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ABSTRACT  

 

Metabolomics is the systematic and comprehensive analysis of metabolites in a biological system 

and provides a functional snapshot of an organism's condition. It can be used to discover biomarkers 

for diagnosis and for staging the disease’s progression. 

Nuclear Magnetic Resonance (NMR) spectroscopy, one of the main analytical platforms used in 

metabolomics, has been employed in this Thesis exploiting its reproducibility, the possibility to 

measure all metabolites at once, and absolute metabolite quantification.   

This Thesis aims to: optimize salivary sample preparation for metabolomics analysis; determine 

physiologic metabolic profiles of a cohort of healthy subjects, identify salivary biomarkers associated 

with oral pathologies such as inflammation, potentially malignant disorders, and oral carcinoma. 

The optimization of saliva samples preparation for 1H-NMR analysis includes an ultrafiltration step 

followed by freeze-drying which allows a 5-fold gain of metabolite's concentration. The method has 

been validated, and the LOQ and LOD were determined.  

Three different types of saliva were collected (whole, parotid, and submandibular/sublingual) from 

20 healthy volunteers without oral cavity diseases. Metabolites derived from endogenous host 

metabolism and oral bacterial microflora and differently distributed within the three saliva subtypes 

were identified and quantified. 

The periodontal health status of our study cohort was assessed by the "Full Mouth Bleeding Score" 

(FMBS). Multivariate statistical analysis of the whole saliva highlighted the correlation between 

some metabolites and FMBS. The identified metabolites represent a dysbiotic oral bacterial 

colonization that can induce inflammation and gingival bleeding.  

These findings are the starting point to set up an early diagnostic tool for oral inflammation 

preceding periodontitis.  

The last part of the study was the determination of the metabolic profiles of the whole saliva from 

patients with oral cancer (OSCC) and patients with potentially malignant oral disorders (leukoplakia 

and lichen planus).  

Preliminary data showed metabolic alterations associated with the progressive transformation of 

potentially malignant lesions to neoplastic cells. Noteworthy, the metabolic data allowed also to 

distinguish, in the leukoplakia cases, different stages of dysplasia degeneration of the oral mucosa. 

Further investigations will be needed to correlate metabolomic data with subjects' clinical and 

epidemiological features. 
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To conclude, 1H-NMR metabolomics analysis of saliva revealed its potential for developing design 

protocols for the early diagnostic of oral pathologies. 
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RIASSUNTO  

 

La metabolomica è l'analisi sistematica dei metaboliti presenti in un sistema biologico ed è in grado 

di fornire un'istantanea delle condizioni di salute di un organismo. Può essere utilizzata per la ricerca 

di biomarcatori utili nella diagnosi e nella stadiazione della progressione di diverse patologie. 

La spettroscopia di Risonanza Magnetica Nucleare (NMR), una delle principali tecniche analitiche 

utilizzate in metabolomica, è stata impiegata in questa tesi per tutti i suoi vantaggi, tra cui la 

riproducibilità, la possibilità di misurare tutti i metaboliti contemporaneamente e la capacità di 

fornire una quantificazione assoluta dei metaboliti. 

Questa tesi si propone di: ottimizzare la preparazione del campione salivare per l'analisi 

metabolomica tramite tecnica 1H-NMR; determinare i profili metabolici di una coorte di soggetti 

sani in condizioni fisiologiche; identificare i metaboliti salivari che possano espletare la funzione di 

biomarkers per patologie orali come l’infiammazione, lesioni orali potenzialmente maligne e il 

carcinoma orale. 

L'ottimizzazione della preparazione dei campioni di saliva per l'analisi 1H-NMR ha previsto una fase 

di ultrafiltrazione seguita da una fase di liofilizzazione, che ha consentito un aumento di 5 volte della 

concentrazione nativa dei metaboliti, permettendone la completa quantificazione. Il metodo è stato 

convalidato analiticamente e ne sono stati determinati LOQ (limite di quantificazione) e LOD (limite 

di rilevamento). 

Sono stati raccolti tre diversi tipi di saliva (intera, parotidea e sottomandibolare/sublinguale) da 20 

volontari sani, senza malattie del cavo orale. Sono stati identificati e quantificati metaboliti derivanti 

sia dal metabolismo endogeno che dalla microflora batterica che popola il cavo orale, presenti in 

concentrazioni diverse nei tre sottotipi di saliva. 

Lo stato di salute paradontale della nostra coorte di studio è stato valutato tramite il "Full Mouth 

Bleeding Score" (FMBS): l’indice di sanguinamento delle mucose orali. L'analisi statistica 

multivariata del metaboloma della saliva intera ha evidenziato la correlazione tra alcuni metaboliti 

e FMBS.  

Questi risultati sono il punto di partenza per lo sviluppo di uno strumento diagnostico che possa 

rilevare precocemente le condizioni di infiammazione orale, prima che evolvano a stadi più severi, 

come la parodontite. 
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L'ultima parte dello studio è stata la determinazione dei profili metabolici della saliva intera di 

pazienti con cancro orale (OSCC) e di pazienti con lesioni orali potenzialmente maligne (leucoplachia 

e lichen planus). 

Dati preliminari hanno mostrato alterazioni metaboliche associate alla progressiva trasformazione 

di lesioni potenzialmente maligne in fenotipi più aggressivi. In particolare, i dati metabolici hanno 

consentito di distinguere, nei casi di leucoplachia, diversi stadi di displasia epiteliale degenerativa 

della mucosa orale. Saranno necessarie ulteriori indagini per correlare i dati metabolomici con le 

caratteristiche cliniche ed epidemiologiche dei pazienti. 

Per concludere, l'analisi metabolomica 1H-NMR della saliva ha rivelato il potenziale di questo 

biofluido per lo sviluppo di protocolli e dispositivi per la diagnosi precoce delle patologie orali. 

  



8 
 

I. INTRODUCTION 

 

1. WHAT IS METABOLOMICS 

 

1.1. Metabolomics: A field of Omics sciences 

The Omics sciences encompass disciplines that, unlike traditional biological sciences that focus on 

selected biological processes, aim to study the ensemble of genes (genomics), transcripts 

(transcriptomics), proteins (proteomics), and metabolites (metabolomics) expressed by the cells 

(Figure I.1). Omics sciences, therefore, analyse cells and tissues from a different perspective, 

probably best suited to describe biological systems characterized by a high degree of complexity. 

This change in biology was possible thanks to the introduction of new technologies and produces a 

considerable amount of information.  

Genomics, the first member of the Omics family introduced in the 80’ of the 20th century, focus on 

the elucidation of the entire genome of an organism, allowing the characterization and 

quantification of all genes at once. DNA sequencing and genetic variant information gained by 

genomics approaches have enabled the identification of gene mutations and chromosomal 

rearrangements related to specific genetic syndromes (Olivier et al, 2019). 

Transcriptomics investigates the set of coding and non-coding RNA measuring the direct activity and 

functional characteristics of the genome. Strongly linked to genomics transcriptomics captures gene 

transcription changes in a precise moment under different conditions. Understanding “how” and 

“why” gene expression profiles change is required to identify molecular mechanisms underlying 

pathological conditions (Jiang et al, 2015). 

Proteomics identifies and quantifies the expressed proteins in the cells or tissues: the proteome. 

Proteins, responsible for cellular processes control, are altered by innumerable factors, external or 

internal perturbations leading to proteome adaptation. The proteomics approach provides the 

means to interpret metabolic pathways alterations in response to pathogenic conditions (Aslam et 

al, 2017). 

Metabolomics is the Omics discipline that aims to provide a quantitative measure of low molecular 

weight metabolites present in a cell, tissue, organ, or organism. Metabolites are the substrates, 

intermediates, and end products of metabolic pathways. Their levels' alteration reflects the dynamic 

measure of the multiparametric response of a living organism to a pathophysiological perturbation 

or gene variation (Nicholson & Lindon, 2008; Liu et al, 2017). 
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Figure I.1: Diagram of Omics sciences (Rai et al, 2018). 

 

Two emerging Omics strategies are fluxomics and lipidomics. Fluxomics explores metabolic 

pathways using precursors enriched with stable isotopes (13C, 15N). It overrides the limitations of 

metabolite analyses at steady-state and allows to monitor metabolic dynamics and pathways 

variations by quantifying metabolites consumption/generation rates (Giraudeau, 2020). Lipidomics 

attempts to comprehensively identify and quantify all kinds of lipid molecular species. Lipids cover 

a central role in many biological processes and their level imbalance can underline many 

pathological conditions (Züllig et al, 2020). 

The Omics family is in continuous expansion and the new disciplines include metagenomics 

(Riesenfeld et al, 2004), glycomics (Raman et al, 2005), connectomics (Sporns, 2005), cellomics 

(Primiceri et al, 2013), and even foodomics (Braconi et al, 2018). 

The integration of all Omics sciences opens new scenarios in the understanding of systems biology 

and the use of the multi-omics approach is envisaged as an important support to precision medicine 

in clinics (Olivier et al, 2019). 

The power of metabolomics, among the Omics, derives from the recognition that subtle changes in 

genes or protein levels can lead to substantial variations in metabolome levels. Metabolome, the 

combination of more than 1.000.000 metabolites, is the dynamic measure of the phenotype at the 

molecular level and this places metabolomics at the top of Omics sciences for pathophysiological 

biomarker discovery (Wishart, 2019). Compared to other Omics, metabolomics can provide direct 

information with a low quantity of material and an easy sample preparation (Fuhrer et al, 2015). 
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Metabolites are defined as small molecules (<1500 Da) (lipids, amino acids, short peptides, sugars, 

etc) produced directly from endogenous processes or derived from exogenous sources, such as 

plant or microbial-derived compounds, xenobiotics and drugs (Hocher et al, 2017). 

Historically, the basic principle of metabolomics, the relation between biochemical pathways and 

biological events, can be dated back to Middle Ages, where urine colours, tastes, or smells, from the 

metabolic origin, were tested to diagnose diabetes (Nicholson & Lindon, 2008). However, systematic 

metabolomics studies in the 1970s by Horning & Horning (Horning & Horning, 1971) and by Pauling 

and cols. (Pauling et al, 1971) started a new age in metabolomics research. The modern approach 

to metabolomics, as we know it today, was then developed at the end of the ‘90s and early 2000s 

when Nicholson and colleagues defined metabolomics as “the study of the quantitative complement 

of metabolites in a biological system and changes in metabolite concentrations or fluxes related to 

genetic or environmental perturbations. Studies are typically holistic in nature through targeted 

studies are also encompassed in the term metabolomics”(Nicholson et al, 1999). Even if at the 

beginning two terms were used: metabolomics and metabonomics, today, they are utilized 

indifferently. For the record, metabolomics is the qualitative and quantitative analysis of 

metabolites levels under various conditions, instead, metabonomics refers to metabolic changes 

related to stressful conditions, such as diseases or toxic exposures (Krastanov, 2010). 

Metabolomics analysis can be made on different types of matrixes of human or animal origin, 

including body fluids (urine, serum, plasma, saliva, cerebrospinal, sweat, milk, tears, or seminal 

fluid), tissue (including biopsy samples), and cell culture (Bollard et al, 2005). A contemporary 

sampling of tissue and biofluids derived from the same organ offers an evaluation of global organ 

metabolic activity.  

In the literature one can find several handling protocols and metabolome characterization of major 

human biofluids, in physiological conditions, revealing their distinct and characteristic metabolic 

composition (Beckonert et al, 2007; Luque de Castro et al, 2018; www.hmdb.ca).  

Metabolomics is applied in medical sciences to identify biomarkers to facilitate early diagnosis, 

accurate prognosis, monitoring of diseases stage, and therapy effects. It is also employed to 

characterize the interactions of organisms with their environment for new risk biomarkers, from 

pollution to microbial colonization. In addition, metabolomics has a considerable scope in the 

pharmaceutical industry for the optimization of drugs development, from the validation of 

biomarkers efficacy to the determination of new drug targets. Not only, but the application of 

metabolomics includes also nutritional research and the plant industry (Peng et al, 2015). 

about:blank
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1.2. Human samples for metabolomics 

Metabolomics can be performed on a wide range of biological matrices, including biofluids, cells, 

and tissues. The well-established biofluids are serum, plasma, urine, and saliva widely employed in 

clinical studies aiming to discover new biomarkers linked to several pathologies. The advantage of 

biofluids is their ability to reflect the metabolic activity of specific organs or anatomical districts: for 

example, urine offers information about kidney function, cerebrospinal fluid on the brain 

metabolism and saliva provides evidence of the oral cavity state (Lindon et al, 2000; Wishart, 2019).  

In the last decade, the group of Prof. David Wishart of the University of Alberta (Canada) has 

developed systematic databases for different biofluids using data present in the literature. These 

databases contain countless information on metabolites: structure, chemical characterization, 

concentration in healthy and pathological conditions, as well as on enzymes and metabolic 

pathways involved in their production or consumption: all information is freely accessible. That 

wealth of data is organized by biofluid: the human serum metabolome (4229 metabolites, 

Psychogios et al, 2011), the human urine metabolome (445 metabolites, Bouatra et al, 2013), the 

human cerebrospinal fluid metabolome (308 metabolites, Wishart et al, 2008) and the human saliva 

metabolome (853 metabolites, Dame et al, 2015). The assembling of all information is accessible at 

"The Human Metabolome Database" (www.hmdb.ca, with 220,945 metabolites, Wishart et al, 

2007).  

Blood, a systemic fluid, is employed to capture information on the organism’s metabolic status and 

is the choice in clinical analyses. The different collecting procedures and the coagulation cascade 

influence the concentrations of metabolites, in plasma and serum (Hernandes et al, 2017). Yu and 

colleagues (Yu et al, 2011) demonstrated good data reproducibility for both blood components and 

confirmed that serum obtained, after whole blood clotting, is suitable for the metabolomics studies 

and biomarker detection. In a recent study, the use of whole blood was evaluated as a reliable 

matrix for cases in which the haemolysis could contribute to the variance of the metabolome 

(Stringer et al, 2015). 

Urine is less complex than other body fluids and is highly employed in biomarker discovery. It can 

be collected as serial sampling to monitor disease and therapy response (Luque de Castro et al, 

2018). Urine metabolomics explores the diseases from cancer (Dinges et al, 2019) to inflammatory 

bowel diseases (Storr et al, 2013), the interaction host-gut microbiome (Chen et al, 2019), nutritional 

aspects (Cheung et al, 2017) and provides a signature of the individual metabolic phenotypes 
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(Assfalg et al, 2008). A considerable effort has been devoted to urinary metabolomics as a diagnostic 

tool and now is moving from discovery to the validation phase (Bancos et al, 2020).  

Saliva, different from blood and urine, only in the last decades has been used to search for 

biomarkers. It is emerging as a tool to diagnose oral diseases and systemic pathologies, thanks to its 

non-invasive and inexpensive collection. 

Saliva is produced by different types of salivary glands, which contribute differently to its chemical 

composition, and contains also metabolites derived from the prokaryotic cells that colonize the oral 

cavity (Ishikawa et al, 2016). The final saliva has a great inter-individual variability, producing specific 

signature. The salivary samples are also employed to monitor athletic performance (Pitti et al, 2019) 

and taste perception (Gardner et al, 2020b).  

There are also other biofluids used for metabolomic analyses, less common as they require more 

articulated and/or more impacting (physically or mentally) sampling on the donor: semen (Wang YX 

et al, 2019), exhaled breath (Ghosh et al, 2021), human milk (Ninonuevo et al, 2006), aqueous 

humour (Barbosa Breda et al, 2020), sweat (Serag et al, 2021) and amniotic fluid (Bardanzellu et al, 

2019).  

The biological samples are metabolically active even after their collection, hence, it is necessary to 

proceed with a quickly quench, by the removal of cellular components or by rapid freezing to 

preserve the in vivo conditions and maintain the metabolites composition at the time of the 

sampling. Moreover, biofluids are very complex samples that require adequate preparation before 

analysis: many works have already been published on protocols for best handling practices, 

especially on the importance of eliminating macromolecules that interfere with the identification 

and quantification of metabolites (Wishart, 2019; Beckonert et al, 2007; Gardner et al, 2018). 

The biofluids report the biochemical processes throughout the body. To get more precise 

information on the metabolic activity occurring at the site of the disease, metabolomics can be 

performed in tissues derived from biopsies, both intact, and subjected to a homogenization process. 

The metabolic profile from intact tissue specimens can be obtained, with a minimum sample 

manipulation, using the high-resolution magic-angle-spinning (HR-MAS) Nuclear Magnetic 

Resonance (NMR) spectroscopy (Grinde et al, 2019, Tilgner et al, 2019). On the other hand, the 

tissue homogenate is subjected to multiple preparation steps to obtain the target sample for 

metabolomics studies (Römisch-Margl et al, 2012).  
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1.3. Analytical techniques and experimental strategies 

For the characterization of metabolites from the cells or organisms, metabolomics makes use of 

high throughput technologies. 

The high resolution of mass spectrometry (MS) and the reproducibility of nuclear magnetic 

resonance (NMR) spectroscopy combined with their ability in the elucidation of chemical structures 

resulted to be the most used analytical technologies for metabolomics studies. NMR and MS 

methods are complementary procedures (Table I.1). 

MS is a highly sensitive method, with high accuracy and resolution: a potent tool for the detection 

and quantification of thousands of small molecules. MS methods need prior separation techniques 

such as liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE). 

The basic principle for metabolite detection and identification is the ionization of molecules: thanks 

to molecular fragmentation and the molecule's mass-to-charge (m/z) ratio it is possible to recognize 

a given compound. To perform a MS experiment only a few microliters of sample are required, but 

the unavoidable ionization process vaporizes the sample, making MS an intrinsically destructive 

technique (Emwas, 2015). 

NMR, instead, is a non-destructive technique, that provides high reproducibility and quantitative 

results, thanks to the use of internal/external standards. NMR spectroscopy is non-biased, easily 

quantifiable, and requires minimal sample preparation. NMR is easily automatable, favouring high-

throughput experiments. In addition, NMR is particularly suited to detect and characterize 

compounds that are less discernible with LC-MS analysis such as organic acids, polyols and other 

highly polar compounds. NMR spectroscopy is perfect for real-time metabolite profiling of living 

cells and real-time metabolic flux analysis (Emwas, 2015).  

However, NMR has also several disadvantages, the most significant of which is low sensitivity, 

detecting molecules at the micromolar range: compared to LC-MS and GC-MS, NMR spectroscopy 

is 10 to 100 times less sensitive. Despite sensitivity has increased enormously thanks to technical 

improvements such as the introduction of cryo-cooled probes (electronics are cooled to near liquid 

helium temperatures (~20 K) to reduce electronic thermal noise) that lead to a three-to four-fold 

enhancement of signal, still, it remains a weak point. In general, NMR spectrometers are quite 

expensive compared to mass spectrometers, requiring highly skilled operators and suitable 

laboratory spaces: these factors have hindered NMR metabolomics development due to the 

difficulty of being transferred to clinical uses (Markley et al, 2017; Crook & Powers, 2020). 
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Table I.1. Summary of advantages and limitations of NMR and MS in metabolomics applications 
(from Emwas et al, 2019) 

 NMR MASS SPECTROMETRY 

Reproducibility High reproducibility is one of the 
fundamental advantages of NMR 
spectroscopy. 

Compared to NMR spectroscopy, 
MS data are less reproducible. 

Sensitivity Intrinsically low but can be improved 
with multiple scans (time), higher 
magnet field strength, cryo-cooled 
probes and micro-probes, and 
hyperpolarization methods. 

High sensitivity is a major advantage 
of MS; metabolites with nanomolar 
concentrations can be readily 
detected. 

Selectivity NMR is generally used for 
nonselective analysis. Peaks overlap 
from multiple detected metabolites 
pose major challenges. 

MS is selective. However, in 
combination with chromatography 
(such as liquid and gas phase 
separation), it is a superior tool for 
targeted analysis. 

Sample measurement Enables relatively fast measurement 
using 1D 1H-NMR spectroscopy, 
where all metabolites at a detectable 
concentration level can be observed 
in one measurement. 

Different ionization methods are 
required to maximize the number of 
detected metabolites. 

Sample preparation Involves minimal sample preparation, 
usually transfer the sample to an 
NMR tube and addition of a 
deuterated solvent. The measure can 
be automated. 

It is demanding; it requires 
chromatography; in some cases 
sample derivatization for gas 
chromatography (GC)-MS. 

Quantitative analysis NMR is inherently quantitative as the 
signal intensity is directly 
proportional to the concentration of 
the metabolite. 

The intensity of the MS line is often 
not correlated with metabolite 
concentrations as the ionization 
efficiency is also a limiting factor. 

Fluxomics Analysis NMR permits both in vitro and in vivo 
metabolic flux analyses. Its inherently 
quantitative nature also enables 
precise quantification of precursors 
and products. Mapping of stable 
isotope locations in molecules is very 
easy via NMR. 

MS can be used for fluxomics 
analysis; however, the destructive 
nature of MS-based methods means 
it is somewhat more limited than 
NMR-based fluxomics. In vivo 
fluxomics is not possible with MS, 
and isotope mapping is more 
difficult. 

Tissue samples Using high-resolution magic-angle 
sample spinning (HR-MAS) NMR, it is 
possible to detect metabolites in 
tissue samples. 

Although some MALDI-TOF 
approaches can be used to detect 
metabolites in tissue samples, these 
approaches are still far from being 
routine. 

Number of detectable metabolites Depending on spectral resolution, 
usually less than 200 metabolites can 
be unambiguously detected and 
identified in one measurement. 

Using different MS techniques, it is 
possible to detect thousands of 
different metabolites and identify 
several hundred. 
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Target and Untargeted metabolomics 

The strategies employed in metabolomics studies, with both MS or NMR techniques, depending on 

the final objective and the state of knowledge of the system, are two: targeted or untargeted. 

A targeted (or hypothesis-driven) approach is carried out when at least some of the metabolites 

that potentially have a key role in the development of some biological functions or processes are 

known, or if their possible importance is suspected a priori. The experimental determination is 

focused exclusively on the research and quantification of these compounds. This method provides 

higher sensitivity and selectivity, ensuring better classification, accuracy, and highly reproducible 

results (Luque de Castro et al, 2018).  

The untargeted analysis uses global metabolic profiling, it analyses all the detectable metabolites 

present in a sample without a priori knowledge of the metabolome, generating the metabolic 

fingerprint. It is an unbiased analysis. It is used for a screening analysis to provide sample 

classification and to get the first discrimination between samples from different groups (i.e., 

disease/healthy) (Ellis et al, 2007). Untargeted approaches are also defined as “hypothesis-

generating” since the data are used for the preliminary quantification of the samples to advance 

hypotheses which are then subsequently analysed with targeted approaches (Schrimpe-Rutledge et 

al, 2016).  

Compared to the targeted approach, the untargeted one takes a more holistic point of view and 

provides results related to the complexity of cellular metabolism. 

 

1.4. Statistical analysis of metabolic data 

The metabolomics analysis produces large datasets like the others "Omics". Robust statistical 

analyses, uni- and multivariate, are required for the accurate elaboration of these complex datasets 

to extract significant biological information.  

Univariate methods analyse data independently, with the disadvantage that do not consider the 

presence of interactions between metabolites. Commonly, parametric tests such as Student’s t-test 

and ANOVA are applied where data normality is assumed; otherwise, non-parametric tests such as 

Mann-Whitney U test or Kruskal-Wallis one-way are preferable (Alonso et al, 2015). 

The use of multivariate data analyses allows an exam of the overall differences, their trends in the 

variations, and the relationships between samples and variables: the metabolites from the same 

metabolic pathway tend to be highly correlated (Vu et al, 2019). Its application enables also to 
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determine, whether the examined samples have a tendency to divide into clusters and it highlights 

the metabolites most responsible for those differences, at last, generating predictive models. 

The visualization methods for highlighting the differences between samples and/or between 

variables can be divided into two groups: unsupervised and supervised. Unsupervised methods are 

used for a preliminary exploration of data and their purpose is to provide an overall visualization of 

the data, reducing the variables and trying to maximize the variance between them, without 

however providing information based on a priori knowledge of the data to guide the analysis. 

There are several unsupervised methods available, the most used is the Principal Component 

Analysis (PCA) which allows to evaluate the existence of correlations between variables and their 

relevance, to identify the possible presence of outliers and clusters, to summarize the description 

of the data, to eliminate noise and to reduce dimensionality. PCA converts the original dataset into 

two matrices: loadings and scores plots. The loadings graph allows the analysis of the role of 

variables in the different components, their direct and inverse correlations, and their importance. 

The scores plot consent to visualize the behaviour of the object (matrix data) in the different 

components, their similarities, or to identify groups of similar objects (clusters), the presence of 

outliers, therefore, is the most important tool for the preliminary data investigation. 

The supervised methods are also used to detect the existence of groupings, patterns and to 

construct predictive models, but in this case, the system is instructed with additional information, 

such as the number and type of classes to be identified. The Partial least squares-discriminant 

analysis (PLS-DA), a supervised linear regression, is the most used of these methods, which 

maximizes the covariance between the matrix of the independent variables (the data matrix) and 

the matrix containing the dependent variables (Smolinska et al, 2012). This approach is necessary 

when datasets are made of highly correlated variables.  

In the PLS-DA model, the measurement of the importance of a variable is given by the Variable 

Importance in Projection (VIP) score. The VIP score of a variable is calculated as a weighted sum of 

the squared correlations between the PLS-DA components and the original variable and is 

considered important when is close to or greater than one (Figure I.2). 
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Figure I.2: Overview of the strengths and limitations of PCA and PLS-DA (Debik et al, 2021). 

 
 
 
 
 
2. SALIVA AS A DIAGNOSTIC TOOL 

 

2.1. Saliva, an overview 

Saliva is a dynamic and complex mix of fluids from major and minor salivary glands and gingival 

crevicular fluid. The major salivary glands include the parotid glands located in the retromandibular 

fossa, the submandibular glands found on the floor of the mouth, and the sublingual glands sited 

under the tongue (Figure I.3). Minor glands are found in the lower lip, tongue, palate, and pharynx. 

The salivary gland tissue is constituted by acinar, duct, and myoepithelial cells irrigated by the 

capillary network. 
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Figure I.3. Anatomy of the salivary glands (PDQ® Adult Treatment Editorial Board). 

 

The daily volume production of saliva fluctuates, in healthy conditions, between 1 and 1.5 L. In the 

unstimulated condition, the parotid glands contribute to 20% of the flow with parotid saliva (PS), 

submandibular and sublingual glands to 75% with submandibular/sublingual saliva (SM/SL), and the 

remaining 5% comes from numerous other minor glands.  

The flow rate can also be stimulated with three types of stimuli: mechanical (by chewing paraffin 

wax), gustatory (with citric acid), and olfactory. Saliva secretion can be highly affected by local or 

systemic diseases that distress the glands themselves (Humphrey & Williamson, 2001). Saliva 

secretion could be serous, mucous, or mixed: serous secretions (light and watery) produced mainly 

by the parotid gland, mucous secretions (slippery solution with mucus) from the minor glands, and 

mixed one from the sublingual and submandibular glands.  

The 99% of saliva content is water, slightly acidic, while the remaining 1% contains many inorganic 

and organic components (Figure I.4). Inorganic compounds include electrolytes, such as sodium, 

chloride, potassium, calcium, magnesium, phosphate and bicarbonate, and trace elements. Organic 

components of saliva are hormones, glucose, lipids (such as cholesterol and fatty acids), amino 

acids, amines, proteins, RNA, and others. The salivary proteome comprises more than 2500 proteins 

(Lau et al, 2021), including hormones, antibodies, growth factors, and enzymes. The most 

represented are proline-rich proteins, amylases, mucins, lysozyme, glycoproteins, and lipoproteins 

(Cuevas-Córdoba & Santiago-García, 2014). Other components are derived from nasal and bronchial 

secretions and external sources, like food debris and microbes. 
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Figure I.4. Schematic representation of the components of whole saliva.  
(Adapted from Cuevas-Córdoba & Santiago-García, 2014). 

 

Oral microbiota consists of approximately 700 distinct prokaryotic (Deo & Deshmukh, 2019) that 

affect salivary composition with intrinsic metabolism. The microbial consortia play a role in 

modulating and maintaining homeostasis and physiological functions in the oral cavity. A balanced 

microbiota is based on complex interactions between inorganic and organic salivary constituents 

(Ngamchuea et al, 2017). 

In addition, due to a thin layer of epithelial cells separating the salivary ducts from the bloodstream, 

the saliva also presents some blood components transferred via passive diffusion, active transport, 

or ultrafiltration (Javaid et al, 2016). The presence of these components allows the achievement of 

five major saliva functions: lubrication/protection, buffering, maintaining tooth integrity, 

antibacterial activity, and taste/digestion (Kaplan et al, 1993). 

The composition and the concentration of saliva components are influenced by many factors: flow 

rate, circadian rhythm, size of salivary glands, gender, age, diet, drugs, environment, lifestyle, 

smoking, physiological/pathological states (Figure I.5). Consequently, saliva can be seen as the 

reflection of the organism's condition, thus turning into a clinical diagnostics fluid and a potential, 

less-invasive, surrogate for other biofluids (Schipper et al, 2007). 

In clinical application, saliva has important advantages: easy and non-invasive collection, 

inexpensive storage, and less manipulation than serum, with minimal risks of external 

contamination. The painless and easy saliva sample collection ensures compliance and alleviates 
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discomfort even in vulnerable patients with psychiatric disorders and in infant/children populations. 

The recommended procedure for saliva collection is the passive drool directly into plastic tubes. In 

the market, different collection devices are available (Khurshid et al, 2016). 

 

Figure I.5. The complex set of factors involved in the saliva metabolic pathway (Hyvärinen et al, 
2021) 

 

 

2.2. Salivary metabolomics for biomarker discovery 

According to the National Institutes of Health, a biomarker is defined as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacological responses to therapeutic intervention” (Biomarkers Definitions 

Working Group, 2001). 

Overall, a biomarker can be a molecule, or a pattern of molecules, representative of a specific 

condition, that is not affected by other factors unrelated to the disease or the condition under study. 

The main concerns against saliva for diagnostic use are that production and composition are 

influenced by numerous factors: circadian rhythm, gland stimulation, diet, age, gender, exercise, 

and environment (Cuevas-Córdoba & Santiago-García, 2014). Therefore, saliva has a double-side 

characteristic since it could be the perfect biofluid for monitoring these variables (Figure I.6). 
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Figure I.6. Counterbalance of saliva as a diagnostic fluid (Javaid et al, 2016). 

 

 

A candidate biomarker validation process to its applicability in clinical diagnostics requires different 

steps illustrated in Figure I.7. 

 

 
Figure I.7. Workflow of biomarker candidate validation process (Nagana et al, 2013). 

 
After discovery, takes place the pre-validation step which is intended to assess the accuracy and the 

robustness of initial multivariate models to screen false positive biomarker candidates. The most 

promising metabolites are identified through multivariate statistical analyses, and, individually or in 

panels, their predictive capability is tested.  
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The receiver operating characteristic (ROC) curve is the most used tool to assess the statistical 

performance measure of a classification model. The ROC curve allows the visualization of specificity 

against the sensitivity at any cut-off value of the model's performance. 

The AUC (area under the ROC curve) score gives the degree or measure of separability. Therefore, 

when AUC is 1.0 the model can distinguish entirely between classes, whereas there is no difference 

from random chance when AUC is 0.5. An AUC > 0.7 is the minimal score to consider a biomarker 

clinically useful (Xia et al, 2013). The analytical development stage provides the linearity, sensitivity, 

limit of detection, recovery, robustness, and reproducibility of the biomarker model. At this point in 

the process, any interferences are identified and minimized. In the last stage, the single biomarker 

or biomarkers panel is validated by evaluating its predictability on many new samples, considering 

confounding factors (biological and technical variances). The final challenge of biomarker discovery 

is to commercialize the developed technologies for diagnostic purposes in clinics (Nagana Gowda et 

al, 2013). 

Salivary metabolomics is gaining attention because the acquisition of disorder-specific metabolic 

profiles has facilitated the identification of candidate biomarkers as diagnostic tools (Cuevas-

Córdoba & Santiago-García, 2014; Beale et al, 2016).  

The salivary biomarkers discovery is growing, as can be appreciated by the increasing number of 

publications in the last decade (Figure I.8). 

 

 

Figure I.8. The number of publications per year is extrapolated from the PubMed portal 
(www.ncbi.nlm.nih.gov) by entering “saliva AND metabolomics AND biomarkers” as keywords. 

 

Most of these publications are concentrated on diagnosis, management, and follow-up of several 

pathologies. The investigation of salivary metabolome has been carried out on patients with various 

systemic disorders to identify biomarkers for early diagnosis. 
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Table I.2 reports the recent studies focused on salivary metabolomics and reflects the potential of 

this strategy on biomarkers identification, pathogenesis, and disease classification.  

 

Table I.2. Recent studies on systemic diseases based on salivary metabolomics approach.  

DIFFERENT DISEASES 
 
Diabetes 

Barnes et al. 2014 
De Oliveira et al. 2016 
Sakanaka et al. 2021 

HIV Shulte et al. 2020 

Respiratory diseases Li et al. 2021  
COGNITIVE DISORDERS 

Dementia Figueira et al. 2016 

Cerebral palsy Symons et al. 2015 
Alzheimer's disease Yilmaz et al. 2017 
Parkinson's disease Kumari et al. 2020 

Schizophrenia 
Kim et al. 2021b  
Cui et al. 2021 

Temporomandibular disorders Sanches et al. 2020 
CANCER 

 
Breast cancer 

Sugimoto et al. 2010 
Murata et al. 2019 

Xavier Assad et al. 2020 
Hepatocellular carcinoma Hershberger et al. 2021 
Thyroid cancer Zhang J et al. 2021 
Glioblastoma García-Villaescusa et al. 2018 

Head and neck cancer 
Mikkonen et al. 2018  

Taware et al. 2018 

 

Apart from the systemic disorders, due to saliva in situ production and its interaction with the local 

environment, salivary metabolomics studies are primarily focused on the oral cavity pathologies. 

Salivary metabolomics analyses are directed to the elucidation of the alterations associated with 

the presence of periodontal diseases and oral cancer, and particularly for the discovery of early 

diagnosis biomarkers. 

Currently, on commerce are present a few diagnostic kits based on salivary Omics: some of them 

are routinely used in clinical laboratories for pathologies such as human immunodeficiency (HIV), 

oral human papillomavirus (HPV), and familial hypercholesterolemia (Nunes et al, 2015).  

Recently, saliva has been proposed in COVID-19 diagnosis as a promising tool to develop a rapid 

diagnostic test, easily performed also by non-trained medical staff, for sizeable epidemiological 

cohort studies (Azzi et al 2020; Costa Dos Santos et al, 2020; Atieh et al, 2021). 
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2.3. 1H-NMR salivary metabolomics for oral diagnostic 
 
The first 1H-NMR studies on saliva were performed using the whole saliva (WS), the spectra acquired 

were of low resolution, which allowed the assignments of only a few peaks (Dan et al, 1989; Harada 

et al, 1987). 

Some years later, Yamada-Nosaka and colleagues employed stimulated saliva derived from the 

parotid glands (PS) and the submandibular and sublingual glands (SM/SL), obtaining preliminary 

results, on a 360 MHz spectrometer, of the comparison between healthy subjects and patients with 

sialadenitis (Yamada-Nosaka et al, 1991). They also reported a coarse assignment of some peaks in 

NMR spectra of PS acquired with a 500 MHz spectrometer. 

In 2002 Silwood and colleagues (Silwood & Grootveld, 2002) published NMR spectra of unstimulated 

whole saliva from a healthy subject, acquired with a 600 MHz spectrometer, with a rough 

assignment of the main peaks of few carbohydrates, amino acids, and organic acids. 

However, the first complete assignment was carried out in the same year, with the same 

spectrometer, when Silwood and co-workers (Silwood & Lynch, 2002) performed a comprehensive 

study of WS from healthy subjects. Following a rigorous saliva sampling, comparable to the 

protocols used today, they were able to identify 63 metabolites in the WS. In that work, they 

presented also the first applications of two-dimensional (2D) NMR techniques to analyse WS saliva. 

In the following years, numerous reports showed a better characterization of the salivary 

metabolome, together with standard operating procedure (SOP) improvements.  

Dame and colleagues produced the most extensive quantitative metabolomics study on the human 

salivary metabolome in 2015 (Dame et al, 2015): by collecting sixteen WS samples of healthy 

individuals, they identified and quantified 64 ± 4 metabolites per sample. 

Subsequently, several studies on salivary metabolome reported on the variables that can impact 

saliva metabolic profiles, such as smoking, exercise, diet, and gender (Figueira et al, 2017; Takeda 

et al, 2009; Pitti et al, 2019; Wallner-Liebmann et al, 2016).  

Because saliva is produced and collected directly from the oral cavity, thus allowing the study of 

metabolome alterations with minimal interference, it has become the focus of much research by 

clinicians active in the various dentistry field. 

Periodontal diseases are usually bacterial-driven inflammatory disorders, affecting tissues 

supporting the teeth. Disease severity ranges from reversible inflammation to chronic destruction, 

mainly induced by pathogenic bacteria and individual host immune reactions. The early phase of 

the disease is called gingivitis, and it is characterized by gingival reddening, bleeding, and swelling 



25 
 

(Liebsch et al, 2019; Aimetti et al, 2012). At present, standard diagnostic is based on visual 

examination, but there are limitations in predicting probable periodontal tissue destruction, so 

periodontitis is recognized only in advanced states.  

Many studies (Na et al, 2021; Gawron et al, 2019; Kim et al, 2021a) have indicated that the saliva's 

metabolome might be a valuable tool to estimate periodontal inflammation levels. The metabolites 

are released in the oral cavity by bacterial metabolism or host-induced inflammatory processes: 

future perspective is to validate potential biomarkers that reflect the severity of disease and 

translate these findings into salivary diagnostic devices development. Thanks to saliva easy and safe 

sampling, salivary metabolomics is also very useful in managing widespread paediatric oral diseases 

such as caries and early dental problems. Identifying and quantifying salivary metabolites that could 

be utilized as biomarkers for caries susceptibility and risk assessment can overcome the limitations 

of other more invasive treatments (Pereira et al, 2019; Pappa et al, 2019). 

Metabolomics for diagnostic purposes has been primarily used also for oral cancer detection 

(Khurshid et al, 2018). Oral cancer is the sixth most common cancer globally, and over 90% is 

represented by oral squamous cell carcinoma (OSCC). Several oral lesions, such as lichen planus and 

leukoplakia, are considered potentially malignant oral disorders (Wetzel & Wollenber, 2020). 

Metabolomics approaches could easily help understand the complex processes of progression from 

pre-cancer to cancer disorders. The interpretation of metabolomics alterations in oral cancer will be 

helpful to identify novel biomarkers for a timely diagnosis and to improve patients’ survival rates. 

Saliva is produced and delivered within the same anatomical site of OSCC, and it seems reasonable 

to hypothesize that several molecules, directly originating from neoplastic cells, are released within 

the salivary fluid. Based on such an assumption, it is possible to argue that the metabolic profile of 

saliva might differ according to the presence of neoplastic cells at a different stage.  

Salivary metabolomics has been explored as a practical diagnostic and categorization tool for oral 

cancer. Numerous studies have investigated how salivary metabolites profiles could distinguish 

patients with OSCC from normal controls. Most of those studies identified potential salivary 

biomarkers through MS technique (Shigeyama et al, 2019; Ohshima et al, 2017; Wang Q et al, 2014a; 

Wang Q et al, 2014b; Ishikawa et al, 2019; Yang, et al, 2020; Ishikawa et al, 2016) while only a few 

have used NMR to detect pathological salivary metabolic changes (Mikkonen et al, 2018; 

Lohavanichbutr et al, 2018; Supawat et al, 2021). Both techniques have also been used for the 

discrimination of OSCC lesions from precancerous lesions, such as oral leukoplakia, oral epithelial 
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dysplasia, and lichen planus (Ishikawa et al, 2019; Ishikawa et al, 2020; Muthu et al,2021; Sridharan 

et al, 2019; Yan et al, 2008; Wei et al, 2011; Zhu et al, 2021). 

The development of a non-invasive screening to discriminate pre-malignant lesions at an early stage 

could help dentists, and oral surgery specialists to early detect malignant transformation. 

Researchers also suggest that integrating both saliva and tumour tissue metabolomics could confirm 

the metabolites involved in oral cancers. These combined approaches could be the beginning of a 

clinically viable non-invasive oral cancer screening (Ishikawa et al, 2016). 

Though from these studies, a variety of tumour-specific metabolites emerge, there are discrepant 

results, and, to date, it seems difficult to get a unique consensus. Therefore, it is necessary to 

perform comprehensive and more extensive studies to evaluate the numerous discriminant salivary 

to identify precise biomarkers for clinical application (Chen & Yu, 2019).  

The final goal of the use of metabolomics for salivary biomarker discovery is to transform 

preliminary laboratory findings into a simple, rapid, and accurate chairside periodontal toolkit 

available to clinicians worldwide for periodontal and oral cancer early screening. 
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II. AIMS OF THE THESIS 

This study aims to discover potential salivary biomarkers for early diagnosis and progression 

monitoring of oral diseases.  

To analyse the salivary metabolites, we applied a metabolomic approach using Nuclear Magnetic 

Resonance (1H-NMR) spectroscopy. 

The current literature reports a variety of protocols for collecting and handling saliva for 

metabolomics studies that, makes very difficult a comparison of the results. It appears therefore 

the desirable definition of a standardized and more sensible protocol. 

The first part of this project is dedicated to defining an efficient and reproducible protocol for 

preparing saliva samples for 1H-NMR analysis. The results are presented in section Results IV.1.  

The devised protocol is then used to characterize the metabolic profiles of three different types of 

saliva from healthy subjects: PS (parotid saliva), WS (whole saliva), and SM/SL 

(submandibular/sublingual saliva). This step is necessary to define the saliva physiologic metabolic 

profile. The results are presented in section Results IV.2. 

The clinical assessment of the participants forming the healthy cohort, based on plaque and 

bleeding indexes, allows correlating the salivary metabolic profile to the periodontal health status. 

The results are presented in section Results IV.3. 

The last part of the work is dedicated to a cohort of patients with potentially malignant disorders 

(PMDs), oral lichen planus (OLP), oral leukoplakia (OLK), and Oral Squamous Cell Carcinoma (OSCC).  

With this study we plan to characterize the saliva metabolic profile associated to those pathological 

conditions, as well as to highlight the metabolic changes that take place with the progression of 

premalignant lesions towards neoplastic conditions. The results are presented in section Results 

IV.4. 

It is our expectation to identify promising diagnostic metabolic biomarkers of oral pathological 

conditions or potentially malignant disorders. The final goal is to develop an analytical protocol 

usable in the clinical practice for early diagnosis of risk patients: If successful, it will improve their 

quality of life and will reduce the mortality rate. 
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III. MATERIALS AND METHODS 

 
1. SALIVA SAMPLES COLLECTION AND PREPARATION 

 

1.1. Subjects enrolment 

 1.1.1. Healthy cohort 

The study “Valutazione comparativa tra il profilo metabolico di “saliva totale”, “saliva parotidea” e 

“saliva sottomandibolare/sottolinguale” in soggetti sani – Studio pilota (METASAL3)” was approved 

by the Ethical Committee of the “Area Vasta Emilia Nord” (AVEN) (protocol number: 

808/2018/SPER/UNIPR METASAL3). Written consent was obtained from all participants to the study 

according to the Declaration of Helsinki.  

The inclusion and exclusion criteria of the study are listed in Table III.1.  

 

Table III.1. Study inclusion and exclusion criteria  

INCLUSION CRITERIA EXCLUSION CRITERIA 

Adults between 19 and 25 years of age Hyposalivation (salivary flow less than 0.5 mL/5min) 

Signed informed consent DFMT, PSR, FMPS, FMBS scores out of normal rangea 

 
Presence of systemic or oral disease impacting on dental/ 
periodontal tissue 

 
Under pharmacological therapy that could affect the salivary 
function 

 Pregnant or lactating 

a. DMFT: “Decayed, Missing and Filled Teeth” index; PSR: "Periodontal Screening and Recording" score; FMPS: "Full Mouth Plaque 
Score”; FMBS: "Full Mouth Bleeding Score”. 

 

The enrolment of the participants and the clinical evaluation were carried out by the group of Prof. 

Marco Meleti of the Centro Universitario di Odontoiatria of the University of Parma. A final cohort 

of twenty healthy volunteers (10 males, 10 females) was enrolled from March to June 2019. The 

demographic information and participants’ social habits are presented in Table III.2. 
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Table III.2. Demographic data and participants’ social habits. 

 MALE (n=10) FEMALE (n=10) 

Age (years) 23.7  1.3 23.7  2.0 

BMI (kg/m2) 23.2  1.4 21.3  1.8 

Under medication 2a 4b 

Smokers 2 3 

Social drinkersc 5 4 

a. antihistamine therapy; b. contraceptive therapy; c. less than 7 drinks/week. 

 

The participants underwent an interview to collect data on the general medical history and 

underwent a dental visit to assess the presence of inflammatory and/or infectious conditions of the 

oral cavity, Figure III.1. 

The oral inspection was performed by carefully examining the teeth, dental support tissues 

(periodontal), and oral mucosa (cheeks, tongue, floor of the mouth, hard and soft palate).  

The periodontal health was assessed through the "periodontal screening and recording (PSR)" index, 

the "full mouth plaque score (FMPS)", the "full mouth bleeding score (FMBS)" and the "decayed, 

missing, and filled teeth" (DMFT) index (Dhingra & Vandana, 2011; Landry, 2002), Table III.3. This 

index comprises the decayed, missing, and filled permanent teeth number. For example, a subject 

with two decayed, one missing, and one filled tooth has a DMFT of 4 (Shulman & Cappelli, 2008). 

Two participants with FMPS/FMBS > 25% were treated through a non-surgical periodontal session 

to remove the plaque and tartar before the saliva collection. 

The salivary function (saliva production capacity in the unit of time, mL/min) was evaluated through 

the quantitative analysis of salivary flow, using the modified Saxon test (Kohler & Winter, 1985), 

Table III.3. One volunteer was excluded due to hyposalivation (salivary flow less than 0.5 mL/5 min). 
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Figure III.1: Data collection sheet used in the study: personal data, anamnesis,  
and information on salivary sample collection. 

 



31 
 

Table III.3. Scores periodontal health and salivary flow of the participants to the study.  
 MALE (n = 10) FEMALE (n = 10) 

% FMPS 12.8  7.1 14.1  7.5 

% FMBS 2.6  1.9 4.6  3.4 

DMFT 1.8  1.3 1.3  1.9 

PSR 0.7  0.5 0.9  0.3 

Salivary flowa 2.3  1.2 2.2  1.4 

Teeth cleaningb 1 1 

  a. Saxon Test; b. treated with a non-surgical periodontal session. 

 

 

 1.1.2.  Patients with oral disease 

The study “La progressione della mucosa orale normale verso la displasia epiteliale ed il carcinoma 

squamocellulare: analisi del profilo metabolico mediante metodica a risonanza magnetica nucleare 

ad alta risoluzione – magic angle spinnig - HR-MAS NMR” was approved by the Ethical Committee 

of the “Area Vasta Emilia Nord” (AVEN) (protocol number: 38/2017/TESS/AUOMO - 

509/2019/TESS/UNIPR). The patients were enrolled in 3 centres, two based in Modena 

(Dermatology Unit and Dentistry Unit, Azienda Ospedaliero Universitaria Policlinico di Modena) and 

one in Parma (Centro Universitario di Odontoiatria of the University of Parma). Written consent was 

obtained from all volunteers who participated in this study, according to the Declaration of Helsinki.  

The inclusion and exclusion criteria of the study are listed in Table III.4. 

 

Table III.4. Inclusion and exclusion criteria to participate in the study. 

GROUP INCLUSION CRITERIA EXCLUSION CRITERIA 

PMDs 
Clinical and histological diagnosis of 
PMDs 
 

Clinical and histological diagnosis of OSCC 
Anemia 
Uncontrolled diabetes 
Onco-haematological disease in the last 12 months 

OSCC 
Clinical and histological diagnosis of 
OSCC 

Anemia 
Uncontrolled diabetes 
Onco-haematological disease in the last 12 months 

CONTROL  

History of PMDs or OSCC 
Anemia 
Uncontrolled diabetes 
Onco-haematological disease in the last 12 months 

 Signed informed consent  
PMDs: Potentially Malignant Disorders; OSCC: Oral Squamous Cell Carcinoma 
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The patients enrolled in this study were 46: 35 patients with oral potentially malignant disorders (of 

which 23 with oral leukoplakia (OLK) with different dysplasia degrees 12 with oral lichen planus 

(OLP)), and 11 patients with oral carcinoma. A saliva sample from one patient with oral carcinoma 

was discarded due to insufficient volume. Therefore, the final cohort of patients included 45 

subjects.  

The control group was composed of 21 healthy volunteers and was matched with the patients by 

sex and age. The final population of the study was made up of 66 individuals. 

All participants were interviewed for the data collection on lifestyle habits (smoke and alcohol 

consumption) and medical history (pathology, comorbidity, and drug therapy). The study population 

general data are reported in Table III.5. 

 

Table III.5. Demographic data and social habits of the participants to the study. 

 
OLP  

(n=12) 
OLK  

(n=23) 

ORAL 
CARCINOMA 

(n=10) 

CONTROL 
(n=21) 

Age (years) 59.3  11.3 61.0  15.6 65.8  12.3 44.6  16.4 

Female (n) 7 13 6 11 

Male (n) 5 10 4 10 

Smokers (n, %) 3 (25%) 10 (43.5%) 9 (90%) 6 (28.6%) 

Social drinkers (n, %) a 1 (8.3%) 1 (4.3%) 4 (40%) 6 (28.5%) 

    a. less than 7 drinks/week 

 

The oral condition was evaluated by “DMFT” and “FMPS” scores. Specific clinical information 

regarding the lesion was collected: classification, aspect, size, and location. Clinical diagnosis was 

confirmed by histological analysis. The patients’ clinical data are reported in Table III.6. 
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Table III.6. Clinical data of patients  

  

Sex 
Age 

(years) 
DMFT FMPS Lesion site 

Lesion 
size 

(cm2) 
Histological diagnosis 

OSCC 

M 49 13 0.89 
Tongue mucosa and 

oral floor 
4.5 OSCC 

M 57 - - Left retromolar trigone 15 Verrucous Carcinoma 

M 57 16 0.3 Tongue mucosa 3 OSCC 

M 78 14 0.56 Upper left maxilla 4 
Infiltrating squamous 

cell carcinoma 

M 84 
total 

edentulous 
total 

edentulous 
Geniena mucosa 31.5 

OSCC 

F 55 
total 

edentulous 
total 

edentulous 

Right cheek, right 
mandibular alveolar 

ridge, right retromolar 
trine 

4 

Dysplastic verrucous 
carcinoma on 

proliferative verrucous 
leukoplakia 

F 58 - - 
Right mand retromolar 

trine, right mand 
alveolar ridge 

4 
Infiltrating squamous 

cell carcinoma 

F 66 9 0.67 
Left mandibular trine, 
oral floor, left cheek 

3 
OSCC 

F 74 - - Tongue mucosa 3 OSCC 

F 80 26 0.72 Oral floor 2 OSCC 

OLK 

M 50 16 0.81 
Tongue mucosa and 
floor of the mouth 

2 
Proliferative 

leukoplakia with mild 
dysplasia 

M 53 - - 
Retromolar trigone,  

tongue dorsum 
- 

Epithelial hyperplasia 
with hyperkeratosis. 

Absent dysplasia 

M 56 - - Left retromolar trigone 8 
Severe epithelial 

dysplasia 

M 64 23 0.99 Buccal mucosa - 
Leukoplakia with mild 

dysplasia 

M 65 - - Buccal mucosa 9 

Epithelial hyperplasia 
with hyperkeratosis and 
notes of inflammation 
of the chorion. Absent 

dysplasia 

M 65 - - Tongue mucosa - 
Leukoplakia with mild 

dysplasia 

M 66 - - Hard palate - 

Hyperkeratosis and 
chronic inflammation of 

the chorion in a 
lichenoid-like 
arrangement 

M 66 8 (0-5-3) 0 
Left alveolar mucosa 
(edentulous saddle) 

2 
Epithelial hyperplasia 
with hyperchratosis 

M 68 21 (0-9-11) 0.35 Right lingual belly 4 
Low-grade lichenoid 

dysplasia 

M 73 - - Alveolar mucosa 3.5 
Epithelial hyperplasia 
with hyperkeratosis, 

absent dysplasia 
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F * 22 - - Lingual margin - 

Epithelial hyperplasia 
with hyperkeratosis and 

low-grade dysplasia 

F * 24 - - Lingual margin 1.5 

Hyperkeratosis and 
microfocula of mild 

dysplasia of the lining 
epithelium. Fibrosis and 

notes of chronic 
inflammation of the 

lamina propria 

F 48 16 0.58 Buccal mucosa 0.8 Leucoplakia 

F 54 - - 
Free lingual gingiva at 

46 
18 

Epithelial hyperplasia 
with hyperkeratosis. 

Absent dysplasia 

F * 61 20 (0-14-6) 0.55 Alveolar mucosa 1.5 
Epithelial hyperplasia 

with hyperkeratosis and 
low-grade dysplasia 

F * 61 20 (0-14-6) 0.55 
Buccal alveolar mucosa 

(between 14 and 15) 
2.5 

Epithelial hyperplasia 
with hyperkeratosis and 

low-grade dysplasia 

F * 62 20 (0-14-6) 0.55 
Buccal alveolar mucosa 

(between 14 and 15) 
1.5 

Fragment of mucosa 
with hyperkeratosis and 

fibrosis of the lamina 
propria 

F 65 - - Floor of the mouth - Leucoplakia 

F 66 - - Lower labial mucosa - 
Epithelial hyperplasia 
with hyperkeratosis. 

Absent dysplasia 

F 69 - - 
Buccal alveolar mucosa 

(between 14 and 15) 
- 

Hyperkeratosis and 
fibrosis of the lamina 

propria 

F 73 -  Left lip commisura - 
Leukoplakia with mild 

dysplasia 

F 77 - - Buccal mucosa 30 

Modest epithelial 
hyperplasia with 

hyperkeratosis, notes of 
inflammation of the 
chorion, absence of 

dysplasia 

F 96 - - 
Right mandibular 

fornix, paramedian 
3 

Proliferative verrucous 
leukoplakia 

OLP 

M 45  - Buccal mucosa 49 
Lichen planus, absent 

dysplasia 

M 50 - - Buccal mucosa - 
Lichen planus, absent 

dysplasia 

M 63 20 (0-20-0) 0 Buccal mucosa 8 
Lichen planus, absent 

dysplasia 

M 63 - - Tongue mucosa 4 
Lichen planus Graft-
Versus-Host Disease 

related 

M 66 - - Lingual margin 4 
Lichen planus, absent 

dysplasia 

F 43 - - Buccal mucosa - 
Lichen planus, absent 

dysplasia 

F 45 - - Buccal mucosa - 
Lichen planus, absent 

dysplasia 
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F 59 - - Buccal mucosa 20 
Lichen planus, absent 

dysplasia 

F 62 17 (0-4-13) 0.25 Left retromolar trigone 16 
Lichen planus, absent 

dysplasia 

F 67 - - Buccal mucosa - 
Lichen planus, absent 

dysplasia 

F 70 10 (0-6-4) 0.23 Buccal mucosa 2 
Lichen planus, absent 

dysplasia 

F 79 - - Buccal mucosa - 
Lichen Planus and 

adenosalivary ectasia 

 

In the cohort of patients, two subjects have two / three entries in the study due to relapse. The 

recurrence of the lesion occurred a few months later after the removal and medical treatments. 

These participants are signalled (*) in Table III.6.  
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1.2. Saliva collection 

 1.2.1. Healthy cohort  

Samples of parotid saliva (PS), submandibular/sublingual saliva (SM/SL), and whole saliva (WS) in 

the absence of stimulation were collected separately and sequentially for each participant to the 

study. 

Saliva collection took place between 8 and 10 am to minimize the influence of circadian rhythm on 

saliva composition. 

The participants were asked to refrain from eating, drinking other than water, and performing an 

intense physical activity for the 12 hours prior to salivary collection. Furthermore, it was requested 

not to carry out oral hygiene procedures (tooth brushing and flossing) during the 45 minutes 

preceding the collection.  

The intake of alcohol, caffeine, nicotine, and drugs 12 hours prior to the salivary collection was 

recorded. Prior to sampling, patients rinsed their mouths with water for 1 minute.  

During collection, the salivary sample was gradually transferred to cryovials containing NaN3 (0.05% 

final concentration) and kept on ice (4 °C) in a portable refrigerated box until obtaining 5.4 mL of 

saliva. The timing required for collecting each type of saliva was recorded (Table III.7). Samples were 

then immediately frozen at -80 °C. 

 

Table III.7. Mean  standard deviation (SD) of sampling time of each salivary type 

 SAMPLING TIME - mean  SD (min) 

Saliva subtype MALE (n=10) FEMALE (n=10) 

PS 56.2  35.1 71.2  23.2 

SM/SL 32.1  19.4 32.9  10.6 

WS 15.7  9.8 13.3  6.0 

 

 

Collection of parotid saliva (PS)  

The subject was placed in a supine position, with the head slightly rotated, to access the Stensen 

duct's area easily. Cotton rollers were placed to isolate the field. After gently cleaning the part with 

sterile gauze, a sterile sponge, capable of absorbing saliva flow, was placed on the Stensen duct 

papilla (Figure III.2a). The sponge was squeezed every 3 minutes into the cryogenic vials through a 

sterile syringe (Figure III.2d), until obtaining the final volume of 5.4 mL. 
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Collection of submandibular/sublingual saliva (SM/SL) 

The subject was seated with the head and back perpendicular to the floor. The site was isolated 

using cotton rollers. After cleaning with sterile gauze, a sterile sponge, capable of absorbing saliva 

flow, was placed on the floor of the mouth (Figure III.2b). The sponge was squeezed every 3 minutes 

in the cryovials tube through a sterile syringe until obtaining the final volume of 5.4 mL. 

 

Collection of whole saliva (WS) 

The subject was positioned on the dental chair with the back straight, perpendicular to the floor. 

The participant was instructed not to swallow saliva. Subsequently, the entire amount of fluid 

present in the mouth was spit (spitting method) into a sterile cooled container (Figure III.2c) and 

transferred in the cryovials tube through a sterile syringe until 5.4 mL. 

 

 

Figure III.2: Salivary sample collection: (a) PS, (b) SM/SL, (c) WS, (d) the sponge absorbed of saliva 
was squeezed into cryovails containing NaN3. 

 

 

 1.2.2. Patients with oral disease  

The non-stimulated whole saliva (WS) sample was collected in the morning. Prior to sampling, 

patients rinsed their mouths with water for 1 minute. The experimental protocol did not require a 

fasting condition. The salivary collection lasted to reach 1 mL volume or non-longer than 15 minutes. 

The sample volume obtained for the patients was reduced since hyposalivation is a frequent 

problem related to these pathologies (Mercadante et al, 2015). The salivary sample was gradually 

transferred from the sterile cooled container to cryovials and kept on ice (4 °C) in a portable 

refrigerated box. Samples were then immediately frozen at -80 °C. 

The volume of the whole saliva collected in the cohort of the healthy volunteers was at least 3 mL. 

 

 

 

(a) (b) (c) (d) 
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1.3. Salivary sample preparation for 1H-NMR analysis 

 1.3.1. Protocol optimization 

The NMR sample preparation was optimized to improve the identification and quantification of 

the metabolites in the different salivary types. 

The sample preparation workflow is depicted in Figure III.3. 

 

Figure III.3: Saliva sample preparation workflow: a) centrifugation to obtained the supernatant, b) 
ultra-filtration to remove macromolecules and debris, c) lyophilisation step. For the 1H-NMR 
samples, the dried pellet was suspended in buffer solution containing TSP (sodium trimethylsilyl-
[2,2,3,3-2H4]-propionate). 
 

The protocol steps are: 

a) Supernatant samples - each sample was thawed at room temperature and centrifuged at 15,000 

x g for 10 min at 4 °C. The supernatant was separated from the pellet and kept on ice until use.  

b) Ultra-filtered samples - supernatants were ultra-filtered using Amicon Ultra-4 Centrifugal filters 

(3000 MWCO, Merck Millipore) at 4,000 x g at 10 °C for 120 min. The filters were washed several 

times with water at 4,000 x g for 20 min to remove glycerol from the filter membrane.  

c) Lyophilised samples - immediately after ultra-filtration, 3.0 mL of each sample were frozen and 

lyophilized overnight (Edwards, Modulyo Freeze Dryed). 

 

To quantify the improvement of each protocol step, the SM/SL samples, the ones which contain the 

lower metabolic content, were prepared as follow: 

1. The ultra-filtered samples (Figure III.3b) were prepared with 575 L of the ultra-filtered 

supernatant with the addition of 10 L of 1 M potassium phosphate buffer (pH 7.4) and 15 L of 1% 

sodium trimethylsilyl-[2,2,3,3-2H4]-propionate (TSP) in deuterium oxide (D2O) - final conditions: final 

volume 600 L, 1.45 mM TSP, 2.5% D2O in 16 mM phosphate buffer. 

2. The lyophilized samples (Figure III.3c) were prepared by dissolving the dried pellets in 600 L of 

50 mM phosphate buffer (pH 7.4), containing 1.45 mM TSP and 2.5% D2O. 

TSP was used as chemical shift reference (0.00 ppm) and quantitative internal standard. 
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The analytical results are described in section IV. Results - 1. Sample optimization for saliva 1H-NMR 

metabolic profiling. 

 

1.3.2. 1H-NMR sample preparation of healthy and oral disease cohorts 

The PS, SM/SL, and WS saliva 1H-NMR samples from the study of 20 healthy subjects were prepared 

using the complete protocol illustrated in Figure III.3. 

The 1H-NMR samples of the patients were prepared using some modifications to the protocol. The 

WS was thawed at room temperature, and 1 mL of each sample was centrifuged at 15,000 x g for 

10 min at 4 °C. The supernatant was ultra-filtered using Amicon Ultra-4 Centrifugal filters (3000 

MWCO, Merck Millipore) at 4,000 x g at 10 °C for 60 min. All the samples reached a final ultra-

filtered volume of at least 800 µL, except 4 samples whose final volume was lower than 600 µL. 800 

µL of ultra-filtered saliva (n=62) and the total volume available for the 4 outliers were frozen and 

lyophilized overnight. 

After lyophilization, the pellets were dissolved in 200 µL of a 48.8 mM phosphate buffer solution 

(pH 7.4) containing 1.45 mM TSP and 2.5% D2O. The samples were loaded in 3 mm outer diameter 

NMR tubes. 

 

1.4. Saliva samples cell count 

Eukaryotic cells (oral epithelial cells and leucocytes) and prokaryotic cells were counted in 

accordance with Gardner and colleagues (Gardner et al, 2018).  

The eukaryotic cells were counted on the same collection day. To 20 μL of each saliva sample was 

added 20 μL of 0.4% Trypan blue (Sigma-Aldrich, Poole, Dorset, UK) and observed with an inverted 

microscope (Nikon Eclipse TS100) in a counting chamber (100× magnification) at the laboratory of 

Centro Universitario di Odontoiatria. 

After sample thawing, the prokaryotic cells were counted by heat-fixing 2 μL of sample to a glass 

slide and stained with Gram staining (Coico, 2005). The samples were viewed at 100× magnification 

with an optical microscope (Nikon Eclipse 80i) at the Laboratorio di Morfologia of the Department 

of Medicine and Surgery of the University of Parma. The ratio between the area of one field of view 

and the whole sample area was calculated, and data were reported as numbers of cells for mL of 

saliva. 
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2. 1H-NMR ACQUISITION AND PROCESSING 

One dimensional 1H-NMR spectra were acquired at 25 °C with a JEOL 600 MHz ECZ600R 

spectrometer at the Interdepartmental Measurement Centre “Giuseppe Casnati” (CIM) of the 

University of Parma.  

The first increment of the 1DNOESY pulse sequence was used for the acquisition, with 128 scans, a 

spectral window of 20 ppm, 128 k points, and a relaxation delay of 5 seconds.  

The spectra were processed and analysed with Chenomx NMR suite 7.6 software (Chenomx Inc., 

Edmonton, Alberta, Canada), applying zero-filling to 256 k points, line broadening of 0.5 Hz, and 

baseline correction using Whittaker spline function. 

 

3. IDENTIFICATION AND QUANTIFICATION OF THE METABOLITES 

The metabolites identification and quantification were carried out using Chenomx NMR suite 7.6 

software (Chenomx Inc., Edmonton, Alberta, Canada). This software contains a spectral reference 

library of over 300 metabolites belonging to several metabolic pathways and different biological 

classes (alcohols, polyols, amides, amines, amino acids, carboxylic acids, hydroxyl acids, drug 

components, monosaccharides, disaccharides, purine, pyrimidines, food components, etc.). 

Chenomx is a semi-automated tool for metabolite profiling. It uses the fit of individual library 

compounds, through the interactive superimposing of the metabolite peaks, upon the experimental 

spectrum peaks. The concentration of each metabolite was estimated by comparing the area under 

the metabolite’s peaks with the TSP peak, whose concentration is known. 

To calculate the total metabolite content of each salivary sample, the spectral areas were manually 

integrated using MestReNova 11.0 software MestReNova 11.0 software (Mestrelab Research, 

Santiago de Compostela, Spain). This measurement also considers the areas of those peaks that 

have not been identified with the Chenomx software. 

 

4. STATISTICAL ANALYSIS 

After the profiling of all spectra, it was considered, for the statistical analysis, only the metabolites 

whose concentration was higher than 5 µM for one saliva subtype.  

The statistical analyses were performed using the MetaboAnalystR 5.0 platform 

(https://www.metaboanalyst.ca).  

The metabolites concentrations were normalized using the internal standard (TSP) and scaled prior 

to analysis. The normalization step is necessary: i) when metabolites in the different samples have 
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significant concentration variations to reduce systematic biased variation, ii) to separate biological 

variation from the ones introduced with the experimental process, and iii) to improve the 

performance of the downstream statistical analysis. The scaling step was performed using 

autoscaling method, which employs the standard deviation as the scaling factor. The variance across 

the multiple metabolites and the correlation patterns are illustrated by the heatmaps generated by 

the MetaboAnalystR 5.0 platform. The colour gradient from warm-to-cool represents the variation 

in the metabolite concentration, with the warm colours representing high concentration and the 

cool colours representing low ones. 

OriginPro8.5 (OriginLab Corporation, Northampton, MA, USA) was used for graphics creation. 

 

4.1. Univariate analysis 

To compare the metabolite composition of each saliva subtype, univariate statistical analysis was 

conducted, applying the non-parametric upper-tailed Mann–Whitney test (Origin 2019 software) 

and considering results with a p ≤ 0.05 statistically significant.  

A volcano plot was employed to compare the size of the fold change to the statistical significance 

level. It reports the p-value as a negative log on the y-axis and the fold-change between two 

conditions on the x-axis. The values set as thresholds were fold change greater than 2.0 and p-value 

higher 0.05. 

 

4.2. Multivariate analysis 

Unsupervised multivariate analysis, Principal Component Analysis (PCA), was performed using the 

PCA module of MestreNova 11.0 software (Mestrelab Research, Santiago de Compostela, Spain).  

PCA provides an overview of the overall variability and reduces data dimension. The related score 

plot summarizes sample clustering patterns projected into three dimensions to explain the maximal 

variance of data (Vu et al, 2019). 

Supervised multivariate statistical analysis was performed using Partial Least Squares Discriminant 

Analysis (PLS-DA) on MetaboAnalystR 5.0.  

PLS-DA reduces the number of the variables, and it finds a predictive model that describes the 

direction of maximum covariance between a dataset and the class membership. 

The VIP (Variable Importance in Projection) score gives the measurement of the variable's 

importance in the PLS-DA model. The VIP scores estimate the importance of each metabolite in 
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groups clustering, summarize the contribution that this makes to the model and show the most 

efficient metabolites in the classification (Vu et al, 2019). 

The predictive ability of the metabolites as a biomarker was tested through the non-parametric 

analysis of the receiver operating characteristic (ROC). For each identified metabolite was 

calculated, a ROC curve and the selection of the potential biomarkers was based on the highest AUC 

(area under the curve) and with an acceptable confidence level. 

AUC score gives the probability that a discriminant can distinguish between the different classes: 

when AUC is 1.0 the model can distinguish completely, whereas there is no difference from random 

chance when AUC is 0.5. AUC is widely used to compare different biomarker models (Xia et al, 2013). 
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IV. RESULTS 

 

1. SAMPLE OPTIMIZATION FOR SALIVA 1H-NMR METABOLIC PROFILING 

The use of 1H-NMR metabolomics analysis of saliva has been exploited mainly for clinical biomarker 

discovery in numerous disorders (Gardner et al, 2020a), including systemic pathologies, such as 

head and neck cancer (Mikkonen et al, 2018), dementia (Figueira et al, 2016), glioblastoma (García-

Villaescusa et al, 2018), as well as in some oral states such as paediatric oral health (Pereira et al, 

2019) and chronic periodontitis (Romano et al, 2018). Noticeably, all these studies have been 

performed on whole saliva (WS). Although most of the metabolites in parotid saliva (PS) and 

submandibular and sublingual saliva (SM/SL) are mainly host-derived with low contamination by 

exogenous and microbial molecules, studies in selected gland saliva types are limited. This is 

partially due to the low concentrations of metabolites in PS and especially in SM/SL. Low NMR 

sensitivity has represented a significant obstacle in investigating the metabolome of saliva from 

different glands. Therefore, the use of NMR for identifying and quantifying salivary gland 

metabolites requires the development of a reproducible sample preparation protocol specifically 

designed to quantify low concentration metabolites. 

Though a wide variety of sample preparation methods have been used in previous studies (Gardner 

et al, 2018), nonetheless it appears evident the need for a standardized method that may allow a 

reliable comparison of the results obtained in the laboratories worldwide. Because saliva 

macromolecules can affect the quality of NMR spectra and interfere with metabolite identification 

and quantification it is necessary to remove cellular debris, bacteria, and high molecular weight 

proteins. Dame and colleagues (Dame et al, 2015) added an ultra-filtration (3kDa filters) step after 

the centrifugation. Ultrafiltration is very reproducible and does not generate side reactions with 

biofluid metabolites (Psychogios et al, 2011). Gardner and colleagues (Gardner et al, 2018) 

evaluated the effect of a freeze-thaw cycle in the preparation of whole saliva samples. 

In the present study, we develop a reproducible saliva preparation protocol designed to identify and 

quantify low concentration metabolites and suitable for the three saliva subtypes: WS, PS, and 

SM/SL. This method involves ultra-filtration for protein depletion and introduces a freeze-drying 

step before the final sample dissolution: this final step overtakes the limited NMR sensibility by 

increasing the native metabolites’ concentration. Note that the freeze-drying step had already been 

reported for metabolomics studies performed with the LC-MS/MS technique (Fernandez-Peralbo et 

al, 2015) producing an enhancement of the number of detected metabolites. Nonetheless, though 
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the freeze-drying step significantly increases the sensitivity of the measure, whether it is carried out 

by NMR or LC-MS/MS, it is affected by a critical drawback: the loss of volatile metabolites. The 

scheme of the proposed protocol for saliva samples preparation for NMR metabolic profiling is 

depicted in Figure III.3 (Section III. Materials and Methods). 

 

1.1. Analytical validation of the protocol 

Once the sample preparation protocol is defined, the next step is the analytical validation. This step 

is necessary to test the technique's performance and the method's capacity to provide solid and 

reproducible results (Naz et al, 2014; Rao, 2018). The analytical validation of our protocol was 

carried out by analysing a pool of SM/SL saliva, the most diluted saliva subtype, collected from three 

different healthy persons. The rationale was that, if the protocol is reliable on the most diluted saliva 

type, it should also be suitable for WS and PS where metabolites are already more concentrated. 

For the pooled SM/SL sample we evaluated, as relevant overall performance indicators, the 

following parameters:  

 Precision 

 Accuracy 

 Limit of detection (LOD) 

 Limit of quantification (LOQ) 

 

 Precision 

Precision is the degree of agreement among results of individual measures performed on multiple 

samplings. It is expressed as the relative standard deviation (coefficient of variation) of a series of 

measures.  

The SM/SL pool was split into two aliquots. The first aliquot was used to prepare three equivalent 

ultra-filtered saliva samples (F). The second aliquot was used to prepare three equivalent ultra-

filtered and lyophilized saliva samples (L). Three 1D 1H-NMR spectra were acquired of each sample, 

obtaining nine replicates of NMR spectra of the F and nine replicates of the L samples. We selected 

a set of seven metabolites with different salivary concentrations: alanine, citrate, formate, lactate, 

pyruvate, taurine, and valine, with concentrations ranging from 4.7 to 187.3 µM in L samples, and 

we measured their NMR concentrations in each spectrum. Results are shown in Figure IV.1. 
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Figure IV.1. Precision evaluated for a set of selected metabolites in F and L samples. Each 
independent measurement is shown in grey, while the mean value of the nine measurements is in 
red. In the table below are indicated the mean concentrations (Mean), standard deviations (SD) and 
relative standard deviation (RSD %) values. 

 

Quantification of the seven selected metabolites leads to a precision of 5 ± 3% for F samples and 9 

± 4% for L samples, expressed as the relative standard deviation (RSD %).  

In addition, for the seven selected metabolites, the ratio between the mean concentrations 

obtained in the L samples with respect to those obtained for the F samples turn out to be 4.9 ± 0.6, 

in agreement with the expected 5-fold increase in concentration upon the lyophilization step. 

 

 Accuracy 

The accuracy indicates how close the experimental results are to the real value. The accuracy of our 

protocol was estimated by using the recovery test (defined as = [(method result/ true value) x 100]) 

for two selected metabolites with different salivary concentrations: valine and lactate (23.1 ± 1.8 

µM and 1073 ± 60 µM, respectively). A 20 L of a reference solution containing known amounts of 

lactate and valine was added to an SM/SL sample obtained following the complete protocol. The 

metabolites' concentration before and after the addition of the reference solution was measured 

using the 1H-NMR methyl signals of both metabolites.  

The accuracy was calculated using the following equation: 
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The experiment was performed in triplicate (Table IV.1).  

 

Table IV.1. Recovery test results 

Metabolite Exp. No. 
 n0 

[nmol] 

nx 

[nmol] 

nx -n0 

[nmol] 

ns 

[nmol] 

Recovery 

[%] 

Average 

[%] 

SD 

[%] 

Valine 

1  13.1 24.1 11.0 10.4 105 

103 2 2  15.0 25.5 10.5 10.4 101 

3  15.8 26.6 10.8 10.4 104 

Lactate 

1  602.4 983.9 381.5 354.5 108 

106 2 2  627.2 993.3 366.1 354.5 103 

3  681.2 1057.8 376.6 354.5 106 

 

The recovery value obtained is 103 ± 2 % for valine and 106 ± 2 % for lactate. These results show 

that our method has a good level of accuracy.   

 

 Limit of Detection (LOD) and Limit of Quantification (LOQ)  

The method's sensitivity was evaluated by determining the limits of detection and quantification, 

parameters related to the smallest concentration of a metabolite that can be reliably measured 

(Shrivastava & Gupta, 2011). Limit of detection (LOD) is the lowest concentration of a metabolite in 

a sample that can be detected but not necessarily quantitated under stated experimental 

conditions. Limit of quantification (LOQ) is the lowest metabolite concentration in a sample which 

can be quantitatively determined with suitable precision and accuracy.  

LOD and LOQ were calculated based upon the IUPAC standard (Shrivastava & Gupta, 2011): 
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In our experimental conditions, for the ultra-filtered (F) samples, the LOD is 2.5 M while the LOQ 

is 5.5 M. In contrast, for the ultra-filtered and lyophilized (L) samples, the corresponding LOD and 

LOQ values are 0.5 and 1.1 M, respectively, reflecting the increase of sensitivity obtained by adding 

the lyophilization step. 

The strategy of introducing an additional ultra-filtration step after the centrifugation allows the 

improvement of the quality of the 1H-NMR spectra by eliminating broad peaks of macromolecules 

and increasing the signal-to-noise ratio. This step enabled the identification and quantification of 22 

metabolites with concentrations ranging from 6 M to 2.75 M in a reference SM/SL sample, in 

comparison with 13 metabolites identified in the same sample, centrifuged but not ultra-filtered. 

The following freeze-drying step increases the method's sensitivity by a factor of five, as 

demonstrated by the LOQ and LOD values obtained in the F vs. the L samples in the analytical 

validation of the method. We were able to quantify 47 metabolites, with corresponding 

concentrations as low as 1.1 M, in the reference SM/SL sample.  

Lyophilization is a conservative process that does not introduce additional peaks or lateral reactions 

but involves inevitably loss of volatile metabolites (such as methanol, ethanol, and acetone). In 

addition, the freeze-drying step produces a decrease in precision (~ 9% vs. ~ 5% in the L vs. the F 

samples). However, the two-fold increase in quantified metabolites compensates for these 

drawbacks. 

The application of our protocol allowed the characterization of the metabolic profile of the three 

saliva subtypes (WS, PS, and, for the first time, SM/SL) for a group of 20 healthy subjects (Meleti et 

al, 2020), quantifying 58 ± 2, 57 ± 2, and 48 ± 2 (mean ± SD) metabolites in WS, PS, and SM/SL, 

respectively.  

In summary, we highlight that the saliva preparation protocol here proposed can generally be 

applicable in all studies that explore the metabolome of different saliva subtypes: it allows to get a 

standard operating procedure, which is reproducible, accurate, and sensitive for metabolites 

quantification. This protocol is suitable for all the saliva subtypes, including PS and SM/SL for which 

most metabolites are assumed to be host derived thus endowed with high diagnostic power. 

 

The protocol was published on Analytical Biochemistry 640 (2022) 114412. 
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Sample optimization for saliva 1H-NMR metabolic profiling 
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2. 1H-NMR METABOLOME OF WHOLE, PAROTID, AND SUBMANDIBULAR/SUBLINGUAL SALIVA 
FROM HEALTHY VOLUNTEERS 
 

In the last years, the interest in the use of saliva as a biofluid for the discovery of disease-specific 

biomarkers and the elucidation of metabolic alterations occurring in physiological conditions (e.g., 

effects of physical exercise, weight changes, smoking) is increasing (Takeda et al, 2009; Pitti et al, 

2019). However, the saliva composition is subjected to various factors, including sex, age, circadian 

cycle, diet, drug effects, stress, oral health, and oral microflora. 

The intra-individual variability of whole saliva metabolic composition seems to be smaller when the 

interindividual variability is considered (Wallner-Liebmann et al, 2016), this observation applies also 

to the saliva proteome (Jehmlich et al, 2013). Overall these findings lead to the hypothesis that, 

under standardized conditions, an individual phenotype is relatively stable. 

The metabolic characterization of WS in physiological conditions has been extensively investigated 

by 1H-NMR spectroscopy (Gardner et al, 2018, and cited references). The metabolome of PS has 

been partially explored (Figueira et al, 2017; Gardner et al, 2019; Rovera et al, 2021), while SM/SL 

has never been systematically described. Yamada-Nosaka and co-workers (Yamada-Nosaka et al, 

1991) recorded broad and low-resolution 1H-NMR spectra of SM/SL. Gardner and colleagues 

(Gardner et al, 2020a) compared the 1H-NMR spectra obtained from PS and SM/SL, both without 

the ultrafiltration step, and stated that both salivae showed similar metabolic composition in this 

condition. 

WS metabolome derives from endogenous sources, host oral microorganisms (De Filippis et al, 

2014; Takahashi, 2015; Gardner et al, 2019), and exogenous origins (Wallner-Liebmann et al, 2016). 

On the contrary, PS and SM/SL metabolomes are less affected by microorganism’s contaminations, 

and the majority of their metabolites are likely host-derived (Figueira et al, 2017; Gardner et al, 

2019). 

The knowledge of the metabolic profiles of the different salivary subtypes, WS, PS, and SM/SL from 

the healthy adults can provide important information to the interpretation of pathological and 

physiological changes that characterize each salivary gland. 

The metabolic composition of unstimulated WS, PS, and SM/SL derived from a cohort of 20 young 

and healthy volunteers are presented in Table IV.2. The mean concentration reported is the 

amounts quantified above the limit of quantification determined by our method (1.1 𝜇M), (see 

Results IV.1). 
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Table IV.2. Metabolites, mean concentrations  SD and concentration ranges measured in the 
three saliva types. 

 

 

 

Metabolite WS (µM) PS (µM) SM/SL (µM)

β-Alanine NQ 4.2 ± 2.1 [1.1-9.1] 1.9 ± 0.8 [1.1-3.4] (15)

1,7-Dimethylxanthine NQ 4.6 ±4.7 [1.3-22.8] NQ

2-Aminoadipate 226.5 ± 130.8 [77.2-530.3] 38.7 ± 35.7 [2.4-117.3] 17.3 ± 19.0 [2.0-92.8]

2-Hydroxy-3-methylvalerate 10.9 ± 7.3 [1.6-24.7] NQ NQ

2-Hydroxybutyrate 15.7 ± 10.9 [1.4-53.1] 7.9 ± 2.5 [4.3-12.8] 2.6 ± 1.3 [1.5-6.5] (17)

2-Hydroxyisovalerate 2.3 ± 0.9 [1.1-4.1] (16) 2.6 ± 1.2 [1.4-5.8] (16) NQ

3-Hydroxybutyrate 6.6 ± 3.4 [1.9-14.5] 8.2 ± 4.4 [3.7-20.1] 4.3 ± 2.2 [1.8-10.7]

3-Hydroxyisobutyrate NQ 2.4 ± 0.8 [1.2-4.1] (19) NQ

3-Methylglutarate 18.9 ± 11.1 [1.6-38.0] (17) NQ NQ

3-Methylxanthine NQ 5.0 ± 3.1 [1.7-14.4] (18) 2.9 ± 1.9 [1.3-7.9] (17)

3-Phenylpropionate 13.2 ± 10.2 [2.0-38.1] NQ NQ

4-Hydroxyphenylacetate 8.8 ± 5.6 [1.9-19.0] NQ NQ

4-Hydroxyphenyllactate 7.9 ± 6.3 [2.2-23.8] (19) NQ NQ

5-Aminopentanoate 168.8 ± 104.2 [34.0-386.3] (15) 26.2 ± 25.8 [1.6-82.2] (19) NQ

Acetate 2667.2 ± 1123.6 [734.1-4322.8] 676.4 ± 730.6 [81.8-3145.0] 382.0 ± 329.4 [54.0-1370.4]

Alanine 61.1 ± 59.1 [9.4-212.6] (16) 81.6 ± 40.2 [41.5-219.1] 24.8 ± 15.4 [8.1-74.9]

Alloisoleucine 6.2 ± 3.3 [1.9-14.0] (17) 3.4 ± 1.4 [1.7-7.5] NQ

AMP NQ 9.4 ± 5.6 [3.7-26.2] (19) 4.0 ± 2.6 [1.1-12.7] (19)

Anserine NQ NQ 1.9 ± 0.7 [1.1-3.5] (18)

Arginine NQ 27.4 ± 14.9 [5.9-56.3]

Aspartate 29.3 ± 18.4 [9.8-76.7] 29.4 ± 18.6 [7.9-70.4] 7.6 ± 3.8 [1.8-18.7]

Betaine 2.1 ± 0.7 [1.1-3.6] (17) 7.6 ± 5.4 [1.5-17.7] (19) 2.4 ± 1.8 [1.2-7.9] (15)

Butyrate 30.1 ± 23.6 [3.2-77.3] 6.1 ± 4.1 [1.5-14.8] (19) 5.0 ± 3.8 [1.1-18.6]

Cadaverine NQ 5.8 ± 5.1 [1.2-17.6] (16) N.Q.

Caprylate NQ NQ 5.5 ± 3.05 [1.6-13.0]

Carnitine 5.6 ± 3.5 [2.1-15.3] (17) NQ 4.1 ± 2.1 [1.7-10.6] (19)

Choline 7.5 ± 4.6 [2.6-17.2] 9.7 ± 5.8 [3.2-21.8] 3.4 ± 1.5 [1.3-6.9] (19)

Citrate 14.9 ± 8.9 [2.9-33.0] (18) 43.7 ± 25.4 [16.0-125.8] 28.8 ± 29.6 [5.9-146.9]

Creatine 15.7 ± 12.6 [3.4-49.4] 53.1 ± 21.5 [23.7-116.7] 19.1 ± 9.1 [6.4-48.1]

Creatinine 5.7 ± 2.7 [2.1-12.7] (18) 5.9 ± 2.8 [2.3-14.1] 4.0 ± 1.8 [2.1-9.6] (19)

Ethanolamine 28.4 ± 25.9 [4.0-115.2] 45.5 ± 48.9 [3.8-185.6] 8.7 ± 7.9 [1.5-36.6] (19)

Ethylene glycol NQ 3.8 ± 2.9 [1.1-11.9] (16) NQ

Formate 60.3 ± 54.7 [8.7-234.0] 27.2 ± 26.8 [6.8-106.7] 24.3 ± 19.6 [6.5-97.9]

Fucose 61.2 ± 73.4 [11.5-275.8] 16.0 ± 18.3 [1.5-57.9] (19) 6.6 ± 4.4 [2.4-16.3]

Fumarate NQ 2.9 ± 1.0 [1.3-4.5] NQ

Galactose 37.1 ± 44.3 [10.2-173.9] NQ NQ



55 
 

 

 

The study allowed the quantification of 58  2, 57  2, and 48  2 (mean  SD) metabolites in WS, 

PS, and SM/SL samples, respectively. 

 

Glucose 23.2 ± 28.9 [6.8-137.8] 256.7 ± 180.0 [81.8-697.8] 63.1 ± 47.1 [7.6-211.8]

Glutamate 109.9 ± 63.0 [30.6-250.1] 79.8 ± 54.9 [27.7-224.0] 23.8 ± 15.4 [8.6-71.2]

Glutamine 46.6 ± 35.7 [6.6-134.6] 72.5 ± 36.3 [9.2-151.4] 26.5 ± 14.7 [2.3-70.6]

Glycerol 107.1 ± 30.7 [30.1-152.0] 102.3 ± 29.3 [59.5-170.1] 53.5 ± 10.8 [23.9-72.5]

Glycine 133.3 ± 104.0 [12.1-306.6] 83.1 ± 64.4 [3.6-218.8] 22.4 ± 17.5 [4.5-76.5]

Glycolate NQ NQ 12.2 ± 12.3 [1.8-55.4]

Histidine 24.3 ± 13.8 [4.1-49.9] 23.2 ± 17.4 [7.8-70.7] 7.6 ± 4.8 [2.9-21.1]

Homoserine NQ 47.6 ± 32.3 [11.3-158.4] (18)

Hypoxanthine 4.9 ± 4.5 [1.4-18.1] (19) 16.8 ± 12.0 [2.4-48.2] 5.1 ± 2.4 [1.2-9.5] (18)

Indole-3-lacate 2.7 ± 1.2 [1.2-5.1] (17) NQ NQ

Isobutyrate 21.2 ± 11.5 [3.7-47.6] NQ NQ

Isocaproate 9.2 ± 6.0 [1.8-22.7] NQ NQ

Isoleucine 10.4 ± 12.2 [1.2-44.2] (19) 5.5 ± 3.5 [2.0-13.4] NQ

Isovalerate 9.5 ± 6.6 [1.1-21.1] (17) NQ NQ

Lactate 156.3 ± 121.5 [23.7-517.5] 798.7 ± 335.6 [408.8-1683.9] 187.3 ± 97.0 [84.0-444.5]

Lactose 30.5 ± 24.1 [3.8-115.4] NQ 26.3 ± 13.6 [3.4-55.5]

Leucine 20.3 ± 16.1 [3.5-56.4] 14.5 ± 7.0 [6.3-30.7] 5.5 ± 2.1 [2.1-9.5]

Lysine 73.5 ± 44.2 [17.6-164.8] 31.4 ± 23.4 [10.1-97.5] 8.3 ± 7.9 [2.3-37.9]

Malonate 7.6 ± 5.1 [1.9-19.0] 6.8 ± 5.6 [1.4-19.1] (15) NQ

Maltose 7.8 ± 12.9 [1.2-52.8] (18) 404.5 ± 336.3 [103.5-1587.9] 95.4 ± 85.6 [16.4-420.4]

Methionine NQ NQ 2.5 ± 0.8 [1.2-4.2] (19)

N-Acetylglucosamine 52.9 ± 42.5 [2.2-141.5] NQ 14.2 ± 12.7 [1.4-40.8]

O-Phosphocholine NQ 10.4 ± 4.0 [4.7-20.5]

O-Phosphoethanolamine 34.5 ± 18.9 [6.5-67.6] 130.2 ± 49.6 [45.7-251.2] 59.2 ± 24.4 [24.8-123.8]

Phenylacetate 18.0 ± 12.0 [4.2-46.2] NQ 2.1 ± 0.7 [1.1-3.3] (15)

Phenylalanine 23.5 ± 13.1 [6.4-48.6] 14.3 ± 9.5 [5.0-41.1] 5.4 ± 2.7 [2.0-12.7]

Proline 152.1 ± 138.1 [29.1-446.8] 55.1 ± 44.1 [10.8-156.0] 11.4 ± 15.5 [2.9-74.4]

Propionate 313.8 ± 167.7 [64.7-627.9] 48.6 ± 49.6 [4.4-200.8] 28.1 ± 32.5 [4.3-151.7]

Putrescine 45.7 ± 29.7 [8.5-96.4] 8.2 ± 7.3 [1.2-27.3] (19) NQ

Pyroglutamate 16.8 ± 16.5 [2.9-70.5] NQ 7.6 ± 3.1 [3.3-14.7]

Pyruvate 21.7 ± 12.7 [4.0-52.8] 35.7 ± 55.6 [1.4-232.0] 5.9 ± 3.2 [2.1-14.2]

Sarcosine 4.6 ± 2.5 [1.4-10] (19) 4.5 ± 2.8 [1.4-10.1] (18) NQ

sn-Glycero-3-phosphocholine NQ 5.0 ± 3.3 [2.2-13.7] (17) NQ

Succinate 17.8 ± 8.2 [8.5-39.2] 13.2 ± 6.1 [3.8-23.3] 5.6 ± 2.3 [2.2-11.8]

Taurine 50.9 ± 30.3 [2.8-132.0] 169.6 ± 90.5 [35.6-342.2] (18) 65.3 ± 39.4 [3.3-146.9]

Trimethylamine NQ 8.6 ± 4.6 [1.4-16.5] (15)

Threonine 8.1 ± 7.8 [2.4-31.5] NQ 8.5 ± 4.4 [2.9-22.3]

Tyrosine 43.6 ± 24.6 [10.5-93.5] 34.0 ± 19.8 [14.4-90.9] 12.1 ± 6.1 [3.0-30.8]

Uracil 6.3 ± 5.6 [1.7-19.8] 6.7 ± 5.3 [1.7-20.5] NQ

Uridine NQ 4.1 ± 2.3 [1.2-8.3] (17) NQ

Valine 16.2 ± 16.0 [2.9-59.2] 15.2 ± 9.1 [3.0-38.0] 4.7 ± 2.7 [1.1-13.1] (19)

Xanthine 6.3 ± 5.0 [1.3-22.2] 11.7 ± 11.3 [1.8-43.9] 7.6 ± 7.6 [1.7-27.1] (19)

Xanthosine NQ 2.8 ± 1.1 [1.4-4.8] (18) NQ

a)  In square brackets are indicated concentration range.

b)  When the metabolite was not found in all the 20 subjects, the number of donors in which it was identified is indicated in round brackets.

     Only the metabolites present in at least 15 subjects (≥ 75% occurrence) have been considered.

c)  The acronym NQ means that the metabolite in that type of saliva was not quantified.
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Most of the metabolites quantified in this study (Table IV.2) were discussed in the publication Meleti 

et al “Metabolic Profiles of Whole, Parotid, and Submandibular/Sublingual Saliva” (presented 

forward). 

Some additional data is reported in Figure IV.2. The heatmap of the metabolites derived from oral 

mucosa cells evidences the differences among the three salivary subtypes. PS shows a higher 

concentration of the metabolites: a possible explanation is that parotid saliva sampling takes a long 

time and, consequently, causes greater stress on the mucous membranes and epithelial tissue. This 

hypothesis is supported by results showing that a higher concentration of metabolites derived from 

cell membrane phospholipids, such as O-phosphocholine, O-phosphoethanolamine, ethanolamine, 

and glycerol, have been detected (Mayr et al, 2015). 

Duarte et al. have investigated the metabolites alterations derived from the oral and microbial 

metabolisms at different temperatures and duration of storage (Duarte et al, 2020). Based on those 

data, we can state that the concentration of metabolites was preserved even in the PS collection 

time in our sampling conditions. 

 

Figure IV.2. Heatmap analysis of selected metabolites: PS (red), SM/SL (green), and WS (blue) 
samples. The brightness of each colour corresponds to the magnitude of the difference when 
compared with the average value. 

 
To further stress the diagnostic and prognostic importance of a reliable and reproducible qualitative 

and quantitative metabolic analysis of the various type of saliva it is worth to outline that among 

the metabolites quantified in salivary samples, a good number have been indicated as candidates 

for the diagnosis of inflammatory processes (Kuboniwa et al, 2016), or markers of aging (Teruya et 
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al, 2021). Sakanaka and co-workers (Sakanaka et al, 2017) reported a gradual decrease of WS 

ethanolamine levels with the increasing of periodontal inflammation severity and, in parallel, meta 

transcriptomics study suggested its involvement in the transition of the commensal microbial 

community to a dysbiotic microflora (Duran-Pinedo et al, 2015). Furthermore, it has been proposed 

that the purine degradation metabolites (hypoxanthine and xanthine) were increased in the gingival 

fluid of subjects with periodontal disease (Barnes et al, 2009).  

In summary, recognizing that mapping the human salivary metabolome of each salivary gland is 

essential to understand most of the physiologic oral metabolic pathways, to translate these findings 

in the research of salivary biomarkers for oral and systemic diseases, we believe that the protocol 

we have developed has appropriate characteristics to become a standard protocol for the 

qualitative and quantitative analysis of the metabolome of salivary glands PS and SM/SL and the 

WS. 
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3. WHOLE SALIVA BIOMARKERS IN EARLY DIAGNOSIS OF ORAL INFLAMMATION 

 

Periodontal diseases are among the most common chronic inflammatory diseases (Pihlstrom et al, 

2005). In a recent study carried out on a Northern Italy urban adult population (Aimetti et al, 2015), 

the estimated prevalence of severe periodontitis was 34.94% and the moderate one of 40.78%. 

The onset and development of these pathologies are mainly due to an abundant and varied bacterial 

flora normally present in the oral cavity (Hill, 1987; Kumar, 2005; Colombo et al, 2009). The 

symbiotic bacteria consortium on oral surfaces produces a biofilm known as dental plaque (Kilian et 

al, 2016), which propitiates a wide range of inflammatory conditions affecting the periodontal 

tissues (gingiva, periodontal ligament, alveolar bone, cement), necessary as teeth support 

structures. 

The cause of periodontitis is multifactorial and includes genetic, epigenetic, hormonal changes, 

lifestyle, and environmental factors (Page & Kornman, 1997; Tatakis & Kumar, 2005; Kilian et al, 

2006). 

The early phase of periodontal disease is gingivitis, characterized by a non-specific bacterial plaque 

accumulation at the gum line of the teeth. The release of toxins by the plaque affects the gingiva 

and triggers an inflammatory host response. The progression of this condition can drive to 

periodontitis, which is distinguished by tissue breakdown, bone destruction, pocket formation, and 

gingival recession, with consequent tooth loss (Barnes, 2011), Figure IV.3.  

 

Figure IV.3. Progression of host-microbe symbiosis from health to gingivitis and to periodontitis, 
associated with a dysbiotic condition (from Hajishengallis, 2015). 

 
 

Periodontitis (chronic or aggressive) onset and propagation are infection-driven inflammatory 

processes. The accumulation of dental plaque initiates an inflammatory host-response that causes 
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a dysbiosis of the commensal oral microbiota, leading to a hyper- or hypo responsiveness and/or a 

lack of inflammatory responses regulation: this leads to severe consequences in the periodontium 

of susceptible individuals (Könönen et al, 2019; Loos et al, 2020; Suárez et al, 2020). 

The persistence of the inflammatory state and consequent pocket formation create a favourable 

environment for bacterial survival and spreading, promoting the shift to a dysbiotic microflora (Van 

Dyke et al, 2020), Figure IV.4. 

 

 

Figure IV.4. Proposed model of the 5 stages that drive inflammation-mediated dysbiosis to plaque-

associated periodontitis (from Van Dyke et al, 2020). 

 

The homeostasis imbalance between host and oral microflora generates a self-feeding cycle of 

dysbiosis and inflammation escalation, Figure IV.5. 

  

Figure IV.5. Bidirectional imbalance in periodontal diseases (Suárez et al, 2020). 
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In a dysbiotic biofilm, a variety of Gram-negative anaerobic species is present such as Pophyromonas 

gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, 

Peptostreptococcus micros, Prevotella intermedia, Treponema forsythia (Niederman et al, 1997; 

Paster et al, 2000).  

The colonization and proliferation of Porphyromonas gingivalis in the periodontal gingival pockets 

are associated with chronic periodontitis. This anaerobe bacterium releases toxic factors such as 

lipopolysaccharide (a bacterial endotoxin that induces the host immune reaction), gingipains (a 

cysteine protease that affects the composition of oral biofilm and promotes colonization), 

fimbriae/pili (filamentous structures which promote bacterial adhesion to periodontal surfaces) 

(Mysak et al, 2014). In addition, those events are associated with the changes in the oral cavity 

metabolome (Gawron et al, 2019). 

 

Metabolomics approach  

Salivary metabolomics is particularly useful for oral diseases diagnosis, from gingivitis to 

periodontitis (Zhang CZ et al, 2016; Javaid et al, 2016). This approach is primarily exploited to 

understand the complex pathogenesis of such oral diseases (Mikkonen et al, 2016; Kouznetsova et 

al, 2021; Tsuchida, 2020).  

Due to the variation of saliva composition in response to pathological processes (bacterial 

metabolism, host-induced inflammatory response), there is a growing interest to analyse human 

saliva for early diagnosis of oral diseases (Lee & Wong, 2009; Gardner et al, Jan 2020; Liebsch et al, 

2019).  

Gingivitis can present different levels of severity, from early signs of inflammation, such as redness 

or swelling, to bleeding upon gentle probing (Klukowska et al, 2015). During the clinical assessment, 

bleeding on probing is the primary parameter to set the thresholds for gingivitis.  

FMPS and FMBS assessed the periodontal health status of our cohort of healthy subjects to evaluate 

plaque and bleeding indexes (section III. Material and Methods). The obtained indexes were 

associated with their respective salivary metabolomes to identify specific metabolites that could be 

related to early stages of gingival inflammation (pre-clinical stage of gingivitis) and, therefore, suited 

to develop a salivary-based screening test for gingivitis. 
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Results  

The low scores index of FMBS and FMPS reflect the good health condition of the participants. FMPS 

ranged from 2.8 to 24.8%, with a mean value of 13.5  7.1 %, and FMBS index from 0 to 11.4% with 

a mean value of 3.8  2.8% (Table III.3, section Materials and Methods).  

The FMPS index did not correlate with the metabolites identified in WS or with the number of 

prokaryotic cells (data not shown). Conversely, the correlation between WS's number of bacterial 

cells and the bleeding index FMBS is r= 0.62 p<0.01. This value was considered significant since this 

association is calculated only for the aerobic bacteria population. Note that the count of prokaryotic 

cells in WS access only the aerobic bacterial colonies since the anaerobic colonies are resident in 

subgingival plaque (Mayanagi et al, 2004). 

The cohort was divided into two subgroups: FMBS < 4% (n=12) and FMBS > 4% (n=8), with respect 

to FMBS mean value.  

Partial Least Squares-Discriminant Analysis (PLS-DA) was performed on the whole saliva metabolite 

database (Table IV.2). The score plot of PLS-DA indicates the separation in two clusters, 

corresponding to the two groups of FMBS index, Figure IV.6. 

 

 
  

Figure IV.6. Score plot of Partial Least Squares-Discriminant Analysis (PLS-DA).  
In red FMBS <4%, green FMBS >4% 
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PLS-DA VIP scores plot (Figure IV.7A) highlights the metabolites that mainly contribute to the 

separation in two clusters. These findings are also visualized in the volcano plot (Figure IV.7B), in 

which metabolites with a fold change greater than 1.0 and p-value < 0.05 are considered significant 

in the clustering. 

 

 

 

Figure IV.7. (A) VIP scores plot. Boxes on the right side are the heatmap, high concentration (red), 
and low concentration (blue). FMBS <4% (1), FMBS >4% (2). (B) Volcano plot. Combination of fold 

change (FC) analysis and t-tests for all the metabolites identified. FMBS <4% (red), FMBS >4% 
(green) 

A. 

B. 
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The critical metabolites for cluster separation are present with higher concentrations in the subjects 

with higher FMBS index. They are short-chain fatty acids (SCFAs) related to bacterial metabolism: 

isocaproate, propionate, and 3-phenylpropionate.  

SCFAs are end-products of bacterial metabolism and are associated with periodontal inflammation 

and bleeding on probing (Rzenik et al, 2017). Several anaerobic periodontal bacteria produce SCFAs 

with concentrations in the millimolar range, that can stimulate gingival inflammatory response and 

bleeding: microorganism colonization stimulates the vascular system for the unceasing request of 

blood nutrients (Niederman et al, 1997).  

SCFAs inhibit leukocyte apoptosis and cell division in the gingival epithelium at the cellular level, 

making oral mucosa repair much more difficult (Quiqiang et al, 2012). 

Propionate has an inhibitory effect on gingival fibroblasts growth and adhesion when exceeding a 

concentration of 4 mM (Jeng et al, 1999): being a population of healthy subjects, the mean 

concentration of propionate in our study is 404.2 ± 164.8 µM for the participants with FMBS > 4%. 

Other studies have identified propionate as a discriminative metabolite for oral hygiene status 

(Klukowska et al, 2015) since its concentration significantly decreases with periodontal treatments 

(García-Villaescusa et al, 2018). 

Moreover, previous publications, investigating alterations in salivary metabolome due to 

periodontal inflammation, have shown an increase in isocaproate (García-Villaescusa et al, 2018) 

and 3-phenylpropionate, matching our findings (Liebesch et al, 2019; Kuboniwa et al, 2016). 

Succinate belongs to the SCFAs class. Saccharolytic bacteria can degrade food-derived 

carbohydrates through the Embden-Meyerhof-Panas pathway to produce succinic and other 

organic acids, using oxygen via NADH oxidase. These processes create acidic and anaerobic 

conditions: a favourable environment for bacterial colonization (Takahashi, 2005). 

SCFAs pathways are closely related to the β-branched amino acids (BCAA), such as isoleucine and 

leucine, since the catabolism of BCAA is an energy source for oral bacteria (Liebsh et al, 2019). 

Leucine is converted by Eubacterium species, through Stickland reaction, into isocaproic or 

isovaleric acid, and by P. gingivalis and P. intermedia, through deamination/ decarboxylation 

reactions, in isobutyric acid (Takahashi et al, 2000), Figure IV.8. Furthermore, numerous oral 

bacteria (S. sanguinis, S. mitis, Streptococcus gordonii, Lactobacillus, and Actinomyces species) 

convert arginine into putrescine, exploiting the arginine deiminase system. This process, by 

generating alkaline molecules seems to counterbalance the acidic environment generated by sugar 
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metabolism (Liu et al, 2012). Putrescine also contributes to the putrid odour of halitosis conditions 

(Jo et al, 2021).  

 

 

Figure IV.8. Oral microbiota metabolism of proteins, peptides, and amino acids and the effects on 

the host response. In red the metabolites identified that mainly contributed to the separation in 

two clusters (Adapted from Takahashi, 2005). 

 

 

In 2015 (Takahashi, 2015), Takahashi summarized the current knowledge of oral microbiome 

metabolism and reported the changes in metabolic pathways related to periodontal diseases 

development. Our findings are in agreement with Takahashi’s results.  

Salivary glycoproteins are degraded into sugars and proteins by bacterial and human glycosidases. 

Proteins can be broken down into peptides and amino acids by bacterial and human proteases. 

Sugars are metabolized to acids by saccharolytic bacteria (Streptococcus, Actinomyces, 

Lactobacillus, etc.), while proteolytic bacteria metabolize amino acids in SCFAs and ammonia with 

the production of ATP (Kilian et al, 2016). 

Takahashi (Takahashi, 2005) proposed that these metabolic end-products could stimulate an 

important gingival inflammatory response and inflammatory cytokine release, impairing host cell 

functions and subsequently disturbing the host defence.  

Together with a direct degradation of host tissues by bacterial proteases, these effects have the 

potential to induce a notable host response, consisting of oral inflammation and, consequently, 

gingival bleeding.  

After identifying the salivary metabolites associated with the early stages of gingival inflammation, 

to develop a preventive periodontitis screening model for each WS metabolite we created a ROC 
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curve from the database (Table IV.2, section Results). A metabolite panel was generated using the 

ones that have the most significant AUC values and T-test values (Table IV.3). All these metabolites 

correlate with oral inflammation. 

 

Table IV.3. AUC and T-test values of the WS metabolites that resulted  
the most predictive in the ROC curve model 

 AUC T-test 

3-Phenylpropionate 0.85 0.00698 

FMBS 0.77 0.03351 

Isobutyrate 0.71 0.28688 

Isocaproate 0.72 0.04893 

Isoleucine 0.74 0.06912 

Leucine 0.77 0.05849 

Propionate 0.86 0.03949 

Valine 0.73 0.33922 

 

Using the metabolites identified in Table IV.3 together with the FMBS index, we designed a model 

to distinguish the subjects prone to developing gingivitis. The final ROC curve in Figure IV.9A shows 

an AUC of 0.96. The ROC curve without including FMBS value (Figure IV.9B) determines an AUC of 

0.93: a very efficient model to distinguish the two populations, the one with FMBS index >4% from 

the one with FMBS index <4%.  

The concentration of these metabolites is strongly correlated with periodontal inflammation, and 

our model could be considered an early diagnostic tool for the discrimination of subjects more prone 

to periodontal diseases progression. This panel of metabolites is promising for developing a 

chairside point-of-care test for the primary diagnosis of gingivitis. 
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4. METABOLIC SALIVARY PROFILE OF ORAL DISEASES 
 

Oral cancer is the 16th most common type of cancer, with 377,713 new cases and 177,757 deaths 

worldwide in 2020 (https://gco.iarc.fr/; Goldoni et al, 2021). 

Around 90% of oral cancer cases are Oral Squamous Cell Carcinoma (OSCC), invasive epithelial 

neoplasia that initiates in the squamous cells. The tumours have different degrees of differentiation 

and the propensity of metastasis in the lymph node (Rivera, 2015; Sasahira & Kirita, 2018, 

https://gco.iarc.fr/). The remaining 10% includes salivary minor glands tumour, melanomas, and 

lymphomas (Dhanuthai et al, 2017). 

OSCC pathogenesis is a multistage process: accumulation of genetic changes and epigenetic 

anomalies which lead to uncontrolled cell proliferation, invasion of adjacent tissues, and metastasis 

(Rivera & Venegas, 2014). 

OSCC may affect all oral subsites: the most common are tongue, oral floor, and lower lip, with 

heterogeneous clinical manifestations: from mucosal ulcerations of variable size to nodules, 

erosion, exophytic lesions, and white and/or red patches Figure IV.10. Pain, burning sensation, and 

bleeding are reported as the main symptoms (Bagan et al, 2010). Due to the rich lymphatic 

vascularization of the oral cavity, OSCC can cause cervical lymph nodes and distant metastases 

(Sasahira et al, 2018). 

 

 

Figure IV.10. OSCC most common oral cavity subsites (Goldoni et al, 2021). 
 

The risk factors of oral cancer include tobacco and alcohol consumption (with a synergistic effect), 

betel quid chewing, age, male gender, human papillomavirus (HPV), dietary habits, oral 

inflammation, and ultraviolet radiation (Rivera C, 2015; Montero & Patel, 2015; Panarese et al, 2019; 
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Kumar et al, 2016; Trimarchi et al, 2014; Lanzillotta et al, 2018; Rosenquist K, 2005; Gupta & 

Johnson, 2014).  

From the 90s, epidemiological studies on the occurrence of oral cancer among relatives have 

highlighted the presence of a genetic predisposition (Foulkes et al, 1996; Jefferies et al, 1999).  

Research groups are investigating the involvement of the oral microbiome, and the consequent 

mucosal inflammation, in disease development (Li et al, 2020; Singhvi et al, 2017). 

Oral cancer is preceded by asymptomatic clinical manifestations, oral mucosa lesions, known as 

potentially malignant disorders (PMDs) - leukoplakia, erythroplakia, submucosal fibrosis, and lichen 

planus (Warnakulasuriya, 2020), Table IV.4).  

 

Table IV.4. Definitions of various potentially malignant disorders (Warnakulasuriya, 2020). 

Condition Definition 

Leukoplakia 
(OLK) 
   

- A white patch or plaque that cannot be characterized clinically or 
pathologically as any other disease. 
- A white patch or plaque that cannot be characterized clinically or 
pathologically as any other disease and is not associated with any 
physical or chemical causative agent except the use of tobacco. 
- White plaques of questionable risk having excluded (other) known 
diseases or disorders that do not caran ry increased risk for cancer. 
- A predominantly white patch or plaque that cannot be characterized 
clinically or pathologically as any other disorder; oral leukoplakia carries 
an increased risk of cancer development either in or close to the area of 
the leukoplakia or elsewhere in the oral cavity. 

Erythroplakia A fiery red patch that cannot be characterized clinically or pathologically 
as any other definable disease. 

Proliferative 
Verrucous 
Leukoplakia (PVL) 

Leukoplakias tend to spread and become multifocal. PVL is slow-
growing, persistent, and irreversible, and in time areas become 
exophytic and warlike 

Oral submucous 
fibrosis 

Oral submucous fibrosis is a chronic, insidious disease that affects the 
lamina propria of the oral mucosa, and as the disease advances, it 
involves tissues deeper in the submucosa of the oral cavity with resulting 
loss of fibroelasticity 

Oral lichen planus 
(OLP) 

A chronic inflammatory disease associated with cell-mediated 
immunological dysfunction 

Oral lichenoid lesion/ 
reaction 

OLP-like lesions found in close proximity to any dental restoration 
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Oral leukoplakia and Oral lichen planus 

Oral leukoplakia is a white lesion or plaque in the oral mucosa that cannot be brushed off and cannot 

be characterized clinically or histologically as any other definable lesion. Therefore, a process of 

exclusion establishes the diagnosis of the disease (Rethman et al, 2010; Warnakulasuriya et al, 

2007). 

Leukoplakia is often associated with tobacco smoking, but the lesions are from idiopathic causes in 

some cases. 

The prevalence of leucoplakia in the US and European population is 2-3.6%, especially among men 

(Bewley & Farwell, 2017). The 2-3% per year of leukoplakia lesions progress to squamous cell 

carcinoma (Bewley & Farwell, 2017; Carrard & Van Der Waal, 2018). 

The lesions are homogeneous, with a uniform area, and non-homogeneous, with nodular, 

exophytic, or papillary/verrucous surfaces. The prompt recognition is fundamental since the latter 

has a higher probability of neoplastic degeneration (Warnakulasuriya et al, 2007). 

The non-homogeneous class includes the proliferative verrucous leukoplakia (PVL), a rare type but 

with a malignant transformation rate of 60%-100% (Munde & Karle, 2016). 

Instead, oral lichen planus (OLP) is a chronic inflammatory disease and immunologically driven that 

usually affects women aged 30 to 60 years (Maymone et al, 2019). Different subtypes have been 

classified: reticular, papular, plaque, atrophic, erosive, and bullous. Erosive and atrophic types are 

the most invasive, causing severe pain that hamper speech and swallowing and the highest risk of 

malignant transformation (Olson et al, 2016). The rates of transformation of OLP into oral cancer 

are still a matter of debate, although, to date, the literature seems to agree on the 0% -12.5% range 

(Villa et al, 2011). 

Most PMDs do not progress to oral cancer, but some present specific morphological alterations 

leading to malignant transformation. The neoplastic site originates as an epithelial dysplasia and is 

characterized by the accumulation of DNA mutations, followed by an altered proliferation of 

dysplastic squamous cells (Scully & Bagan, 2009). Dysplastic regions show irregular epithelial 

stratification, loss of polarity of basal cells, drop-shaped ridges, increased number of mitotic figures, 

abnormally superficial mitoses, and dyskeratosis, Figure IV.11. The dysplasia is categorized as mild, 

moderate, or severe based on the lesion severity and the depth to which it extends (Ranganathan 

& Kavitha, 2019), Figure IV.12. 
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Figure IV.11. Histopathological coloration of oral mucosa tissues with no evidence of epithelial dysplasia 
(A), moderate dysplasia (B) and severe dysplasia (C), respectively (Adapted from Woo, 2019). 

 
 

 

Figure IV.12. Photographs of the oral cavity of patients with leukoplastic lesions with no evidence of 
dyplasia (A) and patients with leukoplakia and dyplasia (B). 

 
 

 

Oral cancer early diagnosis 

Mainly because of the frequent late OSCC diagnosis, the overall 5-years survival rate is lower than 

50% (https://gco.iarc.fr/). 

Prognosis depends on the stage at diagnosis, defined through the Tumour-Node-Metastasis (TNM) 

staging system, which takes into account the size (T), involvement of regional lymph nodes (N), and 

presence or absence of distant metastases (M) (Edge & Compton, 2010). Early diagnosis (Stage I-II) 

is associated with a 5-year survival rate of approximately 80-90% (Silverman et al, 2010). 

Therefore, early diagnosis and premalignant oral lesions treatment are essential for prognosis and 

survival rates improvement (Abati et al, 2020). 

The current gold standard for OSCC diagnosis is histopathologic analysis, which, however, is an 

invasive procedure that requires qualified staff and equipment (Chakraborty et al, 2019). 

Several adjunctive diagnostic approaches have been proposed. These include the use of visual 

diagnostic aids (e.g., detection of tissue autofluorescence), techniques based on mucosal scraping 

(exfoliative cytology), and staining methods (toluidine blue staining). However, none of those 

diagnostic approaches are associated with reliable diagnostic accuracy; their sensitivity and 
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specificity are usually low (Giovannacci et al, 2016). For these reasons, it is necessary to develop 

new screening methods that can be easily used as point-of-care by clinicians to early identify 

suspicious lesions (Abati et al, 2020). 

Genomics, proteomics, and metabolomics have the potential to detect alterations in the saliva 

composition due to the disease, and these omics have been widely exploited in the search for 

potential saliva biomarkers for OSCC (Khurshid et al, 2018; Kaur et al, 2018; Nguyen et al, 2020). 

Wei and colleagues demonstrated the efficiency of metabolomics in identifying pathological 

changes in saliva metabolic pathways of patients with OSCC and PMDs, enhancing the technique's 

applicability for diagnostic and prognostic purposes (Wei et al, 2011). 

Saliva, produced and delivered in the same anatomical district of OSCC, is expected to contain 

molecules directly originated by neoplastic cells and tumour microenvironment.  

Patil and colleagues in 2021 reviewed all the studies present in literature from 2005 to July 2020, 

which examine the saliva profiles of patients with oral cancer and PMDs (Patil & More, 2021). Using 

“Salivary Metabolomics,” ‘‘Oral Cancer”, “Oral leukoplakia,” and “Oral Lichen planus” as keywords, 

they assessed only nine studies that point to approximately 80 statistically significant metabolites 

belonging to different chemical classes, Table IV.5. 

 

Table IV.5. Salivary metabolomics studies on oral cancer and PMDs (Patil & More, 2021). 

 Authors 
Study 

subjects 
Detection 
method 

Metabolomic findings 

1 
Almadori et al, 

2007 
OLP, OSCC HPLC 

Salivary glutathione was characteristically different among 
cancer and control groups indicative of oxidative stress in 
cancers. 

2 Yan et al, 2008 
OLK, OLP, 

OSCC 
HPLS-MS 

Metabolic profiling data differentiated between OSCC, OLP, 
and OLK. 

3 
Sugimoto et al, 

2010 
OSCC 

CE-TOF-
MS 

28 differentially expressed metabolites were detected and 
used to predict oral cancer outcomes The salivary polyamine, 
ornithine, and putrescine levels were significantly higher 
than the other metabolites expressed. 

4 Wei et al,2011 OSCC, OLK 
UPLC-

QTOF-MS 

Valine, lactic acid, and phenylalanine in combination yielded 
satisfactory accuracy (0.89, 0.97), sensitivity (86.5% and 
94.6%), specificity (82.4% and 84.4%) and positive predictive 
value (81.6% and 87.5%) in distinguishing OSCC from the 
controls or OLK, respectively. 

5 
Ishikawa et al, 

2016 
OSCC 

CE-TOF-
MS 

Eighty-five tumour metabolites and 43 saliva metabolites 
showed significantly different concentrations between OSCC 
and controls, (P<0.05 adjusted by FDR); in total, 17 
metabolites showed significantly higher average 
concentrations consistently in both saliva and tissues. Among 
the salivary metabolites, a combination of S-
adenosylmethionine (SAM) and pipecolate showed statistical 
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significance (p<0.0001) in distinguishing OSCC cases from 
controls. 

6 
Ohshima et al, 

2017 
OSCC 

CE-TOF-
MS 

A total of 499 metabolites were detected as CE-MS peaks in 
the saliva tested from the two groups. A total of 
25metabolites were revealed as potential markers to 
discriminate between patients with OSCC and healthy 
controls. Choline, metabolites in the branched-chain amino 
acids (BCAA) cycle, urea, and 3-hydroxybutyric acid were 
found to be significantly different among the OSCC cases and 
controls. 

7 
Lohavanichbutr 

et al, 2018 
OSCC 

NMR, LC-
MS 

Levels of two metabolites (glycine and proline) were 
significantly different between OSCC and control. Four 
metabolites, including glycine, proline, citrulline, and 
ornithine were associated with early-stage OSCC. 

8 
Sridharan et al, 

2019 
OLK 

Q-TOF-LC 
MS 

Characteristic overexpression of 1-methylhistidine, 
inositol1,3,4-triphosphate, d-glycerate- 2-phosphate,4-
nitroquinoline- 1-oxide, 2 oxoarginine, norcocaine nitroxide, 
sphinganine-1- phosphate, and pseudouridine was seen in 
oral leukoplakia and OC. The downregulated metabolites in 
the study group are l-homocyst acid, ubiquinone, neuraminic 
acid, and estradiol valerate. 

9 
Ishikawa et al, 

2019 
OLP, OSCC 

CE-TOF-
MS 

Fourteen metabolites were found to be significantly different 
between the OSCC and OLP groups. Among them,indole-3-
acetate and ethanolamine phosphate were statistically 
significant. 

HPLC-High Performance Liquid Chromatography; NMR-Nuclear Magnetic Resonance Spectroscopy; Q-TOF-LC Liquid 
Chromatography Surface-enhanced laser desorption/ionization time-of-flight; CE-TOF-MS Capillary Electrophoresis Surface-

enhanced laser desorption/ionization time-of-flight; LC–MS Liquid Chromatography Mass Spectroscopy. UPLC-QTOF-MS 
Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry 

 

The review identified an excessive variety of protocols for the analyses, which produces inconsistent 

results. Therefore, an unambiguous description of the salivary metabolic profiles of oral lesions is 

still missing. 

Identifying and validating promising diagnostic metabolite biomarkers of potentially malignant 

lesions can improve the development of saliva-based point-of-care for early diagnosis of risk 

patients, reducing the mortality rate of oral cancer.   

This section aims to investigate the metabolic profiles of patients with leukoplakia and patients with 

OSCC, with a particular focus on the metabolic alterations that accompany the progressive 

malignant transformation of PMD lesions. 
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Results 

Due to the pandemic emergency COVID-19, the salivary sample collection of the patients and the 

control group was prolonged and, for a period, suspended due to the infection risks associated with 

the collection protocol. The results present in this chapter are, for that reason, preliminary. 

The total number of patients enrolled in this study was 45: 23 with oral leukoplakia (OLK) with 

different dysplasia degrees, 12 with oral lichen planus (OLP), and 11 with oral carcinoma together 

with a control group composed of 21 healthy volunteers (Table III.5). 

Some collected saliva samples were very viscous, and some presented blood contamination. The 

final samples analyzed were 20 OLK, 11 OLP, and 9 OSCC carcinomas. 

The OLK group was divided into two subgroups, patients with no evidence of dysplasia lesion, and 

patients with co-presence of dysplasia with different degrees of severity. 

The PLS-DA of the spectral binning of OLK, OSCC, and control samples (Figure IV.13 A) show a 

discrete clusterization; it is more evident in the 3D graph (Figure IV.13 B). The cases of OLP were 

excluded from this analysis since they present different etiological characteristics. It can be seen a 

net separation between controls and OSCC patients. As expected, the potentially malignant 

disorders are grouped in-between, progressing from healthy to neoplastic conditions.  

 
Figure IV.13. (A) Score plot of Partial Least Squares-Discriminant Analysis (PLS-DA) applied on the 
spectral binning. control group (red); OLK patients with no dysplasia (green); OLK patients with 
dysplasic lesions (magenta), and OSCC patients (blue). (B) 3D plot of PLS-DA. 

 

The spectral analysis allowed the identification and quantification (above 1.1 M) of 47 ± 5, 47 ± 7, 

43 ± 6, and 48 ± 4 (mean ± SD) metabolites in lichen planus, leukoplakia, OSCC, and control group 

samples, respectively. 
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PLS-DA on the identified metabolites is illustrated in Figure IV.14.  

 

 

Figure IV.14. (A) Score plot of Partial Least Squares-Discriminant Analysis (PLS-DA) using the 
quantified metabolites: healthy subjects (red); OLK patients (green); OSCC patients (blue). (B) VIP 
scores plot. The boxes on the right side are the heatmap: the brightness of each colour corresponds 
to the magnitude of the difference when compared with the average value (high concentration in 
red and low concentration in blue). 
 
The score plot confirms the cluster separation of Figure IV.13, suggesting different metabolomes for 

the three diverse types of saliva. The Variable Importance in Projection (VIP) scores (Figure IV.14 B) 

shows the metabolites that implicated in the clusters separation:  

Tryptophan has a higher concentration in OSCC saliva, with a progressive decrease up to healthy 

controls. Tryptophan, an essential amino acid, has already been reported as a discriminant 

metabolite of patients with oral cancer (OC) and controls (Tankiewicz et al, 2006; Sugimoto et al 

2010; Ohshima et al, 2017). Not only tryptophan but also its derivatives, such as kynurenine and 

indole, showed higher concentrations in oral cancer patients, indicating increased reactive oxygen 

species stress in tumour tissues (Tothova et al, 2015; Ishikawa et al, 2016). 

The observation of a higher concentration of succinate in OSCC compared to controls agrees with 

the work of Lohavanichbutr and colleagues, who included succinate among the salivary metabolites 

differentiating OSCC by controls, although they identified two different concentration ranges 

depending on the technique used, NMR and LC-MS / MS (Lohavanichbutr et al, 2018). 

Fucose is another metabolite present at higher concentration in OSCC than in control and 

leukoplakia. Our finding correlates with results by Mikkonen and colleagues who detected an 

increase of fucose level in the saliva of patients with head and neck cancer (Mikkonen et al, 2018) 
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and by Shah and colleagues that found a significantly increased serum fucose level in OSCC patients 

compared with PMDs or healthy controls (Shah et al, 2008). 

Epithelial dysplasia is the alteration of the architectural and cytologic features of the mucosa; the 

progressive changes lead towards the acquisition of a malignant phenotype (Walsh et al, 2013). To 

investigate the leukoplakia more accurately, with and without dysplasia, and being in search of early 

biomarkers that may facilitate the diagnosis, we explored how the lesion's presence can impact the 

salivary metabolic compositions.  

In the PLS-DA analysis (Figure IV.15), the samples with and without dysplasia are well separated. 

The group of subjects with leukoplakia but no dysplastic lesion is less dispersed, while patients with 

dysplasia show more significant variability due to the different grades of dysplasia. 

VIP scores plot (Figure IV.15 B) highlights the metabolites that mainly contributed to this separation 

in two clusters. These findings are also visualized in the volcano plot (Figure IV.16), in which 

metabolites with a fold change greater than 1.0 and p-value < 0.1 are considered significant in the 

clustering. 

 

Figure IV.15. (A) Score plot of Partial Least Squares-Discriminant Analysis (PLS-DA): OLK patients 
with no dysplasia (cyan); OLK patients with dysplastic lesions (orange) (B) VIP scores plot. The boxes 
on the right side are the heatmap: each colour's brightness corresponds to the magnitude of the 
difference when compared with the average value (high concentration in red and low concentration 
in blue). 
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Figure IV.16. (A) Volcano plot. Combination of fold change (FC > 1.0) analysis and p-value (< 0.1) for 
all the metabolites identified. (B) Box plot of the concentrations of metabolites found relevant from 
the volcano plot (without dysplasia -LK_0 in cyan; with dysplasia - LK_1 in orange) 
 

Among the most impacting metabolites in clustering we find glycerol, o-phosphoethanolamine, and 

ethanolamine, which are metabolites deriving from cell membrane phospholipids: this could be 

correlated to the altered cellular morphology underling the development of dysplastic regions 

(Mayr et al, 2015). Ishikawa and colleagues had previously reported a significant difference in O-

phosphoethanolamine concentration between patients with OSCC and healthy controls (Ishikawa 

et al, 2017). 

It is known that all the branched-chain amino acids, and tryptophan, are building blocks for protein 

synthesis and are used to produce energy in the rapid cell proliferation and growth of tumours 

(Ananieva & Wilkinson, 2018). 
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In a recent review, Assad and colleagues reported the most significant salivary metabolites for the 

early detection of oral cancer (Assad et al, 2020). Valine is frequently reported as a discriminant 

metabolite, which is more concentrated in patients than healthy people. Our data show that valine 

is present in higher concentrations in the lesions associated with dysplasia, Figure IV16B, thus 

suggesting a progress towards tumour transformation. The metabolomic signatures of dysplasic 

lesions affecting other tissues have already been partially studied (Lal et al, 2018; Macioszek et al, 

2021). 

Regarding the metabolic study of oral cavity precancerous lesions, with and without dysplasia, to 

date, there is a single study that compares serum metabolites in patients with Esophageal Squamous 

Cell Carcinoma and Esophageal Squamous Dysplasia (Zhang S et al, 2020).  

Summarizing, though due to the limited time available, the results presented derive from 

preliminary analysis of experiments carried out on saliva samples, it is worth noting, that they agree 

with results obtained from serum, in particular showing a progressive decrease of glycerol from 

leukoplakia without dysplasia to those with dysplasia. This finding confirms that saliva is a 

convenient biofluid for the diagnosis of oral pathologies.  

In that perspective, it will be interesting to study the differences between the saliva metabolic 

profile of patients with different dysplasia severity degrees and healthy subjects to identify 

biomarker for the presence of morphological changes precursors of the malignant transformation. 

In conclusion, we foresee that progressing in these studies will allow correlating metabolomic data 

with subjects' clinical and epidemiological features.  
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V. CONCLUSIONS AND FUTURE PERSPECTIVES 

Albeit blood remains the gold standard for clinical investigations, saliva is gaining increased 

attention: it does not coagulate, sampling is non-invasive and relatively stress-free facilitating 

multiple collections; it does not require highly skilled staff and sample handling is safer compared to 

blood (Javaid et al, 2016). 

Saliva, a heterogeneous biofluid containing a large number and variety of biomolecules, is a very 

suitable tool for diagnostic applications (Pfaffe et al, 2011; Goldoni et al, 2021). 

In the past decades, many studies on saliva, based on the various omics (genome, RNA, proteins, 

metabolites, and microbiome) have explored its diagnostic potential in medicine and dentistry 

(Castagnola et al, 2017; Pappa et al, 2019). Saliva-based diagnostic tests are being recognized as 

promising tools to ease population screening, risk assessment, prognosis and diagnosis 

determination, therapy response (Pfaffe et al, 2011). 

To date, it is recognized that the metabolomics approach to analyse saliva may support the 

identification of diagnostic biomarkers (Fuhrer et al, 2015). 

In order to confirm that potentiality, it is necessary to obtain high-quality and reproducible data and 

therefore to improve and standardize saliva collection, handling, and processing protocols (Cuevas-

Córdoba & Santiago-García, 2014). Timing of collection, stimulus, intrinsic inter-individual variability, 

and the confounding factors from the environment and daily activities, are factors that must be taken 

into consideration as they impact saliva composition (Gardner et al, Jun 2020; Goldoni et al, 2021). 

Indeed, the translation of salivary metabolomics findings into diagnostic aids and clinical 

recommendations is hampered by the absence of validated protocols that must assure good 

reproducibility and reliable comparison of the results. 

1H-NMR spectroscopy is not considered the technique of choice for salivary metabolomics because: 

a) the frequent low concentration of the metabolites often exceeds the detection limit of the 

technique; b) while for urine and plasma validated guidelines for collection, storage, preparation, 

and 1H-NMR analyses are available, for saliva a consensus on equivalent protocols has not been 

reached, yet (Gardner et al, Jan 2020). 

In the past years, a few studies have investigated the possible alterations introduced during saliva 

collection as a consequence of the sampling method, the addition of antibacterial agents, the 

preparatory steps prior to storage, and the storage conditions (Duarte et al, 2020; Gardner et al, 

2018). 
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The present study proposes a protocol for saliva collection and sample preparation for 1H-NMR 

studies that provides good reproducibility and improves metabolites' identification and 

quantification.  

The use of an ultracentrifugation step, essential to eliminate the broad NMR peaks generated by 

the macromolecules, with the addition of a freeze-drying procedure, overtakes the limited NMR 

sensibility, increasing the efficiency in metabolites identification by  3̴0%, with the quantification of 

low concentration (1.1 μM) metabolites. 

Following the complete procedure, we analysed the metabolic composition of the unstimulated 

parotid (PS), submandibular/sublingual (SM/SL), and whole (WS) saliva in a cohort of young and 

healthy subjects and we identified: 58 ± 2 in WS, 57 ± 2 in PS, and 48 ± 2 in SM/SL (mean ± SD) 

metabolites.  

These data resulted essential for the progression of the project. In fact, a detailed analysis of the 

human salivary metabolome is necessary to interpret the dynamic metabolic status in physiological 

conditions and to prevent the misinterpretation when analysing saliva from patients with a specific 

pathological state in search of disease biomarkers.  

We found that a considerable contribution to the saliva metabolome derives from bacterial 

metabolism. 

WS, the saliva directly in contact with the oral cavity, showed a high number of prokaryotic cells and, 

consequently, a significant number of bacterial metabolites (amino acids, and organic acids).  

Bacterial glucosidases metabolize saliva glycoproteins, generating monosaccharides such as fucose, 

N-acetylglucosamine, and galactose. These sugars are converted into lactic, formic, acetic, succinic, 

propionic, and other organic acids, called short-chain fatty acids (SCFAs), through the glycolytic 

pathways. Note that SCFA metabolites are present at a sensibly lower concentration in glandular 

saliva (PS, SM/SL) as compared to WS, a fact that might be back to their reduced bacterial 

contamination. 

Since host-induced inflammatory processes and dysbiotic bacterial metabolism take part and 

influence the metabolic pathways of WS, they were investigated in search of diagnostic biomarkers 

for periodontal diseases: infection-driven inflammatory processes (Gardner et al, 2020a; Liebsch et 

al, 2019; Miller et al, 2010).  

To date, in clinical practice, periodontal disease diagnosis can assess only the advanced stage, but 

not the disease evolution because these pathologies do not have a linear progression as they are 

characterized by progression/remission periods (Ko et al, 2021; Nomura et al, 2017).   
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For this pathology, we are interested in salivary biomarkers that may allow an early-stage 

periodontal diagnosis favouring an easy, safe, and non-invasive scheme to plan appropriate 

treatment strategies. Transferring scientific findings to clinical practice is relevant also for 

developing rapid, low-cost, and accurate point-of-care technologies (Cuevas-Córdoba & Santiago-

García, 2014).  

In our study, among the various clinical parameters accessed by dentists, we evaluated the level of 

periodontal bleeding (FMBS - “Full Mouth Bleeding Score”) because it detects the possible presence 

of inflammation linked to bacterial microflora dysbiosis. The homeostasis imbalance between host 

and oral microflora generates an inflammation that could lead to severe periodontal diseases (Van 

Dyke et al, 2020). 

The selected cohort was composed of healthy subjects. Though their clinical parameters were 

characterized by low scores, the evaluation of the periodontal bleeding and the index of oral 

inflammation, were correlated to the salivary metabolic composition. In WS, we found 7 

metabolites, 3-phenylpropionate, isobutyrate, isocaproate, isoleucine, leucine, propionate, and 

valine, linked to oral inflammation, and all of them strongly correlated to bacterial metabolic 

pathways. The panel composed of those 7 metabolites was used as an early diagnostic tool to 

discriminate subjects more prone to periodontal disease progression. This result represents the first 

relevant step to develop a point-of-care for primary diagnosis of early periodontal disease 

inflammation. 

Early diagnosis is essential in more severe oral diseases: e.g. oral cancer (OSCC), whose overall 5-

years survival rate is lower than 50% (https://gco.iarc.fr/) due to the diagnostic delay. Therefore, 

early diagnosis and premalignant oral lesions treatment are essential factors for survival rates 

improvement. 

There is an increase in advertising campaigns that encourage self-screening as well as in the request 

for medical checks in case of suspicious oral lesions. Indeed, the breakthrough would be to device a 

point-of-care that dentists can easily use to detect potentially malignant oral lesions before 

degeneration (Abati et al, 2020). 

Although there are studies pointing to some metabolites as promising biomarker for early oral 

cancer detection (Hyvärinen et al, 2021), investigations on premalignant lesions as a risk factor are 

still very few. 

We have studied the WS metabolome of OSCC and leukoplakia (OLK) patients, particularly the 

metabolic profiles of the OLK patients with and without epithelial tissue dysplasia. The early 

https://gco.iarc.fr/
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identification and grading of dysplasia in OLK lesions could be a precious risk assessment tool for 

progression to cancer. 

The results presented are still preliminary because of the COVID-19 epidemiological emergency. 

Despite this, it has been possible to identify a progressive modification of the metabolic profiles, 

from healthy subjects to patients with OSCC, passing through patients with OLKs regularly ordered 

from the ones without to those with dysplasia, which have a profile similar to the neoplastic patients: 

some metabolites present in OLKs with dysplasia are the same as those identified in the literature in 

the saliva of patients with oral cancer (valine), while others indicate the presence of an altered 

cellular morphology (o-phosphoethanolamine, glycerol). 

We plan to study the differences between the metabolic profiles of patients with different dysplasia 

severity degrees and compare those profiles with ones of healthy subjects to search for metabolites 

that may indicate the presence of morphological changes precursors to the malignant phenotype 

degeneration. 

 

FUTURE PERSPECTIVES 

The combination of salivary biomarkers associated with conventional oral examination may become 

an effective strategy for early detection and treatments of oral precancerous lesions.  

Multi-Omics study of saliva from other oral and systemic diseases and the development of high 

sensitivity biosensors and point-of-care will allow an earlier identification and more effective 

management of the disease progression (Ko et al, 2021) and will improve the personalized approach 

of precision medicine. 

It is also recognized that metabolomics studies of saliva will modernize oral microbiology, expanding 

our understanding of the microbial species of the oral cavity and their role in many disease-related 

dysbiotic changes (Gardner et al, Jan 2020). 

Finally, we envisage as an interesting development to apply the approaches we discussed on saliva 

samples collected at several standpoints before and after treatment or at different stages of the 

disease: the objective is to obtain a dynamic description of the metabolic activity ongoing in the oral 

cavity. 
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