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Abstract 

Current discrete manufacturing systems are characterized by an ever-increasing complexity, 

demanding for innovative technologies that promote the agile development of intelligent and 

flexible systems, capable of highly optimized performances, but also ready to evolve promptly 

according to the requirements of production. Industry 4.0 and its whole ecosystem of 

methodologies and technologies lay their basis on the assumption that no future development 

is possible without a tight integration between the mechatronic system and its digital 

counterpart. 

With such a background, changing perspective to deal with distributed modular architectures of 

Cyber Physical Systems is mandatory, and the IEC 61499 standard, its object oriented and event 

based approaches promote this paradigm shift. The opportunities of this revolution reside in the 

multi-disciplinary nature of the CPS entities and in the possibility to exploit their digital 

counterparts to increase the reliability of the control applications and reduce the development 

times. The adoption of a virtual commissioning (VC) system can effectively support the validation 

phase of the overall procedures, providing immediate feedback and reducing significantly the 

amount of time needed to carry on physical tests on the real mechatronic system. However, 

currently creating a virtual commissioning model is still a complex and potentially expensive 

process that needs to be carried out by different professionals who must tightly cooperate to 

generate an effective playground for the automation testing. 

The main objective of this PhD is the engineering of a new way to the design and develop virtual 

commissioning models, improving the efficiency of the overall process of implementing 3D 

simulation digital twins for complex automated discrete manufacturing systems. The proposed 

approach, leveraging the synergies between modular simulation and automation technologies, 

aims at reducing the required interaction between competences, increasing the level of 

independence of the automation engineer, to increase his productivity. This target requires the 

study and development of an holistic solution that encompasses all the stages involved in the 

implementation of a distributed CPS system, following the natural evolution of the control 

logics, from the early prototyping up to the final commissioning of the whole system and 
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embracing the problem space from the perspectives of two main domains that compose a virtual 

commissioning model: the system engineering and its runtime execution. 

The most ambitious objective of this PhD is therefore study and implement a proof of concept 

of and integrated engineering platform composed of software tools instrumented to cooperate 

for the joint production of virtual-commissioning-ready instances of CPS digital twins. This 

achievement of such result requires the analysis of the current possibilities of extension of 

existing IEC 61499 Automation and 3D Simulation IDEs, the design of an open architecture made 

of a reference data model and a set of software API that, once deployed, manages the 

communication between the applications and the actual realization of scenarios to validate the 

approach. 
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1 Introduction 

1.1 Context and motivation 

Current discrete manufacturing systems are characterized by an ever-increasing complexity, 

mainly due to the quick change of demand and to the request for highly customized multi-

components products [1]. This context demands for innovative technologies that promote the 

agile development of intelligent and flexible systems, capable of highly optimized performances, 

but also ready to evolve quickly according to the requirements of production. Device, machine 

tool and plant builders must promptly react to the modifications of the surrounding 

environments, adapting their products to meet the customer needs, that more than ever move 

in the direction of using reliable and multi-purpose automated systems. 

If the mechanical and electrical design of these complex systems can be improved and generate 

benefits in terms of dynamics of the systems, it has been demonstrated that the real 

breakthrough takes place thanks to the improvement of the automation and, in general, of the 

digital facets of the industrial products [2].  

Industry 4.0 and the whole ecosystem of methodologies and technologies for the fourth 

industrial revolution lay their basis on the assumption that no future development is possible 

without a tight integration between the mechatronic system and its digital counterpart [3]. This 

is demonstrated by the European research agenda that started with Horizon 2020 program to 

push forward the concept of digital twins as fundamental enablers of the new generation of 

intelligent systems and by the current national and international research initiatives whose main 

objective is fostering the adoption of the cyber physical system paradigm in the standard 

workflow of small, medium, and large production systems manufacturers. The digitalization 

process in the last years has grown at an exponential speed and nowadays it permeates all the 

levels and sizes of devices: from the single actuators up to the large scale systems the 

connectivity has become an essential feature, thanks also to the wide diffusion of the IoT 

technologies that reached so optimal levels of maturity and security to be allowed to enter the 

shopfloor. 
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This evolution changed in a permanent way not only the physical nature of the mechatronic 

systems, but also the way they are controlled and governed in the, so called, automation 

pyramid that, as highlighted in Figure 1 [4], stops being a strict hierarchical structure, to become 

a fluid de-centralized architecture.  

 

Figure 1 Evolution of digital pyramid with CPS 

The interlaced CPS facets represent transversal elements, crossing all the layers from the field 

up to the ERP, providing different views of the same object and exposing multi-level services, 

publishing and consuming data, that can be exploited locally, on the edge or on the cloud. Within 

this context the simulation represents a fundamental component of the new automation 

pyramid because it exploits at maximum level the digital nature of the CPS bringing a great 

number of benefits at design and operation time.  

Within these boundaries, a key role is played by the automation logics developer who is in 

charge of formalizing and translating into working code not only the control logics of the device 

as he always did, but also its multiple interfaces towards the digital world. These connectors 

include protocols and technologies whose objective is opening as much as possible in a standard 

way the doors to the internal information of the production environments (e.g., OPC.UA). These 

new requirements and, the need to implement industrial products with a “first time right” 
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approach stress the automation development procedures so that if on one side the complexity 

of the work increases, the time to produce optimized and reliable customized devices decreases. 

With such a background, changing perspective, from a centralized classical approach to the 

distributed modular one, is mandatory, in order to exploit tools and methodologies that may 

help the control engineers in they everyday activities, reducing the overall burden and splitting 

it on smaller and more comprehensible components. In this way it is possible to better focus on 

the optimization of particular parameters of interest in order to obtain the improvement of the 

global performance of the system. This kind of architectural approach is strongly supported by 

the IEC 61499 standard, which defines function blocks for industrial process measurement and 

control systems. The IEC 61499 replaces the old concept of monolithic program, written in a 

language compliant with the standard IEC 61131, with the concept of Application which is 

composed of hierarchical bricks called Function Blocks (FBs) and that can be dynamically 

distributed at runtime on multiple Resources. 

This design pattern, streamlines the organization and development of the automation logics, 

modularizing it and improving the abstraction from the underlying executing hardware. 

Nevertheless, the problem of obtaining a “zero defect” behavior in a short implementation time, 

particularly for large systems, is attenuated but not removed, the automation solution must be 

still tested and accurately debugged. Testing the logics behavior of an automated system is a 

time-consuming task of the design and engineering phase that frequently leads to team racing 

and causes delays on the delivery to the final customer. Figure 2 shows a typical development 

process of a discrete manufacturing system, highlighting the critical phase where the 

inefficiencies can occur. 
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Figure 2 Typical development process of discrete manufacturing systems 

To this purpose, the adoption of a virtual commissioning (VC) system can effectively support the 

validation phase of the overall procedures, providing immediate feedback about the expected 

results. A virtual commissioning system is based on the connection of the controllers with a 

simulation model capable of reproducing the reaction of the real environment under actions 

generated by the automation. Such tools can reduce significantly the amount of time needed to 

carry on physical tests on the real mechatronic system because they provide the means to 

perform off-line debugging sessions. 

 

Figure 3 Possible scenario of improvement with virtual commissioning 
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Figure 3 shows a possible scenario of improvement of the global production process that could 

be derived from the introduction of the use of virtual commissioning tools. The automation code 

testing is split into a first extensive phase parallel to the construction of the physical devices and 

a lighter and faster advanced phase concurrent with the mechanical tests. 

The benefits of this approach are multiple, and all go in the direction of increasing the 

performances of the production: 

• extensive debugging sessions can be anticipated without the need to wait for the 

physical system to be fully assembled; 

• the parallelization of the testing procedures, reduces the risk of racing conditions 

between production departments, because decreases the amount of time spent by the 

automation engineers on the device before acceptance tests; 

• the possibility to test multiple scenarios without facing the risk of system breakage 

allows the control engineers to evaluate the safety boundaries and verify the correct 

behavior also in dangerous operating conditions; 

• when the virtual commissioning system is capable to simulate also the technological 

process, the virtual tests imply savings in terms of materials that would become waste, 

energy and time that would have to be spent in raw parts handling; thus the approach 

goes in the direction of an improved sustainability of the whole production. 

If the benefits of the approach are evident, it is important noting that currently creating a virtual 

commissioning model is still a complex and potentially expensive process that needs to be 

carried out by different professionals who must tightly cooperate to generate an effective 

playground for the automation testing.  

The Automation Developer is the person in charge of the development of the device logics, its 

testing and debugging and becomes the repository of the knowledge of the system rules. For 

this reason, from a user perspective, he is also the actual consumer of the simulation results, 

since they provide the needed feedback to identify unpredictable pitfalls in the device operation 

(e.g., possible collisions, wrong operating sequences, etc.). 
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On the opposite, the simulation expert is not able to complete the aforementioned activities 

without a deep understanding of the system, its mechanical structure, its physics and the logics 

reaction rules. For this reason, the two figures must closely interface; the automation engineer 

must transfer to the simulation expert the full knowledge of the device, provide the map of input 

and output signals governing the interaction between the control and the mechatronics and 

explain how each component is expected to operate. 

This iterative process is evidently expensive and affected by some inefficiencies: 

• the transfer of the expected system behavior to the simulation engineer can be really 

high, especially for complex machines and plants 

• the possibility to introduce errors increases at least linearly with the dimension of the 

simulated system, even if it is an assembly of reusable components, because in a non-

object-oriented automation paradigm, each signal must be manually mapped to the 

right entity of the simulation model 

• a change in the physical domain requires the intervention of both engineers, requiring 

at minimum three steps of description of the differences, their implementation, and 

their validation 

The third aspect in particular makes it really expensive and hard to effectively apply the 

described paradigm when the underlying mechanical system is evolving quickly. This happens 

very often, for instance, in the everyday work of the system integrator companies, which need 

to test several possible alternatives of the same productive layout, with proof of concept control 

logics, and to further implement the most promising. 

In the following chapters the problems here introduced will be examined in detail and split on 

the functional domains of the virtual commissioning system, leading to possible solutions that 

have been designed, implemented and validated during the research activities here 

documented. 
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1.2 Objectives of this research 

The main objective of this PhD is the engineering of a new approach to the design and 

development of virtual commissioning models improving the efficiency of the overall process of 

implementing virtual commissioning digital twins for complex automated discrete 

manufacturing systems. 

The proposed approach, leveraging the synergies between modular simulation and automation 

technologies, aims at reducing the required interaction between competences, increasing the 

level of independence of the automation engineer, and overcoming some of the cited 

limitations. This target requires the study and development of a holistic solution that 

encompasses all the stages involved in the implementation of a distributed CPS system, truly 

following the natural evolution of the control logics, from the early prototyping up to the final 

commissioning of the whole system.  

The foundation of the work is established on the capability of the IEC-61499 standard to 

orchestrate CPS hierarchies relying on the concepts of object-orientation, so that that the 

modularity and reconfigurability of the mechatronic product coincides to that of the software 

governing them. This means that the same organized and scalable methods can be applied in 

the concurrent design of the digital models mirroring the control system, promoting the 

development of a new generation of CPS entities whose simulation counterpart not only exist 

and operate at production time but streamlines the everyday work of the automation developer. 

The final tangible expected result of the whole work is the full integration between the  

behavioral models of CPS devices with their IEC-61499 functional architecture, enabling a 

complete and seamless connection between the information flows originating through the 

sensing and acting capabilities of the CPS itself on one hand, and the data structure of the 

simulation model on the other hand, independently from where they reside and transparently 

to the engineers’ efforts. 

To this purpose, the activities of this research start from the exploration of the possibilities to 

integrate the IEC-61499 platform with third party model design environments and simulation 
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engines that allow the definition of multi-disciplinary behavioral models, representing 

complementary aspects of the CPS physical dynamics.  

The creation of an infrastructure coupling the intelligence supervising the physical system with 

the multi-level simulation models can be achieved only embracing the problem space from the 

perspectives of two main domains that compose a virtual commissioning model: the system 

engineering and its runtime execution. In fact, both at automation and at simulation side the 

concept of separation between model in preparation and model in execution is strongly present 

and mainly arises from the big difference between the requirements of design time formats, 

that need to retain all the source information for the continuous editing, and the requirements 

for the runtime artifacts, that usually need to be optimized for performance and resource 

consumption, i.e. compiled. For the same reason, usually the two different platforms are 

composed of two main applications: an authoring environment and an execution engine. 

The runtime facet of the virtual commissioning domain is based on the live and quasi real time 

connection between the automation and the simulation engines, and deals with the objectives 

of ensuring a high-throughput data exchange between the artifacts mimicking the physical 

exchange of low level I/O signals between the automation solution and the real set of sensors 

and actuators of the device hardware. At this level, many solutions are already present on the 

market (seethe state of the art of Chapter 2) but almost all of them are based on non-object-

oriented automation standards belonging to the IEC 61131 ecosystem. They are characterized 

by the adoption of low-level standard communication protocols, like Modbus, that require an 

extremely time consuming mapping process of the I7O signals, or by the usage of high-end data 

access protocols like OPC-UA that perfectly maintain the semantics of the information but lack 

in performance when they must be used for testing and debugging of control logics. Therefore, 

the research activities, at runtime level, aim at developing a high performance and secured I/O 

channel that leverages the two fundamental features of the IEC 61499 standard: the object-

orientation and the event based paradigm. The main expected benefits on this topic are a 

significant reduction of the configuration burden and the improvement of the support of the 

communication architecture to distributed cyber physical systems. Maintaining near-real-time 

bidirectional synchronization with the shop floor is based on the study of extensions of the 
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platform and plug-ins for commercial software to allow the integration of IEC-61499 approach 

with any simulation tool wanting to become compliant with the standard. 

The engineering aspect, first in terms of production workflow, represents also the most difficult 

context to deal with. The nature of the software environments involved in the engineering phase 

of the cyber-commissioning are completely different and share only a similar and really high 

degree of complexity. An IEC 61499 Automation Integrated Development Environment (IDE) and 

a 3D Simulation IDE are meant to support their respective end users in the fine-grained 

authoring of large scale models. They typically provide complete set of tools that allow the 

definition, programming, compilation and execution of completely different software artifacts 

and they are designed to be self-contained and self-standing applications, rarely interfaced with 

other platforms. The most ambitious objective of this PhD is therefore study and implement a 

proof of concept of and integrated engineering platform composed of software tools 

instrumented to cooperate for the joint production of virtual-commissioning-ready instances of 

CPS digital twins. This achievement of such result requires the analysis of the current possibilities 

of extension of existing IEC 61499 Automation and 3D Simulation IDEs, the design of an open 

architecture made of a reference data model and a set of software API that, once deployed, 

manages the communication between the applications and the actual realization of scenarios 

to validate the approach. The activities originate within the context of Daedalus European 

Research Project, where the consortium was designed to pursue a wider superset of objectives 

related to the promotion of IEC16499 standard as key enabler for the distributed control of new 

generation of CPS systems. The natural follow up of Daedalus is represented the 1-SWARM 

European Research Project that pushes forward the original targets towards the concept of 

Cyber Physical System of Systems. 1-SWARM lays its basis on the industrial implementation of 

IEC-61499 to provide an industrial grade engineering environment supporting the design of 

control applications and visualization together in one tool; automatic generation of the 

communication during the distribution process of the application; the debugging and online-

monitoring infrastructure, allowing to remotely debug single Function Blocks (that is, one of the 

key programming formalisms of the standard) as well as fully distributed applications. Thanks to 

this unique, innovative, and standard-based approach, 1-SWARM aims at obtaining simple-to-

deploy aggregation of already existing CPS, each one with its own on-board intelligence, to 
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compose the articulated “Cyber-Physical Systems of Systems”. The activities are then carried on 

in continuity among the two research initiative and in collaboration with several academic and 

industrial partners that provided, not only the domain knowledge, but also the open access to 

the corresponding software platforms for the runtime and engineering of IEC 16499 and 

manufacturing system 3D kinematics simulation.  

For this reason, the whole present research is based on a twofold approach that starts from the 

study and design of platform independent solutions, characterized to be openly accessible and 

applicable virtually to any third-party commercial application, an then goes deep in the 

implementation of proof of concept prototypes based on the software platforms available in the 

consortium. This conceptual and pragmatic way of proceeding reflects in the organization of the 

dissertation, which alternates the documentation of the developed open specifications of data 

models and interfaces with the presentation of the results of applying them to the commercial 

software platforms provided in particular by NxtControl GmBH for the IEC 61499 automation 

side and Technology Transfer System s.r.l. for the simulation side. 

In compliance with the desire of realizing not only a theoretical study, but to explore with a real 

implementation the potentialities of the proposed approach, the third objective of this PhD is 

developing is a set of show cases that, applying the previous results demonstrate the actual 

usability of the engineered solutions, highlighting benefits and limits, to pave the way for future 

improvements. 
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1.3 Executive summary 

The main objective of this PhD is the design and development of virtual commissioning 

framework based on the IEC 61499 standard capable to improve the process implementing  

digital twins for complex automated discrete manufacturing systems. In order to produce a 

coherent and vendor independent result, the research activity covers both main functional 

domains of the virtual commissioning system: the engineering phase and the runtime execution. 

They are characterized by really different requirements and solutions, but the former can’t 

overlook the latter, and the harmonization of the approaches is a key aspect of the activities of 

this PhD work. 

The proposed solutions are meant to increase the capability of automation developers to deal 

with the advanced testing of IEC 61499 control application for complex and distributed 

architectures of Cyber Physical Systems, supporting them in exploiting the expressivity of 3D 

virtual environments simulations for the testing phase. The holistic view on the problem requires 

to advance in both the two involved knowledge domains, the automation, and the simulation, 

to study and implement bridges that facilitate their interaction. Such an objective can’t be 

reached without a tight collaboration between the IEC 61499 and 3D simulation professionals 

that must intervene within their respective contexts to adapt software tools and methodologies 

to the proposed integration layers. This is the reason why the research has been carried on in 

the scope of the collaborative initiatives of the Horizon 2020 Daedalus Research Project and of 

the Horizon 2020 1-SWARM Research Project where reference partners in the field of IEC 61499 

like NxtControl cooperated with simulation platform builders to create industry ready 

prototypes of integrated digital twin frameworks. This PhD in particular focuses on the 

simulation side, leveraging on the personal expertise matured during a personal path dedicated 

to 3D kinematics and dynamics simulations, and fully documents the work from the digital twin 

perspective. The whole approach has been tested extending the DDD simulation platform 

provided by Technology Transfer System S.r.l. The automation counterpart, which is not 

reported in this thesis, has been developed by NxtControl that extended its own IDE and its 

runtime to cope with the respective new communication architectures. 
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The structure of the document is organized to start from a detailed introduction about the target 

type of simulation (Chapter 3) and about the software platform and artifacts that stand behind 

the modular set-up of a 3D kinematics virtual environment. This overview is needed as a 

background to the comprehension of the data models underpinning the whole proposed 

infrastructures, since they are internally mapped on the components of the simulation software 

applications. The report then proceeds with the description of the overall proposed architecture 

(Chapter 4), discussing the design choices made to intervene on the two major aspects of the 

engineering and execution of virtual commissioning sessions on IEC 61499. The results obtained 

for the runtime execution of virtual commissioning models are fully detailed in Chapter 5, that 

moving from the identified requirements, contains sections dedicated to the I/O Data Model 

and to the two main implementations, WebSocket based and MQTT based, achieved and tested 

within the context of this research. Chapter 6 formalizes the solutions studied for the integration 

of engineering IDE presenting the underlying Digital Avatar Data Model and the integration API 

based on the GRPC protocol, as well as the impact on the automation developer workflow. 

Finally, Chapter 0 contains industry ready examples of application of the overall result developed 

within this PhD, providing evidence of the achieved progresses.  
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2 State of the art 

The connection of machines with their digital representation has become an essential aspect for 

the management of the whole lifecycle of mechatronic systems, from the early prototyping to 

the optimization of performances [5] [6]. The Digital Twin, a concept borrowed from space 

programs where simulation of the systems is mandatory to ensure any change produces the 

desired effect, is indeed becoming a strict requisite providing engineers with the opportunity to 

address any undesired effect before applying the changes to the system in operation. This 

concept has been nowadays broadly extended to support products/systems design, virtual 

commissioning and the optimization of manufacturing lines installation & ramp-up [2] [7]. 

The virtual commissioning context is intrinsically a shared field of knowledge, methodologies 

and technologies that cover domains, the automation and simulation, whose differences arise 

from the nature of the approaches they follow to achieve their objectives: hardware oriented 

the former and purely digital the latter. The tiny interface layer between them represents the 

actual subject of an interaction whose great benefits impact on the whole manufacturing 

systems production process. Therefore, the state of the art in this context is mainly related to 

the evolution of the communication protocols exposed by the control hardware and software 

for what concerns the runtime aspects and to the progress of the simulation development 

platform for what refers to the engineering process. 

At runtime, most of the architectures currently available for virtual commissioning rely on widely 

accepted interfacing standards for signals exchange in order to integrate the controlling logics 

with the simulation models. The automation solution is treated no more than a black box that 

generates output signals controlling actuators and receives input signals provided by sensors. It 

is a quite rigid paradigm, whose quasi-unique variant is represented by the type of connection 

established, that on its turn, normally is limited by the availability of connectors within the PLC. 

So typically, a Siemens S7 PLC is interfaced with its proprietary protocol, to access internal 

memory DBs, while a Schneider PLC can be easily interfaced through Modbus standard 

messaging to access low level coils, input and holding registers. Each platform provides its own 

set of connectivity solutions that range from purely proprietary (e.g., the Fanuc Focas2 libraries) 
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to completely standard ones (e.g. OPC-UA) but none of them tends to cope with the way the 

automation solution is structured, they only rely on the I/O maps. This approach founds its 

acceptance mainly on the simplicity of comprehension because it doesn’t require any knowledge 

about the specific automation platform that is governing the system. This being agnostic on the 

standard running the control is effective when applied at the runtime of the virtual 

commissioning session because once the input and output are mapped on the two sides of the 

connection, the signals flow and the simulation model runs independently from the system 

generating the signal values. However, the possibility to run distributed virtual commissioning 

sessions is strongly limited by this approach and only few experiences report encouraging results 

about the possibility to perform multi-sided communication between nodes of the same control 

solution and all of them are based on the IEC 61499 standard. A good example is provided as an 

extension to the work of Mazzolini et Al. [8], where the validation of the optimized control of a 

distributed system is interfaced with a simulation model based on the Simio platform [9]. In this 

specific case, the adoption of the IEC61499 allows to manage the different nodes and, through 

the real-time synchronization of the event bus, provide a consistent single entry point to the 

automation network, through a “signal collection” Function Block in charge of supervising the 

communication with the digital counterpart. It represents a valid starting point, but it does not 

yet exploit the object orientation of IEC 61499 to handle the bi-directional mapping of data 

between simulation entities and the corresponding function blocks. An attempt of exploiting the 

modularity of the IEC61499 standard and transfer it to the simulation environment is made by 

J. Cabral et Al. [10]. Their approach is based on the possibility to map between IEC 61499 models 

and the FMI standard and an implementation of a tool that can export IEC 61499 models into 

FMUs (Functional Mockup Units – parts of the standard FMI – Functional Mockup Interface [11]), 

which would allow the co-simulation of physical plants and the PLCs software that controls. 

More automation oriented research are present in Xavier, Patil, Viatkin [12] where the formal 

verification of the IEC 61499 solution is performed with simulation in the loop but the cited 

simulation is constituted by Function Blocks and doesn’t work with an external 3D simulation 

environment. One of the most promising work for performing the collaborative virtual 

commissioning for PLC validation is represented by the approach of Liu, Atmojo, Vyatkin [13] 

where they exploit the Software in the Loop (SIL) paradigm to mix both SoftPLC and virtual 
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device models, deploying them on a containerized docker infrastructure. The virtual devices are 

mainly implemented by IEC 61499 solutions that react as counterparts, so that the homogeneity 

of the technology simplifies the interaction. The communication channel in particular coincides 

with the IEC61499 event bus so there is no need for leveraging different communication 

technologies for interfacing third party simulation software. This way of managing the 

Simulation in the Loop is common to other virtual commissioning experiences on IEC 61499, 

because it does not require the development of exogenous models but the simulation twin of 

the real factory is implemented using the same Function Blocks and the same programming 

language [14]. All the reviewed approaches share the focus on the integration at runtime of the 

deployed control applications, and the same does most of the literature review related to the 

topic of virtual commissioning on IEC 61499 platform [3], [15]. 

Considering the limitations aforementioned about the design process and the development of 

heterogeneous simulation models, almost no solution exists in literature of full attempts of 

integration between automation and simulation IDE to create multi-disciplinary IEC 61499 

enabled Cyber Physical Systems. Only the work of J.Cabral et Al. [10] can be considered an 

attempt to move in such direction since it relies on the implementation of an automatic tool for 

the translation of function blocks into FMUs, but this is far from the possibility to guide the 

automation developer into the building process of a 3D virtual environment capable of a 

completely different level of realistic and articulated response. 

From the commercial point of view, instead, there exist solutions that integrate development 

environment belonging to different knowledge domains to create multi-perspective engineering 

platforms. An example is the Siemens Tecnomatix [16] suite of simulation and virtual 

commissioning tools that are fully compliant with the set of tools dedicated to automation and 

provided through the TIA portal. In the context of robotic simulation, the possibility to natively 

operate within vendor specific integrated environments is provided by most of the robot 

builders, e.g. by Fanuc with Robot Guide [17] or by Delmia with the Robotics Virtual 

Commissioning application. Historically the robotics field has been one of the first to handle 

testing on virtualized models because it did not have to cope with a plethora of legacy systems 

like the traditional discrete automation requires to do.  However, all the of them behave like 

closed ecosystems, dedicated to specific hardware and none of them complies with the IEC 
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61499 standard. This analysis of the state-of-the-art highlights how the field of integration of 

software tools for the IEC 61499 needs to be explored, looking for solutions that are vendor 

independent and open for adaptation to multi-disciplinary scenarios to promote the 

development of real Smart factories. The following chapter reports a short review of the IEC 

61499 standard as a quick reference for the reader who is not used to operate in such 

automation environments. 

2.1 IEC 61499 

The IEC 61499 standard has been designed to facilitate the implementation of distributed 

automation intelligence [18]. At the beginning the standard could not meet the industrial world 

acceptance, mainly because of some imperfections of the initial version of the standard, which 

allowed personal interpretations [1]. Nowadays, with the emergence of professionally made 

software tools and dozens of hardware platforms, stronger industrial interest to the distributed 

automation can be expected. 

The goal of IEC 61499 is “to offer an encapsulation concept that allows the efficient combination 

of legacy representation forms with the new object and component-orientation realities”. At 

the core of the standard there is the concept of Function Block. An IEC 61499 Function Block 

(FB) represents a system component, which is implemented and controlled by the internal FB's 

software. The approach based on FBs increases the modularity of the system and promotes the 

reusability of software components in the system.  

Function Block 

The IEC 61499 architecture of a function block derives from the concept of subroutine-like 

structure in IEC 61131-3, to provide process-like abstraction. A process is an independent 

computational activity with its own set of variables (context) that communicates with other 

processes via messages that flow through the event interface. This encapsulation mechanism 

provides the strength of this architecture because it allows the arbitrary allocation of FBs to 

distributed domains.  

Hierarchy and internal implementation 
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The architecture of an IEC 61499 application supports unlimited nesting of composite function 

block structures, and combination of several diagram types: block-diagrams, state charts, and 

ladder logic in the same design. 

Encapsulation 

A key enabler of the portability of IEC 61499 applications is the strong data encapsulation into 

components. This is widely recognized as one of the pillars of creating reusable code preventing 

hidden dependencies between variables of several FBs. This model also reflects the fundamental 

property of distributed systems where any data exchange can be implemented only via explicit 

message passing. 

Event-Driven Execution 

FBs of IEC 61499 are event-driven, i.e., they remain idle unless an event is sent to one of their 

event inputs. The main motivation for event-driven execution is portability, i.e., the desire to 

make the code independent of the sequence of FB invocation in the PLC scan loop. The event-

driven execution is the key mechanism enabling transparent modelling of distributed systems. 

After a FB is activated by an input event, it is assumed that it cannot be re-entered before the 

previous activation has terminated. 

Execution 

By definition, the IEC 61499 system configuration is an executable specification of a distributed 

automation system. Naturally, to enjoy the benefits of being directly executable (as opposed to 

more abstract design languages), one needs a tool chain which generates executable machine 

code from the IEC 61499 design artefacts. The tool chain needs to include the following 

component software tools: 

• Compiler from the source FB format to an intermediate code executed with a virtual 

machine, or directly to machine code. 

• Run-time environment – usually a set of libraries of function blocks implementing 

service functions akin to device drivers, responsible for scheduling of FB invocation, data, and 

control flow and interfacing the peripherals. 
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• Support of device management protocol – the function implementing the load of FB 

application to a device, creation of new FB instances, or their modification. 

2.2.1 Available development software tools 

The standard has inspired many researchers to create supporting software tools. The usual 

implementation tool set includes a workbench for editing function block designs and translating 

them into executable form, and some kind of run-time environment, which supports the 

execution of the executable code. 

The most developed examples of such research-oriented workbenches are FBDK and 4DIAC-IDE. 

These have been supported with a consistent development effort until now, with 4DIAC-IDE 

being an open-source project. These tools have been successfully applied in many automation 

projects but mostly in academic and research labs. 

Currently, the most advanced commercial development is nxtStudio [19]. 

NxtStudio (developed by an Austrian company NxtControl) integrates distributed control 

approach based on IEC 61499. It is an industrial grade engineering environment which supports 

the design of control applications and visualization together in one tool. This approach has great 

advantages in productivity and reuse of both control and visualization components. Several 

features of nxtStudio have long been expected from IEC 61499, for example, the debugging and 

online-monitoring infrastructure, allowing to remotely debug single FBs as well as fully 

distributed applications. Another feature is the automatic generation of the communication 

during the distribution process of the application. This greatly reduces the engineering effort 

when distributed control applications are designed. NxtControl has implemented various CIFB 

libraries to support communication over popular fieldbuses, such as EtherCAT and Profibus. 

NxtControl Concept of CAT 

The Model-View-Control (MVC) design pattern has motivated NxtControl to invent the 

composite automation type (CAT) concept. CAT is a function block that combines functions of 

machines or their parts, with their simulation and visualization. 
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Considering for example a “pick and place” manipulator built of two identical pneumatic 

cylinders, each of those represented by a CAT in the FB application. Once the application is 

assembled from instances of such CATs, nxtStudio can automatically deploy the control parts of 

all CATs to the designated embedded targets, while the View parts will be sent to the device 

displaying SCADA screens. In the figure, a CAT of a pneumatic cylinder is exemplified. The CAT 

also includes the (behavioral) model of cylinder’s dynamics. Once executed, the application built 

of these CATs immediately delivers a complete interactive simulation model of the manipulator. 

The CAT concept has proven its benefits in a number of industrial projects, where NxtControl 

tools were used, for example, in building management systems automation. 
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3 3D simulation 

3.1 Introduction 

3D simulation of automated systems has born with the idea of enabling the mechanical 

designers to leave the static world of 3D CAD and move towards the animation of the models. 

The main objective of a 3D simulation is reproducing the complex behavior of environments 

composed of several parts, providing the end user with the means to study the evolution of the 

system over time with multiple and complementary targets among which we can find avoiding 

collisions of parts sharing the same motions space, optimizing trajectories of active elements 

(e.g., machine tools) or improving the overall system performances.  

Historically, this kind of simulation has been applied to robotic systems simulation to reproduce 

the complex three-dimensional motion trajectories of the links of anthropomorphic kinematics 

chains when they are controlled in inverse kinematics mode. In fact, the problem of optimal 

trajectory planning with collision avoidance for such devices is one of the first playgrounds 

where the 3D simulation has been exploited and the evolution to include multiple robots and 

their surrounding devices has been the natural evolution of the engines… 

 

Figure 4 Full plant 3D simulation 
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Currently, 3D simulation engines are capable to reproduce large manufacturing environments, 

composed of several processing stations and their internal logistics of customized products, with 

the capability to mimic, with an ever-increasing level of reliability, their complex behavior.  

3.2 Structure of a virtual environment 

A virtual environment can be defined as “a computer animated 3D model of a manufacturing 

system capable of quasi real-time response”. Each part of this definition can be further 

developed in the following points: 

• Computer animated: a 3D simulation must be able to represent the evolution of the 

whole system through a series of states along the timeline. The focus of 3D simulation 

is how the environment modifies according to a series of endogenous or exogenous 

events. The nature of these events is extensively discussed in the following sections. 

• 3D Model: the 3D simulation must work with three dimensional representations of the 

parts of the system. The representation must be as much as possible realistic 

• Manufacturing system: subject of the simulation are mainly multibody discrete 

manufacturing systems, meaning that it doesn’t handle fluid or continuum mechanics, 

even if in some cases it is possible to approximate them. 

• Capable of quasi real time response: a 3D simulation must ensure a high refresh rate 

(low refresh interval) in order to be able to show in quasi real time what’s the current 

status of the virtual environment and in order to react to exogenous events and adapt 

the simulation model logics. How low the refresh interval must be is a direct 

consequence of the dynamics of the phenomena that the model is reproducing (e.g., 

with high speed and high acceleration motion laws even a refresh rate of 10 milliseconds 

could lead to some unacceptable approximations) 

3.3 Virtual Environment Development process 

The process to set up a 3D simulation for a manufacturing environment is similar for all the 

existing commercially available simulation engines and requires a series of steps that, starting 

from the constructive 3D drawings of the system, lead to an executable model. 
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Figure 5 Steps to build up a 3D simulation 

3.3.1 3D Models 

The geometrical models at the basis of a 3D simulation of an automated system are generated 

starting from the constructive 3D drawings available nowadays in every mechanical department. 

These drawings represent a high value-added asset of the company, whose development cost is 

mainly allocated on the goods productions. The possibility to reuse such assets in a different 

lifecycle phase, allows to better amortize their cost while reducing the time needed to build up 

a simulation model. 

Nevertheless, the fact that the constructive drawings contain all the details for the real 

production, makes them unsuitable, as they are, for a direct application within a large virtual 

environment. The presence of small components like screws, bolts or threaded holes often is 

not relevant for the study of the system behavior but it strongly increases the complexity of the 

models’ shapes, leading to an unacceptable load on the graphics. 
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Figure 6 Simplifying 3D models 

Once simplified, the drawings are translated from the proprietary format of the CAD platform 

to a neutral exchange format that can be imported into the simulation engine. 

These neutral formats include STEP, IGES, VRML, OBJ…. 

3.3.2 Structural Constraints and attributes 

Once the 3D models have been simplified and exported into a suitable neutral format, they must 

be organized into a multi body system defining their relationships and attributes, which typically 

include: 

• Relative positions of parts 

• Level of aggregation into assemblies 

• Kinematics joints 

• Materials 

• Visual appearances 

 

 

The definition of these features normally takes place in a dedicated editing application of the 

chosen simulation platform, where, with the aid of visual tools, it is possible to formalize the 

set-up of the physical aspect of the simulation model: the virtual environment. 
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3.4 DDD Platform 

Within the scope of the research project, the DDD suite of software applications has been used 

as reference 3D simulation platform for the implementation of the new integrated approach to 

virtual commissioning on IEC 61499. The DDD platform, developed by Technology Transfer 

System – TTS S.r.l., is a complete set of tools that support whole lifecycle of multi-purpose 3D 

simulation models, from the initial import of CAD drawings to the runtime for the execution of 

scenarios and the integration with external control systems. 

The suite is composed of three main applications: 

• DDD Model Editor 

• DDD Simulator 

• DDD Machine NC 

• DDD Supervisor 

During the work of this thesis, only the first three, namely DDD Model Editor, DDD Simulator 

and DDDMachine NC, have been used and extended for the purposes of virtual commissioning, 

therefore they will be briefly introduced in the following paragraphs. 

The whole architectures of the applications and of the simulation engine are developed on top 

of Java Platform (version 8), while the rendering engine relies on OpenGL to exploit hardware 

accelerated graphics, when available. Both technologies ensure a high level of portability on 

different hardware platforms, so that the suite can be easily installed and run both on Microsoft 

Windows (7 and upper) and on Linux systems. 

3.4.1 DDD Model Editor 

The DDD Model editor is the integrated development environment (IDE) for the creation of 

simulation models. The application supports the end user with visual tools in the three main 

processes of: 

• Building up the 3D virtual environment 

• Developing behavioral logics 

• Assembly and parametrize the overall simulation model 
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Figure 7 DDD Model Editor IDE application 

3.4.2 DDD Simulator 

DDD Simulator environment is the runtime application that supports the optimized execution of 

3D simulation models or virtual commissioning models, enabling the end user to start several 

executions of the same models with different inputs and collect the output statistics for the 

evaluation of simulation results. 

 

Figure 8 DDD Simulator Runtime application 
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3.4.3 DDD Machine NC 

DDD Machine NC is the software application explicitly dedicated to Virtual Commissioning in the 

DDD platform. Is based on a modified version of the high-performance simulation engine of the 

DDD Simulator, the Eagle engine, that is equipped with an abstraction layer dedicated to handle 

different connectors to control hardware for the quasi real-time I/O communication. 

3.4.4 Simulation model structure 

Within the DDD Platform, simulation models are a composition of instances of reusable 

elements called prototypes, each one representing a component of the simulated system 

(machine, transporters, logic module, etc.). Each prototype brings two main aspects: a 3D 

geometrical structure and a behavior whose tight interaction determines the evolution of an 

instance at runtime. 

 

Figure 9 Model structure 

This approach, quite common in the ecosystem of simulation platforms, makes it possible to 

split the development process of 3D simulation models into two main processes, requiring 

different levels of skills: 

1. The development of prototypes for the creation of libraries of reusable objects 

2. The configuration of prototype instances and their composition into the final complete 

simulation models 
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3.4.5 Structure of a prototype 

A prototype is a complex simulation object defining both the 3D model and the behavior of a 

device. 

 

Figure 10 Structure of a prototype 

The following table reports the required and optional assets composing the internal structure of 

a valid prototype definition. 

Asset name Format Short Description Use 

Meta-

descriptor 

XML Contains the meta-data of the prototype and its 

internal organization 

required 

3D model XML kinematics structure file (an XML) defining the 

hierarchical aggregation scene-graph of the 

functional parts 

optional 

Meshes Neutral format 

geometry files 

(RML, IGES, 

STEP) 

set of 3D geometry files (in neutral format like 

VRML, STEP or IGES) 

optional 
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Customizer JavaScript (.js) JavaScript file containing directives for the 

preliminary customization of an instance 

optional 

Builder JavaScript (.js) JavaScript file which contains the parametric 

geometries 

required 

Logics Java class 

(.java)  

java class extending the “module” class which 

contains the code which determines the 

behavior of a simulation module 

optional 

Table 1 Prototype folder structure 

3.4.5.1 The meta-descriptor 

The meta-descriptor file plays a key role in the structure of a prototype because it contains the 

definition of all its external interfaces and links all the other assets above mentioned. The file 

must be named “prototype.xml” and must reside in the root folder.  

Each prototype meta descriptor defines a large set of data; hereby are reported the most 

relevant for the comprehension of the adaptation work that has been carried out during the 

research activities. 

<prototype> data structure  

Attributes 

Name Type Description Use 

uuid string Unique identifier of the prototype in the 
form of a UUID, it must be different for all 
the prototypes 

Required 

name string Name of the prototype: it is the human 
readable identifier, it should be different for 
each prototype but this is a light constraint 

Required 

version integer Progressive number identifying the current 
version of the prototype 

Required 

Elements 

Name Type Description Use 
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<parameter> <parameter>* Set of parameters that can be used to 
customize the future instances of the 
prototype when it will be used to assembly 
whole simulation models 

Optional 

<input> <port>* Communication interfaces that instances 
can exploit to receive data and events at 
runtime 

Optional 

<output> <port>* Communication interfaces that instances 
can exploit to send data and events at 
runtime 

Optional 

<property> <property>* A variable set of properties that can be used 
as further meta information of the 
prototype. Some properties are always 
present even if not mandatory for the 
correct instantiation of the prototype. 

Optional 

<logics> <logics> Characterization of the behavior of the 
prototypes 

Optional 

The following table reports the list of properties that are currently accepted within the 

<prototype> element: 

Name Type Description Use 

displayName string Label that will be displayed in the catalog 
view. 

Required 

vendor string Name of the developer of the prototype Required 

category string Name of the group this prototype belongs 
to. 

Optional 

generator string Name of the JavaScript file capable to 
instantiate the geometry of the prototype. 
This file contains the code creating the 3D 
model of the instances according to the 
parameter values. 

Required 

bounds_center double[] Array of 3 values representing the position 
(x, y, z) of the center of the box containing 
the geometry 

Optional 

bounds_size double[] Array of 3 values representing the size (x, y, 
z) of the box containing the geometry 

Optional 

Example of minimal <prototype> structure: 

<prototype uuid="bad1968f-5607-4f4b-960e-c333ce324ae4" name="Cartesian" 

version="1"> 
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  <property name="displayName" value="Cartesian Robot" type="string"/> 

  <property name="vendor" value="TTS" type="string"/> 

  <property name="category" value="handling" type="string"/> 

  <property name="generator" value="builder.js" type="string"/> 

</prototype> 

<parameter> data structure 

Attributes 

Name Type Description Use 

name string  Required 

type string  Required 

value string  Required 

Elements 

Name Type Description Use 

<property> <property>* A variable set of properties that can be used 
as further meta information of the 
prototype. 

Optional 

The following table reports the list of properties that are currently accepted within the 

<parameter> element: 

Name Type Description Use 

displayName string Label that will be used to display the 
parameter in the prototype customization 
panel during the editing 

Optional 

affectGeometry boolean Flag that indicates whether the parameters 
value change determines a recalculation of 
the instance geometry. It is used to 
optimized the editing mode. 

Optional 

constraints string String containing validation hints that are 
provided to the end user at editing time 

Optional 

Example of <parameter> element: 

<parameter name="zSpeed" type="double" value="10"> 

   <property name="constraints" value=">0" type="string"/> 

   <property name="displayName" value="Z speed [m/min]" type="string"/> 

   <property name="affectGeometry" value="false" type="boolean"/> 

</parameter> 
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<property> data structure 

Attributes 

Name Type Description Use 

name string Name of the property. It must be unique 
within the context of the element that 
contains the property definition. 

Required 

type string Simple type of the  Required 

value string  Required 

<port> data structure 

Attributes 

Name Type Description Use 

name string Name of the connection port. It must be 
unique within the prototype definition. 

Required 

type string A string representing the type of this 
connection port. This string can be any valid 
identifier recognized by the engine or by any 
of its extensions. Typically, it contains a valid 
Full Qualified Name (FQN) of the Java type 
of the connection. 

Required 

Elements 

Name Type Description Use 

<property> <property>* A variable set of properties that can be used 
as further meta information of the 
prototype. 

Optional 

The following table reports the list of properties that are currently accepted within the <input> 

and <output> elements: 

Name Type Description Use 

frame string Identifier of a reference frame (within the 
3D model it represents a named coordinate 
system) 

Optional 

<logics> data structure 

Attributes 

Name Type Description Use 
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type string Full Qualified Name (FQN) of the Java class 
implementing the logics of the prototype 

Required 

Elements 

Name Type Description Use 

<param> <param>* A variable set of parameters that can be 
passed to the logics implementation to 
customize its behavior 

Optional 

<param> data structure 

Attributes 

Name Type Description Use 

name string Name of the property of the logics Java class 
to assign value 

Required 

type string Valid primitive type or array type of the 
parameter to be set. It must match one of 
the valid primitive types 

Required 

Content 

A string containing the actual value to be assigned to the logics parameter. 
This string can be a simple value or it can refer to the prototype parameters using the following 
addressing syntax: 
 
${[name of the parameter]} 
 
Example:  
${xScale} refers to the runtime value acquired by the prototype parameter called xScale 
If the parameter is an array, the values composing the array must be separated with a semi-
colon “;” 

Within the meta descriptor the importance of the parameters set and of the input/output ports 

must be underlined because they implement two fundamental mechanisms of the prototype-

based simulations. 

The former allows the creation of flexible prototypes, which represent entire families of devices, 

whose visual appearance and behavior change according to the parametrization assigned at 

instantiation time. An example of parametrization is the prototype of a conveyor that could have 

a “speed” parameter which influences the speed of the conveyor and a “length” parameter 

which scales the length of the conveyor in the 3D environment. 
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The latter enable the cooperation among the instances belonging to a simulation model, so that 

the overall evolution of the simulation is the result of a complex interaction of single atomic 

logics. 

3.4.6 Basic data types 

The following table reports the basic data types that are used throughout the description of the 

elements composing the prototype. The same types have been applied in the XML descriptors 

developed during the research activities to enable the virtual commissioning extensions. 

Beside the description of the primitive type, the table reports the corresponding array type 

definition, when available. 

Name Array type Description 

float float[] The basic value float is a single precision real value (32 bit). The 
range of float values is defined by m * 2 e, where m is an integer, 
whose absolute value is below 224, and e is an integer from -149 to 
104. Other possible values are positive and negative infinity and 
not-a-number (NaN). 
Examples of valid floats are: -1E4, 1267.43233E12, 12.78e-2, 12 , -
0, 0, INF and NaN 

double double[] The basic value space of double consists of the values m × 2e, 
where m is an integer whose absolute value is less than 253, and e 
is an integer between -1075 and 970, inclusive. In addition to the 
basic value space described above, the value space of double also 
contains the following three special values: positive and negative 
infinity and not-a-number (NaN). 
Examples of valid  double are: -INF, -1E4, -0, 0, 12.78E-2, 12, INF, 
NaN 

string string[] This data type represents a character strings. The value space of 
string is the set of finite-length sequences of characters. 
Examples of valid  string are: “sbdkad”, “??;::O”, “”, “ “, e 
“s[][{}}pdns2793” 

URI n.a. Base type uri represents a series of characters linking to a resource. 
URI means Uniform Resource Locator. 
Examples of valid uri are: “pippo.txt”, “../models/a.wrl” and 
“../../model/alfa.xml” 

boolean boolean[] The basic type boolean represents the mathematic version of the 
logic value of true or false. The possible values are: true, false, 1, 0 

Table 2 Basic data types 
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3.4.7 Authoring and execution of models 

Prototypes are arranged in catalogs, and they can be instantiated with a drag and drop interface. 

The use of the compiled prototypes doesn’t require any knowledge of the Java language so 

prototype catalogs can be distributed to third parties and assembling a full simulation model 

becomes a straightforward visual process. 

 

Figure 11 Simulation modules connected to form a plant 

Instances of prototypes can be manipulated in the 3D editor translating and rotating them with 

visual tools and their parameters can be configured. Simulation models can be executed inside 

the DDD Model Editor, typically during the model development phase, or distributed as self-

contained executable .jar, so that simulation models can be executed without the need of a DDD 

Model Editor license. 

Being Java based, there are virtually no limits to the type of data sources and formats that can 

be read as inputs from DDD Simulator models. Similarly, output data can be written in any 

format supported by the Java Language. 
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4 Proposed architecture 

4.1 Introduction 

Starting from the analysis of the state of the art and of the current existing approaches to the 

virtual commissioning problem, it is clear that one of the most evident limitations arises from 

the fact that the process to set-up a dedicated simulation model and connect it to the 

automation logics is mainly a manual procedure and involves skills that are very different, yet 

complementary. The Automation Developer is the person in charge of the development of the 

device logics, its testing and debugging and becomes the repository of the knowledge of the 

system rules. For this reason, from a user perspective, he is also the actual consumer of the 

simulation results, since they provide the needed feedback to identify unpredictable pitfalls in 

the device operation (e.g., possible collisions, wrong operating sequences, etc.). 

With the standard approach, the automation engineer must interact at least with another figure, 

the simulation expert to: 

• build an effective virtual environment, with a balanced level of detail 

• implement the right reactions (like motion laws, simulated sensors, etc.) 

• map the I/O signals onto the simulation model properties 

• identify and formalize the model parameters to enable the desired level of 

customization of the model 

On the opposite, the simulation expert is not able to complete the aforementioned activities 

without a deep understanding of the system, its mechanical structure, its physics and the logics 

reaction rules. For this reason, the two figures must closely interface; the automation engineer 

must transfer to the simulation expert the full knowledge of the device, provide the map of input 

and output signals governing the interaction between the control and the mechatronics and 

explain how each component is expected to operate. 

This iterative process is evidently expensive and affected by some inefficiencies: 
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• the transfer of the expected system behavior to the simulation engineer can be really 

high, especially for complex machines and plants 

• the possibility to introduce errors increases at least linearly with the dimension of the 

simulated system, even if it is an assembly of reusable components, because in a non-

object-oriented automation paradigm, each signal must be manually mapped to the 

right entity of the simulation model 

• a change in the physical domain requires the intervention of both engineers, requiring 

at minimum three steps of description of the differences, their implementation, and 

their validation 

The third aspect in particular makes it really expensive and hard to effectively apply the 

described paradigm when the underlying mechanical system is evolving quickly. This happens 

very often, for instance, in the everyday work of the system integrator companies, which need 

to test several possible alternatives of the same productive layout, with proof of concept control 

logics, and to further implement the most promising. 

The proposed approach aims at reducing the required interaction between competences, 

increasing the level of independence of the automation engineer, and overcoming some of the 

cited limitations. The solution relies on the intrinsic object orientation and extensibility of the 

IEC61499 standard to implement an architecture capable to: 

• ease the design phase, supporting a semi-automated set-up of the virtual 

commissioning model 

• ease the runtime phase, supporting an automated mapping of the I/O on the simulation 

model properties 

• apply to the virtual commissioning model the same distributed approach supported by 

the IEC 61499 standard. 

This chapter will present the result of the research activities starting from a description of the 

high-level architecture to document the implementation details both for the design and for the 

runtime tiers. 
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4.2 Overall design 

The overall architecture has been designed considering the basic distinction between 

development environments and runtimes which is typical both for the IEC 61499 and for the 3D 

kinematics simulation ecosystems. 

As mentioned in the previous chapters, the implementation of a virtual commissioning model 

starts with the definition of the automation logics and of a simulation model in dedicated 

software applications called Integrated Development Environments (IDE). These artifacts are 

deployed and run in the corresponding execution engines called Runtimes, while a I/O channel 

manages the data exchange among them. 

In a usual scenario, therefore, the communication between the world of automation and 

simulation is realized only at runtime level, as shown in the following schema.  

 

Figure 12 Typical virtual commissioning architecture 

Until the execution time there is no relation between the two contexts: the sole data exchange 

is due to the mapping of the I/O signals of the automation onto the properties of the simulation 

model.  
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This approach can be considered quite natural from a conceptual point of view since the I/O list 

represents the physical interface of the automation with the mechatronic device and 

implementing a representation that mimics the same signals could be sufficient to test the 

behavior of the coupled system.  

Nevertheless, in this way, the development process tends to become almost vertical, with the 

result that the conceptual structure of the control logics can differ significantly from the 

organization of the digital counterpart. Moreover, in order to reduce the costs, from a temporal 

perspective, very often, the simulation model creation is subsequent to the completion of the 

automation solution. This silo effect of the artifacts building process mirrors and emphasizes the 

limitations already mentioned in the chapter introduction. 

The architecture proposed in this thesis, mainly aims at providing a possible approach to 

improve the overall virtual commissioning process. 

 

Figure 13 Proposed architecture evolution 

Figure 13 shows from high level perspective the points (highlighted in red) where the software 

components developed during the research activities have brought a progress behind the state 

of the art. 
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The main interventions targeted both levels of the architecture: 

• at design level, filling the gap between the automation and the simulation IDEs, 

implementing a real integration between the two environments through the definition 

of an Integration API 

• at runtime level, improving the I/O runtime communication to comply with the 

distributed approach of the IEC 61499 and to provide an effective data stream satisfying 

the requirements to execute reliable virtual commissioning scenarios 

The following chapters report all the details related to the formalization, implementation, and 

tests of each single component. The analysis starts with the runtime tier, providing a description 

of the improvements made on the I/O communication channel and then it moves to the design 

tier to document the methods and technologies applied to create a tight interaction between 

the IDEs. 

During the whole research activities carried on in the context of Daedalus Project and 1-Swarm 

project, the reference platforms for the implementation of all the prototypes and of the use 

cases have been: 

• Automation: nxtStudio IEC 61499 Platform, developed by NxtControl GmBH (Austria) 

• Simulation: DDD Platform, developed by TTS - Technology Transfer System (Italy) 

The DDD Platform provides two slightly different simulation engines, DDD Machine dedicated 

to the virtual commissioning of machine tools and DDD Simulator dedicated to the simulation 

of small to large production plants.  

The two software share a large part of the data model, but the former uses a monolithic model 

approach optimized for the quasi real time communication with the hardware, while the latter 

has a higher level of modularity event though at the time of the initial activities was not enabled 

for I/O with external systems. 

The possibility to choose the underlying engine and the peculiarities of each application lead to 

two different instantiations of the proposed architecture. 
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A first one, based on DDD Machine engine, as reported in Figure 14: the DDD Model Editor 

application generates and deploys a DDD Machine compliant virtual commission model, while 

the DDD Machine NC application acts as runtime environment. 

This architecture, which has been also the first one to be tested in terms of time, exploited the 

benefits to rely on an engine already designed for virtual commissioning, speeding up the early 

prototyping phase. 

 

Figure 14 Architecture instantiation with DDDMachine engine 

A second one, based on DDD Simulator and reported in Figure 15; the DDD Model Editor 

generates and deploys a prototype-based simulation model compliant with the hybrid event 

based engine of the DDD Simulator runtime. 

This architecture is an evolution of the former, of which it exploits a large set of technical 

solutions, but moves forward the concepts of system of system, exploiting to a higher degree 

the possibility to reuse library components and create multi-level structures that are more 

suitable to perform virtual commissioning on large scale automated systems (e.g., internal 

logistics). 
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Figure 15 Architecture instantiation with DDD Simulator engine 
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5 Connecting automation and simulation at runtime 

5.1 Introduction 

This chapter describes in detail the technical solutions applied at runtime level to improve the 

I/O data exchange between the IEC 61499 automation and the simulation artifacts. 

5.2 Objectives and requirements 

The main objective of the work carried on at runtime level is creating an open and efficient 

integration layer: 

• exploiting the intrinsic Object-Oriented nature of the IEC 61499 standard to move 

forward respect to the mapping of simple plain lists of I/O signals exposed by other 

protocols like Modbus, and create a formalized structure implementing the concept of 

“Digital Avatar”; 

• exploiting the event-driven paradigm of the IEC 61499 standard to avoid, whenever 

possible the brute force polling of the full set of signals, optimizing the data transfer; 

• ensuring a high-performance data transfer between heterogeneous and distributed 

runtimes avoiding the limitations of more complex infrastructures like OPC-UA. 

The joint work with IEC 61499 runtime developers of NxtControl lead to identify the functional 

and non- functional requirements for the communication channel. 

The following table reports the specifications of the requirements. Each requirement is defined 

by: 

• an ID label that has been used to track the progress during the development and to fill 

a validation report during the functional tests 

• a priority level that allowed to schedule the implementation activities; the priority has 

been formalized according the following three levels (mediated from the common 

keywords applied in requirements elicitation and quality management): 
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o SHALL: the final result must completely satisfy the requirement to be positively 

evaluated; 

o SHOULD: (equivalent to the keyword RECOMMENDED) the requirement is 

important and should be satisfied by the final result, but it can be accepted also 

a final result that meets the specification only partially: in this case the 

implications must be understood and justified; 

o MAY: the requirement is non mandatory and meeting it would represent an 

enhancement respect to the optimal baseline. 

• A description of the desired behavior containing a base indication of possible 

acceptance criteria to be verified during the validation phase 

5.2.1 Requirements list 

Name Description Priority 

R001 The communication channel must ensure a large bandwidth to handle 

high sampling frequencies of a large set of I/O signals. 

Acceptance criteria:  

the communication channel must be able to transfer the Input and output 

events of 200 IEC 61499 FBs (Function Blocks) each 10 milliseconds when 

both automation and simulation runtime operate on the same hardware 

(PC equipped with Soft PLC) or on a cabled LAN (Physical PLC operating 

the IEC 61499 solution and a PC operating the simulation model) 

SHALL 
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R002 The communication channel, once activated on the deployed system, 

must have a minimal footprint on the infrastructure. 

Acceptance Criteria:  

the difference of processor and memory occupation of the 

communication channel on a IEC61499 solution deployed on Physical PLC 

must never interfere with the high priority control cycle 

The constraints could be relaxed, but not completely dropped, if trying to 

satisfy them, R001 is not met. 

SHOULD 

R003 The information (signal values) must be delivered in both directions (from 

automation to simulation and vice-versa) assuring the packet ordering 

Acceptance criteria:  

during the execution of a full virtual commissioning test, all the packets 

sent by the  

SHALL 

R004 The information ordering must be ensured without any loss of packet data 

in both directions. 

Acceptance criteria:  

during the execution of a full virtual commissioning test none of the data 

packets sent by one of the runtimes participating to the communication 

must be lost 

SHALL 
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R005 The communication channel must accept, at automation level, multiple 

incoming connection from several simulation clients, thus supporting the 

unidirectional multicasting of packets generated by the automation 

runtime towards several simulation clients, even when deployed on a 

distributed environment 

Acceptance criteria:  

multiple (at least 2) virtual commissioning models (Digital Twins), possibly 

running on different PCs must be able to connect to the same master IEC 

61499 automation solution and receive the same data packets 

SHALL 

R006 The number of sockets opened by each connected client simulation model 

must be minimized. 

Acceptance criteria: 

each client simulation model handles the communication with only one 

physical socket; subordinately, two physical sockets per client could be 

considered and acceptable solution. 

The constraint could be further relaxed if, satisfying it, the requirements 

R001, R003 and R004 are not met. 

SHOULD 
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R007 The communication channel allows an initial synchronous (request-

response) setup phase to select the signals of interest that should be 

transferred during the virtual commissioning session and the 

corresponding maximum update frequencies. 

Acceptance criteria: 

A client simulation model initiating a virtual commissioning session is 

capable to select a subset of the whole I/Os exposed by the IEC 61499 FBs, 

imposing a desired maximum refresh interval for the subset. 

The constraints could be relaxed if the management of the different 

subsets for multiple clients causes the system to miss R002 

SHOULD 

R008 The same communication channel (physical socket) must support the 

multiple flow of asynchronous signal messages, corresponding to the 

events governing the IEC 61499 FBs. 

Acceptance criteria: 

On the same socket the simulation client and the control logics exchange 

bidirectional message exactly when they are generated by the 

corresponding runtimes, without a sticking to a cycle time. 

SHALL 

R009 The communication channel must be based on widely accepted open 

standards both at transport layer and at payload level 

Acceptance criteria: 

both the technology chosen for the transport layer and the supporting 

payload definition are documented open standards 

SHALL 

R010 The communication channel must be natively cross-platform in order to 

easily deployed on multiple different hardware and operating system 

platforms 

SHALL 
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R011 The chosen transport layer must be compliant with industrial and 

shopfloor network setups. 

Acceptance criteria. 

a virtual commissioning session can be executed connecting a simulation 

client located outside a shop floor network with a Physical PLC (or a Soft 

PLC running on a PC) located inside the shop floor network using a VPN 

for tunneling. 

SHALL 

R012 The communication channel can be secured, preventing possible 

exploitations for cyber-attacks to the control hardware 

Acceptance criteria: 

the chosen transport layer supports data encryption, authentication, and 

authorization mechanisms. 

MAY 

Table 3 Runtime communication requirements 
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5.3 Implementation 

The development of a runtime connection satisfying the aforementioned requirements required 

the completion of the following main activities: 

1. Identification and choice of suitable communication standard architecture for the 

transport layer; 

2. Design of a supporting payload data model and choice of a data representation 

standard; 

3. Implementation of transport and data layers at IEC 61499 runtime level 

4. Implementation of transport and data layers at simulation runtime level 

The whole process has been carried out using an iterative approach, starting from initial 

prototypes that have been validated and evolved towards a more mature solution. 

The final result of the work in this field is then represented by two main implementations, based 

on different transport technologies: 

1. WebSocket 

2. MQTT 

The reason for existence of two solutions is the fact that the former, capable to provide most of 

the expected functionalities, when applied to real cases, highlighted some architectural 

limitations (that will be extensively described in the dedicated paragraphs). At the same time 

the simulation platform, during the second half of the research, evolved and provided improved 

functionalities that could be exploited to come to the second and more refined implementation, 

providing the same performances but overcoming the architectural constraints. 

The two implementations correspond respectively to each one of the proposed architectures 

described in the previous sections: 

1. WebSocket based implementation has been applied in conjunction with the DDD 

Machine virtual commissioning engine (Ref. to Figure 14) 
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2. MQTT bases implementation has been applied in conjunction with the DDD Simulator 

engine (Ref. to Figure 15) 

Even though the two approaches are based on a very different low-level socket architecture, 

they are both generic enough to support custom messages so that it was possible to employ the 

same payload data model (described in §5.3.1), minimizing the impact on the internal runtimes 

I/O processing. 

5.3.1 IO data model 

The IO data model formalizes the data structures that organize the exchange of input and output 

signals among the automation and the simulation runtimes. This section describes the data 

model from a conceptual point of view and documents its JSON implementation, which has been 

applied in both channel implementations. 

The data model has been organized with the aim to preserve as much as possible the object-

oriented approach which is a fundamental aspect of the IEC 61499 standard. In fact, in almost 

all the standard PLC data exchange and in the large part of the virtual commissioning 

applications, low level I/O signals represent global lists of incoming and outgoing pieces of data 

flowing through the terminal blocks without any relationships with the internal architecture of 

the automation. In IEC 61499, instead, each signal is related to well defined events of a well 

identified Function Blocks, that typically represent logics dedicated to handle a device or a sub 

assembly of it. Another key aspect that has been considered during the data model design is the 

event-based nature of the interaction among function blocks, that is the same mechanism that 

the IEC 61499 standard promotes to enable the possibility to distribute the runtime execution 

on different devices. 
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Figure 16 IEC61499 Function Block signals 

The following table reports how these two main features of the IEC61499 standard have been 

reflected on the data model. 

IEC 61499 feature Data Model feature 

Object Oriented Function Block Each message organizes signals maintaining the 

relationship between the origin/destination function 

block and output/input signal. 

Each signals name is unique within the function block 

and similar signals of different function blocks can use 

the same name. 

Event based The transmission of the I/O signals of a function block, 

happens only when a triggering event is generated at 

automation or simulation side. Therefore, each 

message can contain only the signals of the function 

block that generated the event. 

Table 4 IEC 61499 impact on IO Data model 

The overall architecture of the data model is reported using the Class Diagram view of the UML 

(Unified Modelling Language) standard, while the meaning of each data structure and of its 

properties is reported in the following tables. 

The developed data model can be considered only and information: the classes don’t define any 

method (function) since the objects contained in the payload of the I/O messages must be 
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treated as exchange data, thus not active elements. Therefore, the UML diagram and the 

documentation tables contain only properties definition. 

 

Figure 17UML Class Diagram of the I/O Data Model 

Payload class 

The Payload class represents the root element of the I/O message payload, referencing a set of 

Function Block instances that represent the function blocks whose events have been generated, 

collected, and packed together at automation or simulation side. 

Properties 

Name Type Description Use 

functionBlocks FunctionBlock[] Array of instances of function block that 
generated an event at automation and 
simulation side 
 
Constraints: 
The array must have size > 0 

Required 
 
 

FunctionBlock class 

Represents an instance of Function Block that triggered an event o signal change both at 

automation and simulation side. It aggregates the signals of a specific Function Block instance. 
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All the instances of FunctionBlock belonging to the same virtual commissioning model must be 

identified by a unique string name. 

Properties 

Name Type Description Use 

name string Identifier of the function block within the 
virtual commissioning model. 
 
Constraints: 
The name must correspond to a specific 
entity both at automation and simulation 
side. 

Required 

timestamp long Represents the time of generation of the 
event and it is set by the sending runtime 
and it is expressed as the value of the system 
clock expressed in milliseconds elapsed 
since the epoch time (1st Jan 1970, 00:00). 
 
The runtime receiving the message can use 
this value to check its reliability and verify if 
the virtual commissioning model is facing 
problems of high latency.  
 
Constraints: 
The value must positive, and also a value of 
0 is acceptable.  

Required 

signals Signal[] Array of instances of signals belonging to the 
instance of FunctionBlock. 
All the signals must be identified by a unique 
name within the FunctionBlock instance 
 
Constraints: 
The array must have size > 0 

Required 

Signal class 

Represents an instance of Signal within a FunctionBlock. 

Properties 

Name Type Description Use 

name string Name of the signal. It must be unique within 
the FunctionBlock instance. 

Required 
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value object Current value of the signal. 
 
Constraints: 
All the signals belonging to the same 
message must be coherent among them, 
meaning that a single change event affecting 
two or more signal must generate only a 
single message containing the at least the 
current value of all the changed signals1. 
 
The value property type is generic because 
each signal is defined with a specific data 
type.  

Required 

It is important noting that the Signal class does not contain any definition of the signal data type, 

but only a key/value pair to report the current valid value of the physical signal. This choice 

depends on the fact that the I/O data model is applied at runtime when the automation solution 

and the simulation model are complete and correctly configured to handle to expected signals 

on both sides2. In this way, the amount of redundant information that is transferred for each 

message is reduced to the minimum.  

5.3.1.1 JSON Data Model implementation 

The data model presented from a formal point of view has been transformed into JSON 

(JavaScript Object Notation) format to serve as a reference implementation of the message 

content. 

JSON is an open standard (formalized also by ISO/IEC3) format for data exchange using human 

readable text to represent data objects consisting of attribute–value pairs, arrays, and other 

serializable values. It is widely accepted in socket communication for the encoding of the 

payloads, especially in web applications, service-oriented architectures (SOA) and web REST API. 

Its main benefits can be summarized in: 

 
1 This constraint is especially important because it ensures the coherence of the state of the function block 
and then the reliability of a payload message. 
2 This aspect is will be better discusses in the chapter dedicated to the integration of the editors  
3 JSON is formalized in ISO/IEC 21778:2017 
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• Syntax simplicity capable to represent also complex data structures suing a reduced 

number of rules 

• Low overhead if compared with other text-based data exchange formats like XML 

• Wide availability of libraries supporting parsing and serialization from and to JSON 

• Support to data schema formalization with JSON Schema format4 

The natural conversion of the designed data model into JSON format would have resulted into 

a structure similar to the following one: 

{ 

“fbName”: [FunctionBlock_ID], 

“timestamp”: [clock_value, 

“signals”: [ 

 { 

  “name”: [Signal_ID], 

  “value”: [Signal value], 

 }, 

 { 

  “name”: [Signal_ID], 

  “value”: [Signal value], 

 }, 

 … 

 

] 

} 

Nevertheless, this message structure is affected by some inefficiencies that could be negligible 

when considering a single message, but that can become a significant amount of redundant data 

when multiplied for all the possible messages flowing in a real-case virtual commissioning 

session at high frequency. 

For this reason, the data structures defined in the previous chapter have been adapted and 

optimized to limit as much as possible the size of the messages, reducing the footprint of the 

communication protocol on the network. 

The final format of the payload, expressed in JSON is the following: 

 
4 This feature, which is derived by the similar approach in XML with XSD, is currently rarely adopted  
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{ 

[FunctionBlock_ID]:{ 

 “ts”: [clock_value], 

 “Param”:{ 

  [Signal_ID]: [Signal value], 

   [Signal_ID]: [Signal value], 

   … 

 }, 

  

} 

} 

Each placeholder and its mapping on the designed data model is documented in the following 

table. 

Placeholder Type Description 

[FunctionBlock_ID] JSON Attribute name Identifier of the IEC 61499 FunctionBlock within 
the automation solution. 
 
This ID corresponds to a digital counterpart of 
the FunctionBlock in the simulation runtime. 
In the proposed architecture, the ID has been 
modelled as a string containing the fully 
qualified name of the FB (full path of dot - “.” 
separated unique names of the containers)  
 
Corresponding property within UML: 
FunctionBlock.name 

[clock_value] Number Timestamp of the events that triggered the 
message communication. 
 
Corresponding property within UML: 
FunctionBlock.timestamp 

[Signal_ID] JSON Attribute name Name of the signal of the function block. 
 
Corresponding property within UML: 
Signal.name 
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[Signal value] Number 
Boolean 
String 

Value of the corresponding signal. 
The content can be: 

• a number, covering all the floating point 
and integer formats, i.e. INT, REAL, etc. 

• a boolean covering the corresponding to 
the BOOL IEC 61499 type 

• a string corresponding to the IEC 61499 
STRING type 

 
Corresponding property within UML: 
Signal.value 

The following code blocks report few examples of payload messages containing one or several 

signals for a single function block. 

Example 1: payload for a FunctionBlock called “Field_QSS.PusherA” generating one output data 

signal called “command” which is assigned with integer (INT) value 1.  

{ 

 "Field_QSS.PusherA": { 

  "ts": 0, 

  "Param": { 

   "command": 1 

  } 

 } 

} 

Example 1: payload for a FunctionBlock called “FI_QDP.FieldInterface_Cartesia” generating four 

output data signals called “XTarget”, “YTarget”, “ZTarget” and “RTarget” which are assigned 

respectively with floating point (REAL) values 900.0, 800.0, 300.0 and 0.0.  

{ 

 "FI_QDP.FieldInterface_Cartesian": { 

  "ts": 0, 

  "Param": { 

   "XTarget": 900.0, 

   "YTarget": 800.0, 

   "ZTarget": 300.0, 

   "RTarget": 0.0 

  } 

 } 

} 
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5.3.1.2 Signal direction 

Both in the formal data model and in its JSON conversion, there is not any indication about the 

direction of the signals; there is no property neither dedicated section of the data structures 

telling whether a signal is an input or an output. 

The reason for such an approach is that, in fact, input and output definitions are related to a 

certain subject system; considering the perspective of the automation runtime, the output 

signals are the data exiting the Function Blocks and going towards the physical devices in the 

real world and towards their digital counterpart in the virtual commissioning world, while the 

input signals are the ones flowing the opposite direction. 

Nevertheless, the definition is perfectly specular when considering the perspective of the 

simulation runtime, and the Figure 18 highlights this symmetry. 

 

Figure 18 Complementary direction of the signals between runtimes 

A definition of Input and Output concepts within the data models would have possibly led to 

ambiguity. The solution accepted to overcome the problem is reporting within the payload only 

the signals outgoing the sender runtime. In fact, a message is generated by one of the two 

runtimes asynchronously when an event is triggered by the internal logics (be it automation or 

simulation logics) and this message flows from the publishing runtime to the consumer one. 
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Figure 19 Each signal contained in the payload is an output 

Therefore, the only signals that makes sense reporting within a message are the ones that exit 

the system that generates them. In this way every ambiguity is avoided because, the receiving 

system knows that the data contained in the payload must be treated as input, then parsed and 

routed to the correct destinations. This approach further lightens the communications removing 

the burden of parsing and interpreting useless information. 

5.3.2 Connection on WebSocket 

The first implementation of the communication channel has been developed basing on the 

WebSocket technology. 

WebSocket is a communication protocol that provides full-duplex data transfer channels over a 

single TCP connection. It is a standard formalized as RFC 6455 in 2011 by IETF and then accepted 

as WebSocket API standard from the W3C consortium. 

WebSocket has been designed to be compatible with HTTP to exploit the capability of HTTP be 

to easily compliant with the security policies of the network infrastructure. In fact, it initializes 

the connection with a standard HTTP handshake running on ports 80 or 443 and then it exploits 

the HTTP Upgrade Header to change the protocol from HTTP to WebSocket.  

WebSocket is located at Level 7 of OSI layer, as the HTTP protocol, and manages the full 

bidirectional continuous data exchange with a very low overhead, making it suitable for quasi 

real-time communications with low latency.  
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Nevertheless, due to its low-level nature, WebSocket does not satisfy the requirements defined 

for the communication channel. In particular, the sender provides an arbitrary UTF-8 or binary 

payload, and the receiver is notified of its delivery when the entire message is available. 

WebSocket defines a Binary Framing Layer that splits application binary or text messages 

produced by a sender into frames with a really small overhead, transports them to destination 

and reconstructs the original message, notifying the receiver. The content of the message is 

completely defined by the application. 

The payload of the message has been defined according to a preliminary version of the I/O data 

model, called CPS-Protocol (see 5.3.2.1), implemented in JSON exploiting: 

• the ease of encoding/decoding of the function block and digital counterparts’ signals 

• the platform independence thanks to the JSON text format, which does not imply any 

binary adaptation that could be related to the differences in the processor architecture5 

5.3.2.1 The CPS Protocol 

The CPS Protocol represents historically the first translation of the IO Data model presented in 

the previous chapter, which has been developed mainly by NxtControl and evolved during the 

thesis research activities with the MQTT approach presented in the following sections. 

From a structural point of view, it is based on the definition an extended set of messages that 

are functional to the server-client approach of the WebSocket, handling not only the continuous 

flow of I/O signals but also the initialization and the conclusion of the communication sessions. 

In the WebSocket instantiation of the runtime channels, the automation solution acts as the 

server while the simulation engine represents the client. The following table summarizes the 

phases supported by the protocol and the flow of the involved messages. 

Phase Messages flow 

Start communication Client: sends a “Connect” message with enable=true 

Server: replies with a “ConnectionReply” message 

 
5 Typically the simulation engine runs on a Intel 64 bit architecture of a PC, while the automation solution 
is run a 32 bit PLC hardware 
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I/O exchange Client/Server: "SendValue" message flows in both directions with 

multiple {"name", "value"} entries for each transferred variable. 

A reply is provided only if an error occurs (see Error phase) 

Disconnect Client: send a “Connect” message with enable=false 

Server: replies with a “ConnectionReply” message 

Error Client/Server: send "SendValueReply" messages to report errors 

for unknown variables, wrong types, or wrong values. 

Query This phase can be applied during the engineering process to 

check if the interfaces between client and server match. 

Client: sends a “QueryAll” message 

Server: replies with “QueryAllReply” 

Table 5 CP-Protocol phases and involved messages 

The structure of each message type is briefly documented in the following paragraphs using 

some examples for reference. 

Connect 

Message used by the client to initialize or conclude a virtual commissioning session, depending 

on the value assigned to the “enable” field. 

Example of message for initializing a connection: 

{ 

 “Connect” : { 

  “Id” : “U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=”, 

  “enable” : true 

 } 

} 

The “Id” is the base64 encoded string representing a unique identifier of the Client initialization 

the connection. 
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Example of a message used to close a session: 

{ 

 “Connect” : { 

  “Id” : “U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=”, 

  “enable” : false 

 } 

} 

The “Id“ reported when closing a session must be recognized as an alive client by the server. 

ConnectReply 

Message sent in reply to a “Connect” during the initialization phase: 

{ 

 "ConnectReply" : { 

  "Id" : "U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=", 

  "enable" : true, 

  "ServerName" : "VGVzdEpzb25Xc1NpbUNvbm5lY3Rpb24=", 

  "result" : 200 

 } 

} 

The “Id” is an echo of the client identifier contained in the “Connect” message, while the 

“ServerName” property identifies the responding automation server. 

If the connection has been accepted by the server, the error code is 200 (HTTP OK code to 

indicate no errors occurred), otherwise other error codes are reported together with an error 

message. Error codes of type 400 represent temporary failures that could be recovered issuing 

a retry message, while 500 type results represent permanent failures of the server.  

Example of reply message sent during the finalization of a session: 

{ 

 "ConnectReply" : { 

  "Id" : "U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=", 

  "enable" : false, 

  "ServerName" : "VGVzdEpzb25Xc1NpbUNvbm5lY3Rpb24=", 

  "result" : 200 

 } 
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} 

SendValue 

SendValue messages are used in both directions, to and from the NxtControl automation 

runtime, and continuously flow after connection initialization. The protocol does not force any 

constraint on the number or priorities of the messages, neither on the system that should send 

the first message. 

Example of a SendValue message: 

{ 

 "SendValue" : [ 

  { 

   "name" : "TC1.Position", 

   "value" : 0.5776 

  }, 

  { 

   "name" : "TC1.H1matrix", 

   "value" : [ 9, 1, -23.4, 1e-14 ] 

  }, 

  { 

   "name" : "TC1.status", 

   "value" : "T0s=" 

  } 

 ] 

} 

It is possible to identify the similarities with the JSON implementation of the I/O data model 

described in §5.3.1.1, in particular the fact that each signal contains only the identifier and the 

current value, because the type has been checked at engineering stage. A limitation of the CPS 

protocol, which has been overcome with the IO Data Model is represented by the lack of the FB 

structure within the SendValue message. All signals are listed at the same level and their 

mapping on the corresponding Function Blocks require both systems (automation and 

simulation) to either parse the IDs and route them to the correct FB instance or to keep a lookup 

map to handle the correspondence of the internal signals with the external IDs. Therefore, this 

approach does not fully exploit the object orientation of the IEC 61499 as the proposed evolution 

applied in the MQTT approach. 
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5.3.2.2 Software Implementation 

The implementation of the I/O communication channel over WebSocket required the 

development of dedicated extensions for the automation runtime and for the simulation 

engines, capable to handle de serialization and deserialization of the internal signals into CPS-

Protocol compliant messages. 

 

Figure 20 Architecture schema of the WebSocket channel implementation 

Within the architecture reported in Figure 20 it is possible to identify the two key components 

that support the I/O signals exchange over WebSocket: 

1. SendValue FB at automation side 

2. IEC 61499 Connector at simulation side 

This thesis focuses and activities carried on for the adaptation of the simulation engine while 

the automation architecture has been developed by NxtControl company during the research 

projects. 

5.3.2.3 The IEC 61499 Connector 

This component has been designed and implemented as an extension plugin of the DDDMachine 

virtual commissioning platform and in particular of its runtime core which is represented by the 

Eagle Engine component. 

The Eagle Engine is a simulation model execution module whose main functionalities are: 

• interfacing external systems through an abstraction layer (Adapter Layer API) dedicated 

to handle specific transport and applications protocols 
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• managing the routing of the I/O signals to the behavioral logics that control the 

simulated entities. 

The IEC 61499 Connector module complies with the Adapter Layer API and provides to the Eagle 

Engine the capability to correctly cope with the above described CPS-Protocol over WebSocket. 

The component therefore is responsible for: 

• the initialization of the WebSocket channel: the simulation acts as client of the 

communication, therefore the module establishes the connection with the Automation 

Runtime that plays the server role; 

• the management of the message format: the module encodes and decodes to/from 

JSON the I/O signals of the IEC 61499 function blocks according to the CPS-Protocol and 

the data model documented in the previous sections. 

The IEC 61499 Connector module developed during the initial phase of the research activities 

has been coded in Java and it is composed by a set of back-end classes with well-defined and 

specialized tasks that collaborates to transfer data to/from the simulation. 

 

Figure 21 List of classes composing the connector and handling the CPS-Protocol over WebSocket 
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The most important object that adheres to the Adapter Layer Specification is the 

IEC61499Connector class, whose structure is hereby reported. All the other ones are functional 

to the correct operation of this data adapter.  

/** 

 * IEC 61499 Adapter Handles the Websocket communication protocol developed 

in 

 * Daedalus to interface IEC61499 applications. 

 */ 

public class IEC61499Connector extends CncAdapter { 

 

    @Override 

    public boolean connect() {...} 

 

    @Override 

    public void disconnect() {...} 

 

    @Override 

    public void dispose() {...} 

 

    @Override 

    public void hfIO() throws Exception {...} 

 

    @Override 

    public void lfIO() throws Exception {...} 

 

    @Override 

    public void hfMemoryUpdate(SharedMemory memory) {...} 

 

    @Override 

    public void lfMemoryUpdate(SharedMemory memory) {...} 

 

    @Override 

    public void init(SharedMemory memory) {...} 

 

    @Override 

    public void configure(Map<String, Object> configProperties) {...} 

 

    @Override 

    public boolean isConnected() {...} 

} 
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The relevant IEC61499connector methods that handle the communication are listed in the 

following table. 

Method Description 

configure Allows the parametrization of the behavior of the class through a map 

of key-value pairs that control how the controller will establish the 

communication with the server. The configuration map contains several 

general-purpose properties that will not be documented here because 

they are defined by the underlying DDDMachine engine, and a set of 

custom entries that are specific to this adapter class that are hereby 

shortly documented: 

• host: ip address or name of the automation runtime endpoint 

• port: network port number of the server endpoint 

• timeout: milliseconds to drop the connection attempts 

• signals-map: reference to the XML file containing the whole list of 

I/O signals that the connector must map to/from the automation; 

this map is auto-generated during the design time thanks to the 

developed interfaces between the two engineering software 

applications of NxtStudio and DDD Model Editor that produce the 

respective automation and simulation artifacts (see §6) 

init Applies the configuration loaded by the configure method, initializing 

the status of the virtual commissioning model. 

During this phase all the signals defined by the signals map are resolved 

within the internal tasks of the engine, and their corresponding 

registers are created on the Shared Memory which is a runtime object 

maintaining a set of data registers in common between the 

communication cycle and the internal processing logics implemented 

within the simulation Task instances. 
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The consistency of the virtual commissioning model is checked during 

this phase and the lookup tables to map the incoming signals to the task 

properties are created. 

connect If the configuration and initialization method succeeded, this method 

establish the connection with the automation engine opening a 

WebSocket channel and issuing to the server a “Connect” message to 

enable the I/O session. 

hfIO Each adapter, according to the Adapter Layer API, must be capable to 

handle high frequency and low frequency input/output operations, 

performed respectively by the hfIO and lfIO methods. 

The reason for such division is providing the developers with a built-in 

mechanism to manage at least two types of data transfers between 

simulation and external systems: a fast continuous flow and a slower 

update of less critical data. This is useful when the underlying 

communication libraries provide different functions to access the 

CNC/PLC data6. 

The IEC61499Connector is implemented to perform only the high 

frequency IO, because in the CPS-Protocol, there is no distinction 

between signals access. The method executes a two-step process: 

• Reads the incoming “SendValue” messages, parses them and 

routes the values on the local IEC61499Signal instances 

• Writes the current values of the output signals in a “SendValue” 

message and sends it on the output channel of the WebSocket 

It is important noting that in this phase, the incoming data values have 

not been already transferred to the corresponding shared memory 

registers. 

 
6 An example is represented by the Fanuc FOCAS2 libraries hat expose different functions to  
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It is possible to control the frequency of execution of this method with 

a dedicated parameter. Typically, the virtual commissioning models 

developed during validation have been configured with a refresh 

interval of 20 milliseconds (i.e. 50 Hz), compliant with the application 

types. Normally, the refresh interval should not be brought under 10 ms 

when running on normal PC platforms without real-time extensions of 

the operating system (e.g., normal Windows 10 or 11) because this 

value corresponds to a stable and reliable resolution of the system 

clock. 

hfMemoryUpdate As reported in the description of the hfIO method, the low-level signals 

exchange on the web socket doesn’t affect the actual register instances 

of the SharedMemory until the hfMemoryUpdate is executed. In this 

way, the SharedMemory decouples the I/O thread with the simulation 

thread in order to avoid simulation blocks due to communication 

failures and vice-versa. 

This method transfers the data cached by the input IEC61499Signal 

instances to the memory registers and caches inside the output 

IEC61499Signal instances the values of the corresponding register, in 

order to prepare them for the next hfIO execution. 

disconnect When the user completes the virtual commissioning session, the 

simulation platform calls this method to interrupt the I/O session. The 

method sends a “Connect” message with enable=false complaint with 

the CPS-Protocol, waits for a reply from the server and closes the 

WebSocket channel. If the server does not reply to the disconnection 

message, the socket is closed after the expiration of the timeout. 
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Figure 22 IEC61499Connector within the simulation engine architecture 

The schema reported in Figure 22 shows how the IEC61499Connector interacts with the other 

components of the simulation engine of the DDDMachine NC application. 
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5.3.3 Connection on MQTT 

The evolution of the runtime communication has been implemented using MQTT as transport 

infrastructure, to overcome the limitations of the WebSocket solution and improve the 

compliance level to the defined system requirements. 

MQTT (MQ Telemetry Transport or Message Queue Telemetry Transport) is an ISO messaging 

standard [20] based on publish-subscribe paradigm that runs typically over TCP/IP. The protocol 

has been designed to be a lightweight and therefore suitable to support fast communication 

with limited resources devices. A MQTT infrastructures relies on the presence of a Broker that 

is a server receiving messages from the and dispatching them to the appropriate clients. A MQTT 

Client is any application that, relying on suitable MQTT libraries, connect to the broker over the 

network and either publishes or consumes messages. 

The messages of an MQTT communication are organized in hierarchical topics: each publisher 

client declared the topic on which it wants the message to be dispatched, while each subscriber 

declares to the broker the set of topics it is interested in. In this way each subscriber receives 

only the data it considers relevant. 

From the architecture perspective, MQTT promotes a complete decoupling among the actors of 

the communication, in fact the publisher doesn’t need to know anything about the subscribers, 

their presence, location or number and vice-versa. This approach simplifies significantly the 

management of the low-level sockets, that can be turned on and off without affecting the 

integrity of the other components connected to the same broker. 

This latter feature, together with the small footprint and the capability to support large 

bandwidth, makes the MQTT protocol a suitable technology to implement an evolution of the 

Virtual Commissioning runtime communication overcoming the limitation of the WebSocket 

approach, which can be identified in the following points: 

• Single endpoint: with WebSocket, in order to reduce the amount of used resources, the 

automation solution, which acted as a server, had to limit the incoming connections as 

much as possible, resulting typically in a single server/single client execution of the 

virtual commissioning session. 
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• Components dependence: the need for the simulation engine to establish a direct 

connection with the automation engine, required the configuration of the complete 

address of the device running the IEC61499 solution. Considering the fact that an 

IEC61499 solution is thought to be possibly distributed on several devices in a 

transparent way, the need for the simulation engine to identify each device server 

address over the network, manage a dedicated connection with it and locate the 

contained target function blocks, makes the set-up of complex scenarios quite hard to 

maintain. 

• Order of initialization: the fact that, in the WebSocket implementation, the automation 

solution is the server, implies that it must up and running before initializing the 

simulation counterpart, requiring the control over the sequence of activation of the 

interacting systems. 

Each one of the presented issues finds a valid solution in the MQTT protocol and architecture: 

• Single endpoint: with MQTT, each system participating to a communication session is 

a client independently of its role within the virtual commissioning scenario. Therefore, 

the automation solution doesn’t have to allocate the resources to handle and keep 

alive the incoming connection requests. 

• Components dependence: the complete transparency of each client to the other ones 

connected to the same broker, allows each engine, automation or simulation, even in 

multiple instances to be configured to address only the broker, produce messages that 

will be automatically broadcasted to different endpoints and consume information 

flowing from different devices, whose location can remain completely unknown. This 

solution is particularly important considering the distributed nature of IEC61499. 

• Order of initialization: the only one component that must be up and running to initiate 

a virtual commissioning session base on MQTT is the broker, while the other engines, 

automation, or simulation, can connected and start publishing and consuming 

messages in a completely asynchronous way. Moreover, the implementations of the 

MQTT brokers are typically characterized by a very high level of resilience, standing 
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continuous connections and disconnections of clients without impacts on the quality 

of service. This makes the overall architecture not only more fault tolerant but also 

simpler to control during the execution of the tests. 

The following schema shows how a possible distributed automation solution could interact with 

many simulation models. It is important noting how the system is easily scalable to different 

deployment scenarios on both sides of the virtual commissioning actors. 

 

Figure 23 Runtime communication architecture with MQTT 

The scalability of the solution could be further exploited if the system considers the deployment 

of multiple MQTT Brokers, which could collect and distribute messages from different portions 

of the automation and simulation artifacts. Figure 24 shows a possible example of deployment 

using two MQTT brokers managing the topics and messages flowing among portions of the two 

artifacts. 

This possibility provided by the MQTT architecture It is extremely interesting also from a load 

balancing perspective because in this way it is possible to select the correct distribution of the 

workload on the supporting hardware network. 
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This approach could be leveraged in large plants where the amount of function blocks and 

simulation modules interacting during the same virtual commissioning session is particularly 

high. This scenario has been validated theoretically during the development of the engines 

extensions, creating tests specifically designed to evaluate the readiness of the developed 

libraries to support it. 

 

Figure 24 Scalability of the MQTT approach with multiple brokers 

5.3.3.1 Software Implementation 

As for the corresponding WebSocket solution, the implementation of the runtime 

communication architecture over MQTT required the development of dedicated extensions for 

the automation runtime and for the simulation engines. 

From the software point of view this approach is not only more scalable and flexible, but it is 

also simpler because each engine connects to the MQTT broker as a client, and all the 

handshaking details can be dropped from the protocol because they are completely handled by 

the broker. 
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Figure 25 Software architecture implementation 

The schema reported in Figure 25 shows the main components of the reference automation and 

simulation environments that have been adapted and extended in order to test the proposed 

infrastructure: 

• The MQTT broker 

• The MQTT Proxy at automation side 

• The MQTT Proxy at simulation side 

The architecture is considerably different if compared to the one presented in the WebSocket 

implementation, not only because of the presence of the MQTT broker, but also because the 

solution, at simulation side, is based on a different engine, the DDD Simulator, more suitable 

respect to the DDD Machine, to exploit the scalability of the system, thanks to its built-in 

modularity. 

This research work focuses on the simulation side, therefore the following paragraphs document 

the extensions at simulation engine side, while the corresponding components at automation 

side have been implemented and provided by NxtControl.  
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5.3.3.1.1 The MQTT Broker 

From a deployment point of view, the selection of the MQTT Broker component doesn’t affect 

in any way the operating principle of the system, providing that the broker supports at least the 

MQTT 3 specification. There exist several open-source implementations of MQTT brokering 

systems whose licenses adapts not only to research activities but also to possible commercial 

scenarios. 

During the implementation and validation phase, the deployments have been based on the 

Eclipse Mosquitto™ which is an open source (EPL/EDL licensed) message broker implementing 

the MQTT protocol versions 5.0, 3.1.1 and 3.1; it is lightweight and suitable for use on all devices 

from low power single board computers to full servers [21]. 

5.3.3.1.2 The Simulation MQTT Proxy 

As presented in section §3.4, a DDD Simulator model is based on the composition of several 

simulation instances whose behavioral logics, coded in Java, is capable to perform complex 

actions on the underlying 3D kinematics entities controlling their evolution over time. 

The MQTT Proxy at simulation side has been designed to work as an extension of the behavioral 

logics of the instances  in order to provide each one of them to interact independently with the 

communication runtime and exchange data with a portion of the automation code.  

 

Figure 26 Correspondence between Simulation Instance and device Function Block 

In order to exploit at maximum, the object oriented approach supported on both side of the 

virtual commissioning components, the coupling of simulation and automation functional units 

has been founded on the assumption that each physical device, represented by a simulation 
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instance, is governed by a dedicated IEC 61499 Function Block, controlling a set of I/O signals 

compatible with the real system. This correspondence tends to align the organization of the 

simulation model according to the structure of the automation code, easing the development 

process of the virtual commissioning sessions. Moreover, this is a key element to reach one of 

the most important objectives of the whole thesis work: the automatic synchronization between 

the environments at design time (described in Chapter 6). 

The Simulation MQTT Proxy is constituted by a set of library Java classes that conform to the 

Heron Simulation API of the DDD Simulator platform.  

 

Figure 27 UML Class diagram of the Simulation MQTT Proxy 
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Eclipse Paho project [22] has been chosen as MQTT client library: it provides open source 

implementations of MQTT V3 and V5 in a variety of programming languages, Java included and 

it represents a reference for working with IoT and MQTT because of its reliability, maturity and 

availability of documentation. 

Figure 27 reproduces with UML Class Diagram notation the structure of the classes and their 

relationship with the reference packages that are: 

• Heron Simulation API: com.ttsnetwork.heron.v5 

• Eclipse Paho: org.eclipse.paho.client.mqttv3 

The following paragraphs document the classes and their responsibilities within the 

infrastructure. 

MqttProxy 

Represents the low-level access to the MQTT interfaces, wrapping the basic mechanisms of the 

Eclipse Paho library for connecting to the broker. This class has been developed to act as an 

abstraction with the underlying MQTT client library, decoupling the higher-level classes like 

MQTTIO from the specific implementation. The following table contains the main methods and 

their description. 

Method signature Description 

connect():void 
Initiates the connection with the broker, opening the 

channels, identifying the client and with a unique UUID 

and declaring the desired protocol version. 

The parameters of the connections are defined by the 

internal attributes set at construction time by the 

containing classes. 

isConnected():boolean 
Provides a way to test the current connection status of 

the proxy. 

Table 6 MqttProxy details table 
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MQTTIO 

This class represents the core of the MQTT runtime communication at simulation side and it is 

responsible for: 

• The management of the MqttProxy instance, starting the connection, declaring the 

topics of interest, and registering as a listener on the message queue, in fact it is an 

implementation of the IMqttMessageListener interface of the Eclipse Paho client library; 

• the management of the application communication protocol, serializing and 

deserializing the I/O signals into JSON messages compliant with the IO Data Model 

described in § 5.3.1; 

• auto-wire of module signals: using the Java reflection API, this class inspects a module 

structure identifying input and output signals and creates an internal cache of signal 

references (represented by the “in” and “out” maps in the UML class diagram); 

The following table contains the description of the main methods. 

Method signature Description 

init():void 
Initializes the MqttProxy instance and, if the 

connection has been established, registers itself 

as a listener on the message queue of the 

specified topic containing the signals flowing 

from automation to simulation. 

messageArrived(String topic, 
MqttMessage message):void 

This method is the realization of the 

IMqttMessageListener interface and is the 

endpoint receiving the incoming JSON Messages. 

routeIncomingSignals(MqttMessage m): 
void 

Deserializes the incoming MqttMessage JSON 

payloads, identifying the InputSignals involved. 

Then it translates the values in the proper data 

type and routes them to the destination module. 
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send():void 
The class register for the internal notification of 

changes in the OutputSignal instances of the 

module it belongs to. When an output value 

changed, the MQTTIO serialize the new signal 

values into a proper JSON payload and sends it 

through the MqttClient provided by the 

MqttProxy instance. 

Table 7 MQTTIO details table 

AbstractMqttModule 

This class represents an extension of the base Module class that all simulation module instance 

inherits from. It is an abstract class, meaning that it cannot be directly instantiated but must be 

extended by the module classes that need to interface with the automation. 

It exposes to the extending classes the infrastructure to cope with the MQTT communication 

runtime without having to deal with all the low-level implementation details needed to handle 

the connections and manage the application messaging protocol. In this way the instance 

module developers, when creating the digital twin representations of the real devices, can 

concentrate on the high-level coding the behavioral logics. 

This class delegates to an internal instance of MQTTIO the management of the protocol and 

defines the module parameters that must be specified in order to correctly configure the low-

level channel. This is the reason way the MUL class diagram reports, for the 

AbstractMqttModule not only the main operations, but also a set of relevant configuration 

attributes. Both attributes and operations are described in the table below. 

Attribute Description 

mqttID:String 
Client identifier, it is used by the MQTT broker to 

distinguish the clients. Each client must provide a 

unique ID in order to be accepted by the broker. 
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Typically this ID is set to the module id string 

which is unique within a simulation.  

topicIn:String 
Name of the topic on which the client expects to 

receive the messages sent by the automation. 

This string conforms to the hierarchical format of 

the MQTT topics. 

topicOut:String 
Name of the topic the client uses to send the 

outgoing signal values to the automation. This 

string conforms to the hierarchical format of the 

MQTT topics. 

broker:String 
URL of the broker. This string must contain the 

chosen transport protocol, the host, and the port 

on which the connection should be established. 

Typically the communication is configured to 

work on TCP, therefore the broker attribute has 

the following shape: 

tcp://[broker_host]:[broker_port] 

The standard port is 1883. 

qos:int 
Sets the quality of service of the communication 

according to the three levels defined by the 

protocol to control the delivery of messages: 

0: At most once (fire and forget, fastest) 

1: At least once (slower, with cache until delivery) 

2: Exactly once (secure but the slowest) 

Method Description 
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initMqtt():void 
Initializes the full proxy infrastructure for the 

module instance, wiring the signals to the MQTT 

queues and starting the client instance using the 

specified parameters 

writeIfChanged(OutputSignal out, T 
value):void 

Writes the values of an output signal if the value 

has been actually changed, otherwise avoids 

calling the output signal setValue operation. 

This method aims at reducing the number of 

redundant events that could generate useless 

MQTT traffic towards automation. 

Table 8 AbstractMqttModule details table 

When implementing an extension of the AbstractMqttModule, it is important that the 

specialization class follows few directives in order to ensure the correct initialization of the 

communication and the in and out data flows: 

1- The class must be a direct or indirect extension of AbstractMqttModule 

2- The class declares input signals as public access class attributes of type InputSignal and 

these attributes must be initialized before initializing the MQTT 

3- The class declares output signals as public access class attributes of type OutputSignal 

and these attributes must be initialized before initializing the MQTT 

4- The class implements the init() method as all the simulation logics modules 

5- The init() method, after initializing all other internal structures calls the initMqtt method 

of the super class 

6- Id the class needs to reduce the amount of events generated by output signals, instead 

of directly writing the OutputSignal values, it must call the writeIfChanged method of 

the super class.   

The code below reports a possible example of extension following the aforementioned rules: 
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/** Module class to be interfaced with automaton through MQTT */ 

public class Extension1 extends AbstractMqttModule { 

     

 public InputSignal input1 = new InputSignal(PropertyType.DOUBLE); 

 public InputSignal input2 = new InputSignal(PropertyType.INTEGER); 

 

 public OutputSignal output1 = new OutputSignal(PropertyType.DOUBLE); 

 public OutputSignal output2 = new OutputSignal(PropertyType.INTEGER); 

     

  @Override 

  protected void init() { 

  if (broker != null && !broker.isEmpty()) { 

   // perform initialization of the internal logics 

   initMqtt(); 

  } 

 } 

} 

5.3.3.1.3 MQTT Topics structure 

As documented in the IO Data Model section, the JSON implementation does not contain any 

specification of the signal direction: no distinction between input and output signal is done at 

message payload level. In the WebSocket, since it is an end to end communication, the direction 

of the messages is immediately clear because they flow from the sender to the receiver without 

any intermediary.  

With the MQTT solution instead, the presence of the MQTT Broker represents a point of 

distribution of data that can create confusion on the direction of the messages. The same client 

in fact can be publisher and subscriber on the same topic creating a loopback on it won 

messages. For this reason, in order to distinguish the semantics of the signals, the hierarchical 

structure of the topics within the MQTT broker has been exploited. 

Therefore, the topics has been organized to reflect: 

• the flow direction of the signal messages; 

• the identifiers of the connected simulated and controlled devices. 

In particular the identifier of the topic is composed as follows: 
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VirtualCommissioning/{System_name}/{module_id} 

 

The “VirtualCommissioning” root of the topic URL represents a common namespace for all the 

topics. 

{System_name} can be assigned with “Automation” or “Simulation” depending if the topic 

contains messages generated respectively by the Automation Solution or from the Simulation 

Model. 

{module_id} is the unique identifier of the entity belonging to the simulation and automation 

artifacts that is generating the signals. This choice has been based on the assumption, already 

discussed in the previous paragraphs, that each IEC 61499 Function Block exchanging signals 

with the external world, has a corresponding digital twin on within the Simulation Model, 

identified with the same name. 

Therefore, considering the existence of an IEC 61499 Function Block called “ConveyorA” in the 

NxtControl Runtime and a corresponding simulation instance in the DDD Simulator model: 

• The IEC 61499 FB: 

o Publishes on topic “VirtualCommissioning/Automation/ConveyorA” 

o Subscribes to topic “VirtualCommissioning/Simulation/ConveyorA” 

• The Simulation instance: 

o Publishes on topic “VirtualCommissioning/Simulation/ConveyorA” 

o Subscribes to topic “VirtualCommissioning/Automation/ConveyorA” 

It is important underlining that this possibility of publishing and subscribing on named topics for 

each virtual commissioning entity depends on the capability of the MQTT Broker to dynamically 

create topics whenever at least one client declares the intention to publish to it or to subscribe 

to it, even if nobody is going to send/receive on that particular channel.  
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6 Connecting automation and simulation at design time 

If the possibility to connect the automation and simulation runtimes with high performance 

communication channels represents the key enabler for each virtual commissioning session, it 

is not yet the most important breakthrough carried out by the research activities of this work. 

The proposed approaches at runtime, documented in the previous chapter are really effective 

because they exploit the capability of the IEC 61499 standard to execute event based and object-

oriented logics coping perfectly with a modular structure of the simulation model. 

Nevertheless, they don’t fill the wider technological gap that make the creation of virtual 

commissioning models a complex task that often prevents automation engineers to adopt it for 

the everyday work. In this chapter, an architecture capable to support the design process of 

virtual commissioning sessions is presented, starting from the presentation of the objectives and 

the main requirements until the documentation of the developed infrastructure, whose validity 

has been proved during the testing phase.  

6.1 Objectives and requirements 

When a virtual commissioning model is defined typically two professional roles are involved in 

the development process: 

• The automation expert who is responsible for the mechatronic system logics and who is 

expert in process control 

• The simulation expert who is responsible for the realization of a digital avatar of the real 

world capable to react to the same signals that the automation sends to the physical 

devices and provide reliable and realistic feedback signals 

The two characters use different development environments: the former works with an 

automation-oriented IDE (like nxtStudio for IEC 61499) conceived to support the coding of 

function blocks, of their internal state machines and their internal and external wiring, while the 

latter is used to operate in a 3D environment, dealing with the programming of geometric and 

kinematics models. 
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The exchange of knowledge between the two actors can be really slow and require several hours 

of work to align the behavior of the two models. This affects the effectiveness of the approach, 

in particular when the automation logics is under development so that its incremental growth 

becomes too fast to be synchronized with a digital counterpart. 

The main objective of this second part of the research is implementing an infrastructure capable 

to integrate the automation and simulation IDE applications, using a common data model that 

automatizes the concurrent evolution of the two artifacts, making it possible to exploit virtual 

commissioning from the early design down to the use phase of the industrial systems. 

During the initial activities, the main requirements for the system have been elicited together 

with a consortium of international partners working with automation and simulation. 

The following table reports the specifications of the requirements. As for the runtime, each 

requirement is defined by: 

• an ID label that has been used to track the progress during the development and to fill 

a validation report during the functional tests 

• a priority level that allowed to schedule the implementation activities; the priority has 

been formalized according the following three levels (mediated from the common 

keywords applied in requirements elicitation and quality management): 

o SHALL: the final result must completely satisfy the requirement to be positively 

evaluated; 

o SHOULD: (equivalent to the keyword RECOMMENDED) the requirement is 

important and should be satisfied by the final result, but it can be accepted also 

a final result that meets the specification only partially: in this case the 

implications must be understood and justified; 

o MAY: the requirement is non mandatory and meeting it would represent an 

enhancement respect to the optimal baseline. 

• A description of the desired behavior containing a base indication of possible 

acceptance criteria to be verified during the validation phase 
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Requirement ID Description Priority 

D001 The integration layer must allow the user to automatically 

create digital counterparts of the automation code written 

in IEC 61499. 

Acceptance criteria: 

The automation IDE succeed in triggering the instantiation of 

simulation prototypes in the simulation IDE 

SHALL 

D002 The integration layer must define automatically the signal 

mapping between function blocks and simulation entities. 

Acceptance criteria: 

The simulation instances created through the integration 

interface are correctly configured with the I/O signals 

compatible with the corresponding Function Blocks. The end 

user should not tweak in any way the signals mapping to run 

the virtual commissioning session. 

SHALL 

D003 The simulation model must be a synchronized 

representation of the automation function blocks. 

Acceptance criteria: 

The automation IDE succeeds in creating, deleting, and 

updating digital twins of the Function Blocks through the 

integration interface without the need to access the 

simulation IDE.  

SHALL 
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D004 The integration layer must support a modular object-

oriented approach. 

Acceptance criteria: 

The integration works with units that have the granularity of 

the Function Blocks 

SHOULD 

D005 The integration layer must be based on an open Digital 

Avatar Data model compatible with the runtime IO Data 

Model and its implementations. 

Acceptance criteria: 

At the end of the development exist an open API and a 

supporting data model that can be mapped to the runtime 

JSON implementation of the IO Data Model.  

SHALL 

D006 The integration architecture must be platform independent; 

it must be possible to apply the same approach to 

automation and simulation platforms different from the 

ones used during the validation. 

Acceptance criteria: 

… 

SHOULD 
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D007 The integration must be based on a cross platform 

technology. The IDE applications are typically developed on 

different software platforms (Java, C++, C#, etc.), the chosen 

technology must ease the implementation of the 

communication stubs. 

Acceptance criteria: 

The integration layer can be interfaces independently from 

the underlying language.  

SHOULD 

D008 The integration layer must support the compilation and 

deployment phase of the artifacts at simulation phase. 

Acceptance criteria: 

At the end of the development the automation developer, 

within the automation IDE user interface, without accessing 

the simulation IDE, compiles the simulation model and 

creates the corresponding runtime artifact. 

SHALL 

D009 The integration layer must support the control (start/stop) 

of the execution of the virtual commissioning sessions, 

running the automation and simulation engine and 

connecting them without the need for the automation 

developer to interacts with the simulation IDE. 

Acceptance criteria: 

At the end of the development the automation developer, 

within the automation IDE user interface, without accessing 

the simulation IDE and without any further configuration, 

starts and stops the virtual commissioning session. 

SHOULD 
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D010 The integration layer must be bidirectional, supporting not 

only the control flow from automation to simulation IDE but 

also the notifications in the opposite direction. 

Acceptance criteria: 

The automation IDE is notified when the requested 

operations are completed in the simulation IDE.  

SHOULD 

D011 The integration layer must be resilient to modifications of 

the simulation model that affect the positioning and 

parametrization of the digital twins of the Function Blocks. 

Acceptance criteria: 

The automation developer modifies the simulation model 

created by the integration layer directly in the simulation 

IDE, changing the position (translation and rotation) of the 

instances and their parameters (speeds, accelerations, etc.) 

without affecting the synchronization between the two 

applications. 

SHALL 
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D012 The integration layer should have a small footprint. The 

concurrent execution of two complex IDEs like the 

automation and simulation can require a significant amount 

of system resources, therefore it is important to avoid that a 

further increase of this consumption due to the 

communication between the applications causes 

instabilities or even system crashes. 

Acceptance criteria: 

The integrated IDEs running on a middle level laptop (e.g., 

PC with 16 Gb of RAM, Intel i5 processor and discrete NVIDIA 

Graphic Card) works smoothly without causing system 

blocks. 

MAY 

Table 9 IDE integration requirements 

The verification of the acceptance criteria for each requirement is documented in Chapter 0 and 

is based on global validation scenarios demonstrating the whole virtual commissioning process 

from design to execution. 
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6.2 Implementation 

The implementation of the integration at IDE level is based on the high-level architecture 

proposed in section §4.2 and whose schema is reported here in for convenience, highlighting 

the position of the interface. 

 

Figure 28 Integration high level architecture 

Even though the development has been carried on using the two selected environments 

nxtStudio and DDD Model Editor, the proposed solution can be adopted to any IEC 61499 

automation IDE and any modular simulation engine. 

The realization of the interface followed an iterative spiral process with the preparation of early 

prototypes to be validated and evolved towards the final released version. 

The interface is composed of two main complementary components that concur to enable the 

communication between the two environments: 

1. The Digital Avatar Data Model 

2. The integration API 
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6.3 Digital avatar data model 

When configuring the simulation entities to behave like the real devices, it is necessary to wrap 

a pure digital behavior into a container capable to mimic the interfaces of the physical units. This 

means defining artifacts capable of consuming the same signals of the physical systems, 

elaborating a reaction and generate the same responses. 

The digital avatar data model aims at defining the structure of the digital counterparts of the IEC 

61499 Function Blocks, composing its interface with its internal logics, supporting the 

parametrization of the whole entity. 

From an architectural perspective, these objects are similar to the simulation prototypes 

adopted by the DDD Simulator platform, because they must formalize: 

1. A set of configuration parameters 

2. A set of I/O endpoints corresponding to the automation I/Os 

3. A set of logical tasks that must be executed to react to external or internal events 

 

Figure 29 Digital Avatar Data Model UML Class Diagram 



pag. 103 
 

The UML Class Diagram reported in Figure 29 shows the organization of the classes that 

compose the Digital Avatar Data Model. The following section provides a brief description of the 

role of each class. 

Prototype 

Represents the root of the data model, acts as a container for the description of an entity 

mapping to virtual commissioning. The role of this container is mainly to behave as a model glue 

that allows different concepts like signals, parameters and task to be cross linked and maintain 

the consistency needed to manage them with an automatic generation system. 

The prototype is a blueprint, a structure that is meant to be replicated by the corresponding 

instances with different parameter values. 

Input and Output 

Represent the physical signals that will be exchanged, at runtime, through the communication 

channel, with the IEC 61499 Function Blocks. Their role is not only defining the external interface 

of the prototype, but also to route the incoming data to the correct internal endpoints of the 

tasks and localize the task properties that provide the values to be published outside. 

Signal 

It is a convenience super class for Input and Output classes, providing common attributes and 

allowing the management systems to handle the I/Os in a consistent way. 

Property 

The property is used at two different levels, as a configuration parameter of the prototype and 

as a property of a specific logs task. It always represents a customization parameter that can be 

controlled from outside the prototype and whose actual value concur to determine the features 

of a particular instance of the prototype. 
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6.3.1 XML implementation of the data model 

The presented model has been transformed into a file format to be used by the simulation and 

automation IDE applications to share prototype definitions. Collection of prototypes are 

organized into libraries called catalogue that the two environments share as a common 

modelling layer. 

The file format chosen for the prototype files is the XML, coherently with the file format defining 

the structure of the simulation entities in the DDD Model Editor platform (see §3.4.5). 

The following paragraphs document the XML data types of the Digital Avatar Data Model 

implementation and their relationships. 

<prototype> 

Attributes 

Name Type Description Use 

uuid string Unique identifier of the prototype in the 
form of a UUID, it must be different for all 
the prototypes 

Required 

name string Name of the prototype: it is the human 
readable identifier 

Required 

Elements 

Name Type Description Use 

<input> <input>*7 Set of input signals that the prototype can 
receive and that is capable to handle. 

Optional 

<output> <output>* Set of output signals that the prototype is 
capable to publish through the runtime 
communication channel 

Optional 

<property> <property>* A variable set of properties that can be used 
as configuration parameters of the 
prototype. Unlike the simulation entity 
prototype, there isn’t a predefined set of 
configuration properties, the list changes 

Optional 

 
7 The * next to a type definition indicates that the current structure contains a collection with 0 or multiple 
definitions of the same type- 
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according to the IEC 61499 Function Block 
that must be interfaced. 
These properties are mapped internally to 
the configuration properties of the tasks. 

<task> <task>* Characterization of the behavior of the 
prototypes 

Optional 

<input> and <output> 

The <input> and <output> XML elements share exactly the same type definition because 

semantically they are a representation of the same type of objects. 

Attributes 

Name Type Description Use 

name string Name of the signal; it is especially important 
because this name is the same identifier 
used by the runtime communication to 
compose the JSON payload of the messages 
exchanged by automation and simulation 
engines. 
This name must unique locally to the 
prototype in the same way the names of the 
events of the Function Block are unique. The 
automatic mapping of the signals in two 
direction is based on this correspondence. 

Required 

type string String identifying the IEC 61499 type of the 
signal to be exchanged. This information, in 
conjunction with the unique name, ensure 
the correct coupling between the artifacts 
and the needed low level type adaptations. 
The values that can be assigned to this 
attribute are defined in the SignalType 
enumeration. 

Required 

Elements 

Name Type Description Use 

<map> <map>* Set of mapping elements that wire the 
signals internally to the input registers of the 
logics tasks. The presence of these mapping 
element is optional but, actually at least one 
<map> should be modelled; otherwise, an 

Optional 
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input signal, even if received by the instance 
of a prototype, does not trigger any 
simulation event and analogously an output 
signal would never publish value variations 
because it would be never updated by 
internal events. 

<map> 

Convenience element needed to map concepts within the prototype definition to a property of 

a task. 

Attributes 

Name Type Description Use 

task string Identifier of the task addressed by this 
mapping. 

Required 

property string Identifier of the target property whose value 
will be set controlled by the mapped 
element value (signal or prototype property) 

Required 

<properties> 

Convenience element grouping together the configuration properties of the prototype. 

<property> 

Within the defaultValue attribute it is possible to reference the current instance of the prototype 

using the $ symbol that, at runtime is substituted with the ID of the instance. This is useful when 

referencing parts of the model like frames, joints, and sub-assemblies. 

Attributes 

Name Type Description Use 

name string Name of the property, must be unique 
within the prototype. 

Required 

type string Low level data type of the property. 
The accepted values are compliant with the 
basic data types listed in §3.4.6 

Required 
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defaultValue string String representation of the default value 
assigned to the property at instantiation 
time. 
The value must be compliant with the type 
attribute. 

Required 

Elements 

Name Type Description Use 

<map> <map>* Set of mapping elements that wire the 
properties internally to the configuration 
properties of the logics tasks. The presence 
of these mapping element is optional and 
typically: 

• it is present when the <property> 
element is used at prototype level; 

• it is missing when the property is used 
internally to a <task> element. 

In the former case it is important that at 
least one <map> is modelled; otherwise a 
property would not affect any behavior of 
the prototype instance and therefore it is 
useless. 

Optional 

<task> 

A task is a piece of logics that instance that, conveniently configured, controls the evolution of 

a part of the simulation entity kinematics model, modifying the position of the elements, the 

values of the joints, the visibility of the parts, and all the runtime properties exposed by the 

simulation engine. A prototype can contain several task definitions, each one dedicated to mimic 

a single aspect of the whole device. 

Attributes 

Name Type Description Use 

name string Unique identifier of the task within the 
prototype. 

Required 

type string Fully qualified name of the Java type 
implementing the behavioral logics of the 
prototype. 
This class must be present within the 
catalogue JAR libraries so that it can be 

Required 
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resolved at runtime by the DDD Simulator 
application. 

Elements 

Name Type Description Use 

<property> <property>* Set of configuration properties that can be 
modified at runtime after the instantiation 
of the prototype. 
These properties, internally are translated 
into values of the fields of the task class. 

Optional 

The following XML fragment shows an example of prototype configuration. All the libraries of 

virtual commissioning entities developed in the validation phase are based on this format. 

prototype uuid="a7315040-3e5c-42cb-b5ee-b532b7e08e5d" name="Pusher"> 

     

    <input name="command" type="DINT"> 

        <map task="PusherSensor" property="pusherCommand_RegistryIn"/> 

    </input>     

    <!-- Pusher Extended TRUE:is completely extended --> 

    <output name="limitExtended" type="BOOL"> 

        <map task="PusherSensor" property="pusherLimitExtended_RegistryOut"/> 

    </output> 

    <!-- Pusher status TRUE:is moving --> 

    <output name="isRunning" type="BOOL"> 

        <map task="PusherSensor" property="pusherIsRunning_RegistryOut"/> 

    </output> 

    … 

    <properties> 

        <property name="pusherAxisValue" defaultValue="500" type="double"> 

            <map task="PusherSensor" property="pusherAxisValue"/> 

        </property> 

        <property name="pusherSpeed" defaultValue="2" type="double">             

            <map task="PusherSensor" property="pusherSpeed"/> 

        </property> 

        <property name="sensorColor" defaultValue="255;0;0" type="integer[]"> 

            <map task="PusherSensor" property="appearanceColorRGB"/> 

        </property> 

        … 

    </properties> 

 

    <!-- TASKS --> 

    <!-- PusherSensor task --> 
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    <task type="synesis.sensors.PusherBoxSensorModule" name="PusherSensor"> 

        <property name="boxPosition" defaultValue="0 0 0" type="vector3"/> 

        <property name="boxDimentions" defaultValue="120 120 20"     

        type="vector3"/> 

        <property name="pusherAxisName" defaultValue="$.Spintore.T"  

        type="string"/> 

    </task> 

  

    <task type="synesis.sensors.BoxSensorModule" name="PusherLightBarrier"> 

        <property name="boxPosition" defaultValue="230 0 0" type="vector3"/> 

        <property name="boxDimentions" defaultValue="460 10 10"  

        type="vector3"/> 

    </task> 

    … 

</prototype> 

6.4 The integration API 

If the data model provide the automation and the simulation IDE with a common ground for the 

definition of the digital twins of the physical devices, the Integration API layer represents the 

means by which the two applications collaborate to co-design the virtual commissioning 

solution. Through this layer, the actions performed by the automation expert induce automatic 

modifications of the simulation model that in this way is kept in synch with the IEC 61499 logics. 

The Design Integration API can be considered the dual of the Runtime Communication Layer and 

the natural completion of the upstream development process. Nevertheless, the two interfaces 

are meant to support two so different phases that the requirements for each one are really 

different. 

The design API supports operations happening at slow rate, triggered by the end user actions, 

therefore it does not demand for the same high speed and low latency required by the runtime 

communication. The performance in terms of throughput becomes not so important because 

there is no real time data exchange.  

On the contrary, the Design Integration API requires the exposure of high-level functionalities, 

identifiable with actions or methods of a high-level software interface. For this reason, the 

choice of the communication protocol is based on criteria that consider the capability to 

efficiently support complex operations in a cross-platform approach. 
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A viable approach could be represented by the adoption of the RESTful API design pattern of 

web services providing client-server access to internal functionalities of the simulation IDE. This 

solution has the advantage of using very simple and accepted communication protocols based 

on HTTP and HTTPs but, as drawbacks, its way of exposing functionalities is unstructured, and 

the communication is error prone because the meaning of each service and in particular of its 

in/out data structures is not built.in with its the definition. Moreover, a RESTful API is not 

suitable to easily manage observer patterns unless switching to the SSE protocol (Server Sent 

Event) or to a pure WebSocket notification channel. 

The best integration technology for this specific use case is the represented by the gRPC [23] 

which is a high performance, open-source universal remote procedure call framework. It 

provides support to most of the common development platforms used for software engineering 

like C++, Java, C#, and others. The gRPC framework uses Protocol Buffers, an industry ready open 

source mechanism for serializing structured data provided by Google, as both its Interface 

Definition Language (IDL) and as its underlying message interchange format.  

 

Figure 30 gRPC framework 

From the architecture point of view, gRPC relies on the implementation of a server artifact and 

of client stubs that manage the function calls in a way that is transparent both to the server and 

to the client applications. The framework, starting from the Protocol Buffer defined interface, 
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generates the server and stubs code in the specific target language of the hosting application, 

so that both the endpoints of the communication can use local compiled methods. Relying on a 

binary socket implementation, the procedure calls run not only locally but also remotely through 

the network. This technology brings a set of benefits that can be summarized in: 

• Transparency of the underlying transport protocol: the application code doesn’t have 

comply with specific patterns like the stateless mode of the RESTful API; 

• Performance: the default binary implementation of the Protocol Buffers is designed for 

performance so the impact on the normal operation times is negligible; 

• Vendor independence: the possibility to use the protobuf format as IDL to define the 

API, allows to open the specification to any vendor interested in integrating with the 

architecture; 

• Complexity management: the possibility to define data structures and articulated 

method signatures brings within the integration layer the same design patterns that can 

be applied with normal OOP (Object Oriented Programming) code, i.e. the observer 

pattern. 

6.4.1 The gRPC API 

The requirements defined at the beginning of the chapter have been translated into use cases 

and then formalized into functions and data structures of the gRPC IDL using the Protocol Buffer 

version 3 syntax (“proto3”, [24]). The following snippet reports the structure of the developed 

API: 

syntax = "proto3"; 

 

package simulation.server; 

 

/** 

 * Simulation service. 

 */ 

service SimulationService { 

 … [rcp definitions] 

} 

 

[message definitions] 
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The following table shows a synoptics overview of the main rpc signatures and the 

corresponding messages that have been defined, grouped according to the target object. 

Group Procedure name Input messages Output message 

Project 

CreateProject CreateProjectRequest ProjectHandle 

OpenProject OpenProjectRequest ProjectHandle 

CloseProject ProjectHandle Result 

DeleteProject ProjectHandle Result 

Prototype 

CreatePrototype CreatePrototypeRequest ResourceHandle 

DeletePrototype ResourceHandle Result 

GetPrototypes ProjectHandle ResourceList 

Instance 

CreateInstance ResourceHandle CreateResult 

DeleteInstance ResourceHandle Result 

GetInstances ProjectHandle InstanceList 

SetInstanceProperty SetInstancePropertyRequest Result 

SetSignalInstance SetSignalInstanceRequest Result 

Deploy and 

run 

CompileProject ProjectHandle Result 

RunProject RunProjectRequest Result 

StopProject ProjectHandle Result 

QueryProjectRunning ProjectHandle Result 
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Transaction 

BeginTransaction ProjectHandle Result 

CommitTransaction ProjectHandle Result 

RollbackTransaction ProjectHandle Result 

Figure 31 Synoptics view of the IDE Integration API 

The full IDL in proto3 language syntax is reported in Appendix A, where each procedure has the 

corresponding embedded documentation and the input/output message structures are visible. 

The documentation of the API is available also in auto-generated HTML format as shown in the 

following picture: 

 

Figure 32 Portion of HTML auto-generated documentation of the SimulationService.proto 
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6.4.2 User workflows 

The API is meant to allow the integration of the automation IDE and the simulation IDE during 

the engineering phase. It is possible to formalize a set of relevant sequences of operations that 

are performed by the two application, highlighting the role of each environment in the 

interaction.  In this section is described a complete Workflow for an End-User (Engineer) divided 

in three phases: start up and creation, stop and close and destroy. The use cases and 

corresponding sequence diagrams are presented from the Automation Engineer perspective 

using a generic IEC 61499 IDE, to describe which is the envisioned user experience and how it 

reflects on the data exchange between environments. This workflows are the same that have 

been implemented on nxtStudio and DDD Model Editor platforms during the development of 

the proof of concepts and that have been applied during the test and validation phase. 

The interactions are described using UML sequence diagrams, where the messages flowing 

between lifelines, denoted with << … >> notation correspond to gRPC calls. 

6.4.2.1 Start up and creation 

In this workflow the user starts the IDE applications and then, following the natural engineering 

process, creates a new project, adding as many CPS instances as needed and setting their 

parameters, and finally compiles, deploys, and runs the project. What is enhanced is the fact 

that during the compiling and run, the corresponding simulation model is transparently built, 

deployed, run, and connected to the control application giving the end user the possibility to 

immediately execute virtual commissioning operations. 
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Figure 33 Startup and creation workflow with gRPC API 
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6.4.2.2 Stop and close 

In this workflow the user stops a running project, closes it, and exits the application. This 

workflow is very simple and it is meant only to highlight the fact that the interaction between 

IDEs involves the management of cleanup operations to ensure the correct release of the system 

resources. 

 

Figure 34 Stop and close workflow 

6.4.2.3 Destroy 

In this workflow the end user deletes an instance and, if the originating prototype is not used 

anymore, the automation IDE is in charge of removing the prototype from the simulation 

project, to allow its garbage collection. 
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Figure 35 Destroy workflow 
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6.4.3 Implementation within target environments 

The implementation of the Integration API has been carried out on the two target environments 

provided by the partners of the EU research projects: nxtStudio and DDD Model Editor. Figure 

36 shows the placement of the gRPC interface component within the internal architecture of 

each platform. The following paragraphs describe the role of the depicted software modules of 

the DDD Model Editor application. 

The implementation on the automation side, in nxtStudio platform, has been completed by the 

R&D department of NxtControl GmBH and its documentation is part of a complementary work 

that will be published separately. 

 

Figure 36 Component view of the implementation 

6.4.3.1 GRPCInterface and Graphical User Interface 

From the Integration API perspective, the DDD Model Editor application represents the serving 

software, providing the functionalities to operate on the simulation project, its prototypes, and 

its instances. The gRPC Server component is a Java package that has been generated using the 
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tools made available by the gRPC framework. The generated classes has been connected with 

the internal project management API to control the CRUD operations of the simulation model, 

of its instances and the execution of the virtual commissioning sessions, as required by the 

Integration API specification. The gRPC server is part of the modular architecture of the DDD 

Model Editor application, that allows the installation of external plugins interacting with the core 

editing functionalities. Figure 37 highlights the internal organization of the plugin. 

 

Figure 37 Internal structure of the GRPCInterface plugin 

It is important noting that this component is mainly operating in the back end logics of the 

application and its presence is almost transparent to the graphical user interface, expect for the 
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startup message that informs the user that the plugin gRPC interface is active, as shown in Figure 

38. 

 

Figure 38 Startup of the gRPC server module 

6.4.3.2 Prototype libraries 

The possibility to instantiate simulation entities inside the project 3D model, depends on the  

availability of the prototypes representing the digital twins of the automation Function Blocks. 

As documented in §3.4.4, the prototypes are grouped and installed into the editing environment 

within libraries of components. Therefore for each CAT (Composite Automation Type) that 

represents a physical element on the nxtStudio side, there exist a simulation prototype in the 

corresponding library. 

 

Figure 39 Library of simulation prototypes corresponding to IEC61499 device FBs 
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6.4.3.3 Simulation Model 

It is the instance of simulation project organized as explained in §3.4.4 and target of the gRPC 

integration API. As reported in the user workflows, all the times the user modifies a device 

Function Block, the corresponding instance are created/deleted or parametrized in the 

simulation model. 

 

Figure 40 Simulation model composed of 2 instances of conveyor prototype 

6.4.3.4 Workflow 

The main workflow presented as a platform independent sequence diagram for the startup and 

creation, the is instantiated with the target software application. Figure 41 shows the main order 

of the actions triggered by the application engineer. In particular it is important highlighting that, 

except for the point number 1 – Write Automation Code,  that corresponds to his everyday work, 

all the other steps happen automatically and are managed by the internal logics of the two 

interacting platforms whenever the automation expert request to start a virtual commissioning 

session. This is fundamental from the workload perspective because it shows how the 

complexity of the whole system can be kept almost transparent to the final end user, without 
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creating additional burden but providing a high value added service for testing the control 

application under development. 

 

Figure 41 Instantiation of the workflow in the target applications 
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7 Global validation scenarios 

The validation of the results achieved has been carried on within the contexts of the Daedalus 

and 1-SWARM European research projects, and the availability of different industrial show cases 

has provided an ideal set of high-value added real scenarios. The development of the runtime 

connection and of the Integration API followed an iterative incremental path made of early 

prototypes implementations, small focused tests and re-design of the solutions. Thus, the low 

level functionalities of each components of the overall picture has been guided by the evaluation 

results during the implementation, correcting pitfalls as they appeared. This approach allowed 

the consortium of partners collaborating to the whole topic to progressively adjust the 

objectives and the steps to achieve them. In this way the single components deployed in the 

respective automation and simulation platforms, both for runtime and for design time, could 

reach a good level of stability and it has been possible to start the demonstration phase 

leveraging on a reliable architecture. 

This chapter reports on the validation tests performed on two reference cases, each one 

characterized by peculiarities that made them an optimal playground: 

• A pilot plant scenario constituted by an automated de-palletization line 

• A industrial scenario constituted by lines for food packaging 

On both cases, the full set of libraries containing the simulation prototypes for the DDD platform 

and the CAT models for the nxtStudio IEC 61499 environment has been developed from scratch 

in compliance with the proposed specifications data models. The nxtStudio and DDD platforms, 

equipped with the extension documented in this thesis have been deployed and extensively 

applied to create the IEC 61499 control applications and their 3D simulation counterparts. In this 

way, the global workflow presented in Chapter 6 has been applied step by step to confirm the 

effectiveness of the framework and to reach an initial evaluation of the improvements that it 

could bring to the virtual commissioning on IEC 61499 systems. 

The evaluation procedures have been based on the comparison of the observed behaviors and 

performances  with the initial expectations formalized in the requirements lists produced for the 
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runtime engines and for the authoring environments. Therefore the final section of this chapter 

contains a synoptic table with an assessment of the level of fulfillment of the acceptance criteria 

for each original requirement. This report, beyond providing a global rating of the whole work,  

constitutes the starting point for the future improvements.   

7.1 Logistics 

The logistic scenario refers to the De-Palletization plant present in Como Next, Lomazzo (IT). It 

is a pilot plant, therefore not dedicated to real production, but mainly to showcase the benefits 

of applying distributed IEC 61499 automation to control systems composed of heterogenous 

devices supplied by different vendors. Figure 42 De-palletization pilot plant model, shows the 

structure of the line. 

 

Figure 42 De-palletization pilot plant model 

The importance of this scenario is related to the following aspects: 
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1. The possibility to develop and test in a complex and complete playground without 

impacting on the production of a real line; this made the logistic scenario ideal for the 

initial validation, the most critical one from the point of view of the stability of the 

applied solutions. 

2. The  richness of devices composing the line: the presence of conveyor lines, pneumatic 

actuators like the pushers and the suction grippers, and complex kinematics structures 

requiring motion control, like the cartesian robot, gave the possibility to develop a wide 

set of prototypes, evaluating the behavior of the framework with different type and 

frequencies of signals.     

7.1.1 Prototypes 

This section documents the device prototypes based on the Digital Avatar Data Model 

developed to perform the virtual commissioning of the plant. 

 

Figure 43 Library of prototypes developed for testing the logistics scenario 

 Other modules have been defined to emulate the behavior of the loading and unloading of the 

bays with pallets and boxes but they are not controlled by the automation. 



pag. 126 
 

Straight Conveyor 

 

Prototype signals: 
IN: velocityTarget 
IN: motorDirection 
OUT: velocityActual 
OUT: driveEnabled 
OUT: driveRunning 
OUT: directionalActual 
OUT: lightBarrierA  
OUT: lightBarrierB 

 

Pusher 

 

Prototype signals: 
IN: command 
OUT: limitExtended 
OUT: limitRetracted 
OUT: isRunning 
OUT: lightbarrierA 
OUT: lightbarrierB 

ConveyorCurve 

 

Prototype signals: 
IN: velocityTarget 
IN: motorDirection 
OUT: velocityActual 
OUT: driveEnabled 
OUT: driveRunning 
OUT: directionalActual 
OUT: lightBarrierA  
OUT: lightBarrierB 
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CartesianRobot 

 

Prototype signals: 
IN: XTarget 
IN: YTarget 
IN: ZTarget 
IN: RTarget 
IN: grip 
OUT: cartesianArrived 
OUT: actualPosX 
OUT: actualPosY 
OUT: actualPosZ 
OUT: actualPosR 

SuctionCapGripper 

 

Prototype signals: 
IN: suctionOn 
IN: blowOn 
OUT: vacuumOn 

7.1.2 Model Statistics 

Number of prototypes 7 

Number of instances 38 

Number of signals 130 

Runtime max update frequency 50 Hz (20 ms interval) 

Simulation model complexity about 250K polygons 
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7.2 Packaging 

The packaging scenario refers to the production of lines for food packaging of Reepack Srl (IT) 

[25]. This type of lines is characterized to be quite short with few but complex modules 

homogeneous because all produced by the same company.  

 

Figure 44 Reepack food packaging line 

Nevertheless the importance of this test case refers to: 

1. The soundness of the test: Reepack lines are industrial products working in real 

environments and with really demanding requirement in terms of performances and 

machines customizations 

2. The machines perform fast operations, requiring event management on simulation side 

which is not larger than 10 ms to allow automation to control the main inverter motor 

governing the motion actuators of the line. 

In this scenario preliminary tests have been executed to asses the capability of the MQTT 

runtime communication channel to stand the required update frequency needed to control the 

inverter motor with a speed profile. The result of the test has been positive, the updating of 
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speed input values and the feedback emulating the encoder succeeded in ensuring an update 

frequency of about 100 Hz. 

7.2.1 Prototypes 

The main device prototypes developed for this test case are listed in the following tables. 

 

Figure 45 Library of prototypes developed for testing the packaging scenario 

All the prototypes have been modelled and endowed of the corresponding signals. The following 

table report the visual appearance but, for data protection reason, the names of the signals and 

their meaning is not reported in the document. 

Denester module 

 

Conveyor module 
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Exit module 

 

Collaborative robot module 

 

7.2.2 Model Statistics 

Number of prototypes 5 

Number of instances 5 

Number of signals 80 

Runtime max update frequency 100 Hz (10 ms interval) 

Simulation model complexity about 200K polygons 
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7.3 Requirements fulfillment assessment 

The following table reports the numbered requirements and the fulfillment level as a number 

between 0 (not achieved) and 10 (completely achieved). For the sake of summary, for the 

documentation about each requirement and its acceptance criteria, refer to the respective  

definition Chapters 5 and 6. 

7.3.1 Runtime requirements 

Name Description Priority LoF 

R001 The communication channel must ensure a large bandwidth 

to handle high sampling frequencies of a large set of I/O 

signals. 

SHALL 10 

R002 The communication channel, once activated on the deployed 

system, must have a minimal footprint on the infrastructure. 

SHOULD 8 

R003 The information (signal values) must be delivered in both 

directions (from automation to simulation and vice-versa) 

assuring the packet ordering  

SHALL 10 

R004 The information ordering must be ensured without any loss 

of packet data in both directions. 

SHALL 10 

R005 The communication channel must accept, at automation 

level, multiple incoming connection from several simulation 

clients, thus supporting the unidirectional multicasting of 

packets generated by the automation runtime towards 

several simulation clients, even when deployed on a 

distributed environment 

SHALL 10 

R006 The number of sockets opened by each connected client 

simulation model must be minimized. 

SHOULD 5 
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R007 The communication channel allows an initial synchronous 

(request-response) setup phase to select the signals of 

interest that should be transferred during the virtual 

commissioning session and the corresponding maximum 

update frequencies. 

SHOULD 0 in MQTT 

8 in WS 

R008 The same communication channel (physical socket) must 

support the multiple flow of asynchronous signal messages, 

corresponding to the events governing the IEC 61499 FBs. 

SHALL 10 

R009 The communication channel must be based on widely 

accepted open standards both at transport layer and at 

payload level. 

SHALL 10 

R010 The communication channel must be natively cross-platform 

in order to easily deployed on multiple different hardware 

and operating system platforms 

SHALL 10 

R011 The chosen transport layer must be compliant with industrial 

and shopfloor network setups. 

SHALL 10 

R012 The communication channel can be secured, preventing 

possible exploitations for cyber-attacks to the control 

hardware. 

MAY 8 
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7.3.2 IDE Integration requirements 

ID Description Priority  

D001 The integration layer must allow the user to automatically 

create digital counterparts of the automation code written in 

IEC 61499. 

SHALL 10 

D002 The integration layer must define automatically the signal 

mapping between function blocks and simulation entities. 

SHALL 10 

D003 The simulation model must be a synchronized representation 

of the automation function blocks.  

SHALL 10 

D004 The integration layer must support a modular object oriented 

approach. 

SHOULD 8 

D005 The integration layer must be based on an open Digital Avatar 

Data model compatible with the runtime IO Data Model and 

it implementations.  

SHALL 10 

D006 The integration architecture must be platform independent, it 

must be possible to apply the same approach to automation 

and simulation platforms different from the ones used during 

the validation. 

SHOULD 9 

D007 The integration must be based on a cross platform technology. 

The IDE applications are typically developed on different 

software platforms (Java, C++, C#, etc.), the chosen 

technology must ease the implementation of the 

communication stubs.  

SHOULD 10 

D008 The integration layer must support the compilation and 

deployment phase of the artifacts at simulation phase. 

SHALL 10 
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D009 The integration layer must support the control (start/stop) of 

the execution of the virtual commissioning sessions, running 

the automation and simulation engine and connecting them 

without the need for the automation developer to interacts 

with the simulation IDE. 

SHOULD 10 

D010 The integration layer must be bidirectional, supporting not 

only the control flow from automation to simulation IDE but 

also the notifications in the opposite direction. 

SHOULD 8 

D011 The integration layer must be resilient to modifications of the 

simulation model that affect the positioning and 

parametrization of the digital twins of the Function Blocks. 

SHALL 8 

D012 The integration layer should have a small footprint. The 

concurrent execution of two complex IDEs like the automation 

and simulation can require a significant amount of system 

resources, therefore it is important to avoid that a further 

increase of this consumption due to the communication 

between the applications causes instabilities or even system 

crashes. 

MAY 6 
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8 Conclusions and future developments 

This PhD document presented a new approach to improve the process of implementing  digital 

twins for complex automated discrete manufacturing systems, basing on an advancement of the 

IEC 61499  virtual commissioning framework. The design and development of the integration 

layers of runtimes and engineering platforms for automation and simulation have been 

documented, motivating the proposed solutions with a detailed analysis of the system 

requirements, and demonstrating their potentialities with industry derived validation scenarios. 

The obtained results are encouraging and the possibility to further extend them is already reality 

at the time of this report. In fact, the European Research initiative Horizon 2020 – 1-SWARM is 

currently entering its third year of activity and the consortium is preparing advanced industrial 

test cases where the framework will be tested and improved. The envisioned developments go 

in the direction of enhancing the capability of the integrated platform, to manage Cyber Physical 

Systems of Systems, increasing the reliability and usability of the reference implementations 

presented in this work. This represents an enormous opportunity of promoting the adoption of 

the proposed solutions as de facto standards for the validation of IEC 61499 control applications, 

paving the way for the commercial exploitation of the results.  
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Appendix A – Simulation Server Protocol Buffer IDL 

The section reports the full definition of the interface that could be used for IDE integration. 

syntax = "proto3"; 

 

option java_package = "simulation.server"; 

option java_multiple_files = true; 

 

 

package simulation.server; 

 

enum StatusCode { 

  ERROR = 0; 

  CREATED = 1; 

  EXISTING = 2; 

} 

 

 

/** 

 * Simulation service. 

 */ 

service SimulationService { 

     

    /** 

     * Creates and opens a Virtual commisioning project 

     */ 

    rpc CreateProject(CreateProjectRequest) returns (ProjectHandle); 

     

    /** 

     * Opens a Virtual commisioning project 

     */ 

    rpc OpenProject(OpenProjectRequest) returns (ProjectHandle); 

     

    /** 

     * Closes the project. 

     */ 

    rpc CloseProject(ProjectHandle) returns (Result); 

 

    /** 

     * Deletes the project 
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     */ 

    rpc DeleteProject(ProjectHandle) returns (Result); 

 

    /** 

     * Creates a new prototype in the project importing a prototype 

definition from the specified directory. 

     */ 

    rpc CreatePrototype(CreatePrototypeRequest) returns (ResourceHandle); 

     

    /** 

     * Deletes a prototype (it should not be used, i.e. no instances of the 

prototype). 

     */ 

    rpc DeletePrototype(ResourceHandle) returns (Result); 

     

    /** 

     * Gets a list of prototypes. 

     */ 

    rpc GetPrototypes(ProjectHandle) returns (ResourceList); 

     

    /** 

     * Creates a new instance of a prototype. 

     */ 

    rpc CreateInstance(ResourceHandle) returns (CreateResult); 

     

    /** 

     * Deletes an instance. 

     */ 

    rpc DeleteInstance(ResourceHandle) returns (Result); 

     

    /** 

     * * Gets a list of instances. 

     */ 

    rpc GetInstances(ProjectHandle) returns (InstanceList); 

 

    /** 

     * Sets the value of a property. 

     */ 

    rpc SetInstanceProperty(SetInstancePropertyRequest) returns (Result); 

     

    /** 

     * Sets the source of a signal for an instance. 

     */ 
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    rpc SetSignalInstance(SetSignalInstanceRequest) returns (Result); 

     

    /** 

     * Compiles the project and creates the distributable runtime. 

     */ 

    rpc CompileProject(ProjectHandle) returns (Result); 

     

    /** 

     * Runs the project, launching the runtime application. 

     * Note: the project must be already compiled. 

     */ 

    rpc RunProject(RunProjectRequest) returns (Result); 

     

    /** 

     * Stop the project: disconnect and exit runtime. 

     */ 

    rpc StopProject(ProjectHandle) returns (Result); 

 

    /** 

     * Returns true if the runtime process is running, false otherwise. 

     */ 

    rpc QueryProjectRunning(ProjectHandle) returns (Result); 

 

    rpc BeginTransaction(ProjectHandle) returns (Result); 

    rpc CommitTransaction(ProjectHandle) returns (Result); 

    rpc RollbackTransaction(ProjectHandle) returns (Result); 

 

} 

 

/** 

 * Request to create a new project. 

 */ 

message CreateProjectRequest { 

    // project display name 

    string name = 1;     

     

    // full path of the new project (the directory should not exist) 

    string path = 2;     

} 

 

/** 

 * Generic result message of success. 

 */ 
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message Result { 

    bool success = 1; 

} 

 

/** 

 * Create message status. 

 */ 

message CreateResult { 

 StatusCode = 1; 

} 

 

/** 

 * Message that holds a project handle. 

 * It is used both as a result for CreateProject and OpenProject, and as a 

parameter for methods that requires a valid opened project (i.e. 

CompileProject). 

 */ 

message ProjectHandle { 

    // project handle    

    uint32 handle = 1;   

} 

 

/** 

 * Request message to open a project from a directory. 

 */ 

message OpenProjectRequest { 

    // full path of the project 

    string path = 1;     

} 

 

/** 

 * Request message to create a new prototype in a project from a prototype 

definition in the specified directory. 

 */ 

message CreatePrototypeRequest { 

    // project handle 

    uint32 handle = 1;  

     

    // prototype resources path  

    string path = 2;    

} 

 

/** 
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 * Generic message that holds information about a resource (prototype or 

instance). 

 * It is used both as a request and a response. 

 */ 

message ResourceHandle { 

    // project handle 

    uint32 project_handle = 1;     

     

    // name of the resource (name of a prototype or name of an instance) 

    string name = 2;  

     

    // resource type (uuid of a prototype or prototype of an instance) 

    string type = 3;  

} 

 

/** 

 * Message that holds a list of resources. 

 */ 

message ResourceList { 

    repeated ResourceHandle resources = 1; 

} 

 

/** 

 * Sets the value of a property. 

 */ 

message SetInstancePropertyRequest { 

    // project handle 

    uint32 handle = 1;       

     

    // instance name 

    string instance = 2;     

     

    // task name 

    string task = 3;         

     

    // property name 

    string name = 4;         

     

    // property value     

    string value = 5;        

} 

 

/** 
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 * Sets the source of a signal for an instance. 

 */ 

message SetSignalInstanceRequest { 

    // project handle 

    uint32 handle = 1; 

     

    // instance name 

    string instance = 2; 

     

    //signal name 

    string signal = 3; 

     

    // source name 

    string source = 4; 

} 

 

/** 

 * A run argument is a pair of name and value. 

 */ 

message RunArgument { 

    // argument name 

    string name = 1; 

     

    // argument value 

    string value = 2; 

} 

 

/** 

 * Run project message request holds the handle of the project and a list of 

run arguments. 

 */ 

message RunProjectRequest { 

    // project handle 

    uint32 handle = 1; 

     

    // optional run arguments 

    repeated RunArgument run_arguments = 2; 

} 

 

/** 

 *  

 */ 

message SignalDescription { 
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    string name = 1; 

    string type = 2; 

     

    // can be unset (but in proto3 cannot be null) 

    string source = 3; 

} 

 

message PropertyDescription { 

    string name = 1; 

    string type = 2; 

    string defaultValue = 3; 

     

    // can be unset (but in proto3 cannot be null) 

    string value = 4; 

} 

 

 

message TaskDescription { 

    string name = 1; 

    string type = 2; 

    repeated PropertyDescription property = 3; 

} 

 

 

message InstanceDescription { 

    string name = 1; 

    string type = 2; 

    repeated SignalDescription input = 3; 

    repeated SignalDescription output = 4; 

    repeated TaskDescription task = 5; 

} 

 

message InstanceList { 

    repeated InstanceDescription instance = 1; 

} 

 


