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Abstract (English)

Deep learning has been increasingly successful in the last few years, and it obtained a

plethora of impressive results in various contexts. However, the drawbacks and the limi-

tations of deep learning and related approaches have recently become indisputable. Ac-

tually, the results of deep learning algorithms are hardly interpretable, and they struggle

to generalize to unseen situations. In order to overcome these problems, neural-symbolic

methods have been recently proposed as a viable approach in various contexts because

neural-symbolic methods combine symbolic with sub-symbolic machine learning methods

to gain the advantages of both while avoiding that inherent problems. This dissertation

focuses on the proposal of a new neural-symbolic method for neural-symbolic reinforce-

ment learning by discussing its design, the developed implementation, and some exper-

imental results. The �rst part of this dissertation overviews the ordinary reinforcement

learning concepts, and it surveys the major deep reinforcement learning and relational

reinforcement learning approaches available in the literature. The second part of the

dissertation focuses on a structured comparison among some of the most representative

neural-symbolic approaches for inductive logic programming, which can be considered as

good candidates for neural-symbolic reinforcement learning. The last part of the disser-

tation presents the proposed method as an evolution of an existing algorithm proposed

by Jiang & Luo and called Neural Logic Reinforcement Learning. The original algorithm

provides for the generation of rules using a top-down approach, while the algorithm pro-

posed in this dissertation uses a bottom-up approach that generates rules starting from

the states of the environment to obtain general rules to be used for training. The proposed

algorithm is presented and compared with the original algorithm to empirically assess

the validity of the approach. The proposed method is able to e�ectively learn many tasks

and it successfully generalize to slightly di�erent versions of the training tasks. However,

despite requiring less information from the user, it performs worse than NLRL. This dis-

sertation is concluded with a discussion on some limitations of the proposed algorithm

and with an overview of future research directions.





Abstract (Italian)

Negli ultimi anni, il deep learning ha avuto sempre maggior successo ed ha permesso di

ottenere risultati molto signi�cativi in diversi ambiti. Tuttavia, sono sempre più evidenti

i limiti di queste tecniche, le quali non sono interpretabili e faticano a gestire situazioni

mai viste. Allo scopo di superare i limiti intrinseci del deep learning, i metodi neuro-

simbolici sono stati recentemente proposti come soluzione in vari contesti perché questi

metodi combinano le tecniche di machine learning sub-simbolico con quelle di machine

learning simbolico allo scopo di ottenere i vantaggi di entrambe evitandone gli svantaggi.

Questo lavoro di tesi di dottorato di ricerca propone un approccio neuro-simbolico per

risolvere problemi di reinforcement learning, discutendone la progettazione, la relativa

implementazione ed alcuni risultati sperimentali. Nella prima parte di questo lavoro

saranno introdotti i principali concetti di reinforcement learning, saranno inoltre presen-

tati i principali approcci di deep reinforcement learning e relational reinforcement learn-

ing. La seconda parte di questo lavoro presenta un confronto tra i principali approcci

neuro-simbolici basati su inductive logic programming, i quali possono essere considerati

una buona base di partenza per risolvere problemi di reinforcement learning. L'ultima

parte di questo lavoro presenta una nuova tecnica, la quale è progettata partendo da un

algoritmo esistente introdotto da Jiang & Luo nel 2019 e chiamato Neural Logic Rein-

forcement Learning. Nell'algoritmo originale le regole di partenza vengono generate in

modo top-down. Viceversa, in questa nuova proposta si usa un approccio bottom-up.

Infatti, l'algoritmo proposto genera le regole partendo dagli stati forniti dall'ambiente

allo scopo di ottenere regole generali da utilizzare durante la fase di addestramento. La

nuova tecnica viene presentata e confrontata con quella originale, allo scopo di mostrarne

empiricamente la validità. Il metodo proposto è in grado di completare e�cacemente

diversi task e riesce a generalizzare a versioni leggeremente diverse dei task usati per

l'addestramento. Tuttavia, pur richiedendo meno informazioni da parte dell'utente, ot-

tiene risultati peggiori rispetto a NLRL. La parte conclusiva di questo lavoro di tesi di

dottorato di ricerca discute i limiti di questo nuovo approccio e presenta una panoramica

su alcuni sviluppi futuri.
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Chapter 1

Introduction

In recent years Reinforcement Learning (RL) [1] has received more and more interest from

the research community. RL is an area of machine learning whose goal is to train an

agent to take actions that maximize some form of cumulative reward. RL di�ers from the

other traditional areas of machine learning, supervised and unsupervised, which require

a dataset that must be given before the training phase. Actually, RL agents try to learn

how to interact with an environment that changes as a consequence of the their actions.

RL is not speci�cally designed for speci�c tasks, and it is an interesting approach for

many real problems.

RL has been studied for many decades now, but, recently, the combinations of these

techniques with modern deep learning methods gave birth to Deep Reinforcement Learn-

ing (DRL) [2]. Combining RL with deep learning allows to tackle many real-world prob-

lems that require the agent to cope with an uncertain environment. DRL has proved

to be an e�ective approach for many RL tasks, and the obtained results in the last few

years are impressive. The �rst work that represents a milestone for DRL is the paper

published by DeepMind in 2013 [3], which presents a method called DQN. DQN reached

impressive results in many di�erent tasks, and it represents a turning point for the entire

RL �eld. Other notable DRL works are Alpha-Go [4] and Alpha-Go Zero [5], which

were both released after DQN. They defeated a professional player on Go, a game that

is considered very di�cult due to its large search space. The �nal goal of the research

in the RL �eld is to design an agent that is able to learn di�erent tasks with a single

training. Recent developments in the DRL �eld follow this direction. Some examples

are the works proposed by OpenAI and DeepMind to solve many di�erent games for the

Atari 2600 consoles reaching super-human scores [3, 6].

Despite the relevant improvements, the limits of DRL has become more and more

evident in the last few years. In particular, these technologies produce solutions that

1



2 Introduction

are not interpretable by humans. Moreover, these techniques are typically not able

to generalize to unseen situations. The main goal of this dissertation is to study the

limits of current approaches to RL, and to introduce a new RL method that tries to

overcome the limitations of current RL methods. This dissertation started from analyzing

DRL methods, and the goal was to understand how the limits of DRL, in terms of

interpretability and generalization capability, could be tackled. The �rst step in this

research was the study of modern DRL techniques. From this study it was clear that

deep neural networks do not represent a solution to the discussed problems but their

ability to treat noisy and erroneous data is very useful in real applications. The next

step was to study the symbolic approaches to RL. In particular, this dissertation focuses

on Relational Reinforcement Learning (RRL) [7], which has been studied for more than 20

years now. RRL tries to apply symbolic technologies, like logical trees, to RL. This study

suggested that RRL approaches produce interpretable solutions that are able to generalize

to unseen states. Moreover, RRL approaches are very data-e�cient because they require

only a small number of interactions to reach reasonable performance. However, RRL

methods are not typically good at treating noisy and erroneous data, and they struggle

to handle complex tasks. The study performed on RRL and DRL suggested that the

best approach would be to combine the ideas behind both these technologies.

In the last few years, neural-symbolic approaches have gained the attention of an

increasing number of researchers. These methods combine sub-symbolic algorithms, like

deep neural networks, with symbolic ones, trying to obtain the best from both these

approaches. The research on this topic started only a couple of years ago, but it could

represent the bridge between RRL and DRL. For these and analogous reasons, it was

then natural to focus on neural-symbolic methods. In particular, the next step was to un-

derstand the state of the art of neural-symbolic methods to Inductive Logic Programming

(ILP) [8] problems. ILP is a research topic focused on the induction of logical rules from

data. Neural-symbolic methods for ILP are particularly interesting because they can be

easily adapted to deal with RL problems. Current neural-symbolic methods for RL are

very limited, and they require the user to guide the search for a solution specifying many

hyper-parameters or de�ning the structure of the resulting program [9�11]. The last step

of the research discussed in this dissertation was to design a new RL method, and in

particular a new neural-symbolic method, for RL that prevents the user from specify-

ing too much information about the solution of a task while, at same time, producing

interpretable solutions. In fact, this requirement represents an important limitation of

current neural-symbolic methods for RL. The proposed algorithm is based on Neural

Logic Reinforcement Learning (NLRL) [9], a recent neural-symbolic method that tries to
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induce logic rules to solve RL tasks.

The research contributions proposed by this dissertation are two. The �rst contribu-

tion is a comparison of the main neural-symbolic methods to ILP that have been proposed

in the last �ve years. The second contribution is a new neural-symbolic method for RL

problems that tries to induce logic rules directly from the states of the environment.

From the induced rules, the algorithm tries to obtain more general rules that can be used

to tackle slightly di�erent versions of the same task.

The contents of this dissertation is described below. Apart from this introductory

chapter, this dissertation is organized as follows.

Chapter 2 presents an introduction to RL, and it describes the basic concepts such as

rewards and observations. Moreover, the chapter presents a brief description of the most

interesting applications of RL. Finally, the chapter is concluded with an introduction on

the main approaches that can be used to tackle RL problems, such as Monte Carlo.

Chapter 3 introduces DRL, and it presents the most important works on the subject

of the last few years, such as DQN [3,12], A3C [13], ACER [14], and PPO [6]. Then, the

chapter introduces RRL, and it discusses the history of this research subject from the

very �rst work proposed by Dºeroski in 1998 [7]. In order to give the reader an overview

of the history of RRL, the chapter then presents the most interesting developments made

in �rst years of research. Finally, the chapter is concluded with a discussion on the limits

of both DRL and RRL.

Chapter 4 presents a comparison of the main neural-symbolic methods for ILP. As

mentioned above, neural-symbolic methods has been chosen to overcome the limits of

both RRL and DRL. In particular, neural-symbolic ILP represents an interesting start-

ing point to deal with RL problems. This chapter starts introducing the basic concepts of

�rst order logic, and it then presents a formal de�nition of inductive logic programming.

In order to give a broad overview on this subject, the most representative neural-symbolic

methods for ILP of the last �ve years are described. In particular, the algorithms that

has been taken into consideration are six: δILP [15], NTPs [16�18], dNL-ILP [11,19,20],

ILPCamp [21], DLM [10], and MetaAbd [22]. Each method is presented, and it is brie�y

analyzed highlighting the main problems in terms of performance and user guidance,

whenever possible. The core of this chapter are two comparisons of the introduced meth-

ods. The �rst comparison is made from the perspective of the interpretability of the



4 Introduction

induced rules. It takes into consideration �ve methods that are all based on program

templates or meta-rules: δILP, NTPs, ILPCamp, dNL-ILP, and MetaAbd. The algorithms

are compared using four characteristics: the language used to represent the induced rules,

the chosen search method, the support of recursive rules, and the support of predicate

invention. The second comparison is made from the perspective of the reusability of the

induced rules. In particular, the three methods that are taken into consideration, δILP,

dNL-ILP and MetaAbd, induce logic rules written in a Datalog dialect. The algorithms

are compared using two characteristics: the representation of training examples and back-

ground knowledge, and the language bias that is used for rules generation. Both these

comparisons are also discussed in two papers presented in 2022 at international events

(EXTRAAMAS and LPNMR) [23, 24]. The chapter is concluded presenting some open

challenges for neural-symbolic ILP, suggesting possible improvements and interesting re-

search directions.

Chapter 5 introduces a new neural-symbolic algorithm for RL. It is based on NLRL,

another neural-symbolic RL method that is in turn an adaptation of δILP for RL tasks.

The �rst part of this chapter presents NLRL, discussing its major limitations. Then,

the new method is presented, discussing the main modi�cations, and the tests made to

measure the overall performance of the proposed method. In order to perform a fair

comparison among the approaches, the performance of the new proposal is measured on

the same tasks discussed in the paper that presents NLRL. In particular, the considered

tasks are: CLIFFWALKING, WINDYCLIFFWALKING, STACK, UNSTACK and ON.

The �rst two tasks are very similar, and the agent must learn to reach a goal position

in a grid, avoiding speci�c cells that represent a cli�. The other three tasks require the

agent to manipulate blocks. In particular, the ON task requires the agent to stack two

speci�c blocks, STACK requires the agent to stack all the blocks on a single pile, while

UNSTACK requires the agent to put all the blocks on the �oor. In order to improve the

performance of the new algorithm, di�erent modi�cations has been tested. Here, four

versions of the same algorithm are discussed. The �rst version simply transforms each

state in a corresponding rule, replacing constants with variables. The second version

makes use of the rules that are generated after the abstraction procedure. The third

version adds an unreachable rule for each action, which could be useful when a valid

rule that implements the action is not available. The fourth version of the algorithm

employs an advanced abstraction procedure that handle recursive patterns within states.

The four versions are compared with NLRL on the discussed tasks, and the chapter is

concluded with a brief summary of the main obtained results.
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Chapter 6 concludes this dissertation, and it summarizes the results of this research.

Moreover, this chapter discusses some open challenges in the �eld and the weaknesses of

the proposed method. Finally, a brief summary of future research directions and possible

improvements of the proposed method concludes this dissertation.





Chapter 2

Reinforcement Learning

Learning through interactions with an environment is probably the most natural form

of learning. An example is an infant, which must learn to move in the world using its

own body. As a child grows up, it always learns by interacting with the surrounding

environment. For example, driving a car o using a computer are activities that require

the user to perform actions and observe the result, in order to learn the proper behaviour

to complete the task. This form of learning is the core idea of Reinforcement Learning

(RL) [1]. RL has many interactions with other �elds such as optimization and statistics.

Moreover, the connections with psychology and neuroscience are very strong. RL can be

considered the most similar form of learning to the one used by humans and animals. It

is not a coincidence that some historical RL algorithms are inspired by biological beings.

This chapter is structured as follows. Section 1 describes the core concepts of RL,

it then continues de�ning a RL problem and some theoretical solutions such as Bellman

optimality equations. In particular, Section 1 de�nes Finite MDP, which is a theoretical

framework that models a decision-making process. Then, it de�nes the concept of reward,

which is the value that is used by the agent to learn which action should be taken in a

speci�c situation. Then, it de�nes the episode, which is used to break the interaction

between the agent and the environment into a sub-sequence of interactions that ends

with a terminal state. Then, it presents the concepts of policy and value function, which

de�ne how the agent behave and how the agent values a speci�c situation, respectively.

Finally, it concludes with some examples. Section 2 presents the main approaches that

can used to tackle RL problems.

7



8 Reinforcement Learning

2.1 Basic RL concepts

In RL, the goal is to learn how to interact with an environment to maximize a

numerical reward value. The agent typically starts interacting with no information about

the correct action to take in a speci�c situation, and it tries to discover which actions

lead to the maximum reward. In order to learn the correct behaviour, the agent tries an

action and it observes the resulting immediate reward. In complex situations, learning

from immediate rewards is not su�cient, and the agent must take into consideration the

possible subsequent states and rewards to maximize the cumulative reward in the long

run. Trial-and-error and delayed rewards are the core characteristics of RL.

RL is di�erent from the other classic forms of machine learning. In supervised learn-

ing, the user provides a set of examples of the desired behaviour to be learned. This

requirement is di�cult to satisfy in problems in which the agent must interact with an

environment, because it is often impossible to provide such examples for all possible in-

teractions. At the same time, RL is di�erent from unsupervised learning. In fact, �nding

hidden patterns in collections of unlabeled data, which is the goal of unsupervised learn-

ing, can be useful in RL but it is not su�cient to solve the problem of maximizing a

reward value in the long run.

A core challenge in RL is to manage the trade-o� between exploration and exploita-

tion. The information that the agent collects during training is used to increase the

obtained reward. Therefore, the agent must exploit the experience made in the past to

improve its performance. However, exploiting the accumulated experience too much can

be detrimental because, in many situations, trying something new can lead to better

results. Therefore, the agent must also explore by trying actions that have not been

selected before in the current state. Both exploration and exploitation are important, an

agent should try di�erent actions and take advantage of the learned information to make

better decisions as the learning progresses. Real problems typically present a stochastic

behaviour, and the agent must try each state-action pair several times to obtain a reliable

estimate of the expected reward. Finding an optimal trade-o� between exploration and

exploitation is very di�cult, and it is a problem that still remains unsolved.

A RL agent is not necessarily only an isolated agent that interact with an uncertain

environment. An RL agent can be part of a larger system. In this case, the agent interacts

directly with the rest of the system, and indirectly with the environment. Learning by

interacting with larger systems, and only indirectly with the environment, is another

important feature of RL.
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2.1.1 Finite MDP

RL problems are typically formalized using aMarkov Decision Process (MDP). MDPs

represent a way to mathematically model a decision-making problem where the outcomes

are only partially under the control of the agent. In particular, in MDPs the agent must

be able to access the state of the environment. Moreover, the agent can take actions

that could modify the state. Finally, the agent must have one or more goals regarding

the state. MDPs model these three aspects: perception, action, and goal. A RL method

represents an e�ective way to solve problems that can be formalized using MDPs. In

most real applications, the agent cannot directly access the state of the environment. In

this case, the problem can be formalized using a Partially Observable Markov Decision

Process (POMDP). POMDPs are a generalization of MDPs in which the state is not

directly available to the agent, and the underlying dynamics of the environment are

determined by an MDP. The agent must perceive the state, and the obtained observation

is not necessarily equal to the underlying state of the MDP.

Now, a formal description of MDPs is presented. As already mentioned, in MDPs

there are two major entities: agent and environment. The environment represents ev-

erything that is considered external to the agent. The agent represents the learner that

takes actions, interacting with the environment at discrete time steps t ∈ N. Basically,

an MDPs is de�ned by 〈S,A,R, p〉, where:

• S 6= ∅ is the set of possible states;

• A 6= ∅ is the set of possible actions;

• R ⊆ R is the set of possible rewards; and

• p : S ×R× S ×A → [0, 1] is the dynamics function.

Note that A(s) is more precise because the action space depends on the current state

but A is used instead to simplify the notation. The agent interacts with the environment

receiving, at each time step t, a representation of the state st ∈ S. Using the obtained

state representation, the agent takes and action at ∈ A. Then, at the t + 1 step, the

agent receives the state st+1 and a reward value rt+1 ∈ R. Figure 2.1 illustrates the

agent-environment interaction.

Let Rt, St and At be random variables representing the possible reward, state, and

action at time step t, respectively. Finite MDPs are a class of MDPs that are particularly

important to the theory of RL. In �nite MDPs, the sets S, A and R are �nite. Therefore,

Rt and St have a well de�ned discrete probability distribution that depends only on the
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AgentEnvironment

Observation st+1

Action at

Reward rt+1

Figure 2.1: Agent-environment interaction in a MDP.

preceding state-action pair. A fundamental characteristic of �nite MDPs is the dynamics

function p, which is de�ned as:

p(s′, r|s, a) = P{St = s′, Rt = r|St−1 = s,At−1 = a} (2.1)

for all s, s′ ∈ S, r ∈ R, and a ∈ A(s). The function p completely de�nes the dynamics

of the environment. In particular, p de�nes the probability of the environment entering

to state s′ ∈ St and the agent receiving reward r ∈ Rt, after taking an action a in a

state s at the previous step t− 1. As a consequence, the probability of receiving reward

Rt and entering state St depends only on St−1 and At−1. Therefore, the state embodies

all the information that can make a di�erence for the future. This property of states

is called Markov property. From function p, other useful probability distributions can

be obtained. In summary, the dynamics function describes all the useful aspects of the

behaviour of the environment.

In MDPs, the level of abstraction of actions and states is not explicitly de�ned.

Actions can be low-level controls or high-level instructions. At the same time, states

can range from low-level sensory information to high-level and abstract observations.

Time steps are generally de�ned as successive phases where a decision must be made. In

summary, actions represent decisions to be learned, and states represent the information

that can be used to make such decisions.

Solving RL tasks requires to specify the boundary between the agent and the envi-

ronment. In some cases, many agents act simultaneously, and each agent operates within

its own boundary. The environment is generally considered as anything that the agent

cannot arbitrarily change. In particular, the reward computation must be external to

the agent because it is de�ned as part of the task, and it should not be modi�ed by the

agent. In summary, the boundary between the agent and the environment is the limit

of what the agent can completely govern. In MDPs, learning to solve a particular task

requires three signals: action, state and reward. MDPs are simpli�ed models of real
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decision-making problems, but they have proved to be e�ective and convenient.

In some applications, it may be useful to build a model of the environment. The

model simulates the environment, and it allows the agent to make predictions. In par-

ticular, a model is used to predict the next state s′ and the obtained reward r, which

are both the consequences of the agent taking an action a in a state s. A model can be

very useful for planning, a RL algorithm that employs a model is called model-based.

Otherwise, a RL method which learns a policy by simply trying possible actions without

using a model is called model-free. Moreover, hybrid methods have been investigated.

These approaches try to simultaneously learn both a model, which can be used to plan

future actions, and the policy, by trial-and-error.

2.1.2 Reward

In order to de�ne the goal of an agent for a particular task, a numerical reward

signal Rt ∈ R must be de�ned. As mentioned before, a RL agent tries to maximize the

cumulative reward in the long term. Rewards specify which actions are good or bad in a

given state, in a similar way to the experiences of pleasure and pain that are observable

in the animal world. For example, if the agent is a cleaning robot, a proper reward could

be -1 for the agent when it collides with other objects. Otherwise, if the robot correctly

cleans a portion of the room, the received reward could be +1.

The design of a reward system is not a trivial task because rewards must be given so

that the agent achieves intended goals by maximizing them. It is not uncommon to give

a reward when the agent reaches a sub-goal, and this choice typically results in the agent

achieving sub-goal without reaching the goal. In summary, rewards must be shaped to

tell the agent what to achieve, instead of communicating the sequence of actions needed

to complete the task.

2.1.3 Episode

Saying that an RL agent tries to maximize the cumulative reward is imprecise. In

fact, an agent tries to maximize the expected return. The return is a function of the

rewards sequence, and it can be de�ned as the sum of rewards between two time steps.

Formally, the expected return is de�ned as:

Gt =
T
∑

k=0

Rt+k+1 (2.2)
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This de�nition makes sense if the interaction between the agent and the environment

can be naturally subdivided into a sequence of episodes. An episode is an independent

sub-sequence of interactions that ends in a terminal state. An episode is always followed

by a reset of the environment to the initial state or to a state chosen from a standard

distribution of initial states. For example, in board games, like Go, an episode is typically

a match, and the terminal state is reached at the end of a match. A task that can be

structured in episodes is called an episodic task. Otherwise, if the interaction continues

without reaching a terminal state, the task is a continuing task. In continuing tasks,

the terminal state could be impossible to reach. This represents a problem with the

de�nition 2.2 because if T = ∞, Gt cannot be computed easily. A solution to this

problem is the concept of discounting. In particular, the agent tries to maximize the

expected discounted return de�ned as:

Gt =

T
∑

k=0

γkRt+k+1 (2.3)

where γ ∈ [0, 1] is the discount rate. Using de�nition 2.3, Gt has a �nite value if γ < 1 or

the reward sequence is bounded. The discount rate changes the learning process of the

agent, which prefers immediate rewards if γ is close to 0. Otherwise, setting γ close to 1

makes the agent more farsighted, as it takes future rewards into account. As discussed

earlier, considering long-term rewards tends to maximize the expected return.

An important relation between successive time steps can be obtained by imposing

a null expected return after T time steps: Gt+1+T = 0. In this case, the expected

discounted return is de�ned as:

Gt = Rt+1 + γ(Rt+2 + γRt+3 + · · · γ
t+k−2Rt+k) = Rt+1 + γGt+1 (2.4)

The above de�nition is crucial to the RL theory because it directly represents the return

Gt as the sum of the immediate reward and γGt+1, which is the expected discounted

return at time step t+ 1.

2.1.4 Policy

A policy describes the behaviour of the agent, which may be stochastic. A policy is

typically represented as a mapping from an observed state to the action taken by the

agent in that state. Stochastic agents require the policy to specify a probability for each

action, given an observed state. A policy is a concept similar to the stimulus-response

association that is theorized in Psychology.
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In order to represent a policy, a function or a lookup table is su�cient. However,

many real applications require complex and expensive functions to represent the policy

of the agent. In general, a policy π maps states to actions probabilities, and it is de�ned

as the following probability distribution:

π(a|s) = P{At = a|St = s} (2.5)

for all s ∈ S, and a ∈ A(s). As the learning progresses, the policy is changed by the

RL method, modifying the interaction between the agent and the environment, as a

consequence. Rewards are used to change the policy, enforcing actions followed by high

rewards, and discouraging actions followed by low rewards. Rewards are generally hard

to predict as they are typically stochastic functions of state-action pairs.

2.1.5 Value function

While rewards represent the best immediate return, the value function is used to

describe the expected return that the agent expects to obtain from a speci�c state.

Rewards are similar to pleasure and pain, while values represent how much pleased the

agent is expected to be in an given state. For example, the agent can be in a state which

simultaneously results in a low reward and high value because the subsequent states often

yield high rewards. The opposite case can be equally possible.

State values must be continuously re-estimated as the learning progresses, and many

RL methods make use of a technique to e�ciently estimate values. Formally, value

functions Vπ(s) are de�ned with respect to a policy π and to a state s ∈ S:

Vπ(s) = Eπ[Gt|St = s] = Eπ

[

∞
∑

k=0

γkRt+k+1|St = s

]

(2.6)

for all s ∈ S, where Eπ is the expected value of a random variable assuming that the

agent makes use of policy π. The function Vπ is also known as the state-value function

for policy π. As a special case, the terminal state has value 0.

During the learning process, it is necessary to compare two policies and pick the best

one. It is possible to de�ne an ordering on policies using the following relation:

π ≥ π′ ←→ ∀s ∈ S, Vπ(s) ≥ Vπ′(s) (2.7)

Using the above de�nition, it is possible to de�ne the optimal policy π∗:

∀π ∈ Π, π∗ ≥ π (2.8)

where Π is the policy space. In order to measure the quality of a policy, the value function

can be used.
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An important function that is often used in place of Vπ is the action-value function

for policy π:

Qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[

∞
∑

k=0

γkRt+k+1|St = s,At = a

]

(2.9)

for all s ∈ S, and a ∈ A(s). The action-value function represents the expected discounted

return assuming that the agent starts from state s and it takes action a. Many RL

methods do not directly use state-value or action-value functions. They use the advantage

function, which is de�ned as:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.10)

for all s ∈ S, and a ∈ A(s). The advantage function denotes the convenience, in terms

of return, for the agent to select action a with respect to the other actions, in a state s.

There are di�erent class of RL methods, and some methods are directly based on

value functions. In particular, an agent can use policy π maintaining an average of the

returns for each encountered state. As the number of encountered states tends to in�nity,

the average value converges to Vπ(s). Similarly, the average of the obtained return that

has been taken for each action-state pair converges to Qπ(s, a).

Maintaining an average value of the returns is not practical in most real scenarios.

Bellman equations are the fundamental relationships that allow a RL method to itera-

tively estimate Vπ and Qπ. They describe the relationship between the value of a state

and the values of its successors, and they are de�ned as:

Vπ(s) =
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a)[r + γVπ(s
′)]

Qπ(s, a) =
∑

s′,r

p(s′, r|s, a)[r + γ
∑

a′

π(a′, s′)Qπ(s
′, a′)]

(2.11)

for all s ∈ S, and a ∈ A(s). The agent takes an action following policy π, and the

environment enters the state s′ and it outputs reward r. Bellman equations take into

account all the possible execution paths, and they average over all the possibilities that

are weighted by their probability. Using optimal policies, it is possible to de�ne the

optimal value functions V∗ and Q∗ as:

V∗(s) = max
π

Vπ(s)

Q∗(s, a) = max
π

Qπ(s, a)
(2.12)

for all s ∈ S, and a ∈ A(s). Functions V∗ and Q∗ are called optimal state-value function

and optimal action-value function, respectively. Optimal value functions must full�ll the
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conditions given by Bellman equations as well. Therefore, it is possible to de�ne Bellman

equations for optimal value functions:

V∗(s) = max
a

∑

s′,r

p(s′, r|s, a)[r + γV∗(s
′)]

Q∗(s, a) =
∑

s′,r

p(s′, r|s, a)[r + γmax
a′

Q∗(s
′, a′)]

(2.13)

for all s ∈ S, and a ∈ A(s). The above equations are called Bellman optimality equations.

A theoretical solution to RL problems is to �nd optimal value functions because a greedy

policy with respect to the optimal value functions is an optimal policy. However, it is

rarely possible to explicitly solve Bellman optimality equations. In fact, this approach

requires that:

• The agent knows the dynamics of the environment; and

• The computational resources are su�cient to complete the search for the solution.

These assumptions are rarely true in real problems. Therefore, RL methods try to �nd

approximate solutions because, in many cases, taking sub-optimal actions does not have

a great in�uence on the amount of obtained reward in the long run. Learning to make

good choices in frequently encountered states, and paying less attention to unfrequently

encountered states, is a key characteristic of RL with respect to other approaches that

approximately solve MDPs.

2.1.6 Applications

RL can address many problems. In particular, games are often used to test the

performance of RL methods. Many perfect information games have been studied, such

as Backgammon [25] and Go [26]. Imperfect information games have been explored as

well, such as Heads-up Limit Hold'em Poker [5]. In recent years, video games have been

increasingly investigated. For example, the Atari 2600 games [27] are some of the most

relevant benchmark tasks for RL methods, but many improvements have been made on

Starcraft [28], Doom [29] and many other games.

Other important applications of RL are robotics and Natural Language Processing

(NLP). Popular robotics tasks include object manipulation, localization, navigation, and

visual tracking. Common NLP tasks include information retrieval, summarization, and

sentiment analysis. It is worth noting the relevant research e�ort made in NLP areas

such as machine translation, dialogue systems, and text generation.

Finally, RL represents a valid approach to solve computer vision tasks, and it in�u-

ences many other research �elds. Examples of computer vision tasks, which are commonly
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addressed by RL methods, are object segmentation, object recognition or categorization,

and grasp planning.

2.2 RL techniques

This section overviews the main approaches to RL: Dynamic Programming (DP),

Monte Carlo (MC ), Temporal-Di�erence (TD), and Policy Gradient (PG). The ap-

proaches are brie�y presented and compared in order to give the reader an overview of

the classic RL literature, which represents the foundation of modern RL methods.

2.2.1 Dynamic Programming

Examples of model-based RL algorithms are DP algorithms [1]. DP methods require

a perfect model of the environment, as well as a large amount of computational resources.

Therefore, they are not widely used, although they are theoretically capable of �nding an

optimal policy. The theory behind DP algorithms remain useful, and it can be used to

solve problems with continuous spaces of actions and states. However, obtaining exact

solutions is possible only in special situations, and these methods typically search for

approximate solutions. In general, approximate solutions are computed by discretizing

the spaces of actions and states, and then applying �nite-state DP algorithms.

Let assume that the dynamics function p is known, then it is possible to use Bellman

equations to iteratively approximate the state-value function Vπ for a policy π. This

problem is called policy evaluation. DP methods de�ne the initial approximation V0,

which outputs an arbitrary value for any states. The only exception is the terminal

state, which must have a value of 0. In order to compute the solution, the algorithm

employs the following update rule:

Vk+1(s) =
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a)[r + γVk(s
′)] (2.14)

for all s ∈ S. The update rule is iteratively applied until the approximation reaches

a �xed point. State-value function Vπ is guaranteed to exist and to be unique if the

following conditions are met:

• The discount rate is opportunely bounded, i.e., γ < 1; and

• The termination is ensured starting from all states and following policy π.

Moreover, if the conditions are met, the procedure is guaranteed to converge as k tends

to in�nity. Assuming that Vπ has been determined using policy evaluation for a deter-
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ministic policy π, let π′ be another deterministic policy such that:

∀s ∈ S Qπ(s, π
′(s)) ≥ Vπ(s) (2.15)

In this case, π′ is equal or better than π. In particular, the above inequality is useful to

�nd possible improvements that are determined by a modi�cation of the current policy

π. As a consequence, the following relation holds:

Vπ′(s) ≥ Vπ(s) (2.16)

for all s ∈ S. It is worth noting that if the inequality 2.15 is strict, then the above

inequality is strict as well. The above inequality allows to de�ne a new policy π′ from

an existing policy. This process is called policy improvement. In order to obtain π′ the

update rule is de�ned as:

π′(s) = argmax
a

Qπ(s, a) = argmax
a

∑

s′,r

p(s′, r|s, a)[r + γVπ(s
′)] (2.17)

for all s ∈ S. Policy improvement is useful to iteratively build an optimal policy, either

deterministic or stochastic.

Combining policy evaluation and policy improvement allows obtaining both an op-

timal policy and an optimal value function in a �nite number of iterations, when the

problem is modeled using a �nite MDP. In particular, policy evaluation is used to obtain

a value function Vπ0
from an initial policy π0. Then, policy improvement is used to obtain

a new policy π1. The entire process is called policy iteration, and it can be represented

as follows:

π0
E

−−−−−→ Vπ0

I
−−−−−→ π1

E
−−−−−→ · · ·

I
−−−−−→ π∗

E
−−−−−→ V∗

where
E

−−−−−→ denotes policy evaluation, and
I

−−−−−→ indicates policy improvement.

Policy iteration can be generalized de�ning two independent processes. The �rst

process implements policy evaluation using the current policy π. The second process

implements policy improvement using the current value function Vπ. This idea is called

Generalized Policy Iteration (GPI ), and it has been proved to converge only in some

cases, as discussed in [1].

DP methods re-estimate the values of the states using the values of their successors.

The idea of updating an approximation using another approximation is called bootstrap-

ping, and it is shared also by TD learning, which is discussed in 2.2.3.
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2.2.2 Monte Carlo

MC methods [1] are examples of model-free RL algorithms, and they assume that

the interaction between the agent and the environment is subdivided into episodes. Each

episode must terminate because these methods update the policy only after the termina-

tion of the episode. In particular, MC algorithms compute the value of a state s as the

average return of all sample trajectories starting from s. MC methods are composed of

policy evaluation and policy improvement, in a similar way to DP.

MC methods collect complete episodes, and they try to empirically learn the value

function. Formally, the state-value function Vπ for MC algorithms is de�ned as:

Vπ(s) = E[Gt|St = s] =
1

N

N
∑

i=1

Gi
t,s (2.18)

for all s ∈ S. As discussed in previous sections, the expected discounted reward at time

step t is de�ned as Gt =
∑T−t−1

k=0 γkRt+k+1. Here, G
i
t,s denotes the expected discounted

reward considering state s, episode i, and N as the number of episodes. Vπ can be

computed by averaging returns Gi
t,s every time the agent encounters state s or the �rst

time the state is visited. In a similar way to Vπ, the action-value function can be de�ned

as:

Qπ(s, a) = E[Gt|St = s,At = a] =
1

N

N
∑

i=1

Gi
t,s,a (2.19)

for all s ∈ S, and a ∈ A(s). Gi
t,s,a denotes the expected discounted reward considering

state s, and taking action a during episode i.

Computing the average return using the entire episode set is typically not convenient.

Therefore, MC algorithms normally perform incremental updates to progressively learn

as the number of studied episodes increases. The procedure to learn an optimal policy

for MC methods is similar to policy iteration, and it can be summarized as:

• The policy π is updated using a greedy approach with respect to the current action-

value function: π(s) = argmax
a

Q(s, a);

• A new episode is generated using policy π; and

• The value function Q is re-estimated using the new episode.

Unfortunately, naïve MC methods tend to exploit too much the learned experience.

In order to solve this problem, exploration can be encouraged using two techniques:

exploring starts and ε-soft. Exploring starts requires that all state-action pairs have non-

zero probability of being chosen as initial state and action. Therefore, every time the
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agent plays a new episode, it should explore new states. Many environments do not allow

multiple starting states, in this cases ε-soft can be used. ε-soft requires the agent to try

the action that maximizes the function Q, with probability 1 − ε, and to try a random

action with probability ε. Following this strategy, all actions are tried with non-zero

probability, if ε > 0.

An important classi�cation in RL is whether a methods is on-policy or o�-policy.

On-policy algorithms follow the policy that is currently updated. O�-policy algorithms

try to learn an optimal policy that may be unrelated to the policy that is used to take

actions. In particular, o�-policy methods try to learn the value function of a target policy

using the episodes that are generated by another policy, which is called behaviour policy.

The main di�erences between MC and DP methods are two. The �rst di�erence is

that MC algorithms make use of sample experiences. Therefore, they do not require

a model to learn a policy. The second di�erence is that MC methods do not employ

bootstrapping, which updates value estimates using other values estimates.

2.2.3 Temporal-Di�erence

A recent RL approach is TD learning [1], which combines some ideas fromMC and DP.

TD learning is a model-free approach like MC but TD methods employ bootstrapping,

in a similar way to DP methods.

TD learning employs a form of GPI, and the policy evaluation phase, also called TD

prediction, is similar to the one that was discussed for MC methods. In particular, given a

non-terminal state St at time step t, TD methods collect episodes following policy π, and

they update an estimate of Vπ accordingly. MC methods require to complete the current

episode to compute the update of V (St), where V (St) represents the value estimate

of state St. Therefore, an update rule for MC methods, assuming a non-stationary

environment, can be written as:

V (St)← V (St) + α[Gt − V (St)] (2.20)

where Gt is the obtained actual return starting from time step t, and α is a constant

step-size parameter. Unlike MC methods, TD algorithms update the value estimate at

each time step. In particular, they make use of reward Rt+1 and the value estimate of

the next state V (St+1). The update rule for TD methods can be written as:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (2.21)

The update rules of both approaches make use of di�erent target values to optimize the

value function. MC employs Gt, while TD uses Rt+1 + γV (St+1). This form of TD
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learning is called TD(0), or one-step TD. More advanced forms of TD algorithms exist

in the literature, such as TD(γ) and n-step TD. The update rule 2.21 is an example

of bootstrapping: the value estimate V (St) is updated using another value estimate

V (St+1). The di�erence between the target value and the actual value is called TD-

error, and it represents a recurrent concept in the RL literature. Formally, TD-error is

de�ned as:

δt = Rt+1 + γV (St+1)− V (St) (2.22)

The interesting characteristics of TD algorithms, such as learning without a model

and updating the value estimates after each time step, make these methods appealing for

a wide range of applications. From a theoretical point of view, TD(0) has been proven

to converge to Vπ for any policy π by accurately adjusting hyper-parameter α. However,

it has not been proved that TD algorithms converge faster than MC methods.

TD prediction is the counterpart of policy evaluation for MC methods. TD learning

follows GPI, and therefore it de�nes a counterpart for policy improvement, which is called

TD control. Here, the two main approaches for TD control are presented: Sarsa and Q-

learning. In particular, Q-learning is the base of many modern RL methods [12,30�32].

Sarsa

Sarsa is an on-policy algorithm, and it estimates the action-value function of the pol-

icy that is currently used to generate episodes. In particular, Sarsa de�nes the following

update rule:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.23)

which is very similar to the update rule used by TD prediction. Using the above rule,

Sarsa continually re-estimates Qπ for each state s and action a. Then, it changes the

policy π to be greedy with respect to Qπ. The action-value function is updated after

each transition from a non-terminal state St to a state St+1. The value Q(St+1, At+1) is

de�ned as 0 if St+1 is a terminal state.

Sarsa can be summarized as follows:

1. The agent takes action At, assuming state St at time step t. In order to select the

action, the agent uses Q, commonly applying an ε-soft strategy;

2. The agent receives reward Rt+1 and it enters state St+1;

3. The agent takes action At+1 from state St+1 using the strategy in 1;

4. The agent updates Q(St, At) using the update rule 2.23;
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5. The agent increases the time step number, and it repeats from 1.

Sarsa converges to an optimal policy and an optimal action-value function if all state-

action pairs are encountered an in�nite number of times. Moreover, how much the policy

depends on Q determines the convergence of Sarsa. In particular, ε-soft can be used to

reduce such dependency, and Sarsa converges to an optimal policy and an optimal Q

function as long as the policy converges to the greedy policy as t tends to in�nity.

Q-learning

Q-learning represents an important result for RL theory. The update rule for Q

function approximation is de�ned as:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.24)

Q-learning tries to directly estimate the optimal action-value function Q∗. The policy is

not directly approximated but Q-learning assumes that the greedy policy with respect

to Q is used. The algorithm can be summarized as follows:

1. The agent takes action At, assuming state St at time step t. Action At is selected

accordingly to Q, and strategies such as ε-soft are commonly used;

2. The agent receives reward Rt+1 and it enters state St+1;

3. The agent updates Q(St, At) using the update rule 2.24;

4. The agent increases the time step number, and it repeats from 1.

The steps 1 and 2 are shared with Sarsa. Step 3 is used to estimate Q∗ taking the best

Q values without using the current policy. It is worth noting that the policy is still

used to decide which state-action values are updated. The convergence of Q-learning

is guaranteed as long as all state-action pairs are visited and continuously updated.

Moreover, speci�c conditions on the sequence of step-size parameters must be met to

ensure the convergence of Q-learning [1].

2.2.4 Policy Gradient

PG methods [33] do not try to learn a value function to perform action selection,

like the previously discussed approaches. PG algorithms try to directly learn the policy

using a function parameterized with respect to θ: π(a|s, θ). Let J be a reward function
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representing the expected return that the agent obtains using policy π. In particular, J

is de�ned for discrete state and action spaces as:

J(θ) = Vπθ
(S1) (2.25)

where θ are the parameters that de�ne the behaviour of the policy, and S1 is the initial

state. J is de�ned using θ, and the agent must optimize θ to increase the obtained

rewards. The reward function for continuous action and state spaces is de�ned as:

J(θ) =
∑

s∈S

dπθ
(s)Vπθ

(s) =
∑

s∈S

(dπθ
(s)

∑

a∈A

πθ(a|s, θ)Qπ(s, a)) (2.26)

where dπθ
= limt→∞ P (st = s|s0, πθ) denotes the probability of reaching state s starting

from the initial state, and following policy πθ. PG methods are commonly employed to

solve continuous space problems. In fact, in continuous space problems, the number of

states or actions is in�nite, and estimating value functions requires a huge amount of

computational resources.

In order to optimize a set of parameters, a commonly employed technique is gradient

ascent. Gradient ascent iteratively adjusts θ following the direction that is given by

gradient ∇θJ(θ). In particular, gradient ascent computes the partial derivatives of J(θ)

with respect to each parameter in θ. Computing gradients with respect to J(θ) is useful

to move θ in the direction that maximizes the expected return. Therefore, θ is moved

towards the direction suggested by ∇θJ(θ) to �nd optimal parameters θ∗, which de�ne

the optimal policy πθ∗ .

Gradient ∇θJ(θ) is di�cult to obtain because it relies on both action selection and

states distribution dπθ
. Both action selection and states distribution depend on πθ, and it

is typically di�cult to predict the consequences of a policy update when the environment

is unknown. An important theoretical result that allows to estimate the reward function

is the Policy Gradient Theorem [33]. Using Policy Gradient Theorem, the expected

return J(θ) can be computed as:

J(θ) ∝ Eπθ
[∇θ lnπ(a|s, θ)Qπθ

(s, a)] (2.27)

Policy Gradient Theorem represents a theoretical foundation for many PG algorithms,

and it can be used to approximate reward function J without knowing the state dis-

tribution dπθ
. Unfortunately, the above relation produces policy updates with no bias

and high variance, and a signi�cant research e�ort has been done to reduce the variance

without changing the bias. An interesting algorithm that were introduced before PG

methods is REINFORCE.
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REINFORCE

REINFORCE [34] combines PG and MC, and it uses episode samples to compute

the estimated return. The algorithm employs the estimated return to update θ. In

particular, REINFORCE estimates the reward function J using the following relation:

J(θ) ∝ Eπθ
[∇θ lnπ(a|s, θ)Gt] (2.28)

Basically, it rewrites the relation 2.27 replacing Qπθ
(s, a) with Gt. This is justi�ed by

Qπθ
(s, a) = Eπθ

[Gt|St, At]. REINFORCE is similar to MC algorithms because it uses

full samples trajectories Gt to update the policy.

A common issue with both PG and REINFORCE algorithms is the high variance of

policy updates, which can make the training unstable. In order to reduce the variance of

the updates without changing the bias, the return Gt can be replaced in de�nition 2.28

by the following advantage function:

Aπθ
(s, a) = Gt − Vπθ

(s) (2.29)

The above de�nition of the advantage function is di�erent from the canonical one:

Aπθ
(s, a) = Qπθ

(s, a) − Vπθ
(s), and Gt is used as an estimate of Qπθ

(s, a). The modi-

�ed advantage function 2.29 makes the training more stable and this variant of REIN-

FORCE [1] is able to learn faster than the base algorithm.





Chapter 3

Deep and Relational Reinforcement

Learning

Deep reinforcement learning (DRL) tries to combine classical Reinforcement Learning

(RL) theory with modern deep learning techniques. In recent years, DRL has received

an increasing interest from the research community, and many DRL algorithms obtained

impressive results on complex tasks [3�6, 12]. On the other hand, Relational Reinforce-

ment Learning (RRL) combines classic RL with a relational representation of both states

and actions. RRL has been studied for more than 20 years, and in recent years, the in-

terest in RRL has increased. In fact, the combination of RRL with modern deep learning

techniques seems to be an e�ective way to overcome the limitations of classic RRL meth-

ods. An example of this combination is [9].

This chapter presents some of the most representative results on DRL related to

the last few years. In addition, this chapter introduces the classic RRL algorithms,

and it presents the main di�erences between DRL and RRL. Moreover, this chapter

analyzes the main limitations of both approaches, and it motivates the need of neural-

symbolic methods for RL. The chapter is structured as follows. Section 1 introduces

the most in�uential DRL methods. In particular, Section 1 presents DQN [3, 12], which

combines deep learning with Q-learning. Then, it introduces A3C [13], which combines

deep learning with a Policy Gradient algorithm. Then, it discusses ACER [14], which is

the o�-policy counterpart of A3C. Finally, it brie�y presents PPO [6], which is one of the

most recent breakthroughs that have been introduced in the �eld. Section 2 introduces

the research �eld of RRL. Then, it presents the classic RRL method [7], which adapts

Q-learning to work with relational representations of both the states and the actions.

Finally, it brie�y introduces three notable extensions of the classic RRL method [35�37]

25
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Figure 3.1: The neural network architecture of DQN.

that have been proposed in the �rst years of research on RRL. Section 3 concludes this

chapter discussing the limitations of both DRL and RRL as well as the motivation behind

the neural-symbolic methods for RL.

3.1 Deep RL

3.1.1 DQN

Q-learning requires to memorize the action value Q(s, a) for each state s ∈ S and each

action a ∈ A(s). In realistic applications, this is often impossible to achieve because both

the state space and the action space are very large. Therefore, the action-value function

Q is typically used as a function approximator. Deep Q-learning (DQN ) [3, 12] uses a

deep neural network as the function approximator for Q. If θ denotes the parameters of

the neural network, the approximated action-value function can be written as Qθ(s, a).

Combining Q-learning with a deep neural network is not a trivial task because the

training process is not guaranteed to converge, and it could also su�er from instability.

In order to reduce the convergence and stability problems, DQN proposes two important

innovations:

• Experience Replay

The collected samples are stored in a special memory called replay memory, which

can contain a very large number of elements. DQN randomly selects a batch of

samples from the replay memory during each Q-learning update. Therefore, each

sample can be used multiple times. Note that experience replay has not been intro-

duced with DQN [38]. However, DQN combines experience replay with Q-learning

to improve data e�ciency, and to remove the correlations between subsequent ob-

servations, that is normally present in Q-learning when used to learn how to play at

Atari 2600 console games. As a consequence, experience replay reduces the variance

of the Q-learning updates, smoothing over changes in the samples distribution.
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• Periodically updated target

Q-learning requires to frequently change the target value when computing TD-error.

In order to stabilize the training process and to avoid unnecessary oscillations, Q-

values are optimized using a target value that is periodically updated. In particular,

the parameters of the neural network are updated every C time steps, where C is

an hyper-parameter.

One of the most impressive achievements of DQN is that the algorithm can be used

to learn how to play the games of Atari 2600 consoles using frames that are provided

by an emulator [27]. Learning from realistic images (210x160 pixels with a color palette

of 128) can be computationally expensive. Therefore, DQN computes Q-values updates

every m frames to reduce the frequency of actions to be taken (one action is executed for

m consecutive frames) and the number of Q-values updates. Moreover, DQN performs

many other optimizations by changing the representation of the processed frames.

Rewards are represented by a wide range of values, and those values depend on speci�c

events. When the rewards have high variance, the training process can become unstable.

In order to improve the training stability, DQN clips the rewards, and it sets positive

rewards to +1 and negative rewards to -1.

The network architecture of DQN is composed of an input layer, followed by three

convolutional layers that are useful to extract high-level features from input images. The

convolutional layers are followed by a fully-connected layer and an output layer, which

reports the predicted Q-value for each possible action. The architecture is represented

in Figure 3.1. DQN proved to be e�ective because its architecture is able to compute

Q-values of a given state for each action in a single pass through the network. Interest-

ingly, many extensions of DQN have been proposed, such as Double DQN [32], Dueling

DQN [30], and Prioritized DQN [31].

3.1.2 A3C

Asynchronous Advantage Actor-Critic (A3C ) [13] is a Policy Gradient algorithm that

follows the actor-critic paradigm. Actor-critic methods try to learn both policy and

value function. In particular, they try to learn the value function that is used to reduce

the variance of policy updates. Actor-critic algorithms de�ne two components, whose

parameters my be shared:

• Critic

The critic tries to learn a value function, either Qw(s, a) or Vw(s), where w repre-

sents the parameters that the value function uses. The critic updates w to learn
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the value function.

• Actor

The actor tries to learn policy πθ(a|s) with parameters θ, which are updated in the

direction that is indicated by the critic.

A3C de�nes multiple actors, which try to learn both the value function and the

policy. The actors are executed in parallel and the global parameters are periodically

synchronized. Assuming that the actors try to learn the state-value function, the loss is

de�ned as Jv(w) = (Gt − Vw(s))
2, and gradient ascent is used to �nd the best values for

weights w. Gradient ascent computes the partial derivatives of the value function with

respect to the parameters of the network, also called gradients. The network parameters

are then updated in the direction that is speci�ed by the gradient. The entire process tries

to iteratively move the values of the parameters in the direction that maximize the value

function. A3C uses the values function as a baseline, and it accumulates gradients with

respect to w and θ. Each training thread gives its contribution to the parameters update.

This training procedure can be seen as a parallelized reformulation of the gradient update

based on minibatches because updates are accumulated over multiple time steps before

being applied to the weights.

Both the value function and the policy are approximated using a deep neural network.

The network architecture is very similar to the one used by DQN. However, A3C de�nes a

neural architecture with two output layers. The �rst output layer implements a softmax

policy π(a|s). The second output layer computes the value of the current estimate of

either V (s) or Q(s, a), depending on the value function that is used for training.

3.1.3 ACER

Actor-Critic with Experience Replay (ACER) [14] is the o�-policy counterpart of A3C.

ACER uses experience replay, and it employs the same architecture of DQN with two

output layers: the �rst computes πθ(a|s), and the second computes Qθv(s, a). Similarly

to A3C, ACER collects samples using multiple threads. It is not a complete o�-policy

algorithm: it switches between on-policy and o�-policy executions. In particular, an on-

policy call (which works like A3C) is alternated to multiple o�-policy calls. The number

of o�-policy calls is called the replay ratio. Using a replay ratio of 4, ACER performs in

a similar way to Prioritized DQN or A3C, but ACER is more sample e�cient. Notably,

ACER performs well on a wide range of RL problems, and it proved e�ective to solve

even hard exploration problems [39].
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ACER tries to increase sample e�ciency and to decrease the correlation between

selected samples, and it proposes three major innovations to stabilize the o�-policy esti-

mator:

• Retrace Q-value estimation;

• Importance weights truncation with bias correction; and

• E�cient Trust Region Policy Optimization.

Retrace

Retrace [40] is an o�-policy TD learning algorithm. Similarly to DQN, Retrace uses

experience replay to improve sample e�ciency, and it typically explores more because it

follows a policy that is di�erent from the target policy. However, Retrace uses multi-step

value estimation, which helps reducing the bias introduced by bootstrapping. TD-error

for Retrace is de�ned as:

δt = Rt+1 + γV (St+1)−Q(St, At). (3.1)

Q-values are updated using the rule Q(St, At) ← Q(St, At) + αδt, which can be written

also as ∆Q(St, At) = αδt. TD-error δt is used to estimate Qπθ
using a complete sample

trajectory. However, following a policy di�erent from the one that is updated, it intro-

duces a bias. In order to remove this bias, o�-policy algorithms typically use Imporance

Sampling. The update rule with Importance Sampling becomes:

∆Q(St, At) = γt





∏

1≤τ≤t

π(Aτ |Sτ )

µ(Aτ |Sτ )



 δt (3.2)

where π(a|s) and µ(a|s) are the target and behaviour policies, respectively. This update

rule produces updates with unbounded variance. Retrace proposes a further modi�cation

to the rule 3.2 to solve the problem:

∆Q(St, At) = γt





∏

1≤τ≤t

λmin

{

1,
π(Aτ |Sτ )

µ(Aτ |Sτ )

}



 δt (3.3)

The above update rule produces updates with bounded variance, and it assures conver-

gence for any policy pair π, µ. ACER generates a sample trajectory using policy µ, and

it uses Retrace to estimate Qπθ
(St, At) using the following rule:

Qret(St, At) = Rt+1+γmin

{

c,
π(At|St)

µ(At|St)

}

[

Qret(St, At)−Qθv(St, At)
]

+γV (St+1) (3.4)
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where Qθv is the current approximation of Qπθ
. Finally, ACER uses Qret to de�ne the

following loss function:

Jv(θv) = (Qret −Qθv)
2 (3.5)

where Qret is used as the target function to update Qθv .

Importance weight truncation

Importance sampling is useful to reduce the variance of the Q-values updates. How-

ever, using importance sampling introduces a bias, and ACER uses a correction term to

solve this problem. Therefore, the gradient of the policy at time step t is written as:

ĝacer = ρ̄t(Q
ret(St, At)− Vθv(St))∇θ lnπθ(At|St)

+ Ea∼π

[

max

{

0,
ρt(a)− c

ρt(a)

}

∇θ log πθ(a|St)(Qθv(St, a)− Vθv(St))

] (3.6)

where ρ̄t = min
{

c, π(At|St)
µ(At|St)

}

. The �rst term of the above equation represents the bounded

importance weight, and the second term represents the correction term that is used to

simultaneously remove the bias and reduce the variance of the update.

E�cient Trust Region Policy Optimization

As previously mentioned, o�-policy methods de�ne the gradient of the policy using

Importance Sampling. In particular, the gradient for o�-policy algorithms is written as:

∇θJ(θ) = Eµ

[

πθ(a|s)

µθ(a|s)
Qπθ

(s, a)∇θ lnπθ(a|s)

]

(3.7)

where πθ(a|s)
µθ(a|s)

is called importance weight.

Trust Region Policy Optimization (TRPO) [41] is used to improve the stability of

the training process, and it can be applied either to on-policy or o�-policy algorithms.

TRPO enforces a constraint (trust region constraint) on J(θ). In particular, the distance

between old and new policies may not exceed the value δ ∈ R. Therefore, the updates

of parameters do not change too much the policy in a single step. The distance between

two policies is measured using Kullback-Leibner (KL) divergence [42], which measures

how much a probability distribution q diverges from another probability distribution p,

and it is denoted as DKL(q||p). The objective function J(θ) is rewritten as:

J(θ) = Es∼ρπθold
,a∼πθold

[

πθ(a|s)

θold(a|s)
Aθold(s, a)

]

(3.8)

where πθold are the parameters of the policy before the update, and ρπθold
is the state

visit distribution of the old policy. The constraint that TRPO enforces can be written
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as:

Es∼ρπθold
[DKL(πθold(·, s)‖πθ(·, s))] ≤ δ (3.9)

TRPO measures the KL divergence between an initial policy and an updated policy.

ACER employs a modi�ed version of TRPO. In particular, it maintains a running average

of previous policies, and it changes the policy update to prevent the policy deviating too

much from the average. The modi�ed TRPO algorithm is more computationally e�cient,

and it stabilizes the learning process.

3.1.4 PPO

Proximal Policy Optimization (PPO) [6] is a PG algorithm that tries to combine

the e�ciency and the reliability of TRPO in a simpli�ed way. In fact, TRPO is quite

complicated, and it is not always usable. PPO proposes a new objective function J(θ),

which is somewhat similar to the one that has been proposed by TRPO:

J(θ) = Es∼ρπθold
,a∼πθold

[min(r(θ)Aθold(s, a), clip(r(θ)Aθold(s, a), 1− ε, 1 + ε)Aθold(s, a))]

where r(θ) = πθ(a|s)
πθold

(a|s) , and ε is an hyper-parameter. The �rst term inside the min

operator is the same objective used by TRPO 3.8, which is denoted here as LTRPO.

PPO clips r(θ) to prevent the probability ratio from going outside the interval [1 −

ε, 1 + ε]. Then, the algorithm takes the minimum between the unbounded LTRPO and

the clipped LTRPO to obtain a lower bound on the unclipped objective. In particular,

when Aθold > 0 and r(θ) < 1 − ε, a large update of the policy has been made, which

decreases the probability of taking better actions. At the same time, when Aθold < 0

and r(θ) > 1 + ε, a large policy update has been made, which increases the probability

of taking worse actions. In both cases, the algorithm uses the min operator to pick the

unbounded LTRPO, rectifying an erroneous update with another large update that goes

in the opposite direction.

PPO has been tested on a large number of tasks, and it performed very well. In

particular, PPO shows performance that are similar to the ones reported by ACER [14].

However, it is less complex, and it can be easily implemented. Moreover, it is more

�exible because it removes the trust region constraint, which prevents TRPO from being

used with neural architectures that include noise or parameters sharing.

3.2 Relational RL

DRL methods produce models that are not interpretable. Moreover, these algorithms

are not able to generalize to tasks that are di�erent from the one used for training. In
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particular, the majority of real-world problems can be naturally represented using a

relational representation, in which the environment is represented by a set of objects and

their relationships. For example, states, actions, and goals could be represented using �rst

order logic. Learning from a relational representation of the task has several advantages.

For example, the agent can learn a strategy that solves the task of manipulating a set

of objects, but the learned strategy can be used to solve the same task using a set of

di�erent objects without being retrained. Moreover, the agent can tackle di�erent tasks

that share a similar representation, allowing the transfer of knowledge across tasks. In

particular, the agent can be trained on a simple task, and the learned strategy can be

used to improve the learning performance on more complex tasks. Finally, it is worth

noting that a relational representation of a task allows using an extensive and appropriate

background knowledge. Therefore, domain experts can reuse their valuable and domain-

speci�c knowledge to increase the performance of the method as well as the quality of

the learned strategy.

RRL [7] is a form of RL in which the agent learns from a relational representation

of both states and actions. Combining a structured background knowledge with the

relational representation of states and actions, RRL reduces the number of di�erent

situations that need to be handled. Therefore, RRL is able to reuse the learned knowledge

to e�ectively solve di�erent problems with a single training process. The �rst in�uential

paper in RRL is the classic RRL method, proposed by Dºeroski in 1998 [7]. The classic

RRL method is an adaptation of Q-learning, where the action-value function Q is learned

using a �rst-order logic regression tree algorithm [43]. A logic regression tree is a tree in

which the leave nodes contain a value that represents a prediction for a continuous class,

and the internal nodes contain tests that partition the example space. The example are

a set of facts representing the state, the action to be taken, and the goal. The tests that

are represented in the internal nodes contain predicates, variables and complex terms.

The classic RRL method builds a �rst-order logic regression tree (or relational regression

tree) that takes as input the state representation (a set of ground atoms), a goal, and

an action, and it returns the associated Q-value. In particular, the algorithm uses Q-

learning to continuously update the current estimate of the Q function. The original

Q-learning algorithm updates the current estimate of the action-value function for the

observed state-action pair as follows:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)]. (3.10)

The classical RRL method generates a tuple (St, At, Qt) at each time step, and it employs

the TILDE-RT algorithm [43] to produce the next estimate of the Q-value function. The



Relational RL 33

classic RRL method starts with an initial relational tree Q̂0 that maps each state-action

pair to the value 0. For each goal state g that is de�ned, and for each action a that

leads to g, the method generates the example (g, a, 0). As a consequence, the algorithm

does not expect any reward by taking an action in a goal state. The algorithm does

not incrementally update the relational regression tree, but it generates a new tree at

the end of each episode e. The generated Q̂e is then used to take actions in the next

episode. The classic RRL method keeps the most recent Q-value for each state-action

pair, and it employs TILDE-RT to produce a relational regression tree. The internal

nodes of the generated trees contain conditions that subdivide the example space, and

these conditions are build using logical entities such as predicates, variables, and complex

terms. The leaf nodes of the generated trees represent the Q-values associated to the

state-action pairs. In summary, a relational regression tree is implemented by a Prolog

program that returns a di�erent Q-value depending on the set of atoms that de�nes the

state, the action, and the goal. For example, the following Prolog program represents a

logical regression tree for the ON task, as shown in [7]:

qvalue(0) :- action(move(A,B)), goal(on(C,D)), on(C,D), !

qvalue(1) :- action(move(A,B)), goal(on(C,D)), action(move(C,D)), !

qvalue(0.9) :- action(move(A,B)), goal(on(C,D)), action(move(D,B)), !

qvalue(0.81).

Here, the goal of the agent, described using predicate goal, is to put a speci�c block

onto another speci�c block (represented by variables C and D, respectively). The agent

can use the move action to move a block onto another block, and the environment is

described using the on(X,Y) predicate, which expresses that a block X is onto another

block Y. When running the query ?-qvalue(Q), the program returns the Q-value of the

current state-action pair, provided that the state, the goal, and the action are described

before the the execution of the query.

Di�erent extensions of the classic RRL method have been proposed. The �rst no-

table extension has been proposed in [35], which combines the original algorithm with

the TG algorithm to incrementally build the relational regression tree. The TG algo-

rithm combines the TILDE algorithm [44] with the G algorithm [45]. The TG algorithm

produces a tree that includes conjunctions of �rst order literals as the conditions in the

internal nodes. Each leaf node includes a conjunction of the tests that are present in

the path from the root node to the leaf node, and the variables included in the tests

are existentially quanti�ed. The algorithm stores di�erent statistics in the leaf nodes,

such as the number of positively classi�ed examples as well as the number of negatively
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classi�ed examples. For each classi�ed example, TG also stores the sum of the Q-values

and the sum of the squared Q-values. These statistics are used to extend the tree, and to

decide which tests should be inserted in the new nodes. Another notable extension of the

classic RRL method is based on the RIB algorithm [36]. The RIB algorithm computes a

weighted average of the Q-values of the samples that Q-learning produces. The algorithm

computes the distances among the samples, which must take into account the relational

representation of states and actions. The selected weights are inversely proportional to

the distances among the samples. A third notable extension of the classic RRL method

makes use of the KBR algorithm [37]. The KBR algorithm uses Gaussian processes [46]

to learn the action-value function. A notable feature of KBR is that the algorithm can

also indicate the expected accuracy of the predicted Q-value of a new sample. This

information can be useful to guide the exploration during the training phase.

3.3 Discussion

Some of the most in�uential works on DRL have been discussed in this chapter. These

techniques employ deep neural networks as function approximators. Unfortunately, ar-

ti�cial neural networks are very di�cult to interpret, and the learned knowledge cannot

be extracted and e�ectively reused. Moreover, many experiments show that neural net-

works are not able to generalize to tasks that are slightly di�erent from the tasks used

for training [47�49]. In fact, the discussed works report impressive performance on the

chosen tasks but agents cannot tackle new tasks without speci�c training. Therefore,

it is very di�cult to transfer knowledge. For example, the agent cannot easily learn a

strategy for a complex task starting from another strategy that has been learned from

a easier version of the same task. Finally, it is not possible to easily exploit an existing

background knowledge. In fact, a background knowledge can improve the performance of

RL method because the agent is not forced to learn specialized knowledge that is already

available. On the contrary, classic RRL methods have great generalization capabilities,

they can transfer knowledge across tasks, and they can exploit an existing background

knowledge. However, classic RRL methods are not able to cope with the uncertainty

of real-world environments. Moreover, they cannot solve complex tasks because they

are not able to concisely represent the action-value function. In order to overcome the

limits of both DRL and RRL, in recent years neural-symbolic methods for RL has re-

ceived more and more attention. These methods try to combine modern deep learning

techniques with a relational representation of states and actions. The interpretability

of the learned solution was not the main focus of RRL, but the interpretability of AI



Discussion 35

methods has become a major issue in the last few years. The increasing interest towards

this problem has brought attention to eXplainable AI (XAI ) [50]. However, XAI focuses

on interpretability and explainability problems, and generalization capability, as well as

other interesting properties, are not directly considered. In next chapters, a new neural-

symbolic method for RL is proposed. The proposed method is able to learn logic rules

from a logical representation of states and actions. Using a logical representation of the

policy is important from the perspective of XAI.





Chapter 4

A Survey of Methods for ILP

Inductive Logic Programming (ILP) algorithms try to induce logical rules from positive

and negative examples, and they represent a good starting point to tackle even Rein-

forcement Learning (RL) problems. This chapter presents a comparison between the

major neural-symbolic methods for ILP that have been presented in the last 5 years.

Neural-symbolic methods for ILP represent a good starting point to solve RL tasks.

Therefore, this chapter analyzes the current state-of-the-art to compare the main neural-

symbolic approaches to ILP, which can be then used to tackle RL tasks. The chapter

is structured as follows. Section 1 introduces the core concepts of �rst order logic, and

it brie�y describes ILP. Section 2 presents the most in�uential neural-symbolic methods

for ILP that have been presented in the last 5 years, discussing the main di�erences and

brie�y comparing their main characteristics. Section 3 discusses a comparison of the

neural-symbolic methods that have been presented in the previous section from the per-

spective of the interpretability of the induced rules. Section 4 presents a comparison of

the neural-symbolic methods that have been presented in Section 2 from the perspective

of the reusability of the induced rules. Finally, Section 5 concludes the chapter discussing

some open challenges of the �eld as well as some future research directions.

4.1 Background

Deep Reinforcement Learning (DRL) and Relational Reinforcement Learning (RRL)

have complementary strengths and weaknesses. DRL algorithms are very good at treating

noisy or erroneous data, and they are normally applied to non-symbolic data, but they do

not produce interpretable policies, and they often fail to generalize to unseen situations.

On the other hand, RRL algorithms are much more data e�cient than DRL methods,

and they produce policies that are interpretable, and that allow to generalize to unseen

37
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situations. Unfortunately, RRL methods are often not able to scale to complex tasks,

they are typically unsuitable to handle noisy or erroneous data, and they do not normally

support the use of non-symbolic data. The characteristics of sub-symbolic methods can

prevent the use of these approaches in critical domains, like self-driving vehicles, and

they raise several important concerns related to ethical and legal issues. At the same

time, the characteristics of symbolic methods can prevent the use of these approaches in

complex and real-world applications. Therefore, symbolic and sub-symbolic approaches

are normally considered complementary, and the literature is witnessing several attempts

at combining them in the so-called neural-symbolic approaches (e.g., [51]).

A common approach to solve RL tasks with neural-symbolic algorithms is to adapt

neural-symbolic approaches to ILP [9�11]. Inductive logic programming (e.g., [8]) has

been studied for more than 30 years with the major goal of delivering e�ective algorithms

to induce logical rules from data. Given su�cient background knowledge expressed as

a set of logical rules and a set of initial examples represented as positive and negative

facts, the goal of ILP is to derive a logic program that entails all positive examples while

rejecting all negative examples.

ILP has several advantages when compared with other machine learning algorithms,

as follows:

1. ILP allows using background knowledge, expressed as facts and logical rules, and

experts can inject structured knowledge to improve the e�ectiveness of learning;

2. ILP generates logical rules that�as opposed to, for example, the weights of an

arti�cial neural network�are easily interpretable by humans (e.g., [52, 53]). The

generated rules can be used to reason about the learning task and to perform logical

deduction;

3. ILP provides algorithms that are normally considered as data e�cient because they

typically generalize better than other machine learning algorithms (e.g. [15]), which

is very important when available data are barely su�cient for a super�cial learning;

and

4. ILP supports continual and transfer learning because the background knowledge

can be continuously extended.

State-of-the-art ILP techniques now provide advanced features, like the induction of

recursive rules, that were still considered as huge obstacles a few years ago. Even if

traditional ILP gained more and more interest in the last 30 years [53], neural-symbolic

approaches to ILP have the potential to represent a turning point for the research on
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this subject. Neural-symbolic ILP allows combining the advantages of traditional ILP

with recent advancement in deep learning, and it represents a new way to generate

reusable and interpretable logic programs from noisy data. This section provides a brief

description of ILP to introduce the adopted nomenclature and to �x notation. Interested

readers can consult one of the several introductory texts on ILP (e.g. [8]) for more details

on the subject.

4.1.1 First-order logic

First-Order Logic (FOL) is a formal language in which the major interest is on logical

deduction. The syntax of FOL comprises several elements: constant symbols, variable

symbols, function symbols, and predicate symbols. Constant symbols, or constants, are

normally denoted by words starting with lowercase letters, and they are interpreted as

the objects of the domain of discourse. Variable symbols, or variables, are normally

denoted by words starting with uppercase letters, and they are interpreted as references

to unspeci�ed objects of the domain of discourse. Function symbols, or functions, are

normally denoted by words starting with lowercase letters, and they are interpreted as

mappings in the domain of discourse from tuples of objects to single objects. Predicate

symbols, or predicates, are normally denoted by words starting with lowercase letters,

and they are interpreted as relations among objects in the domain of discourse.

In the syntax of FOL, a term can be a constant, a variable, or a function applied to

a tuple of terms. For example, if c is a constant then f(c) and f(f(c)) are terms, where

f is a function symbol. An atom is a tuple p(t1, . . . , tn), where p is a predicate symbol

applied to a tuple of terms t1, . . . , tn, while a literal is an atom (positive literal) or a

negated atom (negative literal). A (disjunctive) clause is a logical formula expressed as a

disjunction of literals. All variables are universally quanti�ed in a clause, often implicitly.

A de�nite clause is nothing but a clause with only one positive literal. In this chapter,

rule, clause, and de�nite clause are used as synonyms, unless explicitly reported. A rule

is typically written as:

α⇐ β1 ∧ β2 ∧ · · · ∧ βn, (4.1)

where the atoms β1, . . . , βn form the body of the rule, and α is the head of the rule. A

de�nite clause represents a logical consequence: if all the atoms in the body β1, . . . , βn

are true, the head atom α is true. A Horn clause is a clause with at most one positive

literal. A ground clause (resp. atom) is a clause (resp. atom) that contains no variables.

Predicates can be characterized by listing a set of ground atoms, normally called facts,

to obtain extensional predicates. Alternatively, predicates can be characterized using
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a set of facts and rules to obtain intensional predicates. In order to obtain a ground

rule from a de�nite clause, a variable substitution is needed, which can be de�ned as

µ = {X1/t1, . . . , Xn/tn}. The substitution set µ represents an assignment of terms ti to

variables Xi, a variable substitution is denoted as c[µ], where c is a generic rule.

There are two main techniques to perform logical deduction: forward chaining and

backward chaining. In order to de�ne the two approaches, the concept of entailment

is necessary. Given a set of de�nite clauses C, and a ground atom γ, C entails γ, or

C � γ, if γ is a logical consequence of C. In order to perform logical deduction, forward

chaining requires to deduce the logical consequences of the rules C for a speci�ed number

of steps T . Then, it veri�es if the atom γ is included in the set of ground atoms that are

produced. Given a set of clauses C, and a ground atom γ, the set of logical immediate

consequences of C applied to a set of ground atoms X can be de�ned as:

icnC(X) = X ∪ {γ | γ ⇐ γ1, . . . , γm ∈ ground(C),
m
∧

i=1

γi ∈ X}, (4.2)

where ground(C) is the set of ground rules of C. Using the previous de�nition, it is

possible to de�ne the logical consequences after T steps as:

scn(C) =

T
⋃

i≥0

SC,i, (4.3)

where SC,i are the immediate consequences derived at step i:

SC,0 = {} SC,i+1 = icnC(SC,i) (4.4)

Now, if γ ∈ scn(C), then C � γ. Backward chaining does the opposite, and it tries

to �nd a rule α ⇐ β1, · · · , βn ∈ C, and a variable substitution µ, such that α[µ] = γ.

Each atom in the body of the rule becomes a new sub-goal, and the algorithm tries to

recursively prove each sub-goal performing the same operation until all the atoms in the

bodies of the selected rules are proved.

4.1.2 ILP

This chapter takes into consideration a speci�c form of ILP, which is de�ned as

learning from entailment. The literature presents other de�nitions of ILP that can be

useful in other learning settings [53]. An ILP task can be de�ned as a tuple 〈B,N ,P〉,

where B is a set of ground atoms and background clauses, N and P are sets of negative

and positive ground atoms, respectively. The goal of an ILP task is to induce a set of
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clauses that entails all elements of P and rejects all elements of N . More formally, a

solution to an ILP task is a set of de�nite clauses C where:

B,C � γ ∀γ ∈ P

B,C 2 γ ∀γ ∈ N
(4.5)

The solution to an ILP task normally requires searching in the space of clauses, which

grows exponentially with the number of available constants, functions, and predicates.

Therefore, ILP methods normally restrict the space of FOL clauses to de�nite clauses to

make ILP tasks feasible.

For example, the following ILP task adapted from [15] can be used to induce the

predicate even(X), which is expected to hold for every even natural number X. If the

set of constants is C = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the considered task can be de�ned as:

B = {zero(0), succ(0, 1), succ(1, 2), succ(2, 3), succ(3, 4), succ(4, 5)}

P = {even(0), even(2), even(4)}

N = {even(1), even(3), even(5)}

(4.6)

where B is the background knowledge that characterizes zero and the successor predicate

succ. Using one of the available ILP methods, the following set of de�nite clauses can

be induced:
even(X)⇐ zero(X)

even(X)⇐ succ2(Y,X) ∧ even(Y )

succ2(X,Y )⇐ succ(X,Z) ∧ succ(Z, Y )

(4.7)

where succ2(X,Y ) is an invented predicate that is interpreted as X = Y + 2. The

obtained predicate clearly entails all the elements of P, rejects all the elements of N , and

it is able to generalize to unforeseen constants like 6 and 8.

4.2 Neural-symbolic ILP

This section presents some of the most relevant neural-symbolic ILP methods that

have been proposed in the last �ve years. The discussed methods were selected starting

from recent surveys on ILP and neural-symbolic methods [51�55], which were comple-

mented with the inclusion of papers that the surveys cite, possibly indirectly. Interested

readers can consult the mentioned surveys to gain a broader understanding of the sub-

ject. In particular, [54] performs a comparison between neural-symbolic and statistical-

relational approaches. [52] discusses the recent literature from an eXplainable Arti�cial

Intelligence (XAI ) perspective, and it classi�es notable works from the perspective of
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the integration between symbolic and sub-symbolic approaches. [51] compares recent lit-

erature on the basis of the representations of data, and it also classi�es discussed papers

according to which part, either the symbolic part or the sub-symbolic part, is the most

relevant. [53] focuses on traditional ILP and brie�y discusses some of the main neural-

symbolic approaches. Finally, [55] compares relevant papers from major conferences that

target neural-symbolic algorithms according to several interesting features.

Most neural-symbolic methods for ILP use some form of program templates, which

can be generally de�ned as a set of hyper-parameters that guide the rule generation. In

fact, as discussed previously, rule generation requires a large search space, and in the

last few years, many solution have been proposed. Program templates are not an ideal

solution to this problem but they are interesting because they require the user to specify

only a few parameters, as opposed to other techniques that require the user to manually

specify the structure of the generated rules, e.g., meta-rules [56].

Neural-symbolic methods for ILP are not always focused on a speci�c logic language.

In this chapter, di�erent approaches induce programs written in di�erent subset of FOL.

An interesting logic language is Datalog, which imposes some restrictions on the form

of the programs. Many Datalog dialects are discussed in the literature. In order to be

general, this chapter de�nes Datalog programs as a lists of de�nite clauses and facts in

which function symbols are not allowed. In order to provide an introductory view on

this subject, 4.4 presents a comparison between the neural-logic methods for ILP that

induce programs written in Datalog dialects. Datalog dialects are interesting because

they are su�ciently expressive to solve complex problems and, at the same time, these

languages are decidable, and therefore computations always terminate. Therefore, only

Datalog dialects have been considered because they have good expressive power and, at

the same time, they impose a considerable limit on the space of induced programs.

It is worth noting that some interesting approaches do not produce logical rules that

are su�ciently general, and therefore they are not discussed in this work. For example,

NLIL [57, 58] can be used to induce logical rules that follow a rigid chained structure,

which is less expressive than Datalog. Finally, DeepProbLog [59] extends ProbLog [60]

to allow de�ning neural predicates in which deep neural networks are used to implement

predicates capable to process noisy or erroneous data.

4.2.1 δILP

In δILP [15], rules are generated from a program template and then tested using the

training data. In order to cope with noisy or erroneous data, δILP uses a continuous

relaxation of the truth value of each rule, which is then associated to a weight that
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represents the probability of the rule to be part of the induced program. Each element

in P and N is associated with a value in [0, 1] that represents the truth value of the

element. δILP reinterprets the ILP task as a binary classi�cation task. In particular, in

order to choose the correct value for the weights of rules, δILP introduces a di�erentiable

implementation of deduction to predict, for each rule, the truth value of the atoms that

are randomly selected from P and N . Training the model of δILP requires computing

the expected truth value of positive and negative examples, which is obtained performing

a pre�xed amount of forward chaining steps and then applying the generated rules to

the facts in the background knowledge.

As usual for ILP tasks, the induction of rules from data requires searching in a search

space whose size grows exponentially with the number of constants and predicates in

B. In order to reduce the size of the search space, δILP generates rules from a program

template, which is de�ned as follows:

Π = 〈Preda, aritya, (τ
1
p , τ

2
p ), T 〉, (4.8)

where Preda and aritya identify a set of auxiliary intensional predicates, which are in-

vented and used to de�ne the target predicate, together with their arities. T ∈ N is the

number of forward chaining steps to perform, and τ1p and τ2p are two rule templates that

de�ne how each rule should be generated for each intensional predicate p ∈ Predi, where

Predi is the set of intensional predicates. In order to further constraint the generation

of rules, each rule template is de�ned as a tuple:

τ = 〈v, int〉, (4.9)

where v ∈ N is the number of free variables in the rule, and int ∈ {0, 1} speci�es whether

intensional predicates are allowed or not. Since there are only two rule templates, each

generated intensional predicate, either auxiliary or target, is de�ned by exactly two rules.

For each rule template, δILP generates a set of rules cl(τ) using the following further

restrictions:

1. Constants are not allowed in generated rules;

2. Predicates of arity higher than three are not allowed in generated rules;

3. Each generated rule must contain exactly two atoms in its body;

4. All variables that appear in the head of a generated rule must appear also in its

body;
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5. Two rules that di�er only in the order of the atoms in their bodies are not both

allowed in the set of generated rules; and

6. An atom must not be used at the same time in the head and in the body of a

generated rule.

For each generated predicate p, δILP de�nes a matrix Wp ∈ R
|cl(τ1p )|×|cl(τ2p )| that

contains the weights associated with the rules that de�ne the predicate. Each matrix Wp

has |cl(τ1p )| rows and |cl(τ
2
p )| columns, where |cl(τ

i
p)|, with i ∈ {1, 2} is the number of

rules generated from the corresponding rule template τ ip. In order to transform Wp into a

probability distribution, a softmax function is applied, obtaining W ∗
p ∈ [0, 1]|cl(τ

1
p )|×|cl(τ2p )|

de�ned as:

W ∗
p [j, k] =

eWp[j,k]

∑

j′,k′ e
Wp[j′,k′]

(4.10)

Each element W ∗
p [j, k] represents the probability that rules j and k are the correct rules

to de�ne predicate p. The set of W ∗
p matrices is de�ned as W .

δILP uses a continuous relaxation of the truth value of ground atoms. In particular,

given a set of n ground atoms G, and a ground atom γ ∈ G, a valuation is a vector in

[0, 1]n which performs a mapping between each element γi ∈ G to R. In order to train

the weight matrices Wp, δILP takes, for each pair of rules, T forward chaining steps,

and it tries to predict the correct truth value for each element of the training set. In

particular, given the example (γ, λ), where γ is an atom and λ is the associated label,

the entire training set is de�ned as:

Λ = {(γ, 1) | γ ∈ P} ∪ {(γ, 0) | γ ∈ N}. (4.11)

In summary, δILP samples a training example (γ, λ) from Λ and, using the back-

ground knowledge B and the language L, which consists of the constants and the ex-

tensional predicates together with the target predicate, it tries to predict the following

probability:

P (λ | γ,W,Π, L,B) = fextract(finfer(fconvert(B), fgenerate(Π, L),W, T ), γ), (4.12)

where fextract, finfer, fconvert, fgenerate are auxiliary functions.

The computation of P (λ | γ,W,Π, L,B) can be summarized in the following four

steps:

1. The function fconvert : 2G → [0, 1] is used to obtain the expected truth value of

each ground atom:

fconvert(B) = y where y[i] =







1 if γi ∈ B

0 otherwise
(4.13)
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where γi is the i-th element of G for i = 1, . . . , n.

2. Then, a set of rules is generated by applying fgenerate to the language L and program

template Π:

fgenerate(Π, L) = {cl(τ
i
p) | p ∈ Predi, i ∈ 1, 2}. (4.14)

3. Then, T forward chaining steps are performed to compute the predicted truth value

for each example in Λ using finfer : [0, 1]
n × C ×W × N → [0, 1]n, which requires

the generated rules, the initial truth values, and the current rule weights.

4. Finally, the function fextract : [0, 1]
n × G → [0, 1] is used to extract the predicted

probability of λ given a speci�c atom γ:

fextract(x, γ) = x[index[γ]], (4.15)

where index : G→ N is a function that retrieves the unique index of each ground

atom.

δILP makes use of the computed probability to compute a loss as the cross-entropy of

the correct label with regard to the predicted label:

loss = −E(α,λ)∼Λ[λ · log p(λ|γ,W,Π, L,B)+ (1−λ) · log(1− p(λ|γ,W,Π, L,B))], (4.16)

and then it adjusts the corresponding rule weights accordingly by using the stochastic

gradient descent algorithm. At the end of the training, the weights of rules can be used to

extract the most appropriate pair of rules to de�ne the target and the auxiliary predicates

that solve the ILP problem.

The logical deduction of δILP is based on a set of functions Fc : [0, 1]n → [0, 1]n,

de�ned for each rule c. Each function Fc takes as input a valuation that represents the

initial truth value of the ground atoms, and it computes a valuation that represents the

new truth value obtained from the application of the rule c. Assuming the existence of a

mapping between each ground atom and a unique index, for each Fc a three-dimensional

vector Xc ∈ N
n×w×2 is computed before the training phase, where n is the number of

ground atoms. The shape of Xc is also determined by w, which represents the maximum

number of pairs of ground atoms that logically entail each ground atom. Formally, Xc

can be de�ned using xk as the set of index pairs that justify the k-th ground atom:

xk = {(a, b) | satis�esc(γa, γb) ∧ headc(γa, γb) = γk}

Xc[k,m] =







xk[m] if m < |xk|

(0, 0) otherwise

(4.17)
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Intuitively, Xc allows to represent, for each ground atom γk, the set of ground-atom pairs

whose logical consequence is the considered atom. It is worth noting that Xc contains

a portion of unused space because the number of pairs that justify each ground atom is

variable, and the maximum number of pairs is used for the vector construction. In order

to solve this problem, the falsum atom ⊥ is included in G. In case of unused space, δILP

inserts the pair (0, 0), which is mapped to the atom pair (⊥,⊥).

The structure Xc is built to de�ne one step of forward chaining deduction for rule

c. The actual deduction is made during the training phase as followings. δILP takes

X1, X2 ∈ N
n×w, two slices of Xc that represent the �rst and second elements in each

pair, respectively:

X1 = Xc[_,_, 0] X2 = Xc[_,_, 1] (4.18)

Then, δILP de�nes two matrices Y1, Y2 ∈ [0, 1]n×w that represent the vectors containing

the actual truth values of a valuation a referenced by X1, X2. The computation of Y1, Y2

is made by translating each index to the corresponding truth value using the function

gather2 : R
a × N

b×c → R
b×c:

gather2(x, y)[i, j] = x[y[i, j]] (4.19)

Y1 = gather2(a,X1) Y2 = gather2(a,X2) (4.20)

Then, δILP de�nes a vector Zc ∈ [0, 1]n×w that is computed by performing the element-

wise multiplication of Y1 and Y2:

Zc = Y1 � Y2 (4.21)

Finally, δILP de�nes Fc as:

Fc(a) = a′ where a′[k] = max(Z[k,_]) (4.22)

δILP performs the computation of Fc taking the maximum value of Z[k,_] for the atom

γk because Z[k,_] represents the vector of fuzzy conjunctions of all the pairs of ground

atoms that contribute to the truth value of γk. Therefore, taking the maximum truth

value from all the pairs of atoms implements a fuzzy disjunction.

Once the forward chaining step for a single clause c is de�ned, δILP de�nes a step

for a pair of clauses of predicate p as:

Cj,k
p (a) = x where x[i] = max(F 1,j

p [i], F 2,k
p [i]) (4.23)

where F i,j
p performs a forward chaining step for the j-th clause of the i-th rule template.

In the same way of Fc, C
j,k
p computes the resulting truth value by taking the maximum

value of the two clauses of each rule template for each ground atom.
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Using the functions Cj,k
p , it is possible to de�ne a sequence of T forward chaining

steps. The initial valuation is de�ned by fconvert:

a0[x] =







1 if γx ∈ B

0 otherwise
(4.24)

In order to de�ne the step t+ 1, it is useful to de�ne the result valuation bt as:

bt =
∑

p∈Predi

∑

j,k

Cj,k
p ·W

∗
p [j, k] (4.25)

bt is de�ned by applying all the possible pair of rules that jointly de�nes a predicate

p, weighting the results by W ∗
p . The resulting valuations are then summed for each

predicate p because they are disjointed. The result of the t+ 1 is then computed as the

probabilist sum between the valuation at step t and the resulting valuation bt:

at+1 = at + bt − at · bt (4.26)

The architecture of δILP allows implementing logical deduction that handles uncertainty

because the resulting truth value for each ground atom is a real value in [0, 1]. The

role of each rule in the deduction process is adjusted with the corresponding weight,

which is continuously updated during training. Therefore, the algorithm increases the

weights corresponding to the clauses that entail the positive examples, and it does the

opposite with the clauses that entails the negative examples. As discussed previously,

the architecture can be described using four functions. The computation of Xc is non-

di�erentiable, and it is therefore performed before the training phase. fextract and finfer

are instead di�erentiable operations. In particular, the function gather2 allows finfer to

be di�erentiable with respect to the weights, making the training phase feasible.

Despite the interesting results of δILP with respect to traditional ILP methods, δILP

su�ers from two major problems:

1. It stores the weights for every generated pair of rules, which makes the method

unusable in di�cult tasks, with many background and auxiliary predicates, because

the number of generated rules may be very large.

2. The imposed restrictions on the generation of rules makes δILP not suitable in com-

plex tasks because more �exible methods can produce more compact and e�ective

rules.
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4.2.2 NTPs

Neural Theorem Provers (NTPs) [16�18] are a class of di�erentiable end-to-end

provers for theorems formulated as queries to a knowledge base. They implement a

Prolog-style backward chaining algorithm that makes use of di�erentiable uni�cation

among sub-symbolic representations of logical entities. In particular, given a query,

NTPs use three operators: AND, OR, and UNIFY. Here, the �rst paper that introduces

this method [16] is used for the presentation of the method.

The UNIFY operator is similar to the one used by Prolog to verify the exact structural

match among predicates and among terms. In NTPs, the UNIFY operator veri�es the

similarity among vector representations of symbols. After an application of the UNIFY

operator, the method updates a substitution set de�ned as µ = {X1/t1, . . . , Xn/tn}.

Starting from a target query, µ allows applying the rules in the knowledge base to the

constants in the query. The Prolog-style backward chaining algorithm applies the OR

operator on each rule trying to unify the query with the head of a de�nite clause. If

uni�cation succeeds, the method uses the AND operator to jointly prove all the atoms

that are part of the body of the selected rule. Finally, the AND operator performs a

substitution of the variables of the selected atoms, and it tries to compute their truth

values applying, one more time, the OR operator.

Each operator receives atoms, rules, and a proof state, and it returns a proof state

list. A proof state is a tuple 〈δ, ρ〉, where δ is the current substitution set, and ρ is an

arti�cial neural network that computes a real value that represents a partial proof score.

ρ is built during training, but it can be used in both training and testing phases to prove

di�erent target queries. When the proof algorithm ends, the method selects the proof

state that maximizes the proof score among the ones built using the OR operator applied

on each rule of the knowledge base.

While the OR operator and the AND operator are de�ned ordinarily, UNIFY is the

most characterizing operator of this method. Instead of checking the equality between

two non-variable symbols, the UNIFY operator compares their vector representations

using a Radial Basis Function (RBF ) kernel [61]. The use of a RBF kernel allows the

application of the rules of the knowledge base to symbols that are apparently di�erent,

but that share a common meaning. An example of the bene�ts of using a RBF kernel is

to match apparently di�erent predicates like grandPa and grandFather.

In order to train the model, NTPs compute a loss function. In particular, they obtain

invalid ground atoms [s, î, j], [s, i, ĵ], [s, ĩ, j̃] from atoms [s, i, j] that are present in the

knowledge base K. These corrupted atoms must not be present in K, and î, ĵ, ĩ and j̃ are
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constants. The corrupted atoms represent the negative examples in N , while the known

atoms represents the positive examples in P. NTPs compute the loss as the negative

log-likelihood of the proof success score, as follows:

loss =
∑

([s,i,j],y)∈T

−y log(ntpKθ ([s, i, j], d)ρ)− (1− y) log(1− ntpKθ ([s, i, j], d)ρ), (4.27)

where y is the target proof score (either 0 or 1), and T is the set of known and invalid

atoms. The function ntpKθ (X, d)ρ computes the overall success score of proving a goal X

using a maximum proof depth d, and it is parameterized with respect to θ, which is a

matrix that encodes the approximate representations of non-variable symbols. The proof

success score ρ is explicitly written in the loss function because, in the training phase,

when proving a known atom, the substitution set δ is not considered for optimization

purposes. The original paper [16] presents also a variant of NTP called NTPλ, which

employs a modi�ed loss and performs better than NTP in many proposed tasks.

NTPs are not designed as ILP methods, but they allow performing logical deductions

to extend existing knowledge bases. In order to perform rule induction, NTPs use a form

of meta-rules, which are rules where non-variable symbols are not speci�ed. The goal

of the method is to learn their representations from data. For example, the transitivity

rule, r(X,Y ) ⇐ f(X,Z) ∧ g(Z, Y ), where r, f, g are predicates that are not part of the

knowledge base, is a meta-rule. Meta-rules are a form of templates that allow the user

to describe the structure of induced rules using a speci�c syntax, like, for example [16]:

n1 #m1(X,Y ) :- #m2(Y,X)

n2 #m3(X,Y ) :- #m4(X,Z), #m5(Z, Y )
(4.28)

where ni represents how many times meta-rule i is instantiated, while each mi is a

placeholder for a predicate name, and each placeholder is meant to be substituted with

a di�erent predicate name. Note that, in general, NTPs seem to be more scalable than

δILP, but they o�er less �exibility because they require to explicitly specify the structure

of the generated rules.

4.2.3 ILPCamp

Campero et al. propose in [21] a neural-symbolic ILP method, which is informally

called ILPCamp here for the sake of clarity. ILPCamp follows an approach similar to

NTPs because predicates are represented as vectors of real numbers but, in this case,

forward chaining is used to obtain new facts. In the original paper [21], Campero et

al. describe the algorithm for binary predicates only. The following is a generalization
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of the implementation discussed in [21] for predicates of higher arity. ILPCamp stores

a list of facts, each of which is represented as a tuple (θp, c1, . . . , cn, υ), where θp is a

vector representing predicate p, which is shared among all of its ground atoms, ci are

the constants associated with the fact, and υ ∈ [0, 1] represents the fuzzy truth value

of the fact. ILPCamp assigns a truth value of 1 to ground atoms that are part of the

background knowledge, and it stores a set of vectors of real numbers Pred, which are

randomly initialized. Pred includes predicates that are de�ned as part of the task together

with the auxiliary predicates that the user expects to be necessary. As NTPs, ILPCamp

generates rules using meta-rules, each of which is expressed as, for example:

F (X,Y )⇐ F (X,Z), F (Z, Y ), (4.29)

where F is a symbol that stands for a generic predicate, and its underlying representation

is learned during the training phase. Internally, each meta-rule can be represented by:

((θh, vh1
, . . . , vhn

), (θb1, vb11 , . . . , vb1n), . . . , (θbn, vbn1
, . . . , vbnn

)), (4.30)

where θh, θb1, . . . , θbn are vectors of real numbers representing the predicates in the head

and the body of the meta-rule, while each vi is the name of an used variable. In order to

perform a single forward chaining step, the method generates an admissible grounding set

that is chosen by verifying the structure of the meta-rule and by replacing variables if the

structure of the meta-rule is respected. For example, using the rule in 4.29 and supposing

a set of constants {a, b, c}, the rule can be applied to ground atoms {F (a, b), F (b, c)}

because they respect the structure of the meta-rule. On the contrary, other ground

atoms, such as {F (a, b), F (a, c)}, do not respect the structure of the meta-rule, and

therefore they cannot be used.

Using each meta-rule, ILPCamp deduces new facts starting from each pair of ground

atoms that are admissible. For each meta-rule and for each pair of atoms, the algorithm

generates the atoms f1, . . . , fn, one for each predicate in Pred. The internal structure

of the new ground atoms is (θo, co1 , . . . , con , υo). Constants coi are obtained from the

pairs of predicates used in the substitution phase. The value of υo for each new fact is

computed by multiplying the values of f1, . . . , fn with the cosine similarity of the vectors

associated with the predicates in the meta-rule and in the existing facts, as follows:

υo = cos(θh, θo) · cos(θb1, θf1) · · · · · cos(θbn, θfn) · vf1 · . . . · vfn . (4.31)

When ILPCamp �nds a new ground atom, it stores the associated representation in

the list of facts, if it is not already in the list. Otherwise, ILPCamp simply updates the

representation of the new fact in the list computing the maximum between the new truth
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value υo and the previous one. After several deduction steps, ILPCamp generates new facts

from existing facts. The trainable parameters are those associated with de�ned predicates

and those associated with the meta-rules θh, θbi. Using positive and negative examples in

P and N , respectively, ILPCampcan train θh and θbi, computing binary cross-entropy to

predict the truth value of the examples and to generalize to unforeseen constants. Both

the number of forward chaining steps and the number of auxiliary predicates are de�ned

as hyper-parameters of the method.

ILPCamp reports interesting results when compared to δILP and NTPs. ILPCamp

reports slightly better performance than δILP, and it exhibits performance that are com-

parable to NTPs, except for one speci�c task where NTPs performance is much worse,

for the three problems taken into consideration. However, ILPCamp has some drawbacks.

The use of forward chaining implies that the generation of rules requires an increasing

number of facts as the training progresses. Therefore, ILPCamp cannot scale well as the

size of the background knowledge and the number of meta-rules increases. Conversely,

NTPs start from the target query and they try to prove it using backward chaining, which

does not require to generate too many atoms at each time step. Compared to δILP, meta-

rules represent a less �exible solution than program templates because meta-rules require

a human expert to manually specify the structure of the generated rules.

4.2.4 dNL-ILP

dNL-ILP [19,20] associates a trainable weight with each atom that can be part of the

generated rules. Note that this approach is di�erent from δILP because δILP associates

weights with rules while dNL-ILP associates weights with atoms. dNL-ILP de�nes a

particular neural network to model the structure of a Conjunctive Normal Form (CNF )

or of a Disjunctive Normal Form (DNF ) formula, and the nodes of the neural network

implement fuzzy operators de�ned as follows:

x̄ = 1− x x ∧ y = xy x ∨ y = 1− (1− x)(1− y). (4.32)

dNL-ILP associates a truth value in [0, 1] to each atom, just like δILP, and each node

of the neural network receives an input vector x ∈ [0, 1]n. This algorithm de�nes a

membership weight mi ∈ [0, 1] for each input value xi, which is used to include or

exclude the input atom from the generated rule. The neural network is composed of tree

types of nodes: AND, OR, and NOT. The �rst two types of nodes implement functions

fAND and fOR de�ned as:

fAND(x) =
n
∏

i=1

(1−mi(1− xi)) (4.33)
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fOR(x) = 1−
n
∏

i=1

(1−mixi) (4.34)

The neural network is built alternating AND and OR layers, and the order of layers

de�nes the form of the generated rules. Using a �rst layer of AND nodes followed by a

second layer of OR nodes, the algorithm produces DNF formulae. On the contrary, CNF

formulae are produced if a �rst layer of OR nodes is followed by a second layer of AND

nodes.

dNL-ILP requires the user to specify a program template, which is de�ned as:

Π = 〈Pred, arityPred, NrPred, NvNrPred〉, (4.35)

where Pred de�nes the target and the auxiliary predicates, arityPred their respective

arities, NrPred is the number of rules that de�ne each predicate, and NvNrPred is the

number of variables in the body of each generated rule. For each predicate p ∈ Pred

and each forward chaining step t, the algorithm de�nes a value vector Xt
p ∈ [0, 1]n that

contains the fuzzy truth values of every atom resulting from the application of p. If Gp

is the set of ground atoms associated with a predicate p, and γ ∈ Gp, the initial fuzzy

vectors X0
p are de�ned as follows:

X0
p [γ] =







1 if γ ∈ B

0 otherwise
(4.36)

dNL-ILP starts with fuzzy values X0
p [γ], and it performs T forward chaining steps, ob-

taining the values XT
p [γ] that are interpreted as the conditional probability of each truth

value with respect to the model parameters. During the training, dNL-ILP computes a

cross-entropy loss between XT
p [γ] and the truth values associated with training examples.

For the sake of simplicity, only generated formulae in DNF are considered now. Let

F i
p be the conjunctive function represented by the neural network described previously

for predicate p and rule i, and let Θi
p(γ) be the set of substitutions among constants and

variables that result in the atom γ. Let Iip be the set of possible atoms for the predicate

p and the rule i, which is de�ned as:

I
i
p =

⋃

p′∈Pred

T(p′, V i
p ) where T(p, V ) = {p(arg) | arg ∈ Perm(V, arity(p))}, (4.37)

where V i
p is the set of all variables of predicate p and rule i, Perm(s, n) generates all the

permutations of length n from the set s. Finally, arity(p) returns the arity of predicate

p. A single forward chaining step is de�ned as:

Xt+1
p [γ] = Fam(Xt

p[γ],K(γ)) where K(γ) =
∨

i

∨

θ∈Θi
p(γ)

F i
p(I

i|θ) (4.38)
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where Fam is the fuzzy disjunction function introduced in 4.32.

In summary, for each predicate and rule, dNL-ILP generates a list of every possible

atom that can be part of the generated formula, i.e., Iip. The algorithm then perform

T forward chaining steps to continuously update the values Xt
p[γ], which are computed

using the disjunction function of the expected truth value of all the possible substitutions

of constants that would result in the atom γ. At each forward chaining step, dNL-ILP

updates the membership weights mi, and, at the end of the training phase, dNL-ILP

uses the obtained membership weights to extract the logical rules from the network.

It is worth noting that dNL-ILP was subsequently extended to solve RL tasks [11].

Unfortunately, in the original papers [19, 20], only a comparison with respect to δILP is

performed. Another performance comparison is presented in [10], which is summarized

here. The comparison presented in [10] confronts the performance of DLM, δILP, and

dNL-ILP. The two papers [10, 19] report di�erent results: in [19], dNL-ILP performs

better than δILP in all the tasks taken into consideration. On the other hand, the

results reported by [10] show that δILP performs better than dNL-ILP in almost all

the task, which include some of the tasks discussed in [19]. Therefore, these results are

contradictory, and further tests are needed to understand the real performance of these

methods. In principle, dNL-ILP should be more memory e�cient than δILP because it

associates weights directly to atoms instead of to entire rules. Interestingly, [10] reports

that both δILP and dNL-ILP have memory consumption problems, and both methods

fail to complete one task (which is di�erent for each method). In conclusion, dNL-ILP

is interesting because it does not require the user to specify the structure of the �nal

solution with meta-rules. As δILP, dNL-ILP makes use of program templates to guide

the search for a solution, and it is, in principle, more memory e�cient, but more tests

are required to understand the real performance of this method. It is worth noting that

dNL-ILP requires the user to de�ne the structure of the network, which is not required

by the other previously discussed methods.

4.2.5 DLM

Di�erentiable Logic Machines (DLM ) [10] is based on another neural-symbolic method

called Neural Logic Machines (NLM ) [62]. Both methods are not explicitly designed to

solve ILP problems, but they have proved to perform well also for ILP tasks. NLM uses

deep neural networks designed to simulate forward chaining, inducing new grounded

predicates from a vector representing the truth value of the initial ground predicates.

Despite performing relatively well, NLM does not produce interpretable solutions for

ILP tasks. DLM tries to solve this problem introducing fuzzy operators, which allows to
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produce interpretable and reusable rules.

As NLM, DLM de�nes a neural architecture that is organized into a grid of logical

modules structured in L column and B rows. The �rst column of the network takes

vectors representing the input predicates. Each predicate p of arity b is represented by

a vector P of shape (b,m), where m is the number of constants. Each value P [i1, . . . , ib]

represents the probability of the truth value of the corresponding ground atom.

The row of a module de�nes the arity of its input predicates. For example, a module

at [2, i] takes as input predicates of arity 2, for i ∈ {1, . . . , L}. Let P l
b and Ql

b be

the output and input predicates of a module of arity b at column l, respectively. A

predicate representing the negation of an existing predicate is obtained applying the

function f(x) = 1 − x to each component of the corresponding vector representation.

The set of negated predicates is obtained from Ql
b, and it is denoted as Rl

b. In order to

add �exibility to the architecture, DLM allows preserving a predicate from a column to

the next, extending Ql
b and Rl

b with True and False symbols.

Each module de�nes new predicates P l
b from Ql

b using fuzzy conjunction and fuzzy

disjunction. The user can specify the number of input predicates to be used to de�ne the

output predicates, which is denoted as nA. Formally, the fuzzy conjunction is de�ned as:

P l
b =





∑

P1∈Ql
b

wP1
P1



� · · · �





∑

PnA
∈Ql

b

wPnA
PnA



 , (4.39)

where weights wP1
, . . . , wPnA

∈ [0, 1] are the training variables, and � is the element-wise

product. The fuzzy disjunction is de�ned as:

P l
b = Q1 +Q2 −Q1 �Q2 where Qi =

∑

Pi∈Ql
b

wPi
Pi. (4.40)

The weights wPi
represents the probability that predicate Pi is the correct one to de�ne

the output predicate. Therefore, DLM constraints the value of the weights such that
∑

Pi∈Ql
b
wPi

= 1. DLM enforces this constraint using a Gumbel-sofmax function [63],

which is also employed to avoid early convergence to local optima during training. The

Gumbel-softmax function is de�ned as:

wPi
=

e
GP+θP

τ

∑

P ′∈Ql
b
e

G
P ′+θ

P ′

τ

, (4.41)

where GP are samples from a Gumbel distribution, θP are the underlying trainable

weights, and τ is the temperature hyper-parameter, which is decreased during training

to obtain more interpretable solutions. In order to compute the output predicates, each
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module de�nes nO/2 predicates with fuzzy conjunction and nO/2 predicates with fuzzy

disjunction. In particular, both operations are de�ned on nA ground atoms that are

equally taken by {True} ∪Ql
b, {False} ∪Ql

b, {True} ∪Rl
b, and {False} ∪Rl

b.

Each module is connected to the modules on the previous column of the network.

Input predicates Ql
b are obtained transforming the output predicates resulting from the

previous column using three operations:

• Expansion: a predicate with arity b + 1 is obtained from another predicate with

arity b:

P̂ (X1, · · · , Xb+1) := P (X1, · · · , Xb). (4.42)

• Reduction: a predicate with arity b is obtained from another predicate with arity

b+ 1 using either existential and universal quanti�ers:

P̌ (X1, · · · , Xb) := ∃Xb+1P (X1, · · · , Xb+1), (4.43)

P̌ (X1, · · · , Xb) := ∀Xb+1P (X1, · · · , Xb+1). (4.44)

This operation is implemented using maximum and minimum operators for exis-

tential and universal quanti�ers, respectively.

• Permutation: a predicate with arity b is obtained permuting the arguments of

another predicate with the same arity:

∀σ ∈ Sb, Pσ(X1, · · · , Xb) := P (Xσ(1), · · · , Xσ(b)), (4.45)

where Sb is the set of all permutations of {1, . . . , b}.

Now, W l
b can be formally de�ned as:

Ql
b = {Pσ | P ∈ P l−1

b ∪ P̂ l−1
b−1 ∪ P̌ l−1

b+1 , σ ∈ Sb}, P̂ l
0 = ∅, P̌ l

B+1 = ∅, (4.46)

where P̂ l−1
b−1 is the set of the expanded predicates with arity b − 1 at column l − 1, and

P̌ l−1
b+1 is the set of the reduced predicates with arity b+ 1 at column l − 1.

The language used by DLM is more expressive than Datalog, and DLM requires only

a few hyper-parameters to be trained: L, B, nO, and nA. The architecture of DLM

allows to adopt these parameters with �ne granularity. For example, the user can specify

di�erent nO values for di�erent modules. Unfortunately, DLM has the same problem of

deep neural networks, which are di�cult to design for a speci�c task.

For ILP tasks, DLM computes binary cross-entropy between the predicted label and

the actual one. At the end of the training, DLM o�ers the possibility to extract the logical
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ground rules, replacing Gumbel-softmax with argmax and fuzzy operators with boolean

operators. The algorithm starts from the output of the network and moves backward to

extract the output rules, which can be used to complete the task more e�ciently.

From a performance perspective, the results that are reported in the original pa-

per [10] suggest that DLM is generally comparable to δILP and NLM, and it is slightly

better than dNL-ILP. DLMmanages to perform equal or better than the other methods in

all the proposed tasks, and it does not su�er from the memory-related problems that are

reported for δILP and dNL-ILP. In general, DLM is an interesting method, and it allows

to obtain interpretable solutions for ILP problems using only a few hyper-parameters.

Moreover, it is very expressive, and it allows inducing complex FOL rules for a given

task. However, the language employed for the resulting formulae does not o�er the inter-

esting features of Datalog, and the method is able to induce ground rules only. Ground

rules are not always reusable in tasks di�erent from the one used for training, and this

prevents the use of DLM in many real-world applications. Moreover, the performance of

DLM is reported only for a few tasks, and more tests are needed to understand the real

potential of this method.

4.2.6 MetaAbd

Previous methods, like traditional ILP algorithms, assume that the input of the learn-

ing task is symbolic. Therefore, these algorithms assume the availability of a coupled

algorithm to map non-logical data to their logical counterparts before the learning pro-

cess. On the contrary, MetaAbd [22] follows a di�erent approach, and it tries to map

sub-symbolic input, like images, to symbolic one and, at the same time, it induces a set

of rules that de�nes the target predicates.

MetaAbd is composed of two cascaded modules: a perception module and a reasoning

module. The perception module performs the mapping between sub-symbolic input x

and symbolic interpretation z. For example, if x is an image of an handwritten digit, z is

the corresponding integer. The perception module is a neural network with parameters

θ that estimates the conditional probability P (z|x, θ). The other module is the reasoner

H, which is composed of a set of rules that can be used to infer an output symbol y,

provided that background knowledge B and z are available. The goal of MetaAbd is to

learn θ and H simultaneously from training data.

Due to the large search space of interesting ILP tasks, it is very di�cult to learn

θ and H simultaneously. Therefore, to overcome this problem, MetaAbd makes use of

a combination of induction and abduction. Abductive reasoning (e.g., [64]) is a form

of logical inference in which the goal is to infer facts and rules that, using background
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knowledge, provide the best explanation of training examples. MetaAbd induces H in

terms of an abductive theory expressed in terms of abducible primitives, which actually

form the background knowledge. The hypothesis H is then used to prune the search

space for z by abducing facts that constraint the output of the perception module, which

computes P (z|x, θ), to guide the search for the most probable combination of H and z.

If D is the set of training samples, MetaAbd learns from training examples 〈xi, yi〉 ∈ D

using the perception module and the background knowledge B that consists of abducible

primitives. In order to perform the training, MetaAbd employs the following objective

function:

θ∗ = argmax
θ

∏

〈xi,yi〉∈D

∑

H∈H

∑

z∈Z

P (H, z|B, x, y, θ) (4.47)

where H is the hypothesis space and Z is the interpretation space. MetaAbd uses an

expectation maximization algorithm to learn H using two steps:

1. Expectation: P (H, z|B, x, y, θ) is used to sample the expected values of H and z;

and

2. Maximization: new parameters θ are estimated using a stochastic gradient descent

algorithm.

In the expectation step, MetaAbd induces H, which is then used to abduce z. The

algorithm assigns a score to each pair H ]z, and then it chooses the one with the highest

score. In particular, the expectation step is structured in four steps:

1. An abductive theory H ∼ Pσ∗(H|B) is induced. Pσ∗(H|B) is the Bayesian prior

distribution of �rst-order logic hypothesis, and it is computed using the operator

σ∗ [65];

2. MetaAbd uses the hypothesis H ∪ B and y to abduce the possible values for z.

These values are guaranteed to satisfy (H ∪B) ] z � y and P (y|B,H, z) > 0;

3. The algorithm assigns a score to H ] z:

score(H, z) = Pσ∗(H|B)Pθ(z|x); (4.48)

4. Finally, MetaAbd selects the H ] z with the higher score.

In order to induce new rules, MetaAbd uses a form of higher-order logical meta-rules,

which can be written as:

metarule([P,Q], [P,A,B], [[Q,A,B]]), (4.49)
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where the above meta-rule represents the direct application of an abducible primitive

P (A,B) ⇐ Q(A,B). The meta-rules of MetaAbd are similar to those used by other

neural-symbolic approaches for ILP (e.g., [16,21]) because they all de�ne a general struc-

ture of the generated rules that is applicable to di�erent predicate symbols. Meta-rules

represent an interesting way to implement recursion and predicate invention, but they

are limited because induced rules must follow a predetermined structure that is de�ned

by the human expert. In many applications, the requirement of the a priori understand-

ing of the rule structure is not practical, and such a requirement may prevent the use of

MetaAbd and similar approaches in complex problems. In the original paper [22], authors

do not directly compare their method with the other methods discussed in this chapter.

Moreover, it is not clear how well MetaAbd scales with the size of the training set. Finally,

it would be interesting to measure the performance of MetaAbd on tasks that go beyond

simple toy problems.

4.3 Comparing methods from the XAI perspective

This section presents a comparison of neural-symbolic approaches for ILP paying

particular attention to the interpretability of the generated rules. Discussed approaches

are all based on templates or meta-rules. This section is an extension of the comparison

proposed in [23], and it follows a classi�cation that is similar to the classi�cation used

in [53]. The considered methods are δILP, NTPs, ILPCamp, dNL-ILP, and MetaAbd.

DLM has not been considered in this comparison because it produces ground rules only.

Therefore, it would be unfair to compare DLM with the other methods because they

produce di�erent types of rules. The compared methods are categorized using four char-

acteristics: the language used to express the learned rules, the adopted search method,

the possibility to learn recursive rules, and the possibility to learn invented predicates.

This classi�cation is useful to analyze the interpretability of the learned rules. In fact,

the used language as well as the support of predicate invention and recursive rules are

characteristics that have a strong impact on the interpretability of the learned rules. At

the same time, the search method in�uences how the rules are induced. Therefore, it

has been included in this classi�cation because it can directly in�uence the structure of

the learned rules. Table 4.1 summarizes the comparison of the four methods, which is

detailed in the rest of this section.
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4.3.1 Language

The language used to represent the learned rules is an important characteristic of each

method, especially from the point of view of XAI [50]. Although there are several methods

that do not support FOL, like, for example, NLM [62], all the discussed methods produce

programs in a Datalog dialect. In particular, δILP learns programs written in Datalog,

while MetaAbd learns programs written in a speci�c dialect of Datalog. Both methods

produce explicit rules in their respective languages. Similarly, dNL-ILP produces rules

in DNF or CNF. In particular, a rule written in DNF can be used to de�ne a predicate,

and it is equivalent to de�ning a set of Datalog rules. For example, lets consider the

de�nition of a less-than relation over natural numbers. As shown in [19], such relation

could be represented using the predicate lessThan, de�ned as follows:

lessThan(A,B) :- inc(A,B),

lessThan(A,B) :- lessThan(A,C),inc(C,B),

where inc represent an increment of 1. The predicate lessThan can also be written as

a DNF rule:

inc(A,B)∨(lessThan(A,C)∧inc(C,B)).

Unlike the previously discussed methods, NTPs assume the existence of a Datalog knowl-

edge base, and they learn the real vectors associated with rules. The generated rules can

then be used to deduce new ground atoms. In NTPs, rules are not expressed as ex-

plicit Datalog programs, but they are used in the context of knowledge base completion.

Finally, from an XAI perspective, ILPCamp and NTPs share the common problem of

encoding rules using real vectors, which is a limitation for the interpretability and the

explainability of the learned rules. In principle, it is possible to extract the explicit

relationship among the vectors associated with learned predicates by measuring their

similarity, but this possibility is not currently included in these methods.

4.3.2 Search method

The most common approaches to ILP are classi�ed into top-down and bottom-up.

Top-down methods start with a general hypothesis that is gradually specialized. Bottom-

up methods start from training data, and they produce a specialized hypothesis that is

gradually generalized. Recently, meta-level approaches have been introduced to encode

the ILP task as a meta-level program, which is a program that reasons on programs.

This meta-level program is then used to compute the proposed solutions, which are then
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Table 4.1: Summary of the features that characterize surveyed methods.

Method Language Search method Recursion Predicate invention

δILP Datalog Meta-level Yes Partially

NTPs Datalog Top-down Yes No

ILPCamp Datalog Top-down Yes Partially

dNL-ILP Datalog Meta-level Yes Partially

MetaAbd Datalog Meta-level Yes Yes

translated back to inductive solutions of the ILP task [53]. Among the �ve presented

methods, NTPs and ILPCamp follow a top-down approach, while δILP, dNL-ILP and

MetaAbd follow a meta-level approach.

Actually, δILP generates di�erent logical hypotheses using the restrictions imposed by

the program template. δILP starts with no assumptions on the �nal solution and, at each

training step, the weights associated with the generated rules are updated. δILP makes

use of a di�erentiable framework as a meta-level program to �nd the most appropriate

solution to the ILP task. Similarly to δILP, dNL-ILP requires the user to specify a

program template, and it uses a deep neural network to select the most appropriate set

of literals that de�ne a predicate. NTPs and ILPCamp are top-down methods because

the structure of the induced rules are speci�ed by �xed meta-rules. Meta-rules describe

the most general solution to the ILP tasks, and they are specialized by training the

weights associated with the abstract predicate symbols. MetaAbd is an extension ofMeta-

Interpretive Learning (MIL) [56], which is a meta-level method. In particular, MetaAbd

makes use of higher-order meta-rules to generate hypotheses, and it uses a modi�ed MIL

Prolog meta-interpreter to search the space of hypotheses for a solution of the ILP task.

4.3.3 Recursion

Recursion is an important feature in ILP because it allows performing an in�nite

number of deduction steps with a �nite logic program. The support for recursion makes

ILP methods able to better generalize from small numbers of examples because the meth-

ods do not need to learn a separate rule for each speci�c situation. All mature methods

to accomplish ILP tasks are expected to support recursion, and all the discussed methods

support recursion. In particular, δILP and dNL-ILP provide recursion by design because
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they use program templates to generate rules that include recursive rules. Recursion

is enforced in NTPs by manually specifying meta-rules that describe how recursion is

expected to be used in generated rules. The following is an example of a meta-rule that

can be used to learn recursive rules using NTPs:

2 #m1(X,Y ) :- #m1(Y,X) (4.50)

which is instantiated only two times, and whose predicates, in the head and in the body,

are the same. MetaAbd and ILPCamp use a similar form of meta-rules, but they do not

expect the user to manually specify the relationships among the rule predicates. Instead,

they represent predicates with a generic predicate, and the methods are expected to learn

to correctly associate each predicate in the meta-rule with the corresponding predicate

de�ned as part of the ILP task.

4.3.4 Predicate invention

The induction of rules from training data is an extremely di�cult task, and the choice

of an appropriate background knowledge is crucial to improve the learning performance.

Background knowledge is typically provided by experts as a hand-crafted set of facts and

rules, but in most real-world applications, it is di�cult, and often impossible, to provide a

comprehensive knowledge base. Predicate invention is intended to automatically generate

new predicates, under suitable constraints, obviating the user from manually specifying

the knowledge needed to solve the ILP task.

The support for predicate invention is considered a major challenge, and most ILP

methods do not provide this feature. δILP and dNL-ILP support predicate invention only

partially. Actually, they require the user to manually specify which auxiliary predicates to

learn�predicate symbol and arity�in order to de�ne the target predicate. As discussed

previously in this section, it is often very di�cult to foresee the number and the arity

of auxiliary predicates, which makes δILP and dNL-ILP unsuitable for most real-world

applications. ILPCamp too supports predicate invention only partially, and it only allows

the user to specify the number of auxiliary predicates [21]. The method then learns

their representations. As δILP, ILPCamp requires the user to know in advance some

characteristics of the �nal solution, although ILPCamp provides a more �exible approach

because it does not need to know the arity of auxiliary predicates. NTPs do not support

predicate invention, but it is expected that predicate invention could be included in

NTPs because NTPs and ILPCamp share a similar approach to rule induction. MetaAbd

is an extension of the MIL interpreter, which natively supports predicate invention. In

particular, MetaAbd is able to use meta-rules to reduce the space of hypotheses and to
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Table 4.2: Summary of the features that characterize surveyed algorithms, where the

representation of data is detailed for the background knowledge (BK column) and for

the training set (Dataset column).

Algorithm BK Noisy BK Dataset Language bias

δILP Facts Yes Facts Temp. & const.

dNL-ILP Facts Yes Facts Template

MetaAbd Rules No Images Meta-rules

invent new predicates whenever necessary. Invented predicates are then de�ned using

the same meta-rules provided as part of the description of the ILP task.

4.4 Comparing Datalog-based methods

This section presents a comparison of three promising neural-symbolic approaches for

ILP, namely δILP, dNL-ILP, and MetaAbd, paying particular attention to the reusability

of the learned rules. The discussed approaches generate logical rules in Datalog dialects,

so that learned rules can be used to solve the particular learning problem and to perform

logical deduction to extend the background knowledge. DLM has not been considered

in this comparison because it does not produce Datalog rules, while NTPs and ILPCamp

are designed to extend a knowledge base. Therefore, they have not been considered

in this comparison because the induction of Datalog rules is not their primary goal.

Actually, many neural-symbolic approaches for ILP do not produce reusable rules or

they use speci�c subsets of �rst order logic that are normally less powerful than Datalog

because they are designed for the speci�c task at hand. The discussed algorithms are

compared using two characteristics: the representation of the data used for the training

examples and the background knowledge, and the language bias that is enforced to guide

the generation of rules. This section is a summary of the comparison proposed in [24],

but the support of recursion and predicate invention are not described here because they

have been already discussed in the previous section. Table 4.2 summarizes the proposed

comparison among the three studied algorithms using these characteristics, as detailed

in the remaining of this section. Note that the table details the representation of data

used for the training examples (Dataset column), and the representation of data used for

the background knowledge (BK column).
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4.4.1 Representation of data

The representations of background knowledge and training examples plays an impor-

tant role in the considered learning tasks. Normally, ILP algorithms assume that the

background knowledge is composed of a set of facts and logical rules, while the training

set is a set of facts that are used to de�ne the target predicate. Unfortunately, this rep-

resentation of the background knowledge and of the training set cannot adequately treat

noisy and erroneous data, and it must be reconsidered in the scope of neural-symbolic

approaches for ILP.

As far as the three studied algorithms are concerned, training examples are provided

in di�erent forms: both δILP and dNL-ILP de�ne the target predicate using a set of

facts, while MetaAbd requires the training set to consist of images. The adoption of

images for the training set represents a clear advantage when the learning task is required

to work on raw pixels. It is worth noting that δILP was coupled with a perception

module implemented using an arti�cial neural network trained to recognize handwritten

numbers. δILP was then tested together with this perception module, but the results

was not considered satisfactory [15]. This suggests that a much �ner integration between

a perception module and a neural-symbolic algorithm�like the integration proposed by

MetaAbd�can be used to obtain considerable improvements. As a side note, it is worth

mentioning that all the studied algorithms allow mislabelled examples because they all

try to minimize a loss function rather than satisfying a strict constraint, which is what

traditional ILP algorithms do.

In the case of background knowledge, instead, both δILP and dNL-ILP de�ne the

initial predicates as a set of facts, while MetaAbd de�nes the background knowledge as

a set of clauses. This represents an advantage for MetaAbd because it does not require

to manually specify the set of ground atoms in order to de�ne the initial predicates. In

particular, the choice of clauses allows handling in�nite domains because the description

of background knowledge as a set of facts makes the learning impractical as the number

of domain elements grows. From the perspective of noisy background knowledge, both

δILP and dNL-ILP assign a value in [0, 1] to background facts, while MetaAbd expects

that B is exact and free from uncertainty. This could represent a problem for MetaAbd

in some applications, because background knowledge is often imperfect and uncertain.

4.4.2 Language bias

As said, the induction of rules requires searching in a large search space. In order

to guide the search, ILP algorithms normally employ a language bias, which is typically
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de�ned as a set of rules or constraints that partially de�ne accepted rules. δILP de�nes

di�erent restrictions for the generation of rules. As mentioned, a predicate can be de�ned

by only two rules in δILP, but other constraints are imposed on the generation of rules,

as discussed previously. These restrictions on the generation of rules combined with a

program template allow δILP to e�ectively learn from data, although the approach is

not su�ciently scalable because the number of weights grows quickly as the di�culty

of the task increases. On the other hand, dNL-ILP is more scalable, and it requires

only some parameters to de�ne the search space for the generation of rules. Rules are

generated by only specifying the de�nition of the target and of the auxiliary predicates,

namely, the name and the arity of each predicate together with the number of variables

in the body of each rule. Although these two algorithms use some form of template�

as a speci�c set of parameters�to restrict the search space, dNL-ILP represents a more

�exible approach than δILP because the number of required weights is smaller and the

structure of the induced rules is less constrained. MetaAbd follows another approach, and

it employs meta-rules to de�ne the structure of the generated rules. Using this approach,

the human expert can use the domain knowledge to improve the learning performance,

but it is rarely possible to accurately foresee the structure of the solution to a particular

task, and this makes meta-rules impractical for real-world applications.

4.5 Open challenges

Although there is a growing interest on neural-symbolic methods for ILP, several

problems remain to be tackled. From the perspective of the supported features, many

approaches do not fully support automatic predicate invention. Moreover, the language

biases used to guide the generation of rules impose too many constraints, or they require

the human expert to inject too much domain knowledge to e�ectively learn an appropriate

solution to a learning task. Both meta-rules and program templates are not suitable

for real-world tasks, and an interesting attempt to target these problems is DLM [10],

which uses a more complex subset of FOL than Datalog. Unfortunately, DLM produces

ground rules only, but it can be considered as an interesting starting point to overcome

the mentioned problems. In addition, only a few algorithms are capable of e�ectively

learning program written in a Datalog dialect from noisy data.

From the user perspective, neural-symbolic ILP methods are often di�cult to use

because they lack a complete and user-friendly implementation. When available, these

implementations are typically not well documented and maintained. Therefore, it would

be necessary to pay more attention to these aspects to reach a wider audience and to
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increase the research e�ort on this subject. In addition, it is di�cult to perform a

comparison of neural-symbolic ILP methods from the perspectives of performance and

scalability because there is no standard set of benchmarks for ILP algorithms. Paying

more attention to these aspects is important to reach a wider audience and to increase the

interest of researchers in ILP and related challenges. An interesting development could

be the design and the implementation of a tool like OpenAI Gym [27], which provides a

benchmark suite for RL algorithms, to speci�cally assess ILP methods. Unfortunately,

Gym does not provide a logical interface to the RL tasks, which could be used to train

neural-symbolic methods. A tool like OpenAI Gym could provide di�erent learning

problems, from toy problems to real-world problems, allowing researchers to e�ectively

measure the characteristics of proposed methods in di�erent situations.

Other aspects to consider are related to the representation of data and to the treat-

ment of noisy background knowledge, as showed in the second comparison. MetaAbd

de�nes background knowledge as a set of rules. On the contrary, the other studied al-

gorithms require the knowledge base to contain only ground atoms. Therefore, MetaAbd

is capable of handling in�nite domains, unlike δILP and dNL-ILP. On the other hand,

MetaAbd does not support noisy background knowledge, which is instead supported by

the two other methods. None of the three approaches support both these features, and it

would be interesting to further investigate the possibility to support both these features.

Finally, in most ILP algorithms, the training set is composed of logical facts and rules.

MetaAbd is one of the few algorithms that natively supports images as training examples.

It would be interesting to further investigate in this direction, designing a method that

natively learns logical rules from complex images.

Symbolic techniques have several advantages over sub-symbolic techniques, including

the possibility of extending an existing knowledge base for transfer or lifelong learning.

In order to avoid the explosion of the background knowledge, some form of optimization

among rules is necessary. Many induced rules may represent speci�c cases, even if a more

general rule could be already available. The reduction of the complexity of rules, and the

removal of unnecessary rules, represents a major challenge to be addressed in the future.

Finally, it is worth noting that, especially when using predicate invention, the learned

rules may be di�cult to interpret. The optimization of rules could help improve the

interpretability of the learned rules, but a greater e�ort should be made to guarantee

that the generated rules are understandable by humans.

From the comparisons emerges that several improvements has been made, with fea-

tures like recursion and predicate invention that are more and more supported. However,

many problems remain to be tackled. Nonetheless, the works discussed in this disserta-
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tion witness that neural-symbolic ILP has the potential to overcome the limitations of

traditional ILP, allowing to produce reusable and interpretable solutions to real-world

problems. As already mentioned, ILP methods could represent a good starting point to

deal with RL tasks. The next chapter presents a new neural-symbolic approach to RL

tasks which is indirectly based on δILP.



Chapter 5

The Proposed Method SD-NLRL

This chapter presents a new neural-symbolic method for Reinforcement Learning (RL).

The RL literature presents only a few neural-symbolic methods. Neural Logic Rein-

forcement Learning (NLRL) [9], DLM [10], and dNL [11], which is an adaptation of

dNL-ILP [19,20] for RL, are interesting examples of neural-symbolic methods. However,

the existing neural-symbolic methods for RL requires the user to specify a large amount

of information to e�ectively solve a RL task. This represents an important limitation

because it is often very di�cult, or even impossible, to provide such information for

real-world problems. The proposed method is based on NLRL, which is an adaptation

of δILP for RL. Here, for the sake of clarity, the proposed method is called State Driven

NLRL (SD-NLRL).

This chapter is structured as follows. Section 1 discusses the motivations behind

the choice of NLRL as the base of SD-NLRL. Section 2 presents the NLRL algorithm,

describing the main di�erences with the original ILP method, namely, δILP. Section 3

describes the �ve tasks that are used to test the performance of the algorithms: ON,

STACK, UNSTACK, CLIFFWALKING, and WINDYCLIFFWALKING. Section 4 in-

troduces SD-NLRL, discussing the di�erences with NLRL and the proposals that have

been explored for this work. In particular, four versions of SD-NLRL are discussed, and

only the last version reaches a reasonable level of performance. The other three vari-

ants represent the important steps that have been made to obtain the �nal version of

SD-NLRL. Experimental results are presented for twp proposed modi�cation. Finally,

Section 5 concludes this chapter discussing the main problems to be solved and some

interesting ideas that can be explored in the future.

67
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5.1 Motivation

NLRL has been chosen as the base of SD-NLRL for three main reasons:

1. NLRL produces explicit Datalog rules with reasonable performance;

2. The architecture of NLRL can be easily adapted to produce state-driven rules; and

3. The implementation of NLRL is available and easy to inspect.

Other two RL methods that were taken into consideration are: DLM and dNL. From the

perspective of the language used for learned rules, DLM produces ground rules, which

makes this method unsuitable in many real-world applications. Moreover, the support

of state-driven rules is important because the goal of the proposed method is to free the

user from specifying a large number of domain-speci�c parameters, while, at the same

time, producing interpretable policies. Compared to dNL, NLRL works on the level of

rules, de�ning a weight for each de�nite clause. The generation of rules from the states

of the environment, which is the goal of SD-NLRL, is straightforward using the NLRL

architecture. Finally, the availability of an inspectable implementation is also important

because having a usable implementation allows performing an accurate comparison be-

tween the original algorithm and the modi�ed one. In fact, most neural-symbolic RL

methods do not provide an usable implementation. Moreover, when the implementation

is available, a standard set of tasks that can be used to test the performance of the

algorithms is not available. In particular, DLM o�ers an usable implementation, but it

outputs the generated rules in an non-readable format. dNL o�ers a working implemen-

tation that is conceived for ILP tasks only. Therefore, in order to test the ideas that

are the foundations of this work, NLRL has been chosen as a base for the SD-NLRL

implementation.

5.2 NLRL

NLRL is an adaptation of δILP [15], for RL tasks. The paper that introduces NLRL

does not discuss many important details on the actual implementation, the information

that is not explicitly available in the original paper is taken from the available imple-

mentation1. NLRL requires the user to provide a background knowledge expressed using

Datalog rules, similarly to δILP. Moreover, the environment is also described as a set

of ground atoms, and each ground atom indicates whether a speci�c characteristic of

1https://github.com/ZhengyaoJiang/NLRL
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the environment is present. For example, a state of the popular game Tic-Tac-Toe can

be represented as the set [first(1,2),second(3,3),first(2,2),second(3,2)], where

first(K,Y) and second(K,Y) are two predicates that represent X and O marks on the

table at position (K,Y), respectively. Finally, the agent interacts with the environment

taking actions, which are de�ned by action predicates, and each action predicate must

be de�ned as part of the environment. In particular, NLRL tries to learn the best set

of rules that de�ne each action predicate. For example, the actions for Tic-Tac-Toe can

be de�ned as [drawFirst(1,2),drawSecond(3,4),...], where drawFirst(K,Y) and

drawSecond(K,Y) are two action predicates that draw X and O marks on the table at

position (K,Y), respectively.

Let G be the set of ground atoms de�ned for the task. In order to tackle RL problems,

NLRL introduces the concept of MDP with Logic Interpretation (MDPLI ). An MDPLI

is de�ned as a tuple 〈M,pS , pA〉, where:

• M is a �nite-horizon MDP;

• pS : S → 2G is a function that performs the encoding of a state, which is trans-

formed in a set of ground atoms;

• pA : [0, 1]|D| → [0, 1]|A| is a function that maps a valuation of a set of atoms D to

a vector representing the probabilities of each action.

The output of pS includes information on both the current state and the background

knowledge. The learning method is a modi�ed version of the δILP algorithm, and it is

formally de�ned as function fθ : 2G → [0, 1]|D|. The function fθ takes as argument a

set of ground atoms representing the current state, and it produces a valuation vector

representing the assigned score to a set of D ground atoms. The policy can be de�ned

as:

π(s) = pA(fθ(pS(s))) (5.1)

for all s ∈ S. In general, any Policy Gradient method that can solve Deep Reinforcement

Learning (DRL) problems can be used to implement fθ. The original paper makes use of

REINFORCE [34]. Both pA and pS can be implemented using hand-crafted procedures

or arti�cial neural networks. The output of fθ is de�ned for a generic set of ground

atoms D because it is typically di�cult to produce a probability value using the action

atoms only. The original paper discusses a simpli�ed version of NLRL where D = G.

Therefore, the output of the learning algorithm is a valuation vector containing a score

for each ground atom. In particular, pA and pS are de�ned as ad-hoc functions: pS simply

transforms the states into their logical representations, and pA computes the probability
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of the actions using the scores produced by fθ. It is worth noting that both pA and pS

can be implemented using arti�cial neural networks. Therefore, pS can easily work on

images or other non-logical input to build a logical representation of the state, and pA

can implement a more �exible and sophisticated strategy to select actions.

The architecture of NLRL requires pA to be a di�erentiable function. In fact, making

pA di�erentiable allows the gradients to pass from the output back to the weights of the

rules. Now, the hand-crafted function pA that is proposed by the authors of NLRL is

formally de�ned. Let a ∈ A be an action atom, and e ∈ [0, 1]|D| be a valuation vector.

Then, pA can be de�ned as:

pA(e) = {P (a|e) | ∀a ∈ A} where P (a|e) =







l(e,a)
σ

if σ ≥ 1

l(e, a) + σ
|A| otherwise

(5.2)

for all e ∈ [0, 1]|D|. The function l : [0, 1]|D|×A→ [0, 1] extracts the valuation of a single

atom from a valuation vector, and σ is the sum of the action valuations: σ =
∑

a P (a|e).

Using 5.2, the probability of choosing action a is proportional to its score only if the sum

of all action valuations is equal or greater than 1. Otherwise, NLRL evenly distributes

to all action atoms the di�erence between 1 and the sum of all scores. This design of pA

is motivated to increase the di�erences between the weights of desired actions and the

weights of undesired actions. Authors empirically report that de�ning pA as in 5.2 can

produce more interpretable and generalizable policies.

The core of NLRL, represented by fθ, is de�ned using the δILP method, as pre-

sented here recalling the concepts that are discussed in 4.1.2 for completeness. The core

function fθ : 2G → [0, 1]|G| takes a set of ground atoms G as argument, and it tries to

induce Datalog rules that are used to assign a probability to each action predicate. In

particular, fθ takes a set of ground atoms B as argument that represents the background

knowledge. Then, fθ generates all the possible rules that can be used to implement the

action predicates. As discussed previously, the induction of de�nite clauses from data

requires searching in a large search space that is dependent on the size of B. In order to

prune the search space, fθ makes use of a program template, de�ned as follows:

Π = 〈Preda, aritya, (τ
1
p , . . . , τ

k
p ), T 〉, (5.3)

where Preda and aritya are the sets of auxiliary intensional predicates and of their arities,

respectively. T ∈ N is the number of forward chaining steps, and τ jp are rule templates

that specify how fθ generates each rule for each intensional predicate p ∈ Predi. Each

rule template is de�ned as:

τ = 〈v, int〉, (5.4)
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where v ∈ N represents the number of free variables in the rule, and int ∈ {0, 1} indicates

if the intensional predicates are allowed in the rule. It is worth noting that B and Π

must be speci�ed by the user, while the other information is de�ned as part of the task.

A major di�erence between NLRL and δILP is that NLRL allows a target predicate to

be de�ned by more than two rules. For each rule template τ , fθ generates the set of rules

cl(τ) enforcing the same restrictions that δILP enforces:

1. Constants are not allowed in cl(τ);

2. Predicates of arity higher than three are not allowed in cl(τ);

3. Each rule in cl(τ) must contain exactly two atoms in its body;

4. All variables that appear in the head of a rule in cl(τ) must appear also in its body;

5. Two rules that di�er only in the order of the atoms in their bodies are not both

allowed in cl(τ); and

6. An atom is not allowed at the same time in the head and in the body of a rule in

cl(τ).

Let clp be the set of rules that are generated for predicate p ∈ Predi. clp is composed

of the rules that are generated using rule templates τ jp . The size of clp is de�ned as

|clp| =
∑k

j=1 |cl(τ
j
p )|. For each predicate p, NLRL de�nes a vector of weights Wp ∈

R
|cl(τ1p )|×···×|cl(τkp )|, and each weight is associated with a rule in clp. A softmax function is

applied to Wp in order to obtain a probability distribution W ∗
p ∈ [0, 1]|cl(τ

1
p )|×···×|cl(τkp )|:

W ∗
p,k[j] =

eWp,k[j]

∑

j′ e
Wp,k[j′]

. (5.5)

where W ∗
p,k[j] denotes the probability that rule j is the best rule to de�ne the k-th rule

of predicate p. The set of vectors Wp∗ is denoted as W .

As δILP, NLRL uses a continuous relaxation of the truth value associated with a

ground atom. Let G be a set of n ground atoms. Recall that a valuation e is a vector

in [0, 1]n, where each element ei ∈ [0, 1] is the fuzzy truth value of atom γi ∈ G. NLRL

does not de�ne a training set Λ like δILP does. In particular, NLRL takes, for each rule,

T forward chaining steps, and it tries to predict the correct probability value for each

action predicate. In a similar way to δILP, NLRL makes use of background knowledge B

and language L (consisting of constants, action predicates, and extensional predicates),

and it tries to predict the following probability:

P (γ|W,Π, L,B) = fextract(finfer(fconvert(B), fgenerate(Π, L),W, T ), γ), (5.6)
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for each action predicate γ ∈ G. The computation of P (γ|W,Π, L,B) is very similar to

the one that has been presented for δILP:

1. Function fconvert : 2
G → [0, 1] is applied to retrieve the initial truth value of each

ground atom:

fconvert(B) = y where y[i] =







1 if γi ∈ B

0 otherwise
(5.7)

and γi ∈ G is the i-th ground atom.

2. Then, the set of possible rules is generated using fgenerate:

fgenerate(Π, L) = {clp| p ∈ Predi}. (5.8)

3. Then, using function finfer : [0, 1]
n × C ×W × N→ [0, 1]n, NLRL takes T forward

chaining steps to obtain the predicted truth value for each action predicate.

4. Finally, function fextract : [0, 1]
n × G → [0, 1] is used to retrieve the probability of

an action atom γ:

fextract(x, γ) = x[index[γ]], (5.9)

where index : G→ N computes the unique index of a ground atom.

Note that 1 and 2 are executed only at the beginning of the training phase. Then, NLRL

continuously interact with the environment to collect complete episodes. Each episode is

subdivided in batches of b subsequent samples. For each sample, function pS is applied

to retrieve the truth values of ground atoms G that represent the current state of the

environment. Then, 3 and 4 are used to compute the predicted truth value of each action

atom. Finally, pA is applied to compute the probability of each action.

In order to train the weights W , NLRL interacts with the environment, and it com-

putes an appropriate loss function. In particular, an action is chosen using the probability

distribution on action atoms for each sample. The loss function is de�ned as the log-

likelihood of the chosen actions:

loss = −
b

∑

i=1

log(P (ai))Adv(si, ai) (5.10)

where ai is the selected action at time step i, and Adv(si, ai) is the advantage function

of state si and action ai. NLRL tries to minimize the loss function using an optimizer,

enforcing actions ai that are better than the other actions in the current state si. The
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advantage function Adv is implemented using an arti�cial neural network that is trained

together with weights W . In particular, the sequence of states and rewards that de�nes

the current batch of samples is used to train a feed-forward neural network that tries to

predict the return of a given state. The advantage is then computed using Generalized

Advantage Estimation (GAE ) [66]. Let t ∈ {1, . . . , b} be the index of a sample in the

current batch, GAE(γ, λ) is de�ned as:

A
GAE(γ,λ)
t =

∞
∑

j=1

(γλ)jδt+j where δt = rt + γV (st+1)− V (st) (5.11)

and γ ∈ [0, 1] is the discount rate, and λ ∈ [0, 1] is another parameter that is used to

adjust the trade-o� between bias and variance. Value function V is estimated using

the discussed neural network, and the NLRL implementation modi�es the original GAE

algorithm by using the reward of the last sample as the corresponding advantage, i.e.,

A
GAE(γ,λ)
b = rb.

Function finfer is de�ned in a similar way to the one that has been presented for

δILP, and it is based on functions Fc : [0, 1]
n → [0, 1]n, which are de�ned for each rule c.

Each function Fc takes the current truth value of the ground atoms as a valuation, and

it computes a new valuation that represents the truth value of the ground atoms after

the application of rule c. Like δILP, NLRL de�nes a mapping between each ground atom

and a unique index, and it prepares a matrix Xc ∈ N
n×w×2 before starting the training

phase, where w is the maximum number of index pairs relative to ground atoms that

logically entail each ground atom. Xc is formally de�ned as:

xk = {(a, b) | satis�esc(γa, γb) ∧ headc(γa, γb) = γk}

Xc[k,m] =







xk[m] if m < |xk|

(0, 0) otherwise

(5.12)

where xk is a set of index pairs, and each pair references two ground atoms that entail the

k-th ground atom. Similarly to δILP, in NLRL Xc is not fully used because the maximum

number of index pairs w is used to build the structure of Xc. Therefore, NLRL, as well

as δILP, includes a falsum atom ⊥ in G, and each unused pair of indexes (0, 0) is mapped

to the atom pair (⊥,⊥).

During the training phase, NLRL takes two slices of Xc, namely, X1, X2 ∈ N
n×w. X1

and X2 represent the �rst and second element of each pair, respectively:

X1 = Xc[_,_, 0] X2 = Xc[_,_, 1] (5.13)

Then, the algorithm builds two matrices Y1, Y2 ∈ [0, 1]n×w using the function gather2 :



74 The Proposed Method SD-NLRL

R
a × N

b×c → R
b×c:

gather2(x, y)[i, j] = x[y[i, j]] (5.14)

Y1 = gather2(a,X1) Y2 = gather2(a,X2) (5.15)

Y1 and Y2 represent the current fuzzy truth values of a valuation a that are referenced

by X1,X2. NLRL uses Y1 and Y2 to de�ne a matrix Zc ∈ [0, 1]n×w as:

Zc = Y1 � Y2 (5.16)

Element-wise multiplication � is used to implement a fuzzy conjunction between the

truth values of the ground atoms that form the body of rule c. Finally, NLRL de�nes Fc

as:

Fc(a) = a′ where a′[k] = max(Z[k,_]) (5.17)

Here, for each ground atom γk, taking the maximum value implements a disjunction

between the truth values of the fuzzy conjunctions that produce a truth value for γk.

The second major di�erence between δILP and NLRL is the sequence of operations

needed to compute a forward chaining step. In particular, δILP de�nes a forward chaining

step for each pair of rules using the max operator, while NLRL combines the truth values

of each rule using a probabilistic sum operator. Recall that the probabilistic sum is

de�ned as:

a⊕ b = a+ b+ a · b where a, b ∈ [0, 1] (5.18)

NLRL uses fconvert to obtain an initial valuation a0:

a0[x] =







1 if γx ∈ B

0 otherwise
(5.19)

Then, it de�nes a forward chaining step as:

at+1 = a0 +





∑

p∈Predi

⊕
∑

k

∑

j

W ∗
p,k[j]F

j
p,k(at)



 (5.20)

where W ∗
p,k[j] is the weight associated to the j-th rule generated from the k-th program

template for predicate p. Similarly, F j
p,k implements a deduction step for the j-th rule

generated from the k-th template for predicate p. The output of each step at+1 is

dependent only on the initial valuation a0 and on the deduced valuation at. Therefore,

de�nitions of predicates that require less deduction steps have less in�uence on the �nal

valuation. This strategy has been motivated by the authors of NLRL to avoid local

optima during the training phase. In summary, at+1 is de�ned by applying all the
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possible k set of rules that can jointly de�ne a predicate p, weighting the results by

W ∗
p . Like δILP, NLRL sums the resulting valuations for each predicate p because the

valuations are disjoint.

The architecture of NLRL can handle uncertain environments because each ground

atom has a truth value in [0, 1]. Weights are iteratively updated to take the optimal

action in the current state. A the end of the training phase, the rules with higher

weights are presented to the user. NLRL is capable of using the learned rules to solve

slightly di�erent versions of the same task. The RL tasks that have been used to test the

performance of SD-NLRL with respect to NLRL are presented in the following section.

5.3 RL tasks

RL methods are often validated using di�erent type of problems. Unfortunately, a

standard set of RL problems for neural-symbolic algorithms is not available. For example,

the games for the Atari 2600 consoles are widely used to measure the performance of

DRL algorithms. These environments do not provide for logical interface, and they

cannot be directly used with neural-symbolic methods such as NLRL. In order to perform

a fair comparison between NLRL and SD-NLRL, the set of tasks that are discussed

in the paper that proposed NLRL were used. The tasks are �ve: CLIFFWALKING,

WINDYCLIFFWALKING, ON, STACK, and UNSTACK.

In CLIFFWALKING, the environment is a 5 by 5 grid, and the agent is required

to go from a start cell to a goal cell. When the agent goes onto a cli� cell, it receives

a penalty of -1. Conversely, when the agent reaches the goal cell, it receives a reward

of +1. Moreover, the agent is punished with a penalty of -0.02 every time it makes

a move without reaching neither the goal cell nor the cli� cells. This small penalty is

used to encourage the agent to reach the goal state taking the shortest path. Finally,

the agent must complete the task within 50 steps, otherwise the game is terminated.

WINDYCLIFFWALKING is a variant of CLIFFWALKING in which there is a 10%

chance that the agent moves downward, no matter which is the action that it takes.

A state of the environment is described using a single predicate: current(X,Y),

which speci�es the position of the agent in the grid. As discussed previously, the base

problem makes use of a 5 by 5 grid. In order to correctly represent the state, the set of

constants is {0, 1, 2, 3, 4}, and the background knowledge is composed of three predicates:

zero(X), last(X), and succ(X,Y). The predicates zero(X) and last(X) are used to refer

to the constants representing the smallest number and the largest number, respectively.

succ(X,Y) is used to de�ne an ordering among constants (succ(0,1),succ(1,2),...).
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a

b c d GP

P1 P2

P3

Figure 5.1: A block manipulation environment (on the left) and a cli�-walking environ-

ment (on the right).

Finally, the action atoms that are used by the agent to make a move on the grid are:

up(), down(), left(), and right().

The agent is trained on the base environment, and it is than tested using di�erent

versions of the environment to measure the generalization capability of the learning

algorithm. Five variation of CLIFFWALKING and WINDYCLIFFWALKING are used:

top-left, top-right, centre, 6x6, and 7x7. Top-left, top-right, and centre de�ne the initial

position of the agent as top left, top right, and the center of the grid, respectively. 6x6

and 7x7 de�ne a larger grid of 6 by 6 and 7 by 7, respectively. Note that an increase

of the grid size implies increasing the set of constants as well. For example, a state of

CLIFFWALKING is represented in Figure 5.1. G represents the goal cell, and P , P1, P2,

P3 represent the starting cells of the agent. The red circle represents the current position

of the agent, and the state can be described using the following sets of atoms:

[current(1,3)],

while the background knowledge can be represented as follows:

[zero(0), last(4), succ(0,1), succ(1,2), succ(2,3), succ(3,4)].

In STACK, UNSTACK, and ON the agent is required to manipulate blocks. In

particular, STACK requires the agent to pile up all the blocks to obtain a single column.

UNSTACK requires the agent to move all the blocks on the �oor. ON requires the agent

to move a speci�c block onto another speci�c block. Notably, only the block that is the

top of a column can be moved. The agent gets a reward of +1 when it completes the

task within 50 steps, otherwise the game is terminated. When the agent makes a move

that does not end the game, it receives a small penalty of -0.02.

A state of the environment is represented using two predicates: on(X,Y) and top(X).

on(X,Y) speci�es that a block X is on top of Y, where Y can be another block or the
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�oor. top(X) indicates that X is the top block of a column. Background knowledge

is composed of a single predicate, floor(X), that speci�es which constant is used to

represent the �oor. For the ON task, the additional background predicate goal(X,Y)

is used to express which block X must be on top of block Y. The set of constants is

{a, b, c, d, floor}, and there is only one action predicate: move(X,Y), where X must be a

top block and Y must be another top block or the �oor. When the agent takes an invalid

action, the state of the environment is not changed. For example, a state representing

a column of two blocks and two columns of one block is represented in Figure 5.1. The

horizontal line represents the �oor and the background knowledge can be described using

the following sets of atoms:

[floor(floor)],

while the state can be represented as follows:

[top(a), on(a,b), on(b,floor), top(c), on(c,floor), top(d), on(d,floor)].

The base environment of UNSTACK starts with a single column of blocks. Five

variants of the task are de�ned: swap-2, divide-2, 5-blocks, 6-blocks, and 7-blocks. swap-2

and divide-2 swap the top two blocks and divide the blocks in two columns, respectively.

The other three variants increase the number of blocks. The base STACK environment

starts with all the blocks on the �oor. Five variations of the task are de�ned: swap-2,

divide-2, 5-blocks, 6-blocks, and 7-blocks. swap-2 and divide-2 swap the two blocks on

the right and divide the blocks in two columns, respectively. Similarly to the UNSTACK

problem, the other three variants increase the number of blocks. The base environment

of ON starts with a single column of blocks. Similar to UNSTACK and STACK, three

variants are de�ned with an increasing number of blocks: 5-blocks, 6-blocks, and 7-blocks.

Two additional variants of the task are swap-2 and swap-middle, which swap the top two

blocks and the middle two blocks, respectively.

5.4 Inducing rules from states

One of the main issues of NLRL is that rules are generated using a top-down procedure

and the user must specify a large amount of domain-speci�c details to successfully train

the agent. In order to solve this problem, a new algorithm is proposed here. For the sake

of clarity, it will be called SD-NLRL.

The idea behind SD-NLRL is to change the rule generation procedure fgenerate to

learn candidate rules directly from the states of the environment. In particular, the
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algorithm assumes that the environment is able to provide the representations of all

states. SD-NLRL makes use of the such representations to generate the candidate rules.

This bottom-up approach is inspired by the classic bottom-up ILP algorithms such as

Progol [67] (the algorithm combines top-down and bottom-up), which uses a technique

called bottom clause construction. This technique starts de�ning the most speci�c rule

that entails an example, and it then tries to generalize the rule to entail more examples.

Bottom-up ILP methods start from many bottom clauses, and they try to iteratively

obtain a small set of rules that represent the solution of the task. Here, SD-NLRL uses

a slightly di�erent approach because it generates a bottom clause from each state, but,

it does not try to iteratively build the solution of the task. Instead, SD-NLRL tries to

generate abstract rules that can represent a solution to the task, and it then uses the

neural solver to select the subset of the rules that e�ectively solve the problem. Following

the classi�cation among top-down, bottom-up, and meta-level methods presented the

previous chapter for ILP algorithms, SD-NLRL uses an hybrid approach that combines

bottom-up and meta-level approaches.

SD-NLRL does not require the user to specify a program template because it directly

generates candidate rules from the states of the environment. The only hyper-parameter

that is required by SD-NLRL is the number of forward chaining steps T . Formally,

SD-NLRL tries to predict the following probability:

P (γ|W,Π, L,B, S) = fextract(finfer(fconvert(B), fgenerate(S,L),W, T ), γ), (5.21)

where fgenerate takes a language L and the set of possible states S. SD-NLRL expects

that each state is represented as a set of atoms. For each state s ∈ S and each action

atom a ∈ A, a bottom clause is built. In particular, the algorithm generates a bottom

clause using the combination of the logical representation of the state and the associated

background knowledge as the body of the clause, and of the action atom as the head of

the clause. For example, assuming the following state from the CLIFFWALKING task:

[current(3,4)], the algorithm retrieves the atoms that are part of the background

knowledge (they are included in L) and that share at least one term with the state

atoms. For the above example the state representation becomes:

[current(3,4), succ(3,4), succ(2,3), last(4)],

because SD-NLRL �nds all the atoms of B that contain terms 3 and 4, and it adds those

atoms to the �nal state representation. Then, a ground rule is built for each action atom.

The algorithm produces the following rules:

up() :- current(3,4), succ(3,4), succ(2,3), last(4),
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down() :- current(3,4), succ(3,4), succ(2,3), last(4),

right() :- current(3,4), succ(3,4), succ(2,3), last(4),

left() :- current(3,4), succ(3,4), succ(2,3), last(4).

where up(), down(), left(), and right() are the action atoms that are de�ned as part

of the task. Finally, SD-NLRL transforms the ground rules replacing the ground terms

with variables. It introduces a new variable name every time it �nds a new ground term,

starting from the body of the rule and proceeding from left to right. Then, the algorithm

does the same with the head of the rule. The ground rules are rewritten as:

up() :- current(X,Y), succ(X,Y), succ(Z,X), last(Y),

down() :- current(X,Y), succ(X,Y), succ(Z,X), last(Y),

right() :- current(X,Y), succ(X,Y), succ(Z,X), last(Y),

left() :- current(X,Y), succ(X,Y), succ(Z,X), last(Y),

where the variable names are taken from a list [X,Y,Z,K,M]. It would be possible to

invert the valuation order in the procedure, starting from the head of the rule and then

replacing the constants of the body. However, the resulting rules would be less readable

because the head of the clause represents the consequence of the body. Therefore, it is

more natural to de�ne a substitution set for the body, and then use the substitution set

for the head of the rule. For example, when SD-NLRL generates bottom clauses from

the state in Figure 5.1, the algorithm starts from the following state:

[top(a), on(a,b), on(b,floor), top(c), on(c,floor), top(d), on(d,floor)].

There are 25 action atoms for each state: one for each pair of constants that are de�ned

as part of the task. Assuming that the algorithm is trying to generate the clause for

atom move(a,c), which is de�ned as part of the task, it would build the following rule:

move(a,c) :- top(a), on(a,b), on(b,floor), top(c), on(c,floor), top(d),

on(d,floor), floor(floor).

Then, SD-NLRL replaces the constants with variables, and it obtains the following rule:

move(X,K) :- top(X), on(X,Y), on(Y,Z), top(K), on(K,Z), top(M), on(M,Z),

floor(Z)

Replacing the constants of the head before applying the same procedure to the body

produces the following rule:

move(X,Y) :- top(X), on(X,Z), on(Z,K), top(Y), on(Y,K), top(M),

on(M,K), floor(K)
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Therefore, the head atom of the generated rules would be either move(X,Y) or move(X,X),

and the body of rules, which are obtained from the same states, would be completely

di�erent. For the sake of clarity, the algorithm that has been described here will be called

SD-NLRL unground. The procedure is completely described by Algorithms 1 and 2. In

particular, unground_atom takes as argument an atom a, a set of constants F , a set of

variables E, and a substitution set µ. The algorithm starts de�ning the next possible

variable, that is selected from E using function get_next_var, and the set of resulting

terms new_terms. Algorithm 1 makes use of function terms to get all the terms contained

in an atom. Moreover, it uses function get_var to check if the input term is a variable.

If the set of constants F is non-empty, the algorithm transforms only the elements of

F into variables. Otherwise, the algorithm transforms each term de�ned as a part of

the atom. In particular, if F is empty, the algorithm considers each term, and if the

current term is a variable, it is simply added to the resulting set of terms. Otherwise,

if the term is not present in the substitution set µ, a new entry is created in µ and the

term is added to new_terms. If F is non-empty, the algorithm simply adds a term to

new_terms, when the term is a variable or when a term is not contained in F . Otherwise,

if the term is contained in F , the algorithm adds the term to new_terms, and it updates

the substitution set.

In order to reduce the number of generated rules, SD-NLRL enforces some of the

constraints that are used also by NLRL:

1. Constants are not allowed in the generated rules;

2. All variables that appear in the head of a rule must appear also in its body;

3. Two rules that di�er only in the order of the atoms in their bodies are not allowed

together; and

4. An atom is not allowed at the same time in the head and in the body of a generated

rule.

The above constraints are useful to reduce the number of the generated rules without

reducing the �exibility of the algorithm.

An implicit consequence of using the new rule generation strategy is that SD-NLRL

allows an action predicate to be de�ned by an unpredetermined number of rules. More-

over, the body of each candidate rule is composed of an arbitrary number of atoms. In

order to support the changes of the rule generation process, the learning algorithm has

been coherently modi�ed. In particular, the set of generated rules for predicate p, clp,

contains a single set of rules with |clp| = d. For each predicate p, SD-NLRL de�nes a
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vector of weights Wp ∈ R
d, which are normalized using a softmax function to obtain

W ∗
p ∈ [0, 1]d. The set of normalized weights is denoted as W .

The removal the constraints on rule generation improves the �exibility of the learning

process, but it requires a larger amount of computational resources. In fact, SD-NLRL

extends the de�nition of functions Fc : [0, 1]
n → [0, 1]n to allow for an arbitrary number

of body atoms. For each rule c, the algorithm de�nes a matrix Xc ∈ Nn×w×d, which is

formally de�ned as:

xk = {(a1, . . . , ad) | satis�esc(γa1 , . . . , γad) ∧ headc(γa1 , . . . , γad) = γk}

Xc[k,m] =







xk[m] if m < |xk|

(0, . . . , 0) otherwise

(5.22)

SD-NLRL prepares the matrices Xc before the training phase, and it takes d slices of Xc

during the training process, namely, X1, . . . , Xd ∈ N
n×w. Xi represents the i-th element

of the body of clause c. Then, the algorithm uses the gather2 function de�ned in 5.14

to obtain matrices Y1, . . . , Yd ∈ [0, 1]n×w, which represent the current fuzzy truth values

of a valuation that are referenced by X1, . . . , Xd. SD-NLRL makes use of Y1, . . . , Yd to

de�ne the matrix Zc ∈ [0, 1]n×w as:

Zc = Y1 � · · · � Yd (5.23)

Finally, the algorithm de�nes Fc in the same way as NLRL:

Fc(a) = a′ where a′[k] = max(Z[k,_]) (5.24)

In SD-NLRL, a forward chaining step is de�ned in a similar way to NLRL:

at+1 = a0 +





∑

p∈Predi

⊕
∑

j

W ∗
p [j]F

j
p (at)



 (5.25)

where W ∗
p [j] is the weight associated to the j-th rule de�ned for predicate p, and F j

p

performs a deduction step for the j-th rule de�ned for predicate p.

The experimental results that were obtained from the study of the �rst prototype of

SD-NLRL show that the generated rules are overly speci�c. In particular, the algorithm

is able to learn a model that solves the base task of CLIFFWALKING, but it fails to

generalize to the variants of the same task. Moreover, it often fails to to learn a model

using even the standard environment. The algorithm learns a completely wrong strategy,

and it remains stuck in a local optima until the end of the training. This problem has

been solved for the second prototype, and it is discussed in the next section. Another
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Algorithm 1 The function to transform a ground atom into an atom containing variables

1: function ungroud_atom(a, F,E, µ)

2: current_var← get_next_var(E)

3: new_terms← {}

4: if |F | = 0 then

5: for each term ∈ terms(a) do

6: if is_var(term) then

7: new_terms← new_terms ∪ term

8: else

9: if term /∈ µ then

10: µ← µ ∪ {current_var/term}

11: current_var← get_next_var(E)

12: end if

13: new_terms← new_terms ∪ µ[term]

14: end if

15: end for

16: else

17: for each term ∈ terms(a) do

18: if is_var(term) or term /∈ F then

19: new_terms← new_terms ∪ term

20: else

21: if term ∈ F then

22: new_terms← new_terms ∪ term

23: µ← µ ∪ {current_var/term}

24: current_var← get_next_var(E)

25: end if

26: end if

27: end for

28: end if

29: return a new atom with terms new_terms

30: end function
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Algorithm 2 The function to transform a ground rule into a rule containing variables

1: function ungroud(h, b, F )

2: µ← {}

3: �nalb ← {}

4: extv ← vars(h) ∪ vars(b)

5: for each atom ∈ b do

6: res← unground_atom(atom, F, extv, µ)

7: �nalb ← �nalb ∪ res

8: end for

9: �nalh ← unground_atom(h, F, extv, µ)

10: return a new rule with head �nalh and body �nalb

11: end function

problem is that the algorithm requires a large amount of computational resources. In fact,

SD-NLRL must perform each deduction step using large matrices. Moreover, it generates

a large amount of candidate clauses that further increases the complexity of the learning

process. This problem has prevented the �rst prototype of the algorithm from learning

the block manipulation tasks. In particular, SD-NLRL generates 470 candidate rules for

the STACK and UNSTACK environments, and it generates 1488 and 84 rules for the

ON and CLIFFWALKING environments, respectively. The number of generated rules

and the size of their bodies for the ON, STACK, and UNSTACK environments are too

high, and the algorithm was not able to complete the training process. Moreover, the

candidate rules should be less state-speci�c, and the number of body atoms should be

reduced as much as possible. In order to improve the performance of SD-NLRL, as well

as its demand of computational resources, the rule generation procedure was changed to

produce a small number of rules. Having a smaller set of general candidate rules allows

the SD-NLRL neural solver to e�ciently �nd a solution to the considered tasks.

5.5 Inducing general rules from states

Finding a good set of candidate rules is important to increase the generalization ca-

pabilities of the proposed algorithm and to reduce the required computational resources.

In order to improve the quality of the generated rules, SD-NLRL tries to reduce both

the number of atoms in the body of the learned rules and the number of candidate rules.

The logical representation of the states describes the interesting and characterizing

features of the states. Many RL algorithms extract high-level features from the states,
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Algorithm 3 The function that performs rule generation

1: function gen_rules(A,S,B)

2: rules← {}

3: for each s ∈ S do

4: G← get_groups(s)

5: for each g ∈ G do

6: for each a ∈ A do

7: shared← get_shared(a, g)

8: for each b ∈ B do

9: c← constants(b)

10: if c ∩ shared 6= ∅ then

11: g ← g ∪ b

12: end if

13: end for

14: free← get_free(a, g)

15: if |free| = 0 then

16: r ← unground(a, g, {})

17: rules← rules ∪ r

18: else

19: for each f ∈ free do

20: �xed← free \ {f}

21: partial_rule← unground(a, g, �xed)

22: for each b ∈ B do

23: if f ∈ constants(b) then

24: body(partial_rule)← body(partial_rule) ∪ b

25: end if

26: end for

27: r← unground(a, body(partial_rule), {})

28: rules← rules ∪ r

29: end for

30: end if

31: end for

32: end for

33: end for

34: return rules

35: end function
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and DRL algorithms are a clear example of this strategy. In particular, when the state

is represented by an image, these algorithms employ a convolutional neural network to

extract the most relevant features of the image, which are then used to pick the best

possible action. The second prototype of SD-NLRL tries to follow the same strategy,

and it splits the logical representation of each state into di�erent groups of atoms, which

represent the logical features of the states. The algorithm is completely described in

Algorithm 3. The procedure gen_rules takes three arguments: the set of action atoms

A, the set of states S, and the background atoms B. The procedure starts de�ning the

set of generated rules, namely rules, and each state s is subdivided into one or more

groups of atoms. Note that two di�erent groups must have completely di�erent sets of

constants. The function get_groups implements the subdivision of the state into groups,

and it returns a list of groups G. Then, at least one new rule is de�ned for each group

of atoms and for each action atom. Therefore, a single state induces a set of rules that

can simultaneously be true. Each rule represents a logical feature of the state, and it

contributes to the truth value of the target predicate. The constants that are shared

between the action atom and the body of the rule are the most signi�cant ones because

they relate the features of the state to the action to be taken. Therefore, SD-NLRL

includes in each group every background atom that shares a constant with the group.

The procedure gen_rules obtains the set of shared constants, namely shared, using the

function get_shared. Then, it obtains the set of constants of each background atom

b using the function constants, and it adds the background atom to the group if b

contains at least one of the shared constants. Finally, the algorithm builds the set of free

constants, which are the constants that are not shared among the action atom and the

body of the rule after the inclusion of the correlated background atoms. In the pseudo-

code, this procedure is represented by the function get_free. The algorithm then checks

if the set of free constants, namely free, is empty. If free is empty, there is only one

rule that can be generated. Therefore, SD-NLRL directly applies the unground function,

and the resulting rule is inserted in the set of generated rules. On the contrary, if the

set of free constants is non-empty, the algorithm generates a di�erent rule for each free

constant f . In particular, the algorithm applies the unground function to transform the

free constants, except f , into variables. Then, it includes background atoms that contain

f in the body of the generated rule. The function body is used to obtain the body atoms

of an input rule. Finally, the algorithm applies another time the function unground to

transform the remaining constants into variables. In summary, SD-NLRL produces one

rule for each group of correlated atoms, for each action atom, and for each free constant,

adding the needed background knowledge whenever necessary. Therefore, each action
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atom is de�ned by one or more rules that contribute to its truth value depending on the

associated weight and on the speci�c features that the state presents. For example, when

generating the rules from the following state of CLIFFWALKING task:

[current(2,3)],

SD-NLRL generates a single group containing the previous atom only. Then, for each

action atom, it tries to add background atoms that contain constants that are shared

between the action atom and the atom in the group. Unfortunately, the action atoms

have an arity of 0, and the algorithm is not able to add any background atom to the

group. Then, for each free constants, i.e. 2 and 3, SD-NLRL applied the unground

function to the non-free constants, and it includes the background atoms that contain

the free constant. Therefore, the algorithm generates the following rules:

ACTION() :- current(2,X),succ(1,2),succ(2,3),

ACTION() :- current(X,3),succ(2,3),succ(3,4),

where ACTION() can be replaced with up(), down(), left(), or right(). Finally, SD-

NLRL applies the unground function, and it generates the following rules:

ACTION() :- current(Y,X),succ(Z,Y),succ(Y,M),

ACTION() :- current(X,Y),succ(Z,Y),succ(Y,M).

Here, variables X and Y can be assigned to the same value. Therefore, the generated

rules are true in the state current(2,3), but they are true in other states such as

current(1,2).

The current implementation of SD-NLRL is based on the existing implementation

of NLRL, which is available on GitHub2. The implementation of NLRL has not been

updated in the last three years, and it is based on Python 2.7 and Tensor�ow 1.11. Un-

fortunately, these technologies are now considered as deprecated, but the implementation

of SD-NLRL has been obtained by modifying the implementation of NLRL to prevent

any implementation detail from altering the comparison between the two methods.

SD-NLRL shares many hyper-parameters with NLRL. In particular, Table 5.1 shows

the hyper-parameters that are shared between NLRL and SD-NLRL. Moreover, the im-

plementation of NLRL de�nes the number of forward chaining steps T as 4, and the

learning rate as 0.001. The number of training steps are 50,000 for CLIFFWALKING

and WINDYCLIFFWALKING, and they are 30,000 for the block manipulation tasks.

Many of the used hyper-parameters that are de�ned in the implementation are equal

2https://github.com/ZhengyaoJiang/NLRL
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Table 5.1: The hyper-parameters that are shared between NLRL and SD-NLRL.

Hyper-parameter Value

Number of steps per batch 10

γ 1

λ 0.95

Optimizer RMSProp

RMSProp α 0.9

RMSProp ε 0.0000000001

RMSProp momentum 0

Size of the hidden layer of the critic 20 units

to the ones that have been reported by the paper that introduces NLRL. The original

paper de�nes four auxiliary predicates that share common characteristics in all the tasks.

Moreover, the paper de�nes the action predicates for each task. The actual implementa-

tion of NLRL makes use of the same predicate de�nitions reported by the original paper.

In particular, the auxiliary predicates are de�ned using the following program template:

〈[inv1,inv2,inv3,inv4], [2,2,1,1], [[(1,True)],[(1,True)],[(1,True)],

[(2,False)]], 4〉,

where the �rst and the second parameters of the template are vectors containing the

names and the arities of the auxiliary predicates, respectively. The last parameter is

the number of deduction steps T , and the third parameter is a vector containing the

rule templates of the corresponding predicates. NLRL de�nes the templates of the ac-

tion predicates for CLIFFWALKING and WINDYCLIFFWALKING as 〈0, [(3, T rue)]〉,

where the �rst argument is the arity of the predicate, and the second argument is a

vector containing the rule templates. The templates of the action predicate for STACK

and UNSTACK are de�ned as 〈2, [(1, T rue)]〉, while the template for ON is de�ned as

〈2, [(1, T rue), (0, T rue)]〉. The discussed program templates de�ne the rules generated for

each action predicate. For example, the following rules are generated using the program

template of action predicate up() for CLIFFWALKING:

up() :- succ(X,Y),succ(Y,Z),

up() :- succ(X,Y),inv1(Z,Y).
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It is worth noting that the above rules presents 3 free variables, and each rule can contain

both intensional (inv1) or extensional (succ) predicates.

Unlike NLRL, SD-NLRL does not require to specify a template for each predicate.

SD-NLRL requires to specify only the arity of the action predicates. Moreover, in the

second prototype of SD-NLRL, T is de�ned as 1 for all the tasks because the algorithm

generates rules that do not use auxiliary predicates. Therefore, a single forward chaining

step is su�cient to correctly compute the fuzzy truth value of the action predicates. The

reduction of the number of deduction steps can considerably improve the learning speed

as well as the time required to pick an action during the evaluation phase.

The �rst prototype of SD-NLRL uses a softmax function to normalize the weights.

However, di�erent normalization techniques can be applied to the weights. Moreover,

pA can be changed to modify the strategy that is used to select the action. Initially, the

algorithm used a softmax function to normalize the weights, and it used the same action

selection strategy that has been previously discussed. The learning rate was initially

set to 0.001, which is the same value that was proposed for NLRL. Unfortunately, the

updated rule generation strategy was not able to reduce the number of rules for the

block manipulation tasks. In fact, the generated rules for these tasks present multiple

atoms that are connected following a recursive pattern, which cannot be captured by the

proposed strategy. For example, the state:

[top(a), on(a,b), on(b,c), on(c,d), on(d,floor)],

which represents a single column of four blocks, cannot be subdivided into di�erent

groups of atoms because each atom is directly, or indirectly, connected to the other

atoms. Moreover, the only background atom that can be added to the list of atoms is

floor(floor). Therefore, the background atom is always inserted in the list, and the

�nal set of generated rules is the same as the one generated by the �rst prototype of SD-

NLRL. As a consequence, the second prototype of SD-NLRL was not able to complete

the training process for the block manipulation tasks.

In order to test the performance of the second prototype, 10 runs have been performed

for both the CLIFFWALKING and WINDYCLIFFWALKING tasks. Unfortunately, the

algorithm struggled to learn an e�ective strategy. In fact, the action selection strategy

pA was designed to increase, as much as possible, the di�erence between the weights of

the best rules and the weights of the other rules. NLRL generates a large number of

candidate rules. Therefore, it takes a considerable amount of time to signi�cantly change

the rule weights, and the algorithm is able to randomly get a signi�cant amount of

positive rewards during this time. On the contrary, SD-NLRL generates a small number
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of rules for the two cli�-walking tasks. In particular, the algorithm generates 9 rules for

each action predicate. The generated rules are:

ACTION() :- current(X,X),succ(X,Y),zero(X)

ACTION() :- current(Y,X),succ(Z,Y),succ(Y,M)

ACTION() :- current(X,Y),succ(Y,Z),zero(Y)

ACTION() :- current(X,X),last(X),succ(Y,X)

ACTION() :- current(X,Y),succ(Z,Y),succ(Y,M)

ACTION() :- current(Y,X),last(Y),succ(Z,Y)

ACTION() :- current(X,Y),last(Y),succ(Z,Y)

ACTION() :- current(X,X),succ(Y,X),succ(X,Z)

ACTION() :- current(Y,X),succ(Y,Z),zero(Y)

where ACTION() is a placeholder for up(), down(), left(), and right(). The algorithm

generates only 36 candidate rules. Therefore, it is much more likely for the agent to

remain trapped into a local optimum as the algorithm tends to immediately reward a

strategy that is not the correct solution to the problem. As a consequence, the algorithm

often learns a model that performs worse than the random player. If the algorithm

receives a su�cient amount of positive rewards during the initial phase of the training, it

is able to learn a strategy that can be used to e�ectively complete the task. Otherwise,

the agent learns a completely wrong strategy, and, as the training progresses, it fails

to change the rule weights. For example, the agent often learned to go to a cli� cell.

Therefore, it was not able to randomly reach the goal cell, and this behaviour makes the

agent reinforce the current strategy. The learning rate is continually decreased during

training. At the same time, the neural critic continually improves the accuracy of the

estimated state-value function. The updates to the weights are thus increasingly smaller

as the training progress, and, at some point, the agent completely stops learning.

Another problem with the initial con�guration of the prototype was the softmax

function used to normalize the weights. In fact, the softmax function makes the sum of

the fuzzy truth values of the weights equal to 1. Therefore, as the learning progresses,

only 1 rule is selected for each action predicate. In order to solve this problem, a standard

normalization is applied to the weights. In particular, each weight Wp[j] is normalized

using the following rule:

W ∗
p [j] =

Wmax
p −Wp[j]

Wmax
p −Wmin

p

(5.26)

where W ∗
p [j] denotes the normalized weight, W

max
p denotes the maximum weight de�ned

for predicate p, and Wmin
p denotes the minimum weight de�ned for predicate p. Using
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Table 5.2: A performance comparison between NLRL and SD-NLRL on the CLIF-

FWALKING and WINDYCLIFFWALKING tasks. The optimal returns (Optimal col-

umn) are taken from the paper that introduces NLRL [9].

Env. Task NLRL NLRLp SD-NLRL Optimal

CLIFF train 0.807± 0.048 0.862± 0.026 0.673± 0.313 0.880

top-left 0.763± 0.021 0.749± 0.057 0.647± 0.206 0.840

top-right 0.829± 0.020 0.809± 0.064 0.788± 0.031 0.920

centre 0.850± 0.018 0.859± 0.050 0.752± 0.257 0.920

6x6 0.778± 0.062 0.841± 0.024 0.576± 0.499 0.860

7x7 0.765± 0.029 0.824± 0.024 0.529± 0.553 0.840

WINDY train 0.135± 0.481 0.663± 0.377 −0.806± 0.282 0.769± 0.162

top-left 0.250± 0.731 0.726± 0.075 −0.501± 0.459 0.837± 0.068

top-right 0.346± 0.730 0.834± 0.061 −0.319± 0.555 0.920± 0.000

centre 0.498± 0.504 0.672± 0.579 −0.375± 0.526 0.868± 0.303

6x6 0.192± 0.633 0.345± 0.736 −0.863± 0.239 0.748± 0.135

7x7 0.173± 0.660 0.506± 0.528 −0.875± 0.247 0.716± 0.181

this normalization technique, a predicate can be de�ned by multiple rules because Wmax
p

and Wmin
p represent the only constraints on the weights.

This normalization technique allows a predicate to be de�ned by multiple rules. How-

ever, the training process becomes unstable because a large update to Wmax
p or Wmin

p

results in a large update to every other weight. As a consequence, maintaining a learning

rate of 0.001, the agent often learns a wrong strategy, in the same way that have been

discussed before. However, the algorithm keeps changing the weights performing very

small updates. The �nal result is the same but, in this case, the values of the weights

constantly oscillate. Basically, this problem is caused by the learning rate being too

large. The best performance is obtained combing this normalization technique with an

appropriate learning rate. In particular, the value of the learning rate depends on the

complexity of the task. A learning rate value of 0.0005 has been selected to obtain the

best performance on the CLIFFWALKING task. The WINDYCLIFFWALKING task

is more di�cult, and the agent obtains a positive reward less frequently in the initial

phase of the training. In fact, the most appropriate value of the learning rate that has

been tested is 0.0001, which is signi�cantly smaller than the value that has been used for
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Figure 5.2: Average returns (on the left) and losses (on the right) for CLIFFWALKING.

CLIFFWALKING. It is worth noting that some tests have been performed by changing

the action selection strategy pA. In particular, the previously discussed strategy has been

replaced by a softmax function. However, the resulting probabilities were biased because

the softmax was applied to values in [0, 1]. Therefore, the range of possible values of

the output probabilities was smaller than [0, 1], and the agent was not able to learn and

behave correctly in the cli�-walking tasks.

Table 5.2 reports a comparison between the performance of NLRL and the perfor-

mance of the second prototype of SD-NLRL for the two cli�-walking tasks. The table

contains also the column NLRLp that shows the performance of NLRL as reported by

the the original paper [9], for completeness. It is worth noting that the performance

reported by the original paper is much better than the performance that the used imple-

mentation of NLRL shows. The original paper does not report the number of trainings

that have been performed to obtain the corresponding results. On the contrary, the in-

formation that is presented in the table has been produced making 3 trainings for each

task for NLRL and 5 trainings for each task for SD-NLRL. In fact, it was impossible

to make more trials for NLRL because the algorithm requires a considerable amount

of time to complete a training process (NLRL requires approximately 10 days for each

training while SD-NLRL requires less than 2 hours). Therefore, the di�erence between

the results can be justi�ed by the small number of trainings that have been made us-

ing the actual implementation of NLRL. In order to measure the performance of both

methods, each trained model has been evaluated on 100 complete episodes. Then, the
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Figure 5.3: Average returns (on the left) and average losses (on the right) for the WINDY-

CLIFFWALKING task.

average return has been computed using the returns that the agent received during the

evaluation phase. Finally, the values that are shown in the table have been computed

by averaging the average returns on the learned models. Table 5.2 shows that NLRL

slightly outperforms SD-NLRL on the CLIFFWALKING task. It is worth noting that

the performance of SD-NLRL on CLIFFWALKING su�ers from a great variance. In

fact, in 1 of the 5 trainings, SD-NLRL learned a strategy that is able to occasionally

get a positive reward but that is far from the optimal strategy. In particular, the agent

stopped learning, and the algorithm reached a local optimum. This behaviour suggests

that the training process can be particularly sensible to the number of generated rules.

The algorithm should be able to continually explore new action-state pairs avoiding local

optima even when the number of rules is very small, and solving this problem represents

an important goal for the future. The performance of SD-NLRL on the WINDYCLIF-

FWALKING task is far from the performance of NLRL, and the proposed algorithm

was not able to learn an e�ective strategy to complete the task. It is worth noting that

the algorithm sometimes get a positive reward, and it was able to learn over time. Un-

fortunately, the learning speed is very slow, and the algorithm often remains trapped

into a local optimum. Figure 5.2 and Figure 5.3 show the average losses and average

returns for the CLIFFWALKING task and the WINDYCLIFFWALKING task, respec-

tively. In particular, the �gures have been computed using the training data (only the

training environment has been considered). In order to generate the �gures, the losses
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and the returns have been averaged on the learned models. Then, the resulting values

have been averaged every 5 values to improve the readability of the graphs. Finally, each

curve has been smoothed by averaging the points using a sliding window of w = 400.

Despite SD-NLRL reaching lower average returns than NLRL, both the loss curves and

the return curves are smoother in the case of SD-NLRL. Therefore, the algorithm is able

to constantly learn, but it reaches a lower overall performance. In NLRL, the rules are

generated using carefully hand-crafted templates that produce su�ciently general rules.

SD-NLRL generates the rules from the states of the environment. Therefore, the gener-

ated rules can be overly speci�c, and the set of generated rules could not include a good

strategy to complete the task.

SD-NLRL shows performance that are worse than the performance of the original

algorithm, but it was able to perform coherently on tasks that are di�erent from the one

that has been used for training. Moreover, SD-NLRL does not require the user to specify

the form of the �nal solution, which is very important. In fact, it is very di�cult, or

even impossible, to provide such information in many real-world tasks. However, the set

of all possible states is not often available, and the removal of this limitation represents

an important goal for future research.

The number of generated rules plays an important role from the perspective of the

required computational resources. In particular, SD-NLRL generates only 36 rules, while

NLRL generates 2813 rules. Therefore, NLRL requires a considerable amount of time

to complete a training process on the cli�-walking tasks, compared to SD-NLRL. As

previously mentioned, in the case of CLIFFWALKING, for example, NLRL requires

approximatively 10 days to complete a training. SD-NLRL requires only less than two

hours to perform the same training process and using the same machine.

5.6 Learning to avoid an action

In both the CLIFFWALKING and the WINDYCLIFFWALKING tasks, the agent

can move in the four directions. However, the goal cell is always de�ned as the bottom-

right cell of the grid. Therefore, considering the speci�c de�nitions of the tasks discussed

in Section 5.3, the agent must always move to the right, before going down, to correctly

complete the task. The set of learned rules that de�nes the predicate left() must be

impossible to apply. The paper that introduces NLRL reports a similar situation, and

the algorithm learns to avoid moving left. However, the paper shows that NLRL gives a

high weight to a rule that cannot be used. On the contrary, in the experiments that have

been made with the NLRL implementation, the agent learns to avoid moving left, but the
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Table 5.3: The rules generated by the third prototype of SD-NLRL (on the right), with

the associated weights (on the left).

Weight Rule

0.14 left() :- current(Y,X), succ(Y,Z), zero(Y)

0.18 left() :- current(X,Y), last(Y), succ(Z,Y)

0.19 left() :- current(X,X), succ(Y,X), succ(X,Z)

1.0 left() :- current(Y,X), succ(Z,Y), succ(Y,M)

algorithm gives a very small weight to the rules. In fact, the weights of the learned rules

for predicate left() are very small, and only a few weights slightly exceed 0. However,

NLRL does not explicitly contemplate the possibility that one or more actions can be

forbidden by the learned strategy.

The third prototype of SD-NLRL expects that each action can be forbidden. In

particular, the algorithm inserts a special rule, which is called here unreachable rule

for the sake of clarity, into the set of generated rules, for each action predicate. The

unreachable rule has the following structure:

ACTION() :- unreachable_state(),

where ACTION() is a placeholder up(), down(), left(), and right(). The predicate

unreachable_state() is a special predicate that must be di�erent from all the predi-

cates that are de�ned in the task. Inserting an unreachable rule can be useful from the

perspective of the interpretability of the learned rules. In fact, the strategy that NLRL

was able to learn is not easily readable. On the contrary, the unreachable rule represents

a compact and readable solution to the problem.

In order to measure the quality of the generated rules, 5 trainings have been made

for both the CLIFFWALKING and the WINDYCLIFFWALKING tasks. The evalua-

tion procedure that has been used is the same discussed in the previous section. The

experimental results shows that the third prototype of SD-NLRL completely ignores the

unreachable rule in the CLIFFWALKING task, and the algorithm gives a weight of 0 to

the unreachable rule in every test. Moreover, the overall performance of the prototype

is even worse than the performance of the second prototype. The learned rules (with

weight greater than 0.05) of the best trained model for predicate left() are shown in

Table 5.3. The learned rules do not represent a good strategy because the agent goes

left in many situations, though the correct strategy is to go right from almost all the
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Table 5.4: A performance comparison between the second prototype of SD-NLRL (SD-

NLRL2) and the third prototype of SD-NLRL (SD-NLRL3) on cli�-walking tasks. The

returns for SD-NLRL3 are restricted to the best trained model.

Environment Task SD-NLRL2 SD-NLRL3

CLIFF train 0.673± 0.313 0.421

top-left 0.647± 0.206 0.393

top-right 0.788± 0.031 0.737

centre 0.752± 0.257 0.615

6x6 0.576± 0.499 0.211

7x7 0.529± 0.553 −0.166

WINDY train −0.806± 0.282 −0.397

top-left −0.501± 0.459 −0.135

top-right −0.319± 0.555 0.280

centre −0.375± 0.526 0.262

6x6 −0.863± 0.239 −0.521

7x7 −0.875± 0.247 −0.630

positions. The performance of the algorithm for the WINDYCLIFFWALKING tasks is

comparable to the one of the second prototype. The agent does not e�ectively learn a

good strategy, and it occasionally gives a value greater than 0 to the unreachable rule.

Table 5.4 shows a comparison between the performance of the second prototype of SD-

NLRL and the performance of the best model obtained from the experiments on the

third prototype of the algorithm. The comparison shows that, in the CLIFFWALKING

task, the performance of best model that the third prototype of SD-NLRL learned is

worse than the one obtained by the second prototype of the algorithm. In the case of

WINDYCLIFFWALKING, the best model that is learned by the third prototype of SD-

NLRL shows a performance that is similar to the one obtained by the second prototype

of the algorithm. Learning to explicitly avoid certain actions is an interesting advance

from the perspective of the interpretability of the learned rules, and further experiments

are needed to understand how to achieve this goal.
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5.7 Dealing with recursive patterns within states

Dealing with states that present a recursive structure is not a trivial task. In fact,

bottom-up ILP methods typically struggle inducing recursive clauses from examples [53].

A typical example of a simple recursive pattern is the following:

p(X,Y),p(Y,Z),p(Z,K).

The variables in the above sequence connect the atoms following a chain pattern. This

simple pattern can be captured by the following rules:

p2(X,Y) :- p(X,Z),p(Z,Y),

p2(X,Y) :- p(X,Z),p2(Z,Y).

In fact, starting with a list of atoms containing a chain pattern, it is possible to op-

portunely replace the occurrences of p with occurrences of p2. The obtained list of

atoms is not equivalent to the original list, but it represents an arbitrarily long chain of

occurrences of p.

The fourth prototype of SD-NLRL tries to capture the chain patterns included in

states to reduce the number of generated rules as well as the number of atoms in the

body of the generated rules. In particular, the prototype de�nes a special predicate

de�ned as follows:

rec(X,Y) :- on(X,Z),on(Z,Y),

rec(X,Y) :- on(X,Z),rec(Z,Y).

The algorithm employs a modi�ed version of the rule generation function shown in Al-

gorithm 3. The modi�ed rule generation function is described in Algorithm 4. The

algorithm uses function replace_chain to �nd the longest sequence of atoms that fol-

lows a chain pattern, and to replace the sequence with rec(A,B), where A and B are the

constants that limit the sequence on the left and on the right, respectively. For example,

the state:

[top(a), on(a,b), on(b,c), on(c,floor), top(d), on(d,floor)]

is transformed into the following state:

[top(a), rec(a,floor), top(d), on(d,floor)].

Then, the function replace_chain applies a sorting algorithm to the state. The algo-

rithm decides the ordering of the atoms looking at the names of the predicates. When
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Algorithm 4 The function that performs rule generation considering also recursive

patterns

1: function gen_rules(A,S,B)

2: rules← {}

3: for each s ∈ S do

4: G← get_groups(s)

5: for each g ∈ G do

6: for each a ∈ A do

7: shared← get_shared(a, g)

8: for each b ∈ B do

9: c← constants(b)

10: if c ∩ shared 6= ∅ then

11: g ← g ∪ b

12: end if

13: end for

14: free← get_free(a, g)

15: if |free| = 0 then

16: g ← replace_chain(g)

17: r ← unground(a, g, {})

18: rules← rules ∪ r

19: else

20: for each f ∈ free do

21: �xed← free \ {f}

22: partial_rule← unground(a, g, �xed)

23: for each b ∈ B do

24: if f ∈ constants(b) then

25: body(partial_rule)← body(partial_rule) ∪ b

26: end if

27: end for

28: body(partial_rule)← replace_chain(body(partial_rule))

29: r← unground(a, body(partial_rule), {})

30: rules← rules ∪ r

31: end for

32: end if

33: end for

34: end for

35: end for

36: return rules

37: end function
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the names of the predicates are equal, the algorithm looks at the terms proceeding from

left to right. The sorting algorithm is applied to further reduce the number of generated

rules when unground is applied. For example, assuming that unground is applied to the

following two states:

[top(a), rec(a,floor), top(d), on(d,floor)],

[top(a), top(c), rec(a,floor), on(c,floor)],

the bodies of the generated rules would be:

[top(X), rec(X,Y), top(Z), on(Z,Y)],

[top(X), top(Y), rec(X,Z), on(Y,Z)].

The generated rules would appear as di�erent rules, but they represent the same situation.

The sorting algorithm transforms the list of atoms, which would be de�ned as:

[on(X,Y), rec(Z,Y), top(Z), top(X)],

[on(X,Y), rec(Z,Y), top(Z), top(X)].

In this case, the generated rules are equal, and the algorithm discard the duplicate rules.

Table 5.5 shows the experimental results relative to the fourth prototype of SD-

NLRL. In the training environments, SD-NLRL clearly outperforms NLRL in the block

manipulation tasks when considering the experimental results relative to NLRL, and

it reaches a performance that is slightly worse than the one reported by the paper that

introduces NLRL. However, SD-NLRL generalizes only to some block manipulation tasks.

In particular, when the number of constants increases the algorithm struggles to learn

a good strategy. In the ON task, SD-NLRL fails to complete the evaluation process

in two environments because the learned model exceeds the size limits of Tensor�ow.

The reasons behind this behaviours are unclear, and further experiments are required to

completely understand this phenomenon. When the number of constants is not increased,

the agent reaches a near-optimal performance in both STACK and UNSTACK, but

it reaches a lower performance on ON. This is justi�ed because ON is more di�cult

than STACK and UNSTACK. Figure 5.5, Figure 5.4, and Figure 5.6 show the average

losses and returns for the block manipulation tasks. In particular, the �gures have been

computed using the data that is obtained during the training process (only the training

environment has been considered). Both the numerical results in Table 5.5 and in the

�gures have been computed using the same methodology that is discussed in Section 5.5

for the cli�-walking tasks. The �gures show that SD-NLRL learns faster than NLRL, and

it reaches a better overall performance. At the same time, the loss rapidly reaches 0 as the
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Table 5.5: A performance comparison between NLRL and SD-NLRL on the STACK,

UNSTACK, and ON tasks. The optimal returns (Optimal column) are taken from the

paper that introduces NLRL [9].

Env. Task NLRL NLRLp SD-NLRL Optimal

UNSTACK train 0.869± 0.007 0.937± 0.008 0.934± 0.002 0.940

swap-2 0.872± 0.003 0.936± 0.009 0.934± 0.001 0.940

divide-2 0.919± 0.006 0.958± 0.006 0.955± 0.001 0.960

5-blocks 0.786± 0.008 0.915± 0.010 0.076± 0.080 0.920

6-blocks 0.660± 0.003 0.891± 0.014 −0.566± 0.074 0.900

7-blocks 0.559± 0.021 0.868± 0.016 −0.891± 0.033 0.880

STACK train 0.768± 0.015 0.910± 0.033 0.895± 0.047 0.940

swap-2 0.769± 0.053 0.913± 0.029 0.896± 0.052 0.940

divide-2 0.820± 0.028 0.897± 0.064 0.885± 0.047 0.940

5-blocks 0.541± 0.040 0.891± 0.032 0.838± 0.064 0.920

6-blocks 0.234± 0.069 0.856± 0.169 −0.316± 0.060 0.900

7-blocks −0.157± 0.135 0.828± 0.179 −0.867± 0.075 0.880

ON train 0.626± 0.073 0.915± 0.010 0.801± 0.027 0.920

swap-2 0.615± 0.091 0.912± 0.013 0.809± 0.027 0.920

swap-middle 0.636± 0.083 0.914± 0.011 0.739± 0.015 0.920

5-blocks 0.389± 0.134 0.890± 0.016 −0.096± 0.063 0.900

6-blocks 0.138± 0.230 0.865± 0.018 N/A 0.880

7-blocks −0.175± 0.281 0.844± 0.017 N/A 0.860

algorithm learns how to solve the tasks. It is worth noting that the fourth prototype of

SD-NLRL generates 65 rules for both STACK and UNSTACK, while it generates 382 rules

for ON. On the contrary, NLRL generates 1021 rules for both STACK and UNSTACK,

while it generates 2813 rules for ON. Despite SD-NLRL generating more complex rules,

the time required to train a SD-NLRL agent is lower than the time required to train

a NLRL agent. In fact, NLRL requires approximately 3 days to complete a training

process, while SD-NLRL requires approximately 6 hours.
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Figure 5.4: Average returns (on the left) and losses (on the right) for the STACK task.

5.8 Discussion

The experimental results suggest that the fourth prototype of SD-NLRL is able to

learn to solve a RL task using only the states of the environment and the number of

forward chaining steps. In particular, SD-NLRL reaches an overall good performance

on the block manipulation tasks, but it performs poorly on the cli�-walking tasks. The

cli�-walking tasks require the agent to follow speci�c paths on the grid, and the sequence

of actions required to solve these tasks is longer than the one required by the other tasks.

Therefore, it is more di�cult to obtain a random positive reward, as documented in [9].

It is worth noting that the rule generation function of SD-NLRL does not try to partially

combine the background knowledge with each group. For example, the algorithm could

generate a rule for each combination of background atoms that share a constant with the

group. However, increasing the number of generated rules implies an additional amount

of required resources. It is important to �nd the best trade-o� between the number of

generated rules and the required computational resources. Moreover, SD-NLRL is able

to capture only a speci�c chain pattern in the states. This is an example that proves

that the capture of recursive pattern within the states can be crucial to improve the

performance of a method. However, the algorithm that is presented here is very limited.

An interesting research direction would be extending the rule generation function to

produce the most valuable and general rules that can solve the task. Moreover, further

experiments are needed to understand why SD-NLRL struggles to learn a proper strategy
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Figure 5.5: Average returns (on the left) and losses (on the right) for UNSTACK.

when the number of constants is increased in the block manipulation tasks.

Another problem of SD-NLRL is that the algorithm is too much sensible to the

number of generated rules. When it does not receive a su�cient amount of positive

reward, the algorithm quickly learns a wrong strategy, and it stops learning. Moreover,

SD-NLRL requires a considerable amount of computational resources, which increase

as the number and the complexity of the generated rules increase. Finally, SD-NLRL

requires the user to specify a logical representation of all the possible states. These

limitations are other interesting challenges for the future. In particular, SD-NLRL could

generate new rules only when a new state is encountered, assigning an appropriate weight

to each generated rule.

The interpretability of the generated rules is another interesting aspect of SD-NLRL,

and the experimental results show that SD-NLRL does not give an appropriate weight

to the unreachable rule, as it was initially expected. Therefore, further tests are needed

to understand this problem.

The experiments that are discussed in this dissertation are limited because of the

limited time and resources. Therefore, it would be interesting to perform additional tests

to accurately measure the performance of SD-NLRL. Moreover, the combination of SD-

NLRL with a deep neural network would allow the algorithm to work with non-logical

input. An interesting research direction would be the measure of the performance of this

combination on complex visual tasks, such as the tasks included in OpenAI Gym [27].

SD-NLRL uses REINFORCE as its base RL algorithm. However, the NLRL imple-



102 The Proposed Method SD-NLRL

Figure 5.6: Average returns (on the left) and losses (on the right) for the ON task.

mentation includes a modi�ed version of NLRL that is based on PPO [6]. Therefore,

another possible extension of the results presented in this dissertation would be combin-

ing SD-NLRL with PPO, which is one of the most advanced and used RL method that

are currently available.
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Deep Reinforcement Learning (DRL) and Relational Reinforcement Learning (RRL) have

complementary advantages and limitations. DRL is based on arti�cial neural networks,

which are very di�cult to interpret, and the learned policies cannot be easily extracted

and reused. Moreover, the generalization capabilities of DRL methods are limited: DRL

agents do not e�ectively solve tasks that are even slightly di�erent from the oned used

for training. Therefore, it is di�cult to reuse the valuable knowledge that is learned on a

simple task to solve complex, but similar, tasks. Finally, DRL methods do not easily use

an existing background knowledge. This is often a problem because the agent is forced

to learn a large amount of knowledge that could be easily provided by human experts.

However, DRL methods are able to cope with uncertain environments, and they can

learn directly from non-symbolic input. On the contrary, classic RRL methods are able

to generalize to unseen situations, they support knowledge transfer, and they allow the

user to specify a structured background knowledge. However, classic RRL methods are

not typically able to solve complex tasks, and they are not able to handle the uncertainty

of real-world environments.

In order to combine the advantages of symbolic and sub-symbolic Reinforcement

Learning (RL) techniques, neural-symbolic methods for RL have received an increasing

interest from the research community in the last few years. This dissertation presented

the basic concepts of RL in Section 2. Then, it discussed the most in�uential DRL

methods, as well as the classic RRL methods, in Section 3. DRL methods and classic

RRL methods were compared, discussing the main advantages and limitations of the two

approaches. The presented discussion suggested that neural-symbolic methods for RL

can represent valuable tools to overcome the limitations of both DRL and classic RRL.

In fact, neural-symbolic methods for RL combines modern deep learning techniques with

a relational representation of states and actions. In addition, this dissertation presented

a comparison among the most in�uential neural-symbolic methods for Inductive Logic

Programming (ILP) that have been introduced in the last �ve years. In fact, ILP methods

can be adapted to solve RL tasks. The neural-symbolic methods for ILP were compared
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from the perspective of the interpretability of the learned rules and of the reusabiliy of

the learned rules. The comparison suggested that many approaches do not fully support

automatic predicate invention. Moreover, ILP methods require the user to specify a

large amount of information to learn an appropriate solution to a task, or they imposes

too many constraints on rule generation. From a practical point of view, these methods

do not o�er a complete and well-maintained implementation. Moreover, it is di�cult to

compare the performance of these methods because a standard set of benchmarks does not

exist. Other aspects to consider are the representation of data and the treatment of noisy

background knowledge. In fact, only one method is able to learn directly from images,

while all other methods require a logic representation of the examples. Actually, none of

the compared methods support both in�nite domains and noisy background knowledge.

Neural-symbolic methods for ILP are more and more studied, and they represent a way

to overcome the limitations of traditional ILP.

ILP methods learns logic rules from positive and negative examples. Therefore, they

can be adapted to tackle RL tasks. Section 5 introduced a new neural-symbolic method

for RL, called State Driven NLRL (SD-NLRL), which is indirectly based on δILP, a

neural- symbolic method for ILP that was discussed in Section 4. Actually, SD-NLRL is

based on Neural Logic Reinforcement Learning (NLRL), which is an adaptation of δILP

for RL tasks.

The algorithm proposed in Section 5, namely SD-NLRL, generates candidate rules

using a bottom-up approach. In fact, the rules are generated directly from the states

of the environment. SD-NLRL uses di�erent techniques to obtain abstract rules from

states, and the underlying neural solver learns which is subset of the generated rules

that is more appropriate to solve the task. The experimental results showed in Section 5

con�rm that SD-NLRL e�ectively learns to solve di�erent tasks without using program

templates. The algorithm requires only the logic representation of all possible states and

the number of forward chaining steps. Moreover, SD-NLRL is able to reduce the required

time for training and the required computational resources in comparison to NLRL.

Besides its e�ectiveness in solving the considered learning tasks, there are many prob-

lems to be solved before considering SD-NLRL as a de�nitive tool. SD-NLRL performs

poorly on cli�-walking tasks, which are the most di�cult among the studied tasks. An

important challenge for the future is to extend the current rule generation function to

improve the performance of the method on di�cult tasks. In particular, it is impor-

tant to �nd the best trade-o� between the number of generated rules and the required

computational resources. The experimental results discussed in Section 5 showed that

the capture of the recursive patterns within the states can considerably improve the



Conclusions 105

performance of the method. However, the current rule generation function is not able

to e�ectively capture general recursive patterns within the states. Moreover, SD-NLRL

does not generalize to some block manipulation tasks. The extension of the rule gen-

eration function to solve these problems represents another important challenge for the

future. SD-NLRL proved to be too much sensible to the number of generated rules, and

when this number is too small, the method often remains stuck into a local optimum.

Moreover, requiring the user to specify the set of all possible states is a great limitation.

Another limitation of SD-NLRL is that the method does not support noisy background

knowledge, like many neural-symbolic method for ILP. Moreover, the proposed method

does not e�ectively remove unnecessary rules, and it does not reduce the complexity of

the learned policies. Therefore, overcoming these limitations represents other interesting

development of this dissertation. Finally, SD-NLRL fails to learn a special rule that can

be useful to explicitly avoid actions in speci�c situations. These are other interesting

research directions for the future. The experiments presented in this dissertation are

limited, and it would be interesting to measure the performance of SD-NLRL on other

tasks. In particular, complex visual tasks represent a great challenge for the future.

Moreover, SD-NLRL can be extended by replacing its base RL algorithm, REINFORCE,

with modern RL algorithms such as PPO.

In summary, this dissertation presented a comparison among the most in�uential

neural-symbolic methods for ILP that have been introduced in the last �ve years. Then, it

proposed a new neural-symbolic method for RL that showed an overall good performance

on �ve RL tasks. This dissertation also analyzed the major strengths and limitations of

both the base algorithm, NLRL, and the proposed algorithm, SD-NLRL, and it discussed

several relevant research directions for the future. The proposed algorithm is limited and

many improvements are possible. Nonetheless, the experimental results discussed in this

dissertation witness that SD-NLRL has the potential to overcome the limitations of the

current neural-symbolic methods for RL, allowing to compute interpretable and reusable

solutions to complex RL tasks.
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