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Introduction

The last century’s advances in medicine, agriculture, technology, and many other
fields, significantly impacted human conditions. For example, life expectancy rapidly
increased and reached an average value of seventy years [1]. Projections suggest that
this increase will continue in the following decades, bringing to older populations.
Unfortunately, higher ages mean it is more likely for humans to suffer from cardio-
vascular diseases [2, 3]. While other factors can contribute to such illnesses, like
obesity and diabetes, age alone is a risk factor. With older populations, the rate of
heart diseases will increase, thus producing a higher load over sanitary structures and
increased costs in public health [4].
Prevention is a valuable resource to reduce the burden on the health system. An ex-
ample of prevention is to keep people informed about maintaining a healthy lifestyle
and engaging them more in healthy activities [5, 6]. Such purpose is shared by the
Active Assisted Living (AAL) ideology, which supports the design of services and
devices for ageing well. Among the devices and services that fit in the AAL con-
text, there are also the Internet of Things (IoT) technologies, which can be used as a
source of healthy stimulus, for example, by identifying sedentary behaviours [7] and
suggesting how to have a healthier life, especially to aged persons. However, for such
a purpose, IoT devices need to continuously collect accurate data to work correctly.
Another form of prevention is to detect the insurgence of an illness before its mani-
festation [8]. To achieve such a goal, physiological measures can be very useful, but
even this approach needs to have the correct data at the right time. IoT devices can
be helpful in such a context, allowing for continuous data acquisition. These exam-
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ples show how IoT and continuous analysis of activity and physiological data can be
a great prevention source because they can constantly provide users and caregivers
with helpful information.
Adequate instruments are necessary to obtain valuable and continuous data of sub-
jects’ physiological parameters; some are already used and suited for such purposes.
For example, the Holter monitor [9] has been used for decades for clinical electro-
cardiography. Unfortunately, the Holter monitor is not usable over prolonged peri-
ods (months or years) because it is uncomfortable and intrusive. Other techniques
are more appropriate to that purpose, for example, analysis of SeismoCardioGraphy
(SCG) and BallistoCardioGraphy (BCG) signals. Those techniques record mechani-
cal movements induced by heart contraction and blood movements. Compared to the
Holter monitor, such techniques can reduce the obtrusiveness or remove it altogether.
They do not need any electrode attached to the skin (SCG) or even any device at-
tached to the body (BCG).
Recent technological improvements brought IoT devices like smartwatches into our
daily lives. Those devices allow for continuous monitoring possibilities of, for exam-
ple, physiological information [10], stress condition [11], and sedentary behaviour
[12]. The information provided by IoT devices can be complemented by others from
different technologies and approaches, enriching the quality of analysis and enlarging
the possibilities to detect unhealthy behaviour, the insurgence of anomalies, or pos-
sible threats like accidental falls [13]. Surely, a smart floor is an IoT device that can
generate interesting information which can complement domestic and wearable tech-
nologies. A smart floor is inherently unobtrusive and can provide information like
habits, behaviours and activity; moreover, it can be a stimulus to active behaviour if
equipped with outputs to interact with the user. Thus it can be a good instrument for
prevention.

This work focuses on the study, the research, and the design of IoT technologies
suitable for continuous vital sign and activity monitoring in the AAL framework. In
particular, here are described two unobtrusive IoT systems designed to improve the
quality of life of those who use them. The systems were created for two purposes: the
stimulation of active behaviour through activity recognition and the identification of
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health problems through continuous monitoring of physiological data. Together, they
can provide a broad view of personal well-being and thus uncover the insurgence of
possible issues. The first system described is a BCG/SCG system that records and
analyses physiological signals to obtain valuable parameters. The second is a smart
floor system that stimulates users to keep an active behaviour by providing interactive
games.
It is essential to clarify what is not the attempt of this thesis; this work does not at-
tempt to describe medical devices or substitutes for medical devices. The instruments
described in this document try to provide new ways to prevent possible problems and
consciousness on behaviours that can give a better and healthier life, especially for
persons of advanced age.

Figure 1: The BCG/SCG acquisition system.
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Regarding the BCG/SCG system, the main contribution to the research is the pre-
cise identification of heartbeats complexes inside BCG and SCG traces through a uni-
fied methodology. The analysis over different datasets suggests that the methods have
a high identification ability without providing false beats. Moreover, the research
shows another ability: precise time localisation of heartbeats, which allows having
reliable beat-to-beat measurements. However, such ability depends on the adopted
sampling frequency, which changes the available time resolution and introduces a
dependency between precise localisation and energy consumption. Figure 1 shows
the device used to acquire BCG and SCG traces.

Figure 2: The Smart floor system.

The second system is a 4 meters large and 2 meters long smart floor; its main
purpose is to stimulate active behaviour through interactive games. The novelty of
such a device resides in its simple mechanical and modular structure, its high sensi-
tivity to little weights, its orientation towards outdoor use, and its ability to provide
different interactive games. The literature lacks smart floors with the same character-
istics, to the best of our knowledge. The public tested the device on multiple occa-
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sions, always providing great feedback and appreciation. The system was designed
in the context of the project PLEINAIR1 [14] (Parchi Liberi E Inclusivi in Network
per Attività Intergenerazionale Ricreativa e fisica), funded by the POR FESR Re-
gione Emilia-Romagna 2014/2020 program. The partners of the project were [15]:
DataRiver S.r.l. (leader), University of Parma (Future Technology Lab), University
of Bologna (CIRI), University of Ferrara (TekneHub), AIAS Bologna Onlus, Ergotek
S.r.l., Sarba S.p.a. and mHT S.r.l. Figure 2 shows the smart floor system and other
elements of the project.

The following chapters introduce continuous vital sign and activity monitoring
and explain the attempts to build devices suitable for that purpose. Chapter 1 gives
a panoramic of the different methodologies for continuous vital sign and activity
monitoring. Chapter 2 describes the methods and devices used to identify physio-
logical parameters. The focus of Chapter 3 is on the description of instruments and
methodologies used to build a smart floor for activity monitoring and well-being stim-
ulus. Inside Chapter 4 are discussed the analysis results of the proposed devices and
methodologies. Finally, Chapter 5 compares the work with others in the literature,
describes future developments, and concludes.

1https://www.youtube.com/watch?v=Yr_0RcdNOjE

https://www.youtube.com/watch?v=Yr_0RcdNOjE




Chapter 1

Continuous activity and vital signs
monitoring

This chapter introduces the different methodologies that can be used to monitor
physiological parameters and activity continuously. In particular, significant focus
is placed on BCG and SCG signals and smart floors, the two main themes of this
work.

1.1 Continuous vital sign monitoring

Nowadays, smart devices are starting to be part of domestic environments; their pres-
ence promotes the development of innovative services. Following the AAL paradigm,
such services can increase safety and support the life of people with disabilities or
older adults. A wide range of technologies and services fit inside the AAL context,
from telemedicine [16] to unobtrusive and continuous monitoring [17]. Some of those
can compensate for the troubles introduced by diseases, like home control through
Brain-Computer Interfaces for motion impaired users [18], or vocal assistance for a
person with visual impairments[19].
Wearable devices fit inside this scenario and, through various solutions, can provide
a continuous collection and analysis of vital signs like Heart Rate (HR) and Blood
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Pressure (BP) [20] or physical activity. A perfect example of IoT technology that of-
fers such features is the smartwatch [21, 22]; nevertheless, continuous HR monitoring
through PhotoPlethysmoGraphy (PPG) can have limitations in wearing comfort and
measuring accuracy [23, 24], thus in vital signs estimation.
However, due to the importance of heart information in clinical applications, the gold
standard used for HR measures is ElectroCardioGraphy (ECG). Unfortunately, such
a technique is unsuitable for prolonged periods outside clinical contexts. Thus, pro-
viding a different way to obtain physiological information can be worthwhile, for
example, through SeismoCardioGraphy (SCG), which studies the mechanical vibra-
tions created by the heart expansions and contractions. An accelerometer placed upon
a person’s sternum can thus provide HR and Heart Rate Variability (HRV) measures.
Moreover, SCG signals contain cardiac output and heart valves dynamics informa-
tion. Instead, BallistoCardioGraphy (BCG) can provide heart information through
non-contact measures, studying the vibrations that are propagated by an object me-
chanically coupled with the person, like a bed, a chair or a weighing scale.

The following paragraphs describe the signals mentioned above, contextualising
their use in the various works discovered in the literature.

1.1.1 Electrocardiogram - ECG

Figure 1.1: The typical ECG pattern.

An electrocardiogram records the heart’s electrical activity, acquired through elec-
trodes applied to the subject’s skin. Such electrical activity is due to the polarisation
and depolarisation of the cardiac muscle. The cardiac events are strictly correlated
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to the ECG waveform and its points. Figure 1.1 shows a typical ECG waveform
with its main points annotated. Through ECG, it is possible to obtain physiological
parameters like HR and HRV. However, this technique is prone to artefacts that can
distort the measures, thus needing ad-hoc methodologies to reduce the impact of such
a problem [25, 26]. The authors of [27] adopt appropriate filters for different types
of noise inside ECG waveforms and provide heart condition classification. Instead,
Inoue et al. [28] examined noise generation in printed textile probers suggesting a
particular way to make the electrodes.
Through deep learning techniques is possible to identify mechanical dysfunction and
abnormal heart rhythms, to guide and support caregivers’ decisions [29]. Even au-
thors of [30] propose deep learning techniques applied over ECG signals, but for
biometric human identification. Used conjunctly with other typologies of signals,
like oscillometric measures, ECG can provide blood pressure information [31, 32].
These physiological parameters can be obtained if heartbeats are identified precisely
and correctly inside the ECG traces. Jiapu Pan and Willis J. Tompkins approached
the problem many years ago, proposing the Pan-Thompkins algorithm [33]. In more
recent years, other authors proposed a solution for heartbeat identification [34, 35].
Even though ECG offers a broad spectrum of possibilities, its use is not suited for
continuous monitoring outside clinical contexts. Indeed, it is uncomfortable and in-
trusive due to the necessity of electrodes attached to the body. However, in the latest
years, wearable technologies, like the Apple watch1 from Apple, or ear-worn devices
[36], have significantly reduced the burden of this type of measure.

1https://www.apple.com/it/watch/
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1.1.2 Seismocardiogram - SCG

Figure 1.2: Typical SCG pattern and cardiac moments correlated with an ECG wave-
form.

Seismocardiograms are oscillatory signals originating from the vibration induced by
the contraction and expansion of the cardiac muscle and transmitted to the chest. The
seminal work of Salerno and Zanetti [37, 38] firstly investigated this field, which
gained popularity thanks to the advent of MEMS (Micro Electro Mechanical Sen-
sors) technology [39]. Usually, the device sensing the vibrations is placed over the
subject’s sternum, and the magnitude of the signals is of few milli-gs (where g is the
gravitational acceleration) [40, 41]; however, direct contact is not mandatory, as the
authors of reference [42] demonstrate presenting a device capable of day-long acqui-
sitions.
Recently, different works in the literature have focused on SCG to complement and
augment the information provided by ECG [43]. As for ECG, even SCG signals need
methodologies to segment the waveforms and identify heartbeat complexes; some
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work addresses such problems using ECG supervision [44]; in previous work, we
accomplished it without supervision [45]. Even other works [46] achieved heartbeats
annotation without using the ECG signals.
Through ultrasound imaging validation [47] and echocardiogram [48], cardiac phases
were linked to some points inside the SCG waveforms confirming its ability to com-
plement ECG information. Figure 1.2 shows a typical SCG waveform correlated with
an ECG; heart moments are marked over the SCG trace, in particular: Aortic valve
Opening (AO), Aortic valve Closure (AC), Mitral valve Opening (MO), Mitral valve
Closure (MC), and Isovolumic Moment (IM). For a deep analysis of the heart condi-
tion, it is important to mark such points precisely; in [49], the authors developed an
automated method to identify IM and AC moments.
SCG proved to be a valid signal for Atrial Fibrillation (AFib) detection. Through the
training of a classifier on HRV and SCG spectral entropy features, the authors of [50]
were able to detect AFib. Instead, the use of Deep-learning networks allowed to ob-
tain signals’ information [51] and assess Heart Failure (HF) patients’ clinical status
[52].
With the same setup as SCG, gyroscope sensors can be used to study heart dynamics
[53]; such technique was named GyroCardioGraphy (GCG), accordingly. Authors of
reference [54], combined the information of SCG and GCG to identify cardiac events
inside the waveforms. The authors of [55] obtained heartbeat detection through the
same couple of signals. Again, the same signals were used in [56], authors show the
possibility of AFib detection using smartphones. Instead, the work of Yang et al. [57]
explored the correlation between fiducial points inside SCG signals and GCG wave-
forms.
SCG and GCG signals are prone to artefacts [58], especially from body movements,
due to the mechanical nature of the signals. Some works focused on artefacts re-
duction; in [59], are compared different denoising techniques. The authors find that
wavelet thresholding achieves the best results on signal enhancement and computa-
tional efficiency. Instead, through Empirical Mode Decomposition (EMD), the au-
thors of [60] reduced the noise created by walking.
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1.1.3 Ballistocardiogram - BCG

Figure 1.3: Typical BCG pattern and its principal points correlated with an ECG
waveform.

The study of BCG goes back to Starr’s seminal work [61]. BCG originates from
the recoil forces due to the movement of the blood inside the cardio-circulatory sys-
tem. Figure 1.3 shows a typical BCG pattern correlated with an ECG signal. As for
SCG, even BCG gained popularity thanks to technological improvements in MEMS
devices and other typologies of sensors [62]. However, compared to SCG, BCG’s
setups are different in placement, sensors, and technology. For example, the authors
of reference [63] obtain Pulse Transit Time (PTT) quantities utilizing a wrist-worn
BCG sensor. Instead, a BCG is obtained from different positions on the body (upper
arm, knee and wrist) and its potential to identify heart moments like AO and AC is
investigated [64]. Another way to measure BCG is through non-wearable devices,
which sense vibrations transmitted to objects mechanically coupled to the subject’s
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body. Examples are a bed [65], a weighing scale [66], or a chair [67]. Various sen-
sors can detect the vibrations propagated through the objects, like accelerometers
[68], force plates [69], load cells [70], piezoelectric sensors [71] and optical fibers
[72, 73]. Recording through objects is not the only possibility to obtain BCG signals;
even artificial vision techniques can be adopted for non-contact measures [74, 75].
Reference [76] presents an interpretative model for BCG. Such a model can simulate
different heart conditions’ effects over the BCG waveforms, like increased stiffness
and reduced left ventricle contractility. Another mathematical model [77] suggests
that the principal mechanism that generates BCG is blood pressure gradients in the
aorta.
BCG measures are influenced by posture [78]; authors of reference [79] compare dif-
ferent setups and propose a computational methodology to reduce such an effect.
As for SCG, identifying the BCG complexes inside the waveforms is essential for
physiological information extraction. In the literature are proposed different method-
ologies to solve the problem, like the ones of Brüser et al. [80], Lee et al. [81] and
Lydon et al. [82]; in reference [83], such approaches are compared on two datasets.
Results show that the methods adopted in [80] provide the best results in terms of de-
tection rate and annotation accuracy. Another approach is described in reference [84],
where signals recorded from a chair headrest are processed through multi-resolution
wavelet analysis. The authors state that their methodology has a computational ad-
vantage and improves noise filtering compared to EMD techniques.
Through BCG information, different works presented methodologies to discover ab-
normal conditions. Reference [85] tries to discriminate between AFib and sinus rhythm
utilising machine learning algorithms. By combining BCG and ECG signals, it is pos-
sible to detect changes in BP; the authors of [86] developed a classifier to distinguish
changes in systolic BP to detect orthostatic hypotension and supine hypertension.
Due to the possibility of being recorded from beds, BCG is suited for sleep analysis
like sleep breathing disorders [87], classification of sleep-wake state [88], and sleep
efficiency estimation [86].
Table 1.1 shows a summary of the main possibilities offered by SCG and BCG.
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Table 1.1: Resume of the main possibilities offered by SCG and BCG

Methodology Source of signals Coupling Possibilities

SCG
Vibrations induced Direct contact AC, IM moments detection
by heart contraction Textile vest AFib detection

HRV and HR measure
BCG

Vibrations induced Direct contact AO, AC moments detection
by blood’s recoil forces Bed AFib detection

Weighing scale Sleep analysis
Chair PTT measure

BP measure
HRV and HR measure

1.1.4 Some words on other techniques

In the context of continuous vital sign monitoring, other techniques find a place.
Some, like photoplethysmography and PhonoCardioGraphy (PCG), have been used
clinically for many years. Modern research try to reduce the necessity of contact
measures by adopting new technologies, like radar systems [89], to identify heart
sounds. Through an airborne pulse-Doppler ultrasound system, authors of reference
[90] achieved heart rate detection on subjects with clothes. Instead, Villarroel et al.
used cameras to monitor infants inside a neonatal intensive care unit and obtain heart
rate, respiratory rate, and changes in oxygen saturation continuously [91]. Authors of
[92] introduce a new principle that allows having accurate remote measures of blood
oxygenation even in the presence of significant subject motion. Measures of HRV
can be obtained from PPG recordings, as findings of reference [93] suggest. Coupled
with ECG, PPG signals can continuously and unobtrusively provide BP; authors of
[94] present their cuffless nonintrusive approach. Instead, Carek et al. [95] show that
even coupling BCG signals with PPG ones allow for esteeming blood pressure; their
setup involves a BCG acquired from a weighing scale and a PPG acquired from the
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foot. Photoplethysmography also provides information on respiratory activity, in [96]
authors describe an algorithm capable of extracting such information.

1.2 Continuous activity monitoring

In the field of continuous activity monitoring, some different technologies and method-
ologies can provide a large variety of instruments and services beneficial for the vari-
ous necessities of daily living, especially for elderly care [97]. For example, the works
of Errico et al.[98] and Mancini et al. [99] focused on the reduction of the problem-
atics that motion impairments bring in everyday life; instead, Andò et al. developed a
smartphone-based solution to classify daily activities and identify problems, like an
accidental fall.
Wearable devices can bring information on the activity and localisation of a per-
son [100, 101] and suggest how to keep a better lifestyle. In [102] authors show the
benefits that localisation and activity recognition can have inside AAL technologies,
particularly for frail people with Alzheimer’s disease.
Unfortunately, wearable systems always face the obstacle of obtrusiveness which is
critical for accepting a technology. However, other methodologies can provide simi-
lar information. In reference [103], the authors use a variety of non-invasive sensors
placed in the domestic environment to obtain information about the health conditions
of the subject. Among non-invasive devices for daily life activity monitoring, take
place smart floors.

1.2.1 The potential of smart floors

The use of smart floors involves a multiplicity of fields, for example, entertainment,
power generation, localisation, and activity monitoring. Because of its potential, al-
ready two decades ago Orr et al. used a smart floor to study people identification
and tracking [104]. Footstep recognition through a sensible floor was studied some
years before, in 1997 [105]. Recently, smart floors were studied in another research
to distinguish footsteps among other events [106]. Instead, the authors of [107] de-
signed a modular interactive floor able to provide entertainment through multimedia
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and games. Smart floors can be used to address the problem of fall detection, which
is what the works presented in [108] and [109] address together with localisation.
Framed inside the AAL perspective, localisation could help to provide innovative and
useful services. However, such a feature must address privacy issues and concerns,
especially inside domestic environments. In this regard, compared with a tracking
system that uses video cameras, a smart floor is an optimal solution. To provide lo-
calisation features to their smart floor, Feng et al. used fiber optics [110]; instead, the
authors of [111] used Passive InfraRed (PIR) sensors and force-sensing resistors.
Daily activities can tell a lot about personal wellbeing and health, thus, technologies
able to identify and track them through time are powerful instruments. In reference
[112], the authors recorded for ten days the activities made by a subject utilising
different typologies of sensors and devices, including a smart floor. Through such
recordings, they created a dataset used by different works [113, 114] to design and
test solutions to the problem of activity recognition. When fusing information coming
from different sources, the identification possibilities can improve. Utilizing pressure
sensors placed under a mattress and on the floor, authors of [115] created a system
that measures sit-to-stand transfers, thus providing information about the mobility of
the subject.



Chapter 2

Building the systems: BCG and
SCG

This chapter focuses on discovering physiological parameters through BCG and SCG
signals. The first part of the chapter describes the IoT acquisition system’s behaviour
and design; both its hardware and software parts are discussed. Successively, the
focus is on the data analysis; the algorithm is explained through graphs and mathe-
matical formulas. Different versions of the acquisition system and the algorithm for
BCG/SCG analysis have already been published in the following papers: [51, 68, 45,
116, 117, 118, 119].

2.1 The acquisition system

Designing a system that provides physiological parameters requires a device to ac-
quire the necessary waveforms. We have developed an IoT BCG and SCG acquisi-
tion device that senses acceleration signals. From the perspective of a future deploy-
ment in AAL scenarios, we designed the system through low-cost custom hardware.
Even with low-cost hardware, our system could satisfy the necessities required by
such a system; sensitivity and synchronisation constraints among all. Considering the
limited amount of indispensable components (accelerometer, microcontroller, Wi-Fi
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module), the overall cost of the acquisition device for future production can be rela-
tively small, around fifty euros.
Utilising the acquisition system, we have acquired multiple datasets, over which we
have tested and perfected our algorithm for physiological parameters detection.

The system evolved through time, and different modifications changed its be-
haviour and elements. The following paragraphs only describe the system’s final de-
sign; other components used but not present in the last version are described only if
necessary.

2.1.1 The behaviour of the system

Figure 2.1: The block diagram of the acquisition system.

Figure 2.1 displays the block diagram of the acquisition system. A controller
board mounting a MicroController Unit (MCU) synchronously acquires accelera-
tion and ECG signals. The accelerometers communicate with the MCU through the
SPI (Serial Peripheral Interface) protocol, whereas the ECG is obtained through an
Analog-to-Digital Converter (ADC). Successively, the MCU streams the information
through TCP/IP over a Wi-Fi connection to a receiving client. A desktop computer
hosts the client and stores the data for further offline processing. This configuration
allowed us to collect three over four of the datasets discussed in Chapter 4.

With accelerometric signals, we acquired a concurrent ECG. Its use is necessary
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to have an evaluation tool to use for the algorithm’s performance assessment; its
use is restricted to that purpose only. While the system is used only in laboratory
conditions, the ECG is necessary and not problematic. The ECG will no longer be
part of the system for future usees in domestic environments.
For some measurements, we acquired signals from two different accelerometers; such
signals are not part of the present work but will involve future studies. That is why
there is a dotted accelerometer block in the diagram of Figure 2.1.

2.1.2 The elements of the system

The acquisition system contains different elements listed and explained in the fol-
lowing paragraphs. It is worth remembering that the design evolved through time.
The main change of such evolution is using a different controller board. Some of the
datasets were acquired through the initial controller board, while others through the
final one. In Chapter 4, each dataset’s description contains information about which
board was used.

The controller boards

The primary duty of the controller board is to acquire the signals from sources, the ac-
celerometers and the ADC. The first design of the system used an Arduino MKR1000
WiFi1 as a controller board (Figure 2.2a). The successive design substituted such
board with a more functional one, the B-L475E-IOT01A2 (Figure 2.2b). Such choice
was driven by higher performances and more friendly developments tools. The Ar-
duino MKR1000 WiFi features:

• A SAMD21 Cortex®-M0+ 32bit low power ARM® MCU (ARMHoldings,
Cambridge, England, UK).

• A 48 MHz clock and a Real-Time Clock (RTC) with a frequency of 32.768 kHz.

• Different 12-bit ADCs with up to 350 ksps.

1https://docs.arduino.cc/hardware/mkr-1000-wifi
2https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
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(a)

(b)

Figure 2.2: (a) Top view of the Arduino MKR1000 WiFi. (b) Top view of the B-
L475E-IOT01A Discovery kit.

• An ATSAMW25 SoC from Microchip Technology Inc. for Wi-Fi connectivity.

• SPI, I2C and UART peripherals.

• A 256KB Flash memory and a 32KB SRAM memory.

• Power saving features

Instead, the B-L475E-IOT01A features:

• An STM32L475VG MCU from STMicroelectronics with an ARM® Cortex®-
M4 32-bit.

• An 80 MHz clock and a 32 kHz crystal oscillator for RTC.

• Two fast 12-bit ADCs up to 5 Msps.
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• An ISM43362-M3G-L44 module for Wi-Fi connection from Inventek Sys-
tems.

• Multiple SPI, I2C and UART peripherals.

• A 1 MB Flash memory and a 128 KB SRAM memory.

• Power saving features

The ADXL355

(a) (b)

Figure 2.3: (a) The schematic of the ADXL355 accelerometer. (b) The top view of
the ADXL355 evaluation board.

The ADXL3553 accelerometer by Analog Devices, Inc. is the sensor that al-
lows BCG and SCG signals acquisition. In particular, we used the EVAL-ADXL355-
PMDZ evaluation board for our setup. Figures 2.3a and 2.3b show the block diagram
of the accelerometer and the evaluation board, respectively. From Figure 2.3a is pos-
sible to see that the ADXL355 is a 3-Axis accelerometer; moreover, it is a MEMS
(Micro Electro-Mechanical Systems) device that offers the following features:

• Zero g offset over temperature (0.15 mg/°C maximum) on all axes.

• Ultralow noise spectral density (22.5µg/
√

Hz) on all axes.

3https://www.analog.com/en/products/adxl355.html
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• SPI and I2C interfaces.

• 20 bit ADC.

• Programmable high-pass and low-pass digital filters.

• Selectable measurement range ±2g, ±4g, ±8g.

• Internal FIFO.

To sense the tiny vibrations produced by the heart movements or blood recoil
forces, we programmed the accelerometer to work in the ±2g range to have the max-
imum possible resolution.

The AD8232 board

Figure 2.4: Top view of the AD8232.

We used Ag/AgCl electrodes and the AD82324 SparkFun single lead heart rate
monitor board to acquire the ECG signals. Such board (Figure 2.4) mounts the AD8232
chip from Analog Devices Inc. and provides different useful features, like:

4https://www.sparkfun.com/products/12650
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• An analog output.

• Left-arm, right-arm, and driven right leg pins to sense a Lead-I ECG and re-
move common-mode interference.

• 3.5mm Jack connection for cables plug-in.

• Leads-off detection to identify if an electrode is not correctly attached to the
skin.

• Shutdown pin to switch off the device.

2.1.3 The sequence of operations

Figure 2.5: The sequence of operations of the acquisition system.

Figure 2.5 shows the sequence of operations that the controller board does to ac-
quire the data. Firstly, all the devices and peripherals are initialised. Secondly, the
controller board starts the Wi-Fi connection and waits for a client to connect (the
controller board act as a server). At the client connection, the controller board starts
the data acquisition from the accelerometers.
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The ADXL355 can provide a data-ready signal which informs that a successful sam-
pling is concluded. Such signal is used as an interrupt by the MCU and schedules all
the devices’ sampling instants. Whenever the data-ready signal alert that a successful
conversion has happened, the MCU gathers the data from all the accelerometers and
starts an ADC sampling of the ECG signal. The sampling frequency of the ADXL355
can be selected through proper programming.
The signals acquisition is executed in sequence; the accelerometer that has generated
the data-ready signal is the first. Next comes the other accelerometer (if present) and
the ECG signal. A sequential acquisition causes two problems:

1. The accelerometer and the ECG are sampled in two different instants.

2. The second accelerometer accumulates a delay because the accelerometers are
inside two different evaluation boards, with two different oscillators which
have slightly different frequencies. Such delay implies duplicating a sample
with a frequency that depends on the oscillator frequencies’ difference.

Due to the conversion speed of the ADC inside the B-L475E-IOT01A, the first prob-
lem is negligible, and the signals can be considered simultaneous. Even in the case
of less fast ADC conversions, such delay is constant and can thus be removed in the
processing phase.
The second problem can be resolved by doubling the frequency of the additional ac-
celerometer. In this way is assured that for each sample provided by accelerometer
one, there will always be a new sample provided by accelerometer two. This solution
implies an increase in power usage.

After acquiring a certain quantity of data, the controller board sends them to the
client and continues the acquisition. When the client has obtained sufficient data, it
sends a transmission end message, and the connection stops. Finally, the controller
board brings itself to the client’s waiting condition.



2.1. The acquisition system 25

The acquisition software

Figure 2.6: The elements of the acquisition software.

The software that acquires the data stream and saves it into a hard drive runs in a
Python5 environment over a personal computer that acts as a client.
Figure 2.6 shows the different elements of the software: two processes and a queue.
The two processes are named reader and writer; the queue allows the exchange of
information between them. The reader process has the duty of collecting the data
sent by the controller board and starting and stopping the acquisition. Through the
queue, the data are transferred to the writer process, which orders the data and saves
them in an HDF56 (Hierarchical Data Format) file on the hard drive. By changing
a parameter in the software, the program adjusts the acquisition duration. The client
sends an end message to the controller board through the reader process when the
total acquisition time elapses. Successively, the HDF5 file is closed as the queue, and
the processes stop executing.

5https://www.python.org/
6https://www.hdfgroup.org/
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2.2 Waveforms analysis

The purpose of the proposed methodology is not to substitute medical devices or di-
agnose illnesses; the system designed aims to identify abnormal patterns from phys-
iological measures protracted in time (for months or even years). Such an approach
can be especially beneficial to the fragile subjects and their caregivers, which can use
such identifications to prevent undesired conditions.
Our methodology aims to identify heartbeats and estimate cardiac cycles. We reached
such goals by assuming a regular heartbeat in the subjects under test. We can obtain
precise HR and HRV indicators through our methods, which allow us to monitor and
possibly detect anomalous trends.

To extract physiological information from the BCG and SCG signals, it is es-
sential to detect the positions of the heartbeats. The Pan–Tompkins algorithm [33]
is a well-established technique for identifying the R-peaks positions inside the ECG,
thus identifying the heartbeats. Instead, SCG and BCG segmentation methods have
recently been proposed in the literature [120, 121]. However, the literature lacks a
unified approach to analyse and segment SCG and BCG to the best of our knowl-
edge; the following paragraphs describe our attempt to achieve it. Such methodology
was already presented in [68].

2.2.1 Data pre-processing

The ECG and the BCG/SCG waveforms were initially pre-processed to obtain a more
easy annotation. First, a bandpass FIR (Finite Impulse Response) filter is used on both
BCG/SCG and ECG. Pass-bands of [0.5 Hz - 45 Hz] and [2 Hz - 14 Hz] range were
used for ECG and BCG/SCG, respectively. We used zero-phase digital filtering to
maintain a correct alignment between BCG/SCG and ECG signals. Since the ECG
is used only for reference purposes, the bandwidth chosen is sufficient to show the
R-peaks in the signal, thus the heartbeats position. The BCG and SCG bandwidth
was selected because most of the information is contained within such intervals [122,
123].

One of the databases analysed in Chapter 4 was downloaded from a public repos-
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itory. The dataset was sampled at 5 kHz, a frequency excessively high to be analysed
easily. We downsampled this dataset only down to 500 Hz.

The second and final pre-processing step was normalization through z-scoring:

szsc =
s−µs

σs
, (2.1)

where s is the signal of interest, µs is its mean, σs is its standard deviation and szsc is
the z-scored signal.

2.2.2 The algorithm for heartbeats identification

Figure 2.7: The various steps of the annotation algorithm, divided by phase.

Many physiological and anatomical factors contribute to the oscillatory complex of
the SCG or BCG heartbeat. Therefore, accurate heartbeat pattern identification can
be challenging without prior knowledge or references. However, indications come
from the energy inside BCG/SCG data. Thus, initially, the algorithm identifies po-
tential locations of the BCG/SCG complexes through inspection of the signal energy.
Indeed, such energy increases around the areas of the heartbeats. The algorithm pro-
posed utilises a detection signal (sDET ) to identify such energy increases, defined as
follows:



28 Chapter 2. Building the systems: BCG and SCG

sDET [n] =
M−1

∑
k=0

b[k] · s2
zsc[n− k] , (2.2)

where szsc is the preprocessed BCG/SCG signal and b[k], k = 0, ...,M−1 are the
coefficients of a low-pass FIR filter. We used M = 256, and a cutoff frequency of
2 Hz.
To refine the segmentation and better identify the zones of high signal energy, the
sDET waveform is processed using a sliding-window filter, which is defined as fol-
lows:

sSQR(i) =

⎧⎨⎩1, if sDET (i)≥ µi:i−p + k ·σi:i−p

−1, otherwise
, (2.3)

µi:i−p is the average of the last p points (p= 4ms ·30/Ts, where Ts is the sampling
interval), σi:i−p is the standard deviation over the last p points, and k is a multiplica-
tion factor that determines the level over which the sample must be to have a positive
output. If k is too high, it can bring to skipping potential heartbeats. Contrary, if the
value of k is too low, it is easier to discover energy variations, including the ones not
related to a heartbeat. To choose the best value of k possible, we have conducted a
parametric sweep over the performance metrics; the results showed that k = 2 is the
optimum value.
The positive intervals of the signal sSQR determine the candidate heartbeats positions.
Within such zones, the sDET signal is inspected, and its local maximum is annotated.
Such points are used as approximated locations for the heartbeats. In case the time
interval between two maxima is considered too wide, the research of heartbeat energy
is performed again, with a reduced value of the parameter k in equation 2.3. The time
intervals are considered unacceptable if their value exceeds 1500 ms, corresponding
to an HR of 40 beats per minute. The research is performed gain even if the relative
variation between two successive intervals is higher than 30%.

After detecting enough candidate heartbeats, the calibration phase starts. Such a
procedure creates a heartbeat prototype through the alignment of successive beats.
The purpose of such a phase is to personalise the algorithm and adapt it to the unique
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Figure 2.8: The various waveforms used for heartbeats identification and evaluation.

heartbeat pattern of the subject. Portions of the BCG/SCG signal, centered in the
sDET maxima, are taken and aligned with each other through a gradual shift, trying to
maximise their cross-correlation. The shifting is limited to a delay of ±τS =±200 ms
from the sDET maxima. The template szsc,T is extracted from the signals aligned by
computing the median; such a procedure involves only the first 20 candidate heart-
beats.

The annotation phase directly follows the calibration phase. Starting from the
positive intervals of signal sSQR, the extracted prototype is cross-correlated with the
BCG/SCG signal, and the points of maximum correlation are annotated. Such points
are the algorithm’s output and represent the heartbeats inside the BCG/SCG trace.

The entire procedure is shown graphically in Figure 2.7. It is divided into three
main blocks: in the yellow one there is the computation of the signals; the light blue
one represents the calibration procedure; lastly, the purple one is the annotation phase.
Instead, Figure 2.8 shows the waveforms used for annotation and evaluation of a
BCG recording. The middle panel shows the BCG signal in green and the marks
identified using the algorithm in pink. The low panel shows the sDET waveform in
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brown and the sSQR waveform in orange. The top panel shows the ECG signal in blue
with the R-peaks marked in yellow; it is worth reminding that the ECG is used only
for evaluation purposes and is not used by the annotation algorithm.
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Building the systems: the smart
floor

Stimulating and educating people to have active behaviours during their lives is chal-
lenging because it has to influence people’s nature and beliefs. It is not possible to
force someone to have an active life, but creating objects that stimulate such be-
haviour can positively impact. For this reason, a smart floor can be a device suitable
for the cause. Indeed, a smart floor can provide entertainment, active interaction and
valuable services (especially in a domestic environment). Furthermore, it can be an
inter-generational device that can be used by grandparents and grandsons together.

This chapter presents the study and the development of an IoT smart floor. Ini-
tially, it provides a broad view of the system behaviour and its main components.
Successively, the discussion focused on each part of the smart floor, presenting the
main characteristics and the problems which drove some choices.
The smart floor is one element of a larger project called PLEINAIR (Parchi Liberi
E Inclusivi in Network per Attività Intergenerazionale Ricreativa e fisica), funded by
Regione Emilia Romagna. We designed other objects for it, particularly a smart table
and a smart bench. Such devices share with the smart floor their principal compo-
nent, the smart tile. Because the technology is the same for all the objects, to avoid
redundancy the discussion focus only on the smart floor, the most complicated one.
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3.1 The behaviour of the system

The smart floor is created by combining various smart tiles, which can interact with
the users through piezoresistive sensors and luminous feedback. The smart floor uses
such qualities to instruct the users on the actions to do during the game execution and
to record mistakes or the correct movements. A web app provides information and
control of the desired game while also showing the user’s scores at the game end.
Both luminous feedback and scores can engage the user, thus stimulating active be-
haviour. One of the user’s controls over the game is its difficulty; with such an option,
the game’s enjoyment can be adapted to the subject, thus increasing the personalisa-
tion and stimulation.
Even though the typologies of inputs and outputs are a few, multiple games can be
created upon the smart floor, limited only by imagination. The game described in this
document is the molten floor game. To complete the game successfully, the players
must follow the path indicated by the green tiles and avoid touching the ones turned
off. The faster the completion, the higher the score.
Figure 3.1 shows the sequence of operations that the users can do to interact with the
smart floor; it also provides a summary picture of the molten floor game.

Figure 3.1: The users can interact with the smart floor through a web-app that allows
control and provide the results at the end of the game.
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3.1.1 The elements of the system

Figure 3.2: View of the elements of the smart floor system. The RIO modules and
the controller board control the smart floor system. All the boards communicate with
each other over an I2C (Inter Integrated Circuit) bus. After an elaboration phase, the
controller board transmits the data to a server through Wi-Fi. The elements’ dimen-
sions are out of scale for better understanding.

Figure 3.2 shows the different elements of the smart floor system; each one has a
different colour:

• The tiles are represented as brown squares.

• The piezoresistive sensors are the yellow circles.

• The LED strips are light blue squares.

• The Remote Input Output (RIO) boards are the red squares.

• The controller board is a blue square.

• The I2C bus is the white line.
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A total of 32 tiles were used to create the smart floor. Each tile is a square of 50
cm, while the smart floor is 4 meters large and two meters long, for a total of 8 m2.
Figure 3.2 shows only a portion of the floor.
Even if present in Figure 3.1.1 for clarity purposes, the server was not part of the
present work (both back-end and front-end) and its control was implemented by
DataRiver S.r.l., one of the partners of the PLEINAIR project.

Costs reduction was not the main focus during the development; indeed, the over-
all cost of the elements of one smart tile was around 800 euros. Such a price is accept-
able for an early-stage device, but it is not for a product addressed to the consumer.
For future commercialization, those smart devices must reduce their price by acting
over the mechanical structure and the electronic circuits.

3.1.2 System requirements

The smart floor must be an enjoyable instrument to stimulate the user to have ac-
tive behaviour. The interaction needs to be responsive to reach such a purpose. A
responsive system can quickly identify the users’ actions and immediately provide
the outputs.

The 300 grams constraint

The possible users’ actions depend upon the typologies of the sensors and the elec-
tronic circuits which control them (more on the electronic circuits and the choice of
the sensors in sections 3.2.2 and 3.2.1, respectively). The smart tiles were equipped
with piezoresistive sensors, devices able to sense the pressure applied to them. Such
property means that a smart tile can identify a weight present above them or a weight
change, like when a person steps on or steps off it.
To quickly identify a pressure change, the smart tile must be sensitive to tiny varia-
tions. The system was designed to detect a 300 grams mass presence above each tile.
Identifying 300 grams allows quickly detecting the pressures impressed by a child or
by a hand instead of a foot. The inter-generational quality that the system aspires to
have had influenced this choice. Experimental measures tested the mechanical struc-
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ture of the tile and the sensors to assess the sensitivity requested (section 4.2.1discuss
the results of such tests).

A quick reaction of the system

With a fast identification of a user’s action, the smart floor can provide a quick output.
The rapid response requirement is ensured by a Microcontroller Unit (MCU) which
equip both the controller and the RIO boards. The MCU allows to measure the events
above the floor with a precision of 10 ms and inform the controller board immediately
after the detection. The I2C bus is the platform that allows communication to happen
(section 3.2.4 provides more information on the communication between the boards).
When the controller board receives the message, it chooses how to react and informs
the RIO boards that control the luminous outputs. LEDs strips provide such outputs
with different colours and visual effects. The entire communication happens fast so
that the user perceives an immediate response by the system to its actions.

3.1.3 The sequence of operations

Figure 3.3: The sequence of operations that the smart floor does while powered on.
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Figure 3.3 shows the sequence of operations that the system computes at its startup.
The following list gives an overview of each phase:

• Discovery phase: the parameters used for correct communications between the
electronic boards are initialised.

• Calibration phase: the circuits which allow the sensors to function are properly
calibrated.

• Connection to the server: the controller board starts the Wi-Fi connection and
connects to an access point. Successively, the board connects to the server.

• Wait for a user command: the system enters this phase after connecting to the
server and after data transmission. Nothing happens inside this phase; the sys-
tem waits for a user command.

• Game execution: during this phase, the user can play the game selected at the
chosen difficulty. This phase starts when the user selects the game through the
web app (represented by the smartphone in Figure 3.3).

• Send data to the server: at the game end, the controller board sends all the data
gathered to the server, which elaborates and provides the results through the
web app.

The sequence of phases is equal at each power on, but the execution of the discovery
phase is different between the first startup and the successive. Because the changes
happen inside such phase, the discussion about the differences is made inside section
3.2.4, which treats the communication infrastructure and procedures.

3.2 A deep discussion of the main elements

In the following sections, each element of the system is discussed in depth: section
3.2.1 presents the mechanical structure of the smart tile; section 3.2.2 discusses the
RIO board; section 3.2.3 describes the controller board; section 3.2.4 illustrates the
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setup procedures and the communications which allow the smart floor to operate; the
topic of communications continues in section 3.2.5, where are described the Wi-Fi
transmissions and the MQTT (Message Queue Telemetry Transport) protocol; finally,
section 3.2.6 explains the algorithm structure behind the games.

3.2.1 Mechanical structure

Figure 3.4: (a) Top view of the smart tile: anti-trauma tile and LED strip. (b) Top view
of the bottom part of the smart tile: PVC layer, piezoresistive sensors and washers.
(c) Lateral view of the smart tile. The top and bottom parts are put together while
adding another PVC layer in between. The elements’ dimensions are out of scale for
better understanding.

We created the smart tile through the join of a top and a bottom section. Inside
Figure 3.4 are shown different views of the smart tile and its parts. Figure 3.4a is the
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top section, whereas Figure 3.4b is the bottom one. Instead, Figure 3.4c shows the
lateral view of the smart tile in its entirety. In the figures, the brown parts represent
the anti-trauma tile, the light blue colour is used for the LED strips, the white rect-
angles are PVC (PolyVinyl Chloride) layers, the yellow and grey elements are the
piezoresistive sensors and washers, respectively. The design of the device took into
consideration both indoor and outdoor contexts, for this reason, the material used for
the floor is anti-trauma, which is typically used in playground environments to avoid
injuries and hurts.
The white pentagons in Figure 3.4c represent the not uniform texture that the anti-
trauma tile has at its bottom surface. Due to such texture, the pressure tends to focus
on limited areas. Moreover, even the density of the tile is not uniform; thus, a weight
applied in different zones of the tile transmits different pressures. The PVC sheet be-
tween the top and bottom sections is used to respond to such problems. Indeed, the
PVC sheet allows the distribution of the forces above the sensors. Even the use of
washers allows concentrating the force above the sensors. Instead, the bottom PVC
sheet provides a solid and smooth basement that supports the entire structure.

The mechanical design looked for a simple structure and high sensitivity to lit-
tle pressures. Joining those requirements brought some challenges, like choosing the
suitable typology of sensors. Load cells, piezoelectric sensors and piezoresistive sen-
sors were considered. The necessity for a dedicated and complex mechanical struc-
ture to obtain a suitable coupling discarded the load cells. Instead, without specific
algorithms or dedicated electronics, piezoelectric sensors cannot identify a stable
weight. Thus, we choose piezoresistive sensors because they can sense stable weights
with a proper and simple signal conditioning circuit and they can be mounted easily.
We chosed the FlexiforceTM A201 by TekscanTM as the sensing element. Such a de-
vice has a broad force range and has small dimensions (a thickness of only 0.203
mm). Both its resistance and resistance variation reduce with the increase of the pres-
sure applied.
The position and quantity of sensors to use on each tile was a design issue that re-
quired a deep exploration. The FlexiforceTM A201 has a small sensing area (a circle
of 9.53 millimetres in diameter); thus, using only one sensor does not allow to have
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the desired sensitivity in the entire tile. Experimental measures discovered the best
quantity of sensors to place under the tile. Section 4.2.1 discusses the results of the
experimental measures, which suggest that four sensors can fulfill the requirements.

The uneven density of the anti-trauma tile brought a problem in the conditioning
circuit of the sensors. Indeed, a different and unpredictable distribution of the weight
over the sensors implies different resistance values. Such variation forced us to design
a dynamic conditioning circuit to adapt to every resistance value. The resistance span
reduces thanks to the PVC sheet, but this decrease is insufficient to have a unique
polarisation circuit. Section 3.2.2 explains the solution we have designed.

3.2.2 Remote Input Output board

Figure 3.5: (a) Block diagram of the electronic circuit of the RIO boards. (b) The
stages of the conditioning circuit.

The RIO board was engineered for the smart floor; Figure 3.5a shows its block di-
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agram of elements and connections. The sensors connect to the conditioning circuits
that provide output signals to a NUCLEO-L432KC board from STMicroelectronics,
which mounts a STM32L432KCU6U MCU. The LED strips are controlled through
Pulse-Width Modulation (PWM) by the NUCLEO board. An analog to digital con-
verter (ADC) integrated inside the NUCLEO board sample the outputs. During the
calibration phase, the microcontroller processes the samples to pilot a multi-channel
Digital-to-Analog Converter (DAC). The DAC outputs influence the conditioning cir-
cuits; their voltage values depend on the resistance of the respective sensor.
The entire smart floor use sixteen RIO modules, because one board can sense eight
different sensors and control two LED strips, the elements of two tiles. A 3.3 V LDO
(Low-DropOut) regulator embedded into the NUCLEO-L432KC board power both
DAC and conditioning circuits; instead, an external 5 V source powers the LED strips,
which mount the WS2812B LED controller by Worldsemi. A photograph of the RIO
board is visible in Figure 3.6.

Figure 3.6: The RIO board.
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The conditioning circuit

Figure 3.5b shows the conditioning circuit and its main blocks necessary to control
one sensor, eight of them are inside one RIO board. The following list explains the
function of each stage:

• The first stage is a non-inverting amplifier that amplifies a fixed voltage; the
sensor resistance changes the value of the amplification.

• The second stage is a second-order Sallen-Key filter which removes the power
line interference.

• The third stage is a differential amplifier used to amplify the difference between
the second stage output and the output of the DAC.

Through the use of a DAC, we solved the problem of the difference between the initial
values of the sensors. The DAC allows personalising the circuit to each piezoresistive
sensor, and to settle the output of each conditioning circuit around the same voltage.

Figure 3.7: The schematic of one conditioning circuit.

Figure 3.7 shows the schematic of the conditioning circuit. The DAC tension
subtracts the output of the second stage, which is controlled by the sensor resistance;
thus, an increase in the DAC output produces a lower voltage at the conditioning
circuits output. During the calibration phase, when the tiles do not have any weight
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above them, the DAC values are changed to equal the voltages of the different second
stages and to provide zero volts outputs. During the game execution, pressure will
create a difference between the inputs of the differential amplifier (the one on the
right of Figure 3.7), which will increase the output voltage. Thanks to such a circuit,
the system can identify even the touch of a hand.

The operational amplifier used in the conditioning circuit is the OPA23401 from
Texas Instruments, an input and output rail-to-rail CMOS device. The features which
led to its choice are:

• The input offset voltage is driven by the power supply (PSRR) of 120 µV/°C.

• The input bias current of ± 0.2 pA.

• The input offset current of ± 0.2 pA.

• High differential and common-mode input impedance.

Significant for the project is the PSRR (Power Supply Rejection Ratio) characteristic
that allows the device to be unaffected by the switching inside the boost circuit, which
powers the RIO board.

Mathematical description of the conditioning circuit

The following equations explain the behaviour of the conditioning circuit in a math-
ematical language and refer to Figure 3.8a where the second-order filter has been
removed for better clarity purposes.

VX =VCC · R7

R7 +R8
(3.1)

V1 =VX · (1+ RG

R9 +RS
) (3.2)

VY =V1 ·
R3

R3 +R4
(3.3)

1https://www.ti.com/lit/ds/symlink/opa2340.pdf
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Figure 3.8: (a) The first and third stages of the conditioning circuit, without the
second-order filter. (b) The second-order filter.

VOUT =VY +
R1

R2
· (VY −VDAC) (3.4)

Where RS is the sensor resistance, VCC is the power supply, VX and VY are the volt-
ages at the operational amplifier’s negative inputs, and V1 and VOUT are their output
voltages, as Figure 3.8a shows.
Instead, equations 3.5 and 3.6 explain the second-order filter behaviour (Figure 3.8b).

H(s) =
1

1+C2 · (R6 +R5)s+C1C2R6R5s2 (3.5)

Fc =
1

2π ·
√

R6R5C1C2
(3.6)

Where H(s) is the filter’s transfer function and Fc is its cutoff frequency. Replacing
resistances and capacitors of equation 3.6 with the values written in Figure 3.8b gives
a cutoff frequency value of:

Fc = 15.92 Hz

The response of the conditioning circuit

Figure 3.9 shows a simulation of the circuit’s response, which illustrates the changes
in the output voltage due to a variation in the sensor resistance. The image also shows
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Figure 3.9: The simulation of the conditioning circuit’s response. Each curve dis-
played has a different value of the DAC voltage.

how the response changes when a different DAC voltage is used to polarise the con-
ditioning circuit. Each curve has three stages, a top and a bottom saturation stage and
a gain stage. During the calibration phase, the DAC voltages are adjusted to bring
the outputs of all the conditioning circuits to the bottom knee of the curve. At such a
point, the circuit has the maximum sensitivity; indeed, a little pressure above the tile
brings the circuit to the gain stage and an output voltage increase.
Figure 3.9 shows an undesired effect brought by the solution adopted; the slope of
the different curves changes with the value of the DAC voltage. In particular, the
higher the voltage, the higher the gain. Such behaviour should have brought a higher
sensitivity to the more polarised sensors; this does not happen because of the inverse
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proportion between resistance variation and force applied. Indeed, a sensor with high
pressure applied changes its resistance less than one with low pressure. Such an effect
counterbalance the change in gain.

Digital to Analog Converter

The Digital to Analog Converter is a TLV5630 2 chip by Texas Instruments; it has
eight output channels with a voltage resolution of 12 bits. The outputs can change in
a few microseconds; how fast depends on the device’s configuration. To interact with
the device, the RIO uses the SPI (Serial Peripheral Interface) protocol, which allows
configuring the device as desired by the user. An internal rail-to-rail amplifier buffers
each output to provide enough current to the load without interfering with the correct
behaviour of the DAC.

NUCLEO-L432KC

Figure 3.10: The NUCLEO-L432KC from STMicroelectronics.

The NUCLEO-L432KC 3 is a development board equipped with an STM32L4
family MCU based on Arm® Cortex®-M4 32-bit architecture. The microcontroller

2https://www.ti.com/lit/ds/symlink/tlv5630.pdf
3https://www.st.com/en/evaluation-tools/nucleo-l432kc.html
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unit contains different peripherals which allow commanding two smart tiles; some of
them are described in the following list:

• The Analog to Digital Converter (ADC) samples different channels attached to
the conditioning circuit’s outputs. The channels are multiplexed and sampled
in sequence.

• By generating PWM signals, the Timers control the LED strips.

• With the I2C communication interface, the RIO board can communicate with
the other electronic boards of the smart floor.

• The SPI communication interface allows the NUCLEO to command the DAC
outputs to control the conditioning circuit polarisation.

Power section

Figure 3.11: The power circuit of the RIO board.

The NUCLEO-L432KC is not allowed to be powered by a 5 volts supply unless
by unsolder some bridges. Instead, a 7 volts (or greater) supply is permitted without
any changes. Because the operation of unsoldering must be precise and repeated for
each NUCLEO board used, the project choice was to design a boost circuit that pro-
vides a 7 volts supply. Figure 3.11 shows the boost circuit designed, where 5V is the
power supply input, and VOUT is the boost output that powers the NUCLEO board.
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The DC/DC converter used is the LT16154 by Linear Technology, which can provide
a current up to 350 mA. The 7 volts supply powers only the NUCLEO board; the
other chips of the RIO board are powered by a 3.3 volts power supply provided by an
LDO inside the NUCLEO board. Finally, the 5 volts power supply also powers the
LED strips.

The I2C bus extender

Figure 3.12: The I2C bus extender circuit, with the P82B715 chip.

Over the I2C bus the RIO boards and the controller exchange their informa-
tion. Because I2C is a collision avoidance protocol, it suits the system’s necessity
well. Indeed, two boards may try a simultaneous transmission over the bus, thanks
to the collision avoidance feature such event is automatically resolved. The dimen-
sions of the smart floor imposed to equip each board with an I2C bus extender, the
P82B7155 from NXP Semiconductors. Figure 3.12 shows the circuit that connects
the RIO with the I2C bus; OUT _SCL and OUT _SDA are the connections to the

4https://www.analog.com/media/en/technical-documentation/data-sheets/16151fas.pdf
5https://www.nxp.com/docs/en/data-sheet/P82B715.pdf
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bus lines, INT ERNAL_SCL and INT ERNAL_SDA are the connections with the NU-
CLEO board. The external lines are protected by ElectroStatic Discharge (ESD) by
two couples of diodes. The internal lines are connected to the 3.3 volts supply by
pull-up resistors. Instead, the external lines connect to 470 ohms resistances through
a couple of jumpers. The pull-up at the external lines is used only in the first and last
board attached to the bus; thus, the internal ones must be free to disconnect the resis-
tances. The total line capacitance was kept below 3000 pF using suitable connectors
and proper cables, as suggested by the P82B715 datasheet.

3.2.3 The controller board

Figure 3.13: The connections between the B-L475E-IOT01A and the P82B715 bus
extender.

One of the controller board elements is the B-L475E-IOT01A6 Discovery kit
from STMicroelectronics (Figure 2.2b), which has an STM32L4 series microcon-
troller based on Arm® Cortex® M4 processor and an ISM43362-M3G-L44 chip by
Inventek systems for Wi-Fi connectivity. The circuits necessary for the controller to
work were created in a matrix board; such board connects to the B-L475E-IOT01A.
As for the RIO boards, also for the controller was used an I2C bus extender. Fig-

6https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
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ure 3.13 shows the connections between the P82B715 chip and the CN1 connector
of the B-L475E-IOT01A. Other circuit elements not represented in the figure are
connectors and jumpers for the power supply.

3.2.4 The setup procedures

The discovery phase

Figure 3.14: Diagram of the discovery procedure executed at the first startup.

To light the smart tiles as the game logic demand, the controller board must know
their relative spatial position. The first requirement is to know the floor geometry to
program the game logic consequently; our smart floor is a rectangle 4 meters large
and 2 meters long. Secondary, each tile must have an identification number or ID.
Through a direct correspondence between a position and an ID, the controller can
light the tiles correctly. The discovery phase allows making this connection. Each
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RIO board has a user button, pressing it during such a routine allows the memori-
sation of the ID inside the RIO memory. The sequence with which the buttons are
pressed changes the IDs linked to the positions, thus changing the behaviour of the
system.
Figure 3.14 explains the discovery phase through a diagram. Each RIO board does
not have an ID assigned and saved inside its memory at the first startup. Initially,
the controller board broadcast a discovery start message over the I2C bus to tell the
boards that the procedure is starting; such message contains the value 0. In Figure
3.14 the first line of arrows represents the discovery start message. Nothing happens
until the pressure of a RIO’s button; then, the selected board saven the value one in-
side of its memory and broadcasts it over the bus. Such transmission is represented
by the first line of red arrows in Figure 3.14. The same behaviour happens for the suc-
cessive boards, each time increasing by one the value transmitted until the number of
RIOs which control the floor is reached. Finally, the controller board broadcast an end
message to end the discovery phase (the bottom line of blue arrows in Figure 3.14).
No button needs to be pressed at the next startups of the smart floor. Indeed, knowing
their IDs, the RIO boards transmit it over the bus after the reception of their previous
one.
In the case of a RIO board substitution, the discovery phase can end anyway, even if
the new board does not have an ID assigned. The only action necessary to complete
the communication is to press the button on the new board. Indeed, the transmission
goes on until the substituted board must transmit its ID over the bus. Unable to send
its ID, the new RIO waits for its button’s pressure, while the successive boards wait
to receive their previous ID. When the button is pressed, the communications resume
and the discovery phase can end.

The calibration phase

After the end of the discovery phase, the controller board sends a broadcast message
of calibration start. The RIO boards polarise the conditioning circuits by changing
the DAC outputs. When the board with ID one has completed the calibration, it sends
a broadcast message of calibration terminated over the I2C bus. After finishing their
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calibration, the other boards wait for the message from their previous one before
sending their own, as it happens for the discovery phase. The calibration can provide
three possible outputs:

• Calibration_ok: when all the conditioning circuits have been polarised cor-
rectly.

• Calibration_partially_ok: when one sensor of a tile is not working.

• Calibration_error: when more than one tile sensor does not work.

If just one tile provides a Calibration_error message, the smart floor cannot start any
game. Instead, the smart floor can start the games in the presence of multiple Cali-
bration_partially_ok messages. This last eventuality reduces the sensing capability of
the system. If the calibration is successful (or partially successful), the system con-
nects to the server. The successive messages that run over the I2C bus are commands
and information that the controller and the RIOs exchange, respectively.

The calibration algorithm

The calibration algorithm aims to have each output close to the bottom knee of its
characteristic; referring to equation 3.4, it searches for the values closest to:

VDAC,i =VY,i; VOUT,i = 0

where i goes from 1 to 8 and represents the different channels.
The DAC starts the calibration by outputting 1.65 volts on each channel. Successively,
the ADC sample the output values of the conditioning circuits. Consider the case of
a single channel; if the sample falls in the saturation zones or the top part of the gain
stage, the DAC output change with the bisection method. Instead, if the sample falls
in the bottom part of the gain stage, the DAC output changes by unitary steps for fine-
tuning. When the samples are relatively close to zero, the calibration for that circuit is
completed. Figure 3.15 shows the steps of the calibration for one conditioning circuit.
The first three steps fall in the saturation zones, and the successive ones move towards
the bottom knee. The sixth step falls in the bottom part of the gain stage; the value
changes unitary after that.
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Figure 3.15: Steps of the calibration procedure.

3.2.5 Wi-Fi communications

After the discovery and calibration phases, the controller board starts the connection
to an access point. Then, it creates an encrypted connection to the server. The con-
nection uses the TCP (Transmission Control Protocol) and the TLS (Transport Layer
Security) protocols to have a reliable communication channel. Over the encrypted
channel runs an MQTT7 service; at this point, each message exchanged between the
smart floor and the server is an MQTT message which passes over a dedicated MQTT
topic. At this point, the system waits for a user command. The user can interact with
the smart floor through a dedicated web app that shows the performances at the game
end. The web app allows running different games at different difficulty levels.

The MQTT messages

When the user selects a game and its difficulty, the web app sends an MQTT message
to the broker, which shares it with the smart floor. The administrator of the system

7https://mqtt.org/
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Table 3.1: The JSON strings that control the smart floor.

Command Description

{’cmd’:’dac_calibrate’} The device performs a new calibration.
{’cmd’:’game_start_ <game_id> The game with id <game_id>starts,
_<difficulty>_<match_id>’} with a difficulty chosen by the parameter <difficulty>.

Table 3.2: The JSON fields used to transmit the elaborated data.

Field Type Description

measure string Measure name
measure_unit string Measure unit
data_type string Measure description
data_source string The object which has generated the measure
values JSON array The measure values

has an additional command which allows performing a new calibration of the sen-
sors. The MQTT messages are in JSON8 (JavaScript Object Notation) format, and
Table 3.1 shows their syntax. After the game ends, the controller board elaborates all
the data gathered and provides the results to the server. Even the results are transmit-
ted in JSON format. Table 3.2 shows the structure of the results; such a scheme can
contain all the metrics necessary for the specific game in execution.
The structure of the messages and the MQTT service allows running multiple smart
floors and other smart objects simultaneously. Indeed, changing the MQTT topic on
which each smart floor communicates allows routing the communications at the cor-
rect receiver.

8https://www.json.org/json-it.html
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3.2.6 The design of the games

Figure 3.16: The structure of the states machine.

Every game designed for the smart floor system or the other objects (smart table and
smart bench), was initially described as a Mealy state machine. This representation
allowed for a readable structure and minimised possible errors and missed transi-
tions. The number of states not considered in the algorithm, thus a possible game
block, was drastically reduced through such a methodology. Adopting this descrip-
tion and considering the inputs and outputs of the smart floor allows for a diversity
of behaviours.

Figure 3.16 shows an example of a Mealy machine with three states. The arrows
represent the rising of an event and its relative action; they connect the states be-



3.2. A deep discussion of the main elements 55

tween them or with themself. In Figure 3.16, the events and the actions are named
respectively, ev x and act y.z, where x is the number of the event, y is the number
of the starting state, and z is the number of the ending state. Each event can start
from any state; however, the relative action can change depending on the starting and
ending states. Each state in Figure 3.16 has three events, but a given state can have
fewer events. The behaviour desired for the smart floor determines the transitions, the
events, the actions and their number.

The state machine for the “Molten floor” game

Table 3.3: The table of transitions for the molten floor game.

IDLE READY WAITING_FOR_DATA

nil_event IDLE; READY; WAITING_FOR_DATA;
nil_action nil_action waiting_for_data_timeout_check

mqtt_game_start READY; READY; WAITING_FOR_DATA;
idle_to_ready nil_action nil_action

start_tile_pressed IDLE; WAITING_FOR_DATA; WAITING_FOR_DATA;
nil_action ready_to_data_waiting nil_action

new_data_arrived IDLE; READY; WAITING_FOR_DATA;
nil_action nil_action on_data_arrival_action

path_cleared IDLE; READY; IDLE;
nil_action nil_action path_cleared_action

inactivity_timeout IDLE; READY; IDLE;
nil_action nil_action path_cleared_action

game_timeout IDLE; READY; IDLE;
nil_action nil_action path_cleared_action

The molten floor game was designed through a state machine; the game use only
three states but seven possible events. The game’s goal is to jump over all the green
tiles while avoiding touching the others; in the shortest time possible. Table 3.3 shows
the table of transitions for the molten floor game, which is the reproduction of the
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state machine in a tabular form. Inside this table is described how the system responds
to an event for each state. The syntax inside the cells is NEXT _STAT E; action,
where NEXT _STAT E is the successive state and action is the action to do. The three
possible states are:

• IDLE: where the system is waiting for a start game command.

• READY: where the system is waiting for the pressure of the initial tile.

• WAITING_FOR_DATA: where the game is started, and the system is waiting
for events to happen.

Is possible to switch between the states through the seven possible events, which are:

• nil_event: when nothing happens.

• mqtt_game_start: when a start game message arrives.

• start_tile_pressed: when the first tile of the path is pressed.

• new_data_arrived: when a tile changes its state.

• path_cleared: when the game is completed.

• inactivity_timeout: when no action happens on the floor for a specific time.

• game_timeout: when the maximum time allowed to complete the game is ex-
pired.

The combination of events and states brought six different possible actions. Such
actions are the response of the system to a specific interaction. The actions are:

• nil_action: nothing happens.

• idle_to_ready: the controller generates the path and lights up the initial tile
with green.

• ready_to_data_waiting: all the tiles blink in green; then every light is switched
off, and successively the path lights up in green.
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• waiting_for_data_timeout_check: the controller checks if the timeouts are
expired.

• on_data_arrival_action: the controller manages the tile’s state transition, lights
up the LED strip with the proper colour and checks if the game is completed.

• path_cleared_action: the controller elaborates the data and sends them to the
server with an MQTT publish; then, it brings the smart floor to the IDLE state
waiting for a command.





Chapter 4

Evaluation of the systems

Here are presented and examined the results of the systems described in Chapters 2
and 3. Regarding the BCG/SCG system, the following pages describe the databases
we recorded with the acquisition systems. Together with the results, even the metrics
for evaluating the heartbeats identification algorithm are presented and discussed.
Instead, the smart floor system evaluation focused on two different aspects. The first
is the engagement of the user and the stimulus that the device brings in repeating
the experience. The second one is more technical and involves the system’s ability to
sense little pressures and the correct electrical response by the conditioning circuit.

4.1 The BCG and SCG system

We tested the algorithm’s ability to identify heartbeats by analysing different BCG
and SCG databases that we recorded. It is important to remember that we acquired
the databases at different times and that the methodologies and the devices evolved
after each experience.
The same results presented in this section have already been published in [68].



60 Chapter 4. Evaluation of the systems

4.1.1 Changes in waveforms versus ideality

Many factors can corrupt a BCG or SCG waveform by introducing undesired arte-
facts inside the signals. Sometimes, the corruption can be too strong to cover one
or multiple heartbeats completely; thus, identification can be almost impossible. For
example, one source of the problem can be the subject’s movements during the ac-
quisition of the signals.
Other types of corruption can be less disruptive, and even if they introduce changes
inside the measures, the caused distortion is not too worrying. Often, such distortion
is not avoidable because it involves aspects of the measures that cannot be changed
easily. For example, for BCG, the type of bed, its mechanical structure, and the posi-
tion of the accelerometer change the sensing device’s mechanical coupling with the
subject’s body. Even how we sleep (prone, supine, etc.) influences the resulting sig-
nals. For SCG, the waveform change with the position of the accelerometer over the
body. Moreover, the body structure itself changes the morphology of the waveforms,
both for SCG and BCG.
Many of these influences cannot be removed easily from the signals; thus, the algo-
rithm that analyses the waveforms should be robust enough to overcome and possibly
identify them.
The morphology changes can manifest as additional peaks or valleys or changes in
the main peaks’ magnitude. When large body movements are involved, the wave-
forms can become wholly unrecognisable and contain high variations.
For the databases we acquired, the subjects were instructed to stand still and make
little body movements if necessary; thus, our recordings do not contain important
movement variations. Such lack is both an advantage and a limitation, indeed with
clean waveforms is possible to verify the algorithm’s behaviour in the desired condi-
tions, but it is impossible to test its robustness when spikes come.

4.1.2 The experimental setups and the databases

We have acquired three different datasets: two involve BCG traces, whereas the re-
maining contains SCG curves. To record them, we used the acquisition systems de-
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signed; in particular, datasets SCG-1 and BCG-1 used an ARM Cortex M0+ configu-
ration (the Arduino board); instead, dataset BCG-2 used an ARM Cortex M4 configu-
ration (the B-L475E-IOT01A board). We have recorded a synchronous ECG in all the
databases as a reference for evaluating the heartbeat identification methodology. All
the subjects involved were healthy volunteers without any known heart diseases; the
studies were conducted following Helsinki’s declaration on ethical principles. The
analysis also involved an external database publicly available.
Table 4.1 summarises the datasets; ID is the name of the dataset, Nrec is the number
of records in the dataset, Fs is the sampling frequency, and the field Provenance tells
if the database was acquired by us or obtained online.

Table 4.1: List of the databases analysed.

ID Nrec Fs Description Provenance

SCG-1 13 100 Hz SCG database of sitting subjects Acquired
SCG-2 20 500 Hz CEBS database: SCG of lying subjects Online
BCG-1 18 250 Hz BCG database: bed frame 1 Acquired
BCG-2 42 500 Hz BCG database: bed frame 2, three Acquired

lying position for each subject

The SCG-1 database

Dataset SCG-1 contains the signals of 13 volunteers acquired while subjects were
comfortably sitting on a chair in an upright position. Nine males and four women
participated in the study (age 35.2 ± 16.0); each recording lasted 4 minutes.
We inserted the accelerometer used for the measures inside a plastic container to
achieve electrical isolation, successively we placed it over the subjects’ sternum.
Moreover, a chest strap has held the sensor in place to attain good signal quality.
We acquired a lead-I ECG simultaneously through disposable Ag/AgCl electrodes
placed on the subjects’ left and right shoulders. To reduce common-mode noise, we
added a DRL electrode attached to the right hip.
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Figure 4.1: The placement of the accelerometer and the electrodes over the body
of the subject. The ECG is acquired through the right arm and left arm electrodes,
respectively named RA and LA, whereas DRL means Driven Right Leg and is the
electrode used to reduce the measure’s common-mode interference.

The MCU samples with a frequency of 100 Hz as a compromise between low power
consumption and time resolution, looking forward to an embedded device. Figure 4.1
shows the accelerometer placement and its orientation respectively to the body, to-
gether with the placement of ECG electrodes. The same setup and database are stud-
ied also in [45, 116, 117].

The SCG-2 or CEBS database

SCG-2 is the CEBS database (Combined measurement of ECG, Breathing and Seis-
mocardiogram) [124, 125], a public dataset hosted on PhysioNet [126]. It contains the



4.1. The BCG and SCG system 63

signals recorded from 20 healthy subjects lying supine on a bed. SCG signal, lead-
I and II ECG derivations and breath signals were simultaneously sampled through
a Biopac MP36 data acquisition system (Santa Barbara, CA, USA). In particular, a
tri-axial accelerometer produced the SCG signals, though, because the dorso-ventral
axis expresses the most relevant information, this direction is the only one available.
The length of a single record is around 50 minutes each, for a total of about 69,500
heartbeats. Such a length allows validating the methodologies in time intervals rela-
tively significant. In [124, 125, 126] are described more details on the methods and
the database. We proposed a methodology to analyse SCG-2 in [116] and we have
deepened the analysis in [51] through a convolutional variational autoencoder net-
work.
The main differences between the SCG databases’ setups are the subject’s position
(sitting for SCG-1 and lying for SCG-2) and the sampling frequency (100 Hz for
SCG-1, and 5000 Hz for SCG-2, downsampled to 500 Hz for easier processing).

The BCG-1 database

Figure 4.2: The top view of the subject lying on the bed with the electrodes, the
accelerometer and its orientation system visible.

The third dataset, BCG-1, collects 18 recordings lasting 5 minutes each, obtained
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from healthy volunteers. As Figure 4.2 shows, the subjects were lying supine on a
rigid frame bed during BCG and ECG concurrent measurements. The same acquisi-
tion system used for the SCG-1 database sensed the signals. Different from SCG-1,
we used a sampling frequency of 250 Hz. Figure 4.2 also illustrates the placement
of the device; the three electrodes were placed on the left arm, the right arm, and the
right leg (LA, RA and DRL, respectively); the last electrode is used to reduce the
common-mode interferences. Instead, the accelerometer was firmly placed upon the
bed, on the subjects’ right. The same setup and database are also studied in [118].

The BCG-2 database

Figure 4.3: (a) The top view of the subject lying on the bed; the positions of the
electrodes are visible. (b) The side view of the subject lying on the bed; the position
of the accelerometers and their reference system are highlighted.

The last database, BCG-2, contains the signals recorded from 14 healthy volun-
teers; each subject was asked to lie in three positions; we have acquired 42 records
thus. The participants were 13 males and one female, with an average age of 27.1
years. Due to the COVID-19 pandemic, obtaining a more balanced (males/females)
and large database was impossible. The same setup and database are also studied in
[119].

We followed a precise measurement protocol to record the signals; each subject
was instructed about the protocol before starting the measures. The measurement
protocol is the following:
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• The subject lies down supine; the signals are recorded for five minutes.

• After a one-minute break, the subject moves to a left-side position; again, we
recorded the signals for five minutes.

• After another one-minute break, the subject moves to a right-side position; we
acquired the last five minutes of data.

Unlike the other datasets, the MCU that controls the acquisition was an ARM
Cortex M4. Other changes involved the sampling frequency, which was set to 500 Hz
and the bed, which had a spring frame. Moreover, the acquisition system employed
two synchronous ADXL355 accelerometers. The devices were firmly attached under
the bed frame through tape. As Figure 4.2b shows, we placed accelerometer one un-
der the subject’s chest, and accelerometer two was approximately under the subject’s
centre of mass. The figure also shows the reference system of the accelerometers:

• The x-axis represents the head-to-foot component.

• The y-axis represents the lateral component.

• The z-axis represents the dorso-ventral component.

Figure 4.2a shows the ECG electrodes placement used to acquire a lead-I derivation.
Instead, Table 4.2 reports other statistics about the subjects under test.

Table 4.2: Statistical data of age, weight and Body Mass Index (BMI) for the subjects
of database BCG-2.

Age Weight [kg] BMI [kg/m2]
27.07 ±6.31 77.71 ±11.73 24.46 ±3.22

4.1.3 Evaluation metrics

To better understand the algorithm abilities of heartbeats identification and compare
them with others present in the literature, it is helpful to obtain some evaluation met-
rics. The algorithm’s abilities evaluated are:
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1. Its heartbeats detection abilities.

2. Its ability of heartbeats precise time localisation.

We can evaluate such properties by comparing the ECG’s reference points (the gold
standard) and our algorithm’s outputs. Such comparison is possible thanks to the
assumption of a regular heartbeat; in fact, the absence of rhythm disturbances makes
it possible to correlate the mechanical and electrical activities of the heart. For ECG,
the R-peaks inside the QRS complexes are used as heartbeat references; such points
were obtained through the Pan-Tompkins algorithm [33] and a manual check. Instead,
how our algorithm produces its outputs is discussed in Section 2.2.2.

Figure 4.4: A graphical explanation of TP, FP, and FN conditions. The squares repre-
sent the different tolerance windows, the yellow marks are the R-peaks and the green
and red marks are the reference points.

To understand how the evaluation of the output is made is helpful to introduce
some definitions first. In the following, I will refer to the heartbeats position identi-
fied by our algorithm with the words reference points.
For each R-peak is defined a 100 ms tolerance window where the respective reference
point should be found. The time position of the windows is subject-dependent and can
be obtained by statistical esteem of the distance between the prototype (more infor-
mation about the prototype in Section 2.2.2) and the R-peaks positions. It is important
to remember that such statistical measure is used only for performance assessment
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purposes. With such a premise, the following definitions (graphically visible in Fig-
ure 4.4) explain how the evaluation algorithm can mark the reference points:

• A reference point is considered correctly detected and labeled as True Positive
(TP) if its position falls within the tolerance window.

• If a reference point is identified outside of its tolerance window, it is considered
a False Positive (FP).

• If a tolerance window does not contain any reference point, it is considered a
False Negative (FN).

With such definitions is possible to introduce the following metrics:

• Sensitivity: the percentage of reference points correctly identified.

Sens.=
T P

T P+FN
(4.1)

• Precision: the percentage of right detection among all the detection.

Prec.=
T P

T P+FP
(4.2)

The correctly detected beats can be used to verify the ability of precise heartbeats
localization in time. It is helpful to define the R-R intervals’ time series and the time
series of the complex-to-complex intervals:

tRR = {tR,i − tR,i−1}, i ∈ {1, ...,N −1} (4.3)

tCC = {tC,i − tC,i−1}, i ∈ {1, ...,N −1} (4.4)

Where N is the number of correctly detected heartbeats. Using equations 4.3 and 4.4
the annotation error can be defined as:

ei = tRR,i − tCC,i (4.5)

With equation 4.5 is possible to define the following metrics of evaluation:
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• Root Mean Square Error (RMSE)

RMSE =

√︄
1

N −1
·

N−1

∑
i=1

e2
i (4.6)

• Mean Absolute Error (MAE)

MAE =
1

N −1
·

N−1

∑
i=1

|ei| (4.7)

The two metrics reveal the discrepancy between the reference points and the R-peaks
positions. Even if RMSE and MAE are similar, it is important to provide both because
they can be helpful for different purposes. Indeed, the first one gives more weight to
large errors than the second; this implies that it is better to consider one or the other
depending on how important the errors are.

The definitions previously listed are valid for the analysis of both BCG and SCG
because, even if the nature of the signals is different, the information they provide is
similar.

4.1.4 Experimental results

Before presenting and discussing the results is worth noting that to keep the results
consistent between the databases, we analysed only a portion of the signals acquired,
in particular:

• The results of database SCG-1 come from the analysis of the axis perpen-
dicular to the chest (the z-axis of Figure 4.1). Such a choice allows a correct
comparison with database SCG-2.

• Because the recoil forces that produce the BCG are mainly in the head-to-foot
direction [77], the results of both BCG databases come from the analysis of
such a component (the x-axis of Figure 4.2 and Figure 4.3b).

• Even if the acquisition system of BCG-2 featured two accelerometers (see Fig-
ure 4.3b as reference), we analysed only number one. Indeed, accelerometer
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two was introduced in the system for future studies. Its signals are not used in
the present analysis because they do not provide additional information on the
algorithm’s qualities.

Table 4.3: The average score and 10th Lowest Performance Percentile (LPP) for each
metric and dataset.

Sensitivity [%] Precision [%] RMSE [ms] MAE [ms]

SCG-1
mean 98.9 97.9 8.1 4.8

10th LPP 96.2 96.3 8.2 5.7
SCG-2

mean 98.5 98.6 4.5 3.3
10th LPP 97.0 97.2 6.1 4.8
BCG-1

mean 98.4 97.6 6.8 5.0
10th LPP 96.7 95.0 10.6 7.9
BCG-2

mean 98.2 98.0 5.6 3.6
10th LPP 96.2 96.4 8.8 5.9

We obtained the metrics described in Section 4.1.3 from all available datasets.
Table 4.3 reports such results for each metric in terms of average and 10th Lowest
Performance Percentile (LPP). In the following paragraphs, the scores are always
listed in the order SCG-1, SCG-2, BCG-1 and BCG-2.

As stated before, the results presented in this section were already published in
[68] by the same author. However, other publications analysed BCG databases [118,
119] and SCG databases [45, 51, 116, 117] through a similar algorithm. Such works
come from the same author of this thesis, and often present the scores on the singular
records.

Sensitivity and precision are the metrics to consider to assess the most crucial
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(a) (b)

(c) (d)

Figure 4.5: The Box-plots of: (a) Sensitivity, (b) Precision, (c) RMSE, (d) MAE.

quality of the algorithm, the ability of heartbeats detection. On average, sensitivity
obtained the values 98.9%, 98.5%, 98.4% and 98.2% whereas the 10th LPP scored
96.2%, 97.0%, 96.7% and 96.2%. Such results prove that the majority of heartbeats
can be detected. Taking into account precision scores, their average values are 97.9%,
98.6%, 97.6% and 98.0%, with 10th LPP values of 96.3%, 97.2%, 95.0% and 96.4%.
Even for precision, the performances are high, meaning that the algorithm has a low
rate of false positives creation. Furthermore, as LPP values show, both metrics remain
stable at high values even considering the entire population. Figures 4.5a and 4.5b
give a graphical representation of the distribution of the scores for sensitivity and
precision, respectively. Together, the scores of sensitivity and precision confirm that
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the methodology adopted can be a good resource to detect heartbeats inside SCG and
BCG signals without using the ECG.

RMSE and MAE are the metrics used to evaluate the ability of precise tempo-
ral localisation of heartbeats. Figures 4.5c and 4.5d show the distribution of RMSE
and MAE performance, respectively. The average values obtained by RMSE are 8.1,
4.5, 6.8 and 5.6 ms, and the 10th LPP are 8.2, 6.1, 10.6 and 8.8 ms. Instead, the
average MAE’s scores are 4.8, 3.3, 5.0 and 3.6 ms, with 5.7, 4.8, 7.9 and 5.9 ms as
10th LPP. As the scores tell, the methodology adopted can provide precise temporal
localisation with errors of a few ms. A representation valuable for comprehending

(a) (b)

(c) (d)

Figure 4.6: Bland-Altman plots of the tRR, tCC closeness; (a) SCG-1, (b) SCG-2, (c)
BCG-1, (d) BCG-2.
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the temporal localisation of our methodology is shown in Figure 4.6, which displays
Bland–Altman plots for all four datasets. Such plots represent the closeness of the
tRR and tCC intervals values. On these graphs, the x-axis contains the average of the
intervals, in mathematical language: (tRR,i + tCC,i)/2, whereas the y-axis contains the
measurements errors ei. By examining such plots, it is possible to see that errors are
distributed relatively evenly around zero, another confirmation of the correctness of
the methodology.

(a) (b)

(c) (d)

Figure 4.7: Kernel Density Estimates (KDE) of ei for datasets: (a) SCG-1, (b) SCG-
2, (c) BCG-1, (d) BCG-2.

With Bland-Altmann plots is possible to identify dependencies between inter-
vals and measures graphically. For example, Figure 4.6a shows a separation between
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the points in distinct lines for dataset SCG-1; such separation is due to the limited
sampling frequency used, which does not allow a finer temporal resolution. Similar,
but softer, behaviour is shown in Figure 4.6c for dataset BCG-1. This dependence re-
flects on MAE and RMSE results; indeed, datasets with lower Fs shows higher values
caused by a less fine temporal resolution.

Another way to comprehend the agreement between the beat-to-beat intervals
provided by our algorithm and the ECG is through the graphs of Figure 4.8, which
are Kernel Density Estimation (KDE) of the errors ei. KDE is a methodology that
provides a Probability Density Function (PDF) starting from data points. To produce
the graphs, we used a Gaussian kernel with a bandwidth parameter set to one sam-
pling interval Ts = 1/Fs. In the graphs of Figure 4.8, the light blue traces are the KDE
for each subject; the tick dark blue line represents the population-wide aggregation;
the red dotted lines represent the ±RMSE values. As visible from the KDE plots, the
errors ei show a zero-mean distribution for each dataset; instead, they tend to be less
concentrated depending on the sampling period. Indeed, the 95% Highest Density
Interval (HDI), where the 95% of points fall, is ≈ 20 ms for SCG-1 (Ts = 10 ms,
Figure 4.7a), ≈ 16 ms for BCG-1 (Ts = 4 ms, Figure 4.7c), ≈ 10 ms for SCG-2 and
BCG-2 (Ts = 2 ms, Figure 4.7b and 4.7d, respectively).

(a) (b) (c)

Figure 4.8: Kernel Density Estimates (KDE) of ei for dataset BCG-2, grouped by
lying position.

The charts in Figure 4.8 show KDE for the database BCG-2 grouped by resting
position; supine, left position, and right position for Figures 4.8a, 4.8b, 4.8c, respec-
tively. The precedent discussion is also valid for those graphs, which provide similar
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results. No significant differences are visible between the KDE, which suggests no
differences in the algorithm’s performances due to the position. A more rigorous
proof of such a characteristic is discussed in the following paragraphs.

4.1.5 Discussion of results

We assessed the proposed methodology on four different datasets, which differ by the
time of measure, aim, temporal resolution and measurement protocol. Therefore, we
explored a wide range of scenarios. To identify possible differences in the algorithm
behaviour between different datasets, we used two statistical tests:

• the Kruskal–Wallis test is a non-parametric test that asses if the results come
from the same distribution or not. Such a test allows verifying if the methodol-
ogy behaves differently between different datasets.

• the Mann–Whitney U test is similar to Kruskal–Wallis but analyse only two
populations.

Because to use such tests we performed multiple comparisons, we adjusted the p-
values through the Benjamini–Hochberg correction: pad j = p ·M/ri, where M is the
number of tests conducted, and ri is the rank of the i-th p-value in ascending order.
The following paragraphs present the results of the tests; in the tables that summarise
the results, we use the following notation: a single asterisk indicates significance at
the 0.05 level; a double asterisk indicates significance at the 0.01 level.

Table 4.4: Results of the Kruskal–Wallis test for differences between lying positions
in dataset BCG-2.

pppad j pppad j <<< 000...000555 pppad j <<< 000...000111

Sensitivity 0.9057
Precision 0.9677
RMSE 0.7842
MAE 0.5213
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Initially, we tested the difference in results between the lying positions of dataset
BCG-2 to verify if there was an influence on the performances. The results reported
in Table 4.4 show that the hypothesis of belonging to the same distribution cannot be
rejected for all the metrics. Thus, we can consider the results of BCG-2 together when
discussing performances because the position does not influence the methodology.

Table 4.5: Results of the Kruskal–Wallis test for differences between datasets.

pppad j pppad j <<< 000...000555 pppad j <<< 000...000111

Sensitivity 0.6290
Precision 0.0663
RMSE 0.0003 * **
MAE 0.0036 * **

Table 4.5 shows the results of the Kruskal–Wallis test, which searches for differ-
ences between all datasets’ performance. Statistically, sensitivity and precision can-
not reject the null hypothesis of belonging to the same distribution; instead, RMSE
and MAE reject it (pad j < 0.01). The first results imply that the detection of heart-
beats is consistent between different datasets. Instead, the RMSE and MAE results
need further exploration to understand why different datasets provide different re-
sults.

As mentioned, Mann-Whitney tests were performed to unravel the differences
between couples of datasets. Table 4.6 presents the results of such an investigation on
RMSE and MAE values; differences emerge in the scores:

• SCG-1 results are significantly different from SCG-2 and BCG-2 ones. As dis-
cussed in the previous section, the limited sampling interval of SCG-1 (Ts =
10 ms) impacts the performances. Indeed, fine temporal annotation strongly
depends on temporal resolution. Such conclusions are supported by the differ-
ences between RMSE and MAE average values reported in Table 4.3.

• BCG-1 scores behave similarly to the SCG-1 ones, even if the differences with
the other two datasets are less hard.
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Table 4.6: The results of the Mann-Whitney tests used to identify differences between
datasets.

Metric Dataset a Dataset b pppad j pppad j <<< 000...000555 pppad j <<< 000...000111

RMSE SCG-1 SCG-2 0.0006 * **
SCG-1 BCG-1 0.1422
SCG-1 BCG-2 0.0083 * **
SCG-2 BCG-1 0.0117 *
SCG-2 BCG-2 0.0686
BCG-1 BCG-2 0.0502

MAE SCG-1 SCG-2 0.0121 *
SCG-1 BCG-1 0.4762
SCG-1 BCG-2 0.0273 *
SCG-2 BCG-1 0.0117 *
SCG-2 BCG-2 0.1501
BCG-1 BCG-2 0.0331 *

• Datasets SCG-2 and BCG-2 do not show any statistical difference.

The results suggest that the sampling frequency Fs should be increased to have
a finer annotation and beat-to-beat intervals more precise. However, increasing the
sampling frequency can be difficult in some scenarios, such as when power saving is
crucial.
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4.2 The smart floor system

Figure 4.9: (a) The appreciation of the molten floor game. (b) The stimulus of active
behaviour.

The PLEINAIR project was presented to the public on 27th October 2021 at the
museum of peasant civilisation in Bentivoglio, an Italian municipality in the Emilia
Romagna region. The smart floor and other smart objects were some of its attrac-
tions. During the event, sixty people tested the floor and the other objects designed.
The users were asked to take a survey, which was made to analyse their impres-
sions in terms of engagement and stimulation in active behaviour. Figure 4.9a shows
the appreciation of the smart floor and the molten floor game by the users. Instead,
Figure 4.9b reports the answers to the question: "Do you feel more motivated to do
physical exercise?". The results show that almost 47% of the users felt more moti-
vated.
Such preliminary data suggest that the objects designed (the smart floor in particular)
can be instruments adequate to stimulate healthier behaviours.

4.2.1 Experimental results

To match the requirement of little weights detection, we tested the smart tile with
a series of experimental measures. After having built and polarised the device as
described in the previous chapters, we used an oscilloscope and a multimeter to mea-
sure the system’s response to an applied mass. We applied the mass through sand and
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a plastic container. The sand was added gradually and always previously weighted
through a weighing scale. The measures were taken starting from 0 kilograms to 2
kilograms and repeated for different zones of the tile.

The conditioning circuit response and the resistance variation

Figure 4.10: (a) Input-output characteristic of one conditioning circuit, obtained
through the measures. (b) Resistance variation due to an applied mass.

Initially, we assessed the correct behaviour of the conditioning circuits and the
sensors through dedicated measures. Figures 4.10a and b show the results of such
measures for four conditioning circuits and sensors. The measurements were ob-
tained by incrementally applying a mass over the tile with steps of 100 grams; the
mass was placed over the various sensors’ positions. Figure 4.10a shows the input-
output characteristic of the conditioning circuit obtained from the data. As described
previously, the characteristic has three stages, the top and bottom saturation stages
and the gain stage. As expected, due to different DAC voltages, the four input-output
characteristics exhibit different slopes; the higher polarisation has the higher gain,
whereas the lower polarisation has the lower gain. Instead, Figure 4.10b shows the
change of resistance of the four sensors; as expected, the resistance and its variation
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decrease with higher weights.

Sensitivity in different zones of the tile

Figure 4.11: (a) The division of the smart tile used to assess the sensitivity in one of its
quarters. (b) The output voltages of the conditioning circuits with a mass positioned
on a specific zone.

To evaluate the smart tile sensitivity, we made a series of experimental measures
described in the following. The first measures tried to identify the sensitivity in the
proximity of one sensor; in this regard, we divided one-quarter of the tile into nine
zones (Figure 4.11a), over which the weight was incrementally applied with steps
of 50 grams while measuring the conditioning circuits outputs. The measures were
taken for each quarter, providing similar results.
The results are shown in Figure 4.11b (the colours of the lines in Figure 4.11b match
the zones’ colours in Figure 4.11a). As expected, the output values increased with
the weight increments. The results show a dependency of the circuit response due to
the zone over which the mass was applied. Indeed, the curve with the higher slope
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is relative to zone number 5, the zone under which the sensor was placed. Moreover,
after the tile centre, the higher slopes are provided by the zones on the borders (zones
6, 2 and 3). Such behaviour is due to the reduced directions over which the force can
propagate; indeed, for the zones closer to the tile’s centre (zone 7, for example), the
force is distributed over more directions, thus reducing the pressure on the sensor.
The results also show that the smart tile can produce a significant output change for
a mass of 300 grams (we consider significant a change of at least 500 mV).

Figure 4.12: (a) The division of the smart tile used to assess its sensitivity to weights
(b) The response of the conditioning circuits when a mass is positioned over a specific
zone of the smart tile.

The same process was applied for the successive measures, which involved the
tile in its entirety. The new subdivision of the smart tile, together with the sensors’
position, is shown in Figure 4.12a, while the outputs of the conditioning circuit of
sensor number one are displayed in Figure 4.12b (again the zones’ colours and the
lines’ colours match). Those experimental measures allowed us to verify the sensitiv-
ity over a larger surface. We measured the circuit response to weight increments of
100 grams.
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The results show that a 300 grams sensitivity is obtainable only for four zones over
nine; indeed, the value of 500 mV is reached only by four lines in Figure 4.12b. Such
an event is explainable considering the distance of the zones from the sensor. Zone 9
is the one that provides the higher increase because the sensor is positioned under it.
Zones number 8, 6, and 5 are the closest to sensor number one, thus the others that
show an output increase. The remaining zones are too distant to provide a valuable
increase even for a mass of 2 kilograms. The results suggest that it is mandatory to
use at least four sensors to have the required sensitivity over the entire surface. The
other sensors provide similar results.





Chapter 5

Discussion, future developments
and conclusions

In this chapter, final comments about the two systems will be reported. The discussion
starts with the BCG/SCG system and continues with the smart floor system. Such
discussions contain a comparison with the literature, a summary of the results and
the future development necessary to improve the technologies.

5.1 Discussion on the BCG and SCG system

In Chapters 2 and 4, we have discussed the technical aspects, the methodology and
the results of the BCG and SCG system. The following paragraphs compare such
results and methods with other works in literature.

Regarding the SCG system, it should be underlined that various papers focused
on the identification of heartbeats. Authors of [127] developed an automated method-
ology to detect AO instants, using wavelet decomposition and Shannon energy-based
detectors, achieving scores of sensitivity and precision of 94% and 90%, respec-
tively. Only a portion of the CEBS database (SCG-2 dataset) was analysed, particu-
larly 4585 heartbeats, approximately 6.5% of the entire database. During the analysis
of database SCG-2, our methodology discarded no beats, achieving higher perfor-
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mances. Even if our method does not search for AO instants but the simple presence
of a heartbeat, it is worth comparing the results.
Instead, through a moving average methodology, the authors of reference [128] dis-
cuss a way to identify systolic and diastolic regions in the SCG through a moving
average method. Authors report 4% and 9% errors for detecting systole and diastole
events, respectively; our results favourably compare.
To test their methodology, the authors of reference [129] acquired SCG and ECG sig-
nals during a Lower Body Negative Pressure (LBNP) test with participants positioned
supine. They obtained a beat detection average sensitivity to increasing lower body
negative pressure levels of 97.2%, 93.0%, 76.9%, 61.6%, 65.0%, whereas RMSE
values are 40, 71, 26, 51, and 27 ms. Even authors of [130] acquired and analysed a
dataset with the subjects in the LBNP condition, declaring an annotation error of 9±9
ms (mean ±standard deviation).
Through accelerometer and gyroscope, the authors of [131] designed a methodology
able to reach high performances. Indeed, sensitivity and precision reached 99.9%
and 99.6%, respectively. Instead, the RMSE reached 5.6 ms, with signals sampled at
a frequency of 800 Hz. In the case of the SCG-2 dataset, our algorithm achieved an
RMSE of 4.5 ms with a similar sampling frequency (500 Hz). Conversely, in [46], a
very low RMSE was achieved, with a detection rate range of 32% - 14%.
Using a smartphone, the authors of [132] acquired eleven SCG traces; through con-
tinuous wavelet transform, they analyse the signals and obtain a sensitivity of 99.5%
and precision of 97.4%. Even though such scores are comparable to ours, the beat-
to-beat errors have a standard deviation of around 17.5 ms, higher than any value
obtained in the datasets we have analysed.
In [133], the authors train different machine learning algorithms to detect heartbeats
inside a portion of the CEBS database (SCG-2 dataset). The models are trained on
6000 cardiac cycles and cross-validated on 3000 (whereas the CEBS database con-
tains approximately 69,500 beats, all analysed in our methodology). Initially, the
traces are segmented using the ECG trace to identify the regions of interest; suc-
cessively, authors use a series of binary classifications to annotate different maxima.
The best average sensitivity and precision results are around 97% and 95%, respec-
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tively. Instead, the best RMSE error is 3.2 ms, although such a result is obtained
having as reference the R peak; instead, our results are computed between consecu-
tive annotations. Such difference implies a factor of

√
2 in favour of the former (i.e.

RMSEC−C ≈
√

2 ·RMSER−C). Such implication indicates that our methods provide
slightly better scores while considering the entire CEBS database. Moreover, our re-
sults were obtained without supervision, thus without ECG information.

Regarding BCG, the scores obtained compare correctly with other works in the
literature. In [121], the authors compare setups differentiating between single/double
bed, sex, and sensor type, achieving a MAE of 13.22 ms with a sampling frequency of
300 Hz. Instead, reference [134] reports a MAE of 7.7 ms for an analysis computed
over BCG signals acquired from a smart chair. A similar setup was used in reference
[135] with a sampling frequency of 1k Hz; the authors declare a standard deviation
of the measurement errors of 14.35 ms, a value superior to each 10th LPP of our
RMSE’s results. Also, the proposed methodology compares well with the scores of
[121] and [134]. Indeed, the MAE reported in the former is above the 10th LPP of
dataset BCG-1, whereas in [134] the MAE is close to such value.
Taking into account sensitivity, the authors of [136] scored 92.7%. Instead, reference
[121] reports a precision of 98.8%, a value comparable to ours. The best-performing
method described in reference [137] achieved a 95.0% sensitivity, a lower value if
compared to our methodology.

Our methodology well compares with the literature for both SCG and BCG sig-
nals. Although a good concordance with the literature, the work presented here has
its limitations:

• The datasets analysed provide signals from static or quasi-static conditions.
However, motion artefact-free periods are present during an ordinary day, like
during sleep, especially for senior users.

• Future developments will add new features to our methodology. For example,
from a perspective of a stand-alone device, it is necessary to discriminate be-
tween quiet periods and motion-intensive ones.

• BCG signals, in particular, can be acquired through different objects, which
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influence the output signals. It is important to study such influences to reduce
them. As an initial step toward such understanding, we want to compare the
quality of the BCG signals obtained from different locations under the bed
through a second accelerometer.

• A design of a stand-alone device will need further studies on power consump-
tion and computational demand, two fundamental aspects necessary to provide
a suitable device. Moreover, the analysis algorithm must be adapted to an em-
bedded solution reducing the time range of the analysis to a few heartbeats.

• The signals analysed were obtained in laboratory conditions. Future develop-
ments will investigate signals provided by domestic environments. We have al-
ready acquired and analysed a six-hour measure, and the results are promising.
Data were obtained from one subject while sleeping at night; results aligned
with the scores precedently discussed. However, we discarded approximately
2% of the data due to motion corruption of the ECG, which made BCG valida-
tion impossible. We achieved a 95.4% sensitivity and a 94.8% precision on the
valid data, with RMSE and MAE of 5.12 and 3.54 ms, respectively.

5.2 Discussion on the smart floor system

In Chapter 3, we have presented and described a smart floor system. The following
paragraphs contain a brief discussion of the main features of such a system.

We focused on creating a device that can engage users of different generations
and stimulate active behaviour. Such involvement can only happen with a respon-
sive device for good user interaction; the strict requirements and the methodology
of games’ design came from this necessity. The experimental measures conducted
above the smart tile show the achievement of the requirements. In particular, we have
designed a smart floor sensible to the touch of children’s hands or feet.
Compared to other works in literature [138, 139], our system provides more than
a smart floor for activity detection, adding a ludic feature. Moreover, some design
choices like the anti-trauma material and future engineering will allow the system to
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be displaced outdoor. While also other studies [107] investigated a modular system
able to be an entertainment platform, the outdoor component can bring a different
perspective to such a device.
The device has been tested and presented in public on multiple occasions; users al-
ways provided positive feedback from its use. Surveys conducted among the users are
promising and indicate that the system can achieve its purposes. Future developments
will be directed in various paths:

• The user interaction can be improved by adding, for example, sound outputs
and new inputs like buttons or displays.

• The limited choice of games is an obstacle to the purposes of the system.
Adding a more extensive availability of games is desirable.

• Some technical limitations need to be addressed to improve the system quality.
For example, power consumption should be limited; moreover, in the perspec-
tive of outdoor use, the system must be engineered to be impermeable.

• We identified some problems in the sensing of pressures when the smart tiles
are not mechanically blocked. The study of an improved mechanical structure
can reduce them.

• New materials must be studied for indoor use, like ceramics or wood.

5.3 Conclusions

The work described in this document focused on the study and the design of systems
that can provide a better life to users by identifying possible problems and stimulating
more active behaviours. The former is the purpose of the BCG and SCG system, while
the latter is the purpose of the smart floor system.

The first system allows the acquisition and analysis of BCG and SCG wave-
forms. The system’s principal elements and features were described as the algorith-
mic phases that bring heartbeats detection.
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We tested our methodology on four different datasets, two containing SCG traces and
two containing BCG traces from bed setups. The databases differ in multiple aspects
like measurement protocol, subjects involved, time resolution and many more. Such
differences allow exploring and testing the system in various scenarios.
The performances measured are stable across all the datasets; we have validated this
characteristic through statistical tests performed over precision and sensitivity scores.
Instead, the same tests were conducted over RMSE and MAE scores, showing a de-
pendency between such results and the sampling frequency. Lower frequencies pro-
vide higher values; thus, less efficiency in precise time annotation because of a less
fine temporal resolution. Such limitation imposes to choose between power savings
and temporal resolution.
A unified methodology for SCG and BCG analysis does not imply any performances
loss. Indeed, comparisons with other works in the literature show that the proposed
method can often provide better results. Future developments will need to adapt the
algorithm to an embedded implementation by reducing the temporal range of analysis
to a few heartbeats.

The second system is a 4 meters large and 2 meters long smart floor that can in-
teract with the users to recognise activities and stimulate healthy behaviours through
various games. The device was designed in the context of the project PLEINAIR,
which Regione Emilia-Romagna founds.
We connected 32 smart tiles mechanically and electrically to create the smart floor.
The smart tiles have a mechanical structure that we expressly designed to be func-
tional and straightforward. The main elements of the mechanical system are an anti-
trauma tile, piezoresistive sensors, LEDs, and PVC layers. The control of the smart
floor is made through different electronic boards named RIO, which acquire the sig-
nals, light up the LEDs and provide information on activity to a controller board
through an I2C bus. The controller board elaborates the data, commands the RIO
boards and transmits the results to a server through Wi-Fi.
We designed the RIO board to meet our requirements, particularly the conditioning
circuit, which must sense a mass of 300 grams. Measures taken on the conditioning
circuit shows the validity of the solution adopted and suggest the minimum number
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of sensors to use to respect the requirements in the entire tile surface.
Two procedures must end correctly to start the smart floor and make it operate prop-
erly: the discovery and calibration procedures. The first allows the controller to know
the spatial positioning of each tile, while the second one allows the calibration of all
the sensors.
Each game developed was first described using a state machine and successively
translated into C code. Such methodology allowed to reduce possible errors and un-
desired behaviours of the floor.
The system was presented to the public on multiple occasions, always receiving pos-
itive feedback and appreciation.

The two systems were designed to work independently, but a great value could
come by fusing their information. Indeed, introducing such systems (opportunely
adapted) in a domestic environment allows access to physiological data and activity
monitoring together. In such a context, analysis to discover possible anomalies, trends
and problems can become easier due to the richness of the data.
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