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Abstract

Dr. Eduard Ionel STAN

Foundations of Modal Symbolic Learning

Traditional symbolic learning is the sub-field of machine learning that aims to learn
symbolic models from structured data, representing propositional logic theories,
and its investigation initiated with the early days of artificial intelligence. Such an
approach is yet outstanding in terms of academic performance (e.g., accuracy) and
industrial one (e.g., interpretability, bias, ethical concerns) over modern techniques
(e.g., deep neural networks) on structured data, but it suffers to natively address the
problem of learning from unstructured data (e.g., time series, images, and graphs).
By systematically exploiting inductive biases, we present the mathematical frame-
work of modal symbolic learning for learning symbolically from unstructured data,
which is the intersection between the fields of machine learning and modal logic(s)
in terms of academic discipline. We study its properties from a learning perspec-
tive, enhancing standard decision trees, the quintessential expression of conven-
tional symbolic learning, to learn modal logic theories. We demonstrate how modal
data emerges from unstructured one to conduct modal symbolic learning. We ex-
perimentally prove how models learned with this framework are more accurate,
precise, and sensible than classic propositional ones and at least comparable with
those learned with non-symbolic ones. In addition, we show how our approach
can be generalized from trees to more complex learning techniques (e.g., fuzzy and
neural-symbolic trees), and we point to several ambitious and challenging directions
in which modal symbolic learning, as a field, can expand. Modal symbolic learning
is still in its infancy, and investigating its foundations allows a more organic and
substantial development of the matter. Nevertheless, it has already shown enor-
mous application potential, both theoretical (giving modal logic languages a new
application field and fostering the study of new ones) and practical (symbolically
addressing real-world problems and thus offering interpretable models for further
research).
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CHAPTER 1

INTRODUCTION

Of all things the measure is Man, of the things that are, that they are,
and of the things that are not, that they are not.

—Protagoras of Abdera

For thousands of years, we have tried to understand the functionalities of our brain
(e.g., perception, understanding, and prediction) in a world far more extensive and
more complicated than itself to define (human) intelligence correctly. Artificial intelli-
gence (AI) is concerned with not just understanding but also building machines that
exhibit behaviours that (broadly) can be characterized as intelligent (Genesereth and
Nilsson, 1988; Russell and Norvig, 2020). Studies periodically rank AI as one of
the fast-growing and most funded fields (see, e.g., The AI Index 2022 Annual Report
by Zhang et al., 2022).

AI is an interesting area, but there is no general consensus definition of what AI
really is because there have been different versions of AI throughout history. Demis
Hassabis, CEO and co-founder of Google’s DeepMind, made a clear statement in a
recent interview:

Solve intelligence, then use that to solve everything else.

Russell and Norvig (2020) categorize the dimensions of AI that cover a significant
portion of the relevant literature, illustrated in Table 1.1, as:

• Acting humanly based on the (famous) Turing test, proposed by Turing (1950),
to answer the question “Can a machine think?”;

• Thinking humanly based on the cognitive modelling approach, which mimics
human-like thinking if there is enough understanding of the human mind so
that such theory can be embedded into a computer program;

• Thinking rationally based on the "laws of thought" approach rooted in Aristo-
tle’s syllogisms whose studies, especially starting from the 19th century, gave
birth to logic (see, e.g., Hurley, 2014 for an introduction to logic and history
therein);

• Acting rationally based on the rational agent approach that tries to optimize the
best outcome or, under uncertainty, the best-expected outcome.

Many disciplines contributed to the foundations of AI, such as, and not limited to,
philosophy, mathematics, computer science, neuroscience, linguistics, economics,
and psychology.

https://www.theguardian.com/technology/2016/feb/16/demis-hassabis-artificial-intelligence-deepmind-alphago
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Human-based Rationality-based
Reasoning-based Thinking humanly Thinking rationally
Behaviour-based Acting humanly Acting rationally

TABLE 1.1: Dimensions of AI as suggested by Russell and Norvig
(2020).

§1.1 A Brief History of Artificial Intelligence

To better understand the motivations and structure of this thesis, we must review
some historical milestones and critiques of AI; this review is not complete by any
means (e.g., see Russell and Norvig, 2020 for an in-depth history of AI). The term
AI was coined in 1956 thanks to the proposal of McCarthy et al. for a two-month,
10-person summer research conference , where they wrote (McCarthy et al., 2006):

The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it.

Two attendees at the workshop, Allen Newell and Herbert A. Simon, proposed the
development of models using symbolic manipulation (Newell and Simon, 1976),
which later became known as symbolic AI paradigm. The computation in such mod-
els takes symbols that can be combined and manipulated to produce new expres-
sions. Search and representation were the two most dominant ideas in early sym-
bolic AI. Search techniques, adapted in the early days of AI, include graph-theoretic
depth-first search and breadth-first search. Heuristic-based search techniques im-
mediately followed to overcome the disadvantages of both (depth-first and breadth-
first) search approaches. Representation expresses knowledge in a way that facili-
tates its use concerning the task’s requirement to be handled (by AI) and mirroring
the external world (in some way). Rule-based systems are examples of representa-
tions used in conjunction with search algorithms for inference purposes. Researchers
also developed the connectionist AI paradigm (McCulloch and Pitts, 1943; Rosen-
blatt, 1958; Minsky and Papert, 1969) during the same period, essentially based on
(artificial) neural networks. Connectionist models excel at machine learning (ML), the
subfield of AI that learns models from input data to adapt to new circumstances. The
very foundation of such a paradigm has always been learning. In contrast, symbolic
AI is focused more on representation.

Those have been exciting years for the development of (either symbolic or con-
nectionist) AI: many AI researchers were making predictions of their future suc-
cesses; as such, AI received much attention, and many agencies, such as Defense
Advanced Research Projects Agency (DARPA), have funded millions of dollars in AI
research. Notwithstanding the promises and the excitement of the AI community,
some years later, the British government’s support in investing in AI research ended
due to what AI experts know as the “Lighthill report” (McCarthy, 1974). The docu-
ment criticized the field of AI for fulfilling the great expectations that it promised;
one of the arguments against AI research in the report was the combinatorial explo-
sion problem, a well-known issue in computational complexity theory. Minsky and
Papert (1969) also exposed the limitations of Rosenblatt’s PERCEPTRON (Rosenblatt,
1958), preventing further funding in connectionist AI for a decade. On the symbolic
AI side, Dreyfus (1972) criticized the logical approach to AI, observing that humans
rarely use logic when they solve problems.

https://www.darpa.mil/
https://www.darpa.mil/
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Structured data Unstructured data
Structure Information highly organized No predefined structure

Data nature Quantitative data
(e.g., numbers, dates, strings)

Qualitative data (e.g., time series,
images, videos, graphs)

Required memory Less memory More memory

Storage Data warehouses,
Relational databases

Data lakes,
Non-relational databases

Analytics Easy to analyse Hard to analyse (without AI)
Ease of search Easy to search Hard to search

Percent of all existing data 5–20% 80–95%
Preferred learning models Decision trees and the like Neural networks and the like

TABLE 1.2: Differences between structured and unstructured data.

In the 1980s, an awakening of the symbolic AI community began with a program
called expert systems, and knowledge representation was the mainstream research in
AI. The return also of neural networks came during the same years thanks to the in-
fluential work on the backpropagation algorithm by Rumelhart, Hinton, and Williams
(1986), which is the cornerstone for learning modern neural networks and the like.
Finally, at the beginning of the 2000s, thanks to the World Wide Web and new com-
putational power capabilities of modern computers, massive datasets were created,
something called big data (Gandomi and Haider, 2015). Such datasets include bil-
lions of images, billions of hours of speech and video, trillions of words of text,
genomic data, and social network data, among others. Such available data paved
the way for developing learning algorithms specially designed to take advantage
of massive datasets, specifically deep learning architectures (Goodfellow, Bengio, and
Courville, 2016), which are the natural evolution of the connectionist AI paradigm.

§1.2 Motivations of this Thesis

Better symbolic learning models for unstructured data. Structured data refers to
tabular data (organised in rows and columns) found in spreadsheets and relational
databases, which can be easily analysed using data analytics software. It is often
referred to as quantitative data because it is easy to count, measure, aggregate, and
express in numbers. In contrast, unstructured data has no predefined structure, such
as time series, images, audio, videos, or graphs. It is said to be qualitative data be-
cause it is subjective and interpretative1. In the era of big data, unstructured data
embodies 95% of all existing data (Gandomi and Haider, 2015), although other stud-
ies (are more conservative and) say it constitutes 80%. Table 1.2 points out the crit-
ical differences between structured and unstructured data. Deep neural networks
are successful across various domains, including time series (Dempster, Petitjean,
and Webb, 2020; Fawaz et al., 2020), images (Krizhevsky, Sutskever, and Hinton,
2012; He et al., 2016), audio (van den Oord et al., 2016), text (Devlin et al., 2019),
and graphs (Scarselli et al., 2009; Bronstein et al., 2017; Zhou et al., 2020). The com-
mon denominator of such domains is the unstructured nature of data (sometimes
also called raw data). The success of deep learning architectures boils down to the
exploitation of the inductive bias in these data, that is, the set of assumptions that

1The term unstructured data should be interpreted with caution. Such data can have a structure,
but here we only refer to the fact that it does not have a well-studied data model. For instance, a graph
has a structure, namely, vertices and edges between vertices, but there is no unique way to represent
it.
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the learner uses to predict outputs from unseen data (Mitchell, 1997), such as spa-
tial correlations in convolutional neural networks (LeCun et al., 1989). However,
sometimes deep learning models could be more effective on structured data. In con-
trast, decision tree models (Breiman et al., 1984; Quinlan, 1993), symbolic models
by nature, and their siblings, such as random forests (Breiman, 2001) and gradient-
boosted trees (Chen and Guestrin, 2016; Ke et al., 2017), are (still) dominant in such
data (Shwartz-Ziv and Armon, 2022). Decision trees are among practitioner’s most
commonly used algorithms for ML tasks, whereas deep learning architectures are
less preferred, as a recent Kaggle survey suggests. In this work, we show how to
extend symbolic models by augmenting the expressive power of their underlying
logic, that is, replacing propositional logic with modal logic(s) (e.g., see Blackburn,
de Rijke, and Venema, 2001). We aim, therefore, to perform qualitative reasoning
and learn from such fast-growing and ubiquitous unstructured data to close the gap
between structured and unstructured data concerning traditional symbolic learning.

Interpretability, ethics, and bias. AI and, in particular, ML models are becoming
better and better every day. For example, in 2016, ALPHAGO (Silver et al., 2016), a
deep learning model developed by Google’s DeepMind, won against eighteen-time
world champion Lee Sedol in the ancient Chinese game of Go. This very complex
game was considered only human-playable using elaborate thinking and intuition2.
It represents a significant milestone for the AI community. However, it raises ethi-
cal concerns, even fears, as humankind will eventually feel that machines will take
over (Coeckelbergh, 2020), reducing their economic and political power (Brynjolfs-
son, 2022). Deep learning models are considered black boxes: humans fail to under-
stand their decision-making process. Another example of an ethical problem (in the
automated decision-making process with AI) is concerned with the field of criminal
justice. Automated systems proved to be biased against black people. For example,
studies say that a black person is more than twice as likely to be arrested and five
times as likely to be stopped without cause than a white person. The issue with these
models is with the data they received in input: biased data leads to biased models.
A further case in healthcare is where a black box AI model has systematically dis-
criminated against black people (Obermeyer et al., 2019). Other studies show how
black box ML models make wrong medical diagnoses and screening, while others
show how they make lousy loan and credit decisions, to name others. If black box
models are to be trained on biased data, the inability to “open” and inspect the mod-
els makes it very difficult to catch such biases. There have been many proposals to
explain the decision-making process of neural networks, known in the literature as
explainable artificial intelligence (XAI) (Gunning and Aha, 2019; Gunning et al., 2019),
but this only perpetuates the problem. Indeed, Rudin (2019) proposed in her in-
fluential work to use interpretable models, that is, models that are not black boxes,
instead of black box ML models, which, the latter, may be explained afterwards by
a second (model-specific or model-agnostic) model for high-stakes decisions. There
is a perplexing belief among ML practitioners that there is a trade-off between the
accuracy of the models and their interpretability, as Rudin (2019) put it:

It is a myth that there is necessarily a trade-off between accuracy and inter-
pretability.

Indeed, interpretable ML models can give new insights into the problem by inspect-
ing the knowledge enclosed in them, which, if exploited, can improve themselves.

2See AlphaGo - The Movie | Full award-winning documentary.

https://www.kaggle.com/kaggle-survey-2021
https://www.deepmind.com/
https://www.youtube.com/watch?v=WXuK6gekU1Y
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We see transparency and interpretability as key to providing predictions that are not
only statistically solid but also reliable, ethical, trustworthy, and unbiased. Trained
interpretable prediction models can be inspected, adjusted, and validated by do-
main experts. These conditions are the natural playground for symbolic methods.
As a real-world example of interpretability, consider that a (symbolic) rule-based
model can disagree with doctors, correct them, and teach them novel relational pat-
terns. This case was discussed in 2017 by Microsoft’s researcher Rich Caruana dur-
ing the Great Artificial Intelligence Debate on “Interpretability is necessary for ML”
at the annual conference on Advances in Neural Information Processing Systems
(NIPS), which is the leading conference on neural networks, where the ACM Turing
award Yann LeCun refuted such claim during the debate. The model discovered
(the counterintuitive result) that asthma lowers the probability of death from pneu-
monia because asthmatic people are already plugged into the healthcare system. As
a result, they tend to notice pneumonia and are, thus, treated earlier than other sub-
jects. This sort of extracted knowledge would have been difficult, even impossible,
to obtain with uninterpretable models. Brynjolfsson (2022) argues that AI should not
focus only on automating human tasks but should augment humankind by creating
new capabilities, goods and services; the pneumonia diagnosis example fits well in
this argument. Thus, symbolic ML models would eventually, at least partially, aug-
ment humans in this sense. Moreover, the higher interpretability degree of symbolic
models over non-symbolic ones raised a political debate in the General Data Protec-
tion Regulation (GDPR) of the European Council and Union that highlights the need
for interpretable/explainable automatic decision processes for preferring a symbolic
model. Finally, the symbolic approach could also lead to a better understanding of
human learning abilities.

Rebirth of logical AI through symbolic learning. Broadly, deduction and induc-
tion are the two mainstream types of scientific reasoning. In mathematical reason-
ing, deduction proves theorems in an axiomatic system, that is, general-to-specific;
distinctively, induction summarizes specific proofs to generalized theorems, that is,
specific-to-general. The logical deduction may need to be revised due to its restric-
tive nature; for example, the surrounding world may not always be mathematically
defined, and thus, conclusions are only sometimes derivable from it. Informally, to
overcome some of such difficulties, we can, in principle, first observe the behaviours
of the world and then extend systems to learn new facts from it. More formally, we
can formulate general theories that account for the past and predict the future by
exploiting such theories (Genesereth and Nilsson, 1988). The ability to generalize
from examples is an inductive process known as learning from examples in the context
of ML. It is important to stress that deduction is exact, while induction is more of a
statistical approach, and thus, it is approximate. Specifically, we are interested in the
sub-field of ML that deals with symbolic algorithms and models, known as symbolic
learning, which have been known for decades and successfully applied to various
contexts. Standard decision trees are the quintessential expression of propositional
symbolic learning, where the extracted theories from data are essentially represented
in propositional logic. In the same years when the term AI was coined, symbolic
learning started with Belson (1956) working on decision tree development that em-
ployed ML algorithms to produce executable rules. Decision trees are emblematic of
a whole class of other symbolic models. To name a few, by studying the foundations
of decision trees, we can have:

https://www.youtube.com/watch?v=93Xv8vJ2acI
https://gdpr-info.eu/
https://gdpr-info.eu/
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• rule-based models that can be derived from decision tree models represented
as if-then rules, such as decision lists (Rivest, 1987; Clark and Niblett, 1989),
where the extracted rules are ordered;

• bootstrap aggregation, known as bagging (Breiman, 1996), of parallel decision
trees, such as random forests (Breiman, 2001), where predictions are averaged
over the hypotheses;

• boosting (Kearns and Valiant, 1994) of multiple sequential decision trees, such
as gradient-boosted trees (e.g., see Chen and Guestrin, 2016; Ke et al., 2017),
where weak hypotheses are converted to strong hypotheses, and predictions
are weighted over the strength of such hypotheses;

• hybrid models combining the strengths of both symbolic and connectionist
methods, such as neural-symbolic decision trees (e.g., see Guo and Gelfand, 1992;
Zhou and Chen, 2002) and tree-based neural networks (e.g., see Srivastava and
Salakhutdinov, 2013; Kontschieder et al., 2015; Murthy et al., 2016; Murdock
et al., 2016; Alaniz et al., 2021; Wan et al., 2021);

• by investigating the logical elements of propositional logic decision trees and
asking ourselves if such models can be enhanced to capture complex patterns,
more expressive decision trees can be designed, such as first-order logic (FOL)
decision trees (Blockeel and De Raedt, 1998) that learn from logic programs,
which are essentially a kind of unstructured data from which standard, propo-
sitional decision trees would learn awkward theories (due to their limited ex-
pressivity).

Figure 1.1 illustrates schematically such specializations. Similar to the case of FOL
decision trees, where FOL replaces propositional logic, in this thesis, we propose
to replace propositional logic with modal logic(s) for the whole symbolic learning
paradigm; we call the resulting framework modal symbolic learning. Modal logic is a
fragment of FOL, both syntactically and semantically. As such, our choice may seem
restrictive, but several motivations justify it:

• FOL is highly expressive, meaning that one needs to explicit all the knowledge,
which, translated in ML terms, represents the background theory (Genesereth
and Nilsson, 1988; Muggleton, 1991; Blockeel and De Raedt, 1998); for instance,
if the task is learning from temporal domains such as audio, then the temporal
domain must be defined by a collection of axioms expressed in FOL, which, in
turn, could be, to some extent, cumbersome;

• FOL extracted theories (from data) would not have the same practicability of
usage of more tailored logics for the same tasks; for example, (modal) temporal
logics (Pnueli, 1977; Clarke, Emerson, and Sistla, 1986; Halpern and Shoham,
1991) are more suitable for learning from temporal data;

• FOL learning is more expressive than modal logic learning but pays this price
in computability; for example, FOL extracted theories cannot always be auto-
matically verified, as in the case of propositional logic.

Modal (symbolic) learning does not present such restrictions. There is no need to
make explicit all the knowledge since it is essentially implicit in the underlying struc-
tural domain of data. Modal logics are fragments of FOL, and in some of them the
satisfiability problem is decidable (e.g, Pnueli, 1977; Clarke, Emerson, and Sistla,
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FIGURE 1.1: Some specializations of decision trees; r is the final re-
sult of the prediction of each model. A decision list is a set of ordered
if-then rules. A random forest and boosted aggregated trees are en-
sembles of trees where the final result is weighted between the single
trees. A neural-symbolic decision tree can have (deep) neural net-
works NNi(·) that decide the splits, while a FOL decision tree can

have arbitrary relations Ri(·).

1986), in others it is undecidable (e.g., Halpern and Shoham, 1991) but can be re-
stricted furthermore to obtain computationally efficient formalisms (e.g., Muñoz-
Velasco et al., 2019). Whether the satisfiability problem is decidable, reasoning in
modal logic is more straightforward the understand and implement than FOL. Fi-
nally, it is important to stress that the decidability of the satisfiability problem is not
the only element to consider when choosing a logical formalism. We also emphasize
that our framework is integrable to all, but FOL decision trees (as we motivated),
singular settings in Figure 1.1, such as random forests and neural-symbolic decision
trees, and many more, as we shall discuss throughout this work. We believe that
symbolic learning deserves the attention of the mathematical and theoretical, but
also practical, computer science researchers to push forward such an exciting and
under-represented field in terms of inductive reasoning.
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§1.3 Problem Statement and Contributions

In the previous section, we motivated the need for symbolic learning from challeng-
ing and enterprising perspectives. The ultimate ambition of this thesis is to bring
together two essential fields of AI, namely, machine learning and modal logic(s).
Instead of machine learning from unstructured data based on neural networks, our
framework, called modal symbolic learning, brings together the two paradigms with
the aim of enhancing symbolic learning algorithms with the ability to learn modal
logic theories from different types of unstructured data, which, at this time, is not
possible with canonical symbolic algorithms. It is desirable, therefore, to bridge the
gap between structured and unstructured data by leveraging more expressive log-
ics, such as modal ones discussed in this work, by exploring inductive biases at the
symbolic level. The two scientific communities may join forces to embark on such
an exciting field, benefiting from the known results from both sides (e.g., efficient
learning algorithms and modal languages whose applications have been hampered
due to undecidability that now may play a prominent role in machine learning).

The contribution of this work is many-folded. The technical contribution and
novelty of the research in this thesis lie in the generalization of the well-known
propositional symbolic learning approach to modal symbolic learning and showing
how to learn modal logic theories from different types of unstructured data. We take
standard decision trees, the quintessential representation of propositional symbolic
learning, as representatives to elaborate and define the mathematical foundations of
modal symbolic learning. By taking inspiration from existing taxonomies, we char-
acterize the whole (modal) symbolic learning paradigm using inductive biases to
speed up the investigation of new learning algorithms (and models). We provide a
unifying view interpreting unstructured data types as Kripke structures, models of
the considered modal logic formalism, by exploring such inductive biases and how
many modal logics can be absorbed, in our context, by a single one. To this end,
we show how to concretize the learning algorithms and the associated languages to
specific modal logics to adapt to real-world scenarios. Such results are specified in
precise algorithms and formulated in several theorems and lemmas. The results of a
few experiments on two different real-world datasets are reported, one in the tempo-
ral and one in the spatial case, illustrating the learning capability of our framework.
Moreover, we pave the way for advancing our proposal further, providing a wide
vision of several research problems that go beyond the results described in this the-
sis. Finally, we survey the related literature to give a better perspective of the whole
research field and allow assessing the merit and limitations of the proposed solu-
tions.

§1.4 Organization of this Thesis

This thesis is organized as follows:

• Chapter 2 This chapter provides the necessary mathematical background to
understand this work. We discuss propositional and modal logic as these two
logics play a crucial role in the presented work, especially the latter. We then
provide general terms and definitions related to the field of ML since ML is
also essential to grasp the purposes and properties of our framework. Finally,
we present the taxonomy of symbolic learning that should guide every eager
practitioner before starting.
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• Chapter 3 This chapter considers decision trees as representatives of the sym-
bolic learning framework. We initially define and discuss the case of proposi-
tional decision trees. Then, we discuss the case of modal decision trees, which
are the natural extension of propositional ones that learn modal logic theories.
We prove the desiderata of modal decision trees: classification efficiency, cor-
rectness, and completeness. Finally, we formalize entropy-based learning and
provide the algorithm for modal decision tree learning by lifting many ideas
from the propositional case.

• Chapter 4 This chapter shows how to embed unstructured data into modal
datasets, where each instance is a Kripke model. We first present several exam-
ples of unstructured data to understand their complexity aiming at correctly
handling such data. To do so, we discuss modal logics that fit well the consid-
ered data, and we consider several modal logics spanning from point-based
to interval-based to topological-based ones. We then bring together under the
same umbrella all, or at least many of, the discussed modal logics to have a
tool for elegantly treating many cases as one. Finally, we define the modal
logic transformer that produces Kripke models to reason with the chosen logi-
cal formalism.

• Chapter 5 This chapter presents several ways to learn with our framework.
We discuss how regression with modal decision trees is possible by simply
adapting the learning schema from the propositional level. Propositional ran-
dom forests are well-known for learning better models, and we discuss how
to obtain modal random forests. Then, we present how to extract if-then rules
from modal decision trees and random forests. We also discuss a practical sit-
uation where events are described by multiple descriptions at the same time,
and we present a way to learn from them. Finally, we briefly discuss the
blueprint of modal symbolic learning, before concluding with two real-world
learning applications from temporal and spatial data.

• Chapter 6 In this chapter, we highlight some extensions of our framework.
By leveraging different levels of hybridization, we discuss (hybrid) neural-
symbolic modal decision trees. We also discuss the need for fuzzy reasoners
paving the way for fuzzy modal decision trees. Since propositional gradient-
boosted trees are widely accepted and used by practitioners in daily chal-
lenges, such as Kaggle, we discuss gradient-boosted modal decision trees. We
define then incremental learning and give directions on incremental learning
with modal decision trees. Finally, inspired by the recent advances in geomet-
ric deep learning, we discuss the benefits of having geometric modal symbolic
learning.

• Chapter 7 We review the related works in this chapter. We briefly discuss
the history of propositional decision trees. Then, we discuss approaches for
learning from temporal and spatial data, which are unstructured data. Finally,
we discuss symbolic approaches for learning from unstructured data.

• Chapter 8 This chapter presents the conclusions of our work. We also discuss
the future directions of our framework.



10 Chapter 1. Introduction

§1.5 Published (and in Press) Results

As of January 2022, I have published a series of papers, some of which are strongly
related to this work, while others are less related, although they go in the same di-
rection. In this section, from a chronological point of view, I discuss my publications
briefly by grouping together those articles that are related to the same discussion.

In (Muñoz-Velasco et al., 2019), I have studied coarser fragments of HS, an un-
decidable logic that we discuss in Section 4.2, that have better computational prop-
erties, namely, HS7 and HS3. The former remains undecidable, while the latter is
PSPACE-hard. Moreover, I have implemented a tableau system for the satisfiability
problem of HS3 (Muñoz-Velasco, Sciavicco, and Stan, 2017).

As we have motivated in this chapter, we take decision trees as emblematic of
the symbolic learning paradigm. I have studied the properties of modal decision
trees in (Della Monica et al., 2022), which we discuss in Section 3.3. In (Brunello,
Sciavicco, and Stan, 2019), I have presented the first temporal decision tree, which
is a specialization of the modal decision trees that we discuss in Section 3.2, which
mines patterns described in the language of HS, where the assumption is that the in-
put objects to learn from are Kripke models. In (Sciavicco and Stan, 2020), I have en-
hanced the previous contribution to learn from multivariate time series; we discuss
in Section 4.1 what multivariate time series are, and then, in Section 4.4, we discuss
how such objects can be seen as Kripke models. In real-world situations, multiple
descriptions describe an event, and learning in such a multi-setting is challenging.
In (Pagliarini, Sciavicco, and Stan, 2021), I have proposed a method for learning from
multiple descriptions simultaneously, namely, multi-frame modal symbolic learn-
ing, which we discuss in Section 5.4. I have applied temporal decision trees and
their random forest version, which we discuss in Section 5.2, in (Manzella et al.,
2021) to diagnose positive from negative COVID-19 subjects; the same setting has
been applied in (Manzella et al., 2022) in the multi-frame setting, whose results we
discuss in Section 5.6. In (Bechini et al., 2023), I have applied temporal decision trees
in the industrial domain to predict trip events (i.e., anomalous behaviours) in gas
turbines, whose results we do not discuss in this thesis.

As we discuss in Section 5.1, decision trees can also apply to regression prob-
lems. Based on this principle, I have studied temporal decision trees for regression
in (Lucena-Sánchez, Sciavicco, and Stan, 2020). Indeed, in (Lucena-Sánchez, Sci-
avicco, and Stan, 2021), I have developed a multi-objective optimization problem,
solved via heuristic search, employing genetic algorithms, to mine HS patterns from
time series to model air quality, whose results we do not discuss in this thesis.

Rule-based systems are another essential point in the symbolic learning domain,
and we briefly discuss this setting in Section 5.3. In (Stan et al., 2022), I have pro-
posed to mine modal logic association rules from Kripke models. However, we do
not discuss in-depth such a result because focusing on decision trees is enough to
grasp the entire idea of modal symbolic learning. Sticking to the rule-based side, I
have proposed other rule extraction methods (e.g., see Lucena-Sánchez et al., 2019;
Sciavicco, Stan, and Vaccari, 2019; Kaminska et al., 2020).

We discuss in Section 6.2 that modal decision trees can also be fuzzy. Since we
take a generalization of HS as representative for modal symbolic learning, namely,
HSd, which we discuss in Section 4.3, I have studied the fuzzy generalization of
HS in (Conradie et al., 2022), whose model checking problem applied to the case of
multivariate time series has been studied a couple of years before in (Conradie et
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al., 2020). Keeping our focus on the model checking problem, I have also studied the
issue of ultimately-periodic interval temporal logic model checking in (Della Monica
et al., 2020), but such a result is not presented in this thesis. Finally, in Section 6.1,
we discuss the neural-symbolic hybridization of modal decision trees, and I have
studied the hybridization of temporal decision trees in (Pagliarini et al., 2022).
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CHAPTER 2

BACKGROUND

Be kind, resourceful, beautiful, friendly, have initiative, have a sense of
humour, tell right from wrong, make mistakes, fall in love, enjoy
strawberries and cream, make some one fall in love with it, learn from
experience, use words properly, be the subject of its own thought, have
as much diversity of behaviour as a man, do something really new.
No support is usually offered for these statements. I believe they are
mostly founded on the principle of scientific induction.

—Alan Turing “Computing Machinery and
Intelligence” (Turing, 1950)

In this chapter, we discuss the required background to understand our work. At
the end of this chapter, we present the taxonomy of symbolic learning, which shall
guide every symbolic ML practitioner.

§2.1 Propositional Logic

Logic and theoretical computer science are intimately tied as logic is at the core of
the birth of computer science (Davis, 2018). The starting point in this journey is the
propositional language.

Let P be a (possibly infinite, but countable) set of proposition letters (or, sim-
ply, propositions). We use p, q, . . . , p1, q1, p2, q2, . . . to denote propositions. The well-
formed formulas of propositional logic (PL) are generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ,

where p ∈ P . We use ϕ, ψ, . . . , ϕ1, ψ1, ϕ2, ψ2, . . . to denote formulas. The remaining
propositional abbreviations are derived as usual, that is:

> , p ∨ ¬p for some p ∈ P ,
⊥ , ¬>,
ψ1 ∧ ψ2 , ¬(¬ψ1 ∨ ¬ψ2),
ψ1 → ψ2 , ¬ψ1 ∨ ψ2, and
ψ1 ↔ ψ2 , (ψ1 → ψ2) ∧ (ψ2 → ψ1).

Let Φ(L) be the smallest set that contains all the formulas generated by the grammar
of the logic L. For instance, Φ(PL) are the formulas generated by the grammar of
PL.

The semantics of PL are given in terms of propositional models. A propositional
model K = (V) consists of a function V : P → {>,⊥} that assigns truth values to
propositional letters. The (semantical) truth relation K |= ϕ, for a propositional model
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K and a formula ϕ ∈ Φ(PL), is defined by induction on the complexity of formulas:

K |= p iff V(p) = >, for all p ∈ P ;
K |= ¬ψ iff K 6|= ψ (i.e., it is not the case that K |= ψ);
K |= ψ1 ∨ ψ2 iff K |= ψ1 or K |= ψ2.

§2.2 Modal Logic

We now move to propositional modal languages, that is, PL enriched with (a set of)
modal operators (or modalities). Unlike in first-order modal logic (Fitting and Mendel-
sohn, 1998), propositional modal logic operators do not bind variables (Blackburn,
de Rijke, and Venema, 2001). Narrow speaking, modal logic was initially inves-
tigated as the logic of necessary and possible truths of judgments due to Aristotle’s
foresighted analysis of statements containing the words “necessary” and “possible”.
Having just two modalities may seem (at first glance) restrictive, but these are but
two of a wide range of them: modal logic is paradigmatic for a family of related sys-
tems. Arguably, Lewis (1918) formalised propositional modal languages more than
a century ago. As such, there are many works on modal logic (and variants of it); we
will see more-than-modal, but still propositional, languages throughout this work.

Modal logic is an extension of classical PL that allows us to characterize the va-
lidity of arguments with modal premises and conclusions. The well-formed formulas
of (propositional) modal logic (ML) are generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ,

where p ∈ P . The remaining propositional abbreviations are derived as before. Just
as existential (∃) and universal (∀) quantifiers in classical first-order languages are
dual to each other (i.e., ∀ϕ if and only if ¬∃¬ϕ), in ML there is a dual operator
called box (�) for the diamond modality, defined as �ϕ if and only if ¬♦¬ϕ. Let
ϕ ∈ Φ(ML) be a formula of ML, then the set of all subformulas of ϕ, denoted by
sub(ϕ), is defined as:

sub(ϕ) =


{p} if ϕ = p ∈ P ;
{ϕ} ∪ sub(ψ) if ϕ = ¬ψ;
{ϕ} ∪ sub(ψ1) ∪ sub(ψ2) if ϕ = ψ1 ∨ ψ2;
{ϕ} ∪ sub(ψ) if ϕ = ♦ψ.

and the modal-depth of ϕ, denoted by md(ϕ), is defined as:

md(ϕ) =


0 if ϕ = p ∈ P ;
md(ψ) if ϕ = ¬ψ;
max{md(ψ1), md(ψ2)} if ϕ = ψ1 ∨ ψ2;
1 + md(ψ) if ϕ = ♦ψ.

Moreover, the length of a formula ϕ is the number of its symbols.

Two schools of thought arose of mathematical semantics of modal language since
its birth (Goldblatt, 2003). Algebraic semantics interprets modalities on Boolean alge-
bras with operators (McKinsey and Tarski, 1944). Relational semantics, on the other
hand, uses relational structures, commonly called Kripke models (named after its
founder Kripke, 1963). More broadly, a relational structure is a tuple whose first
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FIGURE 2.1: Example of a Kripke model.

element is a non-empty set, called universe (or domain), and whose remaining com-
ponents are relations on the universe. A Kripke frame F = (W ,R) consists of a non-
empty (possibly infinite, but countable) set of (possible) worldsW , and an accessibility
relation over worlds R ⊆ W ×W . A Kripke model K = (W ,R, V), over P , is a
Kripke frame F = (W ,R) enriched with a valuation function V : W → 2P , which
associates each world w with the set of propositions V(w) ⊆ P that are true on it,
while the remaining propositions in P \ V(w) are false on it. Figure 2.1 illustrates
an example of a Kripke model. Frames and models are relational structures based
on the same universe (i.e., set of worlds), but a model is a frame augmented with a
set of unary relations Vw interpreted as V(w), for all w ∈ W , given by the valuation
function V. What is more, the (Kripke) frame provides the structure of the model,
and the valuation function provides the semantical meaning of which propositional
letters are true relative to worlds; one could also define the valuation function as
V : W ×P → {⊥,>}, which assigns truth values to each pair of world w ∈ W and
propositional letter p ∈ P , but, to keep things simple, we prefer the former version.
The truth relation K, w  ϕ, for a (Kripke) model K, a world w (in that model) and
a formula ϕ ∈ Φ(ML) (to be interpreted on that model), is defined by induction on
the complexity of the formulas1:

K, w  p iff p ∈ V(w), for all p ∈ P ;
K, w  ¬ψ iff K, w 6 ψ (i.e., it is not the case that K, w  ψ);
K, w  ψ1 ∨ ψ2 iff K, w  ψ1 or K, w  ψ2;
K, w  ♦ψ iff there exists w′ s.t. wRw′ and K, w′  ψ.

We write K  ϕ as an abbreviation for K, w0  ϕ, where w0 is the initial world of
K. Observe that the definition of truth relation is intrinsically internal and local: for-
mulas are evaluated inside models at some particular world (i.e., current state), and
♦ψ locally scans the R-accessible worlds searching for one possible world where ψ
is true; similarly, �ψ locally scans theR-accessible worlds to assess that ψ is true on
them, if any, that is:

K, w  �ψ iff for all w′, if (w, w′) ∈ R, then K, w′  ψ.

In linguistics terms, ♦ψ is read as “possibly ψ”, and �ψ is read as “necessarily ψ”.
This reading is often attributed to Leibniz due to his studies on modal metaphysics

1It is common to use the symbol  for non-classical logics truth relation, such as modal logics. In
contrast, it is common to use the symbol |= for classical logics truth relation, such as propositional logic
and first-order logic.
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that “possibility” means “truth in some possible world”, and “necessity” means “truth in
all possible worlds”. The following definitions hold for any modal system. Given a
model K and a formula ϕ, we say that K satisfies ϕ if there exists a world w such that
K, w  ϕ. A formula ϕ is satisfiable if there exists a model and a world that satisfies
it. A formula ϕ is valid in a model K if every world in K satisfies it, that is, K, w  ϕ,
for all w. Moreover, a formula ϕ is valid in a modal system (e.g., K) if it is valid in
every model of the modal system.

ML arises from philosophical inquiry. Extensions of (basic) ML include more-
than-one accessibility relations and constraints on such relations, among others.
From the theoretical point of view, ML is paradigmatic for such logics, and, from
an application point of view, expressive enough that it has attracted mathematical
and scientific inquiry in the field of deductive reasoning. Among the many inter-
esting mathematical problems studied over the years in the field of MLs is model
checking (Clarke et al., 2018); indeed, in 2007 Edmund M. Clarke, E. Allen Emerson,
and Joseph Sifakis won the ACM Turing award for their roles in developing model
checking.

Verifying the correctness of hardware and software systems is of utmost impor-
tance as their applications are ubiquitous in our daily lives, where failure is critical
and should be avoided. Verification is more appreciated in safety-critical systems
(e.g., e-health), commercially critical systems (e.g., e-commerce), and mission-critical
systems (e.g., space missions), among others. The principal tools for assessing the
correctness of complex systems are simulation, testing, deductive verification, and
model checking. Simulation and testing involve conducting experiments before the ac-
tual deployment of the system in production. Simulation is performed on an ab-
straction, or model, of the system, while testing is performed on the original system.
Simulation and testing are cost-effective approaches to finding many errors; how-
ever, checking all the possible interactions and pitfalls is rarely possible. Deductive
verification uses axioms and proof rules to check the correctness of (possible infinite
state) systems. Deductive verification is time-consuming as it can be performed only
by educated experts to logical reasoning. Model checking is a technique for automati-
cally verifying finite state concurrent systems (Clarke et al., 2018). Usually, the model
checker exhaustively searches through the finite state space of the system to assess if
some specification (i.e., property of the system) is true or not. An excellent character-
istic of model checkers is that they produce a counterexample that proves the wrong
behaviour of the system when the system fails to satisfy the desired property, which
is very useful for debugging. The theory of computability provides limitations to what
can, or cannot, be decided by an algorithm (Papadimitriou, 1994; Sipser, 2013), and
this is the case also for the model checking problem. Therefore, restrictions on sys-
tems and on properties to be verified must be taken into account whenever we aim
to develop tools for automatic verification.

The model checking process encompasses three parts (Huth and Ryan, 2004):
modelling, specification, and verification. Modelling converts the design of a sys-
tem into an abstract model, which is accepted by a model checking tool and which
should eliminate irrelevant details of the design; it is standard to use Kripke models
to model the behaviour of systems. Specification states the property, or properties,
that a system must satisfy, usually specified in propositional modal languages (e.g.,
temporal logics). Verification establishes whether the description of a system satisfies
the specification(s). Formally, the model checking problem is the process of establishing
if:

K, w  ϕ,
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where K = (W ,R, V) is a Kripke model, w ∈ W is a world of K, and ϕ ∈ Φ(ML) is
a formula of ML. Canonically, model checking is the problem of verifying temporal
logic, that is, ML customized to reason over temporal domains, properties on infinite
state, finitely represented, abstract models (i.e., Kripke models) of concrete ones (e.g.,
reactive systems). Depending on the logical formalism, model checking may not be
a trivial task; for example, Sistla and Clarke (1985) showed that the infinite model
checking for linear temporal logic (LTL) (Pnueli, 1977) formulas is PSPACE-complete.
The common denominator of the ML logical approaches is that the kind of model
checking, which is crucial for the entire learning process, is, in fact, finite. The fact
that model checking is finite for learning trivializes, to some extent, the problem it-
self, which generally becomes PTIME; nevertheless, it still raises many difficulties
that must be addressed with mathematical rigour. For example, learning from sparse
inputs (i.e., with a lot of missing values, or better, in logical terms, with many states
in the Kripke models without any propositional letters) may lead to an exponential
blow-up in the size of the input when performing model checking; Della Monica
et al. (2017) proposed a bisimulation algorithm between a sparse and a non-sparse
interval temporal (Kripke) models, so that model checking on the non-sparse model
remains PTIME. A further example, which is of interest in this work, emerges in the
context of model checking multiple models against multiple formulas; this general-
ization is needed for the entire inductive process that learns a general theory (seen
as multiple formulas) from data (seen as various models).

Algorithm 1 illustrates the finite model checking algorithm for ML. The algo-
rithm computes a mapping ` : W → 2Φ(ML) which intuitively labels each world
w ∈ W with the subformulas ψ ∈ sub(ϕ) that are true on it. The entire process is
a big loop on all the subformulas of the input formula ϕ by increasing length; this
is because model checking is performed bottom-up on the syntax tree of the for-
mula ϕ. The main loop, thus, runs for |sub(ϕ)| times. Each subformula ψ ∈ sub(ϕ)
can be a proposition letter p ∈ P , a negation ¬ψ1, a disjunction ψ1 ∨ ψ2, or a for-
mula prepended with a diamond ♦ψ1. The Boolean cases cost O(|W|) and the
modal case costs O(|W| + |R|). Hence, the model checker for ML runs in time
O(|sub(ϕ)| · (|W| + |R|)) in the worst-case, which is linear in the product of the
length of the formula ϕ and the size of the Kripke model K.

§2.3 Machine Learning

ML focuses on building computer programs that automatically improve with ex-
perience (Mitchell, 1997). Data represents experience, and the main ML task is to
develop learning algorithms that build models from data (Zhou, 2021). Thus, ML tech-
niques are the primary approach in the era of big data.

In ML tasks, we have a dataset X = {x1, . . . , xm} of m instances (or samples) each
containing the description of an event or an object. The space from which instances
are drawn is called sample space (or input space) denoted by X. Learning (or training)
is the process of using ML algorithms to build models from data. In the training
phase, the used dataset is called training data, where each instance is called training
instance, and the set of all training instances is called training set. If the instances are
associated with a target (or response) variable, then the learning task is called supervised
learning; otherwise, it is called unsupervised learning. Within the supervised learning
paradigm, based on the type of target variable, we have:
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ALGORITHM 1: Model checking for ML.

1 function Check(K, ϕ):
input : A Kripke model K = (W ,R, V) and an ML formula ϕ.
output: A mapping ` :W → 2Φ(ML)

2 foreach ψ ∈ sub(ϕ) ordered by increasing length do
3 if ψ = p ∈ P then
4 foreach w ∈ W do
5 if p ∈ V(w) then
6 `(w)← {p}
7 end
8 end
9 end

10 if ψ = ¬ψ1 then
11 foreach w ∈ W do
12 if ψ1 6∈ `(w) then
13 `(w)← `(w) ∪ {ψ}
14 end
15 end
16 end
17 if ψ = ψ1 ∨ ψ1 then
18 foreach w ∈ W do
19 if ψ1 ∈ `(w) or ψ2 ∈ `(w) then
20 `(w)← `(w) ∪ {ψ}
21 end
22 end
23 end
24 if ψ = ♦ψ1 then
25 foreach w ∈ W do
26 if ∃w′ such that (w, w′) ∈ R and ψ1 ∈ `(w′) then
27 `(w)← `(w) ∪ {ψ}
28 end
29 end
30 end
31 end
32 return `

33 end

• classification problems if the target variable, also known as class variable (or, sim-
ply, class), is categorical;

• regression problems if the target variable is numerical.

For supervised tasks, a dataset X is called labelled if each instance is labelled with a
label from a set Y called label space (or output space); for classification tasks, the labels
are also called classes. Let Y = {0, 1} for binary classification problems, |Y| > 2
for multiclass classification problems, that is, more than two classes are present, and
Y = R for regression problems, where R is the set of real numbers. In general, we
denote the i-th labelled instance as (xi, yi), where xi ∈ X and yi ∈ Y is the label for
such sample; therefore, a labelled dataset is X = {(x1, y1), . . . , (xm, ym)}.

To understand the general ML terminology, it is canonical to consider the super-
vised learning paradigm. In supervised learning, the objective is to learn a function
h called hypothesis drawn from a hypothesis space H of possible functions that approx-
imates with a reasonable margin of error the relationship between the input space
and the output space. In alternative terms, h is a model and H is the model space.
The best predictive model h∗, also known as best-fit model, is the one that minimises the
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risk (Gambella, Ghaddar, and Naoum-Sawaya, 2021):

Ep[loss(h(x), y)] =
∫

Y

∫
X

p(x, y)loss(h(x), y)dxdy,

where loss(h(x), y) is the loss function that measures the accuracy of a prediction, and
p(x, y) is the probability of observing (x, y). In practice, p(x, y) is unknown. However,
since the given instances in a labelled dataset are assumed to be independent and
identically distributed, h∗ is obtained by minimising the empirical risk:

h∗ = arg min
h∈H

1
m

m

∑
i=1

loss(h(xi), yi).

We can make predictions with h∗, a process called testing, and the instances to be pre-
dicted are the testing instances; moreover, the set of testing instances is called testing
set. For example, the (predicted) label ŷ of the testing instance x can be obtained with
the learned model ŷ = h∗(x). The ability to predict new, unseen before, instances is
called generalization ability, and should work well on the whole sample space X.

We need to define performance measures, which depend on the ML task (e.g.,
classification), to quantify the generalization ability. Let X = {(x1, y1), . . . , (xm, ym)}
be a labelled dataset and let h be an hypothesis. To evaluate the performance of h,
we compare its predictions h(xi) = ŷi with the ground truth yi, for all 1 ≤ i ≤ m.
For binary classification tasks, the generic performance of h on X can be measured
in terms of its confusion matrix, which, for each given instance, expresses one of four
mutually exclusive indicators, namely, true positive, true negative, false positive, and
false negative, by comparing y with ŷ as:

y = 0 y = 1
ŷ = 0 true negative (TN) false negative (FN)
ŷ = 1 false positive (FP) true positive (TP)

Accuracy, which measures the number of correctly classified instances, is defined as:

acc =
TN + TP

TN + FN + FP + TP
.

In case of unbalanced datasets, other measures are preferred, such as precision, recall
and F1 score. Precision, also called positive predictive value, is defined as:

prec =
TP

TP + FP
,

recall, also called sensitivity, is defined as:

rec =
TP

TP + FN
,

and F1 score, which is the harmonic mean of precision and recall, is defined as:

F1 = 2 · prec · rec
prec + rec

.

Similar metrics can be defined for regression tasks, but such a discussion goes be-
yond the scope of this work; indeed, in our experiments, we address classification
tasks.
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The model complexity must be considered when learning a model, which is mea-
sured in terms of its size. Overfitting is the problem when the learned model fits the
training set very well but performs poorly on the testing set. The minimisation of
the empirical risk often leads to overfitted models, and hence, has a poor generaliza-
tion ability. Therefore, a better predictive model can be obtained by minimising the
regularised empirical risk (Russell and Norvig, 2020):

h∗ = arg min
h∈H

1
m

m

∑
i=1

loss(h(xi), yi) + χ · size(h),

where size(h) is the size/complexity of the hypothesis h and the parameter χ is the
error one would sacrifice to have one fewer term in the model. In other words, reg-
ularisation penalizes complex hypotheses to generalize better (on future samples).

The minimisation of the (regularised) empirical risk forces the learner to choose
a hypothesis from the set of hypothesis space; that is, the learner is biased toward a
particular class of predictive models. Such restriction, also known as inductive bias,
is imposed regardless of the training set and ideally should be based on some prior
domain-expert knowledge about the task to be handled (by ML). For example, the
class of linear functions induces a strong bias since the resulting best hypothesis h∗

will result in a straight line limited to capture only linear separable patterns, which
may not always be the case for noisy data. Another essential way to analyse hypoth-
esis spaces is in terms of the variance they produce, which measures the amount of
change in the hypothesis due to fluctuation in the training set. Broadly, choosing
a more restrictive inductive bias prevents the resulting model from overfitting, but
at the same time, it reduces its variance. Formally, choosing between simpler, low-
variance hypotheses with better generalization ability and more complex, low-bias
hypotheses that fit the training data well is known as the bias-variance trade-off. Ock-
ham’s razor principle says we should choose the simplest hypothesis matching the
data.

The statistical learning approaches can be separated between parametric and non-
parametric (James et al., 2013), and this is also the case for ML approaches (Russell
and Norvig, 2020). Parametric learning is the process of summarizing data with a
set of parameters of fixed size that do not grow as the training set grows (i.e., they are
independent of the number of training instances), spanning from simple methods
(e.g., linear regression), to probabilistic ones (e.g., naive Bayes), to more complex
ones (e.g., deep neural networks). Non-parametric learning, on the other hand, can-
not summarize data with a fixed set of parameters, spanning from tree-like methods
(e.g., decision trees), to instance-based ones (e.g., k-nearest neighbours), and others
(e.g., support vector machines). Parametric models are constrained as they choose
the shape of the hypothesis space, which in turn may underfit (i.e., the opposite
of overfit) the training set. Deep neural networks are universal function approxima-
tors (Hornik, Stinchcombe, and White, 1989; Hornik, 1991), that is, they can approx-
imate any mathematical function by increasing the numbers of parameters, which
can be millions (Vaswani et al., 2017) or even trillions (Fedus, Zoph, and Shazeer,
2022) in modern architectures, to overcome underfitting at the expenses of compu-
tational resources. Non-parametric models make no assumptions about the under-
lying hypothesis space, and this is of greater benefit for simple parametric models
(i.e., non-deep neural networks) as they can learn a vast number of mathematical
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functions, but they tend to overfit the training set; in such cases, regularisation tech-
niques are generally preferred. Another fundamental separation between the sub-
fields of ML, which is of interest in this work, is the one between symbolic and non-
symbolic learning. Symbolic learning is learning a logical description that represents
the theory underlying a particular phenomenon, such as decision trees or rule-based
classifiers. Non-symbolic learning is learning a non-logical description representing
that phenomenon, such as deep neural networks or naive Bayes. Therefore, decision
trees, which we use as a guiding example to present the modal symbolic learning
framework, are non-parametric and symbolic models.

§2.4 Taxonomy of Symbolic Learning

Biases characterize ML algorithms. We can, thus, characterize symbolic learning
algorithms along four dimensions:

• conceptual bias which defines the vocabulary (i.e., propositional letters) of for-
mulas,

• logical bias that defines the logical form (i.e., grammar) of formulas,

• interpretation bias which defines how concepts (i.e., formulas) are evaluated in
semantical terms, and

• search bias that refers to how the hypothesis space is explored.

Many important considerations must be made of the proposed taxonomy. Concep-
tual and logical biases were defined by Genesereth and Nilsson (1988). Fürnkranz
(1999) introduced language bias encompassing both, conceptual bias and logical bias,
under the same umbrella; we prefer to distinguish between the two in our frame-
work as many assumptions can be made about each of them individually. More-
over, Fürnkranz (1999) also introduced search bias and overfitting avoidance bias which
the author claims to be a type of search bias; we prefer to collapse both definitions
in search bias.

In linguistics, syntax (i.e., tokens and their composition), semantics (i.e., the
meaning of sentences), and pragmatics (i.e., how constructs and features of the lan-
guage are used to produce new sound sentences) are used to characterize languages,
and this is also the case for formal languages, such as logics. In deductive reason-
ing, theorems can be proved in an axiomatic system (i.e., pragmatics), given the
language (i.e., syntax) along with its meaning (i.e., semantics); indeed, for example,
the satisfiability problem is among the most addressed problems in mathematical
inquiry. Inspired by the duality between deduction and induction processes, in in-
ductive reasoning, on the other hand, conceptual bias and logical bias represent the
syntax, interpretation bias represents the semantics, and search bias represents the
pragmatics. In particular, interpretation bias (which, to the best of our knowledge,
is introduced here for the first time) is motivated by the duality between crisp and
fuzzy logics; for example, propositional letters could be interpreted with Boolean
truth values (i.e., crisp) and the remaining connectives of the grammar with multiple
truth values (i.e., fuzzy). Thus, in their endeavours, symbolic learning researchers
and practitioners must make hypotheses on each dimension of the taxonomy to de-
sign symbolic learning algorithms.





23

CHAPTER 3

MODAL DECISION TREES

As a matter of fact, logic has turned out to be significantly more
effective in computer science than it has been in mathematics. This is
quite remarkable, especially since much of the impetus for the
development of logic during the past one hundred years came from
mathematics.

—Joseph Yehuda Halpern et al. “On the Unusual Effectiveness
of Logic in Computer Science” (Halpern et al., 2001)

We systematically investigate the framework of modal symbolic learning. As we
have discussed previously, decision trees are emblematic of the class of symbolic
learning, and this is also the case for the modal symbolic ones. Natural extensions
can be formulated based on modal decision trees. For the sake of simplicity, we re-
strict our attention to the case of binary decision trees (the natural choice for numer-
ical attributes) for binary classification, both in the propositional and modal case.
Nonetheless, it is important to stress that binary splits are purely arbitrary: more-
than-binary splits could be performed on numerical attributes, and binary splits
could be performed on categorical ones. Admitting more-than-binary splits also
has consequences on the choices of the locally optimal splits, as observed by Quin-
lan (1986). Therefore, generalizing our approach to the case of general trees and
multiple classes is immediate.

Binary decision trees, typical classifiers, are binary trees whose leaves and edges
are labelled. Leaf-labels identify the different classes an instance can belong to, while
edge-labels are logical atomic elements that are then composed to obtain complex
formulas in the considered logical formalism (e.g., in PL, edge-labels are literals and
formulas are Boolean combinations). A tree associates a formula to every class it
features (i.e., every label occurring in a leaf) and classifies an instance into a class if
and only if the instance satisfies the formula corresponding to that class. As there
can be exponentially many leaves in a tree, the classification process may require
verifying an instance’s satisfaction against exponentially many formulas. However,
decision trees provide an efficient mechanism for classifying an instance that does
not explore the entire tree: for every node, starting from the root and going down
towards the leaves, the truth of the formula associated with that node is checked
against the instance to be classified and, depending on the outcome, the instance
is passed to the right or the left child, and the process is repeated. When a leaf is
reached, the instance is classified into the class that labels that leaf. Summing up,
the desired properties for a family of decision trees include:

• correctness, that is, every tree classifies any given instance into precisely one
class,
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• completeness, that is, for every formula ϕ ∈ Φ(L) in the considered formalism
L, there is a decision tree t of the supposed family of decision trees that realizes
ϕ, and

• classification efficiency, that is, a decision tree t of height h must be able the
classify an instance by checking the truth of, at most, a number of formulas
polynomial in h.

§3.1 Propositional Decision Trees

We first introduce some general concepts for trees. Let t = (V , E) be a full directed
binary tree with nodes in V and edges in E ⊆ V × V . We denote by root(t) the root
of t, by V ` ⊆ V the set of its leaf nodes (or, simply, leaves), and by V ι = V \ V ` the
set of its internal nodes (i.e., non-root and non-leaf nodes). We also denote nodes
(either root, internal, or leaf) by ν, ν′, . . . , ν1, ν2, . . . and leaves by `, `′, . . . , `1, `2, . . ..
Each non-leaf node ν of a tree t has a left child  (ν) and a right child

 
(ν), and each

non-root node ν has a parent  (ν). For a node ν, the set of its ancestors (ν included) is
denoted by  ∗(ν), where  ∗ is the transitive and reflexive closure of  ; we also define
 
+(ν) =  

∗(ν) \ {ν}. For every y ∈ Y, where Y is the label space, we denote by
leavest(y) (or, simply, leaves(y) if t is clear from the context) the set of leaves of t
labelled with y. A path πt = ν0  νh in t h ≥ 0 between two nodes ν0 and νh is a finite
sequence of h + 1 nodes such that νi =  (νi+1), for each i = 0, . . . , h− 1. We denote
by π1 · π2 the operation of appending the path π2 to path π1. We also say that a path
ν0 · ν1  νh is left (resp., right) if ν1 =  (ν0) (resp., ν1 =

 
(ν0)). For a path πt and for

a node ν in t, πt
ν denotes the unique path root(t)  ν. Moreover, for a path πt, the

set of its improper prefixes is denoted by pre f ix(πt). Finally, a branch of t is a path πt
`,

for some ` ∈ V`. We omit the superscript notation, ·t, if t is clear from the context.

Propositional decision trees are defined for structured datasets, which are the
classic type of datasets to which one is used, typically presented in tabular form,
where each row corresponds to an instance.

Definition 3.1: Structured datasets

Let X be the sample space and Y the label space. Then, a structured dataset is a
set X = {x1, . . . , xm} of m instances, where xi ∈ X, for all 1 ≤ i ≤ m, defined
over a vector spaceA = {A1, . . . , An}whose n dimensions are called attributes.
The dataset X is called labelled if each instance is labelled with an element from
Y, that is, X = {(x1, y1), . . . , (xm, ym)}, where yi ∈ Y, for all 1 ≤ i ≤ m. A label
function Y : X→ Y is a function that associates each labelled instance to its true
label.

Without loss of generality, we assume that all attributes are numerical because the
vast majority of real-world datasets are indeed numerical. For each instance x, we
denote by x[i] the value of x in the ith component, that is, the value of x associated
to Ai. Let dom(A) be the domain of the attribute A, namely, the set of values that A
has in dataset X .
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A1 A2 Y
x1 10 3.9 0
x2 7 3.5 1
x3 6 1.3 0
x4 5 2.7 1

FIGURE 3.1: Example of a structured dataset.

Example 1 (Structured dataset). Figure 3.1 illustrates an example of labelled struc-
tured dataset, where X = {(x1, 0), (x2, 1), (x3, 0), (x4, 1)}, A = {A1, A2}, dom(A1) =
{10, 7, 6, 5}, dom(A2) = {3.9, 3.5, 1.3, 2.7}, Y = {0, 1}, x4[1] = 5, x1[2] = 3.9,
Y(x1) = Y(x3) = 0, and Y(x2) = Y(x4) = 1.

A structured dataset induces a set of propositional letters.

Definition 3.2: Induced propositional letters from structured datasets

Let X be a structured dataset defined on attributes A = {A1, . . . , An}. Then,
the set of induced propositional letters P from X is defined as:

P = {Ai ./ a | Ai ∈ A, ./ ∈ {<,≤,=, 6=,≥,>}, a ∈ dom(A)}.

Observe that each instance of a structured dataset is, in fact, a propositional model;
indeed, in a (derived) propositional model K = (V), we have that V(Ai ./ a) = >
if and only if x[i] ./ a, where x is the original instance of the structured dataset. A
set of induced propositional letters P could be closed under negation or not, that is,
for all p ∈ P there is ¬p ∈ P , and vice versa; the domains dom(A) could be too
huge, and it should be better to consider smaller ones also to avoid overfitting (since
the resulting symbolic model would fit too well in training on specific constants
a ∈ dom(A), but such constants may not be seen in testing instances); P may be
defined differently depending on the application-domain. What is more, a smaller
set of induced propositional letters reduces the required time to learn (i.e., the search
space is smaller).

Example 2 (Induced propositional decisions from a structured dataset). Consider the
labelled structured dataset in Figure 3.1. Then, if ./ ∈ {<,≥}, the induced propositional
letters are:

A1 < 10, A1 < 7, A1 < 6, A1 < 5, A2 < 3.9, A2 < 3.5, A2 < 1.3, A2 < 2.7,
A1 ≥ 10, A1 ≥ 7, A1 ≥ 6, A1 ≥ 5, A2 ≥ 3.9, A2 ≥ 3.5, A2 ≥ 1.3, A2 ≥ 2.7.

We are ready to define propositional decision trees.
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Definition 3.3: Propositional decision trees

Let X = {(x1, y1), . . . , (xm, ym)} be a labelled structured dataset defined over a
vector space A = {A1, . . . , An}, and P the set of induced propositional letters.
Then, a propositional decision tree t is a structure defined as:

t = (V , E , l, e),

where:

• (V , E) is a full directed binary tree,

• l : V ` → Y is a leaf-labelling function that assigns a label from Y to each
leaf node in V `,

• e : E → P is a edge-labelling function that assigns a propositional letter
from P to each edge in E ,

and the following conditions hold:

1. e(ν, ν′) = ¬e(ν, ν′′), for all (ν, ν′), (ν, ν′′) ∈ E ,

2. l(`) 6= l(`′), for all `, `′ ∈ V ` such that  (`) =  (`′).

Condition 1 says that the edge-labels of each pair of outgoing edges, (ν, ν′) and
(ν, ν′′), from the same node, ν, must be one the (logical) negation of the other,
e(ν, ν′) = ¬e(ν, ν′′). Condition 2 says that the leaf-labels of each pair of leaf nodes, `
and `′, that share the same parent,  (`) =  (`′), node must be different, l(`) 6= l(`′).

Example 3 (Propositional decision tree). Let t = (V , E , l, e) be the propositional decision
tree in Figure 3.2.Then, we have that:

V = {root(t), ν1, `1, `2, `3},
E = {(root(t), ν1), (root(t), `3), (ν1, `1), (ν1, `2)},
l = {`1 7→ y2, `2 7→ y1, `3 7→ y1},
e = {(root(t), ν1) 7→ p1, (root(t), `3) 7→ ¬p1, (ν1, `1) 7→ p2, (ν1, `2) 7→ ¬p2}.

Moreover, we have that:
leavest(y1) = {`2, `3},
leavest(y2) = {`1}.

The following definition defines path-, leaf-, and class-formulas of propositional
decision trees.
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t

ν1 `3 7→ y1

`1 7→ y2 `2 7→ y1

p 1
¬

p
1

p 2

¬
p

2

FIGURE 3.2: Example of a propositional decision tree.

Definition 3.4: Path-, leaf-, and class-formulas of propositional decision trees

Let t = (V , E , l, e) be a propositional decision tree. Then, for each path πt =
ν0  νh in t, the path-formula ϕt

π is defined inductively as:

ϕt
π =

{
> if h = 0;
e(ν0, ν1) ∧ ϕt

ν1 νh
if h > 0.

Moreover, for each leaf ` ∈ V `, the leaf-formula ϕt
` is defined as:

ϕt
` = ϕt

π`
.

Finally, for each class y, the class-formula ϕt
y is defined as:

ϕt
y =

∨
`∈leavest(y)

ϕt
`.

Path- and leaf-formulas are conjunctions of propositional letters, and class-formulas
are disjunctions of conjunctions. Therefore, class-formulas are formulas of PL in
disjunctive normal form; this means that, theoretically, each formula ϕ ∈ Φ(PL) can
be expressed by a propositional decision tree. We omit the superscript notation, ·t, if
t is clear from the context.

Example 4 (Path-, leaf-, and class-formulas of propositional decision tree). Consider
the propositional decision tree t = (V , E , l, e) in Figure 3.2. Then, we have that:

ϕt
root(ν) ν1

= p1,
ϕt

root(ν) `1
= p1 ∧ p2,

ϕt
root(ν) `2

= p1 ∧ ¬p2,
ϕt

root(ν) `3
= ¬p1,

ϕt
`1

= ϕroot(ν) `1
,

ϕt
`2

= ϕroot(ν) `2
,

ϕt
`3

= ϕroot(ν) `3
,

ϕt
y1

= ϕ`2 ∨ ϕ`3 ,
ϕt

y2
= ϕ`1 .



28 Chapter 3. Modal Decision Trees

Finally, an instance is classified by a propositional decision tree as follows.

Definition 3.5: Run of propositional decision trees

Let t = (V , E , l, e) be a propositional decision tree, ν a node in t, and x an
instance of a structured dataset X interpreted as a propositional model. Then,
the run of t on x from ν, denoted by t(x, ν), is defined as:

t(x, ν) =


l(ν) if ν ∈ V `;
t(x,  (ν)) if x |= ϕπt  

(ν)

;

t(x,
 
(ν)) if x |= ϕπt 

(ν)

.

The run of t on x, denoted by t(x), is defined as t(x, root(t)).

Example 5 (Run of propositional decision trees). Consider the propositional decision
tree t = (V , E , l, e) in Figure 3.2, and the labelled structured dataset X in Figure 3.1. Then,
we have that:

t(x4, root(t)) = t(x4, ν1) (x4 |= p1)
= l(`1) (x4 |= p1 ∧ p2)
= y2,

where p1 , A1 ≤ 7 and p2 , A2 > 1.3.

Correctness, completeness, and classification efficiency could be discussed at this
point. However, they are well-known (although they may not have been completely
formalized in the literature); moreover, modal decision trees include propositional
decision trees as a particular case, and the properties, which we shall discuss in the
modal case, transfer from the latter to the propositional case.

§3.2 Modal Decision Trees

We now introduce the notion of modal dataset which is central to the entire modal
symbolic learning framework.

Definition 3.6: Modal dataset

Let K be the Kripke model space, Y the label space, and P a set of proposition
letters. Then, a modal dataset I = {I1, . . . ,Im} is a set of m instances, where
Ii ∈ K, for all 1 ≤ i ≤ m, defined over P . The dataset I is called labelled if each
instance is labelled with an element from Y, that is, I = {(I1, y1), . . . , (Im, ym)},
where yi ∈ Y, for all 1 ≤ i ≤ m. A label function Y : K → Y is a function that
associates each labelled instance to its true label.

If each Kripke model I in a modal dataset is a (trivial) model with a single world (and
thus, no accessibility relation), namely, I = 〈{w}, ∅, V〉, then such dataset is called
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FIGURE 3.3: Example of a modal dataset.

propositional. It is immediate to observe that structured datasets can be logically
viewed as propositional datasets, and PL learning algorithms can be applied to the
latter (e.g., propositional decision trees).

Example 6 (Modal dataset). Consider the modal dataset in Figure 3.3. In this example,
I = {I1, I2}, where each instance is a Kripke model, and P = {p1, p2, p3}.

As we have discussed, decision trees recursively split samples, and this is also the
case of modal decision trees that split (Kripke-like) instances based on the following
decisions.

Definition 3.7: Modal decisions

Let P be a set of propositional letters. Then, the set of modal split-decisions Λ (or,
for brevity, decisions) is defined as:

Λ = {>,⊥, p,¬p,♦>,�⊥ | p ∈ P}.

We say that p and ¬p are propositional decisions, while ♦> (resp., �⊥) are modal
existential (resp., modal universal) ones. For a decision λ ∈ Λ, the decision that corre-
sponds to its logical negation ¬λ is univocally identified; thus, when λ = > (resp.,
p,♦>), we use ¬λ to denote ⊥ (resp., ¬p,�⊥), and vice versa. Moreover, ♦> and
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�⊥may seem unusual, but it allows us, combined with the other connectives, to ob-
tain all the formulas with respect to ML (we prove such a result in the next section).

Modal decision trees are defined as follows.

Definition 3.8: Modal decision trees

Let I = {(I1, y1), . . . , (Im, ym)} be a labelled modal dataset, and Λ a set of
decisions. Then, a modal decision tree is a structure:

t = (V , E , l, e, b)

where:

• (V , E) is a full directed binary tree,

• l : V ` → Y is a leaf-labelling function that assigns a label from Y to each
leaf node in V `,

• e : E → Λ is a edge-labelling function that assigns a decision from Λ to each
edge in E ,

• b : V ι → V ι is a back-edge function that links an internal node to one of its
ancestors,

and the following conditions hold:

1. e(ν, ν′) = ¬e(ν, ν′′), for all (ν, ν′), (ν, ν′′) ∈ E ,

2. l(`) 6= l(`′), for all `, `′ ∈ V ` such that  (`) =  (`′),

3. if b(ν) = ν′, then ν′ ∈  ∗(ν), for all ν, ν′ ∈ V ι,

4. if b(ν) 6= ν and b(ν′) 6= ν′, then b(ν) 6= b(ν′), for all ν, ν′ ∈ V ι,

5. if b(ν) = ν′, ν′ ∈  +(ν′′), and ν′′ ∈  +(ν), then ν′ ∈  +(b(ν′′)), for all
ν, ν′, ν′′ ∈ V ι,

6. if e(ν, ν′) ∈ {⊥,�⊥} and ν′ 6∈ V `, then b(ν′) 6= ν′, for all (ν, ν′) ∈ E .

A propositional decision tree is a modal decision tree in which edges are labelled
with propositional decisions (instead of modal decisions), and the back-edge func-
tion plays no role; thus, propositional decision trees are a particular case of modal
ones. Since any modal decision (sub)tree rooted in a node, ν, is also a modal deci-
sion tree representing a collection of formulas (similar to the propositional case), the
back-edge, b(ν), allows a modal decision tree to add (sub)formulas (those related
to the tree rooted in ν) at any depth of the syntax tree of the formulas that are to
be built/learnt. As we shall see, adding the back-edges allows us to build (weakly)
complete modal decision trees. Conditions 1 and 2 are as in the case of propositional
decision trees. Condition 3 says that if ν′ is the back-edge link of ν, then ν′ must
be an ancestor of ν. Condition 4 says that if the back-edge links of ν and ν′ are not
self-loops, then such links are not equal. Condition 5 says that if ν′ is the back-edge
link of ν, ν′′ is an ancestor of ν (excluding ν) and ν′ is an ancestor of ν′′ (excluding
ν′′), then ν′ must be an ancestor of b(ν′′) (excluding b(ν′′)), that is, b(ν′′) must be a
node on the path ν′  ν′′. Finally, condition 6 says that, for any edge (ν, ν′), if the
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FIGURE 3.4: Example of a modal decision tree.

edge-label is either ⊥ or �⊥, where ν′ is not a leaf, then the back-edge link of ν′

cannot be ν′ itself.

Example 7 (Modal decision tree). Let t = (V , E , l, e, b) be the modal decision tree in
Figure 3.4. Then:

V = {root(t), ν1, ν2, ν3, `1, `2, `3, `4, `5},
E = {(root(t), ν1), (root(t), `5), (ν1, ν2), (ν1, `4), (ν2, `1), (ν2, ν3), (ν3, `2), (ν3, `3)},
l = {`1 7→ y1, `2 7→ y2, `3 7→ y1, `4 7→ y1, `5 7→ y2},
e = {(root(t), ν1) 7→ ♦>, (root(t), `5) 7→ �⊥, (ν1, ν2) 7→ ♦>, (ν1, `4) 7→ �⊥,

(ν2, `1) 7→ ¬p1, (ν2, ν3) 7→ p1, (ν3, `2) 7→ p2, (ν3, `3) 7→ ¬p2},
b = {(ν3, ν1)}.

Moreover, we have that:
leavest(y1) = {`1, `3, `4},
leavest(y2) = {`2, `5}.

We now show how a modal decision tree defines a modal formula for each of
its classes. ML does not have a normal form that allows one to bound the nesting
of modal operators, and this makes the construction of formulas more complicated.
Let us fix the following concepts.

Definition 3.9: Contributor

Let t = (V , E , l, e, b) be a modal decision tree, and πt = ν0  νh, with h > 1, be
a path in t. Then, the contributor of πt, denoted by ctr(πt), is defined as the only
node νi ∈ πt such that νi 6= ν1, with 0 < i < h, and b(νi) = ν1, if it exists, and
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ν1, otherwise.

Example 8 (Contributor). Consider the modal decision tree t = (V , E , l, e, b) in Figure 3.4.
Let πt

1 = root(t) `3 and πt
2 = root(t) `1. Then, we have that:

ctr(πt
1) = ν3,

ctr(πt
2) = ν1.

Definition 3.10: Node agreement

Let t = (V , E , l, e, b) be a modal decision tree, and πt = ν0  νh a path in t, with
h > 1. Then, given two nodes νi, νj ∈ πt, with i, j < h, we say that they agree,
denoted by A(νi, νj), if νi+1 =  (νi) (resp., νi+1 =

 
(νi)) and νj+1 =  (νj)

(resp., νj+1 =
 
(νj)); otherwise, we say that they disagree, denoted by D(νi, νj).

Example 9 (Node agreement). Let t = (V , E , l, e, b) be the modal decision tree in Fig-
ure 3.4, and consider the path πt = root(t)  `2. Then, we have that A(ν1, ν3) and
D(ν2, ν3).

Definition 3.11: Implicative formulas

A modal formula ϕ is implicative if it has the form ϕ1 → ϕ2 or�(ϕ1 → ϕ2), and
we denote by Im the set of implicative formulas.

Thanks to the above definitions, we are ready to define path-, leaf-, and class-
formulas of modal decision trees.

Definition 3.12: Path-, leaf-, and class-formulas of modal decision trees

Let t = (V , E , l, e, b) be a modal decision tree. Then, for each path πt = ν0  νh
in t, the path-formula ϕt

π is defined inductively as:

• if h = 0, then ϕt
π = >;

• if h = 1, then ϕt
π = e(ν0, ν1);
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• if h > 1, let λ = e(ν0, ν1), πt
1 = ν1  ctr(πt), and πt

2 = ctr(πt) νh, then

ϕt
π =



λ ∧ (ϕt
π1
∧ ϕt

π2
) if λ 6= ♦>, A(ν0, ctr(πt)), and ϕπ2 6∈ Im,

or λ 6= ♦>, D(ν0, ctr(πt)), and ϕπ2 ∈ Im;
λ→ (ϕt

π1
→ ϕt

π2
) if λ 6= ♦>, D(ν0, ctr(πt)), and ϕπ2 6∈ Im,

or λ 6= ♦>, A(ν0, ctr(πt)), and ϕπ2 ∈ Im;
♦(ϕt

π1
∧ ϕt

π2
) if λ = ♦>, A(ν0, ctr(πt)), and ϕπ2 6∈ Im,

or λ = ♦>, D(ν0, ctr(πt)), and ϕπ2 ∈ Im;
�(ϕt

π1
→ ϕt

π2
) if λ = ♦>, D(ν0, ctr(πt)), and ϕπ2 6∈ Im,

or λ = ♦>, A(ν0, ctr(πt)), and ϕπ2 ∈ Im.

Moreover, for each leaf ` ∈ V `, the leaf-formula ϕt
` is defined as:

ϕt
` =

∧
π∈pre f ix(πt

`)

ϕt
π.

Finally, for each class y, the class-formula ϕt
y is defined as:

ϕt
y =

∨
`∈leavest(y)

ϕt
`.

Again, we omit the superscript notation, ·t, if t is clear from the context.

Example 10 (Path-, leaf-, and class-formula of modal decision trees). Consider the
modal decision tree in Figure 3.4. Then, we have that:

ϕt
 (ν) ν

= e(  (ν), ν), for all ν ∈ V \ {root(t)},
ϕt

ν1 `1
= ♦(>∧ ¬p1),

ϕt
root(t) ν2

= ♦(>∧♦>),
ϕt

root(t) `1
= ♦(>∧♦(>∧ ¬p1)),

ϕt
ν1 ν3

= �(> → p1),
ϕt

root(t) ν3
= �(> → �(> → p1)),

ϕt
root(t) `2

= ♦(�(> → p1) ∧ p2),
ϕt

root(t) `3
= �(�(> → p1)→ ¬p2),

ϕt
root(t) `4

= �(> → �⊥),
ϕt
` =

∧
π∈pre f ix(πt

`)
ϕt

π,
ϕt

y1
= ϕt

`1
∨ ϕt

`3
∨ ϕt

`4
,

ϕt
y2

= ϕt
`2
∨ ϕt

`5
.

Similarly to the propositional case, an instance is classified by a modal decision
tree as follows.

Definition 3.13: Run of modal decision trees

Let t = (V , E , l, e, b) be a modal decision tree, ν a node in t, and I an instance of
a modal dataset I . Then, the run of t on I from ν, denoted by t(I, ν), is defined
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as:

t(I, ν) =


l(ν) if ν ∈ V `;
t(I,  (ν)) if I  ϕπt  

(ν)

;

t(I,
 
(ν)) if I  ϕπt 

(ν)

.

The run of t on I, denoted by t(I), is defined as t(I, root(t)).

Following the above definition, a modal decision tree classifies an instance using its
class-formulas, and does so by checking, progressively, the path-formulas that con-
tribute to building a leaf-formula, which, in turn, is one of the disjuncts that take part
in a class-formula. Observe that, inter alia, this implies that propositional decision
trees can be seen as particular cases of modal decision trees even from a semantic
point of view: formulas of the type ϕ1 ∧ ϕ2 behave exactly as in the propositional
case, while those of the type ϕ1 → ϕ2, are such that their antecedent is always in-
cluded as a conjunct in their corresponding leaf-formula, effectively reducing it to a
conjunction, as in the propositional case.

Example 11 (Run of modal decision trees). Consider the modal decision tree t =
(V , E , l, e, b) in Figure 3.4, and the modal dataset in Figure 3.3. Then, we have that:

t(I2, root(t)) = t(I2, ν1) (I2  ♦>)
= t(I2, ν2) (I2  ♦(>∧♦>))
= t(I2, ν3) (I2  �(> → �(> → p1)))
= l(`3) (I2  �(�(> → p1)→ ¬p2)
= y1.

§3.3 Properties of Modal Decision Trees

As we have stated at the beginning of the chapter, the desiderata of decision trees
are correctness, completeness, and classification efficiency. While such properties at
the propositional level may seem trivial, in the case of modal decision trees they are
not, and we must formally define each property.

We start discussing correctness of modal decision trees.

Definition 3.14: Correctness

A decision tree t is correct if and only if, for every dataset I and every instance
I ∈ I , it is the case that I satisfies exactly one of its class-formulas. A class of
decision trees is correct if and only if all of its decision trees are correct.
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Lemma 3.1

Let t = (V , E , l, e, b) be a modal decision tree, and let π1 = ν0  νh−1 ·  (νh−1)
and π2 = ν0  νh−1 ·

 
(νh−1) be two paths in t. Then, ϕπ1 ↔ ¬ϕπ2 is valid.

PROOF. We prove a stronger statement, that is, we prove that for each pair of paths
π1 = ν0  νh−1 ·  (νh−1) and π2 = ν0  νh−1 ·

 
(νh−1) it holds that:

1. ϕπ1 ↔ ¬ϕπ2 is valid, and

2. if h ≥ 2, then ϕt
π1
∈ Im and ϕt

π2
6∈ Im, or the other way around.

We proceed by induction on h:

• h = 1 In this case, π = ν0, π1 = ν0 ·  (ν0), and π1 = ν0 ·
 
(ν0). By definition,

it must be the case that e(ν0,  (ν0)) = λ and e(ν0,
 
(ν0)) = ¬λ, for some

decision λ. By construction, therefore, ϕπ1 ↔ ¬ϕπ2 is valid, as wanted.

• h = 2 In this case, π = ν0  ν1, π1 = π ·  (ν1), and π2 = π ·  (ν1). It holds
that ϕν1 

 
(ν1)

, ϕν1 
 
(ν1)
6∈ Im. There are four cases to consider depending on

the relationship between ν0 and ν1 that can be left or right, and on the value
of e(ν0, ν1) that can be equal to or not to ♦>. Let ν1 =  (ν0) and e(ν0, ν1) =
λ 6= ♦>; the other cases are similar. Observe that ctr(π1) = ctr(π2) = ν1. Since
A(ν0, ctr(π1)), following Definition 3.12, ϕπ1 = λ∧ (ϕν1 ν1 ∧ ϕν1 

 
(ν1)

). Since
D(ν0, ctr(π2)), following Definition 3.12, ϕπ2 = λ → (ϕν1 ν1 → ϕν1 

 
(ν1)

).
Therefore, ϕπ1 6∈ Im, while ϕπ2 ∈ Im, and since ϕν1 

 
(ν1)
↔ ϕν1 

 
(ν1)

is
valid by inductive hypothesis, ϕπ1 ↔ ¬ϕπ2 must be valid, as we wanted.

• h > 2 In this case, π = ν0  νh−1, π1 = π ·  (νh−1), and π2 = π ·  (νh−1).
Observe that ctr(π1) = ctr(π2) = νj, for some j ≤ h− 1, and consider the paths
νj  

 (νh−1) and νj  
 
(νh−1). By inductive hypothesis, ϕνj 

 
(νh−1)

↔
¬ϕνj 

 
(νh−1)

is valid. If j = h − 1, then there are four cases to consider de-
pending on the relationship between ν0 and ν1 that can be leaf or right, and
on the value of e(ν0, ν1) that can be equal to or not to ♦>. Let ν1 =  (ν0)
and e(ν0, ν1) = λ 6= ♦>; the other cases are similar. Since A(ν0, ctr(π1)), fol-
lowing Definition 3.12, ϕπ1 = λ ∧ (ϕν1 νj ∧ ϕνj 

 
(νh−1)

). Since D(ν0, ctr(π2)),
following Definition 3.12, ϕπ2 = λ → (ϕν1 νj → ϕνj 

 
(νh−1)

). Therefore,
ϕπ1 6∈ Im, while ϕπ2 ∈ Im, and since ϕνj 

 
(νh−1)

↔ ¬ϕνj 
 
(νh−1)

is valid
by inductive hypothesis, ϕπ1 ↔ ¬ϕπ2 must be valid, as we wanted. If, on
the other hand, j < h − 1, then we need to consider eight cases depending
on the relationship betwenn ν0 and ν1 that can be left or right, the value of
e(ν0, ν1) that can be equal or not to ♦>, and on the relationship between νj
and νj+1 that can be left or right. Let ν1 =  (ν0), e(ν0, ν1) = λ 6= ♦>, and
νj+1 =  (νj); as before, the other cases are similar. By inductive hypothe-
sis, either ϕνj 

 
(νh−1)

6∈ Im and ϕνj 
 
(νh−1)

∈ Im, or the other way around;
without loss of generality, assume the former. Since A(ν0, ctr(π1)), following
Definition 3.12, ϕπ1 = λ ∧ (ϕν1 νj ∧ ϕνj 

 
(νh−1)

). Since D(ν0, ctr(π2)), follow-
ing Definition 3.12, ϕπ2 = λ → (ϕν1 νj → ϕνj 

 
(νh−1)

). Therefore, ϕπ1 6∈ Im,
while ϕπ2 ∈ Im, and since ϕνj 

 
(νh−1)

↔ ¬ϕνj 
 
(νh−1)

is valid by inductive
hypothesis, ϕπ1 ↔ ¬ϕπ2 must be valid, as we wanted.
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�

We want to prove correctness of modal decision trees.

Theorem 3.1: Correctness of modal decision trees

Modal decision trees are correct.

PROOF. Consider a modal decision tree t = (V , E , l, e, b), a modal dataset I , and an
instance I ∈ I .

We want to prove the correctness of t with respect to I. We want to prove, first,
that, for every pair of classes y1, y2 ∈ Y, with y1 6= y2, it is not the case that I 
ϕy1 ∧ ϕy2 . Suppose, by way of contradiction, that this is the case. Therefore, for some
`1, `2 ∈ V ` such that `1 ∈ leaves(y1) and `2 ∈ leaves(y2), it must be the case that
I  ϕ`1 ∧ ϕ`2 . Consider the branches π`1 and π`2 . Let νi be the lowest node common
to π`1 and ϕ`2 . Since νi is not a leaf, let νi+1 =  (νi) and ν′i+1 =

 
(νi). By Lemma 3.1,

ϕπνi+1
↔ ¬ϕπν′i+1

is valid, but, by definition, ϕ`1 → ϕπνi+1
and ϕ`2 → ϕπν′i+1

are also

valid, which leads to a contradiction.
Second, we want to prove that, for at least one class y ∈ Y it is the case that

I  ϕy, which is equivalent to say that there exists a leaf ` ∈ leaves(y) such that
I  ϕ`. We prove the following stronger statement: for all h′ ≤ h, where h is the
height of t, if there exists a path πνh′ such that I  ϕπ, for every π ∈ pre f ix(πνh′ ),
then νh′ is a leaf, or I  ϕπνh′

·  (νh′ )
, or I  ϕπνh′

·
 
(νh′ )

. We proceed by induction:

• h′ = 0 The result is immediate.

• h′ > 0 Let πνh′ = ν0  νh′ be the path identified by the inductive hypothesis.
If νh′ is a leaf, the result is immediate. Otherwise, observe that, by Lemma 3.1,
ϕπνh′

·  (νh′ )
↔ ¬ϕπνh′

·
 
(νh′ )

is valid, which means that we can take πνh′+1
=

πνh′ ·
 (νh′) or πνh′+1

= πνh′ ·
 
(νh′), and we have the result.

By taking h′ = h, this immediately leads to the conclusion that I  ϕ`, for some ` ∈
V `, that is, I  ϕy, for some class y ∈ Y, such that ` ∈ leaves(y), as we wanted. �

Corollary 3.1: Correctness of propositional decision trees

Propositional decision trees are correct.

We now discuss the completeness of modal decision trees with respect to ML.

Definition 3.15: Completeness

A family of decision trees is strongly complete for a logical formalism if and only
if, for each of its formula ϕ, there is a decision tree t and a class y ∈ Y such that
ϕt

y ↔ ϕ is valid. Moreover, a family of decision trees is weakly complete for a
logical formalism if and only if, for each of its formula ϕ, there is a decision tree
t and two classes y, y ∈ Y such that ϕt

y → ϕ and ϕt
y → ¬ϕ are both valid.
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It is worth discussing how the above definition relates to the purpose of a decision
tree model. From a practical point of view, (modal) decision trees are learned from
labelled (modal) datasets via approximation algorithms which are incomplete by
design; in other words, decision trees are never used as top-down model checkers
for specific formulas. While decision trees from a strongly complete family guaran-
tee the correctness of classification for a formula, those from weakly complete ones
allow one to only partially identify the hypothetical formula that defines a class.
However, the fundamental desideratum is expressing such a formula as a decision
tree. As it turns out, both weakly and strongly complete families of decision trees
can do so.

Lemma 3.2

Let ϕ ∈ Φ(ML). Then, there exists a modal decision tree t = (V , E , l, e, b) and
two leaves `y, `y ∈ V ` such that ϕ`y ↔ ϕ and ϕ`y ↔ ¬ϕ.

PROOF. For the purpose of this proof, let us fix Y = {y, y, y∗}. We prove a stronger
statement, that is, given ϕ ∈ Φ(ML), there exists a modal decision tree t = (V , E , l, e, b)
over Y, and two leaves `y, `y ∈ V ` such that `y ∈ leaves(y), `y ∈ leaves(y), and that:

1. ϕ`y ↔ ϕ is valid, and either ϕπ`y
6∈ Im and π`y is right or ϕπ`y

∈ Im and π`y is
left, and

2. ϕ`y ↔ ¬ϕ is valid, and either ϕπ`y
6∈ Im and π`y is left or ϕπ`y

∈ Im and π`y is
right.

We build, now, by induction on the complexity of ϕ, a modal decision tree t =
(V , E , l, e, b) over Y for which items 1 and 2 hold:

• ϕ = p We build t = (V , E , l, e, b) as follows:

– V = {ν, ν′, ν′′},
– E = {(ν, ν′), (ν, ν′′)},
– l = {ν′ 7→ y, ν′′ 7→ y},
– e = {(ν, ν′) 7→ p, (ν, ν′′) 7→ ¬p},
– b = ∅,

and we impose that ν′ =
 
(ν) and ν′′ =  (ν). Clearly, ν′ ∈ leaves(y), and

since ϕν′ = p, ϕν′ ↔ ϕ is valid, ϕπν′ 6∈ Im and πν′ is right, then item 1 holds
for `y = ν′. Similarly, ν′′ ∈ leaves(y), and since ϕν′′ = ¬p, ϕν′′ ↔ ¬ϕ is valid,
ϕπν′′ 6∈ Im and πν′′ is left, then item 2 holds for `y = ν′′.

• ϕ = ¬ϕ1 By inductive hypothesis, there exists t1 = (V1, E1, l1, e1, b1) such that

item 1 holds for some leaf `1
y ∈ V1 and item 2 holds for some leaf `1

y ∈ V1, with
respect to ϕ1. Informally, we obtain t by producing the mirror image of t, which
consists of switching labels y with y of `1

y and `2
y, respectively, and swapping

right and left children of every node. Formally, we build t = (V , E , l, e, b) as
follows:

– V = V1,

– E = E1,
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– l = (l \ {`1
y 7→ y, `1

y 7→ y}) ∪ {`1
y 7→ y, `1

y 7→ y},
– e = e1,

– b = b1,

and we impose, for every triple of nodes ν, ν′, ν′′ ∈ V , that ν′ =  (ν) (resp.,
ν′′ =

 
(ν)) in t if and only if ν′ =

 
(ν) (resp., ν′′ =  (ν)) in t1. Let us set

`y = `1
y. It is immediate to see that πt

`y
is right (resp., left) if and only if πt1

`1
y

is

left (resp., right), and that ϕt
π`y

= ϕt1
π
`1
y

which means ϕt
π`y
∈ Im if and only if

ϕt1
π
`1
y
∈ Im; observe also that `y ∈ leavest(y). Thus, in t, item 2 holds. Let us

also set `y = `1
y. It is immediate to see that πt

`y
is right (resp., left) if and only

if πt1
`1

y
is left (resp., right), and that ϕt

π`y
= ϕt1

π
`1
y
, which means ϕt

π`y
∈ Im if and

only if ϕt1
π
`1
y
∈ Im; observe also that `y ∈ leavest(y). Thus, in t, item 1 holds as

well.

• ϕ = ϕ1 ∧ ϕ2 By inductive hypothesis, there exists t1 = (V1, E1, l1, e1, b1) such

that item 1 holds for some leaf `1
y ∈ leavest1(y) and item 2 holds for some

leaf `1
y ∈ leavest1(y), with respect to ϕ1, and t2 = (V2, E2, l2, e2, b2) such that

item 1 holds for some leaf `2
y ∈ leavest2(y) and item 2 holds for some leaf

`2
y ∈ leavest2(y), with respect to ϕ2. Informally, we obtain t by:

– appending t2 to the branch of t1 ending in `1
y,

– prepending to t1 a new node ν′ (the root of the new tree t) whose right
child is the root of t1, whose left child is a new node ν′′, such that the edge
(ν′, root(t1)) (resp., (ν′, ν′′)) is labelled with > (resp., ⊥), and

– adding a back-edge from the root of t2 to the root of t1 and from root of t1
to itself.

Let ν1 =  (`
1
y), λ = e(ν1, `1

y), and ν′, ν′′ 6∈ V1 ∪ V2. Formally, we build t =
(V , E , l, e, b) as follows:

– V = (V1 \ {`1
y}) ∪ V2 ∪ {ν′, ν′′},

– E = (E1 \ {(ν1, `1
y)}) ∪ {(ν1, root(t2)), (ν′, root(t1)), (ν′, ν′′)} ∪ E2,

– l = (l1 \ {`1
y 7→ y, `1

y 7→ y}) ∪ {ν′′ 7→ y∗, `1
y 7→ y∗} ∪ l2,

– e = (e1 \ {(ν1, `1
y) 7→ λ}) ∪ {(ν1, root(ν2)) 7→ λ, (ν′, root(t1)) 7→ >, (ν′, ν′′)

7→ ⊥} ∪ e2,

– b = b1 ∪ {(root(t2), root(t1)), (root(t1), root(t1))} ∪ b2,

and we impose root(t1) =
 
(ν′) and ν′′ =  (ν′). Now, we show that t satisfies

item 1 and item 2 with `2
y and `2

y, respectively, with respect to ϕ1∧ ϕ2. Consider,
first, `2

y ∈ leavest2(y). Clearly, `2
y ∈ leavest(y) as well. Observe that, by con-

struction, ctr(πt
`2

y
) = root(t2). Two cases arise: if πt2

`2
y

is right, then ϕt2
π
`2
y
6∈ Im

and A(root(t), ctr(πt
`2

y
)); if, on the other hand, πt2

`2
y

is left, then ϕt2
π
`2
y
∈ Im and

D(root(t), ctr(πt
`2

y
)). Either way, ϕt

π
`2
y
= > ∧ (ϕt1

π
`1
y
∧ ϕt2

π
`2
y
). Now, it is imme-

diate to see that I, w  ϕt
π
`2
y

if and only if I, w  ϕt1
π
`1
y

and I, w  ϕt2
π
`2
y
, that

is, by inductive hypothesis, if and only if I, w  ϕ1 and I, w  ϕ2, that is,
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if and only if I, w  ϕ. Thus, item 1 holds for `y = `2
y. Consider, now,

`2
y ∈ leavest2(y). Clearly, `2

y ∈ leavest(y) as well. Observe that, by construc-

tion, ctr(πt
`2

y
) = root(t2). Two cases arise: if πt2

`2
y

is right, then ϕt2
π
`2
y
∈ Im

and A(root(t), ctr(πt
`2

y
)); if, on the other hand, πt2

`2
y

is left, then ϕt2
π
`2
y
6∈ Im and

D(root(t), ctr(πt
`2

y
)). Either way, ϕt

π
`2
y
= > → (ϕt1

π
`1
y
→ ϕt2

π
`2
y
). Now, it is imme-

diate to see that I, w  ϕt
π
`2
y

if and only if I, w 6 ϕt1
π
`1
y

or I, w  ϕt2
π
`2
y
, that is, by

inductive hypothesis, if and only if I, w 6 ϕ1 and I, w 6 ϕ2, that is, if and only
if I, w 6 ϕ. Thus, item 2 holds for `y = `2

y.

• ϕ = ♦ϕ1 By inductive hypothesis, there exists t1 = (V1, E1, l1, e1, b1) such that

item 1 holds for some leaf `1
y ∈ V1 and item 2 holds for some leaf `1

y ∈ V1, with
respect to ϕ1. Informally, we obtain t by prepeding t1 to a new node ν′ (the
root of the new tree t) whose right child is the root of t1, whose left child is a
new node ν′′, such that the edge (ν′, root(t1)) (resp., (ν′, ν′′)) is labelled with
♦> (resp.,�⊥). Let ν′, ν′′ 6∈ V1. Formally, we build t = (V , E , l, e, b) as follows:

– V = V1 ∪ {ν′, ν′′},
– E = E1 ∪ {(ν′, root(t1)), (ν′, ν′′)},
– l = l1 ∪ {ν′′ 7→ y∗},
– e = e1 ∪ {(ν′, root(t1)) 7→ ♦>, (ν′, ν′′) 7→ �⊥},
– b = b1 ∪ {(root(t1), root(t1))},

and we impose root(t1) =
 
(ν′) and ν′′ =  (ν′). Now, we show that t satisfies

item 1 and item 2 with `1
y and `1

y, respectively, with respect to ♦ϕ1. Consider,
first, `1

y ∈ leavest1(y). Clearly, `1
y ∈ leavest(y) as well. Observe that, by con-

struction, ctr(πt
`1

y
) = root(t1). Two cases arise: if πt1

`1
y

is right, then ϕt1
π
`1
y
6∈ Im

and A(root(t), ctr(πt
`1

y
)); if, on the other hand, πt1

`1
y

is left, then ϕt1
π
`1
y
∈ Im and

D(root(t), ctr(πt
`1

y
)). Either way, ϕt

π
`1
y
= ♦(> ∧ ϕt1

π
`1
y
). Now, it is immediate

to see that I, w  ϕt
π
`1
y

if and only if there exists w′ such that (w, w′) ∈ R

and I, w′  ϕt1
π
`1
y
, that is, by inductive hypothesis, if and only if I, w′  ϕ1,

that is, if and only if I, w  ϕ. Thus, item 1 holds for `y = `1
y. Consider,

now, `1
y ∈ leavest1(y). Clearly, `1

y ∈ leavest(y) as well. Observe that, by con-

struction, ctr(πt
`1

y
) = root(t1). Two cases arise: if πt1

`1
y

is right, then ϕt1
π
`1
y
∈ Im

and A(root(t), ctr(πt
`1

y
)); if, on the other hand, πt1

`1
y

is left, then ϕt1
π
`1
y
6∈ Im and

D(root(t), ctr(πt
`1

y
)). Either way, ϕt

π
`1
y
= �(> → ϕt1

π
`1
y
). Now, it is immediate to

see that I, w  ϕt
π
`1
y

if and only if for every w′ such that (w, w′) ∈ R it is the

case that I, w′  ϕt1
π
`1
y
, that is, by inductive hypothesis, if and only if I, w′ 6 ϕ1,

that is, if and only if I, w 6 ϕ. Thus, item 2 holds for `y = `1
y.

�

Modal decision trees are complete with respect to PL by definition, and weakly
complete with respect to ML.
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Theorem 3.2: Completeness of modal decision trees

Modal decision trees are strongly complete for PL and weakly complete for
ML.

PROOF. Strong completeness for PL comes trivially from the definitions. Let ϕ ∈
Φ(ML). By Lemma 3.2, there exists a modal decision tree t = (V , E , l, e, b) and two
leaves `y, `y ∈ V ` such that ϕ`y ↔ ϕ and ϕ`y ↔ ¬ϕ are both valid. Therefore, ϕy → ϕ
and ϕy → ¬ϕ are both valid, as required. �

Propositional decision trees are strongly complete for PL, which is a known re-
sult (although not discussed in these terms in the literature), but it is not a corollary
of the above result. Indeed, such a result should be proved separately, whose proof
technique is similar to the above, but we decided to omit it.

Theorem 3.3: Completeness of propositional decision trees

Propositional decision trees are strongly complete for PL.

Finally, we discuss classification efficiency.

Definition 3.16: Classification efficiency

A decision tree t of height h is an efficient classifier if and only if, for every dataset
I and every instance I ∈ I , it is the case that its run t(I) can be computed in
polynomial time with respect to h and the size of I. A class of decision trees is
classification efficient if and only if all of its decision trees are efficient classifiers.

The following result holds due the fact that model checking against an ML for-
mula against a Kripke structure can be done in polynomial time in terms of structure
size and formula size (Clarke et al., 2018) (see Algorithm 1).

Theorem 3.4: Classification efficiency of modal decision trees

Modal decision trees are classification efficient.

PROOF. Immediate by the definition of run of modal decision trees. �

Corollary 3.2: Classification efficiency of propositional decision trees

Propositional decision trees are classification efficient.

§3.4 Entropy-based Learning of Modal Decision Trees

Propositional decision trees are well-known constructs that can be used for clas-
sification and regression tasks; their popularity is due to their intrinsic simplicity,
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versatility, and interpretability. It is known that the problem of extracting the op-
timal decision tree from a structured dataset is NPTIME-hard (Hyafil and Rivest,
1976), where optimality is expressed as the relation between the height and the per-
formance of the tree, which justifies the use of sub-optimal approaches for practical
applications, such as Iterative Dichotomizer 3 (ID3) (Quinlan, 1986), C4.5 (Quinlan,
1993), and Classification And Regression Trees (CART) (Breiman et al., 1984). In gen-
eral, the approaches for sub-optimal learning are divided into deterministic and
non-deterministic; while it is true that decision trees can be extracted by a non-
deterministic method, in the context of an optimization problem, the greedy, deter-
ministic approach is a standard de facto in the case of decision trees. The most typical
approach to sub-optimal decision tree learning schema is simple: starting from the
root that has the entire labelled (structured) dataset X , recursively partition (or, in
decision tree terms, split) X into k subsets X1,X2, . . . ,Xk, that contain progressively
similar intra-node target values and dissimilar inter-node target values at any given
level of the tree. The process continues until a stopping criterion based on the purity
of the node (i.e., how is the distribution of values of the target variable in the node)
is met, in which case the node is called leaf. Stopping conditions, for instance, all the
samples in the node having the same class (for classification problems) and the vari-
ance of the observations being below a certain threshold (for regression problems).

Now, we lift the same greedy approach to the modal case. For a labelled modal
dataset I = {(I1, y1), . . . , (Im, ym)}, let Pi be the fraction of instances in I labelled
with yi, that is:

Pi =
|{I ∈ I | Y(I) = yi}|

|I| .

Then, the information conveyed by (or, specifically, entropy of) I is defined as:

In f o(I) = −∑
i

Pi · logPi.

Intuitively, the entropy is inversely proportional to the purity degree of I with re-
spect to the class values. Splitting, the main greedy operation in learning a proposi-
tional decision tree, is performed over a specific decision λ ∈ Λ.

Definition 3.17: Associated dataset to a node

Let t = (V , E , l, e, b) be a modal decision tree, ν a node of t, and I a modal
dataset. Then, the ν-associated dataset is defined as:

Iν = {I ∈ I | I  ϕt
ν}.

Propositional decision tree algorithms recursively split the dataset associated
with node ν over the attribute A, relation ./, and value a of the domain of A (i.e.,
a propositional decision) that guarantee the greatest information gain until a spe-
cific stopping criterion applies. When non-binary splits are allowed, the concept of
split information must be slightly modified, but the underlying ideas remain. As
observed by Quinlan (1986), in the case when attributes are categorical, the infor-
mation gain tends to be biased towards attributes having a high number of values,
that is, in our terms, higher domains, and, in some sense, the heuristic split tends to
overfit the dataset. To overcome such bias, Quinlan proposed an alternative splitting
criterion, called information gain ratio, which makes less sense for binary splits.
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A modal decision tree t splits a ν-associated datasets Iν based on a decision λ ∈
Λ which, together with the back-edge function b, forms two path-formulas ϕt  

(ν)

and ϕt 
(ν)

. Hence, we have the following definitions.

Definition 3.18: Split

Let t = (V , E , l, e, b) be a modal decision tree, ν a node of t, I a modal dataset,
and Iν the ν-associated dataset. Then, the (binary) split of Iν is the pair defined
as:

(I  
(ν), I  (ν)).

Definition 3.19: Split information of modal decision trees

Let t = (V , E , l, e, b) be a modal decision tree, ν a node of t, I a labelled modal
dataset, Iν the ν-associated dataset, and (I  

(ν), I  (ν)) the split of Iν. Then, the
(binary) split information of Iν on (I  

(ν), I  (ν)) is defined as:

In f oSplit(Iν, I  
(ν), I  (ν)) =

|I  
(ν)|
|I| · In f o(I  

(ν)) +
|I  (ν)|
|I| · In f o(I  (ν)).

Definition 3.20: Information gain of modal decision trees

Let t = (V , E , l, e, b) be a modal decision tree, ν a node of t, I a labelled modal
dataset, Iν the ν-associated dataset, and λ ∈ Λ a decision. Then, the information
gain on Iν by decision λ and back-edge function b is defined as:

In f oGain(Iν, λ) = In f o(Iν)− In f oSplit(Iν, I  
(ν), I  (ν)).

It is interesting to discuss the computational complexity of Algorithm 2. We do
so under the hypothesis of having m instances described, each, by a Kripke frame
with at most N distinct worlds, each containing the truth values of |P| different
propositional letter. We study the algorithm’s behaviour as m grows, considering N
as a constant.

Theorem 3.5: Time complexity of learning modal decision trees

Algorithm 2 on a modal dataset I with m instances, each described by a Kripke
frame with at most N distinct worlds containing the truth values of |P| propo-
sitional letters, runs in O(m5) in the worst case and O(m4log(m)) in the average
case if N is considered a constant.

PROOF. The cardinality of the modal decisions Λ is bounded by the cardinality of
the propositional letters P , which is O(m) because each instance can induce new
propositions, but N is a constant. The number of back-edges starting at a given
node is bounded by the tree’s height, which, in turn, is bounded by the number of
instances. Checking each modal decision consists of model checking two modal for-
mulas whose length is bounded by O(m) against every instance and model checking
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ALGORITHM 2: Learning modal decision trees.

1 function ModalDecisionTree(I , Λ):
input : A labelled modal dataset I , and a set of decisions Λ.
output: A modal decision tree t.

2 t← Initialise()
3 Learn(I , Λ, root(t), t)
4 return t
5 end
6 function Learn(I , Λ, ν, t):
7 if a stopping condition applies then return MakeLea f Node(I , ν)
8 ν.le f t← CreateNode(ν)
9 ν.right← CreateNode(ν)

10
 
(ν)← ν.le f t

11
 
(ν)← ν.right

12  (ν.le f t)← ν
13  (ν.right)← ν
14 (I  

(ν)
, I  

(ν)
, ν′)← BestSplit(I , Λ, ν, t)

15 b(ν)← ν′

16 Learn(I  
(ν)

, Λ, ν.le f t, t)

17 Learn(I  
(ν)

, Λ, ν.right, t)

18 return
19 end
20 function BestSplit(I , Λ, ν, t):
21 g∗ ← 0
22 foreach ν′ ∈  

∗(ν) do
23 b(ν)← ν′

24 foreach λ ∈ Λ do
25 (ϕt  

(ν)
, ϕt 

(ν)
)← BuildFormulas(t, ν, λ)

26 g← In f o(Iν)− In f oSplit(Iν, I  
(ν)

, I  
(ν)

)

27 if g ≥ g∗ then
28 (I∗  

(ν)
, I∗ 

(ν)
, ν′∗)← (I  

(ν)
, I  

(ν)
, ν′)

29 g∗ ← g
30 end
31 end
32 end
33 return (I∗  

(ν)
, I∗ 

(ν)
, ν′∗)

34 end

a single formula against a single Kripke structure is linear in the size of the formula
and the structure, which, in turn, is bounded by O(N). Thus, the cost of finding the
best split is bounded by O(m4).

In the worst-case, at each node ν, the split is such that one among I  
(ν) and

I  (ν) is a singleton so that the recurrence that describes the time complexity is:

T(m) = T(1) + T(m− 1) + O(m4),

from which we can conclude that:

T = O(m5).

In the average case, however, we can assume that all splits are equally likely in
terms of relative sizes of I  

(ν) and I  (ν). Thus, the recurrence that describes the
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time complexity becomes:

T(m) =
1

m− 1

m−1

∑
i=1

(T(i) + T(m− i)) + O(m4)

=
2

m− 1

m−1

∑
i=1

T(i) + O(m4).

We prove by substitution that there exists a constant a such that T(m) ≤ am4log(m)
for m sufficiently large, from which we can conclude that T(m) = O(m4log(m)). Let
k = 4, then we have that:

T(m) =
2

m− 1

m−1

∑
i=1

T(i) + O(mk)

≤ 2
m− 1

m−1

∑
i=1

aiklog(i) + O(mk)

≤ 2alog(m)

m− 1

m−1

∑
i=1

ik + O(mk).

We leverage the generalized Faulhaber formula (Gnewuch, Pasing, and Weiß, 2021)
to bound the above summation:

T(m) ≤ 2alog(m)

m− 1

( (m− 1)k+1

k + 1
+

(m− 1)k

2
+

k(m− 1)k−1

12

)
+ O(mk)

=
2alog(m)

(k + 1)(m− 1)

(
(m− 1)k+1 (k + 1)(m− 1)k

2
+

+
k(k + 1)(m− 1)k−1

12

)
+ O(mk).

Since we assumed m sufficiently large, we have that k ≤ m− 2, that is, k < k + 1 ≤
m− 1. Therefore, we have that:

T(m) ≤ 2alog(m)

(k + 1)(m− 1)

(
(m− 1)k+1 +

(m− 1)k+1

2
+

(m− 1)k+1

12

)
+ O(mk)

=
2a(m− 1)klog(m)

(k + 1)

(
1 +

1
2
+

1
12

)
+ O(mk).

For large m, this means that we must prove that:

19
6(k + 1)

a(m− 1)klog(m) ≤ amklog(m),

which is implied by:
19

6(k + 1)
mk ≤ mk.

The latter is true for k ≥ 13
6 , that is, k ≥ 3. The proof is completed. �
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CHAPTER 4

MODAL LOGICS AND MODAL
DATASETS

If you torture data long enough, it will confess to anything.

—Ronald H. Coase

The piece that needs to be added to the picture of modal symbolic learning is how
modal datasets emerge from real-world data. This chapter shows how to interpret
unstructured datasets as modal ones in several practical, real-world cases.

§4.1 Examples of Unstructured Data

The proliferation of digital devices, such as smartphones, smartwatches, and sen-
sors, together with the advances in storage and computations, have enabled the era
of big data (Gandomi and Haider, 2015). Consequently, large datasets have been
created, and there is an academic, industrial, and political demand to manage and
analyse such ever-growing sources of information. In the following, we give some
examples of real-world data.

Time series are observations interpreted over linear orders; they are series of tem-
porally ordered observations. Observations can be univariate if there is only one
measurement or multivariate if there is more than one. Moreover, data types of ob-
servations can be numerical or categorical. Thus, a univariate time series is a single
measurement evolving through time, while a multivariate time series are multiple
measurements that evolve. A temporal sequence is a (multivariate) time series with
categorical measurements; otherwise, we refer to such objects as time series. Fig-
ure 4.1 illustrates an example of time series, which represents the evolution of the
temperature (A1) and blood pressure (A2) of a patient in a medical domain over 10
timestamps. Typical learning problems from time series are classification and re-
gression.

Image datasets are another crucial element in big data. Massive datasets, such
as ImageNet (Deng et al., 2009), have been collected to accelerate computer vision
research by dealing with enormous sets of images. Images are interpreted over a
2D geometrical space (e.g., the Euclidean plane), where observations are attached to
each point. Figure 4.2 illustrates an image representing the tomography of the brain
as a red (R), green (G), and blue (B) image. Typical learning problems from images
are image retrieval, restoration, segmentation, and classification.

Video data, by definition, are temporally ordered images, that is, videos are in-
terpreted over a 3D geometrical space, and, as before, observations are attached to
each point of the space. As such, time series and images are emblematic of study-
ing video data. Figure 4.3 depicts an example of video, which represents a functional
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FIGURE 4.1: Example of a multivariate time series with two measure-
ments A1 and A2.
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FIGURE 4.2: Example of a red R, green G, and blue (B) image.
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FIGURE 4.3: Example of a video with RGB images.

FIGURE 4.4: Example of an audio data.

magnetic resonance image (fMRI) evolving over 4 timestamps of RGB images. Video
learning problems include video restoration, scene generation, video classification,
and object detection.

Audio, or digital sound, data is the digitalisation of analogue sound by taking
samples at a repeated rate, called sampling rate, over time. Thus, to some extent, such
data can be viewed as time series and treated as such. Call centres and healthcare are
the primary application areas of audio data. Call centres analyse hours and hours
of recorded calls to enhance customer experience. In the clinical domain, on the
other hand, breath and cough recordings can be used to diagnose COVID-19 positive
subjects from negative ones. Figure 4.4 illustrates an audio recording of a COVID-19
positive subject.

Survey responses, interview transcripts, journal articles, emails, blogs, call centre
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modal symbolic learning is exciting

FIGURE 4.5: Example of a textual data.

FIGURE 4.6: Example of a graph data; source Sweileh (2020).

logs, news feeds, and text documents are all examples of textual data. Machines can-
not comprehend raw, human-generated text unless properly represented, usually in
numerical form. Natural language processing (NLP), which evolves from computa-
tional linguistics, uses computer science, AI, linguistics, and data science methods
to enable computers to understand human language. NLP is an end-to-end task be-
tween the system and the human that spans from understanding the information
to making decisions while interacting. Therefore, after suitable NLP preprocessing,
textual data represents another form of unstructured data, which can take different
forms, including, but not limited to, graphs. Figure 4.5 depicts an example of textual
data, where the text is “modal symbolic learning is exciting” represented as a graph.

As a last example, graph data is a broad term that encompasses real-world data
such as those emerging from social networks, collaboration networks, protein struc-
ture networks, and semantic networks, among many others. Figure 4.6 illustrates an
international collaboration graph between countries.

Each of the above examples is a category on its own, and there is a broad litera-
ture about knowledge extraction from each via classification, regression, clustering,
and other ML tasks. Modal symbolic learning is a step towards a unifying view,
which starts with showing that most unstructured datasets can be seen, in a way,
as modal ones. Let Ω be a physical domain of interest which can have additional
structure. The space of A-valued signals on Ω defined as:

X(Ω,A) = {x : Ω→ A},

is a function space, where A = {A1, . . . , An} is a vector space with n dimensions
called attributes.
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Definition 4.1: Datasets

Let X(Ω,A) be the space ofA-valued signals on Ω and Y the label space. Then,
a dataset is a set X = {x1, . . . , xm} of m instances, where xi ∈ X(Ω,A), for all
1 ≤ i ≤ m. The dataset X is called labelled if each instance is labelled with
an element from Y, that is, X = {(x1, y1), . . . , (xm, ym)}, where yi ∈ Y, for all
1 ≤ i ≤ m. A label function Y : X(Ω,A) → Y is a function that associates each
labelled instance to its true label.

For a signal x ∈ X(Ω,A), let x(w)[i] denote the value of the signal x at point w in
the ith component, that is, the value of x at point w associated to Ai. Observe that, if
Ω is a singleton, then structured datasets are a particular case of the above definition,
and we use the notation x[i] (instead of x(w)[i] since w is the only element in Ω).

Unstructured data can be represented in terms of datasets.

Example 12 (Time series). Consider the time series in Figure 4.1. We can treat such object
as a signal x ∈ X(Ω,A), where Ω = {1, 2, . . . , 10} is a subset of the natural numbers, and
A = {A1, A2}. Moreover, we have that x(2)[1] = 40 and x(7)[2] = 120.

Example 13 (Images). Consider the image in Figure 4.2. We can treat such object as a
signal x ∈ X(Ω,A), where Ω = {1, 2, . . . , 6} × {1, 2, . . . , 6} is a 2D Euclidean plane, and
A = {R, G, B}.

§4.2 Modal Logics for Unstructured Data

A specific modal logic is the second essential ingredient needed to see a dataset as a
modal one. As we have recalled in Section 2.2, most temporal, spatial, and spatial-
temporal logics are, in fact, modal. We use familiar logics because it is easier to
interpret the formulas. After all, we can do qualitative reasoning over unstructured
objects.

Suppose that we are interested in extracting point-based temporal knowledge
from temporal data that would be beneficial in an e-commerce domain where users
periodically buy goods (e.g., books, clothes, etc.), such as the marketplace of Ama-
zon. In this case, an example of temporal patterns is “if the user bought (in his/her past)
an AI book, then it will buy (in his/her future) an ML one.”

From a modal symbolic learning point of view, the most emblematic temporal
logic that interprets time as a set of sequences of time instants is linear temporal
logic (Pnueli, 1977) (LTL). We consider, however, a fragment of LTL which encom-
passes only two modalities, namely, future (F) and past (P), called LTL with future and
past (LTLF,P). Let D be a finite linearly ordered set. If we exclude the equality, there
are two different binary ordering relations between two time instants on a linear or-
der, depicted in Figure 4.7. Let P be a set of propositional letters. The well-formed
formulas of LTLF,P are generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Fϕ | Pϕ,

https://www.amazon.com/
https://www.amazon.com/
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LTLF,P modality Definition w.r.t. the point structure Example

•w

•w
′

•w
′

F wR<w′ iff w < w′

P w′R<w iff w′ < w

FIGURE 4.7: Point relations and LTLF,P modalities.

where p ∈ P . The remaining connectives can be derived as before with particular
attention to Gϕ if and only if ¬F¬ϕ, which stands for “it will always (in the future) be
the case that ϕ”, and to Hϕ if and only if ¬P¬ϕ, which stands for “it has always (in the
past) been the case that ϕ”.

The semantics of LTLF,P are given in terms of Kripke models:

K = (W ,R<, V),

whereW is the set of time instants over D,R< is the transitive closure of the succes-
sor relation between time instants, and V is a valuation function V :W → 2P which
assigns to each time instant w the set of propositional letters V(w) ⊆ P that are true
on it. The truth relation K, w  ϕ, for a model K, a time instant w and a formula
ϕ ∈ Φ(LTLF,P), is defined by induction on the complexity of formulas:

K, w  p iff p ∈ V(w), for all p ∈ P ;
K, w  ¬ψ iff K, w 6 ψ (i.e., it is not the case that K, w  ψ);
K, w  ψ1 ∨ ψ2 iff K, w  ψ1 or K, w  ψ2;
K, w  Fψ iff there exists w′ s.t. wR<w′ and K, w′  ψ;
K, w  Pψ iff there exists w′ s.t. w′R<w and K, w′  ψ.

LTL and its variants have been studied for years and successfully applied to
learning. Metric interval temporal logic (MITL) (Alur, Feder, and Henzinger, 1996),
a temporal logic based on LTL, properties can be learned to discriminate with a
high probability between good and bad time traces (Bartocci, Bortolussi, and San-
guinetti, 2014). Signal temporal logic (STL) (Maler and Nickovic, 2004), an extension
of MITL that deals with real-valued signals, formulas can be learned using deci-
sion trees (Bombara et al., 2016) or optimization-based procedures (Jones, Kong, and
Belta, 2014; Kong et al., 2014).

Time series represent continuous processes, and it makes little sense to model
each time point on its own: time is better modelled with periods of time. When con-
tinuous signals are brought into a computer, they must be digitalised or discretized,
but one should always consider the nature of signals. In the previous e-commerce
example, we have seen how time series can be treated as discrete objects; now, how-
ever, we discuss how time series can be treated as continuous objects, that is, using
periods of time, and examples, to name a few, span from the predictive mainte-
nance of industrial machines based on sensors, to the study of audio signals, and
the knowledge extraction from biological signals. In this case, an example of inter-
val temporal pattern is “if the patient had (in his/her past) a period of therapy starting
with some new type of medicine, then the patient will (in his/her future) need some period of
monitoring to assess the clinical condition.”

While several different an interval temporal logics have been proposed in the
recent literature (Goranko, Montanari, and Sciavicco, 2004), Halpern and Shoham’s
interval temporal logic (HS) (Halpern and Shoham, 1991), of interest in this thesis,
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HS modality Definition w.r.t. the interval structure Example
w v

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

w′ v′

〈A〉 [w, v]RA[w′, v′] iff v = w′

〈L〉 [w, v]RL[w′, v′] iff v < w′

〈B〉 [w, v]RB[w′, v′] iff w = w′ ∧ v′ < v

〈E〉 [w, v]RE[w′, v′] iff v = v′ ∧ w < w′

〈D〉 [w, v]RD[w′, v′] iff w < w′ ∧ v′ < v

〈O〉 [w, v]RO[w′, v′] iff w < w′ < v < v′

〈A〉 [w, v]RA[w
′, v′] iff [w′, v′]RA[w, v]

〈L〉 [w, v]RL[w
′, v′] iff [w′, v′]RL[w, v]

〈B〉 [w, v]RB[w
′, v′] iff [w′, v′]RB[w, v]

〈E〉 [w, v]RE[w
′, v′] iff [w′, v′]RE[w, v]

〈D〉 [w, v]RD[w
′, v′] iff [w′, v′]RD[w, v]

〈O〉 [w, v]RO[w
′, v′] iff [w′, v′]RO[w, v]

FIGURE 4.8: Allen’s interval relations and HS modalities.

is certainly the formalism that received the most attention, being the most natural
logic for time intervals. From a logical point of view, HS and its fragments have
been studied on the most important classes of linearly ordered sets, from the class of
all linear orders to the classes of linear orders that can be built on classical sets such
as N (natural numbers), Q (rational numbers) and R (real numbers) (Halpern and
Shoham, 1991; Bresolin et al., 2014; Bresolin et al., 2019). Let D be a finite linearly
ordered set. An interval over D is an ordered pair [w, v] starting from w and ending
in v (both included), where w, v ∈ D and w ≤ v. An interval is called point interval
if w = v, and strict interval if w < v. If we exclude the equality relation, there are
twelve different binary ordering relations between two strict intervals on a linear
order, often called Allen’s interval relations (Allen, 1983): the six relationsRA (adjacent
to), RL (later than), RB (begins), RE (ends), RD (during), RO (overlaps), and their six
inverses, that is, RX = (RX)

−1, for each X ∈ {A, L,B,E,D,O}, depicted in Figure 4.8.
Thus, we associate an existential modality 〈X〉with each Allen’s relationRX. Let P be
a set of propositional letters. HS formulas are generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ,

where p ∈ P and X ∈ {A, L,B,E,D,O,A, L,B,E,D,O}.

The strict semantics of HS is given in terms of timelines (or, more commonly,
interval models):

K = (W , {RX}X∈{A,L,B,E,D,O,A,L,B,E,D,O}, V),

whereW is the set of strict intervals over D, RX are Allen’s interval relations, and V
is a valuation function V : W → 2P which assigns to every interval [w, v] the set of
proposition letters V([w, v]) ⊆ P that are true on it. The truth relation K, [w, v]  ϕ,
for an interval model K, an interval [w, v] and a formula ϕ ∈ Φ(HS), is defined by
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structural induction on the complexity of formulas:

K, [w, v]  p iff p ∈ V([w, v]), for all p ∈ P ;
K, [w, v]  ¬ψ iff K, [w, v] 6 ψ (i.e., it is not the case that K, [w, v]  ψ);
K, [w, v]  ψ1 ∨ ψ2 iff K, [w, v]  ψ1 or K, [w, v]  ψ2;
K, [w, v]  〈X〉ψ iff there exists [w′, v′] s.t. [w, v]RX[w′, v′] and K, [w′, v′]  ψ,

where X ∈ {A, L,B,E,D,O,A, L,B,E,D,O}.

Interval temporal logics have been studied in the literature from a deductive
point of view. Recall that satisfiability for HS is undecidable (Halpern and Shoham,
1991) and various fragments have been considered in the literature to define frag-
ments or variants of HS with better computational behaviour. These include re-
stricting the set of modal operators (Aceto et al., 2016; Bresolin et al., 2014), con-
straining the underlying temporal structure (Montanari, Sciavicco, and Vitacolonna,
2002), restricting the propositional power of the languages (Bresolin et al., 2017), and
considering coarser interval temporal logics based on interval relations that describe
a less precise relationship between intervals (similar to what topological relations
do) (Muñoz-Velasco et al., 2019). LTLF,P is a particular case of HS with point inter-
vals and two modalities, namely, 〈L〉 and 〈L〉; HS3 and HS7 are coarse fragments of
HS with only three and seven modalities, respectively (Muñoz-Velasco et al., 2019);
propositional neighbourhood logic (PNL) is the fragment of HS having only 〈A〉 and
〈A〉 as modalities (Bresolin et al., 2014); duration calculus (DC) is an interval temporal
logic for real-time systems (Chaochen, Hoare, and Ravn, 1991); CDT is a HS-based
modal logic with three binary modalities connected with a ternary accessibility rela-
tion (Venema, 1991).

Consider now, as a last scenario, the case where we are interested in extract-
ing spatial knowledge from image data. There are many applications where such
knowledge would be beneficial. For example, knowledge extracted from images
can be used to classify archaeological, industrial, agricultural, and military, among
many others, sites.

From a modal logic point of view, spatial logics are less studied than temporal
ones. Among the known logics for space, probably the best one is the topological logic
developed by Lutz and Wolter (2006), called LRCC8. Let T = (D, I◦) be a topological
space, where D is a finite set and I◦ is an interior operator on D, that is, for all w, w′ ⊆
D, we have that:

I◦(D) = D,
I◦(w) ⊆ w,
I◦(w) ∩ I◦(w′) = I◦(w ∩ w′),
I◦I◦(w) = I◦(w).

In other terms, I◦(w) is the largest open set contained in w. The closure I(w) of w is
I(w) = D \ I◦(D \ w), that is, the smallest closed set containing w. A subset w ⊆ D
is called regular closed if II◦(w) = w, also called region. If we exclude the equality re-
lation, there are eight different relations between two regions in a topological space,
often called Egenhofer and Franzosa’s topological relations (Egenhofer and Franzosa,
1991): RDC (disconnected), REC (externally connected), RPO (partially overlap), RTPP

(tangential proper part), RNTPP (non-tangential proper part), RTPPI (inverse of tangential
proper part), and RNTPPI (inverse of non-tangential proper part), depicted in Figure 4.9,
where the example column is interpreted over R2. We associate an existential modal-
ity 〈X〉, for each Egenhofer and Franzosa’s relationRX. Let P be a set of proposition
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LRCC8 modality Definition w.r.t. the topological structure Example

〈DC〉 wRDCw′ iff w ∩ w′ = ∅ w w′

w w′

w w′

w w′

w w′

w′ w

w′ w

〈EC〉 wRECw′ iff I◦(w) ∩ I◦(w′) = ∅ ∧ w ∩ w′ 6= ∅

〈PO〉 wRPOw′ iff I◦(w) ∩ I◦(w′) 6= ∅ ∧ w 6⊆ w′ ∧ w′ 6⊆ w

〈TPP〉 wRTPPw′ iff w ⊆ w′ ∧ w 6⊆ I◦(w′) ∧ w 6= w′

〈NTPP〉 wRNTPPw′ iff w ⊆ I◦(w′) ∧ w 6= w′

〈TPPI〉 wRTPPIw′ iff w′RTPPw

〈NTPPI〉 wRNTPPIw′ iff w′RNTPPw

FIGURE 4.9: Egenhofer and Franzosa’s topological relations and
LRCC8 modalities.

letters. LRCC8 formulas are generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ,

where p ∈ P and X ∈ {DC,EC,PO,TPP,NTPP,TPPI,NTPPI}.

The semantics of LRCC8 is given in terms of region structures:

K = (W , {RX}X∈{DC,EC,PO,TPP,NTPP,TPPI,NTPPI}, V),

whereW is the set of all regions over T = (D, I◦),RX are Egenhofer and Franzosa’s
relations, and V is a valuation function V : W → 2P which assigns to every region
w the set of proposition letters V(w) ⊆ P that are true on it. The truth relation
K, w  ϕ, for a region structure K, a region w and a formula ϕ ∈ Φ(LRCC8), is
defined by structural induction on the complexity of formulas:

K, w  p iff p ∈ V(w), for all p ∈ P ;
K, w  ¬ψ iff K, w 6 ψ (i.e., it is not the case that K, w  ψ);
K, w  ψ1 ∨ ψ2 iff K, w  ψ1 or K, w  ψ2;
K, w  〈X〉ψ iff there exists w′ s.t. wRXw′ and K, w′  ψ,

where X ∈ {DC,EC,PO,TPP,NTPP,TPPI,NTPPI}.

Spatial logics have been also studied from a deductive point of view. LRCC8 is
undecidable (Lutz and Wolter, 2006). Lutz and Wolter (2006) proposed a coarse frag-
ment of LRCC8, called LRCC5, having only five modalities, that remains undecidable.
Topological relations are not the only ones to be adopted in spatial reasoning. In
fact, directional relations can be exploited instead, and this immediately gives a clas-
sification of spatial reasoning in topological-based and directional-based, depend-
ing on the considered type of relations. Topological relations, as we have recalled
them, can be defined between objects (viewed as a set of points) without referring
to their shape or their mutual position, while directional-based spatial reasoning is
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closely related to the shape of the considered object, and the reference system be-
comes important for the choice of the set of relations. As for the directional-based
spatial logics, Morales, Navarrete, and Sciavicco (2007) proposed spatial neighbour-
hood logic (SPNL) as a two-dimensional spatial logic, whose weak variant, called weak
spatial neighbourhood logic (WSPNL), has been studied some years later (Bresolin et
al., 2009).

§4.3 A Modal Logic for (Almost) All

From the above examples, we can observe that most (unstructured) data is balanced
by a variety of modal logics that can be used to describe patterns in such data. Modal
symbolic learning is a step towards a unifying view, that is, many datasets can be
seen as modal ones, and many modal logics can be absorbed, in our context, by a
single one. The resulting logic, HSd, does not include all the relevant modal logics
as particular cases, but it includes many; however, those that are not included can
be implemented with slight variations of it.

We can lift HS to the case where worlds are regular extended objects with axes-
parallel sides, which, as we shall see in the next section, produces modal datasets
that can be elegantly dealt with the same family of modal logics. Let D be a finite
linearly ordered set, and let Dd be a finite d-dimensional Euclidean space, where
d ∈ N, with d ≥ 1. Elements of Dd are called points denoted by (w1, . . . , wd). In
analogy with interval temporal logic, an hyperrectangle in Dd is an object of the type:

[(w1, v1), (w2, v2), . . . , (wd, vd)],

where wi ≤ vi, for each 1 ≤ i ≤ d. Hyperrectangles are essentially the extension
of intervals in a higher dimensional space: in the 1-dimensional case hyperrectan-
gles are just intervals in their familiar notations, that is, [w1, v1], obtained by sim-
ply omitting the inner brackets. In the multi-dimensional generalization, we repre-
sent any Allen’s interval relation as a tuple of d single-dimensional relations, that
is, (RX1 , . . . ,RXd), where Xi ∈ {A, L,B,E,D,O,A, L,B,E,D,O,EQ}, for all 1 ≤ i ≤ d,
where EQ is the equality relation, with the additional constraint that they cannot
be all the equality; this leads to 13d − 1 distinct relations between any two hyper-
rectangles in a d-dimensional space. Let P be a set of propositional letters. Halpern
and Shoham’s d-dimensional hyperrectangle logic (HSd) formulas are obtained by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1, . . . ,Xd〉ϕ,

where p ∈ P and Xi ∈ {A, L,B,E,D,O,A, L,B,E,D,O,EQ}, for each 1 ≤ i ≤ d.

Formulas of HSd are interpreted in a d-dimensional model:

K = (W , {(RX1 , . . . ,RXd)}Xi∈{A,L,B,E,D,O,A,L,B,E,D,O,EQ} \ {
d times︷ ︸︸ ︷

(REQ, . . . ,REQ)}, V),

where W is the set of all hyperrectangles of the type [(w1, v1), . . . , (wd, vd)], with
wi ≤ vi, for all 1 ≤ i ≤ d, that can be formed on Dd, (RX1 , . . . ,RXd) are d-dimensional
Allen’s relations, and V is a valuation function V : W → 2P which assigns to every
hyperrectangle w the set of proposition letters V(w) ⊆ P that are true on it. The
truth relation K, w  ϕ, for a d-dimensional spatial model K, a hyperrectangle w
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and a formula ϕ ∈ Φ(HSd), is defined by structural induction on the complexity of
formulas:

K, w  p iff p ∈ V(w), for all p ∈ P ;
K, w  ¬ψ iff K, w 6 ψ (i.e., it is not the case that K, w  ψ);
K, w  ψ1 ∨ ψ2 iff K, w  ψ1 or K, w  ψ2;
K, w  〈X1, . . . ,Xd〉ψ iff there exists w′ s.t. w(RX1 , . . . ,RXd)w

′ and K, w′  ψ,

where Xi ∈ {A, L,B,E,D,O,A, L,B,E,D,O,EQ}, for each 1 ≤ i ≤ d. We denote by
HS0 the degenerate case when the resulting logic is simply PL.

Clearly, d-dimensional models are Kripke models. Although HSd has not been
studied per se, the literature that concerns its fragments is very wide. We have al-
ready discussed the case of HS, the 1-dimensional case of HSd, in the previous sec-
tion. In the case of HS2, only a few sub-languages have been studied (Lutz and
Wolter, 2006), and their satisfiability problem has been shown to be undecidable as
well, even under very simple assumptions, or they can be proven so by exploit-
ing the results on the 1-dimensional case. In general, one can expect deduction in
HSd to be a computationally hard problem even under very restrictive assumptions,
such as finite domains. Although, in the spirit of existing works for interval tem-
poral logic, one can imagine exploring fragments of HSd; here, we are interested in
induction problems, for which expressive power and the possibility of describing
patterns are more important desiderata. Figure 4.10 schematically illustrates some
extensions and fragments of HSd; we briefly discuss some scenarios to better grasp
the general idea. First, consider the formalisms that are green-shaded in Figure 4.10.
Then, HS is just HS1 with strict intervals, PNL is just HS1 with two modalities (i.e.,
〈A〉 and 〈A〉), and LTLF,P is HS1 with only point intervals and only two modalities
(i.e., 〈L〉 and 〈L〉); thus, in a sense, we can classify these logics as particular cases of
HSd, obtainable with minimal effort. Now, consider the logics represented in yel-
low in Figure 4.10. Then, HSd is similar to LRCC8 with regular extended objects with
axes-parallel sides having eight modalities, some of which are coarse; for example,

wRNTPPw′ in LRCC8 if and only if w(

d times︷ ︸︸ ︷
RD, . . . ,RD)w′ in HSd. Finally, consider the red

cases in Figure 4.10. Then, these logics share their modal nature with ML and their
temporal nature with HS, of which HSd is a generalization. The binary operators, as
well as the duration constraint, may require non-trivial modifications of the modal
symbolic learning machinery; nonetheless, the driving ideas would be the same.

We can, thus, choose HSd as a representative for modal symbolic learning. The
need of having a unifying view of many real-world situations that can be captured,
at least partially, by a single logic justifies our commitment. We must, however,
discuss model checking for it since it is at the core of any modal symbolic learning
procedure. Algorithm 3 is just the adaptation of Algorithm 1 to HSd from ML, and
it has the same asymptotic time complexity, given in terms of modal datasets. As
we shall see in the next section, a dataset that is transformed to a modal one has a
polynomial blow-up in the size of the original input (e.g., a time series treated with
an interval-based formalism, such as HS, can be seen as a Kripke model which is
quadratic in the size of the original time series due to the possible intervals over
such time series), which affects the performances of the model checking in practice.
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HSd

LTLF,P

HS (Halpern and Shoham, 1991)

HS3 (Muñoz-Velasco et al., 2019)

HS7 (Muñoz-Velasco et al., 2019)

PNL (Bresolin et al., 2014)

LRCC8 (Lutz and Wolter, 2006)

LRCC5 (Lutz and Wolter, 2006)

CL (Venema, 1990)

DC (Chaochen, Hoare, and Ravn, 1991)

CDT (Venema, 1991)

. . .

FIGURE 4.10: HSd-based fragments and extensions: green-shaded re-
quire no, or at most few additional, assumptions, yellow-shaded re-
quire more assumptions, and red-shaded require even more assump-

tions.

§4.4 Datasets to Modal Datasets

In the process of transforming a dataset into a modal one, each resulting instance is
associated with a Kripke model; as it turns out, however, there is no unique way to
identify the Kripke frame (and, thus, the model).

To present the general idea, consider the simple case of signals on X(D,A),
where D is a finite linearly ordered set. Propositional decision trees, or other off-
the-shelf models, can be learned from such signals by transforming an unstructured
dataset into a structured one as follows. Consider the time series case as an exam-
ple. For a signal x ∈ X(D,A), let x(w : v)[i] be the vector having exactly v− w + 1
values of Ai ∈ A contained from point w to point v (both included). Observe that,
x(1 : |D|)[i] is the vector of |D| values of Ai, that is, the original values relative to
Ai on D. Therefore, intuitively, x(w : v)[i] represents an interval-slice [w, v] of the
original signal projected on Ai. To obtain a structured object x′ from the unstruc-
tured one x, we must devise a set of functions that can be applied to vectors (or,
in general, matrices) that return a single value that can be compared (through ./)
with some other value a (see Definition 3.2). Assume that such set of functions con-
tains only the maximum function of a collection of numbers. Now, we can compute
max(x(1 : |D|)[i]), for all 1 ≤ i ≤ n, to obtain a n-dimensional vector representation
x′ of x, and a propositional decision tree algorithm can learn from x′. The important
observation here is that one could apply max to any other slice that is contained in
x(1 : |D|)[i]. The same reasoning holds for more-than-one dimension, that is, for
Ω = Dd. In fact, let x(w1 : v1, . . . , wd : vd)[i] be the v1 − w1 + 1× . . .× vd − wd + 1
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ALGORITHM 3: Model checking for HSd.

1 function Check(K, ϕ):
input : A d-dimensional model

K = (W , {(RX1 , . . . ,RXd )}Xi∈{A,L,B,E,D,O,A,L,B,E,D,O,EQ}, V) and a HSd formula ϕ.

output: A mapping ` :W → 2Φ(HSd)

2 foreach ψ ∈ sub(ϕ) ordered by increasing length do
3 if ψ = p ∈ P then
4 foreach w ∈ W do
5 if p ∈ V(w) then
6 `(w)← {p}
7 end
8 end
9 end

10 if ψ = ¬ψ1 then
11 foreach w ∈ W do
12 if ψ1 6∈ `(w) then
13 `(w)← `(w) ∪ {ψ}
14 end
15 end
16 end
17 if ψ = ψ1 ∨ ψ1 then
18 foreach w ∈ W do
19 if ψ1 ∈ `(w) or ψ2 ∈ `(w) then
20 `(w)← `(w) ∪ {ψ}
21 end
22 end
23 end
24 if ψ = 〈X1, . . . ,Xd〉ψ1 then
25 foreach w ∈ W do
26 if ∃w′ such that (w, w′) ∈ (RX1 , . . . ,RXd ) and ψ1 ∈ `(w′) then
27 `(w)← `(w) ∪ {ψ}
28 end
29 end
30 end
31 end
32 return `

33 end

matrix of values of Ai going from point wi to point vi (both include) along each axis
i, for 1 ≤ i ≤ d. Inspired by the above idea, we have the following definition.

Definition 4.2: Feature extraction functions

Let X(Dd,A) be the space of A-valued signals on Dd, and X = {x1, . . . , xm} a
dataset. Then, a feature extraction function f is defined as:

f :

d times︷ ︸︸ ︷
2dom(A) × . . .× 2dom(A) → R,

for some A ∈ A. Moreover, let F be the feature extraction function space.

Examples of feature extraction functions are the minimum, maximum and aver-
age; others, studied ad hoc for time series, are CAnonical Time series CHaracteristics
(catch22) (Lubba et al., 2019) and Time Series FeatuRe Extraction on basis of Scalable Hy-
pothesis tests (tsfresh) (Christ et al., 2018); for the more-than-one dimensional cases,
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ad-hoc feature extraction functions can be devised for the d-dimensional case, but
this discussion goes beyond the scope of this work.

Example 14 (Feature extraction functions). Consider the signal x in Figure 4.1. Let the
max be the feature extraction function. Then, we have that:

max(x(1 : 5)[1]) = 40,
max(x(7 : 9)[1]) = 37,
max(x(2 : 4)[2]) = 100,
max(x(5 : 8)[2]) = 120.

Similarly, let min be the feature extraction function. Then, we have that:

min(x(2 : 4)[1]) = 39,
min(x(6 : 8)[1]) = 36,
min(x(1 : 5)[2]) = 90,
min(x(6 : 9)[2]) = 100.

Since we are considering HSd as a representative for the modal symbolic learning
framework, the propositional letters are:

P = { f (A) ./ a | f ∈ F, A ∈ A, ./ ∈ {≤,<,=, 6=,>,≥}, a ∈ dom( f (A))}.

However, it is important to stress that, when the worlds are point-based, F can only
be a singleton having the identity function, which is crucial for formalisms such as
LTLF,P.

We are ready to define how an unstructured object can be seen as a Kripke model.

Definition 4.3: Modal logic transformer for signals on X(Ω,A)

Let X(Ω,A) be the A-valued signals on Ω, L a modal logic, P the space of
all sets of propositional letters, and K the Kripke model space. Then, a L-
transformer τL is defined as:

τL : X(Ω,A)×P→ K,

which returns a Kripke model K ∈ K from an input signal x ∈ X and a set of
proposition letters P ∈ P.

Figure 4.11 schematically illustrates the cases captured by the HSd transformers
and those not directly captured by it. As we have mentioned, NLP processes raw,
input text to produce a numerical form of it so that, to some extent, one can imagine
that each word in a text is associated with a fixed size, using the standard nomencla-
ture, embedding vector; at this point, HSd can be exploited. Moreover, the structure
of a graph can be seen as a Kripke frame, and the propositional letters wht their truth
values can be induced from the original graph to obtain a Kripke model; again, at
this point, HSd can be exploited.
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τ
HSd τ

FIGURE 4.11: Cases that are captured naturally by HSd and those that
require more assumptions.
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P = {p1, p2, p3}, where
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FIGURE 4.12: Kripke model after the application of the HS1
A-

transformer.

We give an example of a concrete transformer for illustrative purposes.
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Example 15 (HS1-transformer for temporal data). Consider the signal x ∈ X(D,A) in
Figure 4.12, top. In this example, for the sake of simplicity, we fix the following proposition
letters:

P = {max(A1) = 40, max(A2) = 110, max(A2) = 100},

and we consider a fragment of HS1 with only one modality 〈A〉, denoted by HS1
A. Then, the

HS1
A transformer τ

HS1
A

applied on x and P returns the Kripke model in Figure 4.12, bottom.

We have all the elements to conduct modal symbolic learning from unstructured
data.
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CHAPTER 5

LEARNING WITH MODAL
SYMBOLIC LEARNING

Remember that all models are wrong; the practical question is how
wrong do they have to be to not be useful.

—George Edward Pelham Box

This chapter shows how learning is performed with modal symbolic learning.
We present several points of view on how an ML practitioner could engage in learn-
ing modal theories. At the end of this chapter, we present two real-world applica-
tions of modal symbolic learning by instantiating the framework with HS1 and HS2

for learning from temporal and spatial data, respectively.

§5.1 Regression with Modal Decision Trees

Decision trees have been initially studied for classification. However, decision tree
algorithms can also learn regression models (i.e., regression with decision trees)
when the target variable is numerical (i.e., Y = R) by simply adapting the entire
theory to handle such a circumstance. In such a case, the variance reduction approach
is the to-go strategy, which replaces the greedy entropy-based split strategy with the
one based on variance. It is immediate, therefore, to inherit the same idea from the
propositional case.

Consider a labelled modal dataset I = {(I1, y1), . . . , (Im, ym)}. Then, the (cor-
rected) variance of I is defined as:

Var(I) = 1
m− 1

·
m

∑
i=1

(yi − µy)
2,

where µy is the mean of the labels in I . Now, by simply plugging in the above defini-
tion in the entire mechanism discussed in Chapter 3, and in particular in Section 3.4,
we obtain regression modal decision trees by letting In f o(I) = Var(I).

§5.2 Random Forests with Modal Decision Trees

In the propositional case, the generalization from single trees to forests of trees is
relatively simple. The idea that underlies the so-called random forest model is the
following one (Breiman, 2001): different independent trees can be learned from dif-
ferent subsets of the training set, using different subsets of attributes. Each tree is
precisely a propositional decision tree; a random forest classifier, however, is a clas-
sifier whose semantics depends on many trees and is computed via a voting function.
Introducing modal random forest models can be done in the same way.
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ALGORITHM 4: Learning modal random forests.

1 function ModalRandomForest(I , Λ, k, msub, nsub):
input : A labelled modal dataset I , a set of decisions Λ, the number k of decision trees in

the random forest, the number msub of instances to give to each single decision
tree, and the number nsub of attributes that each single tree learns from.

output: A modal random forest T .
2 T ← ∅
3 foreach do
4 I ′ ← InstancesSubsetSample(I , msub)

5 Λ′ ← DecisionsSubsetSample(Λ, nsub)
6 t← ModalDecisionTree(I ′, Λ′)
7 T ← T ∪ {t}
8 end
9 return T

10 end

Definition 5.1: Modal random forests

Let Y be the label space. Then, a modal random forest is a pair (T , ζ), where T is a
collection of k modal decision trees, that is, T = {t1, . . . , tk}, and ζ : Yk → Y is
a voting aggregation function of all unit votes of each modal decision tree t ∈ T .

We can classify an instance with a modal random forest by exploiting the voting
aggregation function and the individual runs of each modal decision tree as follows.

Definition 5.2: Run of modal random forests

Let (T , ζ) be a modal random forest, where T = {t1, . . . , tk}, and I an instance
of a modal dataset I . Then, the run of T on I, denoted by T (I), is defined as:

T (I) = ζ(t1(I), . . . , tk(I)).

Random forests differ from simple deterministic decision trees in many sub-
tleties, all related to the learning algorithm. Such differences, along with the nature
of the model, transform a purely symbolic method, such as decision trees, into a hy-
brid symbolic and non-symbolic one due to the voting function; however, the voting
function can be learned by a (propositional) symbolic learning algorithm to keep the
resulting random forest still symbolic. In its simplest form, ζ can be the average if
the label is numerical (i.e., regression problem) or can be the maximum class value
among the k (base) decision trees if the label is categorical (i.e., classification prob-
lem). Algorithm 4 provides a high-level description of how a modal random forest
is learned. Each single decision tree t is learned on a subset I ′ of I having msub

instances and on a subset Λ′ of Λ having only the decision relative to nsub attributes.
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§5.3 Rules Extraction from Modal Decision Trees and Modal
Random Forests

Rule-based models, as we have discussed in the introduction of this thesis, have
been studied for some time in AI. A rule ρ is a symbolic object of the type:

ρ : ϕ⇒ y,

where ϕ is called antecedent and y is called consequent. In general, the antecedent is
a formula of some logical formalism, and the consequent can be a label from Y or
another formula. Moreover, as we are in an ML context, to emphasize the difference
with respect to→, which is a logical implication, in rules we use⇒.

Suppose that we have to solve a classification problem by means of a rule-based
classifier Γ, a classification model based on rules. Decision trees provide a natural
way to extract rules from them by exploiting the path-, leaf-, and class-formulas. For
example, a modal rule-based classifier Γ can be synthesized from a modal decision
tree t = (V , E , l, e, b) as follows. Let Y = {y1, y2}. Then, Γ is defined as:

Γ = {ϕt
` ⇒ y | y ∈ Y, ` ∈ leavest(y)}

if one wants to make explicit every single formula (i.e., a formula for each branch),
or as:

Γ = {ϕt
y ⇒ y | y ∈ Y}

if one wants to have a more compact representation (i.e., a formula for each class).
Since Γ is extracted from a single modal decision tree, Γ can be used without ambi-
guities because decision trees are known to be divide-and-conquer (recall correctness
of decision trees), that is, they partition instances at each split level. In other terms,
for a testing instance I, only the antecedent of a single rule ϕ ⇒ y will be true for
it (i.e., I  ϕ), and such instance will be classified with the consequent of that rule
(i.e., y). Therefore, we have the following definitions.

Definition 5.3: Modal rule-based prediction model

Let Y be the label space. Then, a modal rule-based prediction model Γ = {ϕi ⇒
yi}k

i=1 is a set of k rules of the type ϕi ⇒ yi, where ϕi ∈ Φ(ML) and yi ∈ Y.

Definition 5.4: Run of modal rule-based prediction model

Let Γ = {ϕi ⇒ yi}k
i=1 be a modal rule-based prediction model, and I an in-

stance of a modal datasets I . Then, the run of Γ on I is defined as:

Γ(I) = yi if I  ϕi.

Imagine, now, that we want to obtain a rule-based classifier Γ from a random
forest (T , ζ) as:

Γ = {ϕt
` ⇒ y | y ∈ Y, ` ∈ leavest(y), t ∈ T }

or as:
Γ = {ϕt

y ⇒ y | y ∈ Y, t ∈ T }.
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In this case, the resulting set of rules is, in general, ambiguous: antecedents of many
rules may be true for the same testing instance; indeed, a training instance is classi-
fied by all single decision trees t ∈ T . In this case, it is better to order the rules in Γ in
some arbitrary way. A well-known model is a decision list (Rivest, 1987), which is
learned directly from data without extracting rules from decision trees, but the gen-
eral ideas are still valid. Since the ordering is arbitrary, different metrics have been
defined in the literature to break ties between rules, such as support, confidence,
lift, and conviction, among many others (e.g., see Tan et al., 2019). Depending on
the application-domain, many rules can be discarded from the resulting theory as
they may not be interesting for the application (e.g., keep the rules that have high
support).

§5.4 Multi-Frame Modal Symbolic Learning

There are real-world situations where multiple descriptions describe a single event.
In a clinical domain, for example, a patient can be described by a multivariate time
series representing the evolution of his/her fever and blood pressure (i.e., tempo-
ral data), by an image representing his/her chest X-ray (i.e., spatial data), but also
by propositional descriptions such as the number of cigarettes that he/she smokes
(i.e., structured data). To address such situations, we propose multi-frame modal
symbolic learning to enhance modal symbolic learning methods with the possibil-
ity of learning from more-than-one description at the same time and describing the
learned knowledge using the correct logic, which, to some extent, can be seen as
a product of r modal logics. From this, we need to extend the definition of modal
datasets so that multiple descriptions describe each instance.

Definition 5.5: Multi-frame modal datasets

Let K be the Kripke model space, and Y the label space. Then, a multi-frame
modal dataset I = {I1, . . . ,Im} is a set of m multi-frame instances each of which is
associated with r Kripke models, that is, Ii ∈ Kr, for all 1 ≤ i ≤ m. The dataset
I is called labelled if each instance is labelled with an element from Y, that is,
I = {(I1, y1), . . . , (Im, ym)}, where yi ∈ Y, for all 1 ≤ i ≤ m. A label function
Y : Kr → Y is a function that associates each labelled instance to its true label.

Multi-frame modal datasets capture d-dimensional situations quite naturally, but
just as it happens in modal symbolic learning, in the multi-frame case, too, we need
to concretize the learning models and the associated languages to specific modal log-
ics to adapt them to real-world cases. The above definition also captures challenging
real-world scenarios such as different alignments in temporal data (e.g., the patient
has two audio recordings sampled on different days) and different scales in spatial
data (e.g., the patient has two medical images that have different resolutions). There-
fore, we can plug in the mechanism of HSd to learn from multiple descriptions at the
same time (i.e., HS0 for structured data, HS1 for temporal data, HS2 for spatial data,
etc.).

§5.5 Blueprint of Modal Symbolic Learning

Figure 5.1 schematically illustrates the blueprint of modal symbolic learning. We
start with an input dataset X = {x1, . . . , xm} from which we would like to learn a
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FIGURE 5.1: Blueprint of modal symbolic learning.

modal symbolic learning model. We must make some initial assumptions in terms of
conceptual bias (P) and logical bias (L) so that a L-transformer τL can be defined to
obtain a modal dataset I = {I1, . . . ,Im} by leveraging the interpretation bias (e.g.,
what is the truth value of a propositional letter). At this point, a modal symbolic
learning algorithm can be applied on I to build a modal symbolic learning model
by exploiting the search bias for learning L patterns.

§5.6 Real-world Data Experiments: Temporal Data

In this section, we show how to learn with temporal (modal) symbolic learning. We
consider COVID-19 cough and breath audio recordings data to diagnose positive
from negative subjects. Since such data are represented as time series and, following
our general framework, instantiate such a problem with HS. In this practical con-
text, we choose for this task temporal decision trees and temporal random forests;
moreover, we model the task as a multi-frame setting since breath and cough record-
ings can be described, each, by a Kripke model. These results have been published
by Manzella et al. (2021).

Dataset. The dataset used in this work, presented by Brown et al. (2020), was orig-
inally crowdsourced and compiled by researchers at the University of Cambridge,
and it is available upon request. It has the following structure. The dataset in its
entirety is composed of 9986 audio samples recorded by 6613 volunteers. Each au-
dio recording is encoded in the Waveform Audio File (WAV) format and consists of
a discrete sampling of the perceived sound pressure caused by (continuous) sound
waves. Out of all volunteers, 235 declared to be positive to COVID-19. The subjects
are quasi-normally distributed by age, with an average between 30 and 39 and a
frequency curve slightly left-skewed towards younger ones; the data is not gender-
balanced, with more than double as many male subjects than female ones. Besides
recording sound samples, subjects were asked to fill in a very brief clinical history,
plus information about their geographical location. Brown et al. (2020) used this data
to derive smaller datasets, each posing a different form of the same task of COVID-
19 diagnosis. In particular, the location of the subject was used to distinguish among
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those that, at the moment of the recording, were living in almost-COVID-free coun-
tries; by combining this information with the subjects’ declaration concerning a di-
agnostic test for COVID-19, only a subset of the subjects who declared to be nega-
tive could indeed be reliably considered as negative. With this approach, three tasks
were designed:

1. to distinguish between declared positive subjects from non-positive ones that
have a clean medical history, have never smoked, have no symptoms, and live in
countries in which the virus spread at that moment was very low (so they can
be reliably considered negative subjects);

2. to distinguish between declared positive subjects with cough as symptom from
non-positive ones that have a clean medical history, have never smoked, have
cough as a symptom, and live in countries in which the virus spread at that mo-
ment was very low (so they can be reliably considered negative subjects with
a cough);

3. to distinguish between declared positive subjects with cough as symptom from
non-positive ones that have asthma, that have never smoked, have cough as a
symptom, and live in countries in which the virus spread at that moment was
very low (so they can be reliably considered negative subjects with cough and
asthma).

We refer to these tasks and datasets as TA1, TA2, and TA3, respectively. To coun-
teract the small amount of control data, the authors of the original dataset also pro-
duced and released two augmented versions for TA2 and TA3 (referred to, here, as
TA2+ and TA3+, respectively), obtained with standard audio augmentation meth-
ods. Each task was declined into three versions by Brown et al. (2020), which differ
by how subjects are represented, that is, using only their cough sample, only their
breath sample, or both. In their original release temporal HS-based decision trees
and forests were not designed for multi-frame representation of the data. Never-
theless, thanks to the multi-frame formalization, these models are also able to treat
subjects represented as the union of a cough and a breath sample. With respect to
the original work, we have eliminated 14 instances that presented cough/breath la-
beling mistakes, empty audio recording, and/or a too-noisy background; barring
such differences, it is possible to directly compare our results with the ones from the
original paper and from other models trained on the same data. Moreover, because
of the nature of interval temporal trees, it also makes sense to explore the possibil-
ity of learning from single coughs/breath cycles, instead of whole recordings (which
present, each, several episodes); for each version of the dataset, we produced a seg-
mented variant containing single episodes from the original ones.

Preprocessing techniques. In audio signal processing, it is customary to extract
spectral representations of sounds, facilitating their interpretation in terms of au-
dio frequencies. To this end, we adopt a variation of a widespread representation
technique, which goes under the name of Mel-Frequency Cepstral Coefficients (MFCC).
MFCC, first proposed by Davis and Mermelstein (1980), is still the preferred tech-
nique for extracting sensible spectral representations of audio data, and its use in
ML has been fruitful for tackling hard AI tasks, such as speech recognition, music
genre recognition, noise reduction, and audio similarity estimation. Computing the
MFCC representation involves the following steps:
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1. the raw audio is divided into (often overlapping) chunks of small size (e.g.
25ms), and a Discrete Fourier Transform (DFT) is applied to each of the chunks,
to produce a spectrogram of the sound at each chunk, that is, a continuous
distribution of sound density across the frequency spectrum;

2. the frequency spectrum is then converted and represented in the so-called Mel
scale, a logarithmic representation which causes the frequency space to better
reflect human ear perception of frequencies;

3. a set of n triangular band-pass filters is convolved across the frequency spec-
trum, discretizing it into a finite number of frequencies; finally,

4. a Discrete Cosine Transform (DCT) is applied to the logarithm of the discretized
spectrogram along the frequency axis, which compresses the spectral informa-
tion at each point in time into a fixed number of coefficients.

This transformation does not modify the temporal ordering of the audio events; nev-
ertheless, the classical approach at this point is to feed data to off-the-shelf classifi-
cation methods which do not make use of such ordering (e.g., SVMs, neural net-
works). Moreover, step 4 does not preserve the spectral component, which makes
this description not directly interpretable in terms of sound frequencies; as such, we
applied MFCC up to step 3, ultimately obtaining a multivariate time series represen-
tation where the n attributes describe the power of the different sound frequencies.
Furthermore, different techniques were used to clean and normalize the data prior
to the MFCC step:

1. a noise gate filter to attenuate signals that register below a threshold to remove
background noises;

2. a peak normalization filter where the amplitude is scaled on the highest signal
level present in the recording granting consistent amplitude between audio
tracks;

3. silence removal filter to remove unwanted long silences.

Additionally, to make the model invariant to different tones, a pitch normalization
step was applied, where instead of the Mel scale, the frequency spectrum was repre-
sented via the semitone scale, which is still logarithmic, but relative to a fundamental
frequency. Such a fundamental frequency for each sample was found using a Fast
Fourier Transform (FFT) as the most prevalent frequency between 200Hz and 700Hz,
which is generally accepted as appropriate for human cough in normal conditions
(e.g., see Korpáš, Sadloňová, and Vrabec, 1996; Singh, Rohith, and Mittal, 2015).

Experimental settings. For each of the 30 problems described in a previous para-
graph, a number of HS-based temporal decision trees and temporal random forests
were trained and evaluated via standard performance metrics for binary classifica-
tion: overall accuracy (acc), precision (prec), precision (rec) and F1-score (F1). To
minimise the bias, datasets were balanced by downsampling the majority class and
randomly split into two (balanced) sets for training (80%) and test (20%). This pro-
cess was repeated 10 times (randomized 10-folds cross-validation), and the aver-
age and standard deviation of the performance metrics were considered. Further-
more, for any training/test split, random forests were run 5 times with different ini-
tial random conditions, and their average performance was considered. As for the
parametrization of random forests, after a pre-screening phase, we set msub = 70%
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of the cardinality of each training set (m), k = 100, and nsub = 50% of the number of
attributes (n). While experiments for single decision trees were run with a standard
pre-pruning setting, that is, minimum entropy gain of 0.01 for a split to be meaning-
ful and maximum entropy at each leaf of 0.6, random forests grow full trees without
being (pre)pruned. In all cases we let ./ ∈ {≤,≥}. As for f , as we have already
mentioned, there are many possible choices; in order to maximize the interpretabil-
ity of our models, however, we used only minimum and maximum, in their softened
version, which corresponds to the 20th and the 80th percentile, respectively; thus,
f ∈ {min80, max80}. As for the preprocessing, the chunk size and overlap for the
DFT were fixed to the standard values of 25ms and 10ms, respectively. Pre-screening
was also applied to the parameters that partially drive the form of the data, that
is, number of frequencies (i.e., the number of attributes n), the size of the moving
average filter (w) used to lower the number of resulting points, and step of the mov-
ing window (s); as a result of such a pre-screening, we fixed n = 30, w = 30, and
s = 20. In any case, for further data dimensionality reduction, the resulting series
were capped at a maximum of 50 time points each. The pre-screening also found
that noise gate, peak normalization, and silence removal were effective for cough
samples, while peak normalization and silence removal were effective for breath
samples. Pitch normalization proved to be effective both with cough and breath
samples. Furthermore, all audio with a sample rate lower than 16000Hz were dis-
carded.

Results. As much as the suitability of our method is concerned, let us focus on Ta-
ble 5.1 and Table 5.2. As already mentioned, each row is the average of 10 executions
of a specific combination of dataset settings; each performance is associated with its
experimental standard deviation, for a better assessment of the solidity of the re-
sults. It is immediately clear that the datasets with segmented coughs and breath
cycles perform better than the original ones; this is probably due to two aspects:
first, temporal decision trees and random forests can focus on the relevant acoustic
aspects of positive versus negative samples with a single episode at the time, and,
second, segmented datasets are, in general, much bigger than non-segmented ones,
which allowed us to train better models. We have, therefore, followed two differ-
ent rules to highlight the results in Table 5.1 and Table 5.2: for the non-segmented
datasets, rows with accuracies better than 85% have been highlighted, while for the
segmented ones, we have focused our attention on rows with better than 95% of
accuracy. A second, immediate, observation is that multi-frame learning performs
decidedly better than single-frame one; this means that positive samples are more
easily recognized from negative ones from a combination of (a single) breath and
cough episode than they are from breath and cough separately; the performances of
the models on the tasks TA1 and TA2, in particular, benefit from this approach. This
is consistent with the results obtained by Brown et al. (2020). As a third considera-
tion, we notice, as expected, that temporal random forests perform consistently bet-
ter than their single tree counterpart; yet, very high accuracies are obtained with sin-
gle trees in some cases. In accordance with Brown et al. (2020), augmented datasets
give rise to better models, in virtually all cases. The worst results emerge from TA3
(arguably, the most challenging among the three problems), partly because of the
intrinsic difficulty of the problem, but, most importantly, because of the small size
of datasets, especially after downsampling; TA3+, its augmented counterpart, how-
ever, allowed us to train much better models. The best result with non-segmented
datasets and single trees has been obtained precisely with TA3+, with an average
accuracy of 90.6%; in this case, temporal random forests do not improve the accuracy
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TA2+ 88.7± 6.3 91.9± 6.9 85.3± 10.5 88.1± 6.9 247.03
TA3+ 89.2± 6.8 96.3± 5.8 81.6± 11.3 87.9± 8.3 96.57

br
ea

th

TA1 74.5± 6.5 76.3± 8.7 72.3± 6.6 74.0± 6.0 5,184.86
TA2 84.0± 9.7 88.9± 12.2 80.0± 18.9 82.7± 11.3 238.98
TA3 62.0± 21.1 63.0± 32.0 63.0± 33.4 59.7± 26.7 80.99
TA2+ 87.9± 5.7 91.9± 7.7 84.0± 10.6 87.2± 6.3 1,079.55
TA3+ 94.5± 4.1 98.9± 3.5 90.3± 8.9 94.0± 4.7 598.27

co
ug

h+
br

ea
th TA1 74.8± 6.4 76.1± 7.8 73.0± 7.0 74.3± 6.2 5,355.72

TA2 84.2± 9.9 87.3± 10.1 81.2± 17.7 83.0± 11.4 170.95
TA3 69.5± 19.1 76.0± 26.1 69.0± 25.1 68.6± 18.5 22.40
TA2+ 89.8± 5.5 93.5± 5.4 85.8± 10.5 89.1± 6.3 1,048.96
TA3+ 89.5± 7.1 95.4± 6.4 83.3± 11.3 88.5± 8.1 667.19

TABLE 5.1: Cross-validated results on five non-segmented datasets
for COVID-19 diagnosis, using different approaches based on tempo-
ral decision trees and temporal random forests. For each approach,
the average and the standard deviation across 10 repetitions of the
following performance metrics are reported: overall accuracy, mean
precision, mean recall, and F1 score. Results are reported in percent-
age points and, for each dataset, the average performance of the best
decision tree and the best random forest approach is highlighted. Av-

erage training time in seconds is also reported.

(best accuracy in this case is 89.2%). As for segmented datasets, the best result with
single trees is a very notable 98.8%, obtained in TA2, with only 2% of standard devi-
ation over 10 executions. With temporal random forests, TA2+ allowed us to obtain
an astonishing 99.4% of averaged accuracy, 1% of standard deviation, which is the
best-known performance of a COVID-19 acoustic diagnostic system, across all exist-
ing datasets and learning methods in the segmented, multi-frame setting; however,
temporal random forest models have accuracies better than 96% for all tasks, except
for TA3, which is an indication of the reliability of this method. The multi-frame
approach, as it can be seen, has also the effect of lowering the standard deviation
across the different sets of experiments, at least in the segmented case.

Comparison with state-of-the-art competitors. Because COVID-19 is a humankind
threat there has been an enormous effort by researchers to tackle any problem related
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Dataset acc prec rec F1 training time

de
ci

si
on

tr
ee

co
ug

h

TA1 72.8± 7.6 75.0± 8.0 68.4± 9.4 71.4± 8.3 4.22
TA2 91.0± 9.9 96.7± 10.5 86.0± 13.5 90.3± 10.2 0.18
TA3 72.5± 24.9 79.6± 26.1 70.0± 35.0 68.3± 31.8 0.01
TA2+ 93.2± 8.4 92.3± 8.0 94.6± 11.5 93.1± 9.0 0.40
TA3+ 90.0± 5.3 92.4± 6.6 87.5± 8.3 89.7± 5.7 0.22

br
ea

th
TA1 74.3± 2.9 74.6± 4.1 74.1± 3.4 74.3± 2.5 122.47
TA2 84.0± 5.4 84.0± 6.2 84.7± 10.9 83.9± 5.9 3.54
TA3 61.7± 19.3 61.0± 29.5 66.7± 35.1 59.9± 26.6 0.23
TA2+ 88.2± 4.3 91.3± 3.8 84.6± 8.8 87.5± 5.3 13.50
TA3+ 91.9± 6.7 98.4± 3.4 85.4± 13.3 90.8± 8.5 2.78

co
ug

h+
br

ea
th TA1 95.9± 1.5 96.5± 1.7 95.3± 2.1 95.9± 1.5 82.65

TA2 98.8± 1.9 100.0± 0.0 97.7± 3.7 98.8± 1.9 1.10
TA3 90.0± 17.5 92.6± 14.7 90.0± 31.6 86.0± 31.3 0.01
TA2+ 97.8± 1.7 98.5± 1.1 97.0± 3.9 97.7± 1.8 14.08
TA3+ 84.4± 18.0 87.1± 21.3 86.3± 15.0 85.6± 16.0 0.14

ra
nd

om
fo

re
st

co
ug

h

TA1 80.4± 5.7 84.0± 5.6 75.2± 8.0 79.2± 6.3 136.81
TA2 92.4± 6.9 99.3± 2.1 85.6± 13.1 91.4± 8.1 2.06
TA3 73.5± 23.2 78.0± 25.2 77.0± 24.1 74.6± 20.2 0.15
TA2+ 95.5± 4.4 98.5± 2.8 92.6± 9.5 95.1± 5.2 5.94
TA3+ 92.9± 7.5 100.0± 0.0 85.8± 14.9 91.5± 9.7 2.94

br
ea

th

TA1 81.9± 2.2 84.0± 3.1 79.0± 2.7 81.4± 2.2 8,271.27
TA2 86.7± 6.7 91.5± 7.2 82.3± 15.6 85.4± 9.3 124.35
TA3 66.3± 12.4 68.1± 19.3 67.3± 30.9 63.7± 18.7 5.03
TA2+ 90.5± 2.5 95.7± 2.8 84.9± 5.6 89.9± 3.0 947.30
TA3+ 92.0± 8.2 99.9± 0.5 84.2± 16.5 90.5± 10.6 101.68

co
ug

h+
br

ea
th TA1 98.0± 0.5 99.4± 0.6 96.7± 1.1 98.0± 0.5 8,717.38

TA2 97.2± 3.1 100.0± 0.0 94.5± 6.3 97.0± 3.4 28.56
TA3 86.5± 15.6 93.7± 8.6 81.0± 32.5 81.5± 27.6 0.67
TA2+ 99.4± 0.5 99.0± 0.9 99.9± 0.4 99.4± 0.5 905.60
TA3+ 96.1± 5.4 100.0± 0.0 92.3± 10.8 95.6± 6.2 21.10

TABLE 5.2: Cross-validated results on five segmented datasets for
COVID-19 diagnosis, using different approaches based on temporal
decision trees and temporal random forests. For each approach, the
average and the standard deviation across 10 repetitions of the fol-
lowing performance metrics are reported: overall accuracy, mean pre-
cision, mean recall, and F1 score. Results are reported in percentage
points and, for each dataset, the average performance of the best deci-
sion tree and the best random forest approach is highlighted. Average

training time in seconds is also reported.

to it. We, however, considered the problem of COVID-19 diagnosis and many oth-
ers have done the same; thus, we briefly discuss the main aspects of such proposals
(see Manzella et al., 2022 for an in-depth analysis and discussion). Many datasets re-
lated to the COVID-19 diagnosis have been created and collected. Such datasets are
either public or private; the latter may be due to law-compliance issues (e.g., data
anonymity). The majority of the results are based on neural networks because there
are many ready-to-use deep learning frameworks. Non-ML experts need to be made
aware that symbolic approaches are easier to train and are often preferable over the
state-of-the-art deep learning ones which, on the other hand, are harder to train and
require an intensive hyper-parametrization. Cough recordings are preferred over
breath ones, while others use also speech recordings; nevertheless, just few address
the problem by jointly learning to diagnose from both cough and breath recordings.
With respect to dataset the that we used for our experiments, few researches ad-
dressed the tasks TA2 and TA3 preferring their augmented versions, namely, TA2+
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and TA3+. In any case, our methodology is robust in terms of performance metrics
and provides interpretable formulas that may be interesting for medical personnel
and physicians in their work. Indeed, we found out that our (innovative) method-
ology is superior to traditional ones, both symbolic and non, applied to the same
data while allowing the interpretation of the results and enabling visualization (and
transformation into audible sounds) of models that enclose the distinguishing char-
acteristics of a cough/breath sample positive subjects.

§5.7 Real-world Data Experiments: Spatial Data

As a second example of real-world data application, we consider the spatial case
where we instantiate our framework with HS2, and, in particular, where the rela-
tions are the eight Egenhofer and Franzosa’s topological relations, and their coarse
version having only five relations, denoted by HS2

RCC8 and HS2
RCC5, respectively.

Here, we choose spatial modal decision trees and propositional decision trees at
different degrees of experimental settings. Pagliarini and Sciavicco (2021) have pub-
lished these results.

Datasets. We consider five datasets for the problem of land cover classification (LCC),
that is, the problem of classifying pixels in remotely sensed images, associating each
pixel with a label that captures the use of the land it depicts (e.g., forest, urban area,
crop field), typically known as Indian Pines, Pavia University, Pavia Centre, Salinas,
and Salinas-A, respectively. Each dataset consists of a hyperspectral image, or scene,
of a piece of land, coupled with a ground-truth label mask, providing the correct class
for some of the pixels in the scene. In all cases, the scene is captured by a dedicated
sensor during a flight campaign: specifically, Pavia University and Pavia Centre
were collected using a ROSIS sensor (Reflective Optics System Imaging Spectrom-
eter), and the remaining ones using an AVIRIS sensor (Airborne Visible/Infrared
Imaging Spectrometer). The ROSIS and AVIRIS yield spectral detections covering
a range of frequencies from 0.43µm to 0.86µm and from 0.4µm to 2.45µm, with a
number of channels of 103 and 200, respectively. The size of the scenes varies from
86× 83 pixels for Salinas-A to 1096× 1096 pixels for Pavia Centre; note, however,
that not all pixels are labelled.

Preprocessing techniques. The typical approach to LCC involves collecting either
all labelled pixels, or a randomly sampled subset, and applying a learning algorithm
for multiclass classification. In some cases, authors have used the spatial structure
in a simple way, and considered, for the classification of every single pixel, a set of
neighbouring pixels; the neighbourhood is generally in the form of a N×N window
centred in the pixel, for a natural odd number N. We adopted the same solution,
by extracting, for each dataset, a collection of N × N labelled images (one for each
labelled pixel). All five datasets present a class imbalance, with some classes appear-
ing thousands of times, while others only appear a few dozen times. To level out this
imbalance, which can easily cause biases towards the most occurring classes, a fixed
number P of pixels is randomly sampled for each class, discarding classes with less
than P samples. The experiments were carried out in a randomized cross-validation
setting, where, this sampling step is performed 10 times, and each time the set is par-
titioned into two balanced sets, one for training the model, and the other for testing
and evaluating it. In this round of experiments, we set N = 3 and P = 100, for each
dataset, 10 balanced (sub)datasets of 3× 3 images, that is, 3× 3 images are extracted
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from the original image; 4 classes with less than 100 samples were discarded from
Indian Pines so that the resulting subdatasets only encompassed 12 of the 16 origi-
nal classes. Furthermore, an 80%–20% balanced split was performed when splitting
each subdataset into training and test, and a policy for keeping them strongly dis-
jointed was implemented. Such a policy prevents any two images with non-empty
overlap on the original scene to end up on different sides of the training/test bor-
der, to avoid the so-called data leakage phenomenon (i.e., when data leakage occurs,
part of the information in the test set appears in the training set as well, biasing the
algorithm and, ultimately, affecting the performance estimation).

Experimental settings. For each training-test split, different approaches to deci-
sion tree modelling are deployed and compared. We separate the approaches to
symbolic learning for LCC into pure approaches, where the tree is applied on the
3× 3 image itself, and derived ones, where the input image is processed beforehand
using functional filters. The pure approaches included in this experiment are re-
ferred to as single-pixel propositional approach, in which standard, propositional
decision trees are applied to the numerical description of the pixel to be classi-
fied (i.e., the central pixel), disregarding the neighboring pixels, flattened proposi-
tional approach, in which standard decision trees are applied to the numerical de-
scriptions of all pixels in the 3 × 3 image, disregarding the spatial structure, and
RCC8 (resp., RCC5) modal approaches, in which spatial (modal) decision trees with
HS2

RCC8 (resp., HS2
RCC5) is applied to the 3× 3 image, and the image channels are

regarded as spatial variables; each of the above settings has a corresponding de-
rived one, obtained by applying, before training, a 3× 3 average convolutional fil-
ter. In derived settings we first used the outer 5× 5 box around each 3× 3 image
to compute a 3× 3 average image which is, then, fed as is to the learning algorithm
in pure case; in this way, each pair of approaches is immediately comparable. To
fix the ideas, consider the case of Indian Pines, which has 200 channels. In the pure
single-pixel approach we trained decision trees that take decisions on the 200 fea-
tured values of the central pixel; on the other hand, in the corresponding derived
setting (referred to as avg), the trees learn from instances described by 200 values
that are, each, the average of a channel with the 3× 3 image. Instead, trees trained
with the pure flattened approach take decisions on the 32× 200 = 1800 featured val-
ues within the 3× 3 image, while the corresponding derived setting (avg+flattened)
uses 32 × 200 = 1800 values, that are the result of the 3 × 3 average convolution
performed within the 5× 5 outer box. As for the spatial approaches, they are always
applied on 3× 3 images, except that in the derived cases (avg+RCC8 and avg+RCC5)
the image is the result of a convolution. Note that, because LCC is invariant under
rotation and reflection, spatial approaches are more likely to grasp complex pat-
terns when using topological relations, as opposed to directional ones. At the code
level, each approach differs from the others by how data are preprocessed before
the learning phase, and by the algorithm parametrization: when applied to datasets
of 1× 1 images, spatial decision trees behave exactly as traditional ones, so that the
implementation used in this experiment is the same in the traditional and the spatial
case. With regards to pre-pruning, different parametrizations were tested using the
single-pixel baseline approach, and the one achieving the highest cross-validation
performance was, finally, fixed. The fixed pre-pruning conditions are the minimum
number of samples per leaf of 4, minimum information gain of 0.01 for a split to be
meaningful, and maximum entropy at each leaf of 0.3. Each model was evaluated
using standard performance metrics for multiclass classification, namely, overall ac-
curacy, κ coefficient (which relativizes the accuracy to the probability of a random
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Dataset κ acc prec training time

de
ri

ve
d

av
g

Indian Pines 71.2± 2.9 73.6± 2.7 74.5± 2.6 43.75
Pavia University 75.9± 2.5 78.6± 2.2 79.1± 2.5 14.06
Pavia Centre 89.5± 1.0 90.7± 0.9 91.1± 1.1 11.34
Salinas 92.2± 1.7 92.7± 1.6 93.0± 1.5 61.66
Salinas-A 94.9± 2.0 95.8± 1.6 95.9± 1.6 8.49

av
g+

fla
tt

en
ed Indian Pines 66.1± 3.0 68.9± 2.7 69.9± 2.7 239.04

Pavia University 61.2± 5.4 65.5± 4.8 66.8± 4.6 137.82
Pavia Centre 64.1± 5.3 68.1± 4.7 69.6± 4.5 248.32
Salinas 95.5± 1.3 95.8± 1.2 96.0± 1.1 379.55
Salinas-A 67.8± 4.7 73.2± 3.9 74.4± 4.0 446.97

av
g+

R
C

C
8 Indian Pines 77.0± 2.0 78.9± 1.9 79.7± 1.8 7, 644.26

Pavia University 80.0± 2.4 82.2± 2.1 82.8± 2.2 3, 004.28
Pavia Centre 89.6± 2.2 90.7± 1.9 91.3± 1.8 4, 147.41
Salinas 92.8± 1.7 93.2± 1.6 93.5± 1.5 6, 381.60
Salinas-A 98.3± 1.0 98.6± 0.8 98.7± 0.7 1, 790.53

av
g+

R
C

C
5 Indian Pines 77.7± 2.3 79.6± 2.1 80.1± 2.2 6, 154.47

Pavia University 80.1± 2.8 82.3± 2.5 82.9± 2.4 3, 837.40
Pavia Centre 89.4± 2.3 90.6± 2.0 91.1± 1.9 2, 788.61
Salinas 92.3± 1.5 92.8± 1.4 93.0± 1.4 7, 621.10
Salinas-A 98.3± 1.0 98.6± 0.8 98.7± 0.7 4, 310.79

pu
re

si
ng

le
-p

ix
el Indian Pines 62.7± 2.6 65.8± 2.3 66.3± 2.8 29.25

Pavia University 70.9± 3.2 74.1± 2.9 74.6± 3.1 12.09
Pavia Centre 86.4± 4.1 87.9± 3.6 88.5± 3.4 9.39
Salinas 89.1± 1.9 89.8± 1.8 90.3± 1.8 31.20
Salinas-A 94.9± 2.0 95.8± 1.7 95.9± 1.7 4.55

fla
tt

en
ed

Indian Pines 59.0± 4.2 62.4± 3.8 63.6± 3.5 173.49
Pavia University 42.5± 6.5 48.9± 5.8 49.8± 6.0 115.18
Pavia Centre 40.4± 4.2 47.0± 3.7 48.2± 3.4 112.28
Salinas 94.8± 1.4 95.1± 1.4 95.4± 1.2 149.81
Salinas-A 64.8± 6.3 70.7± 5.2 71.8± 5.0 39.67

R
C

C
8

Indian Pines 73.2± 4.1 75.4± 3.8 76.2± 3.8 1, 034.12
Pavia University 77.9± 1.5 80.4± 1.3 81.1± 1.2 599.83
Pavia Centre 89.1± 2.8 90.3± 2.5 90.8± 2.4 518.45
Salinas 90.5± 1.5 91.1± 1.4 91.5± 1.4 1, 811.41
Salinas-A 96.0± 1.5 96.7± 1.2 96.9± 1.1 428.22

R
C

C
5

Indian Pines 74.5± 4.5 76.6± 4.1 77.4± 4.0 1, 795.79
Pavia University 77.7± 1.5 80.2± 1.3 81.0± 1.1 729.35
Pavia Centre 88.9± 3.0 90.2± 2.7 90.8± 2.6 665.75
Salinas 90.4± 1.5 91.0± 1.4 91.4± 1.5 2, 291.02
Salinas-A 96.0± 1.5 96.7± 1.2 96.9± 1.1 562.50

TABLE 5.3: Cross-validation results on five datasets for land cover
classification, using different approaches based on propositional and
spatial decision trees. For each approach, the average and the stan-
dard deviation across 10 repetitions of the following performance
metrics are reported: κ coefficient, overall accuracy, and mean preci-
sion. Results are reported in percentage points and, for each dataset,
the average performance of the best pure approach and the best de-
rived approach is highlighted. Average training time in seconds is

also reported.

answer being correct (Cohen, 1960), and mean precision. Note that with balanced test
sets the overall accuracy also corresponds to the mean recall.

Results. Table 5.3 shows the results of pure and derived approaches applied to the
five datasets; for each approach and dataset, the average and standard deviation of
κ coefficient, overall accuracy and mean precision are reported. The discussion that
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follows is mainly based on the κ coefficient, but the other two metrics reveal similar
insights. The results show that pure approaches always attain lower performances
than their derived counterpart, with the only exception of Salinas-A, where the pure
single-pixel approach and the avg approach yield the same average performance.
For each dataset, the best performances in the pure and derived cases are gener-
ally attained by spatial approaches. On the contrary, the worst performances are al-
ways attained by either single-pixel approaches or flattened ones. Except for Salinas,
which does not seem to follow this general schema, flattened approaches appear to
cause a degradation of performance: when compared to single-pixel approaches, the
degradation ranges from about 4 percentage points (Indian Pines) up to 30 percent-
age points (Salinas-A). Instead, Salinas is the only dataset showing a clear preference
for the flattened approaches which, concerning the spatial approaches, improve κ
from 90.5% to 94.8% in the pure case, and from 92.8% to 95.5% in the derived case.
Altogether, the results show that across four out of five datasets, spatial approaches
consistently yield better results than propositional ones. The improvements seem
to be proportional to the intrinsic hardness of each classification dataset; compared
with the propositional approach, the average improvement of spatial decision trees
ranges from about 1 percentage point (Salinas-A) to 11 percentage points (Indian
Pines). From a qualitative perspective, there does not seem to be a clear winner
between the two topological logics: spatial decision trees with RCC8 and RCC5 be-
have quite similarly, with the greatest difference in terms of κ being as low as 1.3
percentage points (Indian Pines, pure spatial approaches).

Comparison with state-of-the-art competitors. As we shall see in Chapter 7, learn-
ing from spatial data is generally preferred with neural networks; in particular, with
convolutional neural networks. Indeed, the datasets that we considered are com-
monly used to benchmark neural network-based methods for LCC (e.g., see Hu
et al., 2015; Mou, Ghamisi, and Zhu, 2017; Roy et al., 2020; Li, Zhang, and Shen,
2017; Lee and Kwon, 2017; Hong et al., 2022; Audebert, Le Saux, and Lefèvre, 2019;
Cao et al., 2018; Jiang et al., 2019; Santara et al., 2017). A proper literature review
reveals how, since the beginning, due to a declared need for explicit classification
rules, the task has been frequently addressed using propositional symbolic learn-
ing (e.g., see Goel et al., 2003; Zhang and Wang, 2003). This suggests how, despite
of their benefits in terms of transparency, the inability of known symbolic learn-
ing algorithms to deal with complex data caused researchers and practitioners to
favour higher statistical performances. But, in a way, while the life of black box
models ends with their statistical performances, that of symbolic ones starts with it,
and symbolic models enable a continuous interaction between artificial and human
intelligence; in this sense, symbolic learning is still a relatively poorly understood
field. Note that although these datasets are commonly used in literature to evaluate
non-symbolic methods, none of these methods addresses interpretability matters,
and thus, a comparison against these methods makes little sense. In a similar way,
the existing symbolic methods used for the task are generally not spatial in nature,
except for the work by Jiang et al. (2012b) for which, however, data are not available.
Therefore, canonical symbolic approaches are less adopted because, for example,
they are less resilient to symmetries in spatial data for which convolutional neural
networks, and the like, can capture such invariants. Nevertheless, our methodology
is mature enough to learn robust classifiers from which interpretable formulas can
be extracted for further investigation.
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CHAPTER 6

EXTENSIONS

There is nothing permanent except change.

—Heraclitus

This chapter briefly discusses some possible extensions of the modal symbolic learn-
ing framework. Such extensions are not meant to be complete but should guide the
eager symbolic ML practitioners in such an exciting field. The following ideas, ex-
cept for the last one which is an inspiration from the field of deep learning, are
known at the propositional level, and the objective is to lift them at the modal level.

§6.1 Neural-Symbolic Modal Decision Trees

Decision trees and neural networks are well-known alternatives for pattern recogni-
tion, and their strengths and weaknesses have been studied for over three decades
(e.g., see Atlas et al., 1989; Shavlik, Mooney, and Towell, 1991). As suggested in the
literature (e.g., see d’Avila Garcez et al., 2019; d’Avila Garcez, Lamb, and Gabbay,
2009; Minsky, 1991, among others), to solve the symbolic versus non-symbolic ML
duality, one can think of an hybrid approach: hybrid systems combine the strengths
of both symbolic and non-symbolic methods, to guarantee high degrees of inter-
pretability of the learned models, while retaining high enough statistical perfor-
mances. Notoriously, decision trees favour the interpretability of their decisions,
which, due to their symbolic nature, represent coarse concepts in numeric domains,
whereas neural networks are difficult to interpret, but have a better generalization
capability.

Let us focus on the literature concerning the hybridization of these two mod-
els. Neural networks can be initialized from decision trees (e.g., see Sethi, 1990;
Brent, 1991; Ivanova and Kubat, 1995; Setiono and Leow, 1999; Kubat, 1998) De-
cision trees can be initialized by neural networks (e.g., see Craven and Shavlik,
1995; Krishnan, Sivakumar, and Bhattacharya, 1999; Schmitz, Aldrich, and Gouws,
1999; Dancey, McLean, and Bandar, 2004; Zhou and Jiang, 2004). Finally, hybrid
neural-symbolic decision trees can be learned (e.g., see Li, Fang, and Jennings, 1992;
Guo and Gelfand, 1992; Setiono and Liu, 1999; Zhou and Chen, 2002; Micheloni
et al., 2012; Srivastava and Salakhutdinov, 2013; Hinton, Vinyals, and Dean, 2015;
Kontschieder et al., 2015; Murthy et al., 2016; Murdock et al., 2016; Alaniz et al.,
2021; Wan et al., 2021).

In an attempt at taxonomizing the existing neural-symbolic work on decision
trees, one could argue that there are at least three independent parameters that can
be combined. First, the possibility of using a network for initial screening of the
dataset, to be later dealt with in a more precise way by one of several potentially
different trees (root hybridization). Second, the possibility of querying an external net-
work as a feature extractor to take split decisions in a single tree (split hybridization).
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Third, the possibility of consulting one of several different networks at the leaves
of a decision tree before deciding the class (leaf hybridization). When the underlying
neural networks’ architectures are alike, different hybridization types become com-
parable as well. Therefore, neural-symbolic modal decision trees are possible since we
can exploit any of the above hybridization proposals.

§6.2 Fuzzy Modal Decision Trees

Propositional fuzzy (or many-valued) logics (from the early work of Łukasiewicz,
Post, and Tarski) extend Boolean PL by allowing more than two truth values (Há-
jek, 2013). Fuzzy modal logics were introduced by Fitting (1991) and have enjoyed
sustained attention in recent years (e.g., see Bou et al., 2011; Caicedo and Rodríguez,
2010; Hájek, 2005; Vidal, Esteva, and Godo, 2017). Fitting, in particular, gives a very
general approach to fuzzy modal logic in which propositions and accessibility rela-
tions are not just true or false but may take different truth values.

Fuzzy logics ameliorate some of the shortcomings of crisp, Boolean logics. In
ML terms, the fuzzy framework can be used in the decision tree technique to man-
age fuzzy information (e.g., fuzzy inputs, fuzzy classes, fuzzy rules) and improve
the resulting models’ predictive capability. The term fuzzy decision tree was coined
by Chang and Pavlidis (1977), and since then, many other contributions have been
made to the literature. The constants a in propositional decisions (recall Defini-
tion 3.2) and the final decisions (in the leaves) can be softened in a probabilistic way
without the usage of so-called fuzzy sets (e.g., see Carter and Catlett, 1987; Jordan,
1994). The crisp rules extracted from a crisp propositional decision tree can be fuzzi-
fied to obtain fuzzy rules (e.g., see Tani, Sakoda, and Tanaka, 1992; Jang, 1994; Chi
and Yan, 1996). Other proposals start by learning a crisp propositional decision tree
structure and then search the degree of softness in every node to fuzzify the origi-
nal tree (e.g., see Jeng, Jeng, and Liang, 1997; Suárez and Lutsko, 1999). Moreover,
a fuzzy decision tree can be learned directly by integrating fuzzy techniques in the
learning process (e.g., see Wang and Suen, 1987; Cios and Sztandera, 1992; Yuan and
Shaw, 1995; Ichihashi et al., 1996; Tsuchiya et al., 1996; Apolloni, Zamponi, and Zan-
aboni, 1998; Hayashi et al., 1998; Janikow, 1998; Boyen and Wehenkel, 1999; Wang
et al., 2000; Tsang, Wang, and Yeung, 2000; Olaru and Wehenkel, 2003).

Bringing together the two schools of thought, namely, fuzzy modal logics and
fuzzy propositional decision trees, we can elegantly obtain, thanks to our frame-
work, fuzzy modal decision trees to learn more realistic modal patterns from complex
real-world scenarios.

§6.3 Gradient-boosted Modal Decision Trees

Boosting is a sequential process of improving weak learners, where each subsequent
model corrects the errors of the previous model, trying to converge to an optimal
metamodel. Gradient boosting is the extension of boosting that sequentially fits the
negative gradients (Friedman, 2000). Typical boosting involves a regression task,
although it can also be used for classification with minor adjustments.

For any differentiable loss function a different gradient boosting algorithm can
be defined, such as AdaBoost (Freund and Schapire, 1996), stochastic gradient boost-
ing (Friedman, 2002), eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016)
and Light Gradient-Boosted Machines (LightGBM) (Ke et al., 2017). Each weak learner
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can be any model, but propositional decision trees are preferred in the literature, and
this, again, justifies our choice of decision trees as representatives of symbolic learn-
ing. We can, thus, exploit the learning mechanisms of such contributions, and their
relatively efficient implementations, by simply replacing propositional with modal
decision trees to obtain gradient-boosted modal decision trees. In general, moving from
simple decision trees to random forests and then to boosted trees, reduces the inter-
pretability of the final model, but increases its performances (Hastie, Tibshirani, and
Friedman, 2009); nevertheless, there are ways to recover the interpretability of the
model (e.g., see Deng, 2019 for the case of random forests).

§6.4 Incremental Modal Decision Trees Learning

In ML terms, concept drift means that the statistical properties of the target value that
the trained model tries to predict change over time as new observations arrive, and
the performances of the model deteriorate over time as chances of misprediction
increase. For example, imagine a situation where a validated model in production
works well, then a sudden unforeseen situation arises (e.g., a pandemic like COVID-
19), and the model starts to be unreliable. Deployed ML models face such situations
periodically and must be revalidated to asses their performances over time for crit-
ical tasks. There are at least two ways to address such an issue. On the one hand,
the model can be retrained periodically (e.g., during each weekend) or if triggered
by some user-defined condition (e.g., the accuracy goes below a certain threshold),
but training is costly, depending on the volume of the data. Incremental learning (or,
alternatively, online learning), on the other hand, integrates into the original model
the information enclosed in the new observations in the original model as they ar-
rive without retraining on past instances; therefore, training, in this case, is more
feasible.

Typically, ML models are batch trained, where the learning set is fixed before-
hand, and models are learned from it; this kind of setting is also known as non-
incremental learning (or offline learning). In incremental learning, a sequence of in-
stances is observed, one at a time, which might not be equally spaced in a time inter-
val, and a trained model is incrementally updated with the information contained
in such instances. Online modal decision tree learning can be achieved by exploiting
the known results for the same problem at the propositional level (e.g., see Schlim-
mer and Fisher, 1986; Utgoff, 1988; Crawford, 1989; Utgoff, 1989; Utgoff, 1994; Ut-
goff, Berkman, and Clouse, 1997; Domingos and Hulten, 2000; Hulten, Spencer,
and Domingos, 2001; Gama, Fernandes, and Rocha, 2006; Manapragada, Webb, and
Salehi, 2018, among others).

§6.5 Geometric Modal Symbolic Learning

Geometric deep learning is a recent exciting research line in the deep learning realm
that tries to give a unifying view to the zoo of deep learning approaches in the liter-
ature (Bronstein et al., 2017). The general idea of geometric deep learning is the study
of symmetries in data and injecting of such symmetries in the learning pipeline as
inductive biases. As we have recalled in our introduction, deep learning architec-
tures excel at learning from unstructured data as they exploit inductive biases. From
a philosophical point of view, deep learning could have been called connectionist
learning, to be opposed to symbolic learning, as the subset of ML that designs con-
nectionist algorithms (i.e., neural networks) to build models from data. In the same
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spirit, we could have called modal symbolic learning as modal learning since we also
address the problem of learning from unstructured data, but it is just a matter of
taste.

Geometric modal symbolic learning is a research effort similar to geometric deep
learning: symmetries can be studied also in the case of Kripke models. In the field of
modal logics, symmetries have been studied related to the model checking problem,
called symmetry-based model checking (e.g., see Ip and Dill, 1996; Clarke et al., 1996;
Emerson and Sistla, 1996; Sistla, Gyuris, and Emerson, 2000), which, recall, is at
the core of learning any modal logic theory. Regarding modal symbolic learning,
we must discuss some important aspects of symmetry-based model checking. First,
learning is asymptotically more efficient since model checking requires less time in
smaller, but bisimilar to the original, models, and this ameliorates the polynomial
blow-up when transforming an input signal to a Kripke model. Second, state-of-the-
art deep learning architectures exploit the inductive biases by exploiting symmetries
(e.g., shift-invariant and rotation-invariant patterns in images), and symmetry-based
model checking for modal symbolic learning goes in the same direction; we can,
thus, obtain better generalized modal symbolic models. Finally, logicians need to
study symmetry-based model checking for other logics, such as HSd, to advance the
discipline of geometric modal symbolic learning.
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CHAPTER 7

RELATED WORK

Sometimes you put walls up not to keep people out, but to see who
cares enough to break them down.

—Socrates

ML is a thrilling field. The literature is widespread on the argument, and we must
find a degree of comparability with our work. We must, therefore, restrict our hori-
zon in the mare magnum of contributions that are present today in the literature.
Decision trees have been used as emblematic for the entire symbolic learning frame-
work, and we must dedicate some time to discussing their history. Then we must
review the contributions of temporal and spatial learning for completeness. We do
so by reviewing the proposals for temporal and spatial data that are not directly
related to our framework, and finally, we discuss symbolic approaches for similar
tasks.

§7.1 Brief History on Propositional Decision Trees

Figure 7.1 illustrates the reviewed literature on the history of propositional decision
trees. The origin of the development of modern decision trees dates back to Belson
(1956) with his seminal work, which serves as a precursor to a new line of decision
tree development that employs ML algorithms to produce executable rules. Based
on Belson’s work, Morgan and Sonquist (1963) proposed Automatic Interaction De-
tection (AID) as an alternative to functional regression (i.e., regression with decision
trees). Like the earlier approaches, Concept Learning System (CLS) (Hunt, Stone, and
Marin, 1966) works progressively with recursion partitioning the input data based
on highly discriminating variables. Whereas AID is used for regression tasks, THeta
Automatic Interaction Detection (THAID) (Messenger and Mandell, 1972), which is
the first implementation of a decision tree for classification, and CHi-squared Auto-
matic Interaction Detection (CHAID) (Kass, 1980) extend AID for classification tasks
by introducing new impurity information-based functions as entropy or Gini in-
dex needed to partition the dataset in a node. The main issue with AID-based ap-
proaches is overfitting, which prompted the scientific community to gain interest in
investigating further.

Classification And Regression Trees (CART) (Breiman et al., 1984) were iconic in
regenerating interest in the subject. In particular, the method follows the same
greedy approach as the AID-based methods but adds several features; for example,
pruning techniques to regularise the resulting model, such as Reduced Error Pruning
(REP) (Elomaa and Kaariainen, 2001), to cope with the overfitting problem. Quin-
lan (1986) entered this field with an ML perspective formalizing the development of
an inductive process for knowledge acquisition, which resulted in the so-called Itera-
tive Dichotomizer 3 (ID3) algorithm, that has been extended with pruning techniques
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FIGURE 7.1: Literature map on the history on propositional decision
trees (generated with litmaps).

some years later by the same author (Quinlan, 1999). ID3 was a breakthrough for
the rule induction knowledge acquisition process: each decision can be expressed as
a propositional letter; since alternative branches can be seen as logical disjunctions,
and successive decisions on the same branches can be seen as logical conjunctions,
a decision tree as a whole can be seen as a set of PL formulas. As we have seen, a
decision tree is a propositional description of the dataset on which it is learned, rep-
resenting the theory underlying the given task. Moreover, Quinlan compared dif-
ferent entropy-based splitting criteria, namely, information gain and gain ratio. Subse-
quently, the same author developed the C4.5 algorithm (Quinlan, 1993) to cope with
the main limitation of ID3 of handling only categorical data.

With the dawn of the era of big data, other, more sophisticated learning ap-
proaches have been proposed to handle unstructured data, leaving, in a way, de-
cision tree development behind. As such, there are few decision tree-like proposals
in the literature for the need for more expressive decision trees. Finally, there are
more exhaustive, systematic surveys on the history of the development of decision
trees for either classification or regression (e.g., see de Ville, 2013; Loh, 2011; Loh,
2014).

§7.2 Approaches for Learning from Temporal Data

In the temporal case, the most representative objects are time series since, to some
extent, every other temporal object can be seen as one. Classification, on the other
hand, as we have discussed, is the cornerstone of every learning task because it
provides the principles of ML. Therefore, we discuss the literature on time series
classification summarized in Figure 7.2.

Classification of time series can be distance-based (i.e., based on the notion of dis-
tance/similarity between series) or not, its underlying ontology can be point-based or
interval-based, and the method itself can be feature-based (i.e., based on the notion of

https://www.litmaps.com/
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FIGURE 7.2: Literature map for approaches for time series classifica-
tion (generated with litmaps).

extracting features from the series and then using some off-the-shelf, non-temporal
classifier) or not. Finally, a time series classification method may or may not require
a transformation of the raw data. The plethora of existing methods cannot be imme-
diately partitioned into a taxonomy because, first, many proposals present different
combinations of these characteristics, and, second, there may be other dimensions
that are not adequately captured by our list.

Transforming a time series is modifying how the information in the series is pre-
sented; following a transformation, one applies a learning method. In some cases,
the transformation phase is presented as an essential step of a classification method;
nonetheless, at a conceptual level, it is not a classification method but part of the
preprocessing. Feature extraction from a time series can be regarded as a form of
transformation; however, it is often preferred to reserve the term transformation for
order-preserving processes, and so do we. Order-preserving transformations can be
further separated into numerical and categorical; the former includes methods that
return numerical time series (usually for dimensionality reduction, smoothing, and
noise elimination), while the latter produces time sequences that represent the same
coarse information. Categorical transformation can be point-based (i.e., each value
is substituted by its discrete category), but the interval-based representation often
makes more sense (i.e., each interval of values is replaced by a category).

Simple numerical transformations include Equal Width Discretization (EWD) and
Equal Frequency Discretization (EFD); the former divides the domain of each attribute
into equal-width bins and then identifies how many values fall inside each bin, while
the latter forms a uniform distribution of the values inside each bin. More sophis-
ticated transformations are spectral decomposition based on Discrete Fourier Trans-
form (DFT) (Agrawal, Faloutsos, and Swami, 1993), wavelet decomposition based
on Discrete Wavelet Transform (DWT) (Chan and Fu, 1999) (a process similar to DFT),
Singular Value Decomposition (SVD) (Chan and Fu, 1999), and Piecewise Aggregate Ap-
proximation (PAA) (Keogh et al., 2001). At the high level, PAA divides the original

https://www.litmaps.com/


82 Chapter 7. Related Work

raw time series into equal-width segments and then computes the mean of the val-
ues that belong to each segment. Symbolic Aggregate Approximation (SAX) (Lin et al.,
2007) uses PAA to reduce the dimensionality of a N-points time series to a K-points
mean values time series, with K < N, and then assigns K symbolic labels to each
segment.

Persist (Mörchen and Ultsch, 2005) maximizes the duration of the resulting time
intervals which explicitly considers the temporal ordering. In contrast, the transfor-
mation proposed by Sciavicco, Stan, and Vaccari (2019) for multivariate time series
that produces a categorical interval-based representation (or abstraction) of a series,
which inspired the possibility of categorical temporal decision tree extraction from
time series, and, more in general, the notion of timeline, that represents a time series.
Timelines allow interpreting fuzzy interval temporal logics on time series (Conradie
et al., 2020; Conradie et al., 2022).

Other categorical transformations include the work by Moskovitch and Shahar
(2015) who defined a discretization of time series into a set of symbolic, state-based
time intervals, which are used as features for classification tasks. In their work, three
versions of their temporal discretization procedure, called Temporal Discretization For
Classification (TD4C), were compared with EWD and SAX, resulting in a better ap-
proach to classifying time series data. Once the raw time series are abstracted into
an interval-based representation, employing TD4C, a set of temporal interval rela-
tion patterns are mined as features, a process very similar to frequent patterns min-
ing (Agrawal and Srikant, 1994), which are subsequently used for classification via
any (standard) classification schema.

Several non-symbolic approaches have been proposed in the literature for time
series classification. Kakizawa, Shumway, and Taniguchi (1998) developed opti-
mal bivariate discriminants using multivariate time-invariant forms of discriminant
functions. Kudo, Toyama, and Shimbo (1999) proposed a methodology for classify-
ing sets of data points in a multidimensional space based on the common regions
through which only time series of one class pass. Their method transforms multi-
variate signals into binary vectors, where each element of this vector corresponds to
one rectangular region of the space value-time and tells if the signal passes through
this region, and then, a procedure, called subclass method, is applied to build rules
from these binary vectors. Caiado, Crato, and Peña (2006) presented a new mea-
sure of distance between time series based on the normalized periodogram, which
estimates the spectral density of a signal. Fulcher and Jones (2014) presented a
highly-comparative method for learning feature-based classifiers for monovariate
time series. Their method automatically computes more than 9000 features which
are further automatically selected for classification tasks; the trained model is a lin-
ear discriminant classifier that fits a multivariate normal density to each class using
a pooled estimate of covariance. Functional methods for time series classification
in which the notion of distance plays a central role have been developed and tested
by Lines and Bagnall (2015), in which the classifier is a nearest neighbour (Tan, Stein-
bach, and Kumar, 2005; Han, Kamber, and Pei, 2011) equipped with Dynamic Time
Warping (DTW) (Shokoohi-Yekta, Wang, and Keogh, 2015) as dissimilarity measure.
The latter methods have also been tested on several univariate time series by Bagnall
et al. (2018) and in the multivariate setting by Pasos Ruiz et al. (2021).

A generative deep learning model (i.e., an unsupervised model that finds a good
representation of the raw time series prior to training a classifier) for time series clas-
sification has been proposed by Malhotra et al. (2017), where a Sequence Auto-Encoder
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(SAE) based on a sequence-to-sequence model (Sutskever, Vinyals, and Le, 2014) is
trained. In particular, the model consists of two multi-layered Recurrent Neural Net-
works (RNNs), an encoder and a decoder, with gated recurrent units in the hidden
layers. Once the SAE is learned, the encoder RNN is used as a pre-trained model
to obtain embeddings for time series, and, as already pointed out, such embeddings
can be used as input features to other off-the-shelf classifiers. Moreover, the authors
evaluated their method by training two non-linear Support Vector Machines (SVMs).
Finally, unlike Multi-Layer Perceptrons (MLPs), where the temporal information is lost
and the features learned are no longer time-invariant, Convolutional Neural Networks
(CNNs) are probably the most used architectures for time series classification due to
their robustness to learning space-invariant filters and the relatively small amount
of training time because, in general, they need to learn fewer parameters (i.e., the
weights of the network) with respect to, for example, RNNs or MLPs (Fawaz et
al., 2019). Wang, Yan, and Oates (2017) proposed a simple, but robust, CNN-based
baseline with three discriminative deep learning models (i.e., models that directly
learn the mapping between the raw input time series and the output): MLPs, Fully-
Connected Networks (FCNs), and Residual Networks (ResNets). The spectrum of deep
learning approaches for classifying time series is vast, and it is currently a very hot
topic in the time series mining research community. A systematic treatment of deep
learning methods is beyond the scope of this work, but the reader can refer to the
work by Fawaz et al. (2019), an up-to-date and very clear review on this topic, where,
for example, they extend the taxonomy by Längkvist, Karlsson, and Loutfi (2014) for
neural network-based methods.

§7.3 Approaches for Learning from Spatial Data

The most emblematic problem for learning from spatial data is image classification.
Deep learning architectures are preferred for such a problem. Arguably, the medical
context is where image classification is most used. Thus, we discuss the literature on
image classification from a deep learning point of view. There are many reviews on
deep learning in healthcare (e.g., see Shen, Wu, and Suk, 2017; Topol, 2019; Esteva
et al., 2019), and many more on CNNs related to the medical field (e.g., see Akkus
et al., 2017; Litjens et al., 2017; Ker et al., 2018; Raghu et al., 2019; Khan et al., 2020;
Alzubaidi et al., 2021). The take-home message is that CNN architectures, and the
like, are the preferred approaches for learning to classify images in the medical con-
text. Figure 7.3 illustrates the literature map of the reviewed literature on this topic.

CNNs have been formalized by LeCun et al. (1989) and have been a major break-
through in the field of computer vision. There has been a significant interest in
the literature on CNN-like architectures, and we briefly discuss some of the impor-
tant contributions. Szegedy et al. (2015) formalized the Inception neural network,
a sparsely-connected architecture, instead of a fully-connected one; subsequent im-
provements have followed (e.g., see Szegedy et al., 2016; Szegedy et al., 2017; Chol-
let, 2017). ResNets learn residual functions with reference to the layer inputs instead
of learning unreferenced functions (He et al., 2016); other improvements have been
followed (e.g., Wang et al., 2017). Capsule Networks (CapsNets) are neural network
architectures that learn hierarchical relationships (Sabour, Frosst, and Hinton, 2017).
Finally, Dense Networks (DenseNets) connect each layer to every other layer in a feed-
forward way (Huang et al., 2017).
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FIGURE 7.3: Literature map for approaches for image classification
(generated with litmaps).

§7.4 Symbolic Approaches for Learning from Unstructured
Data

Learning from unstructured data has also been approached symbolically over the
years. Figure 7.4 illustrates some of the contributions to this problem, which we
briefly review in this section.

Symbolic methods have been developed for learning from temporal data. Ro-
dríguez Diez, González, and Boström (2001) developed a method for building an en-
semble of (base) classifiers with boosting. The method extracts a set of rules having
only one antecedent. Moreover, point-based and interval-based predicates are de-
fined to cope with the temporal component. In particular, point-based predicates are
introduced to test the results obtained with boosting without using interval-based
predicates. To some extent, predicates can be seen as features, and this method falls
into the realm of inductive logic programming. Geurts (2001) proposed a feature-based
approach that integrates extracted temporal patterns into decision trees. Yamada et
al. (2003) presented a decision tree-based procedure to classify time series data where
the splitting step is done by exhaustively searching a time sequence that is present
in data based on class and shape information using DTW as a distance measure. A
similar approach is the one proposed by Balakrishnan and Madigan (2006) extend-
ing regression trees to deal with functional variables (e.g., multivariate time series)
and standard variables (i.e., non-functional). Representative curves are learned to
split the dataset using clustering techniques with similarity measures (i.e., Euclidean
distance and DTW), where the cluster representative is set to be the instance that is
closest (i.e., has a smaller combined distance) to all other examples in the cluster,
and, then, reassign instances to the groups based on their distance to the represen-
tatives (i.e., complete-link hierarchical clustering). In the work by Baydogan and
Runger (2015), each (multivariate) time series includes also the first differences (rep-
resenting trends) for each numerical variable. Shapelets (Ye and Keogh, 2009) have
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FIGURE 7.4: Literature map for symbolic approaches for learning
from unstructured data (generated with litmaps).

been extensively used in the field of learning from time series; this concept has been
used in decision trees to classify time series by Brunello et al. (2019).

Chen, Tumova, and Belta (2012) and Chen et al. (2013) proposed a method for
automatically generating an LTL-based control policy for a robot moving in an ad-
versarial environment. Given two sets of signals/time traces representing the good
and the bad set, the method proposed by Bartocci, Bortolussi, and Sanguinetti (2014)
finds an MITL formula that is satisfied with high probability by the good set and
with low probability by the bad one. The quantitative semantics of STL can be used
to model the robustness of stochastic models (e.g., see Bartocci et al., 2015). STL-based
classifiers can be used to solve the classification problem involving finite signals
(e.g., finite time series) (e.g., see Jin et al., 2015; Hoxha, Dokhanchi, and Fainekos,
2018; Jha et al., 2019; Saglam and Gol, 2019), even with decision trees (e.g., see Bom-
bara et al., 2016). Learned STL-based formulas can be used for detecting abnormal
behaviours in signals (e.g., see Kong, Jones, and Belta, 2017; Nguyen et al., 2017).
Neider and Gavran (2018) solved the problem of learning discriminating LTL for-
mulas from a set of infinite, ultimately-periodic words to separate the desired and
the undesired behaviours of a (complex) system. Online learning approaches for
STL formulas have also been proposed (e.g., see Bombara and Belta, 2018; Aydin
and Gol, 2020), also with decision trees (e.g., see Bombara and Belta, 2021). Finally,
Brunello, Sciavicco, and Stan (2019) developed a native, interval-based decision tree
learner where the instances are represented as timelines; based on a similar princi-
ple, rule-based classifiers can be trained to learn from sets of timelines by defining
a multi-objective optimization problem and solving it via heuristics, such as evolu-
tionary algorithms (e.g., see Lucena-Sánchez et al., 2019).

Symbolic methods, and in particular propositional decision trees, have also been
applied to spatial data (although not in the sense of this thesis because the spatial
information is destroyed by summarizing the input objects into feature vector repre-
sentations). Zeitouni and Chelghoum (2001) proposed a propositional decision tree
where the spatial structure of the input objects is summarized in real-valued features
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(from which the decision tree is learned). Ding, Ding, and Perrizo (2002) developed
a decision tree learning algorithm that incorporates a data structure, called Peano
Count Tree, to capture the semantics of the input images. Li and Claramunt (2006)
proposed a propositional decision tree mechanism that models the spatial distribu-
tion, which is embedded in the spatial entropy-based splits to learn from a structured
dataset that resembles a spatial situation. Properties in linear superposition (spatial)
logic, a spatial logic based on spatial superposition, can be mined from networks of
cardiac myocytes with decision trees (Grosu et al., 2009). In the work by Jiang et al.
(2012a), inter-pixel correlations are considered by integrating the local feature vector
with additional scalar features capturing the information of neighbouring pixels. A
survey on spatial prediction models is provided by Jiang (2019).
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CHAPTER 8

CONCLUSIONS

Before I had studied Chan for thirty years, I saw mountains as
mountains, and rivers as rivers. When I arrived at a more intimate
knowledge, I came to the point where I saw that mountains are not
mountains, and rivers are not rivers. But now that I have got its very
substance I am at rest. For it’s just that I see mountains once again as
mountains, and rivers once again as rivers.

—Qingyuan Weixin

This thesis presented the foundations of modal symbolic learning which brings to-
gether two mathematical disciplines: modal logics and machine learning. Modal
logics have been studied for more than a century, and their study have been focused
mainly on deductive reasoning. In the era of big data, where unstructured data are
flourishing daily, machine learning is performed generally in a non-symbolic way,
such as with the aid of (deep) neural network architectures, while symbolic learning
is still under-represented. Modal symbolic learning is a research effort that combines
both symbolic learning and modal logics by exploiting the known results in the liter-
ature to enhance symbolic learning algorithms with the ability to learn modal logic
theories from the plethora of unstructured data, benefiting from the inductive biases
at the symbolic level.

We took propositional decision trees as representatives for the propositional sym-
bolic learning paradigm and motivated such a choice. After the presentation of
propositional decision trees, we presented their modal generalization, called modal
decision trees. We then showed classification efficiency, correctness, and complete-
ness for modal decision trees, and we studied the complexity of learning modal deci-
sion trees from modal datasets. Modal datasets, which are needed to conduct modal
symbolic learning, emerge from real-world applications that are described by a va-
riety of unstructured data, and we showed how to transform a dataset into a modal
one by discussing more in detail tailored modal logics. Motivated by the need for
a unique formalism, we made an effort by bringing all such logics under the same
umbrella. Learning with modal symbolic learning can be done by investigating the
properties of modal decision trees, and we discussed two real-world applications
where modal theories are preferred. We also discussed possible extensions of our
framework. First, we argued how to learn (hybrid) neural-symbolic (modal) deci-
sion tree structures leveraging neural networks. Second, we discussed how fuzzy
modal decision trees could be achieved by exploiting the known results on fuzzy
modal logics and fuzzy decision trees. Third, we presented how gradient-boosted
modal decision trees could be obtained, taking motivation from the propositional
level. Fourth, we discussed how to learn incrementally with modal decision trees
inspired by the known results of incremental learning with propositional decision
trees. Finally, motivated by the recent advances in the field of geometric deep learn-
ing, we presented geometric modal symbolic learning by pointing to the relevant
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work on symmetry-based model checking for modal logics. Furthermore, we re-
viewed the relevant related work in the literature. We reviewed the history of the
development of propositional decision trees since such structures have been used
throughout this thesis. Then, we discussed the non-symbolic related work for learn-
ing from temporal and spatial data. Finally, we examined the symbolic proposals for
learning from unstructured data.

Symbolic learning needs to be more represented. Many researchers prefer to ap-
proach the learning problem without exploiting the symbolic side (e.g., using neural
networks). Distinctively, our framework provides the foundations for embarking
on such an exciting field of symbolic learning, exploring the different expressivity
power and applicability of (propositional) modal logics. The take-home message is
that many mathematical logicians, focusing on deductive reasoning for years, and
computer scientists, moved by the hype around neural networks, could find their
position in this field by studying new mathematical properties that emerge from re-
searching other symbolic-related inductive approaches. To steer them in such an
effort, we pointed out many ambitious extensions of our framework, which can be
considered future directions.
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