
pag. 1

 UNIVERSITA’ DEGLI STUDI DI PARMA

DOTTORATO DI RICERCA IN

INGEGNERIA INDUSTRIALE

CICLO XXXIV

3D Virtual commissioning on IEC61499: methods and

technologies to streamline the simulation model development

Coordinatore:

Chiar.mo Prof. Gianni Royer Carfagni

Tutore:

Chiar.mo Prof. Marco Silvestri

Dottorando: Diego Rovere

Anni accademici 2018/2021

pag. 2

Table of contents

1 Introduction .. 11

1.1 Context and motivation ... 11

1.2 Objectives of this research ... 17

1.3 Executive summary .. 21

2 State of the art .. 23

2.1 IEC 61499 .. 26

3 3D simulation .. 30

3.1 Introduction .. 30

3.2 Structure of a virtual environment ... 31

3.3 Virtual Environment Development process .. 31

3.3.1 3D Models ... 32

3.3.2 Structural Constraints and attributes ... 33

3.4 DDD Platform .. 34

3.4.1 DDD Model Editor .. 34

3.4.2 DDD Simulator ... 35

3.4.3 DDD Machine NC ... 36

3.4.4 Simulation model structure .. 36

3.4.5 Structure of a prototype .. 37

3.4.6 Basic data types ... 43

3.4.7 Authoring and execution of models.. 44

4 Proposed architecture ... 45

pag. 3

4.1 Introduction .. 45

4.2 Overall design .. 47

5 Connecting automation and simulation at runtime .. 52

5.1 Introduction .. 52

5.2 Objectives and requirements ... 52

5.2.1 Requirements list ... 53

5.3 Implementation ... 58

5.3.1 IO data model .. 59

5.3.2 Connection on WebSocket ... 68

5.3.3 Connection on MQTT ... 80

6 Connecting automation and simulation at design time .. 94

6.1 Objectives and requirements ... 94

6.2 Implementation ... 101

6.3 Digital avatar data model ... 102

6.3.1 XML implementation of the data model ... 104

6.4 The integration API .. 109

6.4.1 The gRPC API .. 111

6.4.2 User workflows .. 114

6.4.3 Implementation within target environments .. 118

7 Global validation scenarios .. 123

7.1 Logistics ... 124

7.1.1 Prototypes ... 125

7.1.2 Model Statistics ... 127

7.2 Packaging .. 128

pag. 4

7.2.1 Prototypes ... 129

7.2.2 Model Statistics ... 130

7.3 Requirements fulfillment assessment .. 131

7.3.1 Runtime requirements ... 131

7.3.2 IDE Integration requirements ... 133

8 Conclusions and future developments ... 135

9 Bibliography .. 136

pag. 5

List of figures

Figure 1 Evolution of digital pyramid with CPS... 12

Figure 2 Typical development process of discrete manufacturing systems 14

Figure 3 Possible scenario of improvement with virtual commissioning................................... 14

Figure 4 Full plant 3D simulation ... 30

Figure 5 Steps to build up a 3D simulation ... 32

Figure 6 Simplifying 3D models ... 33

Figure 7 DDD Model Editor IDE application ... 35

Figure 8 DDD Simulator Runtime application ... 35

Figure 9 Model structure... 36

Figure 10 Structure of a prototype .. 37

Figure 11 Simulation modules connected to form a plant .. 44

Figure 12 Typical virtual commissioning architecture .. 47

Figure 13 Proposed architecture evolution .. 48

Figure 14 Architecture instantiation with DDDMachine engine ... 50

Figure 15 Architecture instantiation with DDD Simulator engine ... 51

Figure 16 IEC61499 Function Block signals .. 60

Figure 17UML Class Diagram of the I/O Data Model .. 61

Figure 18 Complementary direction of the signals between runtimes 67

Figure 19 Each signal contained in the payload is an output .. 68

Figure 20 Architecture schema of the WebSocket channel implementation 73

Figure 21 List of classes composing the connector and handling the CPS-Protocol over

WebSocket ... 74

pag. 6

Figure 22 IEC61499Connector within the simulation engine architecture 79

Figure 23 Runtime communication architecture with MQTT.. 82

Figure 24 Scalability of the MQTT approach with multiple brokers .. 83

Figure 25 Software architecture implementation .. 84

Figure 26 Correspondence between Simulation Instance and device Function Block 85

Figure 27 UML Class diagram of the Simulation MQTT Proxy ... 86

Figure 28 Integration high level architecture ... 101

Figure 29 Digital Avatar Data Model UML Class Diagram ... 102

Figure 30 gRPC framework .. 110

Figure 31 Synoptics view of the IDE Integration API ... 113

Figure 32 Portion of HTML auto-generated documentation of the SimulationService.proto .. 113

Figure 33 Startup and creation workflow with gRPC API .. 115

Figure 34 Stop and close workflow .. 116

Figure 35 Destroy workflow .. 117

Figure 36 Component view of the implementation ... 118

Figure 37 Internal structure of the GRPCInterface plugin ... 119

Figure 38 Startup of the gRPC server module .. 120

Figure 39 Library of simulation prototypes corresponding to IEC61499 device FBs 120

Figure 40 Simulation model composed of 2 instances of conveyor prototype 121

Figure 41 Instantiation of the workflow in the target applications ... 122

Figure 42 De-palletization pilot plant model .. 124

Figure 43 Library of prototypes developed for testing the logistics scenario 125

Figure 44 Reepack food packaging line .. 128

Figure 45 Library of prototypes developed for testing the packaging scenario 129

pag. 7

List of tables

Table 1 Prototype folder structure .. 38

Table 2 Basic data types .. 43

Table 3 Runtime communication requirements ... 57

Table 4 IEC 61499 impact on IO Data model .. 60

Table 5 CP-Protocol phases and involved messages .. 70

Table 6 MqttProxy details table .. 87

Table 7 MQTTIO details table .. 89

Table 8 AbstractMqttModule details table .. 91

Table 9 IDE integration requirements .. 100

pag. 8

Abstract

Current discrete manufacturing systems are characterized by an ever-increasing complexity,

demanding for innovative technologies that promote the agile development of intelligent and

flexible systems, capable of highly optimized performances, but also ready to evolve promptly

according to the requirements of production. Industry 4.0 and its whole ecosystem of

methodologies and technologies lay their basis on the assumption that no future development

is possible without a tight integration between the mechatronic system and its digital

counterpart.

With such a background, changing perspective to deal with distributed modular architectures of

Cyber Physical Systems is mandatory, and the IEC 61499 standard, its object oriented and event

based approaches promote this paradigm shift. The opportunities of this revolution reside in the

multi-disciplinary nature of the CPS entities and in the possibility to exploit their digital

counterparts to increase the reliability of the control applications and reduce the development

times. The adoption of a virtual commissioning (VC) system can effectively support the validation

phase of the overall procedures, providing immediate feedback and reducing significantly the

amount of time needed to carry on physical tests on the real mechatronic system. However,

currently creating a virtual commissioning model is still a complex and potentially expensive

process that needs to be carried out by different professionals who must tightly cooperate to

generate an effective playground for the automation testing.

The main objective of this PhD is the engineering of a new way to the design and develop virtual

commissioning models, improving the efficiency of the overall process of implementing 3D

simulation digital twins for complex automated discrete manufacturing systems. The proposed

approach, leveraging the synergies between modular simulation and automation technologies,

aims at reducing the required interaction between competences, increasing the level of

independence of the automation engineer, to increase his productivity. This target requires the

study and development of an holistic solution that encompasses all the stages involved in the

implementation of a distributed CPS system, following the natural evolution of the control

logics, from the early prototyping up to the final commissioning of the whole system and

pag. 9

embracing the problem space from the perspectives of two main domains that compose a virtual

commissioning model: the system engineering and its runtime execution.

The most ambitious objective of this PhD is therefore study and implement a proof of concept

of and integrated engineering platform composed of software tools instrumented to cooperate

for the joint production of virtual-commissioning-ready instances of CPS digital twins. This

achievement of such result requires the analysis of the current possibilities of extension of

existing IEC 61499 Automation and 3D Simulation IDEs, the design of an open architecture made

of a reference data model and a set of software API that, once deployed, manages the

communication between the applications and the actual realization of scenarios to validate the

approach.

pag. 10

Acknowledgements

I would like to thank SUPSI and in particular the responsible of the SPS Lab of the ISTePS

department Prof. Paolo Pedrazzoli to give me the possibility to carry on this PhD. A great thanks

goes to Prof. Marco Silvestri who followed my work and supported my efforts during the whole

three years of this experience. I would like to thank also NxtControl and Technology Transfer

System people, in particular respectively Hilmo Dzifac, for having shared with me his knowledge

of the IEC 61499 and for the mutual support we gave in the development of the virtual

commissioning models, and Eng. Giovanni Dal Maso who always provided the right hints to deal

with the simulation applications. A special thanks is due to Eng. Franco Cavadini, for his kind

support and for being the first one to believe in this new approach.

The activities of this PhD have been partially supported by Daedalus and 1-SWARM, two

European research projects focusing on the improvement of the ecosystem of the service and

opportunities around IEC 61499 standard, where I had the chance to meet valuable experts from

all around Europe.

Particular gratitude is due to my family that has been my fan club especially when mixing work,

research, thesis and home was more difficult: to my wife Antonella who always believed I could

succeed and relieved me from the family duties to concentrate on the thesis, to my daughter

Beatrice because she always pushed me to the desk to keep on writing and never give up, to my

daughter Margherita who lent me her desktop that was the warmest place where writing and

finally to my son Giovanni who never stopped to root for me.

pag. 11

1 Introduction

1.1 Context and motivation

Current discrete manufacturing systems are characterized by an ever-increasing complexity,

mainly due to the quick change of demand and to the request for highly customized multi-

components products [1]. This context demands for innovative technologies that promote the

agile development of intelligent and flexible systems, capable of highly optimized performances,

but also ready to evolve quickly according to the requirements of production. Device, machine

tool and plant builders must promptly react to the modifications of the surrounding

environments, adapting their products to meet the customer needs, that more than ever move

in the direction of using reliable and multi-purpose automated systems.

If the mechanical and electrical design of these complex systems can be improved and generate

benefits in terms of dynamics of the systems, it has been demonstrated that the real

breakthrough takes place thanks to the improvement of the automation and, in general, of the

digital facets of the industrial products [2].

Industry 4.0 and the whole ecosystem of methodologies and technologies for the fourth

industrial revolution lay their basis on the assumption that no future development is possible

without a tight integration between the mechatronic system and its digital counterpart [3]. This

is demonstrated by the European research agenda that started with Horizon 2020 program to

push forward the concept of digital twins as fundamental enablers of the new generation of

intelligent systems and by the current national and international research initiatives whose main

objective is fostering the adoption of the cyber physical system paradigm in the standard

workflow of small, medium, and large production systems manufacturers. The digitalization

process in the last years has grown at an exponential speed and nowadays it permeates all the

levels and sizes of devices: from the single actuators up to the large scale systems the

connectivity has become an essential feature, thanks also to the wide diffusion of the IoT

technologies that reached so optimal levels of maturity and security to be allowed to enter the

shopfloor.

pag. 12

This evolution changed in a permanent way not only the physical nature of the mechatronic

systems, but also the way they are controlled and governed in the, so called, automation

pyramid that, as highlighted in Figure 1 [4], stops being a strict hierarchical structure, to become

a fluid de-centralized architecture.

Figure 1 Evolution of digital pyramid with CPS

The interlaced CPS facets represent transversal elements, crossing all the layers from the field

up to the ERP, providing different views of the same object and exposing multi-level services,

publishing and consuming data, that can be exploited locally, on the edge or on the cloud. Within

this context the simulation represents a fundamental component of the new automation

pyramid because it exploits at maximum level the digital nature of the CPS bringing a great

number of benefits at design and operation time.

Within these boundaries, a key role is played by the automation logics developer who is in

charge of formalizing and translating into working code not only the control logics of the device

as he always did, but also its multiple interfaces towards the digital world. These connectors

include protocols and technologies whose objective is opening as much as possible in a standard

way the doors to the internal information of the production environments (e.g., OPC.UA). These

new requirements and, the need to implement industrial products with a “first time right”

pag. 13

approach stress the automation development procedures so that if on one side the complexity

of the work increases, the time to produce optimized and reliable customized devices decreases.

With such a background, changing perspective, from a centralized classical approach to the

distributed modular one, is mandatory, in order to exploit tools and methodologies that may

help the control engineers in they everyday activities, reducing the overall burden and splitting

it on smaller and more comprehensible components. In this way it is possible to better focus on

the optimization of particular parameters of interest in order to obtain the improvement of the

global performance of the system. This kind of architectural approach is strongly supported by

the IEC 61499 standard, which defines function blocks for industrial process measurement and

control systems. The IEC 61499 replaces the old concept of monolithic program, written in a

language compliant with the standard IEC 61131, with the concept of Application which is

composed of hierarchical bricks called Function Blocks (FBs) and that can be dynamically

distributed at runtime on multiple Resources.

This design pattern, streamlines the organization and development of the automation logics,

modularizing it and improving the abstraction from the underlying executing hardware.

Nevertheless, the problem of obtaining a “zero defect” behavior in a short implementation time,

particularly for large systems, is attenuated but not removed, the automation solution must be

still tested and accurately debugged. Testing the logics behavior of an automated system is a

time-consuming task of the design and engineering phase that frequently leads to team racing

and causes delays on the delivery to the final customer. Figure 2 shows a typical development

process of a discrete manufacturing system, highlighting the critical phase where the

inefficiencies can occur.

pag. 14

Figure 2 Typical development process of discrete manufacturing systems

To this purpose, the adoption of a virtual commissioning (VC) system can effectively support the

validation phase of the overall procedures, providing immediate feedback about the expected

results. A virtual commissioning system is based on the connection of the controllers with a

simulation model capable of reproducing the reaction of the real environment under actions

generated by the automation. Such tools can reduce significantly the amount of time needed to

carry on physical tests on the real mechatronic system because they provide the means to

perform off-line debugging sessions.

Figure 3 Possible scenario of improvement with virtual commissioning

pag. 15

Figure 3 shows a possible scenario of improvement of the global production process that could

be derived from the introduction of the use of virtual commissioning tools. The automation code

testing is split into a first extensive phase parallel to the construction of the physical devices and

a lighter and faster advanced phase concurrent with the mechanical tests.

The benefits of this approach are multiple, and all go in the direction of increasing the

performances of the production:

• extensive debugging sessions can be anticipated without the need to wait for the

physical system to be fully assembled;

• the parallelization of the testing procedures, reduces the risk of racing conditions

between production departments, because decreases the amount of time spent by the

automation engineers on the device before acceptance tests;

• the possibility to test multiple scenarios without facing the risk of system breakage

allows the control engineers to evaluate the safety boundaries and verify the correct

behavior also in dangerous operating conditions;

• when the virtual commissioning system is capable to simulate also the technological

process, the virtual tests imply savings in terms of materials that would become waste,

energy and time that would have to be spent in raw parts handling; thus the approach

goes in the direction of an improved sustainability of the whole production.

If the benefits of the approach are evident, it is important noting that currently creating a virtual

commissioning model is still a complex and potentially expensive process that needs to be

carried out by different professionals who must tightly cooperate to generate an effective

playground for the automation testing.

The Automation Developer is the person in charge of the development of the device logics, its

testing and debugging and becomes the repository of the knowledge of the system rules. For

this reason, from a user perspective, he is also the actual consumer of the simulation results,

since they provide the needed feedback to identify unpredictable pitfalls in the device operation

(e.g., possible collisions, wrong operating sequences, etc.).

pag. 16

On the opposite, the simulation expert is not able to complete the aforementioned activities

without a deep understanding of the system, its mechanical structure, its physics and the logics

reaction rules. For this reason, the two figures must closely interface; the automation engineer

must transfer to the simulation expert the full knowledge of the device, provide the map of input

and output signals governing the interaction between the control and the mechatronics and

explain how each component is expected to operate.

This iterative process is evidently expensive and affected by some inefficiencies:

• the transfer of the expected system behavior to the simulation engineer can be really

high, especially for complex machines and plants

• the possibility to introduce errors increases at least linearly with the dimension of the

simulated system, even if it is an assembly of reusable components, because in a non-

object-oriented automation paradigm, each signal must be manually mapped to the

right entity of the simulation model

• a change in the physical domain requires the intervention of both engineers, requiring

at minimum three steps of description of the differences, their implementation, and

their validation

The third aspect in particular makes it really expensive and hard to effectively apply the

described paradigm when the underlying mechanical system is evolving quickly. This happens

very often, for instance, in the everyday work of the system integrator companies, which need

to test several possible alternatives of the same productive layout, with proof of concept control

logics, and to further implement the most promising.

In the following chapters the problems here introduced will be examined in detail and split on

the functional domains of the virtual commissioning system, leading to possible solutions that

have been designed, implemented and validated during the research activities here

documented.

pag. 17

1.2 Objectives of this research

The main objective of this PhD is the engineering of a new approach to the design and

development of virtual commissioning models improving the efficiency of the overall process of

implementing virtual commissioning digital twins for complex automated discrete

manufacturing systems.

The proposed approach, leveraging the synergies between modular simulation and automation

technologies, aims at reducing the required interaction between competences, increasing the

level of independence of the automation engineer, and overcoming some of the cited

limitations. This target requires the study and development of a holistic solution that

encompasses all the stages involved in the implementation of a distributed CPS system, truly

following the natural evolution of the control logics, from the early prototyping up to the final

commissioning of the whole system.

The foundation of the work is established on the capability of the IEC-61499 standard to

orchestrate CPS hierarchies relying on the concepts of object-orientation, so that that the

modularity and reconfigurability of the mechatronic product coincides to that of the software

governing them. This means that the same organized and scalable methods can be applied in

the concurrent design of the digital models mirroring the control system, promoting the

development of a new generation of CPS entities whose simulation counterpart not only exist

and operate at production time but streamlines the everyday work of the automation developer.

The final tangible expected result of the whole work is the full integration between the

behavioral models of CPS devices with their IEC-61499 functional architecture, enabling a

complete and seamless connection between the information flows originating through the

sensing and acting capabilities of the CPS itself on one hand, and the data structure of the

simulation model on the other hand, independently from where they reside and transparently

to the engineers’ efforts.

To this purpose, the activities of this research start from the exploration of the possibilities to

integrate the IEC-61499 platform with third party model design environments and simulation

pag. 18

engines that allow the definition of multi-disciplinary behavioral models, representing

complementary aspects of the CPS physical dynamics.

The creation of an infrastructure coupling the intelligence supervising the physical system with

the multi-level simulation models can be achieved only embracing the problem space from the

perspectives of two main domains that compose a virtual commissioning model: the system

engineering and its runtime execution. In fact, both at automation and at simulation side the

concept of separation between model in preparation and model in execution is strongly present

and mainly arises from the big difference between the requirements of design time formats,

that need to retain all the source information for the continuous editing, and the requirements

for the runtime artifacts, that usually need to be optimized for performance and resource

consumption, i.e. compiled. For the same reason, usually the two different platforms are

composed of two main applications: an authoring environment and an execution engine.

The runtime facet of the virtual commissioning domain is based on the live and quasi real time

connection between the automation and the simulation engines, and deals with the objectives

of ensuring a high-throughput data exchange between the artifacts mimicking the physical

exchange of low level I/O signals between the automation solution and the real set of sensors

and actuators of the device hardware. At this level, many solutions are already present on the

market (seethe state of the art of Chapter 2) but almost all of them are based on non-object-

oriented automation standards belonging to the IEC 61131 ecosystem. They are characterized

by the adoption of low-level standard communication protocols, like Modbus, that require an

extremely time consuming mapping process of the I7O signals, or by the usage of high-end data

access protocols like OPC-UA that perfectly maintain the semantics of the information but lack

in performance when they must be used for testing and debugging of control logics. Therefore,

the research activities, at runtime level, aim at developing a high performance and secured I/O

channel that leverages the two fundamental features of the IEC 61499 standard: the object-

orientation and the event based paradigm. The main expected benefits on this topic are a

significant reduction of the configuration burden and the improvement of the support of the

communication architecture to distributed cyber physical systems. Maintaining near-real-time

bidirectional synchronization with the shop floor is based on the study of extensions of the

pag. 19

platform and plug-ins for commercial software to allow the integration of IEC-61499 approach

with any simulation tool wanting to become compliant with the standard.

The engineering aspect, first in terms of production workflow, represents also the most difficult

context to deal with. The nature of the software environments involved in the engineering phase

of the cyber-commissioning are completely different and share only a similar and really high

degree of complexity. An IEC 61499 Automation Integrated Development Environment (IDE) and

a 3D Simulation IDE are meant to support their respective end users in the fine-grained

authoring of large scale models. They typically provide complete set of tools that allow the

definition, programming, compilation and execution of completely different software artifacts

and they are designed to be self-contained and self-standing applications, rarely interfaced with

other platforms. The most ambitious objective of this PhD is therefore study and implement a

proof of concept of and integrated engineering platform composed of software tools

instrumented to cooperate for the joint production of virtual-commissioning-ready instances of

CPS digital twins. This achievement of such result requires the analysis of the current possibilities

of extension of existing IEC 61499 Automation and 3D Simulation IDEs, the design of an open

architecture made of a reference data model and a set of software API that, once deployed,

manages the communication between the applications and the actual realization of scenarios

to validate the approach. The activities originate within the context of Daedalus European

Research Project, where the consortium was designed to pursue a wider superset of objectives

related to the promotion of IEC16499 standard as key enabler for the distributed control of new

generation of CPS systems. The natural follow up of Daedalus is represented the 1-SWARM

European Research Project that pushes forward the original targets towards the concept of

Cyber Physical System of Systems. 1-SWARM lays its basis on the industrial implementation of

IEC-61499 to provide an industrial grade engineering environment supporting the design of

control applications and visualization together in one tool; automatic generation of the

communication during the distribution process of the application; the debugging and online-

monitoring infrastructure, allowing to remotely debug single Function Blocks (that is, one of the

key programming formalisms of the standard) as well as fully distributed applications. Thanks to

this unique, innovative, and standard-based approach, 1-SWARM aims at obtaining simple-to-

deploy aggregation of already existing CPS, each one with its own on-board intelligence, to

pag. 20

compose the articulated “Cyber-Physical Systems of Systems”. The activities are then carried on

in continuity among the two research initiative and in collaboration with several academic and

industrial partners that provided, not only the domain knowledge, but also the open access to

the corresponding software platforms for the runtime and engineering of IEC 16499 and

manufacturing system 3D kinematics simulation.

For this reason, the whole present research is based on a twofold approach that starts from the

study and design of platform independent solutions, characterized to be openly accessible and

applicable virtually to any third-party commercial application, an then goes deep in the

implementation of proof of concept prototypes based on the software platforms available in the

consortium. This conceptual and pragmatic way of proceeding reflects in the organization of the

dissertation, which alternates the documentation of the developed open specifications of data

models and interfaces with the presentation of the results of applying them to the commercial

software platforms provided in particular by NxtControl GmBH for the IEC 61499 automation

side and Technology Transfer System s.r.l. for the simulation side.

In compliance with the desire of realizing not only a theoretical study, but to explore with a real

implementation the potentialities of the proposed approach, the third objective of this PhD is

developing is a set of show cases that, applying the previous results demonstrate the actual

usability of the engineered solutions, highlighting benefits and limits, to pave the way for future

improvements.

pag. 21

1.3 Executive summary

The main objective of this PhD is the design and development of virtual commissioning

framework based on the IEC 61499 standard capable to improve the process implementing

digital twins for complex automated discrete manufacturing systems. In order to produce a

coherent and vendor independent result, the research activity covers both main functional

domains of the virtual commissioning system: the engineering phase and the runtime execution.

They are characterized by really different requirements and solutions, but the former can’t

overlook the latter, and the harmonization of the approaches is a key aspect of the activities of

this PhD work.

The proposed solutions are meant to increase the capability of automation developers to deal

with the advanced testing of IEC 61499 control application for complex and distributed

architectures of Cyber Physical Systems, supporting them in exploiting the expressivity of 3D

virtual environments simulations for the testing phase. The holistic view on the problem requires

to advance in both the two involved knowledge domains, the automation, and the simulation,

to study and implement bridges that facilitate their interaction. Such an objective can’t be

reached without a tight collaboration between the IEC 61499 and 3D simulation professionals

that must intervene within their respective contexts to adapt software tools and methodologies

to the proposed integration layers. This is the reason why the research has been carried on in

the scope of the collaborative initiatives of the Horizon 2020 Daedalus Research Project and of

the Horizon 2020 1-SWARM Research Project where reference partners in the field of IEC 61499

like NxtControl cooperated with simulation platform builders to create industry ready

prototypes of integrated digital twin frameworks. This PhD in particular focuses on the

simulation side, leveraging on the personal expertise matured during a personal path dedicated

to 3D kinematics and dynamics simulations, and fully documents the work from the digital twin

perspective. The whole approach has been tested extending the DDD simulation platform

provided by Technology Transfer System S.r.l. The automation counterpart, which is not

reported in this thesis, has been developed by NxtControl that extended its own IDE and its

runtime to cope with the respective new communication architectures.

pag. 22

The structure of the document is organized to start from a detailed introduction about the target

type of simulation (Chapter 3) and about the software platform and artifacts that stand behind

the modular set-up of a 3D kinematics virtual environment. This overview is needed as a

background to the comprehension of the data models underpinning the whole proposed

infrastructures, since they are internally mapped on the components of the simulation software

applications. The report then proceeds with the description of the overall proposed architecture

(Chapter 4), discussing the design choices made to intervene on the two major aspects of the

engineering and execution of virtual commissioning sessions on IEC 61499. The results obtained

for the runtime execution of virtual commissioning models are fully detailed in Chapter 5, that

moving from the identified requirements, contains sections dedicated to the I/O Data Model

and to the two main implementations, WebSocket based and MQTT based, achieved and tested

within the context of this research. Chapter 6 formalizes the solutions studied for the integration

of engineering IDE presenting the underlying Digital Avatar Data Model and the integration API

based on the GRPC protocol, as well as the impact on the automation developer workflow.

Finally, Chapter 0 contains industry ready examples of application of the overall result developed

within this PhD, providing evidence of the achieved progresses.

pag. 23

2 State of the art

The connection of machines with their digital representation has become an essential aspect for

the management of the whole lifecycle of mechatronic systems, from the early prototyping to

the optimization of performances [5] [6]. The Digital Twin, a concept borrowed from space

programs where simulation of the systems is mandatory to ensure any change produces the

desired effect, is indeed becoming a strict requisite providing engineers with the opportunity to

address any undesired effect before applying the changes to the system in operation. This

concept has been nowadays broadly extended to support products/systems design, virtual

commissioning and the optimization of manufacturing lines installation & ramp-up [2] [7].

The virtual commissioning context is intrinsically a shared field of knowledge, methodologies

and technologies that cover domains, the automation and simulation, whose differences arise

from the nature of the approaches they follow to achieve their objectives: hardware oriented

the former and purely digital the latter. The tiny interface layer between them represents the

actual subject of an interaction whose great benefits impact on the whole manufacturing

systems production process. Therefore, the state of the art in this context is mainly related to

the evolution of the communication protocols exposed by the control hardware and software

for what concerns the runtime aspects and to the progress of the simulation development

platform for what refers to the engineering process.

At runtime, most of the architectures currently available for virtual commissioning rely on widely

accepted interfacing standards for signals exchange in order to integrate the controlling logics

with the simulation models. The automation solution is treated no more than a black box that

generates output signals controlling actuators and receives input signals provided by sensors. It

is a quite rigid paradigm, whose quasi-unique variant is represented by the type of connection

established, that on its turn, normally is limited by the availability of connectors within the PLC.

So typically, a Siemens S7 PLC is interfaced with its proprietary protocol, to access internal

memory DBs, while a Schneider PLC can be easily interfaced through Modbus standard

messaging to access low level coils, input and holding registers. Each platform provides its own

set of connectivity solutions that range from purely proprietary (e.g., the Fanuc Focas2 libraries)

pag. 24

to completely standard ones (e.g. OPC-UA) but none of them tends to cope with the way the

automation solution is structured, they only rely on the I/O maps. This approach founds its

acceptance mainly on the simplicity of comprehension because it doesn’t require any knowledge

about the specific automation platform that is governing the system. This being agnostic on the

standard running the control is effective when applied at the runtime of the virtual

commissioning session because once the input and output are mapped on the two sides of the

connection, the signals flow and the simulation model runs independently from the system

generating the signal values. However, the possibility to run distributed virtual commissioning

sessions is strongly limited by this approach and only few experiences report encouraging results

about the possibility to perform multi-sided communication between nodes of the same control

solution and all of them are based on the IEC 61499 standard. A good example is provided as an

extension to the work of Mazzolini et Al. [8], where the validation of the optimized control of a

distributed system is interfaced with a simulation model based on the Simio platform [9]. In this

specific case, the adoption of the IEC61499 allows to manage the different nodes and, through

the real-time synchronization of the event bus, provide a consistent single entry point to the

automation network, through a “signal collection” Function Block in charge of supervising the

communication with the digital counterpart. It represents a valid starting point, but it does not

yet exploit the object orientation of IEC 61499 to handle the bi-directional mapping of data

between simulation entities and the corresponding function blocks. An attempt of exploiting the

modularity of the IEC61499 standard and transfer it to the simulation environment is made by

J. Cabral et Al. [10]. Their approach is based on the possibility to map between IEC 61499 models

and the FMI standard and an implementation of a tool that can export IEC 61499 models into

FMUs (Functional Mockup Units – parts of the standard FMI – Functional Mockup Interface [11]),

which would allow the co-simulation of physical plants and the PLCs software that controls.

More automation oriented research are present in Xavier, Patil, Viatkin [12] where the formal

verification of the IEC 61499 solution is performed with simulation in the loop but the cited

simulation is constituted by Function Blocks and doesn’t work with an external 3D simulation

environment. One of the most promising work for performing the collaborative virtual

commissioning for PLC validation is represented by the approach of Liu, Atmojo, Vyatkin [13]

where they exploit the Software in the Loop (SIL) paradigm to mix both SoftPLC and virtual

pag. 25

device models, deploying them on a containerized docker infrastructure. The virtual devices are

mainly implemented by IEC 61499 solutions that react as counterparts, so that the homogeneity

of the technology simplifies the interaction. The communication channel in particular coincides

with the IEC61499 event bus so there is no need for leveraging different communication

technologies for interfacing third party simulation software. This way of managing the

Simulation in the Loop is common to other virtual commissioning experiences on IEC 61499,

because it does not require the development of exogenous models but the simulation twin of

the real factory is implemented using the same Function Blocks and the same programming

language [14]. All the reviewed approaches share the focus on the integration at runtime of the

deployed control applications, and the same does most of the literature review related to the

topic of virtual commissioning on IEC 61499 platform [3], [15].

Considering the limitations aforementioned about the design process and the development of

heterogeneous simulation models, almost no solution exists in literature of full attempts of

integration between automation and simulation IDE to create multi-disciplinary IEC 61499

enabled Cyber Physical Systems. Only the work of J.Cabral et Al. [10] can be considered an

attempt to move in such direction since it relies on the implementation of an automatic tool for

the translation of function blocks into FMUs, but this is far from the possibility to guide the

automation developer into the building process of a 3D virtual environment capable of a

completely different level of realistic and articulated response.

From the commercial point of view, instead, there exist solutions that integrate development

environment belonging to different knowledge domains to create multi-perspective engineering

platforms. An example is the Siemens Tecnomatix [16] suite of simulation and virtual

commissioning tools that are fully compliant with the set of tools dedicated to automation and

provided through the TIA portal. In the context of robotic simulation, the possibility to natively

operate within vendor specific integrated environments is provided by most of the robot

builders, e.g. by Fanuc with Robot Guide [17] or by Delmia with the Robotics Virtual

Commissioning application. Historically the robotics field has been one of the first to handle

testing on virtualized models because it did not have to cope with a plethora of legacy systems

like the traditional discrete automation requires to do. However, all the of them behave like

closed ecosystems, dedicated to specific hardware and none of them complies with the IEC

pag. 26

61499 standard. This analysis of the state-of-the-art highlights how the field of integration of

software tools for the IEC 61499 needs to be explored, looking for solutions that are vendor

independent and open for adaptation to multi-disciplinary scenarios to promote the

development of real Smart factories. The following chapter reports a short review of the IEC

61499 standard as a quick reference for the reader who is not used to operate in such

automation environments.

2.1 IEC 61499

The IEC 61499 standard has been designed to facilitate the implementation of distributed

automation intelligence [18]. At the beginning the standard could not meet the industrial world

acceptance, mainly because of some imperfections of the initial version of the standard, which

allowed personal interpretations [1]. Nowadays, with the emergence of professionally made

software tools and dozens of hardware platforms, stronger industrial interest to the distributed

automation can be expected.

The goal of IEC 61499 is “to offer an encapsulation concept that allows the efficient combination

of legacy representation forms with the new object and component-orientation realities”. At

the core of the standard there is the concept of Function Block. An IEC 61499 Function Block

(FB) represents a system component, which is implemented and controlled by the internal FB's

software. The approach based on FBs increases the modularity of the system and promotes the

reusability of software components in the system.

Function Block

The IEC 61499 architecture of a function block derives from the concept of subroutine-like

structure in IEC 61131-3, to provide process-like abstraction. A process is an independent

computational activity with its own set of variables (context) that communicates with other

processes via messages that flow through the event interface. This encapsulation mechanism

provides the strength of this architecture because it allows the arbitrary allocation of FBs to

distributed domains.

Hierarchy and internal implementation

pag. 27

The architecture of an IEC 61499 application supports unlimited nesting of composite function

block structures, and combination of several diagram types: block-diagrams, state charts, and

ladder logic in the same design.

Encapsulation

A key enabler of the portability of IEC 61499 applications is the strong data encapsulation into

components. This is widely recognized as one of the pillars of creating reusable code preventing

hidden dependencies between variables of several FBs. This model also reflects the fundamental

property of distributed systems where any data exchange can be implemented only via explicit

message passing.

Event-Driven Execution

FBs of IEC 61499 are event-driven, i.e., they remain idle unless an event is sent to one of their

event inputs. The main motivation for event-driven execution is portability, i.e., the desire to

make the code independent of the sequence of FB invocation in the PLC scan loop. The event-

driven execution is the key mechanism enabling transparent modelling of distributed systems.

After a FB is activated by an input event, it is assumed that it cannot be re-entered before the

previous activation has terminated.

Execution

By definition, the IEC 61499 system configuration is an executable specification of a distributed

automation system. Naturally, to enjoy the benefits of being directly executable (as opposed to

more abstract design languages), one needs a tool chain which generates executable machine

code from the IEC 61499 design artefacts. The tool chain needs to include the following

component software tools:

• Compiler from the source FB format to an intermediate code executed with a virtual

machine, or directly to machine code.

• Run-time environment – usually a set of libraries of function blocks implementing

service functions akin to device drivers, responsible for scheduling of FB invocation, data, and

control flow and interfacing the peripherals.

pag. 28

• Support of device management protocol – the function implementing the load of FB

application to a device, creation of new FB instances, or their modification.

2.2.1 Available development software tools

The standard has inspired many researchers to create supporting software tools. The usual

implementation tool set includes a workbench for editing function block designs and translating

them into executable form, and some kind of run-time environment, which supports the

execution of the executable code.

The most developed examples of such research-oriented workbenches are FBDK and 4DIAC-IDE.

These have been supported with a consistent development effort until now, with 4DIAC-IDE

being an open-source project. These tools have been successfully applied in many automation

projects but mostly in academic and research labs.

Currently, the most advanced commercial development is nxtStudio [19].

NxtStudio (developed by an Austrian company NxtControl) integrates distributed control

approach based on IEC 61499. It is an industrial grade engineering environment which supports

the design of control applications and visualization together in one tool. This approach has great

advantages in productivity and reuse of both control and visualization components. Several

features of nxtStudio have long been expected from IEC 61499, for example, the debugging and

online-monitoring infrastructure, allowing to remotely debug single FBs as well as fully

distributed applications. Another feature is the automatic generation of the communication

during the distribution process of the application. This greatly reduces the engineering effort

when distributed control applications are designed. NxtControl has implemented various CIFB

libraries to support communication over popular fieldbuses, such as EtherCAT and Profibus.

NxtControl Concept of CAT

The Model-View-Control (MVC) design pattern has motivated NxtControl to invent the

composite automation type (CAT) concept. CAT is a function block that combines functions of

machines or their parts, with their simulation and visualization.

pag. 29

Considering for example a “pick and place” manipulator built of two identical pneumatic

cylinders, each of those represented by a CAT in the FB application. Once the application is

assembled from instances of such CATs, nxtStudio can automatically deploy the control parts of

all CATs to the designated embedded targets, while the View parts will be sent to the device

displaying SCADA screens. In the figure, a CAT of a pneumatic cylinder is exemplified. The CAT

also includes the (behavioral) model of cylinder’s dynamics. Once executed, the application built

of these CATs immediately delivers a complete interactive simulation model of the manipulator.

The CAT concept has proven its benefits in a number of industrial projects, where NxtControl

tools were used, for example, in building management systems automation.

pag. 30

3 3D simulation

3.1 Introduction

3D simulation of automated systems has born with the idea of enabling the mechanical

designers to leave the static world of 3D CAD and move towards the animation of the models.

The main objective of a 3D simulation is reproducing the complex behavior of environments

composed of several parts, providing the end user with the means to study the evolution of the

system over time with multiple and complementary targets among which we can find avoiding

collisions of parts sharing the same motions space, optimizing trajectories of active elements

(e.g., machine tools) or improving the overall system performances.

Historically, this kind of simulation has been applied to robotic systems simulation to reproduce

the complex three-dimensional motion trajectories of the links of anthropomorphic kinematics

chains when they are controlled in inverse kinematics mode. In fact, the problem of optimal

trajectory planning with collision avoidance for such devices is one of the first playgrounds

where the 3D simulation has been exploited and the evolution to include multiple robots and

their surrounding devices has been the natural evolution of the engines…

Figure 4 Full plant 3D simulation

pag. 31

Currently, 3D simulation engines are capable to reproduce large manufacturing environments,

composed of several processing stations and their internal logistics of customized products, with

the capability to mimic, with an ever-increasing level of reliability, their complex behavior.

3.2 Structure of a virtual environment

A virtual environment can be defined as “a computer animated 3D model of a manufacturing

system capable of quasi real-time response”. Each part of this definition can be further

developed in the following points:

• Computer animated: a 3D simulation must be able to represent the evolution of the

whole system through a series of states along the timeline. The focus of 3D simulation

is how the environment modifies according to a series of endogenous or exogenous

events. The nature of these events is extensively discussed in the following sections.

• 3D Model: the 3D simulation must work with three dimensional representations of the

parts of the system. The representation must be as much as possible realistic

• Manufacturing system: subject of the simulation are mainly multibody discrete

manufacturing systems, meaning that it doesn’t handle fluid or continuum mechanics,

even if in some cases it is possible to approximate them.

• Capable of quasi real time response: a 3D simulation must ensure a high refresh rate

(low refresh interval) in order to be able to show in quasi real time what’s the current

status of the virtual environment and in order to react to exogenous events and adapt

the simulation model logics. How low the refresh interval must be is a direct

consequence of the dynamics of the phenomena that the model is reproducing (e.g.,

with high speed and high acceleration motion laws even a refresh rate of 10 milliseconds

could lead to some unacceptable approximations)

3.3 Virtual Environment Development process

The process to set up a 3D simulation for a manufacturing environment is similar for all the

existing commercially available simulation engines and requires a series of steps that, starting

from the constructive 3D drawings of the system, lead to an executable model.

pag. 32

Figure 5 Steps to build up a 3D simulation

3.3.1 3D Models

The geometrical models at the basis of a 3D simulation of an automated system are generated

starting from the constructive 3D drawings available nowadays in every mechanical department.

These drawings represent a high value-added asset of the company, whose development cost is

mainly allocated on the goods productions. The possibility to reuse such assets in a different

lifecycle phase, allows to better amortize their cost while reducing the time needed to build up

a simulation model.

Nevertheless, the fact that the constructive drawings contain all the details for the real

production, makes them unsuitable, as they are, for a direct application within a large virtual

environment. The presence of small components like screws, bolts or threaded holes often is

not relevant for the study of the system behavior but it strongly increases the complexity of the

models’ shapes, leading to an unacceptable load on the graphics.

pag. 33

Figure 6 Simplifying 3D models

Once simplified, the drawings are translated from the proprietary format of the CAD platform

to a neutral exchange format that can be imported into the simulation engine.

These neutral formats include STEP, IGES, VRML, OBJ….

3.3.2 Structural Constraints and attributes

Once the 3D models have been simplified and exported into a suitable neutral format, they must

be organized into a multi body system defining their relationships and attributes, which typically

include:

• Relative positions of parts

• Level of aggregation into assemblies

• Kinematics joints

• Materials

• Visual appearances

The definition of these features normally takes place in a dedicated editing application of the

chosen simulation platform, where, with the aid of visual tools, it is possible to formalize the

set-up of the physical aspect of the simulation model: the virtual environment.

pag. 34

3.4 DDD Platform

Within the scope of the research project, the DDD suite of software applications has been used

as reference 3D simulation platform for the implementation of the new integrated approach to

virtual commissioning on IEC 61499. The DDD platform, developed by Technology Transfer

System – TTS S.r.l., is a complete set of tools that support whole lifecycle of multi-purpose 3D

simulation models, from the initial import of CAD drawings to the runtime for the execution of

scenarios and the integration with external control systems.

The suite is composed of three main applications:

• DDD Model Editor

• DDD Simulator

• DDD Machine NC

• DDD Supervisor

During the work of this thesis, only the first three, namely DDD Model Editor, DDD Simulator

and DDDMachine NC, have been used and extended for the purposes of virtual commissioning,

therefore they will be briefly introduced in the following paragraphs.

The whole architectures of the applications and of the simulation engine are developed on top

of Java Platform (version 8), while the rendering engine relies on OpenGL to exploit hardware

accelerated graphics, when available. Both technologies ensure a high level of portability on

different hardware platforms, so that the suite can be easily installed and run both on Microsoft

Windows (7 and upper) and on Linux systems.

3.4.1 DDD Model Editor

The DDD Model editor is the integrated development environment (IDE) for the creation of

simulation models. The application supports the end user with visual tools in the three main

processes of:

• Building up the 3D virtual environment

• Developing behavioral logics

• Assembly and parametrize the overall simulation model

pag. 35

Figure 7 DDD Model Editor IDE application

3.4.2 DDD Simulator

DDD Simulator environment is the runtime application that supports the optimized execution of

3D simulation models or virtual commissioning models, enabling the end user to start several

executions of the same models with different inputs and collect the output statistics for the

evaluation of simulation results.

Figure 8 DDD Simulator Runtime application

pag. 36

3.4.3 DDD Machine NC

DDD Machine NC is the software application explicitly dedicated to Virtual Commissioning in the

DDD platform. Is based on a modified version of the high-performance simulation engine of the

DDD Simulator, the Eagle engine, that is equipped with an abstraction layer dedicated to handle

different connectors to control hardware for the quasi real-time I/O communication.

3.4.4 Simulation model structure

Within the DDD Platform, simulation models are a composition of instances of reusable

elements called prototypes, each one representing a component of the simulated system

(machine, transporters, logic module, etc.). Each prototype brings two main aspects: a 3D

geometrical structure and a behavior whose tight interaction determines the evolution of an

instance at runtime.

Figure 9 Model structure

This approach, quite common in the ecosystem of simulation platforms, makes it possible to

split the development process of 3D simulation models into two main processes, requiring

different levels of skills:

1. The development of prototypes for the creation of libraries of reusable objects

2. The configuration of prototype instances and their composition into the final complete

simulation models

pag. 37

3.4.5 Structure of a prototype

A prototype is a complex simulation object defining both the 3D model and the behavior of a

device.

Figure 10 Structure of a prototype

The following table reports the required and optional assets composing the internal structure of

a valid prototype definition.

Asset name Format Short Description Use

Meta-

descriptor

XML Contains the meta-data of the prototype and its

internal organization

required

3D model XML kinematics structure file (an XML) defining the

hierarchical aggregation scene-graph of the

functional parts

optional

Meshes Neutral format

geometry files

(RML, IGES,

STEP)

set of 3D geometry files (in neutral format like

VRML, STEP or IGES)

optional

pag. 38

Customizer JavaScript (.js) JavaScript file containing directives for the

preliminary customization of an instance

optional

Builder JavaScript (.js) JavaScript file which contains the parametric

geometries

required

Logics Java class

(.java)

java class extending the “module” class which

contains the code which determines the

behavior of a simulation module

optional

Table 1 Prototype folder structure

3.4.5.1 The meta-descriptor

The meta-descriptor file plays a key role in the structure of a prototype because it contains the

definition of all its external interfaces and links all the other assets above mentioned. The file

must be named “prototype.xml” and must reside in the root folder.

Each prototype meta descriptor defines a large set of data; hereby are reported the most

relevant for the comprehension of the adaptation work that has been carried out during the

research activities.

<prototype> data structure

Attributes

Name Type Description Use

uuid string Unique identifier of the prototype in the
form of a UUID, it must be different for all
the prototypes

Required

name string Name of the prototype: it is the human
readable identifier, it should be different for
each prototype but this is a light constraint

Required

version integer Progressive number identifying the current
version of the prototype

Required

Elements

Name Type Description Use

pag. 39

<parameter> <parameter>* Set of parameters that can be used to
customize the future instances of the
prototype when it will be used to assembly
whole simulation models

Optional

<input> <port>* Communication interfaces that instances
can exploit to receive data and events at
runtime

Optional

<output> <port>* Communication interfaces that instances
can exploit to send data and events at
runtime

Optional

<property> <property>* A variable set of properties that can be used
as further meta information of the
prototype. Some properties are always
present even if not mandatory for the
correct instantiation of the prototype.

Optional

<logics> <logics> Characterization of the behavior of the
prototypes

Optional

The following table reports the list of properties that are currently accepted within the

<prototype> element:

Name Type Description Use

displayName string Label that will be displayed in the catalog
view.

Required

vendor string Name of the developer of the prototype Required

category string Name of the group this prototype belongs
to.

Optional

generator string Name of the JavaScript file capable to
instantiate the geometry of the prototype.
This file contains the code creating the 3D
model of the instances according to the
parameter values.

Required

bounds_center double[] Array of 3 values representing the position
(x, y, z) of the center of the box containing
the geometry

Optional

bounds_size double[] Array of 3 values representing the size (x, y,
z) of the box containing the geometry

Optional

Example of minimal <prototype> structure:

<prototype uuid="bad1968f-5607-4f4b-960e-c333ce324ae4" name="Cartesian"

version="1">

pag. 40

 <property name="displayName" value="Cartesian Robot" type="string"/>

 <property name="vendor" value="TTS" type="string"/>

 <property name="category" value="handling" type="string"/>

 <property name="generator" value="builder.js" type="string"/>

</prototype>

<parameter> data structure

Attributes

Name Type Description Use

name string Required

type string Required

value string Required

Elements

Name Type Description Use

<property> <property>* A variable set of properties that can be used
as further meta information of the
prototype.

Optional

The following table reports the list of properties that are currently accepted within the

<parameter> element:

Name Type Description Use

displayName string Label that will be used to display the
parameter in the prototype customization
panel during the editing

Optional

affectGeometry boolean Flag that indicates whether the parameters
value change determines a recalculation of
the instance geometry. It is used to
optimized the editing mode.

Optional

constraints string String containing validation hints that are
provided to the end user at editing time

Optional

Example of <parameter> element:

<parameter name="zSpeed" type="double" value="10">

 <property name="constraints" value=">0" type="string"/>

 <property name="displayName" value="Z speed [m/min]" type="string"/>

 <property name="affectGeometry" value="false" type="boolean"/>

</parameter>

pag. 41

<property> data structure

Attributes

Name Type Description Use

name string Name of the property. It must be unique
within the context of the element that
contains the property definition.

Required

type string Simple type of the Required

value string Required

<port> data structure

Attributes

Name Type Description Use

name string Name of the connection port. It must be
unique within the prototype definition.

Required

type string A string representing the type of this
connection port. This string can be any valid
identifier recognized by the engine or by any
of its extensions. Typically, it contains a valid
Full Qualified Name (FQN) of the Java type
of the connection.

Required

Elements

Name Type Description Use

<property> <property>* A variable set of properties that can be used
as further meta information of the
prototype.

Optional

The following table reports the list of properties that are currently accepted within the <input>

and <output> elements:

Name Type Description Use

frame string Identifier of a reference frame (within the
3D model it represents a named coordinate
system)

Optional

<logics> data structure

Attributes

Name Type Description Use

pag. 42

type string Full Qualified Name (FQN) of the Java class
implementing the logics of the prototype

Required

Elements

Name Type Description Use

<param> <param>* A variable set of parameters that can be
passed to the logics implementation to
customize its behavior

Optional

<param> data structure

Attributes

Name Type Description Use

name string Name of the property of the logics Java class
to assign value

Required

type string Valid primitive type or array type of the
parameter to be set. It must match one of
the valid primitive types

Required

Content

A string containing the actual value to be assigned to the logics parameter.
This string can be a simple value or it can refer to the prototype parameters using the following
addressing syntax:

${[name of the parameter]}

Example:
${xScale} refers to the runtime value acquired by the prototype parameter called xScale
If the parameter is an array, the values composing the array must be separated with a semi-
colon “;”

Within the meta descriptor the importance of the parameters set and of the input/output ports

must be underlined because they implement two fundamental mechanisms of the prototype-

based simulations.

The former allows the creation of flexible prototypes, which represent entire families of devices,

whose visual appearance and behavior change according to the parametrization assigned at

instantiation time. An example of parametrization is the prototype of a conveyor that could have

a “speed” parameter which influences the speed of the conveyor and a “length” parameter

which scales the length of the conveyor in the 3D environment.

pag. 43

The latter enable the cooperation among the instances belonging to a simulation model, so that

the overall evolution of the simulation is the result of a complex interaction of single atomic

logics.

3.4.6 Basic data types

The following table reports the basic data types that are used throughout the description of the

elements composing the prototype. The same types have been applied in the XML descriptors

developed during the research activities to enable the virtual commissioning extensions.

Beside the description of the primitive type, the table reports the corresponding array type

definition, when available.

Name Array type Description

float float[] The basic value float is a single precision real value (32 bit). The
range of float values is defined by m * 2 e, where m is an integer,
whose absolute value is below 224, and e is an integer from -149 to
104. Other possible values are positive and negative infinity and
not-a-number (NaN).
Examples of valid floats are: -1E4, 1267.43233E12, 12.78e-2, 12 , -
0, 0, INF and NaN

double double[] The basic value space of double consists of the values m × 2e,
where m is an integer whose absolute value is less than 253, and e
is an integer between -1075 and 970, inclusive. In addition to the
basic value space described above, the value space of double also
contains the following three special values: positive and negative
infinity and not-a-number (NaN).
Examples of valid double are: -INF, -1E4, -0, 0, 12.78E-2, 12, INF,
NaN

string string[] This data type represents a character strings. The value space of
string is the set of finite-length sequences of characters.
Examples of valid string are: “sbdkad”, “??;::O”, “”, “ “, e
“s[][{}}pdns2793”

URI n.a. Base type uri represents a series of characters linking to a resource.
URI means Uniform Resource Locator.
Examples of valid uri are: “pippo.txt”, “../models/a.wrl” and
“../../model/alfa.xml”

boolean boolean[] The basic type boolean represents the mathematic version of the
logic value of true or false. The possible values are: true, false, 1, 0

Table 2 Basic data types

pag. 44

3.4.7 Authoring and execution of models

Prototypes are arranged in catalogs, and they can be instantiated with a drag and drop interface.

The use of the compiled prototypes doesn’t require any knowledge of the Java language so

prototype catalogs can be distributed to third parties and assembling a full simulation model

becomes a straightforward visual process.

Figure 11 Simulation modules connected to form a plant

Instances of prototypes can be manipulated in the 3D editor translating and rotating them with

visual tools and their parameters can be configured. Simulation models can be executed inside

the DDD Model Editor, typically during the model development phase, or distributed as self-

contained executable .jar, so that simulation models can be executed without the need of a DDD

Model Editor license.

Being Java based, there are virtually no limits to the type of data sources and formats that can

be read as inputs from DDD Simulator models. Similarly, output data can be written in any

format supported by the Java Language.

pag. 45

4 Proposed architecture

4.1 Introduction

Starting from the analysis of the state of the art and of the current existing approaches to the

virtual commissioning problem, it is clear that one of the most evident limitations arises from

the fact that the process to set-up a dedicated simulation model and connect it to the

automation logics is mainly a manual procedure and involves skills that are very different, yet

complementary. The Automation Developer is the person in charge of the development of the

device logics, its testing and debugging and becomes the repository of the knowledge of the

system rules. For this reason, from a user perspective, he is also the actual consumer of the

simulation results, since they provide the needed feedback to identify unpredictable pitfalls in

the device operation (e.g., possible collisions, wrong operating sequences, etc.).

With the standard approach, the automation engineer must interact at least with another figure,

the simulation expert to:

• build an effective virtual environment, with a balanced level of detail

• implement the right reactions (like motion laws, simulated sensors, etc.)

• map the I/O signals onto the simulation model properties

• identify and formalize the model parameters to enable the desired level of

customization of the model

On the opposite, the simulation expert is not able to complete the aforementioned activities

without a deep understanding of the system, its mechanical structure, its physics and the logics

reaction rules. For this reason, the two figures must closely interface; the automation engineer

must transfer to the simulation expert the full knowledge of the device, provide the map of input

and output signals governing the interaction between the control and the mechatronics and

explain how each component is expected to operate.

This iterative process is evidently expensive and affected by some inefficiencies:

pag. 46

• the transfer of the expected system behavior to the simulation engineer can be really

high, especially for complex machines and plants

• the possibility to introduce errors increases at least linearly with the dimension of the

simulated system, even if it is an assembly of reusable components, because in a non-

object-oriented automation paradigm, each signal must be manually mapped to the

right entity of the simulation model

• a change in the physical domain requires the intervention of both engineers, requiring

at minimum three steps of description of the differences, their implementation, and

their validation

The third aspect in particular makes it really expensive and hard to effectively apply the

described paradigm when the underlying mechanical system is evolving quickly. This happens

very often, for instance, in the everyday work of the system integrator companies, which need

to test several possible alternatives of the same productive layout, with proof of concept control

logics, and to further implement the most promising.

The proposed approach aims at reducing the required interaction between competences,

increasing the level of independence of the automation engineer, and overcoming some of the

cited limitations. The solution relies on the intrinsic object orientation and extensibility of the

IEC61499 standard to implement an architecture capable to:

• ease the design phase, supporting a semi-automated set-up of the virtual

commissioning model

• ease the runtime phase, supporting an automated mapping of the I/O on the simulation

model properties

• apply to the virtual commissioning model the same distributed approach supported by

the IEC 61499 standard.

This chapter will present the result of the research activities starting from a description of the

high-level architecture to document the implementation details both for the design and for the

runtime tiers.

pag. 47

4.2 Overall design

The overall architecture has been designed considering the basic distinction between

development environments and runtimes which is typical both for the IEC 61499 and for the 3D

kinematics simulation ecosystems.

As mentioned in the previous chapters, the implementation of a virtual commissioning model

starts with the definition of the automation logics and of a simulation model in dedicated

software applications called Integrated Development Environments (IDE). These artifacts are

deployed and run in the corresponding execution engines called Runtimes, while a I/O channel

manages the data exchange among them.

In a usual scenario, therefore, the communication between the world of automation and

simulation is realized only at runtime level, as shown in the following schema.

Figure 12 Typical virtual commissioning architecture

Until the execution time there is no relation between the two contexts: the sole data exchange

is due to the mapping of the I/O signals of the automation onto the properties of the simulation

model.

pag. 48

This approach can be considered quite natural from a conceptual point of view since the I/O list

represents the physical interface of the automation with the mechatronic device and

implementing a representation that mimics the same signals could be sufficient to test the

behavior of the coupled system.

Nevertheless, in this way, the development process tends to become almost vertical, with the

result that the conceptual structure of the control logics can differ significantly from the

organization of the digital counterpart. Moreover, in order to reduce the costs, from a temporal

perspective, very often, the simulation model creation is subsequent to the completion of the

automation solution. This silo effect of the artifacts building process mirrors and emphasizes the

limitations already mentioned in the chapter introduction.

The architecture proposed in this thesis, mainly aims at providing a possible approach to

improve the overall virtual commissioning process.

Figure 13 Proposed architecture evolution

Figure 13 shows from high level perspective the points (highlighted in red) where the software

components developed during the research activities have brought a progress behind the state

of the art.

pag. 49

The main interventions targeted both levels of the architecture:

• at design level, filling the gap between the automation and the simulation IDEs,

implementing a real integration between the two environments through the definition

of an Integration API

• at runtime level, improving the I/O runtime communication to comply with the

distributed approach of the IEC 61499 and to provide an effective data stream satisfying

the requirements to execute reliable virtual commissioning scenarios

The following chapters report all the details related to the formalization, implementation, and

tests of each single component. The analysis starts with the runtime tier, providing a description

of the improvements made on the I/O communication channel and then it moves to the design

tier to document the methods and technologies applied to create a tight interaction between

the IDEs.

During the whole research activities carried on in the context of Daedalus Project and 1-Swarm

project, the reference platforms for the implementation of all the prototypes and of the use

cases have been:

• Automation: nxtStudio IEC 61499 Platform, developed by NxtControl GmBH (Austria)

• Simulation: DDD Platform, developed by TTS - Technology Transfer System (Italy)

The DDD Platform provides two slightly different simulation engines, DDD Machine dedicated

to the virtual commissioning of machine tools and DDD Simulator dedicated to the simulation

of small to large production plants.

The two software share a large part of the data model, but the former uses a monolithic model

approach optimized for the quasi real time communication with the hardware, while the latter

has a higher level of modularity event though at the time of the initial activities was not enabled

for I/O with external systems.

The possibility to choose the underlying engine and the peculiarities of each application lead to

two different instantiations of the proposed architecture.

pag. 50

A first one, based on DDD Machine engine, as reported in Figure 14: the DDD Model Editor

application generates and deploys a DDD Machine compliant virtual commission model, while

the DDD Machine NC application acts as runtime environment.

This architecture, which has been also the first one to be tested in terms of time, exploited the

benefits to rely on an engine already designed for virtual commissioning, speeding up the early

prototyping phase.

Figure 14 Architecture instantiation with DDDMachine engine

A second one, based on DDD Simulator and reported in Figure 15; the DDD Model Editor

generates and deploys a prototype-based simulation model compliant with the hybrid event

based engine of the DDD Simulator runtime.

This architecture is an evolution of the former, of which it exploits a large set of technical

solutions, but moves forward the concepts of system of system, exploiting to a higher degree

the possibility to reuse library components and create multi-level structures that are more

suitable to perform virtual commissioning on large scale automated systems (e.g., internal

logistics).

pag. 51

Figure 15 Architecture instantiation with DDD Simulator engine

pag. 52

5 Connecting automation and simulation at runtime

5.1 Introduction

This chapter describes in detail the technical solutions applied at runtime level to improve the

I/O data exchange between the IEC 61499 automation and the simulation artifacts.

5.2 Objectives and requirements

The main objective of the work carried on at runtime level is creating an open and efficient

integration layer:

• exploiting the intrinsic Object-Oriented nature of the IEC 61499 standard to move

forward respect to the mapping of simple plain lists of I/O signals exposed by other

protocols like Modbus, and create a formalized structure implementing the concept of

“Digital Avatar”;

• exploiting the event-driven paradigm of the IEC 61499 standard to avoid, whenever

possible the brute force polling of the full set of signals, optimizing the data transfer;

• ensuring a high-performance data transfer between heterogeneous and distributed

runtimes avoiding the limitations of more complex infrastructures like OPC-UA.

The joint work with IEC 61499 runtime developers of NxtControl lead to identify the functional

and non- functional requirements for the communication channel.

The following table reports the specifications of the requirements. Each requirement is defined

by:

• an ID label that has been used to track the progress during the development and to fill

a validation report during the functional tests

• a priority level that allowed to schedule the implementation activities; the priority has

been formalized according the following three levels (mediated from the common

keywords applied in requirements elicitation and quality management):

pag. 53

o SHALL: the final result must completely satisfy the requirement to be positively

evaluated;

o SHOULD: (equivalent to the keyword RECOMMENDED) the requirement is

important and should be satisfied by the final result, but it can be accepted also

a final result that meets the specification only partially: in this case the

implications must be understood and justified;

o MAY: the requirement is non mandatory and meeting it would represent an

enhancement respect to the optimal baseline.

• A description of the desired behavior containing a base indication of possible

acceptance criteria to be verified during the validation phase

5.2.1 Requirements list

Name Description Priority

R001 The communication channel must ensure a large bandwidth to handle

high sampling frequencies of a large set of I/O signals.

Acceptance criteria:

the communication channel must be able to transfer the Input and output

events of 200 IEC 61499 FBs (Function Blocks) each 10 milliseconds when

both automation and simulation runtime operate on the same hardware

(PC equipped with Soft PLC) or on a cabled LAN (Physical PLC operating

the IEC 61499 solution and a PC operating the simulation model)

SHALL

pag. 54

R002 The communication channel, once activated on the deployed system,

must have a minimal footprint on the infrastructure.

Acceptance Criteria:

the difference of processor and memory occupation of the

communication channel on a IEC61499 solution deployed on Physical PLC

must never interfere with the high priority control cycle

The constraints could be relaxed, but not completely dropped, if trying to

satisfy them, R001 is not met.

SHOULD

R003 The information (signal values) must be delivered in both directions (from

automation to simulation and vice-versa) assuring the packet ordering

Acceptance criteria:

during the execution of a full virtual commissioning test, all the packets

sent by the

SHALL

R004 The information ordering must be ensured without any loss of packet data

in both directions.

Acceptance criteria:

during the execution of a full virtual commissioning test none of the data

packets sent by one of the runtimes participating to the communication

must be lost

SHALL

pag. 55

R005 The communication channel must accept, at automation level, multiple

incoming connection from several simulation clients, thus supporting the

unidirectional multicasting of packets generated by the automation

runtime towards several simulation clients, even when deployed on a

distributed environment

Acceptance criteria:

multiple (at least 2) virtual commissioning models (Digital Twins), possibly

running on different PCs must be able to connect to the same master IEC

61499 automation solution and receive the same data packets

SHALL

R006 The number of sockets opened by each connected client simulation model

must be minimized.

Acceptance criteria:

each client simulation model handles the communication with only one

physical socket; subordinately, two physical sockets per client could be

considered and acceptable solution.

The constraint could be further relaxed if, satisfying it, the requirements

R001, R003 and R004 are not met.

SHOULD

pag. 56

R007 The communication channel allows an initial synchronous (request-

response) setup phase to select the signals of interest that should be

transferred during the virtual commissioning session and the

corresponding maximum update frequencies.

Acceptance criteria:

A client simulation model initiating a virtual commissioning session is

capable to select a subset of the whole I/Os exposed by the IEC 61499 FBs,

imposing a desired maximum refresh interval for the subset.

The constraints could be relaxed if the management of the different

subsets for multiple clients causes the system to miss R002

SHOULD

R008 The same communication channel (physical socket) must support the

multiple flow of asynchronous signal messages, corresponding to the

events governing the IEC 61499 FBs.

Acceptance criteria:

On the same socket the simulation client and the control logics exchange

bidirectional message exactly when they are generated by the

corresponding runtimes, without a sticking to a cycle time.

SHALL

R009 The communication channel must be based on widely accepted open

standards both at transport layer and at payload level

Acceptance criteria:

both the technology chosen for the transport layer and the supporting

payload definition are documented open standards

SHALL

R010 The communication channel must be natively cross-platform in order to

easily deployed on multiple different hardware and operating system

platforms

SHALL

pag. 57

R011 The chosen transport layer must be compliant with industrial and

shopfloor network setups.

Acceptance criteria.

a virtual commissioning session can be executed connecting a simulation

client located outside a shop floor network with a Physical PLC (or a Soft

PLC running on a PC) located inside the shop floor network using a VPN

for tunneling.

SHALL

R012 The communication channel can be secured, preventing possible

exploitations for cyber-attacks to the control hardware

Acceptance criteria:

the chosen transport layer supports data encryption, authentication, and

authorization mechanisms.

MAY

Table 3 Runtime communication requirements

pag. 58

5.3 Implementation

The development of a runtime connection satisfying the aforementioned requirements required

the completion of the following main activities:

1. Identification and choice of suitable communication standard architecture for the

transport layer;

2. Design of a supporting payload data model and choice of a data representation

standard;

3. Implementation of transport and data layers at IEC 61499 runtime level

4. Implementation of transport and data layers at simulation runtime level

The whole process has been carried out using an iterative approach, starting from initial

prototypes that have been validated and evolved towards a more mature solution.

The final result of the work in this field is then represented by two main implementations, based

on different transport technologies:

1. WebSocket

2. MQTT

The reason for existence of two solutions is the fact that the former, capable to provide most of

the expected functionalities, when applied to real cases, highlighted some architectural

limitations (that will be extensively described in the dedicated paragraphs). At the same time

the simulation platform, during the second half of the research, evolved and provided improved

functionalities that could be exploited to come to the second and more refined implementation,

providing the same performances but overcoming the architectural constraints.

The two implementations correspond respectively to each one of the proposed architectures

described in the previous sections:

1. WebSocket based implementation has been applied in conjunction with the DDD

Machine virtual commissioning engine (Ref. to Figure 14)

pag. 59

2. MQTT bases implementation has been applied in conjunction with the DDD Simulator

engine (Ref. to Figure 15)

Even though the two approaches are based on a very different low-level socket architecture,

they are both generic enough to support custom messages so that it was possible to employ the

same payload data model (described in §5.3.1), minimizing the impact on the internal runtimes

I/O processing.

5.3.1 IO data model

The IO data model formalizes the data structures that organize the exchange of input and output

signals among the automation and the simulation runtimes. This section describes the data

model from a conceptual point of view and documents its JSON implementation, which has been

applied in both channel implementations.

The data model has been organized with the aim to preserve as much as possible the object-

oriented approach which is a fundamental aspect of the IEC 61499 standard. In fact, in almost

all the standard PLC data exchange and in the large part of the virtual commissioning

applications, low level I/O signals represent global lists of incoming and outgoing pieces of data

flowing through the terminal blocks without any relationships with the internal architecture of

the automation. In IEC 61499, instead, each signal is related to well defined events of a well

identified Function Blocks, that typically represent logics dedicated to handle a device or a sub

assembly of it. Another key aspect that has been considered during the data model design is the

event-based nature of the interaction among function blocks, that is the same mechanism that

the IEC 61499 standard promotes to enable the possibility to distribute the runtime execution

on different devices.

pag. 60

Figure 16 IEC61499 Function Block signals

The following table reports how these two main features of the IEC61499 standard have been

reflected on the data model.

IEC 61499 feature Data Model feature

Object Oriented Function Block Each message organizes signals maintaining the

relationship between the origin/destination function

block and output/input signal.

Each signals name is unique within the function block

and similar signals of different function blocks can use

the same name.

Event based The transmission of the I/O signals of a function block,

happens only when a triggering event is generated at

automation or simulation side. Therefore, each

message can contain only the signals of the function

block that generated the event.

Table 4 IEC 61499 impact on IO Data model

The overall architecture of the data model is reported using the Class Diagram view of the UML

(Unified Modelling Language) standard, while the meaning of each data structure and of its

properties is reported in the following tables.

The developed data model can be considered only and information: the classes don’t define any

method (function) since the objects contained in the payload of the I/O messages must be

pag. 61

treated as exchange data, thus not active elements. Therefore, the UML diagram and the

documentation tables contain only properties definition.

Figure 17UML Class Diagram of the I/O Data Model

Payload class

The Payload class represents the root element of the I/O message payload, referencing a set of

Function Block instances that represent the function blocks whose events have been generated,

collected, and packed together at automation or simulation side.

Properties

Name Type Description Use

functionBlocks FunctionBlock[] Array of instances of function block that
generated an event at automation and
simulation side

Constraints:
The array must have size > 0

Required

FunctionBlock class

Represents an instance of Function Block that triggered an event o signal change both at

automation and simulation side. It aggregates the signals of a specific Function Block instance.

pag. 62

All the instances of FunctionBlock belonging to the same virtual commissioning model must be

identified by a unique string name.

Properties

Name Type Description Use

name string Identifier of the function block within the
virtual commissioning model.

Constraints:
The name must correspond to a specific
entity both at automation and simulation
side.

Required

timestamp long Represents the time of generation of the
event and it is set by the sending runtime
and it is expressed as the value of the system
clock expressed in milliseconds elapsed
since the epoch time (1st Jan 1970, 00:00).

The runtime receiving the message can use
this value to check its reliability and verify if
the virtual commissioning model is facing
problems of high latency.

Constraints:
The value must positive, and also a value of
0 is acceptable.

Required

signals Signal[] Array of instances of signals belonging to the
instance of FunctionBlock.
All the signals must be identified by a unique
name within the FunctionBlock instance

Constraints:
The array must have size > 0

Required

Signal class

Represents an instance of Signal within a FunctionBlock.

Properties

Name Type Description Use

name string Name of the signal. It must be unique within
the FunctionBlock instance.

Required

pag. 63

value object Current value of the signal.

Constraints:
All the signals belonging to the same
message must be coherent among them,
meaning that a single change event affecting
two or more signal must generate only a
single message containing the at least the
current value of all the changed signals1.

The value property type is generic because
each signal is defined with a specific data
type.

Required

It is important noting that the Signal class does not contain any definition of the signal data type,

but only a key/value pair to report the current valid value of the physical signal. This choice

depends on the fact that the I/O data model is applied at runtime when the automation solution

and the simulation model are complete and correctly configured to handle to expected signals

on both sides2. In this way, the amount of redundant information that is transferred for each

message is reduced to the minimum.

5.3.1.1 JSON Data Model implementation

The data model presented from a formal point of view has been transformed into JSON

(JavaScript Object Notation) format to serve as a reference implementation of the message

content.

JSON is an open standard (formalized also by ISO/IEC3) format for data exchange using human

readable text to represent data objects consisting of attribute–value pairs, arrays, and other

serializable values. It is widely accepted in socket communication for the encoding of the

payloads, especially in web applications, service-oriented architectures (SOA) and web REST API.

Its main benefits can be summarized in:

1 This constraint is especially important because it ensures the coherence of the state of the function block
and then the reliability of a payload message.
2 This aspect is will be better discusses in the chapter dedicated to the integration of the editors
3 JSON is formalized in ISO/IEC 21778:2017

pag. 64

• Syntax simplicity capable to represent also complex data structures suing a reduced

number of rules

• Low overhead if compared with other text-based data exchange formats like XML

• Wide availability of libraries supporting parsing and serialization from and to JSON

• Support to data schema formalization with JSON Schema format4

The natural conversion of the designed data model into JSON format would have resulted into

a structure similar to the following one:

{

“fbName”: [FunctionBlock_ID],

“timestamp”: [clock_value,

“signals”: [

 {

 “name”: [Signal_ID],

 “value”: [Signal value],

 },

 {

 “name”: [Signal_ID],

 “value”: [Signal value],

 },

 …

]

}

Nevertheless, this message structure is affected by some inefficiencies that could be negligible

when considering a single message, but that can become a significant amount of redundant data

when multiplied for all the possible messages flowing in a real-case virtual commissioning

session at high frequency.

For this reason, the data structures defined in the previous chapter have been adapted and

optimized to limit as much as possible the size of the messages, reducing the footprint of the

communication protocol on the network.

The final format of the payload, expressed in JSON is the following:

4 This feature, which is derived by the similar approach in XML with XSD, is currently rarely adopted

pag. 65

{

[FunctionBlock_ID]:{

 “ts”: [clock_value],

 “Param”:{

 [Signal_ID]: [Signal value],

 [Signal_ID]: [Signal value],

 …

 },

}

}

Each placeholder and its mapping on the designed data model is documented in the following

table.

Placeholder Type Description

[FunctionBlock_ID] JSON Attribute name Identifier of the IEC 61499 FunctionBlock within
the automation solution.

This ID corresponds to a digital counterpart of
the FunctionBlock in the simulation runtime.
In the proposed architecture, the ID has been
modelled as a string containing the fully
qualified name of the FB (full path of dot - “.”
separated unique names of the containers)

Corresponding property within UML:
FunctionBlock.name

[clock_value] Number Timestamp of the events that triggered the
message communication.

Corresponding property within UML:
FunctionBlock.timestamp

[Signal_ID] JSON Attribute name Name of the signal of the function block.

Corresponding property within UML:
Signal.name

pag. 66

[Signal value] Number
Boolean
String

Value of the corresponding signal.
The content can be:

• a number, covering all the floating point
and integer formats, i.e. INT, REAL, etc.

• a boolean covering the corresponding to
the BOOL IEC 61499 type

• a string corresponding to the IEC 61499
STRING type

Corresponding property within UML:
Signal.value

The following code blocks report few examples of payload messages containing one or several

signals for a single function block.

Example 1: payload for a FunctionBlock called “Field_QSS.PusherA” generating one output data

signal called “command” which is assigned with integer (INT) value 1.

{

 "Field_QSS.PusherA": {

 "ts": 0,

 "Param": {

 "command": 1

 }

 }

}

Example 1: payload for a FunctionBlock called “FI_QDP.FieldInterface_Cartesia” generating four

output data signals called “XTarget”, “YTarget”, “ZTarget” and “RTarget” which are assigned

respectively with floating point (REAL) values 900.0, 800.0, 300.0 and 0.0.

{

 "FI_QDP.FieldInterface_Cartesian": {

 "ts": 0,

 "Param": {

 "XTarget": 900.0,

 "YTarget": 800.0,

 "ZTarget": 300.0,

 "RTarget": 0.0

 }

 }

}

pag. 67

5.3.1.2 Signal direction

Both in the formal data model and in its JSON conversion, there is not any indication about the

direction of the signals; there is no property neither dedicated section of the data structures

telling whether a signal is an input or an output.

The reason for such an approach is that, in fact, input and output definitions are related to a

certain subject system; considering the perspective of the automation runtime, the output

signals are the data exiting the Function Blocks and going towards the physical devices in the

real world and towards their digital counterpart in the virtual commissioning world, while the

input signals are the ones flowing the opposite direction.

Nevertheless, the definition is perfectly specular when considering the perspective of the

simulation runtime, and the Figure 18 highlights this symmetry.

Figure 18 Complementary direction of the signals between runtimes

A definition of Input and Output concepts within the data models would have possibly led to

ambiguity. The solution accepted to overcome the problem is reporting within the payload only

the signals outgoing the sender runtime. In fact, a message is generated by one of the two

runtimes asynchronously when an event is triggered by the internal logics (be it automation or

simulation logics) and this message flows from the publishing runtime to the consumer one.

pag. 68

Figure 19 Each signal contained in the payload is an output

Therefore, the only signals that makes sense reporting within a message are the ones that exit

the system that generates them. In this way every ambiguity is avoided because, the receiving

system knows that the data contained in the payload must be treated as input, then parsed and

routed to the correct destinations. This approach further lightens the communications removing

the burden of parsing and interpreting useless information.

5.3.2 Connection on WebSocket

The first implementation of the communication channel has been developed basing on the

WebSocket technology.

WebSocket is a communication protocol that provides full-duplex data transfer channels over a

single TCP connection. It is a standard formalized as RFC 6455 in 2011 by IETF and then accepted

as WebSocket API standard from the W3C consortium.

WebSocket has been designed to be compatible with HTTP to exploit the capability of HTTP be

to easily compliant with the security policies of the network infrastructure. In fact, it initializes

the connection with a standard HTTP handshake running on ports 80 or 443 and then it exploits

the HTTP Upgrade Header to change the protocol from HTTP to WebSocket.

WebSocket is located at Level 7 of OSI layer, as the HTTP protocol, and manages the full

bidirectional continuous data exchange with a very low overhead, making it suitable for quasi

real-time communications with low latency.

pag. 69

Nevertheless, due to its low-level nature, WebSocket does not satisfy the requirements defined

for the communication channel. In particular, the sender provides an arbitrary UTF-8 or binary

payload, and the receiver is notified of its delivery when the entire message is available.

WebSocket defines a Binary Framing Layer that splits application binary or text messages

produced by a sender into frames with a really small overhead, transports them to destination

and reconstructs the original message, notifying the receiver. The content of the message is

completely defined by the application.

The payload of the message has been defined according to a preliminary version of the I/O data

model, called CPS-Protocol (see 5.3.2.1), implemented in JSON exploiting:

• the ease of encoding/decoding of the function block and digital counterparts’ signals

• the platform independence thanks to the JSON text format, which does not imply any

binary adaptation that could be related to the differences in the processor architecture5

5.3.2.1 The CPS Protocol

The CPS Protocol represents historically the first translation of the IO Data model presented in

the previous chapter, which has been developed mainly by NxtControl and evolved during the

thesis research activities with the MQTT approach presented in the following sections.

From a structural point of view, it is based on the definition an extended set of messages that

are functional to the server-client approach of the WebSocket, handling not only the continuous

flow of I/O signals but also the initialization and the conclusion of the communication sessions.

In the WebSocket instantiation of the runtime channels, the automation solution acts as the

server while the simulation engine represents the client. The following table summarizes the

phases supported by the protocol and the flow of the involved messages.

Phase Messages flow

Start communication Client: sends a “Connect” message with enable=true

Server: replies with a “ConnectionReply” message

5 Typically the simulation engine runs on a Intel 64 bit architecture of a PC, while the automation solution
is run a 32 bit PLC hardware

pag. 70

I/O exchange Client/Server: "SendValue" message flows in both directions with

multiple {"name", "value"} entries for each transferred variable.

A reply is provided only if an error occurs (see Error phase)

Disconnect Client: send a “Connect” message with enable=false

Server: replies with a “ConnectionReply” message

Error Client/Server: send "SendValueReply" messages to report errors

for unknown variables, wrong types, or wrong values.

Query This phase can be applied during the engineering process to

check if the interfaces between client and server match.

Client: sends a “QueryAll” message

Server: replies with “QueryAllReply”

Table 5 CP-Protocol phases and involved messages

The structure of each message type is briefly documented in the following paragraphs using

some examples for reference.

Connect

Message used by the client to initialize or conclude a virtual commissioning session, depending

on the value assigned to the “enable” field.

Example of message for initializing a connection:

{

 “Connect” : {

 “Id” : “U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=”,

 “enable” : true

 }

}

The “Id” is the base64 encoded string representing a unique identifier of the Client initialization

the connection.

pag. 71

Example of a message used to close a session:

{

 “Connect” : {

 “Id” : “U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=”,

 “enable” : false

 }

}

The “Id“ reported when closing a session must be recognized as an alive client by the server.

ConnectReply

Message sent in reply to a “Connect” during the initialization phase:

{

 "ConnectReply" : {

 "Id" : "U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=",

 "enable" : true,

 "ServerName" : "VGVzdEpzb25Xc1NpbUNvbm5lY3Rpb24=",

 "result" : 200

 }

}

The “Id” is an echo of the client identifier contained in the “Connect” message, while the

“ServerName” property identifies the responding automation server.

If the connection has been accepted by the server, the error code is 200 (HTTP OK code to

indicate no errors occurred), otherwise other error codes are reported together with an error

message. Error codes of type 400 represent temporary failures that could be recovered issuing

a retry message, while 500 type results represent permanent failures of the server.

Example of reply message sent during the finalization of a session:

{

 "ConnectReply" : {

 "Id" : "U2ltQ2xpZx50IHFwNDEyIHRlc3RTaW1DJ25BcHAgcjEwMjY=",

 "enable" : false,

 "ServerName" : "VGVzdEpzb25Xc1NpbUNvbm5lY3Rpb24=",

 "result" : 200

 }

pag. 72

}

SendValue

SendValue messages are used in both directions, to and from the NxtControl automation

runtime, and continuously flow after connection initialization. The protocol does not force any

constraint on the number or priorities of the messages, neither on the system that should send

the first message.

Example of a SendValue message:

{

 "SendValue" : [

 {

 "name" : "TC1.Position",

 "value" : 0.5776

 },

 {

 "name" : "TC1.H1matrix",

 "value" : [9, 1, -23.4, 1e-14]

 },

 {

 "name" : "TC1.status",

 "value" : "T0s="

 }

]

}

It is possible to identify the similarities with the JSON implementation of the I/O data model

described in §5.3.1.1, in particular the fact that each signal contains only the identifier and the

current value, because the type has been checked at engineering stage. A limitation of the CPS

protocol, which has been overcome with the IO Data Model is represented by the lack of the FB

structure within the SendValue message. All signals are listed at the same level and their

mapping on the corresponding Function Blocks require both systems (automation and

simulation) to either parse the IDs and route them to the correct FB instance or to keep a lookup

map to handle the correspondence of the internal signals with the external IDs. Therefore, this

approach does not fully exploit the object orientation of the IEC 61499 as the proposed evolution

applied in the MQTT approach.

pag. 73

5.3.2.2 Software Implementation

The implementation of the I/O communication channel over WebSocket required the

development of dedicated extensions for the automation runtime and for the simulation

engines, capable to handle de serialization and deserialization of the internal signals into CPS-

Protocol compliant messages.

Figure 20 Architecture schema of the WebSocket channel implementation

Within the architecture reported in Figure 20 it is possible to identify the two key components

that support the I/O signals exchange over WebSocket:

1. SendValue FB at automation side

2. IEC 61499 Connector at simulation side

This thesis focuses and activities carried on for the adaptation of the simulation engine while

the automation architecture has been developed by NxtControl company during the research

projects.

5.3.2.3 The IEC 61499 Connector

This component has been designed and implemented as an extension plugin of the DDDMachine

virtual commissioning platform and in particular of its runtime core which is represented by the

Eagle Engine component.

The Eagle Engine is a simulation model execution module whose main functionalities are:

• interfacing external systems through an abstraction layer (Adapter Layer API) dedicated

to handle specific transport and applications protocols

pag. 74

• managing the routing of the I/O signals to the behavioral logics that control the

simulated entities.

The IEC 61499 Connector module complies with the Adapter Layer API and provides to the Eagle

Engine the capability to correctly cope with the above described CPS-Protocol over WebSocket.

The component therefore is responsible for:

• the initialization of the WebSocket channel: the simulation acts as client of the

communication, therefore the module establishes the connection with the Automation

Runtime that plays the server role;

• the management of the message format: the module encodes and decodes to/from

JSON the I/O signals of the IEC 61499 function blocks according to the CPS-Protocol and

the data model documented in the previous sections.

The IEC 61499 Connector module developed during the initial phase of the research activities

has been coded in Java and it is composed by a set of back-end classes with well-defined and

specialized tasks that collaborates to transfer data to/from the simulation.

Figure 21 List of classes composing the connector and handling the CPS-Protocol over WebSocket

pag. 75

The most important object that adheres to the Adapter Layer Specification is the

IEC61499Connector class, whose structure is hereby reported. All the other ones are functional

to the correct operation of this data adapter.

/**

 * IEC 61499 Adapter Handles the Websocket communication protocol developed

in

 * Daedalus to interface IEC61499 applications.

 */

public class IEC61499Connector extends CncAdapter {

 @Override

 public boolean connect() {...}

 @Override

 public void disconnect() {...}

 @Override

 public void dispose() {...}

 @Override

 public void hfIO() throws Exception {...}

 @Override

 public void lfIO() throws Exception {...}

 @Override

 public void hfMemoryUpdate(SharedMemory memory) {...}

 @Override

 public void lfMemoryUpdate(SharedMemory memory) {...}

 @Override

 public void init(SharedMemory memory) {...}

 @Override

 public void configure(Map<String, Object> configProperties) {...}

 @Override

 public boolean isConnected() {...}

}

pag. 76

The relevant IEC61499connector methods that handle the communication are listed in the

following table.

Method Description

configure Allows the parametrization of the behavior of the class through a map

of key-value pairs that control how the controller will establish the

communication with the server. The configuration map contains several

general-purpose properties that will not be documented here because

they are defined by the underlying DDDMachine engine, and a set of

custom entries that are specific to this adapter class that are hereby

shortly documented:

• host: ip address or name of the automation runtime endpoint

• port: network port number of the server endpoint

• timeout: milliseconds to drop the connection attempts

• signals-map: reference to the XML file containing the whole list of

I/O signals that the connector must map to/from the automation;

this map is auto-generated during the design time thanks to the

developed interfaces between the two engineering software

applications of NxtStudio and DDD Model Editor that produce the

respective automation and simulation artifacts (see §6)

init Applies the configuration loaded by the configure method, initializing

the status of the virtual commissioning model.

During this phase all the signals defined by the signals map are resolved

within the internal tasks of the engine, and their corresponding

registers are created on the Shared Memory which is a runtime object

maintaining a set of data registers in common between the

communication cycle and the internal processing logics implemented

within the simulation Task instances.

pag. 77

The consistency of the virtual commissioning model is checked during

this phase and the lookup tables to map the incoming signals to the task

properties are created.

connect If the configuration and initialization method succeeded, this method

establish the connection with the automation engine opening a

WebSocket channel and issuing to the server a “Connect” message to

enable the I/O session.

hfIO Each adapter, according to the Adapter Layer API, must be capable to

handle high frequency and low frequency input/output operations,

performed respectively by the hfIO and lfIO methods.

The reason for such division is providing the developers with a built-in

mechanism to manage at least two types of data transfers between

simulation and external systems: a fast continuous flow and a slower

update of less critical data. This is useful when the underlying

communication libraries provide different functions to access the

CNC/PLC data6.

The IEC61499Connector is implemented to perform only the high

frequency IO, because in the CPS-Protocol, there is no distinction

between signals access. The method executes a two-step process:

• Reads the incoming “SendValue” messages, parses them and

routes the values on the local IEC61499Signal instances

• Writes the current values of the output signals in a “SendValue”

message and sends it on the output channel of the WebSocket

It is important noting that in this phase, the incoming data values have

not been already transferred to the corresponding shared memory

registers.

6 An example is represented by the Fanuc FOCAS2 libraries hat expose different functions to

pag. 78

It is possible to control the frequency of execution of this method with

a dedicated parameter. Typically, the virtual commissioning models

developed during validation have been configured with a refresh

interval of 20 milliseconds (i.e. 50 Hz), compliant with the application

types. Normally, the refresh interval should not be brought under 10 ms

when running on normal PC platforms without real-time extensions of

the operating system (e.g., normal Windows 10 or 11) because this

value corresponds to a stable and reliable resolution of the system

clock.

hfMemoryUpdate As reported in the description of the hfIO method, the low-level signals

exchange on the web socket doesn’t affect the actual register instances

of the SharedMemory until the hfMemoryUpdate is executed. In this

way, the SharedMemory decouples the I/O thread with the simulation

thread in order to avoid simulation blocks due to communication

failures and vice-versa.

This method transfers the data cached by the input IEC61499Signal

instances to the memory registers and caches inside the output

IEC61499Signal instances the values of the corresponding register, in

order to prepare them for the next hfIO execution.

disconnect When the user completes the virtual commissioning session, the

simulation platform calls this method to interrupt the I/O session. The

method sends a “Connect” message with enable=false complaint with

the CPS-Protocol, waits for a reply from the server and closes the

WebSocket channel. If the server does not reply to the disconnection

message, the socket is closed after the expiration of the timeout.

pag. 79

Figure 22 IEC61499Connector within the simulation engine architecture

The schema reported in Figure 22 shows how the IEC61499Connector interacts with the other

components of the simulation engine of the DDDMachine NC application.

pag. 80

5.3.3 Connection on MQTT

The evolution of the runtime communication has been implemented using MQTT as transport

infrastructure, to overcome the limitations of the WebSocket solution and improve the

compliance level to the defined system requirements.

MQTT (MQ Telemetry Transport or Message Queue Telemetry Transport) is an ISO messaging

standard [20] based on publish-subscribe paradigm that runs typically over TCP/IP. The protocol

has been designed to be a lightweight and therefore suitable to support fast communication

with limited resources devices. A MQTT infrastructures relies on the presence of a Broker that

is a server receiving messages from the and dispatching them to the appropriate clients. A MQTT

Client is any application that, relying on suitable MQTT libraries, connect to the broker over the

network and either publishes or consumes messages.

The messages of an MQTT communication are organized in hierarchical topics: each publisher

client declared the topic on which it wants the message to be dispatched, while each subscriber

declares to the broker the set of topics it is interested in. In this way each subscriber receives

only the data it considers relevant.

From the architecture perspective, MQTT promotes a complete decoupling among the actors of

the communication, in fact the publisher doesn’t need to know anything about the subscribers,

their presence, location or number and vice-versa. This approach simplifies significantly the

management of the low-level sockets, that can be turned on and off without affecting the

integrity of the other components connected to the same broker.

This latter feature, together with the small footprint and the capability to support large

bandwidth, makes the MQTT protocol a suitable technology to implement an evolution of the

Virtual Commissioning runtime communication overcoming the limitation of the WebSocket

approach, which can be identified in the following points:

• Single endpoint: with WebSocket, in order to reduce the amount of used resources, the

automation solution, which acted as a server, had to limit the incoming connections as

much as possible, resulting typically in a single server/single client execution of the

virtual commissioning session.

pag. 81

• Components dependence: the need for the simulation engine to establish a direct

connection with the automation engine, required the configuration of the complete

address of the device running the IEC61499 solution. Considering the fact that an

IEC61499 solution is thought to be possibly distributed on several devices in a

transparent way, the need for the simulation engine to identify each device server

address over the network, manage a dedicated connection with it and locate the

contained target function blocks, makes the set-up of complex scenarios quite hard to

maintain.

• Order of initialization: the fact that, in the WebSocket implementation, the automation

solution is the server, implies that it must up and running before initializing the

simulation counterpart, requiring the control over the sequence of activation of the

interacting systems.

Each one of the presented issues finds a valid solution in the MQTT protocol and architecture:

• Single endpoint: with MQTT, each system participating to a communication session is

a client independently of its role within the virtual commissioning scenario. Therefore,

the automation solution doesn’t have to allocate the resources to handle and keep

alive the incoming connection requests.

• Components dependence: the complete transparency of each client to the other ones

connected to the same broker, allows each engine, automation or simulation, even in

multiple instances to be configured to address only the broker, produce messages that

will be automatically broadcasted to different endpoints and consume information

flowing from different devices, whose location can remain completely unknown. This

solution is particularly important considering the distributed nature of IEC61499.

• Order of initialization: the only one component that must be up and running to initiate

a virtual commissioning session base on MQTT is the broker, while the other engines,

automation, or simulation, can connected and start publishing and consuming

messages in a completely asynchronous way. Moreover, the implementations of the

MQTT brokers are typically characterized by a very high level of resilience, standing

pag. 82

continuous connections and disconnections of clients without impacts on the quality

of service. This makes the overall architecture not only more fault tolerant but also

simpler to control during the execution of the tests.

The following schema shows how a possible distributed automation solution could interact with

many simulation models. It is important noting how the system is easily scalable to different

deployment scenarios on both sides of the virtual commissioning actors.

Figure 23 Runtime communication architecture with MQTT

The scalability of the solution could be further exploited if the system considers the deployment

of multiple MQTT Brokers, which could collect and distribute messages from different portions

of the automation and simulation artifacts. Figure 24 shows a possible example of deployment

using two MQTT brokers managing the topics and messages flowing among portions of the two

artifacts.

This possibility provided by the MQTT architecture It is extremely interesting also from a load

balancing perspective because in this way it is possible to select the correct distribution of the

workload on the supporting hardware network.

pag. 83

This approach could be leveraged in large plants where the amount of function blocks and

simulation modules interacting during the same virtual commissioning session is particularly

high. This scenario has been validated theoretically during the development of the engines

extensions, creating tests specifically designed to evaluate the readiness of the developed

libraries to support it.

Figure 24 Scalability of the MQTT approach with multiple brokers

5.3.3.1 Software Implementation

As for the corresponding WebSocket solution, the implementation of the runtime

communication architecture over MQTT required the development of dedicated extensions for

the automation runtime and for the simulation engines.

From the software point of view this approach is not only more scalable and flexible, but it is

also simpler because each engine connects to the MQTT broker as a client, and all the

handshaking details can be dropped from the protocol because they are completely handled by

the broker.

pag. 84

Figure 25 Software architecture implementation

The schema reported in Figure 25 shows the main components of the reference automation and

simulation environments that have been adapted and extended in order to test the proposed

infrastructure:

• The MQTT broker

• The MQTT Proxy at automation side

• The MQTT Proxy at simulation side

The architecture is considerably different if compared to the one presented in the WebSocket

implementation, not only because of the presence of the MQTT broker, but also because the

solution, at simulation side, is based on a different engine, the DDD Simulator, more suitable

respect to the DDD Machine, to exploit the scalability of the system, thanks to its built-in

modularity.

This research work focuses on the simulation side, therefore the following paragraphs document

the extensions at simulation engine side, while the corresponding components at automation

side have been implemented and provided by NxtControl.

pag. 85

5.3.3.1.1 The MQTT Broker

From a deployment point of view, the selection of the MQTT Broker component doesn’t affect

in any way the operating principle of the system, providing that the broker supports at least the

MQTT 3 specification. There exist several open-source implementations of MQTT brokering

systems whose licenses adapts not only to research activities but also to possible commercial

scenarios.

During the implementation and validation phase, the deployments have been based on the

Eclipse Mosquitto™ which is an open source (EPL/EDL licensed) message broker implementing

the MQTT protocol versions 5.0, 3.1.1 and 3.1; it is lightweight and suitable for use on all devices

from low power single board computers to full servers [21].

5.3.3.1.2 The Simulation MQTT Proxy

As presented in section §3.4, a DDD Simulator model is based on the composition of several

simulation instances whose behavioral logics, coded in Java, is capable to perform complex

actions on the underlying 3D kinematics entities controlling their evolution over time.

The MQTT Proxy at simulation side has been designed to work as an extension of the behavioral

logics of the instances in order to provide each one of them to interact independently with the

communication runtime and exchange data with a portion of the automation code.

Figure 26 Correspondence between Simulation Instance and device Function Block

In order to exploit at maximum, the object oriented approach supported on both side of the

virtual commissioning components, the coupling of simulation and automation functional units

has been founded on the assumption that each physical device, represented by a simulation

pag. 86

instance, is governed by a dedicated IEC 61499 Function Block, controlling a set of I/O signals

compatible with the real system. This correspondence tends to align the organization of the

simulation model according to the structure of the automation code, easing the development

process of the virtual commissioning sessions. Moreover, this is a key element to reach one of

the most important objectives of the whole thesis work: the automatic synchronization between

the environments at design time (described in Chapter 6).

The Simulation MQTT Proxy is constituted by a set of library Java classes that conform to the

Heron Simulation API of the DDD Simulator platform.

Figure 27 UML Class diagram of the Simulation MQTT Proxy

pag. 87

Eclipse Paho project [22] has been chosen as MQTT client library: it provides open source

implementations of MQTT V3 and V5 in a variety of programming languages, Java included and

it represents a reference for working with IoT and MQTT because of its reliability, maturity and

availability of documentation.

Figure 27 reproduces with UML Class Diagram notation the structure of the classes and their

relationship with the reference packages that are:

• Heron Simulation API: com.ttsnetwork.heron.v5

• Eclipse Paho: org.eclipse.paho.client.mqttv3

The following paragraphs document the classes and their responsibilities within the

infrastructure.

MqttProxy

Represents the low-level access to the MQTT interfaces, wrapping the basic mechanisms of the

Eclipse Paho library for connecting to the broker. This class has been developed to act as an

abstraction with the underlying MQTT client library, decoupling the higher-level classes like

MQTTIO from the specific implementation. The following table contains the main methods and

their description.

Method signature Description

connect():void
Initiates the connection with the broker, opening the

channels, identifying the client and with a unique UUID

and declaring the desired protocol version.

The parameters of the connections are defined by the

internal attributes set at construction time by the

containing classes.

isConnected():boolean
Provides a way to test the current connection status of

the proxy.

Table 6 MqttProxy details table

pag. 88

MQTTIO

This class represents the core of the MQTT runtime communication at simulation side and it is

responsible for:

• The management of the MqttProxy instance, starting the connection, declaring the

topics of interest, and registering as a listener on the message queue, in fact it is an

implementation of the IMqttMessageListener interface of the Eclipse Paho client library;

• the management of the application communication protocol, serializing and

deserializing the I/O signals into JSON messages compliant with the IO Data Model

described in § 5.3.1;

• auto-wire of module signals: using the Java reflection API, this class inspects a module

structure identifying input and output signals and creates an internal cache of signal

references (represented by the “in” and “out” maps in the UML class diagram);

The following table contains the description of the main methods.

Method signature Description

init():void
Initializes the MqttProxy instance and, if the

connection has been established, registers itself

as a listener on the message queue of the

specified topic containing the signals flowing

from automation to simulation.

messageArrived(String topic,
MqttMessage message):void

This method is the realization of the

IMqttMessageListener interface and is the

endpoint receiving the incoming JSON Messages.

routeIncomingSignals(MqttMessage m):
void

Deserializes the incoming MqttMessage JSON

payloads, identifying the InputSignals involved.

Then it translates the values in the proper data

type and routes them to the destination module.

pag. 89

send():void
The class register for the internal notification of

changes in the OutputSignal instances of the

module it belongs to. When an output value

changed, the MQTTIO serialize the new signal

values into a proper JSON payload and sends it

through the MqttClient provided by the

MqttProxy instance.

Table 7 MQTTIO details table

AbstractMqttModule

This class represents an extension of the base Module class that all simulation module instance

inherits from. It is an abstract class, meaning that it cannot be directly instantiated but must be

extended by the module classes that need to interface with the automation.

It exposes to the extending classes the infrastructure to cope with the MQTT communication

runtime without having to deal with all the low-level implementation details needed to handle

the connections and manage the application messaging protocol. In this way the instance

module developers, when creating the digital twin representations of the real devices, can

concentrate on the high-level coding the behavioral logics.

This class delegates to an internal instance of MQTTIO the management of the protocol and

defines the module parameters that must be specified in order to correctly configure the low-

level channel. This is the reason way the MUL class diagram reports, for the

AbstractMqttModule not only the main operations, but also a set of relevant configuration

attributes. Both attributes and operations are described in the table below.

Attribute Description

mqttID:String
Client identifier, it is used by the MQTT broker to

distinguish the clients. Each client must provide a

unique ID in order to be accepted by the broker.

pag. 90

Typically this ID is set to the module id string

which is unique within a simulation.

topicIn:String
Name of the topic on which the client expects to

receive the messages sent by the automation.

This string conforms to the hierarchical format of

the MQTT topics.

topicOut:String
Name of the topic the client uses to send the

outgoing signal values to the automation. This

string conforms to the hierarchical format of the

MQTT topics.

broker:String
URL of the broker. This string must contain the

chosen transport protocol, the host, and the port

on which the connection should be established.

Typically the communication is configured to

work on TCP, therefore the broker attribute has

the following shape:

tcp://[broker_host]:[broker_port]

The standard port is 1883.

qos:int
Sets the quality of service of the communication

according to the three levels defined by the

protocol to control the delivery of messages:

0: At most once (fire and forget, fastest)

1: At least once (slower, with cache until delivery)

2: Exactly once (secure but the slowest)

Method Description

pag. 91

initMqtt():void
Initializes the full proxy infrastructure for the

module instance, wiring the signals to the MQTT

queues and starting the client instance using the

specified parameters

writeIfChanged(OutputSignal out, T
value):void

Writes the values of an output signal if the value

has been actually changed, otherwise avoids

calling the output signal setValue operation.

This method aims at reducing the number of

redundant events that could generate useless

MQTT traffic towards automation.

Table 8 AbstractMqttModule details table

When implementing an extension of the AbstractMqttModule, it is important that the

specialization class follows few directives in order to ensure the correct initialization of the

communication and the in and out data flows:

1- The class must be a direct or indirect extension of AbstractMqttModule

2- The class declares input signals as public access class attributes of type InputSignal and

these attributes must be initialized before initializing the MQTT

3- The class declares output signals as public access class attributes of type OutputSignal

and these attributes must be initialized before initializing the MQTT

4- The class implements the init() method as all the simulation logics modules

5- The init() method, after initializing all other internal structures calls the initMqtt method

of the super class

6- Id the class needs to reduce the amount of events generated by output signals, instead

of directly writing the OutputSignal values, it must call the writeIfChanged method of

the super class.

The code below reports a possible example of extension following the aforementioned rules:

pag. 92

/** Module class to be interfaced with automaton through MQTT */

public class Extension1 extends AbstractMqttModule {

 public InputSignal input1 = new InputSignal(PropertyType.DOUBLE);

 public InputSignal input2 = new InputSignal(PropertyType.INTEGER);

 public OutputSignal output1 = new OutputSignal(PropertyType.DOUBLE);

 public OutputSignal output2 = new OutputSignal(PropertyType.INTEGER);

 @Override

 protected void init() {

 if (broker != null && !broker.isEmpty()) {

 // perform initialization of the internal logics

 initMqtt();

 }

 }

}

5.3.3.1.3 MQTT Topics structure

As documented in the IO Data Model section, the JSON implementation does not contain any

specification of the signal direction: no distinction between input and output signal is done at

message payload level. In the WebSocket, since it is an end to end communication, the direction

of the messages is immediately clear because they flow from the sender to the receiver without

any intermediary.

With the MQTT solution instead, the presence of the MQTT Broker represents a point of

distribution of data that can create confusion on the direction of the messages. The same client

in fact can be publisher and subscriber on the same topic creating a loopback on it won

messages. For this reason, in order to distinguish the semantics of the signals, the hierarchical

structure of the topics within the MQTT broker has been exploited.

Therefore, the topics has been organized to reflect:

• the flow direction of the signal messages;

• the identifiers of the connected simulated and controlled devices.

In particular the identifier of the topic is composed as follows:

pag. 93

VirtualCommissioning/{System_name}/{module_id}

The “VirtualCommissioning” root of the topic URL represents a common namespace for all the

topics.

{System_name} can be assigned with “Automation” or “Simulation” depending if the topic

contains messages generated respectively by the Automation Solution or from the Simulation

Model.

{module_id} is the unique identifier of the entity belonging to the simulation and automation

artifacts that is generating the signals. This choice has been based on the assumption, already

discussed in the previous paragraphs, that each IEC 61499 Function Block exchanging signals

with the external world, has a corresponding digital twin on within the Simulation Model,

identified with the same name.

Therefore, considering the existence of an IEC 61499 Function Block called “ConveyorA” in the

NxtControl Runtime and a corresponding simulation instance in the DDD Simulator model:

• The IEC 61499 FB:

o Publishes on topic “VirtualCommissioning/Automation/ConveyorA”

o Subscribes to topic “VirtualCommissioning/Simulation/ConveyorA”

• The Simulation instance:

o Publishes on topic “VirtualCommissioning/Simulation/ConveyorA”

o Subscribes to topic “VirtualCommissioning/Automation/ConveyorA”

It is important underlining that this possibility of publishing and subscribing on named topics for

each virtual commissioning entity depends on the capability of the MQTT Broker to dynamically

create topics whenever at least one client declares the intention to publish to it or to subscribe

to it, even if nobody is going to send/receive on that particular channel.

pag. 94

6 Connecting automation and simulation at design time

If the possibility to connect the automation and simulation runtimes with high performance

communication channels represents the key enabler for each virtual commissioning session, it

is not yet the most important breakthrough carried out by the research activities of this work.

The proposed approaches at runtime, documented in the previous chapter are really effective

because they exploit the capability of the IEC 61499 standard to execute event based and object-

oriented logics coping perfectly with a modular structure of the simulation model.

Nevertheless, they don’t fill the wider technological gap that make the creation of virtual

commissioning models a complex task that often prevents automation engineers to adopt it for

the everyday work. In this chapter, an architecture capable to support the design process of

virtual commissioning sessions is presented, starting from the presentation of the objectives and

the main requirements until the documentation of the developed infrastructure, whose validity

has been proved during the testing phase.

6.1 Objectives and requirements

When a virtual commissioning model is defined typically two professional roles are involved in

the development process:

• The automation expert who is responsible for the mechatronic system logics and who is

expert in process control

• The simulation expert who is responsible for the realization of a digital avatar of the real

world capable to react to the same signals that the automation sends to the physical

devices and provide reliable and realistic feedback signals

The two characters use different development environments: the former works with an

automation-oriented IDE (like nxtStudio for IEC 61499) conceived to support the coding of

function blocks, of their internal state machines and their internal and external wiring, while the

latter is used to operate in a 3D environment, dealing with the programming of geometric and

kinematics models.

pag. 95

The exchange of knowledge between the two actors can be really slow and require several hours

of work to align the behavior of the two models. This affects the effectiveness of the approach,

in particular when the automation logics is under development so that its incremental growth

becomes too fast to be synchronized with a digital counterpart.

The main objective of this second part of the research is implementing an infrastructure capable

to integrate the automation and simulation IDE applications, using a common data model that

automatizes the concurrent evolution of the two artifacts, making it possible to exploit virtual

commissioning from the early design down to the use phase of the industrial systems.

During the initial activities, the main requirements for the system have been elicited together

with a consortium of international partners working with automation and simulation.

The following table reports the specifications of the requirements. As for the runtime, each

requirement is defined by:

• an ID label that has been used to track the progress during the development and to fill

a validation report during the functional tests

• a priority level that allowed to schedule the implementation activities; the priority has

been formalized according the following three levels (mediated from the common

keywords applied in requirements elicitation and quality management):

o SHALL: the final result must completely satisfy the requirement to be positively

evaluated;

o SHOULD: (equivalent to the keyword RECOMMENDED) the requirement is

important and should be satisfied by the final result, but it can be accepted also

a final result that meets the specification only partially: in this case the

implications must be understood and justified;

o MAY: the requirement is non mandatory and meeting it would represent an

enhancement respect to the optimal baseline.

• A description of the desired behavior containing a base indication of possible

acceptance criteria to be verified during the validation phase

pag. 96

Requirement ID Description Priority

D001 The integration layer must allow the user to automatically

create digital counterparts of the automation code written

in IEC 61499.

Acceptance criteria:

The automation IDE succeed in triggering the instantiation of

simulation prototypes in the simulation IDE

SHALL

D002 The integration layer must define automatically the signal

mapping between function blocks and simulation entities.

Acceptance criteria:

The simulation instances created through the integration

interface are correctly configured with the I/O signals

compatible with the corresponding Function Blocks. The end

user should not tweak in any way the signals mapping to run

the virtual commissioning session.

SHALL

D003 The simulation model must be a synchronized

representation of the automation function blocks.

Acceptance criteria:

The automation IDE succeeds in creating, deleting, and

updating digital twins of the Function Blocks through the

integration interface without the need to access the

simulation IDE.

SHALL

pag. 97

D004 The integration layer must support a modular object-

oriented approach.

Acceptance criteria:

The integration works with units that have the granularity of

the Function Blocks

SHOULD

D005 The integration layer must be based on an open Digital

Avatar Data model compatible with the runtime IO Data

Model and its implementations.

Acceptance criteria:

At the end of the development exist an open API and a

supporting data model that can be mapped to the runtime

JSON implementation of the IO Data Model.

SHALL

D006 The integration architecture must be platform independent;

it must be possible to apply the same approach to

automation and simulation platforms different from the

ones used during the validation.

Acceptance criteria:

…

SHOULD

pag. 98

D007 The integration must be based on a cross platform

technology. The IDE applications are typically developed on

different software platforms (Java, C++, C#, etc.), the chosen

technology must ease the implementation of the

communication stubs.

Acceptance criteria:

The integration layer can be interfaces independently from

the underlying language.

SHOULD

D008 The integration layer must support the compilation and

deployment phase of the artifacts at simulation phase.

Acceptance criteria:

At the end of the development the automation developer,

within the automation IDE user interface, without accessing

the simulation IDE, compiles the simulation model and

creates the corresponding runtime artifact.

SHALL

D009 The integration layer must support the control (start/stop)

of the execution of the virtual commissioning sessions,

running the automation and simulation engine and

connecting them without the need for the automation

developer to interacts with the simulation IDE.

Acceptance criteria:

At the end of the development the automation developer,

within the automation IDE user interface, without accessing

the simulation IDE and without any further configuration,

starts and stops the virtual commissioning session.

SHOULD

pag. 99

D010 The integration layer must be bidirectional, supporting not

only the control flow from automation to simulation IDE but

also the notifications in the opposite direction.

Acceptance criteria:

The automation IDE is notified when the requested

operations are completed in the simulation IDE.

SHOULD

D011 The integration layer must be resilient to modifications of

the simulation model that affect the positioning and

parametrization of the digital twins of the Function Blocks.

Acceptance criteria:

The automation developer modifies the simulation model

created by the integration layer directly in the simulation

IDE, changing the position (translation and rotation) of the

instances and their parameters (speeds, accelerations, etc.)

without affecting the synchronization between the two

applications.

SHALL

pag. 100

D012 The integration layer should have a small footprint. The

concurrent execution of two complex IDEs like the

automation and simulation can require a significant amount

of system resources, therefore it is important to avoid that a

further increase of this consumption due to the

communication between the applications causes

instabilities or even system crashes.

Acceptance criteria:

The integrated IDEs running on a middle level laptop (e.g.,

PC with 16 Gb of RAM, Intel i5 processor and discrete NVIDIA

Graphic Card) works smoothly without causing system

blocks.

MAY

Table 9 IDE integration requirements

The verification of the acceptance criteria for each requirement is documented in Chapter 0 and

is based on global validation scenarios demonstrating the whole virtual commissioning process

from design to execution.

pag. 101

6.2 Implementation

The implementation of the integration at IDE level is based on the high-level architecture

proposed in section §4.2 and whose schema is reported here in for convenience, highlighting

the position of the interface.

Figure 28 Integration high level architecture

Even though the development has been carried on using the two selected environments

nxtStudio and DDD Model Editor, the proposed solution can be adopted to any IEC 61499

automation IDE and any modular simulation engine.

The realization of the interface followed an iterative spiral process with the preparation of early

prototypes to be validated and evolved towards the final released version.

The interface is composed of two main complementary components that concur to enable the

communication between the two environments:

1. The Digital Avatar Data Model

2. The integration API

pag. 102

6.3 Digital avatar data model

When configuring the simulation entities to behave like the real devices, it is necessary to wrap

a pure digital behavior into a container capable to mimic the interfaces of the physical units. This

means defining artifacts capable of consuming the same signals of the physical systems,

elaborating a reaction and generate the same responses.

The digital avatar data model aims at defining the structure of the digital counterparts of the IEC

61499 Function Blocks, composing its interface with its internal logics, supporting the

parametrization of the whole entity.

From an architectural perspective, these objects are similar to the simulation prototypes

adopted by the DDD Simulator platform, because they must formalize:

1. A set of configuration parameters

2. A set of I/O endpoints corresponding to the automation I/Os

3. A set of logical tasks that must be executed to react to external or internal events

Figure 29 Digital Avatar Data Model UML Class Diagram

pag. 103

The UML Class Diagram reported in Figure 29 shows the organization of the classes that

compose the Digital Avatar Data Model. The following section provides a brief description of the

role of each class.

Prototype

Represents the root of the data model, acts as a container for the description of an entity

mapping to virtual commissioning. The role of this container is mainly to behave as a model glue

that allows different concepts like signals, parameters and task to be cross linked and maintain

the consistency needed to manage them with an automatic generation system.

The prototype is a blueprint, a structure that is meant to be replicated by the corresponding

instances with different parameter values.

Input and Output

Represent the physical signals that will be exchanged, at runtime, through the communication

channel, with the IEC 61499 Function Blocks. Their role is not only defining the external interface

of the prototype, but also to route the incoming data to the correct internal endpoints of the

tasks and localize the task properties that provide the values to be published outside.

Signal

It is a convenience super class for Input and Output classes, providing common attributes and

allowing the management systems to handle the I/Os in a consistent way.

Property

The property is used at two different levels, as a configuration parameter of the prototype and

as a property of a specific logs task. It always represents a customization parameter that can be

controlled from outside the prototype and whose actual value concur to determine the features

of a particular instance of the prototype.

pag. 104

6.3.1 XML implementation of the data model

The presented model has been transformed into a file format to be used by the simulation and

automation IDE applications to share prototype definitions. Collection of prototypes are

organized into libraries called catalogue that the two environments share as a common

modelling layer.

The file format chosen for the prototype files is the XML, coherently with the file format defining

the structure of the simulation entities in the DDD Model Editor platform (see §3.4.5).

The following paragraphs document the XML data types of the Digital Avatar Data Model

implementation and their relationships.

<prototype>

Attributes

Name Type Description Use

uuid string Unique identifier of the prototype in the
form of a UUID, it must be different for all
the prototypes

Required

name string Name of the prototype: it is the human
readable identifier

Required

Elements

Name Type Description Use

<input> <input>*7 Set of input signals that the prototype can
receive and that is capable to handle.

Optional

<output> <output>* Set of output signals that the prototype is
capable to publish through the runtime
communication channel

Optional

<property> <property>* A variable set of properties that can be used
as configuration parameters of the
prototype. Unlike the simulation entity
prototype, there isn’t a predefined set of
configuration properties, the list changes

Optional

7 The * next to a type definition indicates that the current structure contains a collection with 0 or multiple
definitions of the same type-

pag. 105

according to the IEC 61499 Function Block
that must be interfaced.
These properties are mapped internally to
the configuration properties of the tasks.

<task> <task>* Characterization of the behavior of the
prototypes

Optional

<input> and <output>

The <input> and <output> XML elements share exactly the same type definition because

semantically they are a representation of the same type of objects.

Attributes

Name Type Description Use

name string Name of the signal; it is especially important
because this name is the same identifier
used by the runtime communication to
compose the JSON payload of the messages
exchanged by automation and simulation
engines.
This name must unique locally to the
prototype in the same way the names of the
events of the Function Block are unique. The
automatic mapping of the signals in two
direction is based on this correspondence.

Required

type string String identifying the IEC 61499 type of the
signal to be exchanged. This information, in
conjunction with the unique name, ensure
the correct coupling between the artifacts
and the needed low level type adaptations.
The values that can be assigned to this
attribute are defined in the SignalType
enumeration.

Required

Elements

Name Type Description Use

<map> <map>* Set of mapping elements that wire the
signals internally to the input registers of the
logics tasks. The presence of these mapping
element is optional but, actually at least one
<map> should be modelled; otherwise, an

Optional

pag. 106

input signal, even if received by the instance
of a prototype, does not trigger any
simulation event and analogously an output
signal would never publish value variations
because it would be never updated by
internal events.

<map>

Convenience element needed to map concepts within the prototype definition to a property of

a task.

Attributes

Name Type Description Use

task string Identifier of the task addressed by this
mapping.

Required

property string Identifier of the target property whose value
will be set controlled by the mapped
element value (signal or prototype property)

Required

<properties>

Convenience element grouping together the configuration properties of the prototype.

<property>

Within the defaultValue attribute it is possible to reference the current instance of the prototype

using the $ symbol that, at runtime is substituted with the ID of the instance. This is useful when

referencing parts of the model like frames, joints, and sub-assemblies.

Attributes

Name Type Description Use

name string Name of the property, must be unique
within the prototype.

Required

type string Low level data type of the property.
The accepted values are compliant with the
basic data types listed in §3.4.6

Required

pag. 107

defaultValue string String representation of the default value
assigned to the property at instantiation
time.
The value must be compliant with the type
attribute.

Required

Elements

Name Type Description Use

<map> <map>* Set of mapping elements that wire the
properties internally to the configuration
properties of the logics tasks. The presence
of these mapping element is optional and
typically:

• it is present when the <property>
element is used at prototype level;

• it is missing when the property is used
internally to a <task> element.

In the former case it is important that at
least one <map> is modelled; otherwise a
property would not affect any behavior of
the prototype instance and therefore it is
useless.

Optional

<task>

A task is a piece of logics that instance that, conveniently configured, controls the evolution of

a part of the simulation entity kinematics model, modifying the position of the elements, the

values of the joints, the visibility of the parts, and all the runtime properties exposed by the

simulation engine. A prototype can contain several task definitions, each one dedicated to mimic

a single aspect of the whole device.

Attributes

Name Type Description Use

name string Unique identifier of the task within the
prototype.

Required

type string Fully qualified name of the Java type
implementing the behavioral logics of the
prototype.
This class must be present within the
catalogue JAR libraries so that it can be

Required

pag. 108

resolved at runtime by the DDD Simulator
application.

Elements

Name Type Description Use

<property> <property>* Set of configuration properties that can be
modified at runtime after the instantiation
of the prototype.
These properties, internally are translated
into values of the fields of the task class.

Optional

The following XML fragment shows an example of prototype configuration. All the libraries of

virtual commissioning entities developed in the validation phase are based on this format.

prototype uuid="a7315040-3e5c-42cb-b5ee-b532b7e08e5d" name="Pusher">

 <input name="command" type="DINT">

 <map task="PusherSensor" property="pusherCommand_RegistryIn"/>

 </input>

 <!-- Pusher Extended TRUE:is completely extended -->

 <output name="limitExtended" type="BOOL">

 <map task="PusherSensor" property="pusherLimitExtended_RegistryOut"/>

 </output>

 <!-- Pusher status TRUE:is moving -->

 <output name="isRunning" type="BOOL">

 <map task="PusherSensor" property="pusherIsRunning_RegistryOut"/>

 </output>

 …

 <properties>

 <property name="pusherAxisValue" defaultValue="500" type="double">

 <map task="PusherSensor" property="pusherAxisValue"/>

 </property>

 <property name="pusherSpeed" defaultValue="2" type="double">

 <map task="PusherSensor" property="pusherSpeed"/>

 </property>

 <property name="sensorColor" defaultValue="255;0;0" type="integer[]">

 <map task="PusherSensor" property="appearanceColorRGB"/>

 </property>

 …

 </properties>

 <!-- TASKS -->

 <!-- PusherSensor task -->

pag. 109

 <task type="synesis.sensors.PusherBoxSensorModule" name="PusherSensor">

 <property name="boxPosition" defaultValue="0 0 0" type="vector3"/>

 <property name="boxDimentions" defaultValue="120 120 20"

 type="vector3"/>

 <property name="pusherAxisName" defaultValue="$.Spintore.T"

 type="string"/>

 </task>

 <task type="synesis.sensors.BoxSensorModule" name="PusherLightBarrier">

 <property name="boxPosition" defaultValue="230 0 0" type="vector3"/>

 <property name="boxDimentions" defaultValue="460 10 10"

 type="vector3"/>

 </task>

 …

</prototype>

6.4 The integration API

If the data model provide the automation and the simulation IDE with a common ground for the

definition of the digital twins of the physical devices, the Integration API layer represents the

means by which the two applications collaborate to co-design the virtual commissioning

solution. Through this layer, the actions performed by the automation expert induce automatic

modifications of the simulation model that in this way is kept in synch with the IEC 61499 logics.

The Design Integration API can be considered the dual of the Runtime Communication Layer and

the natural completion of the upstream development process. Nevertheless, the two interfaces

are meant to support two so different phases that the requirements for each one are really

different.

The design API supports operations happening at slow rate, triggered by the end user actions,

therefore it does not demand for the same high speed and low latency required by the runtime

communication. The performance in terms of throughput becomes not so important because

there is no real time data exchange.

On the contrary, the Design Integration API requires the exposure of high-level functionalities,

identifiable with actions or methods of a high-level software interface. For this reason, the

choice of the communication protocol is based on criteria that consider the capability to

efficiently support complex operations in a cross-platform approach.

pag. 110

A viable approach could be represented by the adoption of the RESTful API design pattern of

web services providing client-server access to internal functionalities of the simulation IDE. This

solution has the advantage of using very simple and accepted communication protocols based

on HTTP and HTTPs but, as drawbacks, its way of exposing functionalities is unstructured, and

the communication is error prone because the meaning of each service and in particular of its

in/out data structures is not built.in with its the definition. Moreover, a RESTful API is not

suitable to easily manage observer patterns unless switching to the SSE protocol (Server Sent

Event) or to a pure WebSocket notification channel.

The best integration technology for this specific use case is the represented by the gRPC [23]

which is a high performance, open-source universal remote procedure call framework. It

provides support to most of the common development platforms used for software engineering

like C++, Java, C#, and others. The gRPC framework uses Protocol Buffers, an industry ready open

source mechanism for serializing structured data provided by Google, as both its Interface

Definition Language (IDL) and as its underlying message interchange format.

Figure 30 gRPC framework

From the architecture point of view, gRPC relies on the implementation of a server artifact and

of client stubs that manage the function calls in a way that is transparent both to the server and

to the client applications. The framework, starting from the Protocol Buffer defined interface,

pag. 111

generates the server and stubs code in the specific target language of the hosting application,

so that both the endpoints of the communication can use local compiled methods. Relying on a

binary socket implementation, the procedure calls run not only locally but also remotely through

the network. This technology brings a set of benefits that can be summarized in:

• Transparency of the underlying transport protocol: the application code doesn’t have

comply with specific patterns like the stateless mode of the RESTful API;

• Performance: the default binary implementation of the Protocol Buffers is designed for

performance so the impact on the normal operation times is negligible;

• Vendor independence: the possibility to use the protobuf format as IDL to define the

API, allows to open the specification to any vendor interested in integrating with the

architecture;

• Complexity management: the possibility to define data structures and articulated

method signatures brings within the integration layer the same design patterns that can

be applied with normal OOP (Object Oriented Programming) code, i.e. the observer

pattern.

6.4.1 The gRPC API

The requirements defined at the beginning of the chapter have been translated into use cases

and then formalized into functions and data structures of the gRPC IDL using the Protocol Buffer

version 3 syntax (“proto3”, [24]). The following snippet reports the structure of the developed

API:

syntax = "proto3";

package simulation.server;

/**

 * Simulation service.

 */

service SimulationService {

 … [rcp definitions]

}

[message definitions]

pag. 112

The following table shows a synoptics overview of the main rpc signatures and the

corresponding messages that have been defined, grouped according to the target object.

Group Procedure name Input messages Output message

Project

CreateProject CreateProjectRequest ProjectHandle

OpenProject OpenProjectRequest ProjectHandle

CloseProject ProjectHandle Result

DeleteProject ProjectHandle Result

Prototype

CreatePrototype CreatePrototypeRequest ResourceHandle

DeletePrototype ResourceHandle Result

GetPrototypes ProjectHandle ResourceList

Instance

CreateInstance ResourceHandle CreateResult

DeleteInstance ResourceHandle Result

GetInstances ProjectHandle InstanceList

SetInstanceProperty SetInstancePropertyRequest Result

SetSignalInstance SetSignalInstanceRequest Result

Deploy and

run

CompileProject ProjectHandle Result

RunProject RunProjectRequest Result

StopProject ProjectHandle Result

QueryProjectRunning ProjectHandle Result

pag. 113

Transaction

BeginTransaction ProjectHandle Result

CommitTransaction ProjectHandle Result

RollbackTransaction ProjectHandle Result

Figure 31 Synoptics view of the IDE Integration API

The full IDL in proto3 language syntax is reported in Appendix A, where each procedure has the

corresponding embedded documentation and the input/output message structures are visible.

The documentation of the API is available also in auto-generated HTML format as shown in the

following picture:

Figure 32 Portion of HTML auto-generated documentation of the SimulationService.proto

pag. 114

6.4.2 User workflows

The API is meant to allow the integration of the automation IDE and the simulation IDE during

the engineering phase. It is possible to formalize a set of relevant sequences of operations that

are performed by the two application, highlighting the role of each environment in the

interaction. In this section is described a complete Workflow for an End-User (Engineer) divided

in three phases: start up and creation, stop and close and destroy. The use cases and

corresponding sequence diagrams are presented from the Automation Engineer perspective

using a generic IEC 61499 IDE, to describe which is the envisioned user experience and how it

reflects on the data exchange between environments. This workflows are the same that have

been implemented on nxtStudio and DDD Model Editor platforms during the development of

the proof of concepts and that have been applied during the test and validation phase.

The interactions are described using UML sequence diagrams, where the messages flowing

between lifelines, denoted with << … >> notation correspond to gRPC calls.

6.4.2.1 Start up and creation

In this workflow the user starts the IDE applications and then, following the natural engineering

process, creates a new project, adding as many CPS instances as needed and setting their

parameters, and finally compiles, deploys, and runs the project. What is enhanced is the fact

that during the compiling and run, the corresponding simulation model is transparently built,

deployed, run, and connected to the control application giving the end user the possibility to

immediately execute virtual commissioning operations.

pag. 115

Figure 33 Startup and creation workflow with gRPC API

pag. 116

6.4.2.2 Stop and close

In this workflow the user stops a running project, closes it, and exits the application. This

workflow is very simple and it is meant only to highlight the fact that the interaction between

IDEs involves the management of cleanup operations to ensure the correct release of the system

resources.

Figure 34 Stop and close workflow

6.4.2.3 Destroy

In this workflow the end user deletes an instance and, if the originating prototype is not used

anymore, the automation IDE is in charge of removing the prototype from the simulation

project, to allow its garbage collection.

pag. 117

Figure 35 Destroy workflow

pag. 118

6.4.3 Implementation within target environments

The implementation of the Integration API has been carried out on the two target environments

provided by the partners of the EU research projects: nxtStudio and DDD Model Editor. Figure

36 shows the placement of the gRPC interface component within the internal architecture of

each platform. The following paragraphs describe the role of the depicted software modules of

the DDD Model Editor application.

The implementation on the automation side, in nxtStudio platform, has been completed by the

R&D department of NxtControl GmBH and its documentation is part of a complementary work

that will be published separately.

Figure 36 Component view of the implementation

6.4.3.1 GRPCInterface and Graphical User Interface

From the Integration API perspective, the DDD Model Editor application represents the serving

software, providing the functionalities to operate on the simulation project, its prototypes, and

its instances. The gRPC Server component is a Java package that has been generated using the

pag. 119

tools made available by the gRPC framework. The generated classes has been connected with

the internal project management API to control the CRUD operations of the simulation model,

of its instances and the execution of the virtual commissioning sessions, as required by the

Integration API specification. The gRPC server is part of the modular architecture of the DDD

Model Editor application, that allows the installation of external plugins interacting with the core

editing functionalities. Figure 37 highlights the internal organization of the plugin.

Figure 37 Internal structure of the GRPCInterface plugin

It is important noting that this component is mainly operating in the back end logics of the

application and its presence is almost transparent to the graphical user interface, expect for the

pag. 120

startup message that informs the user that the plugin gRPC interface is active, as shown in Figure

38.

Figure 38 Startup of the gRPC server module

6.4.3.2 Prototype libraries

The possibility to instantiate simulation entities inside the project 3D model, depends on the

availability of the prototypes representing the digital twins of the automation Function Blocks.

As documented in §3.4.4, the prototypes are grouped and installed into the editing environment

within libraries of components. Therefore for each CAT (Composite Automation Type) that

represents a physical element on the nxtStudio side, there exist a simulation prototype in the

corresponding library.

Figure 39 Library of simulation prototypes corresponding to IEC61499 device FBs

pag. 121

6.4.3.3 Simulation Model

It is the instance of simulation project organized as explained in §3.4.4 and target of the gRPC

integration API. As reported in the user workflows, all the times the user modifies a device

Function Block, the corresponding instance are created/deleted or parametrized in the

simulation model.

Figure 40 Simulation model composed of 2 instances of conveyor prototype

6.4.3.4 Workflow

The main workflow presented as a platform independent sequence diagram for the startup and

creation, the is instantiated with the target software application. Figure 41 shows the main order

of the actions triggered by the application engineer. In particular it is important highlighting that,

except for the point number 1 – Write Automation Code, that corresponds to his everyday work,

all the other steps happen automatically and are managed by the internal logics of the two

interacting platforms whenever the automation expert request to start a virtual commissioning

session. This is fundamental from the workload perspective because it shows how the

complexity of the whole system can be kept almost transparent to the final end user, without

pag. 122

creating additional burden but providing a high value added service for testing the control

application under development.

Figure 41 Instantiation of the workflow in the target applications

pag. 123

7 Global validation scenarios

The validation of the results achieved has been carried on within the contexts of the Daedalus

and 1-SWARM European research projects, and the availability of different industrial show cases

has provided an ideal set of high-value added real scenarios. The development of the runtime

connection and of the Integration API followed an iterative incremental path made of early

prototypes implementations, small focused tests and re-design of the solutions. Thus, the low

level functionalities of each components of the overall picture has been guided by the evaluation

results during the implementation, correcting pitfalls as they appeared. This approach allowed

the consortium of partners collaborating to the whole topic to progressively adjust the

objectives and the steps to achieve them. In this way the single components deployed in the

respective automation and simulation platforms, both for runtime and for design time, could

reach a good level of stability and it has been possible to start the demonstration phase

leveraging on a reliable architecture.

This chapter reports on the validation tests performed on two reference cases, each one

characterized by peculiarities that made them an optimal playground:

• A pilot plant scenario constituted by an automated de-palletization line

• A industrial scenario constituted by lines for food packaging

On both cases, the full set of libraries containing the simulation prototypes for the DDD platform

and the CAT models for the nxtStudio IEC 61499 environment has been developed from scratch

in compliance with the proposed specifications data models. The nxtStudio and DDD platforms,

equipped with the extension documented in this thesis have been deployed and extensively

applied to create the IEC 61499 control applications and their 3D simulation counterparts. In this

way, the global workflow presented in Chapter 6 has been applied step by step to confirm the

effectiveness of the framework and to reach an initial evaluation of the improvements that it

could bring to the virtual commissioning on IEC 61499 systems.

The evaluation procedures have been based on the comparison of the observed behaviors and

performances with the initial expectations formalized in the requirements lists produced for the

pag. 124

runtime engines and for the authoring environments. Therefore the final section of this chapter

contains a synoptic table with an assessment of the level of fulfillment of the acceptance criteria

for each original requirement. This report, beyond providing a global rating of the whole work,

constitutes the starting point for the future improvements.

7.1 Logistics

The logistic scenario refers to the De-Palletization plant present in Como Next, Lomazzo (IT). It

is a pilot plant, therefore not dedicated to real production, but mainly to showcase the benefits

of applying distributed IEC 61499 automation to control systems composed of heterogenous

devices supplied by different vendors. Figure 42 De-palletization pilot plant model, shows the

structure of the line.

Figure 42 De-palletization pilot plant model

The importance of this scenario is related to the following aspects:

pag. 125

1. The possibility to develop and test in a complex and complete playground without

impacting on the production of a real line; this made the logistic scenario ideal for the

initial validation, the most critical one from the point of view of the stability of the

applied solutions.

2. The richness of devices composing the line: the presence of conveyor lines, pneumatic

actuators like the pushers and the suction grippers, and complex kinematics structures

requiring motion control, like the cartesian robot, gave the possibility to develop a wide

set of prototypes, evaluating the behavior of the framework with different type and

frequencies of signals.

7.1.1 Prototypes

This section documents the device prototypes based on the Digital Avatar Data Model

developed to perform the virtual commissioning of the plant.

Figure 43 Library of prototypes developed for testing the logistics scenario

 Other modules have been defined to emulate the behavior of the loading and unloading of the

bays with pallets and boxes but they are not controlled by the automation.

pag. 126

Straight Conveyor

Prototype signals:
IN: velocityTarget
IN: motorDirection
OUT: velocityActual
OUT: driveEnabled
OUT: driveRunning
OUT: directionalActual
OUT: lightBarrierA
OUT: lightBarrierB

Pusher

Prototype signals:
IN: command
OUT: limitExtended
OUT: limitRetracted
OUT: isRunning
OUT: lightbarrierA
OUT: lightbarrierB

ConveyorCurve

Prototype signals:
IN: velocityTarget
IN: motorDirection
OUT: velocityActual
OUT: driveEnabled
OUT: driveRunning
OUT: directionalActual
OUT: lightBarrierA
OUT: lightBarrierB

pag. 127

CartesianRobot

Prototype signals:
IN: XTarget
IN: YTarget
IN: ZTarget
IN: RTarget
IN: grip
OUT: cartesianArrived
OUT: actualPosX
OUT: actualPosY
OUT: actualPosZ
OUT: actualPosR

SuctionCapGripper

Prototype signals:
IN: suctionOn
IN: blowOn
OUT: vacuumOn

7.1.2 Model Statistics

Number of prototypes 7

Number of instances 38

Number of signals 130

Runtime max update frequency 50 Hz (20 ms interval)

Simulation model complexity about 250K polygons

pag. 128

7.2 Packaging

The packaging scenario refers to the production of lines for food packaging of Reepack Srl (IT)

[25]. This type of lines is characterized to be quite short with few but complex modules

homogeneous because all produced by the same company.

Figure 44 Reepack food packaging line

Nevertheless the importance of this test case refers to:

1. The soundness of the test: Reepack lines are industrial products working in real

environments and with really demanding requirement in terms of performances and

machines customizations

2. The machines perform fast operations, requiring event management on simulation side

which is not larger than 10 ms to allow automation to control the main inverter motor

governing the motion actuators of the line.

In this scenario preliminary tests have been executed to asses the capability of the MQTT

runtime communication channel to stand the required update frequency needed to control the

inverter motor with a speed profile. The result of the test has been positive, the updating of

pag. 129

speed input values and the feedback emulating the encoder succeeded in ensuring an update

frequency of about 100 Hz.

7.2.1 Prototypes

The main device prototypes developed for this test case are listed in the following tables.

Figure 45 Library of prototypes developed for testing the packaging scenario

All the prototypes have been modelled and endowed of the corresponding signals. The following

table report the visual appearance but, for data protection reason, the names of the signals and

their meaning is not reported in the document.

Denester module

Conveyor module

pag. 130

Exit module

Collaborative robot module

7.2.2 Model Statistics

Number of prototypes 5

Number of instances 5

Number of signals 80

Runtime max update frequency 100 Hz (10 ms interval)

Simulation model complexity about 200K polygons

pag. 131

7.3 Requirements fulfillment assessment

The following table reports the numbered requirements and the fulfillment level as a number

between 0 (not achieved) and 10 (completely achieved). For the sake of summary, for the

documentation about each requirement and its acceptance criteria, refer to the respective

definition Chapters 5 and 6.

7.3.1 Runtime requirements

Name Description Priority LoF

R001 The communication channel must ensure a large bandwidth

to handle high sampling frequencies of a large set of I/O

signals.

SHALL 10

R002 The communication channel, once activated on the deployed

system, must have a minimal footprint on the infrastructure.

SHOULD 8

R003 The information (signal values) must be delivered in both

directions (from automation to simulation and vice-versa)

assuring the packet ordering

SHALL 10

R004 The information ordering must be ensured without any loss

of packet data in both directions.

SHALL 10

R005 The communication channel must accept, at automation

level, multiple incoming connection from several simulation

clients, thus supporting the unidirectional multicasting of

packets generated by the automation runtime towards

several simulation clients, even when deployed on a

distributed environment

SHALL 10

R006 The number of sockets opened by each connected client

simulation model must be minimized.

SHOULD 5

pag. 132

R007 The communication channel allows an initial synchronous

(request-response) setup phase to select the signals of

interest that should be transferred during the virtual

commissioning session and the corresponding maximum

update frequencies.

SHOULD 0 in MQTT

8 in WS

R008 The same communication channel (physical socket) must

support the multiple flow of asynchronous signal messages,

corresponding to the events governing the IEC 61499 FBs.

SHALL 10

R009 The communication channel must be based on widely

accepted open standards both at transport layer and at

payload level.

SHALL 10

R010 The communication channel must be natively cross-platform

in order to easily deployed on multiple different hardware

and operating system platforms

SHALL 10

R011 The chosen transport layer must be compliant with industrial

and shopfloor network setups.

SHALL 10

R012 The communication channel can be secured, preventing

possible exploitations for cyber-attacks to the control

hardware.

MAY 8

pag. 133

7.3.2 IDE Integration requirements

ID Description Priority

D001 The integration layer must allow the user to automatically

create digital counterparts of the automation code written in

IEC 61499.

SHALL 10

D002 The integration layer must define automatically the signal

mapping between function blocks and simulation entities.

SHALL 10

D003 The simulation model must be a synchronized representation

of the automation function blocks.

SHALL 10

D004 The integration layer must support a modular object oriented

approach.

SHOULD 8

D005 The integration layer must be based on an open Digital Avatar

Data model compatible with the runtime IO Data Model and

it implementations.

SHALL 10

D006 The integration architecture must be platform independent, it

must be possible to apply the same approach to automation

and simulation platforms different from the ones used during

the validation.

SHOULD 9

D007 The integration must be based on a cross platform technology.

The IDE applications are typically developed on different

software platforms (Java, C++, C#, etc.), the chosen

technology must ease the implementation of the

communication stubs.

SHOULD 10

D008 The integration layer must support the compilation and

deployment phase of the artifacts at simulation phase.

SHALL 10

pag. 134

D009 The integration layer must support the control (start/stop) of

the execution of the virtual commissioning sessions, running

the automation and simulation engine and connecting them

without the need for the automation developer to interacts

with the simulation IDE.

SHOULD 10

D010 The integration layer must be bidirectional, supporting not

only the control flow from automation to simulation IDE but

also the notifications in the opposite direction.

SHOULD 8

D011 The integration layer must be resilient to modifications of the

simulation model that affect the positioning and

parametrization of the digital twins of the Function Blocks.

SHALL 8

D012 The integration layer should have a small footprint. The

concurrent execution of two complex IDEs like the automation

and simulation can require a significant amount of system

resources, therefore it is important to avoid that a further

increase of this consumption due to the communication

between the applications causes instabilities or even system

crashes.

MAY 6

pag. 135

8 Conclusions and future developments

This PhD document presented a new approach to improve the process of implementing digital

twins for complex automated discrete manufacturing systems, basing on an advancement of the

IEC 61499 virtual commissioning framework. The design and development of the integration

layers of runtimes and engineering platforms for automation and simulation have been

documented, motivating the proposed solutions with a detailed analysis of the system

requirements, and demonstrating their potentialities with industry derived validation scenarios.

The obtained results are encouraging and the possibility to further extend them is already reality

at the time of this report. In fact, the European Research initiative Horizon 2020 – 1-SWARM is

currently entering its third year of activity and the consortium is preparing advanced industrial

test cases where the framework will be tested and improved. The envisioned developments go

in the direction of enhancing the capability of the integrated platform, to manage Cyber Physical

Systems of Systems, increasing the reliability and usability of the reference implementations

presented in this work. This represents an enormous opportunity of promoting the adoption of

the proposed solutions as de facto standards for the validation of IEC 61499 control applications,

paving the way for the commercial exploitation of the results.

pag. 136

9 Bibliography

[1] M. Mazzolini, "ENGINEERING SUPPORT SYSTEM FOR SUSTAINABLE OPTIMIZATION OF

AUTOMATION TASKS SUPERVISION," 2018.

[2] S.-F. Q. a. K. Cheng, "Future Digital Design and Manufacturing: Embracing Industry 4.0 and

Beyond," Chinese J. Mech. Eng., vol. 30, no. 5, p. 1047–1049, 2017.

[3] L. B. a. T. F. P. Osterrieder, "The smart factory as a key construct of industry 4.0: A

systematic literature review," International Journal of Production Economics, vol. 221,

2020.

[4] H2020 1-SWARM European Research Project, 2020.

[5] A. U. a. E. Cevikcan, "Industry 4.0: Managing The Digital," Cham: Springer International

Publishing, 2018.

[6] S. B. a. R. Rosen, "Digital Twin—The Simulation Aspect," Mechatronic Futures, Cham:

Springer International Publishing, p. 59–74, 2016.

[7] S. W. a. F. Q. J. Um, "Plug-and-Simulate within Modular Assembly Line enabled by Digital

Twins and the use of AutomationML," FAC-PapersOnLine, vol. 50, no. 1, p. 15904–15909,

2017.

[8] F. A. G. M. A. F. Mauro Mazzolini, "Structured Approach to the Design of Automation

Systems through IEC 61499 Standard," Procedia Manufacturing, vol. 11, pp. 905-913, 2017.

[9] SIMIO, "SIMIO SIMULATION SOFTWARE," [Online]. Available: https://www.simio.com/.

pag. 137

[10] M. W. A. Z. J Cabral, "Enable co-simulation for industrial automation by an FMU exporter

for IEC 61499 models," 2018 IEEE 23rd International Conference on Emerging Technologies

and Factory Automation (ETFA), 2018.

[11] Modelica Association c/o PELAB, IDA, "Functional Mockup Interface," [Online]. Available:

https://fmi-standard.org/.

[12] S. P. V. V. Midhun Xavier, "Cyber-physical automation systems modelling with IEC 61499

for their formal verification," 2021 IEEE 19th International Conference on Industrial

Informatics (INDIN), 2021.

[13] U. D. A. V. V. Tuojian Lyu, "Towards cloud-based virtual commissioning of distributed

automation applications with IEC 61499 and containerization technology," IECON 2021 –

47th Annual Conference of the IEEE Industrial Electronics Society, 2021.

[14] A. S. Adriano A.Santos, "Simulation and Control of a Cyber-Physical System under IEC

61499 Standard," Procedia Manufacturing, vol. 55, pp. 72-79, 2021.

[15] C. G. L. a. S. C. Park, "Survey on the virtual commissioning of manufacturing systems,"

Journal of Computational Design and Engineering, vol. 1, no. 3, pp. 213-222, 2014.

[16] Siemens, "Virtual Commissioning," Siemens, [Online]. Available:

https://www.plm.automation.siemens.com/global/it/products/tecnomatix/virtual-

commissioning.html. [Accessed 2021].

[17] Fanuc, "Fanuc Robot Guide," [Online]. Available:

https://www.fanuc.eu/it/it/robot/accessori/simulation-software-roboguide. [Accessed

2021].

pag. 138

[18] V. Vyatkin, "The IEC 61499 standard and its semantics," IEEE Industrial Electronics

Magazine, vol. 3, no. 4, pp. 40-48, 2009.

[19] NXT, "nxtStudio," [Online]. Available: https://www.nxtcontrol.com/en/engineering/.

[Accessed 2021].

[20] International Organization for Standardization, ISO/IEC 20922:2016 Information

technology -- Message Queuing Telemetry Transport (MQTT) v3.1.1, 2016.

[21] Eclipse Foundation, "Eclipse Mosquitto," Eclipse Foundation, [Online]. Available:

https://mosquitto.org/.

[22] Eclipse Foundation, "Eclipse Paho," Eclipse Foundation, [Online]. Available:

https://www.eclipse.org/paho/.

[23] g. Authors, "gRPC," [Online]. Available: https://grpc.io/. [Accessed 2021].

[24] Google, "Language Guide (proto3)," [Online]. Available:

https://developers.google.com/protocol-buffers/docs/proto3. [Accessed 2021].

[25] Reepack, "Reepack home page," [Online]. Available: https://www.reepack.com/.

[26] V. D. a. K. V. J. Müller, "Industry 4.0 and its Impact on eshoring Decisions of German

Manufacturing Enterprises," Supply Management Research, Wiesbaden: Springer

Fachmedien Wiesbaden, p. 165–179, 2017.

[27] V. Vyatkin, "IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-

Art Review," IEEE Trans. Ind. Informatics, vol. 7, no. 4, p. 768–781, 2011.

[28] O. M. Group, "Model Driven Architecture," [Online]. Available:

http://www.omg.org/mda/faq_mda.htm.

pag. 139

[29] J. Y. a. V. V. Vyatkin, "Distributed execution and cyber-physical design of Baggage Handling

automation with IEC 61499," 2011 9th IEEE International Conference on Industrial

Informatics, p. 573–578, 2011.

[30] M. Grieves, "Digital Twin: manufacturing excellence through virtual factory replication,"

2015.

[31] T. M. M. O. D. G. a. D. Z. S. Weyer, "Future Modeling and Simulation of CPS-based Factories:

an Example from the Automotive Industry," IFAC-PapersOnLine, vol. 49, no. 31, pp. 97-

102, 2016.

[32] M. Grieves and J. Vickers, "Digital Twin: Mitigating Unpredictable, Undesirable Emergent

Behavior in Complex Systems," Transdisciplinary Perspectives on Complex Systems, Cham:

Springer International Publishing, pp. 85-113, 2017.

[33] L. B. O. R. D. S. M. M. a. M. L. J. Vachalek, "The Digital Twin of an industrial production line

within the industry 4.0 concept," 2017 21st International Conference on Process Control

(PC), p. 258–262, 2017.

[34] M. A. S. M. D. R. a. P. P. M. Ciavotta, "A Microservice-based Middleware for the Digital

Factory," Procedia Manuf., vol. 11, p. 931–938, 2017.

[35] M. R. M. T. a. C. D. T. Bangemann, "Integration of Classical Components Into Industrial

Cyber–Physical Systems," IEEE Proceedings, vol. 104, no. 5, p. 947–959, 2016.

[36] D. R. G. D. M. S. M. R. T. Michele Ciavotta, "Towards the Digital Factory: A Microservices-

Based Middleware for Real-to-Digital Synchronization," in Microservices, Science and

Engineering, 2019.

pag. 140

[37] A. B. S. M. F. C. D. R. G. D. M. G Landolfi, "Design of a multi-sided platform supporting CPS

deployment in the automation market," IEEE Industrial Cyber-Physical Systems (ICPS), pp.

684-689, 2018.

[38] D. R. P. P. M. C. Giovanni Dal Maso, "A Centralized Support Infrastructure (CSI) to Manage

CPS Digital Twin, towards the Synchronization between CPSs Deployed on the Shopfloor

and Their Digital Representation," in The Digital Shopfloor: Industrial Automation in the

Industry 4.0 Era Performance Analysis and Applications, River Publishers, 2019, pp. 317-

335.

pag. 141

Appendix A – Simulation Server Protocol Buffer IDL

The section reports the full definition of the interface that could be used for IDE integration.

syntax = "proto3";

option java_package = "simulation.server";

option java_multiple_files = true;

package simulation.server;

enum StatusCode {

 ERROR = 0;

 CREATED = 1;

 EXISTING = 2;

}

/**

 * Simulation service.

 */

service SimulationService {

 /**

 * Creates and opens a Virtual commisioning project

 */

 rpc CreateProject(CreateProjectRequest) returns (ProjectHandle);

 /**

 * Opens a Virtual commisioning project

 */

 rpc OpenProject(OpenProjectRequest) returns (ProjectHandle);

 /**

 * Closes the project.

 */

 rpc CloseProject(ProjectHandle) returns (Result);

 /**

 * Deletes the project

pag. 142

 */

 rpc DeleteProject(ProjectHandle) returns (Result);

 /**

 * Creates a new prototype in the project importing a prototype

definition from the specified directory.

 */

 rpc CreatePrototype(CreatePrototypeRequest) returns (ResourceHandle);

 /**

 * Deletes a prototype (it should not be used, i.e. no instances of the

prototype).

 */

 rpc DeletePrototype(ResourceHandle) returns (Result);

 /**

 * Gets a list of prototypes.

 */

 rpc GetPrototypes(ProjectHandle) returns (ResourceList);

 /**

 * Creates a new instance of a prototype.

 */

 rpc CreateInstance(ResourceHandle) returns (CreateResult);

 /**

 * Deletes an instance.

 */

 rpc DeleteInstance(ResourceHandle) returns (Result);

 /**

 * * Gets a list of instances.

 */

 rpc GetInstances(ProjectHandle) returns (InstanceList);

 /**

 * Sets the value of a property.

 */

 rpc SetInstanceProperty(SetInstancePropertyRequest) returns (Result);

 /**

 * Sets the source of a signal for an instance.

 */

pag. 143

 rpc SetSignalInstance(SetSignalInstanceRequest) returns (Result);

 /**

 * Compiles the project and creates the distributable runtime.

 */

 rpc CompileProject(ProjectHandle) returns (Result);

 /**

 * Runs the project, launching the runtime application.

 * Note: the project must be already compiled.

 */

 rpc RunProject(RunProjectRequest) returns (Result);

 /**

 * Stop the project: disconnect and exit runtime.

 */

 rpc StopProject(ProjectHandle) returns (Result);

 /**

 * Returns true if the runtime process is running, false otherwise.

 */

 rpc QueryProjectRunning(ProjectHandle) returns (Result);

 rpc BeginTransaction(ProjectHandle) returns (Result);

 rpc CommitTransaction(ProjectHandle) returns (Result);

 rpc RollbackTransaction(ProjectHandle) returns (Result);

}

/**

 * Request to create a new project.

 */

message CreateProjectRequest {

 // project display name

 string name = 1;

 // full path of the new project (the directory should not exist)

 string path = 2;

}

/**

 * Generic result message of success.

 */

pag. 144

message Result {

 bool success = 1;

}

/**

 * Create message status.

 */

message CreateResult {

 StatusCode = 1;

}

/**

 * Message that holds a project handle.

 * It is used both as a result for CreateProject and OpenProject, and as a

parameter for methods that requires a valid opened project (i.e.

CompileProject).

 */

message ProjectHandle {

 // project handle

 uint32 handle = 1;

}

/**

 * Request message to open a project from a directory.

 */

message OpenProjectRequest {

 // full path of the project

 string path = 1;

}

/**

 * Request message to create a new prototype in a project from a prototype

definition in the specified directory.

 */

message CreatePrototypeRequest {

 // project handle

 uint32 handle = 1;

 // prototype resources path

 string path = 2;

}

/**

pag. 145

 * Generic message that holds information about a resource (prototype or

instance).

 * It is used both as a request and a response.

 */

message ResourceHandle {

 // project handle

 uint32 project_handle = 1;

 // name of the resource (name of a prototype or name of an instance)

 string name = 2;

 // resource type (uuid of a prototype or prototype of an instance)

 string type = 3;

}

/**

 * Message that holds a list of resources.

 */

message ResourceList {

 repeated ResourceHandle resources = 1;

}

/**

 * Sets the value of a property.

 */

message SetInstancePropertyRequest {

 // project handle

 uint32 handle = 1;

 // instance name

 string instance = 2;

 // task name

 string task = 3;

 // property name

 string name = 4;

 // property value

 string value = 5;

}

/**

pag. 146

 * Sets the source of a signal for an instance.

 */

message SetSignalInstanceRequest {

 // project handle

 uint32 handle = 1;

 // instance name

 string instance = 2;

 //signal name

 string signal = 3;

 // source name

 string source = 4;

}

/**

 * A run argument is a pair of name and value.

 */

message RunArgument {

 // argument name

 string name = 1;

 // argument value

 string value = 2;

}

/**

 * Run project message request holds the handle of the project and a list of

run arguments.

 */

message RunProjectRequest {

 // project handle

 uint32 handle = 1;

 // optional run arguments

 repeated RunArgument run_arguments = 2;

}

/**

 *

 */

message SignalDescription {

pag. 147

 string name = 1;

 string type = 2;

 // can be unset (but in proto3 cannot be null)

 string source = 3;

}

message PropertyDescription {

 string name = 1;

 string type = 2;

 string defaultValue = 3;

 // can be unset (but in proto3 cannot be null)

 string value = 4;

}

message TaskDescription {

 string name = 1;

 string type = 2;

 repeated PropertyDescription property = 3;

}

message InstanceDescription {

 string name = 1;

 string type = 2;

 repeated SignalDescription input = 3;

 repeated SignalDescription output = 4;

 repeated TaskDescription task = 5;

}

message InstanceList {

 repeated InstanceDescription instance = 1;

}

