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A B S T R A C T

The possibility of extending the technological advances with quantum tech-
nologies have attracted many scientists since several decades. However, their
experimental realization is slowed down due to their errors and noise sen-
sitivity. For this reason, recently, one of the most important challenges to
overcome is the necessity of performing reliable and efficient single quan-
tum operations and sequences of them.

This thesis is devoted to the optimization, under unfavorable conditions,
of quantum operations by utilizing standard tools of the quantum control
framework. In particular, we exploit the intrinsic robustness of the accel-
erated adiabatic evolution, using the well-known counterdiabatic driving
methodology, to realize high-fidelity quantum state transfer. The efficient
implementation of such an apparently simple operation is directly linked
to many important applications. Indeed, based on previous experimental
results, first we optimize the protocol for quantum state transfer between
molecular states, otherwise impossible to reach. With the accelerated adia-
batic framework we satisfy the requirements imposed by the experimental
setup obtaining fidelity and robustness much higher than previous propos-
als. Second, we study noisy accelerated adiabatic drivings under the effects
of decoherence and decay in an open quantum system environment. The
results provide new strategies for a further optimization of the driving pro-
tocols in order to counteract a wide range of disturbing phenomena. Indeed,
for our investigation single and two-qubits gates have been considered using
superconducting qubits. Finally, we propose a new compensation scheme
exploiting the tunable interactions typical of a Rydberg platform. The ap-
plication of our protocol to different driving configurations, including the
well-known stimulated Raman adiabatic passage, supports the validity of
the scheme in a large range of applications.

Our findings provide optimization tools for quantum-state transfer which
allow to take a step toward the efficient and reliable realization of fast quan-
tum operations. Indeed, the natural extension of this thesis is the implemen-
tation of our strategies in quantum gates with obvious impact in quantum
computing.
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1
I N T R O D U C T I O N

Since its formulation, quantum mechanics has renewed the physical under-
standing of the microscopic world. Despite its counter-intuitive explanation
of phenomena, many experiments have confirmed its validity, such as the
famous Stern-Gerlach experiment which demonstrates the spin property of
particles [1]. Quantum mechanics is already used in common devices, such
as lasers, transistors, magnetic resonance for medicine purposes and many
others. However, they are devices for ”classical” applications that could not
replicate the behavior of a quantum system. In fact, Richard Feynman intro-
duced the idea that a classical computer could not simulate efficiently the
real quantum world, but a quantum device is needed for this goal [2]. In
the year in which this thesis is written, the 40th anniversary of quantum
computing is celebrated [3] and the Nobel Prize was given to Alain Aspect,
John F. Clauser and Anton Zeilinger for their achievements in quantum op-
tics. Since then, scientists and governments have put a lot of effort in trying
to build quantum computers and quantum simulators. Many problems and
algorithms, that classical computers can solve in ages, have been rethought
such that in their quantum form can be achieved in much shorter time [4].
This is possible by exploiting the quantum phenomena, such as superpo-
sition and entanglement, and some exemplary algorithms are the Deutsch-
Jozsa [5], Shor [6] and Grover algorithm [7, 8]. Although much progress has
been made in recent years for reaching the so called quantum supremacy [9],
a lot of work has still to be done. Many types of quantum platform are being
explored, such as superconducting circuits [10–12], trapped-ion [13] or Ryd-
berg atoms [14, 15]. We anticipate that part of this thesis is dedicated to the
latter type. One of the common problems of all the quantum platforms is the
presence of errors which limit the performance of the quantum device. They
can be generated by the experimental apparatus or can be intrinsic to the
quantum system, as decoherence and decay. To face this problem, tools have
been developed like Quantum Error Correction [16, 17] or Quantum Control

techniques [18, 19]. The present thesis aims at optimizing quantum opera-
tions, such that the effects of errors in the systems is limited, using quantum

control tools.

quantum control Experimental quantum systems are typically con-
trolled using electromagnetic fields, e.g., laser using different techniques.
These techniques are part of the Quantum Control theory which studies meth-
ods to arbitrarily control the particles dynamics [18]. Its applications range
from quantum technologies [20] to the control of molecular processes [21]
and quantum metrology [22]. One of the question that quantum control tries
to answer is the controllability of a system. In other words, the possibility to
reach a desired state by means of a control field and, as a consequence, the

1



2 introduction

Figure 1.1: Quantum control strategies in (a) open-loop and in (b) close-loop. In the
first approach, the controller generates a control pulse which is used to
manipulate the dynamics of the system, e.g., atom or qubit, then a mea-
surement is performed according to the desired operation. The second
approach, instead, is similar to the one in (a), but the measurement is
reported to the controller such that it can optimize the pulse according
to the current state and the noise affecting the system.

feasibility of a real-life experiment. Once the system is controllable, the other
question concerns the choice of the right strategy in order to control the sys-
tem in an optimal way. The coherent control strategy is the set of techniques
that are used to manipulate a quantum system using semiclassical sources,
e.g., laser light, as mentioned before, such that the coherence is maintained.
In this way, it is possible to exploit phenomena like superposition and entan-
glement which are based on constructive or destructive interference between
states. In this context, we have two control strategies: open-loop and close-
loop. The first technique is described in Fig. 1.1(a). The system is controlled
by a controller which generates the proper control pulse to realize a spe-
cific quantum operation. After that, the system is measured and the wanted
quantity is obtained. The second, strategy instead, represented in Fig. 1.1(b),
is similar to the first one but there is a feedback operation that updates the
controller in order to optimize in ”run time“ the control pulse. Despite in
the classical counterpart, this strategy works well, with quantum system it is
more complicated. The reason lies in the fact that a measurement in such a
system will destroy the information, as described by the laws of the quantum
mechanics. Additionally, since we are working in an open quantum systems
environment we will introduce further noise in the system. Nevertheless,
there exist many strategies that address the problem and try to exploit the
advantages of the open-loop control [19].

In this thesis, we concentrate on the first method, open-loop quantum con-
trol, and we will use various techniques according to the problem we want
to address. In particular, among the several techniques that the quantum
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control theory provides, we will use, e.g., the one based on the Adiabatic
Theorem (ATH).

adiabatic quantum control A particular method to control quan-
tum systems requires the use of the adiabatic theorem. Such a theorem has
been formulated by Born and Fock already in 1928 [23] and was later ex-
tended by Kato in 1950 [24]. It states that, given an eigenstate of the initial
Hamiltonian at time t = t0 and a slowly change of the Hamiltonian, the sys-
tem will follow the evolution of the same instantaneous eigenstate for t > t0.
The theorem is very useful especially in quantum control. Knowing the exact
evolution of any initial state, allows one to engineer the system in order to
obtained a specific target state. This particular type of control is used, e.g.,
in building adiabatic quantum gates [25, 26], realizing high-fidelity quantum
state transfer [27]. It also gave birth to a new paradigm for quantum computa-
tion which is called, indeed, adiabatic quantum computation [28]. Although the
adiabatic approach is a powerful method, one of its most important disad-
vantage is the very long evolution time required for the optimal performance.
In fact, any physical quantum implementation has its own coherence time,
according to the specific platform, during which the coherence of the system
is preserved and we can perform quantum operation. This is due to the fact
that a real quantum system is scarcely perfectly isolated and therefore the
interaction with external environments causes decoherence effects. A high-
fidelity adiabatic evolution requires infinite time to be performed, and this
is in contrast with the limitations imposed by the coherence time of phys-
ical implementation. For this reason, techniques to overcome this problem
have been developed and they are known as shortcut-to-adiabaticity (STA) pro-
tocols [29–31]. They allow the perfect adiabatic evolution in a shorter time
with respect to the standard adiabatic one. Many protocols have been pro-
posed [29–31] and among them the most famous and most used ones are the
so-called Dynamical Invariants and Counterdiabatic Driving (CD) protocols
[29]. While the first approach is based on finding the dynamical invariants of
a system Hamiltonian H(t), e.g., Lewis-Riesenfeld invariants [32], the second
one acts on the system by adding extra terms in the Hamiltonian such that
it eliminates the unwanted non-adiabatic transitions between instantaneous
eigenstates [33, 34]. Indeed, in the present thesis, in Ch. 3 and 4, we will
mostly use the latter method, which has already been experimentally real-
ized [35–39], to optimize and analyze different control functions in close and
open environment scenarios.

this thesis In the present thesis, we use the quantum control tools in or-
der to study and optimize quantum operations, especially quantum state/pop-
ulation transfer. Such a quantum operation is useful, e.g., in quantum infor-
mation science [40] in order to perform basic gate operation as the bit flip
(NOT gate) or to prepare specific initial states as in Grover’s search algorithm
[7, 8]. It is also used in controlling chemical reaction as, e.g., in [41]. In the
first result shown in this thesis, we optimize the performance of all-optical
spin switch, which exchanges the spin multiplicity character between singlet
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and triplet states of a molecule. This process is, indeed, realized through a
quantum state transfer in a simplified molecular level structure. We will show
that this is possible using different adiabatic control functions and that the
performance can be further improved by introducing the auxiliary CD terms
for accelerating the transfer. Our numerical study is conducted considering
an isolated environment and, for this reason, we carried out an additional
analysis of the accelerated adiabatic protocols which is the second major re-
sult of this thesis. In particular, we studied the effect of typical noise sources
in an open quantum-system environment. The study is performed in a sim-
ple two-level system and then in a more complicated two-qubits entangling
gate. We point out that the control functions can be further optimized accord-
ing to the type of noise affecting the system. In our third part, instead, we
assume the the population transfer, for instance in a bit-flip gate, is affected
by errors generated by imperfections in the control parameters. The goal is
then to correct such errors and improve the performance of the state transfer.
For this purpose, we propose a two-qubit scheme that exploits the interac-
tion between the two to compensate the effects of the error. We specifically
considered the Rydberg platform, mentioned above, and the numerical and
analytical studies show that it is indeed possible to tune the interaction in
order to correct the effects of the errors.

thesis organization The work starts with an introduction, in part i,
on the background concepts needed for the subsequent sections. In particu-
lar, we review in detail the ATH mentioned above, the CD protocol, and the
control functions that we used. Additionally, the Lindblad master equation
is introduced. In part ii instead, Ch. 3 is dedicated to our first result on the
optimized all-optical spin switch, while Ch. 4 contains the analysis of the
accelerated adiabatic protocols in an open quantum system environment. In
Ch. 5, our compensation scheme is described. Finally, in the last part of the
thesis (part iv), we summarize the results extensively described in the pre-
vious chapters and we overview possible extensions. In particular, we focus
on the implementation of adiabatic CZ gate using the quantum control tools
described here.



Part I

B A C K G R O U N D





2
T H E O R E T I C A L B A C K G R O U N D

This second chapter of the thesis is dedicated to the main theoretical concepts
useful for what is studied in the next chapters. As mentioned in Ch. 1, in our
analysis we use well-known quantum control tools which can be collected in
a more general framework which we call quantum adiabaticity. The two main
results that we exploit in this thesis are the Adiabatic Theorem (ATH) and
the Counterdiabatic Driving (CD). Although both theoretical ideas have been
briefly introduced in the previous chapter, here we will present a more rig-
orous and explicit mathematical treatment. The first section, then, is devoted
to the ATH and in particular we will analyzed an its important application
in the Landau-Zener (LZ) model [42–45]. The second section, instead, shown
the general theory of the CD in the formalism developed by Berry [34]. Then,
we will apply it to the LZ problem and we will compare the results with the
standard adiabatic case of the previous section. Other adiabatic protocols,
besides the LZ one, can be used. In fact, the third section introduces all the
sweep functions that are implemented in the next chapters of this thesis. The
last part of this chapter, instead, presents another important tool, not only
in quantum control theory but also in other fields of the physics, such as
quantum optics [46, 47], which is the Lindblad master equation. It provides
a general description of the evolution of a system when it is not isolated but
it is coupled with the external environment, i.e., open quantum system.

2.1 adiabatic theorem

The ATH of quantum mechanics was formulated for the first time by M. Born
and V. Fock in 1928 [23] and then restudied by Kato in 1950 [24]. The idea
is: given a physical system described by a slowly varying Hamiltonian, it re-
mains in its instantaneous eigenstate. In the following we will see the mathe-
matical implications of this statement. We will follow the treatment by Saku-
rai and Napolitano in [48] which is useful to introduce quantities that we
will use in the next sections.

Start by an Hamiltonian depending on a generic parameter H(t). Since the
applications of the ATH in this thesis require a time dependent Hamiltonian,
from now on we assume that t represents the time. Thus, at every time t we
can write

Ĥ(t)|n(t)〉 = En(t)|n(t)〉 , (2.1)

where En(t) and |n(t)〉 are, respectively, the instantaneous eigenvalues and
eigenstates. Considering the Scrödinger equation

d

dt
|ψ(t)〉 = − i

h̄
Ĥ(t)|ψ(t)〉 , (2.2)

7



8 theoretical background

we can expand the state of the system |ψ(t)〉 onto the instantaneous basis of
Eq. (2.1)

|ψ(t)〉 = ∑
n

cn(t)|n(t)〉 , (2.3)

with time dependent coefficients cn(t). At this point, plugging Eq. (2.3) into
the Eq. (2.2), we get a differential equation for the time dependent coefficients

∑
n

(ċn(t)|n(t)〉+ cn(t)|ṅ(t)〉) = − i

h̄ ∑
n

cn(t)En(t)|n(t)〉 (2.4)

where we have used the Eq. (2.1) and, for the sake of readability, we have
adopted the dot "·" notation for the time derivative.

Projecting onto the state |m(t)〉 and using the fact that 〈m(t)|n(t)〉 = δmn

we get

ċm(t) = − i

h̄
cm(t)Em(t)− ∑

n

cn(t)〈m(t)|ṅ(t)〉 . (2.5)

The next step is to find an expression for 〈m(t)|ṅ(t)〉. Then, if we differentiate
both sides of the Eq. (2.1) and we take the inner product with |m(t)〉, we
obtain

〈m(t)|ṅ(t)〉 = 〈m(t)|Ḣ(t)|n(t)〉
En(t)− Em(t)

, (2.6)

which holds only for m 6= n such that the denominator of Eq. (2.6) is not 0. It
represents the so called nonadiabatic couplings between the eigenstates. We
would like to highlight this relation because it is strictly related with the CD

tool, and we will find it also in the next section.
Now, if we separate the diagonal term from the off-diagonal one in Eq.

(2.5), we can substitute Eq. (2.6) in it, obtaining

ċm(t) = i

(

−Em(t)

h̄
+ i〈m(t)|ṁ(t)〉

)

cm(t)− ∑
n 6=m

cn(t)
〈m(t)|Ḣ(t)|n(t)〉

En(t)− Em(t)
. (2.7)

Now, by assumption, we consider that the Hamiltonian Ĥ(t) change very
slowly in time and consequently the corresponding term is very small com-
pared to the other. With this, we can neglect the nonadiabatic couplings re-
sorting to the so called adiabatic approximation. Equation (2.7) now reads

ċm(t) ≃ i

(

−Em(t)

h̄
+ i〈m(t)|ṁ(t)〉

)

cm(t) . (2.8)

Integrating such an equation, we directly obtain the adiabatic theorem.

cm(t) ≃ eiθ(t)eiγ(t)cm(0) , (2.9)

where the phase

θ(t) = −1
h̄

∫ t

0
Em(t

′)dt′ (2.10)
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is the dynamical phase and

γ(t) = i
∫ t

0
〈m(t′)|ṁ(t′)〉dt′ (2.11)

is the famous Berry phase or geometric phase [49].
The last step is to determine the nature of the two phases. The dynamical

phase θ(t) is real, in fact, in Eq. (2.10) we are integrating an eigenvalue which
is real, given the Hamiltonian Ĥ is Hermitian, and so the result is still real.
For the geometric phase we need to perform one more step. Starting from
the orthonormality of the eigenstates 1 = 〈m(t)|m(t)〉, we can differentiate
both sides getting

0 = 〈ṁ(t)|m(t)〉+ 〈m(t)|ṁ(t)〉 =
= 〈m(t)|ṁ(t)〉∗ + 〈m(t)|ṁ(t)〉 = 2ℜ (〈m(t)|ṁ(t)〉) ,

(2.12)

where ℜ is the real part of a complex number z, and we have used the relation
z + z∗ = 2ℜ(z). Equation (2.12) tells us that 〈m(t)|ṁ(t)〉 is purely imaginary.
Therefore, in the Eq. (2.11), i〈m(t)|ṁ(t)〉 is purely real.

Equation (2.9) show that the system remains approximately in its instanta-
neous eigenstate if the adiabatic approximation holds.

2.1.1 Example: Landau-Zener model

A typical example of the application of the ATH is the Landau-Zener (LZ)
problem. It has been formulated from Landau, Zener, Stueckelberg and Ma-
jorana independently [42–45]. They derived an analytical formula to calculate
the probability of nonadiabatic transitions in a two level system.

In this section we briefly review the model and then we will see the ATH

implications on the transition probability. We will make use of this model
also in the next chapters as a toy model to understand better the phenomena
occurring in more complex systems.

Let us consider a two level system Hamiltonian

Ĥ(t) = h̄αtσ̂z + h̄Ωσ̂x (2.13)

where t is the time, α is a scaling parameter, Ω is the coupling between the
two levels and σ̂i with i = (x, y, z) are the Pauli matrices. For a better compre-
hension of the problem, we describe the Fig. 2.1. It shows the instantaneous
eigenstates vs. time of the Eq. (2.13) represents a typical situation of anti-
crossing (or Avoided Crossing (AC)) where the two instantaneous eigenstates
never cross each each other during the whole duration of the evolution. To
understand the process, let us consider the Eq. (2.13) without the coupling,
so Ω = 0. The time dependent eigenvalues, in this case, are ±h̄αt and they
are represented by the dashed lines in the Fig. 2.1. When Ω 6= 0, the two
instantaneous eigenvalues become |n±(t)〉 = ±h̄

√
α2t2 + Ω2 represented by

the solid lines in the figure 2.1. From the latter expression we can appreciate
the meaning of the name AC, in fact, while in the case with Ω = 0 the two
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Figure 2.1: Typical example of an AC. It shows the instantaneous eigenvalues vs.
time of the two level system in Eq. (2.13). At time t → −∞ the two
instantaneous eigenstates tend to the bare eigenstates, namely |n+(t)〉 →
|1〉, |n−(t)〉 → |0〉. If the Hamiltonian is slow enough in time, at time
t → ∞, the situation is inverted: |n+(t)〉 → |0〉, |n−(t)〉 → |1〉. If the
Hamiltonian is not sufficiently slow, at final time the two instantaneous
eigenstates are a mix between the two bare ones due to the non adiabatic
transitions.

eigenvalues cross at t = 0, when Ω 6= 0 they do not cross anymore, with a
minimum gap occurring at t = 0 and it is twice the value of the coupling,
2 h̄Ω in our case, as it can be observed in the figure.

The ATH allows us to exploit this situation to perform a population transfer.
In fact, in the adiabatic approximation, we follow a specific eigenstate instan-
taneously. For instance, let us consider the Fig. 2.1, starting at t → −∞ in
the bare state |0〉 and adiabatically following the eigenstate |n−(t)〉, at time
t → ∞ we will end in the bare state |1〉. Therefore, the state transfer |0〉 → |1〉
is realized.

From a practical point of view, we have to deal with a finite evolution
time. For the purpose, in the most general manner, we will assume that the
protocol lasts a time 2t f (from tI = tc − t f to tF = tc + t f ) and the AC occurs
at time tc. Now, we introduce a change of variables which will be also useful
in the next sections. First we use a rescaled time τ = (t − tI)/2t f so that
τ ∈ [0, 1], and then we chose the coupling h̄Ω as the energy reference, so we
have T = 2t f Ω and αΩ = αt f /Ω. In this way, setting h̄ = 1, the Eq. (2.13)
becomes

H(τ) = 2 αΩ

(

τ − 1
2

)

σ̂z + σ̂x . (2.14)
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Figure 2.2: Solid lines indicate population of state |1〉 for two values of T, in particu-
lar T = 5 for the blue solid line and T = 20 for the green one. Before the
AC at τ = 0.5, the population is completely in the initial state, |0〉 in this
case. After, it starts to occupy also the state |1〉 in an oscillatory manner,
around a limit value determined by the formula (2.16) with 1 − PLZ and
represented by the dashed lines. In these simulations we set αΩ = 20.
Both the values of T do not satisfy the adiabatic approximation, but it
can be done just by choosing a larger value. In that case, the transfer
efficiency will be close to 100% and no oscillations are present anymore.

in dimensionless quantities. In this description, αΩ is the control parameter
acting on the gap at τ = 0 (initial gap) between the eigenvalues and therefore
larger is better. The corresponding Schödinger equation reads

i∂τψ(τ) = TH(τ)ψ(τ) . (2.15)

where T is the only parameter controlling the time duration of the protocol.
The theoretical formula for the probability of diabatic transitions with these
parameters is [42–45]

PLZ = e
− πT

2αΩ . (2.16)

The formula can be obtained following, e.g., the approach in [50] using tools
from complex analysis.

We are going to show in Fig. 2.2 how the adiabaticity influences the prob-
ability in a population transfer and, in this case, it is controlled by the pa-
rameter T. The solid lines of Fig. 2.2 show the probabilities of the state |1〉,
which we call fidelity, for two exemplary values of T. When T = 5 the evolu-
tion is too fast and therefore the diabatic transition dominates and the most
of the probability remains in the state |0〉. Viceversa, when T = 20 the evo-
lution is slower than the previous case, and in fact we reach better values
of fidelity. We observe that the probabilities of both cases are zero before the
AC, centered in τ = 0.5, and then they start to grow. They present oscillations
around the value 1 − PLZ predicted by the theoretical formula of Eq. (2.16),
represented by the dashed lines in the figure.
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2.2 counterdiabatic driving

In the previous chapter we have seen that in order to satisfy the adiabatic
approximation and perfectly follow an instantaneous eigenstate, we need a
very long evolution time. This condition could generate problems because
of the short coherence time in a quantum systems. Therefore, shortcut to
adiabaticity protocols have been developed and one of these is the Counter-

diabatic Driving (CD) or transitionless quantum driving. It has been developed
independently by [33] in 2003 and [34] in 2009.

In this section we review the idea behind the CD protocol presented in [34],
and we adapt it to the LZ example.

As in the ATH, let us start with a system described by a time dependent
Hamiltonian satisfying

H0(t)|n(t)〉 = En|n(t)〉 , (2.17)

where En and |n(t)〉 are the eigenvalues and eigenstates respectively. If the
adiabatic approximation seen in the previous section holds, the state of the
system simply follows the instantaneous eigenstate. Therefore it has the same
form of the Eq. (2.9)

|ψn(t)〉 = eiθ(t)eiγ(t)|n(t)〉 , (2.18)

where θ(t) and γ(t) are the same quantities defined in Eqs. (2.10) and (2.11)
respectively. So far, the treatment seems very similar to the one we have seen
in the ATH. However, here, we look for an Hamiltonian that drives the state
of the system in a perfect adiabatic manner without resorting to any type
of approximation. To do that, we start from the Schödinger equation for the
evolution operator U(t)

ih̄∂tU(t) = H(t)U(t) , (2.19)

and exploiting the unitarity of U(t) we can write

H(t) = ih̄(∂tU(t))U†(t) . (2.20)

Now, since we want to have a perfectly adiabatic evolution, we chose U(t)

such that

U(t) = ∑
n

eiθ(t)eiγ(t)|n(t)〉〈n(0)| . (2.21)

In this way we have built the unitary operator that evolves the state perfectly
adiabatic. Now we want to derive the Hamiltonian which generates such
an operator. Therefore, let us substitute Eq. (2.21) in the Eq. (2.20) to easily
obtain

Ĥ(t) = ∑
n

En(t)|n(t)〉〈n(t)|+ ih̄ ∑
n

|∂tn(t)〉〈n(t)| − 〈n|∂tn(t)〉|n(t)〉〈n(t)| .

(2.22)
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In this description we can highlight the two parts of H(t) as

Ĥ(t) = Ĥ0(t) + ĤCD(t) , (2.23)

where the first term H0(t) depends on the instantaneous eigenvalues and
eigenstates, while the second one HCD(t) depends on the time variation of
the instantaneous eigenstates.

We have already encountered the term 〈n(t)|∂tn(t)〉 in the previous section,
in particular in the Eq. (2.6). Therefore, we can exploit the previous result to
write HCD(t). Let us use the completeness relation and split the diagonal
part from the off-diagonal one

ĤCD(t) = ih̄ ∑
n

(

∑
m

|m(t)〉〈m(t)|∂tn(t)〉〈n(t)| − 〈n|∂tn(t)〉|n(t)〉〈n(t)|
)

= ih̄ ∑
m 6=n

∑
n

|m(t)〉〈m(t)|∂tn(t)〉〈n(t)| ,

(2.24)

where the last term in the first line cancels out with the diagonal terms of
the sum on m. Substituting now the result in Eq. (2.6), we obtain

ĤCD(t) = ih̄ ∑
m 6=n

∑
n

|m(t)〉 〈m(t)|Ḣ(t)|n(t)〉
En(t)− Em(t)

〈n(t)| . (2.25)

This latter equation is the key result of the Demirplak-Rice’s and Berry’s
idea. What is the difference with the formula in the ATH? The difference lies
in the way the eigenstates of H0(t) are driven. Using the ATH we made the
assumption of a very slow varying Hamiltonian, while in this case we have
not made any type of assumption or approximation. Therefore, using the Eq.
(2.25), H(t) is able to drive in a perfectly adiabatic way the eigenstates of
H0(t) in an arbitrary fast way. From here, the reason of the name shortcut

to adiabaticity. The drawback of this approach is the necessity of introducing
extra control fields which, usually, may be difficult to realize experimentally.

2.2.1 Two-level system

The theory just explained is very general and the only constraint is the non
degeneracy of the eigenvalues. In order to evaluate the Hamiltonian ĤCD(t)

the whole systems (eigenvalues and eigenvectors) must be known and this
could be a problem when one try to calculate ĤCD analytically. In this section
we compute the correction Hamiltonian ĤCD(t) for a general two level sys-
tem as our generic example. The result, then, will be applied to our Landau-
Zener problem in the next section. Let us consider a generic Hamiltonian for
a spin 1/2 system, with h̄ = 1

Ĥ(t) = f (t)σ̂z + g(t)σ̂x , (2.26)
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with f (t) and g(t) two generic time dependent functions. The instantaneous
eigenvalues are n± = ±

√

f (t)2 + g(t)2 and the corresponding eigenvectors
can be defined in the parametric form with the mixing angle

tan (2θ(t)) =
g(t)

f (t)
⇒ θ(t) =

1
2

arctan
(

g(t)

f (t)

)

(2.27)

such that we have

|n+(t)〉 = − sin(θ)|0〉+ cos(θ)|1〉 (2.28)

|n−(t)〉 = cos(θ)|0〉+ sin(θ)|1〉 . (2.29)

Now let us compute ĤCD(t). Start from the time derivative of the Hamilto-
nian (2.26)

∂tĤ(t) = ḟ (t)σ̂z + ġ(t)σ̂x . (2.30)

Then

〈n−(t)|∂tĤ(t)|n+(t)〉
n+ − n−

=
ġ(t) f (t)− ḟ (t)g(t)

f 2(t) + g2(t)
= 2 ∂tθ(t) . (2.31)

Finally we have

ĤCD(t) = 2 ∂tθ(t) σ̂y . (2.32)

In this case, we can notice that the counterdiabatic field is orthogonal with
respect to the operators composing the Hamiltonian (2.26). This property is
extensively investigated in [51, 52]. In the following, we will exploit the well
known result of Eq. (2.32) for our LZ problem seen in the previous section.

2.2.2 Example: Counterdiabatic Landau-Zener

In the previous section we have seen the analytical expression for the CD field
in a spin 1/2 system. Here, instead, we apply that result to compute ĤCD for
the LZ system introduced in the Sec. 2.1.1.

Recall the Hamiltonian (2.14) with mixing angle

tan(2θ(τ)) =
1

2αΩ

(

τ − 1
2

) ⇒ θ(τ) =
1
2

arctan

(

1
2αΩ

(

τ − 1
2

)

)

, (2.33)

eigenvalues ±
√

α2
Ω (2τ − 1)2 + 1 (with h̄ = 1) and eigenstates defined in the

Eqs. (2.28) and (2.29). Applying directly Eq. (2.32), we obtain

ĤCD(τ) = hCD(τ)σ̂y = − αΩ

1 + 4α2
Ω

(

τ − 1
2

)2 σ̂y . (2.34)

The new Hamiltonian is then

Ĥtot(τ) = T

[

2 αΩ

(

τ − 1
2

)

σ̂z + σ̂x

]

− αΩ

1 + 4α2
Ω

(

τ − 1
2

)2 σ̂y , (2.35)
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Figure 2.3: (a) Population of the state |1〉 vs. rescaled time τ for T = 5 (solid blue
line) and T = 20 (orange dashed line). In the presence of the ĤCD correc-
tion they show the very same behavior independent of the value of T. In
contrast to the Fig. 2.2, in both cases they reach very high fidelities (very
close to 1) after the AC. (b) Shape of the matrix element hCD as a function
of the rescaled time τ. We notice that the Lorenzian peak is centered at
the AC which is where the non-adiabatic transitions are more probable.
Other parameter used in these simulations is αΩ = 20.

where T has been defined before Eq. (2.14). The effects of the Eq. (2.34) on
the evolution are shown in Fig. 2.3. In particular, in Fig. 2.3(a) we simulate
Eq. (2.35) for the same parameters of the Fig. 2.2. The result is that the Berry
correction completely eliminates the non-adiabatic transitions, reaching in
this way, a perfect transfer efficiency. In Fig. 2.3(b), instead, we can observe
the Lorentzian shape of the matrix element, identified by the hCD(τ) factor
in the Eq. (2.34), of ĤCD. Its peak is centered on the AC, namely where the
non-adiabatic transitions occur.

2.3 sweep functions

As we have seen in the previous sections, an ideal adiabatic evolution re-
quires an infinite time in order to have a perfect following of the instanta-
neous eigenstate. However, real physical implementation of adiabatic proto-
cols needs to be performed in a finite time. For this reason, the transition is
not perfect and errors accumulate during the evolution. To mitigate such er-
rors, one can optimize the variation rate of the Hamiltonian by designing spe-
cific functions with different characteristic. During the years many adiabatic
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protocols have been studied [53–56], each with its own characteristic. Here,
we present different families of sweep functions that we use in the first part
of this thesis according to the objective of the work. As we will see, each adi-
abatic protocol has its own shape based on the optimization method used. In
particular, we chose the following adiabatic protocols: (i) Landau-Zener-like
(linear time dependence) [53, 56], (ii) Polynomial [55, 56], (iii) Roland-Cerf
[53, 56–58] and (iv) Arctan. They are found by exploiting different methods,
i.e., (i) is not optimized and it is very similar to the Landau-Zener case that
we have seen in the Ch. 2, (ii) is found with the Boundary Cancellation Meth-
ods (BCMs) [55] while (iii) is derived from Local Adiabatic Driving (LAD)
methods [54, 57]. The sweep (iv), instead, is created ad-hoc to satisfy specific
requirements that we will see in Ch. 3. Each function has been chosen for its
different time-dependence and, consequently, behavior near the AC. In par-
ticular, the LZ ramp is the simplest one and it is characterized by a constant
rate during the entire evolution. Then, the PL one is slow far away from the
AC and very fast near it. On the contrary, the RC protocol is optimized such
that it is very fast far away from AC and very slow close to it. Due to the
requirements that we will see in Ch. 3, the ATAN function is designed with a
”non-standard” approach. In detail, it is very fast at the beginning of the evo-
lution and very slow once approached the avoided crossing. An exemplary
plot of their temporal profile, which is not related to their use in the next
chapters, can be seen in Fig. 2.4.

(i) fLZ(τ) = f0 (1 − 2τ) (2.36)

(ii) fPL(τ) =
f0

13

(

13 − 280τ3 + 490τ4 − 336τ5 + 140τ6 − 40τ7
)

(2.37)

(iii) fRC(τ) =
f0(1 − 2τ)

√

1 + 4α2
Ω

f 2
0 τ(1 − τ)

− c1 (2.38)

(iv) fAT(τ) = f0 arctan (c2τ)− c3 , (2.39)

where f0 = f (0) > 0, τ and αΩ are the dimensionless quantities defined
in Sec. 2.1.1 and c1, c2, c3 are parameters that we will use for optimizing the
sweeps (iii) and (iv) in Ch. 3. In App. A we show how we adapted the func-
tions (ii) and (iii), already derived in [55, 56] and [54, 56, 57], respectively, to
our problem.

2.4 lindblad master equation

So far, we have presented theoretical results describing closed quantum sys-
tems, meaning that they are isolated and they are not perturbed by the sur-
rounding environment (also called bath). However, for measuring or control-
ling the system one has to interact with it from the external, and therefore
other degrees of freedom are introduced. The system is then called ”open”,
in the sense that other phenomena can influence its dynamics [59, 60]. For
instance, the dynamics can be affected by dissipation, which causes the loss of
information contained in the system, memory effects, such that the state of the
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Figure 2.4: Temporal profile of the sweeps functions of Eqs. (2.36), (2.37), (2.38) and
(2.39). In this plot we assume that the avoided crossing occurs at τ = 0.5.
In this condition, the LZ protocol has a linear behavior and it is repre-
sented by the solid blue line; the PL, the dashed orange line, is slow far
away from the avoided crossing and fast near it; on the contrary, the RC,
represented by the dash-dot green line, is slow far away from the avoided
crossing and very slow near it; the ATAN sweep, instead, the dashed red
line, is very fast at the beginning of the protocol and it becomes very
slow approaching the AC. In the present vertical scale, the ATAN sweep
does not reach 1 because it is optimized for the specific protocol in Sec.
3.3.

system depends on its previous history, and also decoherence which consists
in the loss of the coherences between the system states. Therefore, the stan-
dard quantum theory is not sufficient anymore for a complete description
of the system. To address this problem, a theory for open quantum systems
has been developed [59, 60]. In general, the Hamiltonian of the system to be
described is of the form

HT = HS ⊗ 1 + 1 ⊗ HE + HI , (2.40)

where HT is the total system, HS is the Hamiltonian of the ”target” quantum
system, HE is the environment Hamiltonian and HI is the term describing
the interaction between the two. As mentioned before, the open quantum
system description is useful to study an experimental situation where the
system interacts with the external environment. In this scenario, however,
the information about a quantum state is not perfect and there are some
uncertainties. For this reason, a more complete description of the system
state is given by the density matrix, which is defined as

ρ = ∑
i

pi|ψi〉〈ψi| , (2.41)

where pi is the probability of being in the i-th state and ∑i pi = 1. Two
properties of ρ are: (i) it has unit trace, that is Tr[ρ] = 1 and (ii) it is a pos-
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itive matrix, i.e., ρ > 0. Given this, the most important missing part is an
equation describing the temporal dynamics of the system HS. For this pur-
pose, one of the most famous equation is the so called Lindblad equation (or
Gorini-Kossakowski-Sudarsahan-Lindblad equation) [61, 62]. Its derivation
is quite long and it is extensively addressed in, e.g., [60, 63]. In contrast, in
this section we limit our analysis on its validity conditions without entering
in detailed calculations. The Lindblad equation is derived under three strong
approximations:

(i) The first approximation is called Born approximation and it consist in
assuming that the coupling between the system and environment is
very weak. This means that environment has a small influence on the
system and the state at time t can be approximated as

ρ(t)T ≈ ρS(t)⊗ ρE . (2.42)

(ii) The second approximation is the Markov approximation which requires
that the time scales over which the system varies are much slower than
those of the environment. Together with (i), they are called Born-Markov

approximation [60].

(iii) The third is the Rotating-Wave Approximation (RWA) which allows to
neglect terms oscillating faster than the frequencies of the phenomena
considered in the system. We use such an approximation also in other
context in this thesis, for instance when we derive Eq. (3.4) in app. B.1.1.

Now, using this three approximations, one can derive the Lindblad master
equation which reads [60, 63]

dρ(t)

dt
= − i

h̄
[H(t), ρ(t)] + D[ĉ]ρ(t) , (2.43)

where ρ(t) is the density matrix describing the state of the system, [H(t), ρ(t)] =

H(t)ρ(t)− ρ(t)H(t) is the commutator, ĉ is the jump or collapse operator and
D[ĉ]ρ(t) is the dissipator which is defined as

D[ĉ]ρ(t) = ĉρ(t)ĉ† − 1
2

{

ĉ† ĉ, ρ(t)
}

, (2.44)

being
{

ĉ† ĉ, ρ(t)
}

= ĉ† ĉρ(t) + ρ(t)ĉ† ĉ the anticommutator.
In this thesis, we consider typical scenario from the quantum optics where,

in general, all three conditions are satisfied and the Lindblad master equation
can be used.

2.5 remarks

In this chapter, we have reviewed some important well-known theoretical
results that are used for studying the problems in the next chapters. In par-
ticular, in Sec. 2.1, we started with the ATH as a powerful tool for controlling
a quantum system. Then, we have seen its application to one of the most
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famous avoided crossing problem, that is the LZ. However, as showed in
Fig. 2.2, for obtaining an optimal state transfer fidelity and reducing the non-
adiabatic transitions probability, we need a very long evolution time which is
unfeasible in a real implementation. The solution for this is presented, then,
in Sec. 2.2 where the STA protocol is introduced. In particular, we have re-
viewed the theory of the CD developed by Berry [34] and we have applied
it to the same LZ problem of the previous section. We analytically computed
the extra HCD term and Fig. 2.3 showed that it is able to perfectly eliminate
the non-adiabatic transitions and obtaining a fidelity, ideally, 1 in a shorter
time compared to the standard adiabatic evolution. In Sec. 2.3, instead, we
have shown that the changing rate of the Hamiltonian can be optimized by
properly design the sweep functions. We have introduced four different adi-
abatic protocols, each with its own characteristics. In the next chapters (Ch.
3 and 4), we will see that such sweeps can be accelerated with the CD. In
the latter Sec. 2.4, instead, we introduced the Lindblad master equation for
solving the dynamic of an open quantum system. Such an equation will be
useful for studying the behavior of the sweep functions under the effects of
decoherence and decay, typical of open quantum system scenarios.





Part II
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3
O P T I M I Z AT I O N O F P O P U L AT I O N T R A N S F E R

In this chapter, we presents our first result about the application of the quan-
tum control techniques showed in the previous Ch. 2. In particular, we will
use the ATH and CD tools to perform an high-fidelity population transfer in
a multi-level system. In the following, first, in Secs. 3.1 and 3.2, we introduce
the scientific context and then the system together with the adiabatic proto-
col used for the evolution, referring to those presented in Sec. 2.3. Then we
compare the performance of the sweep functions in two different regimes: in
Sec. 3.4, a reduced three-level model and in Sec. 3.5 the complete four-level
one.

3.1 introduction to the context

Quantum control tools have been applied not only in simple few levels sys-
tems but also in more challenging scenarios as, e.g., the molecules [20, 21, 64–
67]. Due to the complex level structure of a molecule, controlling the transfer
between any state is not an easy task in non-relativistic quantum mechanics.
However, in the latter years, the relativistic phenomena have been exploited
using, for instance, the spin-orbit coupling which creates a mixing between
electronic states. This has been observed in several systems, e.g., [68–70] and
being able to control it can allow, for instance, the access to otherwise in-
accessible system states (see, e.g., [71, 72]). A number of theoretical studies
have been performed in the subject [73–76] using resonant and nonresonant
laser field. One of the techniques for controlling the spin-orbit coupling ex-
ploits the Autler-Townes effect [77, 78]. It generates a shift of the energy level
when an oscillating electric field is applied in resonance to that level. This
has been used in [79] for controlling the spin-orbit coupling in lithium dimer
(Li2). This has been possible since, in contrast to other molecules which have
been characterized, as Na2 [80], K2 [81], Rb2 [82] and Cs2 [83] (see [84] for a
more complete list), the spin-orbit coupling in Li2 is weak and therefore eas-
ier to control. Its characterization has been done in [85] while in [84] a sim-
plified four-level structure is provided in their Fig. 2. The considered states
have singlet and triplet spin character mixed by the spin-orbit coupling. With
those states, in [84] the authors realize an all-optical spin switch [74, 86, 87]
by using a continuous-wave field exploiting the Autler-Townes effect. In our
work, instead, the objective is to improve the protocol using a time dependent
control driving. In this way, we aim at realizing an all-optical switch faster
than theirs and with higher efficiency based on the quantum control tools
introduced in Ch. 2. Unlike in [84], where the authors studied the all-optical
switch with an effective two level system, we realize it in the simplified four-
level which is still more similar to the experimental realization in [79]. Such a

23
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|S〉

|T 〉

∆so

|1〉

Ωp

δc

δp

|2〉

Ωc

ΓT

|Tg〉

Figure 3.1: Level scheme of the bare states of the system. There are two lasers with
Rabi frequencies Ωp, with detuning δp, and Ωc, with detuning δc, con-
trolling the transitions |1〉 → |S〉 and |T〉 → |2〉 respectively. The level
|T〉, separated from |S〉 by the energy h̄∆so, decays towards the level |Tg〉,
which is the target level that will be measured, with a rate of ΓT indicated
by the wavy arrow in the figure.

treatment is valid also for other quantum systems experiencing the spin-orbit
coupling.

3.2 system setup

The system, already experimentally investigated in [79, 84, 88] and theoret-
ically in [73], consists of a complex level structure. However, for our pur-
poses, we use the simplified four levels model, as mentioned above, labeled
|1〉, |S〉, |T〉 and |2〉, plus an extra level |Tg〉 needed for the experimental mea-
sures. The scheme is shown in Fig. 3.1 where we can distinguish two lasers
driving the transitions |1〉 → |S〉 and |T〉 → |2〉 with Rabi frequency Ωp and
Ωc and detunings δp = ωp − (ES − E1) and δc = ωc − (E2 − ET) respectively.
In our case, as represented by the dashed lines in the Fig. 3.1, δc is blue de-
tuning, since it assumes only positive values, while δp is red detuning, since
is mainly negative. The all-optical switch is realized through a population
transfer, that is, so, our objective.

We want to prepare a triplet state which translate into realizing the popula-
tion transfer from the state |1〉 to the triplet state |T〉 without populating the
singlet state |S〉. As studied in [73], the spin-orbit coupling between two orig-
inal unperturbed singlet and triplet states |S0〉 and |T0〉, separated by energy
h̄∆0, generates the two perturbed states |S〉 and |T〉 with energy separation
h̄∆so. The spin-orbit coupling V is written in the form (h̄ = 1)

Hso = V (|S0〉〈T0|+ |T0〉〈S0|) , (3.1)

and the two perturbed states read

|S〉 = α|S0〉 − β|T0〉 |T〉 = β|S0〉+ α|T0〉 , (3.2)
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where |α|2 + |β|2 = 1. Moreover, the relations between the spin-orbit coupling
V and the energy h̄∆0 with h̄∆so can be derived, as in App. B.2 and are (with
h̄ = 1)

∆0 = (α2 − β2)∆so V = αβ∆so . (3.3)

Taking into account the spin-orbit coupling in the dynamics of the system
allow to use the manifold |S〉 − |T〉 as a gateway to realize the wanted pop-
ulation transfer |1〉 → |T〉. In our work, we use the same experimental val-
ues found in [79], that are ∆so = 2π · 0.75 GHz or equivalently 4.71 ns−1,
α2 = 0.87, β2 = 0.13 and Rabi frequencies Ωp = 0.24 ns−1 and Ωc = 3.8 ns−1.
Then, the system is governed by the four-level Hamiltonian written in the
basis {|1〉, |S〉, |T〉, |2〉}

H(4) =













δp + ∆so αΩp/2 −βΩp/2 0

αΩp/2 ∆so 0 βΩc/2

−βΩp/2 0 0 αΩc/2

0 βΩc/2 αΩc/2 −δc













, (3.4)

where all the elements have been introduced before in this section. The levels
|S〉 and |T〉 have a very short life times that are represented by the two
parameters ΓS = 0.06 ns−1 and ΓT = 0.1 ns−1.

While in [79, 84] the author studied the system in the Autler-Townes
regime, which means δc ≈ 0, in our work we explored two regimes: the
first, is obtained by supposing |δc| ≫ Ωc, so that the state |2〉 can be adiabat-
ically eliminated obtaining, in this way, an effective three-level problem (the
procedure is shown later in Sec. 3.4); the second one, is in the Autler-Townes
regime with δc comparable with Ωc. In this latter case, the complete four-level
system must be studied and, obviously, the treatment is more complicated
than in the first case.

3.3 adiabatic protocols

For realizing the wanted population transfer |1〉 → |T〉 we resort to the
generalized idea of the Landau-Zener (LZ) model [53, 56–58, 89] assuming
δp a time-dependent function, which reads as

δp(τ) = a f (τ) , (3.5)

where a = 10 ns−1 and the dimensionless sweep functions f (τ) have been
defined in the Ch. 2. In particular, in this chapter we will use the driving
functions (i), (iii) and (iv) of Eqs. (2.36), (2.38) and (2.39) respectively. The LZ

is chosen since its the simplest ramp derived from the Landau-Zener prob-
lem. Then, unlike the LZ sweep which has a constant rate during the entire
evolution, the ATAN has a non linear shape, being very fast before the avoided
crossing and very slow after it. As we will see, this feature will produce better
performance than the LZ one. This has been specifically designed such that
a second avoided crossing is not created. The latter sweep, the RC, as men-
tioned in Sec. 2.3, is designed by optimizing the local adiabaticity condition
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(further detail are shown in App. A.1). This results in a very fast evolution
far away from the avoided crossing and a very slow one in its vicinity. As
we will see, this produces the best performance among the three protocols.
In the following simulations, we fix the parameter f0 = 1 and we use the
change of variable αΩ = 2a

βΩ
.

For measuring the efficiency of the population transfer, we define the fi-
delity as

F = |〈T|ψ(t = t f )〉|2 , (3.6)

where |ψ(t = t f )〉 is the state of the system at the end of the evolution, that
is at time t f .

We will see that, the very fast decay rate of the target state |T〉 represents a
problem for our adiabatic (slow) evolution. The solution to this is the applica-
tion of the CD protocol, introduced in Sec. 2.2, which speed up the adiabatic
evolution.

In the following, we investigate the sweep functions first in the simpler
reduced three level system and then in the complete four-level one. In both
cases, we study the accelerated evolution and the standard adiabatic one.

3.4 reduced three-level system

As mentioned before, the complex molecular model presented in Sec. 3.2 can
be reduced to an effective three-level one by adiabatically eliminating the
state |2〉. In this section, we indeed study such a case which is simpler with
respect to the four-level system.

For the purpose, we consider |δc| ≫ Ωc such that the state |2〉 is not in-
volved in the evolution anymore. In this regime, the state |2〉 can be adiabati-
cally eliminated using the standard adiabatic elimination procedure studied,
e.g., in [90] and shown in the following lines. Starting from the matrix in
Eq. (3.4), we can write the corresponding differential equations for the time
dependent coefficients with h̄ = 1






























iĊ1 = (δp + ∆so)C1 + α
Ωp

2 CS − β
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2 C1 + ∆soCS + β Ωc
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2 CT − δcC2→ Ċ2 = 0 ⇒ C2 = Ωc
2δc

(βCS + αCT) .

(3.7)

Starting from |1〉 and recalling that |δc| ≫ Ωc, the state |2〉 remains essentially
unpopulated. In this way, we can impose that its population does not change
in time and we can find the condition for C2, highlighted in red in Eq. (3.7).
Now, plug the expression of C2 into the other coefficients, we obtain

⇒
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(3.8)
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⇒
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(3.9)

The latter equation can be written in matrix form so that we obtain the effec-
tive three level matrix describing the reduced system in the basis {|1〉, |S〉, |T〉}

H(3) =
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. (3.10)

In this representation, the light-shift of the level |T〉 induced by the Autler-
Townes process is evidently

δls = α2 Ω2
c

4δc
, (3.11)

which in this case is small since |δc| ≫ Ωc. It is worth noting that by neglect-
ing the small ”second order” terms proportional to β2, α2 and αβ, we obtain
the same matrix of Eq. (5) in [73]. Now, we can study such a system using
the adiabatic protocols introduced above.

3.4.1 Adiabatic and Counterdiabatic Evolution

As mentioned in Sec. 3.3, we want to realize the quantum state transfer
|1〉 → |T〉 by using different temporal profiles for the probe detuning δp.
Figure 3.2 shows the instantaneous eigenvalues, as a function of the rescaled
time t/t f , for the three chosen sweep functions that we have introduced
in Sec. 3.3. In particular, in Fig. 3.2(a) the LZ ramp is represented and two
avoided crossings, the first |1〉 − |T〉 occurring at t/t f ≈ 0.25 and the second
|1〉 − |S〉 at t/t f ≈ 0.5, are visible. Since we are interested only in the first
one, the sweep function can be terminated before the second. This problem
is discussed in detail in App D. In Fig. 3.2(b), instead, the ATAN sweep is
optimized, with the parameters c2 = 20 (dimensionless) and c3 = 19.2 ns−1,
such that only the first avoided crossing, around t/t f ≈ 0.45, between |1〉
and |T〉 is generated. Finally, the third case in Fig. 3.2(c) is represented by
the RC sweep. Also in this case we observe only the wanted avoided cross-
ing created very early in time and we will see that its performance are the
best one. We recall that the temporal shape of the three sweep functions is
depicted in Fig. 2.4.

The drawback of all the three adiabatic driving protocols is the very long
time required for reaching high fidelities. For this reason we also introduce
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Figure 3.2: Instantaneous eigenvalues as a function of rescaled time for the three
driving functions in the case of the reduced three-level model. (a) LZ

sweep of Eq. (2.36) creates two avoided crossing, |1〉 − |T〉 and |1〉 − |S〉.
However, we are interested only in the first one and we would like to
have the state |S〉 unpopulated. (b) ATAN sweep of Eq. (2.39) with c2 =
20 and c3 = 19.2 ns−1. Such a sweep function is designed ad-hoc in
order to avoid the creation of the second avoided crossing with the state
|S〉. (c) Similar to the case in (b), the RC sweep, with c1 = 4.68 ns−1,
generates only the wanted avoided crossing |1〉 − |T〉. In each figure, the
three instantaneous eigenvalues are represented by the solid/blue line,
dashed/orange line and dash-dot/green line. In the three figures we can
distinguish the starting eigenstates on the left and the final one on the
right. Other simulation parameters are a = 10 ns−1, δc = 30 ns−1. (Figure
adapted from [91])
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the CD correction in order to accelerate the adiabatic evolution and to obtain
very high fidelity in a time that is shorter than the life time 1/ΓT of the target
state |T〉. In the following, we will compare the two results.

3.4.2 Results

In the previous section we have introduced the three adiabatic protocols that
we used to perform the population transfer |1〉 → |T〉. Here, instead, we
show the comparison of their performance in the case of the standard adia-
batic dynamics and of the accelerated one with the CD correction.

Figure 3.3 shows the populations of the three states |1〉, |S〉 and |T〉 for the
three chosen sweep functions. In particular, in Fig. 3.3(a) we the LZ case is
depicted. It has the worst performance with respect to the other protocols,
reaching a fidelity around 50% with a total evolution time of t f = 1000 ns.
It presents also coherent oscillations between the states |1〉 and |T〉 due to
the early termination of the LZ function, before the second avoided crossing
(see App. D for details). Figure 3.3(b) shows the populations for the ATAN

protocol. It reaches better fidelities than the LZ case, with a value around
98%. This is the result of the optimization of the ATAN function by means of
the parameters c2 = 20 (dimensionless) and c3 = 19.2 ns−1. In the latter, Fig.
3.3(c), the populations corresponding to the RC function are shown. We see
that, its almost constant rate around the avoided crossing, represented in Fig.
3.2(c), generates a linear behavior in the populations change. Additionally,
the fidelity reached in this case is approximately 99.97%, producing the best
performance among the driving protocols that we have studied.

Although the fidelity has been improved, the adiabatic protocols discussed
above require a very long total evolution time, t f = 1000 ns in the case of
Fig. 3.3. Therefore, in order to accelerate the evolution and eliminating all
the non adiabatic transitions between the eigenstates, we resort to the CD

correction term. Using the Hamiltonian HCD introduced in Sec. 2.2, we obtain
the populations shown in Fig. 3.4. As we can appreciate, the three sweep
functions, LZ in Fig. 3.4(a), ATAN in Fig. 3.4(b) and RC in Fig. 3.4(c), reach
fidelities very close to 1. The total evolution time used in these simulations
is t f = 1 ns, confirming the reduction of the time required to reach high
fidelities in the presence of the CD term. Additionally, the oscillations that
were present in the Fig. 3.3, here are completely eliminated in all the three
sweep functions. Once the state |T〉 has been populated, we can transfer its
population to the state |Tg〉, which will be measured, either with a π pulse,
or waiting a sufficient time such that it decays completely by spontaneous
emission. This latter solution can be adopted only with the CD protocol, since
it requires an evolution time shorter than the time decay 1/ΓT ≈ 10 ns, in
our case.

In the following, we investigate the three sweep functions in the case of
the four level model in the similar way that we have done in this section.
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Figure 3.3: Populations of the three states in the case of the standard adiabatic evo-
lution of the chosen sweep functions. In (a) it is represented the LZ pro-
tocol, in (b) the ATAN and in (c) the RC one. The simulations have been
performed for a total evolution time of t f = 1000 ns−1, much longer than
the decoherence time of the state |T〉. At that fixed evolution time, the
LZ sweep has the worst performance reaching a fidelity slightly below
50%. The coherent oscillations observed here are discussed in App. D.
The ATAN protocol reaches much higher fidelities with a value oscillating
around 98%. The latter RC one, instead, is the best one with a fidelity of
99.97%. In all the three cases (a), (b) and (c), the state |S〉 remains un-
populated. Other simulations parameters are δc = 30 ns−1, a = 10 ns−1,
c1 = 4.68 ns−1, c2 = 20 (dimensionless) and c3 = 19.2 ns−1. (Figure taken
from [91])
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Figure 3.4: Populations of the three states in the case of the accelerated adiabatic
evolution using the CD correction. As in Fig. 3.3, case (a) represents the
LZ sweep, case (b) the ATAN and (c) the RC one. All the three accelerated
protocols reach fidelities very close to 1 at the end of the evolution. We
also notice that the oscillations visible in the Fig. 3.3, here are completely
eliminated by the CD term in all the three sweep functions. In this case,
the total time evolution is t f = 1 ns−1, that is much shorter than the life
time 1/ΓT of the state |T〉. Other simulation parameters are the same as
in Fig. 3.3.
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3.5 autler-townes regime

In the section, we discuss the regime of small |δc|, in particular when it is
comparable with Ωc. This case is part of the Autler-Townes regime which is
a particular AC Stark effect realized with resonance conditions, that is δc = 0
in this case. Here, we do not consider the exact resonant case because of the
degeneracy problems that can arise in the CD term, as discussed in 2.2. Hence,
we work with the value δc = 1 ns−1 such that the Autler-Townes effect cannot
be neglected and the adiabatic approximation cannot be used. Therefore, the
dynamics is described by Eq. (3.4). Also in this regime we study the efficiency
of the population transfer |1〉 → |T〉 using the chosen sweep functions of Sec.
3.3.

As in the reduced model case, Fig. 3.5 shows the instantaneous eigenval-
ues for the three adiabatic protocols. In Fig. 3.5(a) the LZ sweep creates three
avoided crossings, one with each levels. Since we are interested in the second
one, in this case occurring around t/t f = 0.35, the LZ ramp can be termi-
nated before reaching the level |S〉. This produces effects similar to the one
discussed in App. D. Figure 3.5(b), instead, shows the instantaneous eigen-
values for the ATAN case. Here, as in the three-level model, the anticrossing
|1〉 → |S〉 is avoided by optimizing the parameters c2 and c3, which in this
case are 20 ns−1 and 18 ns−1, respectively. The latter case in Fig. 3.5(c) depicts
the RC sweep function which creates the long avoided crossing with |T〉 due
to its very slow rate.

The standard adiabatic evolution requires evolution times longer than the
life time of the state |T〉, as in the reduced model examined in Sec. 3.4.2.
Therefore, in the following, we concentrate only in the CD driving.

3.5.1 Counterdiabatic Evolution

This section is dedicated to the strategy that we adopted for realizing the
evolution with CD term. Referring to Fig. 3.5, we see that before reaching the
avoided crossing |1〉 − |T〉, we encounter the very little |1〉 − |2〉 one. This
means that using the CD correction, we will follow the solid/blue eigenvalue
and we will end up in the state |2〉. Therefore, the idea is to turn on the
CD term only after the first avoided crossing. In this way, we can diabatically

cross the anticrossing |1〉 − |2〉 and then we adiabatically follow the dashed/o-
range eigenvalues. This strategy is valid for the LZ and ATAN sweep functions
while the RC is already optimized in order to be fast at the beginning and
slow right after. In this case we will show, as example, only the accelerated
ATAN protocol. In Fig. 3.6(a) we can see the population distributions after the
CD evolution in the bare basis {|1〉, |S〉, |T〉, |2〉} just explained. The state |T〉
reaches a fidelity of ≈ 65% at the end of the evolution and this is already
an improvement in controlling the spin-orbit coupling with respect to the
experimental results in [79], where they obtained a fidelity of 30%. However,
we also notice that a large part of the population, ≈ 33%, is contained in the
state |2〉. This is an indication that the states |T〉 and |2〉 are coupled. This fea-
ture is not apparently visible in the instantaneous eigenvalues picture of Fig.
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Figure 3.5: Instantaneous eigenvalues as a function of rescaled time for the three
driving functions in the case of the complete four-level model. In partic-
ular, in (a) it is shown the LZ protocol, in (b) the ATAN and in (c) RC one.
In each figure the four instantaneous eigenstates are denoted with the
solid/blue line, dashed/orange, dash-dot/green and dotted/red one. In
(a), the LZ ramp generates three avoided crossing but, as in the reduced
model case, we are interested only in the |1〉 − |T〉 one occurring approx-
imately at t/t f = 0.35, that in this case is the second one. Therefore, the
sweep can be terminated before reaching the state |S〉. The ATAN proto-
col in (b), with c2 = 20 (dimensionless) and c3 = 18 ns−1, creates only
two avoided crossings and the |1〉 − |T〉 occurs around t/t f = 0.45. In
(c), instead, with the RC sweep, with c1 = 3.41 ns−1, the wanted avoided
crossing is created very soon after the beginning of the evolution. In these
simulations δc = 1 ns−1, a = 10 ns−1. (Figure adapted from [91])
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3.1(b). However, a further confirmation can be obtained by looking at Fig. 3.7,
where the imaginary part of the Berry pulses are plotted as a function of the
rescaled time t/t f . Here, we can observe two large pulses in correspondence
of the avoided crossing |1〉− |T〉 at t/t f = 0.45. They represents the CD pulses
needed to compensate the non-adiabatic transitions occurring between the
eigenstate that we are following and other two eigenstates. They are identi-
fied by the matrix elements H

(1,3)
CD and H

(1,4)
CD respectively. This means that we

are preparing a state that is a superposition of the basis states, in particular
|T〉 and |2〉 by looking at Fig. 3.4(a).

For this reason, we try to improve the fidelity by resorting to the following
approximation. The states |T〉 and |2〉 are not eigenstate of the system. Hence,
we assume that the almost resonant δc driving generates two eigenstates |±〉
that are superposition of |T〉 and |2〉

|+〉 = a|T〉+ b|2〉
|−〉 = b|2〉 − a|T〉 , (3.12)

with eigenvalues

λ± = −−δc ±
√

δ2
c + Ω2

c

2
. (3.13)

They are found by diagonalizing the 2 × 2 submatrix in the bottom right
angle of the matrix in Eq. (3.4). The next step is to change the old bare basis
{|1〉, |S〉, |T〉, |2〉}, into the new dressed one {|1〉, |S〉, |+〉, |−〉}. Figure 3.6(b)
represents the population distribution obtained from the evolution of the
bare base and by a projective measurement onto the new dressed basis. The
high population in the state |+〉 confirms that we were looking at the system
in the wrong basis. In fact, in Fig. 3.6(a) we are mostly preparing the state
|+〉, with a low population in |−〉, which is a superposition of |T〉 and |2〉 as
in Eq. (3.12).

Performing the evolution in the dressed basis, instead, we obtain the CD

pulses depicted in Fig. 3.7(b). We notice that this time only one of the pulses
is large, therefore the CD driving optimized for the dressed basis is different
from that of the bare basis case. In fact, population distribution of Fig. 3.8(a)
shows that, unlike the evolution in the bare basis, the state |T〉 has a popu-
lation of 97% and also that the state |2〉 is not populated. Additionally, Fig.
3.8(b) shows the population obtained by a projective measurement onto the
dressed basis. In this case, preparing the state |T〉 in the bare basis means to
prepare the corresponding superposition of |+〉 and |−〉.

Therefore, it is convenient studying the complete system, in the Autler-
Townes regime, using the dressed basis. If, instead, |δc| is large the complete
system can be investigated in the bare basis since it can be approximated by
the reduced three-level model. In the next section, we discuss the validity of
the approximation obtained by the adiabatic elimination method comparing
the fidelities of the reduced model with the complete one in the large |δc|
regime.
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Figure 3.6: Populations of the four levels in the case of ATAN protocols accelerated
with the CD driving. The evolution in these simulations is performed in
the bare basis {|1〉, |S〉, |T〉, |2〉}. The case (a) is obtained by a projective
measurement onto the bare basis. The fidelity of |T〉 is ≈ 65% and pop-
ulation of the state |2〉 reaches ≈ 33%. The remaining 2% is in the state
|S〉 but for our purposes it can be neglected since it is very low. Case (b),
instead, is obtained with a projective measurement onto the dressed basis
with the states of Eq. (3.12). In this case we can notice that the population
is mostly in the state |+〉, confirming that it is a superposition of |T〉 and
|2〉. Simulation parameters are t f = 1 ns, a = 10 ns−1, δc = 1 ns−1.
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Figure 3.7: Imaginary part of the CD pulses for the matrix elements H
(i,j)
CD with

i, j = 1, 2, 3, 4 in the case of ATAN sweep. The CD driving is applied after
the threshold time t/t f = 0.15 such that the first avoided crossing is dia-
batically crossed. The peaks are in correspondence of the avoided crossing
|1〉 − |T〉 occurring at t/t f = 0.45. In (a), the three pulses dashed/orange,
dash-dot/green and solid/blue are evaluated for the evolution with the
bare basis {|1〉, |S〉, |T〉, |2〉}, and they corresponds to the matrix elements

H
(1,3)
CD , H

(1,4)
CD and H

(1,2)
CD in ascending order. This is an indication that the

eigenstates we are following is mostly coupled with two other eigen-
states. In (b), instead, the same pulses are computed from the evolution
with the dressed basis {|1〉, |S〉, |+〉, |−〉}. Although the shape is the same,
the peak height is different from the case (a) and in this case only one
peak is relevant. Simulations parameters are δc = 1 ns−1, a = 10 ns−1.
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Figure 3.8: Populations of the four levels in the case of ATAN protocols accelerated
with the CD driving. The evolution in these simulations is performed in
the dressed basis {|1〉, |S〉, |+〉, |−〉}. The case (a) is obtained by a projec-
tive measurement onto the bare basis. The fidelity of |T〉 is ≈ 97% and
the state |2〉 is essentially unpopulated. The remaining population is in
the state |S〉 but for our purposes it can be neglected since it is very
low. Case (b), instead, is obtained with a projective measurement onto
the dressed basis with the states of Eq. (3.12). In this case we can notice
that the state of the system at the end of the evolution is a superposition
of |+〉 and |−〉. This confirms that the state |T〉, found in (a), is a their
superposition. Simulation parameters are t f = 1 ns, a = 10 ns−1, δc = 1
ns−1.
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3.6 validity of the adiabatic elimination

In the Sec. 3.4, we have studied the effective three-level system in the regime
|δc| ≫ Ωc. In this section, we answer the question about the minimum value
of δc to use in order to satisfy the adiabatic elimination condition. We com-
pare the approximation using three different values of δc, that are 10, 30, 100
ns−1. In Fig. 3.9, we can see the fidelities of the three sweep functions as a
function of the total evolution time t f . Figure 3.9(a) corresponds to the case
δc = 10 ns−1 and we can observe that the adiabatic elimination approxima-
tion does not approximates very well the complete system, especially in the
ATAN case. This is due to the fact the adiabatic elimination condition men-
tioned above is weakly satisfied. In fact, increasing the value of δc, we see
that the approximation becomes better and better for the cases δc = 30 and
δc = 100 ns−1 which is the best one. In Sec. 3.4, we have shown the results for
the case with δc = 30 ns−1, which is a good approximation, but other larger
values can be used, e.g., δc = 100 ns−1 as in Fig. 3.9(c).

3.7 approximation of the counterdiabatic driving

In the previous sections, we have taken for granted that the CD fields needed
for speed up the evolution, can all be experimentally realized. However, in-
troducing many extra term in a Hamiltonian, especially for a complex multi-
level system is not an easy task. Therefore, in this section, following the ap-
proach in [56], we resort to an effective CD driving. The objective is to reduce
the number of matrix elements needed for reaching high-fidelity levels in a
very short time. We consider, as exemplary case, the CD ATAN protocol for
the reduced three-level system of Sec. 3.4.2, but the same idea can be applied
for other sweep.

Let us consider the Berry pulses of Fig. 3.10(a) related to matrix elements
of the CD field for the ATAN sweep function in the three-level system. The
application of such a correction produces the infidelity, as function of time,
corresponding to the circled solid blue line of Fig. 3.10(b). However, by look-
ing at the pulses of Fig. 3.10(a), we notice that the pulse corresponding to the
matrix element H

(1,3)
CD is much larger than the others. Hence, we neglected

the two pulses corresponding to the elements H
(2,3)
CD and H

(1,2)
CD and we obtain

the square orange curve and the triangles green one of Fig. 3.10. The first
is obtained by evolving the system eliminating only the H

(2,3)
CD term and the

second one by removing both the small pulses H
(2,3)
CD and H

(1,2)
CD . The results

show that in both cases the approximation does not degrade the performance
in an appreciable way. Therefore, in this case, in a real physical implementa-
tion, we can realize only one pulse instead of three without losing the high
fidelity regime, and simplify in this way the additional experimental cost.
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Figure 3.9: Comparison between fidelities of the three sweep functions LZ, ATAN and
RC, as a function of the total evolution time t f , for (a) δc = 10 ns−1, (b)
δc = 30 ns−1 and (c) δc = 100 ns−1. In all the three plots, the reduced
three level system is identified by the dashed lines, while the complete
one by the solid lines. Additionally, each sweep function is denoted with
different markers, circles for the LZ, triangles for the ATAN and squares
for RC. The δc driving modifies the energy splitting between the states
|T〉 and |2〉 and consequently also the avoided crossing. Therefore, the
parameters c1, c2 and c3 have been optimized in order to approximately
obtain the same type of avoided for the reduced system and the complete
one. The case in (a) is the worst approximation among the three chosen
values of δc, since it considers a small value of δc and the adiabatic elim-
ination condition |δc| ≫ Ωc is weakly satisfied. Then, as the value of δc

increases, we see that also the approximation becomes better and better,
as shown in the cases (b) and (c). Other simulation parameters are the
same as in the other figures.



40 optimization of population transfer

Figure 3.10: (a) Imaginary part of the CD pulses for the ATAN protocol in the reduced
model of Sec. 3.4. The important feature is the fact that the pulse related

to the matrix element H
(1,3)
CD is more relevant for the good realization of

the CD driving. Parameters are δc = 30 ns−1, c2 = 20 (dimensionless)
and c3 = 19.2 ns−1. (b) represents the infidelity of the accelerated ATAN

protocol. The blue line with circles is obtained by the evolution of the
complete set of CD pulses of Fig. 3.10. The orange line with squares

is obtained by evolving the system without the H
(2,3)
CD term, while the

latter green curve with triangles represents the case without both the

elements H
(1,2)
CD and H

(2,3)
CD . Thus, removing the non relevant pulses does

not produce any significant change in the fidelity. (Figure taken from
[91])
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3.8 remarks

This chapter was dedicated to the optimization of a population transfer in a
simplified multi-level system, using our quantum control tools introduced in
Ch. 2. In Sec. 3.2 we have studied the level structure of the system with all the
physical quantities required for our purpose and we have introduced the ma-
trix describing its dynamics. Then, in Sec. 3.3 we have defined the adiabatic
protocols that we have chosen to realize the wanted population transfer. We
have seen that the problem can be studied in its natural complete four-level
description and also in a simplified three-level version by adiabatically elimi-
nating one of the levels. This latter case, has been discussed in Sec. 3.4 where
the fidelities of the chosen sweep functions have been shown. We observed
that the simple LZ protocol has the worst performance and therefore other
sweep functions have been implemented. In particular, the optimized ATAN

and RC driving functions can produce much better fidelity. However, the very
slow adiabatic evolution is in contrast with the typical short life time of the
target state. Therefore, we resort to the CD theory introduced in Sec. 2.2 to
accelerate the adiabatic evolution and reaching fidelities very close to 1 in a
very short time. In Sec. 3.5, instead, the complete system was investigated.
In this case, we directly studied the accelerated version of the adiabatic pro-
tocols. We have seen that, although the fidelity was doubled with respect
to the experimental one [79], a proper change of basis can improve the per-
formance. This is possible because of the different optimization of the CD

driving which depends on the chosen basis. We showed this for the ATAN

function but the same idea holds also for the other sweep protocols. After
that, we dedicated a short section, Sec. 3.6, to compare different regimes of
validity of the adiabatic elimination approximation used before in Sec. 3.4.
We have seen that for sufficiently large δc, the performance of the reduced
system matched very well those of the complete one. Finally, we dedicated
the next section to the discussion of the experimental realization of the CD

protocol. We have used the idea in [56] to reduce the number of CD pulses to
be realized experimentally, such that the fidelity would not be significantly
affected. The results showed that, in the case of the ATAN sweep for the re-
duced model, we could reduce from three to one the pulses needed for an
optimal accelerated adiabatic evolution.

Our study has shown that it is possible to optimize the quantum control
strategies to improve the performance of a specific quantum operation in
complex scenarios. In our case, the fidelity reached in the experiment was
about 30% but using our tools we were able to reach very high fidelities,
> 97%, in both the reduced and complete scheme.





4
N O I S Y S H O RT C U T T O A D I A B AT I C I T Y

As we have seen in the previous chapters, one of the most used quantum
control technique is the adiabatic control [18, 19]. The method allows to
reach a target state, at time t f , of the Hamiltonian H0(t f ) starting from an
eigenstate of the initial Hamiltonian H0(t0) and slowly following the instan-
taneous eigenstate. We have seen that this type of control, although it is very
powerful, for optimal performance it requires ideally infinite evolution time,
which is unfeasible in a real experimental implementation. For this reason, by
evolving the system in a finite time we introduce errors and imperfections in
the evolution, as presented, e.g., in Sec. 2.1.1 and in particular in Fig. 2.2. For
this reason, protocols for optimizing the finite evolution have been designed
[53–55]. We have already presented, in Sec. 2.3, the adiabatic protocols that
we have chosen for the analysis in this thesis. Despite the optimization of the
sweep functions, the evolution time might be still longer with respect to the
typical coherence times of a quantum system. Therefore, we have introduced,
in Sec. 2.2, the CD protocol for accelerating the evolution and reaching fideli-
ties, ideally, 1. Indeed, in the previous Ch. 3 we have seen an application
of the CD to improve the efficiency of a population transfer, counteracting
also the limitation of the very short life time of the level of interest. How-
ever, the control of a quantum system is not a perfect operation but rather
it is affected by many sources of errors and noise. In this direction, similar
studies have been performed in open quantum systems scenario [92–94] or
in experimental setup [95]. In contrast, in this chapter, we aim at studying
the behavior of different adiabatic protocols accelerated with the CD theory
of Sec. 2.2, subjected to noise and decoherence channels. For the purpose,
we investigate two systems configurations: two-level one, in Sec. 4.2, and a
four-level one in the form of two qubit entangling gate, in Sec. 4.3. For both
cases, we first analyze static errors in the control parameters and then we in-
troduce dissipative and dephasing phenomena, typical of an open quantum
system scenario. In the end, will be able to indicate which sweep function is
most robust, under the CD evolution, depending on the type of decoherence
channels.

4.1 theoretical background

In this first section, we briefly recall the theoretical basis introduced before
in Ch. 2. In particular, we will provide further detail about three of the four
sweep functions presented in Sec. 2.3 and about the Lindblad evolution al-
ready introduced in Sec. 2.4.

43
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4.1.1 Adiabatic protocols

One of the key ingredients for our study is the adiabatic protocol driving
the system. Among those presented in Sec. 2.3, here we choose to work with
the LZ (i), PL (ii) and RC (iii), since they belong to three different families of
sweep functions. As already explained in Sec. 2.3 and Ch. 3, the ATAN(iv)
is optimized for the specific requirements of the problem and here it is not
taken into account. The three sweep functions are applied to a generic system
which can be written in the form

Ĥ0(t) = f (t)Ĥ1 + Ĥ2 , (4.1)

where f (t) represents the sweep function and Ĥ1 and Ĥ2 describe the dy-
namics of the system. For the one qubit case they reproduce the system we
have already seen in Ch. 2, i.e., Ĥ1 = ασ̂z and Ĥ2 = Ωσ̂x. Using the rescaled
time and units that we have introduced in the Sec. 2.1.1 and setting c1 = 0,
the analytical expressions of the three sweep functions are the same defined
Sec. 2.3. The two qubits model, instead, realizes a similar implementation
of the entangling gate in [56] and, therefore, this allows us to use the same
sweep functions which are already optimized for the two-qubits entangling
gate.

Each sweep is then accelerated using the CD protocol presented in Sec. 2.2.
We will see that, for both systems presented in this chapter, the Hamiltonian
HCD can be computed analytically.

The evolution is governed by the Lindblad master equation of Eq. (2.43) in-
troduced in Sec. 2.4. In particular, the problems addressed in this chapter, are
typical of quantum optics where the three validity conditions are, in general,
all satisfied. We, indeed, deal with a weak coupling and a non-correlation
regime between the system and the environment. Additionally, the carrier
frequency of the driving is much greater than the one of the phenomena
taken into account. Hence, the RWA can be used as we have done previously
in App. B.1.1. Details on the systems are provided in the corresponding sec-
tions.

4.2 one qubit model

As we have usually done so far, one of the first example to have an initial
comprehension of the phenomena occurring into the system is the two level
system. In this case, the Hamiltonian reads

Ĥ0(t) =
α f (t)

2
σ̂z +

Ω

2
σ̂x (4.2)

where α is the scaling parameter and Ω is the coupling constant, as seen
in in Sec. 2.1.1. The Hamiltonian is expressed in the rotating frame of the
drive and in the RWA, and it can describe, e.g., a two level system driven by
a resonant electromagnetic field. Using the same variables definition that we
adopted in Ch. 2, the system Hamiltonian becomes

Ĥ0(τ) = T [αΩ f (τ)σ̂z + σ̂x] , (4.3)
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with T = αΩt f , αΩ = αt f /Ω and τ = (t − tI)/t f .
For the complete description of the evolution, we need to add the CD term

to the Eq. (4.3). We analytically derived ĤCD for this case, and it has the form

ĤCD(τ) = − αΩ ḟ (τ)

1 + f 2(τ)

1
2

σ̂y . (4.4)

This expression remind us the one that we have already found in Eq. (2.32)
and (2.34) in Sec. 2.2. In Fig. 4.1(b) the matrix CD element for the three sweep
are depicted. We observe the peaks where the probability of non adiabatic
transitions is higher.

Thus, finally, the Hamiltonian corrected by the Berry elements to be used
in the Lindblad master equation of Eq. (2.43) is then

Ĥ(τ) = Ĥ0(τ) + ĤCD(τ) . (4.5)

In this case, the considered two level system is a well-known model used
in quantum optics [47, 60] where the Lindblad formalism is suitable for its
description. In particular, the system is assumed to be weakly coupled and
also non-correlated with the external environment. In this way, the first two
conditions for the Lindblad master equation treatment, introduced in the Sec.
2.4, are satisfied. Then, as previously mentioned in Sec. 4.1.1, the frequency of
the phenomena considered here are much smaller than the driving frequency
such that the RWA can be applied. Additionally, the adiabatic protocols used
to drive the system are sufficiently strong to perform the population transfer
but also sufficiently weak to keep valid the conditions for the Lindblad treat-
ment. We must only be cautious not to exaggerate the driving frequency such
that not to invalidate the Markovian assumption [97]. To study the system
we define the two basis states, represented in basis of the eigenvector of the

Pauli matrix σz, as |0〉=̂
(

0

1

)

and |1〉=̂
(

1

0

)

. Assuming, then, that the system

is prepared in the state |0〉, in order to measure the effects of the errors on
the various adiabatic protocols, we define the fidelity as

F1 = |〈ψ(τ = 1)|1〉|2 , (4.6)

namely the probability of ending the evolution in the state |1〉. In Fig. 4.1(c)
the fidelities generated by the corrected Hamiltonian of Eq. (4.5), without
any type of perturbation, as a function of the rescaled time are plotted. We
observe that the LZ and PL sweeps have a very similar behavior since they
create a similar form of the avoided crossing, while the RC one is completely
different. This will be crucial in the study of dephasing and spontaneous
emission. The similarity between the LZ and PL fidelities can be understood
from Fig. 4.2. We can notice a similar narrow (in time) avoided crossing for
the LZ and PL cases in Figs. 4.2(a) and 4.2(b) respectively, and very long
avoided crossing for the RC sweep of Fig. 4.2.
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Figure 4.1: For the one-qubit case, temporal profile of (a) the three sweep functions
considered. In particular Landau-Zener (LZ) (solid blue line), Polynomial
(PL) (dashed red line) and Roland-Cerf (RC) (dashed dotted green line);
(b) the matrix elements of the Counterdiabatic Driving (CD) term for the
three sweeps; (c) fidelity in Eq. (4.6) generated by the Hamiltonian Ĥ(τ)
for the sweeps considered. Parameters of simulation are αΩ = 10, T = 10,
f0 = 10. (Figure adapted from [99]).

Figure 4.2: Instantaneous eigenvalues of the three sweep functions: (a) LZ, (b) PL and
(c) RC. We observe that the first two have a very similar avoided crossing
form around τ = 0.5, which is narrow, and, therefore, the similarity is
found also in the temporal shape of the fidelity as in Fig. 4.1(c). In (c),
instead, the avoided crossing is very long in time and for this reason the
fidelity has not a rapid change as in the other two cases. The simulation
parameters are the same of Fig. 4.1.

4.2.1 Relative parameter error

The first problem we consider is the imperfection in the control parameters.
In particular, we introduced a relative error in the parameter αΩ in order to
consider the lacking of knowledge of the coupling strength of the levels and
of their initial and final energy gap. Examples of these situation can be found
in experiments for controlling the collisional dynamics in cold-atom setup
[100–102], where the gap of the atoms follows a broad thermal distribution
and thus is subjected to a large error values. Therefore, while keeping fixed
the CD Hamiltonian, we compute the fidelity for the affected parameter αǫ

Ω =

αΩ(1 + ǫ), where ǫ is the relative error. Figure 4.3 shows the fidelities of
the three sweep functions as a function of the error ǫ and of the parameter
T. We can appreciate the stability of the CD protocol with respect to the
parameter error, in particular Figs. 4.3(a) and (b), corresponding to the LZ and
PL drivings. They exhibit very similar behavior because of their similarities
in the temporal dependence of the fidelity, as explained in the previous Sec.
4.2. In particular, the two protocols fidelities remain very stable for an error
lower than 100%, whereas start decreasing for grater values of ǫ. In this
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Figure 4.3: Colormap of the fidelity in Eq. (4.6) in the (ǫ, T) plane for the adia-
batic protocols, with the parameter error ǫ, (a) Landau-Zener, (b) Polyno-
mial, (c) Roland-Cerf accelerated with the Berry Counterdiabatic Driving
Hamiltonian. Plots (a) and (b) have very similar behavior because their
fidelity has also very similar temporal shape, as we can observe in Fig.
4.1(c). Plot (c), instead, shows typical oscillations in the fidelity [56, 58],
due to the accidentally resonance that cancel high-order non-adiabatic
process. Parameters simulation are αΩ = 10 and f0 = 10. (Figure taken
from [99]).

case, the error is too large and CD field is not optimized anymore. Whereas,
in Fig. 4.3(c), the RC sweep is still very stable for errors ǫ < 100% but for
greater values it is characterized by typical oscillations [56, 58] due to the
accidentally cancellation of high-order non-adiabatic processes. Overall, the
CD implementation is very stable, in fact, in the three protocols we need
errors greater that 100% in order to have an appreciable degradation of the
fidelity.

4.2.2 Dephasing and Spontaneous Emission

After studying the static error in the previous section, here we open the
system introducing typical effects such as dephasing and decay due to spon-
taneous emission. For the purpose we define a collapse or jump operator as

ĉ =
√

γ [cos(θ)σ̂z + sin(θ)σ̂x] , (4.7)

where γ is the rate measured in 1/t f and σ̂z and σ̂x the two Pauli matrices
identifying the two decoherence processes. Changing the value of θ we can
analyze the two limiting effects of pure dephasing for θ = 0 and dephasing
with population relaxation for θ = π/2 or a mixture of the two for inter-
mediate values of θ. A similar jump operator can be found, in general, in a
quantum computing context [4]. For instance, the case with θ = 0 is typical
in scenarios when the interaction between the system and the environment
is strongly off-resonant or it can also describe the backaction resulting from
a quantum nondemolition measurement of the system state [103–105]. In our
simulations, we considered values of γ typical of quantum platform such as
Rydberg atoms [106] and superconducting qubits [107] that have γ ∝ 0.1 and
γ ∝ 1, respectively, in our units.
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Figure 4.4: Colormap of the fidelity at the end of the evolution, as a function of θ
and decay rate γ, for the three protocols (a) Landau-Zener, (b) Polyno-
mial and (c) Roland-Cerf. The simulations are obtained by numerically
solving the master equation in Eq. (2.43) with jump operator of Eq. (4.7).
Figures (a) and (b) show similar behavior due to their similar temporal
dependence of the fidelity (see the text for further detail). They are very
stable if the system is subject to pure dephasing, that is θ = 0 and ĉ = σ̂z

because it is very close to an eigenstate of the collapse operator ĉ. (c),
on the contrary, is more stable for θ = π/2 namely for ĉ = σ̂x. Other
simulation parameters are the same of the Fig. 4.1. (Figure taken from
[99]).

We numerically solved the Eq. (2.43) with the jump operator in Eq. (4.7)
for the three sweep functions, and the results are depicted in Fig. 4.4. We first
observe that the LZ protocol and the PL one, in Fig. 4.4(a) and (b) respectively,
have a very similar behavior since, as in the static error case, their fidelities
follow an analogous time dependence. In particular, they are very robust
against pure dephasing effect. This can be understood by the fact that a σ̂z

operator induces a decay of the coherences in the density matrix but it leaves
the populations unchanged. In particular, if we look at the two correspond-
ing fidelities in Fig. 4.1(c), we notice that, the most of the evolution time, the
eigenstate of the system that we follow is in one of the two basis state |0〉
or |1〉. For this reason, the pure dephasing does not affect in an appreciable
way the performance of the fidelity. In other words, the linear and polyno-
mial sweeps, generate a population transfer which is faster than the time
scale 1/γ of the dephasing. However, as θ grows towards the value of π/2,
the two protocols became very sensitive to the population relaxation, and
in fact the fidelity fall very fast as γ increases. On the contrary, the fidelity
of RC sweep function is more sensitive to the pure dephasing. Thinking in
the eigenstate formalism, we are following an eigenstate of H0(τ) which, the
most of the time, is in a superposition with the basis states a|0〉+ b|1〉. There-
fore, the decay of the coherences in the density matrix strongly degrade the
performance of the protocol. Such a behavior, however, allows the RC to be
less sensitive to the population relaxation effect, since the population transfer
is slower compared to the time scale. 1/γ.

The other effect we consider in the open quantum system scenario, is the
spontaneous emission which is modeled by the jump operator ĉ =

√
γ−σ−,

where σ− is the spin-lowering operator, and it is a situation that we can find,
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Figure 4.5: Fidelity F1 at the end of the protocols as a function of the decay rate γ−,
for the sweeps LZ (solid blue line), PL (dashed red line) and RC (dashed
dotted green line). LZ and PL have the same trend, for the reason showed
above in the other figures, and they are more sensitive to the decay be-
cause they populate the state |1〉 much earlier than the RC protocol. Other
simulation parameters are the same of Fig. 4.1. (Figure adapted from
[99]).

e.g., when we have a thermal bath at zero temperature, so that the absorption
probability is practically eliminated.

Figure 4.5 reports the results of the fidelity of the three protocols as a
function of the decay rate γ−. Before explaining what we see from the curves,
it worth to point out that the decay process involves only the level |1〉, when
it is occupied. Therefore, since the LZ and PL adiabatic drivings generate a
faster population transfer with respect to the RC protocol, they populate very
quickly the state |1〉 and therefore they are more sensitive to the spontaneous
emission decay. For this reason, they have lower fidelity with respect to RC

sweep which instead, requires longer times to populate the state |1〉. The LZ

and PL have the very same behavior for the same reason we have explained
previously for the other figures.

4.3 two qubits model

In the previous section we have investigated static error and decoherence
and decay channels for one qubit platform. Here, instead, we study the same
effects but in a two interacting qubits model, relevant in superconducting
qubits platform, for instance, for two-qubit gates [4, 56]. The Hamiltonian
describing the system in the basis {|00〉, |01〉, |10〉, |11〉} reads as

Ĥ2q(t) =
ω1

2
σ̂z

1 +
(ω1

2
+ α f (t)

)

σ̂z
2 + Ω

(

σ̂+
1 ⊗ σ̂−

2 + σ̂−
1 ⊗ σ̂+

2

)

, (4.8)

where {σ̂x
k , σ̂

y
k , σ̂z

k} and {σ̂±
k = 1

2

[

σ̂x
k ± iσ̂

y
k

]

} are the Pauli matrices and the
spin raising and lowering operators respectively, for the two qubits k = 1, 2,
ω1 is the transition frequency of the qubit levels and Ω is the interaction
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strength. This type of system can be used to realize an entangling two-qubits
gate, which is the one investigated in this part of the thesis. In particular,
in this case, we apply the driving only to the second qubit and we leave
the first one fixed. In this way, the sweep function represents a modulation
between the two qubits and when it is large they do not interact since they are
strongly off-resonance, but when it is approaching to 0 they start interacting,
according to Eq. (4.8), and the states |10〉 and |01〉 form an avoided crossing
with a gap of 2Ω. This type of interaction may arise, e.g., in superconducting
qubits coupled to a cavity [11, 12, 108].

As we have done for the other Hamiltonians, we write Eq. (4.8) in dimen-
sionless form so that it is written as

Ĥ2q(τ) = T
[ω1Ω

2
σ̂z

1 +
(ω1Ω

2
+ αΩ f (τ)

)

σ̂z
2 +

(

σ̂+
1 ⊗ σ̂−

2 + σ̂−
1 ⊗ σ̂+

2

)

]

, (4.9)

where ω1Ω = ω1/Ω and T = αΩt f and αΩ = αt f /Ω being defined in the
previous sections. The interaction does not involve the states |00〉 and |11〉
but only the states |01〉 and |10〉. We can better appreciate this feature from
the matrix form of the Hamiltonian (4.9) which is

Ĥ2q(τ) =













ω1Ω + αΩ f (τ) 0 0 0

0 −αΩ f (τ) 1 0

0 1 αΩ f (τ) 0

0 0 0 −ω1Ω − αΩ f (τ)













. (4.10)

We see, thus, that only the states |01〉 and |10〉 are coupled and for this reason
such an Hamiltonian can be used to build an entangling gate, resulting then
in the creation of the Bell states |Bell±〉 = 1√

2
[|01〉 ± |10〉]. Therefore, the

natural definition of the fidelity, in this case, is the probability to be in one
of the Bell states at the end of the evolution. In this case, assuming that we
start from the state |01〉, the fidelity is computed as the probability to end in
the state |Bell+〉 at τ = 1. In formula it reads

F2 = |〈ψ(τ = 1)|Bell+〉|2 . (4.11)

In order to perfectly follow the instantaneous eigenstate of the system we
are interested in, we need to compute the CD terms that, in this particular
case, can be done analytically. Thus, in the following, we will show the main
steps of the calculation.
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As a starting point, we calculate the time dependent eigenvalues and eigen-

vectors, that are respectively E0,3 = ± (αΩ f (τ) + ω1Ω) , E1,2 = ±
√

1 + α2
Ω

f (τ)2

and

|ψ0〉 =













1

0

0

0













, |ψ1(τ)〉 =
1

N2















0

−αΩ

(

f (τ) +
√

1 + α2
Ω

f 2(τ)
)

1

0















,

|ψ2(τ)〉 =
1

N3















0

−αΩ f (τ) +
√

1 + α2
Ω

f 2(τ)

1

0















, |ψ3〉 =













0

0

0

1













.

(4.12)

where N2 and N3 are the corresponding normalization constants

N2 =

√

(

αΩ f (τ) +
√

1 + α2
Ω

f 2(τ)
)2

+ 1 and

N3 =

√

(

−αΩ f (τ) +
√

1 + α2
Ω

f 2(τ)
)2

+ 1. Then we compute the time deriva-

tive of the Hamiltonian

dĤ(τ)

dτ
= αΩ ḟ (τ)













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1













(4.13)

where the dot notation represents the time derivative. Thus, recalling the Eq.
(2.25), the ĤCD matrix for this system is

ĤCD(τ) = ih̄ ∑
m 6=n

∑
n

|ψm(τ)〉
〈ψm(τ)|Ḣ|ψn(τ)〉

En(τ)− Em(τ)
〈ψn(τ)| =

= ih̄
αΩ ḟ (τ)

2
(

1 + α2
Ω

f 2(τ)
)













0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0













=

= −h̄
αΩ ḟ (τ)

4
(

1 + α2
Ω

f 2(τ)
)

(

σ̂x
1 ⊗ σ̂

y
2 − σ̂

y
1 ⊗ σ̂x

2
)

.

(4.14)

In this particular case, we were able to find an analytical expression for the
CD term because, as we have mentioned before, the interaction acts only on
the two states |01〉 and |10〉, and the treatment is similar to the one-qubit
model. In Fig. 4.6, similarly to the one qubit case, the characterization of the
system is represented. In particular, Fig. 4.6(a) represents the temporal shape
of the sweep functions, Fig. (b) the matrix element of the ĤCD for the three
protocols, while Fig. (c) the corresponding fidelities.

In the following we study the robustness of the protocols against dephas-
ing, decoherence and decay.
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Figure 4.6: For the two qubits configurations, temporal profile of (a) the three sweep
functions LZ (solid blue line), PL (dashed red line) and RC (dashed dotted
green line); (b) the imaginary part of the matrix element computed for the
corresponding sweep function; (c) fidelity defined in Eq. (4.11) generated
by the three accelerated driving protocols, without any type of external
errors. Simulation parameters are ω1Ω = 30, T = 10, αΩ = 10, f0 = 10,
γ = 0 and γ− = 0. (Figure adapted from [99]).

4.3.1 Dephasing and Spontaneous Emission

Following the same treatment of the one qubit case, the master equation for
the two qubits model is written as (with h̄ = 1)

dρ(τ)

dτ
= −i

[

H2q(τ), ρ(τ)
]

+ D [ĉ1(θ)] ρ(τ) + D [ĉ2(θ)] ρ(τ) , (4.15)

where ĉk =
√

γ
[

cos(θ)σ̂z
k + sin(θ)σ̂x

k

]

, with k = 1, 2, is the jump operator
associated to the k-th qubit.

In Fig. 4.7 the final fidelity, that is the fidelity F2 in Eq. (4.11), is shown for
the three sweep protocols. As we can observe in the Fig. 4.7, the LZ in (a) is
much more robust against the dephasing than the other two sweeps. This is
due to the fact that the time spent by the system in a superposition of states
is very short compared to the other two protocols. In fact the LZ one, is in the
state |01〉 for the most of the time and approaching the end of the evolution
it has a very steep state transfer. By looking, then, at the Figs. 4.7(b) and
(c) corresponding to the PL and RC protocols respectively, we see they have
different behaviors. In particular the RC sweep has the worst performance
among the three driving protocols. This is related to the different temporal
shape of their state transfer, showed in Fig. 4.6(c). in which we observe that
the RC spends more time in a superposition of states.

Figure 4.8, instead, shows the final fidelity F2 in the presence of different
decay rates for the two qubits, γ

(1)
− and γ

(2)
− respectively. It can be noticed that

the three sweeps have different performance due to their different temporal
shape of the fidelity. The behavior in Fig. 4.8 can be understood by consider-
ing the effect of the spontaneous emission on one of the two qubits at a time.
In fact, if we look at the Fig. 4.8(a) corresponding to the LZ protocol, we see
that it is very robust against the decay on first qubit. Recalling that the initial
state is |01〉, the first qubit is in the state |0〉 for the most of the evolution
time, since the temporal shape of the LZ fidelity has an abrupt change of the
state transfer at the end of the evolution. On the contrary, the second qubit
that starts in |1〉 is subject to the spontaneous emission effect. Using similar
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Figure 4.7: Colormap of the fidelities F2 at the end of the evolution for the three
sweeps (a) Landau-Zener, (b) Polynomial and (c) Roland-Cerf as a func-
tion of θ. The LZ protocol is more robust against the pure dephasing, that
is θ = 0 and ĉk = σ̂z

k , with respect to the other two. The reason is found
by looking at the temporal profile of the fidelity in Fig. 4.6(c) in which
the LZ one is the steepest one. Other simulation parameters are the same
used in the Fig. 4.6. We considered the same rate γ for both the qubits.
(Figure taken from [99]).

argument, the behavior of the fidelities in Figs. 4.8(b) and (c), associated to
the PL and RC sweeps, can be explained. It is worth noting that in all the three
adiabatic protocol, the behavior of the fidelity when γ

(1)
− = γ

(2)
− , namely on

the main diagonal of the colormaps, is the same.

4.3.2 Relative Parameter error

In this section, as we have done for the two-level system in Sec. 4.2, in Fig.
4.9 we report the robustness analysis for the two-qubit system of Eq. (4.8).
As mentioned before, the range of errors analyzed here are typical of experi-
mental setup as in [100–102], where the error on the initial and final energy
gap of the system can reach very high values. Since we are investigating a dif-
ferent qubit model, we expect different results with respect to the two-level
case. In particular, the LZ protocol of Fig. 4.9(a) is the less robust among the
three sweep functions. It shows great stability for error ǫ < 50% but it is very
sensitive for greater values. The PL protocol, instead, apart from a narrow
low fidelity region for small values of T, presents a very stable behavior for
larger error values. The RC sweep is very insensitive to the error and in con-
trast to the case of Fig. 4.3. In this case, such a behavior can be understood by
looking at the temporal shape of the sweep functions in Fig. 4.6(a). We recall
that the two qubits are in resonance when the sweep f (τ) is 0. Indeed, the RC

function reaches the 0 value faster than the other two sweeps and therefore
the two qubits are in resonance for longer time.

4.4 remarks

In this chapter, we have explored different adiabatic protocols subject to de-
phasing, decoherence and decay by spontaneous emission. For the study they
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Figure 4.8: Colormap of the fidelity F2 as a function of different decay rates γ
(1)
− and

γ
(2)
− associated to the two qubits. (a) represents the Landau-Zener proto-

col, (b) the Polynomial one and (c) the Roland-Cerf. The three driving
protocols have different behavior and this is related to the different state
transfer that we can appreciate in Fig. 4.6(c). Their behavior is under-
stood by considering the effect of the spontaneous emission of one qubit
at a time. More detail are given in the main text. The other simulation
parameters are the same of Fig. 4.6. (Figure taken from [99]).

Figure 4.9: Colormap of the fidelity in Eq. (4.11) in the (ǫ, T) plane for the adia-
batic protocols, with the parameter error ǫ, (a) Landau-Zener, (b) Polyno-
mial, (c) Roland-Cerf accelerated with the Berry Counterdiabatic Driving
Hamiltonian. In this case, the LZ protocol exhibit worsen performance
than the other two sweeps. The PL protocol, apart from a lower fidelity
at small values of T, it shows a very robust behavior for the rest of the
values. RC sweep, instead, is very insensitive to error and it shows the
greatest stability among the driving protocols. Parameters simulation are
the same as in Fig. 4.6.
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have been accelerated using the specific STA technique of the CD driving [33,
34]. The three sweep functions have been applied to two different systems:
a one qubit model, in Sec. 4.2, and a two qubits one realizing an entangling
gate, in Sec. 4.3. For the first case, we studied the robustness of the STA pro-
tocol in the presence of static error, and the results show a very high stability
for all three adiabatic protocols. Then, in both cases it is studied the influ-
ence of dephasing and decoherence on the chosen drivings, in Sec. 4.2.2 and
4.3.1 respectively. In this case, we could notice that each sweep function be-
have differently according to the decoherence and decay channels affecting
the system. This indicates that, adiabatic protocols used in operations like
quantum state transfer or quantum gates can be optimized also for mitigat-
ing noise in open system environment. In Sec. 6.2, we provide an overview
on the STA protocol applied to an adiabatic quantum CZ gate in anisolated
environment. Basing on our findings in this chapter, the study of the CZ gate
could be extended to an open scenario and the accelerated adiabatic protocol
could be further optimized. In the next Ch. 5, instead, we provide a different
perspective for optimizing quantum state transfer which is not based on adia-
batic evolution but rather it exploit the atomic interaction as a compensation
tool.
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E R R O R C O M P E N S AT I O N W I T H I N T E R A C T I O N





5
I N T E R - AT O M I C I N T E R A C T I O N F O R E R R O R S
C O M P E N S AT I O N

Experimental quantum operations, e.g., quantum gates, quantum state trans-
fer or quantum control in general, are often affected by errors due to the
imperfect experimental apparatus or by the external environment, as we
have seen in the previous chapter, which limit their performance. During the
years, many strategies and protocols have been investigated for counteract-
ing the problem. Some examples are quantum error correction codes [4, 16,
17] which are based on the idea to protect the qubit information using the re-
dundancy, as in the classical analogous, or composite pulses [109, 110] which
is a technique based on a sequence of pulses for reaching a target fidelity, or
also robust protocols [29, 111] like those studied in the previous chapters of
this thesis (STA). In this direction, in our study, we analyze Rydberg atoms
being a very promising platform for quantum computing and simulation [14,
112]. In particular, we aim at compensating accumulated phase [113, 114], in
a periodic laser driving, generated, e.g., by the imperfection in the control
parameters [115]. Our scheme avoid the propagation of the error during the
periods, that is an idea similar to the fault-tolerant paradigm for quantum
computation [4, 16, 17]. In fact, since we implement a sequence of pulses, our
approach could seems similar to the composite pulses technique [109, 110].
However, the substantial difference between the two methods is that, while
the composite pulse aim at obtaining high fidelity at the end of the evolution,
we, in contrast, aim at obtaining high fidelity for all the periods.

The correcting scheme presented in this chapter, relies on the Rydberg
inter-atomic interaction between two interacting qubits. In principle, such
an interaction could be experimentally controlled [14], e.g., by an electric
field in the presence of F’́orster resonance [114, 116–118]. The phase errors
that we consider affect also the population of the qubit-levels. We show that
the interaction tuning feature is relevant for our protocol because the phase
correction will compensate also the errors affecting the levels population.

In this chapter, we first introduce the details of the protocol in Sec. 5.1.
Then, we analyze two different excitation processes: single photon in Sec.
5.2 and two photons in Sec. 5.3. For the first case, synchronous and asyn-
chronous driving configurations have been investigated, in Secs. 5.2.3 and
5.2.2 respectively, and for each of them we study the performance in the
presence of rotation-angle and rotation-axis error. For the two-photon exci-
tation case, instead, first we introduce the Stimulated Raman Adiabatic Pas-
sage (STIRAP) protocol [119] in Sec. 5.3.1 and then it has been studied in a
synchronous driving configuration, in Sec. 5.3.2, as exemplary scenario.

59
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5.1 system setup

For the compensation scheme described in Fig. 5.1(a), we consider two qubits
realizable using Rydberg atoms [14] which interact with a nearest-neighbor
interaction V. The two qubits, which we call computational and correction

qubits, are excited by a periodic laser field of period T = 2T1 + 2T2 with
a temporal profile Ω as in Fig. 5.1(b). During the time T1, a bit flip operation
is performed using a π pulse, resulting in a population transfer; whereas,
during T2, the laser is off and only the interaction V drives the dynamic of
the system. After that, another π pulse is performed in order to reinitialize
the system to its initial state and the T2 time concludes the cycle. This defines
our period T such that the probability that the system is in the initial state,
e.g. ground state, assumes the temporal behavior shown in Fig. 5.1(c).

We want to anticipate that, for most of the results presented in this chapter,
we neglect the interaction during T1 because we assume, that T1 ≪ T2. This
means that the duration T1 of the π pulse is much shorter than the time T2.
Such an assumption, will help us in the analytical treatment of the system
dynamics.

In the following, we also assume that the bit flip operations described
above are repeated a certain number of times, which we chose to be n = 50.
Moreover, at each period an error occurs in the system which, accumulat-
ing, reduces the performance (fidelity) of the system. Using the interaction
experienced by the two atoms, we aim at compensating the unwanted phase
which is generated by the errors.

For all the cases examined in this chapter, the interaction is described by
the Hamiltonian

HV = V|e1〉|e2〉〈e1|〈e2| , (5.1)

where the state |ek〉 is the excited state of the k-th qubit and V is the inter-
action strength. In Rydberg atoms the interaction can have different forms
according to the atomic states considered [14]. In particular, in our work we
use qubits of the gr type, which means that the qubit consists in weakly-
interacting ground state |g〉 and a strongly-interacting excited one which we
call |e〉. The strong interaction given by the excited state is obtained by reach-
ing states with a very high principal quantum number, typically n > 60 [14].
The interaction can be controlled by the Förster resonances and the scaling
law of the interaction varies according to the coupling between the Rydberg
states of the two qubits, i.e., if they are resonantly or non-resonantly coupled
[14, 26, 116]. For instance, in the resonant case, the dipole-dipole interaction
scales as V ∝ n4/R3 [120] where R is the distance between the qubits.

The Hamiltonian describing the remaining part of the dynamics change
according to the system considered. Therefore, they are introduced in the
corresponding sections in the following.
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Figure 5.1: (a) Qubits scheme for compensation. Two qubits subject to a periodic
potential and experiencing a nearest-neighbor interaction V are excited
by a periodic optical field, depicted in (b). The laser is turned on for a
time T1 during which a π pulse is performed, and then is turned off for
a time T2 during which the interaction V governed the evolution. In such
a way, the laser period is T = 2T1 + 2T2 and the occupation probability
of the ground state as a function of time is shown in (c). (Figure adapted
from [121]).

5.2 single-photon excitation

For the single-photon case we consider a two qubits system governed by the
single-atom Hamiltonian (h̄ = 1)

H0k = −δ|ek〉〈ek|+
Ω

2
(|gk〉〈ek|+ |ek〉〈gk|) , (5.2)

where δ = ωL − ω0 is the detuning between the laser frequency ωL and the
ground state energy ω0, Ω is the Rabi frequency of the laser and k = 1, 2
the two qubits. Equation 5.2 is written in the RWA which, in this case, holds
for Ω ≪ ωL. Moreover, although it is not specified in the equation, the Rabi
frequency Ω is time dependent with temporal profile as in the Fig. 5.1(b).

5.2.1 Static Errors

The aim of this work is to show that the interaction between two atoms can
be used to compensates unwanted effects that reduce the performance of the
system. For this purpose, we consider two kind of static errors (i) rotation-

angle error and (ii) rotation-axis error. Both the errors can be generated by
imperfections in the control parameters that, at each quantum operation, can
accumulate a small amount of unwanted phases. In detail, the two errors are

(i) Rotation-angle error. We have seen that during the time T1 a bit flip op-
eration is performed using a π pulse. This means that the condition
ΩT1 = π must be satisfied in order to guarantee a perfect population
transfer from the ground state |gj〉 to the excited state |ej〉 of the j-th
qubit. Visualizing the state of the qubit on the Bloch sphere, as depicted
in Fig. 5.2(a), it represents a perfect rotation from one pole to the other
represented by the dotted blue trajectory in the figure. In this sense,
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Figure 5.2: State vector on the Bloch sphere in the case of perfect excitation (a) and
excitation with rotation-angle error, of Eq. (5.3)(b). In (a), the initial state
vector at time t = 0 is represented by the green arrow pointing in the
north direction at the state |g〉, the final one at time t = T1, instead, is
represented by the yellow arrow pointing in the south direction at the
state |e〉. The trajectory is represented by the dotted blu line denoting the
perfect rotation of the vector. In (b), instead, the initial state vector is the
same as in (a), while the final one is not pointing at the state |e〉 anymore
but it is slightly rotated of a quantity ǫ. This extra rotation is represented
by the red part in the trajectory line and it denotes the error in the control
parameter.

we introduce a relative error ǫ on the rotation angle which generates
an extra rotation of the Bloch vector, represented by the red part of the
trajectory of Fig. 5.2(b). In formula, it reads as

ΩT1 = π(1 + ǫ) . (5.3)

We will see that such an error generates an extra phase in the evolution
of the state of the system, and we aim at compensating it using the
inter-atomic interaction introduced above.

(ii) Rotation-axis error. In analogy with the angle error, the axis error is
defined during the bit flip operation. In this case, the error affects the
detuning δ and it is of the form σz. In formula, it is written as

δ × T1 = πǫ . (5.4)

where the dot notation (×) represents the multiplication operation. This
error produces a more complicated effect than the angle error because
it affects also the Rabi frequency of the driving. In fact, the Bloch vector
undergoes a rotation of

ΩeffT1 =
√

(ΩT1)2 + (δT1)2 =
√

π2 + (πǫ)2 ≈ π

(

1 +
1
2

ǫ2
)

(5.5)
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where in the last step we have expanded the relation assuming ǫ ≪ 1.
With respect to the angle rotation in Eq. (5.3), here the perturbation on
the Rabi frequency is less effective since it is a second order effect.

Now that we have described the errors we considered in our system, in the
following we analyze their effects on the performance of different scenarios.

5.2.2 Asynchronous driving

Figure 5.3: Sketch of the two qubits in the asynchronous driving configuration for
one period T. The computational qubit is subjected to a first operation,
denoted with the letter A, from the state |g1〉 to |e1〉, then interacts with
the correction qubit through the excited state, and finally in the second
operation, denoted with B, it is returned to its initial state. The operations
are performed using laser pulses with Rabi frequency Ω. The correction
qubit, instead, is prepared in the excited state and it is left there for the
entire duration of the protocol.

The first case of single-photon excitation that we consider is the asyn-
chronous driving. In this case, the two atoms are driven separately and this
assumes the ability to individually address the single atoms, or qubits, in an
experiments. Rydberg atoms is a suitable platform for realizing such a sys-
tem [14]. In the following, we will see that this scenario is also much simpler
to study than the others because the two qubits problem can be reduced to a
one qubit one. This is possible by considering the correction qubit addressed
independently of the computational one and, therefore, it can be prepared in
its excited state |e2〉 without perturbing the other qubit. In this way, the effect
of the interaction generated by the correction qubit acts as an energy shift on
the computational one. For this reason, the problem can be practically treated
as a two level model. In an experimental scenario, this can be realized by
choosing two Rydberg atoms with different resonance frequencies, so that
when one is excited the other is strongly off-resonance and therefore the two
atoms are addressed separately. A sketch of the configuration is shown in
Fig. 5.3. We see that only the computational qubit is subjected to the driving
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field, while the correction one is insensitive to the laser and it is fixed in its
excited state |e2〉.

For measuring the performance of the system, we use the concept of the
fidelity that we have encountered in the previous chapters. In this case, it is
defined as the probability of finding the computational qubit in its ground
state |g1〉 at time nT, that is at the end of each period. For the present two
level case, it has the expression

F1(t = nT) = |〈g1|ψ1(t = nT)〉|2 , (5.6)

where |ψ1(t = nT)〉 is the wavefunction of the computational qubit at the
time nT. In the following plots, for a better visualization, we also use the
infidelity I1(t = nT) = 1 −F1(t = nT).

5.2.2.1 Results: Rotation-Angle Error

In this section we present the results for the asynchronous case. This par-
ticular situation can be modeled as a two level system and, although it is a
simplification, the analytical treatment will be very useful to understand also
more general cases.

We now show the main steps to derive the analytical expression of the
fidelity introduced in Eq. (5.6). In the limit T1 ≪ T2, we start from the Eq.
(5.2) and, for simplifying the calculations, we change the zero of the energy
such that the computational qubit Hamiltonian during T1 reads

H01 =
δ

2
σz +

Ω

2
σx . (5.7)

During T2, instead, the laser is off and the interaction is on. Therefore the
system is driven by H01 = δ

2 σz and HV = V|e1〉〈e1|. Now, to calculate the
fidelity we consider only the state of the system at time nT. However, an an-
alytical treatment for arbitrary number of periods is not easily feasible. For
this reason, we compute the fidelity only for one period, that is n = 1. For
the purpose, we evaluate the evolution operators U1(t = T1) = e−iH01T1 and
U2(t = T2) = e−i(H01+HV)T2 . Then, using the known relation for the exponen-
tial of Pauli matrices we can write

U1(T1) =1 cos
(

1
2

√

Ω2 + δ2

)

+

− i

(

ΩT1√
Ω2 + δ2

σx +
δT1√

Ω2 + δ2
σz

)

sin
(

1
2

√

Ω2 + δ2

)

.
(5.8)

U2(T2) =e−i
δT2

2 e−iVT2|e1〉〈e1| . (5.9)

Thus, the state of the system at time t = T is found by

|ψ(T)〉 = U2(T2)U1(T1) [U2(T2)U1(T1)|ψ0〉] , (5.10)

where ψ0 = ψ(t = 0) is the initial state. Now that we have the general
expression of the unitary operator when T1 ≪ T2 holds, we can compute
the fidelity for the error cases separately. Let us consider the system affected
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only by the angle error, so we put δ = 0 in the evolution operators in Eqs.

(5.8) and (5.9). Assuming that the initial state is |ψ0〉 =

(

1

0

)

and using Eq.

(5.10) and the related expressions for the evolution operators in Eqs. (5.8) and
(5.9), we obtain

|ψ(T)〉 =Cg(T)|g1〉+ Ce(T)|e1〉 =

=

[

cos2
(

ΩT1

2

)

+ sin2
(

ΩT1

2

)

e−iVT2

]

|g1〉+

+ i sin
(

ΩT1

2

)

cos
(

ΩT1

2

)

[

1 + eiVT2

]

e−iVT2 |e1〉 .

(5.11)

Now, to compute the probability of being in the ground state |g1〉 it is con-
venient to consider the coefficient Ce of the state |e1〉. Therefore, after some
algebraic manipulation we arrive at

F1(T) = |Cg|2 = 1 − |Ce|2 = 1 − 1
2

sin2
(

ΩT1

2

)

[1 + cos (VT2)] . (5.12)

Recalling that ΩT1 = π(1 + ǫ), being ǫ the rotation-angle error, the final
expression of the fidelity is

F1(T) =1 − 1
2

sin2 (πǫ) [1 + cos (VT2)]

≈1 − 1
2
(πǫ)2 [1 + cos (VT2)] ,

(5.13)

where in the latter line we have expanded the expression for small ǫ in order
to highlight the quadratic dependence of the fidelity on the error. Equation
(5.13) shows also a key result for the rotation-angle error case, that is

VT2 = (2k + 1)π , (5.14)

for integer k. From the first line of Eq. (5.13) we notice that the magic value in
Eq. (5.14) produces a perfect correction of the error, as shown in the App. C.
We will see that the magic condition is valid also in the synchronous driving
case, although in an approximated way.

Figure 5.4 shows the infidelity I1, as a function of the error ǫ and dimen-
sionless interaction VT2, for the periods n = 1 in 5.4(a) and n = 50 in 5.4(b).
Both the plots show that the best compensation region is around the magic
value of the interaction found in Eq. (5.14). In particular, in Fig. 5.4(b), after 50
periods the region of high fidelity becomes narrower with respect to the one
in the plot (a). This, would require a more precise control of the interaction
in a real experiment.

5.2.2.2 Results: Rotation-Axis Error

In this section, we investigate the effects of the only rotation-axis error, so
we have δ 6= 0. As in the previous case, we want to compute the fidelity in
order to study the performance of the system. For the purpose, we can use
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Figure 5.4: Colormap of the infidelity I1, in logarithmic scale, as a function of dimen-
sionless ǫ and VT2 for the asynchronous driving case. Figure (a) reports
the infidelity after one period, I1(t = T). While, the case (b) is the in-
fidelity after 50 periods, namely I1(t = 50T). In these plots we assume
that the interaction V during T1 is negligible. In both the cases, (a) and
(b), we can identify the magic value of the interaction, VT2 = ±π, where
the fidelity is maximum. Other simulation parameters are δ = 0. (Figure
adapted from [121]).

the unitary evolution operators defined in Eqs. (5.8) and (5.9), and the |ψ(T)〉
in Eq. (5.10). In this case, the expressions generated by such an evolution are
much more complicated than the angle error case. This is because, as we
have seen in the Sec. 5.2.1, the axis error affects not only the axis, but also
the angle. However, recalling that δT1 = πǫ and ΩT1 = π, for small ǫ we can
find a more readable fidelity which is

F1(T) ≈ 1 − 2ǫ2 [1 − cos(VT2)]− πǫ3 (2T2 + 1) sin(VT2) . (5.15)

The sin function in Eq. (5.15) indicates a different symmetry with respect to
the angle error case. In fact, the infidelity, which is depicted after n = 1 and
n = 50 periods in Fig. 5.5, in this case shows a different symmetry along
the horizontal axis. As in the angle error case, the one period infidelity in
Fig. 5.5(a) and the fifty periods one in (b) have very similar behavior. The
diagonal trend that we can appreciate in both the Figs. 5.5(a) and (b) is also
found, although with some differences, in the synchronous driving case in
the next section.

5.2.3 Synchronous driving

In this section, we investigate the single-photon excitation case in which the
two qubits are simultaneously driven. A sketch of the configuration is de-
picted in Fig. 5.6, where we see that two qubits are simultaneously driven
by the same laser pulse with Rabi frequency Ω. Notice the similarity with
adiabatic CZ gate scheme in Sec. 6.2.2. We will see that, in this case, the four-
level initial model can be reduced to a three-level one, with a proper change
of basis. As in the previous sections, in the limit for which T1 ≪ T2, the evo-
lution during T1 is generated by H0k with V = 0, while during T2 the system
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Figure 5.5: Colormap of the infidelity I1, in logarithmic scale, as a function of di-
mensionless δT1 and VT2 for the asynchronous driving case. Figure (a)
reports the infidelity after one period, I1(t = T). While, the case (b) is the
infidelity after 50 periods, that is I1(t = 50T). In these plots we assume
V = 0 during T1. Other simulation parameters are ΩT1 = π.

Figure 5.6: Sketch of the two qubits in the synchronous driving configuration for
one period T. In contrast to the Fig. 5.3, here both qubits are subjected to
the driving field, with Rabi frequency Ω, which excites the qubits from
the ground state to the excited state simultaneously during the operation
denoted with A, and takes back the qubits to the initial ground state
during the operation denoted with B. The interaction, as before, occurs
when both qubits are in the excited state.
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is governed only by the interaction. Thus, starting from the complete matrix
for the time T1 system in the basis {|g1, g2〉, |g1, e2〉, |e1, g2〉, |e1, e2〉}, (h̄ = 1)

H = H01 ⊗ 1 + 1 ⊗ H02 =
1
2













0 Ω Ω 0

Ω δ 0 Ω

Ω 0 δ Ω

0 Ω Ω δ













, (5.16)

we can apply a unitary transformation using the Dicke states [122–125]

|g1, g2〉D = |g1, g2〉S |s〉D =
1√
2
(|g1, e2〉S + |e1, g2〉S)

|e1, e2〉D = |e1, e2〉S |a〉D =
1√
2
(|g1, e2〉S − |e1, g2〉S) (5.17)

where we have distinguished the Dicke and the starting basis states with the
two subscripts D and S, respectively. As a useful notation, we denote the
states |s〉 and |a〉 symmetric and antisymmetric. The unitary transformation,
then, reads as

U =













1 0 0 0

0 1/
√

2 1/
√

2 0

0 1/
√

2 −1/
√

2 0

0 0 0 1













. (5.18)

Choosing the basis {|g1, g2〉D, |s〉D, |a〉D, |e1, e2〉D}, the system Hamiltonian in
the new representation is given by

HD = UHU =















0 Ω√
2

0 0
Ω√

2
δ 0 Ω√

2

0 0 δ 0

0 Ω√
2

0 2δ















. (5.19)

We notice that, in our particular case in which the initial state of the system
is |g1, g2〉, the antisymmetric state |a〉 does not participate to the evolution of
the system and, therefore, we can neglect it obtaining a reduced three level
one. Finally, the two matrices generating the evolution in T1 and T2 read as

HD =











0 Ω√
2

0
Ω√

2
δ Ω√

2

0 Ω√
2

2δ











, HV =









0 0 0

0 0 0

0 0 V









. (5.20)

In this way, the general wavefunction can be expressed as

|ψtot(t)〉 = Cgg(t)|g1, g2〉+ Cs(t)|s〉+ Cee(t)|e1, e2〉 . (5.21)
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We can, now, define the fidelity as the probability that the computational
qubit is in the ground state after a time period nT. Given the wavefunction
in Eq. (5.21), the fidelity reads

F2(t = nT) = Tr [(|g1〉〈g1| ⊗ 1) (|ψtot〉〈ψtot|)]

= |Cgg(nT)|2 + 1
2
|Cs(nT)|2

, (5.22)

where Tr is the trace operation [4], |ψtot〉〈ψtot| is the density operator of the
system and 1 is the identity matrix. Using Eq. (5.20) with δ = 0 and initial
state |g1, g2〉, we can compute the fidelity in Eq. (5.22) which is expressed in
the Dicke basis. We point out that, as mentioned before, since we start from
the pure state |g1, g2〉, the antisymmetric state is never populated and it can
be neglected from the treatment.

5.2.3.1 Results: Rotation-Angle Error

As in the asynchronous case, we first consider the angle-error case. Therefore,
we set δ = 0 in the Hamiltonian HD of Eq. (5.20). Thus, diagonalizing the
matrix in Eq. (5.20) and computing the state of the system at time T, we
arrive at coefficients

|Cgg(T)|2 =
1
4

[

(1 − cos(2ΩT1))−
1
2
(1 − cos(ΩT1))

2 ×

× (1 − cos(VT2))
]2

+
1

16
[1 − cos(ΩT1)]

4 sin2(VT2)

(5.23)

|Cs(T)|2 =
1
4

sin2(ΩT1)
[

cos2(ΩT1) (5 + 3 cos(VT2)) +

+ (2 cos(ΩT1) + 1) (1 − cos(VT2))
]

.
(5.24)

Therefore, using Eq. (5.22) we obtain the fidelity

F2(t = nT) =
1
8

(

− 2 sin(ΩT1)
(

sin2
(

VT2

2

)

sin(2ΩT1)+

+ cos(VT2) sin(ΩT1)
)

+ 3 cos(2ΩT1) + 5
)

.
(5.25)

As in the previous section, we can expand the latter equation considering
small ǫ getting

F2(t = nT) ≈ 1 − 1
2
(πǫ)2 [1 + cos(VT2)] . (5.26)

The nice feature of Eq. (5.26) is that, at second order approximation, it is
equal to the Eq. (5.13) for the asynchronous setup, although they are obtained
from different equation. Figure 5.7 shows exactly this behavior. In particular,
we can notice that Fig. 5.7(a), which represents the infidelity 1 − F2(t = T)

after one period, is very similar to the one seen before in Fig. 5.4(a). This
confirms the similarity between the analytical approximation of the two fi-
delities. However, after 50 periods, they change their behavior. In fact, Fig.
5.7(b) is different from Fig. 5.4(b). However, Fig. 5.7(b) still shows better per-
formance around the magic value found previously in Eq. (5.14). Therefore,
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Figure 5.7: Colormap of the infidelity I2, in logarithmic scale, as a function of dimen-
sionless ǫ and VT2 for the asynchronous driving case. Figure (a) reports
the infidelity after one period, I2(t = T). While, the case (b) is the in-
fidelity after 50 periods, namely I2(t = 50T). In these plots we assume
V = 0 during T1. Figure 5.7(a) is very similar to the Fig. 5.4(a), as an-
ticipated by the Eqs. (5.26) and (5.13). Other simulation parameters are
δ = 0. (Figure (b) adapted from [99]).

the analysis of the asynchronous driving is turned out to be useful also for
the synchronous driving case.

As last result for this type of error, we analyze the case in which the inter-
action is not neglected during T1. As shown by Fig. 5.8, which represents the
infidelity I2(t = 50T), the system assumes a different behavior with respect
to the previous one. We can not identify the magic value compensation for
the interaction anymore. However, other values of the interaction, that are
VT2 = ±2.8 and VT2 = ±3.9, show that it is still possible to obtain good
fidelity independently of the value of error ǫ. Moreover, increasing the ration
T2
T1

, one can find results similar to the case when V = 0 in T1. Unfortunately,
analytical results in this case are not feasible, therefore we limit our attention
on the numerical simulations just showed.

5.2.3.2 Results: Rotation-Axis Error

Likewise the asynchronous model, also for the synchronous driving case we
investigate the axis error. We recall that in this case the following relation
hold: ΩT1 = π and δT1 = πǫ. We have seen in the two level model, that
the axis error produces effects on the axis and on the angle rotation. The
results of numerical simulations are shown in Fig. 5.9. In particular, Fig. 5.9(a)
reports the infidelity after 50 periods when V = 0 during T1, therefore, in this
case, the relation T1 ≪ T2 holds. Most of the best compensation region can
be found in the interval |δT1| ≤ 0.2 and, in particular, for |δT1| . 0.05 the
local diagonal response (in red color in the figure) can be observed as in the
asynchronous driving case of Fig. 5.5. A global diagonal behavior, instead, is
shown in Fig. 5.9(b). In this case, V 6= 0 in T1 and the plot of the infidelity
after 50 periods is very different from the case in (a). However, its global
diagonal behavior, together with the previous local one, is a symptom of
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Figure 5.8: Colormap of the infidelity I2(t = 50T), that is after 50 periods, in log-
arithmic scale, as a function of dimensionless ǫ and VT2 for the asyn-
chronous driving case. Here, V 6= 0 during T1. In this case, the previous
magic value for the compensation is not so clear. However, there are two
values, VT2 = ±2.8 and VT2 = ±3.9, for which we can obtain good
fidelity independently of the error ǫ. (Figure adapted from [121]).

the antiblockade regime [14, 126]. In fact, in this regime one can excite both
atoms when, in general, δ = V/2. In our case, this condition is indicated by
the black line in Fig. 5.9(b). In this way, the computational qubit can indeed
exploit the interaction of the correction qubit to compensate the error.

Figure 5.9: Colormap of the infidelity I2(t = 50T), that is after 50 periods, in log-
arithmic scale, as a function of dimensionless δT1 and VT2 for the syn-
chronous driving case. In Fig. (a) we assume V = 0 during T1, while in
(b) we assume V always on. (Figure taken from [121])

5.2.4 Stability analysis

A natural question could be how stable is the conditions that we have found
in the previous section. Here, we analyze an example of dynamical error in
order to verify the compensation robustness. For the purpose, we apply fluc-
tuations at the interaction value V, supposing the control in the experiment
is not very precise. Figure 5.10 shows an example for a cut of Fig. 5.7(b) at
ǫ = 0.005. We considered two range of fluctuations, ±5% in Fig. 5.10(a) and
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Figure 5.10: Stability of compensation for fluctuations of the interaction value V. We
consider the specific value of ǫ = 0.005 of the Fig. 5.7(b). In (a) we
consider fluctuations of 5%, while in (b) a fluctuation of 10%. We see
that, around the magic value condition, the system has a very stable re-
sponse. In the figure, the orange curve represents the error curve, while
the blue one the curve with no error. The other simulation parameters
are the same as in Fig. 5.7(b). (Figure taken from [121]).

±10% in Fig. 5.10(b). In both cases the system response is very stable around
the magic value defined in Eq. (5.14), also for the relatively large fluctuations
of the second case.

We expect that other cases, for instance the one in Fig. 5.4, are not so
stable. In fact, as we have mentioned before, the condition for the optimal
compensation in the rotation-angle error of the asynchronous configuration,
require a very precise control of the interaction. This is visible especially
for high number of periods as in Fig. 5.4(b) where the best compensation
region is a very narrow line around VT2 = ±π. From this point of view, the
synchronous model described in this section is then more convenient.

5.2.5 Compensation search tool

In the previous section, we optimized the fidelity at a given period number n.
However, for other values n the best compensation condition could be differ-
ent from the one we have found. For this reason, we present an analysis tool
which allows us to find the compensation condition independently of the
number n of periods. For the purpose, we consider the difference between
the populations P(t) = Pg(t) − Pe(t) and we analyzed it by means of their
Fourier components. In particular, we know that when no error is present,
that is ǫ = 0, P(nT) is constant and therefore its Fourier transformation P̃(ν)

has only one peak at frequency ν0 = 1/T. This is shown by the dashed red
curve in Fig. 5.11(a). Whereas, when the system is affected by an error ǫ 6= 0,
the Fourier spectrum has the form of the solid blue curve in Fig. 5.11(a). The
single peak centered in ν0 is now split into two main peaks centered at the fre-
quencies ν0(1 ± ǫT1) and in two additional sidebands, which are visible only
at large values of ǫ. The compensation effect of the interaction, in this case,
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Figure 5.11: (a) Fourier transform P̃(ν) of the population difference P(t). The dashed
red line represents the case with ǫ = 0 whose peak is at frequency
ν0 = 1/T. While the solid blue one is the case with ǫ = 0.1 and VT2 = 1
whose two main peaks are at frequencies ν0(1 + ǫT1). The other small
sidebands arise for large values of ǫ. (b) Peak height of the Fourier
component P̃(ν0) in logarithmic scale, as a function of parameter space
(ǫ, VT2). There is a strong analogy with the Fig. 5.7(b) confirming the
efficacy of such a tool. Other simulation parameters are δ = 0. (Figure
taken from [121]).

is to shift the main peaks towards the natural frequency of the system, that
is ν0. Therefore, knowing the height of the peak of the frequency component
ν0, one is able to say whether the interaction compensates the error. Figure
5.11(b) shows a systematic study of the height of 1 − P̃(ν0) peak over the
parameter space (ǫ, VT2). We observe that there is a strong similarity with
Fig. 5.7(b) that we have encountered before. This, makes the Fourier anal-
ysis a very useful numerical tool in searching the compensation condition,
independently of the number of periods.

5.3 two-photon excitation

So far, we have dealt with a couple of two level atoms which could be re-
duced to a three-level problem or a two-level one, according to the type of
driving we choose. In this part, instead, we analyze the synchronous driving
case for a couple of three level interacting systems. In particular, we study
a well known protocol in quantum optics called STIRAP (STImulated Ra-
man Adiabatic Passage) [119, 127–130] which, as the mentioned in its name,
uses the adiabatic principles presented in Sec. 2.1. In the following, it will be
briefly introduced the STIRAP protocol and then we will see how we use it
for our compensation scheme.

5.3.1 STIRAP

The STIRAP protocol is a technique for quantum state transfer applied, in
general, in a three-level system but also in many other setups [119]. We con-
sider a ladder setup shown in Fig. 5.12(a). We can imagine to realize the
population transfer |0〉 → |2〉 passing through the state |1〉 which, usually,
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Figure 5.12: (a) Three-level scheme for the STIRAP protocol in a ladder configura-
tion. It is controlled by two laser pulses with Rabi frequency Ωp and Ωs.
Then, it is characterized by single-photon and two-photon detunings,
∆1 and ∆2 respectively. (b) Example of Gaussian temporal profile of the
Pump and Stokes pulses. (c) Example of populations transfer |0〉 → |2〉
with the pulses in (b). We notice that the state |1〉 is never populated
during the transfer.

has a very short life time and therefore an high decay rate. For the purpose,
two pulses are used, Ωp (Pump) and Ωs (Stokes), represented in Fig. 5.12(a)
by the blue and red line respectively. The STIRAP protocol is characterized
by a single-photon detuning ∆1 and a two-photon detuning ∆2 which must
be 0 in order to have a correct population transfer. An example of popula-
tion transfer is depicted in the right part of Fig. 5.12 with Gaussian pulses in
Fig. 5.12(b) and the temporal profile of the populations of the three states in
Fig. 5.12(c). For a perfect population transfer, it is used the so-called counter-
intuitive sequence of pulses, i.e., first the Stokes and then the pump. In this
way, as showed in the Fig. 5.12(c), the state |1〉 is never populated during
the evolution, the transition |0〉 → |2〉 is perfectly performed. We point out
that, even if in a different context, we have already encountered adiabatic
population transfer between two eigenstates of the system in Ch. 3 using the
adiabatic control tools of Ch. 2.

After introducing the general concept of the STIRAP protocol, we will see
the detail of the protocol related to our compensation scheme. We denoted
|0〉 as the ground state |gj〉, the intermediate level |1〉 as |ij〉 and |2j〉 is the
excited state, with j = 1, 2 representing the two qubits. In our case, the single
atom Hamiltonian describing the system in the RWA is written as

Hj(t) = h̄









0 Ωp(t)
2 0

Ωp(t)
2 −∆1

Ωs(t)
2

0 Ωs(t)
2 −∆2









, (5.27)
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being the Stokes and Pump pulses respectively

Ωs(t) =Ω0 e
−
(

t+T1/2
TG

)2

Ωp(t) =Ω0 e
−
(

t−T1/2
TG

)2

,

(5.28)

where Ω0 is the peak of the Rabi frequency, T1 is the distance between the
maxima of the pulses and TG the width of the Gaussian. Such a Gaussian
shape is largely used due to its stability and easy to realize in a laboratory
[119, 131].

The state transition that we have seen above can be realized because of the
presence of the so-called dark state [119, 127], which reads as

|Dj(t)〉 = cos(θ(t))|gj〉 − sin(θ(t))|ej〉 , (5.29)

where θ(t) = arctan(Ωp/Ωs) is the mixing angle. Technically, in atom physics,
a dark state is a special state which does not absorb or emit photon, that is
reason of the word dark. Therefore, a system in this state will remain there
indefinitely. For our purpose, the importance of this state lies in the fact that
it does not couple the intermediate state |ij〉 with the other two. This, can
be seen from its analytical expression in Eq. (5.29) in which there is no inter-
mediate state |ij〉 component. Therefore, preparing the system in the ground
state and adiabatically following the dark state, the transfer |gj〉 → |ej〉 can
be performed without any non-adiabatic transitions between the states.

As in the single-photon case, in the following we aim at realizing consecu-
tive quantum state transfers with high fidelity.

5.3.2 Synchronous driving

For the two-photon excitation model, we consider only the synchronous driv-
ing, which means that the computational and correction qubits are driven
simultaneously. Before going into the details, we remark that the STIRAP
three-level model can be reduced to an effective two-level one by consider-
ing large detuning ∆1. The same procedure has been shown previously in
Ch. 3, where in Sec. 3.4 we have reduced a four-level system in a three-level
one using the adiabatic elimination method. If, then, we reduce the STIRAP
to a two-level system, the compensation scheme that we have studied in the
previous sections can be applied. Here, instead, we study the regime of small
∆1 where such an approximation is not valid. The structure of the period T

with STIRAP is defined in Fig. 5.13 where the related population Pg1 and
the pump and Stokes pulses are shown. The weak adiabatic regime due to
parameter that we have chosen, allows the intermediate state to be slightly
populated during the transition. This generates the little oscillations visible
in the population Pg1 of Fig. 5.13. It is worth noting that while the first tran-
sition |gj〉 → |ej〉 is realized with counter-intuitive pulse sequence defined
above, the second transition |ej〉 → |gj〉 is achieved by inverting the order of
the pulses.

Now, having defined the structure of the period T, we repeat it n times
as in the sections above. The error, in this case, is defined by the parameter
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Figure 5.13: Structure of one period T with the STIRAP protocol. To perform the
first transition |gj〉 → |ej〉 we use the counter-intuitive pulse sequence,
that is first Ωs and then Ωp. The second transition |ej〉 → |gj〉, instead,
is done by exchanging the previous order of the pulses. This is repre-
sented in the figure by the dashed green and red lines for the pulses
and the solid blue line for the population of the ground state of the
computational qubit. The left vertical axis represents the probability of
the ground state Pg1 , while the right one represents the pulse ampli-
tude in the dimensionless quantity Ω(t)Tg. The horizontal axis is the
time in units of Tg. The oscillations observed in the population Pg1

have already been studied in [132] Other simulation parameters are
∆2 = 0, ∆1T1 = 1.4, T1 = 1.2TG, T2 = 10TG. (Figure adapted from [121]).

∆1, in particular for the specific value of ∆1T1 = 1.4 the adiabatic regime
is not valid anymore. For this case, Fig. 5.14(a) shows the degradation of
the fidelity when no compensation is applied. We notice that the population
of the intermediate state is not zero as it should be from the Eq. (5.29) of
the dark state. On the contrary, when we apply the compensation value of
VT2 = 2, the population Pi1 is very low and the performance of the system
are greatly improved, as shown in Fig. 5.14(b). For both the figures (a) and (b),
we assume the interaction always on. Anyway, switching it on only during
T2 does not produce any significant effects, as shown in the App. E.

The fidelity dependence on the detuning, after 5 periods, is very complex
and it is shown in Fig. 5.15(a). The dashed blue line represents the infidelity
without compensation and the two high peaks determine a very low fidelity.
When we apply the compensation VT2 = 2, the behavior is still complex
but in correspondence of the two peaks the infidelity is greatly improved.
The black line in the figure represents the value of ∆1T1 = 1.4. This means
that given the value of the detuning and the number of periods, we can
optimize the interaction in order to have a better fidelity. However, a more
complete study is performed in Fig. 5.15(b). It represents the height of the
peak of the Fourier component P̃(ν0) in the parameters plane (∆1T1, VT2)

and, as we have seen in Sec. 5.2.5, it provides the compensation condition
independently of the number of the periods. In fact, the black line in the
figure, representing the valued ∆1T1 = 1.4 as in the case (a), shows that one
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Figure 5.14: Temporal dependence of populations Pg1 and Pi1 for n = 5 periods
T at ∆1T1 = 1.4. In (a) no compensation is applied, that is VT2 = 0,
and the fidelity becomes worse as the time goes on. At t/T = 5T it is
F2 ≃ 0.43. In (b), instead, the interaction, with value VT2 = 2, improves
the fidelity reaching the value of F2 ≃ 0.96 at t/T = 5. The interaction
is assumed always on. Other simulation parameters are the same of Fig.
5.13. (Figure taken from [121]).

the compensation value of VT2 = 2 generates high fidelity for that specific
value of the detuning.

5.4 remarks

In this chapter, we have investigated a new protocol that aim at compensat-
ing errors affecting the control parameters of quantum systems. As shown at
the beginning in Sec. 5.1, we consider a two interacting qubit model subject
to a periodic driving. We denote the first qubit computational and the second
one correction one.The idea is to use this interaction to compensate errors in
the driving parameters. We suppose to perform many quantum operations,
like a bit flip, periodically in time. We then analyzed the system for tens of pe-
riods and such that the error propagates as the time goes on. For the study,
we considered two main types of qubit structures: single-photon and two-
photon excitation. The first one, presented in Sec. 5.2, has been studied un-
der two different types of driving: asynchronous, explored in Sec. 5.2.2, and
synchronous in Sec. 5.2.3. For each of them, we analyzed the rotation-angle
error and the rotation-axis error, finding, when possible, an analytical condi-
tion for the compensation. What we found is that, optimizing the strength
of the interaction for a given period, we can mitigate the effects of the error
and also improve the performance. However, optimizing the fidelity for a
single period could not be an efficient solution since one cannot be sure it is
valid also for larger periods. Therefore, when an analytical condition is not
available, it is useful to exploit the Fourier analysis tool. In Sec. 5.2.5, then,
we showed how to use Fourier analysis to find the compensation condition
independently of the number of periods.

We have seen that the scheme is also valid for a two-photon excitation
system, in particular, using the STIRAP protocol described in Sec. 5.3.1. We
have seen, then, in Sec. 5.3.2, that also for this scenario it is possible to find



78 inter-atomic interaction for errors compensation

Figure 5.15: In (a) it is shown the infidelity after 5T, I2(5T), as a function of the
detuning ∆1T1. The dashed blue line represents the infidelity without
compensation, whereas in the solid orange curve a compensation of VT2
is applied. It can be noticed that at ∆1T1 = 1.4, identified by the black
line, the fidelity is highly improved. This specific case has been shown
in the Fig. 5.14 above. (b) represents the peak height of P̃(ν0), given by
the Fourier analysis introduced in the section above, in the parameter
space (∆T1, VT2). The black line identifies the value of ∆1T1 = 1.4 and it
can be seen that also in this case we find the compensation performance
seen in (a) and Fig. 5.14. In these plots the interaction is assumed always
on. (Figure adapted from [121]).

an interaction value for the compensation. In this case, due to the complexity
of the system, only the Fourier analysis was used, confirming the utility of
such a tool.

Overall, our compensation scheme is able to improve the fidelity in all the
cases that we have studied. However, the complexity of the problem does
not allow a further analytical treatment for periods larger than 1. For more
complex cases, such as the simultaneously presence of angle and axis error
in the single photon excitation must be addressed by resorting to numerical
tools.

Our scheme is suitable to be implemented in quantum gates [106, 133]
which is the natural extension of the work. Indeed, in this direction, in the
next chapter we provide an overview on future development on quantum
gates.
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C O N C L U S I O N S A N D O U T L O O K

This last chapter of this thesis is dedicated to conclusions and outlook. We
first give a summary of the previous chapters, including the problems and re-
sults that we have obtained with our solutions, then we provide an overview
of possible extensions of our work. In particular, we will concentrate on the
implementation of an accelerated adiabatic two-qubit gate relevant for quan-
tum computing.

6.1 summary

In this thesis we have studied quantum systems affected by errors of different
nature. We have addressed the problem essentially from two points of view:
adiabatic control tools in Part ii, for close and open quantum systems, and a
compensation scheme for unitary errors in our experimental platform based
on Rydberg atoms, in part iii. In particular, in Ch. 3, we have optimized a
population transfer in a multi-level quantum system. For the purpose, we
have specifically designed and optimized three sweep functions in order to
maximize the transfer efficiency. The protocols have also been accelerated
using the CD driving [33, 34], introduced in Ch. 2, in order to face the problem
of the very short life time of the target state. The initial four-level system has
been studied in two regimes: firstly in a simplified version by adiabatically
eliminating one of the states which did not take part to the evolution and
secondly in the full four-level description. In both cases, the application of
our designed accelerated adiabatic protocols showed an improvement of the
fidelity with respect to the one obtained in the experiment [79]. Our results,
then, showed that it is possible to reach a population transfer fidelity very
close to 1 in realizing an all-optical switch, in a system more complex than
the two-level one of [84], by optimizing the sweep function and applying the
corresponding CD Hamiltonian.

While in Ch. 3 the sweep function have been analyzed in a close system
environment, neglecting all the decoherence and decay effects, Ch. 4 is ded-
icated to cover such an aspect. The objective was to study the robustness of
three sweep functions in the presence of various sources of noise, especially
decoherence and decay by spontaneous emission. We have seen that each
sweep function showed different behavior under the effects of the mentioned
source of noise. In particular, for a given decoherence channel or decay, one
of the sweeps was more robust with respect to the other. The protocols have
been tested first on a simple two-level system and then on a two-qubit entan-
gling gate, and the results showed similar behavior for both systems. This
means that the adiabatic protocols can be optimized also according to the
type of decoherence and decay affecting the system.

81
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In the Part ii we reduced the effects of noise and errors by using adiabatic
driving protocols. In the Part iii we tackle the problem from a different per-
spective. We propose a compensation scheme based on the exploitation of
the interaction between two qubits. We considered errors generated by the
imperfections in the control parameters which accumulate during a periodic
evolution of the system. We first analyzed a simplified model obtained by
the assumption that the two qubits can be addressed independently. This
reduced the model from four to two levels. The analytical investigation of
the fidelity after many periods was not possible. Therefore, under certain
assumptions given in Sec. 5.2, we analyzed the analytical expression of the
fidelity after one period, for all the error types considered. In some cases, it
was possible to derive an compensation relation, denoted as "magic value",
such that the interaction perfectly compensates the effects of the errors. Al-
though the numerical simulation showed an agreement with the analytical
compensation condition, this method could only optimize the fidelity at a
given period. For this reason, we resorted to the Fourier analysis in order
to find a more general compensation condition. Indeed, the results showed
that such an approach is a powerful tool for eliminating the dependence on
the number of periods of the compensation condition. The same approach
has been also applied to a more complicated system which showed that the
compensation procedure could be generalized to a more realistic systems.

Finally, we believe that our studies confirm that errors in quantum systems
can be corrected or mitigated using quantum control tools. We use the adia-
batic protocols with CD acceleration method but many others could be used
[29]. Additionally, we also provide a new compensation scheme which could
be adopted in non-trivial qubit gates, as anticipated in the following, in Sec.
6.2.

6.2 outlook

The work of this thesis lays the basis for future applications especially in
quantum computing scenarios. We aim at correcting and mitigate errors oc-
curring in a quantum system and optimizing the performance of quantum
operations using specific tools of quantum control, such as, adiabatic evo-
lution and counterdiabatic driving. The natural extension of our studies, is
their implementation to a non-trivial quantum gates. Recently, one of the
most promising quantum platforms are Rydberg atoms because of their fea-
tures and highly controllable degrees of freedom [14]. In this section, we
give a brief preview of how our ideas can be connected to quantum gates
with Rydberg atoms. First, we introduce some standard quantum gates and
then we will see a their adiabatic implementation using Rydberg atoms [26].
Finally, we provide some directions for an implementation of our compensa-
tion scheme, presented in Ch. 5.
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6.2.1 CZ and CNOT gates

Likewise classical computers are based on classical gates for performing math-
ematical and logical operations, such as AND, OR, NOT..., quantum comput-
ers are built using quantum gates. The difference lies in the elementary infor-
mation they have to manage. In fact, while classical gates deal with classical
bits, which can assume only two values 0 and 1, their quantum counterpart
have to deal with quantum bits, or qubits, which can assume infinite values,
or states, given by the superpositions between 0 and 1. In the bra-ket notation
this is written as [4]

|ψ〉 = α|0〉+ β|1〉 (6.1)

where |ψ〉 is the state of the qubit and α and β are two complex coefficients
forming the linear superposition such that |α|2 + |β|2 = 1. There exists many
gates acting on a qubit and they can be distinguished in the single qubit and
multi qubits gates. The first ones, e.g., X (or NOT), Z and H (Hadamard) gate,
are trivial and are easily experimentally realizable. The second, instead, for
instance Controlled-NOT and Controlled-Z, are non-trivial and they attract
the attention of the physicists because they are key ingredients for building
a universal set of quantum gates [4]. From the mathematical point of view,
the quantum gates are described by unitary matrices and for the single qubit

case, the mentioned exemplary gates, in the basis |0〉=̂
(

1

0

)

and |1〉=̂
(

0

1

)

,

have the form

X =

(

0 1

1 0

)

, Z =

(

1 0

0 −1

)

, H =
1√
2

(

1 1

1 −1

)

. (6.2)

The X and Z gates, corresponds to the Pauli matrices σx and σz that we have
seen in the previous chapters, while the Hadamard gate is useful for creating
a maximal superposition of states. In fact, the application of H on the state
|0〉 gives H|0〉 = 1√

2
(|0〉+ |1〉).

The CZ and CNOT gates belong to the two qubits case and they are repre-
sented by

CZ =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1













, CNOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













. (6.3)

These two gates are realized with two qubits such that one controls the op-
eration on the other. For instance, the CZ performs a Z gate on the second
qubit only if the first one is in the state |1〉. Similarly, for the CNOT gate.
They have been implemented using various physical quantum systems, such
as superconducting qubits [10] and Rydberg atoms [14]. In the next sections,
we introduce an implementation of the adiabatic CZ using Rydberg atoms
and we will see how such a system can be extended exploiting the control
tools that we encountered in in this thesis.
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6.2.2 Adiabatic CZ gate

|r〉

|1〉

∆(t)

|0〉

Ω(t)

A B

V |r〉

|1〉

∆(t)

|0〉

Ω(t)

A B

Figure 6.1: Level scheme of the adiabatic protocol for the CZ gate. It consists of two
three-levels qubits, the left one is the control qubit and the right one is
the target qubit. They have two ground states |0〉 and |1〉 and an excited
state |r〉. The protocol consists of two pulses, denoted A and B in the
figure, such that the state |1〉 is excited to the state |r〉 and a 2π rotation is
performed. The pulses are simultaneously applied by means of the Rabi
frequency Ω(t) and detuning ∆(t). Additionally, the two qubits interact
with each other, with strength V, through their |r〉 state.

As mentioned in the previous section, a lot of quantum gates can be real-
ized. In this section, we concentrate in the CZ quantum gate which is inter-
esting not only because it is a non-trivial two-qubits gate, but also because it
can be used, together with two Hadamard gates, for building the CNOT gate
[4]. We show an implementation of the CZ gate with Rydberg atoms, which
is a platform that we have already studied in Ch. 5, using the adiabatic evolu-
tion theory that we have applied in Ch. 3 and 4. The protocol we are going to
show has been studied in [26] and its sketch is shown in Fig. 6.1. As we have
mentioned in Sec. 5.2.3, we stress the similarity of the present scheme for the
adiabatic CZ gate and the one in Fig. 5.3. Figure 6.1 reports two interacting
qubits, with interaction strength V ≫ Ωmax, consisting of three levels: two
ground states |0〉 and |1〉 and a Rydberg excited state |r〉. Their state |1〉 is
excited to |r〉 using a laser pulse with Rabi frequency Ω(t), represented by
the solid blue line in Fig. 6.2, and detuning ∆(t) identified by the dashed
orange line in Fig. 6.2. Their analytical expressions read as

Ω(t) =















Ωmax
1−a1

(

e
− (t−T/4)4

τ4 − a1

)

for 0 ≤ t ≤ T/2

Ωmax
1−a2

(

e
− (t−3T/4)4

τ4 − a2

)

for T/2 ≤ t ≤ T ,
(6.4)

∆(t) =







−∆max cos( 2πt
T ) for 0 ≤ t ≤ T/2

∆max cos( 2πt
T ) for T/2 ≤ t ≤ T

, (6.5)
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Figure 6.2: Time profile of Rabi frequency Ω(t), represented by the solid blue line,
and the detuning ∆(t) represented by the dashed orange line. The pulse
Ω(t) is composed of two pulses ARP A and B, corresponding to the
pulses A and B in Fig. 6.1. The total period is T = 0.54 µs, the maxi-
mum Rabi frequency is Ωmax/2π = 17 MHz and maximum detuning
∆max/2π = 23 MHz.

where T = 0.54 µs is the total duration of the pulse, τ = 0.175 T is the
life time of the Rydberg level |r〉, Ωmax and ∆max are the maximum Rabi
frequency and detuning respectively, and a1 and a2 are constants chosen
such that Ω(0) = Ω(T) = 0.

The pulse Ω(t), composed of two ARP (Adiabatic Rapid Passage) pulses
denoted A and B in Fig. 6.1 with the corresponding time shape in Fig. 6.2,
is simultaneously applied to both the qubits, as in our case of Sec. 5.2.3,
and it realizes a 2π rotation. Taking into account the computational basis
{|00〉, |01〉, |10〉, |11〉}, the states acquire the phases {1, φ1, φ1, φ2} respectively.
The state |00〉 is a dark state with respect to the evolution since is not coupled
with the field and therefore it does not acquire any phase; the states |01〉
and |10〉 are symmetric and therefore they acquire the same phase φ1, while
the state |11〉 acquires a phase φ2 which depends on the Rydberg blockade
condition V ≫ Ωmax. With the Ω(t) pulse, the phases φ1 and φ2 will be
equal to π. Therefore, the resulting matrix of the adiabatic CZ gate in basis
{|00〉, |01〉, |10〉, |11〉} will be

CZad =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













. (6.6)

Notice that the difference between the adiabatic CZ of Eq. (6.6) and the one
in Eq. (6.3) is only an irrelevant global phase.
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Figure 6.3: Half-spectrum (0 ≤ t ≤ T/2) of instantaneous eigenvalues of the adia-
batic CZ gate. In the figure, only 8 of 9 eigenvalues are depicted. The
other one is much higher and it is not relevant for our purpose. All the 8
eigenvalues are degenerate at t = 0 and t = T/2. Moreover, two couples
of them are degenerate for the entire evolution. The other half of the spec-
trum, T/2 ≤ t ≤ T/2 is identical to the first half. Simulation parameters
are T = 0.54 µs, τ = 0.175 T, a1 = a2 = 0.01553078, ∆max/2π = 23 Mhz,
Ωmax/2π = 17 Mhz.

6.2.3 Counterdiabatic CZ

The gate just showed is realized with adiabatic pulses and it already reaches
fidelities > 0.999. Therefore, a possible extension is the application of CD

correction in order to speed up the evolution and reducing the time for per-
forming a CZ operation. Having the possibility of implementing very fast
quantum gates allows one to perform many quantum operations within the
decoherence time of the system, and therefore execute much complex algo-
rithm. Hence, for computing the HCD Hamiltonian, we study the instanta-
neous eigenvalues structure depicted in Fig. 6.3. In the figure only 8 of 9
eigenvalues are shown because one of them is much higher than the others,
and we can neglect it for our purpose. The 8 eigenvalues are degenerate at
t = 0 and t = T/2 while two of them are degenerate for the entire evolution.
This could be a problem for the computation of HCD in Eq. (2.25), since it
requires that all the eigenvalues have to be non degenerate at any time. How-
ever, as extensively explained in the Bachelor thesis of Tim Ehret [134], in
our special case the problem does not arises because the matrix representing
the entire system can be split into blocks which are independent. Therefore,
the CD driving works as it should and the adiabatic evolution is accelerated.
Additionally, another advantage of such an implementation is related to the
unwanted dynamical phase generated by the non-perfect Rydberg blockade
regime. It turned out that the CD term also compensates such a phase im-
proving, then, the performance.
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Another way to compensate the unwanted dynamical phase is to use two
single-qubit phase gates. Such a phase gate produces an energy shift such
that it cancels out the unwanted phase. In this direction, the compensation
scheme presented in Ch. 5 can be explored. In our same synchronous driving
of Sec. 5.2.3, the interaction was used to compensate an extra phase gener-
ated by the imperfection in the control parameters. Therefore, keeping the
interaction range within the Rydberg blockade regime, that is V ≫ Ωmax, the
fidelity can be studied as a function of the interaction strength. Alternatively,
also the asynchronous scheme could be investigated for this purpose.

In the end, improving the performance of the CZ gate allows us to built
a CNOT gate, using two Hadamard gate and one CZ [4, 135], and conse-
quently improving fidelity of a quantum error correction schemes based on
the CNOT gate [16, 17]. In this direction, a more detailed studied has been
developed in the Bachelor thesis of Tim Ehret [134].





Part V

A P P E N D I X





A
S W E E P F U N C T I O N S D E R I VAT I O N

In Sec. 2.3, we have introduced the sweep functions that we used in the Ch.
3 and 4. This appendix is dedicated to show the main steps for deriving the
RC and PL protocols.

a.1 roland–cerf

The RC has been already calculated and studied in [35, 56, 57]. However, we
followed the mention references to derive the RC in our problems and, there-
fore, the aim of this section is to review the main steps for the derivation. In
particular, we consider an exemplary case of the two level system described
by an Hamiltonian similar to the one in Eq. (2.26). For this reason, let us
consider a two level system governed by the Hamiltonian:

H(t) = α f (t)σz + Ωσx , (A.1)

where α > 0 and Ω are the same parameters defined in Eq. 2.13. Let us com-
pute, then, the gap between the eigenenergies of systems E+ and E−, corre-
sponding to the instantaneous excited and ground eigenstates |ψ+[ f (t)]〉 and
|ψ−[ f (t)]〉, respectively:

∆E[ f (t)] = E+[ f (t)]− E − [ f (t)] = 2α

√

f 2(t) +
( g

α

)2
, (A.2)

|ψ±〉 =
1

√

1 + α2

∣

∣

∣

∣

√
f 2(t)+(Ω/α)2∓ f (t)

Ω

∣

∣

∣

∣

2





1

±
√

f 2(t)+(Ω/α)2− f (t)
Ω



 . (A.3)

Notice that the eigenvalues, as well as the eigenstates, depend on the function
f (t) which is the unknown that we want to find.

Now, using the instantaneous eigenstates in Eq. (A.3) and computing ∂ f H,
we can impose the local adiabatic condition as follows [57, 136]:

∣

∣

∣

∣

d f

dt

∣

∣

∣

∣

|〈ψ+( f )|∂ f H|ψ−( f )||〉
(∆E)2 < ǫ . (A.4)

We also demand that f (t) is monotonically decreasing d f
dt ≤ 0 such that we

obtain:

dt

d f
= − |g|

4ǫα2
[

( g
α

)2
+ f 2(t)

]3/2 , (A.5)
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where we consider the threshold value from Eq. (A.4). For convenience, we
first integrate Equation (A.5) between f (0) = f0 > 0 and f (t f ) = − f0, obtain-
ing the expression for the final time as follows:

t f =
f0

2ǫ|g|
√

( g
α

)2
+ f 2

0

. (A.6)

Having the final time t f , we can now find f (t) by integrating again Equa-
tion (A.5), this time from f (0) to f (t), and then by inverting the resulting
function t( f ). The RC protocol then reads as follows:

f (t) =

(

t f

2 − t
)

4ǫ|g|2

α

√

1 −
(

t f

2 − t
)2

16ǫ2|g|2
. (A.7)

Finally, using the same change of variable as in Sec. 2.1.1 and rearranging
the expression we obtain exactly the Eq. (2.38)

fRC(τ) =
(1 − 2τ) f0

√

1 + 4α2
g f 2

0 τ(1 − τ)
. (A.8)

We have shown a quite procedure for a two level system but it can be used
also in other cases. In fact, in Ch. 3, we computed the RC by considering only
the two-level subsystem consisting of the states |1〉 and |T〉. Repeating, then,
the procedure just shown, we obtain the RC for the specific case.

a.2 polynomial

The PL sweep function is derived using the BCMs [55] mentioned in Sec. 2.3.
As extensively explained in the PhD dissertation [51], we are looking for a
sweep function whose first n derivatives are null at the beginning and at the
end of evolution [137]. Typically, such features are present in the polynomial
functions. Therefore, for the one-qubit case studied in Ch. 4, we consider a
polynomial of the form

p(τ) = 1 + aτ3 + bτ4 + cτ5 + dτ6 + eτ7 , (A.9)

with τ ∈ [0, 1]. Thus, we need to find the values of the five coefficients
a, b, c, d, e requiring that the first three derivatives are 0, that the values at
the end of the protocol τ = 1 is p(1) = −1 and that it is 0 at the avoided
crossing, that is p(1/2) = 0. The request of having p(0) = 1 is already ful-
filled from the definition in Eq. (A.9). In formula, we have to solve the system















































a + b + c + d + e + 1 = −1

3a + 6d = 0

4b + 5c + 7e = 0

6a + 12b + 20c + 30d + 42e = 0

a
8 +

b
16 +

c
32 +

d
64 +

e
128 + 1 = 0 .

(A.10)
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The solution provide the coefficients of the polynomial function in Eq. (2.37)
with the temporal profile showed by the dashed red line of Fig. 4.1(a).





B
D E R I VAT I O N O F 4 × 4 H A M I LT O N I A N O F S E C . 3 . 2

In the present appendix we show the main analytical calculations useful for
a better understanding of the system studied in Ch. 3. In particular, first
we start writing the Hamiltonian in the unperturbed basis with the states
|S0〉and|T0〉, and we derive a simpler description in a rotating frame with
the Rotating-Wave Approximation (RWA). Second, we change the basis in the
perturbed basis with the states |S〉 and |T〉 as in the experimental reference
paper [79]. Finally, we show the main steps of the adiabatic elimination pro-
cedure, useful for the reduced system described in Sec. 3.4.

b.1 unperturbed basis description

In this brief section, we write the Hamiltonian of the system in the lab frame.
We consider the unperturbed basis {|1〉, |S0〉, |T0〉, |2〉}

Ĥ = Ĥ0 + Ĥso =













E1 Ωp cos(ωpt) 0 0

Ωp cos(ωpt) ES0 V 0

0 V ET0 Ωc cos(ωct)

0 0 Ωc cos(ωct) E2













,

(B.1)

where E1, ES0 , ET0 and E2 are the energies of the states |1〉, |S0〉, |T0〉 and |2〉,
respectively. Ωp and Ωc are the probe and the control Rabi frequencies, V is
the spin-orbit coupling strength defined in Eq. (3.1) and cos function repre-
sents the laser and ωp and ωc are the corresponding frequencies. Now we
choose the level |T0〉 as the zero energy point, so we obtain

Ĥ = Ĥ0 + Ĥso =













ω1 + ∆0 Ωp cos(ωpt) 0 0

Ωp cos(ωpt) ∆0 V 0

0 V 0 Ωc cos(ωct)

0 0 Ωc cos(ωct) ω2













(B.2)

where ∆0 = ES0 − ET0 , ω1 = ES0 − E1 and ω2 = E2 − ET0 . Now, we simplify
the expression of the matrix of Eq. (B.2) by applying the RWA.

b.1.1 Rotating Frame and RWA

In this section, we apply a unitary transformation U(t) for changing the
system reference and using the rotating frame of the lasers. For simplicity
we do not use the hat notation of the operators.
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Consider the transformation U(t) =













e−iωpt 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiωct













. The new Hamil-

tonian is found using the relation H′ = UHU† + iU̇U†. Let us, then, evaluate
the two terms separately.

1. The first term is given by the matrix product

UHU† =













e−iωpt 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiωct













×

×













ω1 + ∆0
Ωp

2

(

e−iωpt + eiωpt
)

0 0
Ωp

2

(

e−iωpt + eiωpt
)

∆0 V 0

0 V 0 Ωc
2

(

e−iωct + eiωct
)

0 0 Ωc
2

(

e−iωct + eiωct
)

ω2













×

×













eiωpt 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iωct













=

=













ω1 + ∆0
Ωp

2

(

1 + e−i2ωpt
)

0 0
Ωp

2

(

ei2ωpt + 1
)

∆0 V 0

0 V 0 Ωc
2

(

e−i2ωct + 1
)

0 0 Ωc
2

(

1 + ei2ωct
)

ω2













.

(B.3)

Now using the RWA we can neglect the exponentials e±i2ωp,ct since they
rotates much faster than the reference frequencies and we obtain the
much simpler matrix

UHU† =













ω1 + ∆0
Ωp

2 0 0
Ωp

2 ∆0 V 0

0 V 0 Ωc
2

0 0 Ωc
2 ω2













. (B.4)

2. The other term of the transformation, instead, is

iU̇U† =i













−iωpe−iωpt 0 0 0

0 0 0 0

0 0 0 0

0 0 0 iωceiωct

























eiωpt 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iωct













=













ωp 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −ωc













.

(B.5)
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Finally, adding the two results in Eqs. (4) and (5), the Hamiltonian in the
rotating frame and with the RWA reads

H′ = UHU† + iU̇U† =













δp + ∆0
Ωp

2 0 0
Ωp

2 ∆0 V 0

0 V 0 Ωc
2

0 0 Ωc
2 −δc













, (B.6)

where δp = ωp − ω1 and δc = ωc − ω2 are the two detunings.

b.2 perturbed basis description

In order to be consistent with the treatment in [79], in our simulation we
used the Hamiltonian in the perturbed basis. Therefore, in this section we
show the main steps to derive such an Hamiltonian.

Let us write the Hamiltonian of Eq. (B.8) in the basis (|1〉, |S〉, |T〉, |2〉)
where

|S〉 = α|S0〉 − β|T0〉 |T〉 = β|S0〉+ α|T0〉 . (B.7)

Using A =













1 0 0 0

0 α β 0

0 −β α 0

0 0 0 1













as the change-of-basis matrix, the transforma-

tion is

H̃ = AHA−1 =













δp + ∆0 α
Ωp

2 −β
Ωp

2 0

α
Ωp

2 α2∆0 + 2αβV (α2 − β2)V − αβ∆0 β Ωc
2

−β
Ωp

2 (α2 − β2)V − αβ∆0 β2∆0 − 2αβV α Ωc
2

0 β Ωc
2 α Ωc

2 −δc













.

(B.8)

We should evaluate the new energy splitting between the states |S〉 and |T〉.
So let us diagonalize the subsystem 2 × 2, obtaining

ES,T =
1
2

[

∆0 ±
√

[

(α2 − β2)2 + 4α2β2
]

[

∆2
0 + 4V2

]

]

. (B.9)

Since we have performed a parametric diagonalization of the subsystem,
with parameters α and β, the relation between ∆so and V with ∆0 is found
by imposing the two conditions: (i) energy splitting equal to ∆so and (ii) off-
diagonal elements of Eq. (B.8) equal to 0, which read

∆so = ES − ET =

√

[

(α2 − β2)2 + 4α2β2
]

[

∆2
0 + 4V2

]

(B.10)

V(α2 − β2)− αβ∆0 = 0 . (B.11)
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Solving for V in Eq. (B.11) and substituting it in the Eq. (B.10), we find the
relations for V and ∆0 which correspond to the Eqs. (3) and (4) of [73]

∆0 =
(

α2 − β2)∆so (B.12)

V = αβ∆so . (B.13)

At this point, substituting the latter relations of the Eqs. (B.12) and (B.13) into
the Eq. (B.8), the Hamiltonian finally reads

H̃ =













δp + ∆so α
Ωp

2 −β
Ωp

2 0

α
Ωp

2 ∆so 0 β Ωc
2

−β
Ωp

2 0 0 α Ωc
2

0 β Ωc
2 α Ωc

2 −δc













, (B.14)

where, in the new basis with |S〉 and |T〉, we took the state |T〉 as the zero
energy level.



C
O P T I M A L C O R R E C T I O N F O R S Y N C H R O N O U S D R I V I N G

In Sec. 5.2.2.1, we have stated that for the angle rotation error it possible to
prove that the magic value in Eq. (5.14) provides a perfect compensation of
the error, independent of the value of ǫ. Indeed, in this appendix, we show
that for VT2 = π, the evolution operator after one period T = 2T1 + 2T2,
that is U(T), is equivalent to the identity operator. From Eqs. (5.8) and (5.9),
setting δ = 0, we recall that

U(T) = U2(T2)U1(T1)U2(T2)U1(T1) =

= e−iVT2|e1〉〈e1|e−i
ΩT1

2 σx1 e−iVT2|e1〉〈e1|e−i
ΩT1

2 σx1 ,
(C.1)

where σx1 is the X Pauli matrix applied to the first qubit. Knowing that ΩT1 =

π(1 + ǫ) and VT2 = π , we can substitute such values in the Eqs. (5.8) and
(5.9). In this way, the multiplication of the first three factors of Eq. (C.1) yield
to the operator

(

cos( pi
2 (1 + ǫ)) i sin( pi

2 (1 + ǫ))

i sin( pi
2 (1 + ǫ)) cos( pi

2 (1 + ǫ))

)

= ei
ΩT1

2 σx1 . (C.2)

Finally, the time evolution operator U(T) can be written as

U(T) = ei
ΩT1

2 σx1 e−i
ΩT1

2 σx1 = 1 . (C.3)

Hence, we see that for the specific magic value VT2 = π, the unitary operator
is independent of the error ǫ and it produces an identity operation which
leaves the system unchanged.
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D
M O D I F I C AT I O N O F T H E L Z P R O T O C O L

In Sec. 3.3 we observed that the LZ protocol produces two avoided cross-
ings instead of one, as shown in Fig. 3.2(a). This could be a problem in the
adiabatic evolution as explained in the following.

The initial state of the system is |1〉, therefore, at the beginning of the
evolution, that is at time t/t f = 0, we start from the solid/blue line. Then,
adiabatically following the solid/blue instantaneous eigenstate, at the end
of the protocol, that is at t/t f = 1, we would end up in the state |T〉 and
the population transfer from |1〉 to |T〉 would be complete. However, using
the Eq. (2.36) as it is, also the state |S〉 will be populated if the evolution is
not sufficiently slow. This problem is shown in Fig. D.1(a), where we can see
that the state |S〉 has approximately 30% of the population. The solution is
to modify the sweep function as follows

f ′LZ(τ) =







fLZ(τ) for 0 < τ < τ̄

fLZ(τ̄) for τ̄ < τ < 1
(D.1)

where τ̄ is a fixed time after which the LZ protocol is constant. Choosing
τ̄ = 0.3 we obtain the population distribution as in Fig. D.1(b) where the state
|S〉 remains unpopulated. However, the price to pay for this is the generation
of coherent oscillations between |1〉 and |S〉 around the centered value of the
case (a), as can be observed in the Fig. D.1(b). Notice that, in both cases, the
fidelity is around 70% but the time needed to reach such a value is much
longer than the life time 1/ΓT of the target state |T〉. In the simulations, the
modified LZ protocol described here has been used such that the state |S〉 is
not populated.
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Figure D.1: Populations of the three levels |T〉, |S〉 and |1〉 for (a) LZ protocol in Eq.
(2.36) and (b) modified LZ of Eq. (D.1). In the case (a), the state |S〉 is
populated because of the second avoided crossing visible in Fig. 3.2(a).
In the case (b), the state |S〉 remains unpopulated but coherent oscilla-
tions appear between the states |T〉 and |1〉. Simulation parameters are
δc = 30 ns−1, a = 10 ns−1 and t f = 2000 ns.



E
I N T E R A C T I O N I N S T I R A P

In Sec. 5.3.2 we have studied the case in which the interaction is always
present in both the time ranges of the evolution, T1 and T2. Then, we stated
that if the interaction is off during T1, we do not observe any significant
change. Therefore, in this appendix, we address such a problem showing an
exemplary plot in Fig. E.1. In particular, Fig. E.1(a) report the behavior of the
interaction, as a function of the time, compared with the pulses profile. In
this case, we turned of the interaction V during T1, where we defined T1 as
the distance between the two peak pulses. During T2, we set VT2 = 2 and the
result is reported in Fig. E.1(b), which must be compared with Fig. 5.14(b).
As we observe, turning V off during T1 does not produce any significant
effect and, therefore, the results showed in Sec. 5.3.2 are valid also for the
case presented in this section.

Figure E.1: (a) Temporal profile of the Pump and Stokes pulses, represented by the
dashed orange and blue lines, respectively, and of the interaction V de-
noted with the green solid line. In contrast to the case in Sec. 5.3.1, here
we set V = 0 during T1. The left scale refers to the pulses Ωp and Ωs

while the one on the right refers to the interaction. (b) Population of
the ground and intermediate states, as in Fig. 5.14(b). Comparing the
case in (b) of the present figure with that of Fig. 5.14(b) we see that the
two results are very similar. Apart from the interaction, other simulation
parameters are the same of Fig. 5.14.
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