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Abstract

Nonlinear models are a fundamental tool related to mathematical analysis. This is due
to the wideness of problems which might be formulated according to them and the cor-
responding questions which arise concerning e.g. existence, uniqueness and regularity of
solutions. In fact, they are often tied hand in glove to nonlinear PDEs. Although they
have been studied for quite a long time, an infinite number of different assumptions can
unlock different problems, which require unknown strategies and are fascinating for theo-
retical purposes, but not only. Indeed, nonlinear models have largely been used as a tool
to describe and validate multiple phenomena and theories about what surrounds us, for

example physics, biology and medicine.

The aim of this thesis is to present three different problems in this framework, whose
study involves different techniques and approaches. This work is therefore divided into
three Parts.

In Part I, we present two non-isothermal Cahn-Hilliard models. The first one is a two-
dimensional PDE system describing the phase separation behaviour of a two-component
fluid in a bounded domain. In particular, we are interested in studying the existence,
uniqueness and regularity of solutions. This is a starting point to introduce a second
model, namely a three-dimensional non-isothermal Cahn-Hilliard system describing tumor
growth.

Part II is devoted to study the mechanism of breathing. In particular, we consider the
lungs as a viscoelastic deformable porous medium and breathing as an isothermal periodic
process, which also takes into account the phenomenon of hysteresis.

Eventually, in Part ITI we move to the field of Calculus of Variations and in particular to
the study of obstacle problems. Namely, we focus on higher differentiability properties of
solutions to obstacle problems with nonstandard growth conditions. Our analysis takes
into account a particular class of double phase functionals. These are a useful tool to study
the behaviour of strongly anisotropic materials whose hardening properties are strongly
dependent on the point and connected to the exponent ruling the growth of the gradient

variable.
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Part 1

Non-isothermal Cahn-Hilliard

models



The first Part of this work is devoted to present models in the Cahn-Hilliard framework.
The Cahn-Hilliard equation was first formulated by J.W Cahn and J.Hilliard in [18, 19]
and it describes phase separation of multi-component mixtures, that is the segregation of
the system into spatial domains.

The Cahn-Hilliard equation reads

o, = div {M(gp)v EF’(@) - gAng . (1) EQx RY (L.1)

complemented with appropriate initial and boundary conditions.

The process of phase separation is described by the order parameter ¢ = (x,t), which
represents the concentration of one of the two components in a binary system occupying
a volume Q. M = M(y) is a mobility coefficient and F () is the free homogeneous energy
function. We remark that we here stand in the case of the so-called diffuse interface
models. Namely, we allow a partial mixing of components in a narrow interfacial region,
whose thickness is represented by a (small) parameter ¢.

In the main part of our discussion, we assume the domain €2 to be bounded and with a
boundary 92 smooth enough. We will explain in details the needed regularity according
to the different cases we consider in Chapters 1 and 2 respectively. Besides, in our analysis
we suppose that the mobility coefficient M is constant. In this particular case, the Cahn-

Hilliard equation (I.1) can be formulated as the system

e = Ap (1.2)

=M (—eAcp + éF’(gp)) | (L.3)

where we introduced the auxiliary variable p, known in the literature as chemical poten-
tial.

According to both the formulations (I.1) and system (I1.2)-(1.3), we notice that the tem-
perature does not appear in the Cahn-Hilliard equation. This is because in general this
phase separation model is isothermal, so it does not consider the possible variation of
temperature during the process.

However, following the spirit of [46, 47, 39] we here also take into account the effects of the
(absolute) temperature #. Indeed, the analysis of non-isothermal models has been used
to describe the evolution of several types of substances, such as, e.g., plastic materials,

shape memory alloys and liquid cristals [41, 42, 50].

In particular, in Chapter 1 we model the phase separation occurring in a two-component

fluid occupying a bounded spatial domain. The first issue we address is the derivation of




the model. We present two different approaches. The first one follows the lead of a more
general case, presented in [46], based on the strategy proposed in [55]. In the second one,
we adapt the method based on the balance of microforces in [69] to the non-isothermal
case. The existence and uniqueness of the solution to a more general system were estab-
lished respectively in [47] and [39]. However, we here focus on proving further regularity
results for the solution, which allows us to give a simpler proof of the uniqueness. The
well-posedness results presented in Chapter 1 are published in [77].

In Chapter 2 we use Cahn-Hilliard equations to describe tumor growth. In the context
of diffuse interface models, the tumor is seen as a mass of cells surrounded by healthy
tissue, with a thin layer separating the tumoral and healthy regions. The main novelty
of this model is that we here consider the effects of temperature variations on the tumor.
After presenting a thermodynamically consistent derivation of our system, we prove the

existence of a weak (entropy) solution. The main results of Chapter 2 are published in
[75].




Chapter 1

Two-dimensional non-isothermal
Cahn-Hilliard model

We aim to establish new regularity properties for a non-isothermal Cahn-Hilliard model
describing the phase separation of a two-component fluid occupying a bounded domain
() C R2. The model we consider consists of a PDE system describing the evolution of
the unknown variables, namely the order parameter (, chemical potential 1 and absolute

temperature #. That is

or = Ap, (1.1)
p=—Ap+F(p) -0, (1.2)
0, + 0o, — div (k(0)V) = |V ul|?, (1.3)

and it corresponds to the Cahn-Hilliard system for phase separation (cnfr. system (1.2)-
(I.3)) coupled with the internal energy equation describing the evolution of temperature.
This is a nonlinear system whose main source of difficulty is directly related to the ter-
modynamic consistency of the model. Namely, it is represented by the quadratic term
in the right-hand side of (1.3). The analysis is carried out in the 2-dimensional torus
Q =[0,1] x [0, 1], therefore we choose periodic boundary conditions for all the unknowns.
The function F, whose derivative appears in (1.2), is a possibly non-convex potential
whose minima represent the least energy configuration of the phase variable. Here, we
assume that F' is smooth and with power-like growth at co. Moreover the function (6)
in (1.3) denotes the heat conductivity coefficient, assumed to grow at co as a power of 6,

as it has been recently considered in several contributions, for instance [47].
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Our system is part of the more general model

divu = 0, (1.4)
w,+u-Vu+ Vp=Au—div(Vy ® V), (1.5)
or+u-Vep=Au, (1.6)
p=—Ap+F'(p) -0, (1.7)
O +u-VO+0(p +u- Vo) —div(k(0)VO) = [Vul* + |Vp|? (1.8)

where the Cahn-Hilliard equation and the internal energy equation are coupled with a
Navier-Stokes equation. This model has been derived and studied in [46] where the ex-
istence of solutions was shown in the 3D case (under some slightly different assumptions
on the coefficients) in a very general and weak formulation. Then in [47] also the 2D case
was analyzed, obtaining the existence of strong solutions. Eventually in [39] the authors
were able to improve the previous results by defining a class of slightly smoother solutions
and by proving that uniqueness holds in that class (and therefore well-posedness results
have been proved). The key point on which these well-posedness results are proved is the
following. The right hand side of (1.8) lies exactly in L?(0,T; L*(2)) and this informa-
tion apparently does not seem to be sufficient to get additional regularity for 6, which is
essential in order to be able, for instance, to test the equation for the temperature by 6,.
In particular, a L>®-bound is lacking because Moser iterations do not work for L? on the
right hand side and this would be crucial in order to manage some coefficients growing like
powers of . Therefore much efforts have been adopted in the already mentioned papers
[47, 39] to overcome this difficulty and be able anyway to get a control of the gradient of
0 in L?(Q2), uniformly in time.

Motivated by these works, we aim to show that, assuming a null velocity vector field, the
Moser iteration scheme works, so that the crucial L*-estimate for # is now available. As a
consequence, we are thus able to present a simplified proof of uniqueness for the solution
to our non-isothermal Cahn-Hilliard model (1.1)-(1.3).

The main results concerning further regularity and uniqueness of solutions presented
in this Chapter are contained in the published paper [77].
Chapter 1 is then structured as follows. After introducing the suitable notation in Section
1.1, we proceed showing a thermodynamically consistent derivation of the model. In
particular, in Section 1.2 we show two different approaches on how to derive our system.
Namely, on one hand in Section 1.2.1 we present a first strategy based on the fact that
the spatial mean of the order parameter ¢ is conserved in time. On the other hand, in

Section 1.2.2 we follow Gurtin’s approach based on microforces, which does not need the
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condition on mass conservation. Then we focus on proving the well-posedness results.
Thus, Section 1.3 provides the assumptions for our mathematical problem. The core of
this Chapter is presented in Section 1.4, where the main result, Theorem 1.4.1, namely
existence and uniqueness of a solution for our problem (1.1)-(1.3), together with the

additional regularity for 6, is proved.

1.1 Setting

Let us introduce some notation which will be useful in Section 1.2 and then adapted and
extended in Section 1.4 to study the well-posedness results.

We suppose that a two-component fluid occupies a bounded spatial domain Q C IR?,
with a sufficiently regular boundary 0€2. We let n denote the outer normal unit vector
to 0). Moreover, ¢(x,t) is the order parameter, representing the concentration difference

of the fluid, or the concentration of one component, and 6(z, t) is the absolute temperature.

The symbol ||-||; will denote the norm in a generic Banach space. We set H := L*(Q)
and V := HY(Q), (-,-) stands for the usual standard product in H. For any function

v € H, we set
v =)
vo=— [ vdx = [ vdzx,
1€ Jo 0

to indicate the spatial mean of v, being |Q)| = 1, where (-, ) denotes the duality pairing
between V' and V and || stands for the Lebesgue measure of . We note as Hy, V and
Vy the closed subspaces of functions (or functionals) having zero mean value in H, V, and,
respectively, in V'. If the integral is replaced with the duality, the above can be extended
to v € V'. We denote as Hy, Vy and V{ the closed subspaces of functions (or functionals)

having zero mean value in H, V, and, respectively, in V. Then

1/2
ol = ( / |Vv|2dx)
Q

represents a norm on Vy, which is equivalent to the norm inherited from V' by the sub-
sequent Poincaré-Wirtinger inequality (A.1f). In particular |-, is a Hilbert norm and
we can introduce the associated Riesz isomorphism mapping J : Vy — Vj by setting, for

u,v € Vy,
(Ju,v) := ((u,v))y, := /QVu - Vudz. (1.9)

For f € Hy it is easy to check that u = J~1f € H*(Q). Actually, u is the (unique) solution
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to the elliptic problem
we Hy, —Au=f, Vu-n,,=0.

Moreover, if u is as above, then

(T (1 — ug), v) = — / vAudz

Q

for all v € V4. Finally, we can identify Hy with H{ by means of the scalar product on H
obtaining the Hilbert triplet Vi, C Hy C Vj, where inclusions are continuous and dense.

In particular, if z € V and v € V), it holds that

/QVZ-V(J_lv)dw = /Q(z— zo)vdr = /szd:v. (1.10)

1.2 Derivation of the model

We suppose that a two-component fluid occupies an open spatial domain Q C R2. We
denote by ¢(z,t) the concentration of one of the components of the fluid and 6(z,t) is
the absolute temperature.

We present here two different thermodynamically consistent approaches to derive our
model. The first one relies on the fact that the scalar function ¢ = @(z,t) satisfies
the mass conservation constraint. The second strategy is on the other hand based on a
microforces balance and does not require the condition on the conservation of mass.

We recall and collect here some general considerations, which will be exploited in both
approaches.

According to the Ginzburg-Landau theory for phase transitions, we postulate the free

energy density ¥ and the energy functional ¥ respectevely in the form

v =SIVel + ZF(p) + f(6) ~ b (111)

\I/:/dex. (1.12)

Here, ¢ is a positive constant depending on the interface thickness. The function F' in
(1.11) penalizes the deviation of the length |p| from its natural value 1. We refer for
instance to the double-well potential and the logarithmic potential. The term f in (1.11)

describes the part of free energy which is purely caloric and is related to the specific heat
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cy(0) = Q' (0) through relation

Q(0) = f(0) = 65(0),

where @ is the entropy flux. In this Chapter (and in Chapter 2 as well) we assume that
the specific heat is such that ¢,y = 1. Assuming it constant is reasonable since in many
materials the specific heat has small fluctuations around a single value. Moreover, we
recall that it holds

q= Qb (1.13)

where ¢ denotes the heat flux. The internal energy density of the system is given by
Gibbs’s relation

e =1+ 0s. (1.14)

Here, s denotes the entropy of the system, which has the following expression, according
to (1.11)

_ W

=—230 = —11(0) + . (1.15)

Combining the expression of internal energy density (1.14) and entropy formula (1.15),

we infer

Oe 8_¢ ds a0 8_2/18_@ oY OV ds

de _ 9s 00 _ 9s 11
oo Ta T T oo Tove ot (1.16)
and consequently
ob 00 dWde b IV
O 00 _0vdp Y Ve 11
ot "ot T g ot ove ot (L.17)

Both of the approaches rely on the use of the thermodynamic principles. In particular, we

exploit the second law of thermodynamics in the form of the Clausius-Duhem inequality

0s

0 (E + div Q) > 0. (1.18)

1.2.1 Conserved order parameter approach

We here follow the general approach presented in [55]. We note that our case can be

interpreted as a particular one of [46]. However, for sake of completeness, we report here
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all the details.
We denote by
E=(p,Vp,0)

the set of the state variables, which characterize the configuration of the material. On
the other hand, the path along which the system tends to dissipate energy is described

by the set of dissipative variables

The free energy density ¢ (F) and the energy functional W(FE) are given respectevely in
the form (1.11) and (1.12).
As already mentioned, the approach we present here is based on the mass conservation of

the order parameter. In order to impose this constraint, we write
p = ¢ +my, (1.19)

where mg denotes the mean value of the initial datum ¢,. Then, the conservation of mass
corresponds to prescribe ¢ to take its values in H, during the whole evolution of the

system. The conservation of mass ¢(¢,-) = ¢(0,) a.e. for t € (0,T) implies

D

- dr = dr = 1.2
5 [ wte = [ etz o (1.20)

where we remark that in our case the material derivative and time derivative coincide
because we assume the fluid to have zero velocity.
We also notice that condition (1.20) translates into ¢; having zero spatial mean.

Supposing that ¢ has a suitable regularity such that ¢, € V| a.e. in time, we define
0._ -1 _ 0 __ 0 !
o= —J "¢, sothat o, = —Jpu’ =Ap” in V, (1.21)

which entails u° € V.
Moreover, if ¢, € Hy, then, by elliptic regularity, we have

1’ € Von H* () and Vu° - n,, = 0.

This setting allows us to introduce the pseudo-potential of dissipation ®. This functional

characterizes the evolution of the system and it is supposed to be non-negative and convex
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with respect to the dissipative variables. Its expression is given by
B(SE, E) = / 6(OE, E)dx + (o, J"0), (1.22)
Q

where the “local component” ¢ of this dissipation density is given by

H(0E,E) = %NGF, (1.23)

where £(0) > 0 is the heat conductivity.

The last term in (1.22), which is linked to the mass conservation, is nonstandard. In fact,
it corresponds to a squared Vj— norm of the partial derivative of ¢ and thus depends in
a nonlocal way on the dissipative variable.

We notice that we can equivalently rewrite the pseudo-potential ® as follows
- - 1
®(SE,E) = / ¢(6E, E)dz, where ¢(0E,E) = ¢(0E,E) + §|w0|2. (1.24)
Q
Indeed, integrating by parts in space and using the definition of J, it turns out that

| 9itPan = = [ ayas = [ 0 = (o a0

We also remark that we define the functionals ® and W for all sets of variables £ and
0F for which they make sense. Namely, the class of admissible state variables is given by

the condition of finiteness of ¥ and ®.

Balance equations and constitutive relations.

According to [55], by the principle of virtual power it follows that
divH — B =0, (1.25)

where the energy density B and the energy flux H are assumed to decompose as their

non-dissipative and dissipative components. That is

B:Bnd+Bd,
H =H"+ H’

where, taking to account (1.11), we have

1
B = = = ZF'(p) — 6, (1.26)
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B = 61y 00 ® = J 1), (1.27)

According to (1.27), B? is defined as the sub-differential of ® with respect to ¢, in the

space Hy. This coincides in particular with J~!(¢;). Indeed, for any v € Hy, we have

(T pe) v =) = (v =0, T (21)) = (v = @1, 00) vy

1 9 1 9 1 _ 1 _
< S lellyy = 5 el = (v, ) = 5o T @)
Moreover,
oY
H" = —— =¢cV
oV Ve

Analogously, we decompose the heat flux ¢ and the entropy flux @) as

¢=q"+q"
Q=0'+Q".

with ¢¢ = 0Q¢ and ¢"¢ = 0Q"?, where, in view of (1.23),

¢* =0Q" = a% = k(0)V, (1.28)

while the non-dissipative component is determined a posteriori in order to comply with
the second law of themodynamics.

In the sequel we also ask the heat conductivity to grow as a power of the absolute tem-
perature. This choice is mainly motivated by mathematical reasons, however it is also

coherent with physical interpretations (see [108]).

The order parameter equation (1.1) is derived according to the virtual power principle
(1.25). In fact, we need to include the boundary conditions and the conservation mass

constraint. Therefore we first rewrite ¥, according to (1.12) , as

0(B) = [ (5960 + LFG 4 )+ 10) - 00+ o))

where we used the decomposition ¢ = ¢° + my introduced in (1.19). Thus we express

(1.25) as a generalized gradient flow problem in Hj, namely

B+ 85y 00V = 0p1y 0, ® + 0py 0¥ = 0. (1.29)

11
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We remark that requiring ¢° to lie in the domain of the differential 0y, 0¥ means that
there exists a (unique) function z € Hy such that dp, ,0U(¢?) can be represented by =z
in the scalar product of Hy (and so of H). This leads to the fact that (1.29) contains
both the homogeneous Neumann boundary conditions for ¢ and the mass conservation
constraint.

Additionally, we observe that such a function z must be of the form
z=—eAp" + é (F'(¢° +mg) — F'(¢° + mg)a) — 0 + 0. (1.30)
Now, putting together (1.29) and (1.30) with (1.27), we then obtain
T p0) = A6 = 2 (F/(6 + mo) = F'(¢ + mo)o) +0 = b

Eventually, we apply the distributional Laplace operator to both hand sides, recalling that
—AJ v = v for any v € Hy, as stated in Section 1.1. Then we introduce the auxiliary

variable p such that u® = u — (¢)q, in accordance with (1.21). This entails

pr = Ap, (1.31)

1
1= —cAp+ EF’(go) — 0. (1.32)

Therefore, choosing € = 1, we then recover system (1.1)-(1.2).

By the first law of thermodynamics, it follows that

Oe

5 +divg = By, + H- Vi, + 11 (1.33)

The last term in (1.33) does not appear in the standard theory proposed in [55]. Indeed,
IT is needed to balance the nonlocal dependence with respect to the dissipative variable
¢ of the last term appearing in the expression (1.22) of the psudopotential of dissipation
.

We now aim to determine the expressions of II and the nondissipative component of the
heat flux ¢"¢. This is done exploiting the second law of thermodynamics in the form of
Clausius-Duhem inequality (1.18).

Before doing so, we need to gain some useful relations. We first notice that, combining
(1.11), (1.14) and (1.15) we infer

=1+ 0s= %p(@ + 2Vl + Q). (1.34)

12
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We also remark that the latter term in (1.17) is given by

o

Vo —— (V) =H" - (V). (1.35)

Besides, by (1.30)-(1.32), we get that

_ 1
e (o) = —Ap(p — po) = —5 Ak - pa)® + [Vl (1.36)

We are now ready to focus on the second law of thermodynamics. Developing the left
hand side of (1.18), we get

6 (s, + divQ) AL er + divg — g—z —Ois — Q- V0
. . 0 0
15 e, + divg — %g@t - % (Vo) —Q -V
(1.33),(1.26),(1.28) oY
= B H- |
Yr + (Vo) + Ve (Vo)
0
— By, + %]V@\Q — Q. Vo

(1.27),(1.35),(1.36) 1 n
= |Vu|2—§A(u po)? + 11+ (>|V9|2 Q™ - V.

Then, in order to obtain the non-negativity of the right hand side of (1.18), we can assume,

e.g., the following constitutive relations

1
"'=0, Il= §A(,u — pa)?. (1.37)
With these choices, we get fQ x)dx = 0, as expected. Moreover, rewriting the internal
energy balance (1.33) as
(Q(0)): + 0oy — div(k(0)VO) = [V ul, (1.38)

and choosing the specific heat equal to one, we recover the temperature equation (1.3).
Notice that the dissipation terms on the right hand side are perfectly in agreement with the
expression (1.24) of the pseudo-potential of dissipation V. Indeed, as already mentioned,
one has 1’ = pu — pg due to (1.31)-(1.32).

1.2.2 Gurtin’s microforces approach

In this Section, we follow Gurtin’s approach proposed in [69] in order to derive our system

(1.1)-(1.3). Namely, we treat separately the balance laws and the constitutive relations,

13
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moreover we consider the following balance law for internal microforces
div(+7m =0, (1.39)

where ( is a vector representing the microstress and 7 is a scalar corresponding to the
internal microforces. Microforces describe the forces associated with microscopic configu-
rations of atoms, differently from standard forces, which are associated with macroscopic
length scales. These different length scales are the reason why a separate balance law for
microforces is needed. Besides, since in Cahn-Hilliard models the kinematics is associated
with the order parameter, it is natural to infer that the working of microforces has effects
on . Such interatomic forces may be mirrored on the macroscopic level by fields which
perform work when the order parameter undergoes changes. Therefore this working can
be described in terms of ¢;, which explains why the microforces are scalar rather than

vector quantities.

We complement the balance law for microforces with the fundamental balance laws.

Since we do not consider external mass sources, the mass balance law reads
Ot = — div h, (140)

where h is the mass flux.

The derivation of our system is based on the first and second fundamental laws of
thermodynamics. We proceed showing first the derivation of the Cahn-Hilliard system
(1.1)-(1.2) and then the one of the temperature equation (1.3).

Cahn-Hilliard system.

According to [69], we write the first law in the form

4 edr = —/ q-vdn+W(R) + M(R), (1.41)
dt Jg OR

where R is the control volume, v is the outward unit normal to OR and

Wi = [ (¢ (1.42)
M(R) = — /8R wh - vdn (1.43)

are the rate of working and the rate at which free energy is added to R (assuming no heat

14
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supply) respectively. Using Green’s formula, we can rewrite (1.41) as

Oe

Op Oy
% ——dlvq—f—a—leC—I—C V—

T —h-Vu—pdivh, (1.44)

where we introduced the heat flux ¢ in (1.13). Since the control volume R is arbitary,

exploiting the mass balance (1.40) and the microforce balance (1.39), we infer

Oe ) Op Op
i —divg+ (p — )015 +C- Va—hv (1.45)

We now impose the validity of the second law of thermodynamics in the form of the
Clausius-Duhem inequality (1.18). We develop the left hand side of (1.18) as follows

9<gt+de) %—%—f—s%—l—@dw@
%—%—f—s?—% divg— Q- Vo
U (- )Zfﬂ v%—f—hvu—%—f—s%—cg-ve
(L0 <u— _gﬂ> e ( _%> ag—t‘”—hv —Q- V8.
In order to satisfy relation (1.18), we impose
M—W—g—:ﬁ:(), (1.46)
¢ = aév% (1.47)
hVp+@Q-Ve <0, (1.48)
where in particular in order for (1.48) to hold, we exploited Fourier’s law
q=—k(0)V0, (1.49)
with k = k(f) > 0 heat conductivity.
The combination of (1.11) and (1.47) straightly gives
( =¢eVep, (1.50)

15
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which leads to, according to (1.11), (1.39) and (1.46),
L
w=—cAp+ EF (p) — 0. (1.51)

Eventually, inequality (1.48) can be satisfied choosing h = —Vpu, which is a suitable

assumption according to [69]. Therefore equation (1.40) reads
o = Ap. (1.52)

Temperature equation.
We start from the internal energy equation (1.45), taking advantage of (1.47) and of the

expression for the chemical potential (1.46), therefore

de Mop O Ve
ot - Wt e tave e Y

Now, exploiting the assumption h = =V and Fourier’s law (1.49), we infer

de . oYop O OV 9
5 = div (k(0) V) + 95 0t + Ny Ol + |Vl

and by identity (1.16),

9% — div (k(0)V) = |Vl (1.53)

From (1.15), we might write

0% — 0 0)). + b

On the other hand, according to the definition of @, it holds (Q(0)); = (—f'(0)):, with
in particular (Q(9)); = Q’(#)6;. Since we supposed that we are considering the case in
which the specific heat ¢,y = 1, it follows that @'(6) = 1. This implies that

Os; = 0, + 0.
Thus, equation (1.53) reads

0, + 0o, — div (k(0)VEO) = |Vl (1.54)
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1.3 Assumptions

In this Section we expand and adapt the notation presented in Section 1.1, in order to

study the well-posedness of our system (1.1)-(1.3).

We consider our PDE system taking place in the two-dimensional flat torus with pe-
riodic boundary conditions, namely € = [0, 1] x [0,1] and ¢|;,—0 = @|z=1 7= 1,2 Vit €
(0,7).

We denote as H := L?_(Q) the space of functions in L?(IR?) which are Q-periodic (i.e.,

per

1-periodic both in x; and 7). Analogously, we set V := H! (€). The spaces H and V

are endowed with the norms of L?(Q2) and H*(2), respectivel; For brevity, the norm of H
will be simply indicated by |[|-||. Still for brevity, we omit the variables of integration. We
will specify them when there could be a misinterpretation. The symbol (-, -) will indicate
the duality between V" and V and (-, -) will stand for the standard product of H. We also
write LP(€2) instead of L2 (§2), and the same for other spaces; indeed, no confusion should
arise since periodic boundary conditions are assumed to hold for all unknowns. We denote
H (£2) the space of functions which are H[” (2) and -periodic, for m € R,m > 0. In

per

particular, for m = 0 we have H°_(Q) = L2 ().

per per

We now focus on the mathematical hypotheses needed on the nonlinear terms.

We ask the configuration potential F' to satisfy:

F
FeC¥R;R), liminf ) o, (1.55)
|r|—o0 |7”|
F"(r) > =\ for some A > 0, and all » € IR, (1.56)
|F" (r)] < ép(1 + |r[PF™Y) for some ¢ > 0,pp > 1, and all 7 € IR. (1.57)

We remark that (1.57) implies
|F"(r)| < ep(1+ |r|PF) for some cp > 0,pp >0, and all € IR.

Assumption (1.55) postulates regularity and coercivity of F', (1.56) is A-convexity and
(1.57) prescribes a polynomial growth at infinity. Note that (1.55) implies that

F(s) > —cy VseR
for some constant cg > 0. We assume moreover the heat conductivity to be given by

k(r)y=14+r% q€l2,00), r>0. (1.58)
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Correspondingly, we define

1
14+¢

K(r):= / k(s)ds =1 + it >0, (1.59)
0

We aim to estimate the norm ||K(6)||%, since it will be needed in the sequel. We observe
that, for some &k, > 0,

/ K(0)2VO2 dx = |[VEB)|* > | VO|* + &, | V6o (1.60)
Q

Then, by (A.2) with p = 2, we infer

o< (4] o o (25)

for some ¢, > 0. From (A.2), choosing p = 2(¢ + 1), it holds

2
da:) — T+1I (1.61)

2
2 1
r=a [0+ [o) <ol +a (1015 + 190)

< (14 10155 + w6 )?) (1.62)

We then estimate I1 according to (1.60). Therefore we get

K@ <0 (1403 + [ o), (163
for some C' depending on q.

Complying with the boundary conditions and the lack of external forces, we have the
conservation of mass and of the total energy £ that will be rigourously defined in (1.69),

namely
pta=e(0)a  E(p(t),0(t) = E(¢(0),0(0)).

It comes natural to define the “energy-entropy space” of data as:
H={z=(p,0) e VxL(Q):0>0ae inQ, loghe L' (Q)}.

In our space we omitted the chemical potential pu, in view of the fact that p can be
regarded as an auxiliary variable, and sometimes, depending on the situation, it will
be more convenient to “exclude” u. This can be easily achieved rewriting the system

(1.1)-(1.2) as a single equation where y no longer appears.
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Now, in agreement with [47] and [39], we define the set
Vi={z=(p,0) eHN(H* Q) xV):K() €V,1/0 € L'(Q),6 > 0 ae.},

where the requirement K (0) € V yields 0§ € V.
Eventually, we recall here a result which will be useful in order to reach regularity in
Section 1.4.2. The proof of this Lemma can be found in [47].

Lemma 1.3.1. Let O a smooth bounded domain in R%. Then, there exists ¢ > 0 depending
only on O such that

H5HH1(O)/ S C(l —+ Hf”[}(@) 10g1/2 (e -+ ‘|£HL2(O))) (164)

for any ¢ € L*(O).

1.4 Well posedness results

1.4.1 Main result

We are now ready to present the main result of this Chapter, namely

Theorem 1.4.1. Let us assume (1.55)-(1.57) and (1.58). Let also T' > 0. Then given

20 € V there exists a unique solution to our problem, namely a triple (o, u,0) with the

reqularity
w € WhH(0,T; VYN HY0,T; V)N L0, T; H3(Q)), (1.65)
p € HY 0, T; VYN L®(0,T; V)N L*0,T; H*(S2)), (1.66)
6 € H'(0,T; L*(2)) N L>(0,T; L°(Q)) N L>(0,T; V), (1.67)
0 >0 ae in(0,T)x9Q,
K(0) € L*(0,T; L=(Q)) N L>(0,T; V), (1.68)

satisfying equations (1.1)-(1.3) a.e. in (0,T) xQ and complying with the initial conditions

<P|t:0 = Po, ‘9|t:0 =t

almost everywhere in €.

An existence result for our model can be proved by means of the solution of an approx-
imating problem and then on the application of Schauder’s fixed point theorem. The

complete proof can be found in [47].
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Here, we focus o regularity and uniqueness results. Concerning the regularity, in Section
1.4.2, we recover the basic regularity already shown in [47] for the general model, while
in Section 1.4.3 we obtain further regularity with respect to [39]. We then exploit the

regularity obtained to prove the uniqueness of the solution in Section 1.4.4.

1.4.2 Initial regularity

In this section we recover the basic regularity already obtained for the general model in
[47] and we sketch the main points. We observe that, considering here null velocity, as
one may expect, also this part of the proof turns to be simplified. In particular this is
evident in two points: in the complementary estimates (1.82) and (1.84), that can be
casily derived one from the other (due to the absence of convective terms) and in the key
estimate of the term (6, ;). This last achievement is obtained by means of the control
of two terms: the estimate of [ k?(6)|V6|* follows exactly as in [47] while the estimate
of the term [ |Vpu|*¢; can be heavily simplified, even if the idea of relying on conjugate
functions still is necessary, for the presence of the quadratic term in the right hand side
of (1.3).

Energy and entropy estimates

The energy estimate is obtained by testing (1.1) by u, (1.2) by —¢y, (1.3) by 1 and then

integrating over (). We then sum up all the obtained relations. Therefore we infer

d

—E&(p,0) =0, where E(p,0) = /

7 ) (%\V@F + F(p) + 9) (1.69)

which is the total energy of the system, given by the sum of the interfacial, configuration,
and thermal energies (the three terms in £). From relation (1.69) we infer the following

a priori estimates

o]l oo 0.1y < ¢, (1.70)
10| Lo 0,101y < €, (1.71)

where we exploited (1.55) in order to obtain (1.70) and we used the nonnegativity of 6 to

get (1.71) from (1.69). Moreover, from (1.70) and Sobolev’s embeddings, we also have

¢l oo o,msre)) < ¢ for all p € [1,00). (1.72)

20



CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

On the other hand, integrating (1.1) over €2, and using the periodic boundary conditions,

we observe

d

qi ¢ =0 aein (0,7). (1.73)

The entropy estimate corresponds to the entropy production principle. In order to obtain

it, we test (1.3) by —0~! and integrate over €2, namely

d 1 div(x(6)V6)
— [ (—logh — —|Vul? ————==0.
T e 90)+/09|Vu| +/Q . 0

The last term on the left hand side can be written as
/ div(k(0)VE) / div(V0) / div(99V0)
—_— = +
Q 0 Q 0 Q 0

/ Ag / goT V2 + 0110
= [ —+
o 0 Q 0

_ /Q IV log 02 + k,|VOU2 2.

Therefore we infer

d

1
& Q(—loge—gp)+/Q§yw\2+/g(\v10g9|2+kq|veq/2\2) =0, (1.74)

with k, > 0 only depending on the exponent ¢ introduced in (1.58). We now integrate in
time. Recalling that |logr| < r —logr Vr > 0 and owing to (1.70) and (1.71), we get

the a priori bounds

[og 0| L~ 0,721y + [[10g Ol 20,13 < ¢ (1.75)
HV8‘1/2||L2(07T;H) S C. (176)

In particular, from (1.75) we see that the strict positivity of 0 is preserved a.e. in (0,7") x
also in the limit. Moreover, the combination of inequality (A.2) with estimates (1.71) and
(1.76) gives

Heq/QHLQ(O,T;V) <ec,

which implies in particular

0] L2071y < €

and, being ¢ > 2, according to (1.58),

101l 2 0.2 < (1.77)
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First estimates for pu, ¢ and ¢,

From equation (1.3) and periodic boundary conditions, we get

/|V,u|2=i/9+/9g0t. (1.78)
Q dt Jq Q

Our aim is to control the terms on the right hand side.
In order to do so, we first integrate in time, and then we estimate the first one thanks
to (1.71). On the other hand, by using (1.1) and Hélder’s and Young’s inequalities, the

second integral can be controlled as follows

1
o= [ 05n=— [ 90V < S (IVul? + 961, (1.79)
Q Q Q

The first term on the right hand side is absorbed by the corresponding one on the left
hand side of (1.78), while we use (1.77) to estimate the latter. Hence, we obtain

IVl 2.y < e (1.80)

We now integrate (1.2) in space, combine (1.57), (1.71) and (1.72) and then take the

(essential) supremum with respect to time; we infer

1ol L) < c. (1.81)

This estimate, combined with (1.80), gives
el 20y < c. (1.82)
Now, testing (1.1) by nonzero v € V, we can notice that
(e, v) = —/ Vi Vo < [[Vull[[Vol| < e[ Vullf|vflv- (1.83)
Q

Hence, dividing by ||[v|]y, passing to the supremum with respect to v € V'\ {0}, squaring,

integrating in time, and using (1.82), we infer

el 20,791y < (1.84)

On the other hand, we test equation (1.1) by —u and note that (py, uo) = 0, since ¢; has
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zero (generalized) mean. Therefore the use of the Poincaré-Wirtinger inequality yields

Vil == [ o= [ ouln = ne) < lln = alvlionle
Q Q

< SIVull* +cledi,

N[ —

which allows us to get
IVull* < clledlly (1.85)

Finally, if we test (1.2) by A%p and integrate over €2, by recalling (1.57), we get
IVA@|* < c(1+ (VO] + IV ull?)
Integrating this inequality in time and using (1.77) and (1.80), we then obtain
ol 20,113 0)) < ¢ (1.86)

Key estimate: control of the term (6;, ;)

First of all we take (1.1), differentiate it with respect to time, and test the result by J,
where J was first introduced in (1.9). Correspondingly, we differentiate (1.2) in time and

test the result by —y;. Therefore we have

<<,0tt, J‘Pt> = (Ape, Jopr)
(e, —p1) = (=Dt —0r) + <F”(90)90t, —‘Pt> + (01, ¢1)

Summing the obtained relations, noting that a couple of terms cancel in view of

(Ape, Jor) = =((=D) (e — (1)), (=) ) = = (e — () 00) = — (e, 1), (1.87)

by (A.3) and (1.73), we then get

1d
3 silled + IVa? + [ (F (o) + Ml
2 dt 0
1
Al + B < IVl + clial + 0000 (155)

Reabsorbing, this is equivalent to

1d

7
szl g1Vl + [ (Fo)+ ol < g + Gupd. (159)
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On the other hand, testing (1.3) by ¢, yields

(0, 1) /9% = / (0)Vo - Vsot+/!Vul290t (1.90)

<Vl +4 [ ROIOE+ [ [TuPe
Q Q

To treat the term in V6, we test (1.3) by 6K () introduced in (1.59) (the coefficient 6 is
suitable for reabsorbing the second term in the right hand side of the previous inequality

by the left hand side) and working exactly as in [47] we deduce the following estimate

G%LJ(9)+5[2&2(9)|V9\2

1
<c(1+ [leelly) +§Hwtll2+6/ﬂf<<9)|vul2- (1.91)
where we set
/TK()d U 2 > (1.92)
= s)ds = — —_—7 , T =U. .
0 2 (¢+1)(¢g+2)

Summing (1.90) and (1.91) we get

e+ [ 0t +05 [ 70)+ [ w907

<1+ llall) + 35196l + [ G5 0)+ @)V (1.9)

Then, adding together (1.89) and (1.93) we obtain

1 2 1 2
sagledt 63 [ 7@+ Iel? + [ (Pe)+ Ml
/ 07 + / (0)| V6]
<cllgill + (1 + lpillt) + / (6K(6) + 1) Vil (1.94)

Neglecting some positive terms in the left hand side and rearranging, we then arrive at

11 2 9 9
y — ||V 0)|Vo
2dt||90t||v +6dt/j 6” ol ‘F/Q"i (0)|Vo|

<e(1+ ) + / (6K(0) + )|Vl (1.95)

We now focus on controlling of the last term in the right hand side of (1.95), which
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represents the most difficult part of our argument. In order to do so, we use the embedding
inequality (1.64) setting ¢ = |Vu|?>. Then, exploiting (1.63), (1.73) and the Poincaré-

Wirtinger inequality, we infer
/Q (6K(0) + 0| Vul <c(IK@)Ilv + [Vl || Tallv
1 1
<ct3 [ RO +5ITal? + eIVl
1 1
<c+ 5 [ ROIVOP + LIVl
2 /g 8

+cf |vM|2Hil(Q) log (e + | ‘szHL?(Q))' (1.96)

Next, we consider the functions ¥(r) = e", r € R and ¢*(s) = s(logs — 1), s > 0
(extended by continuity to s = 0 by setting 1/*(0) = 0), which are convex conjugate. This
means that Vr € R, s > 0, it holds rs < ¢(r) + ¥*(s), as we can see for example in [10,
Sec. 1.4]. If we now set r = log (e+|||Vpu|?||z2()) and s = ¢| ]V,u\QHiI(Q), we can estimate
the last term in (1.96) as follows

Vi) 108 (e + [V o)
<l VAP0 (108 (e V030 ) = 1) + €+ 198
<c+c|Vul*log (e + Vull?) + I Vall7s) (1.97)
where we used the fact that |||V |? HQLI @ = |Vu||* and elementary inequalities concerning
logarithms.

The first non-constant term on the right hand side of (1.97) can be estimated by using
(1.85) as follows

e Vpl o (e + IVulP) <e(1+ il Tog (e + e(1+ il3))

<c(1+ [lgelly)* log (e + llelly) (1.98)

while the second one can be controlled by using equation (1.1) and inequalities (A.la)
and (A.3) as

IVl Zaq) <cllVelllulme < clVall(lely + [1Ax])

1
<cllully: + elleil® < el + IVl +cliedlls (1.99)

Then, setting M (t) := ¢||p||?,, plugging (1.97)-(1.99) in (1.96) and in turn the result
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into (1.95) we finally deduce

1d, ,, .d 7 , 1 [, ,
= 46— 0) + — Z
sqpllelt+ 63 [ 70+ Vel +3 [ v
<cle+ gl )2[1 +log (e + llpil)] + M(2) (1.100)

<c(e+ [lgelli)*log (e + [lell3) + M(2).

Let us now set

o(t) = e+ glaltn O =6 [ T6). (1.101)

Hence, (1.100) reads
D'(t) + O'(t) < c[®(t)]? log(®(t)) + M(2). (1.102)

We define Z(t) := e + ®(t) + O(¢), then we divide both hand sides of (1.102) by Zlog Z,

Z'(t)
Z(t)log Z(t)
o(1) M(t)
(e + P(t) +O(t)) log(e + @(t) + O(t)) * Z(t)log Z(t)
P log(e + (1))
(e+ P(t) +O(t))log(e + D(t) + O(t))

< M(t) + %EC?Z@) + C(I)(t).

d
T loglog Z(t) =

< M(t)

+ c®

Thus we get

Z'(1t) M(t)

d
an A = Zie 2 = M Ziaos 2100

1.1
pp (1.103)

where we recall that ||®|| 1o + || M (t)|| 10,7 < ¢ in view of the a-priori estimates (1.82)
and (1.84). Moreover, working in a similar way as in [47] in order to estimate the initial

condition, we have Z(0) < oo, hence we can integrate (1.103) over (0,7") to obtain

1Z]| o) < c. (1.104)
Consequences
From (1.92), (1.104) reads
el oo,y < e, (1.105)
10| Lo 0,7 La+2(02)) < €. (1.106)
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Combining (1.1) with (1.81), we get

el e 0wy < e (1.107)

According to the above relations and using (1.59), (1.73), after integrating (1.100) over
(0,7), we infer

il 20y < ¢, (1.108)
1K ()| z20mv) < ¢ (1.109)

Now we read (1.1) as a time-dependent family of elliptic problems. Combining standard

regularity results with (1.108), we have

I ll 220,132 < . (1.110)

We conclude by providing some estimates for the terms p; and ;. We (formally) differ-

entiate (1.2) with respect to time and use (1.3), therefore we infer
pr = =D+ F'(0)pr + Opr — AK(0) — [V, (1.111)

We now test the above relation by nonzero v € V. Recalling the boundary conditions, we

obtain
() = [ Vot K ) Tot (@) + e~ [Vl 0)
Q
<lellv ([V (oo + KO + [F'(@)er + 00 = 190 ooy ) (1.112)

Then, dividing by ||v||y, passing to the supremum with respect to v € V' \ {0}, squaring,
and integrating in time, we get
H/'I’HHI(O,T;V/) S C. (1113)

Indeed, according to (1.108)-(1.109), it holds
IV (e + KO o o) < © (1.114)
and moreover it holds

[ (@)r + 01 ’v'u|2||L2(0,T;L3/2(Q)) ¢ (1.115)

where the exponent 3/2 is chosen just for simplicity (any number strictly greater than 1

would be allowed, indeed).
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This last inequality can be proved considering each term in the norm separately. We
know that F”(p) grows as a power of ¢, whose regularity is given by (1.70) and (1.86).
Hence, integrating in time and exploiting (1.70) and (1.108) we infer

||F”(90)80t”L2(07T7L3/2(Q)) S C.

On the other hand, integrating in time, from (1.106) and (1.108), we obtain

||990tHL2(o,T;L3/2(Q)) =ec

For the last term, integrating once more in time and taking advantage of (1.110) we get

H|V'u’2HL2(O,T;L3/2(Q)) =

Combining the previous bounds we eventually gain (1.115).

Eventually, testing (1.3) by a nonzero v € V' and proceeding similarly as above, it follows
||9||H1(0,T;V’) S C.

1.4.3 Further regularity

Thanks to the estimates obtained in the previous section, we are now able to prove the
regularity presented in Theorem 1.4.1.

First of all we focus our attention on the estimate
0 € L>=(0,T; L>*(Q)) (1.116)

obtained by a Moser’s iteration technique, as in [87].
We start multiplying (1.3) by 67, where p is a positive exponent which will be specified

later on, and then we integrate over €. Therefore, we have, in view of (1.58),

Li/gzﬂrl /’ p+q+1‘2
p+1dt g p+q+1

Si/|AMWMJ+f/|VM|W' (1.117)
Q Q

This entails, using (A.2),

pt1 ||2

£/9p+1+ Ap ’9 >
a G+ 1)

4p 1
< ks +p+1/A ot 4 p+1/V 2gp
oo Iy + ) [ 18 + 1) [ va

|4
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<(p+ 1)/9(|Am L0 4 (p+ 1)/Q|wy?ep — I, 1L, (1.118)
where we observed that =5 < p+1 and where ¢, denotes the Poincaré constant in (A.2).
Now,
h;4p+m/QAM+UPH p+1/ )9
<(p+1) |6 He(“” Al + 1>H
g% \ o5 ||” -+ Clp+ 12]|0"F (A +f e

where the positive constant C' is allowed to vary from line to line.

At this point we use Holder’s inequality with exponents 5 and 5/4, therefore we get

5
3 6 3
g5 (A 1)s
‘ L/5() (/Q ’ (1Au] +1)7
4
3
<|||Aw| + 1Hi6(ﬂ) (/ Gi(pﬂ))
Q

3 3
<e(1+ llEpo) ( / 94<P+”)

(ol + 1)

Eventually we deduce

p+1

2
n<—2— o

cp(p+1)

2 3 é
(V +Cp+1)*(1+ Huuiﬁ(m) (/ 94‘“”) , (1.119)
Q

On the other hand, observing that #7 < 6P™ + 1 and recalling Sobolev’s embedding
theorem, thanks to (1.107) we are led to

L=(p+ 1)/ V6" < (p+ 1)/ ViPoP ! + (4 1) [ Va2
Q Q

<e(p+1) He* ‘V Hmﬁe% \ +C(p+1)

2p p+1 2 p+l
<P Clp+1)? Clp+1).
“ep(p+1) ’ ‘v+ (p+1) L5/4(Q)+ (p+1)

Now, applying Holder’s inequality with exponents 6/5, 6 and interpolation inequality

(A.1le) we obtain
9 8
(p+1) 4 3(p+1)
e = (L) < [l ([ 0100)
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4
s 3
<C ||M||?{3(Q) </994(p+1)) )

Therefore, we have the following inequality for I5:

4

p+1 |2 3 3
0" ‘V+C(p+1)2|yuuzg(m </Qe4<p+1>> +C(p+1).  (1.120)

2
I2 S —p’
cp(p+1)

Using (1.118), (1.119) and (1.120) yields

IS

d

@ P+l 2 2 1+ ’
7 99 <C(p+1) <1 + ||H||H3(Q)> (/99 ) +Cp+1),

then, by a further integration over (0,t),t¢ € (0,77,

%
/Q()P“(t) <C(p+1)> ({SOU%D] (/Q ei@“)) + K,,,T) , (1.121)

where we took advantage of (1.110) and where with K, we denote a term cointaining
the information on the initial datum 67*'(0) which possibly depends on 7. This term
depends exponentially on p, but this difficulty is later overcome taking the (1/p)-power.
In order to apply Moser’s iteration, we consider the sequence (py)y of real numbers defined

by
4

Po=3, Drt1= 3Pk k e N.

Let us take p = pr+1 — 1 in (1.121). We then have

/9pk+1(t) < C’pi+1 sup </ 9”’“) + K,r |,

Q (0,77 \JQ

sup/ AP+ < C’pile max < sup (/ «9’”“) JKpr o
(0,17 JQ 0,7 \Ja

Thanks to (1.106), we already have 6 € L*>(0,T; Li+2(£2)), where ¢ was introduced in
(1.58). Therefore, we can apply the Moser lemma and get

Wl

hence

ol

Vk € N, sup [|0]] ;p () < C.

(0,7]

Taking the limit as k goes to infinity leads to (1.116). This also immediately entails that
K(0) € L>(0,T; L>()).
We are now able to prove that § € L>(0,7; V). In order to do so, we formally multiply
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(1.3) by 0,K(0) = k(0)6;. We obtain

+35 [IVEOF
/ o8u(O)0c-+ [ VuPr6)8 = [ ROBIVHE 0 ) dx

Owing to (1.116), (1.107) and (A.la), the right hand side can be controlled as

POV

Q

S RCANCOAONE

<R (0 V5@ (101w |0l + 1Vl
1

<@l e < 5IVFOI + el

where in the last row we controlled HV/L”%4(9) by (A.la) and (1.107). Then, on account
of (1.110), we get
0c H'(0,T;L*(Q)  K(9) € L>(0,T;V)

and this last estimate entails the desired result 8 € L>(0,7;V).
Finally, by reading (1.2) as

—Ap+ F'(p) =0+ e L>0,T;V),
we deduce the thesis using (1.65), that is ¢ € L>=(0,T; H3(2)).

1.4.4 Uniqueness

We now address the uniqueness of solution in Theorem 1.4.1. Let zy € )V and let
(pi, i, 0;),7 = 1,2, be a couple of (stable) solutions both emanating from z, over the

interval (0,7). Taking (o, i1, 0) := (@1 — P2, 1 — p2, 01 — 65), we can readily obtain

e = Ap, (1.122)
p=—0p+ F(p1) = F'(p2) =0, (1.123)
O + 01 Ap+ 0Aps — A[K(61) — K(62)] = (Vi + Vie) - Vi (1.124)

coupled with null initial data. This guarantees e.g. pq(t) =0 Vit > 0. By the regularity
(1.65)-(1.67), we observe

@i (Ol 30y + @l + 16:@)ly < e, ¢€(0,T)
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[1ll 207 m3(0)) + 10ill oo 07100 () < € (1.125)

for some positive constant ¢ depending on 7" and on the initial data. These properties
will be frequently used in the following.

The proof we show is based on the application of Gronwall’s Lemma to the functional
Z(1) = |[Vo)|* — 22 (0(t) — ba(t). (1)) + 6(t) — ba(t)l[ +6a(t)®,  (1.126)

which is zero for ¢t = 0. We notice that for ¢ > 0 small enough,
Z(1) 2 e.([IVe@)|* + 16(t) — ba(®)][3 + ba(t)?). (1.127)

. 2 2
Therefore we need to estimate the terms 2 [[Vo(t)||*, £ [|6(t) — bo(t)||;, and L0a(t)2.
The first one will be addressed in Section 1.4.4, the second in Section 1.4.4 and the third
in Section 1.4.4.

Preliminary estimates

First of all we control Ap by testing (1.123) by —A:

1A = — (1 — o, Ap) — (8 — o, Ap) + (F'(¢1) — F'(2), Ap)
<c||A¢|| (IVull + 116 = Oall + | F' (1) — F'(2)]])

Exploiting Holder’s inequality with exponents 3 and 3/2 and recalling (1.57), (1.125), we

obtain

1E"(21) = F'(@2)lI” e {(1+ |1 + | alT), %)

<c ||§D||i3(§2) <cllelly .
Eventually, according to (1.85), we conclude that
1Al < c(IVpl* + 116 = ball* + llelly) < elllenlsr + 18 = ball* + lel).  (1.128)
Difference in order parameters for Gronwall’s argument (1.126)

Testing (1.122) by J1p;, we get

lellyr + (o pe) = 0,

where, multiplying (1.123) by ¢y, we can write the second term as

32
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= LIVl ~ 200 — o, ) + (F' (1) = F(p2).0) + ().

Combining the previous relations we infer

<H7 th> =

i + 3 S (Il ~ 240 — fo, o)
(P ()~ Flg2). 90— (0,9). (1.129)

We take care of second term on the right hand side by multiplying (1.124) by ¢:

(01, p) = (K(01) — K(02), Ap) + Vi1, VO10) + (V1,0 V)
— (0Aps, 0) + (Vi + Via) - Vi, ) .

We notice that a direct estimate of the first term in the right hand side could have been
provided due to (1.128) and the regularity achieved on K(#). However in this way, it
turns to be difficult to reabsorb the term C||¢;||y- in the left hand side. Therefore the
gain of regularity in # apparently does not simplify this part of the proof and we need to
proceed as in [39].

We notice that, exploiting (1.123) two times, the first term on the right hand side reads
(K(01) — K(62), Ap)
= (K(61) — K(62), —po + p + F'(p1) — F'(2) — 0 + 0g)
~ (i + 6) [ [K(62) ~ K(60)
Q
= (K(01) = K(62), —p+ po + F'(p1) — F'(p2) — (F' (1) — F'(p2))a)
— (K (61) — K(62),0 — 0q) .

Therefore we have,

(0r, )
= (K(0) — K(02), —pu + po + F'(p1) — F'(p2) — (F' (1) — F'(02))0)
— (K(01) — K(02),0 — Oq) + (Vu, VO10) + (Vu, 01 Vo) — (0D, p)
+ (Vi + V) - Vi, ) .

Owing (1.129) and combining the above relations, we obtain

1d
ol + 555 (19612 =20~ 0. ) = (500 ~ K(60).0 - 6o
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— (F'(¢1) = F'(2), 1)

— (K (01) = K(0a), —p + po + F'(1) = F'(p2) — (F'(1) — F'(p2))a)

—(Vu, Vbip + 6:Vp) + (0Ap2, @)

— (Vi + V) -V, @) = I3+ Iy + Is + Is + I7. (1.130)

First of all using (1.57), we have

IV(F' (1) = F'(2)) (1.131)
<c [Vl (1 + 18" + lel(L + |77 + |eolP ) Vel || < cllelly -

Therefore, as (¢, 1) = 0, we deduce

I3 = — <F/<901> - Fl(%), 90t>
SCIV(F' (1) = F'(e)) Hlpelly: < cllelly lledlly -

On the other hand, by (1.116),

[1K(61) = K (62)[l5/5 < ([0 = Oall +[6al),

and, according to (1.131), it follows

Iy == (K(0h) = K(62), 1 — o — F'(01) = F'(02) = (F'(01) = F'(102)))
<[ (O) = K(02) | 320 (I = pall 1aq)
+1F' (1) = F'(p2) = (F'(01) = F'(@2))all 13 o)
<c((|0 = ball + [O)(IVull + [olly)-

Owing to (A.1a), (A.1b) and (A.1f)

Is :=—(Vu,Voip+ 6,V)
<c|IVull (V0@ Loy + IVl Loy 101l L))
1/2 1/2
<e|IVll (Il el H@(m FIVEl el

1 2
<c|[Vull Vel el
Now, using (A.1f) and the injection V' C LP(Q), for p > 1,

Is = (0 A2, ) = 0o (Apiz, @) + (6 — 6a) Apus, @)
<clbal [|Vul[ Vel +c 10 — Oall | Apzll 2o 1€l 1)
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<clba| Vel +c 0 = Oall |2l s ) IVl -
Finally combining the previous strategy with (A.la), we get

Iy i=— (Vi + Viz) - Vi, ) < Vs + Viall pagey IV 120 2
1/2 1 2
<[l o gy + leallee) ) IVEl Vel

Eventually, the above computations and Young’s inequality yield

I+ 1+ s+ I+ I7
<c|leelly: lelly + el = Oall +10a]) (X + (|12l g3 @) [lelly
1 2
+c |Vl Vel el i + el = ball + 10al) V1]

12 1/2
e (14 il + Iqull / o) IVl 94]
2 2, @ 2 2
<ol + S IVl + <10 = bal + 5 1Al + g(0) el + 63)

1
<(3+c) ||sot||2w v (2 a) 106l + g1l + )

Where in the last passage we took advantage of (1.128) to estimate the term depending

on Ay. Moreover, we have defined

2 2
9(t) = [l + Il s ) + l12llgs @) (1.132)

with (large) constant ¢ > 0 also depending on the choice of the small constant a > 0

Combining the previous estimates with (1.130), we finally get

o+ LIVl = 200 — B0.0)) — 2K (60) — K(82).6— b0

1 1
< (5 + ca) ey + ¢ (a + a) 160 — 99”2 + g(t)(ngH%/ + 9?2) (1.133)

As mentioned before, the aim of these calculations is to apply Gronwall’s Lemma to a
specific functional already introduced. In order to do that, we are trying to obtain the
derivative of such functional on the left-hand side and the functional itself on the right.
Thus all terms arising from that must be either integrable over (0,7") (which is the g(t))
or they must be balanced with some term on the left side as ||¢;||7 or ||§ — 63| (which
will arise from (K (6;) — K(0),0 — 0q)).
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Difference of temperatures for Gronwall’s argument (1.126).

We test (1.124) by J1(0 — ) and integrate by parts, therefore we obtain

th ||9 Oolly, + (K(6r) = K(62),0 — ba)

= (Vb -V, J 710 —00)) + (6: Vi, VIO — bq))
— (0 = 0a) Az, J71(0 — 60)) + bq (12 — (12), 0 — 0q)
+ (Vi + Vo) -V, J7HO = b)) =: Is + Iy + Lo,

First of all we have

Iy = {61V, VJ (0 — b))
<c|[Vull[[VT7(0 = 6a)|| < e Vil 16— bally. -

From (A.1b),
17710 = 00) || iy < €16 = Balli/? 16 — a2

Thus, we infer

Iy:=— (V0 -V —(0—0a)Aps, J7'(0 — 0q))
<(V/L1 + Vug) - Vi, JHO — 09)>
<||J7HO = 00)|| . [0l [V 1]
+ [ Apall 16 = Oall + IVl + IV p2])) [Vl
<c 10— all5 10 — 0ol IV ull + ¢ |2l ooy 10 — Bally” 116 — Oal*

Eventually,

Lo :=0q (o — (12)q, 0 — Oq)
<clOal ||p2 — (u2)elly 1|0 — Oally, < clfal |0 — Oally, -

Combining the estimates of I, Iy, I and exploiting Young’s inequality, we finally have

1d

Sz 10— Oy + (K (01) — K(62),0 — ) < 8¢ |0 — ba]’ (1.134)

2 2
tae [ Vall® + Cu(l + [luzllz2) 16 = bally: + clbal’,

with the (large) constant C, depending on the small constants «, ¢, € which will be specified
at the end.
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Difference of temperatures’ means for Gronwall’s argument (1.126)

Integrating (1.124) over {2 we obtain
Q2(00)e = (VO1, Vi) = (0 — Oa, Apz) + (Vi + Viz), Vi) (1.135)
and by (1.125) it yields

|(Oa)e] < c(IVull + 2l s o) 110 = Oally)-

Moreover, multiplying (1.135) by g we have, for (small) a > 0 we will choose later and

corresponding (large) ¢ > 0,

1d
5 7% <clfal(IVell + 12l s oy 116 - bally) (1.136)

<ae [Vl + (6 + allsoy 19 = all2.): (1.137)

Conclusion

We recall the definition of the functional we want to use
Z(t) = | Vel® = 22 (6 — b, ¢) + 10 — ball}, + 63,

Summing (1.134), (1.136) and § times (1.133), we obtain

1d €
52+ (=) (K(0) = K(02).0 = ba) + 2 el

<e(c+ ca® 4 0) |0 — Oq||* + 20 | Vul|* + g(t) Z,

where ¢g was introduced in (1.132).

Next, we take care of the second term in the left hand side. From (1.59), we obtain
1
(K(61) — K(0),0 — o) = ||6 — bal” + 11 ([(61) = 1(62),0 — ba)
where 1(6;) = 77,7 = 1,2. Now

10,) — 1(6,) = /1 %1(591 + (1= 5)05)ds

:/ﬂmwy+u—ﬂwgwy—@m3=wwh%w,

37



CHAPTER 1. TWO-COMPONENT FLUID IN A 2D-DOMAIN

where we set

(61, 05) = /01 V(s + (1 — 5)6)ds.

We observe that it holds w(6;,602) > 0 almost everywhere. Moreover, we notice that
(1.116) implies,
|w(01,92)| S C (1138)

Therefore we infer
(K (80) = K (6:),6 — 60) =10 = bal]*+ - (1(61) — 1(62).6 — bn)
=116 — bo* + qu1 /Qw(el, 0)0(0 — 0q)
1= b0l* + — [ (61,6010 — 6ol
+ q—i—Ll Qw(ﬁl, 0)00(0 — 0q)
2060 + 5 [ (61021000 — bn).

Hence, exploiting (1.138), we get

1 1 2 2
o 01,05)00(0 —0q)| < cla|||0 —0q| < =10 —0 0
1 [ l61.02)00(6 — 60) | < clbal 10 — ol < 5 16— Bul” + cf,

and moreover

1
(K(0) = K(02),0 — 00) > - 10 — 0> = 62,

Putting everything together we finally have

1 d 1—¢ 2 9 2
——2Z 6 —0 — ,
e ) i P
<e(c+ca® +6) |0 — 0a|]> + 3ae | Vu| + g(t) 2
(1.85)
< ele4ca® +0) 10 — 0all> + 3acc|ldlls + g(t) 2. (1.139)

The constant ¢ on the right hand side of (1.139) only depends on the regularity proper-
ties of the solutions collected in (1.125). In particular, it is independent of the parameters
«,d,e. Therefore, chosing @ > 0 small enough, the second term on the right hand side
of (1.139) can be absorbed the corresponding quantities in the left hand side. Moreover,
taking ¢ sufficiently small (it might depend on other parameters), the first term on the

right hand side can be absorbed, too. As a matter of fact, we are able to semplify (1.139)
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as follows

d
52 T ([0~ ball”* + ledly) < 9(8) 2,

where ko > 0 and g was defined in (1.132), hence, exploiting (1.125), it is summable over
the interval (0,7"). Since Z(0) = 0, then by Gronwall’s Lemma and (1.127) we eventually
see that Z is identically 0 over (0,7"), which gives us the assert.
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Chapter 2

Non-isothermal Cahn-Hilliard model

for tumor growth

The study of tumor growth processes has become of great interest also for mathemati-
cians in recent years [5, 9, 21, 28, 92, 104, 118]. Indeed, mathematical models might be
able to give further insights in tumor growth behaviour. In particular, the framework of
diffuse interface modeling with Cahn-Hilliard equations [19] has received increasing at-
tention. In this context, the tumor is seen as an expanding mass surrounded by healthy
tissues. Its evolution is assumed to be governed by mechanisms such as proliferation of
cells via nutrient consumption, apoptosis [56, 78, 102] and, in more complex models like
[58, 59, 60, 72], also chemotaxis and active transport of specific chemical species effects.
Moreover it is possible to include the effects of fluid flow into the evolution of the tumor,
which brings to the so-called Cahn-Hilliard-Darcy models (see [60, 78]). However, up to
our knowledge it seems that even if the effects of variations of temperature have been stud-
ied for Cahn-Hilliard equations [39, 46, 77|, they have been neglected so far in the analysis
of tumor growth. From the medical point of view, the effects of temperature on tumor
growth have not been completely understood yet, although they have been investigated
since the very beginning of the 20th century [110]. The general tendency of the scientific
community seems to support the thesis that hyperthermia can lead to partial or complete
destruction of tumor cells [15, 98, 109, 115]. In fact, it has also been observed that low
ambient temperature influences the production of particular nutrients for the tumor [88].
Nevertheless, we focus here on the case which does not take into account the production
of a nutrient due to temperature. In this work we introduce a new diffuse interface model
for tumor growth, taking into account proliferation of cells, nutrient consumption and
apoptosis and moreover temperature effects. Our aim consists in proving an existence
result for weak entropy solutions (cnfr. Definition 2.1) to our model. We remark that

a rigorous mathematical theory of well-posedness results has been addressed in multiple
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works, such as [56, 58, 102]. From the biological point of view, we assume that tumor
cells only die by apoptosis, therefore we do not take into account the possibility of tumor
necrosis (differently e.g. from [59]). We also suppose that the healthy cells surrounding
the tumor do not interact with the tumor itself, neglecting the possible response of the

immune system.

According to these considerations, we will derive the following PDE system, describing

the behaviour of a two-component mixture consisting of healthy cells and tumor cells

¢r = Ap+ (Po — A)h(p)
L.,
p=—elg+ —F(p) =0 = xp0

o = Ao —Coh(p) + B(og — o).

We carry out our analysis in Q x (0, 00), where Q C R? is a smooth domain. According to
the derivation of the model shown in Section 2.1, we suppose that the system is isolated
from the exterior. This condition translates in no-flux boundary conditions (i.e. homoge-
neous Neumann) for all the unknowns.

The evolution of the tumor is described by the order parameter ¢ which represents the lo-
cal concentration of tumor cells, ¢ € [—1,1], with {¢ = 1} representing the tumor phase
and {¢ = —1} the healthy one. Moreover p denotes the chemical potential of phase
transition from healthy to tumor cells, @ is the absolute temperature, x(6) represents the
heat conductivity and ¢ is a small parameter related to the thickness of interfacial layers.
We denote by o the concentration of a nutrient consumed (only) by the tumor cells (e.g.
oxygen and glucose). The parameter x,, > 0 is linked to transport mechanisms such as
chemotaxis and active uptake. Although we will show in Section 2.1 how this parameter
is included in the model, for sake of simplicity we will neglect it throughout the math-
ematical analysis, with the aim of including it in future works. The positive constant
parameters P, A, C and B indicate respectively the tumor proliferation rate, apoptosis
rate, nutrient consuption rate and nutrient supply rate. The function h is chosen as
monotone increasing, nonnegative in [—1, 1] and such that h(—1) = 0 and h(1) = 1. The
tumor growth is thus described by the term Poh(p), which reasonably increases propor-
tionally to the concentration of tumor cells, while the death of tumor cells is modelled by
the term Ah(p). Therefore, according to (2.1), if Po — A > 0, then the tumor expands
and it happens faster when the concentration of tumor cells is already high. If otherwise
Po — A < 0 then the tumor reduces and the tumor cells die faster when the concentration

of tumor cells is large. The term Coh(p) represents the consumption of the nutrient by
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the tumor cells. The term B(c — op) is due to the fact that we consider here the case
where the tumor has its own vasculature (as in e.g. [16], [102]), where the threshold
op € (0,1) is the constant nutrient concentration in the pre-existing vasculature. In par-
ticular, if op > o, B(op — 0) models the supply of nutrient from the blood vessels, on
the other hand if o < o, B(op — o) represents the transport of nutrient away from the
domain. Eventually, the function F(s) represents a polynomial potential having at least
cubic growth at infinity, whose assumptions will be specified in Section 2.2. A simple
choice might be a double-well potential with equal minima at s = 41 penalizing the devi-
ation of the length || from its natural value 1. This more general potential allows ¢ to
take values also outside of the significance interval [—1, 1], therefore we will carry out our
analysis also in the case |¢| > 1 and correspondingly extend function h. We also remark
that although among Cahn-Hilliard literature the singular potentials, such as logarithm
type (see e.g. [20]), are very common, the growth conditions that the problem requires

make them unsuitable for our case, as it will be clear in Section 2.3.1.

In this work we derive a new phase field model according to the laws of thermodynam-
ics describing the tumor growth, published in [75]. The novelty of [75] with respect to the
pre-existing literature is to include possible variations of temperature in the tumor growth
model. The presence of nutrient concentration ¢ in the system implies that here the spa-
tial mean of ¢ is not conserved in time (as we can see from equation (2.1)), therefore the
derivation of the model cannot follow the techniques proposed in Section 1.2.1. However,
we are able to gain enough regularity for the quadruple (¢, i, 0, 0) in order to prove the
existence of weak (entropy) solutions to the initial-boundary value problem associated to
(2.1)—(2.4).

The structure of this Chapter is the following. In Section 2.1 we derive system (2.1)—
(2.4) according to the approach proposed by Gurtin in [69]. Then we proceed with the
mathematical analysis of our problem in the case € = 1, x, = 0. In particular, Section
2.3 is devoted to give the setting and to present the main result of this Chapter (which is
Theorem 2.3.1) concerning the existence of weak entropy solutions to our problem. The
proof is carried out in two steps. In Section 2.3.1 we gain a priori bounds for (¢, i, 0, o).
In Section 2.3.2 we use the weak sequential stability argument to prove the existence of
weak entropy solutions. Namely, we exploit the a priori bounds obtained for a sequence

of weak entropy solutions together with standard compactness results to pass to the limit.
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2.1 Derivation of the model

We suppose that a two-component mixture consisting of healthy cells and tumor cells
occupies an open spatial domain 2 C R3. We denote by ¢(z,t) the tumor phase concen-
tration, 6(z,t) is the absolute temperature and o(z,t) is the concentration of a nutrient
for the tumor cells. According to the Ginzburg-Landau theory for phase transitions, we

postulate the free energy density ¥ in the form

v = SV +ZF(¢) + (0) — O+ N(o,0). 2.5

We observe that (2.5) differs from (1.11), because of the presence of the term N. This
latter term describes both the chemical energy of the nutrient and the energy contribu-
tions given by the interactions between the tumor tissues and the nutrient.

One of the main difficulties we have to face in the derivation of our model is that, dif-
ferently from standard Cahn-Hilliard models, such as the one studied in Chapter 1, the
spatial mean of the tumor phase concentration ¢ is not conserved. Indeed the tumor may
grow or shrink according to the right hand side of (2.1). Because of this issue, we cannot
derive this model according to strategy proposed in Section 1.2.1. Indeed, we follow the
approach presented in Section 1.2.2, proposed by Gurtin in [69], which relies on the bal-
ance law for internal microforces (1.39). The pivotal concepts behind Gurtin’s strategy
are described in Section 1.2.2. However, the main difference between this case and the
one presented in Chapter 1 occurs in the mass balance equation.

Indeed, we are here considering the case where the tumor grows or reduces according to
a source term. Therefore relation (1.40) is not suitable to describe this phenomenon. In

this case the mass balance law thus reads
oy = —divh +m, (2.6)

where h is the mass flux and m is the external mass supply. The derivation procedure
follows the same steps as the one in Section 1.2.2 is based on the first and second laws of

thermodynamics.

Cahn-Hilliard system.
According to [69], we might write the first law in the form

d

— | edz = —/ q-vdn+W(R) + M(R), (2.7)
dt Jr OR
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that coincides with (1.44), but we recall here for convenience. In particular

W) = [ (¢ 2:5)
M(R) = — /aR ph - vdn + /Rumdx (2.9)

are the rate of working and the rate at which free energy is added to R (assuming no heat
supply) respectively. We remark that (2.9) presents an extra term with respect to (1.43),
given by the external mass supply m. From Green’s formula, we can rewrite (2.7) as

Oe Op

= _d
v q—+ i

0
T diVC+C-V—¢—h-VM—udivh+um. (2.10)

ot

Because the control volume R is arbitary, exploiting the mass balance (2.6) and the

microforce balance (1.39), we infer

de . Iy d¢
a——dlvq—l—(u—w)a—kﬂva—hv,u. (2.11)

Since we here consider the free energy density ¢ in (2.5) to be possibly dependent also on
the nutrients, the combination of (1.14) and (1.15) leads to

Oc _9v 05 0 _0bdp 9 Ve  Owdo  0s

o a ta T aea Tave ot Tasar o (2:12)
hence
o 80 Wdp O Ve o
il =, - T, 77 2.1
ot "o T oot Tove o oo o (2.13)

We now impose the validity of the second law of thermodynamics in the form of the
Clausius-Duhem inequality (1.18). We develop the left hand side of (1.18) as follows

0s i (114)@ 871# @ i
0<(%+d1VQ> = at—at—sat—i-ﬁdw@

w0 ov o0

= 5% A 88t+dlvq Q-Vo

(145) % 9% o 90

= nmm g+ Vg TV G s — @V

ax 00N e, (00 \Ve owdo o

- (“ T 090) o T\ Tave) ot e VHTO VY
In order to satisfy relation (1.18), we impose

9
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_ oY
(= vz (2.15)
oy
5 =0 (2.16)
W+ Q- V6 <0, (2.17)

where in particular in order for (2.17) to hold, we exploited Fourier’s law (1.49). The
combination of (2.5) and (2.15) straightly gives

( =V, (2.18)

which leads to, according to (2.5), (1.39) and (2.14),

1 ON
= —cA —-F -0+ —. 2.19
L eAp + . () + 90 (2.19)
Eventually, inequality (2.17) can be satisfied choosing h = —Vpu, which is a suitable
assumption according to [69]. Therefore equation (2.6) reads
o = Ap+m. (2.20)

Temperature equation.
We start from the internal energy equation (2.11), taking advantage of (2.15) and of the
expression for the chemical potential (2.14), therefore

Oe oY 3_@ oY OV

9 L _divgs WL WOV g,
ot VAt o Tave ar VA

Now, exploiting the assumption h = —Vy and Fourier’s law (1.49), we infer

Oe 8_1#8_(,0 oY OV

— = div (k(0)VO) + 90 0t + N o

2
T + [Vl

and by identity (2.12), taking into account (2.16),

9% — div (k(0)V0) = |Vul*. (2.21)

From (1.15), we might write

0s ,
05 = 0=F(0): + 0.

On the other hand, according to the definition of @, it holds (Q(0)); = (—f(6)):, with in
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particular (Q(0)); = Q'(0)6;. Since we suppose, as in Chapter 1, the specific heat to be
cy = 1, it follows that Q'(6) = 1. This implies that

Os; = 0; + 0.
Thus, equation (2.21) reads
0, + 0o, — div (k(0)VEO) = |Vl (2.22)

We remark that, even though the temperature equation (2.22) reads exactly like (1.54),

the expressions of ¢; and u are different.

Nutrient equation.

We postulate the nutrient balance equation in the form
op=—divJ =S, (2.23)

where J is the nutrient flux and S denotes a source/sink term for the nutrient. Choosing
J = —Vo, equation (2.23) reads

op=Ac —S. (2.24)

2.1.1 Constitutive relations

Owing to [16, 60, 102], we now make the following constitutive assumptions.

o m = (Po— A)h(y),

where h(p) is a monotone increasing, nonnegative function in [—1, 1] and such that
h(—1) = 0 and h(1) = 1. Hence this relation states that on one hand the tumor
growth is proportional to the nutrient supply in the tumoral region. This assumption
reflects the fact that it often happens that tumors bring mutations which switch off
certain growth inhibiting proteins. Therefore the tumor cells increasing is limited
only by the supply of nutrients, despite of healthy cells where the mitotic cycle
regulates the growth. On the other hand, when we are in the healthy region, this
equation shows that the proliferation rate of the tumor is greater than the one of
healthy cells.

ON
e — = —x,0, in fact, we take y, = 0.

dp

Indeed, this equation is due to the mechanism of chemotaxis, which we exclude in

our analysis.
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e S=Coh(p)—B(og —0).
We here assume that the sink/source of nutrient is regulated by consumption of
nutrients and the term B(op — o) which models the fact that we here consider the
case in which the tumor has its own vasculature. In particular the threshold opg

indicates whether the nutrient is supplied to the tumor or transported away.

2.2 Assumptions

In order to carry out a mathematical analysis of our problem, let us introduce some
notation we will use in the sequel. We recall that €2 is a smooth domain of R and we
denote by 0f2 its boundary. For sake of semplicity, let us assume |2] = 1. We denote
by (0,T) an assigned but otherwise arbitrary time interval. We set H := L?(Q2) and
V := H'(Q) and we will use these symbols also referring to vector valued functions. The
symbol (+,-) will indicate the standard scalar product in H, while (-, -) will stand for the
duality between V' and V. We denote by || - ||x the norm in the generic Banach space X.
For brevity we will write || - || instead of || - ||z. Still for brevity, we omit the variables of
integration. We will specify them when there could be a misinterpretation.

For any function v € V, we define

1
v = —/’U:/U, (2.25)
2 Jo Ja

where the last equality holds since we assumed |2 = 1.

We recall the Poincaré-Wirtinger inequality
lv —val < cql|Vv]] YveV (2.26)
and the non-linear Poincaré inequality
IE I < e (0l + IV0EI) | (2.27)

which holds Vv € L'(Q) s.t. Vo € L*(Q) and Vp € [2, 00).

We assume the coefficients P, A, B and C to be strictly positive and o € (0,1). Next,
we suppose that the derivative of potential FF € C} (R,R) decomposes as a sum of a

monotone increasing part S and a linear perturbation, namely

F'(ry=8(r)—Xr A>0,7€R. (2.28)
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Moreover we normalize § s.t. 4(0) = 0 and we require

deg >0 st |B(r)| < cg(l+ F(r)) VreR, (2.29)
|B(r)| > k|r| for some k > 0, (2.30)

where (2.29) means that F' has at most an exponential growth at infinity, while (2.30)
states that [ has superlinear growth. Moreover, we assume potential F' to be strictly
positive.

Next, we assume h € C'(R) increasingly monotone s.t.
i) h(=1)=0, h(r)=1 Vr>1.
ii) 3h>0and p < —1s.t. h(r)=-h Yr <o
Therefore h is globally Lipschitz continuous and there exists a constant ¢ > 0 s.t.

Ih(r)| + K ()| < ¢ VreR. (2.31)

Moreover we assume the thermal conductivity to depend on the absolute temperature 6

as follows
kK(O)=1+61, qge€[2,00), 6>0. (2.32)
Eventually, we require the initial data to be such that

Plieo =0, wo €V, Flpo) € L'(Q)
e‘t:() = 00, 00 € Ll(Q), 00 > (0 a.e. in Q, log(% S Ll(Q>
Olio = 00, 09 € L¥(Q), 0<0p<1ae. in{ (2.33)

where the last assumption on oy is due to the interpretation of o as a nutrient concen-
tration. We also recall that we couple our system with homogeneus Neumann boundary

conditions for all the unknowns.

2.3 Existence of solutions

In this section we present the main result of this Chapter, concerning the existence of
solutions for the tumor growth model (2.1)-(2.4) for x, = 0 and ¢ = 1. Namely, we work

on system

pr = Ap+ (Po — A)h(p) (2.34)

48



CHAPTER 2. AN APPLICATION TO TUMOR GROWTH

p=—Ap+F'(p)—0 (2.35)
0, + 0o, — div (k(0)VEO) = |V p|? (2.36)
o, = Ao — Coh(p) + B(og — o). (2.37)

We here present what will be called a weak entropy solution, already used for example
in [97], which is in fact weaker than other corresponding notions appearing in related
contexts. This is due to the fact that we do not get enough regularity to pass to the limit
in some non-linear terms in the temperature equation (2.36). In particular, the definition
stated here does not include (a weak formulation of) the conservation of internal energy,
differently from e.g. [14, 46].

Multiplying (2.36) by 3, we have

(A(0) + ) — div (n(egve) = HH(? VO] + ’VTM, (2.38)
with ,
A(6) ::/ %ds = logé. (2.39)

We remark that in our case A(f) is a very well-known function, but we stick with this
notation in order to be coherent with the literature [46, 97], where A(f) might be a more
generic function. Testing (2.38) by £ € C*°([0,T] x Q), £ > 0, &(T,-) = 0 and integrating

by parts we infer

/OT/Q(A(Q)+go)§tdxdt+/OT/Q@w-vgdxdt
:_/OT/Q%gdxdt—/:/(z%wemxdt—/Q(A(eo)+¢0)5<.,o)dx.

Setting () := flg @ds =Infd+ %(9‘1 — 1) according to (2.32), we get

/OT/Q(A(&)+‘P)ftdxdt+/j/ﬂ5(9)A§dxdt
:_/OT/Q |V:|2gdxdt_/OT/Q$|VQ|2dxdt—/Q(A(eo)jupo)g(.,o)dx_ (2.40)

Definition 2.1. We say that (¢, i, 0, 0) is a weak entropy solution to our non-isothermal

Cahn-Hilliard model if it sastisfies the following equations

(o, &) = — /Q V- Vedr + /Q(Pa — A)h(p)&dx a.e. in (0,7) and V¢ € V,

p=—-Ap+F(p)—0 ae in (0,T)x Q,
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(0,&) = — /Q Vo - Védr — /QCah(go)fd:U + / B(op — o)édx

Q0
a.e. in (0,7) and V¢ € V,

complying a.e. in € with the initial conditions (2.33), homogeneus Neumann boundary

conditions and the entropy production inequality

/OT/Q(A(G)+g0)§tdxdt+/0T/Q(5(9)A§dxdt
< _/OT/Q’V:Pgdxdt_/oT/ﬂ“0(5)|V9|2dxdt—/Q(A(OO)JHPO)g(.’O)dx (2.41)

VE e C=([0,T] x ), £>0, &(T,-) =0.

Theorem 2.3.1. Suppose that the assumptions in Section 2.2 hold and let T' > 0. Then
there exists at least one weak solution to our model problem, namely a quadruple (p, 1,0, o)

with reqularity

0 € C([0,T; V)N H0,T; V)N L*(0,T; H*(Q))

Bly) € L*(0,T; H)

p € L*0,T;V)

6 c L*(0,T; V)N L>(0,T; L*(Q)) N L0, T; L*(2)), ¢ >2, 6>0 a.e. inS
o€ C([0,T); H)nH 0, T; V') N L>=((0,T) x Q)N L*(0,T;V)

satisfying system (2.34)—(2.37) in the sense of Definition 2.1.

2.3.1 A priori estimates

This section is devoted to gain the suitable regularity for the quadruple (¢, u,0,0) to
prove the existence of solutions in Section 2.3.2. These a priori bounds are obtained
formally, working directly on our system (2.34)-(2.37). We remark that the existence (of
weak entropy solutions) argument might be made rigorous by the Faedo-Galerkin method
that we decided not to detail here.

Nutrient estimate

We first search for a priori bounds for the nutrient following [102]. Therefore we give here
only a sketch of the main steps.
Testing (2.37) by —o_, where o_ > 0 represents the negative part of the nutrient o,
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exploting the initial conditions on ¢ and applying the Gronwall lemma, we gain
o(t,z) >0 fora.e. t>0,z¢€.

Now, testing (2.37) by (¢ — &), (where ¢ > 1 is a suitable constant) using the Gronwall

lemma and our assuptions on h and op, it is possible to obtain
o/l (0.m)x0) < er, (2.42)
where cr is a constant depending on time.

Energy estimate

We test (2.34) by p, (2.35) by ¢, and (2.36) by 1 and then sum up. This yields, taking

into account the boundary conditions,

c(lit( Vel + /Q F(p) + /Q 9) = /Q (Po — A)h(p)p. (2.43)

We take care of the right hand side, in particular

/ (Po— Ah(p)u
Q
- / (P — Ah(g)Ap + / (P — Ah()F'(¢) - / (P — A)h()6
Q Q Q
(2.28) /Q (Po — AN (9)|Vel? + /Q Ph(p)Vo - Vo + /Q Bp)(Po — A)h(p)
+ /ﬂ Mp(A — Po)h(p) + /Q (A - Po)h(p)p.

(2.35)

Thus (2.43) reads

((iit ( Vel + /QF(SOH/QQ :/Q(PU—A)’%’(SO)\W)V

+ [ (Po— 4B
/)\ (A—"Po)h <,0+73/ ¢)Vo -V
+ /Q(A — Po)h(p)

=T+ [T+ 111 +1V. (2.44)

We now estimate each term on the right hand side separately. The estimate on the

nutrient (2.42) is a key point for all these bounds. In particular this is where a time-
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dependent constant ¢y comes from. Exploting the assumption (2.31), we infer
I <er||Vel. (2.45)

According to (2.29) it is straightforward that

I < er <1 + /Q F(gp)) . (2.46)

Moreover, using once again the assumption (2.31) on h and Young’s inequality, we get
1 2 2
HI < S|[Voll* +er (1+ el + [Vel?) (2.47)
Eventually, by the same tools used to estimate /11, it holds

Combining estimates (2.45)—(2.48), (2.44) reads

3 (1o + [ For+ [ o) (2.49)

1
< 59l +er (14 el + 1962+ [ F)+ 1ol
Q

Our aim is to apply Gronwall’s lemma in order to gain the energy estimate. Therefore we
estimate and reabsorb the term |[[¢l|1(q) according to (2.30). Moreover we test (2.37) by
o which yields

1d
sgloll’ +1vel® < e +llof?). (2.50)

Hence, summing this last estimate to (2.49) we finally get

d (1 ) 1, 5\ 1 )

Sl I - -
&<5WMI+A w»+46+5wu)+gwﬂ
g@(uwwW+Lﬂ@+wm@+M@. (2.51)

We are now able to apply Gronwall’s lemma to (2.49), therefore we obtain the following

a priori estimates

IV @l oo o) < e (2.52)
1 E'(0)l| Lo (0,7521 () < 7 (2.53)
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10| Lo 0,101 (02)) < €1 (2.54)

o || Lo (0,1 )N L2 0,13v) < € (2.55)
In particular, combining (2.29) and (2.30) with (2.53), we gain
¢l oo 0,1 (02 < e (2.56)

Entropy estimate

1
We now derive the entropy estimate testing (2.36) by —5 Therefore

d 1
< Q<_1oge—go>+/ﬂéyw2+L(\v1oge|2+kq|veq/2|2) 0, (2.57)

where k, > 0 is a suitable constant only depending on the exponent ¢ > 2, introduced in
(2.32).
Now, integrating in time, owing to (2.54) and (2.56) and recalling that |logr| < r —

logr Vr > 0, we infer

|| log ‘9||L°°(0,T;LI(Q)) + || IOg QHLQ(O,T;V) < Ccr, (258)
V02| 20,7,y < 1. (2.59)

Then, combining (2.27) with (2.54) and (2.59), it holds
10| 220.757) < cr (2.60)
which implies in particular, since ¢ > 2
101l 220,7v) < e (2.61)
On the other hand, using Sobolev embedding theorems; (2.60) also implies
||0%||L2(0,T;L6(Q)) <cr

and hence

10| Laco,r:23000)) < . (2.62)
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Chemical potential estimate

Integrating (2.36) over 2 and exploiting boundary conditions together with Gauss-Green

formula, we infer

d
IVulP =3 / 6+ / b (2.63)
(9] Q

We now rewrite the latter term according to (2.34), then using (2.31) and (2.42), it follows
that (2.63) reads

1, n_d 1

- <— [0+ =|IVo)? Ol L1 (o- 2.64

Il < 5 [ 0+ 1900 +erlllve (2.64)
Thus from (2.54) and (2.61), we obtain

HV/LHLZ(QT;H) S Cr. (265)

Now we integrate (2.35) over €, then

ol 22| [ (30) =30~ [ 9 (2.66)
< [ 11+ [ Pl + 16l (2.67)
e 280 (1+ /Q F(cp)) +er. (2.68)

Using now the bound (2.53), we get

lallzeo.r) < cr (2.69)

Combining this last bound with the Poincaré inequality (2.26) and the previous estimate
(2.65), we achieve

kel 20y < er (2.70)

p-dependent estimates

We start testing (2.34) by ¢, which leads to

%/QMQ - /Q Vi Ve + /Q(PU — Ah(p)e. (2.71)
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Exploiting Young’s inequality, the uniform bounds on h and (2.42) we infer

d 1 1
EHSDII2 < §||VM||2 + §||V90||2 + erllell -

Thus, integrating in time and using (2.65), (2.52) and (2.56) we get
el oo,y < s
whence estimate (2.52) gives
ol oo 0,73y < e (2.72)

Next we test (2.35) by B(p) and we obtain

L1s@E+ [ BIve? = [ ns)+ [ xos)+ [ o5

Now, from (2.70), (2.72), (2.61) and the monotonicity of 3, it follows

18| 20,75 < - (2.73)

Taking advantage of this last estimate with (2.29) and again of (2.72) and (2.61), a direct

comparison within equation (2.35) yields
ol r2(0,7,m2) < er. (2.74)

Further regularity

We start testing (2.34) by a nonzero test function v € V' and we infer

(pr,v) = — / V- Vo + /(730 — A)h(p)v.
Q Q
Now, according to estimates (2.42), (2.65) and (2.72) it follows

ot 20,7y < er (2.75)

Taking advantage of this last estimate and exploting (2.74) together with (2.72), we infer
(for example from [90])
© e C(0,T]; V). (2.76)

Similarly, multiplying equation (2.37) by a nonzero test function v € V and exploiting
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the bound (2.55), it holds

loell 220,y < or (2.77)

From standard embedding results (see e.g. [12]), combining (2.77) and (2.55), we gain

the additional regularity for the nutrient

o € ([0, T]; H). (2.78)

2.3.2 Weak sequential stability

We assume to have a sequence of weak solutions (¢, fin, 0n, 0,,) which satisfies the a priori
estimates obtained in Section 2.3.1 uniformly with respect to n € N.

We then show that, by weak compactness arguments, up to the extraction of a subse-
quence, (@n, by, On, 0n) converges in a suitable way to an entropy solution to our problem,
i.e., to a limit quadruple (¢, i, 8, 0) solving (2.34)—(2.37) in the sense of Theorem 2.3.1.
Indeed, exploiting the above bounds (2.42), (2.54), (2.55), (2.61), (2.62), (2.70), (2.72),
(2.74), (2.75) and (2.77), together with standard weak compactness results, it is possible

to extract a nonrelabelled subsequence such that

¢n — ¢ weakly star in L>®(0,T; V) N L*(0,T; H*(Q)) N H*(0,T; V") (2.79)
ftn — p weakly in L*(0,T;V) (2.80)
0,, — 6 weakly star in L*(0,7;V) N L>(0,T; L' (Q)) N LY(0,T; L**(2)) (2.81)
0, — o weakly star in L=(0,T) x Q)) N L*(0,T; V)N H*(0,T; V") (2.82)

Moreover, combining (2.75) and (2.77) with (2.79) and (2.82) respectively and applying

the Aubin-Lions lemma, we infer that
¢n — @ and o, — o strongly in L*(0,T; H). (2.83)
Furthermore, convergence (2.81) and interpolation theory for L? spaces imply that

2
0, — 0 strongly in LP(0,T; LP(R2)), p€ [1, q+ §) . (2.84)

Indeed, from Proposition A.2.1, with s = oo and p = ¢, it holds

Ly
- =2 2.85
r g (2.85)

We then apply the general interpolation result to the space-spaces L' and L39, from which
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( )
T

2
Since (2.85) and (2.86) must hold simultaneously, we infer that r = ¢ + 3
Now, according to Theorem A.2.6 with s = r = 0, it follows that

L(0,T; L(9)) N LU0, T; L*(Q)) == LP(0, T5 L7(Q) p € [1, ¢+ %) .

Therefore it is possible to pass to the limit also in the nonlinear terms, according to
the continuity of x, 5 and h. Indeed, by a generalized version of Lebesgue’s dominated

convergence theorem it holds

k(0,) — K(0) strongly in LP(0,T; LP(Q)), p€ [1 1+ 32q> (2.87)

B(p,) — B(p) weakly in L*(0,T; H). (2.88)

We now want to pass to the limit in the balance of entropy. Namely let us assume
that (2.38) is satisfied by the appro