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Abstract

Motivation

S ince the beginning, in the late 40s, computation was based on classical principles
such as mechanics, electromechanics and, nowadays, electronics: these principles

represented the basic technology to implement numeric calculation, driven by the need
to speed up and automatize the process. Important improvements have been achieved
through the decades, and countless inventions and innovations have contributed to raise
computational power while minimizing the size of computers. Although the classical
computation has reached incredible peaks, such as IBM Summit with more than 200
quadrillion (short scale, 1015) calculations per second [1], there are still many problems
that cannot be addressed adequately by a classical computer in terms of required re-
sources or computation time. This awareness started to grow since the early 80s, when
the need of a computer able to simulate nature without approximations exposed the
limits of a classical approach to computation, especially when simulating quantum me-
chanical systems.

Quantum Computation represents the new frontier of information science and could
be a breakthrough to solve some kind of problems impossible to be solved with a clas-
sical computer. Nowadays we are in the NISQ (Noisy Intermediate Scale Quantum) Com-
puting era, and some market players have released basic versions of quantum processors
using different technologies: in this context, IBM is one of the most advanced player, as
in 2016 was the first to release on the Cloud an open-source quantum platform called
IBM Quantum [2][3], with superconducting qubits as basis of quantum hardware, and
an initial open-source software stack.

Currently there are several technologies to build qubits, for example superconduct-
ing transmons, ion traps, molecules and photons. In the NISQ era, the available number
of qubits of near-term quantum devices is ∼ 101 − 102 and the errors are still important:
to define Quantum Computers power, a new set of metrics called have been developed,
such as Quantum Volume [4], taking into account not only the number of qubits avail-
able, but also their quality. One of the most useful steams is to understand how to use
Quantum Computers to solve important problems, starting from simple but scalable
models. While today’s technology is constantly improving over the years in terms of

xvii
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chip quality, speed and scalability, together with the software and application stack, it
is clear that new approaches should be investigated in order to overcome current limi-
tations. Investigations on possible paradigm changes are due to address some current
problems, in particular related to noise reduction and Quantum Error Correction imple-
mentation.

Thesis overview

Main results

The first results of this work have been achieved by exploiting IBM Quantum technol-
ogy to study and simulate the static and dynamic behaviour of small spin and Fermionic
models, developing and applying error mitigation techniques. We used the small-sized
currently available Quantum Computers to simulate the static properties (with Varia-
tional Quantum Algorithms) and dynamic properties (with Digital Quantum Simula-
tions) of Magnetic Molecules consisting of open and closed spin 1/2 chains with Heisen-
berg interaction, up to 6 spins, and to study Fermionic systems like a 2 sites Fermi-
Hubbard model. In particular, finite-size spin systems are interesting models for funda-
mental physics and they represent, for instance, Molecular Nanomagnets (MNMs).

These MNMs are not only interesting physical systems to be studied, but also possi-
ble quantum systems to implement new qudit-based technologies. We therefore focused
on developing possible new platforms for quantum computation, in which Molecular
Nanomagnets can be used to implement a new prototype of Quantum Computers based
on multi-level qudits rather than qubits. This approach based on molecular spins can
be a promising way to create quantum computing architectures that leverage on rather
unique features like protection from decoherence, embedding of Quantum Error Correc-
tion (QEC) in single objects, and performing efficient Quantum Simulations of models
with many degrees of freedom. I worked on one of the proposed approaches for the sim-
ulation of a Universal set of quantum gates, and on the analysis of the performance of a
previously proposed Quantum Error Correction scheme on realistic molecular systems.

Thesis structure and performed activities

Part I of this work aims to give an introduction to Quantum Computation theory, Quan-
tum Simulation and quantum noise, together with Error Mitigation and Error Correction
concepts.
Part II is focused on Quantum Computing hardware and software platforms, with a
deep dive on currently available superconducting transmons qubits that I specifically
exploited, together with an introduction on a new possible platform based on molecular
spin qudits.
Part III reports the results obtained with IBM Quantum devices. I specifically worked
on the Hamiltonian encoding and ansatz definition for simulating static Ground State
properties of 4 and 6 spins Heisenberg closed chains, and on noisy simulations reported
in Chap. 5; I performed noisy simulations to compute Finite-Size and Parity effects. I
also worked on the heuristic ansatz approach to study spin states mixing, one of the two
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main methods adopted. I finally worked on defining and optimizing the quantum cir-
cuits and hardware runs to compute the Ground State dynamic properties, and on the
implementation of the error mitigation techniques previously developed. On Fermionic
systems reported in Chap. 6, I worked specifically on both Ground State properties sim-
ulations and time evolution computation on real IBM Quantum hardware.
Part IV is focused on the above mentioned new approach to quantum computation, in
which the Molecular Molecules are exploited to build the fundamental unit of computa-
tion, the qudit (multi-level qubit). I worked specifically on single spin molecular systems
and on Planar Rotation gates decomposition approach, on both single- and two-qudit
gates simulation reported in Chap. 7. On QEC with qudits, work reported in Chap. 8, I
focused on nuclear spin qudits by simulating QEC scheme performances and optimizing
them with pulse-shaping technique DRAG.

It is worth mentioning the work described in the Appendices. I worked on perform-
ing the tomography and the search for systematic errors on IBM Quantum gates, as
reported in App. A. I report in App. B the calculations on Planar Rotations gate decom-
position method on qudits. Finally, I worked on the technological innovations that de-
veloped to support this work: an automatic computation framework to compute, save,
manage and visualize large amount of quantum simulations, and a way to integrate
quantum workloads into existing software architectures, reported in App. C.

Organizational note

This work has been performed in a collaboration path between the University of Parma
and IBM, as an Executive PhD.
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CHAPTER 1

Introduction to Quantum Computation

W hen in 1981 Richard Feynman, the well known Nobel Prize in Physics, stated that
“Nature isn’t classical, ... and if you want to make a simulation of nature, you’d bet-

ter make it quantum mechanical” [5], the quantum computation era just began: in over 40
years, many research effort has been performed in order to achieve this technological
breakthrough, “because it doesn’t look so easy” [5]. Classical computers were already able
to perform very useful and unthinkable calculations since decades, like all the calcula-
tions to support the landing on the Moon in July 1969; the arising interest in simulating
physical phenomena at microscopic scale though, started to highlight the limits of this
approach to computation, in which the resources needed to solve a problem scale expo-
nentially with the size of the task itself. This applies in particular to quantum mechanics
problems: nowadays it is possible to simulate the behaviour of a molecule in a spe-
cific environment, for example during drug research; however, several approximations
need to be done, leading to a certain loss of accuracy. And, beyond a certain problem
size, approximating the simulation would not be the solution since the needed resources
(i.e. bits of memory) and computation time would exceed the human scale. Simulat-
ing such systems with a classical computer is an intrinsic failure, even if the effort to
minimize components and to increase the performances has been unbelievable; more-
over, Moore’s law [6] stating in 1965 that the number of transistors into an integrated
circuit would double every two years, is quickly approaching saturation [7]: a change
on computing paradigm is therefore needed.

1.1 Introduction to Quantum Information Theory

A Classical Computer differs from a Quantum Computer from its foundations: the logic
of the first one is based on Classical Mechanics laws, in particular the classical binary
logic, while the logic of the second one is built directly from Quantum Mechanics laws.
On a QC, each computation is governed and made possible by such laws [8].

A QC consists of a set of well distinct quantum bits (qubits) that can be set to an
initial state, properly controlled and then measured; each qubit is a two-states quantum
system such as a spin 1/2. However, these are necessary but not sufficient conditions to
build a QC: in order to build a working quantum platform that can be used to perform
computation, there are five requirements (called DiVincenzo Criteria [9]) that must be
fulfilled.

3



4 1.1 Introduction to Quantum Information Theory

• Scalability of the system with well characterized qubits. As stated, a qubit is de-
fined as a two-level quantum system with a certain energy gap: a well charac-
terized qubit is therefore a system able to remain in the subspace of the selected
two-levels.

• Initialisation of qubits to a simple and fiducial state. Each operation performed on
a qubit is dependent on the initial state of the qubit itself: it is crucial to be able to
prepare the qubits in an initial pure state such as |000...0⟩

• Long and relevant coherence time. Decoherence is one of the major problems
of qubits as quantum systems: any interaction between the qubits and the envi-
ronment can corrupt the state of the qubit, that collapses destroying completely
the computation. Longer decoherence time (much longer than the average time
needed to perform a generic quantum gate) means that the qubits state would last
longer in the defined superposition or entanglement, allowing to make more oper-
ations on them.

• Universal set of quantum gates: this is the smallest set of one- and two-qubits gates
that can be used to compute any unitary transformation on a register of N qubits.

• Qubit-specific measurement capability: to get the results of a quantum computa-
tion it is important to be able to perform the measurement of the states of the qubits
registry, for each qubit involved.

In the following sections we will introduce in more details some above mentioned
components of a QC.

1.1.1 Qubits as unit of information

The simplest and most effective way to encode information is using only two states, that
we can define as 0 and 1. The binary approach is used on classical computers to store
information and to perform calculations on it, from smartphones to supercomputers:
each bulk of information, from very small ones to very large ones, can be encoded in a
set of bits with a certain length. Therefore, bits are the unit of information. Bits can be
easily modeled as switches, implementing the “open” (0) and “close” (1) states; many
different implementations have been implemented over the decades, from tube valves
to microscale transistors. The quantum bits (qubits) are the corresponding unit of infor-
mation for Quantum Computers: as the classical counterparts, they can store one bit of
information as they are quantum systems in a 2-dimensional Hilbert space, spanned by
two distinct orthogonal states |0⟩ and |1⟩, and they can be represented with Pauli matri-
ces algebra. The main difference between bits and qubits is the fact that they can be in a
superposition of the basis states; a very useful representation of the qubit is viewing it
as a generic point on the surface of the Bloch Sphere, as depicted in Fig. 1.1.

A qubit can be defined as a vector on a 2-dimensional complex vector space, and
together with states |0⟩ and |1⟩ (North and South Poles of the Bloch Sphere) it can be
prepared in a generic superposition



Introduction to Quantum Computation 5

|0⟩

|1⟩

|𝜓⟩
𝜃

𝜑

|0⟩

|1⟩

𝑥)

𝑦)

�̂�

Figure 1.1: Representation of a bit (left) and of a qubit using the Bloch Sphere (right).

|ψ⟩ = α|0⟩+ β|1⟩ (1.1)

in an arbitrary combinations of them, where α, β ∈ C and |α|2 + |β|2 = 1. Another
way to describe a qubit state |ψ⟩ is using a geometric representation, that recalls the
depicted state on the Bloch Sphere:

|ψ⟩ =
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)
eiγ (1.2)

where θ, φ, γ ∈ R. The factor eiγ is an overall phase, with no observable effects. The
angles θ and φ are respectively the polar and the azimuth angles reported in Fig. 1.1, and
are limited by 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

A QC is based on multiple qubits that can be used together to perform computations:
we can enlarge and generalise the computational basis described above in Eq. 1.1 by
considering n qubits. The computational basis would be then composed by 2n states,
and would have the form

|ψn⟩ = α00...0|00...0⟩+ α00...1|00...1⟩+ ...+ α11...1|11...1⟩ (1.3)

with 2n different α values. The basis state would have the form |x1x2...xn⟩; the n sub-
spaces are thus coupled in a way that classical computers cannot achieve: the Hilbert
space has size 2n, almost impossible to be computed with the most powerful classical
computers if n reaches ∼ 50: let’s recall that 250 ∼ 1.12 · 1015, and classical computers
yet struggle to handle this amount of information. Instead, Quantum Computers with
50 qubits are yet available in early 2022, so a computation made with these systems with
50 qubits can in theory outperform a classical computer on certain operations.
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1.1.2 Quantum logic gates

In a classical computer, bit values are manipulated by the application of logic gates, such
as NOT, AND, OR, XOR and the related NAND, NOR, XNOR. This set of classical logic
gates can be used to build any boolean expression. Classical logic gates can be reversible
or irreversible: for example, a NOT gate is logically reversible (the output can be inverted
again), but a gate with 2 inputs and a single output is irreversible, as the two inputs
cannot be uniquely reconstructed from the single output. It is possible to reduce the
set of logic gates needed to build any boolean expression: these gates, such as AND,
OR and NOT, are called “universal logic gates” [10]. An automatic machine with the
ability to use an universal gate set to build any combination of every logic gates can
than be defined “universal computer” . In late XIX Century it has been proven that by
using NOR (or NAND) gates alone it is possible to construct any other logic gates. This
simplification of notation had also an important impact on technology evolution, since
the actual implementation of a NAND gate was simpler and more cost-effective than
implementing the others; remarkably, it has been proven that it was more cost-effective
to use several NAND gates to build any other gate, instead of building a single other
gate itself [10].

The same concepts regarding computation on classical computers can be applied for
quantum computing. Instead of classical logic gates there are the so called quantum
logic gates, and, in contrast to classical computation, any quantum gate is represented
by an unitary operator, since the qubit vector is normalized. It is worth noticing that
unitary quantum gates are reversible gates, as the inverse of an unitary matrix is unitary
itself: so it is possible to invert a quantum logic gate using another quantum logic gate,
and this is impossible on a classical platform. As each quantum gate is represented by an
unitary operation, it is theoretically possible to express an entire circuit using a unique
unitary operation: this unitary operation, once applied to the initial state, returns the
output state.

We define in the following paragraph the most common single-qubit and multi-qubit
operations that have been used through all this work.

Single-qubit operations
As a single qubit is a two-levels system, a quantum gate acting on it can be defined as a
2× 2 matrix. Hereby there is the definition of the most used single-qubit gates.

• Hadamard gate, creating superposition by transforming the computational basis
state |0⟩ and |1⟩ into |+⟩ = |0⟩+|1⟩√

2
and |−⟩ = |0⟩−|1⟩√

2
:

H =
1√
2

(
1 1

1 −1

)
(1.4)

• Pauli matrices, acting as π rotations along axes, from which we can obtain X, Y and
Z rotations:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0

0 −1

)
(1.5)
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• Generic θ rotations along an axis k:

Rk(θ) = e−iθσk/2 = cos
θ

2
− i sin θ

2
σk (1.6)

reflecting on x, y and z axes as

Rx(θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
(1.7)

Ry(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
(1.8)

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(1.9)

• Generic rotation form in SU(2) group:

U(θ, ϕ, λ) =

(
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

)
(1.10)

Multi-qubit operations:
As described in Eq. 1.3, we would need to define operations acting on a system made of
multiple qubits in order to expand computational possibilities using a Quantum Com-
puter, making qubits interacting each others. Gates involving n-qubits can be defined as
2n × 2n matrices. In general, the most common multiple-qubit gates are the controlled-
operator operations; hereby we define the most important two-qubits gates, in general
used to create entanglement between two qubits.

• Controlled-NOT, in which a NOT gate (X gate) is performed on the target qubit if
the control qubit is in state |1⟩: CNOT is therefore a Controlled-X operation. This
gate is used to create entanglement: in particular, starting from a product state (|0⟩+
|1⟩)⊗ |0⟩, the application of the CNOT returns a maximally entangled state.

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.11)

• SWAP, used to swap the state of two qubits. This is particularly useful during
circuit transpiling, in order to rewrite the circuit in a way that can be run on a real
hardware chip, where not all qubits are directly interconnected each others. SWAP
gate does not create entanglement, and can be obtained using 3 CNOT gates:

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (1.12)



8 1.1 Introduction to Quantum Information Theory

• Controlled-Phase shift, adding a generic phase φ to the target qubit only if control
qubit is on state |1⟩. If φ = π, the C-φ gate acts as a Controlled-Z:

C − φ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−iφ

 (1.13)

• Generic multi-qubit operation, when one would apply a certain set of gates on a
multiple qubits registry. Any multi-qubit gate can be decomposed into single-qubit
Pauli matrices tensor products, for example:

ZZ = Z ⊗ Z, XX = X ⊗X, Y Y = Y ⊗ Y (1.14)

and with more than 2 qubits

XZX = X ⊗ Z ⊗X (1.15)

and so on. It is also possible to define multi-controlled multi-qubit operations,
leveraging on CNOT and on generic Controlled-U operations [11].

A more detailed description of multi-qubit gates and their composition is reported in
Appendix A.

1.1.3 Universal gate set

As the classical computation lies on universal classical logic gate sets, it is possible to
select a set composed by a finite number of quantum logic gates that can be used to per-
form arbitrary computations on a QC. It is possible to prove that any unitary operation
can be built using a set of gates composed by CNOTs and single qubits rotations along
two non-parallel axes of Bloch Sphere, or specific discrete gate set [11]. Each multi-qubit
unitary operation can be decomposed in two-qubit gates, so on many platforms it is
preferred to implement only them.

Although several universal gate sets composed of single-qubit and multiple-qubit
gates can be defined [11], that can be used to implement any unitary operation, usually
each hardware platform has its own best set of universal gates to achieve the most effi-
ciency. For example, hardware technology based on superconducting qubits implement
a coupling map with a small amount of inter-qubit interconnections, leveraging on soft-
ware features to swap qubit states in order to implement entanglement on not directly
interconnected qubits. Trapped ions technology has usually an all-to-all coupling map,
so a different universal gate set could be more suitable.

1.1.4 Measurement and accuracy metrics

In order to collect the results of a computation of a quantum circuit it is necessary to
implement a measurement of the final states of the required qubits. The probability to
find a state |ψ⟩ in a certain state |z⟩ is:
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p(|z⟩) = |⟨z|ψ⟩|2 (1.16)

Usually the measurement is performed by projecting along the basis of σz eigenstates,
but it is possible to change the axis by performing the proper basis change: measuring
in a different basis can be achieved by applying some rotations before the measurement
operator, such as an Hadamard gate to measure on x basis, and a Rx(π/2) to measure on
y basis.

For many specific tasks is important to find a way to measure the accuracy of the
calculation. In this work, we used as metric the fidelity F . The fidelity can be used
to compare the expected state |ψ⟩ (if it is possible to compute it exactly with a classical
computer) and the density matrix ρ̂ (computed with a quantum computer):

F(ρ̂, |ψ⟩⟨ψ|) =
√
⟨ψ|ρ̂|ψ⟩ (1.17)

Another useful metric is the error, defined as ε = 1−F .

1.1.5 Composing quantum gates: quantum circuits

A quantum circuit is a model used in Quantum Information to define a set of actions
to be performed on the selected qubits. Basically, a quantum circuit consists of by a
sequence of quantum logic gates, considering qubit initialization, one-qubit quantum
gates, multi-qubit quantum gates and measurement operations. This concept is very
similar to the classical logic circuit, in which a string of input bits is manipulated by a
sequence of classical logic gates, obtaining the output bit string. In the same way, in a
quantum circuit, a registry of qubit initialized in a proper state (usually |0⟩) is manip-
ulated by a sequence of quantum gates. Each quantum circuit must have at least one
measurement gate in order to collapse the state of each measured qubit.

AND

AND

AND

OR

NOT |𝑞!⟩

|𝑞"⟩

|𝑞#⟩

𝑏!
𝑏"

𝑏#

𝐻 𝑅! 𝑅"

𝐻 𝑅#

𝐻

Figure 1.2: Different examples of classical logical gates circuit (left) and quantum logical gate
circuit (right).

It is worth noticing that each quantum gate implements a unitary operation, and
each operation takes a certain amount of time; usually, multiple-qubit operations are
slower than single-qubit operations. Therefore, the total time for a quantum circuit to
be executed can be computed with the sum of time length of all operations performed,
considering that usually some operations are performed in parallel. Here we introduce
the definition of quantum circuit depth as the number of gate layers that are performed in
series, as depicted in Fig. 1.3.
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Measurement gates

Quantum registry

Classical registry

Quantum gates

Barriers

Figure 1.3: Details of a quantum circuit of depth 6 built with Qiskit [12].

Finally, a circuit or a set of circuits performing a certain task can be defined as quan-
tum algorithm. These algorithms can be purely quantum, such as Shor’s algorithm for
numbers factorization, or hybrid classical-quantum, such as Variational Quantum Eigen-
solver, that leverages also on a classical optimizer to get the best set of parameters for a
certain quantum circuit that is then prepared and measured by a Quantum Computer.
The characteristic of hybrid algorithms is also to reduce the requirements on coherence
times by performing many quantum calculations with less circuit depth.

1.1.6 Principles of quantum computation

Given the definition of qubits and quantum states, the next step is to implement a com-
putation over a string of qubits |q⟩. Performing a computation means properly changing
the state of the input information, transforming it to the output information; the manip-
ulation of the state of the qubits is represented by a generic operation:

|q⟩ → Û |q⟩ ≡ |f(q)⟩ (1.18)

where q is a string of binary numbers. A Quantum Computer is a machine designed
to implement unitary operations Û to work on qubit states. The real deal with Quantum
Computers, however, lies in the combination of the above mentioned superposition and
entanglement properties to enhance the computation. There is a wide class of quantum
algorithms [13] whose circuits start with the application of Hadamard gates on the entire
qubit register, preparing the qubits in a superposition of |0⟩ and |1⟩: in this way, the QC
can compute in parallel all the final f(q).

This implementation is however not valid for all functions. Indeed, all unitary trans-
formations preserve the overlap between any pair of quantum states: taking two input
states |q1⟩ ̸= |q2⟩ with |f(q1)⟩ = |f(q2)⟩, we can prove that Û |q⟩ ̸= |f(q)⟩ for some q. To
compute any function in a reversible way with a Quantum Computer, the introduction
of a second bit string |p⟩ is needed in order to compute the transformation:

|q⟩ ⊗ |p⟩ → Û |q⟩ ⊗ |p⟩ ≡ |q⟩ ⊗ |p⊕ f(q)⟩ (1.19)

where |p⊕ f(q)⟩ is a string of bits composed by modulo 2 addition of p and f(q). It is
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worth noticing that if the second bit string y = 0, the measurement of the final quantum
state of the second string returns f(q). Now, let’s consider a state |q⟩ defined as the
following:

|q⟩ = H⊗n|0⟩⊗n =
1√
2n

2n−1∑
r=0

|r⟩ (1.20)

and then use the defined state in Eq. 1.20 as one of the two states of Eq. 1.19.

Û |q⟩ ⊗ |0⟩ = 1√
2n

2n−1∑
r=0

|r⟩ ⊗ |f(r)⟩ (1.21)

It is worth to noting that, in general, the time needed to perform the operation in
Eq. 1.19 scales up polinomially with the size n of the quantum register. However, the
state prepared in Eq. 1.20 is a superposition of 2n values, as per Hadamard gate (Eq. 1.4)
application: in this case, the quantum processor has computed at the same time all f(r)
values for all r, and it is able to achieve an exponential speed up, for some class of prob-
lems.

A very important example of this implementation is the Quantum Fourier Transform
(QFT). The QFT is a linear transformation on a set of qubits, that transforms an initial
quantum state |q⟩ =

∑N−1
i=0 qi|i⟩ into a quantum state |f⟩ =

∑N−1
i=0 fi|i⟩ by applying n

Hadamard gates and n(n− 1)/2 C-φ gates:

|f⟩ 7→ ÛQFT |f⟩ =
1√
2N

2N−1∑
q=0

ei
2π

2N
qf |q⟩ (1.22)

where q and f are strings of binary numbers. Finally, we can see that QFT is imple-
mented with a number of gates that scales polinomially with qubit number.

1.2 Quantum simulation

One of the first applicable fields of quantum computation is the Quantum simulation.
The simulation of the time evolution of a quantum system is a highly demanding pro-
cess for a classical computer in terms of computational resources, as the number of bits
required to store in memory all the possible system states (and to compute the corre-
sponding time evolution) grows exponentially with the system size: due to its intrinsic
features, a Quantum Computer is the most suitable platform to perform such simula-
tions [14]. An interesting fact about quantum simulation is that the required amount
of resources (qubit number, qubit quality and error correction) are limited, differently
from a general purpose computation. This implies that current QC technology can be
exploited to perform quantum simulations of rather complex physical systems: only a
few tens of qubits with small error rate can outperform a classical computer in this field.
There are two categories of Quantum Simulators:
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• Analog simulators: the simulation is performed by a large quantum device glob-
ally addressable, that directly mimics the evolution of the target system; the hard-
ware is composed by a large array of qubits geometrically reflecting the target sys-
tem, with no local control [15]. In particular, the evolution of the target system is
analogically emulated by an Hamiltonian that is equivalent to the Hamiltonian of
the quantum device simulator. The quantum device properties can thus be studied
instead of the properties of the target system.

• Digital simulators: the digital approach can be considered more flexible than the
analog simulators. In particular, the physics of the target system is properly en-
coded in the quantum device qubits, then the system evolution is implemented
using quantum gates: an Universal QC can be used as a digital simulator. This ap-
proach allows to encode various kind of physical systems into the quantum device,
thus increasing the flexibility of such simulators [16].

During this work, Digital Quantum simulators have been used to study the dynamic
properties of several physical systems.

1.2.1 Digital Quantum simulation

In general, an Hamiltonian describing a quantum system can be written in the form:

H =
L∑
k

Hk (1.23)

where each HamiltonianHk is basically a tensor product of Pauli matrices; it is crucial
that the Hamiltonian is the sum of local terms [17] to have an advantage on the quantum
simulation.

The simulation of a time evolution of the Hamiltonian H corresponds to the imple-
mentation of the time evolution operator Û = e−iHt (if H is not depending on time),
where Û is an unitary operation. As reported in more details in Appendix A, rotations
and two-qubits gated needed to perform a digital simulation of a time evolution can be
summarized as per Fig. A.1 and Fig. A.2.

Then, if [Hl,Hl′ ] ̸= 0, in order to perform the time evolution of the Hamiltonian, the
Suzuki-Trotter (S-T) decomposition [18] formula is needed (here reported using notation
ℏ = 1):

ei(A+B)t = lim
n→∞

(ei
At
n ei

Bt
n )n (1.24)

where τ = t/n and n is the number of Trotter steps, to obtain, with a finite n, the
approximated time evolution (with O(dt2) error)

Û(t) = e−iHt ≈ (e−iH1τ . . . e−iHLτ )n (1.25)

The Suzuki-Trotter decomposition in Eq. 1.24 requires an approximation due to the
finite number of Trotter steps possible to implement. A more general form of Eq. 1.24 is
the following:
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e−i
∑

l Hlt = lim
n→∞

(∏
l

e−iHlt/n

)n

(1.26)

Unless all the Hl operators commute, in which case the ST identity is exact already
for n = 1, the product of local unitaries will not be exactly equal to the total target unitary
U(t) = exp (−iHt). However, it can be shown that ∀n:

U(t) = e−i
∑

l Hlt =

(∏
l

e−iHlt/n

)n

+O

(
t2

n

)
(1.27)

This means that we can approximate arbitrarily well the desired unitary operator by
repeating n times the sequence of gates corresponding to the product of local terms for
time slices t/n. The digitalization error due to S-T decomposition decreases by increasing
the number of Trotter steps, but this implies using more noisy quantum gates: a trade-off
is therefore needed.

We are finally able to break the original problem into smaller pieces e−iHlt/n which
can now be implemented efficiently using only a limited set of elementary gates and
which give the correct answer up to an arbitrarily small digitalization error. This tech-
nique has been applied in Chap. 5 and 6 to compute time evolution and dynamic prop-
erties of physical systems.

1.3 Quantum noise

Quantum Computers are very promising machines that could be used to perform com-
puting tasks currently impossible for even classical supercomputers. However, as they
are based on Quantum Mechanical laws, many noise sources are present: qubits are very
fragile and prone to errors. Even if the QC technology is evolving very quickly, the cur-
rent prototypes are still dramatically affected by noise. Currently we are in the era of
Noise Intermediate Scale Quantum (NISQ) devices [19], where the rather small amount of
qubits and the presence of noise make the use of Quantum Computers limited to certain
areas of application; the main breakthrough would be the rise of the Fault Tolerant QCs,
in which the errors caused by noise are corrected by the Quantum Error Correction and
made acceptable by the computation itself; nowadays, we have still to face with noise by
implementing error mitigation techniques in order to make current QCs useful for some
kind of problems.

There are two kind of error sources, called coherent and incoherent:

• Coherent errors: in this case errors depend on an incorrect application of quantum
gates, as a systematic control error. Let’s consider an initial state prepared in |0⟩
and apply to it a series of identity gates. The final state would be:

|ψf ⟩ =
N∏
i

Ii|0⟩ = |0⟩ (1.28)
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An incorrect application of the identity gate due to coherent (systematic) errors
leads to the application, each time, of a small rotation about a certain axis of the
Bloch Sphere, for example the X axis. The result would be slightly different by
Eq. 1.28:

|ψf ⟩ =
N∏
i

eiϵσx |0⟩ = cos(Nϵ)|0⟩+ i sin(Nϵ)|1⟩ (1.29)

The probability to measure |0⟩ and |1⟩ is then:

P0 = cos(Nϵ)2 ≈ 1− (Nϵ)2

P1 = sin(Nϵ)2 ≈ (Nϵ)2
(1.30)

where (Nϵ)2 ≪ 1 can be defined as the error probability p.

The same concept can be applied to rotation gates. Let’s consider a rotation of a
certain angle along a certain axis: an incorrect application of the rotation gate can
be due to a small tilt on the rotation axis, or an imprecise rotation angle.

• Incoherent errors: in this case errors depend on the interaction of the quantum
system with the surrounding environment. As an example, we can consider the
environment as an additional qubit with quantum state (|e0⟩, |e1⟩) coupled with
the computational system during the idle stage of a quantum algorithm. Assuming
an initial environment state |E⟩ = |e0⟩, we can couple it with the computational
system on a coherent superposition: the system is entangled with the environment,
and the calculation of the partial trace [11] results in a mixed state, i.e. due to the
loss of coherence on the ρ.

1.3.1 Kraus decomposition

We need to introduce a method to modeling the above mentioned kind of errors, in
order to understand and then mitigate and correct them. Quantum operations between
quantum states introduced in the previous sections (Sec. 1.1.2) can be modeled using the
operator-sum representation. Let’s define a quantum operation as a transformation of the
density operator ρ′ = f(ρ), where f is the quantum operation. Unitary transformations
and measurements are thus defined as the following:

f(ρ) = ÛρÛ†

fm(ρ) = M̂ρM̂†
(1.31)

where ρ is the initil state and f(ρ) is the final state. We can now introduce the inter-
action with the environment during a quantum operation: we can define a general input
state as a product state ρ⊗ ρenv .

After the application of the transformation, the system is not interacting with the
environment, so we can compute f(ρ) as a partial trace:
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f(ρ) = Trenv[Û(ρ⊗ ρenv)Û†] (1.32)

Eq. 1.32 can be rewritten considering ρenv = |a0⟩⟨a0|, with |ak⟩ an orthonormal basis
for the environment Hilbert space [11]:

f(ρ) =
∑
k

⟨ak|Û(ρ⊗ |a0⟩⟨a0|)Û†|ak⟩ =
∑
k

EkρE
†
k (1.33)

where
∑

k E
†
kEk = I. The Ek operators are called Kraus Operators. This decomposi-

tion of quantum operations using Kraus Operators is very useful, and in particular can
be applied to model quantum noise: these operators can be also called Noise Operators
when the quantum operation represents the effect of the noise on the quantum state. The
quantum state is thus described, after the effect of noise, with discrete operations.

With the above introduced formalism, we can take in consideration the main sources
of quantum noise in order to modeling them. Each incoherent error derives from the
interaction of the quantum state with the environment; in general, it is not possible to
describe incoherent errors using unitary operations: an useful way to describe them is
to assume the presence of incoherent errors on each gate implementation, and use the
Kraus decomposition to describe them. Below there is a list of the main quantum noises.

• Bit flip and phase flip errors. The bit flip error flips the state of a qubit from |0⟩ to
|1⟩, or from |1⟩ to |0⟩, with probability (1− p). The related operation is:

E0 =
√
p · I

E1 =
√
1− p · σx =

√
1− p ·

(
0 1

1 0

) (1.34)

The related operation of the phase flip error, instead, is:

E0 =
√
p · I

E1 =
√
1− p · σz =

√
1− p ·

(
1 0

0 −1

) (1.35)

The composition of the two errors, the bit-phase flip, has the following related
operation:

E0 =
√
p · I

E1 =
√
1− p · σy =

√
1− p ·

(
0 −i
i 0

) (1.36)

where σx, σy and σz are the Pauli matrices, and I is the identity.
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• Depolarizing error: this kind of noise represents the probability to find a qubit
in a depolarized state (with probability p), where it is replaced by a mixed state.
This is a generalisation of the above introduced errors, in which we assume the
same probability for errors x, y and z. The related operation is, for a 2-dimensional
quantum system:

f(ρ) =
p · I
2

+ (1− p)ρ (1.37)

where its generalisation to n qubits is achieved by substituting the denominator
with 2n. Considering a single qubit, with Pauli operators as computational basis,
it is possible to rewrite the evolution of the density matrix ρ as the following:

f(ρ) = p0IρI+ p1σxρσx + p2σyρσy + p3σzρσz (1.38)

If we assume p1 = p2 = p3 = p/3→ p0 = (1− p), we can rewrite Eq. 1.38 as:

f(ρ) = (1− p)ρ+ p

3
(σxρσx + σyρσy) + σzρσz (1.39)

• Amplitude damping: this error source describes energy dissipation effect to the
quantum system. The operation describing the amplitude damping is:

fad(ρ) = E0ρE
†
0 + E1ρE

†
1 (1.40)

where

E0 =

(
1 0

0
√
1− γ

)
E1 =

(
1
√
γ

0 0

) (1.41)

with γ = (sin θ)2 is the probability of amplitude damping. The amplitude damping
causes the decay with time of the diagonal elements of the density matrix, and it
is related to the time T1, the thermal relaxation time; the thermal relaxation is a
stochastic and irreversible process related to the transition between two states. The
effect of T1 is represented basically by the qubits quantum state collapsing before
finishing the computation, making the results inconsistent, or in the worst case
losing entirely the information contained in the qubit state.

• Phase damping: this error source refers to the loss of information without loos-
ing energy, but by changing of the relative phase between energy eigenstates. As
per amplitude damping description, let’s start from a quantum state as the one in
Eq. 1.1 and apply random Rz(θ) rotations, originating from the interaction with
the environment. The density operator defining the output state can be obtained
by integrating on all θ random values:
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ρ =

(
|α|2 αβ∗e−λ

βα∗e−λ |β|2

)
(1.42)

where 2λ is the variance of the Gaussian distribution of random θ values, averaged
on 0. The phase damping causes the decay with time of the off-diagonal elements
of the density matrix, and it is related the T2 time: it is called dephasing time, the
time for the superposition state to lose its coherence. We can define the related
operation as:

E0 =
√
µ · I

E1 =
√
1− µ · σz =

√
1− µ ·

(
1 0

0 −1

) (1.43)

where µ = (1 +
√
1− λ)/2. It is worth noticing that this is the same effect of the

phase flip, described above.

In superconducting transmon technology, introduced in Chap. 3, the effect of T1
and T2 is similar, as T1 and T2 are comparable, while in spin systems, introduced
in Chap. 4, T1 ≫ T2.

• The Readout error represents the probability to read |1⟩ given an |0⟩ state. Readout
errors can be modeled as an environmental decoherence, acting as an incoherent
error on the system. If a quantum circuit is long (i.e. composed by several quan-
tum gates) and if there is a measurement only at the end of the algorithm, this kind
of error is less relevant than other error sources. As reported in Section 1.1.4, the
measurement operation on a single qubit can be defined by the application of pro-
jection operators P̂0 = |0⟩⟨0| and P̂1 = |1⟩⟨1|; on a real hardware, the readout error
distorts the projectors: we introduce the error parameters called pp1m0 and pp0m1,
that are respectively the probability to measure 0 on a state prepared in 1, and the
probability to measure 1 on a state prepared in 0. The projection operators can be
redefined by:

P̂0generalized = (1− pp0m1)|0⟩⟨0|+ pp1m0|1⟩⟨1|

P̂1generalized = (1− pp1m0)|1⟩⟨1|+ pp0m1|0⟩⟨0|
(1.44)

1.3.2 Lindblad master equation

Another way to describe errors assuming to know their form, in particular decoherence,
is to compute the continuum dynamics of the system by solving the Lindblad differential
equation for the ρ. This approach is more precise than the Kraus decomposition, but also
more demanding in terms of computation.

To describe this approach we first need to introduce the dynamics of open quantum
systems, as the motion equation of the density matrix: the Lindblad master equation.
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• Closed and open quantum systems: in case of closed quantum systems (i.e. not
coupled to other quantum systems), the density matrix motion equation is:

dρ̂S(t)

dt
= −i[Ĥ(t), ρ̂(t)] = Lρ̂(t) (1.45)

with ℏ = 1 and L is the Liouville superoperator [20]. Eq. 1.45 is called Liouville-von
Neumann equation. If we want to describe the equation of motion for an open quan-
tum system (where the computational system S is coupled with another quantum
system, i.e. the environment E) we have to rewrite Eq. 1.45 as the following:

dρ̂S(t)

dt
= −iTrE [Ĥtot(t), ρ̂(t)] (1.46)

where Htot is the total Hamiltonian of the system and the environment.

• Evolution of open quantum system: in the case of Markov approximation [21]
(short correlation time with the environment), it is possible to write Eq. 1.46, the
evolution of the open quantum system described by a generic transformationW (t),
as:

dρ̂

dt
= Lρ̂ (1.47)

where L is a generator of the quantum dynamical semigroup W (t) = eLt itself.
A quantum dynamical semigroup, or quantum Markovian semigroup, describes the
dynamic properties in a Markovian open quantum system [22]; one of the main
properties of a quantum Markovian semigroup is that W (t1)W (t2) = W (t1 +

t2), ∀(t1, t2) > 0 [20].

In general, in aN -dimensional Hilbert space, the L generator of the open quantum
system can be written as:

LρS
= −i[Ĥ, ρ̂S ] +

N2−1∑
i,j=1

ai,j(F̂iρ̂SF̂
†
j −

1

2
F̂ †
j F̂iρ̂S −

1

2
ρ̂SF̂

†
j F̂i) (1.48)

where F̂i are the basis operators of the Liouville space of dimension N2. By di-
agonalizing the coefficients ai,j with the unitary transformation u, it is possible to
obtain:

LρS
= −i[Ĥ, ρ̂S ] +

N2−1∑
k=1

γk(Âkρ̂SÂ
†
k −

1

2
Â†

kÂkρ̂S −
1

2
ρ̂SÂ

†
kÂk) (1.49)

where Âk are a set of operators related to the basis operators of the Liouville space
of dimension N2 by the following:
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F̂i =
N2−1∑
k=1

uk,iÂk (1.50)

and γk are the relative non-negative eigenvalues [20]. Âk operators are called Lind-
blad operators and the density matrix is called Lindblad equation. We can finally in-
troduce the dissipator operator

DρS
=

N2−1∑
k=1

γk(Âkρ̂SÂ
†
k −

1

2
Â†

kÂkρ̂S −
1

2
ρ̂SÂ

†
kÂk) (1.51)

to obtain a more compact form for Eq. 1.49:

dρ̂S(t)

dt
= −i[Ĥ(t), ρ̂S(t)] +DρS

(1.52)

A more detailed view of this formalism can be found at Ref. [20].

1.4 Error mitigation techniques

In order to handle with these error sources that can compromise Quantum Computer
calculations, several error mitigation techniques have been investigated, in particular
leveraging on existing Quantum Computing platforms, i.e. IBM Quantum [2], with
Qiskit [12] as software framework.

• Systematic (coherent) error mitigation: the first error mitigation technique imple-
mented is related to a potential systematic error on Rotation Gates. This test has
been performed on IBM Quantum chips: by using the Qiskit Aer noiseless simu-
lator, we reproduced the behaviour of the real quantum hardware noisy rotations
among respectively X and Y axes using a parametrization with a set of tilt angles
(εx, εy, εz), as reported in Appendix A, Sec. A.3. In December 2019 these ε angles
were ∼ π/20, but they have been progressively reduced to less than ∼ π/100 with
the new IBM Quantum hardware generation in May 2020.

• Best qubit layout: current Quantum Computing platforms, in particular super-
conducting ones (Chap. 3) provide many kind of quantum chips with different
topologies (the actual positioning and coupling map between qubits on the chip,
also called coupling map). When mapping a problem on a Quantum Computer it’s
important to select the right qubits layout, taking into account the needed entan-
glement. For example, with the Qiskit framework it is possible to create entangle-
ment between qubits that are not directly interconnected, by an automatic addition
of SWAP quantum gates. Each SWAP is however composed by 3 CNOTs, leading
to an increase of the circuit length; by choosing the best problem mapping on the
circuit, it is possible to slightly reduce the circuit length. However, as the number
of qubits increases, it is useful to let a transpiler [23] choose the best qubit layout.
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In this work, this error mitigation technique has been applied to mitigate results
calculations made on several chip topologies.

• Measurement error mitigation: this method, whose implementation is based on
Qiskit built-in functions, implies the computation of the calibration matrix of the
chip on 0 states, to be used to correct results a posteriori. Such matrices are repre-
sented in Fig. 1.5(a), where an IBM Quantum chip with 5 qubits has been used: the
difference between the noiseless and the noisy calibration matrix is evident, as the
state mixing occurs in the second one. In Fig. 1.5(b) are then reported the results of
a noiseless computation of a GHZ state (maximally entangled state with 3 qubits
|ψ⟩ = (|000⟩ + |111⟩)/

√
2), compared with the noisy simulation, noisy mitigated

with Qiskit Measurement Error Mitigation, a real quantum hardware run and the
mitigated hardware run on IBM Quantum platform. For this example we have
chosen an hardware calibrated with a noise model allowing to clearly see the effect
of the measurement error mitigation technique: the 3 qubits GHZ circuit (Fig. 1.4)
is composed by 1 Hadamard gate, 2 CNOT gates and 3 measurement gates, so the
effect of the measurement error is significant, compared to a circuit with hundreds
of gates and only a couple of measurement gates at the end, in which the gate error
would be dominant. The error is therefore largely mitigated by the application of
the calibration matrix filter to the results. This technique is very useful to correct
results on algorithms that require a large amount of measurements as the Varia-
tional Quantum Eigensolver algorithm, introduced later. The effort taken to build
the calibration matrix increases exponentially with the system size, however in this
work we applied this technique to a small amount of qubits, less than 10. A more
detailed view of this method is described in Appendix A, Sec. A.4.

Figure 1.4: 3 qubits circuit for a GHZ state.

• Zero-Noise Extrapolation: this techniques can be used to correct the error of the
gates [24]. The procedure is based on performing several calculations by adding
gates each time, being sure to obtain an equivalent circuit, but each time with the
introduction of additional error on the observable. It is thus possible to interpo-
late the value of the observable at zero noise implementing a fit on the results.
Multiple-qubits gates are the most noisy ones, so we performed tests trying to mit-
igate the effect of CNOT gate errors. By adding CNOT pairs (identities) to our
circuits, leading to equivalent circuits, we performed an interpolation to obtain the
results without the effect of CNOT noise. It is worth noticing that this method re-
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(a) (b)

Figure 1.5: (a) Noiseless and noisy measurement error calibration matrices. (b) Noiseless, noisy
raw, hardware raw and mitigated results.

lies on a linear interpolation, so it is applicable only if the error increases linearly
with the application of the additional gates. A more complex fit (e.g. polynomial)
would address the non linearity of the error increment, especially at high error
rate, but it would be needed to deeply understand the behaviour of the trend.

• Post selection: in many cases, in particular on simple problems, some conservation
laws (or symmetries of the investigated problem) can be exploited to correct the
results a posteriori. As reported in Chap. 6, a post selection correction could consists
on a rescaling of the results based only on these selected states, specifically for the
studied system.

1.5 Quantum Error Correction

Quantum Error Correction and the Fault-Tolerant quantum computation are crucial as-
pects for the future of Quantum Computation. In the following section we will introduce
the key aspects of QEC, but it is needed to introduce two main important points to be
taken into account when considering error correction. Although classical computers are
very robust regarding errors, their deployment in extreme environments such as outer
space or radioactive zones, could lead to potential interactions between radiations and
the hardware, causing a change of status of the hit bit. A solution to this bit flip error
could be for example the use of multiple programmable hardware devices to perform
the same calculation, such as Field Programmable Gate Arrays (FPGAs), that can be
reprogrammed automatically if the majority of them notices differences in computed
quantities. This approach is not directly applicable to quantum computers due to two
main facts: the first is the impossibility to use results of a measurement of quantum state
to help protect it from errors, since the measurement would destroy the quantum state
itself; secondly, it is impossible to clone a quantum state in order to perform multiple
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computation to correct errors, due to the No-Cloning Theorem [19]. It is clear that the
only way to implement an error correction is by implementing codes regardless to the
quantum state itself.

1.5.1 The Knill-Laflamme conditions

In their work [25], Knill and Laflamme introduced one of the first approaches for the
QEC. A basic concept underlying QEC is the redundant encoding, where multiple physical
qubits are used to generate logic qubits, thus expanding the overall Hilbert space: in this
way, it turns out to be possible to correct quantum errors, or at least a subset of them. A
single qubit of the form |ψ⟩ = α|0⟩ + β|1⟩ can be protected by the encoding on a larger
Hilbert space as the following:

(α|0⟩+ β|1⟩)|000...0⟩ → α|0L⟩+ β|1L⟩ (1.53)

where |0L⟩ and |1L⟩ are respectively the logical 0 and logical 1 of the protected qubit.
Let’s consider a quantum system interacting with the environment, with a density matrix
of the form:

ρf =
∑
a

AaρiA
†
a (1.54)

where Aa operators are called interaction operators and are built considering the envi-
ronment basis |µa⟩, the environment state |e⟩ and the time evolution operator Û

Âa = ⟨µa|Û |e⟩ (1.55)

with
∑

a Â
†
aAa = I. Assuming a small number of errors occurring on the quantum

system to be protected, the Knill-Laflamme necessary and sufficient conditions to re-
cover the original state |ψ⟩ from errors are the following:

⟨0L|A†
aAb|1L⟩ = 0 (1.56)

⟨0L|A†
aAb|0L⟩ = ⟨1L|A†

aAb|1L⟩ (1.57)

Eq. 1.56 imply that |0L⟩ and |1L⟩ must be projected to orthogonal states by the effect
of errors; Eq. 1.57 states that the size and the inner product of the projected states after
the effect of the errors must be the same.

In general, the Knill-Laflamme conditions state that any error operator Â applied to
an initial state, produce a distorted and corrupted image of the input state, where |0L⟩
and |1L⟩ are distorted in the same way, thus preserving the information: in this way,
it is possible to implement the correction. In case of not satisfied K-L conditions, the
distortion of α and β coefficients of Eq. 1.53 would be unknown, so the correction would
not be possible.
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1.5.2 QEC codes

An error correction code considering the above presented conditions can then be built
by performing a measurement for a set of projections, then by applying a proper unitary
operation depending on the measurement output. Proper basis change are required to
perform measurements of the selected subspaces. It is worth mentioning the two as-
sumptions made to let the quantum error correction code working as described below:
errors occur only during idle time (when no quantum gates or QEC codes are applied),
and quantum gate are not subject to systematic (coherent) errors [26]. Here we propose
a brief description of the most famous QEC codes.

• 3-Qubit code: one of the first introductive quantum error correction code, that per-
forms single qubit bit and phase flip correction. The 3-Qubit code here described
has been developed to correct a bit flip error on a single qubit, and the basis of this
method lies in the encoding a logical qubit with three physical qubits. The 3-Qubit
code is not a full quantum error correction code, as it can not correct bit flips and
phase flips at the same time. If we consider a single-qubit superimposed state like
the one in Eq. 1.1, it is possible to entangle the |ψ⟩ state with other two qubits by
using the circuit depicted in Fig. 1.4, obtaining a logical qubit encoded state:

|ψL⟩ = α|0L⟩+ β|1L⟩ = α|000⟩+ β|111⟩ (1.58)

With this encoding, the 3-Qubit code is able to correct only a single bit flip error due
to the binary distance between |0L⟩ and |1L⟩. If the distance between two encoded
states in d, the number of bit flip errors that can be corrected is t = ⌊(d − 1)/2⌋:
with a distance d = 3, we obtain t = 1.

Ancillas

Measurements 
on ancillas

Logic qubit |𝜓!⟩

Initial state |𝜓⟩

Logic qubit
preparation

Ancillas preparation
for measurement

Error

Correction

Figure 1.6: 3-Qubits bit flip error correction circuit.

Now, in order to detect a single bit flip acting on each of the three qubits, we need to
measure the states without modifying the encoded superposition: this is done by
adding two ancillary qubits (also called ancillas) properly entangled with the other
qubits, where to perform parity measurement, as depicted in Fig. 1.6. It is then
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possible to understand if something happened during the computation by reading
the state of the measured ancillas. In particular:

(α|000⟩+ β|111⟩)⊗ |00⟩Ancillas → no bit flip

(α|100⟩+ β|011⟩)⊗ |11⟩Ancillas → bit flip q1

(α|010⟩+ β|101⟩)⊗ |10⟩Ancillas → bit flip q2

(α|001⟩+ β|110⟩)⊗ |01⟩Ancillas → bit flip q3

(1.59)

When measuring the two ancillas, it is possible to detect in which state we are
located during the computation without modifying encoded logical state. So, to
correct the states we can apply the proper recovery algorithm, dependent by the
values measured: this corresponds to a σx; a basis change is required to implement
the error correction for phase flip and the combination of bit flip and phase flip.
It is finally worth recall that this method cannot detect and correct errors on more
than one qubit: more physical qubits implementing a logical qubit are needed to
correct more errors, in example, a single error on more than one qubit, or a generic
single qubit error. This method can be easily implemented on current Quantum
Computers [27].

• 9-Qubit code: developed by Shor in 1995 [28], this code is based on the 3-Qubit
code with the difference that it can correct a bit flip, a phase flip, or both, on each
of the 9 physical qubits involved. Thus, this code can be considered a full quantum
error correction code, as it can correct an arbitrary single qubit error. Following and
enlarging the same approach of the 3-Qubit code, in the 9-Qubit code the logical
qubit encoding is performed as follow:

|ψL⟩ = α|0L⟩+ β|1L⟩ =
= α[(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)]
+β[(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)]

(1.60)

In Fig. 1.7 is depicted the quantum circuit required to encode a quantum state
using 9 physical qubits. The correction of bit flip (σx) errors can be achieved in
the same way of the 3-Qubit code, while the correction of phase flip (σz) errors can
be achieved by comparing the sign of the three code blocks, with the proper basis
change application. This code is able to correct a single bit flip error in any of the
three blocks, and a single phase flip error in any of the 9 qubits; a bit-phase flip on
a single qubit can also be corrected. Despite being a full quantum error correction
code, the 9-Qubit code can not handle and correct multiple occurring errors.

Other similar but more compact codes are available, using 5 and 7 qubits rather
than 9.

Many other error correction codes and methods are available. However, we above
introduced the ones that will be leveraged to implement QEC on qudits as reported in
Chap. 8.
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Figure 1.7: 9-Qubits bit and phase flip error correction circuit.

1.5.3 Fault-Tolerant computing

One of the ultimate goals for Quantum Computation is to achieve the Fault-Tolerant
computing, a computing paradigm in which the primary computing circuits and the
QEC circuits do not cause cascading errors through the entire computation process. In
general, for F-T computation, the Quantum Threshold Theorem [29] states that if the phys-
ical qubit quantum error rate is below a certain threshold, a QC can suppress the logical
error rate leveraging on QEC codes: in this way, Quantum Computation can achieve the
Fault-Tolerance. So, in a F-T circuit element, a single error on a logical qubit would cause
at most a single error on a logical qubit output state, if the QEC code corrects a single
error: Fault-Tolerant computation, for a QEC code correcting t = ⌊(d − 1)/2⌋ errors, re-
quires that n ≤ t errors occurring during the computation execution would not create
n′ > t errors in the output for each logically encoded qubit.

Let’s consider a typical example in which a 2 logical qudit CNOT gate, mapping
|111⟩|000⟩ → |111⟩|111⟩ is applied in a F-T way. In Fig. 1.8(a), a bit flip error on a single
physical qubit of logical qubit |ψ1⟩ can propagate to more than 1 physical qubit on logical
qubit |ψ2⟩. In Fig. 1.8(b) instead, the CNOT is implemented in a Fault-Tolerant way: the
bit flip error can propagate only on a single physical qubit on the on logical qubit |ψ2⟩.

In order to achieve Fault-Tolerant computation with QEC, it is therefore needed to
perform Fault-Tolerant operations directly on logical qubits. To do this, the stabilizer
formalism [30] can be very helpful. Here, a quantum state is stabilized by an operator if
the state itself is a +1 eigenstate of the operator:

K|ψ⟩ = |ψ⟩ (1.61)

For example, |0⟩ is stabilized by the operator σz , as σz|0⟩ = |0⟩ [26]. To apply the
formalism to N -qubits, we have to consider the group of operators called Pauli group P ,
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Figure 1.8: (a) Non-Fault-Tolerant CNOT implementation. (b) Fault-Tolerant CNOT implementa-
tion.

composed by {±I,±iI,±σx,±iσx,±σy,±iσy,±σz,±iσz}, and we have to expand it by
taking the N tensor product of itself:

PN = P⊗N (1.62)

In order to stabilize a |ψN ⟩ state, we would need the group G of the N generators of
the N -qubit Pauli group of Eq. 1.62:

G = {Ki|Ki|ψ⟩, [Ki,Kj ] = 0, ∀(i, j)} ⊂ PN (1.63)

It is possible now using the above introduced formalism to perform operations on
logical qubits. For example, if a operation U is performed on a logical qubit |ψL⟩ stabi-
lized by the operator K, we can obtain:

UKU †U |ψL⟩ = UK|ψL⟩ = U |ψL⟩ (1.64)

where the stabilizer set must be fixed. Thus, an X rotation acting on a logical qubit
encoded using 3 physical qubits, would be:

XL = XXX = X⊗3 (1.65)

Two-qudit gates implemented on logically encoded qubits must follow a similar ap-
proach:

CNOTL = CNOT⊗3 (1.66)

This CNOT implementation is also intrinsically Fault-Tolerant, as represents exactly
the circuit depicted in Fig. 1.8(b). The combination of gates applied directly on logically
encoded qubits and a Fault-Tolerant implementation of them is thus a promising way
to achieve Fault-Tolerant Quantum Computation with Quantum Error Correction. The
above mentioned are only a subset of techniques that can be put in place to achieve F-T
Quantum Computing: a more detailed view can be found on Ref. [26].
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1.6 Final considerations

In this Chapter we introduced the theoretical framework underlying quantum gates,
quantum circuit, quantum computation and simulation, together with an introduction
and modeling of quantum noise and how to handle it through error mitigation and error
correction. In the next chapters we will focus on some promising technologies that can
be exploited to implement Quantum Computers based on the introduced theoretical
elements.
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CHAPTER 2

Quantum Computing technology

I n the previous Chapter we introduced the theory underlying quantum computation,
together with an initial overview of noise mitigation techniques and some possible

application areas. Now, the following part is focused on practical approaches to quan-
tum computation, introducing technologies, applications, challenges and innovations
exploited to build real Quantum Computers. Although the theoretical foundations of
Quantum Computation started to be developed in the early 80s, there is not yet a well
agreed and defined technology that can be exploited to mass produce such systems. Re-
search is still in progress, even if the first prototypes hardware and software platforms
are starting to arise. The first step on Quantum Computation implementation quest is to
find a way to build the quantum systems to be controlled and measured to perform com-
putation, and then to leverage on them to prove the advantage of the quantum approach
for specific class of problems.

The first identified area of interest is the simulation of Quantum Systems, as the idea
of a Quantum Computer originates from the need to perform a precise simulation of
Nature through Quantum Mechanics, and as it is the closest to be realized with only
tens of non-error corrected qubits. Quantum chemistry, material science and high en-
ergy physics fields can be the first to be significantly impacted by the rise of QC, as the
digital quantum simulation requires a relatively small amount of qubits to obtain an ad-
vantage on computation. Possible applications could be new drug discovery, genomics
analysis, chemical product design, high energy physics particles classification, identi-
fication of materials for battery improvements, and more. The second area of interest
could be Artificial Intelligence [31][32], where a Quantum Computer could speed up the
model training process and increase training quality. Example of this could be better
product recommendation, better and quicker fraud detection, vehicle routing and bet-
ter pattern recognition. Optimization area could be another field of interest, that could
find application on finance and banking area. Optimization algorithms and Monte Carlo
simulations are widely used in risk analysis and stock portfolio optimization, especially
on high level Worldwide financial transactions: more speed and more accuracy on thou-
sands of micro transaction could lead to significant earnings. Optimization field contains
also more general areas such as schedule of transports, fabrication process, quality con-
trol, manufacturing supply chain, forecasting and data search [33]. Lastly, algorithms
related to some mathematical problems like solving systems of linear equations, or fac-
torization of large numbers (Shor’s algorithm [34]) would achieve a huge speed up, as a
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classical computer struggles to complete this task. This would have, at least in the next
decades, an impact on cryptography and security [35] (when millions of qubits will be
available on quantum chips), while the first quantum-safe systems are yet in production
[36][37]. Many more fields of interests are still in development, and many others have to
be discovered yet.

Since 2016, quantum technology field has seen important announcements from sev-
eral research institutions and technology enterprises such as Google, IBM, Intel, Rigetti
and many more: the race towards a practical implementation of Quantum Computers
has started, reaching in November 2021 the release of a 127 qubits processor [38].

2.1 Available and emerging hardware and software technologies

2.1.1 Quantum hardware

The quest for real Quantum Computation starts obviously with the selection of the quan-
tum system to be used to implement the fundamental unit of computation, the qubit.
Here there is brief description of the available and emerging hardware platforms, each
one carrying its own advantages and disadvantages.

• Trapped ions: this technology was one of the first used to create qubits with all
needed features, such as initialization, quantum gates and measurement. It con-
sists in a series of ions kept in position by rotating electromagnetic fields, that act as
qubits with long coherence times. Although high fidelity of operations is achieved,
these systems are currently having scalability issues [39]. Nevertheless, thanks to
the high fidelity achievable and despite the limited amount of qubits that can be
implemented, these machines are well suitable to perform quantum simulations,
such as time evolution, and Variational quantum Algorithms implementation.

• Quantum dots: this way to build qubits is based on semiconductors, so can be
supported by already developed industry best practices. Nanoscale points in a
semiconductor substrate can trap and control single electrons using electric pulses,
where the qubit is represented by the spin of the system, having a long coherence
time [40]. This is also one of the first technologies proposed, as leverages on exist-
ing semiconductor techniques; scalability issues are still present.

• Superconducting circuits: they leverage on superconducting properties of mate-
rials to generate qubits as Cooper Pairs inside Josephson Junctions. Stability and
quality of results has been proven up to more than hundred of qubits [38], and
many players have started building software platforms to control such systems
[41]. Superconducting transmons technology is described in Chap. 3, as it has been
widely used in this work to simulate several spin and fermionic systems.

• Photons: a photon-based quantum computer uses photon spin states as qubits,
controlled in example by phase shifters and beamsplitters. Photons are generated
by single photon sources (lattices of resonators) and pass through optical wave
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guides, then are finally measured by an array of detectors [42]: several network-
ing systems are required to control photons and use them to create entanglement.
There are various technologies almost ready to implement photonic quantum de-
vices, based on state of art nanotechnologies and optoelectronics.

• Topological encoding: semiconductor nanoscale wires encode and host Majorana
fermions inside them. They are however currently difficult to control and measure
[43].

• Neutral atoms: trapped neutral atoms are manipulated by light pulses. Neutral
atoms can be addressed individually, have long coherence times and can be orga-
nized in lattices, up to ∼ 102 atoms [44].

• Molecular spins: some magnetic molecules can act as effective S = 1/2 quantum
systems and can be exploited to encode qubits, where the |0⟩ and |1⟩ states are en-
coded in the two m = ±1/2 levels. Thanks to their multi-level structure, magnetic
molecules can be also exploited to define multi-level qubits, called qudits [45][46].
This intrinsic feature of molecules increases the computational power, enabling in-
tegrated Quantum Error Correction (QEC) simplifying some algorithms [47] and
allowing the execution of parallel operations within the same molecule. More-
over, with the proper chemical engineering process, customized molecules can be
created in order to reduce decoherence errors and build systems that can be used
together with other technologies such as superconducting transmons control sys-
tems [48]. A detailed description of such systems is provided in Chap. 4, and they
will be exploited to create quantum gates (Chap. 7) and QEC (Chap. 8).

The most promising technology, used to build current most advanced Quantum Com-
puters, is superconductivity; however, we are still in the NISQ era, but aiming to the
“second quantum revolution” with a next generation of quantum devices, that could
hopefully used for practical scope gaining advantage respect to classical computation in
the proper fields of application. Other hardware technologies are still in development
and will be probably explored for a practical implementation in the next years.

2.1.2 Quantum software

Together with hardware development, the software stack is an essential feature to enable
the usage of Quantum Computers. There are several layers of software that need to be
implemented in order to run applications on a quantum device.

• Low-level access: this is the lowest level of the software stack, communicating di-
rectly with the quantum hardware, and it is analogous to the classical Assembly
language. At this level, instructions directly implementable by the Quantum Com-
puter are managed, such as implementing a specific quantum gate to a specific set
of qubits. Some examples of this low-level access programming are Qiskit Circuits
(formerly Qiskit Terra) [49] and OpenQASM [50].
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• Transpilers: on top of the basic low-level machine language there is the transpiler.
This software performs a first translation of the original machine-level software,
optimizing the quantum gate circuits considering mainly qubits topology and cal-
ibration. Moreover, transpiling a quantum circuit implies taking into account the
connectivity in order to implement multi-qubit gates: if a quantum hardware does
not have the right connectivity between qubits in order to implement the required
two-qubit gates, this software layer introduces SWAP gates in order to properly
rewrite the code. Several techniques can be leveraged to perform this circuit opti-
mization, from a randomized optimization approach to machine learning.

• Pre-built libraries: the possibility to use a set of pre-built, automatically transpiled
and optimized pieces of code is the first step towards an higher-level program-
ming. Examples of this are the Qiskit Applications, in which several pre-built al-
gorithms can be imported and used in a bigger program: the Variational Quantum
Eigensolver library will be used during this work in Chap. 6 and in Chap. 5. In
this case there is no need to manage the low-level programming structure of the
algorithm: several functions are provided, each one with properties, flags and at-
tributes to be set.

• Compilers: the next level of the software stack would be the program compiling.
A compiler is a program that translates a code written in a certain language, called
source, to a code written in another language, called target. An example of this
is the translation of a program written using a high-level language to a low-level
machine set of instructions.

• High-level programming: this layer of the software stack is a complete packaging
of all core libraries and tools to enable developers to program Quantum Comput-
ers with the same skill set required for classical computation. With an high-level
programming language, all the complexity related to quantum circuits, gates, er-
ror correction will be properly masked, and developing applications will be almost
transparent. For this purpose, an architectural framework described in App. C has
been designed and implemented [51].

• Frictionless development: the final stage of quantum software. When achieved,
frictionless development will enable programmers to develop, test and run code with-
out caring of the underlying platform. Each piece of code will be run automatically
on the right platform, whether classical or quantum, considering several factors
like performances required, type of algorithm, and so on [52].

2.2 Challenges on technology implementation

All the above mentioned hardware and software technologies would need, through their
evolution, to face with some challenging problems.
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2.2.1 Scalability and quality

The number of qubits available on quantum chips is the first crucial result that needs to
be achieved. Although for some specific use cases such as quantum simulation a limited
amount of qubits (∼ 50) could lead to significant improvements, like the possibility to
simulate time evolution of quantum systems impossible with classical computers, the
majority of general quantum algorithms require thousands or million of qubits to be-
come useful, for example the factorization of large numbers [34].

Beside the number of implemented qubits, the quality of themselves must be taken
into account. The quality of qubits is primarily related to the ability of initialize, control
and readout the states: the pursuit of quality qubits must pass through this improve-
ment of these basic operations. Then, it is needed to improve the quality of the quantum
system itself, in particular regarding coherence. Currently, available quantum comput-
ing platforms are limited by the number of quantum gates that can be performed: an
improvement of T1 and T2 times, as well the reduction of the time taken to each gate to
be performed, is crucial to be able to increase the complexity of algorithms.

In 2019, IBM proposed the Quantum Volume (QV) metric to define the quality of near-
term quantum devices [4], being adopted also by other QC manufacturers. The Quan-
tum Volume computation takes into account several quantum chip features, such as
qubit number, connectivity, single-qubit and two-qubit gate error rates. In order to
compute the QV of a certain chip, a specific algorithm must be run: a series made of
d randomized modular circuits (depth) are applied to a set ofm qubits (amplitude), then
optimized by the software transpiler and let evolve. The final calculation is performed
by the formula [53]:

log2QV = argmax
m

min(m, d(m)) (2.1)

The Quantum Volume indicates the maximum size of square quantum circuits that a
Quantum Circuit can implement considering the error rate. It can be considered an uni-
versal metrics, as it is independent from the QC architecture or topology: for example,
with QV it is possible to compare the quality of superconducting transmons and ion trap
devices, or other architectures.

2.2.2 Error mitigation and error correction

In order to help improving results quality, beside technological improvements, some er-
ror mitigation techniques can be exploited to reduce the effect of noise on the results.
Some of them have been introduced in Chap. 1. The improvement on quantum hard-
ware quality and the successful application of error mitigation techniques would be for
sure a great achievement; however errors will still remain there, although heavily re-
duced. It is clear that a method of correcting them is desirable, achieving Fault-Tolerant
computation, where operations are performed tolerating the errors, which are reduced
by increasing the size of the logic qubits. Each quantum hardware technology should be
assisted with the proper error correction codes, that should be applied in a reasonable
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amount of time, not to extend significantly the overall computation time.

2.2.3 Demonstration of quantum advantage

The main goal of this technology research path is to obtain a solid way to build Univer-
sal Fault-Tolerant Quantum Computers, able to perform general purpose computation,
with a significant amount of error corrected qubits. Quantum Computers will be a fun-
damental platform to gain access to the solution of problems that nowadays are impos-
sible to handle with a classical computer; nevertheless, classical computers will remain
the primary choice for some class of algorithms and problems. Thus, it is not fair consid-
ering valid the so called quantum supremacy concept. Quantum and classical computers
will work together, each one on their specific class of problems: a more fair term is, in
this case, the so called quantum advantage, where QCs will overcome classical systems
on solving specific class of algorithm. In particular, considering the number of qubits
as the sole comparing term, it is possible to notice that there is an exponential ramp-up
of the coefficients involved in the calculation while increasing the size of the QC. It is
worth noticing that 64 qubits will require ∼ 75 EB (Exa-Byte) of memory to be encoded
on a classical computer: for example, encoding 256 qubits on a classical computer would
rather be simply impossible.

Although quantum supremacy/advantage is currently a controversial field [54][55],
it is clear that Quantum Computation field is rapidly evolving in terms of number of
available qubits, qubits quality and application use cases.

Taking into account the above introduced state of art of the available hardware and soft-
ware technologies, together with the most promising ones for future developments, we
now introduce in the following Chapters two different approaches to Quantum Com-
putation. The first one, based on superconducting transmons qubits, has been used to
perform simulations and real hardware runs on IBM Quantum platform; the second one,
the molecular approach representing a possible next generation of Quantum Computers,
has been exploited to create a set of simulated Universal Quantum Gates and a simula-
tion of a Quantum Error Correction algorithm.



CHAPTER 3

Transmons approach

O ne of the most promising platforms used nowadays to build qubits are the super-
conducting transmons in terms of easiness to build, control, scale and, most of all

performance [41]. They are implemented using a Niobium-Aluminum alloy: in partic-
ular, Niobium is a transition metal that enters in superconducting regime at relatively
high temperature (∼ 9.2 K), and it has some useful properties for superconducting tech-
nologies. Superconducting transmons qubits are basically anharmonic oscillators built
using Josephson Junctions.

In the following sections the foundation theory is reported, along with a description
of the physical implementation.

3.1 Transmons as superconducting qubits

Each modern classical computing hardware consists of basic components named transis-
tors, elements capable to control electric charge flux with the application of an external
electric field (FET, Field Effect Transistor) or current (BJT, Bipolar Junction Transistor). Tran-
sistors leverage electric concepts of capacitors (C), inductors (L) and resistors (R), that
establish the basis of charge and current flow control; one of the most important combi-
nation of such electrical components is the LC oscillator, also called resonant circuit, that
acts as an electrical resonator able to store and release energy.

3.1.1 The harmonic oscillator

A classical harmonic oscillator can be defined by the following equation:

H =
p2

2m
+

1

2
mω2x2 (3.1)

where a particle of mass m is subject of the action of an harmonic potential, and
where [x, p] = iℏ [56]. This can be translated in the electronic field as:

H =
ϕ2

2L
+
q2

2C
(3.2)

where ϕ is the magnetic flux and q is the electric charge. In Fig. 3.1(a) is reported a
sketch of an ideal LC oscillator: the capacitor C is able to store energy by creating an

37
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electric field between plates, while the inductor L by creating a magnetic field inside its
coil. Connecting a capacitor and an inductor in a circuit can create an oscillation of en-
ergy through the two components, in terms of charge flux and induced currents. If this
system is charged and then isolated, the oscillations would be damped until disappear-
ing after a certain amount of time, as the resistance of the circuit dissipates energy; on
the other hand, if an external generator is inserted in the LC circuit, oscillations can be
controlled and maintained without damping. It is important now to introduce the main
energy dissipation sources in an LC circuit oscillator, in order to understand the effect
on energy storage. There are two main dissipation sources: internal and external.

• Internal dissipation: each LC circuit has an internal resistance, due to the physical
implementation of the conductors (wires) and the dielectric of the capacitor. We
can define this internal resistance as Rint.

• External dissipation: an LC circuit interacts with the external environment while
oscillating, leading to radiation and coupling effects. We can define these external
effects as Rext and Cext.
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Figure 3.1: Ideal and real harmonic oscillating circuit with energy levels.

As depicted in Fig. 3.1(b), the external effects contribute to a decrease of the total
resistance and an increase of the total capacitance, by following the laws regulating the
series and parallel circuits. The total resistance and the total capacity can thus be defined
as

1

Rtot
=

1

Rint
+

1

Rext
(3.3)

Ctot = Cint + Cext (3.4)

leading to a energy decay time (and rate):
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Tτ =
1

τ
= Rtot · Ctot (3.5)

We can then define a resonance frequency ω0 for an oscillating LC circuit as ω0 ≡ 1√
LC

.
In Fig. 3.1(c) the energy levels of the harmonic oscillator built with an LC circuit after

quantization are reported: in an harmonic oscillator, energy levels are equally separated
by equal gaps. An oscillator with equal energy gaps is called linear.

3.1.2 Quantization of the harmonic oscillator

In order to use such theoretical basis to implement a quantum oscillating system to im-
plement computation, we would need to address only a single gap, with |0⟩ and |1⟩ to
be used to define qubit states.

First, the quantization of the harmonic oscillator is of course required. The classical
harmonic oscillator Hamiltonian in Eq. 3.1 can be rewritten introducing a complex vari-
able A = mωx + ip, resulting in the form H = 1

2m |A|
2. This leads to the Hamiltonian of

the quantum harmonic oscillator:

H =
1

4m
(A†A+AA†) =

1

2m
A†A+

1

2
ℏω (3.6)

that, with the introduction of the creation and annihilation operators a and a†, leads
to [56]:

H = a†a+
1

2
(3.7)

The n-th energy level of the quantum harmonic oscillator is thus En = (n + 1/2)ℏω,
equal to the classic harmonic oscillator spectrum.

3.1.3 Josephson Junctions as non-linearity source

The most important feature now needed is a non-linearity source to make the energy gaps
different each others in order to address specific levels to induce transitions between
them, without inducing other unwanted transitions, as depicted in Fig. 3.2.

The introduction of a non-linear element in an harmonic oscillator is achieved using
Josephson Junctions, the only circuit elements that are dissipation-free and nonlinear
[57]. The LC circuit becomes an anharmonic oscillator with the introduction of Josephson
Junctions working in the superconducting regime, as depicted in Fig. 3.3. This artificial
atom would provide the anharmonicity needed to induce only the selected transitions.
The Josephson Junction is a junction similar to what occurs on transistors, with the dif-
ference that two superconducting stripes (instead of semiconductors) are separated by
an insulator [58]: the charge carriers, thus, are not electron-vacancy pairs, but Cooper
Pairs acting like a Boson (S = 0) moving through the insulating layer by tunnel effect,
condensed into a macroscopic wave function [59]. Several different uses of Josephson
Junction are reported in Ref. [60]. The two main characteristics of Josephson Junctions
essential to create qubits are reported below.
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Figure 3.2: Ideal and real anharmonic oscillating circuit with energy levels.
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Figure 3.3: Josephson Junction section view.

• Flux quantization and Josephson tunnelling: when a ring-shaped superconduct-
ing material immersed in a magnetic field is cooled down below a certain tem-
perature, in particular its superconducting transition temperature (usually a few
degrees Kelvin dependant on the considered material), the repentine shut off of
the magnetic field yields to the quantization of the magnetic flux through the ring;
this is due to the supercurrents inside the ring. The magnetic flux takes values of:

Φ0 ≡
h

2e
(3.8)

In a Josephson Junction, as depicted in Fig. 3.3, an insulator tunnel lets Cooper
Pairs pass: this supercurrent through the insulator is related to the different phases
of the two superconducting layers:

Isup = Ic sinϕ(t) (3.9)

where Ic is the critical current [61]. The phase time evolution can be represented
by:

dϕ(t)

dt
=

2π

Φc
V =

2e

ℏ
V (3.10)
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as per Eq. 3.8, where V is the difference of potential between the two supercon-
ducting layers. Let’s now represent the time evolution of supercurrent (Eq. 3.9) by
using Eq. 3.10:

dI

dt
= Ic cosϕ(t)

dϕ(t)

dt
=

2eV Ic
ℏ

cosϕ(t) =
2πV Ic
Φc

cosϕ(t) (3.11)

Considering the Faraday’s law of induction ∆V = −dΦ
dt and L = Φ/I , we can

obtain:

|Ljj | =
Φc

2πIc cosϕ(t)
=

Φc

2π
√
I2c − I2

(3.12)

in the I < Ic regime. The Josephson Junction is thus a nonlinear inductance carry-
ing an internal capacitance Cint as reported in Eq. 3.4.

• Charge qubit: in order to understand the different functioning regimes of a qubit
made with Josephson Junctions, one needs to study the flux of Cooper Pairs that
pass through the insulator. The characteristic energy contribution of the Josephson
Junction is Ejj cos ϕ̂, where ϕ̂ describes the phase difference across the junction. To
study the Cooper Pairs flux we now introduce the number operator n̂ = −q̂/2e and
the charging energy Ec = q2/2Cint. Cooper Pairs energy can be represented by:

Ĥ = 4Ec(n̂− noff )− Ejj cos ϕ̂ (3.13)

where noff represents an offset charge, when adding an external voltage source to
the circuit depicted in Fig. 3.2(b). Hamiltonian in Eq. 3.13 can be rewritten on the
charge basis:

Ĥ = 4Ec

N∑
n=−N

(n− noff )2|n⟩⟨n| − Ejj

N−1∑
n=−N

(|n+ 1⟩⟨n|+ |n⟩⟨n+ 1|) (3.14)

The number of Cooper Pairs tunnelling the insulator is then related to Ejj/Ec, and
n are the eigenvalues of the operator n̂.

3.1.4 Physical implementation

Superconducting qubits are physically implemented in many different ways. The non-
linear Josephson Junction, a crucial element that basically all implementations have in
common, is usually built using an alloy of Niobium and Aluminum, with different crit-
ical temperatures to enter in superconducting regime, respectively TCNb

= 9.2 K and
TCAl

= 1.2 K. The insulating layer is usually built with Aluminum Oxide [62]. There
are several regimes for implementing superconducting qubits, depending on the ratio
Ejj/Ec, as reported in Eq. 3.14.
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• Cooper Pair Box (CPB) regime: here we have Ejj/Ec ∼ 1 [63], with a high anhar-
monicity of the system and a high Cooper Pairs flux, increasing decoherence.

• Transmon regime: here we have Ejj/Ec ≫ 1 [41], where ahnarmonicity is only a
small perturbation in a system dominated by harmonic characteristics. The system
can then be described as a perturbed harmonic oscillator, with the Hamiltonian:

Ĥ =
√
8EcEjj(α̂

†α̂+
1

2
)− Ejj −

Ec

12
(α̂+ α̂†)4 (3.15)

where α̂† and α̂ are the canonical creation and annihilation operators of the har-
monic oscillator. The latter part of the Eq. 3.15 is the leading order anharmonicity.
The energy levels thus are not equally spaced as the harmonic oscillator, but a first
order correction occurs:

E
(1st)
l = −Ec

12
⟨l|(α̂+ α̂†)4|l⟩ = −Ec

4
(2l2 + 2l + 1) (3.16)

where |l⟩ are the harmonic oscillator eigenstates. They are mixed with |l ± 2⟩ and

with |l ± 4⟩: resulting anharmonicity is ∼ −
√

Ec

8Ejj
. Cooper Pairs flux is thus lim-

ited, and also decoherence, while anharmonicity is reduced. The transmon qubit
can be integrated on a superconducting transmission line resonator, also called
Coplanar Wave guide Resonator (CWR). As depicted in Fig. 3.4, two Josephson
Junctions with energy Ejj are coupled with a CWR and connected to a voltage
source. Shunting capacitor CB reduces Ec, increasing the ratio Ejj/Ec. Consider-
ing Cr ≪ Ctot (total capacitance), the system can be described by:

Ĥint = 2e
Coff

Ctot

√
ℏωr

2Cr
· n̂(â+ â†)→ ℏ

∑
i,j

gi,j |i⟩⟨j|(â+ â†) (3.17)

where ωr = 1/
√
LrCr is the resonator frequency, â and â† are respectively the

annihilation and creation operators of the photons in the harmonic oscillator, and
n̂ is the number operator. The transmon qubits can be physically implemented
and controlled by properly tuning the characteristic quantities Ejj/Ec, Coff/Ctot,
Cr and ωr. The latter notation is achieved by rewriting Ĥint on the basis of the
uncoupled states |i⟩, where:

ℏgi,j = 2e
Coff

Ctot

√
ℏωr

2Cr
⟨i|n̂|j⟩ (3.18)

Here we focus on the transmon regime, which is the most largely employed and stud-
ied. Transmission-line Shunted Plasma Oscillation qubits, also called Transmon qubits, are
one of the most encouraging technological implementation of superconducting qubits:
as said, some of their properties are that the energy gaps are very well defined, there
is a low sensitivity to the noise due to the charge flux, and a large dipole moment.
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Figure 3.4: Effective circuit diagram of the transmon, with two Josephson Junctions (blue), an
offset voltage source (green) and a CWR (orange).
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Figure 3.5: Implementation scheme of the transmon in a CWR. Typical scale of the overall CWR
thickness is ∼ 5 µm.

As compared to other superconducting qubit technologies, transmons are characterized
by high anharmonicity and low charge noise. Increasing anharmonicity will increase
charge noise, but while anharmonicity scales exponentially with Ejj/Ec, decoherence
scales polinomially [41]. Most importantly, these systems can be controlled by introduc-
ing microwave-scale pulses, inducing transitions between the two lowest energy levels,
defined as |0⟩ and |1⟩.

Taking into account all the above mentioned features, a quantum chip made of sev-
eral transmons qubit is composed by the following elements.

• Qubit processor: the qubit itself is composed by a single Josephson Junction act-
ing as non-linear inductor, introducing anharmonicity to the harmonic oscillator
created by the transmission line resonator, with different gaps between energy lev-
els. In there, the two states of the qubit can be accessed. To control the state of
the qubits, the application of a resonant microwave pulses is required. To do this,
some control lines inputs need to be installed on the chip [64]; the size of these
resonators is due to the fact that they must resonate with a frequency ∼ 5 GHz,
thus with a scale length of 10−2 m. The external microwave pulse is tuned close to
the resonating frequency, and it is sent through the resonator input or through the
side-gate, properly varying their length, amplitude and phase. Single-qubit quan-
tum gates are implemented with resonant microwave pulses; two-qubit gates are
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implemented in various ways, always with resonant microwave pulses [14].

• Qubit readout: readout wave guides are used to obtain the qubit states after mea-
surement. In general, the qubit readout is performed in the dispersive regime,
where a large qubit-resonator detuning ∆ = |ωr − ω0| ≫ g is present, with g de-
fined in Eq. 3.18 and ω0 is the energy gap between level |0⟩ and |1⟩ (as depicted in
Fig. 3.2). The Hamiltonian in the dispersive regime can be rewritten as the follow-
ing [65]:

Ĥdisp ≈ ℏ(ωr + χσ̂z)â
†â+

ℏ
2
(ω0 + χ)σ̂z (3.19)

where χ = g2/∆. The dispersive regime allows one to perform a non-demolition
readout of the qubit state. The first term of Eq. 3.19 represents a state-dependent
frequency shift of the resonator: the qubit performs a dispersive shift of the res-
onator frequency. The application of an external microwave pulse close to the res-
onance frequency ωr on the CWR is required: then, a phase-sensitive measurement
of the transmitted microwave is enough to gather the state of the qubit [65].

• Refrigeration: the entire chip containing qubit and resonating wave guides must
be kept at very low temperature, to maintain superconductivity regime, and to cut
down unwanted excitations from the external environment. To do so, a cooling
system operating with liquid Helium isotopes 3He and 4He is required, capable
to lower the temperature down to ∼ 10 mK. Superconductivity also carries the
opportunity to lower the dissipation of energy and reduce excitations, due to the
low temperature involved.

We can finally define the quality factor of the resonator as Q ≡ ωr/∆ω, where ∆ω is
the half-power bandwidth [66]. The quality factor describes the resonator performance
being inversely correlated to the energy damping rate. Exploiting Niobium properties to
create Nb-based alloys superconducting transmons has improved the quality factor up
to 107 [67].

3.1.5 Main noise sources

One of the major noise sources for transmons qubits are the decoherence errors, intro-
duced in Section 1.3, and here recalled: the thermal relaxation time T1 is the decay time
of diagonal elements of the ρ, while T2 time is the dephasing time, the decay time of the
off-diagonal elements of the ρ (T1 ≥ T2, in general). Transmon systems can be built with
relaxation time T1 ∼ 100 µs and coherence time T2 ∼ 100 µs, as order of magnitude.
As an example, below we simulated a measurement of relaxation time and coherence
time on IBM’s superconducting transmons qubits, using Qiskit simulators and fitters. In
Fig. 3.6(a) it is reported the probability as a function of time to find the qubits in the state
|1⟩ after applying an X gate to the initially prepared state |0⟩, for two different qubits.
The slope is a decaying exponential, where T1 is the decay time. In Fig. 3.6(b) are repre-
sented the probability as a function of time of Rabi oscillations between |0⟩ and |1⟩ states
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obtained with a transition resonant pulse. The envelop is a decaying exponential, where
T2 is the decay time. Decoherence rates must be taken into account to be able to im-
plement reliable computation. Each quantum gate composing a quantum circuit takes a
certain time to be executed, usually single-qubit gates take ∼ 30 ns and two-qubit gates
take ∼ 300 ns: the overall time taken to compute the entire circuit must be significantly
shorter than T1 and T2.

(a)

(b)

Figure 3.6: Simulations of decoherence times on transmons qubits made with Qiskit.

Another error source affecting superconducting transmons, but not limited to them,
is related to the accuracy of rotations performed on the qubit states. Rotation gates the-
oretically are meant to implement rotations of a certain angles along a certain axes: in
practice, this process is experiencing mainly two problems. The first one is a tilt on the
rotation axis, not being precisely accurate; the second one is an incorrect implementa-
tion of the rotation angle, usually due to the fact that the transition frequency depends
on the first-neighbour qubits, that are not completely decoupled (cross-talk). The com-
bination of these two effects leads to an inaccurate implementation of the rotation gate,
thus influencing the final state quality and the fidelity of the computation. An accurate
characterization of IBM Quantum gates is reported in Appendix A.
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3.2 IBM Quantum

A consistent part of this work has been developed using IBM Quantum technology,
based on the above detailed superconducting transmon qubits. In the following sec-
tions we will give an overview of the main features of the IBM quantum computing
platform. IBM was certainly [68] the first enterprise to start thinking about quantum
computing, since the first quantum computing conference named “Physics of Compu-
tation Conference” was hosted in 1981 by IBM and the MIT [69], more than 40 years
ago. During the following decades, a lot of theoretical and experimental research was
performed by several research laboratories, academic institutions and enterprises, with
the objective to create the foundations of quantum computing and to start thinking to
possible implementations.

IBM’s quantum devices are available in IBM Cloud since 2016 through the IBM Quan-
tum Experience platform, then renamed IBM Quantum [2][3].

3.2.1 Hardware description

IBM Quantum systems are available for remote access via the Internet through IBM
Cloud platform, and are released in different versions. The different architecture ver-
sions take the names of birds (e.g. Falcon, Hummingbird, Eagle) while the single devices
take the name of cities (e.g. Nairobi, Toronto, Washington). Each chip architecture has
different qubit topologies, as depicted in Fig. 3.7: it is clear that superconducting chips
have a limited coupling, as only a few qubits are directly interconnected each other.
However, the software stack is in charge to transpile the circuits in order to achieve
the desired connectivity implementing SWAP gates, allowing the creation of entangled
states using not directly interconnected qubits. This architectural choice is due to the
fact that additional connectivity would introduce an higher cross-talk effect, leading to
a more important noise impact on the chips. A detailed view of chip’s calibration is pro-
vided on the user interface, or via API using the software stack. In Fig. 3.7 are reported
the most common IBM Quantum chip topologies: the “brick-shape” topology is cur-
rently used to enable chip scalability, as more and more bricks can be attached together
creating bigger chips. The different shades of purple color indicate the calibration data
for both single-qubit gates and two-qubit gates.

These quantum devices are nowadays (late 2022) hosted on IBM facilities in the U.S.,
first of all due to the required highly skilled maintenance and operations personnel
(Fig. 3.9(a)). For the production systems, all the hardware components, including the
refrigerator, the classical read-out and control computing resources, are enclosed in a
single glass case, as depicted in Fig. 3.9(b) photo: these machines are the World’s first
fully integrated universal quantum computing system “IBM Quantum System One” that
can accomodate devices up to 127 qubits [38]. The future chips would require a bigger
enclosure, with a more powerful cooling system, that will be called “IBM Quantum Sys-
tem Two” as depicted in Fig. 3.9(c) render [71].

IBM Quantum chips are constantly calibrated via software, and calibration data are
available on both user interface on the portal and via programmatic access. Calibra-
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Figure 3.7: Different IBM Quantum system topologies (2019). Top-left: first version of brick-based
topology. Top-center: current brick-based topology. Top-right: T-shaped topology. Bottom-left:
first version of linear-brick topology. Bottom-right: first version of high-connectivity topology.
The name of the Cities represent the different devices, with the relative topology. Not reported
here: H-shaped and L-shaped topologies. Reproduced from Ref. [70] with permission from IBM
(open access photo collection distributed under the terms and conditions of the Creative Commons
Attribution (CC BY-ND 2.0) license Creative Commons).

Superconducting qubits

Control and Readout resonators

Bus resonator

(a) (b)

Figure 3.8: (a) First generation of IBM Quantum basic chip structure. Reproduced from Ref. [70]
with permission from IBM (open access photo collection distributed under the terms and con-
ditions of the Creative Commons Attribution (CC BY-ND 2.0) license Creative Commons). (b)
Details of IBM Quantum chip components.
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tion data (late 2022) contain the topology diagram depicting the coupling map between
qubits, and a set of tables containing information on qubits themselves and on single-
qubit and multi-qubit operations. The calibration includes the frequency and anhar-
monicity (both measured in GHz), T1 and T2 (measured in µs, readout error rate and
length (in ns), and single qubit operation error rates. For connectivity calibration data,
the CNOT error rates and the CNOT gate time length (in ns) are provided. It is possi-
ble to access the specific chip calibration data to perform noisy simulations reproducing
the general behaviour of that chip; advanced error composition techniques also allow
to build custom noise models to simulate custom calibrated chips, very useful to mimic
technology improvements.

(a) (b)

(c)

Figure 3.9: IBM Quantum systems. Reproduced from Ref. [70] with permission from IBM (open
access photo collection distributed under the terms and conditions of the Creative Commons At-
tribution (CC BY-ND 2.0) license Creative Commons).

3.2.2 Metrics

There are currently three main metrics to define near-term quantum devices computa-
tional power [72].

• Scale: the number of available qubits in a quantum chip is an important feature,
since more qubits mean more available states that can be accessed. Superconduct-
ing qubits are still the most promising for scalability purposes: for example, the
IBM brick-shape connectivity would ensure a great improvement on qubits num-
ber, as they can be put together leveraging on their modular design. New strategies
to constantly increase the number of qubits are in development (see Sec. 3.2.3).

• Quality: qubits quality refers to reducing the impact of noise on quantum compu-
tation. The metric defining the quality of quantum processors is Quantum Volume
(QV) [53], introduced in 2019 by IBM and explained in Sec. 2.2.1.
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• Speed: in 2021, IBM introduced the concept of Circuit Layer Operations per Sec-
ond (CLOPS), that recalls the Floating Point Operations per Second (FLOPS) metric
used for classical computers. CLOPS is a measure determining the number of cir-
cuit layers that the Quantum Processing Unit (QPU) is able to execute in a given
unit of time. Properly, this metric is defined as the number of primitive circuits that
can be processed in a second. Higher CLOPS means the ability to execute more cir-
cuits, allowing a Quantum Computer to perform more complex algorithms in a
reasonable amount of time.

3.2.3 Development roadmap

As explained in the previous sections, superconducting transmons qubits are very promis-
ing technology to build Universal Quantum Computers. Several techniques to increase
the number of qubits are in development, as per IBM Quantum roadmap [73][74]: circuit
knitting, real-time classical communication between separate processors, and chip-to-chip
couplers will be leveraged all together to break the barrier of 4000 qubits in the next years
(2023 to 2026), reaching then 10k-100k qubits beyond 2026.

Circuit knitting is a software feature that will be used to break quantum circuits in
chunks to be computed on separate quantum processors, then combined back by a clas-
sical controller: this is the main software feature that will enable all the scalability re-
quired to build the future devices. The next step, enabled by circuit knitting, is expected
to allow the real-time communication between different quantum devices, that will work
together in parallel to compute their chunk of circuit. This will be enabled by using hard-
ware communicating links between quantum devices, with a scale length of ∼ 100 m, as
depicted in Fig. 7.4(a). In the meanwhile, quantum processors will be improved by in-
troducing a chip-to-chip connectivity using small scale couplers (∼ 10−3 m), enabling
to put together several chips inside the same quantum device as depicted in Fig. 7.4(b).
Each blue dashed block represents a separate quantum system. The last step will be the
concurrent use of these technologies, building quantum devices connected with both
real-time connections and chip-to-chip couplers, allowing to go beyond 4000 qubits. A
scheme of this implementation is depicted in Fig. 3.11.

All IBM Quantum hardware is currently released remotely at IBM sites, for evident tech-
nology constraints such as refrigeration and highly skilled professionals required for
maintenance. All quantum resources are available on the quantum portal in different
flavours; in this work we used quantum chips up to 7 qubits to simulate static and dy-
namic properties of several quantum systems as reported in Chap 6 and Chap. 5. IBM’s
quantum devices are also available via IBM Cloud platform, integrating Qiskit Runtime
services: this feature is described in Chap. C, where new architectural approaches are
proposed to integrate quantum systems into current classical enterprise applications.

Although the significant effort put in place to develop this revolutionary technology,
Quantum Computation is just at the beginning of its journey. Superconducting qubits,
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as well as the other systems currently investigated, are probably only one of the first
steps towards the large scale fault tolerant universal quantum computation. Fundamen-
tal research must continue to find new ways to build the future generation of Quantum
Computers, hopefully mitigating all the issues experienced by current technology. In the
next Chapter is thus introduced a different approach to Quantum Computation based on
magnetic molecules, then exploited in Chap. 7 with several simulations.

(a) Universal Classical Bus
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Quantum Chip
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Real-time classical 
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Figure 3.10: (a) Real-time classical communication scaling technique. (b) Chip-to-chip couplers
scaling technique.
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CHAPTER 4

Molecular approach

T he main issue preventing today’s approaches to Quantum Computing to be consid-
ered good candidates for Fault-Tolerant computation is their intrinsic weakness to

decoherence: current systems implementing qubits can be considered reliable only for
a relatively small amount of time, thus cannot be used to achieve a real quantum ad-
vantage for applications in a production environment. Several ways are being studied
and developed to improve Quantum Computer performances in terms of error correc-
tion, and will be available to next generations of Quantum Computers. One approach
in development is the implementation of block encoding, where the fundamental unit of
computation will be a logic unit composed by a certain amount of physical qubits: with
this approach, the logical qubit becomes a collection of physical ones, which must then
be corrected, as introduced in Chap. 1.5. The main drawback of this method is that a
huge amount of physical qubits is needed: as million of logic qubits [75] will be proba-
bly needed to implement complex quantum algorithms, and each logical qubit would be
composed by hundreds of physical qubits, a Quantum Computer would require chips
implementing hundreds of millions of qubits [76]. This is not achievable with the cur-
rently available technology.

Fortunately, other approaches are arising for Quantum Error Correction: one of the
most promising one is exploiting multi-level (qudit) systems to embed QEC into single
objects. Molecular Nanomagnets provide one of the most promising implementation of
such error-corrected units.

4.1 Introduction to Molecular Nanomagnets

Molecular Nanomagnets (MNMs) are molecules containing a small amount of transition
metals or rare-earth ions in their core, surrounded by an organic ligand structure. The
core ions are the source of the magnetic behaviour of the molecule: transition metal ions
(usually V, Cr, Mn, Fe, Co, Cu) have a partially filled 3d shell, and are characterized by
strong inter-spin Heisenberg interactions; rare-earth ions (usually lanthanides, Ce, Nd,
Eu, Yb) have a partially filled 4f shell, and are characterized by a strong single-ion mag-
netic anisotropy. The incomplete orbital shells of the core ions are responsible for the
magnetic effects, due to the Hund’s Rules. The shell position respect to the ions nuclei
are important to determine the most important interaction characterizing the molecule.

53
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Such molecules composed by magnetic core ions and a ligand cage can be organized
in crystal lattices, where each magnetic core acts as a single and isolated Molecular
Nanomagnet: the surrounding ligand structure suppresses interactions between mag-
netic cores. This characteristic can be exploited to perform computation by accessing
each magnetic ions singularly, while arranged in a solid and precise crystal structure.

Molecular Nanomagnets with an effective S = 1/2 have been proposed to imple-
ment qubits [77]: proper compounds have been selected and engineered to improve
coherence time up to∼ 0.1 ms at low temperature and up to∼ 1 µs at room temperature
[78], reaching values impossible to be achieved with currently implemented technolo-
gies such as superconducting transmons. Moreover, the molecular approach can lead to
a relatively easy implementation of Quantum Error Correction algorithms by encoding
logical qubits using the larger available Hilbert space. Unsurprisingly, the real power
of Molecular Nanomagnets in the Quantum Computation field lays in a deeper use of
such systems: complex and specific compounds can be properly synthesized to achieve
highly stable and controllable multi level systems, with more than two levels: thus, the
paradigm changes from qubits - quantum bits to qudits - quantum digits. This feature of
such systems unlocks many computation possibilities: it is possible, for example, to en-
code multiple qubits into a single qudit molecule, firstly reducing the number of quan-
tum objects required to achieve the same computational power, secondly allowing an
embedded implementation of Quantum Error Correction. The above mentioned char-
acteristics make Molecular Nanomagnets good candidates for the implementation of a
new platform for next generation Quantum Computers.

(a) (b)

Figure 4.1: Example of a Molecular Nanomagnet compound Cr7Ni. (a) Side view. (b) Top view.
Reproduced from Ref. [79] with permission from the Royal Society of Chemistry (Creative Com-
mons Attribution 3.0 Unported Licence).

In this work we first studied Molecular Nanomagnets static and dynamic properties
with current available IBM Quantum Computers (Chap. 5), then we exploited specific
Molecular Nanomagnets to simulate the implementation of an universal set of quantum
gates (Chap. 7) and a specific QEC algorithm (Chap. 8), then as next step we plan to
apply these techniques to study simple fermionic systems with qudits.
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4.2 Spin Hamiltonian

Molecular Nanomagnets properties can be described with a single molecule spin Hamil-
tonian (sH), assuming that each magnetic ion at the core of the MNM can be represented
by an effective spin SMNM : this ensures that all magnetic properties of the system can be
described using single-ion spin operators [80]. It is possible to express the contributions
to the spin Hamiltonian of MNMs considering three main terms:

ĤMNM = Ĥex + ĤZFS + ĤB (4.1)

In the following sections we describe each term of Eq. 4.2.

4.2.1 Exchange interaction

The main contribution to the spin Hamiltonian of a MNM is the two-bodies interaction
between core magnetic ions. This is described by:

Ĥex =
∑
i>j

ŝi · Jij · ŝj (4.2)

A deeper analysis of this term leads to a further decomposition:

Ĥex = Ĥiso + Ĥaniso + Ĥantisym (4.3)

where:

Ĥiso =
∑
i>j

Jij ŝi · ŝj → Isotropic Heisenberg exchange (4.4)

Ĥaniso =
∑
i>j

∑
α,β

Jα,β
ij ŝi,α · ŝj,β → Anisotropic exchange (4.5)

Ĥantisym =
∑
i>j

Gij ŝi × ŝj → Antisymmetric exchange (4.6)

and i is the index identifying the magnetic ions, α, β = x, y, z are the coordinate
axes, Jij and Jα,β

ij are the isotropic and anisotropic exchange couplers, and Gij are an-
tisymmetric parameters. The Hamiltonian of Molecular Nanomagnets based on transi-
tion metal ion cores are dominated by the isotropic Heisenberg exchange term, usually
a superexchange (antiferromagnetic coupling between two neighbour cations through
a non-magnetic anion): the incomplete 3d shells of magnetic ions interact via the non-
magnetic organic ligands; on the other hand, MNMs with lanthanides magnetic cores
interact with the incomplete 4d shells, leading to a much smaller interaction. In the first
situation, with a leading Ĥiso term on the overall Ĥex, we can reach the so called strong-
exchange limit. This imply the conservation of total spin S, and the fact that energy gaps
within each multiplet are much smaller than the energy gaps between multiplets them-
selves. It is then possible to describe such MNMs considering only the ground state
multiplet, reducing Hamiltonian complexity and Hilbert Space dimensions.
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The magnetic ions are sufficiently separated to make the anisotropic exchange inter-
action including the dipolar intra-molecular interaction.

The latter term, the antisymmetric exchange, is the Dzyaloshinskii-Moriya Interac-
tion, a contribution to the total magnetic interaction exchange between two neighbour
magnetic ions sping si and sj , which exists in pairs of spins lacking inversion symmetry.

4.2.2 Zero-Field Splitting

A Molecular Nanomagnet is composed by a magnetic core ion and a complex ligand
structure: this contributing term to the spin Hamiltonian describes how the magnetic
ion interacts with all the charges in which it is located. The surrounding charges create
an electric field that influences the shape of the orbitals of the magnetic core ion, act-
ing on spin multiplets caused by the spin-orbit interaction: this can introduce a strong
anisotropy to the system. In the strong-exchange limit, this is described by:

ĤZFS = µB

∑
i

ŝi ·Di · ŝi (4.7)

where Di is a real symmetric tensor called Zero-Field Splitting tensor or Fine-Structure
tensor. It is worth noting that, when no external magnetic field is applied, this term is
the responsible for partially breaking the (2si + 1) degeneration of the energy levels;
this effect can be seen, also in case of the application of an external magnetic field as
described in the following section, by exploring the splitting in proximity of B = 0.

4.2.3 Zeeman interaction

As mentioned before, the latter interaction contributing to the spin Hamiltonian is re-
lated to the application of an external magnetic field. This is described by:

ĤB = µB

N∑
i=1

B · g
i
· ŝi (4.8)

where µB is the Bohr Magneton and g
i

is the spectroscopic splitting tensor. The effect
of the application of a generically oriented external magnetic field is double: to break the
(2si + 1) degeneration of the energy levels and to mix different spin states.

4.3 Exploiting MNMs for Quantum Computation

Molecular Nanomagnets are good candidates to implement fundamental units for Quan-
tum Computation. Despite their fundamental characteristics, not all the theoretically
ready ions are well suitable for a practical implementation of Quantum Computation:
for example, transition metal ions (with the 3d shell partially filled) are better for their
longer coherence [46].
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4.3.1 Two-level systems using molecules

One of the first studies to create suitable compounds to implement qubits on Molecular
Nanomagnets was based on molecular rings of Chromium ions. Proper chemical engi-
neering of such compound, basically by replacing a Cr with a Ni ion on the ring, leads to
Cr7Ni molecule, with very promising characteristics to be exploited to create molecular
qubits [81]. An array of such molecules, with an antiferromagnetic interaction between
them, can be used to implement a set of qubits with a well separated ground doublet
with S = 1/2 (as per DiVincenzo Criteria, Chap. 1.1), at low temperatures. The effective
S = 1/2 spin on the ground state produces two different states, encoded by m = ±1/2,
corresponding to the eigenvalues: those two states can be assigned to the qubit states |0⟩
and |1⟩, usable to perform quantum computation. However, the presence of a well de-
fined two-states system is not enough to declare it useful for computation: a rather long
coherence time would be required. Several different ions composing the magnetic core
has been studied in order to find the right compounds implementing long spin-lattice re-
laxation time and long coherence time: Copper-based MNMs achieve T2 ∼ 70 µs [82][83],
while in certain conditions, Vanadium-based MNMs achieve up to ∼ 1 ms [77][84]. Im-
provement of coherence time can be also achieved by a proper chemical engineering of
molecules [85]: the structure of the ligands surrounding the magnetic core ion can be op-
timized to obtain a more robust lattice, obtaining longer coherence times, improving by
an order of magnitude [85]. Finally, external electromagnetic pulses can be used to con-
trol the two states of such qubits, thus implementing quantum gates. It is worth noticing
that such systems offer an intrinsic way to approach scalability: Molecular Nanomagnets
can be in fact easily disposed in a structured way, forming arrays of well and solidly po-
sitioned qubits. These molecular structures can finally be easily scaled up, leveraging on
current chemical engineering state of art, properly switching off the unwanted interac-
tions that can cause cross-talk.

4.3.2 Multi-level systems using molecules

In general, Molecular Nanomagnets like Cr7Ni have more than two accessible levels to
be used to perform computation: the two-level systems introduced above are exploiting
only two of them, and are the basis of a more complex (but more powerful) approach, in
which more than two levels are used.
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Figure 4.2: (a) Sketch of different single ion S > 1 qudits. (b) Sketch of competing interaction
qudits, composed by three S = 1/2 interacting together.
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There are two possible ways to exploit more than two levels on a molecular system
in order to perform computation.

• The first one is to choose magnetic core ion with a spin S > 1. For instance, it is
possible to use ions such Cr3+ with S = 3/2 and 4 accessible levels, or Fe3+ with
S = 5/2 and 6 accessible levels, or Gd3+ with S = 7/2 and 8 accessible levels.
Increasing the size of the spin of the single magnetic ion has some advantages
and some disadvantages. They are very common compounds and there is a lot of
literature about them, and well differentiated energy gaps can lead to high fidelity
on quantum gates; they are also relatively easy to be synthesized. On the other
hand, they have only a linear connectivity between energy levels, allowing only
transitions with ∆m = ±1, and decoherence gets worst by increasing S. Single spin
S > 1 systems can also be “single giant spin molecules” where the fundamental
multiplet could be generated by multiple spins interacting in the magnetic core.

• The second one is to create more complex compounds with several S = 1/2 states
at low energy, originating from competing interactions between ions in the same
molecule. Multiple magnetic ions with almost frustrated ground state energy lev-
els have a very high connectivity between levels allowing all-to-all transitions, and
they can be protected from decoherence, as reported in Chap. 7. However, even
if many compounds are existing, chemical engineering effort to synthesize more
complex and more suitable systems is needed.

Wrapping up, these molecular structures can be good candidates for qubits and qudits
implementation, leveraging on the magnetic properties of the core ion and on the sur-
rounding ligands. Besides electronic spins, also nuclear spins of the magnetic ions can
be exploited [86]: they have a much important coherence (they are more protected from
the environment than the electron spins), but their control is also slower. A combination
of the two approaches (electronic and nuclear spins) can be leveraged to implement par-
ticular quantum computation, exploiting computation and memory features to improve
results [87].

4.3.3 Switch between spin qubits

A crucial feature enabling scalability of such architecture is the possibility to implement
a switchable interaction between the qudits (or qubits); in fact, a permanent interaction
causes unwanted time evolution of the quantum states, while a switchable interaction
can be turned off when not needed. A simple way to implement switchable interaction
is to use external magnetic fields to induce the time evolution only when required: this
can be done by exploiting auxiliary quantum states adding an ion between two qudits,
acting as switch of the interaction of the two [88][89]. As depicted in Fig. 4.3, there are
two different MNMs involved: the two lateral ones have the role to encode the qudit
states, e.g. with an S = 3/2 each, while the central one is the ion switch, e.g. an effective
S = 1/2.

The main condition that the switch must satisfy is that, when in the ground state,
the effective exchange interaction between the qudits made possible through the switch
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Figure 4.3: Sketch of an effective S = 1/2 Ni ion switch linked to two S = 3/2 Cr-based qudits.

is very small, and all the unwanted time evolution are thus minimal: the energy of the
excited state of the switch must be much larger than the exchange between the qudit and
the switch itself, but enough large to let the excitation energy of the switch dependent
on the state of the qudits. In this way, it is possible to implement a conditional dynamic.
An example of switch ion on Cr7Ni MNMs is Ni2+, that has S = 1 but only two levels
can be exploited creating an effective S = 1/2 [90][91].

It is thus possible, using uniform pulses exciting the switch, to switch on and off the
inter-qudit interaction, enabling scalability and making possible the implementation of
two-qudit gates. This feature has been reported in Chap. 7, where two-qudit controlled
gates have been simulated. This kind of gates require, as reported in Chap. 1.1.2, to
implement rotations on a target qubit considering the state of the control qubit.

4.4 Quantum noise in MNMs qudits

When considering MNMs as quantum systems to implement qudits, an introduction to
error sources can be outlined following the already introduced theoretical framework
and modelization in Sec. 1.3.

4.4.1 Coherent errors

As introduced above, coherent errors are due to an incorrect implementation of quantum
gates. This is basically due to a not perfect implementation of electromagnetic pulses
required to implement transitions on the quantum system. In this case, especially when
working with multi-level qudits, many transitions between energy levels are required
to implement generic gates: pulse control is thus extremely important to induce highly
reliable gates, even if energy levels could be very close together. As several transitions
have similar energy gaps, one needs to be very selective with pulse frequencies: this can
be done by making longer pulses, or with more complex pulse shaping techniques. Of
course, a perfect pulse control is rather impossible to obtain.

Fine tuning and pulse engineering can improve pulse quality to obtain rather precise
gates, approaching (but not reaching completely) the goal to implement almost perfect
gates, addressing only the selected transition. The result of not perfectly monochromatic
pulses is a population leakage between unwanted energy levels, reducing the accuracy
of the quantum gates, making this kind of error source one of the most impacting on
molecular qudits. It is worth noticing that MNMs can be precisely engineered by chem-
istry, obtaining compounds with optimized energy gaps between levels, slightly relaxing
the requirements on pulse control.
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4.4.2 Incoherent errors

Eq. 4.2 describes the main contributions to the spin Hamiltonian of a Molecular Nano-
magnet considering the magnetic cores as non-interacting with the surrounding envi-
ronment, in primis the ligands structure and the overall lattice. This description is very
useful to comprehend the theoretical behaviour of a MNM and how to exploit its charac-
teristics to perform quantum computation; however, there are some other contributions
that come from the interaction of the core ions with the environment, leading to unde-
sirable but still important effects.

As per other qubit technologies such superconducting transmons, decoherence is one
of the main source of incoherent errors also on molecular spin systems [92]. An accurate
description of decoherence is thus important to understand how to reduce its effect on
computation. We recall that, if a quantum system described by an Hamiltonian has two
possible states |0⟩ and |1⟩, these states can be put in superposition. This superimposed
state, however, does not last forever when there is an interaction with the external envi-
ronment. Another way to look at of this phenomenon is related to the description of a
quantum system using a wave function: if the system interacts with the external envi-
ronment, after a certain amount of time it would become impossible to describe it using
a well defined wave function, as the phase would become unknown. This is the effect of
decoherence. The system starts to loose coherence when computational time approaches
T2, when the interaction with the surrounding bath starts to become important after the
initialization process. At low temperature, the main contribution to decoherence is the
so called pure dephasing, and it is caused by interactions between the magnetic core and
the neighbouring electronic and nuclear spins. Indeed the other contribution to deco-
herence, the so called spin-lattice relaxation, becomes negligible [93]. Moreover, at very
low temperature the dipolar interaction between the magnetic ion and the electron and
nuclear spins is suppressed, and the main contribution to pure dephasing is lead by an
hyperfine coupling with the surrounding spin bath [94].

We describe incoherent errors such as pure dephasing by the Lindblad approximation
for system dynamics, as introduced in Sec. 1.3.2: the first term of Eq. 1.52 is the time
evolution of the density matrix of the computational quantum system, while the dissi-
pator operator describes the effect of decoherence, causing the decay of the off-diagonal
elements of the density matrix (as already discussed in Eq. 1.42). We can rewrite the
dissipator operator in case of a spin S:

DρŜz
= ŜzρŜ

†
z −

1

2
(Ŝ†

z Ŝzρ+ ρŜ†
z Ŝz) (4.9)

by using spin operators Ŝz . Pure dephasing is induced by the interaction of the spins
of the molecular qudit core with the spins of the surrounding environment.

An important implication of the Lindblad’s equation form reported in Eq. 1.52 is that,
with the expansion on Sz eigenstates {|m⟩}, an exponential decay of the off-diagonal ele-
ments on ρ comes out, which is proportional to the squared difference of the eigenvalues
of Sz :
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ρS(t) =
S∑

m′,m=−S

e−γ(m−m′)2t⟨m|ρS(0)|m′⟩|m⟩⟨m′| (4.10)

where γ = 1/T2 is the dephasing rate. Thus, systems with small differences between
Sz eigenvalues can be protected by decoherence, as reported in Chap. 7.

4.5 Quantum Error Correction with MNMs

Quantum Error Correction represents a way to overcome the effect of errors, in particular
incoherent ones, occurring during a computation on a Quantum Computer. We recall
here the effect of incoherent errors on a quantum state. A qubit, for its nature of two-level
quantum system, can encode two different states |0⟩ and |1⟩; we consider a superposition
of these two states in the form α|0⟩+β|1⟩. We recall here that an error, regardless its origin
or nature, has the effect to corrupt this logical state: a change in the relative population
of the two states |0⟩ and |1⟩ can occur, or also a decay of the superposition coherence.
After this event, it is impossible to reconstruct the original information stored in α and
β, as they are deformed: the error occurs in the same two-dimensional space used for
the computation (i.e. the encoding of the logical superimposed state). In order to be able
to detect errors, a larger space is then required: if more than two levels are available, it
is possible to choose specific code words to encode and protect the state, so that an error
applied on this encoded state result to a symmetric translation of the superimposed state
from the two original levels to other two levels, without deforming α and β coefficients,
thus without corrupting the information stored. In this case, a proper Quantum Error
Correction scheme can detect and correct the errors. It is worth recalling that a Quantum
Error Correction scheme can recover the original state if and only if the Knill-Laflamme
conditions are satisfied [25]:

⟨0L|E†
kEj |1L⟩ = 0

⟨0L|E†
kEj |0L⟩ = ⟨1L|E†

kEj |1L⟩
(4.11)

Incoherent errors have different effects on different platforms: while the effect of
both T1 and T2 is equally important on superconducting transmon qubits, for molec-
ular systems the most important error at low temperature is pure dephasing [95], as
already introduced in Sec. 7.2, coming from the interaction between the magnetic ion of
the Molecular Nanomagnet and the nuclear spin bath in which the core is located [96].
A strategy to face it is required to create reliable quantum devices based on Molecular
Nanomagnets.

Due to their intrinsic multi-level structure, qudits built on Molecular Nanomagnets
are good candidates for the implementation of QEC: logical states |0L⟩ and |1L⟩ can be
defined leveraging on multiple energy levels of the MNM. Errors acting on logical states
have the effect to let the system leave the computational subspace formed by the logical
states: errors can be detected and corrected if K-L conditions are satisfied. QEC codes
implementation on two-level qubits (Sec. 1.5.2) is currently challenging, due to the need
of a huge number of physical qubits to create logical qubits. Systems with more than
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two levels can lower the hardware requirements, as (2S+1) levels (instead of only 2) are
available on each qudit.

In order to understand the form of the error operator Ek (see Sec. 1.3.1), we recall the
Lindblad equation:

dρ(t)

dt
=

1

T2
(2SzρSz − S2

zρ− ρS2
z ) (4.12)

its solution at a certain time t can be expanded as ρ(t) =
∑

k Ekρ(0)E
†
k where Ek is

the error operator

Ek =

√
(2t/T2)2

k!
e−S2

zt/T2Sk
z (4.13)

For small t/T2, we notice that Ek ∝ Sk
z : the first order error E1 is ∝ Sz , while higher

powers become significant at longer times. Details are reported in the original work in
Ref. [95]. The QEC is possible only if K-L conditions are satisfied for the Ek operators in
Eq. 4.13, and thus for Sk

z operators, since they are proportional each other. K-L conditions
can be condensed in the form:

⟨aL|Sk
z |bL⟩ = βkδa,b (4.14)

where a, b = 0, 1, 0 ≤ k ≤ 2n and βk is a coefficient. We describe here the code
words |0L⟩ and |1L⟩ that can be used to implement QEC on molecular spin S qudits,
as proposed in Ref. [95]. The conditions expressed in Eq. 4.14 are satisfied by the code
words:

|0L⟩ =
1√

22S−1

2S∑
k=1,odd

√(
2S

k

)
|k − S⟩

|1L⟩ =
1√

22S−1

2S∑
k=0,even

√(
2S

k

)
|k − S⟩

(4.15)

Demonstration of K-L conditions satisfaction
We here report the demonstration of how code words in Eq. 4.15 satisfy the K-L condi-
tions [95]. For the first condition we have:

⟨0L|Sl
z|1L⟩ = ⟨1L|Sl

z|0L⟩ (4.16)

|0L⟩ and |1L⟩ are superposition of different sets of orthonormal states, not mixed by
dephasing: the first condition is thus satisfied.
For the second condition we have:

⟨1L|Sl
z|1L⟩ − ⟨0L|Sl

z|0L⟩ =
1

22S−1

2S∑
k=0

(−1)k
(
2S

k

)
⟨k − S|Sl

z|k − S⟩ = 0 (4.17)
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1

22S−1

2S∑
k=0

(−1)k
(
2S

k

)
⟨k − S|Sl

z|k − S⟩ =
1

22S−1

2S∑
k=0

(−1)k
(
2S

k

)
(k − S)l (4.18)

recalling the binomial expansion (1+x)2S =
∑2S

m=0

(
2S
m

)
xm and with the assumption

l < 2S:

2S∑
m=0

(
2S

m

)
(−1)m(m− S)l =

[(
x
d

dx

)l 2S∑
m=0

(−1)m
(
2S

m

)
xm−S

]
x=1

(4.19)

and [(
x
d

dx

)l
1

xS
(1− x)2S

]
x=1

= 0 (4.20)

Thus also the second condition is satisfied.
This demonstration is reported in details in Ref. [95].

■

Figure 4.4: Error ε after QEC as a function of memory time t/T2 for different S values. System is
prepared in |ψ(0)⟩ = (|0L⟩ + |1L⟩)/

√
2 superposition and its evolution is subject to decoherence

(pure dephasing) for a certain time t/T2. Inset: error ε decreases monotonically with the size of
the qudit spin S, for a fixed t/T2 = 10−2. Reproduced from Ref. [47] with permission from the
Royal Society of Chemistry (licensed under a Creative Commons Attribution-NonCommercial 3.0
Unported Licence).

Fig. 4.4 shows the error ε = 1−⟨ψ(0)|ρ(t)|ψ(0)⟩ occurring on a logically encoded state
|ψ(0)⟩ = (|0L⟩+ |1L⟩)/

√
2 as a function of a memory time t/T2 (described in Sec. 8.3.2): the

capacity of the QEC code increases with the size of the spin of the involved Molecular
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Nanomagnet. We also noticed that, for a fixed t/T2, the error decreases monotonically
by increasing S. Lastly, it is worth noticing that code words in Eq. 4.15 work for powers
of Sz up to 2S − 1: K-L conditions must be satisfied for powers of Sz up to 2n (Eq. 4.14)
to correct to the order (γt)n. To be able to detect and correct n different errors, we thus
would need to use a spin system with 2(n+ 1) addressable levels.

4.5.1 Embedding QEC into MNMs qudits

As reported in Chap. 1, Quantum Error Correction is based on encoding logical qubit
states using multiple physical qubits. It is possible for example to implement the above
mentioned code on a spin S with an ancillary spin S = 1/2 for error detection.

It has been shown that a class of molecules with the following Hamiltonian:

H = gzµBSz + gazµBBσ
a
z +DS2

z + S · Γ · σa (4.21)

can be used to embed error protected states in the S qudit spin and to detect errors
using the ancilla qubit σa. Hamiltonian in Eq. 4.21 recalls the above introduced in Eq. 4.2,
and is composed by two Zeeman interaction terms, a single-ion anisotropic term, and a
weak exchange (hyperfine) ancilla-qudit coupling; a practical implementation of such
class of molecules is by exploiting compounds with a single magnetic ion with a nuclear
spin S interacting with an electronic spin 1/2, or also using two electronic spins, the first
spin S and the second spin S = 1/2 (or an effective spin 1/2, using compounds with spin
S > 1/2 but using only 2 levels). Using the error operators introduced in Eq. 4.13 and
implementing the code words reported in Eq. 4.15, it is possible to implement proper
error correction codes [95].

Results of the implementation of this error correction code on realistic molecular com-
pounds are reported on Chap. 8.
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CHAPTER 5

Simulation of static and dynamic properties of Magnetic
Molecules

S imulating static and dynamic properties of spin systems can be very challenging for
classical computers when increasing the system size in terms of number of spins;

Quantum Computers have an advantage above classical computers for their intrinsic
nature that fits well to describe systems such as anti-ferromagnetic spin chains and rings.
Prototype Quantum Computers, in particular IBM Quantum systems up to QV 32 and
7 qubits, are here exploited to perform simulations and real hardware runs on small-
sized spin systems, with the help of proper error mitigation techniques on finite-size spin
systems. The systems studied are Molecular Nanomagnets, finite-size spin systems, here
explored as test-beds for the current generation of Quantum Computers. Such systems
are also very interesting for fundamental phenomena investigation. Moreover, they are
very interesting for their technological applications to implement new approaches to
quantum computation (see Chap. 4, and Chap. 7) and for QEC (see Chap. 8): being able
to explore all their static and dynamic properties will be very useful to better understand
their technological potential.

Quantum Computers, and in particular their application to Quantum Simulation and
Variational Algorithms as described in Chap. 1, can simulate the static and dynamic
properties of the target system handling linearly the scaling of computational resources
with the size of the target system [97]. The potential applications in physics and chem-
istry fields are thus very interesting. As already introduced in Chap. 2, there are many
different technologies available, each one with its own features: the most promising ones
for Quantum Simulation and for the implementation of Variational Algorithms are the
superconducting [98][99] and the ion trap platforms [100]. In the last few years, the size
and quality of such platform have seen a quick rise [19], together with the development
of error mitigation techniques [101][97]. The devices used in this work, IBM Quantum
systems, have been upgraded several times from mid 2020 to mid 2021 in terms of avail-
able chips, Quantum Volume and number of qubits: we had the possibility to use better
devices over time, and using Qiskit simulators to simulate the technological evolution
in terms of device noise rate.

We study here two classes of MNMs: anti-ferromagnetic open chains with open
boundary conditions [102], and closed rings with closed (periodic) boundary conditions
[103][104], both composed by spins S = 1/2; we are using these systems as ideal test-
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beds for IBM Quantum superconducting devices [99], that can be hard to simulate clas-
sically by increasing the size [97]. As the publicly available systems are limited in terms
of qubits number, we will evaluate systems with up to 6 spins, but with a theoretically
scalable approach to larger systems. Further investigations can be performed on S = 1

systems, properly mapped on pairs of qubits.
We exploit the Variational Quantum Eigensolver (VQE) [105][106], a method part

of the class of Variational Quantum Algorithms (VQA) [107][108], to find the ground
state. Different approaches are put forward to apply VQE to explore the ground state
of the target MNMs, mainly due to the high level of entanglement: we leverage on an
heuristic approach, where the exploited quantum gates reflect the chip topology and
characteristics instead of the target model properties, and also on a physically motivated
approach, that exploits system’s symmetries and properties of the target Hamiltonian.
Dynamic properties of target MNMs are also investigated, in particular the dynamic
spin-spin correlation functions, with a Digital Quantum Simulation of the system time
evolution [109].

5.1 Introduction to Variational Quantum Algorithms

The Variational Quantum Algorithm (VQA) methods are a very useful near-term class
of algorithms that can be used in many fields, from spin systems [106] to optimization
[110] and machine learning [111]; NISQ devices are able to implement such algorithms as
they require rather simple (small-depth) circuits with a limited amount of qubits. VQA
algorithms are in general called “hybrid quantum-classical” algorithms, as they consist
of a quantum-computed part and by a classical counterpart. In order to explain how this
class of algorithms work, considering also the Variational Quantum Eigensolver (VQE),
several theorem must be introduced.

5.1.1 Variational theorem

The variational method is a way to estimate the energy of the ground state (GS) of a
physical system; it can also be applied to compute the energy of some excited states.
This method is based on the variational principle stating that, for a given Hamiltonian,
its expectation value on a |ψ⟩ state is always greater (or equal) to the energy of the GS.
The variational method has been developed basically to solve problems where the per-
turbative theory can not be applied. The outcome of the variational method applied to
the GS of a system is an approximation of the energy E0 and the state |0⟩, respectively
the eigenvalue and the relative eigenvector. The variational theorem [112] states that the
computed energy is always approximated upwards:

⟨H⟩ ≡ ⟨ψ(θ⃗)|H |ψ(θ⃗)⟩
⟨ψ(θ⃗)|ψ(θ⃗)⟩

(5.1)

⟨H⟩ ≥ E0 (5.2)

It is possible to demonstrate the variational theorem in the following way. We de-
compose |ψ⟩ into the basis of H eigenvectors:
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|ψ(θ⃗)⟩ =
∞∑
k=0

|k⟩⟨k|ψ(θ⃗)⟩ (5.3)

and using the definition of eigenvector and eigenstate H|k⟩ = Ek|k⟩

⟨H⟩ =
∑∞

k=0 |⟨k|ψ(θ⃗)⟩|2Ek

|⟨k|ψ(θ⃗)⟩|2

=

∑∞
k=0 |⟨k|ψ(θ⃗)⟩|2(Ek − E0)

|⟨k|ψ(θ⃗)⟩|2
+ E0

≥ E0

(5.4)

we find that, as (Ek − E0) ≥ 0, ⟨H⟩ ≥ E0.
■

These quantities are computed recursively: an initial parametric ansatz defining the
eigenstate |ψ(θ⃗)⟩ is used to compute the eigenvalue (the energy), then an optimization is
performed to minimize the energy, finding the related parameters θ⃗.

5.1.2 Hellmann-Feynman theorem

Another foundational theorem that can be used for the computation of the observables
is the Hellmann-Feynman theorem. It relates the energy derivative with respect to a
certain parameter λ to the expectation value of the Hamiltonian derivative with respect
to the same parameter.

∂Eλ

∂λ
=

〈
ψλ

∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣ψλ

〉
(5.5)

where Ĥλ is the Hamiltonian depending on a certain parameter λ, |ψλ⟩ is an eigen-
state of the Hamiltonian (depending on the same parameter) andEλ is the related eigen-
value. It is possible to simply proof this theorem:

∂Eλ

∂λ
=

∂

∂λ
⟨ψλ|Ĥλ|ψλ⟩

=

〈
∂ψλ

∂λ

∣∣∣∣Ĥλ

∣∣∣∣ψλ

〉
+

〈
ψλ

∣∣∣∣Ĥλ
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∂λ

〉
+

〈
ψλ

∣∣∣∣∂Ĥλ

∂λ
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〉
= Eλ

〈
∂ψλ

∂λ

∣∣∣∣ψλ

〉
+Eλ

〈
ψλ

∣∣∣∣∂ψλ

∂λ

〉
+

〈
ψλ

∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣ψλ

〉
= Eλ

∂⟨ψλ|ψλ⟩
∂λ

+

〈
ψλ

∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣ψλ

〉
=

〈
ψλ

∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣ψλ

〉
(5.6)

as ⟨ψλ|ψλ⟩ = 1, so its derivative with respect to λ is equal to 0.
■
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5.2 The VQE algorithm

The Variational Quantum Eigensolver algorithm [105] is based on the variational theo-
rem and allows one to obtain, when applied to physics systems, an approximation of
the the energy of the ground state. It is an hybrid algorithm, as demands to a quantum
computer all the operations whose cost increases exponentially on a classical computer,
while retaining on a classical computer the optimization process. In the following sub-
sections, all the steps of the VQE algorithm are introduced.

The VQE approach is based on an hybrid calculation that consists in the approx-
imation of the exact target Hamiltonian ground state |ψ0⟩ with the construction of a
parametrized quantum state |ψ(θ⃗)⟩, whose E expectation value ⟨H⟩θ = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩,
obtained measuring the quantum states on a QC, is minimized by a classical optimizer.

Mapping problem to qubits

Ansatz generation with
initial parameters

!𝜓(�⃗�!)⟩ = U �⃗�! |𝜓⟩

Preparation of ansatz 
quantum circuit

!𝜓(�⃗�")⟩ = U �⃗�" |𝜓⟩

Classical optimization algorithm

�⃗�" → �⃗�"#$

Measurement

𝐸 �⃗�"�⃗�"#$

CPU

QPU

VQE iterations

Problem to be 
solved with VQE

𝐸%& = 	𝐸 �⃗�'()*|𝜓%&⟩ = U �⃗�'()* |𝜓⟩

Figure 5.1: VQE process flow.

5.2.1 Quantum part

The first part of the VQE process is performed on a QPU (Quantum Processing Unit),
and it consists of the encoding of the target Hamiltonian into an operator function and
the creation of a variational ansatz via a sequence of quantum gates. The operator, namely
the encoded Hamiltonian of the target system, is created by mapping the problem on the
qubit topology: in case of systems made by spin 1/2 objects, the mapping is quite trivial,
as qubits themselves are spin 1/2 objects. Details of the encoding method are reported
in Sec. 5.3.1, taking advantage of the first explorative model studied.

The trial waveform, or the variational ansatz, contains a set of parameters θ⃗k, which
number impacts on the performances of the VQE itself: these parameters are continu-
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ously updated to minimize the energy of the system using the operator (the encoded
Hamiltonian), obtaining at the end a set of parameters that, applied to the ansatz, rep-
resent the ground state itself. It is crucial to build the ansatz with the right amount of
parameters: on the one hand, a number of parameters increasing polynomially with
the system size can be computed efficiently on the QC; on the other hand, a limited set
of parameters allow the ansatz to explore only a subset of the whole Hilbert space in
which the problem lies. It is worth noting that, in principle, the exploration of the whole
Hilbert space is possible using many parameters; however, the classical optimization
process would fail, making this approach impracticable. The objective of a good ansatz
building strategy is to select the relevant Hilbert space to be spanned with the right set
of variational parameters. The estimation of the target Hamiltonian energy on the |ψ(θ⃗)⟩
is then performed by measuring ⟨H⟩θ.

5.2.2 Classical part

The parametrized wavefunction is then sent to a classical optimizer that minimizes the
energy, obtaining a new set of parameters θ′. This new set is then used to build a
new parametrized wavefunction by the Quantum part of the algorithm. The subse-
quent iteration of this method is required until reaching a proper convergence, where
|ψ(θopt)⟩ ≃ |ψ0⟩. The classical optimization algorithms have been widely studied and
developed, and a lot of literature is present [105][113]. In this work, two algorithms
have been exploited: COBYLA (Constrained Optimization By Linear Approximation) [114]
and SPSA (Simultaneous Perturbation Stochastic Approximation) [115].

The first one is a gradient-based algorithm, and can be initialized with three param-
eters: the maximum number of optimizing iterations, the tolerance of the optimization
approximation, and the length of the parameters optimization steps.

The second one is a stochastic algorithm based only on the measurements of the
cost function to determine the next optimization steps. This algorithm is not gradient-
based, so a tolerance is not included in the parameters; it will continue optimizing until
reaching the maximum number of iterations set. It is consequently more costly from
a computational resources point of view; however, its stochastic nature makes it more
robust when dealing with quantum noise and with the measurement statistics.

5.2.3 Computation of observables of interest

The computation of the physical quantities can be performed in two ways. The first
one is leveraging directly on VQE outcomes, measuring the expectation value using the
ansatz with the optimized parameters. The second method is based on the Hellmann-
Feynman theorem (Eq. 5.5): observables can be obtained by deriving the energy with
respect to the proper parameter.

In the next Sections, we make use of the VQE algorithm to compute physical proper-
ties of several spin systems.
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5.3 Study of spin 1/2 Heisenberg chains Ground State properties

We investigate several different systems, from 2 up to 6 spin 1/2, in order to simulate
their static properties: in the considered systems, the dominant interaction linking the
spins on chains and rings is the Heisenberg interaction, with an uniform strength J and
an uniform external magnetic field B. To study the static GS properties of these systems,
we build the variational ansatz, introduced in Sec. 5.2.1, using two different approaches.

• Heuristic approach: the simplest way to implement the ansatz is following an
hardware heuristic approach, in which no information about the physical system
under investigation is required. The ansatz is built via a sequence of standard
parametrized rotations and entanglement blocks, organized in layers. Usually, sin-
gle qubit rotation gates, containing the variational parameter as rotation angle, and
CNOT gates to create entanglement, are the only needed ingredients. A possible
choice is to leverage on the single-qubit rotation implemented using the general U3

gate, represented by the form:

U3(θ, ϕ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) ei(λ+ϕ) cos(θ/2)

)
(5.7)

An hardware heuristic ansatz takes into account the hardware features and topol-
ogy: as a knowledge of the target system is not required, entanglement is created
by putting CNOT gates on the required positions in a flexible way, leaving to the
transpiler to adapt them on the hardware configuration, i.e. adding SWAP gates
considering the coupling map (see Fig. 3.7). An heuristic ansatz is usually built
by concatenating a certain amount of layers, consisting of a set of rotations (with
embedded variational parameters) and two-qudits entangling gates. Although its
high flexibility and adaptivity, HA are unaware of the actual Hamiltonian of the
system, usually having the need to implement an high number of layers (thus vari-
ational parameters) to be able to converge to the optimal solution: an higher num-
ber of parameters implies a difficult optimization process, increasing the chance to
fall into local minima [116].

• Physically motivated approach: this ansatz building technique takes into account
the properties and symmetries of the system’s Hamiltonian. This ansatz class lies
on methods and techniques able in theory to better approximate the quantum state,
obtaining better results overall. An example of PMA is the Unitary Coupled Clus-
ter (UCC) ansatz [113][117].

5.3.1 Test model: spin 1/2 Heisenberg dimer

Before starting to investigate different spin configuration for MNMs, I contributed to
perform an initial test of the methods and techniques on a simpler model, consisting of a
2 spins 1/2 chain with Heisenberg interaction and an external field along z. This model
is characterized by an energy levels crossing as a function of B, ideally dividing in two
regions: the low field and the high field regions. The Hamiltonian is reported in Eq. 5.8.
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H = J1(σx ⊗ σx) + J2(σy ⊗ σy) + J3(σz ⊗ σz)
+B [cos θ(σz ⊕ σz) + sin θ(σx ⊕ σx)]

(5.8)

In order to implement the VQE algorithm to be able to get the GS properties of the
target system, we need to first encode the system Hamiltonian on the qubits. A vari-
ational ansatz (i.e. a parametrized trial wavefunction) is then varied by the classical
optimizer, with the objective to get the minimum expectation value of the input Hamil-
tonian. The Hamiltonian in Eq. 5.8 can be, for example, traduced into an input operator
for VQE by leveraging on Qiskit Operators [118], representing the Pauli matrices (taking
into account the normalizing factor). The obtained result is then:

Ĥ(dimer)
op = J1(X ⊗X) + J2(Y ⊗ Y ) + J3(Z ⊗ Z)

+Bz(Z ⊗ I + I ⊗ Z) +Bx(X ⊗ I + I ⊗X)
(5.9)

where X , Y and Z are the Qiskit Operators, and the magnetic field is acting on the
xz plane, with Bz and Bx its components along respectively the z and the x axes. It is
worth noting that, since the studied systems are composed by S = 1/2, it is possible
to natively encode the Hamiltonian on the spin 1/2 qubits: an interaction between two
spins is mapped on the quantum chip as an interaction between two qubits. Details on
the actual implementation of X ⊗X and similar gates are reported in App. A.

We test the heuristic ansatz approach on this simple system in order to compute GS
energy, where the Hamiltonian is isotropic (J1 = J2 = J3 = J); the HA is composed by
Ry and Rz , with a simple CNOT entanglement layer.

We also apply and test several error mitigation techniques on noisy simulations, in
particular the Qiskit Measurement Error Mitigation [119] and the Zero-Noise Extrapo-
lation [120][24], together with performing multiple VQE calculations keeping the best
result for each point.

(a) (b)

Figure 5.2: Results of VQE noisy simulations with HA approach for Measurement Error Miti-
gation. (a) Effect of Measurement Error Mitigation for the mitigation of Readout error (RO). (b)
Corresponding state fidelity.

In Fig. 5.2 and Fig. 5.3 the results of the VQE noisy simulations for the target model
are reported, with different noise source active, leveraging on Qiskit features [121], and
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Figure 5.3: Results of VQE noisy simulations with HA approach for Zero-Noise Extrapolation.
Squared markers: extrapolated zero-noise result. (a) Effect of ZNE for the Gates Error in low field
region. (b) Effect of ZNE for the Gates Error in intermediate field region.

based on QV 8 IBM Quantum chips. In Fig. 5.2(a), only the Readout Error is active: due
to the simplicity of the model, an heuristic approach is able to reconstruct well the GS,
however the application of the Measurement Error Mitigation is able to further improve
the results, almost completely correcting the data. A significant improvement on state
fidelity is evident in Fig. 5.2(b).

In Fig. 5.3, only the Gates Error is active: the Zero-Noise Extrapolation technique
is applied by recursively increasing the number of involved CNOTs in the variational
ansatz, leaving unchanged the circuit outcome, and assuming a linear increment of the
noise. We are able to extract the energy by performing a linear fit of the data series, in
this case for some different B values on low and intermediate field regions. The squared
mark on each data series represents the extrapolated zero-noise value for the relative GS
energy.

The VQE approach, together with the two main error mitigation techniques, is thus
validated and ready to be used for more complex systems. It is worth noting that the
ZNE is quite demanding in terms of computation, as it requires several VQE runs by
incrementing ansatz depth, to extrapolate the exact value for a single point; moreover
it is applicable only in presence of low noise rate, due to the need of linear increasing
errors. So, this technique will not be used for complex systems, but can still represent a
possible improvement on the results.

5.3.2 Four spins 1/2 Heisenberg closed ring

We now consider as target system a chain of spin 1/2, with the following Hamiltonian:

H = 2J
∑
i

s⃗i · s⃗i+1 +B
N∑
i=1

szi (5.10)

where sαi are spin 1/2 operators and the magnetic field is along z axis. In the follow-
ing sections the results are reported for the different systems studied, in terms of number
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of spins and open or closed boundary conditions. VQE noiseless and noisy simulations
are performed on IBM Quantum devices and simulators with Qiskit.

The first studied system is a MNM
composed by four S = 1/2 spins in a
closed ring, arranged in a squared shape.
The general target Hamiltonian in Eq. 5.10
(isotropic) is completed with the proper
boundary conditions, assumed to be peri-
odic; the following commutation relations
are thus valid:

[
H, S2

]
= 0 and [H, Sz] = 0.

This implies that the Hamiltonian eigen-
states can be related to the quantum num-
bers S (associated to the total spin S⃗ =∑

i s⃗i) and m = −S,−S + 1, ..., S (associ-
ated to the projection of S along z axis).

x

y

z
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The exact solution of the ground state is characterized by several crossings, which
identify several different regions corresponding to S = 0, 1, 2 and m = −S. In order
to implement the VQE, we focus our search on low and intermediate external magnetic
field conditions, since for high B all the spins are known to be aligned in a factorized
ground state | ↓↓ ... ↓⟩.

Hamiltonian encoding
Hamiltonian in Eq. 5.10 of this 4 sites closed chain can be encoded on the spin 1/2 qubits
following the same approach introduced in Eq. 5.9. It is possible to build the following
operator, introducing the general notation MM...M =M ⊗M ⊗ ...⊗M (used from here
onward):

Ĥ(4 closed)
op = Jz(ZZII + IZZI + IIZZ + ZIIZ)

+Jy(Y Y II + IY Y I + IIY Y + Y IIY )

+Jx(XXII + IXXI + IIXX +XIIX)

+B(ZIII + IZII + IIZI + IIIZ)

(5.11)

where, as stated, theB field is acting only on the z axis, and we assume Jα01
= Jα12

=

Jα23
= Jα30

(where α = x, y, z). It is possible to notice the application of periodic bound-
ary conditions, as the Hamiltonian is representing a closed chain, in the latter element of
the first three lines of Eq. 5.11.

Construction of the variational ansatz
As introduced in Sec. 5.3, both hardware heuristic (HA) and physically motivated (PMA)
approaches are put in place to build the variational ansatz.

For the HA approach, the building blocks of the ansatz are composed by the structure
depicted in Fig. 5.4, and built as:
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Figure 5.4: Single layer of hardware heuristic ansatz for a 4 spins closed chain, consisting of a
single block of parametrized rotations and a linear entanglement pattern.

UHA(θ⃗) =

L∏
j=1

Vj(θ⃗j) (5.12)

Since the target Hamiltonian in Eq. 5.10 is real and symmetric, also the GS wave-
function is real: we can then make use of Ry rotations, specializing the form in Eq. 5.7,
avoiding ϕ and λ parameters (controlling relative phases), obtaining Ry(θ) = U3(θ, 0, 0).
Considering the target hardware linear coupling map that will be simulated, the entan-
gling layer consists of CNOT gates connecting only the nearest neighbouring qubits. It is
worth noting that, although the Heisenberg chain considered is a closed ring, the entan-
glement layer is not composed by a closed configuration (i.e. there is no entanglement
between qubit 3 and qubit 0): this is done to optimize the number of CNOTs involved
while preserving a sufficient reconstruction precision of the GS, as the heuristic ansatz
approach lies on the fitting of the circuit on the considered hardware, which has a linear
connectivity. A final layer of Ry(θ) rotations is put at the end of the ansatz circuit.

For the above introduced PMA approach, we know that the target Hamiltonian in
Eq. 5.10 has well defined S and m, total spin quantum numbers: this property allows
to explore only a subspace of the entire Hilbert space by initializing the ansatz with a
well defined S and m, while implementing only parametrized rotations that preserve
the symmetries of the system [122][123]. In this case, the initial state could have the
form:

Wij(θ) = e−iθsi·sj (5.13)

This operation is the so called eSWAP [122][123], preserving S and m. The imple-
mentation of this eSWAP operation using quantum gates is depicted in Fig. 5.5 [122][14].

Hence, an eSWAP preserving S and m values following the form in Eq. 5.13 can
be implemented with the circuit reported in Fig. 5.5(a). The resulting physically mo-
tivated ansatz (PMA) layer can be built alternating the circuit blocks of Eq. 5.13. The
circuit depth can be reduced by implementing in parallel operations not sharing com-
mon qubits, implementing a Vk(θ⃗k) circuit block (Fig. 5.5(b). The nearest neighbours
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connectivity applied on the HA is suitable also for the PMA. The overall PMA ansatz is
then built, in general, with several layers:

UPMA(θ⃗) =
K∏

k=1

Vk(θ⃗k) (5.14)
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(a)

(b)

Figure 5.5: (a) Physically motivated ansatz building block with 1 parameter, preserving S and m
quantum numbers. (b) PMA ansatz layer with 4 parameters, built by composing 4 ansatz blocks.

UPMA(θ⃗) preserves S and m: hence, so a proper initialization of the qubit states is
required, respecting the symmetries of the GS for the different regions corresponding to
S = 0, 1, 2, ... and m = −S.

Initialisation of the ansatz
Ansatz initialisations depending by the B field region are prepended to the ansatz cir-
cuit, where the qubits are initially set to |0⟩. In the following list there are examples of
possible ansatz initialisations.

|𝜓!⟩ =

|01⟩ − |10⟩
2

|01⟩ − |10⟩
2

|𝜓!⟩ =

|01⟩ − |10⟩
2

|11⟩

(a) (b)

Figure 5.6: PMA initialisation, 4 spins: (a) lowB (S = 0,m = 0 region), (b) intermediateB (S = 1,
m = −1 region).
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• Low B (before the first crossing): for even-numbered spin 1/2 open or closed
chains with anti-ferromagnetic interactions, the S is minimized [104], so the GS
has S = 0 and m = 0. For this region, initialization is then reported in Fig. 5.6(a)
[122]. This state is called resonating-valence-bond (RVB) [123][124][125], and it is one
of the possible choices to obtain a S = 0 state.

• Intermediate B (after the first crossing): the ground state becomes S = 1, m = −1
due to the Zeeman contribution to the Hamiltonian. For this region, initialization
is then reported in Fig. 5.6(b): we start from S = 0 and we change one of the pairs
to S = 1.

• High B: the Zeeman contribution dominates, so the GS becomes ferromagnetic
(| ↓↓↓↓ ⟩). For this region, initialisation is done by setting all qubits to |1⟩ with an
array of X gates.

The parametrized wavefunction is then:

|ψ(θ⃗)⟩ = UPMA(θ⃗)|ψ0⟩ (5.15)

It is worth noting that the initial states reported in Fig. 5.6, in case of closed chain (pe-
riodic boundary conditions), break the spatial symmetry of the target system (Fig. 5.3.3),
together with the UPMA(θ⃗) having four independent variational parameters, one for
each bond: this asymmetry could lower the performance of the ansatz itself in the VQE
calculation, leading to an increment of optimization cycles required. Although results
show a good recovery of the symmetry with the proposed ansatz, improvements can
be achieved by changing the order of the building blocks of Fig. 5.5(b), applying first
the block on the bond connecting the local singlet (for low B) or triplet (for higher B):
this approach balances the initial state structure, making the recovering of the symme-
try faster. Circuit depicted in Fig. 5.5(b) becomes, in the correct order, W23(θ

1
k), W14(θ

3
k),

then W12(θ
2
k) and W34(θ

4
k).

Noiseless statevector VQE results
Here we report the results of the numerical simulation of the VQE process performed
with Qiskit statevector_simulator [126], to which I contributed by helping to de-
fine VQE parameters. This process is done by performing direct matrix multiplication
evaluating the results of the quantum circuits and using COBYLA [114] as classical opti-
mizer.

The heuristic ansatz (HA) results, corresponding to dark green dots in Fig. 5.7(a), are
in good accordance with the exact ground state solution. At low field, 3 layers (16 pa-
rameters and 9 CNOT gates) are required, due to an higher entanglement when Heisen-
berg interaction is dominant; at intermediate field, only 2 layers (12 parameters and 6
CNOTS) are sufficient to exactly reconstruct the GS. The PMA results, corresponding to
light green stars, are still in good agreement with the exact GS solution, while requiring
only 1 layer (with 4 parameters and 12 CNOTs, some of them parallelisable leading to a
total of 6 CNOTs) for both low and intermediate field regions.
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(a)

(b)

Figure 5.7: Statevector simulations of 4 sites spin closed ring. (a) GS energy. Inset: corresponding
fidelity. (b) VQE energy convergence. Reproduced from Ref. [127] with permission from MDPI
(open access article distributed under the terms and conditions of the Creative Commons Attribu-
tion (CC BY 4.0) license Creative Commons).

Each computed point represents the minimal achieved energy from 5 independent VQE
runs with random initial parameters. The Fig. 5.7(a) inset is the state fidelity of each point
relative to the exact GS solution (black solid line). In Fig. 5.7(b) the computed energies
as a function of the VQE iteration are reported, for two different B/J points on the two
regions of interest (low and intermediate field), showing the convergence to the two ex-
act solutions (black solid lines): despite having a similar number of gates involved, PMA
shows much faster convergence rather than HA, due to the lower number of variational
parameters involved. Increasing the number of layers (thus the number of parameters
and of quantum gates involved) leads to better results; however, ah high number of
parameters makes impractical the classical optimization, while an high number of quan-
tum gates makes very noisy the execution, especially on the near-term quantum devices
used.

Noisy VQE simulation results
In the previous section we presented the results regarding ansatzes performances in ab-
sence of noise. In the NISQ era, a crucial point is to verify the robustness and the perfor-
mances of the defined strategy in presence of realistic quantum noise. Here we simulate
the VQE process using Qiskit noisy simulators with realistic noise models, represent-
ing the mid-term status of the available quantum technology, especially IBM Quantum
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devices. As introduced in Sec. 1.3, the expected errors of currently available devices are:

• incoherent errors like thermal relaxation (T1) time and coherence (T2) time of the
qubits, with the effect of amplitude damping and phase damping;

• gate errors of single-qubit and two-qubit gates, due to systematic (coherent) error
on the implementation of the gates themselves, and due to other incoherent errors
such as depolarizing error;

• measurement (readout) error, due to an imperfect measurement process.

(b)

(a)

(d)

(c)

Figure 5.8: Noisy simulations of 4 sites spin closed ring. (a) GS energy, both HA and PMA are
able to reconstruct well the expected results. Inset: corresponding fidelity. (b) Expectation value
of magnetization and total spin S2: both ansatz perform well to reconstruct GS observables. (c)
VQE convergence, showing that PMA is able to let the optimization process to converge quicker.
(d) Expectation values of the local one- and two-body spin operators. Reproduced from Ref. [127]
with permission from MDPI (open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY 4.0) license Creative Commons).

The main effect of noise on VQE calculations is lowering the precision of the estima-
tion of the observables, in this case the ground state energy; moreover, also the optimiza-
tion process itself is affected by the effect of noise, increasing the number of iterations
required to reach convergence [128].

In Fig. 5.8 we report the VQE results simulated with Qiskit qasm_simulator [119],
considering the custom noise rates reported in Table 5.1, derived from IBM Quantum
ibmq_kolkata chip (QV 128) in early 2021. SPSA optimizer [129] is used for all noisy
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simulations, as its stochastic approach is more effective in presence of fluctuations of the
observables due to the noise. Qiskit Measurement Error Mitigation technique [119], al-
ready introduced in Sec. 1.4, is applied to improve the results by correcting the readout
error [130], increasing the accuracy of the observables evaluation. In Fig. 5.8(a) we report
the GS energies in the low and intermediate field regions: both HA and PMA are able
to reconstruct well the observable, together with an high state fidelity, averaged around
0.9. In Fig. 5.8(b) are reported the other two GS global observables: the expectation value
of the magnetization along z axis M =

∑
i Sz and the expectation value of the total spin

S2. Despite the presence of noise, the GS energy and both the expectation values of mag-
netization and total spin are well reconstructed.

The effect of the noise is clearly visible in Fig. 5.8(c): VQE struggles to converge to the
right value of the GS energy (solid lines), here reported for two different B/J values,
each one in a region of interest (low and intermediate field). It is also worth noting that
convergence is reached with an higher number of iterations, in particular ∼ 102 for the
PMA (respect to ∼ 101 in the noiseless statevector case, as reported in Fig. 5.7(b)) and
> 103 for the HA (respect to > 102 in the noiseless statevector case). The physically
motivated approach is thus much faster than the heuristic approach. In Fig. 5.8(d) we
report two local observables, i.e. the expectation value of szi and szi s

z
i+1: the black dots

indicate the exact solution, hence both ansatzes are able to reconstruct well the correct
translational invariance of the model.

T1 135 µs
T2 125 µs

Single-qubit Gate Error ∼ 2.5× 10−4

Two-qubit Gate Error ∼ 8× 10−3

Readout Error ∼ 10−2

Table 5.1: Custom noise parameters derived from QV 128 chip (early 2021).
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5.3.3 Six spins 1/2 Heisenberg closed ring

The same approach is applied for a
more complex system, consisting of six
spins 1/2 arranged in a closed hexagon
chain described by Eq. 5.10 (isotropic in J)
and periodic boundary conditions, with an
external B field parallel to z axis. Despite
being still easy to compute classically, it
represents a good test to study ansatz scal-
ability and performances.
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Hamiltonian encoding
Hamiltonian in Eq. 5.10 of this 4 sites closed chain can be encoded on the spin 1/2 qubits
following the same approach introduced in Eq. 5.9. It is possible to build the following
operator:

Ĥ(6 closed)
op = Jz(ZZIIII + IZZIII + IIZZII + IIIZZI + IIIIZZ + ZIIIIZ)

+Jy(Y Y IIII + IY Y III + IIY Y II + IIIY Y I + IIIIY Y + Y IIIIY )

+Jx(XXIIII + IXXIII + IIXXII + IIIXXI + IIIIXX +XIIIIX)

+B(ZIIIII + IZIIII + IIZIII + IIIZII + IIIIZI + IIIIIZ)

(5.16)

where the B field is acting only on the z axis. Also in this case it is possible to notice
the application of periodic boundary conditions, as the Hamiltonian is representing a
closed chain, in the latter element of the first three lines of Eq. 5.16.

Construction and initialisation of the ansatz
Both HA and PMA approaches are here extended to a 6 sites configuration. For the
HA, we just add two qubits to the circuit represented in Fig. 5.4, both initialized with
an Ry(θl) and linearly entangled with the next neighbour. Each variational ansatz layer
thus includes 6 different parameters instead of 4, and 5 CNOTs instead of 3.

For the PMA approach, we can use the same building block introduced in Fig. 5.5(a)
and a similar approach for the overall ansatz layer, with a slightly different initialisation
for the different field regions, as reported in Fig. 5.9.

Noiseless statevector VQE results
Numerical simulations of the VQE performed with Qiskit statevector_simulator
are reported in Fig. 5.10, as per 4 sites case, and using COBYLA as classical optimizer, to
which I contributed by investigating the optimal configuration of VQE.
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Figure 5.9: PMA initialisation, 6 spins: (a) lowB (S = 0,m = 0 region), (b) intermediateB (S = 1,
m = −1 region).

(a)

(b)

Figure 5.10: Statevector simulations of 6 sites spin closed ring. (a) GS energy. Inset: corresponding
fidelity. (b) VQE energy convergence. Reproduced from Ref. [127] with permission from MDPI
(open access article distributed under the terms and conditions of the Creative Commons Attribu-
tion (CC BY 4.0) license Creative Commons).

In this case, due to an increased system complexity, both ansatzes are more demand-
ing in terms of parameters and quantum gates to be able to reconstruct the GS observ-
ables. The HA requires 5 layers (24 parameters and 15 CNOTs) for the low field region,
and 4 layers (20 parameters and 12 CNOTs) for the intermediate field region. The PMA
requires instead 2 layers, with 8 parameters and 36 parallelizable CNOTs. Also in the 6
spin case, we notice that the HA circuit is less complex than the PMA, but the PMA has
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less parameters to be optimized, leading to a easier and quicker convergence.

Noisy VQE simulation results
The same noisy VQE simulations are performed also in the 6 spins case, using the same
customized noise parameters reported in Table 5.1. A degradation in the performances
of both ansatzes is evident, due to the more complex circuits.

(b)

(a)

(d)

(c)

Figure 5.11: Noisy simulations of 6 sites spin closed ring. (a) GS energy. Inset: corresponding
fidelity. (b) Expectation value of magnetization and total spin S2. (c) VQE convergence. (d) Expec-
tation values of the local one- and two-body spin operators: only PMA is able to reconstruct the
local spin expectation values symmetries, in particular at intermediate B/J (orange solid line).
Reproduced from Ref. [127] with permission from MDPI (open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license Creative Com-
mons).

Fig. 5.11(a) shows the GS energy observable and the corresponding state fidelity. HA
seems slightly better in reconstructing the GS energy in the intermediate field region,
while the average fidelity is similar for both ansatzes.

A different trend is reported in Fig. 5.11(b): here the PMA is slightly better on recon-
structing the expectation value of both magnetization and total spin S2: this is due to the
imposition of the symmetry constraints in the ansatz.

Fig. 5.11(c) reports the VQE convergence for twoB/J values, one in each field region:
while the energy is clearly not well reconstructed for the effect of noise, showing that
with this system complexity we are close to the current limits of technology, we can
confirm that PMA converges in ∼ 102 iterations, while HA takes almost 104 iterations.

Perhaps the most interesting result is reported in Fig. 5.11(d): here the expectation
value of szi and szi s

z
i+1 are shown. We notice the effect of symmetry breaking induced by
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the noise, especially in the intermediate field region: only the PMA (light blue for lowB,
orange for intermediate B) preserves the star-shaped trend of the exact results, reported
with the black dots. This leads to the possibility to design error mitigation techniques
based on the system symmetry [131][132][133], in order to improve the variational ansatz
performances.

In general, in case of 6 spins the PMA is able to better reconstruct the ground state
with also the correct symmetry; the noisy simulations highlights that VQE is still de-
manding to be implemented on real quantum devices. Moreover, for complex systems
requiring a more complicated entanglement-map, several SWAP operations would be
included by the circuit transpiler in order to be implemented on the current chips: two
ways are here available to overcome this issue, i.e. improving chips connectivity or
lowering the error rate. The latter approach is more promising, as there are no future
improvements on IBM Quantum roadmap for increasing intra-qubit connectivity due to
cross-talk errors (see Sec. 3.2.3), while chips QV is constantly increasing [134]. Calcula-
tions of such static system properties will then be possibly implemented in the near-term
future hardware devices. Additionally, other error mitigation techniques could be imple-
mented, such as the Zero-Noise Extrapolation (ZNE) [120][24] and the above mentioned
system symmetry-based techniques.

5.3.4 Finite-Size and Parity effects of local spin operators

In the previous sections we used both HA and PMA approaches to study GS static prop-
erties of the target systems; the PMA is the best of the two approaches, in terms of ob-
servables reconstruction accuracy, easiness of convergence and symmetry preservation.
PMA can now be used to study how the local variables change by changing the topol-
ogy of the system in terms of number of spins and boundary conditions (open or closed
chains). The studied systems are reported in Fig. 5.12; in particular, a comparison of the
expectation values of the local spin operators ⟨szi ⟩ on the GS is performed, with the ob-
jective to study finite-size effects and parity effects, as they are important quantities for
MNMs characterization [102].

First, we need to introduce the Hamiltonian encoding on qubits for 4, 5 and 6 spins
open chains, following a similar approach of 4 and 6 spins closed chains, already re-
ported in Eq. 5.11 and Eq. 5.16:

Ĥ(4 open)
op = Jz(ZZII + IZZI + IIZZ)

+Jy(Y Y II + IY Y I + IIY Y )

+Jx(XXII + IXXI + IIXX)

+B(ZIII + IZII + IIZI + IIIZ)

(5.17)

Ĥ(5 open)
op = Jz(ZZIII + IZZII + IIZZI + IIIZZ)

+Jy(Y Y III + IY Y II + IIY Y I + IIIY Y )

+Jx(XXIII + IXXII + IIXXI + IIIXX)

+B(ZIIII + IZIII + IIZII + IIIZI + IIIIZ)

(5.18)
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Figure 5.12: Even-odd open-closed MNM configurations. Dashed lines are an useful symmetry
axis of the open chains.

Ĥ(6 open)
op = Jz(ZZIIII + IZZIII + IIZZII + IIIZZI + IIIIZZ)

+Jy(Y Y IIII + IY Y III + IIY Y II + IIIY Y I + IIIIY Y )

+Jx(XXIIII + IXXIII + IIXXII + IIIXXI + IIIIXX)

+B(ZIIIII + IZIIII + IIZIII + IIIZII + IIIIZI + IIIIIZ)

(5.19)

where the periodic boundary conditions are here not present due to the open struc-
ture of the chain, and where the magnetic field is acting only on the z axis.

The VQE algorithm with PMA approach, considering the same noise configuration
of the previous GS studies reported in Sec. 5.3.2 and in Sec. 5.3.3, is used to simulate
the local spin expectation values for the configurations depicted in Fig. 5.12. It is worth
noting that the initialisation of the PMA for a 5 spins chain follows the same approach
of the 4 and 6 spins chains. In Fig. 5.13 is reported the initialisation for the low field
region, as our investigation of odd-numbered chains is based on this range for simplicity
reasons.

Results of the finite-size and parity effects exploration are reported in Fig. 5.14, where
the different colors and symbols are related to the different MNM configurations intro-
duced above; exact values are reported by the dashed lines. In Fig. 5.14(a) are reported
the ⟨szi ⟩ in the low field region, for B/J = 0.1, while in Fig. 5.14(b) are reported the ⟨szi ⟩
in the intermediate field region, for B/J = 2.7. In the following list are listed the main
outcomes.

• Even-numbered closed chains: due to their periodic boundary conditions, these
rings show a translational invariance symmetry. Expectation values of the local
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Figure 5.13: PMA initialisation, 5 spins, low B (S = 0, m = 0 region).

(a)
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Figure 5.14: Finite-size and Parity effects, even-odd open-closed chains (noisy VQE simulations):
(a) low B (S = 0, m = 0 region), (b) intermediate B (S = 1, m = −1 region). All noisy simulated
results are in good agreement with expected behaviour of finite-size systems. Reproduced from
Ref. [127] with permission from MDPI (open access article distributed under the terms and condi-
tions of the Creative Commons Attribution (CC BY 4.0) license Creative Commons).

spin operators are uniform and equal to 0 in low field region, as the GS is S = 0

(Fig. 5.14(a), light blue circles and blue triangles). The same behaviour is visible
also in intermediate field region, with the difference that as the GS is characterised
by S = 1 and m = −1, the expectation value is ⟨szi ⟩ = −1/N , where N is the
number of spins in the ring (Fig. 5.14(b), light blue circles and blue triangles).

• Even-numbered open chains: due to their open boundary conditions and an even
number of spins, these MNM are symmetrical to the central bond. Low field re-
gion results show a uniform (but still symmetric with respect to the central bond)
⟨szi ⟩ = 0 behaviour (Fig. 5.14(a), yellow squares and red triangles), while in the in-
termediate field region this symmetry is evident (Fig. 5.14(b), yellow squares and
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red triangles).

• Odd-numbered open chains: as per even-numbered open chains, odd-numbered
open chains show an symmetric pattern, this time with respect to the central spin.
Results for low B field are showing alternating positive and negative expectation
values (Fig. 5.14(a), orange plus marks), as expected for ⟨m⟩ = ⟨

∑
i s

z
i ⟩ = −1/2.

The VQE noisy simulations are in very good agreement with exact results; by increas-
ing the MNM size, the symmetric behaviour is slightly worse reconstructed, but still in
good accordance.

The obtained results show how the PMA approach can reconstruct the actual struc-
ture and symmetries of the target MNM ground state.

5.4 Study of GS spin states mixing on spin 1/2 systems

I then helped investigating anti-ferromagnetic closed Heisenberg chains in which a small
Dzyaloshinskii-Moriya Interaction (DMI) is added on top of the leading coupling. Such
systems are interesting because, rather than the other systems studied, they present a
mixing between different total spin states; this mixing is induced by the DMI itself, and
induces anti-crossings between ground and first excited state ad specific magnetic field
values. As the energy gap between ground state and the first excited state is very small
in proximity of the anti-crossing, a proper variational ansatz must be built to be able
to explore that particular area, in which observables like torque assume non-trivial be-
haviours.

5.4.1 Test-case: spin 1/2 Heisenberg trimer with DMI

We first consider a rather simple test
model, consisting of three spins 1/2 ar-
ranged in a closed chain with a triangu-
lar shape. This system is subject to an ex-
ternal magnetic field along z axis, and is
described by the general Hamiltonian in
Eq. 5.20. The DMI is acting on all three
bonds, and both Jij andDij are considered
in general different on each bonds: several
configurations of have been explored. In
Fig. 5.4.1 is reported a sketch of the target
test model.
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H =
∑
i

Jis⃗i · s⃗i+1 +
∑
i

B⃗ · s⃗i

+
∑
ij

Dij s⃗i ∧ s⃗j
(5.20)

The Hamiltonian in Eq. 5.20 has been implemented on the trimer configuration as:

H = H0 +H1

= J1s⃗1 · s⃗2 + J2s⃗2 · s⃗3 + J3s⃗3 · s⃗1 +B(sz1 + sz2 + sz2)

+D(s⃗1 × s⃗2 + s⃗2 × s⃗3 + s⃗3 × s⃗1)
(5.21)

and it is composed by a leading termH0 and a perturbative termH1 representing the
DMI (assuming D ∼ J/10). For this first test model, a rather simple HA is adopted to
explore several configurations of the spin triangle in terms of Jij and Dij values.

Hamiltonian encoding
The Hamiltonian in Eq. 5.21 is encoded on qubits as the following:

Ĥtrimer DMI
op = J01(XXI + Y Y I + ZZI)

+J12(IXX + IY Y + IZZ)

+J20(IXI + IY I + IZI)

+B(ZII + IZI + IIZ)

+D(ZXI −XZI + IZX − IXZ +XIZ − ZIX
+Y XY −XY I + IY X − IXY +XIY − Y IX
+ZY I − Y ZI + IZY − IY Z +XIZ − ZIY )

(5.22)

where the magnetic field is acting only on z axis and DMI is acting on each bond.

Construction of the variational ansatz
We start studying these systems by leveraging on a heuristic approach for the variational
ansatz. The circuit constructing the ansatz is depicted in Fig. 5.15, and it is composed by
a set of parametrized Ry and by a linear entanglement layer; the ansatz block Vj(θ⃗j) is
then repeated two times, with a final rotation layer. Overall, this ansatz shows 9 varia-
tional parameters.

VQE results
The ansatz in Fig. 5.15 is exploited to perform noiseless and noisy VQE simulations. Due
to the simplicity of this model, we found that the ansatz is able to reconstruct well the
GS even close to the anti-crossing; the parallel magnetization however is not well recon-
structed, in particular the behaviour induced by the anti-crossing. In Fig. 5.16 we report
the results, where VQE was performed 5 times, getting the best results for each point.
Noisy simulations have been performed with a noise model created from a QV 16 IBM
Quantum chip (ibmq_belem).
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Figure 5.15: Heuristic ansatz for the spin 1/2 trimer with DMI, containing 3 variational parameters
per block.

Panel (a) and (b) of Fig. 5.16 are related to a spin 1/2 trimer configuration representing
an isosceles triangle, where J01 = J20 ̸= J12 (considering the sketch in Fig. 5.4.1). It is
worth noting that, atB = 0, the energy difference between doublets depends on J12−J01.
Noiseless, noisy (with the three noise sources active: Thermal Relaxation, Readout and
Gate Errors) and noisy mitigated (using Qiskit Measurement Error Mitigation) quantum
computations have been performed. The implemented error mitigation technique is able
to increase the accuracy of the results.

Panel (c) and (d) of Fig. 5.16 are instead related to a spin 1/2 trimer configuration
representing a scalene triangle, where J01 ̸= J20 ̸= J12. The same considerations of the
isosceles triangle about noiseless, noisy and noisy mitigated results are due.

While the noise effect is evident, results show a rather good agreement between VQE
simulations and the exact behaviour; a more complex heuristic ansatz would increase
the accuracy, but also the error in the noisy simulations. In general, for small systems, a
well balanced heuristic approach could lead to an accurate reconstruction of the GS static
properties. Incrementing system complexity in terms of sites can be very challenging for
a heuristic ansatz, as reported in the next Section.
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(a) (b)

(c) (d)

Figure 5.16: (a) VQE simulations for an isosceles (J01 = J20 ̸= J12) triangle of spins 1/2 with
DMI. (b) Related parallel magnetization simulations. (c) VQE simulations for a scalene (J01 ̸=
J20 ̸= J12) triangle of spins 1/2 with DMI. (d) Related parallel magnetization simulations. HA is
able to reconstruct quite well the expected behaviour of the GS, while approximates the parallel
magnetization observable; the HA however struggles to reconstruct the observables in presence
of noise. Error mitigation increases the performances significantly on the noisy simulation.

5.4.2 Four spins 1/2 Heisenberg closed ring with DMI

Given the test model trimer results, I
contributed to focus on a more complicated
system consisting of four spins 1/2, in
which, as depicted in Fig. 5.4.2, we assume
DMI acting only on the 0-1 and 2-3 bonds
to make the Hamiltonian less symmetric.
The Hamiltonian describing such systems
is reported in Eq. 5.23, it is isotropic in both
Ji and Dij , and and it can be considered
composed by a leading term H0 and a per-
turbative termH1 (assuming D ∼ J/10).
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In order to create anti-crossings between states with ∆m = 1, it is necessary to have a
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magnetic field not null in the xz plane: we thus need to tilt its direction, assuming i.e. an
angle θ between the magnetic field and the z axis. In this case we imposed θ = π/6.

H = H0 +H1

= J
4∑

i=1

(σi
xσ

i
x + σi

yσ
i
y + σi

zσ
i
z) +B

4∑
i=1

(sin θ(σi
x + σi

x) + cos θ(σi
z + σi

z))

+D(σ0
xσ

1
y − σ1

xσ
0
y + σ2

xσ
3
y − σ3

xσ
2
y)

(5.23)

(a)

(b) (c)

Figure 5.17: (a) Exact solution of energy levels of 4 spins system with DMI, with zoom on the
anti-crossings. Yellow, blue and green colors represent respectively the low, intermediate and high
field regions. (b) Parallel magnetization exact solution. (c) Torque exact solution. It is worth noting
the effect of the DMI on the observables in panels (b) and (c), by comparing the exact solution and
the solution with D = 0 (black dashed lines).

In Fig. 5.17(a) the exact energy levels of the target system described by Eq. 5.23 are
reported, with the highlighted GS. The effect of the DMI on the energy levels is to mix
different total spin states in proximity of the anti-crossings: while the spin eigenstates
are well defined far away from the anti-crossings (|S = 0, m = 0⟩ in the low field region,
|S = 1, m = −1⟩ in the intermediate field region, |S = 2, m = −2⟩ in the high field
region), where the effect of DMI is negligible, in proximity of the anti-crossings the spin
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eigenstates are not well defined. Interestingly, parallel magnetization and torque are in-
fluenced by the DMI, leading to the behaviour reported in Fig. 5.17(b) and Fig. 5.17(c):
magnetization shows a smoothed steps behaviour, and torque shows peaks. These ob-
servables require high precision to be computed accurately with a QC: a custom vari-
ational ansatz is thus needed to address explore the interesting but narrow part of the
observables near the anti-crossings.

Hamiltonian encoding
The encoding of the Hamiltonian follows the Eq. 5.22 approach, with the proper modifi-
cations due to the system properties. We can obtain:

Ĥ4 closed DMI
op = Jz(ZZII + IZZI + IIZZ + ZIIZ)

+Jy(Y Y II + IY Y I + IIY Y + Y IIY )

+Jx(XXII + IXXI + IIXX +XIIX)

+Bz(ZIII + IZII + IIZI + IIIZ)

+Bx(XIII + IXII + IIXI + IIIX)

+D(XY II − Y XII + IIXY − IIY X)

(5.24)

where the magnetic field is acting on the xz plane, and the DMI is acting only on 0−1
and 2− 3 bonds.

Construction of the variational ansatz
Three different approaches are adopted to build the variational ansatz. The first ap-
proach I specifically focused on is based on the HA: the ansatz is composed by a general
rotation block (U3 rotations) and a full entanglement block, forming a layer, repeated 3
times (Fig. 5.18(a)) and with a final rotation layer, for a total of 48 variational parameters.
This is due to the complexity of the anti-crossing region.

A second heuristic approach I contributed to, based on symmetry considerations of
the target system, aims to lower the number of parameters while preserving the perfor-
mance of the ansatz (Fig. 5.18(b)). We first consider that the Hamiltonian in Eq. 5.23 with
the same J for each bond, so we can assume Ry and Rz rotations instead of U3 rotations,
lowering the overall number of parameters. Moreover, due to system symmetry, it is
possible to impose the variational parameters related to opposite spins (i.e. 0 − 2 and
1 − 3) to be equal, halving the number of parameters, achieving 16 parameters overall.
In fact, also the Ground State of the system is expected to show the same Hamiltonian
symmetries. The symmetric heuristic ansatz choice has also the effect to reduce the pa-
rameters space explored by the ansatz itself, forcing it to stay in a subspace conserving
the symmetries of the system. The quantum circuit implementing this variational ansatz
is composed by 32 single-qubit rotations and 18 CNOTs.

The third ansatz I contributed to is based on a PMA approach, and it is built in partic-
ular to explore the anti-crossings proximity. This approach has been developed consid-
ering that the dominant term of the Hamiltonian is isotropic, so all eigenstates are also
Stot eigenstates; then, the Heisenberg interaction is dominant, and commutes with the
Zeeman part of the Hamiltonian, while the DMI is a perturbation. In these conditions,
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Figure 5.18: Different hardware heuristic approaches for 4 spins system with DMI. (a) Hardware
heuristic ansatz with 48 parameters. (b) Hardware heuristic ansatz considering system symme-
tries, with 16 parameters. Both ansatzes require a final rotation layer after the 3 repetitions of the
block.

as already said, it is possible to know the configuration of the GS far away from the anti-
crossings. Near the anti-crossings, instead, we expect DMI to mix the states: near the first
anti-crossing, |S = 0,m = 0⟩ and |S = 1,m = −1⟩ will be mixed, leading to the need
of only 2 variational parameters for a VQE calculation to discriminate them. The same
considerations can be done for the second anti-crossing, where |S = 1,m = −1⟩ and
|S = 2,m = −2⟩ are mixed. So, as we know the eigenstates of the total spin, a quantum
circuit to obtain them has been built, and then a linear combination of the two has been
performed: the ansatzes created (S0S1 for the first and S1S2 for the second anti-crossing)
are thus adapted to the area of interest. In this way, it is possible to simplify the overall
VQE process.

S0S1 = |S = 0,m = 0⟩ cosα+ eiβ |S = 1,m = −1⟩ sinα
S1S2 = |S = 0,m = −1⟩ cosα+ eiβ |S = 2,m = −2⟩ sinα

(5.25)

The ansatz with the forms in Eq. 5.25 is built using Qiskit initialize function
[135][136]: the output is a circuit made of 15 single-qubit rotations and 22 CNOTs. Fur-
ther optimizations of this build have been made in our joint research, especially for the
S1S2 ansatz.

Noiseless VQE results
Several numerical noiseless simulations of the VQE process have been performed, and
related results are reported in Fig. 5.19.

Panels (a) and (b) of Fig. 5.19 show the computed GS energy in proximity of the
first and the second anti-crossings. The circles are calculated with the two HA ap-
proaches, while the squared markers are obtained by the PMA (S0S1 and S1S2). In
particular, for the PMA two different optimization processes have been developed: the
first one (green squared symbols) represent a regular VQE optimization performed with
COBYLA, while the second one (blue squared symbols) represents a manual optimiza-
tion of the two parameters of Eq. 5.25. While it is clear that the PMA approach works
better than the HA, the manual optimization of the parameters achieves a remarkable
State Fidelity.
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(a) (b)

(c) (d)

Figure 5.19: (a) GS energy computed in proximity of the first anti-crossing with noiseless simula-
tions. (b) GS energy computed in proximity of the second anti-crossing. (c) Parallel magnetization.
In all these three cases, the PMA (S0S1 for the first anti-crossing, S1S2 for the second anti-crossing,
and in general S) with the manual parameters optimization is able to achieve a remarkable fidelity.
(d) Torque, reconstructed with good agreement with a derivative approach based on Hellmann-
Feynman theorem, developed in our joint research.

We then use the PMA approach to compute the parallel magnetization and the torque
observables. Panel (c) shows the parallel magnetization computed with S0S1 and S1S2
ansatzes: the manual optimization leads to better results, and can be used in proximity of
the anti-crossing. Panel (d) shows the torque results, computed exploiting the PMA ap-
proach with the manual optimization of the parameters, and with two different methods
to extract the observable. In particular, the first one (purple squared symbols) represents
the regular calculation using the results from the VQE process; the second one (black
squared symbols) relies on the derivative method developed in our joint research, based
on the Hellmann-Feynmann theorem (Eq. 5.5). Taking the target system Hamiltonian
(Eq. 5.23) it is possible to compute:

∂Eθ

∂θ
=

〈
ψθ

∣∣∣∣∂H∂θ
∣∣∣∣ψθ

〉
=

〈
ψθ

∣∣∣∣B 4∑
i=1

(− cos θ(σi
x + σi

x) + sin θ(σi
z + σi

z)

∣∣∣∣ψθ

〉
= B(Mz sin θ −Mx cos θ)

(5.26)
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thus it is possible to obtain the torque by calculating the derivative of the energy with
respect to the direction θ of the magnetic field. Then, a discrete derivative is computed
by slightly varying the θ between two points with similar B field.

The same calculation can be performed to compute the parallel magnetization:

∂EB

∂B
=

〈
ψB

∣∣∣∣∂H∂B
∣∣∣∣ψB

〉
=Mpar (5.27)

It is worth noting that, while the technique reported in Eq. 5.26 is the best way we
found to compute the rather small torque values, it is very sensible to fluctuations: it
would be hard to be implemented on noisy simulations, especially with high noise rates.

Noisy VQE simulation results
Due to the complexity of the VQE calculation in the anti-crossings proximity already
noticed in noiseless simulations, we report here the best results obtained by our joint re-
search. In Table 5.2 are reported the custom noise parameters used in these simulations,
which have been further improved from the parameters in Tab. 5.1 used in the other
simulations.

T1 200 µs
T2 200 µs

Single-qubit Gate Error ∼ 2× 10−4

Two-qubit Gate Error ∼ 5× 10−3

Readout Error ∼ 2.5× 10−3

Table 5.2: Custom noise parameters derived from QV 128 chip (early 2021), further improved.

Fig. 5.20 reports the VQE results of GS energy in proximity of the anti-crossings. In
Panel (a), the PMA S0S1 approach leads to the best results, although the ansatz circuit
is composed by an higher number of CNOT gates rather than the hardware heuristic
symmetric ansatz (22 for the PMA, 18 for the HA symmetric). A similar behaviour is
reported in Panel (b), in the proximity of the second anti-crossing: PMA S1S2 results are
more stable rather than symmetric HA. Further improvements have been put in place,
in particular to improve the S1S2 ansatz by lowering the number of gates, with the help
of an ancillary qubit: these improvements are however not part of this work.

5.5 Study of spin 1/2 chains Dynamic Correlation Functions

Dynamic properties of target Molecular Nanomagnets described by the Hamiltonian in
Eq. 5.10 are here explored. The dynamic spin-spin correlation functions are very impor-
tant physical quantities [137][138], as they are used to obtain other observables and to
describe the propagation of external perturbations and excitations within the target sys-
tem. We base our research on the approach developed in Ref. [109]; dynamic spin-spin
correlation functions are defined as:
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(a) (b)

Figure 5.20: (a) Noisy VQE simulations of GS energy in proximity of the first anti-crossing. (b)
Noisy VQE simulations of GS energy in proximity of the second anti-crossing.

Cαβij (t) = ⟨sαi (t)s
β
j ⟩0 =

∑
p

⟨0|sαi |p⟩⟨p|s
β
j |0⟩e

−iEpt (5.28)

where |p⟩ are the system eigenstates with eigenvalues (energies) Ep, where α, β =

x, y, z and i, j are the spin sites. The computation of such quantities is hard for classical
computers. In order to compute dynamic correlations with a QC it is possible to use the
class of quantum circuits depicted in Fig. 5.21 [14][109], in this case applied to the N = 4

spins 1/2 closed chain. In particular, the quantum circuit reported is based on 4 qubits
register |ψ⟩R and an ancilla qubit a; the quantum register needs to be prepared in the
ground state |ψ0⟩.

𝑈(𝑡)
𝛽

𝛼

𝑈!"#$a

𝑠#% + 𝑖 𝑠#
& ∝ 𝐶'(

)*(𝑡)
Time 

evolution

Figure 5.21: Circuit for computing Dynamic Correlation Functions, implementing time evolution
U(t) and conditional ancilla excitation to access the correlation functions.

• Circuit preparation. Qubits from 0 to 1 are used to simulate the time evolution
of the target system, while the qubit a is an ancilla, prepared in a superposition
(|0⟩+ |1⟩)/

√
2 using an Hadamard gate.
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• First and second ancilla entanglement. In order to compute the dynamic correla-
tion functions Cαβij between sites i and j, on axes α and β, we need to first entangle
the ancilla with the j-th qubit with a c-β gate; a c-α gate is then required, after the
time evolution simulation, to entangle the ancilla with the i-th qubit. The i and j

choice represent the possibility to choose the pair of spins on which to compute the
dynamic correlation function, including also autocorrelations if i = j.

• System time evolution. The central step is to perform a simulation of the time
evolution of the target system. The operator U(t) = e−iHt can be implemented
[14] on the quantum device using a Digital Quantum Simulation (see Sec. 1.2.1).
In this case, the time evolution has been performed at an high field region, where
the Zeeman interaction is dominant; VQE process with PMA can be exploited to
compute the ground state optimal variational parameters, then used to create the
actual ground state, and its time evolution circuit is then represented in Fig. 5.22.
In general, the S-T decomposition is needed, while in this situation a single Trotter
step is enough to simulate the time evolution with a good level of approximation.

𝑊!"(2𝐽𝑡) 𝑊"#(2𝐽𝑡)

𝑊!$(2𝐽𝑡)𝑊#$(2𝐽𝑡)
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𝐵𝑡
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𝑈 𝑡 =

Figure 5.22: Time evolution circuit of the target Hamiltonian in high field region. The Ground
State is represented by an array of Rz rotations.

• Measurement process. The measurement is then performed on the ancilla, and
the process is conditioned by the quantities to be computed: both sx and sy are re-
quired, composing respectively the real and imaginary part of the function, so two
different quantum computations are required as the two observables are incom-
patible and can not be computed at the same time. A basis change is required to
measure on axes different than z, and the Umeas circuit implements just this choice:
it is an Hadamard gate to measure sx, and a Ry(π/2) to measure sy . In particular,
a measurement of the observable σx on the ancilla qubit returns

⟨σα
x ⟩ = Tr

[(
σα
x ⊗ I

)
|ψout⟩⟨ψout|

]
= ℜ[Cαβij (t)] (5.29)

and a measurement of σy on the ancilla qubit returns ℑ[Cαβij (t)]. The overall dy-
namic correlation function is obtained by:

⟨2σα
+⟩ = Cαβ(t) (5.30)
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where 2σ+ = σx + iσy [14].

5.5.1 Error mitigation techniques

In order to compute the dynamic correlation functions on IBM Quantum real hardware
devices, some error mitigation techniques should be applied.

Qubit topology
First, it is important to avoid unnecessary SWAP gates introduced in the circuit by the
transpiler, having the objective to adapt the circuit to the selected hardware. We used
IBM Quantum ibmq_bogota chip, with a linear connectivity (see Fig. 3.7 L-shape chip),
and we adapted the circuit choosing the best position for the ancilla in each measurement
case.

Phase and Scale
Observables of this kind computed on a real quantum superconducting transmons-based
device are affected by a phase factor and a scale factor (due to incoherent error induced
damping): these errors can be mitigated, without considering their origin, by applying
to the raw results a physically motivated correction related to general properties of dy-
namic correlation functions.

• First, one can easily show from Eq. 5.28 that, for t = 0, the autocorrelation functions
Cααii (0) (same site, same axis) are a real quantity:

Cααii (0) =
∑
p

|⟨0|sαi |p⟩|2 (5.31)

Raw results show a complex value for this quantity: here we apply to all t the same
computed phase at t = 0, by imposing Cααii (0) being real and positive.

ϕ = arg(ℜ[Cααii (0)] + iℑ[Cααii (0)]) (5.32)

Cααiimit
(0) = e−iϕCααii (0) (5.33)

• Second, we exploit a sum rule for autocorrelations in t = 0:

⟨(si)2⟩ = si(si + 1) =
∑
α

Cααii (0) (5.34)

where (si)
2 is related to the total spin operator of the i-th spin 1/2. In this case,

Eq. 5.34 implies:

Cxxii (0) + Cyyii (0) + C
zz
ii (0) = s(s+ 1) =

3

4
(5.35)
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or, due to the isotropic model under investigation, Cααii (0) = 1/4. We can now find
a scaling factor to correct the amplitude damping due to incoherent errors:

Fi =
si(si + 1)∑

α Cααii (0)
(5.36)

This method has been developed in Ref. [109], and we apply it in order to mitigate
the errors in the real hardware computation of the Dynamic Correlations Functions.

5.5.2 Dynamic Correlations Functions results

In order to test the above mentioned PaS procedure, we performed several noisy simu-
lations for Cxx11 , Cyy11 , Czz11 , Cxx22 , Cyy22 , Czz22 , and Cxx21 , Cyy21 , Czz21 , with the same noise parameters
used in the previous sections, reported in Table 5.1. Despite being close to the exact
values due to the low noise rate, a significant mitigation is obtained by the PaS proce-
dure by applying the computed phase and scaling factors through all the time evolution;
we then performed the same calculations on IBM Quantum ibmq_bogota chip, with 5
qubit hardware and QV 32, with nshots = 8192. Raw (experimental) and mitigated re-
sults using PaS [109] technique are reported in Fig. 5.23. Hardware (raw) results are
depicted in light colors, while PaS (mitigated) in dark colors; black solid lines are the ex-
act values. The computed correlations are Cxx11 , Cxx22 and Cxx21 , as the Cyyij show theoretically
the same behaviour, and the Czzij are theoretically flat to 0. The agreement is remarkably
good after the error mitigation, in particular on Cxx21 cross-correlations. First, imaginary
part of the dynamic correlation functions is rather different from zero, especially on auto-
correlations; second, raw data are clearly damped in amplitude; third, it is possible to
notice that the minima and the maxima are shifted with respect to the exact behaviour.
The latter behaviour is especially evident in the cross-correlations Cxx21 , for both real and
imaginary part. For the considered system (4 spins closed chain), mid-sized QV 32 IBM
Quantum chips are able to produce acceptable results; dynamic correlation functions of
more complex systems are not investigated here, but as chip quality increases it would
be possible to compute them on real hardware devices, with acceptable accuracy after
error mitigation.

5.6 Conclusions

In conclusions, the work carried on exploiting IBM Quantum devices and simulators
demonstrated the potential of this technology to describe small-sized molecular system
properties; this approach, in particular the Physically Motivated one supported by the
proper error mitigation techniques, will allow one to scale up the target system size when
the number of qubits will increase, showing the possibility to reliably simulate relevant
systems (i.e. chains consisting of at least tens of spins). It is finally worth noting that,
although being very interesting physical models, Molecular Nanomagnets are quantum
systems that can also be exploited to build fundamental units of quantum computation
themselves: in Part IV we will deeply explore this possibility.
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Figure 5.23: Real and Imaginary parts of the dynamic spin-spin correlations computed on IBM
Quantum hardware, displaying raw and mitigated results. Computed dynamic correlation func-
tions: Cxx

11 , Cxx
22 and Cxx

21 , both real and imaginary parts. The computed results using a mid-sized
QV 32 device show an amplitude damping and phase shift due mainly to incoherent errors of
the real hardware; the Phase and Scale (PaS) error mitigation technique is able to correct well the
results, obtaining a good agreement with the exact results (black solid lines). Reproduced from
Ref. [127] with permission from MDPI (open access article distributed under the terms and condi-
tions of the Creative Commons Attribution (CC BY 4.0) license Creative Commons).

Part of the content of this Chapter has been published in Magnetochemistry 2021, 7(8), 117
(Ref. [127]).
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CHAPTER 6

Quantum Simulation of Fermionic systems

S trongly correlated quantum systems represent an interesting class of problems, in
particular in Physics of Matter, that have been studied since last century [5][139];

they can not be solved using simple classic approximations, so a QC approach is needed.
Nowadays, with the current prototype QC, they are taken as interesting test-beds for
simulation on prototype Quantum Computers.

In this Chapter we describe the work performed on Fermionic systems, in particu-
lar simulating the static and dynamic properties of a one-dimensional Fermi-Hubbard
model [140][141] by changing model parameters (i.e. one- and two-body terms), using
currently available IBM Quantum real devices, with proper error mitigation techniques.
Variational Quantum Eigensolver algorithm is exploited to compute the static proper-
ties of target system Ground State, while a Digital Quantum Simulation is performed
to study the time evolution of the target system. The aim of the work reported in this
Chapter is to leverage on a well known system to apply a similar approach to the one
adopted for Chap. 5 in terms of simulation of static and dynamic properties, in particular
a Physically Motivated approach to build the variational ansatz for VQE and the appli-
cation of error mitigation techniques like Qiskit MEM [142] and the best qubit layout,
specifically on quantum hardware calculations. In particular, coherent and incoherent
errors are taken into account with a Post Selection error mitigation method, allowing us
to simulate the time evolution of the model faithfully despite having circuits consisting
on more than 300 two-qubit gates.

6.1 The Fermi-Hubbard model

The Fermi-Hubbard model is an approximate model that can be used to describe inter-
acting particles in a lattice [141]. This model is one of the most studied in condensed
matter, because it can be used to model many semiconductor and superconductor sys-
tems, and in general correlated systems like localized magnetic systems; in many cases,
as the size of the lattice increases, classical algorithms cannot reproduce well the be-
haviour of this model, as the Hilbert’s space dimension scales exponentially. In case of
strongly correlated systems, it is difficult to compute the solution with classical approx-
imations, as they are likely to fail.

The Hamiltonian describing the time evolution of this system consists of a kinetic (or
hopping) term, describing the particle jumps between chain sites, and by a potential (or

103
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interaction) term, describing the interaction between a pair of particles on the same site.
The Fermi-Hubbard model under the second quantization formalism is described by the
following Hamiltonian:

H = −t
N∑

<i,j>

(b̂†i b̂j + b̂†j b̂i) + V
N∑
i

(n̂i↑n̂i↓) (6.1)

with n̂i↑ = (b̂†i b̂i)↑ and n̂i↓ = (b̂†i b̂i)↓, and where b̂†i and b̂j are respectively the fermionic
creation operator in site i and the fermionic annihilation operator in site j, with N the
total sites number. In case of 2 sites:

H =

[
−t
∑
σ

(b̂†1,σ b̂2,σ + b̂†2,σ b̂1,σ)

]
+

[
V

2∑
i

(n̂i↓n̂i↑ + n̂i↑n̂i↓)

]
(6.2)

where the two square brackets highlight the hopping and the interaction terms H =

Hhop +Hint.

6.2 Jordan-Wigner Transformation

The Jordan-Wigner Transformation [11][143] is a transformation that maps spin opera-
tors in fermionic operators, in particular creation and annihilation operators. In Quan-
tum Computing, it can be inverted to transform a fermionic Hamiltonian into a spin
Hamiltonian, that can be encoded into a qubit registry. Among the steps that must be
undertaken in order to practically design and realize a Digital Quantum Simulation of
the Fermi-Hubbard model, the states mapping is the one that is most typically hardware-
dependent [144]. It is also critical in terms of results and performance, particularly in the
present era of NISQ devices, where the correlation between hardware properties and
target features is stronger. With the J-W approach, spin 1/2 states must be considered as
empty (| ↓⟩ ≡ |0⟩) or single-occupied fermionic states (| ↑⟩ ≡ |1⟩ ≡ f†|0⟩), where S+ = f†

and S− = f . One can calculate:
Sx = 1

2 (S
+ + S−) = 1

2 (f
† + f)

Sy = 1
2 (S

+ − S−) = 1
2i (f

† − f)
Sz = 1

2

[
| ↑⟩⟨↑ | − | ↓⟩⟨↓ |

]
≡ f†f − 1

2

(6.3)

The resulting J-W Transformations can be written as:
S+
j = f†j e

iπ
∑

l<j nj

S−
j = fje

−iπ
∑

l<j nj

Sz
j = f†j fj − 1

2

(6.4)

from which one can obtain S+ = σ+ = σx+iσy

2 and S− = σ− = σx−iσy

2 .

In order to directly map onto a N -qubit quantum register the model of Eq. 6.2 we thus
need to apply the J-W Transformations mapping fermionic operators b̂i using spin states
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S using the notation b̂k → S+eiαj , with α =
∑

i(n̂i)π. In order to proceed with the
Hamiltonian expression in spin notation, we can notice that:

{b̂†i , b̂j} = δij

{b̂†i , b̂
†
j} = 0

{b̂†i , b̂i} = {S
+
i , S

−
i } = I

{S+, S+} = 0

{S+
2 , S

−
1 } = {I, S−} ⊗ {S−, I}

{σz, S+} = 0

(6.5)

where we define S+
2 = I ⊗ S+ the creation operator on a correlated system acting

on site 2, and S−
1 = S− ⊗ I the annihilation operator acting on site 1. From the above

relations one can obtain [145]:

b̂j →

(
j−1∏
l=1

−σl
z

)
σj
− = (−1)j−1σ1

zσ
2
z · · ·σj−1

z σj
−

b̂†j →

(
j−1∏
l=1

−σl
z

)
σj
+ = (−1)j−1σ1

zσ
2
z · · ·σj−1

z σj
+

(6.6)

6.2.1 Application of J-W Transformation to Fermi-Hubbard Hamiltonian

Here we apply the J-W Transformation with the objective to map the target two sites
fermionic Hamiltonian into a 4-qubits registry. We first need to define a mapping for
lattice sites and electronic spins on the qubit registry:

Figure 6.1: Mapping between Fermi-Hubbard model and Qubits used. Note on the left the num-
bers 1 and 2, representing the lattice sites, and the spin of the particles ↑ and ↓. The hopping (of
kinetic) term represents the Fermions hopping between site 1 and site 2, with the same spin; the
interaction term represents the interaction of different spin species in the same site.

Here we report the calculation of hopping and interaction terms of Fermi-Hubbard
Hamiltonian of Eq. 6.2 using the spin notation, leveraging on the above defined trans-
formations.

• Hopping term: using Eq. 6.6, the first term of Eq. 6.2 can be written in spin notation
as:
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Hhop = − t
2

(
σx ⊗ σx + σy ⊗ σy

)
(6.7)

Taking into account the mapping introduced in Fig. 6.1, this term becomes:

Hhop = t

[
(σx ⊗ σx ⊗ I⊗ I) + (σy ⊗ σy ⊗ I⊗ I)

+(I⊗ I⊗ σx ⊗ σx) + (I⊗ I⊗ σy ⊗ σy)
] (6.8)

• Interaction term: the transformation of the interaction term follows a similar ap-
proach. Starting from the latter term of Eq. 6.2, rewritten here asHint = V (n̂i↑n̂i↓) =

V (b̂†i↑b̂i↑)(b̂
†
i↓b̂i↓) it is possible to obtain a compact notation for the fermionic opera-

tors:

b̂†1↑ = σ+ ⊗ I⊗ I⊗ I

b̂†1↓ = σz ⊗ σ+ ⊗ I⊗ I

b̂†2↑ = σz ⊗ σz ⊗ σ+ ⊗ I

b̂†2↓ = σz ⊗ σz ⊗ σz ⊗ σ+

(6.9)

b̂1↑ = σ− ⊗ I⊗ I⊗ I

b̂1↓ = σz ⊗ σ− ⊗ I⊗ I

b̂2↑ = σz ⊗ σz ⊗ σ− ⊗ I

b̂2↓ = σz ⊗ σz ⊗ σz ⊗ σ−

(6.10)

Thus, considering Eq. 6.9 and Eq. 6.10 together with the definition of σ+ and σ−,
and the mapping depicted in Fig. 6.1, the full interaction term can be written in a
compact spin notation as:

Hint = V

[
(σz ⊗ I⊗ I⊗ σz) + (I⊗ σz ⊗ σz ⊗ I)

+(σz ⊗ I⊗ I⊗ I) + (I⊗ σz ⊗ I⊗ I)

(I⊗ I⊗ σz ⊗ I) + (I⊗ I⊗ I⊗ σz)
] (6.11)

Combining the hopping term (Eq. 6.8) and the interaction term (Eq. 6.11) transformed
according to the Jordan-Wigner Transformations, it is possible to obtain the full Fermi-
Hubbard model Hamiltonian in spin notation. Here we report a compact notation, con-
sidering the qubit number (1 to 4, following the mapping of Fig. 6.1) on which to apply
the quantum gates:
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H = Hhop +Hint

=
t

2

[
(σ1

x ⊗ σ3
x + σ1

y ⊗ σ3
y) + (σ2

x ⊗ σ4
x + σ2

y ⊗ σ4
y)

]
+V

[
(σ1

z ⊗ σ2
z + σ3

z ⊗ σ4
z) + (σ1

z + σ2
z + σ3

z + σ4
z)

] (6.12)

6.3 Error mitigation approaches

In order to be able to handle the requirements in terms of circuit depth (metric that
calculates the longest path between the data input and the output in terms of single,
two-qubits gate, where each gate counts as a unit) for both VQE and Digital Quantum
Simulations on IBM Quantum devices, we apply a set of error mitigation techniques that
can be classified in two different approaches.

• Post Selection: this technique is implemented iteratively inside the algorithm, and
is based on the classification of the given output states in allowed and unallowed
states. The time evolution of quantum mechanical systems follows the conserva-
tion laws for some physical quantities, i.e. the number of particles and the total
spin for the Hubbard model: in this case, the two different spin species ↑ and ↓ are
then both separately conserved. The same consideration can be done on VQE al-
gorithm: in this case the ansatz can be structured in order to span just the subspace
of the Hilbert space where the particles number and the total spin are conserved.
Being this conservation ensured by the theory, the results violating the species con-
servation can be discarded. The Post Selection error mitigation technique has been
implemented by computing the observable values selecting only the allowed states,
and then normalizing the wave function. The best results obtained by this Post
Selection technique take place when there is an almost uniform leakage of counts
among the allowed states to the unallowed states. In this case, the shape of the wave
function is unaltered, and both ground state and time evolution are scaled and
corrected according to a normalization factor.

This technique could be improved by demanding to proper quantum algorithm
the computation of counts occurred in allowed states, e.g. the Quantum Counting
algorithm [146]. This improvement is however not subject of this work.

• Best qubit layout: it is important to be aware of the actual calibration and con-
figuration of the selected quantum chip. Is it possible to choose the best qubits
to be used in terms of qubit calibration and quantum chip layout. The latter is
particulary critical: being able to choose the best connected qubits considering the
mapping in Fig. 6.1 can help to reduce the SWAP gates needed to transpile the
circuit on the hardware to perform calculations. The best layout can be chosen
programmatically by Qiskit [119] using the transpiler; however, for this kind of
simulations on quite small systems, keeping the control on the qubits involved in
the calculation could be required to further improve the results.
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6.4 Simulation of static properties

We start the investigation of Fermionic systems by performing the Ground State energy
calculation using VQE algorithm [147][148][149], for different V/T ratios. In order to let
the VQE algorithm find the GS energy of this model, it is important to choose an ansatz
that best fits the complexity of the problem [150]. A Physically Motivated Ansatz (PMA)
[122] conserving the total number of Fermions has been built (as introduced above about
error mitigation in Sec. 6.3) considering the chosen model mapping on the qubit registry;
the circuit creating the ansatz is reported in Fig. 6.2.

𝑉! �⃗�! =
−𝜃! +𝜃! −𝜃" +𝜃"

−𝜃# +𝜃#

−𝜃$ +𝜃$

−𝜃% +𝜃%

−𝜃& +𝜃&

Figure 6.2: Full ansatz used to calculate Fermi-Hubbard model 2-sites GS energy. Note the 6
parameters (from θ0 to θ5) as the rotation angle in all Ry gates, with the proper sign, and the
application of the mapping depicted in Fig. 6.1.

We make here a comparison between raw results and mitigated results, with Mea-
surement Error Mitigation [130] technique applied. Results reported in Fig. 6.3(a) show
a good accordance between calculated and expected GS energies, in particular for low
V/T ratio. Fig. 6.3(b) show the noisy simulated GS components: the expected allowed
states can be recognized as 0101, 0110, 1001, 1010 considering the problem mapping. Re-
sults are simulated using a noise model derived from IBM Quantum ibmq_montreal

QV 128 device. It is worth noting that the Measurement Error Mitigation technique is
able to reduce the effect of Readout Errors by lowering the probability to find the GS in
an unallowed state.

6.5 Simulation of dynamic properties

Many studies on how to simulate Fermi-Hubbard model on current quantum device
have been already carried on [140][139], together with works on how to reach a prac-
tical computational advantage [151][152] on this kind of computations. In order to test
the hardware behaviour and the above mentioned error mitigation techniques [153], we
present here the simulation of the time evolution of a initial state composed by two parti-
cles, with the objective to observe the behaviour of n1↑, n1↓, n2↑, n2↓ quantities, intended
as the probability to find the particles in a specific site with a specific spin. In order
to perform a Digital Quantum Simulation, it is needed to implement the Suzuki-Trotter
decomposition for fixed V/T ratio.

6.5.1 Suzuki-Trotter decomposition

The best form of Fermi-Hubbard model Hamiltonian ready to be implemented on quan-
tum processor is built from Eq. 6.9 and Eq. 6.10. An introduction of the Suzuki-Trotter
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Figure 6.3: Fermi-Hubbard model VQE noisy simulations performed with a custom noise model
derived from IBM Quantum Montreal QV 128 device. (a) GS energy for various V/T ratios. (b)
GS components at fixed V/T = 0.1. Measurement Error Mitigation improves the GS components
results, in particular by reducing the leakage to unallowed states.

decomposition is reported in Sec. 1.2.1; here we present an optimization of the Suzuki-
Trotter approach by applying a second order decomposition on Hhop term (the same
approach is possible onHint term), obtaining:

e−i(Hhop+Hint)t = e−iHhopte−iHintt +O(t2)

→ e−i
Hhop

2 te−iHintte−i
Hhop

2 t +O(t3)
(6.13)

This strategy allows one to optimize the S-T decomposition in terms of Trotter steps
needed, but a trade-off analysis between quantum circuit length and digital error is still
necessary. While a single σz can be easily implemented on a quantum computer using
a standard rotation among z-axis, the implementation of σx ⊗ σx, σy ⊗ σy and σz ⊗
σz require the application of a transformation of the reference coordinate system, as
two-body terms require two-qubit gates. In particular, the relationships used are the
following [14]:

X̂ → [Ry(−
π

2
) Z Ry(

π

2
)]

Ŷ → [Rx(−
π

2
) Z Rx(

π

2
)]

ẐẐ → [CNOT Rz(2δ) CNOT ]

(6.14)

where the parameter δ is the angle related to the time evolution of the system. Hence,
we can create the needed building blocks to map the spin Hamiltonian (Eq. 6.12) as re-
ported in Fig. A.1. The quantum circuit describing the Fermi-Hubbard model Hamilto-
nian time evolution is reported in Fig. 6.4.
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Interaction termHopping term

Repeated nTrot times
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Figure 6.4: Single Suzuki-Trotter step of the Fermi-Hubbard model Time Evolution circuit, consist-
ing of the hopping term and of the interaction term, following the above defined mapping. The
angle 2δ in eachRz gates represents the time of the time evolution. The main circuit block needs to
be repeated n = Suzuki-Trotter steps times. A final measurement on each qubit is required to ex-
tract the observables; considering 3 S-T steps, obtaining an overall circuit depth ∼ 90, the Readout
error effect is negligible, making practically useless the Measurement Error Mitigation.

6.5.2 Time evolution

With the above introduced S-T decomposition, we now report the results of the time
evolution of the system initialized in a well defined initial particle configuration. Several
tests have been performed in order to find the best trade-off between the quality of the
decomposition and the error introduced due to an increasing number of quantum gates
involved: for the target model, current quantum devices are able to handle between
3 and 5 Suzuki-Trotter steps. It is worth noting that this limited amount of S-T steps
introduces a difference between the exact time evolution and the actual (decomposed)
one; quantum computed results are thus considered valid until the two slopes diverge
(i.e. on t ∼ 3 for 3 S-T steps, as reported in Fig. 6.5).

We report in Fig. 6.5 the results of the time evolution of a state starting from both
Fermions on the same lattice site (1↑, 1↓). Panel a) shows the noisy simulation for ob-
servable n1↓ with a noise model derived from the IBM Quantum Rome QV 32 (noise
parameters reported in Tab. 6.1), while panel b) shows the results computes on the ac-
tual IBM Quantum Rome device. In both cases, the circuit consists of 242 gates (188
single-qubit gates 54 two-qubits gates), which sum up to an overall circuit depth of 89,
approaching limits of prototype devices at the moment of computation (early 2021). The
applied error mitigation techniques, in particular Post Selection (as the effect of Mea-
surement Error Mitigation is negligible) are able to significantly correct the raw results
(black series) obtaining a remarkable agreement between mitigated results (cyan series)
and the expected behaviour of the spin Hamiltonian time evolution with 3 S-T steps
(green solid line).
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Figure 6.5: Time evolution results for an initial state with both Fermions on the same lattice site
(1↑, 1↓). (a) Noisy simulations with IBM Quantum Rome QV 32 noise model for n1↓ observable.
(b) Real hardware computation on IBM Quantum Rome QV 32 device for n1↓ observable. (c)-(d)
Noisy simulations and real hardware results for n2↓ observable, where the errorbars on hardware
mitigated results are 1/

√
shots, with shots = 8192. The applied error mitigation techniques (in

particular Post Selection) are able to rescale well the results, achieving a remarkable agreement
with the expected behaviour. The overall observables n1↓ and n2↓ should be symmetric with re-
spect to the x axis, as shown by the exact simulations; however, differences in the qubits calibration
at the moment of the calculation lead to an asymmetry: e.g. panel (a) n1↓(t = 0) ∼ 0.75 (black
dots) while panel (c) n2↓(t = 0) ∼ 0.1 ̸= (1− n1↓(t = 0)) (black dots). However, the applied error
mitigation techniques are able to correct this issue, as n2↓(t = 0) ∼ (1 − n1↓(t = 0)) (cyan dots,
panels (a) and (c)).

T1 134.7 µs
T2 105 µs

Single-qubit Gate Error 2.6× 10−4

Two-qubit Gate Error 7.4 · 10−3

Readout Error 2.1 · 10−2

Table 6.1: Main details of the noise model for the IBM Quantum QV 32 device in February 2021.
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CHAPTER 7

Molecular Nanomagnets for qudit-based computation

I n Part III of this document is reported the work performed using currently available
Quantum Computers, in particular IBM Quantum devices, where simple spin and

fermionic models have been used as test beds for both hardware and algorithms. The
results reported in Chap. 5 and Chap. 6 show that current devices are able to repro-
duce well set of observables of this kind of systems; however, an important limitation
is the effect of noise. Current Quantum Computers are intrinsically and largely affected
by decoherence, limiting their potential and reliability. An interesting solution to over-
come aforementioned limitations of current devices is to exploit systems with embedded
Quantum Error Correction, or systems with many accessible levels, enabling the simpli-
fication of various algorithms. A specific class of quantum systems with many accessible
energy levels are the Molecular Nanomagnets.

Molecular Nanomagnets (MNMs), as described in Chap. 4, are very promising fun-
damental units of computation to design the new generations of Quantum computing
architectures [154][90][155]; this class of molecules can be manipulated with proper mag-
netic pulses [156], and can be deployed on surfaces [157][158] and in superconducting
resonators [159], introduced in Chap. 3. Molecular Nanomagnets intrinsic possibility
to display more than two levels with remarkable coherence [45][160] is a key feature en-
abling the implementation of a new kind of fundamental unit for quantum computation,
namely qudit (quantum-digit). Also, the large number of accessible levels could simplify
the the implementation of several algorithms, due to the large amount of computational
states available.

In this Chapter we study two different MNM configurations. The first one is a class of
iso-structural molecules with ferromagnetic exchange interactions, consisting of a single
spin S > 1 (S-systems). They are very common compounds and there is a lot of literature
about them, and well differentiated energy gaps can lead to high fidelity on quantum
gates implementation; they are also relatively easy to be synthesized. On the other hand,
they have only a linear connectivity between energy levels, allowing only transitions
with ∆m = ±1, and decoherence effect becomes larger by increasing the size of the
qudits.

The second one is a class of artificial molecules consisting of multi-spin clusters with
anti-ferromagnetic competing spin-spin interactions (C-systems) between different mag-
netic ions [161]. These molecules have many low-spin multiplets at low energy, an high
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connectivity between levels allowing a more flexible approach to level transitions, and
most importantly, a suppression of decoherence [162] even by increasing the size of the
qudits. Several molecules with competing interactions exist: here we focus on Cu3 trian-
gle [163] with almost frustrated ground state, and on a class of molecule with a double-
tetrahedron arrangement, like Ni7 [164].

We tested these systems by implementing and simulating a generalized Hadamard
gate [165], representing a Quantum Fourier Transform, with a proper decomposition
into several elementary operations. This set of single-qudit gates, together with the real-
isation of a two-qudit Controlled-Phase gate, provide an universal set of quantum gates
for molecular spin qudits.

7.1 Model molecular systems

Here we introduce the above mentioned MNM systems; as described in the below Sec-
tions, two key features of a candidate molecule to implement qudits are the presence
of many low-energy eigenstates (mitigating decoherence), and the presence of magnetic
dipole matrix elements among most of them (enabling efficient qudit state manipula-
tion). These features have been take in consideration in the presented molecular system
models.

7.1.1 Single spin systems

The first considered system to implement a qudit is a molecule containing a single mag-
netic ion, with a spin > 1/2; I specifically focused on these systems. The Hamiltonian
describing such systems is the following:

Hsingle = DS2
z + gµBB0Sz (7.1)

where the first term is the the Zero-Field Splitting (ZFS) with coupling D, and the
second term is the Zeeman interaction of the ion with an external magnetic field B0,
parametrized by g. For simplicity, the axial anisotropy and the external magnetic field
are assumed parallel 1. Here, HS and Sz itself share a common basis of eigenstates:
Sz|m⟩ = m|m⟩. We simulated three different S-systems with an increasing spin, depicted
in Fig. 7.1, with real parameters:

• System S1: S = 3/2 ion, e.g. Cr3+, with D = 30 µeV and g = 1.98 [166][167].

• System S2: S = 5/2 ion, e.g. Fe3+ or Mn2+, with D = 30 µeV and g = 2.0 [166][167].

• System S3: S = 7/2 ion, e.g. Gd3+, with D = 20 µeV and g = 2.0 [168].

The above introduced single spin molecular systems are characterized by real param-
eters: it is possible to find more details in the reported References.

1The analysis can be extended to handle more complex situations.
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Figure 7.1: Single spin S > 1 MNMs [166][167][168].

7.1.2 Multi-spin systems with competing interactions

The second system that has been considered in order to implement a qudit is a molecule
consisting of multi-spin with competing interactions, described by the following Hamil-
tonian:

Hc.i. =
N∑
i>j

Ji,jsi · sj +
N∑
i>j

Di,j · si × sj + µBB0 ·
N∑
i

gi · si (7.2)

where the first term is the isotropic exchange interaction between the ions, coupled
by Ji,j ; the second term is the Dzyaloshinskii–Moriya interaction (DMI), coupled by Di,j ;
the third term is the Zeeman interaction of each single ion with the external magnetic
field B0, parametrized by gi; si are the spin operators. I contributed to simulate two
different systems, depicted in Fig. 7.2 and Fig. 7.3, with realistic parameters:

• System C1: existing frustrated triangular Cu3 molecule, consisting of three si =

1/2 ions arranged in a triangular shape (almost isosceles), with parameters J12 =

0.390 meV, J13 = J23 = 0.348 meV, gxx1 = gyy1 = 2.2, gxx2 = gyy2 = 2.1, gxx3 = gyy3 =

2.4, gzzi = 2.0; Dx
12 = Dy

12 = Dz
12 = 0.045 meV (D ∼ J/10) [163]. The energy

levels spectrum reported in Fig. 7.2 shows two low-energy doublets, splitted by
the difference between J12 and J13, and an higher energy multiplet. The presence
of the DMI induces an anti-crossing at B0 ∼ 0.8 T, mixing the two multiplets. The
simulations have been performed with a static magnetic field B0 = 1 T, tilted by
θ = 1 rad with respect to the z axis in the xz plane.

• System C2: hypothetical system consisting of eight S = 1/2 low-energy multiplets,
reported in Fig. 7.3, with si = 1/2 for i = 1, ..., 6, s7 = 3/2, with parameters:
Ji,7 = 0.95 meV, J1,2 = 1.29 meV, J2,3 = J3,1 = 1.25 meV, J4,5 = 1.41 meV,
J5,6 = J6,4 = 1.36 meV and g-factors g1 = g2 = g4 = g5 = 2.1, g3 = g6 = 2.15

and g7 = 2, typical for Cu2+ (s1−6) and Cr3+ (s7) arranged in a double-tetrahedron
shape, similar to Ni7 [164]. The simulations have been performed with a static
magnetic field of 2.7 T along z axis, and with only the z component of DMI vector
(Dz

i,j = Ji,j/10), similar to C1 system.

Panel a) of both Fig. 7.2 and Fig. 7.3 report the spectrum of energy levels: both con-
sidered molecules display low-spin multiplets at low energy, crucial feature to be taken
into account when dealing with decoherence.
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C1

Cu!(a) (b)

Figure 7.2: (a) Energy levels in function of external magnetic field B0 (tilted by θ = 1 rad with
respect to the z axis in the xz plane) of multi-spin triangular molecule C1 with competing interac-
tion. (b) Scheme of the magnetic core structure, where solid black lines represent the interactions
between the magnetic ions. Reproduced from Ref. [46] with permission from Phys. Rev. Research
(available under the terms of the Creative Commons Attribution 4.0 International license).

C2

(a) (b)

Figure 7.3: (a) Energy levels in function of external magnetic field B0 (along the z axis) of multi-
spin hypothetical double-tetrahedron molecule C2 with competing interaction. (b) Scheme of the
magnetic core structure, where solid black lines represent the interactions between the magnetic
ions. Reproduced from Ref. [46] with permission from Phys. Rev. Research (available under the
terms of the Creative Commons Attribution 4.0 International license).

7.2 Description of decoherence

Pure dephasing, induced by the coupling of the magnetic ions spins with the surround-
ing nuclear spins, is the main error influencing the quantum state of a MNM. As de-
scribed in Sec. 1.3, solving Lindblad master equation for the density matrix leads to an
exponential decay of the off-diagonal elements of local spin operators (i.e. the connec-
tivity of levels does not affect it). In order to describe the effect of pure dephasing, we
consider a markovian bath, and we use Lindblad approximation to describe the system
dynamics, as already introduced in Sec. 1.3.2.



Molecular Nanomagnets for qudit-based computation 119

7.2.1 Derivation of the master equation

In order to describe the time evolution of the density matrix, we report here some details
of the derivation of the master equation, already published in Ref. [162]. It is possible to
write the Hamiltonian of the interaction between the system and the nuclear spin bath
as the following:

HSB =
N∑
j=1

M∑
n=1

∑
α,β=x,y,z

dαβjn s
α
j ⊗ Iβn (7.3)

where N is the number of the magnetic ions of the system, M is the number of nu-
clear spins in the bath, Iβn are the bath spin operators and dαβjn are components of the
dipole-dipole interaction tensor (in point dipole approximation, and for isotropic nu-
clear magnetic moments)

dαβjn =
µBµNgN
R3

jn

[
gαβj − 3

Rβ
jn(
∑

γ g
αγ
j Rγ

jn)

R2
jn

]
(7.4)

with gN the nuclear g-factor, µN the nuclear magneton and Rα
jn the α component of

the distance between the j-th electronic spin and n-th nuclear spin (α = x, y, z). Defining
HS as the Hamiltonian of the free system and HB the Hamiltonian of the bath, it is
possible to write the interaction picture in the form:

HSB(t) = ei(HS+HB)t/ℏHSBe
−i(HS+HB)t/ℏ

=

M∑
n=1

∑
µν

∑
β

Lβ
n,µνe

i(Eµ−Eν)t|µ⟩⟨ν| ⊗ Iβn (t)
(7.5)

where |µ⟩ is the basis of the system eigenstates (HS =
∑

µEµ|µ⟩⟨µ|) and Iβn (t) are the
nuclear spin operators in interaction picture

Iβn (t) = eiHBt/ℏIβne
−iHBt/ℏ (7.6)

and the Lβ
n,µν are defined as

Lβ
n,µν =

N∑
j=1

∑
α=x,y,z

dαβjn ⟨µ|s
α
j |ν⟩ (7.7)

containing the structure of the system eigenstates in the matrix elements ⟨µ|sαj |ν⟩. The
dynamic of the system (in Born and Markov approximations) is described by the master
equation [169]:

dρ(t)

dt
= −

∫ ∞

0

dt′trB

[
HSB(t), [HSB(t− t′), ρ(t)⊗ ρB ]

]
(7.8)

where the reduced density matrix of the system (as per Eq. 1.46) has been used. It is then
possible to obtain:
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dρ(t)

dt
= −

M∑
n,n′=1

∑
µ,ν

∑
ββ′

{
Lβ
n,µµL

β′,∗
n′,ννζ

ββ′

nn′ (ω)
[
|µ⟩⟨µ|ν⟩⟨ν|ρ(t)− |µ⟩⟨µ|ρ(t)|ν⟩⟨ν|

]
+ h.c.

}
(7.9)

where the ζββ
′

nn′ (ω) are the bath spectral functions, in general unknown and hard to com-
pute, defined as:

ζββ
′

nn′ (ω) =

∫ ∞

0

dt trB
[
Iβn (t)I

β′

n′ (0)ρB
]
eiωt (7.10)

It is worth noting that in Eq. 7.9 operators of the form |µ⟩⟨ν| (with µ ̸= ν) have been
neglected because the difference between ∆µν and the energy gaps of the bath is much
larger than the system-bath interaction. In this limit, only diagonal operators |µ⟩⟨µ| are
considered (pure dephasing). Finally, it is possible to rewrite Eq. 7.9 in a more compact
form:

dρ(t)

dt
= −i[HLS , ρ(t)]+

∑
µν

Γµν

[
2|µ⟩⟨µ|ρ(t)|ν⟩⟨ν| − |µ⟩⟨µ|δµνρ(t)− ρ(t)|ν⟩⟨ν|δµν

]
(7.11)

where the coefficients Γµν are defined as

Γµν =

M∑
n,n′=1

∑
β,β′

Lβ
n,µµL

β′,∗
n′,ννχ

αα′

nn′ (0) (7.12)

with

χαα′

nn′ (0) =
1

2

∫ ∞

−∞
dt trB [I

α
n (t)I

α′

n′ (0)ρB ] (7.13)

and where HLS =
∑

µ Sµ|µ⟩⟨µ| is the Lamb shift Hamiltonian, not considered in the
simulations as it introduces a small renormalization of the energies. Hence, the final
form of the dynamics of the density matrix is described by:

dρ(t)

dt
= −i[H +H1, ρ] +

∑
µν

Γµν

(
2|µ⟩⟨µ|ρ|ν⟩⟨ν| − δµν |µ⟩⟨µ|ρ− δµνρ|ν⟩⟨ν|

)
(7.14)

where the first term is the coherent time evolution of the Hamiltonian (withH1 is the
driving pulse Hamiltonian), and the second term is the dissipator operator introduced
in Eq. 1.51, modeling pure dephasing. |µ⟩ and |ν⟩ are the system eigenstates.

7.2.2 Pure dephasing

Eq. 7.14 implies the decay of the off-diagonal elements of the density matrix ρµν(t) =

e−γµνρµν(0) where γµν = −2Γµν + Γµµ + Γνν . These coefficients are:
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Γµν =
N∑

jj′=1

∑
αα′=x,y,z

Cαα
′

jj′ ⟨µ|sαj |µ⟩⟨ν|sα
′

j′ |ν⟩ (7.15)

where the zero-energy bath spectral function Cαα′

jj′ is defined as

Cαα
′

jj′ =
∑
nn′

∑
ββ′

χββ′

nn′(0)d
αβ
jn d

α′β′

j′n′ (7.16)

where χββ′

nn′(0) is defined in Eq. 7.13, dαβjn and dα
′β′

j′n′ is defined in Eq. 7.4. The pure dephas-
ing described in Eq. 7.15 is thus mainly dependent on the difference between expectation
values on local spin operators sαj on different eigenstates (|µ⟩ and |ν⟩). This is a general
property of the system Hamiltonian: the eigenstates structure can be tuned to create
e.g. ferromagnetic / anti-ferromagnetic interactions, or competing interaction patterns,
by chemically engineering the ligand structure. Pure dephasing is also dependant on
the structure of the molecule itself, in particular regarding the dipolar interactions be-
tween nuclear spins and electronic spins, involving the distances between them: this is
dependant on the system itself. As we are mainly facing with model systems, we tested
∼ 30 different random (but reasonable) configurations for nuclei positions: the general
behaviour does not change significantly, having an impact only on T2 times. Lastly, the
bath spectral functions containing information about the intra-nuclei interactions, are
unknown: we assumed them as constant.

We first consider the simplest case in order to understand the general behaviour:
we describe how the form of the eigenstates can affect system decoherence considering
the case of an axial Hamiltonian with an external magnetic field along z direction: in
this case, we notice that ⟨µ|Sα|µ⟩ ∝ δαz , with Sα =

∑
j s

α
j . The coefficients Cαα′

jj′ are
independent on j, j′, thus Γµν ∝ ⟨µ|Sα|µ⟩⟨ν|Sα|ν⟩. Hence, the decay rate of the off-
diagonal elements of the density matrix is:

γµν ∝

(
⟨µ|Sα|µ⟩ − ⟨ν|Sα|ν⟩

)2

(7.17)

Decoherence is thus eliminated if subspaces are characterized by the same ⟨Sz⟩. Refer to
Ref. [162] for more details.

7.2.3 Decoherence effect on considered molecular systems

As introduced in the previous Section, a molecular spin system is affected by decoher-
ence depending on the structure of its eigenstates and its coupling with the surrounding
nuclear spin bath. Here we describe this effect on the two above introduced molecu-
lar systems that have been exploited to simulate qudits, i.e. single spin (S-systems) and
multi-spin with competing interaction systems (C-systems). In order to identify general
properties of these systems to suppress decoherence, we first need to fix the position of
nuclear and system spins in both cases. To do this, two iso-structural molecules are con-
sidered, in which we reverse the sign of the isotropic exchange. Indeed, we note that a
multi-spin molecule with a ferromagnetic exchange as leading interaction, has a ground
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state multiplet with total spin S =
∑N

i=1 si, independently from the actual values of
Jij < 0. This multiplet is characterized by the same eigenstates (namely |m⟩) of a single
spin ion, making it possible a comparison between S-systems and C-systems.

We can now compute the form of the ⟨m|sαj |m⟩ of Eq. 7.15 [170]. In case of a ground
state spin S multiplet with small anisotropy, we obtain:

⟨m|sαj |m⟩ = ζj⟨m|Sz|m⟩δαz (7.18)

where ζj are the projection coefficients. Is is possible to write the γ coefficients for both
S-systems and C-systems:

ΓS
mm′ =

(∑
jj′

Czzjj′ζjζj′
)
mm′ =

mm′

T2
(7.19)

ΓC
mm′ =

1

T2
∑

jj′ c
zz
jj′ζjζj′

N∑
jj′=1

∑
αα′

cαα
′

jj′ ⟨µ|sαj |µ⟩⟨ν|sα
′

j
′|ν⟩ (7.20)

where an effective dephasing rate has been introduced as T−1
2 = χ̄

∑
jj′ c

zz
jj′ζjζj′ , that

contains the information about the nuclear spin bath (i.e. the distribution of the nu-
clei and the bath spectral functions). The χββ′

nn′ are considered constant (reported as χ̄)
and factorized from the geometric factor czzjj′ ; they are equal for both S-systems and C-
systems. It is worth noting that Eq. 7.20 is written in terms of T2 (i.e. dephasing time)
and geometric factors cαα

′

jj′ =
∑

nn′
∑

ββ′ d
αβ
jn d

α′β′

j′n′ .

A comparison between Eq. 7.19 and Eq. 7.20, respectively for S-systems and C-systems,
suggests that the latter are protected by decoherence: the eigenstates of these systems
are in fact characterized by a small total spin S and have small differences in the expec-
tation values of the spins sαj ; moreover, for S-systems the decoherence rate significantly
changes by changing eigenstates, while is constant for C-systems.

In the following Sections we report the calculations performed to compare multi-spin
systems with competing interactions C1 and C2 (see Fig. 7.2 and Fig. 7.3) with single
spin systems S1, S2 and S3, displaying substantial differences in the structure of the
eigenstates. Refer to Ref. [46] for more details.

7.3 Quantum gates on qudit architectures: decomposition methods

Implementing the first quantum gates on the two introduced qudit architectures is the
identified strategy to compare them in terms of performances and decoherence protec-
tion. To do this, a method to factorize generic unitary operations on a d-dimensional
qudit into a sequence of elementary gates is required: here we exploit different exist-
ing methods [171]. The first one is called Planar Rotations (PR) [172][173][174][175],
implementing Givens rotations between pairs of consecutive energy levels, that can be
applied to any quantum system (both S-systems and C-systems, in this case). Transi-
tions between consecutive energy levels (induced by electromagnetic pulses) need to be
allowed by non-zero matrix elements (but are always present). The second method is



Molecular Nanomagnets for qudit-based computation 123

called Quantum Householder Reflection (QHR) and leverages on different connectivity
between energy level (available on C-systems), allowing us to improve the efficiency of
decomposition.

Before detailing the decomposition methods, we introduce in Fig. 7.4 the inter-level
connectivity for qudit systems. The simplest connectivity is depicted in panel a), where
levels are interconnected linearly. This is a specific feature of S-systems. Panel b) shows a
pod connectivity, where an auxiliary level |e⟩. Panel c) shows a full connectivity between
energy levels. The reported ωµν are the frequencies of the pulses used to implement the
gate decomposition, addressing a pair of eigenstates |µ⟩ and |ν⟩. Systems with linear
/ full connectivity have been exploited for Planar Rotations decomposition, while sys-
tems with pod / full connectivity (with an extra level) have been exploited for Quantum
Householder Reflection.

(a) (b) (c)

Figure 7.4: (a) “Linear” interconnected system, where only consecutive levels are interconnected.
(b) “Pod” interconnected system, requiring an auxiliary level |e⟩. (c) “Full” interconnected system.
Reproduced from Ref. [46] with permission from Phys. Rev. Research (available under the terms
of the Creative Commons Attribution 4.0 International license).

7.3.1 Planar Rotations

The basic rotation set between pairs of consecutive energy levels consists of d×dmatrices
of the form:

Uµν(θ, β) = cos
θ

2

(
|µ⟩⟨µ|+ |ν⟩⟨ν|

)
+ sin

θ

2

(
|ν⟩⟨µ|eiβ − |µ⟩⟨ν|e−iβ

)
+
∑
l ̸=µ,ν

|l⟩⟨l| (7.21)

that is equal to the identity, except for the matrix elements identified by the intersec-
tion between µ-th row and ν-th column. Below we outline the algorithm for the decom-
position of an arbitrary W ∈ SU(d) in Planar Rotations.

• Multiply W on the right by Ud−1 d(θ d(d−1)
2

, β d(d−1)
2

), with θ
d(d−2)

2

and β
d(d−1)

2

such

that the (d, d− 1) element of the resulting W1 =WUd−1,d(θ1, β1) is zero.

• Compute W2 = W1Ud−2,d(θ d(d−2)
2

, β
d(d−2)

2

), fixing as before θ
d(d−2)

2

and β
d(d−2)

2

an-

gles to nullify the W2(d, d− 2) element.
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• Obtain the Wd−1 matrix with all zeros on the d column and row, apart from the
(d, d)-th element, which must have magnitude one (the matrix is unitary).

• Without affecting the d-th column and row, the same scheme is be repeated for all
the others lines.

The resulting matrix is

WUd−1,dUd−3,d . . . U1,dUd−2,d−1 . . . . . . U1,3U1,2 =

Λ(eiα1 , eiα2 , . . . , eiαd−1 , e−i
∑d−1

k=1 αk)
(7.22)

where Λ is a diagonal matrix (its elements are shown between brackets). It is fi-
nally possible to obtain the decomposition of W in d(d−1)

2 Planar Rotations by reverting
Eq. 7.22:

W = Λ(eiα1 , eiα2 , . . . , eiαd−1 , e−i
∑d−1

k=1 αk)

U1,2(θ1, β1)U1,3(θ2, β2)U2,3(θ3, β3) · · · ×
U1,d(θ (d−1)(d−2)

2 +1
, β (d−1)(d−2)

2 +1
) · · · ×

Ud−2,d−1(θ (d−1)(d−2)
2 +2

, β (d−1)(d−2)
2 +2

) · · · ×

Ud−1,d(θ d(d−2)
2

, β d(d−2)
2

)

(7.23)

Each PR (Eq. 7.22) between a pair of eigenstates |µ⟩ and |ν⟩ connected by a dipole
matrix element (∝

∑
j g

α
j s

α
j ) is implemented by a applying a transverse magnetic pulse,

with a frequency in resonance with the selected transition. Now, the diagonal matrix Λ

needs to be decomposed in a sequence of phase gates

Pµν(α) = |µ⟩⟨µ|eiα + |ν⟩⟨ν|e−iα +
∑
l ̸=µ,ν

|l⟩⟨l| (7.24)

where each Pµν(α) is implemented by properly detuning the pulse frequency, ob-
taining a semi-resonant pulse between the selected eigenstates [176]. It is worth noting
that the PR decomposition can always be implemented on quantum systems with differ-
ent inter-level connectivity: if a direct transition between |µ⟩ and |ν⟩ is not allowed, the
relative Uµν can be decomposed by implementing a series of π pulses, acting as SWAP
between levels, bringing the two levels near each other. This however increases defi-
nitely the length of the pulse sequence.

7.3.2 Quantum Householder Reflections

While I mainly focused on Planar Rotations approach, as a comparison we consider also
Quantum Householder Reflections. Both approaches have been exploited for the fol-
lowing simulations. The QHR approach requires a specific inter-level connectivity (pod
connectivity) between energy levels, exploiting an auxiliary level |e⟩ connected to all the
other states, as depicted in Fig. 7.4(b). This decomposition method can be applied only
on C-systems, as the DMI term has the effect to mix the low-energy doublets allowing
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a pod or even a full connectivity between the considered eigenstates. Below we out-
line the algorithm for the decomposition of an arbitrary W ∈ SU(d) using Quantum
Householder Reflection.

• Each step is represented by the QHR, defined as:

M(v, ϕ) = I+ (eiϕ − 1)|v⟩⟨v| (7.25)

where |v⟩ is a d−dimensional normalized complex vector and ϕ is an arbitrary
phase.

• The calculation of vi and ϕi can be done using an iterative process:

– the parameter of the first QHR M1 =M(v1, ϕ1) are defined as

ϕ1 = 2 arg(1− w11)− π

v1 =
1

e−iϕ1 − 1

√
2 sin (ϕ1/2)

|1− w11|
(|w1⟩ − |e1⟩)

(7.26)

where w1 is the first column of W matrix, w11 is the fist element of the w1

vector and |e1⟩ = [1,0,. . . ,0]T ;

– next, apply M(w1,−ϕ1) on the left side of the initial matrix defining a new
matrix W1 = M(w1,−ϕ1)W , with all zeros on the first row and first column,
apart from the diagonal one;

– moving on from W1 and defining w2, ϕ2 and |e2⟩ as performed for w1, ϕ1 and
|e1⟩, the parameters for M2 can be found.

All vi vectors and ϕi phases can be determined by repeating this procedure.

• With all the computed parameters, we obtain the final QHR decomposition of an
arbitrary W :

W =
d∏

i=1

M(vi, ϕi) (7.27)

It is possible to implement QHR by using a set of parallel semi-resonant transverse
magnetic rectangular pulses, detuned from the addressed gap by a value ∆, as reported
in Fig. 7.4(b), between each eigenstate |µ⟩ and the auxiliary level |e⟩. The amplitude of
these pulses is ∝ ⟨µ|vi⟩ and the phase is arg⟨µ|vi⟩. It is worth noting that, differently
from PR decomposition, all these pulses are implemented in parallel, starting and end-
ing at the same time. The pulse duration is τ and the detuning is ∆, common to all
simultaneous pulses: these values depend on pulses amplitude and on ϕi as
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τ =

√
ϕi(2π − ϕi)

Ω2
1e + · · ·+Ω2

de

∆ = ±π − ϕi
τ

(7.28)

where Ωµe are the Rabi frequencies of the transitions.

With the above introduced decomposition methods, it is now possible to create an uni-
versal set of quantum gates on a multi-level qudit architectures by combining single-
qudit rotations and two-qudit operations.

7.4 Single-qudit gates

The above introduced decomposition methods and the inter-level connectivity of the
considered MNM systems lead to the implementation of a general single-qudit unitary
gate.

7.4.1 Generalized Hadamard

Here we show the implementation of the Generalized Hadamard gate Hd, defined as:

Hd =
1√
d

d∑
µ,ν=1

ei
2π
d (µ−1)(ν−1)|µ⟩⟨ν| (7.29)

where d is the dimension of the qudit. It is worth noting that the Generalized Hadamard
is the Quantum Fourier Transform (QFT) on a d-dimensional Hilbert space (see Ap-
pendix B). In the following paragraph we present the details of the gate decomposition
in both PR and QHR, showing that a large number of elementary pulses are involved.

• Details on Planar Rotations decomposition

In Tab. B.1, Tab. B.2 and Tab. B.3 (see Appendix B) the parameter of the sequence
needed to implement H4, H6 and H8 in PR are reported, assuming a full connectiv-
ity between eigenstates (i.e. when implemented on C-systems), that I computed.
Parameters θ and β are the Uµν rotation pulse parameters of Eq. 7.21, and α is the
Pµν phase pulse parameter of Eq. 7.24. In case of a linear connectivity between
eigenstates (i.e. when implemented on S-systems), proper π pulses need to be
added to the sequence. For H4, the entire sequence is reported in Eq. B.5, resulting
in 14 pulses; for H6 is reported in Eq. B.6, resulting in 38 pulses; for H8 is reported
in Eq. B.7, resulting in 75 pulses. I specifically computed the above mentioned
Planar Rotation parameters, reported in the Appendix B.

• Details on Quantum Householder Reflections decomposition

In Tab. B.4 (see Appendix B) the parameters of the sequence of pulses needed to
implement H3, H4, H6 and H8 in QHR are reported, assuming a pod connectivity
between eigenstates, that have been computed in our joint research.
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7.4.2 Generalized Hadamard gate on d = 4 qudits

Now we investigate the efficiency of the two decomposition approaches on different
molecular systems, starting from a Generalized Hadamard gate implemented on d = 4

qudit with a C1 system showing a full inter-level connectivity (i.e. the Cu3 multi-spin
si = 1/2 triangular molecule with competing interaction, considering only the four states
of the two lowest doublets) and with a single-ion S1 system with spin S = 3/2 showing
a linear inter-level connectivity (i.e. a Cr7+ ion).

First, I contributed to highlight that the number of subsequent pulses (i.e. the depth
of the calculation) to be implemented to simulate the Generalized Hadamard on a d-
sized qudit show a different power scaling with the qudit space dimension; as reported
in Fig. 7.5, a comparison between PR on a linearly interconnected qudit (blue data), PR
on a fully interconnected qudit (red data) and QHR (green data) requiring at least a pod
connectivity, shows that the QHR is much more efficient. In particular, QHR requires
at most d subsequent pulses to compute Hd, while PR requires ∼ d2/2 in case of a fully
interconnected system, and a additional (d − 1)(d − 2) pulses in case of a linearly inter-
connected system. This is due to the fact that on QHR the pulses can be performed in
parallel, while on PR (especially on linearly interconnected systems) must be performed
in series. Hence, a higher connectivity of eigenstates makes the decomposition more
efficient.

d

Figure 7.5: Depth (i.e. number of subsequent pulses) to implement Hd as a function of qudit space
dimension d. PR on linearly interconnected systems (blue) and on fully interconnected systems
(blue) require a number of pulses ∼ d, while QHR requires a number of pulses ∼ d. QHR repre-
sent a more efficient way to decompose quantum gates in elementary pulses. Reproduced from
Ref. [46] with permission from Phys. Rev. Research (available under the terms of the Creative
Commons Attribution 4.0 International license).

In Fig. 7.6 are reported the errors ε = 1− ⟨ψ0|HdρHd|ψ0⟩ after the implementation of
Hadamard gates on different configurations; the initial state |ψ0⟩ is defined as a super-



128 7.4 Single-qudit gates

position of 30 initial states with different phases for the main panels; a superposition of
30 initial states with different amplitudes and phases are considered for the insets. These
states are very error-prone, as contain an uniform superposition of eigenstates.

In Fig. 7.6(a) we report the error ε after the implementation of a single Hadamard on
4 levels qudit (H4) using PR decomposition on the C1 and on the S1, as a function of
the external driving field B1, from 10 G to 100 G, considered the upper limit of current
technology [177]. The sequence of rectangular pulses implemented is reported in Ap-
pendix B, and two different values of T2 (3 µs and 10 µs) are considered to emulate the
effect of decoherence. In particular, for Cr3+ with S = 3/2 and for Cr3+ with S = 5/2

compounds, a T2 of 3 µs has already been reached at low temperatures (∼ 5 K) [178];
these values are obtained by chemically engineering the molecules [78][179][85], and
values up to ∼ 100 µs can be reached [82][180]. The same considerations are valid for
multi-spin systems with competing interactions, as the nuclear spin bath is the same.

Both molecular systems show a similar time required to implement the Hadamard
gate at fixed B1, in particular between 210 ns and 20 ns; while S1 and C1 have different
transition matrix elements, impacting on gate time, the full connectivity of the C-system
allows a more efficient decomposition as additional π± pulses are not needed (see Ap-
pendix B). The error ε show an almost monotonic trend as a function of B1.

As described in Sec. 7.2, pure dephasing is the lead contributor to the decoherence on
considered MNM systems; the intrinsic suppression of decoherence in C1 system leads
to a gain R ∼ 3 − 4 (defined as the ratio between εS1 and εC1 ), almost constant in the
entire B1 range. This gain is independent by B1 and T2.

In Fig. 7.6(b) we report the results of the application of a series of Hadamard gates on
a d = 4 qudit, implemented with S1 and C1 systems, with a fixed T2 = 3 µs [178] and
a B1 = 100 G, close to the optimal value. As expected, the error ε increases by increas-
ing the number of gates; however, system C1 (red and green data) show an overall best
quality compared to system S1 (blue data). The green line is related to the application
of QHR on a H3 gate (the first three are the lowest energy levels, and the fourth level
is the auxiliary |e⟩ of the required pod connectivity), showing a reduction of the error.
C-systems can implement properly both gate decomposition methods (PR and QHR),
being more flexible with respect to S-systems.

7.4.3 Generalized Hadamard on larger qudits

Further numerical simulations are performed by increasing the size of the qudit, imple-
menting the Generalized Hadamard on d = 4, 6, 8, defined in the basis of the lowest
energy d eigenstates of single spin ions S = 3/2 S1, S = 5/2 S2 and S = 7/2 S3, and on
multi-spin with competing interaction system C2 (double tetrahedron). In particular, in
order to achieve up to 8 computational levels with the proper connectivity to implement
QHR on the latter system, we consider the lowest eight m = −1/2 states, with the first
m = +1/2 acting as the additional level required for the pod connectivity. All the tran-
sitions between the computational space and the auxiliary state |e⟩ are allowed by the
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Figure 7.6: (a) Error ε = 1−⟨ψ0|HdρHd|ψ0⟩ after the implementation of a single Hadamard gate on
an initial state |ψ0⟩ on a d = 4 qudit for two different T2 (3 µs and 10 µs), using PR decomposition,
as a function of external B1 field. Red data represent the results obtained with the C1 system (Cu3

triangle), while the blue data the results obtained with the S1 system (Cr3+ single spin S = 3/2

ion). We see that C-systems have a more efficient decomposition in terms of error by changing the
driving field B1, for fixed T2 values. (b) Error ε after the implementation of a series of Hadamard
gates, with a fixed T2 = 3 µs and B1 = 100 G. Red data represent the results obtained on a d = 4

C1 system implementing H4 with PR decomposition; green data represent the results obtained
on the same system implementing H3 with QHR decomposition (the fourth level is the auxiliary
|e⟩); blue data represent the results obtained on the S1 system, with PR decomposition. We see
that competing interaction systems are less affected by error for both PR and QHR by increasing
the number of H gates applied in series. In both cases, we have a gain of competing interaction
systems over single spin systems of ∼ 3 − 4. Initial states |ψ0⟩ considered: main panels, 30 initial
states superposition |ψ0⟩ =

∑
µ e

iφµ |µ⟩/
√
d with different phases φµ; insets, average over a set of

30 random initial states with different amplitudes and phases. Errorbars are the standard devia-
tion. Reproduced from Ref. [46] with permission from Phys. Rev. Research (available under the
terms of the Creative Commons Attribution 4.0 International license).

axial DMI (Eq. 7.2), inducing inter-multiplet mixing between states with ∆m = 0: in this
way, a transverse field will induce only ∆ = ±1 transitions. As outlined in Sec. 7.2.2,
with C-systems it is possible to suppress decoherence by choosing the eight computa-
tional states with the same ⟨Sz⟩.

First, we study the effect of errors on State Fidelity by considering the implementation
of H6 on a mid-sized S2 qudit, decomposed using Planar Rotations, as worst case.

Pulses can be set to have a certain amplitude in terms of magnetic field B1: low
amplitude pulses, with long overall execution time, can have better results respect to
strong pulses, where each transition could interfere with other levels, causing leakage.
Considering also decoherence, it is important to understand the best trade-off between
B1 and T2: a long circuit with low B1 pulses could have lower fidelity in presence of
decoherence. In general, fidelity takes into account two aspects:

• leakage, due to errors on pulse implementation, that is lowered by lowering B1,
as slower pulses are more accurate in terms of induction of the right transition;
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• decoherence, that is lowered by increasingB1, thus reducing the overall gate time.

(a) (b)

𝐵! = 10	G 𝐵! = 100	G

Figure 7.7: H6 pulse sequence implemented with PR on S2 system, assuming linear connectivity
between levels, without considering decoherence (T2 = ∞). (a) Pulses with B1 = 10 G. (b) Pulses
with B1 = 100 G: high pulse amplitude can cause leakage, lowering the State Fidelity of the
operation.

(a) (b)

Figure 7.8: H6 State Fidelity implemented with PR on S2 system, assuming linear connectivity
between levels, considering decoherence. (a) Heatmap of State Fidelity as a function of both T2

and B1. (b) State Fidelity as a function of B1 for different T2 values. In both panels, the maximum
of State Fidelity moves to greater B1 for lower T2.

Fig. 7.7 shows the implemented pulse sequence for PR considering a linear connec-
tivity between levels with T2 =∞: an high B1 driving field can induce leakage between
the selected transitions and other energy levels, lowering the State Fidelity. In Fig. 7.8(a)
we report the State Fidelity as a function of both B1 and T2; in Fig. 7.8(b) we report the
calculation of State Fidelity as a function of B1 for different T2 values. In both cases the
maximum of State Fidelity moves to greaterB1 as T2 lowers; a similar behaviour is noted
for S1 and S3 qudits. Hence, a trade-off between B1 and T2 is required.

Given the study of decoherence and State Fidelity shown above, in Fig. 7.9 we report
the results of the implementation of Generalized Hadamard gate Hd, where H4 results
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Figure 7.9: Error ε = 1−⟨ψ0|HdρHd|ψ0⟩ implementing Generalized Hadamard gate H4 (dots), H6

(squares) and H8 (triangles) on d = 4, 6, 8 levels as a function of T2/tgate. Blue shades represent
S1, S2 and S3 systems, green shades represent C2, where respectively d = 2, 4, 8 computational
levels are used. Leakage is neglected due to low driving field B1 = 10 G. C-systems show a
lower error than S-systems, and the error does not increase with qudit size, as the green shades
are almost superimposed. A single initial state |ψ0⟩ = 1/

√
d
∑

l e
i2π/µ|µ⟩ is considered in order

to reduce the computational effort. Inset: gain between errors on S-systems and C-systems using
d = 4, 6, 8-sized qudit, reaching a maximum value of R ∼ 50 for d = 8. Reproduced from Ref. [46]
with permission from Phys. Rev. Research (available under the terms of the Creative Commons
Attribution 4.0 International license).

are represented by dots, H6 by squares and H8 by triangles, as a function of T2/tgate.
We compare the performances of S1, S2 and S3, depicted with blue shades, with C2
(considering 4, 6 and 8 computational levels), depicted in green shades. The qudit is
initialized using a single initial state |ψ0⟩ = 1/

√
d
∑

l e
i2π/µ|µ⟩: this is an error-prone

state, in which each component has the same absolute amplitude, as in the previous Sec-
tion calculations. We used a single initial state also to reduce the computational effort
to simulate the Hadamard gate, especially for S3, where only Planar Rotations with a
linear connectivity between eigenstates can be used, increasing the number of subse-
quent pulses involved (see Appendix B). Here we need to focus on decoherence effects,
so the leakage must be negligible. It can be reduced by implementing pulse engineering
[181][47] or quantum control techniques [182], but an higher amount of computational
resources would be required to implement them, together with being system specific;
hence, we perform all simulations with a low driving field B1 = 10 G making leakage
negligible above the lowest d+ 1 states.

The T2 values explored are T2 = 1, 3, 10, 25, 50, 100 µs. We notice that C2 systems less
affected by decoherence, as the computational error ε is lower with respect to S-systems;
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we reach a maximum gain ofR ∼ 50 for a qudit size d = 8 (Fig. 7.9 inset). We notice that
the effect of decoherence does not increase with qudit size in C-system, i.e. by increasing
the number of levels: the green-shaded curves are almost superimposed, while the error
increases with qudit size in case of S-systems (blue-shaded curves). This result, com-
bined with the remarkable gain reached, proves the power of multi-spin molecules with
competing exchange interactions as optimal units for quantum computation. Moreover,
the more efficient QHR decomposition method allows to reduce the tgate required to im-
plement the Hd: even if C-systems have a smaller transition matrix elements rather than
S-systems, the higher efficiency of QHR leads to a tgate comparable to the one obtained
with PR. In particular, tgateH4

∼ 200 ns, tgateH6
∼ 400 ns and tgateH8

∼ 600 ns with B1

set to 10 G.

7.5 Two-qudit gates

The next step is to introduce the implementation of two-qudit gates, in order to com-
plete the universal gate set. As introduced in Sec. 4.3.3, two d-sized qudits are linked
together with an effective s = 1/2 ion, acting as switch enabling and disabling the intra-
qudit interaction [90][91][86]: this is a crucial feature to enable the two qudits inter-
acting together only when needed, leading to the possibility to implement controlled
gates. Moreover, unwanted time evolutions of the two-qudit system are significantly
suppressed. Eq. 7.30 represents the spin Hamiltonian of the system consisting of two
qudits and the switch:

H2q = H1 +H2 +
Dσz
2

+H1−σ +H2−σ (7.30)

where H1 and H2 are the single qudit Hamiltonians, σ are the Pauli matrices of the
switch, D is the switch Zero-Field Splitting and H1−σ , H2−σ are the qudit-switch cou-
plings, respectively for qudit 1 and qudit 2.

In order to build a well-working switch, we need a good factorization between qudit
and switch eigenstates: |µ1mσµ2⟩ ≡ |µ1⟩ ⊗ |mσ⟩ ⊗ |µ2⟩, where |µi⟩ are the qudit eigen-
states, while |mσ⟩ are the switch eigenstates (eigenstates of σz).

The factorization of the eigenstates is required to generate a proper computational
basis in the idle phase: if there is entanglement between the qudit and the switch, the
system would evolve in time and the quantum registry would change, making it not
useful as quantum computing platform. This is achieved when the transverse part (xy)
of the interaction between the qudit and the switch is small compared to the single-body
energy gaps (i.e. the energies needed to excite the qudit and to excite the switch). This
condition is theoretically achievable with a spin 1/2 switch characterized by a large g;
however, realistic systems are based on transition metals like Ni (with incomplete 3d

shell) or rare earths like Yb (with incomplete 4f shell). Transition metals are character-
ized by g ∼ 2 and T2 ∼ 1 µs; a significant spin-orbit interaction increases this value, but
makes coherence times are shorter. Rare earths, instead, are characterized by g ∼ 4 and
T2 ∼ 1 µs.

A spin 1 system is however not only characterized by its g value, but also by its ZFS,
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representing another degree of freedom. A transition metal Ni2+ ion in an octahedral
field (i.e. the structure of ligands surrounding the core ion) has a ZFS parameter D =

0.2− 0.3 meV (meaning tens of GHz in energy), meaning that one of the three levels can
be easily selected and excluded from the Hamiltonian, obtaining an overall effective spin
1/2 (with two well distinct levels) that can be represented by Pauli matrices notation.

As conservative choice, we adopt in this work a Ni2+ ions as switch, with spin s =

1, characterized by the parameters reported below. By applying an external magnetic
field of ∼ 1 T parallel to the z axis (easy axis), the resulting energy gap ∆E|mσ=−1,0⟩
(between mσ = −1 and mσ = 0) is very different from the energy gap ∆E|mσ=0,+1⟩
(between mσ = 0 and mσ = +1) due to the effect of the ZFS: it is thus possible to choose
|mσ = −1, 0⟩ states only to define an effective two-levels system acting as switch, where
D = dσ − gσµBB0. Most importantly, the couplings Ji must be much smaller than the
difference between switch and qudit energy gaps in order to maintain states factorization
between qudit and switch states.

(a) (b)
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Figure 7.10: Two different implementations of the two-qudit with switch architecture. (a) Two S1
qudits, coupled with the switch. (b) Two C1 triangles, coupled with the switch via a single vertex.
Panels (c) and (d) show the strategy implemented to make the two qudits distinguishable each
other, i.e. by choosing different Di for the two S1 qudits, and by tilting one of the two C1 triangles
on the y axis (since it is an existing system and parameters cannot be chanced). Reproduced from
Ref. [46] with permission from Phys. Rev. Research (available under the terms of the Creative
Commons Attribution 4.0 International license).

• System S1+σ+S1: in Fig. 7.10(a) a sketch of the two-qudit with switch architecture
is represented considering two S-systems, in particular S1 with S = 3/2, and a
S = 1 switch, acting as an effective S = 1/2. The qudit coupling terms of the
spin Hamiltonian are Hi−σ = JiSi · σ, with i = 1, 2. The system parameters are:
D1 = 30·10−3 meV, g1 = 2.05, J1 = 5·10−3 meV,D2 = 24·10−3 meV, g1 = 1.95, J1 =

7 · 10−3 meV, gσ = 2.2, dσ = −0.3 meV. The two qudits are made distinguishable
by setting different parameters, in particular D1 ̸= D2 (Fig. 7.10(c)). In this case, I
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specifically focused my effort on such systems architecture.

• System C1+σ+C1: in Fig. 7.10(b) a sketch of the same two-qudit with switch archi-
tecture is represented, but the qudits are in this case C-systems, in particular C1 tri-
angles: the coupling with the switch is implemented using a single vertex for each
qudit, and the triangles are rotate by 90◦ each other around y axis, to make them
nonequivalent due to their intrinsic anisotropy (Fig. 7.10(d)) 2. The system param-
eters are the same of the C1 system introduced in the previous Sections; switch
parameters are: gσ = 2.2, dσ = −0.3 meV, J1 = 1 · 10−2 meV, J2 = 1.4 · 10−2 meV. I
gave my contribution to study also on this system architecture.

The switchable qudit-qudit coupling can be achieved in the following way. First,
the idle phase where the state of the two qudits is decoupled is obtained by keeping
the switch in mσ = −1 state: the Ji interaction between each qudit and the switch (al-
ways on) is diagonal and fixed, due to the chosen parameters range. Secondly, to turn
on the effective qudit-qudit interaction, an 2π excitation pulse depending on the state
of the two qudits is sent to the switch. As an example, in Fig. 7.11 the energy levels
of the system S1+σ+S1 are reported: black levels are related to states with mσ = −1,
where the switch is open; purple ones are excited states used to dynamically turn on
the interaction (switch closed); the system C1+σ+C1 follows a similar approach. In
order to control the state of the switch, a conditional excitation of the switch itself is
required; this is possible due to the Hi−σ terms of Eq. 7.30, making the transition ener-
gies of the switch dependent on the state of the two qudits to first order. For S-system
based qudit-switch architecture, the transition energies of the switch can be calculated as
δ(m1,m2) = gσµBB0 + J1m1 + J2m2, where mi are the eigenvalues of Sz

i and Ji are the
couplings between the qudits and the switch. The chosen coupling range, where Ji are
larger than the frequency broadening of the pulses, leads to the possibility to well dis-
tinguish the gaps 3. We note, in turn, that proper pulse engineering techniques [181][47]
could significantly improve the results that can be obtained with such systems.

It is worth noting that larger B1 would speed up the implementation of two-qudit
gates, reducing the effect of decoherence; a side effect is however an higher leakage, so
higher Ji values are needed to better distinguish the states. We reached < 25 ns as gate
time, and we accordingly optimized the driving field B1 (as reported in Fig. 7.12).

7.5.1 Controlled-Phase

With the above introduced architecture, we implement a Controlled-Z gate, as a resonant
2π pulse is able to add a π phase to a given component of the wave function. A proper
detuning of the pulse frequency from the energy gap δ(m1,m2) can lead to the appli-
cation of a specific phase: this is achieved by implementing semi-resonant transitions
[183]. This scheme is implemented on both Fig. 7.10(a) and Fig. 7.10(b) systems, where

2This is an existing system, so it is not possible to change the parameters to make the qudit distinguishable
each other like the S1 system (i.e. we made the two D nonequivalent): a way to make distinguishable the two
qudits is to rotate one of the two triangles on the y axis.

3For J1 = J2 only a subset of gaps are non-degenerate. While combined with universal single qudit
rotations, this constitutes a universal set.
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Figure 7.11: Energy levels of the S1+σ+S1 system. Black: levels with switch spin expectation value
mσ = −1; purple: levels with switch spin expectation value mσ = 0. The two sketch represent
the open (black) and closed (purple) switch between the two qudits. Colored arrows represent
the transitions involved in a two-qudit gate implementation, as a 2π pulse is applied to the switch
depending on the states of the two qudits, in order to turn on the qudit-qudit interaction. Repro-
duced from Ref. [46] with permission from Phys. Rev. Research (available under the terms of the
Creative Commons Attribution 4.0 International license).

the considered parameters are reported in the above Section. Results of the Controlled-
Phase are shown in Fig. 7.12(a) and Fig. 7.12(a), respectively for S-system and C-system
qudits; the initial state has been set to a uniform superposition of all the two-qudits
wavefunction components, where each qudit has size d = 4, and where the switch is
set in mσ = −1 (switch closed). The chosen initial state is very error-prone, as in par-
ticular all components are taken into account, not only the three selected for the actual
implementation of the gate: this choice leads to an overall higher effect of decoherence.
Fig. 7.12(c) shows the tests performed with different B1 values for the C-system qudits
gate: the bestB1 value (considering leakage and decoherence effects) has been identified
at 20 G. This value has been confirmed also for S-system qudits gate. As the duration
of the gate is proportional to the phase we want to add [183], a proper rescaling of B1

has been applied to have the three Controlled-Phase gates with the same length, where
B1 = 20 G is set to be the maximum amplitude.

T2 is set to 3 µs for both qudits in both S-system and C-system cases, and 3 µs for the
Ni2+ switch [184].

Similarly to the implementation of the Generalized Hadamard gate, the main out-
come of the implementation of Controlled-Phase gate on qudit systems is the clear ad-
vantage of using C-systems rather than S-systems: the suppression of decoherence al-
lows, at fixed B1, to reduce the error from 4.2% to 1.7%. Even if the overall error is
lower, we noticed an higher leakage on C-systems qudits, but it can be reduced with a
proper pulse engineering strategy, or by incrementing Ji. Higher values of switch co-
herence can also lead to improvements on results. The parameters for both qudits and
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Figure 7.12: Simulation of the time evolution of the three selected components of the two-qudit
wavefunction for the Controlled-Phase gate. Implemented phases are: π (red), π/2 (blue) and π/4
(green). Solid and dotted lines represent states where the switch is respectively in mσ = −1 and
mσ = 0. Gray lines are the other energy levels of the system, thus not evolving. The initial state is
set to be |ψ0⟩ =

∑
µ1µ2

|µ1,mσ = −1, µ2⟩/d, where d = 4 is the size of the each qudit. (a) Results of
S1+σ+S1 system. The error I computed is ∼ 4.2%. (b) Results of C1+σ+C1 system. While leakage
is larger in this case rather than in (a), the actual error on phase implementation is lower: ∼ 1.7%.
(c) Error as a function of B1, computed for C-system qudits (analogous for S-system qudits): the
best working field is B1 = 20 G, value used in both simulations reported in (a) and (b). T2 has
been set to 3 µs for both qudits and 3 µs for the Ni2+ switch [184]. Reproduced from Ref. [46]
with permission from Phys. Rev. Research (available under the terms of the Creative Commons
Attribution 4.0 International license).

switch are however set to realistic values; proper chemical engineering and synthesis
must be performed to tune the parameters of these molecular systems.

Finally, when all transitions are well resolved, this scheme can be exploited to imple-
ment a Controlled-Phase gate leveraging on all available levels.

7.6 Conclusions

Molecular Nanomagnets consisting of multi-spin systems with competing exchange in-
teractions have been investigated and proven as optimal qudit units for the implemen-
tation of an universal set of quantum gates. These molecules, rather than single spin S
qudits, are characterized by a set of low energy multiplets where decoherence is strongly
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suppressed [162]. Their Hamiltonian structure, in particular the anisotropic and asym-
metric terms, introduce dipole matrix elements between most of these multiplets: this
allows to optimize the number of sequential pulses required to implement unitary trans-
formations. This is supported by the possibility to chemically engineering complex
multi-spin molecules with properly tuned interactions; MNMs with competing inter-
actions are hence a very competitive platform to implement qudits [185][186][100].

The implemented universal gate set on these MNMs can be relevant for the near-term
next generation of quantum computing platforms, as current devices are limited by con-
nectivity and, in particular, two-bodies operations are very slow and more error-prone.

Part of the content of this Chapter has been published in Phys. Rev. Research 4, 043135
(Ref. [46]).

https://link.aps.org/doi/10.1103/PhysRevResearch.4.043135




CHAPTER 8

Quantum Error Correction with molecular spin qudits

R esults reported in Chap. 7 show how Molecular Nanomagnets with a large number
of accessible levels, especially in presence of competing exchange interactions, are

protected from decoherence; universal sets of quantum gates can thus be implemented
with a remarkable fidelity [46] with proper electro-magnetic pulses [187][184][180]. These
kind of molecular systems, considered a promising unit of the future generations of
Quantum Computers [100][14][188][109][141][189], can be exploited to implement com-
plex algorithms and information encoding [171][190][176][191]; indeed, they can also be
exploited for a simple implementation of Quantum Error Correction: the QEC codes
can be embedded within the MNMs themselves [192][193]. Thus, exploiting molecular
qudits could be the best way to achieve Quantum Error Correction.

The QEC scheme suppressing pure dephasing (dominant source of error in molecular
qubits/qudits) proposed in Ref. [95] can be implemented on S > 1 qudits coupled to
an ancilla with S = 1/2 qubit, allowing to flag errors without corrupting the encoded
logical states. In this work we analyze the performance of this QEC scheme on specific
molecular spin qudits, and we also explored the possibility to improve its performances
by pulse-shaping techniques such as DRAG (Derivative Removal by Adiabatic Gate)
[194][181].

8.1 Introduction

As introduced in Sec. 1.3, Quantum Error Correction is a crucial feature that needs to
be addressed in order to build scalable and faithful Quantum Computing platforms,
able to reach the so called quantum advantage, i.e. the ability to overcome classical
computers to solve specific class of problems. Currently available Quantum Computing
platforms need a huge number of physical qubits to encode logical qubits for Quan-
tum Error Correction purposes, making the achievement of this feature still impossible;
Molecular Nanomagnets, on the other hand, provide a multi-level structure [167] with
remarkable coherence [77][82][180][195] allowing to embed Quantum Error Correction
within a single computational unit (qudit) [192][193] in an easier and promising way
[196], by reducing the number of units to be controlled and thus facilitating a practical
implementation.

The Quantum Error Correction scheme proposed in Ref. [95], and here exploited,
allows to suppress pure dephasing, identified as the most important source of errors in

139
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molecular spin qudits (see Sec. 4.4) [95][96][197]. This scheme is based on a molecular
qudit with S > 1, with 2S + 1 accessible energy levels that can be exploited to encode
the protected states |0L⟩, |1L⟩; the detection of the error (without corrupting the state)
is made possible with an additional S = 1/2 ancilla qubit, similarly to the basic QEC
schemes introduced in Sec. 1.5.2.

In this Chapter we present two different approaches for the implementation of this
scheme on realistic molecular systems. Even if the QEC is still a long-term achieve-
ment, considered as important as “the first nation to land the Moon” [198], we identified a
roadmap to implement the first proof of concept of QEC embedding in qudits, in partic-
ular on chemical details and pulse shaping techniques required.

8.2 Molecular systems and methods

Here we report the two different molecular systems used for the aforementioned QEC
scheme.

• Electronic spin qudit, called e-system from now on, is an electronic spin dimer
described by the following spin Hamiltonian:

He = µBB0

(
gzSz + gAz s

A
z

)
+DS2

z + S · J · sA (8.1)

where the terms between brakets represent the Zeeman interaction with the exter-
nal magnetic field along z axis, µB is the Bohr magneton and D is the axial ZFS
term; lastly, S > 1 is the spin of the qudit, sA = 1/2 is the spin of the ancilla
qubit and J is the exchange tensor between them. Working in a weak coupling
regime is required to obtain eigenstate factorization: this is achieved by choosing
|Jx,y| ≪ |(gz−gAz )µBB0+D(2M+1)| 1, i.e. much smaller than the difference of ex-
citation energies of two adjacent levels of both qudit and qubit ancilla. In this case,
the difference between Zeeman energies is minimal. With this condition satisfied,
and by applying an external field B0 > 0.1 T, the eigenstates of the spin Hamilto-
nian in Eq. 8.1 are practically factorized: they can thus be labelled with |M,m⟩, the
eigenvalues of Sz and sAz .

• Nuclear spin qudit, called n-system from now on, is a single magnetic ion coupled
by hyperfine interaction to the magnetic nucleus, described by the following spin
Hamiltonian:

Hn = B0

(
gNµNIz + gAz µBs

A
z

)
+QI2z + I ·A · sA (8.2)

where the terms between brakets represent the interaction of the nuclear and elec-
tronic spins driven by an external magnetic field, with µN the nuclear magneton;
lastly, I is the nuclear isospin, Q is the nuclear quadrupole coupling and A is
the hyperfine tensor. In order to achieve eigenstates factorization (weak coupling

1Where J is assumed to be a diagonal tensor, so for simplicity we write Jx as Jxx, etc.
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regime) of the spin Hamiltonian in Eq. 8.2, a condition similar to the e-system case
is required. In this case, however, we have µN ≪ µB , making the nuclear Zeeman
interaction practically negligible, and hence reaching the factorization is easier. By
imposing B0 > 0.1 T (very easy condition for current technology), it is possible to
achieve gAz µBB0 ≫ Ax,y

2: the eigenstates can thus be labelled with |M,m⟩, the
eigenvalues of Iz and sAz .

Both A and J are assumed diagonal for simplicity. Theoretically, in both systems
transitions between adjacent eigenstates of the spin Hamiltonians introduced above are
possible: this is due to the ZFS or quadrupole and interaction terms. Proper pulse shap-
ing techniques help to practically implement them. An external magnetic field b1(t)

(parallel to x axis) is able to drive ∆m = ±1 transitions: it is coupled to each system
with the two Hamiltonians

H1e = µBb1(t)
(
gAx s

A
x + gxSx

)
(8.3)

for e-system, and

H1e = b1(t)
(
µBg

A
x s

A
x + µNgNIx

)
(8.4)

for n-system. It is possible to compute numerically the time evolution of the overall
spin Hamiltonian of each system by solving the motion equation of the density matrix:

(dρ(t)
dt

)
e
= −1

ℏ
[He +H1e, ρ(t)]

+
1

T2

[
2Szρ(t)Sz − S2

zρ(t)− ρ(t)S2
z

]
+

1

TA
2

[
2sAz ρ(t)s

A
z − sAz 2ρ(t)− ρ(t)sAz 2

] (8.5)

for e-system, and

(dρ(t)
dt

)
n
= −1

ℏ
[Hn +H1n, ρ(t)]

+
1

T2

[
2Izρ(t)Iz − I2zρ(t)− ρ(t)S2

z

]
+

1

TA
2

[
2sAz ρ(t)s

A
z − sAz 2ρ(t)− ρ(t)sAz 2

] (8.6)

for n-system. In both Eq. 8.5 and Eq. 8.6, the first term represents the coherent time
evolution, while second and the third terms represent pure dephasing of the qudit (T2)
and of the ancilla qubit (TA

2 ).

2Where also in this case A is a tensor, so for simplicity we write Ax as Axx, etc.
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8.3 Quantum Error Correction scheme on qudits

8.3.1 Code words

Assuming small t/T2 for the selected physical system, we have to face with a single error:
to correct it, we can exploit a molecular system with four addressable levels, i.e. a single
molecule with S = 3/2. The chosen code words to encode the logic states into the four
levels are:

|0L⟩ =
| 32 ⟩+

√
3| − 1

2 ⟩
2

|1L⟩ =
√
3| 12 ⟩+ | −

3
2 ⟩

2

(8.7)

The above defined code words must fulfill the Knill-Laflamme conditions in Eq. 4.11:
the application of pure dephasing, modeled in this case as a single Sz error, transforms
the code words (Eq. 8.7) in two states |e0⟩ and |e1⟩, both orthogonal to the original |0L⟩
and |1L⟩:

|e0⟩ =
Sz|0L
∥Sz|0L∥

=

√
3| 32 ⟩ − | −

1
2 ⟩

2

|e1⟩ =
Sz|1L
∥Sz|1L∥

=
| 12 ⟩ −

√
3| − 3

2 ⟩
2

(8.8)

The effect of the leading error is thus a symmetric translation of the original encoded
state α|0L⟩ + β|1L⟩ into the state α|e0⟩ + β|e1⟩: as no distortion is performed, the coef-
ficients α and β are not corrupted, and a proper QEC scheme can discriminate correct
states from wrong ones, being able to implement a proper correction.

It is now worth mentioning that, while a first order error E1 ∝ Sz can be corrected
with a four-level system, the capacity of the QEC code can be expanded to cover higher
powers of Sz [95] by exploiting molecular systems with a larger number of levels.

It is now worth noting that simulations reported in Fig. 4.4 are referred to ideal per-
formances of the QEC scheme: ancilla states are perfectly factorized, and pulses are
instantaneous and monochromatic. In the next Sections, we first describe the proposed
QEC scheme, and then its possible implementation on realistic physical systems.

8.3.2 QEC scheme phases and pulse sequence

Here we describe the proposed QEC scheme proposed in Ref. [95] and its implementa-
tion on a S = 3/2 qudit with a S = 1/2 ancilla qudit, being able to detect and correct
the first order error E1 ∝ Sz (see Eq. 4.13), already identified as pure dephasing. To-
gether with the nuclear spin qudit already discussed in Ref. [95], here we consider also
an electronic qudit. We leave to Section 8.4 all the details related to a physical imple-
mentation on realistic systems. In Fig. 8.1 we show the overall pulse sequence required



Quantum Error Correction with molecular spin qudits 143

to implement the QEC scheme, from the logical state encoding to the logical state recov-
ery, where the qudit Hamiltonian eigenstates are represented with horizontal solid lines,
labelled with the expectation value of Sz in case of e-system, and Iz in case of n-system.

• State preparation. First, the ancilla qubit is prepared in state | ↓⟩, while the infor-
mation is stored on the first two levels | − 3/2⟩ and | − 1/2⟩ of the qudit.

• Encoding. Four pulses are used to implement the state encoding in the protected
logical state | − 3/2⟩ → |0L⟩ and | − 1/2⟩ → |1L⟩. Two out of these four pulses can
be performed in parallel.

• Memory Time. The encoded state can evolve for a certain time t: here the deco-
herence (i.e. pure dephasing) is the only considered error error source.

• Detection.

– The information is first decoded: each of the states {|0L⟩, |1L⟩, |e0⟩, |e1⟩} is
mapped on a different |M⟩ state. Correct superposition (i.e. where no error
has occurred) is mapped to α|−3/2⟩+β|1/2⟩, while wrong superposition (i.e.
where error has occurred) is mapped to α| − 1/2⟩+ β|3/2⟩.

– The qudit-ancilla interaction makes the excitation energy of the ancilla depen-
dent on the state of the qudit. After a conditional excitation of the ancilla qubit
with two parallel π pulses, one for qudit in state | − 3/2⟩ and one for |1/2⟩we
are able to detect the occurrence of the errors by simply measuring the ancilla.

• Recovery. A final set of pulses is applied to restore the original encoded state,
depending on the outcome of the measurement of the ancilla.

As mentioned above, the performance of the QEC code is limited by the finite dura-
tion of the pulses themselves. During Detection and Recovery phases, the system (which
is not protected) is subject to errors due to leakage and decoherence: QEC scheme per-
formances and costs must be both taken into account in order to achieve the best results.
The correction capability of the scheme would be incremented by increasing the number
of available levels; however, additional errors would raise during Detection and Recov-
ery phases, decreasing the overall efficiency [95].

8.4 Physical implementation

Two different physical systems (i.e. the above introduced e-system and n-system) are
now considered in order to simulate a real implementation of the proposed QEC scheme,
by a numeric integration of Eq. 8.5 and Eq. 8.6. Decoherence is set to be always present,
not only during Memory Time phase, but also during the implementation of each set of
pulses depicted in Fig. 8.1. Possible working points in terms of driving field b1(t) and
qudit parameters are here investigated, in order to have a realistic molecular platform
simulation with proper trade-off between leakage and decoherence effects.

First of all, the simulation of a real implementation of this QEC scheme comes with
significant deviations from the ideal conditions on which the analysis in Fig. 4.4 is based:
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Figure 8.1: Quantum Error Correction scheme proposed to correct pure dephasing at first order
with S = 3/2 qudit and an ancilla S = 1/2 qubit; the horizontal lines are the eigenstates of the
qudit, labelled with the expectation value of Sz in case of e-system, and Iz in case of n-system.
System initialization: logical states in the first two levels of the qudit, ancilla in | ↓⟩ state. Pulse
sketch represent actual resonalt pulses implemented, with the relative angles. During Encoding
phase, the logic state is encoded to be protected; during Memory Time phase, the system is let
evolving freely, and decoherence (pure dephasing) is affecting the states; Detection phase is where
errors are detected with a proper conditional excitation/de-excitation of the ancilla qubit, after a
first decoding of the information; finally, during the Recovery phase we use results from ancilla
qubit measurements to reconstruct the information accordingly, thus recovering the original state.
Reproduced from Ref. [47] with permission from the Royal Society of Chemistry (licensed under
a Creative Commons Attribution-NonCommercial 3.0 Unported Licence).

ancilla states are not fully factorized, and pulses are not instantaneous and monochro-
matic.

• decoherence acting on the entire QEC procedure (where the state is not protected)
and not only during Memory Time phase, due to the finite duration of the pulses;

• leakage to other levels not involved in transitions, due to unwanted frequencies in
the pulses;

• measurement errors on ancilla, due to a mixing between ancilla qubit and qudit
wavefunctions caused by the Jx,y transverse coupling (with a probability to detect
an error when no errors occurred, or not to detect an error when it occurred).

All these physical effects have an impact on the overall ε, slightly changing the be-
haviour depicted in Fig. 4.4 at short t/T2 (where the additional error overcomes the
incoherent error on which the QEC scheme is focused), while converging to the ideal
behaviour for higher t/T2.

Here the implementation of the proposed QEC scheme is simulated on the two iden-
tified systems in Sec. 8.2 (i.e. e-system and n-system).

8.4.1 Electronic spin qudit simulations

The first system considered in our joint research consists of two realistic dimers, where a
Cr3+ ion, in an octahedral crystal field, with S = 3/2 acting as qudit is coupled (weakly)
with an effective spin 1/2 ion acting as the ancilla qubit. Two different ancilla ions are
here considered: Cu2+ and Yb3+ complexes. It is possible to synthesize CrCu dimer
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(namely e1-system) [176], and CrYb dimer (namely e2-system) is already existing [199].
Typical parameters for both dimers are described below:

• CrCu dimer: g = 1.98, D = −0.24 cm−1, with exchange interaction parame-
ters (Jx, Jy, Jz)/(Ax, Ay, Az) = (1.7, 1.7,−3.3) · 10−2 cm−1, with (gAx , g

A
y , g

A
z ) =

(2.1, 2.1, 2.3), and with coherence times T2 = 50 µs and TA
2 = 5 µs [199][87].

• CrYb dimer: g = 1.98, D = −0.24 cm−1, with exchange interaction parame-
ters (Jx, Jy, Jz)/(Ax, Ay, Az) = (1.7, 1.7,−3.3) · 10−2 cm−1, with (gAx , g

A
y , g

A
z ) =

(2.9, 2.9, 4.2), and with coherence times T2 = 50 µs and TA
2 = 1− 3 µs [199][200].

We assumed J, A and gA diagonal tensors, and we also assumed an axially anisotropic
exchange interaction for both dimers, that can be obtained with a dipole-dipole coupling
by properly positioning the ions at a distance of 5−6 Å. Factorization between qudit and
ancilla qubit is obtained by imposing |Jx,y| ≪ |(g − gAz )µBB0 +D(2M + 1)|.

Fig. 8.2(a) reports the energy levels of e2-system (CuYb dimer) as a function of the
static external field B0, with the eigenstates labelled by |M,m⟩, the eigenvalues of Sz

and sAz .

We report in Fig. 8.2(b) the performances of the QEC scheme in terms of the error ε =

1 − ⟨ψ(0)|ρ(t)|ψ(0)⟩ as a function of the memory time t/T2 for both e1-system (CuCr
dimer) and e2-system (CuYb dimer). The gray dashed line is the error for an uncor-
rected s = 1/2 subject to the effect of pure dephasing, while black solid line represents
the ideal performances of this QEC scheme on a S = 3/2 qudit. Solid coloured lines rep-
resent the overall error where only ideal pulses are performed, but with measurement
operators resulting from Hamiltonian diagonalization: unwanted ancilla-qudit interac-
tions are considered, causing a not perfect factorization of the eigenstates. In this way,
we highlighted the measurement errors coming from this imperfect factorization.

Considering the presence of the sole measurement error (solid coloured lines), we
notice that ε is much larger for e1-system as it is characterized by a smaller gAz − gz (set-
ting a restriction on the accuracy of the QEC scheme for these systems); for e2-system,
characterized by an almost perfect factorization of eigenstates, one can neglect the mea-
surement error, as the blue solid line is almost superimposed to the black solid line (i.e.
the ideal behaviour, with no errors). Higher values of B0 > 1 T can help to make e1-
system behaviour similar to e2-system with B0 = 1 T.

Including also real pulses (and hence both leakage and decoherence), we performed
simulations with Gaussian-shaped pulses with the form

b1(t) = B1e
−(t−t0)

2/2τ2

cosωt (8.9)

where ω is the frequency of each pulse, in resonance with the selected pair of en-
ergy levels for each transition of the QEC scheme of Fig. 8.1. In this case, we found that
leakage is negligible for qudit transitions (the ZFS provides sufficiently large gaps be-
tween energy levels): it is thus possible to increase the driving field up to B1 = 100 G,
as shown in Fig. 8.2(b) inset: ε monotonically decreases (violet dots) by increasing BQ

1

(driving field for qudit transitions) at fixed t/T2. The chosen BQ
1 = 100 G is thus only
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(b)

(a)

Figure 8.2: (a) Energy levels as a function of the external static B0 magnetic field for e2-system.
Note the practically factorized eigenstates labelled by |Sz, s

A
z ⟩. (b) Performances of QEC scheme

(error ε = 1 − ⟨ψ(0)|ρ(t)|ψ(0)⟩) for both e1-system and e2-system, with a fixed B0 = 1 T. Gray
dashed line: error for an uncorrected s = 1/2 spin subject to pure dephasing. Black solid line:
ideal performance on a S = 3/2 qudit. Solid coloured lines: measurement errors for the two e-
systems (e1-system: orange, e2-system: blue) with BQ

1 = 100 G for the qudit and BA
1 = 45 G for

the ancilla qubit. Related symbols are related to simulations including decoherence and leakage:
in particular, regarding the ancilla coherence time, we set it to TA

2 = 5 µs for e1-system (orange
triangles). On e2-system we compared two cases: blue triangles are related to TA

2 = 1 µs, while
blue circles are related to TA

2 = 3 µs. Inset: the total error on e2-system as a function of the driving
field B1 with Gaussian-shaped pulses, for qudit (violet) and ancilla qubit (green) excitations, with
fixed t/T2 = 0.035 (TQ

2 = 50 µs and TA
2 = 3 µs). Reproduced from Ref. [47] with permission from

the Royal Society of Chemistry (licensed under a Creative Commons Attribution-NonCommercial
3.0 Unported Licence).

limited by current technology [177]. On the other hand, Jz parameter is responsible for
the energy level gaps of the ancilla qubit: since the gaps are smaller, a smaller BA

1 must
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be used not to induce leakage of population to other neighbouring energy levels. The
minimum of ε as a function of BA

1 is located at 45 G (green dots); lower values for the
driving field would increase the duration of the pulses and hence decoherence, while
higher values would increase leakage. With these B1 values, and with T2 = 50 µs for
the qudit (realistic value in case of transition metal core ion and a chemically engineered
organic ligand structure), we performed the simulations reported with triangular and
circular symbols in the main panel.

Measurement error on the ancilla qubit compromises the performances of e1-system:
the error ε on the orange triangles is the highest reported, very similar to the uncorrected
s = 1/2 behaviour. On the other hand, measurement error is negligible for e2-system,
as stated above. We finally note that, as the ancilla qubit is excited only during the
Detection phase of the QEC procedure, it is possible to set TQ

2 ≫ TA
2 : it has been set, for

e1-system, to 5 µs [200] (orange triangles), while for e2-system, to 1 µs (blue triangles)
and 3 µs (blue circles). The best performances have been obtained with e2-system with
TA
2 = 3 µs, with ε < 5 · 10−3 for low t/T2.

8.4.2 Nuclear spin qudit simulations

The second qudit-ancilla qubit system I specifically worked on is a nuclear spin qudit
(n-system), consisting of a molecule [82] named (PPh4)2[Cu(mnt)2] containing a Cu2+

ion with an electronic spin 1/2 coupled with the nuclear I = 3/2 spin via hyperfine
interaction. Typical parameters for a 63Cu ion are described below:

• (PPh4)2[Cu(mnt)2]: g = 1.48, Q = 1.7 · 10−3 cm−1, exchange interaction param-
eters (Jx, Jy, Jz)/(Ax, Ay, Az) = (0.4, 0.4, 1.7) · 10−2 cm−1, with (gAx , g

A
y , g

A
z ) =

(2.0, 2.0, 2.1), and with coherence times T2 = 102 − 103 µs and TA
2 = 68 µs [82].

As for the e-systems, we assumed J, A and gA as diagonal tensors. The nuclear
quadrupole Q reported value, that governs the energy gaps between adjacent nuclear
spin levels, is set to Q = 1.7 · 10−3 cm−1 [83][201]. Fig. 8.3(a) shows the energy levels of
n-system as a function of the static external field B0, in which it is evident the separation
of the two subspaces identified by the ancilla qubit in | ↓⟩ and | ↑⟩ states. In this case, the
subspace identified by |ψA⟩ = | ↓⟩ is used to encode the states to be protected, while the
subspace with |ψA⟩ = | ↑⟩ is used to detect the errors.

Simulations reported in Fig. 8.3(b) are performed with a low B0 = 0.1 T: eigenstates
are well factorized in this case, as the electronic and nuclear excitation energies are very
different, giving a maximum states mixing of about 10−3. This allows us to focus the
investigation on decoherence and leakage only source of errors. Moreover, the matrix
element of nuclear transitions is enhanced by a factor ∼ 50 [45][160], speeding up the
manipulation of nuclear levels, thanks to a slight mixing between electronic and nuclear
spin wavefunction. Coherence times for n-system are not referenced in literature; in or-
der to set a reasonable value for the T2, compare with similar systems. The decoherence
is mainly induced, at low B0, by the coupling of the core ion with the surrounding mag-
netic nuclei, in which the electronic spins act as mediators: the T2 (nuclear coherence
time) has a direct relation with the TA

2 (electronic coherence time), in particular it is rea-
sonable to assume it > 10 times larger [87][45], as reported in similar systems such as
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Vanadyl tetraphenylporphyrinate. This system consists of a I = 7/2 nucleus coupled
by hyperfine interaction with an electronic spin 1/2: it is very similar to the considered
n-system (PPh4)2[Cu(mnt)2]. This complex has a TA

2 = 68 µs (at rather low tempera-
ture 5 K): a value 10 times larger for the nuclear coherence time T2 = 0.5 ms is thus
reasonable.

Black and blue triangles in Fig. 8.3(b) represent the error for different configuration of
the driving field; the best results are achieved with an external driving field ofBQ

1 = 50 G
for the qudit and BA

1 = 30 G for the ancilla (black triangles). The inset represents the
gain as the ratio between the uncorrected qubit error and the protected qudit. Higher
B1 would reduce the effect of decoherence, while increasing the leakage: B1 = 125 G for
the qudit (blue triangles) show an higher error ε.

8.5 Performance improvements with pulse-shaping techniques

In order to further improve the results depicted in Fig. 8.3(b), several pulse shaping tech-
niques are existing, with the aim to reduce decoherence effect during QEC implementa-
tion while controlling leakage, by increasing the driving field; this is rather complicated,
especially when the width of the pulse approaches the difference between the gaps, both
in terms of frequency. We report here some of these techniques:

• Sideband-modulated “wah-wah” pulses [202][203];

• SWIPHT, namely Speeding up Waveforms by Inducing Phases to Harmful Transitions
[204][205];

• DRAG, namely Derivative Removal by Adiabatic Gate [181][206][207].

8.5.1 DRAG: Derivative Removal by Adiabatic Gate

The chosen pulse shaping technique is the DRAG, as it allows to improve the speed of the
implementation of two-level rotations with high fidelity (i.e. by suppressing leakage). A
second pulse, simultaneous and orthogonal to the first one, is generated as the time
derivative of the main pulse; the combination of these two pulses creates a spectral hole,
that can be tuned and moved near to the frequency of the unwanted transitions. In this
way, the leakage to that unwanted transition is significantly reduced. Therefore, the
structure of the driving field b1(t) is:

b1(t) =

{
εx(t) cosωt+ εy(t) sinωt for 0 < t < tg

0 otherwise
(8.10)

where a single frequency ω is employed. More specifically, in case of a main driving
field with a Gaussian shape, the x and y components become:

εx(t) =
B1

σ
e−(t−t0)

2/2σ2

εy(t) = βλ
dεx(t)

dt

(8.11)
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(b)

(a)

Figure 8.3: (a) Energy levels as a function of the external static field B0 for n-system. The eigen-
states are labelled by |Iz, sAz ⟩. (b) Performances of QEC scheme (error ε = 1 − ⟨ψ(0)|ρ(t)|ψ(0)⟩),
with a fixed B0 = 0.1 T, T2 = 0.5 ms, TA

2 = 68 µs [82]. The driving field for the ancilla is set
to BA

1 = 30 G, while different values and pulse shapes are employed for the BQ
1 : triangles are

related to Gaussian-shaped pulses, while circles to DRAG-shaped pulses (see Section 8.5.1). The
gray dashed line represents the error for an uncorrected s = 1/2 qudit subject to pure dephas-
ing. Inset: gain as ratio between ε on protected and on unprotected qubits. Reproduced from
Ref. [47] with permission from the Royal Society of Chemistry (licensed under a Creative Com-
mons Attribution-NonCommercial 3.0 Unported Licence).

where B1 is the maximum driving field amplitude, σ is the width of the Gaussian, λ
is the relative strength between unwanted and desired transitions and β is a numerically
optimized coefficient to tune the DRAG. The combination of pulses in Eq. 8.11 leads
to the shaped pulse used to improve QEC performances, as reported in Fig. 8.4. The
numerical optimization process to find the best β parameter is highlighted below:

• we consider a target transition e.g. between levels (1− 2) and the unwanted tran-
sition between levels (2− 3) which is the closest in energy;
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• we compute the λ factor as the squared ratio between matrix elements of unwanted
and target transitions, divided by the energy differences between levels;

• we perform the fidelity calculation with a set of β values between 0 and 1, find-
ing the one that leads the best fidelity. This numerical optimization process has
been performed for each B1 value, as it depends on the leakage to the unwanted
transitions.

(a)

(b)

(c)

Figure 8.4: (a) Example of oscillating field with a Gaussian envelope, truncated outside |2σ|. (b)
Time derivative of the Gaussian pulse represented in panel (a), truncated outside |2σ|. The overall
DRAG pulse is the sum of the two pulses. (c) Frequency spectra comparison between Gaussian-
shaped pulse (blue) and DRAG pulse (purple): on DRAG spectrum we note a shift on the peak to
the left and a reduction of the frequency contribution to the unwanted transition ω0/2π.

The DRAG technique is here applied in its simplest form by considering a single
unwanted transition disturbing the target one (while more complex implementations
could handle many unwanted transitions [208][209]); on n-system, we use DRAG to
select the following qudit transitions:

• |3/2⟩ ↔ |1/2⟩ from |1/2⟩ ↔ | − 1/2⟩

• | − 1/2⟩ ↔ | − 3/2⟩ from |1/2⟩ ↔ | − 1/2⟩

As reported in Fig. 8.3(b), the application of DRAG leads to a significant improve-
ment of error ε when an high B1 is employed, in particular on the a system where the
energy gaps are similar: leakage is here kept under control by reducing the contribution
on the unwanted transition, while reducing decoherence effect. The inset of Fig. 8.3(b),
representing the gain as the ratio between ε on protected and on unprotected qubits, lets
us to identify the best t/T2 spot; we compare the performance of the QEC code using
Gaussian and DRAG pulses neat this spot, for different T2 and B1. Results are reported
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in Fig. 8.5. Dark-shaded lines with triangular markers are related to Gaussian pulses,
while light-shaded lines with circular markers are related to DRAG pulses. Different
color shades represent different T2 values. We opted to use B1 values larger than the
ones allowed by current technology (current maximum ∼ 120 G for nuclear magnetic
resonance equipments [210]) for two reasons: the first one is to better appreciate the
DRAG effect, and the second one is to guide future development showing the advan-
tage of larger B1 values.

Figure 8.5: Performances of the DRAG technique on the proposed QEC scheme on n-system. Error
ε is computed as a function of driving fieldB1, for different T2 values, near the t/T2 maximum gain
spot reported in Fig. 8.3(b) inset. Dark-shaded lines with triangular markers are related to Gaus-
sian pulses, while light-shaded lines with circular markers are related to DRAG pulses. Different
colors are related to different T2 values. DRAG performances are maximized to intermediate B1

and long T2, while are maximized to larger B1 when lowering T2. Reproduced from Ref. [47] with
permission from the Royal Society of Chemistry (licensed under a Creative Commons Attribution-
NonCommercial 3.0 Unported Licence).

Gaussian pulses show a minimum in the error distribution for intermediate B1 val-
ues: long Gaussian pulses (with low B1) make decoherence the leading error source,
while shorter Gaussian pulses (with high B1) make leakage the leading error source.
Higher T2 values shift the error minimum to lower B1, as the effect of decoherence is
reduced. DRAG pulse shaping technique reduces the effect of leakage on results: ε be-
haviour is always below the one related to Gaussian pulses. In case of T2 = 0.1 ms,
the minimum of ε is positioned on B1 > 250 G; by increasing T2, the position of the
minimum is shifted to lower B1, as in case of Gaussian pulses, but the effect is less evi-
dent. We can see that the DRAG pulse shaping technique can significantly improve the
performances of the proposed QEC scheme.
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8.6 Conclusions

In this Chapter we considered two realistic molecular spin qudits as candidates for the
embedding of QEC, with the aim to correct pure dephasing errors: the first one is a real-
istic system based on a S = 3/2 qudit coupled with an ancilla qubit with effective spin
1/2, while the second one is an existing nuclear spin qudit with I = 3/2 coupled with
an ancilla qubit (electronic) by hyperfine interaction. In both cases, the role of the ancilla
qubit is to give an extension of the Hilbert space to detect errors without making the
quantum state to collapse, being able to proceed with the calculations. Performances of
the proposed QEC scheme have been investigated and optimized by selecting the proper
driving field range, reaching values below 10−2 for both systems. DRAG pulse-shaping
technique has been applied to further reduce the error. Other methods to improve the
QEC scheme performances can be applied [182], together with different classes of molec-
ular qudits consisting of multi-spin molecules [211][212].

Part of the content of this Chapter has been published in Phys. Chem. Chem. Phys., 2022,24,
20030-20039 (Ref. [47]).

https://pubs.rsc.org/en/content/articlelanding/2022/CP/D2CP01228F
https://pubs.rsc.org/en/content/articlelanding/2022/CP/D2CP01228F


Conclusions and future perspectives

I n this work we had the opportunity to access and use the first prototype supercon-
ducting Quantum Computers, in particular the ones available on IBM Quantum

platform, and to simulate realistic new architectures for possible next generation de-
vices based on molecular spin qudits. We also followed IBM Quantum devices evolution
during the last three years (2019-2022) as we performed several benchmarks and char-
acterizations, and we highlighted the improvements of performances in terms of error
rates and qubit calibrations.

We exploited current Quantum Computers and Simulators to study small-sized physical
systems such as molecular spin chains, considered one of the first areas where Quan-
tum Computation could bring an advantage, even with a rather small amount of qubits.
We applied the Variational Quantum Eigensolver algorithm, hybrid quantum-classical
method, to study the static properties of spin 1/2 molecular chains with a leading Heisen-
berg interaction and subject to an external magnetic field. Starting from a spin 1/2 dimer
test model, we moved on to more complex systems like four spins and six spins closed
chains: a proper Hamiltonian encoding on the qubits and a well studied variational
ansatz strategy, allowed us to compute the ground state energies for different magnetic
field values, together with the magnetization and the expectation value of the total spin.
Two different ansatz approaches have been compared: an Hardware Heuristic Ansatz
approach, able to be natively adapted to the hardware configuration, and a Physically
Motivated Ansatz approach, that takes in consideration properties and symmetries of
the target model. While both have similar performances on computing the ground state
static properties of the studied systems on noisy simulations, we noted that the latter
shows a better and faster convergence, in particular when scaling up the target model
complexity (i.e. the number of spins in the chain), and it is able to reconstruct the local
spin expectation values symmetries, making it the better choice to study molecular spin
systems with proper error mitigation techniques like Qiskit Measurement Error Miti-
gation. This ansatz approach has been then exploited to study parity effects on even-
odd open-closed chains. We then further complicated the target systems by adding a
Dzyaloshinskii-Moriya interaction, to study the VQE performances in presence of anti-
crossings between different total spin states for a trimer and a four spin closed chain.

153
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We were able to perform noiseless simulations with a proper ansatz strategy to well
reconstruct the ground state energy, the magnetization and the torque in proximity of
the anti-crossings, consisting of a rather small gap between the ground state and the
first excited state. We finally studied the dynamic properties of these model systems by
computing the spin-spin Dynamic Correlation functions on a real IBM Quantum chip,
with a remarkable fidelity with respect to exact results after application of proper error
mitigation techniques.

IBM Quantum devices have been also exploited to study strongly correlated quan-
tum systems like the Fermi-Hubbard model, in order to validate the previously devel-
oped approaches like the Physically Motivated Ansatz and the error mitigation tech-
niques. Differently from spin systems, fermionic systems Hamiltonian require more
complex mapping like Jordan-Wigner Transformation, which increases the number of
required qubits and the depth of the resulting circuits. We studied static properties of
the ground state with VQE noisy simulations, and we simulated the time evolution on
IBM Quantum real hardware with the Suzuki-Trotter decomposition on a dimer. In both
cases, the results well fit with the expected behaviour, especially with the application
of error mitigation techniques, such as a custom Post selection technique for real hard-
ware time evolution. We demonstrated that current quantum devices can nowadays be
reliably used to simulate rather small but interesting physical systems; we are confident
that the future technological improvements will make these devices even more reliable
and useful for practical computation.

Results obtained with IBM Quantum are remarkable, but still limited to a small amount
of qubits and small circuit depth: to take a significant step forward, a change of per-
spective could be useful, for example exploiting a qudit logic. We focused on exploring
new approaches to Quantum Computation with the dual objective to handle some in-
trinsic limitations of current devices (in particular decoherence) and to increment the
computing power (e.g. to embed Quantum Error Correction inside the fundamental
unit of computation). We studied different molecular systems called Molecular Nano-
magnets to achieve both these objectives, as they can represent key candidates to im-
plement multi-level (qudit) logic with many engineerable and coherent levels: in fact,
Molecular Nanomagnets are molecules consisting of core magnetic ions surrounded by
a ligand cage, and can be chemically engineered and properly tuned to create multi-level
systems. From a technological point of view, a recently proposed work [48] has shown
how to integrate such molecules into superconducting circuits already used to control
transmon qubits. This clearly indicates a future possible hybrid and integrated archi-
tecture, leveraging on existing and already advanced superconducting technology, to be
exploited to create and control platforms consisting of molecular spin qudits. Therefore,
a physical implementation of the proposed Molecular Nanomagnet compounds can be
considered realistic.

Two different Molecular Nanomagnets have been exploited: single spin systems and
multi-spin systems with competing interactions. We demonstrated that multi-spin sys-
tems with competing interactions are protected by decoherence rather than single spin
systems. On these realistic MNMs, Universal set of quantum gates were simulated by



implementing multi-level Hadamard gate up to 8 levels and a Controlled-Phase gate,
with proper external driving and static magnetic fields. The competing interactions pro-
tection from decoherence allowed us to reach a gain of∼ 50 in terms of gate fidelity with
respect to single spin MNMs on 8 levels Hadamard gate, and a ∼ 3 times fidelity gain
on Controlled-Phase. Even more remarkably, in case of competing interaction MNMs
the error does not increase with system size, making them very effective candidates to
build the fundamental logic of the future qudit-based devices, in particular considering
the proposed qudit-switch architecture enabling scalability.

We exploited similar molecular systems to implement a qudit capable to embed a
recently proposed Quantum Error Correction scheme to detect and correct pure dephas-
ing errors, considered the leading errors on such systems. The investigated molecular
systems are based on an electronic or nuclear spin S qudit, both coupled with an an-
cilla qubit to expand computational space to implement the QEC scheme. The scheme
has been implemented by choosing the best driving and static fields: performances have
been investigated on both systems, reaching errors below 10−2. On the nuclear spin qu-
dit, a pulse-shaping technique named DRAG has been applied to further increase the
performances of the scheme in terms of error.

With the introduced schemes to implement gates on molecular spin qudits with remark-
able fidelity, one of the first steps towards the practical realization of such platform is
to implement some quantum algorithms; the first identified algorithm is the Quantum
Simulation of a Fermi-Hubbard system. To do this, we already started to implement and
simulate some other quantum gates, e.g. the iSWAP gate, and we are investigating the
composition of gates on the proposed qudit platforms.

The race towards production-ready Quantum Computers is still open, and repre-
sents one of the most challenging and revolutionary technological improvements of this
century. In the next decade the scientific community will for sure continuously pursue
this goal; this work aims to help towards direction, from enabling the first uses of near-
term devices on chemical and physical research, to giving a possible roadmap for the
implementation of next generations of Quantum Computers.
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APPENDIX A

The Qiskit framework

Q iskit [12] is an open-source quantum development framework (namely an SDK,
that stands for Software Development Kit) created to work with quantum computers

at many levels, from pulses and circuits, to pre-build libraries and application modules.

A.1 Introduction to Qiskit

Qiskit has been released in 2016, and it is developed by IBM and by the open-source
community. Based on Python, it allows to exploit sets of quantum gates and pre-built
circuits and modules to let users, researchers and professionals to implement quantum
applications.

The developed code can be translated into properly configured circuits to be run on
the Qiskit simulators or on real Quantum Computers, like for example IBM Quantum;
the Transpiler [23] has the role to convert the code into circuits, taking in consideration
the characteristics of the simulator or the hardware itself, letting the users to automate
the deployment on different platforms. These transpiled circuits can be run either on
real QPUs, or on simulated QPUs using CPUs or GPUs. The management of the jobs life
cycle can be achieved with the provided tools.

Qiskit modules currently (early 2023) consist of the Core functions, the Providers
(Qiskit Aer, IBM Quantum Runtime and other Partners like IonQ [213]), the Applica-
tions (Nature, Finance, Optimization and Machine Learning) and the Extensions (Exper-
iments, Dynamics and Metal [214]).

Qiskit has been used extensively in this work, especially in the analysis reported in
Chap. 5 and Chap. 6, where IBM Quantum chips have been used to simulate spin and
fermionic systems behaviour and characteristics, and to perform the search for system-
atic errors reported here in Sec. A.3.

A.2 Gates composition using Qiskit

In Chap. 1, Sec. 1.1.2, we introduced the main quantum logic gates to perform single-
qubit and multi-qubit operations; here we present in more details how to implement
combinations of single- and two-qubit gates to create some of the most common building
blocks used in Digital Quantum Simulations.
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We already introduced the generalized single-qubit rotation in SU(2) space in Eq. 1.10:

U(θ, ϕ, λ) =

(
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

)
(A.1)

This gate depends on 3 angles θ, ϕ and λ. A proper choice of the angles leads to the
implementation of single-qubit rotations like:

Rx(θ) = U(θ,−π/2, π/2)
Ry(θ) = U(θ, 0, 0)

Rz(λ) = U(0, 0, λ) = e−iλ/2Φ(λ)

(A.2)

where Φ(λ) =

(
1 0

0 eiλ

)
is the Phase gate. As the Qiskit platform is able to imple-

ment single-qubit rotation gates, is also able to implement generic U3 = U(θ, ϕ, λ) =

Rz(ϕ)Rx(θ)Rz(λ) rotations. Given the single-qubit rotations introduced above, we now
introduce the implementation of two-qubit operations.

2𝛿

2𝛿

2𝛿

(a)

(b)

(c)

Figure A.1: Composition of two-qubit gates with elementary quantum gates. (a) ZZ(δ) =

e−iδσz⊗σz . (b) Y Y (δ) = e−iδσy⊗σy , built using the identity Rx(π/2)σzRx−π/2. (c) XX(δ) =

e−iδσx⊗σx , built using the identity Ry(π/2)σzRy(−π/2).

When considering the Digital Quantum Simulation of physical systems, for exam-
ple a Fermi-Hubbard model (see Chap. 6), the interaction between different spins is de-
scribed by these two-qubit operations. In order to implement a useful set of building
blocks on the Qiskit framework for IBM Quantum platform, we must consider a typical
Universal gate set for superconducting transmon qubits, consisting of the single-qubit



The Qiskit framework 161

rotations and the entangling gate CNOT. In particular, one can verify the gates compo-
sitions [11] depicted in Fig. A.1, implementing ZZ, Y Y and XX . It is possible to select
other Universal gate sets used to build the two-qubit building blocks, by choosing e.g. C-
Φ(δ) gate instead of CNOT gate, equally implementable on a superconducting quantum
processor [14][215][216][217].

The building blocks reported in Fig. A.1 have been extensively used to build the
time evolution circuits for the Fermi-Hubbard model (see Sec. 6.5.1 and Sec. 6.5.2), in
particular the Y Y and XX building blocks for the hopping term, and the ZZ building
block for the interaction term.

2𝛿

2𝛿

2𝛿

(a)

(b)

(c)

Figure A.2: Composition of three-qubit gates with elementary quantum gates. (a) ZZZ(δ) =

e−iδσz⊗σz⊗σz . (b) Y ZY (δ) = e−iδσy⊗σz⊗σy . (c) XZX(δ) = e−iδσx⊗σz⊗σx . The barriers have
been inserted for a better circuit visualization only. The above circuit shapes are generalizable to
N-qubits.

The two-qubit gates composition can be extended to a multi-qubit approach, with
the objective to create N-qubit building blocks using single- and two-qubit elementary
operations from the Universal gate set consisting of single-qubit rotations and two-qubit
CNOTs. Fig. A.2 shows the building blocks using 3 qubits, implementing ZZZ, Y ZY
and XZX ; however, this can be generalized in case of N-qubits [11].



162 A.3 Search for systematic errors of quantum gates on IBM Quantum

A.3 Search for systematic errors of quantum gates on IBM Quantum

As introduced in Chapter 1, quantum errors affecting current QC platforms can be di-
vided in two categories: coherent errors and incoherent errors. While incoherent errors,
the most dangerous for the computation, must be handled with proper techniques, co-
herent errors can be categorized as an incorrect application of quantum gates: they can
be considered systematic errors. These errors can thus be characterized and, eventually,
corrected by a proper tuning of the quantum gates themselves.

A.3.1 Single-qubit rotations state tomography

Single-qubit rotation gates Rx and Ry should perform rotations respectively on x and
y axes; an effect of the gates error is that single qubit rotations act on tilted angles. An
εz tilt angle affects the Rx and RY accuracy at the maximum rotation (π) , while εx and
εy affect the real and imaginary part of the rotation. The following equations represent
generic rotations along x and y axes affected by coherent errors, corrected with the tilt
angles εx, εy and εz [11]:

Rn̂x(θ) = Rz(εy)Ry(−εz +
π

2
)Rz(θ)Ry(εz −

π

2
)Rz(−εy) (A.3)

Rn̂y
(θ) = Rz(−εx)Rx(εz +

π

2
)Rz(−θ)Rx(−εz −

π

2
)Rz(εx) (A.4)

where n̂x = (cos εy cos εz, cos εy sin εy, sin εz), n̂y = (cos εz cos εx, cos εx sin εz, sin εz).
Although the Qiskit Noisy Simulator is not meant to exactly reproduce the behaviour

of the related quantum hardware, it is possible to have a good representation of the
calibration at the time of the simulation; given that, in Fig. A.3 and Fig. A.4 are reported
the single-qubit Rx and Ry rotations characterization, in which the hardware behaviour
has been reproduced with a parametric noisy simulation following the relations reported
in Eq. A.3 and Eq. A.4. The best ε parameters set that reproduces the hardware behaviour
is reported in Table A.1 and in Table A.2.

We note that, as the Quantum Volume increases, the systematic errors are lowered as
the tilt angles needed to correct them become smaller. Compared to ibmq_yorktown

QV8 device, the best ε set for ibmq_montreal QV128 device consists of values almost
one order of magnitude smaller. This is due to the increment of quality of IBM Quantum
devices during time (in this case from late 2019 to mid 2020), reflecting on a larger QV
through the various quantum hardware generations released.

εx εy εz
∼ π/20 ∼ π/26 ∼ π/19

Table A.1: Parameters set to correct systematic errors for IBM Quantum Yorktown QV8 quantum
chip (late 2019).

Together with results reported in Fig. A.3 and Fig. A.4, we performed another test on
QV8 device ibmq_yorktown (late 2019) by correcting a series of subsequent X gates:
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εx εy εz
∼ π/130 ∼ π/100 ∼ π/100

Table A.2: Parameters set to correct systematic errors for IBM Quantum Montreal QV128 quantum
chip (mid 2020).
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Figure A.3: (a) Behaviour of an hardware rotation Rx from 0 to 2π on a single qubit of IBM Quan-
tum Yorktown QV8 chip reproduced with the noiseless simulator following Eq. A.3. (b) Real and
(c) Imaginary parts with ratio plots between hardware and parametrized simulations. We note
that the hardware real part is zero, so the simulation struggles to reconstruct it.

while we note an increasing error from 1.7% to 8.9% for 1 to 15 subsequent X hardware
gates (odd steps) on a single qubit, a parametrized rotation Ux(π) built as the following
(and based on Eq. A.3 and Eq. A.4)

Ux(π) =

(
−i sin εy −(sin εz + i cos εz) cos εy

(sin εz − i cos εz) cos εy i sin εy

)
(A.5)

with εy = π/26 and εz = π/19 (see Table A.1, late 2019), shows no increasing trend
in error, leaving the State Fidelity constant.

This method can be leveraged to correct the systematic error of the QV8 hardware
rotations by properly tilting the rotation axes; however, we note that the computed ε set
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Figure A.4: (a) Behaviour of an hardware rotation Ry from 0 to 2π on a single qubit of IBM Quan-
tum Yorktown QV8 chip reproduced with the noiseless simulator following Eq. A.4. (b) Real and
(c) Imaginary parts with ratio plots between hardware and parametrized simulations. The hard-
ware behaviour of the rotation itself and both real and imaginary parts are well reconstructed by
the parametrized noiseless simulations, as confirmed by the ratio plots.

for QV128 hardware starts to become negligible, as reported in Table A.2 (mid 2020): as
the IBM Quantum devices quality continues to be improved, this method would become
less impacting on quantum hardware computed results.

A.3.2 Two-qubit CNOT state tomography

We now perform the state tomography of a CNOT gate performed on two qubits with
IBM Quantum ibmq_yorktownQV8 chip (mid 2020). The CNOT density matrix ρCNOT

has been built starting from the four Bell states [11] as initial states:

|0⟩+ |1⟩√
2
⊗ |0⟩ →


1

0

1

0

 on basis

|00⟩
|01⟩
|10⟩
|11⟩

(A.6)
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|0⟩ − |1⟩√
2
⊗ |0⟩ →


1

0

−1
0

 on basis

|00⟩
|01⟩
|10⟩
|11⟩

(A.7)

|0⟩+ |1⟩√
2
⊗ |1⟩ →


0

1

0

1

 on basis

|00⟩
|01⟩
|10⟩
|11⟩

(A.8)

|0⟩ − |1⟩√
2
⊗ |1⟩ →


0

1

0

−1

 on basis

|00⟩
|01⟩
|10⟩
|11⟩

(A.9)

By properly measuring the circuit related to the above states on the selected quantum
hardware (or performing a noisy simulation), it is possible to compute the following
observables:

⟨σz ⊗ σz⟩, ⟨σx ⊗ σx⟩, ⟨σy ⊗ σy⟩
⟨I ⊗ σx⟩, ⟨σx ⊗ I⟩, ⟨I ⊗ σy⟩, ⟨σy ⊗ I⟩

⟨σz ⊗ σx⟩, ⟨σz ⊗ σy⟩
⟨σx ⊗ σz⟩, ⟨σy ⊗ σz⟩
⟨σx ⊗ σy⟩, ⟨σy ⊗ σx⟩

(A.10)

Observables reported in Eq. A.10 can be finally used to compose the CNOT density
matrix as follows:

ρCNOT =


|α|2 α∗β α∗γ α∗δ

β∗α |β|2 β∗γ β∗δ

γ∗α γ∗β |γ|2 γ∗δ

δ∗α δ∗β δ∗γ |δ|2

 (A.11)

where the in-diagonal elements are

In-diagonal→


|α|2 = ZZ[00]

|β|2 = ZZ[01]

|γ|2 = ZZ[10]

|δ|2 = ZZ[11]

(A.12)

and the off-diagonal elements are
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Off-diagonal→



XX + Y Y ∝ ℜ(βγ)
XY − Y X ∝ ℑ(βγ)
IX + ZX ∝ ℜ(αβ)
IY + ZY ∝ ℑ(αβ)
XI +XZ ∝ ℜ(αγ)
Y I + Y Z ∝ ℑ(αγ)
XY + Y X ∝ ℜ(αδ)
XX − Y Y ∝ ℑ(αδ)
IX + ZX ∝ ℜ(δγ)
IY +XY ∝ ℑ(δγ)
XI +XZ ∝ ℜ(βδ)
Y I + Y Z ∝ ℑ(βδ)

(A.13)

We report in Fig. A.5 and in Fig. A.6 the result of the CNOT tomography performed
on ibmq_yorktown QV8 device in late 2019 for the four qubits used for the first tests
of the Fermi-Hubbard model time evolution reported in Chap. 6, in particular the qubit
pairs 0-1 and 2-3. The State Fidelity provides a comparison between noiseless simula-
tions and real hardware runs.

The computed State Fidelity for CNOTs on QV 8 devices is above 0.9: considering a
further increase on higher QV devices, it is possible to consider the two-qudit gate im-
plementation reliable.
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1st Bell State

State Fidelity: 0.969

2nd Bell State

State Fidelity: 0.971

3rd Bell State

State Fidelity: 0.967
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Figure A.5: CNOT tomography for IBM Quantum Yorktown QV8 device (late 2019), for the first
tests of the Fermi-Hubbard model time evolution reported in Chap. 6 for qubits 0-1, built using the
ρCNOT relation in Eq. A.11. The State Fidelity gives a comparison between noiseless simulations
and real hardware runs.
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Figure A.6: CNOT tomography for IBM Quantum Yorktown QV8 device (late 2019), for the first
tests of the Fermi-Hubbard model time evolution reported in Chap. 6 for qubits 2-3, built using the
ρCNOT relation in Eq. A.11. The State Fidelity gives a comparison between noiseless simulations
and real hardware runs.
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A.4 Qiskit Measurement Error Mitigation

Qiskit provides an automatic feature to correct the measurement error, called Measure-
ment Error Mitigation (MEM) [142]. It consists in the computation of a calibration matrix
that can help to determine the effect of the measurement operation on the results: this
is performed by preparing all the possible basis states, then by measuring them and
looking for the probability distribution. In particular, given

Px = Tr
(
⟨x|ρ|x⟩

)
(A.14)

where ρ is the density matrix, and given Pρ the ideal probability distribution, P̃ρ the
experimental probability distribution and A the calibration matrix, one can compute:

P̃ρ = A · Pρ

Pρ = A−1 · P̃ρ

(A.15)

The calibration matrix A translates the ideal probability distribution into the exper-
imental probability distribution; errors due to the measurement can be mitigated by
applying an inverted calibration matrix to the final result.

This method is applied a posteriori on the computed results:

|ψ⟩ → |ψ̃⟩ = R|ψ⟩ → |ψ̃mitigated⟩ = A−1|ψ̃⟩ (A.16)

we start from a certain initial state |ψ⟩ and we perform a rotation on it, then we can
apply the inverted calibration matrix to mitigate the error coming from the measurement
operation. Fig. A.7 shows the application of Qiskit Measurement Error Mitigation on
a Rx rotation on ibmq_armonk chip (mid 2020). It is finally worth noticing that this
method performs very well when the error due to the measurement process is relevant
with respect to the other errors, i.e. when the circuit consists of a rather small amount
of gates (as the case of Eq. A.16), or when a large amount of measurement gates are
performed (as the case of specific algorithms like VQE).
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R
x
R
ot
at
io
n

𝜃

Figure A.7: Qiskit Measurement Error Mitigation (MEM) example on a single rotation gate on IBM
Quantum Armonk device (mid 2020). Light blue triangles represent aRx rotation from 0 to 2π per-
formed on IBM Quantum Armonk hardware, black crosses represent the noiseless simulation of
the rotation, and the green stars are the above hardware results mitigated with Qiskit Measure-
ment Error Mitigation. We notice that green stars and black crosses are almost superimposed: this
means that the Measurement Error Mitigation is able to mitigate the leading error coming from the
measurement process. Other errors, i.e. the gate error of the rotation itself, are still present and not
corrected by the Qiskit MEM, slightly drifting the mitigated results from the noiseless behaviour.



APPENDIX B

Quantum gates decomposition on qudits

H ere we demonstrate how the Hadamard Transform is the Quantum Fourier Trans-
form (QFT) for a single qubit, and how can be generalized in case of a qudit of

size d [165].

B.1 Hadamard Transform and QFT

The QFT for a registry of n qubits is defined:

UQFT |x⟩n =
1√
2n

2n−1∑
y=0

e2πixy/2
n

|y⟩n (B.1)

Equation B.1 can be generalized in case of a d-sized qudit as the following:

UQFT |x⟩ =
1√
d

d−1∑
y=0

e2πixy/d|y⟩ (B.2)

where |x⟩, |y⟩ ∈ {|0⟩, |1⟩, ..., |d− 1⟩}.
The effect of Hadamard Transformation is to map H|0⟩ ← |+⟩ and H|1⟩ ← |−⟩, so

a compact form can be expressed as H = |+⟩⟨0| + |−⟩⟨1|. In order to generalize the
Hadamard Transformation to a d-level system, we nee first to generalize the X and Z
operators, since H transforms Z eigenvectors in X eigenvectors:{

Xd|x⟩ = |x⊕ 1⟩
Zg =

∑d−1
x=0 e

2πix/d|x⟩⟨x|
(B.3)

Hence, the Xd and Zd eigenvectors can be expressed as:{
|z̃⟩ = {|x⟩}d−1

x=0

|x̃⟩ = 1√
d

∑d−1
y=0 e

2πixy/d|y⟩ (B.4)

Finally, considering Eq. B.4, the Hadamard Transformation can be written as Hd|x⟩ =
|x̃⟩ = 1√

d

∑d−1
y=0 e

2πixy/d|y⟩, that is the QFT reported in Eq. B.2.
■
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B.2 Details of decomposition methods

In this Section are reported the details for the implementation of single-qudit quantum
gates for both Planar Rotations and Quantum Householder Reflections decomposition
methods. The reported parameters are used to implement the Generalized Hadamard
gate, following the algorithm outlined in Sec. 7.4.

B.2.1 Planar Rotations

Here we report all the parameters of the decomposition of a Generalized Hadamard gate
using Planar Rotations, in case of a ”linear” connectivity between levels (S-systems) and
in case of a ”full” connectivity between levels (C-systems).

The π±
µν pulses are properly used to swap up or down the eigenstates, in order to

perform U rotations on adjacent eigenstates |µ⟩, |ν⟩.

H4 = P1,2P3,4× (B.5)

× U1,2 × π+
1,2U1,3π

−
1,2U2,3 × π+

3,4π
+
2,3U1,4π

−
2,3U2,4π

−
3,4U3,4

H6 = P5,6P3,4P2,3× (B.6)

× U1,2 × π+
2,3U1,3π

−
2,3U2,3 × π+

3,4π
+
2,3U1,4π

−
2,3U2,4π

−
3,4U3,4×

× π+
4,5π

+
3,4π

+
2,3U1,5π

−
2,3U2,5π

−
3,4U3,5π

−
4,5U4,5×

× π+
5,6π

+
4,5π

+
3,4π

+
2,3U1,6π

−
2,3U2,6π

−
3,4U3,6π

−
4,5U4,6π

−
5,6U5,6

H8 = P7,8P6,7P5,6P3,4P1,2× (B.7)

× U1,2 × π+
2,3U1,3π

−
2,3U2,3 × π+

3,4π
+
2,3U1,4π

−
2,3U2,4π

−
3,4U3,4×

× π+
4,5π

+
3,4π

+
2,3U1,5π

−
2,3U2,5π

−
3,4U3,5π

−
4,5U4,5×

× π+
5,6π

+
4,5π

+
3,4π

+
2,3U1,6π

−
2,3U2,6π

−
3,4U3,6π

−
4,5U4,6π

−
5,6U5,6

× π+
6,7π

+
5,6π

+
4,5π

+
3,4π

+
2,3U1,7π

−
2,3U2,7π

−
3,4U3,7π

−
4,5U4,7 × π−

5,6U5,7π
−
6,7U6,7×

× π+
7,8π

+
6,7π

+
5,6π

+
4,5π

+
3,4π

+
2,3U1,8π

−
2,3U2,8π

−
3,4U3,8×

× π−
4,5U4,8π

−
5,6U5,8π

−
6,7U6,8π

−
7,8U7,8

A ”full” connectivity between levels does not require the additional π±
µν pulses, as no

swap are needed. Thus, the amount of required pulses is lowered, and Eq. B.5, Eq. B.6
and Eq. B.7 are modified accordingly. With the above reported gate decomposition in
elementary pulses, we can now report the parameters to create each Uµν and each Pα.
In Tab. B.1, Tab. B.2 and Tab. B.3 are reported the values, keeping three significant digits
when a numeric form is needed (due to a complex arithmetic expression).
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µ, ν θ/2 β α

3,4 −π/4 π/2

2,4 arctan(1/
√
2) 0

1,4 arctan(1/
√
3) π/2

2,3 0.912 −0.464
1,3 arctan(−1/

√
2) −π/4

1,2 π/4 π/4

3,4 π/8

1,2 3π/8

Table B.1: Parameters to decompose H4 gate into PR (keeping three significant digits), assuming
full connectivity.

B.2.2 Quantum Householder Reflection

Here are reported the parameters for the Quantum Householder Reflection for the Gen-
eralized Hadamard decomposition in elementary pulses, following the algorithm out-
lined in Sec. 7.4. In Tab. B.4 are reported the values of the parameters vi and ϕi, keeping
three significant digits when a numeric form is needed (due to a complex arithmetic
expression).
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µ, ν θ/2 β α

5,6 π/4 −2π/3
4,6 arctan(1/

√
2) −π/3

3,6 π/6 2π

2,6 arctan(1/2) π/3

1,6 arctan(1/
√
5) 2π/3

4,5 (
√
3/7) − arctan(3

√
3)

3,5 (2
√
5/19) (4/

√
3)

2,5 arctan(
√
31/65) π − arctan(5

√
3/7)

1,5 arctan(1/2) −2π/3
3,4 arctan(

√
37/13) − arctan(2

√
3/5)

2,4 (2
√
5/19) 1/2(π + arctan(8

√
3/13))

1,4 π/6 −π/2
2,3 arctan(

√
7/3) arctan(1/3

√
3)

1,3 arctan(1/
√
2) −5π/6

1,2 π/4 1.047

5,6 −π/3
3,4 π/2

2,3 2π/3

Table B.2: Parameters to decompose H6 gate into PR (keeping three significant digits), assuming
full connectivity.
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µ, ν θ/2 β α

7,8 π/4 −3π/4
6,8 arctan(1/

√
2) −π/2

5,8 π/6 −π/4
4,8 2 arctan(1/2) 0

3,8 arctan(1/
√
5) π/4

2,8 (
√
6) π/2

1,8 arctan(1/
√
7) 3π/4

6,7 1.016 4.457

5,7 0.824 −0.5
4,7 0.687 0.843

3,7 0.573 2.213

2,7 0.474 −2.657
1,7 0.388 −1.178
5,6 1.093 −1.249
4,6 0.895 0.655

3,6 0.731 2.585

2,6 0.573 −1.714
1,6 0.421 0.393

4,5 1.113 −0.663
3,5 0.895 1.834

2,5 0.687 −1.906
1,5 0.464 0.785

3,4 1.093 −0.071
2,4 0.824 3.034

1,4 0.524 0

2,3 1.016 0.530

1,3 0.615 −1.963
1,2 0.785 1.178

7,8 π/16

6,7 π

5,6 7π/16

3,4 11π/16

1,2 5π/16

Table B.3: Parameters to decompose H8 gate into PR (keeping three significant digits), assuming
full connectivity.
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APPENDIX C

Technological innovation

C onducting a research process based on Quantum Computing implying the simula-
tion of complex systems or the execution of hybrid algorithm, e.g. the Variational

Quantum Eigensolver, could be very demanding in terms of computational resources
and execution time. Simulations reported in Chap. 5, Chap. 6 and in Ref. [127] fall in this
category, in particular by increasing the complexity of the target system (i.e. number of
spins of an open/closed Heisenberg chain).

C.1 Automatic computation framework for quantum algorithms

In order to overcome the large amount of time and resources required to perform simu-
lations, together with dealing with the overall process complexity, we built the following
computational framework able to exploit HPC resources and databases technologies.

This framework consists of three different parts: enabling the parallel computation
on a proper environment, managing the input and output data by providing access to a
database in which to store experiments data and metadata, and implementing a dash-
board to display results, along with the development environment. The high level archi-
tecture is reported in Fig. C.1.

C.1.1 Data calculation: the computational environment

Required and intensive numerical computation effort, for both classical simulation of
quantum devices and the classical part of hybrid quantum-classical algorithms, can be
demanded to High Performance Computing (HPC) or Cloud environments. A proper
parallelisation of jobs has been exploited, i.e. splitting the overall process in a set of in-
dependent calculations sent to the available resources in the environment: in particular,
a significant speed up in the VQE process on Ref. [127] has been reached (∼ 200 times for
the most complex calculations) with respect to the same computation performed locally
without parallelisation.

C.1.2 Data collection: the data storage

All the computed results, together with the related metadata and input configurations,
are then stored into a NoSQL database. Specifically for Ref. [127] calculations, we in-
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Data storage

Development / visualization environmentComputational environment

Upgraded
workstations 

Servers / 
HPC / Cloud

Jupyter
notebooks

PC / 
Laptops

DB / DBaaS

Send for 
computation

Save results Retrieve data

Figure C.1: Computation framework developed to handle IBM Quantum / Qiskit jobs and results.
A local development environment is used to develop algorithms and view / consolidate data
plots. A remote computational environment allows to access computational resources to perform
high demanding simulation jobs in parallel. Computed results are securely stored and reliably in
a database, together with all the metadata and input configurations. Queries are performed on the
database to retrieve data in order to consolidate plots.

cluded in the database collection the following main metadata for each computation (i.e.
one for each point in each plot):

• physical parameters: Jx, Jy , Jz , D, and the number of spins composing the chain;

• external parameters: magnetic field Bx and Bz components, together with the tilt
angle θ;

• VQE configuration: ansatz identifier, ansatz depth, optimization algorithm, maxi-
mum number of optimization iterations;

• quantum run configuration: number of gates (pre and post transpiling), number of
shots, quantum backend or simulator, measurement error mitigation flag (on/off);

• results: best energy value and counts, ground state components, ground state
parametrized circuit, ground state density matrix components, parallel and per-
pendicular magnetization values and counts, torque;

• run information: initial timestamp, final timestamp, computational time taken,
together with the database entry id (unique).

C.1.3 Data Plot: development and visualization environment

The last part has the aim to retrieve the data from the database by performing queries,
in order to collect all data related to a single experiment, i.e. all the series of points to be
put in the same plot. Some specific functions perform data retrieval and print the plots.
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Considering that the data storage and data retrieval process are performed in near real
time, this set of functions can be used to create a live dashboard to showcase the results.

Details of this framework has been reported on Read The Docs (Ref. [218]).

C.2 A new framework for integrating Quantum into existing software
architectures

C.2.1 Introduction

The recent improvements on Quantum Computing technology made possible to every-
one to access and use real QC prototypes: this will lead quickly to the possibility to
include quantum-based workloads into current software architectures. Startups and cor-
porations could soon begin using quantum computers to enhance software applications
in fields like finance and the materials sciences, but to reach that point, it is not suffi-
cient to just build quantum systems and hope industry developers figure out how to
integrate their workloads with this new technology. The design of such software on
distributed systems is based on a couple of essential best practices and pillars, such as
the loose-coupling of components (i.e. the modularity of the software), the use of open-
source frameworks, and the reusability of assets and components; a software application
typically consists of logical layers, allowing the developers and maintainers to work on
specific components in a decoupled way. Nowadays it is still very difficult to perform an
hybrid quantum-classical computation in an integrated way, exploiting a classical com-
puter and a quantum computer to perform some specific tasks or workloads inside the
same software application.

We present here an open-source software architecture, following the above men-
tioned best practices, that can be used as a pre-built pattern to create hybrid applications:
this framework allows the developers to quickly create workloads able to receive user
requests, sending them to a Quantum Computer, and receiving the results back, while
making sure all data handling occurs in the right order and format.

Quantum Computing services released via the Cloud can currently be accessed in
two main different ways, either using a web-based interface to graphically create and
run circuits, or via REST API. In both cases, all jobs sent to the quantum devices and
simulators are executed exploiting several queue processes (e.g. fairshare). The software
development for quantum algorithms is not currently integrated with traditional devel-
opment on classical resources: the objective of this proposed framework is to provide a
reference architecture and a set of blueprints to close the gap between the classical and
the quantum computation fields. Considering the latest trend of innovation about QCs,
we imagine that enterprises and researchers will soon start using such platforms almost
daily, and integration with classical applications will be desirable and, in the next future,
required, to support and improve computing capacity for existing and new workloads.

https://automatic-computation-framework.readthedocs.io/en/latest/##
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C.2.2 Challenges

We identified two challenges to be overcome to achieve this integration. The first takes
in consideration the requested upskilling and theoretical knowledge to embrace quan-
tum computation: currently, an integration between classical and quantum applications
is possible, but requires a low level approach using the available quantum SDKs (i.e.
Qiskit). In particular, some details can be highlighted: currently, most of the quantum
SDKs are available for Python, and a proper decoupling logic must be available to inte-
grate quantum workloads with non-Pyton classical workloads. Fortunately, these decou-
pling logics are arising, like for example the REST API interface provided by Qiskit Run-
time [219], available in different programming languages. However, a developer having
to integrate classical-quantum backends needs to know at least the basics of quantum
computation, like for example the quantum circuit composition, or the pre-built Qiskit
libraries or applications [220]. Using Qiskit basic features to integrate applications could
therefore be difficult to achieve, especially within the complexity of an enterprise appli-
cation stack. The second identified challenge lies on the similarity between Quantum
Computing and HPC environments in terms of resource accessibility: they share some
peculiarities such as the computation complexity, the long processing time, the concur-
rent resource access and the scalability.

C.2.3 Proposed architecture, requirements and data flow

In order to overcome these challenges, we proposed on Ref. [51] a proprietary frame-
work based on IBM Cloud technologies; this framework has been improved over time
and has been in particular refactored leveraging on open-source technologies, ready for
an enterprise or production environment. Red Hat OpenShift Container Platform [221]
has been chosen as the core solution to achieve the best portability and to exploit the
extended number of services in terms of data storage, hosting, middleware and queuing
services.

We decided exploit RedHat OpenShift, one of the leader platforms to manage and or-
chestrate containers, that provides a significant number of functionalities to design and
monitor almost any workload; to make the development straightforward, we decided to
adopt a managed database solution (DBaaS) to store the configurations. We also focused
on major improvements in terms of workload management: in the previous version of
the framework (Ref. [51]) we exploited HTTP invocations to trigger the Functions com-
ponents, introducing the risk of failure and the need to set up a retry mechanism to
properly handle those failures. Now the Functions trigger is delegated to Kafka [222],
the most adopted platform for event streaming that ensures the delivery of properly con-
figured messages. The serverless component is demanded to Knative [223], the native
technology when OpenShift Container Platform is adopted.

Lastly, we introduced an automation script that allows to install all the framework
components needed with a one-click, taking an elapsed time of a couple of minutes,
giving yet another boost in terms of ease of usability and automation. In terms of data
flow, the mechanism to trigger a function after an end user interaction with the UI has
been improved, as the very same payload sent over HTTP is now sent on a Kafka topic.
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This triggers the Knative Eventing subcomponents, that delivers the message from the
Kafka Topic to the Knative Service component.

C.2.4 Integrating Quantum with existing Enterprise workloads

The proposed framework aims to standardize the interaction of an existing infrastruc-
ture with Quantum Computing platforms, in our case IBM Quantum, leveraging the
most used open-source technologies. The general idea implemented is to decouple all
the components of the framework and isolate, using containers, the components which
interact with IBM Quantum. In addition to this, as introduced above, we automated the
provisioning process accordingly to the latest Infrastructure-as-Code (IaC) trends. Fig. C.2
reports the proposed integration flow.

IBM 
Quantum

Quantum Lab
Devs

Qiskit
Local

Quantum 
Serverless

Qiskit
Runtime

Customer domain Quantum domain

Existing Classical
Workload

New Classical
Workload

Config DB

Knative

Kafka 
Cluster

FrontEnd

Queue Mgr

OpenShift

...

GUI

REST 
API

Cloud domain

Quantum flow
Development flow
Integration flow
OpenShift flow
Polling flow

Figure C.2: Positioning of the proposed integration framework in the Qiskit technological envi-
ronment. Customer domain refers to all private environments, that can be positioned on a Customer
premises, a Public Cloud or a Hybrid/Multi Cloud environment. The Cloud domain refers to the
Qiskit environment located on IBM Cloud. As Quantum domain we refer to the Quantum Data-
center inside IBM facilities. Our framework (in red) can help integrating classical applications or
workloads with a quantum backend, to expand the computational possibilities.

C.2.5 Framework components

We developed a quantum application framework that aims to standardize the interac-
tion of pre-existing software infrastructure with IBM Quantum resources, using common
open-source technologies like RedHat OpenShift Container Platform and Apache Kafka.
The framework consists of five main components, outlined below:

• Frontend: this is the primary entry point for this framework, where the user inputs
the request to run a certain quantum algorithm, specifies whether the circuit will
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run on a simulator or real quantum device, and receives a client ID and job ID for
tracking. The main role of this component is to gather these inputs and transform
them into a standard file format that will interact with the rest of the framework
components. In the demo deployed on IBM Cloud, the frontend is just a simple
Java 1 application with some static HTML 2 and JS resources that provide a web
interface for users. Once the user input has been processed by the quantum system,
the result of the computation is sent back to the frontend for the user to see.

• Kafka Cluster: built by Apache Kafka [222], a distributed open-source system for
creating real-time streaming data pipelines and streaming applications, the Kafka
Cluster is the heart of the communication that occurs between each of the frame-
work components. Whenever we need to move information from one component
to another, we write it onto a Kafka Topic categories that allow us to organize the
messages to be send across the framework. For example, we use a Kafka Topic to
send the user’s request for a quantum circuit off for processing, and we use a differ-
ent Kafka Topic to send the result of a quantum computation back to the frontend
for the user to see.

• Knative Functions: Knative Functions [223] are a useful tool for building and
deploying event-driven functions, self-contained modules of code dedicated to a
specific task, with minimal overhead. In this framework, the Knative Functions
component is responsible for building the quantum algorithm, and sending the
corresponding quantum circuit to the IBM Quantum provider choosing either the
appropriate simulator or the least busy quantum device available. Once the simu-
lator or device has been chosen, the Knative Functions components defines a Qiskit
job and sends it off for execution.

• Queue Manager: it is responsible for polling the computational results from the
IBM Quantum device or simulator, and then writing those results onto a Kafka
Topic [222] that goes back to the frontend component for the user to see.

• Cloudant DB: a database solution that can store the configuration of the frame-
work for future use. We chose to use Cloudant DB [224], a managed solution for
data storage. The data model consists of one collection, named Config, that contains
the parameters that allow the frontend to call the backend. This approach makes
possible to add other quantum applications by simply adding multiple Config files
to the database.

C.2.6 Conclusions

The proposed quantum application framework addresses many of the challenges that
developer organizations may face when attempting to integrate quantum computation

1Programming language released in 1996, designed to be used within the Java Platform, suite of programs
facilitating the development and the deployment of softwares.

2The HyperText Markup Language is the standard markup language to develop browser-based user inter-
faces. It can be integrated by other formatting languages like Cascading Style Sheets (CSS) and scripting
languages such as JavaScript (JS).
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into classical software architectures. The general idea behind our strategy was to decou-
ple all the framework’s components, and then use containers to isolate the components
that interact with quantum resources. This separation allows us to easily get around the
limitations of various quantum providers.

The use of Knative Functions also helps us mitigate some of the challenges of work-
ing with quantum systems, such as their large processing times. This makes it easier
to process multiple user inputs in quick succession. Our flexible architecture allows
developers to focus exclusively on the logic of their application without worrying about
preparing runtimes, managing deployment, or directly facing underlying infrastructure.
An approach like this could be vital in order to allowing quantum adoption in the next
years.

This framework is the successor to a similar project first proposed by our team (Ref. [225]), which
was published as disclosure in 2019 (Ref. [226]).

Part of the content of this work has also been published in arXiv:2107.02007 (Ref. [51]).

https://arxiv.org/abs/2107.02007
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