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Abstract

In this thesis, we present two methods of probing quantum chromodynamics (QCD)
at finite densities on a lattice. This theory studies the dynamics of the interac-
tions between quarks and gluons. Being a strongly interacting theory, it is hard
to study it using perturbative approaches. We need non-perturbative methods to
study this theory. Lattice QCD, a numerical approach in which space-time is dis-
cretized and quarks and gluons are put on four dimensional space-time lattices is
one such non-perturbative method which has been very successful in studying QCD
at zero chemical potential. However, at finite densities we encounter the numerical
sign problem, which hinders progress in simulating QCD via lattice methods. One
of the main reasons we want to study QCD at finite densities is to understand its
phase diagram in the temperature - chemical potential plane. Currently, most of
the phase diagram is a conjecture, although some regions of the phase space are well
studied both by theoretical methods and heavy-ion collision experiments. In the
early stages of the Universe, the temperatures were so high that quarks and gluons
existed in a de-confined phase called the quark gluon plasma (QGP). At some point
in time when the temperatures dropped below a certain value (transition tempera-
ture), quarks and gluons combined to form hadrons like protons and neutrons. A
particularly active field of research, currently, is the search for the transition from
the de-confined to confined phases at finite densities. Through lattice methods, it
has been successfully shown that at zero chemical potentials, this transition is an
analytic crossover. It has also been seen that up to small chemical potentials, it con-
tinues to remain a crossover. However, at larger chemical potentials, this crossover
line is expected to terminate at a critical end point. This search still remains an
open problem to this day and forms a very active field of research. The goal of this
thesis was to make progress towards the understanding of the QCD phase diagram
at finite densities by using methods that minimise/evade the numerical sign prob-
lem to facilitate this goal. To this end we have developed a rational approximation
method to study some thermodynamic variables associated with QCD simulated at
imaginary chemical potentials, in the hope of finding its singularities in the complex
chemical potential plane. Apart from this, some progress in the direction of studying
Lefschetz thimbles within the scope of single thimble simulations and regularising
non-abelian gauge theories on thimbles have also been made.

We begin by a general introduction to the importance of making progress in the
QCD phase diagram in Chapter 1. This thesis is then divided into two parts. The
first part describes an unconventional method of re-summation of the Taylor series
expansions of thermodynamic variables simulated at zero and purely imaginary val-
ues of chemical potential to look for non-analyticities (singularities) of the partition
function in the complex chemical potential plane. The scaling of these complex
singularities can give very important hints about the phase diagram. In Chapter 2
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of this thesis we describe in detail the method of re-summation used by us. This is
followed by Chapter 3 where we give a general overview of phase transitions in QCD.
Chapter 4 contains an introduction to the complex singularities mentioned above,
called Lee Yang edge singularities, with a section containing a case study on the 2D
Ising model performed by us recently to demonstrate the validity of our analysis. In
Chapter 5 we discuss the most significant work of this thesis, i.e., studying the phase
diagram of 2+1 flavour QCD at imaginary values of chemical potential using the
rational-function re-summation techniques to find the Lee-Yang edge singularities.
We then study the scaling of these singularities in the vicinity of the Roberge-Weiss
transition and show the consistency of our results. We also briefly mention another
singularity that we found in the vicinity of a chiral transition.
We then move on to the second part of the thesis that is more directly focused
on the numerical sign problem and the current status of its possible solution using
Lefschetz thimbles. In Chapter 6 we describe the numerical sign problem and intro-
duce the Lefschetz thimble approach and a method to do single thimble simulations.
In Chapter 7 we formulate a method of applying Lefschetz thimbles to non-abelian
gauge theories which is currently an unsolved problem. We further discuss the prob-
lem of having extra zero modes when regularising gauge theories and how they can
be removed by using different boundary conditions. We end the discussion on non-
abelian gauge theories by introducing some ideas as to why studying the topological
charge using Lefschetz thimble regularisation can be a good idea. We finally con-
clude and provide a summary of our results and perspective on future directions in
Chapter 8.
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the fit equation used is 5.11 . . . . . . . . . . . . . . . . . . . . . . . 71

5.17 Pole obtained from 363 × 6 lattice when only half interval taken into
account is compared with the expected LYE singularity for the O(2)
universality class with previously estimated non-universal parameters
(68% and 98% confidence areas). Dashed line indicates the expected
temperature scaling of the LYE. . . . . . . . . . . . . . . . . . . . . . 72

5.18 This figure displays our main findings (Bottom right corner, see [16])
along with the relevant scaling regions we are sensitive to in our anal-
ysis. The region marked by yellow corresponds to the RW transition.
The LY edge singularities corresponding to this are indicated by a
yellow arrow. The other stable singularity found, which is consistent
with the Chiral scaling is shown in the red and green shaded regions.
The green shaded region corresponds to the Chiral scaling while the
red corresponds to a possible CEP scaling. The width of the bands
indicate uncertainties in the non-universal parameters. See main text
for details of construction of the bands. . . . . . . . . . . . . . . . . . 74

6.1 Overlap problem : Reduction in the “shared” configurations between
two values of the external magnetic field for the cae of the 2D Ising
Model while increasing the volume (Left to Right) . . . . . . . . . . . 78

6.2 (left) : Illustration of the sign problem. (right) : Illustration of Sign
quenched vs Phase quenched action. . . . . . . . . . . . . . . . . . . . 79

X



6.3 1D Thirring model (see main text for explanation). (Left) : Thimble
structure for a particular expansion point (µ̂/m̂ = 1.4). Anti-thimbles
are marked in magenta and thimbles in blue. (Centre) : Bridging re-
gions in parameter space using Padé. Note for moderate values of
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Chapter 1

Introduction

1.1 Part I

One of the most active fields of research in the high energy physics community today
is making progress toward the phase diagram of quantum chromodynamics (QCD).
QCD is a strongly interacting theory describing the dynamics of the interactions
between quarks and gluons. Being strongly interacting it is best studied using non-
perturbative tools. Lattice QCD is one of those tools which has been very successful
in studying QCD at zero densities or zero chemical potential1. However, at finite
densities, lattice simulations which rely on the concept of importance sampling, fail
due to not having a well-defined probability measure. This is a numerical problem
and is known commonly as the sign problem. The origin of this problem, in lattice
QCD, can be traced back to the Grassmann odd nature of fermions and how they
enter into the QCD partition function. Being Grassmann odd2, fermions are inte-
grated out of the partition function, leaving us with an object called the fermion
determinant which is a part of the probability measure and has the following prop-
erty (details are left for Chapter 6):

[det M(µ)]∗ = det M(−µ)
where M is the fermion matrix operator and µ represents the chemical potential. It
can be seen that for real values of µ, this determinant is complex. This is the reason
finite (real) µ simulations are hindered. However, simulations at zero and imaginary
chemical potentials are still possible using the standard lattice QCD techniques and
in fact have been successful in gaining some knowledge about the phase diagram,
from extrapolation, to finite µ. Studies in the direction of Taylor expansions about
zero chemical potential were pioneered in [1]. This was followed by imaginary chem-
ical potential simulations and analytic continuations to real chemical potentials [2,
3]. But these two methods certainly don’t exhaust all the research directions. One
of the first (µ, T ) phase diagrams presented for the (2+1) flavour QCD was in [4]
utilising the technique of re-weighting (See Chapter 6) on direct simulations at zero
chemical potential predicted some values for the critical end-point. Based on uni-
versality arguments (relating to chiral symmetry breaking and restoration), QCD is

1A system with zero chemical potential for a particular species of particles indicates an equal
abundance of particles and anti-particles of that species. At finite densities, we have an excess of
particles to anti-particles (conventionally).

2Grassmann odd numbers anti-commute. Ordinary numbers cannot represent them. We need
operator-valued objects to represent them.
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Chapter 1

expected to undergo a first order phase transition at very high densities, whereas,
at zero chemical potential lattice QCD simulations have shown that the transition
from quark-gluon plasma to the hadronic phase is a crossover [5]. We want to em-
phasize that methods of analytic continuation from either zero chemical potential
or imaginary µ are only possible because the transition at zero chemical potential
is a crossover - a smooth transition. Since a second order transition interpolates
between a crossover and a first transition, there is an expectation of a second or-
der critical end-point somewhere in the QCD µ − T phase diagram between these
two regions. This is a field of active research and not enough can be said about it
in an introduction. The reader is referred to the following reviews, which are or-
dered according to the publication year and are definitely not exhaustive : [6, 7, 8, 9].

The transition that we will be focused on in this thesis is the Roberge-Weiss
(RW) transition [10]. This is a transition that occurs for imaginary values of the
chemical potential, i.e., this is a transition that occurs in the Im[µ]− T plane. This
transition has been studied for many years and remains an active area of research.
We will discuss this in detail in Chapter 3. We have proposed a new method of
re-summing the Taylor series coefficients of the net-baryon density measured at
zero and purely imaginary chemical potential using multi-point Padé approximants
(Chapter 2). The goal of the analysis was to extract stable singularities closest to
the imaginary µ axis (axis of expansion) and determine whether they were related
to the Lee-Yang edge [11, 12, 13] singularities expected in the vicinity of the RW
transition. An introduction to Lee Yang edge singularities is presented in Chapter
4. Chapter 5 should be seen as the main focus of this thesis as it shows our findings
regarding the nature of the RW transition. We further discuss another stable pole
obtained from the Padé analysis, in the context of simulations performed away from
the RW transition. We will discuss the scaling of this point with respect to the chiral
transition. Further, we have recently performed simulations on the 2D Ising model
to test our claim about the Padé approximant extracting the relevant Lee-Yang edge
singularities. To this end, we can safely conclude that our re-summation technique
did indeed extract the relevant singularities. We present our findings in Chapter 4.

The content presented in the first part of this thesis is based on the following
publications and conference proceedings that the author of this thesis, was a part
of :

• Net Baryon number fluctuations, Acta Physica Polonica B Proc. Supl.
No 2 Vol. 14(2021),[arXiv:2101.02254].

• Contribution to understanding the phase structure of strong interaction mat-
ter: Lee-Yang edge singularities from lattice QCD - Dimopoulos, P. and Dini,
L. and Di Renzo, F. and Goswami, J. and Nicotra, G. and Schmidt, C. and
Singh, S. and Zambello, K. and Ziesché, F. Published in Physical Review
D 105,034513 on 26th February 2021, [arXiv:2110.15933]. In particular, for
this paper, the author of this thesis was the corresponding author.

• Lee-Yang edge singularities in lattice QCD : A systematic study of singularities
in the complex µB plane using rational approximations - Simran Singh, Pet-
ros Dimopoulos, Lorenzo Dini, Franceso Di Renzo, Jishnu Goswami, Guido
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Nicotra, Christian Schmidt, Kevin Zambello, Felix Ziesché, Bielefeld-Parma
Collaboration - PoS LATTICE2021 (2022) 544. In particular, this pro-
ceeding was a result of the talk given by the author at the International Lattice
conference organized by MIT in 2021 via Zoom.

• Lee-Yang edge singularities in 2+1 flavor QCD with imaginary chemical po-
tential - Guido Nicotra(Bielefeld U.), Petros Dimopoulos(Parma U.), Lorenzo
Dini(Parma U.), Francesco Di Renzo(Parma U.), Jishnu Goswami(Bielefeld
U.), Christian Schmidt(Bielefeld U.), Simran Singh(Parma U.), Kevin Zam-
bello(Parma U.), Felix Ziesche(Bielefeld U.) - PoS LATTICE2021 (2022)
260

• Taylor expansions and Padé approximations for Lefschetz thimbles and be-
yond - Kevin Zambello, Franceco Di Renzo and Simran Singh - PoS LAT-
TICE2021 (2022) 336

In addition, the author had the opportunity to be a speaker at the following
seminars :

1. Invited talk at Massachusetts Institute of Technology MIT (USA) as part of the
Virtual Lattice Field Theory Colloquium Series held via ZOOM on 07.10.2021
(link to recording : [14]).

2. Invited talk at University of Bielefeld on 25.10.2021, held in person, to talk
about Padé approximations in the context of imaginary µ simulations of lattice
QCD.

Furthermore, the work presented on using the 2D Ising model to demonstrate
the feasibility of using Padé approximants to study the Lee-Yang edge singularities
related to its phase transitions was done outside of the collaboration, between the
author and Prof. Francesco Di Renzo at University of Parma.

1.2 Part II

The second part of the thesis is focused on thimble regularisation as a solution to
the sign problem. The first half of this part discusses the origins of the sign problem
in general, and a possible solution by the method of Lefshetz Thimbles. We also
discuss our published results on the thimble regularisation of the Thirring model.
The next half is focused on attempting to regularise non-abelian gauge theories
using the technique of Lefschetz thimbles. Although this part does not contain any
published material, we will show a few results relating to thimble regularisation
SU(2) theories in 2 dimensions. Non-abelian gauge theories are not easy to study
via thimble regularisation due to the presence of certain zero modes arising due
to gauge symmetry called Torons. It will be described how these Torons cause
problems in constructing a stable Lefschetz thimble and how this can be resolved
by changing boundary conditions from periodic to twisted. We will then discuss
the non triviality of finding saddle point solutions for non-abelian gauge theories
and discuss preliminary results from our recently completed code. The discussion
on thimble regularisation should be seen as a pedagogical discussion aimed as an
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invitation to further study this subject. We will also briefly present our motivations
for studying the theta term on the lattice using Lefschetz thimbles.

Starting from Chapter 6 we will explain the sign problem and the Lefschetz
thimble [15] approach to solve it. We then again discuss Padé approximants in the
context of multi-thimble simulations performed on the 1D Thirring model. We will
then move on to applying Lefschetz thimbles to non-abelian gauge theories in the
final Chapter 7 of this thesis. There we will discuss the non-trivialities of regularizing
non-abelian gauge theories with thimbles and end with some numerical results. We
finally end the chapter with an illustrative discussion on the scope of using thimble
regularisation of Yang-Mills theory in the presence of a θ-term.

The content presented in the second part of this thesis is based on the following
publications and conference proceedings that the author was a part of :

• One thimble regularisation of lattice field theories - Francesco Di Renzo, Kevin
Zambello, Simran Singh -PoS LATTICE2019 (2020) 105, [arXiv:2002.00472v1]

• Taylor expansions on Lefschetz thimbles - Francesco Di Renzo, Kevin Zam-
bello, Simran Singh published in Physical Review D 103,034513 on 26th
February 2021, [arXiv:2008.01622].
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Chapter 2

Rational approximations à la Padé

The concept of using rational functions to approximate arbitrary functions of matri-
ces is not new in lattice studies of QCD. Remez type algorithms have been and are
currently being used to calculate the roots of the Dirac operator for use in lattice
QCD simulations. There are at least two well known types of Remez algorithms -
the 1st and the 2nd Remez algorithm 1. The first one is based on using polynomi-
als as the approximating function and the second one using rational functions as
approximants. The algorithm is based on Chebyshev’s theorem which states that
for any order of a polynomial (rational function), there is a unique polynomial (ra-
tional function) that minimises the error between the approximation data and the
approximant (For a very nice introduction to Chebyshev’s theorem and rational
approximations see [17]). These algorithms are iterative in nature and require a
continuous function as an input to be approximated. See [18] and references therein
for extensive discussions on Remez type algorithms 2.

However, our first choice in constructing a rational approximation is not Remez,
but rather based on Padé Approximants (See [21] for a thorough introduction to the
topic.). One of the reasons for this is that the construction of a Padé approximant
uses the input Taylor series coefficients in a direct manner, whereas the construction
of a Remez type rational function first needs the construction of a good interpolating
function followed by an iterative procedure needed to find the best rational function
that approximates the interpolating function. Hence, the study of the propagation
of errors from the errors on the input Taylor coefficients to the final rational func-
tion becomes more straightforward for the Padé as compared to the Remez. Padé
approximants have been used and studied in the context of phase transitions as
early as 1965 by M.E Fisher (see [22]). Moreover, it is well known that rational
functions are much better at approximating certain kinds of functions than simple
Taylor series. This is because a large class of functions contain non-analyticities
that cannot be represented by an analytic series.
Our goal in this chapter is to convince the reader that not only should rational

1The reason we introduce Remez algorithms (although very briefly) is because we have im-
plemented a version of this algorithm as a cross check to our lattice QCD results presented in
[16].

2Unfortunately, the original work on Remez algorithms is not in English but can be found in
[19, 20]
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Part I: QCD à la Padé Chapter 2

functions be preferred over Taylor series when approximating thermodynamic quan-
tities, which become non-analytic at phase boundaries, but also to highlight the
credibility of these approximations in identifying singularities of certain functions.
We begin this chapter, by motivating the choice for using the mulit-Padé methods
for studying lattice QCD data, taking inspiration from the already existing meth-
ods of Taylor series expansions and imaginary µ simulations in QCD, in Section
2.1. In Section 2.2 we describe the construction of the Padé approximations used.
We then describe a few functions for which rational approximations out-perform
Taylor series approximations in Section 2.3. In Section 2.4, we describe how the
Padé re-summation of the same Taylor series can lead to a faster convergence to the
true radius of convergence of the function (defined by the nearest singularity of the
function). In Section 2.5 we discuss the scope of validity of our Padé approximation
by means of numerical experiments performed on toy models like the 1D Thirring
model. We then discuss in Section 2.6 the occurrence and consequences of spuri-
ous singularities. We will finally end the Chapter by discussing some convergence
theorems, currently known about Padé approximations, in Section 2.8.

2.1 Numerically motivating the choice of Multi-

Point Padé

One of the biggest challenges in lattice QCD simulations at finite chemical potential
today is generating higher-order Taylor coefficients at µ = 0 and purely imaginary
µI = iµ. This is a computational cost problem - it gets very expensive to generate
enough statistics to get reliable estimates for higher Taylor coefficients. But as we
know, and will see in the up-coming sections, even for simple functions we need a
high number of Taylor coefficients to extract the radius of convergence. In order to
motivate our choice for multi-point Padé approximations, we will briefly describe
the two main, current state of the art, methods used in lattice studies of QCD to
probe the phase diagram at finite densities (µ ̸= 0).

I Taylor expansion about µ = 0 : Pioneered in [1], this method relies on Taylor
expansions of the conserved charges in terms of their fluctuations simulated at
zero chemical potential (µ = 0). This is because at µ = 0, lattice QCD does not
suffer from a sign problem, hence it is possible to perform numerical simulations
based on Monte Carlo methods. More precisely, the pressure of QCD is written
in terms of an expansion about zero chemical potential as follows 3

p(T, µ)

T 4
=
p(T, 0)

T 4
+
∂(p/T 4)

∂(µ/T )
|µ=0

(µ
T

)
+ ...+

1

n!

∂n(p/T 4)

∂(µ/T )n
|µ=0

(µ
T

)n
+ ...

χf
i =

∂i(p/T 4)

∂(µf/T )i
, cfn =

1

n!
χf
n (2.1)

with χf
i the conserved charge fluctuations or cumulant, related to the quark

flavor f , that we measure in standard lattice QCD simulations and cfn the

3At this stage we are not distinguishing between the quark and baryonic chemical potential
as our goal is only to illustrate the method. The proper expansion variables will be discussed in
Chapter 5.
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respective Taylor coefficients. The goal of this method is to compute Taylor
coefficients of high enough order to study the ratios of coefficients to estimate
the radius of convergence. Such an estimate would give us hints for a possible
transition point in the finite T , µ plane. The main drawback of this method lies
in computing higher order Taylor coefficients. The statistics needed to compute
higher derivatives of pressure increase with the order of derivative computed.
Even today only a few Taylor coefficients are known with reasonable precision
(see [9] for a recent review). And as we saw from Fig. 2.4, we need a large
number of Taylor coefficients in general to estimate the radius of convergence.

II Imaginary µ simulations : Because the fermion determinant is real at purely
imaginary values of chemical potential (µI = iµ, with µ ∈ R), another type
of simulation is possible in lattice QCD. Here, simulations are first performed
at purely imaginary values of µ which are then analytically continued back to
real values of µ (see [2, 23] for the pioneering work). An important point to be
noted is that since the partition function is an even power of µB/T , the Taylor
expansions about µB/T = 0 are related when we compute them from real or
purely imaginary µB/T . Alternate coefficients will appear with negative signs
of one Taylor series with respect to another. For example, if we consider the
Taylor series expansion of the Pressure, we get :

p(T, µ)

T 4
=
p(T, 0)

T 4
+
∂2(p/T 4)

∂(µ/T )2
|µ=0

(µ
T

)2
+
∂4(p/T 4)

∂(µ/T )4
|µ=0

(µ
T

)4
+ ...

p(T, iµ)

T 4
=
p(T, 0)

T 4
− ∂2(p/T 4)

∂(µ/T )2
|µ=0

(µ
T

)2
+
∂4(p/T 4)

∂(µ/T )4
|µ=0

(µ
T

)4
+ ... (2.2)

The main drawback of this method lies in the limits of analytic continuation.
This is because QCD can have non trivial singularities in the complex chemical
potential plane. The will limit the values of real µ, upto which the series can
be continued. A famous example of this is the Roberge-Weiss phase transition
(discussed in Chapter 3) that occurs for QCD at imaginary quark chemical
potential. This limits the analytic continuation using the method above to
µB = π.

This motivates us to go beyond Taylor expansions, and our method uses the in-
formation from both simulations at zero and imaginary chemical potentials to con-
struct a rational approximation called multi-point Padé. In order to implement the
multi-point Padé we still have to perform the standard lattice QCD simulations at
imaginary µB and extract the relevant Taylor coefficients. This in-itself is an in-
volved procedure and we show, in the form of a “dictionary”, the relation between
code output (traces of the fermion determinant) and the final cumulants used in
Appendix A. All the simulations for the construction of Padé approximants shown
in this thesis were exclusively performed in MATLAB [24] and JupyterLAb [25] was
used for the plots.
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2.2 Construction of Padé

Our goal in this section is to demonstrate how to build Padé approximants from
given Taylor series data of a function4. For clarity of notation we mention that a
[m,n] Padé is a rational function with the numerator being a polynomial of O(n)
and denominator a polynomial of O(m). Hence, the number of undetermined coef-
ficients in an [m,n] Padé will be (m + 1) + (n + 1). However, because it is a ratio
of polynomials, one coefficient can be set to unity and therefore, we have m+ n+1
undetermined coefficients. Also, an O(p) polynomial has p + 1 coefficients. This
means to build a Padé of order [m,n] we need at least O(m+ n) input Taylor coef-
ficients.

Let us begin by considering a function f(x) which is only known up to O(L)
about a single expansion point (which in the example below is the origin):

f(x) =
L∑

i=0

ci x
i +O(xL+1) (2.3)

Using the Taylor coefficients we would like to construct a rational function Rm
n (x)

of order [m,n] given by the ratio of two polynomials as:

Rm
n (x) =

Pm(x)

Q̃n(x)
=

Pm(x)

1 +Qn(x)
=

m∑
i=0

ai x
i

1 +
n∑

j=1

bj xj
, (2.4)

The simplest way to obtain the coefficients ai & bi in terms of ci is to equate Eq.
2.3 with Eq. 2.4 and solve for coefficients at each order of x (making use of the
functional independence of xn for different n) as follows

m∑

i=0

ai x
i = Pm(x) = f(x) (1 +Qn(x))

= (
L∑

i=0

ci x
i) (1 +

n∑

j=1

bj x
j) ,

We then obtain the following (Eq. 2.5) system of simultaneous, linear equations
to be solved. This method of building a Padé in literature is known as approximation
through order.

a0 = c0

a1 = c1 + b1c0

a2 = c2 + b1c1 + b2c0

. . .

(2.5)

The set of equations presented in Eq. 2.5 can be obtained from Eq. 2.6 by setting
x = 0 when equation Eq. 2.3 with Eq 2.5 and utilising the following tower of
equations built from differentiating order by order.

4We would like to point out a very comprehensive reference book on Padé approximants that
discusses the existence, uniqueness, convergence and beyond of Padé approximations: [21]
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Pm(x)− f(x)Qn(x) = f(x)

P ′
m(x)− f ′(x)Qn(x)− f(x)Q′

n(x) = f ′(x)

P ′′
m(x)− f ′′(x)Qn(x)− f(x)Q′′

n(x)

− 2f ′(x)Q′
n(x) = f ′′(x)

. . .

(2.6)

We would also like to mention another equivalent method of solving for the coef-
ficients ai & bi in terms of ci, but this time simultaneously solving the following (Eq.
2.7) set of non-linear equations. This tower of equations is obtained by extracting
Taylor coefficients of Rm

n about an expansion point (we again choose x = 0 for the
following) and equating them with the corresponding coefficients of f(x) as follows

: dk

dxkR
m
n (x) = f (k)(x), i.e. 5,

a0 = f(0)

a1 − a0b1 = f ′(0)

2a2 − 2a1b1 + a0(2b
2
1 − 2b2) = f ′′(0)

. . .

(2.7)

This was actually the first method we attempted to solve with, but it turns out to
be very inconvenient and one can only solve for relatively small orders. Hence, we
switched to the linear solver whose obvious disadvantage was that the systems to be
solved were at many times ill-conditioned. But in those situations, care was taken
to ensure that the resulting set of solutions was stable.
Until now we have only been focused on building Padé approximants from Taylor
series about single expansion points. Notice that a very practical problem with
single point Padé approximants is that in order to build even a small order rational
function, around double the number of Taylor coefficients are needed. And this is
usually the roadblock we face in studying QCD at finite density - computing higher-
order Taylor coefficients is very hard and expensive. This small amount of Taylor
series data might still work well for meromorphic functions but would completely fail
for guessing the presence of, for example, a branch cut (see Fig. 2.3 for the zero-pole
structure of a branch cut), since we need a series of poles on a line to understand
the presence of a cut. For this reason, we will now focus our attention on multi-
expansion-point Padé approximants (from now on we will refer to these simply as
“multi-Padé” approximants.). We will implement this very easily by looking at Eq.
2.6

5Again, we assume we know the derivatives in x = 0
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Pm(x1)− f(x1)Qn(x1) = f(x1)

P ′
m(x1)− f ′(x1)Qn(x1)− f(x1)Q

′
n(x1) = f ′(x1)

. . .

Pm(x2)− f(x2)Qn(x2) = f(x2)

P ′
m(x2)− f ′(x2)Qn(x2)− f(x2)Q

′
n(x2) = f ′(x2)

. . .

Pm(xN)− f(xN)Qn(xN) = f(xN)

P ′
m(xN)− f ′(xN)Qn(xN)− f(xN)Q

′
n(xN) = f ′(xN)

. . . ,

(2.8)

which is once again a linear system in n+m+1 unknowns where now n+m+ 1 =∑N
i=1(Li + 1). In the previous formula, the highest order of derivative which we

know (i.e., Li) can be different for different points. To illustrate what we mean,
consider a function f(x), known about three points : {f(x1), f(x2), f(x3)}. Further,
consider that we know its first derivatives about two points : {f ′(x1), f

′(x3)}. With
the given Taylor coefficients about the three points, our goal is to construct the
coefficients of the polynomials Pm(x) and Qn(x), such that, when expanded about
the origin, the rational function has the form as the first line in Eq. 2.5. Since we
are only given five Taylor coefficients, we can only construct rational functions of
the order [m,n] = [2,2],[1,3],[3,1]. By choosing to construct [2,2], the linear system
to be solved would become :

a0 + a1(x1) + a2(x1)
2 − f(x1)

(
b1(x1) + b2(x1)

2
)
= f(x1)

a1 + 2 ∗ a2(x1)− (f ′(x1)(x1) + f(x1)) b1 −
(
f ′(x1)(x1)

2 + 2 ∗ f(x1)(x1)
)
b2 = f ′(x1)

a0 + a1(x2) + a2(x2)
2 − f(x2)

(
b1(x2) + b2(x2)

2
)
= f(x2)

a0 + a1(x3) + a2(x3)
2 − f(x3)

(
b1(x3) + b2(x3)

2
)
= f(x3)

a1 + 2 ∗ a2(x3)− (f ′(x3)(x3) + f(x3)) b1 −
(
f ′(x3)(x3)

2 + 2 ∗ f(x3)(x3)
)
b2 = f ′(x3)

(2.9)

Multi-points Padé approximations set up in the above form will be our choice for
the analysis of this work. To see how this is implemented in a MATLAB script, see
section 5.2.2.

2.3 Taylor vs Rational approximations

In this section, we will demonstrate the effectiveness of rational functions to approx-
imate functions with simple poles and branch cuts over their Taylor series counter-
parts. We focus on functions with poles and branch cuts because of their relevance in
the study of Lee Yang edge singularities which will be discussed in detail in Chapter
4. We will first consider a function with isolated poles, i.e, analytic everywhere is
the complex plane except for a finite number of poles - also known as meromorphic
functions.

z

(z − c1)(z − c2)
(2.10)

with c1 and c2 can be arbitrary complex numbers (but for the purposes of Figs. 2.1
& 2.2 have been chosen to be c1 = 1 + 2i and c2 = 3 − 4i.). As already seen in
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section 2.2, in order to determine a [m,n] Padé, a Taylor series of at least O(m+ n)
is required. In Fig. 2.1(Left), we display how the Padé approximation (constructed
at the origin) compares with the corresponding Taylor series using the same Taylor
series expansion with even less number of coefficients (a [2,3] Padé uses six Taylor
coefficients, hence an O(5) Taylor series, which is less information than the O(7)
series plotted in Fig. 2.1). In Fig. 2.1, we show both the real and imaginary
restrictions of the complex rational function obtained from the analysis. Moving
onto Fig. 2.2, we display the results for the singularity structure6 for two different
orders of the approximant, i.e., a [2,3] and a [3,4] Padé to show the stability of the
genuine poles of the function. Notice the extra structure in addition to the expected
poles c1 & c2 : this extra structure made up of zero-pole pairings is harmless since
these can be factored out of the rational function (More on this in Section 2.6).
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0.2

0.3

0.4

0.5

R
e
[

z
( z
−
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)(
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Taylor series O (7)

Padé [2, 3]

0 1 2 3 4
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0.5

1.0

1.5

Im
[

z
( z
−
c 1

)(
z−

c 2
)] Exact function

Taylor series O (7)

Padé [2, 3]

Figure 2.1: A function with complex poles z
(z−c1)(z−c2)

and its approximation by Taylor
vs Padé using the same information

The next function to consider is a function with a branch cut:
√

2z + 1

z + 6
(2.11)

A very reasonable question to ask at this point will be : How can we expect a Padé
approximant, which is rational by definition and hence only able to produce poles, to
approximate an irrational branch cut? The answer is that it clusters poles along the
cut (for details, see [21], Chapter 10). This can be seen via the following integration
formula

(1 + x)−1/2 =
1

π

∫ ∞

1

dz

(x+ z)(z − 1)1/2

In Fig. 2.3(Left) we display the approximation itself for the function shown in Eq.
2.11. As can be seen, even in the region where there aren’t any non-analyticities,
the Taylor expansion fails, which is to be expected because the expansion is about
z = 0 and the branch point at z = −0.5 limits the radius of convergence. But the
remarkable feature is that the Padé approximant built from the same Taylor series
(about z = 0 and at a lower order), is able to approximate the function far beyond
the radius of convergence of the Taylor series it was built from. Moving on to the
singular structure in Fig. 2.3 (Right), we display the zero-pole structure found by
the Padé, lying along the branch cut between x = −0.5 to x = −6 with both zeros

6We will use the term singularity structure repeatedly in this thesis to mean the zero-pole
structure found by the Padé approximant.
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Figure 2.2: Recovery of poles of the function z
(z−c1)(z−c2)

from Padé at [2,3] and [3,4]
order

and poles lying on the branch cut and not canceling with each other. This is a
genuine feature of the manifestation of a branch cut by a rational function. As we
increase the order of the Padé, the zeros and poles become denser and denser along
the cut.
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Re[z]
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1.0

1.5

2.0

2.5

R
e√

2z
+

1
z+

6
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Taylor Series O(20)
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0.00

0.05

Im
[ z

]

Distribution of Zeroes and Poles

Pade Zeroes

Pade Poles

Figure 2.3: A function with branch cut (Eq. 2.11) and its approximation (left) and
singular structure (right) by a Padé.

2.4 Comments on Radii of convergence from Tay-

lor vs Padé

It is hard to overstate the importance of extracting the radius of convergence of
a given series, reliably, in lattice QCD simulations. Most lattice simulations are
currently based on extracting higher-order Taylor coefficients at finite µB in order
to determine radii of convergence from those series. In the absence of a very large
number of Taylor coefficients, the ratio tests, however precise, cannot help us much
more than just giving bounds. As can be seen from the plots above, a rational
function built from even a small number of Taylor coefficients can give the precise
location of the poles of the function - getting rid of the need for having very high
Taylor coefficients.
Basically, the question that one would like to try to answer is whether the closest
pole found by the Padé approximation is related in a straightforward way to the
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Figure 2.4: This plot shows the ineffectiveness of the Taylor expansion to estimate the
radius of convergence even for a function with a simple pole.

radius of convergence. Of course, this will depend on the type of the function as
will be described below.

• Case I : Meromorphic functions
This class of functions is defined by having a finite number of poles in any
given disc. In this case, the Padé approximant gives the radius of convergence
exactly by finding the closest pole to the point or axis of expansion, whereas
higher-order Taylor coefficients are needed to estimate a faithful bound on the
radius of convergence. We refer to reader to look at Fig. 2.2 to see how even a
low order Padé (O[2, 3]) gives us the exact location of the closest pole (labelled
c1 in the plot). However, if we try to estimate this pole by the ratio test, using
only Taylor coefficients, we get the following Fig. 2.4. Using the same Taylor
coefficients as used to build the Padé (which gave the exact pole) - we get an
error of ∼ 2 %

• Case II : Functions with branch points
Let us now consider a more interesting class of functions : those with with
branch points/cuts. Since a Padé approximation is, by definition, a rational
function, we will show via Fig. 2.5 the rate of convergence of the closest
pole (zero) to the true radius of convergence of the function vs. the rate of
convergence via the ratio test using simple Taylor coefficients. We will consider
the distance to end point of a branch cut closest to the point (axis) of expansion
to be the relevant radius of convergence. We define the rate of convergence to
the true radius of convergence as the relative distance between the closest pole
found from the Padé approximation multiplied by 100. We will consider two
functions with branch cuts, one of them being the function already plotted
in Fig 2.3. It has a branch cut starting at z = −0.5 and ending at z = −6.
Note that this function is zero at z = −0.5, hence if we Taylor expand around
z = 0, then we need to, strictly speaking, look at the closest zero and not
the pole of our Padé approximation to determine the radius of convergence
(since this zero is a branch point and not a simple zero of the function under
consideration). The other function that we choose is 1.0/

√
2z + 1. This has

been chosen to contrast with the previous function in having a singularity at
the closest branch point to the origin. In this case, we will look at the closest
pole of the Padé. Again the rates of convergence of the poles toward the true
radius of convergence are plotted in Fig. 2.5.
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Figure 2.5: Rate of convergence of ratio test vs Padé with increasing order.

2.5 Scope of validity using 0+1 D Thirring model

Many of our results shown in the following sections will be based on numerical ex-
periments performed on an exactly solvable (0+1) dimensional fermionic model that
was initially studied as a toy model for the sign problem in [26, 27]. This model can
also be seen as a (0+1) D version of the Thirring model[28] (which was originally
defined in (1+1) D as a fermionic model with quartic interaction). We will briefly
comment below on why the fermionic model that we will study is be called a 1D or
a (0+1)D Thirring model in literature ([29, 30, 31, 32]) and we will use this termi-
nology for the rest of the thesis.

The model that we will use (discussion adapted from [33]) describes two fermion
flavours sitting at a single spatial site, with a continuum Lagrangian density given
by :

LTH = χ̄

(
γ0
d

dt
+m+ µγ0

)
χ+

g2

2
(χ̄γ0χ)

2 , (2.12)

where χ is the two-component, time-dependent spinor, and hence γ0 is a Pauli
matrix. The reason we will call this the (0+1) D Thirring model should now be
apparent : the interaction term in Eq. 2.12 is the (0+1) version of current-current
interaction term in the original (1+1) D Thirring model [28]. In order to reach
the version of the model we will use in this thesis a few more steps are needed to
be performed on the partition function associated to the Lagrangian mentioned in
Eq. 2.12. First, the quartic interaction is eliminated by introducing an auxiliary
field, and then the resulting action is discretized (in the time coordinate). Using a
staggered fermion formulation we reach the following partition function [27] :

S = β
∑

n

(1− cos (xn))− log (detD) , (2.13)

with

detD =
1

2L−1

(
cosh

(
Lµ̂+ i

∑

n

xn

)
+ cosh

(
L sinh−1 (m̂)

)
)

, (2.14)

where xn denotes the (rendered dimensionless by multiplying with lattice spacing),
discretized auxiliary field, L stands for the number of lattice sites, and m̂ = am
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,µ̂ = aµ are the mass and number density in lattice units respectively.
This model has been studied in [31] using multi-point Padé and happens to be the
work where the idea of applying Padé to QCD at imaginary µ ([16]) was born. We
will again come back to this model in the framework of Lefschetz thimbles in Chap-
ter 6.
This model is chosen by us to perform numerical experiments with Padé approxi-
mants because its partition function has a known analytical solution and hence is a
good testing ground for building approximations. Also, there exists closed-form ex-
pressions for the chiral condensate and the fermionic number density for this model
and both these observables can be seen to have a string of poles at a certain value of
µ, parallel to the imaginary µ axis and a string of zeros at Re[µ̂] = 0. For the pur-
poses of these experiments we will simulate the number density of the 1D Thirring
model:

Nβ,L,m̂(µ̂) =
I1(β)

L sinh(Lµ̂)

I1(β)L cosh(Lµ̂) + I0(β)Lcosh(Lsinh−1(m̂))
, (2.15)

where I1 and I0 denote the first two modified Bessel functions of the first kind. We
perform our analysis of the singularity structure of the number density simulated
at β = 1, L = 8, and m̂ = 2. Because we know the location of the exact poles
and zeroes of the 1D Thirring model, this model is well suited to either validate or
invalidate our Padé ansatz.

2.5.1 Interval Dependence

We will first demonstrate a feature of the multi-point Padé which may seem obvious
aposteriori but will be essential to our analysis. As has been seen, when we perform
a multi-point Padé analysis, our input Taylor coefficients are spread over an interval
of choice. We found a high sensitivity of the poles of the Padé found, on the interval
chosen for the multi-point. Specifically, we found that to get the best estimate when
looking for genuine poles, an interval centered around that pole should be chosen.
We agree that this may not be the best observation in support of the multi-point
Padé since for most systems of interest we don’t where the singularity lies to begin
with. In that case, our suggestion would be to slide the interval of sampling in order
to probe singular structure. We will demonstrate this interval dependence using the
1D Thirring model with the parameters listed above. Before proceeding, it is im-
portant to mention that for the above-stated parameters the number density of the
1D Thirring model has an infinity of poles separated by a fixed amount, parallel to
the imaginary µ̂ axis, at real value of µ̂ ∼ 2.25 and µ̂ ∼ −2.25 and an infinite set of
zeros at along the imaginary µ̂ axis. What we will demonstrate below is taking three
intervals on the µ̂ axis, each centered about a different set of poles/zeros and using
the same number and order of Taylor coefficients in each interval, therefore studying
the sensitivity of the approximation to the different sets of exact poles/zeros of the
number density.

First consider the top plot in Fig. 2.6 : The interval chosen is µ̂ ∈ {−2, 2}. This
interval is centered about µ̂ = 0. It can be seen that the Padé is able to locate up
to five zeros of the function correctly (see blue diamonds and green circles). As far
as poles are concerned, the approximant fails at reproducing any of the pole.
Next, consider the center plot in Fig. 2.6 : The interval chosen is µ̂ ∈ {0, 4}. This
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interval is centered about µ̂R ∼ 2. It can be seen that the Padé is able to locate
roughly six poles (four exactly and two almost completely) located in the right half
of the complex µ̂ plane (see red stars and black dots). It is also seen that the Padé
has missed the information concerning the zeros located along the imaginary µ̂ axis
and placed the zeros incorrectly.

Lastly, consider the bottom plot in Fig. 2.6 : The interval chosen is µ̂ ∈ {−4, 4}.
This interval is centered about µ̂ = 0, but also the left half of the interval covers
the poles in the left half of the plane and the right one covers the right line of poles.
Before proceeding, let us reiterate that the order of the Padé here is fixed, so this
extended interval can only do so much. It is readily seen that the Padé is able to
locate two poles in the left half of the plane and two poles on the right as well as
one zero. An interesting point to note is that the Padé has distributed the poles
more accurately than the zeros.
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Figure 2.6: Interval sensitivity of the Padé approximant to the zeros/poles of the function
(left) approximant (right) singular structure. (Top) : Interval µ̂ ∈ {−2, 2}, (center) :
Interval µ̂ ∈ {0, 4}, (bottom) : Interval µ̂ ∈ {−4, 4}
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2.5.2 Distinguishing between different types of singularity

Here we wish to demonstrate how a rational function approximates different types
of singularities. An important point to notice will be the ability of the rational
function to faithfully distinguish between different kinds of singularities. This will be
useful in understanding and classifying unknown functions through their singularity
structure.

The first function that we consider in Fig. 2.7 is a corner function. Technically it
is the super set of the well known cusp functions. This type of function is continuous
but its derivative is not. Notice the cluster of zero-pole pairs along the axis where
the cusp is located.
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Figure 2.7: Padé approximation of a corner function : (left) Approximation (right) Zero
Pole structure

The next function in Fig. 2.8 is of great importance, since it is a function with a
discontinuity. We will encounter these in systems with first order phase transitions.
The Padé has put a structure which should remind us of a branch cut (discussed
in Section 2.3) crossing the axis at the position of the cut, and is distinct from the
singularity structure of the function studied in Fig. 2.7.
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Figure 2.8: Padé approximation of a discontinuous function (a function that is continuous
but its derivative is not) : (left) Approximation (right) Zero Pole structure

The next example is of a function with two cusps (a cusp (or a spinode) is a point
where two branches of a curve meet and have equal tangents). A very interesting
point to notice about this singular structure is the two branch-cuts that originate
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at x = ±2 making angles corresponding to their powers. The (sign) modulus causes
the branches cuts to spilt at the cusps.
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Figure 2.9: Padé approximation of a cusp function : (Left) Approximation ; (Right)
Zero Pole structure

The function considered in Fig. 2.10 is e−z/(z+1). This function has an essential
singularity at z = −1. The structure found by the Padé has been seen to be pretty
consistent with this particular kind of an essential singularity.
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Figure 2.10: Padé approximation of function with essential singularity : (left) Approxi-
mation (right) Zero Pole structure

The last function that we consider is a branch cut (we have already seen two
examples of functions with branch cuts in Section 2.3). However, we would like to
demonstrate it again for two reasons. The first is the approximation itself in Fig.
2.11 (left) and its analytic continuation. In this example, we used an interval on
the imaginary z axis. We then continue it to real z and study the restriction of the
complex function on the real axis. For the zero poles structure, we already know
what to expect for a branch cut and see it in Fig. 2.12. We also see more zeros and
poles accumulating along the branch cut as we increase the order of the Padé.
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Figure 2.11: Padé approximation of a function with branch cut : (left) Approximation
with respect to the original data (right) Analytic continuation to the real axis as compared
with exact data.
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Figure 2.12: Singularity structure from the Padé approximation : (left) O[5, 5] Padé
(right) O[8, 8] Padé

2.6 Comments on the occurrence of spurious sin-

gularities

More often than not, the singularities obtained from Padé, or any other rational
approximation, are not accepted as being genuine features of the unknown function
being approximated. In order to begin addressing this issue we would first like to
list the types of spurious poles known in literature and then argue how we are safe
from them :

1. Exactly cancelling pairs of zeroes and poles : As the name suggests - it is
not just sufficient to calculate the poles of a rational function. One should
either list the zeroes as well or calculate the residue of each pole and discard
the poles corresponding to vanishing residue. We are safe from these in our
analyses since we plot both the zeroes and poles of the approximation and
discard the cancelling pairs. Examples for the exactly cancelling zero-pole
pairs can be seen in Fig. 2.2, when we try to demand a higher order (in this
case more than two in the denominator) of the rational function which only
has two genuine poles.

2. Unstable isolated poles : After discarding the poles arising in zero-pole pairs,
we have to deal with the isolated poles which can, at first glance, be mistaken
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for genuine singularities. But based on the theory of Padé approximations [21],
genuine poles remain stable under changing the order of the approximation.
This means it is not sufficient to look at a single rational approximation of the
data. Different orders of the rational function have to be built using different
sets of data and stability of the singularity structure needs to be established
before estimating error bars due to statistical errors. In our analysis we have
checked against this type of spurious pole by constructing many variations of
the rational functions. A very nice visualisation of this will be seen in a later
chapter (Chapter 5), in Fig. 5.13, where the only genuine information in the
imaginary plane of the expansion variable - remains fixed.

3. Zero-pole pairs and Isolated poles in the presence of Noisy data : In the pres-
ence of noise the above described points get modified in the following ways -
zero-pole pairs may not cancel exactly but may have some “distance” between
them depending on the magnitude of the noise present. But even in this case
it is sufficient to calculate the residue and discard poles with nearly vanish-
ing residues. On the other hand, isolated poles don’t exactly stay stable, but
in this case they are found to move around in ellipses of standard deviation
consistent with the amount of noise present in the data. A numerical example
to demonstrate this effect is shown in Fig. 2.13. Here we approximate the
number density of the 1D Thirring model using Padé approximation, with the
same parameters used as in Section 2.5.1. The experiment was to add noise to
the Taylor coefficient data for the 1D Thirring model with two combinations
of errors : the first with 1% and 10% noise on the first and second Taylor
coefficients and the second with 5% and 15% percent noise on the first and
second Taylor coefficient respectively. Each figure represents and average of
5000 samples drawn each for the two different error values shown taken in bins
of 50 to show the 100 points in Fig. 2.13. It can be seen clearly how increas-
ing the noise on clean data affects the sensitivity to the closest pole. Though
we can argue that we checked for the stability of the poles before estimating
statistical errors - strictly speaking the systematical (arising from changing
orders) and statistical (arising from noisy data) errors are correlated. But as
seen from our numerical experiments and based on observations within [21],
it is safe to say that as long as we only focus on the singularity closest to the
axis of expansion we are doing fine.

2.7 Axes of expansion

Until now all of our tests and applications of Padé approximations have been based
on using Taylor series coefficients along a single axis in the complex plane of the
expansion variable. The goal of this section is to determine if we benefit from
mixing Taylor coefficients along different axes. Mathematically, this seems obvious,
because when we only use expansion points along a single axis in the complex plane
of the expansion variable, any information we obtain by from the restriction of
the resulting complex function along the other axis is completely unconstrained.
Therefore, adding a few points along the orthogonal axis can only be beneficial
in constraining the rational approximation in the complex plane of the expansion
variable. However, our primary focus lies in determining the singularity structure

22 S.Singh
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Figure 2.13: Sensitivity of the Padé approximant in the presence of noise : (Left) The
input Taylor coefficients of have 1% noise on the first coefficient and 10% noise on the
second; (Right) : The input Taylor coefficients of have 5% noise on the first coefficient
and 15% noise on the second. Increasing error decreases the sensitivity to the true pole in
proportion to the magnitude of the noise present.

of a given thermodynamic function, so this is a direction worth exploring. The
physical motivation for doing this in our lattice QCD simulations, which are as of
now done completely along the imaginary µ axis, comes from adding (a few) Taylor
coefficients obtained along the real µ axis either by re-weighting or some other
techniques for very small values of µ such that the sign problem is not significant.
A direct implementation of this is algorithmically challenging, so once again we will
numerically test this idea on a toy model first.

The most useful toy-model for us is the 1D Thirring model because of its rich
singularity structure and an exact functional form available to us to compare the
approximation with. We will consider (again) as our function to be approximated
the number density in the 1D Thirring model (Shown in eqn. 2.15). The simulation
parameters for the model are chosen to enhance the imaginary signal of the number
density on the imaginary axis in order to make the signal clear. The parameters we
will be working with, in this section, are : β = 2, L = 2, µ,m = 0.5.

The first experiment formed was using completely either the imaginary axis or
the real axis with exactly the same input points for comparison. The next step is to
select half the coefficients from the real and half from the imaginary µ axis. From
these coefficients we will construct the three rational functions and compare their
respective restrictions on both the imaginary and the real µ axis. As can be seen from
Fig. 2.14, the Padé constructed from the purely real data (blue dashed curve), does
better on the real µ axis and fails quite quickly on the imaginary µ axis. On the other
hand, the approximation constructed from purely imaginary data (dashed green
curve) does better on the imaginary µ axis and fails on the real µ axis. However,
the approximation constructed from the mixed data (dashed magenta) does quite
well on both the axes. Next we will consider the singularity structure of these three
Padé approximants. Presented in Fig. 2.15 are the respective singularity structures
compared with the analytic known results for the three cases mentioned above :
(Top Left) : Padé approximation obtained from considering Taylor coefficients only
on the real µ axis; (Top Right) : Padé approximation obtained from considering
Taylor coefficients only on the imaginary µ axis; (Bottom) : Padé approximation
obtained from considering Taylor coefficients on both the real and imaginary µ axis.
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As can be seen, the Padé approximant in the case of mixed coefficients is sensitive
to three genuine poles of the function as opposed to only two in the other two
cases. This can also be attributed to the interval dependence of the multi-point
Padé approximations seen in Section 2.5.1.

Figure 2.14: Plotted are the restrictions of the number density for the 1D Thirring
model with parameters β = 2, L = 2, µ,m = 0.5 on (Left) the real µ axis and (Right) the
imaginary µ axis. The blue dashed lines represent the Padé approximation obtained by
considering Taylor coefficients (red, filled dots, Left plot) on the real µ axis; the green
dashed lines represent the Padé approximation obtained by considering Taylor coefficients
along the imaginary µ (red, filled dots, Right plot) axis and the magenta dashed lines are
obtained from taking Taylor coefficients (half each in number) from both the imaginary
and real µ axis (black, empty diamonds).

2.8 Notes on rates of convergence

From our experience, it has been quite hard to find literature on the convergence
theorems relating to multi-point Padé. Even for single point Padé, most of the
literature is based around two theorems concerned with two kinds of functions :
the first type being the Stieltjes functions7 and the second being meromorphic ones
(see Section 2.4). In this thesis we will not be dealing with Stieltjes type functions,
but often with meromorphic functions. Hence we will only mention the theorems
relating to meromorphic functions.
The first theorem is due to Montessus de Ballore [35] and talks about uniform con-
vergence of a Padé approximant to a meromorphic function in a disk with a fixed
number of simple poles at distinct points. The theorem then states that in such a
disk, with a radius defined by the pole with maximum modulus, a Padé approximant
will uniformly converge to the correct function in the limit of infinite order. This
theorem further states that no spurious poles will be found within this disc. This
theorem can also be extended to poles of higher multiplicity than one. A further ex-
tension of this theorem exists and is known as the Nuttal-Pommerenke theorem [36,
37]. It states that for meromorphic functions, uniform convergence can be shown

7A (non-negative) Stieltjes function is a function f : (0,∞) → [0,∞) which can be written as

f(λ) =
a

λ
+ b+

∫

(0,∞)

σ(dt)

λ+ t

where a, b ≥ 0 are constants and σ is a measure on (0,∞) such that
∫
(0,∞)

(1 + t)−1σ(dt) < ∞.

Definition taken from [34]
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Figure 2.15: Presented in this figure are the respective singularity structures compared
with the analytic known results for the three cases mentioned above (see main text and Fig.
2.14) : (Top Left) : Padé approximation obtained from considering Taylor coefficients only
on the real µ axis; (Top Right) : Padé approximation obtained from considering Taylor
coefficients only on the imaginary µ axis; (Bottom) : Padé approximation obtained from
considering Taylor coefficients on both the real and imaginary µ axis

not only within the disk mentioned above but everywhere except a set of measures
composed of the isolated poles of the function. It is this statement that one encoun-
ters most often in literature when talking about Padé approximants. Some further
references relating to the Nuttal-Pommerenke theorem can be found here [38, 39]
and references within. Unfortunately, none of the theorems stated above mention
the rate of convergence of the Padé approximant to the function to be approximated.
However, this can be checked case by case, for various functions, by increasing the
order of the Padé.

However, a lot of empirical evidence, based on performing numerical experiments
on functions both with and without the presence of noise, exists, see [29, 40, 41]
and references therein. The results that we present in this thesis are also based on
numerical experiments constructed and performed by us.
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Chapter 3

Overview of phase transitions with
focus on QCD

Thermodynamic systems are characterized by physical observables which can take
different values in different regions of phase space. A phase space can be character-
ized by sets of variables like pressure (P ), temperature (T ), and chemical potential
(µ), otherwise known as control parameters. Physical observables like number den-
sity, magnetization, and their respective susceptibilities can be studied as functions
of these control parameters. A phase transition is set to occur at those values of
the control parameters where one or more of these physical observables and/or their
derivatives become discontinuous or singular or in other words non-analytic. The
knowledge of phase transitions is essential in understanding the equation of state of
a thermodynamic system.

The focus of this chapter is to introduce, very briefly, the most general classes of
phase transitions in Section 3.1, followed by mentioning the importance of symme-
tries while looking for phase transitions in Section 3.2. The main goal of the current
chapter is to describe the current status of our knowledge of the QCD phase dia-
gram in the two corners of the Columbia plot (also described) in Section 3.3. This
is followed by Section 3.4 describing in some detail the main theme of this thesis i.e,
hunting for the Roberge Weiss critical point in QCD at imaginary µ using Padé ap-
proximants. The last section of this chapter (Section 3.5) outlines the expectations
of the QCD phase diagram at real chemical potentials.

3.1 Classification of Phase transitions

A common method to classify phase transitions is by using the Ehrenfest classi-
fication. The basic statement of this classification is to relate the order of the
phase transition to the first discontinuity obtained in the derivatives of logZ. Fur-
ther, since the derivatives of logZ are related to the expectation value of various
thermodynamic quantities, these discontinuities represent non-analyticities in those
physical observables. When studying a thermodynamic system, a quantity of fun-
damental importance is the order parameter. This observable has the property that
it is qualitatively able to distinguish between the phases of interest. This observable
is usually chosen based on the symmetries of the lagrangian of a physical system.

The most common phase transitions found in nature are the first order, second
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order, and crossover in decreasing order of being violent. Basically, a second order
transition interpolates a first order transition and a crossover transition.

o First order: This type of transition is characterised by a discontinuity in
the first derivative of logZ. Being the most “violent” transition, it is marked
by the formation of “bubbles” at the phase boundary. Some examples include
boiling of water or the 2D Ising model (magnetization as a function of external
magnetic field below Tc)

o Second order: This type of transition is marked by a discontinuity in the
second derivative of logZ. The system state evolves continuously into the new
state. Some examples are opalescence, the 2D Ising model when considering
magnetization as a function of temperature at zero external magnetic field.

o Crossover : This is an analytic crossover, there is no discontinuity in any
of the derivatives of logZ. The system changes smoothly from one state to
another. A very relevant example for the purpose of this thesis is the transi-
tion from quark-gluon plasma to the Hadronic state at µB = 0, finite T [42].
Another relevant example is the transition from the SU(2)L symmetric phase
of Standard Model of particle physics to the broken phase, for a Higgs mass
above 72 GeV.

3.2 Symmetry breaking and Phase transitions

Symmetries of a physical system are one of the most important handles one has in
the study/classification of phase transitions. The reason for this is simple : since
a phase transition indicates a transition from one thermodynamic phase to another
of a physical system, it is very likely that in this process either a symmetry of the
system was broken or restored.

As an example, we will consider the 2D Ising model [43]. The Hamiltonian for
the Ising model in the absence of an external field can be written as

H2D = −J
∑

⟨i,j⟩

si.sj , (3.1)

where J is the coupling constant and measures the strength of interaction between
nearest neighbours. Notice that J > 0 implies ferromagnetic interaction (aligning
spins lower the energy of the system) and J < 0 implies anti-ferromagnetic coupling
(anti-aligning spins lower the energy of the system). Further notice that this system
has a Z2 symmetry in the spin variable, since, if all the spins are flipped at the
same time, the total energy of the system remains unchanged. This symmetry is
spontaneously broken when the temperature falls below a characteristic transition
temperature Tc and is restored above it.
On the other hand, the same model in the presence of an external magnetic field is
given by :

H2D = −J
∑

⟨i,j⟩

si.sj − h.
∑

i

si (3.2)

Hence, adding an external magnetic field, in the form above, explicitly breaks the
Z2 symmetry of the Ising model. Depending on the sign of the external magnetic
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field, a certain direction of spins will get preferred at low values of temperature.
But notice that the system still has a symmetry under spin reversal at all sites if,
in addition, even the sign of the external magnetic field is flipped.

3.3 Phase transitions in QCD : Columbia plot

The “Columbia” plot first introduced in [44], is a schematic description of the QCD
phase diagram in quark “mass” and “flavour” space at zero chemical potential. This
is because the QCD phase diagram is expected to undergo different types of phase
transitions for different values of quark masses and number of flavours. The reason
for this is again manifest in the symmetries the action has for different masses of
the quarks - the Chiral symmetry at mq = 0 and centre symmetry at mq → ∞. The
non-trivial observation about the Columbia plot is that the transitions remain first
order even for finite values of quark masses. The first order regions are bounded
by second order transition lines. The region in the middle is a crossover. A point
to emphasize about the Columbia plot is that only a single point, marked by the
purple point, in Fig. 3.1, represents a point in the QCD phase diagram and has been
determined to be a crossover in [5], everything else is un-physical but important to
make progress toward the conjectured QCD critical end-point. We will discuss below
the two extreme regions of the Columbia plot Fig. 3.1 , (withmq → 0 andmq → ∞).
Most of the following discussion and notation used below is based on [45, 46, 47, 8].

Figure 3.1: Columbia plot for QCD 2+1. Figure taken from [48]

3.3.1 Case I : Infinite (quark) mass limit of QCD

In this case, QCD reduces to a purely gluonic theory and is governed by the SU(3)
Yang-Mills action. We already know that the action of an SU(N) theory is invariant
under local gauge transformations. The Euclidean SU(N) action can be shown to
have an additional ZN symmetry [49]. This is a very important symmetry in the
discussion of the de-confinement transition in pure SU(N). The Polyakov loop is an
order parameter for this transition. We will show why this is the case below.
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The Polyakov loop, in the continuum, is defined as :

ϕ(x⃗) =
1

3
TrP exp

{
−
∫ β

0

dx4G4(x⃗, x4)

}
(3.3)

where P denotes the path ordering operator, G4(x⃗, x0) is the time-like gauge field
at position x⃗.

The equivalent loop on the lattice at the point m, is given by

P (m) = Tr
[
ΠNτ−1

j=0 U4(m, j)
]

(3.4)

where U4(m, j) is the temporal link (actually the imaginary time-like link, since
we are in Euclidean space). This loop is invariant under the usual SU(N) gauge
transformations given periodic boundary conditions.

Apart from the usual periodic boundary conditions there exist topologically in-
equivalent class of solutions to the Yang-Mills equations of motion given by the
twisted boundary conditions (see Chapter 7 for details on twist transformations). A
class of these transformations consists of multiplying the temporal links (U4(n)) by
a phase factor zk given by :

U4(n) → zkU4(n), z
k = e2πik/N (k = 0, .., N − 1) (3.5)

where these zk ∈ ZN (center of SU(N)). Since these transformations preserve the
pure gauge action, the Yang-Mills action is said to have a center symmetry.
Gauge transformations on the lattice live at the lattice sites and are independent
of the directions, denoted as Ω(n), whereas gauge fields or links live between the
lattice sites and are as many as there are directions and sites, denoted as Uµ(n).
Then a gauge transformation on a link is defined as :

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω(n+ µ)† (3.6)

Since we are considering a periodic lattice (equivalently a Torus in the continuum),
points separated by the length of the lattice in every direction are identified as :
n0+Lµ̂µ̂ ≡ n0. Hence, the gauge fields at these points must be physically equivalent,
i.e, equal up to gauge transformations. We will first consider the case of strictly
periodic gauge configurations :

Uν(n+ Lµµ) = Uν(n) (3.7)

It can be easily shown that for the above periodicity to hold under arbitrary
gauge transformations, the gauge transformations must satisfy exact periodicity,

Ω(n+ Lµµ) = Ω(n) (3.8)

for the periodic boundary conditions to hold :

Uν(n+ Lµµ) → U ′
ν(n+ Lµµ) = Ω(n+ Lµµ)Uν(n+ Lµµ)Ω(n+ Lµµ+ ν)

= Ω(n)Uν(n+ Lµµ)Ω(n+ ν)† = U ′
ν(n) (3.9)

Additionally, under the above periodic boundary conditions, the Polyakov loop
transforms remains invariant.
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Next we consider the twisted boundary conditions, with Γµ ∈ SU(N) (where
these Γµ’s can be seen as a generalisation of zk in Eq. 3.5) :

Uν(n+ Lµµ) = ΓµUν(n) (3.10)

The relevant question to answer now would be What kinds of the gauge transforma-
tions preserve these twisted boundary conditions on the gauge fields?

Uν(n+ Lµµ) → U ′
ν(n+ Lµµ) = Ω(n+ Lµµ)Uν(n+ Lµµ)Ω(n+ Lµµ+ ν)

= Ω(n+ Lµµ)Γ
µUν(n)Ω(n+ Lµµ+ ν)† (3.11)

It should be apparent that there are two different conditions under which the gauge
transformations preserve the twisted boundary conditions - we will only consider
one of them in this chapter and the other will be discussed in detail in Chapter 7.
We will assume strict periodicity of the gauge transformation matrices Ω(n) and
this will force the allowed Γµ’s to belong in the centre of the group SU(N) (as they
must commute with arbitrary SU(N) matrices):

U ′
ν(n+ Lµµ) = Ω(n+ Lµµ)Γ

µUν(n)Ω(n+ Lµµ+ ν)†

= Ω(n)ΓµUν(n)Ω(n+ ν)†

= ΓµΩ(n)Uν(n)Ω(n+ ν)† = ΓµU ′
ν(n) (3.12)

Although these transformations are still the symmetry of the Yang-Mills action,
the Polyakov loop transforms non-trivially under twist :

P (m) → P ′(m) = Tr
[
ΠNτ−1

j=0 U ′
4(m, j)

]

= Tr [U ′
4(m, 0)U

′
4(m, 1) .... U

′
4(m,Nτ − 1)]

= Tr
[
Ω(m, 0)U4(m, 0)Ω

†(m, 1)Ω(m, 1)U4(m, 1)Ω
†(m, 2)

....Ω(m,Nτ − 1)U4(m,Nτ − 1)Ω†(m,Nτ )
]

= Tr
[
Ω(m, 0)U4(m, 0)U4(m, 1) .... U4(m,Nτ − 1)Ω†(m,Nτ )

]

= Tr
[
Ω(m, 0)U4(m, 0)U4(m, 1) .... U4(m,Nτ − 1)Ω†(m, 0)z†4

]

(3.13)

Considering the fact that z4 is a constant matrix belonging to the centre of
SU(3), making it a constant phase times and identity matrix, it can be commuted
past Ω†(m, 0) and taken out of the trace to get :

P (m) = z†4 Tr [U4(m, 0)U4(m, 1) .... U4(m,Nτ − 1)] (3.14)

This is an important result. It shows that the Polyakov loop transforms non-
trivially under the twist transformations. This further implies that a non-zero value
of the Poyakov loops breaks the centre symmetry. The zero to non-zero transition
of the expectation of the Polyakov loop therefore marks the spontaneous breaking
of the centre symmetry. The corresponding transition marks the confinement/de-
confinement phase transition in pure gauge theories. We now come the question of
the order of the phase transition, which depend upon the number of colour charges
N in SU(N). For N = 2, the transition is 2nd order, for N = 3 it is weakly first order
and for N ≥ 4, it is strictly first order (see [50, 51]). For SU(2), the second order
transition was confirmed on the lattice in [52].
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3.3.2 Case II : Mass(-less) limit of quarks

The QCD lagrangian density, in the mass-less quark limit, can be written as (note
that explicit dependence on space-time has been omitted):

LQCD = −1

4
F a
µνF

aµν + iψ̄γµD
µψ , (3.15)

where the first term is the usual gauge action and the second term is the kinetic
term for the quarks. Spinors (here denoted by ψ) can be decomposed into left and
right components using the following projectors involving the γ5 matrix:

PL =
1

2
[I− γ5]

PR =
1

2
[I+ γ5] , (3.16)

where I is the identity matrix, and the projectors having the properties that : PL +
PR = I and PLPR = PRPL = 0. This operation decomposes the fermion kinetic
term into two parts that do not mix (and hence form two invariant sub-spaces
which means rotations in one sub-space will not affect the other sub-space):

iψ̄γµD
µψ = iψ̄RγµD

µψR + iψ̄LγµD
µψL

Mathematically, a chiral transformation is defined as:

U(1)A : eiαγ5

SU(Nf )A : eiθaT
aγ5 , (3.17)

with α, θa being real and constant and T a being generators of SU(Nf ), Nf being the
number of fermion flavors. These chiral transformations leave the mass-less QCD
action given Eq. 3.15 invariant.
However, for QCD with two mass-less quark flavours (up and down quarks), the
vacuum spontaneously breaks the SU(2)A symmetry resulting in three Goldstone
bosons – pions. This symmetry is restored at high temperatures. The transition
temperature is denoted by T 0

c , and the order parameter is the vacuum expectation
value of the chiral condensate given by :

〈
ψ̄ψ
〉
=
〈
ψ̄LψR

〉
+
〈
ψ̄RψL

〉
, (3.18)

This is a good order parameter for the mass-less limit of QCD in the same spirit
the expectation value of the Polyakov loop in the previous section was, i.e., the
operator ψ̄ψ is not invariant under chiral transformations mentioned above in Eq.
3.17. Hence, any non-zero value of ψ̄ψ ̸= 0 indicates a broken symmetry. Moreover,
in the high temperature (T > T 0

c ) symmetric phase this expectation value is exactly
zero :

〈
ψ̄ψ
〉

= 0. A function that is non-zero in a certain region and exactly
zero in another region must be non-analytic at the point of transition. Hence, the
temperature at which

〈
ψ̄ψ
〉
becomes zero denotes a phase transition.

Since we have already introduced the operator ψ̄ψ, it is not hard to understand
why the QCD action in the presence of massive quarks breaks the chiral symmetry.
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Indeed, the quark mass term, given by mψ̄ψ, transforms under the operation by the
projectors defined in Eq. 3.16 as:

mψ̄ψ = mψ̄LψR +mψ̄RψL ,

thereby explicitly mixing the left and right components (hence, no invariant sub-
spaces). From a phenomenological point of view, one can ask if is there a phase
transition even when quarks are massive, since the physical quarks are light? The
answer is actually based on experimental evidence.

Experimental evidence: [46] If we only had the explicit chiral symmetry
breaking due to the light quarks, then we would observe a non-degeneracy between
the nucleon and its partner with negative parity, the N∗, commensurate with the
amount of explicit symmetry breaking caused by the light quarks. However, the
observed mass difference between the nucleon and N∗ is around 600 MeV, too large
to be explained by the small masses of the quarks. Hence, a spontaneous breaking
of the chiral symmetry must be taking place. This would also explain the small but
finite masses of the pions.

Remarks on the order of the transition:
As seen from the Columbia plot in Fig. 3.1, the transition is heavily influenced by
the masses of the quarks and the number of flavours. We will state below what is
currently known about the order of this transition:

• For three massless flavours (Nf = 3), the transition cannot be second order
[53].

• For two massless quarks, this transition is supposed to be second order in the
continuum limit and to belong to the universality class of 3d−O(4).

• the staggered formulation in lattice QCD away from the continuum limit,
there is only one Goldstone boson, and the universality class is expected to be
3d−O(2).

• For the physical light quark masses, the order of this transition has been shown
to be a crossover [5].

Moreover, some determinations of T 0
c exist by extrapolating to light quark masses

(zero quark mass simulations in lattice QCD are not possible). One such estimate
is for T 0

c = 136+3
−6 MeV by [54]. The order of transition for the left boundary in the

Columbia plot (Fig. 3.1) is still under investigation.

3.4 Phase diagram of QCD at imaginary µ (RW

transition)

Quarks are introduced in the QCD action by a term proportional to ψ̄nU4(n)ψn+4̂.
Hence, in the presence of quarks, the centre symmetry of pure gauge theory, as
given by Eq 3.5, is explicitly broken. However, a remarkable feature for the case of
imaginary chemical potential was discovered by Roberge and Weiss in their seminal
paper [10]. In the presence of an imaginary chemical potential, the QCD partition
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The thermal phase transition at imaginary µ
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11Figure 3.2: (Left) Phase structure in the T - µI plane, showing the three sectors with
their respective directions of symmetry breaking. Figure taken from [48], (Right) 3D
realisation of the Columbia plot. Figure taken from [56]

function inherits a non-trivial periodicity, which is a remnant of the centre symmetry
of the Yang-Mills action1:

ZQCD(µB + i2πT ) = ZQCD(µB) (3.19)

To see why this is the case, it is important to consider how the chemical poten-
tial term enters the partition function. In the staggered fermion formulation, the
chemical potential is added to the temporal links in the following way [55] 2 :

U4(n) → eaµNτU4(n) (3.20)

with aNτ = 1/T , a being the lattice spacing and Nτ the temporal lattice extent. It
is easy to see that if µ = iµI , with µI ∈ R, the chemical potential term just becomes
a phase given by eiµI . Since, the center transformation, given by zk = e2iπk/N , is
also a phase, the centre transformation can be undone by a shift in µI . This is the
reason for the non-trivial Roberge-Weiss symmetry in the QCD partition function
in the presence of an imaginary chemical potential. However, there are further
consequences of this Roberge-Weiss symmetry relating to phase transitions of QCD
at imaginary µ in the presence of quarks. It was shown in [48] that the phase-space
points given by µI = π/3 and µI = 2π/3 mark two first order phase boundaries
(see Fig. 3.2 [Left]), even in the presence of quarks, using Polyakov loop as the
order parameter. This can be seen by noting that at purely imaginary values of
the chemical potential, the term multiplying the temporal link is just a phase -
exactly like the centre elements. Therefore, increasing µI is commensurate with a
centre transformation. Hence, in the de-confined phase, where ⟨P ⟩ ≠ 0, the vacuum
preferred by the fermions will change.

As seen from the Columbia plot (Fig. 3.1), number of flavours of quarks and their
masses influence the details of the phase structure heavily. Now we will briefly de-
scribe the situation at non-zero chemical potentials - also known as the 3D Columbia

1In the following, µ and µB are the chemical potentials for the quark number (Q) and the
baryon number (B) respectively

2For a detailed discussion on why the chemical potential is added this way, see [46, 47]
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Plot (see Fig. 3.2 [Right]). The 3D Columbia plot can be described depending on
quark masses. For very light or heavy quarks, that transition which was first order
at zero chemical potential remains first order for all values of imaginary µB/T . For
quarks with intermediate masses, the smoother crossover at µB/T = 0, becomes
a first order transition at some value of imaginary µB/T . Hence in this case the
first order line ends in a second order critical end point at some value of imaginary
µB/T . For some specific value of quark masses, the critical end point mentioned
above coincides with the RW point. In this case the transition is a crossover for
all values of µB/T ≤ π. Roberge Weiss transition remains an important research
direction today. Some interesting references for further reading include [10, 57, 58,
47, 59, 45, 60]

3.5 Phase transitions relevant to QCD at real µ

To conclude this chapter on an introduction to phase transitions in QCD, we will
briefly sketch the phase transitions expected in QCD at real values of chemical
potential. For this we will first discuss the left plot in Fig. 3.3, which sketches
the conjectured phase diagram of QCD at real chemical potentials. Beginning at
µ = 0, lattice QCD simulations have shown that the transition from quark-gluon
plasma (QGP) at high temperatures to the hadronic phase at lower temperatures is a
crossover [5]. Despite the sign problem, lattice simulations at very small values of µB

have been performed combined with various methods to circumvent the sign problem
with the result that the transition remains a crossover. This has led to the need for
determining the pseudo-critical line that separates the low-T phase characterized
by color confinement and chiral symmetry breaking, from the high-T phase which is
made up of the QGP [61]. Many lattice studies have been performed to determine
the curvature of this line, as that would help in narrowing down the search for the
conjectured QCD critical end-point (CEP). The CEP is a well defined singularity in
the QCD phase diagram at least from theoretical arguments. To understand why, we
consider the low T, high µB region of the phase diagram. This µB driven transition
at low T is believd to be a first order phase transition. Although this conclusion
is not very robust, because of the sign problem, various model predictions in this
region indicate that the transition from nuclear to quark matter is strongly first order
[62, 63, 64]. For these two regions (crossover at low µB and high T and first order
phase transition at high µB and low T) to exist in the phase diagram of QCD, there
must be a second order critical point in the intermediate region which interpolates
between these two regions. This is the conjectured CEP of QCD. However, to locate
the point in the phase diagram, we must be able to perform exact simulations or
calculate the partition function exactly to understand its singular structure - which
is currently out of reach. Another region of interest to theorists is the one marked
by a line separating the quark matter and the colour superconductor phase (or
the Colour Flavour Locked (CFL) phase) [65]. Because of the asymptotic freedom
of QCD, analytic calculations are possible in this region. Moving onto the right
plot in Fig. 3.3, we first want to comment that the plot on the left is but just a
slice of the 3D plot on the right, taken at a fixed value of physical quark masses.
In different regions of the (T, µB) plane of QCD, it can be described by different
effective theories, each determining the behaviour of the relevant transitions. At
high temperature, far above the QCD phase transition, a free Fermi gas model can
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Figure 3.3: (Right) Conjectured QCD phase diagram for physics quark masses [68].
(Left)[Image credit : Christian Schmidt] Schematic picture of the phase diagram of QCD
in three dimensions, including an axis for Quark mass. Indicated are pseudo-critical transi-
tion temperature of QCD (Tpc) with massive quarks and the chiral transition temperature
(Tc) of QCD with two mass-less quarks and one heavy strange quark. Dashed lines in-
dicate the crossover transition and solid lines represent a second ordder transition. The
grey region represents a first order transition.

be expected to approximate the behaviour of quarks. The relevant singularities to
look for in this region of phase space are the poles of the Fermi-Dirac distribution
function, also known as the thermal singularities. Then, moving to the region of the
RW transition, (T, µB) = (TRW , iπT ), we expect universal behaviour in accordance
with the Z(2) symmetric scaling function, if the RW point is an end point of the
first order transition line. The Z(2) scaling behaviour close to the physical point has
been verified by us (in addition to others) and forms the main result of this thesis.
Close to the chiral limit, we expect universal behavior in accordance with the O(4)-
symmetric scaling function. The O(4) universal behavior has been demonstrated
and used in many instances, recently for the determination of the chiral transition
temperature [66]. In the vicinity of the QCD critical point, we expect again critical
scaling with respect to Z(2)- symmetric scaling function. The position of the critical
point is unknown, not even its existence has been verified. Nevertheless, a mapping
to its critical region is frequently used to check for signals of critical behavior in
experimental data [67].
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Chapter 4

Lee Yang zeros and edge
singularities

In 1952, Lee and Yang [11, 12] provided a novel alternative mechanism to look for
phase transitions in a system. Their idea was to extend the grand-canonical partition
function (ZN

GC) of a system in a finite volume to a function of complex values of the
parameter space (phase space). As is well-known, in a finite volume, the partition
function can be expressed as a finite polynomial in the fugacity variable (z = e(βµ))

ZN
GC =

N∑

n

Cnz
n, (4.1)

where Cn’s are coefficients that can be interpreted as the canonical partition func-
tion of the system, but in any case represent the statistical weights associated to the
particular canonical ensemble. For real values of µ̂ (≡ µ/T), the fugacity variable
is strictly positive. Therefore, for z > 0, ZN

GC is strictly positive, and cannot have
any zeros along the real axis. We are interested in the zeros of the partition func-
tion because thermodynamic quantities can be expressed as functions of log (ZGC)

1.
Hence, one expects the appearance of divergences of the partition function at these
points, signaling the onset of a phase transition. Terminology-wise, we will call the
complex zeroes of ZN

GC , Lee-Yang zeroes (LYs) but reiterate that a phase transi-
tion is realized only at real LYs, which is only possible in the thermodynamic limit
(i.e. when N → ∞). Apart from the study of LYs which deals with the zeros in
the complex plane of the external fields, there exist studies on complex zeros of the
partition function in the complex β (inverse temperature) plane. These are called
Fisher zeros and were first studied in [13]. In the same paper, M.E. Fisher coined
the term Lee-Yang edge singularities (LYEs), referring to the closest Lee-Yang
zero to the real axis of z. Also in the same paper, he showed that these LYEs define
a universality class of their own and for theories like the Ising model and O(N) mod-
els, this universality class happens to be that of the ϕ3 theory with purely imaginary
coupling. In this thesis, we only focus on the LYs and LYEs.

In this Chapter, we will first introduce the Lee-Yang zeroes in the fugacity (z)
plane in Section 4.1 and see how the complex zeros of ZN

GC relate to real zeros of

1Notice the change in notation : we will denote ZGC as the grand canonical partition function
of the system in the thermodynamic limit
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ZGC . In Section 4.2 we will illustrate a plausible picture of the Lee-Yang zeros in
the µ̂ plane. In Section 4.3, we will briefly discuss the symmetry properties of these
zeros. We will end this chapter by studying the staple model of statistical physics,
the 2D Ising model, and its phase transition using the Lee-Yang analysis in Section
4.5.

4.1 Lee-Yang zeroes & Edge singularities

Having already introduced the idea of Lee-Yang zeroes and why they should be stud-
ied, we now make concrete statements starting with the original Lee Yang theorems
(to be found in their original paper [11] along with the proofs).

Theorem 1 For all positive real values of z, the quantity

f(z) = lim
V→∞

1

V
logZV

GC(z) (4.2)

approaches a limit that is independent of the shape of V2. Moreover, this limit is a
continuous, monotonically increasing function of z.

Since ZV
GC is a finite polynomial in V, increasing the volume will increase the

number of complex roots of ZV
GC . Lee-Yang showed that the distribution of these

roots in the V→ ∞ limit gives the complete analytic behaviour of the thermody-
namic functions in the z plane. This leads us to their next theorem:

Theorem 2 If in the complex z plane a region R containing a segment of the pos-
itive real axis is always free of roots, then in this region as V→ ∞ all the quantities
:

1

V
logZV

GC ,

(
∂

∂ log z

)
1

V
logZV

GC ,

(
∂

∂ log z

)2
1

V
logZV

GC , ...

approach limits which are analytic with respect to z. Furthermore, the operations(
∂

∂ log z

)
and limV→∞ commute in R.

In the following, we will explain how the theorems mentioned above relate to
phase transitions and the associated non-analyticities of the partition function. It is
not hard to see that ultimately it is the form of the region R that decides whether
a phase transition occurs in a system. If there exists a region R that includes the
entire positive real axis (in z) such that it is free of any roots of ZGC , then all
the quantities depending on logZGC will be analytic at all real values of log z (or
in our case µ̂) and we conclude that our system exhibits no phase transitions (our
system exists in a single phase throughout R). If, on the other hand, the zeros of
the partition function, with increasing volume of the system, close-in on the real
axis at, say, at a point z1, then this point divides the real axis into two parts R1

and R2 separated by the point z1. At this point, the quantities depending on ZGC

will display non-analyticities (in the form of discontinuity or multi-valuedness). The
conclusion in this situation is that the system undergoes a phase transition at z1
and divides the phase space into two regions R1 and R2 both of which are single

2An assumption is made about the surface area to volume ratio of the shape of V. The surface
surface area cannot increase faster than V2/3.
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phases.

The nature of the phase transition is further decided by the manner in which the
zeroes of the partition function close-in on (or approach the real positive z axis). A
first order transition occurs when the Lee-Yang zeros cross the positive real z axis at
the phase transition point. Whereas, a second order transition occurs when complex
conjugate pairs of poles “pinch” the axis in the V→ ∞ limit.
In this thesis we will only study systems that exhibit a second order phase transition.
Hence we will be on the lookout for the “pinching” effect. Another feature to notice
about the Lee-Yang zeros in the finite volume case is that ZV

GC is a finite polynomial
in V, hence we have : (

ZV
GC(z)

)∗
= ZV

GC(z
∗)

This condition (satisfied by all finite polynomials with real coefficients) ensures that
the roots of ZV

GC either come in complex conjugate pairs or lie on the z < 0 axis.
However, depending on whether the partition function has additional symmetries, a
richer structure of roots can be expected. For example, the QCD partition function
has a charge conjugation symmetry :

ZQCD(µ̂) = ZQCD(−µ̂)
=⇒ ZQCD(z) = ZQCD(z

−1) (4.3)

This means that in addition to complex conjugate roots, we will also observe the
corresponding inverse roots and their complex conjugates.

4.2 Analysis of LY theorems in the µ plane

Now that we have discussed the LY theorems in the plane of the fugacity variable
(z = eβµ), it would be useful to see how they translate to the plane of the chemical
potential (µ). This is because µ (or the external magnetic field h) are usually the
control variables when performing simulations and not the fugacity, which means
that most of our results on the position of the complex zeroes of the partition
function are in the µ plane. This can seem a little concerning in the beginning since
the partition function as a function of µ is not a finite polynomial. But we will show
in this section that the LY theorems easily translate to the µ plane. Discussions
along the same lines can also be found [69].

All zeros of the partition function in terms of µ are related to z by the exponential
map (and inversely by the logarithm map). The important point for our purposes
is whether we can encounter spurious poles in the µ plane which are not LY zeroes,
i.e, zeroes of the partition function in the fugacity plane. But this will never be a
problem because the exponential map is a well-defined single-valued map

f(z) = a0 + a1 z + a2 z
2

f(z) = a2 ∗ (z − z1) ∗ (z − z2)

f(z(µ̂)) = (eµ̂ − z1) ∗ (eµ̂ − z2)

(4.4)

There can never be a situation in which we get zeroes on the real line in the µ̂ plane
which will not lie on the z > 0 axis because of the exponential map. Conversely, the
logarithm of a complex number can never lie on the Imµ̂ = 0 line.
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This translates into statements in the µ̂ plane :

o If the quantity f(z) exists for all z > 0, then does also g(µ̂) for all µ̂ ∈ R (since
the region z > 0 corresponds to µ̂ ∈ R).

o The region R’ in the µ̂ plane that corresponds to R above can contain any
part of the Imµ̂=0 axis.

o Since for the finite polynomial in z the zeroes come in complex conjugate
pairs – and the complex conjugation of a exponential is straightforward – the
corresponding zeroes in the µ̂ plane will also come in complex conjugate pairs
modulo a factor of 2π.

4.3 Symmetry properties :

i) What do complex conjugate pairs in the fugacity plane (z = eµ̂) translate into
in the µ̂ plane? Assume F(z) is a finite polynomial.

F ∗(z) = F (z∗)

z = eµ̂ → z∗ = eµ̂
∗

ii) Charge conjugation symmetry of the partition function Z(µ̂) = Z(−µ̂).

F (z(µ̂)) = F (z(−µ̂))
z(−µ̂) = e−µ̂ = z−1(µ̂)

4.4 Zeroes of the Partition function

Let us assume that the partition function ZGC admits a finite-dimensional polyno-
mial in the fugacity variable. Then

ZGC = κ(V )Πi (e
Λµ̂ − zi)

ni (4.5)

where κ can be some volume, model-dependent parameter and ni is the multiplicity
of each zero.
Thermodynamic variables like pressure and number density is related to the

P =

(
T

V

)
log(ZGC) (4.6)

χ1
B =

1

(V T )3
∂ logZGC(µ̂)

∂µ̂

=
1

(V T )3

(
log κ(V ) +

∑

i

ni Λz

(z − zi)

)
(4.7)

Since we are measuring the baryon number density, and we are approximating via
Padé the baryon number density - the residue should be 1

(V T )3
× niΛzi
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4.5 Test Case : The Ising Model

Ising model is one of the most studied systems in statistical physics and its role in
understanding phase transitions cannot be overstated. Listing even a fraction of the
work done on the model would take up many sheets of paper. However, we point the
reader to a very nice review of critical phenomena in 2D Ising model [70], done the
conventional way of studying the scaling of the magnetic susceptibility with lattice
volume and extracting the critical exponents from this data. In this section, we will
try to understand the critical phenomena of the Ising model using the technique
of Yang-Lee to determine the existence (2D Ising) or non-existence (1D Ising) of a
phase transition.
The goal of this section is two-fold : 1) To use the Padé approach to obtain the
singularity structure of the 2D Ising model in the complex H (external magnetic
field) plane. 2) To study the scaling of the edge singularity obtained. A very
exhaustive reference on equilibrium and non-equilibrium phase transitions in terms
of the Yang-Lee formalism can be found in [71].

4.5.1 1D Ising

It is well known that the 1D Ising model does not exhibit a phase transition at
any finite values of temperature. Nonetheless, it is a very good starting point for
discussing the Lee-Yang theorems. This is because it has an exact solution for the
partition function at all values of system size which makes it possible to see exactly
where the Lee-Yang zeros are located for this model. It also serves as a good example
for seeing via the Lee-Yang analysis, when there isn’t a phase transition in a system.
If we consider again the Hamiltonian of Eq. 3.2, it can be shown (see [72]) that the
partition function (using the method of transfer matrices [73]), can be written as a
sum of its eigenvalues (λ±) raised to the power of volume (number of lattice sites in
this case):

ZN = λN+ + λN− ; λ± = eβJ cosh (βh)±
√
e2βJ sinh2 (βh) + e−2βJ , (4.8)

where N is the number of lattice sites, J and h the ferromagnetic coupling and the
external magnetic field (as defined in Eq 3.2) and β is the inverse temperature. The
partition function then has zeros when

λN+ + λN− = 0

=⇒ λ+ = ei(2n−1)π/Nλ− , n ∈ {1, ...N − 1}

→ cosh (βh) = ±
√

1− e−βJ cos
(2n− 1)π

2N
(4.9)

It should be clear from the last equation (Eq. 4.9) above, that the partition func-
tion will only have zeros at purely imaginary values of the external field : βh = ihI
with hI ∈ R. Further, at any finite temperature, βJ is finite, which implies that∣∣∣
√
1− e−βJ

∣∣∣ < 1 and
∣∣∣cos (2n−1)π

2N

∣∣∣ < 1 for all n = {1, ..., N − 1}, for any N . This

means that for no finite value of βJ , and for no lattice volume N , the zeros of the
partition function will touch the real h axis, i.e , hI ̸= 0. Hence, using the distri-
bution of the Lee-Yang zeros, in the thermodynamic limit, we have recovered the
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Figure 4.1: Lee Yang zeroes for 1D Ising model. Notice that the zeros given by red stars
and black dots are shifted with respect to the cyan circles to display with clarity the string
of zeros in for the three lattices. But they all lie on Re[βh] = 0 axis.

result that the 1D Ising model does not have a phase transition.

Now we will visualise how these zeros look in the plane of the external magnetic
field h. In Fig 4.1 we have chosen three different values of the temperature, and
shown the distribution of zeros in the thermodynamic limit 3. Notice that at each
value of βJ chosen there is a definite gap between +hLY and −hLY , which does
not go close-in even after taking a very large number of lattice sites (equivalent to
V → ∞). Not surprisingly, the gap reduces when we change βJ , indicating only
that the term

√
1− e−βJ gets closer to unity as T → 0. If there truly was a phase

transition of this model at any T = Tc, then the closest LY zeros, ±hLY would
approach the real axis as V → ∞.

4.5.2 2D Ising

The 2D Ising model is a particularly well-suited model to test our analysis of the
QCD Lee Yang edge singularities (LYEs) in the complex chemical potential plane
which is based on extracting the genuine LYEs using poles of the Padé interpolant.
There are a number of reasons for studying this model, the primary one being that
the distribution of the LYEs of Ising model, in all dimensions, is known (they lie on

3Here the thermodynamic limit means taking large enough volumes beyond which the position
of the closest LY zero does not change.
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the imaginary h axis). Furthermore, a very wide literature on these LY zeros for the
Ising model exists [74, 75, 76] (many using the functional re-normalisation group
approach [77, 78]).The other reason for studying the 2D Ising model using Padé
analysis to extract the LYEs is that the order parameter for this model is obtained
as a result of numerical Monte Carlo simulations, hence the type of statistical noise
present in the data would be similar to the one appearing in the QCD analysis at
imaginary µ (see Chapter 5).

In this section, we want to numerically verify a few theorems based on the LYEs
for the Ising model. In order to do this, we will study two types of scaling using
the LYEs obtained by our Padé analysis. The first scaling is a fixed-volume temper-
ature scaling and the second one is a fixed (reduced) temperature volume scaling.
Before showing the LYEs data we would like to give a few comments on the order
parameter studied in this work. Details of simulations along with relevant plots of
magnetisation and susceptibility can be found in Appendix C

We remind again that the Hamiltonian used is the same as in Eq 3.2, with ferro-
magnetic couplings and only nearest neighbour interactions. This theory exhibits a
second order phase transition from an ordered (broken symmetry phase) to a disor-
dered Z2 symmetric phase. Due to Onsager [79], the 2D Ising model is solved and all
its critical exponents along with the transition temperature (Tc = 2J/ log (1 +

√
2) ≈

2.269J) are known. We consider the order parameters for our Lee Yang edge sin-
gularity scaling analysis - the mean magnetization per site (⟨m⟩ = 1

N
⟨M⟩) and the

first cumulant of the order parameter, i.e., magnetic susceptibility (per site) χM

defined as the following :

M =
∑

i

si

χM =
1

N

∂ ⟨M⟩
∂h

=
1

N
β
(〈
M2
〉
− ⟨M⟩2

)

χM = β N
(〈
m2
〉
− ⟨m⟩2

)
(4.10)

We consider χM as our function to be approximated by the Padé analysis, along
with its first derivatives. The signals we obtain for the singularity structure (or the
poles and zeroes of the function) from the approximant are shown in Fig. 4.2). No-
tice that our order parameter does not involve the modulus on the spins as usually
done when analysing the Ising data. The reason for this is that our analysis for the
LYEs is only performed at T > Tc, hence we are not faced with the situation (at
T < Tc) when the spins are either all aligned along +1 or −1 spin directions and
averaging gives the wrong results. Also, what we are studying is the behaviour of
the magnetisation and its susceptibility around h = 0, when we move from negative
values of h to positive values. Introducing a modulus would then artificially force
discontinuities in the order parameter causing the Padé approximant to pick up
spurious singularities.

Since our analysis to extract the relevant Lee-Yang edge singularities completely
relies on our method of re-summing the Taylor coefficients, we would like to digress
from our discussion on the Lee-Yang zeros to display the “raw” outcome of our Padé
analysis with respect to the singularity structure found for the 2D Ising model.
Padé approximants applied to 2D Ising :
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The goal of this digression is to display the zero-pole structure found by Padé and
also display the pinching of the branch cut associated to the Lee-Yang singularity
as one approaches the transition temperature (Tc). It is well known that the Lee-
Yang zeroes display a gap in the density of zeroes at all T>Tc (see previously
mentioned references in this Chapter). This gap becomes smaller as one approaches
the transition temperature from above finally pinching the real axis at Tc. Our Padé
approximation was able to capture this behaviour for the 2D Ising model and we
display the results for the 50×50 Ising model when solved numerically. A snapshot of
the distribution of zeroes and poles will be displayed below, and lastly, the stability
of the LY zeroes will be discussed by including error estimates. In Fig. 4.2 and Fig.
4.3, we display the zero pole structure taken from a [17,17] order Padé approximation
at twelve different values of the temperature shown on the title of each sub-figure.
We would like to draw the attention of the reader to the two complex conjugate poles
found closest to the real H = βh axis. We want to emphasize that no symmetries
were imposed on the functional form of the approximating function and hence the
complex conjugate found is a genuine effect of the data. Further, every other pole
has been cancelled by an associated zero and hence can be completely disregarded.
Perhaps the most important feature of this singularity structure is that as we move
closer to the transition temperature, the closest complex conjugate pairs of poles
also move closer to the real H axis. Further, notice the appearance of a branch cut
structure as we approach the transition. This is a characteristic feature of Lee-Yang
edge singularities. Also note, that for the 50×50, from the peak of the susceptibility
(shown in Fig. C.1 (left)), it can be seen to have a transition at Tc = 2.3J ). The
very last plot in Fig. 4.3 is exactly at that value of temperature. The point being
that there are still a complex conjugate pairs not touching the real axis. Note that
this conforms to the expectation that there is no phase transitions in a finite volume.
One might argue that this is due to just the fact that the function to be approximated
(χM in this case) becomes sharper near the transition, i.e., it may not signify the
presence of LYEs. Of course to argue with that we will have to perform the scaling
analysis of the poles found by the Padé, which we will do below.
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Figure 4.2: Case Study - 2D Ising model: Displayed are snapshots of the singularity
structure of the magnetic susceptibility approximated by a Padé function simulated at
Temperatures starting from T=3.5 J (Top left) to T = 2.8 J (Bottom right). Note on the
units - the temperatures are taken relative to the transition temperature of 2D Ising, i.e
Tc = 2.269J , with kB set to unity. Further, H is a short hand for βh.

44 S.Singh
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Figure 4.3: Case Study - 2D Ising model: Displayed are snapshots of the singularity
structure of the magnetic susceptibility approximated by a Padé function simulated at
Temperatures starting from T=2.7 J (Top left) to T = 2.3 J (Bottom right). Note on the
units - the temperatures are taken relative to the transition temperature of 2D Ising, i.e
Tc = 2.269J , with kB set to unity. Further, H is a short hand for βh.
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Figure 4.4: (Left) Displaying the LY edge singularities for an array of temperatures
T > Tc for three lattice sizes. Notice that the LYEs for L=30 and L=80 are artificially
shifted to depict the scaling clearly. (Right) The closest LYE to the real h axis for the
three lattice sizes considered.

Shown in Fig. 4.4 are the two types of scaling mentioned above. In Fig.
4.4(Left) is the scaling for the closest poles extracted by the Padé interpolant for
a set of temperatures (T > Tc) for all the three lattice volumes shown. Simu-
lations for the three lattices were done at the same set of reduced temperatures
(t = (T − TC)/TC), where TC was the value of the peak of the susceptibility for
each lattice size (see Appendix C). The values of the reduced temperature used
in the plot : t ∈ { 0.0022,0.0458,0.0893,0.1329,0.1765,0.2200,0.2636,0.3072,0.3508
,0.3943,0.4379,0.4815,0.5251 }. We claim that these poles are the relevant LYEs for
the 2D Ising model simulated by us. This is because the poles extracted always
lie on the imaginary h axis, come in complex conjugate pairs and moreover obey
the expected scaling with temperature, i.e, come closer to the real h axis as one
approaches Tc from above, finally “pinching” the real h axis as we hit Tc. Although
as of now we only have simulation results for three lattice sizes, we would also like
to claim that, looking at Fig. 4.4(Right), we see the onset of a phase transition.
As we have seen throughout this Chapter, the “smoking gun” evidence of a phase
transition using the LY zeros is that the LYE at Tc, goes closer to the real h axis by
increasing volume. This behaviour (which was not observed in Fig. 4.1) can be seen
in Fig. 4.4. Further, in Fig. 4.4(Left) we have tried to stay at the same reduced
temperature (or relative distance from the respective peaks of susceptibility for the
three lattice sizes) to compare the position of the LYEs.

Temperature scaling of LYEs :
Here we want to study the temperature scaling of the LYEs shown in Fig. 4.4(Left)
to see if it is consistent with the Universality class of the 2D Ising model (within
errors) 4. We want to do this in the same spirit as described in [80, 81]. Following
[80], we note that the branch cuts associated to LYEs in the presence of an external
magnetic field h, are located at positions given by functions of reduced temperature
t ∝ (T − Tc)/Tc (for T > Tc) as:

h∗ =

(
t

x∗

)βδ

(4.11)

4We do a similar analysis for the Roberge-Weiss transition done in the paper [16], which will
be described in Section 5.5.1.
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where x∗ is a complex constant and h∗ denotes the position of the singularity closest
to the real h axis. The fact that h∗ is purely imaginary at t > 0, fixes the argument
of the complex constant to be : arg x∗ = π

2βδ
(this value is universal and can be

found in the two references mentioned above. Also, the universal location of LYE
in O(N) models has recently been found in [78]. )

We will fit two types of equation to the poles of the Padé shown in Fig. 4.4
(Left) in accordance with Eq. 4.11.

Fit I : hLY (t) = a ∗ (T/Tc − 1)βδ + b (4.12)

where we fix the the critical exponent βδ = 1.875 in accordance with the known
values from Onsager’s solution [79]. We fit for a, Tc and b. Notice the extra fit
parameter b in Eq. 4.12 as compared to Eq. 4.11. This is added to incorporate the
fact that there are no phase transitions at finite volume - hence, hLY (t = 0) ̸= 0 at
finite V.

The other fit we perform is :

Fit II : hLY (t) = a ∗ (T/Tc − 1)c + b (4.13)

where now the critical exponent is also a parameter to be fitted. We display
our results both in tabular (4.1 and 4.2) form and as plots in Fig. 4.5. The results
from the first fit analysis, where we fixed the Universality class (βδ = 1.875) of the
Ising model model to 2D Z2, despite being consistent with the University class, the
values of Tc returned from the fits are not accurate. However, when we do not fix
the Universality class (allow βδ to be a fit parameter), then we observe expected
results. We see that with increasing volume, the values of Tc and βδ approach the
known values in the thermodynamic limit.

Volume Tc a b χ2

L = 30 2.2567 (75) 1.183 (34) 0.00186(55) 0.55
L = 50 2.2316 (94) 1.105 (36) -0.00134 (65) 0.36
L = 80 2.2221 (90) 1.079 (34) -0.00163 (47) 0.38

Table 4.1: Results for Fit I : Closest poles obtained from the Padé along with their errors
were fit to Eq. 4.12 with fixed critical exponent βδ = 1.875 for the 2D Ising Universality
class and fit parameters a,b,Tc were determined. Reduced χ2 is also shown. Fit degrees of
freedom are 10.

Volume Tc βδ a b χ2

L = 30 2.3166 (59) 1.671 (23) 1.129 (15) 0.00396 (23) 0.09
L = 50 2.2848 (93) 1.699 (34) 1.071 (23) 0.00038 (36) 0.14
L = 80 2.278 (15) 1.705 (51) 1.068 (25) -0.00004 (37) 0.22

Table 4.2: Results for Fit II : Closest poles obtained from the Padé along with their
errors were fit to Eq. 4.13 with the critical exponent as a fit parameter along with a,b,Tc

were determined. Reduced χ2 is also shown. Fit degrees of freedom are 9.
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	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	0.45

	2.2 	2.4 	2.6 	2.8 	3 	3.2 	3.4 	3.6

Im
[h

LY
]

T/J

30	X	30	Ising	model

Fit	type	I
Fit	type	II

Pade	Poles

-0.05

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	2.2 	2.4 	2.6 	2.8 	3 	3.2 	3.4 	3.6

Im
[h

LY
]

T/J

50	X	50	Ising	model

Fit	type	I
Fit	type	II

Pade	Poles

-0.05

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.3

	0.35

	0.4

	2.2 	2.4 	2.6 	2.8 	3 	3.2 	3.4 	3.6

Im
[h

LY
]

T/J

80	X	80	Ising	model

Fit	type	I
Fit	type	II

Pade	Poles

Figure 4.5: Comparison of Fit I & Fit II with errors on data (shown as a cyan band)
for : (Top Left) : 30 × 30 Ising model, (Top Right) : 50 × 50 Ising model and (Bottom
center) : 80 × 80 Ising model.

4.6 Outlook and conclusions

We would like to conclude this chapter by first reminding the reader that the primary
reason for the above shown temperature scaling analysis of the LYEs of the 2D Ising
model was to mimic the analysis done by us for the Roberge-Weiss (RW) analysis
(section 5.5.1) and to compare our findings. In one way the comparison is mean-
ingful because (as stated previously), both are a result of numerical Monte-Carlo
simulations and have the same type of statistical errors and they both undergo a dis-
continuous phase transition (2D Ising below and the RW transition above a certain
transition temperature). So the goal was to see if the Padé analysis would return
to us the genuine Lee-Yang zeros also for the 2D Ising model when the analysis was
performed for the temperature scaling exactly the same way as for RW transition.
From a numerical point of view, we do find that the closest poles of the Padé analysis
obtained for the 2D Ising model satisfy all the properties expected of Lee-Yang edge
singularities of the Ising model to have (lie on imaginary H axis, come in complex
conjugate pairs and follow the expected temperature scaling). But from a physical
point of view, such a comparison can be misleading. The Ising model is a discrete
model and the thermodynamic limit for it only means taking infinite lattice size.
Although we see from fit II a trend, that supports the statement that with increasing
lattice size, we are moving toward the expected critical exponents, the analysis uses
only small lattices. For QCD, the thermodynamic limit also means taking infinite
volume, but the theory has an inherent length scale. Because of this the discretiza-
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Figure 4.6: (Left) : [75]Determination of the convergence points of the Lee-Yang zeros
(red circle) for d = 2, 3. For d = 3, the real-part also vanishes (not shown). (Right)
: Scaling of LYEs from our analysis for 2D Ising model done at L ∈ {10, 15, 20, 30} for
T = Tc ≈ 2.269J , to be compared with the d = 2 plot on the left.

tion is also extremely important, and a scaling analysis of the Lee-Yang zeros can
have a very different meaning. We say this to emphasize that the volume scaling
done for the 2D Ising model should not be compared to the analysis done later in
Chapter 5.

Further studies on the 2D Ising model in relation to the extracting the LYEs from
Padé analysis were done. These were done following an analysis done in [75, 76].
The authors of [75] have come up with a method of extracting critical exponents
using the Lee Yang formalism, even for systems away from phase transition. A
detailed analysis of both the Fischer and Lee Yang zeros have been done in the
paper. For the purposes of this thesis, we will discuss only the Lee Yang zero study
along with our results 5. They briefly describe the analysis we want to reproduce.
Using a method we will not describe here (makes use of higher order cumulants),
LYEs were obatined for d = 2, 3 Ising model, at different lattice volumes. The finite
size scaling hypothesis was applied to the LYEs found :

|h0 − hc| ∝ LB/ν−d =⇒ Im[h0] ∝ LB/ν−d (4.14)

with h0 represent the LYE for a lattice volume, denoted by L, hc represents the value
for the external magnetic field for which the transition occurs and B/ν represents
the ratio of critical exponents, which for the 2D Ising model is B/ν ∼ 0.125. From
Eq. 4.14 it can be seen that we can either fit for B/ν or input it and verify the
scaling law. The results from the paper are shown in Fig. 4.6(Left).

Our goal was to obtain the LYEs via the Padé analysis to check (again) if the
closest Padé poles are the genuine LYEs. For this simulations were performed for the
2D Ising model for the lattice sizes L ∈ {10, 15, 20, 30} at an array of values of the
external magnetic field (similar to the analysis above) at temperature fixed at the
critical temperature (T = Tc ≈ 2.269J). A Padé approximation is constructed using

5We have also performed the Fischer zero studies which will form the content of a future
publication.
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the multi-point Padé method. The closest pole for each of the lattices was obtained
and fitted according to Eq. 4.14. The results are shown as below in Fig. 4.6 (Right).
It can be seen from the plot that the poles lie very nicely on the expected scaling
curves. As a last comment we would like to mention that a detailed study following
the analysis in [75] was performed by us after submitting the first version of this
thesis. The results of that study will appear in a future publication.
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Chapter 5

Probing QCD at imaginary µ
using Padé

As already seen in Chapter 3, QCD displays a very rich phase structure at imaginary
values of the chemical potential. In this chapter, we will study complex singularities
of 2+1 flavour lattice QCD with physical quark masses1. One of its most important
features being the Roberge Weiss (RW) transition. We will first present our findings
relating to the RW transition and then briefly discuss the other transitions that we
might be sensitive to, for example the chiral transition.
The QCD partition function at imaginary values of the quark chemical potential
(µq) is free of the sign problem and hence suitable for integration using Monte Carlo
methods. Being free of the sign problem, QCD simulations in the imaginary µq (in
this chapter we will use µq for the quark chemical potential and µB for the baryon
chemical potential) plane in order to constrain the phase diagram at real µq, via
analytic continuation remains one of the most popular choices to hunt for the QCD
critical point [57, 58, 82]. This research direction mainly relies on obtaining Taylor
series coefficients for cumulants of various conserved charges at either µ = 0 or
purely imaginary. Recently, many methods of re-summation of these Taylor series
have appeared - [83, 84, 81, 85] to name a few.

In this Chapter, we will first discuss in Section 5.1 our simulation details for both
generation and measurement of gauge configurations followed by a description of the
cumulants measured. We will then describe the three methods used for our Padé
analysis of the cumulants in Section 5.2. This will be followed by a discussion on
the approximations obtained and their analytic continuation to real µB in Section
5.3. We will then describe the singularity structure found by our Padé functions
and the stability of those results in Section 5.4. We will finally discuss the scaling
of the stable poles found by the Padé approximation in Section 5.5.1 found in the
vicinity of the RW transition and show that they are indeed the expected Lee Yang
edge singularities. We will also discuss an additional stable pole found by the Padé
analysis not in the vicinity of the RW transition in 5.5.2. We will discuss the scaling
of this point with respect to the Chiral transition. Finally, in Section 5.6 we discuss
the implications of the LYEs found in the context of the QCD phase diagram.

1This chapter is heavily based on our recent publication [16], although results from our new
analysis for Nτ = 6 are presented
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5.1 Simulation details

The theory that we will be studying is the (2+1) flavor of QCD using highly improved
staggered quarks (HISQ) with imaginary chemical potential with the partition func-
tion given by:

Z =

∫
DU det[M(ml, iµ

I
l )]

2/4

× det[M(ms, iµ
I
s)]

1/4 e−SG(U) , (5.1)

where M(m, iµI) represents the fermion matrix of a HISQ flavor with mass m and
chemical potential µ = iµI . The first determinant represents the two degenerate
light flavors (up and down quarks). For the gauge part SG(U), we are using the
Symanzik improved Wilson action, which is correct to O(a2) in the lattice spacing.
For the gauge field generation, we were using the SIMULATeQCD package [86] with
an implementation of the rational hybrid Monte Carlo algorithm (RHMC) [87]. The
lattice bare parameters are used from various publications of HotQCD. The lattice
bare quark masses are varied with the lattice coupling such that for each coupling
physical meson masses are obtained; i.e., we stay on the line of constant physics
(LCP). Here, we make use of the parametrization of the LCP (for the physical value
of the pion mass, ml/m

phys
s = 1/27) obtained and refined in previous works [88, 89,

90]. The same holds true for the scale setting, where the parametrization of the β
function based on the kaon decay constant has been used. For simplicity, we fix the
ratio of the explored chemical potential in this study to µl/µs = 1. The initial goal
during the commencement of this project was to see whether Padé approximants
were sensitive to the RW singularity (the end-point of the RW phase transition). To
study this transition we chose the net baryon number density (χ1B) as the function
to be approximated and to this end we have measured its cumulants to the 4th order:

χB
n (T, V, µB) =

(
∂

∂µ̂B

)n
lnZ(T, V, µl, µs)

V T 3

=

(
1

3

∂

∂µ̂l

+
1

3

∂

∂µ̂s

)n
lnZ(T, V, µl, µs)

V T 3
, (5.2)

To motivate our choice for studying this function in order to look for the RW sin-
gularity, we again mention the two very important properties of the QCD partition
function at imaginary µB :

ZQCD(µB + i2πT ) = ZQCD(µB) & ZQCD(−µB) = ZQCD(µB)

Based on the above and the fact that χ1B is a derivative of the logarithm of the
QCD partition function2, it is easy to see that χ1B is an odd and periodic function
of µB/T . Moreover, since the order of the transition is expected to be first order at
physical masses of quarks at µB/T = iπ, χ1B(µB/T ) is expected to become discon-
tinuous at the transition point. This periodicity also limits the interval (in µB/T )

2The logarithm of an even function is itself an even function. This statement is not true for
logarithm of odd functions, but we are not concerned with those.
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Figure 5.1: Cumulants measured for 243×4 lattices. (Left): net baryon number density,
(Center): its first cumulant χ2B, (Right) : second cumulant χ3B simulated at temperatures
T ∈ {160.4, 167.4, 176.6, 183.3, 201.4} MeV

where we can gain genuine information about the partition function and the observ-
ables derived from it. Also, because of this periodicity, we only need to simulate
the net baryon number cumulants in the interval µB/T ∈ {0, π}. Our hope is that
the rational function will be able to encode this discontinuity 3 as a singularity as
we approached the RW transition point. Our primary analysis was done for lattices
with spatial extent Nσ = 24 and temporal extent Nτ = 4. The reason for choosing
this lattice volume was that an independent analysis in [91] had already been per-
formed to determine the RW transition temperature for this lattice volume, using
the HISQ action and for the same quark masses (throughout this work we use phys-
ical quark masses ml/ms = 1/27). Hence, this was a good testing ground to check
whether our approach would work. A summary of the simulations in the forms of
plots of the cumulants of the net baryon number density measured is shown in Fig.
5.1. More details of the simulations including the µB/T values sampled and number
of configurations generated at each temperature are available in Table B.1 for the
Nτ = 4 simulations.

Also within the same work, simulations on finer lattices (Nσ = 36 and Nτ = 6)
were performed at lower temperatures T ∈ {120, 145} MeV. The goal there was to
stay away from the RW transition in hope of being sensitive to other singularities
like the Chiral transition. The net baryon number cumulants for this simulation can
be found in Table B.2.

Recently we have been simulating net baryon number density cumulants along
with other observables like chiral condensate and charge density for 363 × 6 lattices
(using the same action as above) at higher temperatures (T ∈ {166, 179.5, 185, 190, 196}
MeV). The goal of this analysis was to predict the RW transition temperature for
this discretization of the lattice. At this moment we only have completed simula-
tions for four temperatures T ∈ {145, 179.5, 185, 190} MeV. Again, a summary of
the first two cumulants measured is shown in Fig. 5.2 & 5.3. Note that we only show
the first two cumulants for the new simulations because only those have been used
to produce the results presented in the next section. More details of simulations are
to be found in Appendix B.

Lastly, we have also been running simulations around the crossover temperature
T = 156.5 MeV for 323 × 8 lattices. The goal here is not exactly the same as for

3We of course realise that a lattice discretization regularises a discontinuity, so what we strictly
mean here is the tendency of a discontinuity.
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Figure 5.2: [New simulations] Net baryon number density (χ1B) (Left) and its first
cumulant (χ2

B) (right) for 36
3× 6 lattices simulated at temperatures T ∈ {179.5, 186, 190}

MeV
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Figure 5.4: [New simulations] (Left) Net charge and baryon number density for 323×8
lattices simulated at T = 156.5 MeV

the above experiments mentioned above, i.e., we are not really looking for complex
singularities here. The goal here is more phenomenological. We would like to see how
our analytic continuation of the net baryon number density and other observables
(chiral condensate and charge density) compares with the current state-of-the-art
results.

5.2 Padé analysis

In this section we would like to describe in greater detail the main approaches used
by us to build the Multi-Point Padé approximations. In the first subsection 5.2.1, the
general structure of the equations used in the three implementations of the Padé
construction is described. In the second subsection 5.2.2, we explain the actual
implementation of the Multi-Point Padé solver with the help of MATLAB scripts.
We also discuss the inclusion of errors on Taylor coefficients in our construction.

5.2.1 Description of methods used

We present here the list of approaches used by us to build Padé approximants. This
was partly motivated by needing consistency checks and partly by observing certain
patterns occuring in our approximations.

I The solution of the linear system (2.8) has been worked out in two different
ways, namely,

i One can build the system by writing the most general form for Rm
n (x), i.e.,

that of (2.4).
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ii One can instead impose the form

Rm
n (x) =

m′∑
i=0

a2i+1 x
2i+1

1 +
n/2∑
j=1

b2j x2j
,

( m = 2m′ + 1, a1 = χB
2 (T, V, 0) ) ,

(5.3)

with the coefficients {ai} and {bj} that turn out to be real. This form
ensures the following: (a) The function χB

1 (T, V, µB) has the right parity
(it is an odd function). (b) As a consequence of the coefficients being real-
valued, for imaginary µB = µI

B, the odd cumulants χB
2n+1(T, V, µ

I
B) are

imaginary valued, while the even χB
2n(T, V, µ

I
B) are real-valued, as it must

be. (c) When Eq. (5.3) is computed for real µB = µR
B, the cumulants are real;

i.e., the analytic continuation one is typically interested in is guaranteed to
be meaningful.

Notice that taking into account different functional forms for Rm
n is not the

end of the story. Another alternative which can (and actually was) taken into
account is whether one :

i performs the Padé analysis in the (original) complex-µB plane or

ii goes through a conformal map µB = ϕ(ν) and performs the Padé analysis in
the complex-ν plane (where ν would be the relevant variable after mapping.
Details of the map used for this work in Section 5.4.2).

This is in the spirit of [92, 93, 81].

II Because of the cumulants being known to finite precision, the minimization of
a generalized χ2 is an obvious alternative to the solution of (2.8). Suppose we
want Rm

n (x) to be a Padé approximant for the function f(x) whose values and

derivatives we know at given points {xj | j = 1 . . . N}, i.e. c
(k)
j ≡ ∂jf

∂xj (xk) ≃
∂jRm

n

∂xj (xk), with the c
(k)
j known with errors ∆c

(k)
j . Then, the coefficients {ai, bj}

the Rm
n depends on can be fixed minimizing the generalized χ2,

χ̃2 =
∑

j,k

|∂jRm
n

∂xj (xk)− c
(k)
j |2

|∆c(k)j |2
. (5.4)

Of course, all the alternatives that we commented on in 1 (namely, different
functional forms for Rm

n , use of conformal maps) can be also implemented in
this approach.

III Both 1 and 2 make use of the knowledge of f(x) (and its derivatives) at given
points; i.e., the only information on f(x) we have is at a finite (possibly small)
number of points. One could instead compute a smooth interpolation of f(x)
before entering the Padé analysis.
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5.2.2 Simulation details : Padé analysis

Solving for the Rational function :

The first function that we will describe is the linear solver for building multi-point
Padé approximation. We will do this with the help of the MATLAB script shown
below. The function named NSLinPadeGen takes as input a matrix MyDD
consisting of Taylor coefficients (in this implementation only the value and its first
derivative are used) as columns simulated at multiple values of the chemical potential
with each row representing a different chemical potential value. The first column is
given by the value of the chemical potential followed by the value of the function
in the second column. The third column is always assumed to be the statistical
error associated to the given Taylor coefficient. The fourth column contains the
first derivative of the function followed in the fifth column by the statistical error
associated to it. The next input to the function is another matrix labelled idx
consisting of two columns, the first one labelling the rows corresponding to the
matrix MyDD and the second column contains any number up to the number of
Taylor coefficients to be considered for the evaluation. In our case it can only take
values ∈ {0, 1, 2} because we only consider two Taylor coefficients in the current
implementation. Making the value zero excludes that particular row from the Padé
construction, as can be seen in line number 3 in the script below. Based on the
total number of Taylor coefficients available, the next step is to decide on the order
of the Padé approximant. This is done between lines 7 and 13. At line 7, the total
number of coefficients available is obtained by summing the second column of the
input matrix labelled idx. Then depending on whether this number is even or odd,
the order of the polynomials in the numerator and denominator is constructed. For
odd number of Taylor coefficients, a rational function with same order in numerator
(On) and denominator (Od) will be constructed (lines 8 to 10). For even number
of Taylor coefficients available, a rational function with order one less in numerator
than denominator ([On,On+1]) will be constructed (lines 12 and 13) 4. After this
the first column of the input matrix MyDD will be copied into a new vector called
mu in line 16 and the value of the first Taylor coefficient from the first row will
be copied to a variable ff in line 18. We now proceed to construct the matrix A
and the column vector b with an aim to solve the linear system Ax = b, with x
the column vector made up of the required coefficients of the rational function we
want. We want to remind the reader that the system of equation we are trying
to solve is given in Eq. 2.8, while the matrices A and b are set up according to
Eq. 2.9. Between lines 20 to 27, we set up the first row of the system of Eqs. 2.9,
because we always include the Taylor coefficients at µB = 0, and assume that to be
our first row. We set up this row separately because, the number density is always
zero for zero chemical potential. It is straightforward to remove this assumption,
in order to solve for arbitrary functions, but we implement this assumption below
since we are dealing with the number density here. Between lines 29 and 41 we
set up the remaining rows of our system of equations and solve them for the vector
b. Between lines 47 and 52, the vector b, which contains the coefficients of the
polynomials of the numerator (denoted in the script by P) and the denominator

4Other combinations of the difference in degrees between numerator and denominator have also
been tried. However no new non-trivial information was gained regarding the singularity structure
or the functional form of the approximation, because of which we are making a choice

57 S.Singh



Part I: QCD à la Padé Chapter 5

(denoted in the script by QQ), is split according to the values of [On,Od] requested
to build the respective polynomials. Finally, using the inbuilt multi-root solver of
MATLAB, called roots, the entire set of roots for the numerator (denoted by zz in
the script) and denominator (denoted by pp in the script) of the rational function
are constructed.

1 function [P, QQ, zz, pp] = NSLinPadeGen(MYdd ,idx)

2

3 idx(idx(:,2)==0,:) =[];

4

5 dd = MYdd(idx(:,1) ,:);

6

7 lll = sum(idx(:,2));

8 if mod(lll ,2)

9 On = (lll -1) /2;

10 Od = On;

11 else

12 On = lll/2-1;

13 Od = On+1;

14 end

15

16 mu = dd(:,1);

17

18 ff = dd(1,2);

19

20 A = [mu(1) .^(0:1: On) (-ff*mu(1) .^(1:1: Od))];

21 b = ff;

22 if idx(1,2) >1

23 ddd = dd(1,4);

24 A(end+1,:) = [0 (1:1: On).*mu(1) .^(0:1:On -1) (-ddd*mu(1) .^(1:1:

Od)-

25 ff *(1:1: Od).*mu(1) .^(0:1:Od -1))];

26 b(end+1) = ddd;

27 end

28

29 for ii=2: length(dd(:,1))

30

31 ff = dd(ii ,2);

32 A(end+1,:) = [mu(ii).^(0:1: On) (-ff*mu(ii).^(1:1: Od))];

33 b(end+1) = ff;

34 if idx(ii ,2) >1

35 ddd = dd(ii ,4);

36 A(end+1,:) = [0 (1:1: On).*mu(ii).^(0:1:On -1)

37 (-ddd*mu(ii).^(1:1: Od)-ff *(1:1: Od).*mu(ii).^(0:1:Od -1))];

38 b(end+1) = ddd;

39 end

40

41 end

42

43 b = transpose(b);

44

45 aux = A\b;

46

47 P = zeros(1,On+1);

48 P(1:1: end) = [aux(1:On+1)];

49 P = flip(P);

50 QQ = zeros(1,Od+1);

51 QQ(1:1: end) = [1; aux(On+2: end)];
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52 QQ = flip(QQ);

53

54 zz = roots(P);

55 pp = roots(QQ);

56

57 end

Including errors :

An immediate observation from the script above is that the analysis does not take
into account errors present on the simulated Taylor coefficients, even though they
are present in the input matrix constructed. A straightforward way to include errors
is vary the input Taylor coefficients over a randomly generated spread determined
by a Gaussian centered around the central values of the Taylor coefficients obtained
and having a standard deviation proportional to the error on that coefficient (see the
section above for the placement of error in the input matrix MyDD). The lines of
code necessary to implement one instance (is run in a loop to generate error estimates
and check for the stability of poles of the Padé approximant) of this error on the
coefficients is shown below. Here, the inbuilt function of MATLAB called randn
is used, whose most basic function is the generate a random number drawn from a
normal distribution. The most natural way to construct a random number drawn
from a different Gaussian distribution, say with mean m and standard deviation d,
is r = m+ d ∗ randn(M,N), where M,N are dimensions of the matrix needed. The
use of the imaginary value in line 3 and 5, is to indicate that the number density
and its second derivative are imaginary when simulated at imaginary µB.

1

2 DD = MYdd;

3 DD(:,2) = DD(:,2) + 1i*randn(size(DD(:,2))).*DD(:,3);

4 DD(:,4) = DD(:,4) + randn(size(DD(:,4))).*DD(:,5);

5 DD(:,6) = DD(:,6) + 1i*randn(size(DD(:,6))).*DD(:,7);

6

7 [~,~,zz ,pp]= NSLinPadeGen(DD ,idx);

The procedure described above takes into account statistical errors. The stable
poles found in our analysis are always reported along with statistical errors obtained
from generating stable poles from about 500-2000 random generations of Taylor
coefficients. The magnitude of errors can be viewed in Table 5.4.
To inspect how the stable pole moves systematical errors, one varies the input matrix
idx. This can be done by deleting certain rows and including or dis-including higher
order Taylor coefficients for some rows and their various permutations. We have also
ascertained the stability of the poles found under this test. As an example, see Fig.
5.13 and Fig. 5.14. The green dots are results from the analysis of varying the
second column of idx matrix, with the number of permutations used indicated in
the caption of the figures.

5.3 Results : Approximation and analytic contin-

uation

In this section we will describe how the Padé function obtained approximates our
data. We will display results from both the approximation in the imaginary µB/T

59 S.Singh
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Figure 5.5: (Left) : Rational approximation of the baryon number density for the 243×4
lattices simulated at temperatures T ∈ {167.4, 186.3, 201.4} MeV. (Right) : Analytic
continuation of the rational functions shown in the left plot to real µB/T for the same
temperatures.

plane and the analytic continuation of the results to the real µB/T plane. We will
also display results obtained both from our symmetric and general ansatz.

Results for the Nτ = 4 data: Here we display the net baryon number density
and its analytic continuation. On the left plot in Fig. 5.5 are displayed the results
from the two ansatz : one using the symmetric Padé solver (labelled S in the plot)
and the other by using no symmetries imposed (labelled NS in the plot). As can be
seen, they lie on top of each other and approximate the data very well. The spikes
that one can see in Fig. 5.5 (Left) are due to zero-pole pairs on the imaginary µB/T
axis, which are supposed to exactly cancel each other (as explained in Section 2.6),
but due to the presence of noise are slightly different (difference is in the 3rd or 4th

digit.) Now we move onto Fig. 5.5 (Right) - the analytic continuation of the rational
approximations to the real µB/T plane. As for the analytic continuation, it can be
seen that the curves corresponding to a given temperature from both the ansatz
agree up to µB/T ∼ 2. Another feature to notice is that we have also plotted the
imaginary part of the number density as a function of real µB/T (which of course
should be zero). We can see that for the ansatz with no symmetry imposed, this
curve starts as zero, but soon deviates from it, around µB/T ∼ 1.5− 2.0. We claim
that we should be able to trust the analytic continuation up until the point where
the imaginary part of the number density at real µB/T deviates from zero. As for
the symmetric ansatz, the imaginary part of the number density at real µB/T is
zero by construction such that it cannot give an indication about when the analytic
continuation fails.

Results for the Nτ = 6 data at T = 145 MeV: Now we discuss the rational
approximation and analytic continuation for the case for 363 × 6 lattice. We would
like to remind the reader that this lattice size and temperature were chosen in or-
der to probe other singularities like the chiral transition. To this end we did find
a signature of a pole in the complex µB/T which was not a thermal singularity -
only when we restricted our input interval to µB/T ∈ {0, π}. We will display this
singular structure in the next section (Section 5.4). Here we will discuss the ap-
proximation itself and its analytic continuation. Displayed in Fig. 5.6 (Left) are the
rational approximation (top) and analytic continuation (bottom) obtained from the
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Figure 5.6: 363 × 6 lattice data at T = 145 MeV : Rational approximation (Top Left)
and Analytic continuation (Bottom Left) using the Linear solver described in Eq. 2.8 and
Rational approximation (Top Right) and Analytic continuation (Bottom Right) from the
generalised χ2 fit method described in Eq. 5.4.

linear solver (Eq. 2.8) using both the half interval as input (µB/T ∈ {0, π}) and full
interval (µB/T ∈ {0, 2 ∗ π}). It is not surprising that the approximant built from
the full interval does a better job at approximating the number density on the full
interval. As for the analytic continuation, the real part of the number density at real
µB/T for both the half and full interval inputs starts deviating around µB/T ∼ 2.5
while their imaginary parts start deviating from zero at around the same value of
µB/T ∼ 1.5. The situation on the right plot of Fig. 5.6 is qualitatively the same as
the one on the Left, but was obtained using the generalised χ2 procedure mentioned
in Eq. 5.4.

Results for the Nτ = 6 data at T ∈ {179.5, 186, 190} MeV: These are results
from our most recent simulations. We have approximated here also the charge
density and its cumulants, in addition to the net baryon number density. We display
below only the rational approximations for this data. In Fig. 5.7 the reader will
find both the rational approximation for the charge and baryon number densities
displayed in the same plot.
Results for Nτ = 8 data at T = 156.5 MeV : 323 × 8 lattices were simulated
at T = 156.5 MeV for the purposes of comparing how the Padé approximant and
its analytical continuation perform with respect to the state of the art methods
currently used in lattice QCD simulations. But for the moment we only display
preliminary results for Nτ = 8. Below we display a new variable simulated - the
chiral condensate. Since the chiral condensate is a mass derivative of the partition
function, we would expect it to inherit the even behaviour of the partition function
across µB/T = π, but for the moment we only display results for the first half of
the interval in Fig. 5.8.
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Figure 5.7: Rational approximations for net baryon number density and net charge
density for 363 × 6 lattices simulated at: (Top left) : T = 179.5 MeV,(Top right) : T =
185 MeV, (Bottom) : T = 190 MeV
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Figure 5.8: Rational approximation vs simulated data for the chiral condensate obtained
for 323 × 8 lattices at T = 156.5 MeV
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Figure 5.9: Free energy for the Nτ = 4 data near the RW transition obtained by inte-
gration of the corresponding Padé approximation of net baryon density.

Free energy for the Nτ = 4 data near the RW transition : Since we have
the rational function at for the number density at our disposal, we decided to nu-
merically integrate it to obtain the free energy profiles for temperatures near the
RW transition. Shown in Fig. 5.9 are the free energy profiles constructed for three
temperatures for the 243×4 lattices : (Top) at T = 167.4 MeV, (center) : T = 183.6
MeV; (bottom) : T = 201.4 MeV (expected RW transition). More details about the
RW transition can be found in the following section, but we however would like to
point out that a signature cusp is developing around Im[µ]= π as T approaches the
expected RW transition temperature.
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5.4 Results for the singularity structure

In this section we will begin by displaying our final results for the stable poles
obtained by the Padé approximation of the net baryon number density in Tables
5.1 & 5.2. The results of Table 5.1 can also be found in our recent publication
[16]. The poles that are displayed in Tables are the only stable poles found by
the Padé approximant. The stability has been checked for every single pole by
repeating the analysis at various order (more on this in the following subsection).
After determining the stable poles an error estimation was proposed on each of them.
The errors are computed out of a bootstrap in which our Padé analysis is repeated
by letting the input Taylor coefficients vary within their errors. A note on the type
of errors is due. There are two effects which we believe are correlated. One of them
is statistical which originates from the nature of Monte Carlo methods and we have
taken them into account for the current error estimates on the poles in the tables.
The other is more systematic in nature and has to do with the choice of order we
make for generating our Padé approximant. This effect has also been studied by
us qualitatively in [16]. But the main message is that these systematic effects grow
proportionally with the noise present in the data, and with the given magnitude of
noise on our input coefficients (for the 243× 6 lattices), our statistical error bars are
larger than the systematic ones. But of course a more careful analysis will have to
be done in the future taking into account both effects.

The main message we want to convey from Table 5.1 is that the poles from
the three different methods described to construct the rational approximation are
consistent within errors. Method III in the table indicates the analysis performed
in the fugacity plane and Method III∗ the values mapped back to the original plane
(being a logarithmic map there are infinitely many relatives of the pole found, but
we pick the one in the first quadrant since they are all physically equivalent.)

T (MeV) Method I Method II Method III* Method III
µ̂R
LY µ̂I

LY µ̂R
LY µ̂I

LY µ̂R
LY µ̂I

LY zR zI

201.4 0.11(11) 3.142(10) 0.077(45) 3.133(15) 0.0541(15) 3.1294(63) -0.9472(14) -0.0116(60)
186.3 0.48(14) 3.118(54) 0.53(13) 3.112(66) 0.397(51) 3.127(34) -0.672(34) 0.010(21)
176.6 1.03(10) 3.112(72) 1.022(80) 3.18(12) 1.040(94) 3.115(65) -0.353(33) -0.010(20)
167.4 1.82(11) 3.125(79) 1.79(13) 3.164(95) 1.694(55) 3.12(13) -0.184(12) 0.004(22)
160.4 2.097(90) 3.147(11) 2.14(12) 3.150(70) 2.07(76) 3.14(24) -0.126(70) 0.000(14)

Table 5.1: Method I : Linear Solver. Method II : χ2 fit approach. Method III : Linear
solver in fugacity plane. (Note* : Mapped back values from fugacity plane. We are picking
the value in first quadrant given the symmetries of the partition function)

We now focus on the poles found from the recent analysis on 363 × 6 data
with temperatures in the vicinity of the RW transition. We used two different
observables to approximate via our Padé analysis here : the net baryon density and
the net charge density since they have the same symmetry properties across the RW
transition. The results from the same type of bootstrap analysis are presented in
Table 5.2. This is again a positive result for us, that the two agree very well within
errors.

Lastly, we would like to display results for the 363 × 6 lattice data simulated at
T = 145 MeV. This was only error-analysed using method II described in Section
2.2. This point is special because it only shows up when we consider half the input
interval (the full interval gives a thermal type singularity as shown). But there is
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T (MeV) χ1B χ1Q

µ̂R
LY µ̂I

LY µ̂R
LY µ̂I

LY

190 0.532(82) 3.160(66) 0.539(85) 3.153(91)
186 0.91(12) 3.154(91) 0.869(95) 3.151(76)
179.5 1.33(17) 3.14(14) 1.25(12) 3.136(95)
145 2.99(39) 3.15(96) 2.89(59) 3.58(99)

Table 5.2: Comparison of thermal singularities obtained from the analysis of two cumu-
lants for the Nτ = 6 data: χ1B and χ1Q

Figure 5.10: Singularity structure in the µ̂B plane on Nτ = 6 at T = 145 MeV. As in
Fig. 5.6, the method for obtaining the rational approximants can be the solution of the
linear system (left) or the minimization of the generalized-χ2 (right); the input interval
for the analysis can be µ̂I

B ∈ [0, π] (top) or µ̂I
B ∈ [0, 2π] (bottom).

still the stability of this pole across methods as shown in Fig. 5.10. The pole with
its statistical error bars is presented in Section 5.5.2.

5.4.1 Stability of the singularity structure under choice of
coefficients

In this sub-section we will comment more on the systematic effects of changing the
order of the Padé to display the stability of the pole found. This is important
because the only true signature of a genuine pole is stability under changing order
of the Padé. Of course this stability is subject to noise as explained in Section 2.6.
We display this stability in two ways. The first one can be seen in Figs. 5.11 & 5.12,
and the second can be seen in Figs. 5.14 & 5.13.

In Fig. 5.11 we explicitly display the singularity structure obtained from the
Padé at three different order for the 243 × 4 lattices simulated at 160 MeV. As can
be seen, the stable poles only move within the statistical error bars quoted. The
same holds of the data shown in Fig. 5.12.
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Figure 5.11: Zero pole structure for Nτ = 4 , T=160MeV at different orders of the Padé
interpolant
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Figure 5.12: Zero pole structure for Nτ = 4 , T=167MeV at different orders of the Padé
interpolant
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Figure 5.13: Stability of poles using fifty permutations of the input Taylor coefficients
(marked Spread) for 363×6 lattice simulated at T = 179.5 MeV : (Left) net baryon density
and (Right) net charge density
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Figure 5.14: Stability of poles using thirty five permutations of the input Taylor coeffi-
cients (marked Spread) for 323 × 8 lattice simulated at T = 156 MeV : (Left) net baryon
density and (Right) net charge density

In Fig. 5.13 we demonstrate stability of the closest pole found by the Padé by
using fifty permutations of the input Taylor coefficients. These are marked by green
dots. The spread of the poles in indeed very small within statistical error bars shown
in Table 5.2.

However, the situation in the 323 × 8 lattice is less promising at the moment.
But irrespective of that there is definitely the signature of a pole which will be
investigated in the future.

5.4.2 Stability of results under conformal maps

Taking inspiration from [92, 81], we repeated our analysis in a different variable
obtained via a conformal map of our data. The primary reason for doing this was to
determine whether the poles obtained in the µ plane are artifacts of the variable of
expansion or invariant under the choice of variable which can confirm the genuineness
of the stable poles we find. Another reason (which became apparent to us after doing
the analysis in the conformal plane) was that when we choose a map that shrinks our
input interval for the multi-point Padé analysis, the linear system we solve becomes
well-conditioned. To be specific, the map we chose was the fugacity map : z = eµ̂B .
Before we display the results of this map, we would like to comment on the expected
singularity structure from this map.
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i Our interval of expansion µ̂B = iµ̂I with µ̂I ∈ R will be mapped to a unit circle
in the fugacity plane because of the exponential map.

ii The signal for the Roberge-Weiss transition observed in the µ̂B plane was either
poles or branch-cuts all lying on the line µ̂B = iπ. Hence, these will be mapped
to the real z axis.

iii Even though one of the motivations for the conformal map was to get rid of the
spurious poles (if any) in the original plane, we still find some poles of residue
zero (poles accompanied by zeros). But this is to be expected since they are both
an artifact of noise and of the order we demand from our Padé as explained in
Section 2.6.

In Fig. 5.15, we display results for the singularity structure in the conformal
(fugacity) plane for the thermal singularities for the Nτ = 4 data for three temper-
atures: T = {201.4, 186.3, 167.4} MeV. As can be seen, all the relevant singularities
we found in the µ plane have survived including the branch cut structure for TRW

(T = 201.4MeV).
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Figure 5.15: Singularity structure in the fugacity (z = eµ̂B ) plane for the RW transition
(Nτ ) data. (Top left): T = 201.4 MeV ,(Top right): T = 186.3 MeV, (Bottom center):
167.4 MeV
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5.5 Scaling analysis

After having extracted the stable singularities from the Padé analysis we now have
to discuss the physical relevance (if any) of our poles. The most natural test is
to check whether these are Lee-Yang edge singularities because if they are, they
will follow a particular scaling law. In the following, we make extensive use of
the fact that the scaling function of the order parameter fG(z) exhibits a branch
cut singularity at z = zc, where the scaling variable z is expressed in terms of the
reduced temperature t and symmetry breaking field h as z = t/|h|1/βδ. The universal
position zc of the universal singularity, known as the Lee-Yang edge singularity, has
been recently determined for different universality classes [78]. To this end, we will
show that the poles we obtained relating to the RW transition indeed follow a scaling
consistent with the 3d Ising Z2 universality class for both the Nτ = 4 and Nτ = 6
high temperature data. We will also briefly discuss the physical relevance of the
single-pole found in the low temperature simulation (T = 145 MeV) of the 363 × 6
lattice in the context of chiral transitions.

5.5.1 Roberge-Weiss scaling

As has already been seen in Section 3.4, the RW critical point is a remnant of the Z3

symmetry in the mq → ∞ limit of QCD. The nature of the RW end-point depends
on the masses of the quarks as well as the scheme of lattice discretization chosen.
In 2+1 flavour QCD with physical value of quark masses and improved lattice dis-
cretizations, the RW end-point has been shown to belong to the Z2 critical end-point
[94, 91, 59]. Using the poles for Nτ = 4 data from Table 5.1 and for Nτ = 6 data
from Table 5.2, we will fit them to a scaling equation which describes a Z2 symmetric
second order phase transition in the scaling region of the RW transition. We will
then show the consistency of these fits.

The order parameter in the vicinity of a second order transition can be written
as the sum of a universal and a regular part,

M = h1/δfG(z) +Mreg ; z ≡ t/|h|1/βδ, (5.5)

where, t, h are scaling fields and β, δ are critical exponents. Also, fG is the universal
scaling function for the order parameter, whereas Mreg accounts for regular contri-
butions. The relevant scaling fields for a Z2 symmetric second order transition can
be defined as

t = t−1
0

(
TRW − T

TRW

)
, (5.6)

h = h−1
0

(
µ̂B − iπ

iπ

)
, (5.7)

where t is now our reduced temperature with respect to the RW transition, µ̂B =
µB/T , and h0, t0 and TRW are the non-universal parameters. Notice that this reduced
temperature is defined in the negative sense to the one used for the 2D Ising model
in Section 4.5. The reason for that is that for the 2D Ising model we approach
the transition Tc form above, i.e., from the symmetric to the non-symmetric phase.
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For the RW transition, we do the same, but here the low temperature phase is
the symmetric phase, and hence we approach it from below. Also, in the RW
transition, the chemical potential plays the role of the symmetry-breaking field (h =
0 corresponds to µ̂B = iπ which marks the position of the RW transition in the
µB − T plane). We now can solve t/h1/βδ ≡ zc = |zc|ei

π
2βδ for µ̂B to obtain,

µ̂R
LY = ±π

(
z0
|zc|

)βδ (
TRW − T

TRW

)βδ

, (5.8)

µ̂I
LY = ±π , (5.9)

where the normalization constant z0 is defined as z0 = h
1/βδ
0 /t0. Equations (5.8) and

(5.9) thus define the temperature scaling of the Lee-Yang edge singularity, associ-
ated with the Roberge-Weiss critical point.

Now we move on to the actual fitting equation that has been used by us to fit
the Nτ = 4 pole data. We will actually implement two fitting ansatz : the first one
will only be used for the Nτ = 4 data, using the known values for TRW = 201.4 MeV
which was obtained for our particular 243 × 4 lattice set up in [91]. In the second
fit we fit both the Nτ = 4, 6 results and allow TRW to be fitted.
The first fit method for Nτ = 4: In order to show that the real part scales in
accordance with Eq. (5.8) we perform fits to the data listed in Table 5.1 with the
ansatz

µ̂R
LY = a

(
TRW − T

TRW

)βδ

+ b , (5.10)

with fit-parameter a, b. We fixed the critical exponents to that of the Ising univer-
sality class; i.e., we have βδ ≈ 1.5635. The parameter b is added to capture the
leading order finite-size effects. Since our calculations are done in a finite volume,
we expect that the Lee-Yang edge singularities will not reach the real h axis, which
is here the µ̂I

B axis. Or with other words, there is no phase transition in a finite
volume. A more elaborate finite-size analysis is ongoing. We will display the results
of our fit in Fig. 5.16 (Left)5. The results for the fit parameters are shown in Table
5.3:

Method a b χ2 z0
I 24.77 (2.68) 0.1192(80) 1.14 9.18(99)
II 25.54 (79) 0.0806(9) 0.49 9.37(29)
III 26.08 (63) 0.0541(1) 0.96 9.49(23)

Table 5.3: Fit parameter a, b, obtained from a scaling fit to the Lee-Yang edge singulari-
ties in the vicinity of the Roberge-Weiss transition. Also given are the reduced χ2 and the
deduced values for the nonuniversal constant z0 for the data sets obtained from methods
I-III, respectively.

The second fit method for Nτ = 4 & Nτ = 6: The fit ansatz used is

µ̂R
LY = a

(
TC − T

TC

)βδ

, (5.11)

5The scaling has been performed in Bielefeld and checked in Parma (by the author). Here we
would like to acknowledge this and present the original plot.
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Figure 5.16: [Image credit : Christian Schmidt] RW scaling plots : (Left) Scaling of the
real part of the poles (from Table 5.1) with the fit equation Eq. 5.8. (Right) : Scaling of
the real part of the equation for χ1B data from both Nτ = 4 & Nτ = 6 using the Padé
procedure Method II., the fit equation used is 5.11

with fit-parameter a, TC (we fit for TRW ). We again fixed the critical exponents to
that of the 3d Z2 Ising universality class. The results for the parameters of the fit
obtained are (note that z0 is not a fit parameter but calculated from a, TC) :

Nτ TC a χ2 z0
4 22.66 (2.18) 206.12 (2.67) 0.61 8.68 (84)
6 26.085 (5) 208.704 (2) 0.000324 8.696 (2)

Table 5.4: Fit results for the fit shown in Fig. 5.16

(Right). [Fit data obtained from Christian Schmidt]

We have demonstrated that our Padé poles scale in accordance with the expected
3d Z2 scaling in the Ising universality class. Besides the demonstration for scaling,
we have calculated a non-universal constant z0. To our knowledge, this is the first
such estimation for z0 for the RW transition.

5.5.2 Chiral Scaling:

Following the discussion from Section 3.3.2, chiral transition with staggered fermions
on coarse lattices falls in the 3d−O(2) universality class. However, the full 3d−O(4)
symmetry is expected to be restored in the continuum limit. The chiral transition
in QCD has been subject to many lattice studies, and the scaling equation in the
vicinity of the chiral transition is given by :

t =
1

t0

[
T − Tc
Tc

+ κB2

(µB

T

)2]
, (5.12)

h =
1

h0

ml

mphys
s

. (5.13)

Here the light quark mass ml in units of the physical strange quark mass mphys
s takes

the role of the symmetry breaking field (ml/m
phys
s ∝ h). In addition, this relation
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Figure 5.17: Pole obtained from 363 × 6 lattice when only half interval taken into
account is compared with the expected LYE singularity for the O(2) universality class with
previously estimated non-universal parameters (68% and 98% confidence areas). Dashed
line indicates the expected temperature scaling of the LYE.

involves three non-universal parameters z0, Tc, κ
B
2 . The latter two are prominent

numbers that quantify the QCD phase diagram and have been determined to quite
some precision [95, 96, 97]. We can now proceed as we did in Eq. 5.8 5.9, but
finding a solution for z = zc to obtain the trajectory of the LYEs :

µ̂LY =

[
1

κB2

(
zc
z0

(
ml

mphys
s

)1/βδ

− T − Tc
Tc

)]1/2
, (5.14)

This solution has also been used in [98] to derive an estimate of the radius of
convergence.

However, since we cannot study the LYE scaling with only one data point, the
goal in this section is to compare the position of the stable pole of the Padé ob-
served by us when taking the half interval data for the 363 × 6 lattice: (µ̂R

B,µ̂
R
B) =

(3.03(28),1.61(10)) shown in Fig. 5.10, to the expected position of the Lee-Yang
edge singularity in the O(2) universality class6. In Fig. 5.17, we show the 68% &
96% confidence areas of the expected Lee Yang edge singularity of the O(2) univer-
sality class when the non-universal parameters are varied, under the assumption of
Gaussian distributed errors. In particular, for Nτ = 6, specific values and errors are
chosen :

Tc = (147± 6) MeV ,

z0 = 2.35± 0.2 ,

κB2 = 0.012± 0.002 , (5.15)

and in addition, we take |zc| = 2.032 [78]. As can be seen from Fig. 5.17,
the results from the rational approximation to our data (method II), (µ̂R

B, µ̂
I
B) =

(3.03(28), 1.61(10)), lie within the 68% confidence area of this prediction.

6The study on the Chiral scaling is based on scaling studies of the HotQCD collaboration and
is presented in more detail in [16]
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5.6 Conclusions and Outlook : Scaling analysis

To conclude this chapter, it is important to see how the two different scaling analyses
tie together in the context of the conjectured QCD phase diagram. For this we will
refer again to the RW transition described in Section 5.5.1 and the 3D QCD phase
diagram described in Section 3.5. All the stable LY edge singularities found, in the
context of both the RW and the Chiral transition can be summarised in a single
plot (bottom right corner in Fig. 5.18) shown. The RW region (yellow line) can be
easily seen as the LY edge trajectory with varying temperature as a straight line in
the (µR

LY , µ
I
LY ) plane according to Eq. 5.8 and Eq. 5.9. As can be seen, the stable

poles from the Padé agree, even with errors, with this scaling. Moreover, from the
scaling of these poles (now seen to be the relevant LYEs for the RW transition), it
was shown to be in the 3d Z2 universality class of the Ising model. This is indicated
by the plot on the bottom left in Fig. 5.18, where the first order RW transition line
ends at a 2nd order critical point, turning into a cross over line that extends into
the real µB plane. Equation (5.14) is visualized in Fig. 5.18 as green band, where
we chose ml/m

phys
s = 1/27 (physical mass ratio) and Tc = 147 MeV which is our

knowledge the best estimate for the Chiral transition temperature for Nτ = 6. It is
however obvious that Tc does not alter the line of constant z = zc much; it mainly
alters the normalization of the temperature behavior. The curvature κB2 is chosen
as κB2 = 0.012. The construction of the red band is discussed in [16] and is based
on [99]. We vary z0 from 1.5 to 2.5 which generates the width of the green band.
Our best estimate for Nτ = 6 is z0 = 2.35, which stems from scaling fits to the
magnetic equation of state. It is fair to say that not much can be concluded from
a single point that we have for the low temperature (Nτ = 6,T = 145MeV ) data.
Currently, more data is being generated at low temperature and thus more LY edge
singularities are expected. Once a number of points will be available, one can be
in a position to inspect whether what we start seeing is indeed the signature of the
Chiral transition. Notice that in principle one could even find that the scaling of
the singularities points to the red band (thus being a signature for the CEP).
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Figure 5.18: This figure displays our main findings (Bottom right corner, see [16]) along
with the relevant scaling regions we are sensitive to in our analysis. The region marked by
yellow corresponds to the RW transition. The LY edge singularities corresponding to this
are indicated by a yellow arrow. The other stable singularity found, which is consistent
with the Chiral scaling is shown in the red and green shaded regions. The green shaded
region corresponds to the Chiral scaling while the red corresponds to a possible CEP
scaling. The width of the bands indicate uncertainties in the non-universal parameters.
See main text for details of construction of the bands.
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Chapter 6

Sign problem & Lefschetz
Thimbles

6.1 The complex action problem

The complex action problem occurs in many physical systems of interest – mostly
fermionic. In this section, we will show how and why it occurs in lattice quantum
chromodynamics simulations.

Since fermions are Grassman-odd objects, it is not straightforward to represent
them using plain numbers - at best they can be understood using matrix representa-
tions which is dimensionally not very feasible when it comes to lattice simulations.
Hence, in order to perform lattice simulations, we need to integrate fermions out
of the path integral. This leads us to the following equation for the QCD partition
function :

ZQCD =

∫
DU detM(U) e−SG (6.1)

The fermion matrix M is γ5 hermitian in the absence of the baryon chemical poten-
tial which leads to a real fermion determinant :

(γ5M) = (γ5M)†

→M † = (γ5Mγ5)

=⇒ det
(
M †) = det (γ5Mγ5)

→ det(M)∗ = det(M) (6.2)

However in the presence of a chemical potential, the γ5 hermiticity condition men-
tioned above becomes :

→M †(µ) = (γ5M(−µ∗)γ5)

=⇒ [detM(µ)]∗ = [detM(−µ∗)] (6.3)

This means we are faced with a complex fermion determinant at finite µ lattice
QCD simulations - this makes direct Monte Carlo simulations impossible as we lose
the notion of a positive definite measure in the partition function. There are certain
workarounds listed below which however come with their own set of problems, as
shown in the next sections.
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6.1.1 Re-weighting and the overlap problem

A natural way to try to avoid simulating at any finite value of µ (where we cannot
perform direct Monte Carlo simulations) is to perform the simulation at µ = 0
and re-weight those configurations to obtain results at some finite value of µ. This
method was first introduced in [100, 4] to estimate the QCD end-point at finite T
and µ for relatively small lattices. However, their estimate was shown to be only
correct for the lattice size and discretization they had chosen in [101]. A simple
illustration of the idea of re-weighting is shown below. Starting with a simulation
at µ = 0 (assume that the finite µ term in the action occurs as an additive term,
namely, S(µ) = S(µ = 0) + Sint(µ)) :

Z|µ=0 =

∫
DU e−S

⟨O⟩ |µ=0 =
1

Z|µ=0

∫
DU O e−S

(6.4)

we can mimic the result at µ ̸= 0 by re-writing the µ = 0 configurations as :

⟨O⟩ |µ =
1

Z|µ

∫
DU O e−S(µ)

=
1

Z

∫
DU O e−S−Sint(µ)

=

(
Z|µ=0

Z|µ

)
1

Z|µ=0

∫
DU

[
Oe−Sint(µ)

]
e−S

=

(
Z|µ=0

Z|µ

)〈
Oe−Sint(µ)

〉
|µ=0 (6.5)

The ratio of the two partition functions can also readily seen to be
(

Z|µ=0

Z|µ

)
=

1

⟨e−Sint(µ)⟩|µ=0
, leading us to the final result :

⟨O⟩Re−weighted |µ =

〈
Oe−Sint(µ)

〉
|µ=0

⟨e−Sint(µ)⟩ |µ=0

(6.6)

One should immediately raise the question about the range of validity of this re-
weighting procedure. Since, when we perform a Monte Carlo simulation at some
given values of parameters – we are in essence approximating an integral with ran-
dom configurations given by the Boltzmann-weights around those parameters. The
assumption (or hope) of the re-weighting procedure relies on the fact that there are
enough configurations sampled during the simulation that are also relevant in the
domain of integration for the observable at the parameters we want the re-weighting.
This means that we should have enough overlap between the configurations at the
re-weighted values of µ and µ = 0. Hence, there are two ways in which this can fail.
The first is the obvious one - we should not expect re-weighting to work for config-
urations separated by large values of the parameter in which we want to re-weight.
The second one is less obvious and is displayed in Fig. 6.1. There it can be seen that

77 S.Singh



Part II: Yang-Mills & Lefschetz thimbles Chapter 6

by increasing the volume (going to the continuum limit), the distributions become
narrower and the overlap between configurations decreases and increasing statistics
would not lead to a better result in this situation!

Figure 6.1: Overlap problem : Reduction in the “shared” configurations between two
values of the external magnetic field for the cae of the 2D Ising Model while increasing
the volume (Left to Right)

6.1.2 The Sign problem

The above-explained complex action problem can be reduced to the (in-)famous Sign
Problem [102, 103]. Apart from re-weighting, another method of indirect Monte
Carlo sampling can be applied to the partition function with the complex fermion
determinant. It can be seen from the charge conjugation symmetry of the partition
function that the partition function is real at finite µ. And also since e−sG is real,
this means that we can use the real part of the integrand as weight to perform our
Monte Carlo simulations :

ZQCD =

∫
DU Re[detM(U)]e−SG(U) (6.7)

Now, we have that the probability weight is real but it is however still not
positive. This is what causes the sign problem. Regions of integration now differ in
sign and in order the get the precise cancellations correctly very high statistics are
needed, for which the computational cost explodes exponentially with volume. This
can be seen using a simple toy partition function (Ztoy =

∫∞
−∞ dx exp{(−x2 + iλx)})

below :
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Figure 6.2: (left) : Illustration of the sign problem. (right) : Illustration of Sign quenched
vs Phase quenched action.

There are two possible ways to tackle the above-mentioned sign problem (See
Fig. 6.2) :

• Phase quenching : Instead of simulating with the real part of detM(U),
simulations are performed with |detM(U)|. As is apparent, if we simulate with
this measure, we are actually simulating a different partition function. In order
to get the original one back, we must re-weight the phases. This re-weighting
has overlap problems in the same spirit as listed above (configurations not
overlapping enough between the two partition functions). Further, this type
of re-weighting has additional problems as the average phases can become zero.
A nice overview can be found in [104]. Lattice QCD studies using this phase
re-weighting method can be found in [1, 105, 106] and references therein.

• Sign quenching : Simulations are performed with |Re[detM(U)]|. Here,
only the sign of the real part of the fermion is being quenched. This means (as
seen in Fig. 6.2 (left)), by a sign re-weighting technique, the original integral
can be recovered. This re-weighting has no configuration overlap problem as
the Monte Carlo simulations generate the relevant configurations from the
beginning. Only the sign of various integration regions has to be corrected.
A recent application of this technique in lattice QCD can be found in [107].
Other references include [108, 109, 110].

The above two have an obvious drawback that we are simulating a different problem.
This can be easily corrected by sign re-weighting. And there is no overlap problem as
we are basically re-weighting from the same distribution. In any case, the finite-size
effects are very bad for the direct simulations even today as can be seen in [107]

6.2 Lefschetz Thimbles : A possible way out?

Lefschetz thimble was developed as a technique to avoid the sign problem [111, 3].
The idea is to deform the original domain of integration into a suitable subspace
of a complex domain while maintaining the same homology class, such that the
imaginary part of the action remains constant on this new domain. Such paths exist
and are shown to be solutions of the steepest descent equations originating at the
saddle points of the action.

79 S.Singh



Part II: Yang-Mills & Lefschetz thimbles Chapter 6

6.2.1 Defining a thimble

Thimbles are defined as solutions of the steepest ascent equations

d

dt
zi =

∂SR

∂zi
(6.8)

originating from saddle points of the action
(

∂S
∂zi

= 0
)
(here i ∈ {1, 2...d}, with d

being the dimension in field space). The following properties of Lefschetz thimbles
should be noted below (shown in d = 2 for simplicity).

1. Imaginary part of the action remains constant on a thimble (due to holomor-
phicity of the action). This can be seen as:

dSI

dτ
=
∂SI

∂x

dx

dτ
+
∂SI

∂y

dy

dτ
→ ∂SI

∂x

∂SR

∂x
+
∂SI

∂y

∂SR

∂y
→ 0 (6.9)

2. Convergence of the integral is ensured because the real part of the integral
increases along a thimble :

dSR

dτ
=
∂SR

∂x

dx

dτ
+
∂SR

∂y

dy

dτ
→ ∂SR

∂x

∂SR

∂x
+
∂SR

∂y

∂SR

∂y
→ ||∇SR| |2 (6.10)

3. And lastly, thimbles form a basis for all integration contours. This will be
made explicit in the next section.

An implicit assumption has gone into defining a Lefschetz thimble and that has to
do with the fact that thimble formulation comes from a theory (Morse theory) that
is only defined for isolated critical/saddle points of the action. This is because a
thimble is defined as the union of all steepest ascent curves originating from a saddle
point. The eigenvectors of the Hessian matrix, H(S; pσ) defined as

H(S; pσ) =
∂2S

∂ϕi∂ϕj

, (6.11)

with positive eigenvalues span the tangent space of the stable thimble at the saddle
point. And for isolated saddle points, this matrix has no null eigenvalues, this means
it has exactly the number of positive eigenvalues as the dimensionality of the original
field space (recall that we doubled the degrees of freedom when we complexified the
field space.). We will see in the next chapter (Chapter 7) that gauge symmetry
introduces null eigenvectors into this Hessian thus messing up the dimension of the
thimble.

6.2.2 Single thimble vs Multi-thimble simulations

The quantities of interest in any Monte Carlo simulation are the expectation values
of certain observables. When using the thimble approach, prior to computing this
expectation value, we must determine the thimbles that contribute to the partition
function and perform the Monte Carlo simulation on each of the contributing thim-
bles. This will lead us to the correct value of the expectation value of the observable
as expected from the original action:

⟨O⟩ =

∑
σ nσ e

−i SI(pσ) Zσ ⟨O ei ω⟩σ∑
σ nσ e−i SI(pσ) Zσ ⟨ei ω⟩σ

(6.12)
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where the summation is over all contributing thimbles which are attached to critical
points labelled by σ, SI is the (constant) imaginary part of the action on each con-
tributing thimble, nσ is an integer known as the intersection number and represents
the intersection of the unstable thimble with the original domain of integration.
Whenever the unstable thimble (see next section) attached to a given critical point
does not intersect the original domain of integration, that critical point does not
contribute to the expectation value mentioned above. Notice that although we have
factored out the constant imaginary part of the thimble outside the integral, there
is a residual phase, denoted by eiω, that accounts for the orientation of the thimble
with respect to the original manifold. In principle, Eq. 6.12 is all we need to perform
Lefschetz thimble simulations. However, in practice, it turns out to be quite hard to
determine which thimbles contribute. This is because of two reasons : the first one
being that it is not straightforward to calculate all the critical points of the action,
in many cases this has to be done numerically (see Chapter 7 for an example of
this), the second reason being that thimble decomposition may not stay the same
when varying parameters of the theory. This means that even if one has determined
the contributing thimbles in one region of parameter space, this may be the same
thimble decomposition in another region of space. Points in the parameter space
where thimble decomposition fails are called Stokes points, which we will discuss
next. Nevertheless, multi-thimble simulations are still not easy to simulate even if
one did have the knowledge of the contributing thimbles as has been shown in many
works [30, 33, 112, 113, 32].

6.2.3 Stokes phenomena

As seen from Eq. 6.8,a union of steepest ascent (SA) curves originating from saddle
points constitutes stable thimbles whereas solutions of steepest descent (SD) con-
tribute to the unstable thimbles (anti-thimbles). Since these curves are solutions to
first order differential equations with different boundary conditions (starting from
different saddle points), thimbles (or anti-thimbles) can never cross each other. And
the only way in which two such curves can cross each other is if they completely lie
on top of each other. In the thimbles decomposition scenario this can only happen
in one way : when there is SA/SD curve connecting two saddle points (see [31]), i.e,
a SA curve lies on top of a SD curve. This is called a Stokes phenomenon. Across a
Stokes point, there is a discontinuity in the number of contributing thimbles. How-
ever, this discontinuity is not harmful since it does not imply a discontinuity in the
physical observables defined on the original thimble. In fact, we can use this discon-
tinuity to our advantage in circumventing the problem of multi-thimble simulations.
The idea is that instead of computing an observable O(µ) as a weighted sum of con-
tributions over many thimbles, we identify regions of parameter space where only
a single thimble contributes, and then using the fact that the physical observable
is defined and continuous 1 across a Stokes point we can circumvent simulating on
many thimbles. This is done by bridging Taylor series of a physical observable across
the Stokes points covering the region where more than one thimble contributes. We

1We are only claiming here that a discontinuity in the number of contributing thimbles does not
imply a discontinuity in the physical observables in the original manifold. Of course, it is possible
that in some situations Stokes phenomena can be accompanied by a discontinuity in the physical
observable. In that case, we cannot apply this bridging solution and must look for other points in
parameter space where only one thimble contributes.
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can improve this bridging mechanism by using Padé series instead of Taylor series
as will be seen in the next section.

6.2.4 Examples of success in Toy models

We applied the idea mentioned above to two toy models for which analytical results
are known, in [31]. In both these models, regions of parameter space were identified
where only single thimbles contribute, and then these regions were bridged first
using Taylor series and finally using Padé approximants. In this section, we will
only discuss the Thirring model in 0+1 dimensions and the second model which is
heavy dense QCD (a 3d effective field theory) can be found explained in detail in
the paper mentioned above 2. We will summarize the main results of our work using
Fig. 6.3 shown below.
1 D Thirring model : We begin by very briefly reminding the reader of this
model in the context of the sign problem. The theory of this model has already
been discussed in section 2.5. This is a model of staggered fermions coupled to U(1)
gauge fields. The sign problem in this model is caused by the terms containing the
chemical potential (µ). The action that we consider is given by Eq. 2.13, which we
display again for convenience (the 1D Thirring has been introduced in Chapter 2,
Section 2.5),

S = β
∑

n

(1− cos (xn))− log (detD) ,

with

detD =
1

2L−1

(
cosh

(
Lµ̂+ i

∑

n

xn

)
+ cosh

(
L sinh−1 (m̂)

)
)

where all the dimension-full quantities are in lattice units. Moreover, we only con-
sider expansions of our Taylor series in dimensionless quantities by taking ratios, i.e.,
in µ̂/m̂ (The parameters chosen for our discussion are : L = 8, β = 1 and m = 2).
It was shown in [30, 112] that contributions from multiple thimbles were required
to account for the correct analytical result (which is known as seen in Eq.2.13),
especially in the region with moderate values of the chemical potential µ̂/m̂ ∼ 1.
As shown in Fig. 6.3 (centre plot), we pick four points (marked by triangles at
µ̂/m̂ = {0.15, 0.4, 1.4, 1.95}) where we determine (based on arguments presented in
the paper [31]) that only a single thimble contribution matters and then we compute
Taylor coefficients of the chiral condensate (⟨χ̄χ⟩) up-to various orders. We use those
Taylor coefficients to build a multi-point Padé whose ability to approximate ⟨χ̄χ⟩
can be seen in the middle plot of Fig. 6.3. The right-most plot of Fig. 6.3 shows
the validity of our Taylor expansions. The circles represent the radii of convergence
about two expansion points and have an overlap, which justifies joining the Taylor
expansions in that region. Also shown as a red dot is the analytical pole of ⟨χ̄χ⟩,
which seems to be in very good agreement with the only stable poles found by our
Padé approximant in that region. Lastly, for the sake of clarity, we explain the left-
most plot in Fig. 6.3. The plot shows the various saddle points of the action for the
specific values of the parameters mentioned above at µ̂/m̂ = 1.4 (marked at green
dots) and zeros of the fermion determinant (marked with red points) where thimbles

2Only the Thirring model has been described here since this was the model the author con-
tributed to. Details of the heavy dense QCD can be found in [31]

82 S.Singh



Part II: Yang-Mills & Lefschetz thimbles Chapter 6

Figure 6.3: 1D Thirring model (see main text for explanation). (Left) : Thimble struc-
ture for a particular expansion point (µ̂/m̂ = 1.4). Anti-thimbles are marked in magenta
and thimbles in blue. (Centre) : Bridging regions in parameter space using Padé. Note
for moderate values of µ̂/m̂ ∼ 1, multiple thimbles contribute to the partition function
and the single thimble approximation fails, but using our approach we can get around
multi-thimble simulations. (Right) Validity of our approximation using poles of the Padé
to determine radii of convergence around our expansion points.

end, along with the thimbles (in blue) and anti-thimbles (in magenta) originating
from those points. The dominant thimble at this region in parameter space is the
one at Re[z] = 0.

6.2.5 Outlook : What have we learnt from the 1D Thirring
model ?

The reader has certainly noticed that in Section 2.5 many numerical experiments
on multi-Padé were performed on the 1D Thirring model. Here we saw that there
was a good reason for that. We first want to draw the attention of the reader to
the Fig. 6.3 (middle), where we show how the Taylor expansions about the four
points (represented by filled triangles) mentioned above (section 6.2.4) bridge the
regions described by different composition of thimbles. The solid line (analytic so-
lution of the Chiral condensate) is faithfully represented by the joining of the four
Taylor expansions. The obvious question to ask here is : When is such a analytic
continuation allowed ? This question is answered in the next Fig. 6.3 (right most).
The two circles represent the radii of convergence about two points (filled triangles
at µ̂/m̂ ∈ {0.4, 1.95}) shown in the plot before. The validity of the analytic contin-
uation can be seen by the overlapping of the two circles about the region of bridging
(µ̂/m̂ ∼ 1.4). Furthermore, the pole of the analytic function that represents the Chi-
ral condensate (red dot) is captured by the pole of the multi-point Padé (green dot)
and its position marks the radii of convergence of the two Taylor expansions men-
tioned above. Seeing the success of the multi-point Padé approximant in capturing
the pole of the Chiral condensate, further numerical experiments were conducted on
understanding the various aspects of validity of this approximation primarily using
the 1D Thirring model. Many of the results of these studies have been shown in
section 2.
This was the result that prompted our further studies of using the multi-point Padé
approach in studying QCD. But the most important point, beyond the reconstruc-
tion of the functions, is that the singularity structure was correctly identified. Since,
also in QCD, we can simulate to low orders (because of computational costs associ-
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ated with precision needed) at zero and imaginary chemical potentials, we wanted to
see if the multi-point Padé can be sensitive to the singularities of the thermodynamic
functions of QCD.
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Chapter 7

Lefschetz thimble regularisation of
Yang Mills

Until now, Lefschetz thimble as a solution to the sign problem has only been suc-
cessful in studying toy models, like the ones we mention in Chapter 6. However,
the original motivation was to study QCD at high densities [114]. In order to make
progress in that direction we first need a mechanism to regularize Yang-Mills theories
using Lefschetz thimbles. This is because the gauge fields form the basis of integra-
tion in any lattice QCD simulation1. However, as we will discuss in this chapter,
regularising non-abelian gauge theories using Lefschetz thimbles is a hard problem
both conceptually and computationally. There is yet another motivation to study
non-abelian gauge theories using Lefschetz thimbles, and that is in the presence of
a θ-term. This is because the Euclidean Yang Mills action with the θ-term present
has a genuine sign problem.

The layout of this chapter is as follows : In Section 7.1 we will briefly mention
the notation used. In Section 7.2, we will show the steps for complexifying the gauge
fields and constructing the Steepest ascent equation. In Section 7.3 we will show a
problem with the naive thimble construction for the gauge field and in Section 7.4 we
will try to resolve this problem using twisted boundary conditions. In that section
we will also display results from our new code which has the thimble regularisation of
non-abelian gauge fields implemented. Following this, in Section 7.6 we will discuss
another problem native to non-abelian gauge theories - that is of identifying all the
relevant saddle points and discuss a few well known results for the case of 2D SU(2)
partition functions. In Section 7.7 we will display a few results from our “numerical
hunt” for saddle points using the steepest ascent equations and finally as an outlook
we describe the possible motivation to study the topological θ-term on Lefschetz
thimbles.

7.1 Notation used

Since this chapter can seem dense in equations, we will introduce in this section
some useful notation.

Our discussion in the following sections will be based on Non-Abelian gauge fields
living on a Torus in Euclidean space. We will for the most part also restrict our

1Fermions are integrated out in lieu of being Grassmann odd objects.
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analysis to 2D SU(N) theories , finally restricting further to SU(2) on a 2D Torus.

7.1.1 In the continuum :

The gauge fields are represented by the vector potentialAµ(x) = Aa
µ(x)T

a, withTa’s
being the generators of the SU(N) Lie algebra in the fundamental representation.
They satisfy the following algebra (summation over repeated indices is implied unless
stated otherwise):

Tr
{
TaTb

}
=
δab
2

[Ta,Tb] = ifabcTc (7.1)

The field tensor is given by :

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− i[Aµ(x),Aν(x)]

Fµν(x) = F a
µν(x)T

a (7.2)

Gauge transformations (Ω(x)) on the vector potentials act as usual :

Aµ(x) → Ω(x)Aµ(x)Ω
−1(x) + iΩ(x)∂µΩ

−1(x) (7.3)

Under these transformations the field tensor transforms as Fµν(x) → Ω(x)Fµν(x)Ω
−1(x).

Finally, the Yang Mills action is given by :

SYM =
1

2

∫

T 4

d4xTr{FµνFµν}

7.1.2 On the lattice :

Gauge fields are represented by links which live on the edges connecting lattice sites
(Fig. 7.1). The lattice equivalent of the field strength tensor Fµν is given by the
Plaquette, shown in Fig. 7.1. The plaquette is the simplest gauge invariant term
on the lattice. The main point of difference between the continuum and the lattice
representations of the gauge fields to notice is that in the vector potentials in the
continuum are elements of the Lie algebra whereas the gauge links on the lattice
belong in the Lie group.

The lattice Yang Mills action can be written in terms of the plaquette as follows.

UP = Uµ̂(n)Uν̂(n+ µ̂)U †
µ̂(ν̂)U

†
ν̂(n)

SLYM =
β

N

∑

P

(
Tr

[
IN − 1

2

(
UP + U †

P

)])
(7.4)

Gauge transformations are given by (as already seen in Chapter 2):

Uµ̂(n) → U ′
µ̂(n) = Ω(n)Uµ̂(n)Ω

†(n+ µ̂) (7.5)
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n

Uµ̂(n)

n+µ̂
n

Uµ̂(n)
n+µ̂

Uν̂(n+µ̂)

n+µ̂ + ν̂
U
†
µ̂(n+ν̂)n+ν̂

U
†
ν̂(n)

Figure 7.1: (Left): Directed gauge link connecting the sites n and n + µ, (Right) : A
plaquette in the µν plane.

7.2 Thimble construction for Yang Mills

Consider a pure-YM, SU(N) theory. This means considering a set of fields {Uk} on
a manifold (in field space) of real dimension dimR = n. A suitable complexification
of this manifold will take us to another manifold of real dimension dimR = 2n. We
complexify in the algebra as follows

SU (N) ∋ U = eixaTa → eizaT
a

= ei(xa+iya)Ta ∈ SL (N,C) . (7.6)

Notice that the transpose conjugation operation becomes,

SU (N) ∋ U † = e−ixaTa → e−izaTa

= e−i(xa+iya)Ta

= U−1 ∈ SL (N,C) .

We finally proceed to write down a suitable Steepest Ascent (SA) equation. A
natural way of writing down the SA equations follows from [115, 116]

d

dτ
Uµ̂ (n; τ) =

(
i T a∇̄a

n,µ̂S [U (τ)]
)
Uµ̂ (n; τ) (7.7)

written in terms of the Lie derivative given by,

∇af (U) = lim
α→0

1

α

[
f
(
eiαT

a

U
)
− f (U)

]
=

δ

δα
f
(
eiαT

a

U
) ∣∣∣∣

α=0

.

Notice that, since d
dτ

= ∇̄a
n,µ̂S̄∇a

n,µ̂ +∇a
n,µ̂S ∇̄a

n,µ̂ we proceed to show that Eq. 6.9
and Eq. 6.10 are satisfied,

dSR

dτ
=

1

2

d

dτ

(
S + S̄

)
=

1

2

(
∇̄a

n,µ̂S̄∇a
n,µ̂S +∇a

n,µ̂S ∇̄a
n,µ̂S̄

)
= ∥∇S∥2 ≥ 0

and
dSI

dτ
=

1

2i

d

dτ

(
S − S̄

)
=

1

2i

(
∇̄a

n,µ̂S̄∇a
n,µ̂S −∇a

n,µ̂S ∇̄a
n,µ̂S̄

)
= 0,

Among all the solutions of Eq. (7.7), we have to look for the ones whose union
defines the thimble. We will see in the next section why this is not straightforward
for gauge theories in the next section.
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7.3 Generalised Thimbles and the need for Twist-

ing

In general we would proceed by identifying the critical points and building Lefschetz
Thimbles from the union of all steepest ascent curves arising from the points saddle
points of the Yang Mills action. However, we immediately hit two roadblocks, one of
them is discussed in this section has to do with the fact that we violate the criteria
for having isolated critical points for Yang Mills (YM) because of gauge symmetry.
The other problem has to do with hunting for the saddle point of the Yang Mills
action which we discuss in the next section.

When we consider YM theories, because gauge transformations are a symmetry
of the action, instead of getting isolated critical points we get a manifold of critical
points given by:

Mσ = {U ∈ χ|∃G ∈ G : Uσ
G = U} (7.8)

Where G is a complexification of the original gauge group H (of dimensionality
dimR = nG) and the dimensionality of this manifold is dimR Mσ = 2nG.

Consequently the Hessian H(SR;U) for U ∈ Mσ is degenerate, with n− nG

positive, 2nG zero and n− nG negative eigenvalues. These zero eigenmodes cause
problems with the dimensionality of the thimbles as explained below.

A thimble by definition has dimensions equal to the dimension of the original
manifold (before complexification). In our case, because of the zero modes, the
naive thimble will have the dimension n− nG. Therefore we can’t use the Lefschetz
thimble formulation as it stands for regularising gauge theories. Witten pointed out
in [111], a way to construct a thimble decomposition for degenerate critical points
is to first generalize to a non-degenerate critical manifold Mσ and then consider
the normal bundle associated to it, which has the dimensions n− nG (positive
eigenmodes og the Hessian at the gauge orbit). Now the way to construct a n-cycle
Jσ attached to Uσ (critical gauge orbit), is by considering all the SA curves attached
to a middle dimensional manifold Nσ ⊂ Mσ (such that it has dimension nG). Then
we have the required n-cycle n− nG + nG = n. Where the middle dimensional
manifold Nσ is given by,

Nσ = {U ∈ χ|∃H ∈ H : Uσ
H = U}

In principle our problem should be solved as we now know how to construct
the stable thimble attached to a degenerate critical manifold. Unfortunately, this is
again not the end of the story. When we consider the the critical manifold as seen
above, attached to classical vaccuum of the YM equations of motion, i.e , Uk = IN
(this corresponds to the choice Ak = 0), we run into a problem of additional zero-
modes. These correspond to zeros of the Hessian, not given by gauge modes. The
Hessian2,

H(S, Uσ) = ∇b
m,ρ̂∇a

n,µ̂S[U ]|Uσ=I

=
β

2N
δab {2dδn,mδµ̂,ρ̂ − δn,m + δn+µ̂,m + δn−ρ̂,m − δn+µ̂−ρ̂,m−

2the general form of the Hessian for SU(N) is a very large formula, hence we only write the
version evaluated at the classical vacuum.
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δµ̂,ρ̂
∑

ν̂

(δn+ν̂,m + δn−ν̂,m)

}
(7.9)

can be seen to have not only the required nG zero modes due to the gauge direc-
tions, but additional zero modes arising because of the periodic boundary conditions
named Torons. Gauge oriented zero modes are given by the discrete equivalent of
the infinitesimal gauge transformations

V a
µ̂ (n) = Λa(n+ µ̂)− Λa(n) (7.10)

and the number of these modes are (V − 1)(N2 − 1) 3. The toronic zero modes
given by space-time independent vectors of the form : V a

µ̂ , the number of these
are d(N2 − 1). So clearly, the classical vacuum has the incorrect dimensionality
for the zero-mode manifold to construct the middle dimensional manifold: We have
dimCV = (V − 1)(N2 − 1) + d(N2 − 1) ̸= nG. (Where nG = V (N2 − 1).)

One possible way out of this problem is to make use of twisted boundary condi-
tions. How this corrects the dimensionality will be shown in the next section.

7.4 Twisting and zero modes

As mentioned in Chapter 2, pure Yang Mills SU(N) theories have an additional
center symmetry given by invariance under the center group ZN . Twisting refers
to changing the boundary conditions from strictly periodic (for the gauge fields)
to periodic up to a twist transformation. G. ’t Hooft in [118] showed that group
elements defining a twist are restricted to the centre of the group. Further, if the
group has a trivial center there can be no non-trivial twists. Twisting in lattice
gauge theories is usually used in the context of describing the phase structure of
non-abelian gauge theories.

In this section we will try to illuminate the need for having twisted boundary
conditions in the framework for studying Yang Mills theories using Lefschetz thim-
bles regularisation and what they correspond to on a lattice. Most of the following
discussion is based on [119]. Below we briefly remind the reader what twist transfor-
mations we consider and what algebra they must follow. The boundary conditions
we want to consider are (square lattices with extent L are considered) :

Uν̂(n+ Lµ̂) = Γµ̂Uν̂(n)Γ
†
µ̂ (7.11)

To preserve these under gauge transformations :

Uν̂(n+ Lµ̂) → U ′
ν̂(n+ Lµ̂) = Ω(n+ Lµ̂)Uν̂(n+ Lµ̂)Ω(n+ Lµ̂+ ν̂)

= Ω(n+ Lµ̂)Γµ̂Uν̂(n)Γ
†
µ̂Ω(n+ Lµ̂+ ν̂) (7.12)

Hence, as seen in Chapter 2, either we demand strict periodicity in the gauge
transformation matrices and force Γµ̂’s to lie in the centre ZN . Or the gauge trans-
formation matrices must satisfy:

Ω(n+ Lµ̂) = Γµ̂Ω(n)Γ
†
µ̂ (7.13)

3Strictly speaking these zero modes have dimensionality V (N2−1), but the mode corresponding
to zero momentum must be discarded as it amounts to a null eigenvector [117]
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to give,

U ′
ν̂(n+ Lµ̂) = Ω(n+ Lµ̂)Γµ̂Uν̂(n)Γ

†
µ̂Ω(n+ Lµ̂)

= Γµ̂Ω(n)Γ
†
µ̂Γµ̂Uν̂(n)Γ

†
µ̂Γµ̂Ω(n+ ν̂)Γ†

µ̂

= Γµ̂U
′
ν̂(n)Γ

†
µ̂ (7.14)

Further, as a consequence of physical arguments (on a 2D torus it should not
matter in what order one reaches a point identified with another point when we
have periodic boundary conditions.) these twist matrices are shown to obey the
twist algebra shown below :

Uν̂(n+ Lµ̂+ Lρ̂) = Γµ̂Γρ̂Uν̂(n)Γ
†
ρ̂Γ

†
µ̂

= Γρ̂Γµ̂Uν̂(n)Γ
†
µ̂Γ

†
ρ̂ (7.15)

To not reach a physical contradiction we must have :

Γµ̂Γρ̂ = zρ̂µ̂Γρ̂Γµ̂ (7.16)

with zρ̂µ̂ = e2πinρ̂µ̂/N are elements of the centre of SU(N). Here, nρ̂µ̂ is an anti-
symmetric tensor and hence has dimension 1

2
d(d− 1).

It can further be shown [120] that the twisted boundary conditions with the orig-
inal Wilson gauge action is equivalent to a modified action with periodic boundary
conditions. One then proceeds to find the classical vacuum of this twisted action
and investigate its dimensionality. Moreover, this twisted action admits a class of
zero-action solutions called twist eaters. The existence and class of configurations
of these twist eaters can be proved using the following theorem 4. Before writing
out the theorem we will list a few conditions which the action (Wilson in our case)
must satisfy for the theorem to hold (which are all satisfied!) :

A : Let fP(U) denote the plaquette action function. Then it must satisfy
ΩfP(U)Ω

−1 = fP(U), with U and Ω ∈ H.

B : fP(U) ≥ 0, for all plaquettes and U ∈ H.

C : For each P, fP = 0, iff U = 1.

Theorem 3 If the plaquette action functions fP satisfy conditions (A) - (C) listed
above, then a lattice gauge system (defined originally with periodic boundary con-
ditions), on a d-dimensional hyper-torus with a gauge group G and twist tensor
z = {zµν}, admits a zero action configuration if and only if also the following con-
dition is satisfied : There exist, in G, d elements G1, ....Gd such that

GνGµ = zµνGµGν (1 ≤ µ < ν ≤ d) (7.17)

Following this, all the zero action solutions of the twisted action can be shown
to be the “ladder” or twist-eater configurations whose construction (Fig. 7.2) can
also be found in [121]. The important point here is the dimensionality structure of
those solutions:

90 S.Singh



Part II: Yang-Mills & Lefschetz thimbles Chapter 7

n0 n0 + Lµ̂ ≡ n0

n0 + Lν̂ ≡ n0 n0 + Lν̂ + Lµ̂ ≡ n0

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •
Gν̂ Gν̂ Gν̂ Gν̂

Gµ̂

Gµ̂

Gµ̂

Gµ̂

Figure 7.2: Twist Eater solution (along with all the conventions for links)

The twist-eater solutions are maximal gauge trees, with links everywhere unity
except for the two ladders given by (say) Gµ̂ and Gν̂ obeying the relation:

Gν̂µ̂ = zµ̂ν̂Gµ̂ν̂ with zµ̂ν̂ = e2πinµ̂ν̂/N for SU(N). Since these twist-eater solutions
exhaust the set of solutions for zero action solutions of EOM for the twisted action,
we can now proceed to fnd the dimensionality of the manifold of such solutions.

It can be shown (Appendix A in [119]) that the zero-action configuration man-
ifold is diffeomorphic to ⊗V−1SU(N) ⊗ Mµ̂ν̂ , where Mµ̂ν̂ is the twist dependent
manifold given by:

Mµ̂ν̂ = {G1, ...Gd|Gµ̂ ∈ SU(N), Gν̂µ̂ = zµ̂ν̂Gµ̂ν̂}

For the case of no twist (zµ̂ν̂ = 1), i.e, the original Wilson action, the dimension
of Mµ̂ν̂ is (N - 1)(N + d). So the total dimension of the zero action configuration
manifold is : (V − 1)(N2 − 1) + (N − 1)(N + d). This is clearly not equal to
nG = V (N2 − 1).

Next consider the case of a simple twist, i.e, zµ̂ν̂ = e2πik/N , with k and N coprime.
It is shown (Appendix D & E in [119]) that the dimension of Mµ̂ν̂ in this case is
given by Nd−2 connected components, each with dimension N2 − 1. Moreover, any
two points in the same connected component are related to each other by a gauge
transformation.

This gives us the dimension for the zero action configuration to be : (V −1)(N2−
1) + (N2 − 1) = nG, which is precisely the dimension we need to build Lefschetz
thimbles of the correct dimensionality. Therefore, we have got rid of the toronic
degrees of freedom and can proceed with Witten’s prescription to build the stable
thimble and proceed with steepest ascent and parallel transport simulations.

7.5 Numerical Results

Before proceeding to the next problem of looking for the saddle points of the lattice
YM action, we briefly describe the steps in our code which implement Lefschetz

4The theorem and its proof can be found in [119]

91 S.Singh



Part II: Yang-Mills & Lefschetz thimbles Chapter 7

thimble regularisation for SU(2) Yang-Mills in any number of dimensions 5. Monte
Carlo sampling on Lefschetz thimbles is a hard subject. The Parma group put
forward one approach [122] which is conceptually clean and can be implemented for
YM fields, provided one is able to construct steepest ascents. The idea is that of
writing the functional integral on a single thimble as a sum over ascent paths:

⟨O⟩σ =

∫
Dn̂ Z(σ)

n̂

(
Z(σ)−1

n̂

∫
dt ∆n̂(t) e

−SR(n̂,t) eiω(n̂,t) O(n̂, t)
)

∫
Dn̂ Z(σ)

n̂

(
Z(σ)−1

n̂

∫
dt ∆n̂(t) e−SR(n̂,t) eiω(n̂,t)

) ≡
∫
Dn̂ Z(σ)

n̂ ⟨eiω O⟩n̂∫
Dn̂ Z(σ)

n̂ ⟨eiω⟩n̂

All in all, the thimble manifold is parameterised in a simple way: in order to
reach a given point on the thimble, we must specify the direction (n̂) along which we
leave the critical point and the value of the “time” (t) at which one stops integrating
the steepest ascent (see Eq. 6.8). In order to implement this algorithm, one must be
able to construct the steepest ascents that sit on the thimble. Notice that this means
that, having chosen an initial condition (which is built in n̂) we will integrate all the
way up to fully reconstruct the contribution ⟨O eiω⟩n̂. Next, we briefly summarise
the basic building blocks. The fist step is to build the twist-eating configuration
described above. In order to begin integrating the SA equations along the stable
thimble, we first need to find the tangent space around the critical point (twist-eater
in this case) to prepare the initial conditions. The basis needed for this tangent space
is obtained by diagonalising the Hessian matrix (defined for the classical vacuum
in Eq. 7.9) keeping only the eigenvectors corresponding to the positive eigenvalues.
The choice of coefficients will not be discussed here, as it is described in detail
in [117]. The tangent basis has to be parallelly transported along the thimble.
Solving the parallel transport equations is the most computing-time intensive part
of the code. To perform the integration of the SA and PT equations, a 4th-order
Runge-Kutta-Munthe-Kaas integrator was used, following [123]. Such a numerical
integrator preserves exactly the geometric structure of the differential equation to
be integrated, like the group manifold of SU(2) in our case. In our code, the SA and
PT equations are inter-woven with each other, i.e, first the field is integrated by one
step followed by the basis vectors and so on. The output of our code is precisely
computing averages using the procedure described above - but only on a single
dominant thimble. The thimble that we start from is the twist-eating configuration.
The average plaqutte computed from our code can be seen as blue dots along with
the respective error bars, in Fig. 7.3 6. To show what the red dots in the Fig. 7.3
represent and how they compare with the results of the code will be seen in Section
7.6.3.

7.6 Hunting for saddle points

In order to proceed with thimble regularisation, we need to identify all the contribut-
ing saddle points of the action to Eq. 6.12. As we have already seen in the previous

5The code base is a part of a private repository on GITHUB which was meant to be made
public this year, but there have been delays.

6The code based for simulating non-abelian gauge on lefschetz thimbles was already developed
to a large extent by a student of the Parma group. The author of this thesis in collaboration with
Kevin Zambello, completed the code to perform the Steepest ascent integration while building the
necessary routines needed for the same.
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2.0 2.5 3.0 3.5 4.0 4.5 5.0

β
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1.1
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1.5

P

analytic

numerical

Figure 7.3: [Image credit : Kevin Zambello] This figure shows the comparison of the
analytical expression for the 2D SU(2) results for the average plaquette with results fro
our code at real values of β.

chapter (Section 6.2.4), even for simple models, single thimble decomposition is not
enough. But at least in the model studied in the previous chapter we knew all the
saddle points of the action since we had a closed for expression for it. For the case
of Yang Mills theory, it is still a conjecture. The closest theory we have to testing
this conjecture is for 2D SU(2) gauge theory, for which Witten in [124] has given us
a closed form expression in the continuum, for the partition function as a sum over
saddle points. This is exactly the result we would like to have on the lattice.

Below we will try to motivate and list all the forms of the partition function
for the 2D SU(2) YM theory currently known. We will start with Witten’s famous
solution.

7.6.1 Witten’s 2D Yang Mills partition function

Based on [124] : Starting with the Lagrangian of non-abelian YM theory, Witten
arrives at the sum over representations formula on a Riemann surface with genus g:

Z(Σ, ϵ) =
1

(2π2)(g−1)

∞∑

n=1

exp (−ϵπ2n2)

n2g−2
(7.18)

which for g=1 becomes:

Z(Σ, ϵ) =
∞∑

n=1

exp
(
−ϵπ2n2

)
(7.19)

This is the formula which can now be changed into sum over saddle points using the
Poisson summation formula:

Let f : R → C be a Schwartz function, then

∑

n∈Z

f(n) =
∑

m∈Z

f̂(m) (7.20)

where f̂ is the Fourier transform of f . All we need to do now is to compute the

Fourier transform of exp (−ϵπ2n2). This is easily seen to be exp
(−πn2)

ϵπ
. But ϵ′ =
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4π2ϵ, giving us:

∑

n∈Z

exp
(
−ϵπ2n2

)
=
∑

m∈Z

exp
(−(2πm)2)

ϵ′
(7.21)

Hence, the 2D partition in the continuum can be expressed both as a sum over
representations and as a sum over saddle points. We will see below that we can also
write down a closed form for the partition function as a sum over representations
on the lattice.

7.6.2 Migdal’s 2D SU(2) lattice partition function

Migdal in [125] gave a set of recursion relations which allow us to write down a
closed form expression of the lattice gauge action (Wilson) in terms of a sum of over
representation formula. We briefly sketch his procedure here: Starting with a 2d
lattice and integrating out the internal lines to get a boundary Γ enclosing an area
S:

ZS(vΓ) =
∑

p

(Za,p)
S/a2dpχp(vΓ) , (7.22)

where vΓ are the path ordered links on the boundary, p denotes a particular repre-
sentation, dp is the dimension of that representation and χp(vΓ) the character of the
representation and (Za,p) are the coefficients of the expansion. Here, a denotes the
lattice spacing , so S/a2 denotes the number of plaquettes. Taking the local limit
a→ ∞, one must take the limit Za,p → 1− a2ϵp, so that

ZS(vΓ) =
∑

P

exp{(−Sϵp)}dpχ(vΓ) (7.23)

Deleting the vacuum energy, ϵp → ϵp−ϵ0 and demanding that these differences must
be positive: ϵp − ϵ0 = g2p, one gets:

ZS(vΓ) =
∑

P

exp
{(

−Sg2p
)}
dpχ(vΓ) (7.24)

If you require the bare action to go over into Yang Mills in the local limit, g2p is
replaced by g2(T )2p, where T

2 is the Casimir operator.

7.6.3 Exact lattice result from Wilson’s YM action

In this section we sketch the derivation of the exact sum over representations formula
on the lattice for SU(2) YM, to which we compared the numerical results from our
code shown in Fig. 7.3. The original derivation can be found in Appendix F of [117].
We begin by writing a formula exactly analogous to Migdal’s recursion formula (Eq.
7.22), with S/a2 replaced by the lattice volume V, and the coefficients replaced by
λR:

ZS(vΓ) =
∑

P

(λP )
V dpχ(vΓ) (7.25)
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Using periodic boundary conditions, taking into account the overall additive con-
stant βV in the action, which we had ignored since the being, he arrives at:

Z(pbc)(β) = e−βV
∑

p

[λp]
V (7.26)

Then he calculates λp as:

λp =
1

dp

∫
dUχp(U)e

βf(U) (7.27)

Using the Wilson action in the fundamental representation, he arrive at:

λp =
2

β
I2j+1(β) (7.28)

Z(pbc)(β) = e−βV
∑

p

[
2

β
I2j+1(β)

]V
(7.29)

Recall that for SU(2) , all the representations are labelled by j = 0, 1
2
, 1, 3

2
, ..., so

that the formula becomes:

Z(pbc)(β) = e−βV

∞∑

n=1

[
2

β
In(β)

]V
(7.30)

This is the formula we used to compute (up to a trivial sign factor that has to
do with using twisted boundary conditions instead of the periodic one) the partition
function for comparison with our code 7. In Fig 7.3 we depict the comparison of the
known result and the result we got by taking only the dominant thimble into account
(single-thimble simulation). The red dots are the average plaquette obtained from
the partition given in Eq. 7.30 by the following :

⟨Sp⟩/Np =
d logZ(pbc)

dβ
/Np + 1 (7.31)

where Sp is the value of the average plaquette for a lattice with Np plaquettes and
coupling β. Referring again to the Fig. 7.3, we see that the results from the single
thimble simulation are not consistent with the analytic results. Hence, we have a
partial result (and a negative one). However, this has been the first attempt at a
Lefschetz thimble simulation of a Yang-Mills theory and in that forms a new result.

7.7 Finite action solutions

We would like to end the discussion on thimble regularisation of Yang Mills theories
with some numerically obtained saddle points of the lattice Yang Mills action, which
have zero value of the action, along with their modification to obtain finite action
solutions. We numerically solved Eq. 7.7 starting from a random SU(2) matrix and
flowed to a solution of the equation of motion. We also constructed a maximal gauge

7The continuum limit of this action can be shown to result in the correct action given by Witten
(Eq. 7.19).
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tree of the solution obtained, in order to compare easily to the ladder solutions.
To our surprise we always converged to a ladder solution - even for the un-twisted
action as shown in Fig. 7.4 (Right). The left plot in Fig. 7.4 shows the expected
solution. However, note that this ladder solution obtained by the simulation is
special because it always results in a ladder solution with commuting SU(2) matrices.

Figure 7.4: Untwisted cases : (Left): Classical vacuum, (Right) : Solutions found by
steepest ascenting from a random SU(2) matrix.

For the twisted Wilson action, the simulation always converged on the expected
solution : a zero action solution given by a maximal gauge tree with anti-commuting
ladder matrices ( shown in Fig. 7.5 (Left)). What we display in Fig. 7.5(Right)
is a modification of the twist eater shown in the left plot. In this we instead of
choosing the same matrix in every step of the ladder, we use (-1) times the matrix
(Note this only works for even dimensional lattices to preserve the correct boundary
conditions). This way we get a non-zero action solution to the equation of motion -
a non-trivial candidate saddle point.

Figure 7.5: Twisted case : (Left) : Twist eater solution found by the simulation (expected
result). (Right) A modification to the twist eater to get a finite action solution.
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Part II: Yang-Mills & Lefschetz thimbles Chapter 7

7.8 Outlook : Yang Mills in presence of θ term

For Yang-Mills theories, in addition to the usual Kinetic term for gauge theories we
are allowed to write another term referred to, in literature, as the θ - term. The rea-
son behind writing a θ term is the fact that apart from the usual quadratic Fµν Fµν

(or equivalently F̃
µν
F̃µν ) terms, we can write an additional gauge and Lorentz in-

variant term no higher than O(2) in Fµν to the action.
In 4D, such a θ term can be written for both abelian and non-abelian gauge theories
and takes the form:

Sθ =
θ

16π2

∫
d4xTr

{
F̃
µν

Fµν

}
(7.32)

with F̃
µν

= ϵµνρλ Fρλ, that is F̃ is the dual stress tensor.
The existence of the dual stress tensor is a dimension dependent statement. For
example - theta terms can only be written for theories in even dimensions.

The question we would like to address is whether simulating Yang-Mills in the
presence of the θ-term makes sense on a Lefschetz thimble. The answer is yes.
We should consider studying the θ-term in a thimble framework for the following
possible reasons :

• The presence of the θ term in the Euclidean Yang-Mills actions leads to a
genuine sign problem, because of the presence of the term representing the
topological charge. The current state-of-the-art methods for studying the θ
term [126, 127, 128] involve simulations at imaginary values of θ and their
analytic continuation to real values of θ much in the same spirit as Imaginary
µB simulations in QCD. If we solve the theory on a thimble, we would, in
principle, be directly to simulate at real values of θ, without the need for
analytic continuation.

• Further, in the usual formulations of computing the topological charge on
the lattice, we are aware of a problem. Standard lattice simulations do not
preserve topological charge, since topological boundaries lose their meaning
on discrete and finite space-time. But this can theoretically be solved while
simulating the topological charge on a thimble. There are two reasons for
this: The first being that in order to perform a thimble simulation we have to
start our simulation from a given critical point (orbit in the case of a gauge
theory). Such an orbit only contains gauge configurations which are related
to each other by a local gauge transformation, by definition of a gauge orbit.
So starting the simulation from any point on the orbit would give the same
value of the topological charge. The second point is the simulation along the
thimble from any given point along the path of steepest ascent. This ascent
can also be seen to preserve the topological charge because, once again, by
definition and construction, a thimble preserves the homotopy class of the
original domain of integration. And from the index theorems [129], such a
change in geometry which preserves the homotopy class of a manifold - cannot
change the topological charge.

Although implementing such a θ-term will be very computationally intensive to
study on a lattice within the Lefschetz thimble framework, we believe it is a research
direction which should be pursued.
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Chapter 8

Conclusion

Knowledge of the QCD phase diagram remains a highly active field of research. Im-
plications of the knowledge gained from the QCD phase diagram range from under-
standing the interior of compact stars to experiments involving heavy-ion collisions.
The sign problem makes direct simulations hard, and methods of circumventing it
should be further investigated. One of the methods that were proposed to minimise
the sign problem a few years ago was the Lefschetz thimble approach. Although a
very intuitive approach, its practical application beyond toy models is still both com-
putationally (and conceptually for the non-abelian gauge theories) a tough challenge.

In this thesis, we have explored two potential methods of evading the sign prob-
lem. In the first part, we have systematically investigated singularities of the grand
canonical partition function. In the second part, we focused on the Lefschetz thimble
approach to solve the sign problem.

After introducing the general framework of the conjectured QCD phase diagram
in Chapter 1, we moved on to discuss in detail the Padé approximation technique in
Chapter 2. We started by motivating why rational approximations should be pre-
ferred over Taylor series expansions, especially when looking for non-analyticities in
a function. We then showed a general framework for constructing such an approxi-
mation. We then motivated why we should look at multi-point Padé approximations.
This was followed by showing through numerical experiments the scope of validity
of our analysis. We also commented on the type of spurious singularities one can
find in our analysis and how we were safe from them. In the next chapter, Chapter
3 we gave a general outline of phase transitions. This was followed by explaining
in some details the two corners of the Columbia plot. We finally discussed the
Roberge-Weiss(RW) plane and motivated our interest in the RW transition. Chap-
ter 4 introduced the Lee-Yang theorems and edge singularities and showed their
significance in hunting for critical points. We would like to mention that the subject
of Lee-Yang and Fisher zeros is extremely rich with physics and some sophisticated
mathematics. It should definitely be studied with enthusiasm. We finally moved
on to the essence of this thesis, i.e., Chapter 5. Here we computed cumulants of
the net baryon number density using lattice QCD simulations for two different tem-
poral extents. These cumulants were approximated with Padé functions and their
singularities studied. Signals for stable poles were found, which when fitted with
the expected Lee-Yang scaling functions, were completely consistent with the known
results (3d Z2 for the RW transition.) We also showed the consistency of the single
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pole found for the 363 × 6 lattices simulated at T = 145 MeV with the expected
Lee-Yang edge singularity in the O(2) universality class. We then concluded by
showing some new results.

We finally moved to the second part of the thesis, where we focused on the sign
problem and its possible solution via the Lefschetz thimble approach. In Chapter 6
we explained the many manifestations of the complex action problem, one of which
is the sign problem. We then showed a few possible workarounds of the sign problem
using re-weighting via phase and sign quenching. We then showed the success of
a single thimble simulation using Taylor (but later Padé) series to bridge regions
connected by single thimbles. We then applied the general framework of Lefschetz
thimbles to Yang-Mills theories in Chapter 7 and showed how a naive application
fails. We then showed some results from our code and left with some open questions.
Finally, we concluded by giving the reader reasons to pursue simulating the θ-term
using the Lefschetz thimble approach.

In the future, it would be interesting to study already existing cumulant data
from lattice simulations by other groups who performed imaginary µ simulations and
see if our multi-point Padé can find the appropriate signals for Lee-Yang singularities
in them. It would also be very beneficial to go beyond numerical experiments and
prove some theorems involving multi-point Padé approximants. Although we can
say that we have “smoking gun” evidence of the RW transition via our approach, the
same cannot be said about the Chiral transition point at the moment. We definitely
need more data with higher statistics to perform a proper Lee-Yang scaling. More
types of scalings are currently being explored by us in the framework of our 2D
Ising model simulations, this time even involving Fisher zeros. Another important
research direction is a systematic study of finite size effects on Lee-Yang edge sin-
gularities. Very special attention should also be paid when classifying singularities
in various universality classes. We end this thesis by emphasizing that through our
method of using Padé re-summation of the Taylor series expansion about zero and
imaginary chemical potentials, we can obtain information about Lee Yang zeros of
QCD. While the study is far from complete and currently ongoing, we hope that we
have at the very least presented the reader with a convincing platform, where they
can build from.
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Appendix A

Useful relations between measured
traces and cumulants

The goal of this appendix is to provide a map between the traces (of the fermion
determinant) measured and the final form of the cumulants used, which have been
plotted and used for Padé analysis in Chapter 5. This appendix is to a large extent
very specific to the output of the Bielefeld GPU code [86], in the sense that the IDs
given to the traces fo the fermion determinant are specific to their code. However, we
first “unravel” those IDs in a readable form in terms of the traces. Then, proceeding
section by section, we finally end up with the cumulants (up to the ones used by us)
written in terms of the observable IDs obtained from the code. The primary goal
of this appendix was to provide an easy to read crosscheck for the analysis of the
cumulant data.

A.1 Relation between Traces measured and their

observable ids :

The traces measured are : obsid = 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 16, 17, 18, 61, 62, 63, 311, 312
with Xn = ∂nM

∂µn and X0 = I

obsid = 1 ↔ Tr
(
X0M

−1
)
= Tr

(
M−1

)

obsid = 2 ↔ Tr
(
X1M

−1
)
= Tr

(
∂M

∂µ
M−1

)

obsid = 3 ↔ Tr
(
X2M

−1
)
= Tr

(
∂2M

∂µ2
M−1

)

obsid = 4 ↔ Tr
(
X3M

−1
)
= Tr

(
∂3M

∂µ3
M−1

)

obsid = 5 ↔ Tr
(
X4M

−1
)
= Tr

(
∂4M

∂µ4
M−1

)

obsid = 6 ↔ Tr
(
X0M

−1X0M
−1
)
= Tr

(
M−1M−1

)

obsid = 11 ↔ Tr
(
X1M

−1X0M
−1
)
= Tr

(
∂M−1

∂µ
M−1M−1

)
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obsid = 12 ↔ Tr
(
X1M

−1X1M
−1
)
= Tr

(
∂M−1

∂µ
M−1∂M

−1

∂µ
M−1

)

obsid = 13 ↔ Tr
(
X1M

−1X2M
−1
)
= Tr

(
∂M−1

∂µ
M−1∂

2M−1

∂µ2
M−1

)

obsid = 14 ↔ Tr
(
X1M

−1X3M
−1
)
= Tr

(
∂M−1

∂µ
M−1∂

3M−1

∂µ3
M−1

)

obsid = 16 ↔ Tr
(
X2M

−1X0M
−1
)
= Tr

(
∂2M−1

∂µ2
M−1M−1

)

obsid = 17 ↔ Tr
(
X2M

−1X1M
−1
)
= Tr

(
∂2M−1

∂µ2
M−1∂M

−1

∂µ
M−1

)

obsid = 18 ↔ Tr
(
X2M

−1X2M
−1
)
= Tr

(
∂2M−1

∂µ2
M−1∂

2M−1

∂µ2
M−1

)

obsid = 61 ↔ Tr
(
X1M

−1X1M
−1X0M

−1
)
= Tr

(
∂M−1

∂µ
M−1∂M

−1

∂µ
M−1M−1

)

obsid = 62 ↔ Tr
(
X1M

−1X1M
−1X1M

−1
)
= Tr

(
∂M−1

∂µ
M−1∂M

−1

∂µ
M−1∂M

−1

∂µ
M−1

)

obsid = 63 ↔ Tr
(
X1M

−1X1M
−1X2M

−1
)
= Tr

(
∂M−1

∂µ
M−1∂M

−1

∂µ
M−1∂

2M−1

∂µ2
M−1

)

obsid = 311 ↔ Tr
(
X1M

−1X1M
−1X1M

−1X0M
−1
)
=

Tr

(
∂M−1

∂µ
M−1∂M

−1

∂µ
M−1∂M

−1

∂µ
M−1M−1

)

obsid = 312 ↔ Tr
(
X1M

−1X1M
−1X1M

−1X1M
−1
)
=

Tr

(
∂M−1

∂µ
M−1∂M

−1

∂µ
M−1∂M

−1

∂µ
M−1∂M

−1

∂µ
M−1

)

A.2 Relation between derivatives of ln detM and

the traces mentioned above :

∂ ln detMf

∂µf

= Tr

(
∂M

∂µ
M−1

)
(A.1)

∂2 ln detMf

∂µ2
f

= Tr

(
M−1∂

2M

∂µ2

)
− Tr

(
M−1∂M

∂µ
M−1∂M

∂µ

)
(A.2)

∂3 ln detMf

∂µ3
f

= Tr

(
M−1∂

3M

∂µ3

)
− 3Tr

(
M−1∂M

∂µ
M−1∂

2M

∂µ2

)

+ 2Tr

(
M−1∂M

∂µ
M−1∂M

∂µ
M−1∂M

∂µ

)
(A.3)

∂4 ln detMf

∂µ4
f

= Tr

(
M−1∂

4M

∂µ4

)
− 4Tr

(
M−1∂M

∂µ
M−1∂

3M

∂µ3

)

− 3Tr

(
M−1∂

2M

∂µ2
M−1∂

2M

∂µ2

)
+ 12Tr

(
M−1∂M

∂µ
M−1∂M

∂µ
M−1∂

2M

∂µ2

)

− 6Tr

(
M−1∂M

∂µ
M−1∂M

∂µ
M−1∂M

∂µ
M−1∂M

∂µ

)
(A.4)
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A.3 Relating the obsids to ln detM

With obsid↔ [N ]f with N∈ {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 16, 17, 18, 61, 62, 63, 311, 312}
and f = {u, d, s}

∂ ln detMf

∂µf

= [2]f (A.5)

∂2 ln detMf

∂µ2
f

= [3]f − [12]f (A.6)

∂3 ln detMf

∂µ3
f

= [4]f − 3× [13]f + 2× [62]f (A.7)

∂4 ln detMf

∂µ4
f

= [5]f − 4× [14]f − 3× [18]f + 12× [63]f − 6× [312]f (A.8)

A.4 Key observables in terms of obsids :

Starting with Aijk =
1
Z

∂i

∂µi
u

∂j

∂µj
d

∂k

∂µk
s
Z = ⟨aui adjask⟩ and hence

A001 =
1

Z

∂Z

∂µs

=

〈
1

4

∂ ln detMs

∂µs

〉
=

〈
1

4
[2]s

〉
(A.9)

A010 =

〈
1

4
[2]d

〉
(A.10)

A100 =

〈
1

4
[2]u

〉
(A.11)

A002 =
1

Z

∂2Z

∂µ2
s

=

〈(
1

4

∂ ln detMs

∂µs

)2

+
1

4

∂2 ln detMs

∂µ2
s

〉

=

〈(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

〉
(A.12)

A020 =

〈(
1

4
[2]d

)2

+
1

4
([3]d − [12]d)

〉
(A.13)

A200 =

〈(
1

4
[2]u

)2

+
1

4
([3]u − [12]u)

〉
(A.14)

A011 =
1

Z

∂2Z

∂µd∂µs

=

〈
1

4

∂ ln detMd

∂µd

1

4

∂ ln detMs

∂µs

〉

=

〈
1

4
[2]d

1

4
[2]s

〉
(A.15)

A101 =

〈
1

4
[2]u

1

4
[2]s

〉
(A.16)

A110 =

〈
1

4
[2]u

1

4
[2]d

〉
(A.17)
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A003 =
1

Z

∂3Z

∂µ3
s

=

〈
1

4

∂3 ln detMs

∂µ3
s

+

(
1

4

∂ ln detMs

∂µs

)3
〉

+ 3

〈
1

4

∂ ln detMs

∂µs

1

4

∂2 ln detMs

∂µ2
s

〉

=

〈
1

4
([4]s − 3× [13]s + 2× [62]s) +

(
1

4
[2]s

)3
〉

+

〈
1

4
[2]s

1

4
([3]s − [12]s)

〉
(A.18)

A030 =

〈
1

4
([4]d − 3× [13]d + 2× [62]d) +

(
1

4
[2]d

)3
〉

+

〈
1

4
[2]d

1

4
([3]d − [12]d)

〉
(A.19)

A300 =

〈
1

4
([4]u − 3× [13]u + 2× [62]u) +

(
1

4
[2]u

)3
〉

+

〈
1

4
[2]u

1

4
([3]u − [12]u)

〉
(A.20)

A111 =
1

Z

∂3Z

∂µu∂µd∂µs

=

〈
1

4

∂ ln detMu

∂µu

1

4

∂ ln detMd

∂µd

1

4

∂ ln detMs

∂µs

〉

=

〈
1

4
[2]u

1

4
[2]d

1

4
[2]s

〉
(A.21)

A012 =
1

Z

∂3Z

∂µd∂µ2
s

=

〈
1

4

∂ ln detMd

∂µd

[(
1

4

∂ ln detMs

∂µs

)2

+
1

4

∂2 ln detMs

∂µ2
s

]〉

=

〈
1

4
[2]d

[(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

]〉
(A.22)

A021 =
1

Z

∂3Z

∂µ2
d∂µs

=

〈[(
1

4
[2]d

)2

+
1

4
([3]d − [12]d)

]
1

4
[2]s

〉
(A.23)

A120 =
1

Z

∂3Z

∂µu∂µ2
d

=

〈
1

4
[2]u

[(
1

4
[2]d

)2

+
1

4
([3]d − [12]d)

]〉
(A.24)

A210 =
1

Z

∂3Z

∂µ2
u∂µd

=

〈[(
1

4
[2]u

)2

+
1

4
([3]u − [12]u)

]
1

4
[2]d

〉
(A.25)

A102 =
1

Z

∂3Z

∂µu∂µ2
s

=

〈
1

4
[2]u

[(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

]〉
(A.26)

A201 =
1

Z

∂3Z

∂µ2
u∂µs

=

〈[(
1

4
[2]u

)2

+
1

4
([3]u − [12]u)

]
1

4
[2]s

〉
(A.27)

(A.28)
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A.5 Writing Xuds
ijk in terms of the above observable

IDs :

Xuds
001 = A001 =

〈
1

4
[2]s

〉
(A.29)

Xuds
002 = −A2

001 + A002

= −
〈
1

4
[2]s

〉2

+

〈(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

〉
(A.30)

Xuds
003 = 2A3

001 − 3A001A002 + A003

= 2

〈
1

4
[2]s

〉3

− 3

〈
1

4
[2]s

〉〈(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

〉

+

〈
1

4
([4]s − 3× [13]s + 2× [62]s) +

(
1

4
[2]s

)3
〉

+

〈
1

4
[2]s

1

4
([3]s − [12]s)

〉
(A.31)

Xuds
010 = A010 =

〈
1

4
[2]d

〉
(A.32)

Xuds
011 = −A001A010 + A011

= −
〈
1

4
[2]s

〉〈
1

4
[2]d

〉
+

〈
1

4
[2]d

1

4
[2]s

〉
(A.33)

Xuds
012 = −(−2A2

001 + A002)A010 − 2A001A011 + A012

= −
(
−2

〈
1

4
[2]s

〉2

+

〈(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

〉)〈
1

4
[2]d

〉

− 2

〈
1

4
[2]s

〉〈
1

4
[2]d

1

4
[2]s

〉
+

〈
1

4
[2]d

[(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

]〉
(A.34)

Xuds
020 = −A2

010 + A020

= −
〈
1

4
[2]d

〉2

+

〈(
1

4
[2]d

)2

+
1

4
([3]d − [12]d)

〉
(A.35)

Xuds
021 = −A020A001 + 2A001A

2
010 − 2A010A011 + A021

= −
〈(

1

4
[2]d

)2

+
1

4
([3]d − [12]d)

〉〈
1

4
[2]s

〉

+ 2

〈
1

4
[2]s

〉〈
1

4
[2]d

〉2

− 2

〈
1

4
[2]d

〉〈
1

4
[2]d

1

4
[2]s

〉

+

〈[(
1

4
[2]d

)2

+
1

4
([3]d − [12]d)

]
1

4
[2]s

〉
(A.36)

Xuds
030 = 2A3

010 − 3A010A020 + A030

= 2

〈
1

4
[2]d

〉3

− 3

〈
1

4
[2]d

〉〈(
1

4
[2]d

)2

+
1

4
([3]d − [12]d)

〉
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+

〈
1

4
([4]d − 3× [13]d + 2× [62]d) +

(
1

4
[2]d

)3
〉

+

〈
1

4
[2]d

1

4
([3]d − [12]d)

〉
(A.37)

Xuds
100 = A100 =

〈
1

4
[2]u

〉
(A.38)

Xuds
101 = −A001A100 + A101

= −
〈
1

4
[2]s

〉〈
1

4
[2]u

〉
+

〈
1

4
[2]u

1

4
[2]s

〉
(A.39)

Xuds
102 = −(−2A2

001 + A002)A100 − 2A001A101 + A102

= −
(
−2

〈
1

4
[2]s

〉2

+

〈(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

〉)〈
1

4
[2]u

〉

− 2

〈
1

4
[2]s

〉〈
1

4
[2]u

1

4
[2]s

〉
+

〈
1

4
[2]u

[(
1

4
[2]s

)2

+
1

4
([3]s − [12]s)

]〉
(A.40)

Xuds
110 = −A010A100 + A110

= −
〈
1

4
[2]d

〉〈
1

4
[2]u

〉
+

〈
1

4
[2]d

1

4
[2]u

〉
(A.41)

Xuds
111 = 2A001A010A100 − A001A110 − A010A101 − A011A100 + A111
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A.6 Some χBQSijk (cumulants of conserved charges)

in terms of the measured quantities

The cumulants (χuds
ijk ) are related to the expectation values with a pre-factor : χuds

ijk =
1

V T 3X
uds
ijk .

Now the conserved charges are easy to read from the values of {i,j,k} in χBQS
ijk .For

example,
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&....

Finally writing the desired cumulants directly in terms of the measured observables.
Do not forget to put the factors of (1/V T 3) that relate X’s to χ’s:
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〉
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Appendix B

Data Measured for Cumulants of
conserved charges

In this appendix we present the results of our analysis for the cumulants measured.
The first two tables B.1 and B.2 are the data already published in [16]. Finally, in
tables B.3 and B.4 we show the first two cumulants fo the net baryon and net charge
densities.
The gauge fields have been generated with a rational hybrid Monte Carlo algorithm
(RHMC). In Tables B.1 and B.2 we list results from calculation on the 243 × 4 and
363 × 6 lattices, respectively. Also listed are the number of configurations on which
we have measured the observables and which are separated by 10 RHMC trajectories
of length 0.5-1.0.
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Im
[
χB
1

]
Re
[
χB
2

]
Im
[
χB
3

]
#conf. Im

[
χB
1

]
Re
[
χB
2

]
Im
[
χB
3

]
#conf.

T = 201.4 [MeV] T = 176.6 [MeV]
0.000 -0.00002(18) 0.26421(52) 0.0009(21) 4800 0.000 0.00062(28) 0.2288(10) -0.0018(43) 1600
0.393 0.10319(17) 0.26066(46) 0.0155(27) 4800 0.209 0.04840(25) 0.22800(83) 0.01876(43) 1600
0.785 0.20388(21) 0.25134(72) 0.0367(30) 4800 0.419 0.09556(42) 0.22487(11) 0.0279(52) 1600
1.178 0.29940(27) 0.2344(11) 0.0478(47) 4800 0.628 0.14253(36) 0.2178(10) 0.0305(74) 1600
1.571 0.38637(20) 0.2107(11) 0.0762(68) 4800 0.838 0.18703(38) 0.2084(15) 0.0420(93) 1600
1.963 0.46004(44) 0.1675(22) 0.132(15) 5400 1.047 0.22836(50) 0.1951(18) 0.0706(87) 1600
2.356 0.51602(51) 0.1049(28) 0.224(22) 5400 1.257 0.26744(63) 0.1761(23) 0.092(14) 1600
2.749 0.53076(91) -0.0589(73) 0.72(13) 5400 1.466 030325(65) 0.1599(29) 0096(20) 1600
2.880 0.52279(99) -0.1291(79) 1.00(11) 10800 1.676 0.33369(37) 0.1253(17) 0.201(16) 1600
3.011 0.4851(21) -0.516(34) 5.39(79) 10800 1.885 0.35465(57) 0.0961(35) 0.175(18) 1600
3.105 0.3859(78) -2.92(54) 141(48) 11000 2.094 0.36401(57) 0.0147(62) 0.360(72) 1600

T = 186.3 [MeV] 2.304 0.3594(11) -0.086(13) 0.73(12) 1600
0.000 0.00025(12) 0.24537(35) 0.0021(20) 4100 2.513 0.32881(51) -0.235(18) 1.06(42) 1600
0.286 0.06986(20) 0.24361(51) 0.0062(17) 4100 2.723 0.2608(24) -0.482(17) 1.40(44) 1600
0.571 0.13876(20) 0.23687(52) 0.0127(23) 4100 2.932 0.1454(32) -0.567(29) 0.31(55) 1600
0.857 0.20486(26) 0.22681(75) 0.0181(29) 4100 3.142 0.0055(30) -0.626(33) -0.58(53) 1600
1.142 0.26792(27) 0.21248(91) 0.0271(46) 4100 T = 167.4 [MeV]
1.428 0.32485(30) 0.1850(16) 0.0796(97) 4100 0.000 -0.00029(23) 0.21093(75) -0.0070(53) 6000
1.714 0.37469(41) 0.1588(15) 0.068(12) 4100 0.393 0.08176(27) 0.2059(13) 0.0283(67) 6000
1.999 0.41448(59) 0.1088(38) 0.140(22) 4100 0.785 0.15952(31) 0.1860(12) 0.0668(70) 6000
2.285 0.43543(90) 0.0350(73) 0.271(48) 4100 1.178 0.22720(45) 0.1551(21) 0.1017(85) 6000
2.570 0.4213(15) -0.145(11) 0.88(15) 4100 1.571 0.27782(81) 0.0982(36) 0.181(33) 6000
2.713 0.3918(24) -0.349(25) 2.21(49) 4000 1.963 0.29885(84) -0.0083(59) 0.372(68) 6000
2.856 0.3262(34) -0.757(61) 5.3(1.2) 4100 2.356 0.2630(16) -0.179(15) 0.57(12) 12000
2.999 0.2020(41) -1.061(54) 2.9(1.6) 4000 2.749 0.1554(16) -0.343(19) 0.23(25) 12000
3.142 -0.0069(61) -1.40(12) -0.0(3.2) 4100 3.142 -0.0015(16) -0.421(13) 0.07(27) 12000

T = 160.4 [MeV] T = 160.4 [MeV]
0.000 -0.00027(25) 0.1919(12) -0.0000(82) 5550 1.571 0.23653(81) 0.0584(60) 0.190(39) 5550
0.393 0.07427(36) 0.1865(14) 0.0287(84) 5550 1.963 0.2391(13) -0.0476(83) 0.262(89) 5550
0.785 0.14273(32) 0.1637(18) 0.071(14) 5550 2.356 0.1990(16) -0.1580(88) 0.16(16) 5550
1.178 0.20104(40) 0.1262(27) 0.109(17) 5550 2.749 0.1061(13) -0.271(17) 0.13(23) 5550

Table B.1: Mean values and statistical errors of net baryon number cumulants from
243 × 4 lattices. Also indicated is the number of measured configurations.

Im
[
χB
1

]
Re
[
χB
2

]
Im
[
χB
3

]
#conf. Im

[
χB
1

]
Re
[
χB
2

]
Im
[
χB
3

]
#conf.

T = 145.1 (MeV) T = 145.1 (MeV)
0.000 0.00024(51) 0.0579(24) 0.001(20) 5280 1.963 0.05578(61) -0.0217(39) 0.074(36) 5280
0.393 0.02276(42) 0.0526(27) 0.026(24) 5280 2.356 0.04384(73) -0.0467(49) 0.099(46) 5280
0.785 0.04142(56) 0.0426(22) 0.057(19) 5280 2.749 0.02391(81) -0.0569(44) 0.024(37) 5280
1.178 0.05436(54) 0.0176(27) 0.055(27) 5280 2.945 0.01315(95) -0.0663(47) 0.008(46) 5280
1.571 0.05995(76) -0.0042(24) 0.075(25) 5280 3.142 0.00024(80) -0.0538(41) 0.071(39) 5280

Table B.2: Mean values and statistical errors of net baryon number cumulants from
363 × 6 lattices. Also indicated is the number of measured configurations.
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µ̂I
B Im

[
χB
1

]
Re
[
χB
2

]
#conf.

T = 190 [MeV]
0 0.00004(23) 0.21723(77)

0.393 0.08453(38) 0.2140(11)
0.785 0.16715(39) 0.1992(14)
1.178 0.24091(55) 0.1783(20)
1.571 0.30577(67) 0.1491(19)
1.963 0.3549(13) 0.0908(71)
2.356 0.3713(12) -0.0177(70)
2.749 0.3083(24) -0.417(44)
2.945 0.1931(42) -0.712(51)
3.141 0.0042(40) -0.942(70)
3.141 0.0038(25) −0.484(27)

T = 185 [MeV]
0 0.00011(25) 0.20524(90)

0.393 0.08045(26) 0.2008(11)
0.785 0.15823(25) 0.1908(11)
1.178 0.22713(56) 0.1652(20)
1.571 0.28627(63) 0.1321(21)
1.963 0.3260(10) 0.0664(43)
2.356 0.3244(17) −0.0873(83)
2.749 0.2304(19) −0.463(33)
2.945 0.1278(38) −0.627(50)
3.141 0.0043(32) −0.720(42)

T = 179 [MeV]
0 −0.00008(29) 0.1912(10)

0.393 0.07481(33) 0.1865(11)
0.785 0.14535(41) 0.1730(12)
1.178 0.20806(47) 0.1463(16)
1.571 0.25758(64) 0.1004(36)
1.963 0.28318(86) 0.0412(48)
2.356 0.2652(15) −0.125(11)
2.749 0.1656(15) −0.350(16)
2.945 0.0882(24) −0.498(30)

Table B.3: Mean values and statistical errors of net baryon number cumulants from
363 × 6 lattices at new values of temperatures T ∈ {179.5, 185, 190} MeV. Also indicated
is the number of measured configurations.
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µ̂I
B Im

[
χQ
1

]
Re
[
χQB
11

]
#conf.

T = 190 [MeV]
0 0.000053(45) 0.02479(11)

0.39276 0.009701(48) 0.02477(17)
0.78534 0.019448(67) 0.02431(17)
1.1781 0.028965(58) 0.02435(24)
1.5709 0.038456(76) 0.02375(24)
1.9634 0.047198(87) 0.02006(54)
2.3562 0.05324(12) 0.00819(63)
2.749 0.04804(36) −0.0538(62)
2.9452 0.03119(65) −0.1111(76)
3.1415 0.00069(65) −0.155(12)

T = 185 [MeV]
0 −0.000026(47) 0.02640(14)

0.39276 0.010349(47) 0.02622(21)
0.78534 0.020859(53) 0.02640(20)
1.1781 0.030889(73) 0.02507(28)
1.5709 0.040614(80) 0.02331(23)
1.9634 0.048770(89) 0.01717(47)
2.3562 0.05185(19) −0.0046(10)
2.749 0.03923(34) −0.0730(51)
2.9452 0.02218(64) −0.1063(81)
3.1415 0.00067(55) −0.1250(68)

T = 179.5 [MeV]
0 0.000014(58) 0.02878(18)

0.39276 0.011216(58) 0.02852(17)
0.78534 0.022122(53) 0.02767(24)
1.1781 0.032704(74) 0.02577(22)
1.5709 0.041847(93) 0.02076(50)
1.9634 0.04811(11) 0.01230(76)
2.3562 0.04742(24) −0.0168(18)
2.749 0.03071(26) −0.0631(28)
2.9452 0.01657(44) −0.0917(52)
3.1415 0.00073(44) −0.0898(48)

Table B.4: Mean values and statistical errors of net charge cumulants from 363 × 6
lattices at new values of temperatures T ∈ {179.5, 185, 190} MeV. Also indicated is the
number of measured configurations.
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Appendix C

2D Ising model simulation data

C.1 Simulation details :

We used a cluster algorithm to perform Monte Carlo simulations for the 2D Ising
model with ferromagnetic couplings with only nearest neighbour interactions. We
use the following Hamiltonian,

H2D = −J
∑

⟨i,j⟩

si.sj − h.
∑

i

si , (C.1)

where we will fix for our simulations J = 1, an array of values for the external
magnetic field h will be sampled along along with an array of temperature values.

The values of βh simulated are given in the following Table :

βh 0
0.01 0.025
0.05 0.1
0.15 0.2
0.25 0.4
0.6 0.8
1.0 1.2
1.4 1.6
1.8 2.0

From these we constructed the M vs H data. Notice that we only simulated the
positive values for βh, since we know the symmetry properties of the data. But we
also explicitly performed simulations at negative βh values for smaller lattices and
confirmed the symmetry properties. Shown below are for two lattices sizes L=30
and L=80
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Figure C.1: Magnetisation and the peaks of susceptibility for the three lattices simulated
L=30,50,80.
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Figure C.2: Magnetization as a function of the external magnetic field displayed for a
few selected temperatures shown in the legends. (Left) : L=30, (Right) : L=80
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Appendix D

Yang Mills with theta term

This appendix is organised as follows: In Section D.1 we show why cannot write down
a theta term for SU(N) in 2D and hence cannot use the Yang Mills 2D exact results
to test our ideas. In Section D.2 we show how the theta term in is complexified, that
being our first step in the thimble regularisation procedure. In Section D.3 we show
via two different ways that the topological charge, now defined using complexified
gauge fields can still be written as a total derivative term and hence it is still a
topological term. Finally, in Section D.4 we will show the lattice version of the θ
term we have implemented in our code.

D.1 θ-term in 1+1 D

In 1+1 D, the volume form ϵµν contains only two indices , and since the field tensor
Fµν also contains only two indices, the dual tensor is actually a scalar (a 0-form):

F̃ = ϵµν Fµν (D.1)

Hence there exists no combination of Fµν and F̃ at O(2) in Fµν that can be used to
form a Lorentz scalar!
In Abelian theories , this is not a problem as we can add a linear θ term:

S1+1D,U(1) =

∫
d2x

(
1

2g2
Fµν Fµν +

θ

2π
ϵµν Fµν

)
(D.2)

The problem occurs when we go to non-abelian theories because Fµν transforms
non trivially under gauge transformations, the Lorentz invariant term ϵµν Fµνa T

a

is not sufficient - since it is not gauge invariant, since F transforms as Fµν →
Ω(x) Fµν Ω−1(x). Moreover, taking a trace will make the term zero : Tr{(ϵµν Fµνa T

a)} =
0!

So it seems that 2D SU(N) does not have a theta term, in the usual sense when
discussing the 4D theory 1.

D.2 θ term in 4D SU(N) (complexified)

In this section we proceed to start with our thimble construction by first complexi-
fying the θ term. Our goal is to split the action in real and imaginary parts. This

1It is however possible to write a particular θ-term also for the group CP. More details at [130]
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is because we know that, by construction, the imaginary part of the action remains
fixed while ascenting on the thimble. Therefore, we would like to identify what
remains constant on a thimble. As will be apparent, we do complexification on the
continuum theory.

We start with the usual YM Euclidean action in the presence of the θ term
defined as,

Lθ (x) =
1

4
F a
µν (x)F

a
µν (x)− ιθ

g2

64π2
ϵµνρσF

a
µν (x)F

a
ρσ (x)

S =

∫
d4xLθ =

∫
d4x

(
1

4
F a
µν (x)F

a
µν (x)− ιθ

g2

64π2
ϵµνρσF

a
µν (x)F

a
ρσ (x)

)

with,

F a
µν (x) = ∂µA

a
ν (x)− ∂νA

a
µ (x)− ιg [Aµ, Aν ]

a

= ∂µA
a
ν (x)− ∂νA

a
µ (x) + gfabcAb

µ (x)A
c
ν (x)

Complexifying the field degrees of freedom : Aa
ν → Aa

ν + ιÃa
ν , we get

S = SYM

[
A+ ιÃ

]
− ιSθ

[
A+ ιÃ

]

S = SYM + ιS̃YM − ιSθ + S̃θ

So the part that remains constabt is SI = S̃YM − Sθ. In terms of F a
µν and Aa

µ, the
complexification looks like:

F a
µν → ∂µ

(
Aa

ν + iÃa
ν

)
− ∂ν

(
Aa

µ + iÃa
µ

)
− ιg

[
Aµ + iÃµ, Aν + iÃν

]a

= ∂µA
a
µ − ∂νA

a
µ − ιg [Aµ, Aν ]

a + ι∂µÃ
a
µ − ι∂νÃ

a
µ − ιg

[
ιÃµ, ιÃν

]a
− ιg

[
Aµ, Ãν

]
− ιg

[
Ãµ, Aν

]

= F a
µν [A] + F a

µν [ιÃ]− ιg
[
Aµ, ιÃν

]
− ιg

[
ιÃµ, Aν

]

So F a
µνF

a
µν becomes (still incomplete) :

F a
µνF

a
µν →

(
F a
µν [A]

)2
+
(
F a
µν [ιÃ]

)2
+ cross terms

And iϵµνρσF
a
µνF

a
ρσ becomes (it is easier to write this in compact form because of the

ϵµνρσ).

ιϵµνρσF
a
µνF

a
ρσ →ιϵµνρσ Tr [(∂µZν − ∂νZµ − ιg [Zµ, Zν ]) (∂ρZσ − ∂σZρ − ιg [Zρ, Zσ])]

= 4ϵµνρσ Tr [(∂µZν − ιgZµZν) (∂ρZσ − ιgZρZσ)]

With Za
µT

a = (Aa
µ + ιÃa

µ)T
a.

We can further simplfy the above to get rid of the term with ZZZZ, to get:

ιϵµνρσF
a
µνF

a
ρσ →4ϵµνρσ Tr (∂µZν∂ρZσ − ιgZµZν∂ρZσ − ιg(∂µZν)ZρZσ)
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= 4ϵµνρσ Tr (∂µZν∂ρZσ − 2ιgZµZν∂ρZσ)

= 4ϵµνρσ Tr
(
∂µ(Aν + ιÃν)∂ρ(Aσ + ιÃσ)

−2ιg(Aµ + ιÃµ)(Aν + ιÃν)∂ρ(Aσ + ιÃσ)
)

However, because of all the cross terms present, we couldn’t conclude what rel-
evance (if any) the net imaginary term being fixed on a thimble has. As can be
guessed, we hoped that only the topological term would survive. We then moved
onto try a different exercise - hoe see if after the complexification of the algebra the
topological charge would still remain a total derivative term.

D.3 To show that ϵµνρσ Tr{FµνFρσ} = ∂µK
µ for com-

plex potentials : A + ιÃ

We know that the theta-term of Yang-Mills can be written as a total derivative in
the action, i.e.

ϵµνρσ Tr{FµνFρσ} = ∂µK
µ (D.3)

where Kµ is known as the Chern-Simons term and is given by

Kµ = ϵµνρσ

(
Aa

νF
a
ρσ ±

g

3
fabcAa

νA
b
ρA

c
σ

)
(D.4)

Note that the sign ± depends on conventions. We now want to show that this
relation also holds for complexified stress tensor. We complexify the potential as
follows

F a
µν → ∂µ

(
Aa

ν + iÃa
ν

)
− ∂ν

(
Aa

µ + iÃa
µ

)
− ιg

[
Aµ + iÃµ, Aν + iÃν

]a
(D.5)

and thus define the corresponding complexified stress-energy tensor as

Ka
µν (x) = ∂µZ

a
ν (x)− ∂νZ

a
µ (x)− ιg [Zµ, Zν ]

a (D.6)

with Zµ = Aµ + ιÃµ.

Going through the algebra it can readily be seen that the topological term with
a complexified stress-tensor can also be written as a total derivative term

ϵµνρσ TrKµνKρσ = ϵµνρσ Tr [(∂µZν − ∂νZµ − ιg [Zµ, Zν ]) (∂ρZσ − ∂σZρ − ιg [Zρ, Zσ])]

= 4ϵµνρσ Tr [(∂µZν − ιgZµZν) (∂ρZσ − ιgZρZσ)]

= 4ϵµνρσ Tr [(∂µZν − ιgZµZν) (∂ρZσ − ιgZρZσ)]

= 4ϵµνρσ Tr (∂µZν∂ρZσ − ιgZµZν∂ρZσ − ιg(∂µZν)ZρZσ)

− 4g2
(((((((((((
ϵµνρσ Tr (ZµZνZρZσ)

= 4ϵµνρσ Tr (∂µZν∂ρZσ − ιgZµZν∂ρZσ − ιg(∂µZν)ZρZσ)

= 4ϵµνρσ Tr (∂µZν∂ρZσ − 2ιgZµZν∂ρZσ)

= 4ϵµνρσ Tr (∂µ (Zν∂ρZσ)− Zν∂µ∂ρZσ − 2ιgZµZν∂ρZσ)

= 4ϵµνρσ Tr [∂µ (Zν∂ρZσ)− 2ιgZµZν∂ρZσ]− 4
((((((((((
ϵµνρσ TrZν∂µ∂ρZσ
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= 4ϵµνρσ Tr

[
∂µ (Zν∂ρZσ)−

2

3
ιg∂µ (ZνZρZσ)

]

= 4∂µ

(
ϵµνρσ Tr

[
Zν∂ρZσ −

2

3
ιgZνZρZσ

])

It is interesting to note that the Chern-Simons term in this scenario is the obvious
generalization of Eq. D.4. Nonetheless, it is not yet clear what the corresponding
winding number would mean for such gauge group SL (n,C) and we leave such
interesting matter for further work.

D.4 Action on the lattice

In the Euclidean QCD lagrangian (with the θ-term), the action becomes complex
for real values of θ. Hence, direct MC simulations become impossible. So the idea
is to continue θ → −iθi, with θi real and then carry out the MC simulations and
continue the results back to real θ.

The θ term in the continuum is given by:

q(x) = iθ
g2

64π2
ϵµνρσF

a
µν (x)F

a
ρσ (x) (D.7)

On the lattice this becomes θLQL, with:

QL =
∑

n

qL(n) (D.8)

qL(n) =
−1

2432π2

±4∑

µνρσ=±1

ϵ̃µνρσ Tr{[Πµν (n)Πρσ (n)]} (D.9)

with ϵ̃µνρσ = ϵµνρσ for positive directions and ϵ̃(−µ)νρσ = -ϵµνρσ for every negative
direction. And the plaquttes being,

Πµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν(n)

Πρσ(n) = Uρ(n)Uσ(n+ ρ̂)U †
ρ(n+ σ̂)U †

σ(n)

n+ν̂

Πµν(n)

n+µ̂ + ν̂

n+ρ̂ + σ̂

n+µ̂

Πρσ(n)

n

n+σ̂

n + ρ̂

Figure D.1: The loop associated to theta term (not the only diagram relevant on the
lattice with positive directions)
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Since our code is made for only positive directions - we need to split sums for µ,ν,ρ
and σ for positive and negative directions. We can split the sum in Eqn(5) and
convert all directions to positive in order to get the diagrams relevant to our code.

What happens to the plaquettes under µ̂→ −µ̂, ν̂ → −ν̂, ρ̂→ −ρ̂ and σ̂ → −σ̂
?

Using U−µ(n) ≡ U †
µ(n− µ̂), we get:

Π(−µ)ν(n) = U−µ(n)Uν(n− µ̂)U †
−µ(n+ ν̂)U †

ν(n)

= U †
µ(n− µ̂)Uν(n− µ̂)Uµ(n+ ν̂ − µ̂)U †

ν(n)

̸=
[
Uν(n− µ̂)Uµ(n+ ν̂ − µ̂)U †

ν(n)U
†
µ(n− µ̂) = Π†

µν(n− µ̂)
]

Πµ(−ν)(n) = Uµ(n)U−ν(n+ µ̂)U †
µ(n− ν̂)U †

−ν(n)

= Uµ(n)U
†
ν(n+ µ̂− ν̂)U †

µ(n− ν̂)Uν(n− ν̂) ̸= Π†
µν(n− ν̂)

Π(−µ)(−ν)(n) = U−µ(n)U−ν(n− µ̂)U †
−µ(n− ν̂)U †

−ν(n)

= U †
µ(n− µ̂)U †

ν(n− ν̂ − µ̂)Uµ(n− µ̂− ν̂)Uν(n− ν̂) ̸= Πµν(n− µ̂− ν̂)

n+ν̂

6= Π†µν(n− µ̂)

n−µ̂ + ν̂

n+ρ̂ + σ̂

n−µ̂

Πρσ(n)

n

n+σ̂n+ρ̂

n - ν̂

6= Π†µν(n− ν̂)

n + µ̂− ν̂

n + ρ̂ + σ̂

n + µ̂

Πρσ(n)

n

n + σ̂n + ρ̂

n−ν̂

6= Πµν(n− ν̂ − µ̂)

n −µ̂− ν̂

n+ρ̂ + σ̂

n−µ̂

Πρσ(n)

n

n+σ̂

n+ρ̂

Figure D.2: The loop associated to theta term in (Top Left) −µ̂ , (Top Right) −ν̂ and
(Bottom) (−µ̂− ν̂) direction

The inequality represents the fact that we cannot use trace cyclibility to move
the links in Πµν without commuting over Πρσ.

But these four diagrams do not exhaust all the terms in the diagrams possible.
All the sixteen terms appearing in the “positive” direction sum are:

qL(n) =
−1

2432π2

4∑

µνρσ=1

ϵµνρσ Tr
([
Πµν (n)− Π(−µ)ν (n)− Πµ(−ν) (n) + Π−µ−ν (n)

]
×

[
Πρσ (n)− Π(−ρ)σ (n)− Πρ(−σ) (n) + Π−ρ−σ (n)

])
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