
UNIVERSITÀ DEGLI STUDI DI PARMA

DOTTORATO DI RICERCA IN
“TECNOLOGIE DELL’INFORMAZIONE”

CICLO XXXV

Deep Reinforcement Learning in Action:
Innovative Approaches to Control a Real

Self-Driving Vehicle

Coordinatore:
Chiar.mo Prof. Marco Locatelli

Tutore:
Chiar.ma Prof.ssa Monica Mordonini

Dottorando: Maramotti Paolo

Anni 2019/2022





A Federica





Contents

Introduction 1

1 Autonomous Driving 7
1.1 A Century of History . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Levels of Driving Automation . . . . . . . . . . . . . . . . . . . . 14

1.3 Software System Architecture . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Modular Architecture . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 End-to-End Architecture . . . . . . . . . . . . . . . . . . . 24

2 Learning Approaches 25
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . 27

2.1.3 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . 28

2.1.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . 29

2.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Convolutional Neural Network . . . . . . . . . . . . . . . . 35

2.2.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . 36

2.2.3 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.4 Variational Autoencoder . . . . . . . . . . . . . . . . . . . 40

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 41



ii Contents

2.3.1 Markov Decision Process . . . . . . . . . . . . . . . . . . 44

2.3.2 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.3 Bellman Expectation Equation . . . . . . . . . . . . . . . . 46

2.3.4 Model-free and Model-based reinforcement learning . . . . 46

2.3.5 Elementary Solution Methods . . . . . . . . . . . . . . . . 46

2.3.6 Policy Gradient Method . . . . . . . . . . . . . . . . . . . 48

2.3.7 Actor-Critic Method . . . . . . . . . . . . . . . . . . . . . 50

2.3.8 Asynchronous Advantage Actor-Critic . . . . . . . . . . . . 51

2.3.9 Delayed Asynchronous Advantage Actor-Critic . . . . . . . 53

2.4 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Simulators 55
3.1 Reinforcement Learning Simulators . . . . . . . . . . . . . . . . . 56

3.2 Autonomous Driving Simulators . . . . . . . . . . . . . . . . . . . 58

3.2.1 Realistic Graphic Simulators . . . . . . . . . . . . . . . . . 59

3.2.2 Synthetic Simulators . . . . . . . . . . . . . . . . . . . . . 61

3.3 Multi-Agent Traffic Simulator and HD Simulator . . . . . . . . . . 62

4 Intersection Handling using Deep Reinforcement Learning 65
4.1 Intersection Handling Problem . . . . . . . . . . . . . . . . . . . . 66

4.2 Environment Definition . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Training Considerations . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Algorithm and Neural Network Architecture . . . . . . . . . . . . . 75

4.5 Reward Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 System Testing . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Comparison with TTC method . . . . . . . . . . . . . . . . 80

4.6.3 Test the Right of Way Rule . . . . . . . . . . . . . . . . . . 82

4.6.4 Test on Real Data . . . . . . . . . . . . . . . . . . . . . . . 84

5 Deep Reinforcement Learning Planner 87
5.1 Environment Definition . . . . . . . . . . . . . . . . . . . . . . . . 88



Contents iii

5.2 Neural Network and Training Settings . . . . . . . . . . . . . . . . 90
5.3 Reward Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Deep Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Test on Real Data . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2 Speed Limits . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.3 Imitation Learning Pre-training . . . . . . . . . . . . . . . 100

6 World Models for Autonomous Driving 105
6.1 World Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 VAE-Model . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.2 MDNRNN-Model . . . . . . . . . . . . . . . . . . . . . . 110
6.1.3 Control-Model . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.1 VAE-Model Tests . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 MDNRNN-Model Tests . . . . . . . . . . . . . . . . . . . 116
6.2.3 Control-Model Tests . . . . . . . . . . . . . . . . . . . . . 119

Conclusion 121

Bibliography 125





List of Figures

1 Critical traffic situation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Linrrican Wonder radio-controlled vehicle . . . . . . . . . . . . . . 8

1.2 Firebird III, a General Motors model from 1958 . . . . . . . . . . . 9

1.3 VaMoRs and Vamp, the first two models of self-driving vehicles set
up by Ernst Dickmanns . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 ARGO, Lancia Thema equipped with two cameras set . . . . . . . 11

1.5 Winners of the Demo II of the DARPA Grand Challenge . . . . . . 12

1.6 VisLab Intercontinental Autonomous Challenge . . . . . . . . . . . 13

1.7 Standard SAE J3016: “Levels of Driving Automation” . . . . . . . 15

1.8 Waymo Robotaxi . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Modular Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.10 End-to-End Architecture . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Russian nesting dolls of Artificial Intelligence . . . . . . . . . . . . 29

2.2 Neural Network Structures . . . . . . . . . . . . . . . . . . . . . . 30

2.3 McCulloch-Pitts Model . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Convolutional Neural Network Architecture . . . . . . . . . . . . . 35

2.6 RNN Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Comparison between RNN Unit and LSTM Unit . . . . . . . . . . 38

2.8 Autoencoder Architecture . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Variational Autoencoder Architecture . . . . . . . . . . . . . . . . 40



vi List of Figures

2.10 Reinforcement Learning System . . . . . . . . . . . . . . . . . . . 43
2.11 Asynchronous Advantage Actor-Critic Architecture . . . . . . . . . 52

3.1 Carla simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 SUMO simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Top-view of a real roundabout and its synthetic representation . . . 62
3.4 Top-view of a roundabout represented on a synthetic simulator based

on HD maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Time-to-collision concept representation . . . . . . . . . . . . . . . 67
4.2 Synthetic representations of three intersections used for training agents

to execute the crossing maneuver . . . . . . . . . . . . . . . . . . . 70
4.3 Input channels perceived by agents in the three intersection scenarios 71
4.4 Neural network architecture used for the intersection handling task . 76
4.5 Test scenario used for comparison with the time-to-collision method 83
4.6 Real intersections contained in the inD dataset . . . . . . . . . . . . 85

5.1 Mapped area of a neighborhood of Parma . . . . . . . . . . . . . . 88
5.2 Synthetic representation of the top-view of a training scenario and

the surrounding view perceived by the agent . . . . . . . . . . . . . 89
5.3 Neural network architecture used for training the Deep Reinforce-

ment Learning planner . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Comparison between simulated agents, real vehicle and deep response

model behaviors executing target actions . . . . . . . . . . . . . . . 96
5.5 The distance to the center lane and the steering angle output predicted

by two different policies, with and without deep response model . . 99
5.6 Example of behaviour of the Reinforcement Learning planner de-

ployed in the real autonomous vehicle . . . . . . . . . . . . . . . . 101
5.7 Comparison between a pure RL training and another using a pre-

training through Imitation Learning . . . . . . . . . . . . . . . . . 103

6.1 World Models architecture . . . . . . . . . . . . . . . . . . . . . . 108
6.2 RNN with a Mixture Density Network output layer . . . . . . . . . 111



Elenco delle Figure vii

6.3 Architecture for the control part of the version of World Model that
we adapted to autonomous driving . . . . . . . . . . . . . . . . . . 113

6.4 Results of VAE-Model Tests . . . . . . . . . . . . . . . . . . . . . 115
6.5 Baseline test architecture for MDNRNN-Model . . . . . . . . . . . 116
6.6 Baseline test results for MDNRNN-Model . . . . . . . . . . . . . . 118
6.7 Dream test architecture for MDNRNN-Model . . . . . . . . . . . . 119
6.8 Dream test results for MDNRNN-Model . . . . . . . . . . . . . . . 120





Introduction

Since ancient times, humankind has always sought solutions to make travel faster
and more comfortable. It started with the horse and chariot, and then moved through
steam or coal powered means of transportation to the present day with vehicles pow-
ered by gas, petrol or electricity. Over time and especially in the last century, progress
in mobility has been steady and exceptional and this is evidenced by the density of
vehicles that fill populated areas on a daily basis. However this exaggerated amount
of transportation has catastrophic consequences for the environment, because of the
pollution they generate. For this reason and also because traffic accidents determined
by human error are one of the primary causes of death, the autonomous driving has
become worldwide topic of interest in recent years. Many major automotive com-
panies and universities are investing large amounts of capital to achieve this goal as
soon as possible.
This chapter introduces the concept of autonomous driving, focusing mainly on the
benefits and difficulties involved in this technology. Then a brief overview of the
research work done during these three years will be given.

Benefits and Difficulties of Autonomous Driving

Autonomous Car, or also Driverless or Self-Driving Car are terms that identify vehi-
cle that can move autonomously without the intervention of a human driver. In these
cars, the driver is essentially replaced by a technological system that allows it to move
in total autonomy. That of the self-driving car is the image which most comes to mind



2 Introduction

when thinking about the future of four-wheelers. A future that in some respects is al-
ready materializing nowadays. In recent years, the investments of the major automak-
ers in the field of autonomous driving have been enormous. Nowadays, particularly
advanced driver assistance systems can be found on the cars driving in our cities,
laying the groundwork for autonomous driving.
Autonomous vehicles rely on both traditional algorithms and advanced Artificial In-
telligence (AI) systems that enable them to "understand" and "interpret" the environ-
ment and interact with it. In order to work, an autonomous driving system must be
able to "see" what is happening around the car. To do this it takes advantage of the
combined work of several tools, first and foremost, sensors. The ones mainly used
are three: radar, ultrasound and lidar. In addition to the combination of some or all of
these sensors, autonomous vehicles are usually equipped with cameras. If the cam-
eras are stereoscopic, they behave exactly like human eyes; indeed, they are able to
calculate the distance to objects due to the ability to analyze perspective. All the data
obtained from these instruments, together with advanced computer vision functions
are used to create a constantly updated map of their surroundings. From it, the vehi-
cle is then able to autonomously identify obstacles and signs, define the appropriate
route to follow, and drive along it correctly.
Autonomous vehicles, by now, are pure reality: it is no longer a question of won-
dering about the possibilities of creating them, but, simply, when they will begin to
circulate on our streets. The fact that even today the spread of self-driving cars is ex-
tremely limited can be attributed to the fact that a good portion of the population has
not yet accepted this technology. Indeed, at present, there are still too many critical
issues related to autonomous driving. Mainly those related to ethics and responsi-
bilities. Before dwelling on this fundamental point we will go over the benefits and
difficulties involved in autonomous driving.

Certainly, the main benefit that would be achieved through autonomous driving
would be increased safety in travel, greatly reducing the likelihood of accidents. A
system like this is not subject to fatigue or distractions as a human being is, and, in
addition, it is less subject to environmental conditions (low light, fog, rain, snow)
because it may be able to adapt. In addition to these important factors, it must also



Introduction 3

Figure 1: Critical traffic situation that mirrors what happens in most cities around the
world.

be taken into account that with new technologies we have come to obtain vehicles
that are able to make decisions with far greater responsiveness than a human driver.
A person has limited senses and reflexes that vary depending on certain factors, such
as age, level of fatigue, and others. In contrast, an autonomous vehicle has a sensor
composition that determines these factors and makes it generally better than a human.
In this regard, [1] , in a 2014 study, estimated that the number of traffic fatalities per
day is a figure of around 3000 cases, with more than half of the people involved not
being in a car. Besides, according to [1], unless effective action is taken, with the
increase in stress and technological means such as smartphones, this number is set to
rise to more than 2.4 million per year, becoming the fifth leading cause of death in
the world.

In addition to this factor, which is certainly the most obvious one, there are also
many other benefits if we came to have autonomous driving in our daily lives. First of
all, there would be a reduction in congestion on the roads (Fig. 1) due to better traffic
management skills than human drivers, especially if car sharing and improved public



4 Introduction

transportation services also take hold in parallel [2]. As a consequence, there would
also be a drastic decrease in fuel consumption and thus pollution, which is a topic
of very current interest. Also not insignificant is the amount of time that on average
a person could save; indeed, the figure of the driver during the commute would no
longer have the need to drive, but could occupy the time at his or her leisure like
other passengers. A study conducted by CSA Research in collaboration with Citroen
in 2016 estimates that on average in Europe each person spends 4 years and 1 month
of his or her life driving.

An important benefit to note is also to give the possibility of being more au-
tonomous to the elderly and the disabled, who, thanks to this technology, would be
able to move freely with more safety. In addition to these direct consequences, there
are also countless other indirect consequences, such as those related to the raising
of speed limits (due to the increased active safety) to the abolition of age limits for
driving (even a single underage passenger can travel, since he or she has no respon-
sibility) or even to the reduction of signage (information is acquired directly from
the on-board computer system). Given the rising cost of living in recent years, an
innovation such as this could also lead to reducing a family’s automobile costs. Less
accidents would also decrease the cost of repairing damage, and even in the future
might even lead to the abolition of insurance. Of course, with the introduction of auto-
mated vehicles into an environment where it is essential to have the readiness to react
appropriately to external stimuli, it carries risks of considerable ethical significance
as well. Special situations and contingencies are to date the main object of study and
the main issue in autonomous driving. This is because the algorithm that would make
it possible to avoid any kind of accident would have to depend on infinite factors and
conditions, and for that reason it is very complex to develop. Lately there have been
some fatal accidents caused by these vehicles, such as one where the autonomous
car failed to avoid a woman who was jaywalking and in total darkness, causing her
death [3]. In addition to algorithms, it is necessary also to take into account that any
one component of a vehicle could malfunction, and this could compromise the en-
tire system. For these reasons, there are still no fully automatic vehicles that can be
purchased by individuals and used on the road.



Introduction 5

In addition to this, it must also be taken into consideration that with the advent of
these systems there would be a reduction in drivingrelated jobs (taxi drivers and truck
drivers). Among the risks to be considered is the danger of hacking. Like any elec-
tronic device connected to a network, similarly the self-driving car is also attackable
by hackers. Malicious third parties could "take over" the vehicle or modify normal
driving functions, changing the temperature inside the cabin or governing the brake
and accelerator. In an even worse scenario, terrorist and criminal activities could use
these vehicles for attacks or to kill someone.

Ultimately, self-driving cars will definitely be part of our future, with their pros
and cons, although it must be seen how much more time will be needed in order to
improve and refine this new technology. Many lovers of "pure" driving are skeptical
of such a change as they would like to retain the possibility of being able to drive
themselves, thus maintaining those sensations that can only be experienced behind
the wheel of one’s own car. Now all that remains is to find the perfect algorithm by
which autonomous cars can finally avoid any kind of accident.

Research Overview

The main theme of the research project is the development of Deep Reinforcement
Learning and Imitation Learning algorithms in the field of autonomous driving in
urban environments. Initially, we focused on solving the problem of crossing inter-
sections. We implemented an algorithm that allows the agents involved to negotiate
with each other and learn to respect the right of way rule. The system directly returns
the acceleration and steering angle values that the vehicle must use to cross the inter-
section correctly and safely.
Then, we developed a Deep Reinforcement Learning planner, capable of driving com-
fortably in both a simulated and real obstacle-free environment. We showed that the
system has good generalization capabilities and that it works even in areas on which
it has not been directly trained. Moreover, in order to deploy the system on board
of the real self-driving car and to reduce the gap between simulated and real-world
performances, we also develop a module represented by a tiny neural network able to



6 Introduction

reproduce the real vehicle dynamic behavior during the training in simulation.
In the last part of the project, we tested a different architecture than that used in previ-
ous work, attempting to make the system more robust by splitting the neural network
used into several separately trained components. This architecture also has the ca-
pability of generating a model of the environment that it then exploits to predict the
future. In this way, our system is able to evaluate what action to take now based on
what it thinks might happen in the future.



Chapter 1

Autonomous Driving

In this chapter we will discuss in more detail the topic of autonomous driving, which
we have already defined as a system that has the capabilities to replace the driver
of a vehicle by performing driving tasks itself. Since such a system must operate
in a real-world environment whose dynamics are unpredictable, it therefore needs
to be extremely robust and well-structured. The creation of a vehicle that can drive
autonomously involves, first of all, the selection of suitable hardware, especially sen-
sors and cameras. In addition, it requires the development of software that can process
the collected data and turn it into useful information to define the best actions to per-
form. In this chapter we will cover the history of autonomous driving, showing all the
progress that has been achieved to date. Next, we will define the six canonical lev-
els of automation, which have been identified to quantify how autonomous a given
vehicle actually is. At the end of this chapter we will also discuss in more detail the
different types of sensors that are generally used, and finally, we will also describe
the typical architecture of an autonomous vehicle.

1.1 A Century of History

Contrary to what many people think, Google and Tesla are not the pioneers of au-
tonomous driving. Autonomous vehicles have a century-long history, starting with



8 Chapter 1. Autonomous Driving

Figure 1.1: Linrrican Wonder, the radio-controlled vehicle that the Houndina Ra-
dio Control company developed in 1925 for the first concrete demonstration of au-
tonomous driving.

the earliest radio-controlled models and continuing to the present with complex sys-
tems based on artificial intelligence and computer vision. For more than a hundred
years, humans have dreamed of and designed a vehicle that can accelerate, brake,
and safeguard the security of passengers and pedestrians autonomously. New tech-
nologies and progress have made feasible and less science fiction what was thought
long ago. The first concrete demonstration of autonomous driving was in 1925, in
New York, when the American radio equipment company Houdina Radio Control
presented a radio-controlled vehicle named the Linrrican Wonder (Fig. 1.1). It was
a Chandler accessorized with a radio antenna, which picked up impulses sent by an
operator located on another vehicle and turned them into controls that allowed move-
ment. The following year there was a similar experiment in Milwaukee, witnessed by
newspapers of the time, which dubbed the vehicle the Phantom Auto. Thereafter for
a decade or so there was no further relevant news about these technologies until pro-
totypes of driverless cars and cabs began to make their way with the aim of reducing
traffic congestion in American cities.



1.1. A Century of History 9

Figure 1.2: Firebird III, the model developed by General Motors in 1958 with the first
cruise control system.

In 1939, at the New York World’s Fair, General Motors presented its "Futurama"
project, where an environment populated by radio-controlled cars driven by electro-
magnetic fields was showcased. The idea was simple: you would drive the car to the
entrance of a highway, then engage the autopilot. The vehicle would stay in its own
lane until the exit. Then again a halt in progress, probably caused by World War II.
New designs are developed only in 1953 from the collaboration between RCA Labs
of New York and General Motors. The prototype they made and unveiled in 1958 was
capable of covering a 121-meter road. Its operation was based on a network of sen-
sors placed in the asphalt that were capable of controlling the vehicle’s actuation and
determining the presence and speed of other obstacles along the way. Also in 1958
General Motors introduced a model called the Firebird III (Fig. 1.2) equipped with an
early cruise control system, which allowed the car to travel on highways without the
assistance of a driver. Despite these early achievements exclusively in the U.S., the
first fully autonomous vehicle capable of moving without external auxiliary systems



10 Chapter 1. Autonomous Driving

Figure 1.3: The vehicle on the left is VaMoRs, a Mercedes van set up by Dickmanns
and his team. It dates back to 1986 and is considered the first autonomous vehicle
capable of moving without external auxiliary systems. In contrast, the figure on the
right shows Vamp, another autonomous car model developed in 1994 also by the
collaboration of Mercedes and Dickmanns.

took shape in Germany. Ernst Dickmanns ([4]) with his team from the University of
Munich presented "VaMoRs" in 1986 (Fig. 1.3), a Mercedes-Benz van adapted for
this purpose. The van was able to move by processing data from its neighborhood,
captured by the various cameras and sensors with which it was equipped.

Great strides were then made when the Eureka Prometheus Project was launched
in 1987, a funding program that allocated about 750 million euros for projects in the
field of autonomous driving. With these funds in 1994 Ernst Dickmanns ([5]) again in
collaboration with Mercedes-Benz created twin vehicles, Vamp (Fig. 1.3) and Vita-2.
Together they traveled many kilometers on highways in varying traffic conditions,
reaching up to 175 km/h and experimenting with driving in traffic resulting in lane
changes and overtaking. Sometimes with some man-made adjustments. In 1995 an-
other major step was taken, the introduction and use of the first neural networks for
autonomous driving. In the Navlab project ([6], [7]), Carnegie Mellon University cre-
ated a prototype that could drive on the road in which the accelerator and brake were
controlled by a human, but the steering wheel by a neural network.

Italy has also had its own role on the subject of autonomous driving. In 1998 the
Department of Information Engineering of the University of Parma, with the work of



1.1. A Century of History 11

Figure 1.4: The picture represents ARGO, the autonomous vehicle developed in 1998
by Broggi and his team at the University of Parma. A Lancia Thema capable of
understanding its surrounding thanks to stereoscopic vision algorithms.

Alberto Broggi ([8]) developed ARGO (Fig. 1.4), a Lancia Thema equipped with two
low-cost video cameras. Thanks to stereoscopic vision algorithms, it is able to under-
stand its surroundings; especially it is able to recognize road signs, lane markings,
possible obstacles and other vehicles. The project’s apotheosis was the MilleMiglia
in Automatic, a 1900-kilometer journey that lasted 6 days on the roads of northern
Italy. The car operated in fully autonomous mode for 94% of the route.

Big improvements in autonomous driving research comes with the Demo I, Demo
II and Demo III competitions launched between 2004 and 2007 by the Defense Ad-
vanced Research Projects Agency (DARPA), the most prominent research organiza-
tion of the United States Department of Defense. Large funds were put up for grabs
for the winner. These kinds of competitions attracted many researchers and compa-
nies from all over the world. In the first two competitions (Demo I and Demo II)
the goal was to create an autonomous vehicle capable of driving on difficult off-road
terrain. The competition in both cases was held in the Mojave Desert in California
and consisted of driving over 200 km in these rugged terrains. The Demo I ([9]) was
a complete failure, none of the vehicles completed the race. The best one managed
to cover only 12 km of the course before getting hung up on a rock after making a



12 Chapter 1. Autonomous Driving

Figure 1.5: Three of the five vehicles that finished Demo II of the DARPA Grand
Challenge. On the left the blue vehicle is Stanley, the overall winner from Stanford
University’s Thrun team. In the center and right, the two red vehicles are Sandstorm
and H1ghlander, which finished second and third, respectively. These two vehicles
were developed by Carnegie Mellon University.

switchback turn. Demo II went much better, five vehicles successfully completed the
race. The winner was "Stanley" a modified Volkswagen Touareg (Fig. 1.5) proposed
by Stanford University ([10]).
Demo III was held in 2007 and no longer consisted of driving on difficult off-road
terrain, but was a challenge in an urban setting. Participating vehicles had to be able
to comply with traffic regulations and drive through traffic while avoiding not only
other vehicles, but also objects in the middle of the roadway. In this case the winner
was "Boss" a Chevy Tahoe prototype from Carnegie Mellon University ([11]).



1.1. A Century of History 13

Figure 1.6: This image represent the fleet of four autonomous vehicles and the team
that drove from Parma to Shanghai in the VisLab Intercontinental Autonomous Chal-
lenge (VIAC).

In 2008, the Netherlands introduced one of the first driverless public transporta-
tion systems, the ParkShuttle, while, also in the same year, Canadian mining company
Rio Tinto Alcan began testing the Komatsu Autonomous Haulage System, the first
fully automated construction vehicle.

Also Broggi (Italy) with his startup VisLab took on a challenge called VIAC (Vis-
Lab Intercontinental Autonomous Challenge) in which he and his team built a fleet of
four autonomous vehicles that undertook a 3-month journey from Parma to Shanghai
([12], [13], [14]). Each vehicle was equipped with a total of seven cameras (5 forward
and 2 backward looking), and four laserscanners with different characteristics. The
complexity and magnitude of this challenge lay mainly in the plurality of scenarios,
situations, environments, roads, and weather conditions they encountered along the
way. Despite the countless difficulties, the four vehicles performed excellently and
reached China almost completely on their own.



14 Chapter 1. Autonomous Driving

After this important Milestone the rest is recent history in which Google, Uber,
Lyft, Tesla, and the major automakers are battling it out in a race toward the future.
To date, thanks to artificial intelligence and technological progress, we already have
very good systems with vehicles capable of autonomous driving in any traffic and
environmental conditions. However, the next step that will allow us to commonly see
these autonomous vehicles driving on the streets will only occur when the various
nations organize themselves to have infrastructure and legislation that will allow it
and, above all, when humankind is able to accept this technology.

1.2 Levels of Driving Automation

In the field of autonomous driving, there is an organization called SAE International,
which is responsible for developing and defining the standards by which the level
of automation of a given vehicle can be defined. It recently published a visual table
(Fig. 1.7) with the purpose of clarifying and simplifying the standard J3016 "Levels
of Driving Automation". This standard defines the levels of driving automation, from
level 0 SAE, which refers to a vehicle with no automation, to level 5 SAE, which
corresponds to complete vehicle autonomy. Let us now look in detail at the different
levels:

• Level 0: Corresponding to a vehicle that has no automatics, every movement
of the car is due to a command given by the driver. The only exception is
automatic emergency braking, which stops the car’s movement when sensors
detect an obstacle in front of the vehicle (mandatory technology for vehicles
registered from 2022). Also included in Level 0 are blind spot warning, which
alerts the driver if another vehicle is in the rear-view mirror blind-spot, and lane
departure warning, which warns of inadvertent occupation of the oncoming
lane.

• Level 1: It contains those technologies that are supportive to the driver for steer-
ing or acceleration (but not simultaneously). Belonging to this category are the
lane centering system, to keep the car in its lane, adaptive cruise control, to



1.2. Levels of Driving Automation 15

SAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

• lane centering

 OR

• adaptive cruise 
control

• local driverless 
taxi

• pedals/
steering 
wheel may or 
may not be 
installed

• lane centering

  AND

• adaptive cruise 
control at the 
same time

• same as 
level 4, 
but feature 
can drive 
everywhere 
in all 
conditions

• automatic 
emergency 
braking

• blind spot 
warning

• lane departure 
warning

• traffic jam 
chauffeur 

You are driving whenever these driver support features 
are engaged – even if your feet are off the pedals and 

you are not steering

You are not driving when these automated driving 
features are engaged – even if you are seated in 

“the driver’s seat”  

These automated driving features 
will not require you to take 

over driving

You must constantly supervise these support features; 
you must steer, brake or accelerate as needed to 

maintain safety

What does the 
human in the 
driver’s seat 
have to do?

Example
Features

When the feature 
requests,

you must drive

These are automated driving features
These features 

provide 
steering 

OR brake/
acceleration 
support to 
the driver

These features 
provide 
steering 

AND brake/
acceleration 
support to 
the driver

These features can drive the vehicle 
under limited conditions and will 

not operate unless all required 
conditions are met

This feature 
can drive the 
vehicle under 
all conditions

These features 
are limited 

to providing 
warnings and 
momentary 
assistance

These are driver support features

What do these 
features do?

SAE 
 LEVEL 0TM

SAE 
 LEVEL 1TM

SAE 
 LEVEL 2TM

SAE 
 LEVEL 3TM

SAE 
 LEVEL 4TM

SAE 
 LEVEL 5TM

Copyright © 2021 SAE International. 

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here:  sae.org/standards/content/j3016_202104

Figure 1.7: This visual table represents the SAE standard J3016 in which the 6 levels
of driving automation are defined.

keep the vehicle at a certain speed, but without colliding the vehicle in front of
it.

• Level 2: It is assigned to those vehicles that simultaneously have both lane
keeping and autonomous acceleration capabilities. So if a vehicle has both lane
centering and adaptive cruise control, it belongs in this category. To date, a
large proportion of the cars that can be purchased have the option of integrating
systems to make it level 2.

• Level 3: At this level, driving begins to become truly autonomous, although
the driver is still in charge of the vehicle and obliged to intervene in case of



16 Chapter 1. Autonomous Driving

problems or malfunction of an electronic system. It combines some advanced
driving assistance systems (ADAS) with functionality achievable through neu-
ral networks. An example of Level 3 autonomous driving technology is what
is known as traffic jam assist, or traffic jam chauffeur: when in the middle of
a traffic jam, the driver activates the system and, until it deactivates, traffic
jam assist takes control of the accelerator, brakes, and steering and moves the
car forward to the end of the traffic jam. Some mid- to high-end cars already
integrate this feature.

• Level 4: It is the first level in which the driver becomes a passenger and no
longer has to take command of the car, such that the vehicle no longer needs
to have pedals and steering. An example of Level 4 autonomous driving are
Robotaxis, which are driverless cabs that Waymo is experimenting with in the
United States. The only real limitation of Level 4 is that the automation systems
cannot be activated under all conditions, but only when specific requirements
are met.

• Level 5: With level five, the automation systems are always active in all condi-
tions and without limits. As with four, there is no need for pedals and steering
wheel for the driver because his or her intervention is not required.

To date, we are still a long way from being able to see a Level 5 system moving
freely through the streets. Both because there are still limits at the technological level
and on algorithms, and because there are still bureaucratic and legislative hurdles to
overcome. Suffice it to say that in Italy, for example, only as of July 14, 2022, has the
possibility of using Level 3 ADAS in vehicles been unlocked and thus achieving not
quite autonomous driving, but advanced assisted driving. Despite this, some respon-
sibilities may still fall on the driver, who must still intervene when needed. In fact, not
only Italy is in this situation, but most European states because even at the legislative
level, Europe has not yet come up with a common instrument to enable automated
driving on public roads, delegating the individual member states to enact laws and
regulations on the subject and assigning responsibility directly to the manufacturers.
As also mentioned earlier, until society is able to fully accept this technology there



1.3. Software System Architecture 17

Figure 1.8: The Waymo Robotaxi, with a level 4 automation system.

is unlikely to be complete progress that would lead to seeing Level 5 systems on the
road.

1.3 Software System Architecture

When we want to implement software for an autonomous driving vehicle we rely
mainly on two types of architectures: a modular one, which is composed of specific
systems for localization, mapping, planning and control, and one defined end-to-end
in which the information obtained from sensors is directly turned into actuation val-
ues, with a single compact system. Before describing these two architectures in detail
let us take a look at what provides the input data to both, namely the sensor compo-
nent of the system.

1.3.1 Sensors

Capturing the environment, as we humans do with our senses, is essential for cars
to be able to drive autonomously. Modern vehicles are therefore equipped with a



18 Chapter 1. Autonomous Driving

wide variety of sensors that help them detect their surroundings and thus support the
driver or even relieve him of some tasks. The most important sensors for sensing the
environment are cameras, radar, sonar, and LiDAR sensors, let us now look at them
in a little more detail:

• Cameras: this is the only one of those previously mentioned that does not rely
on the time-of-flight principle and at the same time is the only one that allows
a visual representation of the world in color. This also involves additional in-
formation related to texture and contrast on objects. In the field of autonomous
driving, for example, it allows the identification and differentiation of two traf-
fic signs with the same shape, or distinguish static objects from moving objects.
In addition, it is a sensor that is generally inexpensive, with small and compact
size and high resolution. However, it also has weaknesses; first, it is based on a
passive measurement principle, meaning that objects are detected only if they
are illuminated. Therefore, the reliability of the cameras is limited in harsh en-
vironmental conditions such as snow, ice or fog and in the dark. In addition, the
cameras do not provide distance information. Obtaining 3D images requires at
least two cameras, as in the case of stereo cameras, or image recognition soft-
ware, which requires high computational performance ([15], [16], [17]).

• Radar: In recent decades they have also been installed in vehicles to measure
distances in order to obtain reliable data for systems such as the spacer and the
emergency brake assistant, regardless of weather conditions. Radar technology
is based on the time-of-flight principle. Sensors emit short pulses in the form
of electromagnetic waves (radio waves), which propagate almost at the speed
of light. As soon as the waves hit an object, they are reflected and bounce back
to the sensor. The shorter the time interval between transmission and reception,
the closer the object. Based on the speed of wave propagation, the distance to
the object can be calculated and determined with great accuracy. By putting
together several measurements, vehicle sensors can also determine the speed.
This technology enables driver assistance systems such as adaptive cruise con-
trol and collision avoidance. Radar sensors are robust, inexpensive, and usually



1.3. Software System Architecture 19

provide reliable data even in adverse weather conditions. However, they have
low resolution and lack color; they work very well for short distances, but with
greater distances they struggle to differentiate different objects and classify
them ([18], [19]).

• Sonar: Like radar, sonar is also based on the time-of-flight principle. In this
case, sound waves, inaudible to the human ear, are emitted at a frequency of
20,000 Hz. Apart from parking assistance, sonar sensors are also used to mon-
itor the blind spot and for emergency brake assistants. Ultrasonic sensors are
robust and provide reliable distance data, both at night and in fog. They are
also inexpensive and can detect objects, regardless of material or color. How-
ever, the range of these vehicle sensors is limited to less than 10 meters, which
means that this technology can only be used at close range ([20]).

• LiDAR: This stands for "light detection and ranging", and they are sensors that
can be used for both short- and long-range applications. Higher levels of auton-
omy are thought to be possible with the use of LiDAR technology ([21], [22],
[23]). These sensors are also based on the principle of time-of-flight. Instead
of radio or ultrasonic waves, however, they emit laser pulses that are reflected
by an object and picked up again by a photodetector. LiDAR sensors emit up
to one million laser pulses per second and summarize the results in a high-
resolution 3D map of the environment. Because of the level of information in
these so-called point clouds, objects cannot only be recognized but also classi-
fied. One can distinguish a pedestrian from a cyclist, for instance. Long-range,
durable LiDAR sensors deliver accurate information that is mostly unbiased
by environmental circumstances, allowing vehicles to make the best driving
choices. In the past, these sensors were frequently highly pricey, mostly be-
cause of the complicated and labor-intensive design of the mechanically com-
ponents. However, thanks to their solid-state design, which is becoming in-
creasingly established, the cost of high-resolution 3D sensors is being reduced
quite considerably.

All of these sensors clearly have strengths and weaknesses, and for that reason, gen-



20 Chapter 1. Autonomous Driving

Figure 1.9: Typical modular architecture containing the main components of an au-
tonomous driving stack.

erally in the structural composition of a vehicle, we try to include most of them. Each
sensor will produce different data, and the vehicle’s software must be able to inter-
pret all these different data and apply what is known as "sensor fusion" ([24], [25])
to create a complete and as accurate as possible map of its surroundings.

1.3.2 Modular Architecture

Modular architecture, among the two main ones, is considered the most frequent. In
this type there are different components as shown in Fig. 1.9, namely: mapping, per-
ception, planning, control and actuation, which will be explained individually later.
In the picture, however, only the main ones have been included, these then can be
divided into many other sub-modules, or other modules can be added. The final ar-
chitecture is highly dependent on the autonomous driving task for which it is used,
the one presented is only a simplified and general form of architecture. Let us now
look at the different modules of this typical autonomous driving pipeline:

• Perception: In self-driving cars, it is nothing more than how the car perceives
and understands its surroundings. It is the most important and complex thing.
For humans it is very simple to perceive our surroundings because we have
eyes, ears, etc. and human intelligence, but for cars it is a very difficult and
complex task of taking the huge amount of data from sensors and using com-
puter intelligence to evaluate the data and derive meaning from it. The self
driving cars have four core tasks to perceive the world:



1.3. Software System Architecture 21

1. Object detection: is a computer vision technique for identifying and lo-
cating objects in an image or video. With this kind of identification and
localization, object detection can be used to count objects in a scene and
determine and track their precise location. Generally, each object that is
identified is framed by a 2D or 3D bounding box ([26]). In the field of
autonomous driving it is used, for example, to recognize other agents or
obstacles on the roadway ([27]), or to recognize traffic signs ([28]), traffic
lights, etc.

2. Classification: is defined as the process of recognition, understanding,
and grouping of objects. Classification algorithms used in machine learn-
ing utilize input training data for the purpose of predicting the likelihood
or probability that the data that follows will fall into one of the predeter-
mined categories. In the context of autonomous driving, for example, it
is used to distinguish pedestrians from bicycles, cars or other means of
transportation ([29], [30]). This enables the vehicle to understand what
kind of other elements are present around it.

3. Tracking: It means defining the trajectory of other dynamic objects on the
scene ([31], [32]). To do this, it is necessary to be able to recognize the
same object on consecutive frames of the same sequence. In most track-
ing techniques, all objects detected in a frame are given an ID and an
attempt is made to match the IDs in consecutive frames. Given that the
monitored objects may enter and exit the frame at various timestamps,
this is frequently a challenging process. They might also be occluded by
their surroundings or even by one another. Noise, sampling or compres-
sion artifacts, aliasing, or acquisition mistakes are examples of faults in
the obtained images that could lead to additional issues. Other difficul-
ties arise when accounting for variations in motion, such as when objects
are subject to rotation or scaling transformations or when their relative
movement speeds are fast. This task is therefore very complicated, but at
the same time also very important because it can aid in obstacle avoid-
ance, motion estimation, the prediction of the intentions of pedestrians



22 Chapter 1. Autonomous Driving

and other vehicles, as well as path planning.

4. Depth Estimation: This process is necessary if the sensor you are using
is the camera because the data you are getting is 2D and is obtained from
reproducing the scene on the image plane. In this case the depth dimen-
sion is lost. This type of task deals precisely with recalculating the depth
by, for example, comparing the same pixel on two consecutive frames
obtained from the same camera or on two frames obtained from different
cameras whose relative positions are known exactly ([33], [34]).

• Mapping: This module can also be redefined Localization ([35], [36]) and Map-
ping ([37]), and its main task is to estimate the state of the vehicle and the
model of the environment around it. If these two tasks are performed simulta-
neously, because, for example, the pose of the sensors is unknown, then it is
called SLAM (Simultaneous Localization and Mapping [38], [39]). Thanks to
this module, the vehicle is then able to understand where it is in the environ-
ment, and thus, consequently, to stay in its lane of travel. Also by knowing the
position of other objects relative to itself it can move without crashing. From
this we deduce the importance of accurate estimation of both the surroundings
and the state of the vehicle, because even a small error can have catastrophic
consequences. The more accurate the estimates, the better the maneuvers that
can be performed. A recent tool that certainly helps in achieving good results
in localization and mapping tasks are HD maps (High Definition Maps [40]).
These maps contain topological information that can be accurate down to the
centimeter. Moreover, being created specifically for autonomous driving they
generally contain many other map elements such as road shape, road marking,
traffic signs, barriers and much more. The vehicle, driving based on these maps
definitely has a lower error rate, not having to create the map itself, and in addi-
tion it is already aware of a lot of useful information about the road it is driving
on, but especially about the roads it will have to drive on. So for example it will
be able to brake because it knows there will be a dangerous or difficult curve.
Or it will easily be able to know the speed limits of a particular road or how



1.3. Software System Architecture 23

Figure 1.10: End-to-End architecture, allows actuation values to be obtained directly
from sensor data.

many lanes there are and how wide they are.

• Planning: Motion planning or path planning ([41], [42]) means the task of
defining a sequence of states and configurations that allow a system to move
from a given starting position to a target point while avoiding any obstacles
in the path. In the case of autonomous driving, motion planning must also
take into account other constraints, such as speed limits. For this module to
work properly, it is necessary that all the data obtained from the previous com-
ponents be as accurate as possible. Because such a system must necessarily
make high-level decisions in trajectory definition, such as entering or leaving a
roundabout, changing lanes, or overtaking.

• Control: It is simply that component that transforms the motion planning output
into actuation values for steering and acceleration or braking. It then allows
specific low-level values to be obtained from a given high-level trajectory given
to it by the previous module ([43]).

The last module of the architecture, which is called Actuation in Fig. 1.9, simply
indicates the transformation of control values into actual vehicle actions that impact
the environment.



24 Chapter 1. Autonomous Driving

1.3.3 End-to-End Architecture

Instead, this type of architecture encapsulates all the previous modules into a single
module, as in the red area of Fig. 1.10. Indeed, it allows obtaining the actuation values
to control the steering wheel, throttle, and brake directly from sensor inputs. Given its
inherent complexity, this type of architecture can only be based on the use of Deep
Learning and especially the approaches that will be described in the next chapter:
Deep Reinforcement Learning and Imitation Learning ([44], [45], [46], [47]).



Chapter 2

Learning Approaches

Recently, thanks to the increase in calculus power of the computers that are used
on autonomous vehicles, it has been possible to implement machine learning-based
algorithms to perform increasingly onerous and complex tasks. In this chapter we will
show what is meant by Machine Learning [48] and what are the main subcategories
into which it is divided. In particular, we will focus on the two approaches mainly
used in the context of this research project, namely Deep Reinforcement Learning
and Imitation Learning.

2.1 Machine Learning

Machine learning is a data analysis method that automates the construction of ana-
lytical models. It is a branch of Artificial Intelligence (AI) [49] and is based on the
idea that systems can learn from data, identify patterns independently and make deci-
sions with minimal human intervention. Artificial intelligence is an umbrella term and
refers to systems or machines that mimic human brain. The terms machine learning
and AI are often used together and interchangeably, but they do not mean the same
thing. An important distinction is that although everything about machine learning
falls under artificial intelligence, AI does not include machine learning alone. Ma-
chine learning is a specific subset of AI that trains a machine how to learn. Machine



26 Chapter 2. Learning Approaches

learning stems from the theory that computers can learn to perform specific tasks
without being programmed to do so, thanks to pattern recognition in data. It uses al-
gorithms that learn from data in an iterative way. It allows computers, for example,
to locate even unknown information without explicitly telling them where to look for
it. The most important aspect of machine learning is repetitiveness, because the more
patterns are exposed to the data, the more they are able to adapt autonomously. Com-
puters learn from previous processing to produce results and make decisions that are
reliable, replicable, and when possible generalizable. Every Machine learning project
has main elements, which combine to build a system that learns relationships between
data and stores them in a model:

• Algorithm: a set of rules, usually based on statistical methods, for extracting
recurrent patterns from data. The difference between writing code and imple-
menting logics with predetermined patterns is that the rules are not coded but
are learned from the available example data.

• Model: a representation of a real context by an algorithm with appropriate pa-
rameters.

• Training Dataset: the set of data that given to the algorithm allows optimization
of model parameters.

• Testing Dataset: the set of data that following the training phase is used to
assess the quality of the model in terms of precision and accuracy.

The learning mechanism could happen in different ways based on the task we
want to perform and on the available data; it could be supervised, unsupervised, semi-
supervised or based on reinforcement learning approach.

2.1.1 Supervised Learning

In supervised machine learning, we have a known output value in the training dataset,
and we use this information to train a model to be able to return a given output when
a new given input not present in the training dataset occurs. There are two types of
problem classes that can be solved with this type of approach:



2.1. Machine Learning 27

• Classification: consists of providing as output a discrete value, a label or cat-
egory. It classifies the required dataset into one of two (binary classifier) or
multiple labels (multi-class). Some examples of classification algorithms are
linear classifiers, decision trees and k-nearest neighbors, and in autonomous
driving they are used, for example, in the context of perception to distinguish
different road users: pedestrians, bicyclists, cars or other means of transporta-
tion; they can also be used to assess the status of a traffic light ([50], [51]).

• Regression: consists of predicting a continuous output. In this way a curve that
represents the training set data to the best possible approximation is defined.
By then mapping a new input, it is possible to obtain as output the prediction
based on this curve ([52]).

In addition to the type of output and thus the context in which they are used, classifi-
cation and regression also differ in the metrics defined to evaluate the quality of the
model. In classification, correctly predicted labels, false positives and false negatives
are counted and coefficients such as accuracy, precision, specificity, sensitivity, etc.
are constructed; while in regression, an error function is evaluated, for example Mean
Squared Error.
Another key aspect to take into account when talking about the supervised approach
is that, compared to the others, it compulsorily requires a training dataset, which the
more complete and extensive it is, the more accurate the model that can be obtained.

2.1.2 Unsupervised Learning

The unsupervised learning technique is based on the fact that you have a set of inputs
but do not know the corresponding output. The model is built only with the input data,
and the algorithm discovers hidden relationships in the data on its own. This type of
approach is used when you have a data set with no output value or label associated
with it. Thus, there are no training, validation and testing steps as in supervised; how-
ever, there are still methods to verify that the algorithm is optimized and that the
resulting model produces meaningful outputs. These algorithms are suitable for dis-
covering behaviors in the data that deviate from the usual, for discovering anomalies



28 Chapter 2. Learning Approaches

and exceptions. The two common uses of unsupervised learning are:

• Clustering: This technique is for grouping the unlabeled data based on their
similarities or differences. A cluster is thus a set of data that have similarities
with each other but, conversely, have dissimilarities with data in other clusters.
The input of a clustering algorithm is a sample of elements, while the output is a
number of clusters into which the elements of the sample are divided according
to a measure of similarity. One of the popular clustering algorithm is K-Means
where it sets aside the data points into different K groups ([53]).

• Dimensionality Reduction: This refers to representing the same data using
lesser dimensions. This is usually used while removing noisy data from an
image to improve its quality. A dataset with very large input characteristics
complicates the predictive modeling task, putting performance and accuracy at
risk. This condition is known as “the curse of dimensionality.” By reducing the
number of input features, thereby reducing the number of dimensions in the
feature space. Hence, dimensionality reduction simply means reducing the set
of features that can represent the data.

2.1.3 Semi-Supervised Learning

Semi-supervised learning is a hybrid technique between the supervised and unsuper-
vised methods. It is used when you have an input set consisting of a labeled part
of the data and an unlabeled part. Semi-supervised learning determines correlations
between data points, just like unsupervised learning, and then uses the labeled data
to label those data points. Finally, the entire model is trained based on the newly
applied labels. This type of approach has been shown to give accurate results and
is applicable to many real-world problems where the small amount of labeled data
would prevent supervised learning algorithms from working properly. This kind of
approach is widely used in the field of autonomous driving ([54], [55], [56]).



2.2. Neural Network 29

Figure 2.1: Russian nesting dolls of Artificial Intelligence

2.1.4 Reinforcement Learning

Reinforcement Learning is a learning technique that does not rely on labeled data,
but on the experience made by an agent repeating given actions over and over again
until it gets to do it to the best of its ability. A typical RL algorithm thus involves
the interaction between an agent or agents and their environment. It is based on the
trial-and-error mechanism and serves, for example, for an agent to learn to choose the
best actions to perform at a given instant in a dynamic environment. To define which
are the best there is a reward value that the agent receives as a consequence of its
actions. The higher the reward the better the choice. This approach works very well
when it has to perform a sequence of consecutive actions to achieve a given goal. We
will elaborate more on the theory of this type of approach later in 2.3.

2.2 Neural Network

Generally the words artificial intelligence, machine learning, neural networks, and
deep learning are mistakenly interchanged, each of them having a definite mean-
ing and relationship to the others. They can be thought of as each one a component



30 Chapter 2. Learning Approaches

Figure 2.2: Schematic representation of two neural network structures, in which is
shown the subdivision between input, hidden and output layers

contained in the previous one, like Russian nesting dolls (Fig. 2.1). As we defined
before, machine learning is a subfield of artificial intelligence and in turn contains
Deep Learning, the backbone of which is composed of neural networks. Let us now
see what is meant by neural networks and then we will do a more specific overview
of deep learning.

Neural network means an algorithm that can mimic the behavior of a human
brain. Specifically, it is an algorithm that can predict an outcome from a given situa-
tion, and it can do this through accumulated experience. With a neural network, it is
then possible to make a machine perform, completely autonomously, tasks that were
previously intended to be done exclusively by humans; such as, for example, in the
case of this thesis project: driving a vehicle. In the graphical and theoretical represen-
tation, a node in a neural network corresponds to a neuron in the human brain, and,
just as with neurons in the human brain, a single node does not have great capabili-
ties, but when combined together, they are able to perform complex tasks and achieve
great results. A neural network can be represented with one of the two diagrams in
Fig. 2.2. The nodes on the left indicate the input data, which can be the most varied
and correspond to information procured by the senses in the case of the human brain.
The nodes on the right, on the other hand, indicate the output, the prediction or re-
action to stimuli. Their value can be continuous, discrete, binary or categorical. The
nodes in the center correspond to the neurons in the brain and are used to "transform"



2.2. Neural Network 31

Figure 2.3: McCulloch-Pitts Model of a neural network with only a single neuron.

stimuli into reactions, that is, inputs into outputs. If the central part of the neural net-
work, that is, the part between input and output, is composed of multiple layers, as
in second network of Fig. 2.2, then we will speak of deep neural network and the
learning technique used will be deep learning. These central layers are usually called
hidden layers and make up the core of the neural network.

A neural network can be viewed as nonlinear mathematical functions that trans-
form a set of independent variables x = (x1, ...,xd), called inputs, into a set of de-
pendent variables z = (z1, ...,zc), called outputs. The precise form of these functions
depends on the internal structure of the network and a set of values w = (w1, ...,wd),
called weights. We can then write the network function in the form z = z(x;w) which
denotes the fact that z is a function of x parameterized by w.

A simple mathematical model consisting of a single neuron was proposed by
McCulloch and Pitts [57] at the origins of neural networks. It can be viewed as a
nonlinear function that transforms the input variables x1, ...,xd into the output variable
z (Fig. 2.3).

In this model, the weighted sum of the inputs is carried out, using w1, ...,wd

(which are analogous to the powers of synapses in the biological network) as weights,
thus obtaining:

a =
d

∑
i=1

wixi +w0 (2.1)

where the parameter w0 is called the bias.



32 Chapter 2. Learning Approaches

If we define an additional input x0, set constantly to 1.0, we can write 2.1 as:

a =
d

∑
i=0

wixi (2.2)

where x0 = 1.0.
The output z is obtained by applying a nonlinear transformation g(), called the acti-
vation function, to a weighted sum of the input values, yielding:

z = g(a) = g(
d

∑
i=0

wixi). (2.3)

An activation function then is used to map input to output and thus helps a neu-
ral network learn complex relationships and patterns among data. These activation
functions are all nonlinear because with a linear one it would not be enough to form
a universal function approximator, but would reduce everything to a single neuron.
The main activation functions are as follows:

• Threshold Function: the function returns 1.0 in the case where the weighted
sum of the input signals is greater than or equal to zero, and 0.0 in the remaining
cases. It is very useful if a binary output signal is needed (Fig. 2.4a).

• Sigmund Function: the codomain of the function, that is, the values that the
neuron can return, ranges between 0.0 and 1.0 in a continuous interval (Fig.
2.4b).

• Rectifier Function: is the most commonly used activation function. It returns
0.0 if the weighted sum of input signals is less than or equal to zero, or ∑wx
in other cases. The codomain of the function ranges in this case from 0.0 to
infinity (Fig. 2.4c).

• Hyperbolic Tangent Function: is similar to Sigmund Function from which it
differs in the simple fact that its codomain ranges from -1.0 to +1.0 (Fig. 2.4d).

So far we have mentioned weights, without specifying their role; in the neural
network a weight corresponds to a synapse, which tells the node (neuron) what infor-
mation is useful and what is not. Training a model of a neural network corresponds



2.2. Neural Network 33

(a) Threshold Function (b) Sigmund Function

(c) Rectifier Function (d) Hyperbolic Tangent Function

Figure 2.4: The main activation functions: Threshold Function (Fig. 2.4a), Sigmund
Function (Fig. 2.4b), Rectifier Function (Fig. 2.4c) and Hyperbolic Tangent Function
(Fig. 2.4d)

precisely to the automatic optimization of these weights. Since a neural network mim-
ics the functioning of a biological neural network, if we want it to learn something,
we have to give it experience: we have to instruct it. Exactly as we do with a child,
we have to show it a certain process several times, and automatically it will create
useful preconceptions concerning that process. Assuming we have a dataset, that is,
a collection of input-output pairs (x,z) and giving an input to the network it will mul-
tiply it by the weights and return an output ẑ that will be different from the output z
present in the dataset. Since the goal is to have increasingly accurate predictions, we
will define a cost function that accounts for the deviation of our prediction ẑ from the
reality z. There are several types of cost functions, each useful in a different context.
The most common is Mean Squared Error. Training a network means trying to mini-



34 Chapter 2. Learning Approaches

mize the cost function by acting on the values of the weights. That is, the weights are
calibrated so that given input x, we get an output value of ẑ as close to z as possible.
For this process, when you have a deep neural network you usually apply the tech-
nique of backward propagation: starting from the output layer, you try to define the
values of the weights of the last layer in such a way that the expected result is as
close as possible to the expected result. Then we proceed backward to the inner lay-
ers until we reach the input layer. For each neuron, the concept is always the same:
find the values of the weights for which the value returned by the neuron is as close
as possible to the value expected by the downstream neuron.

Let us now look at some types of layers and, subsequently, the main architectures
used in this work:

• Fully Connected Layer: is a type of layer in which every node in the previ-
ous layer is connected to every node in the next layer. Since each connection
between two nodes corresponds to a weight and thus to a model parameter,
a layer of this type gets heavier and heavier as the number of nodes involved
increases. It is therefore generally used only as the last layer to obtain the final
outcome of the neural network.

• Convolutional Layer: is a layer that applies a convolution between an input
matrix and a kernel matrix and whose result is a feature map extracted from
the input image. The kernel matrix generally has a smaller height and width
dimension than the input matrix, however, it has the same number of channels.
Since the kernel corresponds to the set of learned parameters and a kernel is
smaller than the input, it can be inferred that such a layer is less onerous than
a fully connected layer.

• Pooling Layer: is a type of layer that is intended to increase the generaliza-
tion capability of a feature map extracted from a convolutional filter. Indeed,
without applying a pooling layer a network consisting only of convolutional
layers will be able to find the features for which it is trained but only if they
are in the same location. With the pooling layer a neural network assumes the
ability to recognize features regardless of their position in the image. Besides



2.2. Neural Network 35

that, it also aims to decrease the size of the convolutional feature map to reduce
computational costs. The two main types of pooling layers are:

1. Max Pooling: Calculate the maximum value for each patch of the feature
map.

2. Average Pooling: Calculate the average value for each patch on the feature
map.

2.2.1 Convolutional Neural Network

Figure 2.5: Typical Convolutional Neural Network Architecture. It is composed of
alternating convolution layer and pooling layer and ends with one or more fully con-
nected layers.

A convolutional neural network (CNN) [58], is a network architecture for deep
learning commonly applied to analyze visual imagery. Unlike a traditional feed for-
ward neural network that works on the "general information" of the image, a CNN
works and classifies the image based on particular features of the image. In other
words, depending on the type of filter used it is possible to identify patterns or objects
on the reference image, e.g., figure outlines, vertical lines, horizontal lines, diagonals,
etc. In Fig. 2.5 it is possible to see the structure of a typical CNN, which is composed
of exactly the concatenation from the three types of layers described above. Specifi-
cally, by pairs of convolutional and pooling layers and a final part consisting of one



36 Chapter 2. Learning Approaches

or more fully connected layers.

2.2.2 Recurrent Neural Network

A Recurrent Neural Network (RNN) [59], is a type of architecture that differs from
feed forward ones, such as CNNs, because it also admits loops and/or interconnec-
tions with neurons from a previous level. This feature makes this type of neural net-
work very interesting, because the concept of recurrence intrinsically introduces the
concept of a network’s memory. In an RNN network, indeed, the output of a neuron
can influence itself in a subsequent time step or can influence neurons in the previous
chain, which in turn will interfere with the behavior of the neuron on which the loop
closes.
There are more than one way to implement an RNN network, several different types
of RNNs have been proposed and studied over time. The best known are those that
are based on LSTMs (Long Short Term Memory) [60] and GRUs (Gated Recurrent
Units) [61]. Thus, the data that an RNN network is capable of processing is a tempo-
ral sequence.
If with a CNN network it is possible to recognize objects or patterns in images, with
an RNN it is possible to recognize behavior and predict future trends.

In the RNN cell at each instant t, the layer will receive not only its input xt but
also its output zt−1. The feedback from the output will allow the network to base
its decisions on past history. Unrolling the RNN cell over time, through an opera-
tion called unfolding of the network, actually results in the same behavior as a feed
forward type network (Fig. 2.6). We introduce for the purpose the concept of net-
work unfolding, which translates, in essence, into an operation of transforming an
RNN network into a feed-forward type network. Indeed, if one looks at the Fig. 2.6,
one can easily see that the RNN neural network has become a feedforward neural
network. Clearly a single recurrent neuron has very limited memory capacity, if you
need something more complex you need to use more complex neurons such as LSTM
depicted in Fig. 2.7.

Whereas a simple recurrent neuron manages only an additional output ht for the
current state and an input ht−1 for the previous state, as well as two different activation



2.2. Neural Network 37

x

h

Input layer

Output layer

Hidden layers

y

x

h

t-1

t-1

t-1
y

x

h

t

t

t
y

x

h

t+1

t+1

t+1
y

...

Time

Figure 2.6: RNN cell on the left and its unrolling over time on the right. This process
is called unfolding of the network and allows an RNN to be represented as a feed-
forward network

functions for state h and output z, the LSTM neuron has several gates internally that
allow it to decide independently during the training phase what is worth storing or
forgetting, whether and how to combine the input with the internal state, and whether
and how to return the output. The forget gate decides whether the input information
should be thrown away or retained. To it comes the information of the current input xt

and the previous feedback output ht−1. A sigmoidal activation function is applied to
this information, which will return an output between 0.0 and 1.0. This output will be
multiplied to the value of the previous state ct−1. Thus if the sigmoidal returns a value
close to 0.0, the previous state will tend to reset (be forgotten), while if it returns a
value close to 1.0, the previous state will tend to remain the same (be stored). The
input gate similarly decides whether the input values xt and ht−1 can be processed
together with the previous state ct−1, or what remains of it after passing through the
forget gate. The processing of the inputs and the current state, or at least the values
that the forget and input gate let through, become the neuron’s current state ct . Finally,
the output gate, similarly to the other two gates, always exploiting the input values
xt and ht−1 decides whether the current state ct can be presented at the output and



38 Chapter 2. Learning Approaches

Figure 2.7: Comparison between an RNN Unit and an LSTM Unit, where the dif-
ference in structural complexity can be seen. Among the components observable in
the LSTM are the gates, each with specific tasks, allowing it, for example, to decide
which information to keep in memory and which to discard .

become the output zt that also corresponds to the next feedback input ht . As can be
guessed, therefore, the training of a recurrent neural network made of LSTM neurons
turns out to be far more complex since the parameters involved are numerous.

2.2.3 Autoencoder

When someone wants to compress the information of a given input such as an image,
it is possible, for example, to use combinations of convolutional and fully connected
layers, but there are also ready-made and more sophisticated architectures such as
Autoencoders (AE). The goal of these neural networks is not only to compress a
piece of data with many dimensions (e.g., an image) into a space of latent variables,
but it is also to return as output a reconstruction of the input based on the informa-
tion acquired. This type of architecture is shown in Fig. 2.8 consists mainly of two
components:

• Encoder: The part of the network that compresses the input into a space of



2.2. Neural Network 39

ENCODER DECODER

θe (x) dϕ (z)

x x

Z

input

latent vector

reconstructed
input

Figure 2.8: Schematic representation of an Autoencoder Architecture. The architec-
ture consists of two components: Encoder and Decoder. The first allows the compres-
sion of an input with a certain size into a latent vector z of smaller size. The second,
on the other hand, starting from the latent vector z reconstructs the initial input.

latent variables.

• Decoder: The part that deals with reconstructing the input based on previously
collected information.

Using autoencoders will certainly result in a loss of the information of the sup-
plied data, which means that they will not be able to perfectly reconstruct the input
image. However, as the autoencoder is forced to reconstruct the input image as best as
possible, it must learn to identify and represent its most significant features. During
the model training phase with this type of architecture generally a loss function such
as Mean Squared Error is used, in which the encoder input and the decoder output
are compared. One problem with AE is that it has latent space that is not regularized,
for example, there are some regions/clusters that have generative capacity and from
which sensible images similar to those used in training can be reconstructed. But by
randomly sampling you could fall back to points outside these regions and you would
get a reconstruction that is meaningless. So with this architecture you do not have all
the latent space with generative capacity; therefore it is mostly used for compression.



40 Chapter 2. Learning Approaches

ENCODER DECODER

θe (x) dϕ (z)

x x

Z

input

latent
vector

latent
distribution

reconstructed
input

μ

σ

x

x

SAMPLING

Figure 2.9: Schematic representation of a Variational Autoencoder Architecture. The
architecture consists of three components: Encoder, Sampling, and Decoder. The first
allows the compression of an input into mean and variance values for each latent
variable. The second allows the sampling of a latent vector z from the Gaussians
obtained with the mean and variance values generated by the Encoder. The third, on
the other hand, reconstructs the input from the latent vector z.

2.2.4 Variational Autoencoder

Variational Autoencoder (VAE) addresses the issue of non-regularized latent space in
autoencoder and provides the generative capability to the entire space. The encoder in
the AE offered directly latent vectors. Instead the encoder of VAE outputs parameters
of a pre-defined distribution in the latent space for every input. The VAE then imposes
a constraint on this latent distribution forcing it to be a normal distribution. This
constraint makes sure that the latent space is regularized. So by sampling any point
in the latent space it is possible to get through the decoder something more or less
sensible. So the structure of VAE is like the one in Fig. 2.9 and as we can see it no
longer consists only of Encoder and Decoder, but also of Sampling. In this case the
encoder doesn’t return the latent vector z directly, but a mean and standard deviation
for each latent variable. The latent vector is then sampled from the normal distribution
obtained from this mean and variance. The decoder part, on the other hand, is exactly



2.3. Reinforcement Learning 41

like the classic autoencoder part. In this case the goal of VAE is not only to reconstruct
the input, but also to have a latent space normally distributed, so to do this a loss is
used which is formed by a reconstruction loss (like that of VAE) and a similarity loss
which is the Kullback–Leibler divergence [62] between the latent space distribution
and standard gaussian (zero mean and unit variance).
Since the latent vector is obtained by randomly sampling from the generated latent
space, there is a problem with backpropagation in the encoder, because we can’t trace
back errors due to this random sampling. To overcome this problem we usually use
what is called a "reparametrization trick", which is to represent the latent vector z as
a function of the encoder output:

z = µx +σxε, ε ∼N (0, I) (2.4)

2.3 Reinforcement Learning

As already mentioned in 2.1.4, when we talk about Reinforcement Learning (RL)
we refer to those Machine Learning (ML) methods whose training is not done pre-
liminarily, but the machine learns by a trial-and-error mechanism. The philosophy of
Reinforcement Learning is very intuitive and closely resembles the techniques used to
make a child learn something or those used for training animals. Indeed, the training
process is based on the concept of reward. If an agent, i.e., the subject to be trained,
performs a correct action, then it will receive a positive reward value; conversely, if
the action taken turns out to be wrong it will receive a disincentive, a negative re-
ward value. So, Reinforcement Learning involves the presence of an agent, who, first
of all, due to its perception skills observes the dynamic environment around it, and,
based on its knowledge, performs an action that changes its state and that of the ex-
ternal environment. Based on the obtained state, through a feedback mechanism the
algorithm will tend to figure out which actions are best and refine the learning. The
agent’s goal is to learn a policy, that is, a behavior strategy that allows it to identify
what are the best actions to perform so that the reward is maximized. Initially, the
agent will perform actions that are the result of random trial and error, and slowly it
will come to a learning sophisticated tactics that will enable it to make correct and



42 Chapter 2. Learning Approaches

conscientious choices. Conceptually the idea is that if the agent discovers a way to
get a higher reward then it will then tend to always perform it, at the same time the
action it is performing may not be the absolute best possible. So if the agent will
always try to execute the action that it knows will lead him to a positive reward it will
adopt a type of policy that is called Greedy Policy. However, in certain situations, this
is not the best solution, because it may bind the agent not to do other types of actions
that would lead him to an even better reward. Therefore, a tradeoff between explo-
ration and exploitation is used, adopting what is called an Epsilon Greedy Policy, that
is, a generally small (or time-varying and tending to shrink) value is defined for an
epsilon variable that defines the probability of choosing an exploration action rather
than performing the one that is already known to lead to a given reward. In this way,
during training the agent will always have the opportunity to discover new actions
that may be better than those it already knows. Additionally, it should be taken into
consideration that actions may have long-term consequences. Thus positive rewards
may be somewhat delayed in being received. It may sometimes be better to sacrifice
immediate better rewards in order to receive even better ones in the future. A Rein-
forcement Learning system can thus be summarized with the diagram in Fig. 2.10,
which represents a continuous loop over time: What happens in the future depends on
history, the agent deciding one action rather than another inevitably influences his-
tory. Thus a state is defined as: St = f (Ht), where Ht is the sequence of observations,
actions and reward from time 0 to time t.
It is necessary, at this point, to distinguish the state of the environment from the
state of the agent. The former is the agent internal representation and contains all the
useful information that the agent uses to determine the action to be performed, i.e.,
the information needed by a Reinforcement Learning algorithm. The second, on the
other hand, is not visible to the agent and contains the data with which the environ-
ment selects subsequent observations and rewards, thus contains information that is
irrelevant to the agent.

After this introduction it is now possible to evaluate what makes Reinforcement
Learning different from other Machine Learning paradigms:

• There is no supervisor, but solely a reward signal. So no one specifically tells



2.3. Reinforcement Learning 43

ac�on

reward reward

statestate

a

s s

r rt+1

t+1

t

t

t

AGENT ENVIRONMENT

Figure 2.10: Schematic representation of a Markov Decision Process. It shows the
interaction between the agent and its environment. At each time step t the agent is
in state st , in which it performs an action at for which it receives a reward rt+1 and
which brings it to state st+1. In Reinforcement Learning this process is repeated until
the agent has reached the terminal state at the end of an episode.

the agent what is the best action to take.

• Feedback is delayed and not instantaneous. The agent may realize that an ac-
tion taken earlier that seemed to bring a low reward may actually turn out to be
surprisingly good after some time.

• Sequential decision processing: sequences that last over time are used. In Su-
pervised and Unsupervised a single step is sufficient, whereas in Reinforce-
ment Learning it is difficult to evaluate on a single step.

• Agents’ actions change the state of the environment and consequently the se-
quence of data they receive.

In the field of autonomous driving actually a simple Reinforcement Learning al-
gorithm is not enough. Traditional techniques can only be applied to simple contexts
and small problems. For something more complex and onerous there is what is called
Deep Reinforcement Learning, which combines the theory of Reinforcement Learn-



44 Chapter 2. Learning Approaches

ing with the capabilities of Deep Learning algorithms. In fact, throughout the project
we will use only Deep Reinforcement Learning techniques.

In the next paragraphs, some components of Reinforcement Learning theory will
be analyzed in a little more detail.

2.3.1 Markov Decision Process

Since the agent’s state contains all the useful information in the story, it is possible to
define it as a Markov state. Indeed, a state st is a Markov state if and only if:

P[st+1|st ] = P[st+1|s1,s2, ...,st ] (2.5)

By knowing the current state, which in turn is a function of history, it is in some way
possible to predict the future. In the case of a Markov State the current state, summa-
rizing within it the past, is a sufficient statistic of the future. Considering the system
at a time step t, the agent will perform the action at to move from state st to state st+1

and receive the reward rt . This process can be defined as a Markov Decision Process
(MDP), where M =< S,A,P,r,γ > and in which S is a set of Markov states, A is a set
of discrete or continuous actions, P is the state transition probability P(st+1|st ,at), r
represents the reward function and γ is the discount factor, with a value between 0.0
and 1.0 that modulates the importance of future rewards. The closer γ is to 0.0 the
more importance is given to immediate rewards over future rewards. So formally the
goal of the agent is to find the best policy π that maximize the expected return:

Rt =
T

∑
t

rt + γrt+1 + · · ·+ γ
T−trT (2.6)

where T represent the time instant of the terminal state, which we now explain what
is meant.
Generally in Reinforcement Learning, the agent has a certain goal that it must achieve
with certain actions. An episode is defined as the set of the entire sequence of states,
actions and rewards from time instant 0 until the time instant in which the agent either
achieves the goal or decrees itself according to a metric that it can never achieve it.
The final state of an episode is called the terminal state. That being said, we can now



2.3. Reinforcement Learning 45

formally define policy as a mapping function that for each state st ∈ S predicts an
action at ∈ A, which is nothing more than the concrete definition of a behavior.

2.3.2 Value Functions

Almost all reinforcement learning algorithms are based on estimating value func-
tions, that tell how good it is for the agent to be in a given state. The concept of “how
good” is based on the future rewards that can be expected or expected return with re-
spect to the policy that the agent will follow. Because it is the policy that defines the
actions to be taken, and it is the actions chosen determine the reward that the agent
will take. For MDPs, we can define formally as:

Vπ(s) = Eπ(Rt |st = s) (2.7)

which corresponds to a state-value function obtained with policy π .
Depending on the chosen policy it is then possible to have different state-value func-
tions. If the policy considered is also the best π∗, it is possible to calculate the optimal
value function Vπ∗ in this way:

Vπ∗(s) = max
π

Vπ(s) (2.8)

This value function corresponds to the one with the highest value compared to all
other state-value functions obtainable with the other policies. Similarly, we define the
value of taking action a in state s under a policy π , denoted Qπ(s,a), as the expected
return starting from s, taking the action a, and thereafter following policy π:

Qπ(s,a) = Eπ(Rt |st = s,at = a) (2.9)

We call Qπ(s,a) the action-value function for policy π . Also in this case it is possible
to estimate the optimal action value function Qπ∗ following the optimal policy π∗:

Qπ∗(s,a) = max
π

Qπ(s,a) (2.10)



46 Chapter 2. Learning Approaches

2.3.3 Bellman Expectation Equation

Bellman was an applied mathematician who derived equations that help to solve an
Markov Decision Process. Replacing 2.6 in the equation 2.7 it is possible to define
the state value function Vπ(s) iteratively, using the value of the next state:

Vπ(st) = Eπ(rt+1 + γVπ(st+1)) (2.11)

In practice, Bellman showed that it is possible to define the value function for a
given policy π in terms of the value function of the next state. This is called Bellman
Expectation Equation. Information about the value of the next states is transferred
to the current state. The same concept can be applied to the action value function
Qπ(s,a):

Qπ(st ,at) = Eπ(rt+1 + γQπ(st+1|at+1)) (2.12)

2.3.4 Model-free and Model-based reinforcement learning

In Reinforcement Learning, the terms "model-based" and "model-free" refers strictly
as to whether, whilst during learning or acting, the agent uses predictions of the en-
vironment response. A model-based algorithm, as it sounds, involves an agent trying
to understand the environment and creating a model based on its interactions with it.
In contrast, in model-free, the agent does not know the environment and tries to learn
from the consequences of its actions. If the agent is able to predict the reward of an
action before performing it, thus planning its action, the algorithm is model-based.
Whereas if it has to actually perform the action to see what happens and learn from
it, the algorithm is model-free.

2.3.5 Elementary Solution Methods

There are three classes of elementary methods for solving the reinforcement learn-
ing problem: Dynamic Programming, Monte Carlo method and Temporal-Difference
Learning. All these methods solve the complete version of the problem, including
delayed rewards:



2.3. Reinforcement Learning 47

• Dynamic Programming (DP): It is a set of algorithms that can solve a prob-
lem in which you have a perfect model of the environment and in which an
agent can take only discrete actions. DP essentially solves a "planning" prob-
lem rather than a more general RL problem. The main difference is that for a
general RL problem, the environment can be very complex and dynamic, and
its specifications are not initially known. This method is based on the concept
of dividing the problem into subproblems and solving them, then combining
the solutions of the subproblems. These algorithms break the process into two
parts. Initially the policy π using Bellman Expectation Equation is evaluated
and then one acts greedy to this evaluated value function to find an optimal
policy. The algorithm proceeds by iterating these two steps until it converges
to Optimal Value Function and Optimal Policy.

• Monte Carlo (MC): In the real world, it is difficult to have complete informa-
tion about the environment in order to apply DP, and one possible solution is to
use the MC method. The Monte Carlo method involves an agent learning from
the environment by interacting with it and collecting samples. In this learning
process, it is necessary for the agent to reach the terminal state. The values of
each state are updated only according to the final reward and not according to
the estimates of other neighboring states. Thus MC can only be applied to what
are called episodic MDPs. The updated state-value formula is:

V (st)←V (st)+α[Rt −V (st)] (2.13)

where α is the learning rate.

• Temporal Difference (TD): The Monte Carlo reinforcement learning algorithm
overcomes the difficulty of state-value estimation caused by an unknown model.
However, a disadvantage is that the state-value can only be updated after the
whole episode. Instead, in TD it is also possible to update it to the next step,
as in the Bellman Equation. The trick is that rather than attempting to calculate
the total future reward, temporal difference learning just attempts to predict the
combination of immediate reward and its own reward prediction at the next



48 Chapter 2. Learning Approaches

moment in time. Now when the next moment comes and brings fresh infor-
mation with it, the new prediction is compared with the expected prediction.
If these two predictions are different from each other, the Temporal Difference
Learning algorithm will calculate how different the predictions are from each
other and make use of this temporal difference to adjust the old prediction to-
ward the new prediction. There are several TD methods, and the simplest is:
TD(0), which has the following update formula for the state-value function:

V (st)←V (st)+α[rt+1 + γV (st+1)−V (st)] (2.14)

2.3.6 Policy Gradient Method

So far we have seen methods that improve the policy implicitly, by optimizing the
state value function or the action value function. Policy Gradient Methods instead
target at modeling and optimizing the policy directly. As we have already mentioned,
the goal of Reinforcement Learning is to maximize the "expected" reward when fol-
lowing a policy π . We define θ as the set of parameters of policy π . Thus we obtain
that for a given trajectory τ , maximizing the total reward r(τ) of that trajectory cor-
responds to:

J(θ) = Eπ [r(τ)] (2.15)

Being able to find the parameters θ ∗ that maximize J corresponds to solving the pol-
icy optimization problem. A standard approach to solving this maximization problem
in Machine Learning literature is to use Gradient Ascent or Gradient Descent. Taking
the case of gradient ascent as an example, sliding of the parameters is done according
to the following update rule:

θt+1 = θt +α∇J(θt) = θt +α∇Eπ [r(τ)] (2.16)



2.3. Reinforcement Learning 49

Since integrals are always bad in a computational setting, we can reformulate the
gradient in this way:

∇Eπ [r(τ)] = ∇

∫︂
π(τ)r(tau) dτ

=
∫︂

∇π(τ)r(tau) dτ

=
∫︂

π(τ)∇ logπ(τ)r(tau) dτ

= Eπ [r(τ)∇ logπ(τ)]

(2.17)

The policy gradient can be represented as an expectation. It means we can use sam-
pling to approximate it. Also, we sample the value of r but not differentiate it. It
makes sense because the rewards do not directly depend on how we parameterize the
model. But the trajectories τ are. Considering that πθ (τ) is defined as:

πθ (τ) = p(s1)
T

∏
t=1

πθ (at |st)p(st+1|st ,at) (2.18)

The log of πθ (τ) corresponds to:

logπθ (τ) = log p(s1)+
T

∑
t=1

logπθ (at |st)+ log p(st+1|st ,at) (2.19)

Since the first and third components do not depend on θ we can remove them.
So the formula for updating the policy parameters θ then becomes:

θ ← θ +α∇θ J(θ) (2.20)

where:

∇θ J(θ)≈ 1
N

N

∑
i=1

(︃ T

∑
t=1

∇θ logπθ (ai,t |si,t)

)︃(︃ T

∑
t=1

r(si,t ,ai,t)

)︃
(2.21)

One advantage these methods have over those seen previously is that they de-
pend only indirectly on state. While in the others, uncertain state information leads
to making those approaches impossible to apply. In this case uncertainty can degrade
policy performance, but policy techniques can still be applied. Thanks to gradient as-
cent or gradient descent, however, convergence to at least a local optimum is always



50 Chapter 2. Learning Approaches

guaranteed. An additional advantage of these methods is that the policy representa-
tion can be chosen so that it is meaningful to the task at hand and can incorporate
domain knowledge. Clearly, policy gradients are not the solution to all problems but
also have significant problems. For example, the value function methods are guaran-
teed to converge to a global maximum while policy gradients only converge to a local
maximum and there may be many maxima in discrete problems. In addition, policy
gradient methods are often quite challenging to apply, mainly because it is necessary
to have considerable knowledge of the system you want to control in order to define
reasonable policies.

2.3.7 Actor-Critic Method

Briefly summarizing the methods seen above, we can say that in policy-based RL
the optimal policy is computed by manipulating directly the policy, and value-based
function implicitly finds the optimal policy by discovering the optimal value function.
Policy-based RL is effective in high dimensional and stochastic continuous action
spaces, and learning stochastic policies. At the same time, value-based RL excels in
sample efficiency and stability.

In Actor-Critic methods, these two approaches are combined. Specifically, the
policy is exactly parameterized and optimized as in policy gradient methods, but
simultaneously the state value function is estimated to reduce the variance of updates.
In other words, Actor-Critic is a Temporal Difference version of Policy gradient.
This methods consists of two neural networks, the Actor and the Critic. The former
decides what action should be taken by the agent based on the policy, while the latter
defines how good the action taken is by calculating the value function. In this type
of algorithm there is the concept of Advantage A(st ,at), which defines how good a
state is compared to the expected state and consequently how much the action taken
deviates from what should have been performed. Advantage is thus represented by
the following expression:

A(st ,at) = rt+1 + γV (st+1)−V (st) (2.22)



2.3. Reinforcement Learning 51

Then substituting this into 2.21 instead of policy gives:

∇θ J(θ)≈
T−1

∑
t=0

∇θ logπθ (at |st)(rt+1 + γV (st+1)−V (st))

=
T−1

∑
t=0

∇θ logπθ (at |st)A(st ,at)

(2.23)

The update formulas of actor and critic parameters result as follows:

θ
π
t+1 = θ

π
t +απA(st ,at)

∇θ π π(at |st ,θ
π)

π(at |st ,θ π)

= θ
π
t +απA(st ,at)∇θ π logπ(at |st ,θ

π)

(2.24)

θ
v
t+1 = θ

v
t +αvA(st ,at)∇θ vV (st ,θ) (2.25)

This corresponds to the policy update method used in the Advantage Actor Critic
(A2C) algorithm. The key concept is that if the Advantage value is positive, it means
that the action taken at that particular instant was good or even better than expected.
This implies the policy to take this into consideration and to execute more frequently
this type of action that was extremely positive. In case the action turns out to be neg-
ative it is simply ignored and different or opposite actions to the latter are attempted.

2.3.8 Asynchronous Advantage Actor-Critic

Asynchronous Advantage Actor-Critic (A3C) is an algorithm developed by Google’s
DeepMind [63] and corresponds to the asynchronous version of A2C. The basic prin-
ciple is the same, but the difference is that in A3C there is not a single agent opti-
mizing the network, but there are multiple agents independent of each other acting
in separate environments or in the same environment and simultaneously optimizing
the same global network (Fig. 2.11).

At the beginning of every episode, each agent creates a local copy of the global
network, then, during the episode, continues to update the parameters of its local
network. Every N steps, with N variables, the agent sends an update of its parameters
to the global network. In this algorithm because there are multiple agents involved
at the same time encountering different situations the typical RL exploration process



52 Chapter 2. Learning Approaches

Global Network

Input

Network

V(s)π

Agent 1

Environment 1

Input

Network

V(s)π

Agent 2

Input

Network

V(s)π

Agent n

Input

Network

V(s)π

...

...Environment 2 Environment n

Figure 2.11: Scheme representing the architecture of a neural network based on Asyn-
chronous Advantage Actor-Critic. Each agent has its own local network and interacts
with its own environment, but all agents participate in policy and value function op-
timization of a global network.



2.4. Imitation Learning 53

is greatly speeded up and, in parallel, a good generalization capability is achieved.
With this algorithm there is also the possibility of developing a Multi-Agent system,
a system in which two or more agents share the same environment and interact or
negotiate with each other and, at the same time, both participate in training the global
network. This algorithm lends itself very well to the purposes of the research project
and has been the most widely used algorithm, both Single-Agent and Multi-Agent
versions.

2.3.9 Delayed Asynchronous Advantage Actor-Critic

Actually, a variant of the classical A3C was used in the project. Which was called De-
layed Asynchronous Advantage Actor-Critic (D-A3C) by the authors and which they
show in [64] and [65] that it performs better in autonomous driving tasks. The D-A3C
algorithm differs from the classical algorithm simply by a particular in the updating
of global network parameters. Indeed, in both algorithms (A3C and D-A3C) each
agent starts the episode with a local copy of the latest version of the global network
and contributes to the update of the global network parameters. In addition, in both
at every step each agent updates the parameters of its local network. The difference
that distinguishes these two algorithms is that in A3C after a predetermined amount
of steps it sends an update to the global network based on its current parameters; on
the other hand, in D-A3C, the update is sent to the global network only at the end of
the episode, when the terminal state is reached. The name "Delayed" comes precisely
from the fact that the update occurs in a delayed manner compared to the classical
one.

2.4 Imitation Learning

Certainly Reinforcement Learning is one of the most interesting areas of machine
learning, mainly because of its particularity of autonomously learning a policy us-
ing a trial-and-error mechanism based on interaction with an environment. The goal
of RL is precisely to learn the best policy that maximizes the long-term cumulative
rewards. To get good results with this kind of algorithm, however, it is necessary to



54 Chapter 2. Learning Approaches

manually define the reward function. In certain contexts, it is not always easy to man-
ually design a reward function that satisfies the desired behavior.
A feasible solution to this problem is Imitation Learning (IL). In this learning method,
the agent does not use the trial-and-error mechanism and does not exploit a reward
function to evaluate the best policy, but tries to learn the best policy by imitating
the behavior of an expert, typically that of a human. The simplest form of Imitation
Learning is Behavior Cloning (BC), which focuses on learning the expert’s policy
using supervised learning. The most famous example in the literature is ALVINN
[66], an autonomous vehicle that had learned to obtain steering angle values directly
from data obtained from sensors. This project dates back to 1989 and was the first
application of Imitation Learning in the field of autonomous driving.
Another very interesting work is that of NVIDIA [47], in which, thanks to a dataset
manually collected by themselves, they were able to train a neural network that was
able to learn the task of lane keeping, controlling the steering angle in different con-
texts: urban road, parking lots, etc.
Clearly, this approach also has limitations, the first is definitely the need for a com-
plete dataset, which can involve a lot of expensive work to obtain it. Differently in
Reinforcement Learning there are some approaches, Model-Free ones that do not
strictly need a dataset. As consequence, RL has good generalization capabilities, in-
stead, imitation of a behavior limits the system to learn only what is included in the
dataset and, therefore, other techniques are needed to achieve generalization in IL.
A final important consideration to complete the comparison between these two ap-
proaches and that is crucial in the field of autonomous driving is related to whether
or not to use a simulator. Certainly for both it is strongly recommended to be used
for all its benefits, but while in IL it is not strictly necessary, in RL it is strongly
recommended. Both in the training phase to avoid accidents being RL based on the
trial-and-error mechanism, and in the testing phase to speed up the debugging phase
and to be aware of the vehicle behavior before testing it on a real vehicle. In the next
chapter we will give a more specific overview of simulators generally used in RL,
with a focus on the one used in this research project.



Chapter 3

Simulators

In this chapter we will clarify some aspects about a fundamental component of Rein-
forcement Learning: the simulator. Let’s start with defining the term simulation as it’s
quite an abstract concept. Simulation is nothing but the imitation of a real behavior,
environment, process or system in time. In other words, thanks to a simulator we can
recreate a copy of reality within software. Clearly there are limitations and advan-
tages. The main limitation is caused by the inherent characteristics of reality, namely
that it changes over time and is infinitely complicated. Therefore it is impossible to
recreate it faithfully, but only to generate an approximation that tends to be as true
as possible. Nowadays, with current technologies there is a possibility in any case
to obtain results that are very close to reality. Nonetheless, one must also take into
account that in certain contexts such precision is not necessary and indeed it is more
convenient to have a simplified reproduction of reality. For example, in Reinforce-
ment Learning the simulator plays a key role, both in the training pipeline and during
the testing phase. Indeed, Reinforcement Learning uses the trial-and-error approach
to learning, and during this process it is important that it sees all kinds of situations
to achieve an optimal policy. Autonomous driving is one of those contexts in which
it would be impossible to train a model for an agent by means of RL without using
a simulator, mainly because the vehicle would continually tend to have accidents or
go off the road. Since RL is a learning mechanism that is basically complex, it is



56 Chapter 3. Simulators

necessary that the environment from which features are extracted be both simple but
meaningful. A simulator can be perfect for this purpose, because it is indeed a simpli-
fication of reality that predominantly contains the most important details. In addition
to this a huge advantage of using a simulator in RL is in the training time, with good
hardware it is possible to train a model in a few hours. If, on the other hand, we were
to consider, for example, training an anthropomorphic robot to walk without a sim-
ulator, an exaggerated amount of time and constant supervision by a human would
be required. The application fields in which RL is used to perform certain tasks are
different. The main tests have been in the areas of gaming, robotics and autonomous
driving.

In the world of scientific research, a fundamental concept is the reproducibil-
ity of an experiment. Without being able to recreate an experiment and compare it
with one’s own work, it is difficult to determine whether progress has been made and
to evaluate it against the state of the art. In the survey that Nature [67] published in
2016 they showed the results of a short online questionnaire done by 1576 researchers
specifically about reproducibility. The result was striking, because more than 70 per-
cent of the researchers admitted that they have tried and failed to reproduce another
scientist’s experiments, and more than half have failed to reproduce their own ex-
periments. In this regard, some groups of researchers have developed open source
libraries or simulators to overcome this problem and have already become a refer-
ence. We elaborate in the next sections of this chapter on what these simulators are,
dividing them between generic reinforcement learning simulators and those suitable
for autonomous driving. The chapter will conclude with a presentation of those used
within this research project.

3.1 Reinforcement Learning Simulators

In 2016, the OpenAI organization involved in artificial intelligence research devel-
oped an open source Python library [68] that allows users to create new environments
or test their algorithm on one of the many already in the library. Basically they have
provided the community with an effective way to compare RL algorithms by imple-



3.1. Reinforcement Learning Simulators 57

menting a standard API to communicate between learning algorithms and environ-
ments. Thanks to this library in the field of RL, the problem of lack of standardization
in papers has been removed. A researcher no longer has to deal with recreating an en-
vironment and then testing his algorithm in it, but can focus only on developing his
algorithm and can test it using the environment he needs without knowing how it
was implemented. Another key aspect is that since this library has taken hold there
has been a benchmarking system right away in which it is extremely easy to compare
one’s algorithm with any other state-of-the-art algorithm. OpenAI Gym provides a di-
verse suite of environments that you can divide into different categories based on the
purpose of your research and from the data you need. The division of environments
that they themselves make separates them into these collections:

• Classic control and toy text: used primarily for complete small-scale tasks.

• Algorithmic: perform different types of calculations, from the simplest to the
most complex.

• Atari: play classic Atari games such as: Space Invaders, Pac-Man, Breakout,
and many others.

• Board Game: this category includes all those types of games where two or
more participants compete against each other such as Go.

• 2D and 3D robots: controlling and making a robot learn tasks. Here the Mu-
joco [69] physic engine is exploited to more accurately recreate the physics of
reality in simulation.

In parallel with OpenAI other research groups have in turn developed other suites
of environments for Reinforcement Learning. In particular, DeepMind has introduced
some alternative tools and libraries:

• AI Safety Gridworlds [70]: which is a set of environments that allow the eval-
uation of various safety properties of intelligent agents.



58 Chapter 3. Simulators

• DeepMind Control Suite [71]: DeepMind’s DM Control Suite resembles Ope-
nAI’s fifth collection of environments and also exploits the physics introduced
by Mujoco [69].

• DeepMind Lab [72]: is a 3D customisable game-like platform tailored for
agent-based AI research. It has the characteristic of simulating with a first-
person point of view. It provides a variety of 3D navigation and puzzle-solving
tasks.

Preceding these can be found The Arcade Learning Environment [73] a framework
that allowed researchers to create AI agents for Atari 2600 games. In addition to
these, there are other simulation environments related to autonomous driving and we
will discuss them in detail in the next chapter.

3.2 Autonomous Driving Simulators

Driving is one of the most complicated activities when it comes to teaching an AI
agent. In the field of autonomous driving, the use of a simulator is increasingly a
common practice, both during the training and testing phases. This makes it possible
to drastically reduce the time required for training and especially debugging algo-
rithms. In addition, a simulator opens up the possibility of generating any possible
situation with ease, which would be much more complex in the real world. Among
developers of RL algorithms there are two currents of thought, those who do not
use a simulator but train the agent simply by providing him with scalar data (such
as vehicle speed, vehicle size, position of roadway lines, etc.) and those who use a
simulator for both the training and testing parts. In the former case, complexity is
drastically reduced, which greatly simplifies the learning process, but it exposes the
system to a high risk of overfitting on the scalar information provided to it, making
the algorithm less generalizable. A simulator then, if it is structured well allows you
during the test phase (and potentially during the training phase as well) to preview the
behavior of the vehicle, something you could not do using only the scalars. In order
to have a proper simulation environment it is necessary that this takes into account



3.2. Autonomous Driving Simulators 59

the following key parts:

• Real Physics and Dynamics: both the vehicle itself and the other components
and obstacles in the environment must be as realistic as possible.

• Observations: includes all those elements that are present in the environment
and that the vehicle must take into account in order to drive correctly. For
example, the shapes of objects, lines of the road, signs, etc.

• Sensor feed: the input of the algorithm in simulation must be equivalent to that
used later on the real vehicle. So the perception part must be the same.

In this section we will mainly focus on autonomous driving simulators used to
train RL agents. In particular, we examine the characteristics of two different families
of simulators, Realistic Graphic Simulators that try to faithfully reproduce reality and
Synthetic Simulators that reproduce it more schematically, dwelling only on certain
features of the environment.

3.2.1 Realistic Graphic Simulators

That of realistic graphic simulators is a highly active area of research nowadays.
Gaming, racing, and the advent of autonomous driving bring continuous incentives
for ever better and more detailed simulators. The massive deployment of Deep Learn-
ing techniques for image reconstruction is facilitating this progress. In the context of
video games, Grand Theft Auto V (GTA V) [74] is one of the most realistic and most
widely used simulators for autonomous driving. Within it, pseudo-realistic image se-
quences and other data can be collected with special tools. However, the fact that it is
based on an always static map turns out to be a limitation. Customization for this type
of tool would be essential, because it would allow the creation of complete datasets
and reproduce particular situations.
It is exactly for this purpose that the open-source CARLA (CAR Learning to Act)
simulator [75] was born, developed specifically for the training, and validation of au-
tonomous driving systems (Fig. 3.1). This simulator provides a countless amount of
open digital assets (urban layout, buildings, vehicles) that are freely usable. It also



60 Chapter 3. Simulators

Figure 3.1: Carla simulator.

provides a complete and flexible set of APIs that allows users to control all aspects
related to the simulation. Everything is configurable: types of sensors, the behavior
of other vehicles or pedestrians, weather, and much more. This type of simulator, al-
though extremely engaging and interesting, still has limitations for some autonomous
driving tasks. First of all, as we mentioned earlier, trying to reproduce reality is a
very complicated task, and these simulators in some way must necessarily make an
approximation. In addition, the introduced traffic agents have rule-based behavior,
which deviates from human behavior and might be uncomfortable in a real vehicle.
If the goal is to teach the agent to drive by Deep Reinforcement Learning or with
Imitation Learning, as in our case, these two problems just mentioned are extremely
limiting, because they incorrectly influence the policy that the agent learns. Finally,
on these simulators, the focus is more on visual quality than on other aspects. For
example, vehicle dynamics should be much more like the dynamics of a real self-
driving car, with actuation delays and other factors influencing behavior. For these
reasons, these types of simulators are not suitable for the purpose of this research.



3.2. Autonomous Driving Simulators 61

Figure 3.2: SUMO simulator.

3.2.2 Synthetic Simulators

Synthetic Simulators does not attempt to represent reality, but simply certain features.
The details present in reality are often superfluous. A planning and control algorithm
needs only some aspects of the environment to achieve correct and comfortable driv-
ing, not all the details. Typically, synthetic simulators consist of a bird’s-eye view of
the scene in which only the basic parts are schematically represented: roadways, ob-
stacles, ego vehicle, traffic signals, etc. A snapshot of SUMO (Simulation of Urban
MObility) [76], an open source, microscopic and continuous multi-modal traffic sim-
ulator, is shown in Fig. 3.2. As can be seen, the scene is simplified, all details of the
external environment that do not affect driving have been removed, and only the basic
ones have been retained. Agents are stylized and some traffic signs are represented
simply by colored lines, such as stop sign in red, yield signal in yellow, etc.



62 Chapter 3. Simulators

Figure 3.3: Synthetic representation of a roundabout in Parma and its real counterpart.
In the simulated image, the red part corresponds to the navigable space and the blue
rectangles are the agents.

3.3 Multi-Agent Traffic Simulator and HD Simulator

In this section we will discuss the two different simulators that were used in this re-
search project. The first is a synthetic simulator that was implemented in [77] and
also used in [64] and [65]. This simulator is based on Cairo [78], an open source 2D
graphics library. The purpose for which it was developed is to synthetically represent
real scenes, and especially roundabout, as in Fig. 3.3. The authors’ goal was very sim-
ilar to that of this project, indeed, they used RL as main approach and Asynchronous
Advantage Actor-Critic (A3C), described in 2.3.8, as algorithm. Although in our case
we use it to address the intersection problem, they instead focused on the traffic circle
entry problem. The simulator was developed to be used in a multi-agent system, to
give them the ability to negotiate and interact with each other. In this environment
each agent was able to perceive a surrounding area of 50× 50 meters from which it
was possible to derive 3 different channels that could then be used as input to the
neural network: Navigable Space, Path and Obstacles. This same information is then
readily available on a real vehicle through perception and localization algorithms.

For the second part of the project in which we developed a Deep Reinforcement
Learning Planner capable of driving safely and comfortably in an urban environment,
it was necessary to implement a new, more comprehensive simulator based on HD



3.3. Multi-Agent Traffic Simulator and HD Simulator 63

Figure 3.4: Top-view of a roundabout depicted on a synthetic simulator based on
HD maps. The yellow lines correspond to the road lanes. The blue rectangles are the
traffic agents and the green rectangle is the ego agent. The red line is the stop-line
that sees the green ego agent.

maps [40]. This new simulator allowed us to greatly speed up the process of creating
new scenarios for training because they can be directly extrapolated from the HD
maps. Fig. 3.4 shows the view of a complete scenario, from which a reduced view
of the agent and consequently the input channels for the neural network can be ob-
tained at each time instant, as we will explain later in 5.1. An additional advantage
that the introduction of HD maps provided was the possibility of having more "real"
information about the scenario, such as, for example, speed limits, exact stopline lo-
cations, roadway dimensions, and much more. All very useful data to create a more
complete and accurate reward function, which is necessary to improve the behavior
of RL agents.





Chapter 4

Intersection Handling using Deep
Reinforcement Learning

A previous paper, [64] explored the capabilities of a Deep Reinforcement Learning
algorithm in dealing with the entry of an autonomous vehicle into a traffic circle. In
the paper, they used a variant of the Asynchronous Advantage Actor-Critic (A3C)
called Delayed-A3C, which was described in 2.3.9 . The neural network they imple-
mented was capable of predicting the probability of entering a roundabout among
three different cases: permitted, not permitted and caution; it was also capable of
defining a discrete action that was reflected in the acceleration value used to perform
the maneuver. Based on this work, we tried to obtain a more complex model in which
an agent, once trained, was able to deal with intersections. Since in [64] a limitation
had been found due to the choice of a discrete action, we decided not to predict a
probability and then later estimate the acceleration, but the model is able to directly
estimate the actions to be performed by the vehicle, acceleration and steering angle.
In this way, the system is able at any instant to modulate its behavior directly based
on the current observed state. So, we propose a Multi-Agent System, using a continu-
ous, model free Deep Reinforcement Learning algorithm that allows acceleration and
steering angle to be estimated every 100 milliseconds, in order to cross intersection
scenarios. In this work we focused on the type of intersections where traffic lights are



66 Chapter 4. Intersection Handling using Deep Reinforcement Learning

not present, because with them is simpler and solvable even with only a few rules. For
this reason we decided to focus on intersections that have only traffic signs and where
agents simply have to learn how to handle precedences and drive safely. In the final
part of the chapter we will also show how this system achieved better performance
than classical rule-based methods, especially under heavy traffic conditions. Finally,
also in this part of the project we tested this model on real scenarios taken from inD
Dataset (Intersection Drone Dataset) [79] and showed how it is able to generalize
even with real recorded traffic data and on scenarios never seen during training.

4.1 Intersection Handling Problem

Deep Reinforcement Learning is a paradigm that fits very well for certain uses, such
as solving Atari games ([80], [63]), robot control ([81], [82], [83]) and others. In con-
trast, in other contexts, such as autonomous driving, it is far from trivial to be able to
achieve good results with this method of learning, both because of the mutability of
the environment and the complexity of the agent itself. In the specific case of inter-
section management and more generally for evaluating potential maneuvers, a typical
rule-based method that is widely used is the time-to-collision (TTC) algorithm [84].
Time-to-collision provides a valuable behavioral safety measure in a self-driving ve-
hicle. By knowing whether collisions are imminent and when they might occur and
with what object, an autonomous system can better plan safe maneuvers in its envi-
ronment or possibly perform emergency evasive maneuvers if necessary. To estimate
the collision time between two dynamic agents, their predicted paths are estimated in
this algorithm and it is evaluated whether possible collision points exist (Fig 4.1). If
a collision point exists then the time to collision corresponds to the amount of time
before the collision. The main limitation of this algorithm is that it relies on an accu-
rate understanding of the space that will be occupied by agents in the future to obtain
estimates of the time to collision. However, this approach is extremely complex be-
cause it relies on the accuracy of the geometries of the agents and the accuracy of the
predicted trajectories (position, heading, and velocity). Since it is difficult to obtain
accurate or exact values for both, it follows that the collision time must necessarily



4.1. Intersection Handling Problem 67

Figure 4.1: Time-to-collision concept representation. The green rectangle is the ego
agent and the orange rectangle is the traffic agent. The blue dot represents the colli-
sion point and those dashed in white the trajectories of the two agents. The numerical
value in seconds represents an estimated time-to-collision for the two agents consid-
ering that they will move with constant speed.

be treated as an approximation. In addition in these estimates it is necessary to define
constraints that may not correspond to real situations, e.g., the velocities of the two
agents may vary over time from those assumed to define the collision point, further-
more, the intentions of the other agents may also be different from those predicted.

It is precisely because of all these limitations caused by hard coded road rules
that a strand of research has developed that attempts to address the problem of inter-
section management using neural networks. [85] have proposed a scalable alternative
trained and tested on multi-agent environments in which road rules emerge as optimal
solutions to the traffic flow maximization problem. This is also complemented by the
work [86] in which they address intersections as a reinforcement learning problem



68 Chapter 4. Intersection Handling using Deep Reinforcement Learning

using two different Deep Q Networks (DQNs) ([80], [87]) on a variety of intersec-
tion scenarios. In these papers, however, although are interesting approaches, they
only succeed in obtaining policies that do not generalize well. Indeed, as can be seen
from the results and as they themselves point out, albeit rarely, they sometimes lead
to collisions. Moreover, it is also necessary to take into account that in these works
the traffic agents involved follow control actions dictated by the Intelligent Driving
Model (IDM) algorithm. In this way there is in no interaction or negotiation between
the main agent and the traffic agents. Differently in reality this negotiation phase is
natural when human drivers approach the intersection. So, the agent will be trained
with behaviors different from human ones and then considering a possible testing
phase on a real vehicle a solution would have to be found to bridge this gap between
simulated and real data.
In parallel to this work, to minimize uncertainty delays and collisions, [88] pro-
posed the: decentralized coordination learning of autonomous intersection manage-
ment (DCL-AIM) to optimize control policy. The movement and actions of each
individual agent are modeled as multi-agent Markov decision processes (MAMDPs)
and the system is trained using multi-agent reinforcement learning.

In this work, we decided to use a multi-agent approach, in which each agent
is able to negotiate with other vehicles and evaluate and adapt its behavior every
100 milliseconds. Each agent involved in the scenario contributes during the training
phase and its actions influence those of the others, and vice versa. The neural network
that we trained using Deep Reinforcement Learning allows us to estimate accelera-
tion and steering angle with which the agent must cross the intersection safely and
in a reasonable time. The choice to use a multi-agent system in which the vehicles
involved learn to interact, in addition to the reasons mentioned above, is also dictated
by the fact that we do not want to always assign the lowest priority to the agent over
the traffic ones, as for example is the case in [86] and [89]. Such a system could lead
to even very high delays and would in no way be usable in a congested or other-
wise complex traffic situation. In our system, due to the negotiation between agents,
each individual vehicle is able to understand all priorities, including the right of way.
That is, that the moment two vehicles coming from two different branches of the in-



4.2. Environment Definition 69

tersection and having the same traffic sign (or no traffic sign) would collide in the
intersection then the car coming from the right has priority and the one on the left
must stop to let it pass. If, on the other hand, the precedences are defined by road
signs then the agents follow the order of entry specified by those. It is important to
note that the choice of these regulations with which the agents are trained is due to
the fact that the final goal is to test the system on a real vehicle, and to do so, we
found it convenient to use the regulations of the country in which we conducted the
research.

4.2 Environment Definition

Before analyzing the architecture of the neural network used in this part of the project,
let us take a look at the environment that was chosen for the training and testing
phase. As was already pointed out in the introduction of this chapter, we decided to
consider only road intersection scenarios. In particular, we chose intersections that
have only traffic signs and not traffic lights. Indeed, there are already many works in
the literature showing that traffic management at an intersection that presents traffic
lights is a task that has already been extensively studied and with already excellent
results ([90], [91]). Therefore, in this paper we decided to leave out this relatively
simpler case to focus on a more generic and more complex case.

For the training phase, we used the 3 scenarios in Fig. 4.2, which have different
levels of difficulty. The simplest one, is the one depicted in Fig. 4.2a where there
are only three possible directions that can be traveled; the second, the medium dif-
ficulty one (Fig. 4.2b has four possible directions that can be traveled; the third, the
most complex one (Fig. 4.2c), is like the previous one, but with two entry and exit
roadways for each direction. Despite the presence of multiple lanes in the last type of
intersection, for simplicity, we do not consider the lane change maneuver. If a vehicle
in training attempts the lane change maneuver, even though it might be a legitimate
maneuver in reality, in this case it results as if it has exited its path and thus receives
a negative reward. The three scenarios in Fig. 4.2 correspond to a synthetic repre-
sentation of real intersections and are derived from the first simulator described in



70 Chapter 4. Intersection Handling using Deep Reinforcement Learning

(a) Easy Scenario (b) Medium Scenario (c) Hard Scenario

Figure 4.2: Synthetic representations of three intersections used for training agents
to execute the crossing maneuver. Each of these scenarios has a higher level of dif-
ficulty. Within them, the green rectangles correspond to the ego agent and the white
rectangles to the traffic agents. The red lines correspond to stop signs and the yellow
lines correspond to yield signs. Each agent can only see a 50×50 meters area that is
represented by the green square and corresponds to the ego agent’s view.

the section 3.3. During the training phase, only one agent can be born per lane dur-
ing each episode. Thus, the maximum number of agents involved in the intersection
is equal to the number of lanes in the selected scenario, 3 in the easiest, 4 in the
medium-level, and 8 in the difficult one.
In order for the system to learn to generalize as much as possible, each of the agents
is assigned a new path and traffic sign each episode, which then are not fixed in the
scenario, but also change with each episode. In this way, every agent explores as
many state configurations as possible during training.
However, in the scenario in Fig. 4.2c the two side-by-side lanes in each direction have
the same traffic signs, and this allows us not to include inconsistencies in training and
not to have to change the configurations of some traffic signs during the episode.
During an episode, each agent is not aware of the complete scenario, but perceives

only an area of 50×50 meters. From this the system then derives four semantic im-
ages (Fig. 4.3) that correspond to:



4.2. Environment Definition 71

Navigable Space 

Navigable Space 

Traffic Sign

Traffic Sign

Obstacles

Obstacles

Path

Path

Navigable Space Path Obstacles Traffic Sign

Navigable Space Path Obstacles Traffic Sign

Navigable Space Path Obstacles Traffic Sign

Figure 4.3: Channels derived by agents from their view in the three different intersec-
tions: Navigable Space, Path, Obstacles, Traffic Sign. The four channels correspond
only to the content in the green rectangle, which is the 50×50 meters area perceived
by the ego agent. The channels are grayscaled to allow the agent to distinguish stop
signs (black) and yield signs (white) in the Traffic Signs channel and also, to dis-
tinguish agents to be given precedence (black) from those that need not be given
precedence (white) in the Obstacles channel.



72 Chapter 4. Intersection Handling using Deep Reinforcement Learning

• Navigable Space: which represents the whole space in which the agents can
move.

• Path: which the agent must travel through during the episode and which is
randomly determined at the beginning of the episode.

• Obstacles: which provides information about both the ego agent’s location and
that of any other vehicles in its surrounding view.

• Traffic Sign: which identifies how the agent should approach the intersection,
if nothing is present the agent can go because it has the right of way, otherwise
it may have a stop line or yield line for which it must negotiate with the other
traffic agents present.

Each of these four images corresponds to an Input channel of the neural network
and has a size of 84×84 pixels. Given that the system leads to control actions, having
images with such a small size is limiting. A vehicle should be able to see an area
large enough to move safely. It follows that this size is sufficient for the scenarios
under consideration and for contained agent speeds, but with larger intersections or
higher speeds it would be necessary to enlarge the size of these bird’s-eye views.
However, it must be kept in mind that enlarging the input inevitably involves longer
execution times and a change in the neural network’s architecture. The work done
below and described in chapter 6 aims in this direction. As shown in Fig. 4.3, we
opted to use grayscale rather than black-and-white images for the four channels. This
choice allowed us to compress more information in the obstacle bird’s-eye view and
the traffic sign one. Indeed, in order to train the agents to behave differently according
to the traffic sign they encounter in their path before the intersection, these can take
different colors:

• No sign: the ego agent is traveling the main road, so it has precedence over all
other traffic agents except those who like it have no signs on their roadway and
are coming from the right side.

• Yield sign: in the traffic sign channel it is represented with the color white and
correspondingly with a yellow segment in the simulator.



4.2. Environment Definition 73

• Stop sign: in the traffic sign channel it is represented with the color black and
correspondingly with a red segment in the simulator.

The simulator represents a bird’s-eye view that takes into account the whole scenario
and the agents involved. In Fig. 4.3, the four channels do not correspond to the whole
scene, but only to the area depicted in the green box that highlights the view of the
agent, the green one, at that particular instant. Since the simulator is equivalent to the
complete scenario, it contains all the stoplines in each direction. In contrast, in the
corresponding traffic sign channel of the agent there is only that of the agent under
consideration. To give the agent information about which traffic signs other agents
will encounter we use the obstacle channel. This is because if we used the traffic
sign one, the system might misinterpret them and stop even if there are actually no
obstacles in the other lane. The obstacle channel then gives us both the position of
the other agents in the agent’s surrounding view and their priority level relative to the
ego agent. So, the ego agent can perceive agents in two different ways in the obstacle
channel:

• White agents: which correspond to those over whom it has priority and there-
fore do not influence its actions (also includes the ego agent himself).

• Black agents: which are those to whom it has to give precedence, which have
a higher priority than itself and therefore influence its behavior.

In the training phase this prior knowledge is embedded in the obstacle channel be-
cause it is based on traffic signs and is necessary for learning. In addition, in testing on
the real vehicle, this prior knowledge contained in the traffic sign and obstacle chan-
nels can be easily recreated using perception algorithms and high-definition maps.
An example of how this type of system can be developed in a real autonomous vehi-
cle is shown in [65]. As a final note it is important to point out that there is a control
to avoid unpleasant situations of traffic deadlock, i.e., situation where there are for
example four vehicles coming from four different directions and they all have the
same traffic sign. In this situation all agents would have the same traffic sign and a
vehicle to their right and, therefore, no one would move.



74 Chapter 4. Intersection Handling using Deep Reinforcement Learning

4.3 Training Considerations

In this work, the goal is to make sure that each agent is able to cross the intersection
safely by using acceleration and steering angle values obtained with a neural network
every 100 milliseconds as input for the control. For this reason, we have chosen the
kinematic bicycle model for the vehicle dynamic. This is the standard model that is
used for capturing vehicle motion under normal driving conditions. In practice, the
bicycle model considers the front wheels of a vehicle as one and equivalently for the
rear wheels as well. This assumption is possible because effectively the wheels are
connected on the same axle and therefore perform the same motions. Thus instead of
having to handle 4 wheels and 2 steering angles, we only need to consider 2 wheels
and 1 steering angle. In addition to this assumption, the bicycle model also assumes
that the vehicle is moving in a 2D plane and that there is no lateral or longitudinal
slippage of the vehicle. Clearly, these are assumptions that must be taken into account
when testing the system on a real vehicle. The goal of this type of model is to generate
a set of equations that can fully describe the model at any point in time, i.e., calculate
the x,y pose and θ heading. The input of the model are vehicle speed and steering
angle. Since acceleration is the derivative of velocity and the output of our neural
network is just acceleration and steering angle, we can use it as input to the bicycle
model. The steering angle values that are assigned to the agents are always between
[−0.2,+0.2] and the acceleration values between [−3.0 m

s2 ,+3.0 m
s2 ]. To make the sys-

tem more realistic during training, we generate the vehicles with an initial speed be-
tween [3.0 m

s ,6.0
m
s and impose to them a target speed between [7.0 m

s ,10.0 m
s ], which

is the speed we would like them to reach, but without exceeding it, as if it were a
speed limit. To increase the generalization and the number of cases seen in training,
we introduced a delay for spawning new vehicles, which varies between 0.0 and a
scenario dependent maximum value:

• Easy scenario: [0.0,30.0] seconds

• Medium scenario: [0.0,50.0] seconds

• Hard scenario: [0.0,100.0] seconds



4.4. Algorithm and Neural Network Architecture 75

This ensures greater mutability in the density of traffic that is about to cross the in-
tersection. Thus, in summary, each agent spawns into the scenario with a given delay
and initial speed and then negotiates with the other agents to decide what actions to
take until the episode is concluded. Each agent can end the episode in one of the
following four states:

• Goal Reach: that is, when the agent has crossed the intersection without crash-
ing, following its path and respecting traffic signs.

• Crash: the officer collided with another vehicle.

• Out of Path: the agent did not respect the path set for him/her at the beginning
of the episode.

• Time over: exceeded the time limit to reach the objective. A time limit has been
built into the system in which the agent must be able to cross the intersection
and finish the episode correctly.

In the section 4.5 we will see how the final state affects the Reward of our algorithm.

4.4 Algorithm and Neural Network Architecture

The system is trained using Delayed-A3C (D-A3C) which was explained in the sec-
tion 2.3.9 In this work, we trained a Multi-Agent version of D-A3C in which all
agents in the scenario simultaneously contribute to parameter optimization.

The architecture of the neural network is as shown in Fig. 4.4 and consists of two
sub-modules, the red one to handle acceleration (acc) and the blue one for steering
angle (sa). The neural network input consists of both a set of visual channels and
scalar parameters. Indeed, both sub-modules simultaneously receive the same 16 in-
put images that correspond to the sequence of the last 4 frames of the 4 channels seen
by the agent (navigable space, path, obstacles, traffic sign). Each of these images has a
size of 84×84 pixels. In addition to these visual inputs, each sub-module receives the
same scalar parameters as input at each step, representing the agent’s current speed



76 Chapter 4. Intersection Handling using Deep Reinforcement Learning

Figure 4.4: Neural network architecture used for the intersection handling task. The
network consists of two sub-modules. The blue one to derive the steering angle and
the red one for acceleration. Each receives the same 4 visual inputs, each consisting
of the last 4 frames seen by the agent, and two scalar parameters: current speed and
target speed. The neural network produces two different outputs corresponding to the
means (µsa,µacc) of two different Gaussian distribution from which the acceleration
and the steering angle performed by the agent are sampled using a standard deviation
σ that decreases linearly from 0.65 to 0.05 during the training phase.

and the target speed to which it should aspire. In order to ensure exploration, the ac-
tions performed by the agent are sampled by two Gaussian distribution centered on
the output of the two sub-modules (µsa,µacc). So the final outputs of acceleration and
steering angle that are passed to the implementation component are: sa∼N (µsa,σ)

and acc∼N (µacc,σ), where σ is a tunable parameter and it decreases linearly from
0.65 to 0.05 during the training phase.
Simultaneously with the estimation of µsa and µacc, the Critic part of the algorithm
produces the corresponding state-value estimations (vsa, vacc) using two different re-
ward functions: Racc,t and Rsa,t . The state-value functions can be written as: vsa(st ;θ vsa)=

E(Rsa,t |st) , vacc(st ;θ vacc) = E(Racc,t |st). In this case, the policy update described in



4.5. Reward Shaping 77

Equation 2.24 can be defined as follows:

θ
µsa
t+1 = θ

µsa
t +αAsa,t

∇π(at |st ,θ
µsa
t )

π(at |st ,θ
µsa
t )

= θ
µsa
t +αAsa,t

∇N (sa,µsa(θ
µsa
t ))

N (sa,µsa(θ
µsa
t ))

= θ
µsa
t +αAsa,t

sa−µsa

σ2 ∇µsa(θ
µsa
t )

(4.1)

and the Advantage Asa,t :

Asa,t = Rsa,t + vsa(st+1;θ
vsa)− vsa(st ;θ

vsa) (4.2)

The same equations can be written for the acceleration output, replacing µsa with µacc

and sa with acc.

4.5 Reward Shaping

As we mentioned in the previous section, we decided to define two different reward
functions, one for the steering angle Rsa and one for the acceleration Racc. In this way
it is possible to evaluate acceleration and steering angle separately. Since we have
decided not to allow lane changing, a possible departure of the vehicle from the road
depends exclusively on the steering angle. By the same principle, we decided that an
accident with another agent depends entirely on an error in acceleration. Each of the
two rewards is defined by two components:

Rsa,t = rlocalization + rterminal (4.3)

Racc,t = rspeed + rterminal (4.4)

The first component rlocalization of Rsa is a penalization given to the agent when
its position (x,y) and its heading (ha) differs from the center lane and the heading
(hp) of the path respectively. The greater the difference between the two headings,
the greater the penalty the agent will receive.
This factor can be defined as:

rlocalization = φ cos(ha−hp)+ψd (4.5)



78 Chapter 4. Intersection Handling using Deep Reinforcement Learning

where φ and ψ are constants to which we assigned the fixed value 0.05 and d is
the distance between the position of the agent and the center of the lane. The first
component of Racc,t , on the other hand, is rspeed which incentivizes the agent to reach
a certain target speed. The closer the agent is able to approach this speed, the greater
the value of this component and thus of the overall reward.
It is defined as:

rspeed = ε
current speed
target speed

(4.6)

where ε is a constant set to 0.005.

Both rewards then are affected by the value of the terminal state the agent is in at
the end of the episode:

• Goal Reach: It means that the agent was able to achieve the goal on time and by
traveling exactly the path it was assigned. Therefore, rterminal will have value
+1.0 both for Rsa,t and Racc,t .

• Crash: Since the system is multi-agent we are in this situation if two agents
have collided. Both are on their path at the time of impact, otherwise we would
fall into the Out of Path case, so the penalty occurs only for Racc. The agent
who had precedence and therefore saw the other agent as white in the obstacle
channel will have an rterminal equal to−0.5. The one who is more at fault in the
accident and saw the other agent as black in the obstacle channel will receive
an rterminal equal to −1.0.

• Out of Path: The episode ends when the agent goes off its path and we assume
that it is due only to an inaccurate estimation of the steering angle output. For
this reason rterminal will be 0.0 for Racc,t and −1.0 for Rsa,t .

• Time over: To prevent the agent from standing still indefinitely, we set a time
limit in which the agent must be able to reach the goal. Since this happens if
the vehicle is moving at too low speed, we only penalize acceleration. So we
will have that rterminal takes the value 0.0 for Rsa and −1.0 for Racc.



4.6. Experiments 79

4.6 Experiments

In this part of the project, we focused on teaching an agent to deal with intersections
with different traffic conditions and traffic sign configuration. It proves difficult, how-
ever, to be able to compare our method with others. Indeed, there are few works that
address and attempt to solve this issue with some method similar to ours. In [86] and
[89] for example, they train an agent to find the appropriate time to cross the inter-
section without crashing. However, there are many differences between our system
and theirs, and it is difficult to make a comparison. The agent in our case learns to
negotiate and learns rules of behavior (traffic signs and priority to the right rule), in
their work, on the other hand, the agent always has the lowest priority in the inter-
section and only has to learn how to cross it, without caring about other traffic agents
and without having to negotiate with them. Furthermore, in papers [86] and [89] the
type of training is single-agent, instead in our case it is multi-agent and tends to look
much more like human behavior.
Since there are all these differences and even they themselves point out that the sys-
tem still did not lead to consistently optimal results, we opted to make the comparison
with the Time to Collision (TTC) algorithm. In addition to this comparison, we also
focused on other types of tests, each aimed at demonstrating the effectiveness of our
system. Initially, we analyzed its behavior, assessing whether it was able to move
correctly along the path and safely. Then we demonstrated that the agent had learned
to negotiate and comply with the right of way rule. Finally, we explored its general-
ization capabilities both on scenarios different from those of training and, also, with
real traffic, i.e., where the behavior of the other agents involved is of human drivers.

4.6.1 System Testing

The first test in chronological order was the one in which we evaluate whether ef-
fectively the agents learned to drive safely and along the route assigned to them at
the beginning of the episode. In this test we mainly evaluate the agent’s percentage
of Reach, Crash, Out of Path and Time Over and its average speed in finishing the
episode. To make the experiment more varied and more consistent, we tested the



80 Chapter 4. Intersection Handling using Deep Reinforcement Learning

agent on all 3 scenarios in Fig. 4.2 and, every episode, we modified the traffic signs
to evaluate different behaviors. For each scenario we ran 3000 episodes analyzing
the agent’s behavior with different traffic conditions. During the training phase the
spawn ranges for agents was fixed for each scenario [0,30] seconds for the easy one
(Fig. 4.2a), [0,50] seconds for the medium one (Fig. 4.2b) and [0,100] seconds for
the hard one (Fig. 4.2c). Instead, during this test we extracted the spawn delay value
between a variable range: [delaymin,delaymax]. The lower the delay value, the more
heavier the traffic turns out to be and it becomes more complicated for the agent to
cross it. We initially started on all scenarios with the delay range [0,10] seconds and
then increased the delaymax by 10 with each successive test phase until we reached
the maximum value used in training. We then performed 3 test phases for the easy
scenario, 5 for the medium scenario, and 10 for the hard scenario.

Table 4.1 shows the percentages obtained through this experiment and divided
according to the traffic sign the agent faced.
It can be seen that the agent finds it slightly more complex to cross the intersection
in the situation where the traffic sign in the agent’s lane is the stop sign. It is also
interesting to see how the system was able to modulate its speed according to the
difficulty of the scenario and also according to the traffic sign it encounters. From
the percentages in the table, it is then also possible to see that the system never went
out of path and was practically always able to end the episode in a reasonable time.
Such a result leads us to state that the agent has learned to move correctly along its
assigned path, safely and without unnecessary delays. The following video1 shows
the behavior of the agents in the three training scenarios with different traffic signs.

4.6.2 Comparison with TTC method

The next test was the comparison with the TTC algorithm, where we also wanted
to demonstrate the efficiency of our system from the point of view of the time with
which it is able to cross the intersection and conclude the episode correctly. For this
test we had to create an ad hoc situation for the TTC; that is, where the task of the

1https://www.youtube.com/watch?v=x28qRJXiQfo&ab_channel=

AlessandroPaoloCapasso

https://www.youtube.com/watch?v=x28qRJXiQfo&ab_channel=AlessandroPaoloCapasso
https://www.youtube.com/watch?v=x28qRJXiQfo&ab_channel=AlessandroPaoloCapasso


4.6. Experiments 81

Easy Scenario
No Sign Yield Sign Stop Sign

Goal Reach (%) 0.998 0.995 0.992
Crash (%) 0.002 0.005 0.008

Out of Path (%) 0.0 0.0 0.0
Time over (%) 0.0 0.0 0.0

Average Speed ( m
s ) 8.533 8.280 8.105

Medium Scenario
No Sign Yield Sign Stop Sign

Goal Reach (%) 0.995 0.991 0.992
Crash (%) 0.005 0.009 0.008

Out of Path (%) 0.0 0.0 0.0
Time over (%) 0.0 0.0 0.0

Average Speed ( m
s ) 8.394 7.939 7.446

Hard Scenario
No Sign Yield Sign Stop Sign

Goal Reach (%) 0.997 0.991 0.972
Crash (%) 0.003 0.009 0.012

Out of Path (%) 0.0 0.0 0.0
Time over (%) 0.0 0.0 0.016

Average Speed ( m
s ) 8.224 7.365 5.855

Table 4.1: Results obtained in the training scenarios (Fig. 4.2) with the three different
traffic signs.

TTC is exclusively to decide the instant of time when the agent should cross the inter-
section. For this reason, we chose to compare the two methods on the hard scenario
(Fig. 4.2c) and for both the traffic sign the agent encounters is the stop sign. The
traffic agents involved remain in the center lane and move with a speed defined by
the Intelligent Driver Model (IDM); moreover, their spawn points are only in the left
and right branches with respect to the one where the ego agent spawns. The agent’s



82 Chapter 4. Intersection Handling using Deep Reinforcement Learning

behavior when applying the TTC algorithm is to decelerate to the stopline, then wait
to cross the intersection until all calculated collision times with other vehicles ex-
ceed a certain threshold. If this happens, the vehicle moves with an acceleration of
3.0 m

s2 . For the estimation of collision times with other agents, it is assumed that there
is a possible collision point in the intersection and that the velocities of the agents
involved are constant. The threshold was set to obtain the best possible results with
TTC and 0% accidents. A time limit was set for both algorithms within which they
must necessarily conclude the episode to avoid failure. The tests were performed
considering 3 traffic levels: low, medium and high, which correspond respectively to
having a maximum of 4,8 or 12 agents simultaneously active in the scenario. The
agents’ spawn delay is also variable in this test, initially being in the range [0,20]
seconds then increases the delaymax by 20 for every successive new stage. Both al-
gorithms work well with medium and low traffic level, indeed, with each of the two
a percentage of successfully concluded episodes above 99% was obtained. The dif-
ference is noticeable with a high level of traffic, as can be seen from the Fig. 4.5, the
success rate in the case of our RL-based algorithm decreases, but still remains very
high. For the TTC, on the other hand, the percentage decreases quite a bit because
a good portion of the episodes end with the agent stopped at the stop sign and fails
to find an opportunity to enter and exceeds the time limit set to end the episode. The
difference between the two methods becomes more and more evident as the traffic
level increases, that is, when the maximum agent spawn delay is less.

4.6.3 Test the Right of Way Rule

So far, we have shown that the agent is able to deal with the intersection correctly,
but we have not yet evaluated its negotiation skills and whether it has actually learned
the right of way rule.
This third test focuses precisely on analyzing the vehicle’s behavior when faced with
choices due to the presence of other obstacles approaching the intersection. To make
sure that there are always other vehicles arriving at the intersection at the same time,
we set the initial and target speeds the same for all agents involved. The test was
performed on all three scenarios in Fig. 4.2, respectively with 3,4 and 8 vehicles



4.6. Experiments 83

(a) Test scenario

(b) Reaches (c) Time-overs

Figure 4.5: 4.5a represent the test scenario used to compare the performances of our
module with those obtained with the time-to-collision method. The tested agents are
represented by the green rectangles, while the white rectangles correspond to the traf-
fic agents moving using the Intelligent Driver Model (IDM) algorithm to define their
speed. 4.5b and 4.5c show the comparison between the percentage of successfully
completed episodes and time-overs respectively. In the graphs, the blue curves corre-
spond to the results of our module and the red curves correspond to the results of the
time-to-collision method.



84 Chapter 4. Intersection Handling using Deep Reinforcement Learning

simultaneously active (one per lane) as in training. With this configuration we are
able to assess whether precedence was respected by evaluating the terminal state of
each agent at the end of the episode. For each type of scenario, 9000 episodes were
performed. In the Table 4.2 we can see the percentage of No Infraction and Infraction
that were obtained. An episode was considered to have No Infraction if all agents
complied with the precedence rules, but if at least one vehicle did not comply it was
evaluated as Infraction. The results show that indeed our agent is able to negotiate and
respect precedence and the right of way rule in most cases. The success rate drops a
bit in the hard scenario, but this is mostly due to the fact that this scenario imposes
wider spaces that allow agents to risk the maneuver more.

Easy Scenario Medium Scenario Hard Scenario
No Infraction (%) 0.985 0.990 0.863

Infraction (%) 0.015 0.010 0.137

Table 4.2: Percentages of episodes ended following the right of way rule by all the
agents involved in the episode (No infraction) and with at least an infraction (Infrac-
tion).

4.6.4 Test on Real Data

Since the overall goal of the project is to obtain a system that works on a real vehicle,
as the last test of this first work we analyzed the behavior of the trained agent in a
real traffic situation. Specifically, we used 33 sequences of inD Dataset (Intersection
Drone Dataset) [79] divided over 4 scenarios, shown in Fig. 4.6 for a total of 10 hours
of recorded data. The dataset includes pedestrians, bicyclists, cars, trucks and buses
that passed through the intersection during the recordings of a drone equipped with
cameras. A total of 11500 road users were tracked. Because only vehicles moving
along the roadway are present in our training dataset, we removed pedestrians, bicy-
clists, and vehicles that remain stationary. In this test, our agent, represented in green
in Fig. 4.6, always enters the intersection from the same lane and then can randomly
exit from one of the other lanes. Because the traffic is real and pre-recorded it is



4.6. Experiments 85

Figure 4.6: Four real intersections contained in the inD dataset [79] used for testing
our agents (green rectangles) using the recorded traffic data (white rectangles).

not aware of our agent’s presence. Therefore, to avoid unintentional collisions, traffic
agents that would spawn in the same lane as the agent were removed and the ego
agent was assigned the lowest priority in the scenario.
Having made all these considerations, the dataset was reduced from 11500 to 7386
users populating the traffic, while the executed episodes are 2702. In order to visual-
ize our agent behavior, we reproduced the 4 intersections with CAIRO graphic library
[78], based on the trajectories of the dynamic agents. For each episode, we saved data
related to the RL agent (position, speed and heading) in order to project them on the
real scenarios (Fig. 4.6) using the code provided by [79] on their github page2. Do-
ing an analysis we found that the percentage of correctly concluded episodes is over
99%, with 0% time-over and 0% off-road cases. In this video3 we show the agent’s
behavior on the scenarios. Watching the video carefully, it can be seen that in some
cases the vehicle entry seems a bit risky, especially when a vehicle comes over the in-
tersection after it has already entered. This fact is justified, our agent has been trained
to negotiate with other vehicles and in this case it cannot do so because the other
agents do not perceive its presence. In a similar situation that occurs during training,
the vehicle behind our agent would slow down, making the entry seem much less
dangerous. Having made these considerations, we can say that the results obtained
are promising, especially considering that the agent is not trained on these scenarios
and is not used to seeing the behavior of real traffic. However, by doing some tests

2https://github.com/ika-rwth-aachen/drone-dataset-tools
3https://www.youtube.com/watch?v=SnKUk2k9YCg&ab_channel=

AlessandroPaoloCapasso

https://github.com/ika-rwth-aachen/drone-dataset-tools
https://www.youtube.com/watch?v=SnKUk2k9YCg&ab_channel=AlessandroPaoloCapasso
https://www.youtube.com/watch?v=SnKUk2k9YCg&ab_channel=AlessandroPaoloCapasso


86 Chapter 4. Intersection Handling using Deep Reinforcement Learning

directly on a real vehicle we found that the driving style is not feasible and comfort-
able, despite being able to cross the intersection correctly. So before proceeding with
further testing in the real world, we focused on solving this issue, as we will see in
the following chapters.



Chapter 5

Deep Reinforcement Learning
Planner

In the previous chapter, we demonstrated how it is possible, at least in simulation, to
use Deep Reinforcement Learning to enable an agent to manage and navigate an in-
tersection by negotiating with other vehicles and observing precedence. In particular,
we demonstrated how the vehicle learned to follow the path and to observe the prior-
ity to the right rule. From the very first moment we started testing this model in the
real world, we realized that the quality of driving was not comfortable, although in
simulation we were able to achieve good behavior. So we decided to take a step back
and develop a model-free Deep Reinforcement Learning Planner that was capable of
drive comfortably and safe in a real urban environment.
This chapter describes the neural network that was implemented and all the strategies
adopted to achieve better driving comparable to that of a human driver. We trained
the model predicting continuous actions related to the acceleration and steering an-
gle, and testing it on board of a real self-driving car on an entire urban area of the city
of Parma (Fig. 5.1).
With this work, we developed a system capable of generalizing even over those areas
of the map not used in the training phase. In addition, we were also able, with a tiny
neural network, to reproduce the dynamics of the real autonomous vehicle in simula-



88 Chapter 5. Deep Reinforcement Learning Planner

Figure 5.1: Mapped area of a neighborhood of Parma. The four red rectangles contain
the scenarios used for training agents. The whole light blue area was used for testing.

tion, thus bridging the gap between simulation and reality to a large extent.
Finally, we also demonstrate how pre-training by Imitation Learning enabled us to
drastically reduce overall training time.

5.1 Environment Definition

For this part of the project and subsequent tests, we used a new simulator based on
HD maps as explained in the chapter 3.3. In Fig. 5.1, the light blue area represents
one of the neighborhood areas in Parma where autonomous driving tests are allowed.
The area is in a new neighborhood with little traffic and lends itself well to this kind
of testing. From this map it is then possible to derive an arbitrary amount of scenarios
useful in the training phase. Specifically in our case we used the scenarios contained
in the red rectangles. An example scenario is illustrated in Fig. 5.2.



5.1. Environment Definition 89

(a)

(b) (c) (d) (e) (f)

Figure 5.2: Synthetic representation of training scenario (Fig. 5.2a) included in the
mapped area of Fig. 5.1. Fig. 5.2b represents the 50× 50 meters surrounding per-
ceived by the agent, that is split in four channels: obstacles (Fig. 5.2c), navigable
space (Fig. 5.2d), path (Fig. 5.2e) and stop line (Fig. 5.2f).

The first Fig. 5.2a shows an entire scenario representing a roundabout. The green
rectangle corresponds to the agent and the red line the stopline that lies in its path.
However, as we have also seen in the previous chapter 4.2, an agent can only see a
limited area around him, which for this part of the work we set at 50× 50 meters.
More specifically, he sees 25.0 m left and right, 40.0 m ahead and 10.0 m behind. Fig.
5.2b represents exactly this surrounding view of the agent, that is, the portion of the
world it sees when it is in the position of Fig. 5.2a. To facilitate training, we decided
not to use 5.2b directly as input for the neural network, but split it into 4 different



90 Chapter 5. Deep Reinforcement Learning Planner

grayscale channels, so that each of them contains specific information:

• Obstacles(Fig. 5.2c): in this stage of the project where we are analyzing the ca-
pability to drive comfortably, it contains only the ego agent, so as not to further
complicate the task with the presence of other static or dynamic obstacles.

• Navigable Space (Fig. 5.2d): representing the entire area of the road on which
the agent is allowed to move.

• Path (Fig. 5.2e): representing the path that the agent has to follow. It connects
his spawn point with the end point of the episode and is randomly assigned to
it at the beginning of the episode.

• Stop Line (Fig. 5.2f): which contains all the points at which the agent must stop
or slow down to give precedence. In the dataset on which we trained the agent
for this part of the project it is only present for entering roundabout.

Since the simulator is based on HD maps, during the training phase, there are
also additional advantages, because from these maps can be derived other informa-
tion about the surrounding environment: location, width and number of lanes, road
speed limits, and much more. However, in this part of the project we only exploit
the topological part of the maps to create the four channels and road speed limits to
define the target speed of the vehicle, but in the future some other information could
be used as a scalar parameter of the network.

5.2 Neural Network and Training Settings

Since this part of the project is a natural evolution of the one described in chapter 4,
the neural network we implemented is also based on the previous one, but with some
difference. The basic algorithm we use is still the same, namely D-A3C (explained in
3.3), and the new neural network is the one shown in Fig. 5.3. Since the main goal is
to achieve smooth and safe driving style, the architecture is focused on obtaining as
output actions that are as correct as possible and consistent with the previous ones,
so that there is no abrupt braking or unpleasant sensation when people are on board



5.2. Neural Network and Training Settings 91

Figure 5.3: Neural network representing the evolution of the one seen in Fig. 4.4 .
The main differences are the number of scalar inputs the two sub-modules receive
and the fact that in this case standard deviations (σsa and σacc) are also predicted.

of the vehicle.
The dynamic vehicle model we consider is the kinematic bicycle model, so again the
output of the neural network are set points of acceleration and steering angle every
100 milliseconds. The architecture is then divided into two sub-modules: the first one
able to define the steering angle sa (blue one) and the second one for the acceleration
acc (red one). Because the system is trained using Reinforcement Learning it is nec-
essary to ensure exploration for the system to be able to find the optimal policy, for
this reason the acceleration and steering angle set points do not correspond directly to
the model output but are sampled from two Gaussian distributions obtained through
the neural network: sa∼N (µsa,σ) and acc∼N (µacc,σ). The two standard devia-
tions σsa and σacc are also predicted and modulated by the neural network along with
the two values musa and muacc. This choice leads us to have throughout training an
estimate of the model’s uncertainty on an instant-by-instant basis.
Furthermore, the network produces the corresponding state-value estimations (vsa

and vacc) using two different reward functions Rsa,t and Racc,t related to the accelera-
tion and steering angle respectively, exactly as is the case in the previous work 4.4.



92 Chapter 5. Deep Reinforcement Learning Planner

Instead, on the input side, both sub-modules receive 84× 84 pixels images that cor-
respond to the four channels (Navigable Space, Path, Obstacles and Stop Line) de-
scribed in the previous paragraph. To give the agent an idea of what its past history
looks like, they actually receive 4 images for each channel, related to the last 4 time
steps, for a total of 16 visual inputs. Together with this, the network receives the
same 5 scalar parameters including the target speed (the road speed limit), the cur-
rent speed of the agent, the ratio between the current speed and the target speed, and
the last actions related to the steering angle and the acceleration. The parameters of
the neural network model were trained only on the scenarios contained in the red
rectangles in Fig 5.1. In each scenario we deliberately decided not to include any ob-
stacles or other road users, because the goal of this part of the project was to evaluate
the agent’s learning capabilities in an environment that was as simple as possible. For
this reason, since we did not have agents training at the same time, we decided to cre-
ate multiple instances of each scenario, on which the agents act independently of each
other. Every agent moves using values in the range [−2.0 m

s ,+2.0 m
s ] for acceleration

and [−0.2,+0.2] for steering angle. In order to make the system more generalizable
for future real-vehicle testing, we decided not to set an initial velocity that was al-
ways the same, but to assign each agent an initial random velocity chosen from the
range [0.0,8.0] with which it spawns in each episode. The maximum initial speed
was set at 8.0 m

s because the road speed limits used in the urban area from which the
training scenarios are taken vary between 4.0 m

s and 8.3 m
s , and therefore we did not

want to exceed this value. Once spawn, the agent will have to drive comfortably by
following the route and obeying the speed limit until the terminal state of the episode
is reached.
Finally, since there are no obstacles inside the training scenarios, episodes can finish
in one of the following terminal states:

• Off-road: when the agent goes off the route it was assigned at the beginning of
the episode due to a wrong decision on the action to be taken.

• Time-over: when the time limit to end the episode is reached. For the system
to learn to drive properly, it must also be able to arrive at its destination within



5.3. Reward Shaping 93

a reasonable time. The main cause for an agent to happen in this terminal state
is to choose extremely cautious driving with very low acceleration values.

• Goal reached: when the agent is able to reach the terminal position of his route
without going off the road and within a reasonable time.

5.3 Reward Shaping

The ability to stay in the center lane, to reach but not exceed the target speed, and
not to brake or accelerate abruptly are all characteristics that must be considered
when defining the reward components. Indeed, if an agent wants to obtain a policy
that is able to drive smoothly both in simulation and in the real world environment,
reward shaping is essential to achieve the desired behavior. The main problem we
found in the experiments performed in the previous chapter 4.6, was related to the
extreme variability with which the agent chose consecutive actions, which led to
rapidly changes between positive and negative accelerations and thus to very abrupt
braking and acceleration. To obtain better results from this point of view, we modified
the rewards, one for acceleration and the other for steering angle, redefining them as
follows:

Racc,t = rspeed + racc_indecision + rterminal (5.1)

Rsa,t = rlocalization + rsa_indecision + rterminal (5.2)

Let us now analyze the components of both rewards individually, dwelling on their
significance and how they affect the actions taken by the agent. The rspeed component
allows us to quantify how close the current speed is to the desired speed. So it depends
on the value of the ratio between the vehicle’s current speed and the target speed, and
can be defined like this:

rspeed =

⎧⎨⎩sr ·ζ if sr < 1.0,

(1.0− sr) ·ζ otherwise,
(5.3)

where ζ is a constant set to 0.009.
This factor encourages the agent to reach but not exceed the target speed defined by



94 Chapter 5. Deep Reinforcement Learning Planner

the route speed limit in that section of road.
rlocalization is an element that penalizes the reward of the steering angle when its head-
ing ha and position (x,y) differs from those of the HD maps. It is defined as:

rlocalization = φ · (ha−hp)+χ ·d (5.4)

where φ and χ are constants set to 0.05, hp is the heading of the road, and finally
d is the lateral distance between the position of the agent and the center of the lane.
In addition to these components that were already present in previous work, another
component was added in both Rsa,t and Racc,t with the task of penalizing in case two
consecutive actions differ too much from each other. That is, if the modulus of their
difference is less than a certain threshold. Specifically, the difference between two
consecutive accelerations is calculated as ∆acc = |acc(t)−acc(t−1)| and racc_indecision

is defined as:
racc_indecision = ψ ·min(0.0,δacc−∆acc) (5.5)

where ψ is a constant set to 0.1 and δacc is set to 0.5 m
s2 .

Instead, the difference between two consecutive predictions of the steering angle is
calculated as ∆sa = |sa(t)− sa(t−1)|, such that rsa_indecision is defined as:

rsa_indecision = λ ·min(0.0,δsa−∆sa) (5.6)

where λ is a constant set to 0.01 and δsa is set to 0.05. Finally, the last term of both
rewards depends on the agent’s terminal state, so it takes on value 0.0 at every step
of the episode except the last one. Thus, the values it can take depend on the terminal
states defined earlier:

• Off-road: The agent did not maintain the path assigned to it. Since this type of
error is mainly due to wrong curvature we decided to penalize only the steering
angle reward, so rterminal takes value −1.0 in Rsa,t and 0.0 in Racc,t .

• Time-over: The time to end the episode is over before the agent has reached the
target position. This is mainly due to an overly cautious acceleration predic-
tions of the agent; for this reason rterminal assumes the value of −1.0 for Racc,t

and 0.0 for Rsa,t .



5.4. Deep Model 95

• Goal reached: the agent reached the goal position without leaving the roadway
and in a reasonable time, so rterminal is set to +1.0 for both rewards.

5.4 Deep Model

Since in this project we also wanted to test the system on a real vehicle, we had to deal
with all those problems that make a simulated system different from a real system.
Primarily, the discrepancy between a real and simulated data, caused by the difficulty
of reproducing a real situation in a simulator. To overcome this problem we used a
synthetic simulator (Fig. 3.4) in order to simplify the input of the neural network and
to reduce the gap between simulated and real world data. Indeed, the input we have
chosen for our network is grayscale and consists of 4 channels each focused on a
certain feature of the environment (Obstacles, Navigable Space, Path, Stop Line). In
this way we are able to synthesize reality, eliminating all details that are irrelevant
to the agent. The 4 images we pass as input to the neural network can be easily re-
produced by perception and localization algorithms and by HD Maps embedded on
the real self-driving car. An additional factor that must be taken into consideration
when using a simulator is that each real system has its own characteristics that make
it unique. For example, when considering two human beings, even if they belong to
the same species, they are different from each other, reacting in different times and
ways to stimuli. Just as with humans, for which the example is self-evident, the same
is true for other systems. Taking generic systems into account in simulation can then
result in differences with a specific system in reality. In our case, a vehicle has its own
peculiarities that depend on engine capabilities, wheel size, aerodynamic characteris-
tics, and countless other parameters. Some are easily configured as parameters in the
simulation and it is simple to take them into account, such as the size of the vehicle,
but for others it is more complex. Just think about reaction times, that is, how each
simulated agent performs a target action compared to how the autonomous car would
behave executing that command. Indeed, a target action to be performed by an agent
at time instant t, in simulation has immediate effects at that precise moment, but this
does not happen on a real vehicle. Every real vehicle executes this target action with



96 Chapter 5. Deep Reinforcement Learning Planner

a certain dynamics that involves a delay in execution (t+δ ). For this reason, wanting
to test a model trained in simulation also in reality, it is necessary to overcome this
problem by introducing in a delay also in simulation.

S
te

er
in

g 
an

gl
e 

Time [ms] 

Target

Simulated agent

Autonomous vehicle
Deep response model

Figure 5.4: Comparison between simulated agents (green curve), real vehicle (orange
curve) and deep response model (red dotted curve) behaviors executing target actions
(blue curve).

Fig. 5.4 shows the different curves that represent the actual behavior of the mod-
els we are analyzing when there is a change in steering angle. The blue curve corre-
sponds to the ideal, instantaneous response time that occurs in simulation. Whereas,
the orange curve shows the behavior of the autonomous vehicle while performing the
same steering action. The purpose of our research focused on making the behavior of
the agents in simulation as close as possible to the real behavior (orange).
We initially trained agents by adding a low-pass filter to the target action predicted by



5.5. Experiments 97

the neural network. In the Fig. 5.4, the green curve represents the response time of an
agent in simulation with the introduction of the low-pass filter. However, the differ-
ence in the response time between simulated and real vehicle still remains relevant.
The problem persists even with the introduction of the low-pass filter, the set points
predicted by the neural network remain non-feasible commands and do not take into
account some factors such as the inertia of the system, the delay of the actuators and
other non-idealities. Therefore, the solution we found was the introduction of a model
consisting in a small neural network composed by 3 fully connected layers (which we
will call deep response). This model is trained using a dataset collected directly with
the vehicle we will then test on. The input of this neural network corresponds to the
commands given to the vehicle directly by the driver, i.e., accelerator pressure and
steering wheel movement. The output, on the other hand, corresponds to the throttle,
brake and curvature of the vehicle that can be measured with GPS, odometry or other
techniques. Then applying this model to the actions generated with the other neural
network yields in simulation a behavior like that represented by the red dotted curve
in Fig 5.4. As can be seen, the curve overlaps almost perfectly with the orange curve
that corresponds to that of the real vehicle. In this way we were able to report as
truthfully as possible the dynamics of the autonomous car. Given the absence of ob-
stacles and traffic vehicles in the training scenarios, the described problem was more
evident for the actuation of the steering angle, but the same idea has been applied to
the acceleration output.

5.5 Experiments

To validate our Deep Reinforcement Learning Planner, experiments were conducted
both in simulation and in a real environment. Considering a modular architecture
1.3.2, our system aspires to replace that module that deals with planning and control.
Once data is obtained from the sensors, it is processed and the 4 images that serve
as input to the neural network are generated, exactly as in simulation. Initially, we
conducted prolonged tests to evaluate the effectiveness and impact of the deep re-
sponse model on the system. The experiment consists of comparing two policies, one



98 Chapter 5. Deep Reinforcement Learning Planner

in which it is included and the other in which it is not used. The next step was to ver-
ify that the vehicle actually followed the assigned path and that its speed approached
the speed limit defined by the HD maps without exceeding it. In the last part of this
work we focused on optimizing the system and showed that pre-training the neural
network with Imitation Learning dramatically reduces the overall training time.

5.5.1 Test on Real Data

In this first experiment we tested the behavior of the real vehicle over the whole
mapped area shown in Fig. 5.1 with two different policies:

• Policy 1: trained without the deep response model, but adding a delay in simu-
lation with a low-pass filter.

• Policy 2: trained with the deep response model, applied to the output of the
neural network in Fig. 5.5.

We initially performed the tests in simulation and then also on the real vehicle. In
the simulated environment, the agent was able to drive in a way that was apparently
comfortable and correct, succeeding 100% of the time with both policies. However,
the difference was noticeable when we switched to testing on the real vehicle. Policy
1 was unable to handle the dynamics of the vehicle, in which the execution of the pre-
dicted actions occurs with completely different timing than in the simulation. Indeed,
the model, at each step predicted an action that should have brought it to a certain
state, but actually brought it to a different state. This uncertainty had negative effects
on the behavior, making the driving style uncomfortable on board of the self-driving
car. In addition to this, the reliability of the system was also undermined because of
this behavior, sometimes leading to human intervention to prevent the car from run-
ning off-road. In contrast, Policy 2 is capable of predicting actions correctly because
it is based on a model learned directly from the vehicle itself. The resulting behavior
is comfortable and comparable to that of a human driver. Moreover, using Policy 2 it
has never been necessary to intervene to correct its driving except to avoid accidents
with other vehicles. However, we do not consider these cases as failures because both



5.5. Experiments 99

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-1.25

0.020

0.015

0.010

0.005

0.000

-0.005

-0.010

-0.015
42 6 8 12 14100

Time[s]

D
is

ta
n

ce
 t

o
 c

e
n

te
r 

la
n

e
[m

]
S

te
e

ri
n

g
 a

n
g

le

Figure 5.5: The distance to the center lane and the steering angle output predicted by
Policy 1 (blue curves) and Policy 2 (red curves) on a short time window of the real
world test on board the self-driving car.

policies were trained in obstacle-free scenarios. To better understand the difference
between Policy 1 and Policy 2 we plot (Fig. 5.5) the steering angles predicted by the
neural network and the distance to the center lane in a short time window of the real
world tests. The behavior described earlier is perfectly reflected in this graph. The
vehicle using Policy 1 (blue curves) often deviates from center lane and its steering
angle constantly oscillates, never finding a way to stay parallel to the center lane. The
vehicle using Policy 2 (red curves), on the other hand, has a much more stable and
less noisy behavior as evidenced by the almost straight curves.
This test prove that the deep response module is essential for the deployment of the
policy on board of the real self-driving car. An example of the real world test per-
formed using the Policy 2 is showed in video4

4https://drive.google.com/file/d/1ZCI2qqNPY2CsE4U1xKfEqGzNintDxf9Q/

view

https://drive.google.com/file/d/1ZCI2qqNPY2CsE4U1xKfEqGzNintDxf9Q/view
https://drive.google.com/file/d/1ZCI2qqNPY2CsE4U1xKfEqGzNintDxf9Q/view


100 Chapter 5. Deep Reinforcement Learning Planner

5.5.2 Speed Limits

The second test we performed was aimed at demonstrating that the vehicle was able
to follow its assigned path and adapt its speed to the speed limits imposed by different
types of road. Fig. 5.6 depicts the behavior of a trained vehicle with a Policy 2 driv-
ing autonomously in a real urban area. In particular, the Fig. 5.6a represents a portion
of the map (Fig. 5.1) with the speed limits of 4 m

s , 5 m
s and 8.3 m

s , corresponding to
orange, blue and green curve colors respectively. In order to show a more detailed
example of the longitudinal behavior of the real self-driving car, we plot the accelera-
tions predicted by the network (Fig. 5.6b) and the vehicle speeds (Fig. 5.6c) obtained
driving along the route of Fig. 5.6a.
From the speed graph Fig. 5.6c it is possible to see how the agent never exceeds the
speed limit imposed by the different sections of the road and extrapolated from HD
Maps. When it has to face a straight road it manages to increase its speed quickly,
and when it encounters a roundabout or a section with a lower speed limit it manages
to slow down just as fast. On the other hand, looking at the trend of the acceleration
curve Fig. 5.6b, it can be seen that it appears very noisy. Actually for the difference
between two consecutive predicted values never exceeds the threshold δacc used in the
reward function in Equation 5.5, resulting in a smooth and comfortable longitudinal
behavior perceived on-board vehicle.

5.5.3 Imitation Learning Pre-training

In this part of the project, the system is single-agent and there is only one agent on
each scenario, but training takes place on multiple instances of different scenarios
simultaneously. This already makes training long and onerous. If we then consider
that the ultimate goal we are striving for is to achieve a multi-agent system we easily
come to the conclusion that the training time could become prohibitive. To overcome
this limitation of RL that is the need for millions of episodes to reach the optimal
solution, we decided to perform a pre-training using Imitation Learning. Generally,
when a neural network is trained by IL, the architecture that is used is very large and
complex. Since our idea is to use the imitation approach only for pre-training and



5.5. Experiments 101

(a) Path with different speed limits

1.0

0 25

0.5

0.0

-0.5

-1.0

A
cc

el
er

at
io

n 
[m

/s
 ]

Time [s]

2

50 75 100 125 150 175

(b) Acceleration

S
pe

ed
 [m

/s
]

Time [s]
0

3

4

5

6

7

8

25 50 75 100 125 150 175

(c) Speed

Figure 5.6: Fig. 5.6a represents the path performed with the self-driving car in which
colors identify the different speed limits faced in this area. Fig. 5.6b and Fig. 5.6c are
respectively the trend of acceleration and speed during the real test.



102 Chapter 5. Deep Reinforcement Learning Planner

then continue the training with RL, we decided to use the same neural network Fig.
5.3 that is small instead, about one million parameters. The most obvious advantages
obtained with this choice are increased robustness and good generalization capability.
Because IL is a supervised approach the first problem we faced was to create a dataset
with which to train the model. To create a complete dataset using data directly ob-
tained from human drivers would have been overly burdensome and hardly feasible.
Therefore, we decided to take advantage of our simulator to create a dataset with
agents moving following rule-based approaches. In particular, for the curvature we
use the tracking algorithm called Pure Pursuit [92], where the agent’s purpose is
to move following specific waypoints. Instead, we use the Intelligent Driver Model
(IDM) [93] to control the longitudinal acceleration of the agent.
During the dataset creation, each agent moves to one of 4 scenarios (Fig 5.1) and
every 100 ms saves the data needed to derive the scalar parameters and an image
representing the agent’s view at that instant. Instead, the output is given by the Pure
Pursuit algorithm and the Intelligent Driver Model. During the IL training phase we
do not estimate the values of the standard deviations (σacc, σsa) and neither the value
functions (vacc, vsa), but only the tuple (µacc, µsa) that corresponds to the two lateral
and longitudinal controls that are returned as output by the neural network. These
features, together with the deep response module, are learned during the IL + RL
training phase. A comparison of two different trainings is shown in Fig. 5.7. The first
Pure RL that does not involve any kind of pre-training and starts directly with Pure
RL (red curve); the second IL + RL, on the other hand, is still training using RL, but
has been pre-training using IL (blue curve).
Fig. 5.7a shows how both approaches are able to achieve a good success rate, but IL
+ RL training requires fewer episodes than the Pure RL and the trend is also more
stable. However, the most interesting result is obtained in the graph depicted in Fig.
5.7b, where it is evaluated how the average reward value grows during training. Look-
ing at a time window of 50000 episodes, IL + RL policy manages to reach an optimal
solution in a few episodes (blue curve), Pure RL approach, on the other hand, would
require many more episodes to reach a comparable reward. In this case an optimal
solution is represented by the dashed orange curve. This baseline represents the av-



5.5. Experiments 103

(a) Positive episodes

(b) Average reward

Figure 5.7: Comparison between Pure RL training (red curve) and using a pre-training
through Imitation Learning, IL + RL (blue curve). In Fig. 5.7b the orange dashed line
represents the average rewards obtained in 50000 episodes using simulated agents
that follow deterministic rules as those used for collecting the dataset for IL pre-
training.

erage rewards obtained using simulated agents that perform 50000 episodes in the 4
scenarios of Fig. 5.1. The simulated agents follow deterministic rules as those used
for collecting the dataset for IL pre-training, which therefore use Pure Pursuit for
curvature and IDM for longitudinal acceleration. Since we are not only interested



104 Chapter 5. Deep Reinforcement Learning Planner

in the agent being able to reach the goal, but also in achieving a good policy; pre-
training with Imitation Learning saved us quite a bit of time, since the time it takes
for pre-training is significantly less than it takes Pure RL to achieve an optimal so-
lution. Thus we proved that pre-training with IL drastically reduces the time needed
for training. This gap between the two approaches may be more evident training the
system performing more complex maneuvers in which agents interactions could be
required.



Chapter 6

World Models for Autonomous
Driving

Before proceeding with the work, we analyzed the limitations and issues related to
the Deep Reinforcement Learning planner explained in the previous chapter.
First and foremost is the lack of obstacles. An autonomous vehicle must necessarily
be able to drive in traffic situations and be able to negotiate and interact with other
road users. For this reason, the inclusion of obstacles was one of the priorities evalu-
ated in the further work.
In addition to this, we also realized that the size of the visual inputs we have used so
far (84×84 pixels) was very limiting. Indeed, wanting to drive at high speeds would
require the vehicle to be able to see a larger area to comply with safety regulations.
Currently it is limited to seeing only up to 40 meters ahead. Furthermore, considering
that the agent’s surrounding view is 50×50 meters it can be inferred that the resolu-
tion is about 60.0 cm per pixel. This implies a very high error range that could lead
to accidents, since with this resolution the system must necessarily make approxi-
mations on the position and speed of obstacles. One type of situation that highlights
this problem is when the agent should stop behind another vehicle, such as before
entering a roundabout or at a traffic light. In these situations, the distances between
two vehicles might be even less than 60.0 cm.



106 Chapter 6. World Models for Autonomous Driving

In addition to the lack of obstacles and the small size of the input bird’s-eye views, we
also found limitations related to the type of architecture we chose. Indeed, although it
apparently seems to be a lightweight network, wanting to train it in a multi-agent sys-
tem, on multiple scenarios simultaneously, with larger visual inputs trying to make
the agent learn different maneuvers, we find that it actually turns out to have a very
onerous computational load and extremely long training times. This is also caused
by the fact that the neural network turns out to be compact, not decomposable into
several simple models that can be trained separately. Moreover, in a compact system
such as the one seen so far, in case of malfunctions or in case the agent learns un-
wanted behaviors, the process of debugging the system is really difficult.
Because of all the limitations just listed and present in the previous architecture, we
decided in this concluding work to test new ones, choosing mainly from decompos-
able ones, that is, where it was possible to separate the global neural network into
several simple models and train them separately.
After several experiments we chose to use the architecture proposed in the paper
World Models [94]. This paper was very important in the field of reinforcement learn-
ing because it introduced a novel machine learning algorithm that solved a previously
unsolved continuous action space, pixel observation space control problem. The ar-
chitecture is divided into 3 separately trainable components: VAE, MDNRNN and a
final control part. In this chapter we see in detail the different components and how
we were able to adapt them to our system. Finally, we will see the results of some
tests performed once the various components have been trained.
The purpose of this last part of the work was to evaluate how this architecture could be
introduced in autonomous driving, and then evaluate the results and see if it could be a
viable solution for the future. The authors had only tested this architecture in "game"
environments, such as Car-Racing-v0 and ViSDoom. So this last part is simply a pre-
liminary work where we demonstrated with some results that this architecture can be
adapted to autonomous driving.



6.1. World Models 107

6.1 World Models

Before proceeding with the explanation of the main components of the World Model
architecture [94] it is necessary to show the key and innovative concepts it proposes,
especially because it has met with enormous success and had a major impact in the
community of researchers in the field of Reinforcement Learning. First of all, their
philosophy is to take cues from the human brain system, not only for the structure of
the neural network, but also because of its way of learning from experience, interact-
ing with the environment and consequently learning to make decisions by predicting
the future. Now we take a closer look at these concepts in detail. A human, every day,
is constantly interacting with the world around him and receiving millions of infor-
mation from it. Our senses help us take in this information and our brains transform
it into abstract representations. These representations cover spatial and temporal as-
pects and help us navigate and interact in our world. Every human being uses these
representations to create his or her own model of the world that helps him or her
unconsciously and significantly in daily life. Many actions we perform in the day
are done automatically and instinctively, without any need to think or plan them.
This means that our model of the world allows us to have small, constant predictions
about the future of the sensory data we observe and enables us to react instinctively
and adapt our "motor actions" without the need to plan based on the predictive model.
In the paper [94], their main goal was to have an agent capable to learn a model of
the environment, just as a human does. In this way, thanks to the learned model and
through a control part, the agent is able to move and interact with the environment. In
addition, they have also shown that their agent is also able to learn by training itself
in the model of the environment it has created. As we have already mentioned, the
result they obtained is a model that was able to train an agent to play and gain high
scores in the OpenAi Gym environments. Since their system is based on learning a
model by which the agent becomes able to predict future actions, clearly this archi-
tecture falls into the Reinforcement Learning category of model-based algorithms.
Therefore, with the choice of this architecture, we have abandoned the model-free
approach of the planner described in the previous chapter 5 to explore this different



108 Chapter 6. World Models for Autonomous Driving

Observation

Environment

VAE

MDNRNN

C

z

h

a

World Model

Figure 6.1: Architecture presented in the paper World Models, consisting mainly of
three separately trainable components: Variational Autoencoder, MDNRNN and con-
trol.

type of algorithms. The architecture they proposed is the one in Fig. 6.1 and is decom-
posable into three sub-models: VAE-Model, MDNRNN-Model and Control-Model.
The first two are the ones that allow the creation of the "World Model", while the con-
trol part deals with the decision-making process of the actions to be performed. Let
us now take a closer look at the three sub-models and how they have been revisited
in our system.

6.1.1 VAE-Model

The VAE-Model consists of a Variational Autoencoder, explained in section 2.2.4. Its
task is basically to compress into a latent space z what the agent sees at each instant
of time t, that is, to reduce the high dimensional data of input into a lower dimen-
sional space. Indeed, through this process, it can provide a lower dimensional space
at the controlling part, in which it is easier to make decisions about the actions to be
performed.
For training this model we used the same encoder and decoder structure used in the



6.1. World Models 109

paper [94], with the only difference that we added some Convolutional Layers (ex-
plained in 2.2), because compared to their work we chose to use a larger input size.
Their input was 64×64 pixel images, in our case instead we use 4 images (Obstacles,
Navigable Space, Path and Stop Line) obtained from the different channels as also
seen in the previous chapter 5.1. In this work we chose to use images that have a size
of 256×256 pixels, so an agent can have a wider overview of its surroundings, com-
pared to the 50×50 meters it saw in the architectures of previous works. In addition,
this change also results in higher resolution in the input images, greatly reducing the
distance in meters corresponding to one pixel. A dataset of black-and-white images
acquired in the 4 scenarios contained in the red rectangles in Fig. 5.1 was created
for training the VAE-Model. As reconstruction loss we use the so called BCEWith-
LogitLoss, which combines a Sigmoid layer with the classical BCELoss in a single
operation. This version turns out to be more numerically stable than using the two
components separately. The complete loss is then the sum of the BCEWithLogitLoss
and the similarity loss, for which we used the KL Divergence [62].
In this system, however, in the different four images, the amount of white pixels is
completely different. The most obvious case can be seen by looking at the two chan-
nels of Navigable Space and Stop Line, in the former there are a good number of
white pixels and in the latter there are only a few. Without any expedient and weigh-
ing the pixels in the same way on all 4 images, we found that the system was unable to
reconstruct neither the obstacles nor the stoplines, which were the channels with the
least concentration of white pixels. Thus, we decided to calculate a different weight
to associate with the white pixels for each channel. Initially, all the white pixels of
that channel in the entire dataset are added up and then divided by the number of total
pixels.

channel_pixels =
white_pixels
total_pixels

(6.1)

The obtained value channel_pixels is then applied in the formula:

channel_weighti =
1.0

log(c+ channel_pixelsi)
(6.2)

which allows us to have the final weight of each channel i. This formula is also used
in [95] and has a parameter c that must be calibrated in the training phase and usually



110 Chapter 6. World Models for Autonomous Driving

depends on the composition of the dataset. In section 6.2 we will show some results
obtained in the testing phase using this trained model.

6.1.2 MDNRNN-Model

The second element from which the World Model architecture is composed is the
MDNRNN-Model, which, as can be guessed from its name, owns as its key compo-
nent an RNN, more specifically an LSTM, explained in chapter 2.2.2. This element
represents the memory of the system and contains a state within it that compresses
the information of what happens in time. Keeping track of what happens in the input
space would be too complex and onerous, so only the lower dimensional latent space
zt learnt by the VAE-Model is kept track of. This process allows the internal state of
the LSTM memory to accumulate knowledge and be able to predict how the environ-
ment changes based on the action the agent takes. In this way, the agent will be able
to perform better actions because it can predict the consequences.
The MDNRNN-Model has two main components, the LSTM we just described, and a
Gaussian Mixture Model, which together form a Mixture Density Network (MDN),
from which the name "MDNRNN". A Mixed Density Network combines a neural
network that can represent arbitrary non-linear functions, with a mixture model that
can model arbitrary conditional distributions. This second component takes as input
the deterministic zt value obtained with the RNN and returns a corresponding prob-
ability density function p(zt). Since most complex environments have a stochastic
nature, this probability function p(zt) captures the stochasticity better than a deter-
ministic prediction of zt . The purpose of the MDNRNN-Model is to learn to predict
the probability distribution of the next latent vector z′t+1, based on current and past in-
formation. So as seen from the Fig. 6.2, at each time instant t, the MDNRNN-Model
takes as input the latent space zt produced by the VAE-Model encoder, the action at

to be performed and the hidden state ht of the previous step, and returns the prob-
ability distribution of the next latent vector z′t+1 and the hidden state ht+1, which is
useful for the next time instant. The output of this element, that is the predicted next
environment latent representation z′t+1 will actually not be used by the control part,
just like the output decoded by the VAE-Model. Indeed, the C-Model makes use of an



6.1. World Models 111

RNN

MDN

𝜏

h

a
z

z'

RNN

MDN

𝜏

h

a
z

z'

RNN

MDN

𝜏

h h

a
z

z'

t+2

t+2

t+1t-1

t-1

t-1

t

t

t+1

t+1

t+1

t

t

Figure 6.2: MDNRNN-Model architecture consisting of an RNN and a Mixture Den-
sity Network that predicts the probability distribution of the next latent vector.

internal representation learnt by the memory, that is the hidden state ht of the LSTM.
This internal representation is a compressed representation that is useful to predict
the future. For the training of the MDNRNN it is assumed that the VAE-Model has
already been trained, in fact during the calculation of the latent zt space the encoder
pre-trained in the VAE is used, but its parameters are locked, to keep the two models
separate and have a more decomposable architecture.
Before introducing the changes we have made in our system on this component, it
is necessary to make an additional premise. The "World Model" system is trained
by Reinforcement Learning and as we will see later it predicts a reward at each step
which is compared with the original reward contained in the training dataset. Since
ours is a preliminary work with the purpose of evaluating and introducing this ar-
chitecture in the autonomous driving domain we decided, as a first approach to use
Imitation Learning, aware also of the results obtained in the paragraph 5.5.3. This
choice mainly affects the control part, but also has feedback on this part of MD-
NRNN, especially in the composition of the loss function. In the original paper [94],
the loss function was composed of 3 elements:

• GMMLoss: which compares the latent space computed by the VAE at time t +



112 Chapter 6. World Models for Autonomous Driving

1, with the latent space predicted by the MDNRNN at time t and thus matching
that at time t +1.

• MSELoss: applied between the dataset reward and the predicted reward.

• BCELoss: applied to evaluate the terminal state of the dataset and that pre-
dicted.

Having chosen an approach using Imitation Learning the our loss, instead, consists
only of the GMMLoss. The action that takes as input the MDNRNN clearly cannot
be the one obtained from the control part, because it has not yet been trained. They
are therefore obtained from a dataset, which we will elaborate on in the next control
section.

6.1.3 Control-Model

The final component of the architecture is the Control-Model and it has two tasks:
deciding what actions to execute, and learning to decide what is the best action to
execute. In the original architecture [94] this component is very simple because it can
be represented by a single-layer linear model that maps the latent vector zt and the
hidden state ht directly to an action at :

at =Wc[zt ,ht ]+bc (6.3)

where Wc and bc are the parameters to be trained.
The combination of the compressed representation of the current environment (zt)
and the future environment (ht), provided by the previous two models, are exactly
what the control part needs to decide what action to perform. In the paper [94], the
controller learns the parameters of this linear function that maximize the expected
reward of our agent. This is an optimization problem and the algorithm that is used to
find these parameters is the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [96].
In our case, that we use Imitation Learning and not Reinforcement Learning, we still
have to learn a policy, but not through a reward metric. Because IL is a supervised



6.1. World Models 113

approach, the agent must necessarily be trained based on a dataset, and the loss that
is used is MSELoss, which compares the estimated acceleration and steering angle
actions with those in the dataset. Since creating a complete dataset directly from
a real vehicle was a very onerous and complex task, we generated it by exploiting
the simulator described in section 3.3. The dataset is equivalent to the one in the test
described in paragraph 5.5.3, that is, with agents moving with rule-based methods and
traditional algorithms (IDM [93] and Pure Pursuit [92]). The only difference is that in
that test obstacles were not present and, instead, in this dataset, rules were generated
to introduce them and make them coexist in the scenario as in a real situation. This

Figure 6.3: Architecture for the control part of the version of World Model that we
adapted to autonomous driving. It is a very simple neural network that takes as input
the latent space generated by the VAE, the hidden state of the MDNRNN, and a series
of scalars to produce as output the acceleration and curvature set points to be passed
to the actuation module.

dataset was created so that it could be used for training all three components. In Fig.
6.3 it is possible to see the architecture of the neural network of the control part.
In addition to the latent space generated by the VAE-Model and the hidden state
generated by the MDNRNN-Model, we also added 7 scalar parameters as input. The
5 parameters already used in the neural network seen in the previous work 5.2 to



114 Chapter 6. World Models for Autonomous Driving

which two parameters related to the speed of any vehicle present in front of the agent
are added. During the training of the control part both the parameters of the VAE-
Model and the MDNRNN-Model are locked so that they are not changed.

6.2 Experiments

One of the reasons we chose to use the World Models architecture rather than oth-
ers was that it was decomposable, in which each model can be trained and tested
individually. In this chapter we will look at the tests performed to verify the capa-
bilities of the individual trained models. For the first two components, we were also
able to do extensive testing on different types of scenarios, but for the control part,
in this preliminary stage of the work, we focused only on straight roads. A unique
dataset equivalent to the one described in the section 6.1.3 was created for all tests,
but clearly different from the one used during the training phase.

6.2.1 VAE-Model Tests

The VAE-Model is a key component of the architecture, because since it is the one
that generates the latent space that is then used by the other two models, if the latent
space is not well descriptive of the input, the end result will be poor. Therefore, of
the VAE-Model we are mainly interested in optimizing its capability to generate a
latent space that is descriptive of the input, that is, the Encoder. Being compressed
information, it is in no way possible to verify its accuracy based directly on the val-
ues contained in the latent space itself. Therefore, the Decoder component serves
exactly that purpose, because it produces an output that is nothing more than the re-
constructed Input. Therefore, to verify whether indeed the VAE is able to reconstruct
the input well, we tested it on some sequences.
We report in Fig. 6.4 some images showing on the left the four input channels and
on the right their respective reconstructions. We decided to include in this paper only
two significant images as examples. In the first one (Fig. 6.4a ) the agent is able to
correctly reconstruct a roundabout, obstacles and also the stop line. In the second one
(Fig. 6.4b), on the other hand, it is noteworthy that he is able to correctly distinguish



6.2. Experiments 115

(a) Roundabout (b) Traffic

Figure 6.4: Results of VAE-Model Tests. 6.4a represents a correct reconstruction of
a roundabout, 6.4b, instead, represents a situation with many traffic agents that the
system can distinguish.



116 Chapter 6. World Models for Autonomous Driving

and reconstruct all agents on the scene, even if they are close to each other. To better
show the results, a folder accessible from this link5 was created that contains ani-
mated gifs representing the reconstruction of entire sequences, in which it is easier
to appreciate the model’s capability. Once we ascertained that the VAE-Model had
achieved the desired results we moved on to training the next component.

6.2.2 MDNRNN-Model Tests

MDNRNN

ENC

DEC

h

a
z

z

x

x

t

t

t

t

t+1

t+1

t+1 t+2

t+1t+1t+1

t+1

MDNRNN

ENC

DEC

h

a
z

z

x

x

t+1

h
t+2

t+2

t+1

Figure 6.5: Baseline test architecture for MDNRNN-Model. In this test, the latent
space of the next step predicted by the MDNRNN is decoded and compared with the
input of the next step. That is, the two items circled in red.

In the MDNRNN-Model, it is important to evaluate whether the hidden state that
is stored and then used in the control part is descriptive enough of the past history to

5https://drive.google.com/drive/folders/1_3bW-VyN3ZxetLuFNkNJiOfBxKXxsDDy

https://drive.google.com/drive/folders/1_3bW-VyN3ZxetLuFNkNJiOfBxKXxsDDy


6.2. Experiments 117

be able to generate correct and consistent future latent spaces. Being able to obtain a
good hidden state puts the agent in a position to determine the action to be performed
now by imagining what might happen in the future. Therefore, we performed two
different types of tests. The first test, which we call baseline test, allows us to visu-
ally compare how much the latent space predicted by the MDNRNN for time t + 1
differs from the actual input at time t + 1. Basically, the reconstruction made with
the VAE-Model decoder of the predicted latent space for the next step is compared
with the input image of the next step, i.e., the two elements circled in red in Fig. 6.5.
Fig 6.6 shows some example images of the results, in which the two elements to be
compared can be seen superimposed. In particular, an erosion filter was applied to the
original input to obtain only the contour (white), instead the grey pixels represent the
reconstruction made with the decoder of the latent space predicted by the MDNRNN.
They have been superimposed in order to better assess how much the reconstruction
differs from the original.
It can be seen from the reconstructions that the agent has figured out how other

agents are moving at the scene, because for example if it sees an agent coming from
the opposite lane it can predict its downward movement. Similarly, it has learned that
the navigable space also slopes downward if the agent is moving. Again, to better
appreciate the results, a folder accessible from this link6 was created, containing a
number of gifs representing sequences of 70 consecutive steps.

For the trained MDNRNN model, we also performed an additional test in which
we wanted to understand whether the generated latent spaces were substantial enough
to allow it to use them as the latent spaces of the next step. Basically, the agent
stopped at a certain step and began to dream about its future for a certain amount of
subsequent steps. What we have therefore done is to use the latent space predicted by
the MDNRNN-Model at the previous step as the input latent space for the MDNRNN
at the next step. As seen in Fig. 6.7. Clearly, the expected result of this test is that there
is a worsening going forward with the dream steps. And this is exactly what occurs in
most cases. Some results, however, are still interesting. For example, the one shown

6https://drive.google.com/drive/folders/1M2SX7xWiFhFvc_

S3shpO9PZOa8ts5oeR

https://drive.google.com/drive/folders/1M2SX7xWiFhFvc_S3shpO9PZOa8ts5oeR
https://drive.google.com/drive/folders/1M2SX7xWiFhFvc_S3shpO9PZOa8ts5oeR


118 Chapter 6. World Models for Autonomous Driving

Figure 6.6: Two images representing examples of results obtained with the baseline
test using trained MDNRN-Model. The white contour represents the input of the
next step to which an erosion filter was applied to superimpose it on the gray areas
representing the reconstruction made by the decoder of the latent space predicted by
the MDNRNN

in Fig. 6.8, where the top image shows the initial step of a sequence 70 steps long and
the bottom image the final step. The agent was imagined to be moving along the road
and arriving at the stop line of a roundabout. Again it is difficult to show the results
with single images, so we created a folder accessible from the link7, in which there
are gifs showing all the steps of the dream. In each gif you can see that actually the
first 10 steps are always performed as in the baseline test, because before starting to
dream the agent needs to accumulate information from the past history in the hidden
state in order to then predict the future.

7https://drive.google.com/drive/folders/1oKFfiYFG1_

BIktDzLssNuw0ttfizAc_B

https://drive.google.com/drive/folders/1oKFfiYFG1_BIktDzLssNuw0ttfizAc_B
https://drive.google.com/drive/folders/1oKFfiYFG1_BIktDzLssNuw0ttfizAc_B


6.2. Experiments 119

MDNRNN

ENC

DEC

h

a
z

z

x

x

t

t

t

t

t+1

t+1

t+1 t+2

t+1

MDNRNN

DEC

h

a

z

x

h
t+2

t+2

t+2

t+3

MDNRNN

DEC

a

z

x

h
t+3

t+3

Figure 6.7: In this test, the agent is allowed to imagine the future for 70 steps. In fact,
after a few initial steps in which the agent accumulates memory in the hidden state,
the latent space decoded by an input is no longer used but the latent space predicted
by the MDNRNN at the previous step.

6.2.3 Control-Model Tests

The test performed on the trained control model corresponds to a test on the whole ar-
chitecture. Indeed, this model takes as input the result of the previous two components(zt

and ht), as we saw in section 6.1.3. In this preliminary work, the agent was trained
only to drive on a straight road. So the tests were also carried out in the same situa-
tion. To test it we used the simulator described in 3.3 and in which the agent drives
in the middle of random traffic generated by other vehicles of various types. An ex-
ample of its behavior is in the video8. In this video we have the agent (green) always
driving along the same roadway of an almost straight road. The traffic is represented
by the blue rectangles, which, according to their size, represent different types of ve-
hicles. The results obtained are extremely satisfactory, indeed, the vehicle learned to

8https://drive.google.com/file/d/1LL9o7Kf_uflLC0kbmT_

ttAqj-eBY8y9h/view?usp=share_link

https://drive.google.com/file/d/1LL9o7Kf_uflLC0kbmT_ttAqj-eBY8y9h/view?usp=share_link
https://drive.google.com/file/d/1LL9o7Kf_uflLC0kbmT_ttAqj-eBY8y9h/view?usp=share_link


120 Chapter 6. World Models for Autonomous Driving

Figure 6.8: These two images represent the first and last steps of a dream test per-
formed with the architecture in Fig. 6.7. In this case, the agent imagined itself driving
along the road until it reach the stop line of a roundabout.

complete each episode without crashing into other vehicles or running off the road. In
addition, it can also be seen that it is able to move correctly in traffic, slowing down
when necessary and accelerating when the road is clear from traffic. For example, an
astonishing result is that of the episode beginning at about 1.50 minute of the video,
in which the ego agent manages to overtake a traffic vehicle who has stopped at the
side of the road. However, these are only preliminary results; the system would then
need to be tested directly on the real vehicle and trained on other scenarios, such as
roundabout and intersections.



Conclusion

The main purpose of this research work has been the exploration and development
of Deep Reinforcement Learning and Imitation Learning algorithms in the field of
autonomous driving and particularly in an urban environments. Indeed, the final goal
of the project, which had its foundations in this work, is the development of a system
based on a Deep Reinforcement Learning algorithm that can be used in a real vehicle
and be able to drive safely and comfortably even in traffic conditions.
We started with the development of a neural network that was able to predict the
correct lateral and logitudinal continuous control values that would allow an agent to
safely cross an intersection, respecting the precedence rules dictated by traffic signs
and also the right of way rule. The algorithm we proposed is D-A3C, explained in
2.3.9, that is able to obtain these output values based only on synthetic images re-
producing navigable space, path, obstacles and traffic signs, and the agent’s current
speed and target speed values. Since our purpose was not to estimate when was the
exact time to cross the intersection, but to make the agent intelligent and capable of
negotiating and interacting with other vehicles, we decided to develop a multi-agent
system, in which each individual agent participates in the optimization of the overall
policy. Through testing, we proved that the agent learned to cross the proposed inter-
sections by following its path and respecting basic driving rules, and it was also able
to generalize the acquired behavior knowledge to different scenarios where there was
a real traffic.
However, trying to test the proposed system on a real vehicle we found the driv-
ing style was not comfortable due to the acceleration values varying drastically very



122 Conclusion

quickly, leading the vehicle to make abrupt braking and starts. Because the goal of
the project is to develop a system that also works in the real world, in this second part
of the work we were concerned with the implementation of a Deep Reinforcement
Learning planner capable of safe and comfortable driving that would be applicable
on a real vehicle.
Since the focus was on driving style, we decided for this part to train the agent in an
obstacle-free environment. The main problem we faced was to find a way to bridge
the differences between simulation and reality, especially the delays introduced by
vehicle dynamics. For this purpose, we implemented a small neural network that we
called deep response model, which is trained directly on the real vehicle and allows
us to learn what delays there are between the choice of an action and its implementa-
tion on a real vehicle. In this way, by embedding this module in simulation we were
able to obtain agent behavior similar to the real thing even during training. Also for
this part of the work the algorithm used was D-A3C in which the neural network is
able to predict both the means and the standard deviations of two Gaussian distribu-
tions used to sample the acceleration and steering angle values. Tests conducted in a
neighborhood area of Parma yielded satisfactory results, showing that the real vehicle
was able to drive safely and comfortably even in those areas on which it had not been
trained.
However, despite the good results, this work still has limitations, primarily the lack of
static and dynamic obstacles. For a complete system usable in a daily urban context,
it must necessarily be able to interact with other vehicles and adapt to their behav-
iors. In addition, the architecture used is compact and would be extremely onerous
if a multi-agent system were to be trained. To overcome these limitations in the last
part of this work, a new architecture proposed in the paper World Model [94] was
tested, which is decomposable into 3 separately trainable models. The final purpose
of the last part of the work was exactly to evaluate whether this architecture was also
suitable for use in autonomous driving, and whether, consequently it could become
the solution for our project. This new architecture has some differences from the one
used in previous works, first of all, the first of the three models is a Variational Au-
toencoder which allowed us to use larger images as input, no longer just 84× 84



Conclusion 123

pixels in size but also 256×256 pixels. This advantage is evident both in the quality
of the actions, because a higher pixel-meter resolution can be achieved, and also be-
cause the agent is able to see at a greater distance and thus can move at higher speeds
as well. An additional difference is that this system is no longer model-free like the
previous one, but is model based, and is therefore able to exploit the model that is
created to obtain predictions about the future that allow it to make better choices
about what actions to take in the present. However, this last part of the project is just
a preliminary work to evaluate this new architecture in the context of autonomous
driving, and for simplicity we decided to use Imitation Learning as approach.
In any case, the behavior observed in simulation on a straight road with obstacles
seems to be an excellent starting point for the development of a new complete plan-
ner. Since this new decomposable architecture scales very well with a complex sys-
tem such as autonomous driving, it may allow us to test a multi-agent system. Future
developments will tend precisely in this direction in which all agents present will
contribute to the training of a global model, negotiating and interacting with each
other. Before that, however, it will surely be necessary to proceed with training and
testing of the control model to make it adequate to deal not only with straight roads
but also with other types of more complex maneuvers: such as roundabout entry and
intersection handling. Finally, it will also be crucial to evaluate how this system per-
forms using Reinforcement Learning as main approach and not Imitation Learning as
was done in this last part of the work. Certainly with Reinforcement Learning there
will be an opportunity to introduce that generalization capability that is difficult to
achieve from a supervised approach such as Imitation Learning.





Bibliography

[1] Pawan Deshpande. Road safety and accident prevention in india: a review.
International Journal of Research in Advanced Engineering and Technology,
5:64–68, 2014.

[2] Keigo Akimoto, Fuminori Sano, and Junichiro Oda. Impacts of ride and car-
sharing associated with fully autonomous cars on global energy consumptions
and carbon dioxide emissions. Technological Forecasting and Social Change,
174:121311, 2022.

[3] Daisuke Wakabayashi. Self-driving uber car kills pedestrian in arizona, where
robots roam, 2018.

[4] E.D. Dickmanns and A. Zapp. Autonomous high speed road vehicle guidance
by computer vision1. IFAC Proceedings Volumes, 20(5, Part 4):221–226, 1987.

[5] E.D. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrandt, M. Maurer,
F. Thomanek, and J. Schiehlen. The seeing passenger car ’vamors-p’. In Pro-
ceedings of the Intelligent Vehicles ’94 Symposium, pages 68–73, 1994.

[6] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer. Toward autonomous driving:
the cmu navlab. i. perception. IEEE Expert, 6(4):31–42, 1991.

[7] Dean A Pomerleau. Knowledge-based training of artificial neural networks for
autonomous robot driving. In Robot learning, pages 19–43. Springer, 1993.



126 Bibliography

[8] Alberto Broggi, Massimo Bertozzi, Alessandra Fascioli, C Guarino Lo Bianco,
and Aurelio Piazzi. The argo autonomous vehicle’s vision and control systems.
International Journal of Intelligent Control and Systems, 3(4):409–441, 1999.

[9] R Behringer. The darpa grand challenge-autonomous ground vehicles in the
desert. IFAC Proceedings Volumes, 37(8):904–909, 2004.

[10] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei
Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoff-
mann, et al. Stanley: The robot that won the darpa grand challenge. Journal of
field Robotics, 23(9):661–692, 2006.

[11] Chris Urmson, J Andrew Bagnell, Christopher Baker, Martial Hebert, Alonzo
Kelly, Raj Rajkumar, Paul E Rybski, Sebastian Scherer, Reid Simmons, Sanjiv
Singh, et al. Tartan racing: A multi-modal approach to the darpa urban chal-
lenge. 2007.

[12] Massimo Bertozzi, Luca Bombini, Alberto Broggi, Michele Buzzoni, Elena
Cardarelli, Stefano Cattani, Pietro Cerri, Alessandro Coati, Stefano Debattisti,
Andrea Falzoni, et al. Viac: An out of ordinary experiment. In 2011 IEEE
Intelligent Vehicles Symposium (IV), pages 175–180, 2011.

[13] Alberto Broggi, Pietro Cerri, Mirko Felisa, Maria Chiara Laghi, Luca Mazzei,
and Pier Paolo Porta. The vislab intercontinental autonomous challenge: an
extensive test for a platoon of intelligent vehicles. International Journal of
Vehicle Autonomous Systems, 10(3):147–164, 2012.

[14] Massimo Bertozzi, Alberto Broggi, Alessandro Coati, and Rean Isabella
Fedriga. A 13,000 km intercontinental trip with driverless vehicles: The viac
experiment. IEEE Intelligent Transportation Systems Magazine, 5(1):28–41,
2013.

[15] Massimo Bertozzi, Alberto Broggi, Alessandra Fascioli, and Stefano Nichele.
Stereo vision-based vehicle detection. In Proceedings of the IEEE Intelligent
Vehicles Symposium 2000 (Cat. No. 00TH8511), pages 39–44, 2000.



Bibliography 127

[16] Massimo Bertozzi, Emanuele Binelli, Alberto Broggi, and MD Rose. Stereo
vision-based approaches for pedestrian detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-
Workshops, pages 16–16, 2005.

[17] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn based 3d object
detection for autonomous driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7644–7652, 2019.

[18] Juergen Dickmann, Jens Klappstein, Markus Hahn, Nils Appenrodt, Hans-
Ludwig Bloecher, Klaudius Werber, and Alfons Sailer. Automotive radar the
key technology for autonomous driving: From detection and ranging to envi-
ronmental understanding. In 2016 IEEE Radar Conference (RadarConf), pages
1–6, 2016.

[19] Shunqiao Sun, Athina P Petropulu, and H Vincent Poor. Mimo radar for
advanced driver-assistance systems and autonomous driving: Advantages and
challenges. IEEE Signal Processing Magazine, 37(4):98–117, 2020.

[20] Divas Karimanzira, Helge Renkewitz, David Shea, and Jan Albiez. Object de-
tection in sonar images. Electronics, 9(7):1180, 2020.

[21] You Li and Javier Ibanez-Guzman. Lidar for autonomous driving: The princi-
ples, challenges, and trends for automotive lidar and perception systems. IEEE
Signal Processing Magazine, 37(4):50–61, 2020.

[22] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A Chapman, Dongpu
Cao, and Jonathan Li. Deep learning for lidar point clouds in autonomous driv-
ing: A review. IEEE Transactions on Neural Networks and Learning Systems,
32(8):3412–3432, 2020.

[23] Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards safe autonomous
driving: Capture uncertainty in the deep neural network for lidar 3d vehicle
detection. In 2018 21st international conference on intelligent transportation
systems (ITSC), pages 3266–3273, 2018.



128 Bibliography

[24] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. Sensors and sensor fusion
in autonomous vehicles. In 2018 26th Telecommunications Forum (TELFOR),
pages 420–425, 2018.

[25] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh.
Sensor and sensor fusion technology in autonomous vehicles: A review. Sen-
sors, 21(6):2140, 2021.

[26] Xiangmo Zhao, Pengpeng Sun, Zhigang Xu, Haigen Min, and Hongkai Yu.
Fusion of 3d lidar and camera data for object detection in autonomous vehicle
applications. IEEE Sensors Journal, 20(9):4901–4913, 2020.

[27] Angelo Nikko Catapang and Manuel Ramos. Obstacle detection using a 2d lidar
system for an autonomous vehicle. In 2016 6th IEEE International conference
on control system, computing and engineering (ICCSCE), pages 441–445, 2016.

[28] Arturo De la Escalera, J Ma Armingol, and Mario Mata. Traffic sign recognition
and analysis for intelligent vehicles. Image and vision computing, 21(3):247–
258, 2003.

[29] N Deepika and VV Sajith Variyar. Obstacle classification and detection for
vision based navigation for autonomous driving. In 2017 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI),
pages 2092–2097, 2017.

[30] Hongbo Gao, Bo Cheng, Jianqiang Wang, Keqiang Li, Jianhui Zhao, and Deyi
Li. Object classification using cnn-based fusion of vision and lidar in au-
tonomous vehicle environment. IEEE Transactions on Industrial Informatics,
14(9):4224–4231, 2018.

[31] Heng Wang, Bin Wang, Bingbing Liu, Xiaoli Meng, and Guanghong Yang.
Pedestrian recognition and tracking using 3d lidar for autonomous vehicle.
Robotics and Autonomous Systems, 88:71–78, 2017.



Bibliography 129

[32] Guilherme V Raffo, Guilherme K Gomes, Julio E Normey-Rico, Christian R
Kelber, and Leandro B Becker. A predictive controller for autonomous ve-
hicle path tracking. IEEE transactions on intelligent transportation systems,
10(1):92–102, 2009.

[33] Raul de Queiroz Mendes, Eduardo Godinho Ribeiro, Nicolas dos Santos Rosa,
and Valdir Grassi Jr. On deep learning techniques to boost monocular depth
estimation for autonomous navigation. Robotics and Autonomous Systems,
136:103701, 2021.

[34] V Harisankar, Variyar VV Sajith, and KP Soman. Unsupervised depth estima-
tion from monocular images for autonomous vehicles. In 2020 Fourth Interna-
tional Conference on Computing Methodologies and Communication (ICCMC),
pages 904–909, 2020.

[35] Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis
Mccullough, and Alexandros Mouzakitis. A survey of the state-of-the-art lo-
calization techniques and their potentials for autonomous vehicle applications.
IEEE Internet of Things Journal, 5(2):829–846, 2018.

[36] Jesse Levinson and Sebastian Thrun. Robust vehicle localization in urban envi-
ronments using probabilistic maps. In 2010 IEEE international conference on
robotics and automation, pages 4372–4378, 2010.

[37] Brent Schwarz. Mapping the world in 3d. Nature Photonics, 4(7):429–430,
2010.

[38] Talha Takleh Omar Takleh, Nordin Abu Bakar, Shuzlina Abdul Rahman,
Raseeda Hamzah, and ZA Aziz. A brief survey on slam methods in autonomous
vehicle. International Journal of Engineering & Technology, 7(4):38–43, 2018.

[39] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-
Whyte, and Michael Csorba. A solution to the simultaneous localization and
map building (slam) problem. IEEE Transactions on robotics and automation,
17(3):229–241, 2001.



130 Bibliography

[40] Sven Bauer, Yasamin Alkhorshid, and Gerd Wanielik. Using high-definition
maps for precise urban vehicle localization. In 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC), pages 492–497, 2016.

[41] Laurene Claussmann, Marc Revilloud, Dominique Gruyer, and Sébastien
Glaser. A review of motion planning for highway autonomous driving. IEEE
Transactions on Intelligent Transportation Systems, 21(5):1826–1848, 2019.

[42] Wenda Xu, Jia Pan, Junqing Wei, and John M Dolan. Motion planning un-
der uncertainty for on-road autonomous driving. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 2507–2512, 2014.

[43] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kine-
matic and dynamic vehicle models for autonomous driving control design. In
2015 IEEE intelligent vehicles symposium (IV), pages 1094–1099, 2015.

[44] Zhiqing Huang, Ji Zhang, Rui Tian, and Yanxin Zhang. End-to-end autonomous
driving decision based on deep reinforcement learning. In 2019 5th Interna-
tional Conference on Control, Automation and Robotics (ICCAR), pages 658–
662, 2019.

[45] Alexander Amini, Igor Gilitschenski, Jacob Phillips, Julia Moseyko, Rohan
Banerjee, Sertac Karaman, and Daniela Rus. Learning robust control policies
for end-to-end autonomous driving from data-driven simulation. IEEE Robotics
and Automation Letters, 5(2):1143–1150, 2020.

[46] Thomas van Orden and Arnoud Visser. End-to-end imitation learning for au-
tonomous vehicle steering on a single-camera stream. In International Confer-
ence on Intelligent Autonomous Systems, pages 212–224, 2021.

[47] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.



Bibliography 131

[48] Ürün Dogan, Johann Edelbrunner, and Ioannis Iossifidis. Autonomous driving:
A comparison of machine learning techniques by means of the prediction of
lane change behavior. In 2011 IEEE International Conference on Robotics and
Biomimetics, pages 1837–1843, 2011.

[49] Ajay Agrawal, Joshua Gans, and Avi Goldfarb. What to expect from artificial
intelligence, 2017.

[50] Andrés Serna and Beatriz Marcotegui. Detection, segmentation and classifica-
tion of 3d urban objects using mathematical morphology and supervised learn-
ing. ISPRS Journal of Photogrammetry and Remote Sensing, 93:243–255, 2014.

[51] Karsten Behrendt, Libor Novak, and Rami Botros. A deep learning approach to
traffic lights: Detection, tracking, and classification. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 1370–1377, 2017.

[52] Vsevolod Nikulin, Albert Podusenko, Ivan Tanev, and Katsunori Shimohara.
Regression-based supervised learning of autosteering of a road car featuring a
delayed steering response. International Journal of Data Science and Analytics,
7(2):149–163, 2019.

[53] Brook W Abegaz. Asdvc-a self-driving vehicle controller using unsupervised
machine learning. In 2020 IEEE International Conference on Environment and
Electrical Engineering and 2020 IEEE Industrial and Commercial Power Sys-
tems Europe (EEEIC/I&CPS Europe), pages 1–6, 2020.

[54] Mehdi Rezagholiradeh and Md Akmal Haidar. Reg-gan: Semi-supervised learn-
ing based on generative adversarial networks for regression. In 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 2806–2810, 2018.

[55] Alex Teichman and Sebastian Thrun. Tracking-based semi-supervised learning.
The International Journal of Robotics Research, 31(7):804–818, 2012.



132 Bibliography

[56] Jiachen Li, Haiming Gang, Hengbo Ma, Masayoshi Tomizuka, and Chiho Choi.
Important object identification with semi-supervised learning for autonomous
driving. arXiv preprint arXiv:2203.02634, 2022.

[57] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[59] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning inter-
nal representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[61] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555, 2014.

[62] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[63] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

[64] Alessandro Paolo Capasso, Giulio Bacchiani, and Daniele Molinari. Intelli-
gent roundabout insertion using deep reinforcement learning. arXiv preprint
arXiv:2001.00786, 2020.



Bibliography 133

[65] Alessandro Paolo Capasso, Giulio Bacchiani, and Alberto Broggi. From simu-
lation to real world maneuver execution using deep reinforcement learning. In
2020 IEEE Intelligent Vehicles Symposium (IV), pages 1570–1575, 2020.

[66] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
Advances in neural information processing systems, 1, 1988.

[67] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604),
2016.

[68] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[69] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems, pages 5026–5033. IEEE, 2012.

[70] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, An-
drew Lefrancq, Laurent Orseau, and Shane Legg. Ai safety gridworlds. arXiv
preprint arXiv:1711.09883, 2017.

[71] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bo-
hez, Josh Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa.
dm_control: Software and tasks for continuous control. Software Impacts,
6:100022, 2020.

[72] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wain-
wright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir
Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[73] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The ar-
cade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research, 47:253–279, 2013.



134 Bibliography

[74] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke, Alex
Yablonski, and Alain Kornhauser. Beyond grand theft auto v for training,
testing and enhancing deep learning in self driving cars. arXiv preprint
arXiv:1712.01397, 2017.

[75] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. In Conference on
robot learning, pages 1–16, 2017.

[76] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz.
Sumo–simulation of urban mobility: an overview. In Proceedings of SIMUL
2011, The Third International Conference on Advances in System Simulation,
2011.

[77] Giulio Bacchiani, Daniele Molinari, and Marco Patander. Microscopic traf-
fic simulation by cooperative multi-agent deep reinforcement learning. arXiv
preprint arXiv:1903.01365, 2019.

[78] Keith Packard and Carl Worth. Cairo graphics library. 2003-2020.

[79] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater,
and Lutz Eckstein. The ind dataset: A drone dataset of naturalistic road user
trajectories at german intersections. In 2020 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 1929–1934, 2020.

[80] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[81] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[82] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. In Inter-
national conference on machine learning, pages 1329–1338, 2016.



Bibliography 135

[83] Rongrong Liu, Florent Nageotte, Philippe Zanne, Michel de Mathelin, and Bir-
gitta Dresp-Langley. Deep reinforcement learning for the control of robotic
manipulation: a focussed mini-review. Robotics, 10(1):22, 2021.

[84] David N Lee. A theory of visual control of braking based on information about
time-to-collision. Perception, 5(4):437–459, 1976.

[85] Avik Pal, Jonah Philion, Yuan-Hong Liao, and Sanja Fidler. Emergent road
rules in multi-agent driving environments. arXiv preprint arXiv:2011.10753,
2020.

[86] David Isele and Akansel Cosgun. To go or not to go: a case for q-learning at
unsignalized intersections. 2017.

[87] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 30, 2016.

[88] Yuanyuan Wu, Haipeng Chen, and Feng Zhu. Dcl-aim: Decentralized coor-
dination learning of autonomous intersection management for connected and
automated vehicles. Transportation Research Part C: Emerging Technologies,
103:246–260, 2019.

[89] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo
Fujimura. Navigating occluded intersections with autonomous vehicles us-
ing deep reinforcement learning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2034–2039, 2018.

[90] Carlos Gershenson and David A Rosenblueth. Self-organizing traffic lights at
multiple-street intersections. Complexity, 17(4):23–39, 2012.

[91] LA Prashanth and Shalabh Bhatnagar. Reinforcement learning with average
cost for adaptive control of traffic lights at intersections. In 2011 14th Inter-
national IEEE Conference on Intelligent Transportation Systems (ITSC), pages
1640–1645, 2011.



136 Bibliography

[92] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm.
Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[93] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states
in empirical observations and microscopic simulations. Physical review E,
62(2):1805, 2000.

[94] David Ha and Jürgen Schmidhuber. World models. arXiv preprint
arXiv:1803.10122, 2018.

[95] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv preprint arXiv:1606.02147, 2016.

[96] M Willjuice Iruthayarajan and S Baskar. Covariance matrix adaptation evolu-
tion strategy based design of centralized pid controller. Expert systems with
Applications, 37(8):5775–5781, 2010.


	Introduction
	Autonomous Driving
	A Century of History
	Levels of Driving Automation
	Software System Architecture
	Sensors
	Modular Architecture
	End-to-End Architecture


	Learning Approaches
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning
	Reinforcement Learning

	Neural Network
	Convolutional Neural Network
	Recurrent Neural Network
	Autoencoder
	Variational Autoencoder

	Reinforcement Learning
	Markov Decision Process
	Value Functions
	Bellman Expectation Equation
	Model-free and Model-based reinforcement learning
	Elementary Solution Methods
	Policy Gradient Method
	Actor-Critic Method
	Asynchronous Advantage Actor-Critic
	Delayed Asynchronous Advantage Actor-Critic

	Imitation Learning

	Simulators
	Reinforcement Learning Simulators
	Autonomous Driving Simulators
	Realistic Graphic Simulators
	Synthetic Simulators

	Multi-Agent Traffic Simulator and HD Simulator

	Intersection Handling using Deep Reinforcement Learning
	Intersection Handling Problem
	Environment Definition
	Training Considerations
	Algorithm and Neural Network Architecture
	Reward Shaping
	Experiments
	System Testing
	Comparison with TTC method
	Test the Right of Way Rule
	Test on Real Data


	Deep Reinforcement Learning Planner
	Environment Definition
	Neural Network and Training Settings
	Reward Shaping
	Deep Model
	Experiments
	Test on Real Data
	Speed Limits
	Imitation Learning Pre-training


	World Models for Autonomous Driving
	World Models
	VAE-Model
	MDNRNN-Model
	Control-Model

	Experiments
	VAE-Model Tests
	MDNRNN-Model Tests
	Control-Model Tests


	Conclusion
	Bibliography

