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Abstract

In meshless numerical methods such as Smoothed Particle Hydrodynamics (SPH), the

lack of uniformity in particle distribution, which is manifested as the presence of voids

or clusters, negatively affects the accuracy. In these models, the particles follow the

Lagrangian trajectories, and for highly distorted flows, their distribution is severely per-

turbed, generating numerical issues and compromising the quality of the simulations.

For this reason, methodologies, called Particle Shifting Technique (PST), have been

introduced to reduce these phenomena. The PSTs presented in the literature have an

explicit approach meaning that it is not possible to impose a maximum predefined level

of perturbation in the particle distribution.

In the present thesis, an explicit shifting technique has been extended and opti-

mized in the framework of Arbitrarily Lagrangian-Eulerian SPH (ALE-SPH) schemes,

increasing the accuracy without extra computational overheads. Then, a novel approach

for particle shifting, which can be adopted in meshless numerical methods, has been

developed and analyzed. The proposed methodology, called Implicit Iterative Parti-

cle Shifting (IIPS), uses an iterative procedure to reduce the spatial particle anisotropy,

which is associated with the discretisation error. Through the implicit iterative mini-

mization problem, which is based on the particle concentration gradient, the algorithm

is able to control the particle spatial distribution and therefore, the anisotropy of the

particles. The implicit method has been implemented in the software ASPHODEL of

the ANDRITZ group, which adopts an SPH-ALE solver. In order to demonstrate its

effectiveness, the IIPS performances have been compared to the explicit shifting tech-

nique. Due to the characteristics of ALE-SPH models, in order to keep the scheme

consistency, two different methodologies to update the physical quantities, named ”Im-

plicit iterative particle shifting with fictitious time step” and ”Implicit iterative particle

shifting with MLS reconstruction”, have been proposed and tested in two-dimensional

test cases: the Taylor-Green vortex, the moving box inside a rectangular box and the

jet impacting a flat surface. With these applications, it has been shown that for afford-

able computational overheads, the IIPS maintains isotropic particle distribution, sig-

nificantly increasing the accuracy, confirming its superiority in comparison to existing

explicit shifting approaches.
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Chapter 1

Introduction

1.1 SPH Grand Challenges

The Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless numerical
scheme introduced in the late years of 70s by Gingold and Monaghan (1977) and by
Lucy (1977). Nowadays, it is increasingly receiving attention from the scientific com-
munity as a promising methodology, it is undisputed that it has already made huge signs
of progress from its early stages, but its potential is still not fully expressed. Indeed,
the SPHERIC (SPH Research and Engineering International Community) scientific or-
ganization, whose members are researchers and industrial users, aiming to extend the
knowledge on the method, has grouped the areas of research into five categories, named
Grand Challenges (GC):

• GC#1 convergence, consistency and stability,

• GC#2 boundary conditions,

• GC#3 adaptivity,

• GC#4 coupling to other models,

• GC#5 applicability to industry.

A review of these challenges has been recently published in Vacondio et al. (2020),
in which the progress that have been achieved are presented and the investigations that
still require further investigations are disclosed.

The main objective for the first GC is the theoretical formalization of the SPH nu-
merical properties to increase the reliability of the method. The three properties, consis-
tency, stability and convergence, are deeply connected, although, underneath the SPH
methods, there is not a specific and equivalent theory, like the Lax Equivalence theorem
which is strictly valid for Finite Difference Method (FDM). For this reason, significant
mathematical developments are still missing in the literature. On the other hand, the
sources of instability that negatively affect the convergence of the method have been
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already pointed out, as tensile instability, (Swegle et al. 1995; Monaghan 2000; Morris
et al. 1997; Sun et al. 2019) and pairing instability, (Price 2012; Dehnen and Aly 2012).

The particle distribution has a major impact on convergence, which has, conse-
quently, an influence on the accuracy of the SPH interpolation, (Quinlan et al. 2006;
Amicarelli et al. 2011). In order to improve the particle distribution, different numeri-
cal treatments have been introduced, (Xu et al. 2009; Lind et al. 2012; Vacondio et al.
2013; Oger et al. 2016).

The GC#2 is dedicated to the boundary conditions, which have a key role, especially
in simulation with complex geometries. Among the different numerical methodologies
that have been proposed throughout the years to treat boundaries, which can be found
in different publications, (Monaghan 2005; Gomez-Gesteira et al. 2010; Monaghan
2012; Gotoh and Khayyer 2016; Violeau and Rogers 2016), none of them has gained
the supremacy to be broadly valid and effective in every application. In order to ful-
fill mathematical issues, strictly related even with CG#1, e.g. conservation properties,
convergence and consistency, efforts are still required.

The GC#3 takes in consideration algorithms used to discretize the domain with
different resolutions, meaning particles with different sizes. The adaptivity is a rele-
vant research field because adopting a uniform resolution in the whole domain can be
computationally expensive even with the recently available hardware, whereas a higher
level of refinement located exclusively in zones where the flow requires a larger num-
ber of interpolation points can potentially drastically reduce the computational costs.
Numerical techniques associated with GC#3 have been first seen as remeshing meth-
ods, (Koumoutsakos 2005; Børve et al. 2005) and later as non-uniform initial domain
discretization (Oger et al. 2006). Nowadays the dynamic refinement methods, (Lasti-
wka et al. 2005; Feldman and Bonet 2007; Vacondio et al. 2013; Barcarolo et al. 2014;
Chiron et al. 2018), are able to dynamically modify the particle size during the sim-
ulation, indeed they are applied to a wide range of problems. Nevertheless, parallel
implementations and robust theories on adaptivity for multi-phase flows are an open
discussion.

Compared to mesh-based methods, SPH has convenient points of strength in simu-
lations with moving objects and complex interfaces, because, in these applications, the
mesh generation process is complicated and computationally expensive. In addition,
in fields where Finite Volume Method (FVM) or Finite Element Method (FEM) are
highly effective, SPH can be coupled with these schemes to simulate specific parts of
the problem, aggregating the benefits from the different solvers involved. This foremost
topic is explored in CG#4, aiming to smooth the paths toward accurate and fast Fluid-
Structure Interaction (FSI) simulations, e.g. FSI with rigid objects, elastic structure,
extreme loadings, in which solid components are usually solved with FEM, (Li et al.
2015; Yang et al. 2016; Long et al. 2016; Fourey et al. 2017).

2



The SPH method is increasingly attracting partners from the industrial world be-
cause of its capability to simulate violent flows with fragmented interfaces and/or com-
plex multi-physics problems. Lastly, in this contest, the CG#5 encourages the devel-
opments of components required among industries and professionals to extensively use
the SPH techniques, (Shadloo et al. 2016). To be competitive, SPH needs rigorous
and stable solvers as well as user-friendliness in pre-processing, easy integration with
Computer-aided Design (CAD) tools, and post-processing, lightweight software capa-
ble to handle the visualization of millions of particles simultaneously. For example, to
encourage new users, a novel Graphic User Interface (GUI) was introduced in the SPH-
based open source code DualSPHysics, (Vieira et al. 2017). In GC#5, the other major
task is the mandatory reduction of computational time, throughout High Performance
Computing (HPC) and parallelism techniques.

To summarizing, the Grand Challenges identified by SPHERIC have to be seen as
a motivation for researchers to try to solve some relevant issues of the SPH models and
to share knowledge.

1.2 Objective of the project

A brief presentation of the SPHERIC Grand Challenges has been included to better un-
derstand the objectives underneath this research, in fact, as previously reported among
the studies related to GC#1, the lack of uniformity in particle distribution affects nega-
tively the accuracy of SPH schemes. This phenomenon commonly occurs in Lagrangian
models, especially in simulations of violent flows that drastically perturb the particle
distribution. As practical examples in engineering, water jets in Pelton turbines produce
highly distorted and complex flows while impacting the buckets, (Marongiu et al. 2010).
With these motivations, the present thesis aims to investigate solutions to increase the
accuracy of SPH schemes improving the particle distribution. This would allow higher
quality in modelling the fluid behaviours in the above-mentioned problems.

1.3 Outline of the thesis

In this section is presented the structure of this thesis.

Chapter 2 includes an introduction to the different approaches used in numerical
modelling and the description of grid-based and mesh-less models used in fluid dynam-
ics simulations. The review of these schemes is enlightened, among them, the SPH
models have a wide applications which are briefly reported.

Chapter 3 introduces the numerical cases used for validation in this thesis, the
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Taylor-Green vortex, the moving square inside a rectangular domain and the jet im-
pacting a flat surface for whose analytical or reference solutions are available.

Chapter 4 deals with the theoretical fundamentals of the SPH models, from the con-
tinuous to the discrete level. The kernel properties are illustrated with an analysis of the
accuracy of the models, referring that to the GC#1.

Chapter 5 reports the SPH formulations for weakly compressible fluids and the steps
needed to introduce the Arbitrarily Lagrangian-Eulerian (ALE) SPH models, focusing
on the different advantages and drawbacks of these methods. An SPH-ALE solver has
been implemented in the software called ASPHODEL, developed in the PhD work of
Marongiu (2007) and Leduc (2010), which is briefly presented.

Chapter 6 is dedicated to the literature review of the Particle Shifting Technique
(PST), since the original applications to the most recent formulations discussing the
main characteristics of these algorithms.

Chapter 7 presents an optimization for the explicit particle shifting technique fitted
in ASPHODEL by Neuhauser (2014). Numerical analysis regarding particle distribu-
tion quality and computational time has been conducted to assess the behaviour of the
original algorithm, then it has been proposed two different upgrades which have been
studied and evaluated through the Taylor-Green Vortex (TGV) test case.

Chapter 8 introduces the novel Implicit Iterative Particle Shifting (IIPS) technique,
the main relevant objective of this project. Thus, to fully clarify the theoretical aspects,
the 1D and 2D formulations are derived, then the method properties are investigates
using two purely analytical test cases.

Chapter 9 is used to show the applicability of the new IIPS into the SPH-ALE model,
discussing the advantages and the drawbacks in the different strategies available.

The Chapter 10 is reserved to shows the new proposed particle shifting methodolo-
gies applied to the moving square inside a rectangular box, which is used as a bench-
mark test case among the SPH international community, and the impinging jet on a flat
surface, that can be seen as a close simplified example of a Pelton turbine.

Chapter 11 is left for the conclusions and the general perspectives that this work
generates.
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Chapter 2

Meshless numerical methods

In this chapter the mesh-based and the mesh-less approaches for numerical modelling
are initially introduced, generally, in these techniques, computational nodes are inter-
connected or disconnected from each other. Then, the main focus is posed on the latter
ones, it is preliminary to illustrate the SPH main characteristics, which are later ad-
dressed to present the objective of this project.

2.1 Introduction

Numerical simulations are important tools used to analyse complex phenomena. Their
versatility has been remarkably incremented due to the increasing computer capabili-
ties. This has allowed obtaining numerical solutions even for extremely complicated
engineering applications and natural phenomena. For these reasons numerical mod-
elling drastically changed the way physical problems can be studied and described.
Physical and theoretical models have some intrinsic lacks, respectively the needs of
calibration through experimental data and the validity for exact solutions only, which
limit their reliability as standalone investigation instruments. This has led to a strong
interconnection, like comparison and validations, with numerical simulations which are
able to translate important aspects of the problem into a discrete form of mathematical
laws, using theoretical assumptions and physical principles. The numerical techniques
for solving numerical models can be different but all of them have common steps in the
solution strategy.

Initially, it is crucial to identify the most relevant aspects of physical phenomena
under investigation, for which a simplified mathematical model needs to be derived.
The phenomena behaviour is described with the governing equations, together with the
initial state conditions and with the boundaries limitations.

Successively, the domain discretization is the first step to numerically solve the
above-mentioned set of equations, the process consists of the representation of the con-
tinuum by distinct components or by connected elements that are used as computational
nodes. The approach utilized in the discretization stage is decisive to define the numeri-
cal inherent characteristics of the methodology. As stated in the preamble, there are two
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(a) Eulerian description (b) Lagrangian description

Figure 2.1 Fluid flow description of motion in a Cartesian frame of reference, (a) Eu-
lerian: particles pass through the control volume and (b) Lagrangian: particles are fol-
lowed using a position vector.

main different domain discretization strategies, mesh-based or mesh-free techniques,
both have advantages and disadvantages and it has to be chosen the one better suited to
describe the nature of the problem and to achieve accurate numerical solutions, more
details later in the chapter.

Following, the mathematical laws that govern the physical problem are derived co-
herently with the discretization methodology, in the case of transient problems numeri-
cal algorithms for time integration has to be introduced. As a final step, these numerical
expressions need to be translated in computational codes that can be run in proper in-
frastructures, the range of options of programming languages and hardware is wide and
it constantly increases.

2.2 Mesh-based and mesh-less approaches

Among numerical models, the Computational Fluid Dynamic (CFD) is a branch broadly
used to simulate different applications that involve the flows of fluids, characterized by
a variety of time and length scales. As previously mentioned, even in fluid dynamics
modelling there are approaches better suited to the simulation of specific types of flows.

Mesh-based methods adopt a computational frame that is made up of nodes topo-
logically connected, where the fluid variables are evaluated. Grid-based methods, like
finite-difference, or finite-volume are the most widespread schemes, adopted especially
in commercial software, utilized by industry, due to their robust theoretical fundamen-
tals and mature computational algorithms.

The accuracy of the numerical approximation is related to the mesh topography, as
the size and the shape of the mesh, and to obtain valuable results, the grid preparation
and generation need high expertise and it can be very time-demanding. There are dif-
ferent types of mesh with structured or unstructured geometry, (Figure 2.3), in these
schemes, mass fluxes between adjacent cells have to be taken into account. These dis-
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(a) (b)

Figure 2.2 Mesh-less discretization, (a) overview and (b) details of the computational
domain discretized by particles for a turbine. (Neuhauser 2014)

cretization techniques usually describe the spatial domain with an Eulerian approach in
which the computational grid is assumed to be fixed in the space without deformations
while the continuum evolves, (Figure 2.1 (a)). As a relevant drawback, the computa-
tional grid needs to be large enough to cover even portion of space in which the fluid can
move to. These methods provide information on the field quantities globally whereas
specific fluid trajectories, streamlines, are difficult to track and follow. In many applica-
tions with confined domains or internal stiff boundaries, where no adaptive behaviour
is needed, they can produce really accurate simulations, on the contrary, a cumbersome
numerical mapping is required to handle complex and deformable geometry. Moreover,
these methods can be expensive and slow, especially in presence of moving compo-
nents, free surfaces and material interfaces in the computational domain.

The need of reliability and efficacy in these latest types of problems led to the intro-
duction and to the development of numerical meshless methods. The basic idea of these
approaches is to discretize the continuum through a set of nodes without any topological
connections (Figure 2.2), in order to directly follow the deformations experienced by
the fluid, avoiding the degradation of the numerical results and maintaining a suitable
computational effort. Computational nodes represent fluid material particles carrying
physical quantities, moving in space along trajectories accordingly to the dynamics that
govern the problem, following their velocities and accelerations. These methods are
based, in general, on the Lagrangian approach, (Figure 2.1 (b)), avoiding the computa-
tion of convective terms in the governing equations, simplifying the numerical handling.
Only the fluid medium is discretized and it is free to move in the whole domain, this
allows easily managing of simulations with large deformations.
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(a) (b)

Figure 2.3 Mesh-based discretization, (a) overview and (b) details of the computational
domain discretized by grid for a turbine. (Hirsch 2007)

It is worthwhile to introduce, in the context of this thesis, the link between the
Lagrangian and the Eulerian description, here valid for fluid dynamics, for a generic
fluid property φ,

dφ

dt
=
∂φ

∂t
+ v · ∇φ (2.1)

dφ
dt

(or an equivalent notation Dφ
Dt

) is the global derivative that represents the total rate of
change of φ along the fluid trajectory whereas ∂

∂t
is the local derivative that describes

the rate of change of φ in a fixed position in space. v · ∇φ expresses the convective
derivative.

2.3 Meshless numerical methods literature review

In this section, a review of the main developments and achievements in numerical mod-
elling using meshless methods is reported. Starting from the late years of the 50s,
several mesh-free schemes have been adapted to the study of physical or engineering
problems whose constitutive equations are described through Partial Differential Equa-
tions (PDE).

The first attempt was the Particle-In-Cell (PIC) method by Evans et al. (1957), fol-
lowed by its extension, the so-called Material Point Method (MPM), presented by Sul-
sky et al. (1994). In both the PIC and the MPM the motion of the particles is described
through the Lagrangian trajectories whereas a background fixed Eulerian mesh is re-
quired to compute the field quantities; in these schemes, particles move and exchange
information back and forth to the grid.

In 1996, in a similar manner, Oñate et al. (1996) adopted a scattered distribution
of points, called Finite Pointset Method (FPM), which is based on a pure Lagrangian
approach. A remeshing technique is required in FPM in order to prevent instabilities
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triggered by severe mesh deformations.
The Moving Particle Semi-implicit (MPS) method was introduced in the same year

by Koshizuka and Oka (1996), to simulate viscous incompressible flows, it has been ex-
tensively developed in the following decades and it is frequently utilized, (Tsuruta et al.
2013), in simulations with highly distorted flows. In the MPS schemes, the Lagrangian
discrete computational domain is stabilized adopting inter-particle repulsive-attractive
forces.

In addition to the mesh-less scheme previously mentioned, the Radial Basis Func-
tions (RBF) have been widely used, as an interpolation technique, for high-order func-
tions reconstruction, using scattered sets of data. In 1990 RBFs were applied by Kansa
(1990) to the solution of PDEs, where radial functions are used to determine basis func-
tion weights for steady-state or time-dependent problems, (Franke and Schaback 1998).

The differential operators that appear in the PDEs are discretized with a kernel-
based spatial interpolation in the Finite Volume Particle Method (FVPM), presented by
Hietel et al. (2000) in the early 2000s. This numerical scheme combines consistency and
conservation properties typical of classical FVM with the advantages of a Lagrangian
description of motion, including accessible implementation of boundary conditions.
FVPM has been further developed in Nestor et al. (2009), for viscous flows, in Nestor
and Quinlan (2013), for fluid-structure interactions and later in Quinlan (2018), for
free-surface applications.

In this section the Smoothed Particle Hydrodynamics schemes have not been men-
tioned on purpose, a specific introduction, from the initial developments to the newest
applications, pointing out some crux aspects of the method is following presented.

2.4 Introduction to Smoothed Particle Hydrodynamics

In recent years, of all the meshless schemes currently available, SPH has received in-
creasing attentions and its range of applications is constantly growing, as presented the
reviews of the method (Monaghan 2005; Gomez-Gesteira et al. 2010; Monaghan 2012).

2.4.1 SPH applications

SPH has been firstly developed for astrophysics by Gingold and Monaghan (1977),
using a magnetohydrodynamics SPH formalism (SPMHD). Phenomena like the gravi-
tational collapse of interstellar clouds or the interplanetary gases-dust interactions can
be simulated to study stars or planets formation processes, (Price and Monaghan 2005).
In these problems, the range of length and time scales involved changes by many orders
of magnitude, but high-density gradients can be handled directly by SPH models due
to the ability to adopt variable smoothing lengths. Additionally, these problems do not
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require proper treatments for the boundaries because they simulate phenomena in the
infinite space.

Later, the SPH operator has been used to discretize the governing elastic-plastic
equations in solid mechanics, (Libersky and Petschek 1991), involving fractures and
damage constitutive models, (Gray and Monaghan 2004). In these applications the
damage information is directly carried by the SPH particles and the collapse of the
modelled medium is directly considered by the meshless nature of the method.

Moreover, SPH has been utilized in geo-mechanic problems, (Zhu et al. 1999), to
simulate fluids flowing through a porous matrix, in fact, the versatility of SPH has been
extremely efficient in simulations of groundwater flows which are characterized by both
macro-scale physics and micro-scale effects, (Masciopinto and Palmiotta 2013).

The first application to fluids simulations has been proposed in Monaghan (1992),
reproducing cases with free surface flows impacting solid objects. It was a game-
changer achievement due to the multitude of engineering problems in which it has been
applied including sloshing tanks, (Delorme et al. 2009), ship-hull design (Veen 2010)
and many other applications. These examples are just a limited part of the many fields
in which SPH has been applied, presented to demonstrate the advances that the meth-
ods have already achieved, even if there are still unsolved issues, as reported in the
SPHERIC Grand Challenges; among them, numerical instabilities related to GC#1 are
presented in the following section.

2.4.2 Accuracy of the SPH operator

The original version of SPH is based on kernel basis function in which material points
follow the fluid trajectories and therefore, the particle distribution can break apart with
particles clumping together or separating in nonphysical voids. These behaviours, in-
trinsically due to the Lagrangian nature of the method, affect negatively the numerical
stability and therefore they have been constantly faced over the past years (Morris et al.
1997; Monaghan 2000). Historically, the tensile instability and the pairing instability
have been identified as sources of numerical issues.

The first one has been studied by Swegle et al. (1995), this effect tends to cluster or
create large holes in the fluid continuum and it is usually triggered by negative pressure,
compromising the field variables accuracy. Several techniques have been proposed to
fix the tensile instability, introducing a background pressure, (Morris 1996), adding
extra terms in the momentum equation, (Monaghan 2000), which produce repulsive
forces between particles, or using the non-conservative formulation in the momentum
equation, (Morris et al. 1997; Sun et al. 2019); nevertheless these expedients do not
completely solve this issue.

Similarly, the second one, the pairing instability, tends to overlap particles in pairs.
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It strictly depends on the ratio between smoothing length and particles spacing, and
the kernel function used in the simulations, (Price 2012), but it can be prevented us-
ing kernels with positive Fourier transforms (e.g. Wendland kernels, Wendland 1995;
Wendland 2004; Dehnen and Aly 2012).

These two different types of instability both produce perturbation in the particle
distribution reducing the accuracy, but the overall particles spatial positions cannot be
controlled due to Lagrangian nature. Nowadays, it is well known that the particle distri-
bution affects the accuracy of the spatial interpolation as illustrated in GC#1, (Vacondio
et al. 2020; Colagrossi et al. 2012), and since SPH uses kernel-based operators, the
spatial interpolation exhibits numerical instability for disordered particles distributions,
(Quinlan et al. 2006; Amicarelli et al. 2011). To regularize the particle distribution
numerous approaches have been proposed, mentioned in the following section.

2.4.3 Numerical methods for particle distribution regularization

The particle shifting technique was proposed for the first time by Nestor and Quinlan
(2007) in the framework of FVPM, a similar approach, based on particles position, was
initially applied to Incompressible SPH (ISPH) scheme by Xu et al. (2009), for interior
flows, with the aim of improving the efficiency of the Poisson Pressure Equation (PPE)
solver. Later, this method was extended by Lind et al. (2012), to free-surface problems,
adopting the so-called Fickian formulation, based on Fick’s diffusion law, which adjusts
the particle distribution accordingly to the gradient of the particle concentration. This
PST was modified and applied to body-water slam simulations by Skillen et al. (2013),
for single-phase flows, and later by Mokos et al. (2017), and by Fourtakas and Rogers
(2016), for multi-phase flows.

In Weakly Compressible SPH (WCSPH) schemes, an artificial particle displacement
algorithm was initially introduced by Shadloo et al. (2012). Since then, Vacondio et al.
(2013), and Vacondio et al. (2016) combined a Fickian-based shifting technique with
δ-SPH proposed by Marrone et al. (2011) and the Adaptive Particles Refinement (APS)
method, later repeated in the δ+-SPH formulation by Sun et al. (2017). A more general
PST for free-surface or multi-phase flows has been recently presented by Khayyer et al.
(2017), without tuning parameters, later implemented and optimized with an iterative
procedure in Khayyer et al. (2019).

In addition, Oger et al. (2016) introduced a methodology with limitations for the
maximum shifting displacements, in the context of Arbitrarily Lagrangian-Eulerian
SPH, Vila (1999). In the same framework, a shifting procedure without limitations
in the shifting distance has been introduced by Neuhauser (2014).

Moreover, Antuono et al. (2021), extended the δ+ SPH formulation to an ALE-
SPH framework. In this scheme, the explicit diffusive terms, in the equations of mass
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and momentum, and the PST, directly introduced in the transport velocity formulation,
guarantee consistency and increase the accuracy.

Recently, after having pointed out the main theoretical aspects of Fick’s law-based
shifting methods, Michel et al. (2021) introduced a more general formulation that can
be valid in many SPH schemes.

2.5 Summary and conclusions

In this chapter, starting from the global overview regarding numerical modelling, pass-
ing rapidly through the different domains’ discretization techniques and then through
the two approaches to fluid simulations, the Particle Shifting Techniques (PSTs) has
been introduced. PSTs represent the solution adopted to prevent anisotropic particle
distributions which are a critical numerical issue in SPH schemes. Additional details
about the algorithms utilized in these techniques are later reported in Chapter 6 and
new methodologies are presented in Chapter 7 and Chapter 8 as the main investigations
objectives.
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Chapter 3

Validation tests

In this chapter the validation cases used to analyse the novel particle shifting method-
ologies, proposed later in this work, are described.

The unbounded Taylor-Green vortex, for which an analytical solution is available,
is principally adopted to evaluate the numerical fundamental of the new shifting algo-
rithms.

Then, two different tests, that can be representatives for more complex problems,
have been chosen to verify the applicability of the novel methodologies in real applica-
tions: the first one with a bounded domain and a moving solid object and the second one
with free surface. The results for these two applications can be compared with accurate
reference solutions.

Additionally, some basic but important investigations tools, widely utilized in this
document, are reported to avoid non-necessary repetitions.

3.1 Taylor-Green vortex

The Taylor-Green vortex is a two-dimensional case that has an analytical solution for
the Navier-Stokes equations. The case has a bi-periodic squared domain and for each
point, the velocity components on x and y directions, respectively, u and v, and the
pressure p are computed as,

u = Ue−8π2t/Recos(2πx/L)sin(2πy/L)

v = Ue−8π2t/Resin(2πx/L)cos(2πy/L)

p =
ρ

4
e−16π2t/Re [cos(4πx/L) + cos(4πy/L)]

(3.1)

where ρ, is the density and Re = UL/ν is the dimensionless Reynolds number com-
puted with ν, the kinematic viscosity, U the initial reference velocity and L the charac-
teristic length of the problem which coincides with the size of the domain. The Taylor-
Green vortex represents a counter-rotating decaying flow in which the streamlines are
highly distorted as it can be seen in the velocity field, Figure 3.1 (c). Following in
this work, in purely kinematic investigations focus has been posed on the motion of
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the particles only, therefore, it has been simulated without any physical viscosity and
the velocity and pressure initial fields have been reimposed at each time steps to kept
them constant throughout the entire simulation, the flow is thus considered in its steady
condition.
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Figure 3.1 Taylor-Green flow. Two-dimensional analytical velocity (a) and pressure (b)
field at physical time t = 0 s. Flow streamlines (c).
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Figure 3.2 Taylor-Green flow. Two-dimensional analytical velocity components at
physical time t = 0 s.
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Figure 3.3 Taylor-Green flow. Two-dimensional analytical velocity components at
physical time t = 1 s.

The global decaying of the velocity field can be assessed using the theoretical decay
of the kinetic energy, EkA, which is computed integrating in space equation (3.1),

EkA = Ek0e
−16π2νt, (3.2)

Figure 3.4 shows the analytical decay of the kinetic energy EkA, normalized on the
initial value Ek0, considering two different Reynolds numbers.
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Figure 3.4 Taylor-Green flow. Two-dimensional analytical total kinetic energy.

3.2 Moving square inside a rectangular box

The first application is the 2D incompressible flow around a moving square inside a
rectangular box which is a benchmark problem in the SPH community (Colicchio et al.
2006).

Figure 3.5 SPHERIC Benchmark Test #6, A. Colagrossi. Initial configuration.

The test case configuration is shown in Figure 3.5, the inner square is 1 m × 1 m
and its centre of mass has coordinate x = 1.5 m and y = 2.5 m while the external domain
is 10 m wide and 5 m high. The fluid is initially at rest, then the object is accelerated for
1 s until it reaches the final velocity Uobj = 1 m/s, which is maintained constant during
the entire simulation. In the analysis shown later in this thesis, the reference density ρ0

is set equal to 1000 kg/m3 and the kinematic viscosity ν is set equal to 0.01 N/m2s.
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(a) Velocity (b) Pressure

Figure 3.6 SPHERIC Benchmark Test #6, , A. Colagrossi. Contours of velocity magni-
tude and pressure around the moving square at physical time t = 5 s, using FD solver.

In the present test, the sharp edges of the moving object develop quite an intense
vorticity and one of the main issues is related to the fact that the Lagrangian motion of
the particles can generate voids.

3.3 Impinging jet on a flat surface

The second application is the jet impinging on a flat surface, this case has a complex
analytical solution, firstly presented by Michell (1890), in addition Taylor (1966) de-
rived an implicit solution for velocity and pressure at the wall, with an arbitrary degree
of impact, which has the following formulation,

x

H
=

1

2
(1 + cosϕ)ln

(
1 + q

1− q

)
+ sinϕ sin q−1

u =

√
(1− q2) sinϕ− 1− cosϕ

q − cosϕ)

p =
1

2
ρU2

(
1− u2

)
(3.3)

where q is a free parameter in the solution, ϕ is the angle measured from the vertical, x
is the horizontal distance, H is the characteristic length which is the half-width of the
inflow section (Figure 3.7 (a)) and U is the jet velocity.
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(a) (b)

Figure 3.7 Molteni and Colagrossi (2009), (a) initial configuration and set up, (a) fluid
domain and pressure field at tU/L = 10.

(a) (b)

Figure 3.8 (a) Green et al. (2019) non-dimensional pressure field (b) non-dimensional
pressure over the flat surface in steady conditions.

This test case is a free surface problem that can be adopted as a first attempt to
simulate flow impacting rigid structures such as the ones that develop in different types
of hydraulic turbines.

3.4 Numerical investigations

In this work, results of particles distribution analysis are usually presented in terms of
particle concentration gradient,∇C, detailed in Section 6.3, and its non-dimensional L2
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and L∞ norms,

L2 (∇C) = h

√√√√ n∑
i=1

‖∇Ci‖2

n
, (3.4)

and
L∞ (∇C) = h(max

i
|∇Ci|). (3.5)

where h is the smoothing length of the kernel function, and n is the number of particles
in the computational domain. As explained later, ∇C can be seen as a measure of the
disorder in particle distribution, therefore analyzing dimensionless norms allows com-
paring the level of perturbation even in particle distributions with different resolutions.

In numerical experiments, a periodic test function f(x, y), defined in a two-dimensional
squared domain, has been used to evaluate the accuracy of the spatial SPH interpolation,

f(x, y) = sin
(πx
λ

)
+ cos

(πy
λ

)
, (3.6)

where x and y are the coordinates of a two-dimensional domain and λ can be changed
to modify the steepness.
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Figure 3.9 Test function x derivative.

The SPH spatial interpolation error has been assessed computing the norm,

L2 (∂xf) =

√√√√ n∑
i=1

‖∂xfSPHi − ∂xfani ‖
2

n
, (3.7)

while in the Taylor-Green vortex the accuracy is evaluated through the error on the
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velocity field,

L2|vx − vxA|=

√√√√ n∑
i=1

‖vx − vxA‖2

n
, (3.8)

where vx and vxA are, respectively the x components of the interpolated and the analyt-
ical velocity, Figure 3.2 (a), and Figure 3.3 (a).
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Chapter 4

Smoothed Particle Hydrodynamics methodology

In the following chapter, an overview of the smoothed particle hydrodynamics models
is presented. The introduction to the theoretical fundamentals is illustrated through the
main steps that allow the method to be applied in fluid dynamics, extended contents are
published in Liu and Liu (2003) and in Violeau (2012).

4.1 SPH theoretical fundamentals

The SPH method is a spatial interpolation technique that can be adopted to reconstruct
field quantities defined over a domain, D, using a convolution integral. The process
needed to derive the basics of SPH starts by defining a scalar or vector field function
f(x): IRd → IR, where x is the position vector and d is the number of spatial compo-
nents. Using the Dirac delta function, δ(x), the following identity can be written,

f(x) =

∫
Ω

f(x′)δ(x− x′) dΩ, (4.1)

where Ω defines the integration domain and the position vectors x and x′ respectively
define the interpolation and the surrounded points.

4.1.1 SPH continuous interpolation

The function expressed in equation (4.1) cannot be estimated by any numerical scheme
due to the infinitesimally narrow domain of the Dirac delta function which as a zero
value everywhere except at location x,

δ(x− x′) =

{
∞, x = x′

0, x 6= x′
(4.2)

therefore equation (4.1) is useless for practical computations. It is convenient to in-
troduce an approximation, at the continuous level, substituting δ(x) with the weighted
function W (x − x′, h) which is called the smoothing kernel and depends on the in-
terpolation distance between x and x′ and on the smoothing (or characteristic) length
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h.
The convolution integral in equation (4.1) is thus rewritten introducing the continu-

ous approximation,

〈f(x)〉 =

∫
Ω

f(x′)W (x− x′, h) dΩ, (4.3)

where 〈f(x)〉 is the SPH approximated value. The kernel function has high relevance
in the SPH models and it has to possess some important properties, described in detail
in Liu and Liu (2003), and summarized below.

• The kernel function is normalized:

α

∫
Ω

W (x− x′, h) dΩ = 1, (4.4)

a normalization coefficient α is used to ensure that the integral of the kernel func-
tion over the domain is equal to unity.

• The kernel function has a compact support:

W (x− x′, h) = 0 if |x− x′|> κh, (4.5)

where κh represents the kernel radius of influence, and κ is often twice the
smoothing length.

• The kernel function is symmetric:

W (x− x′, h) = W (x′ − x, h) . (4.6)

• The kernel function tends to Dirac delta function if h tends to zero:

lim
h→0

W (x− x′, h) = δ(x− x′, h). (4.7)

• The kernel function is positive over the entire support:

W (x− x′, h) > 0 if |x− x′|> κh, (4.8)

• The kernel function is k-times differentiable and the derivative is continuous:

W (x− x′, h) ∈ Ck0 . (4.9)

In the applications presented in this thesis and in many other SPH frameworks, the
above-mentioned kernel function characteristics are commonly satisfied, nevertheless,
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non all of them are strictly required, e.g. Gaussian kernel (Monaghan 1992) has no
compact support (equation (4.5)), high-order schemes (Nasar et al. 2021) require not-
positive function (equation (4.8)).

The consistency of equation (4.3) can be estimated using a Taylor Series expansion
for the generic field function f(x) around x′,

f(x′) = f(x) +
∂f(x)

∂x
(x− x′) +

1

2

∂2f(x)

∂x2
(x− x′)2 +O(x− x′)3. (4.10)

It is substituted in convolution integral, equation (4.3), leading to

〈f(x)〉 = f(x)

∫
Ω

W (x− x′, h) dΩ +
∂f(x)

∂x

∫
Ω

W (x− x′, h)(x− x′) dΩ+

+
1

2

∂2f(x)

∂x2

∫
Ω

W (x− x′, h)(x− x′)2 dΩ +O(x− x′)3.

(4.11)

Then, the generic k-moment for the kernel function is be defined as,

MW,k =

∫
Ω

W (x− x′, h)(x− x′)k dΩ (4.12)

due to the properties stated in equations (4.4) and (4.6), the zero-order momentMW,0

is equal to 1 and first-order momentMW,1 is equal to 0. These important assumptions
allow to simplify equation (4.11) as,

〈f(x)〉 = f(x) +O(h)2 (4.13)

A kernel function with the above-mentioned properties grants that the SPH approxima-
tion, (equation (4.3)), is second-order accurate in space at continuous level, (Monaghan
1992), (Amicarelli et al. 2011), meaning that the method is able to reproduce exactly
zeroth and first-order polynomial functions. Nevertheless, the order of accuracy of the
SPH interpolation can be moved up to higher orders adopting modified kernel functions.

Several authors, Monaghan (1985), Chaniotis and Poulikakos (2004), Lind and
Stansby (2016), have introduced kernel functions that can be used to achieve higher
orders of consistency. Equation (4.11) is extended and rewritten substituting equation
(4.12) as

〈f(x)〉 = f(x)MW,0 +
∂f(x)

∂x
MW,1 +

1

2!

∂2f(x)

∂x2
MW,2 +

+
1

3!

∂3f(x)

∂x3
MW,3 + O(x− x′)4.

(4.14)

In order to remove the error term greater than second-order, the property in equation
(4.4) can not be satisfied, meaning that the kernel function needs to assume negative
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values. ForMW,2 guaranteed equals to zero, SPH reaches higher accuracy order,

〈f(x)〉 = f(x) +O(h)4 (4.15)

The same procedure could be applied to higher order, improving arbitrarily the SPH
consistency. However, introducing not positive defined kernel functions, which are
not monotonically decreasing, can produce numerical issues in purely Lagrangian SPH
schemes, in particular, in the case of free-surface flow, (Nasar et al. 2021).

Moreover, the major point of interest in the SPH method is its capability to repro-
duce the gradient of field quantities using exclusively the field values and the gradient of
the kernel function. Indeed, the function gradient SPH approximation, equation (4.3),
is rearranged as

〈∇f(x)〉 =

∫
Ω

∇f(x′)W (x− x′, h) dΩ. (4.16)

Then, recalling the product rule for derivatives

∇[f(x)W (x− x′, h)] = ∇f(x)W (x− x′, h) + f(x)∇W (x− x′, h), (4.17)

it can be used to substitute equation (4.17) in (4.16) obtaining

〈∇f(x)〉 =

∫
Ω

∇[f(x′)W (x− x′, h)]dΩ−
∫

Ω

f(x′)∇W (x− x′, h) dΩ. (4.18)

The Gauss theorem is applied to the first term of equation (4.18),

〈∇f(x)〉 =

∫
S

[f(x′)W (x− x′, h)]n dS −
∫

Ω

f(x′)∇W (x− x′, h) dΩ (4.19)

where n is the vector normal to the integration surface S. Thus, the gradient of the field
quantity is computed by two terms associated with the values of the field itself. Under
the hypothesis that the kernel support is fully extended inside the computational domain,
meaning that the integration region is not intersected by boundaries, the first term is
neglected because the kernel function is null at the extreme of its support, heading to

〈∇f(x)〉 = −
∫

Ω

f(x′)∇W (x− x′, h)dΩ (4.20)

The symmetry condition allows to change sign, leading to the SPH continuous approx-
imation for the gradient of a function,

〈∇f(x)〉 =

∫
Ω

f(x′)∇W (x− x′, h)dΩ (4.21)

This formulation represents the core of the SPH methods, the computation of the field
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derivatives can be carried out using the convolution integral between the field quantity
and the kernel function derivative.

Under the same conditions, the accuracy for the SPH gradient approximation can
be evaluated, as previously, substituting equation (4.21) in Taylor Series expansion,
similarly to equation (4.10), defining the generic moment for the gradient function as

M∇W,k =

∫
Ω

∇W (x− x′, h)(x− x′)k dΩ. (4.22)

It is possible to show, (Marongiu et al. 2010), that the error of the gradient field at the
continuous level is first-order consistent and it converges as O(h)2.

4.1.2 Kernel functions

As previously highlighted, the choice of the kernel function has a relevant impact on
the SPH interpolation and, therefore, on the reconstruction of the field quantities (and
their gradient). In Section 4.1 the main properties required to guarantee first-order con-
sistency have been presented, different kernel functions that satisfy these characteristics
have been proposed in SPH, formulated with the generic expression,

W (x, h) =
c

hd
f(
x

h
) (4.23)

where q = x/h is the ratio between the distance from the origin and smoothing length
h; as previously defined, d is the number of spatial dimensions and c is a constant that
allows to specify the coefficient α = c/hd, which verifies the normalization condition,
equation (4.4).

In their first publication, Gingold and Monaghan (1977) adopted a Gaussian kernel
defined as

W (q) = αe(−q2), (4.24)

where α = 1/(h
√
π) , 1/(h2π) , 1/

(
h3π3/2

)
is the normalization factor in one, two,

three dimensions. The Gaussian kernel is able to closely approximate the Dirac delta
function, meaning that the smoothing approximation is minimized, but its support is
infinitely extended and, for this reason, its usage is computationally expensive.

The third-order Cubic spline has been later introduced by Monaghan and Lattanzio
(1985),

W (q) = α


1− 3

2
q2 +

3

4
q3 0 ≤ q ≤ 1

1

4
(2− q)3 1 ≤ q ≤ 2

0 otherwise

(4.25)

where α = 2/(3h), 10/(7h2π), 1/(h3π) is the normalization factor in one, two, three
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dimensions. It accurately reproduces the Gaussian kernel even though it has a compact
support and it is, therefore, computationally cheaper. The third-order Cubic spline is
piecewise-defined and it is differentiable two times, Quinlan et al. (2006) and Amicarelli
et al. (2011) have demonstrated that the smoothness of the kernel function affects the
SPH interpolation errors. Differently, the Wendland kernel, (Schaback and Wendland
2006), which are able to prevent the pairing instabilities (Dehnen and Aly 2012), see
Section 2.4.2, are usually preferred in fluid simulations, (it is the case for this project).
These functions, generally defined as

W (x, h) =
c

hd
f(

x

2h
), (4.26)

where q = x/2h, have been constructed using high–order polynomials and, therefore,
they are able to capture higher-order effects improving the accuracy.

The Wendland kernel C2 is

W (q) = α

{
(1− q)4 (4q + 1) q ≤ 1

0 otherwise
(4.27)

with α = 5/8, 7/(4π), 21/(16π) in 1D, 2D and 3D.
The Wendland kernel C4 is

W (q) = α

{
(1− q)6 (35q2 + 18q + 3

)
q ≤ 1

0 otherwise
(4.28)

with α = 3/4, 3/(4π), 165/(256π) in 1D, 2D and 3D.
The Wendland kernel C6 is

W (q) = α

{
(1− q)8 (35q3 + 25q2 + 8q + 1

)
q ≤ 1

0 otherwise
(4.29)

with α = 55/64, 38/(14π), 1365/(512π) in 1D, 2D and 3D.
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Figure 4.1 (left) Kernel functions in 1D. (right) Gaussian kernel in 2D

In Figure 4.1 can be seen the shape of the kernel functions and it can be noted
that the second derivatives of the Wendland kernels remain derivable, however, despite
the fact that all these kernel functions are compactly supported, the value of W varies
significantly among them. For example, the Wendland C6, (equation (4.29)), gives
greater weight to points close to the origin, while the Cubic spline, (equation (4.25))
assigns more weight to distant particles compared to other functions. For this reason,
different results for the interpolations are expected and the kernel function has to be
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carefully chosen.

4.1.3 SPH discrete interpolation

The second main step to derive the SPH methodology is the discrete approximation of
the convolution integral previously presented in equation (4.3). In the interior of the
domain, the equations (4.3) and (4.21) are discretized as

〈f(xi)〉 =

∫
Ω

f(x′)W (x− x′, h) dΩ

≈
J∑
j=1

f(xj)W (xi − xj, h)ωj

(4.30)

〈∇f(xi)〉 =

∫
Ω

f(x′)∇W (x− x′, h)dΩ

≈
J∑
j=1

f(xj)∇W (xi − xj, h)ωj

(4.31)

where i represents the calculation point, j defines the generic interpolation point with
the associated discrete volume ωj , which for a uniform particle size is defined as ωj =

∆d
i , and J is the total number of particles within the support of particle i.

In grid-based schemes, the numerical solution tends toward the exact solution while
the mesh size tends to zero. In meshless methods, the inter-particle distance ∆ defines
the resolution of the discretized domain. Additionally, in SPH schemes, the smoothing
length h determines the number of particles that fall into the kernel radius of influence,
which corresponds to the number of interpolation points. These parameters have a key
role in the method spatial convergence and both have to tend to zero. The ratio between
h and ∆ rules the number of interpolation points in the kernel support; Raviart (1985)
showed that it has to increase while the discretization parameters tend to zero. The set
of conditions involved in the convergence of SPH interpolation is,

∆→ 0

h→ 0

h

∆
→∞

(4.32)

In practice, the ratio h/∆ has a finite value and the choice has to be balanced between
numerical error and computational costs. The smoothing error is reduced while h tends
to zero, equation (4.7), whereas the discretization error is lessened while h/∆ increases,
gaining accuracy but raising the computational time.
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4.1.4 Convergence analysis of an SPH interpolation

At discrete level, the SPH interpolations, equations (4.30) and (4.31), can reach the
theoretical convergence rate if the smoothing error is much larger than the discretisa-
tion error, conversely, if the discretization error is greater than the smoothing error, the
second-order convergence rate is no longer achieved. To restore first-order consistency
the following equations need to be fulfilled,

J∑
j=1

W (xi − xj, h)ωj = 1 (4.33)

J∑
j=1

∇W (xi − xj, h)ωj = 0 (4.34)

but for significant disorder in particle distribution, these conditions are not satisfied. In
discrete SPH approximation, the evaluation of the accuracy is a really complex topic,
because, as stated previously, all the conditions presented in equations (4.32) are in-
volved in the convergence.

The accuracy for the SPH interpolation at the discrete level depends on the particle
distribution, Quinlan et al. (2006) demonstrated that in one dimension, for particles
uniformly spaced, the difference between the analytical and the approximated values
can be estimated as

∂f(xi)

∂x
− 〈f(xi)

∂x
〉 = h2∂

3f(xi)

∂x3

∫
Ω

q2W (q)dq + C

(
∆

h

)β+2

. (4.35)

The SPH error is the sum of a second-order error in h (smoothing error) and a β+2 order
error in ∆/h (discretization error), where β represents the smoothness of the kernel at
the boundaries.

To analyse these aspects a convergence analysis of the test function derivative has
been performed using equation (4.31) and adopting the Wendland C6 kernel, (equation
(4.29)).

The accuracy of the spatial SPH interpolation in a two-dimensional domain, see
Section 3.4, has been evaluated using the test function (3.6) and the test function gra-
dient error norm (3.7). The analysis has been conducted using a Cartesian particle dis-
tribution and a perturbed particle distribution, obtained applying a normalized random
perturbation, σ/∆, to each particle, originally placed in a Cartesian grid, whereas three
values of h/∆ have been tested. The results of these numerical experiments are shown
in Figure 4.2 through the L2 norm of the derivative error against the particle spacing
∆. In experiments with a perturbation, σ/∆ = 0.1, the error remains constant and
does not decrease with ∆, whereas, in tests with a Cartesian distribution the theoretical
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Figure 4.2 Numerical test. L2 error norm in SPH estimations of first partial derivative
for a test function, (a) perturbed particle spacing σ/∆ = 0.1, (b) Cartesian grid.

second-order convergence rate is restored.

4.2 Summary and conclusions

In this chapter the SPH fundamentals have been illustrated, then the method accuracy
has been presented from a theoretical point of view and through numerical evaluations.
At the discrete level, the global scheme precision is strictly related to the particle distri-
bution, the interpolation points.

Since in SPH, (Monaghan 1994), the particles move accordingly to the Lagrangian
trajectories, the particle distribution cannot be controlled during the simulation leading
to poor interpolation accuracy. In conclusion, it has been once more confirmed that
proper techniques that aim to minimize the particle spatial perturbation are crucial to
maintaining the SPH accuracy.
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Chapter 5

ALE-SPH model for Weakly-Compressible fluids

In this chapter, the review of the main steps used to discretize the set of equations that
governs fluid dynamics within the SPH formalism is presented. Different SPH schemes
can be adopted, the original formalism introduced by Monaghan (1992) is presented,
then the focus is posed on the process needed to derive the SPH equations in the Weakly-
Compressible Arbitrarily Eulerian-Lagrangian framework. This latest model has been
implemented in the code ASPHODEL, (Marongiu 2007; Leduc 2010; Neuhauser 2014;
Pineda Rondon 2017), whose structure is presented later in the chapter because it has
been widely utilized in this project.

5.1 Governing equations for fluid dynamics

The motion of fluids is a physical phenomenon that has always attracted interest and
it has been widely investigated for many centuries. Nowadays, the flow of Newtonian
fluids is described with a macroscopic approach using the Navier-Stokes equations,
presented as a system of partial differential equations, whose solution is able to predict
the evolution of density, velocity, pressure and temperature in fluids.

In thermo-fluid dynamics the equations for continuity, momentum and energy con-
servation, expressed with the conservative differential form, are:

∂ρ

∂t
+∇ · (ρv) = 0

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ · τ + ρfe

∂ρE

∂t
+∇ · (ρvE) = −p∇ · v + τ∇ · v +∇ · (k∇T ) + qc

(5.1)

where ρ and v are respectively the density and the velocity of the fluid, p is the pressure
field, e is the internal energy and T is the temperature, the external forces and heat
sources are fe and qc. The total energy E is defined as the sum of internal energy e and
kinetic energy,

E = e +
1

2
v2. (5.2)
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The intrinsic fluid properties are described by µ, the dynamic viscosity or ν the kine-
matic viscosity (with the relation µ = ρν), while k is the thermal conductivity and τ ,
describes the viscous stress tensor.

The system of equations represents a fully coupled and non-linear problem, a smooth
analytical solution is not currently available, excluding some simplified cases in which
are specified peculiar initial and boundary conditions (an exact analytical solution is
known for the two-dimensional Taylor Green vortex for incompressible flow, as seen in
Section 3.1).

Nevertheless, it can be approximated using numerical modelling, (Section 2.1), to
compute the physical quantities, ρ, p,v and T in a finite number of computational
points, but, even using highly sophisticated numeral models, obtaining the approxi-
mated solution can be extremely difficult and computationally expensive.

For this reason, the system (5.1) can be rewritten under certain simplifying hypothe-
ses to reduce the complexity of the problem, without drastically tightening the range of
applications, as introducing a closure model for fluid to link the internal energy with
pressure, density, generally stated as e = e(p, ρ). As an additional simplification, the
temperature can be assumed constant to remove the equation of energy conservation
from the system: in the problems which are investigated in this project the thermal
behaviour is not taken into account because it does not play any significant role.

Moreover, in studies involving water flows, the fluid can be simulated with differ-
ent assumptions regarding compressibility behaviour. For incompressible models, the
continuity equations can be rewritten assuming that density remains constant,

∇ · v = 0. (5.3)

Differently, in Monaghan (1994) water is modelled as weakly-compressible fluid in
which the range of density variation is kept close to 1%, an equation of state is needed
to couple the equations of mass and momentum conservation, defined as p = p(ρ), and
specifically using the barotropic Tait’s equation

p =
c2

0ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
+ p0, (5.4)

where γ = 7 is the polytropic fluid coefficient and c0, ρ0 and p0 are respectively the
reference speed of sound, the reference density and the reference pressure (which is
usually set equal to zero). This equation is highly representative of water compressibil-
ity in the case in which the reference speed of sound is defined as the physical speed
of sound (c0 ≈ 1480m/s), however, this assumption requires to adopt a time step that
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fulfills the Courant-Friedrichs-Lewy condition written as:

(c0 + ‖v‖)∆t
∆

≤ CFL (5.5)

where the coefficient CFL in explicit time integration schemes is set less than one,
to capture any acoustic wave that passes through the discrete particle. To avoid the
computational overhead, in most of the SPH practical applications is usually imposed
c0 ≈ 10‖v‖, maintaining the fluid model still in the range of weakly-compressibility,
but allowing a greater time step, under this condition the Mach number Ma, defined as
Ma = ‖v‖/c0 remains around 0.1.

Important assumptions on the physical fluid viscosity need to be specified, in New-
tonian fluid, the viscous stresses are proportional to the fluid velocity rate of change,
many common fluids, like water, can fit in this viscosity model and if the dynamic
viscosity µ is constant the viscous stress is defined by

τ = µ∇ · v. (5.6)

As previously mentioned, these considerations are taken into account to reduce the com-
plexity of the problem described in equations (5.1), which are rewritten in the following
simplified form: 

∂ρ

∂t
+∇ · (ρv) = 0

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+∇ · τ + ρfe

(5.7)

while the vector form for equations (5.7) is

∂Φ

∂t
+∇ · (Fc + Fν) = Q. (5.8)

defining

Φ =

(
ρ

ρv

)
Fc =

(
ρv

ρv ⊗ v + pI

)
Fν =

(
0

τ

)
Q =

(
0

ρfe

)
(5.9)

where Φ represents the conservatives field variables vector. Fc and Fν are respectively
the convective and the viscous stress tensors, I the identity matrix and Q are the source
terms which contain the external forces that may act on the fluid, for real applications it
includes the gravity force g.

Whenever fluids are considered inviscid, excluding viscosity forces, equations (5.7)
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is rewritten as 
∂ρ

∂t
+∇ · (ρv) = 0

∂ρv

∂t
+∇ · (ρv ⊗ v) = −∇p+ fe

(5.10)

called Euler equations, or, similarly to equation (5.8), in vector form,

∂Φ

∂t
+∇ · (Fc) = Q (5.11)

Therefore, neglecting the effects of the viscosity, the numerical model is reduced both
in terms of physics and in terms of mathematics.

As a recap, the natural phenomena of fluids flow can be described in different ways
and it can be translated into different numerical schemes, in Section 5.3 the above-
mentioned models are discretized using the SPH schemes.

5.2 Arbitrary Lagrangian-Eulerian

An initial overview of the different approaches that can be used in fluid dynamics has
been presented in Section 2.2. The Eulerian approach describes the fluid flow in a
fixed frame of reference, single particles of fluid are not identified, instead, a control
volume is defined and all other flow properties are computed within the this volume.
Conversely, the Lagrangian approach describes the fluid flow in a frame of reference
attached to the particles that carry the flow properties while moving in time and space.

A mixed approach that is able to generalize both the Lagrangian and the Eulerian
description has been presented by Hirt et al. (1974). In this technique, called Arbitrary
Lagrangian-Eulerian, the velocity of the frame of reference v0 is additionally introduced
and it can be arbitrarily defined. The Eulerian or Lagrangian description can be recov-
ered by setting v0 respectively equal to zero or to the fluid velocity v. The arbitrary or
transport velocity adds flexibility to the numerical schemes as a degree of freedom. In
this thesis different options and strategies to define v0 are analyzed, (Neuhauser 2014).

The Euler equations are presented in the ALE conservative form using the flux vec-
tor notation:

Lv0 (Φ) +∇ · (Fc − v0 ⊗Φ) = Q, (5.12)

where the transport velocity operator Lv0 is defined as

Lv0 (Φ) =
∂Φ

∂t
+∇ · (v0 ⊗Φ), (5.13)

and it can be replaced in equation (5.12),

∂Φ

∂t
+∇ · (v0 ⊗Φ) +∇ · (Fc − v0 ⊗Φ) = Q. (5.14)
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To avoid a recursive formulation a compact notation for the flux tensor F is introduced,

F (Φ,v0) = F(Φ)− (v0 ⊗Φ). (5.15)

In equation (5.14), the Leibniz-Reynolds transport theorem is applied on the convective
term whereas the Gauss divergence theorem is imposed on the flux term passing from
the volume integral over Ω, to the surface integral on ∂Ω,

d

dt

∫
Ω

Φ dΩ +

∫
∂Ω

Fc(Φ,v0) · n dS =

∫
Ω

Q dΩ. (5.16)

In the ALE framework the integration domain moves accordingly to the transport ve-
locity v0, this additional degree of freedom can increase the accuracy of the simulation.
In Section 5.4, this approach has been used to fully derive the governing equation for
fluid motion in the ALE formalism.

5.3 Weakly-Compressible SPH model

The SPH numerical model has been firstly applied for fluid dynamic by Monaghan
(1992), as a Lagrangian scheme, the particle trajectory is defined by the field velocity:

dxi
dt

= vi. (5.17)

The Euler equations, defined in the system (5.10), are discretized in the classical SPH
formulation as, 

dρi
dt

=
J∑
j=1

(vi − vj)∇Wijmj

dvi
dt

= −
J∑
j=1

(
pj
ρ2
j

+
pi
ρ2
i

)
∇Wijmj + g

(5.18)

where mi is the mass of the particle i, which can be used to compute the volume,
ωi = mi/ρi. Additionally, following the Weakly-Compressible approach, the equation
of state (5.4) closes the system.

The set of equations (5.17) and (5.18) present some numerical physical issues, to
prevent particles mixing and penetration, the XSPH scheme, see Section 6.1, has been
proposed by Monaghan (1994), introducing, in the continuity equation, a factor that
averages the velocity field. For stability reasons, numerical dissipation is introduced
in the momentum equation as artificial viscosity Πij , (Monaghan 1992). Although the
classical formulation of equations (5.17) and (5.18) has been widely used, and several
advancements have been introduced to improve the quality of the pressure field, (Mar-
rone et al. 2011; Lind et al. 2012; Oger et al. 2016; Green et al. 2019), in this work a
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different SPH formalism, called SPH-ALE, is followed.

5.4 Weakly-Compressible ALE-SPH model

The Arbitrary Lagrangian-Eulerian model has been adopted for the first time in the
WCSPH framework by Vila (1999). This section reviews the formulation presented
by Vila (1999) and then taken up in the PhD works of Marongiu (2007), Leduc (2010),
Neuhauser (2014) and Pineda Rondon (2017), which are outlined to introduce the ALE-
SPH solver used in the framework of this project. It is worth underling that in classical
SPH the domain is represented by particles that move according to their kinematics,
equation (5.17), and carry their own mass, while their volumes can change even though
specific information on their topological deformations are not known. Conversely, in
ALE-SPH schemes particle volumes move accordingly to their arbitrary velocity,

dx

dt
= v0. (5.19)

The calculation points do not correspond anymore to the actual material points, for this
reason, physical fluxes between neighbours particles need to be taken into account. Fol-
lowing, the governing equations are rewritten with a different formulation coherently
with the ALE description. Neglecting the source term, the Euler equations (5.10), writ-
ten in conservative form, are a hyperbolic system that can be integrated over a defined
volume Ω, which is free to move and deforms,∫

Ω

[
∂Φ

∂t
+∇ · Fc (Φ)

]
dΩ = 0. (5.20)

The vectors (5.9) of conserved variables and physical fluxes are expanded for the three
dimensions:

Φ =


ρ

ρu

ρv

ρw

 , Fc (Φ) =


ρu ρv ρw

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw ρvw ρw2 + p

 . (5.21)

Using the Leibniz-Reynolds transport theorem, through the transport velocity v0,

d

dt

∫
Ω

Φ dΩ =

∫
Ω

∂Φ

∂t
dΩ +

∫
∂Ω

Φ (v0 · n) dS, (5.22)

and the divergence theorem,∫
Ω

∇ · (Φ⊗ v0) dΩ =

∫
∂Ω

Φ (v0 · n) dS, (5.23)
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the equation (5.20) is rewritten as

d

dt

∫
Ω

ΦdΩ +

∫
Ω

∇ [Fc (Φ)− v0 ⊗Φ] dΩ = 0, (5.24)

or, adopting the ALE formalism introduced in equation (5.15), as

d

dt

∫
Ω

ΦdΩ +

∫
Ω

∇ [Fc (Φ,v0)] dΩ = 0. (5.25)

This latest equation is defined at the continuous level for a generic control volume; at
this point the continuum is partitioned in a set of distinct volumes, called particles, then
equation (5.25) is specified for particle i,

d

dt

∫
Ωi

ΦdΩ +

∫
Ωi

∇ [Fc (Φ,v0)] dΩ = 0. (5.26)

In the discretized domain, the volumes of particle i is defined,

ωi =

∫
Ωi

dΩ, (5.27)

and it is thought to be centered on the material point described by i. Therefore, any
discrete quantities Φi are computed as the average over the particle volume ωi, without
any information about the shape,

Φi =
1

ωi

∫
Ωi

Φ dΩ −→ ωiΦi =

∫
Ωi

Φ dΩ (5.28)

Taking into account these considerations, the ALE form of the Euler equation (5.26) is
rewritten using equation (5.28) in the vector notation,

d(ωiΦi)

dt
+ ωi∇ · [Fc (Φi,v0i)] = 0. (5.29)

or fully expanded,

d(ωiΦi)

dt
+ ωi∇ · [Fc(Φi)− v0i ⊗Φi] = 0. (5.30)

These steps are preliminary to introduce, in equation (5.30), a discrete approximation
using ALE-SPH formalism for,

∇ · [Fc(Φi)− v0i ⊗Φi] . (5.31)
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Applying the classical SPH interpolation is not recommended,

ωi∇ · [Fc (Φi,v0i)] = ωi

J∑
j=1

Fc (Φj,v0j)∇Wijωj, (5.32)

it can be seen that equation (5.32) loses conservative property, mutual fluxes between
particle i and particle j do not cancel out,

ωiωjFc (Φi,v0i)∇Wij 6= ωjωiFc (Φj,v0j)∇Wji. (5.33)

For this reason, the identity,

∇ · v0i = ∇ · v0i − v0i∇1, (5.34)

is used to rewrite equation (5.31) as

∇ [F(Φi)− v0i ⊗Φi] = ∇ [F(Φi)− v0i ⊗Φi] + [F(Φi)− v0i ⊗Φi]∇1. (5.35)

Following this approach, a symmetric conservative form for the Euler equations is ob-
tained as seen in the following formulation:

d(ωiΦi)

dt
+ ωi

J∑
j=1

[F(Φi)− v0i ⊗Φi + F(Φj)− v0j ⊗Φj]∇Wijωj = 0. (5.36)

Moreover, through the Leibniz–Reynolds transport theorem the volume variation

dωi
dt

= ωi∇v0i (5.37)

is approximated as
dωi
dt

= ωi

J∑
j=1

(v0j − v0i)∇Wijωj (5.38)
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Grouping together equation (5.38) and equation (5.36), the full set of ALE-SPH equa-
tions for fluid motion are:

dxi
dt

= v0i

dωi
dt

= ωi

J∑
j=1

(v0j − v0i)∇Wijωj

dωiρi
dt

= −ωi
J∑
j=1

(ρi (vi − v0i) + ρj (vj − v0j))∇Wijωj

dωiρivi
dt

= −ωi
J∑
j=1

(ρivi ⊗ (vi − v0i) +

+ρjvj ⊗ (vj − v0j) + pi + pj)∇Wijωj + ωiρig

(5.39)

Under a mathematical perspective, the ALE formulation (5.39) is a centred spatial dis-
cretization, and, as a hyperbolic system of equations, it is numerically unstable.

In order to add numerical stabilization diffusion terms can be introduced similarly
to classical SPH, by introducing artificial viscosity, (Monaghan 1994; Molteni and Co-
lagrossi 2009; Antuono et al. 2012):

d(ωiΦi)

dt
+ ωi

J∑
j=1

(Fi(Φi)−v0i ⊗Φi+

Fj(Φj)−v0j ⊗Φj + Πij)∇Wijωj = 0

(5.40)

or shortened through equation (5.15),

d(ωiΦi)

dt
+ ωi

J∑
j=1

(Fi(Φi,v0i) + Fj(Φj,v0j) + Πij)∇Wijωj = 0 (5.41)

A different methodology to add numerical diffusion in the scheme, has been pro-
posed by Vila (1999), in which the flux terms Fi and Fj are replaced by a decentred
flux, Fij:

Fij(Φij,v0(xij)) ≈
Fi(Φi,v0i) + Fj(Φj,v0j)

2
, (5.42)

located at the interface between particle i and particle j, in xij =
xi+xj

2
, which moves

with the interface transport velocity defined by

v0(xij) =
v0i + v0j

2
. (5.43)

It is computed solving a Riemann problem defined by the left and the right state of Φi
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and Φj , then it is are substituted in equation (5.36),

d(ωiΦi)

dt
+ ωi

J∑
j=1

2Fij(Φij,v0(xij))∇Wijωj = 0 (5.44)

In the continuity and in the momentum equations, the solution of the Riemann problem
ΦE
ij = (ρEij, ρ

E
ij, vEij) at the i-j interface replaces the centred field quantities ρi, ρj ,

pi, pj , vi,vj whereas v0(xij) substitutes v0i and v0j . Gathering together the motion of
the particle (5.19) and the volume evolution (5.38), the ALE-SPH Euler equations are
obtained as presented in Oger et al. (2016),

dxi
dt

= v0i

dωi
dt

= ωi

J∑
j=1

(v0j − v0i)∇Wijωj

dωiρi
dt

= −ωi
J∑
j=1

2ρEij
(
vEij − v0(xij)

)
∇Wijωj

dωiρivi
dt

= −ωi
J∑
j=1

2
[
ρEijv

E
ij ⊗

(
vEij − v0(xij)

)
+ pEij

]
∇Wijωj + ωiρig

(5.45)

This scheme has the capability to recover both the Eulerian and the Lagrangian
description, imposing respectively v0 = 0 or v0 = v.

5.5 SPH-ALE for numerical simulations

In this section are specified complementary information regarding the methodologies
that have been implemented in the SPH-ALE based software ASPHODEL, (Marongiu
2007; Leduc 2010; Neuhauser 2014; Renaut 2015; Pineda Rondon 2017), which has
been developed in the latest years especially for simulating water flows in turbines,
(Rentschler et al. 2018; Pineda et al. 2019).

In particular, in order to solve the fluid governing equations expressed in (5.45),
the reconstruction of field quantities has to be computed at the interfaces and a time
integration scheme is needed to update position, volume, density and velocity. Addi-
tionally, solid objects in the computational domain are treated following the techniques
introduced in Marongiu (2007) and in Li (2013), in which a partial Riemann prob-
lem is solved at the interfaces between fluid and solid particles; these approaches are
well suited to deal with complex geometries with thin components. Moreover, the open
boundary conditions have to be carefully imposed; the Lagrangian nature of SPH makes
it troublesome to manage particles that are created in inlet sections or removed in outlet
sections, (Marongiu 2007; Neuhauser 2014; Pineda Rondon 2017).
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5.5.1 Volume equation

Pineda Rondon (2017) introduced an additional assumption regarding the transport ve-
locities that are used in equation (5.39), to express the equation for volume variation
using a consistent approach. In the mass and in the momentum equations, the average
transport velocity, defined by equation (5.43), is adopted, while in the volume equation
the difference between v0i and v0j is taken into account. In order to be consistent, it is
rewritten as,

v0j = 2v0(xij)− v0i, (5.46)

then, subtracting v0i on both sides, it leads to

v0j − v0i = 2(v0(xij)− v0i). (5.47)

The right-hand side term is replaced in the volume equation, the final set of govern-
ing equations for the SPH-ALE scheme, which is solved in the code ASPHODEL, is
presented:

dxi
dt

= v0i

dωi
dt

= ωi

J∑
j=1

2 (v0(xij)− v0i)∇Wijωj

dωiρi
dt

= −ωi
J∑
j=1

2ρEij
(
vEij − v0(xij)

)
∇Wijωj

dωiρivi
dt

= −ωi
J∑
j=1

2
[
ρEijv

E
ij ⊗

(
vEij − v0(xij)

)
+ pEij

]
∇Wijωj + ωiρig

(5.48)

5.5.2 Interface reconstruction: MUSCL scheme

In the continuity and in the momentum equations the fluxes between neighbours par-
ticles are computed at the interfaces, solving a Riemann problem. The method used
to define the initial states ΦL and ΦR has not been explained yet. The Godunov’s
first-order conservative upwind scheme for FVM has been adapted for ALE formal-
ism in Harten and Hyman (1983), but it usually generates too numerical dissipation,
therefore, to overcome this issue, a second-order method, called Monotone Upstream-
centred Scheme for Conservation Laws (MUSCL) is adopted to reconstruct the Left
and Right state, ΦL and ΦR, of the Reimann problem, Van Leer (1979). In this method,
the values of the field quantities are approximated with a linear interpolation between i
and j. To adapt the MUSCL scheme to the SPH-ALE method, (Marongiu et al. 2010;
Vila 1999), the particle interface position, which is not known in SPH is estimated at
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the midpoint, and the reconstruction scheme assumes the following formulation:
ΦL = Φi + α(Φi,Φj,∇Φi)∇Φi ·

(
xj − xi

2

)
ΦR = Φj − α(Φi,Φj,∇Φj)∇Φj ·

(
xj − xi

2

) (5.49)

where ∇Φ are the gradient computed using the SPH formulation and α ∈ [0, 1] is the
limiter minmod fuction, (LeVeque 1992).

5.5.3 Time integration

In this project, the integration scheme used to update in time the equations (5.48), which
are generally expressed as,

dΨ

dt
= H(Ψ,x, t), (5.50)

is an explicit Runge-Kutta (RK) third-order, (Hirsch 2007). In explicit methods, the
state variables Φn, at t = tn, are incremented to Φn+1, at t = tn+1, through the known
values of the functionHn = Hn(Ψn,xn, tn). The RK third-order scheme includes three
intermediate sub-steps defined by

Ψ(1) = Ψn

Ψ(2) = Ψn +
1

2
∆tH(1)

Ψ(3) = Ψn −∆tH(1) + 2∆tH(2)

Ψ(n+1) = Ψn +
1

6
∆tH(1) +

2

3
H(2) +

1

6
H(3)

(5.51)

where theH(k) = H(Ψ(k)) with k = 1,2,3.
The choice of time step is imposed with the same criteria as in the FVM, the

Courant-Friedrichs-Lewy condition,

∆t = CFL min
i∈Ω

(
hi

c0i + ‖v0i‖

)
(5.52)

where c0i is the local speed of sound and, in this work, CFL = 0.2.
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Chapter 6

Correction techniques for particle distribution

As previously illustrated in Chapter 4, in meshless methods the quality of the particle
distribution has a significant influence on the space interpolation accuracy. In this chap-
ter, a literature review of the most relevant particle distribution correction techniques,
applied in SPH schemes, is reported. These corrections aim to avoid the formation
of Lagrangian structures of particles along flow trajectories, maintaining homogeneous
particle distribution. The disordering of particles position, which are the calculation
points for field variables in the SPH methods, increases the numerical error and reduces
the accuracy in the simulations. Throughout the years, several studies have been con-
ducted to analyze the performance of different algorithms. As a global view, Particle
Shifting Techniques (PSTs) are formulated with two different approaches that can be
adapted based on the specif solver for the governing equations in which they are imple-
mented. In practice, the correction term can be introduced as a displacement directly
applied to the particle position,

x̄i = xi + δxi, (6.1)

where xi is the original position, x̄i is the adjusted or shifted position and δxi is the
shifting vector of the i-th particle, or, in other approaches, as a modification to the
particle velocity,

v̄i = vi + δvi, (6.2)

where vi is the field velocity, v̄i is the modified velocity and δvi is the correction term.
In these techniques, the Lagrangian nature of SPH, in which particles move with

their velocity, want to be maintained and not drastically altered, therefore, the shifting
velocity, δvi, (or the shifting displacement δxi), is usually limited to a factor of the
maximum physical velocity (or displacement).

6.1 SPH schemes with particles reordering techniques

In the early stages of the development for applying SPH to the study of fluids, Mon-
aghan (1989) introduced the so-called XSPH method, which is a correction to the La-
grangian particle velocity that prevents particles penetration. This formulation has been
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Figure 6.1 Oger et al. (2016), purely Lagrangian streamlines past a squared box.

defined as follows, (Monaghan 1994),

dxi
dt

= vi + ε
∑

(
vi − vj
ρij

)mjWij, (6.3)

where mj is the mass and ρij = (ρi + ρj) /2 is the average density, while ε is the tuning
parameter that can range between 0 and 1, usually set equal to 0.5. This formulation
was proposed in the context of WCSPH scheme, the additional term in the kinematic
equation smooths the particles’ velocity with the neighbours average velocities. The
motion of particles does not exactly follow any longer the Lagrangian trajectories, but
the conservation in linear and angular momentum is preserved.

A different approach, in which the particles’ position is not modified, but completely
reinitialized, has been proposed by Chaniotis et al. (2002), this methodology is substan-
tially equivalent to a remeshing process, in which particles are periodically relocated on
a regular grid, then, the physical quantities are re-interpolated.

6.2 SPH schemes with repulsive forces

To remove tensile instabilities, Monaghan (2000) introduced some repulsive terms in
the form of Lennard-Jones forces, modifying the formulation using the kernel function
W through a function that is inversely proportional to the distance between particles,

fij =
Wij

Wij

, (6.4)

44



whereWij is the kernel value computed for the average spacing between the neighbours
of particle i. Using this approach in the momentum equation, written in the canonical
form, (equation (5.18)), the repulsive force is added,

dvi
dt

= −
J∑
j=1

(
pj
ρ2
j

+
pi
ρ2
i

+ Πij +Rfnij

)
∇Wijmj + g, (6.5)

where n is positive and usually set equal to 4, R depends on the pressure and on the
density, it is basically an artificial pressure field, defined as,

R = ε

(
pi
ρ2
i

+
pj
ρ2
j

)
, (6.6)

where ε assumes the values previously defined for equation (6.3). Repulsive forces
have been introduced to stabilize the particle distribution, removing tensile instability
that generates clustering effects. This methodology has been reproposed by several au-
thors in the following years, for example, Tsuruta et al. (2013) introduced the dynamic
stabilization method in the contest of incompressible smoothed particle hydrodynamics,

(
1

ρ
∇p
)

=
J∑
j=1

mj

ρiρj
(pj − pi)∇Wij +ADS, (6.7)

whereADS is a stabilization term for the pressure projected equation that keeps particles
uniformly spaced.

6.3 Incompressible SPH schemes with particle shifting techniques

In the contest of ISPH, the initial milestone for particle shifting techniques, properly
intended as methodologies to move particles in order to obtain and maintain spatial
uniformity, has been presented by Xu et al. (2009) through a formulation which was
inspired by the work of Nestor and Quinlan (2007), developed within Finite Volume
Particle Methods (FVPM).

The particle shifting algorithm has the formulation reported in equation (6.1) in
which the correction, explicitly designed to regularize the particle distribution, is ap-
plied to the particle position. Xu et al. (2009) implemented the shifting correction term
in a projection-based SPH solver as,

δxi = CαRi, (6.8)

where C is a tuner coefficient and α is a factor determined as a multiplication between
the maximum expected field velocity Umax and the time step ∆t. The shifting adjust-
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ment Ri is defined as a weighted distance,

Ri =
J∑
j=1

x̃2
i

x2
ij

nij, (6.9)

where x̃i the average particle spacing between the neighbours of particle i, xij and nij
are respectively the distance and the unit distance vector between particle i and particle
j. The shifting procedure requires to correct the generic hydrodynamic variable φ using
a Taylor series expansion,

φi′ = φiδxii′ · (∇φ)i +O(δx2
ii′), (6.10)

where δxii′ is the distance vector between the particle’s old position i, defined by xi

and its new position i′, defined by x̄i. This correction allows particles to redistribute
themselves in a more regular spacing, it is based on a weighting approach and it moves
particles outward areas of aggregation. This method has been tested for a range of in-
ternal flows, showing an increase in accuracy. The results presented by Xu et al. (2009)
encouraged further investigations on particle shifting algorithms in order to enlarge the
cases in which these methods can be applied.

Still in the framework of Incompressible SPH, Lind et al. (2012) proposed an im-
plementation following the key idea of redistributing the particles from packed areas to
lacking areas. The author introduced a particle shifting method based on Fick’s law of
diffusion, in which particles move from the regions of high concentration to regions of
low concentration and the particles concentration C is computed as the summation of
the kernel function,

Ci =
J∑
j=1

ωjWij. (6.11)

The gradient of particles concentration, ∇Ci, can be physically seen as a measure of
the non-uniformity of particle distribution at particle i, (Colagrossi et al. 2012). ∇C
is the gradient operator of SPH and it shows the accuracy of the SPH interpolation, as
viewed in Section 4.1. Large variations of the particle concentration, which can be due
to not homogeneous particle distribution, presence of clusters or voids, are numerically
translated into high values of∇C, which is calculated as,

∇Ci =
J∑
j=1

ωj∇Wij. (6.12)

In a physical simulation, the particles shifting vector, defined in equation (6.1), has been
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rewritten by Lind et al. (2012),

δxi = −D∇Ci. (6.13)

where D is a diffusion coefficient. A correction function, fij , that act like the artificial
pressure, similarly to equation (6.4), is defined,

fij = b

(
Wij

W (∆)

)n
, (6.14)

where ∆ is the initial particle size. The function fij is used to minimize the instabil-
ity due to zero kernel gradient at the origin and to remove the interactions when the
particles tend to overlap, (b and n are suggested in Monaghan (2000)). δxi is adjusted
introducing the following corrected concentration gradient, reformulating from equa-
tion (6.12) using equation (6.14),

∇̂Ci =
J∑
j=1

ωj(1 + fij)∇Wij. (6.15)

The particle shifting technique improves the robustness of the ISPH scheme, partic-
ular attention has been posed on the shifting maximum values; in areas of strong varia-
tion of particles concentration equation 6.15 can take to relatively high displacements.
It has been introduced a limitation in terms of velocity in order to maintain the shift-
ing correction terms coherent with the physical velocities imposed by the Lagrangian
motion:

δxi =


−0.5h

h

∆t
∇̂Ci, if ‖0.5h h

∆t
∇̂Ci‖< 0.2

h

∆t

−0.2
h

∆t

∇̂Ci
‖∇̂Ci‖

, otherwise
(6.16)

Moreover, Lind et al. (2012) introduced an implementation to the shifting algorithm in
order to treat simulations with free surface flow; equation (6.13) is rewritten, using a
correction and a free surface detector algorithm, which stabilizes problems that occur
during the simulation due to anisotropic particle distribution at the interface,

δxi = −D
(
∂Ci
∂s

si + α

(
∂Ci
∂n
− β

)
ni

)
, (6.17)

where si and ni are respectively the tangent and the normal vectors to the free surface
of particle i; β and α are parameters that prevent nonphysical shifting toward the free
surface. Adopting this algorithm the accuracy has been improved even in presence of
free surface.

To avoid instabilities Skillen et al. (2013) limited the diffusion coefficient thought
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out a Von Neumann stability analysis, linking the parameter D of equation (6.13), with
the smoothing length h, the fluid velocity v and the time step ∆t. The proposed formu-
lation is,

δxi = −Ah‖vi‖∆t∇Ci, (6.18)

where A is a dimensionless constant problem invariant.
To determine the free surface particles Lee et al. (2008) proposed a threshold value

for the particles position divergence∇r, defined as,

∇ri =
J∑
j=1

mj

ρj
rij∇Wij, (6.19)

where rij = ri − rj is the distance vector. The value obtained from equation (6.19) has
been used to compute the free surface correction coefficient, AFSC ,

AFSC =
∇ri − AFST
AFSM − AFST

, (6.20)

where AFSM is 2 in 2D and 3 in 3D, and it represents the maximum value of ∇r

for particles in the inner domain, (Mokos et al. 2017). AFST is the threshold value for
particles to the free surface, (1.5 in 2D and 2.5 in 3D) then, equation (6.18) is multiplied
by the coefficient AFSC to obtain the value of the particle shifting vector,

δxi =

{
−AFSCAh‖vi‖dt∇Ci, if (∇ri − AFST ) < 0

−Ah‖vi‖dt∇Ci, if (∇ri − AFST ) = 0
(6.21)

The Fickian formulation, (Lind et al. 2012), in equation (6.17), is considered as
the real breakthrough in the PSTs, it has been seen a starting point for improvements
in more specific applications. Many authors proposed enhancement to better suit real
problems, among them Khayyer et al. (2017) proposed an optimization to minimize
some nonphysical gaps in fluids in proximity to interfaces. The correction has been
carried on introducing a modified unit normal vector ñi,

ñi = − Bi∇Ci
|Bi∇Ci|

, (6.22)

where Bi is defined by,

Bi =

(
J∑
j=1

rij ⊗∇Wijωj

)−1

. (6.23)

Introducing this assumption, equation (6.17) is rewritten using the modified normal,ñ,
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and tangential, s̃ vectors as,

δxi = −D
(
∂Ci
∂s̃

s̃i +
∂Ci
∂ñ

ñi
)
. (6.24)

It can be seen that the tuning parameters α and β of equation (6.17) are no longer needed
and the particle shifting in the normal direction are automatically cancelled out. This
methodology has been extended to multi-phase flows by Khayyer et al. (2019).

6.4 Weakly Compressible SPH schemes with Particle Shifting Techniques

The particle shifting techniques, presented for ISPH, have been reformulated in the
context of Weakly-Compressible SPH by Shadloo et al. (2012) showing improvements
in the accuracy compared to pure Lagrangian SPH schemes.

Immediately after, Vacondio et al. (2013), applied a modification on the particle’s
velocity instead that on the particles position,

dxi
dt

= vi + δxi, (6.25)

where, in this case, δxi has to be seen as a velocity shifting vector. In order to manage
simulations with different particle sizes, due to splitting or coalescing processes, an
adjusted scheme has been introduced,

δxi =
β

mT

J∑
j=1

mj
xij
r3
ij

r2
0vmax, (6.26)

where r0 =
∑

j rij/N is average inter-particles distance, mT =
∑

jmj , is the total
mass, β is a non-dimensional parameter,and vmax is the maximum fluid velocity.

The natural development of the δ-SPH scheme was proposed by Sun et al. (2017),
named δ+-SPH, aiming to improve the model with a PST that specifically treats and re-
arranges free surface particles. Using a Fickian-based approach, the position is modified
introducing a dependency on the Mach number, Ma, through the following equation,
suitable for multi-resolution simulations,

δxi = −CFL Ma(2hij)
2∇̂Ciφij

mj

(ρi + ρj)
, (6.27)

where hij is average smoothing length, R and n are constant respectively set to 0.2 and 4,
(to prevent tensile instability as proposed in XSPH, equation (6.3)), and φ is a function
used for solve multi-resolution problems. The equation (6.27) proposed some main dif-
ferences in comparison with equation (6.13), specifically, the WCSPH approach limits
the physical time step and, consequently, the particle shifting displacement is bounded
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as a fraction of the particle spacing, which is related to the Mach number and the CFL
number. For this reason, the field quantities do not require to be re-interpolated after
the shifting. Moreover, in order to conserve total linear and angular momentum for
particles in interior regions, the volume is substituted with the ratio between mass and
average density. The δ+-SPH scheme has been implemented with an algorithm that
turns off the shifting in the direction normal to the free surface, based on the distance
from the interface. A parameter λ is designed to obtain information about the location
of the particles and their normal vectors. It has to be calculated for each particle as the
minimum eigenvalue of the tensor,

L(xi) =

[ J∑
j=1

(xj − xi)⊗∇Wijωi

]−1

. (6.28)

Particles with λi smaller than 0.2 belong to the free surface, particles with λi greater
than 0.75 belong to the inner domain, then the particle correction has to be moderated
as follow:

δxi =


0 if λi < 0.4 and i ∈ free-surface region

(I− ni ⊗ ni) δxi if λi > 0.4 and i ∈ free-surface region

δxi i 6∈ free-surface region

(6.29)

where I is the identity tensor and ni is referred to particle i.
Still in the framework of WCSPH, a slightly different algorithm has been recently

proposed by Sun et al. (2019), introducing a particle shifting technique in a quasi-
Lagrangian scheme with a consistent approach. The correction, defined similarly to
equation (6.27),

δvi =


−Mac0(2hij)∇̂Ci if ‖Mac0(2hij)∇̂Ci‖< 0.5Umax

−0.5Umax
∇̂Ci
‖∇̂Ci‖

, otherwise
(6.30)

is applied directly to the particle velocity; then v̄i is substituted in the continuity and
in the momentum equations maintaining values close to the physical velocity, without
altering significantly the Lagrangian nature of the method.

In these schemes the particles’ position is usually adjusted at the end of each time
step, however, the explicit nature of the WCSPH models does not allow to ensure
whether the updated particle configuration satisfies any quantitative requirements in
terms of isotropy of the particle distribution.

For this reason, Vacondio and Rogers (2017) proposed to integrate the shifting tech-
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nique, equation (6.18), into an iterative procedure. The aim is to fulfill a quantitative
condition on the level of particle distribution disorder, evaluated by means of the max-
imum ∇C value. The iterative algorithm is activated whether ∇C rises above a pre-
defined threshold and, at the end of the iterative shifting procedure the reinterpolation
of the physical quantities is required. This method produces results more accurate in
comparison to non iterative shifting methods but the number of iterations needed to
reach the predefined threshold increases with the resolution, augmenting significantly
the computational cost.

6.5 ALE-SPH schemes with Particle Shifting Techniques

6.5.1 Transport velocity in a quasi-Lagrangian scheme

The Fick’s law of diffusion has been applied even in the context of ALE-SPH initially
by Oger et al. (2016). The nature of the scheme, presented in Section 5.4, avoids the
reintepolation of the physical quantities. The shifting velocities is directly taken into
account, in a consistent way, by the transport velocity. Oger et al. (2016) proposed the
following law for the arbitrary velocity,

v̄0i = vi + δvi, (6.31)

based, as previously mentioned, on the field velocity adjusted with a velocity shifting
term δvi which value is far less than the fluid velocity vi,

δvi =


−U char2∆i∇Ci if U char2∆i‖∇Ci‖< 0.25‖vi‖

−0.25‖vi‖
∇Ci
‖∇Ci‖

otherwise
(6.32)

where U char = Mac0 is the characteristic velocity. The formulation limits the shifting to
a percentage of the fluid velocity, maintaining the quasi-Lagrangian approach. For par-
ticles close to the interface, detected using specific algorithms, the shifting is disabled
and the motion is purely Lagrangian.

6.5.2 Transport velocity based on Riemann solver

Another approach to shift the particles, reducing the spatial disordered with a differ-
ent transport velocity formulation, has been proposed in the PhD project of Neuhauser
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(2014), defined as acceleration correction method,

(
dv0i

dt

)
corr

=
J∑
j=1

[
pref
ρ0

+
c0

2

(
v0i − v0j

)
nij
]
∇Wijωj

+
J∂∑
j=1

[
pref
ρ0

+
c0

2

(
v0i − v0j

)
nij
]
Wijnjω∂j ,

(6.33)

where pref = ρ0c
2
0/γ is the uniform reference pressure. The transport velocity correc-

tion is computed in equation (6.33) with an upwind treatment needed to stabilize the
hyperbolic system of particle position, particle velocity and background pressure. An
additional term is added to the formulation introducing diffusion in order to smooth the
arbitrary velocity,

(
dv0i

dt

)
smooth

=

(
dv0i

dt

)
corr

− α
J∑
j=1

c0

hi

(
v0i − v0j

)
Wijωj, (6.34)

where α is a numerical parameter usually chosen equal to 0.1. The smoothed transport
acceleration is scaled with the physical time step, which implicitly limits its magnitude,
and it is introduced in the transport velocity formulation as,

v̄0 = vi + ∆t

(
dv0i

dt

)
smooth

. (6.35)

This correction is implemented in the code ASPHODEL, previously mentioned in Sec-
tion 5.5, its behaviour will be deeply investigated in Chapter 7.

6.5.3 δ-ALE-SPH

Recently, a new particle shifting methodology has been proposed by Antuono et al.
(2021) in the contest of ALE-SPH with some different treatments,

δvi = min
(∥∥∥-Mac0(2hi)∇̂Ci

∥∥∥ , Umax
2

)
. (6.36)

In the work of Antuono et al. (2021) the Navier-Stokes equations have been rewritten
in terms of density and velocity, introducing numerical diffusive terms.
An extensive recap of the state-of-the-art of PSTs is reported in Michel et al. (2021),
in which is firstly derived a general expression that can summarize equations (6.16),
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(6.30) and (6.32) in the following form,

δvi =


U chardchar∇̂Ci, if ‖U chardchar∇̂Ci‖< U lim

U lim ∇̂Ci
‖∇̂Ci‖

otherwise
(6.37)

This formulation depends on U char, the characteristic velocity, dchar, characteristic
length, and it is bounded by the limit U lim. Michel (2020) and Vergnaud (2020) pro-
posed to define the characteristic velocity as follow:

U char = max
j∈J

(∣∣∣∣(vj − vi)
xj − xi
‖xj − xi‖

∣∣∣∣) . (6.38)

Using relative velocities between neighbouring particles the shifting magnitude is in-
fluenced only by the local kinematics of the flow. Then, the formulation for the PST is
expanded as,

δvi = 0.5


−U char

(
R

∆

)3

R∇̂Ci, if

∥∥∥∥∥
(
R

∆

)3

R∇̂Ci
∥∥∥∥∥ < 1

2

R

∆

−U char 1

2

R

∆

∇̂Ci
‖∇̂Ci‖

otherwise

(6.39)

Michel (2020) and Vergnaud (2020) illustrated solid points regarding the approach to
define a novel PST but still some limitations are not debated.
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Chapter 7

Explicit Particle Shifting techniques

This chapter presents an investigation on the particle shifting technique developed in
the PhD project of Neuhauser (2014), which has been implemented in the code AS-
PHODEL, for the SPH-ALE numerical scheme described in Section 5.5. In ALE-SPH
schemes the particle position is controlled by the transport velocity v0. As demon-
strated by Oger et al. (2016), adopting a quasi-Lagrangian approach, in which the trans-
port velocity is defined applying a correction term to the fluid velocity, equation (6.31),
prevents the formation of anisotropic particle distribution. Different analyses have been
conducted aiming to optimize the explicit algorithm, equation (6.33), increasing the
effectiveness without introducing computational overhead.

The Taylor-Green vortex test case, see Section 3.1, has been used to study the shift-
ing techniques. Initially, the shifting formulations have been evaluated under a purely
kinematic point of view, only the governing equation for the particle position is solved
(first equation in the system (5.39)). In these analyses, the velocity and the pressure
fields are reinitialized through the exact solution, equation (3.1) for t = 0 s, at each
physical time step, to assess the role of the PSTs on the particle distribution quality. In
this kinematic analysis, the variation of physical quantities is not considered, the parti-
cle shifting quality is assessed through the evaluation of ∇C and its L∞ norm. Later,
the explicit shifting algorithms have been studied solving the full set of the Navier-
Stokes equations (system (5.39)), to analyze how the shifting methodologies affect the
accuracy of the results.

The results reported in the following sections have a fixed resolution, ∆/L =

0.00625, however, simulations with greater and smaller particle sizes have been tested
producing similar outcomes; the numerical tests start from an initial Cartesian particle
distribution. In the TGV the maximum fluid velocity, (U in equation (3.1)), has been
set equal to 1 m/s; in Weakly-Compressible SPH, the Mach number is usually assumed
in the order of 0.1, (Ma = ‖v‖/c0 < 0.1), and the minimum value of c0 is 10 m/s.
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7.1 Riemann-based particle shifting technique

Preliminary analysis has been conducted to better understand the formulation behaviour
presented in Section 6.5.2 and the role of the parameters in the correction term, defined
in equation (6.33). In this formulation, the reference speed of sound c0 is the leading
term, which affects both the correction term and the time step size.

Under a theoretical point of view, the formulation (6.33) uses the relative velocities,
it is invariant for uniform translations and because it is locally defined and scaled by ∆t,
which depends on the particle size, it results resolution-independent. Analytically, it is
expected that higher values of c0 increase the correction term, producing an increment
in the deviation of particles from the original Lagrangian streamlines, therefore, the role
of c0 is deeply analyzed in the following section.

7.1.1 Results solving the kinematic equation

As previously mentioned, initially the focus has been posed on the kinematic only, to
assess the capability of equation (6.33) in maintaining low level in particles disorder,
therefore, at each physical time step the velocity and the pressure fields have been reini-
tialized at t = 0 s, following equation (3.1), to force a continuous perturbation in the
particle positions. The value of c0 has been gradually incremented, and results for c0=
10, 20, 100 m/s are shown in Figure 7.1. It can be noted in Figure 7.1(a) that the maxi-
mum value of∇C is reduced by one order of magnitude increasing the reference speed
of sound from 10 m/s to 100 m/s, this behaviour can be observed even in the ∇C field,
Figure 7.1(b), (c) and (d).

7.1.2 Results solving the Navier-Stokes equations

Later, the experiments have been repeated using the above-mentioned values of c0,
while solving the full set of Navier-Stokes equations (5.48). In these tests the kine-
matic viscosity ν has been set equal to 0.01 m2/s, meaning a Reynolds number equal to
100. Similar results have been founded, in Figure 7.2 the decreasing trends in the L∞
norm of∇C is due to the decay of the maximum velocity.

Computational times for the simulations presented in Figure 7.2 are reported in
Figure 7.3 normalized with the maximum computational time TMax for c0 equal to 10
m/s. As expected, increasing the reference speed of sound augments the magnitude
of the shifting velocity, improving the strength of the methodology, but, as relevant
drawback, it reduces the size of the time step raising significantly the CPU time due to
the CFL condition.
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(d) c0 = 100 m/s.

Figure 7.1 TGV test case. Neuhauser (2014) formulation, imposed analytical solution.
Results for ∆/L = 0.00625 at t = 0.2 s.
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(c) c0 = 20 m/s.
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(d) c0 = 100 m/s.

Figure 7.2 TGV test case. Neuhauser (2014) formulation, solved simulation. Results
for ∆/L = 0.00625 at t = 0.2 s.
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Figure 7.3 TGV test case. Neuhauser (2014) formulation. Time comparison for c0 =
10, 20, and 100 m/s.

7.2 Improvement of a Riemann-based particle shifting technique

Following, using the information obtained in the preliminary studies, presented in Sec-
tion 7.1, two different formulations are proposed to enhance the equation (6.33).

7.2.1 Particle Shifting coefficient

In the first optimization proposed, an empirical particle shifting coefficient, PS , has been
introduced to directly increment the reference pressure, keeping the particle shifting
term elevate even in case of low kinematics; the formulation for the correction, defined
in equation (6.33), is upgraded as follow,

(
dv0i

dt

)
corr

=
J∑
j=1

[
Ps
pref
ρ0

+
c0

2

(
v0i − v0j

)
nij
]
∇Wijωj

+
J∂∑
j=1

[
pref
ρ0

+
c0

2

(
v0i − v0j

)
nij
]
Wijnjω∂j ,

(7.1)

A sensitivity analysis on the particle shifting coefficient has been conducted to deter-
mine its optimal value. The L∞ and the L2 norms for the particle concentration gradient
are shown in Figure 7.4, for PS = 2, 5, 10, 20, these results have been obtained impos-
ing the initial analytical solution, at t = 0 s, during the entire simulation. Note that the
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original formulation of Neuhauser (2014) is recalled using PS equal to 1.
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Figure 7.4 TGV test case. Sensitive analysis for PS imposed analytical solutions. Re-
sults for ∆/L = 0.00625

Increasing the PS value improves the particle distribution quality until it is reached
an optimal value. The PS value cannot be augmented indefinitely, the Fick’s based
techniques move the particles towards areas of lower concentration, imposing the PS
value higher than 10, Figure 7.5 (d), leads to numerical instabilities, as seen in Figure
7.4, the magnitude of the shifting correction tends to displace the particles beyond their
optimal location, affecting negatively the particle distribution, as shown in Figure 7.5.
In the following simulations, the equation (7.1) is tuned with PS equal to 10.

7.2.2 Fictitious Pressure field

In the second optimization proposed, a fictitious pressure field, P F , is introduced to
indirectly connect the shifting correction with the governing equations. In fact, in ALE-
SPH scheme, there is no explicit theoretical connection between the transport velocity
correction term, equation (6.33) and the other equations of the system (5.39), in par-
ticular the volume equation (second equation in the system (5.39)), which is computed
with the divergence of the transport velocity itself.

To overcome this lack, a formalism, that recalls the Euler equations (5.10), is used
to introduce a dependency between the changes in the particle volume, equation (7.2a),
and the changes in the Lagrangian trajectory, equation (7.2b), with the following for-
mulation,

dω

dt
= −ω∇v0 (7.2a)(

dv0

dt

)
corr

= −1

ρ
∇P F (7.2b)

These equations represent respectively the volume variation and the transport velocity
variation with respect to the fluid velocity. P F is a fictitious pressure field and, to create
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(c) c0 = 10 m/s. PS = 10 at t = 0.25 s.
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(d) c0 = 10 m/s. PS = 20 at t = 0.02 s.

Figure 7.5 Sensitive analysis for PS imposed analytical solutions. Results for ∆/L =
0.00625, a restricted domain is shown for visual evaluation.
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the sought connection, it is defined relying on the particle volume ω and the its original
value ω0,

P F =
ρ0c

2
0

γ
+
ρ0c

2
0

γ

[(ω0

ω

)γ
− 1
]

(7.3)

To introduce the link between the divergence of the transport velocity and the variation
of volume, equation (6.33) has been rewritten,

(
dv0i

dt

)
corr

=
J∑
j=1

[
−1

ρ0

P F
i + P F

j

2
− c0

2
(v0i − v0j) nij

]
∇Wijωj

+
J∂∑
j=1

[
pref
ρ0

+
c0

2

(
v0i − v0j

)
nij
]
Wijnjω∂j ,

(7.4)

The fictitious pressure field P F does not act on the physics of the problem, it is only
related to the definition of the transport velocity correction. It is thought to be a smooth-
ing term and it is able to counterbalance volume changes.

To evaluate whether the novel particle shifting techniques, equations (7.1) and (7.4),
have been optimized, compared to the original formulation (6.33), the analyses de-
scribed in Section 7.1 have been repeated, using the reference speed of sound equal to
10 m/s, which corresponds to its minimal value.

7.2.3 Results solving the kinematic equation

As a first investigation step, the initial analytical TGV solution has been imposed to
evaluate exclusively how the new formulations are reflected on the particles kinematic
and on the particle distribution quality.

The L∞ norm and the∇C fields are shown in Figure 7.6. Compared to the original
formulation, the particle shifting coefficient and the fictitious pressure field are able to
maintain a lower particle concentration gradient in the entire domain during the sim-
ulation. Moreover, the new results are similar to the ones obtained with the original
formulation but using c0 = 100 m/s instead, Figure 7.1 (d), which is an order of magni-
tude higher than the one adopted in these tests.

7.2.4 Results solving the Navier-Stokes equations

As a second investigation step, the simulations have been repeated solving the full set
of governing equations to include the accuracy evaluation for the proposed particle
shifting techniques. Again, the L∞ norm and the ∇C fields are shown in Figure 7.7,
these results confirm the effectiveness of equations (7.1) and (7.4), demonstrating that
the particle concentration uniformity is enhanced.
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(c) c0 = 10 m/s. Particle shifting PS .
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(d) c0 = 10 m/s. Particle shifting PF .

Figure 7.6 TGV test case. Formulations comparison: (b) equation (6.33) Neuhauser
(2014) formulation, (c) equation (7.1) shifting technique with particle shifting coeffi-
cient PS , (d) equation (7.4) shifting technique with fictitious pressure field P F , imposed
analytical solution. Results for ∆/L = 0.00625 at t = 0.2 s.
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(b) c0 = 10 m/s. Neuhauser (2014).
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0.00 0.25 0.50 0.75 1.00

x[m]

0.00

0.25

0.50

0.75

1.00

y
[m

]

10−4

10−3

10−2

10−1

∇
C
i

(d) c0 = 10 m/s. Particle shifting PF .

Figure 7.7 TGV test case. Formulations comparison: (b) equation(6.33) Neuhauser
(2014) formulation, (c) equation (7.1) shifting technique with particle shifting coeffi-
cient PS , (d) equation (7.4) shifting technique with fictitious pressure field P F , solved
simulations. Results for ∆/L = 0.00625 at t = 0.2 s.
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Figure 7.8 TGV test case. Time comparison: Neuhauser (2014) formulation, particle
shifting coefficient PS , fictitious pressure field P F .

In Figure 7.3 the computational times are shown, as expected introducing a particle
shifting coefficient does not add any computational time while an additional fictitious
pressure field produces an affordable overhead.

The error between the analytical velocity and the computed velocity has been eval-
uated; a convergence analysis has been carried on, using ∆/L = 0.05, 0.025, 0.0125,
0.00625 and h/∆ equal to 2, showing the results in Figure 7.9, while the numerical
values for the convergence rates θ and the norms of the velocity errors are reported in
Table 7.1. The theoretical second-order convergence rate is restored, before reaching
saturation, using the particle shifting coefficient and the fictitious pressure field formu-
lations. The velocity field and the error on the velocity field are shown in Figures 7.10,

Neuhauser (2014) PS P F

∆/L L2(vx) θ L2(vx) θ L2(vx) θ

0.05 0.16288 0.13321 0.12889

0.025 0.05559 1.55 0.02594 2.36 0.02846 2.17

0.0125 0.03373 0.72 0.00667 1.95 0.00760 1.90

0.00625 0.01761 0.93 0.00238 0.68 0.00542 0.48

Table 7.1 TGV test case. Convergence analysis results, L2|vx − vxA| and convergence
ratio θ, explicit shifting.
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comparison at t = 1s.
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Figure 7.10 TGV test case. ∆/L = 0.00625, Neuhauser (2014) formulation: (a) veloc-
ity x component, (b) error on the velocity x component at t = 1 s.
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Figure 7.11 TGV test case. ∆/L = 0.00625, particle shifting coefficient PS: (a) velocity
x component, (b) error on the velocity x component at t = 1 s.

7.11 and 7.12 for a visual evaluation.
The analysis of the kinetic energy shows that the new proposed formulations closely

match the analytical solution, (Figure 7.13 (c) and Figure 7.13 (d) with curves basically
overlapped), while the original formulation (Figure 7.13 (b)) is less accurate; these
trends are better seen looking at the errors in Figure 7.13 (a), which demonstrate that
the novel particle shifting technique reduce the errors by almost an order of magnitude
compared to the original one.

7.3 Summary and conclusions

In these studies, the explicit particle shifting technique presented in Neuhauser (2014)
has been optimized, showing relevant improvements. Two different formulations have
been proposed, in the first one, the magnitude of the shifting has been augmented
through a coefficient, while in the second one, a fictitious pressure field has been in-
troduced. Both significantly improve the quality of the particle distribution as seen in
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Figure 7.12 TGV test case. ∆/L = 0.00625, fictitious pressure field P F : (a) velocity x
component, (b) error on the velocity x component at t = 1 s.
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Figure 7.13 TGV test case. Kinematic energy analysis: (a) Kinematic energy error
(b) (6.33), Neuhauser (2014) formulation, (c) (7.1), particle shifting coefficient PS , (d)
(7.4), fictitious pressure field P F at t = 0.2s.
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Figure 7.7, gaining almost an order of magnitude in accuracy, the convergence rate has
been restored to the theoretical one, higher than 2, before reaching saturation. Adopt-
ing the same value of reference speed of sound keeps the computational times similar
for the different shifting formulation, as reported in Figure 7.8; the fictitious pressure
formulation has slightly increased the computational overheads but it does not produce
the expected global improvements, nevertheless deeper investigation could try to better
catch these aspects. In this thesis, due to its simplicity and effectiveness, the particle
shifting technique presented in equation (7.1) has been used in other validation tests as
optimized explicit formulation.
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Chapter 8

Implicit Iterative Particle Shifting Technique

In this work a novel shifting method is presented aiming to solve the issues of the clas-
sical explicit shifting techniques. The schemes, described in Chapter 6, assume that
particles concentration is a valid indicator for the discretization error of the SPH inter-
polation accounting for particles disorder and thus, the particle distribution is adjusted
accordingly, (Colagrossi et al. 2012). However, the explicit nature of these techniques
implies that they cannot guarantee a predefined and spatially homogeneous SPH dis-
cretization error, nor do they ensure that the discretization error is minimised, either
locally or globally. For these reasons, none of the methods reported in Chapter 6 is
identified as broadly and generally accepted as superior, indeed particle shifting tech-
niques are still a field under investigation.

In the next sections, a new implicit particle shifting method is presented, in which
the corrected particle positions are computed adopting an iterative scheme to obtain
a spatially homogeneous particle distribution, imposing a predefined level of particle
concentration. For clarity, the novel shifting method is derived in 1D and 2D.

8.1 1D formulation

The technique can be described starting by defining a generic function in 1D f(X): IRn →
IR where X = (x1, ..., xi, ..., xn) represents the vector of particles position and n the
number of particles in the domain. The objective is to identify the new particle’s posi-
tion array X̄ = (x̄1, ..., x̄i, ..., x̄n) in which the following condition holds,

fi(X̄) = 0, i = 1, ..., n, (8.1)

where fi(X̄) is the value of the scalar function f at particle i.
To find the roots of equation (8.1) a Newton-Raphson procedure is adopted, therefore
the Taylor expansion truncated at the first-order of function f at position x̄i has been
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considered,

fi(X̄) = fi(X) +
J∑
j=1

∂fi(X)

∂xj
(x̄j − xj) +O(x̄i − xi)2. (8.2)

Here it has been assumed that the function f corresponds to the derivative of the particle
concentration,

f(X) =
∂C(X)

∂x
, (8.3)

therefore,
∂f(X)

∂xj
=

∂

∂xj

(
∂C(X)

∂x

)
, (8.4)

substituting equations (8.3) and ( 8.4) in equation (8.2) leads to

∂Ci(X̄)

∂x
=
∂Ci(X)

∂x
+

J∑
j=1

∂

∂xj

(
∂Ci(X)

∂x

)
(x̄j − xj) +O(x̄i − xi)2. (8.5)

The particle concentration SPH derivative approximation is,

∂Ci(X)

∂x
=

K∑
k=1

∂W (xi − xk)
∂xk

ωk, (8.6)

where K is the number of neighbouring particles inside the kernel support of particle i.
Then, the summation in equation (8.5) is reformulated

∂

∂xj

(
∂C(X)

∂x

)
=

K∑
k=1

∂

∂xj

(
∂W (xi − xk)

∂xk

)
ωk. (8.7)

The only term in equation (8.7) which is non-null is the one in which j = k, therefore,
it is rewritten as,

∂

∂xj

(
∂Ci(X)

∂x

)
=
∂2W (xi − xj)

∂x2
j

ωj. (8.8)

Substituting equation (8.8) in equation (8.5) leads to

∂Ci(X̄)

∂x
=
∂Ci(X)

∂x
+

J∑
j=1

∂2W (xi − xj )

∂x2
j

ωj(x̄j − xj) +O(x̄i − xi)2. (8.9)

As explained before, in order to improve the accuracy of the SPH operator at the discrete
level, the particle concentration C has to be uniform and thus its derivative should be
equal to zero. Imposing this constraint in equation (8.9), and neglecting non-linear
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terms, leads to the following equation for the generic particle i,

J∑
j=1

∂2W (xi − xj)
∂x2

j

ωj (x̄j − xj) =
∂Ci(X)

∂x
. (8.10)

In equation (8.10) the terms on the left-hand side (x̄j − xj) are the unknowns which
correspond to the particle shifting δxj for j = 1, ...., n, which have to be applied to
all particles respectively to obtain a uniform particle concentration. This leads to a
linear system of equations which can be expressed in matrix form (where W (xi − xj)
is replaced with Wij for brevity) as follows:



∂2W11

∂x21
ω1 . . . ∂2W1i

∂x2i
ωi . . . ∂2W1n

∂x2n
ωn

...
...

...
∂2Wi1

∂x21
ω1 . . . ∂2Wii

∂x2i
ωi . . . ∂2Win

∂x2n
ωn

...
...

...
∂2Wn1

∂x21
ω1 . . . ∂2Wni

∂x2i
ωi . . . ∂2Wnn

∂x2n
ωn


︸ ︷︷ ︸

A



(x̄1 − x1)
...

(x̄i − xi)
...

(x̄n − xn)


︸ ︷︷ ︸

X

≈



∂C(x1)
∂x
...

∂C(xi)
∂x
...

∂C(xn)
∂x


︸ ︷︷ ︸

B

(8.11)

By solving the linear system of equation (8.11), the new particle positions X̄ = (x̄1, ...x̄i, ...x̄n)

are found.

Note that in equation (8.2) the problem has been linearised by neglecting high-order
term in the Taylor series, this effectively corresponds to a Newton-Raphson algorithm
to find the solution of equation (8.9) and thus, an iterative approach is necessary in order
to obtain the particle distribution which fulfil the condition ∂Ci/∂x=0 for i = 1, ..., n.

8.2 2D formulation

Similarly, a generic function is defined in 2D, f(X,Y): IR2n → IR with X = (x1, ..., xi, ..., xn)

and Y = (y1, ..., yi, ..., yn). As previously explained for the 1D case, the objective is
to obtain the updated particle distribution represented by X̄ = (x̄1, ..., x̄i, ..., x̄n) and
Ȳ = (ȳ1, ..., ȳi, ..., ȳn) in which

fi(X̄, Ȳ) = 0, i = 1, ..., n. (8.12)

Recalling equation (8.2), the Taylor series expansion truncated at the first order of func-
tion f at position x̄i, ȳi is
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fi(X̄, Ȳ) =fi(X,Y) +
J∑
j=1

∂fi(X,Y)

∂xj
(x̄j − xj)+

+
J∑
j=1

∂fi(X,Y)

∂yj
(ȳj − yj) +O((x̄i − xi)(ȳi − yi))2.

(8.13)

For the two-dimensional case, two different functions express the gradient of particle
concentration components along the two axes,

f (1)(X,Y) =
∂C(X,Y)

∂x
, (8.14)

f (2)(X,Y) =
∂C(X,Y)

∂y
, (8.15)

therefore, equations (8.14) and (8.15) are substituted separately in equation (8.13) lead-
ing to separate equations for each spatial component,

∂Ci(X̄, Ȳ)

∂x
=
∂Ci(X,Y)

∂x
+

J∑
j=1

∂

∂xj

[
∂Ci(X,Y)

∂x

]
︸ ︷︷ ︸

second derivative

(x̄i − xi) +

+
J∑
j=1

∂

∂yj

[
∂Ci(X,Y)

∂x

]
︸ ︷︷ ︸

cross derivative

(ȳi − yi) +O((x̄i − xi)(ȳi − yi))2,

(8.16)

along x axis,

∂Ci(X̄, Ȳ)

∂y
=
∂Ci(X,Y)

∂y
+

J∑
j=1

∂

∂xj

[
∂Ci(X,Y)

∂y

]
︸ ︷︷ ︸

cross derivative

(x̄i − xi) +

+
J∑
j=1

∂

∂yj

[
∂Ci(X,Y)

∂y

]
︸ ︷︷ ︸

second derivative

(ȳi − yi) +O((x̄i − xi)(ȳi − yi))2,

(8.17)

along y axis.
The SPH approximation for∇C components in 2D are

∂Ci(X,Y)

∂x
=

K∑
k=1

∂W ((xi − xk) , (yi − yk))

∂xk
ωk, (8.18)
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∂Ci(X,Y)

∂y
=

K∑
k=1

∂W ((xi − xk) , (yi − yk))

∂yk
ωk. (8.19)

The second and the cross derivatives of equations (8.16) and (8.17) are manipulated as
previously illustrated in equation (8.7).

For the x axis, introducing equation (8.18) in the first-order term of equation (8.16),

∂

∂xj

(
∂Ci(X,Y)

∂x

)
=

K∑
k=1

∂

∂xj

(
∂W ((xi − xk) , (yi − yk))

∂xk

)
ωk, (8.20)

∂

∂yj

(
∂Ci(X,Y)

∂x

)
=

K∑
k=1

∂

∂yj

(
∂W ((xi − xk) , (yi − yk))

∂xk

)
ωk, (8.21)

and for y axis, introducing equation (8.19) in the first-order term of equation (8.17),

∂

∂xj

(
∂Ci(X,Y)

∂y

)
=

K∑
k=1

∂

∂xj

(
∂W ((xi − xk) , (yi − yk))

∂yk

)
ωk, (8.22)

∂

∂yj

(
∂Ci(X,Y)

∂y

)
=

K∑
k=1

∂

∂yj

(
∂W ((xi − xk) , (yi − yk))

∂yk

)
ωk. (8.23)

On the RHS of equations (8.20) and (8.23) the only non-null terms of the sums are the
ones where j = k . Therefore equations (8.20) and (8.23) are written as,

∂

∂xj

(
∂Ci(X,Y)

∂x

)
=
∂2W ((xi − xk) , (yi − yk))

∂x2
j

ωj, (8.24)

∂

∂yj

(
∂Ci(X,Y)

∂x

)
=
∂2W ((xi − xk) , (yi − yk))

∂yj∂xj
ωj, (8.25)

along x axis,

∂

∂xj

(
∂Ci(X,Y)

∂y

)
=
∂2W ((xi − xk) , (yi − yk))

∂xj∂yj
ωj, (8.26)

∂

∂yj

(
∂Ci(X,Y)

∂y

)
=
∂2W ((xi − xk) , (yi − yk))

∂y2
j

ωj, (8.27)

along y axis.
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Substituting equations (8.24) and (8.27) in (8.16) and (8.17) leads to

∂Ci(X̄, Ȳ)

∂x
=
∂Ci(X,Y)

∂x
+

+
J∑
j=1

∂2W ((xi − xk) , (yi − yk))

∂x2
j

ωj(x̄j − xj)+

+
J∑
j=1

∂2W ((xi − xk) , (yi − yk))

∂xj∂yj
ωj(ȳj − yj)+

+O((x̄i − xi)(ȳi − yi))2,

(8.28)

for the x axis,

∂Ci(X̄, Ȳ)

∂y
=
∂Ci(X,Y)

∂y
+

+
J∑
j=1

∂2W ((xi − xk) , (yi − yk))

∂yj∂xj
ωj(x̄j − xj)+

+
J∑
j=1

∂2W ((xi − xk) , (yi − yk))

∂y2
j

ωj(ȳj − yj)+

+O((x̄i − xi)(ȳi − yi))2,

(8.29)

for y axis.
As explained previously, in order to improve the accuracy of the SPH operator at

the discrete level, the particle concentration C has to be uniform and therefore each
component of its derivatives should be equal to zero. In 2D, in order to satisfy equation
(8.12) and by neglecting non-linear terms, two linear equations have to be solved to for
the generic particle i,

J∑
j=1

∂2W ((xi − xj) , (yi − yk))
∂x2

j

ωj (x̄j − xj) +

+
J∑
j=1

∂2W ((xi − xj) , (yi − yk))
∂xj∂yj

ωj (ȳj − yj) =
∂Ci(X,Y)

∂x
,

(8.30)

and

J∑
j=1

∂2W ((xi − xj) , (yi − yk))
∂yj∂xj

ωj (x̄j − xj) +

+
J∑
j=1

∂2W ((xi − xj) , (yi − yk))
∂y2

j

ωj (ȳj − yj) =
∂Ci(X,Y)

∂y
.

(8.31)

The notationW ((xi−xj), (yi−yj)) is shorten toWij , the 2D system of linear equations
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in a matrix form is:
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The extension in 3D is analogous, in general there are d · n linear equations in the
system, where d is number of spatial dimensions and, the size of A is d · n× d · n.

The matrix A, defined in equations (8.11) and (8.32), is sparse and it is convenient
to adopt an iterative solver for the linear system, similar to the one used for the Poisson
equation of pressure in incompressible SPH schemes, (Xu et al. 2009; Lind et al. 2012;
Chow et al. 2018). In the present work the Jacobi preconditioner and the BiCGStab
have been utilized and the Wendland C6 kernel, (equation (4.29)), has been used in all
the SPH interpolations. In the implicit formulation, two different levels of iterations are
present, the external one is related to the Newton-Raphson algorithm adopted to solve
the non-linear equations (8.2) and (8.13, whereas internal iterations are referred to the
linear system solver, equations (8.11) and (8.32) in 1D and 2D.

8.3 Numerical test cases

In order to validate the proposed method two different numerical experiments are ini-
tially presented in this section. A static case is used to analyze the robustness of the IIPS
algorithm for different SPH parameters (such as the smoothing length h and the particle
size ∆). Later, the algorithm has been evaluated in a test that generates a continuous
distortion of the particle distribution. In this second numerical assessment, particles are
kept in motion by imposing the kinematic that reproduces counter-rotating vortexes in
the domain, through the entire simulation. This flow (that recall the TGV motion, see
Section 3.1) has been chosen as a test case because it is known to be very demanding in
maintaining uniformity in the distribution.

In both test cases, no physical quantities are attached to the particles (velocity or
pressure), only the accuracy of the SPH approximation on the test function is evaluated.
In this way, since the main area of interest is the accuracy of the discrete operators, the
effectiveness of the proposed iterative shifting formulation is verified regardless of the
properties of the specific meshless solver adopted.

The non-dimensional L2 and L∞ norms of the ∇C error, defined in Section 3.4,
have been employed as a measure of particle disorder. A comparison (in terms of effi-
ciency and accuracy) with the explicit shifting formulation proposed by Vacondio and
Rogers (2017) has also been conducted. The accuracy of the spatial SPH interpolation
has been evaluated using the test function (3.6) and its derivative norm (3.7).

8.3.1 Static test case

The aim of this numerical experiment is to assess how effective and efficient the IIPS
formulation is in restoring a uniform particle distribution starting from a pseudo-random
one. The particles distribution perturbation is introduced exclusively at the beginning
of the numerical experiment, thus, this test is referred as ”static”. For this purpose a bi-
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periodic squared domain has been initialized with particles placed on a Cartesian grid,
then a pseudo-random normalized perturbation with standard deviation σ has been as-
signed to the particles position and the IIPS algorithm has been activated. With the aim
of investigating the performance of the proposed formulation, the IIPS procedure has
been run for 100 Newton-Raphson (NR) iterations, itMax, as described in the pseudo-
code (Algorithm 1). At the end of each iteration, the particle positions are updated using
the results obtained solving the linear system of equations (8.32).

Algorithm 1 Static case
1: procedure IMPLICIT ITERATIVE SHIFTING .
2: CartesianGridDistribution()
3: RandomPerturbation σ
4: Compute∇Ci, L2(∇C), L2 (∂xf)
5: while it ≤ itMax do
6: AssembleMatrix(∇Ci)
7: LinearSystemSolver(AssembleMatrix)
8: UpdateParticlePosition(Implicit PST)
9: Compute L2(∇C), L2 (∂xf)

10: end while
11: end procedure

Figure 8.1 shows the particle distribution before and after the IIPS procedure for
a resolution ∆/L = 0.05. It is immediately noted how the particle stencil changes,
particles arrange themselves into a triangular-staggered configuration. This distribution
is reached for the different resolutions (∆/L = 0.025, 0.0125) presented. It is notable
that the final particle configuration is similar to a hexagonal-centred distribution which
represents a minimum extreme for ∇C in the particle system configuration, as demon-
strated in Colagrossi et al. (2012).

Figure 8.2 shows the maps of∇C magnitude at the beginning, and at the end of the
simulation, it can be seen that the magnitude is reduced in the whole domain by more
than two orders of magnitude.

The error on the test function gradient and the test function itself are shown in Figure
8.3 and in Figure 8.3. The error on the test function gradient is reduced and the quality
of the SPH approximation for the test function itself increases, distortions, due to the
anisotropy of particle distribution, are corrected.

As previously mentioned, different resolutions have been analysed with an increas-
ingly initial disorder, and it has been verified that the IIPS algorithm is able to generate
a particle distribution that globally minimizes the L2 (∇C). Herein, two different val-
ues of σ have been considered, as the initial maximum value of perturbation, and results
are reported in Figure 8.5.

In Figure 8.5 (b) and (d) the L2 (∇C) for three different particle size (∆/L =

0.05, 0.025, 0.0125) is shown against the Newton-Raphson (NR) iterations of the IIPS.
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Figure 8.1 Static test case. ∆/L = 0.05 and initial perturbation σ/∆ = 0.10. Particle
distribution at (a) it = 0 and (b) it = 10.
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Figure 8.2 Static test case. ∆/L = 0.025 and initial perturbation σ/∆ = 0.10. ∇C
magnitude at (a) it = 0 and (b) it = 10. Note that images have different colorbars.
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colorbars.
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Figure 8.4 Static test case. ∆/L = 0.025 and initial perturbation σ/∆ = 0.10. ∂xfSPH

at (a) it = 0 and (b) it = 10. Note that images have different colorbars.

80



0 1 2 3 4 5 6 7 8 9 10

NR Iteration

10−4

10−3

10−2

10−1

L
2
(∂
x
f

)

∆/L = 0.05

∆/L = 0.025

∆/L = 0.0125

Cartesian Grid

(a)

0 1 2 3 4 5 6 7 8 9 10

NR Iteration

10−4

10−3

10−2

L
2
(∇
C

)

∆/L = 0.05

∆/L = 0.025

∆/L = 0.0125

(b)

0 1 2 3 4 5 6 7 8 9 10

NR Iteration

10−4

10−3

10−2

10−1

L
2
(∂
x
f

)

∆/L = 0.05

∆/L = 0.025

∆/L = 0.0125

Cartesian Grid

(c)

0 1 2 3 4 5 6 7 8 9 10

NR Iteration

10−4

10−3

10−2

L
2
(∇
C

)

∆/L = 0.05

∆/L = 0.025

∆/L = 0.0125

(d)

Figure 8.5 Static test case. Initial perturbation σ/∆ = 0.10 (top) and σ/∆ = 0.25
(bottom).
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Figure 8.6 Static test case. ∆/L = 0.0125 and initial perturbation σ/∆ = 0.10.

It is observed that the L2(∇C) is reduced by almost three orders of magnitude and that
the minimum value is reached after approximately 5 Newton-Raphson iterations, re-
gardless of the resolution adopted and the initial level of particle disorder. This demon-
strates that the IIPS algorithm is robust and generates a uniform particle distribution
even starting from a significant initial disorder in a few Newton-Raphson iterations.

In order to assess the quality of the particle distribution in terms of SPH accuracy,
the L2 (∂xf) norm is shown in Figure 8.5 (a) and (c). As a reference, in the same figure
the same norms obtained adopting no initial disorder (which corresponds to an initial
Cartesian particle distribution) are plotted with dashed lines, regardless of the initial
values of σ/∆, an accuracy similar to the Cartesian one is achieved with less than 4
iterations, demonstrating that the IIPS algorithm is able to remove the effects of particle
anisotropy from the SPH operators.

These initial tests, described above, have been conducted using a tolerance εt equal
to 10−6 for the linear system iterative solver. However, since its value clearly affects the
efficiency, additional analysis have been carried out to evaluate how its value affect the
overall accuracy; therefore εt = 0.1, 0.01, 10−6 have been tested, for ∆/L = 0.0125
and σ/∆ = 0.10.

Figure 8.6 shows the norms L2 (∇C) and L2 (∂xf) against the number of Newton-
Raphson iterations, while using εt = 0.01, εt = 10−6 results are similar, adopting
εt = 0.1 both norms are not monotonically decreasing, suggesting that this value is not
adequate to obtain a robust convergence of the IIPS algorithm.

The number of linear solver iterations and the cumulative computational time at
each Newton-Raphson iteration are shown in Figure 8.7. Choosing εt = 0.01 is a good
compromise between computational cost and accuracy, this value will be used in the
following numerical tests.

A convergence analysis, for the static test case, has been performed, following the
procedure reported in the pseudo-code (Algorithm 1), with itMax = 10. In these eval-
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Figure 8.7 Static test case. (a) iteration needed to reach the ε value by the linear system
solver, (b) normalized CPU time, scaled on ε = 10−6, using tolerance (normalized
residual) value in the linear system solver.

h
∆

= 2.0 h
∆

= 1.6 h
∆

= 1.3

∆/L L2(∂xf) θ L2(∂xf) θ L2(∂xf) θ

0.05 0.007532 0.005754 0.008354

0.025 0.001020 2.89 0.001327 2.12 0.004109 1.19

0.0125 0.000159 2.68 0.000452 1.55 0.001919 1.10

0.01 0.000094 2.35 0.000352 1.11 0.001557 0.92

0.00625 0.000038 1.93 0.000231 0.90 0.001022 0.89

0.003125 0.000018 1.11 0.000149 0.64 0.000628 0.70

0.0015625 0.000013 0.43 0.000127 0.22 0.000484 0.38

Table 8.1 Static test case. Convergence analysis results, L2(∂xf) and convergence ratio
θ.

uations, as previously illustrated, an initial particle distribution with σ/∆ = 0.10 is
considered, then, at each Newton-Raphson iteration, the implicit procedure is called,
particles are shifted exclusively using the implicit displacements obtained through the
formulations expressed in equation (8.32) and the L2(∂xf) is computed. In Figure 8.8
the values of L2(∂xf) obtained at the end of the NR iterations are shown using dif-
ferent kernel size and in Table 8.1 these values are reported together with the order of
convergence θ.

The SPH spatial interpolation has two main different sources of error, the smooth-
ing and the discretization error, generated respectively by the approximation of equation
(4.3) and by the quadrature equation (4.31). For each h/∆ adopted in the convergence
analysis, the L2(∂xf) reduces when the smoothing error is much larger than the dis-
cretization error, (Quinlan et al. 2006). Smaller h/∆ corresponds to larger discretiza-
tion error, which therefore becomes dominant for a larger ∆ causing saturation for the
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Figure 8.8 Static test case. Convergence analysis results, L2(∂xf) for different h/∆
values.

overall convergence.
Looking at the convergence rate θ in Table 8.1, for h/∆ = 2.0, greater than theo-

retical order of convergence (equal to 2 for the adopted kernel) are obtained for ∆/L >

0.0125 m, possibly this is due to the fact that the IIPS scheme reduces also the dis-
cretization error when the resolution is increased. The capability of the IIPS proce-
dure to restore the SPH spatial convergence becomes apparent comparing Figure 8.8 to
Figure 4.2 (b), obtained with Cartesian distributions, implying that the IIPS is able to
completely remove the SPH discretization error.

Having established that the IIPS is able to minimize the discretization error, its
performances against a different explicit shifting methodology are evaluated. Through
the static test case, the implicit iterative method has been compared with a methodology
that recalls the explicit iterative method proposed by Vacondio and Rogers (2017). At
each explicit iteration the gradient of particles concentration, ∇C, is computed and
particles are moved as described in equation (6.13), (adopting D = 0.5, as suggested
in Lind et al. (2012)), with the aim to analyses the formulation effectiveness in term of
the total number of iterations. The comparison between the implicit iterative and the
explicit iterative methodologies has been conducted starting form the same perturbed
particle distribution, with σ/∆ = 0.10, using h/∆ = 2.0 and ∆/L = 0.0125, to
assess the number of iterations and the computational time needed to reach a predefined
level of the L2 (∂xf), using different steepness of the test function, considering λ/L =

1, 0.5, 0.25 which correspond respectively to a 40, 20, 10 particles in wavelength.
Figure 8.9 shows the L2 (∂xf) against the number of iterations needed to reach the

Cartesian grid accuracy (with a 5% tolerance), for the implicit iterative (Figure 8.9 (a))
and explicit iterative (Figure 8.9 (b)) shifting procedures, whereas Table 8.2 reports
the computational time. While the implicit method reaches the Cartesian accuracy in
maximum of 3 Newton-Raphson iterations, the explicit method requires 68, 380 and
2408 iterations to achieve similar accuracy.
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Figure 8.9 Static test case. ∆/L = 0.0125 and initial perturbation σ/∆ = 0.10. (a)
implicit iterative particle shifting method, (b) explicit iterative shifting method.

Implicit Explicit

Iteration Time [ms] Iteration Time [ms]

λ/L = 0.25 1 66 68 2619

λ/L = 0.5 2 126 380 13964

λ/L = 1.0 3 207 2408 98302

Table 8.2 Static test case. Particle Shifting Techniques comparison

Moreover, for the explicit algorithm, the total number of iterations strongly depends
on λ. Therefore, despite the fact that each iteration of the IIPS has a larger computa-
tional cost (due to the fact that a linear system with d× n unknowns has to be solved),
it is always more efficient, with speedups varying from 40 for λ/L = 0.25 to 475 for
λ/L = 1.

The estimated extra memory required to the implicit procedure is proportional to
d · n · nb, the number of non-null elements on the matrix, where nb is the number of
neighbours for each particle.

8.3.2 Kinematic test case

The second validation test is a purely kinematic case, the aim is to test the capabil-
ity of IIPS in maintaining low discretization error, while an external motion constantly
perturbs the distribution. For this reason, this test is referred as ”kinematic” because
the perturbation in the particles distribution is introduced during the entire simulation.
Specifically, particles move following the Lagrangian trajectories defined by the inte-
gration in time of the analytical TGV initial velocity field, at t = 0 s:

∆xi =− Ucos(2πxi/L)sin(2πyi/L)∆t

∆yi =Usin(2πxi/L)cos(2πyi/L)∆t
(8.33)
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where ∆x and ∆y are the particles’ displacements in the vortexes on the x and y axis,
respectively, U is equal to 1 m/s and L is equal to 1 m. The reference speed of sound
c0 =10U and the CFL = 0.2 have been set to compute an equivalent time step size,
∆t = 0.2(∆/c0), to obtain the particle displacement. In order to assess which one
guarantees the lower error in the SPH interpolation and optimizes the computational
costs, two methodologies, named Procedure A, and Procedure B have been investigated
and presented respectively in Algorithm 2 and Algorithm 3. The only difference among
them is that in the Procedure A at least one Newton-Raphson iteration is activated at
each time step, regardless of the other condition.

The initial particle distribution has been obtained by introducing an iterative pre-
procedure (line 2 of Algorithm 2 and 3), which corresponds to run the static test case
for 100 Newton-Raphson iterations. Using the pre-procedure the initial minimal value,
L∞(∇C)Init, is obtained and it is utilized to set the threshold used to trigger the IIPS,
L∞(∇C)Thr, (line 3 of Algorithm 2 and 3), which is set equal to:

L∞(∇C)Thr = βL∞(∇C)Init, (8.34)

where β is an arbitrary coefficient. At each time step the particle distribution has to
fulfil this condition, (line 5 of Algorithm 2 and 3):

L∞(∇C) ≤ L∞(∇C)Thr. (8.35)

Therefore, the maximum value of h|∇Ci| has to be always below the fixed threshold
otherwise the IIPS procedure is activated. This condition is valid in both procedures,
the only difference is the extra condition added in Algorithm 2, which requires to run
at least one Newton-Raphson iteration at each time step even if the condition defined in
equation (8.35) is satisfied.

The IIPS procedure runs for an unlimited number of Newton-Raphson iterations,
until each particle has h|∇Ci| that meet the condition.

In Procedure A and in Procedure B two different factors have been tested, β=5 and
β=10, but because at least one Newton-Raphson iteration is required in Procedure A,
L∞(∇C) never reaches the imposed threshold and the results, as presented later, do not
depend on β.

To illustrate this, results for ∆/L = 0.025, h/∆ = 2.0, and λ/L = 0.5 are pre-
sented, showing the difference between the procedures. Figure 8.10 and Figure 8.11
report the comparison between the different implicit iterative procedures and the ex-
plicit method. The explicit shifting technique is called in line 8 of Algorithm 4, at each
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Algorithm 2 Kinematic case
1: procedure A IMPLICIT ITERATIVE .
2: Static test case (Algorithm 1)
3: Set L∞(∇C)Thr =β L∞(∇C)Init
4: Start Simulation
5: while (L∞(∇C) ≤ L∞(∇C)Thr and NRit ≥ 1) do
6: AssembleMatrix(∇Ci )
7: LinearSystemSolver(AssembleMatrix)
8: UpdateParticlePosition(Implicit PST)
9: Compute L∞(∇C), L2(∂xf)

10: end while
11: ParticleDisplacement (Eq. (8.33))
12: end procedure

Algorithm 3 Kinematic case
1: procedure B IMPLICIT ITERATIVE .
2: Static test case (Algorithm 1)
3: Set L∞(∇C)Thr =β L∞(∇C)Init
4: Start Simulation
5: while (L∞(∇C) ≤ L∞(∇C)Thr) do
6: AssembleMatrix(∇Ci )
7: LinearSystemSolver(AssembleMatrix)
8: UpdateParticlePosition(Implicit PST)
9: Compute L∞(∇C), L2(∂xf)

10: end while
11: ParticleDisplacement (Eq. (8.33))
12: end procedure
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Figure 8.10 Kinematic test case. Procedure comparison, ∆/L = 0.025 and h/∆ = 2.0.
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Figure 8.11 Kinematic test case. Procedure comparison, ∆/L = 0.025 and h/∆ = 2.0.
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Figure 8.12 Kinematic test case. Method comparison, CPU time. Note different scales.

time step the particle position in updated using equation (6.1) and equation (6.13),

δxi = ∆t2c2
0

J∑
j=1

∇Wijωj. (8.36)

Algorithm 4 Kinematic case.
1: procedure C EXPLICIT .
2: Static test case (Algorithm 1)
3: Start Simulation
4: UpdateParticlePosition(Explicit PST)
5: Compute L∞(∇C), L2(∂xf)
6: ParticleDisplacement (Eq. (8.33))
7: end procedure

The implicit procedures show differences evaluating L∞(∇C), Figure 8.10, and
similarities analysing L2(∂xf), Figure 8.11. In all the implicit procedures, a gain of
more than an order of magnitude in the SPH accuracy is obtained and measuring ∇C
the particle distribution quality is improved by almost two order of magnitude.

The computational costs for Algorithm 2, Algorithm 3 and Algorithm 4) are pre-
sented in Figure 8.12, the results are re-scaled with explicit method computational time.

As seen in Figure 8.9 and reported in Table 8.2, the explicit iterative procedure is
not always sustainable in term of computational efforts and for this reason the implicit
iterative procedures have been compared with a non-iterative explicit method.

Procedure A calls the IIPS at each time step, significantly increasing the computa-
tional costs, the non linear trend is due to the higher number of iterations that the linear
solver requires to converge, explained by the fact that the IIPS procedure is activated
even if the L∞(∇C) is already close to the minimal value, therefore it needs a larger
number of iterations to reduce the normalized residuals. The Procedure B calls the IIPS
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(a) Procedure B Implicit iterative, β = 5
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(b) Procedure B Implicit iterative, β = 10
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x[m]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
[m

]

10−3

10−2

10−1

100

∇
C
i

(d) Procedure C Explicit not iterative

Figure 8.13 Kinematic test case. Particle distribution at t = 0.2 s .

whenever the L∞(∇C) value rises above the set threshold and it generates an extra
computational cost between 10 to 70 percent based on β; the CPU times are shown in
Figure 8.12.

Looking at the particle distributions in Figure 8.13, it can be immediately noted that
the implicit procedures maintain the particle uniformly distributed avoiding the creation
of distinct streamlines in the domain.

Results presented in Figure 8.14 shows the convergence analysis for all the differ-
ent procedures, using ∆/L = 0.05, 0.025, 0.0125 and h/∆ = 1.3, 1.6, 2.0., The
Procedure A shows same results regardless β, as it was already seen for just a single
resolution and kernel size in Figure 8.11. The convergence rates for results presented
in Figure 8.14, are reported in Table 8.3; these are close to the ones obtained in the
static test case (Table 8.1), meaning that even with a continuous sources of perturbation
the IIPS is able to prevent anisotropy in particle distribution, differently to the explicit
procedure which convergence rate is lower.
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Figure 8.14 Kinematic test case. Convergence analysis.

Implicit Implicit Implicit Explicit

iterative all iterative iterative not

β=5 β=10 iterative

θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

h
∆

= 2.0 2.85 2.51 2.81 1.99 2.67 1.76 0.23 0.81
h
∆

= 1.6 2.04 1.30 1.12 0.51 0.51 0.56 0.53 0.89
h
∆

= 1.3 1.27 0.91 0.76 0.72 0.65 0.58 1.26 0.92

Table 8.3 Kinematic test case. Convergence ratio results.
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8.4 Summary and conclusions

A novel particle shifting technique has been presented in this chapter, the implicit itera-
tive methodology is purely based on geometric evaluations for the particle distribution.
The algorithm has the capability to directly tackle the formation of areas in the domain
with non-uniform particle concentration using a minimization procedure. It has been
evaluated the efficiency in restoring the accuracy and of the SPH interpolation but it is
applicable in different meshless numerical scheme method based on kernel basis func-
tions. Specific applications to a fluid dynamic SPH solver are illustrated in the following
chapter.
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Chapter 9

Implicit iterative particle shifting in ALE-SPH schemes

In Chapter 8 has been proposed a new formulation called Implicit Iterative Particle
Shifting (IIPS) to improve the particle position in meshless schemes based on kernel
spatial interpolators. It is relevant to point out that the IIPS can be embedded and
applied for meshless methods in which isotropy in computational points is required to
achieve a high level of accuracy; in the following, specific additional details on the
methodologies adopted to embed the IIPS method in an SPH-ALE solver, presented
in Section 5.5, are clarified and numerical validations are shown. In particular, two
different approaches are proposed to update the physical quantities at the new particles’
positions after the IIPS is completed.

9.1 IIPS in ALE-SPH schemes

During the physical simulations, at the end of each time step, the particle positions
and the attached physical quantities are computed using equations (5.48), the particles
move following a pure Lagrangian motion, in which v0 = v. Based on the defined
condition on the level of particle distribution disorder, the IIPS procedure is activated,
then those positions are further updated using the formulation described in Section 8.3.
Therefore, there are two different sets of particles: the initial one, computed at the end
of the physical time step, and the updated one, obtained through the IIPS procedure.

As an initial attempt, the IIPS has been directly implemented in the SPH-ALE solver
without any modification to the physical quantities, after the particles’ positions are
corrected. This is a basic approach that introduces inconsistency, nevertheless, it is an
option to speed up the simulations.

Update the physical quantities after the shifting procedure guarantees the scheme
consistency and reduces numerical instabilities. The ALE-SPH model, proposed in
Oger et al. (2016), coherently adjusts these quantities, while using a shifting technique;
the scheme itself allows to arbitrarily define the transport velocity v0, which directly
embed the explicit shifting correction. In this method, the arbitrary velocity field is
the summation of two terms, equation (6.31), which are both smooth, in particular,
the correction term, equation (6.32), is scaled by the fluid velocity and it is limited to
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maintain the quasi-Lagrangian nature, therefore the transport velocity field results to be
smooth too. Following this approach, introducing directly the particle displacements
obtained with the implicit procedure in the transport velocity formulation is not rea-
sonable because it is not guaranteed the smoothness of implicit shifting correction, on
the contrary, in numerical experiments as the ones presented in Section 8.3, it has been
noted that even adjacent particles can be displaced in opposite directions. The shifting
generated by IIPS is based on pure geometric evaluations, for this reason, it is aimed to
maintain separations between the correction to particle distribution and the flow char-
acteristics, i.e. fluid velocity. Following these considerations, different methodologies,
to update the physical quantities, are presented.

9.1.1 IIPS with a fictitious time step

An innovative approach is adopted, following the explicit nature of the ALE-SPH scheme,
the displacement obtained from the IIPS is used to compute the transport velocity in a
fictitious time step. The equation (6.1), is manipulated as,

x̄ = x + δx −→ δx = x̄− x (9.1)

and, isolating the implicit shifting term, a fictitious time step, ∆t∗, is applied,

δx

∆t∗
=

x̄− x

∆t∗
= v0, (9.2)

defining the transport velocity v0 for that fictitious time step.
Due to the ALE-SPH nature, the interpolation points displacements, obtained through

the implicit iterative shifting procedure, generate convective fluxes that need to be taken
into account. To compute the variation of the physical quantities, the above-mentioned
defined v0 is introduced in equation (5.39), and, neglecting internal or external forces
leads to the set of equations that need to be solved in the fictitious time step,

δxi
∆t∗

= v0i

dωi
∆t∗

= ωi

J∑
j=1

(v0j − v0i)∇Wijωj

dωiρi
∆t∗

= −ωi
J∑
j=1

(ρi (v0i) + ρj (v0j))∇Wijωj

dωiρivi
∆t∗

= −ωi
J∑
j=1

(ρivi ⊗ (v0i) + ρjvj ⊗ (v0j))∇Wijωj

(9.3)

The equations in system 9.3 need to be solved exclusively after the IIPS procedure, it
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has no relation to the physical time step. Then, substituting equation (9.2), the ALE-
SPH system is rewritten,

δxi
∆t∗

= v0i

dωi
∆t∗

= ωi

J∑
j=1

(
δxj
∆t∗
− δxi

∆t∗

)
∇Wijωj

dωiρi
∆t∗

= −ωi
J∑
j=1

(
ρi

(
δxi
∆t∗

)
+ ρj

(
δxj
∆t∗

))
∇Wijωj

dωiρivi
∆t∗

= −ωi
J∑
j=1

(
ρivi ⊗

(
δxi
∆t∗

)
+ ρjvj ⊗

(
δxj
∆t∗

))
∇Wijωj

(9.4)

The time step ∆t∗, as expected, has non influence and it is canceled out,

x̄i − xi = δxi

ω̄i − ωi = ωi

J∑
j=1

(δxj − δxi)∇Wijωj

ω̄iρ̄i − ωiρi = −ωi
J∑
j=1

(ρi (δxi) + ρj (δxj))∇Wijωj

ω̄iρ̄iv̄i − ωiρivi = −ωi
J∑
j=1

(ρivi ⊗ (δxi) + ρjvj ⊗ (δxj))∇Wijωj

(9.5)

In this system, ω̄i, ρ̄i, and v̄i are the updated quantities at the end of the fictitious time
step. A preliminary consideration regarding the maximum implicit displacement has
to be pointed out; the IIPS methodology has no numerical constrains on the maximum
allowed shifting, even if the conducted numerical experiences have shown that for low
perturbed distributions the values are usually less than 0.2∆. Nevertheless, with the
respect to the physics, it has been proposed to indirectly bound the displacements, re-
ducing the fictitious time step with a factor related to the CFL condition. It results
that the field quantities are updated with implicit displacements that do not exceed the
maximum allowed physical displacement obtained in the time integration. A numerical
coefficient, N , is computed at the end of each implicit procedure as the nearest greater
integer number of the ratio between the maximum shifting displacement and the particle
size, inversely scale by CFL,

N =

⌈
(maxi|δxi|)

CFL ∆

⌉
. (9.6)

where the symbol d e stands for the ceiling function. It is used to reduce the shifting
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displacement, therefore, the final version of equations (9.3) is rewritten as,

x̄i − xi =
δxi
N

ω̄i − ωi = ωi

J∑
j=1

(
δxj
N
− δxi

N

)
∇Wijωj

ω̄iρ̄i − ωiρi = −ωi
J∑
j=1

(
ρi

(
δxi
N

)
+ ρj

(
δxj
N

))
∇Wijωj

ω̄iρ̄iv̄i − ωiρivi = −ωi
J∑
j=1

(
ρivi ⊗

(
δxi
N

)
+ ρjvj ⊗

(
δxj
N

))
∇Wijωj

(9.7)

These equations are integrated forN times to obtain the final value of the field quantities
in the position obtained using the implicit iterative algorithm.

The set of equations proposed is consistent with the ALE-SPH formalism and it
conserves mass and momentum for particles in the interior region of fluid.

9.1.2 IIPS with MLS reconstruction

A second approach is proposed to update the physical quantities, ω̄i, ρ̄i, and v̄i, at the
final particle position, obtained using the IIPS procedure, by means of spatial interpola-
tion, conducted using the information available at the particle positions computed at the
end of the physical time step. This approach has been utilized in explicit iterative par-
ticle shifting procedure, (Vacondio and Rogers 2017), adjusting the quantities by using
the corrected SPH interpolation proposed in (Liu and Liu 2006). The spatial interpo-
lation procedure needs to be chosen in such a way that it minimizes the unavoidable
numerical diffusivity of the reinterpolation. The first-order and second-order Moving
Least Square (MLS) reconstruction, presented in Renaut (2015), have been evaluated
against the test function, equation (3.6). For each particle in the fluid domain to recon-
struct field quantities a linear system is assembled and solved.
The linear reconstruction system is,

J∑
j=1

Wijωj

1 xij zij

− x2
ij xijzij

− − z2
ij


︸ ︷︷ ︸

A

·

 fi

∂xfi

∂zfi


︸ ︷︷ ︸

X

=
J∑
j=1

φjWijωj

 1

xij

zij


︸ ︷︷ ︸

B

(9.8)

96



and quadratic reconstructions system is,

J∑
j=1

Wijωj



1 xij zij x2
ij xijzij z2

ij

− x2
ij xijzij x3

ij x2
ijzij xijz

2
ij

− − z2
ij x2

ijzij xijz
2
ij z3

ij

− − − x4
ij x3

ijzij x2
ijz

2
ij

− − − − x2
ijz

2
ij xijz

3
ij

− − − − − z4
ij


︸ ︷︷ ︸

A

·



fi

∂xfi

∂zfi

∂2
xfi

∂xzfi

∂2
zfi


︸ ︷︷ ︸

X

=

=
J∑
j=1

φjWijωj



1

xij

zij

x2
ij

xijzij

z2
ij


︸ ︷︷ ︸

B

(9.9)

where xij =
xi−xj
hi

and zij =
zi−zj
hi

, and i is the particle in the updated configuration and
j are the particle inside the kernel support of i in the initial configuration.

Numerical tests have been performed using the test function defined in equation
(3.6); starting from the same particle distribution, with the same amount of disorder, the
implicit procedure has been applied and the new configuration has been obtained. Then,
the first and the second-order MLS reconstructions have been computed, to interpolate
the function f on the updated particle distribution, through the values of the original
particle position. The errors fields are reported in Figure 9.1, for the ∆/L = 0.025; as
expected the second-order MLS reconstruction increases the level of accuracy; in Figure
9.2, the L2 norm for different resolutions is shown, confirming the results. For this
reason, it has been chosen the second-order MLS to reconstruct the physical quantities.

9.2 Evaluation of the IIPS in ALE-SPH

The Taylor-Green vortex test case, described in Section 3.1, has been used to analyze
the methodologies, previously introduced; in this section the notation ”Implicit iterative
shifting” stands for no correction of physical quantities (particle positions are moved
using the IIPS procedure, but the physical quantities are not updated), ”Implicit iterative
shifting NFTS” stands for equations (9.7) and ”Implicit iterative shifting MLS II” stands
for equation (9.9), while ”Explicit shifting” is referred to the methodology described in
Neuhauser (2014).

The IIPS methods has been implemented in a numerical SPH-ALE solver, (equa-
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(a) MLS I◦ order reconstruction.
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(b) MLS II◦ order reconstruction.

Figure 9.1 MLS reconstructions, error on a test function. ∆/L=0.025

10−3 10−2 10−1

∆[m]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

L
2
(f

)

MLS I

MLS II

Figure 9.2 MLS reconstruction, error on a test function.
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Figure 9.3 TGV test case. ∆/L = 0.00625, (a) Neuhauser (2014) formulation, (b) IIPS
with L∞(∇C)thr = 0.001/h.

tions (5.39), following the Proceduce B reported in Algorithm 3, (Section 8.3.2), with
L∞(∇C)thr = 0.001/h. Initially, the quality of the particle distribution has been evalu-
ated through the L∞ norm of the particles concentration gradient. The implicit iterative
shifting has been compared with the explicit shifting introduced in equation (6.33). The
methodologies illustrated in Section 9.1.1 and in Section 9.1.2 aim is to increase the
accuracy for the field variables; they do not improve the quality of particle distribution
obtained using the IIPS, the L∞ trends are coincident and, for this reason, not reported
in Figure 9.3.

To evaluate the effectiveness of these methodologies the convergence analysis has
been done using ∆/L = 0.05, 0.025, 0.0125, 0.00625, and h/∆ equal to 2, showing
the results in Figure 9.4, while the numerical values for the convergence rates θ and the
norms of the velocity errors are reported in Table 9.1. These results are compared with
the original explicit shifting formulation, (equation (6.33). The explicit methodology
is able to guarantee a first-order of convergence only, while, as already experienced
in the kinematic test cases presented in Section 8.3, the IIPS technique increases the
convergence rates to values higher than 2 reducing the discretization error. Addition-
ally, updating the physical quantities with the proposed methodologies enhances the
convergence rates while the resolution increases.

The velocity field and the error on the velocity field are shown in Figure 9.5, 9.6, 9.7
and 9.8, while the analysis of the error on the total kinetic energy is reported in Figure
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Figure 9.4 TGV test case. Convergence analysis L2|vx−vxA|, implicit particle shifting
comparison at t = 1s.

Neuhauser (2014) IIPS IIPS - NFTS IIPS - MLS II

∆/L L2(vx) θ L2(vx) θ L2(vx) θ L2(vx) θ

0.05 0.1628 0.1139 0.1111 0.1062

0.025 0.0556 1.55 0.0208 2.44 0.0189 2.55 0.0218 2.28

0.0125 0.0337 0.72 0.0039 2.42 0.0020 3.22 0.0025 3.12

0.00625 0.0176 0.93 0.0007 2.41 0.00019 3.41 0.00014 4.13

Table 9.1 TGV test case. Convergence analysis results, L2|vx − vxA| and convergence
ratio θ, implicit iterative shifting.
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Figure 9.5 TGV test case. ∆/L = 0.00625, Neuhauser (2014) formulation (a) velocity
x component in [m/s], (b) error on the velocity x component at physical time t = 1 s.
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Figure 9.6 TGV test case. ∆/L = 0.00625, implicit iterative shifting (a) velocity x
component in [m/s], (b) error on the velocity x component at physical time t = 1 s.
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Figure 9.7 TGV test case. ∆/L = 0.00625, implicit iterative shifting with NFTS (a)
velocity x component in [m/s], (b) error on the velocity x component at physical time
t = 1 s.
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Figure 9.8 TGV test case. ∆/L = 0.00625, implicit iterative shifting with MLS II◦ (a)
velocity x component in [m/s], (b) error on the velocity x component at physical time
t = 1 s.
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Figure 9.9 TGV test case. Kinetic energy error.

9.9; those results are referred to the higher resolution, ∆/L = 0.00626. Comparing
Figure 9.6 (b) with Figure 9.7 (b) and Figure 9.8 (b) confirms that the velocity field is
more accurate and less noisy, this trends is verified during the entire simulation, where
the error on the kinematic energy is reduced by more than one order of magnitude.

9.3 Summary and conclusions

In this chapter two methodologies have been proposed to update the physical quantities
after the implicit iterative procedure in an SPH-ALE scheme for fluid dynamics. Firstly,
it has been proposed to introduce a fictitious time step in which, taking advantage of the
transport velocity, the field quantities are updated computing the convective fluxes gen-
erated moving the particles from the initial position to the position obtained using the
implicit procedure. Secondly, a an MLS second-order reconstruction has been adopted
to reinterpolated the particle volume, mass and momentum on the adjusted particle dis-
tribution. Overall, these methodologies keep the consistency in the scheme, therefore,
it has been demonstrated that updating the physical quantities after the implicit iterative
procedure is fundamental to increase the accuracy, in particular for high resolutions, in
which the discretization error is minimized.
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Chapter 10

Applications

Chapter 7 presented an optimized formulation for an explicit PST while Chapter 8 pro-
posed a completely new formulation for an implicit iterative PST. These methodologies
have been tested against the Taylor Green vortex case for global evaluations, validating
their overall applicability. In this chapter, these algorithms are utilized to simulate more
complex applications, in order to compare them in different scenarios.

10.1 Moving box in squared domain

The first application considered is the moving square inside a rectangular box which has
been described in Section 3.2. The results shown in the following section are referred
to the resolution ∆/L = 0.0125 and the Reynolds number Re=100.

10.1.1 Threshold evaluation for IIPS

Initially, the moving box has been simulated focusing mainly on the kinematics, without
any quantities updating after the IIPS, (Section 9.1.1 and Section 9.1.2). In order to
assess which value of L∞(∇C) has to be imposed as a threshold, during the physical
simulation. A preliminary evaluation of the implicit procedure performances, regarding
the quality of particle distribution and the computational time, has been conducted. The
initial particle distribution has been obtained using an iterative pre-procedure, which, as
illustrated in Section 8.3.2, is equivalent to applying the implicit shifting procedure on
a static configuration, for several iterations. The value obtained, L∞(∇C)Init, is larger
than the one obtained for the TGV, due to the presence of solid boundaries, which has
an influence on the minimum value of the gradient of particle concentration. Finally, it
has been chosen L∞(∇C)Thr = 0.08/h.
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Figure 10.1 Moving Box test case. ∆/L = 0.0125, L∞thr = 0.08/h, h/∆ analysis.

An initial investigation, on the size of the kernel support, has been conducted and
the test case has been performed using h/∆ = 1.2, 1.5, 1.8; for these simulations, the
results of the particle distribution analyses, in terms of the maximum value of particle
concentration gradient, are reported in Figure 10.1. As shown in Figure 10.1 (a), in
which h/∆ = 1.2, the IIPS methodology is not able to guarantee the predefined thresh-
old at all the physical time steps; this is due to the fact that the max number of New-
ton–Raphson iterations, which has been set equal to 20, is reached before the predefined
level of error, in the particle distribution, is achieved; this additional condition has been
introduced for practical reasons, to reduce computational costs. Conversely, increasing
the size of the kernel support, h/∆ = 1.5 or h/∆ = 1.8, is sufficient to overcome the
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Figure 10.2 Moving Box test case. ∆/L = 0.0125, L∞(∇C)thr = 0.08/h.

above-mentioned numerical instability, as clarified in Figure 10.1 (b) and (c), in which
the imposed L∞(∇C) is always guaranteed.

The effects of varying the kernel size, on the total number of Newton-Raphson iter-
ations and on the total computational time, are presented in Figure 10.2. In particular,
as observed in Figure 10.2 (a), the total cumulative implicit iterations are almost 6 or
12 times, comparing the results for h/∆=1.2 respectively with the results for h/∆=1.5
and h/∆=1.8. Nevertheless, these differences are reduced in the total computational
time, as confirmed by the analyses presented in Figure 10.2 (b), in which the total com-
putational time of h/∆=1.2 are increased by around 60%, with respect to h/∆=1.5 and
h/∆=1.8.

Reducing h/∆ decreases the effectiveness of the implicit iterative methodology, this
is due to the fact that the system of linear equations (8.32) is assembled with a lower
number of particles, reducing the implicit interactions among them. For this reason, the
updated configuration is less stable, and small perturbations are sufficient to increase
the L∞(∇C) above the threshold. Therefore the IIPS has to be called a higher number
of times, Figure 10.2 (a), on the contrary, a smaller kernel support reduces the compu-
tational time during the physical simulation, Figure 10.2 (b), partially counterbalancing
the computational overheads.

For this reason, it has been chosen h/∆ = 1.5, which allows keeping the predefined
level of error in the particle distribution while does not increase the overall computa-
tional time. Another option to reduce the CPU time, maintaining the IIPS effectiveness,
is to adopt different kernel sizes in the physical simulation and in the implicit procedure;
these considerations are left for future investigations.

10.1.2 Particle shifting techniques comparison

Having set the threshold for the implicit procedure, L∞(∇C)thr = 0.08/h, the size
of the kernel support, h/∆ = 1.5, and the reference speed of sound c0 = 12 m/s, the
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Figure 10.3 Moving Box test case. ∆/L = 0.0125, L∞(∇C)thr = 0.08/h. Shifting
procedure comparison.

investigations on the different particle shifting techniques have been conducted; the
implicit iterative shifting procedures are compared to the explicit shifting methods.

Focusing on the gradient of particle concentration, the results of L∞(∇C), obtained
using the original and the optimized explicit shifting, Section 7.1 and Section 7.2, and
the implicit iterative procedures, Section 9.1.1 and Section 9.1.2, are shown in Figure
10.3. As demonstrated by Lee (2007), the case presents some numerical issues, due to
the highly perturbed particle distribution, introduced by the motion of the squared box.
As expected, the simulation in which the original explicit shifting is adopted, Figure
10.3 (a), manifests numerical instabilities and it does not reach the end. On the other
hand, it has to be pointed out that the enhanced explicit shifting presents the same order
of magnitude of L∞(∇C), compared to the implicit iterative shifting procedures, as
confirmed observing Figure 10.3 (b), and Figures 10.3 (c) and (d).

In Figure 10.4, the ∇C fields are shown at t = 0.75 s, moreover, in Figure 10.5,
the particles distributions near the moving square are reported at the same physical
time. These results are referred to a physical instant in which the object is still in an
acceleration phase.

It is clear that the proposed shifting methods, both the optimized explicit shifting,
with PS = 10, and the implicit iterative procedures avoid the formation of areas with
lack of particles on the tail of the moving object. Furthermore, it is notable that there
are no relevant differences in the particles distributions reported in Figure 10.4 (c) 10.4
(d). Updating physical quantities, even with different methodologies, as illustrated in
Chapter 9, do not strongly affect the particles configurations.

The non-dimensional velocity and the non-dimensional pressure fields are shown in
Figures 10.6, 10.7 and 10.8, while the reference solution obtained with FD solver has
been reported in Section 3.2.
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(a) Explicit shifting. (b) Explicit shifting, PS=10.

(c) Implicit iterative shifting NFTS. (d) Implicit iterative shifting MLS II.

Figure 10.4 Moving Box test case. ∆/L = 0.0125, L∞(∇C)thr = 0.08/h. Shifting
procedure comparison, gradient of particle concentration at t=0.75 s.

The results obtained using the improved explicit method, Figure 10.6, comparable
with the reference solution regarding the velocity field, while the pressure field exhibits
some noise, as expected, adopting a weakly-compressible approach.

Introducing the procedures to update the physical quantities, after the IIPS, shows
different outcomes, especially in the pressure field as shown in Figure 10.7 (b) and in
Figure 10.8 (b). The fictitious time step, Section 9.1.1, produces a velocity field with
great agreements while the pressure field results are quite noisy, Figure 10.7, this is due
to the fact that the fluxes, in the artificial time step, are generated from a not smoothed
field of implicit displacements. On the contrary, the second-order MLS reconstruction,
Section 9.1.2, adds numerical dissipation to the model, and, therefore, the velocity field
results are less accurate, while the pressure field is smoothed, even if a background
pressure is generated, Figure 10.8.

The total computational times have been monitored and the results are shown in
Figure 10.9. Due to the fact that the explicit shifting simulation does not reach the final
physical time, t = 5 s, the CPU times are normalized using the explicit shifting with PS
= 10, which, as reported in Section 7.2, do not increase the computational cost. The
ranges of computational overhead are similar to the ones obtained in the theoretical test
case, Section 8.3.2, the fictitious time step and the MLS second-order reconstruction
increase the CPU time respectively by 33 and by 54 percent.

In conclusion, in this application, the presence of a moving square and external
walls interfere with the shifting displacements generated by the implicit procedure; the
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Figure 10.5 Moving Box test case. ∆/L = 0.0125, L∞(∇C)thr = 0.08/h. Shifting
procedure comparison, particle distribution at t=0.75 s.
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Figure 10.6 Moving Box test case. ∆/L = 0.0125, L∞(∇C)thr = 0.08/h, Re=100.
Explicit shifting, PS=10, at t= 5 s.
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Figure 10.7 Moving Box test case. ∆/L = 0.0125, L∞(∇C)thr = 0.08/h, Re=100.
Implicit iterative shifting with NFTS, at t= 5 s.
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Implicit iterative shifting with MLS second-order, at t= 5 s.
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Figure 10.9 Moving Box test case. ∆/L = 0.0125. Shifting procedure comparison,
CPU time.

solid objects act as constraints on the rearrangement of particles, therefore the IIPS
is not able to guarantee the same level of discretization error, as the one obtained in
the TGV test case, with an unbounded domain. However, its performances are overall
superior with respect to the explicit shifting methodology. Moreover, even introducing
the procedures to update the physical quantities, which keep the consistency in the
scheme, the computational times are not drastically increased and remain affordable.

10.2 Impinging jet on a flat surface

The second application is the impinging jet on a flat surface, which has been described
in Section 3.3. It has been tested to establish the performance of the IIPS method in
free surface problems. It has been initially simulated with a resolution H/∆ = 10 for
a preliminary studies, and H/∆ = 40 for global assessments. The gradient of particle
concentration, in a restricted area of the domain, a representative pressure field along
the fluid-wall interface and the pressure at the stagnation point P0 = [0,0], during the
entire simulations, are reported in the following analyses.

10.2.1 Threshold evaluation for IIPS

In this free surface test case, the implicit iterative method needs some modifications
to deal with particles located at the free surface, at the inlet or at the outlets. The
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detection location algorithm is able to find the particles near the interfaces; it is based
on a reference value of ∇C, which is computed considering the kernel support half
empty. In this way, particles with a lower value of ∇C are identified as belonging to
interfaces, these particles keep moving through their Lagrangian trajectories, without
any particle position correction. Therefore, the free surface particles are removed from
the system of linear equations (8.32), which is solved in the iterative implicit shifting
procedure, and, during the IIPS, are considered as fixed wall particles. The size of the
adjusted linear system downgrades to d · (n − nint), where nint is the number of the
interface particles. Using this expedient allows to correct the particle position for the
interior fluid particles only. The presence of a wall boundary, as seen in Section 10.1,
do not add any complexities to the problem.

In this test case, at the beginning of the simulation the domain is empty, therefore,
the preliminary evaluations on L∞(∇C) through a static pre-procedure, illustrated in
Section 10.1.1, cannot be adopted. To assess the value of L∞(∇C)thr, which has to be
imposed during the physical simulations, an initial investigation on the particle distri-
bution has been conducted, using H/∆ = 10. In this assessment, it has been studied
the trends of the gradient of particle concentration at the first steps of the physical sim-
ulation, without investigations on the physical quantities. As specified in the previous
application, the use of the fictitious time step or the MLS reinterpolation has no sig-
nificant interference with the particles distributions. In Figure 10.10 are reported the
L∞(∇C), computed in a restricted area of the domain, where x/L = [−0.3, 0.3] and
z/L = [0, 0.6], for the explicit and the implicit procedures; the latter one is called at
each physical iteration, regardless to the maximum ∇C value. The particle distribu-
tions and the gradients of particle concentration, for the simulation presented in Figure
10.10, are shown in Figure 10.11, 10.12 and 10.13, at the normalized time tU/L =
0.0525. In the impinging jet, the Lagrangian trajectories are particularly distorted in
the areas around the stagnation point and its axis, where the water jet splits, thus the
gradient of particle concentration has been evaluated in this area, (red box in Figures).
It is clear that the IIPS acts to redistribute the particle even in the zone close to the
stagnation point in which the physical kinematics are low.

Through these investigations, it has been set L∞(∇C)thr = 0.02/h, as a condition
on the particle distribution disorder, that is used in the simulations presented in the
following section. Moreover, it has been immediately observed that the IIPS is effective
since the first steps of the physical simulation and it reduces the norm of∇C by almost
an order of magnitude with respect to the explicit procedures, Figure 10.10.
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Figure 10.11 Impinging Jet test case. H/∆ = 10, ∇C, explicit shifting, at tU/L =
0.0525.

114



−0.50 −0.25 0.00 0.25 0.50

x/L

0.00

0.25

0.50

0.75

1.00

1.25

1.50

z/
L

−0.4 −0.2 0.0 0.2 0.4

x/L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z/
L

10−4

10−3

10−2

10−1

∇
C
i

Figure 10.12 Impinging Jet test case. H/∆ = 10,∇C, explicit shifting, PS=10 at tU/L
= 0.0525.
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Figure 10.13 Impinging Jet test case. H/∆ = 10, ∇C, implicit iterative shifting at
tU/L = 0.0525.
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Figure 10.14 Impinging Jet test case. ∆/L = 0.0005,∇C, shifting procedure compari-
son.

10.2.2 Particle shifting techniques comparison

Having set the threshold for the implicit procedure, L∞(∇C)thr = 0.02/h, and the
size of the kernel support, h/∆ = 1.4, the comparison between the shifting techniques
has been carried on. The simulations reach the steady-state at tU/L = 2 and it has
been considered the time interval tU/L = [2, 3] for the pressure analyses. The inflow
velocity is U = 100 m/s, the reference speed of sound is set c0 = 1000 m/s, which
is equal to 10 times the maximum velocity, with respect to the consideration on the
Mach number, for weakly compressible models. As previously mentioned, it has been
monitored the pressure at the stagnation point and at the interface with the flat wall in
the interval x/L = [−0.8, 0], in a defined interval of time. These results are compared
to the analytical reference solution reported in equation (3.3).

In Figure 10.14 is shown the particle distribution quality, measured as L∞(∇C) in
the above-mentioned area of interest, in long run simulations, these results are reported
from the beginning of the simulation. It has been confirmed that since the moment
in which the jet impacts the plate the implicit shifting formulation is more effective
compared to the explicit ones. Moreover, even in presence of a free surface, the implicit
iterative procedure is able to guarantee the predefined level of particle disorder, in terms
of L∞(∇C).

The pressure at the interface with the place, averaged in the normalized time inter-
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Explicit Explicit PS = 10 IIPS - NFTS IIPS - MLS II

x/L P/ρU2 Er% P/ρU2 Er% P/ρU2) Er% P/ρU2 Er%

0.0 0.448 10.48 0.488 2.49 0.486 2.85 0.493 1.45

-0.05 0.444 10.38 0.483 2.47 0.481 2.88 0.487 1.62

-0.10 0.432 10.37 0.468 2.81 0.466 3.18 0.473 1.84

-0.15 0.412 10.25 0.444 3.23 0.441 3.73 0.448 2.24

-0.20 0.384 9.80 0.410 3.86 0.408 4.16 0.414 2.74

-0.25 0.351 8.82 0.368 4.23 0.368 4.36 0.373 3.13

-0.30 0.309 7.84 0.320 4.48 0.320 4.49 0.324 3.19

-0.35 0.263 6.17 0.269 3.91 0.269 3.81 0.273 2.69

-0.40 0.216 3.43 0.218 2.47 0.218 2.26 0.221 1.16

Table 10.1 Impinging Jet test case. ∆/L = 0.0005. Normalized average pressure on the
plate and percentage error Er%.

val tU/L = [2, 3], is shown in Figure 10.15, the numerical values for probe points and
the percentage errors are reported in Table 10.1. In these results, it can be seen that
the original explicit shifting formulation has a percentage error higher than 10%, close
to the stagnation point. Differently, introducing the improved explicit shifting method,
with PS = 10, or the implicit formulation, through both the procedures to update the
physical quantities, drastically reduce the pressure error along the plate. Moreover, in
Figure 10.15 is observed that the explicit shifting with P0 is quite effective for high
resolution, H/∆ = 40, while for lower resolutions, H/∆ = 20 and H/∆ = 10 the
pressure profiles have more discrepancy compared to the analytical solution. The per-
centage error of P (0)/ρU2, which corresponds to the point of higher perturbation of
the Lagrangian streamlines, using the fictitious time step and the MLS interpolation are
respectively 2.85% and 1.45% in respect to the analytical value.

The trends of the normalized pressure at the stagnation point are presented in Fig-
ure 10.16, in the time interval tU/L = [2, 3]. From the comparison between Figure
10.16 (a) and Figure 10.16 (b) can be noted that the improved explicit shifting increases
the quality of the particles distribution, as can be seen in Figure 10.14, improving the
overall accuracy, but it introduces more fluctuation in the pressure field. Regarding the
methodologies proposed to updated the physical quantities after the implicit iterative
procedure, the fictitious time step, Figure 10.16 (c), produces a quite noisy pressure
at the stagnation point, whereas the MLS interpolation, Figure 10.16 (d), generates
smoother results. In Figure 10.17 the computational times are reported and the results
are similar to the ones obtained in the theoretical test cases, Section 8.3.2.

Through the impinging jet impacting on a flat, it has been confirmed that even in
presence of a free surface, the implicit methodology is feasible in these applications.
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Figure 10.15 Impinging Jet test case. ∆/L = 0.002, ∆/L = 0.001, ∆/L = 0.0005,
shifting procedure comparison, normalized pressure at P0 in the time interval tU/L =
[2, 3].

10.3 Summary and conclusions

In this chapter two different applications, which are representative of a wide range of
practical problems, have been simulated using the shifting methodologies introduced in
this project. The optimized explicit shifting has shown good results in the application
with bounded domain, while in presence of free surfaces the effectiveness is slightly re-
duced for low resolutions. Moreover, it does not increase the computational time, com-
pared to the original formulation, therefore, it is still considered a valid methodology
for particle shifting. In addition, the implicit iterative methodology has demonstrated
its superior performance in controlling the particle distribution quality and in maintain-
ing a predefined level of discretization error in both the moving squared box and in the
impinging jet test cases. The methodologies introduced in Section 9.1.1 and in Section
9.1.2 are different under a mathematical point of view and the outcomes that these pro-
vided, in the cases presented, are not coincident. Nevertheless, it has been demonstrated
that both the fictitious time step and the MLS interpolation are valid formulations, thus
based on the aims of the application under investigation, it can be adopted the more
suitable methodology.
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Figure 10.16 Impinging Jet test case. ∆/L = 0.0005, shifting procedure comparison,
normalized pressure at P0 in the time interval tU/L = [2, 3].
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Chapter 11

Conclusions and perspectives

11.1 Conclusions

The main objective of the present thesis is to analyze the link between particle dis-
tribution and accuracy in the Smoothed Particle Hydrodynamics schemes. In the SPH
schemes, Particle Shifting Techniques have been introduced in the past years as method-
ologies with the aim of reducing the discretization error.

In this work, an optimization for the existing explicit particle shifting technique
based on Fick’s law of diffusion has been initially presented; this shifting algorithm
has been implemented in the code ASPHODEL, which is an in house-software devel-
oped by the ANDRITZ group, used to model hydraulic turbines. This solver adopts
a specific version of the ALE-SPH numeric models, which differ from the classical
SPH in the way the particle motion is described. In the ALE-SPH schemes, the posi-
tion of the interpolation points is defined by the transport velocity, which is not equal
to the fluid velocity; this parameter can be arbitrarily formulated, allowing to correct
the particle distribution without introducing any numerical inconsistency and to grant
mass and momentum conservation. The improved shifting algorithm is able to main-
tain a homogeneous particle distribution while keeping the Mach number around 0.1,
as common in Weakly-Compressible SPH models, without adding extra computational
overhead. Explicit shifting techniques have been widely applied and their effectiveness,
in improving the particle distribution quality, has been empirically proved, however, the
results obtained are very case-dependent, due to the local and explicit characteristics
of this type of algorithms, which are not able to guarantee that the discretization error
is maintained under a certain threshold in every part of the domain during the entire
simulation.

Having this latest issue in mind, to overcome this limitation, an innovative formu-
lation has been developed based on the global assessment of the particle distribution
aiming at guaranteeing that discretization error is reduced all over in the domain. The
particle concentration gradient is still the key component underneath this idea, but it
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is adopted to assemble a system of linear equations that are derived minimizing the
particle concentration gradient for all the particles in the domain. In this way, all the in-
terpolation points are taken into account at the same time, creating implicit connections
between the shifting displacements. This novel methodology has been called Implicit
Iterative Particle Shifting (IIPS) because it uses an iterative procedure to minimize those
functions.

This IIPS takes on a numerical issue of mesh-less methods based on kernel basis
functions, it has not been thought specifically for SPH and neither for fluid dynamic
simulations. The IIPS directly tackles the discretization error in the meshless meth-
ods. For this reason, in contrast to other shifting algorithms, properly developed for
SPH simulations, the methodology does not require any empirical coefficient or param-
eter related with the fluid characteristics, for example, the reference speed of sound
or the fluid velocity. Moreover, from the numerical experiences conducted and pre-
sented in this thesis, it has been demonstrated that the IIPS is capable of minimizing the
discretization error a few iterations, without any external constraints on the maximum
allowed shifting. The IIPS requires to define only a threshold value for the particle
concentration gradient, which defines the predefined level of disorder, this value is res-
olution independent, but it needs to be adjusted based on the applications: walls and
free-surface affect the minimum value that can be reached.

The ways in which the IIPS can be embedded in an SPH solver, for fluids dynam-
ics, are different and, in this project, two strategies have been herein proposed for an
SPH-ALE solver. These methodologies have been called ”Implicit iterative shifting
with fictitious time step” and ”Implicit iterative shifting with MLS interpolation”, both
of them have been introduced to update the physical quantities at the end of the implicit
procedure allowing to maintain consistency in the numerical scheme. To adjust volume,
mass and momentum on the particle distribution obtained using the IIPS, the first one
adopts the ALE formalism to compute the convective fluxes generated by the implicit
shifting displacements, while the second one makes a pure geometric interpolation us-
ing the information of the original particle distribution.

The implicit iterative procedures have been testes in different cases; in the Taylor-
Green vortex, these methodologies are able to reduce the error associated with the dis-
cretization approximation by more than one order of magnitude and to increase the
convergence rate to a higher than second-order, compared with the explicit shifting
formulation. These results have been obtained without adding significant extra compu-
tational time to the global cost. Additionally, in this project, the implicit method has
been applied to the simulation of a bounded case, the moving square in a rectangular
box, and a free surface case, the jet impinging on a flat surface. These tests have con-
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firmed that the method has the capability to be used in SPH schemes in a wide range of
problems, moreover, even in these applications the IIPS prevents the formation of areas
with high particle distribution disorder and its performances are superior with respect
to explicit shifting procedures.

11.2 Perspectives

The innovative implicit iterative particle shifting methodology has been proposed and
reported in one and two dimensions but its extension to 3D does not present any theo-
retical issues and it can be derived straightforward.

The cases used to validate the methodology are representative of real engineering
problems, further investigations in applications with multi-fluid or multi-phase cases
are left for future investigations.

Some specific adjustments on the algorithm are required in simulations with frag-
mented domains, typically in highly distorted and violent flows.

The work on the implicit iterative methodology is seen as an initial step, the view
regarding the particle shifting technique has been moved from a local to a global ap-
proach, while future investigations are required to better understand the methodology
both under mathematical and physical perspectives, some relevant goals have been al-
ready achieved as presented in the thesis.

Additionally, efforts must be done to parallelize the technique, even if there are
already several methods to solve large linear system, the procedure need to be speeded
up with multiprocessors or GPU.
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Marongiu, J.-C. (2007), Méthode numérique lagrangienne pour la simulation
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