(2q − p)
, 1− δ =

n(q − p)

µ(2q − p)
.

Hence we get the following inequalities

∫

Bt′

(1 + |Dv|)2q−pdx ≤
(∫

Bt′

(1 + |Dv|)pdx
)

δ(2q−p)
p
(∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
(n−2µ)(q−p)

µp

,

(7.35)

(∫

Bt′

|Dv|2q−pdx
)

q
2q−p

≤
(∫

Bt′

|Dv|pdx
)

δq
p

·
(∫

Bt′

|Dv|
np

n−2µdx

)
(n−2µ)qp′

p

, (7.36)

where p′ = q−p
µ(2q−p)

.

Inserting (7.35) and (7.36) in (7.32), and exploiting the bounds

n(q − p)

µp
< 1,

nq(q − p)

µp(2q − p)
< 1, (7.37)

which hold by assumption (7.18) and for µ ∈ (n(q−p)
p

, α), from Young’s inequality, we infer

ν

∫

Ω

η2(|τhVp(Dv)|2 + a(x+ h)|τhVp(Dv)|2)dx

≤3ε

∫

Ω

η2|τhVp(Dv)|2dx

+ Cε(L̃, p, q, ∥a∥∞)|h|2γ[Dψ]2q−p
Bγ

2q−p,∞(Br)

+ Cε,θ(L̃, n, p, q, ∥a∥∞)|h|2γ
(∫

Br

(1 + |Dv|)pdx
)

δ(2q−p)p̃
p

+ θ|h|2γ
(∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+
Cε(L̃, n, p, q, ∥a∥∞)

(t− s)2
|h|2

∫

Br

|Dψ|2q−pdx

+ θ|h|2
(∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+
Cε,θ(L̃, n, p, q, ∥a∥∞)

(t− s)2p̃
|h|2
(∫

Br

(1 + |Dv|)pdx
)

p̃δ(2q−p)
p

+ Cε,θ|h|2α
(∫

Br

|Dv|pdx
)

p̃δ(2q−p)
p

+ θ|h|2α
(∫

Bt

|Dv|
np

n−2µdx

)
n−2µ

n
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+ Cθ(q)|h|α+γ[Dψ]qBγ
2q−p,∞(Br)

+ Cθ(n, p, q)|h|α+γ
(∫

Br

|Dv|pdx
)

p∗δq
p

+ θ|h|α+γ
(∫

Bt

|Dv|
np

n−2µdx

)
n−2µ

n

+
Cθ(n, p, q)

t− s
|h|α+1

(∫

Br

|Dψ|2q−pdx
)

q
2q−p

+
Cθ(n, p, q)

(t− s)p∗
|h|α+1

(∫

Br

|Dv|pdx
)

p∗δq
p

+ θ|h|α+1

(

∫

Bt′

|Dv|
np

n−2µdx

)
n−2µ

n

. (7.38)

for some constant θ ∈ (0, 1), where we set p̃ = µp
µp−n(q−p)

, p∗ = µp(2q−p)
µp(2q−p)−n(q−p)q

.

For a better readability we now define

A =Cε(L̃, p, q, ∥a∥∞)[Dψ]2q−p
Bγ

2q−p,∞(Br)
+ Cε,θ(L̃, n, p, q, ∥a∥∞)

(∫

Br

(1 + |Dv|)pdx
)

δ(2q−p)p̃
p

+ Cε,θ

(∫

Br

|Dv|pdx
)

p̃δ(2q−p)
p

+ Cθ(q)|h|α+γ[Dψ]qBγ
2q−p,∞(Br)

+ Cθ(n, p, q)|h|α+γ
(∫

Br

|Dv|pdx
)

p∗δq
p

B1 =Cε(L̃, n, p, q, ∥a∥∞)

∫

Br

|Dψ|2q−pdx,

B2 =Cε,θ(L̃, n, p, q, ∥a∥∞)

(∫

Br

(1 + |Dv|)pdx
)

p̃δ(2q−p)
p

,

B3 =Cθ(n, p, q)

(∫

Br

|Dψ|2q−pdx
)

q
2q−p

,

B4 =Cθ(n, p, q)

(∫

Br

|Dv|pdx
)

p∗δq
p

,

so that we can rewrite the previous estimate as

ν

∫

Ω

η2(|τhVp(Dv)|2 + a(x+ h)|τhVp(Dv)|2)dx

≤3ε

∫

Ω

η2|τhVp(Dv)|2dx

+ θ(|h|2α + |h|α+γ)
(∫

Bt

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ θ(|h|2 + |h|2γ + |h|α+1)

(

∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n
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+ (|h|2γ + |h|2α + |h|α+γ)A+ |h|2 B1

(t− s)2
+ |h|2 B2

(t− s)2p̃

+ |h|α+1 B3

(t− s)p
′′ + |h|α+1 B4

(t− s)p∗
.

Choosing ε = ν
6
, we can reabsorb the first integral in the right hand side of the previous

estimate by the left hand side, thus getting

∫

Ω

η2(|τhVp(Dv)|2 + a(x+ h)|τhVq(Dv)|2)dx

≤3θ|h|2α
(∫

Bt

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ 3θ|h|2α
(

∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ |h|2αA+ |h|2 B1

(t− s)2
+ |h|2 B2

(t− s)2p̃
+ |h|2α B3

t− s
+ |h|2α B4

(t− s)p∗
, (7.39)

where we used the fact that α < γ.

Since the right hand side of (7.39) depends on the integrability of Dv, in order to

exploit inequality (7.19), we need to derive an a priori estimate for the gradient of the

minimzer v. First, we bound (7.39) from below as follows

∫

Bs

|τhVp(Dv)|2dx

≤
∫

Bs

(|τhVp(Dv)|2 + a(x+ h)|τhVq(Dv)|2)dx

≤|h|2α
{

2θ

(∫

Bt

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ 3θ

(

∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ A+
B1

(t− s)2
+

B2

(t− s)2p̃
+

B3

t− s
+

B4

(t− s)p∗

}

, (7.40)

where we also used that η = 1 on Bs. Then, Lemma 5.1.3 and equality (5.1) imply

(∫

Bs

|Dv|
np

n−2µdx

)
n−2µ

n

≤2θ

(∫

Bt

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ 3θ

(

∫

Bt′

(1 + |Dv|)
np

n−2µdx

)
n−2µ

n

+ A+
B1

(t− s)2
+

B2

(t− s)2p̃
+

B3

t− s
+

B4

(t− s)p∗
, (7.41)

for all µ ∈ (n(q−p)
p

, α).
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Now, applaying the iteration Lemma 5.0.2 twice, we obtain

(∫

Br/4

|Dv|
np

n−2µdx

)
n−2µ

n

≤ C|h|2α
{

1

r2p̃

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ

+ [Dψ]2q−p
Bγ

2q−p,∞(Br)

}

,

(7.42)

thus, using Lemma 5.1.3, from inequalities (7.42) and (7.40), we deduce the a priori

estimate

∫

Br/4

(|τhVp(Dv)|2 + a(x+ h)|τhVq(Dv)|2)dx

≤C|h|2α
{

1

r2p̃

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ

+ [Dψ]2q−p
Bγ

2q−p,∞(Br)

}

, (7.43)

for some µ < α, where C := C(n, p, q, µ, ∥a∥∞) and κ := δ(2q−p)p̃
p

< p̃.

According to the previous result, we state the following remarks, which will be crucial

for the proof of Theorem 7.4.1.

Remark 4. From Proposition 5.2.1 (iii), it follows that

|τh(
√

a(x)Vq(Dv))|2 ≤ Ca(x+ h)|τhVq(Dv)|2 + C|Vq(Dv)|2|τha(x)|. (7.44)

Combining (7.43) and (7.44), we obtain

∫

Br/4

|τh(
√

a(x)Vq(Dv))|2dx

≤
∫

Br/4

(|τhVp(Dv)|2 + |τh(
√

a(x)Vq(Dv))|2dx

≤C
∫

Br/4

(|τhVp(Dv)|2 + a(x+ h)|τhVq(Dv)|2 + |Vq(Dv)|2|τha(x)|)dx

≤C|h|2α
{

1

r2p̃

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ

+ [Dψ]2q−p
Bγ

2q−p,∞(Br)

}

+C|h|α∥Dv∥qLq(Br)

≤C|h|α
{

1

r2p̃

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ

+ ∥Dv∥qLq(Br)
+ [Dψ]2q−p

Bγ
2q−p,∞(Br)

}

, (7.45)

which is finite by Theorem 7.2.1. Therefore,

√

a(x)Vq(Dv) ∈ B
α
2
2,∞,loc(B).

Lemma (5.1.3) yields

a(x)|Dv|q ∈ L
n

n−2β

loc (B), ∀β < α

2
.
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Remark 5. Choosing µ < α s.t. q = np
n−2µ

, estimates (7.42) and (7.45) yield

∫

Br/4

(|τhVp(Dv)|2 + |τh(
√

a(x)Vq(Dv))|2dx

≤C|h|α
{

1

r2p̃

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ

+ [Dψ]2q−p
Bγ

2q−p,∞(Br)

}
q
p

≤C|h|α
{

1

r2p̃1

(∫

Br

(1 + |Dv|p + |Dψ|2q−p)dx
)κ1

+ [Dψ]q1
Bγ

2q−p,∞(Br)
+ 1

}

, (7.46)

where p̃q
p
= p̃1 > 1, κq

p
= κ1 < p̃1 and (2q−p)q

p
= q1 < p̃1, with p̃ and κ introduced in (7.38)

and (7.43) respectively.

7.3 Comparison

In this section we prove a comparison Lemma (see Lemma 7.3.2 below), where we estimate

the distance between the solution u to the problem (7.1) and the solution v to the problem

(7.5). In order to do so, we first need the following lemma.

Lemma 7.3.1. Let F̃ : Ω × R
n → R be the function defined in (7.4) under Assumption

1. Then there exists a positive constant c = c(r, n, ν) such that the following inequality

holds for every x ∈ Ω and every z1, z2 ∈ R
n

c(|Vp(z1)− Vp(z2)|2 + a(x)|Vq(z1)− Vq(z2)|2)
≤ F̃ (x, z1)− F̃ (x, z2)− ⟨DξF̃ (x, z2), z1 − z2⟩. (7.47)

Proof. We start proving that for every r ≥ 2 there exists a constant c = c(r, n) such that

c(r, n)|Vr(z1)− Vr(z2)|2 ≤ gr(z1)− gr(z2)− ⟨Dξgr(z2), z1 − z2⟩, (7.48)

where we denote gr(z) := |z|r.
Let us consider the function Gr : [0, 1] → R defined by Gr(t) := gr(tz1 + (1 − t)z2).

Since Gr ∈ C2([0, 1]), by using Taylor’s formula with integral remainder, we obtain

Gr(1) = Gr(0) +G′
r(0) +

∫ 1

0

(1− s)G′′
r(s)ds. (7.49)

Since

G′
r(t) =⟨Dξgr(tz1 + (1− t)z2), z1 − z2⟩,

G′′
r(t) =⟨Dξξgr(tz1 + (1− t)z2)(z1 − z2), z1 − z2⟩,
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from (7.49) we get

gr(z1)− gr(z2)− ⟨Dξgr(z2), z1 − z2⟩

=

∫ 1

0

(1− s)⟨Dξξgr(sz1 + (1− s)z2)(z1 − z2), z1 − z2⟩ds

≥c(r)|z1 − z2|2
∫ 1

0

(1− s)|sz1 + (1− s)z2|r−2ds. (7.50)

Now, we want to estimate from below |sz1 + (1− s)z2|r−2. If |z1| ≤ |z2| and s ∈ [3/4, 1],

then −1/4 ≤ s− 1 ≤ 0 and

|sz1 + (1− s)z2| ≥ s|z1|+ (s− 1)|z2| ≥
3

4
|z1| −

1

4
|z2| ≥

1

4
(|z1|+ |z2|),

while, if |z2| > |z2| and s ∈ [0, 1/4], then 3/4 ≤ 1− s ≤ 1 and

|sz1 + (1− s)z2| ≥ −s|z1|+ (1− s)|z2| ≥ −1

4
|z1|+

3

4
|z2| ≥

1

4
(|z1|+ |z2|).

Therefore

|sz1 + (1− s)z2|r−2 ≥ 42−r(|z1|+ |z2|)r−2 (7.51)

holds on a suitable subinterval of [0, 1]. Eventually, inserting (7.51) in (7.50) we obtain

gr(z1)− gr(z2)− ⟨Dξgr(z2), z1 − z2⟩ ≥c(r)(|z1|+ |z2|)r−2|z1 − z2|2

≥c(r, n)|Vr(z1)− Vr(z2)|2,

where in the last inequality we used Lemma 5.0.1.

At this point, using the bound from below on b in Assumption 1 and estimate (7.47)

we deduce

F̃ (x, z1)− F̃ (x, z2)−⟨DξF̃ (x, z2), z1 − z2⟩
=b(x0, uB)[gp(z1)− gp(z2)− ⟨Dξgp(z2), z1 − z2⟩
+ a(x)(gq(z1)− gq(z2)− ⟨Dξgq(z2), z1 − z2⟩)]

≥c(r, n, ν)(|Vp(z1)− Vp(z2)|2 + a(x)|Vq(z1)− Vq(z2)|2).

Remark 6. In the proof of Lemma 7.3.2 we will take advantage of the higher integrability

results established in Section 7.1, in particular in the case q
p
< 1 + α

n
.

Indeed, the assumptionDψ ∈ Bγ
2q−p,∞,loc(Ω) and Lemma 5.1.3 imply thatDψ ∈ L

n(2q−p)
n−µ(2q−p) ,

for every 0 < µ < γ. Therefore, H(x,Dψ) belong to some Lm, with m > 1.
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Lemma 7.3.2. Let u be a solution to (7.1) and v ∈ u+W 1,p
0 (B) be the solution to (7.5),

under Assumptions 1 and 2, for exponents 2 ≤ p < q verifying

q

p
< 1 +

α

n
.

If

Dψ ∈ Bγ
2q−p,∞,loc(Ω),

for 0 < α < γ < 1, then

∫

B

|Vp(Du)− Vp(Dv)|2 + a(x)|Vq(Du)− Vq(Dv)|2dx

≤ CRσ

∫

2B

(1 + (H(x,Du))m + (H(x,Dψ))m)dx, (7.52)

with σ = min{β,m − 1}, where β is the exponent appearing in the Assumption 2 and

where m is the minimum of the two higher integrability exponents of Theorems 7.1.2 and

7.1.3.

Proof. Assumption 1, the definition of F̃ and the minimality of v imply

∫

B

H(x,Dv)dx ≤ C

∫

B

F̃ (x,Dv)dx ≤
∫

B

F̃ (x,Du)dx ≤ C

∫

B

H(x,Du)dx, (7.53)

on the other hand, Theorem 7.1.3 yields

∫

B

(H(x,Dv))mdx ≤
∫

B

[(H(x,Du))m + (H(x,Dψ))m]dx, (7.54)

for some m > 1. From inequality (7.47) we get

∫

B

|Vp(Du)− Vp(Dv)|2 + a(x)|Vq(Du)− Vq(Dv)|2dx

≤ C

∫

B

F̃ (x,Du)− F̃ (x,Dv)− ⟨DξF̃ (x,Dv), Du−Dv⟩dx,

moreover, recalling inequality (7.6), i.e.

∫

B

⟨DξH(x,Dv), Du−Dv⟩dx ≥ 0, (7.55)

and that b(x0, uB) ≥ ν > 0, we deduce

∫

B

|Vp(Du)− Vp(Dv)|2 + a(x)|Vq(Du)− Vq(Dv)|2dx ≤ C

∫

B

F̃ (x,Du)− F̃ (x,Dv)dx.
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Hence, we can write the previous estimate as follows

∫

B

|Vp(Du)− Vp(Dv)|2 + a(x)|Vq(Du)− Vq(Dv)|2dx

≤C
∫

B

F̃ (x,Du)− F̃ (x,Dv)dx

=C

∫

B

[b(x0, uB)H(x,Du)− b(x0, uB)H(x,Dv)]dx

=C

∫

B

[b(x0, uB)H(x,Du)− b(x, uB)H(x,Du)]dx

+ C

∫

B

[b(x, uB)H(x,Du)− b(x, u)H(x,Du)]dx

+ C

∫

B

[b(x, u)H(x,Du)− b(x, v)H(x,Dv)]dx

+ C

∫

B

[b(x, v)H(x,Dv)− b(x, vB)H(x,Dv)]dx

+ C

∫

B

[b(x, vB)H(x,Dv)− b(x, uB)H(x,Dv)]dx

+ C

∫

B

[b(x, uB)H(x,Dv)− b(x0, uB)H(x,Dv)]dx

=C[I1 + I2 + I3 + I4 + I5 + I6]. (7.56)

We proceed estimating the various pieces arising up from (7.56).

By Assumption 2 and estimate (7.53), we get

I1 + I6 ≤
∫

B

ωb(|x− x0|)H(x,Du)dx+

∫

B

ωb(|x− x0|)H(x,Dv)dx

≤
∫

B

|x− x0|β(H(x,Du) +H(x,Dv))dx

≤CRβ

∫

B

H(x,Du)dx

≤CRβ

∫

B

[1 + (H(x,Du))m]dx. (7.57)

Now, we take care of the integral I2. From Assumption 2, Young’s and Poincaré’s in-

equalities, we infer

I2 ≤
∫

B

ωb(|u− uB|)H(x,Du)dx

=

∫

B

1

R
σ

1+σ

ωb(|u− uB|)R
σ

1+σH(x,Du)dx

≤C
∫

B

1

R
ωb(|u− uB|)

1+σ
σ +Rσ(H(x,Du))1+σdx
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≤CRσ

∫

B

1

R1+σ
|u− uB|1+σ + (H(x,Du))1+σdx

≤CRσ

∫

B

|Du|1+σ + (H(x,Du))1+σdx

≤CRσ

∫

B

(1 + |Du|p(1+σ)) + (H(x,Du))1+σdx

≤CRσ

∫

B

[1 + (H(x,Du))m]dx, (7.58)

where σ := min{β,m− 1}.
The minimality of u yields that

I3 ≤ 0. (7.59)

Arguing analogously as for the integral I2, we obtain

I4 ≤
∫

B

ωb(|v − vB|)H(x,Dv)dx

≤CRσ

∫

B

1

R1+σ
|v − vB|1+σ + (H(x,Dv))1+σdx

≤CRσ

∫

B

|Dv|1+σ + (H(x,Dv))1+σdx

≤CRσ

∫

B

[1 + (H(x,Dv))m]dx

≤CRσ

∫

B

[1 + (H(x,Du))m + (H(x,Dψ))m]dx, (7.60)

where in the last inequality we used (7.54).

Since u = v on ∂B, using Poicaré inequality for the function u − v, we infer the

following estimate for I5.

I5 ≤
∫

B

ωb(|uB − vB|)H(x,Dv)dx

≤CRσ

∫

B

1

R1+σ
ωb(|uB − vB|)

1+σ
σ + (H(x,Du))1+σdx

≤CRσ

∫

B

1

R1+σ
|u− v|1+σ + (H(x,Dv))1+σdx

≤CRσ

∫

B

|Du|1+σ + |Dv|1+σ + (H(x,Dv))1+σdx

≤CRσ

∫

B

[1 + (H(x,Du))m + (H(x,Dv))m]dx

≤CRσ

∫

B

[1 + (H(x,Du))m + (H(x,Dψ))m]dx, (7.61)
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where in the inequality we used estimate (7.53). Finally, inserting estimates (7.57)–(7.61)

in (7.56), we get the desired estimate.

7.4 Main result

In order to prove Theorem 7.0.1 we follow the strategy first proposed in [85].

Before proving our main result, in Section 7.4.1, we fix some further notation and derive

a preliminary regularity theorem for solutions to (7.1).

For a ball B ⋐ Ω of radius R, we will denote by Q1 = Q1(B) and Q2 = Q2(B) the largest
and the smallest cubes, concentric to B and with sides parallel to the coordinate axes,

contained in B and containing B respectively. It is easy to verify that |B| ≈ |Q1| ≈ |Q2| ≈
Rn. We also denote the enlarged ball by B̂ = 4B. We set

Q1 = Q1(B) Q̂2 = Q2(B̂)

so that we have the following chain of inclusions

Q1 ⊂ B ⋐ 2B ⋐ Q1(B̂) ⊂ B̂ ⊂ Q̂2.

In what follows, we shall always take B such that Q2(B̂) ⋐ Ω.

Our next result shows that a fractional differentiability property on the gradient of the

obstacle transfers to a higher fractional differentiability for the gradient of the minimizer.

Theorem 7.4.1. Let u be a solution to (7.1) under Assumptions 1 and 2, for exponents

2 ≤ p < n
α
, p < q verifying

q

p
< 1 +

α

n
.

Then the following implication

Dψ ∈ Bγ
2q−p,∞,loc(Ω) ⇒ Vp(Du),

√

a(x)Vq(Du) ∈ Bσα
2,∞,loc(Ω)

holds provided 0 < α < γ < 1, with σα = σα(p, q, n, α, β,m), where β is the exponent

appearing in the Assumption 2 and where m is the minimum of the two higher integrability

exponents of Theorems 7.1.2 and 7.1.3.

Proof. Let us fix arbitrary open subsets Ω′
⋐ Ω′′

⋐ Ω and choose x0 ∈ Ω′. We recall

the definition of p̃1 from (7.46). Let δ ∈
(

0, α
2p̃1

)

be chosen later and consider the ball

B = B(x0, |h|δ) with |h| sufficiently small, depending on the dimension n, the parameter

δ and the distance between Ω′ and the boundary of Ω′′ such that Q̂2 ⋐ Ω′′. Furthermore,

let v ∈ u+W 1,p
0 (B) be the solution to (7.5) with B = B̂.
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We estimate the difference quotient for Vp(Du) and
√

a(x)Vq(Du) as follows

∫

B

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

=

∫

B

|Vp(Du(x+ h))− Vp(Du(x))|2dx

+

∫

B

|
√

a(x+ h)Vq(Du(x+ h))−
√

a(x)Vq(Du(x))|2dx

≤C
∫

B

|Vp(Du(x+ h))− Vp(Dv(x+ h))|2dx

+ C

∫

B

|Vp(Dv(x+ h))− Vp(Dv(x))|2dx

+ C

∫

B

|Vp(Dv(x))− Vp(Du(x))|2dx

+ C

∫

B

|
√

a(x+ h)Vq(Du(x+ h))−
√

a(x+ h)Vq(Dv(x+ h))|2dx

+ C

∫

B

|
√

a(x+ h)Vq(Dv(x+ h))−
√

a(x)Vq(Dv(x))|2dx

+ C

∫

B

|
√

a(x)Vq(Dv(x))−
√

a(x)Vq(Du(x))|2dx. (7.62)

Notice that if x ∈ B, then x+ h ∈ B̂, for |h| ≤ 1. Thus, we get

∫

B

|Vp(Du(x+ h))− Vp(Dv(x+ h))|2dx

+

∫

B

|
√

a(x+ h)Vq(Du(x+ h))−
√

a(x+ h)Vq(Dv(x+ h))|2dx

≤
∫

B̂

|Vp(Du)− Vp(Dv)|2 + a(x)|Vq(Du)− Vq(Dv)|2dx. (7.63)

Inserting inequality (7.63) in (7.62), we obtain

∫

B

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

≤C
∫

B̂

|Vp(Du)− Vp(Dv)|2 + a(x)|Vq(Du)− Vq(Dv)|2dx

+ C

∫

B

|τhVp(Dv)|2 + |τh(
√

a(x)Vq(Dv))|2dx

=:J1 + J2. (7.64)

From estimate (7.52) applied over the ball B̂, we infer

J1 ≤ C|h|σδ
∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx, (7.65)
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where we used that the radius of B̂ is proportional to |h|δ. Now estimate (7.46) (see

Remark 5) applied over the ball B yields

J2 ≤ C|h|α−2δp̃1

(∫

B̂

(1 + |Dv|p + |Dψ|2q−p)dx
)κ1

+ C|h|α[Dψ]q1
Bγ

2q−p,∞(B̂)
+ C|h|α, (7.66)

recalling that the radius of B is |h|δ. Inserting (7.65) and (7.66) in (7.64), we get

∫

B

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

≤C|h|σδ
∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx

+ C|h|α−2δp̃1

(∫

B̂

(1 + |Dv|p + |Dψ|2q−p)dx
)κ1

+ C|h|α[Dψ]q1
Bγ

2q−p,∞(B̂)
+ C|h|α

≤C|h|σδ
∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx

+ C|h|α−2δp̃1

(∫

Q̂2

(1 +H(x,Du))dx

)κ1

+ C|h|α[Dψ]q1
Bγ

2q−p,∞(Q̂2)

+ C|h|α−2δp̃1

(∫

Q̂2

|Dψ|2q−pdx
)κ1

+ C|h|α, (7.67)

where in the last inequality we used (7.53).

Now we choose δ in order to minimize the right hand side of the previous estimate. It

is easy to check that the best possible estimate is given by the choice

δ =
α

σ + 2p̃1
∈
(

0,
α

2p̃1

)

.

With such a choice of δ estimate (7.67) becomes

∫

B

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

≤C|h|
ασ

σ+2p̃1

{∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx+ ∥Dψ∥Bγ
2q−p,∞(Q̂2)

+ 1

}κ2

, (7.68)

where κ2 := κ2(n, p, q, µ), for some µ < α.

At this point, arguing as in [85, Lemma 4.5], a covering argument allows us to replace

the cubes Q1 and Q̂2 with the fixed open subsets Ω′ and Ω′′, respectively. Indeed for

each |h| ∈ R
n sufficiently small we can find balls B1 = B1(x1, |h|σ), ...,BK = BK(xK , |h|σ),

being K = K(h) ∈ N, such that the corresponding inner cubes Q1(B1), ...,Q1(BK) are
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disjoint and satisfy
∣

∣

∣

∣

∣

Ω′ \
K
⋃

k=1

Q1(Bk)
∣

∣

∣

∣

∣

= 0.

By our assumption we have that Q2(B̂k) ⊂ Ω′′, for every k ≤ K and each of the dilated

outer cubes Q2(B̂k) intersects at most (16
√
n) of the other cubes Q2(B̂j), with j ̸= k.

Hence, after summing up (7.68) over the inner cubes Q1 ∈ {Q1(B1), ...,Q1(BK)}, and en-

larging the constant by a fixed factor only depending on n and p (in particular independent

of h), we arrive at

∫

Ω′

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

≤C|h|
ασ

σ+2p̃1

{∫

Ω′′

(1 + (H(x,Du))m + (H(x,Dψ))m)dx+ ∥Dψ∥Bγ
2q−p,∞(Ω′′) + 1

}κ2

. (7.69)

Since the right hand side of the previous estimate is finite by our assumptions, it

follows by arbitrariness of Ω′ that

Vp(Du),
√

a(x)Vq(Du) ∈ B
ασ

2(σ+2p̃1)

2,∞ (Ω) locally.

Setting

σα :=
ασ

2(σ + 2p̃1)
, (7.70)

it follows the conclusion.

7.4.1 Proof of Theorem 7.0.1

We are now able to give the proof of the main result of this work.

Let us consider the function

A(t) =
ασ

2[2(p̃1 − κ1t) + σ]
, ∀t ∈

(

0,
σ + 2p̃1 −

√

(σ + 2p̃1)2 − 4κ1ασ

4κ1

)

=: (0, σ̃),

(7.71)

where p̃1, κ1 are defined in (7.46), σ is defined in Lemma 7.3.2 and α is the exponent

appearing in Assumption 1.

It is easy to see that t 7→ A(t) is increasing and that

t < A(t) < σ̃, (7.72)

A(σ̃) = σ̃. (7.73)
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It is worth noticing that

σα < σ̃ <
ασ

2p̃1
, (7.74)

where σα was introduced in (7.70). Indeed, owing to (7.70), the first part of inequality

(7.74) holds if, and only if,

(σ + 2p̃1)
√

(σ + 2p̃1)2 − 4κ1ασ < (σ + 2p̃1)
2 − 2κ1ασ.

The last inequality is satisfied if, and only if,

(σ + 2p̃1)
4 − 4ακ1σ(σ + 2p̃1)

2 < (σ + 2p̃1)
4 + 4κ21α

2σ2 − 4κ1ασ(σ + 2p̃1)
2,

that is equivalent to

0 < 4κ21α
2σ2.

On the other hand, the second part of inequality (7.74) is valid if, and only if,

p̃1(σ + 2p̃1)− 2κ1ασ < p̃1
√

(σ + 2p̃1)2 − 4κ1ασ,

or, equivalently,

p̃21(σ + 2p̃1)
2 + 4κ21α

2σ2 − 4p̃1κ1ασ(σ + 2p̃1) < p̃21(σ + 2p̃1)
2 − 4p̃21κ1ασ.

The previous inequality can be written as

κ1ασ − p̃1σ < p̃21,

that holds true since 1 < κ1 < p̃1 and α, σ ∈ (0, 1). Let us now fix

θ0 ∈
(

0,
ασ

2(σ + 2p̃1)

)

and denote

θj = A(θj−1), ∀j ∈ N, j ≥ 1.

Hence, the sequence (θj)j is increasing and

lim
j
θj = σ̃. (7.75)

Now we define the sequence (ιj)j inductively as follows:

ι0 =
θ0
2
+

ασ

4(σ + 2p̃1)
<

ασ

2(σ + 2p̃1)
,
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ιj =
θj + A(ιj−1)

2
.

Using the fact that A is increasing and (7.72), (7.73), we obtain

θj < ιj < σ̃, ∀j ∈ N, (7.76)

and therefore, from (7.75), it follows that

lim
j
ιj = σ̃. (7.77)

Arguing by induction, we shall prove that

Vp(Du),
√

a(x)Vq(Du) ∈ B
ιj
2,∞,loc(Ω) ∀j ∈ N.

The case j = 0 follows from Theorem 7.4.1 and our choice of ι0. Now, let us prove the

implication

Vp(Du),
√

a(x)Vq(Du) ∈ B
ιj−1

2,∞,loc(Ω) ⇒ Vp(Du),
√

a(x)Vq(Du) ∈ B
ιj
2,∞,loc(Ω). (7.78)

By virtue of Lemma 5.1.3, the assumptions Vp(Du),
√

a(x)Vq(Du) ∈ B
ιj−1

2,∞,loc(Ω) imply

Vp(Du),
√

a(x)Vq(Du) ∈ L
2n

n−2λ (Q̂2),

for every 0 < λ < ιj−1 and so, recalling equality (5.1), we have that

|Du|p, a(x)|Du|q ∈ L
n

n−2λ (Q̂2).

In particular, it follows

H(x,Du) ∈ L
n

n−2λ (Q̂2),

for every 0 < λ < ιj−1. Moreover, the assumption Dψ ∈ Bγ
2q−p,∞,loc(Ω) and Lemma

5.1.3 imply that Dψ ∈ L
n(2q−p)

n−π(2q−p) (Q̂2), for every 0 < π < γ. Therefore, using Hölder’s

inequality in estimate (7.67) we infer

∫

B

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

≤C|h|σδ
∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx

+ C|h|α−2δp̃1+2δκ1λ

(∫

Q̂2

(1 +H(x,Du))
n

n−2λdx

)

(n−2λ)κ1
n

+ C|h|α[Dψ]q1
Bγ

2q−p,∞(Q̂2)
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+ C|h|α−2δp̃1+(2q−p)δκ1π

(∫

Q̂2

|Dψ|
n(2q−p)

n−π(2q−p)dx

)

(n−π(2q−p))κ1
n

+ C|h|α

≤C|h|σδ
∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx

+ C|h|α−2δp̃1+2δκ1λ

(∫

Q̂2

(1 +H(x,Du))
n

n−2λdx

)

(n−2λ)κ1
n

+ C|h|α[Dψ]q1
Bγ

2q−p,∞(Q̂2)

+ C|h|α−2δp̃1+2δκ1λ

(∫

Q̂2

|Dψ|
n(2q−p)

n−π(2q−p)dx

)

(n−π(2q−p))κ1
n

+ C|h|α, (7.79)

for some π ≥ 2λ
2q−p

, where we used the fact that the radius of the cube Q̂2 is proportional

to |h|δ. Therefore, choosing δ in order to maximize the right hand side of (7.79), namely

δ =
α

σ + 2(p̃1 − k1λ)
,

we have

∫

B

|τhVp(Du)|2 + |τh(
√

a(x)Vq(Du))|2dx

≤C|h|
ασ

σ+2(p̃1−k1λ)

{∫

Q̂2

(1 + (H(x,Du))m + (H(x,Dψ))m)dx

+

∫

Q̂2

(1 +H(x,Du))
n

n−2λdx+ ∥Dψ∥Bγ
2q−p,∞(Q̂2)

+ 1

}κ∗

, (7.80)

where κ∗ := κ∗(n, p, q, µ, λ). Thus, again through a covering argument, we deduce that

Vp(Du),
√

a(x)Vq(Du) ∈ B
ασ

2[σ+2(p̃1−k1λ)]

2,∞,loc (Ω) = B
A(λ)
2,∞,loc(Ω), ∀λ < ιj−1.

We have just proved the following implication

Vp(Du),
√

a(x)Vq(Du) ∈ B
ιj−1

2,∞,loc(Ω) ⇒ Vp(Du),
√

a(x)Vq(Du) ∈ Bt
2,∞,loc(Ω), (7.81)

for all t < A(ιj−1). Since A is increasing, it follows from (7.76) that θj < A(ιj−1).

Moreover, the definition of ιj implies ιj < A(ιj−1). Therefore, (7.78) follows from (7.81).

Besides, from (7.76) and (7.77), we infer

Vp(Du),
√

a(x)Vq(Du) ∈ Bt
2,∞,loc(Ω), ∀t ∈ (0, σ̃).

It is worth noting that the exponent σ̃ defined in (7.71) is bigger than σα. Therefore, The-

orem 7.0.1 improves the higher fractional differentiability result established in Theorem

7.4.1.
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Appendix A

Sobolev embeddings and

interpolation theory

A.1 2D results

In the sequel we will also frequently use the following 2D interpolation inequalities:

∥v∥L4(Ω) ≤ c ∥v∥1/2V ∥v∥1/2 , (A.1a)

∥v∥L∞(Ω) ≤ c ∥v∥1/2H2(Ω) ∥v∥
1/2 , (A.1b)

∥v∥Lr(Ω) ≤ c ∥v∥ 2
r ∥v∥1−

2
r

V , r ∈ [2,∞), (A.1c)

∥v∥Lr(Ω) ≤ c ∥v∥1−αLs(Ω) ∥v∥
α
L∞(Ω , α = 1− s

r
, r ≥ 1 (A.1d)

∥v∥Hs(Ω) ≤ c ∥v∥1−θHs1 (Ω) ∥v∥
θ
Hs2 (Ω) , θ =

s− s1
s2 − s1

, (A.1e)

∥v − vΩ∥ ≤ c ∥∇v∥ , (A.1f)

holding for any sufficiently smooth function v and for suitable embedding constants, all

denoted by the same symbol c > 0 for brevity. We will also use the following non linear

Poincaré inequality (see [66])

∥

∥vp/2
∥

∥

2

V
≤ cp

(

∥v∥pL1(Ω) +
∥

∥∇vp/2
∥

∥

2
)

, (A.2)

holding for all non-negative v ∈ L1(Ω) such that ∇vp/2 ∈ L2(Ω), and for all p ∈ [2,∞).

We also recall that

∥v∥ ≤ c ∥∇v∥1/2 ∥v∥1/2V ′ , ∀v ∈ V0, (A.3)

as one can prove simply combining the standard interpolation inequality ∥v∥ ≤ c ∥v∥1/2V ∥v∥1/2V ′

with the Poincaré-Wirtinger inequality (A.1f).
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A.2 General results

We first recall here a general interpolation result for Lp- spaces.

Proposition A.2.1. If f ∈ Lp ∩ Ls, then f ∈ Lr, with r s.t.
1

r
=
γ

p
+

1− γ

s
.

The following interpolation in Sobolev spaces can be found in [90].

Theorem A.2.2. Let Ω be an open and bounded subset of R. Let X, Y be Hilbert spaces.

If s1, s2 ≥ 0,

(i) then we have

[Hs1(Ω;X), Hs2(Ω, Y )]θ = H(1−θ)s1+θs2(Ω; [X, Y ]θ); (A.4)

(ii) if s2 ̸= µ+ 1
2
(integer µ ≥ 0), then we have

[Hs1(Ω), H−s2(Ω)]θ = H(1−θ)s1−θs2(Ω) (A.5)

if (1− θ)s1 − θs2 ̸= −1
2
− ν (integer ν ≥ 0).

The next theorem can be found in [49].

Theorem A.2.3. Suppose u ∈ L2(0, T ;H1
0 (U)) with u

′ ∈ L2(0, T ;H−1(U)).

(i) Then

u ∈ C([0, T ];L2(U)). (A.6)

(after possibly being redefined on a set of measure zero).

(ii) The mapping

t 7→ ∥u(t)∥2L2(U)

is absolutele continuous, with

d

dt
∥u(t)∥2L2(U) = 2⟨u′(t), u(t)⟩

for a.e. 0 ≤ t ≤ T .

(iii) Furthermore, we have the estimate

max
0≤t≤T

∥u(t)∥2L2(U) ≤ C
(

∥u∥2L2(0,T ;H1
0 (U)) + ∥u∥2L2(0,T ;H−1(U))

)

,

the constant C depending only on T .
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Lemma A.2.4 (Aubin-Lions). Let X0, X and X1 be Banach spaces with X0 ⊂ X ⊂ X1.

Suppose that X0 ↪→↪→ X and X ↪→ X1. For 1 ≤ p, q ≤ +∞, let

W = {u ∈ Lp([0, T ];X0) s.t. u
′ ∈ Lq([0, T ];X1)}.

(i) If p < +∞, then W ↪→↪→ Lp([0, T ];X).

ii) If p = +∞ and q > 1, then W ↪→↪→ C([0, T ];X).

The following compactness embeddings can be found in [12].

Theorem A.2.5. Let 0 ≤ r ≤ s and let Ω ⊂ R
n be bounded.

For 1 ≤ p ≤ q ≤ ∞, if r − n
q
< s− n

p
, then

W s,p(Ω) ↪→↪→ W r,q(Ω).

Theorem A.2.6. Let 0 ≤ r ≤ s, 1 ≤ p ≤ q ≤ ∞, V ↪→ W and r − 1
q
≤ s− 1

p
. Then

W s,p(0, T ;V ) ↪→ W r,q(0, T ;W ).

In particular, the inclusion is compact if r − 1
q
< s− 1

p
and V ↪→↪→ W .
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Appendix B

Topological degree

The content of this Appendix can be found in [119].

Let A = {(f,Ω, p) s.t. Ω ⊆ R
N open and bounded, f : Ω̄ → R

N continuous, p ̸∈ R
N \

f(∂Ω)}.

Definition B.1. The topological degree is a function d : A → Z s.t.

d1. normalization property

d(id,Ω, p) = 1, p ∈ Ω.

d2. domain additivity

Let (f,Ω, p) ∈ A be fixed and Ω1,Ω2 ⊂ Ω open be given s.t. Ω1 ∪ Ω2 = ∅ and

p ̸∈ f(Ω̄ \ (Ω1 ∪ Ω2))

⇒ d(f,Ω, p) = d(f,Ω1, p) + d(f,Ω2, p).

d3. homotopy invariance

h : [0, 1]× Ω̄ → R
N continuous

p : [0, 1] → R
N continuous and s.t. p(t) ̸∈ h(t, ∂Ω)

⇒ d(h(t, ·),Ω, p(t)) = const w.r.t. t.

Proposition B.0.1. The topological degree has the following properties:

P0. d(f, ∅, p) = 0.

P1. excision

∀(f,Ω, p) ∈ A, ∀Ω1 ⊂ Ω open, p ̸∈ f(Ω̄ \ Ω1)

⇒ d(f,Ω, p) = d(f,Ω1, p).

P2. ∀(f,Ω, p) ∈ A, ∀p ̸∈ f(Ω̄)

⇒ d(f,Ω, p) = 0.
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P3. existence

∀(f,Ω, p) ∈ A, d(f,Ω, p) ̸= 0

⇒ ∃x ∈ Ω : f(x) = p with p ̸∈ f(∂Ω).

Namely, the equation has at least one solution.

We also report here the following result, contained in ([119]).

Theorem B.0.2 (Borsuk).

Let Ω ⊂ R
n be opened bounded and symmetric with respect to 0 ∈ Ω.

Let f ∈ C(Ω̄) be odd and 0 /∈ f(∂Ω).

Then the topological degree d(f,Ω, 0) is odd.
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