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Abstract

The expression ��exural tensegrity� indicates an assembly of sti� segments held together
by the tying action of prestressed tendons passing through them, in such a way that the
integrity under �exure is provided by the tensile members (tendons). The key point is
that the contact surfaces of any pair of consecutive segments are shaped according to
properly-designed pitch pro�les, such that a large relative rotation of the segments is
allowed. As a result, the joints open up under bending, and this produces the straining of
the tendons, which are free to move in properly-shaped cavities inside the segments and
are anchored only to the ends of the beam (unbonded cables). The elongation of each
cable, to an amount dictated by the shape of the contact surfaces, thus a�ects the elastic
energy of the system and, hence, characterizes the constitutive bending properties of the
segmental assembly, as a function of the design shape of contact pro�les, as well as of
the prestress and axial sti�ness of the cable. A variational approach can be used to �nd
the set of nonlinear equations that govern the response of the structural system, both in
the static and dynamic equilibrium states.

The �exural-tensegrity concept can be explored in many forms. By changing the
shape of the contact pro�les, linear, sub-linear or super-linear constitutive responses can
be obtained. As a function of the tendon sti�ness, nonlinear Du�ng-like vibrations are
attained and can be controlled by varying the axial force in the tendon. Enhancing the
mobility of the tendon in large cavities, the bending energy can be made non-convex in
type, possibly achieving complex snap-through sequential motions. The limit, when the
number of segments goes to in�nity and their length to zero, corresponds to a particu-
lar type of Euler's elastica with nonlocal response, whose bent shape can be computed
analytically (with elliptic integrals), or numerically. Field applications, yet to be fully
explored, have been found in archery (a new type of deployable segmental bow) and soft
robotics (limbs controlled by internal/external cables). Multi-stable �exural tensegrities
can be used as basic constituents for metamaterials with tailored 3D mechanisms, in
the form of plates and cubes, and for propulsion in �uids as �agellating tails. Larger
scale applications in kinetic architecture, yet to be fully appreciated, can be found in the
manufacturing of movable skeletons and envelopes. In the �eld of industrial design, the
concept has been used in the manufacturing of a desk lamp, where the bent shape of the
arm can be tuned by varying the tension force in the pair of prestressing cables, which
also convoy electricity.

As a hint for future research, a di�erent kinematics is �nally introduced and prelim-
inary investigated. This corresponds to the sliding of plates on initially-matching wavy
contact surfaces (rather than rolling along pitch pro�les), thus constituting the basis for
the new concept of �shear tensegrity�. The model can speci�cally �nd application in the
interpretation of the mechanical behavior of nacre-like laminates.
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Chapter 1

Introduction

I present an innovative class of kinetic segmental structures, which has been named
��exural tensegrity� to refer to the fact that the integrity of the segmental assem-
bly is granted by tensile members, which also give load bearing capacity to the
structure and in�uence its constitutive response under bending.

1.1 Background: towards �exural tensegrity

The term �tensegrity� was �rst coined by R. B. Füller to refer to peculiar structures
whose integrity is granted by tensile members [1]. In the original de�nition [2], here
referred to as �pure tensegrities�, these tensile members are represented by cables,
pre-tensioned by matching a few �oating compression struts. To illustrate such a
design concept, Figure 1.1 reports two paradigmatic examples of pure tensegrities.
In particular, Figure 1.1(a) shows the assembly of two wooden X-shaped modules
connected by cables; peculiarly, the upper module is suspended and restrained by
the thin cables, so that it seems to �oat in the air. Figure 1.1(b) displays a larger
arched structure, made of aluminium and stainless steel, with straight �oating bars
connected by tendons. The aforementioned structures were manufactured by K.
Snelson, who shares the authorship of the tensegrity concept with Füller.

Tensegrities are a paradigmatic example of �prestress stable� [4] pin-jointed
structures. In fact, according to the mobility formula generally referred to as
Maxwell rule [5], such structures do not have enough bars to be motionless, but po-
tential mechanisms are sti�ened by a state of self-stress induced by the prestressed
cables. For example, a state of self-stress can be imparted by manufacturing some
cables shorter than the prescribed distance between the connected bars, and by
elastically forcing them into the design position.

The term ��exural tensegrity�, appearing in the title, and often abbreviated
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(a) (b)

Figure 1.1. Examples of pure tensegrity structures. (a) Wooden X-column by K. Snelson
(1948), from [3]. (b) Rainbow arch by K. Snelson (2001), made of aluminium and stainless
steel, from www.kennethsnelson.net.

as ��ex-ten� in the following, is here used to represent a complementary concept,
according to which the integrity under �exure of a mobile chain of coupled segments
is ensured by tensioned tendons. More in detail, such an assembly is formed by sti�
segments held together by the tying action of a prestressed tendon passing through
them, so that the integrity and load bearing capacity is provided under �exure.
The key point is that the contact surfaces of any pair of consecutive segments
are shaped according to properly-designed pitch pro�les, such that a �nite-scale
relative rotation of the segments is allowed and the joints macroscopically open up
under service loads.

Because of their peculiar design, classical tensegrities are suitable to realize col-
lapsible/deployable structures [6], also accounting for structural optimization [7]
and form-�nding [8]. Here, similar arguments hold: �exural tensegrities can be
folded/deployed by slackening/pulling the cables, while the shape of the contact
surfaces can be designed according to the speci�c need, to obtain a peculiar, pos-
sibly optimized, constitutive response.

The proposed system, especially when declined as one-dimensional chains of
segments, recalls the segmental construction of beam-like structures with unbonded
post-tensioned cables and prefabricated concrete ashlars, typically used to realize
columns [9], arches [10] and bridges [11,12]. The similarity is that the structure is
assembled from segments, which are kept into contact by tendons encapsulated in
ducts within the segments. These cables are tensioned (stressed) by pulling them
through the anchorages while pressing against the end segments, so that the forces
required to tension the tendons result in a signi�cant permanent compression of
the segments once the tendon is locked-o� at the anchorage. On the other hand,
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(a) (b)

Figure 1.2. Structural arches in Padre Pio Pilgrimage Church (San Giovanni Rotondo,
FG, Italy), made with post-tensioned prefabricated-concrete ashlars: (a) segmental arches
before the construction of the supported roof, and (b) disassembled segments before the
erection of the arches, with evidence of the �at contact surface. Photographs from [10].

unbonded post-tensioning means that the tendons have freedom of longitudinal
movement inside the prefabricated segments, thanks to the lubrication within the
sheaths that house the cables.

Anyway, there is a substantial di�erence with prestressed reinforced concrete
segmental beams. Indeed, the concrete segments are in reciprocal contact along ap-
proximately �at surfaces, and the joints are designed to remain tight (no opening)
at least in the serviceability limit state. To explain, consider Figures 1.2 and 1.3,
where representative examples are reported. More in detail, Figure 1.2(a) shows
the segmental concrete arches erected for the Padre Pio Pilgrimage Church (San
Giovanni Rotondo, FG, Italy), designed by R. Piano. The arches are portrayed
before the construction of the supported roof and the planar contact surfaces are
highlighted by the straight lines that visually tessellate the arch; these are also
evidenced in Figure 1.2(b), which represents the disassembled ashlars lying on the
ground before the erection. Figure 1.3(a) displays a segmental concrete bridge un-
der construction: here the average mid plane for the contact is still planar, but the
actual contact surfaces are undulated, by means of shear keys, and match each
other to enhance interlocking. A detail view of the segment is reported in Figure
1.3(b). In both cases, the opening or the sliding of the joints is not expected under
service loads, and the action of cables is basically that of generating a compression
state in the segments so to avoid the onset of tensile stresses, under bending, in
the no-tension-resistant concrete, and in order to increase the shear resistance by
friction at the contact interfaces. Under loading the deformation is mainly due
to the concrete matrix and the prestressed cables are not substantially further
stretched. As a result the constitutive response is led by the concrete, and mini-



4 Chapter 1. Introduction

(a) (b)

Figure 1.3. Segmental bridge made with post-tensioned prefabricated-concrete seg-
ments: (a) bridge under construction, photograph from [13]; (b) detail of one segment
with evidence of the �at contact surface with shear keys, photograph from [14].

mally in�uenced by the tendons. On the contrary, in the ultimate limit state (close
to collapse), the joints can open and the cables are designed to yield, thus increas-
ing the ductility of the structure before the total breakage. This means that, in
traditional (concrete) segmental beams, the tendons do in�uence the structural be-
havior in the ultimate limit state, in terms of strength and ductility, while keeping
the compressed segments together, but do not signi�cantly a�ect the constitutive
response in the serviceability limit state.

The case of �exural tensegrities is di�erent and somehow complementary. Here,
the opening of the joints is expected and tailor-designed to produce a speci�c
straining of the tendons. The scope of post-tensioning is not that of inducing a
permanent compression in a quasi-brittle material like concrete, but rather that
of providing a relevant contribution to the elastic strain energy for a prestress-
stable hinge-jointed structure, whose bending sti�ness can be tuned according to
the speci�c application. Then, the function of the cable is upgraded, and passes
from that of a mere reinforcement element to that of a constitutive element.

The opening of the joints is obtained through a tailor-shaping of the contact
surfaces according to curved pro�les, so that any pair of consecutive segments,
supposed rigid at least as a �rst-order approximation, can roll one another along
design pitch lines. In particular, as a main deformation mode, a pure rolling motion
along these pitch lines is assumed, and the desired kinematics is obtained with
coupled conjugate pro�les. A demonstrative example of such a structural system
is provided in Figure 1.4. In particular, the straight and bent con�gurations of a
3D-printed cantilever are shown in Figure 1.4(a), where the segments are open to
visualize the passing-through tendon (black cable). The magni�cation of Figure
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(a) (b)

Figure 1.4. Flexural-tensegrity cantilever: (a) reference straight con�guration and bend-
ing deformation under a hanging weight; (b) detail of the contacts in the straight and
rotated states, with evidence of the elongation of the tendon due to the opening of the
joints. Millimeter grid paper on the background for dimensional reference.

1.4(b) evidences the part of the tendon that remains exposed when the joint opens
up, and the segments roll one another along circular pitch lines. The elongation of
the cable, to an amount dictated by the shape of the contact surfaces, thus a�ects
the elastic energy of the system and, hence, characterizes the constitutive bending
properties, as a function of the design shape of contact pro�les.

Since a relative rotation of any two segments results in a localized elongation
of the prestressing cable, the resulting internal constraint at the contact sections is
similar to a spring hinge between the coupled segments. As the cable is unbonded
in frictionless cavities and it passes through all the segments, these spring hinges
result to be interconnected and the response of the assembly turns out to be non-
local in type. By varying the design shape of the pitch lines, the initial tensile
force in the tendon and its axial sti�ness, and the type of allowed mobility of the
cable inside the segments (from axial stretching only, to increased lateral degrees
of freedom), it is possible to functionally grade the sti�ness, and to obtain, at least
in principle, any type of nonlinear, possibly non-monotone, moment vs. rotation
constitutive relation at the joints, according to the requirement in service. In addi-
tion, an active tensioning device could automatically pull or release the cable, so to
change the compliance of the system and reach diverse equilibrium con�gurations
under the same applied loads, or control the vibrations.

As the system consists of segments that are strung by a cable, it is possible to
fold and package them when the cable is slack (Figure 1.5), while their deployment
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Figure 1.5. Packaging of a �ex-ten assembly: beam in the deployed straight state,
disassembled beam (segments, cable and clamps to anchor the cable) and components
packed in a prismatic box for transportation.

is obtained by simply pulling the cable at one extremity, pressing against one end
segment. All these properties make the system particularly suitable to manufacture
(foldable) soft arms [15], especially for biomedical [16], robotics [17] and aerospace
[18] applications.

1.2 Objectives

As a global objective, the kinematics and the static/dynamic response of innovative
segmental assemblies, within the class of �exural tensegrity, will be investigated
under multiple loading scenarios and for di�erent design shapes of the contact
pro�les. More speci�cally, the principal scopes of such research can be listed as
follows.

� De�nition of the pure rolling kinematics for the contact joint and design of
the corresponding constructive details, with speci�c reference to a possible
manufacturing via 3D printing, CNC milling or casting in molds.

� De�nition of the law that relates the opening of the joints to the elongation
of the cable, once the shape of pitch pro�les is given, or, alternatively, �nding
the shape of contact pro�les for a target law of the cable elongation (as a
function of the rotation at the joint).

� Enhancing the mobility of the cable inside the segments, to attain complex
non-monotone constitutive relations for the joint, with the possibility to ob-
tain structures able to harness elastic energy and suddenly release it, by
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means of sequential snap-through instabilities, as a consequence of localized
perturbations.

� Modeling the segmental assembly as a whole, for any given constitutive re-
sponse of the contact joints, within a variational approach in order to �nd the
set of nonlinear equations that govern the response of the structural system,
both in the static and in the dynamic equilibrium states.

� Investigation of the continuum limit of the segmental assembly, with speci�c
reference to beam-like segmental structures, and comparison with the model
of Euler's elastica under large de�ections.

� Extension of the structural concept from the one-dimensional beam to the
cases of two-dimensional plates and three-dimensional assemblies, with a
speci�c design for the contact joint that allows a full 3D mobility.

� Validation of theoretical models and analytical �ndings, as well as testing
the manufacturing feasibility of the joint geometry, with experiments on 3D-
printed or laser-cut prototypes, tested under static and dynamic conditions.

� Study on the possible �eld applications of the �exural-tensegrity concept,
ranging from archery, to robotics, from marine propulsion with bio-inspired
beating tails to the broad �eld of kinetic architecture and industrial design.

� Further hints for future research are found in the di�erent kinematics of
sliding plates on wavy surfaces (rather than rolling along pitch pro�les),
which can �nd application in the interpretation of the mechanical behavior
of nacre-like laminates.

1.3 Outline

This work is divided into twelve chapters. In addition to the present introductory
Chapter 1, the subject is exposed according to the following order.

Chapter 2 � The basic concept of �exural tensegrity

The concept of �exural tensegrity is presented, with speci�c reference to the case of
cable-sti�ened segmental beams. A way to manufacture a contact joint, such that
consecutive segments move according to pure rolling along design pitch pro�les, is
proposed. The static equilibrium equations for the assembly under external loads
are derived through a variational approach. Prototypes with di�erent geometries
for the pitch pro�les are �nally built via 3D printing, and tested to validate the
theoretical model.
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Chapter 3 � The continuum approximation

The continuum limit of �ex-ten segmental beams is analyzed. This corresponds to
the case in which the number of segments increases to in�nity and their length
decreases to zero. The model represents a peculiar elastica with nonlocal bending
sti�ness and hardening behavior under loading. Classical semi-analytical solutions,
via elliptic integrals, that describe the bent shape of the thin lamina �rst analyzed
by Euler, also apply to the nonlocal elastica here derived from �exural tensegrity.
Such solutions are also compared with numerical results and with a simpli�ed
model that relies on a shape function. Examples are provided for axial buckling
and bending under concentrated and distributed loads.

Chapter 4 � Dynamic aspects

The dynamic problem for �ex-ten beams is analyzed, and the corresponding nonlin-
ear governing equations are obtained thanks to Hamilton's principle. Experiments
on simple cantilevers suggest how to model the possible sources of dissipation, by
means of viscous damping and additional frictional moments. In the continuum
limit, a simpli�ed model is derived, based on the de�ection of the beam described
via shape function. This leads to a peculiar Du�ng-like oscillator, whose vibrations
can be excited/controlled by varying the cable sti�ness and prestress.

Chapter 5 � Multi-stable �ex-ten beams

An improved mobility of the cable in hourglass-shaped cavities inside the segments,
rather than in tubular sheaths, allows for a multi-stable behavior of the contact
joints. The response under bending of multi-stable �ex-ten beams is theoretically
analyzed, both in a hard and soft device (prescribed rotation angles or loads at the
extremities of the beam, respectively), and analytical �ndings are corroborated by
experiments on 3D-printed prototypes.

Chapter 6 � A snapping �ex-ten cantilever

A further increased mobility of the cable within larger cavities inside the segments
is the basis for the design of a snapping cantilever beam, that behaves like a �ag-
ellating tail. The sequential snapping of the joints causes the beam to reverse its
shape, as a consequence of the rotation of just one driving segment. The dynamic
equilibrium equations are obtained, and then used to describe the motion of pro-
totypes whose snapping was recorded with a high-speed camera.

Chapter 7 � Two- and three-dimensional extensions

The extension from beam-like chains of segments to two- and three-dimensional
assemblies is introduced. A speci�c joint that allows 3D relative motions between
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the coupled segments is proposed. The requirement of a pure rolling contact can
limit the allowed mobility of the segments when more than two segments are in
reciprocal contact. Hence, a kinematic analysis is performed to �nd admissible
mechanisms, and 3D-printed prototypes are tested to check the new design.

Chapter 8 � Application 1: a �ex-ten bow

As a �rst �eld application, �ex-ten beams are used to manufacture the limbs of a
new type of bow. The bow is a case-study that involves the elastic return of the
limbs coupled with the inertial e�ects due to their mass and to the accelerated
arrow, thus representing a good benchmark problem to test the developed theoret-
ical approach, by comparing results with experiments. Moreover, the possibility of
tailor-shaping the pitch pro�les, which represent the design variables for �ex-tens,
together with the cable sti�ness and prestress, can be fully exploited to achieve
such a bending response that meets the archer's needs and optimizes the �ring
performance. The design variables are theoretically investigated, and two bows,
characterized by di�erent shapes for the pitch pro�les are �nally built and tested.

Chapter 9 � Application 2: propulsion in �uids

The possibility of using the snapping cantilever beam, previously introduced, as
a marine bio-inspired propeller is tested. The investigation is carried out only
experimentally, since �uid-structure interaction is a challenging problem to tackle
predictively because of the non-trivial coupling of elastic, inertial, and �uid forces,
which speci�cally depend on time, geometry, and the physical properties of both
�uid and structure. Thrust measurements on statically mounted tails are reported,
as well as a proof-of-concept toy boat propelled by the snapping tail.

Chapter 10 � Other potential applications

Further applications of �ex-ten structures are discussed. In particular, the envis-
aged �elds of applications range from kinetic architecture, to soft robotics, to indus-
trial design. More speci�cally, kinetic structures to support envelopes for shielding
and water collection are proposed, cable-actuated robotic limbs are presented, and
a desk lamp with a �ex-ten tunable arm is designed and prototyped.

Chapter 11 � From rolling to sliding: introduction to shear tensegrity

A di�erent type of kinematics is introduced. This corresponds to the sliding of
initially-matching plates along wavy surfaces, rather than the case of pure rolling
along pitch pro�les, investigated so far. The segmental assembly is declined as
a laminar brickwork, which is named �shear tensegrity� to refer to the sliding,
in contrast to ��exural tensegrities�, whose segments are rotated under bending.
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Here, each lamella of the brickwork can relative slide with respect to the adjacent
ones. As a result, the straining is due to the elasticity of the material and to the
opening of gaps at the interfaces between consecutive lamellae. The response of the
laminate is analyzed within structured deformation theory; it strongly depends on
the shape of the contact pro�les, as it happens for the complementary case of �ex-
tens under bending. The model, which deserves a speci�c research in the future, is
suitable to interpret the complex structural behavior of nacre and nacre-inspired
materials.

Chapter 12 � Final remarks

The results of the previous analyses are summarized and the main �ndings are
highlighted. Possible future developments for the proposed structural concept are
suggested, while open problems and hints for further research are discussed.



Chapter 2

The basic concept of �exural tensegrity

The �exural-tensegrity concept is here presented, theoretically analyzed and ex-
perimentally veri�ed for the paradigmatic case of a simply supported segmental
beam under di�erent external loads.

A row of rigid voussoirs joined by a passing-through pre-tensioned cable was
proposed at an embryonic level in [19], with the aim of obtaining a foldable elastica
for architectural applications. However, that analysis was limited to the case of
circular pitch lines, the theoretical modeling was for the linearized case only (small
rotations) and relied upon strong simplifying hypotheses, no speci�c design of the
joints to achieve the desired coupling along the pitch lines was considered, and
the results were not corroborated by experiments. All these pending points are
here analyzed in detail, and it is shown that the response of the beam is generally
nonlocal in type, because the second-order elongation of the cable, under large
de�ections, depends upon the rotations of all the segments. On the other hand
the response of each joint can be nonlinear in type, depending on the shape of the
pitch lines.

In Section 2.1, the starting point is the de�nition of the spring contact hinges,
appropriately designing the pitch lines and the corresponding internal constraint
to realize a pure rolling motion along them, so to impart the desired nonlinear
sti�ness to the joint as a function of the tensile force and axial sti�ness of the cable.
The theoretical analysis of the discrete assembly correlates the bending sti�ness
with the geometry of the segments and the mechanical properties of the tendons.
Section 2.2 is dedicated to the experimental veri�cation. Prototypes of the system
have been constructed with a 3D printer in order to obtain three di�erent-in-type
moment vs. rotation constitutive relations at the spring hinges: linear, super-linear
and sub-linear. The physical models, tested under various static loads, show an
excellent agreement with the theoretical predictions.

A selection of the main results here discussed can be found in [20].
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2.1 The segmental beam

The simplest structural model for a �ex-ten beam is that of a chain of rigid bodies
(segments) connected by spring hinges. The model problem corresponds to a simply
supported beam of the type indicated in Figure 2.1(a), composed of n longitudinal
rigid segments of length ℓi, with i “ 1 . . . n and

řn
i“1 ℓi “ L. Segments i and i` 1,

for i “ 1 . . . n ´ 1, are coupled together at the node i through a hinge �tted with
a nonlinear rotational spring. On the other hand, node 0 of segment 1 and node
n of segment n are constrained by a hinge and a roller, respectively. Introduce the
reference system px, yq as represented in Figure 2.1(b). The beam is loaded by a
plane system of vertical forces, whose e�ect is assigned by the resultant Pi of all the
forces acting on the segment i, considered positive in the direction of increasing y.
This force is applied at a distance bi from node i, as indicated in Figure 2.1(a). The
deformation of the beam, represented in Figure 2.1(b), is completely described by
the displacement components pui, viq of node i, for i “ 0, . . . , n, considered positive
in the same direction of the axes px, yq.

(a)

(b)

Figure 2.1. Scheme of a simply supported segmental beam with spring-hinged joints,
in (a) the reference and (b) the deformed state.

The �exural-tensegrity concept will allow to tailor design the constitutive mo-
ment vs. rotation relationship of each spring hinge. The forthcoming analysis con-
siders the case of a simply supported beam, but the results can be readily extended
to constraints of more general type.
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2.1.1 The contact joint

The construction of the spring hinges is the main aspect in the design of �ex-tens.
The constituent segments are pierced in the direction of the beam axis, housing
a sheath through which an elastic cable can slide, approximately with negligible
friction. When the cable is tensioned and later anchored at the end segments, the
various parts are brought into contact, likewise in a prestressed precast-concrete
segmental bridge. In our case, the contact surfaces of the segments are appropri-
ately shaped so that, under bending, the adjacent segments can relatively move
one another, as if they were in pure rolling contact, with no sliding, along the
design pitch lines, as schematically represented in Figure 2.2(a).

At least as a �rst-order approximation, one can overlook the curvature of the
�ttings at the end points of the sheaths in each segment, which are certainly neces-
sary to limit the contact stresses between the cable and the material, and consider
that the diameter of the sheath is much smaller than the length of the segment.
This means that in the deformed con�guration the cable follows a polyline, de-
�ned by the actual placement of the end points of the sheath of each segment. The
kinematics is completely described by the rolling contact along the design pitch
lines. Therefore, at each joint i the cable elongates of the quantity Λi , represented
in Figure 2.2(a), which depends only upon the relative rotation of the adjacent
segments, once the shape of the pitch lines is given. The tensile force N in the
cable correspondingly varies, but since sliding within the sheath is supposed to be
frictionless, it remains homogenous along its length.

The bending response of the beam depends upon the shape of the pitch lines
for segments i and i ` 1, since this a�ects the value of the cable elongation Λi

and, consequently, its stored elastic energy. Following the general method for de-
termining the forces and moments acting across any section of a slender member,
imagine a hypothetical cut or section across the member. In this case, it is con-
venient to consider a section that passes through the surfaces in contact without
trimming the segments, but cuts the cable in a point of the portion of length Λi ,
which remains exposed after the relative rotation of the segments. As represented
in Figure 2.2(b), the mutual actions across such a section are the tensile force N in
the cable, directed according to the line joining its exit points from the segments,
and the resultant of the contact forces, which is a concentrated force Ri applied
on a point of each segment that corresponds to the pitch point. Referring to the
classical theory of beams, such internal forces can be resolved into the shear com-
ponent Vi and the moment component Mi, which are represented in Figure 2.2(c).
Indeed, Vi is the unbalanced resultant of N and Ri in the vertical direction, while
Mi “ aiN , where the lever arm ai is the distance between the pitch point and line
of application of N , which depends only upon the relative rotation of the segments
once the pitch lines have been assigned.
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(a)

(b)

(c)

Figure 2.2. Con�guration consequent to the relative rotation of the segments. (a) Cable
elongation Λi at the i´th joint and lever arm ai of the tensile force N with respect to
the pitch point. (b) Schematics of the forces acting across a hypothetical section that
cuts the cable and separates the segments i and i` 1. These can be resolved (c) into the
vertical shear Vi and the bending moment Mi for the bent segmental beam.
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Observe that, in general, Ri is not parallel to N and it is not directed along the
normal to the pitch lines, in order to ful�ll the requisite of pure rolling contact with
no sliding. To explain, consider the example given by a couple of toothed wheels,
whose reciprocal motion is equivalent to the pure rolling along circular pitch lines.
The resultant of the contact forces between the lubricated teeth, is equipollent to
a concentrated force applied to the (ideal) contact point on the pitch lines, but it
is never directed towards the center of the circles, otherwise no couple could be
transferred through the mechanism.

(a)

(b)

Figure 2.3. Schematics of the pitch lines with the double couple of conjugate pro�les at
the contact hinge. (a) Undistorted reference con�guration; (b) actual con�guration and
actual pitch point P after the relative rotation of the segments.

If one simply designed the contact surfaces with the same shape of the pitch
lines, frictional forces would be necessary to achieve the desired pure rolling mo-
tion, which may not be compatible with the friction coe�cient of the material.
Therefore, the desired kinematics is achieved by using the geometrical interlocking
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provided by conjugate pro�les, associated with the design pitch lines. Figure 2.3
represents a solution with just a double couple of smooth conjugate pro�les. In
particular, Figure 2.3(a) schematically represents, either in blue or in red color,
the pitch line corresponding to one of the two segments in contact, and with the
same color the pro�les on the same beam segment that are conjugate with their
counterparts on the other segment. In general, friction along the conjugated pro-
�les is a parasitic action, to be limited by lubrication or non-stick interlayers like
polytetra�uoroethylene; hence, the contact along the conjugate pro�les is supposed
to be frictionless, with the contact forces directed along the common normal to the
pro�les at the contact points. When the segments undergo a relative rotation, as
represented in Figure 2.3(b), there is a unique con�guration that ful�lls the contact
between both couples of conjugate pro�les, and this corresponds to the con�gura-
tion associated with the pure rolling motion along the pitch lines. The resultant
of the contact forces on the conjugate pro�les is equipollent to Ri , applied at the
pitch point.

(a) (b)

Figure 2.4. Three dimensional drawing of the smooth contact surfaces. (a) Exploded
view of the joint evidencing the conjugate pro�les and the pitch lines in two adjacent
segments (blue dashed line indicates the cable axis); (b) the actual con�guration of the
joint, with the exposed portion of cable (in red), after a relative rotation of the segments.

Figure 2.4(a) shows a 3D drawing of one of the possible ways in which a joint
achieving such a kinematics could be operatively constructed. Each segment is
composed of three layers: the two external ones correspond to the two couples
of conjugate pro�les, whereas the central layer reproduces the pitch line. Strictly
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speaking, the central layer is not necessary because the kinematics is achieved by
using the conjugate pro�les only. However, it is maintained in this design because,
on the one hand, it hosts the cable and guides its deformed con�guration; on the
other hand, it helps to illustrate the concept from an experimental point of view.
In any case, because of the presence of the conjugate pro�les, the friction along
the pitch lines is inessential for the desired kinematics. The contact con�guration
in the deformed state is represented in Figure 2.4(b). Here, one can see, evidenced
with red color, the portion of cable that becomes exposed as a consequence of the
rotation, which corresponds to the elongation Λi just indicated in Figure 2.2(a).

Note that the manufacturing can be conveniently carried out with a 3D printer
(Figure 2.5(a)), through a deposition method [21], because each layer rests on
the previous one. On the other hand, this design is also suitable for CNC milling
(Figure 2.5(b)), with ordinary three-axis machinery, and for casting in simply-
carved molds (Figure 2.5(c)).

(a) (b) (c)

Figure 2.5. Di�erent ways to manufacture the segments: (a) 3D printing with a plastic
�lament; (b) CNC milling from solid acrylic or aluminium; (c) casting in molds.

There are many ways to determine the conjugate pro�les that achieve a rolling
motion along the assigned pitch lines, and the solution is not unique. Here, a
graphical method has been adopted, which is sometimes referred to as the method
of normals [22]. This method is directly based upon the de�nition: since conjugate
pro�les are pro�les in contact to each other during motion, the normal line to their
contact point passes, at each time, through the corresponding pitch point of the
primitive pro�les [23]. Once one of the two pro�les is given, the conjugate one can
be drawn point to point, through the graphical construction represented in Figure
2.6. Here, r and ρ are the pitch lines, with initial pitch point P0 . Given the pro�le
t, with initial contact point M0 , its conjugate τ is found by considering that any
pair of points P 1 and P 2, equidistant from P0 along r and ρ, shall correspond
to the contact points M 1 and M2 that are their normal projection on t and τ ,
respectively, so that the distances between P 1 and M 1 and between P 2 and M2

are equal, and the angle between P 1M 1 and the normal to the pitch line r in P 1 is
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Figure 2.6. Graphical construction of the conjugate pro�les: r and ρ are the pitch lines,
t and τ the corresponding conjugate pro�les.

(a)

(b)

Figure 2.7. Schematics of the pitch lines with conjugate toothed pro�les at the contact
hinge. (a) Undistorted reference con�guration; (b) actual con�guration after the relative
rotation of the segments.
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equal to the angle between P 2M2 and the normal to the pitch line ρ in P 2 [22].
Once the pitch lines have been decided, the major di�culty consists in selecting

the �rst one of the two conjugate pro�les (the second one is uniquely determined
from the �rst one), in such a way that kinematic interference is avoided and the
contact stress remains within allowable limits. The construction shall be repeated
in order to �nd the second couple of conjugate pro�les. In the following we will limit
to the case in which the pitch lines are symmetric with respect to both the tangent
and the normal axes at their initial pitch point P0 . In this condition, the second
couple of conjugate pro�les can be obtained by mirroring the �rst couple with
respect to the tangent axis of symmetry (Figure 2.3). In this case, all the segments
composing the beam, except at most the end ones, are identical: the assembly is
done by simply rotating half the segments of 180˝ about their longitudinal axis,
so to bring the conjugate pro�les in contact, as indicated in Figure 2.4(a).

Another possibility is to shape the contact pro�les as toothed surfaces, designed
according to standard methods for spur gears [24, 25]. Figure 2.7, which is the
counterpart of Figure 2.3, schematically represents this second solution. The dotted
line, either in blue or in red color, de�nes the pitch line corresponding to one of
the two segments in contact, and the solid line with the same color describes the
toothed pro�le on the same beam segment that is conjugate with its counterparts
on the opposite segment. Figure 2.8(a) reports an exploded view of the joint,
where the central layer reproducing the pitch lines is maintained, as before, to

(a) (b)

Figure 2.8. Three dimensional drawing of the toothed contact surfaces. (a) Exploded
view of the joint evidencing the toothed pro�les and the pitch lines in two adjacent
segments (blue dashed line indicates the cable axis); (b) the actual con�guration of the
joint, with the exposed portion of cable (in red), after a relative rotation of the segments.
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guide the deformation of the cable; the assembled joint in a rotated con�guration
is represented in Figure 2.4(b).

The second design with toothed pro�les (Figure 2.7) is well suited for classical
circular pitch lines, the ones usually employed in gear transmissions; this also
corresponds to a case in which the contact pro�les can be easily machined. On the
contrary, the �rst construction with a double couple of smooth conjugate pro�les
(Figure 2.3) is much more general and should be preferred for pitch lines whose
shape di�ers from the simple geometry of the arc of circle/ellipse.

2.1.2 Constitutive equations

With reference to Figure 2.2(a), observe that, when a relative rotation occurs
between the two consecutive segments i and i ` 1 at the i´th contact joint, the
cable is constrained to vary its length of Λi . As the tendon is supposed to be
unbonded, this quantity can be accommodated by the whole cable length. Denoting
with K the equivalent axial sti�ness of the tendon1, the consequent increment of
tensile force is KΛi. Globally, as a consequence of the bending of the whole beam
composed of n segments, the variation of length of the tendon due to the rotation
of the n ´ 1 contact hinges reads Λ “

řn´1
i“1 Λi and its axial force passes from the

initial prestressing value N0 to N “ N0 ` KΛ.
The static state at the i´th contact joint is also de�ned by the distance ai

from the pitch point to the line identi�ed by the portion of the cable that becomes
exposed after the relative rotation of the segments, also indicated in Figure 2.2(a).
This represents the internal lever arm of the tensile force N , i.e., the contact joint
is a spring hinge transmitting the bending moment Mi “ aiN .

Remarkably, the quantities Λi and ai , for any given shape of the pitch lines, are
correlated by pure kinematics. In particular, if ∆φi denotes the relative rotation
between the consecutive segments i and i ` 1, one �nds

aip∆φiq “
d

d∆φi

Λip∆φiq . (2.1.1)

To prove this relation, let R “ Rp∆φiq denote the radius of curvature of the pitch
line at the pitch point. Consider an in�nitesimal incremental relative rotation d∆φi

in a neighborhood of the rotated con�guration ∆φi of Figure 2.2(a). Since the pure
rolling motion is an in�nitesimal rotation about the pitch point, but the pitch point
moves as well, one can write

1If E, A and L0 represent the Young's modulus, the cross sectional area and the undistorted
length of the cable, respectively, one has that K “ EA{L0, with L0 ă L, being L the total length
of the segmental beam. However, if an additional spring is added in series with the cable at the
anchor point, the e�ective sti�ness varies accordingly.
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dai “ ´
Λi

2

d∆φi

2
` R

d∆φi

2
, (2.1.2a)

dΛi

2
“ ai

d∆φi

2
. (2.1.2b)

Clearly, equation (2.1.1) comes from (2.1.2b). Moreover, using (2.1.2b) in (2.1.2a)
one obtains

d2ai
d∆φi

2
“ ´

1

4
ai `

1

2

dR
d∆φi

. (2.1.3)

This equation is the one that serves to design the shape of the pitch lines. For
instance, from (2.1.3) the condition to achieve a linear dependence ai “ B∆φi ,
between the relative rotation and the internal lever arm, reads

dR
d∆φi

“
B

2
∆φi ñ R “ R0 `

B

4
∆φi

2 . (2.1.4)

where R0 is the radius of curvature of the pitch line at the contact point in the
straight reference con�guration ∆φi “ 0 of Figure 2.3(a). With respect to the
reference frame ξ ´ η of Figure 2.3, thanks to symmetry, one �nds the analytic
expression of the pitch line by considering that

1

R
“

η2

r1 ` pη1q2s
3{2

, η1
“ tan

∆φi

2
(2.1.5)

where we have used the notation p¨q1 “ Bp¨q{Bξ.
A linear relationship is the simplest one that can be considered, and, left aside

the variation of the tensile force in the cable associated with its straining, which is
negligible in the case of highly prestressed cables for which N0 " KΛ, this provides
a linear relationship between the moment at the contact joint and the relative
rotation. In the continuum limit, this corresponds to classical Euler's elastica, as
explained in the following Chapter 3. From (2.1.4), it is evident that circular pitch
lines R “ R0 can approximate a linear relationship up to in�nitesimal that are of
second order in ∆φi . A better approximation is granted by elliptic pitch lines, as
(2.1.4) indicates that the radius of curvature shall increase as a consequence of the
relative rotation.

For the speci�c case of circular pitch lines (R equal to a constant value), the
elongation Λi and the lever arm ai can also be obtained from simple geometry. In
particular, one has

Λi “ 2R
´

1 ´ cos
∆φi

2

¯

, ai “ R sin
∆φi

2
. (2.1.6)
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Note that the structure of (2.1.6), obtained from geometry, con�rms the validity
of (2.1.1). In addition, observe that the fact that circular pitch lines provide an
approximated linear law of the lever arm ai as a function of the rotation ∆φi of the
joint can be also veri�ed by expressing (2.1.6) through a truncated Taylor series
for sine and cosine functions. In this case, one �nds

Λi »
R

4
∆φi

2 , ai »
R

2
∆φi . (2.1.7)

(a) (b)

(c)

Figure 2.9. Linear case: solution of the di�erential equations (2.1.4) and (2.1.5) com-
pared with the approximations with circular or elliptical pitch lines. Dimensionless plot
of (a) the internal lever arm ai and (b) of the radius of curvature R at the pitch point,
as a function of the relative segmental rotation ∆φi; (c) corresponding non-dimensional
plot of pitch lines.
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The pitch line pro�les that achieve a linear relationship ai “ B∆φi come from
the solution of the di�erential equations (2.1.4) and (2.1.5), but, as previously
said, they could be approximated with arcs of a circle or of an ellipse. Figure
2.9 indicates the level of approximation by considering the three aforementioned
cases, labeled as �di�erential equation�, �circle� and �ellipse�. The graphs of aip∆φiq

represented in Figure 2.9(a), indicate that elliptical pitch lines provide an excellent
approximation up to ∆φi » 2 rad, while circular pitch lines can be used up to
∆φi » 0.5 rad. Figure 2.9(b) reports the radius of curvature at the pitch point
as a function of ∆φi , and Figure 2.9(c) complements the analysis showing the
corresponding pitch lines.

More in general, observe that the fact that the elongation of the cable Λ,
and consequently its tensile force N , depends upon the rotation of all the joints
is responsible of the nonlocal behavior of the beam. This is because the relative
rotation of any two segments produces the elongation Λi , which modi�es the overall
cable elongation Λ from the hypothesis of perfectly unbonded prestressing tendon.
Moreover, since N increases with Λi , or Λ, also in the case of a linear relationship
between ai and ∆φi , the internal moment Mi “ aiN becomes a super-linear
function of ∆φi . Only in the case of highly prestressed cables, or, equivalently, for
a very compliant tendon (K Ñ 0), for which N0 " KΛ, this provides an internal
moment that reads Mi » aiN0 , and is characterized by a trend similar to that of
the lever arm ai as a function of the relative rotation ∆φi . Note that, in this case,
also the nonlocal interaction is (approximately) ine�ective.

2.1.3 Static equilibrium equations

With reference to Figure 2.10(a), the absolute rotations φi of the segments i,
i “ 1 . . . n, positive if clockwise, are chosen as the Lagrangian variables to describe
the deformation of the beam of Figure 2.2.

Since the segments are sti�, and can be assumed rigid as a �rst order approx-
imation, the elastic strain energy U is due to the deformation of the cable only.
Let K represent the elastic constant of the cable as a spring and denote with Λ0

the cable elongation in the reference state of a straight beam, so that the initial
pre-tension is N0 “ K Λ0. If Λ is the successive variation of the cable length due
to the in�exion of the beam, the increment ∆U of the elastic strain energy in the
cable reads

∆U “

ż Λ`Λ0

Λ0

KΛ̄ dΛ̄ “ KΛ0Λ `
1

2
KΛ2

“ N0

n´1
ÿ

i“1

Λi `
1

2
K

ˆ n´1
ÿ

i“1

Λi

˙2

. (2.1.8)
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(a)

(b)

Figure 2.10. Lagrangian variables for the deformed beam. (a) The deformed state φi ,
i “ 1 . . . n, and equilibrium on the i´th segment; (b) perturbation φi ` δφi from the
deformed state.

Recall from Figure 2.1 that Pi is the resultant of all the vertical (conservative)
forces acting on the i´th segment of length ℓi , and it is applied at a distance bi
from node i. Hence, the work ∆W of external loads from the undistorted straight
state to the bent con�guration reads

∆W “

n
ÿ

i“1

Pi v̄i “

n
ÿ

i“1

#

Pi

«˜

i
ÿ

j“1

ℓj sinφj

¸

´ bi sinφi

ff+

, (2.1.9)

where v̄i denotes the vertical displacement of the point where Pi is applied.
The problem to be solved is

∆U ´ ∆W “ min , G “

n
ÿ

i“1

ℓi sinφi “ 0 , (2.1.10)
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where condition G “ 0 is the kinematic constraint for a simply supported beam.
It is important to remark that Λ “

řn´1
i“1 Λi , with Λi de�ned as per Figure

2.2(a), and that Λi is a function the relative rotation ∆φi “ φi ´ φi`1 , i.e., Λi “

Λipφi ´ φi`1q. Moreover, recalling from Figure 2.2(a) that ai is the lever arm of
the cable force N in the i´th joint, it is immediate to deduce that

$

’

’

&

’

’

%

BΛj{Bφi “ 0 , if j ‰ i ´ 1 ^ j ‰ i ,

BΛj{Bφi “ ´ai´1 , if j “ i ´ 1 ,

BΛj{Bφi “ ai , if j “ i .

(2.1.11)

It should be observed that, due to assumed symmetry in the construction of the
pitch lines of Figure 2.3, in general Λi is an even function of ∆φi and, consequently,
ai is an odd function of ∆φi: the sign of ai is consistent with the sign of the spring-
hinge moment Mi “ aiN , which is positive if the beam curvature is as indicated
in Figure 2.2, negative otherwise.

Therefore, one can write

B∆U

Bφi

“
B∆U

BΛ

BΛ

Bφi

“ KpΛ0 ` Λq

ˆ n´1
ÿ

j“1

BΛj

Bφi

˙

“ Npai ´ ai´1q , (2.1.12)

B∆W

Bφi

“

n
ÿ

j“1

Pj
Bv̄j
Bφi

“

ˆ n
ÿ

j“i

Pj

˙ˆ

ℓi cosφi

˙

´ biPi cosφi , (2.1.13)

BG

Bφi

“ ℓi cosφi . (2.1.14)

Setting H “ ∆U ´ ∆W ` µG, where µ is the Lagrange's multiplier, the system
(2.1.10) is solved by the n` 1 equations BH{Bφi “ 0 (i “ 1 . . . n) and BH{Bµ “ 0,
which read

Npai ´ ai´1q ´

ˆ n
ÿ

j“i

Pj

˙ˆ

ℓi cosφi

˙

` biPi cosφi ` µℓi cosφi “ 0 , (2.1.15a)

n
ÿ

j“1

ℓj sinφj “ 0 . (2.1.15b)

Clearly, N “ KpΛ0 ` Λq is the tensile force in the cable, uniform along its length
from the hypothesis of negligible friction. Whereas Λ0 is a datum from the initial
prestress, Λ “

řn´1
i“1 Λi is a nonlinear function of all φi and depends upon the

selected shape for the pitch lines at the contact sections. Also observe that the



26 Chapter 2. The basic concept of �exural tensegrity

Langrange's multiplier µ plays the role of the upward vertical constraint reaction
at the right-hand-side roller of Figure 2.10(a), whereas the equation (2.1.15a) comes
from the principle of virtual displacement for a variation φi ` δφi at i´th segment
(Figure 2.10(b)). In fact, one has that the corresponding variation v̄j ` δv̄j reads

δv̄j “

$

’

&

’

%

0 , for j ă i ,

pℓi ´ biq cosφi δφi , for j “ i ,

ℓi cosφi δφi , for j ą i .

(2.1.16)

In particular, (2.1.15a) corresponds to the rotational equilibrium of the i´th seg-
ment about the i´th node, indicated at the top of Figure 2.10(a). In fact, the
bending moments at the pi ´ 1q´th and i´th nodes are equal to Mi´1 “ ai´1N
and Mi “ aiN , respectively, whereas the vertical shear force at node i´ 1 is equal
to Vi´1 “ µ ´

řn
j“i Pj. Consequently one has

Mi ´ Mi´1 ` Vi´1 ℓi cosφi ` Pi bi cosφi “ 0 , (2.1.17)

which clearly coincides with (2.1.15a).
It is important to observe from (2.1.15) that the momentMi at the i´th spring

hinge is a function not only of its relative rotation ∆φi “ φi ´ φi`1, but also of
all the relative rotations ∆φi for i “ 1 . . . n ´ 1. This nonlocal dependence is a
direct consequence of the quadratic term in Λ of (2.1.8). Consequently, in the
schematic representation of Figure 2.1, the spring hinges should be intended in
a broader sense than in the classical acceptation, since the sti�ness of each one
indeed depends upon the rotation of all the other hinges. Only in the case in which
1
2
KΛ2 ! KΛ0Λ in (2.1.8), which is equivalent to assume that the tensile force in

the cable remains almost constant during bending, does the spring-hinge sti�ness
depend upon its relative rotation only, so that the nonlocal e�ect vanishes.

2.2 Examples

A few case-studies are now presented in order to illustrate the practical develop-
ment of the �exural-tensegrity concept.

2.2.1 Construction of the pitch lines

Three prototypes have been designed and manufactured. As indicated in Figure
2.11(a), these represent three di�erent-in-type relationships for the lever arm ai of
the tension force N , de�ned in Figure 2.2(a), as a function of the relative rotation
∆φi “ φi ´ φi`1: linear, sub-linear and super-linear. Figure 2.11(b) reports the



2.2. Examples 27

(a) (b)

Figure 2.11. Constitutive relations for the prototyped beams. (a) Lever arm ai of the
tension force N in the cable and (b) local cable elongation Λi at the i´th spring hinge,
as a function of the relative rotation ∆φi “ φi ´ φi`1.

corresponding local cable elongation Λi , as indicated in Figure 2.2(a). The graphs
have been drawn only for ∆φi ě 0, but recall that ai and Λi are, respectively, an
odd and an even function of ∆φi , as detailed in Section 2.1.3.

The analytical expression of such laws can be obtained by observing that the
actual pitch point P of coordinates pξ, ηq with respect to the reference frame drawn
in Figure 2.3, belongs to the pitch line of equation η “ fpξq. Thanks to the
symmetry in the construction, as discussed in Section 2.1.1, denoting with f 1p¨q

the �rst derivative of the function fp¨q, one obtains from simple calculations that

ai “

d

ˆ

ξ ´
ξf 1pξq ´ fpξq

f 1pξq ` 1{f 1pξq

˙2

`

ˆ

fpξq ´
fpξq ´ ξf 1pξq

1 ` f 1pξq2

˙2

, (2.2.18)

Λi “ 2

d

ˆ

ξf 1pξq ´ fpξq

f 1pξq ` 1{f 1pξq

˙2

`

ˆ

fpξq ´ ξf 1pξq

1 ` f 1pξq2

˙2

. (2.2.19)

It is immediate to express these quantities as a function of ∆φi by observing that

f 1
pξq “ tan

∆φi

2
ñ ξ “ f 1´1

´

tan
∆φi

2

¯

, (2.2.20)

where f 1´1p¨q denotes the inverse of the function f 1p¨q.
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For the linear case, the pitch lines can be well approximated by arches of ellipse,
as detailed in Section 2.1.2, whereas power laws can be selected for the sub-linear
and the super-linear cases. The graphs of Figure 2.11 correspond to the equations

...

ηrmms “ fpξrmmsq “

$

’

’

&

’

’

%

β ´
β

α

a

α2 ´ ξ2 , linear case ,

α1 |ξ|3 , sub-linear case ,

α2 |ξ|1.5 , super-linear case ,

(2.2.21)

with α “ 40.9626 mm, β “ 50 mm, α1 “ 0.0004 mm´2 and α2 “ 0.0756 mm´0.5.
Observe that the local cable elongation Λi is convex function of ∆φi whenever the
pitch lines are convex or, equivalently, ai is a monotone increasing function of ∆φi.

For a practical representation, the values of ai from (2.2.18) were �tted with a
polynomial of the 1st, 8th and 4th order for the linear, sub-linear and super-linear
cases, respectively. Recalling (2.1.1), the Λi from (2.2.19) were correspondingly
�tted with polynomials of the 2nd, 9th and 5th order. The average di�erence with
respect to the theoretical value is always less than 0.6% within the range |∆φi| ď

30°, in particular less than 0.01% for the linear case.

2.2.2 Manufacturing of prototypes

The prototypes were manufactured with a 3D printer in Polylactic Acid (PLA),
a thermosoftening plastic obtained from renewable resources such as corn and
sugar cane, using the deposition method (FDM) [21]. The typical segments for the
three considered cases, with indication of their size, are represented in Figure 2.12.
Each beam, made with 10 segments, has a free span of 613.5 mm, calculated from
the midpoints of left- and right-hand-side supports in the reference undeformed
con�guration, with a total weight of 2.313 N, 2.948 N and 2.403 N for the linear,
sub-linear and super-linear cases, respectively.

The prestressing cable is a polyamide 6.6 wire of diameter 1.1 mm, placed in
series with one spring of sti�ness k0 “ 3.9 N/mm at each end, as represented
in Figure 2.13. In this way, the e�ective sti�ness K of the system, introduced in
(2.1.8), satis�es 1{K “ 2{k0 ` L0{EA, where EA{L0 “ 2.6 N/mm is the sti�ness
of the nude cable, as mentioned in Footnote 1. The initial prestress has been
calculated by measuring (through a Vernier caliper) the shortening δ0 of one of
the end springs after having tensioned the cable; in fact, since the springs and the
cable are in series, one has that N0 “ KΛ0 “ k0 δ0.

The end segments are shaped with a vertical appendix, which, in the experi-
mental setup, is in contact with a lubricated support to achieve a roller constraint.
In Figure 2.13 it is also evident the horizontal cantilever at the extremity of which
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(a)

(b)

(c)

Figure 2.12. Geometry of the typical segment of the tensegrity beam: (a) linear case;
(b) sub-linear case; (c) super-linear case.

Figure 2.13. End segment of the beam, with indication of the additional compression
spring, the vertical appendix in contact with the support and the cantilever at the ex-
tremity of which the force is applied for the four-point-bending test.
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a conservative force, orthogonal to the beam axis in the undistorted (straight)
con�guration, is applied for the four-point-bending (4P-B) tests. The lever arm,
initially 35 mm, varies because of geometric nonlinearity as the beam ends rotate.

All contact surfaces of the spring hinges, as well as the cable inserted in the
ducts, were lubricated with silicone grease to minimize the e�ects of friction.

2.2.3 Experiments under bending

For three di�erent values of the initial tensile force N0 in the cable, the simply sup-
ported beams have been tested either under their self-weight or under the action
of two end forces applied at the extremities of the cantilevers (4P-B), as indicated
in Figures 2.14(a) and 2.14(b), respectively. In the 4P-B con�guration, in order

(a)

(b)

(c)

Figure 2.14. Experimental setup: (a) bending under self-weight; (b) four-point-bending;
(c) bending under self-weight and tandem load at midspan.
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to rule out the e�ects of the dead weight, the beam was lying on a horizontal
plane, lubricated with oenological vaseline oil. The external forces were introduced
through wires, directed to the vertical through lubricated pulleys, to which weights
had been attached. Table 2.1 represents the test matrix. In total 9 con�gurations
were considered, i.e., three con�gurations for each one of the linear, sub-linear and
super-linear cases, indicated with the labels �lin�, �sub� and �sup�, respectively,
which di�er one another in the initial prestress N0 . Each con�guration was tested
under 4P-B with external end forces indicated in the third column and under the
self-weight, reported in the fourth column, for a total of 18 tests. Furthermore, 13
additional measurements were made, for the linear case only, in the con�guration
of Figure 2.14(c), in which, besides the self-weight, a variable tandem load is act-
ing, with the two forces applied at the centroid of the two midspan segments. The
tandem forces were applied through two clamps, to which two additional weights
were hung. The background plane was graded for reference, and the beam de�ec-
tion was measured with a Vernier caliper. The measurement error can be estimated
to be ˘0.001 N for the applied forces, and ˘0.05 mm (caliper precision) for de�ec-
tions. There are of course additional sources of error, but a precision of less than
1 mm for the sag of the beam can be con�dently assured.

Under self-weight, the comparison between experimental and analytical re-
sults, obtained with the theory of Section 2.1.3, is shown in Table 2.2 in terms
of maximum de�ection. The beam response is highly nonlinear and the de�ection
is strongly a�ected by the initial prestress N0. The error between measured values
and the theoretical predictions is smaller than 3%, which is satisfactory taking into

Table 2.1. Test matrix: con�guration reference for the linear (lin), sub-linear (sub) and
super-linear (sup) cases, initial tensile force (prestress) N0 in the cable, end forces under
4P-B, self-weight of the typical segment.

Con�guration Prestress External Segment
reference N0 end force self-weight

lin 1 33.2 N
lin 2 44.1 N 2.335 N 0.231 N
lin 3 51.1 N

sub 1 23.0 N
sub 2 32.4 N 5.337 N 0.295 N
sub 3 38.2 N

sup 1 38.2 N
sup 2 56.6 N 1.216 N 0.240 N
sup 3 64.0 N
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Table 2.2. Maximum de�ections of the beam under self-weight. Comparison between
theoretical predictions and experimental measurements.

Con�guration Theoretical Experimental Error

lin 1 126.5 mm 125.0 mm 1.2 %
lin 2 106.0 mm 107.0 mm 0.9 %
lin 3 95.5 mm 98.0 mm 2.7 %

sub 1 69.5 mm 71.0 mm 2.2 %
sub 2 43.6 mm 44.0 mm 0.9 %
sub 3 32.7 mm 33.0 mm 0.9 %

sup 1 189.1 mm 190.0 mm 0.5 %
sup 2 173.8 mm 174.0 mm 0.1 %
sup 3 168.6 mm 169.0 mm 0.3 %

Table 2.3. Maximum de�ections of the beam under four-point-bending. Comparison
between theoretical predictions and experimental measurements.

Con�guration Theoretical Experimental Error

lin 1 136.3 mm 135.0 mm 1.0 %
lin 2 109.6 mm 112.0 mm 2.2 %
lin 3 97.1 mm 99.0 mm 1.9 %

sub 1 140.1 mm 140.0 mm 0.1 %
sub 2 106.4 mm 106.0 mm 0.4 %
sub 3 81.1 mm 83.0 mm 2.3 %

sup 1 178.3 mm 176.0 mm 1.3 %
sup 2 158.1 mm 158.0 mm 0.1 %
sup 3 149.9 mm 151.0 mm 0.7 %

account the possible errors due to printing tolerances, measurement inaccuracies
and the fact that our model neglects the straining of the segments (especially at
the contact points) and their slight variation in length during the rolling motion,
as well as the role of friction at the contact hinges, at the supports and between
the cable and the duct.

Table 2.3 represents the counterpart of Table 2.2 for the four-point-bending
tests. Again, the error remains smaller than 2.5%, despite of the fact that, now,
there is an additional source of uncertainty due to the inevitable frictional contact
between the supporting table and the beam resting on it. We have particularly
veri�ed that, in this case, the relative rotations ∆φi are the same at all the spring
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hinges i “ 1 . . . n ´ 1, as it is qualitatively clear by observing Figure 2.14(b).
From a theoretical point of view, this �nding is a direct consequence of the fact

that the local cable elongation Λi is a convex function of ∆φi , i “ 1 . . . n ´ 1, as
shown in Figure 2.11(b). Pure bending can be equivalently obtained by imposing
a relative rotation pn´ 1q∆φ to the ends of the beam, with ∆φ the average hinge
rotation. Therefore, recalling (2.1.8), since the external forces per unit length are
null, the minimization problem (2.1.10) can be conveniently restated in the form

U “ KΛ0

ˆ n´1
ÿ

i“1

Λi

˙

`
1

2
K

ˆ n´1
ÿ

i“1

Λi

˙2

“: Hp∆φ1, . . . ,∆φn´1q “ min ,

n´1
ÿ

i“1

∆φi “ pn ´ 1q∆φ ,

(2.2.22)

where Hp∆φ1, . . . ,∆φn´1q is a convex function in the pn ´ 1q dimensional space.
Denote with H,i the partial derivative of the function H with respect to the vari-
able ∆φi . It is straightforward to demonstrate that, since the pitch lines are the
same for each hinge and the segments have the same length, H,ip∆φ, . . . ,∆φq “

H,jp∆φ, . . . ,∆φq, @i, j “ 1 . . . n ´ 1. Therefore, one can write

Hp∆φ, . . . ,∆φq “ Hp∆φ, . . . ,∆φq `

n´1
ÿ

i“1

“

H,ip∆φ, . . . ,∆φq
`

∆φi ´ ∆φ
˘‰

ď Hp∆φ1, . . . ,∆φn´1q @∆φi such that
n´1
ÿ

i“1

∆φi “ pn ´ 1q∆φ ,

(2.2.23)

where the inequality results from the fact that any tangent plane supports a convex
function from below. This means that the condition ∆φi “ ∆φ, i “ 1 . . . n ´ 1,
minimizes the energy.

In order to evidence the nonlinear response of the beam, an increasing tandem
load composed by two twin forces F was superimposed to the dead weight, as per
Figure 2.14(c). The experimental measurements, limited on the structure with a
linear ai vs. ∆φi relationship, were juxtaposed with the results from the model of
Section 2.1.3. In particular, we are now considering, for the sake of comparison,
also an approximation of the strain energy (2.1.8), here referred to as the ��rst-
order approximation�, in which the term KΛ2{2 is neglected with respect to N0Λ.
This is equivalent to assume that the tensile force in the cable remains constant
during the deformation of the beam (N » N0).
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N
0
 = 51.1 N

N
0
 = 33.2 N

(a)

F = 0.5 N

(b)

Figure 2.15. Maximum de�ections vmax of the beam (linear case) under self-weight and
tandem forces F . Comparison between experiments, theoretical model and its �rst-order
approximation at: (a) constant N0 and variable F ; (b) constant F and variable N0 .
Measurement errors of ˘0.1 N for N0 and ˘1 mm for vmax .

This comparison is of importance, because it has been shown in Section 2.1.3
that, when the quadratic term in Λ is negligible, each spring hinge in the scheme
of Figure 2.1 has a local response that depends upon its rotation only. Otherwise,
a nonlocal e�ect arises due to the second-order straining of the cable.

For two values of the initial prestressing force (N0 “ 33.2 N or N0 “ 51.1 N) the
maximum de�ection vmax at the middle of the beam is reported in Figure 2.15(a)
as a function of the tandem forces F . The model (continuous blue curve) provides
an excellent agreement with the experimental results (red dots). As expected,
the ��rst-order approximation� (dashed green line) slightly underestimates the
sti�ness of the beam, the error being higher the smaller the pre-stressing force N0

is. Obviously, the di�erence increases as the load increases, because the second-
order cable elongation becomes more important.

In order to evaluate the e�ect of the initial prestress, the tandem forces F were
maintained constant to the value 0.5 N while N0 was continuously varied. The
corresponding de�ection vmax is recorded in Figure 2.15(b). The model (continuous
blue curve) again provides an excellent agreement with the experiments (red dots).
The inaccuracy of the ��rst-order approximation� (dashed green line) diminishes as
N0 increases, because the more the beam is pre-stressed, the lower is the de�ection
and, correspondingly, the lower is the second-order elongation of the cable.

If the beam is used in practical structural applications, it cannot be too de-
formable. From an engineering point of view, it is reasonable to expect that the
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initial prestress N0 should be such that the maximum de�ection under self-weight
vmax should remain within the order of, say, L{5. For this prototype, approximately
62 cm long, this means a maximum sag of about 12 cm. From the graphs in Fig-
ure 2.15, one deduces that, in this case, the ��rst-order approximation� is quite
accurate, and it can be used in a preliminary design phase.

2.2.4 Discussion on joints modeled as spring hinges

In the previous Section 2.1, the coupling between any pair of consecutive seg-
ments is that of a pure rolling contact along the pitch pro�les, which a�ects the
strain energy of the system through the cable elongation Λ. Such a coupling was
used to deduce the constitutive relations for the joints; on the contrary, the joints
were modeled as (nonlocal) spring hinges when macroscopically considering the
segmental beam as a whole. This is obviously an approximation because the seg-
ments actually move one another in pure rolling along the pitch pro�les, so that
the pitch point moves as well during the rotation, while, in a (spring) hinge, the
pivot point remains �xed.

As a consequence of the fact that the segments move on curved surfaces, their
length slightly varies during the rotation of the joints, while in the model of Section
2.1.3, the segmental length ℓi was kept �xed under bending deformation. Hence,
the validity of the simpli�ed modeling of the joint as a spring hinge needs to
be critically discussed. In particular, this assumption is validated whenever the
variation in length of the segments, during the reciprocal rolling, represents a
small percentage of ℓi , so that it can be overlooked. On the contrary, when this
argument is not satis�ed, or high accuracy in the description of the kinematics of
the coupled segments is required, the model of Figure 2.1 should be updated.

(a) (b)

Figure 2.16. Comparison between the spring-hinge model and the actual �ex-ten kine-
matics: (a) cantilever with 4 segments coupled by nonlocal spring hinges subjected to
self-weight; (b) corresponding �ex-ten beam with pure rolling along the pitch lines.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Comparison between the spring-hinge model and the actual �ex-ten kine-
matics. Horizontal displacement u and vertical displacement v of the centroid of the tip
segment for: (a)-(b) variable prestress N0 in the cable and R “ 5 cm, ∆L “ 10 cm,
mi “ 0.01 kg, K “ 1000N/m; (c)-(d) variable segmental length ∆L and R “ 5 cm,
N0 “ 5N, mi “ 0.01 kg, K “ 1000N/m; (e)-(f) variable pitch line radius R and
∆L “ 10 cm, N0 “ 5N, mi “ 0.01 kg, K “ 1000N/m.
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Consider the model problem of a cantilever beam subjected to self-weight and
composed of n “ 4 segments, coupled by means of circular pitch lines of radius
R. Here, the segments have all the same length, so that ℓi “ ∆L, and the same
mass mi . Hence, the applied load at each segment centroid is mi g, being g “

9.81m/s2 the gravity acceleration. The simpli�ed modeling with spring hinges,
considered so far, is reported in Figure 2.16(a). This is now compared with a more
re�ned modeling that accounts for the actual motion of the pitch point along
the pitch lines while describing the de�ection of the beam (Figure 2.16(b)). The
de�ection of the beam, obtained from the two models, is compared in terms of the
displacements u and v of the centroid of the segment at the tip of the cantilever.
These displacements are also indicated in Figure 2.16.

Figure 2.17 collects the results for such a comparison. In particular, a para-
metric investigation on how the de�ection of the beam is a�ected by the initial
prestress N0 in the cable (Figure 2.17(a) and 2.17(b)), the segmental length ∆L
(Figure 2.17(c) and 2.17(d)) and the radius R of pitch lines (Figure 2.17(e) and
2.17(f)) was carried out. In all cases, the di�erence between the spring-hinge model
and the more re�ned rolling along pitch lines is small: always less than 1.3% for
the vertical displacement v, and within the value of 1 mm for the horizontal dis-
placement u. This demonstrates that the simple modeling with spring hinges is
satisfactory, at least for the geometry at hand.

Note that the initial prestress N0 , the segmental length ∆L and the pitch line
radius R are comparable with the values adopted in the experimental investigations
presented in the previous Section 2.2.3, thus justifying the modeling of the joints
as spring hinges also for that case.

2.2.5 Discussion on the deformation of contact pro�les

In the previous Section 2.1, the segments were supposed to be very sti� (rigid
in the limit case), so that their contribution to the variation ∆U of the strain
energy can be overlooked. As a result, ∆U depends only upon the stretching of
the tendon, as per (2.1.8). In addition to the speci�c contribution to strain en-
ergy, the deformability of the segments would also a�ect the shape of the contact
pro�les, thus in�uencing the cable elongation Λi and the internal lever arm ai at
each joint. Now, we want to evaluate this e�ect, and check if the assumption of
macroscopically rigid segments is correct.

To exemplify, consider again the paradigmatic case of circular pitch lines of
radius R, and assume that the contact pro�les are shaped directly according to the
pitch pro�les. The simplest way to get a preliminary result about the deformation
of the surfaces in contact is represented in Figure 2.18. Here, the initially-circular
deformable contact pro�les are modeled as a bed of springs à la Winkler, with
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(a) (b)

Figure 2.18. Deformable surfaces in contact modeled as a bed of springs à la Winkler:
(a) joint in straight reference state and (b) rotated state under bending.

constant κ. Figure 2.18(a) reports the straight reference state of the joint, while
the rotated state under bending is displayed in Figure 2.18(b), with indication of
the lever arm ai and the cable elongation Λi. Note that the cable exit point from
the sheaths has been set back from the surface of pitch pro�les, and placed at
the interface between the bed of springs à la Winkler and the rigid underlying
material matrix of the segments. From a physical point of view, this could account
for �smoothened� �ttings due to the deformability of the material of the segments.

Figure 2.19 reports the response of such a joint under bending, as a function
of the relative rotation ∆φi and for di�erent values of the spring constant κ. The
trend of the internal lever arm ai (Figure 2.19(a)) is practically una�ected by the
deformation of pitch lines. On the contrary, the cable elongation Λi (Figure 2.19(b))
varies, especially for what concerns the initial distance between the exit points
from the sheaths, referred to as Λip0q, despite the quadratic trend of each curve
is substantially maintained. The tension force N in the cable, given by N “ N0 `

K rΛip∆φiq ´ Λip0qs and reported in Figure 2.19(c), and the transmitted moment
Mi at the joint, which reads Mi “ aiN (Figure 2.19(d)), varies accordingly. The
plots correspond to R “ 10 cm, N0 “ 25N. The shortening of Winkler's springs
can be computed from equilibrium with the tension force in the cable.

To visually appreciate the deformation of the surfaces in contact, Figures
2.20(a) and 2.20(c) show the straight state of the joint, for κ “ 1 ¨ 108N/m3

and κ “ 8, respectively. Figures 2.20(b) and 2.20(d) depict the rotated state un-
der bending for the corresponding values of κ. Here, the cable is represented with
a red solid line, the deformable pitch lines with blue curves, and the bed of springs
à la Winkler is highlighted by the shaded region.

To evaluate the �attening of contact pro�les in the �eld, a compression test
on a 3D-printed half segment was �nally performed. The specimen, of length
ℓi{2 “ 4 cm, thickness equal to 1.5 cm, and with the radius of the pitch con-
tact surface R “ 10 cm, as assumed in the plots of Figures 2.19 and 2.20, was
compressed through a testing machine (MTS810 Universal Testing System) and



2.2. Examples 39

the force vs. shortening was measured. If all the deformation is concentrated at
the pitch pro�les, this shortening corresponds to the �attening of the contact sur-
faces, indicated as di in Figure 2.18(b). The value di » 0.1mm was found at a
compression force of about 64N for the test, while the case of κ “ 1 ¨ 109N/m3,
theoretically analyzed in Figure 2.19, corresponds to di » 0.4mm at the same
compression force.

Since the response of the joint for κ “ 1 ¨ 109N/m3 is close to the limit case
κ “ 8 (Figure 2.19) and the value of di found in the compression test is smaller
than the theoretical one for κ “ 1 ¨ 109N/m3, this validates the assumption of
considering sti� segments, whose deformation minimally a�ects the shape of con-
tact surfaces and whose straining can be neglected with respect to the variation of

(a) (b)

(c) (d)

Figure 2.19. Response of the joint with deformable pro�les under bending, as a function
of the relative rotation ∆φi , for variable spring constant κ: (a) internal lever arm ai ; (b)
cable elongation Λi ; (c) tension force N in the cable; (d) transmitted moment Mi at the
joint. The plots correspond to R “ 10 cm, N0 “ 25N.
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(a) (b)

(c) (d)

Figure 2.20. Response of the joint under bending: straight and rotated con�gurations
for (a)-(b) κ “ 1 ¨ 108N/m3 and (c)-(d) κ “ 8. The plots correspond to R “ 10 cm,
N0 “ 25N; the cable is represented in red color, the deformable pitch lines in blue color,
and the bed of springs à la Winkler is highlighted by the shaded region.

∆U due to the compliant cable. In particular, as the tested specimen corresponds
to the dimensions and the manufacturing process discussed in Section 2.2.2, the
assumption of rigid segments adopted to theoretically interpret the experimental
investigations of Section 2.2.3 is thus justi�ed.



Chapter 3

The continuum approximation

The continuum limit of �ex-ten segmental beams is here analyzed. This corre-
sponds to the case in which the number of segments goes to in�nity and their
length decreases to zero. The model falls within the framework of Euler's elastica,
but its peculiarity is represented by the nonlocal bending sti�ness and hardening
behavior under loading.

The classical model by Euler is �rst introduced in Section 3.1, while discussing
the wide range of its possible �elds of application, spanning from engineering to
biology. With reference to the paradigmatic case-study of a simply supported rod
under the most general loading conditions, the new nonlocal theory is then pre-
sented in Section 3.2. After detailing its derivation from �exural tensegrity, it is
shown how the equilibrium states of the rod can be determined analytically mod-
ulo the calculation of elliptic integrals, as in the case of classical Euler's elastica.
Indeed, the analysis of example cases (buckling and bending under concentrated
and distributed loads), pursued in Section 3.3 either with the analytical approach
or with a direct numerical calculation, demonstrates the strict correlation, but with
fundamental di�erences, of the most well-known model by Euler with the nonlocal
rod presented here.

The proposed nonlocal elastica represents an innovative �exible structure which,
while respecting the orthodoxy of the classical elastica, can be tuned for a tailored
design in a wide range of applications.

The main results here discussed are also collected in [20] and [26].
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3.1 Introduction to the elastica

In Additamentum I �De Curvis Elasticis� to his famous treatise of 1744, Eu-
ler [27]1 celebrates Daniel Bernoulli for having suggested that the universam vim
of a curved elastic lamina could be compacted in one single formula called vim
potentialem, and such an expression shall be minimal for the curva elastica. De-
veloping Bernoulli's idea, Euler showed that the di�erential equation determining
the curve, or elastica, in which a thin rod, straight and prismatic in the unstressed
state, is held by forces and couples when bent in a principal plane � so that the
central line becomes a plane curve � could be found by making a minimum the
integral of the square of the curvature taken along the rod [30,31].

Euler's elastica is a simple model that is often advocated as the paradigm
for compliant structures. It applies to biology, e.g., to conveniently describe the
deformation of collagen �bers [32], or to study the locomotion provided by �exible
�agella to bacteria [33]. The model is widely used in mechanical engineering and
soft robotics [34, 35], as well as for biomedical tools [36]. �Unusual� applications
can be found in a hot-cutting robot for the fabrication of formwork for concrete
shell structures [37], in devices for timber transportation along rivers [38] and in
cattle-catching tools like the lasso [39]. From a more fundamental point of view,
�exible and inextensible elastic rods have been used by Bigoni and co-workers
as the basic structural models to describe phenomena and applications yet to be
fully appreciated. An elastic rod constrained within a frictionless sliding sleeve
provides the simplest illustration of the role played by con�gurational, or Eshelby-
like forces, on the statics [40] and dynamics [41] of one-dimensional structures. This
�nding has suggested novel ingenious devices, like a deformable arm scale [42], as an
alternative to the traditional rigid arm balance. The elastica can be used to describe
the e�ects of surface tension in �uids, such as self-encapsulation or dripping [43],
with potential applications in electro-magnetic circuits. Drawing inspiration from
antique weapons, the optimization of a �exible rod as a catapult [15] suggests the
design for innovative robotic limbs.

All the aforementioned applications make use of the classical theory of the elas-
tica. This has been geometrically linearized, treated with imperfections, analyzed
for bifurcation points, relaxed to include extensibility but, fundamentally, the orig-
inal stored-energy function has been maintained in its dependence on the square of
the curvature. Non-quadratic energies have sometimes been used to describe non-
linear constitutive responses between bending moment and local curvatures. Strain
energy functionals derived from non-convex potentials in the curvature �eld [44]
predict, as absolute minimizers, discontinuous curvatures of the central line even

1Reference [27] is the original Latin version of Euler's work, also available in [28]. An English
translation with comments can be found in [29].
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under pure bending (prescribed terminal slope-angles or couples), which recall the
coexistent phases in stressed solid mixtures. Non-convex strain energy densities
with linear growth at in�nity (oblique asymptotes), providing moment-curvature
relationships with strain-softening branches and horizontal asymptotes, can induce
the localization of bending strains as in a plastic hinge [45]. Under the Euler-
Bernoulli hypothesis that cross sections remain plane after the deformation, laws
of this type were obtained in [46] for elastic-plastic materials exhibiting a transition
from the upper to the lower yield point, commonly experienced in strain-driven
tests on low-carbon-steel bars [47], which is equivalent to a strain-softening branch.

Nonlocal theories for in�exed rods have been inspired by the seminal work by
Eringen [48]. Nonlocal di�erential (high-order gradient) elastic constitutive rela-
tions have been successfully used to describe the equilibrium states and vibration
modes of carbon nanotubes [49]. The di�erential form is often considered as an
approximation of the complete integral formulation, in which the bending depends
upon the convolution between the elastic curvature and an averaging kernel, usu-
ally with compact support or with a fast decay at in�nity. For models of this kind,
an issue of paramount importance is the compatibility between the boundary con-
ditions consequent to the nonlocal constitutive law and the equilibrium conditions
that the bending �eld has to satisfy [50]. In order to overcome possible emerging
paradoxes, stress-driven nonlocal theories have been also proposed in [51], where it
is the elastic curvature �eld that depends upon convolution between the bending
�eld and an averaging kernel.

In the following, a particular nonlocal constitutive law for the elastica, never
considered before to the best of our knowledge, is proposed and analyzed in detail.
The bending moment at each cross section depends linearly upon the curvature,
but the bending sti�ness, although remaining homogenously constant in the whole
rod, is a�ected by the whole curvature �eld. This is fundamentally di�erent from
all the cases mentioned before, in which the bending moment at each point of
the centroidal line is at most a nonlinear function of the local curvature and its
gradients, or depends upon the values of the curvature �eld in a neighborhood of
the point.

3.2 The model for a nonlocal elastica

After deriving the bending sti�ness from the continuum limit of �ex-ten beams,
the analytical theory of the nonlocal elastica is presented. The nonlocal e�ect is
discussed and methods of solution of the equilibrium equations are proposed.
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3.2.1 From discrete to continuum

It has been evidenced in the previous Chapter 2 that the key point of �ex-ten
beams is the de�nition of the cable elongation Λi at the i´th joint, which is a
function of the relative rotation ∆φi at the joint. In particular, referring to the
quantities indicated in Figure 2.10, it is useful to introduce a re-normalization of
such a function in the form

Λi “ Λip∆φiq “ Λipφi ´ φi`1q “ Λ̂i

´φi ´ φi`1

ℓi

¯

“
1

ℓi
Λ̂i

´φi ´ φi`1

ℓi

¯

ℓi “ λ̂i

´φi ´ φi`1

ℓi

¯

ℓi ,
(3.2.1)

where λ̂ip¨q “ Λ̂ip¨q{ℓi is the normalized cable elongation per unit length of the
beam. Therefore, recalling (2.1.1), one can write

ai “ aip∆φiq “ aipφi ´ φi`1q “ âi

´φi ´ φi`1

ℓi

¯

“

“ Λ1
ipφi ´ φi`1q “

1

ℓi
Λ̂1

i

´φi ´ φi`1

ℓi

¯

“ λ̂1
i

´φi ´ φi`1

ℓi

¯

.
(3.2.2)

where f 1p¨q denotes the �rst derivative of the function fp¨q. Consequently, the
variation ∆U of the strain energy of (2.1.8) can be written in the form

∆U “ KΛ0

«

n´1
ÿ

i“1

λ̂i

´φi ´ φi`1

ℓi

¯

ℓi

ff

`
1

2
K

«

n´1
ÿ

i“1

λ̂i

´φi ´ φi`1

ℓi

¯

ℓi

ff2

. (3.2.3)

By letting ℓi Ñ 0, one can de�ne a smeared view of these quantities and refer
to the continuum problem of a thin and prismatic, initially-straight, rod bent in
a principal plane. Introduce the curvilinear coordinate s on the beam axis, and, if
φpsq is the rotation of the beam at s, one can set

lim
ℓiÑ0

φi ´ φi`1

ℓi
“ ´φ1

psq , lim
ℓiÑ0

λ̂i

´φi ´ φi`1

ℓi

¯

“ λ̃p´φ1
psqq , (3.2.4)

so that
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n´1
ÿ

i“1

λ̂i

ˆ

φi ´ φi`1

ℓi

˙

ℓi »

ż L

0

λ̃p´φ1
psqq ds . (3.2.5)

This quantity represents the total elongation of the cable in the continuum limit,
and, under this assumed equivalence, the elastic strain energy (3.2.3) should be
written in the form

∆U “ KΛ0

„
ż L

0

λ̃p´φ1
psqq ds

ȷ

`
1

2
K

„
ż L

0

λ̃p´φ1
psqq ds

ȷ2

. (3.2.6)

The �rst term in this equation is the contribution due to the initial prestress
in the cable N0 “ KΛ0, whereas the second term represents the second-order
contribution, associated with the further increase in length of the cable.

3.2.2 The elastica with nonlocal bending sti�ness

Consider the problem of determining the equilibrium states of a thin rod, straight
in its undistorted reference con�guration, which is bent in a principal plane so that
the centerline becomes a plane curve. The rod, of length L, is simply supported
at the ends as represented in Figure 3.1(a), and we take a system of �xed axes
x, y, with x coinciding with the centerline in the unstressed state. The rod bends,
as schematically indicated in Figure 3.1(b), under the action of a distributed load
ppsq, being s P r0, Ls the curvilinear abscissa identifying points on the centerline,
two opposite horizontal end-forces F , positive if they induce compression, and two
couples Ml and Mr, applied at the left- and right-hand-side ends, respectively. Let
upsq and vpsq denote the components on x, y of the displacement of the point at
s, positive if opposite to the orientation of the axes, and let φpsq represent the
angle here formed between the tangent to the deformed centerline and the x-axis,
considered positive if it corresponds to a clockwise rotation. Hence, the curvature
at s is given by χ “ ´φ1psq.

Assume that the increase∆U of the elastic strain energy, under applied external
loads, is of the form

∆U “ ∆Urφs “
1

2
KL

ż L

0

p´φ1
psqq

2
ds `

l2

4L
KNL

„
ż L

0

p´φ1
psqq

2
ds

ȷ2

, (3.2.7)

where KL and KNL are constants with dimension rML3T´2s and l denotes an
intrinsic length scale. In the case in which KNL “ 0, the model falls in the category
of classical Euler's elastica. With respect to this case, the term associated withKNL
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(a)

(b)

(c)

Figure 3.1. Schematic representation of the continuum problem: (a) beam in the straight
reference state; (b) deformed con�guration under external loads; (c) perturbation from
the deformed state, and corresponding distortion of the beam.

provides a nonlocal e�ect and additional bending sti�ness.
The physical role of these quantities is clear by comparison of (3.2.7) with

(3.2.6), derived from �exural tensegrity. In particular, one has

λ̃p´φ1
psqq “

l2

2
p´φ1

psqq
2 , KL “ N0 l

2 , KNL “
1

2
K L l2 . (3.2.8)

Note that a quadratic law for λ̃p´φ1psqq can be obtained with circular pitch lines
of radius R in the corresponding �ex-ten beam, as detailed in Section 2.1.2. Then,
recalling (2.1.7) and (3.2.4), the counterpart in the discrete model of the intrinsic
length-scale l of (3.2.7) is of the form l2 “ R∆L{2, where ∆L denotes the segmen-
tal length, now supposed to be uniform along the beam. To obtain a �nite limit for
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l2 in the continuum model, one has to assume that lim∆LÑ0R “ `8; this means
that, for segments of in�nitesimal length, the pitch lines at the contact joints are
almost �at.

The work ∆W of the external loads of Figure 3.1(a), under the hypothesis of
conservative generalize forces, can be written as a function of φpsq in the form

∆W “ ∆Wrφs “

ż L

0

ppsq

„
ż s

0

sinφps̄q ds̄

ȷ

ds`

` F

ż L

0

”

1 ´ cosφpsq
ı

ds ` Ml φp0q ` Mr φpLq .

(3.2.9)

In addition, the kinematic compatibility with the roller constraint at s “ L,
for the simply supported beam of Figure 3.1(b), implies that

G “ Grφs “

ż L

0

sinφpsq ds “ 0 . (3.2.10)

The equilibrium states correspond to the solution of the minimization problem
∆Urφs ´ ∆Wrφs “ min, under the constraint Grφs “ 0. Consider the augmented
functional Hrφs “ ∆Urφs´∆Wrφs`µGrφs, where µ is the Lagrange's multiplier.
For a variation φ ` δφ, the corresponding �rst variation of Hrφs reads

Hrφ|δφs “

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2 ds

ȷ „
ż L

0

φ1
psq δφ1

psq ds

ȷ

`

´

ż L

0

ppsq

„
ż s

0

cosφps̄q δφps̄q ds̄

ȷ

ds ´ Ml δφp0q ´ Mr δφpLq `

´ F

ż L

0

sinφpsq δφpsq ds ` µ

ż L

0

cosφpsq δφpsq ds .

(3.2.11)

Consider a variation δφ with unit mass and centered at s˚ with compact sup-
port in the interval ps˚ ´ ∆s

2
, s˚ ` ∆s

2
q, as schematically indicated in Figure 3.1(c).

One clearly has

ż s

0

cosφps̄q δφps̄q ds̄ “

$

’

&

’

%

0 , for s ă s˚ ´ ∆s
2
,

ż s

s˚´∆s
2

cosφps̄q δφps̄q ds̄ , for s ě s˚ ´ ∆s
2
.

(3.2.12)
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By letting ∆s Ñ 0, the distortion becomes a Dirac Delta distribution centered at
s “ s˚. After integration by parts, one obtains the �eld equations

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2 ds

ȷ

φ2
ps˚

q ` F sinφps˚
q `

`

„
ż L

s˚

ppsq ds ´ µ

ȷ

cosφps˚
q “ 0 ,

(3.2.13a)

ż L

0

sinφpsq ds “ 0 , (3.2.13b)

with integral conditions at the boundary

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2 ds

ȷ

φ1
p0q “ ´Ml , (3.2.14a)

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2 ds

ȷ

φ1
pLq “ Mr . (3.2.14b)

Observe that boundary conditions of this kind do not present the inconvenience
discussed in [50] because the nonlocal e�ect is not obtained as a convolution be-
tween the elastic curvature and an averaging kernel, which may provide spurious
results when the convolution is evaluated in a neighborhood of the ends of the rod.
Here, the �exural sti�ness is homogeneously increased in the whole rod, accord-
ing the quadratic mean of the curvature. The classical equations of Euler's (local)
elastica are obtained when KNL “ 0 and, in this limit, the �exural sti�ness is KL.

It is worth mentioning that an interesting result in the classical problem of the
elastica, in the case in which no forces or couples are applied to the rod except at the
ends, is that there is a conserved quantity, equivalent to the energy-integral of the
equations of motion in Kirchho�'s kinetic analogue, expressed by eq. (3) of art. 260
in the treatise by Love [31]. To be more explicit, consider, for example, the simplest
case of a cantilever s P r0, Ls, initially straight, clamped at s “ 0 and loaded by
the axial force F at s “ L. In this case, the governing equation can be derived
from (3.2.13a) with KNL “ 0, ppsq “ 0, µ “ 0, and reads KLφ

2 ` F sinφ “ 0. In
the kinetic analogue [31], substituting di�erentiation with respect to the variable
s with the time derivative, this equation applies to the varying angle φptq that
a rigid pendulum turning around a �xed horizontal axis, with a hanging mass
proportional to F , forms with the vertical in the time interval t P r0, Ls.

However, in the presented nonlocal theory, the bending sti�ness is not constant,
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but depends on the squared Lebesgue norm of the curvature, so that the classic
argument does not hold. The periodicity in space of the curves representing a family
of elastica solutions is lost in the nonlocal case, because the bending sti�ness
depends upon the length of the rod that is considered. Consequently, also the
periodicity in time in the envisaged kinetic analogue would fail.

Remark. The discretized version of the equilibrium equations (3.2.13) for the
nonlocal elastica provides the basis for their numerical solution with the �nite dif-
ference method, but it also corresponds to the equations for the tensegrity beam
of Figure 3.2. Denoting with n the number of subdivisions and with ∆L the dis-
cretization step, coinciding with the length of the segment in the �exural-tensegrity
counterpart (ℓi “ ∆L, for i “ 1 . . . n), derivatives are substituted by di�erence quo-
tients and integrals by summations. Of course, the distributed load ppsq needs to
be approximated by a set of forces Pi applied at the segment centroid, such that
ppsi ´∆L{2q “ Pi{∆L, being si “ i∆L the curvilinear abscissa at the i´th node.
In particular, one can set

´φ1
psq »

φi ´ φi`1

∆L
, φ2

psq »
φi`1 ´ 2φi ` φi´1

∆L 2
, (3.2.15)

where φi is the absolute rotation of the discretization segment i for i “ 1 . . . n.
Recalling (3.2.8), the discretized form of equations (3.2.13) read

N
ai ´ ai´1

∆L
`

ˆ

µ `
Pi

2
´

n
ÿ

j“i

Pj

˙

cosφi ´ F sinφi `

´ I1piq
Ml

∆L
´ Inpiq

Mr

∆L
“ 0 ,

(3.2.16a)

n
ÿ

j“1

∆L sinφj “ 0 , i “ 1 . . . n , (3.2.16b)

where N “ N0 ` K Λ, ai “ l2 pφi ´ φi`1q{∆L, Λi “ 1
2
l2 pφi ´ φi`1q

2{∆L, and
Λ “

řn´1
i“1 Λi . On the other hand, Iipjq is the indicator function, which equals 1

when i “ j, zero otherwise. Moreover, we have formally set φk “ 0 when k ă 1 or
k ą n, and ak “ 0 when k ă 1 or k ě n.

Note that equations (3.2.16) are the same found in Section 2.1.3 and repre-
sent an extension of (2.1.15) to a more general loading condition. Speci�cally, the
quantity bi , indicated in Figure 2.1, is here set to bi “ ∆L{2 and the presence of
end moments has been made explicit; in addition, the axial force F has been now
introduced.
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(a)

(b)

Figure 3.2. Schematic representation of the simply-supported �exural-tensegrity beam.
(a) Reference undeformed con�guration; (b) deformed state.

3.2.3 Nonlocal e�ect and the semi-analytical solution

The di�erence with classical Euler's elastica is represented by the nonlocal term in
(3.2.13). In the physical �ex-ten segmental model of Figure 3.2, this is consequent
to the fact that the tendon (cable) is not bonded to the material matrix, so that
its elongation Λ is a�ected by the whole curvature �eld. There is a remarkable
di�erence between the present model and a nonlocal elastica for which the bending
is governed by the convolution between the curvature �eld and an average kernel
with compact support. In the second case, the nonlocal e�ect is localized in a
neighborhood of the cross section, whereas in our case the bending sti�ness is
homogeneously and uniformly modi�ed along the entire length of the rod.

Indeed, it is clear from (3.2.13) and (3.2.14) that the in�exion of the nonlocal
elastica is identical to that of a classical Euler's elastica with e�ective bending
sti�ness K˚, of the form

K˚
“ KL ` KNL

l2

L

ż L

0

pφ1
psqq

2ds . (3.2.17)

This observation suggests that, if the solution of the Euler's elastica is known as
a function of its bending sti�ness, then the solution can be found also for the
nonlocal case.

To illustrate, consider the curve attained under applied loads by a classical
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Euler's elastica of bending sti�nessK˚, and let φ˚psq represent the angle of rotation
of its tangent at s with respect to the undeformed straight con�guration. Then,
calculate the function

fpK˚
q “

ż L

0

“

pφ˚
psqq

1
‰2
ds . (3.2.18)

In order to solve the nonlocal case, it is su�cient to observe from (3.2.17) that

K˚
“ KL ` KNL

l2

L
fpK˚

q ñ
pK˚

´ KLqL

l2KNL

“ fpK˚
q . (3.2.19)

Consequently, the actual curve taken by the nonlocal elastica is the one corre-
sponding to the deformation of that Euler's elastica, whose bending sti�ness is
found from the intercept of the graph of the function η “ fpK˚

q with the line
η “ pK˚

´ KLqL{pl2KNLq.
In general, the solution of Euler's elastica prescribes the calculation of elliptic

integrals. In the past, it was necessary to estimate them with tables [52], but,
nowadays, they can be evaluated numerically using a commercial software. Since
the method described above is based on a analytical formulation, but eventually a
numerical approach will be used to solve the elliptic integrals, the solution found
in this way will be referred to as the semi-analytical solution.

The method is �rstly clari�ed in an elementary example for which the �eld
φ˚psq can be found in closed form, i.e., the case in which the rod of Figure 3.1 is
bent by the two couples Ml “ M and Mr “ ´M . The deformed shape is an arc of
a circle and the rotation �eld takes the form

φ˚
psq “

M

2K˚ pL ´ 2sq . (3.2.20)

From (3.2.18) and (3.2.19), the actual sti�ness K˚ coincides with the real root of
the cubic equation

pK˚ ´ KLqL

l2KNL

“ fpK˚
q “

M2L

pK˚
q
2 . (3.2.21)

For the case M “ 50Nm, KL “ 10Nm2, KNL “ 150Nm2, l2 “ 0.1m2 and
L “ 3m, its graphical solution, providing the value K˚ “ 37.16Nm2, is shown in
Figure 3.3(a).

The cases in which a concentrated load P is applied at midspan or, alterna-
tively, the rod is axially compressed by two end-forces F , can be similarly treated.
The starting point is again the solution of Euler's elastica with arbitrary bending
sti�ness K˚. Using symmetry, one can equivalently consider a cantilever of length
L{2 loaded at the free end by a force P {2 orthogonal to the undeformed centerline
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(a) (b)

Figure 3.3. Graphs of the functions η “
şL
0

“

pφ˚psqq
1
‰2
ds and η “ pK˚ ´KLqL{pl2KNLq

for a simply supported rod subjected to (a) pure bending under end-couplesMl “ ´Mr “

M (plotted as a function of the e�ective sti�ness K˚) and (b) a concentrated force P at
midspan (plotted as a function of the elliptic parameter γ). Case M “ 50Nm, P “ 80N,
KL “ 10Nm2, KNL “ 150Nm2, l2 “ 0.1m2 and L “ 3m.

or by an axial force F . The �rst case was solved by Bisshopp and Drucker [53],
while the second one has been reported in classical books [30, 31] and, more re-
cently, by Bigoni [54]. Let φ0 represent the rotation at the tip of the cantilever, to
be determined. De�ne the quantities P0, γ and ϑ1 as

P0 “ P {2

γ “ p1 ` sinφ0q{2

ϑ1 “ arcsinp1{
a

2γq

,

/

/

.

/

/

-

for midspan concentrated load P ,

P0 “ F

γ “ p1 ´ cosφ0q{2

ϑ1 “ 0

,

/

/

.

/

/

-

for compression axial load F .

Then, for any value of the bending sti�ness K˚, the value γ “ γ˚ that solves the
problem is found from the equation

K˚
“

P0L
2

4 rFpπ
2
, γq ´ Fpϑ1, γqs2

, (3.2.22)
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where

Fpϕ, γq “

ż ϕ

0

dθ
a

1 ´ γ sin2 θ
, (3.2.23)

represents the incomplete elliptic integral of the �rst kind. The actual value φ0
˚ can

be determined once γ˚ is known. The corresponding curvature �eld χ˚ “ ´pφ˚psqq1

admits the representation

pφ˚
psqq

1
“

$

’

’

’

&

’

’

’

%

c

P

K˚

”

sinφ0
˚

´ sinφ˚
psq

ı
1
2

for midspan load P ,

c

2F

K˚

”

cosφ˚
psq ´ cosφ0

˚
ı

1
2

for axial load F .

(3.2.24)

Hence, one �nds the intercept of η “ fpK˚q with the line η “ pK˚´KLqL{pl2KNLq.
It should be observed that (3.2.24) can be conveniently expressed through elliptic
integrals as a function of the only variable γ, so that the elliptic parameter γ can
be used to restate the condition (3.2.19). After some calculations, one �nds that
the solution γ “ γ˚ for the nonlocal elastica is the solution of the equation

η “ f pK˚
pγqq “

ż L

0

pφ1
ps, γqq

2
ds “

“
16 γ

L

“

Fpπ
2
, γq ´ Fpϑ1, γq

‰ “

Fpπ
2
, γq ´ Fpϑ1, γq ´ Dpπ

2
, γq ` Dpϑ1, γq

‰

“

“
P0L

3

4 l2KNLrFpπ
2
, γq ´ Fpϑ1, γqs2

´
KLL

l2KNL

“
rK˚pγq ´ KLsL

l2KNL

,

(3.2.25)

where Dpϕ, γq is a combination of the incomplete elliptic integral of the �rst kind
Fpϕ, γq and the incomplete elliptic integral of the second kind Epϕ, γq, which take
the form

Epϕ, γq “

ż ϕ

0

b

1 ´ γ sin2 θ dθ , (3.2.26)

Dpϕ, γq “
Fpϕ, γq ´ Epϕ, γq

γ
“

ż ϕ

0

sin2 θ dθ
a

1 ´ γ sin2 θ
. (3.2.27)
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For the same material parameters considered for the case of Figure 3.3(a), Figure
3.3(b) shows the graphical solution of (3.2.19) in terms of the elliptic parameter
γ for the case of a midspan load P “ 80N. In this way, one obtains the value
γ˚ “ 0.95 and, from this, K˚ “ 22.35Nm2 and φ0

˚ “ 1.12 rad.
The semi-analytical approach could also be used when the rod of Figure 3.1 is

bent by a load ppsq distributed along its length. When ppsq follows a constant, tri-
angular or sinusoidal law, the deformation of the Euler's elastica can be found [55]
in terms of Lauricella FD

p3q hypergeometric functions [56]. However the calcula-
tions become very complicated, so that a simple numerical method based on �nite
di�erences, through equations (3.2.16), turns out to be much more convenient.

To conclude this section, it may be useful to estimate the �strength� of the
nonlocal e�ect with reference to the physical interpretation of parameters via the
�exural-tensegrity model. Assume that, in the �ex-ten equivalent beam, the cable
is characterized by Young's modulus E, cross sectional area A and undistorted
length L0, so that its axial sti�ness is given by K “ EA{L0. Using (3.2.8), the
e�ective sti�ness (3.2.17) becomes

K˚
“ l2N0 `

l4

2

EA

L0

ż L

0

p´φ1
psqq

2
ds . (3.2.28)

To be noticed is that the intrinsic length scale l a�ects both the local and the
nonlocal sti�ness, but with di�erent powers. The term l2N0 determines the tangent
sti�ness at the origin. When the tendon is highly pre-stressed with respect to its
axial sti�ness (N0 " EAL{L0) and/or the curvature is small (φ1psq ! 1{L), the
model falls within the framework of Euler's (local) elastica. In the simplest case of
pure bending according to an arc of a circle, the rotation �eld is given by (3.2.20).
Setting φ0

˚ “ φ˚p0q “ ´φ˚pLq, one �nds that pφ˚psqq1 “ ´2φ0
˚{L, so that the

radius of curvature is ρ “ 0.5L{φ0
˚. Consequently, assuming for simplicity that

L0 » L , equation (3.2.28) can be written in the form

K˚
“ l2

ˆ

N0 `
l2

2ρ2
EA

˙

. (3.2.29)

As an order of magnitude N0 » 10´4AE. Hence, the nonlocal term becomes greater
than the local one when approximately ρ ă 70 l. This simple example highlights
that there is a close correlation between macroscopic curvature and intrinsic length-
scale l in the nonlocal term.

3.2.4 Numerical solutions

The semi-analytical method described in Section 3.2.3 makes it possible to es-
tablish a correspondence between the classical Euler's elastica and its nonlocal
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counterpart. However, it is much faster nowadays to directly solve numerically the
integro-di�erential equations (3.2.13) and (3.2.14). The comparison of the solutions
obtainable with the semi-analytical and the numerical methods mutually proves
their reliability, since the approaches are completely di�erent in type.

The discretized version of the governing equations can be obtained through
the approximation (3.2.15). The interval r0, Ls is divided into n equal segments
of length ∆L “ L{n, and the nonlinear system of algebraic equations (3.2.16)
is solved. Recall that such system corresponds to the solution for the �exural-
tensegrity physical model represented in Figure 3.2, when the length of the seg-
ments coincides with the discretization step. Segmental beams composed of a lim-
ited number of segments (of the order of 10) have been analyzed in detail in
Chapter 2, but our interest here is to tackle to continuum problem by means of its
discrete approximation. Therefore, it is necessary to check the convergence of the
numerical solution as the number of subdivisions increases.

For the discretized problem, we have used the numerical solver fsolve im-
plemented in Matlab® [57], which is based on the Levenberg-Marquardt [58] and
trust-region [59] methods developed from nonlinear least-squares algorithms.

For the rod of Figure 3.1, subjected only to a concentrated force P “ 30N at
midspan, with reference to the case L “ 3m, KL “ 10Nm2, KNL “ 150Nm2 and
l2 “ 0.1m2, Figure 3.4(a) shows the plots of the deformation as the number n of
subdivisions is augmented. On the other hand, Figure 3.4(b) reports the maximum
de�ection vm again as a function n. A good approximation is obtained with n “ 49
since the di�erence is less than 0.032% when passing to n “ 99.

(a) (b)

Figure 3.4. Numerical results obtained with an increasing number n of subdivisions for
a simply supported rod under a concentrated load P “ 30N at midspan: (a) Deformed
curve for various n and (b) maximum midspan de�ection vm as a function of n. Case
L “ 3m, KL “ 10Nm2, KNL “ 150Nm2 and l2 “ 0.1m2.
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It should also be mentioned that fairly accurate estimates of the solution can
be obtained by using appropriate shape functions for the rotation �eld φpsq. In
particular, consider

φpsq “ φ0 cos
πs

L
, (3.2.30)

where φ0 is the shape parameter, representing the rotation at the ends of the simply
supported rod (Figure 3.1). The constraint equation (3.2.13b) is automatically
satis�ed. Then, the shape function is inserted in the energy functional represented
by (3.2.7) and (3.2.9), which thus becomes an algebraic function of φ0. The optimal
value of φ0 is found through minimization. A further useful simpli�cation consists
in expanding in Taylor's series the sine (up to the �fth order) and cosine functions
(up to the fourth order), so that the energy reduces to a polynomial of the 5th

degree in φ0. We have veri�ed that when the midspan de�ection is less than L{5,
this method provides excellent results under uniformly distributed loads, but it is
also su�ciently accurate under a concentrated load at midspan and for the �rst
mode of axial buckling, as it will be shown in the forthcoming examples.

3.3 Examples

The rod of Figure 3.1 is here analyzed when subjected to axial load, concentrated
load at midspan and uniformly distributed load. Results obtained with the semi-
analytical method illustrated in Section 3.2.3 are compared with those obtainable
with a direct numerical approach, as per Section 3.2.4. For the case of moderately
in�exed rods, with no loops, we discuss the approximation via shape function.
Unless stated otherwise, reference is made to the case L “ 3m, KL “ 10Nm2,
KNL “ 150Nm2 and l2 “ 0.1m2.

In order to compare the theoretical curves obtained from the nonlocal contin-
uum theory with the physical model of �ex-ten beams, the prototype displayed
in Figure 3.5 has been manufactured in the same way indicated in Section 2.1.1.
The prototype, 3D printed in polyethylene terephthalate, is composed of 32 seg-
ments of length 17.3mm (total length of 553.6mm), for which l2 “ 100.6mm2. The
prestressing cable is a polyamide 6.6 wire of diameter 0.8mm, with two springs
of constant k “ 2.8N/mm added in series, as shown in Figure 3.5(a), so that
KNL » 21375Nmm2. The deformation under self-weight is represented in Fig-
ure 3.5(b). The relative displacement of any two consecutive segments is a rolling
motion along the design circular pitch lines, which has been obtained in the prac-
tice by shaping the contact surfaces with a double couple of conjugate pro�les,
according to the layered construction detailed in Section 2.1.1.
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(a) (b)

Figure 3.5. Flexural-tensegrity segmental beam used for comparisons with the nonlocal
elastica: (a) constituting segments for which the theoretical pitch lines at the contact
surfaces are obtained with a double couple of conjugate pro�les; (b) de�ection of the
prototype under self-weight.

3.3.1 Axial load and buckling

Suppose that only a compression force F is applied (Ml “ Mr “ 0 and ppsq “ 0).
The Lagrange's multiplier µ is null and the di�erential equation (3.2.13a) becomes

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2ds

ȷ

φ2
psq ` F sinφpsq “ 0 . (3.3.31)

To determine the bifurcation limit for buckling, only small perturbations in a
neighborhood of the reference straight con�guration need to be considered. As-
suming φ ! 1, the nonlocal term becomes negligible; setting sinpφpsqq » φpsq, the
critical load Fcr “ KLπ

2{L2 is found. For the case at hand Fcr » 10.97N.
The post-critical deformation (�rst mode) has been evaluated in three di�er-

ent ways: with the semi-analytical approach, numerically and by using the shape
function (3.2.30). In the latter case, the equilibrium condition furnishes the shape
parameter φ0 as the solution of the equation

ˆ

KNLl
2π4

2L4
`
F

8

˙

φ2
0 `

ˆ

KLπ
2

L2
´ F

˙

“ 0 . (3.3.32)

Figure 3.6(a) shows the deformation corresponding to four di�erent values of
F ą Fcr. The curves associated with the two lower loads (F “ 20, 40N), calculated
with all the three aforementioned methods (semi-analytical, numerical, shape-
function), show an excellent correspondence. The other curves (F “ 60, 80N)
cannot be accurately determined with the shape function. A quantitative compar-
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(a) (b)

(c) (d)

Figure 3.6. Nonlocal elastica under the axial load F ě Fcr. (a) Post-buckling deforma-
tion for di�erent values of F ; (b) graph of F as a function of the in�exion vm at midspan
and comparison with Euler's elastica; (c) e�ective sti�ness K˚ as a function of |vm|; (d)
non-dimensional plot of the load-displacement curves.

ison is made in Table 3.1 in terms of maximum in�exion |vm| at midspan.
The plot of F against vm is shown in Figure 3.6(b), together with the graph

corresponding to the case KNL “ 0, from now on referred to as Euler's elastica or
local elastica. It is clear that the nonlocal term provides additional sti�ness since
a slight increase of |vm| with respect to the bifurcation point is associated with
an almost quadratic increment of F ; on the other hand, in the Euler's elastica, F
remains almost constant within the range |vm| ď 0.5m.

Figure 3.6(c) reports the bending sti�ness K˚ as per (3.2.17) as a function of
|vm|. Observe that for large de�ections the contribution from the nonlocal term
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Table 3.1. Maximum in�exion |vm| at midspan under the axial load F ą Fcr. Results
obtained with the semi-analytical approach, the numerical method and the shape func-
tion, and corresponding di�erence (in percentage) with respect to the semi-analytical
solution.

Axial Semi- Numerical Percentage Shape Percentage
Load F analytical (n “ 199) di�erence function di�erence

20 N 0.7800 m 0.7781 m 0.24 % 0.7742 m 0.74 %
40 N 1.1017 m 1.0997 m 0.18 % 1.0831 m 1.69 %
80 N 1.2097 m 1.2087 m 0.08 % - -
380 N 0.9453 m 0.9474 m 0.22 % - -

may overcome several times the tangent sti�ness, which coincides with the sti�ness
of Euler's elastica.

Figure 3.6(d) is the most interesting one since it shows the non-dimensional
quantity FL2{K˚, plotted as a function of vm{L. While presenting the semi-
analytical method in Section 3.2.3, it has been demonstrated that a nonlocal elas-
tica responds as an Euler's elastica with bending sti�ness K˚ given by (3.2.17).
This means that the deformed shape of Euler's elastica, with bending sti�ness KL,
under the force F , perfectly overlaps with the curve attained by the nonlocal elas-
tica when bent by the generic force F K˚{KL. Hence, it is not surprising that the
black dots, associated with the nonlocal model, perfectly overlap with the curve
corresponding to the local case. In other words, the ratio F {K˚ represents the
invariant describing the self-similarity associated with the same deformed shape
for the local and the nonlocal cases.

For the sake of comparison with a physical model, consider now the �ex-ten
beam that was illustrated in Figure 3.5, for which L “ 553.6mm, l2 “ 100.6mm2,
KL “ 3475Nmm2 and KNL “ 21375Nmm2. The deformed shapes consequent to
the application of the two forces F can be equivalently obtained by imposing the
relative displacement of the ends, so that F represents the constraint reaction.
Figure 3.7 reports four di�erent con�gurations which correspond to the cases illus-
trated in Figure 3.6(a) with respect to the aforementioned self-similarity. The blue
dots that are overdrawn on the photographs indicate the deformation predicted by
the theoretical continuum model with the same material parameters, calculated by
using the semi-analytical method. The comparison shows a very good agreement.

3.3.2 Rod bent by a concentrated force at midspan

When only a concentrated force P acts at midspan (F “ 0 andMl “ Mr “ 0), the
Lagrange's multiplier is µ “ P {2 and the di�erential equation (3.2.13a) becomes
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(a) (b)

(c) (d)

Figure 3.7. Post-buckling deformations of the �ex-ten beam for di�erent values of the
relative displacement assigned at the ends. Imposed end displacements correspond to
axial force: (a) upLq “ 198mm, (b) upLq “ 286mm, (c) upLq “ 432mm and (d) upLq “

755mm (closed loop). The overdrawn blue dots correspond to the semi-analytical solution
of the nonlocal-elastica continuum model.

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2ds

ȷ

φ2
psq ˘

P

2
cosφpsq “ 0 , (3.3.33)

where the �plus� (�minus�) sign holds for L{2 ď s ď L (0 ď s ă L{2).
Using the shape function (3.2.30) and expanding in Taylor's series the trigono-

metric functions, as indicated in Section 3.2.4, one obtains the polynomial equation
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(a) (b)

(c) (d)

Figure 3.8. Nonlocal elastica under the concentrated load P at midspan. (a) Deforma-
tion for di�erent values of P ; (b) graph of P as a function of maximum in�exion vm at
midspan and comparison with Euler's elastica; (c) e�ective sti�ness K˚ as a function of
vm; (d) non-dimensional plot of the load-displacement curves.

P
1

45

L

π
φ4
0 ´

KNLl
2π4

4L3
φ3
0 ´ P

1

3

L

π
φ2
0 ´

KLπ
2

2L
φ0 ` P

L

π
“ 0 . (3.3.34)

The plots of the deformed shape obtained with the semi-analytical method, the
numerical approach and the shape function are juxtaposed in Figure 3.8(a). The
agreement between the semi-analytical and numerical methods is again excellent.
The accuracy of the shape function is still rather good, with maximum di�erences
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Table 3.2. Maximum in�exion vm under concentrated load P at midspan. Results ob-
tained with the semi-analytical approach, the numerical method and the shape function,
and corresponding di�erence (in percentage) with respect to the semi-analytical solution.

midspan Semi- Numerical Percentage Shape Percentage
Load P analytical (n “ 199) di�erence function di�erence

20 N 0.6448 m 0.6434 m 0.22 % 0.6314 m 2.08 %
80 N 1.0085 m 1.0068 m 0.17 % 0.9734 m 3.48 %
160 N 1.1340 m 1.1325 m 0.13 % - -

in terms of vm of about 3.5%, at least for the loads P “ 20, 80N (the case P “

160N is not considered because accuracy is lost). The quantitative comparison in
terms of maximum de�ection vm is recorded in Table 3.2, which is the counterpart
of Table 3.1.

The relationships between P and vm are plotted in Figure 3.8(b) and com-
pared with the local model of Euler's elastica: the additional sti�ness provided
by the nonlocal term is evident. Figure 3.8(c) reports the e�ective sti�ness K˚

for increasing in�exion, measured through the variable vm. Figure 3.8(d), which
is the counterpart of Figure 3.6(d), shows the non-dimensional plot of the load-
displacement curves for Euler's elastica and the nonlocal elastica. Again the black
dots, corresponding to the nonlocal case, perfectly overlap with the graph corre-

(a) (b)

Figure 3.9. Flexural-tensegrity segmental beam under imposed displacements at
midspan (equivalent to concentrated load at midspan): (a) vpL{2q “ 211mm and (b)
vpL{2q “ 226mm. The overdrawn blue dots correspond to the semi-analytical solution
of the nonlocal-elastica continuum model.
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Table 3.3. Maximum in�exion vm under uniformly distributed load p0. Results obtained
numerically and with the shape function, and corresponding di�erence (in percentage).

Distributed Numerical Shape Percentage
Load p0 (n “ 199) function error

10 N/m 0.6082 m 0.6097 m 0.25 %
30 N/m 0.8897 m 0.8861 m 0.40 %
100 N/m 1.0962 m 1.0719 m 2.22 %

sponding to local case. This con�rms what already indicated for case of the axial
force: the nonlocal elastica is equivalent to a local Euler's elastica with a bending
sti�ness that depends upon the deformation.

Figure 3.9 reports the comparison between the response of the �exural tenseg-
rity segmental beam of Figure 3.5, with the same constitutive parameters, and that
of the nonlocal model (blue dots). The e�ect of a concentrated load at midspan
has been equivalently evaluated by imposing a vertical displacement at the same
point. The agreement is again very good.

3.3.3 Rod bent by uniformly distributed load per unit length

Having set Ml “ Mr “ 0 and F “ 0, the e�ect of a uniformly distributed load
ppsq “ p0 is now investigated. The solution has been obtained either by means
of the shape function (3.2.30) or numerically. For this case, the semi-analytical
method is not feasible. An analytical solution for Euler's elastica has been pre-
sented by [55] in terms of Lauricella's hypergeometric functions, but it is limited
to the range 0.0594 ă p0L

3{K˚ ă 6 and its expression is really complicated.
For this case, the Lagrange's multiplies is µ “ p0L{2 and the di�erential equa-

tion (3.2.13a) becomes

„

KL ` KNL
l2

L

ż L

0

pφ1
psqq

2ds

ȷ

φ2
psq ` p0

L ´ 2s

2
cosφpsq “ 0 . (3.3.35)

By using the shape function (3.2.30) and expanding in Taylor's series the trigono-
metric functions, one obtains the polynomial equation

p0
149

2700

L2

π2
φ4
0 ´

KNLl
2π4

4L3
φ3
0 ´ p0

7

9

L2

π2
φ2
0 ´

N0l
2π2

2L
φ0 ` 2 p0

L2

π2
“ 0 . (3.3.36)

...
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(a) (b)

(c) (d)

Figure 3.10. Nonlocal elastica under uniformly distributed load p0. (a) Deformation for
di�erent values of p0; (b) graph of p0 as a function of maximum in�exion vm at midspan
and comparison with Euler's elastica; (c) e�ective sti�ness K˚ as a function of vm; (d)
non-dimensional plot of the load-displacement curves.

The deformations resulting from the two approaches (numerical and shape func-
tion) are juxtaposed in Figure 3.10(a) for p0 “ 10, 30, 100N/m. Table 3.3 records
the maximum de�ection vm as a function of p0. Observe that the shape function
provides a di�erence less than 0.5% with respect to the numerical calculation when
vm ă L{3.

The dependence of vm on p0 is shown in Figure 3.10(b). Figure 3.10(c) compares
the values of K˚ against vm for the nonlocal case (black dots) and the local Euler's
elastica (continuous line). The same conclusions drawn in the previous Sections
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(a) (b)

Figure 3.11. Flexural-tensegrity segmental beam under uniformly distributed load. The
distributed load was self-weight (Pi “ 0.02N for each segment i, i “ 1 . . . 32) and the
di�erent value of de�ection is obtained by varying the tension force in the cable: (a)
N0 “ 44.1N and (b) N0 “ 23.7N. The overdrawn blue dots correspond to the numerical
solution of the nonlocal-elastica continuum model.

3.3.1 and 3.3.2 also apply in this case. The non-dimensional plot of the function
p0L

3{K˚ vs. vm{L, shown in Figure 3.10(d), con�rms again that the nonlocal
elastica perfectly corresponds to an equivalent Euler's elastica with appropriate
sti�ness.

Figure 3.11 shows the comparison between the deformation of nonlocal elastica
(blue dots), numerically calculated, and the �ex-ten beam of Figure 3.5 under the
uniformly distributed load corresponding to self-weight. The two di�erent de�ec-
tions have been obtained by varying the initial tensile force in the cable (either
N0 “ 23.7N or N0 “ 44.1N), which is equivalent to a variation in the initial sti�-
ness, so that, for the tested model, one has L “ 553.6mm, l2 “ 100.6mm2, either
KL “ 2383Nmm2 or 4435Nmm2, and KNL “ 21375Nmm2. Again the theoretical
and the physical models provide overlapping results.





Chapter 4

Dynamic aspects

The problem of vibrations of �exural-tensegrity segmental assemblies is here con-
sidered. Speci�cally, the case of �ex-ten beams is analyzed and it is shown that this
can represent a su�ciently rich model to illustrate, with paradigmatic examples,
complex nonlinear e�ects in the mechanics of vibrations. Most of the properties
are consequent to the way in which the unbonded cable, after prestressing, is �xed
to the end segments. In particular, elastic springs in parallel with viscoelastic
dampers, as in a Kelvin-Voigt model, can be interposed between the end segments
and the anchorage points of the cable, in order to achieve a passive control of the
vibrations; moreover, the cable tensile force could also be modi�ed by an actuator,
for an active control on the basis of a sensor input.

The variation of tensile force in the cable consequent to its in�exion-induced
elongation provokes the bending sti�ening of the beam. This represents a higher
order term that renders the oscillations nonlinear [60,61] from a constitutive point
of view (nonlinear sti�ness). The classical example is represented by a Du�ng
oscillator [62], where a cubic term is present.

Another source of nonlinearity results from the viscoelastic damper at the ca-
ble ends, even when this is a simple dashpot whose force is a linear function of
the velocity only, because the beam in�exion nonlinearly a�ects the relative dis-
placement of the points connected by the dashpot. Nonlinear damping has been
measured in aerospace structures, such as real-scale aircraft wings [63], in graphene
and carbon nanotubes at the nano-scale [64], but also in common shock absorbers
for automotive applications [65]. However, it is perhaps much less known that even
in beams, plates and shells made of a homogenous material like steel, and even
more so in laminated sandwich panels, the most signi�cant e�ect during nonlinear
vibrations is the increase of damping with the vibration amplitude [66,67]. Based
on this evidence, in [68] a consistent derivation of nonlinear damping was obtained
for rectangular plates made of a viscoelastic material within a geometric nonlin-
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ear theory. In �ex-ten beams, the nonlinear character of the damping is naturally
obtained, in the gross structural response, from simple kinematics.

The possibility of modifying the tensile force in the cable through an actuator
permits to artfully manipulate the bending sti�ness of the beam. A periodically
variable sti�ness represents a parametric excitation that can lead to phenomena
of parametric resonance, similar to those occurring in cables with harmonically
excited supports [69], when the external excitation frequency equals twice the
natural frequency of the system. Such phenomenon may lead to instabilities that
are interpreted by Mathieu's equation [70] for a linear oscillator but, in the case
at hand, the nonlinear character of the bending sti�ness allows to reach a limit
amplitude at any frequency. On the other hand, the parametric excitation can be
imposed in opposition of phase to the natural oscillations, measured by a sensor,
in order to produce an active control of the vibrations [71]. Remarkably, since the
structure is characterized by a strongly nonlinear damping, the active control may
be directed at modifying the amplitude of the oscillations in order to obtain the
maximum dissipation in the shortest time. This represents, to our knowledge, a
possibility that has never been explored before, whose potentialities are yet to be
fully appreciated.

This chapter intends to be illustrative about the topic of vibrations in �ex-ten
beams and, for this reason, simpli�ed approaches are used. In particular, after
a detailed derivation, in Section 4.1, of the dynamic equations for the segmental
beam, the equivalent continuum model is adopted in Section 4.2 under the hypoth-
esis that the length of the segments is much smaller than the length of the beam.
Then, by using an appropriate shape function for the rotation �eld of the continu-
ous beam, which proved to be accurate also for large de�ections under transversal
loads (see Section 3.3), the problem can be reduced to that of a single-degree-of-
freedom (SDOF) oscillator. The nonlinear response of a simply supported beam
under harmonic uniformly-distributed transversal actions is analyzed, evidencing
the role played by nonlinear damping and by the presence of an initial camber due,
e.g., to self-weight. Furthermore, the possibility of artfully controlling the tensile
axial force in the cable is investigated. This may lead to nonlinear phenomena of
parametric resonance, or may serve to suppress pre-existing oscillatory motions.

Some of the results presented here are also available in [72].

4.1 The dynamic problem for a segmental beam

The dynamic problem for �ex-ten segmental beams is here introduced, and the
corresponding nonlinear governing equations are obtained thanks to Hamilton's
principle. Experiments on simple SDOF cantilevers, composed of two segments
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coupled by one joint, suggest how to model the possible sources of dissipation, by
means of viscous damping and additional frictional moments.

4.1.1 Dynamic equilibrium equations

Postponing to the next sections the detailed discussion about the possible sources
of damping, the response of the �ex-ten beam is governed by the variation ∆U
of elastic potential energy from the reference state under null external loads, the
work∆W of external (conservative) forces from such reference state and the kinetic
energy T of the moving segments. With reference to the notation introduced in
Figures 2.1 and 2.10, and recalling Section 2.1.3, these quantities take the form

∆U “ N0Λ `
1

2
KΛ2

“ N0

n´1
ÿ

i“1

Λi `
1

2
K

ˆ n´1
ÿ

i“1

Λi

˙2

, (4.1.1a)
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(4.1.1b)
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(4.1.1c)

where N0 is the initial prestress of the cable, K its equivalent elastic axial sti�ness,
Pi and Fi are the external (conservative) loads applied at the i´th segment in the
transverse and longitudinal direction, respectively, with respect to the beam axis in
the initial straight state (positive if directed as the displacements v and u displayed
in Figure 3.1(b)); mℓi is the mass of the i´th segment of length ℓi . Here, it has
been assumed that the mass m per unit length is constant and that the loads Pi

and Fi are applied at the midpoint of the i´th segment, so that the quantity bi ,
indicated in Figure 2.1(a), reads bi “ ℓi{2. The total elongation of the cable is
Λ “

řn´1
i“1 Λi , where n is the number of segments, as usual.

Observe that, in the de�nition of T , the rotational inertia of each segment has
been neglected with respect to translational contribution: this is reasonable if the
segments are much shorter than the beam length. More in detail, the kinetic energy
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of the i´th segment can be rigorously written as Ti “ pIi 9φi
2 `mℓi 9vi

2 `mℓi 9ui
2q{2,

where Ii is the moment of inertia of the segment, mℓi is the segmental mass, φi the
segmental rotation, and ui and vi are the longitudinal and transverse displacement,
respectively, of the centroid of the segment from the straight reference state; the
latter two quantities correspond to the terms between square brackets in (4.1.1c),
�rst and second line respectively. For the case at hand, we are assuming that the
rotational contribution of each segment is negligible, i.e., Ii 9φi

2 ! mℓi 9vi
2 `mℓi 9ui

2.
The equations of equilibrium can be found with a variational approach, accord-

ing to Hamilton's principle [73], under the constraint related to the compatibility
with boundary conditions. For the paradigmatic case of cantilevers (clamped at
segment i “ 1) and simply supported beams (pin at node i “ 0 and roller at node
i “ n), this reads

G “

$

’

’

&

’

’

%

φ1 “ 0 , for cantilever beams,

n
ÿ

j“1

ℓj sinφj “ 0 , for simply supported beams.
(4.1.2)

The Euler-Lagrange's equations of motion, in terms of variables φi “ φiptq,
resulting from Hamilton's principle [73], takes the well-known form

B

Bt

ˆ

BT

B 9φi

˙

´
BT

Bφi

`
B∆U

Bφi

“ QW ´ µQG , (4.1.3a)

G “ 0 , i “ 1 . . . n , (4.1.3b)

where µ is the Lagrange's multiplier and we have set

δ∆W “
B∆W

Bφi

δφi “ QW δφi , (4.1.4)

δG “
BG

Bφi

δφi “ QG δφi “

$

’

’

&

’

’

%

0 , for cantilever beams pi ‰ 1q,

1 , for cantilever beams pi “ 1q,

ℓi cosφi , for simply supported beams.

(4.1.5)

Note that for cantilever beams, the equation (4.1.3a), for i “ 1, can be disregarded
during the computation of variables φi. In fact, the constraint φ1 “ 0 and the n´1
equations (4.1.3a), for i “ 2 . . . n, su�ce to �nd the n unknowns φi (i “ 1 . . . n).
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On the other hand, the equation (4.1.3a), for i “ 1, can be later used to calculate
the constraint moment reaction, which is expressed by the additional unknown
represented by the Lagrange's multiplier µ.

To exemplify, consider a �ex-ten cantilever with n segments and assume, for
simplicity, that ℓi “ ∆L, for i “ 1 . . . n. The governing equations (4.1.3), describing
the undamped vibrations of such a beam, can be detailed as follows

N
`

ai ´ ai´1

˘

´

ˆ n
ÿ

j“i

Pj

˙ˆ
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ÿ
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“ 0 ,

(4.1.6a)

φ1 “ 0 , i “ 1 . . . n, (4.1.6b)

where we have formally set φk “ 0 when k ă 1 or k ą n, and ak “ 0 when k ă 1 or
k ě n. Recall that Iipjq is the indicator function, which equals 1 when i “ j, zero
otherwise, and that N “ N0 ` KΛ with Λ “

řn´1
i“1 Λi. To further detail, one can

assume, for example, that ai “ l2 pφi ´φi`1q{∆L and Λi “ 1
2
l2 pφi ´φi`1q

2{∆L, as
discussed in the previous Section 3.2.2. The mass coe�cients µ̄ij can be expressed
through a recursive formulation that reads

µ̄ij “

$

’

’

&

’

’

%

µ̄i´1 j´1 ` 4 , for 1 ă i “ j ď n , with µ̄nn “ 1 ,

µ̄i j´1 ` 4 , for 1 ă i ă j ď n , with µ̄in “ 2 ,

µ̄i´1 j ` 4 , for 1 ă j ă i ď n , with µ̄nj “ 2 .

(4.1.7)

These mass coe�cients µ̄ij can be collected in a symmetric matrix of the form
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ffi

ffi

ffi

fl

, (4.1.8)
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which corresponds to n “ 6 segments of equal mass, but its recursive structure
allows for a direct extension/reduction to n ‰ 6.

4.1.2 Focus on the SDOF oscillator

The simplest case of a SDOF oscillator is now considered. This corresponds to
a �ex-ten cantilever composed two segments (n “ 2) coupled by one joint. Such
�reduced� assembly is introduced, and dynamic governing equations are detailed,
in view of the following Section 4.1.3, where the observed free vibration of a 3D-
printed prototype are compared with theoretical �ndings, which will include dif-
ferent modelings for the damping contribution at the joint.

Recall that schematizing �ex-ten beams as a sequence of segments connected
by spring hinges, as per Figure 2.1, is adequate for long chains of ashlars and
limited angles of rotation (see Section 2.2.4). Since the structure here analyzed
is composed by one single joint under large de�ections, a higher level of detail
is needed to describe the kinematics, rather than the modeling of the coupling
between the segments as a macroscopic spring hinge. Hence, equations (4.1.1), for
n “ 2, have to be upgraded and adapted to the case at hand. On the contrary,
equations (4.1.1) are adequate for the larger assembly with n “ 5, introduced later
on in Section 4.1.3 for comparison.

Refer to Figure 4.1, which reports a schematic representation of the SDOF

Figure 4.1. Schematic of the SDOF cantilever composed of two segments coupled by a
joint with circular pitch lines of radius R.
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cantilever. The coupling between the segments relies on circular pitch lines of
radius R; the bottom segment is clamped, while the upper one is free to rotate.
The inertial forces are modeled through a lumped massM˚, which is concentrated
on the tip of the cantilever, at a distance L̂ from the initial pitch point in the
straight state at rest. External forces Fx and Fy are applied at the centroid of
mass M˚, and they are positive if directed as indicated in Figure 4.1. Since only
one joint is considered, one has that the absolute rotation of the free segment
coincides with its relative rotation with respect to the clamped segment; this is
indicated as φ in Figure 4.1.

For the case at hand, equations (4.1.1) can be rewritten as

∆U “ N0Λ `
1

2
KΛ2 (4.1.9a)
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(4.1.9c)

and the Euler-Lagrange's equation of motion, resulting from Hamilton's principle,
takes the form
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In particular, recalling the di�erential condition (2.1.1) and that, for circular pitch
lines, formula (2.1.6) holds, one �nds
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where the only unknown is represented by the function φ “ φptq; its derivatives
can be approximated, through �nite di�erences, as follows

9φptq »
φpt ` ∆tq ´ φpt ´ ∆tq

2∆t
, (4.1.12a)

:φptq »
φpt ` ∆tq ´ 2φptq ` φpt ´ ∆tq

∆t2
. (4.1.12b)

Here,∆t is the time step adopted for the numerical integration of equation (4.1.10),
once initial conditions for the motion are set.

4.1.3 Experiments on free vibrations of cantilevers

The cantilever schematically represented in Figure 4.1 has been prototyped via 3D
printing in order to test its response under free vibrations. The geometry of the
prototype, depicted in the photograph of Figure 4.2, is characterized by the length
L̂ “ 65.3mm and by the radius R “ 48.0mm of the pitch lines, indicated in Figure
4.1. The total mass at the tip of the cantilever is M˚ “ 0.035 kg, which accounts
for the lumped self-weight of the 3D-printed segment (made of white polylactide)
and for an additional weight (made of lead).

The tendon is a dark-brown braided wire made of cotton, waxed to diminish
friction, with e�ective diameter of 0.5mm. In addition, a steel compression spring is
placed in series to the cable, to achieve the e�ective axial sti�nessK “ 0.84N/mm.
As described in Section 2.2.3, the initial prestress N0 in the cable is measured from
the shortening of the spring with a Vernier caliper.

Figure 4.2. Photograph of the SDOF cantilever prototyped via 3D printing according
to the schematic drawing of Figure 4.1.

In the experimental procedure, the cantilever was placed vertically in the
gravity �eld, so that force Fy, indicated in Figure 4.1, is equal to M˚g, being
g “ 9.81m/s2 the gravity acceleration. The force Fx , also indicated in Figure 4.1,
was �rst applied quasi-statically to deform the cantilever, then it was suddenly
made to vanish in order to excite the free vibration of the cantilever. The motion
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was �lmed with a camera (Samsung S5KGM1) and the position of the centroid of
lumped mass M˚ has been recorded with respect to the reference frame indicated
in Figure 4.1. It was observed, as expected, that oscillations progressively reduced
their amplitude. Since viscous drag in the air is negligible, a source of damping at
the level of the joint should be introduced to catch this phenomenon.

The simplest way to consider such damping contribution is to append to the
governing equation (4.1.10) a damping moment of the form

Md “ c 9φ , (4.1.13)

which is proportional through the constant c to the speed of relative rotation 9φ
between the two coupled segments.

Figure 4.3 compares the experimental and theoretical �ndings, when damp-
ing is modeled as a linear function of the rotation speed. In particular, the x-
and y-position of the centroid of lumped mass M˚ is reported for two di�erent
values of the prestress, N0 “ 9.36N and N0 “ 1.83N, respectively. The best agree-
ment between theory and experiments is obtained for the corresponding values
c “ 0.0005Nms and c “ 0.0003Nms. Numerical integration of (4.1.10), with the
additional contribution (4.1.13), is computed though the approximation (4.1.12)
with a time step ∆t “ 0.0001 s.

Note that distinct values of c correspond to di�erent values of prestress N0 ,
suggesting that a (nonlinear) dependence between these quantities could be es-
tablished, but this would require a wide campaign of experimental tests to have
coherent statistical data, which goes beyond the scope of the present section.

The theoretical results almost perfectly overlap to the experimental ones when
the amplitude of oscillations is large (Figure 4.3). Conversely, accuracy is lost when
small amplitudes are reached, which demonstrates that a di�erent damping mech-
anism comes into play at this stage. In particular, observe that, in the recorded
experiments, the oscillations stop abruptly and the initial straight state x “ 0 is
not perfectly recovered (Figure 4.3(a)). This evidence can indicate the presence of
frictional dissipative moments.

To this aim, instead of the linear damping moment Md , a parasitic-friction
moment is now appended to the governing equation (4.1.10). This frictional con-
tribution can be due, for example, to the rough contact (despite lubrication with
graphite powder) of the toothed contact pro�les that de�ne the pitch pro�les. Such
dynamic-friction moment is considered in the form

Mf “ sgnp 9φq M̄ , (4.1.14)

where M̄ ą 0, and the sign depends on the rotation speed 9φ.
Figure 4.4, which is the counterpart of Figure 4.3, shows the experimental and
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(a) (b)

(c) (d)

Figure 4.3. Comparison between experimental and theoretical �ndings, when damping is
modeled as a linear function of the rotation speed: x-position of the centroid of lumped
mass M˚ for (a) N0 “ 9.36N and c “ 0.0005Nms, and (b) N0 “ 1.83N and c “

0.0003Nms; (c)-(d) y-position of the centroid of lumped mass M˚ for the corresponding
cases.

theoretical �ndings, when damping is modeled with an additional friction moment.
The x- and y-position of the centroid of lumped mass M˚ is plotted for the afore-
mentioned values of the prestress (N0 “ 9.36N and N0 “ 1.83N, respectively),
and the best �t is obtained for the corresponding values M̄ “ 0.0031Nm and
M̄ “ 0.0003Nm. Again the selected time step is ∆t “ 0.0001 s.

Also in this case, distinct values of M̄ are found for di�erent values of prestress
N0 . This is consistent with the fact that a higher value of the prestress, i.e., higher
compression stresses along the pro�les in contact, does induce larger frictional
forces at the surfaces in contact.

Observe that now the sudden stop of the oscillations is caught by the model
(Figure 4.4), though at the price of having singularities in the mathematical com-
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(a) (b)

(c) (d)

Figure 4.4. Comparison between experimental and theoretical �ndings, when dissipation
is modeled as a parasitic friction moment: x-position of the centroid of lumped mass M˚

for (a) N0 “ 9.36N and M̄ “ 0.0031Nm, and (b) N0 “ 1.83N and M̄ “ 0.0003Nm;
(c)-(d) y-position of the centroid of lumped mass M˚ for the corresponding cases.

putations due to the change in sign of the friction moment Mf during the time
history. For this reason, in the following, the linear damping, as per (4.1.13), will
be preferred, when only large oscillations are involved. Indeed, for large oscillations
(4.1.13) proves to be adequate, as evidenced by Figure 4.3. To further demonstrate
this point, another example is considered, which corresponds to the cantilever beam
depicted in Figure 4.5.

The new prototype is composed of n “ 5 segments coupled according to circular
pitch pro�les, and it has been prototyped via 3D printing. The beam is clamped at
segment i “ 1, as indicated in Figure 4.5(a), and the position of a reference point
on segment i “ 5, also highlighted in Figure 4.5(a), has been recorded as before.
Each segment is made of black polylactide and an additional lead lamina is glued
at its centroid to increase the segmental inertia (Figure 4.5(a)); the segmental mass
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(a)

(b)

Figure 4.5. Photograph of the cantilever with n “ 5 segments prototyped via 3D
printing to test the modeling of dissipation through linear damping: (a) assembled and
(b) disassembled beam, with evidence of the various components (segments, cable, spring,
clamp to anchor the cable).

(a) (b)

Figure 4.6. Comparison between experimental and theoretical �ndings, for the longer
cantilever with n “ 5 segments: (a) x-position and (b) y-position of the reference point
indicated in Figure 4.5(a), for c “ 0.0016Nms.
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results m∆L “ 0.0188 kg, being ∆L “ 49.2mm the segmental length and m the
equivalent mass per unit length. The radius of the pitch lines is R “ 48.0mm. The
prestressing cable is a polyamide 6.6 wire of diameter 0.8 mm, placed in series with
a steel spring, which are shown in Figure 4.5(b) together with the disassembled
segments; the equivalent axial sti�ness of the tendon is K “ 1.72N/mm, while
the initial prestress was set to N0 “ 11.32N. During the experimental test, the
cantilever was placed vertically in the gravity �eld, and oscillations are caused by
the release from a bent con�guration due to an external load at the free tip.

In this case, the modeling of the joints as spring hinges is acceptable, since the
beam is longer and the global response of the assembly is analyzed, rather than
that of a single joint. Hence, equations (4.1.6) can be used, with the additional
moment Md,i “ c∆ 9φi “ c p 9φi ´ 9φi`1q transmitted at each joint. For clarity, the
generic governing equation (4.1.6a) is here rewritten including such a damping
contribution, and it reads
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(4.1.15)

where, for the case at hand, Pi “ 0 during the oscillations and Fi “ mg∆L.
Figure 4.6 compares the experimental and theoretical results, concerning the

position of the reference point during oscillations. The adopted damping coe�cient
is c “ 0.0016Nms, and the time step is ∆t “ 0.0001 s. The accuracy of the model
with linear damping is good up to t » 3.6 s, then experimental oscillations quickly
decay to zero, whereas the model still computes small vibrations with slower decay.

Since the present prototype (Figure 4.5) is totally di�erent from the previous
SDOF oscillator (Figure 4.2), but in both cases a good accuracy is reached in re-
producing experimentally measured vibrations, we believe that the linear damping
contribution, expressed through the additional dissipative moments Md,i “ c∆ 9φi,
can represent a satisfactory way to model dissipative forces, at least when large
oscillations are observed. On the other hand, the additional frictional moment
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Mf,i “ sgnp∆ 9φiq M̄ should be considered to catch the fast decay of oscillations at
small amplitudes.

4.2 The dynamic problem in the continuum limit

The description of the dynamic problem in the continuum limit is now consid-
ered. By using the appropriate shape function (3.2.30) for the rotation �eld of a
simply supported beam (selected as paradigmatic case-study), the problem can
be reduced to that of a SDOF oscillator. The nonlinear response of the simply
supported beam under harmonic uniformly-distributed transversal actions is ana-
lyzed: the role played by the introduction of dampers at the anchoring points of
the cable is considered and the e�ect of an initial camber due, e.g., to self-weight,
is investigated. The possibility of artfully tuning the tensile force in the cable to
actively control vibration is �nally tested.

4.2.1 Governing equations and damping

Consider equations (4.1.1). By letting ℓi Ñ 0, one can replace summations with
integrals and incremental quotients with derivatives, in order to de�ne, as repre-
sented in Figure 3.1, the continuum counterpart of the discrete problem. Referring
to Section 3.2 for the detailed derivation, the �nal result is here recalled.

Having introduced the curvilinear coordinate s on the beam axis, if φps, tq is
the rotation of the beam at s at the time t, with the notation p¨q1 “ Bp¨q{Bs, the
expressions (4.1.1) become
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0

”

1 ´ cosφps̄, tq
ı

ds̄

*

ds ,

(4.2.16b)

T ptq “
1

2

ż L

0

mpsq

#

B

Bt

ż s

0

sinφps̄, tq ds̄

+2

ds

`
1

2

ż L

0

mpsq

#

B

Bt

ż s

0

”

1 ´ cosφps̄, tq
ı

ds̄

+2

ds ,

(4.2.16c)
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where pps, tq and fps, tq are the smeared counterpart of loads Pi and Fi, whilempsq
is the mass per unit length. The cable elongation depends upon the local curvature
χps, tq of the beam, and it is such that dΛps, tq “ 1

2
l2χ2ps, tqds “ 1

2
l2r´φ1ps, tqs2ds,

i.e., the local cable elongation dΛps, tq, corresponding to Λi in the discrete model,
is a quadratic function of the curvature at s, as assumed in Section 3.2. Recall that
the quantity l is an intrinsic length scale for the structure.

Again, the equilibrium equations can be found through Hamilton's princi-
ple [73], under the continuum limit of the constraint (4.1.2), which, for a simply
supported beam, reads

Gptq “

ż L

0

sinφps, tq ds “ 0 . (4.2.17)

This is the same formulation as per (3.2.10), but now the dependence on time t
is considered and highlighted. The associated Lagrange's multiplier represents the
vertical reaction force at the right-hand roller restraint (Figure 3.1(c)).

The solution of the problem requires a step-by-step numerical integration. How-
ever, it has been demonstrated in Section 3.3 that for di�erent static load condi-
tions, including uniformly distributed loads, the rotation �eld is very well approx-
imated by a cosinusoidal function. Hence, now in the dynamic case, we consider a
shape function (3.2.30) in the time-depending version of the form

φps, tq “ φ0ptq cos
πs

L
, (4.2.18)

where φ0ptq is the shape parameter at time t, representing the rotation at the left-
hand end of the rod. The constraint equation (4.2.17) is automatically satis�ed by
this choice. Then, the variational problem via Hamilton's principle allows to obtain
the optimal value of φ0ptq. A further useful simpli�cation consists in expanding
in Taylor's series the sine and cosine functions appearing in (4.2.16), so that the
integrals can be readily calculated in closed form. In the following, the presence of
axial force fps, tq will also be dropped.

It is clear that (4.2.18) can only account for the �rst vibration mode, which is
indeed a very strong limitation. However, this is certainly the leading mode when
considering the forced vibrations under uniformly distributed harmonic loads, or
other conditions similar to this, as it will be done in the sequel. In addition, ob-
serve that the �rst mode is also driven by the nonlinear character of the bending
sti�ness, associated with the variation of the cable length and/or, equivalently, of
the springs in series to it. Kept �xed the maximum amplitude of vibrations, the de-
formation associated with the �rst mode provokes a cable elongation much smaller
than that for the higher modes, i.e., less elastic energy is involved. Of course, by
numerically solving the equilibrium equations for the discrete case, obtained from
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(4.1.1), it would be possible to clarify the role played by the higher natural modes
of vibrations. However, the simpli�cations introduced here will provide a concise,
though accurate, view of the response of the �exural-tensegrity beam.

There may be many possible sources of damping and one is certainly associated
with relative rotation at each contact joint, as introduced in the previous Section
4.1.3 for the discrete case. In this simplest case, for a continuous beam, assume
that the �rst variation of dissipated energy is of the form

δWD
p1q

ptq “ ´c1L
3

ż L

0

9χps, tq δχps, tq ds

“ ´c1L
3

ż L

0

”

´ 9φ1
ps, tq

ı”

´ δφ1
ps, tq

ı

ds ,

(4.2.19)

where c1 is the damping coe�cient, which dimensions are rM srT s´1, and we have
used the notation 9p¨q “ Bp¨q{Bt and, again, p¨q1 “ Bp¨q{Bs. Substituting the shape
function (4.2.18) in (4.2.19), after integration by parts, one obtains

δWD
p1q

ptq “ ´c1
π2L2

2
9φ0ptqδφ0ptq “ QD1ptqδφ0ptq . (4.2.20)

However, an additional contribution to damping may be considered, now asso-
ciated with the unbonded tendon. This may be naturally due to the sliding of the
tendon inside the sheath or, equivalently, it can be artfully obtained by adding a
linear viscous dashpot at each end of the prestressing cable. The resulting scheme
is that represented in Figure 4.7, where kC is the e�ective sti�ness constant for
the elasticity of the cable, whereas kA and kB are the additional elastic springs at
the beam ends. In parallel with the springs kA and kB, one can insert the dashpots
with damping coe�cients cA and cB, respectively, with dimensions rM srT s´1.

With reference to Figure 4.7(b), let ΛA and ΛB denote the variation of length
of the end springs, of length LA and LB in the reference state as per Figure 4.7(a),
considered positive if they induce compression in the springs. As before, let Λ
represent the increase of length of the centroid line of the beam, where the cable
is placed, consequent to the in�ection. For simplicity, assume that cA “ cB “ c2,
kA “ kB “ k and k{kC Ñ 0. Hence, recalling that dΛps, tq “ 1

2
l2r´φ1ps, tqs2ds, one

obtains by symmetry

ΛA “ ΛB “
Λ

2
“
l2

4

ż L

0

”

´ φ1
ps, tq

ı2

ds , (4.2.21)

so that the variation of dissipated energy, after substituting the shape function
(4.2.18), takes the form
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(a)

(b)

Figure 4.7. Schematic representation of the system formed by the prestressing cable
and the two additional dashpots in parallel with the end springs of the �ex-ten beam.
(a) Reference straight con�guration and (b) con�guration after bending.

δWD
p2q

ptq “ ´cA 9ΛAptqδΛAptq ´ cB 9ΛBptqδΛBptq

“ ´c2
l4π4

8L2
φ0

2
ptq 9φ0ptqδφ0ptq “ QD2ptqδφ0ptq .

(4.2.22)

Observe that δWD
p1q provides a linear contribution to damping directly pro-

portional to the deformation speed 9φ0ptq. More interesting, the term δWD
p2q is

nonlinear, since the resulting damping depends upon both 9φ0ptq and φ0
2ptq. The

possibility of a nonlinear source of damping of this type has been either postulated,
or theoretically derived under speci�c assumptions, in order to correctly interpret
the dynamic response of homogenous plates [68]. Here it is naturally obtained for
a simple mechanical system.

4.2.2 Simpli�ed governing equation

The Euler-Lagrange's equation of motion in terms of φ0ptq, resulting from Hamil-
ton's principle [73], can be written as
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B

Bt

ˆ

BT
B 9φ0

˙

´
BT
Bφ0

`
B∆U
Bφ0

“ QW ` QD1 ` QD2 , (4.2.23)

where we have set δ∆W “ QW δφ0. After some calculations, assuming that both
the mass m and the load per unit length p are uniformly distributed along the
beam, that axial force f “ 0, and using Taylor's expansion for the sine and cosine
functions and neglecting terms of order higher than 5, one obtains

m
L3

π2

„

1

2
´

3

8
φ0

2
ptq `

7

72
φ0

4
ptq

ȷ

:φ0ptq ´ m
L3

π2

„

3

8
φ0ptq ´

7

36
φ0

3
ptq

ȷ

9φ0
2
ptq `

` m
L3

π2

„

8π2 ´ 9

96
φ0

2
ptq ´

16π2 ´ 21

768
φ0

4
ptq

ȷ

:φ0ptq `

` m
L3

π2

„

8π2 ´ 9

96
φ0ptq ´

16π2 ´ 21

384
φ0

3
ptq

ȷ

9φ0
2
ptq `

` c1
π2L2

2
9φ0ptq ` c2

l4π4

8L2
φ0

2
ptq 9φ0ptq `

l2N0π
2

2L
φ0ptq `

`
l4kπ4

16L2
φ0

3
ptq ´ pptq

L2

π2

„

2 ´
7

9
φ0

2
ptq `

149

2700
φ0

4
ptq

ȷ

“ 0 .

(4.2.24)

which is the equation of a nonlinear SDOF oscillator. If the oscillations are very
small, one may neglect all the terms of order higher than 1 in equation (4.2.24) and
obtain a harmonic oscillator, but the nonlinear character is provided by cubic and
higher order terms. It will be veri�ed in Section 4.2.3 that terms of order higher
than 3 do not provide a signi�cant contribution even when resonant conditions
are approached. Of course, some of the cubic terms are negligible with respect to
others depending on the model parameters.

In order to estimate which are the leading terms in the expansion, it is conve-
nient to de�ne suitable quantities that provide the mechanical similitude for the
oscillating system. To this end, consider the following nondimensional quantities:

γ “
mLω̄2

N0{L
“

inertia force per unit length
local sti�ness

, (4.2.25)

β “
k

N0{L
“

nonlocal sti�ness
local sti�ness

, (4.2.26)

α “
l

L
“

intrinsic length scale
macroscopic length

, (4.2.27)
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where ω̄ can be either the natural frequency of the equivalent harmonic system or
the frequency of the forcing term, if any.

Assume that the general solution of equation (4.2.24) is of the type

φ0ptq » ψ cospω̄t ` ϕq , (4.2.28)

where ψ is the amplitude of oscillations and ϕ is the phase. In particular, one
has |φ0ptq| ď ψ, | 9φ0ptq| ď ω̄ψ and | :φ0ptq| ď ω̄2ψ. We can de�ne ψ as the order
parameter, which is also associated with the ratio vm{L between the maximum sag
vm at midspan and the beam length L.

Considering mass, sti�ness and load terms up to third order in (4.2.24), dividing
each term by N0 L and substituting the order parameter, one �nds

m
L3

π2

1

2
:φ0

1

N0L
»

γψ

19.7
,

m
L3

π2

3

8
φ0 9φ0

2 1

N0L
»
γψ3

26.3
,

m
L3

π2

8π2 ´ 9

96
φ0 9φ0

2 1

N0L
»
γψ3

13.5
,

l2N0π
2

2L
φ0

1

N0L
» 4.9α2ψ ,

m
L3

π2

3

8
φ0

2 :φ0
1

N0L
»
γψ3

26.3
,

m
L3

π2

8π2 ´ 9

96
φ0

2 :φ0
1

N0L
»
γψ3

13.5
,

pL2

π2

ˆ

2 ´
7

9
φ0

2

˙

1

N0L
»
pL p2 ´ 0.8ψ2q

10N0

,

l4kπ4

16L2
φ0

3 1

N0L
» 6.1α4βψ3 .

Hence, if oscillations are su�ciently small (say when ψ ă 15˝ or vm ă L{12),
one can neglect terms proportional to γψ3 with respect to those proportional to
γψ, as well as the quadratic contribution in the forcing term. On the other hand,
the cubic sti�ness, proportional to α4βψ3, will a�ect the solution in the case that
β is big enough, of the order of β ą 0.08α´2ψ´2: this represents a condition of
practical interest.

Passing to the damping, the linear contribution is proportional to 4.9 c1ψ, while
the nonlinear contribution is proportional to 12.2 c2α4ψ3. Hence the nonlinear e�ect
is comparable with the linear one if c2 » c1{p2.5α4ψ2q.

In conclusion, neglecting all the terms of order higher than 1 in ψ, but keeping
the signi�cative terms in the cubic sti�ness and nonlinear damping, one obtains

m
L3

2π2
:φ0ptq ` c1

π2L2

2
9φ0ptq ` c2

l4π4

8L2
φ0

2
ptq 9φ0ptq `

`
l2N0π

2

2L
φ0ptq `

l4kπ4

16L2
φ0

3
ptq ´ pptq

2L2

π2
“ 0 .

(4.2.29)
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This represents a hard-spring Du�ng oscillator [61] with linear and nonlinear
damping under forced oscillations. In the following, we will assume that pptq is
proportional to mg f̂ptq, where f̂ptq is a periodic function of time and mg is the
self-weight per unit length of the beam, being g the acceleration of gravity.

4.2.3 Examples

The dynamical response of the beam of Figure 3.1 is here analyzed by numerically
integrating equation (4.2.29) and by using the harmonic balance method [74] to
capture unstable branches. Unless stated otherwise, in the following reference is
made to the case L “ 0.4m, l2 “ 0.00109m2, N0 “ 20N and m “ 0.3 kg/m, while
k “ 1400N/m. Such parameters are consistent with a �ex-ten beam of the type
represented in Figure 3.5, composed of n “ 32 segments of equal length ∆L “

12.5mm and coupled according to circular pitch lines of radius R “ 174.4mm,
where the prestressing cable is a steel tendon, much sti�er than the end springs.

Harmonic and du�ng oscillator

Equation (4.2.29), which corresponds to a nonlinear Du�ng oscillator, can be
rewritten in the more compact form

M :φ0ptq ` C1 9φ0ptq ` C2φ0
2
ptq 9φ0ptq ` K1φ0ptq ` K2φ0

3
ptq ´ F ptq “ 0 , (4.2.30)

where

M “ m
L

2π2
,

K1 “
l2N0π

2

2L3
,

C1 “ c1
π2

2
,

K2 “
l4kπ4

16L4
,

C2 “ c2
l4π4

8L4
,

F ptq “
2

π2
pptq .

(4.2.31)

For the corresponding harmonic oscillator the natural frequency is ω1 “
a

K1{M
and the critical linear damping reads Ccr “ 1{

?
4K1M . The nonlinearity in sti�ness

is due to the cubic term with coe�cient K2 (Du�ng term) with positive sign (hard
spring).

For the case in which C1 is 10% of the critical value and C2 “ 0, the response
under a harmonic excitation of the type pptq “ p0 cospΩtq is evidenced in Figure 4.8,
which reports the maximum displacement at midspan vm , normalized by the beam
length L, as a function of the frequency Ω, normalized by the natural frequency ω1 .
The two pictures refer to di�erent values of the Du�ng term K2 and show graphs
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(a) (b)

Figure 4.8. Frequency-displacement response chart for the beam under the harmonic
load pptq “ p0 cospΩtq, when C1 is 10% of the critical value and C2 “ 0. (a) Small Du�ng
term (K2 “ 0.396N/m) and (b) large Du�ng term (K2 “ 8.307N/m).

corresponding to various values of p0 , expressed in terms of the weight per unit
length mg. For a small K2 , as indicated in Figure 4.8(a), the response is similar
to a harmonic oscillator. Increasing K2 , as per Figure 4.8(b), an unstable branch
becomes visible for su�ciently high values of p0 . The fundamental resonance is at
Ω{ω1 » 1, but for su�ciently high K2 a subharmonic resonance begins to emerge,
for frequencies about 1{3 of the fundamental resonance.

Having set p0 “ 0.3mg and having de�ned K̄2 “ 0.396N/m, Figure 4.9(a)
shows how the response chart is a�ected by the Du�ng term K2 , indicated as a
multiple of K̄2 . When K2 is small, the structure tends to a harmonic oscillator.
On the contrary, when K2 increases, the nonlinear response typical of the Du�ng
oscillator emerges. This fact is also evident by the comparison of Figure 4.8(a)
and 4.8(b). Observe, in passing, that, from (4.2.31), K1 depends upon the initial
prestress N0 in the cable, whereas K2 is a�ected by the e�ective sti�ness of the
cable, in particular by the end springs with elastic constant k.

Figure 4.9(b) reports the in�uence of linear damping C1 , indicated as a per-
centage of Ccr , when C2 “ 0. The considered values should take into account the
rolling friction of the contact surfaces and the friction between the sheath and
cable in proximity of the joint. Friction is certainly enhanced here by the change
of direction of the cable consequent to the rotation of the segments, which locally
increases the contact pressure between cable and sheath.

Figure 4.10(a) shows the response in terms of maximum de�ection for di�erent
values of p0 when the vibrations are around the deformed shape due to self-weight
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(a) (b)

Figure 4.9. Frequency-displacement response chart for the beam subjected pptq “

0.3mg cospΩtq when C2 “ 0. (a) In�uence of the Du�ng term K2 , expressed as a multi-
ple of the reference value K̄2 “ 0.396N/m, when C1 “ 0.1Ccr; (b) in�uence of damping
C1 , indicated as a percentage of Ccr , when K2 “ 8.307N/m.

in the gravity �eld. Note that the fundamental resonance moves from Ω{ω1 » 1.0
to Ω{ω1 » 1.5. Moreover, a subharmonic resonance emerges for frequencies about
one half of those corresponding to fundamental resonance. These di�erences may
be attributed to the �arch-e�ect� of the con�guration around which the oscilla-
tions take place. When p0 is su�ciently high, the amplitude becomes so large that
the initial camber is recovered and the curvature changes sign in the oscillations.
This is evident in Figure 4.10(b) that reports, for p0 “ 0.5mg, the minimum
and the maximum sag as well as their arithmetic mean. Figure 4.10(c) shows
the phase diagram at a frequency corresponding to the subharmonic resonance
(Ω “ 12.1 rad/s » 0.75ω1 when p0 “ 0.5mg), whereas Figure 4.10(d) displays the
corresponding time history for the oscillator.

Figure 4.11(a) is dedicated to the illustration of the in�uence of the additional
nonlinear damping. As the dissipation depends on φ0

2 9φ0, its contribution increases
for large oscillations. Hence, only in a neighborhood of the fundamental resonance
the e�ect of the nonlinear damping is relevant, while the remaining part of the
frequency-displacement response chart is left almost completely una�ected.

It may be argued that, in proximity of the fundamental resonance, the hypoth-
esis of small oscillations (|φ0| ă 15˝), at the basis of the simpli�cations presented
in Section 4.2.2, may be violated. However, it is possible to verify that, at least for
the case at hand, the error is limited. This is con�rmed by the graphs of Figure
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(a) (b)

(c) (d)

Figure 4.10. Frequency-displacement response chart for the simply supported beam
under pptq “ mg ` p0 cospΩtq, for the case C1 “ 0.1Ccr , C2 “ 0 and K2 “ 11.076N/m.
(a) Maximum sag under variable p0; (b) maximum, minimum and mean sag when p0 “

0.5mg; (c) phase diagram in proximity of subharmonic resonance at Ω “ 12.1 rad/s »

0.75ω1 at p0 “ 0.5mg and (d) corresponding time history.

4.11(b), which provide the comparison between the results obtainable with the
simpli�ed equation (4.2.30) and the equation (4.2.24), where terms up to the �fth
order are preserved. Only a slight deviation is observed for the largest oscillations:
the error is less than 2% at resonance, less than 3% at the frequency corresponding
to maximum amplitude, and remains in any case within 4% on stable branches.

...

...
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(a) (b)

Figure 4.11. Frequency-displacement response chart for the simply supported beam
under pptq “ p0mg cospΩtq, for C1 “ 0.1Ccr and K2 “ 8.307N/m. (a) Case p0 “ 0.5mg
and variable c2. (b) Comparison between the responses predicted by the simpli�ed equa-
tion (4.2.30) and the equation (4.2.24), where terms up to the �fth order are considered
(case c2 “ 0 and p0 “ 0.3mg).

Parametric resonance

The coe�cient K1 , which represents the linear sti�ness of the oscillator, depends
on the cable initial prestress N0 . By varying in time the prestress value, a condition
of parametric resonance may be achieved. If one neglects all sources of damping,
as well as the nonlinear Du�ng term, the oscillations consequent to a prestressing
force N0 ` ∆N0 cospωtq correspond to the solutions of Mathieu's equation

M :φ0ptq ` rK1 ` ∆K1 cospωtqsφ0ptq “ 0 , (4.2.32)

where∆K1 “ pl2∆N0π
2q{p2L3q represents the e�ect of∆N0 , which is equivalent to

a variation in the bending sti�ness. With the change of variable ωt “ 2τ , (4.2.32)
can be written in the canonical form

:xpτq ` rδ ` 2ϵ cosp2τqsxpτq “ 0 , (4.2.33)

where δ “ p4K1q{pMω2q and ϵ “ p2∆K1q{pMω2q. The corresponding stability
chart is reported in Figure 4.12(a). The addition of the Du�ng term to equation
(4.2.32) does not modify the shape of the curves that, in the stability chart of
Figure 4.12(a), mark a transition between di�erent-in-type responses, but its pres-
ence makes the solution bounded also in instability regions [60]. To illustrate Figure
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(a) (b)

Figure 4.12. Parametric resonance: (a) stability chart for Mathieu's equation (instability
regions are shaded in light grey); (b) unbounded response (in magenta) for the point
corresponding to the black dot in the �rst plot, which becomes bounded (in black) when
the Du�ng term is added (K2 “ 1.187N/m).

4.12(b) represents the time history in terms of φ0ptq for values of the parameters
pδ, ϵq “ p9.080, 1.135q corresponding to the point indicated with a black dot in Fig-
ure 4.12(a). The addition of the Du�ng term makes the solution to pass from that
plotted in magenta, which diverges, to the one indicated in black, which remains
bounded. The plot corresponds to k “ 4200N/m, so that K2 “ 1.187N/m.

The complete equation for parametric resonance, also accounting for damping,
Du�ng and forcing terms, reads

M :φ0ptq ` C1 9φ0ptq ` C2φ0
2
ptq 9φ0ptq `

c2
k
∆K1

9fkptqφ0ptq `

` rK1 ` ∆K1fkptqsφ0ptq ` K2φ0
3
ptq ´ F ptq “ 0 ,

(4.2.34)

where we assume that fkptq “ cospωtq.
An initial camber, like that corresponding to the in�exion under self-weight,

triggers the onset of the oscillations due to the variation of the cable prestress: this
is a classical example of self excitation due to parametric resonance. On the con-
trary, if the reference con�guration is straight, an initial perturbation is necessary
to induce the onset of oscillations.

Consider a cambered beam under self-weight. Setting C1 “ 0.1Ccr and C2 “

0, and assuming K̄2 “ 0.396N/m as a reference value, Figure 4.13 reports the
maximum displacement at mid-span as a function of the ratio ω{ω1. In Figure
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(a) (b)

Figure 4.13. Parametric resonance: self-excitation of the beam, cambered under self-
weight. Case C1 “ 0.1Ccr , C2 “ 0, K1 “ 1.680N/m, ∆K1 “ 0.420N/m (∆N0 “ N0{4q

and K̄2 “ 0.396N/m. (a) In�uence of the Du�ng K2 expressed as a multiple of K̄2; (b)
maximum, minimum and mean sag when K2 “ 2 K̄2.

4.13(a), K1 “ 1.680N/m and ∆K1 “ 0.420N/m (∆N0 “ N0{4q are kept constant,
while the Du�ng term K2 is varied and indicated as a multiple of K̄2. Observe that
the Du�ng term sti�ens the beam, so that the maximum sag diminishes when K2

increases, and also a�ects the peak position of curves at resonance, which moves
rightwards as K2 is increased.

Also in this case, in proximity of the fundamental parametric-resonance values,
the oscillation amplitude may overcome the initial camber. This is represented in
Figure 4.13(b) that reports, for K2 “ 2 K̄2 , the minimum and the maximum sag
as well as their arithmetic mean. In particular, the mean value remains almost
constant and equal to the initial camber, with slight deviations in correspondence
of the fundamental and subharmonic resonances.

Active control

The variation of cable prestress can also be used to reduce or suppress the oscilla-
tions by means of an active control system.

In order to investigate this potentiality, consider �rst the case of free vibra-
tions without damping (c1 “ c2 “ 0). A possible way to reduce the oscillations
amplitude may consists in introducing impulsive variations in the cable prestress:
Figure 4.14(a) compares the free vibrations with the controlled vibrations. A sen-
sor detects the oscillator natural period and then an actuator applies the variation
of stress in the cable with a doubled frequency and in phase opposition. Observe
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(a)

(b)

Figure 4.14. Active control of free vibrations with no damping (case K2 “ 0.791N/m,
c1 “ c2 “ 0), obtained with impulsive variations of the cable tensile force. (a) Comparison
between free and controlled vibrations; (b) time history for the maximum displacement
at midspan and for the sti�ness K1 , with impulsive variations induced by the actuator.

that the period of oscillation changes with the amplitude of the vibrations because
of the nonlinear term; hence, it would be necessary to change accordingly the fre-
quency of the impulses from the actuator. For this case, a stepwise variation has
been considered, in the sense that the frequency of the impulses is maintained
constant for the time in which they are e�ective, and it is updated successively
following the new natural period detected by the sensor. Figure 4.14(b) reports the
maximum displacement as a function of time, with indication of the variation of
the sti�ness K1 , which is correlated with the variation of the cable prestress N0 ,
as induced by the actuator. Observe that the number of the impulses at constant
frequency is decreased because, as the oscillation amplitude diminishes, just a few
impulses result e�ective; then, the control detects the new natural period and runs
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again the actuator, decreasing the number of impulses if necessary (from 4 to 1 in
the �gure).

The introduction of damping can itself provide a strong decay in the oscilla-
tory motion and render super�uous the active control. Nevertheless, the nonlinear
character of the damping may suggest a new form of active control that is worth
mentioning, at least for its theoretical value. To illustrate, consider the case in
which only the nonlinear damping is present (c1 “ 0 and c2 “ 880 kg/s). The
damping depends on φ0

2 9φ0 , so that its contribution is the higher, the larger the
amplitude of oscillations is. If one artfully reduces the tensile force in the cable,
the oscillations correspondingly increase their amplitude and, consequently, ren-
der the nonlinear dissipation more e�ective; when the initial prestress is restored,
the vibrations are much smaller than in the case in which the cable tensile force
had been kept constant. Figure 4.15 provides an example for this method. Figure
4.15(a) compares the free and controlled vibrations when the sti�ness K1 varies
according to the graph of Figure 4.15(b), as a consequence of the release of the
tensile force in the prestressing cable.

(a) (b)

Figure 4.15. Alternative active control of free vibrations with nonlinear damping
(c1 “ 0, c2 “ 880 kg/s, K2 “ 0.791N/m). (a) Comparison between free and controlled
vibrations; (b) Variation of sti�ness K1 in time, induced by releasing the tensile force in
the cable.

In the case of forced vibrations induced by a periodic external perturbation,
an active control may be much more e�ective than a strong damping, because the
system can be sti�ened by tensioning the cable when the external action is applied.
Figure 4.16 reports the time histories of the forced vibrations, either uncontrolled
or controlled, of a beam excited by a series of sinusoidal impulses, indicated in
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Figure 4.16(a); the control detects, by means of a sensor, when a limit value for
the sag at midspan is exceeded; at this point an actuator starts to pull the cable
so to modify the sti�ness K1 , as indicated in Figure 4.16(b), in order to reduce
oscillations amplitude. When the limit value for the sag is no more exceeded, the
cable is released and the initial prestress is restored. For the case represented in
the �gure, the reduction of amplitude is about 30% as a consequence of an increase
of sti�ness K1 of the order of 50%.

(a) (b)

Figure 4.16. Comparison of uncontrolled and controlled forced vibrations (case C1 “

0.1Ccr , C2 “ 0, K2 “ 0.791N/m) with evidence of (a) the forcing term and (b) the
variation in time of the sti�ness K1 , as a consequence of the control on the axial force
in the cable.

Certainly, other types of active controls can be obtained by acting directly on
the cable tensile force, and/or by using more than one cable eccentrically located
with respect to the beam axis. For example, inserting a certain number of actively
controlled tendons, a cable-actuated robotic limb could be manufactured, with
properties similar to the prototype presented in [75]. The cases reported above are
only examples of the potentiality of the proposed structural system.





Chapter 5

Multi-stable �ex-ten beams

The possibility to design a multi-stable �ex-ten joint is here concerned. In the pre-
vious chapters, the simplest class of �exural tensegrities, i.e., the case of segmental
beams for which the bending moment is a monotonic increasing function of the
relative rotation of the segments (convex bending energy), was theoretically ana-
lyzed, prototyped and tested under static and dynamic loads. The aim now is to
present a new class of �ex-ten beams, characterized by a nonlocal and non-convex
strain energy function, described in terms of the rotations at the segmental con-
tact sections. This represents the extension to the case of bending of the chains
formed by snap-springs under tension [76], with additional nonlocal interaction.
The bi-stable behavior now depends not only upon the shape of the pitch lines, but
also on a tailored increased mobility of the prestressing tendon inside the sheaths,
which produces an e�ect similar to the snap-through buckling.

For illustrative purposes, the case analyzed here is that of pure bending. One of
the most remarkable properties of the model is that the Maxwell path is described
by a stepped strain-hardening curve. Real scale prototypes have been 3D printed
and tested to compare the experimental results with the theoretical predictions. As
derived for �exional loading, this concept could be immediately adopted to develop
foldable devices, to store binary data, or to interpret di�erent con�gurations of
biological structures.

Simple models for bi-stable bars are recalled in Section 5.1, and the motivation
from natural/engineered materials is highlighted. The concept of bi-stable �ex-ten
beams is indicated in Section 5.2.1, and the governing equations are presented in
Section 5.2.2. Section 5.2.3 is dedicated to the testing of two representative 3D-
printed physical models, for which the experimental �ndings are compared with
the theoretical results. These results here presented are also summarized in [77].

The extension to a more complicated multi-stable behavior, with a more elab-
orated geometry for the contact joints, is �nally analyzed in Section 5.3....
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5.1 Multi-stable materials and their modeling

New materials characterized by a morphing capacity are often derived from the
possibility of supporting multi-stable equilibrium states under prescribed boundary
conditions. Such materials arouse the interest of engineers and material scientists,
for their speci�c applications in the electronic, mechanical and biomedical �elds.

Multi-stable con�gurations may be obtained at the molecular level thanks to
microstructural transformations, which can be driven by variations in terms of
stress, temperature and electro-magnetic �eld. A paradigmatic example is repre-
sented by shape memory alloys, for which the austenite-martensite phase trans-
formation permits multiple simultaneous equilibrium states for a �xed value of
external actions, which results in large deformations at the macroscopic level. To
illustrate, Figure 5.1(a) represents the experimentally-measured uniaxial macro-
scopic response under cyclic loading [78] of a specimen made of a shape memory
alloy in a constant magnetic and temperature environment. There is an evident
hysteresis loop, where the largest part of the deformation is associated with a
plateau, apparently horizontal but actually strain-harding in type. A similar be-
havior has been observed in foldable molecules, such as DNA and other biological
structures and proteins, as a consequence of the breakage and rearrangement of
molecular bonds (hydrogen and van der Waals bonds) under external actions. For
example, Figure 5.1(b) reports [79] the strain-hardening sawtooth force vs. dis-
placement path for titin, the giant sarcomeric protein of striated muscle, measured
in microscopic tests under uniaxial tension.

In a continuum approach, the equilibrium states for structures made of materi-
als of this type are usually associated with the local and global minimizers of energy
functionals, possibly incorporating the e�ects of temperature and electro-magnetic
�elds, peculiarly characterized by a non- (quasi) convex dependence on the stretch
tensor. Since the seminal work by Ericksen [80] on uniaxially stretched elastic bars,
it has been clear that the plateau in the macroscopic stress-strain response is due
the coexistence of solid phases. There are multiple equilibrium states, since the
location of the phases in the bar can be rearranged without a�ecting the statics.
The coexistence of material phases was discussed in more general thermodynamic
framework by Dunn and Fosdick [81].

The continuum models have their justi�cation in the material underlying crys-
talline microstructure, or in a rearrangement of the protein constituents, a fact that
has led many authors to consider discrete lattices whose points are coupled by cen-
tripetal interactions. A key aspect is that the interaction forces between the points,
which depend upon their relative distance, are described by non-convex potentials
permitting bi-stable equilibrium con�gurations. Müller and Villaggio [82] proposed
an interesting interpretation with reference to a mechanical model made by chains
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(a) (b)

Figure 5.1. Typical response of real materials: (a) magnetic shape memory alloy under
a uniaxial cyclic loading in a controlled temperature and magnetic environment at 6 kOe
(picture adapted from [78]); (b) uniaxial tension test on titin, the protein constituting
striated muscles (picture adapted from [79]).

of bi-stable two-bar-linkage elements, amenable of snap-through buckling. The se-
quential occurrence of snaps in the units provides a macroscopic response in which
large deformations occur under a stress oscillating around a constant value, remi-
niscent of the onset of plastic �ow. The bi-stable character of the interaction forces
can also be considered in a physical model where the units consists of springs and
dashpots [47]; connecting the points with multiple units, it is possible to reproduce
the slow wave of plastic �ow and the Portevin-Le Chatelier e�ect in tensile bars,
as measured by experiments [83].

Truskinovsky and coauthors were among the �rst to develop and exploit the
concept model of uniaxial chains composed by atoms interacting through bi-stable
springs, usually referred to as snap-springs to recall the properties of snap-through
buckling. Such a simple arrangement, considering either interconnections of type
NN (nearest neighbor) or NNN (next nearest neighbor), is su�ciently rich to rep-
resent complex stability paths [76], which can reproduce the response of shape
memory alloys [84] or plastic �ow [85]. More recently, Benichou and Givli have
revisited the discrete chain model [86] to study the behavior of proteins or shape
memory alloys, providing an experimental veri�cation with a �nite-scale physi-
cal model consisting of units susceptible to snap-through buckling, connected to
linear springs. The system proposed by Caruel et al. [87] to model the response
of contractile units in skeletal muscles is composed of bi-stable units connecting
two rigid backbones, where each crosslinker is represented by a bi-stable potential,
representing two folding con�gurations, connected in series to a linear spring.
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When uniaxially stretched, chains of snap-springs evolve according to equilib-
rium paths where large displacements derive from the sequential occurrence of
snap-through instabilities of the constituent units. Such paths may be associated
with points representative of con�gurations where each unit is in a locally stable
equilibrium state; however, since the �uctuation consequent to the snaps can cause
the exit from the domain of local equilibrium, the structure is prone to follow the
Maxwell path, corresponding to absolute minima of the energy. Anyway, the dis-
crete nature of the model implies a stepped response around a constant value of
stress, with an amplitude that decreases as the number of units is increased, as
evidenced from the graphs recorded in [76]. In the limit of in�nite units, there
is a convergence to a horizonal plateau, as in the continuum model [80]. On the
other hand, the graphs of Figure 5.1, which typically refer to tensile experiments
on shape memory alloys and on proteins amenable of folding/unfolding, indicate
that in the branches of large deformation the response is indeed strain-hardening
in type. The model presented in [88] consists of a simple chain of snap-springs
with NN interactions with diverse constitutive properties but characterized by
the same Maxwell force (computable with the equal-area rule): correspondingly,
the Maxwell stress vs. average strain path corresponds to a stress that �uctuates
around a constant value as the deformation is increased, whereas the maximum
hysteresis path, associated with local minima, exhibits a strain-harding trend be-
cause of the orderly snaps of the springs, from the weakest to the strongest ones.
A strain-hardening Maxwell path can be obtained by introducing the dependence
upon temperature [89�91], which a�ects the mechanical properties of the links due
to entropic e�ects [91].

All the discrete models mentioned above consider the uniaxial response of
chains composed, in practice, of extensional snap-springs. Continuum theories for
the bending of beams that are based on the minimization of a non-convex strain
energy functional of the curvature �eld have been proposed as an extension of
the classical Euler's theory of the inextensible elastica, in order to overcome the
classical quadratic energetic dependence on the curvature. Fosdick and James [44]
considered the simplest problem of the pure bending, showing that under pre-
scribed end-couples a set of many inhomogeneous strain con�gurations is possible.
These kinds of equilibrium con�gurations are related to those that are observed in
a casual experiment on the pure bending of a steel pocket measuring tape. Non-
convex strain energy densities with linear growth at in�nity (oblique asymptotes)
can induce the localization of bending strains similar to what occurs in a plastic
hinge [45]. Energies of this type can be theoretically derived [46] for elastic-plastic
materials exhibiting a transition from the upper to the lower yield point [83].

The discretized version of models of this type for bending has seldom been
attempted. On the one hand, the experimental veri�cation is di�cult because,
whereas the snap-spring under tension can be conceptualized in the snap-through
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buckling of lowered arches, or two-bar-linkages, and manufactured accordingly,
the practical way to fabricate snap-spring hinges that link rigid segments is not
straightforward. On the other hand, it is di�cult to conceive, for the case of bend-
ing, the counterpart of the interconnections of the type �next nearest neighbor�,
which induce in uniaxial models that great variety of behaviors such as to make
them particularly e�ective for the description of complex interaction phenomena
at the molecular level. Despite this, the characterization of the bending behavior
is of great importance to describe the peculiar capacities of elongated structures,
with applications especially in the biological �eld, e.g., for the interpretation of
the mechanical properties of folding molecules such as DNA and of protein chains,
capable of adapting and replicating also by virtue of their �exural properties [92].

The issues above are readily solved thanks to the versatility of �exural tensegri-
ties. In the following, the problem of bending is investigated for a �ex-ten chain of
segments, and the practical manufacturing of the bi-stable joint is obtained thanks
to the geometry of the contact surfaces and the additional mobility of the cable.
The nonlocal interconnection of all the segments through the unbonded tendon
preserves some features of the next nearest neighbor, or higher order, interactions.
In fact, the rotation of any contact joint sti�ens all the other joints, so that the
orderly snaps of the spring-hinges occur at an increasing bending moment. Re-
markably, this leads to a strain-hardening character of the Maxwell path, which
renders the model suitable to reproduce experimentally the measured responses
for elements of the type represented in Figure 5.1.

5.2 Bi-stable segmental beams

A particular construction of the joints is proposed in order to achieve a non-
convex strain energy. The governing equilibrium equations are analyzed for the
paradigmatic case of pure bending of an initially straight beam. Experiments on
3D-printed prototypes are �nally considered to evidence the inhomogeneous strain
con�gurations for given loads at the extremities of the beam.

5.2.1 The contact joint

In principle, any type of nonlinear moment-curvature relationship could be ob-
tained with a tailored design of the pitch lines; the limit, however, is represented
by possible slip and material interpenetration between the segments, which is dic-
tated by the geometry and roughness of the contact surfaces. By using toothed
conjugate pro�les, in theory, relative rotations between the segments up to ˘180˝

can be achieved. In practice, only convex pitch lines can avoid the interpenetration



102 Chapter 5. Multi-stable �ex-ten beams

(a)

(b)

Figure 5.2. Schematic representation of a contact joint in which the pitch lines are
smoothly connected arcs of circle: (a) con�guration with the cable exit point on the
pitch line; (b) con�guration with the cable exit point set back with respect to the pitch
line.

of the segments in contact during the pure rolling motion. More precisely, one of
the pitch lines can be convex and the other one concave, but in any case, the pro-
�les that avoid material interpenetration corresponds to conditions (see Section
2.2.1) in which the lever arm ai , indicated in Figure 2.2(a), is a monotone increas-
ing function of the relative rotation ∆φi “ φi`1´φi . Since the axial force N in the
cable is also a monotone increasing function of the relative rotation, the bending
moment Mi “ aiN is monotonically increasing as well. No bi-stable equilibrium
states are thus possible.

A way to obtain a non-monotone moment-rotation relationship, without run-
ning into problems of material interpenetration, consists in setting back the cable
exit point with respect to the pitch pro�le. Figure 5.2 shows a schematic example to
represent this concept. The design pitch lines consist of three smoothly connected
arcs of circle: the central one (red color line) has twice the radius of the external
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ones (blue color line), which are symmetric with respect to the longitudinal axis
of the segment. Globally, the pitch lines are convex and represented by regular
curves, so to provide a smooth rolling motion without interpenetration. Figure
5.2(a) reports the standard case, analyzed so far, in which the cable exit point is
right on the pitch line: the area hatched in grey, representing the material matrix
cut by a longitudinal section, indicates the location of the sheath and the region
where the cable is constrained. This con�guration shall provide a monotonically
increasing dependence of the lever arm on the relative rotation of the contact seg-
ments. On the contrary, Figure 5.2(b) represents the case in which the cable exit
point is set back with respect to the pitch pro�le: the hatched portions indicate
the corresponding mobility of the cable when the segments are rotated apart. In
particular, the cable exit point is located between the centers of curvature of the
pitch lines and the segments are hollowed in such a way that there is no contact
of the cable with the matrix, at least until the relative rotation does not exceed
a certain limit. During the pure rolling motion of the contact surface, the cable
moves and its distance from the pitch point varies. By varying the distance of the
exit point, one can obtain a non-monotone relationship between the lever arm ai
and the relative rotation ∆φi of the type represented in Figures 5.3(a) and 5.3(b),
both characterized by bi-stable equilibrium con�gurations.

The trilinear graphs result from an assumed piecewise circular shape of the
pitch lines and to the allowed movement of the cable inside the hollow segments1.
Of course, by varying the shape of the pitch lines one can obtain any kind of
smooth curves. The cable elongation Λi at each contact joint is indicated in Figures
5.3(c) and 5.3(d), respectively. The non-convex graphs are composed of arches of
parabolas since, as it will be explained in the sequel, formula (2.1.1) holds also in
this case, i.e., ai “ aip∆φiq is the �rst derivative of Λi “ Λip∆φiq.

The graphs of ai and Λi in Figure 5.3 are drawn only for positive values of the
relative rotation ∆φi , but they can be directly extended to negative values since
they are odd and even functions, respectively. In fact, due to geometric symme-
try, the bending response is specular for opposite values of the applied actions. In
Figure 5.3, points A and B delimit the spinodal region (for positive relative ro-
tations), which is the region of instability: if the load is quasi-statically increased
(decreased), once reached point A (point B), the equilibrium con�guration jumps
to a distant branch of the graphs.

The graphs of Figure 5.3 correspond to pitch lines for which the internal (red)
arc has radius 48mm and length 11.73mm, whereas the external (blue) arcs have
radius 24mm and length of 14.44mm. The di�erence between the case of Figures

1More precisely, this construction provides a trilinear graph only approximately, as it will be
clear later on while discussing equations (5.2.4). However, the accuracy is excellent: the maximum
deviation from linearity is of about 0.5% for the case of Figure 5.3(a), and of about 1.0% for
Figure 5.3(b) when ∆φi » 1 rad, the di�erence being the smaller, the smaller the rotation.
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5.3(a) and 5.3(c), on the one hand, and of Figures 5.3(b) and 5.3(d), on the other
hand, consists in the location of the exit point of the cable, which is set back with
respect to the pitch line of 31.6mm, in the �rst case, and of 39.2mm, in the second
case. In both cases, the cable can freely span an arc length of 17.59mm measured
along the pitch line pro�le, corresponding to the cavity of the segments indicated
in Figure 5.2(b). These two di�erent designs will be prototyped in 3D-printed
physical models, hereafter referred to as Prototype A and Prototype B.

Remarkably, such a small di�erence in the location of the exit point can greatly
a�ect the joint response. The peculiarity of prototype B is that null values of the

(a) (b)

(c) (d)

Figure 5.3. Constitutive relationships for two designs that will be prototyped and tested:
(a) lever arm ai as a function of ∆φi for Prototype A; (b) lever arm ai for Prototype B ; (c)
and (d) corresponding cable elongation Λi . Points A and B delimit the spinodal region
and correspond to each other in their respective �gures.
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lever arm ai can be attained for a non-null relative rotation ∆φi , as indicated in
Figure 5.3(b): this means that there are bent con�gurations in equilibrium with
null bending moment. This is not the case for prototype A, as it is clear from Figure
5.3(a): the only con�guration in equilibrium with null external forces is the straight
state. A response of this type could be referred to as �pseudoelastic in bending�, in
accordance with a similar term used to characterize the tensile response of SMA
wires. The two prototypes thus represent paradigmatic examples, but of course
they cannot cover all possible cases.

It may be worth remarking that the bi-stable behavior of the joint depends only
upon the shape of the pitch lines and on the placement of the prestressing cable,
i.e., the location of its exit points with respect to the pitch lines and the region
where it can freely move inside the segments. Indeed, the constitutive properties
depend only upon the geometry of the structure.

5.2.2 Governing equations and analytical results

Consider the equilibrium under pure bending of a �exural-tensegrity beam com-
posed of n segments coupled one another with the bi-stable joints represented in
Figure 5.2(b).

If the beam is constrained in a hard device (strain-driven test), then the relative
rotation ∆φ̄ on the ends of the beam is prescribed. If the segments are supposed
rigid, the equilibrium problem reduces to the study of critical points of the increase
∆U of the elastic strain energy, which is expressed by (2.1.8). This is here rewritten,
for clarity, and reads

∆U “ N0Λ `
1

2
KΛ2 , Λ “

n´1
ÿ

i“1

Λi . (5.2.1)

The constraint equation is given by

n´1
ÿ

i“1

∆φi “ ∆φ̄ . (5.2.2)

Again, N0 is the cable initial prestress, K is the elastic constant of the cable,
possibly taking into account the presence of springs in series, while

Λi “ Λip∆φiq , (5.2.3)

is the elongation of the cable in the i´th contact joint, i “ 1 . . . n ´ 1, due to
the relative rotation ∆φi “ φi`1 ´ φi of the coupled segments. This produces
the straining of the cable. With reference to (5.2.1), this function is associated
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Figure 5.4. Schematic representation of the i´th contact joint, with indication of the
lever arm ai , the exposed portion of the cable 2Λoi ` Λi and the radius of curvature R
of the pitch line at the pitch point.

with the strain energy stored in the �exural-tensegrity beam, dictated only by the
shape of the contact pitch lines and the location of the exit point of the cable, as
schematically represented in Figure 5.2(b). We will assume for such a function a
non-convex dependence, of the type indicated in Figures 5.3(c) or 5.3(d).

Geometric considerations indicate that, as con�rmed by the shape of the graphs
of Figures 5.3, the lever arm of the cable force ai “ aip∆φiq is the �rst derivative
of the local cable elongation Λi “ Λip∆φiq . In fact, with reference to Figure
5.4, which displays two adjacent segments subjected to the relative rotation ∆φi ,
consider the e�ects of an incremental in�nitesimal relative rotation d∆φi . Let
2Λoi denote the distance between the two exit points of the cable in the reference
straight con�guration. In the con�guration ∆φi this becomes 2Λoi ` Λi , while
R “ Rp∆φiq will denote the radius of curvature of the pitch line at the pitch point.
The incremental relative motion of the segments is an in�nitesimal rotation about
the pitch point, but the pitch point moves as well with the rotation. Therefore,
one can write

dai “ ´
2Λoi ` Λi

2

d∆φi

2
` R

d∆φi

2
, (5.2.4a)

dp2Λoi ` Λiq

2
“ ai

d∆φi

2
. (5.2.4b)

These represent an extension of equations (2.1.2) discussed in Section 2.1.2. For
the case at hand, since Λoi is a constant quantity, it is immediate to deduce
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from (5.2.4b) that dΛi{d∆φi “ ai , which is the equation (2.1.1). Moreover, using
(5.2.4b) in (2.1.2a) one recovers (2.1.3), i.e., the equation that serves to design the
shape of pitch lines.

In the special case in which the pitch line is an arc of a circle so that the radius
of curvature R is constant, from the condition that ai “ 0 when ∆φi “ 0, one �nds
from (2.1.3) that ai “ A sinp∆φi{2q, where A is a constant that depends on the
radius of the pitch line. In particular, A “ R ´ Λoi for the con�guration reported
in Figure 5.4, where the cable moves still in the hollow portion2. When ∆φi is
small, with very good approximation3 one can write ai “ A∆φi{2. This provides
a direct veri�cation that circular pitch lines provide almost a linear dependence
of ai on ∆φi , as anticipated in Section 5.2.1 while discussing the piecewise linear
trend of the graphs in Figures 5.3(a) and 5.3(b).

Taking into account that ai “ aip∆φiq is the �rst derivative of Λi “ Λip∆φiq,
as per (2.1.1), the stationary points of the energy correspond to the solution of the
system of equations

«

N0 ` K

ˆ n´1
ÿ

i“1

Λip∆φiq

˙

ff

aip∆φiq “ M , i “ 1 . . . n ´ 1 , (5.2.5)

in the n ´ 1 unknowns ∆φi , where M “ const. is the Lagrange's multiplier orig-
inating from the constraint (5.2.2), which corresponds to the constant bending
moment along the beam.

When the beam is loaded in a soft device (stress-driven test), then the uniform
bending moment M is prescribed. Denoting with ∆U the increase in strain energy
function, as per (5.2.1), and with ∆W the work of the external end couplesM , the
equilibrium con�gurations coincide with the stationary points of the total energy

∆U ´ ∆W “ N0Λ `
1

2
KΛ2

´ M∆φ̄ , (5.2.6)

where ∆φ̄ takes the same expression of (5.2.2). The corresponding equilibrium
equations take a form analogous to (5.2.5), where now M is given.

In the following, two di�erent types of bi-stable �exural-tensegrity segmental
beams will be analyzed in detail. These are the ones referred to in Section (5.2.1)
as Prototype A and Prototype B, for which the geometric parameters have been
indicated in the same section. The laws for ai “ aip∆φiq and Λi “ Λip∆φiq are
those represented in the graphs of Figures 5.3(a) and 5.3(c) and Figures 5.3(b)
and 5.3(d) for Prototypes A and B, respectively. The peculiarity of Prototype B

2When the pitch line is an arc of a circle of radius R and the cable moves in the hollow
portion of the segment, the derivation of this result is straightforward. In fact, with elementary
trigonometry, one �nds Λi “ 2R´ 2pR´ Λoiq cosp∆φi{2q ´ 2Λoi and ai “ pR´ Λoiq sinp∆φi{2q.

3When ∆φi “ 1 rad, sinp1{2q “ 0.48.
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is that null values of the lever arm ai correspond to non-null relative rotations:
this implies that non-straight con�gurations at null external moment are expected
for the beam. More in general, a variety of nontrivial equilibrium con�gurations,
characterized by an inhomogeneous distribution of relative rotations, are possible
even under uniform bending.

Response in the hard device

For N0 “ 1.96N and K “ 1.03N/mm, Figure 5.5 shows the graphs of all possible
states, in terms of energy ∆U and of end-couple M , as a function of the relative
rotation∆φ̄ for Prototype A with three bi-stable joints (n “ 4 segments). Figure 5.6
reports the same plots for �ve bi-stable joints (n “ 6 segments). In this latter case
N0 is still 1.96N, but K “ 0.89N/mm, because the length of the beam changes
(it is longer) and, accordingly, the sti�ness of the tendon varies (it decreases).
Absolute minima (stable states) are shown with bold (black) lines, metastable
states with solid (red) lines and unstable states with dotted (magenta) lines. Note
that, if the number of segments is increased while keeping �xed the geometry of
the joints, for example from 3 to 5 as shown in Figures 5.5 and 5.6, we move
from the con�guration that in the snap-spring chain analyzed in [76] was called
supercritical, to the one referred to as subcritical.

Similar to what discussed in [76], in the supercritical con�guration the absolute
minima of the energy function, represented with black bold lines in Figures 5.5(a)
and 5.6(a), form a smooth curve, whereas in the subcritical con�guration angular
points appear where the curve changes slope. This e�ect depends upon the exten-
sion of the spinodal region of the single joint, i.e., the distance between point A
and point B in Figure 5.3, with respect to the number of segments. If the beam is
formed by a limited number of segments, the unstable branch of one snap-spring
can be stabilized by the angle-control of the hard device. This is evident in Figure
5.5(b), where unstable branches characterized by steep and negative slope connect,
without gaps, the two adjacent stable branches with positive slope. The analytical
demonstration of this �nding, reported at the end of this section, follows the same
arguments presented in [76].

Figure 5.7 shows the expected macroscopic response of Prototype A with n “ 6
segments in a monotone strain-drive test (increasing ∆φ̄). The beam could follow
two di�erent main paths, evidenced in the graphs with a black bold line. The
�rst one corresponds to the Maxwell path associated with absolute minima of
∆U , represented in the ∆U -∆φ̄ and M -∆φ̄ graphs of Figures 5.7(a) and 5.7(c),
respectively. The second one, referred to as maximum hysteresis path, includes also
metastable states, i.e., local minima of the strain energy ∆U , and is indicated in
the corresponding Figures 5.7(b) and 5.7(d). This latter path prescribes energy
dissipation by hysteresis under loading and unloading path, with the appearance
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of rhomboidal loops in Figure 5.7(d).
What should be observed is the main peculiarity of these graphs: both the

Maxwell and the maximum hysteresis paths are characterized by a strain-hardening
trend. This is essentially due to the nonlocal character provided by the unbonded

(a)

(b)

Figure 5.5. Response in a hard device of the bi-stable �ex-ten Prototype A with n=4
(supercritical con�guration): (a) energy as a function of relative end rotation ∆φ̄ and (b)
moment M vs. ∆φ̄. Stable states are shown with bold (black) lines and unstable states
with dotted (magenta) lines. Parameters: N0 “ 1.96N and K “ 1.03N/mm.
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(a)

(b)

Figure 5.6. Response in a hard device of the bi-stable �ex-ten Prototype A with n “ 6
segments (subcritical con�guration): (a) energy as a function of relative end rotation ∆φ̄
and (b) moment M vs. ∆φ̄. Stable states are shown with bold (black) lines, metastable
states with solid (red) lines and unstable states with dotted (magenta) lines. Parameters:
N0 “ 1.96N and K “ 0.89N/mm.
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prestressing cable, which produces the sti�ening of the beam with increasing rota-
tion. The branches for stable and metastable states progressively become steeper
as the deformation ∆φ̄ increases; moreover, both the Maxwell path and the hys-
teresis path follow a stepped curve that increases with the overall rotation. This
is qualitatively di�erent from what occurs in chains of snap-springs [76,82].

In order to recover the same qualitative response predicted by models of this
kind, in the �ex-ten beam one should disregard the increment in the cable axial

(a) (b)

(c) (d)

Figure 5.7. Response of the bi-stable �ex-ten Prototype A with n “ 6 segments in a
strain-driven test (increasing ∆φ̄): (a) Maxwell path and (b) maximum hysteresis path in
the ∆U -∆φ̄ (energy-strain) chart; (c) Maxwell path and (d) maximum hysteresis path in
the M -∆φ̄ (load-strain) chart. Followed paths are drawn with bold (black) lines, stable
and metastable states are shown with solid (red) lines and unstable states are omitted.
Parameters: N0 “ 1.96N and K “ 0.89N/mm.
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(a) (b)

Figure 5.8. Response of the bi-stable �ex-ten Prototype A with n “ 6 segments in a
strain driven test (increasing ∆φ̄), when the nonlocal e�ect is neglected (the increment
in the cable axial force is overlooked): (a) ∆U -∆φ̄ (energy-strain) chart and (b) M -∆φ̄
(load-strain) chart. Maxwell path is shown with bold (black) lines and metastable states
with solid (red) lines; unstable states are omitted. Parameters: N0 “ 1.96N and K “ 0.

force ∆N “ KΛ due to the elongation of the cable. In fact, by assuming K “ 0 in
the relevant equation, the counterpart of Figures 5.7(a) and 5.7(c) for the Maxwell
path becomes the graphs of Figure 5.8. The stable and metastable branches are now
linear, and the steps occur around a horizontal plateau. This trend is qualitatively
equal to that found in [76, 84] for NN chains formed by trilinear springs. In fact,
in �ex-ten beams, circular pitch lines for the contact surfaces provide a pseudo-
linear dependence of the lever arm ai on the relative rotation ∆φi . In other words,
the case K “ 0 corresponds to the case of snap-spring hinges. In fact, when
the nonlocal dependence from the unbonded tendon is disregarded or becomes
negligible, also the strain-hardening behavior is lost.

We believe that, because of the aforementioned properties, in particular the
possibility of describing strain-hardening equilibrium paths, models based on bi-
stable �exural tensegrities could interpret, better than classical models with snap-
springs chains, the macroscopic response of crystalline and biological structures of
the type presented in Figure 5.1. Remarkably, the path of Figure 5.7(c) is qualita-
tively analogous to the one experimentally observed and reported in Figure 5.1(b).

Response in the soft device

The equilibrium con�guration under a soft device of Prototypes A is reported in
Figures 5.9 and 5.10, referring to the cases with three and �ve joints (n “ 4 and
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n “ 6 segments, respectively). As previously, stable states (absolute minima) are
shown with bold (black) lines, metastable states (local minima) with solid (red)
lines and unstable states with dotted (magenta) lines.

(a)

(b)

Figure 5.9. Response in a soft device of the bi-stable �ex-ten Prototype A with n=4
segments: (a) energy as a function of the applied end couple M and (b) moment M vs.
relative end rotation ∆φ̄. Stable states are shown with bold (black) lines, metastable
states with solid (red) lines and unstable states with dotted (magenta) lines. Parameters:
N0 “ 1.96N and K “ 1.03N/mm.
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(a)

(b)

Figure 5.10. Response in a soft device of the bi-stable �ex-ten Prototype A with n “ 6
segments: (a) energy as a function of the applied end couple M and (b) moment M vs.
relative end rotation ∆φ̄. Stable states are shown with bold (black) lines, metastable
states with solid (red) lines and unstable states with dotted (magenta) lines. Parameters:
N0 “ 1.96N and K “ 0.89N/mm.
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Figure 5.11, which is the counterpart for the soft device of Figure 5.7, shows the
response of the bi-stable beam Prototype A with n “ 6 segments for an increasing
load M . Again, the structure can follow two di�erent main paths, evidenced with
black bold lines in the �gure: again, the �rst one is the Maxwell path, associated
with absolute minima of the total energy ∆U ´ ∆W , and the second one is the
maximum hysteresis path, associated with local minima. Loading and unloading
stress histories following local minima in the soft device lead to a strong energy

(a) (b)

(c) (d)

Figure 5.11. Response of the bi-stable �ex-ten Prototype A with n “ 6 segments in a
stress-driven test (increasing M): (a) Maxwell path and (b) maximum hysteresis path in
the ∆U ´∆W vs.M (energy-load) chart; (c) Maxwell path and (d) maximum hysteresis
path in the ∆φ̄ vs.M (strain-load) chart. The followed path is evidenced with black color,
stable and metastable states are shown with red lines and unstable states are omitted.
Parameters: N0 “ 1.96N and K “ 0.89N/mm.
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dissipation by hysteresis: a large closed loop would appear in Figure 5.11(d).
The complete hysteresis path for Prototype A under a cyclic quasi-static load

is shown in Figure 5.12, which also compares the same load history for Prototype
B. The hysteresis loop is much larger for this latter case.

Again the nonlocal character of �exural tensegrity provides a strain-hardening
behavior and both the Maxwell path and the hysteresis path of Figure 5.12 are
increasing stepped curves. Focusing on ∆φ̄ ą 0, Figure 5.12(b) has a noteworthy

(a) (b)

(c) (d)

Figure 5.12. Load-strain charts (M vs.∆φ̄) for a bi-stable �ex-ten with n “ 6 seg-
ments in a stress-driven test under cycling load M . (a) Maxwell path and (b) maximum
hysteresis path for Prototype A; (c) Maxwell path and (d) maximum hysteresis path
for Prototype B. The followed path is evidenced with black color, stable and metastable
states are shown with red lines and unstable states are omitted. Parameters: N0 “ 1.96N
and K “ 0.89N/mm for Prototype A; N0 “ 2.00N and K “ 2.80N/mm for Prototype B.
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(a) (b)

Figure 5.13. Response of the bi-stable �ex-ten Prototype A with n “ 6 segments in a
stress-driven test (increasing M), when the nonlocal e�ect is neglected (the increment
in the cable axial force is overlooked): (a) ∆U ´ ∆W vs.M (energy-load) chart and
(b) ∆φ̄ vs.M (strain-load) chart. Maxwell path is shown with bold (black) lines and
metastable states with solid (red) lines; unstable states are omitted. Parameters: N0 “

1.96N and K “ 0.

similarity with the hysteresis loops observed in Figure 5.1(a). Note that, now, also
the Maxwell line shows a strain-hardening behavior, while in the model of [88] only
the hysteresis path is of this type.

Of course, if one disregards the nonlocal character of �exural tensegrity by
setting K “ 0, the usual horizontal Maxwell line is found, as indicated in Figure
5.13. Such a condition can be used to reproduce a perfectly plastic response.

Stability analysis

The possibility of attaining supercritical states is strictly correlated to the local
stability of the corresponding equilibrium con�gurations, dictated by the second
variation of the energy. For this system, de�ned by a �nite number of variables∆φi ,
i “ 1 . . . n´ 1, the stability analysis consists in discussing the positive de�niteness
of the Hessian matrix of the energy function.

Let ∆φ̄ represent the relative rotation of the end segments in a hard-device
testing. This datum can be conveniently used to restate the total elongation of the
cable, Λ “

řn´1
i“1 Λi , as a function of n ´ 2 variables only, by setting

∆φn´1 “ ∆φ̄ ´

n´2
ÿ

j“1

∆φj , (5.2.7a)
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Λi “ Λip∆φiq , i “ 1 . . . n ´ 2 , (5.2.7b)

Λn´1 “ Λn´1p∆φn´1q “ Λn´1

ˆ

∆φ̄ ´

n´2
ÿ

j“1

∆φj

˙

. (5.2.7c)

The elastic strain energy function ∆U , expressed by (5.2.1), now depends on ∆φi

for i “ 1 . . . n´ 2. Let H denote the Hessian matrix. For j, k “ 1 . . . n´ 2 one has

rHsjk “
B2

B∆φk B∆φj

∆U “
B2

B∆φk B∆φj

„

N0

n´1
ÿ

i“1

Λi `
1

2
K
´

n´1
ÿ

i“1

Λi

¯2
ȷ

. (5.2.8)

Recalling equation (2.1.1), i.e., the fact that ai “ aip∆φiq is the �rst derivative of
Λi “ Λip∆φiq, and expressing ∆φn´1 as per equation (5.2.7a), for j, k “ 1 . . . n´2,
one obtains

B

B∆φk

ˆ n´1
ÿ

i“1

Λi

˙

“ ak `
BΛn´1

B∆φn´1

B∆φn´1

B∆φk

“ ak ´ an´1 , (5.2.9a)

B

B∆φj

`

ak ´ an´1

˘

“
Bak

B∆φj

´
Ban´1

B∆φn´1

B∆φn´1

B∆φj

“

“
Bak

B∆φj

`
Ban´1

B∆φn´1

.

(5.2.9b)

Consequently, the Hessian matrix can be rewritten as

rHsjk “ N
´

Bak
B∆φj

`
Ban´1

B∆φn´1

¯

` Kpak ´ an´1qpaj ´ an´1q , (5.2.10)

for j, k “ 1 . . . n´2, where N “ N0`KΛ is the tension force in the cable, supposed
homogenous along its length (perfectly-unbonded prestressing tendon).

Equilibrium under pure bending implies that Mi “ aiN is a constant quantity,
for i “ 1 . . . n´1, so that also ai “ const. This means that the second term on the
r.h.s. of (5.2.10) is null. Moreover, recall that Λi is a function of the only variable
∆φi , so that Bak{B∆φj “ 0 when j ‰ k. Therefore, (5.2.10) can be simpli�ed as

rHsjk “

$

’

’

’

&

’

’

’

%

N
´

Baj
B∆φj

`
Ban´1

B∆φn´1

¯

, for k “ j ,

N
Ban´1

B∆φn´1

, for k ‰ j .

(5.2.11)
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Recall that Bai{B∆φi represents the gradient of the internal lever arm with respect
to the relative rotation (Figure 5.3), which is negative in the spinodal region and
positive otherwise.

Since the tendon is unbonded, rearrangements of the order of the relative ro-
tations of the joints are energetically equivalent. If there are two joints in the
spinodal state con�guration, without loosing generality, these can be assumed to
be the �rst one (i “ 1) and the last one (i “ n´ 1). This readily implies that the
�rst principal minor of the Hessian matrix has negative determinant, i.e.,

det

ˆ

N
Ba1

B∆φ1

` N
Ban´1

B∆φn´1

˙

“ N
Ba1

B∆φ1

` N
Ban´1

B∆φn´1

ă 0 . (5.2.12)

because N ą 0, Ba1{B∆φ1 ă 0 and Ban´1{B∆φn´1 ă 0. Since the Hessian matrix,
from Sylvester's criterion, cannot be positive-de�nite, the con�guration cannot be
stable. The same argument can be repeated if there are more than two joints in
the spinodal region, to conclude that con�gurations of this type are also unstable.

If there is only one joint in the spinodal region, thanks to the energetic equiv-
alence of the rearrangements, this can be considered in the position i “ n ´ 2. In
general, all the principal minors of the Hessian matrix up to the pn´ 3q´th order
have positive determinant since N ą 0, Ban´1{B∆φn´1 ą 0 and Bak{B∆φk ą 0, for
k “ 1 . . . n´3. Therefore, the positive-de�nitiveness of the Hessian matrix depends
only upon the sign of the determinant of the pn ´ 2q´th principal minor.

Consider, as an illustrative example, the structure represented in Figure 5.5,
for which n “ 4. For a piecewise-linear law ai vs. ∆φi , of the type represented in
Figure 5.3(a), the derivatives Bai{B∆φi attain constant values, which are positive
(negative) on the increasing (decreasing) branches.

For n “ 4, the determinant of the pn ´ 2q´th principal minor is proportional,
modulo the tendon force N , to the quantity

Ba1
B∆φ1

Ba2
B∆φ2

`
Ba1

B∆φ1

Ba3
B∆φ3

`
Ba2

B∆φ2

Ba3
B∆φ3

. (5.2.13)

This is equal, for instance, to 18.57mm/rad ą 0 when one joint is on the central
decreasing branch of Figure 5.3(a) (between points A and B), and the remaining
two joints are on the l.h.s. increasing branch (below point A) and on the r.h.s.
increasing branch (above point B), respectively. One can thus conclude that su-
percritical con�gurations, where only one of the joints is in the spinodal region,
are admissible for this structure.

When there are no joints in the spinodal region, it is possible to verify that,
since now Bak{B∆φk ą 0, for k “ 1 . . . n ´ 1, all the principal minors of the
Hessian matrix have positive determinant. Therefore, equilibrium con�gurations
of this type are locally stable.
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5.2.3 Experiments on prototypes

Experiments on 3D-printed bi-stable �ex-ten beams are now performed for a com-
parison with the theoretical predictions. In order to visually evaluate the position
assumed by the cable in the various con�gurations as per Figure 5.2(b), the seg-
ments are �open� in the central portion, so that the cable, made of white polyamide,
can be distinguished against the dark material of which the segments are made.

The shape of the pitch lines for the contact surface and the location of the exit
point for the cable are as described in Section 5.2.1, so to obtain the constitutive
relations for the lever arm ai and the gap Λi as a function of the relative segmental
rotation ∆φi respectively represented in Figures 5.3(a) and 5.3(c) for Prototype A,
and in Figures 5.3(b) and 5.3(d) for Prototype B.

In the case of pure bending, the moment Mi “ aiN transmitted by each one of
the contact joints shall be the same; but since the tensile force N in the unbonded
tendon is constant at all joints, this equilibrium condition requires that the lever
arm ai , indicated in Figure 5.4, does not vary from joint to joint for any given
value of N . Figure 5.14 recalls, from Figure 5.3, the constitutive equation ai vs.
∆φi where, for completeness, also the negative branches have been drawn. Observe
that, for prototype A, there may be one (case of lines a and c) or three (line b)
values of ∆φi that provide the same value of ai , whereas for prototype B the values
of ∆φi can be one (line a), three (line b) or �ve (line c).

Any equilibrium con�guration for prototype A with n segments and n´1 joints,
either stable, metastable, or unstable, will be characterized by k joints whose lever

(a) (b)

Figure 5.14. Constitutive relations for the lever arm ai as a function of relative seg-
mental rotation ∆φi , with indication of the possible coexistent states for a given value
of ai: (a) Prototype A and (b) Prototype B.
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arm is on the stable branch passing through the origin, h joints laying on one of
the other stable branches and j joints in the spinodal branch, with j, h, k ě 0 and
j`h`k “ n´1; of course, one is free to change the location of the joints without
a�ecting the static equilibrium. Therefore, the number of equivalent con�gurations
equals the number of permutations with repetition

P
pj,h,kq

n´1 “
pn ´ 1q!

j!h! k!
. (5.2.14)

For Prototype B, there are up to �ve values of the relative rotation ∆φi corre-
sponding to the same ai at each joint and, consequently, the number of equivalent
con�gurations can be much higher. In the noteworthy case, analyzed in the fol-
lowing, of an unconstrained beam in its natural state (M “ 0), besides the null
value there are other two values of ∆φi (˘0.4887 rad) corresponding to (locally)
stable states in equilibrium with null bending moment: this case is attained by
3n´1 con�gurations.

When the end segments are relatively rotated of ∆φ̄ (hard device), one of
the joints may be trapped in the spinodal region and stabilized by the hard-device
control of the global angle∆φ̄: this condition was referred to as supercritical in [76].
In a soft device (prescribed end couples M), all the lever arms ai at the various
joints shall be on the stable branches.

Prototype A - Hard device

Physical models of Prototype A with either three (n “ 4 segments) or �ve (n “ 6
segments) bi-stable joints were 3D printed. The end segments were relatively ro-
tated of ∆φ̄ and the resulting deformed shapes were compared with those analyzed
in Section 5.2.2. In particular, the end rotations have been imposed by pinning the
end segments to a rigid support, in such a way that only the rotation is prevented.
The forcing was done gradually by hand, paying great care at not touching the in-
termediate segments in any way, acting only on the end segments. At this point, we
have veri�ed whether the intermediate segments actually described the theoretical
deformation, using as reference for the measurements a graph paper background.

Three bi-stable joints (4 segments). The prototype has a total length L “

198.8mm, with end segments of length about one half (33.8mm) of the central
ones (65.6mm). The initial prestress of the cable and its e�ective axial sti�ness,
taking into account the presence of the springs in series, are the same of the case
reported in Figure 5.5, i.e., N0 “ 1.96N and K “ 1.03N/mm.

At ∆φ̄ “ 36.56˝ “ 0.6381 rad, as well as at ∆φ̄ “ 99.23˝ “ 1.7319 rad, the
equilibrium branches indicate the possibility of just one homogeneous con�guration
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(relative rotations of the segments are all equal), corresponding to a theoretical
constraint reaction M “ 4.41Nmm. These are represented in Figure 5.15(a) and
5.15(b), respectively.

(a) (b)

(c) (d)

Figure 5.15. Experiments on the prototype of the bi-stable �ex-ten beam considered
in Figure 5.5 (n “ 4, Prototype A). Homogeneous equilibrium con�guration in the hard
device for: (a) ∆φ̄ “ 36.56˝ “ 0.6381 rad and (b) ∆φ̄ “ 99.23˝ “ 1.7319 rad. Three
inhomogeneous equilibrium con�guration in the hard device for: (c) ∆φ̄ “ 42.23˝ “

0.7371 rad and (d) ∆φ̄ “ 76.61˝ “ 1.3371 rad.
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Figure 5.15(c) corresponds to ∆φ̄ “ 42.23˝ “ 0.7371 rad, for which there are
three possible stable con�gurations corresponding to M “ 4.41Nmm. Two joints
are in a state corresponding to the l.h.s. stable branch of Figure 5.3(a) (below
point A) and one joint is on the spinodal branch (between points A and B). This
is due to the fact that the beam is in a supercritical state [76], so that one joint
is in the spinodal (unstable) region, but it is stabilized thanks to the hard device.
There are three possible stable con�gurations also at ∆φ̄ “ 76.61˝ “ 1.3371 rad, as
indicated in Figure 5.15(d), but in this case two joints are in a state corresponding
to the r.h.s. stable branch (above point B) and one joint is on the l.h.s. stable
branch (below point A).

Figure 5.16 displays the six possible stable con�gurations of the beam for
∆φ̄ “ 67.48˝ “ 1.1777 rad, to which corresponds M “ 4.41Nmm. This is again

Figure 5.16. Experiments on the prototype of the bi-stable �ex-ten beam considered
in Figure 5.5 (n “ 4, Prototype A). Six inhomogeneous equilibrium con�guration in the
hard device for ∆φ̄ “ 67.48˝ “ 1.1777 rad.
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a supercritical con�guration for the beam in which one joint is on the spinodal
branch of Figure 5.3(a) (between points A and B), but it is stabilized by the hard
device; the remaining two joints are on the l.h.s. stable branch (below point A)
and on the r.h.s. stable branch (above point B), respectively. Since j “ h “ k “ 1,
from (5.2.14) one has P p1,1,1q

3 “ 6, corresponding to the number of equivalent con-
�gurations.

Five bi-stable joints (6 segments). A physical model of Prototype A with �ve
bi-stable joints (n “ 6 segments) was manufactured by adding two more central
segments of length 65.6mm to the prototype with three bi-stable joints (n “ 4
segments), so to reach a total length L “ 330mm. The initial prestress of the
cable and its e�ective axial sti�ness, taking into account the presence of the springs
in series, are the same of the case reported in Figure 5.6, i.e., N0 “ 1.96N and
K “ 0.89N/mm. The major di�erence with the case of the previous subsection is
that now all equilibrium con�gurations of the beam are subcritical, according to
the de�nition of [76]: with respect to the length of the spinodal branch, the number
of joints is such that no joint in the instability region can be stabilized even in the
hard device. In fact, from Figure 5.6(b), one has that there is at least one value of
M corresponding to a stable or metastable state for any rotation ∆φ̄.

At ∆φ̄ “ 65.00˝ “ 1.1345 rad, there is one homogeneous con�guration (all rel-
ative rotations of the segments are equal) corresponding to a theoretical constraint
reaction M “ 5.40Nmm, and �ve inhomogeneous con�gurations (di�erent rota-
tions) atM “ 3.24Nmm. These respectively correspond to the �rst photograph in
Figure 5.17 and to the successive �ve pictures in the same �gure. For the inhomo-
geneous con�gurations, four joints are on the l.h.s. stable branch of Figure 5.3(a),
one joint is on the r.h.s. stable branch and none on the spinodal branch.

Figure 5.18 displays the possible stable con�gurations of the beam at ∆φ̄ “

120.00˝ “ 2.0944 rad, corresponding to M “ 5.18Nmm. There are ten possible
stable con�gurations: two joints are in a state corresponding to the l.h.s. stable
branch of Figure 5.3(a) (below point A) and three joints on the r.h.s. stable branch
(above point B). Since j “ 0, h “ 3, k “ 2, from (5.2.14) one has P p0,2,3q

5 “ 10,
corresponding to the number of equivalent con�gurations.

It is worth remarking that, in the theoretical model, all contact joints are
identical and the tendon is supposed to be free to frictionless slide. At least in
theory, it is totally equivalent if one or the other spring hinge snaps: only the
number of snapping springs is prescribed, neither their order, nor the sequence
of snapping. On the other hand, in the real prototype there are many sources
of inaccuracy (one for all, parasitic friction), which may drive the sequence to
follow a preferential order. Non-locality also in�uences the hardening response,
in the sense that the beam becomes sti�er as deformation increases. However,
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Figure 5.17. Experiments on the prototype of the bi-stable �ex-ten beam considered in
Figure 5.6 (n “ 6, Prototype A). Homogeneous and inhomogeneous equilibrium con�gu-
ration in the hard device for ∆φ̄ “ 65.00˝ “ 1.1345 rad.

since the tendon is supposed to be perfectly unbonded, the nonlocal e�ect is the
same in all the contact hinges composing the chain; consequently, for �xed relative
rotation between the end segments, the order of the snapped contact joints can
be interchanged without a�ecting the resulting strain energy. In any case, non-
locality does in�uence the energetic barrier that separates one inhomogeneous
con�guration from any other energetically equivalent to it because, in order to
pass from one con�guration to the other, the cable has to be further strained. The
detailed dynamic characterization of the sequence of snaps is not considered here,
and it will be the subject of a successive work.

�
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Figure 5.18. Experiments on the prototype of the bi-stable �ex-ten beam considered
in Figure 5.6 (n “ 6, Prototype A). The ten inhomogeneous equilibrium con�guration in
the hard device for ∆φ̄ “ 120.00˝ “ 2.0944 rad.
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Prototype A - Soft device

Prototype A is now tested in a soft device. Only the results under stress-driven
testing on one single joint and the shorter prototype are recorded, since the longer
chain does not add any conceptual di�erence.

One single joint (2 segments). The two coupled segments, of length 33.8mm,
lay in the vertical plane, as indicated in Figure 5.19(a). The initial prestress is
4.70N, the cable equivalent sti�ness is 1.80N/mm and the contact pro�les are the
same of Prototype A. The upper segment is hinged to a horizontal pin passing
through its centroidal point, while a constant weight of 1.00N is hanged to the
lower segment. Then, the upper segment is gradually rotated, so that the self-
weight of the lower segment, equal to 0.08N, together with the hanging weight,
produces a moment with respect to the pitch point of the contact joint, which can
be estimated by geometrically measuring the lever arm.

Despite the many sources of inaccuracy (friction between pro�les, friction in
the sheaths, imperfections and manufacturing tolerances, creep of the tendon, par-
asitic bending sti�ness of the tendon, measurement errors), the graph reported in

(a) (b)

Figure 5.19. Stress-driven test of one bi-stable joint of Prototype A (n “ 2, N0 “ 4.7N
and K “ 1.80N/mm): (a) layout, with indication of the lever arm for the hanging weight
with respect to the pitch point; (b) measured M vs. ∆φ̄ graph in loading-unloading
paths, compared with the theoretical predictions.
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Figure 5.19(b) con�rms the good agreement between the experimentally-measured
points and the theoretical prediction, in particular for what concerns the loading-
unloading paths and the consequent �pseudoelastic� response.

Three bi-stable joints (4 segments). The physical model of Prototype A
with three bi-stable joints (n “ 4 segments) is tested in the soft device under
four-point-bending. Structural parameters for this case are N0 “ 5.6N, in order
to span larger values of the bending moment, and K “ 1.00N/mm, because the
cable is a bit longer than in the hard-device-tested beam due to the new design of
the end segments.

Figure 5.20. New design of the end segment for the soft-device testing of the bi-stable
�exural-tensegrity beam.

The prototype lies on a well-lubricated horizontal plane, in order to rule out
the e�ects of the dead weight. The external forces are introduced through wires,
redirected towards the vertical by means of pulleys, to which weights have been
attached. It is important to assure that the moment applied at the end segments
remains constant regardless of their rotation: hence, the end segments have been
designed as indicated in Figure 5.20. Observe that they are characterized by two
appendices: the vertical one is placed in contact with a straight �xed support,
well lubricated so to minimize the e�ects of friction, in order to become a roller
constraint; the cable to which the weights are attached is convoluted on the circular
appendix with radius 60 mm, centered on the tip of the vertical appendix. When
the end segment rotates, the cable unwinds from the circular guide and its tensile
force maintains a constant lever arm with respect to the center of rotation. Hence,
the bending moment at the beam ends depends only on the weights that are
attached to the loading wires.

Figure 5.21 represents the results of the test. The moment-rotation (M vs. ∆φ̄)
chart reports the theoretical analysis, with indication of the Maxwell path (black
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Figure 5.21. Testing in a soft device of the bi-stable �ex-ten Prototype A with four seg-
ments (n “ 4). ChartM vs.∆φ̄ , with indication of metastable states (red lines), Maxwell
path (black line) and experimentally measured data (magenta dots). Photographs of the
prototype in the con�gurations represented by the points indicated with A-F in the chart.
Parameters: N0 “ 5.6N and K “ 1.00N/mm.

line) and the branches corresponding to metastable states (red line). The measured
points are those represented with magenta dots in the chart and indicated with
the letters A-F: the photographs of the structure in these states are shown below.
End-couples have been applied to the prototype and, at each value of the load, the
structure has been gently shaken in order to reduce the parasite e�ects of friction,
so to reach the equilibrium con�guration. As a result of the applied perturbations,
the prototype essentially follows the Maxwell line, with slight deviations on the
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metastable branches in proximity of the point where each contact joints snaps.
There are of course the same sources of inaccuracy as in the test on the sin-

gle joint, but also additional uncertainties: friction between the structure and the
horizontal plane; friction in the pulleys and inside the sheath that host the pre-
stressing cable (despite lubrication); friction at the roller supports; measurement
errors with the caliper, the scale and the protractor; 3D printing tolerances; creep
and parasitic bending sti�ness of the cable. In any case, the experimental results
well agree with the theoretical predictions.

Prototype B - Multiple natural states

Consider now the Prototype B with �ve bi-stable joints (n “ 6 segments), for
which the constitutive relations for ai and Λi as a function of the relative segmental
rotation ∆φi are reported in Figures 5.3(b) and 5.3(d), respectively. The beam has
a total length L “ 406mm and again the end segments have a length about one
half (41.4mm) of the central ones (80.8mm). The initial prestress of the cable and
its e�ective axial sti�ness, taking into account the presence of the series springs,
are now N0 “ 2.73N and K “ 0.84N/mm. With respect to Prototype A, the
main peculiarity is that equilibrium states either than the straight con�guration
are possible for null applied external couples M “ 0.

Figure 5.22 shows just a few of the possible natural con�gurations in equilib-
rium with null external couples. These range from the straight reference state to
the uniformly bent state with constant relative rotations, and comprehend zig-zag
and V-shaped con�gurations or a combination of them. This possibility is due to
the fact that, as it is clear from Figures 5.3(b) and 5.14(b), also negative values of
the lever arm ai are possible for certain rotations: there are values of ∆φi ą 0 for
which the bending moment is null even if the deformation is not, one correspond-
ing to spinodal region and another one on the stable branch (of course the same
result holds on the specular branch, for ∆φi ă 0).

There are many locally stable con�gurations, besides the straight reference one.
For the case of �ve bi-stable joints (n “ 6 segments), considering that each joint
has three natural states for M “ 0 corresponding to the stable branches (rotation
positive, null or negative), there are 3n´1 “ 35 “ 243 possible con�gurations
corresponding to null end-couples, for the unconstrained beam. The particular
shape of the contact surface and the location of the exit points of the cable are
such that the globally-stable natural state (absolute minimum for the energy) is
the straight one. It should be observed, however, that in the con�guration shown
in the second picture from the top in the �rst column of Figure 5.22, the cable
is just slightly longer than in the straight con�guration represented above. By
slightly changing the shape of contact surface, it would be possible to render this
con�guration, and the symmetric one, energetically equivalent to the straight state,
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Figure 5.22. Multiple natural states (in equilibrium withM “ 0) for a bi-stable �ex-ten
beam with n “ 6 segments, manufactured as Prototype B : examples of straight, zig-zag,
V-shaped, homogenously bent con�gurations and a combination of them.

in order to achieve a structure where there are multiple globally-stable natural
states. This is just an example that con�rms the great versatility of structures of
this type which, with a tailored design, can adapt to any path.

Indeed, bi-stable �exural-tensegrity beams of this type, arranged as long struc-
tures or as a single joint, have properties that recall the multiple natural states
of shape memory alloys in the martensitic phase. Multiple natural states are also
possible in elastic isotropic material with polyconvex stored energy [93]. With the
geometric parameters used for the construction of Prototype B, presented in Section
5.2.1, the relative rotations of the joints when M “ 0, corresponding to ai “ 0,
can be initialized to zero and then set equal to either a positive or a negative
value (∆φi “ ˘28˝ “ ˘0.4887 rad for the constitutive relation of Figure 5.3(b)).
The resulting structure could be used to store binary data, similarly to old hard
disks based on magnetic hysteresis, to construct switches in electric circuits, or to
manufacture adaptive catheters for biomedical applications.

5.3 Multi-stable segmental beams

The possibility of increasing the number of energy wells at the level of the single
contact joint is now investigated. Using the design concept illustrated in Figure
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5.2(b), which consists in setting back the exit point of the cable with respect to
the pitch line, just two energy wells can be obtained (bi-stable response) for mono-
tonically increasing rotations (∆φi ą 0). In order to increase their number, one
can conceive a layout that repeats this construction multiple times, thus obtaining
a contact joint where the pitch lines consist of many smoothly connected arcs of
circle, and the internal cavities are delimited by convex segmented pro�les (in-
stead of one straight line). In the following, reference is made to the case in which
this construction is repeated twice, so that a �tri-stable� response is obtained for
rotations ∆φi ě 0 that are monotonically increasing.

5.3.1 The contact joint

To this aim, consider Figure 5.23. Each segment is carved to increase the mobility
of the cable inside it, but as the relative rotation increases, the cable comes into
contact with the ridges of the segmented edge pro�le of the cavity. The result is
that the pivotal point for the cable attains di�erent positions as a function of the
relative rotation. If the pitch lines are properly designed, a new energy well can
be associated with each one of the new pivotal points. In Figure 5.23, these pitch
lines are smoothly connected arcs of circle with decreasing radius, and each arc is
highlighted with a di�erent color.

The graphs of Figures 5.24(a) and 5.24(c), representing the internal lever arm
ai and the local cable elongation Λi as a function of the relative rotation ∆φi of the
joint, correspond to pitch lines for which the internal (red) arc has radius 96mm
and length 23.46mm, the adjacent (blue) arc has radius 48mm and length 5.86mm,
the consecutive (green) arc has radius 36mm and length 3.32mm, whereas the
external (magenta) arc has radius 18mm and length of 9.52mm; the cable exit
point is set back with respect to the pitch line of 63.21mm in the straight state
reported in Figure 5.23(a).

On the other hand, the graphs of Figures 5.24(b) and 5.24(d) correspond to
pitch lines where each arc has the same radius as before, but di�erent arc length.
In particular, the internal (red) arc is 10.05mm long, the adjacent (blue) arc
is 8.38mm long, the consecutive (green) arc is 5.65mm long, and the external
(magenta) arc is 9.52mm long, while the cable exit point is now set back with
respect to the pitch line of 63.20mm.

In the �rst case (Figures 5.24(a) and 5.24(c)), the cable can freely span an
angle of ˘20.14˝ along the pitch line and centered at the cable exit point, whereas
the ridges of the internal cavities are at ˘14.00˝ with polar distance from the cable
exit point equal to 36.11mm. In the second case (Figures 5.24(b) and 5.24(d)), the
cable can freely span the angle of ˘14.17˝ along the pitch line, centered again at
the cable exit point, whereas the ridges of the internal cavities are at ˘6.41˝ with
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(a)

(b)

(c)

(d)

Figure 5.23. Schematics of a contact joint where the pitch lines are smoothly connected
arcs of circle, and the cavities are delimited by curved segmented pro�les. Various posi-
tions of the pivotal point for the cable as the relative rotation increases: (a) ∆φi “ 0.0˝,
(b) ∆φi “ 14.9˝, (c) ∆φi “ 50.4˝ and (d) ∆φi “ 88.2˝.
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polar distance from the pitch point equal to 35.69mm.
Note that the peculiar design of pitch lines and internal cavities allows to

obtain the additional branch, indicated as BC in Figure 5.24, interposed between
the two spinodal (unstable) regions AB and CD. Observe, in particular, that,
with the design corresponding to Figure 5.24(b), it is possible to have two rotated
stable states under null applied loads (M “ 0) for positive rotations (∆φi ą 0).
Recalling that ai is an odd function of the relative rotation ∆φi of the joint, one
has up to 5 natural states at M “ 0 for the joint, corresponding to ∆φi “ 0,
∆φi “ ˘0.6370 rad and ∆φi “ ˘1.1884 rad in Figure 5.24(b).

(a) (b)

(c) (d)

Figure 5.24. Two possible constitutive relationships for the multi-stable joint of Figure
5.23 by varying the geometrical parameters: (a)-(b) lever arm ai as a function of ∆φi;
(c)-(d) corresponding cable elongation Λi . Points A, B, C and D delimit the spinodal
regions and correspond to each other in the respective pictures.
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5.3.2 Analytical results in the hard device

The response of a beam, composed of n “ 3 segments coupled by means of
joints with such a geometry to achieve the constitutive laws of Figures 5.24(b)
and 5.24(d), is shown in Figure 5.25. This analysis is limited to one example for
the hard device testing, as the soft device case does not provide additional rele-
vant information, and the energy landscape is already incredibly rich, with many
bifurcations and possible paths for a given external constraint/load.

For N0 “ 5.00N and K “ 5.60N/mm, Figure 5.25(a) shows the graphs of all
possible states in terms of energy ∆U as a function of the relative rotation ∆φ̄
of the extremities of the beam. Figure 5.25(b) reports the corresponding plot in
terms of end-couple M . As before, absolute minima (stable states) are shown with
bold (black) lines, metastable states with solid (red) lines and unstable states with
dotted (magenta) lines. The stability of the various paths has been assessed by
studying the positive de�nitiveness of the Hessian matrix, as detailed in the last
paragraphs of Section 5.2.2.

As evidenced by Figure 5.25, which refers just to the case of two multi-stable
joints, the energy landscape can rapidly become richer by adding segments to
the beam. Multiple equilibrium paths are possible, both stable and metastable,
which can �nd speci�c applications in material science, to realize tailor-designed
structured materials or as phenomenological model for the interpretation of the
nature of solids with poly-convex energy. More in general, �exural tensegrities of
this kind can also serve as a didactic laboratory, to explain the complex behavior
of materials with multiple energy wells.

5.3.3 Multiple natural states

The structural response of a beam with the multi-stable joints of Figure 5.24(b)
can apparently recall the multi-stable behavior of the segmental beam presented
in [94], but, here, the scenario is much broader. Indeed, each joint is characterized
by 5 stable con�gurations (instead of two) under null external loads, and one cable
connects all the joints, thus giving to the assembly a nonlocal response. Moreover,
the contact surfaces are shaped according to smooth and regular curves without
angular points, so that the transition from one con�guration to any other occurs
smoothly and without large stress concentrations.

Similarly to what discussed in the previous Section 5.2.3 for the bi-stable joint,
a �ex-ten beam, whose multi-stable joints are manufactured according to consti-
tutive relations of Figures 5.24(b) and 5.24(d), is characterized by many locally
stable con�gurations, besides the straight one. For the case with four multi-stable
joints (n “ 5 segments), each joint has �ve natural states for M “ 0, so that there
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(a)

(b)

Figure 5.25. Response in a hard device of the multi-stable �ex-ten beam with n “

3 segments corresponding to constitutive relations of Figures 5.24(b) and 5.24(d): (a)
energy as a function of relative end rotation ∆φ̄ and (b) momentM vs. ∆φ̄. Stable states
are shown with bold (black) lines, metastable states with solid (red) lines and unstable
states with dotted (magenta) lines. Parameters: N0 “ 5.00N and K “ 5.60N/mm.
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(a) (b)

Figure 5.26. Prototyped multi-stable �ex-ten beam with n “ 5 segments, manufactured
according to constitutive relations of Figures 5.24(b) and 5.24(d). (a) Selection of the
many possible multiple natural states (in equilibrium withM “ 0) (b) Detail of the joint
with evidence of the three stable states under null external loads for relative rotations
∆φi ě 0.

are 5n´1 “ 54 “ 625 possible con�gurations corresponding to null end-couples, for
the unconstrained beam. Figure 5.26(a) reports just a selection of such natural
states, while Figure 5.26(b) displays a detail of the 3D-printed joint, depicted in
the three stable states under null external loads for relative rotation ∆φi ě 0.

Obviously, this was just one example to evidence the great versatility of �ex-ten
structures and to show how a custom design of the joints can enlarge the energy
landscape, including multiple energy wells.





Chapter 6

A snapping �ex-ten cantilever

Structures that present two, or more, stable-equilibrium con�gurations, are re-
ferred to as bi-stable, or multi-stable, respectively. A bi- and multi-stable response,
at the level of the single joint, was analyzed in the previous Chapter 5 by modifying
the segments with hourglass-like internal cavities, where the cable can move. Any-
way, the load was considered quasi-static and the focus was only on the di�erent
equilibrium con�gurations attainable for the same given external load.

Here, a new type of �ex-ten structure is presented, and the full dynamic prob-
lems during snapping is considered in detail. The beam, arranged as a cantilever,
is characterized by an enhanced mobility of the cable, which allows for a reversible
multi-articulated global motion, driven by a localized perturbation, between two
distant stable-equilibrium con�gurations. The new design provides a bi-stable re-
sponse at the level of the whole structure. This is much more than simply modi-
fying the energy wells of the multi-stable contact joints considered in Chapter 5,
by reshaping the contact pro�les or the hourglass-like internal cavities. If this was
done, only the blending between inertial and elastic forces could possibly trigger
the snapping of the links [95], through the propagation of transition waves [96].

The major novelty here consists in the new design of the internal cavities,
such that the enhanced mobility of the tendon de�nes only two stable-equilibrium
con�gurations for the chain as a whole. Remarkably, the structure will snap in its
entirety in response to the imposed relative rotation of any two adjacent segments,
without the need for inertial triggering via transition waves. When the �rst joint
snaps, the others are forced to snap in cascade by the movement of the cable inside
the cavities, which is driven by elastic energy minimization regardless of the inertia
forces, without any control device. Of course, the dynamics of the problem must
be considered because the performance of the system is dictated by the sudden
release of energy at snapping, balanced by the inertial contribution.

The energetic barrier separating these states provides that the structure can
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snap from one equilibrium con�guration to another in response to external actions.
In particular, the energy resulting from localized perturbations of an equilibrium
con�guration may be harnessed in the structural system, and make it snap towards
another state when the perturbation reaches a critical threshold. The interest for
systems of this kind has considerably grown in recent years in view of morphing
and adaptive applications.

In Section 6.1, the detailed design of the new �exural-tensegrity structure is
presented; the dynamic equations for the assembled system are derived and solved.
In Section 6.2, three cantilevers, characterized by a di�erent number of segments,
are designed, prototyped and tested, in order to validate the theoretical predictions.
The results here discussed are also collected in [97].

6.1 The design for a snapping cantilever

We consider the paradigmatic arrangement of a segmental �ex-ten cantilever, en-
tailing large de�ections between two stable con�gurations. The motion is produced
by the sequential snaps of the constituent contact joints in response to one single
perturbation, represented by the slow cyclic rotation of one contact joint in prox-
imity of the clamped segment. The system is simple and robust, and its movement
is autonomous once snapping is triggered.

A similar example was presented in [96]. This is represented by a chain of hinged
rigid segments, coupled in a next-nearest-neighbor (NNN) interaction scheme by
extensional elastic springs, with an eccentricity with respect to the axis of the ele-
ments. If an initial low-energy perturbation is introduced at the free tip, the chain,
clamped at the opposite end, folds from the straight con�guration and needs to be
manually restored back. On the contrary, one of the most interesting features of the
�ex-ten cantilever is that the motion can be reversed by changing the sign of the
perturbation, although only one tendon is used. Thus, the system can represent the
basic unit of complex articulated systems, in particular for deployable-collapsible
structures. The two stable con�gurations are separated by a high energetic barrier:
no locking device is thus needed to secure one of them after snapping, as is the
case in other proposed devices [98].

The full dynamical problem is stated and the resulting equations are solved nu-
merically. Since the harvested energy is suddenly released, the deformation rate is
strongly in�uenced by dissipative phenomena, such as: friction/cohesion between
the segmental contact surfaces (a�ected by the deformation of the conjugate pro-
�les) and between the cable and the sheaths; viscosity of the medium where the
device operates (air) and the aerodynamic characteristics of the segments. These
are taken into account through equivalent terms in the theoretical formulation,
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according to the �ndings of Section 4.1.3, and the corresponding parameters will
be later calibrated by comparison with experiments on 3D-printed prototypes.

The aforementioned properties suggest applications as (micro) propulsion units,
such as a �agellating tail for a robot �sh [99], or jumping legs for a locust-inspired
robot [100], for which the desired curvatures can be obtained by shaping the pitch
pro�les of the contact joints. The actuation mechanism would be simpler than that
proposed, e.g., in [101], for a dolphin-like tail (adjustable Scotch yoke mechanism
vs. a basic crank and crankshaft connected to a motor). The whipping of multiple
�agella has application in a snake robot like that in [102], which locomotes in pipes
using trapezium-like traveling wave. A classical �exural-tensegrity can be used to
manufacture a bow (see next Chapter 8), but the new concept suggests applications
for a new type of snapping catapult, outperforming the classical elastica-based
design [15]. A miniaturized version may represent the basic cell of metamaterials
with a modular 2D pattern, with a multi-stable response similar to the proposal of
[103], where the basic snap-through instability of thin elastic arches is coupled with
the Eulerian buckling of initially-straight thin elastic rods. If these were substituted
by a �exural-tensegrity assembly, the metamaterial would acquires also memory
properties, because the snap rewinds only if one changes the load sign, but not if
the load is brought to zero.

6.1.1 Flexural tensegrity with enhanced tendon mobility

Increasing the mobility of the cable within the segments, that compose the �ex-ten
assembly, opens up a broader scenario because it can confer a multi-stable char-
acter to the contact joints. The evolution of the structural concept is summarized
in Figure 6.1, which represents a schematic view of longitudinal sections of the
segments, with indication of the passing-through cable. The sectioned portions are
hatched, to distinguish them from the cavities where the cable is free to move.
Adjacent to each section, on the right-hand side, the corresponding standing-alone
segment is shown in a X-ray view.

The primitive con�guration, �rst introduced in Chapter 2, is represented in
Figures 6.1(a) and 6.1(b). The cable is constrained within a thin tubular sheath
inside the segment, and its exit point is located exactly at the mid-point of pitch
pro�le, here coinciding with the arc of circle drawn in red. The mobility of the
cable is limited to axial stretching only. In general, the lever arm ai , represented
in Figure 2.2(a), is a monotone function of the relative rotation ∆φi , so that the
corresponding energy is a convex function of ∆φi and no snapping occurs.

The scheme of Figures 6.1(c) and 6.1(d) was analyzed in Chapter 5, and di�ers
from the previous one because the exit point is located behind the pitch line: thanks
to the presence of triangular-shaped cavities, the cable can move while keeping the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1. Schematic sections of adjacent segments with increased mobility of the cable,
and corresponding X-ray view of the standing-alone segment: (a)-(b) tubular sheath and
circular pitch lines, �rst introduced in Chapter 2; (c)-(d) triangular-shaped cavity and
short sheaths, with piecewise circular pitch lines, analyzed in Chapter 5; (e)-(f) broader
cavities, with circular pitch lines.

exit point as the pivot point. Designing the pitch lines as three smoothly-connected
arcs of circle (blue and red curves in the picture), as pursued in Chapter 5, it is
possible to obtain a multi-stable joint, with three stable con�gurations under null
external actions, of which one is represented by the undistorted straight state.

The new geometry, that will be investigated in the present chapter, is that
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(a) (b)

Figure 6.2. Schematic section of a snapping cantilever with n “ 7 segments: (a) detailed
view of the shape of the cavities and the passing-through cable; (b) the two symmetric
con�gurations corresponding to minima for the strain energy.

depicted in Figures 6.1(e) and 6.1(f), where the cavity is broader and the sheath
has been eliminated, so that there is no more the constraint for the exit point of the
cable, as in the previous cases. The result is that the cable can more freely move
inside the cavity, since there is no more the geometric restraint to pass through a
�xed point within the single segment. The residual constraint is unilateral in type,
being activated only when the cable touches the walls of the internal cavity.

The new concept is specialized to the model-problem of a cantilever, represented
in Figure 6.2 as the assembly of n “ 7 segments. The most important feature,
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Figure 6.3. Frame sequence during the snapping of a cantilever prototyped via 3D-
printing according to the schematic of Figure 6.2: the tip of the cantilever is initially
pointing to the right-hand side, then the beam reverses its shape with a sequential snap
of the joints.

evidenced in the longitudinal schematic section of Figure 6.2(a), is that the cavities,
symmetric with respect to the axis of the segments, are tapered and gradually
narrow while passing from the bottom to the top of the structure. More precisely,
the cavities for i “ 2 . . . 6 are trapezoidal in shape, while those at i “ 1 and i “ 7
are triangular because the anchoring point of the cable is located at the vertices
(points A and B). The pitch pro�les for the contact joints are arcs of circle and
their radius is kept constant along the beam, while the length of the segments is
less than the radius of the pitch lines (segmental length equal to 74% of the pitch
line radius in the �gure).

The peculiar geometry of the segments and their cavities, as well as of the
contact pro�les, is such that there are, by symmetry, only two con�gurations that
correspond to the minimal length of the cable, when this is in contact with the walls
of the cavities. These two con�gurations, which are represented in Figure 6.2(b),
correspond to states of minimal strain energy and, therefore, de�ne the only two
symmetric stable con�gurations of equilibrium under null external actions.

We are interested in studying the dynamics of this structure when the segment
i “ 2 is kept �xed and the segment i “ 1 is gradually rotated, as indicated
in Figure 6.2(a). The cable thus moves inside the cavities: static equilibrium is
obtained when the cable passes through the pitch point of each contact joint i ‰ 1
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(null lever arm). However, gradually increasing the rotation of the �rst segment,
the equilibrium becomes unstable, because the length of the cable may be lowered
by an in�nitesimal perturbation of the con�guration. At this instant, the structure
is prone to snap towards the symmetric stable equilibrium state, as indicated in
Figure 6.2(b). For a real cantilever, prototyped via 3D printing according to the
schematic of Figure 6.2, the frame sequence during the snapping is reported in
Figure 6.3: the tip of the cantilever is initially pointing to the right-hand side and
the segment i “ 1 is rotated by hand; when a certain limit angle is reached, then
the beam is forced to reverse its shape.

One observes the orderly snap of the contact joints, because the relative rotation
of two segments produces the movement of the cable that, in turn, triggers the
snapping of the adjacent couple of segments. This is the major di�erence between
structures of this type, and those corresponding to the construction of Figure
6.1(c). There, the energetic barrier between the equilibrium states of the contact
joints is in general such that snapping occurs independently from one joint to the
other. Here, for the case at hand, the snap-through instability of one joint produces
instead a chain reaction that a�ects all the other joints. As a consequence, the
structure snaps as a whole.

Of course, the dynamics is complicated by the blending between inertial and
elastic forces. In particular, the acceleration is such that the stable equilibrium
states are overtaken and the system starts to oscillate. The length of the arc of the
pitch pro�les that the cable can span without touching the walls of the cavities
gradually diminishes from the bottom to the top, corresponding to an angle that
passes from 2π{15 for the �rst joint (between segments 1 and 2) to π{45 for the
last joint (between segments 6 and 7). When the extremal points are reached, the
cable is bound by the walls of the cavities and this produces the springing-back of
the link. By changing the sign of the rotation of the control segment, the motion is
reversed. Since a considerable elastic energy is released when the entire structure
snaps, the structure behaves like a tail that �agellates. The cyclic rotation of the
end segments produces alternating whipping, which can �nd speci�c applications.

6.1.2 Dynamic equilibrium

The solution procedure consists in solving the nonlinear system of equations that
de�ne dynamic equilibrium, coupled with a minimization algorithm that deter-
mined the position of the cable. We neglect the mass of the cable and the rotatory
inertia of the segments1, so that their mass is concentrated in the corresponding

1We have checked, a posteriori, that this contribution is inessential. The veri�cation is pro-
vided in the remark at the end of Section 6.2.3, while discussing the experiments on the proto-
typed cantilever with n “ 5 segments.
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centroid (lumped mass model).
With reference to Figure 6.2(a), for a cantilever composed of n segments, let

∆φiptq, i “ 1 . . . n ´ 1, denote the relative rotation, positive if clockwise, between
the segment i` 1 and i, at time t. Recall that the segment 1 is gradually rotated,
whereas segment 2 is kept �xed. Hence, the �rst rotation ∆φ1ptq is the control
parameter, whereas ∆φiptq, i “ 2 . . . n ´ 1, are the Lagrangian variables that
de�ne the actual con�guration at time t. Introduce the global reference system
px, yq as represented in the same �gure. If the values of the rotations are known,
then the coordinates

`

xP̄i
ptq, yP̄i

ptq
˘

of the pitch point P̄i at the i´th contact
joint, i “ 1 . . . n ´ 1, the coordinates pxAptq, yAptqq and pxBptq, yBptqq of the end
points A and B where the cable is anchored, and the position

`

xḠi
ptq, yḠi

ptq
˘

of
the centroid Ḡi of the i´th segment, i “ 1 . . . n are completely determined by
elementary geometry as a function of ∆φiptq, i “ 1 . . . n ´ 1.

The cable is free to move in the space determined by the cavities of the segments
at time t, which is again completely de�ned by ∆φiptq, i “ 1 . . . n ´ 1. Since we
neglect the mass of the cable, its position is such that its length is minimal at
each instant t. This is found by solving a minimization problem, subjected to the
unilateral constraints that the walls of the cavities cannot be overcome. Since the
walls of the cavities are straight and the cable has negligible bending sti�ness, such
tendon is represented by a polyline. Thus, the minimization problem can be stated
by considering as variables the coordinates

`

x´
Ci
, y´

Ci

˘

and
`

x`
Ci
, y`

Ci

˘

, i “ 1 . . . n´1,
that represent the vertices of the polyline, being respectively associated with the
position of the cable in correspondence of the pitch pro�les of the lower p´q and

(a) (b)

Figure 6.4. Location of the cable in the deformed con�guration: (a) variables C´
i ”

px´
Ci
, y´

Ci
q and C`

i ” px`
Ci
, y`

Ci
q that de�ne the vertices of the polyline as the points of

intersection with the pitch pro�les at joint i; (b) o�set of the pitch pro�les to avoid
numerical instabilities in the minimization problem.
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upper p`q segments at the i´th joint, as indicated in Figure 6.4(a). With the same
notation used in the previous chapters, once the length of the cable is determined,
its elongation Λ is found and, correspondingly, the tensile force readsN “ N0`KΛ.

The objective function is represented by the length of the cable expressed in
terms of the aforementioned variables, subjected to the constraints, expressed in
terms of inequalities, that the walls of the cavities cannot be surpassed. This is
solved by using a procedure implemented in Wolfram Mathematica® [104], that
adopts a Karush-Kuhn-Tucker approach. However, numerical instabilities may oc-
cur when the cable is close to the pitch points, because in this case

`

x´
Ci
, y´

Ci

˘

≊
`

x`
Ci
, y`

Ci

˘

. Even a small approximation of such values can produce noteworthy er-
rors for the evaluation of the internal moment at the contact joint. In fact, this
is given by Mi “ aiN , but the lever arm ai is determined by the coordinates
`

x˘
Ci
, y˘

Ci

˘

, which de�ne the orientation of the exposed portion of the cable. In
order to by-pass this problem, the pitch pro�les are arti�cially o�set of a small
quantity (o�set-length “ 0.5mm for the case at hand), as indicated in Figure
6.4(b). This implies that, even in proximity of the pitch point, the intersection
points are well spaced apart, and the minimization algorithm is stabilized.

Dissipation can also play a decisive role. According to the �ndings of Section
4.1.3, this is modeled by assuming that at each joint i there is a parasite moment
Md,i “ c∆ 9φi , proportional through the constant c to the speed of relative rotation
∆ 9φi . An additional contribution is due to the frictional contact of the conjugate
pro�les that de�ne the pitch pro�les, manufactured as toothed wheels in the pro-
totypes. A dynamic-friction moment is considered in the formMf,i “ sgnp∆ 9φiq M̄ ,
where M̄ ą 0.

The equilibrium of each joint shall be satis�ed. To de�ne the correspond-
ing equation, the structure is ideally separated at the i´th contact joint, for
i “ 2 . . . n ´ 1, by cutting the exposed portion of the cable: the internal forces
at the node are the contact reactions, concentrated at the pitch point, and the
axial force N in the cable. Consider the free body diagram of the portion, formed
by the assembled segments j, for j “ i ` 1 . . . n. For the con�guration at time
t, de�ned by the variables ∆φiptq for i “ 2 . . . n (recall that ∆φ1ptq is the con-
trol parameter representing the load history), one calculates the position of the
cable from the minimization problem and, hence, the axial force Nptq. Elemen-
tary geometry also provides the lever arm aiptq of the cable force with respect to
the pitch point P̄i ”

`

xP̄i
ptq, yP̄i

ptq
˘

at the i´th joint, the coordinates of the cen-
troid Ḡj ”

`

xḠj
ptq, yḠj

ptq
˘

and the corresponding components of the inertial forces
Fx,jptq “ ´mj :xḠj

ptq and Fy,j “ ´mj :yḠj
ptq, where mj is the mass of the segment.

Then, there are n ´ 2 independent nonlinear equations at joints i “ 2 . . . n ´ 1,
which correspond to the rotational equilibrium with respect to the pitch point and
can be written as

...
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Nptq aiptq `

n
ÿ

j“i`1

”

mj:xḠj
ptq

`

yḠj
ptq ´ yP̄i

ptq
˘

´ mj:yḠj
ptq

`

xḠj
ptq ´ xP̄i

ptq
˘

ı

`

` sgn p∆ 9φiptqq M̄ ` c∆ 9φiptq “ 0 , i “ 2 . . . n ´ 1 .

(6.1.1)

For the sake of illustration, the various quantities represented in this equations
are detailed in Figure 6.5(a) for the case n “ 4. Observe that in general aiptq may
achieve either positive or negative values, depending on the fact that the cable line
is located on the right-hand side or the left-hand side with respect to the pitch
point, as indicated in Figure 6.5(b).

Experiments have provided further evidence that there is an initial resistance
to the rotation of the segments, which should be attributed to the static friction

(a) (b)

Figure 6.5. Cantilever with n “ 4 segments: (a) indications of inertial forces, centroids
and pitch points; (b) di�erent signs of the level arm ai according to the position of the
cable line with respect to the pitch points.



6.1. The design for a snapping cantilever 149

between the conjugate pro�les, i.e., a threshold that should be overcome before
dynamic friction comes into play when the motion starts. We consider this e�ect
by introducing a value for the moment of static friction M̄s ą M̄ . Therefore, the
problem is subjected to the further condition that the relative rotation at the i´th
joint does not occur as long as

ˇ

ˇ

ˇ

ˇ

ˇ

Nptq aiptq `

n
ÿ

j“i`1

mj:xḠj
ptq

`

yḠj
ptq ´ yP̄i

ptq
˘

`

´

n
ÿ

j“i`1

mj:yḠj
ptq

`

xḠj
ptq ´ xP̄i

ptq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ă M̄s .

(6.1.2)

The problem is solved through a step-by-step integration coupled with the
minimization algorithm that �nds the position of the cable associated with each
con�guration. Let ∆t denote the time step. As detailed in equation (4.1.12) for the
speci�c case of the relative rotation, the time-derivatives (velocity and acceleration)
of any function θptq of the time t can be approximated as

9θptq »
θpt ` ∆tq ´ θpt ´ ∆tq

2∆t
, (6.1.3a)

:θptq »
θpt ` ∆tq ´ 2θptq ` θpt ´ ∆tq

∆t2
. (6.1.3b)

The x and y components of the acceleration :xḠj
ptq and :yḠj

ptq, as well as the angular
velocity ∆ 9φiptq, featuring in equations (6.1.1) and (6.1.2), are approximated as per
(6.1.3). In conclusion the solution is found according to the following procedure.

� The variables ∆φiptq, i “ 1 . . . n´ 1, are supposed to have been determined
up to the time t. The polyline de�ning the position of the cable is then found
by solving the minimization problem. Hence, the tensile force Nptq, the lever
arm aiptq, the pitch points P̄i ”

`

xP̄i
ptq, yP̄i

ptq
˘

, i “ 1 . . . n ´ 1, and the
centroids Gj ”

`

xḠj
ptq, yḠj

ptq
˘

, j “ 3 . . . n, are determined.

� At the time t ` ∆t, ∆φ1pt ` ∆tq is assigned. The values of ∆ 9φiptq, for i “

2 . . . n ´ 1, and of :xḠj
ptq and :yḠj

ptq, for j “ 3 . . . n, are approximated with
a formula of the type (6.1.3). Since xḠj

pt ` ∆tq and yḠj
pt ` ∆tq depend on

∆φipt ` ∆tq, i “ 2 . . . n ´ 1, all quantities depend upon this value.

� Solving the nonlinear equations (6.1.1), under the condition (6.1.2), the val-
ues of ∆φipt ` ∆tq, i “ 2 . . . n ´ 1 are found.

� The calculation is repeated for the time t ` ∆t.
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In the following, we will consider the motion of cantilevers composed of n “ 3, 4, 5
segments. The theoretical results will be compared with experiments on 3D-printed
physical models.

6.2 Examples

This section presents theory and experiments. A high-speed camera has been used
to record the snap-through instability of physical models of the structure, to make
comparisons with the predictions of the theoretical model.

6.2.1 Construction of prototypes

Three cantilevers, made of n “ 3, 4, 5 segments, were 3D printed in white poly-
lactide (PLA) through the deposition method (FDM). These are shown in Figure
6.6(a). The tendon is a dark-brown braided wire made of cotton, waxed to dimin-
ish friction, with e�ective diameter of 0.5mm. Each segment is open in proximity
of the cavity, so that the movement of the cable can be visualized. To increase
its compliance, a steel elastic spring was added in series with the cable at the
anchor point, as displayed in Figure 6.6(a). The initial prestress N0 was evaluated
by measuring the deformation of the spring. The elastic constant of the spring
(measured in a compression test) is 5.45N/mm, so that the e�ective axial sti�ness
of the cable, with the spring in series, results to be K “ 2.47N/mm for n “ 3,
K “ 2.17N/mm for n “ 4 and K “ 1.91N/mm for n “ 5. The di�erence is
because the length, and hence the compliance, of the cable itself increases with the
number of segments.

Figure 6.6(b) shows the design drawings, with indication of the main dimensions
of the segments and the corresponding cavities. The pitch lines are arcs of circle
with radius equal to 48mm and the pure rolling motion, with no sliding, is obtained
with toothed conjugate pro�les, as evidenced in Figure 6.6. In the same picture,
the x´ y reference frame used for the representation, as well as the points used as
reference to measure the motion, are evidenced in red.

6.2.2 Static analysis

The �rst analysis concerns the static equilibrium con�gurations of the structure,
irrespective of their stability. When inertia, dissipative and frictional forces are
not considered, the only way in which the equilibrium can be achieved is that the
polyline representing the position of the cable passes through the pitch points of
all the contact joints, except for the �rst one i “ 1, because the �rst segment is
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(a)

(b)

Figure 6.6. Physical models of the cantilever: (a) 3D-printed prototypes composed by
n “ 3, 4, 5 segments; (b) corresponding design drawings of the prototypes, with indication
of the dimensions [mm].
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constrained to rotate. In fact, only in this case the internal moment Mi “ aiN
is zero, because the lever arm ai is null. Hence, the equilibrium con�gurations
are obtained from pure geometric considerations. As the control parameter ∆φ1

is gradually varied, one �nds the rotation angles ∆φi , i “ 2 . . . n ´ 1, such that
compatibility with the cable position is satis�ed.

The construction is particularly simple for n “ 3, because only the angle ∆φ2

needs to be determined as a function of just ∆φ1 . For the geometry indicated in
Figure 6.6(b) and an initial prestress N0 “ 2.73N, as in the experiments of the
following Section 6.2.3, the results are summarized in Figure 6.7. The variation
of elastic strain energy ∆U “ N0Λ ` 1

2
KΛ2, as �rst detailed in Section 2.1.3, is

plotted as a function of ∆φ1 in Figure 6.7(a). This exhibits two convex branches

(a) (b)

(c)

Figure 6.7. Static equilibrium con�gurations of a cantilever composed of n “ 3 segments,
for varying ∆φ1: (a) variation of the elastic strain energy ∆U ; (b) internal moment M1

at the �rst joint; (c) relative rotation ∆φ2 .
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with absolute minima at ∆φ1 “ ˘24˝ (corresponding to ∆φ2 “ ˘20˝), connected
by a narrow spinodal region where the curvature changes sign. Figure 6.7(b) reports
the internal moment M1 at the �rst joint, corresponding to the reaction o�ered
by the system as the angle ∆φ1 is varied. There is a steep descending branch,
in correspondence of the spinodal region. Finally, Figure 6.7(c) shows ∆φ2 as a
function of ∆φ1 .

(a) (b)

(c)

Figure 6.8. Static equilibrium con�gurations of a cantilever composed of n “ 4 segments,
for varying ∆φ1: (a) variation of elastic strain energy ∆U ; (b) internal moment M1 at
the �rst joint; (c) relative rotations ∆φ2 and ∆φ3 .
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Figure 6.8 corresponds to the case of n “ 4 segments for the geometry of
Figure 6.6(b) and initial prestress N0 “ 8.72N. Now the free variables are ∆φ2

and ∆φ3 , so that there can be three equilibrium con�gurations corresponding to
the same value of control variable ∆φ1 . The graph of the energy ∆U becomes that
represented in Figure 6.8(a). Again, there are two absolute minima at∆φ1 “ ˘24˝,
corresponding to ∆φ2 “ ˘20˝ and ∆φ3 “ ˘16˝, and equivalent to the natural
equilibrium states at rest. As ∆φ1 is gradually diminished from the initial value
`50˝, the system jumps from one branch to the other corresponding to a lower
energy: the system snaps, following the path drawn with a black line. Figure 6.8(b)
reports the internal moment M1 at the �rst joint, where the correspondence with
the various branches in the energy graph is evidenced by an equal color. Figure
6.8(c) shows ∆φ2 and ∆φ3 as a function of ∆φ1 , and, according to the same
chromatic characterization of the other graphs, the snap path is drawn in black.

The analysis for a structure made by a higher number of segments is similar.
More equilibrium paths and more complicated snap-through instabilities would
be possible. However, at the conceptual level, there is not a substantial di�erence
with respect to the case n “ 4.

6.2.3 Dynamic analysis and comparisons with experiments

Three prototypes following the design of Figure 6.6(b), respectively composed of
n “ 3, 4, 5 segments, were tested. Their motion was �lmed with a high-speed
camera and compared with the theoretical predictions. The segment i “ 2 was
clamped and angle ∆φ1 was gradually varied by moving the segment i “ 1 by
hand. During the test, the specimens were placed horizontally, in order to rule
out the e�ects of gravity in the plane where the motion took place. Of course,
the cantilever bends also in the vertical direction and twists, but we have veri�ed
that the corresponding deformation is negligible. The high-speed camera was a
Phantom v1840 and the recordings were performed at 2000 fps for the prototype
with n “ 3 segments, and at 1000 fps for the other two prototypes. The values of
prestress N0 , the e�ective sti�ness of the cable K, and the segmental mass mi are
reported in Table 6.1.

Table 6.1. Values of the prestress N0 , the e�ective sti�ness of the cable K, and the
segmental mass mi for the three prototypes composed by n “ 3, 4, 5 segments.

n N0 K m3 m4 m5

3 2.73N 2.47N/mm 0.0063 kg ´ ´

4 8.72N 2.17N/mm 0.0068 kg 0.0059 kg ´

5 11.00N 1.91N/mm 0.0068 kg 0.0060 kg 0.0049 kg
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Cantilever with n “ 3 segments

The frames from the high-speed video, collected in Figure 6.9, represent the motion
of the cantilever with n “ 3 segments while snapping. The chart above the pictures
reports, as a function of time, the x-coordinate xC of the tip point C, de�ned with
respect to the reference frame represented in Figure 6.6(b). Here the dots numbered
from 1 to 8 correspond to the labels of the photographs.

Figure 6.10 reports the results from the theoretical model, calculated with a
time step ∆t “ 0.0005 s. The rotation history ∆φ1ptq of the end segment has been
determined from the high-speed video and used as input for the calculations. Fig-
ure 6.10(a) shows the elastic strain energy contribution ∆U as a function of time,
whereas Figures 6.10(b) and 6.10(c) respectively report the internal moments Mi

and the segmental relative rotations ∆φi , for i “ 1, 2. Here, the instant where the
structure snaps and the successive oscillations are well de�ned. The comparison
between experiments and theory is represented in Figures 6.10(d) and 6.10(e), re-
spectively in terms of the coordinates xCptq and yCptq of the tip point C indicated
in Figure 6.6(b). The agreement is very good if one assumes, as dissipative and fric-
tion parameters, the values c “ 0.03Nmms, M̄ “ 0.33Nmm and M̄s “ 3.30Nmm.

Note that the condition (6.1.2) provides the initial delay of the motion, in
agreement with the experimental �ndings. This can be attributed by the initial
static character of the friction and/or the interlocking of the teeth of the conjugate

Figure 6.9. Images of the snapping cantilever with n “ 3 segments from high-speed
recording. The graph above shows, as a function of time, the x-coordinate xC of the tip
point C with respect to the reference frame represented in Figure 6.6(b), with indication
of the con�gurations 1 ´ 8 corresponding to the pictures.
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(a) (b)

(c)

(d) (e)

Figure 6.10. Cantilever with n “ 3 segments subjected to a gradual rotation ∆φ1ptq of
the �rst segment: (a) variation of the elastic strain energy ∆U as a function of time t;
(b) internal momentsMiptq at the contact joints i “ 1, 2; (c) segmental relative rotations
∆φiptq, i “ 1, 2. Comparison between experimental data and theoretical results: coordi-
nates (d) xCptq and (e) yCptq of the tip point C.
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pro�les that have been used in the design. Of course, the phenomenon is complex,
and the assumption of a relatively-high value for the static-friction moment M̄s of
�rst movement, is just an approximation. This is why the experimental (magenta)
curve of Figure 6.10(d) does not perfectly overlap with the theoretical branch in
the neighborhood of t “ 0.10 s, but the agreement may be reputed satisfactory.

Cantilever with n “ 4 segments

The counterpart of Figure 6.9 for the case of n “ 4 segments is represented by
Figure 6.11; now the tip point is denoted by D as per Figure 6.6(b). On the other
hand, Figure 6.12 is the counterpart of Figure 6.10. The time step in the �nite
di�erence approach is again ∆t “ 0.0005 s, and, again the rotation ∆φ1ptq has
been calculated from the video and used as input for the model. For this case
there are three values, for i “ 1 . . . 3, of the bending moments Miptq and the
relative rotation ∆φiptq. With respect to the case n “ 3, the response is more
complicated and the oscillations of larger amplitude, as expected.

The comparison between experimental data and theoretical prediction can be
found in Figure 6.13. This is done in terms of the coordinates pxDptq, yDptqq and
pxHptq, yHptqq respectively of the tip point D and the point H of segment i “ 3,
indicated in Figure 6.6(b) with respect to the relevant reference frame. The agree-

Figure 6.11. Images of the snapping cantilever with n “ 4 segments from high-speed
recording. The graph above shows, as a function of time, the x-coordinate xD of the tip
point D with respect to the reference frame represented in Figure 6.6(b), with indication
of the con�gurations 1 ´ 8 corresponding to the pictures.



158 Chapter 6. A snapping �ex-ten cantilever

(a) (b)

(c)

Figure 6.12. Cantilever with n “ 4 segments subjected to a gradual rotation ∆φ1ptq of
the �rst segment: (a) variation of the elastic strain energy ∆U as a function of time t; (b)
internal moments Miptq at the contact joints i “ 1 . . . 3; (c) segmental relative rotations
∆φiptq, i “ 1 . . . 3.

ment between the theory and the experiment is excellent if one sets c “ 0.25Nmms,
M̄ “ 0.40Nmm and M̄s “ 2.00Nmm. Again, the static-friction moment M̄s is nec-
essary to reproduce the delay in the motion observed in the test.

The parameters de�ning the dissipation terms in the equations have been cali-
brated for the best �t with the experimental data. Since multiple parameters need
to be found, corresponding to phenomena that all restrain the motion, the pre-
cise calibration of each single parameter would require a greater number of tests
and a statistical analysis, especially for the pair pM̄, cq. Moreover, notice that the
values change with respect to the previous case of n “ 3 segments. Indeed, one
expects nonlinear e�ects which depend upon the level of the inertial forces and
their ratio with the elastic constraining forces for the tendon. In particular, for the
short prototypes, the mass and the prestress are low, so that frictional forces may
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(a) (b)

(c) (d)

Figure 6.13. Comparison between experimental data and theoretical results for a can-
tilever with n “ 4 segments: coordinates (a) xDptq, (b) yDptq, (c) xHptq and (d) yHptq,
of points C and H indicated in Figure 6.6(b).

be decisive. On the contrary, in long prototypes, inertia, prestress and aeroelastic
damping are much higher, so that the friction at the joints becomes less important
with respect to damping. In addition, one should mention the physiological toler-
ances associated with FDM 3D printing: these could certainly provide a further
source of uncertainty.

Cantilever with n “ 5 segments

The situation becomes more complicated for a cantilever made of n “ 5 segments.
Relevant images during the snapping are reported in Figure 6.14(a). The instant at
which they have been taken is evidenced in the graph which reports the coordinate
xEptq of the tip point E with respect to the reference frame represented in Figure
6.6(b). A subtle movement now occurs because in a neighborhood of t “ 0.25 s the
segment i “ 3 counter-rotates, because this renders minimal the length of the cable
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(a)

(b)

Figure 6.14. Snapping cantilever with n “ 5 segments. (a) Images from high speed
recording (the graph shows, as a function of time, the x-coordinate xE of the tip point
E with respect to the reference frame represented in Figure 6.6(b), with indication of
the con�gurations 1 ´ 8 corresponding to the pictures). (b) Detail representation in a
restricted time interval when the segment i “ 3 counter-rotates (the graph indicates the
rotation ∆φ2ptq and the points refers to the images 1 ´ 8).
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at this stage. This is evidenced in the detail representation of Figure 6.14(b), where
the rotation of such segment is emphasized by drawing its axis while indicating
its intercept with a horizontal graduated scale. The associated graph reports the
trend of ∆φ2ptq, with the dots denoting again the labels of the photographs: the
counter-rotation is associated with the descending branch.

Figure 6.15 reports the theoretical �ndings for a time step ∆t “ 0.0005 s. Also
in this case ∆φ1ptq has been traced from the high-speed video and used as input.
Figure 6.15(a) shows the elastic strain energy contribution ∆U as a function of
time t, while Figures 6.15(b) and 6.15(c) show the internal momentsMiptq and the
segmental rotations ∆φiptq for i “ 1 . . . 4. The comparison between experimental

(a) (b)

(c)

Figure 6.15. Cantilever with n “ 5 segments subjected to a gradual rotation ∆φ1ptq of
the �rst segment: (a) variation of elastic strain energy ∆U as a function of time t; (b)
internal moments Miptq at the contact joints i “ 1 . . . 4 and corresponding (c) segmental
relative rotations ∆φiptq.
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Figure 6.16. Comparison between experimental data (r.h.s. graphs) and theoretical
results (l.h.s. graphs) in terms of the rotation ∆φiptq, i “ 1 . . . 4, for the cantilever with
n “ 5 segments subjected to a gradual rotation ∆φ1ptq of the �rst segment.

and theoretical rotations ∆φiptq, i “ 1 . . . 4, results from the observation of the
graphs of Figure 6.16 in the restricted interval t P r0.11, 0.41s s. Despite a certain
background noise is observed in the experimentally-obtained curves, the trend can
be reproduced by the theoretical model. The time at which the segment i “ 3
counter-rotates, is indicated by the black rectangle reported in the same picture.
This phenomenon is precisely caught by the theory.

A more comprehensive comparison between experiments and theory is shown
in Figure 6.17. This is done in terms of the coordinates pxEptq, yEptqq of the tip
point E (Figures 6.17(a) and 6.17(b) respectively), pxF ptq, yF ptqq of the point F on
segment i “ 4 (Figures 6.17(c) and 6.17(d), respectively) and pxP ptq, yP ptqq of the
point P on segment i “ 3 (Figures 6.17(e) and 6.17(f), respectively), where the
position of the points on the prototype is shown in Figure 6.6(b). The agreement
is again good when the dissipative and friction parameters are c “ 0.55Nmms,
M̄ “ 0Nmm and M̄s “ 0Nmm.

Observe that now the best �t is obtained by considering viscous dissipation
only. On the one hand, the dynamic-friction moment may loose importance as the
number of segments is increased and the amplitude of oscillations enlarged (see also
Section 4.1.3), because of the major role played by the inertial and viscous/drag
forces, but this is yet to be veri�ed through more tests and comparisons, in order
to obtain statistically reliable data. On the other hand, in this case, we have
experimentally observed that there is not a noteworthy delay in the response, of
the same type of the one that, in the other cases n “ 3 or n “ 4, has suggested
to consider the static friction moment M̄s . More in particular, the starting of the
experimentally-observed motion is characterized by a single relatively-high jump
(Figure 6.17), which however occurs a few time steps before that the theoretically-
predicted onset of the snap-through motion, corresponding to ∆φ1 » 21.38˝, is
reached. This may also be due to 3D printing inaccuracies.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.17. Comparison between experimental data and theoretical results for a can-
tilever with n “ 5 segments. Coordinates (a) xEptq, (b) yEptq, (c) xF ptq, (d) yF ptq, (e)
xP ptq and (f) yP ptq, of points E, F and P represented in Figure 6.6(b), with respect to
the indicated reference frame.

Another remark is that the damping coe�cient c, calibrated from the experi-
mental results, increases with the number of segments. However, one should com-
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pare this value with a quantity somehow related with the critical damping for a
vibrating linear system. To do so, although the system is highly nonlinear, one can
consider the mean value N̄ for the tensile force N in the cable, which varies during
the motion, and approximate the e�ective rotational sti�ness of the contact joint,
as detailed in Section 3.2.2, as k̃φ “ RN̄{2, where R is the radius of pitch lines.
Although the pitch lines have the same radius R, the resulting k̃φ varies from case
to case, because oscillations of larger amplitude increase the tension in the cable.

Now, by measuring the frequency ω of oscillations from experimental data, the
value of the critical damping can be set equal to ccr “ 2k̃φ{ω. Left aside the case
n “ 3, for which the frictional dissipation is found to be quite high with respect
to the viscous contribution (frictional moment about 30% of maximum damping
moment), one �nds that the ratio c{ccr is almost the same for the cases n “ 4 and
n “ 5, of the order of 6%. This indicates that the calibrated value of c is somehow
related with dynamical properties of the joints, thus con�rming the consistency of
the theoretical approach.

Remark. The model was developed by neglecting the rotary inertia of the seg-
ments and the mass of the cable, as well as the energy dissipation due to the impact
of the cable on the internal surfaces of the cavities. These could be considered in
an updated version, but even the present model can reproduce fairly well the ex-
perimental �ndings. Indeed, the manufactured segments are short and the cable is
a thin lightweight cotton string.

We can verify a posteriori that the rotary inertia of the segments plays a minor
role, with speci�c reference, for example, to the case of the cantilever with n “ 5
segments. The kinetic energy Tiptq of the i´th segment at time t, reads

Tiptq “ Ti,TRptq ` Ti,ROTptq “
1

2
mi

”

9xḠi

2
ptq ` 9yḠi

2
ptq

ı

`
1

2
Ii 9φi

2
ptq , (6.2.4)

where, we recall, mi is the mass of the segment and Ii its rotational inertia with
respect to the centroid Ḡi; xḠi

and yḠi
denote the position of the centroid and φi

is the absolute segmental rotation. Here, Ti,TR and Ti,ROT represent the trans-
lational and rotational contributions, respectively. The total kinetic energy is
T ptq “

řn
i“1 Tiptq, where n is the number of segments, but the kinetic energy

of the control segment i “ 1 is negligible because this is slowly rotated, while the
second segment i “ 2 provides a null contribution since it is clamped.

For the prototype with n “ 5 segments, Figure 6.18(a) reports the experi-
mentally measured relative segmental rotation ∆φiptq, for i “ 1 . . . n ´ 1 in the
restricted interval t P p0.2, 0.4q s, while Figure 6.18(b) displays the corresponding
total kinetic energy, sorted out into translational and rotational contributions. The
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(a) (b)

Figure 6.18. Cantilever with n “ 5 segments subjected to a gradual rotation ∆φ1ptq
of the �rst segment: (a) experimentally measured relative rotations ∆φiptq, i “ 1 . . . 4,
between the segments and (b) corresponding kinetic energy for the beam, divided into
translational and rotational contributions.

rotational contribution is always less than 5%. There is just one exception, when
the segment i “ 3 counter-rotates, as previously discussed in this section: at this
instant (t » 0.26 s), it momentarily reaches a peak of 15%, but this happens in a
very limited time interval. Hence, we think that, at least for the considered cases,
it is legitimate to overlook the rotational contribution.





Chapter 7

Two- and three-dimensional extensions

Flexural tensegrities have been analyzed, so far, for the one-dimensional case, cor-
responding to beam-like chains of segments. The concept has been declined in
many ways: di�erent shapes for the contact pro�les are responsible for diverse
constitutive responses, either linear, or sub-linear, or super-linear (Chapter 2),
while further improvements for the cable mobility inside the segments, passing
from tubular sheaths to a broader cavities, modify the bending energy landscape,
including non-convex relationships (Chapter 5), with possibly the activation of
sequential snap-through instabilities in response to localized perturbations (Chap-
ter 6); on the other hand, the limit case of the segmental beam, when the number
of segments goes to in�nity and their length to zero, turned out to be a particular
type of Euler's elastica (Chapter 3) with nonlocal bending sti�ness.

Here, we focus on �exural-tensegrity two- and three-dimensional assemblies,
where the segments are in mutual contact according to spherical pitch surfaces of
radius R, whose center is placed at the corners of a square/cube of side equal to
2R. This con�guration immediately recalls a crystalline lattice, which represents a
motivation to deepen the study. Indeed, �ex-ten 3D assemblies could represent a
suitable way to interpret, with a simple physical model, the complex phenomena
that occur at the molecular level in solids.

In Section 7.1, the parallelism between 3D �ex-tens and crystalline microstruc-
ture is highlighted, and, in Section 7.2, the design of the joints for 1D beams is
extended to a 3D motion. In Section 7.3, we present manufactured prototypes for
�ex-ten plates and cubes, analyzed under the hypothesis of either large or small
de�ections, while possible hints for further research and open problems are �nally
explored in Section 7.4. The main results here discussed are also collected in [105].

...
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7.1 Motivation from crystalline lattices

Modeling the response of materials is a key point for a correct understanding of the
macroscopic behavior of solids and structures. Halfway between the microscopic
level of detail, where sub-atomic particles are directly taken into account through
quantum physics, and the macroscopic level generally dealing with the classical
mechanics of continua, there is the mesoscopic approach [106]. In this case, the
material is assumed to be composed of small-sized structural elements, such as
masses, springs, or beams (structural approach), to form a microstructure for the
medium. The assembly should be such that it degenerates into a continuum me-
chanics medium when the investigated phenomenon involves larger length scales,
and, on the other hand, each constituent should behave in a way that approaches
quantum mechanics or classical physics depending on its size.

In the remarkable Robert Boyle Lecture, delivered before the Oxford University
Junior Scienti�c Club on May 16th 1893 (reprinted in Appendix H of the Baltimore
Lectures [107]), Sir William Thomson, 1st Baron Kelvin, while discussing the �The
Molecular Tactics of a Crystal�, presents his insightful view of the constitution of
matter. Every crystal is a homogenous assemblage of small bodies (molecules), all
equal, similar and in precisely similar attitudes. Each member of the assemblage
may be regarded as a single point but this is a drastic approximation. One should
consider that each member is a group of points, or a globe, or a cube, or an-
other geometrical (possibly chiral) �gure, in reciprocal contact on a set of points,
or lines, or surfaces. The solids may be perfectly smooth and frictionless, or in
frictional contact, or connected by forces operating at a distance. The coherent
assemblage constitutes a kinematic frame or skeleton for an elastic solid of very
peculiar properties: change of shape of the whole can only take place in virtue of
rotation of the constituent members, relative to each other. An interesting prob-
lem is represented by supposing any mutual forces, such as may be produced by
springs, to act between the solid molecules, and investigating con�gurations of
equilibrium on the supposition of frictionless contacts. The solution of it is that
the potential energy of the springs must be stationary for equilibrium, and a min-
imum for stable equilibrium, but the constitutive properties are dictated, besides
the nature of intermolecular forces, by pure geometric consideration of kinematic
compatibility. This interpretation of the macroscopic properties of a crystal, de-
�ned by the geometry of the constituent members, the nature of their contact, and
the type of intermolecular forces, is actually within the mesoscopic approach [106],
being halfway between the microscopic level of detail, where particles are taken
into account through the laws of quantum physics, and the macroscopic level of
continuum mechanics.

Mesoscopic models are usually discrete lattices of points, where lumped masses
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(a) (b)

Figure 7.1. Scandium �uoride lattice: (a) schematics of the crystalline lattice with indi-
cation of octahedral meso-structures; (b) octahedral rotation at increasing temperature,
causing bulk contraction.

interact through elastic forces that depend on mutual distance, schematized as
extensional spring linkages [108], possibly amenable of multi-stable equilibrium
states [76, 84]. The �eld of application of such mass-spring models is very wide,
ranging from the analysis of propagating acoustic waves in elastic media [109] to
the modeling of vibrations of tensioned membranes [110], from �uid-structure in-
teraction [111] to the reproduction of facial movements [112]. On the other hand,
micropolar bodies can be represented by grid frameworks, where meso-particles
are linked by beam-like connectors [113,114], and the plastic �ow in metals can be
interpreted via chains of two-bar-linkage elements amenable of snap-through in-
stability [82]. A major limitation in models of this kind is that the points are seen
as irrotational entities; instead, there are materials composed by the aggregation
of subelements (meso-particles) whose relative rotations cannot be disregarded.
An illustrative example is that of scandium �uoride (ScF3) whose microstruc-
ture, shown in Figure 7.1(a), is represented by octahedral-shaped meso-particles.
These can relatively rotate when heating is provided [115], causing a reduction
of volume according to the mechanism of Figure 7.1(b), responsible of a negative
thermal-expansion coe�cient at the macroscopic level. For such a material the
basic mesoscopic element cannot be point, but a member with geometric shape,
whose con�guration is de�ned by its rotation.

In order to account for �rotational� e�ects and, speci�cally, torsional vibrations
of the lattice members, it is common to conceive mass-spring models where addi-
tional eccentric springs connect the body of two adjacent meso-constituents, with
anchoring points di�erent from their centroids [106]. This approach is followed for
the representation of chiral metamaterials, when the connectors are not symmet-
rically placed [116,117]. Another class is represented by lattice solid models [118],
consisting of non-pointwise particles linked by bond of various nature. This �dis-
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crete element modeling� of matter can interpret macroscopic mechanical properties
of structured materials [119].

Here, a new conceptual structure for two- and three-dimensional lattices, with
non-chiral structure, is presented. Since these are based on the structural concept
of �exural tensegrity and represent its extension to the spatial case, they will be
speci�cally referred to as �extegrity lattices. When passing to spatial grid assem-
blies, the major di�culty certainly consists in the design of the contact joints.
Here, the simplest case is analyzed, in which the kinematics of the segments mim-
ics that of balls of radius R in pure rolling contact (no sliding), with their centers
at the points of simple cubic lattice of size 2R. The segments are hold together by
straight tendons, following the direction of the primitive vectors of the lattice. The
skeletal structure constrains the kinematics; the energy of the system results from
the straining of the tendons consequent to the relative rotation of the segments.

Flextegrity lattices can de�ne mesoscopic models for crystals. Remarkable are
the similarities with the nanostructure of fullerite, composed of fullerene balls as
indicated in Figure 7.2(a). The spherical structure of fullerene, with a diameter of
0.714 nm [106], is shown in Figure 7.2(b) with reference to Buckminsterfullerene
C60 [120] with 60 carbon atoms. It recalls the same tessellation (hexagons and
pentagons) of soccerballs, as well as the geometric structure of the geodesic domes
theorized by Buckminster Füller (hence, the name Fullerene). The fullerite crystal
at room temperature [121] is a face-centered cubic (FCC) lattice with parameter

(a) (b) (c)

Figure 7.2. Fullerite and fullerene crystalline structure. (a) Basic unit of fullerite lat-
tice at room temperature, composed of members of (b) Buckminsterfullerene (type of
fullerene with formula C60). (c) Face-centered cubic (FCC) lattice for fullerite at room
temperature, and simple cubic (SC) lattice for fullerite at lower temperature.
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a “ 1.417 nm (Figure 7.2(c)), whose points are the centers of fullerene balls. At
260K a phase transition begins, in which the mesoscopic arrangement is trans-
formed from FCC to simple cubic (SC) lattice (Figure 7.2(c)). At room tempera-
ture fullerenes are free to rotate [121] independently one another at high frequency,
but at lower temperature (SC lattice, below 200K) the mobility is restrained: the
orientation of the rotation axis is always the same and the molecules perform tor-
sional vibrations, relatively rotating with jump-like movement [106] only when a
certain energy barrier is occasionally overcome.

The analogy with crystalline lattices is kinematical, because �extegrity grid
assemblies are characterized by the relative rotation of the segments as main de-
formation mechanism. Although the model accounts for relative rotations of sub-
constituents with �nite amplitude, not for their spin, it appears suitable for those
materials in which torsional vibrations play a major role. The �extegrity lattice
can also inspire metamaterial with tailor properties, depending on the shape of
the contact surface and the mutual spatial placement of segments. Anyway, this
study is a �eld of research per se, as it represents the nontrivial spatial extension
of the structural principle introduced in Chapter 2.

7.2 The spatial assembly

Recall the geometry of a �ex-ten joint, of the type introduced in Chapter 2. Such
a joint is schematically redrawn in Figure 7.3(a), where the contact surfaces be-
tween any two consecutive segments are shaped according to toothed pro�les, as in
gears, to prevent sliding. The corresponding pitch lines are arcs of circle, which are
drawn in red, while the passing-through tendon is represented by the green line.
Consider a deformation scenario as general as possible. Under tensile forces, when
the prestress induced by the tendon is overcome, the segments detach as indicated
in Figure 7.3(b), so that the axial sti�ness is due to the elasticity of the tendon.
When subjected to shear loading, as in Figure 7.3(c), the deformation depends on
the elastic compliance of the teeth. Under compression, the contact surfaces �atten
due to Hertzian contact, as per Figure 7.3(d). The response to pure bending is led
by the relative rotation of the segments along the design pitch lines, as shown in
Figure 7.3(e): the tendon is strained due to the opening of the joint, while the
segments are subjected to localized compression at the contact point.

If the tendon is compliant, as in most practical applications and as usually
supposed in the previous chapters, the bulk deformation of the segments can be
neglected. In this case, the joint is almost rigid under shear and compression (Fig-
ures 7.3(c) and 7.3(d)). The deformation due to tensile actions (Figure 7.3(b))
depends on the cable prestress and its axial sti�ness: in the following we will as-
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(a) (b) (c) (d) (e)

Figure 7.3. Schematics of a �ex-ten joint for beam-like structures, with toothed contact
pro�les corresponding to circular pitch lines. (a) Reference state, with indication of the
cable (green line) and the pitch lines (in red); (b) detachment of segments under tensile
forces; (c) deformation of teeth and segments under shear forces; (d) deformation of
segments under compression loading; (e) relative rotation of segments under bending.

sume that the prestress induced by the tendon is never exceeded by tensile loads.
Under bending (Figure 7.3(e)), the response is governed by the straining of the
cable, which is forced to elongate by the relative rotation of the segments, while
the segments remain practically undeformed.

Focus od the response under bending, and consider the schematic of Figure
7.4(a), which illustrates the paradigmatic case of circular pitch lines of radius R.
Let N0 denote the initial prestress of the cable, as usual, and K its e�ective axial
sti�ness. When the consecutive segments i and i ` 1 are relatively rotated by the
quantity ∆φi , the segments follow pure rolling along the pitch lines. The pitch
point moves from the cable exit point to the position Pi , while the cable elongates
of the quantity Λi . The distance between the portion of the cable that becomes
exposed (of length Λi , between the two exit points from the segments) and the
pitch point Pi , indicated as ai in Figure 7.4(a), is the internal lever arm. Hence,
the internal bending moment Mi at the joint, computed with respect to the pitch
point, can be written asMi “ N ai , where N is the tension force in the cable. If the
cable can frictionless slide inside the holes and it is anchored at the end-segments
only, its elongation is the sum of all the joint elongations Λi . For a segmental
beam composed of n segments and n ´ 1 contact joints, the total elongation of
the cable is Λ “

řn´1
i“1 Λi , while the axial force in the cable passes from the initial

pre-tension N0 at rest, to the value N “ N0 ` K Λ after bending.
For the case of circular pitch lines of Figure 7.4(a), Λi and ai are given by

(2.1.1) and (2.1.6); these equations are here retyped for clarity and read

Λi “ 2R
´

1 ´ cos
∆φi

2

¯

, and ai “
dΛi

d∆φi

“ R sin
∆φi

2
. (7.2.1)

...
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(a) (b)

(c)

Figure 7.4. Schematics of a �ex-ten joint and comparison with a pin joint. (a) Flex-ten
joint between segments i and i ` 1, with indication of the cable elongation Λi and the
lever arm ai : the reference point Ci`1 moves to C 1

i`1 after a relative rotation of ∆φi . (b)
Pin joint, connecting beam segments i and i ` 1. (c) Equivalence between the �exural-
tensegrity and the spring-hinged joint under the hypothesis of small de�ections.

In order to analyze the mobility of the joint under bending, assume, for sim-
plicity, that 2R is the segmental length along the longitudinal centroidal axis, so
that the reference point Ci`1 corresponds to the segment centroid. If the segments
i and i ` 1 relatively rotate of ∆φi , Ci`1 moves to the new position C 1

i`1 . With
respect to the reference frame shown in Figure 7.4(a), de�ne the displacements

∆xi “ ´2R
´

1 ´ cos
∆φi

2

¯

, and ∆yi “ 2R sin
∆φi

2
, (7.2.2)

while the lever arm and the cable elongation are de�ned by (7.2.1). If ∆φi is an
in�nitesimal quantity (small de�ections and rotations), one can write

∆xi » 0 , ∆yi » R∆φi , Λi » 0 , and ai » R∆φi{2 , (7.2.3)
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while the internal bending moment reads Mi “ N ai » N0R∆φi{2.
It should be observed that the kinematics is equivalent to that of a pin hinge,

indicated in Figure 7.4(b), only in the case of in�nitesimal rotations. In fact, for
�nite deformations, one would �nd ∆xi “ ´Rp1 ´ cos∆φiq and ∆yi “ R sin∆φi.
There is therefore a substantial di�erence, associated with rolling motion of the
segments along the pitch pro�les. Anyway, such a di�erence is negligible for many
practical applications, where the rotations are small enough to approximate the
sine and cosine functions with a Taylor's series truncated at the �rst or second
order (see also Section 2.2.4). Under the hypothesis of small rotations, the �exural-
tensegrity joint is equivalent to a spring hinge with constant kφ “ N0R { 2. In
this case, the �exural-tensegrity assembly can be modeled as a chain of segments
connected by 3D spring hinges, representing the spatial extension of the 2D case
of Figure 7.4(c). In the limit in which the prestressing force in the cable vanishes
(N0 Ñ 0`), the �exural-tensegrity joint is equivalent to a spherical hinge. However,
in this condition, the detachment of the segments under tensile forces (Figure
7.3(b)), is not prevented, unless K Ñ 8.

Consider now the kinematic skeleton of spheres of radius R in pure rolling
contact (no sliding) along their surfaces. This represents a possible extension to
spatial assemblies of the �exural-tensegrity kinematics, thus de�ning the concept
of �extegrity lattices. Figure 7.5(a) refers to a SC lattice, where the sphere centers
are placed at the vertices of the cubic unit cell of size 2R. The spheres are kept
in contact by three orthogonal families of straight prestressing cables (tendons)
passing through holes drilled in them, as indicated in Figure 7.5(b). If the cables
are compliant, one can neglect the deformation of the spheres and regard them
as rigid bodies. Clearly, the resulting assembly is incompressible under uniformly
distributed positive (inwards) pressures applied to the boundary; under negative
(outward) pressures, it will not be deformed as long as the prestress from the
tendons is not exceeded.

The spheres are supposed to be in pure rolling contact: this is a strong kine-
matic constraint that limits their mobility. Consider, for example, one layer of
the assembly, indicated in Figure 7.5(c). If one sphere rotates in the clockwise
direction, the condition of no-sliding requires that the neighboring ones rotate
counter-clockwise. Remarkably, the rotation of one sphere a�ects the rotations of
all the other spheres of the layer, which are forced to rotate of the same angle
(in absolute value), alternatively clockwise or counter-clockwise. This is a nonlocal
interaction that a�ects instantaneously the whole layer where the sphere, which is
�rst rotated, is placed. Another noteworthy property is that shear-like distortion
of the lattice, of the type represented in Figure 7.5(d), is not allowed, because this
would involve the reciprocal slipping of some of the surfaces in contact. Moderate
shear distortion would be permitted only by the deformation of the material of
which the spheres are made.
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(a) (b)

(c) (d)

Figure 7.5. Spheres in contact: (a) assembly of spheres in the SC lattice and (b) detail
of one layer with indication of the three family of prestressing tendons. The spheres
are in pure rolling contact: (c) allowed relative rotation, and (d) forbidden shear-like
deformation.

Here, we consider a particular kinematic constraint, represented in Figure
7.6(a), where the relative motion between any two �rigid� spheres i and j is fully
described by the torsion angle ∆ψij , the longitude angle ∆ϑij , and the angle ∆φij

corresponding to pure rolling along the meridian. In the reference (undistorted)
state, in which the tendons are straight, the center of the spheres, Ci and Cj ,
and the cable exit points, E 1

ij and E
2
ij , which coincides in the same point Eij , are

aligned on a straight line. Starting from this con�guration, the sphere j can freely
rotate (without straining the tendon) with respect to the adjacent sphere i of the
angle ∆ψij around the axis passing through Ci , Cj and Eij (the cable cannot
provide any sti�ness against twist). Then, the spheres can pure roll one another
along that meridian (with the �North� pole in Eij) identi�ed by the longitude angle
∆ϑij . The motion takes place for an arc length equal to R∆φij { 2, so that points
P 1
ij and P

2
ij are going to coincide in Pij . This path is represented by the arcs drawn

in red and distinguished by solid dots in Figure 7.6(a).
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(a)

(b) (c)

Figure 7.6. Kinematics of the 3D joint. (a) Degrees of freedom of the spherical contact
surfaces: torsion ∆ψij , longitude ∆ϑij , and pure rolling along the meridian achieving
the relative rotation ∆φij . (b) Reference (undistorted) state on the slicing plane passing
through points Ci , Cj , P

1
ij andP

2
ij , and (c) rotated (distorted) state on the same plane,

with indication of the cable elongation Λij and lever arm aij .



7.2. The spatial assembly 177

Figures 7.6(b) and 7.6(c) respectively report a section of the reference undis-
torted state and the distorted state, obtained with a slicing plane passing through
points Ci , Cj , P 1

ij and P 2
ij . The motion on this plane is analogous to that of a

one-dimensional joint, discussed in Figure 7.4(a). In particular, the cable elongates
of the quantity Λij between the spheres i and j, while the distance aij corresponds
to the lever arm of the cable axial force with respect to the pitch point Pij . If R
is the radius of the spheres, the expressions for Λij and aij are again de�ned by
equations (7.2.1).

Observe that the assumed kinematics does not cover all possible con�gurations
of two spheres in pure rolling contact. This is in general a strong non-holonomic

(a)

(b) (c)

Figure 7.7. Physical model of the contact joint, with axial-symmetric toothed contact
pro�les, achieving the kinematic constraint schematized in Figure 7.6. (a) View of the
disassembled joint with the axial-symmetric toothed contact surfaces; longitudinal section
of the joint (cable represented by the red solid line) in (b) the reference state and (c) the
rotated con�guration.
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constraint: in principle, any two arbitrary points laying on the two spherical sur-
faces can be brought into contact by following a proper contact path. On the
contrary, the motion indicated in Figure 7.6(a) requires that the arcs of circle
ŔEijP 1

ij and ŔEijP 2
ij have the same length, a property that is not satis�ed by all

rolling motions. This simpli�cation is such that the relative position of the spheres
is completely determined by the angles ∆ψij , ∆ϑij and ∆φij , which can thus be
considered as generalized coordinates to describe the con�guration of system.

The constraint just described can be directly achieved within the category
of �exural-tensegrity structures, since it represent the natural three-dimensional
extension of the toothed beam joint represented in Figure 7.3. The concept is
illustrated in Figure 7.7. An exploded view of the disassembled joint is shown in
Figure 7.7(a): the portions of the spheres that remain in contact during movements
associated with a limit admissible value for the angle ∆φij , are grooved according
to toothed contact pro�les, axially symmetrical with respect to the axis of the
prestressing tendon. The conjugate pro�les are shaped in such a way that relative
rotation between the bodies achieves a pure rolling motion along two meridians.
A side view of the sections of the two bodies, obtaining by cutting them with a
plane passing through the contact meridians, is represented in Figures 7.7(b) and
7.7(c) for the undistorted reference state and the rotated state, respectively.

This joint corresponds to a pin coupling for the spinning around cable axis
(rotation ∆ψij is unconstrained). The contact meridians are de�ned by the angle
∆ϑij . The elasticity of the cable and its pre-stress de�ne the sti�ness of the joint
against the relative rotation ∆φij .

7.3 Physical models

Flextegrity grids forming two-dimensional plates and three-dimensional cubes are
now analyzed. Physical prototypes are manufactured via 3D printing to demon-
strate how the assembly works and deforms under loading.

7.3.1 Kinematic analysis of �extegrity plates

Figure 7.8 shows two physical models of segmental plates, representative of two-
dimensional �extegrity lattices. The assembled basic unit, composed of 4 segments
manufactured via 3D printing, is indicated in Figure 7.8(a), whereas Figure 7.8(b)
shows the corresponding exploded view. The contact surfaces, which correspond
to spherical pitch surfaces of radius R “ 30mm, are shaped according to toothed
gears, axial symmetric with respect to axis of the tendons, made with two couples of
black-colored parallel elastic rods visible in Figure 7.8(a). The size of the segments
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(a) (b)

(c) (d)

Figure 7.8. Segmental plates with �exural-tensegrity skeleton. (a) Photograph of the
manufactured basic unit composed of 4 segments, and (b) corresponding exploded view.
(c) Photograph of a larger plate with 9 segments (4 basic units) and (d) corresponding
exploded view. Tendons are black-colored elastic strings.

is such that the distance between the pitch surfaces and the center of the segments,
de�ned as the point of intersection of two orthogonal tendons passing through
them, is equal to R, so that the system reproduces the assembly of a plane of
spheres in contact. Figures 7.8(c) and 7.8(d) are the counterpart of the previous
ones for a larger assembly, made of 4 basic units coupled together, with 9 segments
in total. The tendons are elastic strings of diameter 1.2mm, with axial sti�ness
equal toK “ 0.058N/mm for the prototype of Figure 7.8(a) andK “ 0.029N/mm
for the case of Figure 7.8(c). The di�erence is due to the fact that the length of the
cables of the �rst prototype is one-half of the second one. The cables are equally
prestressed (modulo tolerances) by N0 » 1.2N.

Supposing that the angles of rotation are in�nitesimal of the �rst order (lin-
earized kinematics), the contact joints can be approximated by spherical (spring)
hinges, as discussed in Section 7.2. The physical model of Figure 7.8(a) is thus
schematized as in Figure 7.9(a), which represents the assembly of 4 L-shaped bars
connected by hinges, numbered counterclockwise. One can assume, as degrees of
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freedom, the absolute rotations of each segment αh , βh and γh, for h “ 1 . . . 4,
de�ned by the triad of Figure 7.9(a). The corner of element 4 is clamped to rule
out rigid-body displacements.

(a) (b)

(c) (d)

Figure 7.9. In�nitesimal mobility of the plate and states of self-stress. (a) Equivalent
chain of pinned L-shaped bars (element 4 is clamped), representative of the basic unit
of Figure 7.8(a), and (b) corresponding six independent mechanisms, with indication of
possible systems of external loads to achieve them. (c) Equivalent scheme with pin joints
for the larger structure of Figure 7.8(c), with indication of in-plane internal actions at
joints and (d) corresponding state of self-stress.
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The kinematic matrix C for such a structural system can be written as

C “

»

—

—

—

—

—

—

–

´1 0 0 ´1 0 0 1 0 0 0 0 0
1 0 0 ´1 0 0 ´1 0 0 0 0 0
0 ´1 1 0 1 1 0 1 ´1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (7.3.4)

being the degrees of freedom ordered in the array d de�ned as

d “
␣

α1 β1 γ1 α2 β2 γ2 α3 β3 γ3 α4 β4 γ4
(T

. (7.3.5)

The kinematic matrix (7.3.4) is rank de�cient with respect to the number of
degrees of freedom. There are 6 independent mechanisms, associated with the
non-trivial solutions of C d “ 0, which are shown in Figure 7.9(b). Since the
pre-tension of the cable renders the contact joints equivalent to spring hinges, the
aforementioned mechanisms can be obtained with the external loads, reported in
the same �gure. Here, F “ kφ∆φ {R, where the angle ∆φ de�nes the deformation.
Observe that the mechanisms of Figure 7.9(b) corresponds to in�nitesimal mobility,
but they can be achieved also with �nite rotations, with the only exception of
mechanism (1). This is not allowed by the actual geometry of the joint, as it is
incompatible with the rolling motion of the contact surfaces along meridians, as
detailed in Section 7.2.

The plate of Figure 7.8(a) cannot accommodate any other state of self-stress
but the pre-compression introduced by the cables. This is not the case of the
larger structure of Figure 7.8(c). Consider the corresponding pinned-joint assembly,
composed of 4 L-shaped, 4 T-shaped and 1 X-shaped bars connected by hinges.
This is shown in Figure 7.9(c) together with the relevant in-plane internal actions.
The static unknowns are 36, while the rank of the static matrix S, collecting the
static equilibrium equations, is equal to 35. This means that it is possible one state
of self-stress, schematically shown in Figure 7.8(d). This could be obtained, e.g.,
by providing to the central X-shaped segment a positive thermal variation, causing
its expansion.

In practical terms, this state of self-stress could be used to reduce the number
of prestressing cables, as the two tendons passing through the inner segment are
no longer needed to keep the segments in contact. On the other hand, the state of
self-stress is not stable, and it can be lost by means of out-of-plane de�ections of
the plate.
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7.3.2 Kinematic analysis of �extegrity cubes

Figure 7.10 shows two 3D-printed prototypes of �extegrity cubes. The basic unit,
now composed of 8 segments, is displayed in Figure 7.10(a) and is kept together
by 12 tendons. The exploded view is shown in Figure 7.10(b). Figures 7.10(c) and
7.10(d) refer to a larger system of 27 segments, formed by the assembly of 8 basic
units, coupled by 27 tendons. The contact conjugate pro�les are shaped similarly
to the two-dimensional case of Section 7.3.1, forming spherical pitch surfaces of
radius R “ 30mm. In this way, one aims at reproducing a set of spheres in pure
rolling contact whose centers follow a SC lattice. Each tendon is again an elastic

(a) (b)

(c) (d)

Figure 7.10. Flextegrity cubes. (a) Photograph of the manufactured basic unit com-
posed of 8 segments and 12 tendons (black-colored elastic strings); (b) corresponding
exploded view. (c) Photograph of a larger cube with 27 segments (8 basic units) and 27
tendons; (d) corresponding exploded view.



7.3. Physical models 183

thread of diameter 1.2mm, with axial sti�ness equal to K “ 0.058N/mm for
the prototype of Figure 7.10(a) and K “ 0.029N/mm for the prototype of Figure
7.10(c), due to the di�erent cable lengths. Again, the cables are equally prestressed
at N0 » 1.2N.

(a)

(b)

Figure 7.11. In�nitesimal mobility of the segmental cube and states of self-stress. (a)
The six independent mechanisms for the cubic basic unit of Figure 7.10(a), with indication
of possible systems of external loads to achieve the mechanisms. (b) Equivalent scheme
with pin joints for the larger cube of Figure 7.10(c), with indication of one of the 9
possible states of self-stress.
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As done in the previous Section 7.3.1, independent mechanisms can be caught
from the equivalence between the �exural-tensegrity assembly and an assembly
of hinged beams under the hypothesis of in�nitesimal mobility. Figure 7.11(a)
collects the six independent mechanisms, obtained for the basic cubic unit of Figure
7.10(a). For each mechanism, a possible set of external loads is also indicated, with
F “ kφ∆φ {R, where kφ is the sti�ness of the spring hinges, de�ned in Section
7.2. All these mechanisms are also allowed in large de�ections for the geometry at
hand, corresponding to spherical contacts.

For the larger cube of Figure 7.10(c), nine states of self-stress are possible. These
correspond to the state of self-stress already found for the two-dimensional case
of Figure 7.8(c), which can be now achieved in each planar face and intermediate
symmetry plane of the cubic assembly, as shown in Figure 7.11(b). The major
di�erence, with respect to the case of plates, is that now each state of self-stress
is stable, thanks to the con�nement of the cubic lattice, which avoid out-of-plane
deformations.

Figure 7.12. Mobility of each face of the larger cube with 27 segments.

The structure of Figure 7.10(c) may represent a mesoscopic model for a crys-
talline lattice with strong asymmetry between the responses under tension and
compression. Remarkably, the particular form of the eigenstress states could pro-
vide an insight about the strategy of crystalline growth in thin �lms, or the way
through which the molecular skeleton could be strengthened via thermal processes
or oversized solutes. A certain freedom is maintained for the rotations of sub-
elements, which is a peculiar property of �extegrity lattices. For example, the
comparison of Figure 7.12 with Figure 7.1(b) recalls the molecular re-organization
of the scandium �uoride lattice consequent to heating. If the segments were cir-
cumscribed by a surface di�erent from a sphere (e.g., an ellipsoid), a deformation
of this type could also be associated with a thermal di�erential expansion of the
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central segments with respect to the neighboring ones, where the rotation render
the elongation compatible.

7.3.3 Examples of �nite deformation

The kinematic analysis under large rotations presents no conceptual di�culty, but
requires a robust numerical approach. An example, instructive for its simplicity,
is represented by the out-of-plane bending of �extegrity plates under conservative
external forces, such as self-weight. Since in the manufactured prototypes the de-
formation of the segments is negligible, the strain energy is associated only with
the tendons.

Let Q indicate the total number of tendons, e.g., Q “ 6 for the case of Figure
7.8(c). Let ∆ψ, ∆ϑ and ∆φ denote the arrays respectively containing all the
rotations ∆ψij , ∆ϑij , and ∆φij , as indicated in Section 7.2. With the notation
of Figure 7.6, the increase of strain energy ∆U when the segments (spheres) roll
on each another, starting from the reference state with straight tendons, can be
written as

∆U “

Q
ÿ

q“1

N0,q Λq `
1

2

Q
ÿ

q“1

Kq Λq
2

“

Q
ÿ

q“1

N0,q

´

ř

i,j Λij

¯

q
`

1

2

Q
ÿ

q“1

Kq

´

ř

i,j Λij

¯2

q
.

(7.3.6)

Here, N0,q (q “ 1, . . . , Q) represents the initial prestress of the q´th tendon, Kq

its axial sti�ness, whereas Λq denotes its total elongation, which is the sum of the
contributions Λij (detailed in Figure 7.6(c)) due to the relative rotation of the two
spheres i and j in contact, through which the q´th cable passes. Since Λij is a
function of ∆φij , the strain energy ∆U results to be a function of ∆φ.

The work ∆W of the external conservative loads Fs , for s “ 1, . . . , S, applied
orthogonally to the initially-planar (mid) surface of the plate at S points, depends
upon the out-of-plane displacements ws of these points, i.e.,

∆W “

S
ÿ

s“1

Fsws . (7.3.7)

Observe that the displacements ws depend on the position of the segments (spheres)
in the distorted state, which is de�ned by the rotations ∆ψij , ∆ϑij , and ∆φij .
Hence, ∆W is a function of the vectors ∆ψ, ∆ϑ and ∆φ.

...
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(a)

(b) (c)

(d) (e)

Figure 7.13. Flextegrity plate composed of 6 segments (two basic units of Figure 7.8(a))
under symmetric external loads. (a) Schematic of the spherical contact pro�les with
indication of the constraints and the points of application of the loads. (b)-(d) Di�erent
views of the deformed shape for the manufactured prototype, and (c)-(e) corresponding
views for the shape obtained via computations.
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(a)

(b) (c)

(d) (e)

Figure 7.14. Flextegrity plate composed of 6 segments (two basic units of Figure 7.8(a))
under eccentric external loads. (a) Schematic of the spherical contact pro�les with indi-
cation of the constraints and the points of application of the load. (b)-(d) Di�erent views
of the deformed shape for the manufactured prototype, and (c)-(e) corresponding views
for the shape obtained via computations.
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The equilibrium condition is de�ned by

∆U ´ ∆W “ ∆Up∆φq ´ ∆W p∆ψ,∆ϑ,∆φq “ min , (7.3.8)

under the constraints introduced, besides the boundary conditions, by the kine-
matic skeleton. The latter correspond to the kinematic conditions that each ring of
the grid, following the path of segments in contact, must be a closed loop: starting
from one segment, one shall recover the same position after the composition of dis-
placements dictated by rotations ∆ψij , ∆ϑij , and ∆φij at each pair of consecutive
segments.

The 3D-printed plate �rst considered consists in the assembly of 2 basic units
(6 segments), of the type indicated in Figure 7.8(a), now coupled in series. The
kinematic skeleton is that of 6 spheres of radius R “ 30mm in mutual contact,
arranged as in Figure 7.13(a). The tendons parallel to the short sides are char-
acterized by axial sti�ness equal to Kq “ 0.058N/mm and they have been pre-
tensioned at N0,q » 1.7N (q “ 1, 2, 3), while for those following the long sides one
has Kq “ 0.029N/mm and N0,q » 1.4N (q “ 4, 5).

The test of Figure 7.13 was preliminary carried out. As indicated in Figure
7.13(a), the structure is clamped at one of the short sides and it is subjected
to the forces F1 “ F2 “ 0.1N, applied at the opposite sides. The tested plate
is placed vertically, in such a way that the planar face of the undeformed plate
is parallel to the gravity �eld, acting along the direction of the short sides: this
allows to disregard the action of the self-weight. The symmetry of the problem is
such that the structure deform as a one-dimensional beam, for which an analytic
solution can be found. This served to validate the numerical computations, which
used the Nelder-Mead algorithm [122], implemented in Mathematica®, used for
energy minimization [123]. Figures 7.13(b) and 7.13(d) show di�erent views of
the deformation of the prototype, which are juxtaposed to the deformed shapes
obtained via calculation, reproduced with a CAD tool and reported in Figures
7.13(c) and 7.13(e), respectively. Analytical and numerical solutions coincide in
practice. The agreement between theory and experiment is very good.

The same physical model was tested under the eccentric force F “ 0.4N in-
dicated Figure 7.14(a). Figures 7.14(b)-7.14(d) and Figures 7.14(c)-7.14(e) again
compare the observed de�ection with that obtained via numerical calculations.
The �exural-torsional deformation is correctly reproduced by the model.

The last test regards the square 3D-printed plate of Figure 7.8(c), placed hor-
izontally in the (vertical) gravity �eld. This is composed of 9 segments (4 basic
units), and it is supported at the mid central segment and subjected to self-weight.
The pitch surface radius is again R “ 30mm, and the tendons, whose axial sti�-
ness is Kq “ 0.029N/mm for q “ 1, . . . , 6, are pre-tensioned by N0,q “ 1.2N. The
loads Fs » 0.1N represent the self-weight of each segment. Figure 7.15 collects
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(a) (b)

(c) (d)

(e) (f)

Figure 7.15. Deformation of a �extegrity plate composed of 9 segments (4 basic units),
under self-weight and supported at the middle. (a)-(c)-(e) Di�erent views of the deformed
shape for the manufactured prototype, and (b)-(d)-(f) corresponding views for the shape
obtained via computation.
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three di�erent views for the plate in the deformed state, and compares them with
the corresponding shapes, obtained via calculations. The deformation recalls the
shape of a hyperbolic paraboloid, which is perfectly caught by the model.

On the whole, the agreement between theory and experiments is very good, at
least at the qualitative level, taking into account the uncertainties in the physical
model, in terms of measured tensile force and sti�ness of the tendons, e�ects
of parasitic friction at the contact joints and with the cables, and 3D printing
tolerances.

7.4 Discussion

Flextegrity lattices, mimicking an assembly of rolling spheres, can represent the
basis for mesoscopic models of crystalline microstructure, where the molecular ro-
tations are non-negligible degrees of freedom. Similarly, the mesoscopic model can
represent the actual microstructure of metamaterials, with mechanical properties
dictated by the kinematic skeleton. However, the conceptual model can be declined
in many other forms. In fact, by varying the tendon sti�ness/prestress, as well as
the shape of the pitch surfaces of the contact joints, with geometries departing
from the spherical paradigm (paraboloid, ellipsoid or more complex surfaces), a
surprising wide range of di�erent in-type responses can be attained. As discussed
in Chapters 2 and 3 for beam-like structures, the sti�ness and prestress of the
tendons would a�ect the equivalent elasticity of the lattice; the shape of pitch
surfaces dictates the cable elongation Λij and the lever arm aij at each joint, thus
modifying the form of constitutive relations.

(a) (b) (c)

Figure 7.16. Lattices made with spherical segments with diverse radius. (a) Schematics
of the arrangement (tendons represented by magenta lines), which allows for both (b)
relative rotations and (c) shear-like deformation between the sub-particles.
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The assemblies so far considered are, in practice, SC lattices of spheres with
the same radius R in pure rolling contact, but this is just one particular category.
Figure 7.16(a) reports a plan view of a lattice made with spheres of two di�erent
sizes, connected by tendons represented in magenta color. Figure 7.16(b) indicates
that the system permits the relative rotation of the spheres, with a motion similar
to that already observed in Figure 7.5(c). Note, however, that also a shear-like
deformation, following the scheme of Figure 7.16(c), can be achieved. A motion of
this type is prevented in the assembly of equal spheres by the constraint of pure
rolling contact, as discussed in Figure 7.5(d).

(a) (b)

Figure 7.17. Two possible arrangements for (nano-)tube lattices. Arrangement with (a)
parallel rings and (b) helically wound chains.

Spherical segments of equal size could also be conveniently arranged in the form
of (nano-)tube lattices. Figure 7.17(a) schematically represents a tube formed by
parallel rings of spheres. In this case the integrity is granted by straight longitudinal
tendons, as well as by circular tendons that hoop the rings. Another possible
con�guration follows the helical arrangement of Figure 7.17(b). Apart from straight
tendons parallel to the axis of the tube, here the segments are kept in contact by
tendons that follow the helix de�ned by the sphere centers.

In Chapter 5, it has been shown that the contact joints of a segmental beam
can achieve multiple equilibrium states (non-convex energy) when the mobility of
the tendon is increased by enlarging the segmental cavities. The possible extension
of this concept to �extegrity lattices is shown in Figure 7.18. The multi-stable be-
havior is obtained by shaping the internal cavity hollowed inside the segments as
indicated in Figure 7.18(a), so that the pivot point of the cable (exit point from the
tubular sheath) is set back with respect to the pitch pro�le. This is formed, as dis-
cussed in Section 5.2.1 for the one-dimensional case, by three smoothly-connected
arcs of circle with radii R and 2R. The joint is multi-stable, because there are
more than one con�gurations associated with the minimal length of the tendon.
Two-dimensional structures can be obtained by assembling cross-shaped segments
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(a) (b) (c) (d)

Figure 7.18. Other types of �exural-tensegrity lattices, with multi-stable contact joints.
(a) Schematics of the segmental cavity (blank region), which increases the mobility of the
cable inside the segment, and pitch lines consisting of 3 smoothly-connected arcs of circle,
as suggested in Chapter 5, with radii R and 2R. Equilibrium con�gurations under null
external actions: (b) �straight� (non-chiral) state and (c)-(d) �rotated� (chiral) states.

according to the scheme of Figure 7.18(b): this �straight� con�guration depicts a
non-chiral lattice. There are, however, other two �rotated� equilibrium states, as
per Figures 7.18(c) and 7.18(d), that provide a chiral micro-arrangement, stable
under null external actions. This is an example of how a homogeneous assem-
blage of non-chiral objects can have chirality. The concept could also be extended
to three-dimensional multi-stable �extegrity lattices, although the design of joints
with complete 3D mobility certainly requires additional investigation. The possibil-
ity, leveraging the variant proposed in Chapter 6 for a globally-snapping �exural-
tensegrity beam, of making such a 3D bi-stable coupling between the segments
that the solid lattice snaps as a whole is yet to be fully investigated.

In all the aforementioned cases, rolling motions rely on the hypothesis that
all the segments remain in contact along the pitch surfaces but, in general, some
components may detach under tension. Moreover, the hypothesis of rigid segments
should be relaxed when the segmental contact is achieved by very sti�, highly pre-
tensioned, tendons. In this case, the change of shape of the pitch pro�les under
contact forces will produce a modi�cation of the constitutive equations, according
to the straining mechanisms of Figure 7.3.



Chapter 8

Application 1: a �ex-ten bow

The invention of the bow, one of the �rst man-made tools used for hunting and
for warfare, dates back to the dawn of time; but the bow also represents an in-
structive and clever application of the theory of the elastica and elastica-related
models. Here, reference is made to the application of �exural-tensegrity beams to
manufacture the limbs of a new type of foldable bow. The focus is on the technical
and theoretical problems related to the development and optimization of elastic
bows, in order to present the potentialities of �ex-ten structures. Indeed, the bow
is a model problem that involves the elastic return of the limbs coupled with the
inertial e�ects due to their mass and to the accelerated arrow, thus representing
a good benchmark to test the developed theoretical approach, comparing results
with experiments. Moreover, the possibility of tailor-shaping the pitch pro�les,
which represents the design variable for �ex-tens, together with the cable sti�ness
and prestress, can be fully exploited to achieve such a bending response that meets
the archer's needs and optimizes the �ring performance.

For centuries the bow has been the best performing long-range hunting device
and weapon [124]. Nowadays, these uses have been outdated by the development
of �rearms, at least in the industrialized countries, so that the bow is mainly
used in a sport known as archery, but transportability, low-technology, robustness,
e�ectiveness and silence are still appreciated. The scheme of a classical bow is
indicated in Figure 8.1(a). It consists of [125] a central sti� portion (the grip or
handle), with two elastic staves on both sides (the limbs); the side of the limb
facing the archer is the belly, while the opposite side is called the back ; the two
free tips of the limbs, called nocks, are coupled together with the string, which
should be as inextensible as possible. When the limbs are free, the bow is said to
be unbraced or unstrung ; when they are tied together by the string, the bow is
braced or strung. In this con�guration, the distance between the grip and the string
is the brace height. In order to shoot, the arrow is set in contact with the string
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and the archer holds the bow at the handle with one hand and pulls the string at
the middle, hooking it with the �ngers of the other hand or clip devices: this is the
drawing phase. The force applied by the archer at full draw is referred to as the
weight of the bow and represents a parameter of paramount importance, because
aiming is facilitated by a low weight, but a low weight is usually associated with
a limited power of the device.

(a)

(b) (c)

Figure 8.1. Schematic representation of a classical bow. (a) Parts of the bow; (b) non-
recurve bow in the unbraced, braced and fully-drawn con�guration; (c) recurve bow in
the unbraced, braced and fully-drawn con�guration (pictures adapted from [125]).

Over the centuries there have been many technical innovations, which allowed
some populations to obtain war supremacy. Most of the theory and technology has
been addressed to limiting the weight, without going to the detriment of power.
From a geometrical point of view, one can distinguish two types of traditional bows:
the non-recurve bow of Figure 8.1(b) and the recurve bow of Figure 8.1(c). In the
former case, the limbs are straight in the unbraced con�guration and the string
touches only at their tips both in the braced and in any drawn state. In the second
case, the limbs are curved away from the archer in the unbraced con�guration, so
that in the braced con�guration the string is in contact with the limbs on a certain
length in proximity of the tips; such length diminishes as the bow is drawn [125].
By properly shaping the limbs, the recurve bow can perform much better than
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non-recurve bows. Nowadays, modern compound bows use advanced technology,
having passed from single stave bows to complex mechanisms operated by means
of cams and pulleys.

Passing to materials, traditional bows were mostly made of wood (self bow), or
a composition of wood and other natural materials, such as sinew, horn and bone
(composite bow), providing suitable materials where it is required to resist tension
(sinew on the back) and compression (horn on the belly). The classical example of
traditional self bow is the English longbow [126], while a paradigmatic historical
composite bow is the Turkish bow [127�129]. Modern bows can be made of steel
and/or glass/carbon �bers in a resin matrix, while nylon, dacron and kevlar are
used for the string in substitution of sinew, silk, hemp or cotton [125]. Moreover,
since the 1960s, eccentric cams, to which the string is wound, have been added at
the tips of the limbs in order to provide a better performance (modern compound
bow [130,131]).

Many are the parameters that determine the performance of the bow: its length
and shape, the ultimate drawing force, the compliance of the string. In any case,
the bending sti�ness and mass of the limbs [124,132] play a dominant role. These
were traditionally functionally graded by recurving and tapering the bows and/or
using composite materials and, more recently, by introducing additional devices,
such as the cams in the compound bow. However, the constitutive law for the
�exible parts remains essentially linear elastic. Here, we consider a new design
approach. Left aside the important aspect of the optimization of geometry for
the recurve bow, which is a classical and well studied subject, we start with the
simplest case of a non-recurve bow, being interested in increasing its performance
via a tailored functionally-graded nonlinear nonlocal constitutive bending law for
the limbs. To manufacture elements with such properties, the �exural-tensegrity
concept appears to be particularly suitable.

The plan of the chapter is as follows. After some historical insights on classical
bows (Section 8.1), the dynamic equations for a non-recurve segmental �ex-ten
bow are detailed in Section 8.2. Two di�erent types of �ex-ten bows are then
designed, prototyped and tested in Section 8.3, comparing their e�ciency with
that of a classical non-recurve bow. The main results here concerned are also
collected in [133].

8.1 Insights on historical bows

The bow is a fascinating machine that has undergone a continuous evolution during
the centuries, in order to improve its performance in throwing projectiles faster
and farther.
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Traces of stone-tipped arrows, namely of a bow, were reported in South Africa
64000 years ago [134]. The invention of the bow as a machine to throw shaped
projectiles at a long distance required great cognitive ability by primitive humans
[135]. Our ancestors had �rst to recognize that elastic rods can store energy in the
form of deformation, which can be transformed, thanks to the elastic return, into
kinetic energy of the arrow. Manufacturing required the right materials, whose
combination and shaping was made with manual skill and coordination, using
state-of-the-art tools for smoothing, carving, cutting and glueing. Certainly, its
use in hunting requires the right muscular e�ort to provide the initial deformation
energy, and skills to direct this released energy (aiming and shooting).

There have been many famous bows, such as Ulysses's, classically known to be
very di�cult to draw, and the longbow used by Robin Hood, the English outlaw
who steals from the rich to give to the poor. One should also recall the primitive
short bows of African Bushmen, the fearsome recurve bows used by Mongolians
under the guide of Genghis Khan and the weapons of American Indians. From
a theoretical and historical point of view, the most noteworthy examples are the
English longbow, the Turkish recurve bow and the modern compound bow.

The longbow [126], represented in Figure 8.2(a), is a huge non-recurve self bow
traditionally made of yew or wych elm in England. Although probably already used
as a hunting tool in the Neolithic period (10000 BC), the �rst written reference of
the longbow dates back to 1449 AD in a letter by Margaret Paston to her husband
John who, at that time, were involved in a private war against Robert Moleyns.

(a) (b) (c)

Figure 8.2. Di�erent types of bow: (a) English longbow, (b) Turkish-Mongolian bow,
and (c) modern compound bow.
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Mrs. Paston suggested to employ the crossbow instead of the �long bowe� because
the inter-�oor height of their house was too small for a longbow archer [126].
The longbow is also famous for its massive employment in the battle�elds of the
Scottish Wars (1296-1357), the Hundred Years' War (1337-1453) and the War of
the Roses (1455-1485); indeed, it was very popular in Eastern Europe, particularly
in England, during the Middle Age. Its main characteristic is the length of its
limbs, which is dictated by the fact that it is a self bow made of wood: compatibly
with material strength, the longer the arms, the higher the elastic energy that can
be stored. However, since the length could exceed the height of the archer1, it was
di�cult to handle [126]; hence, it was mainly used as a �defensive� weapon by a
static crowd of archers against the approaching hord of enemies [129].

The Turkish bow, sketched in Figure 8.2(b), is a strongly-recurved compos-
ite bow representative of the technology developed by Asian bowyers. The oldest
traces of this type of bow are reported in Mesopotamia, in Anatolia and in the
steppes of Northern Asia since the third millennium BC [137]. This consists of a
central core made of wood to which a layer made of horn is glued on the belly and
a strip of sinew is placed on the back. The horn was generally from bu�alos or
antelopes, the sinew from the leg tendons of oxen and the wood from maple trees,
while the adhesive was a animal collagen-based glue [128,129]. The composite lay-
ered rod was protected from the weather by a thin covering of tree bark, leather
or lacquer [127, 128]. In this way, the appropriate materials are placed where it
is required to resist tension (sinew on the back) and compression (horn on the
belly), while the wooden core, being close to the neutral axis in bending, provides
axial sti�ness and the support for the other layers. The structure is actually pre-
stressed, since the shrinkage of the sinew contributes to provide a re�exed shape
for the unbraced bow. The cross-section has a variable shape along the limb in
order to better distribute the sti�ness [128], but it is the recurve that provides
a peculiar elastic law for the drawing force, which increases quickly at �rst, but
it softens as drawing progresses [127]. A peculiar �trick� introduced by the Turks
was represented by a rigid tip in proximity of the limb-ends called siyah, shown
in Figure 8.2(b), which plays a bene�c lever action [127, 129]. The curved shape
provides a convenient energy-draw function and, on the other hand, the composite
material can withstand extreme bending, so that a short bow can be made without
loss of weight and e�ciency. In this way, the archer could shoot both light-weight
missiles at a long-distance and heavy arrows to perforate soldiers armor, but, the
greatest advantage was that the archer could handle the bow while on horseback,

1The Japanese Yumi was even longer (210 ˜ 230 cm), with draw lengths of about 80 ˜ 90 cm,
so that the string had to be pulled beyond the shooter's ear. This is a bow worth mentioning
because of its unique asymmetric shape with the handle at about one-third of the its length from
the bottom [136]. As the longbow, it was traditionally made of wood, speci�cally of bamboo
strips glued together, with no rigid parts.
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following the �attack and retreat� Saracen strategy [129].
It should be mentioned that in traditional bows, such as the aforementioned

examples, the arrow does not follow the straight line (aim line), connecting the
target with the nock of the arrow and parallel to the arrow when the bow is fully
drawn. The arrow cannot travel straight along this line, because it is resting on
the archer's hand and there is the thickness of the handle, which would de�ect
its trajectory (Figure 8.3(a)). Nevertheless, the arrow actually directs towards the
target: the e�ect is usually referred to as the archer's paradox [138, 139]. This is
a consequence of the missile oscillations (Figure 8.3(b)), due to the de�ection of
the arrow against the handle when it is �red and the interaction with the string
perturbed by the archer's �ngers at release. In addition to the archer skill in
properly releasing the string, the arrow will �y accurately to the target only if its
elastic bending sti�ness is properly functionally graded along the centroidal line.

The compound bow, represented in Figure 8.2(c), is a modern composite bow,
�rst reported to be built in 1938 by the physicist Claude Lapp [125], but patented
and commercialized by H.W. Allen in the 1960s [130]. Apart from the string, whose
constitutive properties are more or less the same in all bows, its main constituents
are, as indicated in Figure 8.2(c), the riser, the grip, the arrow shelf, the limbs
and the cams. The riser is a central sti� portion of the bow, usually made of
aluminium or magnesium alloys, which supports, in the middle, both the grip and
the arrow shelf. The arrow shelf allows to hold the arrow in place according to
the aim line (in the plane of the bow), so that the missile can follow a rectilinear
trajectory, with no need of the e�ects of the archer's paradox. The limbs, generally

(a)

(b)

Figure 8.3. Illustration of archer's paradox: (a) de�ection of the arrow trajectory against
the handle if the arrow were rigid and the string remained in the plane of the bow;
(b) schematic representation of the shapes actually assumed by the arrow, which is de-
formable in bending and interacts with the string during its passage of the bow.
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made of laminated layers of �berglass glued with resin, represent the �exible part
of the bow, bolted to the tips of the riser. Other accessories are available, such
as view�nder, stabilizers and special hooks for aid during drawing and releasing.
Remarkably, the cams to which the string is wound are eccentric pulleys, placed at
the limbs tips. The main properties of the compound bow are consequent to this
eccentricity: by gradually changing the lever arm, the peak force is reached much
before the full draw and, from this point on, the required force to complete the
drawing decreases. This facilitates aiming [130], because the holding weight at full
draw is not too high while, by properly shaping the cams and limbs, the stored
elastic energy remains su�ciently high to provide power. A way to design cams
for an arbitrary function generation is presented in [131]; although the wrapping
device is indicated to obtain torsional nonlinear spring-hinges, an application to
the cams of a compound bow is envisaged.

More in general, the elastic limbs are the key elements of more complicated
and enlarged launching systems. A �rst example is represented by the portable
crossbow, reported in China since the third century BC [140], in which the limbs are
quite short but rigid and attached to a wooden tiller [128]; the string is then hooked
to the tiller itself and released with a trigger, so that the shooter can aim without
any muscular e�ort. A further development in size, and hence and in stored elastic
energy, probably dates back to the inventions by Archimedes [141, 142]: here the
limbs are large and the wooden staves are connected at the basis to torsion motors,
as in Figure 8.4(a); because of the huge weight, drawing is done via toothed wheels,
racks and chains. Also Leonardo da Vinci explored the theme of the catapult
and the siege-crossbow, as indicated in the tabulae of the Codex Atlanticus [143],
one of which is reported in Figure 8.4(b); this example is characterized by the
functionally-graded laminar conformation of the bow.

(a) (b)

Figure 8.4. Evolution of the bow: (a) Greek-Roman catapult (picture adapted from
[141]); (b) drawing of a siege-crossbow by Leonardo da Vinci (picture adapted from [143]).
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8.2 Dynamic equilibrium of the bow

The aim is to investigate the possible application of the �exural-tensegrity concept
to the manufacturing of an innovative type of bow. This represents a challenging
problem in dynamics, characterized by the interaction of a nonlinear nonlocal
elastic structure with a moving mass. Now, the dynamic equilibrium equations for
a �ex-ten segmental bow are derived.

Figure 8.5 shows the scheme of a non-recurve bow in which the �exural-
tensegrity concept is applied. Each limb, made of �ve rigid segments, is connected
to a rigid handle, twice as long as the segments, and its pieces are kept together by
one prestressing tendon. The limb tips are connected by an inextensible string of
length Ls , with negligible mass, the brace height is f0 , while the draw is indicated
as fd in Figure 8.5(a). The drawing force P , which is a function of fd according
to the elastic return of the limbs, accelerates the arrow after that the string is re-
leased. Thanks to symmetry, the problem can be simpli�ed, as per Figure 8.5(b),
in that of a �exural-tensegrity cantilever with n “ 6 segments of equal length ∆L,
under the force applied by the string.

The dynamic response of bows and arrows after the release of the string from
the full draw has been analyzed by a few authors. A simpli�ed approach was
�rst presented in [144], under the assumptions that the limbs deform according to
arcs of a circle and an e�ective percentage of their mass is concentrated at tips
(lumped mass model). An improved model was proposed in [145] by considering the
limbs as thin elastic Euler-Bernoulli beams, but a discretization was used to solve
the equations numerically, i.e., the limbs were treated as chains of rigid segments

(a) (b)

Figure 8.5. Schematic representation of the �ex-ten bow: (a) scheme of the whole bow in
the braced (light grey) and drawn (black) con�gurations; (b) equivalent problem thanks
to symmetry, with indication of the Lagrangian variables.
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coupled by linear elastic spring hinges. Also the proposed �ex-ten bow is actually
a segmental structure, but the spring hinges are governed by a nonlinear nonlocal
constitutive relation.

The Lagrangian variables for the problem, represented in Figure 8.5(b), are
the absolute rotations φi , i “ 1 . . . n, of the n “ 6 segments, positive if clockwise,
and the inclination ϑ of the string, which are related because the segments and the
string are inextensible. The increase of elastic strain energy ∆U from the unbraced
straight state, under the assumption of rigid segments and compliant tendon, takes
the form expressed by (2.1.8) or (4.1.1a). Its variation reads

∆U “ N0Λ `
1

2
KΛ2

ñ δ∆U “ N0 δΛ ` KΛ δΛ “ N δΛ , (8.2.1)

where N0 is the initial prestressing force of the tendon and K its e�ective sti�ness,
while N “ N0 ` KΛ is the actual tension force in the cable, being Λ “

řn´1
i“1 Λi ,

with Λi indicating the elongation of the cable at each joint (Figure 2.2(a)).
Recall that the quadratic term in the left-hand formula of equation (8.2.1) is

responsible of the nonlocal behavior of the structure. If this term is negligible, as in
the case of a highly prestressed beam (N0 " KΛ), all the contact joints behave as
spring hinges, one independent from the other. Otherwise, the term 1

2
KΛ2 provides

the �interconnection� of the spring hinges.
With reference to Figure 8.5(b), the force P {2 is in general a function of time,

and can indicate either the (static) drawing force, or the force that accelerates the
arrow at �ring. Let∆W denote the work done by such force. Then, the incremental
work δ∆W of P {2, for a variation δfd of the draw fd , is given by

δ∆W “
P pfdq

2
δfd , with fd “

n
ÿ

i“1

∆L sinφi `
Ls

2
sinϑ , (8.2.2)

where ∆L the length of each segment and Ls the length of the string.
Let us denote with f̄d the full draw and with Ma the mass of the arrow. When

the bow is released from the full draw con�guration fd “ f̄d and the arrow is �red,
the following conditions apply:

φ1ptq “ 0 , (8.2.3a)

n
ÿ

i“1

∆L cosφiptq ´
Ls

2
cosϑptq “ 0 , (8.2.3b)

Ma
:fdptq “ ´P ptq , with fdp0q “ f̄d , 9fdp0q “ 0 . (8.2.3c)

Here, the notation 9p¨q “ Bp¨q{Bt has been used. The clamped handle constraint
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provides (8.2.3a). Equation (8.2.3b) is the kinematic compatibility of inextensible
segments and string, which relates the inclination ϑ of the string with the absolute
rotations φi , i “ 1 . . . n, of the n “ 6 segments. Equation (8.2.3c) is Newton's
second law of motion with initial conditions for the arrow. Left aside the inertial
contributions, the equations can also be used to describe the quasi-static process
of drawing.

The drawing phase can be assumed to be a quasi-static process, where acceler-
ations are negligible and, hence, condition (8.2.3c) does not apply. One thus �nds
the relationship between drawing load P {2 and the draw fd from the minimization
of the elastic energy of the limbs and the potential energy of the load. On the
contrary, in the process of �ring, one has also to consider the inertia of the bow.
The kinetic energy T of the limb of Figure 8.5(b) can be expressed according to
(4.1.1c). For the case at hand, where ℓi “ ∆L, @ i “ 1 . . . 6, this reads

T “
1

2

n
ÿ

i“1

m∆L

#

B

Bt

«˜

i
ÿ

j“1

∆L sinφj

¸

´
∆L

2
sinφi

ff+2

`
1

2

n
ÿ

i“1

m∆L

#

B

Bt

«˜

i
ÿ

j“1

∆Lp1 ´ cosφjq

¸

´
∆L

2
p1 ´ cosφiq

ff+2

,

(8.2.4)

where m∆L is the mass of each segment of length ∆L. Observe that the mass m
per unit length of the segments has been assumed constant and uniform, neglecting
the rotational inertia with respect to translational contribution2.

It is worth mentioning that one could have considered the system bow + arrow.
In this case, the drawing force P is an internal force between the string and the
arrow that makes no work, but the massMa of the arrow should be included in the
kinetic energy contribution. By adding to T the quantity Ma

9fd
2{4 corresponding

to one half of the mass of the arrow associated with the half-bow of Figure 8.5(b),
the variational derivation of the equation of motion would imply (8.2.3c). However,
the proposed formulation has the advantages that it can be applied both to the
dynamic (�ring) and the static (drawing) case.

In order to consider possible sources of dissipation, a conventional linear-

2As already pointed out in Chapter 4, the kinetic energy of the i´th segment can be written
as Ti “ pI 9φi

2 ` m∆L 9ui
2 ` m∆L 9vi

2q{2, where I is the moment of inertia of the segment (here
assumed to be all same), m∆L is the segmental mass, φi the segmental rotation, ui the longitu-
dinal displacement of the centroid of the segment, from the straight reference state, and vi the
corresponding transverse displacement; the latter two quantities correspond to the terms between
square brackets in (8.2.4), �rst and second line respectively. For the case at hand, the rotational
contribution is negligible. In fact, it has been veri�ed a posteriori that the term

řn
i“1 I 9φi

2{2
accounts only for 1% of the total kinetic energy T when this reaches its maximum; in general,
the contribution is always much less than 5%.
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damping term, associated with the parameter c, is added at each joint, so that
the resulting incremental dissipated work reads

δWD “ ´c
n´1
ÿ

i“1

B∆φi

Bt
δ∆φi “ ´c

n´1
ÿ

i“1

„

B

Bt
pφi ´ φi`1q

ȷ„

δφi ´ δφi`1

ȷ

. (8.2.5)

This represents a conventional idealization and a simpli�cation of the real mech-
anisms of dissipation, which occur at the level of the contact hinges, as well as
between the cable and the sheaths. The sliding of the conjugate pro�les certainly
dissipates energy through friction; frictional contact also comes into play, despite
lubrication, between the cable and the sheaths, and this may also a�ect the distri-
bution of axial stress along the cable itself. Many authors have suggested models to
take into account friction while analyzing cables sliding on pulleys, such as in [146]
and [147], via a complementary approach, or in [148], via a dynamic relaxation
formulation. Postponing to further studies a more detailed characterization of the
dissipation mechanisms3, here we limit to consider the conventional expression
(8.2.5). Of course, dissipations do not come into play in the quasi-static case of
the bow drawing; in particular, the parasite e�ects of friction can be ruled out if
the bow, at full draw, is shaken by hand, so that the external perturbations allows
to reach the con�guration of minimum potential energy.

The governing equations can be found via Hamilton's principle [73] from (8.2.1),
(8.2.2), (8.2.4) and (8.2.5), under conditions (8.2.3) and recalling the di�erential
relation (2.1.1) between the cable elongation Λi and the internal lever arm ai ,
which are reported in Figure 2.2(a). These governing equations can be written in
the general form

N
`

ai ´ ai´1

˘

´
P ∆L

2 tanϑ
sinφi `

P ∆L

2
cosφi ` c

`

2 9φi ´ 9φi´1 ´ 9φi`1

˘

`

`
m∆L3

4
cosφi

ˆ n
ÿ

j“1

µij :φj cosφj ´

n
ÿ

j“1

µij 9φj
2 sinφj

˙

`

`
m∆L3

4
sinφi

ˆ n
ÿ

j“1

µij :φj sinφj `

n
ÿ

j“1

µij 9φj
2 cosφj

˙

“ 0 , i “ 1 . . . n,

(8.2.6)

3Preliminary experiments on the free vibrations of cantilevers, reported in Section 4.1.3, for
which the theoretical modeling of di�erent sources of dissipation has been considered, indicate
that a conventional viscous dissipation, of the same type considered in (8.2.5), can very well
reproduce the oscillatory response, at least when the oscillations are wide enough. When the
arrow is �red, the deformation of the bow is large: we conjecture that such a condition is similar
to that corresponding to oscillations of wide amplitude in the dynamical test.
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where we have formally set φk “ 0 when k ă 1 or k ą n, and ak “ 0 when
k ă 1 or k ě n. Recall that N “ N0 ` KΛ is the tensile force in the tendon, ai
is the internal lever arm and Λ “

řn´1
i“1 Λi , where both ai and Λi are functions of

the relative rotation ∆φi “ φi ´ φi`1 . The mass coe�cients µij result from the
symmetric matrix (4.1.8), introduced in Section 4.1.1.

In the dynamic problem, when the archer releases the string, the unknowns are
the segmental rotations φi , the drawing force P and the angle ϑ, as per Figure
8.5(b). In the quasi-static process of drawing, one shall set m “ 0 and c “ 0
in equations (8.2.6), while condition (8.2.3c) becomes ine�ective. Hence, the un-
knowns are the segmental rotations φi and the drawing force P , while the angle ϑ
is the datum that describes the amount of drawing.

8.3 Design of the bow

The �ex-ten bow is a composite bow, since it is made of two distinct categories of
elements: the segments, which resist compression, and the compliant prestressing
cable, which provides tension and is the main source of elastic energy. By simply
changing the shape of the contact surfaces of the segments, it is possible to de-
sign the elastic properties of the limbs according to the speci�c needs of the archer.
Moreover, the length of the bow can be changed by simply adding or removing seg-
ments, while the sti�ness can be tuned by varying the cable prestress. In addition,
the weapon can be folded/unfolded for easy packaging and transportation. The
modular construction permits industrialized manufacture: the hard components,
which are massive and hardly subjected to breakage, could be obtained by using
milling cutters. It should also be mentioned that the desired relative motion of the
segments, conceived as pure rolling along the design pitch lines, could alternatively
be obtained by manufacturing the joints not as surfaces in contact, but as opti-
mized compliant mechanisms [149] or cross-axis �exural pivots [150]. Although the
�nal assembly would be more complicated, this represents a promising conceptual
development of the �exural-tensegrity concept, to be considered in further work.

After recalling the parameters that measure the bow performance, two pro-
totypes of �ex-ten bow are presented for the sake of comparison, corresponding
to either a linear or a sub-linear constitutive relation for the internal lever arm.
Finally, theoretical predictions for the prototypes are experimentally corroborated.

8.3.1 The good design

Two main aspects need to be considered while evaluating the performance of a
bow. The �rst one [138] is the speed that the bow can impart to an arrow of given
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mass for �xed draw and drawing force. In particular, the interest of designers is
to investigate how di�erent masses for the arrow a�ect the exit speed. In fact, in
general the elastic strain energy is not entirely converted into kinetic energy of the
arrow because of the contribution of the mass of the limbs, which induces their
vibrations; moreover, when the string suddenly achieves the straight con�guration
there is an impact that can induce further energy loss. Hence, one has to consider
the full dynamic problem for arrows of di�erent mass. The second aspect to be
taken into account [138] is the e�ciency of the bow, de�ned as the ratio between
the kinetic energy of the arrow when it leaves the bow and the work done by the
archer in the drawing operation.

A further important parameter [132] is the ratio between the energy stored in
drawing and the product between the weight of the bow and the full draw height
(distance of the middle of the string from the grip at full draw). When this quantity
is small, the drawing force increases quite sharply. Since slight variations of the
draw correspond to appreciable variations in the energy stored in the limbs, the
archer has a harder time taking a good aim. Hence, in a user-friendly bow, this
ratio should be as large as possible.

8.3.2 The shape of pitch pro�les

The lever arm ai “ aip∆φiq of the tension force N in the cable, or equivalently
the elongation Λi “ Λip∆φiq required at each joint for the cable, de�nes the con-
stitutive response at the i´th contact joint of the �ex-ten bow. Here, we consider
either a linear or a sub-linear law for ai , which are represented in Figures 8.6(a)
and 8.6(c), respectively. The corresponding primitives Λi are plotted in Figures
8.6(b) and 8.6(d), respectively.

The linear case, represented in Figures 8.6(a) and 8.6(b), can be very well
approximated with elliptic pitch lines whose equation, with respect the reference
frame ξ ´ η of Figure 2.3(a), reads

η “ ˘ β

«

1 ´

d

1 ´

ˆ

ξ

α

˙2
ff

, (8.3.7)

with α “ 118.14mm and β “ 144.21mm, where the plus (minus) holds for pitch
line 1 (pitch line 2) labeled in Figure 2.3(a). From this, one �nds that ai » B∆φi ,
with B “ 48.39mm. On the other hand, the sub-linear case of Figures 8.6(c) and
8.6(d) results from power-law pitch lines of the form

η “ ˘ γ ξ4 , (8.3.8)

where γ “ 32.63 ¨ 10´6mm´3. From this geometry, one �nds that ai » C∆φi
1{3,
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(a) (b)

(c) (d)

Figure 8.6. Constitutive relations for two types of joints used in the design of the �ex-
ten bow: (a) internal lever arm ai and (b) local elongation Λi for the linear case; the
curves plotted in (c) and (d) respectively correspond to the sub-linear case.

with C “ 15.60mm. The graphs of Figure 8.6, obtained from pure kinematic
considerations, con�rm that the lever arm ai is the �rst derivative with respect to
∆φi of the local elongation Λi , as per (2.1.1).

8.3.3 Theoretical results

We now theoretically compare two di�erent designs for the �ex-ten bow, corre-
sponding either to the linear or sub-linear constitutive relations represented in
Figure 8.6 for the contact joints, from now on referred to as �linear� and �sub-
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linear� cases. Assumed parameters are ∆L “ 60mm, L “ 12∆L, f0 “ 105mm
(Ls » 0.94L), m “ 0.1515 kg/m and K “ 2.19N/mm, which are compatible with
the prototypes considered in the following Section 8.4. The initial prestressing force
of the tendon is N0 “ 13.00N for the linear case and N0 “ 15.35N for its sub-linear
counterpart, in order to have the same value of full draw height and weight. For
this example, the arrow mass is Ma “ 0.0096 kg.

The time-dependent system of algebraic equations (8.2.6) and conditions (8.2.3),
has been numerically solved using the function fsolve implemented in Matlab®,
which is based on the Levenberg-Marquardt [58] and trust-region [59] methods de-

(a) (b)

(c) (d)

Figure 8.7. Dimensionless shapes of �ex-ten bow in the braced state and in the fully-
drawn con�guration for the (a) linear and (b) sub-linear design. Response curves for the
drawing and �ring stages for the (c) linear and (d) sub-linear cases. The two di�erent
�ring scenarios correspond to damping coe�cients c “ 0 or c “ 5 ¨ 10´3Nms.
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veloped from nonlinear least-squares algorithms. The time-depending aspect has
been computed according to a �nite di�erence explicit Euler method, with a time
step equal to ∆t “ 0.0002 s. Since we are interested in the �ring of the arrow, we
assume that the impact that occurs when the string achieves the straight con�g-
uration has consequences only on the vibration and dissipation in the limbs; in
other words, we suppose that, at the same instant, the arrow detaches from the
string and is no more a�ected by the dynamics of the bow.

Figures 8.7(a) and 8.7(b) show the braced and fully-drawn shape for the linear
and sub-linear cases, respectively, obtained for the quasi-static case. The corre-
sponding response curves are indicated in Figures 8.7(c) and 8.7(d). The quasi-
static drawing curve, reported in blue solid line, is juxtaposed to those correspond-
ing to two di�erent �ring scenarios, associated with the conditions in which the
damping coe�cient c is either null (red solid line) or equal to 5 ¨ 10´3Nms (red
dotted line), respectively.

Observe that the drawing curve is much more �concave� in the sub-linear than
in the linear case, corresponding to a higher stored energy for the same force at full
draw. Although more e�ort is needed to draw the bow in the sub-linear case, the
ratio between the energy spent for drawing and the product between the weight
of the bow and the full draw height is bigger, so that small �uctuations of the
draw while aiming a�ect less the exit speed of the arrow. Indeed, the di�erence in
the slope of the curves measures the variation in stored energy for �uctuation of
the drawing force: the smaller it is, the easier is the aiming process for the archer
(more user-friendly bow).

Let Ed denote the stored elastic energy in the bow and Ef the kinetic energy
of the �red arrow with exit speed ve , and let f̄d and P̄ represent the full draw
and weight, respectively, then the e�ciency of the bow is measured by the ratios
Ef{Ed and Ed{pf̄ P̄ q, and by the value of the exit speed ve . Referring to Figure
8.7(c) or 8.7(d), one has

Ed “

ż f̄d

f0

P pfdq dfd , along the blue curve of drawing , (8.3.9)

Ef “ ´

ż fdpP“0q

f̄d

P pfdq dfd “
1

2
Mve

2 , along the red curve of �ring , (8.3.10)

where f0 is the brace height. Note that the value of the draw fd , for which the
arrow detaches from the string when �red, i.e., the value fdpP “ 0q indicated in the
integral of (8.3.10), may be slightly di�erent from f0 because the limb de�ection
is in�uenced by the inertial e�ects due to its own mass. For the case at hand,
numerical data about the e�ciency of �ex-ten bows are collected in Table 8.1.
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Table 8.1. Performance of the �ex-ten bow, measured by the energetic ratios Ef{Ed

and Ed{pf̄dP̄ q and by the exit speed ve of the arrow.

prototype linear sub-linear

damping c 0Nms 5 ¨ 10´3Nms 0Nms 5 ¨ 10´3Nms

Ef{Ed (�) 0.88 0.83 0.84 0.81
Ed{pf̄dP̄ q (�) 0.31 0.31 0.38 0.38
ve (m/s) 4.55 4.42 4.92 4.85

Observe that the sub-linear case always provides a higher exit speed ve , about
7.6% higher than the linear case with no dissipation and 8.8% higher when damping
is considered. Results con�rm that the linear prototype requires less work by the
archer (18.7% lower than the sub-linear case), but there is a negative e�ect on
both ve and the ratio Ed{pf̄dP̄ q. The linear bow is more e�cient in terms of the
ratio Ef{Ed when no dissipation is present, but the di�erence strongly decreases
when damping comes into play, as it passes from 5.1% to 2.4% (less than one half)
with respect to the sub-linear prototype. This is due to the fact that, in the sub-
linear design, as shown in Figure 8.7(b), the deformation mainly concentrates at
the �rst joint (the one that connects the limb with the handle). Hence, dissipation
is minimized, at least with respect to the model of damping assumed here. On the
contrary, in the linear prototype the curvature is more uniform along the limbs, as
indicated in Figure 8.7(a).

Figure 8.8 reports the curves for the arrow exit speed ve and for the ratio Ef{Ed

as a function of the arrow mass Ma for various values of the mass per unit length
m of the limbs. As expected, Figure 8.8 shows that the lighter the limbs, the faster
the arrow and the higher the e�ciency, regardless of the arrow mass. On the other
hand, both bows show a similar trend for the response in terms of arrow speed
as a function of the arrow mass. In the linear bow the exit speed is lower than
in the other case (Figure 8.8(a)), but the e�ciency (Figure 8.8(b)) is comparable
to that of a sub-linear prototype (Figure 8.8(d)). On the contrary, the sub-linear
bow excels in exit speed (Figure 8.8(c)), but the e�ciency is poor if the mass of
the limbs is high.

In conclusion, the sub-linear bow results to be the most performing, although
it requires more drawing work with respect to the other case.

8.3.4 Comparison with a traditional bow

For the sake of comparison, we consider now the case of a bow made of a single
stave of linear elastic material, whose width is functionally graded in such a way
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(a) (b)

(c) (d)

Figure 8.8. E�ciency of the �ex-ten bow with variable arrow massMa and for di�erent
values of the limb mass per unit length m: (a) arrow exit speed ve and (b) e�ciency ratio
Ef{Ed for the linear case; graphs plotted in (c) and (d) correspond to the sub-linear case.
Condition with no dissipation.

that the limb deforms according to an arc of circle. This case, referred to as the
�circular� bow, is suggested in [144], where it is stated that practically all bowyers
construct their (self) bows so that they bend in such a shape, corresponding to a
homogenous stress along the limb consequent to the constant curvature.

Although the cross sectional area of the limbs is in theory variable, in order
to grade the sti�ness and obtain the circular bend, their mass per unit length has
been considered constant in order to facilitate the comparisons with the �ex-ten
bow; moreover, the limbs have been discretized into six segments, as for the �ex-ten
bow, but now they are coupled by �local� spring-hinges whose sti�ness is constant
at each joint but varies along the limb, from joint to joint, in order to approximate
the circular deformed shape with a polygonal line.

The response of the circular bow is detailed in Figure 8.9, which is the coun-
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terpart of Figure 8.7. In particular, Figure 8.9(a) displays the bow in the braced
and fully-drawn con�guration. Figure 8.9(b) shows the static drawing curve in
blue color and the �ring scenario corresponding to no dissipation in red color, for
Ma “ 0.0096 kg and m “ 0.1515 kg/m, while the full draw height and weight, as
well as the brace height, are the same as for the �ex-ten bow.

Figures 8.9(c) and 8.9(d) qualitatively compare the response of the circular
bow with that of the �ex-ten bow, for the linear and sub-linear cases, respectively.
Corresponding quantitative data are collected in Table 8.2. On the one hand, the
circular (traditional) bow is much less e�cient than the �ex-ten linear bow, as

(a) (b)

(c) (d)

Figure 8.9. Behavior of the single stave circular bow. (a) Dimensionless shapes in the
braced and fully-drawn con�gurations; (b) response curves for drawing and �ring, for
c “ 0; (c) and (d) response curves compared with the �ex-ten bow, linear and sub-linear
case, respectively, for c “ 0.
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Table 8.2. Performance of the �ex-ten bow, measured by the energetic ratios Ef{Ed and
Ed{pf̄dP̄ q and by the exit speed ve of the arrow, compared with the traditional circular-
bent bow (case with no dissipation).

prototype linear sub-linear circular

Ef{Ed (�) 0.88 0.84 0.79
Ed{pf̄dP̄ q (�) 0.31 0.38 0.34
ve (m/s) 4.55 4.92 4.53

measured by the ratio Ef{Ed , but the exit speed is comparable; on the other
hand, the �ex-ten sub-linear bow is still more e�cient than the circular bow, but
it is much more e�ective in exit speed. Considering the ratio Ed{pf̄dP̄ q, the linear
bow is less user-friendly than the circular bow, which is also less user-friendly than
the sub-linear bow.

Figure 8.10 reports the curves for the arrow exit speed ve and for the e�ciency
ratio Ef{Ed as a function of the arrow mass Ma for various values of the mass
per unit length m of the limbs, comparing the theoretical results obtained for the
circular (traditional) bow with those for �ex-ten bows. The sub-linear prototype
always excels in exit speed ve, regardless the arrow mass and the limb mass. The
linear bow performs worse than the circular bow for the lighter limbs, becoming
more e�ective for light-weighted arrows when the limb mass increases. Passing
to the e�ciency, evaluating both the actual value of Ef{Ed and the trend as the
arrow mass Ma varies, the traditional bow worsen its performance as the limb
mass increases and passes from being the more performing bow to being the less
performing one, at least in the range of Ma here considered. Comparing the two
�ex-ten bows, the linear prototype is the best.

Of course the �ex-ten bow can be further optimized, but this comparison shows
its potentialities. In particular, a sub-linear constitutive relation for the internal
lever arm ai as a function of the relative segmental rotation ∆φi is more e�cient in
terms of arrow exit speed than the traditional linear elastic relationship, describing
the deformation of the limbs of a traditional self bow. On the other hand, the linear
�ex-ten bow excels in terms of e�ciency ratio.

8.3.5 In�uence of number of segments

Let us now consider the in�uence of the number of segments on the response of the
�ex-ten bow. For brevity, only the linear prototype is analyzed. The geometric and
constitutive parameters, with the only exception of the number of segments, are the
same as in the previous Section 8.3.3: total length of the bow L “ 720mm, brace
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(a) (b)

(c) (d)

(e) (f)

Figure 8.10. E�ciency of the �ex-ten bow, with variable arrow massMa and for di�erent
values of the limb mass per unit length m, with respect to a single stave circular bow: (a)
arrow exit speed ve and (b) e�ciency ratio Ef{Ed for m “ 0.0505 kg/m; graphs plotted
in (c) and (d) correspond to m “ 0.1515 kg/m; graphs plotted in (e) and (f) correspond
to m “ 0.3030 kg/m. Condition with no dissipation.
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height f0 “ 105mm (Ls » 0.94L), limb mass per unit length m “ 0.1515 kg/m,
cable equivalent axial sti�ness K “ 2.19N/mm, and initial prestress N0 “ 13N;
arrow mass Ma “ 0.0096 kg.

Following Figure 8.5(b), let again n represent the number of segments for the
half bow. Figures 8.11(a) and 8.11(b) display the trend of the drawing force P as a
function of the draw fd , comparing the case of n “ 6 (assumed as standard) with
the case of n “ 49 and n “ 9, respectively. Figures 8.11(c) and 8.11(d) repeat the
comparison in terms of deformed shape of the bow both in the strung and in the
fully-drawn states. The slope of the linear relation of Figure 8.6(a) is adapted to
the number of segments in order to have the same full draw height f̄d and weight P̄
as in Section 8.3.3: dai{d∆φi “ 48.4mm{rad for n “ 6; dai{d∆φi “ 79.4mm{rad
for n “ 9, and dai{d∆φi “ 496.1mm{rad for n “ 49.

The number of segments minimally a�ects the drawing curves, which almost
perfectly overlap in Figures 8.11(a) and 8.11(b). Concerning the deformation of the
limb, the con�guration n “ 6 is almost perfectly equivalent to the con�guration
n “ 9, as per Figure 8.11(d). On the other hand, this is not the case of n “ 49.
This case well approximates the continuous nonlocal elastica discussed in Section
3.2.4, approaching a continuous deformed shape that appreciably di�ers from the
polygonal line corresponding n “ 6 (Figure 8.11(c)), although the drawing forces
coincide in practice.

The cases reputed of practical interest for the fabrication of �ex-ten bows are
those corresponding to the number of segments comprised between 6 and 9 for the
half bow, i.e., a total number of segments comprised between 5`5 and 8`8 for the
limbs plus the handle, which has twice the length of the segments. For n “ 6 and
n “ 9, Figures 8.11(e) and 8.11(f) compare both the static and dynamic response
curves, considering c “ 0 (no dissipations) or c “ 5 ¨ 10´3Nms, respectively. The
trend is very similar, although the curves do not perfectly overlap. Anyway, the
di�erence in terms of drawing work is 0.6%, passing from Ed “ 113.3Nmm for
n “ 9 to Ed “ 112.6Nmm for n “ 6; the energy released to the arrow passes from
Ef “ 97.9Nmm for n “ 9 to Ef “ 99.3Nmm for n “ 6, when c “ 0; and from
Ef “ 94.7Nmm for n “ 9 to Ef “ 93.9Nmm for n “ 6, when c “ 5 ¨ 10´3Nms,
leading to a di�erence of 1.4% and 0.9% respectively. The exit speeds ve coincide,
up to the �rst decimal digit, when passing from n “ 6 to n “ 9, both for the
damped (4.4 m/s) and for the undamped (4.5 m/s) �ring scenario.

For the sake of comparison, we also include the case in which the deformation
of the limbs is approximated via the shape function (4.2.18), which reduces the
problem to the optimization of the single degree of freedom φ0ptq, i.e., the rotation
at the tip of the limb. For the linear bow, Figure 8.12 reports the comparison
between the model with n “ 6 and the SDOF approximation via shape function.
The drawing phase almost perfectly coincides for the two cases (Figure 8.12(a)),
but di�erences arise in the �ring stage (case c “ 0), as the shape function prescribes
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(a) (b)

(c) (d)

(e) (f)

Figure 8.11. In�uence of the number of segments (linear case). Comparisons in terms of:
(a) force-draw curve for n “ 49 and n “ 6; (b) corresponding plots for n “ 9 and n “ 6;
(c) bow in the braced and fully-drawn state for n “ 49 and n “ 6; (d) corresponding plots
for n “ 9 and n “ 6; (e) drawing and arrow �ring for n “ 9 and n “ 6, Ma “ 0.0096 kg
and c “ 0; (f) corresponding plots for c “ 5 ¨ 10´3Nms.



216 Chapter 8. Application 1: a �ex-ten bow

(a) (b)

Figure 8.12. Comparison between the model with n “ 6 (linear case) and the SDOF
approximation via shape function for the deformation of the limbs: (a) force-draw and
�ring curves; (b) bow in the braced and fully-drawn state. Adopted parameters areMa “

0.0096 kg and c “ 0.

the deformed shape of the limbs and accounts only for the �rst mode of vibration.
Similar arguments hold to interpret the di�erences for the bow in the braced
and fully-drawn state (Figure 8.12(b)), with the additional consideration that the
description via shape function approaches the continuum limit.

In conclusion, the di�erences in the response consequent to the number of
segments is negligible, in practice, when this is comprised between 6 and 9 for the
half bow. The con�guration with n “ 6, assumed as a paradigmatic example, will
be prototyped and tested in the following.

8.4 Prototyping and testing

Two di�erent types of �ex-ten bows are now prototyped and tested, corresponding
to the linear and sub-linear cases analyzed so far. Theoretical results are compared
with the experimental �ndings.

8.4.1 Manufacturing of the prototypes

The prototypes were manufactured in polylactide (PLA) with the 3D-printing
deposition method. Typical segments for the limbs and the handle are represented
in Figure 8.13. The segments have been cut, carved and grid in�lled (20% space
density, covered by three external solid layers) in order to remove unnecessary
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(a) (b)

Figure 8.13. Geometry of the �ex-ten bow. 3D-CAD drawing of (a) the typical segment
(3/4 view of belly side and back side) and of (b) the handle (3/4 view of belly side and
back side).

material and diminish the weight of the bow. As a result, the mass per unit length
is m “ 0.1515 kg/m. The typical segmental length is 60mm. The handle has twice
the length of the segments (120mm) and a groove has been made in it (Figure
8.13(b)), so to realize an arrow shelf and avoid the problems associated with the
archer's paradox [138,139], i.e., the choice of the good �exural compliance for the
arrow. The holes of the handle are used to pin it in a �xed position during the
experimental tests.

The two prototypes clearly di�er only for what concerns the moment-rotation
constitutive equation at the contact hinges, consequent to either a linear or a sub-
linear ai vs. ∆φi relationship of the type indicated in Figures 8.6(a) and 8.6(c),
as already discussed in Section 8.3.2. The overall geometry of the bow is the same
for the two prototypes, as the only di�erence in the segments consists in the shape
of the conjugate-pro�le contact surfaces, corresponding to the pitch lines. Figure
8.14(a) displays the assembled and braced �ex-ten bow (here the linear prototype)
with a bowstring length of 685mm (tolerance ˘ 1mm). Consequently, the brace
height ranges from to 90mm to 100mm, depending upon the stringing process and
upon the di�erent bent shape, for the linear and sub-linear prototypes, respectively.

The limbs of both the prototyped bows are composed of �ve segments, coupled
together by a polyamide 6.6 wire of diameter 0.8mm; springs with elastic constant
5.45N/mm are added in series. Consequently, the e�ective axial sti�ness of the
tendon is 2.19N/mm. The disassembled components of the bow (the segments, the
handle, the string, the series springs, the prestressing cable in two portions and
the clamps for anchoring) are shown in Figure 8.14(b). Thanks to this modular
design, the disassembled bow perfectly �ts in a minimal prismatic box for easy
transportation, as indicated in Figure 8.14(c).
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(a)

(b) (c)

Figure 8.14. Prototype of the �ex-ten bow (linear case) manufactured via 3D printing.
(a) Assembled and braced bow; (b) disassembled components of the bow (segments,
handle, string, clamps, cables and springs); (c) the disassembled bow perfectly �ts in a
small prismatic box for transportation.

8.4.2 Experiments

The prototypes of the �ex-ten bows reproduce the cases theoretically considered
in Section 8.3.3, the only di�erence being the cable prestress, which was experi-
mentally measured from the shortening of the series spring with a Vernier caliper.
The measured prestress is either N0 “ 9.8N or N0 “ 16.4N for the linear bow,
and either N0 “ 7.1N or N0 “ 17.2N for the sub-linear case. The same value of
prestress is used for both limbs, each one of which has a dedicated tendon.

The prototypes have been tested both in static and dynamic conditions. The
setup for the static tests is schematically represented in Figure 8.15(a). The bow is
kept in position at the handle, while the draw and the drawing force are measured
by a ruler and a spring dynamometer with a precision of ˘ 0.05N. The test was
performed in the vertical plane, with the drawing force opposite to gravity, so that
one has to add to the work of external forces the contribution of self-weight ∆Wg ,
antagonistic to drawing, which reads
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(a) (b)

(c)

Figure 8.15. Schematic representation of the experimental setup: (a) static force-draw
measurement with a ruler and a spring dynamometer; (b) measurement of the arrow exit
speed from range, with a crossbow-like apparatus; (c) parasitic out-of-plane de�ection of
the cross-bow due to self-weight.
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from the unstrung con�guration φi “ 0, for i “ 1 . . . n, to the actual drawn state.
Here, mg∆L is the weight of each segment of length ∆L, and g is the gravity
acceleration. Consequently, (8.2.2) becomes
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δfd ` δ∆Wg . (8.4.12)

In conclusion, the static response is governed by
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mg∆L2 cosφi “ 0 , (8.4.13)

for i “ 1 . . . n. This is the counterpart of equation (8.2.6) when the bow is placed
in vertical position and quasi-statically drawn, as in Figure 8.15(a).
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Experimental results are collected in Figures 8.16(a) and 8.16(b), respectively
for the linear and sub-linear prototypes, with reference to the aforementioned two
values of initial prestress, and compared with the theoretical predictions. Despite
measurement errors and manufacturing tolerances, the experimental points (black
dots) well overlap with the theoretical trend (magenta solid curve). In general,
the theory slightly overestimates the experimental value. This is probably due to
construction tolerances and the approximations of the model, in particular the
hypothesis of perfectly unbonded tendon.

The setup for the dynamic testing is represented in Figure 8.15(b). The bow

(a) (b)

(c) (d)

Figure 8.16. Experiments on the �ex-ten bow: comparison between the theoretical and
experimental results for quasi-static drawing for (a) the linear and (b) the sub-linear
prototypes; theoretical response of the bow in the crossbow-like apparatus for (c) the
linear and (d) the sub-linear cases, considering a tendon prestress N0 “ 16.4N and
N0 “ 17.2N, respectively.



8.4. Prototyping and testing 221

Figure 8.17. Schematic representation of the arrow �ight: after detachment from the
string, the arrow interacts with the edge of the supporting rail and rotates (upper and
side views).

is placed horizontally, to rule out the e�ects of the self-weight on the in-plane
deformation of the limbs, and �xed to a rail to guide the arrow while �ring, as in a
crossbow con�guration. A polystyrene target, where the arrow can penetrate, was
placed at a distance D “ 1.60m from the crossbow-like apparatus, and the length
H was measured from the point where the arrow had impacted. The arrow exit
speed ve is obtained by solving a ballistic problem, once the quantities D and H
represented in Figure 8.15(b) are known.

Observe that the arrow is not a point mass and, therefore, the actual situation
is that of Figure 8.17: when it detaches from the string and its center of mass
moves out of the supporting rail, the arrow is subjected to the couple formed by
its own weight and the contact reaction with the rail. Because of the conservation
of angular momentum, the rotation increases during the �ight of the arrow, until
it reaches the target. However, experiments have demonstrated that the rotation
is small, but one has to consider the length ℓ of the arrow, and the brace height
f0. Then, up to in�nitesimal of higher order in the ration, the center of mass of
the arrow travels the distance

D̃ » D ´
ℓ

2
` f0 . (8.4.14)

Neglecting viscous drag dissipation through the air, one can write
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where t̄ is the time of �ight for the arrow, ve is the exit (horizontal) speed, g “

9.81m/s2 is the gravity acceleration.
A �rst test for the calibration of the model was carried out for the higher values

of the initial prestress, previously considered for the statics; the full draw was set
equal to f̄d “ 0.32m, in order to achieve the same weight for both the linear and
the sub-linear bows; the arrow length is ℓ “ 28 cm and its mass Ma “ 0.002 kg.
The values H “ 0.35m and H “ 0.26m were obtained (mean of ten shots) for the
linear and sub-linear prototypes, respectively, which correspond to ve “ 5.9m/s
and ve “ 6.8m/s.

The model with no dissipation provides the upper bound for the exit speeds,
respectively equal to ve “ 7.6m/s for the linear bow and ve “ 8.3m/s for the
sub-linear bow. There are, however, many uncertainties in the dynamic tests: the
out-of-plane parasitic de�ection of the limbs due to gravity; the consequent friction
between the rail and the arrow; errors in the planarity for the crossbow (despite
checked with spirit level); perturbations of the string at releasing; the creep of
the prestressing cable, made of nylon (the bow is maintained braced for a few
minutes during the tests); the neglected mass of the string; the simpli�cations in
the ballistic problem to de�ne the �ight of the arrow. We repute that the most
important contribution is that associated with the frictional contact between the
arrow and the rail, because this is enhanced by the out-of-plane de�ection of the
limbs of the crossbow due to their self-weight, as schematically represented (not
in scale) in Figure 8.15(c). The limb deformation δ presses the arrow against the
rail (constraint reaction represented in Figure 8.15(c) with a red vector), so that
frictional forces are greater than the value associated with the arrow weight.

In order to take into account this e�ect, condition (8.2.3c) shall be restated as

Ma
:fdptq “ Fd ´ P ptq , (8.4.16)

where, as before, P is the force on the string and Fd is the resultant of frictional
forces from the contact with the rail. This force is supposed constant during �ring
and independent of the cable prestress N0, because N0, though a�ecting the out-
of-plane sti�ness of the limbs, is only mildly varying (14 ˜ 19N for the tests). By
considering Fd “ 0.200N and a coe�cient c “ 5 ¨10´3Nms for viscous dissipation,
the theoretical response of the bow is as displayed in Figure 8.16(c) for the linear
prototype and in Figure 8.16(d) for the sub-linear prototype, corresponding to
N0 “ 16.4N and N0 “ 17.2N, respectively. Assuming that the arrow detaches



8.4. Prototyping and testing 223

Table 8.3. Results of the dynamical tests in terms of arrow exit speed ve compared with
theoretical predictions for the linear and sub-linear bows. Arrow of mass 0.002 kg, �red
from the crossbow with full draw f̄d “ 0.32m, for varying initial prestressing force N0 .

linear prototype

prestress theoretical experimental error
N0 (N) ve (m/s) ve (m/s) (%)

14.2 5.4 6.0 ` 10.0
16.4 5.9 5.9 ` 0.0
19.5 6.6 6.7 ` 1.5

sub-linear prototype

prestress theoretical experimental error
N0 (N) ve (m/s) ve (m/s) (%)

14.2 6.2 6.3 ` 1.6
17.2 6.9 6.8 ´ 1.5
19.5 7.4 7.2 ´ 2.8

Table 8.4. Experimental results in terms of arrow exit speed ve for di�erent masses of
the arrow, compared with the theoretical predictions, for the linear and sub-linear bow
(full draw of 0.32m and initial prestress N0 “ 19.5N).

linear prototype

arrow mass theoretical experimental error
M (kg) ve (m/s) ve (m/s) (%)

0.0020 6.6 6.7 ` 1.5
0.0036 5.6 5.9 ` 5.1
0.0094 3.9 4.6 ` 15.2

sub-linear prototype

arrow mass theoretical experimental error
M (kg) ve (m/s) ve (m/s) (%)

0.0020 7.4 7.2 ´ 2.8
0.0036 6.1 6.1 ` 0.0
0.0094 4.3 4.6 ` 6.5
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from the string when it is no more accelerated ( :fd “ 0), the theoretical exit speed
ve well agrees with the experimental �nding, being the di�erence less than 1.5%.

Once the dissipative terms have been calibrated from the aforementioned cases,
other experiments have been made while maintaining �xed the arrow mass Ma “

0.002 kg and the full draw f̄d “ 0.32m, but varying the prestressing force N0 of the
tendon. The results are collected in Table 8.3 where, again, the arrow exit speed
has been estimated as the mean value of ten measurements. Given all the possible
uncertainties of the experimental apparatus and the simplicity of the model, the
accuracy is reputed good, being the di�erence with the theory very small, of the
order of 1 ˜ 2%, apart from the linear bow with the lowest prestress, for which it
is about 10%. In all the cases, the sub-linear prototype performs better than the
linear prototype.

For the sake of comparison, the most highly-prestressed bow (N0 “ 19.5N)
has been tested with projectiles of increasing mass. Table 8.4 collects, for both the
linear and the sub-linear prototypes, the experimental results and the theoretical

(a)

(b)

Figure 8.18. Limb of the sub-linear bow of Figure 8.7(d) during �ring: (a) kinetic energy
of the limb as a function of time, and (b) corresponding trend of the draw fd and the
vertical displacement vtip of the tip of the limb. Case c “ 5 ¨ 10´3Nms.
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predictions for arrows with either mass Ma “ 0.0036 kg and length ℓ “ 28 cm,
or Ma “ 0.0094 kg and ℓ “ 50 cm. To facilitate the comparison, the previous case
(Ma “ 0.0020 kg and ℓ “ 28 cm) is repeated. The accuracy of the theoretical model
worsens a little but it is still reputed good, taking into account the simpli�cations
in the model and, in particular, the fact that the arrows di�er not only in mass and
length, but also in material (wood and plastic) and surface �nishing, with diverse
friction coe�cients.

Remark. The model was developed by neglecting the rotary inertia of the seg-
ments. Here, we want to check a posteriori whether this assumption is consistent
with the results computed with such a model.

Once the rotation �eld φi , for i “ 1 . . . n, is known, the translational kinetic
energy of the limb can be readily calculated from (8.2.4), while the rotational
contribution is given as indicated in Footnote 2.

Figure 8.18(a) reports, as a function of time, the trend of kinetic energy during
�ring for the limb of the sub-linear bow of Figure 8.7(d). The various contributions
to kinetic energy are highlighted: translational (x-direction, y-direction and sum
of the two) and rotational contributions are plotted in the chart, together with
total amount of kinetic energy. Remarkably, the translational contribution almost
perfectly overlaps with the total amount of kinetic energy. For reference, Figure
8.18(b) shows the corresponding trend of the draw fd and the vertical displacement
vtip of the limb tip, as a function of time, during the �ring of the arrow.

From the graphs of Figure 8.18, it is clear that the rotational contribution is
certainly negligible, thus justifying the assumption of overlooking it in our model.





Chapter 9

Application 2: propulsion in �uids

Many aquatic animals propel themselves by �apping their tails or tentacles. In-
deed, cephalopods, �sh, and aquatic mammals are extraordinary examples of how
nature can �nd e�cient strategies for propulsion in a �uid environment [151�153].
The �exural-tensegrity concept can be used to realize cable-controlled beam-like
structures, capable of �apping and suitable for the speci�c application of propul-
sion in �uids.

Focusing on �sh, two main modes of swimming can be identi�ed, generally
related to the shape of their body [154]. In slender-bodied �shes, such as eels, the
whole lissome body tends to undulate at high amplitude in the so-called anguilli-
form mode. By contrast, �shes with a broad tail, compact body, and narrow caudal
peduncle generally swim in the carangiform mode, oscillating only their tail [155].
These di�erent swimming modes produce distinct vortex and wake structures in
the �uid, with varying e�ciencies. Experimental and computational results [154]
show that carangiform swimmers are more e�cient at high swimming speeds, while
the anguilliform mode is preferable at low speeds.

Nature has long been a source of inspiration for arti�cial swimming devices.
The robotic tuna [156] is a pioneering example of an e�cient swimming machine
but, even if the body shape and the swimming mode closely mimicked real tuna
�sh, the actuation was done with motors outside the testing tank. Recent advances
in bio-inspired soft robotics and miniaturization [157] have enabled �sh-like semi-
autonomous robots for underwater exploration [158,159]. Flexible oscillating tails
for propulsion proved to be feasible also for silent operations of larger vessels [160]:
moving �ns minimize cavitation noise, which instead characterizes standard helix-
based propellers. Indeed, the search for noise reduction or, more precisely, for
low-level noise resembling a biological sound, is one of the goals of naval designers
for stealth vessels and robotic rovers used for the exploration of natural environ-
ments. This context has motivated us to investigate the propulsion capacity of an
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oscillating �ex-ten tail in water.
Here, we explore the applicability of the �exural-tensegrity concept, declined

as a snapping cantilever according to the design introduced in Chapter 6, to make
active �apping devices for propulsion in �uid media, focusing on carangiform-
mode oscillating tails. To characterize the �uid-structure interaction, precision
experiments were performed and the thrust generated by the oscillating tail in a
water tank was measured for di�erent designs of the structure and the terminal
�n, as the actuation frequency is varied. The device is simple and robust; the
snapping is reversible and activated by a single cable; the actuation is a simple
crank and crankshaft mechanism operated by a motor at low revs. A toy boat
has been manufactured to demonstrate feasibility in the �eld. We believe that our
innovative propulsion device, which di�ers from other active/passive non-snapping
�appers, can �nd applications for swimming robots or silent vessels.

A summary of the present study is also reported in [161].

9.1 De�nition of the problem

In Figure 9.1(a), a schematic diagram of the mid-surface layout of our segmented
beam is presented. This adopts the design concept from Chapter 6. The tapered
cantilever is composed of n hollow segments (n “ 7 in Figure 9.1), which are held
together by a pre-tensioned cable (drawn in red). The beam is clamped at the
(�xed) segment i “ 2, while the (control) segment i “ 1 is rotated externally to
trigger the snapping. The internal cavities, symmetric to the segment axis, are
trapezoidal for the segments 2 ď i ď n ´ 1, and triangular at i “ 1 and i “ n,
with the anchoring point of the cable at the vertices (points S and H, in Figure
9.1(a)). The contact surfaces are shaped according to circular pitch lines, with an
equal radius for all joints; the toothed pro�les prevent sliding. The cable is free
to move inside the segments, constrained only by the cavity walls. This geometry
makes the cable elongate by Λi “ Λip∆φiq when segments i and i`1 are relatively
rotated by ∆φi . As a result of the rotation of all joints, the total elongation of the
cable is Λ “

řn´1
i“1 Λi , and the harnessed energy ∆U is expressed by (2.1.8).

The system is actuated by gradually rotating the segment i “ 1, while segment
i “ 2 is kept �xed, causing the cable to move inside the cavities and elongate by Λ.
Static equilibrium is attained as long as the cable passes through the pitch point
of each joint i ‰ 1 (condition of null lever arm), while Λ progressively increases
(also increasing ∆U) until the equilibrium becomes unstable. At this point, Λ can
be lowered by an in�nitesimal perturbation, and the structure snaps, reversing
its shape from con�guration A to B, represented in Figure 9.1(b) together with
the corresponding energy path. An orderly sequential snap of the contact joints
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(a)

(b)

Figure 9.1. Schematic of the tail structure and its energy paths. (a) Mid-surface layout
of the structured beam comprising a series of 7 segments held together by a cable (red
line), which can move within the internal cavity (central non-shaded regions) and is
blocked by lateral walls (shaded regions) of each element; note that the reference frame
x ´ y is now rotated with respect to the one adopted in Figure 6.2(a). (b) Quasi-static
energy landscape: when moving along the path of increasing ∆φ1 (in blue), snapping
occurs between the complementary equilibrium con�gurations A and B.
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ensues, because the relative rotation of a pair of consecutive segments produces
the snapping of the adjacent joint. Cyclically changing the sign of rotation of
the control segment drives the beam to reverse its shape, alternately, acting as an
oscillating tail. This oscillatory snapping motion will be interpreted for locomotion
applications in �uid environments.

Fluid-structure interaction is a challenging problem to tackle predictively be-
cause of the non-trivial coupling of elastic, inertial, and �uid forces, which depend
on time, geometry, and the physical properties of both �uid and structure. Devel-
oping analytical or computational models for this class of problems is particularly
challenging in unsteady and turbulent �ows, with added complexity in our system
arising from the snap-though instability of the structure. Models for active/passive
�exible/rigid �appers have been reported in the literature [162], but these usually
consider simple geometries for the �apping foil, sinusoidal heave and pitch mo-
tions, small de�ection theory, linearized terms, and inviscid �uid. Our system does
not share the simple geometry of a rectangular plate, and it undergoes very large
oscillations regulated by nonlinear contributions associated with the snap-through
instability in a turbulent and dissipative medium. Therefore, the present study
focuses exclusively on experiments aimed at a �rst quantitative characterization
of the propulsive capacity.

9.2 Experimental apparatus

The photograph in Figure 9.2(a) shows the experimental apparatus, which includes
a 100ˆ50ˆ50 cm3 water tank, whose plan dimensions are detailed in Figure 9.2(b).
The samples, connected to a driving system, were immersed in the tank, while the
driving system was mounted on the lab frame through a load cell to measure the
reaction forces Fx and Fy (in the x and y directions reported in Figures 9.1(a) and
9.2(b)) arising from the �uid-structure interaction.

The samples (prototypes) consist of n segments of length 17.8mm with a pitch
line radius of 24.0mm. Each segment is composed of three laser-cut layers bolted
together. The two external layers (see Figure 9.3(a)) are made of black 6 mm-
thick PMMA, shaped for the toothed contact pro�les (indicated in Figure 9.1(a));
the central white 2 mm-thick PMMA layer is cut to form the internal cavities.
The cable is a Nitinol wire of diameter 20µm. A steel compression spring (elastic
constant 5.9N/mm) is added in series to the wire at the anchoring point to increase
its compliance and measure the initial prestress N0 from the spring shortening. The
beam sti�ness can be tuned by varying the prestress: the higher the prestress, the
sti�er the beam. The value ofN0 “ 9.0˘1.2N (the uncertainty comes from the �eld
measurement of the spring shorting) was found to be an appropriate compromise
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(a) (b)

Figure 9.2. Experimental setup and testing tank. (a) View of the setup with indication
of: 1O the testing tank, 2O the camera, 3O the light, 4O the driving system, 5O the load
sensor, 6O the separating barrier, 7O the prototypes to be tested, 8O the foam coating,
and 9O the rigid lab frame. (b) Schematic plan view of the tank, with indication of the
main dimensions [mm] and reference frame.

between beam sti�ness, matched with viscous and inertial forces that come into
play, and strength of the various components.

Each of prototypes shown in Figure 9.3(a) was equipped with a �n (see Figures
9.3(b) and 9.3(c)) to the end segment i “ n, perpendicularly to the mid-surface.
This �n was made out of PMMA (thickness 3mm) and was e�ectively rigid in
the considered regime of �uid loading. The trailing edge was designed convex to
enhance thrust generation [163]. The connection of the �n to the end segment,
i “ n, was either clamped (Figure 9.3(b)) or pinned (Figure 9.3(c)). The pinned
�ns are equipped with a stop, limiting the maximum rotation angle to ϑ.

As shown in Figure 9.4, the segment i “ 2 of the tail was bolted to a transparent
PMMA box, the upper face of which was in turn connected to a load sensor (Schunk
Mini40 SI-20-1), mounted on the test frame. This box housed the driving system
comprising a gearbox coupled to both an electric 60 rpm 12V DC motor (Cramer
30827) and a crankshaft, supporting the crank that cyclically rotated the segment
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(a)

(b) (c)

Figure 9.3. Prototypes and terminal �n. (a) Tested prototypes with variable number n
of segments. Axonometric representation of the terminal �n: (b) �xed �n, clamped to the
terminal segment; (c) pinned �n, in three di�erent rotated con�gurations, with indication
of the limit angle ϑ.

i “ 1 of the prototype. To exemplify, in Figure 9.5, a schematic of the snapping
of the tail, actuated by the crank, is presented. Multiple gears allowed us to vary
the gear ratio with the motor, which ran at a constant velocity, in order to change
the actuation frequency.

The tank was �lled with water at room temperature (« 20˝C) up to a height of
18 cm, so that the tail was fully submerged, 5 cm below the free surface. The tank
was divided into two basins, as evidenced by the plan view of Figure 9.2(b). The
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Figure 9.4. Detail of the driving system, mounted onto the load cell: the motor is
connected through gears to a crankshaft and the snapping beam is actuated by a crank.

(a) (b)

Figure 9.5. Schematic representation of the motion (actuating crank drawn in red color),
reconstructed from the video recording of the experiments in water: (a) �xed �n and (b)
pinned �n (ϑ “ 45˝).
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actuating system was hosted in the partition at the top of Figure 9.2(b) (left-hand
side of Figure 9.2(a)), whose lateral walls were coated with foam panels to minimize
contamination of the force signals due to wave re�ections. The tail was placed in
the partition at the bottom of Figure 9.2(b) (right-hand side of Figure 9.2(a)).
The separating barrier between the upper and the bottom partitions contained an
aperture where the tail passed through. In the absence of a background �ow, the
Reynolds number was estimated [164, 165] as Re “ 2π f AL{ν , where L is the
length of the oscillating tail from the clamped segment, A is the tip amplitude, f
is the actuation frequency and ν “ 1 ¨10´6m2/s is the kinematic viscosity of water.
For the typical experimental values here concerned (A » 60mm, L » 90mm, and
f » 1Hz), one �nds Re » 34000.

During the experiments, the reaction forces Fx and Fy (x and y directions
as per Figure 9.1(a)) were measured. These forces are those experienced by the
driving box, connected to an external rigid frame (Figure 9.2(a)) through the load
sensor. Given that the tail is integral with the box at segment i “ 2, these forces
are equivalent to the longitudinal (thrust) and transverse forces generated by the
prototype oscillating in water. In particular, a parametric study was performed to
investigate how the thrust is in�uenced by the number of segments n, the type
of terminal �n (clamped or pinned), and the natural curvature of the tail at rest.
During the experimental tests, the �apping of prototypes was captured by a digital
camera (IDS UI-3370SE-M-GL) under controlled illumination conditions.

9.3 Characterization of the propulsion capacity

Experimental evidence on the propulsion capacity of �ex-ten snapping tails is now
reported. The most performing con�guration was �nally adopted to propel a toy
boat, as proof-of-concept in the �eld.

9.3.1 Laboratory tests

The �rst tests concerned the evaluation of the �optimal� value of the prestress for
the tail �apping in water. The focus was on the prototype shown in Figure 9.3(a)
with n “ 7 segments, manufactured according to the schematic of Figure 9.1(a).
This design is referred to as �layout 1� (L1). Figure 9.6 compares the response of
the �apping tail for three di�erent values of initial prestressing force N0 in the
cable. In particular, Figure 9.6(a) reports the mean thrust force F̄x (average value
in the cycle), as a function of the actuation frequency f ; the data points refer to
the average of �ve measurements, and the corresponding standard deviations are
represented as error bars. A �tted spline serves as a guide to the eye of each dataset.
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As expected, the plot shows that the higher the prestress, the sti�er the beam.
Consequently, a higher value of N0 corresponds to a more powerful snapping, thus

(a)

(b)

Figure 9.6. Experimental results for the snapping tail in the �layout 1� with n “ 7
segments, equipped with a �xed �n and for di�erent values of initial prestress N0 in the
cable: (a) mean thrust force F̄x as a function of the actuation frequency f ; (b) Time series
of the recorded thrust (Fx) and transverse force (Fy), at the frequency f “ 0.54Hz.
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increasing the forces Fx and Fy arising from the �uid-structure interaction. On the
other hand, Figure 9.6(b) reports the time history of Fx and Fy for the three cases
at the actuation frequency f “ 0.54Hz.

Note that, at f “ 0.54Hz, the mean thrust force F̄x passes from 0.032N for
N0 “ 3.4˘ 0.5N, to 0.034N for N0 “ 9.0˘ 1.2N, to 0.042N for N0 “ 12.6˘ 0.8N,
i.e., a di�erence of about ´12% and `16% with respect to the case N0 “ 9.0˘1.2N
(selected as standard). On the contrary, the peak value of Fy was found equal
to 0.112N for N0 “ 3.4 ˘ 0.5N, 0.119N for N0 “ 9.0 ˘ 1.2N, and 0.208N for
N0 “ 12.6 ˘ 0.8N, which is a di�erence of about ´7% and `75% with respect to
the caseN0 “ 9.0˘1.2N. The advantage of the higher value of prestressN0 , related
to the gain in generated mean thrust F̄x , is thus limited by the strong increase of
lateral force Fy , which corresponds to a waste of energy in lateral direction and
would cause undesired yaw movements in possible �eld applications. In addition,
it was observed that the Nitinol wire is subjected to fatigue breakage after a few
cycles (of the order of 102) for the higher prestress. For the aforementioned reasons,
all the tests presented in the following adopted the value N0 “ 9.0 ˘ 1.2N for the
initial prestress of the cable, which is, in our opinion, the best compromise between
the sti�ness of the beam, compared with viscous and inertial forces that come into
play in the �uid, and the strength of the various components.

Observe that the high-frequency oscillations, which have been low-passed in
the graphs of Figure 9.6(b), correspond to the noise due to re�ections from the
walls and interactions of the waves generated by the moving tail within the tank,

Figure 9.7. Single-sided amplitude spectrum, obtained with the Fast Fourier Transform,
evidencing that the peaks in the force signal are due to the oscillations of the tail (driving
frequency and snapping frequency), and to the waves generated inside the tank (shallow
water waves). The plot refers to the L1 tail, with n “ 7 segments and actuated at f “

0.27Hz, corresponding to the �rst experimental dot in Figure 9.6(a) for N0 “ 9.0˘1.2N.
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as well as to the snapping itself, which occurs like a whiplash. To ascertain this ar-
gument, at the start of the experimental campaign, the driving system was tested,
running it with and without the connected tail, while measuring the force signal,
in order to check whether the noise originated from the motor and gearbox of the
driving system or if it was strictly related to the snapping of the tail. We also
compared the single-sided amplitude spectrum, obtained with the Fast Fourier
Transform (Figure 9.7) of the force signals, when the tail is moving in the �uid,
with the frequencies obtained for stationary shallow water waves in inviscid �uid
for the assumed tank dimensions1. In particular, Figure 9.7 reports the single-sided
amplitude spectrum of the time history of the measured force signal for the L1
tail, with n “ 7 segments and actuated at f “ 0.27Hz, corresponding to the �rst
experimental dot in Figure 9.6(a) for N0 “ 9.0 ˘ 1.2N. The green and magenta
triangular markers correspond to the driving frequency and to the frequency of
the snaps, respectively: since two snaps occur in one cycle, clearly the snapping
frequency is twice the actuation frequency. The black triangles mark the basic fre-
quencies of resonant waves (fundamental plus harmonics) in the tank, under the
hypothesis of the shallow water waves in inviscid �uid, for the assumed dimensions
of the tank. Since the peaks in the measured force signal approximately correspond
to the actuation frequency, the snapping frequency and the frequencies of shallow
water waves, these results indicate the nature of the noise that is present in the
graphs of Figure 9.6(b).

After having de�ned the reference value for the prestressing force in the cable,
all the prototypes shown in Figure 9.3(a) were tested. These follow the design
of Figure 9.1(a), previously indicated as �layout 1� (L1), with a clamped �n at
the tip, while varying the number n of segments (4 ď n ď 8). The experimental
results for the mean thrust force F̄x , as a function of the actuation frequency f , are
reported in Figure 9.8. Each dataset corresponds to a prototype with a set number
n of segments, and the data points refer again to the average of �ve measurements
with standard deviation error bars. For each prototype, an optimal frequency value
that provides maximal thrust can be found; the decreasing branch corresponds to
oscillations progressively becoming less symmetric until the beam can no longer
snap because the actuation is too fast to overcome inertial and viscous forces. The
tails with n “ 6 and n “ 7 segments provide approximately the same maximum
for F̄x . For the longest prototype n “ 8, the motion becomes soon unstable when

1The free-surface modes [166] in a rectangular container, of plan dimensions a ˆ b and �lled
with water up to the height h, are characterized by frequencies fij given by

fij “
ωij

2π
, with ωij

2 “ g kij tanhpkij hq and kij “

c

i2 π2

a2
`
j2 π2

b2
,

where g “ 9.81m/s
2
is the gravity acceleration, and i and j are integers.



238 Chapter 9. Application 2: propulsion in �uids

the actuation frequency increases. For the short prototypes, n “ 4 and n “ 5, the
expected peak value of F̄x is not reached in the accessible range of frequencies,
which could not be increased further without producing excessive vibrations in
the experimental apparatus. Overall, the prototype with n “ 7 provided the best
compromise between thrust generation and smooth motion, therefore, becoming
the reference for subsequent tests.

Figure 9.8. Experimental results for the snapping tail with a �xed �n and a di�erent
number of segments (4 ď n ď 8): mean thrust force F̄x as a function of the actuation
frequency f , for tails in the �layout 1�, with initial prestress N0 “ 9.0˘1.2N of the cable.

Having set n “ 7, the investigation proceeded to �nd out whether a modi�ca-
tion of the shape of the segmental cavities, providing di�erent curvatures for the tail
at rest, could enhance thrust. Hence, the �layout 2� (L2) prototype is introduced,
which is �less bent� at rest than the L1 tail. For a quantitative characterization of
the di�erence, at each segment i, one can de�ne the curvature χi “ 1{ri , where
ri is the radius of the circle passing through the centroids of segments i, i` 1 and
i ´ 1. The di�erence between the L1 and L2 prototypes is shown in the left- and
right-hand illustrations of Figure 9.9(a), respectively juxtaposing the values of χi ,
for i “ 3 . . . 6, and the shapes of the two tails at rest. Figure 9.9(b) compares the
mean thrust F̄x: the response is similar between the L1 and L2 cases, except for a
shift towards higher frequency for L2. Figure 9.9(c) shows the time series of thrust
Fx and transverse force Fy , at the driving frequency corresponding to the peak
thrust. Remarkably, the motion of the L2 tail was much smoother and symmetric
(compare the plots of Fy) than the L1 tail. In fact, the more bent shape (at rest) of
the L1 tail provides a more powerful snapping and a longer path of the �n, but this
dissipates more energy in the lateral direction, producing more waves and causing
more undesired vibrations. The milder and smoother snapping sequence of the L2
tail generates less noise in the measured force and is more e�cient. Because of this
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(a)

(b)

(c)

Figure 9.9. Comparison between the �layout 1� (L1) and �layout 2� (L2). (a) Charac-
terization of L1 and L2 for tails with n “ 7 segments in terms of: curvature χi at the i-th
segment, i “ 3 . . . 6, and reference shapes at rest. (b) Mean thrust force F̄x as a function
of frequency f for L1 and L2 with n “ 7 segments. (c) Time series of the recorded thrust
(Fx) and transverse force (Fy), at the frequency of peak mean thrust. Initial prestress of
the cable: N0 “ 9.0 ˘ 1.2N.
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(a)

(b)

Figure 9.10. Experimental results for the �layout 2� prototype with n “ 7 segments and
pinned �n. (a) Measurements of generated thrust: mean thrust force F̄x as a function of
the actuation frequency f , for various limit angle ϑ for the �n, and corresponding peak
value of the mean thrust force as a function of ϑ. (b) Comparison between the extremal
con�gurations during the motion at f “ 1.05Hz, corresponding to the peak thrust, for
ϑ “ 25˝, 35˝ (shapes at rest are drawn, for reference, in yellow color).

�nding, the L2 prototype with 7 segments was chosen as the new reference for the
subsequent steps of the investigation.

In all of the experiments above, the prototypes were equipped with a clamped
PMMA �n. Based on recent studies [167] suggesting that a pivoting �n may in-
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crease performance, a new set of experiments was performed. The �n was pinned
(instead of clamped) at the tip of the tail, and it could rotate freely, within an
angular range ˘ϑ, as per Figure 9.3(c). Five di�erent cases were considered, with
ϑ “ 15˝, 25˝, 35˝, 45˝, 55˝. Figure 9.10(a) shows the measured mean thrust F̄x as
a function of the frequency f , for the L2 prototype with 7 segments and pinned
�n, for di�erent values of ϑ (each point corresponds to the average of �ve mea-
surements). In the same �gure, on the right-hand side, the corresponding values
of peak thrust as a function of ϑ are also reported, evidencing that a maximum is
obtained around 30˝. These results con�rm that the pinned �n allows attaining a
more favorable angle of attack in the �uid, enhancing the thrust generated.

The case with ϑ “ 25˝ provides the highest measured thrust at f “ 1.05Hz;
however, the frames from the video, reported in Figure 9.10(b), indicate that the
motion lacks symmetry and is not fully developed, as evidenced by the comparison
with the theoretical rest shape (dashed yellow lines). Under these conditions, the
actuation is too fast compared to the inertial and viscous forces. Therefore, for
the �eld application that is presented in the next Section 9.3.2, concerning a toy
vessel propelled by one single snapping tail, we will choose the case ϑ “ 35˝ at
the same frequency f “ 1.05Hz. From Figure 9.10(b), this case corresponds to
symmetric oscillations at the cost of a (small) thrust loss of about 4%. In any case,
the gain of thrust with respect to the clamped �n is more than 40%, passing from
0.038N for ϑ “ 0˝ at f “ 0.67Hz to 0.055N for ϑ “ 35˝ at f “ 1.05Hz. Note that
symmetric oscillations should be considered a design requirement to avoid parasitic
de�ections of the vessel trajectory when one tail is used for propulsion. Indeed, to
achieve a nearly straight motion, the transverse force Fy at one stroke needs to be
compensated by an equal force in the opposite direction at the following stroke.

9.3.2 Field application

As a proof-of-concept application in a �eld setting, a toy vessel was equipped with
a snapping tail for propulsion and tested in a rectangular fountain basin (see pho-
tograph in Figure 9.11(a)). The top view of the moving vessel was video recorded
using a digital camera (Samsung S5KGM1). The 300ˆ61ˆ50 cm3 tank had a water
inlet on its left-hand side and an outlet on its right-hand side, with a morning-
glory spillway producing a background �ow with surface velocity estimated to be
« 9mm/s. A wire (highlighted in red in Figure 9.11(a)), kept straight by a hanging
weight through a pulley, guided the vessel in the x-direction of the reference frame
indicated in the same picture. This guidewire was needed because the vessel had
no active control against external disturbances, such as wind.

Both vessel and tail, shown in Figure 9.11(b), were manufactured out of laser-
cut acrylic plates and polypropylene shim stock, and bolted together. The interior
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(a)

(b)

(c)

Figure 9.11. Field application of a toy vessel propelled by a �ex-ten snapping tail. (a)
View of the basin for the test, indicating the main dimensions, reference frame, and the
guidewire (highlighted in red color). (b) Photograph of the manufactured vessel, evi-
dencing the propulsive tail, the motor, the battery holder, and the keel. (c) Experimental
results comparing the performance of a vessel propelled either by the 7-segment �lay-
out 1� tail and �xed �n, actuated at f “ 0.54Hz, or by the �layout 2� tail with movable
�n (limit angle ϑ “ 35˝) at f “ 1.05Hz: vessel position x amidships as a function of time
t, and trajectories of the stern and the bow.
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of the boat was �lled with polystyrene foam to increase buoyancy, while a vertical
keel was used to improve stability. The hull was 38 cm long, with a tail of length
approximately 12 cm, including the �n. The tail was submerged in water to a
depth of 5 cm (same depth of the in-lab tests); it was actuated, through crank and
crankshaft, by the same motor used in the experimental setup of Section 9.2. Two
types of tails with n “ 7 segments were considered: the L1 prototype with �xed �n,
actuated at f “ 0.54Hz, and the L2 prototype equipped with a pinned �n with
limit angle ϑ “ 35˝, at f “ 1.05Hz. The �rst case corresponds to the highest mean
thrust force, as per Figure 9.8; the second one to the best compromise between
thrust and regularity of motion, according to Figures 9.10(a) and 9.10(b).

Figure 9.11(c) reports quantitative results for the motion of the vessel sailing
in the fountain basin. The left-hand plot shows the x-position of the boat as a
function of time t: the propulsion speed dx{dt is « 0.011m/s for the L1 tail with
�xed �n, and « 0.049m/s for the L2 tail with pinned �n, con�rming in the �eld
the advantages of the second design, as already indicated by in-lab experiments.
Since the reference frame of Figure 9.11(a) is integral with the tank, dx{dt is the
absolute speed; the relative speed with respect to the �uid is obtained by summing
up the background �ow. The trajectories of the stern and the bow, represented in
the two plots on the right-hand side of Figure 9.11(c), evidence the yawing motion
for a vessel propelled by the L1 tail, which determines undesired oscillations and
waste of energy in the lateral direction. The situation improves remarkably for the
L2 tail with pinned �n, con�rming again that this is the best design among all
those considered.

Figure 9.12. Sequence of superimposed snapshots showing the toy vessel sailing in the
tank when propelled by the L2 tail with pinned �n (ϑ “ 35˝, f “ 1.05Hz, no guidewire).

Figure 9.12 reports a sequence of superimposed photographs showing the toy
vessel sailing in the tank when propelled by the L2 tail with pinned �n (ϑ “ 35˝,
f “ 1.05Hz). In this case the guidewire has been removed, thus evidencing that the
motion is approximately straight with such a design for the propeller. In particular,
this demonstrates that the yaw movement is reduced and, at each stroke, the
transverse force compensates for the one in the opposite direction resulting from
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the previous stroke; the slight deviation, when the right-hand side of the tank is
reached, is due to the perturbations induced by the water inlet.

In order to compare our vessel with a swimming �sh, reference can be made to
the Strouhal number (St). This traditionally de�nes a similarity index for wakes
and the frequency of vortex formation behind �ow obstructions, but can also be
applied to the alike wake structures generated by �apping foils in a �uid. For a
swimming �sh, St can be de�ned [154] as St “ 2Af {V , where A is the amplitude
of oscillations for the tail beating at frequency f , and V represents the velocity
of the �sh with respect to the �uid. Fishes generally swim at St » 0.3 [156],
considered a bio-motivated optimal value. For the toy vessel, with a background
�ow of 0.009m/s, one has V “ 0.020m/s for the L1 tail and V “ 0.058m/s
for the L2 case. Assuming A » 60mm, as measured in the tests, one obtains
St “ 3.24 and St “ 2.17 for the L1 and L2 prototypes, respectively. These values
are still considerably higher than those corresponding to a �sh, indicating that
there is ample room for improvement and further optimization in the design of
both the hull and the propelling tail. Still, the Strouhal number closer to that of
the �sh corresponds to the L2 layout with pinned �n, con�rming its superiority
with respect to the L1 prototype with �xed �n.



Chapter 10

Other potential applications

Further applications of �ex-ten structures, yet to be fully discovered and appre-
ciated, are here proposed. In particular, the envisaged �elds of applications range
from soft robotics, to kinetic architecture, to industrial design. More speci�cally,
cable-actuated robotic limbs are presented, kinetic structures to support envelopes
for shielding and water collection are proposed, and a task lamp with a �ex-ten
tunable arm has been designed and prototyped.

10.1 Soft robotics

Linkages susceptible of large deformations are typically used in �eld applications
for robotics, such as elephant-trunk or octopus-tentacle manipulators [168, 169],
with also extensibility properties [170]. Most of them are cable-actuated, as �ex-ten
structures. More than one cable is generally used (at least 2 cables for plane motion
or 3 cables for spatial motion); if just one cable is employed, it is usually con�ned
in an eccentric sheath and the resulting bending motion is not symmetric [171].

Despite a one single cable can be used to fold a �ex-ten beam with a proper
design of the internal cavities (see Chapter 6), here a more classical design is con-
cerned, with one cable that gives integrity to the assembly and dedicated tendons
to control the folding of the beam. The aim is to show that �exural tensegrity
represents a versatile structural concept, that can be used with minimal modi�-
cations in many �elds, for example to manufacture grippers, as presented in [172]
while discussing beam-to-beam and beam-to-rigid contacts, or robotic limbs with
three-dimensional pitch-pro�led-joints operated by cables, to achieve capacities
comparable, e.g., to the manipulator presented in [170].
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10.1.1 A cable-actuated picker

Using two cables a robotic segmental limb can be manufactured, which is capable
of in-plane folding. As represented in Figure 10.1(a), one tendon (red color) passes
through the segments in a centroidal tubular sheath to provide integrity to the
assembly, while another tubular sheath, eccentric with respect to the segment
centroid, houses the control cable (blue color). Both cables are anchored to the
free tip of the limb at one end. At the opposite end, the red centroidal cable is
pre-tensioned and anchored as well to the structure, thus representing the elastic
bond that keeps the segments together. On the contrary, the blue control cable is
connected to an actuator: by pulling this second tendon, the limb folds. Obviously,
when the limb folds, the red centroidal cable is stretched and one has to win the
increase of its elastic strain energy by acting on the tension force of the blue cable.

(a) (b)

Figure 10.1. Applications to robotics: the cable-controlled limb. (a) Schematics of the
cable-actuated limb: the centroidal (red) tendon gives integrity to the assembly, while
the eccentric (blue) one controls grasping when pulled. (b) Detail of the contact joint,
evidencing the di�erent elongations of the two cables in a folded state.

Let N0 denote the initial prestress in the red cable and K its elastic axial
sti�ness. If N1 is the external pulling force applied to the blue cable, whose elastic
axial sti�ness is K1 , then one has that the increase ∆U of elastic strain energy
(under the hypothesis of rigid segments) and the work ∆W done by the external
force respectively read
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where Λi and Λ˚
i are the portions of the cables, red and blue color respectively,

that are exposed at joint i, between segments i and i ` 1, in the rotated state
represented in Figure 10.1(b); n is the number of segments in the limb, and Λ̄˚

i

represents the initial value of Λ˚
i , corresponding to the con�guration in which the

limb is straight (unfolded) and the blue cable is totally slackened (N1 not yet
applied, and Λi “ 0). For the paradigmatic case of circular pitch lines of radius
R, when the distance between the exit points of the blue and red cable is equal to
Rα along the pitch lines, one has
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where ∆φi is the relative rotation between the consecutive segments, as usual.
One can select the rotations ∆φi , for i “ 1 . . . n ´ 1, as Lagrangian variables

to describe the folding/unforlding of the limb. Hence, the problem is reduced to
∆U ´ ∆W “ min, if inertial e�ects can be neglected during the folding/unfolding
process, otherwise one should consider the dynamic formulation according to what
reported in Chapter 4.

Combining two of the limbs of Figure 10.1(a), a cable-actuated picker of the
type shown in Figure 10.2(a) can be obtained; here, the contact joints can be
manufactured according to the design introduced in Chapter 2, with a double
couple of conjugate pro�les, thus obtaining a 2D plane mobility for the limb.
Such a limb is capable of grasping and collecting also very soft objects, by tuning
the pulling force N1 in the control cables. To exemplify, Figure 10.2(b) reports a
sequence of photographs corresponding to the grasping of a plastic cup, without
deforming it. Of course, in this example, the focus was on the structure, so that
the folding was simply actuated by hand, visually tuning the pull of the control
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(a)

(b)

Figure 10.2. The cable-actuated robotic picker. (a) Robotic picker manufactured ac-
cording to the principle of Figure 10.1(a). (b) Sequence of snapshots evidencing the
capabilities of the cable-controlled picker: grasping of a plastic cup.

cable to avoid the deformation of the plastic cup. Anyway, this kind of picker could
be readily equipped with pressure sensors on the segments, and the control cable
can be driven by a stepper motor, with a closed-loop controller that adapts the
tension force in the cable according to the pressure detected by the sensors.

10.1.2 A cable-controlled limb

Leveraging the design of the contact joints presented in Chapter 7, a more complex
3D mobility can be attained for the �ex-ten robotic limb. Consider the sectioned
CAD view of Figure 10.3. This is actuated by three cables, plus a centroidal cable
for the integrity of the assembly. Moreover, the limb is now characterized by two
di�erent parts, i.e., the active and passive portions. In the active portion, the
centroidal (red) tendon keeps the segments together in the straight state when the
limb is at rest; on the other hand, the eccentric (blue) tendons, placed at 120˝ one
another, control the 3D folding when pulled. In the passive portion, all the cables
are con�ned in a neighborhood of the centroidal axis of the limb, thus providing
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Figure 10.3. Schematics of the cable-actuated limb for 3D mobility: in the active por-
tion, the centroidal (red) tendon gives integrity to the assembly, while the eccentric (blue)
ones control folding when pulled; in the passive portion, all the cables are con�ned in a
centroidal sheath, thus providing only elasticity to the assembly.

only elasticity and integrity to the assembly, which remains approximately straight
if no external forces are applied except for the pull in the control cables. This is
evidenced in Figure 10.4, which reports a sequence of photographs showing the
capabilities of the cable-controlled limb.

Such a design, with a �exible (passive) portion that can elastically adapt to
external constraints, while the active portion is capable of folding independently
by pulling the cables, can �nd speci�c applications, apart from the general use
as robotic limb to pick up and move objects. In particular, it can be suitable for
robots for in-pipe traveling [173, 174], or to realize special endoscopes, also in the
medical �eld. Indeed, the active head of the limb can be employed to select the
desired path inside sharply curved pipes with bifurcations, or, in a miniaturized
version, inside blood vessels. In addition, it can represent the basis to develop
implants for prosthetics or other recon�gurable surgical tools such as catheters,
possibly equipped with grippers actuated by the same tendon.

Figure 10.4. Sequence of snapshots evidencing the capabilities of the cable-controlled
limb of Figure 10.3.
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10.2 Kinetic architecture

The need for transforming spaces dedicated to human activities is pushing de-
signers to think up and outline innovative structures in the broad �eld of kinetic
architecture.

Probably one of the �rst examples of kinetic structures is represented by the
drawbridge, typically present in fortresses dating back to the Middle Age. The
application of movable structures to realize bridges is still leading in the �eld of
civil engineering, being the Tower Bridge [175] and the Millennium Bridge [176] in
London, or the El Ferdan Swing Bridge [177] on Suez Channel, classical examples
among the others. Anyway, the mobility in these cases is usually obtained thanks
to the standard technology of cylindrical or spherical hinges, and the actuation is
generally made with steam or hydraulic power.

Novel applications come from the possibility to exploit the buckling of thin
rods or the multi-stable mechanisms of curved plates due to local changes in the
curvature �eld [178]. These structures do not need to be secured by additional
devices in the deployed state, thanks to the high energy barrier separating the
folded and the unfolded states. Nevertheless, a limitation is that such structures
have only a few con�gurations, typically two, i.e., the open and closed ones.

Another class is represented by deployable tensegrity grids [179], while trans-
forming origami façades [180] and recon�gurable vaults [181, 182] can be speci�-
cally conceived for shading and/or optimization of natural lighting of sustainable
buildings. On the other hand, the light weight and the easy deployment and re-
con�guration make these structures particularly suitable for the manufacturing of
aerospace antennas [183] and shelters for rescue, scouting, military operations or
extraterrestrial exploration [184].

The application of �exural tensegrities to kinetic architecture was envisaged
in [19], where the structural concept was �rst proposed at the embryonal stage,
and a methodology to tessellate generic plane curves with �ex-ten segments was
introduced. Here, we develop this idea and present possible applications to realize
movable skeletons, with tunable shape, suitable for supporting envelopes devoted
to shielding and water collection. Two examples are proposed in the following,
which correspond to �ex-ten arches and umbrellas; small-scale prototypes have
been manufactured as a proof-of-concept.

10.2.1 Arches with tunable shape

In Figure 10.5(a), a �ex-ten triumphal arch is proposed, which is made of concrete.
The segments, shown in detail in Figure 10.5(b), are designed according to Section
2.1.1, with a double couple of conjugate pro�les, because this layered construction
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(a)

(b)

Figure 10.5. Applications to architecture: a small-scale �ex-ten triumphal arch. (a)
Front and 3/4 views of the arch, made of concrete; (b) detail of the segments.

is suitable for casting in molds (see Figure 2.5(c)). The segments are in contact
along circular pitch lines of radius equal to the segmental length (28 mm). The holes
inside the segments, that house the sheath for the cable, are now slightly eccentric
with respect to the longitudinal axis of the segments, in order to tessellate the
curved shape of the circular arch. The procedure to determine the position of the
sheaths is reported in [19] for any given plane project curve, and it is summarized
in Figure 10.6 for the case at hand, where the project curve is a semi-circle.

Figure 10.6. Geometric construction for the tessellation of the given project curve (semi-
circle) with �ex-ten segments of �xed length (28 mm), with circular pitch lines.
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Arches of the type of Figure 10.5, but at a larger scale, can be used, as they are,
as standing alone sculptures, similar to Snelson's tensegrities (see Figure 1.1). On
the other hand, these arches, possibly composed of segments made of lightweight
material, can be placed in sequence to realize the ribs of a �ex-ten vault or dome,
suitable for supporting a waterproof envelope to cover large spaces. Interestingly,
by varying the initial tension force N0 in the cable, the shape of the structure under
service loads can be modi�ed, thus obtaining kinetic structures that can optimize,
for example, the exposed surface to solar irradiation.

(a) (b)

Figure 10.7. Tunable shape of a small-scale �ex-ten arch under self-weight: (a) clamps
and (b) hinges at the supports. Segmental length equal to 28 mm and segmental weight
of 0.2176N, corresponding to the case of Figure 10.5.

Figure 10.7(a) shows the mobility of the structure when the initial prestress N0

of the cable is modi�ed under self-weight. The arch is clamped at the supports and
dimensions correspond to the case depicted in Figure 10.5; the own weight of each
segment is 0.2176N. Another example, for the same values of weight and length
for the segments, is reported in Figure 10.7(b), where the supports are hinged,
rather than clamped, and the span of the arch is di�erent.

Note that the custom design of the hinge-based joints, with self-aligning prop-
erties when the cable is pulled, together with the possibility of a segmental con-
struction, allows for the fabrication of modular structures that can be folded when
the cable is slack and can be quickly unfolded by tensioning the cable. This can
meet the speci�cations for a wide range of application in both the military and
the rescue �elds. Moreover, the tunable sti�ness by controlling the tension force in
the cable (see Section 4.2.3) may allow the aeroelastic tailoring and the reduction
of vibrations.
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10.2.2 Umbrellas for shielding and water collection

Architectural umbrellas are a typical example of deployable/collapsible structures,
used to occasionally cover open spaces for sun shading and rain shielding. Figure
10.8 reports just one example, corresponding to Al-Masjid an-Nabawi Umbrellas in
Medina. The umbrellas consist of a mast connected to the ground and supporting
the ribs, to which a canopy is �xed. In folding umbrellas, such as those in Figure
10.8, the canopy is usually made with fabric or a waterproof polymeric membrane,
but it is worth mentioning that it can be realized with di�erent materials, such as
glass or concrete. For instance, in the hypar-shaped umbrellas by Félix Candela
[185,186], the structure is a point-supported thin shell made of reinforced concrete,
but it cannot fold in the serviceability limit state.

Figure 10.8. Folding sequence of the Al-Masjid an-Nabawi Umbrellas in Medina, placed
to shade the pilgrims to the mosques (snapshots from YouTube video, public domain).

The �exural-tensegrity concept, thanks to the tailor design of the joints and
the tunable deformation of the members under loads (by pulling/releasing the
tendons), seems to be particularly suitable for the manufacturing of the ribs of
foldable umbrellas. A �rst possibility, represented in Figure 10.9(a), consists of
a �ex-ten segmental cantilever beam placed vertically in the gravity �eld: the
deployment is obtained by progressively releasing the tendon under the service
load represented by self-weight. In Figure 10.9(a), the simplest case of circular
pitch lines, with constant radius along the beam, is adopted for the joints; anyway,
the bent shape of the cantilever can be functionally graded along the beam by
tailor designing the pitch pro�les of each joint. The disadvantage of this solution
is that the beam is stabilized against external disturbances, such as wind, only by
the own weight of the segments and the parasitic friction at the joints. As a result,
the structure needs to be secured with additional devices, e.g., bolts at the joints
or external cables connecting the tip of the ribs to the ground.
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(a) (b)

Figure 10.9. Tunable shape of a small-scale �ex-ten umbrella rib: (a) solution with one
cable, which is progressively released for the deployment of the rib under self-weight; (b)
solution with two cables, one for integrity of the segmental assembly (prestress N0 “

10N) and one for actuation (pulling force N1). Segmental length equal to 17.4 mm and
segmental weight of 0.0142N; circular pitch lines of radius 13 mm.

(a) (b) (c) (d)

Figure 10.10. Manufactured ribs for a small-scale �ex-ten umbrella under self-weight:
(a) folded state, (b) semi-open state, and (c) totally deployed state; (d) detail of the
segments. Segmental length of 17.4 mm and weight of 0.0142N; circular pitch lines of
radius 13 mm. Each rib has one tendon for integrity and one cable for actuation.

A second solution is represented in Figure 10.9(b). This case is similar to the
robotic limb of Section 10.1.1, as two cables are used: the centroidal one is pre-
stressed, thus giving integrity to the assembly and providing elasticity against
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external loads; the eccentric tendon is used for actuation, to bend the rib. In par-
ticular, in Figure 10.9(b), di�erent con�gurations for the rib are shown when the
tension force N1 applied to the actuation cable is expressed as a fraction of the
prestress N0 of the centroidal cable. In this case, thanks to the mutual action of
the two tendons, the rib is always stable against external disturbances without the
need of additional devices to secure it.

(a)

(b)

Figure 10.11. Schematics for the ribs of a snapping umbrella: (a) sectioned view of the
open/closed con�guration evidencing the cavities spanned by the cable, drawn as a red
polyline; (b) another sectioned view of the open/closed con�guration, for comparison,
with the slicing plane that does not intercept the segmental cavities.
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In Figure 10.10, a scale model of the umbrella with two tendons for each rib
is presented. Each rib is composed of 9 segments, manufactured via 3D printing;
the segmental length is equal to 17.4 mm, and each segment weights 0.0142N; the
radius of circular pitch lines is 13 mm. Note that these data correspond to the case
theoretically analyzed in Figure 10.9(b). The folded state, the semi-open state, and
the totally deployed con�guration are depicted in Figures 10.10(a), 10.10(b) and
10.10(c), respectively, while a detail of the segments is reported in Figure 10.10(d).

A much more interesting solution to realize the ribs of a collapsible umbrella is
represented by the snapping cantilever �rst introduced in Chapter 6. Referring to

(a) (b)

(c) (d)

Figure 10.12. Manufactured small-scale �ex-ten snapping umbrella under self-weight:
(a) deployed state, and (b) folded state; (c) detail of the deployed rib; (d) detail of the
actuation system. Segments are 3D-printed in PLA, with segmental length of 26.7 mm.
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(a)

(b)

Figure 10.13. Mobility of the manufactured small-scale �ex-ten snapping umbrella: (a)
folding and (b) deployment process.

the schematics reported in Figure 10.11, each segments is holed to reduce the own
weight; di�erently from the case of Chapter 6, the segmental cavities are now made
non-symmetric with respect to the segmental longitudinal axis, in order to attain
di�erent curvatures (in absolute value) for each rib in the open and closed states,
respectively. Moreover, a rigid appendix is added at the tip of the cantilever, to
cover a wider space in the deployed state.

Figure 10.12 displays a small-scale prototype for such a snapping umbrella,
manufactured via 3D printing in white PLA (segmental length of 26.7 mm). Here,
a canopy made with a cable net is added, to de�ne more accurately the structural
volumes. The umbrella can open and close like a �ower, by controlling the rotation
of the L-shaped segments beneath the clamped one of each rib (see Figure 10.11).
This is done through connecting rods hinged to a sliding sleeve on the mast (Figure
10.12(d)), which is externally raised or lowered.

Compared to a �ower, the canopy plays the role of the petals, reinforced by the
ribs, while the end segments recall the sepals. Remarkably, the prototype of Figure
10.12 resembles in shape the Tulipa Sylvestris. Flowers fold at night to protect
stamens and ovary from the weather; on the contrary, the snapping umbrella can
be deployed for sun shading or rain shielding, as well as for rainwater collection.
Figure 10.13(a) reports the snapshots for the folding process of the umbrella, while
Figure 10.13(b) is its counterpart for the deployment phases. Note that the energy
barrier, separating the open and closed states, secures itself the structure in the
two distant con�gurations without the need of external devices, while dampers can
be added to control the structural vibrations after each snap.
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Figure 10.14. Di�erent views of two manufactured prototypes, when the lamp is either
switched o� (left-hand side) or switched on (right-hand side). The blue prototype is
entirely made of 3D-printed PLA, while the transparent one is made of acrylic, with a
wooden base and a 3D-printed white lampshade.



10.3. Industrial design: the Dino-Lamp 259

Apart from the large-scale applications to kinetic architecture, such a snapping
design can be used also to realize an innovative type of portable (inverse) umbrella.

10.3 Industrial design: the Dino-Lamp

At the scale of daily-life objects, the �exural-tensegrity concept can �nd application
in the �eld of industrial design. Here, we discuss the possibility to realize a task
lamp whose arm is made with a �ex-ten cantilever beam. The segmental assembly
together with the lampshade recalls the vertebrae and the skull of a dinosaur;
hence, the proposed lamp has been named the �Dino-Lamp� (�LampaDino� in
Italian, pun intended).

Since the Anglepoise lamp [187] was patented in the 1930s, most of task lamps is
designed according to a spring-and-lever balancing mechanism [188], which allows
to maintain the desired position of the arm, once it is initially set by hand. Here,
the proposed design is somehow complementary, since the position of the arm is
controlled by tuning the rotational sti�ness of the spring-hinge joints of the �ex-
ten assembly, but the governing mechanism at each joint is still that of balancing
an elastic return (of the springs in the Anglepoise lamp, of the elastic tendon in
�ex-ten beams) with an appropriate lever arm (see Figure 2.2).

In Figure 10.14 two manufactured prototypes are presented, depicted when the
lamp is either switched o� (left-hand side of the �gure) or switched on (right-hand
side of the �gure). The blue prototype is entirely made of polylactide and was
manufactured via 3D printing. On the contrary, for the second prototype, the arm
was made of transparent acrylic, CNC milled and drilled from solid; the base was
made of glued laminated timber, and the lampshade was 3D printed in white PLA.
Inside the segments two twin tendons run parallel to keep the segments together
and convoy electricity to the lamp. These can be made of carbon nanotube (CNT)
�bers, which combine high tensile strength with a small cross-sectional area [189]

Figure 10.15. The height of the lamp can be tuned by pulling/releasing the tendons,
manually acting on a knob.
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and a reduced electrical resistance [190].
As shown in Figure 10.15, the height of the lamp can be tuned by pulling

or releasing the tendons. This is achieved by manually turning a knob, placed
on the base, to which the tendons are wound. A lock device, such as a ratchet
mechanism, prevents the tendons from rolling out. Anyway, other solutions are
possible to control the tension force of the tendons, such as electric actuators or

Figure 10.16. Di�erent views of a third smaller prototype, made of 3D-printed PLA,
in the assembled and disassembled con�gurations; the lamp can be packed in a small
prismatic box for retailers.
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miniaturized hydraulic jacks.
A third smaller prototype, made of 3D-printed PLA, is shown in Figure 10.16

in the assembled and disassembled con�gurations. The segmental construction is
suitable for modular assemblies with di�erent lengths of the arm, and the various
components (segments, electric wire and plug, CNT tendons, lampshade, base
and LED light) can be packed in a small prismatic box for retailers, so that the
disassembled lamp can be sold as a kit project.

Observe that, in the manufactured prototypes, the segments have all the same
dimensions and pitch pro�les, but di�erent curvatures for the arm can be attained
by changing the shape of the design pitch lines. For instance, it is possible to have
localized deformations of the arm when a certain rotation threshold is reached for
a pair of consecutive segments, for example, by using a sub-linear law as per Figure
8.6; bi-stable joints, according to the design of Section 5.2.1, could also give to the
arm a multi-stable response. On the other hand, by changing the con�guration
of the sheaths that house the tendons, moving them to eccentric positions with
respect to the longitudinal axis of the segments, a sinusoidal shape, or even a more
complicated one, can be obtained for the pre-tensioned arm.

Moreover, note that the design of the segments with a double couple of conju-
gate pro�les, according to the layered construction of Section 2.1.1, is suitable for
an industrialized manufacturing process, such as 3D printing in a wide range of
plastic materials, casting in molds using synthetic resins, CNC milling from solid
acrilic, aluminium, wood or glass, and die casting with thermoplastic polymers or
metal alloys.





Chapter 11

From rolling to sliding:

introduction to shear tensegrity

A di�erent type of kinematics is now introduced, which represents the basis for
a new type of tensegrity composite characterized by the sliding rather than the
rolling of the segments in contact.

The kinematics, concerned so far, was de�ned by the pure rolling of the adja-
cent segments along tailor-designed pitch pro�les. Now, we consider the sliding of
initially-matching plates along wavy surfaces, and the resulting segmental assem-
bly is declined as a laminar brickwork, rather than a beam-like chain of voussoirs.
Since the sliding characterizes the response of such a structured material, this is
named �shear tensegrity�, in contrast to ��exural tensegrities�, whose segments are
rotated under bending.

Here, each lamella of the brickwork can relative slide with respect to the adja-
cent ones. As a result, in addition to the elasticity of the material matrix of the
lamellae, the straining is due to the opening of gaps at the interfaces between the
consecutive lamellae. The response of the laminate is analyzed within the struc-
tured deformation theory [191] and strongly depends on the shape of the contact
pro�les, as it happens for the complementary case of �ex-ten beams under bending.

There exist natural materials whose response is governed by the sliding of
platelets in mutual contact on rough surfaces, such as nacre [192]. Then, the the-
oretical model, which certainly deserves a speci�c and more accurate study in the
future, is preliminary set with speci�c reference to nacre and materials that directly
mimic the structural architecture of this naturally occurring composite. Anyway,
apart from the speci�c interpretation of the mechanical response of nacre found in
nature and the application to nacre-inspired laminates with a tailor design of the
contact wavy pro�les, this model has a much broader scope, since it can be suitable
to interpret the complex structural behavior of new arti�cial metamaterials with
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the propagation of disarrangements under loading, and it can inspire the design of
novel bio-mimetic or bio-inspired self-assemblies and composites.

The chapter is organized as follows. In Section 11.1, the hierarchical structure
of nacre is described, as it represents an example of biological shear tensegrity,
and the model in introduced. Then, the theoretical analysis is developed in the
following Section 11.2, while various geometric descriptions of the roughness of
the lamellae composing the shear tensegrity are considered in Section 11.3. The
theory is applied, in Section 11.4, to the mesolayers of di�erent shear tensegrities
under in-plane tension-compression; here, a comparison between the model and
the response of real nacre is also reported. The theory and the main results here
concerned are also available in [193].

11.1 An example of biological shear tensegrity

Nacre (mother-of-pearl), forming the iridescent internal layer of certain shells of
mollusks, represents an example of the class of structured materials here referred
to as shear tensegrities. In fact, it is arranged as a laminar assembly of tablets, in
mutual interaction on rough surfaces. Nacre is composed of 95 wt% of a crystallo-
graphic form of CaCO3, called aragonite, and 5 wt% of organic materials, such as
proteins and polysaccharides [194]. It presents mechanical properties superior to
those of monolithic aragonite thanks to an ingenious hierarchical microarchitecture
that spans di�erent length scales.

11.1.1 The hierarchical architecture of nacre

The hierarchical structure of nacre, represented in the scanning electron microscope
(SEM) image of Figure 11.1(a), consists of thin lamellae composed of �at polygo-
nal aragonite tablets, arranged in a Voronoi-like tiling of the type shown in Figure
11.1(b). There are various forms of micro-architecture, distinguished into two cat-
egories [195]: in the columnar nacre of Figure 11.1(c), typical of gastropods, the
aragonite tablets have uniform size with nearly coinciding centers, whereas in the
sheet nacre of Figure 11.1(d), which is found in bivalves, the tablets are stacked in
a �brick wall� pattern. The overlap region in columnar nacre covers approximately
1/3 of the area of the tablets, but in sheet nacre the core and overlap cannot be
distinguished [194]. The thickness of the aragonite tablets is approximately 0.5µm
for gastropods and 0.3µm for bivalves [194], whereas their diameter is of the order
of 10 ˜ 15 µm [196].

The architecture derives from a protein-mediated mechanism of growth. Each
aragonite tablet is nucleated at one island. A thin organic membrane is spread from
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(a) (b)

(c) (d)

Figure 11.1. Microstructure of nacre. Image of nacre tablets: (a) view of a fractured
section, adapted from [197], and (b) in-plane section showing the Voronoi-like tiling,
adapted from [198]. Schematic illustration of (c) columnar nacre and (d) sheet nacre
(pictures from [195]).

the top of the islands and determines the thickness of the layer: the membrane
is permeable to calcium and carbonate ions but it restricts their �ux to lateral
growth only, until the layer closes [194]. The growth is arrested when the borders
of adjacent tablets meet. The continuation of mineral growth from the preceding
lamella of tiles to the successive lamella is due to mineral bridges, protruding
through the membrane of proteins, creating the islands for the successive layer.
The aragonite lamellae are bonded by interlayers, approximately 20˜ 50 nm thick
[195, 199], made of chitin or other silk-like proteins [197]. These consist of beta-
pleated sheets folded into cross-linked polymer-like �brils, shown in Figure 11.2(a),
which can stretch out up to an elongation of 150%, without becoming detached
from the aragonite [194,200].

Lin, Mayers and coworkers [199,201] have demonstrated that a tensile straining
in the lamellar plane produces the inelastic relative slip of the lamellae, restrained
by the friction and interlocking between the undulating surfaces and the stretching
of the organic bonds. As suggested by Evans et al. [192], friction is enhanced
by nano-asperities on the surfaces of the tiles, which accompany the growth of
the aragonite crystals. In abalone shells [199], SEM micrographs evidence a large
number of asperities, about 50 nm in diameter, protruding outside the surface
plane for less than 30 nm, as shown Figures 11.2(b) and 11.2(c). The asperities
on the upper aragonite tablets interpose with those on the lower plane, providing
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(a) (b) (c)

(d)

Figure 11.2. Micromechanics of the sliding aragonite tablets: (a) biopolymeric �b-
rils bridging the surfaces of adjacent tables during delamination tensile test, adapted
from [200]; (b) SEM image of nano-asperities on the surface of aragonite tablets, taken
from [199]; (c) cross sectional view of lamellae with evidence of their interlocking due
to nano-asperities, adapted from [195]. (d) Schematic representation of the constraints
in sliding plies [201]: i) nano-asperities interlocking , ii) bonding from the biopolymeric
�brils, iii) broken mineral bridges.

the interlocking of the two surfaces. Another source of roughness is represented by
the broken mineral bridges connecting the individual tablets [199, 201], but their
number is much smaller than the total number of the asperities. Restraints1 of this

1Other microstructural imbrications, not considered in the model, are found in nacre: the
Voronoi arrangement of tablets in each layer, screw dislocations with unique tessellated zig-zag
morphologies and interconnected layer-to-layer spiral structures.
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(a) (b)

Figure 11.3. SEM images of the dilatation bands found in nacre upon in-plane tensile
straining: (a) aragonite lamellae with incipient gap formation [195] and (b) opening of
gaps during the tensile test (adapted from [192]).

type are schematically indicated in Figure 11.2(d).
The constitutive properties of nacre are a�ected by the sliding of the rough

interfacial surfaces and the stretching of the organic bonds, following the scheme
of Figure 11.2(d). Apart from friction and cohesion, additional resistance to rel-
ative sliding between sheets results as the dilatation, that would occur when an
undulating plate surmounts its mate, is constrained by non-slipping material out-
side the deformation band and by the sti�ness of the organic �brils. Straining in
the plane of the lamellae produces disarrangements evidenced by the formation of
dilatation bands [192], visible in Figure 11.3(a), located at the tablet terminations,
which have a tessellated shape due to the regular microstructure. The inelastic
in-plane strain derives from the opening gaps at these separations, shown in Fig-
ure 11.3(b), which derive from the slip of the adjoining interfaces of the aragonite
tablets. Sliding of the aragonite tablets is facilitated by water, which softens the
organic matrix. Indeed dry nacre is brittle, similarly to pure aragonite, whereas
wet nacre shows a region of large inelastic strain [198].

Thanks to the �brickwork� arrangement of the platelets, which inhibits trans-
verse crack propagation, the fracture toughness of nacre can be three to nine times
the value of its basic calcium carbonate constituent [194]. There are various types
of toughening mechanisms [202]: plastic deformation ahead of the crack tip, crack
de�ection, crack blunting, and tablet pull out. Several studies [203�207] have de-
veloped mechanical models spanning multiple length scales, which have inspired
the creation of synthetic nacreous composite materials both at nanoscale [208�210]
and at millimeter-scale. These include PMMA brickwork-like laminates [211] whose
designs can be informed by optimization analyses [212]. These interesting aspects,
however, will not be considered here. Our discussion will focus on the mechani-
cal constitutive properties, under the assumption that the aragonite tablets remain
sound and the deformation is dominated by the disarrangement of the �brickwork�.
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11.1.2 A multi-scale approach to shear tensegrities

To this aim, a multiscale approach is proposed, consisting in homogenizing the
e�ects of disarrangements at the level of the representative volume element (RVE),
with reference to the structured deformation theory by Del Piero and Owen [191,
213]. This powerful tool bridges mechanical responses at di�erent length scales
with macroscopic �elds that can be set in a general thermodynamic framework. In
fact, it is based on a two-scale representation that captures and recognizes, at the
macroscopic level, the contributions of both smooth and non-smooth geometrical
changes (disarrangements) at sub-macroscopic levels.

Two basic hypotheses are made, in agreement with Evans et al. [192]: (i) once
the elastic limit is exceeded, the shear resistance of the plate interfaces is low
enough to form dilatation bands rather than brittle cracks; (ii) large-scale inelastic
distortions are due to the cohesive/frictional sliding of the aragonite tablets along
rough interfaces. This approach spans multiple length-scales: (I) calcium carbonate
and protein molecules (atomic scale); (II) characteristic height of the asperities on
the surfaces of the aragonite tablets (ď 30 nm); (III) thickness of the aragonite
tablets forming each layer (0.3 ˜ 0.5µm); (IV) diameter of the aragonite tablets
(10 ˜ 15 µm); (V) thickness of the nacre mesolayers (0.1 ˜ 1mm). We consider
(I) by assuming a linear elastic response of the calcium carbonate of aragonite
and introducing a constitutive law for the binding of the protein �brils. Assuming
a shape of the contact pro�les takes into account (II). The characteristic size of
the tablets provides for (III) and (IV). The mesolayers of (V) are supposed to be
formed by a number of lamellae and determine the scale of the RVE.

The interfacial resistance to sliding is obtained via a generalized cohesive-
frictional law, e�ective at the level of average separation plane. This approach
accounts for the roughness of the interfaces, but eliminates the di�culties in solv-
ing in detail the contact problem and �nding the stress concentrations at the
asperity contacts; these can possibly be considered a posteriori. A key aspect is
consideration of the dilatation due to the surmounting asperities of the sliding
interface, which depends on their geometry; in fact, the bridging of the organic
interlayer and, possibly, a transverse con�nement pressure, can a�ect the constitu-
tive properties. Structured deformation theory allows the representation of elastic
and inelastic (disarrangements-driven) sources of deformation via continuum de-
scriptors, which are set in a standard thermodynamic framework for irreversible
processes for generalized materials [214]. Speci�cally, the lamellar sliding is treated
as the internal variable associated with the corresponding thermodynamic force.
A major peculiarity, discovered through this model, is the level to which the over-
all response of the composite is dictated by the geometry of the sliding pro�les.
For various shapes of the surface pro�les, we derive the macroscopic response un-
der monotonic and cyclic loading under in-plane stress, taking into account the
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possible presence of a con�ning pressure.
The proposed model represents the development of what was proposed, at an

embryonic level, in [215], in order to interpret the response of quasi-brittle ma-
terials under shear and con�nement. That contribution was speci�cally conceived
for masonry and concrete walls; it considered elementary surface shapes; it did
not take into account the elastic bonding of the interfaces; it considered only the
response under shear, for which the size and shape of the constituent bricks is not
important. Here, we focus our attention on a completely di�erent class of hierar-
chical materials; we consider the in-plane tensile response incorporating the length
scale of the constituent tablets; we consider the presence of a binding interlayer;
and we broaden the scenario by considering interface pro�les of di�erent shapes.

The model is inspired by the hierarchical structure of nacre, and speci�c refer-
ence to nacre is made throughout the chapter for illustrative purposes. However,
this approach is much more general and can �nd applications in the design of
new metamaterials, as well as in macroscopic applications, such as base isolators
for seismic protection [216]. We demonstrate that, as a function of their geometry,
pure kinematics of the sliding lamellae can provide a wide range of responses under
tension tests, characterized by pinched hysteresis loops with branches of various
shape, and serrated inelastic deformations. The hierarchical architecture can also
represent a phenomenological model for interpreting the Portevin-Le Chatelier ef-
fect that characterizes the plastic deformation in steels [47], as well as a way of
de�ning stick-slip frictional motion [217] without the need of distinguishing be-
tween static and kinematic friction.

11.2 Modeling of generalized shear tensegrities

The multi-scale mechanical model for shear tensegrities, inspired by nacre archi-
tecture, is presented next. The kinematics of sliding is set in a thermodynamical
framework which provides the constitutive laws, the governing equations and the
boundary conditions for the two dimensional problem of a laminate under gener-
alized plane stress.

11.2.1 Structured deformation of lamellar materials

Consider a �at thin plate of nacre made by the assembly of several laminae formed
by aragonite tablets. For convenience, introduce a reference frame te1, e2, e3u, with
te2, e3u parallel to the plate surface and e1 orthogonal to it. The major assumption
is that the tablets are arranged according to a regular tessellation and that their
surface asperities are isotropically distributed in the te2, e3u plane. This implies
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(a) (b)

Figure 11.4. Schematic representation of the 2D model problem: (a) equivalent cross
section of a mesolayer, composed of laminae of tablets, under uniaxial straining in the
direction e2; (b) detail of the kinematics of contact for the wavy interface pro�les.

that the relative sliding of any two adjacent laminae produces the same e�ects, in
terms of stress and strain, whatever the in-plane direction of sliding.

The aforementioned regularity hypotheses allows us to consider an �equivalent�
two-dimensional scenario. The term �equivalent� establishes a correspondence with
the micro-mechanics of a three-dimensional arrangement for what concerns the
mechanical properties, when the plate is in-plane strained in an arbitrary direction.
This can be identi�ed, without loosing generality, by the vector e2 . The equivalent
2D kinematics, which strictly recalls the micro-photograph of Figure 11.3(a), is
that indicated in Figure 11.4(a). The cross section shows a regular �brickwork�
arrangement of rectangles of sides 2Lˆt, where L is the overlapping length between
the interfaces and t is the thickness of the tablets forming the laminar layers, with
t ! L as an order of magnitude2.

Recall that the platelets are separated by interlayers of biopolymers. These
provide, on the one hand, a bond that is su�ciently strong to impart a sti�ness
to the tile assembly during the deformation. But, on the other hand, they are
su�ciently compliant to prevent their transverse breakage. Therefore, fractures are
intergranular rather than transgranular. A macroscopic dilatation in the direction
of e2 can only occur at the price of the opening of gaps in correspondence of the
short sides of the rectangles [192], at a longitudinal pitch L, consequent to the
sliding of the interfaces along the long sides. Denoting with Λ the gap opening,
assume that Λ ! L.

2In real nacre the lamellae are much longer than thick, because t “ 0.3 ˜ 0.5µm and L “

5.0 ˜ 7.5µm (see Section 11.1.1), so that t{L » 0.05.



11.2. Modeling of generalized shear tensegrities 271

The asperities of the platelets are modeled as wavy interface pro�les: the kine-
matics of sliding is described by the requirement that the pro�les remain in contact
when they are sheared apart. In particular, a dilatation in the direction of e1 is
provoked by the surmounting of the conjugate pro�les (we de�ne surmounting as
the movement of a point on the surface of a tile along a path de�ned by the surface
on an opposing tile to which it may be originally mated). This e�ect dictates the
constitutive properties of the laminate, because the biopolymeric interlayers pro-
duce the springing back of the platelets, providing a cohesive-elastic restraint to
the transversal dilatation. Indeed, the characterization of the kinematics of sliding
for the wavy pro�les represents a key point for the proposed model.

Observe that the model considers a regular arrangement, speci�cally for both
the lamellar tessellation and the geometry of the wavy contact surfaces with inter-
layer bonds (organic �brils). The potential randomness of nacre microstructure is
not taken into account, but recent studies [218] have provided evidence that the
macroscopic properties are only marginally a�ected by the underlying microstruc-
tural randomness, because of the staggered geometry and the shear load-transfer
mechanism of brick-mortar microstructure. Although a more complicated model
could take into account this aspect, the assumed regular arrangement is su�cient
to motivate a wide scenario of possible responses and, in any case, it shall be con-
sidered as representative of an e�ective geometry, providing constitutive properties
equivalent to the actual condition.

Consider a representative volume element of diameter w, with w " L, embrac-
ing a mesolayer. The macroscopic strain is due to the elasticity of the material and
the disarrangements consequent to the cohesive-frictional sliding of the lamellae.
We take a smeared view of this within structured deformation theory [191]. The gap
Λ that opens between a pair of consecutive tablets, represented in Figure 11.4(a),
reads Λ “ 2 t s ` Λ0 , where Λ0 ě 0 is the gap in the reference state, which may
also be due to a previous load history, and t s is the slip between the upper and the
lower lamella as per Figure 11.4(b). Note that the requirement that material does
not overlap is ful�lled if 2 t s ě ´Λ0 . Consequently, one may de�ne the average
inelastic dilatation due to disarrangement in the e2 direction as

λ “
Λ

2L
“

2 t s ` Λ0

2L
. (11.2.1)

When Λ0 “ 0, the dilatation (11.2.1) becomes λ “ t s{L, with s ě 0.
In order to characterize the transversal structured strain in the e1 direction,

refer to Figure 11.4(b). It is convenient to introduce the function θpsq according
to the following requirement: if t s is the relative longitudinal displacement of the
interface pro�le (in the e2 direction), the quantity t θpsq represents the transversal
relative displacement due to the surmounting (in the direction of e1). Since t is
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the thickness of the lamellae, here taken as a representative length-scale, then
s is the smeared shear strain in the lamellar layer and θpsq the corresponding
dilatation strain. In this description, the function θpsq is completely characterized
by the roughness of the lamellae; it will be referred to as the opening or separation
function.

Introduce the x ´ y reference frame, whose corresponding versors are respec-
tively e1 and e2 . The disarrangements due to sliding can be associated, in a
smeared description, with the deformation gradient

M px, yq “ θ pspx, yqq e1 b e1 ` λ pspx, yqq e2 b e2 , (11.2.2)

where3 we have emphasized the dependence of s on px, yq to cover the case in which
the disarrangement is not homogeneous. Following the theory of [191], a structured
deformation is given by a pair of functions g and G, de�ned as

gpx, yq “ rx ` upx, yqs e1 ` ry ` vpx, yqs e2 , (11.2.3)

Gpx, yq “ ∇gpx, yq ´M px, yq , (11.2.4)

where upx, yq and vpx, yq represent the macroscopic displacement in the e1 and
e2 directions, respectively. Roughly speaking, g is the macroscopic deformation,
M the deformation gradient due to the disarrangements, and G that part of the
deformation gradient due to the elastic distortion.

Assuming that the gradients of upx, yq and vpx, yq, as well as λ pspx, yqq and
θ pspx, yqq, are small quantities of the �rst order, the Green's strain pGTG´ Iq{2,
due to the elasticity of the material, may be approximated by the elastic in�nites-
imal strain

εepx, yq “
1

2

`

∇gpx, yq ` ∇gT px, yq
˘

´ I ´
1

2

`

Mpx, yq `MT
px, yq

˘

“ εpx, yq ´ θ pspx, yqq E11 ´ λ pspx, yqq E22 ,
(11.2.5)

where εpx, yq is the macroscopic (global) in�nitesimal strain, and we have de�ned
E11 “ e1 b e1 and E22 “ e2 b e2 .

The quantity εs pspx, yqq “ θ pspx, yqq E11 ` λ pspx, yqq E22 represents instead
the (in�nitesimal) singular part of the strain, due to the disarrangements. The
macroscopic strain ε is obtained with respect to the hypothesis of its partition in
the elastic part εe, due to the elasticity of the undamaged aragonite plates, and
the structured deformation part εs due to the disarrangements. This leads to a
plastic-like deformation splitting in the form

3Here, the symbol b represents the tensor product, i.e., pa b bqv “ pb ¨ vqa.
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ε “ εe ` εs . (11.2.6)

In this way, it is possible not only to describe highly singular strains using
continuous �elds, but also to distinguish the contribution of the macroscopic de-
formation due to microstructural disarrangements from that consequent to the
bulk distortions.

11.2.2 Thermodynamic framework

The state variables suggested by micro-mechanics are the total strain ε and the
shear s due to disarrangements, which are now set in a thermodynamic framework.
For convenience of notation, their dependence upon px, yq will be dropped in the
following. At constant temperature, the model is de�ned through the Helmholtz's
free energy per unit mass Ψ and the yield function f .

Considering isothermal evolution, the Helmholtz's free energy coincides with
the reversible elastic energy. There are two contributions to this energy: i) the
elastic energy stored in the bent lamellae and ii) that associated with the elastic
restraint o�ered by the bio-polymeric interlayer. If C represents the fourth-order
isotropic elasticity tensor for the material forming the aragonite platelets, supposed
to remain linear elastic (undamaged), the �rst contribution is associated with a
strain energy per unit mass, which reads

Ψelas “
1

2ρ
εe ¨ C εe “

1

2ρ
εe ¨ σ . (11.2.7)

Here, ρ is the material density and σ “ C εe is the stress tensor4.
The second contribution is naturally associated with transversal relative dis-

placement t θpsq at the interface. We consider a general elastic constitutive law,
expressed by the potential K pt θpsqq. Thinking again of a smeared view, where
this contribution is averaged on the lamellar thickness t, the elastic energy per
unit mass due to the elastic restraint of the disarrangements, reads

Ψdis “
1

ρt
K pt θpsqq . (11.2.8)

For example, in the simplest case of a linear elastic constitutive law, one may
assume K pt θpsqq “ 1

2
κ pt θpsqq

2, where κ is the elastic constant per unit area,
with dimensions rM srLs´2rT s´2. Representing the organic �brils as elastic springs,
and in particular the assumption that they are e�ective only for the dilatation

4The application of the fourth-order tensor C on the second-order tensor εe is denoted as
C εe. The inner product between the two second-order tensors εe and σ reads εe ¨ σ.
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component of deformation, is certainly a strong approximation. The model could
incorporate a more general elastic-viscous-plastic response, of the type presented
in [219], accounting for the shear s in addition to the dilation θpsq. However, this
is not done here, because the simple term (11.2.8) will be su�cient to cover an
exhaustive scenario.

In conclusion, by using the expression (11.2.5) for the elastic component of the
strain εe, the free energy per unit mass takes the form

Ψpε, sq “
1

2ρ
pε´ θpsqE11 ´ λpsqE22q ¨ C pε´ θpsqE11 ´ λpsqE22q `

`
1

ρt
K pt θpsqq .

(11.2.9)

The stress σ, which corresponds to the derivative of ρΨ with respect to ε, reads

σ “ C pε´ εsq “ C pε´ θpsqE11 ´ λpsqE22q . (11.2.10)

Since θp0q “ 0 and λp0q “ 0, isotropic elasticity is readily recovered. It is possible
to interpret the quantity εspsq “ θpsqE11 ` λpsqE22 to be equivalent to a plastic
strain since, as in plasticity theory, from (11.2.9) the stress is given by Cpε´ εsq,
but the similarity is just formal.

Following the standard generalized material framework [214], the thermody-
namic force S associated with s is the partial derivative of the Helmholtz's free
energy with respect to s, i.e., S “ ´BpρΨq{Bs (the minus sign is due to a thermo-
dynamical convention). It is clear that here S represents the driving force for crack
slip. In the case of isotropic materials, from (11.2.9) and recalling from (11.2.1)
that dλ{ds “ t{L, one obtains

Spε, sq “C
´

ε´ θpsqE11 ´ λpsqE22

¯

¨

´

θ1
psqE11 `

t

L
E22

¯

`

´ θ1
psqK1

pt θpsqq ,
(11.2.11)

where θ1p¨q and K1p¨q denote the �rst derivative of the functions θp¨q and Kp¨q,
respectively. Using (11.2.10), this expression can be conveniently rewritten in terms
of the stress σ in the form

Spσ, sq “ θ1
psq

”

σ ¨E11 ´ K1
pt θpsqq

ı

`
t

L
σ ¨E22 . (11.2.12)

Here, σ ¨E22 is the normal stress in the direction e2 , related with the shear stress
acting in direction parallel to the separation surface, while σ ¨E11 represents the
normal component of stress in the direction e1 . Thus, we infer from (11.2.12) that
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not only the driving force S is produced by t{Lσ ¨ E22 , but a signi�cant role
is also played by the component of stress work-conjugate with the �shear-induced
dilation�, as well as by the elastic reaction of the interface, represented by the term
K1 pt θpsqq.

It is natural to de�ne the elastic region, or �convex of elasticity�, with respect
to the associated thermodynamic forces σ and S. In order to consider a cohesive-
frictional response, one may introduce the yield function

fpσ, Sq “ |S| ´ tB ´ µ rσ ¨E11 ´ K1
pt θpsqqsu . (11.2.13)

Here, µ is the e�ective frictional coe�cient and the constant B represents the co-
hesive contribution. This function de�nes the elastic domain through the condition
fpσ, Sq ă 0; yielding corresponds to fpσ, Sq “ 0; states for which fpσ, Sq ą 0
are not attainable. This is consistent with what observed in quasi-brittle materi-
als [220] and recalls the cohesive fracture model by Barenblatt [221].

The term σ ¨E11 denotes the component of macroscopic stress at right angle to
the sliding interface, de�ned at a material scale much larger than the characteris-
tic length scale of surface roughness; similarly, the quantity K1 pt θpsqq denotes the
elastic bridging provided by the biopolymeric interlayer. Observe that (11.2.13)
does not exactly account for Coulomb's law, which should act according to the
tangent plane to the contact pro�les at the actual contact points, but it represents
an �average� frictional law, e�ective at the level of mean separation plane between
any pair of adjacent lamellae. In particular, µ denotes, in the aforementioned equiv-
alence, the e�ective frictional coe�cient, which is associated, but not necessarily
coincides, with the actual frictional coe�cient locally acting at the length scale of
the contact pro�les. Similarly, the dependence of the cohesion parameter B upon
the local geometry of the contact pro�le is not made explicit, since B interprets
the cohesive sliding of the mean interface plane between the adjacent lamellae.

The borderline case when B “ 0 corresponds to unilateral Coulomb's frictional
law. When B “ 0, from (11.2.13), it follows that condition σ¨E11´K1 pt θpsqq ą 0 is
not admissible. This means that the tensile stresses normal to the interface cannot
overcome the elastic bridging. The elastic bridging, as well as a compressive normal
stress σ ¨E11 ă 0, all weighted by µ, increase the size of the elastic domain. The
second limit case, µ “ 0, corresponds to cohesive sliding. Now, we have from
(11.2.13) that |S| remains constant at yielding, independently of the compressive
stress. The combinations of these two cases furnishes the admissibility condition

σ ¨E11 ´ K1
pt θpsqq ď

B

µ
. (11.2.14)

This means that cohesion allows the transfer of tensile stresses that moderately
overcome the elastic bridging....
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At yielding (f “ 0), the evolution for the state variable s is determined from
the consistency equation df “ 0 and generalized normality rule [214], stating that

9s “
Bf

BS
9χ “ sgnpSq 9χ , (11.2.15)

where χ is analogous to the classic plastic multiplier, with 9χ ą 0, the dot indi-
cating derivative with respect to time. In this sense, the model can be considered
associated, i.e., the dissipation pseudo-potential coincides with the yielding func-
tion. In particular, from equation (11.2.15), it is evident that 9s has the same sign
of S, so that the yielding condition deriving from (11.2.13) can be written in the
form,

$

’

’

’

&

’

’

’

%

S “ B ´ µ rσ ¨E11 ´ K1 pt θpsqqs , if 9s ą 0 ,

S “ ´tB ´ µ rσ ¨E11 ´ K1 pt θpsqqsu , if 9s ă 0 ,

|S| ď B ´ µ rσ ¨E11 ´ K1 pt θpsqqs , if 9s “ 0 ,

(11.2.16)

where B ´ µ rσ ¨E11 ´ K1 pt θpsqqs is positive.
According to the second principle of thermodynamics, the intrinsic dissipation

9D must be positive. From the general theory [222], 9D “
ř

k Ak
9Vk , where Ak

denotes the thermodynamic force associated with internal state variable Vk . For
the case at hand, Ak “ S and Vk “ s, so that, from (11.2.15), one obtains that the
second principle is naturally ful�lled, i.e., 9D “ S 9s ą 0. Moreover, from (11.2.16),
the intrinsic dissipation can be written as 9D “ tB ´ µ rσ ¨E11 ´ K1 pt θpsqqsu| 9s|,
from which the admissibility condition (11.2.14) is recovered and turns out to be
strictly correlated to the positiveness of the dissipation.

11.2.3 Equations for homogenous biaxial stress

Assume, for the shear tensegrity, that the stress state is homogeneous of the form
σ “ σ11 e1 b e1 ` σ22 e2 b e2 , where e1 and e2 are as de�ned in Figure 11.4(a).
This assumption, which neglects the stress concentrations due to local contact
of the asperities, can be introduced in this particular theoretical framework, and
represents one of the major advantages of the model.

From formula (11.2.12), the thermodynamical variable S associated with the
slip s reads

Spsq “ θ1
psq

”

σ11 ´ K1
pt θpsqq

ı

`
t

L
σ22 . (11.2.17)

In words, S is the sum of the imposed longitudinal stress σ22 , weighted by t{L, and
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of the term θ1psq rσ11 ´ K1 pt θpsqqs, which has a precise mechanical interpretation.
Referring to Figure 11.4(a) and considering the equivalence in terms of resultant
internal force, one has that the mean shear stress acting along the average inter-
face of adjacent lamellae caused by the σ22 is σ22 t{L. On the other hand, with
reference to periodic and symmetric contact pro�les as per Figure 11.4(b), if the
separation lips of the tablets are supposed to remain in contact during a relative
translation, at each instant, the relative velocity of gliding is parallel to a common
tangent plane to the separation lip pro�les, whose slope is θ1 with respect to the
separation average plane. Hence, one can interpret θ1psq rσ11 ´ K1 pt θpsqqs as the
amount of shear induced by the stress σ11 and the elastic bridging. The equiv-
alence is also evident in energetic terms, since the dissipation reads 9D “ S 9s “

rσ11 ´ K1 pt θpsqqs 9θ` σ22 9s t{L. Here, σ22 9s t{L is the power dissipated by the shear
induced by longitudinal stress and rσ11 ´ K1 pt θpsqqs 9θ represents the power of the
lateral stress in the extension that accompanies sliding.

From (11.2.13) and (11.2.17), the elastic domain at a given state s is de�ned
by the inequality

ˇ

ˇ

ˇ

ˇ

θ1
psq

”

σ11 ´ K1
pt θpsqq

ı

`
t

L
σ22

ˇ

ˇ

ˇ

ˇ

ď B ´ µ
”

σ11 ´ K1
pt θpsqq

ı

, (11.2.18)

where B ´ µ rσ11 ´ K pt θpsqqs ě 0 from the admissibility condition.
In the σ11 ´ σ22 plane, equation (11.2.18) de�nes the region bounded by the

two lines with the common point identi�ed by the pair of coordinates

ˆ

K1
pt θpsqq `

B

µ
, ´

BL

t

θ1psq

µ

˙

, (11.2.19)

and intersecting the σ22´axis at points with ordinate

L

t
θ1

psqK1
pt θpsqq ˘

L

t

”

B ` µK1
pt θpsqq

ı

. (11.2.20)

The situation can be better appreciated by plotting the elastic domain in the
σ11 ´ K1 pt θpsqq vs. σ22 t{L plane. This is bounded by two lines with the common
point pB{µ,´Bθ1psq{µq and intersecting the vertical axis at `B and ´B, as shown
in Figure 11.5(a). The elastic domain may evolve between the upper and lower
bounds determined by the maximum and minimum values attained by θ1psq. In
particular, for the case of periodic and symmetric pro�les in contact along convex
surfaces, as indicated in Figure 11.4(b), these extremes are equal in absolute value,
say ˘M , where M ą 0 depends only upon the shape of the contact pro�les. For
varying s, the yielding surface takes two di�erent shapes, according to the sign of
the quantity µ ´ M .
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(a)

(b)

(c)

Figure 11.5. Representation of the elastic domain in the σ11 ´ K1 pt θpsqq vs. σ22 t{L
plane: (a) typical form of the elastic domain, bounded by two lines; (b) elastic domains
in the case maxtθ1psqu “ M ă µ and (c) maxtθ1psqu “ M ą µ.
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Figure 11.5(b) illustrates the caseM´µ ă 0, corresponding to a material where
the coe�cient of friction µ is greater than the maximum slope M of the opening
function, while Figure 11.5(c) displays the complementary case M ´ µ ą 0. Here,
parameters B and µ maintain the same values of Figure 11.5(a) and only M has
been changed. Provided θ1psq attains all the values in the interval r´M,M s as
s is varied, all admissible stress states lie in grey region represented in Figure
11.5. In particular, the dark-grey region, referred to as �always-elastic domain�,
corresponds to locally stable elastic stress con�gurations, i.e., every in�nitesimal
transformation from those states will remain elastic in the sense that they do not
imply any modi�cation of s.

11.3 Geometric characterization of sliding pro�les

The constitutive properties of the material are strictly correlated with the rough-
ness of the contact surfaces, which determines the form of the opening function
θpsq. An important hypothesis is that the stress concentration due to the local
contact of the asperities produces a negligible change in the shape of the pro�les.
The validity of this assumption will be checked later on in Section 11.4.3, while
discussing the proposed examples. Our purpose, here, is to illustrate the wide sce-
nario that can be obtained under this hypothesis, by just changing the geometry
of the contacts.

Let ω : R Ñ R represent a piecewise regular, symmetric, even, periodic func-
tion, with period p, with the property that ωpx` p{2q “ ´ωpxq, @x P R. In order

(a) (b)

Figure 11.6. Schematic representation of the sliding pro�les, with indication of contact
points per period for increasing shearing. Case of (a) convex and (b) non-convex periodic
pro�les.
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to de�ne such a function it is su�cient to de�ne the graph of its restriction in
the interval r0, p{4s, since the successive branches can be obtained by alternately
reversing this graph, mirroring and matching the pieces together. In other words,
the graph can be made to coincide with itself after the combination of a re�ec-
tion in its average line and a translation of half the wave-length. Without losing
generality, assume that ωp0q ă 0.

We suppose that in the reference undistorted con�guration the surfaces of the
upper and lower lamellae perfectly match one another and are identi�ed by the
graph of the function η “ t ωpξ{tq, where t is the thickness of the lamellae, here
again chosen as a representative length-scale. Hence, the axis ξ de�nes the middle
plane of each contact surface and is parallel to the direction of sliding, identi�ed by
the unit vector e2 in Figure 11.4(a); the axis η is orthogonal to ξ. Clearly the pro�les
are periodic curves of period t p and they are the sequence of branches, which are
one opposite to the other, alternately following with step t p{2. In particular, the
assumed symmetry implies that

ωpp{4 ` ξ{tq “ ´ωpp{4 ´ ξ{tq, @ξ P R , (11.3.21a)

ω1
pp{4 ` ξ{tq “ ω1

pp{4 ´ ξ{tq, @ξ P R . (11.3.21b)

It is supposed that, as the lamellae are sheared apart, the pro�les remain in
contact at points that are de�ned by their geometry, as represented in Figure 11.6.
A distinction needs to be made between two cases. In the �rst, indicated in Figure
11.6(a), there is one point of contact per period. This occurs when the graph of
η “ t ωpξ{tq is convex in the interval r´t p{4, t p{4s: because of this, pro�les of this
type will be called convex. The second, complementary, case is represented by the
non-convex pro�les of Figure 11.6(b). Now, there might be more than one point
of contact for increasing shearing: more in general, the locus of the contact points
is not represented by a continuous line, because the contact may �jump� from one
branch of the pro�le to another.

The shearing is measured by the state variable s introduced in Section 11.2.1.
The problem consists in calculating the opening function θpsq once the shape of
the contact pro�les is assigned through the function ω.

11.3.1 Convex periodic pro�les

When the upper lamella glides with respect to the lower one, as indicated in Figure
11.6(a), opening is due to surmounting. In the case of a convex pro�le, there is only
one possible contact point C per period. Figure 11.6(a) illustrates this scenario for
two di�erent values s1 and s2 of the variable s. Without loosing generality, suppose
that the lower pro�le remains �xed, so that it remains associated with the function
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η “ t ωpξ{tq; the upper pro�le, which is right-shifted of t s if s ą 0, is represented
by the graph of the function η “ t ωpξ{t ´ sq ` t θpsq.

Due to the periodicity of the pro�les, it is convenient to restrict the attention to
the interval ´t p{2 ď ξ ď t p{2 and consider a shearing such that s P r´p{2, p{2s.
Indicate with ξc the abscissa of the generic contact point C, which shall satisfy
´t p{2 ď ξc ď t p{2 and observe that ξc has the same sign of s. The contact
condition is that at C the tangent to the two pro�les shall be the same, i.e.,

ω1
pξc{tq “ ω1

pξc{t ´ sq , for s P r´p{2, p{2s . (11.3.22)

Because of (11.3.21b), there exists some α for which

#

ξc{t “ p{4 ` α ,

ξc{t ´ s “ p{4 ´ α ,
if s P r0, p{2s , (11.3.23a)

#

ξc{t “ ´pp{4 ` αq ,

ξc{t ´ s “ ´pp{4 ´ αq .
if s P r´p{2, 0q . (11.3.23b)

This distinction is necessary because ξc is positive (negative) when s is positive
(negative). Eliminating α one obtains

ξc{t “ s{2 ` p{4 , if s P r0, p{2s , (11.3.24a)

ξc{t “ s{2 ´ p{4 , if s P r´p{2, 0q . (11.3.24b)

The opening function θpsq can be found from condition ωpξc{tq “ ωpξc{t´sq`θpsq.
Taking into account the symmetry of ω, as per (11.3.21a), θpsq takes the form

θpsq “ ωpp{4 ` s{2q ´ ωpp{4 ´ s{2q

“ 2ωpp{4 ` s{2q ,
if s P r0, p{2s , (11.3.25a)

θpsq “ ωpp{4 ´ s{2q ´ ωpp{4 ` s{2q

“ ´2ωpp{4 ` s{2q ,
if s P r´p{2, 0q . (11.3.25b)

This function is non-negative and its derivative is, in general, discontinuous at
s “ 0. It shall be periodically extended to cover the more general case in which s
exceeds the interval r´p{2, p{2s.



282 Chapter 11. From rolling to sliding

Triangular pro�les

A triangular wave pro�le of the type represented in Figure 11.7(a) corresponds to
an expression of the form

η

t
“ ω

´ξ

t

¯

“ ´
A

2
` ATr

´2ξ

tp

¯

, (11.3.26)

where Trp¨q is the period extension of the function Tp¨q, de�ned in the interval
r0, 2s as Tpxq “ x for x P r0, 1s and Tpxq “ 2 ´ x for x P p1, 2s. The opening
function θpsq is displayed in Figure 11.7(c) and can be expressed as

θpsq “ ATr
´2s

p

¯

. (11.3.27)

The derivative θ1psq of the opening function is shown in Figure 11.7(e). It is piece-
wise constant function, i.e., θ1psq “ ˘2A{p “ ˘M , with jumps at s “ kp and
s “ kp{2, k P Z.

Sinusoidal pro�les

In the model proposed by Evans et al. [192], the roughness of the nacre lamellae
has been considered sinusoidal in type. The pro�le shown in Figure 11.7(b) is the
graph of the function

η

t
“ ω

´ξ

t

¯

“ ´
A

2
cos

´2πξ

tp

¯

. (11.3.28)

The opening function θpsq, displayed in Figure 11.7(d), can be expressed as

θpsq “ A

ˇ

ˇ

ˇ

ˇ

sin
´πs

p

¯

ˇ

ˇ

ˇ

ˇ

. (11.3.29)

Its �rst derivative θ1psq is depicted in Figure 11.7(f). It is a monotonically decreas-
ing piecewise cosine function, with jumps at s “ kp, k P Z.

Observe that the slope of θpsq at s “ 0˘ is equal to ˘πA{p; for the same
amplitude A, the triangle function provides θ1p0˘q “ ˘2A{p, which is smaller in
absolute value.

Circular pro�les

A pro�le represented by a piecewise circular curve, where arcs of circle are con-
tinuously and smoothly connected one another, is referred to as a circular pro�le.
It is convenient to use a parametric representation in the ξ ´ η plane. When the
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(a) (b)

(c) (d)

(e) (f)

Figure 11.7. Triangular and sinusoidal contact pro�les. Pro�le shape, opening function
θpsq and its derivative θ1psq for (a)-(c)-(e) the triangular and (b)-(d)-(f) the sinusoidal
cases, respectively.

pro�le is formed by semicircles as in Figure 11.8(a), so that the amplitude is R
and the period p “ 4R, one can write

#

ξ{t “ R sinpαq ` 2kR ,

η{t “ ´R cospα ` kπq ,
for α P r´π{2, π{2q , k P Z . (11.3.30)
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It is clear that α represents the angle between the η axis and the rotating radius
of the constituting semicircles.

One can use the same parameter α to indicate a potential contact point. Simple
geometry shows that the corresponding slide s takes the form

s “ 2 rR ´ R sinpαqs ` 4kR , if α P r0, π{2q , k P Z , (11.3.31a)

s “ ´2 rR ` R sinpαqs ` 4kR , if α P r´π{2, 0q , k P Z , (11.3.31b)

whereas the corresponding value of the opening θ reads

θ “ 2R cos pαq . (11.3.32)

(a) (b)

(c) (d)

(e) (f)

Figure 11.8. Circular contact pro�les. Pro�le representation, opening function θpsq and
its derivative θ1psq for (a)-(c)-(e) the semicircular toothing (parameter α P r´π{2, π{2q)
and (b)-(d)-(f) the minor-arc toothing (parameter α P r´π{3, π{3q), respectively.
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The equations (11.3.31) and (11.3.32) provide a parametric representation of the
opening function θpsq, whose plot is represented in Figure 11.8(c). This is a piece-
wise semicircular curve of radius 2R, with cusps at s “ kp. Its derivative θ1psq,
reported in Figure 11.8(e), presents vertical asymptotes at s “ kp, k P Z.

The case in which the pro�le is formed by the smooth coupling of minor arcs
of circles, can be similarly studied. One can write the same equations (11.3.30),
(11.3.31) and (11.3.32), provided that the parameter α is made to vary in an inter-
val smaller than r´π{2, π{2q, while considering that the centers of the connected
circular arcs are no more aligned on the ξ axis. Figure 11.8(b) reports the graph of
this minor-arc toothing for α P r´π{3, π{3q: the amplitude is R{2 and the period
p “ 2

?
3R. The corresponding plot of the opening function θpsq is indicated in

Figure 11.8(d). Observe that now the initial slope is no longer vertical, so that
its derivative θ1psq, plotted in Figure 11.8(f), is bounded, with jumps at s “ kp
between the values ˘ tanpπ{3q.

11.3.2 Non-convex periodic pro�les

This case is complicated by the fact that, as illustrated in Figure 11.6(b), the
contact point may be not unique and may jump from one branch of the pro�le to
another as the slide s is increased. Since condition (11.3.24) does not necessarily
hold, the opening function θpsq cannot be evaluated using (11.3.25). For the non-
convex case, the direct approach is the most convenient. For any given value of the
sliding s “ s̄, the corresponding value θps̄q is calculated, so that the upper pro�le
η{t “ ωpξ{t´ s̄q ` θps̄q shares at least one point in common with the lower pro�le
η{t “ ωpξ{tq and the inequality ωpξ{tq ď ωpξ{t ´ s̄q ` θps̄q is ful�lled @ξ P R.

Figure 11.9 reports two examples. The shape shown in Figure 11.9(a) is ob-
tained as the product of two cosine functions with di�erent periods, in the form

η

t
“ ω

´ξ

t

¯

“ ´
A

2
cos

´2πξ

tp

¯

cos
´4πξ

tp

¯

. (11.3.33)

The corresponding opening function θpsq and its derivative θ1psq are reported in
Figures 11.9(c) and 11.9(e), respectively. Figure 11.9(b) indicates instead a pro�le
with smoothly connected arcs of circle of radius R and 2R, for which θpsq and θ1psq
are respectively plotted in Figures 11.9(d) and 11.9(f).

Multimodal functions for θpsq are obtained, which correspond to complex con-
stitutive responses. However, comparing Figure 11.9 with Figure 11.7, for the
sinusoidal case, and with Figure 11.8, for the circular case, one infers that the
non-convex case may be considered the superposition of convex cases. The consti-
tutive equations shall be more complicated, but the di�erence is formal and not
substantial.
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(a) (b)

(c) (d)

(e) (f)

Figure 11.9. Non-convex contact pro�les. Pro�le shape, opening function θpsq and its
derivative θ1psq for (a)-(c)-(e) the piecewise sinusoidal and (b)-(d)-(f) the piecewise cir-
cular pro�les, respectively.

Remark 1. A key property, which is in general shared by a wide class of pro�les,
is that θ1psq is discontinuous at s “ kp, k P Z, and attains its extreme values in a
neighborhood of discontinuity points. The model calls for an interpretation of such
discontinuities. For any in�nitesimal variation of s in a neighborhood of s “ kp,
the yield surface would suddenly jump between the two distinct con�gurations,
represented by the wedge-like domains of Figure 11.5, whose vertices are either
at pB{µ,´BM{µq or at pB{µ,BM{µq. Such a material instability is due to the
assumed sharpness of the contact pro�les, but one expects that in a real case
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the pro�les are smoothened, perhaps by micro-fractures that round the surfaces.
Therefore, the discontinuous function θ1psq should be interpreted as the limit case
of a corresponding continuous function with a steep branch in a neighborhood of
s “ kp: this fact implies that θ1psq attains all the values of the interval r´M,M s

in a neighborhood of s “ kp.
This position re�ects the spirit of classical Coulomb's frictional theory and the

corresponding generalized functions. Referring to (11.2.18), all possible admissible
states in the stress space, spanned while θ1psq P r´M,M s in a neighborhood of
s “ kp, k P Z, can be attained.

Remark 2. The model does not account for the reduction of the number of as-
perities during straining but, under the hypothesis that the shape of the asperities
does not change, the results are not a�ected by this phenomenon. In fact, our
model considers a frictional law that is valid at the level of the average contact
plane, in such a way that the shear stress, consequent to the frictional restraint,
depends on the resultant of the contact forces normal to this plane, and not on
the single contact forces. If the number of contacts is reduced, the localized con-
tact forces increase, but the resultant basically remains the same. Moreover, the
opening function θpsq does not change regardless the number of asperities still in
contact, because this is dictated by the shape of the asperities, supposed rigid,
that remain in contact.

Of course, the scenario becomes quite di�erent if the elastic deformation of the
asperities is taken into account, because, if the localized contact forces increase,
the shape of the contact pro�les is modi�ed. Moreover, one expects that, as the rel-
ative sliding is increased, the cohesive ligaments break, thus reducing the cohesive
contribution, but this is not taken into account here.

In any case, in real nacre, there is a high number of asperities. This implies that
the length L of the overlapping lamellae is much greater than the characteristic
wavelength t p of the wavy pro�les, and that the relative displacement Λ between
sliding lamellae is much smaller than the length of the lamellae themselves (see
Figure 11.4). As a result, the total number of asperities that remain in contact
should not substantially vary during shearing. A more re�ned improved model
shall take into account that the number of contacted asperities will decrease as
the relative sliding increases, but this would require consideration of the elastic
compliance of the lamellae, which is beyond the scope of the present work.

11.4 Response under homogeneous plane stress

Consider again the case developed in Section 11.2.3 for the biaxial state of stress
σ “ σ11 e1 be1 `σ22 e2 be2 , with e1 and e2 as in Figure 11.4(a). We calculate the
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response under homogeneous straining for various shapes of the contact pro�les,
of the type characterized in Section 11.3.

From (11.2.16) and (11.2.17), one obtains that

σ22 “
LB

t
´
L

t

”

µ ` θ1
psq

ı”

σ11 ´ K1
pt θpsqq

ı

, if 9s ą 0 , (11.4.34a)

σ22 “ ´
LB

t
`
L

t

”

µ ´ θ1
psq

ı”

σ11 ´ K1
pt θpsqq

ı

, if 9s ă 0 . (11.4.34b)

When 9s “ 0, the inequality (11.2.18) holds. From (11.2.1), (11.2.5), (11.2.6) and
(11.2.10), the corresponding strain takes the form

ε22 “
σ22
E

´ ν
σ11
E

`
2 s t ` Λ0

2L
, (11.4.35)

where E and ν are the Young's modulus and the Poisson's ratio for the bulk
material, supposed homogeneous and isotropic. In the following examples, unless
otherwise stated, values compatible with those of a nacre tablet made of single
crystalline aragonite are assumed for the mechanical properties. In particular, we
will use E “ 87GPa as reported in [223], and ν “ 0.28 as derived from the bulk
and shear moduli indicated in [224].

Assume that σ11 is given and �xed. For varying s the equations (11.4.34)
and (11.4.35) provide a parametric representation of the �plastic� branches in the
σ22 ´ ε22 plane. The elastic branches correspond to s “ s̄, with s̄ representing a
constant value and 9s “ 0. In this case the inequality (11.2.18) implies that σ22
can vary within the interval de�ned by the limits (11.4.34a) and (11.4.34b); the
corresponding ε22 results from (11.4.35).

The reference state is that in which σ11 “ σ22 “ 0 and ε22 “ 0, which corre-
sponds to s “ 0 if Λ0 “ 0. However, since we are interested in considering reverse
cyclic loading, it will be assumed that Λ0 ą 0, so that sliding of the interfaces can
occur also in compression without material overlapping. According to (11.4.35),
this would mean that ε22 “ 0.5Λ0{L in the reference state, but this value is purely
formal. For clarity, the graphs that will be drawn in the following will consider the
e�ective value of ε22 , which represents its variation with respect to the reference
value 0.5Λ0{L.

11.4.1 Constant interfacial con�nement

For �interfacial con�nement� we mean a restraint to the dilatation of the sliding
interfaces, which can be generated by internal and/or external causes.
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Table 11.1. Model parameters, including internal/external con�nement and geometric
characteristics of the contact pro�les, used for the in-silico experiments of Figures 11.10,
11.11, 11.12 and 11.13.

pro�le triangular sinusoidal circular non-convex

con�nement high low high low high low high low

σκ (MPa) 1.43 0.48 0.96 0.31 1.64 0.55 0.37 0.12
σ0 (MPa) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σy (MPa) 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00

B (MPa) 0.5 2.5 0.4 2.5 0.5 2.5 0.4 2.5
µ (´ ) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

p (´ ) 0.126 0.126 0.126 0.126 0.131 0.131 0.200 0.200
A (´ ) 0.126 0.126 0.126 0.126 0.038 0.038 0.300 0.300
t{L (´ ) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

A constant external con�nement is essentially a homogeneous compressive
stress �eld orthogonal to the mean surface of interfaces, of the type σ11 “ ´σ0 ,
with σ0 ą 0. For example, in a underwater environment, this can represent the
e�ect of the hydrostatic pressure when the nacre is protected by a waterproof skin.

The internal interfacial con�nement is due to the biopolymeric �brils bridging
the interfaces, which has been modeled through the elastic potential K pt θpsqq in
Section 11.2.2. A constant con�nement is achieved when the bridging stress, which
is equal to K1 pt θpsqq, is of the form

K1
pt θpsqq “

#

σκ , if θpsq ą 0 ,

0 , if θpsq “ 0 ,
with σκ ą 0 (11.4.36)

This represents the limit case of a superelastic response characterized by a tan-
gent elastic modulus that rapidly decays to zero. Equivalently, it indicates a pure
cohesive bridging, which recalls Barenblatt's crack model [221]. The superimpo-
sition of the two cases provides that σ11 ´ K1 pt θpsqq “ ´σ0 ´ σκ “ ´σc , where
σc “ pσ0 ` σκq ą 0 will be referred to as interfacial con�nement stress.

Figures 11.10, 11.11, 11.12 and 11.13 collect the graphs, drawn in the σ22 ´ ε22
plane, which describe the responses for the triangular, sinusoidal, circular and non-
convex (sinusoidal) contact pro�les, respectively. The considered parameters are
reported in Table 11.1.

The behavior is linear-elastic, with s “ 0 and 9s “ 0, from the initial state p0, 0q
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(a) (b)

(c) (d)

Figure 11.10. Response for the triangular contact pro�les of Figure 11.7(a). Hysteresis
loop for s P r´p{2, p{2s: (a) �high� σc ą B{pθ1p0`q´µq and (b) �low� σc ă B{pθ1p0`q´µq.
Long tensile response (s " p{2) for (c) high σc and (d) low σc .

up to the point pεy, σyq of �rst �yielding�, for which s “ 0 and 9s ą 0. Observe
that the assumed value σy “ 70MPa is consistent to that of real nacre [198], while
t{L “ 0.05 complies with the dimensions of tablets detailed in the introductive
Section 11.1.1. The sub�gures (a) and (b) report the hysteresis loop consequent
to strain-driven cycles, for which s P r´p{2, p{2s, for two di�erent values of σc .
The sub�gures (c) and (d) show, for the aforementioned σc , the �long� tensile
response, corresponding to the case in which s can be very high (s " p{2), so
that the surmounting of the asperities can occur several times as the interface
pro�les are progressively sheared apart. This tensile experiment corresponds to a
closed-loop control imposing that the state variable s is monotonically increasing.
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(a) (b)

(c) (d)

Figure 11.11. Response for the sinusoidal contact pro�les of Figure 11.7(b). Hysteresis
loop for s P r´p{2, p{2s: (a) �high� σc ą B{pθ1p0`q´µq and (b) �low� σc ă B{pθ1p0`q´µq.
Long tensile response (s " p{2) for (c) high σc and (d) low σc .

Consideration of two di�erent values for σc is important, because it con�nes
the lateral dilatation and, hence, it has an e�ect on the sliding of the pro�les. The
case of �high� interfacial con�nement σc is represented in sub�gures (a) and (c).
In the hysteresis loop of sub�gure (a), the �rst unloading path is high enough to
reconnect to the �rst linear-elastic branch at a point for which σ22 is positive (a
specular response is obtained for negative stresses). For s ą 0 and 9s ă 0, condition
(11.4.34b) provides

σ22 “ ´
LB

t
´
L

t

”

µ ´ M
ı

σc ą 0 ñ σc ą
B

M ´ µ
, (11.4.37)
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(a) (b)

(c) (d)

Figure 11.12. Response for the circular contact pro�les of Figure 11.8(b). Hysteresis
loop for s P r´p{2, p{2s: (a) �high� σc ą B{pθ1p0`q´µq and (b) �low� σc ă B{pθ1p0`q´µq.
Long tensile response (s " p{2) for (c) high σc and (d) low σc .

where M (´M), as indicated in Section 11.2.3, represents the maximum (mini-
mum) value of the function θ1psq. In all the pro�les considered here ˘M “ θ1p0˘q.
Clearly, a strong interfacial con�nement stress favors the return of the pro�les to-
wards the con�guration where they match. This fact is evident also in the long
tensile response, reported in sub�gures (c). At the stage s “ p{2` kp, k P N0 , the
pro�les are at the maximum surmounting: immediately before (after) σc opposes
(favors) sliding. The e�ect of σc , as stated by (11.4.37), overcomes that associated
with the cohesive/frictional contact forces: hence, the stroke of the pro�les must
be braked by a negative σ22 . This is why the stress oscillates between positive and
negative values.
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(a) (b)

(c) (d)

Figure 11.13. Response for the non-convex contact pro�les of Figure 11.9(a). Hysteresis
loop for s P r´p{2, p{2s: (a) �high� σc ą B{pθ1p0`q´µq and (b) �low� σc ă B{pθ1p0`q´µq.
Long tensile response (s " p{2) for (c) high σc and (d) low σc .

The complementary case, illustrated in sub�gures (b) and (d), corresponds to
the condition of �low� interfacial con�nement σc , when σc ă B{pM ´ µq. Since
σc ą 0 and B ą 0, this can occur only if M ą µ. Now the e�ect of σc cannot over-
come the cohesive/frictional forces. Therefore, in the hysteresis loop of sub�gures
(b), the unloading branch requires in general a stress σ22 of opposite sign with
respect to that for the loading branch. The oscillations in the long tensile response
occur between positive values of the stress, because σc is not su�cient to make the
pro�les slide after the peak point of surmounting.

The response is similar, at the qualitative level, for all the three considered
shapes of convex contact pro�les. The hysteretic response exhibits an evident
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pinched loop, which originates from the pinning associated with the waviness of the
interface pro�les. The oscillations that accompany the tensile response recall the
Portevin-Le Chatelier e�ect that characterizes plastic deformation in steels [47].
The response of the non-convex (sinusoidal) pro�les is more complicated, with
more than one pinched loop, each of which corresponds to the surmounting of a
local maximum of the curve describing the pro�le.

The elastic branches of the response are clearly linear in all the cases, but there
are di�erences in the inelastic phase, associated with the progression of disarrange-
ments, which depend upon the speci�c shape of the contact pro�les. The plastic
branches are horizontal in Figure 11.10, which corresponds to the case of triangular
pro�les. They show a strain-softening trend in the case of sinusoidal contact pro-
�les, reported in Figure 11.11. The circular pro�les of Figure 11.12 provide as well
strain-softening branches in the plastic regime, but the concavity is opposite to
that of the sinusoidal case. The non-convex case of Figure 11.13 exhibits two soft-
ening branches connected by a linear path, but the shape of each softening branch
is similar to the corresponding sinusoidal case for the convex contact pro�les.

11.4.2 Elastic interfacial constraint

In the following simulations, assume that σ11 “ 0 and that the lamellae are held
together by a linear-elastic interfacial constraint only. This is modeled as a bed
of springs à la Winkler, with elastic constant per unit area equal to κ. Hence, the
potential K pt θpsqq, introduced in Section 11.2.2, takes the form

K pt θpsqq “
1

2
κ pt θpsqq

2 , (11.4.38a)

K1
pt θpsqq “ κ t θpsq . (11.4.38b)

Figures 11.14, 11.15, 11.16 and 11.17 report the graphs, drawn again in the
σ22 ´ ε22 plane, for the responses of triangular, sinusoidal, circular and non-convex
(sinusoidal) contact pro�les, respectively. The parameters used in the plots are
collected in Table 11.2.

Again, the behavior is linear-elastic from the initial state p0, 0q up to the point
pεy, σyq of �rst yielding; then an inelastic branch, consequent to the development
of disarrangements, develops if the strain is further increased. The sub�gures (a)
and (b) collect the hysteresis loop under strain-driven cycles, for s P r´p{2, p{2s,
for two di�erent values of the interfacial spring sti�ness, expressed by κ t and re-
ferred to as �weak� and �strong� in Table 11.2. As in the previous Section 11.4.1,
sub�gures (c) and (d) show, for the aforementioned values of κ t, the long tensile
response, characterized by s " p{2 and, hence, by multiple surmountings of asper-
ities while the pro�les are progressively sheared apart. As in Section 11.4.1, the
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Table 11.2. Model parameters, including elastic interfacial constraint and geometric
characteristics of the contact pro�les, used for the in-silico experiments of Figures 11.14,
11.15, 11.16 and 11.17.

pro�le triangular sinusoidal circular non-convex

interfacial
weak strong weak strong weak strong weak strong

springs

κ t (MPa) 3.00 20.00 4.00 30.00 40.00 300.00 1.50 7.00
σy (MPa) 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00

B (MPa) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
µ (´ ) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

p (´ ) 0.126 0.126 0.126 0.126 0.131 0.131 0.200 0.200
A (´ ) 0.126 0.126 0.126 0.126 0.038 0.038 0.300 0.300
t{L (´ ) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

graphs correspond to a closed-loop control imposing that the state variable s is
monotonically increased.

Consideration of two di�erent values for κ t allows to appreciate the e�ect of the
interface constraints on sliding of the pro�les: weak and strong interfacial springs
are represented by the sub�gures (a)-(c), and (b)-(d), respectively. The case of
strong springs corresponds to a condition in which the �rst unloading inelastic
path is characterized by points for which σ22 ą 0 (a specular response is obtained
for the other paths). At these points s ą 0 and 9s ă 0; hence, from (11.4.34b), this
happens when

σ22 “ ´
LB

t
´
L

t

”

µ ´ θ1
psq

ı

κ t θpsq ą 0 ñ κ t ą
B

pθ1psq ´ µqθpsq
. (11.4.39)

Clearly, a strong elastic interface favors the sliding back of the pro�les when the
deformation is reversed. The complementary condition characterizes the case of
weak springs.

A substantial di�erence with respect to the case of Section 11.4.1 is that the
inelastic branches are smooth when 9s has a constant sign: the loops are not pinched
any longer. This is a consequence of the fact that K1 pt θp0qq “ K1 p0q “ 0: the
elastic interface does not oppose any resistance in a neighborhood of s “ 0. Observe
as well that when s “ kp, k P Z, and 9s ‰ 0, equations (11.4.34) provide that
σ22 “ sgnp 9sqB L{t, where B L{t is the stress σy of �rst yielding.

The fact that the elastic branches are linear results from the straining of the
constituent tablets, supposed linear elastic. The shape of the pro�le makes a dif-
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(a) (b)

(c) (d)

Figure 11.14. Response for the triangular contact pro�les of Figure 11.7(a). Hysteresis
loop for s P r´p{2, p{2s: (a) �weak� interfacial springs and (b) �strong� interfacial springs.
Long tensile response (s " p{2) for (c) �weak� and (d) �strong� interfacial springs.

ference in the inelastic phase, associated with the progression of disarrangements.
For triangular pro�les, the trend is linear and strain-hardening for s P r0, p{2q,
as per Figures 11.14(a) and 11.14(b); a sawtooth response characterizes the long
tensile test of Figures 11.14(c) and 11.14(d). On the contrary, a smooth convex
curve is obtained for both sinusoidal and circular contact pro�les for s ą 0 and
9s ą 0. Sub�gures 11.15(a)-11.15(b) (sinusoidal) and 11.16(a)-11.16(b) (circular)
indicate that the behavior is strain-hardening at the beginning, approximately for
0 ă s ă p{4, and then strain-softening, for p{4 ă s ă p{2. The curves are anti-
symmetric for s ă 0 and 9s ą 0 with respect to the point pεy, σyq of �rst yielding
(the trend is analogous for 9s ă 0). Correspondingly, in the long tensile test the
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(a) (b)

(c) (d)

Figure 11.15. Response for the sinusoidal contact pro�les of Figure 11.7(b). Hysteresis
loop for s P r´p{2, p{2s: (a) �weak� interfacial springs and (b) �strong� interfacial springs.
Long tensile response (s " p{2) for (c) �weak� and (d) �strong� interfacial springs.

inelastic branch is described by a wavy smooth curve. Again, strong interfacial
springs dictate that negative values of σ22 are attained during the oscillations, due
to the powerful elastic return that accompanies the post-surmounting phase of
the pro�les. As before, the case of non-convex pro�les of Figures 11.17 provides a
more complicated response than the corresponding convex case of sinusoidal pro-
�les (Figure 11.15), being now the path followed after the �rst yielding composed
of a �rst strain-hardening branch which anticipates a strain-softening phase, a
subsequent (short) linear branch and, again, a hardening and softening trend until
s “ p{2 is reached. Anyway, the di�erence is formal, but not substantial, with
respect to the corresponding sinusoidal convex case.
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(a) (b)

(c) (d)

Figure 11.16. Response for the circular contact pro�les of Figure 11.8(b). Hysteresis
loop for s P r´p{2, p{2s: (a) �weak� interfacial springs and (b) �strong� interfacial springs.
Long tensile response (s " p{2) for (c) �weak� and (d) �strong� interfacial springs.

The comparison of Figures 11.14, 11.15, 11.16 and 11.17 with the corresponding
Figures 11.10, 11.11, 11.12 and 11.13 of the previous Section 11.4.1, shows that
the main di�erence introduced by the linear-elastic interfacial constraint is the
strain-hardening character of the inelastic branches, after the �rst yielding. This
is due to the fact that the interfacial forces increase as the shear induce dilatation
increases. Observe that the long tensile response formally recalls the stick-slip
frictional motion [217], in particular for the case of Figure 11.14(c) (triangular
contact pro�les), even if there is no distinction in the model between the cases of
static and dynamic friction.

...
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(a) (b)

(c) (d)

Figure 11.17. Response for the non-convex contact pro�les of Figure 11.9(a). Hysteresis
loop for s P r´p{2, p{2s: (a) �weak� interfacial springs and (b) �strong� interfacial springs.
Long tensile response (s " p{2) for (c) �weak� and (d) �strong� interfacial springs.

11.4.3 E�ects of the localized contact

The assumption of negligible change in shape of the contact pro�les during their
reciprocal sliding greatly simpli�es the calculations. In any case, the deformation
consequent to the localized contact forces could be considered, and the same ar-
guments, leading to the conclusions that the shape of the contact pro�les dictates
the macroscopic constitutive response, could be repeated, though at the price of a
more sophisticated analysis of the contact problem. In order to validate the results
of Sections 11.4.1 and 11.4.2, we now discuss the conditions for which the local
deformation can be neglected.
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Therefore, we now consider the localized contact between two curved surfaces
by using a Hertzian-like approach [225] under plane stress assumption. If the size
of the �attened contact area is small with respect to the characteristic size of the
pro�les, associated with the wavelength t p, the change in shape will be consid-
ered negligible. Viceversa, if this region is comparable with the wavelength, the
compliance of the asperities shall be taken into account. The problem is a�ected
by the mechanical properties of the material forming the lamellae, the level of

(a) (b)

(c) (d)

Figure 11.18. E�ect of the localized contact on the circular pro�les of Figure 11.8(b),
during tensile test under constant interfacial con�nement and elastic interfacial con-
straint. (a) Reference volume element, corresponding to a wavelength tp of the contact
pro�les. (b) Detail of the contact zone with indication of the �attened contact area (grey
solid line) of width 2a and the contact forces transmitted by the upper pro�le to the
lower pro�le (vertical and horizontal components Fv and Fh; normal and tangential com-
ponents FK and F{{). Half-width a of the contact area as a function of the slide s for: (c)
the case of �low� and �high� interfacial con�nement σc, and (d) the case of �strong� and
�weak� interfacial springs κ t.
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transversal con�nement and the slope of the contact pro�les. The actual cohesive-
frictional nature of the contact a�ects the norm and the direction of the localized
reaction force, which could not be fully appreciated in the proposed model, where
the Mohr-Coulomb law was de�ned on the inter-lamellar plane.

The triangular pro�les of Figure 11.7(a) provide for a contact between two
plane surfaces: the contact forces are distributed, so that a noteworthy change in
the shape of the pro�les is not expected. Of course, when the relative sliding s
approaches one half of the wavelength (s Ñ p{2), the tip of the teeth are in direct
contact, but this is a limit condition. In the real case, perfectly sharp teeth are
not expected; on the other hand, the tip of a sharp tooth is prone to break, thus
providing a blunt pro�le.

For curved pro�les, Hertz's theory applies. To illustrate, consider the circular
contact pro�les of Figure 11.8(b). One can isolate a representative volume element
corresponding to one wavelength t p, as per Figure 11.18(a). Assume that all the
asperities equally respond to the tensile stress σ22 applied to the lamellae, so that
the portions of Figure 11.18(a) are subjected to the net tensile stress t p σ22{L and
to the con�nement given by σ11 ´ K1pt θpsqq. Their resultant is balanced by the
contact force F (per unit lamellar width) at the contact point C, with components
Fh and Fv . Recalling (11.4.34a), these can be written as

Fv “
“

σ11 ´ K1
pt θpsqq

‰

t p , (11.4.40a)

Fh “ σ22
p t2

L
“ t pB `

“

µ ` θ1
psq

‰

Fv . (11.4.40b)

Such components are detailed in the left-hand picture of Figure 11.18(b), where the
�attened portion, of width 2a, is also indicated. From these, one can calculate the
components F{{ and FK, respectively parallel and normal to the tangent contact
plane, indicated in the right-hand picture of Figure 11.18(b).

According to Hertzian theory [225], assume that the width 2a of the �attened
contact region is dictated by FK , while the contribution of F{{ consists only in
the modi�cation of the contact stress �eld. Hence, if R denotes the radius of the
contact pro�les, one has

a “

g

f

f

e

2R FK

π
E

1 ´ ν2

, (11.4.41)

where E is the Young's modulus of the material and ν the Poisson's ratio.
Recall that, in the previous examples, the values E “ 87GPa and ν » 0.3,

compatible with a real nacre, were assumed. Figures 11.18(c) and 11.18(d) show
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the trend of a as a function of the slide s for the case of low and high interfacial
con�nement σc , and for the case of strong and weak interfacial springs κ t, respec-
tively. These correspond to the examples of circular pro�les reported in Sections
11.4.1 and 11.4.2, whose parameters are collected in Tables 11.1 and 11.2. For
nacre (see Section 11.1.1), one can assume t » 400 nm, so that t p » 50 nm. From
Figure 11.18 one �nds 2a ď 0.47 nm, a value that is less than 1% of the wavelength
of the asperities. This conclusion validates the hypothesis of negligible change in
shape of the contact pro�les during sliding.

11.4.4 Comparison with real nacre

The analysis of the previous sections has demonstrated the great potential of the
proposed model in its capability to reproduce a wide spectrum of responses. It is
now shown how the model parameters can be calibrated to speci�cally reproduce
tensile tests on real nacre. Reference is made to the experimental results reported
by Barthelat et al. [198] and by Evans et al. [192]. The model with the linear-
elastic interfacial constraint should be preferred, because in real nacre the biological
polymeric interlayer bridges the lamellae, without external con�nement. Therefore,
as in Section 11.4.2, consider σ11 “ 0 and K1 pt θpsqq “ κ t θpsq.

Figures 11.19(a) and 11.19(b) respectively show the experimental curves (green
solid line) by Barthelat et al. [198] and Evans et al. [192]. In the same �gures, the
results (black dotted line) from the model are presented for the case of circu-
lar contact pro�les, for which mechanical parameters are collected in Table 11.3.
This case is referred to as �short yielding� because it corresponds to s P r0, p{2q:
surmounting of the contact pro�les is not achieved. In fact the asperities are big
enough (parameters p and A in Table 11.3) to cover the whole inelastic branch in
this range. The agreement between theory and experiments is excellent.

Another possibility is to consider circular pro�les with smaller asperities (pa-
rameter A) and shorter period (parameter p). In this way, with a mechanism
analogous to that providing the long tensile response (Sections 11.4.1 and 11.4.2),
the inelastic phase, associated with a horizontal plateau, results from multiple sur-
mountings of the contact pro�les. Figure 11.19(c) shows this second choice, referred
to as �long yielding�, for the parameters reported in Table 11.3. The comparison
with the experiments reported in [192] indicates a less accurate �tting with re-
spect to the short yielding case, especially for what concerns the �llet between the
elastic branch and the plastic plateau, but the asymptotic tensile response can be
accurately reproduced.

Since the thickness of aragonite tablets is of the order of t » 400 nm (Section
11.1.1), the height of the asperities for the case of short yielding is t A » 32 nm.
This value agrees with the size of asperities found in abalone nacre [199]. This
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(a) (b)

(c) (d)

(e)

Figure 11.19. Comparison of the theoretical results with the experimental stress-strain
curves for nacre. Case of �short yielding�, with big asperities and s P r0, p{2q, reproducing
the dataset (a) by Barthelat et al. [198] and (b) by Evans et al. [192]. (c) Case of �long
yielding� (small asperities and s " p{2), reproducing the test curve by Evans et al. [192].
Comparison with other models for nacre: (d) TSC network analysis by Yan et al. [218],
and (e) �nite element analysis by Evans et al. [192].
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Table 11.3. Parameters for the cohesive-frictional model and the circular contact pro-
�les, used to �t the experimental results reported in the plots of Figures 11.19(a), 11.19(b)
and 11.19(c).

response short yielding short yielding long yielding

reference Barthelat et al. [198] Evans et al. [192] Evans et al. [192]

E (GPa) 78.00 78.00 78.00
κ t (MPa) 20.00 28.00 28.00
σy (MPa) 56.00 95.00 118.00

B (MPa) 2.80 4.75 5.90
µ (´ ) 0.1 0.1 0.1

p (´ ) 0.3811 0.2771 0.0104
A (´ ) 0.1100 0.0800 0.0030
t{L (´ ) 0.05 0.05 0.05

Table 11.4. Parameters for the cohesive-frictional model and for the contact pro�les,
used in the comparison with other models reported in Figures 11.19(d) and 11.19(e).

comparison with TSC network FEM analysis

reference Yan et al. [218] Evans et al. [192]

pro�les circular sinusoidal

E (GPa) 15.00 70.00
κ t (GPa) 1.50 29.00
σy (MPa) 30.00 0.00

B (MPa) 12.00 0.00
µ (´ ) 0.1 0.2

p (´ ) 0.0416 0.2000
A (´ ) 0.0120 0.0100
t{L (´ ) 0.40 0.50

suggests that, in real nacre, the yielding mechanism develops with a short shearing
of the contact pro�les. In this case, the bridging provided by the biopolymeric �brils
can survive because their elongation is small. On the contrary, the condition of long
yielding, with a pseudo-horizontal branch, corresponds to di�erent mechanisms, in
which one may expect the breakage of the extremely-elongated �brils, and/or the
blunting (due to localized breakage for stress concentration) of the teeth of the
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contact pro�les at their tip after their �rst surmounting. Moreover, it may be
possible, especially in a stress-driven test, that the pro�les directly slip over the
peaks of the asperities after the �rst short-yielding phase, as detailed in [192].
Therefore, referring to the discussion reported in Remark 2 of Section 11.3, the
case of short yielding is not in contrast with the hypotheses at the base of the
model, in particular the invariability of the shape of contact pro�les and of the
cohesive contribution.

Further in-silico tests were performed to compare our model with other mod-
els. In particular, Yan et al. [218] developed a tension-shear-chain (TSC) network
model, where linear-elastic tablets are connected by shear- and tension-resistant
interfaces, such as in a brick-mortar arrangement. The authors accounted for mi-
crostructural randomness of the assembly, �nding a family of curves in the σ22´ε22
plane. Although we do not consider microstructural randomness, by considering
circular pro�les with the same average geometrical parameters of [218], collected
in Table 11.4, we �nd the curve shown in Figure 11.19(d) (black solid line). This is
consistent with the �ndings by Yan et al. [218] with the TSC model, which provide
a range of values (due to the random microstructure) within the green-shaded area
reported in the same �gure.

A second comparison is with the FEM analysis also reported by Evans et al.
[192]. The authors considered two (half) lamellae with sinusoidal contact pro�les,
sheared apart in a numerical tensile experiment, for which the frictional contact
was modeled along the actual contact wavy interface. In particular, we refer to the
plot recorded in [192] for a friction coe�cient equal to 0.1, for which results are
provided in terms of the non-dimensional quantities ∆ and Γ, which, according to
our notation of Figure 11.4, are de�ned as

∆ “
Λ

t p
Λ0“0

ÝÝÝÝÝÝÝÑ ∆ “
2 t s

t p
“ λ

1

t{L

1

p{2
, (11.4.42a)

Γ “
σ22 t

2

E AtL

´

1 ` ν
L

t

¯

“
σ22
E A

t

L

´

1 `
ν

t{L

¯

, (11.4.42b)

where E “ 70GPa is the Young's modulus of the lamellae and ν “ 0.2 the Poisson's
ratio, as in [192]. Given the values of ∆ and Γ, one can plot the stress σ22 as a
function of the inelastic elongation λ in the corresponding direction. In Figure
11.19(e), results from our model (black dotted line) are compared with those by
Evans et al. [192], for which the red dots corresponding to the FEM simulations
are �tted with a continuous semi-empirical curve. Remarkably, even if we do not
consider the deformation of the pro�les in contact, the agreement is very good,
once the model parameters have been tuned according to the values of Table 11.4.
Note that the non-dimensional parameters A, t{L and 2L{pptq are the same as
in [192], but the spacing between the �dilatation bands�, as de�ned in [192], has
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been set equal to the distance L, in order to obtain the a geometric correspondence
with our model.

The above results show the possibility of reproducing the experiments on the
real nacre through the proposed model for shear tensegrities. Remarkably, despite
the simplifying hypotheses, the proposed model is not in contrast but comple-
ments the di�erent models for nacre presented by other authors, while providing
a mechanical interpretation of the mechanism through which structural capacity
is achieved.



Chapter 12

Final remarks

12.1 Contributions

Flexural tensegrity represents an innovative structural concept, to achieve the �ex-
ural integrity of a chain of segments in unilateral contact by pressing them one
another with tensioned cables (tendons), in order to form a beam-like structure
with load bearing capacity under bending. The contact surfaces are curved and
shaped in such a way that their relative movement is that of pure rolling along
design pitch lines. The resulting contact constraint between the coupled segments
is macroscopically equivalent to a spring hinge, but with nonlocal constitutive re-
sponse. This is due to the interaction between all the joints, resulting from the
fact that the tendon is unbonded, i.e., it is free to slide inside the segments, being
anchored only at the end segments of the chain. In principle, any kind of consti-
tutive response can be obtained, as a function of the tensile force in the cable and
its axial sti�ness, with a proper design of the pitch lines along which the segments
roll. The construction is very simple, and the joints are made with massive compo-
nents, without minute parts that are potentially subject to damage. Redundancy
and structural robustness can be achieved by using more than one cable, de�ning
a con�guration with multiple prestressing tendons placed in parallel, or using a
braided strand, so to avoid collapse if one wire of the strand breaks. The struc-
ture can be packaged and deployed by simply pulling the cables. Moreover, since
the constitutive response of the spring hinges depends upon the tensile force in
the cables, its active control can tune the structural response according to speci�c
requirements. The concept can also be extended to two- and three-dimensional
geometries, to form �exural-tensegrity plates, shells, and solids.

Starting with the simplest case in which the segments are held together by
a centroidal cable, con�ned in a tubular sheath within the segments, the struc-
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tural concept has been analyzed, modeled, prototyped and tested, as illustrated in
Chapter 2. Despite a few simplifying hypotheses, such as the neglecting of frictional
e�ects and the assumed rigidity of constituting segments, which will be considered
in future work, a good agreement is found between the experimental results and
the theoretical predictions.

In the continuum limit, presented in Chapter 3, it has been shown that the
structure falls within the category of Euler's elastica. More precisely, since the
tensile force in the tendon depends also upon the overall bending of the beam, the
strain energy is characterized by a nonlocal contribution. In particular, the bending
sti�ness depends, through a squared Lebesgue norm, on the whole curvature �eld.
For this reason, the theory provides a nonlocal model, recovering the classical Eu-
ler's elastica when the nonlocal term is negligible (�rst-order approximation, when
the tensile stress in the tendon is supposed to remain constant). The continuum
model does not carry the inconsistencies, especially for what concerns the edge
conditions, of other nonlocal models for beams, in which the bending depends on
the convolution of the curvature �eld with an averaging kernel, with either com-
pact support or fast decay at in�nity. The analytical research of the equilibrium
con�gurations of the nonlocal elastica under imposed loads, relies upon the same
methods of the classic Euler's elastica, implying the solution of elliptic integrals
and the use of hypergeometric functions. This type of approach has been con�rmed
by a direct numerical calculation in paradigmatic model problems, for which the
possibility of using shape functions to approximate moderate curvature �elds has
also been investigated.

The nonlinear e�ects in the dynamic response of �exural-tensegrity beams have
been discussed in Chapter 4. The unbonded tendon is anchored to the end seg-
ments through the interposition of Kelvin-Voigt elements (linear spring and linear
dashpot), but its tensile force may also be modi�ed by an actuator. The kinematics
is still driven by the shape of the intersegmental contact surfaces, which dictates
the tendon elongation; this nonlinearly a�ects the reaction forces of the end springs
and dashpots, thus modifying the dynamic response of the structure. Depending
on the mechanical parameters of the cable and the Kelvin-Voigt elements, the re-
sponse is that of either a harmonic or a Du�ng oscillator. On the other hand, the
modi�cation of the tensile force in the tendon provides the variation of the bending
sti�ness of the beam, thus exciting or reducing the oscillations. Simple experiments
on the free vibrations of cantilevers also allowed for a preliminary characterization
of dissipation sources for the segmental assembly. These can be modeled by linear
rotational dampers at the joints, i.e., providing a dissipative moment that linearly
depends on the speed of relative rotation of the coupled segments, and through a
constant parasitic friction moment at the joint.

In Chapter 5, a special subclass of �exural tensegrities, capable of exhibiting
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multi-stable static states for certain values of the deformation, has been conceived,
theoretically analyzed, prototyped and tested. In principle, it is possible to achieve
a non-convex strain energy pro�le with arbitrary values of the energy wells, by
properly designing the pitch lines that de�ne the relative movement between the
segments. However, there are limitations consequent to material interpenetration
and sliding of the contact surfaces that realized the pitch pro�les, which still need
to be recognized and categorized in detail. The case of piecewise circular pitch lines
for the contact surfaces, together with the enhancement of the tendon mobility in-
side hourglass-shaped cavities carved in the segments, ful�lls the aforementioned
physical constraints. It is then possible to obtain equilibrium states under pure
bending that can be non-symmetric at certain levels of the applied actions (im-
posed rotations or couples at the ends), being characterized by diverse rotations
(phases) at the various contact joints. Under monotonic loading, the sti�ening due
to the nonlocal action of the unbonded cable provides Maxwell paths and maximum
hysteresis paths, which are strain-hardening in type, being characterized by �nal
pseudo-linear growth, whose steepness increases with the rotations. Under cyclic
actions, well de�ned hysteresis loops are obtained, with strain-hardening branches
in the regions of phase (rotation) coexistence. This response qualitatively agrees
with the experimentally measured pseudoelastic response of shape memory alloys,
as well as with the response of biological tissues and macro-molecules, driven at
the microstructural level by the breakage and rearrangement of internal bonds.

Thanks to a further improvement in the mobility of the cable inside broader
segmental cavities, an innovative movable cantilever beam has been conceived.
Theoretical model and experiments are recorded in Chapter 6. The new design
allows for a multi-articulated global snapping between two distant globally-stable
structural con�gurations, in response to one single perturbation, here represented
by the relative rotation of a pair of segments. The major properties of such a
structure are: i) the motion is autonomous, as it is activated by a slow perturbation
(rotation) of one joint, with no need of special control devices; ii) the motion is
reversible, since, by changing the sign of the perturbation, snapping occurs in
the opposite direction; iii) the stable con�gurations do not need to be secured by
locking devices, because they are well separated by an energetic barrier; iv) the
driving system can be realized through a simple crank and crankshaft mechanism,
connected to a motor at low revs; v) the structure is robust, since it is made
of massive segments and the tendon can be composed of parallel wires, to avoid
collapse in case of breakage of one wire. Since the structure behaves like a tail
that �agellates, if cyclicly actuated, this can �nd speci�c applications to robotics,
launching devices (such as catapults) and propulsion in �uids.

The extension of �exural-tensegrity beam-like structures to three-dimensional
assemblies has been proposed in Chapter 7. They have been referred to as �extegrity
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lattices, where �extegrity is the contraction of the coupled words �exural-tensegrity.
They are composed of segments in a simple cubic arrangement, mimicking a com-
pact assembly of spheres in pure rolling contact. The concept has been proposed,
theoretically analyzed, prototyped in physical models and tested. Geometric com-
patibility provides a kinematic skeleton which constrains the energetic landscape,
enforcing constitutive properties that are dictated, beside the sti�ness and preten-
sion of the tie tendons, by the shape of the pitch surface of the contact joints. The
lattice can represent a mesoscopic model for the homogeneous microstructure of
a crystal with interacting molecules, whose qualities as a whole depend upon the
orientation of the molecules and the mutual forces acting between them. Meta-
materials built upon �extegrity lattices enjoy particular bulk properties and are
amenable of (molecular) vibrations, which suggests their use as resonators.
The static-kinematic analysis has also demonstrated that the lattice can support
self-equilibrated stress states (eigenstress). This �nding could be related to pos-
sible strategies for the growth of the crystal by the addition of layer after layers,
and suggest a possible way by which contact forces can be increased by inserting
molecules with di�erent size into the lattice, as well as motivate the change in the
microstructural orientation in response to the thermal expansion of the molecules.
The particular kinematic, supplemented by the consideration of electric charges
on the segments, could also represent a mesoscopic model for piezoelectric e�ects.
The analyzed cases represent the simplest �extegrity lattices. One can imagine
three-dimensional grids composed of segments with diverse geometry, di�erent
contact surfaces, possibly amenable of multiple equilibrium states, representing a
transition from chiral to non-chiral phases as a consequence of thermal or mechan-
ical stimuli. An improved model could account for the di�erent response of the
assembly under tension, compression and bending, by considering the detachment
of segments. Anyway, the dynamics of the lattice, for what concerns either the
global response of the whole, or the local vibrations at the segmental (molecular)
level, possibly complicated by the fact that multi-stable contact joints may snap
in response to localized perturbations, still need to be analyzed more in detail in
future work.

The tailor design of hinge-based and self-aligning �exural-tensegrity structures
with tunable response can have many potential applications at various length
scales. Microfabrication allows to manufacture nano- to centimeter-scale devices
for biomedical structures ranging from implants for prosthetics or for controlled
drug delivery, to recon�gurable surgical tools such as catheters, possibly equipped
with grippers actuated by the same tendons, which could also be designed to re-
spond autonomously to speci�c chemical or temperature changes. In robotics, low-
inertia cable-actuated compliant beams are particularly suitable for (humanoid)
parallel recon�gurable arms and manipulators in di�erent workspaces; moreover,
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the structural system can mimic the movement of the limbs of microorganisms,
such as the �agella of bacteria, or the mechanical characteristics of macromolecules,
such as nucleic acids, especially in their capability of being transformed with very
small variations at the level of the underlying microstructural constituents (here
represented by the tuning of cable sti�ness and prestress). Other potential appli-
cations are certainly in collapsible-deployable structures: foldable legs for camping
furniture, landing sleds for drones, substructure for a membrane that folds and
opens up like a �ower, conveyors that work with movable villi or cilia.
At the bigger scale of aerospace applications, structures with morphing capability
may de�ne their aeroelastic properties. Moreover, the possibility of packaging, de-
ployment and active control of the sti�ness, possibly obtained with tendons made
with shape-memory-alloy wires, permits the transport on spacecrafts, the segmen-
tal construction, the compliant adaptability and the reduction of the vibrations.
In the broad �eld of architecture, the proposed structural element, used alone
as a beam or an arch, or assembled in the form of spatial grids, may also meet
the increasing demand for solutions capable of transforming the living space for
anthropic and environmental needs, such as the optimization of solar radiation
according to daily or seasonal changes. A few of these envisaged applications have
been analyzed more in detail, to complement the theory with a feasibility study.

The �rst application is in archery, and it has been addressed to the manufac-
turing a new �ex-ten bow, presented in Chapter 8. The bow is a launching device
based on the elastic properties of the components, and represents a paradigmatic
example to test the developed theory, comparing results of the dynamical model
with experiments. Moreover, the possibility of tailor-shaping the pitch pro�les, to-
gether with a tunable prestress for the cables, can be fully exploited to achieve a
constitutive property in bending that meets the needs of the archer to optimize
the �ring performance. There is no need to use special materials to manufacture a
�ex-ten bow, because the constitutive properties result from geometry, i.e., from
the shape of the contact surfaces between the segments. There are also further ad-
vantages in the modular construction: the components are simple and massive; the
sti�ness of the limbs can be modi�ed by releasing/tensioning the tendons; segments
with di�erent contact surfaces are interchangeable; the bow length can be varied
by adding/removing segments; the bow can be easily assembled/disassembled and
the components packed in a small box.
The example of the bow is interesting because, in both professional and sports ap-
plications, it is necessary to take into account various performance indices, often
antithetical and sometimes con�icting. Indeed, optimizing the bow properties is dif-
�cult and requires maximum freedom in the design parameters. Here, non-recurve
�ex-ten bows have been considered. Two designs have been proposed, which di�er
in terms of the laws describing, as a function of the segmental relative rotation,



312 Chapter 12. Final remarks

the lever arm of the internal forces at each contact joint. It has been theoretically
and experimentally demonstrated that a sub-linear law provides advantages with
respect to a linear relationship in terms of arrow exit speed, while the opposite
holds in terms of energetic e�ciency. A limitation of this study is that only two
categories of bow prototypes have been analyzed in detail. On the one hand, the
shape and mass of the segments can certainly be further optimized; on the other
hand, various di�erent geometries for recurve bows could be obtained with seg-
ments of identical shape, simply by varying the position of the hole through which
the tendon passes. The use of segments with multiple holes would give the archer
the additional possibility to modify the geometry in the unbraced con�guration,
according to speci�c needs. In addition, the use of multiple cables, with di�erent
placements and prestressing forces, could increase the bow performance and make
the device more structurally robust. All these potentialities have yet to be fully
explored and appreciated.

The possibility, as an experimental proof-of-concept, of using �exural-tensegrity
beams as propulsion mechanisms to mimic the swimming of �sh has been investi-
gated in Chapter 9. The proposed device adopts the design of the snapping �ex-ten
cantilever, and the propulsion capacity has been characterized by parametrically
varying the number of segments and the shape of their internal cavities, also con-
sidering the e�ect of a terminal �n, either clamped or hinged to the cantilever
tip. The concept has been �nally demonstrated for the propulsion of a toy vessel.
The results suggest that the �exural-tensegrity concept of the snapping cantilever
could �nd application in marine propulsion. However, there are limitations, which
can be hopefully addressed by future studies. For the cantilever and the tip �n,
just a few elementary schemes were considered, which are presumably far from
being optimal; �exible �appers with pro�led geometries could be added; a limited
range of frequencies was tested, only in water; theoretical modeling of the �uid-
structure interaction is needed to rationalize the blending between elastic and
inertial forces, together with drag and viscous forces in the �uid. Furthermore, to
evaluate the real advantages of our system, it will have to be compared with other
types of non-snapping simple �appers. Nevertheless, experimental �ndings indicate
exciting new avenues for future investigations on bio-inspired �exural-tensegrity
propulsion. Potential applications could be considered at di�erent length scales:
microthrusters for medical microrobots (capable not only of swimming in highly
viscous human �uids, but also of climbing blood vessel walls or acting as stents),
amphibious vehicles to move in marshes, and submarines with silent bio-mimetic
propulsion units.

Further �elds of application, explored in Chapter 10, range from kinetic ar-
chitecture, to soft robotics, to industrial design. More speci�cally, kinetic struc-
tures to support envelopes for shielding and water collection have been proposed
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and small-scale prototypes have been manufactured. In addition, cable-actuated
robotic limbs have been presented, 3D-printed and tested in the �eld. Despite the
structure was actuated by hand in the presented examples, electric or hydraulic
actuators, and the related control systems, can be readily developed according
to the speci�c need. Finally, a desk lamp with a �ex-ten tunable arm has been
designed and prototyped. Here, the bent shape of the �ex-ten arm can be tuned
by varying the tension force in the cables, which also convoy electricity, while the
segmental construction allows for industrialized production. The lamp can be sold
as an assembly kit.

To complement the study on �exural tensegrity, a di�erent type of kinematics
was explored in Chapter 11. This corresponds to the sliding of initially-matching
plates along wavy surfaces, rather than the case of pure rolling along pitch pro-
�les. This de�ne a laminar brickwork-like segmental assembly, which has been
called shear tensegrity. More in detail, the laminar material of shear tensegrities
is formed by an assembly of tiles with rough contact surfaces. The considered
microstructural arrangement is inspired by nacre (mother-of-pearl), composed of
tablets of aragonite arranged in lamellae, connected by organic polymeric inter-
layers to form laminates. The model considers the disarrangements consequent to
the sliding of the wavy contact surfaces between adjacent lamellae within struc-
tured deformation theory. The interfacial resistance to sliding is taken into account
through an average cohesive-frictional law, e�ective at the level of average separa-
tion plane. The localized contact of the surface asperities is supposed to negligibly
deform the contact pro�les, and the conditions for which this hypothesis is consis-
tent have been discussed. Similarly to what happens for the complementary case
of �exural tensegrities under bending, the geometry of the contact pro�les at the
interface represents the main characteristic, which dictates the constitutive prop-
erties of the material when sheared in the lamellar plane. Another key point is
represented by the gradual surmounting of the asperities of the interface pro�les,
which produces a shear-induced dilatation, constrained by the bridging o�ered by
the (organic) interlayer, as well as by a transverse (external) con�ning stress.

The proposed model considers �on average� the elastic deformation of tablets
and interlayers, thus bypassing the noteworthy di�culties associated with the so-
lution of the microscopic contact problem. The model spans multiple length-scales,
associated with the size of the surface asperities, the thickness and diameter of the
tablets and the thickness of the interlayers. By changing the model parameters, it
is possible to cover a wide spectrum of responses, characterized by pinched hys-
teresis loops under cycling strain-driven tests, and serrated inelastic deformations
for long tensile tests. The shape of the inelastic branches can be linear, convex,
concave, strain-hardening or strain-softening, according to the shape of the contact
pro�les, the sti�ness of the interlayers and the possible external con�ning stress.
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The relevant parameters can be calibrated to reproduce the experiments on real
nacre, but the model is of much more general importance, because it can be applied
to a broad class of hierarchical lamellar metamaterials.

Although more general loading scenarios can be considered, rather than the
case of bi-axial plane stress here analyzed, and a direct experimental validation
of the model is still missing, the proposed theoretical framework could guide the
design of innovative organized arrangements of sub-components, with tailored en-
hanced constitutive properties. The insights gained through the analytical model
o�er promise for conceptual designs of isolators/dissipators, laminated composites,
resilient shields, and deployable structures.

12.2 Conclusions

The term �exural tensegrity, in short �extegrity or �ex-ten, is an invention: partially
borrowing the original portmanteau tensegrity, coined by Buckminster Füller, it
represents the contraction of tension-induced integrity under �exure. By extending
Füller's concept, it describes a structural principle in which the shape deforma-
tion is governed, and the constitutive behavior is determined, by the geometry of
discontinuous compression members pressed in unilateral contact by the force of
continuous tensile elements. In the original tensegrities by Füller and Snelson, com-
pression members are local islands, represented by �oating struts, held together
by a cable net. In �exural tensegrities, the compression islands are joined by isth-
muses represented by the contact points, whose position depends upon geometry
and deformation level, being detachment avoided by the tensile embracement of a
few seamless prestressing tendons. This provides the ability to bend increasingly,
without breaking or coming asunder, since the contact point represents a leverage
fulcrum for which the geometry of neighboring compression members dictate the
lever arm of the internal forces, arising from the stretched tendons, to balance the
external loads.

Energy can be harvested in properly shaped systems and made available in re-
sponse to localized stimuli. Three dimensional geometries can be achieved thanks
to the multidirectional shaping of the contact surfaces. Through an ideal limit pro-
cess, the segmental-chain construction can be conceptualized as a continuum rod,
reducing to classical models, like Euler's elastica, but with non-classical character-
istics, in particular the nonlocal character of the constitutive bending properties.
The concept can be declined in the alternative form of shear tensegrity, for which
the deformation is not any more �exural, but indicated by the relative sliding
(shearing apart) of compressed lamellae with shaped surfaces, interconnected by a
network of tensile �brils. Other forms are yet to be fully explored and appreciated.
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In the broad �eld of engineering structures, applications are in metamaterials,
biomedical tools, robotic limbs, tunable aerospace sca�oldings, locomotion in �u-
ids via tail-like propulsion units, and transforming (kinetic) architecture. The main
advantages consist in the tailored constitutive relationships, the tunable sti�ness,
the self-aligning and foldable/deployable properties, all achieved with a very sim-
ple modular construction. Many natural systems, if properly understood, can be
regarded as tensegrity structures, i.e., pure tensegrities in the classical sense, �exu-
ral tensegrities, shear tensegrities, or other variants. Examples have been proposed
for material lattices with a kinematic skeleton of non-pointwise meso-particles (ful-
lerite), as well as for biological laminates (nacre).

The theoretical framework is still limited and some simplifying hypotheses
should be removed in a more general comprehensive approach. For what concerns
the constitutive laws, a more detailed experimental activity is necessary for a better
understanding of dissipative phenomena, i.e., those of frictional nature (between
adjacent segments, and between the tendon and the segments), the damping due
to the hysteretic material deformation and the interaction with the surrounding
medium (air, water). In addition, the deformation of the segments renders the
contact not anymore pointwise, as assumed in the theoretical models, with a con-
sequent modi�cation of the energy landscape. What I have proposed is just the
conceptualizing model, which can be reliably programmed to reproduce structur-
ings at various length-scales of humanly discernible magnitudes, at various levels
of super�cial and volumetric hierarchies.

Despite all the conceptual and practical limitations of my dissertation, I believe
that I have been able to demonstrate, albeit tentatively, that the �exural-tensegrity
concept, although very simple, has a lot of potential in various �elds of application.
Let me then conclude by citing one of the aphorisms by Buckminster Füller: �I am
concerned with �nding new technical ways of doing more with less�.
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