
 

 

 UNIVERSITA’ DEGLI STUDI DI PARMA
 

 

DOTTORATO DI RICERCA IN 

“TECNOLOGIE DELL’INFORMAZIONE” 

CICLO 34 

Towards Intelligent Serious Games:  

Integrating Deep Knowledge Tracing and Transformer-based Recommendation 

Coordinatore: 

Chiar.mo Prof. Marco Locatelli  

 

Tutor: 

Chiar.mo Prof. Francesco Zanichelli  

    

                            Dottorando: Baha MG. Thabet  

 

Anni 2018/2019 – 2020/2021



 

 



 

 

 

 

 

 

Alla mia famiglia 

To my FATHER who passed away last year while waiting for my PhD. degree... May God have mercy 

upon your soul 



 

 

 



Contents 

List of Figures .............................................................................................................. 0 

List of Tables ................................................................................................................ 0 

Abstract ........................................................................................................................ 0 

Introduction .................................................................................................................. 1 

Literature Review ......................................................................................................... 7 

2.1 Serious Games Data Analytics ........................................................................................................... 7 

2.2 Serious Games frameworks ............................................................................................................ 11 

2.3 Knowledge Tracing (KT)................................................................................................................... 13 

2.2.1 Probabilistic Knowledge Tracing (PKT) ..................................................................................... 14 

2.2.2 Deep Knowledge Tracing (DKT) ................................................................................................ 14 

2.2.3 Neural Networks Models ......................................................................................................... 15 

2.4 Transformer-based Models ............................................................................................................. 17 

Intelligent Serious Games Model .............................................................................. 21 

3.1 Model Overview .............................................................................................................................. 21 

3.2 iGDA A Conceptual Serious Games framework ............................................................................... 23 

3.2.1 iGEM ........................................................................................................................................ 27 

3.2.2 Dynamics .................................................................................................................................. 28 

3.2.3 Achievements........................................................................................................................... 28 

3.3 Learning Analytics (LA) .................................................................................................................... 29 

3.3.1 LA Player’s Model ..................................................................................................................... 29 

3.3.2 Learning Analytics Environments ............................................................................................. 31 

3.3.3 DKT-Each Sequence Length Approach ..................................................................................... 32 

3.3.4 Hybrid-Deep Knowledge Tracing (RNN-CNN) ........................................................................... 33 

3.3.5 DKT-Missing Sequence Padding Method.................................................................................. 35 

3.4 Transformer-based Recommender ................................................................................................. 37 

3.4.1 Spaced Repetition and Flashcards Approach ........................................................................... 38 

3.4.2 Recommendation and Filtering Context .................................................................................. 39 

3.4.3 Transformer-based Recommender Architecture ..................................................................... 40 

3.4.4 Transformer-based Recommendation Algorithm .................................................................... 41



 

3.4.5 Transformer-based Flashcards Generation Framework ........................................................... 42 

3.5 xAPI Tracker .................................................................................................................................... 44 

3.5.1 Experience APIs ........................................................................................................................ 45 

Experiments and Results .......................................................................................... 46 

4.1 iGDA Serious Games Framework .................................................................................................... 47 

4.1.1 C++ Code Challenge Learning Outcomes Matrix ...................................................................... 49 

4.1.2 C++ Code Challenges Online Quiz............................................................................................. 51 

4.1.3 xAPI Integration and Learning Records Store ........................................................................... 52 

4.1.4 Results ...................................................................................................................................... 53 

4.1.5 Summary .................................................................................................................................. 58 

4.2 Hybrid-Deep Knowledge Tracing ..................................................................................................... 59 

4.2.1 Dataset 1 Preprocessing for Training ....................................................................................... 59 

4.2.2 Dataset: Simulated-5 (Baseline) ............................................................................................... 60 

4.2.3 Model Configuration ................................................................................................................ 61 

4.2.4 Design of Experiments ............................................................................................................. 61 

4.2.5 Results ...................................................................................................................................... 62 

4.2.6 Summary .................................................................................................................................. 67 

4.3 Transformer-based Paragraph Generation ..................................................................................... 68 

4.3.1 Dataset 2: Programming Skills Guide ....................................................................................... 68 

4.3.2 Design of Experiments ............................................................................................................. 69 

4.3.3 Results ...................................................................................................................................... 70 

4.3.4 Summary .................................................................................................................................. 74 

4.4 Transformer-based Answer Generation .......................................................................................... 75 

4.4.1 Dataset 3: Programming Skills Summaries ............................................................................... 75 

4.4.2 Design of Experiments ............................................................................................................. 76 

4.4.3 Results ...................................................................................................................................... 77 

4.4.4 Summary .................................................................................................................................. 80 

4.5 Transformer-based Questions Generation...................................................................................... 81 

4.5.1 Dataset 4: C++ Questions/Answers .......................................................................................... 81



 

4.5.2 Design of Experiments ............................................................................................................. 81 

4.5.3 Results ...................................................................................................................................... 83 

4.5.4 Summary .................................................................................................................................. 86 

4.6 Flashcards Generation Summary .................................................................................................... 87 

Conclusions and Future Work .................................................................................. 89 

5.1 Conclusions ..................................................................................................................................... 89 

5.2 Future Work .................................................................................................................................... 91 

5.2.1 Integration of The Intelligent Model ........................................................................................ 92 

Bibliography ................................................................................................................. 0 

 

 



 

 

 

 

 

 

 

 

 

 



List of Figures 

Figure 1. The Intelligent Serious Games (ISG) Components ........................................ 22 

Figure 2. Learning Based-Achievements Model ........................................................... 24 

Figure 3. Inputs-Process-Outcomes by Garris ............................................................. 25 

Figure 4. iGDA Framework combines three prior models ............................................. 26 

Figure 5. iGDA Framework .......................................................................................... 27 

Figure 6. Conceptual Model Process of Learning Analytics ......................................... 30 

Figure 7. Learning Analytics and SG Environment ....................................................... 31 

Figure 8. Deep Knowledge Tracing-based Hybrid Model ............................................. 34 

Figure 9. Missing Sequence Values Prediction Problem .............................................. 36 

Figure 10. Transformer-based Recommender ............................................................. 38 

Figure 11. Transformer-based Recommender System Architecture ............................. 40 

Figure 12. Transformer-Based Recommendation Algorithm ......................................... 41 

Figure 13. Fully Automated Flashcards Generation Framework ................................... 43 

Figure 14. xAPI Tracker ............................................................................................... 45 

Figure 15. C++ Code Challenge Serious Game ........................................................... 48 

Figure 16. Code Challenge .......................................................................................... 49 

Figure 17. C++ Online Quiz for Dataset ....................................................................... 51 

Figure 18. C++ Code Challenge Results (Skills Proficiency Distribution) ..................... 56 

Figure 19. xAPI Captured Statements .......................................................................... 58 

Figure 20. AUC prediction performance range for all 22 sequence lengths .................. 64 

Figure 21. Prediction performance trend for all sequence lengths for each model ....... 66 

Figure 22. Prediction performance trend for all sequence Lengths for GRU – Hybrid 

GRU-CNN .................................................................................................................... 66 

Figure 23. Average Cosine Semantic Similarity Scores and Summary Ratio ............... 78 

Figure 24. Science Questions Generation Performance Trend .................................... 86 

Figure 25. Proposed Activity Diagram for the C++ Code Challenge ............................. 93 

Figure 26. Mock-up of Prediction and Recommendations in Action.............................. 93 

 

 



List of Tables 

Table 1. DKT-Missing Sequence Padding (MSP) Algorithm ......................................... 36 

Table 2. C++ Code Challenge Learning Outcomes Matrix ........................................... 50 

Table 3. xAPI Statement .............................................................................................. 52 

Table 4. Example of Instructional Element and Game Elements Mapping ................... 53 

Table 5. Example of Instructional Mechanics and Game Mechanics Mapping ............. 54 

Table 6. Questions’ difficulty and satisfaction ............................................................... 55 

Table 7. Responders' Self-evaluated C++ Proficiency Level ........................................ 55 

Table 8. C++ Code Challenge Dataset......................................................................... 60 

Table 9. Prediction at Each Sequence Length Input/Output ......................................... 62 

Table 10. AUC/ACC Prediction Performance (Average for all Sequence Lengths) ...... 63 

Table 11. AUC Prediction’s Performance on Each Sequence Length for C++CCH 

Dataset ........................................................................................................................ 65 

Table 12. Sequence 11 prediction using 5 missing sequence padding method ............ 67 

Table 13. Tags Structure.............................................................................................. 68 

Table 14. Tags Structure Example ............................................................................... 69 

Table 15. Testing sets: Prompt structure and Output ................................................... 70 

Table 16. Models Performance .................................................................................... 71 

Table 17. Comparison between the generated and the reference Texts ...................... 72 

Table 18. Generated code samples with prefix tags ..................................................... 73 

Table 19. N-gram Performance Results for The Flashcard Sample ............................. 74 

Table 20. Average Performance of Generated Answers .............................................. 77 

Table 21. Examples of Generated Answers ................................................................. 79 

Table 22. Performance of C++ Questions Generation .................................................. 83 

Table 23. Examples of Generated Questions ............................................................... 84 

Table 24. Performance of Science Questions Generation ............................................ 85 

Table 25. Examples of Flashcards Generation............................................................. 88 



Abstract 

Combining Deep Knowledge Tracing (DKT) and Transformer-based recommendation with serious 

games can establish an intelligent model for modeling players’ knowledge state over missions and 

auto generating help text. This model can help players to look one or more steps ahead and predict 

the performance of the next missions in gameplay. Afterwards and if needed, the model enables the 

generation of proactive recommendations as flashcards for players to be able to complete the next 

mission successfully. In this research, we introduce a novel Intelligent Serious Games model (ISG) 

based on integrating the state-of-the-art DKT method and a fine-tuned Transformer-based 

recommendation component to improve players’ programming skills for C++, one of the most common 

programming languages used in first-year computer science and engineering bachelor programs. 

We propose novel hybrid prediction models for DKT, a novel Transformer-based Recommender 

architecture and a novel Transformer-based framework tailored to three different generation tasks. 

The latter aims to generate flashcards in the form of supporting paragraphs, questions, and answers. 

Alongside with fine-tuning GPT-2, GPT-Neo, BART and T5 models to four new programming skills 

datasets. Flashcards are the main tool used in the Spaced Repetition memorization method, yet there 

are not always available for many topics due to the high efforts required to create them whereas the 

Transformer-based models come to simplify the process. Our findings revealed the effectiveness of 

integrating the Deep Knowledge Tracing (DKT) method and the Transformer-based recommender with 

serious games. The results revealed that the fine-tuned Transformer-based framework models are 

capable to generate coherent C++ paragraphs, questions and answers inspected semantically with 

code examples in a fully automated process and using a single input string. Also, the proposed hybrid 

prediction models with a multi-layer learning approach for DKT achieved the best prediction 

performance among the other models. Whereas assessing the proposed DKT-Missing Sequence 

Padding (MSP) recursive method demonstrated its effectiveness in predicting more steps ahead with 

missing values in the sequences. Also, the novel approach in evaluating the DKT method based on 

each sequence within a fixed length enabled us to trace and investigate each knowledge state.  

Keywords: intelligent serious games, deep knowledge tracing DKT, LSTM, GRU, CNN, hybrid 

prediction, questions and answer generation, Transformer, GPT-2, GPT-Neo, BART, T5. 



 

 

CHAPTER 1 Introduction  

1 | P a g e  

CHAPTER 1 

Introduction 

Serious Games (SGs) are games designed to raise awareness or develop some skills in 

several domains. In particular, they combine learning with entertainment components to 

increase the motivation level and improve learning outcomes of players [1]. In the 

literature several data analytics approaches have been adopted in serious games. SGs 

data analytics aim to utilize players’ interactions in improving design, learning outcomes, 

players’ experience and decision making. However, a recent systematic literature review 

in [2] revealed some future directions to improve SGs research area with data analytics. 

The authors suggest focusing more on players as the main intended recipients; secondly, 

to establish an adaptive gaming experience according to players’ needs and feedback; 

thirdly, to apply neural networks algorithms to analyze data; fourthly, to adopt a standard 

data format for capturing gameplay interactions to be sharable as open access.  

To contribute into these future directions, it is worth to mention that Intelligent Tutoring 

Systems (ITS) traditionally offer adaptive learner-oriented environment. An ITS utilizes 

artificial intelligence [3], [4] to improve learning performance. The intelligent model in the 

ITS is an adaptive environment represented by knowledge tracing [5]–[10] and offers 

customized recommendations and feedback to comply with the learners’ knowledge level. 

Similarly, our main objective in this research focuses on introducing an intelligent model 

for SGs. In SGs the intelligent model requires continuous estimation for the proficiency 

level of players during the gameplay to provide recommendations accordingly.  

Recently, deep learning has demonstrated its potential over several domains, including 

Natural Language Processing (NLP) and knowledge tracing. Deep Knowledge Tracing 
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(DKT) [5] based on Recurrent Neural Networks (RNNs) has demonstrated excellent 

results for capturing hidden and long dependencies. DKT is an approach for modeling 

knowledge states of learners during practice to predict the future learning performance.  

In practice DKT in a serious game can help players to look one or more steps ahead to 

predict the result of the next missions in gameplay. Accordingly, fine-tuned Transformer-

based models [11] can auto generate flashcards as proactive recommendations for 

players to complete the next mission successfully with high confidence.  

The emergence of the Transformer-based models [11] such as GPT-2 (Generative Pre-

Training) [12], BERT (Bidirectional Encoder Representations from Transformers) [13], 

BART (Bidirectional and Auto-Regressive Transformers) [14] and T5 (Text-to-Text 

Transfer Transformer) [15] caused a significant breakthrough in several NLP tasks. These 

models are already pre-trained on corpus of vast number of web text and have the 

capability of additional fine-tuning to particular knowledge domains. Yet, Transformer-

based NLP tasks such as text generation, questions/answers generation and 

summarization have proven to be very efficient to produce coherent text. These tasks can 

be deployed in different contexts to generate flashcards recommendations and feedback 

for players and learners.  

Flashcards method is one of the widely spread application on the spaced repetition 

technique. Spaced repetition [16] is an evidence-based learning technique aims at 

reviewing the learning material at systematic intervals to form a long-term memory and 

improve information retrieval [16], [17]. Flashcards method is to label those with well-

known concepts as less frequent review, while difficult or forgotten concepts are labeled 

with more frequent review to be shown frequently in spaced intervals.  

This study introduces an intelligent model for learning programming skills in a serious 

game. As a matter of fact, learning programming skills can be challenging, especially for 
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university freshmen with no previous programming experience. In general, one of the 

main goals of teaching basic programming courses is to let students develop problem-

solving abilities. Several studies suggested that traditional methods to teach computer 

programming are not appropriate for students who have difficulties in learning 

programming skills, whereas gaming, gamification and other related approaches can be 

problem-solving oriented and can help to focus on the concepts, hide the programming 

complexity and provide instant feedback [18]–[22].  

In this research, we introduce an Intelligent Serious Games model (ISG) [23] based on 

combining serious games conceptual framework with the intelligent model of DKT [5] and 

a Transformer [11] based recommender for learning programming skills. 

The main contributions of this study can be summarized as follows:   

1. we introduce a novel Intelligent Serious Games model based on combining a 

novel serious games conceptual framework with the state-of-the-art DKT method 

and a novel Transformer-based Recommender architecture. The main purpose of 

the model is to look for one or more steps ahead during the gameplay and predict 

the result of the next missions to decide about the generation and proposal to 

players of guide flashcards as proactive recommendation.  

2. we introduce a novel SG conceptual framework (iGDA) which proposed to align 

the learning model with the game model in the early stage of design, along with 

artificial intelligence techniques to provide an effective and complete learning 

experience. 

3. we introduce a novel Transformer-based Recommender architecture which 

acts on the basis of the DKT prediction result to generate flashcard 

recommendations by fine-tuned Transformer-based models and perform spaced 

repetition filtering. 
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4. we introduce and evaluate a novel Transformer-based framework to generate 

flashcards in a fully automated process. The new framework combines at least 

three state-of-the-art transformer-based models fine-tuned on three new C++ 

datasets and tailored for specific generation tasks as follows: 

A. we fine-tune and evaluate the state-of-the-art GPT-2 and GPT-Neo models 

on a new dataset for generating paragraphs in the field of programming 

skills, and we evaluated two key factors coherence and meaning of the 

generated texts: 

• we investigate the influence of the annotation tags’ structure and 

associating the prompt text with prefix tags on the generated texts. 

• we investigate the performance trend along different contiguous 

sequence of N-gram overlap between the generated and the reference 

texts. 

• we evaluate and compare the performance of the generated 

paragraphs among GPT-2 and GPT-Neo models. 

B. we fine-tune and evaluate the state-of-the-art BART and T5 models on a 

new dataset for generating answers in the field of programming skills, and 

we compared the performance of the two models:  

• we examine the capability and the performance of the models trained 

on different datasets to generate C++ answers. 

• we investigate the influence of using different generator decoding 

methods on the performance of the generated answers. 

• we compare difference evaluation metrics of the generated answers 

with respect to the summarization ratio. 

C. we fine-tune and evaluate the state-of-the-art T5 model on a new dataset 

for generating questions in the field of programming skills. 
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• we investigate the performance of the model to generate C++ 

questions using a model trained on a science dataset; a C++ dataset; 

a mixed dataset with science and C++. 

• we examine the capability of the model trained on a subset of the 

topics to generate questions for the rest of the topics. 

• we investigate the influence of the dataset size on the performance of 

the generated C++ questions. 

5. We propose and evaluate a novel DKT-based hybrid prediction models with a 

multi-layer training approach and investigate the influence of combining the 

state-of-the-art: Long Short-Term Memory (LSTM) neural network; Bidirectional 

LSTM (biLSTM); and the Gated Recurrent Unit (GRU) neural network; for 

sequential dependencies with Convolutional Neural Network (CNN) for hidden 

features extraction on the prediction performance. 

• we introduce and evaluate a novel method based on recursive 

algorithm called DKT-Missing Sequence Padding (MSP) to predict 

more than one step ahead with possible of missing values in the 

sequence. 

• we assess a novel approach in evaluating the state-of-the-art DKT 

method based on each sequence within a fixed-length sequences of 

submissions to trace each knowledge state and apply the DKT method 

in real learning situations. 

• we investigate the impact of real sequence dependency and ordered 

concepts from basic to advance on the prediction performance using the 

real C++CCH dataset with the simulated dataset. 

6. we introduce 4 new datasets  
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• C++ exercise responses dataset called C++ Code Challenge (C++CCH) for 

learning programming skills. This dataset is used in the DKT method. 

• A C++ textual dataset called C++ Code Guide (C++CG) to fine-tune GPT-

2/Neo models to generate programming skills paragraphs. 

• A C++ summaries dataset called C++ Summaries (C++SUMM) to fine-tune 

BART and T5 models to generate answers from given paragraphs. 

• A C++ questions-answers dataset called C++ Questions/Answers (C++QA) 

to fine-tune T5 model to generate questions from given answers. 

The rest of the thesis structure consists of Chapter 2 describing the state of the art, 

Chapter 3 introducing the ISG model and its components, Chapter 4 in which we describe 

and discuss the experiments and results, followed by Chapter 5 for conclusion and future 

work. 
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CHAPTER 2 

Literature Review 

In this Chapter we will review several aspects in serious games and deep learning. Firstly, 

we will discuss the SGs data analytics approaches that adopted in the literature to 

address the possible contributions in this study; secondly we will discuss several state-

of-the-art serious games frameworks to clearly identify the SGs components and the 

possible integration of a knowledge tracing component with flashcard recommendations; 

thirdly, we will discuss the different knowledge tracing methods and we will focus on the 

state-of-the-art deep knowledge tracing based on RNNs and the other neural networks 

models; fourthly, we will highlight on some NLP tasks and review the state-of-the-art text 

generation models in order to introduce a model capable to auto generate flashcard 

recommendations for players. 

2.1 Serious Games Data Analytics 

Serious games are designed to improve objectives of learning and training with 

entertainment components [1], [2]. According to [24], [25] gameplay produces a large 

number of interactions which can be tracked and analyzed to extract patterns and useful 

information. Several SGs data analytics approaches have been adopted to evaluate and 

improve several aspects in serious games such as assessment, in-game behavior, game 

design, student profile, framework, and others. However, this research focuses on 

utilizing players’ interactions for introducing an intelligent model of knowledge tracing to 

predict the future performance of players and to generate flashcard recommendations. 
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Therefore, we identified five aspects in SGs data analytics to focus on in this section as 

follows:  

1. target stakeholders and the intended recipients; 

2. purpose of the data analytics; 

3. algorithms used in the data analytics; 

4. assessing methods; 

5. real-time/offline analytics. 

To review the first three, Alonso-Fernández et al., [2] in 2019 have conducted an 

important systematic literature review on the applications of SGs data analytics. The final 

sample was total of 87 studies, and the authors presented significant facts and directions 

for the future work in this field.  

Regarding the target stakeholders, the results shown that only in 7% of the studies the 

main intended recipients were students, while the majority considered as target designers 

and developers (35%), researchers (33%), and teachers (22.50%) respectively. These 

results uncover that, most of the previous studies have focused to help in decision making 

to improve game design, learning, impact of serious games, and to understand the 

gameplay interactions. Despite the final outcomes of these studies are intended to benefit 

students but focusing on them as the main stakeholder is crucial especially during the 

gameplay to enhance playing experience and learning achievements. On the other hand, 

for the purpose of the studies, the results show that, 36.8% of the studies have used data 

analytics for assessments followed by 31% for the in-game behaviors. These results 

aligned with the previous ones, in the fact of improving decision making by analyzing the 

impact of different assessment methods on the students’ performance as well as the 

students’ behavior and experience. 
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Referring to the most used algorithms and techniques, the study shows that linear models 

and regression are the most used methods for supervised approaches (24.50%), while 

correlations and clustering are used in the unsupervised methods (32.40%) while other 

visualization techniques were also used (35.30%). From this result, we conclude that the 

previous studies focused on traditional data analytics models and techniques. In fact, data 

availability restricts the fast advances in the serious games research area, due to the lack 

of open datasets as indicated in [2], thus requiring extra efforts in developing serious 

games to make further testing with new analytical tools and techniques. The authors in 

[2] concluded with a set of recommendations, some of them aligned with our research, 

such as: 

1- apply more complex algorithms such as neural networks; 

2- adopt a standard format for capturing players’ interactions such as Experience 

Application Programming Interface (xAPI) [24]; 

3- encourage authors to share datasets as open access; 

4- integration of assessment in the early phase of game design; 

5- focus on student profiles, feedback, and adaptive learning experience. 

Regarding the remaining aspects concerning assessment methods and where data 

analytics take place, two main approaches have been followed in the literature with non-

real-time data analytics. In the first approach, which we call “the significant change 

method” the authors in [27]–[33] tried to capture and analyze the significant change in the 

knowledge state of the players before playing and/or during and after finishing the game. 

In this approach they applied the so-called pre-test and post-test assessments, while [32], 

[33] mixed it with some qualitative methods such as observations and interviews. The 

pre-test and post-test methodology is widely common in assessing learning, however, 

despite its effectiveness, it neglects that in serious games huge records of players’ 
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interactions can be captured and analyzed instantly to extract useful information for 

players during the gameplay. The other approach in [25], [34]–[38] is a mixed 

methodology which aims to combine and analyze the pre-test and post-test with the 

captured interactions to support assessing learning and provide other information related 

to the players’ characteristics and behavior, as well as to game design. 

In conclusion, several data analytics approaches have been applied for different 

purposes. Most of the studies considered to use data analytics for assessments and in-

game behavior. The main goal of the assessments was to assess the players’ learning 

performance. However, in-game behavior the main goal was to discover the players’ 

settings, characteristics and to improve the game design process. Moreover, a recent 

systematic literature review suggested some future directions for serious games research 

area such as: to target players as the main intended recipients (the scope of our research 

is player-oriented); to integrate assessments in the early phase of game design (we will 

discuss this in section 2.2); to apply more advanced techniques for data analytics such 

as neural networks (we will describe it in sections 2.3); to follow a standard data format 

such as xAPIs for capturing and sharing interactions; to focus more on feedback and 

adaptive learning experience (we will discuss in section 2.4 for text generation models).  

To the best of our knowledge in the literature there are no serious games integrated with 

adaptive environment for knowledge tracing and recommendations for players. In the next 

section, we discuss different SGs frameworks to identify the SGs components from 

different point of views to address the possibility of integrating the learning model in the 

early stage of design with knowledge tracing and recommendation components.  
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2.2 Serious Games frameworks 

Generally, several models and frameworks have been introduced for games. The most 

widely formal approach according to [39] is the Mechanics, Dynamics, and Aesthetics 

(MDA) [40] framework. The MDA game framework aims at linking all the game 

components to each other to facilitate a smooth transition from the code to content and 

play experience and go back again. In the MDA, the authors proposed the framework in 

three abstract components: Mechanics, Dynamics, and Aesthetics. Mechanics describe 

the main components of the game including rules, actions, control mechanisms. 

Dynamics are the gameplay interactions, player’s inputs and considered as the run-time 

behavior of the mechanics. Aesthetics is the player’s feeling, experience, and result 

during/after playing and interacting in the game. However, while the MDA framework 

focuses on the entertainment games [41], it has limitations and weaknesses [39] such as 

focusing too much on the mechanics and ignoring other design aspects. Moreover, the 

MDA is not suitable for gamified content and experience-oriented games. 

Other scientists have tried to overcome the MDA limitations by introducing new 

extensions. In 2008 Winn [41] introduced an expansion for the MDA as Design, Play and 

Experience (DPE). The DPE provides a formal approach to design SGs and involves a 

language to discuss design, a methodology to analyze a design, and finally a process to 

design a SG. Winn replaces Mechanics with Design, Dynamics with Play, and Aesthetics 

with Experience and translates them into four separated layers as Learning, Storytelling, 

Gameplay and User experience. Furthermore, the DPE framework is grounded on the 

technology layer which has a major influence on the design process as an enabler or a 

limiter.  

Robson et al in [42] have introduced Mechanics, Dynamics, and Emotions (MDE) as a 

new framework to focus on the gamified content, experience, and gamification design in 
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general. In MDE the authors classified mechanics into three components: Setup which is 

the game objects, Rule which is the goals and constrains, and the last is the Progression 

to describe the diverse types of instruments for the experience while it is happening. 

Dynamics are related to the players’ behavior during the gameplay, and emotions are the 

player’s state of mind and a product of how players follow the mechanics to generate 

dynamics.  

Another extension has been introduced by Walk in [39], Design, Dynamics, and 

Experience (DDE). In the DDE, the authors placed the mechanics as a part of the design 

component to focus more on the design aspects and process such as blueprints to 

provide a conceptual design and interface to give more specifications about graphics, 

sounds and narratives. A recent model also introduced by Pendleton in [43] a Game 

Design Matrix (GDM). In GDM the authors paired the MDA framework with the Bloom’s 

Taxonomy to provide a serious game design process. The core of this design process is 

to select and map the output dynamics with the Bloom’s levels, after identifying the 

learning objectives and the subject matter. The GDM provides a step-by-step method to 

design serious games, with more details/constrains to map Bloom’s levels to game 

dynamics.  

To conclude, the MDA is a generic game framework, but it focuses on entertainment 

games, and it is not suitable for serious games as it lacks any learning model as well as 

in the other expansions such as the MDE and the DDE. Despite the other MDA 

expansions such as DPE and GDM are proposed for serious games, but they provide a 

design process rather than a framework. For instance, the GDM is more oriented to the 

learning model, and it introduces more specifications for mapping Bloom’s levels to the 

game dynamics in a step-by-step process. Also, the DPE is a formal approach to design 

SGs by splitting the SGs into four logical layers. DPE also linking the user experience 
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only with the user interface ignoring the playing and learning experience. While learning 

experience is one of the most important outcomes, the educational effectiveness of the 

game increases according to the integration level of the game components with the 

educational elements.  

Our approach in this study is to identify a generic framework for SGs rather than a detailed 

design process. As there are several design methodologies for software, gaming, learning 

and instructional design which can be adopted to comply with the serious game’s needs. 

Also, a generic SGs framework enables us to align the outcomes-based learning model 

with the game. For instance, the game components can be divided into game elements 

and learning elements (including learning objectives and material), whereas the 

integration between them can be implemented during the design process. Also, dynamics 

can be identified as game interactions and learning activities, whereas the output of the 

SGs can be identified as game achievements and learning achievements.  

In the next section, we discuss how we can track the knowledge state of players (which 

is the learning achievements) in real-time to predict their future learning performance (in 

the learning activities) using neural networks.  

2.3 Knowledge Tracing (KT) 

Modeling learners’ knowledge state while practicing is a crucial task to improve learning 

achievements in the educational environments. Knowledge tracing according to [5]–[10] 

is an essential component in any intelligent tutoring system (ITS) to predict the students’ 

performance. To model this problem, there are two main approaches in the literature, one 

based on probabilistic methods, and the other based on deep learning. 
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2.2.1 Probabilistic Knowledge Tracing (PKT) 

Corbett and Anderson [6] have introduced the Bayesian Knowledge Tracing (BKT) 

method based on the Bayesian probability and the Hidden Markov Model (HMM). The 

original BKT method has been followed by several extensions such as [7], [8] and became 

the most popular classical probabilistic knowledge tracing method. The authors in BKT 

defined knowledge tracing as monitoring the student’s changing knowledge state during 

practice to estimate with a high probability that each rule or concept is in the learned state. 

Also, they assumed that for each concept in the learning model there are two knowledge 

states: learned state or unlearned state. The transition occurs from the unlearned state 

to learned state through reading or applying some practice. Generally, the main task in 

knowledge tracing is to estimate the probability that a student will provide a correct answer 

in the concept 𝑐𝑛+1 given that all the previous answers from 𝑐1 to 𝑐𝑛, where 𝑛 is equal to 

the questions’ sequence length (number of questions). 

2.2.2 Deep Knowledge Tracing (DKT) 

According to [5], [9] the BKT method and its successor extensions are suffering from the 

difficulty of capturing the hidden dependencies between the sequence of concepts. 

However, Piech et al [5] have introduced a recent approach called deep knowledge 

tracing based on RNNs. The novel approach aims at modeling learners’ knowledge state 

over time to predict the future learning performance for learners. The DKT method has 

been applied in several studies [5], [9], [10], [44]–[46] and outperformed previous PKT 

methods. 

Despite the success of the DKT method, there are some limitations in terms of using 

inputs with non- fixed and unordered sequence lengths (timesteps) with neural network 

models [40]. Most of the previous studies used a non-fixed sequence length of students’ 

submissions with undetermined sequence submission order due to the nature of the used 
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datasets. Unordered submissions with missing values could influence the performance of 

the model as there are explicit and implicit dependencies between each series of 

concepts, and next submission is dependent or partially dependent on previous 

submissions in the time-series problems. Also, they measured an overall prediction 

performance without assessing the impact of the non-fixed sequence length sizes on the 

performance of their models and without assessing the performance on each sequence 

length, which is unrealistic when we apply the model in real learning situation, and we 

need to trace each knowledge state. Another limitation in the prior studies is due to the 

absence of evaluating the DKT method on different neural network models other than the 

RNNs and its variants. However, other authors have focused partially on these limitations. 

Wang et al. in [44] have evaluated the DKT method on one exercise question to predict 

the next one. While in 2022, Hooshyar et al. [47] have assessed the DKT method on the 

CNN but they evaluated the model on only three sequence lengths out of 20 fixed 

sequence lengths. To the best of our knowledge no prior studies having assessed the 

DKT method using a hybrid neural model and on each sequence length within a fixed and 

ordered series of submissions, which is crucial to apply the model on real learning 

situation to trace each knowledge state of players.  

In the next sub-section, we discuss different neural network models including RNN, its 

limitations, RNN variants, CNN in order to introduce DKT with hybrid prediction models. 

2.2.3 Neural Networks Models 

RNNs have been successfully applied for modeling time series data and sequences. The 

simple architecture of the RNNs consists of three layers: input layer, hidden state layer 

and output layer. The RNNs have the form of repeating modules receive a new input with 

feedback from the recent last input. In fact, inputs and outputs are dependent, the prior 

inputs influence the current input and output using a short-term memory within the 
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sequence and so on. During the training process, a backpropagation algorithm 

propagates backward from the output layer to calculate the error gradients and adjusts 

the weights up or down to decrease the error. Sometimes the error gradients often get 

smaller until approach to zero and leave the weights unchanged which cause the so-

called vanishing gradient problem. Therefore, the simple RNNs with a short-term memory 

are not suitable to manage long term dependencies modeling [5], [9]. 

LSTM was introduced by Hochreiter and Schmidhuber [48] to address the problem of 

vanishing gradient and to manage long term dependencies. LSTM is a special type of 

RNNs with special memory cells architecture and forward information flow to manage 

sequences from past to future. This architecture enables the RNNs to remember inputs 

over a lengthy period of time. The repeating modules in LSTM have different structure 

than the RNNs. In LSTM, instead of having a single layer like in RNNs, there are three 

gates called input, output and forget gate that decide which information to remember or 

to forget. Another type of the LSTM is biLSTM which has another layer to manage the 

backward information flow from future to past [49]. 

GRU was introduced by Cho et al. [50] to manage long term dependencies problems. 

GRU is similar to LSTM but with simple architecture, faster and more efficient on small 

datasets [51]. In GRU the repeating modules have two gates only update and reset gates 

without having separated cell states. The update gate is responsible for determining 

which previous information needs to be passed along the next state, whereas the reset 

gate decides which information is needed to forget from the previous state. 

CNN is a deep feed-forward artificial neural network and one of the most popular 

architectures of deep learning for feature extraction, computer vision and classification 

problems [52], [53]. CNN consists of three layers: input layer, hidden state layer and 

output layer and has a grid-like topology in processing data. Indeed, CNN models can 
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manage multiple formats of input data, such as 1D for the time-series data and 2D for the 

imaginary data. 

The next suction focuses on some NLP tasks and reviews the state-of-the-art text 

generation models in order to introduce a model capable to auto generate flashcard 

recommendations for players. 

2.4 Transformer-based Models 

Several tasks in the field of NLP are rapidly evolving such as text completion, 

summarization, question/answer generation. Traditionally deep learning has 

demonstrated its potential over NLP tasks based RNNs [47]. RNNs have positively 

influenced the NLP fields with excellent results. However, processing long texts caused 

some limitations [48] due to the sequential processing that slowing down the propagation 

speed in addition to the need of using parallel computing. This led to the emergence of 

the Transformer [11] based encoder-decoder architecture as a significant breakthrough 

in the NLP tasks.  

Different Transformer-based models were introduced for text generation such as BERT 

[13], OpenAI GPT [56] and its successors GPT 2 [12] and GPT 3 [57] for business or the 

research version GPT-Neo. These models were pre-trained on a large corpus and have 

the capability of additional fine-tuning to a specific domain. BERT model is constructed 

using the encoder module, while GPT-2 built by the decoder part of the Transformer. The 

GPT-2 task for text generation starts with a predefined input text and target text length. 

Afterwards, the model starts generating one token at a time according to the context of 

the previous tokens. Once a new token is generated, the model adds it after the previously 

generated token sequence, and this sequence becomes the new input for the next token 

and so on until the generated sequence reaches the target length. In contrast, BERT is a 
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masked language model, and the main task is to predict a masked token in a given text 

surrounded by other tokens from both sides. Both models have demonstrated remarkable 

capabilities and results over the state-of-the-art text generation models.  

Several studies in the literature [55], [58]–[61] have fine-tunned BERT and GPT2 on 

customized datasets in different domains to generate text. The authors in [61], 

investigated the efficacy of dialogue generation for in role-playing games. Despite those 

models are considered as robust models and can generate human-like text, other authors 

highlighted on some limitations related coherence and semantic of the generated text. 

However, several studies such as in [55], [59]–[64] have transformed the plain text into 

semi-structured text by injecting the training dataset with metadata, special tags, and 

tokens to provide extra level of annotation to describe the text structure while training data 

and to improve coherence and semantic of the generated text. 

Also, other Transformer-based models have been introduced such as BART [14] and T5 

[15] as encoder-decoder models to include both text understanding and generation to 

perform a conditional text generation. These models are sequence to sequence 

(seq2seq) models which take a sentence (sequence of words) as an input in the encoder 

part and produce another sentence as an output in the decoder part. In practice seq2seq 

models are capable to outperform the other models in some NLP tasks such as in 

summarization [65], question generation and translation [66].  

Several studies have investigated the question/answer generation task. The authors in 

[67], [68] have proposed to generate questions from a given text, while the authors in [69], 

[70] focused on generating answers from given questions. Recent studies in [71], [72] 

have investigated and proposed generating questions and answers together. In [71] the 

authors used the ProphetNet [73] model to generate questions from a given text. They 

filtered questions by computing the cosine similarity to exclude unanswerable and 
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irrelevant questions, then they generated answers for the non-excluded questions using 

BERT model. On the other hand, the authors in [72] have fined-tuned the BERT model to 

extract keywords from a given text, then they used some syntax analysis tools to extract 

the complete sentences containing the extracted keywords, while in the last phase they 

feed the complete sentences into the fine-tuned GPT-2 model to generate questions. 

However, a very recent review study in [66] tried to provide a comprehensive 

understanding of question generation tasks in terms of the input context text, the target 

answer, and the generated question. The study revealed that the majority of the questions 

generation studies have attempted to fine-tune the models BERT and GPT which are not 

appropriate for the questions generation task, since they are designed for language 

understanding instead of language generating. Accordingly, the authors suggest using 

seq2seq models which are capable of modeling together context texts with different 

lengths, answers with different granularities, and questions with several types. Moreover, 

the authors suggest focusing on questions generation for information seeking and 

recommendation approaches such as in the conversational search and interacting with 

users for recommendation which is our approach in the flashcard generations. 

Also, Kurdi et al. in [54] have conducted a recent comprehensive systematic review of 93 

studies addressing the automatic question generation for educational purposes. The 

systematic review revealed that the majority of the studies in the literature focus on some 

areas such as (1) generating questions for the purpose of assessment; (2) generating 

questions for the language domain; (3) template-based approach was used with pre- and 

post-processing tasks. 

In this research, we will introduce a Transformer-based Flashcard generation in the field 

of learning programming skills based on the findings of the discussed review studies. The 
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flashcards will be generated as recommendations and information seeking for players in 

the form of supporting paragraphs and questions/answers aligned with seq2seq models.  
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CHAPTER 3 

Intelligent Serious Games Model 

3.1 Model Overview 

 Reviewing the literature have revealed some important future directions to improve 

serious games with data analytics research area such as focusing more on players in 

adaptive gaming experience and applying neural networks for data analytics. Hence, we 

introduce in this research a novel Intelligent Serious Games (ISG) [23] model (see Figure 

1) as adaptive knowledge tracing and recommendation environment. The proposed 

model combines iGDA conceptual serious games framework with an intelligent model of 

deep knowledge tracing and Transformer-based recommender. The main goal of the new 

ISG is to adapt and adjust learning trajectories of players according to their level of 

proficiency in gameplay. In particular, the model looks one or more steps ahead during 

the gameplay and predicts the result of the next missions before they are happening in 

order to provide players with proactive recommendations to complete the missions 

successfully. Therefore, the ISG continuously keeps tracking and analyzing the current 

players’ knowledge state to predict the future knowledge state of the players and what 

will happen in the next mission (success/fail). Based on that, and when the predicted 

knowledge state of the next mission is (non-acquired/fail), the recommender system will 

be able to make a proactive action by generating guide flashcards relevant to the next 

mission. These flashcards aim to form a long-term memorization for players using the 

spaced repetition technique which we will describe in the next sections. 
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Figure 1. The Intelligent Serious Games (ISG) Components 

The ISG model shown in Figure 1 consists of four components as follows: 

1. iGDA Conceptual Serious Game Framework: a novel re-usable serious game 

framework, aiming at clearly identifying all game and learning components to be 

integrated at the early stage of design. In addition, to increase the overlapping 

between the game elements and mechanics with the instructional content. In fact, 

the iGDA framework is aligned with the learning-based outcomes approach, and 

this allows modeling the knowledge state of players with measurable 

achievements to easy integrate the DKT component and the recommender in real 

gaming experience.  



 

 

CHAPTER 3 Intelligent Serious Games Model  

23 | P a g e  

2. Learning Analytics: located in two separated environments: in game environment 

which is a generic component can hold any analytics approach. In our research it 

consists of the DKT prediction model with the DKT missing sequence padding 

method integrated with the serious game and the recommender system; externally, 

connected on-demand with the Hybrid-DKT training host which is responsible to 

update the DKT prediction model when needed. 

3. Transformer-based Recommender: a novel re-usable recommender system 

acts based on the DKT prediction result, consists of a novel fine-tuned 

Transformer-based Framework tailored to three different tasks to generate 

flashcards recommendation, and spaced repetition filtering technique. The 

recommender system (RS) is Integrated with the serious game and the learning 

analytics as well. The RS works during the gameplay based on the DKT prediction 

result to generate personalized guide text for players as flashcard 

recommendations. The recommender follows the spaced repetition technique to 

filter and show flashcards to form a long-term memory and reduce the cognitive 

load.  

4. XAPI Tracker: this component is based on xAPIs [26] data and communication 

standard. The main goal of this component is to provide a standard data format 

with communication protocol for tracking, capturing, storing, and sharing players’ 

interactions to be analyzed in the LA layer (in-game environment) and externally 

with other databases or learning record stores, to improve data availability and 

enhance the serious game data analytics research field. 

3.2 iGDA A Conceptual Serious Games framework 

Serious games refer to games designed for learning with entertainment components and 

attempt to focus more on the player performance. Therefore, in order to contribute to this 
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topic, we intend to develop a conceptual framework of serious game that integrates the 

learning model and the game model all together. The main goals of this framework as 

follows: 

• Define a structure and framework of the interrelationship between learning and 

gaming models, to allow game designers, instructional designers, and data 

analytics experts to work jointly in designing a dynamic and integrated environment 

based on the learning achievements.  

• Recognize measurable achievements based on learning outcomes to enable 

modeling the knowledge state of players and easy integrate the DKT component. 

• Identify game dynamics with location and time context aligned with the knowledge 

state of players where action can take place to integrate the Transformer-based 

recommender in real gaming experience. 

 

Figure 2. Learning Based-Achievements Model 

Learning achievements or achieved learning outcomes are related to the knowledge, 

skills and attitudes that can be demonstrated by learners after completing a certain course 

[75], [76]. Also learning achievements can be assessed using qualitative indicators or 

quantitatively using measurable performance such as in formal exams. From the 

educational point of view, the instructional material must be designed in a way to achieve 

the intended learning outcomes as shown in Figure 2. According to Hayes [77], any game 

designed for educational purposes must be closely related to the educational goals, and 

he adds that the greater the degree of the overlap between the learning objectives and 

the game elements, the greater the educational effectiveness of the game. 
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Figure 3. Inputs-Process-Outcomes by Garris 

Outcome-based learning is an important approach to improve learning effectiveness and 

enhance learner achievement. Garris [33] has proposed a model of instructional games 

consistent with modern educational theories, which is called the Input-Process-Outcome 

(Figure 3). This perspective presents the learning cycle as “Process” whose results are 

in the form of learning outcomes as “Outcome” while the “Input” is instructional content 

with game characteristics. This approach is a learning-oriented model and satisfies the 

learning needs which we will adopt in our study, but it neglects different gaming aspects 

such as mechanics, game elements and game achievements.  

According to [40], [42], [79] mechanics are related to the game rules, settings, actions, 

behaviors, boundaries, and control mechanisms that define the player interactions during 

the gameplay. Although [39], [41] found that mechanics are not everything in the game 

whereas several aspects should be described such as game content, storytelling, user 

interface and so on. Regardless of the context of the game Ferro [80] in 2021 sees that 

there is no specific and consistent definition of the game mechanics, so they divided the 

game into two parts, game elements and game mechanics (GEM). In GEM, the game 

mechanics include set of verbs and rules, while the game elements mean the game parts 

which represents the player, quests, points, timer story and others. Therefore, we 

concluded that GEM approach is more realistic to include various aspects of the serious 

games.  
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Figure 4. iGDA Framework combines three prior models 

At this end we can define Mechanics as: a set of rules and actions that control the 

interaction between the player and the game elements during the gameplay. Whereas 

game elements are the characteristic parts of the game including avatars, story, levels, 

points, quests, timers, and other items in the game environment. While instructional 

elements are those related to learning objectives, learning materials, and learning 

activities. 

In this research, we combined some components of the state-of-the-art models MDA [40], 

GEM [80] and INPUTS [78] (see Figure 4) with new specifications to introduce the 

Instructional Game Elements and Mechanics iGEM framework (see Figure 5).  
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Figure 5. iGDA Framework 

3.2.1 iGEM 

iGEM integrates the learning model with the game components by introducing two main 

components: 

• iGame Elements: consist of instructional elements (iElements) such as concepts, 

learning materials and learning activities; game elements ((gElements)) such as 

timers, badges, help, levels, and places. 

• iGame Mechanics: consist of instructional mechanics (iMechanics) such as 

measurable educational verbs-based outcomes such as explore, evaluate, learn 

and answer; game mechanics (gMechanics) such as game rules and verbs as 

move, accept, select, and open. 

This integration increases the overlap between the learning elements/mechanics and the 

gameplay elements/mechanics by constructing iGEM mapping matrix. The basic idea of 

the iGEM mapping matrix is to map the instructional element/mechanic with relevant 

game element/mechanic where available. For instance, in our C++ Code Challenge 

serious game (described in the next Chapter) there is a mechanic called “move” which 

enables the player to move around the board visiting the campus buildings one after 

another in the form of turns. The integrated instructional mechanic (iMechanics) for move 
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is “explore” which provides Exploration-based learning as an active learning approach by 

exploring the instructional content in the game while moving. 

3.2.2 Dynamics 

Dynamics create achievements and represent the run-time behavior and player’s input of 

the game. Building on this, all activities and interactions are generated during the 

gameplay are producing the playing outcome as achievements for players. Dynamics 

structure includes four main components:  

• Learning Activities: generated from the player’s interaction with the instructional 

elements in the iGDA. Indeed, learning activities influence the knowledge state of 

players and produce the learning achievements.  

• Gameplay Activities: generated from the player’s interaction with the game 

elements and produce the Game Achievements. 

• Demographics Data: which is related to the player gender, age range, country, 

background, and others. This part of the dynamics is crucial when we intend to 

integrate filtering technique for items customized with the player preferences.  

• Location and time: related to the current place of players in a certain time with 

reference to their achievements. Location and time provide a context for the 

current knowledge state and the game state of players, where actions can be taken 

from the game such as providing feedback and recommendation for players.  

3.2.3 Achievements 

The learner's achievement in any educational experience represents the cornerstone of 

self-knowledge of the educational needs. It also provides stakeholders with a vision and 

indicators about the success, effectiveness, and weaknesses of this educational 

experience. Since serious games are designed for educational purposes rather than for 
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entertainment, we believe that they are intended to achieve specific goals like any 

educational experience. Therefore, we expect serious games to make a difference in the 

level of knowledge, skills, and attitudes of players in the form of achieved learning 

outcomes. Therefore, in our context it is important to shed more light on the term 

achievements rather than emotions [42] or aesthetics [40], since the main outputs are 

learning achievements [76], while lesser outcomes could be related to aesthetics and 

emotions. 

Also, in the literature we found that the term “achievements” does not contradict with the 

outcomes of the entertainment games. Thus, achievements can be badges, scores, 

icons, unlocked levels that linked with the fulfillment of specific goals in the game. 

According to [81] and [82] many gaming platforms have started to adopt the term 

achievements in their games such as Xbox and PlayStation, and they provide a way to 

track achievements among the different games that the player has played.  

Indeed, achievements in the iGDA framework divided into learning achievements and 

game achievements. The latter represents for instance the finished turns, earned badges, 

scores, unlocked places and others related to the game elements. Whereas, learning 

achievements represent the current knowledge state of players at certain time and place 

in the gameplay with measurable indicators as “acquired knowledge” or “success” in front 

of each concept or learning activity. 

3.3 Learning Analytics (LA) 

3.3.1 LA Player’s Model 

Data analytics have been applied in serious games for several purposes. Most of the prior 

studies in SGs have focused on assessing the players’ performance to assist decision 

makers in improving design and curriculum. In this research, we focus on the player’s 
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model of the learning analytics. Zanichelli et al., [83] have proposed a conceptual model 

of learning analytics for serious games at which we integrated our work with (Figure 6).  

 

Figure 6. Conceptual Model Process of Learning Analytics 

The model consists of five stages aligned with two parallel models, the supervisor model 

and player model which is our scope. Along the five stages Track, Classify, Analyze, 

Reveal and Act, the player model gives more specifications on what is happening in the 

player-side during the gameplay. At this end, the Learning Analytics component we 

proposed in the ISG is a player-side process starts by capturing players’ interactions, 

performing player-side analytics (predict the next knowledge state), then providing 

players with suitable recommendations to improve their learning performance. 
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3.3.2 Learning Analytics Environments 

 

Figure 7. Learning Analytics and SG Environment 

The proposed learning analytics component shown in Figure 7 is linked with the xAPI 

Tracker component to receive the captured interactions in real-time. Also, it is linked with 

the Transformer-based recommender. Thus, the learning analytics component receives 

interactions during gameplay, process them using the DKT prediction model and the DKT 

Missing Sequence Padding algorithm when needed, then it forwards the results to the 

recommender as a final destination. Indeed, both learning analytics component and the 

recommender are aligned together and dedicated for players to complete the cycle of 

“predict then recommend” and so on during the gameplay. 
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LA external environment: relevant data of players’ interactions is forwarded 

instantaneously during the game to external Learning Records Store (LRS) in the xAPI 

Tracker component. Consequently, the new interactions forwarded again on-demand (an 

offline and not automated process) from the LRS to the Hybrid-DKT training host, which 

is responsible on training/updating the prediction model with the new interactions, then it 

updates the game engine (in-game environment) with the new updated DKT prediction 

model.  

LA in-game environment: this environment includes the entire serious game mechanics 

and elements. Players’ interactions and achievements occur within the dynamics and 

achievements components. while the xAPI Tracker component forward the interactions 

and achievements instantaneously to the DKT prediction model which is also responsible 

for re-forwarding the results to the recommender system to act accordingly.  

3.3.3 DKT-Each Sequence Length Approach 

As we mentioned previously in Chapter 2, most of the previous studies in DKT used a 

non-fixed sequence length of students’ submissions with undetermined sequence order. 

This was as a result of the state-of-the-art DKT task [5] given a series of interactions 

  𝑥1, 𝑥2, 𝑥3, … 𝑥𝑡 , predict the next interaction 𝑥𝑡+1 . Indeed, unordered submissions from 

basic to advance difficulty could influence the performance of the model as there are 

explicit and implicit dependencies between each series of concepts, and new knowledge 

is dependent or partially dependent on previous knowledges. Also, to apply the model in 

real environment we need to trace each knowledge state of players or in other words 

each sequence length. Therefore, in our research, we focus on investigating and 

comparing the performance at each sequence length within a fixed and ordered sequence 

length. Each sequence length approach in the DKT can be formalized as:  
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given M ordered game challenges (exercises) x1, x2, xs…, xM, the task is to predict the result 

of each next game challenge  xs+1 (sequence) whether it will be completed successfully or 

not, where S from 1 to M-1, and M > 1. 

• 𝐷𝑆 = { 𝐼1, 𝐼2, 𝐼3, … 𝐼𝑗 … 𝐼𝑁 } a given dataset where Ij is a submission of the jth student. 

• 𝐼𝑗 = {𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3 … 𝑥𝑗𝑠 … 𝑥𝑗𝑀} a sequence of ordered responses with fixed length M 

for the jth student.  

• 𝑥𝑗𝑠 = {𝑄𝑗𝑠, 𝐴𝑗𝑠} A response entry at sequence S where Q is a question id and A is 

an answer outcome as wrong/correct where A ∈ {0,1}.  

𝑁 is the number of students, 𝐼𝑗 represents a vector of sequence of ordered responses 

with fixed length 𝑀 > 1, and a response 𝑥𝑗𝑠 at sequence 𝑆 is performed by the student 𝑗. 

Each response entry 𝑥𝑗𝑠 contains two elements 𝑄𝑗𝑠 to represent the question id and 𝐴𝑗𝑠 

for the answer outcome entry as 0 for wrong answer and 1 for correct answer.  

To feed the neural network, each submission 𝐼𝑗 = {𝑥𝑗1, 𝑥𝑗2, 𝑥𝑗3 … 𝑥𝑗𝑠 … 𝑥𝑗𝑀} should be 

transformed into vectors for each input and output. 𝑀 − 1 Vectors with length 2𝑀 to 

represent the inputs 𝑥𝑠 as {𝑄𝑠, 𝐴𝑠}2𝑀, and 𝑀 − 1 vectors with length 𝑀 to represent the 

outputs 𝑦𝑠+1 as {𝐴𝑠+1}𝑀 for each entry 𝑥𝑠  and 𝑦𝑠+1 where 𝑠 = 1 𝑡𝑜 𝑀 − 1, 𝑎𝑛𝑑 𝑀 > 1.  

3.3.4 Hybrid-Deep Knowledge Tracing (RNN-CNN) 

RNNs and CNNs are the most popular adopted machine learning models for the time 

series and image recognition problems. Several prior studies have combined the LSTM 

and CNN together in other research areas [84]–[87] with excellent performance results. 

In this study, we propose a hybrid prediction model for the Deep Knowledge Tracing 

problem (Hybrid-DKT) based on combining the advantages of the RNNs variants and the 

CNN neural networks. The proposed hybrid network combines two key learning 
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characteristics together: sequence dependencies learning and feature/pattern extraction. 

Unlike prior studies in DKT, our work focuses to provide prediction performance on each 

sequence length within a fixed and ordered series of 22 sequences. Therefore, we seek 

to improve the performance for each single sequence. We expect from the hybrid 

combination to improve the performance along all the sequences in qualitative way by 

level-up the prediction performance ranges as we combined two different learning 

techniques. This means that, long-term and sequential dependencies will be discovered 

by the RNNs variants models and passing the results to the CNN model might influence 

the performance by discovering hidden features and more patterns among the 

sequences. 

 

Figure 8. Deep Knowledge Tracing-based Hybrid Model 

The Hybrid-DKT [23] model in Figure 8 consists of four layers: input layer, RNN layer 

followed by CNN layer and output layer. This architecture enables a multi-level learning 

and feature extraction. Initially the input layer feeds the LSTM/GRU layer to capture the 

sequence patterns and dependencies from the sequence of input vectors. Accordingly, 

the LSTM/GRU forward its output to a fully connected layer to adjust weights and bias (as 
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optional), then it feeds the 1D convolutional layer to learn the low-level features and make 

more tunning for the output of the LSTM/GRU to produce the feature map. A normalization 

layer usually is used after learnable layers to normalize a mini batch of data across all 

channels, to speed up training and reduce the sensitivity to network initialization. The 

Rectified Linear Unit (ReLU) is an activation function for each input sequence, any value 

less than zero is set to zero. ReLU usually used to overcome the vanishing gradient 

problem, allowing models to learn faster and perform better. The dropout layer offers a 

method to prevent neural networks from overfitting during training. The output layer is the 

last phase of training by passing the outputs from the CNN layer to a fully connected layer 

and applying the SoftMax function then the classification layer to infer the number of 

classes from the output size which 0 or 1 in our case.  

3.3.5 DKT-Missing Sequence Padding Method 

In flexible learning or playing scenario, there are two different strategies ahead for 

learners or players. The first one is to move sequentially to learn from the easiest 

concepts to the difficult ones, while the second is to move randomly or jump-moving to 

learn the difficult concepts first, and implicitly acquire the simple concepts. In reality, 

moving randomly raises an issue of missing previous sequences in the DKT prediction 

model as shown in Figure 9. Usually, we predict the next code challenge 𝑥𝑠+1  given that 

all the previous code challenge results. In moving randomly, the player most likely to jump 

over some unanswered code challenges. For this problem we propose below a solution 

to overcome the issue of missing values called DKT-Missing Sequence Padding Method 

[23]. 
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Figure 9. Missing Sequence Values Prediction Problem 

Generally, the DKT method needs a threshold of at least one value available within a 

series to predict the second one. In the Code Challenge game (will be discussed in the 

next chapter), we set this threshold to 4 as players have to answer 4 code challenges to 

start the game. Therefore, in our case we can predict starting from index 4 as our indexing 

starts by 0. Table 1 shows the DKT Missing Sequence Padding (MSP) algorithm. For a 

given code challenge sequence set from 0 𝑡𝑜 𝑠 our goal is to predict the value of the 

sequence 𝑠 + 1.  

Table 1. DKT-Missing Sequence Padding (MSP) Algorithm 
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1. Initially, at line 2 assign the threshold index >=0 at which the model is able to 

predict the next value, for instance threshold = 1 which means that the model is 

capable to predict after the sequence x1. 

2. Assign the index 𝑖 at line 3 which is the first missing value in the series and 

obviously it should be greater than the threshold.  

3. The MSP algorithm initiates at line 5. 

4. At line 11 the MSP algorithm starts predicting xs+1 recursively by decrementing the 

index and looking back to temporarily predict and fill the missing values only at 

lines 12 and 13. 

5. When the decremented index reaches the first missing value (line 7), predict the 

missing value at line 8 and terminate the recursive calling at line 9 and exit the 

program. 

3.4 Transformer-based Recommender 

In the previous section, we discussed how to estimate the next knowledge state of 

players, i.e., to know whether they already acquired a specific concept or not. In case it 

is not, we apply a proactive recommendation to help players to acquire this concept before 

proceeding to the next mission. 

In this section, we propose a novel recommender architecture based on knowledge 

tracing, spaced repetition filtering and three NLP tasks to auto generate flashcards 

(Figure 10). Flashcards will be provided for players in the form of recommendations and 

information seeking. Thus, each flashcard consists of a question to be presented for the 

player first, an answer to be shown after certain of time, and a hidden supporting 

paragraph can be viewed on demand. 
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Figure 10. Transformer-based Recommender 

3.4.1 Spaced Repetition and Flashcards Approach 

Spaced repetition involves one of the important learning and training techniques to form 

a long-term memory. According to [16], [88], spaced training is an evidence-based 

learning technique aims at reviewing the learning material at systematic intervals. In 

addition to that, spaced training is more effective for facts, concepts, skills, and others. 

However, flashcard method is one of the widely spread application on the spaced 

repetition technique. The basic idea of using the flashcards is to filter those with well-

known concepts with less frequent review, while difficult or forgotten concepts are filtered 

for more frequent review to be shown frequently in spaced intervals.  

In the context of this study, the Transformer-based recommender generates flashcard 

recommendations and filters them for players according to the spaced repetition 

technique to show difficult concepts frequently. 
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3.4.2 Recommendation and Filtering Context 

Generally, a recommender system is a personalized technique that can recommend items 

based on the user’s needs [89], [90]. According to Ricci et al., [33] there are three actors 

in any recommender system namely environments (items to be recommended), users 

and interactions that were captured between users and items. Traditionally, there are 

several filtering and recommendation techniques such as: content-based to recommend 

similar items by filtering those the user liked; collaborative-based which recommend items 

that are liked by similar users; hybrid-based which combine multiple filtering techniques; 

and the most recent technique for recommendation is the context-aware [90], [91], which 

tracks the user’s state and consider recommendations at specific situation linked with 

time, place, and context. 

The proposed Transformer-based recommender is context-aware with the DKT prediction 

result as the reaction time and with the player’s attempt to move to a new code challenge 

as the location. The main task of the recommender is to generate recommendations for 

a player in the form of flashcards as soon as the DKT prediction result is most probably 

“Fail” in the next mission. In addition to that, the recommender performs on each reaction 

a spaced repetition filtering to present all previous flashcards labeled with knowledge 

state “non-acquired” for a player. Indeed, this recommender reaction and filtering 

technique enable an evidence-based learning approach for players to form a long-term 

memory through spaced repetition practice and feedback-driven metacognition [17], [92]. 

In particular, each flashcard consists of a question and an answer to improve information 

retrieval of players followed by a supporting paragraph to be provided as feedback-driven 

for players “to know what they know and know what they don’t know” [92]. 
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3.4.3 Transformer-based Recommender Architecture  

 

Figure 11. Transformer-based Recommender System Architecture  

The architecture in Figure 11 shows the Transformer-based Recommender with the 

context-aware component.  

• Context-Aware component: the overall process initiates when the player intends 

to move to the next new challenge, the DKT predicts the result of the next new 

challenge, and if the predicted result state is “acquired” the context-aware 

component allows the player to move and solve the challenge without 

recommendations. Otherwise, the context-aware component proceeds directly to 

the recommendation process before letting the player solve the challenge. 

• Transformer-based Recommender: initiates by rating the predicted concept as 

non-acquired, applies spaced repetition filtering to retrieve all previous flashcards 

labeled with non-acquired, generates a flashcard for the predicted concept if it is 
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not already generated from previous turns, and finally recommends and shows the 

new flashcard with all filtered ones for a player   

3.4.4 Transformer-based Recommendation Algorithm  

Output: Recommend_For_Player (Transformer_Flashcard_Generator (𝐜𝐤)) 

Context_Aware_Code() 

1  Concepts: [  𝑐1,  𝑐2,  . . 𝑐𝑖, … 𝑐𝑡 … ] 

2  Next Challenge   𝑐𝑖+1 

3  Result DKT_Predict ( 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑐𝑖+1) 

4  If Result is non-acquired, then 

5   Transformer_Recommender ( 𝑐𝑖+1) 

6  end 

Transformer_Recommender ( 𝑐𝑖+1) 

7  Rate  𝑐𝑖+1  non-acquired 

8  foreach  𝑐𝑘 in Concepts where 𝑘 ≤ 𝑖 + 1   // spaced repetition 

9     If  𝑐𝑘 is non-acquired then 

10    Recommend_For_Player (Transformer_Flashcard_Generator (𝐜𝐤)) 

11     end 

12  end 

Transformer_Flashcard_Generator ( 𝐶𝑘) 

13  𝐅𝐥𝐚𝐬𝐡𝐂𝐚𝐫𝐝𝐬_𝐏𝐨𝐨𝐥: [  𝐹1,    𝐹2,  . .   𝐹𝑘−1, …   𝐹𝑡 … ] 

14  If    𝐹𝑘 𝒊𝒔 𝒏𝒐𝒕 𝑖𝑛 𝐹𝑙𝑎𝑠ℎ𝐶𝑎𝑟𝑑𝑠_𝑃𝑜𝑜𝑙 

15   𝐹𝑘  Generate_Flashcard ( 𝐶𝑘) 

16  end 

17  Return   𝐹𝑘 

 

Figure 12. Transformer-Based Recommendation Algorithm  

Figure 12 demonstrates the recommendation algorithm in three main methods as follows: 

1. Context_Aware_Code() method get invoked every time a player intends to move 

to a new code challenge. 
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2. At line 3 the DKT model predicts the next challenge ci+1 and if the result is non-

acquired at line 4, invoke the method Transformer_Recommender(ci+1) at line 5. 

3. Rate the predicted concept as non-acquired in the learning progress at line 7.  

4. At lines 8 and 9 perform spaced-repetition filtering by retrieving each previous 

concept ck labeled with non-acquired. 

5. At line 10 recommend for players a relevant flashcard for the newly predicted 

concept and each concept ck labeled with non-acquired by invoking the method 

Transformer_Flashcard_Generator(ck). 

6. The method Transformer_Flashcard_Generator(ck) at line 14 performs a check if 

a relevant flashcard Fk is not already generated, then the method generates Fk  

flashcard at line 15 using the Transformer-based Flashcards Framework that we 

will introduce in the next suction. 

7. At line 17 return Fk flashcard for the recommendation method at line 10.  

8. Repeat line 8 (point number 4 above) for each concept ck labeled with non-

acquired. 

3.4.5 Transformer-based Flashcards Generation Framework 

With reference to the recent findings and future directions that we discussed in section 

2.5; we introduce in this section a novel Transformer-based framework to generate 

flashcards in a fully automated process. The new framework combines at least three 

transformer-based models which are fine-tuned and tailored to three different NLP tasks 

of flashcards generation process as shown in Figure 13. 
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Figure 13. Fully Automated Flashcards Generation Framework 

The Flashcards Generation Framework consists of three task generators as follows: 

• The Paragraph Generator task receives an input string to generate a relevant 

paragraph using a fine-tuned GPT-2/Neo decoder, the output of this task is used as 

an input for the next generator task. 

• The Answer Generator task receives a paragraph as an input to generate a relevant 

answer using the BART/T5 seq2seq models that fine-tuned on paragraph 

summarization task. 

• The Question Generator task receives an answer as an input to generate a relevant 

question using the T5 seq2seq model fine-tuned on the task of questions generation. 

This generic framework can be used in any context for generating paragraphs, answers, 

and questions. Moreover, the framework needs three different datasets relevant to the 

discipline to be fine-tuned on the generation tasks. In our research we introduced three 

C++ programming skills datasets to fine-tune the models on the context of C++ 

programming skills. Also, for implementing this framework, we recommend evaluating it 
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using quantitative metrics to measure the N-gram overlaps between the generated and 

the reference text, and to measure the cosine semantic similarity. We believe this is 

crucial to maintain coherence text and correct semantically as we will discuss this in 

chapter 4 in more details. 

3.4.5.1 Input Strings for Flashcards Generation 

To generate a flashcard for a particular concept the Flashcards Generation Framework 

needs an input string such as the title of the target concept in order to initiate task-1 for 

paragraph generation. For this purpose, we can use the learning outcomes matrix which 

we developed as part of this research, and it will be discussed in the next chapter. This 

kind of matrix is identifying the code challenges (exercises) as rows mapped to the 

concepts as columns. Therefore, each code challenge is mapped to a main concept and 

to one or more secondary concepts when available. Accordingly, when predicting any 

next code challenge, we can identify all main and secondary concepts that belong to that 

code challenge. In this case we retrieve the concept title/titles to be used as inputs to 

generate one or more relevant flashcards.  

3.5 xAPI Tracker 

Generally, the user profile is a collection of settings and information associated with the 

user. The Player Tracker (PT) in ISG is responsible for tracking, storing, and sharing the 

player interactions and achievements during/after the gameplay. In reality, PT provides a 

unique identity for the player among the other players related to demographic data, 

performed activities, location, and time. 
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Figure 14. xAPI Tracker 

In order to track, store and share the player interactions and achievements, it is crucial to 

select a standard maintains a data model with a communication model. This standard 

enables interoperability level with external databases, learning record stores (LRS), 

learning management systems, and with any recommendation system that can be 

integrated. In addition, the information should be shared with other researchers for further 

work in serious games.  

3.5.1 Experience APIs 

xAPI [26] is a community-driven specifications for learning technology to allow collecting 

data about a user experience online and offline. xAPI was known before as Tin Can API 

and have introduced by the Advanced Distributed Learning (ADL), who also introduced 

the SCORM standard. In xAPI there are two key elements to define data and 

communication models, for data the xAPI captures the user experience in the form of 

statements contains actor, verb, and object to be stored and shared to any LRS according 

to a unique specification that defines the communication method. The main advantages 

of using the xAPI are the wide adoption and the flexibility of using a wide range of 

vocabulary and extensions to be adaptable with any environment. In our work, we 

integrated the xAPI as the main data format and communication component to provide 

abstraction and wide accessibility for the captured gameplay interactions.  
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CHAPTER 4 

Experiments and Results 

In the previous Chapter, we introduced and described the intelligent Serious Games (ISG) 

model. As described before, the ISG consists of 4 components, the iGDA conceptual 

framework, Learning Analytics with DKT, the Transformer-based Recommender and the 

xAPI Tracker. Our approach in this research is to assess and evaluate the efficacy and 

the feasibility of the ISG components. However, a complete implementation to address 

the effectiveness of the ISG on the players’ attainments will be conducted in future work.  

In this work we assessed and evaluated the ISG components through the following: 

• we developed the C++ Code Challenge game according to the iGDA serious 

games conceptual framework, and accordingly we provided the iGEM mapping to 

identify and describe the overlap between the gaming components and the 

instructional components. We also developed the C++ Code Challenge learning 

outcomes matrix to cover 26 code challenge mapped to 17 concepts. Afterwards 

we transformed the code challenges into online quiz to validate them on real 

students and to create a training dataset for the DKT prediction model. Finally, we 

integrated and evaluated the xAPI Tracker component on real students and the 

ability of sharing the gameplay interactions into two different external data sources.  

• we evaluated the DKT method using three novel hybrid models, three state-of-the-

art single RNNs variants, and CNN single model on two datasets. The Hybrid-DKT 

models obtained better prediction performance over the state-of-the-art DKT 

method with RNNs single variants LSTM, biLSTM and GRU on both datasets. 
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Also, we evaluated the effectiveness of the DKT Missing Sequence Padding 

proposed method, the results revealed the ability to recursively predict more than 

one step ahead with filling the missing values. The metrics that used in the DKT 

evaluation are the area under the curve AUC and the prediction accuracy ACC. 

• we evaluated a novel Transformer-based framework to generate flashcards in a 

fully automated process through combining three NLP generation tasks: Task1 to 

generate C++ paragraphs; Task2 to extract and generate answers from the 

generated paragraphs in Task1; Task3 to generate questions for the generated 

answers in Task2. For evaluation we considered three common metrics in the text 

generation problems: SacreBLEU [95] and ROUGE [97] to measure the surface 

similarity on the words level and SBERT Sentence Transformers [79] to measure 

the cosine semantic similarity between the reference and generated sentences. 

The results revealed that the proposed framework is capable of generating 

coherent and semantically correct flashcards through three experiment sets as 

follows: 

1. we fine-tuned and evaluated the state-of-the-art GPT-2 and GPT-Neo 

models on a new C++ textual dataset for generating C++ guide paragraphs. 

2. we fine-tuned and evaluated the state-of-the-art BART and T5 models on a 

new C++ summarization dataset for generating C++ answers from given 

paragraphs.  

3. we fine-tuned and evaluated the state-of-the-art T5 model on a new C++ 

question/answer dataset for generating C++ questions from given answers. 

4.1 iGDA Serious Games Framework  

The Code Challenge serious game, (Figure 15) developed based on the iGDA model as 

a board-adventure game using UNITY 2D and simulates the campus environment to 
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teach the basic skills of computer programming in C++, one of the most important and 

used programming languages1. The game consists of 26 challenges, places where 

players can acquire quick timed-skills, library, badges, concept flashcards, and 

achievement progress bar which is an evidence-based to track players’ success in the 

game challenges. 

 

Figure 15. C++ Code Challenge Serious Game 

Moving on to the player role in the game, the overall goal for the player is to walk through 

26 code challenges (see Figure 16) to acquire the programming skills in the form of 

learning achievements. Initially, players have to answer four code challenges before they 

can enter the board. Then, the player role is to roll the dice and choose one of the next 

possible places in the board with some criteria to move and try to overcome the rest of 

22 code challenges. Indeed, there are two different strategies a head for players, the first 

one is to move sequentially to learn from the easiest concepts to the difficult ones, while 

the second one is to move randomly or jump-moving to learn the difficult concepts first, 

and implicitly acquire the simple concepts. 

1 https://spectrum.ieee.org/top-programming-languages/ 
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Figure 16. Code Challenge 

4.1.1 C++ Code Challenge Learning Outcomes Matrix 

We identified 17 concepts of C++ programming using C++ Primer Plus book [93] as a 

reference, selecting the common basic skills and excluding advanced skills such as those 

related to objects, classes, and object-oriented programming. Consequently, we 

developed the learning outcomes matrix by setting-up the 17 identified concepts as 

columns, followed by creating 26 code challenges as rows mapped to the concepts. The 

result is each code challenge covers one main concept with one or more secondary 

concepts (denoted by M for main concepts and S for secondary concepts) as shown in 

Table 2. We considered this type of mapping to make sure we aligned each code 

challenge with at least one concept and to visualize the possible dependencies between 

them. Also, identifying main and secondary concepts for each code challenge enable the 

flashcards generation using one or more concept titles as input strings. 
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Table 2. C++ Code Challenge Learning Outcomes Matrix 

#  
Code 

Challenge 
Type 

Syntax Variables IO 
Data 

Types 
String

s 
Arrays Arithmetic  Math Logic 

Condition
s 

Loops 
Ref/Pt

r 
Scop

e 
Functions Recursion  

Overloa
d 

Struc
t 

1 Syntax1 M  S            
   

2 Syntax2 M S  S           
   

3 Syntax3 M              
   

4 Variables1 S M  S           
   

5 Variables2 S M  S           
   

6 Variables3 S M  S           
   

7 Input/Output 1 S S M S           
   

8 Input/Output 2 S S M S   S        
   

9 Input/Output 3 S S M S   S        
   

10 Data Type S S  M           
   

11 String1 S S S S M          
   

12 String2 S S S S M          
   

13 Arrays S S S S  M         
   

14 
Arithmetic 
Operators1 

  S    M        
   

15 
Arithmetic 
Operators2 

  S    M        
   

16 Math S S S S    M       
   

17 
Logical 
Operators 1 

  S      M      
   

18 
Logical 
Operators 2 

S S S S     M      
   

19 
conditional 
statements 1 

S S S S     S M   S  
   

20 
conditional 
statements 2 

S S S S      M     
   

21 
Loop 
statements 1 

S S S S   S   S M    
   

22 
Loop 
statements 2 

S S S S   S   S M    
   

23 
Loop 
statements 3 

S S S S   S   S M    
   

24 
References / 
Pointers 1 

S S S S S       M   
   

25 
References / 
Pointers 2 

S S S S S       M   
   

26 Functions 1 S S S  S        S M    

27 
Functions  & 
Scope 

S S S S   S      M M 
   

28 Functions 2 S S S S  S S  S S S   M    

29 
Functions & 
Recursion 

S S S S     S S    M M 
  

30 
Functions & 
Overload 

S  S          S M 
 

M 
 

31 Structure S S S S  S S  S  S    
  M 
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4.1.2 C++ Code Challenges Online Quiz 

To validate the code challenges and create dataset1 (C++ Code Challenge Dataset) to 

train the DKT prediction model, we transformed the 26 code challenges into online quiz 

as multiple choices and sort statements questions using Microsoft Forms. For most of the 

questions, the associated source code produces two outputs, thus there are 22 possible 

answers (Figure 17). After that, we published the quiz with total of 36 questions, 26 of 

them from our game and 10 extra questions with some demographic data, insights, and 

opinions without names or contacts. We targeted computer engineering, computer 

science and information technology students from UNIPR. We also shared the quiz with 

other colleague professors in Italy and abroad to share it with their students. Our goal 

was to collect responses from trusted population to have high quality series of 

submissions. 

 

Figure 17. C++ Online Quiz for Dataset 
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4.1.3 xAPI Integration and Learning Records Store 

The Experience API (xAPI) captures the interactions in the form of statements, each 

statement contains actor, verb, and objects in JSON format. Accordingly, we identified 

these specifications within the game environment. As shown Table 3, the actor is the 

player, the verb represents the type of the action such as attempted new turn, with one 

or more attached objects. We identified several objects for each statement, one to 

indicate the turn number and activity type. Other objects to describe the result of that 

activity such as success or fail, response type, duration for this activity and scores. Also, 

each statement contains a signature with three fields: context, timestamp, and version. 

Finally, we integrated the xAPI protocol to forward the interactions into two different third-

party sources which are the SCORM cloud and google spreadsheets. 

Table 3. xAPI Statement 

xAPI Attributes Vocabularies 

Actor Name: name of the player 

Verb Attempted: to indicate a new turn 

Object Name: to indicate number of the turn 

Description: to describe the position/destination of the player 

Object type: Activity 

Result Success: true/false 

Completion: true/false 

Response: to describe the action result of this activity 

Duration: the duration of doing this activity 

Score: the earned score for doing this activity 

Context Supervised game or not by instructor 

Timestamp Time and date signature  

Version The version of the xAPI 
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4.1.4 Results 

4.1.4.1 iGEM Mapping 

The proposed iGDA conceptual framework enabled us to identify the serious game 

components in the design phase through two levels.  

In the first level we described and categorized the components into instructional elements, 

game elements, instructional mechanics, and game mechanics. In this level, the learning 

model transformed into instructional elements to include concepts, learning materials, and 

learning activities, and instructional mechanics to include the measurable educational 

verbs-based outcomes such as explore, evaluate, learn, answer and so on. Moreover, 

the game objects such as timers, badges, help, levels, and places are categorized as 

game elements. Whereas the game mechanics identified as rules and verbs such as roll, 

move, accept, select, open and so on.  

In the second level we mapped the iElements with the gElements (see Table 4) and the 

iMechanics with the gMechanics (see  

Table 5), followed by an integration process when available to increase the overlapping 

between them. 

Table 4. Example of Instructional Element and Game Elements Mapping 

gElements Description Mapped iElements 

Flashcards Used for recommendations Brief C++ concepts 

Diamonds Represents the scores Learning achievement 

indicator 

Feedback information and reaction for players  

after finishing a task or a challenge  

Qualitative and quantitative 

feedback about the 

achievement 

Progress 

bars 

To visualize the player progress Learning Achievements 
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Campus There are several buildings that represent possible 

locations on the board, each represent a unique concept 

and contains code challenges 

Concepts and learning 

activities 

Dormitory A building on the board that represents the starting point 

where the main mission and objectives are presented as 

a dialogue scene, some recommendations for players also 

provided at this place during the turns 

Learning objectives and 

learning recommendations 

Library A building on the board that represents the studying area 

in the game, and where players can view categorized 

learning material 

Learning material 

Round When the player reaches the end of the board and start 

over from the starting point 

Learning achievement that 

conducted per a round 

Tip card Lucky cards that can be viewed to give hints related to 

learning activities 

A hint regarding a concept  

Player An avatar representation for the player, it could be male or 

female 

N/A 

Board An area is divided into locations where the player will 

move through 

N/A 

Dices A way to identify a possible movement range by rolling the 

dices  

N/A 

Timer The countdown timer in the game Learning achievement that 

conducted in certain time 

Volume Mute/unmute the sounds N/A 

Turn Rolling the dices, moving, and facing a challenge Where a learning strategy can 

be chosen as step by step or 

jump learning 

      

Table 5. Example of Instructional Mechanics and Game Mechanics Mapping 

gMechanics Description iMechanics Description 

Choose Allow the player to choose a 

location among the movement 

range 

Create, plan, 

develop 

create a playing strategy. i.e., from 

easy to difficult (visit the nearest 

place)  

Move Allow the player to walk around 

the board 

Explore, 

identify 

Explore the instructional goals and 

content  

Select Allow a player to select an option 

among many options 

Identify, 

solve, recall 

Allow the player to identify the 

correct answer for a specific 

question 

Generate Allowing the player to generate a 

new card using the TIP Generator 

Evaluate, 

rate, classify 

Allowing the player to evaluate the 

generated information  
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Submit Allowing the player to submit the 

answer 

Review, 

compare 

Obtaining the answer result whether 

it is correct or incorrect 

Use Allowing the player to use a tip 

card in answering the question 

N/A N/A 

Roll Turning over the dices to have a 

movement range 

N/A N/A 

Correct It is the correct result of answering 

a code challenge 

N/A N/A 

Wrong It is the incorrect result of 

answering a code challenge 

N/A N/A 

 

4.1.4.2 Dataset 1: C++ Code Challenge Results 

A total of 5394 exercise responses were collected from 174 students, 57% males and 

43% females, 60% of them from Palestinian universities, 31% from Italy and 9% of them 

from other countries. The age of 61% of the responders was less than 23 years. Other 

results revealed that 43% of responders self-evaluated their proficiency level as basic, 

42% as medium and 15% as advanced. The majority of them rated the questions’ difficulty 

as average, around 3 out of 5 (5 meaning most difficult). In general, responders were 

quite satisfied (3.79 out of 5) with the questionnaire. 

Table 6. Questions’ difficulty and satisfaction 

Question 1 2 3 4 5 

Questions’ difficulty (5 means very difficult) 8% 22% 38% 23% 9% 

Responders’ satisfaction (5 means very satisfied)  4% 2% 30% 39% 25% 

 

Table 7. Responders' Self-evaluated C++ Proficiency Level 

C++ Proficiency Level 
Basic Medium Advanced 

43% 42% 15% 
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4.1.4.3 C++ Proficiency Level Distribution 

We obtained the proficiency level by computing the average of all responders’ scores for 

each code challenge. Figure 18 shows the average proficiency level for all students. The 

results demonstrated that the students obtained an average score of 59% when 

answering all the code challenges. These results are quite aligned to the self-evaluated 

proficiency levels as the majority selected “basic” and “medium,” and also aligned with 

the questions’ difficulty as the majority of responders rated the questions’ difficulty as 3 

out 5. 

 

Figure 18. C++ Code Challenge Results (Skills Proficiency Distribution) 

The results or the proficiency distribution can be classified into three categories according 

to the average scores among the 31 sequence answers. First category, most students 

possess important skills in programming such as dealing with strings, arrays, arithmetic, 

logic, conditions, and loops with average results between (60% - 80%). However, they 
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have performed significantly less in floats, switch statements, while/do, references and 

pointers (20% - 50%). Second category, concepts such as syntax, variables, and 

input/outputs results shown an oscillating curve from 23% to 73%, and this is due to the 

majority of these concepts being probably memory dependent and it is easy for the 

students to memorize them when needed or to correct the error while practicing. Third 

category, the results revealed that the students showed semi-constant results in dealing 

with functions, scope, overload, recursion, and structure with results between 50% and 

60%, and this may be most probably related on the above results as dealing with functions 

in programming is a mixed experience of all previous skills and concepts. 

4.1.4.4 xAPI Hands-on Workshop 

The main purpose of the workshop was to assess and evaluate the practical use of this 

framework with the xAPI Tracker. Due to some limitations regarding the COVID-19 

lockdown, we were unable to distribute and evaluate the game on a large scale. Instead, 

we have evaluated the game on twenty students. The participants attended the online 

workshop which have started by introducing the game and the purpose of this workshop. 

The demographic questionnaire was embedded in the stating part of the game, and it was 

optional. Then the participants have given 30 minutes to play the game, and the xAPI 

Tracker was responsible to capture and share all the interactions instantly into two 

different external data sources the first one was the xAPI Learning Record Store in the 

SCORM Cloud service and the second was google spreadsheets. The age range was 19 

– 29, gender 90% female and 10% male while the country was Italy. Total of 485 turns 

and interactions are captured in the form of xAPI statements as shown in Figure 19, and 

each statement contains more specifications regarding the actor, results, verb, and other 

objects.  
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Figure 19. xAPI Captured Statements 

4.1.5 Summary 

In summary, we developed the C++ Code Challenge game according to the iGDA serious 

games conceptual framework and we introduced the iGEM mapping. The iGEM mapping 

enabled us to identify iMechanics, gMechanics, iElements and gElements, in addition to 

increase the overlap between them. We also developed the C++ Code Challenge learning 

outcomes matrix covering 26 code challenge and mapped to 17 concepts. We also 

validated the code challenges and created a training dataset for the DKT prediction 

model. The validation results of the code challenges revealed that the majority of students 

possess important skills in programming such as dealing with strings, arrays, arithmetic, 

logic, conditions, and loops. Whereas the students’ performance significantly decreased 

in floats, switch statements, while/do, references and pointers. Also, we integrated and 
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evaluated the xAPI Tracker component on real students and results revealed the ability 

of using this integration to share the gameplay interactions into two distinct locations 

which are SCORM learning record store and google spreadsheet. 

4.2 Hybrid-Deep Knowledge Tracing 

To assess and compare the Hybrid-DKT models on dataset1 that we introduced in section 

4.1 with other public datasets, we found most of the previous studies have evaluated only 

the overall performance of their DKT models, unlike our own work to evaluate each 

knowledge state as described in section 3.3.3. They mostly used some public datasets 

such as ASSISTments’ skill builder [94], Algebra 0506 and Statics2011. Those datasets 

have some limitations such as: each student has a different length of responses; some 

questions have multiple associated scaffolding questions, therefore there are multiple 

sequence of responses with sub-sequences; undetermined submission order and 

repeated responses for each student where a student can keep trying until a proficiency 

threshold is reached. Differently, our approach (see section 3.3.3) is to evaluate each 

knowledge state by assessing each response sequence in a fixed-length and ordered 

responses. Therefore, besides our own dataset1, we also adopted a simulated dataset 

from the literature. Piech et al. [5] have simulated 5 concepts to cover a fixed-length and 

ordered sequence of 50 questions and answered by 4000 virtual students, and this 

dataset was used also to evaluate DKT method in [5], [10]. 

4.2.1 Dataset 1 Preprocessing for Training 

The C++CCH dataset (dataset1) was already scaled and normalized in the form of 0 for 

false answer and 1 for true. The original dataset consists of 5394 records for 31 questions 

with 174 unique students. We selected only 4524 responses that belongs to 26 questions 

(𝑀 = 26 is the length of the response sequence for each student) of the game as shown 
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in Table 8. Consequently, we fed all the selected responses into a generation function to 

generate the inputs matrix in the form of questions and answers {𝑄𝑠, 𝐴𝑠} as 𝑥𝑠 = {0,1}2𝑀 with 

output { 𝐴𝑠+1} as 𝑦𝑠+1 = {0,1}𝑀. Also, we applied the 60% / 20% / 20% split ratio for training, 

validation, and testing data, respectively. 

Table 8. C++ Code Challenge Dataset 

Response ID Player ID C++ Code Challenge ( 𝑸𝒕) Response ( 𝑨𝒕) 

1 1 𝑄1 1 

2 1 𝑄2 0 

… 1 … … 

26 1 𝑄26 1 

…    

1284 50 𝑄10 1 

… … … … 

4523 174 𝑄25 0 

4524 174 𝑄26 1 

 

4.2.2 Dataset: Simulated-5 (Baseline) 

We randomly selected only 174 unique virtual student submissions from Simulated-5 

dataset with total of 4524 exercise answers for 26 sequences. The purpose of this 

selection was to match the size with the C++CCH dataset to evaluate and compare the 

two datasets on same size. Our objective is to investigate the impact of using a small 

dataset with fixed-length responses and ordered questions from basic to advance 

concepts on the prediction performance. 
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4.2.3 Model Configuration 

In our experiments, we applied and evaluated LSTM, biLSTM, GRU, CNN and hybrid 

RNN-CNN-based models across our dataset C++CCH and Simulated-5 dataset using 

MATLAB to compare their prediction performance. The same network topologies and 

settings on all models and datasets were applied. Initially, the proposed Hybrid-DKT 

topology (see Figure 8) was used to apply the hybrid-RNN-CNN model. For the CNN 

model we used the same Hybrid-DKT, but we removed the RNN layer and reconnected 

the input layer directly with the CNN layer. For the LSTM, biLSTM, GRU we removed the 

CNN layer from the Hybrid-DKT model as well and reconnected the RNN layer with the 

output layer. Moreover, we adjusted the hidden layers to 98 and batch size to 25 for the 

RNN single models, and 70 for the CNN and the Hybrid models. We performed 30 training 

epochs with Adam algorithm [95] to optimize the training. For the CNN layer we adjusted 

the number of filters to 64, filter size to 5, dropout factor to 0.01 and padding value to 

“same”. 

4.2.4 Design of Experiments 

In order to trace the knowledge state of players in real-time during the gameplay and 

predict the result of the next code challenge along 22 challenges in the game, we trained 

the model to predict the next code challenge for each sequence length from 5 to 26 as 

shown below in Table 9. Whereas the first 4 challenges as we indicated in section 3.4.5 

the players have to answer them when starting the game. 
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Table 9. Prediction at Each Sequence Length Input/Output 

Sequence 

Length 

Input Sequences (Code Challenges) Next Code Challenge 

to be Predicted 

5 {𝑄1, 𝐴1}, {𝑄2, 𝐴2}, {𝑄3, 𝐴3}, {𝑄4, 𝐴4} { 𝐴5} 

6 {𝑄1, 𝐴1}, {𝑄2, 𝐴2}, {𝑄3, 𝐴3}, {𝑄4, 𝐴4}, {𝑄5, 𝐴5} { 𝐴6} 

7 {𝑄1, 𝐴1}, {𝑄2, 𝐴2}, {𝑄3, 𝐴3}, {𝑄4, 𝐴4}, {𝑄5, 𝐴5}, {𝑄6, 𝐴6} { 𝐴7} 

… … … 

26 {𝑄1, 𝐴1}, {𝑄2, 𝐴2}, {𝑄3, 𝐴3}, … , {𝑄25, 𝐴25}  { 𝐴26} 
 

In these experiments, we evaluated and compared the prediction performance for each 

sequence length using the proposed Hybrid-DKT model and the single baseline models 

LSTM, biLSTM, GRU and CNN in tuple input entry as question and answer {𝑄𝑡 , 𝐴𝑡} on 

both datasets. Also, we assessed the DKT Missing Sequence Padding method on the 

trained model. 

4.2.5 Results 

We evaluated the prediction performance by four metrics: we constructed the confusion 

matrix and plotted the ROC curve to measure the AUC for each sequence length. We 

also calculated the prediction accuracy ACC to compare it with the AUC results. 

Moreover, to simplify the comparison along 22 sequence lengths and 7 prediction models, 

we calculated the ACC/AUC average of all sequence lengths for each model to make a 

general comparison indicator between models and datasets. Finally, we considered to 

compare the AUC prediction performance in four ranges over the sequence over all 

sequence lengths. 
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Table 10. AUC/ACC Prediction Performance (Average for all Sequence Lengths) 

Model      Simulated-5 Dataset     C++CCH Dataset 

ACC AUC ACC AUC 

LSTM 0.752 0.700 0.789 0.786 

biLSTM  0.725 0.666 0.786 0.788 

GRU 0.743 0.685 0.795 0.794 

CNN 0.757 0.703 0.790 0.791 

Hybrid (LSTM-CNN) 0.741 0.712 0.786 0.802 

Hybrid (biLSTM-CNN) 0.709 0.712 0.784 0.804 

Hybrid (GRU-CNN) 0.759 0.716 0.798 0.814 
 

The average performance for all sequence lengths in Table 10 shows that the Hybrid 

models outperformed the other single models biLSTM, LSTM, GRU and CNN on both 

datasets (for more details see Table 11). Among the hybrid models, the GRU-CNN model 

achieved the best prediction performance average with an AUC score of 0.814, higher 

than the biLSTM-CNN with a 0.804 AUC score and the LSTM-CNN with an AUC score of 

0.802, which is expected on our small datasets. For the single models, the GRU model 

achieved the best average AUC prediction performance with 0.794, followed by CNN and 

biLSTM with 0.791 and 0.788 respectively, the LSTM model was the last in the list with 

0.786 AUC score. The results also revealed that the CNN single model obtained similar 

performance to the RNNs variants and can be used in the DKT problem. To compare the 

performance on the dataset level, the C++CCH dataset outperformed the Simulated-5 

dataset on all models. This result is expected as the C++CCH dataset contains real 

submissions and sequence dependency ordered in ascending order from simple 

concepts to difficult. The best prediction performance for the Simulated-5 dataset was on 

the Hybrid GRU-CNN with AUC 0.716. Also, the Simulated-5 dataset showed significant 

differences between ACC and AUC scores on the single models. 



 

 

CHAPTER 4 Experiments and Results  

64 | P a g e  

 

Figure 20. AUC prediction performance range for all 22 sequence lengths 

The prediction performance range in Figure 20 shows that along all the 22 sequence 

lengths the hybrid models achieved the best prediction performance ranges. The 

combination of the RNNs variants and the CNN network impacts the performance 

positively with an interesting behavior. Obviously, it leveled-up the overall prediction 

quality toward increasing the sequence lengths in the AUC interval 0.80 - 0.99 and 

decreasing those with AUC score less than 0.70. Group 1 shows that 63.6% of the 

sequence lengths achieved AUC scores between 0.80 and 0.99 in the Hybrid biLSTM-

CNN, while the biLSTM baseline percentage was 41%, with significant increase of 23% 

to the benefit of the Hybrid biLSTM-CNN. Also all the sequence lengths with score less 

than 0.60 improved and shifted up to the range 0.60 - 0.69. Group 2 shows that around 

9% of the sequence lengths shifted up from the AUC range 0.70 - 0.79 to 0.80 - 0.99 in 
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the Hybrid LSTM-CNN, while the rest ranges below 0.70 remained unchanged. Group 3 

shows stability in the range 0.80 - 0.99 with 54.5% for both Hybrid GRU-CNN and GRU 

baseline, but 13.6% of the sequence lengths shifted from the score range 0.60 - 0.69 to 

0.70 - 0.79, so that there are no sequence lengths with AUC performance under the score 

0.70 as Figure 22 shows the level-up trend for GRU baseline and Hybrid GRU-CNN. 

Table 11. AUC Prediction’s Performance on Each Sequence Length for C++CCH Dataset 

Sequence 

Length 

biLSTM LSTM GRU CNN Hybrid 

biLSTM-CNN 

Hybrid  

LSTM-CNN 

Hybrid  

GRU-CNN 

5 0.781 0.875 0.875 0.960 0.938 0.875 0.982 

6 0.742 0.742 0.742 0.753 0.717 0.682 0.707 

7 0.667 0.633 0.633 0.767 0.733 0.667 0.700 

8 0.729 0.750 0.813 0.646 0.667 0.771 0.739 

9 0.786 0.775 0.813 0.742 0.852 0.775 0.775 

10 0.595 0.500 0.679 0.595 0.821 0.821 0.821 

11 0.933 0.933 0.833 0.967 0.933 0.900 0.933 

12 0.864 0.808 0.818 0.864 0.808 0.864 0.818 

13 0.742 0.703 0.780 0.742 0.709 0.780 0.780 

14 0.843 0.843 0.788 0.788 0.843 0.843 0.788 

15 0.792 0.792 0.771 0.833 0.833 0.833 0.833 

16 0.854 0.958 0.984 0.938 0.896 0.958 0.896 

17 0.742 0.742 0.742 0.687 0.742 0.742 0.742 

18 0.798 0.843 0.843 0.788 0.843 0.843 0.843 

19 0.850 0.850 0.800 0.750 0.800 0.800 0.850 

20 0.808 0.808 0.808 0.808 0.808 0.808 0.808 

21 0.885 0.923 0.885 0.852 0.885 0.885 0.885 

22 0.857 0.821 0.857 0.821 0.821 0.821 0.821 

23 0.708 0.750 0.750 0.750 0.750 0.750 0.750 

24 0.753 0.697 0.652 0.753 0.697 0.753 0.753 

25 0.846 0.846 0.846 0.846 0.775 0.885 0.923 

26 0.753 0.707 0.753 0.753 0.808 0.586 0.753 
 

Table 11 and Figure 21 demonstrate the AUC prediction performance trend at each 

sequence length from 5 to 26 on all models. The results show the impact of the multi-

level learning and feature extraction in the proposed Hybrid-DKT model. For example, the 
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Hybrid GRU-CNN achieved the best prediction performance with top three AUC scores 

0.982, 0.933 and 0.923 on the sequence lengths 5, 11, 25 respectively, while the baseline 

results on the GRU model before applying the hybrid multi-level training were 0.875, 

0.833 and 0.846. Similarly, on the same models, the best improvement ratio is 20.9%, 

15.5% and 12.2% on the sequence lengths 10, 24 and 5. 

 
 

 

Figure 21. Prediction performance trend for all 
sequence lengths for each model 

 

Figure 22. Prediction performance trend for all 
sequence Lengths for GRU – Hybrid GRU-CNN 

For assessing the DKT Missing Sequence Padding (MSP) method across the three hybrid 

trained models, we recursively predicted the result of the 11th sequence given the results 

of all available sequences from 1 to 5 and missing results from element 6 to 10. The 

results in Table 12 revealed the effectiveness of the method with 5 missing values. The 

Hybrid GRU-CNN achieved the best AUC scores on sequences 7 and 11, while the other 

sequences are still in acceptable score ranges above 0.75 except sequence 6. 
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Table 12. Sequence 11 prediction using 5 missing sequence padding method 

Sequence  

Length 

Hybrid (biLSTM-CNN)     Hybrid (LSTM-CNN) Hybrid (GRU-CNN) 

AUC AUC AUC 

6 (missing) 0.673 0.632 0.668 

7 (missing) 0.750 0.719 0.813 

8 (missing) 0.749 0.792 0.764 

9 (missing) 0.786 0.643 0.750 

10 (missing) 0.750 0.679 0.786 

11  0.752 0.719 0.813 

 

4.2.6 Summary 

In summary, we evaluated three hybrid models, three single RNNs variants, and the CNN 

single model on two datasets. The Hybrid-DKT models obtained better prediction 

performance over the state-of-the-art DKT method with RNNs single variants LSTM, 

biLSTM and GRU on both datasets. The GRU-CNN hybrid model achieved the best 

prediction performance with slightly advantage over the biLSTM-CNN, while the LSTM-

CNN was the third on the C++CCH dataset. For the single baseline models on the 

C++CCH dataset, the GRU obtained the best AUC score followed by the CNN, biLSTM 

and LSTM. Along all the 22 sequence lengths, the hybrid GRU-CNN obtained the highest 

improvement ratio with 20.9%, 15.5% and 12.2 over the baseline GRU model for 

sequence lengths 10, 24 and 5, while the sequence lengths 5, 11, and 25 achieved the 

highest prediction performance AUC scores 0.982, 0.933 and 0.923 respectively on the 

GRU-CNN model. Also, the results revealed that the hybrid model have positive impact 

to level-up the prediction quality toward increasing the sequence lengths in the AUC 

interval 0.80 - 0.99 by 23%, and decreasing those with AUC score less than AUC 0.70 to 

0%. Also, the results revealed the effectiveness of the DKT Missing Sequence Padding 
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method and the ability to recursively predict far sequences with AUC score 0.813 on 5 

missing values. 

4.3 Transformer-based Paragraph Generation 

4.3.1 Dataset 2: Programming Skills Guide 

To fine-tune the Transformer-based paragraph generator on programming skills, we 

collected data from some free C++ programming skills tutorial websites by a web scraping 

tool developed in Python. We pre-processed and cleaned the dataset, by reformatting the 

text and codes in proper statements and paragraphs format, removing unwanted markers, 

tags, or irrelevant structures.  

For paragraphs generation, we investigated and considered three basic formats to be 

generated. Firstly, we rely on definitions to provide abstract description for a concept. 

Secondly, explanations are used to describe a concept in more details. Thirdly, source 

codes give programming code examples related to a concept. Accordingly, we considered 

for tagging to include the title of the concept with identifying verbs such as define, explain 

and code as shown in Table 13 and Table 14. 

Table 13. Tags Structure 

Verb Tags Structure 

Start <|title|> [concept title…] 

define <|define|> definition… 

explain <|explain|> description… 

code <|code|> code example… 

end code <|endofcode|> 

end <|endoftitle|> 
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Table 14. Tags Structure Example 

Example 

<|title|> variables 

<|define|> variables: A variable definition tells the compiler where and how much storage to create… 

<|explain|> variables: A variable definition specifies a data type and contains a list of one or more 

variables of that type. type must be a valid C++ data type including char…. 
<|code|> variables: 
#include <iostream> 
using namespace std; 
int main () { 
   // Variable definition: 
   int a, b; 
   int c; 
   float f; 
   …… 

<|endofcode|> 

<|endoftitle|> 

 

In the final phase, we transformed the dataset which consists of 2300 text lines into text 

with tags structure <|title|> as proposed in Table 13 and Table 14 to simplify and guide 

the model towards certain tags while training, and to generate more relevant and coherent 

text. 

4.3.2 Design of Experiments 

We fine-tuned the pre-trained models GPT-2 and GPT-Neo on a new dataset for 

generating flashcards text in the field of programming skills. We used the GPT-2 model 

124M parameters and GPT-Neo 125M parameters, with temperature=0.9 and            

top_p=0.9. We deployed the experiments in Google Colab environment, a Jupyter-based 

notebook environment on the cloud. 

The paragraphs generation task is formulated as follows: given a pre-defined text as 

concept title  𝑡1 and target text length 𝑀 as inputs, generate a paragraph relevant to  𝑡1 as 
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a sequence of tokens (words/grams)   𝑡1, 𝑡2, 𝑡𝑠, … 𝑡𝑀  and not exceeding the given 

sequence length 𝑀. The model generates one gram at a time relevant to the previous 

tokens’ context. Then, the model adds the new generated token after the previously 

generated token sequence, and the new sequence becomes the new input for the next 

token and so on until the generated sequence reaches the target length.  

We investigated the fine-tuned models on three testing sets with different setups to 

generate 25 programming skills paragraphs for each testing set. For each paragraph 

generation we prepared pre-defined text as prompt for the generator and reference text 

for evaluation, whereas a max sequence length is assigned for each testing set as shown 

in Table 15. Also, for evaluation, we removed the generated code examples from set 3. 

We will see in the next section that the evaluation metrics we applied are suitable for the 

natural language rather than for code syntax. 

 Table 15. Testing sets: Prompt structure and Output 

Testing Set Prompt Structure Example Predicted Output 

Set-1  Define tag + title 
<|define|> variables 

 

A definition with max length 50 

words. 

Set-2 Incomplete Sentence 
Global variables are defined 

outside of… 

A complete sentence with max 

length 24 words  

Set-3 Title tag + title <|title|> arrays 

A paragraph with definition, 

explanation, and code example 

with max length 300 words 

 

4.3.3 Results 

We considered three metrics: SacreBLEU [96] which is a recent variant of BLEU [97]; 

ROUGE [98]; and SBERT Sentence Transformers [79]. SacreBLEU and ROUGE are the 

common metrics in the text generation problem. Both metrics measure the surface 
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similarity between the sentences and rely on N-gram overlap. Rouge metric focuses on 

recall, and computes recall, precision and F1 score for the words overlap in 1-gram, 2-

gram, and the longest common sequence. In fact, SacreBLEU focuses more on precision 

score, and computes precision for 1-gram, 2-gram, 3-gram, and 4-gram, in addition to the 

BLEU Score which is the geometric mean of all four n-gram precision scores. However, 

SBERT is a recent Transformer-based model introduced to evaluate the semantic 

similarity. SBERT was adopted in several previous studies such as in [100], [101]. It 

computes the cosine semantic similarity scores for all possible pairs between two 

sentence embeddings to measure their semantic similarity. 

Table 16. Models Performance 

Metrics   SacreBLEU ROUGE-1 SBERT 

Model Testing Set Sample P BLEU  

Score 

P R F1 Semantic 

Similarity 

GPT-2 

Set-1 Definitions 0.808 0.760 0.838 0.887 0.843 0.937 

Set-2 Complete Sentences  0.918 0.807 0.933 0.846 0.880 0.930 

Set-3 Paragraphs 0.901 0.750 0.901 0.875 0.876 0.959 

GPT-Neo 

Set-1 Definitions 0.808 0.769 0.851 0.901 0.847 0.944 

Set-2 Complete Sentences  0.795 0.685 0.800 0.756 0.771 0.860 

Set-3 Paragraphs 0.922 0.849 0.875 0.828 0.843 0.965 

 

The models performance results in Table 16 show that the generators are capable of 

generating programming skills text with scores higher than 85% for n-gram-based metrics 

and 90% for the semantic score. The high scores for both N-gram-based metrics and the 

cosine semantic confirmed that the models-maintained two key factors coherence and 

meaning of the generated paragraphs (see the generated samples in Table 17). However, 

limited BLEU scores are obtained on both models, but these results are expected as the 

BLEU score is a result of computing the geometric mean of all four N-gram precision 

scores, and the precision decreases when N increases.  
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Table 17. Comparison between the generated and the reference Texts 

Samples Generated Text Reference Text 

Definition  
goto: Transfers control to the labeled statement. 

Though it is not advised to use goto statement in 

your C++ to use goto statement 

goto: Transfers control to the labeled statement. 

Though it is not advised to use goto statement in your 

program… 

Complete 

sentence 

A pointer is a variable whose value is the address of 

another variable. 

A pointer is a variable whose value is the address of 

another variable. Like any variable or constant, you 

must declare… 

Paragraph 

const: Constants can be of any of the basic data 

types and can be divided into Integer Numerals, 

Floating-Point Numerals, Characters, Strings and 

Boolean Values. constants are treated just like 

regular variables except that their values cannot be 

modified after their definition… 

const: Constants refer to fixed values that the program 

may not alter and they are called literals. Example 

const int  LENGTH = 10; Constants can be of any of the 

basic data types and can be divided into Integer 

Numerals, Floating-Point Numerals, Characters, 

Strings and Boolean Values… 
 

In the testing sets level, the long paragraphs (set-3) achieved the best semantic similarity 

score higher than 0.95 on both models followed by the short definitions (set-1), and 

complete sentences (set-2) was the last which were generated without prefix tags. This 

result confirms two conclusions: firstly, the models achieve better performance when 

associating prefix tags with the input prompt; secondly, increasing the max-length-size of 

the generated text has positively influence on the performance, as we assigned it to 300, 

50 and 24 for long paragraphs, short definitions, and complete sentences, respectively. 

Overall, GPT-Neo achieved slightly better performance than GPT-2 in definitions and 

paragraphs, whereas GPT-2 performed better than GPT-Neo only on the complete 

sentences with small max-length-size. 
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Table 18. Generated code samples with prefix tags 

Prompt: <|code|> variable: Prompt: <|define|> variable: 

 

 

Prompt: <|code|> scope: Prompt: <|code|> global variable: 

 
 

 

The generated code samples with prefix tags in Table 18 demonstrate that the models 

are capable to generate relevant code examples. The annotation tags influenced the 

generated text to be more relevant and responsive with the prompt. For example, when 

prompting “<|code|> scope” the model is given the priority to generate relevant code for 

the keyword “scope” despite there are other details for this keyword such as a definition 

and explanation. Whereas when prompting “<|code|> global variable” this keyword has 

only a definition in the dataset. Therefore, the priority is given to define it as the first 
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relevant text, then the model generated the second relevant text as code tagged with 

<|code|> scope.  

Table 19. N-gram Performance Results for The Flashcard Sample 

Model GPT-2 GPT-Neo 

Metrics SacreBLEU ROUGE SacreBLEU ROUGE 

Contiguous N-gram 

(word) 

Precision Precision Recall F1 Precision Precision Recall F1 

1-gram 0.901 0.901 0.875 0.876 0.922 0.875 0.828 0.843 

2-gram 0.859 0.866 0.852 0.853 0.902 0.831 0.794 0.805 

3-gram 0.844 
N/A 

0.894 
N/A 

4-gram 0.833 0.890 

Longest Common 

Subsequence (LCS) 
N/A 0.878 0.861 0.862 N/A 0.852 0.806 0.822 

 

Table 19 shows the performance trend along different contiguous sequence of N words 

overlap between the generated text and the reference. Initially, SacreBLEU metric has 

four n-gram precision scores, whereas ROUGE has two n-gram scores with longest 

common subsequent score (LCS). Generally, the performance decreases when the n 

value increases, but the score results demonstrate slightly decreasing which assures the 

quality of the generated text on different n-grams. For example, in the GPT-Neo model, 

SacreBLEU metric obtained the best precision among all models and metrics with score 

0.922 on 1-gram and the score decreased slightly to 0.890 on 4-gram precision. Also, the 

model GPT-2 achieved the best F1 score value of 0.876 on 1-gram, and the longest 

common subsequent slightly decreased the F1 score to 0.862. 

4.3.4 Summary 

We fined-tuned the GPT-2 and GPT-Neo models with a new dataset to explore the 

generation of programming skills paragraphs. We evaluated both models by two N-gram-

based metrics and a cosine semantic similarity metric. The results revealed that the fine-
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tuned models are capable to generate coherent guide text and code examples for 

programming skills. Both N-gram-based metrics and cosine semantic similarity metrics 

scores assure the quality and capability of the models to generate coherent text. We also, 

investigated the influence of associating the prompt text with prefix tags, the results 

showed that the generated samples with prefix tag achieved better performance. Also, 

the results demonstrated that the GPT-Neo model achieves better performance on the 

long text length, whereas GPT-2 performs better on the short text length. Also, the results 

revealed that the models are capable to detect and recognize the structure of the 

annotation tags, which is positively influenced the generated text to be more relevant and 

responsive with the prompt. Furthermore, we investigated the performance trend along 

different contiguous sequence of N words overlap between the generated and the 

reference text. The score results demonstrated slightly decreasing in the performance 

when N value increases, which assures the quality of the generated text on different N-

grams.  

4.4 Transformer-based Answer Generation 

4.4.1 Dataset 3: Programming Skills Summaries  

In this part of the experiments our goal is to fine-tune and compare the Transformer-

based models T5 and BART to make it capable of summarizing C++ paragraphs to extract 

and generate answers. Unluckily, we were not able to find any public datasets related to 

C++ summaries. Instead of that we found datasets for news summaries, scientific papers 

summaries and some others. Subsequently, we collected C++ questions/answers from 

different programming skills websites. After cleaning and removing the short answers, we 

manually provided a summary for each paragraph to form a dataset with 300 C++ 

paragraphs/answers’ summaries covering different topics in C++. Also, in order to train 

the model to recognize other forms of summarization, we added to the dataset 3700 
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paragraphs/summaries from the standard dataset cnn_dailymail [83] to produce a 

C++Summary dataset with 4000 pairs of paragraphs/summaries. 

4.4.2 Design of Experiments 

We fine-tuned the pre-trained models T5 and BART on our new C++ Summary dataset 

(C++SUMM) to generate answers in the field of programming skills. We used the T5-large 

and BART-large models, with max_seq_length: 128, train_batch_size: 8 and 9 epochs. 

We deployed the experiments in Google Colab environment, and we set the generating 

parameters as follows: max_length: 50, top_k: 50, top_p: 0.95 and 

num_return_sequences to 1, whereas we applied different values for num_beams and 

do_sample as we described below.  

Experiments: We conducted in total 18 experiments to generate answers by 

summarizing the generated paragraphs (C++ guide text) in section 4.3: 

• we investigated and compared the performance of the models T5 and BART to 

generate C++ answers; 

• we examined the capability and the performance of the models trained on: (1) both 

cnn_dailymail and C++ summaries together; (2) the C++ summaries only; (3) the 

cnn_dailymail summaries only; to generate C++ answers. For this purpose, we 

produced 3 different versions of the C++SUMM training dataset DS1, DS2 and DS3; 

• we investigated the influence of enabling/disabling the beam search and the greedy 

search decoding during the answer generation process; 

• we compared difference performance metrics of the generated answers with respect 

to the summarization ratio.  
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4.4.3 Results 

We evaluated each generated answer with respect to a reference answer by the same 

three metrics used in the previous text generation experiments, which is SacreBLEU [77], 

ROUGE [79] and SBERT Sentence Transformers [79]. In addition to that, we computed 

the summary improvement ratio as the number of words between the original paragraph 

and the answer summary: Summary Improvement Ratio (P, S) = |P-S| / |P|. We also repeated 

each experiment 10 times and we computed the average performance for each metric. 

Table 20. Average Performance of Generated Answers 

Dataset Model 

Search 

Alg. 

Enabled 

Sacre- 

BLEU 
ROUGE-1 ROUGE-2 ROUGE-L 

SBERT 

Cosine 

Semantic 

Similarity  

Summary 

Improvement 

Ratio % 

P P R F1 P R F1 P R F1 Score 

DS1: 

CPP with 

cnn- 

dailymail 

BART 

Sampling 0.550 0.603 0.702 0.624 0.468 0.547 0.484 0.566 0.654 0.584 0.869 44.0 

Beam 0.559 0.613 0.709 0.634 0.478 0.554 0.493 0.576 0.660 0.593 0.873 44.5 

Greedy 0.565 0.604 0.694 0.622 0.467 0.539 0.480 0.567 0.647 0.583 0.869 46.2 

T5 

Sampling 0.559 0.595 0.577 0.558 0.415 0.422 0.397 0.553 0.543 0.522 0.832 57.0 

Beam 0.572 0.616 0.595 0.575 0.433 0.439 0.414 0.575 0.563 0.541 0.850 57.4 

Greedy 0.562 0.600 0.587 0.564 0.409 0.427 0.398 0.561 0.556 0.530 0.847 57.2 

DS2: 

CPP 

BART 

Sampling 0.526 0.571 0.678 0.595 0.421 0.504 0.441 0.536 0.633 0.557 0.856 43.6 

Beam 0.527 0.575 0.681 0.596 0.425 0.507 0.444 0.539 0.634 0.558 0.856 43.3 

Greedy 0.552 0.596 0.695 0.622 0.442 0.522 0.462 0.560 0.646 0.581 0.870 44.8 

T5 

Sampling 0.476 0.509 0.517 0.485 0.305 0.314 0.292 0.459 0.466 0.437 0.792 53.4 

Beam 0.473 0.497 0.516 0.482 0.292 0.313 0.287 0.452 0.470 0.439 0.805 53.1 

Greedy 0.464 0.485 0.481 0.456 0.266 0.280 0.257 0.440 0.438 0.415 0.797 56.4 

DS3: 

cnn- 

dailymail 

BART 

Sampling 0.392 0.411 0.760 0.515 0.288 0.558 0.365 0.370 0.687 0.464 0.824 16.1 

Beam 0.391 0.410 0.763 0.514 0.286 0.559 0.364 0.367 0.686 0.461 0.827 15.4 

Greedy 0.417 0.437 0.782 0.543 0.319 0.596 0.400 0.401 0.721 0.498 0.837 17.7 

T5 

Sampling 0.341 0.353 0.618 0.433 0.212 0.382 0.262 0.302 0.530 0.370 0.773 21.7 

Beam 0.353 0.365 0.641 0.448 0.237 0.426 0.292 0.323 0.565 0.395 0.791 21.1 

Greedy 0.354 0.366 0.642 0.450 0.232 0.417 0.285 0.322 0.562 0.393 0.793 21.0 
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The average performance of the generated answers in Table 20 shows that the fine-tuned 

models are capable to summarize paragraphs and generate C++ answers even with a 

trained dataset consists of only C++ summaries. Whereas mixing the C++ summaries 

with the cnn-dailymail summaries in the training dataset for the BART model and beam 

search enabled achieved the best average F1 scores for Rouge-1, Rouge-2, and Rouge-

L and cosine semantic similarity score of 0.873 with summarization ratio reached to 

44.5%, which is a slight improvement over when enable sampling or greedy search 

instead of beam on the same model. Also, slightly performance decrease was obtained 

on the BART model when using the C++ summaries only in the training dataset with 

scores 0.856 for both beam and sampling, and 0.870 when enabling the greedy search. 

However, generating answers by training a dataset consists of the cnn-dailymail 

summaries only showed decreasing in the cosine similarity scores under 0.840 and a 

significant decreasing in the summarization ratio to less than 22%, which means that the 

models just re-generating almost the same paragraphs. 

 

Figure 23. Average Cosine Semantic Similarity Scores and Summary Ratio 
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In general, the BART model achieved best Rouge and Cosine semantic similarity scores 

on all datasets, while the T5 achieved the best summarization ratio with 24% increase 

over the BART model as shown in Figure 23. For the model’s generator decoding 

methods, mostly beam decoding demonstrated better performance scores than the 

others, whereas greedy search decoding comes next, and random sampling is the last. 

Despite the greedy search gets the second rank in the quantitative scores, but in reality 

the greedy search returns the most probable next word, which means it mostly returns 

same sentences without rephrasing new sentences, as we conducted a qualitative 

evaluation and the result comes to confirm that as shown in Table 21.        

Table 21. Examples of Generated Answers  

Generated Answers  

Beam/Sampling 

(Summary) 

Generated Answers  

Greedy 

(Summary) 

Reference Answer Reference Paragraph 

A constructor is the 

class method that 

initializes an object of 

that class. 

A constructor is a member 

function that is invoked 

whenever you create an 

object; it has the same 

name as that of the class. 

A constructor is a 

function that is called 

when an object is 

created. It is used to 

initialize the object. 

A constructor is defined as a member function 

that is invoked whenever you create an 

object; it has the same name as that of the 

class. There are two types of constructors: 

Default constructor: This auto-generated 

constructor does not take any arguments. 

Parameterized constructor: In this 

constructor, it can pass arguments. 

The break statement is 

a statement that 

causes the user to exit 

an iterative or switch 

statement. 

A break statement is a C or 

C++ control statement that 

contains the keyword 

break and a semicolon (;). 

It is used to end an 

iterative or a switch 

statement 

It is a way of exiting a 

loop (or switch 

statement) at any point, 

instead of only at the end, 

by using the keyword 

break. 

break statement: A C or C++ control 

statement that contains the keyword break 

and a semicolon (;). It is used to end an 

iterative or a switch statement by exiting 

from it at any point other than the logical end. 

Control is passed to the first statement after 

the iteration or switch statement. 

void specifies that the 

function does not 

return a value. 

A void pointer is a pointer 

which is having no 

datatype associated with 

it. 

Void keyword specifies 

that the function does 

not return a value. 

You use the void() return type when you do 

not want to return any value. void specifies 

that the function does not return a value. A 

function with a void return type completes its 

task and then returns the control to the caller. 

Inheritance is the 

mechanism in which 

Inheritance is the 

mechanism in which you 

Inherence is a mechanism 

in which you can create a 

Inheritance is the mechanism in which you 

can create a new class i.e., child class from the 
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you can create a new 

class from the existing 

class i.e., child class. 

can create a new class i.e., 

child class from the 

existing class 

new class called a child 

class from the existing 

parent class 

existing class i.e. parent class. This child class 

is also known as a derived class and the 

parent class is also called Base class. 
 

4.4.4 Summary 

We fined-tuned the BART and T5 models with a new C++ Summary dataset (C++SUMM) 

to summarize and generate answers from the generated paragraphs in section 4.3. We 

evaluated the model by two N-gram-based metrics, the cosine semantic similarity metric, 

and we computed the summarization ratio. The results revealed that the fine-tuned 

models are capable to summarize paragraphs and generate C++ answers with best 

semantic similarity score 0.873 and best summarization ratio reached to 57.4%. We 

explored the ability and the performance of the models to generate C++ answers using 

three different training datasets, the results revealed that combining the C++ summaries 

with the cnn-dailymail summaries achieved better performance on all metrics than using 

the C++ summaries alone in the training dataset. Whereas, using a dataset with only the 

cnn-dailymail summaries downgraded the performance. While using the summarization 

ratio uncovers the importance of using this metric in the summarization tasks. Despite the 

models in some cases achieves accepted scores, but in reality, it is regenerating almost 

the same paragraphs (rows 13-15 in Table 20). Overall, the BART model demonstrated 

better Rouge and Cosine Semantic scores, whereas the T5 model showed better 

summarization ratio. Finally, we investigated the influence of using different generator 

decoding methods, the quantitative metrics scores revealed that the beam decoding 

obtained the best performance followed by the greedy search decoding. Whereas the 

qualitative evaluation uncovers that the beam and the sampling decoding methods are 

better than the greedy as the latter is mostly returns same sentences from a paragraph 

without rephrasing new sentences. These results emphasize the importance of applying 

multiple evaluation metrics for the summarization task such as N-gram-based, Semantic-
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based and summarization ratio or (compression ratio) as the best performance is a 

compromise among them. Also, we underline the importance of having a relevant 

summary dataset so that the model can better recognize the context and achieve better 

summarization ratio. 

4.5 Transformer-based Questions Generation 

4.5.1 Dataset 4: C++ Questions/Answers 

Our goal was to fine-tune the Transformer-based T5 model to make it capable of 

generating C++ questions from the answers that generated in the previous section 4.4. 

Unfortunately, we were not able to find any public datasets related to this topic. The 

majority of the available question/answer datasets that we found was related to other 

topics such as Amazon products [102], RACE [103] for English language, Bing search 

[104], CoQA [105] conversational-style QA dataset, Wikipedia-based Stanford Question 

Answering Dataset SQuAD [106], and SciQ [107] for science exams (including Physics, 

Chemistry, Biology, and other disciplines). Therefore, we collected C++ 

questions/answers from different programming skills websites. After cleaning and 

removing irrelevant questions, the dataset consists of 500 pairs of questions/answers 

covering 28 topics in C++ including all the basic programming concepts, OOP, and socket 

programming. Also, in order to train the model to recognize other forms of questions, we 

added to the dataset 1500 questions/answers from the datasets RACE, CoQA and 

SQuAD, and 1000 questions with the supporting answer paragraphs from SciQ science 

exams dataset, to produce a C++QA dataset with 3000 pairs of question/answer.  

4.5.2 Design of Experiments 

We fine-tuned the pre-trained model Google T5 on our new C++ Questions/Answers 

(C++QA) and on SciQ science exams datasets to generate questions in the field of 
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programming skills and to evaluate the impact of the dataset size. We used the T5-large 

model, with max_seq_length: 128, train_batch_size: 8 and 6 epochs. We deployed the 

experiments in Google Colab environment, and we set the generating parameters as 

follows: num_beams: None, do_sample: True, max_length: 50, top_k: 50, top_p: 0.95 

and num_return_sequences to 1. 

Exp. Set-1: We investigated the performance of the model to generate C++ questions for 

topics not included in the dataset. In real situation, it is difficult to include all topics in a 

specific domain due to data availability and the needed effort to create many 

questions/answers for the topic. Also, we needed to examine the capability of the model 

trained on a subset of the topics to generate questions for the rest of the topics. Therefore, 

among of 28 C++ topics, we conducted six experiments using 6 different versions of the 

C++QA training dataset to include 0 topics (i.e., only the SciQ dataset was used), 4 topics, 

7 topics, 14 topics, 21 topics and 28 topics. We also created 6 different testing datasets 

with 60 questions each to evaluate only the ability of the model to generate questions for 

topics left out from the training dataset (i.e., for 28, 24, 21, 14, 7 and 0 excluded C++ 

topics). 

Exp. Set-2: We investigated the influence of the dataset size on the performance of the 

generated C++ questions. We evaluated the performance using training datasets with 

25%, 50% and 75% of 440 C++ Question/Answers, while the remaining 60 questions of 

the C++QA dataset were used for testing.  

Exp. Set-3: As we were able to have at most only 440 C++ questions available for 

training, in order to investigate the influence of the dataset size on the performance we 

had to resort to science questions from the larger SciQ dataset. We started with 440 

questions and scaled up to tenfold in ten experiments.   
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4.5.3 Results 

We chose to evaluate each generated question with respect to a reference question by 

the same three metrics used in the previous text generation experiments, which is 

SacreBLEU [77], ROUGE [79] and SBERT Sentence Transformers [79]. We also 

repeated each experiment 10 times and we computed the average performance for each 

metric as shown in Table 22. The variance is not reported as it was less than 0.001 for all 

experiments.  

Table 22. Performance of C++ Questions Generation 

Metrics SacreBLEU ROUGE-1 SBERT  

Exp.Set-1: 

Percentage of CPP 

Topics in the Training 

DS. 

Precisions Precisions Recall F1 Semantic Similarity 

(Cosine score) 

AVG 
% Of the best 

result (row 6) 
AVG 

% Of the 

best result 

(row 6) 

AVG 

% Of the 

best result 

(row 6) 

AVG 

% Of the 

best 

result 

(row 6) 

AVG 

% Of the 

best result 

(row 6) 

1 0% of Topics  0.205 28.1 0.199 26.8 0.430 56.4 0.251 34.0 0.563 64.9 

2 15% of Topics  0.503 69.0 0.579 77.9 0.670 87.8 0.595 80.5 0.768 88.5 

3 25% of Topics 0.48 65.8 0.582 78.3 0.649 85.1 0.576 77.9 0.789 90.9 

4 50% of Topics 0.597 81.9 0.659 88.7 0.648 84.9 0.631 85.4 0.838 96.5 

5 75% of Topics 0.702 96.3 0.705 94.9 0.667 87.4 0.666 90.1 0.859 99.0 

6 100% of Topics 

and Questions 
0.729 100.0 0.743 100.0 0.763 100.0 0.739 100.0 0.868 100.0 

Exp.Set-2: Percentage of the 440 C++ Questions in the Training DS. 

1 75% of 

Questions 
0.757 103.8 0.751 101.1 0.751 98.4 0.734 99.3 0.855 98.5 

2 50% of 

Questions 
0.693 95.1 0.729 98.1 0.735 96.3 0.712 96.3 0.837 96.4 

3 25% of 

Questions 
0.617 84.6 0.669 90.0 0.672 88.1 0.646 87.4 0.81 93.3 

 

The questions generation performance results in Table 22 show that the fine-tuned model 

is capable of generating C++ questions even when only 15% of the topics are covered in 

the training data. The model achieved best semantic similarity cosine score of 0.868 when 
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all the topics are included in the training dataset, with a slight 1% improvement over when 

including 75% of the topics (score 0.859). Limited performance decrease was obtained 

when covering 50% and 25% of the topics with scores 0.838 and 0.789, respectively. 

However, decreasing under 25% the included topics in the training datasets produced 

similarity cosine scores of 0.768 and 0.563 for 15% and 0% of the topics, respectively. 

For the other metrics, results show oscillating scores between 0.5 and 0.7 and this is due 

to the model rephrasing questions semantically correct but using different words or 

phrases as shown in Table 23. 

Table 23. Examples of Generated Questions  

Generated Question Reference Question 

What do you mean by passing by value and passing by reference? Explain Pass by Value and Pass by Reference 

What is the conditional expression? Define the conditional expression? 

What do you call functions that share the same name? What is function overloading? 

What is the keyword enum used for in C++? Is enum a data type? 

 

For the second experiment set (lower part of Table 22), results evidenced that 

performance slightly decreases when decreasing the number of C++ questions (all 

randomly chosen from the available 440 C++QA questions) in the training dataset. For 

instance, the similarity score decreased to 0.855 when using 75% of the questions, 

whereas the scores decreased to 0.837 and 0.810 when using 50% and 25% of the 

available C++QA 440 questions for training, respectively. We examined the effect of 

increasing the dataset size using the SciQ dataset in which we have enough questions to 

evaluate up to tenfold. 
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Table 24. Performance of Science Questions Generation  

Metrics SacreBLEU ROUGE-1 SBERT  

Exp.Set-3: Percentage 

of SciQ Science 

Questions in the 

Training DS. 

Precisions Precisions Recall F1 Semantic 

Similarity 

AVG 

% Of the 

best 

result 

(row 10) 

AVG 

% Of 

the best 

result 

(row 

10) 

AVG 

% Of 

the best 

result 

(row 

10) 

AVG 

% Of 

the best 

result 

(row 

10) 

AVG 

% Of 

the best 

result 

(row 

10) 

1 440 x 1 – 10% 0.609 71.9 0.644 74.7 0.635 74.2 0.621 73.1 0.794 85.9 

2 440 x 2 – 20% 0.647 76.4 0.659 76.5 0.659 77.0 0.644 75.8 0.811 87.8 

3 440 x 3 – 30% 0.594 70.1 0.64 74.2 0.685 80.0 0.644 75.8 0.814 88.1 

4 440 x 4 – 40% 0.75 88.5 0.766 88.9 0.729 85.2 0.734 86.4 0.859 93.0 

5 440 x 5 – 50% 0.774 91.4 0.795 92.2 0.811 94.7 0.794 93.4 0.885 95.8 

6 440 x 6 – 60% 0.869 102.6 0.866 100.5 0.838 97.9 0.846 99.5 0.907 98.2 

7 440 x 7 – 70% 0.776 91.6 0.798 92.6 0.762 89.0 0.768 90.4 0.876 94.8 

8 440 x 8 – 80% 0.802 94.7 0.836 97.0 0.828 96.7 0.82 96.5 0.907 98.2 

9 440 x 9 – 90% 0.788 93.0 0.813 94.3 0.799 93.3 0.794 93.4 0.886 95.9 

10 440 x 10 – 100% 0.847 100.0 0.862 100.0 0.856 100.0 0.85 100.0 0.924 100.0 
 

Table 24 and Figure 24 demonstrate experiment set 3 for the science questions 

generation. The results confirmed that the model achieves some performance 

improvements when increasing the number of SciQ questions in the training dataset. For 

instance, the generated questions at 10X outperformed the others with similarity score 

0.924 whereas at 5X and 1X achieved 0.885 and 0.794 similarity scores, respectively. To 

compare both datasets, results hint that increasing the C++ dataset may improve the 

performance of the generated questions. However, the science questions needed 4X to 

5X of the data to achieve the same 0.868 SBERT semantic similarity score of C++ 

questions. This is expected due to fact the C++ topics are limited in number, while the 

science question dataset is much more general as it covers chemistry, biology, physics, 

and other disciplines, thus it needs more training questions to learn from.  
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Figure 24. Science Questions Generation Performance Trend 

4.5.4 Summary 

We fined-tuned the T5 model with a new dataset to generate C++ questions for the 

flashcards. We evaluated the model by two N-gram-based metrics and a cosine semantic 

similarity metric. The results revealed that the fine-tuned model is capable of generating 

coherent questions with a semantic similarity score around 0.87. Also, we investigated 

the performance of the model to generate C++ questions for topics not included in the 

training dataset, the results revealed that the model is able to generate coherent 

questions with including only 15% of the topics in the training data. Furthermore, we 

investigated the influence of the dataset size on the performance of the generated C++ 

questions and on the science questions dataset, the results for both datasets show that 

increasing the number of relevant questions in the training data can improve the 

performance of the generated questions. Finally, we remark we also explored the ability 
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of generating C++ questions using a training dataset with only science questions (row 1 

in Table 22). Results revealed that the model can generate only up to 50% coherent 

questions, while the other 50% is incorrect/irrelevant. These results underline the 

importance of having a relevant Q&A dataset so that the model can recognize the context 

and the terms’ dependencies for a certain subject.  

4.6 Flashcards Generation Summary 

In order to generate flashcards, we introduced a Transformer-based framework to 

generate flashcards recommendation for players through three different transformer-

based generators (see Figure 13 in sec. 3.4.5). Through three experiment sets in the 

previous sections (4.3 to generate paragraphs, 4.4 to generate answers from the 

generated paragraphs and 4.5 to generate questions from the generated answers) we 

examined and successfully evaluated the Transformer-based Flashcards Generation 

Framework.  
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 Table 25. Examples of Flashcards Generation  

Input 

Prompt 

Generated Paragraph 

(Model=GPT-2, temperature=0.7, top_p=0.9) 

Generated Answer 

(Model=BART, num_beams=3, 

do_sample=True,  top_p=0.95) 

Generated Question 

(Model=T5, 

do_sample=True,  

top_p=0.95) 

<|title|> 

scope 

Scope refers to the area of code where a variable can be 

accessed, while lifetime refers to the duration of time 

for which a variable exists. In older programming 

languages, scope and lifetime are usually the same, but 

in newer languages like C++ they have different 

meanings, it is possible for a variable to be out of scope 

but still alive, which is exploited in the creation of 

classes. 

Scope and lifetime have 

different meanings. Scope is 

where a variable can be 

accessed, but lifetime is 

how long a variable exists. 

What is the difference 

between variable scope 

and lifetime? 

<|title|> 

conversion 

Type conversion is changing an entity of one data type 

into another. This is done to take advantage of certain 

features of type hierarchies, or to enable operations 

that were not previously possible. Type conversion can 

lead to loss of data if it is not done carefully. 

Type conversion is changing 

one data type into another. 

This can lead to loss of data 

if it is not done carefully. 

What is the type 

conversion? 

<|Define|> 

conditional 

statement 

A conditional is a statement that tells the computer to 

control the flow of a program based on whether a 

certain condition is met. The most common conditional 

is the if-else statement, but there are also conditional 

expressions and switch-case statements. 

A conditional is a statement 

that allows you to control 

the flow of your program 

based on whether a 

condition is true or false. 

What is a conditional 

statement? 

 

Table 25 shows some examples of generating flashcards related to certain topics in C++ 

by prompting a prefix <|title|>/<|define|> followed by keywords, then the model generates 

a paragraph related to the input keyword, followed by summarizing the paragraph to 

extract a short answer and finally generating a relevant question. 
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CHAPTER 5 

Conclusions and Future Work 

5.1 Conclusions 

In this work, we presented a novel Intelligent Serious Games model. This study revealed 

the effectiveness of combining the Deep Knowledge Tracing (DKT) method and the 

Transformer-based Recommender as an intelligent model for serious games and for 

games in general. This research highlighted that the proposed DKT-based hybrid 

prediction models with the Missing Sequence Padding Recursive (MSP) method are 

capable to look one or more steps ahead during the gameplay to predict the result of the 

next missions. Also, results showed that the proposed Transformer-based Recommender 

enables a generation of proactive coherent-flashcard recommendations so that the player 

can successfully complete the next mission with high confidence.  

We introduced a novel SG conceptual framework (iGDA), which enabled us to identify 

learning and gaming characteristics to apply and align the intelligent model that we 

proposed with the player’s learning model.  

In the intelligent model, we introduced a novel approach in evaluating the DKT method 

based on each sequence length, within a fixed and ordered series of submissions. This 

approach is crucial to apply the model on real situation to trace the knowledge state of 

players/students at each mission. Furthermore, we proposed and evaluated a novel DKT-

based hybrid prediction models, and we investigated the influence of combining the 

LSTM, biLSTM and GRU with CNNs as a multi-layer learning approach. The results 

revealed the effectiveness of this approach, the models LSTM, biLSTM and GRU are 
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efficient for long-term and sequential dependencies, but this might not necessarily be 

useful for all sequence lengths. For this reason, the CNN model as a second layer is 

efficient for feature extraction and can enhance the performance with discovering hidden 

patterns and features. Also, the study uncovered the fact of the CNN as a single model 

can be used in the DKT problem or in the time-series problem in general as it achieved 

performance close to the RNNs single variants. 

Also, we introduced and evaluated a novel method for DKT-Missing Sequence Padding 

with recursive algorithm. The results revealed the effectiveness of this method to predict 

far sequences on series with missing values. Therefore, the model can look more steps 

ahead during the gameplay. 

For the second part of the intelligent model, we introduced a novel Transformer-based 

Recommender System architecture to generate recommendations in programming skills. 

We also introduced and evaluated a novel Transformer-based framework to generate 

flashcards in a fully automated process. Using three new programming skills datasets, 

we fined-tuned GPT-2, GPT-Neo, BART and T5 models to three different generation 

tasks to generate paragraphs, questions, and answers. We also considered three metrics 

to evaluate the N-gram overlaps and the semantic similarity to assure the quality and 

capability of the models. The results revealed that the fine-tuned models are capable to 

generate coherent paragraphs, questions, answers, and code examples for programming 

skills. 

For the paragraph generating task, the results showed that the generated samples with 

prefix tag achieved better performance. The results also revealed that the models are 

capable to detect and recognize the structure of the annotation tags, which positively 

influenced the generated text to be more relevant and responsive with the prompt. Also, 

the investigation along different contiguous sequence of n words overlap between the 
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generated and the reference text demonstrated slightly decreasing in the performance 

when N value increases, which assures the quality of the generated text on different n-

grams. 

For evaluating the BART and T5 models to generate answers the results revealed that 

combining the C++ summaries with the cnn-dailymail summaries achieved better 

performance on all metrics, also the BART model demonstrated better Rouge and Cosine 

Semantic scores, whereas the T5 model showed better summarization ratio. Results of 

evaluating the summarization task emphasize the importance of applying multiple 

evaluation metrics with summarization ratio as the best performance is a compromise 

among them. 

Generating questions results showed the capability of the model trained on a subset of 

the topics to generate questions for the rest of the topics as the model needs to capture 

the context of the knowledge domain. Whereas increasing the number of relevant 

questions in the training data can improve the performance of the generated questions. 

However, limited performance can be obtained in the absence of relevant questions in 

the training dataset. 

5.2 Future Work 

Overall, we introduced an Intelligent Serious Games (ISG) model, and we focused on 

assessing and evaluating the efficacy and the feasibility of the ISG components and in 

particular the intelligent model. Further work will address the influence and the 

effectiveness of the ISG on the players’ attainments by implementing a complete ISG-

based game and testing on real players. 

The Intelligent model of combining the DKT-based hybrid prediction models and the 

Transformer-based Recommender is a generic model and can be replicated and 
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extended in different disciplines and can be integrated with any online learning 

environment. Also, applying the intelligent model on the entertainment games can 

positively impact the gaming industry. Other future opportunities to extend this work by 

generalizing the proposed Transformer-Based Recommender System and expanding the 

datasets. In addition to extend the Transformer-based framework tailored tasks to include 

auto short answers’ correcting and scoring and generate multiple questions/answers from 

a certain paragraph.  

5.2.1 Integration of The Intelligent Model  

The proposed activity diagram in Figure 25 shows how the DKT prediction model and the 

recommender system impact the gameplay, learning progress, learning achievement and 

the playing behavior in general. Predicting the next knowledge state of the player occurs 

just before solving the challenge. Consequently, the recommender acts directly if the 

prediction result is “failed” to change the playing flow. It generates flashcard 

recommendations for players before letting them solve the challenge. Also, after solving 

the challenge, a backward flow of interactions updates learning achievements and 

predicted achievements with success/fail. The learning progress will be updated 

considering each (acquired/non-acquired) concept. Figure 26 shows a mock-up screen 

example for changing of the playing flow.  
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Figure 25. Proposed Activity Diagram for the C++ Code Challenge  

 

Figure 26. Mock-up of Prediction and Recommendations in Action 



Bibliography 

[1] M. Zyda, “From visual simulation to virtual reality to games,” Computer, vol. 38, no. 9, pp. 25–32, Sep. 
2005, doi: 10.1109/MC.2005.297. 

[2] C. Alonso-Fernández, A. Calvo-Morata, M. Freire, I. Martínez-Ortiz, and B. Fernández-Manjón, 
“Applications of data science to game learning analytics data: A systematic literature review,” Comput. 
Educ., vol. 141, p. 103612, Nov. 2019, doi: 10.1016/j.compedu.2019.103612. 

[3] K. R. Koedinger, E. Brunskill, R. S. J. d. Baker, E. A. McLaughlin, and J. Stamper, “New Potentials for 
Data-Driven Intelligent Tutoring System Development and Optimization,” AI Mag., vol. 34, no. 3, pp. 
27–41, Sep. 2013, doi: 10.1609/aimag.v34i3.2484. 

[4] A. Hasanov, T. H. Laine, and T.-S. Chung, “A survey of adaptive context-aware learning environments,” 
J. Ambient Intell. Smart Environ., vol. 11, no. 5, pp. 403–428, 2019, doi: 10.3233/AIS-190534. 

[5] C. Piech et al., “Deep Knowledge Tracing,” in Advances in Neural Information Processing Systems, 
2015, vol. 28. [Online]. Available: 
https://proceedings.neurips.cc/paper/2015/file/bac9162b47c56fc8a4d2a519803d51b3-Paper.pdf 

[6] A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of procedural 
knowledge,” User Model. User-Adapt. Interact., vol. 4, no. 4, pp. 253–278, 1995, doi: 
10.1007/BF01099821. 

[7] R. S. J. d. Baker, A. T. Corbett, and V. Aleven, “More Accurate Student Modeling through Contextual 
Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing,” in Intelligent Tutoring 
Systems, vol. 5091, B. P. Woolf, E. Aïmeur, R. Nkambou, and S. Lajoie, Eds. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 2008, pp. 406–415. doi: 10.1007/978-3-540-69132-7_44. 

[8] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon, “Individualized Bayesian Knowledge Tracing 
Models,” in Artificial Intelligence in Education, vol. 7926, H. C. Lane, K. Yacef, J. Mostow, and P. Pavlik, 
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 171–180. doi: 10.1007/978-3-642-
39112-5_18. 

[9] Y. Mao, C. Lin, and M. Chi, “Deep Learning vs. Bayesian Knowledge Tracing: Student Models for 
Interventions,” Oct. 2018, doi: 10.5281/ZENODO.3554691. 

[10] C.-K. Yeung and D.-Y. Yeung, “Addressing two problems in deep knowledge tracing via prediction-
consistent regularization,” in Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 
London United Kingdom, Jun. 2018, pp. 1–10. doi: 10.1145/3231644.3231647. 

[11] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems, 
2017, vol. 30. [Online]. Available: 
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf 

[12] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language Models are 
Unsupervised Multitask Learners,” 2019. 

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding,” 2018, doi: 10.48550/ARXIV.1810.04805. 

[14] M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language 
Generation, Translation, and Comprehension,” in Proceedings of the 58th Annual Meeting of the 
Association for Computational Linguistics, Online, 2020, pp. 7871–7880. doi: 10.18653/v1/2020.acl-
main.703. 

[15] C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.” 
arXiv, Jul. 28, 2020. Accessed: May 25, 2022. [Online]. Available: http://arxiv.org/abs/1910.10683 

[16] P. Smolen, Y. Zhang, and J. H. Byrne, “The right time to learn: mechanisms and optimization of spaced 
learning,” Nat. Rev. Neurosci., vol. 17, no. 2, pp. 77–88, Feb. 2016, doi: 10.1038/nrn.2015.18.



 
[17] D. S. Dunn, B. K. Saville, S. C. Baker, and P. Marek, “Evidence‐based teaching: Tools and techniques 

that promote learning in the psychology classroom,” Aust. J. Psychol., vol. 65, no. 1, pp. 5–13, Mar. 
2013, doi: 10.1111/ajpy.12004. 

[18] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of programming 
environments and languages for novice programmers,” ACM Comput. Surv., vol. 37, no. 2, pp. 83–
137, Jun. 2005, doi: 10.1145/1089733.1089734. 

[19] P. Gestwicki and F.-S. Sun, “Teaching Design Patterns Through Computer Game Development,” J. 
Educ. Resour. Comput., vol. 8, no. 1, pp. 1–22, Mar. 2008, doi: 10.1145/1348713.1348715. 

[20] M. Muratet, P. Torguet, F. Viallet, and J. P. Jessel, “Experimental Feedback on Prog&Play: A Serious 
Game for Programming Practice: M. Muratet et al. / Experimental Feedback on Prog&Play,” Comput. 
Graph. Forum, vol. 30, no. 1, pp. 61–73, Mar. 2011, doi: 10.1111/j.1467-8659.2010.01829.x. 

[21] M. Carbonaro, D. Szafron, M. Cutumisu, and J. Schaeffer, “Computer-game construction: A gender-
neutral attractor to Computing Science,” Comput. Educ., vol. 55, no. 3, pp. 1098–1111, Nov. 2010, doi: 
10.1016/j.compedu.2010.05.007. 

[22] A. I. Wang and B. Wu, “Using Game Development to Teach Software Architecture,” Int. J. Comput. 
Games Technol., vol. 2011, pp. 1–12, 2011, doi: 10.1155/2011/920873. 

[23] B. Thabet and F. Zanichelli, “Towards Intelligent Serious Games: Deep Knowledge Tracing with Hybrid 
Prediction Models,” presented at the 2022 17th International Conference on Computer Science & 
Education (ICCSE), Ningbo, China, Aug. 2022. [Online]. Available: https://ieeexplore.ieee.org/ 

[24] M. Freire, Á. Serrano-Laguna, B. M. Iglesias, I. Martínez-Ortiz, P. Moreno-Ger, and B. Fernández-
Manjón, “Game Learning Analytics: Learning Analytics for Serious Games,” in Learning, Design, and 
Technology, M. J. Spector, B. B. Lockee, and M. D. Childress, Eds. Cham: Springer International 
Publishing, 2016, pp. 1–29. doi: 10.1007/978-3-319-17727-4_21-1. 

[25] C. Alonso‐Fernández, I. Martínez‐Ortiz, R. Caballero, M. Freire, and B. Fernández‐Manjón, “Predicting 
students’ knowledge after playing a serious game based on learning analytics data: A case study,” J. 
Comput. Assist. Learn., vol. 36, no. 3, pp. 350–358, Jun. 2020, doi: 10.1111/jcal.12405. 

[26] Experience APIs: a new specification for learning technology. Advanced Distributed Learning. [Online]. 
Available: https://xapi.com/ 

[27] A. Calvo-Morata, C. Alonso-Fernandez, M. Freire-Moran, I. Martinez-Ortiz, and B. Fernandez-Manjon, 
“Game Learning Analytics, Facilitating the Use of Serious Games in the Class,” IEEE Rev. Iberoam. 
Tecnol. Aprendiz., vol. 14, no. 4, pp. 168–176, Nov. 2019, doi: 10.1109/RITA.2019.2952296. 

[28] L. Chittaro and F. Buttussi, “Learning Safety through Public Serious Games: A Study of ‘Prepare for 
Impact’ on a Very Large, International Sample of Players,” IEEE Trans. Vis. Comput. Graph., pp. 1–1, 
2020, doi: 10.1109/TVCG.2020.3022340. 

[29] K. Graham et al., “Cyberspace Odyssey: A Competitive Team-Oriented Serious Game in Computer 
Networking,” IEEE Trans. Learn. Technol., vol. 13, no. 3, pp. 502–515, Jul. 2020, doi: 
10.1109/TLT.2020.3008607. 

[30] T. Mettler and R. Pinto, “Serious Games as a Means for Scientific Knowledge Transfer—A Case From 
Engineering Management Education,” IEEE Trans. Eng. Manag., vol. 62, no. 2, pp. 256–265, May 
2015, doi: 10.1109/TEM.2015.2413494. 

[31] L. Chittaro and F. Buttussi, “Assessing Knowledge Retention of an Immersive Serious Game vs. a 
Traditional Education Method in Aviation Safety,” IEEE Trans. Vis. Comput. Graph., vol. 21, no. 4, pp. 
529–538, Apr. 2015, doi: 10.1109/TVCG.2015.2391853. 

[32] R. Schulz, B. F. Smaradottir, A. Prinz, and T. Hara, “User-centred Design of a Scenario-based Serious 
Game: Game-based Teaching of Future Healthcare,” IEEE Trans. Games, pp. 1–1, 2020, doi: 
10.1109/TG.2020.3033437. 

[33] V. Guillén-Nieto and M. Aleson-Carbonell, “Serious games and learning effectiveness: The case of It’s 
a Deal!,” Comput. Educ., vol. 58, no. 1, pp. 435–448, Jan. 2012, doi: 10.1016/j.compedu.2011.07.015.



 
[34] C. Alonso-Fernandez, A. Calvo, M. Freire, I. Martinez-Ortiz, and B. Fernandez-Manjon, “Systematizing 

game learning analytics for serious games,” in 2017 IEEE Global Engineering Education Conference 
(EDUCON), Athens, Greece, Apr. 2017, pp. 1111–1118. doi: 10.1109/EDUCON.2017.7942988. 

[35] C. Alonso-Fernández, A. Calvo-Morata, M. Freire, I. Martínez-Ortiz, and B. Fernández-Manjón, 
“Evidence-based evaluation of a serious game to increase bullying awareness,” Interact. Learn. 
Environ., pp. 1–11, 2020. 

[36] A. Calvo-Morata, D. C. Rotaru, C. Alonso-Fernandez, M. Freire-Moran, I. Martinez-Ortiz, and B. 
Fernandez-Manjon, “Validation of a Cyberbullying Serious Game Using Game Analytics,” IEEE Trans. 
Learn. Technol., vol. 13, no. 1, pp. 186–197, Jan. 2020, doi: 10.1109/TLT.2018.2879354. 

[37] L. Chittaro, “Designing Serious Games for Safety Education: ‘Learn to Brace’ versus Traditional 
Pictorials for Aircraft Passengers,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 5, pp. 1527–1539, 
May 2016, doi: 10.1109/TVCG.2015.2443787. 

[38] M. Callaghan, M. Savin-Baden, N. McShane, and A. G. Eguiluz, “Mapping Learning and Game 
Mechanics for Serious Games Analysis in Engineering Education,” IEEE Trans. Emerg. Top. Comput., 
vol. 5, no. 1, pp. 77–83, Jan. 2017, doi: 10.1109/TETC.2015.2504241. 

[39] W. Walk, D. Görlich, and M. Barrett, “Design, Dynamics, Experience (DDE): An Advancement of the 
MDA Framework for Game Design,” in Game Dynamics, O. Korn and N. Lee, Eds. Cham: Springer 
International Publishing, 2017, pp. 27–45. doi: 10.1007/978-3-319-53088-8_3. 

[40] “MDA: A Formal Approach to Game Design and Game Research,” presented at the Game Developers 
Conference,  2001-2004, San Jose, 2004. 

[41] B. M. Winn, “The Design, Play, and Experience Framework:,” in Handbook of Research on Effective 
Electronic Gaming in Education, R. E. Ferdig, Ed. IGI Global, 2009, pp. 1010–1024. doi: 10.4018/978-
1-59904-808-6.ch058. 

[42] K. Robson, K. Plangger, J. H. Kietzmann, I. McCarthy, and L. Pitt, “Is it all a game? Understanding the 
principles of gamification,” Bus. Horiz., vol. 58, no. 4, pp. 411–420, Jul. 2015, doi: 
10.1016/j.bushor.2015.03.006. 

[43] A. Pendleton and J. Okolica, “Creating Serious Games with the Game Design Matrix,” in Games and 
Learning Alliance, vol. 11899, A. Liapis, G. N. Yannakakis, M. Gentile, and M. Ninaus, Eds. Cham: 
Springer International Publishing, 2019, pp. 530–539. doi: 10.1007/978-3-030-34350-7_51. 

[44] L. Wang, A. Sy, L. Liu, and C. Piech, “Deep Knowledge Tracing On Programming Exercises,” in 
Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale, Cambridge Massachusetts 
USA, Apr. 2017, pp. 201–204. doi: 10.1145/3051457.3053985. 

[45] Z. Wang, X. Feng, J. Tang, G. Y. Huang, and Z. Liu, “Deep Knowledge Tracing with Side Information,” 
in Artificial Intelligence in Education, vol. 11626, S. Isotani, E. Millán, A. Ogan, P. Hastings, B. McLaren, 
and R. Luckin, Eds. Cham: Springer International Publishing, 2019, pp. 303–308. doi: 10.1007/978-3-
030-23207-8_56. 

[46] L. Sha and P. Hong, “Neural Knowledge Tracing,” in Brain Function Assessment in Learning, vol. 
10512, C. Frasson and G. Kostopoulos, Eds. Cham: Springer International Publishing, 2017, pp. 108–
117. doi: 10.1007/978-3-319-67615-9_10. 

[47] D. Hooshyar, Y.-M. Huang, and Y. Yang, “GameDKT: Deep knowledge tracing in educational games,” 
Expert Syst. Appl., vol. 196, p. 116670, Jun. 2022, doi: 10.1016/j.eswa.2022.116670. 

[48] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 
1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735. 

[49] A. Aziz Sharfuddin, Md. Nafis Tihami, and Md. Saiful Islam, “A Deep Recurrent Neural Network with 
BiLSTM model for Sentiment Classification,” in 2018 International Conference on Bangla Speech and 
Language Processing (ICBSLP), Sylhet, Sep. 2018, pp. 1–4. doi: 10.1109/ICBSLP.2018.8554396. 

[50] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural Machine 
Translation: Encoder-Decoder Approaches,” 2014, doi: 10.48550/ARXIV.1409.1259.



 
[51] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU Neural Network Performance Comparison Study: Taking 

Yelp Review Dataset as an Example,” in 2020 International Workshop on Electronic Communication 
and Artificial Intelligence (IWECAI), Shanghai, China, Jun. 2020, pp. 98–101. doi: 
10.1109/IWECAI50956.2020.00027. 

[52] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, and M. Gabbouj, “1-D Convolutional Neural Networks for 
Signal Processing Applications,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), Brighton, United Kingdom, May 2019, pp. 8360–8364. doi: 
10.1109/ICASSP.2019.8682194. 

[53] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” in 
2017 International Conference on Engineering and Technology (ICET), Antalya, Aug. 2017, pp. 1–6. 
doi: 10.1109/ICEngTechnol.2017.8308186. 

[54] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine 
Translation,” 2014, doi: 10.48550/ARXIV.1406.1078. 

[55] M. A. Niculescu, S. Ruseti, and M. Dascalu, “RoGPT2: Romanian GPT2 for Text Generation,” in 2021 
IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 
Nov. 2021, pp. 1154–1161. doi: 10.1109/ICTAI52525.2021.00183. 

[56] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving Language Understanding by 
Generative Pre-Training,” presented at the OpenAI, 2018. 

[57] T. B. Brown et al., “Language Models are Few-Shot Learners,” 2020, doi: 
10.48550/ARXIV.2005.14165. 

[58] Y. Qu, P. Liu, W. Song, L. Liu, and M. Cheng, “A Text Generation and Prediction System: Pre-training 
on New Corpora Using BERT and GPT-2,” in 2020 IEEE 10th International Conference on Electronics 
Information and Emergency Communication (ICEIEC), Beijing, China, Jul. 2020, pp. 323–326. doi: 
10.1109/ICEIEC49280.2020.9152352. 

[59] J.-S. Lee and J. Hsiang, “Patent claim generation by fine-tuning OpenAI GPT-2,” World Pat. Inf., vol. 
62, p. 101983, Sep. 2020, doi: 10.1016/j.wpi.2020.101983. 

[60] W. Antoun, F. Baly, and H. Hajj, “AraGPT2: Pre-Trained Transformer for Arabic Language Generation,” 
2020, doi: 10.48550/ARXIV.2012.15520. 

[61] J. van Stegeren and J. Myśliwiec, “Fine-tuning GPT-2 on annotated RPG quests for NPC dialogue 
generation,” in The 16th International Conference on the Foundations of Digital Games (FDG) 2021, 
Montreal QC Canada, Aug. 2021, pp. 1–8. doi: 10.1145/3472538.3472595. 

[62] J.-S. Lee and J. Hsiang, “PatentTransformer-2: Controlling Patent Text Generation by Structural 
Metadata,” 2020, doi: 10.48550/ARXIV.2001.03708. 

[63] T. Klein and M. Nabi, “Learning to Answer by Learning to Ask: Getting the Best of GPT-2 and BERT 
Worlds,” ArXiv191102365 Cs, Nov. 2019, Accessed: Apr. 20, 2022. [Online]. Available: 
http://arxiv.org/abs/1911.02365 

[64] R. Zellers et al., “Defending Against Neural Fake News,” in Advances in Neural Information Processing 
Systems, 2019, vol. 32. [Online]. Available: 
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf 

[65] A. R. Fabbri, W. Kryściński, B. McCann, C. Xiong, R. Socher, and D. Radev, “SummEval: Re-evaluating 
Summarization Evaluation,” Trans. Assoc. Comput. Linguist., vol. 9, pp. 391–409, Apr. 2021, doi: 
10.1162/tacl_a_00373. 

[66] R. Zhang, J. Guo, L. Chen, Y. Fan, and X. Cheng, “A Review on Question Generation from Natural 
Language Text,” ACM Trans. Inf. Syst., vol. 40, no. 1, pp. 1–43, Jan. 2022, doi: 10.1145/3468889. 

[67] V. Pyatkin, P. Roit, J. Michael, R. Tsarfaty, Y. Goldberg, and I. Dagan, “Asking It All: Generating 
Contextualized Questions for any Semantic Role.” arXiv, Sep. 10, 2021. Accessed: May 27, 2022. 
[Online]. Available: http://arxiv.org/abs/2109.04832



 
[68] K. Grover, K. Kaur, K. Tiwari, Rupali, and P. Kumar, “Deep Learning Based Question Generation Using 

T5 Transformer,” in Advanced Computing, vol. 1367, D. Garg, K. Wong, J. Sarangapani, and S. K. 
Gupta, Eds. Singapore: Springer Singapore, 2021, pp. 243–255. doi: 10.1007/978-981-16-0401-0_18. 

[69] X. Zhao, F. Xiao, H. Zhong, J. Yao, and H. Chen, “Condition Aware and Revise Transformer for 
Question Answering,” in Proceedings of The Web Conference 2020, Taipei Taiwan, Apr. 2020, pp. 
2377–2387. doi: 10.1145/3366423.3380301. 

[70] H. Ngai, Y. Park, J. Chen, and M. Parsapoor, “Transformer-Based Models for Question Answering on 
COVID19,” 2021, doi: 10.48550/ARXIV.2101.11432. 

[71] S. G. Aithal, A. B. Rao, and S. Singh, “Automatic question-answer pairs generation and question 
similarity mechanism in question answering system,” Appl. Intell., vol. 51, no. 11, pp. 8484–8497, Nov. 
2021, doi: 10.1007/s10489-021-02348-9. 

[72] D. C. L. Tsai, W. J. W. Chang, and S. J. H. Yang, “Short Answer Questions Generation by Fine-Tuning 
BERT and GPT-2,” in 29th International Conference on Computers in Education Conference, ICCE 
2021 - Proceedings, Nov. 2021, pp. 509–515. 

[73] W. Qi et al., “ProphetNet: Predicting Future N-gram for Sequence-to-SequencePre-training,” in 
Findings of the Association for Computational Linguistics: EMNLP 2020, Online, 2020, pp. 2401–2410. 
doi: 10.18653/v1/2020.findings-emnlp.217. 

[74] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A Systematic Review of Automatic Question 
Generation for Educational Purposes,” Int. J. Artif. Intell. Educ., vol. 30, no. 1, pp. 121–204, Mar. 2020, 
doi: 10.1007/s40593-019-00186-y. 

[75] T. Ayadat, D. Ahmed, S. Chowdhury, and A. Asiz, “Measurable performance indicators of student 
learning outcomes: a case study,” Glob. J. Eng. Educ., vol. 22, p. 40, Feb. 2020. 

[76] L. K. Gudeva, V. Dimova, N. Daskalovska, and F. Trajkova, “Designing Descriptors of Learning 
Outcomes for Higher Education Qualification,” Procedia - Soc. Behav. Sci., vol. 46, pp. 1306–1311, 
2012, doi: 10.1016/j.sbspro.2012.05.292. 

[77] R. T. Hays, “The Effectiveness of Instructional Games: A Literature Review and Discussion:,” Defense 
Technical Information Center, Fort Belvoir, VA, Nov. 2005. doi: 10.21236/ADA441935. 

[78] R. Garris, R. Ahlers, and J. E. Driskell, “Games, Motivation, and Learning: A Research and Practice 
Model,” Simul. Gaming, vol. 33, no. 4, pp. 441–467, Dec. 2002, doi: 10.1177/1046878102238607. 

[79] J. Schell, The art of game design: a book of lenses, Third edition. Boca Raton: Taylor & Francis, a CRC 
title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division 
of T&F Informa, plc, 2019. 

[80] L. S. Ferro, “The Game Element and Mechanic (GEM) framework: A structural approach for 
implementing game elements and mechanics into game experiences,” Entertain. Comput., vol. 36, p. 
100375, Jan. 2021, doi: 10.1016/j.entcom.2020.100375. 

[81] J. Hamari and V. Eranti, “Framework for Designing and Evaluating Game Achievements,” Sep. 2011, 
vol. Vol. 10, No. 1.224, p. 9966. 

[82] I. Lewis, K. de Salas, and L. Wells, “Features of Achievement systems,” in Proceedings of 
CGAMES’2013 USA, Louisville, KY, Jul. 2013, pp. 66–73. doi: 10.1109/CGames.2013.6632608. 

[83] F. Zanichelli, M. Encheva, B. Thabet, A. M. Tammaro, and G. Conti, “Serious games for Information 
Literacy: assessing learning in the NAVIGATE Project,” presented at the 17th Italian Research 
Conference on Digital Libraries, Padova, Italy, Feb. 2021. [Online]. Available: http://ceur-ws.org/Vol-
2816/paper7.pdf 

[84] X. SHI, Z. Chen, H. Wang, D.-Y. Yeung, W. Wong, and W. WOO, “Convolutional LSTM Network: A 
Machine Learning Approach for Precipitation Nowcasting,” in Advances in Neural Information 
Processing Systems, 2015, vol. 28. [Online]. Available: 
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf



 
[85] J. Zhang, Y. Li, J. Tian, and T. Li, “LSTM-CNN Hybrid Model for Text Classification,” in 2018 IEEE 3rd 

Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 
Chongqing, Oct. 2018, pp. 1675–1680. doi: 10.1109/IAEAC.2018.8577620. 

[86] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid CNN-LSTM Model for Short-Term Individual 
Household Load Forecasting,” IEEE Access, vol. 8, pp. 180544–180557, 2020, doi: 
10.1109/ACCESS.2020.3028281. 

[87] A. Agga, A. Abbou, M. Labbadi, Y. E. Houm, and I. H. Ou Ali, “CNN-LSTM: An efficient hybrid deep 
learning architecture for predicting short-term photovoltaic power production,” Electr. Power Syst. Res., 
vol. 208, p. 107908, Jul. 2022, doi: 10.1016/j.epsr.2022.107908. 

[88] S. Oren, C. Willerton, and J. Small, “Effects of Spaced Retrieval Training on Semantic Memory in 
Alzheimer’s Disease: A Systematic Review,” J. Speech Lang. Hear. Res., vol. 57, no. 1, pp. 247–270, 
Feb. 2014, doi: 10.1044/1092-4388(2013/12-0352). 

[89] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Recommender Systems Handbook. Boston, 
MA: Springer US, 2011. doi: 10.1007/978-0-387-85820-3. 

[90] G. F. Tondello, R. Orji, and L. E. Nacke, “Recommender Systems for Personalized Gamification,” in 
Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, 
Bratislava Slovakia, Jul. 2017, pp. 425–430. doi: 10.1145/3099023.3099114. 

[91] M. Amoretti, L. Belli, and F. Zanichelli, “UTravel: Smart Mobility with a Novel User Profiling and 
Recommendation Approach,” Pervasive Mob. Comput., vol. 38, pp. 474–489, Jul. 2017, doi: 
10.1016/j.pmcj.2016.08.008. 

[92] P. K. Agarwal and P. M. Bain, Powerful teaching: Unleash the science of learning. John Wiley & Sons, 
2019. 

[93] S. Prata, C++ primer plus, 6th ed. Upper Saddle River, NJ: Addison-Wesley, 2012. 
[94] “ASSISTments’ skill builder.” [Online]. Available: 

https://sites.google.com/site/assistmentsdata/datasets 
[95] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ArXiv14126980 Cs, Jan. 2017, 

Accessed: Jan. 29, 2022. [Online]. Available: http://arxiv.org/abs/1412.6980 
[96] M. Post, “A Call for Clarity in Reporting BLEU Scores,” in Proceedings of the Third Conference on 

Machine Translation: Research Papers, Belgium, Brussels, 2018, pp. 186–191. doi: 10.18653/v1/W18-
6319. 

[97] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for automatic evaluation of machine 
translation,” in Proceedings of the 40th Annual Meeting on Association for Computational Linguistics  - 
ACL ’02, Philadelphia, Pennsylvania, 2001, p. 311. doi: 10.3115/1073083.1073135. 

[98] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” in Text Summarization 
Branches Out, Barcelona, Spain, Jul. 2004, pp. 74–81. [Online]. Available: 
https://aclanthology.org/W04-1013 

[99] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks,” ArXiv190810084 Cs, Aug. 2019, Accessed: Apr. 24, 2022. [Online]. Available: 
http://arxiv.org/abs/1908.10084 

[100] R. Devika, S. Vairavasundaram, C. S. J. Mahenthar, V. Varadarajan, and K. Kotecha, “A Deep 
Learning Model Based on BERT and Sentence Transformer for Semantic Keyphrase Extraction on Big 
Social Data,” IEEE Access, vol. 9, pp. 165252–165261, 2021, doi: 10.1109/ACCESS.2021.3133651. 

[101] B. Dang, T.-T. Dang, and L.-M. Nguyen, “SubTST: A Combination of Sub-word Latent Topics and 
Sentence Transformer for Semantic Similarity Detection:,” in Proceedings of the 14th International 
Conference on Agents and Artificial Intelligence, Online Streaming, --- Select a Country ---, 2022, pp. 
91–97. doi: 10.5220/0010775100003116. 

[102] Amazon, Open Data on AWS Datasets. [Online]. Available: https://registry.opendata.aws/ 
[103] RACE English examinations in China Dataset. [Online]. Available: 

http://www.cs.cmu.edu/~glai1/data/race/



 
[104] MS MARCO Datasets. [Online]. Available: https://microsoft.github.io/msmarco/ 
[105] CoQA Conversational Question Answering  dataset. [Online]. Available: 

https://stanfordnlp.github.io/coqa/ 
[106] Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset of Wikipedia 

articles. [Online]. Available: https://rajpurkar.github.io/SQuAD-explorer/ 
[107] SciQ dataset for science exam questions about Physics, Chemistry and Biology, among others. 

[Online]. Available: https://allenai.org/data/sciq 

 
 

 

 


