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Riassunto. Oggetto della tesi sono i modelli NNLIF (Nonlinear Noisy Leaky
Integrate and Fire), basati su sistemi di PDE non lineari del tipo Fokker-Planck.
Questi modelli descrivono l’attivitá del sistema neurale attraverso il potenziale
di membrana, ovvero la differenza di potenziale tra l’interno e l’esterno del
neurone. Quando il neurone riceve uno stimolo, il potenziale di membrana
cresce e, raggiunta una certa soglia, genera un potenziale d’azione, ovvero un
segnale elettrico che viene trasmesso agli altri neuroni tramite le sinapsi. Se il
segnale ricevuto viene amplificato si parla di neurone eccitatorio, viceversa di
neurone inibitorio.

Nel primo capitolo, che è una raccolta di risultati ottenuti in precedenza,
approfondiremo in particolare il caso in cui il sistema neurale sia formato da
neuroni solo eccitatori o solo inibitori e senza periodo refrattario. In particolare
ci occuperemo di provare l’esistenza globale della soluzione nel caso di neuroni
solo inibitori, mentre nel caso di neuroni solo eccitatori dimostreremo che le
soluzioni esplodono a tempi finiti. Mostreremo poi come varia il numero di
soluzioni stazionarie, al variare del parametro b che rappresenta la connettività
tra i neuroni (b > 0 eccitatori, b < 0 inibitori).

Il secondo capitolo contiene i nuovi risultati e ha l’obiettivo di analizzare il
caso in cui la scarica del potenziale d’azione sia random: questo significa che i
segnali neuronali vengono trasmessi quando il potenziale di membrana raggiunge
una soglia che non è fissa, ma casuale. Da un punto di vista matematico
tale fenomeno si rappresenta aggiungendo un termine caratterizzato da una
funzione φε, chiamata tasso di scarico. Questa può essere scelta in vari modi,
noi utilizzeremo prima una forma discontinua e poi una continua. Ci occuperemo
in particolare di determinare le condizioni sui parametri affinché si abbiano 0,
1, o almeno 2 o 3 soluzioni stazionarie. Infine confronteremo i risultati dei due
modelli mettendo in evidenza le differenze riscontrate.
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Abstract. Subject of the thesis are the NNLIF (Nonlinear Noisy Leaky
Integrated and Fire) models, based on non-linear system of PDEs of Fokker-
Planck type. These models describe the activity of the neural system through
the membrane potential, that is the potential difference between the inside
and outside of the neuron. When a neuron receives a stimulus, its membrane
potential grows and, upon reaching a certain threshold, generates an action
potential, or an electrical signal that is transmitted to the other neurons via the
synapses. If the received signal is amplified it is called an excitatory neuron,
vice versa an inhibitory neuron.

In the first chapter, which is a collection of previous results, we will investigate
in particular the case in which the neural system is made up of average-excitatory
or average-inhibitory neurons and without refractory period. In particular, we
will prove global existence in the case of only inhibitory neurons, while in the
case of only excitatory neurons we will demonstrate that the solutions blow up
at finite times. Then we will show how the number of steady states varies in
dependence of the parameter b which represents connectivity between neurons
(b > 0 excitatory, b < 0 inhibitory).

The second chapter is the main part of this thesis as it contains the new
results on the topic and has the aim of analyzing the case in which the discharge
of the action potential is random: this means that the neuronal signals are
transmitted when the membrane potential reaches a threshold which is not
fixed, but random. From a mathematical point of view, this phenomenon is
represented by adding a term characterized by a function φε, called the discharge
rate. This can be chosen in various ways, we will first use a discontinuous form
and then a continuous one. We will deal in particular with the conditions on the
parameters that allows us to have 0, 1, or at least 2 or 3 stationary solutions.
Finally we will compare the results of the two models highlighting the differences
found, and the differences with the fixed threshold model.



4



Introduction

The nervous system is a complex of specialized organs whose function can
be briefly expressed as the ability to collect and recognize stimuli from the
external and internal environment of the organism, elaborating voluntary and
involuntary coordinated responses. The fundamental aspect of the physiology
of the nervous system is that nerve functions depend on single units, called
neurons, which have the same properties as those which make up other organs,
but they are distinguished from the other cells for their marked ability to
communicate: the combination of the functions of these cells results in the
ability to integrate the functions of the other organs to allow optimal functioning.

In the last decades, mathematicians also began to study the functioning of
the nervous system. There are a lot of types of mathematical models to describe
the behaviour of neuronal network. The purpose of this thesis is to deepen one
of the simplest self-contained mean-field models, the Nonlinear Noisy Leaky
Integrate and Fire (NNLIF) model, which is based on nonlinear systems of
PDEs of Fokker-Plank type.

Now let us firstly see how neurons work [11][12][15][23][22], and then we will
describe the basic idea of NNLIF model [12][15][16][5][22].

Neurons

Neurons are highly specialized cells which are in charge of the reception of
the nerve impulses. In each neuron we can find 4 parts: the cell body, the
dendrites, the axon and the synaptic terminal (see Figure 1). The cell body
is the genetic and metabolic center and is the portion of the neuron in which
protein synthesis and processing take place. Dendrites are branched processes
that emerge from the cell body; their plasma membrane is particularly rich in
neurotransmitter receptors and they represent the main apparatus for receiving
signals originating in other neurons. The axon also originates from the cell
body but, unlike the dendrites that remain in the vicinity of the cell body, it can
move away for considerable distances and has no ramifications. At the end of its
course, the axon branches into numerous terminations, the synaptic terminals,
which contain the synaptic vesicles and the complex molecular apparatus that
regulates the release of neurotransmitters.

5
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Figure 1: Structure of a neuron. Source: Wikipedia.

In order to send a nerve impulse, neurons generate action potentials (or
spikes), which are electric impulses that appear as a reply to the stimuli they
receive. These impulses arrive at the neuron by the dendrites, travel trough the
axon and pass from one to another by the synapses: it’s important to know
that the sending and reception of the nerve impulse is not an instantaneous
process, because it passes a small period called synaptic delay since the signal
leaves the presynaptic neuron until it reaches the postsynaptic one. On the
other hand, the signal that they receive from other neurons can be excitatory
or inhibitory, depending on whether they increase or decrease the probability
of occurance of an action potential.

Inside the neurons there are different ions, in particular sodium Na+ and
potassium K+. The neuron membrane is impermeable to this ions, but it has
some ionic channels that allow the crossing of ions from inside to the outside or
vice versa. This polarization generates a potential difference between the inside
and outside of the cell, called membrane potential and defined as

V (t) := Vint(t)− Vext(t).

Without signals, V (t) relaxes towards an equilibrium or resting potential Veq ∼
−70mV . When a neuron receives current from a nerve impulse, the resting
potential gets lost. First, as a reply to the stimulus, the sodium channels are
opened, so that sodium enters the neuron due to the electrical attraction. As a
consequence, the value of V (t) increases. If it reaches a certain threshold value,
VF , an action potential is emitted. Moreover, while the sodium channels are
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opened , the potassium channels are opened slower. Thus, potassium gets out of
the cell due to the concentration difference, since usually there is a higher sodium
concentration inside the neuron than outside. The exit of potassium makes the
membrane potential negative again. Finally, the neuron remains some time in a
refractory period and does not respond to stimuli, while the sodium-potassium
pumps return every ion to its place and the membrane potential relaxes to a
reset value VR.

NNLIF model

By a mathematical point of view the time evolution of the membrane potential
V (t) can be modeled as an electrical circuit

Cm
dV

dt
(t) = I(t), (1)

where I(t) is the intensity of the applied current and Cm is the capacitance
of the membrane. Nevertheless, as in a neuron there are several active ionic
channels that influence directly the value of the membrane potential, we have
to extend the equation (1) as follows:

Cm
dV

dt
(t) = −gNa(V (t)− VNa)− gK(V (t)− VK)− gL(V (t)− VL) + I(t), (2)

where gi is the conductance of the channel associated to the ion i, i.e. the ease
with which the ions cross the channel, and Vi is the reversal potential of the
channel i, i.e. the value of the potential that corresponds to an equilibrium
between the inside and the outside fluxes. Moreover, in the term IL(t) :=
gL(V (t)− VL), which is called leak current, we join all the contributions of the
other ions, distinct from sodium and potassium.

If we include the ionic currents of sodium and potassium also in the term
that groups the leak currents IL(t), from (2) we find the Integrate and Fire
(IF) model:

Cm
dV

dt
(t) = −gL(V (t)− VL) + I(t), (3)

where gL is the leak conductance and VL is the leak reversal potential.

Now we can present the Nonlinear Noisy Leaky Integrate and Fire
(NNLIF) model. We consider a neural network with n neurons (nE excitatory
and nI inhibitory) described by the IF model, which depicts the activity of the
membrane potential. The time evolution of the membrane potential V(t) of an
inhibitory neuron (α = I) or an excitatory one (α = E) is given by (see [3][4])

Cm
dV α

dt
(t) = −gL(V α(t)− VL) + Iα(t) (4)

where Iα(t) is the incoming synaptic current, which models all the interactions
of the neuron with other neurons. The synaptic current takes the form of the
following stochastic process:
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Iα(t) = JαE

C̄E∑
i=1

∑
i

δ(t− tiEj −D
α
E)− JαI

CI∑
i=1

∑
i

δ(t− tiIj −D
α
I ), α = E, I,

where:

• δ(t) is the Dirac delta;

• Dα
E ≥ 0, Dα

I ≥ 0 are the two synaptic delays;

• tiEj and tiIj are the times of the jth-spike coming from the ith-presynaptic
neuron for excitatory and inhibitory neurons, respectively;

• CE and CI are the number of connections from excitatory and inhibitory
neurons inside the network;

• C̄E = CE +Cext, where Cext is the number of connections for each neuron
in the network from excitatory neurons outside the network ;

• Jαk are the strengths of the synapses.

The spike trains of all neurons in the network are supposed to be described
by Poisson processes with a common instantaneous firing rate, να(t). These
processes are supposed to be independent. By using these hypothesis, the mean
value of the current, µαC(t), and its variance, σα

2

C (t), take the form

µαC(t) = CEJ
α
EνE(t−Dα

E)− CIJαI νI(t−Dα
I ), (5)

σα
2

C (t) = CE(JαE)2νE(t−Dα
E) + CI(J

α
I )2νI(t−Dα

I ), (6)

Many authors [3][4][17][19] then approximate the incoming synaptic current by
a continuous in time stochastic process

Iα(t)dt ≈ µαC(t)dt+ σαC(t)dBt (7)

where Bt is the standard Brownian motion. Summing up, the approximation
to the differential equation model (4), with stochasticity given by the incoming
synaptic current, taking the voltage and time units so that Cm = gL = 1, finally
yields

dV α(t) = (−V α(t) + VL + µαC(t))dt+ σαC(t)dBt, V α ≤ VF , α = E, I, (8)

with the jump process V α(t+0 ) = VR, V α(t−0 ) = VF , whenever at t0 the voltage
reaches the threshold value VF . The firing rate of the Poisson spike train, να(t),
is calculated in [20] as

να(t) = να,ext +Nα(t), α = E, I,
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where να,ext is the frequency of the external input and Nα(t) is the mean firing
rate of the population α (in particular νI,ext = 0 since the external connections
are with excitatory neurons).

From (8) a system of coupled partial differential equations for the evolution
of the probability densities pα(v, t) can be written, where pα(v, t) denotes the
probability of finding a neuron in the population α, with a voltage v ∈ (−∞, VF ]
at time t ≥ 0. In [22][3][4][17][21], taking the limit n→ +∞ and using Ito’s rule
the stochastic equations (4) and (7) lead to a system of coupled Fokker-Planck
equations



∂pI
∂t

(v, t) +
∂

∂v
[hI(v,NE(t−DI

E), NI(t−DI
I ))pI(v, t)]+

−aI(NE(t−DI
E), NI(t−DI

I ))
∂2pI
∂v2

(v, t) = MI(t)δ(v − VR),

∂pE
∂t

(v, t) +
∂

∂v
[hE(v,NE(t−DE

E), NI(t−DE
I ))pE(v, t)]+

−aE(NE(t−DE
E), NI(t−DE

I ))
∂2pE
∂v2

(v, t) = ME(t)δ(v − VR),

(9)

with hα(v,NE(t −Dα
E), NI(t −Dα

I )) = −v + VL + µαC the drift coefficient and

aα(NE(t−Dα
E), NI(t−Dα

I )) =
σαC

2

2 the diffusion coefficient and Nα the mean
firing rates which represents the flux of neurons across the threshold VF and
obey to

Nα(t) = −aα(NE(t), NI(t))
∂pα
∂v

(VF , t) ≥ 0 α = E, I. (10)

Notice that (10) gives rise to the nonlinearity of the system (9) since firing rates
are defined in terms of boundary conditions on distribution functions pα. The
right hand sides in (9) represents the fact that when neurons reach the threshold
potential VF , they emit a spike over the network, reset their membrane potential
to the reset value VR and remain some time in a refractory period, denoted
τα. Different choices of Mα(t) can be considered: Mα(t) = Nα(t − τα) and

Mα(t) = Rα(t)
τα

. Thus, system (9) is completed with two ODEs for Rα(t), the
probabilities to find a neuron from population α in the refractory state

dRα(t)

dt
= Nα(t)−Mα(t), ∀α = E, I, (11)

with Dirichlet boundary conditions and initial data

pα(−∞, t) = pα(VF , t) = 0, pα(v, t) = p0
α(v) ≥ 0, Rα(0) = R0

α ≥ 0 α = E, I.
(12)
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In order to simplify the notation, we denote bαk = CkJ
α
k ≥ 0, which represent

the connectivities of the network, and dαK = Cαk (Jαk )2 ≥ 0, for k, α = E, I,
and the variable v is translated with the factor VL + bEEνE,ext. So, using the
expression (5) and (6), the drift and diffusion coefficients become

hα(v,NE(t−Dα
E), NI(t−Dα

I )) =

= −v − VL − bEEνE,ext + VL + bαEνE(t−Dα
E)− bαI νI(t−Dα

I ) =

= −v + bαENE(t−Dα
E)− bαINI(t−Dα

E) + (bαE − bEE)µE,ext, (13)

aα(NE(t−Dα
E), NI(t−Dα

I )) =
1

2
(dαEνE,ext + dαENE(t−Dα

E) + dαINI(t−Dα
I )) .

(14)
Since RE and RI represent probabilities and pE and pI are probability densities,
the total mass is conserved:∫ VF

−∞
pα(v, t)dv +Rα(t) =

∫ VF

−∞
p0
α(v)dv +R0

α = 1 ∀t ≥ 0, α = E, I.

The model (9)-(11) is quite complex and its mathematical analysis is difficult.
This is the reason why it is necessary to start by studying some simplifications.

One simplification is to consider two population of neurons, excitatory and
inhibitory, but without transmission delays between the neurons (DE = DI = 0)
and without refractory state (τα = 0). In this case the model is reduced to a
system of two PDEs:



∂pI
∂t

(v, t) +
∂

∂v
[hI(v,NE(t), NI(t))pI(v, t)]− aI(NE(t), NI(t))

∂2pI
∂v2

(v, t)

= NI(t)δVR(v),

∂pE
∂t

(v, t) +
∂

∂v
[hE(v,NE(t), NI(t))pE(v, t)]− aE(NE(t), NI(t))

∂2pE
∂v2

(v, t)

= NE(t)δVR(v),

(15)

In this way, for α = E, I, the drift and the diffusion terms in (15) are not
delayed:

hα(v,NE(t), NI(t)) = −v + bαENE(t)− bαINI(t) + (bαE − bEE)vE,ext, (16)

aα(NE(t), NI(t)) =
1

2
(dαEvE,ext + dαENE(t) + dαINI(t)) , (17)
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and there are no refractory states, which means that all the neurons respond to
stimuli just after they spike, and thus the right hand sides of the equations are
written in terms of the mean firing rates:

Nα(t) = −aα(NE(t), NI(t))
∂pα
∂v

(VF , t).

Even so, the model (15) is still too complex and so we can consider a further
simplification: only one population in average-excitatory or average-inhibitory,
without transmission delays between the neurons, and without refractory state:

∂p

∂t
(v, t) +

∂

∂v
[h(v,N(t))p(v, t)]− a(N(t))

∂2p

∂v2
(v, t) = N(t)δVR(v), (18)

where h(v,N) = −v + bN and a(N) = a0 + a1N with a0 > 0, a1 ≥ 0. In
this model the connectivity parameter b describes the networks in terms of their
nature:

• b > 0: means that the neurons of the network are average-excitatory;

• b < 0: means that the neurons of the network are average-inhibitory.

So in this sense we consider only one population on average-excitatory or
average-inhibitory depending of the sign of the connectivity parameter b. This
choice makes sense because if we consider the case of two populations (model
(15)), if the population of inhibitory is empty (NI = 0), then bIα = 0, and so
hE(v,NE) = −v+bEENE (bEE > 0), and vice versa if the population of excitatory
is empty (NE = 0), then bEα = 0, and so hI(v,NI) = −v − bIINI (bII > 0).

Again the model (18) is nonlinear because the mean firing rate is computed
in terms of the derivative with respect to v of p at the border VF :

N(t) = −a(N(t))
∂p

∂v
(VF , t) ≥ 0.

Model (18) is studied in depth in [6].

In Chapter 1 we are going to summarize the main results regarding model
(18). In particular in the first part we will study the existence of solutions and
by proving Criterion 1.1.4 which correlates the maximum time of existence of
solutions with the time of divergence of the firing rate N(t), we will show in
which cases there is a global existence: in particular we will prove that solutions
blow-up if and only if the firing rate diverges at finite time. In the second part
instead we will find the number of steady states depending on the value of
parameters.

Second Chapter is the core of this thesis, and it contains some new results.
We will consider a modification of model (18), presented in [7], which consists
in assuming some randomness on the discharge potential. This makes sense
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because neurons discharge when they reach a threshold, which is actually not a
fixed value, but more or less close to VF . So the new model is:

∂p

∂t
(v, t)+

∂

∂v
[h(v,N(t))p(v, t)]−a(N(t))

∂2p

∂v2
(v, t)+φε(v)p = N(t)δVR(v), (19)

where in this case the voltage v is considered in the whole R, φε(v) is the
discharge rate and the mean firing rate is given by

N(t) =

∫ +∞

−∞
φε(v)p(v, t)dv.

In particular we will study the number of steady states of this model and
then in the chapter of conclusions we will compare it with the results of Chapter
1 about model (18).

Finally in Appendix A we will show Matlab codes used to generate some
examples in Chapter 1 and in Appendix B we will develop some calculations of
Chapter 2 in detail.

Relation with neurophysiological phenomena

From a biological point of view NNLIF model could be interesting to describe
phenomena well known in neurophysiology: synchronous and asynchronous
states. As in [9][3] we will call asynchronous the states in which the firing rate
tends to be constant in time and synchronous every other state. Experimental
and computational results exhibiting such phenomena can be found in [3] and
references therein.

Thus, on one hand, when the model does not have stable steady states,
there are syncronous states. In this sense, the blow-up phenomenon could be
understood as a synchronization of part of the network, because the firing rate
diverges for a finite time. Possibly, this entails that a part of the network
synchronizes, and thus fires at the same time. Synchronization between neurons
is crucial for diseases of the nervous system such as Parkinson or epilepsy. For
example, an epileptic attack is characterized by a very high level of neuronal
synchronization.

On the other hand, the presence of asymptotically stable steady states
implies asyncronous states, since the firing rate tends asymptotically to be
constant in time. Moreover, the presence of several steady states could provide
rich behaviours of the network, since multi-stability phenomena could appear.
Multi-stable networks are related, for instance, to the decision making [2][14]
and the visual perception. The last one involves several phenomena, including
for example the perceptual bistability [18]. This is a particular phenomenon of
visual perception that occurs when an ambiguous stimulus that has two distinct
interpretations is presented to an observer, and so its perception alternates over
time between the different possible percepts in an irregular manner, like happens
by looking Figure 2.
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Figure 2: the old and young women.
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Chapter 1

One population without refractory
states

In this Chapter we focus on the simplification (18) which we mentioned in the
Introduction. All the results we are going to present here have already been
dealt in previous articles [22][6][13]. We want to dedicate a chapter to this
model because it is important to introduce to the study of NNLIF models and
will be essential to present and study the random discharge potential model
which is the core of this thesis.

In the first section we deal with the existence of solutions of model (18). We
show that the maximal time of existence of solutions T ∗ strictly depends on
the time divergence of the firing rate N(t). In particular, in the inhibitory case
solutions are always defined on t ∈ [0,+∞), while in the excitatory case T ∗ can
be a finite time.

In the second section we will consider the delayed model and we will prove
the globally existence of solutions both in the inhibitory case and the excitatory
case.

In the third section we are going to find the number of steady states of model
(18). We will show that in the inhibitory case there is always only one steady
state, while in the excitatory case, depending on the value of parameter b, there
may be 0, 1 or at least 2.

The Fokker-Plank equation which describes this model of one population
without transmission delays or refractory states is

∂p

∂t
(v, t) +

∂

∂v
[h(v,N(t))p(v, t)]− a(N(t))

∂2p

∂v2
(v, t) = N(t)δVR(v), (1.1)

with v ∈ (−∞, VF ] at a time t ≥ 0, and

N(t) = −a(N(t))
∂p

∂v
(VF , t) ≥ 0, (1.2)

15
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where the right-hand side is nonnegative since p ≥ 0 over the interval (−∞, VF ]
and thus, ∂p∂v (VF , t) ≤ 0. The partial differential equation (1.1) is complemented
with Dirichlet and initial boundary conditions

p(VF , t) = p(−∞, 0) = 0, p(v, 0) ≥ 0. (1.3)

Furthermore, since there is no refractory state and p(v, t) is a probability density,
we have that ∫ VF

−∞
p(v, t)dv =

∫ VF

−∞
p0(v)dv = 1 (1.4)

for all t ≥ 0. Finally, we have already observed in the Introduction that the
drift and diffusion coefficients are of the form

h(v,N) = −v + bN, a(N) = a0 + a1N, (1.5)

where b > 0 for excitatory-average networks, b < 0 for inhibitory-average
networks, a0 > 0 and a1 ≥ 0.

1.1 Blow up and global existence

Before showing the theorems regarding the existence of solutions, let us remember
the definition of weak solution [6], which we will use for all our results.

Definition 1.1.1. We say that a pair of nonnegative functions (p,N) with
p ∈ L∞(R;L1

+(−∞, VF )), N ∈ L1
loc,+(R+) is a weak solution of (1.1)-(1.5) if

for any test function ψ(v, t) ∈ C∞((−∞, VF ] × [0, T ]) such that ∂2ψ
∂v2 , v ∂ψ∂v ∈

L∞((−∞, VF )× (0, T )), we have∫ T

0

∫ VF

−∞
p(v, t)

[
−∂ψ
∂t
− ∂ψ

∂v
h(v,N)− a∂

2ψ

∂v2

]
dv dt = (1.6)

=

∫ T

0

N(t)[ψ(VR, t)−ψ(VF , t)]dt+

∫ VF

−∞
p0(v)ψ(v, 0)dv−

∫ VF

−∞
p(v, T )ψ(v, T )dv.

In particular, choosing test functions of the form ζ(t)ψ(v), for all ψ ∈
C∞((−∞, VF ]) such that v ∂ψ∂v ∈ C

∞((−∞, VF )), a weak solution of (1.1)-(1.5)
satisfies

d

dt

∫ VF

−∞
ψ(v)p(v, t)dv =

∫ VF

−∞

[
∂ψ

∂v
h(v,N) + a

∂2ψ

∂v2

]
p(v, t)dv

+N(t)[ψ(VF , t)− ψ(VF , t)], (1.7)

in the distributional sense. The first result we show [6] is that weak solutions
of (1.1)-(1.3) can blow up at finite time in the case of an average-excitatory
network (Theorem 1.1.3).
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This result holds with less stringent hypotheses on the coefficients than in
(1.5) with an analogous notion of weak solution as in Definition 1.1.1. Before
presenting Theorem 1.1.3, we show the following lemma which will be useful in
the proof.

Lemma 1.1.2. (Gronwall’s inequality). Let [0, b] be an interval in R+, u ∈
C([0, b]) and β, α nonnegative, summable functions on [0, b] so that u′(t) ≤
β(t)u(t) + α(t) ∀t ∈ (0, b) then

u(t) ≤ e
∫ t
0
β(s)ds

[
u(0) +

∫ t

0

α(s)e−
∫ t
0
β(s)ds

]
.

Theorem 1.1.3. Assume that:

• h(v,N)+v ≥ bN and a(N) ≥ am > 0 for all v ∈ (−∞, VF ] and all N ≥ 0,

• b > 0 (this means an average-excitatory network).

Choosing µ > max( VFam ,
1
b ), if the initial data is concentrated enough around

v = VF , in the sense that ∫ VF

−∞
eµvp0(v)dv

is close enough to eµVF , then there are no global-in-time weak solutions to (1.1)-
(1.3).

Proof. We choose ψ(v) = eµv. Observe that the i-derivative ψ(i)(v) = µiψ(v).
For a weak solution according to (1.6), using the hypotheses on the diffusion
and drift terms and the fact that v ∈ (−∞, VF ), we find from (1.7) that

d

dt

∫ VF

−∞
ψ(v)p(v, t)dv ≥ µ

∫
−∞

VF (bN(t)− v)ψ(v)p(v, t)+

+µ2am

∫ VF

−∞
ψ(v)p(v, t)dv +N(t)[ψ(VR)− ψ(VF )]

≥ µ[bN(t) + µam − VF ]

∫ VF

−∞
ψ(v)p(v, t)dv −N(t)ψ(VF ). (1.8)

Thus, denoting

Mµ(t) :=

∫ VF

−∞
ψ(v)p(v, t)dv,

we obtain, from (1.8),

d

dt
Mµ(t) ≥ µ[bN(t) + µam − VF ]Mµ(0)−N(t)ψ(VF ),

and by Gronwall’s inequality (Lemma 1.1.2):

Mµ(t) ≥ eµ
∫ t
0

(bN(s)+µam−VF )ds

(
Mµ(0)− ψ(VF )

∫ t

0

N(s)e−µ
∫ s
0

(bN(z)+µam−VF )dzds

)
.
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After some more computations that include the fact that µam − VF > 0, the

right hand side of the previous inequality can be bounded by −ψ(VF )
µb :

−ψ(VF )

∫ t

0

N(s)e−µ
∫ s
0

(bN(z)+µam−VF )dzds ≥

≥ −ψ(VF )

µb

∫ t

0

µ(bN(s) + µam − VF )e−µ
∫ s
0

(bN(z)+µam−VF )dzds =

= −ψ(VF )

µb

∫ t

0

− d

ds
e−µ

∫ s
0

(bN(z)+µam−VF )dzds =

= −ψ(VF )

µb
[e−µ

∫ s
0

(bN(z)+µam−VF )dz]t0 =

= −ψ(VF )

µb
[1− e−µ

∫ t
0

(bN(z)+µam−VF )dz] > −ψ(VF )

µb
.

Finally, the following inequality holds

Mµ(t) ≥ eµ
∫ t
0

(bN(s)+µam−VF )ds

(
Mµ(0)− ψ(VF )

µb

)
.

This inequality produces a contradiction if K :=
(
Mµ(0)− ψ(VF )

µb

)
> 0,

because, remembering that p(v, t) is a probability density:

Keµ(µam−VF )t ≤Mµ(t) =

∫ VF

−∞
ψ(v)p(v, t)dv ≤ eµVF

∫ VF

−∞
p(v, t)dv = eµVF

which cannot be true for all t ≥ 0. Therefore, to conclude the proof we only
need to guarantee the nonnegativity of K. To verify this, we can approximate
as much as we want by smooth initial probability densities an initial Dirac mass
at VF (p0(v) ≈ δ(v − VF )) which gives the condition

Mµ(0) =

∫ VF

−∞
eµvp0(v)dv = eµVF >

eµVF

µb
,

that is verified because µ > 1
b from hypotheses.

Now, more specifically, is possible to prove that, under suitable assumptions,
solutions blow up if and only if the firing rates diverge at finite time. We are
going to present a criterion [13] to determine the maximum time of existence
for the solutions of problem (1.1)-(1.5).

Criterion 1.1.4. Let p0(v) be a non-negative C1((−∞, VF ]) ∩ L1(−∞, VF )
function such that p0(VF ) = 0 and

lim
v→−∞

∂p0

∂v
(v) = 0.
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There exists a unique classical solution to the problem (1.1)-(1.5) in the
time interval [0, T ∗) with T ∗ > 0. The maximal existence time T ∗ > 0 can be
characterized as

T ∗ := sup{t ≥ 0 : N(t) <∞}.

Furthermore:

• if b < 0 (average-inhibitory case) : T ∗ =∞, therefore the solutions do not
blow up;

• if b > 0 (average-excitatory case) : T ∗ < ∞, therefore the solutions blow
up at finite time.

The steps of the proof of this Criterion are the following:

1. Relation to the Stefan problem.

2. Local existence and uniqueness.

3. Maximal time of existence.

4. Global existence in the average-inhibitory case.

In the following subsections we are going to go deeper into each step, proving
the Criterion 1.1.4 for the problem (1.1)-(1.5) with a(N) = 1 and VF = 0.

1.1.1 Relation to the Stefan problem

The main part of this subsection concerns the formulation of equation (1.1) as a
free boundary Stefan problem with a nonstandard right hand side. For this we
recall a well known change of variables [10], that transform Fokker-Plank type
equations into a non-homogeneous heat equation. This change of variables is
given by

y = etv, τ =
e2t − 1

2
,

that yields

p(v, t) = etw

(
etv,

e2t − 1

2

)
⇐⇒ w(y, τ) = (2τ+1)−

1
2 p

(
y√

2τ + 1
,

1

2
log(2τ + 1)

)
.

In the sequel, to simplify the notation, we use α(τ) = (2τ + 1)−
1
2 = e−t. Now,

differentiating w with respect to τ , and using that p is solution of (1.1), yields

wτ (y, τ) = α′(τ)p(yα(τ),−log(α(τ)))+

+yα′(τ)α(τ)pv(yα(τ),−log(α(τ)))− α′(τ)pt(yα(τ),−log(α(τ))) =

−α′(τ)pvv(yα(τ),−log(α(τ)))+

+α′(τ)bN(−log(α(τ)))pv(yα(τ),−log(α(τ)))−α′(τ)N(−log(α(τ)))δ(yα(τ)−VR).
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Finally, taking into account that

−α′(τ) = α3,

wy(y, τ) = α2pv(yα(τ),−log(α(τ))),

wyy(y, τ) = α3(τ)pvv(yα(τ),−log(α(τ))),

we obtain

wτ (y, τ) = wyy(y, τ)− α(τ)bN(t)wy(y, τ) +M(τ)δ

(
y − VR

α(τ)

)
, (1.9)

where M(τ) = −wy(0, τ) = α2(τ)N(t). Now, in order to remove the term with
wy in (1.9), we introduce a second change of variables

x = y − b
∫ τ

0

N(s)α(s)ds,

and define

u(x, τ) = w

(
x+ b

∫ τ

0

N(s)α(s)ds, τ

)
.

Differentiating u with respect to τ produces

uτ (x, τ) = wy

(
x+ b

∫ τ

0

N(s)α(s)ds, τ

)
bN(τ)α(τ)+wτ

(
x+ b

∫ τ

0

N(s)α(s)ds, τ

)
.

Using equation (1.9) to substitute wτ yields

uτ (x, τ) = wyy

(
x+ b

∫ τ

0

N(s)α(s)ds, τ

)
+M(τ)δ

(
x+ b

∫ τ

0

N(s)α(s)ds− VR
α(τ)

)
.

Taking into account that

ux(x, τ) = wy

(
x+ b

∫ τ

0

N(s)α(s)ds, τ

)
,

uxx(x, τ) = wyy

(
x+ b

∫ τ

0

N(s)α(s)ds, τ

)
,

defining

s(τ) := −b
∫ τ

0

N(s)α(s)ds,

finally we obtain:
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

uτ (x, τ) = uxx(x, τ) +M(τ)δ(x− s1(τ)), x < s(τ), τ > 0,

s1(τ) = s(τ) +
VR
α(τ)

, τ > 0,

s(τ) = −b
∫ τ

0

N(s)α(s)ds, τ > 0,

M(τ) = −ux(s(τ), τ), τ > 0,

u(−∞, τ) = u(s(τ), τ) = 0, τ > 0,

u(x, 0) = uI(x), x < 0.

(1.10)

We now give a definition of classical solution for the Stefan-like free boundary
problem (1.10). It is immediate to translate this to a notion of classical solution
to the original problem (1.1)-(1.5) by substituting u by p, x by v, M(t) by N(t),
s1(t) by VR, and s(t) by VF .

Throughout the paper we will make the following assumption (H1) on the
initial data uI .

Assumption (H1):

• uI(x) is a non-negative C1((−∞, VF ]) ∩ L1(−∞, VF ) function,

• uI(VF ) = 0,

• limx→−∞
∂uI
∂x = 0.

Definition 1.1.5. We say that (u(x, t), s(t)) is a classical solution to (1.10) in
the time interval J = [0, T ) or J = [0, T ] for a given 0 < T ≤ ∞ and with initial
data uI(x) satisfying (H1), if the following conditions are satisfied:

1. M(t) is a continuous function for all t ∈ J ,

2. u is continuous in the region {(x, t) : −∞ < x < s(t), t ∈ J},

3. uxx and ut are continuous in the region {(x, t) : −∞ < x < s1(t), t ∈
J − {0}} ∪ {(x, t) : s1(t) < x < s(t), t ∈ J − {0}},

4. ux(s1(t)−, t), ux(s1(t)+, t), ux(s(t)−, t) are well defined,

5. ux(x, t)→ 0 when x→ −∞,

6. problem (1.10) is satisfied in the classical sense.

The next Lemma presents some of the a-priori properties of the solution to
(1.10).
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Lemma 1.1.6. Let u(x, t) be a solution to (1.10) in the sense of Definition
1.1.5. It holds:

1. the mass is conserved, i.e., for all t > 0

∫ s(t)

−∞
u(x, t)dx =

∫ sI

−∞
uI(x)dx,

2. the flux across the free boundary s1 is exactly the strength of the source
term:

M(t) := −ux(s(t), t) = ux(s1(t)−, t)− ux(s1(t)+, t),

3. for b < 0 (resp. b > 0) the free boundary s(t) is a monotone increasing
(resp. decreasing) function of time.

1.1.2 Local existence and uniqueness

In this subsection we prove local existence of solutions to system (1.10). We
first derive an integral formulation for the problem. Suitable differentiations
yield an integral equation for the flux M , where a fixed point argument can be
used to obtain short time existence. Once M(t) is known, the function u is the
solution of a linear problem.

Theorem 1.1.7. Let uI(x) satisfy (H1). Problem (1.10) has a unique classical
solution (u, s) in the sense of Definition 1.1.5 for any t ∈ [0, T ], T > 0. The
existence time T is such that

T <

(
sup

−∞<x≤0

∣∣∣∣∂uI∂x
∣∣∣∣)−1

.

The proof of this theorem will be divided in two steps:

1. Integral formulation of the solution.

The goal of this step is to find the integral form of the function M . To
do this we need the concept of Green’s function. Let us remember the
definition and the main results.

Definition 1.1.8. Let Lx,t a second order linear differential operator,
associated with a linear differential equation

Lx,t[u] = f. (1.11)

The Green’s function, associated with the operator L is the solution of

Lx,tG(x, t, ζ, τ) = δ2(x− ζ, t− τ), (1.12)

where δ2 is the bidimensional Dirac delta function, defined as

δ2(a, b) :=
{ 1 if (a,b)=(0,0),

0 otherwise.
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Theorem 1.1.9. If function G(x, t, ζ, τ) is the solution of (1.12), then
the function

u(x, t) =

∫ +∞

−∞

∫ +∞

−∞
G(x, t, ζ, τ)f(ζ, τ)dτ (1.13)

is the solution to (1.11). Furthermore the following Green’s identity holds:

∂

∂ζ

(
G
∂u

∂ζ
− u∂G

∂ζ

)
− ∂

∂τ
(Gu) = 0. (1.14)

Theorem 1.1.10. Let y = (x, t) and Ly a second order linear differential
operator of the following form:

Ly =

2∑
i=1

ai
∂

∂yi
+

2∑
i=1

bi
∂2

∂y2
i

then the Green’s function associated with L is

G(y, σ) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

P (k, y − σ)

Q(k)
dk (1.15)

where σ = (ζ, τ) and

P (k, y − σ) := ei
∑2
j=1 kj(yj−σj),

Q(k) :=

2∑
j=1

aj(ikj) +

2∑
j=1

bj(ikj)
2.

Proof. Remember that

δ(yj − σj) = F−1[1] =
1

2π

∫ +∞

−∞
eikj(yj−σj)dkj ,

where F−1 is the Fourier anti-transform, and so the bidimensional δ
function can be represented as

δ2(y − σ) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
ei
∑2
j=1 kj(yj−σj)dk1dk2.

Now, taking into account the expression (1.15) of G, we observe that

LyG(y, σ) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
Ly

(
P

Q

)
dk1dk2 =

=
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

(
Ly[P ]

Q
− PLy[Q]

Q2

)
dk1dk2.
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On the other hand, it is immediate to calculate that

Ly[P (k, y − σ)] = Q(k)P (k, y − σ),

Ly[Q(k)] = 0,

and so

LyG(y, σ) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
P (k, y − σ)dk1dk2 =

=
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
ei
∑2
j=1 kj(yj−σj)dk1dk2 = δ2(y − σ).

In particular in our case L = ∂t−∂2
x, then a1 = 1, a2 = 0, b1 = 0, b2 = −1

and so

G(x, t, ζ, τ) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞

ei[k1(x−ζ)+k2(t−τ)]

ik1 + k2
2

dk1dk2 =

=
1

2π
H(t− τ)

∫ +∞

−∞
eik2(x−ζ)−k22(t−τ)dk2 =

H(t− τ)√
4π(t− τ)

e−
(x−ζ)2
4(t−τ) ,

where H is the Heaviside function. To recover u we first integrate the
identity (1.14) in the two regions

−∞ < ζ < s1(τ), 0 < τ < t, and s1(τ) < ζ < s(τ), 0 < τ < t,

and then add up the results from the integration. We split the resulting
expression into the following 4 terms:

I =

∫ t

0

∫ s1(τ)

−∞

∂

∂ζ

(
G
∂u

∂ζ

)
dζdτ, II =

∫ t

0

∫ s(τ)

s1(τ)

∂

∂ζ

(
G
∂u

∂ζ

)
dζdτ,

III =

∫ t

0

∫ s(τ)

−∞

∂

∂ζ

(
u
∂G

∂ζ

)
dζdτ, IV =

∫ t

0

∫ s(τ)

−∞

∂

∂τ
(Gu) dζdτ.

Each term will be analyzed separately. Note that u and G have enough
decay as |ζ| → ∞ to justify the following computations due to Definition
1.1.5. Since G(x, t,−∞, τ) = 0 it holds

I =

∫ t

0

[
G
∂u

∂ζ

]ζ=s1(τ)

ζ=−∞
dτ =

∫ t

0

G(x, t, s1(τ), τ)
∂u

∂ζ

∣∣∣∣
s1(τ)−

dτ. (1.16)
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Next, we obtain

II = −
∫ t

0

(
G|ζ=s(τ)M(τ) +G

∂u

∂ζ

∣∣∣∣
s1(τ)−

)
dτ,

using the fact that M(τ) = −∂u∂ζ
∣∣
s(τ)−

. For the third integral we have

III = −
∫ t

0

[(
u
∂G

∂ζ

) ∣∣∣∣
ζ=s(τ)

−
(
u
∂G

∂ζ

) ∣∣∣∣
ζ=−∞

]
dτ = 0

because u(s(τ), τ) = u(−∞, τ) = 0. Finally, recalling G(x, t, ζ, t) = δx=ζ ,
we get

IV =

∫ t

0

∂

∂τ

∫ s(τ)

−∞
Gudζdτ =

=

∫ s(τ)

−∞
δeta=xu(ζ, t)dζ −

∫ s(0)

−∞
G(x, t, ζ, 0)uI(ζ)dζ. (1.17)

Combining (1.16)-(1.17), and part 2) of Lemma 1.1.6, we get that the
solution u reads as

u(x, t) =

∫ s(0)

−∞
G(x, t, ζ, 0)uI(ζ)dζ −

∫ t

0

M(τ)G(x, t, s(τ), τ)dτ+

+

∫ t

0

M(τ)G(x, t, s1(τ), τ)dτ. (1.18)

Now, differentiating (1.18) respect to x and evaluating at x = s(t)−, we
obtain:

M(t) = −2

∫ s(0)

−∞
G(s(t), t, ζ, 0)U ′I(ζ)dζ+

+ 2

∫ t

0

M(τ)Gx(s(t), t, s(τ), τ)dτ − 2

∫ t

0

M(τ)Gx(s(t), t, s1(τ), τ)dτ.

(1.19)

2. Local existence and uniqueness for M and u.

Theorem 1.1.11. Let uI(x) satisfy (H1). There exists a unique solution
M(t)([0, T ]) to (1.19) and the maximal existence time T is estimated as

T ≤
(

sup
−∞<x≤sI

∣∣∣∣∂uI∂x
∣∣∣∣)−1

This theorem, proved in [13], shows that we have short time existence of
a mild solution for problem (1.10) (i.e., a solution in the integral sense).
However, using the expression (1.18) of u, one can easily show that [13]:

Corollary 1.1.11.1. There exists a unique solution of problem (1.10) in
the sense of Definition 1.1.5 for t ∈ [0, T ].
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1.1.3 Maximal time of existence

The drawback for long time existence is the possible blow up of ||ux(·, t)||∞
particularly at the free boundary, i.e. the blow up of M(t). We now formalize
this idea by showing that we can extend the solution as long as the firing rate
M(t) is bounded. The following Proposition is proved in [13].

Proposition 1.1.12. Let (u, s) be a classical solution to (1.10) in the time
interval [0, T ], as proven in Theorem 1.1.7. Assume, in addition, that

U0 := sup
x∈(−∞,s(t0−ε))

|ux(x, t0−ε)| <∞ and that M∗ = sup
t∈(t0−ε,t0)

M(t) <∞,

for some 0 < ε ≤ T . Then

sup{|ux(x, t)| with x ∈ (−∞, s(t)], t ∈ [t0 − ε, t0]} <∞,

with a bound depending only on the quantities M∗, U0 and t0.

With this result in hand, our solutions can be extended to a maximal time
of existence. The maximal time can be characterized, as shown in the following
theorem.

Theorem 1.1.13. Let (u, s) be a solution to (1.10), as proven in Theorem
1.1.7. Then the solution u can be extended up to a maximal time 0 < T ∗ ≤ ∞
given by

T ∗ = sup{t > 0 : M(t) <∞}.

Proof. By definition we have T ∗ ≤ sup{t > 0 : M(t) < ∞}. If T ∗ = ∞ there
is nothing to show. Now, assume that T ∗ < ∞, let’s show the equality by
contradiction.

Let T ∗ < sup{t > 0 : M(t) <∞}. Then there exists 0 < ε < T ∗ such that

M∗ = sup
t∈(T∗−ε,T∗)

M(t) <∞.

Let U0 be defined as in Proposition 1.1.12 with t0 = T ∗. Applying Proposition
1.1.12, we deduce that ux(x, t) is also uniformly bounded for x ∈ (−∞, s(t)]
and t ∈ [T ∗ − ε, T ∗) by a constant, denoted U∗. The same proposition tells us
that U∗ only depends on M∗ and on U0. We may now use Theorem 1.1.7 to
show that problem (1.10) has a classical solution in the time interval [t0, t0 + δ),
with t0 ∈ [T ∗ − ε, T ∗) and δ depending only on U∗. Thus, we can extend
the solution (u(t), s(t)) to (1.10) after T ∗ and find a continuous extension of
M(t) past T ∗. We have then reached a contradiction and the conclusion of the
Theorem follows.

1.1.4 Global existence in the average-inhibitory case

The following Proposition, proved in [13], shows that it is possible to extend the
solution for a short (but uniform) time ε for b < 0.
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Proposition 1.1.14. For b < 0, let (u, s), t ∈ [0, t0), be a classical solution to
(1.10) as proven in Theorem 1.1.7. There exists ε > 0 small enough such that,
if

M0 = sup
x∈(−∞,s(t0−ε)]

|ux(x, t0 − ε)| <∞,

for 0 < ε < t0 then
sup

t0−ε<t<t0
M(t) ≤ C <∞.

The constant ε does not depend on t0, and the constant C above only depends
on M0.

The combination of Proposition 1.1.14 with Theorem 1.1.13 and Proposition
1.1.12 gives a unique global classical solution for b < 0.

1.2 Global existence of solutions for the delayed
model

In this section we are going to consider the NNLIF model of one population
without refractory state, but with transmission delay [8]. We want to show that
in this case all solution are global both in the inhibitory and excitatory case.
The model that we consider is:

∂p

∂t
(v, t)+

∂

∂v
[(−v+bN(t−D))p(v, t)]−a(N(t−D))

∂2p

∂v2
(v, t) = N(t−D)δVR(v),

(1.20)
with v ∈ (−∞, VF ] at a time t ≥ 0, b > 0, D ≥ 0 and

N(t) = −a(N(t))
∂p

∂v
(VF , t) ≥ 0. (1.21)

The partial differential equation (1.20) is complemented with Dirichlet and
initial boundary conditions

p(VF , t) = p(−∞, 0) = 0, p(v, 0) ≥ 0. (1.22)

In [8] is shown that Criterion 1.1.4 holds also in this case. Then to prove the
global existence of solutions we can show that the firing rate cannot diverge in
finite time. This would allow us to conclude that the maximal time of existence
T ∗ is not finite (T ∗ = +∞). In order to do that, we introduce the notion of
super-solution.

Definition 1.2.1. Let T ∈ R+, D ≥ 0, (p̄, N̄) is said to be a (strong) super-
solution to (1.20)-(1.22) on (−∞, VF ] × [0, T ] if for all t ∈ [0, T ] we have
p̄(VF , t) = 0 and

∂tp̄+∂v[(−v+bN̄(t−D))p̄]−a∂vvp̄ ≥ δv=VRN̄(t), N̄(t) = −a∂vp̄(VF , t), (1.23)

on (−∞, VF ]× [0, T ] in the distributional sense and on ((−∞, VF ]−VR)× [0, T ]
in the classical sense, with arbitrary values for N̄ on [−D, 0).
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We start proving the following comparison property between strong solutions
and super solutions of (1.20)-(1.22).

Theorem 1.2.2. Let D > 0, 0 < T < D. Let (p,N) be a strong solution
of (1.20)-(1.22) on (−∞, VF ] × [0, T ] for the initial condition (p0, N0) and let
(p̄, N̄) be a strong super-solution of (1.20)-(1.22) on (−∞, VF ]× [0, T ]. Assume
that

∀v ∈ (−∞, VF ], p̄(v, 0) ≥ p0(v) and ∀t ∈ [−D, 0), N̄(t) = N0(t).

Then,

∀(v, t) ∈ (−∞, VF ]× [0, T ], p̄(v, t) ≥ p(v, t) and ∀t ∈ [0, T ], N̄(t) ≥ N(t).

Proof. First, we prove that if p̄(v, t) ≥ p(v, t) then N̄(t) ≥ N(t). Due to the
Dirichlet boundary condition for p and the definition of super-solution we have
p(VF , t) = p̄(VF , t) = 0 on [0, T ]. Thus, as long as p̄(v, t) ≥ p(v, t) holds, we
have

−a p̄(VF , t)− p̄(v, t)
VF − v

≥ −ap(VF , t)− p(v, t)
VF − v

.

And taking the limit v → VF we get N̄(t) ≥ N(t).

Then, denoting w = p̄− p, we have for all (v, t) ∈ (−∞, VF ]× [0, T ],

∂tw+ ∂v(−vw) + bN̄(t−D)∂vp̄− bN(t−D)vp− a∂vvw ≥ δv=VR(N̄(t)−N(t)).

As we assume T < D we have by hypothesis N̄(t − D) = N0(t − D) for all
t ∈ [0, T ]. Thus, as long as w ≥ 0 holds, since N̄(t) ≥ N(t),

∂tw + ∂v[(−v + bN0(t))w]− a∂vvw ≥ 0.

As w(·, 0) ≥ 0, by a standard maximum principle theorem, we have for all
t ∈ [0, T ], w(·, t) ≥ 0, and we conclude the proof.

Now, fixed N0 and chosen N̄(t) = N0(t) in [−D, 0], we look for a super-
solution on [0, D] of the form

p̄(v, t) = etλf(v), (1.24)

where λ is large enough and f is a carefully selected function, such that p̄
satisfies (1.23), which means

(λ− 1)f + (−v + bN0(t))f ′ − af ′′ ≥ δv=VR(t)N̂(t), N̂(t) = −af ′(VF ). (1.25)

We show that f defined as follow

f : (−∞, VF ]→ R+
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v →

{
1 on (−∞, VR]
eVR−vψ(v) + 1

δ (1− ψ(v))(1− eδ(v−VF )) on (VR, VF ]

verifies (1.25). To complete the definition of f we explain which are ψ and δ:

1. For ε > 0 small enough, such that VF+VR
2 +ε < VF , we consider ψ ∈ C∞b (R)

satisfying 0 ≤ ψ ≤ 1 and

ψ =

{
1 on (−∞, VF+VR

2 )
0 on (VF+VR

2 + ε,+∞).

2. For B > 0, such that | − v+ bN0(t)| ≤ B, ∀t ∈ [−D, 0), ∀v ∈ (VR, VF ), we
take δ > 0 such that aδ −B ≥ 0.

Notice that f being the sum of two continuous non-negative functions that never
vanish at the same point, we have

inf
v∈(VR,

VF+VR
2 +ε)

f(v) > 0.

With this choice, p̄(v, t) is a super-solution on [0, D] for λ enough large, because:

• on (−∞, VR) f ′(v) = f ′′(v) = 0 and so if ≥ 1 (1.25) is verified;

• around the VR point the inequality (1.25) has to hold in the sense of
distribution, which means, integrating from VR − ε and VR + ε,∫ VR+ε

VR−ε
(λ−1)f+(−v+bN0(t))f ′dv−

∫ VR+ε

VR−ε
af ′′dv ≥

∫ VR+ε

VR−ε
δv=VR(t)Ñ(t)dv.

For ε→ 0 it becomes

−a
[
f ′
]V +
R

V −R
≥ −af ′(VF ),

or equivalently
f ′(V +

R )− f ′(V −R ) ≤ f ′(VF )

which is satisfied because f ′(V −R ) = 0, f ′(V +
R ) = −1 and f ′(VF ) = −1;

• on (VR,
VF+VR

2 + ε), we choose λ such that

(λ− 1) inf
v∈(VR,

VF+VR
2 +ε)

f(v) ≥ sup
v∈(VR,

VF+VR
2 +ε)

(B|f ′(v)|+ a|f ′′(v)|),

which is possible because inf
v∈(VR,

VF+VR
2 +ε)

f(v) > 0. Then the super-

solution inequality (1.25) holds;

• on (VF+VR
2 + ε, VF ), the inequality (1.25) holds since

(−v+bN0(t))f ′−af ′′ = eδ(v−VF )[aδ−(−v+bN0(t))] ≥ eδ(v−VF )[aδ−B] ≥ 0.
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Given this super-solution on [0, D] for any fixed continuous N0(t), we can prove
global existence for local solutions.

Theorem 1.2.3. (Global existence-excitatory and inhibitory case)Let
p0 be a non-negative function in C0((−∞, VF ]) ∪ C1((−∞, VR) ∩ (VR, VF ]) ∪
L1((−∞, VF )), such that p0(VF ) = 0 and dp0

dv decays at −∞ and admits finite
left and right limits at VR; let N0 ∈ C0([−D, 0]) with D > 0. Let (p,N)
the corresponding strong solution of (1.20)-(1.22) on the maximal interval of
existence [0, T ∗). Then T ∗ = +∞.

Proof. Assume that the maximal time of existence T ∗ is finite, this means, using
Criterion 1.1.4, that firing rate N diverges when t→ T ∗. We prove that this is
a contradiction with the fact that p̄ given by (1.24) is a super-solution.

As the solution was showed previously to be unique, we assume without lost
of generality that T ∗ = D

2 < D by using the new initial conditions

p̃0(v) = p

(
v, T ∗ − D

2

)
∀v ∈ (−∞, VF ]

and

Ñ0(t̃) = N

(
T ∗ − D

2
+ t̃

)
, t̃ ∈ [−D, 0).

As p̃0 is continuous and vanish at VF and −∞, it belongs to L∞((−∞, VF ])
and therefore there exists α ∈ R∗+ such that the super-solution p̄ we constructed
satisfies

αp̄(v, 0) ≥ p̃0(v), ∀v ∈ (−∞, VF ],

where we use the fact that p̄ never vanish on (−∞, VF ). Then, by Theorem
1.2.2, we have

N

(
T ∗ − D

2
+ t̃

)
= Ñ(t̃) ≤ N̄(t̃) = aeλt̃ ∀t̃ ∈

[
0,
D

2

)
.

Thus, N(t) ≤ a eλ(t−T∗+D
2 ) for all t ∈ [T ∗ − D

2 , T
∗). Therefore, by continuity,

there is no divergence of the firing rate N when t→ T ∗, and thus by Criterion
1.1.4 we reach a contradiction.

1.3 Steady states

This section is devoted to find all smooth stationary solutions of the problem
(1.1)-(1.5) (see [6]). Let us search for continuous stationary solutions of p of
(1.1) such that p is C1 regular except possibly at V = VR where it is Lipschitz.

The steady states of this NNLIF model are solutions of

∂

∂v
A(v) = 0
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where

A(v) = (v − bN)p(v) + a(N)
∂p

∂v
(v) +NH(v − VR),

with H being the Heaviside function. Therefore, we conclude that A(v) is
constant. Observe that, using the boundary condition p(VF ) = 0, we have that
A(VF ) = 0, and so we can conclude that A(v) = 0 ∀v ∈ (−∞, VF ]. Assuming
that a(N) = a is a constant, now the problem is to find the solutions of this
equation:

∂p

∂v
+

(v − bN)

a
p = −1

a
NH(v − VR).

With the variation of constants method we can find p :

p(v) =
N

a
e−

(v−bN)2

2a

∫ VF

v

H(w − VR)e
(w−bN)2

2a dw,

which can be rewritten, using the expression of the Heaviside function, as

p(v) =
N

a
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw. (1.26)

Now, remembering condition (1.4), and integrating (1.26) from −∞ to VF we
obtain

1 =
N

a

∫ VF

−∞

[
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw

]
dv. (1.27)

We can rewrite the previous integral (and thus the condition for steady state)
as


1

N
= I(N),

I(N) :=
1

a

∫ VF

−∞

[
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw

]
dv.

(1.28)

Remark 1.3.1. To find the number of steady states we investigate how many
times the two functions I(N) and 1

N intersect. Now we are going to rewrite in
some different useful ways I(N) and to study its properties (Lemma 1.3.3).

Using the following change of variables and notations

z =
v − bN√

a
, u =

w − bN√
a

, wF =
VF − bN√

a
, wR =

VR − bN√
a

,
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the integral I(N) can be rewritten as

I(N) =

∫ wF

−∞

[
e−

z2

2

∫ wF

max(z,wR)

e
u2

2 du

]
dz. (1.29)

Another alternative form of I(N) follows from the change of variables

s =
z − u

2
, s̃ =

z + u

2
,

to get

I(N) = 2

∫ 0

−∞

∫ wF+s

wR+s

e−2ss̃ds̃ds = −
∫ 0

−∞

e−2s2

s
(e−2swF − e−2swR)ds,

and consequently,

I(N) =

∫ +∞

0

e−2s2

s
(eswF − eswR)ds. (1.30)

Remark 1.3.2. Let us rewrite (1.30) as

I(N) =

∫ ∞
0

e−
s2

2 e
−sbN√

a
e
sVF√
a − e

sVR√
a

s
ds.

Taking the function f(s) = e
sVF√
a − e

sVR√
a and a Taylor expansion up to second

order at s = 0, we get f(s) − f(0) − f ′(0)s = f ′′(θ) s
2

2 with f(0) = 0, f ′(0) =
VF−VR√

a
, and θ ∈ (0, s). It is easy to see that

|f ′′(θ)| ≤ max
(
V 2
F

a
e
θVF√
a ,

V 2
R

a
e
θVR√
a

)
,

for all θ ∈ (0, s). By distinguishing the cases based on the signs of VF and VR,
this Taylor expansion implies that∣∣∣∣e

sVF√
a − e

sVR√
a

s
− VF − VR√

a

∣∣∣∣ ≤ max(V 2
F , V

2
R)

2a
s e

smax(|VR|,|VF |)√
a

=: C0s e
smax(|VR|,|VF |)√

a (1.31)

for all s ≥ 0.

Lemma 1.3.3. Let I(N) the function defined in (1.28), then the following
properties hold:

1. I(N) > 0 ∀N ≥ 0;

2. I(0) <∞;
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3. I(N) is C∞ and, for all integers k ≥ 1,

Ik(N) = (−1)k
(

b√
a

)k ∫ ∞
0

e−
s2

2 sk−1(eswF − eswR)ds. (1.32)

4. • if b < 0 (inhibitory case),

lim
N→+∞

I(N) = +∞,

• if b > 0 (excitatory case),

lim
N→+∞

I(N) = 0 and lim
N→+∞

NI(N) =
VF − VR

b
;

Proof. 1. Consider I(N) in the form (1.30). Since e−2s2

s (eswF − eswR) > 0
∀s ∈ (0,∞) ∀N ≥ 0, then I(N) > 0 ∀N ≥ 0.

2. Consider I(N) as in (1.29):

I(0) =

∫ wF (0)

−∞

[
e−

z2

2

∫ wF (0)

max(z,wR(0))

e
u2

2 du

]
dz ≤

≤ (wF (0)− wR(0))e
max(w2

R(0),w2
F (0))

2

∫ wF (0)

−∞
e−

z2

2 dz ≤

≤
√

2π(wF (0)− wR(0))e
max(w2

R(0),w2
F (0))

2 =
√

2π
VF − VR√

a
e
max(V 2

R,V
2
F )

2a <∞

3. A direct application of the dominated convergence theorem and theorems
on the continuity of integrals with respect to parameters show that the
function I(N) is continuous with respect to N on [0,∞). Moreover, the
function I(N) is C∞ with respect to N since all the derivatives can be
computed by differentiating under the integral sign by direct application
of dominated convergence theorems and theorems on differentiation of
integrals with respect to parameters. In particular,

İ(N) = − b√
a

∫ ∞
0

e−
s2

2 (eswF − eswR)ds,

and for all integers k ≥ 1,

Ik(N) = (−1)k
(

b√
a

)k ∫ ∞
0

e−
s2

2 sk−1(eswF − eswR)ds.

4. By (1.32) we deduce that:
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• if b < 0, I(N) is an increasing strictly convex function and thus

lim
N→+∞

I(N) = +∞;

• if b > 0, I(N) is a decreasing convex function, and furthermore,
using the previous expansion (1.31) and the dominated convergence
theorem, we conclude that

lim
N→+∞

I(N) = 0.

Moreover, using again (1.31), we deduce∣∣∣∣NI(N)−N VF − VR√
a

∫ ∞
0

e−
s2

2 e
− sbN√

a ds

∣∣∣∣ ≤
≤ C0N

∫ ∞
0

se−
s2

2 e
− sbN√

a e
smax(|VR|,|VF |)√

a ds. (1.33)

A direct application of dominated convergence theorem shows that

the right hand side converges to 0 as N → ∞ since sNe
− sbN√

a is a
bounded function uniform in N and s. If we prove that

lim
N→+∞

N

∫ ∞
0

e−
s2

2 e
− sbN√

a ds =

√
a

b
, (1.34)

combining this result with the inequality (1.37), we can deduce that

lim
N→+∞

NI(N) =
VF − VR

b
.

So, let us prove (1.34). Remembering the definition of the complementary
error function

erfc(x) :=
2√
π

∫ ∞
x

e−t
2

dt,

we can rewrite∫ ∞
0

e−
s2

2 e
− sbN√

a ds = e
b2N2

2a

∫ ∞
0

e
−
(
s√
2

+ bN√
2a

)2

ds =

√
π

2
e
b2N2

2a erfc

(
bN√

2a

)
.

Finally, using L’Hopital’s rule

lim
N→+∞

N

∫ ∞
0

e
− s22 −

sbN√
a ds =

√
π

2
lim

N→+∞

erfc( bN√
2a

)

e
−b2N2

2a

N

=

=
√

2 lim
N→+∞

− b√
2a
e
−b2N2

2a

− b2a e
− b2N2

2a − 1
N2 e−

b2N2

2a

=

√
a

b
.



1. One population without refractory states 35

Remark 1.3.4. Another way to write problem (1.28) is Q(N) = 1,

Q(N) := NI(N).
(1.35)

In this case the problem of finding the number of steady states is equivalent
to find the number of intersections of Q(N) and h(N) = 1.

A direct consequence of Lemma 1.3.3 and Remark 1.3.4 is the following
Lemma, which lists the properties of Q(N).

Lemma 1.3.5. Let Q(N) the function defined in (1.35), then the following
properties hold:

1. Q(N) > 0 ∀N > 0;

2. Q(0) = 0;

3. Q(N) is C∞(N) and Q̇(N) = I(N) +Nİ(N);

4. • if b < 0,
lim

N→+∞
Q(N) = +∞,

• if b > 0,

lim
N→+∞

Q(N) =
VF − VR

b
.

We can now prove the main result [6] on steady states:

Theorem 1.3.6. Considering the problem (1.1)-(1.5) with a(N) = a a positive
constant, we have:

1. If b < 0 (inhibitory case): there is a unique steady state to (1.1)-(1.5).

2. If b > 0 (excitatory case):

(a) if b is small enough there is a unique steady state;

(b) if b < VF − VR or b < (VF−VR)2

2a VR, then there exists at least one
steady state solution to (1.1)-(1.5);

(c) if VF − VR < b < (VF−VR)2

2a VR, then there are at least 2 steady states
to (1.1)-(1.5);

(d) if b > β2 := max(2(VF−VR), 2VF I(0)), then there is no steady states.

Proof. 1. Let b < 0. From Lemma 1.3.3 I(N) is an increasing function,
starting at I(0) <∞ and such that

lim
N→+∞

I(N) =∞.

Therefore it crosses the function 1
N at a single point.
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2. Let b > 0.

(a) We first remark, by a direct application of the dominated convergence
theorems and continuity theorems for integrals, that I(N) and İ(N)
are continuous functions of b. Moreover these two functions are both
C∞ with respect to b since all their derivatives can be computed by
differentiating under the integral sign by applying again dominated
convergence theorems and differentiation theorems of integrals.

Furthermore, it is simple to realize that I(N) is a decreasing function
of the parameter b.

Now, choosing b ≤ b∗ <
VF−VR

2 , I(N) ≤ I∗(N) and Q(N) ≤ Q∗(N)
for all N ≥ 0 where I∗(N), Q∗(N) denote the functions associated to
the parameter b∗, remembering that limN→∞Q∗(N) = VF−VR

b∗
, we

can say that

∃N∗ = N∗(b∗) s.t. Q∗(N) >
VF − VR

2b∗
> 1 ∀N ≥ N∗,

and so
Q(N) ≥ Q∗(N) > 1 ∀N ≥ N∗.

Since Q(0) = 0 and Q(N) is continuous, we conclude that there are
solutions to Q(N) = 1 and all these solutions are on the interval
[0, N∗]. We observe that

lim
b→0

I(N) = I(0) > 0, lim
b→0

Nİ(N) = 0

uniformly in the interval [0, N∗]. Therefore, for b small enough,

Q̇(N) = I(N) +Nİ(N) > 0, N ∈ [0, N∗],

which means that Q(N) is strictly increasing in this interval and so
there is a unique solution to Q(N) = 1.

(b) Considering Q(N) and using the results of Lemma 1.3.5 we know
that:

• Q(N) is continuous;

• Q(0) = 0;

• ∃N̄ such that Q(N̄) > 1, since:

– if b < VF − VR:

lim
N→+∞

Q(N) =
VF − VR

b
> 1;

– if b < (VF−VR)2

2a VR, we can say that the interval
(

2a
(VF−VR)2 ,

VR
b

)
is not empty, and if we prove that I(N) > 1

N in this interval,

then we can conclude thatQ(N) ≥ 1 forN ∈
(

2a
(VF−VR)2 ,

VR
b

)
.
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Observe that condition N < VR
b is equivalent to wR > 0,

therefore, using the expression (1.29), we deduce

I(N) ≥
∫ wF

wR

[
e−

z2

2

∫ wF

z

e
u2

2 du

]
dz =

∫ wF

wR

∫ wF

z

e
u2

2 −
z2

2 du dz.

Since z > 0 and e
u2

2 is an increasing function for u > 0, then

e
z2

2 < e
u2

2 on [z, wF ], and we conclude

I(N) ≥
∫ wF

wR

∫ wF

z

du dz =
(VF − VR)2

2a
>

1

N

because N > 2a
(VF−VR)2 .

So we can conclude that there exists at least one steady state.

(c) We consider againQ(N), and we observe again thatQ(N) is continuous,
Q(0) = 0, and there exists an interval in which Q(N) > 1 because

b < (VF−VR)2

2a VR. Moreover in this case the condition b > VF − VR
implies that

lim
N→+∞

Q(N) =
VF − VR

b
< 1.

Thus, we can conclude that there are at least 2 steady states.

(d) Consider b > max(2(VF − VR), 2VF I(0)).

• For N ≤ 2VF
b :

I(N) < I(0) <
b

2VF
≤ 1

N
;

• for N > 2VF
b , firstly observe that N > VF

b (i.e. wF < 0), and
moreover

VF − VR
bN − VF

<
b

2(bN − VF )
<

b

bN
=

1

N
. (1.36)

Now, consider f(x) = esx, for the mean-value theorem we have

f(wF )− f(wR)

wF − wR
= f ′(c), c ∈ (wR, wF ),

and so
eswF − eswR
wF − wR

= sesc < seswF ,

or equivalently

eswF − eswR
s

< (wF − wR)eswF . (1.37)
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Finally, using I(N) in the form (1.30) and the inequality (1.37),
and remembering that wF < 0, we have

I(N) < (wF − wR)

∫ ∞
0

e−
s2

2 eswF ds =

= (wF−wR)e
w2
F
2

∫ ∞
0

e−
(s−wF )2

2 ds = (wF−wR)e
w2
F
2

∫ ∞
−wF

e−
y2

2 dy ≤

≤ (wF−wR)e
w2
F
2

∫ ∞
−wF

y

|wF |
e−

y2

2 dy =
VF − VR
|wF |
√
a

=
VF − VR
bN − VF

<
1

N
,

because of (1.36).

So, we can now conclude that I(N) < 1
N ∀N ≥ 0.

Denoting with β1 a positive value such that there is a unique steady state
∀ 0 < b ≤ β1 (it must exist, by Theorem 1.3.6) and supposing that

VF − VR <
(VF − VR)VR

2a
,

we can summarise the results of Theorem 1.3.6, with the following table.

inhibitory or excitatory range for b n. of steady states

b < 0 b ∈ (−∞, 0) 1

b ∈ (0, β1] 1

b ∈ (β1, VF − VR] at least 1

b > 0 b ∈
(
VF − VR,

VR(VF − VR)

2a

]
at least 2

b ∈
[
VR(VF − VR)

2a
, β2

]
?

b ∈ (β2,+∞) 0



Chapter 2

Steady states of the random discharge
potential model

This chapter is the core of the thesis, since it contains new results regarding
NNLIF model. In particular we will focus on model (19), called random
discharge potential model. The idea is, starting from model (18) described
in Chapter 1, to assume some randomness on the discharge potential: this means
that the neurons spike when their membrane potential exceed the value VF with
a certain discharge rate. From a mathematical point of view, this phenomenon
is represented by adding a term characterized by a function φε(v), called the
discharge rate.

Here we recall the model, already anticipated in the Introduction. In this
chapter we assume in particular that a(N) = a is a constant:



∂p

∂t
(v, t) +

∂

∂v
[(−v + bN)p(v, t)]− a∂

2p

∂2v
(v, t) + φε(v)p(v, t) =

= N(t)δVR(v), v ∈ R

N(t) =

∫ +∞

−∞
φε(v)p(v, t)dv.

(2.1)

Randomness on the discharge of the action potential implies that, while in
the previous model p(VF ) = 0 because the neurons discharge when v = VF , in
this model p(VF ) is a value different from 0 but that we do not know, because
neurons discharge randomly when v > VF .

The goal of this chapter is to study the number of steady states of model
(2.1) and then find the differences compared to model with fixed threshold (1.1)-

39
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(1.5) described in Chapter 1. To do that we will choose function φε(v) in two
different ways:

φε(v) =
1

ε
1{v>VF } (2.2)

where 1{·} denotes the characteristic function, and

φε(v) =
1

ε
(v − VF )+, (2.3)

where (·)+ denotes the positive part.
In both choices we will distinguish, depending on the value of p(VF ), two

cases that we will call case A (if p(VF ) is big enough) and case B (if p(VF )
is small enough): we will show that case B, closer to model (1.1)-(1.5), is
characterized by an odd number of steady states, while case A by an even
number.

In the first section we consider the discharge rate like φε(v) = 1
ε1{v>VF }

and we show that if we consider a population in average-excitatory with ε large
enough or a population in average-inhibitory, there are no steady states in case A
and a unique steady state in case B, while if we consider a population in average-
excitatory with ε in a small interval and the other parameters satisfying suitable
conditions, there could be at least 2 or 3 steady states. We also show that the
same results hold if we consider the transmission delay and the refractory period.

In the second section we consider the discharge rate as φε(v) = 1
ε (v − VF )+

and we show that also here in the inhibitory case there are 0 or 1 steady states,
while in the excitatory one we do not find sufficient conditions for the same
result, but we show that if ε belongs to an interval and the other parameters
satisfy suitable conditions, there could be at least 2 or 3 steady states.

To determine the steady states of the random discharge potential model we
follow the same procedure used in Chapter 1. Also in this case, steady states
are solution of

∂

∂v
A(v) = 0

where

A(v) = (v − bN)p(v) + a
∂p

∂v
(v) +

∫ v

−∞
φε(w)p(w)dw +NH(v − VR),

with H being the Heaviside function. Therefore, we conclude that A(v) is
constant. Observe that

lim
v→−∞

A(v) = 0,

so we can conclude that A(v) = 0. Now the problem is to find the solutions of
this equation:

∂p

∂v
+

(v − bN)

a
p =

1

a
g(v)
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where

g(v) :=

∫ v

−∞
φε(v)p(v)dv −NH(v − VR) =

=



0 v < VR

−N VR ≤ v ≤ VF∫ v

−∞
φεp(w)dw −N v > VF .

(2.4)

With the variation of constants method we can find p :

p(v) =
1

a
e−

(v−bN)2

2a

[
k +

∫ v

VF

g(w)e
(w−bN)2

2a dw

]
.

As p(VF ) = 1
ae
− (VF−bN)2

2a k we conclude that k = p(VF )a e
(VF−bN)2

2a . Unlike the
original problem, in the random discharge potential model we do not know what
is the value of p in v = VF and so p can be written as

p(v) = −1

a
e−

(v−bN)2

2a

∫ VF

v

g(w)e
(w−bN)2

2a dw + p(VF )e
(VF−bN)2

2a e−
(v−bN)2

2a . (2.5)

Now, as in Chapter 1, the idea is to integrate (2.5) to find an equation which
depends on N and whose solutions correspond to the steady states. We will do
this in the two next sections of this Chapter, choosing φε differently, as explained
above.

2.1 Discharge rate φε(v) =
1
ε1{v>VF }

The aim of this section is to find the number of steady states of this model,
choosing as discharge rate φε(v) = 1

ε1{v>VF }. We will firstly integrate (2.5) to
find an equation which depends on N and whose solutions correspond to the
steady states. Then, we will define exactly what is meant by case A and case
B that we talked about at the beginning of the chapter, and we will show by
Theorem 2.1.2 that the number of steady states in the two cases is different.
Finally we will prove the main result of this section, Theorem 2.1.10, which
shows the conditions on the parameters of the model clarifying the exact number
of steady states.

Before starting is important to make the following remark:

Remark 2.1.1. In this section we will consider

N ∈
(

0,
1

ε

)
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since,

N(t) =
1

ε

∫ +∞

VF

p(v, t)dv <
1

ε

∫ +∞

−∞
p(v, t)dv =

1

ε
∀t ≥ 0.

Now we follow the same procedure as in Chapter 1 to find an equation which
depends on N . Firstly we note that∫ VF

−∞
p(v)dv =

∫ +∞

−∞
p(v)dv −

∫ +∞

VF

p(v)dv = 1− εN (2.6)

and so, integrating (2.5) from −∞ to VF , we obtain:

1− εN = −1

a

∫ VF

−∞
e−

(v−bN)2

2a

∫ VF

max(v,VR)

g(w)e
(w−bN)2

2a dw dv+

+ p(VF )e
(VF−bN)2

2a

∫ VF

−∞
e−

(v−bN)2

2a dv

because g(w) = 0 if w < VR. As w ∈ (VR, VF ), g(w) = −N and so

1− εN =
N

a

∫ VF

−∞
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw dv+

+ p(VF )e
(VF−bN)2

2a

∫ VF

−∞
e−

(v−bN)2

2a dv.

We can rewrite the previous integral (and thus the condition for steady state)
as 

1

N
= J(N),

J(N) := ε+ I(N) +M(N),

(2.7)

where

I(N) :=
1

a(N)

∫ VF

−∞
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw dv

is the function already defined in (1.28) and studied in Chapter 1, and

M(N) :=
K(N)

N

with

K(N) := p(VF )e
(VF−bN)2

2a

∫ VF

−∞
e−

(v−bN)2

2a dv. (2.8)
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Using the change of variables z = bN−v√
2a

, K can be rewritten as

K(N) =
√

2a p(VF )e
(VF−bN)2

2a

∫ +∞

bN−VF√
2a

e−z
2

dz =

=

√
πa

2
p(VF )e

(VF−bN)2

2a erfc

(
bN − VF√

2a

)
We notice that, unlike the previous chapter, the function we have to study is
composed, in addiction to I(N), by the ε parameter and by a new functionM(N)
which depends on p(VF ). In particular p(VF ) = 0 if and only if M(N) = 0.
However, for the reason explained at the beginning of Chapter 2, from now we
assume that p(VF ) 6= 0, and so M(N) 6= 0 too.

Now we are going to define two different cases, according to the value of p(VF ).
To do that, we define the new parameter

c := K(0) =

√
πa

2
p(VF ) e

V 2
F

2a erfc

(
−VF√

2a

)
, (2.9)

and the threshold

P :=

√
2

√
πa e

V 2
F

2a erfc

(
−VF√

2a

) , (2.10)

and we distinguish:

Case A : if c > 1, which is equivalent to

p(VF ) > P ; (2.11)

Case B : if c < 1, which is equivalent to

p(VF ) < P. (2.12)

Observe that this classification does not depend on ε. Moreover, since in case
B p(VF ) is smaller than in case A, we note that case B is closer to model (1.1)-
(1.3), in which p(VF ) = 0.

This classification is important because, as we prove in the following Theorem
2.1.2, the number of steady states in the two cases is different.

Theorem 2.1.2. Considering the equation of random model (2.1) with φε(v) =
1
ε1{v>VF } and ε > 0 we have:

• in case A (see (2.11)) there is an even number of steady states;
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• in case B (see (2.12)) there is an odd number of steady states.

Note that this differentiation holds for both the inhibitory and the excitatory
case, because does not depend on the value of b. Moreover, we observe that in
case A there may not be steady states, while in case B there is always at least
1 steady state.

This theorem is a direct consequence of the properties of the function J(N),
shown in the following Lemma 2.1.3.

Lemma 2.1.3. Let J(N) the function defined in (2.7), then the following
properties hold:

1. J(N) > ε ∀N > 0;

2. J(N)→ +∞ when N → 0;

3. • if b < 0 (inhibitory case),

lim
N→+∞

J(N) = +∞,

• if b > 0 (excitatory case),

lim
N→+∞

J(N) = ε;

4. • in case A (see (2.11)), J(N) intersects an even number of times
1

N

on

(
0,

1

ε

)
,

• in case B (see (2.12)), J(N) intersects an odd number of times
1

N

on

(
0,

1

ε

)
.

Proof. 1. The first property comes from the definition of J(N) and the fact
that I(N) and M(N) > 0.

2. Since I(0) < +∞ (see Lemma 1.3.3), when N → 0, J(N) ∼ K(0)

N
=

c

N
→ +∞.

3. Consider b < 0. From Lemma 1.3.3 we know that

lim
N→∞

I(N) = +∞.

Furthermore M(N) → ∞ because eN
2

N → ∞ and erfc(−N) → 2 when
N → +∞. So we conclude that J(N)→ +∞ when N → +∞.
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Now consider b > 0. From Lemma 1.3.3 we know that

lim
N→∞

I(N) = 0.

Furthermore M(N)→ 0 because, using L’Hopital rule

lim
N→+∞

M(N) =

√
πa

2
p(VF ) lim

N→+∞

erfc( bN−VF√
2a

)

N e−
(VF−bN)2

2a

=

=
√

2a p(VF ) lim
N→+∞

−e−
(VF−bN)2

2a(
N
b(VF − bN)

a
+ 1

)
e−

(VF−bN)2

2a

= 0.

So we conclude that J(N)→ ε when N → +∞.

4. When (2.11) holds (case A), then

• Since c > 1: when N → 0, J(N) ∼ K(0)

N
=

c

N
>

1

N
;

• J(N) >
1

N
when N =

1

ε
because of property 1;

• the two functions J(N) and
1

N
are both continuous on

(
0,

1

ε

)
.

So we can conclude that J(N) intersects
1

N
an even number of times on(

0,
1

ε

)
.

When (2.12) holds (case B), then

• Since c < 1: when N → 0, J(N) ∼ K(0)

N
=

c

N
<

1

N
;

• J(N) >
1

N
when N =

1

ε
because of property 1;

• the two functions J(N) and
1

N
are both continuous on

(
0,

1

ε

)
.

So we can conclude that J(N) intersects
1

N
an odd number of times on(

0,
1

ε

)
.

Now we are going to show an example of case A and an example of case B.

Example 2.1.4. Choosing ε = 0, 5, a = 1, b = 2, VR = 1, VF = 2 then
P = 0, 0552 and so:
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• if p(VF ) = 0, 5 > P (Figure 2.1) we can observe that the number of
intersections, and thus the number of steady states is 0 (which is an even
number).

• if p(VF ) = 0, 01 < P (Figure 2.2) we can observe that there is 1 intersection,
namely 1 steady state (which is an odd number).

Figure 2.1: Graph of functions J(N) and 1
N in case of ε = 0, 5, a = 1, b = 2,

VR = 1, VF = 2, p(VF ) = 0, 5
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Figure 2.2: Graph of functions J(N) and 1
N in case of ε = 0, 5, a = 1, b = 2,

VR = 1, VF = 2, p(VF ) = 0, 01

Up to now we have shown that the steady state number in case A is different
from that in case B. Now we are going to find conditions on the parameters of the
model clarifying the specific number of steady states. Before that, we illustrate
some results that will be used in the proof of the final Theorem 2.1.10.

Lemma 2.1.5. The function y(x) := ex
2

erfc(x) is decreasing.

Proof. To prove this lemma we use the following upper and lower limitations
from [1] for y(x) when x > 0:

2
√
π(x+

√
x2 + 2)

< y(x) <
2

√
π(x+

√
x2 + 4

π )
(2.13)

Now,

ẏ(x) = 2x ex
2

erfc(x) − 2√
π

= 2xy(x)− 2√
π

which is obviously negative if x ≤ 0. If x > 0 we use the upper limitation:
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ẏ(x) ≤ 2x

[
2

√
π(x+

√
x2 + 4

π )

]
− 2√

π
=

2x− 2
√
x2 + 4

π

√
π(x+

√
x2 + 4

π )
< 0

And so y is a decreasing function.

Lemma 2.1.6. The function ẏ(x) = 2x ex
2

erfc(x) − 2√
π

is increasing.

Proof. We have:

ÿ(x) = (2 + 4x2)ex
2

erfc(x)− 4x√
π

= (2 + 4x2)y(x)− 4x√
π
,

which is obviously positive if x ≤ 0. Now, using again (2.13), if x > 0 we
have:

ÿ(x) ≥ 4 + 8x2

√
π(x+

√
x2 + 2)

− 4x√
π

=
4x2 + 4− 4x

√
x2 + 2

√
π(x+

√
x2 + 2)

> 0

And so ẏ is an increasing function.

From Lemma 2.1.5 and Lemma 2.1.6 we can conclude that:

Corollary 2.1.6.1. Considering K(N) defined in (2.8) and J(N) defined in
(2.7), we have:

• if b > 0: K̇(N) < 0, K̈(N) > 0, J̇(N) < 0;

• if b < 0: K̇(N) > 0, K̈(N) > 0;

Proof. We have:

K(N) =

√
πa

2
p(VF ) y

(
bN − VF√

2a

)
K̇(N) =

√
πa

2
p(VF )

b√
2a

ẏ

(
bN − VF√

2a

)
K̈(N) =

√
πa

2
p(VF )

b2

2a
ÿ

(
bN − VF√

2a

)
Then if b > 0, K̇(N) < 0 and K̈(N) > 0. Furthermore:

Ṁ =
K̇

N
− K

N2
< 0

and remembering that İ < 0 (see Lemma 1.3.3) we obtain that:

J̇ = İ + Ṁ < 0

Instead if b < 0, K̇(N) > 0 and K̈(N) > 0, but M is not a monotonic function
and so we cannot conclude about the sign of the derivative of J .
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Remark 2.1.7. It will be useful rewriting K̇ and İ in function of K:

• K̇(N) =

√
πa

2
p(VF )

b√
2a

ẏ

(
bN − VF√

2a

)
=

=
√
πp(VF )b

[
bN − VF√

2a
e

(VF−bN)2

2a erfc

(
bN − VF√

2a

)
− 1√

π

]
=

= −b d1(N),

where

d1(N) := −
[
bN − VF

a
K(N)− p(VF )

]
; (2.14)

• İ(N) = − b√
a

[ ∫ +∞

0

e
− s22 +s

VF−bN√
2a ds−

∫ +∞

0

e
− s22 +s

VR−bN√
2a ds

]
=

= − b√
a

[
e

(VF−bN)2

2a

∫ +∞

0

e
−( s√

2
−VF−bN√

2a
)2
ds−e

(VR−bN)2

2a

∫ +∞

0

e
−( s√

2
−VR−bN√

2a
)2
ds

]
.

Using the change of variables

y =
s√
2
− VF − bN√

2a
z =

s√
2
− VR − bN√

2a
,

we obtain:

İ(N) = −b
√

2

a

[
e

(VF−bN)2

2a

∫ +∞

−VF−bN√
2a

e−y
2

dy−e
(VR−bN)2

2a

∫ +∞

−VR−bN√
2a

e−z
2

dz

]
=

= −b
√

2

a

[√
π

2
e

(VF−bN)2

2a erfc

(
bN − VF√

2a

)
−
√
π

2
e

(VR−bN)2

2a erfc

(
bN − VR√

2a

)]
=

= −b d2(N),

where

d2(N) :=

[
K(N)

a p(VF )
−
√

π

2a
e

(VR−bN)2

2a erfc

(
bN − VR√

2a

)]
. (2.15)

To determine more precisely the number of steady states it will be useful to
reformulate the problem (2.7) in the following way:{

1 = U(N),
U(N) := N J(N) = N(ε+ I(N)) +K(N),

(2.16)

Remark 2.1.8. (2.16) is the equivalent of (1.35) for problem with fixed threshold
(1.28). So, like in Chapter 1, the idea to find the steady states is to find the
intersections between U(N) and the straight line h(N) = 1. Unlike Q(N), we
note that U(N) is composed, in addition to the term NI(N), by two new terms:
Nε and K(N). The positivity of I(N) and K(N) and the presence of the term
Nε guarantee, as we see below, that U(N) is greater than 1 in the extreme N = 1

ε
of the considered interval. We can now observe that the following properties
hold:
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• U is a continuous function;

• U(0) = K(0) (= c);

• U( 1
ε ) = 1 + 1

ε I( 1
ε ) +K( 1

ε ) > 1

• U(N)→ +∞ when N → +∞ because:

– if b > 0, NI(N)→ VF−VR
b , K(N)→ 0 when N → +∞;

– if b < 0, I(N)→ +∞, K(N)→ +∞ when N → +∞.

• U̇(N) = ε+ I +Nİ(N) + K̇(N).

We can easily notice that the sign of U̇(N) is not constant for any choice
of parameters. In the following Lemma 2.1.9 we find some conditions which
guarantee the positivity of U̇(N) for all N in the considered interval.

Lemma 2.1.9. For b > 0, if

ε > ε̄ :=
−2İ(0)

K̇(0) +
√

[K̇(0)]2 − 4İ(0)
(2.17)

then U̇(N) > 0 ∀N ∈ (0, 1
ε ).

Proof. As İ and K̇ are increasing, and I is decreasing, ∀N ∈ (0, 1
ε ) we have:

I

(
1

ε

)
< I(N) < I(0) (2.18)

Nİ(0) < Nİ(N) < Nİ

(
1

ε

)
(2.19)

K̇(0) < K̇(N) < K̇

(
1

ε

)
(2.20)

Therefore, U̇(N) > ε + I( 1
ε ) + Nİ(0) + K̇(0) and the right hand side in this

inequality is positive, if N < (ε+ I( 1
ε ) + K̇(0))/(−İ(0)). So, if we prove that

1

ε
<
ε+ I( 1

ε ) + K̇(0)

−İ(0)
(2.21)

then we can conclude the proof, since N < 1
ε .

We notice that the condition (2.21) is equivalent to

ε2 + ε

[
I

(
1

ε

)
+ K̇(0)

]
+ İ(0) > 0

whose positive solutions are

ε > µ :=
−[I( 1

ε ) + K̇(0)] +
√

[I( 1
ε ) + K̇(0)]2 − 4İ(0)

2
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As

µ = µ ·
[I( 1

ε ) + K̇(0)] +
√

[I( 1
ε ) + K̇(0)]2 − 4İ(0)

[I( 1
ε ) + K̇(0)] +

√
[I( 1

ε ) + K̇(0)]2 − 4İ(0)
=

=
−2İ(0)

[I( 1
ε ) + K̇(0)] +

√
[I( 1

ε ) + K̇(0)]2 − 4İ(0)
<

−2İ(0)

K̇(0) +
√

[K̇(0)]2 − 4İ(0)
= ε̄,

we conclude that if ε > ε̄ then condition (2.21) applies and so U̇(N) > 0
∀N ∈ (0, 1

ε ).

Now we can prove the following theorem:

Theorem 2.1.10. Considering the equation (2.1) with φε(v) = 1
ε1{v>VF } and

ε > 0 we have:

1. If b < 0 (inhibitory case):

• case A: there is no steady state to (2.1);

• case B: there is a unique steady state to (2.1).

2. If b > 0 (excitatory case): in case B there is always at least 1 steady state.

Moreover, if ε > ε̄ := −2İ(0)

K̇(0)+
√

[K̇(0)]2−4İ(0)

• case A: there is no steady state to (2.1);

• case B: there is a unique steady state to (2.1).

Proof. 1. If b < 0 we know that İ > 0 and from Corollary 2.1.6.1 K̇ > 0 and
then:

U̇ = ε+ I +Nİ(N) + K̇(N) > 0,

i.e. U is an increasing function. Now,

• in case A from Remark 2.1.8 we deduce that U(0) > 1, and so U(N) >
1 ∀N ∈ (0, 1

ε ), which means that there is no steady state;

• in case B from Remark 2.1.8 we deduce that U(0) < 1, and so ∃! N ∈
(0, 1

ε ) such that U(N) = 1, which means that there is a unique steady
state.

2. If b > 0. In case B, since U(0) < 1, U( 1
ε ) > 1 and U continuous, we can

assert that U(N) crosses h(N) = 1 at least 1 time, which means that there
is always at least 1 steady state.

Now, if ε > ε̄, from Lemma 2.1.9 we have U̇(N) > 0 ∀N ∈ (0, 1
ε ) and so,

as we explained in case b < 0 we can conclude that:

• case A: there is no steady state;
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• case B: there is a unique steady state.

Remark 2.1.11. Notice that condition (2.17) is equivalent to

0 < b <
ε2 d2(0)

ε d1(0)d2(0) + d2
2(0)

(2.22)

where d1 and d2 are respectively defined in (2.14) and (2.15). This is true
because

ε̄ =
−2İ(0)

K̇(0) +
√

[K̇(0)]2 − 4İ(0)
=

2b d2(0)

−bd1(0) +
√
b2d2

1(0) + 4b d2(0)
,

and so ε > ε̄ is equivalent to

ε
√
b2d2

1(0) + 4b d2(0) > ε b d1(0) + 2b d2(0) ⇐⇒

ε2b2d2
1(0) + 4ε2b d2(0) > (ε b d1(0))2 + 4b2d2

2(0) + 4 ε b2 d1(0)d2(0) ⇐⇒

b2[4 ε d1(0)d2(0)] + 4 d2
2(0)]− 4ε2b d2(0) < 0 ⇐⇒

b[b(ε d1(0)d2(0) + d2
2(0))− ε2 d2(0)] < 0,

whose solution are given in (2.22).

Now, comparing the results of this Theorem with those of Theorem 1.3.6
about model with fixed threshold (1.1)-(1.5), we note that

• if (2.12) holds (case B), when b < 0 or b > 0 small enough, random
model (2.1) has a unique steady state exactly as model with fixed threshold
(1.1)-(1.5), and this makes sense because case B of the random discharge
potential model is closer to model (1.1)-(1.5) since p(VF ) ∼ 0 ;

• if (2.11) holds (case A), results are very different, because model (2.1) has
no steady states both in case of b < 0 and b > 0 small enough.

.

Example 2.1.12. Choosing ε = 6, a = 1, b = 2, VR = 1, VF = 2, p(VF ) = 0, 01
(Figure 2.3).

We have:

P = 0, 0552 > p(VF )⇒ case B.

Furthermore b < ε2 d2(0)
ε d1(0)d2(0)+d22(0)

= 2, 1358 or equivalently ε̄ = 5, 7928 < ε⇒
there is only 1 steady state.
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Figure 2.3: Steady states in the case of ε = 6, a = 1, b = 2, VR = 1, VF = 2,
p(VF ) = 0.01 (case B)

Now, by studying function U in more detail and imposing conditions on it,
we show that it is possible to find ε such that equation (2.1) admits more than
one steady states. In particular:

• in case A the idea is that if we impose U̇( 1
ε ) > 0 and U̇(N̄) < 0 for a

certain N̄ < 1
ε , then exists N∗ ∈ (N̄ , 1

ε ) a relative minimum of U and
if we impose that U(N∗) < 1 then U intersects h(N) = 1 at least 2
times, since U(0) > 1, U( 1

ε ) > 1 and U is continuous (see the top plot
in Figure 2.4). Observe that a necessary condition to have U(N∗) < 1 is
that K(N∗) < 1;

• in case B the idea is that if we impose U̇( 1
ε ) > 0, U̇(N̄) < 0 for a certain

N̄ < 1
ε , and U̇(0) > 0 then exist N∗2 ∈ (N̄ , 1

ε ) a relative minimum of U and
N∗1 < N̄ a relative maximum of U and if we impose that U(N∗2 ) < 1 and
U(N∗1 ) > 1 then U intersects h(N) = 1 at least 3 times, since U(0) < 1,
U( 1

ε ) > 1 and U is continuous (see the bottom plot in Figure 2.4).
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Figure 2.4: Graphs of function U(N)
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Now we are going to show two Lemmas that will be useful to understand
which conditions the parameters must satisfy so that U has the characteristics
we have just talked about.

In Lemma 2.1.14 and 2.1.15 we are going to use:

p1 :=
1

b

[√
π

2a
VF

[
−1 + e

(VF−VR)2

2a erfc

(
VF − VR√

2a

)]
+ I

(
VF
b

)]
,

p2 :=
I(0)

b
− VF

a
, p3 :=

√
2

πa
,

b1 :=

√
πa

2
e
V 2
F

2a erfc

(
−VF√

2a

)[
I

(
VF
b

)
+

√
π

2a
VF

(
e

(VF−VR)2

2a erfc

(
VF − VR√

2a

)
− 1

)]
,

I0 := b1

(
p3 +

VF
a

)
, b2 :=

I(0)

p3 + VF
a

, b3 :=
I(0)

p3

e
V 2
F

2a erfc(
−VF√

2a
)

+ VF
a

.

Remark 2.1.13. Notice that:

• 0 < b2 < b3,

• I(0) > I0 ⇒ b1 < b2,

• b1 < b ⇐⇒ p1 < P ,

• b < b3 ⇐⇒ (0 <) P < p2,

• b2 < b ⇐⇒ p2 < p3.

Lemma 2.1.14. Let I(0) > I0, b ∈ (b2, b3), p(VF ) ∈ (p2, p3) and

ε̃1,12 < ε < ε̃2, (2.23)

where

ε̃1,12 :=
−K̇(

12VF
b )+

√
I(

12VF
b )2+K̇(

12VF
b )2−4İ(

12VF
b )

2 ,

ε̃2 := min( b
7VF

,
√

π
2aVF [1− e

(VF−VR)2

2a erfc(VF−VR√
2a

)] + bp(VF )− I(VFb )).

Then U̇(VFb ) < 0, U̇( 1
ε ) > 0 and K(VFb ) < 1.
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Proof. From Remark 2.1.13 we know that (b2, b3) and (p2, p3) are not empty,
and also that (2.11) is satisfied, i.e. we are in case A.

Furthermore p1 < p(VF ) guarantees that ε̃2 > 0.

Now note that VF
b < 1

ε because

ε < ε̃2 <
b

12VF
<

b

VF

and

U̇

(
VF
b

)
< 0 ⇐⇒ ε+ I

(
VF
b

)
+
VF
b
İ

(
VF
b

)
+ K̇

(
VF
b

)
< 0

ε < ζ :=

√
π

2a
VF

[
1− e

(VF−VR)2

2a erfc

(
VF − VR√

2a

)]
+ bp(VF )− I

(
VF
b

)
(2.24)

where ζ > 0 because p(VF ) > p1. The inequality (2.24) is satisfied because
ε < ε̃2 and so U̇(VFb ) < 0.

Secondly notice that U̇
(

1
ε

)
> 0 if and only if

ε2 + ε

(
I

(
1

ε

)
+ K̇

(
1

ε

))
+ İ

(
1

ε

)
> 0, (2.25)

whose positive solutions are

ε > η(ε) :=
−(I( 1

ε ) + K̇( 1
ε )) +

√
(I( 1

ε )− K̇( 1
ε ))2 − 4İ( 1

ε )

2
.

Since ε < ε̃2 <
b

12VF
, then 12VF

b < 1
ε and so

η(ε) <
−(K̇( 1

ε )) +
√
I( 1

ε )2 + K̇( 1
ε )2 − 4İ( 1

ε )

2

<
−(K̇( 12VF

b )) +
√
I( 12VF

b )2 + K̇( 12VF
b )2 − 4İ( 12VF

b )

2

which is less then ε because ε > ε̃1,12. So the inequality (2.25) is satisfied and

we can conclude that U̇
(

1
ε

)
> 0.

Finally, since p(VF ) < p3 then

K

(
VF
b

)
=

√
πa

2
p(VF ) < 1.
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Lemma 2.1.15. Let I(0) > I0, b ∈ (max(0, b1), b3), p(VF ) ∈ (p1, p2) and

ε̃1,7 < ε < ε̃2, (2.26)

where

ε̃1,7 :=
−K̇(

7VF
b )+

√
I(

7VF
b )2+K̇(

7VF
b )2−4İ(

7VF
b )

2 .

Then U̇(0) > 0, U̇(VFb ) < 0 and U̇( 1
ε ) > 0.

Proof. From Remark 2.1.13 we know that (max(0, b1), b3) and (p1, p2) are not
empty. Furthermore, since p2 > P , we cannot conclude if we are in case A or
B.

Now we are going to prove the thesis. Observe that

U̇(0) > 0 ⇐⇒ ε+ I(0) + K̇(0) > 0 ⇐⇒

ε > −I(0)− K̇(0) = −I(0) + b

[
VF
a
K(0) + p(VF )

]
.

Since p(VF ) < p2 and K(0) < 1 (as p(VF ) < P ), then

−I(0)− K̇(0) < −I(0) + b

[
VF
a

+ p(VF )

]
< 0

and so we conclude that U̇(0) > 0 ∀ ε > 0.

Now notice that

U̇

(
VF
b

)
< 0 ⇐⇒ ε+ I

(
VF
b

)
+
VF
b
İ

(
VF
b

)
+ K̇

(
VF
b

)
< 0

ε < ζ :=

√
π

2a
VF

[
1− e

(VF−VR)2

2a erfc

(
VF − VR√

2a

)]
+ bp(VF )− I

(
VF
b

)
(2.27)

where ζ > 0 because p(VF ) > p1. The inequality (2.27) is satisfied because
ε < ε̃2 and so U̇(VFb ) < 0. Finally, since ε > ε̃1,7 and ε < b

7VF
we conclude that

U̇( 1
ε ) > 0 like in Lemma 2.1.14

From Lemma 2.1.14 and 2.1.15 we can say that:

Corollary 2.1.15.1. Let I(0) > I0:

• Case A: if b ∈ (b2, b3) and p(VF ) ∈ (p2, p3), then it could exist a range of
ε such that there are at least 2 steady states.

• Case B: if b ∈ (max(0, b1), b3) and p(VF ) ∈ (p1, P ), then it could exist a
range of ε such that there are at least 3 steady states.
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Proof. Let I(0) > I0.

• Case A.

From Lemma 2.1.14, if ε̃1,12 < ε < ε̃2, then U̇(0) < 0, U̇( 1
ε ) > 0 and

K(VFb ) < 1. Since U is continuous, then exists N∗ ∈ (VFb ,
1
ε ) a relative

minimum of U in (0, 1
ε ). Furthermore, sinceK(VFb ) < 1 andK is decreasing,

then K(N∗) < 1.

Now we are going to prove that could exist an interval such that there are
at least 2 steady states. This is true if and only if

U(N∗) < 1 (2.28)

Observe that

U̇(N∗) = 0 ⇐⇒ N∗ =
ε+ I(N∗) + K̇(N∗)

−İ(N∗)

and so (2.28) can be rewritten as

ε2 +[2I(N∗)+ K̇(N∗)]ε+I(N∗)K̇(N∗)+I2(N∗)− İ(N∗)(1−K(N∗)) < 0
(2.29)

which has real solutions because

∆ := [2I(N∗)+K̇(N∗)]2−4[I(N∗)K̇(N∗)+I2(N∗)−İ(N∗)(1−K(N∗))] =

= K̇2(N∗)− 4İ(N∗)(1−K(N∗)) > 0

since K(N∗) < 1.

So the solution of (2.29) are

εa(N∗) < ε < εb(N
∗),

where

εa(N) :=
−2I(N)− K̇(N)−

√
K̇2(N)− 4İ(N)(1−K(N))

2
, (2.30)

εb(N) :=
−2I(N)− K̇(N) +

√
K̇2(N)− 4İ(N)(1−K(N))

2
. (2.31)

Finally if ε ∈ (max(ε̃1, εa(N∗)),min(εb(N
∗), ε̃2)), then (2.29) is satisfied

and so U(N∗) < 1 which means that U intersects the straight line h(N) =
1 at least 2 times in the interval

(
0, 1

ε

)
, i.e. there are at least 2 steady
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states.

We cannot prove that the interval (max(ε̃1, εa(N∗)),min(εb(N
∗), ε̃2)) is

always not empty, but we can find values of parameters such that it is (see
Example 2.1.17).

• Case B.

Since b < b3, then P < p2 and so if ε̃1,7 < ε < ε̃2, by Lemma 2.1.15, we

have that U̇(0) < 0, U̇(VFb ) < 0 and U̇( 1
ε ) > 0. So, since U is continuous,

then exist N∗1 <
VF
b < N∗2 a relative maximum and a relative minimum of

U in (0, 1
ε ).

Finally if we prove that U(N∗1 ) > 1 and U(N∗2 ) < 1 we can conclude that
there are at least 3 steady states.

Defining εa,i := εa(N∗i ), εb,i := εb(N
∗
i ) (see (2.30) and (2.31)) and using

the same reasonings of case A we know that

εa(N∗2 ) < ε < εb(N
∗
2 ) ⇒ U(N∗2 ) < 1 (2.32)

and

ε < εa(N∗1 ) or ε > εb(N
∗
1 ) ⇒ U(N∗1 ) > 1 (2.33)

So, if ε satisfying (2.41), (2.32) and (2.33) exists, then U intersects the
straight line h(N) = 1 at least 3 times, i.e. there are at least 3 steady
states.

We cannot prove that it is always possible to find an ε of this type, but
we can find values of parameters such that ε satisfies (2.41), (2.32) and
(2.33) (see Example 2.1.16).

We can summarize and better visualize the results of the Corollary 2.1.15.1
in the following table.

If I(0) > I0 and b ∈ (b2, b3) then, depending on the value of p(VF ):

p(VF ) ∈ (0, p1) (p1, P ) (P, p2) (p2, p3) (p3,+∞)

case B B A A A

n. of steady state odd 3 even 2 even
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Example 2.1.16. Choosing ε = 0, 12, a = 1, b = 2, VR = 1, VF = 2, p(VF ) =
0, 01, k = 7 (Figure 2.5).

Figure 2.5: Steady states in the case of ε = 0, 12, a = 1, b = 2, VR = 1, VF = 2,
p(VF ) = 0, 01 (case B)

We have:

P = 0, 0552 > p(VF )⇒ case B.

Conditions of Lemma 2.1.15 are satisfied because

I0 b1 b3 p1 ε̃1,7 ε̃2
-14,8565 -5,3099 4,0555 -0,1467 0,1191 0,1429

⇒ exist N∗1 <
VF
b = 1 < N∗2 relative maximum and minimum of U .

εa,1 εa,2 εb,1 εb,2
-4,5422 -0,8711 -0,660 0,1297

⇒ max(ε̃1,7, εa,2) = 0, 1191 < ε < min(ε̃2, εb,2) = 0, 1297⇒ at least 3 steady
states.
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Example 2.1.17. Choosing ε = 0, 1, a = 1, b = 3, 5, VR = 1, VF = 2,
p(VF ) = 0, 7 (Figure 2.6).

Figure 2.6: Steady states in the case of ε = 0, 1, a = 1, b = 3, 5, VR = 1, VF = 2,
p(VF ) = 0, 7 (case A)

We have:

P = 0, 0552 < p(VF )⇒ case A.

Conditions of Lemma 2.1.14 are satisfied because

I0 b2 b3 p2 p3 ε̃1,12 ε̃2
-14,8565 2,979 4,0555 0,3814 0,7979 0,0884 0,1458

⇒ exist N∗ > VF
b = 0, 5714 relative minimum of U .

εa(N∗) εb(N
∗)

-0,4010 0,1540

⇒ max(ε̃1,12, εa(N∗)) = 0, 0884 < ε < min(ε̃2, εb(N
∗)) = 0, 1458 ⇒ at least

2 steady states.
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2.1.1 Case with transmission delays and refractory states

In this subsection we consider the random discharge potential model with refractory
state and transmission delay. In this case the model (2.1) becomes, considering

Mτ (t) = R(t)
τ :

∂p

∂t
(v, t) +

∂

∂v
[(−v + bN(t−D))p(v, t)]− a∂

2p

∂2v
(v, t) + φε(v)p(v, t)

= M(t)δVR(v),

N(t) =

∫ +∞

−∞
φε(v)p(v, t)dv,

dR(t)

dt
= N(t)−Mτ (t).

(2.34)

And so, the search for steady states consists in finding the solutions of

∂

∂v
[(−v + bN)p(v)]− a∂

2p

∂2v
(v) + φε(v)p(v) = N(t)δVR(v),

N =

∫ +∞

−∞
φε(v)p(v)dv,

R = Nτ.

(2.35)

We can immediately observe that the presence of the delay does not produce
any change.

Instead, let’s see how the presence of the refractory period influences the
search for steady states. With the same calculations previously made we obtain

p(v) = −1

a
e−

(v−bN)2

2a

∫ VF

v

g(w)e
(w−bN)2

2a dw + p(VF )e
(VF−bN)2

2a e−
(v−bN)2

2a , (2.36)

with g(v) defined in (2.4). In this case, because of the refractory period, the
following identity holds:∫ +∞

−∞
p(v, t)dv +R(t) =

∫ +∞

−∞
p0(v)dv +R0 = 1

from which we deduce that∫ VF

−∞
p(v)dv =

∫ +∞

−∞
p(v)dv −

∫ +∞

VF

p(v)dv = 1−R− εN. (2.37)

Therefore, integrating (2.36) from −∞ to VF , we obtain:
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1−R− εN = −1

a

∫ VF

−∞
e−

(v−bN)2

2a

∫ VF

max(v,VR)

g(w)e
(w−bN)2

2a dw dv+

+ p(VF )e
(VF−bN)2

2a

∫ VF

−∞
e−

(v−bN)2

2a dv

because g(w) = 0 if w < VR. As w ∈ (VR, VF ), g(w) = −N and so

1− (τ + ε)N =
N

a

∫ VF

−∞
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw dv+

+ p(VF )e
(VF−bN)2

2a

∫ VF

−∞
e−

(v−bN)2

2a dv.

We can rewrite the previous integral (and thus the condition for steady state)
as 

J̄(N) =
1

N
,

J̄(N) := (τ + ε) + I(N) +M(N),

(2.38)

or equivalently as Ū(N) = 1.

Ū(N) := N(τ + ε) +NI(N) +K(N),
(2.39)

Notice that in this case, since I(N) and M(N) are both positive, for the problem
to have solutions it is necessary that

N <
1

τ + ε
.

Now we can easily verify that the following properties of J̄(N) are valid. The
proof of the following Lemma is the same as Lemma 2.1.3.

Lemma 2.1.18. Let J̄(N) the function defined in (2.38), then the following
properties hold:

1. J̄(N) > τ + ε ∀N > 0;

2. J̄(N)→ +∞ when N → 0;

3. • if b < 0 (inhibitory case),

lim
N→+∞

J̄(N) = +∞,
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• if b > 0 (excitatory case),

lim
N→+∞

J̄(N) = τ + ε;

4. • if (2.11) holds, J̄(N) intersects an even number of times
1

N
on(

0,
1

τ + ε

)
,

• if (2.12) holds, J̄(N) intersects an odd number of times
1

N
on

(
0,

1

τ + ε

)
.

Now, simply by replacing ε with (τ + ε) is possible to find the main result
on steady states:

Theorem 2.1.19. Considering the equation (2.34) with a(N) = a a positive
constant and ε > 0 we have:

1. If b < 0:

• case A: there is no steady state to (2.34);

• case B: there is a unique steady state to (2.34).

2. If b > 0: if ε+ τ > ε̄ := −2İ(0)

K̇(0)+
√

[K̇(0)]2−4İ(0)

• case A: there is no steady state to (2.34);

• case B: there is a unique steady state to (2.34).

At the same way it is easy to prove the following two Lemma, from which we
deduce the same result of the case without delays or refractory periods, which
illustrates the conditions that must hold to have at least 2 or 3 steady states
(Corollary 2.1.15.1).

Lemma 2.1.20. If I(0) > I0, b ∈ (b2, b3), p(VF ) ∈ (p2, p3) and

ε̃1,12 < τ + ε < ε̃2, (2.40)

where ε̃1,12 and ε̃2 are defined in Lemma 2.1.14.

Then ˙̄U(VFb ) < 0, ˙̄U( 1
τ+ε ) > 0 and K(VFb ) < 1.

Lemma 2.1.21. If I(0) > I0, b ∈ (max(0, b1), b3), p(VF ) ∈ (p1, p2) and

ε̃1,7 < τ + ε < ε̃2, (2.41)

where ε̃1,7 is defined in Lemma 2.1.15

Then ˙̄U(0) > 0, ˙̄U(VFb ) < 0 and ˙̄U( 1
τ+ε ) > 0.
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2.2 Discharge rate φε(v) =
1
ε (v − VF )+

The aim of this section is to study the steady states of system (2.1) choosing
φε(v) = 1

ε (v − VF )+. Since in this case the calculations are more involved, we
report here the main results and refer to Appendix B for details and explicit
computations.

In this case finding the steady states is equivalent to solving the following
equation: {

Ũ(N) = 1,

Ũ(N) := NI(N) + L(N)−O(N),
(2.42)

where

L(N) :=
√

2πa p(VF )e
(VF−bN)2

2a ,

O(N) =
1

ε

∫ +∞

VF

p(l)(l − VF )Ĩ(N, l)dl,

with

Ĩ(N, l) :=

∫ +∞

0

e−
s2

2

s
(e−swF − e−swl) ds.

Now, as in Section 2.1, defining the parameter

c̃ := Ũ(0) = L(0)−O(0) =
√

2πa p(VF )e
V 2
F

2a −O(0)

and the threshold

P̃ :=
1 +O(0)
√

2πa e
V 2
F

2a

(2.43)

we can distinguish two different cases according to the value of p(VF ) again:

Case A : if c̃ > 1, which is equivalent to

p(VF ) > P̃ ; (2.44)

Case B : if c̃ < 1, which is equivalent to

p(VF ) < P̃ . (2.45)
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Notice that P̃ depends on ε because O(0) = 1
εE(0). This implies that when

ε >> 1 then

P̃ ∼ 1
√

2πa e
V 2
F

2a

Instead when ε << 1 then P̃ is much bigger, which means that case B is more
likely.

In the following Lemma 2.2.1 we show some property of Ũ(N), useful to
solve the the problem (2.42).

Lemma 2.2.1. The following properties on Ũ(N) hold:

1. If b < 0 or if b > 0 and ε is big enough, then

lim
N→∞

Ũ(N) = +∞;

2. • if (2.44) holds, i.e. we are in case A, then Ũ(N) intersects h(N) = 1
an even number of times.

• if (2.45) holds, i.e. we are in case B, then Ũ(N) intersects h(N) = 1
an odd number of times.

Now we can present the main result of this section, Theorem 2.2.2, which is
a direct consequence of Lemma 2.2.1.

Theorem 2.2.2. Considering the equation (2.1) with φε(v) = 1
ε (v − VF )+ and

ε > 0 we have:

1. If b < 0 (inhibitory case):

• case A: there is no steady state to (2.1);

• case B: there is a unique steady state to (2.1).

2. If b > 0 (excitatory case) and ε big enough:

• case A: there is an even number of steady state to (2.1);

• case B: there is an odd number of steady state to (2.1).

Finally, like in the case of φε(v) = 1
ε1{v>VF }, by studying function Ũ in

more detail and imposing conditions on it, we show that it is possible to find
ε such that equation (2.1) admits more than one steady state. Before showing
Corollary 2.2.2.1 we introduce some notations:

b̃ :=
I2(VFb )√

2π
a (2e

V 2
F

2a − e
V 2
R

2a )
, p̃1 :=

I(VFb )

b VF

√
2π
a e

V 2
F

2a

,
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p̃2 :=
I2(VFb )− b

√
2π
a (2e

V 2
F

2a − e
V 2
R

2a )

I(VFb )b
√

2π
a VF e

V 2
F

2a

, p̃3 :=
I(0)

b VF

√
2π
a e

V 2
F

2a

.

Corollary 2.2.2.1. If b > 0 :

• case A: if p(VF ) > p̃3 it could exist an interval of ε such that there are at
least 2 steady states.

• case B: if b < b̃ and p(VF ) < min(p̃1, p̃2) then it could exist an interval of
ε such that there are at least 3 steady states.

2.3 Comparison between case φε(v) = 1
ε1{v>VF }

and case φε(v) =
1
ε (v − VF )+

First of all we notice that for both choices of discharge rate (2.2) and (2.3) we
distinguish in two cases, depending on the value of p(VF ). When p(VF ) is small,
close to zero, we are in case B, characterized by an odd number of steady states;
when p(VF ) is bigger than a certain threshold we are in case A, characterized
instead by an even number of steady states. We note that only in the case of
φε(v) = 1

ε (v − VF )+ it is necessary that ε be large enough to guarantee this
result when we consider a population of neurons in average-excitatory (b > 0).

It is easy to see that when we consider a population in average-inhibitory
(b < 0) the number of steady states in (2.2) and (2.3) is the same: in case A
there is no steady states, in case B there is 1 steady state.

Let us analyze the case of a population in average-excitatory (b > 0).
Unfortunately in the case of φε(v) = 1

ε (v−VF )+, which is much more difficult
to study, we cannot find conditions such that there are no more than one steady
state. In the case of φε(v) = 1

ε1{v>VF } instead, if ε is big enough (or equivalently,
b is small enough), it is shown that in case A there are no steady states, while
in case B there is only one steady state.

For both choices of φε(v) (2.2) and (2.3) we observe that by studying function
U (see (2.16)) and Ũ (see (2.42)) in more detail and imposing more stringent
conditions on the parameters, is possible to find an interval for ε such that model
(2.1) has more than one steady state (at least 2 in case A, and 3 in case B). The
problem is that we are not able to prove that this interval is always not empty.
To prove that this interval is not always empty, in case φε = 1

ε 1{v>VF } we have
shown some examples in which there are 2 or 3 steady states.
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Conclusion

In this thesis we have investigated some NNLIF models for the neural activity.
In the first Chapter we focused on the simplest model, the one that describes
the case of a population of neurons, inhibitory or excitatory, without refractory
period. Referring to previous articles [22][6][13], we dealt with the existence of
the solutions and subsequently with the number of steady states. Remember, as
explained in the Introduction, that steady states are related to the synchronous
or asynchronous functioning of neurons in the network and the possibility of
multi-stable phenomena, such as for example visual perception [18] and decision
making [2][14]. The study of the model with fixed threshold in Chapter 1 was
important to introduce the new problem we wanted to tackle in this thesis and
which is treated in Chapter 2: the random discharge potential model. This is
already presented in [7], but it had not yet been studied in depth. In particular
in this thesis we focus on studying the number of steady states of this model,
choosing two types of discharge rate φε(v) :

φε(v) =
1

ε
1{v>VF }

that is not continuous but is simpler to study, and

φε(v) =
1

ε
(v − VF )+

that is continuous, but is more difficult to study. We have seen that the number
of steady states with the two choices is not very different.

What is interesting to see is the difference about the steady states between
the model with fixed threshold (1.1)-(1.5) and the random model (2.1). To do
this comparison, for the random discharge potential model we refer in particular
to the case with φε(v) = 1

ε1{v>VF }, which is more detailed.
Let us start considering a population of neurons in average-inhibitory (b <

0). In this case we have shown that in model (2.1), when p(VF ) is small enough
(this is what we called case B), there is a unique steady state exactly as in
model (1.1)-(1.5). Instead, when p(VF ) is big enough (that we called case A),
there are no steady states: this result is really different from the model with
fixed threshold.

Instead, consider now a population of neurons in average-excitatory (b > 0).
An important difference is that in model (1.1)-(1.5) for b big enough there are
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no steady states, while in case B of model (2.1) there is always at least one
steady state. Going into more detail, in the random discharge potential model,
in case B we have shown that when ε is big enough, or equivalently b is small
enough, there is a unique steady state exactly as in model (1.1)-(1.5), while in
case A with the same condition on ε there are no steady state. Moreover we
know that in model (2.1) there is an interval for b such that there are at least 2
steady states, while in the random discharge potential model we found intervals
for ε and conditions for the other parameters such that in case A there are at
least 2 and in case B there are at least 3, which is an absolute novelty. As we
have already mentioned above the problem is that we are not able to prove that
conditions to have at least 2 or 3 steady states can always be satisfied. This is
because the range to which ε should belong may also be empty. However, we
have found examples in which this interval is not empty, to demonstrate that
there are cases in which there can actually be 2 or 3 steady states in the random
discharge potential model.

What this thesis did not deal with, but which it would be interesting to
address, would be the existence of the solutions of the discharge potential model.
If we proved that Criterion 1.1.4, presented in Chapter 1 for the model (1.1)-
(1.5), also holds for model (2.1), we could say that the maximal time of existence
is given by

T ∗ = sup{t ≥ 0 : N(t) <∞},

and since in the discharge potential model the firing rate N is bounded, we
could conclude that T ∗ = +∞, which means that solution are globally defined.

It would then be interesting to study the discharge potential model from
a numerical point of view, to try to understand what value p(v, t) assumes in
v = VF , and for what value of the potential v, p is very close to zero.

Furthermore, [7] shows through numerical simulations the presence of periodic
solutions for the random discharge potential model: it would be interesting to
try to prove their existence in a rigorous way.



Appendix A

Matlab Codes

A.1 Code to establish the existence of a maximum
and a minimum of U

71
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A.1. Code to establish the existence of a maximum and a minimum

of U
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A.2 Code to find a minimum and a maximum
N ∗2 and N ∗1 and determine if there are at
least 3 steady states



74 A.3. Code to establish the existence of a minimum of U

A.3 Code to establish the existence of a minimum
of U
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A.4 Code to find the minimum N ∗ and determine
if there are at least 2 steady states
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A.4. Code to find the minimum N∗ and determine if there are at

least 2 steady states



Appendix B

Random discharge potential model
with φε(v) =

1
ε(v − VF )+

The aim of this appendix is to study in depth the problem of finding the number
of steady states of system (2.1) choosing φε(v) = 1

ε (v−VF )+ . The main results
have been already presented in Section 2.2.

As in Section 2.1, we will firstly integrate (2.5) to find an equation which
depends on N and whose solutions correspond to the steady states. Then, we
will define again what is meant by case A and case B, and we will show by
Theorem B.0.6 and Corollary B.0.8.1 the conditions on the parameters of the
model clarifying the exact number of steady states.

Firstly we recall an important result from [7].

Theorem B.0.1. Assume a(N) ≤ a0 + a2N
2,
∫ +∞
−∞ (1 + |v|3)p0(v)dv <∞ and

the discharge rate φε(v) = 1
ε (v − VF )+, then the solution of (2.1) satisfy the

a-priory bounds

N(t) ≤ max
(
C,

∫ ∞
VF

(v − VF )3p0(v)dv

)
e
ct
ε2 .

This allows us to say that N is bounded, and since in this case N is given
by

N =
1

ε

∫ +∞

VF

p(v)(v − VF ) dl,

we can suppose bounded also other quantities as∫ +∞

VF

p(v)(v − VF )2 dv,

∫ +∞

VF

p(v)(v − VF )2e
v2

2a dv.

Now we proceed by looking for a function that depends on N . Remembering
the definition of function g in (2.4), in this case we have
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g(v) =



0 v < VR

−N VR ≤ v ≤ VF

1

ε

∫ v

VF

(w − VF )p(w)dw v > VF

,

and integrating (2.5) from −∞ to +∞ we obtain

1 =
1

a

∫ +∞

−∞
e−

(v−bN)2

2a

∫ max(v,VR)

VF

g(w)e
(w−bN)2

2a dw dv+

+ p(VF )e
(VF−bN)2

2a

∫ +∞

−∞
e−

(v−bN)2

2a dv

because g(w) = 0 if w < VR. Splitting the first integral and remembering that
g(w) = −N when w ∈ (VR, VF ) and g(w) = 1

ε

∫ v
VF

(w−VF )p(w)dw when v > VF ,

1 =
N

a

∫ VF

−∞
e−

(v−bN)2

2a

∫ VF

max(v,VR)

e
(w−bN)2

2a dw dv+

−1

a

∫ +∞

VF

e−
(v−bN)2

2a

∫ v

VF

e
(w−bN)2

2a

∫ ∞
w

1

ε
p(l)(l−VF )dl dw dv+

√
2πap(VF )e

(VF−bN)2

2a .

We can rewrite the previous integral (and thus the condition for steady state)
as

{ Ũ(N) = 1,

Ũ(N) := NI(N) + L(N)−O(N),

(B.1)

where

L(N) :=
√

2πap(VF )e
(VF−bN)2

2a ,

O(N) :=
1

ε
E(N)

where

E(N) :=
1

a

∫ +∞

VF

e−
(v−bN)2

2a

∫ v

VF

e
(w−bN)2

2a

∫ ∞
w

p(l)(l − VF )dl dw dv.

and I(N) is the function already defined in (1.28). Notice that L, O and I are
all positive functions.
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Remark B.0.2. O(N) can be rewritten in a more useful way.

O(N) =
1

a

∫ +∞

VF

e−
(v−bN)2

2a

∫ +∞

VF

1

ε
p(l)(l − VF )

∫ min(l,v)

VF

e
(w−bN)2

2a dw dl dv =

=
1

a

∫ +∞

VF

1

ε
p(l)(l − VF )

∫ +∞

VF

e−
(v−bN)2

2a

∫ min(l,v)

VF

e
(w−bN)2

2a dw dv dl =

=
1

ε

∫ +∞

VF

p(l)(l − VF )Ĩ(N, l)dl,

where

Ĩ(N, l) =
1

a

∫ +∞

VF

e−
(v−bN)2

2a

∫ min(l,v)

VF

e
(w−bN)2

2a dw dv = (B.2)

=
1

a

∫ l

VF

∫ +∞

w

e−
(v−bN)2

2a e
(w−bN)2

2a dv dw,

which became, with the change of variables z = v−bN√
a
, u = w−bN√

a
,

Ĩ(N, l) =

∫ l−bN√
a

VF−bN√
a

∫ +∞

u

e
u2−z2

2 dz du. (B.3)

With an other change of variables s = z−u
2 , s̃ = z+u

2 , Ĩ can also be rewritten as

Ĩ(N, l) = 2

∫ +∞

0

∫ s+wl

s+wF

e−2ss̃ds̃ ds =

∫ +∞

0

e−
s2

2

s
(e−swF − e−swl) ds

where wF = VF−bN√
a

and wl = l−bN√
a

. Finally we have

O(N) =
1

ε

∫ +∞

VF

p(l)(l − VF )

∫ +∞

0

e−
s2

2

s
(e−swF − e−swl) ds dl =

=
1

ε

∫ +∞

VF

p(l)(l − VF )

∫ +∞

0

e−
s2

2 · e
sbN√
a

(e
−sVF√

a − e−s
l√
a )

s
ds dl.

Using the form of Ĩ(N, l) in (B.2) we observe that

|Ĩ(0, l)| =

∣∣∣∣∣1a
∫ +∞

VF

∫ min(l,v)

VF

e−
v2

2a e
w2

2a dw dv

∣∣∣∣∣ <
∣∣∣∣1a
∫ +∞

VF

(l − VF )e−
v2

2a e
max(l2,V 2

F )

2a dv

∣∣∣∣ <
<

1

a
(l − VF )e

l2

2a

∣∣∣∣∫ +∞

−∞
e−

v2

2a dv

∣∣∣∣ =

√
2π

a
e
l2

2a (l − VF ),
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and so

O(0) <

√
2π

a
· 1

ε

∫ +∞

VF

p(l)(l − VF )2e
l2

2a dl, (B.4)

which is a bounded quantity because
∫ +∞
VF

p(l)(l− VF )2e
l2

2a dl is supposed to be
bounded. Now, as in Section 2.1, defining the parameter

c̃ := Ũ(0) = L(0)−O(0) =
√

2πa p(VF )e
V 2
F

2a −O(0)

and the threshold

P̃ :=
1 +O(0)
√

2πa e
V 2
F

2a

we can distinguish two different cases according to the value of p(VF ) again:

Case A : if c̃ > 1, which is equivalent to

p(VF ) > P̃ ; (B.5)

Case B : if c̃ < 1, which is equivalent to

p(VF ) < P̃ . (B.6)

Note that P̃ depends on ε because O(0) = 1
εE(0). This implies that when

ε >> 1 then

P̃ ∼ 1
√

2πa e
V 2
F

2a

Instead when ε << 1 then P̃ is much bigger, which means that case B is more
likely.

As we did in Section 2.1 for the problem (2.7), the idea to find solution of
(B.1) is to study the graph of function Ũ(N), to understand how many times
and under what conditions it intersects the straight line h(N) = 1. Like in case
φε(v) = 1

ε 1{v>VF } each intersection represents a steady state.
In order to do that, firstly we have to show some properties of O(N) with

Lemma B.0.4, but before we need to do the following remark.

Remark B.0.3. Taking the function f(s) = e
−sVF√

a−e−s
l√
a and Taylor expanding

up to second order at s = 0, we get f(s) − f(0) − f ′(0)s = f ′′(θ)s2/2 with
f(0) = 0, f ′(0) = (l − VF )/

√
a, and θ ∈ (0, s). It is easy to see that for all

θ ∈ (0, s)

|f ′′(θ)| ≤ max
(
l2

a
e
−θl√
a ,
V 2
F

a
e
−θVF√

a

)
≤ max

(
l2

a
,
V 2
F

a

)
=
l2

a
.

This Taylor expansion implies that∣∣∣∣∣∣ (e
−sVF√

a − e−s
l√
a )

s
− l − VF√

a

∣∣∣∣∣∣ ≤ sl2

2a
. (B.7)
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Lemma B.0.4. The following properties of O(N) hold:

1. O(N) is C∞ on N and, for all integers k ≥ 1,

Ok(N) =
bk

εa
k
2

∫ +∞

VF

p(l)(l−VF )

∫ +∞

0

sk−1e
− s22 + sbN√

a (e
−sVF√

a−e−s
l√
a ) ds dl.

(B.8)

2. A limitation for Ȯ(N) can be:

|Ȯ(N)| <
∣∣∣∣b√ π

2a
Ne

(VF−bN)2

2a erfc

(
VF − bN√

2a

)∣∣∣∣ . (B.9)

3. Ȯ(N) = 0.

4. • If b < 0 (inhibitory case):

lim
N→∞

O(N) = 0

• If b > 0 (excitatory case):

lim
N→∞

O(N) =∞

Proof. 1. A direct application of the dominated convergence theorem and
continuity theorems of integrals with respect to parameters show that
Ĩ(N, l) and O(N) are continuous on N on [0,+∞). Moreover, Ĩ(N, l) and
O(N) are C∞ since all their derivatives can be computed by differentiating
under the integral sign by direct application of dominated convergence
theorems and differentiation theorems of integrals with respect to parameters.
In particular,

∂Ĩ

∂N
(N, l) =

b√
a

∫ +∞

0

e−
s2

2 · e
sbN√
a (e
−sVF√

a − e−s
l√
a ) ds,

Ȯ(N) =
1

ε
S(N)

where

S(N) :=
b√
a
·
∫ +∞

VF

p(l)(l − VF )

∫ +∞

0

e−
s2

2 · e
sbN√
a (e
−sVF√

a − e−s
l√
a ) ds dl.

Ö(N) =
b2

a
· 1
ε

∫ +∞

VF

p(l)(l−VF )

∫ +∞

0

s ·e− s
2

2 ·e
sbN√
a (e
−sVF√

a −e−s
l√
a ) ds dl.
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2.

|Ȯ(N)| <
∣∣∣∣ b√a · 1

ε

∫ +∞

VF

p(l)(l − VF ) dl ·
∫ +∞

0

e−
s2

2 · e
sbN√
a · e−s

VF√
a ds

∣∣∣∣ =

=

∣∣∣∣ b√aNe (VF−bN)2

2a

∫ +∞

0

e
−( s√

2
+

(VF−bN)√
2a

)2
ds

∣∣∣∣ =

=

∣∣∣∣b√ π

2a
Ne

(VF−bN)2

2a erfc

(
VF − bN√

2a

)∣∣∣∣ .
3. Follows directly by point 2) of this Lemma.

4. • If b < 0: O(N) is a decreasing convex function. Also, from the
previous expansion (B.7) and dominated convergence theorem we
have that

lim
N→∞

O(N) = 0.

• If b > 0: O(N) is an increasing convex function and thus

lim
N→∞

O(N) =∞.

Taking into account the properties of O(N), we can now prove some properties
of Ũ(N).

Lemma B.0.5. The following properties on Ũ(N) hold:

1. If b < 0 or if b > 0 and ε big enough, then

lim
N→∞

Ũ(N) = +∞;

2. • if (B.5) holds, i.e. we are in case A, then Ũ(N) intersects h(N) = 1
an even number of times.

• if (B.6) holds, i.e. we are in case B, then Ũ(N) intersects h(N) = 1
an odd number of times.

Proof. 1. Observe that

L̇(N) = −b
√

2π

a
p(VF )(VF − bN)e

(VF−bN)2

2a , (B.10)

then:

• If b < 0: I(N)→ +∞, L(N)→ +∞ and O(N)→ 0 when N → +∞,
then

lim
N→∞

Ũ(N) = lim
N→∞

(NI(N) + L(N)−O(N)) =∞.
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• If b > 0: using the form of Ĩ(N, l) in (B.3) we observe that

Ĩ(N, l) <

∫ l−bN√
a

VF−bN√
a

e
u2

2

∫ +∞

−∞
e
−z2
2 dz du =

√
2π

∫ l−bN√
a

VF−bN√
a

e
u2

2 du <

<
√

2π
l − VF√

a
e
m
2a

where m := max((VF−bN)2, (l−bN)2). Observe that if l < 2bN−VF
then m = (VF − bN)2, if l > 2bN − VF then m = (l − bN)2. Now,
considering N > VF

b then

O(N) <
1

ε

√
2π

a

[
e

(VF−bN)2

2a T (N) + Z(N)

]
where

T (N) :=

∫ 2bN−VF

VF

p(l)(l − VF )2dl,

Z(N) :=

∫ +∞

2bN−VF
p(l)(l − VF )2e

(l−bN)2

2a dl

Note that
lim
N→∞

Z(N) = 0,

lim
N→∞

T (N) =

∫ +∞

VF

p(l)(l − VF )2dl

So we have that

Ũ(N) = NI(N) + L(N)−O(N) >

> NI(N) +

[
√

2πap(VF )− 1

ε

√
2π

a
T (N)

]
e

(VF−bN)2

2a − 1

ε

√
2π

a
Z(N)

which tends to +∞ because NI(N) → VF−VR
b (see Lemma 1.3.3),

Z(N)→ 0 and[
√

2πap(VF )− 1

ε

√
2π

a

∫ +∞

VF

p(l)(l − VF )2dl

]
> 0

when ε is big enough, since
∫ +∞
VF

p(l)(l − VF )2dl is bounded.

2. Ũ(N) → +∞ when N → ∞ from point 1) and Ũ(N) is continuous,
moreover:
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• in case A we have Ũ(0) > 1 and so we conclude that Ũ(N) intersects
h(N) = 1 an even number of times;

• in case B we have Ũ(0) < 1 and so we conclude that Ũ(N) intersects
h(N) = 1 an odd number of times.

Now we are going to show the main result for the number of steady states
of (2.1), Theorem B.0.6, which is a direct consequence of the previous Lemma
B.0.5.

Theorem B.0.6. Considering the equation (2.1) with φε(v) = 1
ε (v−VF )+ and

ε > 0 we have:

1. If b < 0 (inhibitory case):

• case A: there is no steady state to (2.1);

• case B: there is a unique steady state to (2.1).

2. If b > 0 (excitatory case) and ε big enough:

• case A: there is an even number steady state to (2.1);

• case B: there is an odd number of steady state to (2.1).

Proof.

1. If b < 0: from Lemma B.0.5 we know that

lim
N→∞

Ũ(N) =∞.

Moreover İ(N) > 0 and Ȯ(N) < 0, so

˙̃U(N) = Nİ(N) + I(N) + L̇(N)− Ȯ(N) > 0 ∀ N ≥ 0.

So we can conclude that

• case A: Ũ(0) > 1, Ũ(N) is an increasing function and then does not
cross the straight line h(N) = 1, which means that there is not steady
state.

• case B: Ũ(0) < 1, Ũ(N) is an increasing function which tends to ∞
and then has to cross the straight line h(N) = 1 one time, which
means that there is 1 steady state.

2. If b > 0. The proof follows directly by Lemma B.0.5.

Now, like in the case of φε(v) = 1
ε1{v>VF }, by studying function Ũ in more

detail and imposing conditions on it, we show that it is possible to find ε such
that equation (2.1) admits more than one steady state. In particular:
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• in case A the idea is again that if we impose ˙̃U(0) < 0, since Ũ(N)→ +∞
for ε > ε̃, then exists N∗ a minimum of Ũ and if we impose that Ũ(N∗) < 1
then Ũ intersects h(N) = 1 at least 2 times;

• in case B the idea is that if we impose ˙̃U(0) > 0 and U̇(N̄) < 0 for a
certain N̄ > 0 then exist N∗2 > N̄ a relative minimum of Ũ and N∗1 < N̄ a
relative maximum of Ũ and if we impose that Ũ(N∗2 ) < 1 and Ũ(N∗1 ) > 1
then Ũ intersects h(N) = 1 at least 3 times.

Lemma B.0.7 and Lemma B.0.8 tell us which conditions the parameters have
to satisfy for Ũ(N) to have the characteristics just described.

Before showing the two Lemmas, we introduce some notations:

ε̄ :=
bS(VFb )
√
aI(VFb )

, b̃ :=
I2(VFb )√

2π
a (2e

V 2
F

2a − e
V 2
R

2a )
,

p̃1 :=
I(VFb )

b VF

√
2π
a e

V 2
F

2a

, p̃2 :=
I2(VFb )− b

√
2π
a (2e

V 2
F

2a − e
V 2
R

2a )

I(VFb )b
√

2π
a VF e

V 2
F

2a

, p̃3 :=
I(0)

b VF

√
2π
a e

V 2
F

2a

.

Lemma B.0.7. If b > 0 and p(VF ) > p̃3 then ˙̃U(0) < 0.

Proof. By Lemma B.0.4 we know that Ȯ(0) = 0 and so

˙̃U(0) = I(0) + L̇(0)− Ȯ(0) = I(0) + L̇(0) = I(0)− bVF

√
2π

a
p(VF )e

V 2
F

2a ,

which is negative because p(VF ) > p̃3.

Lemma B.0.8. If b > 0, p(VF ) < p̃1 and ε < ε̄ then ˙̃U(0) > 0 and ˙̃U
(
VF
b

)
< 0

Proof. By Lemma B.0.4 we know that Ȯ(0) = 0 and so

˙̃U(0) = I(0) + L̇(0)− Ȯ(0) = I(0) + L̇(0) =

= I(0)− bVF

√
2π

a
p(VF )e

V 2
F

2a > I

(
VF
b

)
− bVF

√
2π

a
p(VF )e

V 2
F

2a ,

which is positive because p(VF ) < p̃1. As ε < ε̄,

I

(
VF
b

)
<

b√
a

1

ε
S

(
VF
b

)
=

b√
a
Ȯ

(
VF
b

)
and so, since İ is negative and L̇(VFb ) = 0,

˙̃U

(
VF
b

)
= I

(
VF
b

)
+ L̇

(
VF
b

)
+
VF
b
İ

(
VF
b

)
− Ȯ

(
VF
b

)
< 0.
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Corollary B.0.8.1. If b > 0 (excitatory case):

• case A: if p(VF ) > p̃3 it could exist an interval of ε such that there are at
least 2 steady states.

• case B: if b < b̃ and p(VF ) < min(p̃1, p̃2) then it could exist an interval of
ε such that there are at least 3 steady states.

Proof. Let b > 0.

• From Lemma B.0.7 we know that ˙̃U(0) < 0. If ε big enough, Ũ(N)→ +∞
when N → +∞, then exists N∗ a minimum of Ũ(N).

If Ũ(N∗) < 1 holds, then we can conclude that Ũ(N) intersects at least 2
times the straight line h(N) = 1 and so there are at least 2 steady states.

Notice that

˙̃U(N∗) = 0 ⇐⇒ N∗ =
I(N∗) + L̇(N∗)− Ȯ(N∗)

−İ(N∗)
,

and so

Ũ(N∗) < 1 ⇐⇒ I(N∗) + L̇(N∗)− Ȯ(N∗)

−İ(N∗)
I(N∗) + L(N∗)−O(N∗) < 1

⇐⇒ I(N∗)2+I(N∗)L̇(N∗)−I ′(N∗)(L(N∗)−1) < Ȯ(N∗)I(N∗)−O(N∗)İ(N∗) =

=
1

ε
[I(N∗)S(N∗)−R(N∗)İ(N∗)].

Notice that the right hand side is always positive. So, if the left hand
side is negative the inequality is always satisfied; if the left hand side is
positive the inequality is however satisfied if

ε < εa(N∗) :=
I(N∗)S(N∗)−R(N∗)İ(N∗)

|I(N∗)(I(N∗) + L̇(N∗))− İ(N∗)(L(N∗)− 1)|
.

• From Lemma B.0.8 we know that ˙̃U(0) > 0 and ˙̃U(VFb ) < 0. If ε big

enough, Ũ(N) → +∞ when N → +∞, then exist N∗1 < VF
b < N∗2

maximum and minimum of Ũ(N).

If Ũ(N∗1 ) > 1 and Ũ(N∗2 ) < 1 hold, then we can conclude that Ũ(N)
intersects at least 3 times the straight line h(N) = 1 and so there are at
least 3 steady states.

As in case A

˙̃U(N∗i ) = 0 ⇐⇒ N∗i =
I(N∗i ) + L̇(N∗i )− Ȯ(N∗i )

−İ(N∗i )
i = 1, 2.
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And so

Ũ(N∗2 ) < 1 ⇐⇒ I(N∗2 ) + L̇(N∗2 )− Ȯ(N∗2 )

−İ(N∗2 )
I(N∗2 ) + L(N∗2 )−O(N∗2 ) < 1

⇐⇒ I(N∗2 )2+I(N∗2 )L̇(N∗2 )−İ(N∗2 )(L(N∗2 )−1) < Ȯ(N∗2 )I(N∗2 )−O(N∗2 )İ(N∗2 ) =

=
1

ε
[I(N∗2 )S(N∗2 )−R(N∗2 )İ(N∗2 )].

Note that the right hand side is always positive. So, if the left hand side is
negative the inequality is always satisfied; if the left hand side is positive
the inequality is however satisfied if

ε < εa(N∗2 ) :=
I(N∗2 )S(N∗2 )−R(N∗2 )İ(N∗2 )

|I(N∗2 )(I(N∗2 ) + L̇(N∗2 ))− İ(N∗2 )(L(N∗2 )− 1)|
.

Furthermore,

Ũ(N∗1 ) > 1 ⇐⇒ I(N∗1 ) + L̇(N∗1 )− Ȯ(N∗1 )

−İ(N∗1 )
I(N∗1 ) + L(N∗1 )−O(N∗1 ) > 1

⇐⇒

I(N∗1 )(I(N∗1 )+L̇(N∗1 ))−İ(N∗1 )(L(N∗1 )−1) >
1

ε
[I(N∗1 )S(N∗1 )−R(N∗1 )İ(N∗1 )].

(B.11)
Note that the right hand side is always positive.

Moreover, since p(VF ) < p̃2 (which is positive because b < b̃), then

I2

(
VF
b

)
− b
√

2π

a
(2e

V 2
F

2a − e
V 2
R

2a ) > I

(
VF
b

)
b

√
2π

a
VF e

V 2
F

2a p(VF ) =

= −I
(
VF
b

)
L̇(0). (B.12)

And so, using (B.12) we have I2(VFb ) + İ(0) > −I(VFb )L̇(0) because:

I2

(
VF
b

)
+ İ(0) =

= I2

(
VF
b

)
− b
√

2π

a

(
e
V 2
F

2a erfc

(
−VF√

2a

)
− e

V 2
R

2a erfc

(
−VR√

2a

))
>

> I2

(
VF
b

)
− b
√

2π

a

(
2e

V 2
F

2a − e
V 2
R

2a

)
> −I

(
VF
b

)
L̇(0).

Now, since İ and L̇ are increasing functions and I is a decreasing function,
and remembering that 0 < N∗1 <

VF
b ,

I2(N∗1 ) + İ(N∗1 ) > I2

(
VF
b

)
+ İ(0) > −I

(
VF
b

)
L̇(0) > −I(N∗1 )L̇(N∗1 ),
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or equivalently

I(N∗1 )(I(N∗1 ) + L̇(N∗1 )) + İ(N∗1 ) > 0

from which we deduce that the left hand side of the inequality (B.11) is
positive too.

We can finally conclude that if

ε > ε̃a(N∗1 ) =
I(N∗1 )S(N∗1 )−R(N∗1 )İ(N∗1 )

|I(N∗1 )(I(N∗1 ) + L̇(N∗1 ))− İ(N∗1 )(L(N∗1 )− 1)|

then (B.11) is verified and so Ũ(N∗1 ) > 1.
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cui studiare per gli esami è stato molto più leggero di quanto sarebbe stato altrimenti,
e anche Maria Laura, Dario, Giovanni C., Giovanni Z., Fabio, Marco, Rocco, Martina,
Silvia e Giulia con cui ho condiviso questi anni di Università e grazie ai quali scoprire
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