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The goal of this dissertation is the study of nonperturbative effects and phenomena in low-
dimensional gravity and gauge theories, both in the presence and absence of integrable deforma-
tions. The investigation of these nonperturbative aspects is indeed essential to render physical
quantities well-definite, allowing for a better understanding of the quantum regime of the rele-
vant theories. Concretely, we focus on JT gravity, one of the rare example of exactly solvable
quantum gravitional systems and a remarkable toy model for holography, and 2d Yang-Mills
theory, which is very much related to JT gravity in the first order formalism. Due to their high
degree of solvability and control, these two models provide a valuable theoretical laboratory to
test phenomena and properties likely to occur in their realistic four-dimensional counterparts.
Given a theory with an exact quantum solution, it is natural to look for deformations preserving
its solvable character: for this reason, we subsequently investigate the flow of these models un-
der the T T̄ deformation, which offers the possibility to safely move against the renormalization
group flow and possibly describe non-local physics in the deep UV.
The first project concerns the study of the perturbative series associated to bi-local correlators in
JT gravity, for positive weight λ of the matter CFT operators. Starting from the known exact
expression, derived by CFT and gauge theoretical methods, we reproduce the Schwarzian semi-
classical expansion beyond leading order. The computation is done for arbitrary temperature
and finite boundary distances, in the case of disk and trumpet topologies. A formula presenting
the perturbative result (for λ∈◆/2) at any given order in terms of generalized Apostol-Bernoulli
polynomials is also obtained. The limit of zero temperature is then considered, obtaining a com-
pact expression that allows to discuss the asymptotic behavior of the perturbative series and
possibly detect, if any, the relevant nonperturbative completions. Finally we highlight the possi-
bility to express the exact result as particular combinations of Mordell integrals.
Secondly, we turn to investigate the nonperturbative structure of Jackiw–Teitelboim gravity at
finite cutoff, as given by its proposed formulation in terms of a T T̄ -deformed Schwarzian quan-
tum mechanics. Our starting point is a careful computation of the disk partition function to
all orders in the perturbative expansion in the cutoff parameter. We show that the perturbative
series is asymptotic and that it admits a precise completion exploiting the analytical properties
of its Borel transform, as prescribed by resurgence theory. The final result is then naturally
interpreted in terms of the nonperturbative branch of the T T̄ -deformed spectrum. The finite-
cutoff trumpet partition function is computed by applying the same strategy. In the second part
of the analysis, we propose an extension of this formalism to arbitrary topologies, using the
basic gluing rules of the undeformed case. The Weil–Petersson integrations can be safely per-
formed due to the nonperturbative corrections and give results that are compatible with the flow
equation associated with the T T̄ deformation. We derive exact expressions for general topologies
and show that these are captured by a suitable deformation of the Eynard–Orantin topological
recursion. Finally, we study the “slope” and “ramp” regimes of the spectral form factor as
functions of the cutoff parameter.
The deep link between gravity and T T̄ deformation suggests to consider the flow induced by the
T T̄ operator in another deeply connected two-dimensional model, Yang-Mills. We study the
T T̄ deformation of this theory on a surface at genus zero by carrying out the analysis at the
level of its instanton representation. We first focus on the perturbative sector by considering its
power expansion in the deformation parameter µ. By studying the resulting asymptotic series
through resurgence theory, we determine the nonperturbative contributions that enter the result
for µ < 0. We then extend this analysis to any flux sector by solving the relevant flow equation.
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Specifically, we impose boundary conditions corresponding to two distinct regimes: the quan-
tum undeformed theory and the semiclassical limit of the deformed theory. The full partition
function is obtained as a sum over all magnetic fluxes. For any µ > 0, only a finite portion
of the quantum spectrum survives and the partition function reduces to a sum over a finite set
of representations. For µ < 0, nonperturbative contributions regularize the partition function
through an intriguing mechanism that generates nontrivial subtractions.
Finally, we continue the analysis by studying the large-N dynamics of T T̄ -deformed 2d Yang–Mills
theory at genus zero. The 1/N-expansion of the free energy is obtained by exploiting the associ-
ated flow equation and the complete phase diagram of the theory is derived for both signs of the
rescaled deformation parameter τ . We observe a third-order phase transition driven by instan-
ton condensation, which is the deformed version of the familiar Douglas–Kazakov transition
separating the weakly-coupled from the strongly-coupled phase. By studying these phases, we
compute the deformation of both the perturbative sector and the Gross–Taylor string expansion.
Nonperturbative corrections in τ drive the system into an unexplored disordered phase separated
by a novel critical line meeting tangentially the Douglas–Kazakov one at a tricritical point. The
associated phase transition is induced by the collision of large-N saddle points, determining its
second-order character.
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1Motivations

In this chapter, we provide a general introduction to the content of the dissertation. In 1.1 we
give some general background about the area of research that we will be investigating, while
in 1.2 we point out the specific goals of this dissertation, summarizing the original results and
contributions that this work has produced.

1.1 General background

One of the main issues of our current understanding of the universe is the lack of a complete
theory of quantum gravity. If we try to interpret General Relativity as a quantum field theory,
this turns out to be non-renormalizable. In other words, General Relativity (GR) can only
be regarded as an Effective Field Theory that can describe phenomena occuring at an energy
scale below a certain cutoff, where a complete theory of gravity is expected to emerge. Im-
proving our knowledge of the quantum behavior of gravitational theories is one of the most
fascinating challenges in contemporary theoretical physics. In particular, deep questions arise
in the problem of black hole formation and subsequent evaporation, starting with Hawking’s
work in the ’70s [71, 72]. A promising setup for addressing these long-standing puzzles about
quantum gravity is the possibility of reducing the number of physical dimensions of spacetime,
allowing gravitational models to make sense at the level of the Euclidean path integral. Due
to the absence of local propagating degrees of freedom, gravity theories in lower dimensions
are simpler to study but nonetheless key aspects about their higher dimensional avatars can be
extrapolated from them, because they still retain quite non-trivial dynamics.

A specific model that has gained a lot of interest in the last few years is Jackiw-Teitelboim
(JT) gravity [76] [125]. Interestingly, this particular type of dilaton gravity theory captures
the dynamics close to the horizon of near-extremal black holes in higher dimensions and de-
scribes the low-energy dynamics of the SYK model [114]. However, it has been only recently,
sparked by developments in 2015 by A. Kitaev, that we have reached a far deeper understand-
ing of the quantum mechanical aspects of this model. For instance, a concrete progress on
the black hole information paradox [111, 2, 106] has been recently achieved by correctly in-
terpreting how different topological solutions contribute to the gravitational path integral at
late time [113, 111]: these results heavily rely on explicit quantum computations and to the
special degree of solvability of JT gravity. The theory is often studied with a negative cos-
mological constant; in fact, by working within the framework of holography, then we have a
preferred anchoring point, and are guided by the major breakthroughs in this field throughout
the years, the AdS/CFT correspondence [87]. Furthermore, JT gravity is generally considered
in the infinite cutoff regime, where the spacetime boundary is pushed at asymptotic distance:
a one dimensional quantum mechanics, the Schwarzian theory, arises on the AdS2 boundary
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1.1. GENERAL BACKGROUND 1. Motivations

in this limit and allows to obtain the partition function of the dual gravitional theory through
localization [119]. The possibility of computing the gravitational path integral and related ob-
servables exactly is one the main reasons that render this theory so unique within the landscape
of low-dimensional gravity models. Moreover, in [113] the general construction was extended
to arbitrary topologies, incorporating to the gravitational path integral a sum over spacetime
wormholes that explores the heavy quantum regime even further. The genus expansion of JT
gravity, also known as third quantization, was then reinterpreted in terms of a certain double-
scaled matrix integral: this feature has identified a novel form of holographic duality where a
single quantum-gravity model is dual to an averaged ensemble of boundary Hamiltonians. We

point out that these higher genus contributions are proportional to e
− 1

GN , so they are com-
pletely nonperturbative in the gravitational coupling constant: their inclusion is indeed crucial
in order to make JT gravity actually describe a sensible finite-entropy black hole Hilbert space.
As we mentioned before, the same type of non-trivial geometrical saddles of the gravitational
path integral, namely these nonperturbative spacetime wormholes solutions, is responsible for
correctly reproducing the Page curve for an evaporating black hole [2].

A fundamental framework to study JT gravity is its reformulation in terms of a gauge
theory: in the first order formalism, the vielbein and spin connection of the spacetime manifold
can be packaged into a SL(2,❘) gauge connection [12], while the JT action is rephrased in
terms of a BF theory with quadratic potential defined on a one-dimensional defect [74]. A
natural observable to study in this approach is a boundary anchored Wilson line that, from the
boundary perspective, is understood as the insertion of a bilocal correlator in the Schwarzian
theory [11]. From a gravitational point of view, the expectation value of a Wilson line can be
interpreted as the coupling of a probe particle to a quantum fluctuating spacetime geometry [74].
Besides, a remarkable feature displayed by JT gravity in the first order formalism is its close
resemblance with 2d Yang-Mills theory, which takes the equivalent form of a BF-theory action
with quadratic potential supported on the whole surface [130]. Interestingly, pure Yang-Mills
theory in two spacetime dimensions is one of only a few examples of exactly solvable interacting
gauge theories, another being the closely related Chern-Simons theory in three dimensions [128]
1. Solvability can be traced back to any number of properties: the lack of propagating degrees
of freedom; the existence of a subdivision invariant lattice model [96]; invariance under area
preserving diffeomorphisms [129]; a type of hidden supersymmetry [130]; the existence of a
gauge which allows one to explicitly evaluate the path integral [9]; and probably others. In
[130], Witten related the partition function of 2d Yang-Mills on a closed Euclidean manifold,
in the topological limit of vanishing coupling constant, to the symplectic volume of the moduli
space of flat connections for the gauge group. At finite coupling however, 2d Yang-Mills displays
in addition a number of interesting mathematical phenomena whose detailed study may be
relevant for more physical models, providing a valuable theoretical laboratory to test properties
likely to occur in their realistic four-dimensional counterparts. These phenomena include an
asymptotic, but not generally convergent, formal perturbation series, the emerging over the
perturbative vacuum of a fully nonpertubative sector of the theory. The latter determines the
presence of contributions to both the partition function and the expectation value of other
observables from generically unstable instantons.

Given a model with an exact quantum solution, as it happens for JT gravity and 2d YM,
it is natural to look for deformations preserving at least part of its solvable character. Usu-

1Maybe not so surprisingly, three-dimensional gravity is dual to a double Chern-Simons theory in the
Einstein local frame description [131].
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1. Motivations 1.2. SPECIFIC GOALS AND RESULTS

ally, one is interested in relevant deformations, which keep the theory well-defined in the UV,
disregarding irrelevant ones that should, instead, uncontrollably change it. A notable coun-
terexample is provided by the so-called T T̄ deformation [118, 19]. This is a deformation of
local relativistic quantum field theories in two dimensions induced by a specific irrelevant local
operator, quadratic in the stress-energy tensor. This operator is unambiguously defined in the
presence of translational invariance since its point-splitted version has a regular pinching limit,
up to total derivatives [135]. The deformation generates a one-parameter family of quantum
field theories with strongly-coupled dynamics at high energies, and despite being in general ex-
pected to destroy short-distance locality, it exhibits remarkable properties. It preserves many of
the symmetries of the original theory, and it is amenable to exact computations. For instance,
the finite-volume spectrum of the deformed theory is described by a differential equation of
Burgers type [118, 19]. The surprising amount of control that the deformation allows seems
to provide a consistent way to move against the renormalization-group flow and explore un-
conventional fixed points in the ultraviolet. Being triggered by the stress-energy tensor, the
deformation appears to be rooted in geometry. In fact, it can equivalently be formulated as
a coupling to topological gravity [37, 36, 126] or random background metrics [17]. Much of
the literature on the T T̄ deformation deals with its application to conformal field theories,
where the geometric dependence of the undeformed spectrum is fixed by conformal invariance.
In this context, the action of the deformation has been observed leading to radically different
regimes according to the sign of the irrelevant coupling µ. For a positive sign, the density of
states of a deformed conformal field theory interpolates between the typical Cardy growth and
a Hagedorn-like growth [46] signaling nonlocal features of the deformed field theory in the UV,
reminiscent of a stringy behavior. For a negative sign, the spectrum seemingly undergoes a
partial complexification [1], putting into question the consistency of the theory at finite volume.
The presence of nonperturbative effects in the deformation parameter has been advocated [1] to
cure this pathological behavior. T T̄ -deformed conformal field theories with negative µ have also
been suggested leading to an extension of the holographic dictionary [89, 46, 80, 20], potentially
describing quantum gravity confined in a portion of the AdS3 bulk of radius rc ∝ 1/

√−µ. In
particular, imposing suitable boundary conditions on the metric at some finite spatial extent
in the bulk should be equivalent to performing a T T̄ deformation of the dual boundary CFT
[89]. The same idea was then applied to JT gravity by dimensional reduction, showing that JT
at finite cutoff is described by a deformation of the Schwarzian action, which is the analogue
of the T T̄ deformation [63]. JT gravity in this context thus offers the fascinating possibility
of probing the behavior of gravity confined in a box, testing finite-size effects of gravitational
theories beyond the perturbative regime [73] 2.

1.2 Specific goals and results

The goal of this dissertation, as we shall describe below, is the investigation of nonperturbative
effects and phenomena occurring in low-dimensional gravity and gauge theories, both in the
presence and absence of integrable deformations. As a result, we find that the study of these
nonperturbative aspects is indeed essential to render physical quantities well-definite, allowing
for a better understanding of the quantum regime of the relevant theories. To be more concrete,

2both in the gravitational coupling constant and in the T T̄ parameter.
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we will mainly focus on JT gravity, 2d Yang-Mills theory and investigate the flow of these models
under the T T̄ deformation, exposing the results published in [59, 56, 54, 55, 57].

Since the disk partition function for JT gravity is one-loop exact [119], the perturbative series
in the gravitational coupling constant is trivial, because all higher order terms (two-loop, etc.)
vanish identically. In order to have a non-trivial perturbative series, we are thus encouraged to
consider some observable on the disk topology: the most interesting candidate is a boundary
anchored Wilson line, which introduces an interaction between probe matter and gravitational
excitations on AdS2. Since computing gravitational corrections to this observable coming from
boundary gravitons in the Schwarzian theory is in general a difficult task, in [59] we started
from the exact expression for the Wilson line expectation value [74] [95] on the disk topology
and we developed a systematic way to extract from it the full perturbative series expansion, for
general value of the inverse temperature β and conformal dimension λ, thus generalizing some
of the results in [90]. The perturbative expansion of course misses any non-analytic term in
the gravitational coupling constant, which could compete with the contribution coming from
higher genus topologies with one holographic boundary. In the limit of zero temperature, we
have been able to derive the asymptotic behavior of the general coefficient in the expansion: as
an outcome of our analysis, we find the series is asymptotic but nonetheless Borel resummable;
however, clearly more studies are needed on this point, to possibly detect and interpret any
nonperturbative completion of the series. In this direction, we also computed the same ob-
servable on the trumpet configuration 3, which could be used as a building block for directly
constructing higher genus topologies contributing to the bilocal correlator [90]. However, it was
observed in [92] that, to actually implement periodicity of free matter around the boundary
circle, one should include a sum over integers in the Wilson line definition, corresponding to
the all possible windings of the line around the neck of the trumpet. Computing the correlators
with the improved operator is however a very challenging task, since it implies self-intersections
of the line and a consequent a much more complex expression for them; we hope to investigate
further on this improved version in the future. As a final comment, in our derivation we also de-
scribed the analytical structure of the exact Wilson line expression, highlighting the possibility
to express it as a particular combinations of Mordell integrals.

We have previously argued that JT gravity at finite cutoff is dual to a T T̄ -deformed
Schwarzian theory on the boundary. However, for large enough energies the perturbative branch
of the spectrum of the Schwarzian theory complexifies, implying a potential breakdown of uni-
tarity for the bulk theory at finite cutoff. Moved by the intuition that these ambiguities could
be somehow related to the emergence of the nonperturbative branch of the spectrum 4, in [56]
we considered the a piori ill-defined expression defining the partition function of JT gravity
at finite cutoff as a formal one, encoding a perturbative expansion around the infinite cutoff
case. After a careful analysis of the resulting asymptotic series, we then applied the powerful
tool of resurgence theory to fix the nonperturbative contributions in the cutoff parameter. This
procedure gives a solid prescription to determine the partition function for the classical disk
topology; as a bonus, the precise nonperturbative completion provided by resurgence intro-
duces a certain truncation of the spectrum that exactly removes the puzzling complex part
mentioned above. The correct inclusion of the relevant nonperturbative term was even more
important for the construction of higher genus topologies; in fact, for the trumpet configura-
tion, it completely smooths out the naïve singularity associated with the fact that the cutoff

3which corresponds to a disk with an addictional geodesic boundary of length b.
4That was initially discarded, not having a well defined undeformed limit.
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boundary could overlap with the geodesic boundary. In this way, we could safely use the gluing
prescriptions given by [113] to compute the deformed partition functions of arbitrary topologies.
Crucially, as a check of the consistency of the construction, the latter satisfy some recursive
relations hinting at some matrix-integral origin, representing a one-parameter refinement of the
undeformed ones derived by Mirzakhani [99]. We find it noteworthy that the nonperturbative
geometrical configurations—the topologies that contribute to the genus expansion—can only be
implemented appropriately after the nonperturbative terms in the deformation parameter have
been fixed correctly. The latter, at least at a classical level, enjoy a nice physical interpretation
as action terms being sensitive to the geometry lying between the finite cutoff boundary and
the asymptotic AdS2 boundary [73], i.e. the portion of space integrated out by the T T̄ flow.

Interestingly, T T̄ -deformed Yang-Mills theory on the sphere displays similar troubling fea-
tures as the ones encountered in JT gravity. In fact, if one applies the T T̄ deformation naively
on the spectrum, the partition function of U(N) Yang-Mills on the sphere, written as a sum
over irreducible representations of the gauge group, badly diverges. In [54] and [55] we managed
to clarify this puzzling aspect by studying the theory in its dual description, i.e. at the level
of GNO quantized magnetic fluxes. Specifically, by solving the relevant flow equation for each
individual flux sectors and finally summing exactly the “instanton” series, we obtained a well-
defined expression for the partition function at arbitrary deformation parameter µ and gauge
group U(N), expressed as a deformed version of the Migdal formula. Concretely, we were able
to follow the trajectory of each flux sector independently along the flow, by imposing boundary
conditions corresponding to two distinct regimes: the full quantum undeformed theory and the
semiclassical limit of the deformed theory. In [54] we focused on N = 1, i.e. Maxwell theory,
where the result holds for any genus g and the computational steps are less complicated to show
than in the general U(N) case. For µ > 0, the quantum spectrum of the theory experiences a
truncation, the partition function reducing to a sum over a finite set of positive-energy states.
As a further outcome, the theory is observed to undergo infinite-order phase transitions for
certain values of µ, associated with the vanishing of Polyakov-loop correlators, which act as
order parameters for these transitions 5. For U(N) the same type of truncation is observed
for µ > 0, with only the representations satisfying a certain bound depending on µ are left
to contribute to the final sum [55]. For µ < 0 instead, the appearance of a nonperturbative
contribution in µ drastically modifies the structure of the partition function, regularizing its
naive divergences through an instanton-like subtraction. In the general U(N) case, the presence
of the Vandermonde determinant renders the structure of the regularizing subtractions more
involved, with the number of instanton-like terms growing with N2 [55].

If the emergence of peculiar nonperturbative terms in the deformation parameter was essen-
tial in order to make the partition function well-definite, their role becomes still more important
in the large N limit of T T̄ -deformed Yang-Mills theory on the sphere, determining new unex-
pected phenomena. Two-dimensional Yang-Mills at large N is a very rich theory already in the
undeformed case. In this regime the theory enjoys an exact description as a string theory: this
can be shown for instance at the level of the partition function, which can be determined in
terms of a sum over maps from a two dimensional worldsheet onto the two dimensional target
space [66]. Furthermore, the spherical topology is peculiar in that it exhibits a large-N phase
transition in the spacetime area [35], going from a strongly-coupled phase for large area, where
the stringy description keeps holding, to a weakly-coupled phase for small area where the large
N expansion of the free energy truncates. The discontinuity of the free energy is of third-order

5They acquire a non-vanishing vev below the transition.
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and this phenomenon is commonly known as Douglas-Kazakov (DK) phase-transition: its phys-
ical origin can be understood from the weak-coupling side in terms of instanton condensation
[64]. In other words, if below the critical value only the vacuum perturbative sector of the
theory survives, beyond the transition the nonperturbative sector of the theory, accounting for
unstable instanton configurations, is no longer absent, as the entropy of instantons at large N
overwhelms their classical exponential suppression.

In [57] we considered the flow equation for the leading N2 order of the free energy F ,
which in this regime reduces to a inviscid Burgers equation solvable through the method of
characteristics. This procedure is generalizable and allows to possibly determine in a recursive
way all subleading terms in the 1/N2 expansion of the free energy. In this setup, we were
thus able to carry the undeformed solution along the characteristics and fully characterize
the phase diagram of the theory, depending this time on two variables, the oringinal area
α of the Riemann surface and the deformation parameter µ. First of all, we could observe
the emergence in the diagram of a deformed version of the familiar Douglas-Kazakov phase-
transition, separating a weak-coupling phase with non-trivial 1/N2 expansion 6 from a strong-
coupling phase, described by a consistent deformation of Gross-Taylor string theory. Exploiting
the results of [55], we further confirmed that the deformed Douglas-Kazakov phase-transition
is driven by instanton condensation also in the T T̄ -deformed case. Secondly, we noticed that
the system of characteristics for µ < 0 has an envelope, i.e. characteristics cumulate around
a particular line in the phase diagram; we demonstrated this phenomena is associated with
a second order phase-transition where the specific heat diverges with critical exponent 1/2.
Moreover, thanks to the finite N results of [55], we could infer that the famous instanton-like
corrections in µ are the ones responsible for this new phase transition, crucially driving the
system, through a saddle point collision mechanism, into a phase when they are no longer
suppressed at large N .

This analysis revealed the existence in the diagram of a tricritical point, where three dif-
ferent phases come in contact with each other: the deformed weak-coupling phase where both
instantons in α and µ are absent, the deformed strong-coupling phase where instantons in α are
no-longer suppressed but those in µ still are and finally a new phase, which we called ”mixed
phase”, where both instantons in α and µ are active.

Organization of the work. This dissertation is organized as follows. In 2 we introduce in
detail the background material that is needed in order to present the original outcomes of this
work, focusing in particular on JT gravity, 2d Yang-Mills theory and the T T̄ deformation. In
3 we present the perturbative expansion of a boundary-anchored Wilson line in JT gravity, the
content of [59]. Chapter 4 is devoted to the study of JT gravity at finite cutoff, the content of
[56]. The second part of the work deals with the T T̄ -deformation of Yang-Mills. In 5 we derive
the exact partition function for the theory on the sphere, with U(N) gauge group, presenting
the results of [54] and [55]. In 6 we study the large N limit of the deformed theory, the object of
[57]. In 7 we draw the final conclusions, outlining some possibile outlooks and related directions
of research. A set of final appendices complete the dissertation A.

6In the undeformed case, the expansion is trivial in the weak phase.
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2Review

This chapter is devoted to a review of the basic background material useful for this work.

In 2.1 we introduce JT gravity. We fully solve its classical equations of motion 2.1.1, cru-
cially incorporating boundary conditions at the holographic boundary that allow us to map the
dynamics to its boundary Schwarzian description. Section 2.1.2 proceeds with the exact quan-
tization of the model, by computing the Euclidean gravitational path integral in the Schwarzian
language. In 2.1.3 we quantize the theory in the presence of matter. In particular, we introduce
a scalar field in the bulk and compute its boundary to boundary propagator, corresponding to
a bilocal operator insertion in the Schwarzian theory: we also consider loop corrections arising
from the interaction with boundary gravitons. In 2.1.4 we consider nonperturbative contribu-
tions, in the gravity coupling constant, to the gravitational path integral, including non-trivial
topological corrections (or wormholes) to the quantum amplitudes and introducing to so called
third quantization in JT gravity. In 2.1.5 we reinterpret the genus expansion in JT gravity as
a large N expansion of a dual matrix model, in a suitable double scaling limit, introducing the
loop equations, or topological recursion equations, enjoyed by general correlators of resolvents
in the random Hamiltonian ensemble.

In 2.2 we give a brief summary of the main properties of gauge theories in two dimensions.
In 2.2.1 we describe Yang-Mills theory, focusing on the Hamiltonian formalism and deriving the
Migdal heat-kernel representation of the exactly solvable partition function for basic topologies.
In 2.2.2 we provide a brief digression on the dual representation for Yang-Mills, i.e. the instanton
expansion, which expresses the partition function as an infinite sum over unstable flux sectors.
In 2.2.3 we specify the Migdal representation to U(N), which is the gauge group studied in
this work. In 2.2.4 we specify further to the sphere topology, studying the Douglas–Kazakov
phase transition from weak-coupling phase to strong-coupling phase, both at the level of the
matrix-model large-N description and at the level of instanton condensation. In 2.2.5 we
show that JT gravity in the Einstein local frame can be rephrased as a BF gauge theory,
once we further introduce a quadratic boundary potential in the scalar field to reproduce
the Schwarzian dynamics. We then apply the rules exposed previously for the Hamiltonian
quantization of Yang-Mills to compute the JT gravity partition function on the disk, provided
that we choose a specific group theoretical structure, i.e. SL+ (2,❘) representation theory, to
obtain the correct density of states. We finally derive in 2.2.6, in the gauge theory language, the
exact expression for a boundary anchored Wilson line, further proving that its matrix element
between the highest and lowest state of a discrete representation of SL+ (2,❘) labeled by λ is
actually equivalent to a bilocal correlator 〈OO〉 in the Schwarzian theory for an operator O of
conformal dimension λ.

In 2.3 we introduce the T T̄ deformation. In 2.3.1 we start by pointing out why this type of
integrable deformation is remarkable in the spirit of Wilsonian renormalization group flow. In
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2.3.2 we define the T T̄ operator, showing that its point-splitted version has a regular pinching
limit, up to total derivatives. In 2.3.3 and 2.3.4 we apply the T T̄ operator to the two theories
object of study, i.e. JT gravity and Yang-Mills. Specifically, in 2.3.3 we show that moving
a CFT into the bulk with T T̄ is actually equivalent to considering 3d gravity in a box, once
we evaluate the classical three-dimensional Einstein-Hilbert action on shell. The equivalence,
at a classical level, between the finite cutoff version of JT gravity and the T T̄ deformation
of the Schwarzian follows then directly from dimensional reduction, also allowing to match
the T T̄ -deformed spectrum with the relativistic energy of the black hole in JT gravity, once we
impose a radial cutoff on its geometry. In 2.3.4 we instead esplicitely compute the T T̄ -deformed
version of the Yang-Mills Lagrangian, further translating the flow equation for the action into
a quantum flow equation for the partition function its self, that we will solve in the 5 and 6.

2.1 JT gravity

Suppose our goal is to find interesting models of gravity in (1+1)d. The simplest example we
may think of is the Einstein-Hilbert action in two dimensions:

SEH =
1

16πG

∫

Σ
d2x

√
g R (2.1)

Hower in 2d the above is completely topological: in particular, it computes the Euler charac-
teristic of the manifold χ = 2 − 2g, where g is the genus of the surface. 1. This means that
every metric in the same topological class has the same on-shell value of the action, so there is
no sense in extremizing the action and getting interesting equations of motion.

Then one could possibly think of adding matter to (2.1) in a naive way

SEH =
1

16πG

∫

Σ
d2x

√
g R+Smatter (2.2)

however the Einstein equation just leads to a vanishing stress-energy tensor Tµν = 0, implying
no energy can consistently be added in this way. This means (2.2) is not useful as a classical
toy model to describe black hole formation or evaporation, for instance.

Therefore we need a different coupling with matter, corresponding to the so called dilaton-
gravity models whose action take generally this form:

Sdil grav =
1

16πG

∫

Σ
d2x

√
g [ΦR+V (Φ)] (2.3)

where we have introduced a new scalar field, the dilaton Φ, which couples linearly to the Ricci
scalar and we have allowed for a generic dilaton potential V (Φ). If we further specify to a linear
dilaton potential V (Φ) = −ΛΦ, we obtain the Jackiw-Teitelboim gravity action

SJT =
1

16πG

∫

Σ
d2x

√
g Φ(R−Λ) (2.4)

where Λ is a cosmological constant and Σ is the two-dimensional surface where the theory
lives.In particular, we specify to Λ< 0 2, because in the following discussion we will be interested
in having an asymptotically AdS spacetime to apply holography.

1We are considering here a manifold without boundaries, but the same conclusione holds.
2We will soon specify Λ = −2.
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2.1.1 Classical solutions

If we define the model (2.4) on a manifold that has a boundary, which is our goal, we have to
add a boundary term of this form:

Sbdy =
1

8πG

∫

∂Σ
du

√
γ Φ|∂Σ κ (2.5)

where u is a one-dimensional time or proper length which parametrizes the boundary δΣ of the
surface and the dilaton is evaluated on the boundary Φ|∂Σ. 3. This is known as the Gibbons-
Hawking boundary term. Therefore the total Jackiw-Teitelboim gravity Sbulk +Sbdy action will
read as

SJT =
1

16πG

∫

Σ
d2x

√
g Φ(R+Λ)+

1

8πG

∫

∂Σ
du

√
γ Φ|∂Σ κ (2.6)

This particular choice for the boundary term is needed in order to make the variational principle
well defined: in fact we need to add this term in order to get rid of second order derivatives
obtained by varying (2.4). In this way we can fix the value of the metric 4 and vary the action
with respect to Φ and the metric gµν to get the following equations of motion

δSJT

δΦ
= 0 =⇒R = Λ (2.7)

δSJT

δgµν
= 0 =⇒ ∇µ∇νΦ = −Λ

2
gµνΦ (2.8)

Let’s consider the first equation. In 2d there is only one curvature function, which can be
conveniently parametrized as the local Ricci scalar R(x). Therefore having set R(x) = −2
means that we know everything about the local geometry. In particular, the geometry is fixed
as some patch of AdS2 manifold, which in Poincaré coordinates can be written as

ds2 =
dz2 +dt2

z2
(2.9)

where z is the Poincaré radial coordinate and t the Poincaré time coordinate. The holographic
boundary is located at z = 0. Here we are considering the simplest classical geometry 5, cor-
responding to the topology of a disk (i.e. a manifold with genus zero and one boundary), as
depicted in Figure 2.1.1.

There are several other classical frames to describe the AdS2 spacetime; we mention the
most important ones. If we introduce lightcone coordinates u= t+ iz and v = t− iz, the metric
is rewritten as

ds2 = −4
dudv

(u−v)2 (2.10)

This form of the metric is important because it is found in the near-horizon regime of higher
dimensional extremal black holes. To see this patch actually represents a black hole geometry,

3The one-dimensional metric γ is induced from the two-dimensional metric gµν , while κ is the extrinsic
curvature, i.e. the curvature of a space thought as embedded in a higher dimensional one; in this case the one
dimensional boundary embedded in Σ.

4and not its derivatives too
5We will consider higher genus topologies later.
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β/ǫ

Figure 2.1: The disk topology. The dashed lines represent the full AdS2 geometry, while the
actual manifolds have wiggly boundary of length β/ǫ.

it is convenient to define a new radial coordinate r= rh coth
(

2π
β (u−v)

)

and thus put the metric
into the more familiar form:

ds2 = −
(

r2 − r2
h

)

dt2 +
dr2

r2 − r2
h

(2.11)

where r = rh = 2π
β is the black hole horizon. Starting from this solution, we can calculate

the total black hole mass in the bulk specetime to be M ∼ r2
h. Moreover, by demanding

that the Euclidean section of this manifold has no conical deficit, we can deduce the Hawking
temperature T = β−1 = rh

2π , justifying the parameter label β as the inverse temperature; this

leads to verify the black hole first law T ∝
√
M .

Asymptotic Poincaré boundary conditions We see that the metric (2.9) blows up on the
boundary, at z = 0. Therefore the induced metric γuu ≡ γ on the boundary diverges as 1/z2,
but if we introduce a cut off at z = ǫ (i.e. we place the boundary of the disk at z = ǫ) we have

γuu =
1

ǫ2
(2.12)

In this way the total boundary length will be

∮

du
√
γuu =

1

ǫ

∮

du≡ β

ǫ
(2.13)

where β plays the role of the renormalized boundary length. As ǫ → 0 the boundary length
diverges and the we recover the full Poincaré disk.
The next task is to find how to parametrize the embedding coordinates t ≡ t(u) and z ≡ z(u)
as a function of the boundary time u, as shown in Figure 2.2. That can be done by comparing
the line element on the boundary with that of the embedding Poincaré disk: in the limit ǫ→ 0
they should match, i.e.

dt2 +dz2

z2
≈ du2

ǫ2
ǫ→ 0 (2.14)

We can thus find the relation

z ≈ ǫ

√

√

√

√

(

dt

du

)2

+

(

dz

du

)2

≈ ǫ
dt

du
+O(ǫ3) (2.15)
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Figure 2.2: A cutout of the Poincaré disk. As ǫ → 0 the region with boundary labeled by
(t(u), z(u)) covers the full Poincaré spacetime

because z and so forth dz
du is already of order ǫ and can be ignored. The last result means that

the boundary can be parametrized by only one function t(u), which can be as well thought as a
field living on the boundary: (2.15) is referred asymptotic Poincaré boundary conditions (this
is also known as Fefferman-Graham gauge which is usual pratice in AdS/CFT).

Solution for the dilaton One can prove that the solution of the equation (2.8) (setting
Λ = −2) in Poincaré coordinates is given by

Φ ∝ 1

z
(2.16)

Just like the metric, value of the dilaton field diverges at the boundary as z → 0. Therefore
introducing as before the cut-off at z = ǫ we can define the renormalized dilaton field φr at the
boundary as

Φ|∂Σ =
φr

ǫ
(2.17)

2.1.2 Quantization of the Schwarzian theory

Let’s consider the Euclidean gravitational path integral for JT gravity, which is schematically
given by

ZJT =
∫

DgDΦe−SJT (2.18)

Since the dilaton appears only linearly in the action (2.6), it acts as a Lagrangian multiplier
in imposing the constraint R = Λ. Once we integrate out the dilaton Φ, we are thus lead to
evaluate the JT action (2.6) on shell, i.e. on the solutions of the equations of motion. The bulk
term vanishes and we are thus left with the boundary action Sbdy only. In doing this, we are

25



2.1. JT GRAVITY 2. Review

fixing the bulk geometry to be some interior patch of the Poincaré disk and the gravitational
path integral is rephrased as integrating over all possible ways of cutting out some inner portion
of the AdS2 manifold.

Now, we need to compute the extrinsic curvature κ associated with the Poincaré solution
(2.9), in addition to the boundary conditions (2.12) and (2.17) for the induced metric and
dilaton respectively. The extrinsic curvature can be computed using the formula

κ= −h(T,∇Tn)

h(T,T )
(2.19)

where T is the tangent vector to the boundary, n is the normal vector(orthogonal to T ) and
h(v,w) = gµνv

µwν is the scalar product defined with respect to the 2d metric in (2.9). This
formula can be understood by thinking of the normal vector as parallel transported along the
tangent vector through the covariant derivative ∇: the difference between the normal vector n
evalueted at two points of the boundary as they get infinitely close is then a measure of the
extrinsic curvature, as shown in figure 2.3. We define

T a =
(

t′, z′) na =
z

√

(t′2 + z′2)

(

−z′, t′
)

naTa = 0 (2.20)

as respectevely the properly normalized tangent and normal vector at the boundary, where
t′ = dt

du and z′ = dz
du . After a long but straightforward calculation, the extrinsic curvature yields

κ=
t′
(

t′2 + z′2 + zz′′
)

− zz′t′′

(t′2 + z′2)3/2
(2.21)

It can be simplified sobstituting (2.15) and neglecting terms of order O(ǫ3).

κ= 1+{t(u),u}ǫ2 +O(ǫ4) (2.22)

where {t(u),u} is the Schwarzian derivative defined as

{t(u),u} =
t′′′

t′
− 3

2

(

t′′

t′

)2

(2.23)

Putting all together, the boundary action evaluated on shell becomes

Sbdy = − 1

8πG

∫

∂Σ

du

ǫ

φr

ǫ

(

1+{t(u),u} ǫ2 + ...
)

(2.24)

The O(1/ǫ2) divergent therm is a residue of the UV limit in which we are workig, but as usual
practice in AdS/CFT context it can be removed by holographic renormalization, i.e. adding
to the boundary theory a counter term in order to eliminate this divergence. Concretely, we
consider as our real boundary term the following

Sbdy =
1

8πG

∫

∂Σ
du

√
γ Φ|∂Σ (κ+1) (2.25)

In this way we end up with the Schwarzian action as ǫ→ 0

SSch = −C
∫

∂Σ
du {t(u),u} (2.26)

where C = φr
8πG and t(u) represents a time reparametrization in terms of the proper time u.
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Figure 2.3: The initial normal vector ni is parallel transported along the tangent vector T to
the boundary ∂Σ. The covariant derivative ∇Tn consists in comparing it with the final normal
vector nf .

The classical saddle

We now concentrate on the boundary Schwarzian theory, which describes the dynamics of the
wiggly boundary curve t(u), the only remaining degree of freedom. The equations of motion
are obtained by varying the SSch with respect to t(u)

δSSch

δt
=
δSSch

δu

du

dt
= 0 =⇒ {t(u),u}′

t′
= 0 (2.27)

This means that the solution to the equation of motion is a non-constant function characterized
by a constant Schwarzian 6. In particular we will restrict to monotone increasing reparametriza-
tions, i.e. t′(u) > 0. We know that the Schwarzian derivative vanishes when restricted to the
global SL(2,❘) subgroup of the two dimensional conformal group, i.e. under finite transforma-
tions of the form

t→ at+ b

ct+d
ad− bc= 1 (2.28)

however these are not true dynamical modes, but instead a redundancy in the description of
the cutouts t(u), a gauge symmetry. In fact they represent translations and rotations of a fixed
shape around in the hyperbolic disk which do not change the chunk that we are actually cutting
out. In order to find different maps with a constant Schwarzian, the true dynamical modes, we

6If we compute the Hamiltonian as the Noether charge associated to time translation simmetry, this turns
out to be equal to the Lagrangian itself. So the equation of motion is just energy conservation.
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perform the following change of variables and evaluate the Schwartzian derivative (2.23) in the
new coordinate

t(u) = tan

(

τ(u)

2

)

=⇒ {t(u),u} = {τ(u),u}+
1

2
τ ′2 (2.29)

If τ is a linear function of u, such as τ = au with a constant, the action remains invariant in
form, up to an addictional constant which does not affect the equation of motion. Since the
Poincaré time t must be periodic with period 2π/a, we hence take the constant a to be 2π

β , in
such a way that the total boundary time length is set to β. For convenience, we can finally set
β = 2π. The classical solution is then

τ(u) = u t(u) = tan
(

u

2

)

(2.30)

We can see from (2.26) that the Schwarzian action SSch is of order O (1/G) and so the semi-
classical solution (2.30) will be correct only in the limit G,h̄ → 0, because in this regime the
saddle point would be a good aproximation to the full path integral. On the other hand, since
C = φr

8πG has dimension of length, or negative mass dimension, by power counting renormaliz-
ability we infer that quantum effects should be important in the IR, that is at long distances
or late times. This will be important later when studying the spectral form factor and higher
topologies effects.

The Schwarzian path integral is one loop exact

The JT gravity partition function on the disk topology will be given by the full Schwarzian
path integral:

ZJT =
∫ Dµ(τ)

SL(2,❘)
e−SSch(τ) (2.31)

where µ(t) is some measured to be determined, on the space diff
(

S1
)

of the 1d change of

coordinates on the circle. Moreover τ is supposed to wind once around the circle 7, τ(u+2π) =
τ(u)+2π. In terms of τ , the Schwarzian action is rewritten as

SSch(τ) =
C

2

∫ 2π

0
du

(

τ ′′2

τ ′2 − τ ′2
)

(2.32)

where we used (2.29) and integrated by parts a total derivative. In (2.31), we are explicitly
modding out by the SL(2,❘) gauge redundancy that we mentioned before.

It turns out that the path integral (2.31) is one-loop exact. This remarkable fact can be
explained through localization [119]: in fact the Duistermaat-Heckman (DH) formula shows
that the integral over a symplectic manifold of exp(H) 8, where the Hamiltonian H generates
via Poisson brackets a U(1) symmetry of the manifold, is one-loop exact 9.

7The boundary curve should not self intersect.
8The DH formula can be used whenever the action is said to be Hamiltonian. This holds in our case since

the Hamiltonian corresponds to the Schwarzian Lagrangian.
9In fact in these cases one can introduce the equivariant extension of the symplectic form α = exp(ω̃) =

exp(ω+H) which is equivariantly closed and then use the equivariant localization theorem.
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First of all, the space over which we are integrating in (2.31), i.e. diff
(

S1
)

/SL(2,❘) is a
symplectic manifold. In fact we can construct on it the following symplectic measure

ω =
∫ 2π

0
du

((

dτ ′

τ ′

)

∂u

(

dτ ′

τ ′

)

−dτ∂udτ

)

(2.33)

where we omitted the wedge product and we just remind that the abstract exterior derivative
dτ can be regarded as a fermionic field. The symplectic measure is closed dω = 0 and non-
degenerate (once we remove its three zero modes corresponding to the action of SL(2,❘) on
τ).

Moreover, a key property of ω for localization to work is that it is diff
(

S1
)

invariant, that is

the Lie derivative LVαω = 0 vanishes. Here Vα is the vector field δτ = α(u)τ ′(u) corresponding
to an infinistesimal reparametrization on the space of τ ’s and δu = α(u) is an infinitesimal

diff
(

S1
)

transformation. Since ω is closed, the Lie derivative vanishes if d(iVαω) = 0, which
amounts to say

iVαω = dHα (2.34)

in terms of a Hamiltonian function Hα, that via Poisson brackets generates the infinitesimal
transformation of τ . In [119] equation (2.34) was proven to hold, starting from the symplectic
defined in (2.33) and with Hamiltonian function:

Hα = −2
∫ 2π

0
du α

{

tan
τ(u)

2
,u

}

(2.35)

which, setting α = 1, exactly corresponds to the Schwarzian action. This garantees that the
Schwarzian path integral is one-loop exact. In A.1 we sketch a proof of the DH formula in more
detail. Here we just proceed in the evaluation of the one-loop contribution to the path integral,
knowing it will yield the full answer.

Since under diffeomorphisms the differentials Dτ transform as Grassman variables, one can
introduce a periodic Grassmann field ψ to write the Pfaffian of the symplectic form ω as a path
integral. We obtain

ZJT =
∫ DτDψ

SL(2,❘)
exp

{

−C

2

∫ 2π

0
du

[

τ ′′2

τ ′2 − τ ′2 − 2

C

(

ψ′ψ′′

τ ′2 −ψψ′
)]}

(2.36)

By integrating out the fermion ψ, we get the factor Pf (ω)Dτ =
√

det(ω)Dτ yielding the correct
measure for the integral over τ .

To perform the one-loop computation, we now consider a small perturbation δ(u) around
the saddle point solution (2.30)

τ(u) = u+ δ(u) (2.37)

The ψ field has no classical saddle instead. Dropping total derivatives, the quadratic expansion
of the action will be

S
(2)
Sch(δ,ψ) =

C

2

∫ 2π

0
du
(

δ′′2 − δ′2)+
∫ 2π

0
du
(

ψ′′ψ′ −ψ′ψ
)

(2.38)

We now express δ(u) and ψ(u) as a discrete Fourier series :

δ(u) =
∑

n6=−1,0,1

δne
−inu +h.c. ψ(u) =

∑

n6=−1,0,1

ψne
−inu +h.c. (2.39)

29



2.1. JT GRAVITY 2. Review

where we have gauge fixed to zero the n = 0,1,−1 modes, which exactly correspond to action
of the SL(2,❘) generators we are removing from the path integral.

Keeping also track of the leading classical contribution (i.e. the action (2.32) evaluated on
the saddle), the quadratic expansion of the action, after exploiting orthogonality of the modes,
becomes

SSch (δ,ψ) = πC+4πC
∑

n>1

δnδ−n

(

n4 −n2
)

+4π
∑

n>1

ψnψ−n

(

n3 −n
)

(2.40)

Computing the Gaussian integral in these variables is now very simple. Combining the bosonic
and fermionic modes, we get the following one-loop contribution:

Z = eπC
∏

n≥2

2π

Cn
=

1

4π2
C

3
2 eπC (2.41)

where we employed ζ function regularization for the infinite product. Restoring the dependence
of the inverse temperature β, the full result for the JT gravity partition function on the disk is

Zdisk(β) =
1

4π2

(

2πC

β

)
3
2

e
2π2C

β (2.42)

We remind that, although we did only a one-loop computation, the result is exact at all orders
in perturbation theory, due to the localization argument.

Propagator 〈δ(0)δ(u)〉 With the quadratic action at hand, one can also compute the Schwarzian
propagator. To do so we have to invert the Gaussian kernel:

〈δ(u1)δ(u2)〉 = 〈δ(0)δ(u)〉 =
2

C

∑

n6=0,1,−1

einu

n2 (n2 −1)
(2.43)

where the first equivalence comes from traslation invariance. As proposed in [117], this sum
can be evalueted as a countour integral in the complex plane. The details of the computation
are fully explained in Appendix A.4, here we present the result

〈δ(0)δ(u)〉 =
2π

C

[

−(u−π)2

2
+(u−π)sinu+1+

π2

6
+

5

2
cosu

]

(2.44)

The form of the propagator is useful to check esplicitely that the two-loop term, for instance,
vanishes. Moreover, it is a key ingredient to compute the gravitational corrections to the
connected n-point functions for boundary operators in the Schwarzian theory.

2.1.3 Adding some matter in the bulk

We now perform the calculation with the addition of matter. In particular we consider a massive
scalar field χ propagating on the JT black hole background. It couples to gravity in a covariant
way

Smatter =
1

2

∫

d2x
√
g
(

gαβ∂αχ∂βχ+m2χ2
)

(2.45)

In Poincaré coordinates the action can be reexpressed as

Smatter =
1

2

∫

dzdt
1

z2

[

z2 (∂zχ)2 + z2 (∂tχ)2 +m2χ2
]

(2.46)
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The Euler-Lagrange equation for this action is

∂z (∂zχ)+∂t (∂tχ) =
1

z2
m2χ (2.47)

Let’s neglect the t therm since we are interested in the behavior of the solution near the
boundary z → 0, i.e. the UV region of the potential where the dipendence on t can be ignored.
Besides we choose a power law ansatz for the solution χ ∝ z∆, where the exponent ∆ will be
soon identified, and we find

∆(∆−1)z∆−2 =m2z∆−2 =⇒ ∆1,2 =
1

2

(

1±
√

1+4m2
)

(2.48)

If we denote simply ∆1 = ∆ (∆ is the biggest root) and ∆2 = 1 − ∆ the general solution will
be a linear combination

χ(z, t) = z1−∆χ(1)
r (t)+ z∆χ(2)

r (t) (2.49)

where χ
(1)
r (t) and χ

(2)
r (t) are two coefficients depending only on t. Near the boundary z → 0

the solution with the lowest exponent will be predominant so we have

χ(z, t) ≈ z1−∆χr(t) z → 0 (2.50)

χr as a primary This form suggests that χr behaves as a primary with dimension 1−∆. To
see this, we rewrite the boundary condition (2.50) in terms of the boundary time u using (2.15)

χ(z, t) ≈ ǫ1−∆
(

t′(u)
)1−∆

χr (t(u)) = ǫ1−∆χr (u) χr (u) =
(

t′(u)
)1−∆

χr (t(u)) (2.51)

where the last equation defines χr(u), which we see transforms as a conformal primary of
dimension 1−∆ under reparametrizations. Furthermore, according to the AdS/CFT dictionary,
we should interpret fields in the bulk as sources for correlation functions of local operators, i.e
χr(t) acts as a source for an operator O(t) on the boundary through the standard coupling

∫

dt O(t)χr(t) (2.52)

Up to now, ∆ is just a parameter in terms of m but one can easily check it plays the role of
the conformal dimension of the dual operator O. 10

Evaluating the action on shell Now the usual AdS/CFT procedure tells us to evaluate
Smatter (2.46) on shell, i.e integrating by parts

Smatter =
∫

bdy
χ∂αχ+

∫

d2x
√
gχ
(

−∇2 +m2
)

χ (2.54)

10To verify this we have to impose that (2.52) term is invariant to conformal transformations, in particular
under riscalings t→ λt:

∫

dt O(t)χr(t) =⇒
∫

dtλλαλ1−∆ O(t)χr(t) (2.53)

where the first λ comes from the measure, λα comes from the transformation O→ λαO (where α is to determine)
and λ1−∆ from the transformation of χr we derived in (2.51). In order (2.53) to be invariant, the scaling
dimension α of O has to be α≡ ∆.
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where the second term is zero on the equations of motion. We are left with

Smatter on shell ≡ Sm ∼
∫

z=ǫ
dt χ∂zχ (2.55)

We find that after renormalization (2.55) is rewritten as a function of the source χr
11

Sm =D
∫

dt dt′
χr(t)χr(t′)

|t− t′|2∆
(2.56)

up to some proportionality constant D. Let us finally rewrite (2.56) as a function of the time
u that parametrizes the boundary curve t(u).

Sm =D
∫

du du′t′(u)t′(u′)t′(u)∆−1t′(u′)∆−1 χr(u)χr(u′)

|t(u)− t(u′)|2∆
(2.57)

where the first two derivatives come from the integration measure and the last two from the
tranformation (2.51) of χr. Recollecting terms we find

Sm =D
∫

du du′
[

t′(u)t′(u′)

(t(u)− t(u′))2

]∆

χr(u)χr(u′) (2.58)

Gravitational corrections to 2 point function 〈O∆ (u1,u2)〉
The aim is now to compute perturbately the boundary partition function in presence of a source
χr [117]

Z[χr] =
〈

e−SSch−Sm
〉

(2.59)

where 〈〉 indicates the path integral over the Schwarzian theory.

Saddle point approximation First of all, one can try to perform a saddle point approxi-
mation of the path integral (2.59) (in the limit G→ 0 saddle point becomes exact), i.e evaluate
the exponent on the field configuration that minimize it (on the solutions )

Z [χr]|saddle = e
−SSch−Sm|t=t0

δ (SSch +Sm)

δt(u)

∣

∣

∣

∣

∣

t=t0

= 0 (2.60)

Finding the solution for the boundary metric t coupled to a matter field χ is not a simple task.
However, we note that if ∆ is not too large(i.e. from (2.48) the bulk scalar is not too heavy),
the bulk scalar couples weakly to the backgroud and won’t affect the geometry of space time
so much with its presence, since the Schwarzian action has a big prefactor 1/G with G → 0.
This means that we can basically neglect Sm in the computation of the saddle t(u) for the
Schwarzian theory, or simply arguing that in this regime gravitational and matter degrees of
freedom decouple from each other, i.e t does not depend on χr.

11After removing all divergent terms as ǫ → 0, the only surviving term is
∫

dt χ
(1)
r (t)χ

(2)
r (t). Moreover, by

carefully studying the solution of (2.47) one finds χ
(2)
r (t) is determined in terms of χ

(1)
r (t) as an integral over a

kernel: χ
(2)
r (t) =

∫

dt′ χ
(1)
r (t′)

|t−t′|2∆
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Through this approximation, one can treat the dual field O to the source χr as effectively
free, as all of its connected correlators vanish except for the two point function which is

δ2 (− log Z [χr]|saddle)

δχr(u1)δχr(u2)
=

δ2Sm

δχr(u1)δχr(u2)
= 〈O∆(u1,u2)〉 = 〈O(u1)O(u2)〉 ∝

[

t′(u1)t′(u2)

(t(u1)− t(u2))2

]∆

(2.61)
obtained through a double functional derivative of the free energy − logZ [χr], the connected
partition function. Since we are assuming the saddle for t is not affected by the presence of χ,
we sobstitute the solution (2.30) in (2.61), obtaining

〈O∆(u1,u2)〉class =







d
du tan

(

u
2

)∣

∣

∣

u=u1

d
du tan

(

u
2

)∣

∣

∣

u=u2
(

tan
(

u1
2

)

− tan
(

u2
2

))2







∆

=
1

(

2sin u12
2

)2∆
u12 = u2 −u1

(2.62)
where we put the apex "class" to remind that this is computed on the classical saddle. 12

Beyond the saddle point So far we have worked in the classical limitG→ 0 where the saddle
point is exact, but actually at G finite we should integrate over all possible field configurations
t(u). As shown above, a convenient way to perform this path integral is to consider the one-loop
term coming from the expansion around the classical saddle. As we have seen in (2.38), the
quadratic Schwarzian action is

S
(2)
Sch(δ) =

C

2

∫

du
(

δ′′2 − δ′2) (2.64)

where δ represents small quantum fluctuations. This reformulation allows us to work again
within the approximation of vanishing backreaction of χr on t in the determination of the
saddle but enables us to take into account the gravitational loop corrections from t(u). For this
purpose, we will need to make us of the expansion

O∆(u1,u2) =

[

t′(u1)t′(u2)

(t(u1)− t(u2))2

]∆

=
1

(

2sin u12
2

)2∆

[

1+B(δ)+C(δ2)+O(δ3)
]

(2.65)

12In fact in the limit u12 → 0 we recover the correct behavior

1
(

2sin u12
2

)2∆

∣

∣

∣

∣

∣

u12→0

≈ 1

u2∆
12

(2.63)

. As a final comment, if the approximation we adopted didn’t hold, i.e the saddle of t depended in some way on
χr, then we see immediately from (2.58) that Sm would not be only quadratic in the source χr. Therefore there

would be other connected correlators(obtained through higher order functional derivatives δnSm
δχr(u1)...δχr(un) ),

not only the two-point function.
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obtained by plugging (2.37) into the bilocal correlator (2.61). B(δ) and C(δ2) are respectively
the O(δ) and O(δ2) terms of the expansion, given by

B(δ,u1,u2) =∆

(

δ′(u1)+ δ′(u2)− δ(u1)− δ(u2)

tan u12
2

)

C(δ2,u1,u2) =
∆

(

2sin u12
2

)2

[

(1+∆+∆cosu12)(δ(u1)− δ(u2))2

+2∆sinu12 (δ(u2)− δ(u1))
(

δ′(u1)− δ′(u2)
)

−(cosu12 −1)
(

(∆−1)(δ′(u1)2 + δ′(u2)2)+2∆δ′(u1)δ′(u2)
)]

(2.66)

We now expand in series the exponential e−Sm , plugging in also the expansion (2.65) for O∆

e−Sm = 1−D
∫

du1du2

[

1+B(δ,u1,u2)+C(δ2,u1,u2)
] χr(u1)χr(u2)
(

2sin u12
2

)2∆

+
D2

2

∫

du1du2du3du4
χr(u1)χr(u2)χr(u3)χr(u4)
(

2sin u12
2

)2∆ (

2sin u34
2

)2∆
[(1+B(δ,u1,u2)+ ...)(1+B(δ,u3,u4)+ ...)]

(2.67)

Recalling that schematically
∫

Dδ δ(u1)δ(u2) e− C
2

∫

du(δ′′2−δ′2) = 〈δ(u1)δ(u2)〉 (2.68)

we compute the path integral over δ by simply taking the expectation value for every quadratic
appaerance in δ. The expectation value of the one point function 〈δ〉 vanishes, then 〈B(δ)〉 = 0.
We are interested in the two point function for the operator O that will be given by a double
functional derivative of (2.67), setting the sources to zero at the end

〈O∆(u1,u2)〉 =
δ2Z[χr]

δχr(u1)δχr(u2)

∣

∣

∣

∣

∣

χ=0

=
1

(

2sin u12
2

)2∆

[

1+
〈

C(δ2,u1,u2)
〉

+ ...
]

(2.69)

where dots stand for higher order corrections. Since the correlation functionG(|u12|) = 〈δ(u1)δ(u2)〉
depends on the module of the boundary time, we have

〈

δ′(u1)δ(u2)
〉

= sign(u12)G′(|u12|)
〈

δ′(u1)δ′(u2)
〉

= −G′′(|u12|) (2.70)

In this way we can compute
〈

C(δ2,u1,u2)
〉

sobstituting in (2.66) the expression (2.44) for the

propagator 〈δ(u1)δ(u2)〉 we computed above, or its derivatives. The final result is

〈O∆(u1,u2)〉 =
1

(

2sin u12
2

)2∆





1+
1

2πC

∆
(

2sin u12
2

)2 [2+4∆+u12 (u12 −2π)(∆+1)+

(∆u12(u12 −2π)−4∆−2)cosu12 +2(π−u12)(2∆+1)sinu12]+ ...)

(2.71)

In the above we recognize the classical leading contribution (2.62) plus a correction that is pro-
portional to G. Small fluctuations of the metric background can be regarded as the interactions
of our massive free particle χ with a gravitational particle δ, leading to effective couplings of
the form G1/2 δδχ or G δδχχ that correct the classical geodesics of the particle in the bulk.
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2.1.4 Higher topologies

We now generalize our construction to the case of n boundaries (or the boundary has n con-
nected components), each described by their own inverse temperatures β1,β2, · · ·βn and define
the gravity path integral on a manifold with n boundaries as Zgrav (β1, · · · ,βn).

We then generalize further our set-up by adding to the JT gravity action the topological
Einstein-Hilbert term:

SJT = −S0

4π

[∫

Σ
d2x

√
g R+2

∫

∂Σ
du

√
γ κ

]

− 1

16πG

[∫

Σ
d2x

√
g Φ(R+2)+2

∫

∂Σ
du

√
γ Φ|∂Σ (κ−1)

]

(2.72)
The motivation for this is that the Einstein-Hilbert actioncorresponds to the zero’th order term
in the near-extremal near-horizon expansion of higher dimensional black holes, where S0 plays
the role of the near extremal entropy. At first first order we get JT gravity and then we would
have an infinite series (completing (2.72)) of higher order corrections as you move back from
the near-horizon near-extremal approximation.

Since the first term of the action is proportional to the Euler characteristic χ of the surface,
the full path integral decomposes into a sum over different topological sectors weighted by S0
13:

Zgrav (β1, · · · ,βn) =
+∞
∑

g=0

eS0(2−2g−n)Zg,n (β1, · · · ,βn) (2.73)

where Zg,n represents the contribution from geometries with fixed topology. If we fix the
number of boundaries n, this series amounts to considering surfaces with increasing number of
handles: these are called spacetime wormholes in this context. The Eisntein-Hilbert action is
so responsible for weighing amplitudes with topology, determining a supression of these higher
wormholes for a given number of boundaries. In the new notation, we identify the disk partition
function with Z0,1 ≡ Zdisk(β).

Weil-Peterson volumes In order to compute Zg,n, it is convenient first to study the case
of a surface of genus g with n geodesic boundaries of lengths bi i= 1, · · ·n„ and no holographic
boundaries. A geodesic boundary follows a geodesic trajectory (null acceleration) and so it is
defined to have a null extrisinc curvature, κ = 0. The path integral on such a configuration
thus becomes

∫ DgµνDΦ

V (Diff)
e−SJT =

∫ Dgµν

V (Diff)
δ (R+2) (2.74)

where we are modding out by the group of gauge diffeomorphism. In the second step, we have
path integrated out the dilaton and we are left with an integral with a null action, that is
computing the volume of the moduli space of Riemann surfaces (with R= −2) with hyperbolic
metric. This goes under the name of Weil–Petersson volume. We denote the moduli space as
Mg,n(~b), with real dimension 6g−6+2n, and with Vg,n its volume.

It turns out that the correct measure over Mg,n is the one induced from the Weil-Petersson
symplectic form as follows. We can decompose any hyperbolic surface with genus g into a set of
pair-of-pants with 3g−3+n connecting tubes with lengths bi and twists τi (i= 1, · · · ,3g−3+n).

13This is sometimes referred as third quantization.
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The Weil-Petersson form in these length-twist coordinates, is 14

ωg,n =
3g−3+n
∑

i=1

dbi ∧dτi (2.75)

The volume form extracted from this Weil-Petersson form is
ω3g−3+n

g,n

(3g−3+n)! .

Formally, the Weil–Petersson volume can then be represented as an integral over the Deligne–
Mumford compactification Mg,n of the moduli space of Riemann surfaces of genus g and n
marked points pi,

Vg,n(b1, . . . , bn) =
∫

Mg,n

exp

(

ω+
1

2

n
∑

i=1

ψi b
2
i

)

, (2.76)

where ω is the Weil–Petersson symplectic form and ψi the first Chern class of the line bundle
whose fiber is the cotangent space at pi. We refer the reader to [31] for an introduction on
the subject. Concretely, the Weil–Petersson is just a polynomial of degree 3g− 3 +n in the
geodesic lengths bi. However, extracting them from (2.76) can be a difficult task. Moreover the
the pair-of-pants decomposition is in general not unique. Fortunately,in [99] Mirzakhani found
these Weil–Petersson volumes satisfy a topological recursion formula and one can compute all
of them recursively.

Trumpet configuration Another key ingredient to compute multi-boundary amplitudes is
the partition function of the trumpet configuration, which is a hyperbolic cylinder bounding
a holographic boundary, of renormalized length β, and a geodesic boundary, of length b, as
shown in Figure 2.4. The metric is of the form

b β/ǫ

Figure 2.4: The trumpet has an additional boundary, running along a geodesic of length b.

ds2 = dσ2 +cosh2σ dθ2 θ ∼ θ+ b (2.77)

where the periodic identification of θ breaks the SL(2,❘) symmetry of the hyperbolic plane
down to U(1) translations in θ. The wiggly boundary is described by a function θ(u), and in
this case the boundary Schwarzian action becomes

Str
Sch = −C

∫

∂Σ
du {e−θ(u),u} (2.78)

14It can be deduced from the symplectic form in the first order formulation of JT gravity as a BF gauge
theory, as shown in [113]
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The good news is that the path integral for this configuration is still one-loop exact as for the
disk, so one can obtain the exact answer just by studying the Gaussian integral over small
fluctuations about the saddle point θ(u) = 2πb

β (u+ δ(u)).
Decomposing in modes and working out the determinant of the symplectic measure for the

trumpet configuration, where {e− 2πb
β u,u} = −2π2b2

β2 , we finally get the following answer for the

partition function of the trumpet:

Ztr (β,b) =
1

2π

(

2πC

β

)
1
2

e− Cb2

2β (2.79)

General topologies With the Weil–Petersson volumes and the trumpet partition function
at hand, we can factorize the path integral and exploit the so called topological decomposition.
We just need to use the basic Weil–Petersson gluing:

∫ +∞

0
dbi

∫ bi

0
dτi =

∫ +∞

0
dbi bi (2.80)

where we have integrated over the twists. In this way we are able to compute

Zg,n (β1, · · · ,βn) =
∫ +∞

0
db1b1 · · ·

∫ +∞

0
dbnbn Vg,n (b1, · · · , bn)Ztr (b1,β1) · · ·Ztr (bn,βn) (2.81)

where we are just gluing n external trumpets (corresponding to the n Schwarzian boundaries)
with the corresponding Weil–Petersson volume characterized by n boundaries and genus g,
along their common tubes of length bi at each interface.

As an example, we can compute the disk at genus 1, by gluing together a single trumpet
and V1,1, as shown in Figure 4.2. The result is [94]

Z1,1 (β) =
∫ +∞

0
db b V1,1(b) Z (b,β) =

β
3
2

24
√

2πC
3
2

+
π

3
2
√
β

12
√

2C
(2.82)

The cylinder The only exception in the construction above is given by the cyilinder Z0,2, our
double trumpet (see Figure 4.1), which is obtained by gluing together two trumpets directly,
i.e.

Z0,2 (β1,β2) =
∫ +∞

0
db b Ztr (b,β1)Ztr (b,β2) =

√
β1β2

2π (β1 +β2)
(2.83)

As a final comment, we note that none of these topologies correspond to classical solutions.
In fact none of these manifolds have isometries, while instead the equation of motion for the
metric implies that ǫµν∂νΦ is a Killing vector.

2.1.5 JT gravity and random matrices

Motivations In this section we will describe the holographic dual of JT gravity, mainly
following the recent review [94]. The final outcome of this analysis is that JT gravity is not
equivalent to a single boundary hamiltonian but instead to an statistical ensemble. There are
two main arguments for this thesis:
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• An inverse Laplace transform of the disk partition function (2.42), including the Einstein-
Hilbert topological term, reveals the following density of states

ρ(E) =
C

2π2
eS0 sinh

(

2π
√

2CE
)

(2.84)

i.e. the spectral density is not a sum of delta functions, as one would expect for an ordinary
quantum system in a finite volume, but instead it is continuous. A continuous spectrum
implies the entropy in the microcanonical ensemble is infinite, such that information can
be lost inside a black hole. Therefore we expect the disk partition function not to be the
whole story, but instead to receive non-perturbative from manifolds with higher genus to
effectively render the spectrum discrete. Moreover, a continuos spectrum could emerge
from some averaging mechanism.

• the matter bilocal correlator in the Schwarzian theory, that we computed in 2.1.3, has a
semiclassical leading behavior given by

〈O(t)O(0)〉 ≃
(

sinh
π

β
t

)−2∆

that, at late times, decays exponentially 15. Again, this is not what we would predict
for a quantum mechanical system with a bulk dual, where we would expect a late time
erratic oscillation around a non-zero mean. Instead of studying matter correlators, a
simpler insight with the same outcome is obtained by considering the so called spectral
form factor Z(β + it)Z(β + it), i.e. the modulus squared of an analytically continued
partition function. If we consider just the product of two disjoint disks, then the spectral
form factor shows exactly that typical t−3 decay at late time. However, we have seen in
(2.83) that another connected topology, corresponding to a cylinder, is possible for two
asymptotic boundaries. Actually, this topology determines the so called ramp-regime in
the spectral form factor, which contrasts the forever decay of the disconnected solution.
Indeed, including all higher genus connected solutions, is responsibile for the expected
late time plateu regime in the spectral form factor. We will treat in more detail the
spectral form factor in the finite cutoff JT gravity in 4.6. Here it suffices to say that we
can argue the non-factorization in gravity, i.e.

Zgrav (β1,β2) 6= Z(β1)Z(β2)

which is a typical property of statistical systems.

We now proceed by constructing the holographic dual of JT gravity. We consider the black hole
Hilbert space HBH to be of dimension L. A quantum theory is described by an L×L Hermitian
Hamiltonian matrix H acting HBH. Instead of being dual to a single hamiltonian, we argue the
JT gravitational path integral on a manifold with n boundaries of length β1,β2, · · ·βn is equal
to an ensemble average over hamiltonians:

Zgrav (β1, · · ·βn) =
∫

dH e−LtrV (H) tr
(

e−β1H
)

· · ·tr
(

e−βnH
)

(2.85)

15Quantum effects actually correct the decay to t−3
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where e−LtrV (H) is the properly normalized probability distribution over theory space, V (H) is

the matrix model potential, Z(βi) = tr
(

e−βiH
)

is the partition function associated to a single
boundary and the correlator of these partition functions is hence an observable in the matrix
model.

Instead of considering as an observable the partition function, one can either consider the
associated spectral density or resolvent, which are related by the following trasformations

R(E) =
∫ +∞

0
dβeβEZ(β) Z(β) =

∫ +∞

0
dEe−βEρ(E) R(E+ iǫ)−R(E− iǫ) = −2πiρ(E)

(2.86)

In the following we will consider the resolvent as our main object. We can then define correlation
functions on the matrix integral side with n insertions of resolvents

R (E1, · · · ,En) = 〈R(E1) · · ·R(En)〉 (2.87)

where we denote with 〈〉 the ensemble average.Correlation functions of resolvents in the matrix
integral are known to have a 1/L expansion in the large L limit, taking the form

R (E1, · · · ,En)conn =
+∞
∑

g=0

Rg,n (E1, · · · ,En)

L2g−2+n
(2.88)

where we refer to the connected piece only. The series is only asymptotic and there are hence
non-perturbative corrections to it. This expansion arises from a perturbation theory in ’t
Hooft double line diagrams, where Rg,n is the contribution corresponding to the diagram with
n insertions and genus g. 16

We note that (2.88) clearly resembles the expansion (2.73) of the gravitational path integral,
also known as third quantization, once we clarify the connecton between L and eS0 . To do that
we need to introduce the concept of a double scaled matrix model.

Double scaled matrix model Although the single hamiltonian H has a discrete spectrum
for finite L, after averaging over H and taking the large L limit, the resulting density of states
will be continuous. This is exactly what happens in JT gravity. So we should find a potential
V (H) such that its density of states to leading order at large L matches with JT gravity on the
disk. However, this is not possible, since JT gravity has an infinite support over E ∈ [0,+∞ ).
So how can we intepret it as a density? The resolution of this puzzle is that JT gravity is dual
not to an ordinary matrix integral, but to a double-scaled matrix integral.

Let us see how it works. We wish to obtain a distribution that has support on the entire
positive real axis, so we begin by regularizing the disk density of states, and constructing a
matrix potential V (H), such that to leading order in L one has

ρ0(E) = 〈ρ(E)〉L→∞ = eS0
C

2π2
sinh



2π

√

2CE
a−E

a



 (2.89)

which has finite support on E ∈ [0,a]. We then wish to send a → ∞. This runs into an issue:
since we have a finite number of eigenvalues L to be distributed on the whole real line, the

16the genus of the surface needed to embed the particular double-line diagram.
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spectral density ρ0(E) goes to zero. To resolve this problem, we need to send the number of
eigenvalues to infinity L → ∞ at the same time. We do so by keeping eS0 fixed. After having
performed this double scaling limit, the topological expansion (2.88) becomes thus written in
terms of eS0 instead of L, assuming exactly the same form as the gravitational expansion (2.73).

Loop equations Once the matrix potential is tuned to give the disk JT gravity density
of states in the large eS0 limit, all other subleading terms in the topological expansion will
automatically match between the matrix model and the gravity calculation [113]. This miracle
is due to the so called loop-equations of the matrix model, which provide a recursive way to
determine all Rg,n. The loop equations are in fact Schwinger–Dyson-like identities which one
can write down starting from the following master identity, which comes from differential over
a single eigenvalue inside the matrix integral:

0 =
∫

dLλ
∂

∂λa





1

E−λa
R(E1) · · ·R(Ek)

∏

i<j

(λi −λj)
2e−L

∑

j V (λj)



 (2.90)

Once we evaluate the derivative, sum over a and expand in powers of 1/L, for each fixed power
in the expansion one can get recursive equations that can be solved order by order, making
it possible to systematically compute all of the Rg,n with R0,1 and R0,2 as the only inputs.
The former corresponds to the leading density ρ0 = 〈ρ(E)〉L→∞, which is determined by the
potential through

V ′(E) =
∫

dλ
ρ0(λ)

E−λ
(2.91)

by imposing the stationary saddle point equation for the effective potential Veff = V (E) −
2
∫

dλρ0(λ) log(λ−E) in the large L limit 17. The latter, i.e. R0,2, represents the density-
density correlator 〈ρ(E)ρ(E′)〉L→∞ which is universal and indipendent of the potential. The
loop equations themselves were studied a long time ago, but they were put in its most useful
form by B. Eynard [39].

In order to better show the recursion relations, he proved it is useful to introduce the
following objects Wg,n related to the resolvent correlators by:

Wg,n(z1, z2, · · · , zn) = (−2)nz1 · · ·zn Rg,n(−z2
1 ,−z2

2 , · · · ,−z2
n)conn E = −z2 (2.92)

where in the case of JT gravity

W0,1(z) = 2zy(z) W0,2(z1, z2) =
1

(z1 − z2)2 (2.93)

The function y(z) = −iπρ(−z2) = C
2π sin

(

2π
√

2Cz
)

is called spectral curve, while W0,2 can be

easily inferred from the cylinder partition function (2.83). In terms of Wg,n the Eynard-Orantin
recursion relations [41] are concretely expressed through the formula (4.98) that we will present
and exploit later on in the context of JT gravity at finite cutoff.

17The Vandermonde comes from diagonalizing H.
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The duality We now finally present the duality proposed by Saad-Shenker-Stanford in [113],
where they demonstrate JT gravity is actually dual to a double scaled matrix model. The
quantities Wg,n are related to Zg,n by the following integral transform

Wg,n (E1, · · · ,En) = 2nz1 · · ·zn

∫ +∞

0
dβ1 · · ·dβne

−(β1z2
1+β2z2

2+···βnz2
n)Zg,n (β1, · · · ,βn) (2.94)

We now express Zg,n as an n-dimensional integral with n trumpets attached to the Weil-
Petersson volume Vg,n, as prescribed in (2.81). Then we exchange the integrals over bi and βi

and perform the integral over βi exploiting:

2zi

∫ +∞

0
dβie

−βiz
2
i

1

2π

(

2πC

βi

)
1
2

e
− Cb2

i
2βi =

√
2
√
Ce−

√
2bi

√
Czi (2.95)

We find

Wg,n (E1, · · · ,En) = (2C)
n
2

(

n
∏

i=1

∫ +∞

0
dbi bi e

−
√

2Cbizi

)

Vg,n (b1, · · ·bn) (2.96)

Eynard and Orantin showed that Mirzakhani’s recursion relations for Vg,n imply that Wg,n

satisfy the loop equations of a double scaled matrix model with spectral curve

y(z) =
C

2π
sin
(

2π
√

2Cz
)

(2.97)

. We therefore conclude that the sum over topologies in JT gravity reproduces the genus
expansion of a particular double-scaled matrix integral, introducing a new form of holographic
duality where a single gravity bulk theory is dual to an ensemble of boundary hamiltonians.
This implies that an n-point connected correlator at “genus” g for the boundary theory is dual
to a connected topology with n boundaries and genus g on the gravity side: holography, through
the JT gravity example, gives then a meaningful physical interpretation of the mathematical
duality.

2.2 Gauge theories in two dimensions

2.2.1 Yang-Mills theory: general properties

Let us consider a Euclidean gauge theory on a compact orientable Riemann surface Σ of genus g.
We denote the gauge group and its Lie algebra with G and g, respectively. In our conventions,
the gauge fields are hermitian, and we define the curvature in terms of the gauge connection A
as F = dA− iA∧A. The action of pure Yang–Mills theory

Sym =
1

2g2
ym

∫

Σ
trF ∧⋆F (2.98)

can be rewritten in terms of a single g-valued scalar f = ⋆F as

Sym =
1

2g2
ym

∫

Σ
η trf2 , (2.99)
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where η is the volume form on Σ. An alternative action for the theory can be obtained by
introducing an auxiliary g-valued scalar φ,

Sym = i
∫

Σ
tr(φF )+

g2
ym

2

∫

Σ
η trφ2 . (2.100)

which is also known as first-order formulation of Yang-Mills theory.
This last expression shows that the theory is invariant under a large group of local symme-

tries, known as area-preserving diffeomorphisms [29]. As a consequence, the partition function
is sensitive to the underlying geometry only through the total area a= volΣ; by virtue of this,
we state the theory is almost topological. In fact, since the action is invariant under an appro-
priate simultaneous rescaling of a and of the Yang–Mills coupling gym, the dependence on such
couplings comes only through the combination α= g2

yma.

The Migdal heat-kernel expansion

The previous statement extends to the Yang-Mills partition function, which can be defined via
the usual path integral formulation:

Z(α) =
∫

DAe−Sym(A) (2.101)

It turns out the full quantum theory is solvable. The first solution was found by Migdal and
Rusakov ([110][96]) and relies on the lattice formulation in terms of Wilson action. A similar
method was developed by Witten ([129] [130]) and consist in cutting the Riemann surface with
a circle and factorize the path integral integration in order to write it as a product of vectors
on a Hilbert space. In particular, the Hilbert space consists of class functions on the gauge
group G.

The resulting partition function, known as Migdal representation, reads:

Z =
∑

R

(dimR)2−2g e−g2
ymaC2(R)/2 , (2.102)

and consists in a sum over inequivalent irreducible representations R of the gauge group G,
weighted by the Euler characteristic χ = 2 − 2g of the Riemann surface and multiplied by a
Boltzmann factor. It exhibits explicit dependence only on the effective area parameter α;
c2(R) is the eigenvalue of the quadratic Casimir operator of a given representation. The proof
by Witten holds also for a genus g surface Σ which contains a number b of one-dimensional
boundaries, the corresponding partition function is

Z(α;U1, . . . ,Ub) =
∑

R

(dimR)2−2g−b e−αC2(R)/2χR(U1) . . .χR(Ub) . (2.103)

For each boundary bi we can associate a gauge invariant holonomy Ui and define the character
χR(Ui), which is the trace of the holonomy Ui in the representation R. Indeed it is possible
to obtain higher genus surfaces by gluing two boundaries. The operation, at the level of the
partition function, consists in integrating the two characters corresponding to the holonomies
with respect to the Haar measure of the group G. For instance, we can obtain the torus from
a finite cylinder by gluing the two boundaries, the resulting partition function will be of the
form (2.102) with g = 1.

Below, we review the strategy proposed by Witten in [130], following an Hamiltonian quan-
tization of the theory. Specifically, we will derive the Migdal representation for the basic
topologies of the disk and sphere, that will be relevant for this dissertation.
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Hamiltonian approach Let us consider an initial-value circle C ⊂ Σ in our surface Σ. In a
neighborhood of C, we can write the volume form in terms of local coordinates as η = dx∧dt,
where C corresponds to t= 0 and x is a coordinate along C such that

∮

dx= 1. Since the action
(2.100) is linear in F , the Hamiltonian reads 18

H =
g2

ym

2

∮

C
dx tr

(

φ2
)

, (2.104)

and generates translations along t. The Hilbert space of states will be defined on circular slices
at constant time, while the hamiltonian will give the propagation along the time coordinate.
When quantizing the theory on a spatial circle C, due to the Gauss law constraint A.5, the
wave functions are simply class functions ψ(U) 19of the holonomy U around that circle:

U = Pexp
∮

C
A . (2.105)

Consequently a natural basis for the Hilbert space of states, the so called “representation basis”,
is provided by the characters in the irreducible unitary representations, i.e.

〈R|U〉 = χR(U) = trR(U) (2.106)

We note from (2.100) that the canonical momentum conjugate to the space component of the
gauge field πAa

x
is φa. Hence in the quantum theory, by canonical quantization, if the Aa

x are
multiplication operators, then φa are functional derivatives operators:

φa = −i δ

δAa
x

(2.107)

As a consequence the momentum acting on the wavefunctions χR(g) is given by

πAa
x
χR

(

Pexp
∮

Aa
xT

a
)

= −iχR (T aU) (2.108)

while the hamiltonian (2.104) will be

H =
g2

ym

2

∮

dx
δ

δAa
x(x)

δ

δAa
x(x)

(2.109)

and therefore acts diagonally on the characters. Let’s find the associated eigenvalues ER

g2
ym

2

∮

dx
δ2

δAa
1(x)δAa

1(x)
χR (U) =

g2
ym

2

∮

dx T aT aχR (U) (2.110)

We recognize immediately
∑

aT
aT a, evaluated in representation R, as the eigenvalue of the

quadratic Casimir c2(R) in representation R, where we used
∮

dx= 1. Therefore

ER =
g2

ym

2
c2(R) (2.111)

18The Lagrangian is directly written as the Legendre transform of the Hamiltonian.
19The are class functions because they must be invariant under conjugation ψ(g) = ψ

(

g−1Ug
)
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Figure 2.5: Transition amplitude between an initial holonomy U1 and a final holonomy U2,
along time t in the vertical direction.

Transition amplitude It is now convenient to exploit the area-preserving diffeomorphisms
to deform our surface Σ into a two-holed sphere, or more simply a cylinder, with an initial
state circle C1 and a final state circle C2. The euclidean path integral for this manifold can be
rewritten in the Hamiltonian approach as a transition amplitude

Z (U1,U2,a) = 〈U1|e−Ha |U2〉 (2.112)

between the initial state U1 and the final state U2, corrisponding respectevely to the holonomy
around the initial circle at time t1 and final circle at time t2, with t= t2 − t1, as shown in figure
2.5. Since the length of the circles is 1, we can set t= a, the area enclosed by the cylinder.

Having diagonalized the Hamiltonian, we can immediately write the propagator correspond-
ing to this transition amplitude, by inserting a completeness on the representation basis.

Z (U1,U2,a) = 〈U1|e−Ha |U2〉 =
∑

R

〈U1|R〉e−Ha 〈R|U2〉

=
∑

R

χR(U1)χR(U †
2) e− g2

ym
2 c2(R)a

(2.113)

From the cylinder to the disk At area a = 0 the amplitude can be calculated in the
topological theory, in fact the small a limit is identical to the small g2

ym limit in which the
action (2.100) becomes topological. In this limit, we have seen that the integral over φ imposes
the condition that A is a flat connection, which renders the holonomy U = ✶. This means that
the wavefunction ψ(U) is completely concentrated in U = ✶ and null for any other value of the
holonomy, i.e

ψ(U) = δ (U,✶) (2.114)

where δ is the delta function in the Haar measure
∫

dU x(U)δ (U,✶) = x(✶) (2.115)
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Figure 2.6: Following the vertical arrow: the final holonomy U2(at final time t2) becomes ✶
in the limit in which we contract the area of the circle (along which the holonomy is defined) to
zero. Following the horizontal arrow: we gradually flatten the shape on the left to obtain
a disk and we note that the red line, which indicates the time interval t, becomes a ray of the
disk. In this way we get the radial quantization pattern in which time flows along the radial
direction.

To find the partition function of the object shown on the left in figure 2.6, we should glue the
partition function of a cylinder with the one just obtained in the limit a→ 0 , i.e.

Z(U,a) =
∫

dU1 Z (U,U1,a)δ (U1,✶) =
∑

R

χR(U)χR(✶) e− g2
ym
2 c2(R)a (2.116)

where in the second step (2.115) and (2.113) have been used. Now we take advantage of
χR(✶) = trR(✶) = dimR to yield

Z(U,a)disk =
∑

R

dimR χR(U) e− g2
ym
2 c2(R)a (2.117)

Using the area preserving diffeomorphism invariance, we may flatten out the shape we are
considering (see figure 2.6) and regard (2.117) as an amplitude for a disk (or one-holed sphere).

The sphere To get the partition function for the sphere, we just need to set U = ✶ in (2.117),
which just corresponds to closing the remaining hole by setting the holonomy to the identity.
We obtain a new factor of dimR:

Z(a)sphere =
∑

R

(dimR)2 e− g2
ym
2 c2(R)a (2.118)
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2.2.2 The instanton expansion

2dYM also admits an equivalent formulation with a fermionic symmetry. Let ψ be a Grassmann
valued, and adjoint valued, one-form field. The action

Ssusy (A,ψ,φ) = −g2
ym

2

∫

Σg

ηTrφ2 − i
∫

Σg

(

φF +
1

2
ψ∧ψ

)

(2.119)

yields a theory which is equivalent to 2dYM in the first order formulation (2.100), up to an
overall renormalization from integrating out ψ. Indeed the path integral over ψ plays the role of
inducing the correct symplectic measure on A 20, the space of gauge connections on Σg. Ssusy

is also invariant under the following BRST odd symmetry transformations:

δAµ =iψµ

δψµ =−Dµφ

δφ=0

(2.120)

The transformation δ squares to an infinitesimal gauge transformation with parameter φ

δ2 = −iδφ (2.121)

In [130], Witten showed that the cohomologial Yang-Mills action (2.119) admits a δ-exact
deformation which can be used to localize the theory. The specific deformation used by Witten,
which requires the introduction of two additional supermultiplets, was shown to localize the
theory to the moduli space of solutions to the Yang-Mills equations on Σ:

DiFij = 0 (2.122)

where D is the derivative which is covariant with respect to both the Levi-Civita connection and
A. The connected components of this moduli space, which deserve the name instanton sectors,
are labeled by Γ: the magnetic weight lattice of G, which is dual to Γ∗: the usual weight lattice
of G, modulo the action of the Weyl group W [4]. Recall that the latter is equivalent to the
set of irreducible representations of the gauge group G.

The localization procedure used by Witten, which differs from standard localization com-
putations, was given the name “non-abelian localization”. See Appendix A.2 for a brief review
on non-abelian localization. The value of the partition function derived using non-abelian
localization is, schematically,

Z =
∑

m∈Γ/W

q (m,α,g)e−Sym(m)
(2.123)

here Sym (m) is the value of the action (2.98) on any solution of the Yang-Mills equations in
the component labeled by m, and q (m,α,g) is a function which was not explicitly computed in
[130]. Witten argues that when the moduli space of flat connections, which we denote Mflat,
is smooth, the part of (2.123) which is not exponentially suppressed in the limit α → 0 is in
fact a polynomial in the area α, which we call p(α,g). It was further argued by Witten that

20with symplectic form ω =
∫

trδA∧ δA
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p(α,g) contains all of the information required in order to compute the intersection theory on
Mflat. More explicitly:

∫

Mflat

exp(ω+αΘ) = p(α,g) (2.124)

where Θ is the BRST invariant observable trφ2 and the left hand side expresses the intersection
numbers on Mflat.

21

The expression (2.123), known as instanton expansion, and the Migdal representation
(2.102) are indeed equivalent, and Witten argues that they are related by Poisson summa-
tion [130]. In the following, we will specify the gauge group to be U(N) and the instanton
expansion will be more manifest. Moreover, we will mainly focus on the sphere (g = 0) where
we can basically forget issues about flat connections ( there no flat connections wrapping the
nontrivial cycles of Σ) and intersection theory, since in that case Mflat becomes trivial.

2.2.3 The U(N) theory

Below, we will regard the partition function as a function of the rank N and written in terms of
the effective adimensional coupling α= λa, where λ= g2

YMN is the usual ’t Hooft coupling. An
irreducible representation R of U(N) is labeled by its highest weight vector λ ∈ ❩N of ordered
integers

λ1 ≥ λ2 ≥ . . .≥ λN . (2.125)

The dimension of R and the eigenvalue of its quadratic Casimir are given by

dimR =
∏

i<j

(

1− λi −λj

i− j

)

, (2.126)

C2(R) =
N
∑

i=1

λi(λi −2i+N +1) . (2.127)

For the purpose of applying this to (2.102), it is useful to rewrite the above in terms of new
variables ℓi = −λi − i+N . The constraint (2.125) restricting to the fundamental Weyl chamber
now reads

ℓ1 < ℓ2 < .. . < ℓN . (2.128)

With the new variables, the dimension

dimR =
∆(ℓ1, . . . , ℓN )

G(N +1)
, (2.129)

is expressed in terms of the Vandermonde determinant, defined as

∆(ℓ1, . . . , ℓN ) = det















ℓ01 ℓ11 · · · ℓN−1
1

ℓ02 ℓ12 · · · ℓN−1
2

...
...

. . .
...

ℓ0N ℓ1N · · · ℓN−1
N















=
∏

i<j

(ℓj − ℓi) . (2.130)

21Witten denotes Mflat with µ−1(0), the inverse of the moment map µ(A) = − F
4π2 .
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Here, G is the Barnes function. The eigenvalue of the quadratic Casimir reads

C2(R) =
N(1−N2)

12
+ 〈ℓ〉 , (2.131)

where we have introduced the shorthand

〈ℓ〉 =
N
∑

i=1

(

ℓi − N −1

2

)2

. (2.132)

Focusing on the sphere topology (i.e. on g = 0), since both dimR and C2(R) are invariant
under permutations of the ℓi’s, and since dimR vanishes whenever two of these coincide, we
can simply lift the constraint (2.128) and normalize appropriately. This gives

Z(α) =
∑

ℓ∈❩N

ẑ ℓ(α)

=
∑

ℓ∈❩N

eα(N2−1)/24

N !G2(N +1)
∆2(ℓ1, . . . , ℓN ) e− α

2N 〈ℓ〉 . (2.133)

Through the Poisson summation formula, the partition function (2.133) can be recast in
terms of a dual representation

Z(α) =
∑

m∈❩N

zm(α) , (2.134)

where

zm(α) =
∫

❘N
dℓ1 . . .dℓN e−2πim·ℓ

ẑ ℓ(α) . (2.135)

This is nothing but the instanton representation mentioned earlier, where now we regard m as
a set of N integers through the natural isomorphism Γ ≃ ❩

rkG. The physical interpretation as
a sum over classical configurations becomes manifest upon performing the Fourier transform
above. In fact, one finds that each term in (2.134) has the form

zm(α) = wm(α) e−Scl(m) , (2.136)

where the function [97]

wm(α) = (−1)m eα(N2−1)/24

N !G2(N +1)

(

2πN

α

)N2

×
∫

dx1 . . .dxN e−Scl(x)
∏

i<j

[

(xi −xj)
2 − (mi −mj)

2
]

(2.137)

captures the quantum fluctuations about the classical configuration. By introducing the differ-
ential operator

V = (−4π2)−N(N−1)/2
∏

i<j

(∂mi −∂mj )2 , (2.138)
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we can write

zm(α) =
eα(N2−1)/24

N !G2(N +1)
(−1)m

∫

❘N
dh1 . . .dhN Ve− α

2N |h|2−2πim·h

= z0(α)
(α/N)ν

N !G(N +1)
(−1)m Ve−2π2N |m|2/α , (2.139)

where ν =N(N −1)/2, and m= (N −1)(m1 + . . .+mN ).
The result for the zero-flux and the unit-flux sectors read [64]

z0(α) = CN eα(N2−1)/24α−N2/2 , (2.140)

z1(α) = (−1)N−1N−1 e−2π2N/αL1
N−1(4π2N/α) z0(α) (2.141)

where we denoted with 1 ∈ ❩
N a generic unit vector, and we defined

CN =
(2π)N/2NN2/2

G(N +1)
. (2.142)

The former corresponds to the contribution coming from the vacuum sector and describes the
perturbative regime of the theory. The latter captures the contribution of the first nontrivial
solution associated with a monopole configuration of unit flux and classical action 2π2N/α.

2.2.4 The large N limit

When N becomes large, 2d Yang-Mills theory is conjectured to be dual to some string theory
with target space Σ [61, 66, 29]. Taking advantage of the solvability of two dimensional U(N)
pure Yang-Mills theory on the torus topology, Gross and Taylor in fact identified the free-
energy of the theory at weak coupling (in the t’Hooft limit) as a string expansion. Specifically,
the Yang–Mills free energy should compute the partition function of a string winding on Σ
with coupling gs = 1/N and tension λ. Evidence for the duality is given by the fact that the
1/N -expansion of the free energy takes the form

F (α) = logZ(α)

=
∞
∑

ℓ=g

N2−2ℓFℓ(α) . (2.143)

Gross and Taylor have shown that the coefficients of the free energy in the expansion can be
interpreted as maps between branched covers of Riemann surfaces, with different genus. This is
consistent with the fact that, according to the Riemann–Hurwitz formula, there are no covering
maps between a worldsheet of genus ℓ and a two-dimensional target space of genus g, if ℓ < g.
Moreover, the coefficients of the Gross-Taylor string expansion were shown to have a deep
geometrical interpretation in terms of modular functions.

The case of the sphere In the context of large N , the topology of the sphere is peculiar.
In fact, due to presence of the Vandermonde determinant at the numerator, as in (2.133), the
theory undergoes a phase transition, known as Douglas-Kazakov phase transition. Below a
certain threshold in the value of the area α, the system is dominated by a weak-phase regime
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where the full Gross-Taylor expansion (which remains unaltered in the strong regime) becomes
trivial. This phenomenon due to the fact the in the weak-coupling phase only the zero-instanton
sector dominates, with all higher instantons being suppressed. Below, we will explore this points
in more detail.

At leading order, the large-N limit analysis can be efficiently tackled by approximating the
sum in (2.133) through the functional integral [35]

Z =
∫

[dh] e−N2Seff[h] , (2.144)

Seff[h] = − α

24
− 3

2
+
α

2

∫ 1

0
dx h2(x)−

∫ 1

0
dx
∫ 1

0
dy log |h(x)−h(y)| , (2.145)

where the integral is performed over the function h : [0,1] → ❘ obeying the constraint h′ ≥ 1.
Interestingly, the saddle-point approximation of the above is analogous to that of a Gaussian
matrix model. In fact, the density ρ(h) = ∂x/∂h obeys the saddle-point equation

α

2
h= −

∫ ρ(s)

h− s
ds . (2.146)

What makes this model nontrivial, however, is the presence of the constraint on h′. This implies
that a general solution of the above should be of the form

ρ(s) =















1 for |s|< b ,

u(s) for b≤ |s|< a ,

0 for a≤ |s| .
(2.147)

For α < π2, one finds that b= 0, while ρ obeys the typical Wigner semicircle law. For α > π2,
instead, b > 0 and to find the density ρ one should solve

α

2
h− log

h− b

h+ b
= −
∫ −b

−a

u(s)

h− s
du+−

∫ +a

+b

u(s)

h− s
du . (2.148)

The saturation of the constraint on h′ is responsible for a third-order phase transition at
α= π2 that the theory undergoes in the large-N limit, first observed by Douglas and Kazakov
[35]. Later, in [64], it was shown that the transition is induced by instantons. By evaluating
the ratio between the unit-flux and the zero-flux partition functions, one can see that for small
values of the effective ’t Hooft coupling, the former is exponentially suppressed in N/α only for
α < π2. Specifically, by taking the large-N limit of (2.140) and (2.141) below the critical point,
one finds

log
z1(α)

z0(α)
∼ −2π2N

α
γ(α/π2) , (2.149)

where

γ(z) =
√

1− z− z

2
log

1+
√

1− z

1−√
1− z

. (2.150)

The function γ(z) is positive for z < 1, i.e. in the weak phase, but vanishes as its argument
reaches the critical value z = 1.
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The large-N limit of the theory is characterized by the leading order of the free energy in
the 1/N expansion, which we can write as

F0(α) =
3

4
+
α

24
− logα

2
+Θ(α−π2)∆F0(α) , (2.151)

where Θ denotes the Heaviside step function. The function ∆F0 captures the behavior above
the transition. Its derivative reads [35]

∂α∆F0(α) =
1

2α
− 4(k(α)+1)K2(k(α))

3α2
− 8(k(α)−1)2K4(k(α))

3α3
, (2.152)

where k(α) is obtained by inverting

α= 4K(k)(2E(k)+(k−1)K(k)) . (2.153)

Here, K and E denote elliptic integrals of the first and second kind, respectively. Near the
transition point,

∆F0(α) = −(α−π2)3

3π6
+O((α−π2)4) , (2.154)

which shows, indeed, that the transition is of the third order.
For large values of α, the free energy is given by the expansion [35]

F0(α) = 2e−α/2 +(α2/2−2α−1)e−α +(α4/3−8α3/3+4α2 +8/3)e−3α/2 + . . . , (2.155)

that is perfectly consistent with the Gross–Taylor string expansion.

2.2.5 Quantization of JT gravity as a BF theory

In this section we prove that JT gravity can be equivalently written in the first-order formula-
tion, which involves the frame and spin-connection of the manifold Σ, as a two-dimensional BF
theory with SL(2,❘) gauge group. The close analogy with 2d Yang-Mills theory will lead us to
borrow some results shown above to rederive the JT partition function in this framework.

We start by reviewing how the correspondence works at the classical level. Let us consider
a BF theory with action

SBF = −i
∫

Σ
tr(φF ) (2.156)

This is just a purely topological theory 22 and corresponds to the gym → 0 limit of (2.100). We
choose a two-dimensional real representation P0,P1,P2 for the sl(2,❘) algebra

P0 = i
σ2

2
P1 =

σ1

2
P2 =

σ3

2
(2.157)

One can check they satisfy the commutation relations of the algebra of sl(2,❘):

[P0,P1] = P2 [P0,P2] = −P1 [P1,P2] = −P0 (2.158)

22The action is completely written in terms of forms and does not require a metric on Σ.

51



2.2. GAUGE THEORIES IN TWO DIMENSIONS 2. Review

We then denote the adjoint fields A and φ as

A(x) =

√

Λ

2
ea(x)Pa +ω(x)P0 φ(x) = φa(x)Pa +φ0(x)P0 (2.159)

where φa(x) and φ0(x) are scalar functions while ea(x) = ea
µdxµ and ω(x) = ωµdxµ are one

forms. Exploiting the definition F = dA+A∧A and the commutation relations (2.158), we
calculate the non-abelian field strenght

F = F aPa +F 0P0

=

√

Λ

2

(

de1 +ω∧ e2
)

P1 +

√

Λ

2

(

de2 −ω∧ e1
)

P2 +

(

dω+
Λ

2
e1 ∧ e2

)

P0

(2.160)

Plugging it in the action (2.156) and using normalization tr
(

φiP
i FjP

j
)

= φiFjη
ij/2 we get

SBF = − i

2

∫

√

Λ

2

[

φ1

(

de1 +ω∧ e2
)

+φ2

(

de2 −ω∧ e1
)]

−φ0

(

dω+
Λ

2
e1 ∧ e2

)

(2.161)

The variation of φ1 and φ2 yields the equation of motion

dea +ωa
b ∧ eb = 0 ω1

2 = −ω2
1 = ω → ω =

1

2
ǫbaω

a
b (2.162)

which are precisely the zero torsion conditions for the frame ea with spin connection ωa
b. We

then evaluate the action on shell plugging these equations back into (2.161)

SBF =
i

2

∫

φ0

(

dω+
Λ

2
e1 ∧ e2

)

(2.163)

Moreover we have the following relations in 2d

d2x
√
g = e1 ∧ e2 d2x

√
gR = 2dω (2.164)

such that the BF action will then finally read as

SBF =
i

4

∫

d2x
√
g φ0 (R+Λ) (2.165)

which is precisely the bulk part of the JT action if we identify the dilaton Φ = −i φ0/4.

Recovering the boundary dynamics Let’s specify Σ to be the surface of a disk, since this
is the classical topology in JT gravity. If we vary the action (2.165) with respect to the gauge
field, we obtain

δSBF = (bulk equations of motion)− i
∫

∂Σ
dτ tr(φδAτ ) (2.166)

where boundary term has been produced by integration by parts. As a consequence the BF
theory has a well-defined variational principle only when fixing the gauge field Aτ along the
boundary. This is in contrast with the second-order formulation of JT gravity (2.4), when fixing
the metric and the dilaton along the boundary is necessary.
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Figure 2.7: The resulting theory (2.167) is invariant under perimeter preserving defect diffeo-
morphisms and thus the defect can be brought arbitrarily close to the boundary of the manifold.
Furthermore, the degrees of freedom of the gauge theory defect can be captured by those in
the Schwarzian theory.

However, solely fixing the gauge field around the boundary yields a trivial topological theory.
Of course, such a theory cannot be dual to the Schwarzian. In order to effectively modify the
dynamics of the theory we consider a defect along a loop [74], i.e we add a term SI to the BF
action

SBF+def = SBF +SI SI = e
∫ β

0
du

√
γuu V (φ(u)) (2.167)

where e is a coupling constant (related to the gravitational coupling constant through e= 2/C)
and u is the proper length parametrization of the loop I, whose embedding coordinates are
given by xI(u) and whose total length is β, measured with the induced background metric γuu

from the disk. 23 V is a potential depending on the value of φ on such a loop, but needs to be
of trace class in order to be gauge invariant. Our guess is

V (φ) = −1

4
tr
(

φ2
)

(2.168)

with the trace in the fundamental representation of SL(2,❘). Due to the appearance of the
length form in (2.167) the action is invariant under diffeomorphisms which preserve the local
length element on I, i.e. the perimeter of the defect. As shown in figure 2.7, this means that the
defect can be brought arbitrarly close to the boundary of the manifold by modifying the metric
through a local diffeomorphisms away from I. In A.3 we prove that this form of the potential
is suitable to recover the Schwarzian dynamics at the boundary of the disk [74].

Quantization Once we write down the complete action

SBF+def (φ,A) = −i
∫

Σ
tr(φF )− e

4

∫

I
duTr

(

φ2
)

(2.169)

23Consequently, since the defect depends on the metric, it is not topological.
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Figure 2.8: Blue arrows indicate time propagation flow, the loop defect is represented in red.
The theory is topological, i.e not dynamical (H = 0), inside and outside the region delimited
by dotted lines, while a YM theory is defined within this area. Actually the external region
vanishes in the limit in which we push the loop defect arbitrarly close to the boundary in order
to recover the Schwarzian theory.

we notice a clear similarity with the 2d Yang-Mills action (2.100): the only difference is that
the potential term is supported only along the path I of length β and not over the entire disk
surface. The Hamiltonian quantization we performed for Yang-Mills on the disk is not affected
by this slight modification. This means that we can deduce the partition function for the theory
(2.169) from (2.117)

ZBF+def(U,β) =
∑

R

dimR χR(U) e−eβc2(R) (2.170)

and immediately write down the answer, where U is again the boundary holonomy of the gauge
field.

One way to motivate this is considering radial quantization and choosing time-slices to
be concentric to the loop. However, instead of having an hamiltonian defined on all disk,
now it is non-vanishing only in corrispondence of the loop defect and null everywhere. This
means that the hamiltonian (2.104) becomes time dipendent, because it turns active only for
an infinitesimal time around the loop defect. In this way, the propagation factor becomes the
dimensionless quantity eβ. Alternatively, one can consider the gluing of a totally topological
theory with e = 0 in the regions inside and outside I, and a Yang-Mills theory of type (2.100)
in a fattened region around I with infinitesimal width, as shown in Figure 2.8.

Non compact gauge group G So far we have assumed that the group G is compact, and
thus the spectrum of unitary irreps is discrete. The only modification required in the case of
a non-compact gauge group, which is indeed the case of SL(2,❘), is that the irreducible irreps
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are in general part of a continuous spectrum, so one should replace a discrete summation with
an integral

∑

R → ∫

dR. Then (2.170) simply becomes

ZBF+def(U,β) =
∫

dR ρ(R) χR(U) e−eβc2(R) (2.171)

where ρ(R) is the Plancherel measure that generalizes dimR in the continuos case. In particular,
we should pick as our non-compact group SL(2,❘), the gauge group relevant for JT gravity.
The unitary irreducible representations of SL(2,❘) have all been classified: there are both
continuos and discrete series representations 24. However, we know from the result deduced
from the Schwarzian theory that only the continuos ones should contribute to the partition
function. Moreover, the Plancherel measure for the principal continuos series of SL(2,❘) is
ρ(k) = k tanh(πk): this would imply a density of states ∝ tanhπ

√
E. The latter does not

display a Cardy rise at large energies, consistent with the semiclassical Bekenstein-Hawking
entropy formula. So an SL(2,❘) BF theory will not result in a correct calculation of the black
hole entropy, as there are simply not enough states [12].

There are two possible resolutions for these puzzling features in the literature:

• the first proposal is based on an analytic continuation of the universal cover of SL(2,❘)
[74]. The parameter µ governing the extension is taken to infinity: in this regime we
both recover the right Plancherel measure for the continuos series representations and the
discrete series contributions gets exponentially suppressed. From a physical point of view,
in the boundary particle approach to JT gravity (see A.6), this is equivalent to having
a particle propagating in the hyperbolic plane under the effect of an infinite imaginary
magnetic field.

• consider the positive semigroup SL+(2,❘), where one can find directly the correct Plancherel
measure ρ(k) = k sinh(2πk) for the continuos series representation and there are no dis-
crete ones appearing [12].

In this dissertation, we choose the follow the second root, because it provides an interesting
physical interpretation. We explain in A.7 how restricting to the positive semigroup corresponds
to projecting out all non-physical geometries with conical singularities in the bulk: these rep-
resent replicated geometry, with the spacetime boundary allowed to wind multiple times and
self-intersect. This physical picture is very clear in the derivation of the JT gravity partition
function through the boundary particle approach, in the limit of vanishing magnetic field, that
we review in A.6.

The SL+(2,❘) quadratic Casimir evaluated on a spin j = −1
2 + ik,k ∈ ❘ representation is

given by c2(j) = −j(j+ 1) = k2 + 1
4 , so it is convenient to perform a shift in the ground state

of the Hamiltonian c2(R) → c2(R) − 1
4 in such a way that k2 is directly the energy eigenvalue

25. Inserting the SL+(2,❘) Plancherel measure in (2.171), we obtain

ZBF+def(U,β) =
∫ +∞

0
dk k sinh(2πk) χk(Uλ) e−eβk2

(2.172)

where we parametrized the holonomy as U = e−2πλH with H is the Cartan generator of
SL+(2,❘)26.

24In (A.7) we give a brief review of SL(2,❘) and SL+(2,❘) representation theory.
25The same shift is performed in the Hamiltonian of the boundary particle in the magnetic field in A.6.
26In our case H = P2
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The SL+(2,❘) character for the representation labeled by k is given by

χk(Uλ) =
cos(kλ)

sinhλ

We are interested in considering the limit in which the total boundary holonomy U → ✶: this is
achieved by sending λ→ 0. In this limit the character χk (Uλ), i.e. the sum over all states in each
continuous series irrep labeled by k, becomes divergent but yet the divergence is indipendent
of the representation [74]. Therefore, indicating with Ξ = limλ→0χk(Uλ), this divergent factor
Ξ can be brought outside the integral and be reabsorbed inside the overall proportionality
constant. We are left with

ZBF+def(β) = Ξ
∫ +∞

0
dk k sinh(2πk) e−eβk2

(2.173)

Performing the last integral, we finally obtain the exact partition function

ZBF+def(β) ∝
(

2π

eβ

)3/2

e
2π2

eβ (2.174)

which, up to β-indipendent normalization factors, exactly matches with the result (2.42) ob-
tained through quantization of the Schwarzian theory.

2.2.6 Wilson lines in JT gravity

The gauge reformulation of JT gravity is remarkable because it allows to compute amplitudes
and correlators in the bulk in an exact way. Specifically, in this dissertation we are interested in
particular observables on the gauge theory side, Wilson lines, that will prove to be equivalent
to bilocal correlators in the bulk. Let use describe these objects.

When placing the theory on a topologically trivial manifold all Wilson lines and loops that
do not intersect the defect are contractible and have trivial expectation values: in fact they
are not dynamical because the hamiltonian of the system lives on the defect. We are thus only
considering boundary anchored Wilson lines, that intersect the defect in two points τ1 and τ2,
i.e by definition

WR (Cτ1τ2) = χR

(

P exp
∫

Cτ1τ2

A

)

(2.175)

where Cτ1τ2 is the underlying path along which the connection is parallel transported.
These boundary anchored Wilson lines have a precise gravitational interpretation: in fact,

in the semiclassical limit, they represent the equivalent of the geodesics of a mass particle in
the bulk. Furthermore, they are intrinsically quantum objects, because they do not take into
account only the classical geodesics of the particle, but the full Feynman path integral as a sum
over all possible paths weighted by the action of the particle on that trajectory [74], i.e.

WR (Cτ1τ2) =
∫

paths∼Cτ1τ2

[Dx]e
−m

∫

Cτ1τ2
ds

√
gαβ ẋαẋβ

(2.176)

Moreover, the mass m of the particle is determined by the representation R of the Wilson line,
in particular it is related to its Casimir

m2 = c2(ℓ) = ℓ(1− ℓ) (2.177)

where we assume the Wilson line to be in the positive or negative discrete series irreducible
representation of SL(2,❘). This statement will be justified later.
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The gravitational interpretation To compute the Wilson line expectation value we need
to perform a path integral over A and φ in the theory (2.169), i.e.

〈WR (Cτ1τ2)〉 =
∫

DφDA WR (Cτ1τ2) e−SBF+def(φ,A) (2.178)

By virtue of the equivalence between the second order metric formulation and the first order
gauge formulation of JT gravity, the above should be equivalent to the gravitational path
integral

〈WR (Cτ1τ2)〉 =
∫

DgµνDΦ
∫

paths∼Cτ1τ2

[Dx]e
−SJT(g,Φ)−m

∫

Cτ1τ2
ds

√
gαβ ẋαẋβ

(2.179)

This means that determining the expectation value of the boundary anchored Wilson line
offers the possibility to compute the exact coupling to probe matter in JT gravity, including
the interaction of the particle with a fluctuating quantum spacetime background.

Wilson line computation To compute the Wilson line expectation value, we can exploit the
almost topological nature of the theory we are considering and employ a gluing procedure, very
similar to the one used in [130] to compute the partition function of higher genus topologies.

In fact a boundary anchored Wilson line splits our original disk in two patches, which are
in turn diffeomorphic to a disk. If no operator is inserted on the common arc shared by the
two regions, integrating over the link leaves the partition function invariant:

∫

dU ZBF+def(V U,β1) ZBF+def(U
†W,el2) = ZBF+def (VW,e(β1 +β2)) (2.180)

where U is the holonomy running on the common interface and β1 +β2 is just the total boundary
length of the glued surface.

If instead a non-trivial character χR(h) is inserted on the Wilson line support, then the
non-normalized expectation value of the observable WR becomes [74]:

〈WR (Cτ1τ2)〉 =
∫

dh Z (g1h,eτ21) χR(h) Z
(

h−1g2, eτ12

)

(2.181)

where h = P exp
∫

Cτ1τ2
A is the holonomy along Cτ1τ2 and we have labeled with τ21 = τ2 − τ1

the length of I enclosed by the first patch of the disk and τ21 = β−τ2 +τ1 as the complementary
length enclosed by the other patch. The total length of I is set to β: see Figure 2.9. Now,
we want to set the total holonomy around the boundary to be trivial, g1g2 = ✶, and so for
semplicity we impose g1 = g2 = ✶. To obtain the normalize expectation value of the Wilson line
we should also divide by the total partition function of the disk, i.e.

〈WR (Cτ1τ2)〉 =

(

eβ

2π

)3/2

e− 2π2

eβ

∫

dh Z (h,eτ21) χR(h) Z
(

h−1, eτ12

)

(2.182)

where we have plugged (2.174) in the second step. We assume the partition function of the
two patches of the disk to be characterized by the principal unitary series representations of
SL+(2,❘), while we consider the Wilson line defined on the discrete series representations of
highest weight λ. We will shortly see this is necessary to reproduce the correct form of the
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Figure 2.9: Red line corresponds to the loop defect of total length β which has been pushed
infinitely close to the boundary of the Poincarè disk. The blue line crossing the disk corresponds
to the boundary anchored Wilson line WR (Cτ1τ2).

bilocal correlator in the Schwarzian theory. Therefore sobstituting the expression (2.172) and
indicating χR(h) ≡ χℓ(h) we have

〈Wℓ (Cτ1τ2)〉 =

(

eβ

2π

)3/2

e− 2π2

eβ

∫ +∞

0
ds1s1 sinh(2πs1)e−eτs2

1

∫ +∞

0
ds2s2 sinh(2πs2)e−e(β−τ)s2

2 ×

×
∫

dh χs1(h)χℓ(h)χs2(h−1)

(2.183)

where we have denoted τ21 = τ for semplicity. Let us concentrate on the last term. We enunciate
the following definition

∫

dU χR1(U)χR(U)χR2(U−1) ≡NR2
R,R1

(2.184)

where NR2
R,R1

are called the “fusion numbers”, i.e. some coefficients given by the decompo-
sition of a tensor product of two representations R and R1 into a direct sum of irreducible
representations R2.

|R〉⊗ |R1〉 = ⊕R2N
R2
R,R1

|R2〉 (2.185)

The group integral gives a Clebsch-Gordan coefficient for R2 in R1 ⊗R. One can show that if
R1 and R2 are principal unitary series representations of SL+(2,❘) labeled by λ1 = 1

2 + is1 and

λ2 = 1
2 +is2 respectevely, and R is a discrete representation labeled by ℓ, then the correspondent
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fusion number is given by 27

NR2
R,R1

≡Ns2
s1,ℓ =

Γ(ℓ± is1 ± is2)

Γ(2ℓ)
(2.186)

The relevant group integral to be evaluated is [11]
∫ +∞

−∞
dφe2φRs1 (φ)Rℓ,0,0 (φ)Rs2 (φ) (2.187)

where dφe2φ comes from the Haar measure, Rs1 (φ) ≡ Rs1,λ,ν (φ) corresponds to the mixed

parabolic matrix element of SL+(2,❘) (see (A.63)), subjected to the Schwarzian contraint ν =
λ =

√
µ. The latter leads to restrict the Wilson line endpoints on the boundary to J+ = 0,

meaning that J+ is conserved. Inserting so the relevant eigenfunctions, we get 28

∫ +∞

−∞
dφe2ℓφK2is1

(√
µeφ

)

K2is2

(√
µeφ

)

=
Γ(λ± is1 ± is2)

Γ(2λ)
(2.188)

Performing the group integral, exactly gives the correct 3j symbol presented above. We notice
that this construction fails for continuous irrep Wilson lines: the limit λ,ν → 0 is ill-defined for
j = −1

2 + ik, because the Bessel function oscillates erratically near the origin [11]. As such, the
integral (2.188) only converges for j = ℓ integer, justifying why we are restricted to considering
discrete rep Wilson lines as operators in JT gravity. 29

So the exact evaluation of the normalized Wilson line 〈Wℓ (C0,τ )〉 ≡ 〈Wℓ〉 finally yields

〈Wℓ〉 =

(

eβ

2π

)
3
2

e− 2π2

eβ

∫ +∞

0
ds1 ds2 s1 sinh(2πs1)s2 sinh(2πs2)

Γ(ℓ± is1 ± is2)

Γ(2ℓ)
e−eτs2

1−e(β−τ)s2
2

(2.189)
Using the correspondence e = 2/C and setting C = 1, the result agrees precisely with the
computation performed in [95] through conformal bootstrap.

Wilson lines as bilocal correlators in the Schwarzian theory As a final statement, in
this section we will probe the Wilson line definition exactly reproduces the form of a bilocal
correlator in the Schwarzian theory [11]. In particular this is a Wilson line in the lowest weight
state of a discrete j = l representation of SL+(2,❘). 30

Since the disk is a simply connected manifold, every flat gauge connection, solution to F = 0
31, is gauge-equivalent to A= 0. This means that every flat connection can be parametrized as
a pure-gauge as

Aτ = g−1dg (2.190)

with g a element of SL(2,❘), g(τ +β) = g(τ). The boundary value of the guage field is con-
strained by the gravitational boundary conditions

Aτ |∂Σ =

(

0 −1
2T (τ)

1 0

)

(2.191)

27This is known as 3j symbol and is equal to Γ(x±y±z) = Γ(x+y+z)Γ(x+y−z)Γ(x−y+z)Γ(x−y−z)
28Rℓ,0,0 can be computed as Rℓ,0,0 = limǫ→0 e

−φJ2ℓ−1

(

ǫe−φ
)

starting from the SL+(2,❘) discrete series
matrix element of mixed parabolic type.

29This separation of states (continuous irreps) and operators (discrete reps) happens naturally for the
Schwarzian once we impose the relevant boundary conditions.

30This representation is identical to a discrete representation of SL(2,❘).
31after integrating out φ.
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which descend from the Brown-Henneaux boundary conditions in 3d-gravity via dimensional
reduction. We use the following parametrization for the boundary SL(2,❘) group element and
the gravitational boundary conditions:

g−1 =

(

A B
C D

) (

A B
C D

)(

0 −1
2T (τ)

1 0

)

=

(

A′ B′

C ′ D′

)

(2.192)

from which we obtain the following equations

A′′ +
1

2
T (τ)A= 0 B = A′

C ′′ +
1

2
T (τ)C = 0 D = C ′

(2.193)

together with the SL(2,❘) constraint AC ′ −A′C = 1. Up to permutations, there is a unique
solution to this system

A=
1√
f ′ C =

f√
f ′ (2.194)

with f the solution of {f,τ} = T (τ). We now write g−1 using the Gauss decomposition

g−1 =







1√
f ′ − 1

2
√

f ′
f ′′

f ′

f√
f ′ − f

2
√

f ′
f ′′

f ′ +
√
f ′





= eγ−J−e2φJ0eiγ+J+ (2.195)

and we hence identify

γ− = f e−φ =
1√
f ′ γ+ = −1

2

f ′′

f ′ (2.196)

In the finite-dimensional spin-j representation, with states |ℓ〉, |l−1〉,· · · , |−l〉, we have the
following action of the generators:

J0 |m〉 =m |m〉 J± |m〉 = (ℓ±m+1) |m±1〉 (2.197)

We now evaluate explicitly the Wilson line in terms of the group element g

P exp
∫ τ2

τ1

A(z)dz = g(τ2)g−1(τ1) (2.198)

One can then compute the following matrix element 〈−ℓ|g(τ2)g−1(τ1) |ℓ〉. We first compute
directly 32

g−1(τ1) |ℓ〉 = eγ−(τ1)J−e2φ(τ1)J0eiγ+(τ1)J+ |ℓ〉 = e2ℓφ(τ1)
2ℓ
∑

n=0

γ−(τ1)n |ℓ−n〉 (2.199)

while

〈−ℓ|g(τ2) = e2ℓφ(τ2)
2ℓ
∑

n=0

(

2ℓ

n

)

(−γ−(τ2))n 〈−ℓ+n| (2.200)

32Using that Jn
± |m〉 = (ℓ±m+n)!

(ℓ±m) |m±n〉.
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Exploiting orthogonality, we finally obtain

〈−ℓ|g(τ2)g−1(τ1) |ℓ〉 =
[

eφ(τ1)+φ(τ2) (γ−(τ1)−γ−(τ2))
]2ℓ

=

[

(f(τ1)−f(τ2))2

f ′(τ1)f ′(τ2)

]ℓ (2.201)

where we used (2.196). We now generalize to the infinite-dimensional lowest/highest-weight
representations by setting ℓ = −h where h > 0. The state |ℓ〉ℓ is still annihilated by the cor-
responding J+, but is never annihilated by powers of J−. The Wilson line in terms of h is
therefore

Wh(τ1, τ2) =

[

f ′(τ1)f ′(τ2)

(f(τ1)−f(τ2))2

]h

(2.202)

which exactly corresponds to the bilocal correlator in the Schwarzian theory we computed in
(2.58) when performing a double derivative with respect to the source and setting h= ∆.

Wilson line on the trumpet When exposing higher topologies in JT gravity, we have
already described the trumpet configuration and argued its partition function is still one-loop
exact. The additional geodesic boundary can be taken into account by considering a disk with
a hyperbolic defect in the bulk [92]. The partition function of JT gravity on the trumpet is
given by the integral of a slightly modified spectral density, namely

Ztrump.(β) =
∫ +∞

0
ds cos(2πbs)e−κβs2

=

(

π

κβ

)
1
2

e− b2π2

βκ (2.203)

Now, one can ask what is the exact form of a Wilson line on the trumpet configuration.
Following the same logic that led to (2.189) in the case of the disk, we can write down the
expectation value of a boundary anchored Wilson line also in this case. Since this type of path
will split the trumpet into two regions, homeomorphic to a disk and a trumpet, we can easily
show that

〈Wλ (τ)〉trump. =Nt

∫ ∞

0

∫ ∞

0
ds1ds2s1 sinh(2πs1)cos(2πbs2)

Γ(λ± is1 ± is2)

Γ(2λ)
e−κτs2

1−κ(β−τ)s2
2 .

(2.204)

with normalization Nt ≡ κ2λ

2π Z−1
trumpet = κ2λ

(

κβ
π

)
1
2 e

b2π2

βκ . From the point of view of anchored
Wilson loops, this correlator describes bi-local lines not winding around the defects. It was
observed in [92] that this observable could not arise from free matter in the bulk since it
does not satisfy the KMS condition (which is equivalent to periodicity around the boundary
circle). Therefore they generalized the bi-local operator to satisfy the KMS condition, including
an explicit sum over integers in its definition. Computing the correlators with the improved
operator is equivalent to sum over Wilson lines encircling the defect, with fixed anchored points.
Self-intersections naturally appear for non-trivial windings with the associated 6j-symbols,
complicating the evaluation of the two-point function.
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2.3 TT deformation of QFTs/CFTs

In order to properly introduce the concept of TT -deformation, we make a brief digression to
motivate the importante of this particular type of irrelevant deformation.

2.3.1 The relevance of being irrelevant

In the context of Wilson’s Renormalization Group Theory, the usual renormalization prescrip-
tion consists in starting from an high energy Lagrangian and integrate out high energies degrees
of freedom in the Fourier space, rescaling the momenta and formally rewriting the theory in
the new set of variables. As a result, we can define a flow in the space of theories, which starts
from an high energy Lagrangian and flows to a lower energy formulation. At some point, the
theory stabilizes in a fixed point. The simpler type of fixed point is the gaussian one, which
corresponds to a non-interacting theory. We know that we can add linear perturbations around
a gaussian fixed point. Such perturbations are described by local operators which interact with
the Lagrangian at the fixed point with a given coupling constant. It is important to remember
that the operators are classified in this way:

• Relevant operators flow away from the fixed point, since their coupling constant diverges
at low energy scales.

• Irrelevant operators do not usually induce modifications to the flow, since their coupling
constant is suppressed at low energy scales.

• Marginal operators have a coupling constant which does not scale at the first order ap-
proximation, therefore a better analysis is needed to understand their behavior.

If we follow the usual RG flow, it is customary to focus on relevant operators, indeed they
modify the IR theory and the renormalization procedure is mathematically consistent. On
the other hand, irrelevant operators are more problematic. Firstly, we notice that they give
physical effects only in the UV regime. If we try to follow the irrelevant deformation at high
energies we usually run into a Landau pole (i.e. a divergence). Therefore, in order to study
an irrelevant operator at high energies, it is usually required to define an infinite amount of
counter-terms when we apply the renormalization procedure. This also implies that we should
fix an infinite amount of experimental data which are not at our disposal. These problems may
be interpreted in a physical intuitive motivation: It is unlikely that we can recover the physical
description of an high energy system starting from a system with less degrees of freedom.

Now an important question is whether all irrelevant deformations33 are ill-defined. At this
stage the concept of TT -deformation enters in the story, indeed this theory was historically
introduced by Zamolodchikov [135] as an example of integrable irrelevant deformation. In a
certain sense, exploiting integrability, we can define and derive an infinite tower of conserved
quantities, which are used to fix the experimental data along the flow. This suggests that a
TT -deformed theory is UV complete, allowing to move consistently against the RG flow and
explore non-trivial UV dynamics (see Figure 2.10).

Beyond the possibility of having a better understanding of the space of integrable field
theories [118], the topic has a wide range of physical properties as we will see.

33The coupling constant is of dimension m−2
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Figure 2.10: Thanks to integrability, the T T̄ allows to move in the opposite direction, starting
from a IR fixed point and flowing to UV.

Therefore, now that we have hopefully understood why TT -deformation is so special, we can
give its formal definition at first order around the fixed point:

L
(µ+δµ) −L

(µ) = −δµ TT (µ)
(2.205)

where µ is the deformation coupling constant. Clearly, we can iteratively apply (2.205) and
give a formulation ([19], [25]) at the level of Lagrangian or Hamiltonian flow:

∂µL
(µ) = TT

(µ)
, T

(µ)
αβ = − 2√

g

δS(µ)

δgαβ
(2.206)

Where L is the Lagrangian, and gαβ it the two-dimensional metric and S is the action. For
simple theories ([8], [13]) it is possible directly apply (2.206) and to study the effects of TT -
deformation34.

2.3.2 Definition of the TT operator

In this section we properly define the TT operator, mainly following [135], [118], ,[77].

Hypothesis and basic definitions

Let’s consider a generic two dimensional Quantum Field Theory or Conformal Field Theory,
defined on an Euclidean space ❘2. Let’s assume that:

• 1) The theory is local. Then we can describe the theory in terms of a Lagrangian made
of local operators.

34As an example, if we start from a 2d non-interacting free boson and follow the lagrangian flow driven by
TT , we are surprisingly lead to the Nambu-Goto string action. This is a first suggestion that TT is somehow
linked to a non-local UV completion of IR theories, indeed string theory is intrinsically non-local.
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• 2) The theory has global translational symmetry. In other words, we assume that, for
each local operator Oi(z), the expectation value does not depend on spatial coordinates:
∂z 〈Oi(z)〉 = 0. This also has implications at the level of two point correlation functions:
〈Oi(z)Oj (z′)〉 = Gij (z− z′). Where Gij (z− z′) depends only on the distance between
points.

• 3) Moreover, if local translational symmetry holds, we can always define a conserved
Noether current: the energy-momentum tensor Tα,β, satisfying the property: ∂αTα,β = 0.
Clearly, Tα,β is a 2×2 matrix whose entries are operators, made of the fields of the theory.

• 4) Finally, if Lorentz invariance holds, the stress energy tensor is symmetric: Tα,β = Tβ,α.
The above conditions are needed to build the formal construction of the TT operator and
the corresponding deformation.

We denote x,y the euclidean coordinates and then we introduce the complex conjugated vari-
ables: (z,z) = (x + iy,x − iy). The components of the stress-energy tensor are related, in the
two basis, in the following way:

Tzz =
1

4
(Txx −Tyy −2iTxy) , (2.207)

Tzz̄ =
1

4
(Txx −Tyy +2iTxy) , (2.208)

Tzz̄ =
1

4
(Txx +Tyy) . (2.209)

We can also introduce the chiral components of the 2d stress-energy tensor, according to CFT
conventions:

T = −2πTzz, T̄ = −2πTzz̄, Θ = 2πTzz

The continuity equation for the energy-momentum tensor in this basis reads:

∂zT (z) = ∂zΘ(z) (2.210)

∂zT̄ (z) = ∂zΘ(z) (2.211)

The ĈT T operator

Now we focus on the following product of operators denoted as ĈT T and depending on two
different position z and z′:

ĈT T (z,z′) := T (z)T̄
(

z′)−Θ(z)Θ
(

z′)

Actually ĈT T (z,z′) is a composite operator and it can be pictorially remembered as the deter-
minant of the energy momentum tensor in complex basis, up to a multiplication factor35.
The remarkable property of ĈT T is that it has a nice operator product expansion (OPE):

ĈT T (z,z′) = OT T̄

(

z′)+ derivative terms (2.212)

35However, this definition is clearly not rigorous, since we are not giving indications on the spatial dependence
z and z′. The right statement is the following: Ĉ(z,z′) ∝ −ǫαβǫγδTαγ(z)Tβδ(z′). Where Tαγ is the energy-
momentum tensor in the complex basis.
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Where OT T̄ (z′) is a local operator. Let us prove this property starting from the general

hypothesis. We start by computing the derivatives of the ĈT T operator, using properties (2.210)
and (2.211):

∂z̄ĈT T (z,z′) = ∂z̄

(

T (z)T̄
(

z′)−Θ(z)Θ
(

z′))= (2.213)

= (∂z +∂z′)Θ(z)T̄
(

z′)− (∂z +∂z′)Θ(z)Θ
(

z′)

∂zĈT T (z,z′) = ∂z

(

T (z)T̄
(

z′)−Θ(z)Θ
(

z′))= (2.214)

= (∂z +∂z′)T (z)T̄
(

z′)− (∂z +∂z̄′)T (z)Θ
(

z′)

In order to have a better intuition of what is going on, we can introduce the operator product
expansion, in the following way:

Θ(z)T̄
(

z′)=
∑

i

Bi

(

z− z′)Oi

(

z′)

T (z)Θ
(

z′)=
∑

i

Ai

(

z− z′)Oi

(

z′)

T (z)T̄
(

z′)=
∑

i

Di

(

z− z′)Oi

(

z′)

Θ(z)Θ
(

z′)=
∑

i

Ci

(

z− z′)Oi

(

z′)

The sum involves generic local fields. We can also write the product operator expansion for
ĈT T (z,z′), in the following way:

ĈT T (z,z′) = T (z)T̄
(

z′)−Θ(z)Θ
(

z′)=
∑

i

Fi

(

z− z′)Oi

(

z′)

where:
Fi

(

z− z′)=Di

(

z− z′)−Ci

(

z− z′)

Then, the derivatives (2.213) (2.214) can be written as:

∂z̄ĈT T (z,z′) =
∑

i

∂zFi

(

z− z′)Oi

(

z′)= (2.215)

=
∑

i

(

Bi

(

z− z′)∂z′Oi

(

z′)−Ci

(

z− z′)∂z̄′Oi

(

z′))

∂zĈT T (z,z′) =
∑

i

∂zFi

(

z− z′)Oi

(

z′)= (2.216)

=
∑

i

(

Di

(

z− z′)∂z′Oi

(

z′)−Ai

(

z− z′)∂z̄′Oi

(

z′))

Therefore, we can state that a generic derivative of ĈT T has an OPE which is only made of

derivatives operators. This statement is needed to prove that the OPE of ĈT T contains terms
that must obey one of the following conditions:
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• 1) Oi(z) is a local operator dependent on z, and it multiplies coefficient Fi (z− z′) which
actually does not depend on z nor z′.

• 2) Oi(z) is a derivative operator.

We can prove the previous statement by contradiction [?]: let’s assume that in the OPE of ĈT T

there is a term F̃ (z− z′) Õ(z) where O is not a derivative and F̃ is non vanishing. Then it
follows that:

∂zĈT T (z,z′) = ∂z

[

F̃
(

z− z′) Õ(z)
]

+ · · · = ∂z

[

F̃
(

z− z′)] Õ(z)+ . . . (2.217)

Clearly the previous expression (2.217) is not compatible with the general expression (2.216)
for the derivative of ĈT T , since it contains an operator which is not a derivative. Clearly this
is a contradiction, and the only non-derivative local operator which appears in the OPE should
respect condition 1). Therefore, as promised, we can conclude that the ĈT T operator has the
particular OPE shown in (2.212).

The TT operator

Now we can define the TT operator taking advantage of (2.212), which can be schematically
written as:

TT (z) = lim
z′→z

(

ĈT T (z,z′)
)

−derivative operators (2.218)

This was the so called point-splitting definition of TT : instead of starting from an ill-defined
determinant of the stress-energy tensor detTαβ(z), we start from a product of its components (≡
local fields) at different spatial coordinates z and z′. Then, morally speaking, we can state that
TT is obtained from the determinant of the stress-energy tensor, applying a limiting procedure
z → z′ on the spatial coordinates and omitting the derivative operators36. Such operators are
not important, since in QFTs we are interested in expectations values and the derivative of
expectation values must vanish due to the translational invariance of the theory. Therefore the
physical content is only located in TT , which is a non-vanishing observable.
Now we can also make a comment on the historical origin of the name TT . Originally, the
TT -deformation was studied by Zamolodchikov in the context of CFTs. As we know, in such
theories the stress-energy tensor is traceless, due to conformal invariance. Therefore Θ ∝ Tzz̄ = 0
and the operator ĈT T reduces to T (z)T̄ (z′); this means that in CFTs:

TT (z) = lim
z′→z

(

T (z)T̄
(

z′)) −derivative operators (2.219)

36However, as we will show, in the case of two dimensional Yang-Mills theory, the energy-momentum tensor
does not depend on the position, therefore, there are not divergencies in the derivative operators appearing in
the OPE of ĈT T .
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The Burger’s equation

A very convenient framework to study TT -deformation consists in considering finite-volume
theories. For example, we can define an (undeformed) QFT on a finite cylinder37 with radius R.
It is possible to study the spectrum of the corresponding TT starting from the Zamolodchikov’s
factorization formula [135]:

〈n|T T̄ |n〉 = 〈n|T |n〉〈n|T̄ |n〉−〈n|Θ|n〉〈n|Θ|n〉 (2.220)

where |n〉 is an eigenvalue of the Hamiltonian of the theory. The previous equation will lead
to a useful formulation of the TT -deformed theory in terms of a flow equation involving the
observables of the undeformed theory. The proof of (2.220) consists in three steps:

• 1) Prove that the expectation value 〈ĈT T (z,w)〉 is a constant.

• 2) Factorize the products of operators.

• 3) Compute the pinching limit of the factorized expression.

In order to prove 1) we can take a derivative of the expectation value and use the continuity
equation (2.210) and translational invariance:

∂z〈ĈT T (z,w)〉 =
〈

∂zT (z)T̄ (w)
〉

−〈∂zΘ(z)Θ(w)〉 =

=
〈

∂zΘ(z)T̄ (w)
〉

+ 〈Θ(z)∂wΘ(w)〉 =

= −
〈

Θ(z)∂wT̄ (w)
〉

+ 〈Θ(z)∂wΘ(w)〉 = 0

A similar result holds for z̄, and the statement is proven.
In order to prove 2) it is sufficient to notice that the expectation value does not depend on the
distance between z and w, therefore, we can send one of the two point at infinite distance and
apply the factorization theorem, then we have that:

〈ĈT T (z,w)〉 = 〈T (z)〉
〈

T (w)
〉

−〈Θ(z)〉〈Θ(w)〉

The computation 3) consist simply in substituting w → z, using again the fact that the expec-
tation value does not depend on the positions, we have therefore proven38 (2.220).

Since the result (2.220) is based on Lorentz invariance and conservation of the stress-energy
tensor, it is clear that it holds along all the flow. Therefore, we can try to translate the
formula in the language of a differential equation which relates the deformed solution to the
undeformed one. We start from the third formula in (2.206) and we introduce the eigenvalues
of the Hamiltonian by inserting the operators in a bracket:

〈n|∂µH
(µ)|n〉 = 〈n|TT (µ)|n〉 (2.221)

Moreover, we can apply the factorization formula (2.220):

37In the case of 2d Yang-Mills it is possible to extend this property to other topologies, by the procedure of
gluing cylinders.

38Actually the proof restricts to the vacuum expectation value, but can be generalized to generic states.
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〈n|∂µH
(µ)|n〉 = 〈n|T |n〉〈n|T̄ |n〉−〈n|Θ|n〉〈n|Θ|n〉 (2.222)

In a QFT on a cylinder of radiusR the (adimensional) eigenvalues of energy (En) and momentum
(Pn) are related to the stress energy tensor in the following way:

En(R,t)

R
= −〈n |T |n〉 , ∂REn(R,t) = −

〈

n
∣

∣

∣T
∣

∣

∣n
〉

, Pn = −iR 〈n |Θ|n〉 . (2.223)

Therefore we conclude that the following flow equation holds39:

∂µEn(R,µ) = En(R,µ)∂REn(R,µ)+
1

R
P 2

n(R) (2.224)

Clearly, this is a nonlinear partial differential equation and it is known in literature as inviscid
Burgers equation.

2.3.3 T T̄ deformation of JT gravity

One of the most interasting aspects of the T T̄ -deformation is its deep connection with gravity.
For instance, it was shown that deforming a theory with the T T̄ operator is equivalent to
coupling it with random geometries [17] of with JT gravity its self [37]. However most interesting
connection with gravity, for the purposes of this dissertation, is indeed the intepretation of T T̄
in the context of the holographic principle. We will review it in this section.

Deformation of AdS3/CFT2 holographic duality

In [89] it was claimed that the dual of a finite patch of an asymptotically-AdS3 spacetime is
given by a T T̄ -deformed CFT2. Three-dimensional gravity action with a boundary condition
is obtained by coupling the standard Eistein-Hilbert term to a Gibbons-Hawking-York term:

S = − 1

16πG

∫

M
d3x

√
g
(

R+2ℓ−2
)

− 1

8πG

∫

∂M
d2x

√
h
(

K− ℓ−1
)

(2.225)

It is always possible to “diagonalize” the metric and consider a set (r,xi,xj)
40 of coordinates

in the 3d space, such that:

ds2 = dr2 +gij(x,r)dx
i dxj

Therefore, at the boundary r is fixed and we can write the extrinsic curvature as a derivative
of gij , i.e. Kij = 1

2∂rgij . If we set l = 1, the Einstein equation in the 3d space, is just

Rµν − 1

2
Rgµν −gµν = 0

39Here we are omitting the fact that, in principle, the deformation includes also contributions coming from
derivatives of operators. However, also a more rigorous derivation is possible: it consists in computing the
partition function on the torus and then extract the spectrum from it.

40We will use (r,φ,τ) coordinates in the following.
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and can then be rewritten in terms of the extrinsic curvature.
It is also possible to reexpress the 3d action in terms of K:

S = − 1

16πG

∫

d3x
√
g
(

R(2) +K2 −KijKij +2
)

+
1

8πG

∫

∂M
d2x

√
h (2.226)

This expression is useful to compute the variation of the quasi local action on the boundary.
We need to vary the action (2.226) on a shell of fixed radius: instead of the usual practice in
AdS/CFT to send the boundary to asymptotic infinity, we push it at a finite distance r = rc.
On the other hand, we can write the same variation in terms of the stress-energy tensor at the
boundary:

δS =
1

4π

∫

d2x
√
hT ijδhij (2.227)

Combining (2.227) and the variation of (2.226), we obtain the expression of the 2D stress-energy
tensor:

Tij =
1

4G
(Kij −Kgij +gij) (2.228)

Now the important point is that in AdS/CFT it is customary to identify the quasi-local stress
energy tensor to the stress energy tensor of the corresponding CFT. Clearly Tij can be used to
construct the TT operator, as usual: T ·T −Θ2.
Specifically, the Θ term reads as:

Θ = Tijg
ij =

1

4G
(K−2K+2) =

1

4G
(2−K) (2.229)

Once we impose the Er
r = 0 Einstein equation, the TT operator reduces instead to:

TT = − 1

64G2
(2−K)− R(2)

128G2
(2.230)

If we consider a flat metric at the boundary, the curvature R(2) is null, therefore comparing
(2.230) and (2.229), we can state that the Einstein equations imply the following identity, which
is known as trace flow equation:

Θ = −16GTT (2.231)

Now we want to prove that the same equation arises in the rather different context of TT
deformed CFTs. As we know, at the level of action, the flow acts as:

dS(µ)

dµ
=
∫

d2x
√
g TT (2.232)

The ingredient of the proof is to exploit the fact that the theory is conformal, therefore, if we
rescale the action the only contribution comes from the trace of the energy-momentum tensor,
implying once again the trace flow equation, provided that we identify µ = 8G. We should
interpret the previous result as a strong indication that the underlying physics is the same,
and the deformation preserves the duality. Although this is not a rigorous proof, at least at
a classical level the Einstein equations of motion imply the same physics which arises in the
context of TT .
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T T̄ deformation of the Schwarzian theory

We now proceed by applying the same idea to JT gravity by dimensional reduction, showing
that JT at finite cutoff is described by a deformation of the Schwarzian action, which is the
dimensionally reduced T T̄ deformation [63].

By begin by rewriting the flow equation (2.206) in an equivalent form. For a CFT flow 41

∂λS = 8
∫

d2x
√
γT T̄ (2.233)

one has, because of the trace flow equation

Tµ
µ = −16λT T̄ = −2λ

(

TijT
ij − (T i

i )2
)

(2.234)

From this equation we can extrapolate Tφ
φ :

Tφ
φ =

T τ
τ +4λTτφT

τφ

4λT τ
τ −1

(2.235)

We plug it back into the flow equation and we rewrite it as

∂λS =
∫

d2x
√
γ





(T τ
τ )2 +TτφT

τφ

1
2 −2λT τ

τ



 (2.236)

If we identify 〈T τ
τ ≡ E〉 the energy and 〈T τ

τ ≡ iJ〉 the angular momentum, the above implies
the following flow equation for the spectrum

∂λE =
E2 −J2

1
2 −2λE

(2.237)

which is solved by

E(λ) =
1

4λ

(

1−
√

1−8λE0 +16λ2J2
)

(2.238)

An important point is that, after a careful identification of the physical parameters, (2.238)
exactly represents the spectrum of 3d dimensional black hole. In fact, if we insert a BTZ black
hole42 in the bulk [7], which induces zero curvature at the boundary, with metric 43

ds2 =
(

r2 − r2
+

)

dτ2 +
dr2

r2 − r2
+

+ r2dφ2 (2.239)

we can compute the black hole spectrum, by using the definition in general relativity for the
proper energy:

E =
∫

dφ
√
gφφu

iujTij

where u is a normal vector to the radial cutoff surface at r= rc. By doing so, we find exactly the
form (2.238), one we identify the radial cutoff and the T T̄ deformation parameter. In particular
E0 ≃M , i.e. the mass of the black hole, and J represents its angular momentum.

41To follow [63] here we denote with λ the deformation parameter that we previously called µ. It easy to
map the two conventions.

42It is the AdS3 variant of the Kerr rotating black-hole, in three dimensions.
43We write down the metric of a spin-less black-hole for semplicity.
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Dimensional reduction We can now perfom dimensional reduction to go from the BTZ
black hole to the JT gravity black hole, by dimensionally reducing the action above along the
φ circle. We get

ds2 =
(

r2 − r2
+

)

dτ2 +
dr2

r2 − r2
+

(2.240)

which is exactly the form (2.11) we obtained by extremizing the JT gravity action.
Furthermore, by setting T τφ = 0, the flow equation modifies accordingly, with its related

solution:

∂λE =
E2

1
2 −2λE

→ E(λ) =
1

4λ

(

1−
√

1−8λE0

)

(2.241)

which agrees precisely with the energy of the two-dimensional black holes at finite cutoff upon
the identification λ = 2πG

rc
, where rc labales the cutoff radial surface. Accordingly, (2.241)

represents the T T̄ -deformed spectrum of the Schwarzian theory.
An important remark is that the holographic correspondence holds only in the negative

deformation parameter regime (λ < 0). This regime is known in the literature to be rather
problematic, since it exhibits some pathologies in the high energy regime. As we can directly
see from (2.241), for high values of M (i.e. of the energy eigenvalue), the argument of the
square root becomes negative and the spectrum becomes complex. This could be interpreted
as a breakdown of unitarity. However we should also notice that our analysis holds only
at the perturbative level in µ. As proposed by Aharony et al. [1], a possible solution to
the pathologies in the spectrum could come from non-trivial nonperturbative effects, such as
instantons depending on the deformation parameter λ, which arise as non-trivial solutions of
the Burgers equation (2.224). One of the main results of this dissertation is indeed to clarify
this point, showing how the presence of these nonperturbative terms naturally emerges to cure
the problem. This is the content of Chapter 4.

2.3.4 T T̄ deformation of Yang–Mills theory

In this section, instead of applying the T T̄ operator to a CFT, we study its effect on a QFT in
two dimensions, i.e. Yang-Mills, a model that we have extensively studied in 2.2.1. In the first
part, we explicitly solve the flow equation for the action, finding its exact T T̄ -deformed version.
Secondly, starting from the flow equation for the action, we derive an associated flow equation
for the partition function its self, which will be a necessary tool in order to fully quantize the
theory. This is the content of Chapters 5.1, 5 and 6.

The deformed classical action

Our goal is to construct the T T̄ operator associated to Yang-Mills action in (2.99). We first
consider the abelian case. Since f is the only local gauge-invariant scalar degree of freedom of
the theory, one can assume that the deformed Lagrangian density will be some function of f .
In fact, we can equivalently define it as L (u,µ), i.e. as a function of the deformation parameter
µ and of

u=
f2

2g2
YM

, (2.242)
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which is the undeformed Lagrangian density itself. With this choice, we have L (u,0) = u. We
can compute the stress-tensor of the deformed theory by varying the action with respect to the
metric. Since f is defined as the Hodge dual of the field strength, it carries a dependence on
the metric and contributes to the variation

δSYM = δ
∫

Σ
η L (u,µ)

=
∫

Σ
η
(

1

2
L (u,µ)−u∂uL (u,µ)

)

gκλ δgκλ . (2.243)

From the above, we can easily read off the expression of T κλ that, in turn, can be plugged into
the flow equation (2.206). This produces an equation for the Lagrangian density,

∂µL = OT T̄

= 2(L −2u∂uL )2 , (2.244)

that we solve using the ansatz

L (u,µ) =
∞
∑

n=0

µn
Ln(u) , (2.245)

with L0(u) = u, as mentioned above. We find

Ln(u) =
3(4n+1)!

n! (3n+3)!
(2u)n+1 , (2.246)

which, upon summation, gives44

L =
3

8µ

(

3F2

(

−1

2
,−1

4
,
1

4
;
1

3
,
2

3
;
512

27
µL0

)

−1
)

. (2.247)

We can repeat the analysis for the nonabelian theory. In principle, one is now faced with
the choice of which trace structure to include in the deformed action. However, since the
undeformed theory, and therefore its stress-tensor, only contain trf2, one can safely assume
that no other term could appear in the deformed Lagrangian density. With this in mind, we
simply redefine

u=
trf2

2g2
YM

, (2.248)

and repeat the steps above to find that (2.247) holds for the nonabelian theory as well.

Notice that (2.247) has a branch cut for µL0 > 27/512. This feature is not entirely un-
expected, as it appears in other instances of T T̄ -deformed Lagrangians [13, 14], but poses a
problem if one tries to quantize the deformed theory by starting from (2.247). Since we will
take a different route to the quantum theory, we will defer this discussion to Section 5.5, which
is devoted to the semiclassical limit.

44The deformed Lagrangian density (2.247) was obtained for the first time in [25].
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The deformed partition function

We now allow for a general gauge group G and start with an ansatz for a deformed action
which is a generalization of (2.100),

Stop = i
∫

Σ
tr(φF )+

g2
YM

2

∫

Σ
ηU (v,µ) , (2.249)

where v = trφ2. The undeformed Yang–Mills action is recovered with U (v,0) = v. Again, note
that the one defined above is not the most general potential that can be considered, since one
could in principle involve other invariant polynomials in g. However, because of the initial
condition, no other term can enter the deformed action. From the variation

δStop =
g2

YM

4

∫

Σ
η U (v,µ)gκλ δgκλ (2.250)

one can read off the expression for the stress-energy tensor and plug it in (2.206) to obtain an
equation for the deformed potential U ,

∂µU (v,µ) = 2OT T̄ /g
2
YM

= g2
YM U

2(v,µ) . (2.251)

Let us now proceed in analogy with [130] and repeat the argument 2.2.1 exposed above to
quantize Yang-Mills theory through an Hamiltonian approach. We consider as usual an initial-
value circle C ⊂ Σ. As before, in a neighborhood of C, we write the volume form in terms of
local coordinates as η = ds∧ dt, where C corresponds to t = 0 and s is a coordinate along C
such that

∮

ds= 1. Since the action (2.249) is linear in F , the Hamiltonian reads

H =
g2

YM

2

∮

C
dsU (v,µ) , (2.252)

and generates translations along t. When acting on the representation basis, as in (2.103), the
Hamiltonian is diagonal and takes the simple form H = g2

YM/2U (C2(R),µ).
If we now consider a finite cylinder spanned by the range t ∈ [0,a], the associated partition

function will depend on the relevant couplings as e−aH(µ), where a is the area of the cylinder.
As a consequence, one concludes that the deformed partition function obeys the flow equation
[19, 75, 115]

∂Z

∂µ
+2a

∂2Z

∂a2
= 0 . (2.253)

We remark that the differential equation above is fully general, since there is nothing special
about the chosen topology. In fact, it still applies if we consider, for instance, a disk or a sphere
partition function. We simply need to shrink the boundary circles to points, and in doing
so, impose trivial holonomies on them. Arbitrary topologies can be further obtained through
gluing, thus exploiting the quasi-topological character of the theory.

Before moving on, let us also mention that, while one can safely employ the flow equation
for the deformation of the classical action, at the quantum level things are more subtle as
one needs to deal with potential ambiguities associated with the UV behavior of composite
operators. More precisely, the deformation operator OT T̄ is typically only defined on flat
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backgrounds where one employs point-split regularization and shows that the pinching limit is
actually regular, up to derivative terms. However, in quantum theories described by the action
(2.249), correlators of gauge-invariant local operators are topological, i.e. do not depend on the
position of the operator insertions. As a consequence, the regularity of the pinching limit of
such operators is trivially guaranteed.
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JT gravity
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3Bi-local correlators in JT
gravity

An appealing aspect of JT gravity is the existence of a particular class of n-point functions that
we can compute exactly, the so-called bi-local correlators [86, 134]. Specifically, these observ-
ables can be viewed either as n-point vacuum expectation value for bi-local operators evaluated
at the boundary of the AdS2 space-time or as 2n-point correlators of some 1D ’matter CFT’
at finite temperature coupled to the Schwarzian theory on the boundary [86]. Their general
structure on disk and trumpet topologies has been studied by exploiting different techniques,
and their explicit form can be systematically obtained for any n as an integral of momentum
space amplitudes, using a simple set of diagrammatic rules. Originally the derivation relied on
the precise equivalence between the 1D Schwarzian theory and a certain large central charge
limit of 2D Virasoro CFT [95].

More recently, taking advantage of the SL(2,❘) gauge theory formulation 1, the correlation
functions of bi-local operators have been computed as correlators of Wilson lines anchored at
two points on the boundary [74]. We have indeed reviewed the gauge reformulation of JT
gravity in 2.2.5 and computed in 2.2.6 a boudnary anchored Wilson line in this framework. 2

Anchored Wilson lines also have a gravitational interpretation, representing the sum over all
possible world-line paths for a particle moving between two fixed points on the boundary of
the AdS2 patch [74, 11]. The computation of bi-local correlators have been later extended in
the presence of defects [92], and the inclusion of higher-genus corrections was also considered
[111], with particular attention to their late time behavior and non-perturbative properties. On
the other hand, correlation functions on the disk can also be studied through a perturbative
expansion in the Schwarzian coupling constant [86, 117], as we reviewed in 2.1.3. In this
approach, one directly computes Feynman diagrams for boundary gravitons, i.e., the quantum
mechanical degrees of freedom associated with the fluctuations of the wiggle AdS2 boundary. 3

Quite surprisingly, the consistency of the exact results obtained through CFT and gauge
theoretical techniques with the Schwarzian perturbative expressions has never been checked
or discussed in details until recently4 [90]. More generally, the structure of the perturbative
series and its convergence properties have been somehow overlooked despite certain interest-
ing pieces of information that could be directly extracted from it, as the relation with the
gravitational S-matrix or the trigger of the full quantum regime at large time with respect to
Schwarzian coupling constant. A particularly intriguing point concerns the convergence itself

1see [42] for an exhaustive analysis of the subject
2In particular, the time ordering is encoded into the intersection of the Wilson lines in the bulk, resulting in

the appearance of momentum-dependent fusion coefficients and 6-j symbols inside the integrated amplitudes.
3The semiclassical limit and the first quantum correction to two-point and four-point functions were studied

in [82]. Schwarzian perturbation theory has also found applications for higher-point functions [69], while higher
loop corrections were analyzed in [108].

4The semiclassical limit for the two-point and the four-point functions has been checked in [82]
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of the perturbative series and the presence of non-perturbative contributions inside the exact
expressions derived in [95, 74]. A first attempt to answer this question has been taken in
[90]: the exact two-point correlator on the disk for a bi-local operator of conformal weight
λ ∈ −◆/2 have been expanded for a small value of κ, the Schwarzian coupling, and confronted
successfully with the perturbative result beyond the semiclassical regime. Moreover, exploiting
the simplicity of the cases λ = −1/2 and λ = −1 and the limit of zero temperature, it was
argued that for generic λ the series is asymptotic, implying the presence of non-perturbative
contributions. The asymptotic character for generic conformal weights was taken as a signal of

non-perturbative contributions of order e− 1
κ inside these correlators, competing therefore with

the higher-genus corrections of order e
− 1

GN , derived by matrix-model techniques [113, 111],
because κ is proportional to gravitational Newton constant GN .

In this chapter, which is mainly based on the content of our paper [59], we obtain some
progress in these directions, performing explicit computations and elucidating the analytical
structure of the bi-local correlators in the case of general positive conformal weight and general
temperature.

We also slightly extend our analysis beyond the disk topology by considering the trum-
pet configuration: this could be relevant in view of further studies on higher-genus topologies
[90, 93, 79] or for investigating one-point functions in the presence of defects [92]. Our first
aim is to recover the Schwarzian perturbative result beyond the leading semiclassical order
in the case of positive λ, on the disk and trumpet topologies. We have obtained a perfect
agreement by evaluating the exact expression through a saddle-point approximation: the com-
putation heavily relies on the relevant amplitudes’ analytical properties. In the general case,
it reduces to an integral around branch-cuts determined by the conformal weight of the oper-
ators involved. The result is obtained for finite boundary separations; it exhibits the correct
time periodicity and, as expected in this case, the bi-local correlator is singular at coincident
points. The outcome completes and generalizes the analysis of [90], performed for negative
semi-integer weights λ and in the particular case of zero temperature, and strengths our trust
in the analytical approach. Actually, in the case of λ ∈ ◆/2 we can go well beyond the first
subleading quantum correction; the branch-cut singularity of the two-point function reduces
to a pole, and by carefully computing the residue, we obtain an all-order expansion in the
Schwarzian coupling constant κ. Finally we have also examined the zero-temperature case, in
order to recover the results of [90] in this limit: although being potentially singular, as seen
from the previous expansions, we have obtained a nice and compact expression in terms of
Bernoulli polynomials, consistent with the general result. We can draw from this limit some
conclusions on the convergence properties of the perturbative series, confirming its asymptotic
character for positive semi-integer weights. Moreover, the alternate sign of the perturbative
orders points towards a possible Borel summability for the full series. As a final observation,
we point out that the exact expression for the bi-local correlator can also be written in terms
of Mordell integrals [101], suggesting a link with the world of Mock-modular forms [136, 23].

The chapter’s structure is the following: we first present the perturbative computation of the
bi-local correlator on the trumpet, generalizing the previous calculation for the disk topology,
reviewed in 2.1.3. Then, we perform the saddle-point analysis of the exact expressions on the
disk and the trumpet, successfully recovering the first subleading correction to the semiclassical
result. Section 3.3 is devoted to the all-order expansion in the case λ ∈ ◆/2. We give the
explicit (although a little cumbersome) general expression and examine in more detail the
weights λ = 1/2 and λ = 1. The zero-temperature limit is instead the subject of Section 3.4.
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Subsequently, in 3.5, we illustrate how the bi-local correlators for integer 2λ can be written in
closed form in terms of Mordell integrals.

3.1 Perturbation theory in the Schwarzian

In [74] [11] it was proposed that the bulk Wilson line anchored to the points τ1 and τ2 of the
boundary is dual to the bi-local correlator of conformal dimension λ:

O(τ ≡ τ1 − τ2) =

[

t′(τ1)t′(τ2)

(t(τ1)− t(τ2))2

]λ

(3.1)

computed in the Schwarzian theory, whose action we have already encountered in (2.26) and
reads as 5

SSch [t] = − φr

16πGN

∫

∂M
dτ {t(τ), τ} = − 1

2κ

∫

∂M
dτ {t(τ), τ} . (3.2)

As we have seen in 2.1.2, here the fundamental field t(τ) plays the role of a reparameterization
mode, or boundary graviton, capturing the boundary excitations over AdS2 in JT gravity. The
expectation value 〈O(τ)〉 is found by inserting (3.1) inside the path integral over the boundary
mode t weighted by the Schwarzian action6. In 2.2.6 we have demonstrated the equivalence for
a Wilson line in the lowest weight state of a discrete j = l representation of SL+(2,❘). We can
use this representation to compute these observables perturbatively.

This result indirectly provides a check for the exact formulae (2.189) and (2.204), that we
derived in 2.2.6 in the context of the gauge formulation of JT gravity as a BF theory. Below,
we shall briefly describe how to do the perturbative computation in the trumpet’s less trivial
case. The analysis is very similar to the one performed in 2.1.3 for the disk.7.

The classical equations of motion for (3.2) are solved by a field t(τ) with a constant
Schwarzian derivative. In the trumpet case, the classical saddle can be parameterized as

t(τ) = e−ϑ(τ) ϑ(τ) =
2πb

β
(τ + ε(τ)) , (3.3)

where ε(τ) is a small fluctuation over the classical background8. Plugging eq. (3.3) into eq.

5We implement a slight change of notation, indicating with τ the proper boundary time, instead of u. We
also map C → 1/2κ.

6On the disk the Schwarzian path integral is

〈O(τ)〉 =

∫ Dt
SL(2,❘)

e−SSch[t] O(τ)

where SL(2,❘) are gauge redundancies of the Schwarzian action. When a hole is inserted, this breaks the gauge
group to U(1).

7The perturbative computation for the disk is shown in detail in [86, 117]
8This parametrization can be justified by looking at the metric solution for the disk and the trumpet in

Rindler coordinates, which are respectevely

ds2
disk = d̺2 +sinh2 ̺ dτ2 ds2

trumpet = dσ2 +cosh2σ dϑ2

where the coordinate ϑ obeys the twisted periodicty ϑ ∼ ϑ+ b. The relation between the τ and ϑ coordinates
at the boundary of the regular hyperbolic disk is cosτ = tanhϑ and therefore this implies t= tan τ

2 = e−ϑ.
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(3.1), we find at zero order in ε

〈O(τ)〉tr.
tree =





πb

β sinh
(

πb
β τ
)





2λ

, (3.4)

which is the tree level amplitude for the correlator on the trumpet geometry. To compute the
quantum correction to the tree-level result, we must determine the propagator for the field ε.
Expanding the action (3.2) to order ǫ2 around the saddle (3.3) we find

Sε = − 1

2κ

∫ β

0
dτ



ε′′(τ)2 +

(

2πb

β

)2

ε′(τ)2



= − β

2κ

(

2π

β

)4
∑

n∈❩
εnε−n n

2
(

n2 + b2
)

, (3.5)

where we have Fourier-expanded the fluctuation as ε(τ) =
∑

n∈❩ εn e
2πinτ

β . We recognize the
presence of a zero mode (n= 0) associated with the residual U(1) gauge redundancy present in
the trumpet geometry. The propagator can be found by inverting the quadratic action and we
get

〈ε(0)ε(τ)〉 =
κβ3

8π4

∑

n6=0

e
2πinτ

β

n2 (n2 + b2)
= (3.6)

=
βκ
(

π2b2
(

β2 −6βτ +6τ2
)

+3β2 −3πβ2b csch(πb)cosh
(

πb(β−2τ)
β

))

24π4b4
.

where the sum over negative and positive integers has been computed in terms of elementary
functions by exploiting standard complex analysis techniques [117].

To obtain the correction of order κ to this observable, we do not need to proceed further in
expanding the action. We have instead to expand the bi-local correlator (3.1) around the saddle
(3.3) up to order ε2. The O(ε) has vanishing expectation value since the one-point function is
zero for the quadratic action (3.5). Normalizing with respect to the tree level (3.4), we get

λ

2β2

{

4b2π2

(

λcoth2 πbτ

β
+

1

2
csch2πbτ

β

)

(ε(τ1)− ε(τ2))2 +β2
[

λ
(

ε′(τ1)+ ε′(τ2)
)2 −

−ε′(τ1)2 − ε′(τ2)2
]

+4πbλβ coth

(

πbτ

β

)

[

(ε(τ2)− ε(τ1))
(

ε′(τ1)+ ε′(τ2)
)]

}

(3.7)

We now substitute every appearance of ε2−combination with their expectation value at this
order, i.e. with the propagator (3.6) 〈ε(0)ε(τ)〉 ≡ G(τ) or its derivatives. Introducing the
auxiliary combination ξ = τ

β , the first perturbative term finally reads as

〈O(τ)〉tr.

〈O(τ)〉tr.
tree

= 1+
βκλ

4π2b2
csch2(πbξ)

[

2λ−1−2π2b2(λ+1)(ξ−1)ξ+ (3.8)

+bπ(λ(4ξ−2)−1)sinh(2πbξ)+
(

1−2λ
(

π2b2(ξ−1)ξ+1
))

cosh(2πbξ)
]

+O(κ2).

We will reproduce the above expression from the exact formula (2.204) in the next section.
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3.2 Recovering the perturbative expansion

3.2.1 Bi-local correlator on the disk

In the following our goal is to illustrate how the perturbative results for the bi-local correlator
〈O(λ)(τ)〉disk

β on the disk can be recovered from its exact integral representation (2.189), that

we rewrite here for clarity 9:

〈Wλ (τ)〉disk =Nd

∫ ∞

0

∫ ∞

0
ds1ds2s1 s2 sinh(2πs1)sinh(2πs2)

Γ(λ± is1 ± is2)

Γ(2λ)
e−κτs2

1−κ(β−τ)s2
2 .

(3.9)

where we choose the normalization constant Nd = κ2λ

2π Z−1
disk = κ2λ

2π

(

κβ
2π

)
3
2 e− π2

βκ .
A simple-minded Taylor-expansion of the integrand would lead to divergent expressions since

the representation (3.9) is naturally suited to derive the large κ expansion for the two-point
function.

To obtain the perturbative series in κ we have to rearrange the κ dependence of (3.9) and
we start by using the following identity, first derived by Ramanujan:

∫ ∞

−∞
dp sech2a

(

p

2

)

eipx =
22a−1

Γ(2a)
Γ(a+ ix)Γ(a− ix) . (3.10)

which holds for Re(a) > 0. It is not the first time this identity appears in the context of JT
gravity [82, 134]. In both cases, it was used to probe the leading saddle of the momentum
integrals.

In this way we can express the 3-j symbol in Fourier space and we get

〈O(λ)(τ)〉disk
β =

NdΓ(2λ)

24λ−2

∫ ∞

0

∫ ∞

0
ds1ds2 s1s2 sinh2πs1 sinh2πs2 e

−κ(β−τ)s2
1−κτs2

2×

×
∫ ∞

−∞
dp
∫ ∞

−∞
dq eip(s1+s2)+iq(s1−s2) sech2λ p

2
sech2λ q

2

(3.11)

Since the integrand is even in s1 and s2, we can extend the region of integration to the entire
real line and subsequently perform the gaussian integration over s1 and s2. We are left with a
double integral over p and q:

〈O(λ)(τ)〉disk
β =

πNdΓ(2λ)

24λ+2κ3τ3/2(β− τ)3/2

∫ ∞

−∞
dpdq

q2 − (p−2iπ)2

cosh2λ p
2 cosh2λ q

2

e
− (p+q−2iπ)2

4κ(β−τ)
− (p−q−2iπ)2

4κτ (3.12)

The original symmetry in the exchange τ ↔ β− τ in (3.9) is now realized by the change of
variables q ↔ −q. Next we perform the shift p→ p+ 2πi by considering the contour displayed
in fig. 3.1 in the complex p−plane. In the following we shall assume that 2λ 6∈ N10. Then
the contour encircles the branch cut, due to (cosh p

2)−2λ, that has been chosen to run from
p= πi to p= ∞+πi11. Moreover, we take 0< 2λ < 1 so that the contribution of the semicircle
(IV) is finite and vanishes when we shrink its radius to zero. At the end we will recover the
perturbative result for 2λ > 1 by extending analytically the final expression.

9We slightly change notation, from e to κ.
10The case 2λ ∈N, where the cut is replaced by a pole, will be discussed in detail in sec. 3.3.
11This position of the cut is obtained by choosing the phase around the branch point between (−3π

2 ,
π
2 ].
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Re p

Im p

2πi

πi

I

II
III

V

VI

VII

VIII

IV

Figure 3.1: Contour in the complex p-plane used to perform the shift p→ p+2πi.

The contributions of the vertical edges (II, VI and VIII) of the contour vanish when we ap-
proach infinity and thus the original integral (edge I) can be replaced by the two terms coming
respectively from the horizontal edge (VII) and the discontinuity around the cut

〈O(λ)(τ)〉disk
β =

πNde
−2πiλΓ(2λ)

24λ+2κ3τ3/2(β− τ)3/2

∫ ∞

−∞
dpdq

q2 −p2

cosh2λ p
2 cosh2λ q

2

e
− (p+q)2

4κ(β−τ)
− (p−q)2

4κτ −

− πiNde
πiλ sin(2πλ)Γ(2λ)

24λ+1κ3τ
3
2 (β− τ)

3
2

∫ ∞

−∞
dq
∫ ∞

0
dt

q2 − (t− iπ)2

cosh2λ q
2 sinh2λ t

2

e
− (t+q−iπ)2

4κ(β−τ)
− (t−q−iπ)2

4κτ

(3.13)

The first integral in (3.13) vanishes because of the antisymmetry in the exchange p↔ q. In the
second one we can safely perform the following shift

q → q+
(t− iπ)(β−2τ)

β
(3.14)

since we do not encounter any branch cut or singularity of the integrand during this process
(at least for generic values of β and τ). This shift centers the integral at q = 0 and we obtain

〈O(λ)(τ)〉disk
β =− πiNde

πiλ sin(2πλ)Γ(2λ)

24λ+1κ3β3ξ
3
2 (1− ξ)

3
2

× (3.15)

×
∫ ∞

−∞
dq
∫ ∞

0
dt

(q+2(t−πi)(1− ξ))(q−2(t−πi)ξ)

cosh2λ q+(t−πi)(1−2ξ)
2 sinh2λ t

2

e
− q2

4κβξ(1−ξ)
− (t−πi)2

βκ

where we have found it convenient to introduce the auxiliary combination ξ ≡ τ
β . The form

(3.15) of the integral representation is suited to identify the origin of the dominant contributions
in the limit κ → 0. A neighborhood around q = 0 dominates the integration over q due to the
integrand’s gaussian weight. For the same reason, one might assume that the integration over
t is also primarily controlled by a small interval around t = πi. On the other hand, since t
spans the semi-infinite interval [0,+∞], we have to consider a second candidate, namely the
neighbourhood around t= 0 (see [103] for the general theory). Comparing the two possibilities,
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we find that the integral (3.15) in the limit κ → 0 is dominated by the second one since the

gaussian weight scales as e
π2

κβ .
The simplest way to construct systematically the asymptotic series in the limit κ → 0 is to
perform the following rescaling of variables

q 7→ √
κq t 7→ κt. (3.16)

The different scaling of the variable t takes into account that the leading contribution comes
from the lower extremum of the integral and not from a saddle-point. Using the explicit form
of the normalization Nd we get

〈O(λ)(τ)〉disk
β = − ieπiλκ2λ sin(2πλ)Γ(2λ)

24λ+2π5/2β3/2(1− ξ)3/2ξ3/2
× (3.17)

×
∫ ∞

−∞
dq
∫ ∞

0
dt

(
√
κq+2(κt−πi)(1− ξ))(

√
κq−2(κt−πi)ξ)

cosh2λ
√

κq+(κt−πi)(1−2ξ)
2 sinh2λ κt

2

e
− q2

4βξ(1−ξ)
− κt2

β − 2πit
β

The non-analytic factor e− π2

βκ present in Nd cancels exactly against the constant term in the
gaussian weight for t and we can Taylor-expand the integrand (3.17) around κ= 0, obtaining a
series with both integer and semi-integer powers of κ. The latter is always proportional to an
odd power of q and vanish when the integral is performed. Moreover, the expansion generates
integrals over t, which are divergent for real β. We can take care of this issue by rotating our
path of integration in t of a small positive angle α before expanding. Once we have integrated
over t, the final result does not depend on α. Alternatively, we could assume that β has a small
imaginary part and then analytically continue to real values.
After integrating over t and q term by term, we find

〈O(λ)(τ)〉disk
β =

π2λ

β2λ sin2λ(πξ)

[

1+
κβλ

4π2 sin2(πξ)
(2π2(λ+1)ξ2 −2π2(λ+1)ξ−

−π(2λ+1)(2ξ−1)sin(2πξ)+(2λ(π2(ξ−1)ξ−1)−1)cos(2πξ)+2λ+1)+O(κ2)
]

(3.18)

In this expansion, we recognize the classical term and the one-loop contribution obtained by a
direct diagrammatic computation in [117], whose final result we explicitly derived and shown
in (2.71). A systematic all order expansion can also be obtained by expanding the integrand in
terms of generalized Apostol-Eulerian and Bernoulli polynomials. However, the final expression
is not particularly appealing, and we will concentrate on the particular case 2λ ∈ ◆.

3.2.2 Bi-local correlator on the trumpet

The structure of the bi-local operator on the trumpet (2.204) is quite similar to the case of the
disk and if we use the symmetry of the integrand, we can rearrange it in the following form:

〈O(λ)(τ)〉tr.
β =

Nt

4

∫ ∞

−∞

∫ ∞

−∞
ds2ds2 s1 e

2π(s1+ibs2)−κ(β−τ)s2
2−κτs2

1×

× Γ(λ− is1 − is2)Γ(λ+ is1 + is2)Γ(λ+ is1 − is2)Γ(λ− is1 + is2)

Γ(2λ)
. (3.19)
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As in the case of the disk, we can use the identity (3.10) to eliminate the Gamma function and
perform the gaussian integration over s1 and s2. We find this new integral representation for
the bi-local correlator (2.204):

〈O(λ)(τ)〉tr.
β =

iπNtΓ(2λ)

24λ+1κ2
√
τ(β− τ)

3
2

∫ ∞

−∞
dpdq

(p+ q−2πi)

cosh2λ
(

p
2

)

cosh2λ
(

q
2

)e
− (2πb+p−q)2

4κ(β−τ)
− (p+q−2iπ)2

4κτ .

(3.20)

Next we shift the variables of integration as follows p 7→ p−πb q 7→ q+πb and we get

〈O(λ)(τ)〉tr.
β =

iπNtΓ(2λ)

24λ+1κ2
√
τ(β− τ)

3
2

∫ ∞

−∞
dpdq

(p+ q−2πi)e
− (p−q)2

4κ(β−τ)
− (p+q−2πi)2

4κτ

cosh2λ
(

p−πb
2

)

cosh2λ
(

q+πb
2

) . (3.21)

Again we perform the shift p → p+ 2πi by considering a contour similar to the one displayed
in fig. 3.1. The only difference is the position of the branch cut that now runs p = πb+πi to
p= ∞+πi. As in the case of the disk we assume that 2λ 6∈N and 0< 2λ < 1. We get

〈O(λ)(τ)〉tr.
β =

iπe−2πiλNtΓ(2λ)

24λ+1κ2
√
τ(β− τ)

3
2

∫ ∞

−∞
dpdq

(p+ q)e
− (p−q+2πi)2

4κ(β−τ)
− (p+q)2

4κτ

cosh2λ
(

p−πb
2

)

cosh2λ
(

q+πb
2

)+ (3.22)

+
2πNtΓ(2λ)eπiλ sin(2πλ)

24λ+1κ2
√
τ(β− τ)

3
2

∫ ∞

−∞
dq
∫ ∞

0
dt

(t+ q−πi+πβ)e
− (t−q+πb+πi)2

4κ(β−τ)
− (t+q−πi+πb)2

4κτ

sinh2λ
(

t
2

)

cosh2λ
(

q+πb
2

) .

The first integral vanishes because it is odd under the transformations p 7→ −q and q 7→ −p. In
the second integral we perform a shift in q to center the gaussian weight around q = 0 and we
obtain the analog of (3.15):

〈O(λ)(τ)〉tr.
β =

πNtΓ(2λ)sin(2πλ)

16λβ2κ2
√

1− ξξ3/2
×

×
∫ ∞

−∞
dq
∫ ∞

0
dt

2ξ(πb+ t)+ q

sinh2λ
(

t
2

)

sinh2λ
(

1
2(2ξ(πb+ t)+ q− t)

)e
− (πb+t)2

βκ − q2

4βκξ(1−ξ) (3.23)

where we have again introduced the auxiliary combination ξ ≡ τ
β . As in the previous case, the

integration over q is again dominated by a neighbourhood around q = 0 due to the gaussian
weight in the integrand. Since t spans the semi-infinite interval [0,+∞] and in this interval the
gaussian weight is monotonic (for b > 0), we find that the integral over t in the limit κ → 0 is
controlled by the lower bound of the integration interval, t= 0.

Next we scale the variables t and q as in (3.16) and expand the integrand around κ = 0.
Performing the two integrations term by term we find

〈O(λ)(τ)〉tr.
β =

π2λb2λ

β2λ sinh2λ(πbξ)

[

1+
βκλ

4π2b2sinh2(πbξ)

(

−2π2b2(λ+1)ξ2 +2π2b2(λ+1)ξ+

+
(

1−2λ
(

π2b2(ξ−1)ξ+1
))

cosh(2πbξ)+πb(λ(4ξ−2)−1)sinh(2πbξ)+2λ−1
)

+O(κ2)

]

(3.24)

In this expansion we recognize the classical term and the one-loop contribution obtained by a
direct diagrammatic computation in subsec. 3.1.
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Re u

Im u

2πi
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VI

-v+2πi v+2πi

IV
VVII
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Γ

Figure 3.2: The red contour C used to perform the integration over u

3.3 All order expansion: the case 2λ ∈ ◆
In this section we focus our attention on a particular but very interesting case, namely 2λ ∈N.
For semi-integer values of λ, the cut present in fig. 3.1 is replaced by a pole of order 2λ. For
this reason it is convenient to start over our analysis from the integral representation (3.12)
and use as new variables of integration

p=
u+v

2
q =

u−v

2
. (3.25)

We get a nice and symmetric representation for the bi-local correlator on the disk:

〈O(λ)(τ)〉disk
β = − πNdΓ(2λ)

22λ+3κ3τ3/2(β− τ)3/2

∫ ∞

−∞
dudv

(u−2πi)(v−2πi)

(cosh u
2 +cosh v

2)2λ
e

− (u−2iπ)2

4κ(β−τ)
− (v−2iπ)2

4κτ (3.26)

Next we evaluate the integral over u in (3.26) using residues. Consider the closed red contour
C depicted in fig. 3.2. Along this path the integral of the function

f(u,v) = − πNdΓ(2λ)

22λ+3κ3τ3/2(β− τ)3/2

(u−2πi)(v−2πi)

(cosh u
2 +cosh v

2)2λ
e

− (u−2iπ)2

4κ(β−τ)
− (v−2iπ)2

4κτ (3.27)

is identically zero as (3.27) defines a holomorphic function in the enclosed region. Since the
contributions of the two vertical edges II and VIII vanish when they approach infinity, the
integral along the entire real u−axis, i.e. the original integral, is equal to minus the integral of
f(u,v) along Γ (see fig. 3.2):

〈O(λ)(τ)〉disk
β =

πNdΓ(2λ)

22λ+3κ3τ3/2(β− τ)3/2

∫ ∞

−∞
dv
∫

Γ
du

(u−2πi)(v−2πi)
(

cosh v
2 +cosh u

2

)2λ
e

− (v−2iπ)2

4κτ − (u−2iπ)2

4κ(β−τ)
(3.28)

The path Γ is composed by three straight segments (III,V and VII) and two semi-circumferen-
ces (IV and VI). The former three contributions either cancel or vanish because the resulting
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integrand is an odd function under reflection with respect to the axis Im u. Instead the latter
two (i.e. IV and VI) yield

〈O(λ)(τ)〉disk
β = − π2iNdΓ(2λ)

22λ+4κ3τ3/2(β− τ)3/2

∫ ∞

−∞
dv e− (v−2iπ)2

4κτ (v−2πi)×

×









Resu=v+2πi









(u−2πi)e
− (u−2iπ)2

4κ(β−τ)

(

cosh v
2 +cosh u

2

)2λ









+Resu=−v+2πi









(u−2πi)e
− (u−2iπ)2

4κ(β−τ)

(

cosh v
2 +cosh u

2

)2λ

















= (3.29)

= − π2iNdΓ(2λ)

22λ+3κ3τ3/2(β− τ)3/2

∫ ∞

−∞
dv (v−2πi)e− (v−2iπ)2

4κτ Resu=v







ue
− u2

4κ(β−τ)

(

cosh v
2 − cosh u

2

)2λ





 ,

where we used the symmetry of the integrand to show that the two residues are equal.

3.3.1 Some interesting examples: small λ values

The representation (3.29) is very efficient in reconstructing the perturbative series at all orders.
To illustrate how we can recover the series for small κ, we first focus on the case λ= 1

2 . Then
the residue in (3.29) can be easily evaluated and is given by

Resu=v







u e
− u2

4κ(β−τ)

cosh v
2 − cosh u

2





= −2v csch
v

2
e

− v2

4κ(β−τ) . (3.30)

Next we can recast the integral (3.29) as follows

〈O( 1
2 )(τ)〉disk

β = iπ2Nde
π2

βκ

22λ+1κ3τ3/2(β−τ)3/2

∫ +∞

−∞
dv
v (v−2iπ)

sinh v
2

e
−

β

(

v− 2iπ(β−τ)
β

)2

4κτ(β−τ) . (3.31)

It is convenient to center the gaussian weight in (3.31) v = 0 through the shift v → v+ 2iπ(β−τ)
β ;

〈O( 1
2 )(τ)〉disk

β = − iκ
−

1
2 β

3
2

8π
3
2 τ3/2(β−τ)3/2

∫ +∞

−∞
dv
(

v2 + 2iπ(β−2τ)
β

v+ 4π2τ(β−τ)
β2

) e
− βv2

4κτ(β−τ)

sinh
(

v
2 − iπτ

β

)
(3.32)

Now we replace 1/sinh(· · ·) with its representation in terms of exponentials

csch

(

v

2
− πiτ

β

)

=
2

v
e− πiτ

β

(

v e
v
2

ev− 2πiτ
β −1

)

, (3.33)

and recognize that the quantity between parenthesis is the generating functional of the so-called
generalized Apostol-Bernoulli polynomials of degree one. The definition of these polynomials
for general degree and some of their properties are briefly discussed in app. A.8. Therefore we
directly write

csch

(

v

2
− πiτ

β

)

= 2e− πiτ
β

∞
∑

n=0

B(1)
n

(

1

2
, e− 2πiτ

β

)

vn−1

n!
. (3.34)
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If we integrate in v term by term using the expansion (3.34), we encounter only powers of v
averaged over a gaussian weight. We find convenient to treat separately the even and the odd
powers in (3.34). Reordering the powers in κ produced by the gaussian integrations, we obtain
the following perturbative series for the expectation value of the bi-local operator with λ= 1

2 :

〈O( 1
2 )(τ)〉disk

β = e
−

πiτ
β

π
1
2

∞
∑

p=0

22pκpτp(β−τ)pΓ[p+ 1
2 ]

(2p)!βp

[

(β−2τ)
τ(β−τ)B

(1)
2p

(

1

2
, e− 2πiτ

β

)

−

− i
(2p+1)B

(1)
2p+1

(

1

2
, e− 2πiτ

β

)

− ipβ
πτ(β−τ)B

(1)
2p−1

(

1

2
, e− 2πiτ

β

)]

.

(3.35)

The case λ= 1 is slightly more involved: the explicit form of the residue is

Resu=v







u e
− u2

4κ(β−τ)

(cosh v
2 − cosh u

2 )2





= −2e
− v2

4κ(β−τ)

sinh2 v
2

(

v2

κ(β− τ)
+v coth

(

v

2

)

−2

)

, (3.36)

and we can perform again the previous analysis. This time the dependence on 1/sinh(· · ·)
is accompanied by higher powers, namely 1/sinh2(· · ·) and 1/sinh3(· · ·). With computations
similar to the case λ= 1/2, we can also obtain with little effort the all order expansion

〈O(1)(τ)〉disk
β = e

−
2iπτ

β

π
1
2

∞
∑

p=0

22pκpτp(β−τ)pΓ(p+ 1
2 )

(2p)!βp

[

(

p−1
2p−1

β2

τ2(β−τ)2 − 3
τ(β−τ)

)

B(2)
2p

(

1, e− 2πiτ
β

)

− 3iπ
(2p+1)

β−2τ
βτ(β−τ)B

(2)
2p+1

(

1, e− 2πiτ
β

)

− 4π2

β2(2p+1)(2p+2)
B(2)

2p+2

(

1, e− 2πiτ
β

)

− ip
2π

β(β−2τ)

τ2(β−τ)2 B(2)
2p−1

(

1, e− 2πiτ
β

)]

(3.37)

where also generalized Apostol-Bernoulli polynomials of degree 2 appears in the expansion.
The same analysis can be easily carried out for the trumpet. Here the starting point is

〈O(λ)(τ)〉tr.
β = − π2Γ(2λ)N

22λ+1κ2(β−τ)
1
2 τ

3
2

∫ +∞

−∞
dv Resu=v







u e
− u2

4κ(β−τ)

(

cosh v
2 − cosh u

2

)2λ





 e− (v+2bπ)2

4κτ (3.38)

The case λ = 1/2 and λ = 1 are again obtained along the same lines discussed above and one
gets

〈O( 1
2 )(τ)〉tr.

β = e
−

bπτ
β

π
1
2

∞
∑

p=0

22pκpτp(β−τ)pΓ[p+ 1
2 ]

(2p!)βp

(

1
τ
B(1)

2p

(

1

2
, e− 2bπτ

β

)

- 2bπ
(2p+1)β B(1)

2p+1

(

1

2
, e− 2bπτ

β

))

(3.39)

and

〈O(1)(τ)〉tr.
β = e

−
2bπτ

β

π
1
2

∞
∑

p=0

22pκpτp(β−τ)pΓ[p+ 1
2 ]

(2p!)βp

[

(

1
τ2 − β+bπτ

τ2(β−τ)(2p−1)

)

B(2)
2p

(

1, e− 2bπτ
β

)

− 4bπ
βτ(2p+1)B

(2)
2p+1(1, e− 2πbτ

β )+ 4b2π2

β2(2p+1)(2p+2)
B(2)

2p+2

(

1, e− 2bπτ
β

)

+ pβ
τ2(β−τ)(2p−1)

B(2)
2p−1

(

1, e− 2πbτ
β

)

+ 1
τ2(β−τ)(2p−1)

(

βB(3)
2p

(

1, e− 2πbτ
β

)

− 2bπτ
(2p+1)B

(3)
2p+1

(

1, e− 2πbτ
β

))]

(3.40)

The trumpet expressions become a little bit more cumbersome since we lose the symmetry
τ → β− τ , as expected since we are working in the zero winding sector. As a consequence, we
also notice the presence of generalized Apostol-Bernoulli polynomials of degree 3.
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3.3. ALL ORDER EXPANSION: THE CASE 2λ ∈ ◆ 3. Bi-local correlators

3.3.2 The case of generic n

Having trained with the simplest cases, we are ready now to examine the case of generic semi-
integer λ. The details of the computation are presented in app. A.8 and app. A.10. Here we
summarise the mains steps of our analysis. To begin with, we have to compute the residue for
generic n. The structure of the answer is

Resu=v







u e−αu2

(

cosh v
2 − cosh u

2

)2λ





= e−αv2

f(v) (3.41)

where α= 1
4κ(β−τ) and f(v) can be written as

f(v) = eλv
2λ−1
∑

ℓ=0

(−2)4λ−ℓ−1α
2λ−ℓ−2

2 H2λ−ℓ (
√
αv)

(2λ− ℓ−1)!

ℓ
∑

j=0

B
(2λ)
ℓ−j (λ)B(2λ)

j+2λ (λ,ev)

(ℓ− j)!(2λ+ j)!
. (3.42)

In (3.42) Hn(x) stands for the usual Hermite polynomials, while Bn
k (x,y) and Bn

k(x) are respec-
tively generalized Apostol-Bernoulli of degree n and generalized Bernoulli polynomials. Their
definition and some of their properties are discussed in app. A.8 together with the details of
the computation. Then the remaining integral in v takes the following form:

〈O(λ)(τ)〉disk
β = − iπ2Γ(2λ)Nd

22λ+2κ3τ3/2(β−τ)3/2

∫ +∞

−∞
dv (v−2iπ)f(v) e

− (v−2iπ)2

4κτ − v2

4κ(β−τ) . (3.43)

Next we perform the shift v 7→ v+ 2πi(β−τ)
β to move the gaussian center around v = 0 and we

expand the f around v = 0. Subsequently we reorganize the result exploiting the properties of
Hermite polynomials and perform the integration over v to get

〈O(λ)(τ)〉disk
β = − iπ2(−1)2λΓ(2λ)κ2λ−

3
2 β

3
2

22λ+3π
7
2 τ

3
2 (β−τ)

3
2

∞
∑

m=0

2m+1(κτ(β− τ))
m+1

2

β
m+1

2 m!

2λ−1
∑

ℓ=0

(−2)4λ−ℓ−1

(2λ− ℓ−1)!
c

(λ)
ℓ,m(β,τ)×

×
(

1

4κ(β− τ)

)
2λ−ℓ−2

2
2λ−ℓ
∑

k=0

(

2λ− ℓ

k

)(

2πi
√
β− τ

β
√
κ

)2λ−ℓ−k(
√

4κτ(β− τ)

β
Pk,m+1 − 2πiτ

β
Pk,m

)

, (3.44)

where

Pk,m =
∫ ∞

−∞
dv vmHk

(
√

τ

β
v

)

e−v2

. (3.45)

and

c
(λ)
ℓ,m(β,τ) = e− 2πiλτ

β

ℓ
∑

j=0

(j+m)!

(ℓ− j)!(2λ+ j+m)!j!
B

(2λ)
ℓ−j (λ)B(2λ)

j+2λ+m

(

λ;e− 2πiτ
β

)

. (3.46)

The integral Pk,m yields a polynomial of order k in
√

τ
β and its explicit expression in terms

of the associated Legendre function is given in (A.104). Obviously Pk,m is different from zero
only when m+k is an even number. We use this selection rule to rearrange the our expression

88



3. Bi-local correlators 3.4. EXPANSION FOR β → ∞

and to arrive to the final expansion

〈O(λ)(τ)〉disk
β =

π2λ

β2λ sin2λ πτ
β

+ (−πi)2λ+1Γ(2λ)

(2β)2λπ
5
2

∞
∑

n=1

(

4κτ(β− τ)

β

)n min(n,2λ−1)
∑

ℓ=0

(−2)4λ−ℓ−1

(2λ− ℓ−1)!
×

×




min(2n−2ℓ−1,2λ−ℓ)
∑
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c
(λ)
ℓ,2n−2ℓ−k−1(β,τ)

(2n−2ℓ−k−1)!

(

2λ− ℓ

k

)(

β2

4πiτ(β− τ)

)ℓ+k(
τ

β

)
k
2

−1

Pk,2n−2ℓ−k−

− 2πi

min(2n−2ℓ,2λ−ℓ)
∑

k=0

c
(λ)
ℓ,2n−2ℓ−k(β,τ)

(2n−2ℓ−k)!

(

2λ− ℓ

k

)(

β2

4πiτ(β− τ)

)ℓ+k(
τ

β

)
k
2

Pk,2n−2ℓ−k



. (3.47)

We make a couple of observations on the above expression: first of all, we notice that at
sufficiently large order in κ the non-trigonometric dependence on τ cannot grow arbitrarily,
being a polynomial bounded by the weight of the bi-local operators itself. Moreover we expect
the original symmetry τ → β− τ to be preserved by the expansion: looking at the structure
of the coefficients it is not manifest but we checked its presence till the order κ6. Making
explicit this symmetry should probably simplify the final formula. A second remark concerns
the trigonometric dependence of the generic perturbative term and its singularity properties

as τ → 0. The trigonometric dependence is completely encoded into the coefficients c
(λ)
ℓ,m(β,τ):

we expect the presence of negative powers of sin(τ/β), generating a singular behavior at small
τ . This fact is also evident from the singularity appearing in this limit for the generalized
Apostol-Bernoulli polynomials.

3.4 Expansion for β → ∞
It is now interesting to concentrate on the zero temperature limit of the bi-local correlator to
check explicitly the agreement with [90]. The structure of our integrals simplifies significantly
as β → ∞: moreover we observe that both the disk and the trumpet share the same behavior
in this regime, since we expected that as the total boundary length diverges (while keeping b
fixed) the presence of an hole in the interior becomes negligible.

However this limit cannot be directly extracted from the final result of subsec. 3.3.2 since the

limit of generalized Apostol-Bernoulli polynomial B(ℓ)
n (x,µ) is discontinuous when µ approaches

one. Therefore it is convenient to go back to eq. (3.26) and take the limit β → ∞ at this level.
The limit of the integrand and of its normalization is smooth and we get

〈O(λ)(τ)〉β→∞ =
κ2λΓ(2λ)

22λ+4π
5
2κ

3
2 τ

3
2

∫ ∞

−∞
dudv

(u−2πi)(v−2πi)

(cosh u
2 +cosh v

2)2λ
e− (v−2iπ)2

4κτ (3.48)

The integral over u can be now evaluated in closed form. The linear term in u vanishes since
it is odd, while the contribution proportional to 2πi yields

〈O(λ)(τ)〉β→∞ =
8πiκ2λΓ(2λ)

22λ+4π
5
2κ

3
2 τ

3
2

∫ ∞

−∞
dv

(v−2πi)

sinh2λ v
2

e− (v−2iπ)2

4κτ Q2λ−1

(

coth
v

2

)

, (3.49)

where we have used that

Qn(coth v
2)

sinhn+1 v
2

=
1

4

∫ +∞

−∞
du

(

cosh v
2 +cosh u

2

)n+1 . (3.50)
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In eq. (3.50) Qn(z) stands for the so-called Legendre function of the second kind. Next we
eliminate the dependence on the linear factor (v−2πi) by integrating by parts and we write

〈O(λ)(τ)〉β→∞ =
16πiκ2λΓ(2λ)κτ

22λ+4π
5
2κ

3
2 τ

3
2

∫ ∞

−∞
dv e− (v−2iπ)2

4κτ
d

dv





Q2λ−1

(

coth v
2

)

sinh2λ v
2



 , (3.51)

Exploiting the recurrence relation for the Legendre function of the second kind and its deriva-
tives for integer indices, it is straightforward to show that

d

dv





Q2λ−1

(

coth v
2

)

sinh2λ v
2



= −λ
Q2λ

(

coth v
2

)

sinh2λ v
2

(3.52)

Thus

〈O(λ)(τ)〉β→∞ = −16πiλκ2λΓ(2λ)κτ

22λ+4π
5
2κ

3
2 τ

3
2

∫ ∞

−∞
dv e− (v−2iπ)2

4κτ
Q2λ

(

coth v
2

)

sinh2λ v
2

. (3.53)

Although the structure of the integrand suggests the possible presence of a singularity at v = 0,
it is not difficult to check this singularity is only apparent. In fact a careful analysis of the
integrand shows that it is completely regular at v = 0. When 2λ is an integer Q2λ can be
expressed in terms of the Legendre polynomials. Specifically the following identity holds

Q2λ

(

coth v
2

)

=
1

2
P2λ

(

coth v
2

)

v−W2λ−1

(

coth v
2

)

(3.54)

with

W2λ−1

(

coth v
2

)

=
2λ
∑

k=1

1

k
Pk−1

(

coth v
2

)

P2λ−k

(

coth v
2

)

(3.55)

Therefore the Legendre function of the second kind is not periodic under the shift v → v+2iπ,
but we have

Q2λ

(

coth v
2

)

→ Q2λ

(

coth v
2

)

+ iπP2λ

(

coth v
2

)

. (3.56)

If we perform this shift in our integral we find

〈O(λ)(τ)〉β→∞ = −16πi(−1)2λλκ2λΓ(2λ)κτ

22λ+4π
5
2κ

3
2 τ

3
2

∫ ∞

−∞
dv e− v2

4κτ

[

Q2λ

(

coth v
2

)

+πiP2λ

(

coth v
2

)]

sinh2λ v
2

.

(3.57)

The combination sinh−2λ
(

v
2

)

Q2λ

(

coth v
2

)

is an odd function and so its contribution to the

integral (3.57) identically vanishes. So we are left with the term proportional to P2λ only, i.e.

〈O(λ)(τ)〉β→∞ =
16π2(−1)2λλκ2λΓ(2λ)κτ

22λ+4π
5
2κ

3
2 τ

3
2

∫ ∞

−∞
dv e− v2

4κτ
P2λ

(

coth v
2

)

sinh2λ v
2

. (3.58)

A remark is now in order. The final integral is singular at v = 0. If we perform, as we should,
the translation v → v+ 2iπ as a change of path in the complex v−plane, we have to deform a
little bit the contour to avoid precisely v = 0 since the integrand possesses a pole there. This
small deformation provides us the prescription on how to regularize the singularity (it is PV-like
prescription). In the following, we neglect this issue and regularize this singularity using an
analytic regularization, which is more straightforward and produces the same result.
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Next we use the following representation of the Legendre polynomials Pn(x)

Pn(x) =
1

2n

n
∑

k=0

(

n

k

)2

(x−1)n
(

x+1

x−1

)k

(3.59)

For x= coth v
2 this representation simplifies

P2λ

(

coth
v

2

)

=
(

1

ev −1

)2λ 2λ
∑

k=0

(

2λ

k

)2

ekv (3.60)

and our integral becomes

〈O(λ)(τ)〉β→∞ =
16π2(−1)2λλκ2λΓ(2λ)κτ

22λ+4π
5
2κ

3
2 τ

3
2

2λ
∑

k=0

(2λ
k

)2
∫ ∞

−∞
dv e− v2

4κτ

(

1

ev −1

)4λ

ev(k+λ). (3.61)

We can now expand part of the integrand in terms of generalized Bernoulli polynomials

(

1

ev −1

)4λ

ev(k+λ) =
∞
∑

n=0

B
(4λ)
n (k+λ)

n!
vn−4λ. (3.62)

This expansion explicitly exhibits the aforementioned poles present in the integrand. Equation
(3.62) is a Laurent series which contains negative powers up to −4λ. Then we have to compute

〈O(λ)(τ)〉β→∞ =
16π2(−1)2λλκ2λΓ(2λ)κτ

22λ+4π
5
2κ

3
2 τ

3
2

2λ
∑

k=0

(2λ
k

)2
∞
∑

n=0

B
(4λ)
n (k+λ)

n!

∫ ∞

−∞
dv vn−4λe− v2

4κτ .

(3.63)

Since 4λ is even, the integral is different from zero only for even n. If we set n= 2p with p ∈N,
the gaussian integral can be now easily performed and we always get

∫ ∞

−∞
dv v2(p−2λ)e− v2

4κτ = (2
√
κτ)2(p−2λ)+1Γ

[

2p−4λ+1

2

]

, (3.64)

where we have defined the integral for negative powers of v by analytic continuation. By
substituting it in (3.63) we find

〈O(λ)(τ)〉β→∞ =
(2λ)!(−1)2λ

22λπ
1
2

1

τ2λ

∞
∑

p=0

(4κτ)p

(2p)!
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∑

k=0

(2λ
k

)2
B

(4λ)
2p (k+λ)Γ

[

2p−4λ+1

2

]

. (3.65)

To better understand the structure of this perturbative expansion it is convenient to separate
positive and negative powers of τ . Recalling the value of the Gamma function for seminteger
values of the argument, we immediately find

〈O(λ)(τ)〉β→∞ =
(2λ)!

τ2λ







2λ−1
∑

p=0

(κτ)p

(2p)!
(−1)p (2λ−p)!

(4λ−2p)!

2λ
∑
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(2λ
k

)2
B

(4λ)
2p (k+λ)+

+ (−1)2λ

22λ

∞
∑

r=2λ

(2κτ)r

(2r)!
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∑

k=0

(2λ
k

)2
B

(4λ)
2r (k+λ)







(3.66)

One can easily check that for λ = 1
2 and λ = 1 this result exactly reproduces the expressions

given by [90], where the first perturbative orders are presented.
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3.5 Mordell integrals

As anticipated in the introduction, in this section our goal is to show that the bi-local correlator
can be in general expressed as a combination of Mordell integrals. Concretely, let us go back
to the case 2λ ∈N and to be more specific we focus on λ = 1/2 for the disk. The expression
(3.32) can be rewritten as follows

〈O( 1
2 )(τ)〉disk

β = −2π
3
2 iκ

−
1
2 β

3
2 e

iπτ
β

τ3/2(β−τ)3/2

∫ +∞

−∞
dv



v2

(a)

+ i(β−2τ)
β

v
(b)

+ τ(β−τ)
β2

(c)





e
− π2βv2

κτ(β−τ)
+πv

e2πv − e
2πiτ

β

, (3.67)

where we have also scaled the integration variable by 2π. We recognize three different contri-
butions: the third one can be immediately identified with the so-called Mordell integral [101],
which appears in number theory and in the theory of Mock-theta functions [136]. The general
form of the Mordell integral is

M(x,θ,ω) =
∫ ∞

−∞
dt

eπiωt2−2πxt

e2πt − e2πiθ
= e−πi(θ2ω+2θx+2θ)F [(x+ θ)/ω,−1/ω]+ iωF [x+ θω,ω]

ωθ11(x+ θω,ω)
.

(3.68)
The function F (x,ω) admits a q−expansion of the form

F [x,ω] = −i
∑

m∈Z

(−1)mq(m+1/2)2
e2πi(m+1/2)x

1+ q2m+1
, (3.69)

where q = eπiω. The denominator is one of the usual Jacobi theta function and its q−expansion
is

θ11(x,ω) = −i
∑

m∈Z
(−1)mq(m+1/2)2

e2πi(m+1/2)x. (3.70)

In our case, we have x= −1
2 , θ = τ

β and ω = πiβ
κτ(β−τ) . The other two contributions, (a) and (b),

are proportional to the second and first derivatives of the Mordell integral with respect to x.
Then the complete result for the bi-local correlator at λ= 1/2:

〈O( 1
2 )(τ)〉disk

β = −2π
3
2 iκ− 1

2β
3
2 e

iπτ
β

τ3/2(β− τ)3/2

(

1

4π2
∂2

xM
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2
,
τ

β
,

πiβ

κτ(β− τ)

)

−

−i(β−2τ)

2πβ
∂xM

(

−1

2
,
τ

β
,

πiβ

κτ(β− τ)

)

+
τ (β− τ)

β2
M
(

−1

2
,
τ

β
,

πiβ

κτ(β− τ)

))

(3.71)

The structure of the bi-local correlator for 2λ generic integer is not so different. In fact, by
carefully inspecting (A.86) we can easily verify that it is given by a sum of integrals of the
following form

∫ ∞

−∞
dt tn

eπiωt2−2πxt

(e2πt − e2πiθ)m
, (3.72)

where m and n are integers. However any integral of this kind can be evaluated in terms of the
original Mordell integral:

∫ ∞

−∞
dt tn

eπiωt2−2πxt

(e2πt − e2πiθ)m
=

(−1)n

(m−1)!

(

1

2π
∂x

)n
(

e−2πiθ

2πi
∂θ

)m−1

M(x,θ,ω) (3.73)

In other words, the correlators are completely controlled by this kind of functions.
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4Resurgence in JT gravity at
finite cutoff

A promising and challenging attempt to obtain more “local” observables in quantum gravity
certainly consists in putting the gravitational degrees of freedom in a box, imposing suitable
boundary conditions on the metric at some finite spatial extent. A natural question in this
context is how to correctly interpret the definition of gravity on bounded regions of spacetime
in the spirit of AdS/CFT and holograhic correspondence.

We have argued in 2.3.3 that a renewed interest in a class of solvable irrelevant deformations
of two-dimensional CFTs, the T T̄ deformations [135, 118, 19], has suggested an innovative
strategy to address the above issue, at least in low dimensions. It was proposed in [89] that
T T̄ -deformed CFTs could realize the holographic dual of AdS3 gravities on a finite patch, as we
have sketched in 2.3.3. 1 This correspondence has been checked in various ways [70, 47, 68], but
the consistency of the proposal is still under scrutiny. An unsatisfying feature of this duality
is that for large enough energies, the spectrum of the deformed boundary theory becomes
complex, implying a potential breakdown of unitarity for the bulk theory.

While there have been attempts to generalize the conjecture to higher dimensions [123], a
simpler context, where we can accurately study the status of the proposal, is to consider the
finite cutoff version of Jackiw–Teitelboim (JT) gravity [76, 125]. In its mordern formulation [86],
the JT path integral itself is defined as a limit procedure from a cut-off theory: after imposing
Dirichlet boundary conditions at some finite distance, the proper boundary length and the
boundary value for the dilaton are scaled appropriately in the large area limit to preserve the
boundary degrees of freedom . We have shown in 2.1.2 that, in so doing, JT gravity reduces to
a solvable one-dimensional theory, the Schwarzian quantum mechanics [6, 119, 95]. The natural
expectation is that at finite cutoff the relevant dual formulation is provided by a T T̄ -deformed
version of such a theory [63, 62].

The partition function of JT gravity restricted on a finite AdS2 subregion has been computed
in [73], using two different approaches based on either canonical or path-integral quantization2.
The results of both methods are mutually consistent and are directly related to the T T̄ defor-
mation of the Schwarzian theory. An important issue addressed in [73] concerns the spectrum
of the deformed theory, which complexifies above a certain energy threshold. This fact can
be easily verified looking at equation (2.241), which expresses the spectrum of T T̄ deformed
Schwarzian theory. As a consequence, the naïve integration prescription does not generate
a well-defined partition function. A consistent partition function can be obtained instead by
adding contributions originating from a nonperturbative branch, but the related spectral density
becomes not positive definite, calling for a physical interpretation. Moreover, in the analysis of

1The crucial element in favor of this conjectured duality is that the conformal Ward identity of the relevant
CFT translates, in the presence of the deformation, into a second-order functional differential equation that
closely resembles the Wheeler–DeWitt equation of AdS3 gravity.

2See also the interesting alternative investigation [121], relying on a completely different method
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[73], the nonperturbative completion seems to be accompanied by certain ambiguities that the
authors cannot wholly fix in their approach. Last but not least, the construction of partition
functions for arbitrary topologies configurations, relevant for the nonperturbative definition of
JT gravity itself [113, 120], is left unexplored.

In this chapter, we present the results obtained in our paper [56] about JT gravity at finite
cutoff, enlightening the miracolous role played by nonperturbative effects in providing a consis-
tent definition of the theory. Specifically, we reexamine the theory starting from its definition
in terms of the T T̄ -deformed Schwarzian quantum mechanics. We begin by studying the T T̄
flow purely at a perturbative level and compute the entire perturbative series associated with
the deformation parameter, both for the disk and the trumpet partition functions. We find that
the resulting series has a vanishing radius of convergence and, as such, requires an appropriate
nonperturbative completion. We then exploit the standard resurgence technique [32, 3], using
the properties of the lateral Borel resummation, to take into account nonperturbative contribu-
tions. This procedure unambiguously brings into the game the nonperturbative configurations
associated with the new energy branch and prescribes the correct integration contour. For
the disk topology, we obtain the partition function in terms of a modified Bessel function of
the first type, an expression already considered in [73]. The energy spectrum naturally spans
a finite interval; however, the associated spectral density is not positive definite. The trum-
pet partition function experiences an even more dramatic modification: the nonperturbative
corrections completely smooth out naïve singularity associated with the fact that the cutoff
boundary could overlap with the geodesic boundary.

Relying on this observation, in the second part of the chapter, we explore the construction
of the deformed version of the partition functions for arbitrary topologies, using the same gluing
procedure derived for the undeformed theory [113] and exposed in the review 2.1.4. We remark
that without the nonperturbative corrections, the relevant gluing integral would be ill-defined.
The gluing procedure results in a consistent deformation of the standard Eynard–Orantin re-
cursion relations [41] associated with the original theory (2.1.5): the deformed spectral curve
and the higher-genus correlation functions are fully compatible with the flow equation of the
T T̄ deformation, and we find a precise mapping that encodes the flow. We stress that the non-
positivity of the input spectral density does not spoil the consistency of the recursion relations,
although its actual physical interpretation is still missing in our case. An essential step in our
construction is the explicit evaluation of the cylinder partition function: it is closely related to
the kernel necessary to engineer the Eynard–Orantin topological recursion formula [41] and is
responsible for the “ramp” growth in the spectral form factor [112, 113, 111]. We derive in this
last perspective its late-time behavior and observe the transition between the slope and the
ramp phase at finite cutoff. Quite interestingly, the change of regime does not seem to depend
on the value of the finite cutoff.

The chapter is structured as follows. We start in Section 4.1 where, after recalling basic
results of JT gravity and its T T̄ deformation, we compute the perturbative series arising from
the deformation and its completion using the theory of resurgence, both for the disk and the
trumpet. Section 4.2 is devoted to the spectral properties of the deformed theory: the relevant
partition functions are seen arising from a compact spectrum and computed with a suitable
integration contour. The spectral density is derived and found to be not positive defined. In
Section 4.3 we construct the partition functions for arbitrary topologies, exploiting the gluing
prescription of the undeformed theory. The consistency of this construction with the T T̄ flow
equation is discussed in Section 4.4. The extension of the Eynard–Orantin recursion relations in
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4. Resurgence in JT gravity at finite cutoff 4.1. DISK AND TRUMPET

the deformed case is presented in Section 4.5, opening the possibility to interpret holographically
the theory at finite cutoff. Finally, in Section 4.6, we study the deformed spectral form factor,
deriving the behavior of the “slope” and “ramp” regimes.

4.1 Disk and trumpet

This section is devoted to studying both the disk and the trumpet partition functions for the
theory at finite cutoff.

Our starting point is the partition function for the disk, which we computed in 2.1.2 by
quantizing the dual Schwarzian theory on the boundary. As we have seen, the final result
(2.42) is one-loop exact and can written as a Boltzman integral over a continuos spectral
density (2.84):

Zdisk
Schw =

∫ ∞

0
dE

φr sinh
(

2π
√

2φrE
)

2π2
e−βE . (4.1)

where we have restored the dependence on the renormalized dilaton value φr.
For the trumpet, we know from (2.203) the corresponding Boltzmann integral is character-

ized by a modified density of states,

Ztrumpet
Schw =

∫ ∞

0
dE

φr cos
(

b
√

2φrE
)

π
√

2φrE
e−βE . (4.2)

We then saw that in [63] a certain integral deformation of the Schwarzian theory was con-
sidered, which is the one-dimensional analogue of the T T̄ deformation 2.3.3. It introduces a
shift of the energy levels of the theory which is exactly solvable in terms of a parameter t. As
explicitly shown in equation (2.241), the shift is controlled by the following differential equation
for the Hamiltonian H,

2∂tH =
φrH

2

1−φrtH
, (4.3)

which governs the flow of the theory under the deformation.3 The solutions form two branches

H±(t) =
1

φrt

(

1∓
√

1−2φrtE
)

, (4.4)

however, only H+(t) reproduces the expected undeformed limit for t→ 0.
The deformed partition function4 is defined by introducing the level shift in (4.1) and (4.2),

Zdisk
T T̄

=
∫ ∞

0
dE

φr sinh
(

2π
√

2φrE
)

2π2
e−(β/φrt)(1−

√
1−2φrtE) , (4.5)

Ztrumpet

T T̄
=
∫ ∞

0
dE

φr cos
(

b
√

2φrE
)

π
√

2φrE
e−(β/φrt)(1−

√
1−2φrtE) . (4.6)

3The T T̄ deformation parameter t is defined is such a way to match the expansion parameter φ−2
b that we

will use for the bulk theory. To match the conventions of [63, 62, 73], one should set t= 4λ/φr.
4The integrals (4.5) and (4.6) are actually ill-defined if the integration region spans the entire positive line.

In [73], it was suggested to Wick-rotate the bare parameters of the theory to make sense of these integrals. In
the following, we shall choose a different approach to address this issue.
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It was then argued [73] that the deformed Schwarzian theory is the holographic dual of JT
gravity at finite cutoff, establishing a correspondence between the T T̄ deformation parameter t
and the bulk gravity cutoff ǫ, that we introduced in 2.1.2 as a regulator for the radial position of
the asymptotic AdS boundary in Poincaré coordinates (the boundary of AdS2 should sit in fact
at z = 0). For finite values of the boundary length, as the boundary of Σ is pushed away from
the asymptotic boundary of AdS2 and into the bulk, the boundary theory flows accordingly.

At infinite cutoff, the ǫ parameter is introduced to take the double-scaling limit where
both the boundary length and the value of the dilaton on the boundary diverge, while their
ratio u = β/φr remains constant. In principle, when considering the theory at finite cutoff, ǫ
becomes redundant since the theory should only depend on its bare parameters. However, as
mentioned in Section 2.1.2, ǫ plays an important role, as it parametrizes the deviation from
the infinite cutoff limit and is the analog of the deformation parameter t = ǫ2/φ2

r in the T T̄ -
deformed Schwarzian theory. As proven in [63] for the first orders in the bulk ǫ-expansion,
flowing the Schwarzian under T T̄ is equivalent to considering more and more subleading terms
in the expansion (2.24) around the ǫ→ 0 pure Schwarzian theory.

The starting point of our analysis is to study the theory from the point of view of its
perturbative expansion in t. For this reason, throughout most of the paper, we will find it
convenient to express the results in terms u and t.

With a simple change of variables, we can recast the disk and the trumpet partition functions
in (4.5) and (4.6) as

Zdisk(u,t) =
1

2π2

∫ ∞

0
ds ssinh(2πs) e−I(u,t;s) , (4.7)

Ztrumpet(u,b, t) =
1

π

∫ ∞

0
ds cos(bs) e−I(u,t;s) , (4.8)

where the t-deformed action reads

I(u,t;s) =
u

t

(

1−
√

1− ts2
)

. (4.9)

For any t > 0, the part of the action (4.9) depending on s becomes imaginary in the region
s ∈ (1/

√
t,+∞) and the integral diverges. Moreover, the expression above is ambiguous as it is

not clear a priori which of the two branches of the square root one should take when crossing
the branch point at s = 1/

√
t. As we will see in the following, these aspects ultimately signal

the presence of non-analytic (namely instanton-like) contributions in the parameter t, and care
should be taken in choosing the correct prescription to take these into account and make sense
of the integrals above.

4.1.1 Perturbative expansion

Despite the possible ambiguities in defining the integrals (4.7) and (4.8), they can be used to
yield well-defined asymptotic series in t for the partition functions. This is achieved by first
expanding the exponential term as

e−I(u,t;s) = e−us2/2

(

1+
∞
∑

n=1

An(s,u) tn
)

. (4.10)
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The coefficients An can be expressed in terms of generalized Laguerre polynomials,

An(s,u) = −us2n+2

22n+1n
Ln+1

n−1

(

us2

2

)

. (4.11)

In Appendix A.12, we show in detail how the expression above is derived. By integrating each
term in the series, we rewrite the partition functions as

Zdisk(u,t) =
∞
∑

n=0

Zdisk
n (u) tn , (4.12)

Ztrumpet(u,b, t) =
∞
∑

n=0

Ztrumpet
n (u,b) tn . (4.13)

The t0 terms come from taking the integral against the undeformed action factorized in (4.10)
and, as such, correctly reproduce the known results computed in the t→ 0 limit [113],

Zdisk
0 (u) =

u−3/2

√
2π

e2π2/u , (4.14)

Ztrumpet
0 (u,b) =

u−1/2

√
2π

e−b2/2u . (4.15)

For n > 1 we have the following expressions:

Zdisk
n (u) =

1

2π2

∫ ∞

0
ds ssinh(2πs) e−us2/2An(s,u) , (4.16)

Ztrumpet
n (u,b) =

1

π

∫ ∞

0
ds cos(bs) e−us2/2An(s,u) . (4.17)

For any n ∈ ◆, the above integrals are real and convergent. By expanding in t, we have
apparently cured the ambiguity arising from the integration over s. We will see in a moment
where the subtlety is now hiding. We first need to perform the integration. In order to deal
with both integrals at once, we compute

aj =
∫ ∞

0
ds s2j e−us2/2An(s,u)

= − 1

n!
2j−n−1/2u−j−n−1/2

(

1

2
− j

)

n−1

Γ

(

j+n+
3

2

)

, (4.18)

were (x)n denotes the Pochhammer symbol. Then, we simply use the Taylor expansion of
ssinh(2πs) and cos(bs) to obtain

Zdisk
n (u) =

1

2π2

∞
∑

j=0

(2π)2j+1aj+1

(2j+1)!

= Zdisk
0 (u)

(2n)!

n!
(−2u)−nL

3/2−n
2n

(

−2π2

u

)

=
(2u)−n

n!
√

2π3u3
Γ

(

n− 3

2

)

Γ

(

n+
5

2

)

1F1

(

n+
5

2
;
5

2
−n;

2π2

u

)

, (4.19)
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and

Ztrumpet
n (u,b) =

1

π

∞
∑

j=0

(−b2)j aj

(2j)!

= Ztrumpet
0 (u)

(2n)!

n!
(−2u)−nL

1/2−n
2n

(

b2

2u

)

= − (2u)−n

n!
√

2π3u
Γ

(

n− 1

2

)

Γ

(

n+
3

2

)

1F1

(

n+
3

2
;
3

2
−n;− b2

2u

)

. (4.20)

Conveniently, the two expressions above capture also the n = 0 cases in (4.14) and (4.15).
In both cases, the perturbative coefficients are the undeformed partition functions times a
polynomial in 1/u of degree 3n. Finally, we must remark that these two series expansions can
also be directly obtained by solving the flow equation perturbatively in t (see Section 4.4 for
some details) without making any reference to the integral representations (4.7) and (4.8).

4.1.2 Resurgence

The coefficients in (4.19) and (4.20) grow asymptotically as n!. This means that the perturbative
expansions in (4.12) and (4.13) should be understood as formal power series, since both have
vanishing radius of convergence. It is possible to associate a finite result to these series by
performing a Borel resummation.

The Borel sum of a series

Φ(z) =
∑

n
ωn z

n (4.21)

is defined as follows. First, one should take the Borel transform of Φ,

B[Φ](ζ) =
∑

n
ωn

ζn

n!
. (4.22)

If the coefficients ωn grow as n!, B[Φ] has finite radius of convergence, thus defining a germ of
an analytic function at ζ = 0. Then, the directional Borel resummation of Φ along a chosen
direction θ on the complex ζ-plane is defined as

SθΦ(z) =
1

z

∫ eiθ∞

0
dζ e−ζ/z B[Φ](ζ) , (4.23)

where the integral, taken along the ray with argζ = θ, is also known as a directional Laplace
transform. The directional resummation SθΦ(z) defines an analytic function in the wedge
Re(e−iθz)> 0 that, upon expansion in z, reproduces (4.21).

In our case, rather than directly computing the Borel transform of (4.12) and (4.13), it
is convenient to use the power series representation of the Kummer confluent hypergeometric
function to first recast (4.19) and (4.20) as

Zdisk
n (u) =

∞
∑

m=0

(−2u)−n u
−3/2

√
2π

(

2π2

u

)m Γ
(

m+n+ 5
2

)

n!m!Γ
(

m−n+ 5
2

) , (4.24)

Ztrumpet
n (u,b) =

∞
∑

m=0

(−2u)−n u
−1/2

√
2π

(

− b2

2u

)m Γ
(

m+n+ 3
2

)

n!m!Γ
(

m−n+ 3
2

) , (4.25)
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and then perform the Borel transform on each term in the sum over m5. When summing over
n, each series has finite radius of convergence,

B[Zdisk](u,ζ) =
u−3/2

√
2π

∞
∑

m=0

1

m!

(

2π2

u

)m

2F1

(

−m− 3

2
,m+

5

2
;1;

ζ

2u

)

, (4.26)

B[Ztrumpet](u,b,ζ) =
u−1/2

√
2π

∞
∑

m=0

1

m!

(

− b2

2u

)m

2F1

(

−m− 1

2
,m+

3

2
;1;

ζ

2u

)

. (4.27)

Now, in order to complete the Borel summation and obtain an analytic expression for the
formal series in (4.12) and (4.13) one should proceed as in (4.23). However, the hypergeometric
functions appearing in the Borel transforms (4.26) and (4.27) have branch cuts located on the
positive real axis in the range ζ ∈ (2u,+∞). The branch cut identifies a Stokes line at argζ = 0,
i.e. a singular direction in the ζ plane. Namely, when taking a directional Laplace transform
at θ = 0, one runs into an ambiguity since the results obtained by approaching the Stokes line
from above and below differ.

In the theory of resurgence, Stokes lines are associated with nonperturbative contributions,
encoded by the discontinuity (Sθ+

⋆
−Sθ−

⋆
)Φ(z) in the directional Borel resummation as the ray

of angle θ crosses the Stokes line at θ⋆. The directional Borel resummations approaching the
Stokes lines from both sides are usually referred to as lateral Borel resummations. Because of
the nonperturbative nature of the discontinuity, both Sθ+

⋆
Φ(z) and Sθ−

⋆
Φ(z) share the same

expansion in z, but crucially differ by instantonic contributions. In general, the correct nonper-
turbative completion of Φ(z) is obtained by choosing some combination of the two. If Φ is real
and the Stokes line lies at θ⋆ = 0, under some general assumptions the correct real completion
of Φ(z) is given by the median resummation

SmedΦ(z) =
1

2
(S0+ +S0−)Φ(z) . (4.28)

Let us apply this to the case at hand. In Appendix A.13, we provide details on how to com-
pute Laplace transforms of Gauss hypergeometric functions above and below the cut. These,
in turn, give us the lateral Borel resummations of the disk and trumpet partition functions
starting from the expressions for their Borel transforms in (4.26) and (4.27),

S0±Zdisk(u,t) =
e− u

t

πu
√
t

∞
∑

m=0

1

m!

(

2π2

u

)m [

πIm+2

(

u

t

)

± (−1)miKm+2

(

u

t

)]

,

S0±Ztrumpet(u,b, t) =
e− u

t

π
√
t

∞
∑

m=0

1

m!

(

− b2

2u

)m [

πIm+1

(

u

t

)

± (−1)miKm+1

(

u

t

)]

, (4.29)

as depicted in Figure 5.3. We see that the median resummation mentioned above, indeed,
cancels the imaginary terms in the two lateral Borel resummations and gives the real disk and
trumpet partition functions

Zdisk(u,t) =
e− u

t

u
√
t

∞
∑

m=0

1

m!

(

2π2

u

)m

Im+2

(

u

t

)

, (4.30)

Ztrumpet(u,b, t) =
e− u

t√
t

∞
∑

m=0

1

m!

(

− b2

2u

)m

Im+1

(

u

t

)

. (4.31)

5In fact, for fixed m, the modulus of the coefficient of the series in n behaves as (n−1)!
πm! when n approaches

infinity.
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Both sums can be performed through the Bessel multiplication theorem

∞
∑

k=0

1

k!

(

z(λ2 −1)

2

)k

In+k(z) = λ−n In(λz) , (4.32)

to obtain

Zdisk(u,t) =
u√
t

e−u/t

u2 +4π2t
I2

(

1

t

√

u2 +4π2t

)

, (4.33)

Ztrumpet(u,b, t) =
u√
t

e−u/t

√
u2 − b2t

I1

(

1

t

√

u2 − b2t

)

. (4.34)

Through resurgence, we have been able to unambiguously fix the nonperturbative completions
of both the disk and the trumpet partition functions with just their perturbative expansions
at t = 0 as inputs. These corrections naturally carry the information of the nonperturbative
branch H− of the T T̄ deformation in (4.4).

4.2 The spectrum

The results for the disk and the trumpet partition functions obtained in (4.33) and (4.34)
through resurgence can be reproduced by changing the prescription for the integration contour
in (4.7) and (4.8). At the level of the boundary theory, this prescription induces a cutoff on the
spectrum for any finite value of t and gives rise to instantonic contributions associated with a
region in the spectrum where the density of states becomes negative. The present section is
dedicated to discussing these aspects.

4.2.1 Integration contour

The action (4.9) has two branch points, located at s= −1/
√
t and s= +1/

√
t. We can extend

the definition of I(t,u;s) to the complex s-plane by placing a branch cut in the interval s ∈
(−1/

√
t,+1/

√
t). Then, we can replace the original contour, running along the real axis, with

an integration contour S surrounding the branch cut.
Let us consider a generic integral

W =
∫

S
ds f(s)e−I(t,u;s) , (4.35)

where f is some entire function. The integral is easily computed in terms of the discontinuity
of the action across the branch cut,

W = 2e−u/t
∫ +1/

√
t

−1/
√

t
ds f(s) sinh

(

u

t

√

1− ts2
)

=
2e−u/t

√
t

∫ π

0
dθ sinθf

(

cosθ√
t

)

sinh

(

u

t
sinθ

)

, (4.36)

where in the last step we introduced the change of variable cosθ =
√
ts. By replacing the

hyperbolic sine with its Taylor expansion, we find

W =
∞
∑

j=0

(

u

t

)2j+1
2e−u/t

(2j+1)!
√
t

∫ π

0
dθ (sinθ)2j+2 f

(

cosθ√
t

)

. (4.37)
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Disk. The disk partition function is obtained by setting f(s) = ssinh(2πs)/(4π2). Actually,
because the original integral is even in s and the integration range is symmetric about the
origin, one can equivalently use f(s) = sexp(2πs)/(4π2), which gives

Zdisk(u,t) =
∞
∑

j=0

(

u

t

)2j+1
e−u/t

2π2(2j+1)!t

∫ π

0
dθ (sinθ)2j+2 cosθ exp

(

2π cosθ√
t

)

. (4.38)

The term

(sinθ)2j+2 cosθ =
1

2j+3

d

dθ
(sinθ)2j+3 (4.39)

can be used to integrate by parts and obtain

Zdisk(u,t) =
∞
∑

j=0

(

u

t

)2j+1
e−u/t

π(2j+1)!(2j+3)t3/2

∫ π

0
dθ (sinθ)2j+4 exp

(

2π cosθ√
t

)

. (4.40)

We perform the integration by using the integral representation of the modified Bessel function,
that, for j ∈ ❩, reads

Ij(z) =
zj2jj!

(2j)!π

∫ π

0
dθ (sinθ)2j exp(z cosθ) . (4.41)

This gives

Zdisk(u,t) =
ue− u

t

4π2t3/2

∞
∑

j=0

1

j!

(

u2

4πt3/2

)j

Ij+2

(

2π√
t

)

, (4.42)

which, upon summation with (4.32), reproduces the result computed in (4.33).

Trumpet. Likewise, the trumpet partition function is recovered from W by setting f(s) =
cos(bs)/(2π),

Ztrumpet(u,b, t) =
∞
∑

j=0

(

u

t

)2j+1
e−u/t

π(2j+1)!
√
t

∫ π

0
dθ (sinθ)2j+2 cos

(

bcosθ√
t

)

. (4.43)

We use the integral representation

Jj(z) =
zj2jj!

(2j)!π

∫ π

0
dθ (sinθ)2j cos(z cosθ) , (4.44)

to find

Ztrumpet(u,b, t) =
ue− u

t

bt

∞
∑

j=0

1

j!

(

u2

2bt3/2

)j

Jj+1

(

b√
t

)

. (4.45)

Using the multiplication theorem

∞
∑

k=0

1

k!

(

z(1−λ2)

2

)k

Jn+k(z) = λ−nJn(λz) , (4.46)

we finally get

Ztrumpet(u,b, t) =
u√
t

e−u/t

√
b2t−u2

J1

(
√
b2t−u2

t

)

, (4.47)

which agrees with (4.34), since In(x) = i−nJn(ix).
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4.2.2 The density of states

The prescription on the integration contour S translates into a prescription for the integration
over the spectrum of the boundary theory. Changing the integration variable to E = s2 brings
the disk partition function into the form

Zdisk(u,t) =
∫ 1/t

0
dE

sinh
(

2π
√

E
)

4π2

(

e−u(1−
√

1−tE)/t − e−u(1+
√

1−tE)/t
)

. (4.48)

The above differs from the naïve integral (4.5) associated with the T T̄ -deformed Schwarzian
theory in two ways: the integration range is now capped at E = 1/t, and there is an additional
term of instantonic origin. The spectrum is always real within the integration range, and in
the t→ 0 limit, one recovers the undeformed Schwarzian partition function.

The deformed density of states ρ(E; t) can be obtained as follows. We split the exponential
terms into two separate integrals and apply on both an appropriate change of variables to
obtain integrals of the type

∫

dE ρ(E; t) e−φruE , (4.49)

where the density of states is weighted by a Boltzmann factor with inverse temperature β = φru.
This amounts to set

E = − 1

φrt

(

±
√

1− tE −1
)

, E =
1

t

(

1− (1−φrtE)2
)

. (4.50)

The the two integrals combine nicely as

Zdisk(u,t) =
∫ 1/(φrt)

0
dE ρ(E; t) e−φruE −

∫ 1/(φrt)

2/(φrt)
dE ρ(E; t) e−φruE

=
∫ 2/(φrt)

0
dE ρ(E; t) e−φruE , (4.51)

where the t-deformed density of states is given by

ρ(E; t) =
1

4π2
sinh

(

2π
√

E(E)
)

dE(E)

dE

=
φr(1− tφrE)

2π2
sinh

(

2π
√

φrE(2− tφrE)
)

. (4.52)

Here and in the following, whenever we Laplace-transform from u to E, we adopt the widely-
used convention of setting φr = 1/2. With this choice, the density of states reads

ρ(E; t) =
1− tE/2

4π2
sinh

(

2π
√

E(1− tE/4)
)

. (4.53)

To interpret the integral as a conventional Laplace transform we simply extend the integration
range to the entire real positive E axis and define ρ(E; t) to have support on the interval

E ∈ (0,4/t). At t = 0, the above reproduces the familiar Schwarzian density ρ ∝ sinh
(

2π
√
E
)

growing exponentially in
√
E. At finite t, the result is qualitatively rather different. In the

“perturbative range” 0<E < 2/t the density is positive, but after an initial growth it decreases
and reaches a zero at E= 2/t. In the “nonperturbative range” 2/t<E < 4/t the density becomes
negative; the two ranges are related by the symmetry property ρ(4/t−E,t) = −ρ(E; t) and thus
the integral of ρ(E; t) over the entire spectrum vanishes.
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4.3 Other topologies

The disk partition function Zdisk(u,t) computed in the previous sections is the partition function
associated with a manifold of genus zero whose boundary has a single connected component of
(rescaled) length u,

Z0,1(u; t) = Zdisk(u,t) . (4.54)

In general, one can compute partition functions on orientable manifolds with arbitrary topology.
These are classified by the number n of connected components of the boundary, and by the
genus g. The resulting partition function, Zg,n will depend on the lengths u1, . . . ,un of the
connected boundaries.

As already explained in 2.1.4, in a theory of quantum gravity, the path integral receives
contributions from different spacetime topologies. We briefly recall here the key aspects of
what is known as “third quantization”.

For any given choice of n, the full partition function should really be a sum over the Zg,n

obtained for any value of the genus g. Each term is weighted by the topological (Einstein–
Hilbert) action term that gives a factor of (eS0)χ, where χ= 2−2g−n is the Euler characteristic.
At fixed n the full partition function reads

Zn(u1, . . . ,un; t) = e(2−n)S0

∞
∑

g=0

e−2gS0 Zg,n(u1, . . . ,un; t) . (4.55)

In [113], it was shown that the partition function Zg,n for a generic choice of n and g can be
obtained in terms of a certain topological decomposition. Each boundary component of length
ui is associated with a trumpet Ztrumpet(ui, bi, t) that is glued to a bordered Riemann surface of
genus g through a common geodesic boundary of length bi. In Figure 4.2, we show the simple
case of Z1,1. The gluing is performed by taking an integral over the length bi of each geodesic
boundary,

Zg,n(u1, . . . ,un; t) =
∫ ∞

0
db1 b1 . . .

∫ ∞

0
dbn bnVg,n(b1, . . . , bn)

×Ztrumpet(u1, b1, t) . . .Z
trumpet(un, bn, t) . (4.56)

The formula is written in terms of Vg,n(b1, . . . , bn), the Weil–Petersson volume of the moduli
space of hyperbolic Riemann surfaces of genus g with n geodesic boundaries of lengths b1, . . . , bn.
We have seen in (2.74) how the Weil–Petersson volumes naturally emerge in the gravitational
path integral, where one inserts n geodesic boundaries which have no action (their extrinsic
curvature is κ= 0).

Besides the disk, the only other topology that represents an exception to the formula above
is given by the cylinder

Z0,2(u1,u2; t) =
∫ ∞

0
db bZtrumpet(u1, b, t)Z

trumpet(u2, b, t) , (4.57)

which is obtained by directly gluing together two trumpets along their geodesic boundary, as
shown in Figure 4.1.

In principle, it is not obvious why the gluing prescription should still be valid at finite t. In
fact, for any t > 0, there is a portion of the integration range where the length b of the geodesic
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boundary exceeds the length u/
√
t of the Dirichlet boundary of the same trumpet. However,

as already noticed in [73], the inclusion of nonperturbative terms had the effect of making the
trumpet partition function in (4.34) regular at b= u/

√
t and real across the entire integration

range, thus making the integral well-defined. Although we do not have an ab initio derivation
of (4.56) and (4.57) for finite t, we take these formulas as prescriptions for the computation
of partition functions for any topology. We will show later that the results they generate have
remarkable properties.

4.3.1 Cylinder

u1

b

u2

Figure 4.1: The topological decomposition of the cylinder in terms of two trumpets glued
along their geodesic boundary.

We start our analysis of by considering the cylinder Z0,2(u1,u2; t). The series representation
in (4.45) turns out to be particularly useful when dealing with integrals over b. We plug that
expression in (4.57) and use

∫ ∞

0

db

bj+k+1
Jj+1

(

b√
t

)

Jk+1

(

b√
t

)

=
1

2j!k!(j+k+1)

(

1

2
√
t

)j+k

(4.58)

to write

Z0,2(u1,u2; t) = 2u1u2 e
−(u1+u2)/t

∞
∑

j=0

∞
∑

k=0

u2j
1 u

2k
2

(j!)2(k!)2

(

1

4t2

)j+k+1
1

(j+k+1)
. (4.59)

To split the sums, we can use the trivial identity

(

1

4t2

)j+k+1
1

(j+k+1)
=
∫ 1/(2t)2

0
dx xj+k (4.60)

and perform the summations

∞
∑

j=0

(xu2)j

(j!)2
= I0(2

√
xu) (4.61)

to obtain

Z0,2(u1,u2; t) = 2u1u2 e
−(u1+u2)/t

∫ 1/(2t)2

0
dx I0(2

√
xu1)I0(2

√
xu2) . (4.62)
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The last integral is easily evaluated and gives

Z0,2(u1,u2; t) =
u1u2 e

−(u1+u2)/t

t(u2
1 −u2

2)

[

u1 I0

(

u2

t

)

I1

(

u1

t

)

−u2 I0

(

u1

t

)

I1

(

u2

t

)]

. (4.63)

It is not immediate to see how this extends the result at infinite cutoff, but performing an
expansion at the first few orders in t, one finds

Z0,2(u1,u2; t) =
1

2π

√
u1

√
u2

(u1 +u2)
+

1

26π

1√
u1

√
u2
t+

9

256π

u1 +u2

(
√
u1

√
u2)3

t2 +O(t3) , (4.64)

which exactly matches the t → 0 limit previously computed in [113] and presented in (2.83).
However, a power expansion in t necessarily misses nonperturbative contributions that, as we
will discuss later, constitute a crucial feature of the theory at finite cutoff.

Furthermore, in the context of intepreting JT gravity as an average ensemble of random ma-
trices 2.1.5, we have seen a key observable in the matrix model is represented by the connected
correlators of resolvents. Specifically, from the cylinder partition function one can extract the
resolvent by taking a Laplace transform over both u1 and u2,6

R0,2(E1,E2; t) =
1

4

∫ ∞

0
du1

∫ ∞

0
du2 Z0,2(u1,u2; t) eu1E1/2+u2E2/2 . (4.66)

We assume E1,E2 < 0 and apply the identity
∫ ∞

0
du ue−αu I0(βu) =

α

(α2 −β2)3/2
, (4.67)

which holds for Reα > |Reβ |, to (4.62). This gives

R0,2(E1,E2; t) =
1

2

∫ 1/(2t)2

0
dx

1/t−E1/2

[(1/t−E1/2)2 −4x]3/2

1/t−E2/2

[(1/t−E2/2)2 −4x]3/2

=
t2(1− tE1/2)(1− tE2/2)(tE2

1/4+ tE2
2/4−E1 −E2)

4[(1− tE1/2)2 − (1− tE2/2)2]2
√

−E1(1− tE1/4)
√

−E2(1− tE2/4)

− t2[(1− tE1/2)2 +(1− tE2/2)2]

4[(1− tE1/2)2 − (1− tE2/2)2]2
. (4.68)

When continuing the resolvent to arbitrary complex values of E1 and E2, the square roots in
(4.68) induce branch cuts at E1 ∈ (0,4/t) and E2 ∈ (0,4/t). The double-discontinuity of the
resolvent across the real E1 and E2 lines, appropriately normalized by a −1/(4π2) factor, gives
the two-point correlator of the density ρ(E; t),

ρ0,2(E1,E2; t) =
t2(1− tE1/2)(1− tE2/2)(tE2

1/4+ tE2
2/4−E1 −E2)

4π2[(1− tE1/2)2 − (1− tE2/2)2]2
√

E1E2(1− tE1/4)(1− tE2/4)
. (4.69)

Interestingly, its support coincides with the one computed for the one-point function of ρ(E; t)
in (4.53), obtained from the disk partition function. In fact, the above expression is valid within
the ranges where the branch cuts extend, i.e. for E1 ∈ (0,4/t) or E1 ∈ (0,4/t). Outside those
ranges, ρ0,2 vanishes, since the double discontinuity of the resolvent R0,2 is zero.

6Here, we make use of the trivial change of variables

−
∫ ∞

0
dβ e−βEf(β) = −φr

∫ ∞

0
du e−φruEf(φru) , (4.65)

together with the convention, stated at the end of Section 4.2.2, according to which φr = 1/2.
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4.3.2 The general case

The Weil–Petersson volume Vg,n is a polynomial of degree 3g− 3 +n in the squared lengths
b21, . . . , b

2
n of the geodesic boundaries. By linearity, (4.56) can be computed by splitting the con-

tribution of each monomial as a product of integrals where a single Ztrumpet(u,b, t) is integrated
against some even power of b. It is sufficient to use

Z̃m(u,t) =
∫ ∞

0
db bZtrumpet(u,b, t)b2m

=
m!√
t

2mum+1e−u/t Im

(

u

t

)

(4.70)

to read off Zg,n from the coefficients in the polynomial Vg,n. Moreover, we can use the rep-
resentation of Vg,n in (2.76) as an integral over Mg,n together with (4.70) to recast (4.56)
as7

Zg,n(u1, . . . ,un; t) =
1

tn/2

∫

Mg,n

eω
n
∏

i=1

ui e
−ui/t

∞
∑

j=0

(ψiui)
j Ij

(

ui

t

)

. (4.72)

A similar approach can be used to compute generic resolvents Rg,n(E1, . . . ,En; t). Instead
of taking an integral transform of the result Zg,n(u1, . . . ,un; t), it is possible to first apply the
transformation to a single trumpet. This generates a term, for E < 0,

T (E,b, t) = −1

2

∫ ∞

0
du Ztrumpet(u,b, t)euE/2

= −
√
t

2
√
π

∞
∑

k=1

Γ(k+1/2)

(1− tE/2)2k

(

2
√
t

b

)k

Jk

(

b√
t

)

(4.73)

which can be glued to different topologies as in (4.56) to compute directly the resolvent for any
g and n,

Rg,n(E1, . . . ,En; t) =
∫ ∞

0
db1 b1 . . .

∫ ∞

0
dbn bnVg,n(b1, . . . , bn) T (E1, b1, t) . . .T (En, bn, t) . (4.74)

Again, because of linearity, one simply needs to use

R̃m(E,t) =
∫ ∞

0
db b T (E,b, t) b2m

= − (2m+1)!(1− tE/2)

2(−E(1− tE/4))m+1
√

−E(1− tE/4)
, (4.75)

to immediately obtain the result for Rg,n for any given Vg,n. To compute arbitrary correlators
of ρ(E; t) one can take the discontinuity

ρ̃m(E,t) =
R̃m(E− i0, t)− R̃m(E+i0, t)

2πi

= (−1)m+1 (2m+1)!(1− tE/2)

2π(E(1− tE/4))m+1
√

E(1− tE/4)
θ(E)θ(4− tE) . (4.76)

7The infinite sum can be rewritten in terms of Lommel functions of two variables as
∞
∑

j=0

(ψiui)
j Ij

(ui

t

)

= V0

(

i

tψi
,
iui

t

)

− iV1

(

i

tψi
,
iui

t

)

. (4.71)
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Examples. As an example of the above setup, we compute the partition function for the disk
at genus one (see Figure 4.2). The relevant Weil–Petersson volume is given by

u

b

V1,1

Figure 4.2: The topological decomposition of a disk at genus one. A trumpet is glued to
genus-one Riemann surface along a common geodesic boundary.

V1,1(b) =
1

48
(4π2 + b2) . (4.77)

By replacing each power of b with the appropriate term in (4.70), we find

Z1,1(u; t) =
1

48
(4π2Z̃0(u,t)+ Z̃2(u,t))

=
ue−u/t

24
√
t

[

2π2 I0

(

u

t

)

+uI1

(

u

t

)]

. (4.78)

When computing results at higher g and n, which involve higher powers of b, one can recursively
apply the identity

In+1(z) = In−1(z)− 2n

z
In(z) , (4.79)

to rewrite the result solely in terms of modified Bessel functions of order zero and one. For
instance, from

V2,1(b) =
1

2211840
(4π2 + b2)(12π2 + b2)(6960π4 +384π2b2 +5b4) , (4.80)

V1,2(b1, b2) =
1

192
(4π2 + b21 + b22)(12π2 + b21 + b22) , (4.81)

V0,3(b1, b2, b3) = 1 , (4.82)

we can compute the disk at genus two,

Z2,1(u; t) =
ue−u/t

5760
√
t
(870π8 +278π4u2 −232π2tu2 +120t2u2 +5u4)I0

(

u

t

)

+
ue−u/t

2880
√
t
(338π6 −278π4t+232π2t2 −120t3 +29π2u2 −20tu2)I1

(

u

t

)

,

(4.83)

107



4.4. FLOW EQUATION 4. Resurgence in JT gravity at finite cutoff

the cylinder at genus one,

Z1,2(u1,u2; t) =
u1u2

24t
e−(u1+u2)/t

[

u1

(

2π2 − t
)

I1

(

u1

t

)

I0

(

u2

t

)

+(u1 ↔ u2)

+
(

u2
1 +u2

2 +6π4
)

I0

(

u1

t

)

I0

(

u2

t

)

+u1u2 I1

(

u1

t

)

I1

(

u2

t

)]

, (4.84)

and the topology with three boundaries at genus zero

Z0,3(u1,u2,u3; t) =
u1u2u3

t3/2
e−(u1+u2+u3)/t I0

(

u1

t

)

I0

(

u2

t

)

I0

(

u3

t

)

. (4.85)

4.4 Flow equation

The shift in the spectrum of the T T̄ -deformed theory as a function of the deformation parameter
is controlled by (4.3). The equation imposes a constraint at the level of the thermal partition
function, in the form of a partial differential equation in both the deformation parameter t and
the (rescaled) temperature u. In fact, the differential operator

F(u,t) = u
∂2

∂u2
+2t

∂2

∂u∂t
−2

(

t

u
−1

)

∂

∂t
(4.86)

has the property that, for any density of states ̺(E),

F(u,t)
∫ ∞

0
dE ̺(E) e−u(1−

√
1−tE)/t = 0 . (4.87)

This induces a recursion relation

2u(n+1)Zn+1(u) = 2nZn(u)−2nuZ ′
n(u)−u2Z ′′

n(u) (4.88)

for both the disk and the trumpet coefficients in the t-expansion introduced in Section 4.1.1.
A simple check on the explicit forms derived in (4.19) and (4.20) shows that, indeed, the above
holds true.

With the introduction of nonperturbative corrections, however, the integral of the type in
(4.87) should be modified according to the prescriptions discussed in Section 4.2.2. Interestingly,
the modified integral is still a solution of the flow equation,

F(u,t)
∫ 1/t

0
dE ̺(E)

(

e−u(1−
√

1−tE)/t − e−u(1+
√

1−tE)/t
)

= 0 . (4.89)

As a consequence, both (4.33) and (4.34) are solutions of the flow equation, as one can explicitly
check. The nonperturbative contributions to both the disk and the trumpet partition function
correct the perturbative series with the addition of a trans-series term of the form

Zinst.(u,t) = e−2u/t
∞
∑

n=0

Z∗
n(u) tn . (4.90)

The presence of the exponential associated with the instantonic saddle has the effect of modi-
fying the action of the flow equation operator by flipping the sign of u,

F(u,t)Zinst.(u,t) = −e−2u/t F(−u,t)
∞
∑

n=0

Z∗
n(u) . (4.91)
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As a consequence, the coefficients Z∗
n(u) of the expansion about the instantonic saddle obey

the modified equation

2u(n+1)Z∗
n+1(u) = −2nZ∗

n(u)+2nuZ∗
n

′(u)+u2Z∗
n

′′(u) . (4.92)

The fact that the trumpet partition function is annihilated by F(u,t) has important im-
plications at g > 0. In fact, let us consider the gluing formula (4.56) for n = 1. Since the
dependence on u and t comes exclusively from the single Ztrumpet(u,b, t) inside the integral, we
can immediately conclude that the disk partition function is a solution of the flow equation,
not just at genus zero, but at any genus g:

F(u,t)Zg,1(u; t) = 0 . (4.93)

A similar conclusion can be drawn for other topologies, i.e. when n > 1, but it requires a
modification in the way we assign boundary conditions. So far, we considered a specific way of
assigning Dirichlet boundary conditions. Specifically, we imposed on each boundary the same
value φb = 1/

√
t for the dilaton field. In principle, nothing prevents us from computing higher

topologies by gluing trumpets associated with different values of t. The generalization for the
gluing formulas presented in Section 4.3 is actually straightforward, and so is the generalization
of the result written in terms of the building blocks (4.70). This is effectively a refinement of
the results considered so far, since for any given topology, the generalized partition function
Zg,n is now a function of n different deformation parameters t1, . . . , tn. At the level of the flow
equation, to each boundary is associated a differential operator F(ui, ti) which annihilates the
partition function:

F(ui, ti)Zg,n(u1, . . . ,un; t1, . . . , tn) = 0 . (4.94)

For the purpose of the present paper, we will not consider further this refinement, and we
will only deal with the case where the dilaton field takes the same value on each disconnected
component of the boundary.

4.5 Topological recursion

In Section 4.3, we have given a prescription to obtain the resolvents Rg,n for any topology.
At t = 0, we have explained in 2.1.5 that these functions have a natural interpretation in

terms of correlators computed in a certain dual double-scaled Hermitian matrix integral [113].
The correlators enjoy Schwinger–Dyson-like identities, known as loop equations, that allow to
recursively compute results at all orders in the large-N expansion [39]. This procedure goes
under the name of topological recursion, and the set of data initiating it can be captured by a
single mathematical object: the spectral curve [40].

Thanks to the simplicity of the undeformed trumpet partition function (4.15), at t= 0 the
resolvents Rg,n are, essentially, the Laplace transforms of the Weil–Petersson volumes Vg,n. In
fact, the undeformed topological recursion [113] is given precisely by the recursion formula of
Eynard and Orantin [41], which is the Laplace-transformed version of the recursion formula
derived by Mirzakhani [99].

Remarkably, we find that the deformation induced by t represents a consistent deformation
of the spectral curve (2.97) for JT gravity at infinite cutoff. By this, we mean that the resol-
vents Rg,n computed through the Weil–Petersson gluing, as described in Section 4.3, can be
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reproduced by the topological recursion associated with a t-deformation of the Eynard–Orantin
spectral curve capturing the t= 0 case.

To define the spectral curve we introduce the map

E(z) = −z2 , (4.95)

which, in turn, determines the functions

W0,1(z1; t) = iπρ(E(z1), t)E′(z1)

=
z1(2+ tz2

1)

4π
sin
(

πz1

√

4+ tz2
1

)

, (4.96)

and

W0,2(z1, z2; t) =

(

R0,2(E(z1),E(z2); t)− 1

(E(z1)−E(z2))2

)

E′(z1)E′(z2)

=
4(2+ tz2

1)(2+ tz2
2)

(z2
1 − z2

2)2 [4+ t(z2
1 + z2

2)]2



2z1z2 +
4(z2

1 + z2
2)+ t(z4

1 + z4
2)

√

4+ tz2
1

√

2+ tz2
2



 . (4.97)

Notice how both functions are meromorphic in some neighborhood of the origin.
For any choice of g and n other than the two cases above, the topological recursion computes

the Wg,n functions through the recursion formula8

Wg,n(z1, . . . , zn; t) = Res
z→0

K(z1, z; t)

[

Wg−1,n+1(z,−z,z2, . . . , zn; t)

+
∗
∑

h1+h2=g
I1∪I2=J

Wh1,1+|I1|(z,I1; t)Wh2,1+|I2|(−z,I2; t)

]

,

(4.98)

where J = {z2, . . . , zn}, and the symbol ∗ over the sum indicates that one should exclude terms
where (h1, I1) = (g,J) or (h2, I2) = (g,J). The recursion kernel K that appears in (4.98) is
defined as

K(z1, z; t) =
1

2[W0,1(z; t)+W0,1(−z; t)]
∫ z

−z
dz2 W0,2(z1, z2; t)

=
(2+ tz2

1)
√

4+ tz2

(2+ tz2)
√

4+ tz2
1

4π csc
(

πz
√

4+ tz2
)

(z2
1 − z2) [4+ t(z2

1 + z2)]
. (4.99)

The functions Wg,n computed by the recursion are closely related to the resolvents Rg,n.
Specifically, one can obtain the former by simply acting on the latter with the change of variables
induced by E(z),

Wg,n(z1, . . . , zn; t) =Rg,n(E(z1), . . . ,E(zn); t) E′(z1) . . .E′(zn) . (4.100)

8There are more general formulations of the topological recursion. The formulas in (4.98) and (4.99) are
valid for a map E such that dE vanishes at z = 0, where its local Galois involution is σ : z 7→ −z.
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As such, Wg,n can be computed, from a bulk perspective, through the gluing (4.56). In the
spirit of Section 4.3, we define

W̃m(z, t) = R̃m(E,t)E′(z)

= (2m+1)!
2+ tz2

(4+ tz2)m+3/2

(

2

z

)2m+2

, (4.101)

which provides the contribution associated with a single trumpet integrated against b2m.
To prove that the topological recursion (4.98) indeed matches the results obtained in

Section 4.3, we will show that the Wg,n(z1, . . . , zn; t) are connected to the undeformed ones,
Wg,n(z1, . . . , zn;0), through a change of variables.9 A simple way to show this is to consider an
alternative choice for the map E. In particular, we consider a map with an explicit dependence
on t,

Ê(ζ) = −2

t

(

√

1+ tζ2 −1
)

, (4.103)

This choice has two important properties. The first is that it correctly reproduces the unde-
formed map when t vanishes, i.e. limt→0 Ê(ζ) = E(ζ). The second is that it eliminates any
dependence from t in W0,1 and W0,2, which then necessarily agree with the undeformed ones.
Specifically,

Ŵ0,1(ζ1) =
ζ1 sin(2πζ1)

2π
Ŵ0,2(ζ1, ζ2) =

1

(ζ1 − ζ2)2

=W0,1(ζ1;0) , =W0,2(ζ1, ζ2;0) . (4.104)

The same, then, holds true for the recursion kernel

K̂(ζ1, ζ) =
π csc(2πζ)

ζ2
1 − ζ2

=K(ζ1, ζ;0) . (4.105)

As anticipated at the beginning of this section, the undeformed recursion induced by (4.104) and
(4.105) is the Eynard–Orantin topological recursion, while the undeformed Wg,n are connected
to the Weil–Petersson volumes Vg,n by a simple integral transform, as it can be easily seen from
the expression of the integrated trumpet

ˆ̃Wm(z) = (2m+1)!z−2m−2

= W̃m(z,0) . (4.106)

We can therefore argue as follows. We start from the undeformed case, where the recursion
formula is known to hold, and we notice that all quantities can be lifted to the case of fi-
nite t through the change of variables induced by E ◦ Ê−1. Because the recursion formula

9As it is clear from the definitions in (4.96), (4.97) and (4.100), the functions Wg,n transform as a differential
n-forms. In fact, the spectral curve and the topological recursion are naturally formulated in terms of differential
forms

ωg,n(z1, . . . ,zn) =Wg,n(z1, . . . ,zn) dz1 ∧ . . .∧dzn . (4.102)

The recursion kernel K, on the other hand, defines a tensor of type (1,1).
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(4.98) is covariant under change of variables induced by maps that are bi-holomorphic in some
neighborhood of z = 0, the topological recursion is guaranteed to hold at any finite t.

As an example, we notice that both the recursion and the standard gluing procedure give,
for the disk at genus one,

W1,1(z1; t) =
(2+ tz2

1) [6+π2z2
1 (4+ tz2

1)]

3z4
1 (4+ tz2

1)5/2
. (4.107)

4.6 The spectral form factor

At t= 0 [113], JT gravity was observed to reproduce the characteristic shape of a spectral form
factor associated with an ensemble of Hamiltonians with random-matrix statistics. From a bulk
perspective, the spectral form factor can be interpreted as a transition amplitude in the Hilbert
space of two copies of JT gravity [111]. It is computed by the analytic continuation of two
boundaries, u1 7→ u+ iτ , u2 7→ u− iτ , which introduces a timescale τ . The quantity includes
terms coming from different topologies, each weighted by the usual topological factor,

F (u,τ ; t) = e2S0Z0,1(u+iτ ; t)Z0,1(u− iτ ; t)+Z0,2(u+iτ,u− iτ ; t)+ . . . , (4.108)

where the dots correspond to subleading terms associated with higher-genus topologies. We
can rewrite the definition in a graphical way as

F = e2S0 + + . . . . (4.109)

Interestingly, different features of the spectral form factor are associated with contributions
coming from different topologies. The initial “slope” region comes from considering two disjoint
disks (4.30). The characteristic shape of the slope can be observed by looking at its large-τ
regime,

Z0,1(u+iτ ; t)Z0,1(u− iτ ; t) ∼ 1

2πτ3

(

1− e−4u/t
)

+
e−2u/t

πτ3
sin
(

2τ

t

)

. (4.110)

The first term gives a cubic decay that reproduces the known t → 0 limit, while the second
term is an oscillation of period πt whose amplitude is exponentially suppressed in 1/t.

Eventually, the slope phase will end, and other topologies will dominate the form factor.
The characteristic “ramp” region comes, in fact, from the connected topology, i.e., from the
cylinder (4.63), which represents a Euclidean wormhole connecting the two boundaries. The
large-τ behavior is again dominated by two terms,

Z0,2(u+iτ,u− iτ ; t) ∼ τ

4πu

(

1− e−4u/t
)

− e−2u/t

2π
cos
(

2τ

t

)

. (4.111)

In Figure 4.3 and Figure 4.4, the slope and the ramp are plotted as functions of τ for various
values of t.

In [111] the spectral form factor has been discussed using the long-time behavior of the
Hartle–Hawking wavefunction associated with JT gravity. The physical origin of the slope,
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Figure 4.3: A log–log plot of the slope Z0,1(1+ iτ ; t)Z0,1(1− iτ ; t) for various values of t.
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Figure 4.4: A log–log plot of the ramp Z0,2(1+ iτ,1− iτ ; t) for various values of t.
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Figure 4.5: A log–log plot of the spectral form factor F (1, τ, t) with S0 = 4 for various values
of t. It includes contributions from the slope and the ramp; other topologies are discarded.

and in particular, of its decaying character, has been interpreted probabilistically. As the
time τ increases, the amplitude for the time evolved Hartle–Hawking state to have a small
Einstein–Rosen bridge decreases, being mostly supported at large values of the bridge length.
The relevant initial state is localized at small Einstein–Rosen bridge lengths, and thus the
transition amplitude decreases with τ . The exchange of a baby universe instead explains the
ramp in the spectral form factor: at late times τ , Euclidean wormholes allow transitions from
the initial Hartle–Hawking state to a state with a short Einstein–Rosen bridge and a large baby
universe, with a size of order τ . The amplitude for this process, while exponentially small in
the entropy, does not decay as τ increases, and the linear growth comes from the τ different
ways in which the baby universe can be rotated before being absorbed [111].

At finite cutoff, we see from (4.110) and (4.111) that with respect to the undeformed case,
the leading τ -behaviors are diminished by exponential finite-size effects while novel periodic
fluctuations appear. We observe that both the ramp term (4.111) and the slope (4.110) share
the same damping factor in the non-oscillating part, which indeed suggests we are capturing
a universal effect of gravity at finite volume and confirms our result for the cylinder partition
function. As a matter of fact, the intersection of these two regimes is independent of the cutoff
parameter t, up to exponentially-suppressed terms, leading to a transition time of order10

τ ∼ (2u)1/4eS0/2 . (4.112)

In Figure 4.5, the spectral form factor is plotted as a function of τ for various values of t.
A more physical understanding of the late-time behavior at finite cutoff should come from

repeating the analysis of [111] using the real Hartle–Hawking wave function obtained in [73].
It considers both an expanding and a contracting branch, and it is nonperturbative in the
parameter t: we expect, in particular, an interpretation of the oscillating terms as coming from
some interference effects.

10The numerical factors are due to the choice of our conventions but can be simply reabsorbed into a
redefinition of the entropy S0.
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More generally, the appearance of nonperturbative contributions in the disk partition func-
tions seems to suggest the presence of some kind of tunneling process. At t= 0, the boundary
of the AdS2 patch extends to asymptotic infinity, which corresponds to having an infinite po-
tential wall. However, as we move the boundary towards the interior of AdS2 by increasing t,
the potential barrier turns out to be not infinite anymore, and a hard wall replaces it through
Dirichlet conditions. Equivalently, according to the holographic RG picture presented in [89],
one would expect that integrating out the geometry between the asymptotic boundary and a
finite radial distance would result in the T T̄ deformation of the original Schwarzian. It is not
unreasonable that the effective dynamics could support nontrivial tunneling amplitudes among
different vacua in both cases.
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Exact T T̄ deformation of 2d
Yang-Mills theory
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5T T̄ -deformed U(N)
Yang-Mills on the sphere

The present chapter is mainly based on our papers [54] and [55] and deals with the deformation
of gauge theories. Pure Yang–Mills theory in two dimensions is quite different from its higher-
dimensional counterparts in that it does not allow for propagating degrees of freedom. As we
reviewed in 2.2.1, the theory is invariant under a large group of spacetime symmetries that
make the dependence on the geometry almost trivial and render the theory solvable [110, 129].

In the context of the T T̄ deformation, Yang–Mills theory was studied in [25, 75, 115, 105]
and its large-N limit was explored in [116, 48].

In the present work, we shed new light on the subject by taking a different root, i.e. we
focus on the U(N) gauge theory at genus zero and find its exact T T̄ deformed version [55],
although we belive much of our results can be generalized to arbitrary groups and topologies.
As a warm-up, we present the abelian U(1) case, the content of [54], which is less difficult from
the computational point of view but still retains all key aspects.

Motivations In 2.3.4 we derived the flow equation satisfied by the Yang-Mills partition func-
tion, once deformed by the T T̄ operator. We can now specialize to G ≃ U(N) and use the ef-
fective coupling α introduced above. Moreover, for later convenience we introduce the rescaled
deformation parameter τ = µN3g2

YM. In terms of these variables, the flow equation (2.253) for
the partition function is rewritten as

Fα,τ Z(α,τ) = 0 , (5.1)

where we have introduced the differential operator

Fα,τ =
∂

∂τ
+

2α

N2

∂2

∂α2
. (5.2)

In 2.3.4 we also derived a flow equation for the Hamiltonian, or deformed Yang-Mills po-
tential in the first order formalism. It is easy to obtain a closed expression for the deformed
Hamiltonian by solving the relevant Burgers differential equation (2.251) for U :

H =
g2

YMC2(R)/2

1− τC2(R)/N3
. (5.3)

However, for any τ 6= 0 there is always an infinite number of representations whose energy is
arbitrary close to the limit value −1/(2µ). Consequently, the partition function defined through
such a deformed Hamiltonian would necessarily diverge for g < 2.

For τ > 0, the Hamiltonian, intended as a function of C2, is pathological at C2 = N3/τ .
Namely, H → ∓∞ as C2 → (N3/τ)±. One would suspect that (5.3) should really only hold
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for representations for which C2 < N3/τ . Extending (5.3) beyond said range appears devoid
of any physical meaning. However, if one hopes to determine the partition function as a sum
over representations, one must necessarily understand how the deformation acts on the entire
spectrum, not just a portion of it. From a physical standpoint, one is led to postulate that
whenever a given representation falls out of the allowed range for the solution (5.3), it should
be removed from the physical spectrum. Yet, this requirement leads to nontrivial analytic
properties for the deformed partition function Z(α,τ) and makes the study of such a quantity
as a solution of the flow equation (5.1) less obvious.

For τ < 0, the situation is more subtle. The partition function is still naively divergent,
but the deformed spectrum (5.3) appears well-defined in any range of values. To obtain a
well-defined partition function, one is led to study solutions of (5.1) that involve instanton-like
corrections in the deformation parameter.1 However, the question of how to unambiguously
determine such nonperturbative corrections is nontrivial and will be addressed in detail in later
sections.

As a conclusion, we find the naive T T̄ deformation of the Migdal heat-kernel representation
(2.102) when one replaces the quadratic Casimir with its deformed version, according to (5.3),
shows some deep problematic features, for both signs of τ .

Summary of results In order to find a dynamical explanation for both aspects, we con-
struct the deformed partition function for each flux sector zm. These are sectors of the theory
associated with stationary points of the classical action, labeled by the quantized magnetic flux
vector m ∈ ❩

N . We reviewed the instanton expansion for Yang-Mills theory in detail in 2.2.2.
To determine the correct solutions of the differential equation describing the T T̄ flow,

∂zm

∂µ
+2a

∂2
zm

∂a2
= 0 , (5.4)

(a denotes the total area) we must impose suitable boundary conditions. These correspond to
the two important physical regimes we have access to. The first is the undeformed theory in
its fully-quantum regime. The second is the deformed theory in its semiclassical limit.

This approach is essential for two reasons. For µ > 0, the postulated truncation of the
spectrum must be associated with nonanalyticities of the partition function. In the abelian
theory [54], we will show these can be interpreted in terms of an infinite number of infinite-
order quantum phase transitions. This peculiar behavior only emerges when taking the sum
over m: each zm is, in fact, analytic when µ > 0. On the other hand, for µ < 0, we need to fix
nonperturbative terms to which the undeformed limit µ→ 0 is insensitive. Crucially, these are
relevant for the semiclassical regime of the theory that can be probed by taking a specific double
scaling limit. Only by having the result for the deformed zm can we match its semiclassical
limit against the deformed action evaluated on the associated classical saddle.

In analogy with the undeformed case, the partition function can be expressed through a
sum over inequivalent irreducible representations of the gauge group. Schematically, we find
that the full deformed partition function, written in terms of the deformed Hamiltonian

H =
g2

YMC2(R)/2

1−µg2
YMC2(R)

, (5.5)

1The presence of nonperturbative ambiguities in the context of T T̄ -deformed theories has been studied in
[1, 73, 56].
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reads

Z =
∑

R|H>0

(dimR)2 e−aH for µ > 0, (5.6)

Z =
∑

R

(dimR)2

(

e−aH −
kmax
∑

k=0

λk

)

+R for µ < 0. (5.7)

For µ > 0, we have thus proven dynamically that the sum extends over the finite number of
representations R for which H > 0. For µ < 0, the sum is unrestricted, though in order for
it to converge a finite number of terms λk is subtracted. These are the first few terms in the
µ-expansion of e−aH , and the upper bound kmax is the minimum value for which the sum over
R converges. Each of the λk carries a factor of ea/(2µ), making each term nonperturbative in µ.
The same factor appears in the residual term R, which is itself a solution of the flow equation
(5.4).

The chapter is organized as follows. In Section 5.1, we expose the full exact T T̄ deformation
of Maxwell theory. In Section 5.2, we turn to Yang-Mills and in particular we construct the de-
formed zero-flux sector by Borel resumming the associated power expansion in the deformation
parameter. The analytic properties of the associated Borel transform signal the presence of
nonperturbative contributions at µ < 0. We determine the form of such terms with resurgence
theory. In Section 5.3, we compute the partition function for arbitrary flux sectors by solving
the relevant flow equation. To reproduce the correct undeformed limit, we project the initial
condition on a complete set of solutions using the Ramanujan master theorem. In Section 5.4,
we sum over all flux sectors to obtain the explicit form of the full deformed partition function.
It involves the use of the multidimensional Poisson summation formula and certain generaliza-
tions thereof. In Section 5.5, we show how the deformed flux sectors obtained in Section 5.3
reproduce the correct semiclassical limit, thus confirming our choice of nonperturbative correc-
tions. We argue that the truncation of the spectrum is due to destructive interference between
deformed flux sectors.

5.1 Preliminary case: Maxwell theory

In this section, we examine the simplest non-trivial case of T T̄ -deformed gauge theories:
Maxwell theory on the torus. Although placing the theory on the torus topology leads to
a clear interpretation in terms of a finite-volume thermal system, the abelian theory is insen-
sitive to the underlying topology. As such, our results, which are taken by [54], apply to any
genus. We will derive the exact expression of the partition function Z for both signs of the
deformation parameter, solving nonperturbatively the flow equation for the U(1) gauge model

∂Z

∂µ
+2A

∂2Z

∂A2
= 0, (5.8)

where A is the torus area 2. As already mentioned, a certain number of nontrivial features are
displayed by Maxwell theory that generalize to the nonabelian case.

2It’s just (5.1) with N = 1
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Maxwell theory and its deformation We consider Maxwell theory defined on the Eu-
clidean torus S1 ×S1 with lengths R and β. The spectrum of the theory reads En = g2

ymRn
2/2,

where gym is the gauge coupling. Accordingly, the partition function takes the simple form

Z =
∑

n∈❩
e−g2

ymAn2/2 = ϑ3(e−g2
ymA/2) , (5.9)

where A = Rβ. A dual representation of the partition function is obtained by performing
Poisson summation on (5.9),

Z =

√

√

√

√

2π

g2
ymA

∑

m∈❩
e

− 2π2

g2
ymA

m
2

, (5.10)

where the expression in the exponent represents the classical instanton action for configurations
of (quantized) magnetic flux m, while the factor in front is due to quantum fluctuations. The
TT -deformed spectrum is readily obtained from the undeformed one by solving the relevant
Burgers equation:

En =
g2

ymRn
2/2

1−µe2n2
. (5.11)

Despite its simplicity, this immediately exhibits pathologies akin to the case of conformal the-
ories. For µ > 0, an infinite number of energy levels become negative, namely those with
n2 > 1

µe2 , thus signaling an instability: one would like to truncate the spectrum and to explain

the absence of the associated states dynamically. On the other hand, for µ < 0 the spectrum
remains positive, but it saturates on a maximum energy Ec = R

2µ . One can quickly compute

the density of states in this limit and observe that it diverges as (Ec −E)−3/2. Moreover, in
both cases the naive partition function is clearly ill-defined as it is given in terms of a divergent
sum.

Solving the flow equation in each flux sector Since (5.8) is linear, it should separately
apply to each term of the sum in (5.10). In fact, it is reasonable to expect that the deformation
should lead to a well-defined result for each instanton, with the total partition function still
expressible as a sum over “deformed” instantons and their fluctuations. Our strategy will be
precisely to construct the full result as a sum over TT -deformed flux sectors. As a bonus,
deriving the contribution associated with each m, we can check that the classical deformed
action for U(1) obtained in [26] dominates the semiclassical expansion.

The flow equation can be easily solved by separation of variables. The generic solution,

1

τ s

[

c1U
(

s,0,
α

2τ

)

+ c2
α

2τ
1F1

(

s+1;2;
α

2τ

)]

, (5.12)

is labeled by a real parameter s. Here, c1 and c2 are arbitrary constants, while U and 1F1

respectively denote the Tricomi and Kummer confluent hypergeometric functions. We have
also introduced the two adimensional quantities τ = µe2 and α = g2

ymA that naturally appear
in the generic solution. Denoting with zm(α,τ) the deformed partition function for a given flux
m, we obtain its general form by considering a linear combination of the fundamental solutions
in (5.12). The coefficients of such a combination are constrained to reproduce the undeformed
result at τ = 0 and to lead to a convergent expression upon summation over m. The behavior
of (5.12) around τ = 0 is sensitive to the sign of the deformation parameter. We consider the
two choices separately.
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The undeformed result, as it appears in (5.10), can be written as a convergent power series
in 1/α with

zm(α,0) =
√

2π
∞
∑

k=0

(−2π2
m

2)k

k!

1

αk+1/2
. (5.13)

Next, we consider the expansion of (5.12) as τ → 0+. In this limit, the Kummer function blows
up as e

α
2τ for generic values of s. On the other hand, U(s,0,x) ∼ x−s for x → ∞. Thus, the

obvious choice to match the expansion (5.13) is

zm(α,τ) =

√

π

τ

∞
∑

k=0

1

k!

(

−π2
m

2

τ

)k

U
(

k+
1

2
,0,

α

2τ

)

. (5.14)

This solution is precisely the one obtained by Borel-resumming the asymptotic series obtained
through a power expansion in τ of the generic deformed flux sector zm(α,τ).3

By replacing the Tricomi function with its integral representation, we can perform the sum
over k and rewrite (5.14) as the Fourier transform

zm(α,τ) =
∫ ∞

−∞
dy e2πimy φ(y) (5.16)

of the smooth function with compact support

φ(y) = e
− αy2

2(1−y2τ) Θ(1−y2τ) , (5.17)

where Θ is the step function. Now, the sum of e2πimx over m simply yields the Dirac comb of
period 1. This allows us to trivially evaluate the integral in y and to obtain the full deformed
partition function

Z(α,τ) =

⌊ 1√
τ

⌋
∑

n=−⌊ 1√
τ

⌋
e

− αn2

2(1−n2τ) , (5.18)

where the symbol ⌊x⌋ stands for the integer part of x. In the above, we still sum over the
deformed spectrum, but now all negative energies are excluded. Focusing on a specific level n,
we see that its energy grows as τ increases and it blows up at τ = n−2. Above this threshold,
the level drops out of the spectrum. As a consequence, only a finite number of energy levels
survives when τ > 0. For τ > 1, the deformed spectrum contains only the ground state and the
partition function becomes trivial: Z(α,τ) = 1.

3Specifically, the associated Borel transform

Bzm(α,ζ) =

√

2π

α

∞
∑

k=0

1

k!

(

−2π2
m

2

α

)k

× 2F1

(

k+
1

2
,k+

3

2
;1;−2ζ

α

)

(5.15)

produces the desired result when taking a directional Laplace transform along the positive real ζ-axis.
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Reu
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Imu

Figure 5.1: The contour γ for the integrals in (5.20) and (5.21) is the union of a Hankel-like
contour γcut and a circle γcircle of radius R. In u = 1/τ both integrands have an essential
singularity.

When τ < 0, the Tricomi function in (5.12) develops an imaginary part. However, we can
easily engineer a new ansatz for real solutions of the flow equation exploiting the second family
of hypergeometrics in (5.12),

zm(α,τ) =
πα

2

∑

k∈K

(4π2
m

2)k

(2k)! (−τ)k+3/2 1F1

(

k+
3

2
;2;

α

2τ

)

, (5.19)

where K = {0,1, . . .}. This expression is manifestly real and reproduces the 1/α-expansion in
(5.13) for τ → 0−. In fact, 1F1(s+1,2,−x) ∼ x−s−1/Γ(1− s)+e−x . . . for x→ ∞.

The presence of exponentially-suppressed terms in the expansion of the Kummer function
indicates that the solution is nonanalytic at τ = 0. However, these are unavoidable if one wants
to preserve the reality of the partition function. Again, the origin and necessity of nonanalytic
terms also emerge if we carefully examine the perturbative solution of the flow equation through
the tools provided by resurgence.4

Exploiting an integral representation of the Kummer function, we can perform the sum over
k in (5.19) and obtain

zm(α,τ) = −
∮

γ
du

iα sinh
(

2πm
√−u

)

e− αu
2−2τu

4πm(τu−1)2
, (5.20)

where the contour γ is depicted in FIG. 5.1. Suppose we now shrink γ around the essential
singularity in 1/τ and pick up the dominant contribution at large |m|. We can check that
(5.19) grows exponentially in this limit. Thus, the sum over the fluxes does not converge, and
(5.19) does not define a sensible partition function for τ < 0.

We must remark that the existence of nonanalytic contributions solving the flow equation
suggests that there is a degree of arbitrariness in writing down the ansatz (5.19): we are
free to modify it by adding any combination of solutions exponentially vanishing at τ = 0.
The minimal modification of (5.19) that cancels the unsatisfactory behavior for large |m| is
given by extending the sum to half-integers with K = {0,1/2,1, . . .}. We will see later that this

4The branch cut of (5.15) for ζ ∈ (−∞,−α/2) signals the need for instanton-like corrections in τ , when
τ < 0.
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nonperturbative completion has remarkable properties. Each new term solves the flow equation
and vanishes exponentially as τ → 0−. Now

zm(α,τ) = −
∫

γ
du

iαe−2π|m|
√

−u e− αu
2−2τu

4π|m|(τu−1)2
. (5.21)

By shrinking the contour again around the essential singularity, we can verify that zm(α,τ)
decays exponentially for large |m|, yielding a convergent sum over the fluxes. This behavior is
exactly the one suggested by the semiclassical analysis where zm(α,τ) is expected to decay as
the exponential of the deformed action [25].

The easiest way to compute the integral (5.21) is to consider γ as the sum of two contours
γcut ∪γcircle (see FIG. 5.1). The integration over γcircle vanishes in the limit of large R. Instead,
the contribution of γcut is evaluated by taking the discontinuity of the integrand across the cut
of the square root. Upon integrating by parts and setting u= y2, we find

zm(α,τ) = 2
∫ ∞

0
dy

(

e
− α

2
y2

1−τy2 − e
α
2τ

)

cos(2πmy) . (5.22)

Once again, we observe the appearance of the Dirac comb when summing over m, leading to

Z(α,τ) =
∞
∑

n=−∞

(

e
− α

2
n2

1−τn2 − e
α
2τ

)

. (5.23)

We notice that the entire deformed spectrum survives, but we have an additional subtraction
in the partition function, nonperturbative in τ , that ensures the convergence of the sum. The
subtraction matches the asymptotic value of the first term for large n. Again, (5.23) solves the
flow equation and reproduces the correct undeformed limit for τ → 0−.

One would be tempted to conclude that an infinite number of nonperturbative states of
energy Ec is present in the spectrum, having negative norms and regularizing the thermal trace.
This feature is reminiscent of other instances of TT -deformed theories which are associated with
nonpositive-definite densities of states [56].

The deformed instanton action. In a suitable semiclassical limit, we expect that zm(α,τ)
should be dominated by the exponential of the classical deformed action evaluated on the
corresponding U(1) instanton configuration [19].

First, we check this property in the case τ ≥ 0. Performing the change of variable y =
τ−1/2 tanh(x) in (5.16), we can rearrange the integral as

zm(α,τ) =
1√
τ

∫ ∞

−∞
dx

e−4π2
m

2χ(x)/α

cosh2(x)
, (5.24)

where

χ(x) =
sinh2(x)−2i|m|√σ tanh(x)

2m2σ
(5.25)

and σ = 4π2τ/α2. This representation suggests considering a double scaling in which α and
τ are taken small with σ fixed. In this limit, we expect the integral to be dominated by the
saddles of χ. Posing x= iarctan(

√
σw|m|), the equation χ′(x) = 0 translates into

m
4σ2w4 +2m2σw2 −w+1 = 0. (5.26)
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For σ < 27
256m2 we have a real saddle, which is smoothly connected to the one of the undeformed

theory

w⋆ = 3F2

(

1

2
,
3

4
,
5

4
;
4

3
,
5

3
;
256

27
m

2σ
)

. (5.27)

The integral around this saddle is easily evaluated using standard steepest descent approxima-
tion leading to

zm(α,τ) ∼
√

2π

αη
e− 3π2

2ασ [3F2(− 1
2 ,− 1

4 , 1
4 ; 1

3 , 2
3 ; 256

27 m
2σ)−1] , (5.28)

where η = 2w
−3/2
⋆ −w−1

⋆ −2m2σw
1/2
⋆ . The dominant term is exactly proportional to the expo-

nential of the classical deformed action obtained in [19].
While this analysis is certainly consistent at fixed m, the necessity to sum over the U(1)

fluxes poses a problem with the branch cut of the hypergeometric function, the classical action
becoming complex for m2 > 27σ/256. A closer inspection of the interval 0<m

2σ < 27/256 un-
veils a second real solution of (5.26), which provides a subdominant contribution to our expan-
sion. The two real solutions become closer and closer, and collide exactly when m

2σ = 27/256,
emerging further as two complex conjugate solutions. We expect them to both contribute when
m

2σ > 27/256, combining into a real expression for the full partition function. This dramatic
change in the nature of the instanton expansion is presumably related to the truncation of the
spectrum observed for τ > 0.

We can readily repeat the same analysis in the case of τ < 0. At variance with the previous
situation, the hypergeometric function stays real for any value of m (no branch cut is present
when σ is negative). The saddle point connected to the undeformed case always dominates
zm(α,τ) in the double-scaling limit. One can estimate the behavior of the instanton series at
large |m| as

zm(α,τ) ∼ e
− 2π|m|√

−τ , (5.29)

confirming the convergence of the sum over the U(1) fluxes.

Wilson loops and quantum phase transitions. The partition function (5.18) is nonana-
lytic whenever τ−1/2 is integer (τ = 0 is a limit point for such a set of values). Nonetheless, it
is always smooth in τ . Such nonanaliticities are the signs of phase transitions of infinite order
[98]. We will show how Wilson-loop correlators act as order parameters for such transitions.

In accordance with our previous discussion, we introduce the partition function for an
arbitrary topology with b boundaries

Zb(α,τ,θ1, . . . , θb) =

⌊ 1√
τ

⌋
∑

n=−⌊ 1√
τ

⌋
e

− αn2

2(1−n2τ)
+i(θ1n1+...+θ1n1)

, (5.30)

where the θ’s parametrize the boundary holonomies. A correlator of two homological Wilson
loops is given by

〈Wq1Wq2〉 =
∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
ei(θ1q1+θ2q2)

× Z2(α1, τ,θ1, θ2)Z2(α2, τ,θ1, θ2)

Z(α1 +α2, τ)
, (5.31)
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L

Figure 5.2: Two parallel Wilson loops, set at a distance L, wrapping the fundamental cycle
of radius β. In the decompactification limit, the area of the torus diverges, while L and β are
kept fixed.

where q1, q2 ∈ ❩ label the U(1) representations of the Wilson loops. The above is nonvanishing
for q1 = −q2 and its computation is straightforward. In the decompactification limit, where
α= α1 +α2 → ∞ while α2 = e2Lβ is kept fixed, we find

〈WqW−q〉 ∼ e
−e2Lβ q2

2(1−τq2) Θ(1− τq2) . (5.32)

One can think of the two Wilson-loop insertions as the wordlines of a particle-antiparticle test
pair of charge qe set at a distance L and wrapping around the thermal circle. See FIG. 5.2.

For τ < q−2 the pair experiences an attractive potential that grows linearly with L, typical
of a confined phase. However, as τ increases, the interaction gets stronger with an effective

charge eeff = eq/
√

1− τq2. For τ > q−2, the potential diverges with the particles of charge eq
seemingly decoupling from the theory.

To conclude this section, we have derived the exact partition function for the TT -deformed
U(1) gauge theory on the torus. Depending on the sign of the deformation, we have found
radically different behaviors.

For µ > 0, the spectrum of the theory undergoes a drastic reduction with only a finite
number of states (namely, the ones with positive energy) surviving as indicated in Eq. (5.18).
The truncation of the spectrum comes with an infinite number of quantum phase transitions,
each associated with the vanishing of a certain correlator of Polyakov loops.

For µ < 0, the appearance of a tower of nonperturbative contributions cures the naive
divergence of the partition function. Conservatively, the origin of this tower can be traced back
to the existence of a state of energy Ec with the negative norm for each U(1) flux. The spectral
properties of the theory in this regime are encoded in the resolvent

R(E,τ) =
∫ ∞

0
dα eαEZ(α,τ)

= −
√

2π√
E(2Eτ +1)3/2

cot

( √
2π

√
E√

2Eτ +1

)

.

(5.33)

As already observed in the case of JT gravity [56], for negative values of the deformation
parameter, the partition function can be reproduced by acting on the undeformed resolvent
with the change of variables induced by the flow equation for the spectrum. In the case at
hand, we observe that R(E,τ) is obtained from R(E,0) with

E 7−→ E

1+2τE
. (5.34)
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The same approach cannot be used when µ > 0 since the above map cease to be continuous.
Still, it would be interesting to gain a better understading of (5.23), in particular from the
perspective of the topological composition rules of the original gauge theory [129]. These, in
fact, while fully compatible with the truncation of the spectrum for µ > 0, fail to naively hold
for (5.23).

5.2 The zero-flux sector

After having studied the simpler case of Maxwell theory, we now move to U(N) Yang-Mills
theory on the sphere, whose general features have been exposed in 2.2.3. Specifically, we start
by studying the deformed zero-flux sector, describing quantum fluctuations about the “trivial”
vacuum. In the present section, our approach is to regard z0 as a power series in the deformation
parameter τ . To this end, it is convenient to introduce the differential operator

Dα,τ =
∞
∑

n=0

τn

n!

(

− 2α

N2

∂2

∂α2

)n

. (5.35)

Since Fα,τ ◦ Dα,τ = 0, Dα,τ effectively generates power-series solutions of the flow equation
when acting on the corresponding “undeformed” function encoding the initial condition at
τ = 0. However, the sum in (5.35) should be regarded as a formal power series in τ , since in
general, it could have vanishing radius of convergence.

Before applying the above to z0, it is convenient to write the undeformed zero-flux partition
function (2.140) as a power series in α,5

z0(α,0) = CN

∞
∑

j=0

αj−N2/2

j!

(

N2 −1

24

)j

. (5.36)

Then,

z0(α,τ) = Dα,τ z0(α,0)

= CN

∞
∑

j=0

αj−N2/2

j!

(

N2 −1

24

)j ∞
∑

n=0

(

2τ

N2α

)n

ωn , (5.37)

where

ωn =
(−1)n Γ(j−N2/2)Γ(1+ j−N2/2)

n!Γ(j−n−N2/2)Γ(1+ j−n−N2/2)
. (5.38)

Let us now consider the sum over n: as anticipated, the series

Φ(t) =
∞
∑

n=0

ωn t
−n (5.39)

5To enforce convergence for small α, one can regard N as a complex number and choose an appropriate
region in the complex N -plane.

128



5. U(N) Yang-Mills on the sphere 5.2. THE ZERO-FLUX SECTOR

is asymptotic, having ωn ∼ n! for large n. In order to apply the standard machinery of Borel
resummation, we first consider its Borel transform,

BΦ(ζ) =
∞
∑

n=0

ζnωn

n!

= 2F1(N2/2− j,N2/2− j+1;1;−ζ) . (5.40)

We observe two different behaviors depending on sign of τ .

5.2.1 τ > 0

For positive values of τ , and hence of

t=
N2α

2τ
, (5.41)

we can simply Borel-resum the above by taking a Laplace transform along the positive real axis
in the complex ζ-plane

S0Φ(t) = t
∫ ∞

0
dζ Φ(ζ)e−tζ

= tN
2/2−j U(N2/2− j,0, t) . (5.42)

Here, U denotes the Tricomi confluent hypergeometric function; we refer the reader to Ap-
pendix A.14 for a brief survey on its properties. Plugging the resummed series back into (5.37)
gives

z0(α,τ) = CN

(

N2

2τ

)N2/2 ∞
∑

j=0

1

j!

(

τ(N2 −1)

12N2

)j

U

(

N2

2
− j,0,

N2α

2τ

)

. (5.43)

The sum is easily performed through the multiplication theorem for the Tricomi confluent
hypergeometric function. This leads to the final expression

z0(α,τ) = CN eX Y N2/2U(N2/2,0,W ) , (5.44)

where we defined

X =
N2(N2 −1)α

2(N2(12+ τ)− τ)
, (5.45)

Y =
N2(12+ τ)− τ

24τ
, (5.46)

W =
6N4α

τ(N2(12+ τ)− τ)
. (5.47)

It is immediate to check that, indeed, (5.44) is a solution of the flow equation (6.1) and repro-
duces the correct undeformed limit (2.140) for τ → 0+.
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Reζ

Imζ

S−π

S+π S0

Figure 5.3: The contours where the directional Laplace transformations are taken. For τ > 0,
S0 gives the full result of the Borel summation, free from nonperturbative ambiguities. The
Stokes line on the negative ζ axis induces two different lateral Laplace transformations, S+π

and S−π, that are relevant for the τ < 0 regime.

5.2.2 τ < 0

When τ < 0, which means t < 0, the series should be resummed by taking a directional Laplace
transform along the negative real ζ axis. However, as shown in Figure 5.3, the Borel transform
(5.40) has a Stokes line at argζ = π due to a cut that extends over ζ ∈ (−∞,−1). By approaching
the cut from above and below with lateral Laplace transforms one finds

S±πΦ(t) = t
∫ e±iπ∞

0
dζ e−tζ

2F1(N2/2− j,N2/2− j+1;1;−ζ)

= −t
∫ ∞

0
dx etx

2F1(N2/2− j,N2/2− j+1;1;−e±iπx)

= (t∓ i0)N2/2−j U(N2/2− j,0, t∓ i0) . (5.48)

We can use the analytic properties of the Tricomi confluent hypergeometric function to rewrite
the above as

S+πΦ(t) = (t− i0)N2/2−j

[

U(N2/2− j,0, t)− 2iπt

Γ(N2/2− j)
1F1(N2/2− j+1;2; t)

]

,

S−πΦ(t) = (t+i0)N2/2−j U(N2/2− j,0, t) . (5.49)

Since we are interested in a real partition function for real values of the deformation parameter τ
and the effective ’t Hooft coupling α, we can remove the nonperturbative ambiguities associated
with the presence of the Stokes line by employing a prescription known as median resummation,

SmedΦ(t) =
1

2
(S+πΦ(t)+S−πΦ(t)) . (5.50)
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For odd N , this prescription leads to

z0(α,τ) =
πCN

Γ(N2/2)
α

(

−N2

2τ

)N2/2+1

×
∞
∑

j=0

(1−N2/2)j

j!

(

−N2 −1

N2

τ

12

)j

1F1

(

N2

2
− j+1;2;

N2α

2τ

)

= − πCN

Γ(N2/2)
WeX(−Y )N2/2

1F1(N2/2+1;2;W ) . (5.51)

For N even, we find instead

z0(α,τ) = CN

(

−N2

2τ

)N2/2 ∞
∑

j=0

1

j!

(

N2 −1

N2

τ

12

)j

×
[

U

(

N2

2
− j,0,

N2α

2τ

)

− iπ

Γ(N2/2− j)

N2α

2τ
1F1

(

N2

2
− j+1;2;

N2α

2τ

)]

= CN eX Y N2/2

[

U(N2/2,0,W )− iπW

Γ(N2/2)
1F1(N2/2+1;2;W )

]

. (5.52)

Because the second term is purely imaginary, it necessarily cancels the imaginary part of the
first one. In fact, we can rewrite the two expressions as a single formula that holds for any N
as

z0(α,τ) = Re
(

CN eX Y N2/2U(N2/2,0,W )
)

. (5.53)

In both cases, we made use of multiplication theorems (A.137) and (A.138) for confluent
hypergeometric functions. For the theorems to hold, we need τ > τmin, where

τmin = − 12N2

N2 −1
. (5.54)

In fact, when approaching τmin from the left, W → +∞. Consequently, the partition function
diverges in this limit since the instanton-like terms blow up. We are therefore forced to regard
τ > τmin as a constraint on the validity of (5.51) and (5.52). When this condition is obeyed,
the two expressions above are real, satisfy the flow equation, and reproduce the undeformed
limit for τ → 0. One could, in principle, extend the range of validity by studying the relevant
nonperturbative contributions for τ < τmin. However, upon summing over m, we will find an
expression for the total partition function that does not exhibit any pathological behavior at
τ = τmin and that can be taken to hold for any value of the deformation parameter.
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5.3 Any flux sector

The results of the previous section suggest an ansatz for the structure of the full solution of the
flow equation (5.1) when written in terms of the variables Y and W ,6

zm(α,τ) = CN eX Y N2/2 f(Y,W ) . (5.55)

On the above, the flow equation becomes

W∂W f(Y,W )−W∂2
W f(Y,W )+Y ∂Y f(Y,W )+

N2

2
f(Y,W ) = 0 . (5.56)

This equation can be easily solved by separation of variables. Specifically, if we choose f(Y,W ) =
Υ(Y )Ω(W ), we obtain two ordinary equations

YΥ′(Y ) = sΥ(Y ) , (5.57)

WΩ′′(W )−WΩ′(W )− (N2/2+s)Ω(W ) = 0 , (5.58)

with solutions

Υ(Y ) = cY s , (5.59)

Ω(W ) = u U(N2/2+s,0,W )+vW 1F1(N2/2+s+1;2;W ) . (5.60)

Here, s is just an integration constant labeling different solutions.
We rewrite the ansatz as a generic linear combination of the above, where the coefficients

are chosen in order to reproduce the boundary value at τ = 0, which is fixed by the undeformed
theory. From (2.136) and (2.137), it is easy to see that a generic undeformed flux sector can
be expressed as a convergent expansion in 1/α with structure

zm(α,0) =
∞
∑

k=0

am,k

αk+N2/2
. (5.61)

The behavior of zm(α,τ) for small τ is sensitive to the sign of the deformation. We separately
study the two choices.

5.3.1 τ > 0

When τ → 0+, W → +∞ and 1F1

(

N2/2+s+1,2,W
)

becomes exponentially divergent. This
is not surprising as one expects the Kummer confluent hypergeometric function to bring non-
perturbative contributions in τ , which should be absent for positive values of the deformation
parameter. Therefore, when τ > 0, we consider a general solution of the flow equation written
as the linear combination

zm(α,τ) = CN eX Y N2/2
∞
∑

s=0

pm,s

s!
(−Y )s U(N2/2+s,0,W ) . (5.62)

6Here, X should be regarded as the shorthand

X =
(N2 −1)W

1+24Y −N2
.
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The undeformed limit is given by

lim
τ→0+

zm(α,τ) = z0(α,0)
∞
∑

s=0

pm,s

s!
(−α)−s . (5.63)

For the zero-flux sector, one can trivially determine the coefficients in the sum by comparing
with (2.140). This gives p0,s = δs,0, which reproduces the result (5.44) derived in the previous
section. For a generic flux sector, we can determine the coefficients pm,s by exploiting the
so-called Ramanujan’s Master Theorem.7 We find

pm,s =
1

Γ(−s)
∫ ∞

0
dα αs−1 zm(α,0)

z0(α,0)
. (5.64)

The formula is understood for some region in the complex s-plane where the above is well-
defined. The result is then analytically continued to positive integer values of s.

To determine the coefficient pm,s for a generic flux m we start with the definition (2.134).
Performing the integral is nontrivial due to the presence of the square of the Vandermonde
determinant in (2.133). However, within the Fourier integral, we can trade it for the differential
operator

V =
∆2(∂m1 , . . . ,∂mN )

(−4π2)N(N−1)/2
, (5.65)

leading to

zm(α,0) = z0(α,0)
∫

❘N
dℓ1 . . .dℓN e−2πim·ℓ ∆2(ℓ1, . . . , ℓN ) e− α

2N 〈ℓ〉

(2π)N/2N !G(N +1)(N/α)N2/2

= z0(α,0)
(α/N)ν

N !G(N +1)
(−1)m Ve−2π2N |m|2/α . (5.66)

We have used the fact that V(e−πimf(m)) = e−πim Vf(m). Now we can plug the above in
(5.64). The integration can be performed by assuming Res < 0. This gives the coefficient

pm,s =
(−1)m+νNs

N !G(N +1)

Γ(s+1)

Γ(s+ν+1)
V
(

2π2|m|2
)s+ν

, (5.67)

written in terms of the operator in (5.65) and the shorthand ν =N(N −1)/2.

7According to the theorem, if a complex function f has an expansion of the form

f(x) =

∞
∑

k=0

ϕ(k)

k!
(−x)k ,

then its Mellin transform reads
∫ ∞

0
dx xs−1 f(x) = Γ(s)ϕ(−s) .
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5.3.2 τ < 0

Let us now consider the case where τ < 0. From the results of the previous section and the
abelian case [54], we know that the deformed flux sector should receive nonperturbative correc-
tions in τ . Indeed, the presence of the Kummer confluent hypergeometric function, necessary to
construct real solutions of the flow equation (5.1) at τ < 0, brings instanton-like contributions
for τ → 0− (see Eq. (A.134)). As noticed in the previous section, the results will differ according
to the parity of N . To avoid repeating the analysis for both choices, the rest of the present
work will only focus on the case where N is odd, whenever τ < 0. Upon taking the sum over
all flux sectors, we will find an expression for the full deformed partition function that applies
to any N .

We choose the ansatz

zm(α,τ) = −πCN WeX(−Y )N2/2
∑

s∈K

(−1)2s pm,s

s!Γ(s+N2/2)
(−Y )s

1F1(N2/2+s+1;2;W ) . (5.68)

Let us for the moment set K = {0,1,2, . . .}. The ansatz is carefully defined in such a way to
reproduce the same limit as above, but now taken from negative values of τ , i.e. with this
choice, it follows from (A.134)

lim
τ→0−

zm(α,τ) = z0(α,0)
∞
∑

s=0

pm,s

s!
(−α)−s , (5.69)

and one can still use Eq. (5.64) to find the coefficients of the sum. This is consistent with the
result for the zero-flux sector derived in (5.51).

However, it is possible to add to the sum in (5.68) any half-integer s with s > 1 −N2/2
without modifying the undeformed limit (5.69). This is due to the fact that for such values of
s, the Kummer confluent hypergeometric function acts as a purely nonperturbative contribution
to the result. As we will see later, the inclusion of these additional terms is crucial to ensure the
convergence of the sum over m producing the full partition function Z(α,τ) and to generate
the expected semiclassical limit of each flux sector. We will address both of these important
points in the following sections.

For the moment, we simply choose K =K+ ∪K−, where

K+ =

{

0,
1

2
,1,

3

2
,2, . . .

}

, (5.70)

K− =

{

1− N2

2
,2− N2

2
, . . . ,−1

2

}

. (5.71)

As observed at the end of the last section, the ansatz in (5.68) holds for τ > τmin, since the
expression diverges for τ → τ−

min. As we will see in the following, this is a constraint that applies
only to the individual flux sectors since the expression for the full deformed partition function
will hold for any value of τ .

5.4 The full partition function

In this section, we will compute the full deformed partition function by summing over all the
deformed flux sectors. For these, we rely on the results of Section 5.2 and Section 5.3.
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5.4.1 τ > 0

For positive values of the deformation parameter, we can use (5.62) to compute a generic
deformed flux sector, starting from (5.67). The sum over s is performed by first replacing the
Tricomi confluent hypergeometric function with its integral representation (A.135) and then by
using the identity

∞
∑

s=0

xs

Γ(s+a)Γ(s+ b)
=

1F2(1;a,b;x)

Γ(a)Γ(b)

= 1F̃2(1;a,b;x) . (5.72)

This readily gives

zm(α,τ) =
(−1)m+νCN eX Y N2/2

N !G(N +1)

∫ ∞

0
dt

e−tW

t(1+ t)

(

t

1+ t

)N2/2

×V

[

(

2π2|m|2
)ν

1F̃2

(

1; N2

2 ,ν+1;−2π2NY t
1+t |m|2

)

]

.

(5.73)

The above expression can be simplified by changing integration variable with

t=
r2

2NY − r2
(5.74)

and by taking advantage of the following property of the hypergeometric function:

1F̃2

(

1; N2

2 ,ν+1;−z2
)

= (−1)νz1+N/2−N2

JN/2−1(2z)−
ν−1
∑

s=0

(−z2)s−ν

s!Γ(s+N/2)
. (5.75)

We observe that, when inserted into to our integral, the finite sum appearing above combines
with |m|2ν to produce a polynomial of degree 2(ν− 1) in the m’s, and it vanishes under the
action of V, which is a differential operator of order 2ν. We are then left with

zm(α,τ) =
(−1)m eX

N !G2(N +1)
V



2π
∫

√
2NY

0
dr rN/2 e

− r2W
2NY −r2 |m|1−N/2JN/2−1(2πr|m|)



 . (5.76)

In the above, we recognize the N -dimensional Fourier transform8

zm(α,τ) =
(−1)m eX

N !G2(N +1)
V





∫

dℓ1 . . .dℓN e−2πim·ℓ e
− W |ℓ|2

2NY −|ℓ|2 Θ(2NY −|ℓ|2)





=
∫

dℓ1 . . .dℓN e−2πim·ℓ
ẑ ℓ(α,τ) , (5.77)

8Let f(x) be a spherically-symmetric function on ❘
N . We denote f(x) = F (|x|). Then

∫

❘N
dx e−2πik·x f(x) = 2π|k|1−N/2

∫ ∞

0
dr JN/2−1(2π|k|r)rN/2F (r) .
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of the spherically-symmetric smooth function with compact support,

ẑ ℓ(α,τ) =
Θ(2NY −〈ℓ〉)
N !G2(N +1)

∆2(ℓ1, . . . , ℓN ) e
X− W 〈ℓ〉

2NY −〈ℓ〉 . (5.78)

Here, Θ denotes the Heaviside step function. The full partition function comes from taking the
sum over m, which can be traded for a sum over ℓ through the Poisson summation formula,

Z(α,τ) =
∑

m∈❩N

zm(α,τ)

=
∑

ℓ∈❩N

ẑ ℓ(α,τ) . (5.79)

Analogously to the abelian case [54], the full partition function can be expressed in terms
of the deformed Hamiltonian (5.3),

Z(α,τ) =
∑

R∈RN,τ

(dimR)2 e
− α

2N

C2(R)

1−τ C2(R)/N3 . (5.80)

Crucially, the range of the sum extends over RN,τ , the set of inequivalent irreducible repre-
sentations of U(N) with τC2 < N3. As a consequence, for any τ > 0 the deformed partition
function is a sum over a finite set, which is necessarily convergent. Moreover, the number of
terms in the sum in (5.80) varies with τ . Specifically, as τ increases, a given representation
R drops out of the sum when τ reaches the critical value τR = N3/C2(R). This prevents the
partition function from being analytic in τ at τ = τR. However, as τ → τ−

R , the term in the sum
associated with R vanishes together with its derivatives of any order, thus making the partition
function smooth. These critical values of τ have been studied in [54] for the abelian theory.
They were observed to be associated with quantum phase transition of infinite order.

For τ >N2, only the trivial representation contributes to the sum and the partition function
becomes itself trivial with Z(α,τ) = 1.

5.4.2 τ < 0

Let us now turn to the case where the deformation parameter is negative and N is odd. We
start from (5.68) and write zm = z

+
m

+ z
−
m

by splitting the range of the sum over K+ and K−

respectively, as defined in (5.70) and (5.71).
In Appendix A.15 we show that

z
+
m

(α,τ) =
eX

N !G2(N +1)
V



2π
∫ ∞

0
dr rN/2 |m|1−N/2JN/2−1(2πr|m|)

×
(

e
− r2W

2NY −r2 − eW −WeW
kmax
∑

k=1

1

k

(

2NY

r2

)k

L1
k−1(−W )

)





=
∫

dℓ1 . . .dℓN e−2πim·ℓ
ẑ

+
ℓ (α,τ) , (5.81)

where kmax = (N2 −1)/2, and

ẑ
+
ℓ (α,τ) =

eX ∆2(ℓ1, . . . , ℓN )

N !G2(N +1)

(

e
− W |ℓ|2

2NY −|ℓ|2 − eW −WeW
kmax
∑

k=1

1

k

(

2NY

|ℓ|2
)k

L1
k−1(−W )

)

. (5.82)
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One would be tempted to apply the standard Poisson summation formula to the above.
However, the sum over m does not converge.9 One can check that, as a consequence, ẑ

+
ℓ (α,τ)

diverges for ℓ → 0. It is possible to subtract the ℓ = 0 term (see e.g. [38]) with10

∑

m∈❩N

z
+
m

(α,τ)−
∫

❘N
dm z

+
m

(α,τ) =
∑

ℓ6=0

ẑ
+
ℓ (α,τ) . (5.83)

We use the above to write an expression for the full deformed partition function,

Z(α,τ) =
∑

ℓ6=0

ẑ
+
ℓ (α,τ)+R(α,τ) , (5.84)

where the residual term reads11

R(α,τ) =
∫

❘N
dm z

+
m

(α,τ)+
∑

m 6=0

z
−
m

(α,τ) . (5.85)

We now have to efficiently express the residual part in terms of U(N)-representation data.
To this end, we split the residual term as

R(α,τ) = REM(α,τ)+R0(α,τ) (5.86)

where

REM(α,τ) =
∑

m 6=0

z
−
m

(α,τ)−
∫

❘N
dm z

−
m

(α,τ) , (5.87)

R0(α,τ) =
∫

❘N
dm zm(α,τ) . (5.88)

We remind the reader that convergence in the definition (5.87) should be understood as in
Footnote 10.

9We prove in (A.152) that the sum of zm over all flux sectors is convergent. This can be split as

∑

m∈❩N

z
+
m

(α,τ)+
∑

m∈❩N

z
−
m

(α,τ) .

The second sum diverges since z
−
m

is a polynomial in m. As a consequence, the first sum must diverge as well,
and it must do so by sharing the same behavior at large m.

10 In (5.83) and in other instances throughout the remainder of the present section, we will deal with
finite expressions written as the difference between a divergent sum and a divergent integral. In such cases,
convergence is ensured by taking the appropriate simultaneous limit of the spherical partial sums. Namely, the
combination

∑

x

f(x)−
∫

dx g(x)

should be understood as the regulated form

lim
Λ→∞

(

∑

|x|≤Λ

f(x)−
∫

|x|≤Λ

dx g(x)

)

.

11We omit the m = 0 term in the sum, since this vanishes. The result for the zero-flux sector is in (5.51).
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From (5.68) and (5.67), and by using

1F1(k+1;2;W ) =
eW

k
L1

k−1(−W ) , (5.89)

we find

z
−
m

(α,τ) =
(−1)νπ1−N/2WeX+W

N !G2(N +1)

kmax
∑

k=1

(−2π2NY )k L1
k−1(−W )

Γ(k+1)Γ(k+1−N/2)
V |m|2k−N , (5.90)

while its Fourier anti-transform reads

ẑ
−
ℓ (α,τ) =

WeX+W

N !G2(N +1)

kmax
∑

k=1

(2NY )k

k
L1

k−1(−W )
∆2(ℓ1, . . . , ℓN )

|ℓ|2k
. (5.91)

For the last step, we use again a generalized Poisson summation formula [38] to rewrite the
residual term (5.87) as

REM(α,τ) =
∑

ℓ6=0

ẑ
−
ℓ (α,τ)−

∫

❘N
dℓ ẑ

−
ℓ (α,τ)

=
WeX+W

N !G2(N +1)

kmax
∑

k=1

Qreg
N,k

(2NY )k

k
L1

k−1(−W ) , (5.92)

where the coefficients are given by the generalized Euler–Maclaurin expansion12

Qreg
N,k =

∑

ℓ6=0

∆2(ℓ1, . . . , ℓN )

|ℓ|2k
−
∫

❘N
dℓ

∆2(ℓ1, . . . , ℓN )

|ℓ|2k
. (5.93)

We are left with the residual term (5.88) that we rewrite through (A.152) as the residue of
an essential singularity,

R0(α,τ) =
eX+W

N !G2(N +1)
PN Resu=2NY

(

e
2NY W
u−2NY uν−1

)

=
W eX+W

N !G2(N +1)
PN

(2NY )ν

ν
L1

ν−1(−W ) , (5.94)

in terms of the constant of group-theoretic origin

PN = π2
∫

❘N
dm V

[

|m|1− N
2 i

N
2 H

(1)
N
2 −1

(2iπ|m|)
]

=
G(N +2)Γ(N/2)

(−2)ν Γ(N2/2)
. (5.95)

By taking advantage of certain cancellations, we can write the deformed partition function
in a more suggestive way as

Z(α,τ) = R0(α,τ)+
∑

ℓ∈❩N

∆2(ℓ1, . . . , ℓN )

N !G2(N +1)

(

e
X− W |ℓ|2

2NY −|ℓ|2 − e
X+W

)

− eX+W
∫

❘N
dℓ

∆2(ℓ1, . . . , ℓN )

N !G2(N +1)
W

kmax
∑

k=1

1

k

(

2NY

|ℓ|2
)k

L1
k−1(−W ) . (5.96)

12See [16] for an introduction to generalized Euler–Maclaurin expansions and their physical applications.
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Here, the counterterms have the same form as the ones that appear in (5.84), but are provided
by an integral over ℓ, rather than a sum. In fact, in this expression both the sum and the integral
are separately divergent. Once more, convergence should be understood as in Footnote 10.

The sum over ℓ is the only term that survives in the abelian theory, and correctly reproduces
the result obtained in [54], where a constant is subtracted from the e−aH term associated with
the deformed Hamiltonian (5.3). The same constant factor, namely

eX+W = e
N2α

2τ , (5.97)

appears in front of the integral and in R0, and determines the nonperturbative character of
every counterterm in (5.96).

So far, we have been able to recast the full partition function from a sum over fluxes into an
expression that is the direct deformation of the sum over U(N) representations in (2.133). We
now wish to provide a more compact way to reorganize the result, which should shed more light
on the origin of the conterterms. To this end, we observe that in (5.82), instead of subtracting
from the exponential the first kmax +1 terms of its 1/|ℓ| expansion, we can equivalently use the
rest of the series to write

∑

ℓ6=0

ẑ
+
ℓ (α,τ) =

WeX+W

N !G2(N +1)

∞
∑

k=kmax+1

QN,k

(2NY )k

k
L1

k−1(−W ) , (5.98)

in a way that is similar to the residual term in (5.92), if not for the fact that the coefficients

QN,k =
∑

ℓ6=0

∆2(ℓ1, . . . , ℓN )

|ℓ|2k
(5.99)

are not quite the same as in (5.93). However, as explained in Appendix A.16, Qreg
N,k is the

meromorphic continuation of QN,k in k, and both can be expressed as certain derivatives of the
regularized Epstein zeta function. Therefore, we can use the prescription in (A.161) to write
the full partition function as

Z(α,τ) = R0(α,τ)+
WeX+W

N !G2(N +1)

∞
∑

k=1

(2NY )k

k
L1

k−1(−W ) VZreg | 0
m

|(2k)
∣

∣

∣

∣

m=0
. (5.100)

The range of the sum can be safely extended to k = 0 since the added term vanishes identically.
According to this form of the partition function, the counterterms can be seen as originating
from the regularization of the Dirichlet-like sums generated by the expansion in inverse powers
of |ℓ|. There is only a finite number of such terms for any N , namely those with 1 ≤ k ≤ kmax.
The expansion necessarily misses the term with ℓ = 0, which is accounted for by the presence
of R0. This term vanishes in the undeformed theory due to the presence of the Vandermonde
determinant, but amounts to a finite nonperturbative contribution in the deformed theory as
prescribed by the analysis of the deformed flux sectors.

5.5 The semiclassical limit

In Section 5.3.2, we commented on the fact that in writing (5.68), the partition function of a
generic deformed flux sector for τ < 0, we were confronted with a choice regarding the non-
perturbative part of the expression. At the end of Appendix A.15, we noticed that our choice
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guarantees the convergence of the sum over the fluxes m. Although this property is certainly
necessary for the validity of our construction, it is not sufficient to fully remove the ambiguity
regarding the exact form of the deformed flux sectors. From the point of view of the flow equa-
tion (5.1), this arbitrariness comes down to the fact that imposing a boundary condition at
τ = 0 is not enough to guarantee the uniqueness of the solution. A second boundary condition
can be imposed by taking α→ 0+. However, one should be careful in taking such a limit, since
there are a priori various ways in which this can be done. Specifically, keeping τ finite, or
alternatively, keeping µ finite, both lead to unphysical regimes.

In pure undeformed Yang–Mills theory, taking the gYM → 0 limit is equivalent to taking the
semiclassical limit. The reason for this is that the gauge coupling acts as an overall constant
that multiplies the action (2.98), playing a role analogous to that of h̄. As a consequence, when
gYM → 0, the path integral localizes on the field configuration that minimize the Euclidean
action. However, this feature is not shared by the deformed action, as it can be seen from
(2.244) where the two sides of the equation carry different powers of L , and thus of gYM.
One should rather define a rescaled deformation parameter σ ∼ µ/g2

YM so that the deformed
Lagrangian density (2.247) depends on the gauge coupling through an overall power.

In terms of the variables at hand, then, the semiclassical limit amounts to taking α→ 0 and
τ → 0 simultaneously in such a way that

σ =
4π2

N

τ

α2
(5.101)

is kept fixed. Concretely, throughout this section we will replace τ with its expression in terms
of α and σ, so that the semiclassical limit of zm is simply obtained by studying the regime
where α→ 0.

By performing the limit at the level of each individual flux sector we expect to find

− logzm ∼ Scl(m,σ) , (5.102)

where

Scl(m,σ) =
3π2N

2ασ

(

3F2

(

−1

2
,−1

4
,
1

4
;
1

3
,
2

3
;
256

27
|m|2σ

)

−1
)

(5.103)

is the deformed action evaluated on the classical instanton configuration, obtained by plugging
the classical undeformed action associated to flux sector m into the deformed Yang-Mills La-
grangian (2.247). Notice that, since (2.247) is a strictly monotonic function of the undeformed
Lagrangian density, the classical instanton configurations are stationary points of the deformed
action as well.

The remainder of this section is devoted to the computation of the semiclassical limit of zm

for both sign choices of τ .

5.5.1 τ > 0

Choosing a positive deformation parameter corresponds to imposing σ > 0. We start with (5.76)
and notice that the integrand is an even function of r. Thus we can rewrite the expression by
mirroring the integration range about r = 0 and dividing by 2. We then change integration
variable with

r =
2πN |m|

α
w . (5.104)
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Rew

Imw

−wsing +wsing

−iω⋆

γ>

Figure 5.4: The integration contour for (5.107). The original integration contour is represented
with a dashed red line and runs along the real w-axis. In the α→ 0 limit, we deform the contour
according to the steepest-descent approximation which prescribes crossing the saddle point at
−iω⋆ horizontally. The new contour γ> is represented with a solid red line.

The integral now extends over the range (−wsing,wsing), with

wsing =
1

|m|√σ . (5.105)

At the endpoints of such a range, the integrand has an essential singularity.
We now consider the α → 0 regime. To this end, we use the asymptotic behavior of the

Bessel function, namely

Jν(2z) ∼ cos(2z−νπ/2−π/4)√
πz

for z → ∞ , (5.106)

and find

zm ∼ (2πN/α)
N+1

2 (−1)m

N !G2(N +1)

∫

γ>

dw (iw)
N−1

2 V

[

|m|e− 4π2N |m|2
α η(w)

]

, (5.107)

where

η(w) =
w2

2(1−|m|2σw2)
+ iw . (5.108)

The trigonometric function in (5.106) was turned into a complex exponential in (5.107) by
adding an appropriate odd function of w that gets cancelled under integration. The integration
contour γ> is depicted in Figure 5.4.

We employ the steepest-descent approximation method. The solutions of the saddle point
equation, that we write as η′(−iω) = 0, are captured by the quartic

|m|4σ2ω4 +2|m|2σω2 −ω+1 = 0 . (5.109)

There is a saddle,

ω⋆ = 3F2

(

1

2
,
3

4
,
5

4
;
4

3
,
5

3
;
256

27
|m|2σ

)

, (5.110)
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which is smoothly connected to the one of the undeformed theory. Due to the presence of a
branch cut in the hypergeometric function, ω⋆ is real for |m|2σ < 27/256, and so is

1

η′′(−iω⋆)
= 3F2

(

3

4
,
5

4
,
3

2
;
4

3
,
5

3
;
256

27
|m|2σ

)

> 0 . (5.111)

For this range of parameters, we deform the contour as indicated in Figure 5.4 and find

zm ∼ (2πN/α)
N
2 (−1)m

N !G2(N +1)
V

[

h(|m|2σ)e−Scl(m,σ)
]

. (5.112)

In the above, we have recognized

4π2N |m|2
α

η(−iω⋆) = Scl(m,σ) (5.113)

to be the deformed classical action (5.103), and we have denoted

√

√

√

√

ωN−1
⋆

η′′(−iω⋆)
= h(|m|2σ) , (5.114)

where

h(z) =
[

3F2

(

1

2
,
3

4
,
5

4
;
4

3
,
5

3
;
256

27
z
)]

N−1
2
[

3F2

(

3

4
,
5

4
,
3

2
;
4

3
,
5

3
;
256

27
z
)]

1
2

= 1+(N +2)z+O(z2) . (5.115)

We can observe that the full result for the deformed flux sector in the semiclassical limit
maintains the form in (2.136), i.e. it can be decomposed as

zm ∼ wm(α,σ) e−Scl(m,σ) . (5.116)

This is because the action of the differential operator V in (5.112) does not spoil the presence
of an overall exponential term associated with the deformed classical action. Rather, by acting
as in (5.112), V determines the deformation of the fluctuation term wm(α,σ).

Notice that for each flux sector there exists a finite neighborhood of σ = 0 for which zm

is analytic in σ. Conversely, for any σ > 0 only a finite number flux sectors will have an
associated partition function that is analytic at that point. This reflects the fact that, as
discussed in Section 5.4.1, the total partition function has peculiar analyticity properties in
any neighborhood of τ = 0. The presence of a branch cut can also be understood by noticing
that at |m|2σ = 27/256 the saddle (5.110) collides with another real solution of (5.109). This
additional saddle, which is subdominant in the range 0 < |m|2σ < 27/256, should combine
with the contribution coming from ω⋆ and modify the asymptotic behavior in (5.112) when
|m|2σ > 27/256.

From the point of view of the full partition function, this feature suggests a semiclassical
mechanism for the truncation of the spectrum that can be attributed to a collective behavior
of the flux sectors: for any fixed τ , the sum over the fluxes should include contributions coming
from both saddles when |m| is large enough. Accordingly, an infinite number of oscillatory
terms appears in the full sum, since the saddle points are complex conjugates and carry, in
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general, a nontrivial imaginary part. We argue that a destructive interference occurs among
these terms, resulting into the sharp cutoff on the sum over the representations. At a first
look, this observation might seem at tension with the fact that the truncation of the spectrum
is controlled by the sole τ , given that the location of the branchpoint of the classical action
depends on both τ and α. We expect nevertheless that the interference should come from the
full tower of fluxes, and as such to be dominated by terms with large |m|. Nicely, one finds that
in said regime, |Scl|2 ∼ 4π2|m|2N3/τ , recovering the dependence on the correct cutoff scale,
including the expected power of N .

5.5.2 τ < 0

For negative values of the deformation parameter, i.e. for σ < 0, we start from (A.152) and
rescale the integration variable with

u=
4π2N2|m|2

α2
v . (5.117)

The essential singularity of the integrand sits now at

vsing =
1

|m|2σ . (5.118)

In taking the α→ 0 limit, we make use of (A.150) to write

zm(α,τ) ∼ (2πN/α)
N+1

2

N !G2(N +1)

i

2

∮

γ<

dv

v
(
√

−v)
N+1

2 V

[

|m|e− 4π2N |m|2
α χ(v)

]

, (5.119)

where

χ(v) =
v

2(1−|m|2σv) +
√

−v . (5.120)

By writing the saddle-point equation as χ′(−ω2) = 0, we find that the solutions are again
captured by the quartic in (5.109) and consider the solution in (5.110). Since now σ < 0, the
saddle is always real for any range of parameters. Moreover, we find that

vsing <−ω2
⋆ < 0 . (5.121)

In choosing the contour for (5.119) according to the steepest-descent prescription, we notice
that χ′′(−ω2

⋆) < 0. Accordingly, we define γ< so that it crosses the saddle point vertically as
indicated in Figure 5.5. The final result reads

zm ∼ (2πN/α)
N
2

N !G2(N +1)
V

[

h(|m|2σ) e−Scl(m,σ)
]

, (5.122)

where, again we find that

4π2N |m|2
α

χ(−ω2
⋆) = Scl(m,σ) (5.123)
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Rev

Imv

vsing

−ω2
⋆

γ<

Figure 5.5: The integration contour for the steepest-descent approximation of (5.119) in the
α → 0 limit. The contour crosses the saddle point −ω2

⋆ parallel to the imaginary axis. Notice
that, when approaching vsing from the left, Reχ→ +∞.

is the deformed classical action (5.103) evaluated on the classical instanton configuration with
total magnetic flux m, while

√

√

√

√− ωN−3
⋆

4χ′′(−ω2
⋆)

= h(|m|2σ) (5.124)

coincide with the expression obtained in (5.115).
It is remarkable that, for each flux sector, the semiclassical limits obtained for either signs of

τ agree.13 This effectively tells us that the nonperturbative corrections included in the partition
function (5.68) are precisely those that guarantee such a match. In fact, each term that appears
in the sum generates an instanton-like contribution of the form

eX+W = e
2π2N

ασ (5.125)

that shapes the semiclassical limit.

13The only discrepancy between (5.112) and (5.122), namely the presence of the overall sign (−1)m, is merely
due to the fact that for τ < 0 this was dropped since it is always trivial for odd N .
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Despite its simplicity, we know that Yang-Mills theory retains enough complexity to provide a
convenient testing ground for conjectured properties of higher-dimensional models. Specifically,
it can be used as a toy model to study various features of the large-N dynamics of gauge theories,
such as the analyticity of the strong coupling expansion [34], or the ’t Hooft gauge/string
duality [122]. In fact, as we anticipated in 2.2.4, two-dimensional Yang–Mills theory has an
exact description at large N in terms of a string theory, with 1/N playing the role of the string
coupling constant. The expression for the 1/N -expansion of the free energy can be computed
in terms of branched covers of the two-dimensional target space, i.e. as string worldsheets of
various windings [61, 66, 65].

Further, in the review 2.2.4 we have also explained how the partition function on genus-zero
manifolds exhibits a large-N phase transition in the total area a,1 going from a strongly-coupled
string-like phase for large a to a weakly coupled phase for small a. This is a third-order phase
transition first observed by Douglas and Kazakov [35]. Its physical origin can be understood
from the weak-coupling side in terms of instanton condensation [97, 64] or as a divergence of
the string expansion when seen from the strong-coupling region [35, 124].

In the previous chapter, We initiated a systematic study of T T̄ -deformed gauge theories,2

deriving exact results for the abelian case [54] and for the nonabelian theory on the sphere
[55]. In particular, our results of 5 have revealed a truncation of the spectrum for µ > 0
associated with nonanalyticities in the partition function and the appearance of nonperturbative
contribution in the deformation parameter for µ < 0. It is a challenging task, though, to study
the large-N limit of the theory from the exact expressions obtained at finite N .

In the present chapter, mainly following our paper [57], we study the deformed theory on
the sphere in the limit where N is large. In taking this limit, one obtains a nontrivial dynamics
by keeping finite the ’t Hooft coupling λ and the dimensionless combination τ = µλN2, which
can be regarded as an effective deformation parameter. Having a new coupling τ opens up a
new direction in the phase diagram of the theory, which in the undeformed case was simply the
half-line α > 0 (i.e., λ > 0). Indeed, studying the full structure of this phase diagram is one of
the main goals of this work.

Summary of results. Contrary to previous investigations on the subject [116, 48], we follow
an approach based on iteratively solving the system of partial differential equations governing
the deformation of the large-N expansion of the free energy. We find exact solutions at all
orders in 1/N . These are obtained by propagating the initial conditions at τ = 0 associated

1The ’t Hooft coupling λ and the area a form an adimensional coupling α= λa, which is the proper coupling
of the theory.

2The T T̄ deformation of gauge fields has also been studied in connection with DBI-like theories [14, 27, 5].
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Figure 6.1: The phase diagram of the theory at large N has three phases: weak coupling,
strong coupling, and mixed coupling. The blue line is the deformed Douglas–Kazakov critical
line, associated with a third-order phase transition. The black line is a critical line associated
with a second order-phase transition. The two lines join at a multicritical point represented by
a blue dot. The thin gray line at τ = 0 corresponds to the undeformed theory.

with both the weak-coupling and the strong-coupling regime along a system of characteristic
curves determined by the leading order F0 of the free energy. These curves effectively chart the
phase diagram of the deformed theory; much of the information on the large-N dynamics can
be obtained by studying their properties. The entire phase diagram is shown in Figure 6.

The characteristic curve emanating from the Douglas–Kazakov critical point acts as an
interface between the characteristics transporting the weak-coupling and the strong-coupling
initial conditions. In other words, the critical point of the undeformed theory is now a critical
line with an associated third-order phase transition. The critical line is monotonically decreasing
as a function of τ . It reaches the α= 0 axis at a value τmax above which the theory exists only
in the strong phase. At such a point, the discontinuity of F ′′′

0 diverges.

There is a second endpoint of this critical line where F ′′′
0 again diverges. This happens

at τmcp < 0. We can interpret this behavior by observing that the Douglas–Kazakov line
tangentially joins a novel critical line associated with a second-order phase transition on such
a point. This curve is an envelope for the characteristics of both the strong coupling and the
weak-coupling phase and effectively acts as a boundary for both phases. From the point of
view of the differential equation, this limits the region that can be accessed by propagating the
initial condition at τ = 0. This phenomenon has to do with nonperturbative corrections in τ ,
which cease to be suppressed in the large-N limit upon crossing the envelope. We had already
observed in [55] how such corrections introduce ambiguities that can be fixed by imposing a
second boundary condition. In the new region, which we refer to as mixed phase, the hierarchy
between instantons in α, typical of the weak-coupling phase, is also lost.

Figure 6 can then be interpreted as a diagram in which each phase represents a different
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regime for the instantons. In the weak-coupling phase, all instanton corrections are suppressed.
In the strong phase, the instantons in α contribute to the result, while the instantons in τ are
suppressed. Finally, in the mixed phase, both types of instantons contribute.

We mentioned earlier that at finite N , the theory exhibits nonanalyticities in the free en-
ergy associated with the truncation of the spectrum and with the presence of nonperturbative
corrections in the deformation parameter. We can explain the absence of such feature at large
N with the way τ scales with N , which makes such a limit well-defined. For τ > 0, the scaling
has the effect of restoring an infinite spectrum or, equivalently, of pushing towards τ → +∞
the points of nonanalyticity. On the other hand, if α > 0, we notice from the phase diagram
that there always exists a region for small τ < 0 where the nonperturbative corrections in τ are
suppressed,3 thus ensuring the analyticity of the free energy at τ = 0.

6.1 Preliminary observations

We recall that the flow of the Yang–Mills partition function along the T T̄ deformation is
controlled by the partial differential equation [25, 75, 115, 55]

1

λ

∂Z

∂µ
+2α

∂2Z

∂α2
= 0 , (6.1)

where λ= α/a is the ’t Hooft coupling. For µ > 0, we showed in 5 that the deformed partition
function is given by a formula analogous to the heath-kernel expansion (2.102), namely [55]

Z =
∑

C2(R,µ)>0

(dimR)2 e− α
2N C2(R,µ) , (6.2)

where each representation is weighted by the “deformed quadratic Casimir”

C2(R,µ) =
C2(R)

1−µλC2(R)/N
, (6.3)

and the sum is restricted over the representations for which the above is positive. In other words,
whenever the deformation parameter reaches a critical value µR =N/(λC2(R)), the associated
representation R is removed from the sum in (6.2). As a consequence, Z is nonanalytic yet
smooth for µ ∈ {µR}. Furthermore, for any µ > 0, only a finite number of representations R
contribute to the partition function, i.e. such that µR < µ. The only representation always
present in the sum is the trivial representation since it has C2 = 0. Next, we find that the two
U(N) representations with the smallest Casimir are the fundamental and the antifundamental
representation, namely

nF = (+1,0, . . . ,0) , (6.4)

nA = (0, . . . ,0,−1) , (6.5)

both of which have C2 = N . This means that for every N , the theory becomes completely
trivial when µ > 1/λ.

3These corrections have the form eN2α/2τ and are thus suppressed at large N for small τ and large α,
consistently with the picture emerging from the phase diagram in Figure 6.
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A large-N theory with a finite number of states would necessarily bear no resemblance
to the two-phases undeformed theory described in the previous section. To obtain a deformed
theory with rich dynamics at large-N , one should find an appropriate double-scaling limit where
µ → 0 when N → ∞, so that the sum over an infinite number of representations is restored.
The flow equation (6.1) suggests the correct scaling. If we consider just the leading order in
the large-N expansion of the free energy, namely logZ ∼ N2F0, the corresponding differential
equation reads

1

λ

∂F0

∂µ
+2N2α

(

∂F0

∂α

)2

+2α
∂2F0

∂α2
= 0 . (6.6)

By defining as in [115, 55] the rescaled adimensional deformation parameter τ = µλN2 we
provide the right scaling so that the representations contributing to the leading order of the
free energy are still present. At the same time, the deformed Casimir remains nontrivial over
such a set when N is large. The flow equation for F0 in terms of τ then reads

∂F0

∂τ
+2α

(

∂F0

∂α

)2

= 0 . (6.7)

We have seen in the previous chapter 5 that, for µ < 0, the deformed partition function

receives nonperturbative corrections carrying an overall factor of eN2α/(2τ), thus making the
partition function nonanalytic at τ = 0. However, we notice that at large-N , because of the
chosen scaling in N , one expects these instanton-like corrections to be suppressed for small τ ,
thus making F0 analytic at τ = 0. In the next section, we will see that this is indeed the case.

Let us now quickly recall some features of the deformed theory at finite N that will be
useful to treat the large N limit. In 5, based on [55], the deformed partition function on the
sphere was computed by first finding the correct solution of the flow equation associated with
each deformed zm(α,τ), and by then summing over m. The partition functions of the various
flux sectors are conveniently expressed in terms of the variables

X =
N2(N2 −1)α

2(N2(12+ τ)− τ)
, (6.8)

Y =
N2(12+ τ)− τ

24τ
, (6.9)

W =
6N4α

τ(N2(12+ τ)− τ)
, (6.10)

and read

zm(α,τ) =











































CN eX Y N2/2
∞
∑

s=0

pm,s

s!
(−Y )s U(N2/2+s,0,W ) for τ > 0 ,

−πCN WeX(−Y )N2/2

×
∑

s∈K

(−1)2s pm,s

s!Γ(s+N2/2)
(−Y )s

1F1(N2/2+s+1;2;W ) for τ < 0, N odd ,

(6.11)

with K = {1 − N2

2 ,2 − N2

2 , . . . ,−1
2 ,0,

1
2 ,1, . . .}. With U and 1F1 we denote, respectively, the

Tricomi and the Kummer confluent hypergeometric functions. For simplicity, we will not deal
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with the case of even N when τ < 0. The coefficients that appear in the solutions are given by

pm,s =



















δs,0 for m = 0,

(−1)m+νNs

N !G(N +1)

Γ(s+1)

Γ(s+1+ν)
V
(

2π2|m|2
)s+ν

for m 6= 0,
(6.12)

where ν =N(N −1)/2. This ensures that the limit

lim
τ→0

zm(α,τ) = z0(α,0)
∞
∑

s=0

pm,s

s!
(−α)−s (6.13)

matches the correct expression for the undeformed flux sector (2.139).

6.2 The large-N expansion of the free energy

In the last section, we have determined the correct scaling of the effective deformation parameter
τ , deriving the flow equation that governs the leading order of the free energy in the large-N
limit. The goal now is to study further the flow equation, to obtain exact results for all orders
in the 1/N -expansion, and to identify the main features of the phase diagram of the theory for
both positive and negative values of τ .

We first need to write down the flow equation acting on the deformed free energy F (α,τ) =
logZ(α,τ). Eq. (6.1) induces a partial differential equation for F (α,τ) which takes the form

N2∂τF +2α(∂αF )2 +2α∂α
2F = 0 . (6.14)

Before expanding in powers of N , it is useful to transform (6.14) into an equation with constant
coefficients by replacing F with

F (α,τ) =N2G(
√
α,τ)+

logα

4
, (6.15)

thus obtaining for G(z, t)

∂τG+
1

2
(∂zG)2 +

1

2N2
∂z

2G=
3

8N4z2
. (6.16)

Finally, we assume that F , and thus G, possess an expansion in powers of 1/N2, as in the case
of the undeformed theory. In particular, we denote

G(z,τ) =
∞
∑

ℓ=0

N−2ℓGℓ(z,τ) . (6.17)

Let us now start by considering the leading order at large N . Instead of directly dealing
with the equation for G0,

∂τG0 +
1

2
(∂zG0)2 = 0 , (6.18)
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it is easier to study the equivalent problem for E = ∂zG0, which is described by the well-known
inviscid Burgers’ equation

∂τ E +E ∂zE = 0 . (6.19)

Standard solutions are obtained by studying the characteristics of the differential operator
D = ∂τ + E ∂z, i.e. the solutions of the ordinary differential equation dz/dτ = E . According to
(6.19), E is constant along the characteristics, which are then given by

z = ξ+ τ ϕ(ξ) , (6.20)

where ϕ(ξ) = E(ξ,0) and ξ is some integration constant. The original equation (6.19) is solved
by simply inverting (6.20), from which one can write the explicit solution

E(z,τ) = ϕ(ξ(z,τ)) . (6.21)

It is not difficult at this point to derive the equations for the subleading terms in the large-N
expansions:

DG1 = −1

2
∂z

2G0 ,

DG2 = −1

2
∂z

2G1 − 1

2
(∂zG1)2 +

3

8z2
,

DGℓ = −1

2
∂z

2Gℓ−1 − 1

2

ℓ−1
∑

k=1

∂zGk ∂zGℓ−k , for ℓ≥ 2. (6.22)

This recursive system can be conveniently integrated by changing variables with

G̃ℓ(ξ,τ) =Gℓ(z(ξ,τ), τ) , (6.23)

in terms of which (6.22) becomes

∂τ G̃ℓ =
τ ϕ̈∂ξG̃ℓ−1

2(1+ τ ϕ̇)3
− ∂ξ

2G̃ℓ−1 +Sℓ

2(1+ τ ϕ̇)2
+

3δℓ,2

8z2
, (6.24)

where S1 = 0, while for ℓ≥ 2,

Sℓ(ξ,τ) =
ℓ−1
∑

k=1

∂ξG̃k(ξ,τ)∂ξG̃ℓ−k(ξ,τ) . (6.25)

The solutions are now easy to find:

G̃0(ξ,τ) = −1

2

∫ τ

0
dt E2(z(ξ,τ), t)+F0(z2(ξ,τ),0) , (6.26)

G̃ℓ(ξ,τ) =
∫ τ

0
dt

(

t ϕ̈(ξ)∂ξG̃ℓ−1(ξ, t)

2(1+ t ϕ̇(ξ))3
− ∂ξ

2G̃ℓ−1(ξ, t)+Sℓ(ξ, t)

2(1+ t ϕ̇(ξ))2

)

− logξ δℓ,1

2
+

3τ δℓ,2

8ξ(ξ+ τ ϕ(ξ))
+Fℓ(ξ

2,0) , for ℓ≥ 1. (6.27)
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In the second identity, we made use of

Fℓ(z
2(ξ,τ), τ) = G̃ℓ(ξ,τ)+

δℓ,1

2
log(ξ+ τ ϕ(ξ)) , (6.28)

which is a trivial consequence of (6.15). Conversely, we can recover the free energy from the
solutions (6.26) and (6.27) with

Fℓ(α,τ) = G̃ℓ(ξ(
√
α,τ), τ)+ δℓ,1

logα

4
. (6.29)

6.2.1 The phase diagram

As a direct application of the previous formulas, one can read off the large-N expansion of
the free energy in the weak-coupling phase,4 taking as boundary condition the undeformed
zero-flux partition function (2.140)

F0(α,0) =
3

4
+
α

24
− logα

2
, (6.30)

F1(α,0) = − α

24
, (6.31)

Fℓ(α,0) = 0 , for ℓ≥ 2. (6.32)

A peculiar feature of the undeformed theory is that at weak coupling, only F0 and F1 are
nontrivial. As we will see in a moment, this property ceases to hold at finite τ .

To show this, we simply apply the algorithm previously described. The first step is to use
(6.30) to compute

ϕ(ξ) = E(ξ,0) =
ξ

12
− 1

ξ
. (6.33)

We then plug this in (6.20) and find

ξ = 6
z+

√
z2 −αw

τ +12
, (6.34)

which, in turn, from (6.21) and defining αw = −τ(12+ τ)/3, gives

E(z,τ) =
z

τ +12
−2

z−
√
z2 −αw

αw
. (6.35)

Before computing the deformed large-N expansion of the free energy, we should discuss
the bounds on the validity of the solution (6.35). A first bound comes from the fact that the
initial condition we imposed so far holds in the weak-coupling phase, i.e. when α < π2 for the
undeformed theory. Therefore, this initial condition can only be propagated in the region of
parameters covered by characteristics that cross the τ = 0 axis in the interval α ∈ (0,π2). In
other words, the characteristic

α=
[

π+ τ
(

π

12
− 1

π

)]2

(6.36)

4We have neglected inessential constant terms contributing to subleading orders in 1/N .
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Figure 6.2: The diagram shows the system of characteristics associated with both the weak-
coupling phase (red lines) and the strong-coupling phase (orange lines). The blue line is the
characteristic that acts as a critical line between the two phases and crosses the τ = 0 axis
at α = π2. The critical line ends on the multicritical point (αmcp, τmcp). The black parabola
delimiting the weak-coupling phase is the envelope of the weak-coupling characteristics and
corresponds to α = αw. The black line delimiting the strong-coupling phase is the envelope of
the strong-coupling characteristics and has coordinates (αs, τs).

represents a bound for the validity of the solution of the Burgers’ equation (6.19) at weak
coupling. We see that for τ > τmax, where

τmax =
12π2

12−π2
, (6.37)

the theory is always in the strong-coupling phase for any value of α.
Furthermore, we notice that ξ and, as a consequence, E are real for α ≥ αw. The set of

points where the last inequality saturates is the envelope of the system of characteristics (6.35).
This means that the parabola

α−αw = 0 (6.38)

represents another bound for (6.19) at weak coupling. In the next section, we will see what the
origin of said bound is and how to make sense of the deformed Yang–Mills partition function
beyond the envelope.

As can be seen in Figure 6.2, the two parabolas (6.36) and (6.38) are tangent at the multi-
critical point

αmcp =
(

24π

12+π2

)2

, τmcp = − 12π2

12+π2
. (6.39)
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We can now apply (6.26) and (6.27) to recursively generate any term in the large-N expan-
sion of the deformed free energy. The first few terms read

F0(α,τ) =
3

4
+
α̃

24
− log α̃

2
+
τ(12− α̃)2

288α̃
, (6.40)

F1(α,τ) = − α̃

24
− 1

4
log
(

1− αw

α

)

, (6.41)

F2(α,τ) =
τ2

72





α̃2

α̃αw −4τ2
+

12α̃τ(5τ −36)

(α̃αw −4τ2)2
+

48τ2(21α̃αw −4τ2)

(α̃αw −4τ2)3
− 108

α̃αw +4τ2



 , (6.42)

where

α̃= α
1−αw/2α+

√

1−αw/α

2(1+ τ/12)2
. (6.43)

Notice that the critical line α̃ = π2 is not only a characteristic for the weak phase but also
for the strong phase. This is simply due to the fact that E(z,0) is a continuous function at
z = π, since the transition is of the third order. Therefore, the line of equation

z = π+ τϕ(π) (6.44)

is a characteristic shared by both phases. We will discuss the transition in more detail in the
next section.

We start now to explore the deformation of the original strong-coupling phase. The relevant
characteristics can be obtained in implicit form. From (2.151), (2.152), and (2.153) we find

ϕ(ξ) =
ξ

12
− 8(k+1)K2

3ξ3
− 16(k+1)2K4

3ξ5
, (6.45)

where

ξ2 = 4K(2E+(k−1)K) . (6.46)

The corresponding curves are plotted in Figure 6.2. We see that, as it happens for the weak-
coupling phase, the strong-coupling characteristics have an envelope for some range of negative
values of τ . To find such a curve, we need to solve 1 + τ ϕ̇(ξ) = 0 on the solutions of the
characteristics equation (6.20). This is easily done in parametric form. In fact, while it is not
possible to invert (6.46) in closed form, one can still use it to obtain k′(ξ) as a function of k
itself obtaining

αs =

(

384(k−1)2K4ξ

ξ6 −32(k+1)K2ξ2 +320(k−1)2K4

)2

,

τs = − 12ξ6

ξ6 −32(k+1)K2ξ2 +320(k−1)2K4
, (6.47)

in terms of the parameter k ∈ [0,1). The range corresponds to ξ ∈ [π,∞). The envelope has
one extremum, namely the point at k = 0, that coincides with the multicritical point (6.39): it
connects nicely with the envelope for the weak-coupling characteristics, α = αc, thus creating
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a continuous line. It is also tangent to both the envelope for the weak-coupling characteristics
and the critical line for the Douglas–Kazakov phase transition, as the three curves all share the
same derivative at the multicritical point

dα

dτ

∣

∣

∣

∣

∣

mcp

= 4− 96

12+π2
. (6.48)

At large α, as already remarked in (2.155), the leading order of the undeformed free energy
scales exponentially as F0(α,0) ∼ 2e−α/2 . Because

E(z,0) = −zG0(z,0) ∼ −2z e−z2/2 (6.49)

is exponentially suppressed in z, the characteristic equation (6.20) reads z ∼ ξ for large z. In
other words, as z increases, the E dependence on τ gets weaker and weaker, and the character-
istics become, essentially, vertical lines in Figure 6.2.

In this regime, it is convenient to solve the characteristic equation by expanding ξ as a power
series in τ and then by fixing the coefficients of the expansion order by order. The solution,

ξ = z+2zτ e−z2/2 +(z5τ −4z3τ2 −6z3τ +4zτ2 +2zτ)e−z2

+(z9τ −6z7τ2 −32z7τ/3+12z5τ3 +48z5τ2 +28z5τ −28z3τ3 −60z3τ2

−16z3τ +8zτ3 +8zτ2 +8zτ)e−3z2/2 + . . . , (6.50)

gives, in turn, a power-series expression for E(z,τ). Upon integration, we find

F0(α,τ) = 2e−α/2 +(α2/2−2α−1−2ατ)e−α

+(α4/3−8α3/3+4α2 +8/3−2α3τ +12α2τ −4ατ +4α2τ2 −4ατ2)e−3α/2

+ . . . , (6.51)

which is the τ -deformed version of (2.155). Some comments are now in order to interpret the
above result. The undeformed expression captures the Gross–Taylor string theory on the genus-
zero target space [65], the leading order corresponding to connected covering maps of the type
S2 → S2. The exponential terms of the form e−nα/2 represent the contributions of coverings
of degree n, while the associated polynomials are obtained by integrating over the positions of
various types of singularities [66, 65]. In this regime, the τ deformation affects the polynomial
part and acts as a perturbation of the original string expansion: one could conjecture that the
deformation provides a refinement for the maps contributing to the string theory, similarly to
the generalization induced by higher Casimirs [45, 29], but a precise interpretation of the new
terms and their geometrical meaning are beyond the scope of the present paper.

6.3 The deformed Douglas–Kazakov phase transition

In the last section, we have seen that the deformed theory exhibits the critical line (6.36),
separating the weak-coupling phase from the strong-coupling phase, which is the continuation of
the Douglas–Kazakov critical point of the undeformed theory.5 The associated phase transition

5In [116], the same phase transition was studied by considering the matrix-model of [35] with a τ -deformed
potential.
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remains of the third order. In fact, from (2.154) we see that near the critical line

∆E(z,0) = 2z ∂α∆F0(α,0)
∣

∣

∣

α=z2
(6.52)

= − z

π6
(z2 −π2)2 +O((z2 −π2)3) . (6.53)

Let us consider the second derivative

∂2
z ∆E = ∆ϕ̈(ξ)(∂zξ)

2 +∆ϕ̇(ξ)∂2
zξ , (6.54)

and evaluate it on the characteristic with ξ = π. The second term vanishes since ∆ϕ̇(π) = 0,
and we are left with

∂2
z ∆E(z(π,τ)) = ∆ϕ̈(π)(1+ τ ϕ̇(π))−2

= −16

π3

(

τmcp

τ − τmcp

)2

. (6.55)

The discontinuity of the third derivative of the free energy on the critical line is easily obtained
as

Disc∂3
αF0 =

2

π6

(

τmcp

τ − τmcp

)2(
τmax

τ − τmax

)3

, (6.56)

which generalizes the undeformed result in (2.154). This expression diverges at both τmcp and
τmax, i.e. as one approaches both the multicritical point (6.39) and the limit value after which
the theory is in the strong phase for any α.

As mentioned in the review 2.2.4, the Douglas–Kazakov phase transition of the undeformed
theory is driven by instantons, and this fact was argued in [64] by computing the ratio (2.149).
We now want to show that this property still holds in the deformed theory.

The first step is to obtain a convenient representation for the instanton contributions, suit-
able to compute the large-N limit of the relevant ratio. We found useful to express the Tricomi
confluent hypergeometric through the following integral representation, that holds for Rea > 0
and Rez > 0,

U(a,b,z) =
1

Γ(a)

∫ ∞

0
dt e−zt ta−1 (t+1)b−a−1 . (6.57)

The instanton partition function (6.11) can be recast as

zm(α,τ) = CN eX
∞
∑

s=0

(−1)s pm,s

s!Γ(N2/2+s)

∫ ∞

0
dt

e−tW

t(t+1)

(

tY

t+1

)N2/2+s

. (6.58)

To evaluate its large-N limit, we use the Stirling approximation

CN

Γ(N2/2+s)
∼ e

5
4 N2

(

2

N2

)N2/2+s

, (6.59)
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and define

X ∼N2x , x=
α

2(12+ τ)
, (6.60)

Y ∼N2y , y =
12+ τ

24τ
, (6.61)

W ∼N2w , w =
6α

τ(12+ τ)
. (6.62)

We then change the integration variable with

1

u
=

2ty

t+1
(6.63)

and by using (6.13) we obtain

zm(α,τ) ∼
∫ ∞

1
2y

du

u
e−N2ρ(u) zm(u,0)

z0(u,0)
, (6.64)

where

ρ(u) =
w

2uy−1
−x− 5

4
+

1

2
logu . (6.65)

The function ρ(u) has minimum in u = α̃. Moreover, this saddle point always falls within the
integration range since α̃ > 1/(2y) for τ ≥ 0.

As expected, the zero-flux sector (6.64) reproduces the result of the large-N leading order
at weak coupling computed in (6.40). Namely, ρ(α̃) = −F0(α,τ), so that

z0(α,τ) ∼ eN2F0(α,τ) . (6.66)

For a generic m, we assume that in the large-N limit, the sum is always subleading with respect
to the exponential, i.e. that the sum does not contribute to the fluctuations about the saddle.
Under this assumption, one finds

zm(α,τ)

z0(α,τ)
∼ zm(α̃,0)

z0(α̃,0)
. (6.67)

In other words, the deformed ratio coincides with the undeformed one upon replacing α with
α̃.6

Let us see how this works concretely in the case when m= 1. From (6.12), one can compute
the coefficients for the one-flux sector, which turns out to be

p1,s = (−1)N−1 (2π2N)s
2F1(−s,1−N ;2;2) . (6.68)

Then, the associated sum can be performed exactly by using the identity

∞
∑

s=0

ξs

s!
2F1(−s,a;b;x) = eξ

1F1(a;b;−ξx)

= eξ Γ(1−a)Γ(b)

Γ(b−a)
Lb−1

−a (−ξx) , (6.69)

6An analogous result for m = 1 was obtained in [116] through a different approach.
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and as a result, we find

z1

z0

∼ (−1)N−1 e−2π2N/α̃ L1
N−1(4π2N/α̃) , (6.70)

which is the expected result. Therefore, we can simply invoke the argument of [64] and conclude
that the partition function of the unit-flux sector is no longer suppressed in the large-N limit for
α̃≥ π2. This confirms the observation of Section 6.2, where we obtained the same condition for
the transition to the strong-coupling phase of the deformed theory. We remark that the above
picture is a smooth deformation of the undeformed case. The nonperturbative contributions
driving the transition are still instantons labeled by the quantized magnetic flux vector.

6.4 Envelopes and nonperturbative corrections

A puzzling feature of the phase diagram in Figure 6.2 is the emergence of an envelope of
characteristics in both the weak-coupling and the strong-coupling phase. This phenomenon is
similar to the emergence of a Douglas–Kazakov phase transition in that instantons drive both.
However, while the Douglas–Kazakov transition is due to instantons in the effective ’t Hooft
coupling α, the novel phase transition is due to instantons in the deformation parameter τ .

To show this, let us first focus on the envelope at α= αw. In this case, the analysis is more
straightforward since the envelope sits at the boundary of the weak-coupling phase where the
zero-flux sector completely dominates the dynamics. We will show that, when N is large, the
nonperturbative corrections in τ , typical of the deformation with τ < 0, are suppressed only for
α > αw.

Again, we use an integral representation for the Kummer confluent hypergeometric function
to conveniently express our zero-flux partition function. For Rea > 0,

1F1(a;b;z) =
1

2πi

Γ(b)Γ(a− b+1)

Γ(a)

∫ (1+)

0
dt ezt ta−1 (t−1)b−a−1 , (6.71)

where the integral is taken over a contour starting and ending in 0 and encircling 1 in the
positive sense. Armed with the above representation, we recast z0(α,τ) at finite N and τ < 0
in terms of a contour integral and study its large-N limit using a saddle-point approximation.
Starting from (6.11) and (6.12), we find

z0(α,τ) = − iCN

2Γ(N2/2+1)
WeX(−Y )N2/2

∮

γ
ds eW s

(

s

s−1

)N2/2

. (6.72)

The choice of contour γ is shown in Figure 6.3. When N is large, we can write7

z0(α,τ) ∼ iNe
5
4 N2

√
π

α

αw
e−N2 τ

6
α

αw

(

−12+ τ

12τ

)N2/2 ∮

γ
ds e−N2φ(s) , (6.73)

where

φ(s) = 2
α

αw
s− 1

2
log

s

s−1
. (6.74)

7For simplicity, we discard an irrelevant overall constant.
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Res

Ims
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γ

s+s−
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Ims

0 1

γ′

s−

s+

Figure 6.3: On the left, the integration contour for the original integral in (6.72). This choice
is particularly convenient for α > αw, where both saddles are real (blue dots). On the right,
the deformed contour is associated with the steepest descent approximation for α < αw, where
both saddles are complex (green dots).

As N → ∞ the integral will be dominated by the stationary points of φ(s),

s± =



















1

2

(

1±
√

1− αw

α

)

for α > αw ,

1

2

(

1± i

√

αw

α
−1

)

for α < αw .

(6.75)

For τ = 0, the stationary points are at the endpoints s= 0 and s= 1 of the branch cut of φ(s).
As τ decreases, these move towards s = 1/2 where they collide for αw = α. As τ decreases
further, the stationary points acquire an opposite nonvanishing imaginary part and move away
from the real axis.

When evaluated on the critical points, the second derivative of φ(s) reads

φ′′(s±) =























∓8
α2

α2
w

√

1− αw

α
for α > αw ,

∓8i
α2

α2
w

√

αw

α
−1 for α < αw .

(6.76)

When α > αw and both s± sit on the real axis, φ′′(s+)< 0, while φ′′(s−)> 0. In other words,
when applying the Laplace approximation method, we only consider the contribution coming
from s−, which is a minimum for φ(s) and corresponds to the perturbative saddle. On the
other hand, the contribution coming from the nonperturbative saddle s+ is suppressed. We
already know what the large-N asymptotics in this regime is, as it is the result computed in
Section 6.2.

The coalescence of the two saddle points is responsible for a critical behavior: when α<αw,
the nonperturbative saddle is no longer suppressed and needs to be considered. The function
φ(s) has the same real part when evaluated on both saddles. Specifically,

φ(s±) =
α

αw

(

1± i

√

αw

α
−1

)

∓ iarctan
(
√

αw

α
−1

)

± i
π

2
. (6.77)

The integral can be conveniently computed by deforming the original contour γ into a γ′ that
traverses the saddles along the associated steepest-descent path. As shown in Figure 6.3, γ′
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crosses the saddle in s+ with args = π/4 and the saddle in s− with args = 3π/4. This gives
the large-N asymptotics

z0(α,τ) ∼ e5N2/4

(αw/α−1)1/4

(

−12+ τ

12τ

)N2/2

exp

(

N2α(6+ τ)

2τ(12+ τ)

)

× cos
(

N2
[

α

αw

√

αw

α
−1−arctan

(
√

αw

α
−1

)]

− π

4

)

. (6.78)

We observe that the above expression does not have a definite sign. In fact, it oscillates rapidly
when N is large: it is clear that the full theory cannot be dominated by just the zero-flux sector
for α < αw. This regime is thus characterized by the presence of nonperturbative terms both in
the effective ’t Hooft coupling α and in the rescaled deformation parameter τ . We will denote
this region of the phase diagram as the mixed phase.8

We can say more: when the system is in the weak-coupling phase and approaches the critical
line at α = αc, we argue that it exhibits a behavior typical of a system in an ordered phase
approaching a second-order phase transition. To this aim, in the following we loosely identify
α as an inverse temperature. We can compute the “specific heat”

C = α2∂2
αF0(α,τ)

=
1

2
√

1−αc/α
, (6.79)

to find that the associated critical exponent is 1/2.
This behavior is not specific to the weak-coupling phase, but rather it is typical of any

envelope of characteristics of the Burgers equation (6.19). In fact, if we write C in the language
of Section 6.2, we find

C =
z

4

(

z ∂zE(z,τ)−E(z,τ)
)

=
z

4

(

z ϕ̇(ξ(z,τ))∂zξ(z,τ)−ϕ(ξ(z,τ))
)

. (6.80)

As mentioned in Section 6.2, the condition leading to an envelope of characteristics is that

1

∂zξ(z,τ)
= 1+ τ ϕ̇(ξ(z,τ)) (6.81)

should vanish as z approaches the critical value zc. As a consequence, on every envelope of
characteristics, C diverges. Although its derivative is singular, ξ is finite on the envelope. We
are therefore led to the ansatz

ξ(z,τ) = ξ(zc, τ)+ ξ1(τ)(z− zc)
γ + . . . (6.82)

where 0< γ < 1 and the dots represent subleading terms. Now we use (6.81) to fix the leading
power in z− zc and the associated coefficient. In particular, from

(z− zc)
1−γ

γ ξ1(τ)
+ . . .= τ ϕ̈(ξ(zc, τ))ξ1(τ)(z− zc)

γ + . . . , (6.83)

8The phase diagram at τ < 0 and the role of the nonperturbative saddles was studied in [48], although the
results therein do not quite agree with our findings.
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we deduce that

∂zξ(z,τ) ∼ (z− zc)
−1/2

√

2τ ϕ̈(ξ(zc, τ))
. (6.84)

This, in turn, leads to

C ∼ − z2
c

4τ
√

2τ ϕ̈(ξ(zc, τ))
(z− zc)

−1/2 , (6.85)

which, once again, gives C ∼ (α− αc)
−1/2. What we have just proven can be checked to

reproduce exactly the result in the weak-coupling phase if we identify αw = z2
c , but it applies also

to the envelope associated with the strong-coupling characteristics upon identifying αs = z2
c .9

We conclude that the black envelope line in Figure 6.2 at the boundary of the mixed phase
can thus be thought of as a single continuous critical line associated with a second order phase
transition with critical exponent 1/2.

9We can either regard αs as a function of τ or assume that both zc and τ are functions of k as in (6.47).
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7Conclusions and outlook

In this chapter, we finally draw the conclusions for this dissertation. For each of main contents
studied, we summarize the most remarkable results achieved and we point out some possibile
generalizations and outlooks. Section 7.1 is devoted to the perturbative expansions of corre-
lators in JT gravity, Section 7.2 to JT gravity at finite cutoff, while Section 7.3 deals with
T T̄ -deformed Yang-Mills theory. We finally add a Section 7.4 where we outline some related
ongoing projects and directions we are going to pursue in the near future.

7.1 Wilson line perturbative expansion

In 3 we have considered JT bi-local correlators of operators with positive weight λ, on the disk
and the trumpet topologies 1 . The perturbative series associated to these correlation functions
is harder to obtain than in the parent case λ ∈ −◆/2, that was studied in [90] in the zero
temperature limit. We have been able nevertheless to distill some aspects of the κ expansion
of the two-point function.

We started from the exact non-perturbative expression for a boundary anchored Wilson line
(2.189), that we derived in 2.2.6 in the context of first order gauge reformulation of gravity as
a BF theory. In 2.2.6 we have also proven this is equivalent to a bilocal two-point function
for an operator of weight λ in the Schwarzian theory. The semiclassical leading term and first
order in the gravitational perturbative expansion (2.71) for this bilocal correlator were already
known in the literature [86, 117] and in 2.1.3 we have reviewed how to obtain it for the disk
topology, while in 3.1 we extended the perturbative analysis to the trumpet’s less trivial case.
We have then been able to check the agreement of the exact expression with the Schwarzian
perturbation theory, at least for the known orders, for any value of β.

Moreover, for the particular case of λ ∈◆/2, we derived an all-order formula for the pertur-
bative contributions, that becomes particularly handful in the limit of infinite β. We have also
shown that the exact expression for our bi-local correlators is closely related to the Mordell
integral, a basic constituent in the theory of Mock-modular forms [23].

There are some lessons that we can draw from our computations and some directions that
could be worth to study further. A feature that we may explore from the knowledge of the
entire perturbative series is, for example, the nature of possible non-perturbative contributions
to the full answer. For instance, let us consider the coefficient cr in the case β → ∞. We can
easily read it from (3.66):

cr =
(2λ)! (2r−4λ−1)!!

22λ

2rτ r−2λ

(2r)!









2λ
∑

k=0

(2λ
k

)2B(4λ)
2r (k+λ)







 (7.1)

1Chapter 3 presents the results achieved in [59].
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To understand its behavior for large value of r we need to know the behavior of the generalized
Bernoulli polynomials in that limit. This aspect was discussed in detail in [83], where it was
found that the dominant contribution is

Bm
2r(z) ≃ −(2r)!

[

βm
1

e2πiz

(2πi)2r +βm
−1

e−2πiz

(−2πi)2r

]

(7.2)

where βm
k (n,z) ≃ (−1)m−1nm−1

(m−1)!
. At leading order these coefficients are independent of k and

(7.2) collapses to

Bm
2r(z) ≃(2r)! (−1)m+r (2r)m−1 2

(2π)2r (m−1)!
cos(2πz) . (7.3)

If we choose m= 4λ the coefficient cr for r → ∞ takes the form

cr ≃(2λ)! (2r−4λ−1)!!

22λ

2rτ r−2λ

(2r)!

(2r)! (−1)4λ+r (2r)4λ−1 2

(2π)2r (4λ−1)!
(−1)2λ

2λ
∑

k=0

(

2λ

k

)2

=

=
(2λ)! (2r−4λ−1)!!

22λ

2rτ r−2λ

(2r)!

(2r)! (−1)4λ+r (2r)4λ−1 2

(2π)2r (4λ−1)!
(−1)2λ 4λ!

(2λ!)2 ,

(7.4)

where we have performed the sum over the square of the binomial coefficients. We can now
easily complete our large r−expansion with the help of the Stirling formula. After some tedious
algebra we find

cr =
4λ(−1)6λ τ r−2λe2λ

√
π (2λ)!

(−1)r r2λ− 3
2 r!

π2r
(7.5)

The coefficient grows as a power times r! and its global sign alternates with the parity of r.
Thus the perturbative series appears to be Borel-summable: in fact the leading pole appearing
in the Borel-transform is located on the negative axis and thus one could argue that non-
perturbative instanton-like configurations should not play any role here. On the one hand,
there is no guarantee that the Borel resummation of a Borel summable series reconstructs the
non-perturbative answer. There are sufficient conditions for this to be the case, which typically
require strong analyticity conditions on the underlying non-perturbative function. On the other
hand, in most of the examples of Borel summable series in quantum theories, Borel resummation
does reconstruct the correct answer (see [50] for a lucid discussion of these topics). The actual
determination of non-perturbative configurations, if any, remains therefore an important issue
for future investigations, as well as to understand their possible physical meaning with respect
to the boundary gravitons appearing in Schwarzian perturbation theory. This aspect would be
really interesting also to possibly detect the contributions of higher topologies, that, as we know
from (2.73), should indeed bring nonperturbative contributions in the gravitational coupling
constant.

The obvious extension of the present work would consist in studying the perturbative series
associated to general four-point correlators of bi-local operators. While the exact form on the
disk and the trumpet is well known [95, 74], much less has been learned on its perturbative
incarnation, due to the appearing in the out-of-time-ordered case of a very complicated vertex
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function inside the integrals. The relevant 6-j symbols involved there can be expressed through
Wilson function and, in principle, one could try to perform an expansion using the analytical
structure of the full amplitude. The success of such computation would certainly improve our
understanding of the properties of the associated gravitational S-matrix.

Another generalization of our investigations would concern the perturbative aspects of two-
point functions in presence of defects [92]. The trumpet correlators studied here are just a
particular example within this class, being associated to a bi-local operator with the insertion
of a hyperbolic defect in the bulk and computed without taking into account the winding
sectors [92]. It could be interesting to extend our analysis to the winding case and to consider
elliptic and parabolic defects too. The fate and the physics of bi-local correlators in presence
of multiple defects [88] or for deformed JT gravity [132] could be also explored. It would be
nice also to understand the character of perturbative contributions to bi-local correlators from
boundary fluctuations in higher-genus geometry [10].

Another possible direction of work is to verify the N = 1 first subleading correction to the
two-point function; in fact both the exact results and the perturbative leading order answer
are known and contained in [90].

Finally we point out that the correlators studied here were obtained in [93] from boundary
correlators of minimal Liouville string, exploiting a particular double-scaling limit. It would be
interesting to see if the Mordell structure, underlying the exact form of the bi-local correlator
on the disk, could be understood from a Liouville perspective.

7.2 JT gravity at finite cutoff

In 4 we have studied JT gravity as a model for holography at finite volume, considering the
nonperturbative contributions coming from the cutoff scale. We assumed the conjectured holo-
graphic duality between a T T̄ -deformed theory and gravity in a finite patch of AdS space. In
the case of JT gravity, this amounts to consider the Schwarzian theory deformed by a one-
dimensional analog of the T T̄ deformation, a mechanism that we reviewed in 2.3.3.

The same approach has been advocated in [73] where, among other things, crucial nonper-
turbative aspects arising from the radial cutoff have been explored. We investigated the ap-
pearance of exponentially-suppressed terms in the disk and trumpet partition functions through
Borel resummation and resurgence, finding a nice relation between these terms and the analytic
structure of the perturbative series in the deformation parameter. We then applied our findings
to compute results for arbitrary topologies, exploiting the gluing procedure of [113], which we
introduced in 2.1.4. The construction results in a consistent deformation of the Eynard–Orantin
topological recursion relations, that we reviewed in 2.1.5 for the undeformed case, although we
have not attempted to give a physical interpretation to the emerging deformed spectral density.

There are a certain number of open questions arising from our studies that could stimu-
late further investigations. In our opinion, a crucial one concerns the physical realization of
the deformed holographic dual. As already stressed, the deformed spectral density associated
with the topological recursion is not positive definite, and it certainly cannot originate from
an ordinary (double-scaled) matrix model. It would be interesting to explore the resolution of
this problem in a wider perspective: for example, naïve non-positive-definite spectral densities
show up in super-matrix models. Actually, in the context of JT gravity, one could consider
the supersymmetric version of the bulk theory [22, 44]. In this case, the holographic dual is
a supersymmetric Schwarzian quantum mechanics: its disk partition function provides never-
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theless a positive spectral density that allows considering a higher-genus completion, whose
interpretation is given in terms of different matrix ensembles [120, 133]. The T T̄ deformation
(or some related integrable deformation) could arise from a radial cutoff in the bulk theory even
for the supersymmetric JT gravity: we expect that exploring this direction would undoubtedly
improve the understanding of the present construction and maybe provide a link with the ma-
trix model approach proposed in [109]. A somewhat similar positivity problem appears in the
context of JT gravity with defects [88] and was solved by an appropriate sum over quantum
configurations, leading to a nontrivial modification of the theory [78].

Another research direction worth to be taken into account concerns a full first-principles
derivation of the path integral for the bulk theory at finite cutoff. Besides providing a solid
foundation for the gluing procedure used in Section 4.3, this would unambiguously fix the
integration measure, which in [73] is assumed to be unaltered by the deformation. Such a
choice is in sharp contrast with the approach of [121], where instead, a significant role was
played by a particular class of paths in the nonperturbative regime, leading to very different
results. In order to gain a better understanding of this discrepancy, one would perform a
bulk path-integral calculation, taking properly into account configurations with non-constant
Schwarzian action [100]: in principle, a semiclassical calculation could elucidate the contribution
of such configurations to the path-integral measure and indicate other nonperturbative effects.
This is the goal of a paper in preparation [104].

It would also be interesting to understand the behavior of the bulk theory at finite cutoff
in the presence of matter: for example, the existence of a U(1) chiral current could provide a
deformation of the Schwarzian quantum mechanics analogous to the JT̄ deformation in two-
dimensional CFTs [67]. In [21], such a deformation has been proposed leading, for some choice
of the parameters, to a positive-definite spectral density.

As a final remark, we observe that the spectral form factor in the T T̄ -deformed theory
shows some differences with respect to the original JT case, although certain universal aspects
remain present. In particular, the appearance of an oscillating term in the ramp regime hints
towards a different interpretation of the holographic picture.

7.3 T T̄ -deformed Yang-Mills theory

In 5 and 6 we have studied the effect of the T T̄ deformation on 2d Yang-Mills theory on the
sphere, which is exactly solvable with various methods, as we reviewed in the introduction 2.2.1.

The key strategy to make sense of the deformed partition function was to work at the level
of the instaton expansion representation 2.2.2. In fact, for both signs of τ , our approach was
based on the construction of solutions of the flow equation (5.1) for each flux sector of the
theory. Then, since Fα,τ is linear, one can construct the full deformed partition function as a
sum over individual deformed flux sectors zm(α,τ) obeying Fα,τ zm(α,τ) = 0.

There are two main features of the deformed theory that we have been able to address:
these are associated with the two different sign choices for the deformation parameter µ. For
µ > 0, only a finite number of states in the deformed spectrum can be accessed by solving
the relevant flow equation, the rest of the spectrum lying behind a divergence. If one insists
on preserving the hierarchy of states of the undeformed theory, one should postulate that an
infinite number of energy levels should decouple from the theory. Whitout postulating this
feature, we have been able to demonstrate it (5.6), suggesting the truncation of the spectrum
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is due to a phenomenon of deconstructive interference between different flux sectors in this
regime. For µ< 0, to obtain a well-defined partition function (5.7), we have instead proven one
has to incorporate instanton-like corrections in µ whose precise form is determined by imposing
appropriate physical requirements.

There is ample reason to believe that (5.6) should directly generalize to arbitrary gauge
groups and manifolds, with and without boundaries, in analogy with the case of µ = 0. This
is necessary in order to preserve the topological composition properties of the undeformed
theory. In fact, these rely solely on the orthogonality of characters and are unaffected by the
deformation of the Hamiltonian or by the finite range of the sum. The situation is quite different
for the partition function (5.7). Specifically, it is less obvious how R should be modified to
account for different groups and topologies. Furthermore, the nonperturbative terms appear
to be incompatible with the gluing rules of undeformed Yang–Mills theory, at least in their
simplest form. This inconsistency could be interpreted by invoking a breakdown of locality in
the µ < 0 regime. It would be interesting to investigate these points further, e.g. on the torus2

Furthermore, it is natural to employ our analysis of the flow equation to extend previous
results at large N [116, 48]. In [57], we obtain the full 1/N expansion of the deformed theory by
studying the differential equation governing the deformation of the free energy in the large-N
limit. This, in turn, allows us to study the full phase diagram of the deformed theory.

Finally, an obvious line of inquiry concerns applying the ideas presented here outside the
realm of gauge theories, for instance in the context of TT -deformed conformal field theories.
These also exhibit pathologies involving the upper portion of their spectrum. However, con-
trary to the Yang–Mills case, these happen for µ < 0 and in the form of a complexification of
eigenvalues, as we have experienced for instance in T T̄ -deformed Schwarzian theory, the dual
of finite cutoff JT gravity. While in our case the offending states naturally decouple as their
contribution to the partition function vanishes through the associated Boltzmann weight, it is
less clear for deformed conformal theories what the fate of the complex energies should be. In
[28], it was advocated that these states should be removed from the spectrum, thus leading
to a theory with a finite number of degrees of freedom, but a loss of unitarity has also been
proposed as a possible interpretation of the phenomenon. Another point of analogy with our
results is the presence of instanton-like corrections in µ for µ< 0 [1]. This seems to be a general
feature of the T T̄ deformation, with the flow equation admitting a nonperturbative branch of
solutions for negative deformation parameters. Outside the present work and [54], though, we
are not aware of any precise computation in this direction. While we are able to address both
points by studying each flux sector, there is no direct analogue of this for a general conformal
field theory. Perhaps resorting to a semiclassical analysis as described earlier could provide a
way forward.

The large N limit In 6 we have been able to extend the previous analysis to the large N
regime of Yang-Mills theory in the presence of T T̄ deformation. By studying the flow equation
for the free energy at large N and exploiting the previous results at finite N , we have been able
to derive the full phase diagram of the theory and explaining its main properties.

In particular, phase diagram of large-N Yang–Mills theory on the sphere displays an in-
triguing interplay between different types of nonperturbative contributions. In particular,
the discovered second-order phase transition sharply deviates from the familiar third-order
Douglas–Kazakov transition, signaling a genuine new effect due to the TT deformation. A

2For the undeformed torus partition function in a generic flux sector, see [51, 52, 60]
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natural follow-up of the present investigations would consist in deriving an effective description
of the mixed phase: in that region of parameters, we expect a behavior dominated by degrees
of freedom quite different both from the Gross–Taylor string and from the perturbative gauge
fluctuations, typical of the weak-coupling phase.3

The other obvious extension of our work concerns the study of the large-N Yang–Mills
theory on the torus. The undeformed theory has been studied from different points of view over
the years. In particular, it admits an accurate string description in the Gross–Taylor approach
[61, 66], and it is equivalent to a topological string theory on a non-compact toric manifold [127].
It would certainly be interesting to understand how these properties are deformed along the
TT flow and if a string-theory picture survives after the deformation. The torus topology also
offers a possible connection with the well-studied case of TT -deformed conformal field theories:
it is well known that Yang–Mills theory on the torus has a large-N description in terms of an
interacting compact boson [33] with subtle modular properties [30, 102]. We expect that the
TT deformation could be implemented and studied as some nontrivial interaction potential in
this effective theory.

Finally, the large-N theory on the sphere has a dual description in terms of a vicious walkers
model [49]. The Douglas–Kazakov phase transition has been studied in this context [43]. It
would be nice to extend this duality along the TT flow, possibly gaining new understanding of
the second-order phase transition.

7.4 Other related directions

There are various aspects and directions it is worth deepening about quantum gravity and
holography in lower dimensions, expecially in the context of JT gravity. An ongoing project
in this direction is the possibility of localizing the JT gravity partition function directly from
the bulk theory, not passing through the dual Schwarzian theory on the boundary [119]. Lo-
calization is a very powerful tool to reduce the infinite dimensional path integral to a finite
dimensional one, given by local contributions around fixed points.

We have explained in 2.2.5 how the exact computation of the JT gravity partition function
from the gravity side strongly relies on its rephrasal as a gauge theory and on the SL(2,❘)
representation data [74]. However, the link between gravity and fine theoretical structure of
the gauge theory is not directly obvious, as explained in [12] and treated in A.7. We are firmly
convinced that these aspects could be implemented in an elegant way within a supersymmetric
localization argument for the BF formulation of JT gravity, by imposing some suitable boundary
conditions on the relevant fields. we have already made some concrete progress in this direction,
by finding the correct localizing term and computing the one-loop determinant corresponding
to the quadratic fluctuations around the locus; this will be the content of our future paper [53].
The goal is to complete this derivation, possibly extending it to a boundary anchored Wilson
line, which in this language should be implemented by adding a chiral hypermultiplet in the
bulk. Furthermore, there is a concrete possibility to generalize this construction to higher spin
JT gravity [81], by promoting tha gauge group from SL(2,❘) to SL(◆,❘).

Furthermore, it would be illuminating to promote all these fascinating problems to one
dimension more, i.e. to three-dimensional gravity, where the gauge reformulation as a double

3We already noticed in [55] how the expression for the individual flux sector becomes ill-defined below a
certain bound at τmin.
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Chern-Simons is amaenable to localization and exact computations too. Remarkably, recent
studies [91] have also proposed how an effective description of three-dimensional gravity, corre-
sponding to the high temperature regime of the dual CFT, could arise from a doubled-version
of JT gravity. In this framework, well-known properties of Wilson lines in JT gravity could
be exploited to gain information about their three-dimensional uplift. The latter ones are
very notable objects [18] because, in the conventional Chern-Simons formulation, they can be
constructed to represent the geometry of two-sided black holes and to possibly describe an
emergent specetime from entanglement entropy in the bulk.

Furthermore, because of the close analogy between JT gravity and almost-topological gauge
theories 2.2.5, another fascinating direction of work consists in studying Yang-Mills theory on
general Riemann surfaces of genus g, with possibile insertions of boundaries. Specifically, we
have argued in 2.2.2 that the localization computation of 2d Yang-Mills performed by Witten in
[130] includes contributions from unstable flux sectors, which account for the nonperturbative
sector of the theory. Nevertheless, while the non-exponentially suppressed part of the partition
function, accounting for the intersection numbers on the moduli space of flat connections, is
precisely computed, the localized contribution from the vicinity of instantons is not worked out
explicitly. Instead, its asymptotic dependence on the physical gauge coupling is only inferred
on general grounds.

As a first step, we have already performed an exact Poisson resummation of the heat-kernel
sum for rank-one gauge groups, which led us to find the precise form of these instanton terms.
Our goal for the future is understanding their structure directly from localization: the emerging
one-loop determinant around these higher critical points is singular, so a key point would be
to interpret it correctly in the approach of non-abelian localization A.2. Thanks to some toy-
model example computation, we already have some intuition about what type of regularization
is needed for these singular effective actions; these are the contents of the future paper [58] in
preparation. Hopefully, since the cohomological multiplet is available in any dimension, this
procedure may shed light on localization of higher dimensional Yang-Mills, where the exact
result is not known. Finally, a natural extension of this project is the inclusion of Wilson loops,
which, in the vanishing area limit, should be interpreted as some point-like operator insertion
probing the topological sector of the theory.
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AAppendix

A.1 The DH theorem

We use equivariant localization to sketch a proof the DH localization formula, mainly following
the notations of [119]. We are given a symplectic manifold M with coordinates xi and with a
Hamiltonian H that generates a U(1) symmetry via Poisson brackets δxi = vi = ωij∂jH, where
ωij is the inverse of the symplectic form. Our task is to evaluate the integral

Z =
∫

M
dnx dnψ exp

[

1

2
ωijψ

iψj +H(x)
]

=
∫

dnx dnψ exp[−S (x,ψ)] (A.1)

Integrating out the ψ’s give the usual symplectic measure on the symplectic manifold M . The
action in (A.1) enjoys a fermionic symmetry, since it is closed under the action of a fermionic
charge Q, i.e. QS (x,ψ), which acts on the coordinates as

Qxi = ψi Qψi = vi (A.2)

We recognize Q as the equivariant differential

Q = d+ iv = ψi ∂

∂xi
+vi ∂

∂ψi
(A.3)

One can further check that Q2 acts as the generator of the U(1) symmetry. It follows that we
can add tQV to the action, for any U(1)-invariant V and the integral will be deformed by an
exact term that will not change its cohomology class. According to equivariant localization, the
integral will hence not be affected by the deformation 1. To prove the DH formula, it suffices
to choose a particular V = gijv

iψj where gij is any U(1)-invariant metric. In fact

QV = ψk ∂gij

∂xk
viψj +gijψ

k ∂v
i

∂xk
ψj +gijv

ivj (A.4)

Since the integral is indipendent of the coefficient t, we choose large t and so from (A.4) this
localizes the integral to the points where ψi = vi = 0, which corresponds to the critical points
of the Hamiltonian. When expanding QV around the critical points of H, we immeditely note
the first and second term are cubic in the fluctuation and so can be discarded in evaluating the
quadratic integral. One can check the Gaussian integral of the last term indeed induces the
correct measure for the one-loop integral about those points to prove the DH formula.

1the integral of an equivariantly exact form is zero.
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A.2. NON-ABELIAN LOCALIZATION A. Appendix

A.2 Non-abelian localization

Let X be a compact closed manifold acted on by a compact connected Lie group G, with Lie
algebra G of elements Ta. Every genenerator Ta is represented by a vector field Va on X.

We define the following integral

∮

X
α=

1

vol(G)

∫

G×X

dφ1dφ2 · · ·dφs

(2π)s
α e− ǫ

2 (φ,φ) (A.5)

where

• φ1,φ2 . . .φs are Euclidean coordinates of a vector φ ∈ G

• α ∈ Ω∗(X) is an equivariantly closed differential form on X, i.e. Dα = 0 where D =
d− i

∑

aφajVa
2 is the equivariant exterior derivative.

• ( , ) is positive definite invariant quadratic form on G, i.e. (φ,φ) =
∑

aφaφa

The integral above depends only on the cohomology class of D. This means we can always
deform an equivariantly closed form with an an equivariantly exact one 3 and we will get the
same answer for integration, i.e.

∮

X
α≡

∮

X
αetDλ (A.6)

where λ belongs to the G invariant subspace of Ω∗(X), where the Lie derivative with respect
to V vanishes, D2 = −iLV = 0. The deformed integral must be independent of the parameter
t. Writing the above more explicitly we get

∮

X
α=

1

vol(G)

∫ dφ1dφ2 · · ·dφs

(2π)s
α exp

(

tdλ− it
∑

a
φaλ(Va)− ǫ

2

∑

a
φ2

a

)

(A.7)

We now perform the Gaussian integral over each φs and we obtain

∮

X
α=

1

vol(G)(2πǫ)s/2

∫

X
α exp

(

tdλ− t2

2ǫ

∑

a
(λ(Va))2

)

(A.8)

As t→ ∞ the integral is localized to a sum of local contributions Zσ

∮

X
α=

∑

σ∈S

Zσ (A.9)

coming from the set S where

λ(Va) = 0 (A.10)

2jVa is the contraction of a generic form η with the vector Va, also denoted with the inner product η(Va)
3The integral of an exact equivariant form on X is zero

∫

X Dη = 0.
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A. Appendix A.2. NON-ABELIAN LOCALIZATION

A.2.1 The case where X is a symplectic manifold

We suppose now that X is a symplectic manifold, with symplectic form ω, and that the G
action on X has a moment map µ, defined by the moment equation dµa = −jVaω. Moreover
we define I = (µ,µ). We pick an almost complex structure J related to ω through

g (u,v) = ω (u,Jv) (A.11)

where g is a positive definite metric on X. We define λ in this way

λ=
1

2
J (dI) (A.12)

Witten proved that, with this choice of λ, the integral localizes to the critical points of I, i.e.
the condition λ(Va) = 0 is mapped into dI = 0.

We now consider a specific equivariantly closed form α, which is the equivariant extension
of the symplectic form ω:

α= exp

(

ω− i
∑

a
φaµa

)

(A.13)

Let’s check it is closed under the action of D:

Dα= exp

(

ω− i
∑

a
φaµa

)

(−i φajVaω− iφadµa) = 0 (A.14)

where we used dω = 0 and the moment map equation. Let’s specify the integral introduced
above (A.5) in this case:

∮

X
α=

1

vol(G)

∫

G×X

dφ1dφ2 · · ·dφs

(2π)s
exp

(

ω− i
∑

a
φaµa − ǫ

2

∑

a
φaφa

)

(A.15)

We perfom the integral over φ and expand exp(ω):
∮

X
α=

1

vol(G)(2πǫ)s/2

∫

X

ωn

n!
exp

(

− I

2ǫ

)

(A.16)

where I = (µ,µ) and 2n is the dimension of X.

Yang-Mills The partition function of two dimensional quantum Yang-Mills theory on a sur-
face Σ is formally given by the Feynman path integral:

Z(ǫ) =
1

vol(G)

∫

A
DA exp

(

− 1

2ǫ
(F,F )

)

(A.17)

where DA is the symplectic form on the infinite dimensional space of connections A. The
moment map is given by the map

µ(A) = − F

4π2
(A.18)

from the connection A to the curvature two-form F = dA+A∧A. On the other hand, since
(F,F ) is the norm of the moment map with respect to an invariant metric on the Lie algebra,
the integral (A.17) is precisely of the form of the integrals (A.16) governed by the non-abelian
localization principle exposed above. Accordingly, the path integral will therefore be localized
on the critical points of the square of moment map, corresponding either to F = 0 of dF = 0,
i.e. to the flat connections and Yang-Mills connections respectevely.
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A.3. tr
(

φ2
)

REPRODUCES THE SCHWARZIAN A. Appendix

A.3 tr (φ2) reproduces the Schwarzian

We fix the component Aτ of the gauge field along the boundary and thus easily use the equations
of motion to solve for the value of φ along I. We set

Aτ |bdy = ωl0 +

√

Λ

2
e+l+ +

√

Λ

2
e−l− (A.19)

where one defines
l0 = iP0 l+ = −P2 − iP1 l− = P2 − iP1 (A.20)

with commutation relations

[l±, l0] = ±l± [l+, l−] = 2l0 (A.21)

The components of the gauge field on the boundary are given by

ω = −iωτ |bdy e+ =
ie1

τ − e2
τ

2

∣

∣

∣

∣

∣

bdy

e− =
ie1

τ + e2
τ

2

∣

∣

∣

∣

∣

bdy

(A.22)

The equation of motion for φ near the boundary is

Dτφ= ∂τφ+
[

Aτ |bdy ,φ
]

= 0 (A.23)

It is convenient to relate the parametrizations of the boundary and of the defect I through the
function u(τ), i.e. finding the solution φ(u) as a function of u instead of τ . Equation (A.23)
will then be

Duφ= ∂uφ+[Au,φ] = 0 =⇒ ∂uφ+
[

Aτ |bdy τ
′,φ
]

= 0 (A.24)

with τ ′ = ∂τ(u)
∂u . It can be easily checked that the solution to the above is

φ(u) = φ0(u)l0 +φ+(u)l+ +φ−(u)l−

=
1

e

[

2

(

ωτ ′ − τ ′′

τ ′

)

l0 +
√

2Λ

(

e+τ
′ +

τ ′′′

Λe−τ ′2 − ωτ ′′

Λe−τ ′ − ωτ ′′2

Λe−τ ′3

)

l+ +
√

2Λe−τ
′ l−

]

(A.25)

The next step is to sobstitute the last expression into the defect action (2.167) 4:

SI = −1

e

∫ β

0
du

τ ′′′

τ ′ − 3

2

(

τ ′′

τ ′

)2

+2τ ′2
(

2Λe+e− −ω2

4

)

(A.26)

where in the first piece we recognize the Schwarzian derivative and in the second the determi-
mant of Aτ in the fundamental representation. 5 Therefore (A.26) reads as

SI = −1

e

∫ β

0
du {τ(u),u}+2τ ′2 det(Aτ ) (A.27)

4Exploiting the trace relations tr(l0l0) = 1 tr(l0l±) = 0 tr(l±l∓) = 1 tr(l±l±) = 0
5In fact

det(Aτ ) = det





1
2ω

√

Λ
2 e+

−
√

Λ
2 e− −1

2ω



=
2ω2

τ −Λγττ

8
γττ = −4e+e− = e1

τe
1
τ +e2

τe
2
τ
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A. Appendix A.4. SCHWARZIAN PROPAGATOR

Finally, taking advantage of the same change of variables performed in (2.29)

F (u) = tan
(

√

det(Aτ )τ(u)
)

we recover exactly the Schwarzian action as in (2.26)

SI = −1

e

∫ β

0
{F (u),u} (A.28)

with the identification 1/e= φr
8πG = C

2 .

A.4 Schwarzian propagator

We use the Cauchy formula

f(z) =
∮ f(t)

t− z
dt (A.29)

to rexepress the propagator as

〈δ(0)δ(u)〉 =
2

C

∑

n6=0,±1

∮

γn

ds

e2πis −1

eisu

s2 (s2 −1)
(A.30)

where γn are infinitesimal circles of integration around every integer n and the denominator
e2πis −1 reproduces the factor t− z in (A.29) when we expand around every pole n

e2πis −1 ≈ 2πi(s−n) s→ n (A.31)

To evaluate (A.30), we deform the contour of integration to a big circle Γ and a small circle
γ characterized by a ray R and r in the complex plane respectevely. If we send R → ∞ the
integrand goes to zero as 1/R4 and so we can neglect the contribution of the integral along Γ.
The other circle γ is driven counterclockwise and so its contribution amounts of the residues in
the poles 0,1,−1 contained within it, i.e.

Ress=1 =
d

ds

eisu

s(s−1)

∣

∣

∣

∣

∣

s=1

=
iueisu

s2 (s+1)

∣

∣

∣

∣

∣

s=1

− eisu

s2 (s+1)2

∣

∣

∣

∣

∣

s=1

− 2eisu

s3 (s+1)

∣

∣

∣

∣

∣

s=1

= iu
eiu

2
− 5

4
eiu

(A.32)

The same calculation holds for Ress=−1 which yields

Ress=−1 = −iue
−iu

2
− 5

4
e−iu (A.33)

They combine to give the therm

Ress=1 +Ress=−1 = u sin(u)− 5

2
cos(u) (A.34)

that appears in (2.44). After expanding around s = 0, we will instead get a third order pole,
that we can compute by

lim
s→0

d2

ds2

(

s3f(s)
)

(A.35)

Putting all together we recover the full result (2.44).
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A.5. GAUSS LAW CONSTRAINT A. Appendix

Figure A.1: Top: Circuits of integration γn n ∈ Z around every integer except for 0,1,−1.
Bottom: the contour of integration is deformed and the poles in z = 0,−1,1 are shown.

A.5 Gauss law constraint

Using integration by parts and ciclicity of the trace, the BF Lagrangian can be rewritten as

LBF = tr(φ∂0A1 +A0 (∂1φ+ i [A1,φ])) (A.36)

where A0 can be thought as a Lagrange multiplier in imposing the constraint

D1φ
a = 0 D1 = ∂1 + i [A1, ] (A.37)

Besides from (A.36) the canonical momentum conjugate to the space component of the gauge
field Aa

1 is φa, i.e.

πA1 =
δL

δ∂0Aa
1

= φa (A.38)

In canonical quantization therefore we impose
[

Aa
1,φ

b(y)
]

= δabδ2(x−y) (A.39)

Since in canonical quantization the momentum πi associated with a generalized coordinate qi

(satisfying the equal time algebra (A.39)) is defined as πi = − ∂
∂qi

, in this case the generalized

coordinate is a field Aa
1(x) (the discrete index i becomes continuos x) and therefore the same

formula holds with the partial derivative sobstituted by a functional derivative

πAa
1(x) = φa(x) = − δ

δAa
1(x)

(A.40)
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A. Appendix A.6. BOUNDARY PARTICLE APPROACH

Figure A.2: Radial quantization: the wavefunction depends on the holonomy (represented in
red) around a circle of constant ray ψ (P exp

∮

Aa
1T

a) while time flows along the radial direction.

(A.37) then translates into a functional constraint

D1
δ

δAa
1(x)

= 0 (A.41)

on all possible wavefunctionals ψ (Aa
1(x)) of the A1 component of the gauge field. Expressing

the commutator inside the covariant derivative D through the structure constants fab
c, we have

D1
δ

δAa
1(x)

ψ =

(

∂1
δ

δAa
1(x)

+fab
cA

b
1(x)

δ

δAc
1(x)

)

ψ = 0 (A.42)

The condition(A.42) is called Gauss law constraint because it is solved by wavefunctionals of
the form

ψ (Aa
1(x)) = ψ

[

P exp
∮

Aa
1T

a
]

(A.43)

i.e they depend only on the holonomy g = P exp
∮

Aa
1T

a of the angular component A1 of the
gauge field on a spacial circle (uo to conjugation).

A.6 Boundary particle approach

A different approach to quantize JT gravity [134] uses a direct rewriting of the GHY boundary
term of the gravity path integral exploiting the 2d Gauss-Bonnet theorem to relate the extrinsic
curvature to an integral over the bulk:

∫

∂M
du

√
gκ= 2πχ(M)− 1

2

∫

M
R (A.44)

The regularized action then is

I = −φr

ε

∫

∂M
du

√
g (κ−1) = −φr

ε

(

2πχ(M)− 1

2

∫

M
R+

∫

∂M
du

√
g
)

(A.45)

The area term (R = −2), expressed in Poincare coordinates as
∫ dtdz

z2 , can be rewritten using

Stokes theorem as a line integral of the one form gauge field At = −1
zdt

6. The perimeter term

6The field strenght in fact becomes Ftz = 1
z2
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A.6. BOUNDARY PARTICLE APPROACH A. Appendix

is just the integrated line element along the boundary 7. We thus end up with the action of a
non-relativistic particle in AdS2 in the presence of a magnetic field 8:

I =
∫ β

0
du

(

t′2 + z′2

z2
− q

t′

z

)

− 1

2

∫

du
(

1

4
− q2

)

q =
φr

ε
(A.46)

where the last term was added for convenience and just represents a shift of the ground state
energy. Performing the Legendre transform, it is easy to write down the Hamiltonian, where
we recognize the minimal coupling of the momentum of the particle with the gauge field:

H =
z2

2

[

(

pt − iq

z

)2

+p2
z

]

+
q2

2
− 1

8
(A.47)

We wish to solve the Schroedinger equation Hψ(t,z) = Eψ(t,z); we parametrize E = j(1 − j)
and we exploit separation of variables. We diagonalize the pt momentum exploiting plane waves
eikt, so we replace pt with its eigenvalue pt → k. We are left with the differential equation:

ψ′′(z)−
[

k2 − 2kb

z
−

1
4 + s2

z2

]

ψ(z) = 0 (A.48)

where we have further set q = ib and j = 1
2 +s for convenience and 9 we recognize the above as

the Whittacker equation. The normalized solution (such that the integral over AdS2 yields 1)
is thus

ψk,s(z, t) =

(

ssinh2πs

4π3 |k|

)
1
2 ∣
∣

∣

∣

Γ
(

1

2
+ is− b

)∣

∣

∣

∣

e−ikt Wb,is (2 |k|z) (A.49)

where s2/2 labels the energy eigenvalue.
The path integral can be computed through the Euclidean termal trace:

Z = e2πq tr
(

e−βH
)

= e2πq
∫

AdS2

∫ +∞

−∞
dk

∫ +∞

0
dse−βs2/2

∣

∣

∣ψk,s (z, t)
∣

∣

∣

2 (A.50)

where in the second step we inserted a completeness on the eigenfunction basis and integrated
over all possible starting points of the loop in AdS2. The integral over k can be performed
exploiting parity and the following property [24]

∫ +∞

0

dx

x
Wβ,µ(x)2 = π

ψ
(

1
2 +µ−β

)

−ψ
(

1
2 −µ−β

)

sin(2πµ)Γ
(

1
2 +µ−β

)

Γ
(

1
2 −µ−β

) (A.51)

where ψ = d logΓ(x)
dx is the Digamma function. From this we get 10

Z = e2πq
∫ +∞

0
dse−βs2/2 s

2π2
Im
[

ψ
(

1

2
+ is− iq

)]

(A.52)

7In fact q
∫

du
√
g =

∫

duq2 =
∫

du t′2+z′2

z2 once we fix the length of the boundary curve inserting into the

path integral the constraint δ
(

t′2+z′2

z2 − q2
)

.
8We use that χ(M) = 1 and keep out a factor e2πq from the path integral.
9j = 1

2 +s indeed represent the continuos series representation of SL(2,❘).
10We neglect the infinite volume of M since it can be reabsorbed.
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We now use the following identity

Im
[

ψ
(

1

2
+ is− iq

)]

=
π sinh(2πs)

2(cosh(2πq)+cosh(2πs))
(A.53)

to get the final answer

Z =
e2πq

4π

∫ +∞

0
ds s e−βs2/2 sinh(2πs)

cosh(2πq)+cosh(2πs)
(A.54)

A.7 SL(2,❘) and SL+(2,❘) representation theory

In this section we propose a brief review of SL(2,❘) and SL+(2,❘) representation theory, mainly
following [12]. We choose the carrier space of the spin-j representation, on which the Casimir
evaluates to j(j+1), to be L2 (❘). The action of a group element g on functions f(x) is defined
as

(g ◦f)(x) = |bx+d|2j f

(

ax+ b

cx+d

)

(A.55)

The realization of the generators is

J0 = x∂x − j J− = ∂x J+ = −x2∂x +2jx (A.56)

and they satisfy the sl(2,❘) algebra . One can easily check the normalized wavefunctions of J−

and J+ with eigenvalues ν and λ respectevely are 11

〈x|ν〉 =
eiνx

√
2π

〈x|λ〉 =
|x|2j eiλ/x

√
2π

(A.57)

Exploiting the Gauss decomposition of the group element g = eγ−J−e2φJ0eγ+J+ , we deduce the
matrix elements 12

Rk,ν,λ(g) ≡ 〈ν|g|λ〉 = eiγ−νeiγ+λ
〈

ν|e2φJ0 |λ
〉

=
eiγ−νeiγ+λe2jφ

2π

∫

dxeiνe−2φx |x|2ik−1 eiλ/x

=
eiγ−νeiγ+λe2jφ

2π
cosh(πk)

(

λ

νe−2φ

)ik

K2ik

(√
νλe−φ

)

=
eiγ−νeiγ+λe−φ

2π
cosh(πk)

(

λ

ν

)ik

K2ik

(√
νλe−φ

)

(A.58)

11An easy computation shows the antihermiticity of the generators with respect to the measure dx requires
j = −1

2 + ik.
12We used

∫ +∞
−∞ dxeiνx |x|2ik−1 eiλ/x =

∫+∞
0 dxeiνx x2ik−1eiλ/x +

∫+∞
0 dxe−iνx x2ik−1e−iλ/x, exploited

the integral representation of the modified Bessel function of the second kind:
∫ +∞

0 dx x2ik−1e−νxe−λ/x =
(

λ
ν

)ik
K2ik

(√
νλ
)

and analitically continued ν → eiπ/2ν,λ → e−iπ/2λ for the first integral, while ν →
e−iπ/2ν,λ→ eiπ/2λ for the second one.
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Exploiting the orthogonality relation

∫ +∞

0

dx

x
K2iµ(x)K2iν(x) =

π2

8µsinh(2πµ)
δ(µ−ν) (A.59)

we obtain

∫

dg Rk,νλ(g)∗ Rk′,ν′λ′(g) =
π2

2k tanh(πk)
δ(k−k′)δ(ν−ν ′)δ(λ−λ′) (A.60)

where we implemented the Haar measure dg = 1
2e

2φdφdγ+dγ− of SL(2,❘). From the above can

easily read off the Plancherel measure ρ(k) = 2k tanh(πk)

(2π)2 for SL(2,❘).

One can also study harmonic analysis on SL(2,❘). It turns out that the Casimir eigenfunc-
tions are

νλ > 0 eiγ−νeiγ+λe−φ K2ik

(√
νλe−φ

)

νλ < 0 eiγ−νeiγ+λe−φ J2ik

(√
−νλe−φ

) (A.61)

The first solution can be interpreted as the continuous series representation matrices, while
the second case can be interpreted as the discrete series representation matrices. A quick
way to understand this is that, for the discrete representations where νλ < 0, we demand
single-valuedness of the representation matrix element when φ→ φ+2iπ and, since the BesselJ
function is generically a multi-valued function of its argument, except when the index is an
integer, we set 2j ∈ −◆. 13

A.7.1 SL+(2,❘)

Since the elements of an SL+(2,❘) matrix are all positive, we choose as a carrier space of

the spin-j representation of SL+(2,❘) L2
(

❘
+
)

with inner product
∫+∞
0 f(x)∗g(x). The big

difference between SL(2,❘) and SL+(2,❘) is that, while in the former case the parabolic eigen-
functions do form a basis, in the latter case they do not. This is because the only sl(2,❘)
generator that is antihermitian on ❘+ is the hyperbolic generator J0: the parabolic generators
J± are not. Correspondingly, the eigenfunctions of J± are not delta-function normalizable on
❘

+.. Indeed, these are

〈x|ν〉 = e−νx 〈x|λ〉 = |x|2j e−λ/x (A.62)

for J+ and J− respectevely, with eigenvalues ν and λ. These two sets of eigenfunctions do not
satisfy orthogonality relations on ❘+.

Prooceding as before, the former modifications make the mixed parabolic matrix element
read as

Rk,ν,λ(g) =
e−γ−νe−γ+λe−φ

2π

(

λ

ν

)ik

K2ik

(√
νλe−φ

)

(A.63)

13Actually the SL(2,❘) group manifold is actually covered by four patches, which just provide an addictional

factor of 4. Therefore the Plancherel measure is indeed ρ(k) = 2k tanh(πk)

(2π)2
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The factor cosh(πk) in (A.58) has disappeared, because we immediately obtain the integral
representation of the modified Bessel function of the second kind, without need to perform
any analytic continuations. This fact is crucial because the orthogonality relation (A.59) now
immediately provides the Plancherel measure for SL+(2,❘), i.e.

ρ(k) = k sinh(2πk) (A.64)

One can study harmonic analysisalso when restricted to the subsemigroup SL+(2,❘). This
merely requires setting λ → iλ and ν → −iν with ν,λ > 0. This means we only have the case
where νλ > 0, so we notice that the discrete representation matrices cannot be found in the
regime νλ > 0 relevant for the subsemigroup.

A.7.2 Connection with boundary particle approach

The spectral density in (A.54) can be rewritten in a more suggestive way as a geometric series

s
sinh(2πs)

cosh(2πq)+cosh(2πs)
=

1

π
se2πq

+∞
∑

n=1

(−1)n−1e−2πqn sinh(2πsn) (A.65)

where the different terms in the sum can be interpreted as different instanton sectors, corre-
sponding to classical solutions associated with the particle winding n times around the circle.
This higher sectors should not appear in the context of JT gravity, since we want to impose the
boundary not to self-intersect to have a physical bulk gravity theory. We will now comment on
two different regimes of the above:

• in the limit q → ∞, corresponding to an infinite imaginary magnetic field, all higher
instanton sectors, except for n= 1, are exponentially suppressed and so one is left with the
partition function of JT gravity. This is the physical interpretation of the real extension
of SL(2,❘) performed by [74].

• in the limit q → 0 the sum above does not converge, but can be analitically continued to
the origin

stanh(πs) =
1

π

+∞
∑

n=1

(−1)n−1ssinh(2πsn) (A.66)

We note that in this regime we obtain the Plancherel measure of SL(2,❘), while restricting
to n= 1 gives directly the SL+(2,❘) Plancherel measure. A clear physical interpretation
thus emerges: choosing SL+(2,❘) [12] automatically projects out all higher sectors, which
correspond to replicated geometries SLn(2,❘), or conical singularities in the bulk with
angular deficit 2πn.

A.8 Evaluation of the Residue

Most of our results can be expressed in terms of the so-called generalized Apostol-Bernoulli

polynomials B(ℓ)
n (x;µ). If ℓ ∈N, they are defined through the generating function:

(

t

µet −1

)ℓ

ext =
∞
∑

n=ℓ

B(ℓ)
n (x;µ)

tn

n!
. (A.67)
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This definition implies that B(ℓ)
n (x;µ) = 0 for n= 0, . . . , ℓ−1. The generalized Apostol-Bernoulli

numbers B(ℓ)
n (µ) are then given by

B(ℓ)
n (µ) ≡ B(ℓ)

n (0;µ). (A.68)

The familiar Bernoulli polynomials are recovered when we set ℓ = 1 and µ = 1. The explicit

form of this polynomials can be obtained as follows. First we consider the combination
(

t
µet−1

)ℓ

and write its formal expansion in power of et −1.

(

t

µet −1

)ℓ

=
tℓ

(µ−1)ℓ

(

µ−1

µet −1

)ℓ

=
tℓ

(µ−1)ℓ

(

1+
µ

µ−1
(et −1)

)−ℓ

=

=tℓ
∞
∑

k=0

(

k+ ℓ−1

k

)

(−µ)k

(µ−1)k+ℓ
(et −1)k (A.69)

Next we use that

(et −1)k = k!
∞
∑

r=k

S(r,k)
tr

r!
(A.70)

where S(r,k) denotes the Stirling numbers of the second kind. Thus

(

t

µet −1

)ℓ

=
∞
∑

k=0

∞
∑

r=k

(

k+ ℓ−1

k

)

k!(−µ)k

(µ−1)k+ℓ
S(r,k)

tr+ℓ

r!
=

=
∞
∑

r=0

tr+ℓ

r!

r
∑

k=0

(

k+ ℓ−1

k

)

k!(−µ)k

(µ−1)k+ℓ
S(r,k) =

=
∞
∑

r=0

tr+ℓ

(r+ l)!
ℓ!

r
∑

k=0

(

r+ ℓ

r

)(

k+ ℓ−1

k

)

k!(−µ)k

(µ−1)k+ℓ
S(r,k) (A.71)

From eq. (A.71) we can immediately extract a representation for the generalized Apostol-

Bernoulli numbers B(ℓ)
n (µ) by setting r = n− ℓ.

B(ℓ)
n (µ) =ℓ!

n−ℓ
∑

k=0

(

n

n− ℓ

)(

k+ ℓ−1

k

)

k!(−µ)k

(µ−1)k+ℓ
S(n− ℓ,k) =

=ℓ!
n−ℓ
∑

k=0

(

n

ℓ

)(

k+ ℓ−1

k

)

k!(−µ)k

(µ−1)k+ℓ
S(n− ℓ,k). (A.72)

Given the generalized Apostol-Bernoulli numbers B(ℓ)
n (µ) , it is easy to write down the expansion

for the polynomial

B(ℓ)
n (x;µ) =

n
∑

k=0

(

n

k

)

B(ℓ)
n−k(µ)xk. (A.73)

The case µ= 1 are simply known as generalized Bernoulli polynomials and we shall denote them

as B
(ℓ)
n (x). Obviously we can also introduce the generalized Bernoulli numbers, B

(ℓ)
n ≡ B

(ℓ)
n (0).

These polynomials are not simply obtained by taking the limit for µ→ 1 of the previous explicit
expressions. The latter are in fact divergent in this limit.
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In the following we show that the residue appearing in the computation of the bi-local
correlator when 2λ is an integer can be expressed in terms of these generalized quantities. We
start by observing that

1
(

cosh v
2 − cosh u

2

)n =− (−2)n−1e
1
2 nv

(

2

y

)2n
(

y
2

)n
e

1
4 ny

(

e
y
2 −1

)n

(A)

(

y
2

)n
e

1
4 ny

(

ev+ y
2 −1

)n

(B)

=

=− (−2)n−1e
1
2 nv

(

2

y

)n ∞
∑

ℓ=0

(

y

2

)ℓ ℓ
∑

j=0

B
(n)
ℓ−j

(

n
2

)

B(n)
j+n

(

n
2 ;ev

)

(ℓ− j)!(n+ j)!
, (A.74)

where we have introduced y = u−v to keep a compact notation. We have expanded the factor
(A) in terms of generalized Bernoulli polynomials, while the remaining factor (B) has been
expressed as series whose coefficients are the generalized Apostol-Bernoulli polynomials for
λ= ev. If we use the property

B(n)
k (n−x,µ) =

(−1)k

µn
B(n)

k (x,µ−1) (A.75)

we find that

B
(n)
k

(

n

2

)

= (−1)kB
(n)
k

(

n

2

)

e
1
2 nvB(n)

k

(

n

2
, ev
)

= (−1)ke− 1
2 nvB(n)

k

(

n

2
, e−v

)

. (A.76)

The first identity implies that B
(n)
k

(

n
2

)

vanishes for odd k. Next we observe that the combina-

tion uexp
(

−αu2
)

can be written as

ue−αu2

=
1

2

∞
∑

n=0

(−2)nα
n−1

2

n!
Hn+1(

√
αv)e−αv2

(

y

2

)n

(A.77)

where Hn(u) stand for the usual Hermite polynomials. Thus we find the following Laurent

expansion for the function f(u) = ue−αu2

(cosh v
2 −cosh u

2 )
n :

f(u) =− (−2)n−1

(

2

y

)n

e−αv2+ n
2 v

∞
∑

p=0

(

y

2

)p

e−αv2×

×
p
∑

ℓ=0

(−2)p−ℓ α
p−ℓ−1

2

(p− ℓ)!
Hp−ℓ+1(

√
αv)

ℓ
∑

j=0

B
(n)
ℓ−j

(

n
2

)

B(n)
j+n

(

n
2 ;ev

)

(ℓ− j)!(n+ j)!
. (A.78)

It is a trivial exercise to extract the relevant residue form (A.78). We get

Res[f(u)]u=v =e−αv2+ n
2 v

n−1
∑

ℓ=0

(−2)2n−ℓ−1α
n−ℓ−2

2 Hn−ℓ(
√
αv)

(n− ℓ−1)!

ℓ
∑

j=0

B
(n)
ℓ−j

(

n
2

)

B(n)
j+n

(

n
2 ;ev

)

(ℓ− j)!(n+ j)!
. (A.79)
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A.9 Some useful expansions for generalized

Apostol-Bernoulli Polynomials

In ref [85, 84] they provide the following expansion for the generalized Apostol-Bernoulli
polynomials in terms of the generalized Bernoulli polynomials (i.e. µ= 1):

B(n)
j (x,µ) = e−x logµ

∞
∑

k=0

(

j+k−n

k

)(

j+k

k

)−1

B
(n)
k+j(x)

(logµ)k

k!
(A.80)

This expansion suggests that it is possible to expand the generalized Apostol-Bernoulli poly-
nomials at a given µ= µ1µ2 in terms of the same polynomials at µ= µ1. In fact, exploiting the
properties of logarithms

B(n)
j (x,µ1µ2) = e−x(logµ1+logµ2)

∞
∑

k=0

(

j+k−n

k

)(

j+k

k

)−1

B
(n)
k+j(x)

(logµ1 +logµ2)k

k!
=

=e−x(logµ1+logµ2)
∞
∑

k=0

k
∑

ℓ=0

(

j+k−n

k

)(

j+k

k

)−1

B
(n)
k+j(x)

1

k!

(

k

ℓ

)

(logµ1)ℓ(logµ2)k−ℓ (A.81)

We can disentangle the two sums by setting k= ℓ+m. Then the two sums becomes independent:

=e−x(logµ1+logµ2)
∞
∑

m=0

∞
∑

ℓ=0

(

j+m+ ℓ−n

m+ ℓ

)(

j+m+ ℓ

m+ ℓ

)−1

B
(n)
m+ℓ+j(x)

(logµ1)ℓ

ℓ!

(logµ2)m

m!
. (A.82)

Let use rearrange the binomials coefficient as follows and perform the sum over ℓ:

=e−x(logµ1+logµ2)
∞
∑

m=0

∞
∑

ℓ=0

(

j+m−n
m

)(

j+ℓ+m−n
ℓ

)

(

j+m
m

)(

j+l+m
ℓ

) B
(n)
m+ℓ+j(x)

(logµ1)ℓ

ℓ!

(logµ2)m

m!
=

=e−x logµ2

∞
∑

m=0

(

j+m−n
m

)

(

j+m
m

) B(n)
m+j(x,µ1)

(logµ2)m

m!
. (A.83)

Therefore we have shown

B(n)
j (x,µ1µ2) = e−x logµ2

∞
∑

m=0

(

j+m−n
m

)

(

j+m
m

) B(n)
m+j(x,µ1)

(logµ2)m

m!
. (A.84)

If we apply this result to our specific case we get

e
nv
2 B(n)

j+n

(

n

2
;ev− 2πiτ

β

)

=
∞
∑

m=0

(

j+m
m

)

(

j+m+n
m

)B(n)
m+j

(

n

2
;e− 2πiτ

β

)

vm

m!
. (A.85)

A.10 The case of generic n: the details

After performing the shift v 7→ v+ 2πi(β−τ)
β in (3.43) to move the gaussian center around v = 0,

we find

〈O(λ)(τ)〉disk
β = − iπ2Γ(2λ)κ2λ−

3
2 β

3
2

22λ+3π
7
2 τ

3
2 (β−τ)

3
2

∫ +∞

−∞
dv

(

v− 2πiτ

β

)

f

(

v+
2πi(β− τ)

β

)

e
− βv2

4κτ(β−τ) . (A.86)
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Using the result (A.85), we can immediately expand f
(

v+ 2πi(β−τ)
β

)

in powers of v

f

(

v+
2πi(β− τ)

β

)

= (A.87)

= (−1)2λ
∞
∑

m=0

vm

m!

2λ−1
∑

ℓ=0

(−2)4λ−ℓ−1α
2λ−ℓ−2

2 H2λ−ℓ

(√
α
(

v+ 2πi(β−τ)
β

))

(2λ− ℓ−1)!
c

(λ)
ℓ,m(β,τ),

where c
(λ)
ℓ,m(β,τ) is given in (3.46):

c
(λ)
ℓ,m(β,τ) = e− 2πiλτ

β

ℓ
∑

j=0

(j+m)!

(ℓ− j)!(2λ+ j+m)!j!
B

(2λ)
ℓ−j (λ)B(2λ)

j+2λ+m

(

λ;e− 2πiτ
β

)

. (A.88)

Plugging the expansion (A.87) into the integral (A.86), we get a series representation for our
correlator

〈O(λ)(τ)〉disk
β = − iπ2(−1)2λΓ(2λ)κ2λ−

3
2 β

3
2

22λ+3π
7
2 τ

3
2 (β−τ)

3
2

∞
∑

m=0

1

m!

2λ−1
∑

ℓ=0

(−2)4λ−ℓ−1

(2λ− ℓ−1)!
c

(λ)
ℓ,m(β,τ)× (A.89)

×α
2λ−ℓ−2

2

∫ +∞

−∞
dv vmH2λ−ℓ

(√
α

(

v+
2πi(β− τ)

β

)) (

v− 2πiτ

β

)

e
− βv2

4κτ(β−τ) .

To single out the dependence on κ, we scale our variable of integration as follows v→ 2

√

κτ(β−τ)
β

and we get
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(A.90)

Next we exploit a simple rule holding for Hermite polynomials with shifted argument

H2λ−ℓ
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τ

β
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iπ
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, (A.91)

to rearrange our correlator in the form

〈O(λ)(τ)〉disk
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, (A.92)

where

Pk,m =
∫ ∞

−∞
dv vmHk

(
√

τ

β
v

)

e−v2

. (A.93)
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This integral yields a polynomial of order k in
√

τ
β and its explicit expression in terms of

the associated Legendre function is given in (A.104). Obviously Pk,m is different from zero
only when m+ k is an even number. We shall use this selection rule to rearrange the two
contributions proportional to Pk,m+1 [(A)] and Pk,m [(B)] respectively. For the former the
selection rule is m+ k+ 1 = 2p with p = 1, · · · ,∞. We can use this result to replace the sum
over m with a sum over p

(A) = − iπ2(−1)2λΓ(2λ)

22λπ
7
2

∞
∑

p=1

κp+ℓ

(2p−k−1)!

(

4κτ(β− τ)

β

)p+ℓ−2λ

× (A.94)

×
2λ−1
∑

ℓ=0

min(2λ−ℓ,2p−1)
∑

k=0

(−2)4λ−ℓ−1

(2λ− ℓ−1)!
c

(λ)
ℓ,2p−k−1(β,τ)

(

2λ− ℓ

k

)(

4πi
√
τ(β− τ)

β
3
2

)2λ−ℓ−k(
τ

β

)
2λ−ℓ−2

2

Pk,2p−k.

Next we introduce a new index n ≡ k+ ℓ, which simply counts the power of the coupling
constant

(A) = (−πi)2λ+1Γ(2λ)

(2β)2λπ
5
2

∞
∑

n=1

(

4κτ(β− τ)

β

)n min(n,2λ−1)
∑

ℓ=0

(−2)4λ−ℓ−1

(2λ− ℓ−1)!
× (A.95)

×
min(2λ−ℓ,2n−2ℓ−1)

∑

k=0

c
(λ)
ℓ,2n−2ℓ−k−1(β,τ)

(2n−2ℓ−k−1)!

(

2λ− ℓ

k

)(

β2

4πiτ(β− τ)

)ℓ+k(
τ

β

)
k
2

−1

Pk,2n−2ℓ−k.

The same analysis is done for the latter contribution, taking into account the constraint m+k=
2p with p= 0,1, · · · ,∞:

(B) =
(

2πiτ
β

)

iπ2(−1)2λΓ(2λ)

22λπ
7
2

∞
∑

p=0
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(
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× (A.96)

×
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∑
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∑
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Setting again n= p+ ℓ, we get

(B) = −
(

2πiτ
β

)

(−πi)2λ+1Γ(2λ)

(2β)2λπ
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2
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× (A.97)

×
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Combining the two contributions, we obtain the final expansion

〈O(λ)(τ)〉disk
β =

π2λ

β2λ sin2λ πτ
β
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. (A.98)
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A. Appendix A.11. GAUSSIAN INTEGRALS OF HERMITE POLYNOMIALS

A.11 Gaussian integrals of Hermite polynomials

We consider the following integral

Ik =
∫ ∞

−∞
dv Hk (av)e−v2+xv. (A.99)

To find its expression for general k we construct the following generating functional

G(t) =
∞
∑

k=0

tk

k!
Ik =

∫ ∞

−∞
dv e−v2+xv+2atv−t2
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√
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4 =
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√
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√
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√
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∞
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(

ax

2
√
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, (A.100)

where we used
∞
∑

n=0

tn

n!
Hn(av) = e2atv−t2

. (A.101)

Thus

Ik =
√
π(1−a2)

k
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(
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2
√
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)

e
x2

4 . (A.102)

The integral Pkm defined in (A.93) can be computed by taking the mth derivative with respect
to x of Ik and then setting x= 0

Pkm =
√
π ∂m
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) . (A.103)

This sum can be easily evaluated in terms of hypergeometric functions once we extend the
range of j to infinity. In fact the generic term, once written in terms of Γ−function, vanishes
for j ≥m+1. We find

Pkm =π3/22k(−i)m
(
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2
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, (A.104)

where Pµ
ν (x) is the Associated Legendre Function.
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A.12. PERTURBATIVE EXPANSION FROM BELL POLYNOMIALS A. Appendix

A.12 Perturbative expansion from Bell polynomials

In this appendix, we show how to obtain the coefficients An defined in (4.10). These determine
the t-expansion of the disk and the trumpet partition functions. As in Section 4.1.1, we begin
by decomposing the exponential term as

e−I(u,t;s) = e−us2/2 exp

(

us2

(

1

2
− 1√

1− ts2 +1

))

, (A.105)

and define An as the coefficients in the expansion of the second term about t= 0,

exp

(

us2

(

1

2
− 1√

1− ts2 +1

))

=
∞
∑

n=0

An t
n , (A.106)

where

An =
1

n!

dn

dtn
exp

(

us2

(

1

2
− 1√

1− ts2 +1

))∣

∣

∣

∣

∣

t=0

. (A.107)

To compute the n-th derivative above, we interpret the exponential as a composite function
and make repeated use of the Faà di Bruno formula

dn

dtn
(f ◦g)(t) =

n
∑

k=0

f (k)(g(t)) Bn,k(g′(t),g′′(t), . . . ,g(n−k+1)(t)) (A.108)

involving Bell polynomials Bn,k.
We apply (A.108) a first time, with the square root in (A.107) playing the role of the

function g. This gives

An =
1

n!

n
∑

k=0

Ck Bn,k

({

− (2j−3)!! s2j

2j(1− ts2)j−1/2

}
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t=0

, (A.109)

where

Ck =
dk

dzk
exp

(

us2

(

1

2
− 1

z+1

))∣

∣

∣

∣

∣

z=1

. (A.110)

We then apply (A.108) again to determine Ck. This time, the function g is identified with the
term within parenthesis inside the exponential,

Ck =
k
∑

l=0

dl

dyl
eus2y

∣

∣

∣

∣

∣

y=0

Bk,l

({

(−1)j+1j!

(z+1)j+1

}

j=1,...,k−l+1
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∣

z=1

. (A.111)

Bell polynomials enjoy the identity

Bn,k(abx1,ab
2x2, . . . ,ab

n−k+1xn−k+1) = akbn Bn,k(x1,x2, . . . ,xn−k+1) . (A.112)

We can make use of the above to rewrite the expressions for An and Ck in terms of known
combinations of Bell polynomials,

An =
1

n!

(

s2

2

)n n
∑

k=0

(−1)k Ck Bn,k ((−1)!!,1!!,3!! . . . ,(2(n−k)−1)!!) , (A.113)

Ck =
1

(−2)k

k
∑

l=0

(

−us2

2

)l

Bk,l (1!,2!, . . . ,(k− l+1)!) . (A.114)
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OF HYPERGEOMETRIC FUNCTIONS

Specifically,

Bn,k(1!,2!,3!,(n−k+1)!) =

(

n−1

k−1

)

n!

k!
(A.115)

are Lah numbers, while [107]

Bn,k((−1)!!,1!!,3!!,(2(n−k)−1)!!) = [2(n−k)−1]!!

(

2n−k−1

2(n−k)

)

. (A.116)

By plugging these identities in the expressions above, we arrive at

An =
1

22nn!

n
∑

k=1
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k
∑

l=1

(

k

l

)(

−u

2

)l
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. (A.117)

It is convenient to exchange the two sums with

An =
1

22nn!

n
∑

l=1

(
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)l
s2(l+n)

(l−1)!

n
∑
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The final expression (4.11) is obtained by using

n
∑

k=l

(2n−k−1)!

(n−k)!

(

k

l

)

=
(2n)! (n−1)!

(n+ l)! (n− l)!
, (A.119)

and
n
∑

l=1

(

n−1

l−1

)

(−x)l

(n+ l)!
= −(n−1)!

(2n)!
xLn+1

n−1(x) . (A.120)

A.13 Directional Laplace transforms of hypergeometric

functions

In this appendix, we collect some useful results concerning the directional Laplace transforms of
the hypergeometric functions appearing in the t-expansion of the disk and the trumpet partition
functions.

We start from the following identity,

∫ ∞

0
dζ e−βζ

2F1

(

1

2
−m,

1

2
+m;1;−αζ

)

=
eβ/2α

√
παβ

Km

(

β

2α

)

, (A.121)

which holds for α > 0, Reβ > 0, and m ∈ ❩. Over the integration range, the hypergeometric
is evaluated on the negative real axis. When continuing this result to negative values of α,
one should be careful about the fact that the Gauss hypergeometric function has a branch cut
on the positive real axis. Approaching the branch cut from above and below gives the lateral
Laplace transforms

∫ e±i0∞

0
dζ e−βζ

2F1

(

1

2
−m,

1

2
+m;1;γζ

)

=
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− β
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√
πγβ

[

πIm

(

β

2γ

)

± (−1)miKm

(

β

2γ

)]

,

(A.122)
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where γ > 0. The discontinuity in the directional Laplace transform is reflected in the discon-
tinuity of the square root and of the modified Bessel function Km, the both having a branch
cut along the negative real axis. In the last steps of the identity above we used

Km(−x± i0) = (−1)mKm(x)∓ iπIm(x) , (A.123)

which holds for m ∈ ❩ and x > 0.
The difference between the two lateral Laplace transforms can also be obtained through an

integral over a Hankel-like contour wrapping the branch cut, which, in turn, amounts to taking
the Laplace transform of the discontinuity of the hypergeometric function. We use the identity

2F1(a,b;c;x+i0)− 2F1(a,b;c;x− i0)

=
2πiΓ(c)θ(x−1)

Γ(a)Γ(b)Γ(1+ c−a− b)
(x−1)c−a−b

2F1(c−a,c− b;1+ c−a− b;1−x) ,
(A.124)

which holds for x > 1, to write

∫ ∞

0
dx e−βx
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2
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= (−1)m2i
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2
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dx e−βx
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2
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2
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)

= (−1)m2i
e−β/2γ

√
πγβ

Km

(

β

2γ

)

. (A.125)

A.14 Confluent hypergeometric functions

The confluent hypergeometric differential equation

z
d2w

dz2
+(b− z)

dw

dz
−aw = 0 (A.126)

has solution

w = c1 1F1(a;b;z)+ c2 U(a,b,z) , (A.127)

where the functions

1F1(a;b;z) =
∞
∑

k=0

(a)k

(b)k

zk

k!
, (A.128)

U(a,b,z) =
Γ(1− b)

Γ(a− b+1)
1F1(a;b;z)+

Γ(b−1)

Γ(a)
z1−b

1F1(a− b+1;2− b;z) , (A.129)

are referred to, respectively, as Kummer and Tricomi confluent hypergeometric functions. No-
tice that 1F1(a;b;z) does not exist when b is a nonpositive integer, and that (A.129) holds for
b noninteger. One can extend the definition of the 1F1 by using

lim
b→−n

1F1(a;b;z)

Γ(b)
=

(a)n+1

(n+1)!
zn+1

1F1(a+n+1;n+2;z) , (A.130)
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for n nonnegative integer. The function U(a,b,z) has a branch cut in the complex z-plane along
z ∈ (−∞,0]. For x < 0,

U(a,b,x+i0) = U(a,b,x) ,

U(a,b,x− i0) = e2ibπU(a,b,x)− 2iπeibπ

Γ(a− b+1)Γ(b)
1F1(a;b;x) . (A.131)

The Kummer confluent hypergeometric function can be recast in terms of generalized La-
guerre polynomials as

1F1(a;b;z) =
Γ(1−a)Γ(b)

Γ(b−a)
Lb−1

−a (z) . (A.132)

Two asymptotic behaviors are particularly relevant for the present work: for x→ +∞,

U(a,b,x) ∼ x−a , (A.133)

1F1(a;b;−x) ∼ Γ(b)

Γ(b−a)
x−a

(

1+O
(

1

x

))

+ e−x . . . . (A.134)

The confluent hypergeometric functions enjoy the two following integral representations.
For Rea > 0 and Rez > 0,

U(a,b,z) =
1

Γ(a)

∫ ∞

0
dt e−zt ta−1 (t+1)b−a−1 . (A.135)

For Rea > 0,

1F1(a;b;z) =
1

2πi

Γ(b)Γ(a− b+1)

Γ(a)

∫ (1+)

0
dt ezt ta−1 (t−1)b−a−1 . (A.136)

The last integral is taken over a contour starting and ending in 0 and encircling 1 in the positive
sense.

For Rey > 1/2, the two multiplication theorems hold,

∞
∑

j=0

1

j!

(

1

y
−1

)j

U(a− j,b,x) = ex(1−y)yb−aU(a,b,xy) , (A.137)

∞
∑

j=0

(b−a)j

j!

(

1− 1

y

)j

1F1(a− j;b;x) = ex(1−y)yb−a
1F1(a;b;xy) . (A.138)

A.15 Some useful identities

In this appendix, we prove various identities that are used in Section 5.4.2. We start from
(5.68) and (6.12). The sum over s can be performed by using the integral representation

z 1F1(a+1;2;z) =
1

2πi

∮

γ

du

u
e

zu
u+y

(

−y

u

)−a

, (A.139)
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Reu

−y

̺

γcut

γcirc

Imu

Figure A.3: The integration contour for (A.139). The integrand has a branch cut along the
positive real u-axis if a is not integer, and an essential singularity at u= −y. The contour γ is
the sum of a circle γcirc of radius ̺ > y and of a Hankel-like contour γcut wrapping the cut.

which is obtained directly from (A.136) through integration by parts and with the change of
integration variable

t=
u

u+y
, (A.140)

with y > 0. The integral is performed over the contour γ depicted in Figure A.3.
For our purposes, it is convenient to use y = −2NY . This gives14

z
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N
2 eX
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∮
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(
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(A.141)
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N
2 eX
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∑
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2

(−π2|m|2u)s

Γ(s+1+ν)Γ(s+N2/2)

]

.

(A.142)

Notice that the terms obtained by summing over half-integer s’s in (5.68), namely (A.142) and
the term with the second regularized hypergeometric in (A.141), are free from branch cuts along
the positive real u-axis. These are, in fact, the terms associated with an integer a in (A.139).

Let us focus first on z
+
m

(α,τ), with the goal of proving Eq. (5.81). We separate the contri-
butions coming from γcut and γcircle and denote them as z

+
m

(α,τ) = Icut + Icirc. As mentioned,
the integral over the Hankel-like contour receives contributions only from the first regularized
hypergeometric. We use (5.75) and the same argument of Section (5.4.1) to write

Icut =
πeX

N !G2(N +1)

i

2

∫

γcut

du

u
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u−2NY

√
−uV

[

|m|1− N
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N
4 JN

2 −1(2π|m|√u)

]

. (A.143)

14The absence of the (−1)m factor coming from (6.12) is merely due to the fact that m is always even if N
is chosen to be odd.
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The counterterms that appear in (5.81) come from the integral over the circle. We can split
the exponential in the integrand in terms of its power expansion in 1/u as

e
uW

u−2NY = E1 +E2 , (A.144)

where

E1 = eW +WeW
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E2 =WeW
∞
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1

k
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)k

L1
k−1(−W ) , (A.146)

and kmax = (N2 − 1)/2. With an obvious notation we denote Icirc = Icirc,1 + Icirc,2. We notice
that in

Icirc,1 =
πeX

N !G2(N +1)

i

2

∫
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u
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√
−uV
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2 ;−π2|m|2u
)

]

(A.147)

the second line vanishes, as it is the integral of an analytic function over a closed contour.
Moreover, we can use the fact that now the integrand in the first line does not have an essential
singularity at u = 2NY , and it is possible to shrink the contour around the cut. In doing so,
one can combine the above with (A.143) to generate the appropriate counterterms. In taking
̺ → ∞, we see that Icut + Icirc,1 reproduces (5.81). What is left to show now is that, in the
same limit, the remaining term Icirc,2 vanishes. To this end, we use

1F̃2

(

1; N2+1
2 ,ν+ 3

2 ;−z2
)

= z
N
2 −N2

J1− N
2

(2z)+

− 1
2

∑

s=1− N2
2

(−z2)s− 1
2

Γ(s+ν+1)Γ(s+N2/2)
. (A.148)

The two Bessel functions combine in a Hankel function of the first kind with

(−1)νJN
2 −1

(2z)+ iJ
1− N

2

(2z) = (−1)νH
(1)
N
2 −1

(2z) . (A.149)

The asymptotic behavior of the Hankel function, namely

H(1)
ν (2z) ∼

√

1/(πz)ei(2z−νπ/2−π/4) for z → ∞ , (A.150)

is sufficient to show that

Icirc,2 =
πN/2eX
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vanishes in the ̺→ ∞ limit for the Jordan’s lemma. This concludes the proof of (5.81).
We are now in the position to comment on the convergence of the sum over all flux sectors

at τ < 0. In fact, from (A.148) we see that z
−
m

(α,τ) cancels the finite sum generated by the
second regularized hypergeometric in z

+
m

(α,τ) and one is left with an expression with the sole
Hankel function, namely

zm(α,τ) =
πeX
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i
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By closing the contour γ around the essential singularity at u = 2NY , the Hankel function

generates, according to (A.150), an exponential term of the form e−2π|m|
√

−2NY that ensures
the convergence of the sum over m.

A.16 Some useful tools

In this appendix, we follow the notation of [16].
Let us consider the N -dimensional integral

Iν,ε =
∫

Ω\Bε

dx
f(x)

|x|ν , (A.153)

where Ω is some region of ❘N that contains the origin, and f is sufficiently differentiable. The
integral Iν,0 converges for Reν < N . The Hadamard finite-part integral

=
∫

Ω
dx

f(x)

|x|ν = lim
ε→0

(

Iν,ǫ −Hν,εf(0)

)

, (A.154)

is the analytic continuation of Iν,0 to ν ∈ ❈\ (◆+N) defined through the subtraction generated
the differential operator

Hν,ε =
⌊Reν−N⌋
∑

n=0

1

n!

∫

❘d\Bε

dx
(x ·∇)n

|x|ν . (A.155)

For ν ∈ (◆+N), we define instead

Hν,ε =
ν−N−1
∑
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1
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1

(ν−N)!

∫

B1\Bε

dx
(x ·∇)ν−N
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which amounts to dropping logarithmic and power-law divergences in Iν,ε.
The Epstein zeta function

Z | y
p |(ν) =

∑

x 6=y

e−2πip·x

|x −y|ν , (A.157)
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is smooth in p ∈❘N \❩N . By subtracting the singularity in p = 0 one can define the regularized
Epstein zeta function

Zreg | y
p |(ν) = e2πip·y Z | y

p |(ν)− Γ(N/2−ν/2)

πN/2−ν Γ(ν/2)
|p|N−ν , (A.158)

which is analytic in p = 0.
Let us now consider a polynomial P . The sum

Sν =
∑

x 6=0

P (x)

|x|ν (A.159)

is well-defined for Re(ν) > N + degP . A meromorphic continuation of Sν outside the region
where it converges is given by [15]

Sν = lim
β→0
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x 6=0

e−β|x|2 P (x)

|x|ν −=
∫

❘
N
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Alternatively, the same continuation can be obtained by taking derivatives of the regularized
Epstein zeta function, i.e.
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. (A.161)
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