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Abstract

The emergence of new infectious diseases and the persistence of old ones are a major
concern for public health. Understanding the fundamental mechanisms driving the
spread of epidemics is crucial in order to develop effective control and containment
measures. An essential role is played by the mathematical modelling of epidemic
processes, based on the detailed knowledge of the structure of the social interactions.

In modelling the spread of epidemics, two levels of coupling between epidemic
processes and social interactions must be taken into account. On the one hand, hu-
man interactions are continuously rearranged over time, producing a social dynam-
ics which deeply affects the epidemic process. On the other hand, the presence of an
epidemic induces adaptive behaviours with which the population responds to the
spread of the pathogen, modifying the social dynamics.

A powerful paradigm for considering both these levels of coupling consists in the
theory of adaptive temporal networks, in which social interactions are represented
by a time-varying network whose evolution is coupled to an epidemic process.

In this thesis, we deal with epidemic processes on adaptive temporal networks,
focusing on activity-driven networks, an empirically validated class of networks
whose dynamics is determined by the propensity of the nodes to engage interactions
over time. These networks can be treated both with rigorous analytical approaches
and numerical techniques, allowing the formulation of models for the characteriza-
tion of the basic mechanisms of adaptive behaviours.

We develop a general formalism for adaptive activity-driven networks coupled
to epidemic processes, assuming a change in the nodes activity and attractiveness
based on their health status. The epidemic threshold can be estimated analytically,
unveiling the crucial role of correlations in the behaviour of individuals between the
susceptible and the infected state. The model allows to describe several adaptive
behaviours of populations exposed to epidemics, including behaviours observed in
the early stages of the COVID-19 pandemic. Inspired by these behavioural changes,
we implement two different types of quarantine, comparing their effectiveness and
showing the impact of timing in the adoption of measures.

The adaptive formalism proposed can be suitably modified to describe even
more complex adaptive behaviours, such as contact tracing which is crucial for con-
trolling SARS-CoV-2 diffusion without disrupting societal activities. We implement
contact tracing in its manual (interview-based), digital (app-based) and hybrid pro-
tocols. The model highlights an intrinsic difference in contacts exploration: manual
tracing performs a stochastic sampling (annealed), while digital tracing performs a
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sampling localized on a subpopulation (quenched). Because of this, the manual trac-
ing is robustly more effective than the digital one, even assuming the same probabil-
ity of tracing a contact. This difference, previously overlooked, is further amplified
by the presence of heterogeneity in the individuals behaviour, i.e. superspreaders.

Moreover, in active populations a key property of social interactions is their
higher-order nature, due to the formation of social groups and gatherings. In the
presence of epidemics, large gatherings can generate superspreading events, thus
they must be addressed by control strategies. We implement an epidemic model
for the diffusion of SARS-CoV-2 on simplicial adaptive activity-driven networks, in
which the interactions are organized in simplices and the tracing is implemented
on gatherings. Beside forward and backward tracing, a new tracing mechanism
is active in gatherings: the sideward tracing, which occurs laterally exploiting the
simplicial structure of interactions. We unveil the relevance of the sideward mecha-
nism in tracing large gatherings, especially in the presence of strategies targeted on
them. We implement our model on an empirical dataset of gatherings in a Univer-
sity, suggesting the optimal size of groups to be traced to reach the epidemic control,
avoiding the University closure.
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Introduction

Many systems in nature, in our whole physical world, ranging from microscopic to
macroscopic scales, and also in human activities, are composed of a large number
of elements which interact with each other, producing emergent phenomena, col-
lective and cooperative behaviours: these behaviours cannot be described starting
from the single properties of the constituents of the system, but arise from their in-
teractions. The strong interdisciplinary nature of these complex systems generated an
extremely broad research field, ranging from statistical physics to computer science,
from biology to economics [1–4].

Many of these systems can be represented by networks, where the vertices rep-
resent the elements of the system and the edges connecting them represent the in-
teractions. In several systems the interactions are not static nor fixed in time, but
they evolve according to specific temporal patterns: for example, the interactions be-
tween neurons, the public transport or the social interactions. Such systems require
to explicitly take into account the temporal dimension considering temporal networks,
whose edges are continuously destroyed and recreated over time, profoundly affect-
ing the topological properties and introducing new temporal features [4–7].

The effect of the network dynamics is even more dramatic considering dynamical
processes occurring on top of the network: if the time scales of the two processes are
comparable, the dynamic process is strongly affected by the network evolution. In-
deed, the two dynamics are deeply coupled since the dynamic process occurs along
the connections of the network, which evolve on comparable time scales.

The coupling between the two dynamics may be even deeper, since the dynamic
process can induce adaptive mechanisms in the underlying network, with which
the network adapts to the presence of the dynamic process by modifying its own
dynamics. In this case, the temporal dynamics of the interactions and the adaptive
coupling with the dynamical process need to be taken into account, by means of
adaptive temporal networks. Hence, the dynamic on and of the network affect each
others: the mathematical treatment of such systems is challenging due to the deep
coupling levels and due to the non-trivial effects of adaptive mechanism on the dy-
namic process [8–10].

This is the case of epidemic processes on the social interactions network: the spread of
an infectious disease occurs on time scales comparable with that of the social dynam-
ics and, in the presence of an epidemic, the population responds through a series of
adaptive behaviours due to symptoms onset, risk awareness and the implementa-
tion of control and containment measures. Hence, when dealing with epidemics it
is crucial to take into account both the temporal dynamics of the social interactions
and the adaptive behaviours induced by the epidemic [8, 11, 12].

Simplified models considering the two dynamics and their adaptive coupling,
amenable to analytic control, are fundamental and useful for obtaining insights into
the basic mechanisms of adaptive behaviours and for identifying the role played by
specific features of the interactions in the epidemic control, such as heterogeneity in



2 Introduction

the agents behaviour.

Within this framework, in this thesis we deal with epidemic processes on adap-
tive temporal networks, in the presence of control and containment measures. We
mainly focus on a class of temporal networks, the activity-driven networks, which
can be treated with rigorous analytical approaches even when considering epidemic
processes unfolding upon them [13]. This class of networks shifts the focus from the
edges to the nodes: the network properties and dynamics are fully driven by the
propensity of nodes to engage interactions, encoded in their activity.

We develop a general formalism for adaptive activity-driven networks, in which
the adaptive behaviours are modelled with a change in activity and attractiveness
due to a change in the health status [14]. The epidemic threshold of the model,
i.e. the critical condition for the epidemic to produce a large-scale diffusion, can be
obtained analytically, providing insights on the crucial role of correlations in the be-
haviour of individuals between the susceptible and the infected states. The model
can describe several adaptive behaviours in the population, such as disease parties,
sick-leave, quarantine: we implement two behavioural changes observed during the
early stages of the COVID-19 pandemic, when drastic restrictive measures were im-
plemented. The active quarantine, in which the population compensates the loss of
links because of quarantine by readdressing its activity towards non-quarantining
nodes, and the inactive quarantine, in which the loss of activity due to quarantine is
not compensated by link rewiring. We compare the two types of quarantine both an-
alytically and numerically, characterizing the effect of link rewiring and highlighting
the crucial role of the timing in the measures adoption.

The COVID-19 pandemic significantly impacted the approach to epidemic con-
trol: initially it required the quick development of effective containment policies, in
order to limit the spread of the pathogen, its consequences in terms of deaths and
the overwhelming of the health system [15, 16]; then it required the design of control
strategies capable of keeping the population active, in order to avoid the economic,
social and psychological consequences of strong restrictions [17, 18]. Furthermore,
it provided new data and empirical evidences on the effectiveness of interventions,
implemented heterogeneously around the world [19].

During the early stages of the COVID-19 pandemic I carried out a research pe-
riod at the EPIcx lab of the Pierre Louis Institute of Epidemiology and Public Health
(INSERM, Sorbonne Université) in Paris: we analyzed the early data on SARS-CoV-
2 transmission, by tracing the first 288 confirmed cases of COVID-19 outside China,
collecting all possible information about them and reconstructing the clusters of in-
fection. We built a model for the temporal dynamics in the number of importations,
showing the effects of mobility restrictions implemented to contain the spreading.
The data collected show the presence of superspreading events and estimate that
about 64% of the imported cases went undetected, suggesting a silent transmission
of the pathogen, which later gave rise to large outbreaks in many countries [20].

The contact tracing proved to be a fundamental strategy for the mitigation of the
disease transmission without the disruption of social activity, because of the high
fraction of asymptomatic and presymptomatic transmissions of SARS-CoV-2 and
thanks to the local nature of the measure [21, 22]. A broad discussion on the effec-
tiveness of manual tracing (interview-based) and on the possibility of enhancing it
with digital tracing (app-based) has been opened, aiming to optimize the allocation
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of the tracing resources between the different tracing protocols [23–27]. Our work
fits in this discussion: we consider an epidemic model for the spread of SARS-CoV-2
on the adaptive activity-driven network proposed, implementing contact tracing on
it [28]. We consider the manual and the digital tracing protocols, comparing their
effectiveness in curbing the epidemic as isolated protocols and within hybrid proto-
cols. We investigate the effect of contact tracing both on the epidemic threshold and
on the active phase of the epidemic: even when the probability of tracing a contact
is the same, manual tracing robustly performs better and dominates in hybrid pro-
tocols, compared to digital tracing. This is a consequence of an intrinsic difference in
the contacts exploration: manual tracing performs a stochastic (annealed) sampling,
while the digital tracing performs a prearranged (quenched) sampling, localized on
individuals endowed with the app. This difference is further amplified by the pres-
ence of superspreaders, i.e. by heterogeneity in the individuals behaviour, who are
easily traced manually but are invisible to digital tracing if they have not down-
loaded the app. This intrinsic difference has been often overlooked and suggests a
crucial role of manual tracing in any contact tracing policy.

A further level of complexity in the modelling of social dynamics is due to the
higher-order nature of social interactions, which typically are organized in groups and
gatherings [29, 30], producing potential superspreading events (SSEs) of the epi-
demic. These events play a crucial role in the spread of SARS-CoV-2, driving the
pandemic and suggesting to address them by any control measures [20, 31]. A pos-
sible strategy for the control of SSEs, without requiring the complete prohibition
of large gatherings, is to implement contact tracing. The role of tracing in gather-
ings has never been fully investigated, hence we assess its impact within our model,
which can be suitably modified implementing simplices of arbitrary size as building
blocks. We consider a model for the transmission of SARS-CoV-2 on the simplicial
adaptive activity-driven network, with tracing applied on simplices [32]. We show
that forward tracing, which traces to whom the pathogen is transmitted, and backward
tracing, which reconstructs from whom the pathogen is transmitted, are augmented
by the sideward tracing, a third tracing mechanism which occurs laterally by exploit-
ing the simplicial structure of the interactions. This mechanism is crucial in tracing
large gatherings, especially in strategies targeted on them. The model is also imple-
mented on an empirical dataset of gatherings collected in the University of Parma,
estimating the optimal size of gatherings to be traced to control the epidemic with-
out the closure of teaching and research activities.

In summary, we outlined the main challenging issues that motivated this work:
on the one hand the interest in the mathematical modelling of epidemic processes
coupled to the social dynamics through complex adaptive behaviours; on the other
hand, the interest in a deep understanding of the main epidemic control mechanisms
by means of simplified models, amenable of an analytical treatment. In this frame-
work, we model complex adaptive behaviours, understanding their basic mecha-
nisms and the properties of the interactions network that affect their effectiveness.

The thesis is organized in the following way. Chapters 1-3 review the main con-
cepts of epidemic processes on adaptive temporal networks: in Chapter 1 the theory
of temporal networks is presented, especially concerning the properties related to
the temporal dimension and focusing on the activity-driven networks; Chapter 2
introduces epidemic processes on temporal networks, highlighting the differences
with epidemics on static networks; in Chapter 3 the adaptive temporal networks are
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presented, highlighting the role of adaptiveness in the presence of epidemics. Chap-
ters 4-6 are the results of original research [14, 20, 28, 32]: in Chapter 4 we present the
results of Ref. [14], introducing the general formalism for adaptive activity-driven
networks and the specific case of active and inactive quarantine; in Chapter 5 the
results of Ref. [28] are presented, by introducing contact tracing and implementing
its digital, manual and hybrid protocols on the adaptive activity-driven network;
Chapter 6 is based on Ref. [32], it introduces contact tracing on gatherings within
the simplicial activity-driven network, also obtaining insights into optimal tracing
strategies based on empirical data on gatherings in a University Campus.
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Chapter 1

Temporal Networks

In this Chapter we review the temporal network theory: we introduce the main fun-
damental properties of time-varying networks, especially those deriving from the
temporal dimension, and we present the main generative models of temporal net-
works, focusing in particular on activity-driven networks (AD), which constitute the
framework in which our work is placed.

1.1 Temporal dimension

Many systems in physics, in nature and in human activities are composed of sev-
eral interacting elements [1–4]: examples include interactions between proteins, the
social interactions, the local and international transport, the internet. These systems
are typically characterized by collective and cooperative phenomena, emerging only
thanks to the interconnections between the agents of the system and which would
not exist considering the single isolated elements. For example, the interactions can
be substrates for phenomena, such as diffusive processes, transport phenomena or
synchronization processes [1–4]. The study of these collective processes requires a
thorough understanding of the structure, topology and properties of the interactions
that generate them, in order to identify how the interactions influence the dynamical
processes. A natural framework for modelling these systems is graph (or network)
theory, in which the elements of the system are described as nodes and the interac-
tions as links between nodes [1, 4].

In many systems, the interactions between elements are not fixed over time, but
evolve by being continuously removed, created or changed in intensity. This tem-
poral dimension of the topology has often been neglected, by considering only static
network in which the interactions between nodes are frozen in time. However, nu-
merous empirical evidences show that many systems are far from being static, the
temporal ordering of events is fundamental and cannot be disregarded (e.g. social
interactions, public transport connections) [2, 4–7].

This temporal dimension is crucial when considering dynamic processes occur-
ring on the network: if a time-scales separation holds between the dynamics of the
network (τN) and the dynamics on the network (τP), the temporal network can be ap-
proximated by a static graph. For example, if τN ≫ τP, the network evolves slowly
(compared to the dynamic process) and the network can be considered static in the
quenched approximation; if τN ≪ τP the network evolves rapidly (compared to the
dynamic process) and the temporal network can be described through the time av-
eraged static network in the annealed approximation. However, if the time scales of
the two processes are comparable τN ∼ τP, the network dynamics and evolution can-
not be neglected: the temporal evolution of the structure and link rearrangements
may affect the dynamical process.
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2

3
Aggregate
network

FIGURE 1.1: The need for the temporal dimension. Time-varying network made up of three
individuals with two contact events and the corresponding aggregate network.

The network evolution can significantly change the behaviour of a dynamical
process, this is clearly shown in Figure 1.1. Three individuals compose a time-
varying network and two of them have a conversation when there is a vertical line. If
individual 1 starts spreading an information, it can reach all individuals (red dashed
arrows); however, if individual 3 starts spreading an information, it will never reach
individual 1. The temporal dimension introduces asymmetry in the spreading flow,
due to the time flow and its direction: aggregating the network would produce a
static network in which an information starting from any individual would reach
anybody else (see Section 1.3 for more details).

The need to take into account a temporal dimension for the evolution of the net-
work has challenged mathematical understanding and techniques, shifting the fo-
cus towards the study of the coupling between the dynamics of and on the network
[2, 4–7]. Tools and techniques for the study of these systems derive from statisti-
cal physics (which deals with the interactions of many elements), mathematics and
computer science, due to the highly interdisciplinary character of this topic.

1.1.1 Examples of temporal networks

Examples of time-varying networks are available in many disciplines and at very
heterogeneous temporal and spatial scales.

The classic example is that of communication networks, which can cover two
levels: one-to-one communications, such as e-mails [33–35], telephone or instant
messages [36], phone calls [37, 38], and one-to-many communications, such as blogs
and people’s social accounts. Investigating the main topological and temporal fea-
tures of such networks allow to study and control the spread of computer viruses,
information or consensus formation [33, 34, 38].

Similarly, human social interactions constitute a temporal network, which is the
substrate for the diffusion of information and also of pathogens: a deep understand-
ing of the social dynamics is essential for controlling the spread of epidemics and
information [39]. Extensive access to large-dataset on social interactions networks
has been obtained recently through several projects: the first was the Reality Min-
ing project [40], where the proximity of MIT students was recorded using Bluetooth
technology. Subsequently, the SocioPatterns project developed a platform for prox-
imity estimation starting from wearable badges with radio-frequency identification
devices (RFID). This project allows to obtain data on social dynamics in different
settings, such as hospitals, schools and conferences [41–44].
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Other notable applications are found in the study of transport networks [45], for
example air or urban transport, where the connections between stations and cities
evolve over time following the transport schedules. The study of these systems is
useful to optimize mobility and transport.

Apart from human activities, many other systems can be represented with tem-
poral networks: in cell biology, the interactome [46], that is the set interactions be-
tween molecules in a cell, can be described as a temporal network, where the nodes
are proteins (or small molecules) that connect and interact to produce biological
functions. Or even the network of protein interactions or gene-regulatory networks
can be analyzed as temporal networks [47], in which, for example, the vertices are
genes and their interactions correspond to functional relationships, for which a gene
influences the transcription of another. Other biological examples concern the net-
work of neuron interactions [48], on different levels ranging from interactions be-
tween single spiking neurons to a more coarse-grained level of functional or physi-
ological interactions between areas of the brain.

1.2 Definition and representations

A network can be defined as any system that admits a representation by means of
a graph, whose nodes represent the elements that make up the system and whose
links represent the interactions among them. A network is static if the links between
the nodes of its representation are fixed in time, while it is temporal if they are con-
tinuously created, destroyed or modified over time [1, 4].

A static graph G is defined as the pair of sets G = (V , E), where V is the set of
nodes and E the set of links. Each link is defined by a pair of nodes e = (i, j) ∈ E :
the nodes (i, j) are said to be adjacent (or connected) and their order does not matter
(in this thesis we focus on undirected graphs). The number of nodes N of the system
defines the cardinality of the set V and denotes the order of the graph G; the number
of links M of the system defines the cardinality of the set E and denotes the size of
graph G. The maximum number of possible links is (N

2 ) and a graph G with the
maximum number of links is defined complete (or fully connected). Static networks
are mainly represented in two ways: the link list and the adjacency matrix. In the
link list representation, the graph is represented as a list of pairs of nodes, each
corresponding to a link in the graph:

{(u1, v1), (u2, v2), ..., (uM, vM)}. (1.1)

The graph can be also represented by the adjacency matrix A = Aij, i.e. a N × N
matrix whose entries are:

Aij =

{︄
1 if (i, j) ∈ E
0 if (i, j) /∈ E

(1.2)

or if the network is weighted the entries of A can assume positive values different
from one, which correspond to the weight of the link. This representation suggests
the development of matrix analysis theory for the study of static networks, describ-
ing key properties of the network through matrix formalism [4]. Moreover, the graph
can be also represented by another matrix that is the graph Laplacian L0:

L0 = D − A, (1.3)
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where A is the adjacency matrix and D is the degree matrix, with:

Dij =

{︄
ki if i = j
0 otherwise

(1.4)

where ki = ∑N
j=1 Aij is the degree of the node i, that is the number of links in which

i is involved. Analogously to the adjacency matrix, properties of L0 are able to de-
scribe key properties of the graph especially relating to spreading processes on such
networks.

Temporal networks can be represented in two ways [4, 7]: the event-based and the
snapshot representation (see Figure 1.2). In the event-based representation, the tem-
poral network is described as a sequence of events corresponding to the activation
of links between pairs of nodes (see Figure 1.2 - lower panel): thus, the network is
represented by a list of time-ordered events:

{(ui, vi, ti, ∆ti); i = 1, 2, ...}, (1.5)

where (ui, vi) are the nodes involved in the ith event, ti is the time of the ith event
and ∆ti its duration. Generally, the duration of the interactions is very short if com-
pared with the time between two events, therefore hereafter we will consider in-
stantaneous events: this approximation makes numerical simulations and analytical
calculations more tractable. In this case the event-based representation becomes:

{(ui, vi, ti); i = 1, 2, ...}. (1.6)

In this representation the time can be both continuous or discretized.
Alternatively, a temporal network can be represented with the snapshot repre-

sentation (see Figure 1.2 - upper panel), which consists in seeing the network as a
sequence of static networks (snapshots):

G = {G(1), G(2), ..., G(tmax)}, (1.7)

where tmax is the number of snapshots considered. Equivalently, it can be seen as a
sequence of adjacency matrices (snapshots):

A = {A(1), A(2), ..., A(tmax)}, (1.8)

where A(t) is the adjacency matrix of the static graph G(t). In this representation the
time is discretized, however it is possible to introduce an analogous representation
continuous in time, by considering tensor analysis. The temporal network can be
represented through an adjacency tensor A = A(t)

ij of indices i = 1, ..., N, j = 1, ..., N
and t:

A(t)
ij =

{︄
1 if i and j are connected at time t
0 otherwise

(1.9)

This representation highlights the temporal evolution of the network topology and
structure, both in continuous and discretized time, moreover it allows to treat net-
work evolution and topology through tensor analysis.

Given a temporal network and given a certain time window [0, T], the static net-
work aggregated on this window is defined as the static network in which a link ex-
ists between each pair (i, j) of nodes if in the time window there has been at least an
instant t in which they were connected. Clearly the static counterpart of a network
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FIGURE 1.2: Temporal network representations. In the upper panel a temporal network
is displayed in the snapshot representation, highlighting in red the nodes involved in links
in each snapshot. In the lower panel a temporal network is displayed through the event-
based representation, in which for each link between a pair of nodes the contacts time-line is
shown with instant activations event (vertical line) or event with duration (extended bars).
Both panels also show the corresponding aggregate network.

loses all temporal information. However, it is possible to keep a partial information,
considering a weighted static network, in which each link between pairs of nodes
(i, j) is associated with a weight wij which is the frequency of activation of the link
(i, j) in the time window [0, T]. In the snapshot representation, the adjacency matrix
A∗ of the aggregate graph over [0, T] is:

A∗ =
1
T

T−∆t

∑
t=0

A(t), (1.10)

with A(t) adjacency matrix of the static snapshot at time t and ∆t time-step. The
term 1/T serves as a normalization, so that the matrix element A∗

ij represents the
frequency of activation of the link (i, j) in the window [0, T]. In the aggregate net-
work the temporal information is always lost, but the information on the frequency
of connections between pairs of nodes remains, encoded in the weight of the links.
In Figure 1.3 it is reported an example of aggregate network for a mobile-phone
network [49].

Empirical data of temporal network are usually collected and provided in the
event-based version, with discretized time due to technical reasons for data collec-
tion [44]: it is possible to pass directly to the snapshot representation, without loss of
information, or to perform a coarse-graining, losing some temporal information (see
Figure 1.3). Considering a uniform time spacing ∆t for all snapshots: all events that
occur between time (k − 1)∆t and k∆t are contained in graph G(k), for k = 1, 2, ...,
which is a static graph aggregated over the period [(k − 1)∆t, k∆t]. All the temporal
details at time scales lower than ∆t are lost and increasing ∆t produces greater loss
of information: the extreme case is ∆t = tmax in which the aggregate static network
over the entire time window is considered.
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FIGURE 1.3: Mobile-phone call network. Dataset of 633986311 time stamped mobile-phone
call (MPC), collected during 182 days with 1 second resolution in a European country. The
size of the network is N = 6243322 connected via E = 16783865 links. Panel a shows the
MPC network involving people in the same town and aggregated over 3 hours. Panel b
is the same of panel a, but on a different time window. Panel c shows the total weighted
aggregated social network. In all panels, node size and colors indicate the activity of nodes,
while edge width and color describe the weight. Image from [49] under CC BY-NC-SA 3.0
license.

1.3 Topological and structural properties

Several topological descriptors can be defined on a temporal network [50], provid-
ing information on the structure of the network: these properties can be defined
locally (on the basis of connections between a few nodes) or globally (on the basis of
connections between many nodes).

A key concept is that of reachability of a vertex, that is the possibility of moving
from one node to another in the network following the connections. Indeed, the
paths that connect pairs of nodes represent the roads to which dynamic processes
are bound when evolving on the network.

In a static network G = (V , E), a path Pi0,in is defined as an ordered collection of
(n + 1) nodes VP = {i0, i1, ..., in} and n links EP = {(i0, i1), (i1, i2), ..., (in−1, in)}, such
that iα ∈ V and (iα−1, iα) ∈ E , ∀α. The path Pi0,in connect i0 to in and its length is
n. A node j is said to be reachable by another i if there is a path that connects them.
This notion in static networks is symmetric (for undirected graph), transitive (both
for directed and undirected graph) and time-independent.

When considering temporal networks it is necessary to consider time-respecting
(or temporal) paths [4, 6, 51]. A node j is reachable by a node i (or is temporally
connected) if there is a time-respecting path from i to j, that is a path Pi,j that connects
them through temporally ordered events. Indeed, the time flows while the path is
executed and the jump from one node to another can only take place on a sequence
of link activations that follow one another in time. In the event-based representation
this path is defined by the sequence of events:

{(i, v1, t1), (v1, v2, t2), ..., (vn−1, j, tn)}, (1.11)

where ti ≤ ti+1 and i ∈ [1, n − 1]. The definition in the snapshot representation is
analogous, interpreting (vi−1, vi, ti) as a link (vi−1, vi) in the snapshot G(ti). The time
of departure and arrival of the temporal path are t1 and tn respectively; the length of
the path is estimated both with the number of hops n (spatial) and with its duration
tn − t1 (temporal).

The temporal dimension introduces fundamental modification in the concept of

https://creativecommons.org/licenses/by-nc-sa/3.0/
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reachability. The temporal paths and the reachability concept are not symmetrical:
indeed, the presence of a temporal path connecting i to j does not imply the presence
of a temporal path connecting j to i, due to the constraint on the temporal ordering
of links. Moreover, time-respecting paths and the reachability concept are not tran-
sitive: the existence of a temporal path connecting i to j and connecting j to k does
not imply the existence of one connecting i to k, this happens only if the path i-j
is temporally completed before the start of j-k. Finally, time-respecting paths and
reachability are time-dependent concepts, due to the temporal nature of the links: a
node j can be reachable from i in a certain time window, in which the appropriate
links are generated to create the path, and not reachable in a different window.

The set of nodes reachable by a node i over time t ∈ [t1, tn] is called the set of
influence of i, and the reachability ratio is the average fraction of reachable nodes of
all vertices [51]. These quantities are relevant since, in the presence of an epidemic,
they respectively estimate the set of vertices infectable by an epidemic process if
the source of the infection was i and the average infectable fraction not knowing
the source of the infection. Also these concepts are time-dependent, given the time-
dependence of the reachability concept.

If the temporal information is neglected, the number of paths would be over-
estimated: in the aggregate network there are paths that cannot be realized in the
temporal network, due to the lack of temporal ordering of the link formation. A
temporal path is a causal path and therefore it is not allowed to use links in the past,
which are present in the aggregate network.

Since a temporal path occurs while time passes, it is possible that the path must
wait on an intermediate node before an event occurs and allows it to move to a
nearby node: this introduces waiting times in the path. This is crucial for diffusion
and transport processes: for example, in epidemics it is necessary that transmission
occurs before the node heals and waiting times play a key role in this.

In temporal networks it is possible to define a distance through the concept of
time-respecting path: there exists three possible definitions depending on a different
definition of temporal path with the shortest distance [52]. Given a temporal path
{(i, v1, t1), (v1, v2, t2), ..., (vn−1, j, tn)} from node i to node j, we defined:

1. the shortest distance from i to j at time t as:

dshort(i, j; t) = min{n : t1 ≥ t}. (1.12)

It represents the minimum number of jumps between i and j via a time-respecting
path starting after t. This is a topological and adimensional distance measure.

2. the foremost distance from i to j at time t as

d f ore(i, j; t) = min{tn − t : t1 ≥ t}. (1.13)

It represents the minimum time needed to go from i to j through a time-respecting
path, starting to measure time at instant t. This is a temporal measure and has
a time dimension.

3. the travel-time (or fastest) distance from i to j at time t as

dtravel(i, j; t) = min{tn − t1 : t1 ≥ t}. (1.14)

It is the minimum time necessary to go from i to j, starting to measure the time
at the instant t1 in which the path begins, i.e. regardless of the initial waiting
period t1 − t. This is a temporal measure and has a time dimension.
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The different distances are useful in different settings: the shorter distance gives
information on the topological distance in terms of links, while the two temporal dis-
tances give information on how quickly the vertices can reach each other via tempo-
ral paths. For example, in public transport the links represent connections between
stations: dshort will be preferred by passengers interested in minimizing the num-
ber of connections; d f ore will be preferred by passengers who wants to reach their
destination as soon as possible; dtravel will be preferred by a passenger who wants
to minimize the time spent on public transport. In general, all these distances are
highly not symmetric and time-dependent. This is realistic, for example by think-
ing of the daily and weekly human cycles in communication or transport networks,
in which the distance between two individuals/places is changed at different times
and days.

For each of the three distances it is possible to define the average distance between
pairs of nodes:

L(t) =
2

N(N − 1)

N

∑
i=1

i−1

∑
j=1

d(i, j; t), (1.15)

and the diameter of the temporal network:

D(t) = max
i,j∈V

d(i, j; t). (1.16)

These properties provide time-dependent information by estimating the overall evo-
lution of the network over time, presenting dense phases (with small diameter and
small average distance) or sparse phases (with high diameter and high average dis-
tance). Clearly, the meaning of a small L and D depends on the definition of distance
used: for the shortest distance it means a topological dense network, while for tem-
poral distances it means a temporally dense network.

Although they are relevant, distance measures provide global information on
the network structure, but they do not provide information on the importance that
nodes have in the network structure (local information). Several measures of nodes
centrality have been proposed, depending on specific process or function of interest
that the network must satisfy. These centrality measures can also be defined as time-
dependent or time-independent: in the first case they capture changes in the role and
importance of a node in the network over time, modelling changes in the relevance
of nodes; in the latter they describe the overall importance of a node over a time
window.

The simplest measure of the centrality of a node in a static network is the degree
centrality: the analogue for a node in a temporal network would be total number
of events, intended as the formation of links, in which the node has been involved
and is a time-independent measure of centrality. It coincides with the degree of
the node in the aggregate network and its time-dependent version would be the
instantaneous degree of the node k(t).

Another measure of centrality is closeness centrality [53], which for a node i is
defined as follows:

CC(i, t) =
N − 1

N
∑

j=1;j ̸=i
d(i, j; t)

, (1.17)

where d(i, j; t) is one distance, thus CC(i, t) measures the inverse of the mean dis-
tance of i to all other nodes at time t. This centrality is high for nodes that are close
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to all the others and it estimates how quickly a node can reach the other nodes on av-
erage. Clearly it can be defined in three versions, corresponding to the three choices
on the distance.

The closeness centrality of a node would be null if that node were not temporally
connected to at least one node: this situation occurs very frequently on temporal
networks. For this reason, an increased measure of closeness centrality is defined,
the temporal efficiency [45]:

CE(i, t) =
1

N − 1

N

∑
j=1;j ̸=i

1
d(i, j; t)

, (1.18)

where 1/d(i, j; t) is defined as zero if there are no time-respecting paths from i to j
arriving at time t or earlier. In this way a pair of disconnected nodes contributes
with a null term to the centrality, without influencing the other terms.

The degree and closeness centralities consider nodes that are topologically or
temporally (depending on the definition of distance used) better connected with the
rest of the network: however they neglect vertices that may be poorly connected,
but crucial to connect topologically or temporally different regions of the network,
behaving as bridges. Betweenness centrality was introduced to account this [1, 3, 54]:
it measures the fraction of minimum-distance paths that pass through a node, aver-
aged over all starting and ending nodes:

CB(i, t) =
1

(N − 1)(N − 2)

N

∑
j=1;j ̸=i

N

∑
j′=1;j′ ̸=i,j

σi
jj′(t)

σjj′
, (1.19)

where σjj′ is the number of minimum-distance temporal paths j → j′ over the en-
tire time-window, σi

jj′(t) is the number of minimum-distance temporal paths j → j′

passing through i at time t (i.e. i is reached at time t or earlier and the path does not
move to another node before t).

A node with a high betweenness centrality is traversed more by short/fast paths:
this is fundamental for transport networks, to estimate the traffic handled by a node,
assuming that the number of short/fast paths traversing a node are an approxima-
tion of the frequency of use of the node. This information is important to speed up
or slow down the transport process: removing a node with high betweenness would
temporally disconnect different regions of the network, since it acts as a bridge.

In closeness and betweenness centrality the centrality of a node is defined con-
sidering processes in which something moves from a source to a target following a
minimum-distance path. Other centrality classes can be defined assuming instead
a random diffusion process on the network: in this case a node is central if it is fre-
quently occupied by this process. For static networks this approach leads to matrix-
based measures of centrality, such as Katz centrality, eigenvector centrality and the
PageRank [1, 3, 4]: generalizations to temporal networks require the use of three-
dimensional tensors.

The PageRank is defined as the stationary density of a random walk on a node:
initially it was proposed for ranking web pages and then it was applied in many
other fields, identifying central nodes as the ones which has a high probability to be
occupied by a random walker moving on the network [1]. The TempoRank is defined
as the analogue of the PageRank for temporal networks in snapshots representation
[4, 55]. The random walker, in each snapshot, remains on the current node with a
certain probability q, even if it can move on neighbouring nodes. The probability of
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transition from node i to node j in a snapshot A(t) is defined:

Tij(t) =

⎧⎪⎨⎪⎩
δij if ki(t) = 0, 1 ≤ j ≤ N
qki(t) if ki(t) ≥ 1, i = j
Aij(t)(1 − qki(t))/ki(t) if ki(t) ≥ 1, i ̸= j

(1.20)

where ki(t) = ∑N
j=1 Aij(t) is the degree of i at time t, ∑N

j=1 Tij(t) = 1 and the prob-
ability for the walker to stay in the node i is qki(t), since each edge in the snapshot
induces a jump with probability (1 − q). The transition matrix at time t is given by
T(t) = Tij(t) and the one-cycle transition matrix for the network is defined as:

T tp ≡ T(t1)T(t2)...T(tmax). (1.21)

Periodic boundary conditions are imposed, i.e. A(t1) is applied after A(tmax), and u
is defined as an N-dimensional density vector in which the i-th element is equal to
the density on node i. The random walker stationary density is given by the solution
of the equation:

u(t1) = u(t1)T tp. (1.22)

Even if the snapshots are applied indefinitely and the dynamics is at equilibrium,
the density on each node changes at each snapshot: the stationary density in the
usual sense does not apply in a temporal network as the connections continue to
evolve. Thus, u(t1) represents the equilibrium density immediately after A(tmax) or
before A(t1). The TempoRank is defined as the average of equilibrium density over
snapshots:

TR = u ≡
tmax

∑
t=t1

u(t)/tmax, (1.23)

where u(t) is the stationary density when the observation is made just before apply-
ing A(t).

Finally, many more centrality measures have been defined, for example time-
independent version of the measures introduced above, eigenvector centrality, run-
ning broadcast and receive centrality [4]. Moreover, all definitions of node centrality
can be easily redefined for links, identifying central links in the network (local infor-
mation).

1.4 Temporal properties

The temporal dimension of the network introduces a considerable complexity for the
network structure and for topological descriptors, profoundly modifying concepts
introduced on static networks. Moreover, additional temporal features, missing in
static networks, are introduced peculiarly due to the temporal dimension: the statis-
tics of evolution of interactions and the presence of temporal patterns play a key role
in the network properties and for dynamic processes.

1.4.1 Statistical properties of event times

Given a temporal network, a slight modification of the event-based representation
presented in Section 1.2 can be considered. Each node (or link) is assigned with
the sequence of events associated with it {t1, t2, ..., tn}, instead of assigning the se-
quence of events to the entire network. The temporal statistics of these events and
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FIGURE 1.4: Statistics of event sequences. Periodic Ψ(τ) = δ(τ − τ), Poissonian Ψ(τ) ∝
e−λτ and bursty Ψ(τ) ∝ τ−α event sequences.

correlations in the timing play a relevant role, for example in the duration of time-
respecting paths.

The statistics of the events are regulated by the distribution of inter-event times,
that is the time elapsed between two successive events involving a node. The i-th
inter-event time is:

τi = ti+1 − ti. (1.24)

Events generated by a Poisson process present an inter-event times distribution Ψ(τ)
which is exponential:

Ψ(τ) = λe−λτ, (1.25)

where λ is the process parameter. This distribution is homogeneous, with light tails
and small fluctuations (see Figure 1.4).

Empirical data on many natural (e.g. earthquakes, neuron spiking) and artifi-
cial systems (e.g. human communications) show intermittent behaviour that devi-
ates from the homogeneous Poissonian memoryless behaviour, suggesting that the
sequence of events is produced by a renewal process rather than a Poisson process
[56–60]. This bursty dynamic of events consists in alternating periods of strong activ-
ity (trains of events) with long periods of inactivity: this can be modelled in general
with broad inter-event times distributions, with large fluctuations and heavy tails
(see Figure 1.4). For example, a power-law distribution:

Ψ(τ) ∝ τ−α, (1.26)

where α > 0. This inter-event time distribution shape has been observed in many
systems of human activities (see Figure 1.5) estimating 1 ≤ α ≤ 2.7 [4, 58, 61].

A good measure of the burstiness of a sequence of events is the coefficient of varia-
tion, defined as the standard deviation of the inter-event times sequence {τi} divided
by its average:

CV =

√︄
1

n−1

n−1
∑

i=1
(τi − ⟨τ⟩)2

⟨τ⟩ , (1.27)

where

⟨τ⟩ = 1
n − 1

n−1

∑
i=1

τi. (1.28)
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FIGURE 1.5: Characteristic distributions of human communication event sequences. In
the main panels are plotted the distributions P(E) of the number of events E observed in
the same bursty period ∆t, with various ∆t time-window sizes; in the bottom panels the
distributions P(tie) of the inter-event times and the average autocorrelation functions A(t)
are plotted. a Mobile-phone call dataset for a European operator; b text messages from the
same dataset; c email communication sequences. A comparison can be made with reshuffled
temporal sequence, looking at empty symbols. Image from [61] under CC BY-NC-SA 3.0
license.

A periodic process, with Ψ(τ) = δ(τ − τ), produces CV = 0; the Poisson process,
with Ψ(τ) ∝ e−λτ, produces CV = 1; a broad distribution Ψ(τ), on the other hand,
produces high values of CV. A normalized version of the coefficient of variation is
the burstiness measure [60] defined as:

B =
CV − 1
CV + 1

, (1.29)

with −1 ≤ B ≤ 1. A periodic process features B = −1, a Poissonian process B = 0
and an extremely bursty event (CV → ∞) has B → 1. Many empirical systems show
values of CV > 1 and B > 0 [60].

The origin of this temporal statistic in human activities has been much debated
[56, 57]: a possible cause could be related to the decision-based queuing process,
which humans apply when they need to address multiple tasks and allocate their
time and energy in different activities.

The sequences of events can be characterized by even more complex temporal
patterns, emerging from rhythms, cycles or temporal patterns [36, 62]. For example,
human activities are characterized by circadian rhythms and cycles on longer time
scales in human activities (e.g. weeks, seasons), which can produce heterogene-
ity in the dynamics of interactions. An example is the period of inactivity at night
or reduced activity on weekends, alternating with periods of high activity during
working hours and days.

Realistic temporal networks observed at successive snapshots are typically cor-
related, showing positive correlations even removing the effects of circadian rhymes
and periodicities in activities (detrending process). For example, if a node (or a link)
has an event at a time t after a short inter-event time, it tends to have a new event
after a short inter-event time from t; on the contrary, if the last inter-event time was
long, the next one will also be long.

Given a sequence of events of a node (or a link) {t1, t2, ..., tn}, with a sequence

https://creativecommons.org/licenses/by-nc-sa/3.0/
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{τi} of inter-event times, a measure of correlations is the memory coefficient [60], de-
fined as the sample covariance of adjacent inter-event times:

M =

n−2
∑

i=1
(τi − m1)(τi+1 − m2)√︄

n−2
∑

i=1
(τi − m1)2

n−1
∑

i=2
(τi − m2)2

, (1.30)

where:

m1 =
1

n − 2

n−2

∑
i=1

τi, (1.31)

m2 =
1

n − 2

n−1

∑
i=2

τi. (1.32)

A positive value of M means positive correlations, as typically observed in realistic
datasets [60]. An analogous coefficient can be defined also for the snapshot represen-
tation, considering the temporal correlation coefficient between two adjacent snapshots
[53]:

C =
1

N(tmax − 1)

tmax−1

∑
t=1

N

∑
i=1

N
∑

j=1
Aij(t)Aij(t + 1)⌜⃓⃓⎷[︄ N

∑
j=1

Aij(t)

]︄ [︄
N
∑

j=1
Aij(t + 1)

]︄ , (1.33)

where tmax is the maximum number of snapshots and 0 ≤ C ≤ 1. C = 1 means that
all snapshots are the same, i.e. a static network; C would increase if many links are
repeated both at t and t + 1.

Even more complex correlations can emerge in temporal networks: so far we
have considered correlations in the behaviour of a single node or link, however it
is possible that an event on a node (or link) increases the probability of another
event on another node (or link) soon after. This can easily happen in communication
networks for information transmission. Entropy and mutual information concepts
can be used to analyze this aspect [63].

We consider a sequence of events for node i, {t1, t2, ..., tn}, and the corresponding
sequence of nodes with which the node i is in contact {v1, v2, ..., vn}, assuming that
a node is adjacent to them one after the other (neglecting simultaneous adjacencies
to multiple nodes). The entropy associated with the two sequences of i is:

H1
i = −

N

∑
j=1;j ̸=1

pi(j) log2 pi(j), (1.34)

where pi(j) is the probability that the node i is adjacent to j. A node with large
degree in the aggregate network and equally connected to the different nodes, will
have H1

i high. The entropy conditioned by the previous adjacent node is:

H2
i = −

N

∑
j=1;j ̸=1

pi(j)
N

∑
l=1;l ̸=j

pi(l|j) log2 pi(l|j), (1.35)

where pi(l|j) is the probability that the node i is adjacent to l knowing that i was
adjacent to j in the previous snapshot. H2

i measures second-order correlations in
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the sequence {v1, v2, ..., vn} and estimates the uncertainty on the next adjacent node
knowing the previous neighbour. The mutual information measures correlations be-
tween events on different nodes, and is defined as:

Ii ≡ H1
i − H2

i = ∑
j,l=1;j,l ̸=i

pi(j, l) log2
pi(j, l)

pi(l)pi(j)
, (1.36)

where pi(j, l) is the joint probability that the node i is adjacent to the node j and then
to the node l immediately after. Ii = 0 corresponds to the absence of correlations
on different nodes, while Ii > 0 presents positive temporal correlations: for many
empirical systems Ii > 0 has been observed [63].

The event sequence statistics e temporal correlations are very important, as we
will see in Chapter 2, for the study of dynamic processes on temporal networks.

1.4.2 Temporal motifs and sub-structures

We have seen global and local topological descriptors of the networks: however, a
further fundamental aspect in the study of networks is the identification of interme-
diate structures (mesoscale) with specific properties for their structure or for their
role in dynamic processes, such as highly connected communities or cores. These
structures are neither local, since involve several nodes, nor global, since not all
nodes are considered: similar structures are observed in temporal networks, by con-
sidering temporal cores and meso-structures [6].

In temporal networks can be identified subgraphs. Given a subgraph G ′ ⊆ Gt
of the complete graph with all links active at time t in the temporal network, the
support set S(G ′) of G ′ is defined as the set of time steps in which G ′ ⊆ Gt. A
subgraph is said to be persistent if it has a support wider than a certain threshold.
These types of persistent structures play a fundamental role in diffusive or dynamic
processes on the network as well as in the dynamics of the network.

Significant temporal patterns can also be found with temporal motifs: a motif is
an equivalence class of subgraphs overrepresented in the network (cardinality) with
respect to a null model of the network (e.g. with respect to a randomized reference
system). This concept can be implemented by considering snapshots of the network
at different times and counting the different subgraphs in these snapshots.

These temporal mesoscale patterns are fundamental structure of temporal net-
works and play a key role in dynamic processes, thus strong efforts have been de-
voted to the development of tools to detect them [64, 65].

1.5 Temporal networks models

As sketched in the previous Sections, real temporal networks are highly complex,
with several properties crucial for their structure, topology and dynamics, and also
for dynamical processes occurring on top of them. An enormous work has been
directed to the study of empirical temporal networks, however this brings the dis-
advantage of not obtaining a systematic understanding of the effects of the network
temporal structure and properties: to understand this we need generative models
and synthetic temporal networks. These allow to explain the emergence of salient
properties and to model and investigate specific characteristics of real networks on
dynamical processes, by constructing network models with specific and tunable
characteristics.
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The number of temporal network models proposed has increased significantly
recently, here we will present the main models, discussing then in detail the class of
models that constitute the framework of this work, i.e. the activity-driven models.

Preferential attachment class of models. The first examples of temporal net-
works are those generated by the preferential attachment mechanism, which was
proposed as a constructive process for networks with heavy-tailed degree distribu-
tion [3]. This mechanism is based on the idea that in many real systems the for-
mation of links is not random but occurs preferentially towards nodes with a high
number of connections (e.g. web-pages). Hence, the more a node has a high degree
k, the higher the node’s probability of receiving new links: this mechanism is the
elementary generative process for the growth of many networks. For example, in
the Barábasi-Albert model the network starts with a core of m0 connected nodes:

1. at each time-step a new node is added to the network and it engages m links
with m < m0 nodes;

2. a node i with degree ki receives a new link with probability:

Π[ki(t)] =
ki(t)

∑j k j(t)
, (1.37)

which implements the preferential attachment since Π[ki(t)] ∝ ki(t).

The degree ki(t) of node i evolves accordingly to ∂tki(t) = mki(t)/[2mt + m0⟨k⟩0],
where ⟨k⟩0 is the average degree of the initial core. The graph evolves asymptotically
towards a stationary state with power-law degree distribution P(k) ∼ k−3 and the
transient graph can be considered as the first example of a temporal network [3].

Stochastic temporal networks. The simplest version of temporal network mod-
els is the one in which topological and temporal structures are decoupled [4]. In this
network model, a static network is considered (generate with a certain topology)
on which a temporal dynamic is defined in the event-based representation, assign-
ing to each link a sequence of events obtained by an inter-event times distribution
Ψ(τ). More complex behaviours can be considered, for example different distribu-
tions Ψi(τ) for each link, or correlations in τ assuming a conditional distribution
of the inter-event times Ψ(τ|τprev). These models allow to tune and investigate the
effects of Ψ(τ) or correlations on the network and on dynamic processes.

Social group dynamics models. Some models have been developed to describe
the dynamics of social groups, i.e. the formation of transitory social bonds, such
as face-to-face interactions [59, 66]. The main approach is based on defining Mas-
ter Equations that describe the evolution of the number of people in a group of a
certain size and that capture observations such as the fact that the more a node has
interacted with a group, the less will abandon it, or that the more isolated an indi-
vidual is, the less will interact with a group. This produces network models with
communities (groups) of strong links, connected to each other via weak links.

Contact network models. Many temporal network models have been proposed
to describe the dynamics of strong contacts and the change of partnership, based on
the rewiring of an existing static network [67]. The basic idea is to take a static net-
work and select two edges (i, j) and (i′, j′) with a certain probability at each time step
and then replace them with links (i, j′) and (i′, j) with probability 1/2 or with (i, i′)
and (j, j′) with probability 1/2. For example, several models have been proposed
that introduce assortativity into the temporal network, through mixing functions
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ϕ(i, j) [1, 67], which set if the pair is formed or not:

ϕ(i, j) = 1 − ξ + ξ
kik j

k2
max

, (1.38)

or that introduce disassortativity:

ϕ(i, j) = 1 − ξ + ξ
(ki − k j)

2

k2
max

, (1.39)

with ξ fixing the strength of the mixing pattern and kmax fixing the degree upper cut-
off. Inspired by this model, several works investigated the stochastic pair-formation
network [6].

Null and randomized reference models. To understand the relevance of tem-
poral and structural properties in empirical graphs it is necessary to compare the
network with reference models. For static networks the reference network typically
considered is the configuration model, since it is obtained by randomly rewiring
links of the original network. A similar approach can be obtained for temporal net-
works, removing all temporal structures and correlations between nodes and links.
However, correlations and structures are created on many different (temporal and
spatial) scales, thus there is not a single and general method for obtaining a null
model of the network. Different randomized models have been developed, in which
a specific characteristic of the network is destroyed, in order to identify its single
contribution. By selectively turning off specific types of correlation and applying
these randomization procedures, it is possible to isolate the role of different topo-
logical and temporal properties to the network and to dynamical processes [38, 51].
Randomization procedures can act both on the topological level and on the temporal
one [4, 7].

Interval shuffling: For each link, given the sequence of events that characterize
it in the original temporal network, the inter-event times are randomly reshuffled
keeping the first and last events fixed. This procedure preserves the distribution
Ψ(τ) of inter-event times and the structure of the aggregate network, including the
weights of its links. Instead, correlations and causality on each link and between
different links are destroyed: this approach can be used to study the effects of the
detailed order of events and correlations.

Link shuffling: This approach is based on shuffling the sequence of events across
links: the structure of the aggregate network and the weight distribution of the links
are conserved, together with the set of sequences of events, while all correlations
between links are destroyed.

Random times: For each link, given a sequence of events, the same number of
events as the original link are uniformly redistributed on the interval [0, tmax]. This
corresponds to assigning to each link an independent Poissonian process: the effects
are the same of the interval shuffling, but also the distribution of the inter-event
times Ψ(τ) is destroyed.

Random link shuffling: This method is the temporal analogous of the configuration
model in static networks. It consists in considering sequentially each link: for each
edge (i, j) another edge is picked randomly (i′, j′) and with probability 1/2 the two
links are replaced with link (i, j′) and (i′, j), otherwise they are replaced with (i, i′)
and (j, j′), avoiding self-edge or multiple edge. The original sequences of events
of the two links are thus randomly reassigned to the two new links. The procedure
destroys the structure of the aggregate network and maintains the aggregated distri-
bution of the inter-event times on the links, the distribution of the link weights and
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the degree of each node. This approach can be used to study the effect of network
topology, assuming that the times of contacts are governed by edges, since after the
randomization both the numbers and timings of contacts per nodes will change.

These reference models can be simultaneously applied in order to obtain the
combined destruction of various correlations and properties. Finally, many other
models for temporal networks have been proposed, a detailed review can be found
in [4, 7].

1.6 Activity-driven (AD) models

Many static and temporal network models extensively studied in recent years are
connectivity-driven, i.e. they focus attention on links and on topological measures
related to them, such as the degree of a node. Recently a new class of temporal net-
work models has been proposed: the activity-driven models [13]. This class of models
is based on shifting the dynamics from the connections to the nodes themselves:
instead of paying attention to the links and the related topological properties, the
nodes themselves are considered as central entities for the dynamics of the network
and its properties. This is done by assigning to each node i its activity potential (also
called simply activity) ai: this parameter measures the propensity of the node to gen-
erate links. The activity fixes for each node the dynamics of activation and formation
of links in which the node is actively involved.

The idea behind these models is that the dynamic, temporal, topological and
structural properties of the network do not emerge from connectivity-driven mecha-
nisms, but rather from the behaviour of the single nodes, which with their dynamics
of connections produce specific network characteristics emerging from the collective
contribution. The properties of a node do not derive from specific positions in the
degree space or from passive attraction mechanisms (as in the preferential attach-
ment mechanism) but rather their properties are encoded in the active behaviour of
the node itself.

This model therefore is well suited to describe systems and networks in which
connections are guided by the activity of individual: this is the case, for example,
of all human activities, such as social interactions, mobile-phone calls, messages,
emails, content sharing and use of social networks. The activity-driven models have
been used to model time-resolved, empirical large-scale network relating to collab-
orations between authors of articles in scientific journals, exchanges of messages in
the Twitter network and the collaborations of actors [13].

The network is composed of a set of N nodes, each assigned with an activity pa-
rameter ai, distributed with the activity distribution ρ(a). Each node is characterized
by an independent activation process and the activity defines the node activation
probability per unit of time: in a given time interval ∆t the node i is activated with
probability ai∆t and generates interactions with other nodes. The average number
of active nodes per time unit is N⟨a⟩, where ⟨a⟩ =

∫︁
da ρ(a). The complete network

G is the result of the activation processes of all the nodes, therefore the overall dy-
namics of the network is regulated by the distribution ρ(a). The dynamics of G is
the following:

1. at the beginning t = 0 all the nodes are disconnected and the graph G is com-
pletely disconnected;
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FIGURE 1.6: Empirical activity distributions and snapshot representation of the AD net-
work. The cumulative activity distribution is plotted for the network of a messages ex-
changed on Twitter, b actors collaborations in movies and TV series (IMBb), c collaborations
of authors in the journal PRL. In panel d the AD network is visualized in the snapshot rep-
resentation, for N = 13 and m = 3. Image from [13] under CC BY-NC-SA 3.0 license.

2. each node i fires in the interval ∆t with probability ai∆t and generates m links
with m randomly chosen nodes. Inactive nodes can still receive connections
from other agents;

3. at the next time step t + ∆t all the links of the network are removed, assuming
that the interactions last ∆t. Then the process is iterated from point 2.

The model is discrete in time, with time-step ∆t, however it can also describe a con-
tinuously time-evolving network: in that case ∆t → 0, the process is continuous, the
interactions are instantaneous and the activity sets the activation rate of a node. A
sketch of the temporal dynamics is represented in Figure 1.6 in the snapshot repre-
sentation. Hereafter we fix ∆t = 1, without losing generality.

The activity-driven model obtained is random and Markovian, with successive
snapshots independent. Indeed the interactions are without memory and uncorre-
lated, since the activations of nodes occur independently between each other, with-
out correlation with previous activations and the agents contacted do not depend on
previously connected nodes.

The model produces a light-tailed and homogeneous inter-event times distribu-
tion on each node [13]. The generative process of the network produces snapshots at
successive discrete times ∆t: the time between two successive activations of a node
i respects the geometric distribution with probability of success ai∆t:

Ψi(τ = n∆t) = ai∆t(1 − ai∆t)n−1, (1.40)

https://creativecommons.org/licenses/by-nc-sa/3.0/
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since the probability Ψi(τ) of being activated after a time τ = n∆t from the last
activation is the probability of not being activated in the previous (n − 1) time-steps
and of being activated in the last. Within the limit of a continuous process ∆t → 0
the distribution becomes exponential and the process is Poissonian:

Ψi(τ) = aie−aiτ, (1.41)

with average activation time ⟨τ⟩i =
∫︁

dτ τ Ψi(τ) = a−1
i and activation rate ai.

The single activation dynamics define the (aggregated) network structure and
also the instantaneous connectivity patterns: indeed the degree distribution can be
linked to the activity distribution ρ(a). The topological and evolutionary properties
are completely encoded in the distribution of the activity ρ(a) [13, 68–70]. The distri-
bution ρ(a) and the cumulative distribution FC(a) were also observed to be skewed
and highly heterogeneous with heavy-tails in many systems, e.g. interactions on
Twitter, mobile-phone call, collaborations in papers of scientific journal such as PRL
(see Figure 1.6 and Figure 1.8): this is reasonable since real-world social networks
and human activities are characterized by complex properties [13, 70]. Large fluc-
tuations in activity correspond to the presence of different types of individuals who
engage different number interactions: this may be due to work activities or personal
propensity. Furthermore, it has been shown that this distribution, unlike the degree
distributions and other structural properties, is weakly dependent on the time scale
on which it is measured.

In this model nodes with many connections emerge because of their high activity
and propensity for interactions and not because of an advantageous position in the
space of the degree or a passive mechanism of attraction of connections (i.e. prefer-
ential attachment). The instantaneous network is typically sparse, mostly composed
of stars, made up of the active node and some low-degree vertices, contacted by the
active node. The integrated network, on the other hand, is very dense.

This model is analytically tractable: several structural properties have been de-
rived mostly for the aggregate network [13, 68–70]. The integrated network can be
considered and it is defined as the union of all the snapshots of the network on the
T + 1 time steps GT = ∪t=T

t=0 Gt. Each active node generates m links and therefore the
average number of active links per unit of time is Et = mN⟨a⟩, so the average degree
per unit of time is:

⟨k⟩t =
2Et

N
= 2m⟨a⟩. (1.42)

For large time T and network size N, the degree in the integrated network can be
approximated by a continuous variable and agent i will have degree ki(T) in the
integrated network at time T:

ki(T) = N
(︂

1 − e−Tm(ai+⟨a⟩)/N
)︂

, (1.43)

which is the number of distinct nodes interacting with i up to time T.
The adjacency matrix of the activity-driven network aggregated per unit of time

is:
A∗

ij = m
ai + aj

N
, (1.44)
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neglecting the probability that an active node contacts another active node (order
1/N). Thus the average degree of node i in the aggregate network is:

ki(T) = T
N

∑
j=1

A∗
ij = m(ai + ⟨a⟩)T, (1.45)

which holds for large N at the order 1/N. This shows a monotonic relationship
between ki(T) and ai, since dki(T)/dai = mT, which allows to obtain the distribution
PT(k) considering that PT(k)dk = ρ(a)da:

PT(k) ∼
1

Tm
ρ

(︃
k

Tm
− ⟨a⟩

)︃
. (1.46)

The same result can be also obtained formally through a hidden-variable formal-
ism [68, 69]. These results imply that the distribution of the degree in the aggregate
network follows the same functional form of the distribution of activity ρ(a). For
example, for a power-law distribution ρ(a) ∼ a−(ν+1) with a ≥ am, the degree dis-
tribution is P(k) ∼ k−(ν+1); if we consider ρ(a) = δ(a − a0) the degree distribution

is a Poissonian centred on µ ∼ 2Ta0, with PT(k) = e−µ µk

k! , which in the asymptotic
limit is PT(k) ∼ 1

T δ(k − Ta0). Empirically, however the two distributions differ: this
is due to the aspects that the AD model does not capture, such as memory effects,
community, weighted interactions, duration of social interactions (persistence).

Finally, results on the probability Pi(k, t) that a node with activity ai has degree
k at time t have been obtained by applying the Master Equation approach. The
discrete time equation for Pi(k, t) is (assuming m = 1):

Pi(k, t + 1) =ai
N − k

N
Pi(k − 1, t) + ai

k
N

Pi(k, t) + Pi(k − 1, t)
N

∑
j≁i

aj

N

∑
h

Pj(h, t)
N

+ Pi(k, t)
N

∑
j≁i

aj

N

∑
h

Pj(h, t)
N − 1

N
+ Pi(k, t)

N

∑
j≁i

aj + Pi(k, t)

(︄
1 −

N

∑
j

aj

)︄
,

(1.47)
where j ≁ i denotes the sum over the nodes that have not been yet connected to
i. Assuming that only one node is active between two time steps t and t + 1, that
1 ≪ k ≪ N and in the limit of large times and degrees, continuous equation in t and
k can be written:

∂Pi(k, t)
∂t

= (ai + ⟨a⟩)
(︃
−∂Pi(k, t)

∂k
+

∂2Pi(k, t)
∂k2

)︃
, (1.48)

which admits as a solution:

Pi(k, t) =
1√︁

2π(ai + ⟨a⟩)t
exp

(︃
− (k − (ai + ⟨a⟩)t)2

2t(ai + ⟨a⟩)

)︃
. (1.49)

Within the large time limit, the solution is reduced to:

Pi(k, t) = δ(k − (ai + ⟨a⟩)t), (1.50)

which allows to simply obtain again the growth of the degree:

ki(t) = (ai + ⟨a⟩)t. (1.51)
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FIGURE 1.7: AD network and degree distributions. An example of the AD network is
visualized considering different time windows for aggregation: one time-step, 10 time-steps
and 20 time-steps. The network is obtained for N = 5000, m = 2, a = ηx, ρ(x) ∼ x−ν with
ν = 2.8 and x ∈ [10−3, 1]. The color and the size of vertices are proportional to their degree.
In the lower panels the degree distributions of the aggregate networks are shown. Image
from [13] under CC BY-NC-SA 3.0 license.

In Figure 1.7 the aggregated AD network is shown for different aggregation time-
window and the corresponding degree distribution is plotted.

The eigenspectrum of the adjacent matrix can be obtained by considering the
eigenvalue equation:

A∗u = λu, (1.52)

where λ is an eigenvalue of A∗ and u = (u1, ..., uN)
T is the corresponding eigenvec-

tor. Substituting the definition of A yields the following equation:

m

(︄
N

∑
i=1

ai

N
+

N

∑
i=1

aiui

)︄
= λ, (1.53)

which allows to determine the eigenvalues:

Λ± = m

⎛⎝ N

∑
i=1

ai

N
±

⌜⃓⃓⎷ N

∑
i=1

a2
i

N

⎞⎠ , (1.54)

where one is positive, one is negative and the remaining (N − 2) eigenvalues are
null, since A∗ has rank two. The maximum eigenvalue is therefore Λ+.

As shown, the activity-driven model is extremely interesting and powerful, from

https://creativecommons.org/licenses/by-nc-sa/3.0/
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a modelling point of view for the way it is conceived focusing on spontaneous activ-
ity of nodes, and from a mathematical point of view for the analytical and numerical
tractability. Its advantages are not limited to this, allowing, as we will see in Chapter
2, to couple in a simple way the dynamics of the network with dynamic processes
without the need of the time-scale separation approximation.

Clearly the model has some limits mainly related to the lack of empirically ob-
served properties in real systems: for example it does not reproduce bursty contact
sequences and memory effects. By taking advantage of the flexibility and simplicity
of the AD model, it is possible to modify and extend the original AD model with
simple mechanisms, taking into account essential realistic properties.

1.6.1 AD with attractiveness (ADA)

An extension of the AD network is the activity-driven network with attractiveness
(ADA) [71, 72]. In several networks, the nodes not only generate interactions based
on their propensity (activity) but receive links and connections based on their ability
to attract links (attractiveness or popularity index) [71, 73, 74], unlike the AD model
where all nodes receive them equally. In this model a contact selection mechanism
is introduced, which takes into account that some nodes are preferential targets of
interactions. This happens for example in social interactions for the popularity of
individuals or for their social role, which requires them to be contacted frequently
by other individuals, or in information or online communication systems, where
celebrities or public media receive a lot of activity.

The model consists in introducing the attractiveness of a node bi, as a naturally
complementary parameter of the activity: the activity defines the propensity of a
node to generate social interactions, the attractiveness instead the propensity (vol-
untary or not) to receive interactions.

In the activity-driven model with attractiveness the network G is composed of N
nodes: each of them is assigned with two parameters the activity ai and the attrac-
tiveness bi. In general, activity and attractiveness can be correlated and therefore are
extracted from a joint probability distribution ρ(a, b). Recent empirical observations
show that activity and attractiveness are both power-law distributed and feature an
approximately linear correlation [71], e.g. online communities, face-to-face interac-
tions and animal hierarchies [71, 75, 76]. The AD network is the particular case of
the ADA network in which the attractiveness of the nodes is the same for all nodes.

The dynamics of the ADA network is identical to that of the AD network, how-
ever an active node i chooses the target j the connections with probability propor-
tional to the attractiveness of the node pj ∝ bj, suitably normalized so that the prob-
ability of connecting a node is 1. The model thus behaves like a linear preferential
attachment, since the number of contacts received by a link in a time window is pro-
portional to its attractiveness, while the total number depends on both activity and
attractiveness.

The attractiveness models global popularity, i.e. with respect to the entire pop-
ulation, as opposed to the local reinforcement mechanism where the probability of
contact is node-dependent and changes between different nodes (see Section 1.6.2).

The introduction of attractiveness therefore has strong repercussions on the topo-
logical structure and on the temporal dynamics of the network: for example positive
activity-attractiveness correlations produce strong heterogeneity in the link weights
in the aggregate network and produce hubs with a high number of (generated and
attracted) links. This will be essential for the study of dynamic processes [72].
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1.6.2 AD with memory

In the original AD model, an active node chooses uniformly at random the other
nodes to connect: this is clearly an approximation. In empirical networks there are
memory effects: a node can remember the nodes contacted in the past and generates
links preferentially with them (or not) [77, 78]. This is typical of human interactions,
in which individuals remember their friends and social circles (e.g. co-workers, fam-
ily, friends) and can allocate social interactions differently, either by reinforcing a
small number of strong interactions, or by exploring new ones. This happens not
only in social interactions, but also in online interactions, in work and collaboration
networks [79, 80].

The AD model can be extended by introducing memory through a tie allocation
mechanism, in which the interactions are not random but are concentrated on nodes
already connected, through a local reinforcement mechanism [49, 70, 81, 82]. This mem-
ory process fixes the evolution of the network, producing a non-Markovian dynam-
ics and aging effects, as often observed in processes with memory [4, 83].

Again the basic model is the AD model, however an active node i can allocate
their links either by exploring a new connection or by reinforcing one already acti-
vated in the past. To implement this mechanism, each node has a memory of the
contacts previously made: an active node i, which has already contacted ki(t) dis-
tinct nodes at the time t, connects to a new node with probability:

p[ki(t)] =
[︃

1 +
ki(t)

ci

]︃−βi

, (1.55)

or connects a node previously contacted with probability (1 − p[ki(t)]). The βi pa-
rameter sets the memory process: for βi ≃ 0 the probability p[ki(t)] ≃ 1 and, regard-
less of the degree of the node, links with new nodes are always generated; for large
βi instead p[ki(t)] rapidly decays with ki(t), modelling cognitive limits and temporal
constraints on the number of distinct social interactions an individual can perform.
The constant ci is a characteristic limit on the number of connections that i is able to
make before the memory effects are relevant. Empirical estimates of these parame-
ters have been obtained in different networks, such as those of citations, mentions
on Twitter and mobile-phone calls, showing strong memory effects (β ∼ 0.15 − 1.2)
[49, 70]. In Figure 1.8 the reinforcement curves p[k] are shown for several empirical
networks.

For this model it is possible to explicitly write the Master Equation that describes
the evolution of the probability Pi(k, t) that the node i has degree k at time t (assum-
ing time-steps ∆t = 1):

Pi(k, t + 1) =Pi(k − 1, t)

⎡⎣ai pi(k − 1) + ∑
j≁i

aj ∑
k j

pj(k j)

N − k j
Pj(k j, t)

⎤⎦
+ Pi(k, t)

⎡⎣ai[1 − pi(k)] + ∑
j≁i

aj ∑
k j

(︃
1 −

pj(k j)

N − k j

)︃
Pj(k j, t)

⎤⎦
+ Pi(k, t)

[︄
1 − ∑

j
aj

]︄
,

(1.56)

where j ≁ i indicates that the sum is on nodes not yet connected to i and assuming
that only one node is active for each time-step. Considering the case of a single
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FIGURE 1.8: Activity distribution and local reinforcement mechanism. In panels a-d the
activity distribution is plotted for a the collaboration network of authors in PRB, b the collab-
oration network of authors in PRL, c the Twitter mentions network (TMN) and d a mobile-
phone network (MPC). In panels e-h are plotted the measured pb[k] curves for selected nodes
classes b, dividing nodes in classes depending on similar number of interactions and cumu-
lative degree distribution, for the e PRB, f PRL, g TMN and h MPN datasets. Each data
sequence corresponds to a selected nodes class with the average activity of the class increas-
ing from the lower to the upper curves. In panels i-k the pb[k] curves of panels e-g have been
rescaled with k → xb = k/cb and it is plotted pb[xcb]

1/β, with the same β shown on the plot.
In panel l for the MPN network it is shown the original pb[k] curves belonging to a single
nodes class with their fit, indicating the βb for each of them falling in 1.0 ≲ βi ≲ 2.5. Image
from [70] under CC BY 4.0 license.

exponent β and the conditions 1 ≪ k ≪ N, in which k is considered continuous, the
asymptotic behaviour can be obtained explicitly:

Pi(k, t) ∝ exp

⎡⎢⎣−A

(︂
k − C(ai, ci)t

1
1+β

)︂2

t
1

1+β

⎤⎥⎦ , (1.57)

where A is a normalization constant and C(ai, ci) is a constant factor that depends on
the activity and on the parameter ci of the agent, respecting the following equation:

C(a, c)
1 + β

=
acβ

C(a, b)β
+
∫︂

da′ρ(a′)
∫︂

dc′ξ(c′|a′) a′c′β

C(a′, c′)β
, (1.58)

where ξ(c|a) is the probability for a node with activity a to have the reinforcement
constant c. An exact solution for C(a, c) is not available, however it can be shown

that C(a, c) ≃ (acβ)
1

1+β . Thus, the average degree of a node with activity a and
reinforcement constant c evolves over time as:

⟨k(a, c; t)⟩ ∝ C(a, c)t
1

1+β ∝ (at)
1

1+β . (1.59)

Memory, implemented through a local reinforcement process, has very strong effects
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on both Pi(k, t) and on ⟨k(a, t)⟩: the parameter β modulates the system’s growth and
dynamics, fixing the strength of the link reinforcement mechanism. For stronger
reinforcement attitude (large β) the growth is slower. In the limit case β = 0, C(a) =
a + ⟨a⟩ and the linear growth would be recovered, as in the standard AD model (see
Eq. (1.51)) since there are no memory effects and the nodes connect randomly with
the other nodes by growing their social circle; in the opposite limit β → ∞ each node
would create only one link and continue to reinforce it. Real data shows a sublinear
growth of ⟨k(a, t)⟩ [70].

Moreover Eq. (1.59) connects the degree k of a node to their a for a given time t:
given that k ∝ a

1
1+β and knowing the distribution of the activities ρ(a) the functional

form of the asymptotic degree distribution F(k) can be determined:

F(k)dk ∝ ρ(k1+β)kβdk. (1.60)

For example, supposing a power-law activity distribution ρ(a) ∝ a−ν, we obtain
F(k) ∝ k−[(1+β)ν−β]. This relationship between F(k) and ρ(a) is strongly consistent
with the distributions observed in real empirical models, obtained from different
datasets: this shows that the connectivity pattern depends on the propensity of indi-
viduals to participate in social interactions (activities and ρ(a)) and on the strength
of the reinforcement process towards previous links β. Moreover, the results on F(k)
and ⟨k(a, t)⟩ are independent of the parameter c distribution.

Analogous results can be obtained considering a distribution of β: in that case
the asymptotic growth of ⟨k(a, t)⟩ is guided by the minimum value βmin [70].

1.6.3 AD with burstiness (NoPAD)

As already extensively described in Section 1.4.1, a fundamental aspect of many
systems, especially related to human activities, is a bursty dynamic. It is possible to
consider a version of the AD model with a non-Poissonian dynamics of node activation
(NoPAD) [81, 82, 84–86].

The model is analogous to the AD model and evolves similarly, however the
activation process of a node is not Poissonian. Each node is assigned with an inter-
event times distribution Ψ(τ, ξi), where ξi is a parameter that sets the heterogeneity
in the agent behaviour (gauging heterogeneity in the activation rate). Thus, each
node follows an independent activation process with a dynamics whose statistic is
given by Ψ(τ, ξi), following a renewal process. The parameter ξi of the node is het-
erogeneously distributed with Φ(ξi) and fixes the propensity of the node to activate.

Topological properties of the integrated network can be obtained with the gen-
eral formalism of hidden variables [84]. In this framework, an approximate expres-
sion for the degree distribution is:

Pt(k) ≃ ∑
ξ

Φ(ξ)χt(k − ⟨r⟩t|ξ), (1.61)

where ⟨r⟩t = ∑ξ Φ(ξ)∑r rχt(r|ξ) is the average number of activation events at time
t and χt(r|ξ) is the distribution of the number of activation of a node at time t with
heterogeneity ξ. It is sufficient to calculate χt(r|ξ) to obtain the essential structural
properties. For example assuming a heavy-tailed distribution:

Ψ(τ, ξ) = αξ(ξτ + 1)−(α+1), (1.62)
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with 0 < α < 1, and a heterogeneous distribution Φ(ξ) ∝ (ξ/ξ0)−(ν+1) with ν > α,
we get, within the limit k ≫ (ξ0t)α:

Pt(k) ∼ (ξ0t)ν(k − ⟨r⟩t)
−(1+ν/α). (1.63)

In this way the exponent of the distribution P(k) ∼ k−γ is linked to that of the
distribution of inter-event times α and of heterogeneity ν through the relation:

γ = 1 + ν/α. (1.64)

In the presence of power-law inter-event times distributions (with exponent α <
1), aging effects are introduced, which are not present for Poissonian processes. This
can be observed considering the average degree ⟨k⟩t,t0 of the network aged up to
time t0 and then integrated up to t0 + t. It is equal to the number of average activa-
tions multiplied by two:

⟨k⟩t,t0 = 2(⟨r⟩t0+t − ⟨r⟩t0), (1.65)

and it can be shown that [84]:
⟨r⟩t ∼ (ξ0t)α. (1.66)

The sublinear growth (0 < α < 1) implies aging behaviours in ⟨k⟩t,t0 , resulting in a
non-trivial dependence of it on t0:

⟨k⟩t,t0 ∼ [(t0 + t)α − tα
0 ]. (1.67)

So if t ≫ t0 then ⟨k⟩t,t0 ∼ tα ∼ ⟨k⟩t, i.e. it is independent of the aging time t0, aging
effects and time t0 are negligible; if t ≪ t0, the mean degree decays with t0 as ⟨k⟩t,t0 ∼
tα−1
0 . This effect can be understood by considering the inter-event time distribution

with divergent mean α < 1: this distribution is affected by long periods of inactivity.
Starting the integration at a random time t0 we obtain an increased probability of
having an integration interval superimposed on the period of inactivity, in which
more individuals do not interact. This implies that the average degree decreases
with t0 for t ≪ t0. The aging effect is also observed on the Pt,t0(k) which depends
not only on the integration window but also on the aging time. This aging behaviour
has been observed in several real systems [81, 84].

1.6.4 Simplicial AD (SAD)

In the original AD network, the interactions take place with a star structure, in which
an active node contacts m nodes: thus the interaction events are asymmetric, since
one node performs m contacts, but the contacted agents receive only one link. This
condition is clearly peculiar, because it foresees an individual (active) with a central
role in the interactions and other nodes (which receive the link) instead secondary.
This can model information transmission systems by mail or messages, but is not
able to describe group interactions in which all involved nodes participate similarly
(without asymmetry). This is the case of collaborations between authors or actors,
social interactions, populations of spiking neurons [87–92]. A network that evolves
over time with higher-order interactions between the nodes is required to describe
these systems.

The simplical activity-driven model (SAD) is a modification of the AD model,
which accounts for higher-order interactions [87]. Indeed the AD model considering
m = 1 would represent only pairwise interactions; on the contrary, in the SAD model
the building blocks are simplices of nodes.
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FIGURE 1.9: Simplicial complexes. In panel a the building blocks of a social system are
represented through simplices, which model d-dimensional groups interactions. In panel b
the simplices are organized in a simplicial complex. Image adapted from [30] under CC BY
4.0 license.

Here we introduce some fundamental definitions for simplicial complexes [29,
30, 87, 91, 93]. A s-simplex (or s-dimensional simplex) σ is a set of (s + 1) nodes
σ = [v0, v1, ..., vs]. For example, a 0-simplex is a node, a 1-simplex is the set of two
nodes and the link that connects them, a 2-simplex is a triangle consisting of three
nodes and the set of all interactions between all of them (see Figure 1.9). A simplicial
complex K is a collection of simplices K = {σ1, σ2, ..., σn} such that for every σ ∈ K
then all subfaces of σ belong to K (see Figure 1.9). For example if the triangle [i, j, k] ∈
K, it is required that [i, j], [i, k], [j, k], [i], [j] and [k] belong to K. These definitions are
trivially respected in the case of group interactions, since in each group interaction
foresees all possible sub-interactions. Finally, the d-skeleton Kd of K is the simplicial
complex obtained by the union of all the simplices in K with dimension less than or
equal to d: for example the 1-skeleton K1 is the collection of all the links and therefore
it is the underlying graph.

The simplicial description of the interactions is extremely powerful because it
is accompanied by useful mathematical tools. Simplical complexes can model very
regular or highly irregular structures, on them it is possible to define in simple way
the Laplacian operators for any dimension and boundary operators that map sim-
plices of different sizes. These operators allow to describe the topology and shape of
simplicial complexes.

A set of n-dimensional chains Cn(K) of a simplicial complex K is defined as the
formal sum of n-simplices:

Cn(K) = {r1σ1 + r2σ2 + ...|ri ∈ Z, σi ∈ Kn}. (1.68)

The boundary map ∂n maps n-dimensional chains Cn(K) to (n − 1)-dimensional
chains Cn−1(K) and corresponds to mapping simplices to their edges. Formally:

∂n : Cn(K) → Cn−1(K) (1.69)

∂n[v0, ..., vn] =
n

∑
i=0

(−1)i[v0, ..., vî, ..., vn], (1.70)

where the vertex with the hat is omitted. For example a 2-simplex (a complete trian-
gle) is mapped into the alternating sum of its three concatenated links (1-simplex).

The conventional graph Laplacian L0, defined in Section 1.2, operates on the

https://creativecommons.org/licenses/by/4.0/
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eAD

SAD

nAD

FIGURE 1.10: Simplicial activity-driven model. The elementary mechanism of network
evolution is represented for the SAD, nAD and eAD models. At each time-step ∆t a node
activates (red) with probability a∆t: in the SAD model the node creates a simplex of size s,
i.e. a fully connected cluster of s nodes, with (s

2) interactions between s nodes; in the nAD
model the node engages (s − 1) interactions with (s − 1) distinct nodes; in the eAD model
the node creates (s

2) connections with (s
2) distinct nodes. In both the eAD and nAD models

the interactions are built with a star structure.

nodes of the graph, or on the 0-skeleton, and plays a crucial role in the study of
dynamic processes on a network. In the case of a generic simplicial complex, it is
possible to define a simplicial (or combinatorial) Laplacian Lk for each dimension k
of the simplices that compose it:

Lk = ∂k+1∂∗k+1 + ∂∗k ∂k, (1.71)

where Lk maps Ck → Ck and is defined through the boundary map. Similarly to
the conventional graph Laplacian, the simplicial Laplacian is crucial for the study
of dynamic processes on simplicial complexes. While L0 operates only on nodes
and therefore its eigenspectrum is the same for the 1-skeleton and for the simplicial
complex, Lk with k > 0 will be very different.

Simplicial complexes can be used to describe social interactions in groups, as-
suming that a group interaction also implies the underlying pairwise interactions.
The SAD model evolution is analogous to the AD model, however when a node is
activated it creates an (s − 1)-simplex, i.e. a clique of size s, which corresponds to
a fully connected cluster of s nodes. The others (s − 1) nodes participating in the
simplex are chosen uniformly at random in the population and in the interactions
behave exactly as the active node. Each activation of a node thus produces s(s− 1)/2
interactions (see Figure 1.10). The size of each active simplex is extracted from the
distribution Ψ(s): it allows to model the presence of heterogeneity and fluctuations
in the dimension of simplices, as observed in the social dynamics. Group events rea-
sonably involve a number of people that can vary widely depending on the settings,
from small groups (e.g. with family or a few friends) to large groups (e.g. sport-
ing events, religious events, university lessons). In general, the distribution Ψ(s) is
characterized by being broad and heterogeneous (see Figure 1.11) [87, 89, 92].

The structure of the SAD model can be studied on two levels: on the 1-skeleton,
comparing it with the AD model, and on the purely simplicial properties, not com-
parable to a network approach.

Considering the 1-skeleton, the SAD model can be compared with the AD model
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FIGURE 1.11: Empirical simplex size distributions. It is plotted, through histograms, the
number of human interactions P(s) occurring in simplices of size s in different settings: two
university campuses, a conference and a hospital. Image adapted from [89] under CC BY 4.0
license.

by fixing the same number of nodes involved in the activation of an agent (node-
matched AD, i.e. nAD) or the same number of interactions (edge-matched AD, i.e.
eAD). The activation of a simplex of size s in the SAD model correspond to m =
(s − 1) in the nAD model, preserving the total number of nodes contacted, and to
m = (s

2) in the eAD model, preserving the total number of links (see Figure 1.10).
For simplicity, a fixed size of simplex size is considered, i.e. Ψ(s) = δ(s − s),

indicating s = s. In the SAD model, the number of interactions a node i performs in
the time window [0, T] is:

κT(i) = maiT + ∑
j ̸=i

m2Taj

N − 1
≃ T(mai + m2⟨a⟩), (1.72)

assuming N ≫ 1 and fixing m = s − 1. Thus the degree of node i in the aggregate
network is the number of distinct nodes contacted:

kT(i) ∼ (N − 1)
[︃

1 − e−
T(mai+m2⟨a⟩)

N−1

]︃
. (1.73)

It is also possible to obtain the degree distribution, for small k/T and small k/N:

PT(k) ∼
1

mT
1

1 − k
N−1

ρ

[︃
−N − 1

mT
ln
(︃

1 − k
N − 1

)︃
− m⟨a⟩

]︃
. (1.74)

kT(i) depends on m2: therefore if the size of the simplex fluctuate through a broad
Ψ(s), the fluctuations will strongly affect the aggregate degree. Indeed kT(i) should
be averaged over s and this would produce terms ⟨(s − 1)2⟩, which encode the sim-
plex size fluctuations. This is in contrast to the nAD model, which does not depend
on fluctuations, while it is in agreement with the eAD model: this is obvious as what
matters for the degree are the interactions produced, which is fixed equal in the SAD

https://creativecommons.org/licenses/by/4.0/
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model and eAD.
However, since in the eAD model, s(s − 1)/2 connections are generated that

concern s(s − 1)/2 nodes, while in the SAD the s(s − 1)/2 connections concern only
s − 1 nodes, the size of the largest connected component in the SAD model grows
much slower than with the eAD model: it grows like in the nAD [87].

From a 1-skeleton point of view the SAD presents similarities and differences
with the two considered versions of the AD model. As for the purely simplicial prop-
erties, it is possible to study k2(i, T) defined as the average number of 2-simplices in
which node i participated in the SAD model aggregated up to time T:

k2(i, T) =
(︃

N − 1
2

)︃(︃
1 − exp

(︃
− (s − 1)(s − 2)
(N − 1)(N − 2)

T(ai + (s − 1)⟨a⟩)
)︃)︃

. (1.75)

This parameter corresponds to the number of distinct 3-node cliques in which node
i participated, which is different (and smaller) from the number of triangles i partic-
ipated in the 1-skeleton of the aggregated SAD model. This underlines the impor-
tance of the simplicial nature of interactions.

Finally, the eigenspectrum of the simplicial Laplacian of the SAD model differs
considerably if calculated on the 1-skeleton or on the aggregated SAD simplical com-
plexes: this underlines even more that the SAD model has in itself information that
cannot be reduced to only 1-skeleton and differs strongly from the AD model [87].

Other extensions of the AD model have been proposed, for example that bring to-
gether burstiness and memory [81], that introduce more network structure through
communities [94] or alternative modelization of memory and burstiness [95–97],
however here we have focused on those fundamental for our work.
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Chapter 2

Epidemic processes

In this Chapter we review the theory of epidemic processes on temporal networks: we
present a general formalism for epidemic processes on time-varying networks, high-
lighting the differences with static networks, and we review in detail the main results
for epidemics on activity-driven models.

2.1 Epidemic models

The mathematical modelling of epidemic processes is an extremely active research
field thanks to its strong interdisciplinary nature and its relevance for the humankind.
The appearance of new infectious diseases and the persistence of old ones are a
strong reason for concern for public health, social welfare and social cohesion. The
understanding of the fundamental mechanisms that shape the epidemic spreading is
crucial to predict possible developments of epidemics and to guide control and con-
tainment policies, in order to minimize and suppress the impact of epidemics [98,
99]. In this framework, an essential role is played by the mathematical modelling
of epidemics [99–104], as highlighted and acknowledged during the last major epi-
demics, such as the H1N1 pandemic, the SARS epidemic and lastly the COVID-19
pandemic (see Figure 2.4). For example, epidemic modelling of COVID-19 allowed
to estimate the real extent of the spread of SARS-CoV-2 in the early phases of the pan-
demic [20, 105], it allowed to predict risk scenarios and to forecast in short-time the
trend of epidemic descriptors, such as new infections, deaths and hospitalizations:
this allowed policy makers to take decisions on control and containment measures
to minimize the health, social and economic costs of the pandemic [16, 106, 107].

A detailed knowledge of contact networks is necessary to obtain outbreak pre-
dictions. The availability of large-datasets, the development of computational ap-
proaches and mathematical models allowed the implementation of extremely de-
tailed data-driven models to describe the real spread of an epidemic at different spa-
tial and temporal scales [99, 108, 109]. Epidemic models have evolved to structured
approaches where population heterogeneity are considered and where spatial struc-
ture is taken into account considering sub-populations coupled by travel flows (see
Figure 2.1). This meta-population approach is now pushed to the multi-scale frame-
work in which all possible granularities are taken into account, considering cities,
states, neighbourhoods, integrating the epidemic model with detailed information
on contact networks and on local, national and international transport networks, as
well as information on movements obtained through mobile-phone data [3, 99, 104].
In this framework extensive data-intensive computational tools have been devel-
oped: an example is the GLEAM (Global Epidemic and Mobility) model [110, 111]
(see Figure 2.4).
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FIGURE 2.1: Fundamental interaction structures in epidemic models. Schematic represen-
tation of the main structures used to describe interactions in epidemic modelling: nodes
represent individuals. From the lowest level of realism to the highest: homogeneous mix-
ing, individuals are assumed to interact randomly in a homogeneous way; social structure,
the population is stratified on the basis of demographic information (e.g. age, social role);
contact network models, the real pattern of interactions is considered; multi-scale models, the
population is divided in sub-populations interacting through the mobility and at lower spa-
tial scales homogeneous mixing is assumed; agent-based models, the pattern of interactions
and mobility of each individual is reconstructed in detail.

These data-driven and data-informed models are essential for developing risk
scenarios, for addressing threats and health risks and for developing short-term pre-
dictions. However their complexity do not allow to identify the effect of specific
properties of the contact network and neither allow to obtain a general understand-
ing of the interplay between the epidemic process and the network dynamics, since
these models are strongly data and parameter-dependent [3]. To obtain more gen-
eral and fundamental results it is necessary to consider simplified models. Although
these simplified models are not complete [112], they can provide invaluable informa-
tion on the fundamental properties of epidemic, by identifying the effects of specific
properties of the real networks. The simplification of the real model can be achieved
by considering synthetic networks or neglecting network structures, such as hierar-
chies and heterogeneity. See Figure 2.1 for a detailed description of the main network
structures and approaches in epidemic models.

2.1.1 Compartmental epidemic models

In general, epidemics are described through compartmental models, which divide
the population into compartments of nodes according to the clinical stage of the
disease in which they are or to specific categorization (e.g. immunization, hospi-
talization). The main compartments considered are the susceptible (S, those who
can become infected), the infected (I, those who can infect) and the recovered or re-
moved (R, those who are removed from the chain of infections because recovered or
dead). Many other compartments can be introduced to model specific infectious dis-
eases in more detail, such as exposed individuals (E, those who have been infected
but are not yet infectious), immunized individuals or hospitalized individuals. Tran-
sitions between compartments are regulated by specific mechanisms that define the
epidemic model.

In a compartmental epidemic model a node i can be in state σi = {1, 2, ..., κ}
which corresponds to different health states (compartments) [3]. Xm(t) is the num-
ber of individuals in compartment σ = m at time t. The dynamics of Xm(t) depends
on the specific epidemic model considered: the transition mechanisms between two
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T=1 T=2 T=3 Time Aggregated
Network

FIGURE 2.2: Epidemic processes on networks. We schematically represent a network of
N = 8 nodes, each described by a dynamic variable σi, which can assume three values
σi = {1, 2, 3} (color). In the lower panel a generic epidemic process on a temporal network
is represented: the interactions evolve over time according to a snapshot representation and
some spontaneous and contact-induced transitions are represented.

different compartments can be spontaneous, such as the recovery or loss of immu-
nization, or induced by contact, such as infection (see Figure 2.2 for a schematic repre-
sentation of an epidemic process on a temporal network). A spontaneous transition
process can occur with a certain rate from a compartment m to compartment h:

Xm → Xm − 1, Xh → Xh + 1. (2.1)

On the other side, contact processes (or binary interactions) occur through a contact
between a node of type g and one of type h, producing or removing a node of type m.
Assuming that individuals in each compartment are equivalent and homogeneously
mixed, i.e. the probability of interacting with a node of type g at time t is Xg(t)/N,
the evolution of Xm(t) is:

∂tXm(t) = ∑
h,g

νm
h,gah,gXh(t)Xg(t)/N + ∑

h
νm

h ahXh(t), (2.2)

where ah is the spontaneous transition rate for h and νm
h = −1, 1, 0 represents the

change in the number of individuals in m due to spontaneous process from or to the
compartment h, ah,g is the transition rate of the contact process and νm

h,g = −1, 1, 0
represents the change in the number of m because of the contact between h and g.

We consider here two basic epidemic models: the SIS model (susceptible-infected-
susceptible) and the SIR model (susceptible-infected-removed). However, several
other models have been implemented, such as the SIRS model, which considers a
waning immunity, or the SEIR model, which accounts for a latency period (see Fig-
ure 2.3). In all of them, a contact transition is considered S + I → 2I in which a
susceptible individual interacts with an infected one and an infection takes place:
thus the transition rate for S → I depends on the contact pattern and network prop-
erties.

The SIS model, provides a mechanism of spontaneous recovery I → S with-
out immunity (see Figure 2.3). This mechanism allows individuals to be reinfected
cyclically, making the model effective in describing endemic infectious diseases (e.g.
Influenza-like-illness - ILI).
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FIGURE 2.3: Compartmental epidemic models. Panel a shows schematically the SIS epi-
demic model. In panel b we plot the fraction ρS(t) of susceptible nodes and the frac-
tion ρI(t) of infected nodes as a function of time, for R0 = λ/µ = 0.5, by fixing µ = 1
and initial conditions [ρS(0), ρI(0)] = [0.8, 0.2]. The dynamics are obtained by integrat-
ing the Eqs. (2.5) and (2.6). Panel c is the same as panel b but with R0 = 3 and
[ρS(0), ρI(0)] = [1 − 10−3, 10−3]. Panel e shows schematically the SIR epidemic model. In
panel f we plot the fraction ρS(t) of susceptible nodes, the fraction ρI(t) of infected nodes
and the fraction ρR(t) of recovered nodes as a function of time, for R0 = 0.5, by fixing µ = 1
and initial conditions [ρS(0), ρI(0), ρR(0)] = [0.8, 0.2, 0]. The dynamics are obtained by in-
tegrating the Eqs. (2.5) and (2.6). Panel g is the same as panel f but with R0 = 3.5 and
[ρS(0), ρI(0), ρR(0)] = [1 − 10−3, 10−3, 0]. In panels d and h we show schematically the SIRS
and SEIR epidemic models respectively.

The SIR model instead predicts a recovery with immunity I → R (see Figure
2.3), making the model effective in describing infectious diseases with long lasting
immunity. All the infected will be removed at a certain stage, thus the epidemic will
reach a regime without infected: thus the SIR model do not feature a steady state.

The transitions I → S and I → R occur spontaneously after a certain time that
the node has spent in the infected state, therefore they do not depend on the inter-
action network but only on the statistics of recovery, i.e. on the distribution of the
infectious periods. This distribution can be obtained from clinical data and typi-
cally it is broad and heterogeneous [113, 114]. However, for simplicity a constant
transition probability is usually assumed, i.e. a constant recovery rate µ, so that the
average infectious period is µ−1 and the infectious time distribution is exponential
Pin f (τ) = µe−µτ (Poissonian recovery process). Throughout this thesis we consider
this assumption.

From now on we will consider the following transitions, with the following prob-
abilities for the SIS model:

S + I λ−→ 2I, I
µ−→ S, (2.3)

and for the SIR model:
S + I λ−→ 2I, I

µ−→ R, (2.4)
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2018 - Ebola

2019 - COVID19

Population layer Short-range mobility layer Long-range mobility layer
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101
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census areas commuting air travel
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Disease Type R0
Measles 12-18

Smallpox 5-10
COVID-19 - δ 5-8
COVID-19 - α 4-5

COVID-19 2.5-3.5
SARS 2-3
HIV 2-5

Pandemic flu 1.5-3.5
Ebola 1.5-3.5

FIGURE 2.4 & TABLE 2.1: The latest major epidemic outbreaks and their basic reproduc-
tion number. In the table we report the estimated ranges for R0 of some infectious diseases
[99, 115–119]. In panel a we show a time-line with the major epidemic outbreaks since 2000.
In panel b we show the three layers considered by the GLEAM model [110, 111] for mod-
elling epidemics in Europe: the population layer, the short-range and long-range mobility
layers. Panel b is from [111] under CC BY 2.0 license.

where λ is the infection probability for effective contacts and µ is the recovery rate.
The force of infection, i.e. the transition rate for S → I, depends on λ and on the
contact pattern, i.e. on the network.

2.1.2 Classical epidemiology

The simplest and classical description of the SIS and SIR models can be formulated in
the homogeneous mixing approximation (homogeneous mean-field): all nodes are
considered statistically equivalent and the correlations between the node dynamic
state σi(t) are neglected, that is ⟨σi(t)σj(t)⟩ = ⟨σi(t)⟩⟨σj(t)⟩. In this approximation,
all nodes have the same properties and feel a mean interaction (mean-field) due to
the collective contribution of the other nodes [3, 11]. This approximation is valid in
large systems, since it assumes that all nodes interact with each other randomly and
therefore are indistinguishable from each other. Under this approximation, we con-
sider the fraction ρα(t) = Nα(t)/N of individuals in compartment α. The evolution
equations are:

∂tρ
I(t) = λρI(t)ρS(t)− µρI(t), (2.5)

∂tρ
S(t) = −λρI(t)ρS(t) + χρI(t), (2.6)

where χ = µ and ρS(t) = 1− ρI(t) for the SIS model, instead in the SIR model χ = 0
and ρR(t) = 1− ρI(t)− ρS(t). In the initial phases of the epidemic ρI(t ∼ 0) ≃ 0 and
therefore, linearizing, the dynamic equations become (both for SIS and SIR models):

∂tρ
I(t) ≃ (λ − µ)ρI(t), (2.7)

with solution:
ρI(t) ≃ ρI(0)e(λ−µ)t. (2.8)

In the early phases of the epidemic the fraction of infected individuals is character-
ized by an exponential phase. If the exponent coefficient is positive the number of
cases growth exponentially fast, while if it is negative it decays exponentially fast. In
later-time non-linear effects of Eq. (2.5) and Eq. (2.6) become effective and the trend

https://creativecommons.org/licenses/by/2.0/
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FIGURE 2.5: Phase diagram of typical epidemic models. In panel a we report the phase
diagram of an absorbing-active phase transition, which describes the SIS epidemic model.
The order parameter is the epidemic prevalence ρI(t → ∞) = ρI

∞. In panel b we report the
phase diagram of the dynamic phase transition which describes the SIR epidemic model.
The order parameter is the epidemic final size ρR(t → ∞) = ρR

∞. In both cases the control
parameter is the infection rate λ and its critical value is the epidemic threshold λC.

is no more exponential (see Figure 2.3). The number of infected increases exponen-
tially if:

λ − µ > 0 ⇒ r =
λ

µ
> 1. (2.9)

This solution allows to define a key parameter of classical epidemiology: the ba-
sic reproduction number R0 [3, 11, 120] defined as the average number of secondary
infections produced by an infected individual during the infectious period in a com-
pletely susceptible population. If R0 > 1 an infected individual infects on aver-
age more than one susceptible individual, suggesting a large-scale propagation; if
R0 < 1 an individual generates on average less than a new infected individual,
suggesting a receding epidemic. The R0 value depends on the epidemic model con-
sidered (i.e. on the compartments and on the transition rates) and also on the net-
work properties, providing information on the strength of the epidemic both for the
pathogen properties and for the features of the interactions pattern on which the
pathogen spreads. For example in the homogeneous mean-field approximation of
the classical epidemiology R0 = λ/µ (see Eq. (2.9)). It encodes the idea that the in-
fection process competes with the recovery process: if R0 < 1 the recovery is faster
than the infection process and there is no time for infection to spread, while in the
opposite case R0 > 1 the infection is extremely effective.

In general the R0 value can be approximated through mean-field approaches
and can be computed from real epidemiological data, with complicated and refined
techniques [116]. In Table 2.1 we report the R0 values obtained for some infectious
diseases (see also Figure 2.4). R0 is a crucial parameter in classical epidemiology,
however has some limitations, since it investigate only average infection proper-
ties, neglecting heterogeneities which are well known to shape and drive epidemic
spreading in real populations [116, 121]. Indeed, typically the number of secondary
infections produced by an infected individual is extremely fluctuating, due to the
presence of super-spreaders. Several attempts have been proposed to overcome this,
even if R0 is still a crucial epidemic descriptor.

In the SIS model if R0 > 1 the system evolves towards an endemic steady state,
with a constant finite fraction of infected nodes ρI(t → ∞) = ρI

∞ = 1 − µ/λ =
1 − 1/R0 in which individuals are cyclically infected and there is always a fraction
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of the population infected (epidemic circulate persistently); if instead R0 < 1 the sys-
tem evolves towards an absorbing state with all susceptible ρI

∞ = 0, with epidemic
dying out exponentially fast (see Figure 2.3). The SIS model belongs to the Directed-
Percolation (DP) universality class, featuring a dynamic phase transition between an
absorbing and an active steady state (see Figure 2.5) [11, 122].

In the SIR model if R0 > 1 the system is characterized by an outbreak that infects
a finite (macroscopic) fraction of the population ρR(t → ∞) = ρR

∞ −−−→
N→∞

f ; while if

R0 < 1 the epidemic does not spread at large scale, the fraction of infected nodes is
negligible (microscopic) and vanishes within the thermodynamic limit ρR

∞ −−−→
N→∞

0

(see Figure 2.3) [3, 11, 122]. The SIR model does not admit a stationary state and its
evolution is analogous to the bond percolation (see Figure 2.5) [11, 122].

These results of classical epidemiology detect the presence of a dynamic phase
transition: the control parameter is the probability λ of infection (or the effective
infection rate r = λ/µ), its critical value λc (or rc) is the epidemic threshold. The epi-
demic threshold can be also reformulated in terms of the basic reproduction number
R0, whose critical value is RC

0 = 1, thus in general R0 = λ/λC (or R0 = r/rC) pro-
vide information on how deeply the system is in the active phase. Moreover, the
order parameter depends on the epidemic model: for example, it is the asymptotic
fraction of infected individual in the SIS model ρI

∞, called epidemic prevalence, or the
asymptotic fraction of nodes been infected in the SIR model ρR

∞, called epidemic final
size: both are zero below the epidemic threshold, if the epidemic does not spread at
large-scales, and are higher than zero above the epidemic threshold, if the epidemic
spreads at large-scales (see Figure 2.5).

2.1.3 Epidemics on static networks

The classical epidemiology is based on strong assumptions: it neglects the diffusion
of individuals and the spatial scale, which can be introduced with a diffusion term,
and Poissonian infection and recovery processes are considered, even if empirical
evidence shows heterogeneous time distributions [113, 114]. Moreover, the strongest
approximation is the homogeneous mixing, which neglects all the properties of the
contact network, its topology, its structure and its eventual temporal dynamics, con-
sidering all nodes identical and randomly interacting. This approximation results in
obtaining R0 = λ/µ, i.e. rC = 1: however to obtain a more precise estimation of the
epidemic threshold and of the epidemic dynamics, we need to relax this assumption,
by considering approaches which allow to keep the network structure into account.

An epidemic on a static network can be described exactly through the formal-
ism of the Master Equation, which translates into the Markov chain formalism [123,
124], assuming transitions with constant rates between different epidemic compart-
ments. In a model with N nodes and κ epidemic compartments the system ad-
mits κN configurations σ(t) = {σ1(t), σ2(t), ..., σN(t)}: the infinitesimal generator
Q of the Markov chain is a matrix κN x κN and the initial conditions are σ0(t) =
{σ0

1 (t), σ0
2 (t), ..., σ0

N(t)}. Q and σ0 are sufficient to obtain the probability P(σ, t) that
the system is in the configuration σ at time t and all the variables of interest. How-
ever, although the Markov chain approach is exact, it allows to obtain results only
in very few cases [11]: indeed the method is limited to small N since Q is a matrix
κN x κN , moreover Q is very complex and getting steady-state information from it
is quite complicated. Thus, the main analytical results are obtained with mean-field
approximations.



42 Chapter 2. Epidemic processes

We consider the SIS model on an uncorrelated static network with degree dis-
tribution η(k). A degree-based mean-field approach (DBMF) can be applied [11]: the
population is divided into classes of nodes with the same degree k and nodes be-
longing to the same class are treated as statistically equivalent. The probability that
a node is in one state is independent of the dynamic state of its neighbours, depend-
ing only on its degree k, and ⟨σiσj⟩ = ⟨σi⟩⟨σj⟩. These approach, completely disregard
the exact topology of the network, imposing the statistical equivalence of nodes be-
longing to the same k class: this corresponds to replacing the true adjacency matrix
A(t) = Aij(t) with its ensemble average A(t) = Aij(t) (annealed network approx-
imation). The epidemic dynamics is described by means of the probability ρα

k (t)
that a node with degree k is in compartment α at time t. Thus, ∑α ρα

k (t) = 1 and
ρα(t) = ∑k η(k)ρα

k (t) is the fraction of nodes in compartment α at time t. The evolu-
tion equation is:

∂tρ
I
k(t) = −µρI

k(t) + λk[1 − ρI
k(t)]∑

k′
η(k′)

k′

⟨k⟩ρI
k′(t). (2.10)

By imposing the stability of the absorbing state it is possible to obtain the epidemic
threshold:

rDBMF
C =

λ

µ

⃓⃓⃓⃓
C
=

⟨k⟩
⟨k2⟩ . (2.11)

The epidemic threshold (and R0) strongly depends on the topology and on the struc-
ture of the network through the moments of the distribution η(k). This shows the
need to take into account the heterogeneity and topology of the network: for exam-
ple a vanishing threshold is obtained when the fluctuations in k diverge (e.g. for a
power-law η(k) with appropriate exponent).

The individual-based mean-field approach (IBMF) [11], assumes that there are no
local correlations between the dynamic states of the nodes σi, but nevertheless pro-
vides a different probability for each node i to be in a state σi = x at time t. Thus,
the probability that a node is in one state is independent of the dynamic state of its
neighbours, and ⟨σiσj⟩ = ⟨σi⟩⟨σj⟩. This approach makes use of the classic approx-
imation of the homogeneous mixing on local correlations, but keeps the structure
and topology of the interactions, which are still described by the adjacency matrix
A(t) = Aij(t) (quenched network approximation). The epidemic dynamics is de-
scribed by the probability ρα

i (t) for the node i to be in the compartment α at time t.
The evolution equation in this approximation is:

∂tρ
I
i (t) = −µρI

i (t) + λ[1 − ρI
i (t)]

N

∑
j=1

Aijρ
I
j (t), (2.12)

where A = Aij is the adjacency matrix of the network. By imposing the stability of
the absorbing state, the epidemic threshold is obtained:

rIBMF
C =

λ

µ

⃓⃓⃓⃓
C
=

1
Λ1

, (2.13)

where Λ1 is the maximum eigenvalue of the adjacency matrix. The threshold there-
fore strongly depends on the network topology through the properties of the ad-
jacency matrix. The estimate of rC is approximate but it has been observed that
it is in very good agreement with results of extensive numerical simulations [11].
The DBMF result is equivalent to the IBMF with an additional approximation: the
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detailed network topology is replaced by the annealed one, since considering statis-
tically equivalent all the nodes with the same degree k corresponds to consider the
annealed adjacency matrix Aij = k jki/N⟨k⟩ and ρI

k(t) = ∑i∈k ρI
i /(Nη(k)).

Similarly, mean-field approaches can be applied to the SIR model on static net-
works. For example, in the DBMF approach the SIR epidemic threshold is [11]:

rDBMF
C =

λ

µ

⃓⃓⃓⃓
C
=

⟨k⟩
⟨k2⟩ − ⟨k⟩ , (2.14)

taking into account that in the SIR model a node cannot infect the neighbour who
originally infected it, since it will be infected or recovered. Moreover, in some cases
is possible to obtain exact results for SIR epidemic model by mapping it to the bond
percolation [11].

The rC values obtained for the SIS and SIR models in heterogeneous networks
show that heterogeneity observed in real networks lower the epidemic threshold
favouring the epidemic spreading. This is due to the role of hubs in the network,
who behave like super-spreaders and drive the epidemic: once the pathogen reaches
them it can easily spread among the network.

2.2 Epidemic processes on temporal networks

The results presented in Section 2.1.3 holds for static networks, however the tempo-
ral dynamics of the network, as explained in Chapter 1, can profoundly modify the
properties of the network and therefore the epidemic spreading. For example, the
epidemics propagate along time-respecting paths: by seeding the infection in one
node, only its set of influence will be infectable. Moreover, not all the links in the ag-
gregate network are accessible by the real pathogen diffusion, as they may be absent
at the time t a node is infected.

Rigorous analytical results on the spread of epidemics on temporal networks
have been obtained only recently due to the difficulty of dealing with the coupling
between the dynamics of the network and the epidemic process. In the next Section
we will present a novel theoretical framework for epidemic processes on arbitrary
temporal networks, which represents the first systematic result. Then we will focus
on epidemic spreading on activity-driven temporal models, which constitute the
natural framework of this thesis.

2.2.1 The infection propagator approach

A general approach to the study of epidemic processes on temporal networks can
be obtained by extending the Markov chain approach to temporal networks and by
reinterpreting the tensor formalism of multilayer networks [125–127].

Let us consider a static network of N nodes described by an adjacency matrix A,
on which a SIS process evolves in discrete time (∆t = 1). The propagation of the
epidemic is described by the probability pi(t) that the node i is infected at time t,
which evolves according to the equation:

pi(t) = 1 − [1 − (1 − µ)pi(t − 1)]∏
j

[︁
1 − λAji pj(t − 1)

]︁
, (2.15)

obtained through the Markov chain approach, in the individual-based mean-field
approach. The epidemic threshold is rC = (λ/µ)C = ρ(A†), where ρ(A†) is the
spectral radius of the transposed adjacency matrix [11, 125].
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FIGURE 2.6: Infection propagator approach. In panel a we consider a temporal network of
N = 2 nodes and we represent it by the snapshot representation and by the multilayer repre-
sentation. The matrices shown below correspond to the adjacency matrices of the snapshots
and the supra-adjacency matrix of the multilayer representation of the network. In panel b
the same representation is produced for a network of N = 3 nodes, colouring the diagonal
coupling in red and the non-diagonal coupling in black. In panel c we represented a dis-
cretization of a continuous-time evolving network. Each connection {a, b, c} is activated over
time according to the time sequence represented by the coloured bars. The evolution of time
is discretized on intervals ∆t obtaining a sequence of adjacency matrices {A1, A2, A3, A4}
corresponding to the sampled snapshots. Panel a is from [125] under CC BY 3.0 license.

This approach can be extended to temporal networks by assuming that the adja-
cency matrix depends on time A(t) [125]. Considering the adjacency matrix A(t) of
the snapshot at time t, the spread of the epidemic is governed by:

pi(t) = 1 − [1 − (1 − µ)pi(t − 1)]∏
j

[︁
1 − λAji(t − 1)pj(t − 1)

]︁
. (2.16)

We assume periodic boundary conditions on the adjacency matrix, with period T,
i.e. A(T + 1) ≡ A(1): this guarantees the existence of an asymptotic solution of
the epidemic dynamics on a generic network, which will be periodic with period T,
without limiting the generality of the result.

The epidemic and network dynamics can be described using a multilayer ap-
proach (see Figure 2.6), mapping the temporal network to the tensor space RN ⊗RT,
in which each node is identified by two indices (i, t), corresponding to the node in-
dex and the time considered. The multilayer network is defined assuming:

• the ordinal (diagonal) coupling term: each node at time t is connected with
itself at time t + 1;

• the non-diagonal coupling term: if i is connected to j at time t, i.e. Aij(t) ̸= 0,
then i in the layer at time t is connected to j in the layer at time t + 1 and
similarly j in the layer at time t is connected to i in the layer at time t + 1.

https://creativecommons.org/licenses/by/3.0/
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The obtained multilayer network has no links in the same layer and therefore is
multipartite: connections occur only between two consecutive layers (see Figure 2.6).
This new representation of the network encodes all the information necessary to
understand the epidemic spreading. The multilayer network can be represented
tensorially as:

Att′
ij = δt,t′+1[δij + Aij(t)], (2.17)

and similarly, the tensor associated with the epidemic dynamics can be constructed
by coupling the two dynamics:

Mtt′
ij = δt,t′+1[(1 − µ)δij + λAij(t)]. (2.18)

The tensor space can be represented with a single index by applying an isomorphism
(i, t) → α = Nt+ i, with α ∈ {1, 2, ..., NT}. This means mapping RN ⊗RT with RNT,
allowing to rewrite the M tensor in matrix form, representing the coupled topology
and temporal dimension underlying the epidemic dynamics:

M =

⎡⎢⎢⎢⎢⎢⎣
0 1 − µ + λA(1) 0 . . . 0
0 0 1 − µ + λA(2) . . . 0
...

...
...

...
...

0 0 0 . . . 1 − µ + λA(T − 1)
1 − µ + λA(T) 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
(2.19)

The non-symmetric nature of this representation preserves the temporal ordering of
events and causality, while the weights take into account the transition probabilities
of the epidemic model.

The system is described by a vector p̂α(τ) which represents the probability for
each node to be infected at each time-step t in the interval [τT, (τ + 1)T]. This state
vector thus evolves in space RNT, according to the equation:

p̂α(τ) = 1 − ∏
β

[1 − Mβα p̂β(τ − 1)]. (2.20)

The asymptotic state, periodic with period T, is mapped to the steady state p̂α(τ) =
p̂α(τ − 1), which can be obtained from:

p̂α = 1 − ∏
β

[1 − Mβα p̂β]. (2.21)

By linearizing the equation around the absorbing state and imposing the asymptotic
stability, the condition for the epidemic threshold is obtained [125]:

ρ(M†) = 1, (2.22)

where ρ(M†) is the spectral radius of the transpose of M. The equation gives the
critical value rC = (λ/µ)C for the absorbing-active phase transition. Moreover, the
spectral radius can be simplified as follows:

ρ(M) = ρ(P)1/T, (2.23)

where

P =
T

∏
t=1

(1 − µ + λA(t)). (2.24)
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FIGURE 2.7: Numerical validation of the infection propagator approach. In all the panels
the epidemic prevalence ⟨i⟩ is plotted as a function of the probability of infection λ: the cross
symbols represent the numerical solutions of Eq. (2.16); the circles represent the numerical
simulations of the SIS process; the arrows indicate the analytical estimate of the epidemic
threshold obtained from Eq (2.23). In each panel a different temporal network is considered
as a substrate for the SIS process: a sequence of random Erdos-Rényi graphs (panel a), the
activity-driven network (panel b), a network with bursty dynamics (panel c), an empirical
network of face-to-face interactions during a scientific conference (panel d), a network of
sexual contacts (panel e), a network of interactions in a high school (panel f). Image from
[125] under CC BY 3.0 license.

P is a weighted matrix and can be physically interpreted as the infection prop-
agator, which gives the name to this approach thus called the infection propagator
approach [125, 126]. We consider a time-respecting path between nodes i and j that
lasts T time steps and long n jumps (with waiting time T − n). The element Pij is the
sum over all the time-respecting paths from i to j, from time t = 1 to time t = T,
each weighted with λn(1− µ)T−n, which is the probability that the infection starting
from i at time t = 1 pass to j at time t = T. Thus Pij represents the total proba-
bility that j is infected at time t = T knowing that the infection originated from i
infectious at time t = 1. P describes the propagation of the infection near the ab-
sorbing state (small probabilities) and assuming the absence of interactions between
the paths (mean-field).

The infection propagator approach allows to analytically calculate the SIS epi-
demic threshold, without any assumptions about the topology or dynamics of the
network, only assuming the absence of local correlations (mean-field). Moreover,
the validity of the approach has been extensively verified for empirical and syn-
thetic temporal networks, considering numerical simulations of the epidemic (see
Figure 2.7) and considering limit cases, such as the quenched and annealed regimes
[125].

The infection propagator approach has also been extended to consider the im-
pact of immunity [126], showing that the immunity and its duration do not modify

https://creativecommons.org/licenses/by/3.0/
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the epidemic threshold, as also already observed in static networks [128, 129]. In-
deed, if we consider the SIRS model (see Figure 2.3), i.e. the SIR model with waning
immunity R ω−→ S, the equations of the model in the Markov chain approach are:

pi(t) = (1 − µ)pi(t − 1) + (1 − pi(t − 1)− qi(t − 1))

[︄
1 − ∏

j
(1 − Aji(t − 1)pj(t − 1))

]︄
,

(2.25)
qi(t) = µpi(t − 1) + (1 − ω)qi(t − 1), (2.26)

where pi(t) is the probability that node i is infected at time t and qi(t) is the probabil-
ity that node i is recovered at time t. Linearizing around this state pi(t) = qi(t) = 0:

pi(t) ≈ ∑
j
(Aji(t − 1) + (1 − µ)δij)pj(t − 1), (2.27)

qi(t) = µpi(t − 1) + (1 − ω)qi(t − 1). (2.28)

The equation for pi(t) no longer depends on qi(t), thus the immunity does not
change the epidemic threshold. The threshold of the SIS model and the correspond-
ing infection propagator are also valid for the SIRS model, independently on the rate
ω. Thus:

λSIR
C = lim

ω→0
λSIRS

C = λSIRS
C = λSIS

C . (2.29)

The approach presented is valid only for discrete-time evolving networks, since
it is based on representing the network as a multilayer object. When dealing with
continuous-time evolving networks this representation is no longer valid: the infec-
tion propagator approach can be extended also to the continuous case [127].

Let us now consider a temporal network of N nodes that continuously evolves
over time with an adjacency matrix A(t) with t ∈ [0, T] and that constitutes the
substrate for an SIS epidemic model. The network can be discretized with time-step
∆t, considering the sequence of snapshots {A1, A2, ..., ATstep}, where Tstep = ⌊T/∆t⌋
and Ah = A(h∆t), which approximates the network with accuracy decreasing with
∆t (see Figure 2.6). By applying the infection propagator approach to the discretized
network, the epidemic threshold is given by the relation ρ[P(Tstep)] = 1 where:

P(Tstep) =
Tstep

∏
k=1

[1 − µ∆t + λ∆tAk], (2.30)

is the discrete infection propagator. Starting from these results for the discretized
network, it can be obtained the continuous-time limit of P [127], i.e. the continuous-
time infection propagator:

P(t) = T exp
(︃∫︂ t

0
dx[−µ + λA(x)]

)︃
, (2.31)

where T is Dyson’s time order operator, defined as T A(t1)A(t2) = A(t1)A(t2)θ(t1 −
t2) + A(t2)A(t1)θ(t2 − t1), with θ(x) Heaviside step-function. The epidemic thresh-
old can be obtained from:

ρ[P(T)] = 1. (2.32)

The infection propagator in general need to be computed numerically due to its
complex definition, however it can be obtained explicitly in a closed-form in the
weak communication hypothesis, i.e. if the adjacency matrix A(t) commutes with the
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aggregate adjacency matrix up to t:[︃
A(t),

∫︂ t

0
dxA(x)

]︃
= 0, ∀t ∈ [0, T]. (2.33)

This condition allows to state that the ordering of the factors in Eq. (2.31) is no longer
relevant and therefore the Dyson operator T can be removed, obtaining explicitly
the infection propagator:

P(T) = eT[−µ+λ⟨A⟩], (2.34)

where ⟨A⟩ =
∫︁ T

0 dtA(t)/T is the time-averaged matrix, and the threshold becomes:

rC =
λ

µ

⃓⃓⃓⃓
C
=

1
ρ[⟨A⟩] . (2.35)

This closed relation is useful in those classes of networks which respect weak
communication, such as annealed networks, networks whose adjacency matrix de-
pends on time as a scalar function ⟨A(t)⟩ = c(t)⟨A(0)⟩ and the original activity-
driven network model [127].

The infection propagator approach constitutes a theoretical framework to con-
cisely and analytically describe the epidemic diffusion on arbitrary time-varying
networks, allowing the calculation of the epidemic threshold for different epidemic
models (e.g. SIS, SIR or SIRS) on dynamical networks both with discrete dynamics
and with continuous dynamics, both for synthetic and empirical networks.

2.3 Epidemics on activity-driven models

The activity-driven (AD) models presented in Section 1.6 allow to describe exactly
and analytically the spread of an epidemic occurring on top of them, by considering
the real dynamics of the links and without the need to consider the aggregate static
network or a time-scales separation [13].

We consider here the SIS epidemic model on the original AD network described
in Section 1.6 with activity distribution ρ(a). An activity-based mean-field approach
can be applied, dividing the nodes in classes with the same activity a and assuming
that all nodes belonging to the class behave statistically in the same way. Thus, the
epidemic is described by the number Ia(t) of infected individuals at time t belonging
to the activity class a. The evolution of Ia(t), considering the AD model with discrete
time-step ∆t, is:

Ia(t + ∆t)− Ia(t) = −µ∆tIa(t) + λmSa(t)a∆t
∫︂

da′
Ia′(t)

N
+ λmSa(t)

∫︂
da′

a′∆tIa′(t)
N

,

(2.36)
where Sa(t) is the number of susceptible nodes in class a at time t, Na = Ia(t) + Sa(t)
is the number of nodes belonging to the activity class a and N =

∫︁
daNa is the

total number of nodes. In Eq. (2.36) the first term in the right-hand side accounts
for spontaneous recovery, the second term takes into account the probability that
a susceptible node with activity a activates and is infected through a connection
to another infected node (summing over all activity classes), while the fourth term
takes into account the probability that a susceptible node with activity a receives a
connection from an active infected node (summing up to all activities).
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The equation for the total number of infected nodes I(t) =
∫︁

daIa(t) is obtained
by integrating Eq. (2.36) on the activity:

I(t + ∆t) = I(t)− µ∆tI(t) + λm⟨a⟩∆tI(t) + λm∆tθ(t), (2.37)

where θ(t) =
∫︁

daIa(t)a, ⟨ f (a)⟩ =
∫︁

da f (a)ρ(a) and the higher-order terms in I(t)
and θ(t) have been neglected, assuming that in the early phase of an epidemic
Ia(t) ≪ Na(t) (or considering the system near to the epidemic threshold r ∼ rC).
To obtain the evolution equation of θ(t), Eq. (2.36) is multiplied for a and integrate
on the activity obtaining:

θ(t + ∆t) = θ(t)− µ∆tθ(t) + λm⟨a2⟩∆tI(t) + λm⟨a⟩∆tθ(t). (2.38)

In the continuous-time limit ∆t → 0 the Eqs. (2.37) and (2.38) are:

∂t I(t) = −µI(t) + λm⟨a⟩I(t) + λmθ(t), (2.39)

∂tθ(t) = −µθ(t) + λm⟨a2⟩I(t) + λm⟨a⟩θ(t). (2.40)

The Jacobian matrix of the system of equations is:

J =
[︃
−µ + λm⟨a⟩ λm

λm⟨a2⟩ −µ + λm⟨a⟩

]︃
(2.41)

This J matrix admits eigenvalues:

Λ± = ⟨a⟩λm − µ ± λm
√︂
⟨a2⟩. (2.42)

The epidemic threshold can be obtained by imposing the stability of the absorbing
state (I(t), θ(t)) = (0, 0), i.e. by imposing that the maximum eigenvalue Λ+ is neg-
ative, obtaining:

rAD
C =

λ

µ

⃓⃓⃓⃓
C
=

1
m

1
⟨a⟩+

√︁
⟨a2⟩

. (2.43)

The obtained epidemic threshold is exact, as shown with numerical simulations in
Figure 2.8, since the model is exactly mean-field: indeed, local correlations are con-
tinuously destroyed at each time-step with the destruction of the links.

The approach implemented takes into account the real temporal dynamics of the
interactions, describing the real coupling between the dynamics of the network and
the epidemic. In particular, the epidemic threshold shows that the spread of the
epidemic depends on the natural time scale of the network, i.e. on ⟨a⟩−1, and on the
heterogeneity and fluctuations in activity encoded in ρ(a), i.e. ⟨a2⟩. Broad activity
distributions produce a lower threshold, because of the presence of very active nodes
which, due to the high number of interactions, favour the epidemic. The AD model
is able to effectively describe the effect of heterogeneities in the agents behaviour on
epidemics.

Moreover, the epidemic threshold and the epidemic prevalence are considerably
different considering the integrated network or the real temporal network. This is
shown in Figure 2.8: the aggregate network allows the epidemic to spread on links
that are not temporally ordered while in the temporal network the epidemic can
only propagate along temporally ordered paths, producing a lower threshold and
a higher prevalence in the aggregate case [13]. This shows the crucial role of the
temporal dimensionality of the network.
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FIGURE 2.8: SIS epidemic threshold and epidemic prevalence in the AD network. The epi-
demic prevalence I∞ = I(t → ∞) is plotted as a function of the basic reproduction number
R0. I∞ was obtained by numerical simulations of the SIS model on a temporal AD network
and on two static networks obtained by integrating the temporal network on T = 20 and
T = 40 time-steps. Each point corresponds to an average over 102 independent simulations,
N = 106, m = 5, η = 10, ρ(x) ∝ x−ν with a = ηx, ν = 2, x ∈ [10−3, 1]. Furthermore, the
epidemic threshold obtained through Eq. (2.43) is highlighted with a red triangle. Image
adapted from [13] under CC BY-NC-SA 3.0 license.

Finally, analogous results on the epidemic threshold can be obtained for the SIR
model, mapping it to the temporal percolation model on the AD network. In this
model the SIS and SIR thresholds coincide as a consequence of the Markov dynamics
of the link formation (as shown in Section 2.2.1) [13, 126, 128–130].

2.3.1 Epidemics on AD with attractiveness

In Section 1.6.1 we presented the AD model with attractiveness (ADA), showing
how the presence of a popularity index modifies the topological and temporal net-
work properties: this can induce effects on the spread of epidemics [71, 72].

In the ADA network each node is assigned with an activity a and an attractive-
ness b parameter, drawn from a joint distribution ρ(a, b). An active node i contacts
another node j with probability pbj = bj/⟨b⟩N, where the denominator is a normal-
ization factor. We consider the SIS epidemic model on the ADA network and we
apply an activity-attractiveness-based mean-field approach, dividing the population into
classes of nodes (a, b) with equal activity and attractiveness: the nodes within the
same class are considered statistically equivalent and to be fully described by (a, b).

The epidemics is described by the number Ia,b(t) of nodes belonging to the class
(a, b) infected at time t. The evolution of Ia,b(t) is described by a Master Equation,
valid in the limit N ≫ 1 (i.e. the probability that two nodes have repeated contact
with each other can be neglected):

Ia,b(t + ∆t)− Ia,b(t) = −µ∆tIa,b(t) +
λm

N⟨b⟩Sa,b(t)
[︃

a∆t
∫︂

da′
∫︂

db′b′ Ia′,b′(t)

+ b
∫︂

da′
∫︂

db′a′∆tIa′,b′(t)
]︃

,

(2.44)
where Sa,b(t) is the number of susceptible nodes in class (a, b) at time t, Na,b =
Ia,b(t) + Sa,b(t) is the number of nodes in the class (a, b) and N =

∫︁
da
∫︁

dbNa,b is
the total number of nodes. This equation is analogous to Eq. (2.36) of the AD model,
but the probability of being contacted for a node of class (a, b) now is b/⟨b⟩N [72].

https://creativecommons.org/licenses/by-nc-sa/3.0/
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The evolution equation for the total number of infected nodes at time t, I(t) =∫︁
da
∫︁

dbIa,b(t), is obtained by integrating Eq. (2.44) on all classes:

I(t + ∆t) = I(t)− µ∆tI(t) +
λm
⟨b⟩∆t[⟨a⟩ϕ(t) + ⟨b⟩θ(t)], (2.45)

where ⟨ f (a, b)⟩ =
∫︁

da
∫︁

dbρ(a, b) f (a, b), ϕ(t) ≡
∫︁

da
∫︁

dbIa,b(t)b and θ(t) ≡
∫︁

da
∫︁

dbIa,b(t)a
and where higher-order terms in I(t), ϕ(t) and θ(t) are neglected, assuming that in
the early stages of the epidemic Ia,b(t) ≪ Na,b (or that the system is near to the epi-
demic threshold r ∼ rC). The Master Equations for ϕ(t) and θ(t) are obtained by
multiplying Eq. (2.44) respectively for b and a and then summing on the classes
(a, b):

ϕ(t + ∆t) = ϕ(t)− µ∆tϕ(t) +
λm
⟨b⟩∆t[⟨ab⟩ϕ(t) + ⟨b2⟩θ(t)], (2.46)

θ(t + ∆t) = θ(t)− µ∆tθ(t) +
λm
⟨b⟩∆t[⟨a2⟩ϕ(t) + ⟨ab⟩θ(t)]. (2.47)

In the continuous-time limit ∆t → 0:

∂t I(t) = −µI(t) +
λm
⟨b⟩ [⟨a⟩ϕ(t) + ⟨b⟩θ(t)], (2.48)

∂tϕ(t) = −µϕ(t) +
λm
⟨b⟩ [⟨ab⟩ϕ(t) + ⟨b2⟩θ(t)], (2.49)

∂tθ(t) = −µθ(t) +
λm
⟨b⟩ [⟨a2⟩ϕ(t) + ⟨ab⟩θ(t)]. (2.50)

This system admits a Jacobian matrix:

J =

⎡⎢⎣−µ λm
⟨b⟩ ⟨a⟩ λm

0 −µ + λm
⟨b⟩ ⟨ab⟩ λm

⟨b⟩ ⟨b
2⟩

0 λm
⟨b⟩ ⟨a2⟩ −µ + λm

⟨b⟩ ⟨ab⟩

⎤⎥⎦ (2.51)

which has eigenvalues:

Λ0 = −µ, Λ± =
λm
⟨b⟩

(︃
⟨ab⟩ ±

√︂
⟨a2⟩⟨b2⟩

)︃
− µ. (2.52)

To obtain the epidemic threshold, the stability of the absorbing state (I(t), ϕ(t), θ(t)) =
(0, 0, 0) is imposed, which corresponds to impose the maximum eigenvalue to be
negative Λ+ < 0. The epidemic threshold is:

rADA
C =

λ

µ

⃓⃓⃓⃓
C
=

1
m

⟨b⟩
⟨ab⟩+

√︁
⟨a2⟩⟨b2⟩

. (2.53)

The obtained epidemic threshold is exact, given that the model is exactly mean-
field and Markovian, and this can be proved by extensive numerical simulations
based on the lifetime-based method [72]. Moreover, it is valid for arbitrary ρ(a, b):
the epidemic threshold strongly depends on the correlations between activity and
attractiveness in the behaviour of an individual, encoded in ⟨ab⟩, as well as on fluc-
tuations and heterogeneity in activity and attractiveness, i.e. ⟨a2⟩ and ⟨b2⟩. By intro-
ducing heterogeneity or positive correlations a reduction in the epidemic threshold
is always obtained, due to the introduction of hubs who simultaneously activate and
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receive many links, acting as super-spreaders [72].
These results show how the introduction of attractiveness in the network, as a

new source of heterogeneity, profoundly influences the dynamics of the network
and the spread of the epidemic. The epidemic dynamics on the AD network and on
the ADA network are profoundly different.

2.3.2 Epidemics on AD with memory

In Section 1.6.2 we presented the AD model in the presence of memory, which intro-
duces aging and non-Markovian effects, showing how memory effects significantly
modify the network topology and its dynamics (see Figure 2.9), potentially affecting
also the spread of epidemics [49, 83, 130].

We consider the SIS process on the AD network with memory, with N nodes
assigned with the activity a drawn from the distribution ρ(a). Each active node can
create a new link with probability p(ki(t)) = [1 + ki(t)]−β or reinforce an old one
with probability (1 − p(ki(t))), where ki(t) is the degree of the node at time t in the
aggregate network and β is the memory parameter. The network is characterized by
strong local correlations due to the reinforcement mechanism, thus the mean-field
approaches are not exact.

An individual-based mean-field approach can be applied, in which the epidemic
dynamics is described by the probability Ii(t) that node i is infected at time t. The
Master Equation for Ii(t) is:

∂t Ii(t) = −µIi(t) + λ[1 − Ii(t)]

[︄
∑

j
ai[1 − p(ki(t))]

Aij(t)
ki(t)

Ij(t)

+ ∑
j≁i

ai p(ki(t))
1

N − ki(t)− 1
Ij(t)

+ ∑
j

aj[1 − p(k j(t))]
Aij(t)
k j(t)

Ij(t)

+ ∑
j≁i

aj p(k j(t))
1

N − k j(t)− 1
Ij(t)

]︄
,

(2.54)

where j ≁ i indicates a sum on the nodes j not yet connected with i, which at time t
are in total N − ki(t)− 1, Aij(t) indicates the element of the adjacency matrix of the
integrated network up to time t. The structure of the equation is analogous to that of
the AD model, however in this case it is necessary to differentiate whether the link
that produces the contagion is an old reinforced link or a new one [83].

The epidemic dynamics strongly depends on the time t0 at which the pathogen
start spreading, since ki(t) and Aij(t) depend on the evolution time t (see Eq. (2.54)):
this produces the emergence of aging effects. If the epidemic begins at large times,
the dynamics of the network and memory reached a regime where the formation of
new contacts can be neglected, as the connectivity of a node in the integrated net-
work ki(t) becomes very large and so the probability p(ki(t)) ∼ 0. In this regime
the dynamic correlations are asymptotically negligible and it is possible to apply a
heterogeneous mean-field approximation on Aij(t) by replacing it with its annealed
version and obtaining an analytical solution asymptomatically exact. This approxi-
mation transforms the individual-based approach into an activity-based approach, al-
lowing to consider the probability Ia(t) that a node with activity a is infected at the
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a

b

c

d

FIGURE 2.9: The effects of memory on epidemic spreading. In panel a and b we plotted
respectively the numerical estimation of the epidemic prevalence I∞ = I(t → ∞) and the
epidemic final size R∞ = R(t → ∞) as a function of β/µ = 2m⟨a⟩λ/µ both in the mem-
oryless case (ML) and in the case with memory (WM). In both panels N = 105, m = 1,
F(a) ∝ a−ν with a ∈ [10−3, 1]: each point is the average over 102 independent simulations,
with initially a fraction 10−2 of infected nodes randomly selected. The main plots were ob-
tained for µ = 0.015 and the inset for µ = 0.005. Panel c and d show a rumour diffusion
process (analogous to the SIR model) respectively on the memoryless AD network and on
the AD network with memory: the color of the nodes identifies their state, their size repre-
sents their degree and the links width represents their weight. Panels a and b are adapted
from [130] under CC BY 4.0 license, while panels c and d are adapted from [49] under CC
BY-NC-SA 3.0 license.

time t and obtaining the mean-field equation [83]:

∂t Ia(t) = −µIa(t) + λ[1 − Ia(t)]
[︃

ag(a)
g(a) + ⟨g(a)⟩

∫︂
da′ρ(a′)Ia′(t)

+
a

g(a) + ⟨g(a)⟩

∫︂
da′ρ(a′)Ia′(t)g(a′)

+ g(a)
∫︂

da′ρ(a′)
a′

g(a′) + ⟨g(a)⟩ Ia′(t)

+
∫︂

da′ρ(a′)
a′g(a′)

g(a′) + ⟨g(a)⟩ Ia′(t)
]︃

,

(2.55)

where g(a) = a/[C(a)]β, C(a) = (1 + β)[g(a) + ⟨g(a)⟩] and ⟨g(a)⟩ =
∫︁

daρ(a)g(a)
(see Section 1.6.2). The explicit dependence on time in the right-hand member is
cancelled suggesting that in the large times regime it is as if the epidemic evolves on
a static effective graph.

An analytical condition for the epidemic threshold rC can be obtained, for arbi-
trary distribution ρ(a) and for arbitrary reinforcement mechanism β, imposing the
stability of the absorbing state. However, the complexity of the model does not
allow to obtain a closed relation for the epidemic threshold [83]. The mean-field
asymptotic approach implemented for the SIS model can be tested through numer-
ical simulations and is also valid for the SIR model, producing the same mean-field
threshold [83].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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The mean-field epidemic threshold in the presence of memory is always lower
than the memoryless model in the large-times limit [83]: this is due to the tie alloca-
tion mechanism which amplifies the effects of activity fluctuations. Nodes with high
activity a have a high degree k(t), so they are easily involved in interactions both for
their activity but also because of the reinforcement mechanism, being part of the
social circle of many other nodes: the reinforcement of the links of the social circle
favours interactions with hubs and thus the effects of activity fluctuations. This is
validated by the fact that by reducing the heterogeneity of ρ(a) the differences with
the memoryless model are reduced [83].

An analytical analysis for the epidemic spreading at short-times regime is diffi-
cult to obtain since the correlations become relevant due to the finite connectivity
of the network, producing pre-asymptotic effects. This regime can be investigated
through extensive numerical simulations (see Figure 2.9): in this regime the mean-
field approach is not exact and therefore the SIS and SIR epidemic thresholds differ
[49, 83, 130].

In the short-times regime, the memory mechanism induces the formation of clus-
ters of nodes with high activity, which tend to explore their social circle, and then
nodes with small activity, which tend to explore new connections. This is because
nodes with high activity quickly perform a large number ki(t) of connections and
their probability of new connections p(ki(t)) decays rapidly, favouring the reinforce-
ment of the social circle; while nodes with small activity will slowly reach saturation
in the social circle dimension, thus exploring new contacts. Clusters become reser-
voirs of the pathogen in the SIS model, due to the high frequency of connections and
reinfections between them, while nodes with small activity slow down the epidemic
due to the formation of new links. This can lead to an increase or a decrease in the
epidemic threshold compared to the asymptotic regime, depending on the initial
conditions and the memory parameter β [83]. On the contrary, in the SIR model,
reinfection is not allowed and so the presence of highly connected clusters of highly
active nodes also reduces the spread of the epidemic, given that these clusters be-
come immunized. This leads to an increase in the SIR epidemic threshold compared
to the asymptotic limit (see Figure 2.9) [83, 130].

These results allow to fully understand the coupling between the dynamics of a
network with memory and the epidemic dynamics, explaining contrasting effects of
memory and aging on the spread of epidemics.

2.3.3 Epidemics on AD with burstiness

Many results have been obtained recently on the effects of a non-Poissonian network
dynamics on epidemic spreading, some observing a slowdown in the spreading,
compared to the Poissonian case, while others showing an acceleration (see Figure
2.10) [33, 38, 57, 85, 131, 132].

In Section 1.6.3 we introduced the AD model with arbitrary dynamics of node
activation, i.e. with arbitrary distribution of inter-event times Ψ(τ), showing how
the temporal dynamics of interactions affect the network topology and its properties,
potentially affecting also the spread of epidemics [85].

We consider the AD model with arbitrary activity distribution ρ(a) and inter-
event times distribution Ψa(τ), by fixing ⟨τ⟩ =

∫︁
dτΨ(τ)τ = a−1 and assuming

m = 1. On this network we consider the evolution of the SIS epidemic model. We
apply an activity-based mean-field approach by dividing the population into classes
of nodes with the same activity a and considering them statistically equivalent. This
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a b c

FIGURE 2.10: The effects of bursty interaction dynamics on epidemic spreading. In panel
a the epidemic prevalence ⟨i(t)⟩ for the SI epidemic process is plotted as a function of time.
In panel b the epidemic prevalence ⟨i(t)⟩ and the fraction of susceptible individuals ⟨s(t)⟩
for the SIR epidemic process are plotted as a function of time, fixing 1/µ = 5. In both panels
a bursty (HET - Ψ(τ) ∼ τα exp(−βHETτ)) and a homogeneous contact pattern (HOM) are
considered, and N = 103, λ = 1, βHET = 0.001 and α = 2 in panel a and α = 2.5 in
panel b. Panel c shows the SI fraction of infected nodes as a function of time (where τ is
the average inter-event times) for an exponential distribution Ψ(t) ∼ e−at (black and dashed
curve) and for a power-law distribution Ψ(t) ∼ t−(1+α) for t > t0, with different exponents α
for different colors. The simulations were conducted by initially randomly infecting a high-
grade node, on a Barabási-Albert network with N = 104 nodes and ⟨k⟩ = 4. The curves are
averaged over 2.5 103 runs. The arrow indicates increasing values of α, while the inset shows
the fluctuations of the curves for some values of α. Panels a and b are adapted from [132]
under Creative Commons Attribution License, while panel c is adapted from [131] under
CC BY 3.0 license.

approach is correct since the model is exactly mean-field since the reshuffling of the
links breaks all local correlations at each time-step.

Given a contact event at time t, the epidemic dynamics is completely described
by: Qa(t) the probability that a node of activity a activates at time t and is infected;
Pa(t) the probability that a node of activity a is not active at time t and is infected;
Za(t, t′) the probability that a node of activity a is infected at time t knowing that its
last activation occurred at time t′.

The probability Za(t, t′) evolves over time according to the Master Equation:

∂tZa(t, t′) = −µZa(t, t′) + λ(1 − Za(t, t′))
∫︂

da′ρ(a′)a′Qa′(t), (2.56)

where the first term takes into account spontaneous recovery and the second term
takes into account a contagion in which the node of activity a is passively infected
by an active infected node, given the definition of Za(t, t′). Furthermore, Eq. (2.56)
admits as initial conditions:

Za(t′, t′) = Qa(t′) + λ[1 − Qa(t′)]
∫︂

da′ρ(a′)Pa′(t′), (2.57)

in which the node can be already infected at time t′ (first term) or can be susceptible
at time t′ and be infected through the contact activated with an infected inactive
node (second term). Pa(t) and Qa(t) can be defined in terms of Za(t, t′) [85]:

Qa(t) =
∫︂ ∞

0
Za(t, t − τ′)Ψa(τ

′)dτ′, (2.58)

Pa(t) =
1∫︁ ∞

0 dτ′
∫︁ ∞

τ′ Ψa(τ′′)dτ′′

∫︂ ∞

0
dτ′Za(t, t − τ′)

∫︂ ∞

τ′
dτ′′Ψa(τ

′′). (2.59)
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Eq. (2.56) with initial conditions of Eq. (2.57) can be solved assuming that the sys-
tem asymptotically reaches a stationary state (Pa(t), Qa(t)) −−→

t→∞
(P0

a , Q0
a), in which

also the activation dynamics of the nodes has reached a steady state. In this regime
it is possible to obtain a condition for the epidemic threshold [85]:

λ⟨a⟩
µ

+ λ

√︄
1
µ

∫︂
daρ(a)a

La(µ)

1 − La(µ)
< 1, (2.60)

where La(µ) =
∫︁ ∞

0 dτe−µτΨa(τ) is the Laplace transform of the inter-event times
distribution Ψa(τ). This relation is extremely powerful and general, since it provides
a closed, analytical and exact condition for the epidemic threshold of the SIS model
on AD network with arbitrary activity distribution ρ(a) and arbitrary inter-event
times distribution Ψa(τ). In general, the epidemic threshold strongly depends on
the functional form of ρ(a) and of Ψa(τ) via its Laplace transform (see Figure 2.10).
Furthermore, the validity of the relation was tested through extensive numerical
simulations, based on the time-life method, showing excellent agreement [85].

By considering a broad distribution Ψa(τ), it can be shown that temporal hetero-
geneities, i.e. fluctuations in inter-event times, produce a reduction in the epidemic
threshold favouring the spread of the epidemic [85]. On the contrary, the effects
of burstiness on the epidemic prevalence are twofold: in low infective systems it
favours the epidemic by increasing the prevalence, while in highly infective systems
it reduces the average probability of infection, weakening the epidemic [85].

These results show the strong impact of the temporal properties of the network
on the epidemic dynamics, especially highlighting the effects of the link formation
statistics.

2.3.4 Epidemics on simplicial AD

In Section 1.6.4 we introduced the AD model with simplicial interactions, showing
how group interactions profoundly modify the temporal and topological properties
of the AD network. The simplicial AD model allows to investigate the effect of
higher order interactions on epidemic processes [87].

An epidemic process occurring on a model with simplicial interactions can be
characterized by three types of contagion mechanisms [30] (see Figure 2.11):

• simple contagion: the contagion occurs through pairwise interactions between
susceptible and infected individuals and the infection is caused by a single
exposure. This mechanism occurs along the links of the network;

• complex contagion: the contagion occurs through pairwise interactions be-
tween susceptible and infected individuals and the transmission requires that
the susceptible individual entered into contact with two or more infected ones.
This mechanism occurs along the links of a network, but only after repeated
exposure to multiple infected. The contagion probability depends on the num-
ber of previous exposures or on a threshold effect;

• simplicial contagion: the contagion occurs through interactions in groups, i.e.
through real high-order interactions. With this mechanism an individual can
be infected from a group event in which the presence of more than one infected
produces a reinforcing effect on the infection. In this case the contagion occurs
through multi-body interactions.
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FIGURE 2.11: Epidemic spreading on simplicial model. In panel a we represent the main
infection and recovery (sub-panel l) mechanisms that can be activated in a model with sim-
plicial interactions. A susceptible node can be infected with probability β via a simple con-
tagion mechanism via links (1-simplices), if it is in contact with one (sub-panels d and f)
or with more infected nodes independently (sub-panels e and g). The simplicial contagion
mechanism can also be activated: if a susceptible participates in a 2-simplex with only one
infected, then can be infected only through the link (sub-panel h); if in the same 2-simplex
there are two infected nodes, the susceptible node can be infected independently through the
single links (1-face) with probability β and also by a group contagion from the 2-face with
probability β∆ (sub-panel i). In panel b we plotted the epidemic threshold rSAD

C of the SAD
model as a function of ⟨s2⟩ for different values of ⟨s⟩. Panel c shows the epidemic threshold
rC for the SAD, eAD and nAD models, as a function of the simplex size s = s assuming that
Ψ(s) = δ(s − s). In panels b-c we fixed ⟨a⟩ = 0.035 and ⟨a2⟩ = 0.001. Panel a is adapted
from [30] under CC BY 4.0 license.

The three contagion mechanisms described are very general and can describe
contagion processes for infectious diseases or information transmission, such as the
adoption of an opinion. In the case of infectious diseases, the main active conta-
gion mechanisms are simple and complex contagion (e.g. threshold effects related
to viral load), while simplicial contagion is absent given that the exposure to mul-
tiple sources of contagion simply multiplies the likelihood of infection but does not
produce strengthening with group contagion. On the contrary, if we consider the
adoption of an opinion all the mechanisms are active: an individual can be con-
vinced independently by their contacts (simple contagion), by the multiple expo-
sure to contacts with the same opinion (complex contagion), or by participating in a
group with a certain number of people with the same opinion (simplicial contagion)
who convince them through a group interaction (see Figure 2.11). The complex and

https://creativecommons.org/licenses/by/4.0/
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simplicial contagion mechanisms can produce non-trivial effects, profoundly mod-
ifying the evolution of the dynamic process and inducing the emergence of new
phenomena such as discontinuous phase transitions and bistable regions [30].

Let us now consider the SIS process on the SAD model: nodes interact through
simplices and we consider a simple contagion mechanism, in which contagion oc-
curs with probability λ along each link between a susceptible S and an infected I,
neglecting the mechanisms of complex or simplicial contagion.

The epidemic dynamics can be described through an activity-based mean-field
approach, dividing the nodes into classes of equal activity a, indicating with Na =
Sa(t) + Ia(t) the number of nodes in the class a, with Ia(t) the number of infected
nodes at the time t belonging to class a and with Sa(t) the number of susceptible
nodes at time t belonging to class a. Thus N =

∫︁
daNa is the total number of nodes

in the population and I(t) =
∫︁

daIa(t) is the total number of infected nodes at time
t. The size s of an active simplex is drawn from the distribution Ψ(s) and it is inde-
pendent of the activity of the active node. The evolution of Ia(t) is regulated by the
Master Equation:

Ia(t + ∆t)− Ia(t) = −µ∆tIa(t) + λ∆t
∫︂

dsΨ(s)Sa(t)a(s − 1)
∫︂

da′
Ia′(t)

N

+ λ∆t
∫︂

dsΨ(s)Sa(t)
∫︂

da′a′
Ia′(t)

N
(s − 1)

+ λ∆t
∫︂

dsΨ(s)Sa(t)
∫︂

da′a′
Sa′(t)

N
(s − 1)

∫︂
da′′

Ia′′(t)
N

(s − 2).

(2.61)
The first three terms on the right-hand side are analogous to that of the AD model,

taking into account that at each activation of a node a simplex is formed with s(s −
1)/2 interactions. The fourth term exploits the simplicial structure of the interac-
tions and describe the case in which a susceptible node with activity a is infected
by participating in a simplex, activated by another susceptible node a′, in which an
infected node a′′ also participates. The infection terms in the equation are already
linearized in λ (or in Ia(t)) and by integrating Eq. (2.61) over the activity the tempo-
ral evolution of I(t) is obtained:

I(t + ∆t) = I(t)− µ∆tI(t) + λ∆t⟨(s − 1)2⟩⟨a⟩I(t) + λ∆t⟨s − 1⟩θ(t), (2.62)

where θ(t) =
∫︁

daIa(t)a, ⟨ f (a)⟩ =
∫︁

daρ(a) f (a), ⟨g(s)⟩ =
∫︁

dsΨ(s)g(s) and the
high-order terms are neglected, assuming that in the initial phases of the epidemic
Ia(t) ≪ Na (or considering the system near the critical point r ∼ rC). Similarly,
the evolution equation of θ(t) can be obtained by multiplying Eq. (2.61) for a and
integrating over the activity:

θ(t + ∆t) = θ(t)− µ∆tθ(t) + λ∆t[⟨s − 1⟩⟨a2⟩+ ⟨(s − 1)(s − 2)⟩⟨a⟩2]I(t)
+ λ∆t⟨s − 1⟩⟨a⟩θ(t).

(2.63)

In the continuous-time limit ∆t → 0:

∂t I(t) = −µI(t) + λ⟨(s − 1)2⟩⟨a⟩I(t) + λ⟨s − 1⟩, (2.64)

∂tθ(t) = −µθ(t) + λ[⟨s− 1⟩⟨a2⟩+ ⟨(s− 1)(s− 2)⟩⟨a⟩2]I(t) + λ⟨s− 1⟩⟨a⟩θ(t), (2.65)

which admits Jacobian matrix:

J =
[︃

−µ + λ⟨(s − 1)2⟩⟨a⟩ λ⟨s − 1⟩
λ[⟨s − 1⟩⟨a2⟩+ ⟨(s − 1)(s − 2)⟩⟨a⟩2] −µ + λ⟨s − 1⟩⟨a⟩

]︃
(2.66)
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The eigenvalues of J are therefore:

Λ± =
1
2
[λ⟨s(s − 1)⟩⟨a⟩ − 2µ ± λ

√︂
⟨(s − 1)(s − 2)⟩⟨(s − 1)(s + 2)⟩⟨a⟩2 + 4⟨s − 1⟩2⟨a2⟩].

(2.67)
The stability of the absorbing state (I(t), θ(t)) = (0, 0) is obtained by imposing the

maximum eigenvalue to be negative Λ+ < 0. The epidemic threshold is:

rSAD
C =

2
⟨s(s − 1)⟩⟨a⟩+

√︁
⟨(s − 1)(s − 2)⟩⟨(s − 1)(s + 2)⟩⟨a⟩2 + 4⟨s − 1⟩2⟨a2⟩

.

(2.68)
where r = λ/µ. The epidemic threshold shows the key role played by the simplicial
nature of the interactions and by the distribution Ψ(s) of the simplices size, strongly
depending on ⟨s⟩ and on ⟨s2⟩. If the fluctuations in the simplices size ⟨s2⟩ diverge
then, at a fixed average size ⟨s⟩, the epidemic threshold vanishes (see Figure 2.10).
This analytical result can be verified through extensive numerical simulations [87].

The epidemic threshold rSAD
C can be compared with the threshold of the eAD

network (edge-matching AD, where m = s(s − 1)/2) and of nAD network (node-
matching AD, where m = s − 1), considering also in that case that s is drawn from
Ψ(s) at each activation of a node. In that case simply m is replaced by ⟨m⟩ [13, 87]:

reAD
C =

2
⟨s(s − 1)⟩

1
⟨a⟩+

√︁
⟨a2⟩

, rnAD
C =

1
⟨s − 1⟩

1
⟨a⟩+

√︁
⟨a2⟩

. (2.69)

Comparing the SAD model with the eAD:

rSAD
C

reAD
C

=
⟨a⟩+

√︁
⟨a2⟩

⟨a⟩+
√︁
⟨a2⟩

√
Θ

, (2.70)

where:

Θ =
4⟨s − 1⟩2

⟨s(s − 1)⟩2 +
⟨(s − 1)(s − 2)⟩⟨(s − 1)(s + 2)⟩

⟨s(s − 1)⟩2
⟨a⟩2

⟨a2⟩ . (2.71)

Since s ≥ 2 and ⟨s2⟩ ≥ ⟨s⟩2, the ratio rSAD
C /reAD

C is always larger than 1, implying
that the SAD model always features a higher threshold than the eAD model: in
Figure 2.11 this result is clearly shown. Indeed, the SAD and eAD models involve the
same number of links at each node activation, but in the SAD model the connections
are all made between the same s nodes in the simplex, while in the eAD model
they are made between s(s − 1)/2 distinct nodes. This clearly favours the spread
of the epidemic in the eAD model compared to the SAD model, as the infection
can potentially reach many more distinct nodes and there is a higher probability of
connecting an infected node.

Comparing SAD with nAD, the ratio rSAD
C /rnAD

C is always lower than 1: in Figure
2.11 this result is clearly shown. Indeed, the SAD and nAD models involve the
same number of nodes at each node activation, but in the SAD model these nodes
interact with s(s − 1)/2 connections in the simplex, while in the nAD model the
nodes interact through s − 1 interactions in a star-like structure. This favours the
spread of the epidemic in the SAD model compared to the nAD model.

Let us now consider the particular case of uniform activity ρ(a) = δ(a − a0), in
this case ⟨a2⟩ = ⟨a⟩2 = a2

0 and the thresholds becomes:

rSAD
C =

1
⟨s(s − 1)⟩a0

= reAD
C , rnAD

C =
1

⟨s − 1⟩a0
. (2.72)
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The epidemic threshold of the eAD model coincides with that of the SAD model,
but differs from the nAD one. In this case the different terms in the mean-field equa-
tions contribute equally to the infection, independently of the activity of the nodes
involved, and only the number of links formed counts: this number is the same for
the SAD and eAD model, thus they have the same threshold, but it is different for
the nAD model. This is valid only near the critical point where it can be ignored
that the eAD model is the SAD model have the same number of links but involve a
different number of nodes.

These results show that the topological and temporal differences in the network
due to simplicial interactions have a strong impact on epidemic processes, affecting
deeply the epidemic threshold [87].

The results presented in the last Sections show that the activity-driven models
allow to investigate both analytically and numerically the effect of specific network
properties (e.g. memory, burstiness) on epidemic processes, keeping into account
the true temporal dynamics of interactions. We presented the main AD models and
the effects on epidemic spreading of specific network properties, however further
extensions of the AD model have been proposed, for example investigating the effect
of communities on epidemics [94], the effects of memory and burstiness in other
formulations of the model [95, 97] and the effects of static structures underlying the
interactions [96].
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Chapter 3

Epidemic spreading with
adaptiveness

In this Chapter we review the modelling framework of the adaptive temporal net-
works, a new class of time-varying networks whose evolution is coupled to dynam-
ical processes unfolding upon them. In particular, we show how adaptive temporal
networks can describe the spread of epidemics in populations which respond and
adapt to the pathogen diffusion.

3.1 Adaptive temporal networks

Historically, the study of dynamic processes and complex networks has been per-
formed with a strict separation between the dynamics on the network and the dy-
namics of the network, as we have seen in Chapter 1. Recently a lot of interest has
been attracted by considering the two dynamics simultaneously and their interplay.
Indeed, many complex real systems present a coevolution of the network topology
and of the dynamic processes occurring on top of them [8–10, 133, 134]. This cou-
pling can be very deep and can take place on two distinct levels: on the one hand,
the dynamics and topology of the network can deeply influence the evolution of a
dynamic process, as discussed in Chapters 1-2; on the other hand, the dynamic pro-
cess can induce adaptive mechanisms in the network, as a response to the presence
of the dynamic process, modifying the network evolution and in its topology.

In many complex systems the coupling between the network dynamics and the
dynamic process occurs on both levels, since the two dynamics are deeply coupled
and interdependent (see Figure 3.1): this produces emergent phenomena that could
not be observed otherwise. In this case, the underlying network evolves over time,
its evolution influences the dynamic process, which in turn induces adaptive mecha-
nisms in the network, affecting the network topology and evolution through a feed-
back loop. The framework for describing these systems is that of adaptive temporal
networks (or coevolutionary networks), which are dynamic networks whose evolution
is coupled to a dynamic process of which they are substrates: see Figure 3.1 for a
schematic representation.

Adaptive networks are widely applied across many disciplines, from social to
biological science, from physics to epidemiology, from logistics to public transport
[8–10]. A simple example is that of the traffic on the road network: the traffic con-
stitutes a dynamic process whose dynamic entities (seen as people or goods) move
along the links of the network between the nodes. The topology and dynamics of
the network profoundly affect the traffic (for example the flow or density of entities
on links or nodes), but at the same time the traffic influences the network. If traffic
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FIGURE 3.1: Adaptive temporal networks. We schematically represent an adaptive tempo-
ral network and its coupling to a dynamical process through a feedback loop. The network
evolution determines the network topology, which affects the dynamical process and its
local dynamics; the local dynamics determines the node dynamical state, which affect the
topological dynamics through adaptiveness.

jams occur frequently, it is likely that new roads will be built or that a road will be
closed, with the aim of loan on the congested road. The same happens in many other
artificial networks and transport processes such as power-grids for the transport of
electricity and the internet communication network [8], in which links or nodes can
be removed to avoid failure or as a consequence of that.

Another simple example is the dissemination of opinions and consensus that
takes place on the networks of social interactions. This process is strongly influenced
by the structure and dynamics of social interactions and can change the topology of
the network, for example by favouring interactions between individuals with the
same opinion and breaking the connections between individuals with contrasting
views.

Finally, also a population exposed to an epidemic can be described as an adaptive
temporal network [8, 11, 12], since the presence of an epidemic induces a wide range
of adaptive behaviours in the population, ranging from self-protective behaviours
to public interventions, which strongly couple the interaction dynamics to the epi-
demic [12].

Despite the ubiquity of adaptive networks, a general mathematical modelling
is still missing, due to the complexity of the deep coupling between the dynam-
ics. Most of the results are obtained with numerical approaches modelling specific
adaptive behaviours. However, some general insights and hallmarks emerged to be
shared by many adaptive networks [8–10, 135], such as the formation of complex
global topologies, a robust self-organization dynamic and the spontaneous emer-
gence of different classes of nodes.

In the next Section we present the main adaptive behaviours observed in popu-
lations exposed to epidemics, showing the main modelling frameworks to describe
them.
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3.2 Epidemics and adaptive behaviours

Populations exposed to epidemics respond and adapt with a broad set of adaptive
behaviours, including public coordinated measures, implemented by healthcare in-
stitutions and governments for the control of the epidemic, and personal responses,
driven by individual behavioural changes induced by awareness of the epidemic [12,
133, 136]. These adaptive behaviours are implemented on a time-scale τA compara-
ble with that of the network dynamics τN and of the epidemic process τP, since they
are induced by the presence of the epidemic: for example, epidemics with long time
scales induce behavioural changes over large-time scales through cultural changes
(e.g. changes in sexual habits induced by HIV); epidemics with short time scales
induce changes extremely faster (e.g. COVID-19, SARS, MERS) [11, 12]. Under-
standing the mechanisms underlying the response to epidemics is crucial, both for
mathematical fundamental reasons and for the optimization of control and contain-
ment measures, informing policy makers and health institutions.

Public coordinated interventions include a wide set of measures directly activated
on the whole population or on specific classes of individuals [21, 137–141]: these
interventions can be pharmaceutical, such as optimized vaccination strategies, or
non-pharmaceutical (NPIs). Non-pharmaceutical interventions include a broad set
of measures [142], for example interventions at the personal and environmental level
aiming to reduce the transmission probability by increased hygiene (e.g. sanitation
and ventilation) or by the use of protection devices (e.g. face masks). Other NPIs
are implemented directly at the population level, acting directly on the pattern of con-
tacts, modifying it to reduce community-wide spread. For example, the creation
of health cordons for the spatial containment, the promotion of physical distanc-
ing, the closure of specific activities (such as schools, universities, restaurants), the
implementation of restrictions to the mobility and to gatherings, up to social dis-
tancing and extended lockdowns [16, 140, 143–145]. Finally, fundamental NPIs are
pursued at the active-surveillance level, acting directly on infected individuals and ac-
tively searching new infected individuals. For example, a timely testing of suspected
cases [106, 146], the mandatory isolation of positive cases and the quarantine of their
contacts potentially infected and identified through the timely tracing of contacts.

The type of public measures activated, their intensity and their specific imple-
mentation strongly depend on the specific infectious disease [21, 138], on the epi-
demiological situation, as well as on extremely complex socio-economic factors,
since all these measures have significant socio-economic consequences [17, 18, 147].

Self-initiated responses include all the individual adaptive behaviours that emerge
spontaneously, without the intervention of public institutions [148, 149]: for exam-
ple, the reduction of social activity in infected individuals, caused by the appearance
of symptoms, and in susceptible individuals, caused by the perception of risk, the
creation of disease-party to promote diffusion and gain immunity [150–155]. All
these changes in behaviour can derive from the awareness or the fear of the epi-
demic, from information by the media or by the contacts engaged [12]. Moreover,
there exist adaptive mechanisms induced by the epidemic but not directly linked
to reducing or promoting the spread of the pathogen, such as the replacement of
infected individuals with susceptible peers if they have an essential social role (e.g.
teachers or doctors) [156].

These behavioural changes and adaptive mechanisms have been widely observed
and documented during the recent COVID-19 pandemic, also thanks to the availabil-
ity of new tools which allow to systematically investigate the social dynamics during
the several phases of the pandemic. For example, the effects of adaptive behaviours
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on the social dynamics has been estimated by monitoring the mobility of individuals
[20, 144, 157], the use of internet [158] and through data on mobile phones [159, 160]
and surveys [161, 162]. This allows the development of models in the various phases
of the pandemic, first for containment and then for safe exit strategies, estimating the
effects of the public interventions and of spontaneous behaviours in the population
[16, 140, 143–145]. In the past these tools were almost absent, however adaptive be-
haviours have been documented. For example, behavioural changes have been doc-
umented during the SARS epidemic of 2002-2004, such as the use of masks, changes
in travel habits and the implementation of powerful tracking and containment sys-
tems. Further protective behaviours have been observed for HIV, in sexual habits,
and for the H1N1 influenza pandemic in 2009 [12]. These protective behaviours have
often been accompanied by rarer opposite behaviours, for example with the organi-
zation of disease-party (e.g. measles [153], chicken-pox [152], COVID-19 [154, 155],
swine-flu [150, 151]) in which people try to get infected to immunize themselves by
exposing directly to the pathogen.

Many mathematical models have been developed to describe some of these adap-
tive behaviours, both to investigate the effectiveness of public control and contain-
ment measures and to determine the effects of self-initiated adaptive behaviours. In
general, adaptive behaviours can be classified on the basis of several factors [12]:

• the source of information, which induces the behavioural changes. It can be
global or local: in the first case, the individual acts on the basis of information
available to the entire population, for example broadcast by media, from the
government, from local or national health authorities; in the second case the
information derives only from the (spatial or social) local neighbourhood of
the individual. The difference between global and local information is crucial,
since in structured populations information can spread locally in (spatial or
social) clusters, profoundly affecting the epidemic (e.g. local clusters of immu-
nized individuals);

• the type of information, which induces the behavioural changes. Most of the
models can be classified as prevalence-based or belief-based: in the first case the
behaviour of an individual is determined by the number of infected individu-
als; in the second case, the adaptive behaviours derive from an information not
directly linked to the prevalence, for example due to discrepancies between the
personal perception of risk and the real epidemiological parameters;

• the type of the adaptive behaviour induced. The adaptive behaviour can
change the dynamical state of the individual, can induce an increased protec-
tion by a change in the node infection probability, or can change the structure
of the interaction network on which the pathogen spreads.

The effects of the adaptive behaviours on the epidemic spreading are not only
restricted to the protection of the affected nodes but also have strong repercussion
on the global epidemic spreading, also in the rest of the population. These effects
can be investigated by considering different epidemiological descriptors:

• the epidemic threshold rC, compared to the non-adaptive (NA) case rNA
C . R0 =

r/rNA
C estimates how much the system with r = λ/µ is above the threshold

rNA
C in the absence of adaptive behaviours: the effective infection rate r is a

fixed parameter of the pathogen (assuming that the pathogen does not change
its epidemiological properties), while the epidemic threshold rC strongly de-
pends on the epidemic model considered, on the pattern of contacts, on its
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topology and its dynamics. Thus, the epidemic threshold rC is affected by
control measures and adaptive behaviours, which impact on the topology of
interactions, on the dynamics of contacts and on the susceptibility of some
nodes. We can define the effective reproduction number R = r/rC which indi-
cates how much the system is above threshold when the adaptive behaviours
are implemented. Adaptive behaviours reduce the impact of the epidemic if
they increase the epidemic threshold rNA

C → rC, i.e. if they reduce the repro-
duction number R0 → R. The measures can push the system from the active
phase into the absorbing phase with a regressive epidemic R0 > 1 → R < 1, or
can reduce significantly the pathogen circulation but maintaining the system
is still in the active phase R0 > 1 → 1 < R < R0.

• the asymptotic epidemic prevalence (or the epidemic final size). Adaptive
behaviours can lower or increase the epidemic prevalence (or epidemic fi-
nal size) lowering the endemicity (or the total number of infected individ-
uals during the epidemic). In both cases, the transmission of the pathogen
would be minimized and thus the costs in terms of hospitalizations, deaths
and short/long-term health consequences of the infection;

• the infection peak. Adaptive behaviours can lower the height of the infec-
tion peak, reducing the instantaneous impact of the epidemic to avoid over-
whelming the health system. This can be achieved in two ways: mild measures
flatten the infection curve I(t) by lowering the peak, widening and slowing it
down, effectively producing a similar epidemic final size but over longer times
and with lower instantaneous incidence; strong measures instead anticipate the
infection peak, reduce its duration and its height, immediately stopping the
spread of the epidemic also reducing the epidemic final size, by anticipating
the epidemic decay.

A large set of mathematical models investigates the effects of adaptive behaviours,
dealing with the difficulty of considering the interplay between the dynamics of
the network and of the epidemic process, coupled through complex adaptive be-
haviours, which typically depend themselves on a third dynamic process (e.g. aware-
ness diffusion). Many of them are mainly numerical or are based on some assump-
tion and simplification; only few models consider the coupled dynamics without
any assumption on the time-scales of the different processes.

3.2.1 Prevalence-based adaptive behaviours

A first approach to model adaptive behaviour is that to directly modify a compart-
mental epidemic models by introducing new compartments and new transition pro-
cesses, modelling self-protective behaviours or protection implemented by control
measures [163]. The SIR model (with µ recovery rate and β = λ infection rate) can
be extended by assuming that a susceptible node can adopt a protective behaviour
by moving into a new compartment SF due to the risk perception. Individuals in SF

engage contacts with the rest of the population but with a lower risk of infection (for
example by wearing face masks, by keeping a physical distance or by reducing the
number of contacts engaged). This is effectively modelled by assuming that for SF

the infection rate is reduced by a factor rβ and therefore:

SF + I
rβ β
−→ 2I, (3.1)
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with rβ ∈ [0, 1) that modulates the level of behavioural change. Then individuals can
relax their behaviour SF → S returning to behave as previously, due to a reduction
in risk perception or a relaxation in the public measures. This relaxation can be
mediated by interactions with susceptible or recovered individuals who have not
adopted the adaptation measures, in a sort of imitation process with rate µF:

SF + S
µF−→ 2S, SF + R

µF−→ S + R. (3.2)

A wide range of mechanisms can be considered regarding the transition S →
SF, depending on the implementation of the adaptiveness. The simplest case is an
adoption of adaptive behaviours with prevalence-based local information: susceptible
individuals change their behaviour only if they interact with infected individuals,
assuming that the more an individual engages interactions with infected nodes, the
higher the probability of assuming adaptive behaviours. This corresponds to:

S + I
βF−→ SF + I, (3.3)

where βF is the disease awareness acquisition rate. See Figure 3.2 for a schematic
representation of the complete compartmental epidemic model with adaptive be-
haviours. In the homogeneous mixing approximation, the system is described by:

∂tS(t) = −βS(t)
I(t)
N

− βFS(t)
I(t)
N

+ µFSF(t)
S(t) + R(t)

N
, (3.4)

∂tSF(t) = −rββSF(t)
I(t)
N

+ βFS(t)
I(t)
N

− µFSF(t)
S(t) + R(t)

N
, (3.5)

∂t I(t) = −µI(t) + βS(t)
I(t)
N

+ rββSF(t)
I(t)
N

, (3.6)

∂tR(t) = µI(t), (3.7)

where X(t) is the number of individuals in compartment X.
If the infection spreads much faster than the disease awareness β ≫ βF, the

model reduces to the SIR model with R0 = β/µ. If the infection spreads much
slower than the disease awareness β ≪ βF, the model reduces to the SIR model with
R = rββ/µ = rβR0: the adaptive behaviour reduces R0 by a factor rβ which corre-
sponds to the reduction in the infection rate for SF. By integrating the Eqs. (3.4) - (3.7)
and through numerical simulations we can consider the case in which β ≈ βF, i.e.
the intermediate case. In this regime, the adaptive behaviours implemented reduce
the epidemic size, weakening the epidemics, and modify the epidemic dynamics by
introducing multiple peaks in the evolution of the number of infectious individuals
I(t), corresponding to successive waves of infection (see Figure 3.2). Indeed, after
the first wave the adaptive behaviours are relaxed with the transition SF → S, in-
creasing the susceptible population: if at this stage I(t) is not too small and there is
a large set of nodes still susceptible, the second wave occurs [163].

The adaptive model features a very rich dynamics, as shown in the phase dia-
gram on the (R0, βF) plane shown in Figure 3.2. Different regimes occur varying R0
and βF, with a different number of peaks in I(t). This reproduces what was observed
during the 1918 pandemic and during the recent COVID-19 pandemic, where con-
secutive waves were observed due to the alternation of tightening and relaxation of
control measures [164].

Another possibility is an adoption of adaptive behaviours with prevalence-based
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a b

c

FIGURE 3.2: Prevalence-based adaptive behaviour with local information. Panel a shows
the compartmental epidemic model with prevalence-based adaptive behaviours induced by
local information: all transitions are described in the main text. In panel b the temporal
evolution of the number of infected individuals is plotted for 102 stochastic runs and the
solid curve shows the median evaluated for 5 103 runs in which the epidemic final size is
at least 0.1% of N. The parameters are fixed R0 = 2, βF = 3 day−1 and rβ = 0.1. In panel
c the phase diagram of infection waves is plotted on the (R0, βF) plane for three values of
rβ = [0, 0.15, 0.3]. The phase diagram is obtained by integrating numerically Eqs. (3.4)-(3.7).
In all panels N = 106, µ = µF = 0.1 day−1. Image adapted from [163] under Creative
Commons Attribution License.

global information [163], in which a global information induces adaptive behaviours
in the population, even if a node is not in contact with a large fraction of infected
individuals. This is the case of public control and containment measures. The adop-
tion of awareness is not represented by the mass-action law, but is replaced by:

βF
I(t)
N

→ βF(1 − e−δI(t)), (3.8)

with δ ∈ (0, 1] that estimate the adaptiveness intensity. Assuming δ small we obtain:

βF(1 − e−δI(t)) = βF[δI(t) +O(δ2)], (3.9)

therefore δ−1 estimates the characteristic number of infected publicly reported above
which the adaptive behaviour spreads rapidly in the population. See Figure 3.3
for a schematic representation of the complete compartmental epidemic model with
adaptive behaviours. In the homogeneous mixing approximation, the system is de-
scribed by:

∂tS(t) = −βS(t)
I(t)
N

− βFS(t)[1 − e−δI(t)] + µFSF(t)
S(t) + R(t)

N
, (3.10)
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a
b

c

FIGURE 3.3: Prevalence-based adaptive behaviour with global information. Panel a shows
the compartmental epidemic model with prevalence-based adaptive behaviours induced by
global information: all transitions are described in the main text. In panels b-c the reduction
in the epidemic final size R∞ is plotted as a function of βF for different δ values. The param-
eters are fixed µ = 0.4 day−1, R0 = 2, µF = 0.5 day−1 and N = 106. In panel b rβ = 0.6, so
that R0rβ > 1, while in panel c rβ = 0.4, so that R0rβ < 1. The curves are obtained by inte-
grating numerically Eqs. (3.10)-(3.13). Image adapted from [163] under Creative Commons
Attribution License.

∂tSF(t) = −rββSF(t)
I(t)
N

+ βFS(t)[1 − e−δI(t)]− µFSF(t)
S(t) + R(t)

N
, (3.11)

∂t I(t) = −µI(t) + βS(t)
I(t)
N

+ rββSF(t)
I(t)
N

, (3.12)

∂tR(t) = µI(t). (3.13)

The model is completely analogous to the one with local information in the limits
β ≫ βF and β ≪ βF for each δ. Moreover, the two models are equivalent for small
δ by simply redefining the parameters [163]: in these regimes the behaviours al-
ready described are obtained with multiple peaks. In general, this model produces a
reduction of the epidemic final size R∞ that is a function of δ, rβ and βF: with increas-
ing δ the spread of fear is faster and thus the epidemic size decreases (see Figure 3.3).

Simple adaptation mechanisms induce non-trivial changes to the temporal dy-
namics of the epidemic and to its overall impact, producing a very rich dynamic
even neglecting the network structure within the homogeneous mixing approxima-
tion. However, more complex and challenging effects emerge considering the true
network structure of interactions.

In the most realistic scenario, the epidemic process is coupled to the diffusion
of awareness: in this case the nodes are connected at two different level, through
the face-to-face interactions and through communication connections (e.g. internet
connections, telephone connections) [147, 165]. The awareness spread on the infor-
mation network, while the pathogen on the face-to-face interactions network. The
effectiveness of the adaptive behaviours induced by the awareness depends on the
networks overlap: it is very low if the information network and the interaction net-
work differ, since awareness is generated in nodes that are not directly connected
epidemiologically; while it is very high if the two networks overlap [165].
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3.2.2 Adaptive link rewiring

The role of the network structure is even more crucial when complex adaptive be-
haviour directly induce changes in the topology and in the dynamics of the network:
for example the rewiring of links for self-protection or for relational exchange, the de-
struction of links for the implementation of lockdown or quarantine. In these cases
the disease and the network topology coevolve coupled through complex mech-
anisms of removal and redirection of links which depends on the epidemic: this
induces non-trivial effects in the topology, in the epidemic and in the network dy-
namics [166].

Let us now consider a static network of N nodes on which the SIS epidemic pro-
cess occurs inducing a simple adaptive behaviour: susceptible nodes can protect
themselves by rewiring with probability w their links with infected individuals to-
wards other susceptible nodes, selected randomly [166]. In the absence of rewiring
(i.e. w = 0) in a homogeneous population (i.e. all nodes in contact with ⟨k⟩ nodes),
the epidemic threshold is λC = µ/⟨k⟩; in the presence of rewiring an infected node
loses on average a fraction w of its contacts per unit of time, reducing its degree
according to the law:

k(t) = ⟨k⟩e−wt, (3.14)

where t is the time passed since the infection. Therefore the epidemic threshold is:

λC =
w

⟨k⟩[1 − e−w/µ]
. (3.15)

In the limit w ≃ 0 the case without adaptive behaviours is recovered; while for
w ≫ µ the threshold is λC = w/⟨k⟩: the threshold is considerably increased by the
adaptive behaviour.

Moreover, the adaptive behaviour induces relevant effects on the topology: due
to rewiring, the system features two poorly interconnected clusters, one susceptible
and one infected, since all the links SI are redirected to form SS. New connections
between the two clusters are formed by the recovery of the infected and are then
removed by rewiring: this leads to strong temporal fluctuations in the degree of the
nodes, indeed if a node is susceptible its degree grows linearly ∂tkS(t) = wlSI(t)
(where lSI(t) is the number of links SI at time t), while if it is infected its degree
decreases exponentially ∂tk I(t) ∼ −wk I(t). The two processes produce a dynamic
equilibrium with a constant number of links between the two clusters and within the
two clusters, generating a widening of the infected and susceptible degree distribu-
tions and introducing assortativity, even if the network was initially homogeneous
and without degrees correlations [166]. Moreover, the susceptible nodes show a
strong increase in the average degree and in the fluctuations, indicating the forma-
tion of highly interconnected clusters and of temporally isolated nodes.

The rewiring isolates infected individuals, thus locally weakening the epidemic,
but at the same time topologically favours node mixing and the formation of clusters
of highly connected susceptible nodes with high degree fluctuations, thus globally
favouring the epidemic. Indeed an infected node in the highly connected cluster
of susceptibles is able to infect many nodes quickly, furthermore the heterogeneity
and the mixing favour the epidemic. To investigate this behaviour we can consider
a mean-field approach, considering X(t), the average fraction of nodes in compart-
ment X at time t, and lXY, the average fraction of links XY with X, Y ∈ [S, I]. As-
suming the moment closure approximation lXYZ = lXYlYZ/Y with X, Y, Z ∈ [S, I],
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the coevolution of the network and the epidemic is described by the equations:

∂t I(t) = λlSI(t)− µI(t), (3.16)

∂tlI I(t) = λlSI(t)
(︃

lSI(t)
S(t)

+ 1
)︃
− 2µlI I(t), (3.17)

∂tlSS(t) = (µ + w)lSI(t)−
2λlSI(t)lSS(t)

S(t)
. (3.18)

In the absence of rewiring there is only one continuous phase transition at the criti-
cal point λC; activating the rewiring rate the threshold is consistently increased with
Eq. (3.15), however a second threshold appears with a saddle-node bifurcation [166].
A bistability region is activated in which both the endemic state and the absorbing
state are stable, producing an hysteresis cycle. The dynamics of the system is ex-
tremely rich: increasing w the saddle-node bifurcation is replaced by a subcritical
Hopf bifurcation, which produces an unstable limit cycle, and then for higher w it
is replaced by a supercritical Hopf bifurcation with a stable limit cycle, which pro-
duces oscillations in dynamics [166].

Many adaptive behaviours impact on the network topology and can be described
through the links rewiring, even if not directly undertaken for self-protection or to
reduce the impact of the epidemic. This is the case of the relational exchange [156]:
during the spreading of an infectious disease individuals with an essential role for
society (e.g. teachers, health-care workers) when ill are replaced by susceptible in-
dividuals with the same role. This mechanism can be modelled by assuming that an
infected node is replaced by a susceptible one: the infected node is isolated while
the susceptible one maintains their links and acquires those originally belonging to
the replaced individual. Even if the infected individual is isolated, this mechanism
favours the epidemic [156]. Indeed, the new susceptible individual is introduced
into a potentially dangerous environment, since the infected node could have in-
fected their contacts, and furthermore the replacement determines a contraction in
the diameter of the network. Moreover, in heterogeneous populations the nodes
with high degree are initially infected and then are immunized, reducing the epi-
demic potential of the population. However, the relational exchange keeps high
the number of susceptible individuals with high degree, favouring the persistence
of the pathogen. The relational exchange thus impact on the epidemic accelerating
the spreading and increasing the epidemic final size, introducing also non-trivial
dynamic behaviours such as discontinuous phase transitions [156].

3.2.3 Adaptiveness in activity-driven networks

We showed the implementation of adaptive behaviours in the homogeneous mixing
approach and in static networks, however the most realistic case is that of adaptive
temporal networks. In recent years, some adaptive behaviours have been imple-
mented on the activity-driven network, exploiting the flexibility of the AD model
[167–171]. The AD model indeed allows to introduce a coupling between the net-
work and the epidemic process also at the adaptive level, allowing to treat the sys-
tem analytically and numerically despite the complexity of the feedback loop and
without assumptions on the time-scales.

Some immunization strategies can be implemented on the original AD network
(see Section 1.6) [167]. Immunized nodes belong to an immunized compartment R
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and the equations for the SIS model in the activity-based mean-field approach are:

Ia(t + ∆t)− Ia(t) = −µ∆tIa(t) + λm(Na − Ia(t)− Ra)a∆t
∫︂

da′
Ia′(t)

N

+ λm(Na − Ia(t)− Ra)
∫︂

da′
Ia′(t)

N
a′∆t,

(3.19)

where Ia(t) is the number of infected individuals in class a at time t, Ra is the number
of immunized nodes with activity a and Na is the total number of nodes with activity
a, so that N =

∫︁
da′Na′ .

A random strategy (RS) immunizes a fraction p of the population with uniform
probability: in this case Ra = pNa. The epidemic threshold therefore becomes [167]:

rRS
C =

λ

µ

⃓⃓⃓⃓
C
=

1
1 − p

1
m

1
⟨a⟩+

√︁
⟨a2⟩

=
1

1 − p
rAD

C . (3.20)

The epidemic threshold of the non-adaptive case (Eq. (2.43)) is rescaled by a factor
(1− p), i.e. the fraction of nodes still available for infection. Indeed, the random im-
munization strategy effectively corresponds to rescaling the probability of infection
λ with the fraction of available nodes.

Another strategy can be that of a preferential immunization on the nodes with
high activity (TS), i.e. all nodes with a ≥ ac, thus the fraction of nodes immunized
is p =

∫︁ ∞
ac

da′ρ(a′) and Ra = θ(a − ac). An explicit form of the threshold is obtained
[167]:

rTS
C =

λ

µ

⃓⃓⃓⃓
C
=

1
m

1
⟨a⟩c +

√︁
(1 − p)⟨a2⟩c

, (3.21)

where ⟨ f (a)⟩c =
∫︁ ac

0 daρ(a) f (a), i.e. the average on activities in the absence of the
immunized nodes. In this case, not only a rescaling of the threshold is obtained,
but a drastically different behaviour of the threshold. This immunization strategy is
extremely effective, acting on the hubs, but it is based on global information of the
network properties which are typically not available in real situations, since the net-
work structure is only partially known [11, 167]. Thus, local immunization strategies
have been developed recently, based on the local sampling of the network [167].

The immunization processes not only protect directly immunized individuals,
but also can preclude the global propagation of the disease in non-immunized indi-
viduals: this is the heard immunity effect [11, 167]. It is possible to define the immu-
nization threshold pC as the critical value of p necessary to stop the contagion process:
for p ≥ pC the system will be below the threshold, for p < pC immunization re-
duces transmission but is not sufficient to block the contagion. Clearly pC depends
on the immunization strategy implemented, on the pattern of contacts, i.e. on the
ρ(a), and on the epidemiological properties of the epidemic, i.e. on R0 = r/rAD

C . For
the random strategy pC is obtained by inverting Eq. (3.20):

pRS
C = 1 − 1

m
1

⟨a⟩+
√︁
⟨a2⟩

1
r
= 1 − 1

R0
. (3.22)

On the contrary, for the targeted vaccination strategy an explicit form for pC can-
not be obtained, but it can be evaluated numerically imposing rTS

C − r = 0, i.e.
rTS

C /rAD
C = R0: a targeted strategy allows to block the diffusion by immunizing a

very small percentage of the population, acting on the most active nodes that would
behave as super-spreaders if they were not immunized [167].
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Adaptiveness can be introduced in the AD model allowing infected and suscep-
tible nodes to rescale their activity of a specific factor when infected or in case of risk
perception [168]: this is implemented by rescaling the activity a of a node of a factor
ηS if susceptible, i.e. a′ = ηSa with ηS ∈ [0, 1), and a factor ηI if infected, i.e. a′ = ηI a
with ηI ∈ [0, 1). This is completely equivalent to draw the activity a when a node
is susceptible from ρ(a) and rescale the activity in the infected state for all nodes
by a factor ηI/ηS, indeed the reduction in susceptible activity is independent of the
epidemics and thus is always active, replacing the baseline of the activity a. The
epidemic threshold can be obtained analytically with an activity-based mean-field
approach and is [168]:

rC =
λ

µ

⃓⃓⃓⃓
C
=

1
m

2
(ηS + ηI)⟨a⟩+

√︁
(ηS − ηI)2⟨a⟩2 + 4ηSηI⟨a2⟩

. (3.23)

The threshold again depends on the moments of the distribution ρ(a) and on the
rescaling ηS and ηI . If ηS = ηI = 1 the threshold of the non-adaptive case of Eq.
(2.43) is recovered, while for ηI ≪ ηS we get rC = 1/mηS⟨a⟩. In the case of a
strong reduction in the activity of the infected nodes, the threshold depends only
on the activity of the susceptible nodes and on ⟨a⟩, since only the activations of the
susceptible ones produce contagion in this regime and infected nodes can only pas-
sively receive links. In this regime the fluctuations in activity no longer matter. The
epidemic threshold is strongly increased in case of a strong reduction of activity in
infected nodes, especially in heterogeneous populations with broad ρ(a) [168].

The self-protective behaviour of healthy people can be modelled by assuming a
reduction in social activity as a function of global prevalence [168]:

ηS(t) =

{︄
η0

S(1 − I(t)/I) if I(t) ≤ I
0 if I(t) > I

(3.24)

where I(t) =
∫︁

da′ Ia′(t) is the total number of infected individuals at time t, I regu-
lates the intensity of the adaptive behaviour and η0

S regulates the baseline reduction
when I(t) = 0. Analogously the activity reduction in susceptibles can be tuned by
the global epidemic prevalence growth rate ∆I(t) = I(t)− I(t − ∆t):

ηS(t) =

⎧⎪⎨⎪⎩
η0

S if ∆I(t) ≤ 0
η0

S(1 − ∆I(t)/∆) if 0 < ∆I(t) < ∆
0 if ∆I(t) ≥ ∆

(3.25)

where ∆I(t) regulates the intensity of the adaptive behaviour. In both cases, nu-
merical simulations show an increase in the epidemic threshold and a reduction in
epidemic prevalence [168], with a more pronounced effect when the behaviour is
induced by prevalence than by the growth rate. In general, a reduction in the social
activity of infected or susceptible nodes has a strong impact on the network dynam-
ics and on the epidemic, weakening its spread.

Other models of adaptive behaviours have been implemented on the AD net-
work [171], for example considering an alert status in the compartmental model
[169] or a prevalence-based local information which trigger protective behaviours
[170]. All these examples show once again the flexibility of the AD model, which
allow to introduce the coupling of the network with the epidemic process also at the
adaptive level despite the complexity of the feedback loop.
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Chapter 4

A general formalism for adaptive
activity-driven networks

In this Chapter we describe the results of Ref. [14]: we propose a general formal-
ism for adaptive activity-driven temporal networks which can model several adaptive
behaviours observed during epidemics. Through this formalism we implement two
quarantine mechanisms, the active and the inactive quarantine, inspired by real case
studies observed during the early stages of the COVID-19 pandemic.

4.1 Epidemics on adaptive AD networks

Public interventions and adaptive behaviours described in Chapter 3 act directly on
potentially contagious social activity, reducing (e.g. protective measures) or increas-
ing it (e.g. disease-party). The modification in social activity and the effect on the
epidemic spreading strongly depend on the specific implementation of the adaptive
behaviours.

Many adaptive mechanisms can be modelled in the activity-driven network with
attractiveness (see Section 1.6.1 and Section 2.3.1), by introducing an adaptive cou-
pling between the network evolution and the epidemic spreading [14]. In the activity-
driven network with attractiveness (ADA) [71, 72], the behaviour of individuals is
completely encoded in their activity, which set the number of interactions actively
created, and in their attractivenesses, which set the number of interactions passively
received. The ADA network is well-suited for simply modelling a broad spectrum
of adaptive behaviours, since any self-induced adaptive behaviour or public con-
tainment policy can be modelled through a change in the nodes activity and attrac-
tiveness [172, 173]. For example, infected individuals can partially or totally reduce
their activity [168], due to the emergence of symptoms or due to publicly imposed
restrictions; moreover infected individuals can undergo an attractiveness reduction
as a consequence of self-protective behaviours of the rest of the population.

We consider an epidemic, described by a general compartmental epidemic model
with compartments X = {1, 2, ..., κ}, spreading on the ADA network [14]. In the
network without adaptive behaviours, each node is assigned with two parameters,
the activity a and the attractiveness b, extracted from a joint probability distribution
ρ(a, b). A general adaptive behaviour can be implemented assuming that the activ-
ity aX and the attractiveness bX of a node depend on the dynamic state of the node
X: thus, the change in the dynamic state of an individual (e.g. a change in the health
status) determines a change in the activity and attractiveness of the node, affecting
the social behaviour. In this case, each node is assigned with 2κ parameters: κ ac-
tivity and κ attractiveness parameters, where κ is the number of compartments of
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FIGURE 4.1: Schematic representation of the adaptive activity-driven network. In panel a
and panel b we represent schematically the adaptive activity-driven model, respectively for
the SIS and SIR epidemic models. The network is composed of N = 6 nodes: each of them
is coloured according to its health status and is assigned with activity and attractiveness.

the epidemic model. These parameters are extracted from a general joint probabil-
ity distribution ρ(a1, b1, a2, b2, ..., aκ, bκ): this distribution encodes all the correlations
between activity and attractiveness in the same compartment (aX, bX) and all the
cross-correlations between the behaviours of a node in different compartments. See
Figure 4.1 for a schematic representation of the adaptive model for the SIS and SIR
epidemic models.

4.1.1 The model: active vs inactive implementation

We consider here the SIS epidemic model, with λ probability of infection per ef-
fective link and µ recovery rate. In the proposed adaptive activity-driven network
each node is assigned with four parameters: the activity and attractiveness in the
susceptible (aS, bS) and in the infected state (aI , bI) (see Figure 4.1). These four pa-
rameters are drawn from the joint distribution ρ(aS, aI , bS, bI). Hereafter, we define
f (t) =

∫︁
daSdaIdbSdbIρ(aS, aI , bS, bI) faS,aI ,bS,bI (t).

The network is composed of N nodes initially disconnected and evolves anal-
ogously to the ADA model. Each node i is characterized by an independent Pois-
sonian activation process: the activation rate is ai

X, where X is the compartment to
which the node belongs. When a node is active generates m links with m randomly-
selected nodes (we fix m = 1 for simplicity): the probability of contacting a node
depends on its attractiveness bX, in particular pbX = bX/α where X = S, I and α
is the normalization factor. All interactions are instantaneous, thus the links are re-
moved and the procedure is iterated.

In Section 2.3.1 we show that the epidemic is strongly coupled to the dynam-
ics of the ADA network, especially to the average activity and attractiveness of the
nodes and their correlations. In this adaptive model the overall network dynam-
ics is also strongly coupled to the epidemic, since the nodes activity and attrac-
tiveness depend on their health status and therefore on the spread of the epidemic.
For example, the average activity ⟨a(t)⟩ = ∑N

i ai
X/N and the average attractiveness

⟨b(t)⟩ = ∑N
i bi

X/N evolve over time, because of the change in the activity and attrac-
tiveness induced by infections and recoveries (i.e. transitions). The two dynamics
coevolve over time, since the change in activity and attractiveness of a node impact
both on the interaction dynamics of the node itself and on the overall dynamics of
the network, i.e. on the interaction dynamics of the other nodes.
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Active mechanism Inactive mechanism

Active node

Susceptible node

Infected node

Quarantining node

FIGURE 4.2: Schematic representation of the active and inactive quarantine. We represent
schematically the active and inactive quarantine, as a paradigmatic example of the active
and inactive implementations of adaptive behaviours. We consider a network of N = 6
nodes, in which there are two active nodes that generate two links with a quarantined node
(aI , bI) = (0, 0): in the active case, the links are redirected to other non-quarantining nodes
(a, b) ̸= (0, 0) which can be susceptible or infected; in the inactive case the links are simply
removed, thus the active nodes have no effective links.

The change in activity induces a higher or lower activation rate for the affected
node: this impacts on the average activity of the population. All the other nodes
are affected in the same way, changing the number of links received by a factor
proportional to their attractiveness. However, it does not change the probability for
the other nodes to be contacted pbX = bX/α.

The change in attractiveness induces a higher or lower attraction of active links
for the affected node: this impacts on the average attractiveness of the population.
The population need to compensate this effect, adapting the probability for the other
nodes to receive links, in order to counteract the increase or decrease in the proba-
bility for the affected node to attract links, eventually redirecting or adjusting the
population activity. Thus, it can also impact on the probability that the other nodes
are contacted pbX = bX/α.

If the attractiveness is reduced, part of the population activity initially directed
to the node is no longer attracted by it. The population can compensate this change
in two ways:

• Active implementation, assuming that an active node connects securely to an-
other node. The population compensate the change in the attractiveness of
the node, readdressing the activity originally attracted by the affected node to-
wards the other nodes, proportionally to their attractiveness. This corresponds
to an effective rewiring of the links originally directed to the node (see Figure
4.2) and it is formally implemented by setting the normalization factor α as the
average attractiveness at time t:

α(t) = ⟨b(t)⟩, (4.1)
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so that the probability for an active node to contact another node is 1. The
normalization factor evolves over time due to the temporal evolution of the
average attractiveness ⟨b(t)⟩, induced by the epidemic spreading and by the
adaptive behaviours. The probability of contacting a node pbX (t) = bX/⟨b(t)⟩
also evolves over time t due to the evolution of ⟨b(t)⟩. This implementation
is defined active, as the population compensates the reduction in attractiveness
by rewiring the links, thus preserving the population activity level: indeed, the
average activity is not changed since active nodes always create links.

• Inactive implementation, assuming that an active node may also not connect
to any node due to the reduction in the average population attractiveness. The
population does not compensate the change in the attractiveness of the affected
node, but provides a non-zero probability that an active node does not produce
a link. The activity originally attracted by the affected node produces ineffec-
tive and inactive links (see Figure 4.2) and this is formally implemented by
setting the normalization factor α as the average attractiveness with all suscep-
tible nodes:

α = bS, (4.2)

The normalization factor is constant, therefore the probability of contacting a
node pbX = bX/bS is constant over time t and is not affected by the adaptive
behaviour of the other nodes. Moreover, the probability for an active node to
not form a link is:

Q =
bS − ⟨b(t)⟩

bS
. (4.3)

This implementation is defined inactive, as the population does not compen-
sate the reduction in attractiveness: this produces a reduction and deteriora-
tion in the population activity since part of the activations result in inactive
and ineffective links. Thus, not only the node changing attractiveness suffer a
reduction in social activity, but also the other nodes as a consequence of this
mechanism.

The two approaches are profoundly different, since the active one is based on a dy-
namic rewiring of the links, while inactive one is not: this mechanism can produce
highly non-trivial effects both on the topology and on the epidemic dynamics (see
Section 3.2.2) [156, 166]. In Figure 4.2 we schematically represent the active and in-
active implementations, describing the quarantine as a paradigmatic example.

4.1.2 Epidemic threshold and the SIS epidemic prevalence

The SIS epidemic dynamics can be described by means of an activity-attractiveness-
based mean-field approach, dividing the population into classes of nodes with the
same quadruple of parameters (aS, aI , bS, bI) and considering them statistically equiv-
alent. In this approach, the epidemic is described by the probability PaS,aI ,bS,bI (t) that
a node in the class (aS, aI , bS, bI) is infected at time t. Thus, the average activity and
attractiveness at time t are:

⟨a(t)⟩ =
∫︂

∏
X=S,I

daXdbXρ(aS, aI , bS, bI)
{︁

aS[1 − PaS,aI ,bS,bI (t)] + aI PaS,aI ,bS,bI (t)
}︁

= aS + aI P(t)− aSP(t),
(4.4)
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⟨b(t)⟩ =
∫︂

∏
X=S,I

daXdbXρ(aS, aI , bS, bI)
{︁

bS[1 − PaS,aI ,bS,bI (t)] + bI PaS,aI ,bS,bI (t)
}︁

= bS + bI P(t)− bSP(t).
(4.5)

The probability PaS,aI ,bS,bI (t) evolves according to the following equation, which takes
into account the network dynamics, the epidemic spreading and the adaptive be-
haviours:

∂tPaS,aI ,bS,bI (t) =− µPaS,aI ,bS,bI (t)

+ λ(1 − PaS,aI ,bS,bI (t))aS

∫︂
∏

X=S,I
da′Xdb′Xρ(a′S, a′I , b′S, b′I)

b′I
α

Pa′S,a′I ,b
′
S,b′I

(t)

+ λ(1 − PaS,aI ,bS,bI (t))
bS

α

∫︂
∏

X=S,I
da′Xdb′Xρ(a′S, a′I , b′S, b′I)a′I Pa′S,a′I ,b

′
S,b′I

(t).

(4.6)
The first term on the right-hand side is the recovery term; the second term corre-
sponds to the infection process in which a susceptible node of class (aS, aI , bS, bI) is
activated creating a link with an infected node, who attracts the link and can belong
to any class (i.e. the term is averaged on the class (a′S, a′I , b′S, b′I) of the infected node);
the third term corresponds to the infection process in which an infected node of any
class is activated and create a link with a susceptible node in class (aS, aI , bS, bI) who
attracts the link. Thus in the notation reported above:

∂tPaS,aI ,bS,bI (t) = −µPaS,aI ,bS,bI (t) + λ(1 − PaS,aI ,bS,bI (t))
aSbI P(t) + bSaI P(t)

α
. (4.7)

This equation holds for both the active and the inactive implementations and is valid
for arbitrary distribution ρ(aS, aI , bS, bI), i.e. for arbitrary adaptive behaviour.

Let us now consider the active implementation α = ⟨b(t)⟩ = bS + bI P(t) −
bSP(t), the Eq. (4.7) becomes:

∂tPaS,aI ,bS,bI (t) = −µPaS,aI ,bS,bI (t) + λ(1 − PaS,aI ,bS,bI (t))
aSbI P(t) + bSaI P(t)
bS + bI P(t)− bSP(t)

. (4.8)

The evolution of the average probability that a node is infected P(t) can be obtained
by multiplying both members of Eq. (4.8) for ρ(aS, aI , bS, bI) and integrating on
classes (aS, aI , bS, bI):

∂tP(t) = −µP(t) + λ
[aS − aSP(t)]bI P(t) + [bS − bSP(t)]aI P(t)

bS + bI P(t)− bSP(t)
. (4.9)

Similarly we obtain the temporal evolution of aI P(t) and of bI P(t), by multiplying
both sides of Eq. (4.8) for aIρ(aS, aI , bS, bI) and for bIρ(aS, aI , bS, bI) respectively and
then integrating on the classes (aS, aI , bS, bI):

∂taI P(t) = −µaI P(t) + λ
[aI aS − aI aSP(t)]bI P(t) + [aIbS − aIbSP(t)]aI P(t)

bS + bI P(t)− bSP(t)
, (4.10)

∂tbI P(t) = −µbI P(t) + λ

[︂
bI aS − bI aSP(t)

]︂
bI P(t) +

[︂
bIbS − bIbSP(t)

]︂
aI P(t)

bS + bI P(t)− bSP(t)
.

(4.11)
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Thus, Eqs. (4.9)-(4.11) constitute a complete set of three coupled non-linear differ-
ential equations that admits the absorbing state (P(t), aI P(t), bI P(t)) = (0, 0, 0) as a
solution: this state corresponds to a fully susceptible population. We can obtain the
epidemic threshold by analyzing the stability of this absorbing state; we linearize
the Eqs. (4.9)-(4.11) around the absorbing state obtaining:

∂tP(t) = −µP(t) +
λ

bS

(︂
aS bI P(t) + bS aI P(t)

)︂
, (4.12)

∂taI P(t) = −µaI P(t) +
λ

bS

(︂
aI aS bI P(t) + aIbS aI P(t)

)︂
, (4.13)

∂tbI P(t) = −µbI P(t) +
λ

bS

(︂
bI aS bI P(t) + bIbS aI P(t)

)︂
, (4.14)

which is a set of three coupled linear differential equations.
We proceed in the same way for the inactive implementation α = bS. The equa-

tion for the temporal evolution of PaS,aI ,bS,bI (t) is:

∂tPaS,aI ,bS,bI (t) = −µPaS,aI ,bS,bI (t) + λ(1 − PaS,aI ,bS,bI (t))
aSbI P(t) + bSaI P(t)

bS
. (4.15)

Therefore the equations for P(t), aI P(t) and bI P(t) become:

∂tP(t) = −µP(t) +
λ

bS

[︂
(aS − aSP(t))bI P(t) + (bS − bSP(t))aI P(t)

]︂
, (4.16)

∂taI P(t) = −µaI P(t) +
λ

bS

[︂
(aI aS − aI aSP(t))bI P(t) + (aIbS − aIbSP(t))aI P(t)

]︂
,

(4.17)

∂tbI P(t) = −µbI P(t) +
λ

bS

[︂(︂
bI aS − bI aSP(t)

)︂
bI P(t) +

(︂
bIbS − bIbSP(t)

)︂
aI P(t)

]︂
.

(4.18)
Thus, Eqs. (4.16)-(4.18) constitute a complete set of three coupled non-linear differ-
ential equations that admit the absorbing state (P(t), aI P(t), bI P(t)) = (0, 0, 0) as a
solution. We linearize them around the absorbing state and we get:

∂tP(t) = −µP(t) +
λ

bS

(︂
aS bI P(t) + bS aI P(t)

)︂
, (4.19)

∂taI P(t) = −µaI P(t) +
λ

bS

(︂
aI aS bI P(t) + aIbS aI P(t)

)︂
, (4.20)

∂tbI P(t) = −µbI P(t) +
λ

bS

(︂
bI aS bI P(t) + bIbS aI P(t)

)︂
. (4.21)

The active and inactive implementation of adaptive behaviours produce the same
set of linearized equations for epidemic evolution (compare the Eqs. (4.12)-(4.14)
and Eqs. (4.19)-(4.21)). Indeed, the parameter α expanded around the critical point
r = λ/µ ∼ rC, i.e. for PaS,aI ,bS,bI (t) ≃ 0, is the same for the two approaches since
⟨b(t)⟩ ∼ bS, thus the epidemic dynamics in the active and inactive implementation
show the same behaviour in the linearized regime. The two implementations admit
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the same Jacobian matrix:

J =

⎡⎢⎢⎣
−µ λ λ aS

bS

0 −µ + λ aI bS
bS

λ aI aS
bS

0 λ bI bS
bS

−µ + λ aSbI
bS

⎤⎥⎥⎦ (4.22)

The eigenvalues of J are:

ξ1 = −µ, , ξ2,3 =
1

2bS

[︃
−2µbS + λ(aSbI + aIbS)± λ

√︂
(aSbI − aIbS)2 + 4aSaI bSbI

]︃
.

(4.23)
The conditions for the stability of the absorbing state are obtained by imposing
ξmax < 0. Therefore, the epidemic threshold is:

rC =
λ

µ

⃓⃓⃓⃓
C
=

2bS

aSbI + aIbS +
√︂
(aSbI − aIbS)2 + 4aSaI bSbI

. (4.24)

The epidemic threshold is the same for both the active and the inactive implementa-
tion of the adaptive behaviours and is exact, indeed the model is exactly mean-field
since we do not consider memory effects and the local correlations are destroyed at
each time-step through link reshuffling. Moreover, the threshold is valid for arbi-
trary distribution ρ(aS, aI , bS, bI), i.e. for arbitrary adaptive behaviour.

The epidemic threshold depends on all the cross-correlations between activity
and attractiveness in the susceptible and infected state: this suggests that a crucial
role in the spread of the epidemic is played by the way nodes behave when infected,
considering how they behave when susceptible, thus on behavioural correlations.

Positive behavioural correlations reduce the epidemic threshold, i.e. the spread
of the pathogen is favoured by the presence of nodes that keep their activity and/or
attractiveness high when they are infected, acting as temporal hubs for connec-
tions and thus as super-spreaders for the epidemic. Indeed, very active/attractive
susceptible nodes have a high probability of being infected: if they are very ac-
tive/attractive also when infected they spread the infection through the network
very easily (super-spreaders). Furthermore, these nodes are characterized by con-
tinuous waves of reinfection and recovery, actively driving the epidemic.

The joint distribution ρ(aS, aI , bS, bI) plays a key role in the model, since it de-
fines the overall dynamics of the network, its topology and the specific adaptive
behaviour implemented. Moreover, ρ(aS, aI , bS, bI) encodes all the cross-correlations
between the variables (aS, aI , bS, bI), which shape the epidemic spreading as pointed
out by the epidemic threshold (Eq. (4.24)). The correlations can be made explicit in
the distribution ρ(aS, aI , bS, bI) = ρS(aS, bS)ρI|S(aI , bI |aS, bS), where ρS(aS, bS) is the
probability for a node to have (aS, bS) and where ρI|S(aI , bI |aS, bS) is the conditional
probability for a node with (aS, bS) to have (aI , bI). The ρS(aS, bS) has already been
extensively discussed in Section 1.6.1 and Section 2.3.1 showing significant positive
correlations between activity and attractiveness in real systems, as well as strong
heterogeneity in both variables. The conditional distribution ρI|S(aI , bI |aS, bS) fixes
the adaptive behaviour and all the behavioural correlations.

A large set of adaptive behaviours can be modelled through the joint distribu-
tion ρ(aS, aI , bS, bI), both mild (such as sick-leave and mild distancing) and strong
interventions (such as quarantine and lockdown). For example:

• Non-adaptive case with attractiveness (NAdwA) [13, 72]
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ρ(aS, aI , bS, bI) = ρS(aS, bS)δ(aI − aS)δ(bI − bS)
In this case no adaptive behaviours are implemented, i.e. aI = aS and bI = bS
for all nodes (δ(x) is the Dirac delta function). Thus, Eq. (4.24) is reduced
to the epidemic threshold for the activity-driven network with attractiveness

rNAdwA
C = bS/(aSbS +

√︂
a2

S · b2
S) (see Eq. (2.53)). If we assume a linear correla-

tion between bS and aS, i.e. bS = caS as observed in real systems [72, 76] with c
arbitrary constant:

rNAdwA
C =

aS

2a2
S

. (4.25)

While if we assume ρS(aS, bS) = ρS(aS)δ(bS − 1), i.e. bS = 1 for all nodes,
Eq. (4.24) reduces to the epidemic threshold of the AD network rAD

C = (aS +√︂
a2

S)
−1 (see Eq. (2.43)).

• Social or physical distancing [140, 172–174]
ρ(aS, aI , bS, bI) = ρS(aS, bS)[ f δ(aI − ηaS)δ(bI − ξbS) + (1 − f )δ(aI − aS)δ(bI − bS)]

This behaviour requires an infected node to reduce its social activity aI = ηaS,
with η ∈ [0, 1), and its attractiveness bI = ξbS, with ξ ∈ [0, 1). This reduction
is due to distancing measures, which produces a reduction in the number of
potentially contagious contacts, or to self-initiated practices in the population
(e.g. sick-leave) for the appearance of symptoms and self-protection. The pa-
rameters η and ξ define the intensity of the distancing and the parameter f the
level of adhesion in the population. For example, for f = 1, η = ηI/ηS, ξ = 1
and bS = 1 the model of Ref. [168] is recovered as a specific case, obtaining the
threshold of Eq. (3.23).

• Quarantine [140, 174, 175]
ρ(aS, aI , bS, bI) = ρS(aS, bS)[δ · δ(aI)δ(bI) + (1 − δ)δ(aI − aS)δ(bI − bS)]
This behaviour can be self-initiated by the population or imposed by public
interventions, and requires an infected node to be completely isolated aI = 0
and bI = 0. The parameter δ defines the level of adherence in the population.

• Disease-party [150–155]
ρ(aS, aI , bS, bI) = ρS(aS, bS)[ f δ(aI − ηaS)δ(bI − ξbS) + (1 − f )δ(aI − aS)δ(bI − bS)]

This behaviour is self-initiated by the population and requires an infected node
to increase its activity aI = ηaS, with η ∈ (1, ∞), and attractiveness bI = ξbS,
with ξ ∈ (1, ∞), by participating in events such as disease-party. In such events
susceptible individuals voluntarily expose themselves to infection, increasing
the attractiveness of infected nodes, and infected individuals increase their ac-
tivity to promote infection. The parameter f defines the level of adherence.

The model allows also to implement specific levels of adhesion for the different
classes (aS, bS) and thus targeted measures on specific classes. Moreover, it can
describe many other types of behaviours with different ρI|S(aI , bI |aS, bS), such as
combined adaptive behaviours: e.g. a population that in part reduces activity and
attractiveness during infection and in part organizes disease-parties.

Adaptive behaviours can be implemented in the active or inactive way: the epi-
demic threshold is the same for the two implementations, however the epidemic
prevalence P = limt→∞ P(t) is different. We define P∞

aS,aI ,bS,bI
= limt→∞ PaS,aI ,bS,bI (t)

as the stationary asymptotic probability for a node in class (aS, aI , bS, bI) to be in-
fected, so that P =

∫︁
∏X=S,I daXdbXρ(aS, aI , bS, bI)P∞

aS,aI ,bS,bI
. The asymptotic proba-

bility can be obtained for the active case and the inactive case respectively from Eqs.
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(4.8) and (4.15), by setting ∂tP∞
aS,aI ,bS,bI

= 0. We obtain for the active case:

P∞
aS,aI ,bS,bI

=
aSbI P + bSaI P

µ
λ (bS + bI P − bSP) + aSbI P + bSaI P

, (4.26)

and for the inactive case:

P∞
aS,aI ,bS,bI

=
aSbI P + bSaI P

µ
λ bS + aSbI P + bSaI P

. (4.27)

The active phase of the epidemic depends on the specific implementation of the
behaviour: this suggests that it is not enough to investigate the effects of adaptive
mechanisms on the epidemic threshold since different implementations of adaptive
behaviours can produce the same threshold but different active phase dynamics.

Please note that P∞
aS,aI ,bS,bI

depends only on (aS, bS), i.e. on the susceptible be-
haviour of the nodes: this holds also for PaS,aI ,bS,bI (t) (see Eqs. (4.8) and (4.15)). The
probability that a node is infected depends only on its behaviour in the suscepti-
ble phase (aS, bS): indeed the probability of contagion depends on the susceptible
behaviour of the node and on the behaviour of the averaged infected population,
while the recovery process does not depend on infected behaviour of the node.

4.1.3 SIR active phase

We consider now the SIR epidemic model: in this case each node is described by six
parameters (aS, aI , aR, bS, bI , bR) drawn from the joint distribution ρSIR(aS, aI , aR, bS, bI , bR),
where (aR, bR) describe the behaviour of a recovered node (see Figure 4.1). In the
activity-attractiveness-based mean-field approach the epidemic is described by the
probabilities PaS,aI ,aR,bS,bI ,bR(t) and RaS,aI ,aR,bS,bI ,bR(t) that a node in class (aS, aI , aR, bS, bI , bR)
is respectively infected or recovered at time t. The average activity and attractive-
ness at time t are:

⟨a(t)⟩ =
∫︂

∏
X=S,I,R

daXdbXρSIR {aS[1 − P(t)− R(t)] + aI P(t) + aRR(t)}

= aS + aI P(t) + aRR(t)− aSP(t)− aSR(t),
(4.28)

⟨b(t)⟩ =
∫︂

∏
X=S,I,R

daXdbXρSIR {bS[1 − P(t)− R(t)] + bI P(t) + bRR(t)}

= bS + bI P(t) + bRR(t)− bSP(t)− bSR(t),
(4.29)

where for simplicity we do not indicate the dependence on (aS, aI , aR, bS, bI , bR) in
the integrals and we define f (t) =

∫︁
∏X=S,I,R daXdbXρSIR faS,aI ,aR,bS,bI ,bR(t). More-

over, also in this case it is possible to distinguish an active and an inactive im-
plementation of adaptive behaviours, by respectively considering α = ⟨b(t)⟩ =
bS + bI P(t) + bRR(t)− bSP(t)− bSR(t) and α = bS, as normalization factor for the
probability pX = bX/α that a link is attracted by a node with attractiveness bX.

Since the model is completely mean-field, with Markovian dynamics (i.e. there
is no memory), the epidemic threshold of the SIR model and that of the SIS model
are the same, regardless of (aR, bR) (see Chapter 2) [126, 128–130]. On the contrary,
the epidemic active phase is different for the two model, since the SIR model lacks a
stationary endemic state. In particular, it is not possible to investigate the SIR active
phase similarly to the SIS model, but it is necessary to perform numerical simula-
tions to obtain insights in the epidemic dynamics. In particular, we are interested
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in the epidemic final size R∞ = limt→∞ R(t) and in the temporal dynamics of the
epidemic P(t).

The recovered (aR, bR) behaviour does not affect the epidemic threshold, but
modifies the network topology, the network dynamics and the active phase of the
epidemic. The activations of the recovered nodes do not generate contagious links,
thus do not influence the epidemic dynamics, but their attractiveness modifies the
epidemic dynamics by intervening on the formation of contagious links. Indeed, if
the recovered nodes attract links the probability of potentially contagious links is re-
duced, since they attract part of the activity generating non-contagious links, which
otherwise would be potentially contagious.

The dynamics of the network and of the epidemic can be numerically simu-
lated by means of a Gillespie-like algorithm [85, 176]. We consider a network of
N nodes and each node is initially assigned with six parameters (aS, aI , aR, bS, bI , bR)
extracted from the joint distribution ρSIR(aS, aI , aR, bS, bI , bR). Initially the network
evolve in the absorbing state (i.e. all nodes susceptible) in which the pathogen does
not spread:

1. At time t = 0 each node i is assigned with its activation time extracted from
the distribution Ψai

S
(ti) = ai

Se−ai
Sti ;

2. The time is set at the minimum activation time t = ti: the node i with the
minimum activation time ti is activated and generates m links with m nodes
randomly selected with probability proportional to their attractiveness bj

S;

3. The new activation time ti + τ of node i is obtained by drawing the inter-event
time τ from the inter-event times distribution Ψai

S
(τ) = ai

Se−ai
Sτ;

4. All the links are destroyed and the process is iterated from point 2 up to the
relaxation time t0, in which the dynamics of the network is relaxed to equilib-
rium (i.e. no more aging effects are present).

At this point the epidemic dynamic is implemented:

1. At time t = t0 each node is assigned with an activation time ti, resulting from
the relaxation dynamics, and the system is then initialized in a configuration
of susceptible, infected and recovered.

2. The minimum activation time ti is considered. Nodes infected at time t heal at
time ti with probability

[︂
1 − e−µ(ti−t)

]︂
and change their activity and attractive-

ness (aI , bI) → (aR, bR). The time is then set at the minimum activation time
t = ti and the node i with the minimum activation time ti is activated;

3. For the active implementation of the adaptive behaviour, the active node i gen-
erates exactly m links with m randomly selected nodes, with probability pro-
portional to their attractiveness bj.

For the inactive implementation of the adaptive behaviour, each of the m links
activated by node i is inactive with probability Q = (bS − ⟨b(t)⟩)/bS. The
remaining links are created with randomly selected nodes, with probability
proportional to their attractiveness bj.

4. If the nodes involved in an active link are one susceptible and one infected, an
infection occurs with probability λ and in this case the infected node changes
its behaviour (aS, bS) → (aI , bI);
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5. The new activation time ti + τ of node i is obtained by drawing the inter-
event time τ from the inter-event times distribution Ψai

k
(τ) = ai

ke−ai
kτ, where

k = S, I, R denotes the dynamic status of node i at time ti. All links are de-
stroyed and the process is iterated from step 2 until the system reaches the
configuration without infected individuals.

4.2 Active and inactive quarantine

During the early stages of the COVID-19 pandemic, extraordinary and unprece-
dented containment measures were implemented aiming to contain the spread of
SARS-CoV-2 [20, 177–181]. These measures initially included severe mobility restric-
tions and then extended lockdowns, in order to massively reduce the social activity
of individuals, avoiding potentially contagious contacts and stopping community-
wide spreading. It is crucial to determine the effects and the relevance of these
massive isolation and quarantine measures implemented, also through simplified
models that allow to include analytically the relevant aspects of the dynamics.

Recent real case studies show that the restrictions introduced with quarantine can
be implemented in an active way, in which interactions with quarantining nodes
are effectively rewired towards non-quarantining ones [145, 182] (e.g. in the early
phases of COVID-19 in Italy during the first "red zones" or with patients admission
to hospitals), and in an inactive way, in which contacts towards quarantining nodes
are inactive and ineffective [20, 145, 183] (e.g. during the strict COVID-19 lockdowns
and strict restrictions to the mobility). Our model allows naturally to distinguish
between active and inactive quarantine (see Section 4.1.1 and Figure 4.2).

4.2.1 Effects on the epidemic threshold and the SIS epidemic prevalence

We consider the SIS epidemic model on the proposed adaptive activity-driven net-
work, in the presence of quarantine: a fraction δ of the nodes when infected perform
quarantine, setting their activity and attractiveness to zero (aI , bI) = (0, 0), while the
remaining nodes behave as if they were susceptible (aI , bI) = (aS, bS). The param-
eter δ takes into account that some nodes are unaware of the infection (e.g. asymp-
tomatic) or do not follow public prescriptions. This behaviour is described by the
joint distribution ρ(aS, aI , bS, bI) = ρS(aS)δ(bS − caS)[δ · δ(aI)δ(bI) + (1 − δ)δ(aI −
aS)δ(bI − bS)], assuming a linear correlation bS = caS, with c constant value.

Both in the presence of active and inactive quarantine, the epidemic threshold is:

rquarantine
C =

λ

µ

⃓⃓⃓⃓
C
=

1
1 − δ

aS

2a2
S

=
rNAdwA

C
1 − δ

. (4.30)

obtained by Eq. (4.24) replacing the specific distribution ρ(aS, aI , bS, bI). The epi-
demic threshold is increased by the quarantine, compared to the non-adaptive case
rNAdwA

C , by a factor (1 − δ)−1 which is extremely relevant for δ ∼ 1.
Similarly, substituting the specific ρ(aS, aI , bS, bI) in Eqs. (4.26) and (4.27) it is

possible to obtain the stationary asymptotic probability P∞
aS,aI ,bS,bI

(t) that a node in
class (aS, aI , bS, bI) is infected at time t. In the active case we obtain:

P∞
aS,aI ,bS,bI

=
2aSaSP

µ
λ

(︂
aS−aSP

1−δ + aSP
)︂
+ 2aSaSP

, (4.31)
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FIGURE 4.3: Effects of quarantine on the SIS epidemic prevalence. In panel a the ra-

tio P/PNAdwA between epidemic prevalence in the presence of quarantine and in the non-
adaptive case (NAdwA), is plotted as a function of δ for both the active and the inactive case,
with fixed r/rNAdwA

C = [3, 12]. In panel b we plotted the epidemic prevalence P as a function
of the control parameter r/rNAdwA

C , in the non-adaptive case (NAdwA) and in the presence
of quarantine (both in the active and inactive case), fixing δ = [0.2, 0.9]. In panel c the ratio
PACT/PINACT , between epidemic prevalence for active and inactive quarantine, is plotted
as a function of r/rC (where rC is the epidemic threshold in the adaptive case) for different
values of δ. In all panels ρS(aS) ∼ a−(ν+1)

S , ν = 0.5 and a ∈ [10−3, 1]. Reproduced from [14].

while in the inactive case it is obtained;

P∞
aS,aI ,bS,bI

=
2aSaSP

µ
λ

aS
1−δ + 2aSaSP

. (4.32)

Eqs. (4.31) and (4.32) can be solved self-consistently after fixing the ρS(aS), thus ob-
taining the epidemic prevalence P by averaging P∞

aS,aI ,bS,bI
on the activity-attractiveness

classes. Many real systems of human interactions feature a heterogeneous distribu-
tion of activity (and attractiveness), typically power-law ρ(aS) ∼ a−(ν+1)

S with ex-
ponent ν ∼ 0.3 − 1.5 (see Section 1.6 and Section 1.6.1) [13]: hereafter we consider
ρS(aS) ∼ a−(ν+1)

S , with ν = 0.5 and aS ∈ [am, aM], lower and upper cut-off.
Both active and inactive quarantine produce a significant reduction in the epi-

demic prevalence, i.e. in the endemicity of the epidemic, weakening the epidemic
and its transmission. This is shown in Figure 4.3 a, where we plot the ratio between
epidemic prevalence in the presence of quarantine P and in the absence of adaptive
measures PNAdwA (i.e. for δ = 0) as a function of δ and for fixed r = λ/µ. The reduc-
tion is significant (at least by a factor of 2) for δ ≳ 0.5: by increasing δ the epidemic
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prevalence is reduced until it vanishes for δ ≥ δC, where δC = 1 − rNAdwA
C /r is the

critical value of δ above which the system is moved under the threshold for the spe-
cific r fixed, i.e. producing R = 1 for the specific R0 = r/rNAdwA

C fixed since rNAdwA
C

is fixed by ρS(aS) (see Eq. (4.25)). This is also shown in the phase diagram of Figure
4.3 b where the epidemic prevalence P (order parameter) is plotted as a function
of r/rNADdwA

C (control parameter) for δ = 0.2 and for δ = 0.9: quarantine reduces
the epidemic prevalence for δ sufficiently high, while for small δ the differences are
quite small.

Figure 4.3 a-b shows that the epidemic threshold for the active and inactive quar-
antine is the same, while the epidemic prevalence of the inactive case is much lower
than that of the active case, for the same r/rNAdwA

C and δ. To obtain the same effect
on epidemic prevalence with active quarantine, for fixed r/rNADdwA

C , it is necessary
to significantly increase δ, i.e. the intensity of the measure. This is summarized in
Figure 4.3 c, where the ratio between epidemic prevalence in the active and inac-
tive case PACT/PINACT is plotted as a function of r/rC: the ratio is always larger
than 1, suggesting the higher effectiveness of the inactive approach. Furthermore,
the difference between the two approaches is maximized for r/rC ∼ 5 − 10 and is
increased by incrementing δ. Under realistic conditions of strong quarantine mea-
sures, i.e. δ ∼ 1, we expect interventions to move the system under or close to the
critical point, i.e. r/rC ∼ 1: even in that regime the differences are significant, with
PACT being about twice PINACT.

This difference is due to the basic mechanisms of the two types of quarantine
(see Figure 4.2). In the inactive quarantine the links directed towards quarantined
nodes are ineffective and therefore cannot transmit the contagion; in the active quar-
antine the effective link rewiring produces potentially contagious links and a cluster
of highly connected non-quarantining nodes. Furthermore the rewiring takes place
preferentially towards the nodes with high attractiveness, which have a high prob-
ability of being infected and a high spreading capacity. Thus, the rewiring mecha-
nism maintain high the activity level of non-quarantining node but also favour the
epidemic spreading compared to the inactive case, producing potentially contagious
links which are absent in the inactive implementation with an activity reduction.

4.2.2 Effects on the SIR active phase: the role of interventions timing

We now consider the SIR model, assuming that a recovered individual behaves as
susceptible (aR, bR) = (aS, bS), and we implement the quarantine with the joint dis-
tribution ρSIR(aS, aI , aR, bS, bI , bR) = ρS(aS)δ(bS − caS)δ(aR − aS)δ(bR − bS)[δ · δ(aI)δ(bI)+
(1− δ)δ(aI − aS)δ(bI − bS)]. As discussed in Section 4.1.3, the epidemic threshold for
the SIR epidemic model is the same of the SIS model of Eq. (4.30), while the SIR epi-
demic active phase can be investigated by means of numerical simulations.

We performed numerical simulations on a network of N nodes, following the
algorithm presented in Section 4.1.3: the initial conditions are imposed by infecting
the node with highest aI [184] and the quarantine measures are immediately imple-
mented. We considered δ = 0.7 − 1 in accordance with the extended and massive
quarantine measures implemented during the early stages of COVID-19 spreading
[20, 177–181]; moreover we assume that r/rC ∼ 1, i.e. that the measures imple-
mented are strong enough to move the system near the critical point.

Both active and inactive quarantine significantly reduce the epidemic final size
R∞ compared to the case without interventions: this is shown in Figure 4.4 a where
R∞ is plotted as a function of r/rC. Furthermore, they also impact on the temporal
dynamics of the epidemic: in Figure 4.4 b we show the temporal evolution of the
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FIGURE 4.4: Effects of quarantine on the SIR epidemic final size and temporal dynamics.
In panel a the epidemic final size R∞ for the non-adaptive case (NAdwA) and for both the
active and inactive quarantine is plotted as a function of r/rC (where rC is the epidemic
threshold in the adaptive case). In panel b we plotted the temporal dynamics of the average
probability P(t) for a node to be infected for the non-adaptive case (NAdwA) and in the
presence of active and inactive quarantine, by fixing r/rC = 1.4. In all panels δ = 0.9,
N = 103, ρS(aS) ∼ a−(ν+1)

S , ν = 0.5 and a ∈ [10−3, 1]; moreover, each point or curve is
obtained by averaging over several realizations of the temporal dynamics and of the disorder
so that the error on R∞ is lower than 1%. Reproduced from [14].

average probability for a node to be infected P(t) for fixed r/rC and δ. The infection
curve is considerably flattened by the quarantine: the infection peak is considerably
reduced and slightly anticipated, compared to the non-adaptive case, moreover the
duration of the epidemic, i.e. the width of the peak, is also reduced. This suggests
that the implemented quarantine is a strong control measures since the curve decay
is anticipated: the quarantine reduces the propagation of the pathogen by immedi-
ately blocking the spread of the epidemic.

Also in the SIR model the inactive quarantine is more effective than the active
one in limiting the effects of the epidemic. This is shown in Figure 4.4: the active
quarantine produce an epidemic final size and an infection peak about 10%-20%
larger than the inactive ones, in the r/rC ∼ 1 significant regime. However the dif-
ferences are smaller when compared with the SIS model. Indeed, in the SIS model
the recovered nodes are again susceptible and the rewiring favours the formation of
potentially contagious SI links between non-quarantining nodes; in the SIR model
the recovered nodes are immunized, thus the rewiring redirects links also towards
them but these links are not contagious. The danger of the rewiring is mitigated by
the attractiveness of recovered nodes, making the two implementations more simi-
lar.
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FIGURE 4.5: Effects of timing in quarantine measures on the SIR epidemic final size. In
panel a we plot the epidemic final size R∞ as a function of the fraction β of nodes been
infected before the implementation of the quarantine, both in the active and inactive case for
fixed δ = 0.9. The dashed line indicates the value of R∞ for the non-adaptive case (NAdwA).
In the inset the ratio RACT

∞ /RINACT
∞ between the epidemic final size in the case of active and

inactive quarantine is plotted as a function of β for different values of δ. Both in the main and
in the inset r/rC = 1.4 (where rC is the epidemic threshold in the adaptive case), N = 103,
ρS(aS) ∼ a−(ν+1)

S , ν = 0.5 and a ∈ [10−3, 1]; moreover, each point or curve is obtained by
averaging over several realizations of the temporal dynamics and of the disorder so that the
error on R∞ is lower than 1%. Reproduced from [14].

However, containment measures are often implemented only after a fraction β of
the population has been infected, due to delays in detection of the epidemic and due
to specific threshold effects that activate the epidemic control [145, 181, 185, 186]:
thus it is crucial to understand the role of interventions timing. This is relevant for
the SIR epidemic model, whose dynamics strongly depends on the initial conditions,
unlike the SIS model. We consider numerical simulations in which the system ini-
tially evolves in the non-adaptive configuration until a fraction β of the population
has been infected, then the quarantine measures are applied and are kept active until
the end of the epidemic.

The results of the simulations show the importance of a timely adoption of mea-
sures in the early stages of the outbreak. We show in Figure 4.5 that for both active
and inactive quarantine the epidemic final size R∞ grows strongly with β: this sug-
gests that a delay in the intervention allows the pathogen to infect a significantly
higher number of individuals. Furthermore, the delay also has a strong impact on
the temporal dynamics of the epidemic as shown in Figure 4.6: increasing the delay
β both quarantine implementations become less effective in flattening the epidemic
curve, indeed the infection peak Pmax is higher and also the duration of the epidemic
is increased, with potential problems for the health system since the incidence is
higher both at long at short times (see Figure 4.6 a-b and Figure 4.4 b).
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FIGURE 4.6: Effects of timing in quarantine measures on the SIR temporal dynamics. In
panel a and b the temporal evolution of the average probability P(t) for a node to be infected
is plotted, for the non-adaptive case (NAdwA) and for active and inactive quarantine, by fix-
ing δ = 0.9 and β = 0.0025 in panel a and β = 0.02 in panel b. In panel c we plot the ratio
PACT

max /PINACT
max between the height of the infection peak in the active and inactive quarantine

as a function of the fraction β of individuals been infected before the quarantine measures
were implemented, for different δ. In all panels r/rC = 1.4 (where rC is the epidemic thresh-
old in the adaptive case), N = 103, ρS(aS) ∼ a−(ν+1)

S , ν = 0.5 and a ∈ [10−3, 1]; moreover,
each point or curve is obtained by averaging over several realizations of the temporal dy-
namics and of the disorder so that the error on R∞ is lower than 1%. Reproduced from [14].

In the presence of a delay β in the adoption of quarantine, the differences be-
tween the active and inactive quarantine are considerably amplified: in the inactive
case RINACT

∞ (β) ∼ RINACT
∞ (β = 0) + β grows with β approximately linearly, while

in the active case RACT
∞ grows much faster with β widening the differences with

the inactive quarantine. This is shown in the inset of Figure 4.5 where the ratio
RACT

∞ /RINACT
∞ is plotted as a function of β for fixed r/rC: the difference is about

10% if the quarantine is immediately active β = 0, while it grows considerably up
to RACT

∞ /RINACT
∞ ∼ 2.5 when the measures are activated after 2% of the population

has been infected. Similarly, the differences on the temporal dynamics are amplified
with β: if the quarantine measures are applied immediately the infection peak in
the active case is approximately 10% higher than the inactive one, while if measures
are adopted after 0.25%-4% of the population has been infected, the peak height in
the active case is twice that of the inactive quarantine. This is shown in Figure 4.6 c
where the ratio PACT

max /PINACT
max between the height of the infection peak in the active

and inactive case is plotted as a function of β for r/rC and δ fixed.
In the presence of delays the measures are implemented when many infected in-

dividuals are already present in the population: the inactive quarantine is therefore
much more effective than the active one, since the dynamic rewiring has an increased
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probability of producing contagious links, thus amplifying the differences between
the two implementations. The differences, however, feature a non-monotonous trend
with the delay β, as shown in the inset of Figure 4.5 and in Figure 4.6 c: indeed for
very high β the measures are implemented very late, when the system is already at
the peak of infection of the non-adaptive case (or close to it), therefore both quar-
antine strategies are very ineffective since the epidemic has already reached the de-
scending phase.

These results suggest that the timing in the implementation of control measures
is crucial for the good success of the containment [185, 186]: if the quarantine is
implemented immediately a reduction of 75%-85% of the infection peak and of the
epidemic final size can be achieved (depending on δ). Any delay in adoption signifi-
cantly reduces the effectiveness of both strategies, but also amplifies the differences,
reducing the effectiveness of the active strategy more markedly than the inactive
one. If the control measures are not immediately implemented, it is necessary to
adopt a more stringent inactive quarantine to produce significant effects on the epi-
demic spread, thus also affecting the activity of the rest of the population and in
particular of susceptible and non-quarantining nodes. If the measures are imple-
mented immediately, the differences are small between the two strategies, so it is
also possible to obtain effective containment also through active quarantine, which
guarantees susceptible and non-quarantining nodes to maintain their level of activ-
ity. This is crucial when a cost-benefit analysis is performed before the implementa-
tion of any control strategy.

We developed a general model of adaptive activity-driven network coupled to
an epidemic, keeping track of the true dynamics of the two processes and mod-
elling a wide spectrum of adaptive behaviours [14]. We show the crucial role of
adaptive behaviours and their implementation (active vs. inactive) on the epidemic
spreading, through a full characterization of the spreading process. In particular,
our model points out the key role of the correlations between the susceptible and
infected behaviour and the crucial role of super-spreaders in the spread of the epi-
demic. Moreover, in the framework of the control measures implemented in the
early-stages of the COVID-19 pandemic [20, 145, 177–183], we model active and in-
active quarantine through the proposed model, showing that the inactive quarantine
is much more effective than the active one in reducing the impact of the epidemic,
due to the dynamic rewiring mechanism. The differences are amplified by delays in
interventions adoption, showing the key role of interventions timing.
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Chapter 5

Manual and digital contact tracing

In this Chapter we describe the results of Ref. [28]: we present contact tracing (CT)
as a control measure and, within the adaptive activity-driven framework, we im-
plement the manual tracing (interview-based) and the digital tracing (app-based) pro-
tocols. We compare their effectiveness in reducing the impact of an epidemic tai-
lored to describe SARS-CoV-2, in the presence of heterogeneity in the individuals
behaviour, i.e. of superspreaders. We implement a hybrid tracing protocol, suggesting
directions for the integration of the two tracing mechanisms.

5.1 Contact tracing (CT)

The COVID-19 pandemic had an unprecedented impact on everyday life globally.
Controlling and containing the spread of SARS-CoV-2 become a constant goal to
safeguard public health, keeping low the hospital occupancy, avoiding costs in terms
of direct and indirect deaths, long-term health problems and the socio-economic con-
sequences of sustained transmission of the pathogen [18, 190]. In the early stages
of the epidemic massive measures were undertaken in many states, based on strong
limitations to mobility, the closure of not strictly necessary activities and generalized
lockdowns [20, 174, 177–181]. These measures, as discussed in Chapters 3-4, were
extremely effective in stopping the transmission of SARS-CoV-2 by easing hospital
pressure and the number of correlated deaths [15, 181, 191] but at the cost of strong
socio-economic repercussions, making these measures difficult to be replicated in
the same intensity [17, 18, 192]. With the improvement of the epidemiological situ-
ation, the restrictive measures have been progressively relaxed through exit strate-
gies based on new non-pharmaceutical control tools that allow to keep the spread of
SARS-CoV-2 under control and the population active [16, 143, 174, 193, 194]. These
exit strategies are based on the integration of measures on the individual and envi-
ronmental level (such as the use of protective equipment, e.g. face masks, reinforced
hygiene and physical distancing) and active surveillance to break the chains of in-
fection. The active surveillance is based on the periodic testing of individuals at
risk, the isolation of infected individuals (symptomatic or identified with testing),
the tracing of the contacts of infected individuals (index cases), their testing and iso-
lation. The contact tracing plays an essential role in the control of COVID-19 due
to the high fraction of presymptomatic and asymptomatic transmissions observed
from the early stages of the pandemic [20, 24, 187, 195–197].

Contact tracing, unlike generalized restrictions such as lockdown, act locally in a
targeted way. The tracing is activated starting from an infected individual, identified
through a diagnostic test: the infected individual becomes index case and all their
potentially contagious contacts are identified (traced), tested and isolated or quar-
antined [21, 188, 198–202]. This procedure allows to identify individuals infected by
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Disease Type R0 θ
SARS 1-7 0-11%

Smallpox 4-10 0-20%
HIV 2-5 80-100%

Pandemic flu 1.5-3.5 30-50%
COVID-19 2.5-3.5 35-65%

FIGURE 5.1 & TABLE 5.1: Contact tracing (CT). In panel a a schematic representation of
contact tracing is shown. Panels b-c schematically show the basic mechanisms of manual
and digital CT. In app-based CT a score parameter classifies the risk for contacts according to
the contact duration and distance, measured in terms of Bluetooth signal intensity reduction
(see panel d). Panel e shows the complete tracing procedure, up to notification. In the table
we report the estimated ranges for R0 and θ of some infectious diseases [21, 99, 187]. Panels
a,b,c and e are adapted from [188], while panel d is adapted from [189], both under CC BY
4.0 license.

the index case (forward CT - see Chapter 6) or the source of infection for the index
case (backward CT - see Chapter 6) [188, 202], even if presymptomatic or asymp-
tomatic. The transmission chains are broken, reducing the spread of the epidemic,
without excessively deteriorating the activity of the population.

The contact tracing effectiveness depend on many technical aspects of the CT
implementation [198, 199]: the tracing protocol, that is the specific mechanism for re-
constructing the contacts (e.g. traditional manual tracing (interview-based) or dig-
ital tracing (app-based)); the definition of epidemiologically relevant contacts, which de-
pends on the type of infectious disease considered and is based on the proximity,
on the duration and frequency of a contact; the tracing capacity, which depends on
the probability to activate CT for the index case, the capacity to trace all the poten-
tially contagious contacts and the probability for the contacts to adhere to tracing
and isolation; the timing in tracing and isolation.

Moreover, the efficacy of contact tracing depends on the specific epidemiologi-
cal properties of the infectious disease [21], encoded in two parameters: the fraction
of presymptomatic or asymptomatic transmissions θ; the inherent transmissibility
of the pathogen, measured with the basic reproduction number R0. The parameter
θ depends only on the infectious disease and on the timing of the infectious peak
compared to the onset of symptoms. Homogeneous mixing models show that for
infectious diseases with θ < 1/R0 it is enough to isolate symptomatic individuals

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


5.1. Contact tracing (CT) 93

to obtain control of the epidemic, while if θ > 1/R0 the contact tracing must neces-
sarily be implemented to achieve epidemic containment [21]. Furthermore, for very
high values of θ or R0 even the contact tracing combined with the isolation of the
symptomatic is not sufficient to contain the outbreak. This suggests that θ and R0
must be considered when estimating the risk posed by an emerging disease: infec-
tious diseases with moderate (θ, R0) are easily controlled with CT, while those with
high (θ, R0) are hardly. For example, as shown in Table 5.1, SARS and Smallpox are
effectively controllable with CT; on the contrary, pandemic influenza and HIV are
not controllable only with these techniques: in this case it is necessary to combine
these measures with additional control measures, such as physical distancing, the
use of protective devices or restrictions on social activity. These additional measures
reduce R0, thus moving the system in the range of parameters (θ, R0) in which the
CT is sufficient to contain the epidemic [21].

5.1.1 CT models

The contact tracing is an adaptive mechanism of the population that can be imple-
mented through the adaptive temporal networks described in Chapter 3: the tracing
can be seen as a superinfection process that follows the paths of primary infection
and removes infected individuals from the interaction dynamics. It is a process of
exploration and sampling of contacts activated in the past and is dynamically acti-
vated by the epidemic, thus CT deeply couples the dynamics of the network and the
epidemic dynamics. Moreover, the tracing occurs on time scales comparable with
those of the epidemic dynamics and the interactions dynamics, indeed it is dynami-
cally activated by infections and takes place precisely along the history of contacts: it
is not possible to neglect the coupling and their temporal dimension through a time-
scales separation approximation. This introduces highly non-trivial and challenging
difficulties as three dynamic processes are active and deeply coupled.

Many models for contact tracing have been proposed [198]. Some models imple-
ment CT in individual (or agent) based models, by considering explicitly a static (em-
pirical or synthetic) network of contacts and implementing CT numerically through
stochastic simulations. To obtain general insights on the tracing process in an ana-
lytical way, deterministic mean-field models have been developed, based on mean-field
approaches which allow to obtain a deep understanding of the tracing mechanism
on static networks: for example, unveiling the role of clustering and targeted CT
strategy [203, 204]. Finally, in order to quantitatively estimate the impact of CT in
real conditions, phenomenological approaches have been proposed, in which the ef-
fect of CT is simply introduced at the macroscopic scale through phenomenological
terms into the epidemic dynamic equations.

These models, with different levels of approximations, underline the crucial role
of the network of interactions and of the basic CT mechanisms: however very few
CT models really take into account the coupling between the three dynamics, the
temporal dimension and the detailed CT mechanisms.

5.1.2 Traditional CT

Traditionally, the contact tracing has been performed in its manual implementation
(interview-based CT). The tracing is performed by trained healthcare personnel, the
contact tracers, through interviews of infected individuals: index cases are asked to
provide a list of contacts they had in a specific time window. Contacts are classi-
fied as epidemiologically relevant according to a specific definition depending on
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proximity, duration and frequency of the contact. The tracers collect the informa-
tion, then contact individuals who may have been infected, prepare a test for them,
and finally proceed with the isolation of the infected (see Figure 5.1). This requires
an impressive infrastructure with personnel, tools and resources, with a significant
economic cost.

COVID-19 pandemic shows that the adherence to the tracing is fundamental
[205]: in November 2020 in England the tracers were unable to reach 1/8 of the
positive cases and of the cases reached 18% did not provide information on close
contacts, in the United States this fraction increased to over 50%. Furthermore, some
of the contacts listed may not be reachable by the tracer or may not comply with the
requirements. In total, it is estimated that in the UK tracing reached on average the
50% of close contacts during 2020 [205].

In the presence of a low incidence and prevalence, manual tracing is imple-
mented relatively easily, without long delays or resources problems; on the other
hand, tracing becomes almost impossible to apply for high incidence and preva-
lence, since the number of index cases and related contacts to be traced grows in-
troducing delays and the impossibility of tracing all relevant contacts (scalability)
[22, 198, 206]. Therefore, manual tracing is effective and applicable in low diffu-
sion regimes: in the early stages of an epidemic or concurrently with the relaxation
of highly restrictive measures (e.g. the lockdown) that moved the system into an
epidemic regressive phase. Otherwise, it can be implemented effectively in combi-
nation with other containment measures which reduce the activity of the population,
thus reducing the average number of contacts per individual [205]. This limitation
in manual CT applicability is called global limited scalability.

Another crucial aspect in the effectiveness of manual tracing is the timing in the
tracing activation, in the identification and notification of the contacts and in their
isolation, since delays in the various phases of the protocol could make it ineffec-
tive [22, 24, 26, 198, 207]. This could be dramatically problematic for a disease such
as COVID-19 with a high fraction of asymptomatic and presymptomatic transmis-
sions [22, 206]: the World Health Organization defines a tracing protocol effective for
COVID-19 if it is able to trace the 80% of close contacts within 3 days of the positive
index case [205].

5.1.3 CT reinforcement: the digital CT

The traditional CT mechanism has been applied effectively in the past to contain var-
ious infectious diseases [206, 208–210]. An impressive and effective tracing system
was developed to contain the 2002-2004 SARS epidemic [206, 210]; similarly, trac-
ing was implemented for the containment of MERS in the 2012 and 2015 outbreaks
[198]. However, recently several proposals have been put forward to reinforce trac-
ing, overcoming the main problems of traditional CT.

The traditional tracing, from a network point of view, corresponds to trace only
the first-nearest neighbours of the index case, however the approach can be ex-
tended with: the recursive tracing, in which infected neighbours of the index case
become new index cases by activating the tracing on their contacts [205, 211, 212];
the higher-order tracing, in which the tracing does not stop only at first-nearest neigh-
bours but also extends to the k-nearest neighbours [205]. These extensions are useful
for pathogens with a high spreading capacity and when the index cases are identi-
fied late with respect to the infection, however they require the tracing of an enor-
mous number of contacts for each index case, with respect to the traditional tracing,
strongly limiting the applicability of the approaches. For example, in Vietnam a
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recursive tracing up to the third order has been implemented for index cases iden-
tified late during the COVID-19 pandemic, obtaining a significant improvement in
the tracing effectiveness: the average number of individuals traced for index case
has been increased from 15 to about 200, with respect to the first-order approach
[205].

In response to COVID-19 pandemic, health authorities implemented CT with
different procedures and protocols, attempting to enhance and strengthen the tradi-
tional manual tracing through alternative protocols, based on digital tools (e.g. WiFi
data, mobile phones data) [159, 205, 213]. For example, South Korea authorities use
credit-card data, cell phones and closed-circuit cameras to trace the movements of in-
fected individuals and identify their contacts, thanks to a system implemented dur-
ing the 2015 MERS epidemic [205]; in Vietnam, data deriving from posts published
on Facebook and Instagram are used to validate the list of contacts and movements
reported by index cases [205].

In many countries a digital CT (app-based CT) protocol has been developed, based
on the use of smartphones to trace automatically contacts: this is a new approach
being first proposed in a semi-automatic protocol during the 2014-2016 Ebola out-
break [198]. This procedure is based on the use of a tracing application with which
smartphones are able to keep trace of contacts with other devices endowed with the
app, through the proximity sensors of smartphones [23, 159, 213–215] (e.g. Immuni
in Italy [216], SwissCovid app in Switzerland [217], NHS COVID-19 app in UK [218],
Corona-Warn-App in Germany [219]). This app broadcasts rotating pseudorandom
"chirps" and records those emitted by nearby devices, via Bluetooth technology (see
Figure 5.1): only epidemiologically significant contacts are recorded and notified, by
assigning to each contact a score parameter. This parameter is obtained in a complex
way considering the contact time, the frequency of the contact, the distance between
the individuals involved in the contact (measured in terms of Bluetooth signal inten-
sity reduction) and also the epidemiological property of the disease (see Figure 5.1).
The index case loads the broadcast "chirps" through the app in server for exposure
notifications: all the users download automatically and periodically the "chirps" for
comparison of the recorded ones and in case of concurrence are notified (see Figure
5.1).

The digital CT is able to overcome some of the limitations of manual tracing
[22, 23, 198, 206]: reducing the delays in identifying and reporting exposure via an
automatic mechanism [24]; increasing the probability of tracing unknown contacts
(e.g. sporadic contact on public transport); avoiding the limited scalability of manual
tracing, through technological solutions that allow to obtain a arbitrarily scalable
system [215].

Many works evaluated the impact of digital tracing and its performance, also in
relation to manual tracing [24, 189, 207, 220–224]. A quantitative comparison of the
two approaches shows that a 3-days delay in manual tracing prohibits the ability to
control the spread of COVID-19, suggesting that only digital tracing can overcome
this by reducing the delay [24]. However, this comparison is made only on the level
of timing in tracing and isolation, without an in-depth comparison at the level of the
real implementation of the two protocols.

Other works, raise doubts about the assumptions underlying digital tracing and
its effectiveness, showing the main limitations of digital CT [23, 25–27]. Some works
have attempted to evaluate the impact of digital CT through epidemiological data-
driven models, on real networks of interactions [189, 224]: all have shown a crucial
role of the adoption level f of the tracing app in the population, observing that any
value of f helps in mitigating the epidemic but significant results are obtained only
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for f ∼ 60% [24, 26, 27, 201, 225]. These values are in contrast with the app adoption
in most states, where in the most optimistic case f ∼ 30% also due to mistrust linked
to privacy [27, 226–228]. Moreover, f has strong upper limits determined by the
penetration in the population of smartphones (that is about 64%-70% [25, 221, 225])
and by the penetration of smartphones with the technology needed for the tracing
app functionality [229]. Moreover, surveys and population analysis indicate that,
individuals adopting the app are those with more cautious behaviour and fewer
contacts, i.e. individuals less at risk [230, 231]: this further reduces the effectiveness
of digital CT, since the most dangerous individuals driving the epidemic, i.e. super-
spreaders with a high number of interactions, are invisible to CT.

Some drawbacks of digital CT are linked directly to its technical implementa-
tion[23, 25]: privacy issues strongly limit the flexibility of the model [214, 215], for
example prohibiting recursive tracing or higher-order tracing; the Bluetooth technol-
ogy is unreliable, especially for COVID-19 airborne transmission in which proximity
is not the only indicator of risk; some systems require the infected user to request a
code from health authorities to activate the notification system, this produces delays
that can reduce the speed up of digital CT [205, 220].

Results on the use of digital CT show that it speeds up the exposure notification
and the isolation of traced contacts by an average of 1-2 days compared to man-
ual tracing (e.g. SwissCovid app and NHS COVID-19 app) [23, 205, 217, 218, 232].
Moreover, digital tracing in the UK had significant results [232], albeit with strong
repercussions on the functionality of the population: indeed, the digital CT induced
the so-called "pingdemics", i.e. an epidemic of exposure notifications, which led to
more than one million people in quarantine. This significantly deteriorate the pop-
ulation functionality: to remedy this, the quarantine period has been reduced in the
UK and also the parameter for the definition of close contacts in the NHS COVID-19
app have been redefined [233–235]. From a technical point of view the digital CT do
not present global limited scalability, however in a real implementation analogous
effects emerge (e.g. "pingdemics").

In this framework, in the next Sections we propose a model to implement man-
ual and digital contact tracing on the adaptive activity-driven network proposed in
Chapter 4, determining their effectiveness in reducing the impact of an epidemic for
the SARS-CoV-2 spreading [28]. Our work takes a different approach than previous
works, overcoming some of their limitations: it takes into account the dynamics of
the network, the epidemic dynamics and the tracing process and their coupling, con-
sidering their true time scales; moreover, it compares the different tracing protocols
taking into account their specific properties and differences; it allows for a robust
analytical analysis of the effect of the manual and digital CT protocol.

5.2 Epidemic model with asymptomatic infections on AD net-
work

We consider an epidemic model describing the main clinical phases of SARS-CoV-2
[16, 179, 236], which is applicable to any infectious disease presenting asymptomatic
and presymptomatic transmission [195–197]. The epidemic model is composed of
five compartments: S susceptible, A infected asymptomatic, P infected presymp-
tomatic, I infected symptomatic, and R recovered (see Figure 5.2) Susceptible in-
dividuals can be infected with probability λ when involved in a contact with an
infected node (either A, P and I). An infected node has probability δ of following a
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S A R

P I

FIGURE 5.2: Epidemic model without contact tracing. We schematically represent the
compartmental epidemic model without contact tracing and the corresponding adaptive
activity-driven network, with different (aX , bX) depending on the health status of the node.

symptomatic route, becoming presymptomatic after infection S λδ−→ P, and a proba-
bility (1 − δ) of following the asymptomatic route becoming infected asymptomatic

S
λ(1−δ)−−−−→ A. A presymptomatic individual spontaneously develops symptoms with

rate γP becoming symptomatic: with a Poissonian process P
γP−→ I where γP =

1/τP and τP is the average duration of the presymptomatic phase. Asymptomatic
and symptomatic nodes recover spontaneously respectively with rate µ = 1/τ and
µI = µγP/(γP − µ), so that the average period of contagiousness is τ for both symp-
tomatic and asymptomatic ones. The model neglects hospitalizations and deaths,
which do not modify the dynamics of infection and do not modify the results on the
effectiveness of the CT.

This epidemic model is implemented on the adaptive activity-driven network
proposed in Chapter 4, thus taking into account both the heterogeneity in the be-
haviour of individuals and the temporal dynamics of the network [14]. The network
is composed of N nodes and each node is assigned with five couples of parameters
(aX, bX) with X = {S, A, P, I, R} which define the activity and attractiveness of the
node when it is in the compartment X. Each node features a Poissonian activation
dynamics with activation rate aX, i.e. the activity; bX instead defines the probability
that the node receives a link from an active node pX ∝ bX. At the beginning all the
nodes are disconnected and when a node is activated generates m links with m nodes
selected randomly with probability proportional to their attractiveness bX (hereafter
we fix m = 1 with no loss of generality). Then all the links are destroyed and the
procedure is repeated.

We assume that (aS, bS) are drawn from the distribution ρ(aS, bS), which allow
to model heterogeneity in the agent behaviour (see Chapters 1-2): hereafter we will
consider ρ(aS, bS) = ρS(aS)δ(bS − aS), i.e. assuming a linear correlation between
activity and attractiveness as observed empirically [72, 76], with arbitrary ρS(aS).
Adaptive behaviour is implemented assuming that symptomatic individuals are
immediately isolated (aI , bI) = (0, 0) as soon as they develop symptoms, while
presymptomatic, asymptomatic and recovered individuals, in the absence of trac-
ing or other measures, behave exactly as when susceptible (aP, bP) = (aA, bA) =
(aR, bR) = (aS, bS). We implement this behaviour in the active mode pX = bX/⟨b(t)⟩
(see Chapter 4), i.e. assuming that the adaptive behaviour of a node does not affect
the activity of the nodes that are not isolated: this is reasonable since we are consid-
ering the case in which measures are implemented to control the epidemic without
disrupting societal activity and functionality [14].

The control parameter of the epidemic model is the effective infection rate r =
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FIGURE 5.3: Effect of isolation of symptomatic individuals. We plot, as a function of γP/µ,
the ratio rSYMPTO

C /rNA
C between the epidemic threshold when symptomatic nodes are iso-

lated and the threshold in the non-adaptive case. The dashed orange horizontal line corre-
sponds to the value of rSYMPTO

C /rNA
C for instantaneous symptoms development γP/µ → ∞;

the dotted red vertical line corresponds to the value of γP/µ tailored to describe SARS-CoV-
2, i.e. τP = 1/γP = 1.5 days and τ = 1/µ = 14 days. The curves are obtained by fixing
(1 − δ) = 0.43 and ρ(aS, bS) = ρS(aS)δ(bS − aS) and hold for arbitrary ρS(aS) [28].

λ/µ whose critical value rC is the epidemic threshold and is one of the descriptors
of the measures effectiveness. The epidemic threshold, in the absence of tracing
and with the isolation of symptomatic nodes, can be obtained analytically through
an activity-attractiveness-based mean-field approach (see Appendix A for the detailed
derivation), which is exact since all local correlations are destroyed by the link reshuf-
fling thanks to the Markov dynamics. In the non-adaptive case (NA), i.e. if we
assume that also symptomatic individuals are not isolated (aI , bI) = (aS, bS), we
obtain:

rNA
C =

aS

2a2
S

, (5.1)

for ρ(aS, bS) = ρS(aS)δ(bS − aS), with arbitrary ρS(aS), and this threshold is that of
Eq. (4.25) [14, 72].

If we consider the isolation of symptomatic individuals (aI , bI) = (0, 0), the
threshold is:

rSYMPTO
C = rNA

C

γP
µ

δ + (1 − δ)γP
µ

, (5.2)

and these results hold for ρ(aS, bS) = ρS(aS)δ(bS − aS), with arbitrary ρS(aS).
In Figure 5.3 we plotted the increase in the epidemic threshold produced by the

isolation of symptomatic nodes rSYMPTO
C /rNA

C , varying the duration of the presymp-
tomatic phase γP/µ and for δ fixed. In the case of an instantaneous development of
symptoms γP/µ → ∞, i.e. in the absence of the presymptomatic phase τP/τ → 0,
the threshold is increased by a factor (1 − δ)−1; while for lower values of γP/µ the
increase is reduced until it is cancelled out by γP/µ = 1 since in that case nodes
behave like asymptomatics. This represents the baseline on which to evaluate the
effect of additional contact tracing to isolate even asymptomatic individuals.

The model presented is extremely general as it describes an arbitrary epidemic
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FIGURE 5.4: Epidemic model with contact tracing. We schematically represent the compart-
mental epidemic model with contact tracing and the corresponding adaptive activity-driven
network, with different (aX , bX) depending on the status of the node. The rates for infection
and tracing events are not indicated, since they are complex but are fully described in the
main text and in Appendix A. This model holds both for manual CT, applied to all nodes,
and for digital CT, applied only to nodes endowed with the tracing app, while nodes without
the app follow the compartmental epidemic model of Figure 5.2.

with asymptomatic, presymptomatic and symptomatic phases: in this thesis we fo-
cus mainly on the case of the COVID-19 epidemic, however it is sufficient to modify
the epidemiological parameters to describe other infectious diseases. In particu-
lar, we fix the parameters to describe SARS-CoV-2: the fraction of individuals who
develop symptoms δ = 0.57 [187], the average time of the presymptomatic phase
τP = 1.5 days [16, 197, 237] and the average time of contagiousness τ = 14 days,
which is the average recovery time [179, 238]. The whole general approach, as we
will see in the next Sections, is performed for arbitrary values and therefore is valid
for a general epidemic with asymptomatic and presymptomatic transmissions.

In the next Sections we introduce manual and digital CT into the model, through
an adaptive coupling of the network to the epidemic.

5.3 Manual contact tracing on AD network

We introduce in our model the traditional manual tracing (interview-based), de-
scribed in Section 5.1.2, by assuming that it is activated as soon as a presymptomatic
individual develops symptoms P → I. Manual tracing is performed over a time
window TCT and each of the nodes contacted in that window is traced with recall
probability ε(aS), where aS is the index case activity. Then a traced node is tested
and, if asymptomatic A, is isolated (a, b) = (0, 0): we assume a delay between the
isolation of the index case and the isolation of their asymptomatic contacts τC. See
Figures 5.4 and 5.5 for a schematic representation of the manual CT.

The tracing is implemented by introducing two further compartments into the
compartmental model: T traced asymptomatic and Q isolated asymptomatic. Asymp-
tomatic individuals A become traced asymptomatics T with probability ε(as) as soon
as they engage a contact with an individual who will then activate CT. A traced
node T is still infectious, behaving as susceptible (aT, bT) = (aS, bS), and with a rate
γA = 1/τA it is isolated T

γA−→ Q; isolated asymptomatic nodes Q are no longer in-
fectious (aQ, bQ) = (0, 0). Taking into account delays in manual CT, τC, and the need



100 Chapter 5. Manual and digital contact tracing

S

P

A T

S

A

P I

I

Q

T Q

FIGURE 5.5: Manual CT. We schematically represent the manual tracing protocol. A
symptomatic individual (blue) activates CT: each contact engaged in the time window TCT
(dashed links) is traced with probability ε and effectively traced asymptomatic nodes be-
come traced asymptomatic (green). We show the two main processes on which CT can be
applied: asymptomatic individuals can be traced if infected by a presymptomatic node, or if
they infect a node who will then develop symptoms.

for the presymptomatic node to develop symptoms to activate tracing, τP, we have
τA = τC + τP. See Figure 5.4 for the complete epidemic compartmental model in
the presence of manual CT, which hold for all the nodes. In Appendix A we report
all the contact-induced (e.g. infection and tracing) and spontaneous (e.g. recovery)
transitions.

The key parameters of manual tracing are therefore the delay in isolation τC, the
time window TCT on which the tracing is performed and the recall probability ε(aS).

The delay τC can be large because of delays in the technical procedures of manual
CT, such as the collection of the contact diary and reaching the contacts.

We fix the same time-window TCT for both manual and digital CT, assuming that
it is long enough to implement both backward tracing and forward tracing [188, 202,
237] (see Chapter 6 for more details), i.e. asymptomatic nodes can be traced if they
are the primary source of infection of the index case or if they are infected by the
index case during the presymptomatic phase (see Figure 5.5). For example, we will
fix TCT = τ = 14 days for the COVID-19 epidemic [237].

The recall probability ε(aS) takes into account several factors: the limited mem-
ory/knowledge of the index case of some contacts (e.g. occasional meetings in a
supermarket or restaurant), the voluntary decision not to provide all the contacts
engaged, the non-adherence of some of its contacts to the tracing and the limited re-
sources allocated for CT (see Figure 5.5). We considered the most general case where
the recall probability ε(aS) depends on the activity of the index case activating the
CT. This allows to model the local limited scalability of the traditional manual tracing
system: individuals with low social activity are involved in a small number of inter-
actions and a fraction ε∗ of their contacts can be easily traced, since a small number of
individuals can be easily remembered and reachable by the tracers; on the contrary,
individuals with high social activity are involved in a large number of interactions
and therefore, the same fraction ε∗ would require the tracing of a very large num-
ber of contacts. Due to limitations on memory/knowledge and tracing capacity (i.e.
limited resources allocated), only a finite number of contacts can be traced for these
nodes [237, 239, 240]. We model the local limited scalability property of manual CT
by assuming that for each index case the manual CT is able to trace at most a number
kc of contacts:

ε(aS) =

{︄
ε∗, if aS ≤ a∗

ε∗ a∗
aS

= kc
2TCT aS

, if aS > a∗
(5.3)

where a∗ = kc/2TCTε∗. Manual CT reaches a fraction ε∗ of the links generated in the
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time window TCT until the number of traced individuals reaches kc, i.e. for nodes
with aS ≤ a∗; then the fraction ε(aS) decays with the activity aS to keep fixed the
number of traced nodes at the maximum kc [237, 239, 240].

In addition to the local limited scalability of the index case, modelled through
Eq. (5.3), a global limited scalability is active in manual CT, as discussed in Section
5.1. In this thesis we focus mainly on the effects of CT on the epidemic threshold, i.e.
for low prevalence, and in conditions of low incidence, e.g. to control the epidemic
before a widespread diffusion, after the relaxation of very restrictive measures or at
the beginning of an epidemic. This allows us to neglect the global limited scalability
effects.

The epidemic model corresponds to a SIR model where infected individuals are
distinguished on the basis of the presence of symptoms, the tracing and isolation sta-
tus, identifying different states during the period of contagiousness (see Figure 5.4).
Furthermore, the model is exactly mean-field given that the dynamics is Markovian
and there are no local correlations, which are continually destroyed by the reshuf-
fling of the links: this allows us to state that the SIS and SIR model have the same
epidemic threshold [126, 128–130]. The analytical calculation of epidemic threshold
is performed with reference to the SIS model without loss of generality (see Ap-
pendix A).

The epidemic dynamics can be described through an activity-attractiveness-based
mean-field approach: we divide the population into classes of nodes with the same
(aS, bS) and we consider them statistically equivalent. In this framework, we ini-
tially assign to each node the status of symptomatic (with probability δ) or asymp-
tomatic (with probability (1 − δ)), instead of at the time of infection: this choice
is completely equivalent to the model described and allows us to write the mean
field equations in a simpler way. At the mean-field level, the epidemic dynamics
is described by the probabilities: PaS,bS(t), IaS,bS(t) and 1 − PaS,bS(t) − IaS,bS(t) for a
node of class (aS, bS), that will develop symptoms (if infected), to be respectively
presymptomatic, infected symptomatic or susceptible, at time t; AaS,bS(t), TaS,bS(t),
QaS,bS(t) and 1 − AaS,bS(t) − TaS,bS(t) − QaS,bS(t) for node of class (aS, bS), that will
not develop symptoms (if infected), to be respectively infected asymptomatic, traced
asymptomatic, isolated asymptomatic or susceptible, at time t.

In this approach the average attractiveness is:

⟨b(t)⟩ = bS − (1 − δ)bSQ(t)− δbS I(t), (5.4)

where we define g =
∫︁

daSdbSρ(aS, bS)gaS,bS . We assume to be in the thermody-
namic limit and we consider the case of a general joint distribution ρ(aS, bS), so this
is the most general case in which the recall probability ε(aS, bS) depends on the class
(aS, bS), but later we will consider ε(aS).

The probabilities that define the epidemic dynamics evolve according to the fol-
lowing equations:

∂tPaS,bS(t) = −γPPaS,bS(t) + λaS(1 − IaS,bS(t)− PaS,bS(t))
B(t)
⟨b(t)⟩

+ λbS(1 − IaS,bS(t)− PaS,bS(t))
C(t)
⟨b(t)⟩ ,

(5.5)

with B(t) = δbSP(t)+ (1− δ)[bST(t)+ bS A(t)] and C(t) = δaSP(t)+ (1− δ)[aST(t)+
aS A(t)]. The first term on the right-hand side is due to the spontaneous symptoms
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development; the second and third terms are the contagion terms in which a suscep-
tible node of class (aS, bS) is infected through contact with a presymptomatic indi-
vidual or with an asymptomatic non-isolated infected individual of any class (a′S, b′S)
(i.e. the term is averaged on the class of the involved infected node), respectively in
the case in which the link is activated by the susceptible or the infected node.

∂t IaS,bS(t) = −µI IaS,bS(t) + γPPaS,bS(t), (5.6)

where the first term on the right-hand side is due to the spontaneous recovery pro-
cess and the second to the spontaneous symptoms development.

∂t AaS,bS(t) =− µAaS,bS(t)

+ λaS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
B(t)− δεbSP(t)

⟨b(t)⟩

+ λbS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
C(t)− δεaSP(t)

⟨b(t)⟩

− λaSδAaS,bS(t)
εbS − εbS I(t)− εbSP(t)

⟨b(t)⟩

− λbSδAaS,bS(t)
εaS − εaS I(t)− εaSP(t)

⟨b(t)⟩ ,

(5.7)

where the first term on the right-hand side is due to the spontaneous recovery pro-
cess; the second and third terms are the contagion terms in which a susceptible node
of class (aS, bS) is infected through a contact with an infected individual respectively
when the link is activated by the susceptible or the infected node. These terms take
into account that the infection may be due to an asymptomatic non-isolated infected
individual or to a presymptomatic individual, if the corresponding link has not been
traced, i.e. with probability (1 − ε(a′S, b′S)) where (a′S, b′S) are the activity and attrac-
tiveness of the presymptomatic node who activate the CT. Both terms of contagion
are mediated on the activity and attractiveness of the infected node involved. The
fourth and fifth terms correspond to the contribution of the CT of asymptomatic in-
fected individuals who are the source of infection for a symptomatic node that will
later activate CT: in this case an asymptomatic node of class (aS, bS) is traced with
probability ε(a′S, b′S) which depends on the activity and attractiveness of the suscep-
tible node (a′S, b′S) infected in the event. The two terms correspond respectively to
the case in which the link is activated by the infected node or by the susceptible node
and are both averaged on the class (a′S, b′S) of the susceptible node.

∂tTaS,bS(t) =− (µ + γA)TaS,bS(t)

+ λbS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
δεaSP(t)
⟨b(t)⟩

+ λaS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
δεbSP(t)
⟨b(t)⟩

+ λbSδAaS,bS(t)
εaS − εaS I(t)− εaSP(t)

⟨b(t)⟩

+ λaSδAaS,bS(t)
εbS − εbS I(t)− εbSP(t)

⟨b(t)⟩ ,

(5.8)
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where the first term on the right-hand side is due to the spontaneous recovery pro-
cess and the isolation process after tracing; the second and third terms instead are
the contagion terms in which a susceptible node of class (aS, bS) is infected through
a contact with a presymptomatic infected individual and the corresponding link has
been traced effectively, with probability ε(a′S, b′S) where (a′S, b′S) are the activity and
attractiveness of the presymptomatic node. The two terms correspond respectively
to the case in which the link is activated by the susceptible or the infected node and
both are averaged on the activity and attractiveness of the infected node involved.
The fourth and fifth terms correspond to the contribution of the CT of asymptomatic
infected individuals who are the source of infection for a symptomatic node that will
later activate CT: in this case an asymptomatic node of class (aS, bS) is traced with
probability ε(a′S, b′S) which depends on the activity and attractiveness of the suscep-
tible node (a′S, b′S) infected in the event. The two terms correspond respectively to
the case in which the link is activated by the infected node or by the susceptible node
and are both averaged on the class (a′S, b′S) of the susceptible node.

∂tQaS,bS(t) = −µQaS,bS(t) + γATaS,bS(t), (5.9)

where the first term on the right-hand side is due to spontaneous recovery while the
second term to the isolation of traced asymptomatic nodes.

These equations constitute a set of five coupled non-linear differential equations
for each class (aS, bS) and it is not closed nor complete due to the presence of the av-
eraged probabilities. Moreover, the averaged probabilities P(t), I(t), A(t), T(t) and
Q(t), which represent the average probability for a node to belong to these compart-
ments, are much more interesting variables compared to the single probability for
each class (aS, bS). Thus, by averaging on the classes (aS, bS) it is possible to obtain a
system of nine coupled non-linear differential equations that is closed and complete:
this set of equations admits as a solution the absorbing state, that is the configura-
tion with all nodes susceptible. The epidemic threshold can thus be obtained with a
linear stability analysis around the absorbing state: see Appendix A for the details
of the computation of the system of equations and for the linear stability analysis.
The epidemic threshold can be obtained from the following relation:

8r3δ2(1 − δ)
εa2

S εaS

aS

a3
S

1 + 2rδaS
εaS
aS

γA
µ

− 4r2δ(1 − δ)

[︄
εa2

S a2
S +

γP
µ

εaS
a3

S

1 + 2rδaS
εaS
aS

]︄
γA
µ

+ 2ra2
SaS

(︃
γA
µ

+ 1
)︃(︃

δ +
γP
µ
(1 − δ)

)︃
− aS

2 γP
µ

(︃
γA
µ

+ 1
)︃
= 0,

(5.10)
which hold for ρ(aS, bS) = ρS(aS)δ(bS − aS), with generic ρS(aS) and thus the recall

probability becomes ε(aS).
Eq. (5.10) represents a closed and exact relation for the analytical estimation of

the epidemic threshold. Furthermore, the relation is strongly general since it holds
for a generic epidemic with symptomatic and asymptomatic infections, i.e. for arbi-
trary δ, τP and τ, which occurs on an AD network with arbitrary ρS(aS), assuming
ρ(aS, bS) = ρS(aS)δ(aS − bS), with symptomatic isolation and manual CT, with arbi-
trary delay τC and arbitrary recall probability ε(aS).

The epidemic threshold depends in a complex way on all the parameters of the
epidemic model (see Eq. (5.10)): in particular, it depends on the correlations between
the recall probability ε(aS) and the activity aS and also on high-order moments of
the distribution ρ(aS). This suggests that the epidemic threshold strongly depends
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on the heterogeneity of ρS(aS), on its shape and on how the recall probability is
distributed in the heterogeneous population, as we will see in Sections 5.6 and 5.7.

The epidemic threshold rC can be obtained by solving Eq. (5.10) numerically in
r in the general case with delays, heterogeneity and limited scalability. However, in
some limit cases it is possible to solve Eq. (5.10) analytically and obtain an explicit
form of the epidemic threshold.

The non-adaptive case (NA), in which all infected nodes behave as susceptible,
can be obtained by fixing ε(aS) = 0 ∀ aS, i.e. no tracing of the asymptomatic, and
γP/µ = 1, i.e. the presymptomatic phase coincide with the period of contagiousness
and thus no isolation occurs. Substituting this in Eq. (5.10) is obtained:

2ra2
SaS − aS

2 = 0, (5.11)

which admits as a solution:
rNA

C =
aS

2a2
S

. (5.12)

This threshold is that of Eq. (5.1) and is valid for arbitrary ρS(aS); moreover it repro-
duces the result obtained in Chapters 2 and 4 for the ADA model without adaptivity
(see Eq. (2.53) and Eq. (4.25)).

The case in which only the symptomatics are isolated can be obtained by fixing
ε(aS) = 0 ∀ aS. Substituting this in Eq. (5.10) is obtained:

2ra2
SaS

(︃
δ + (1 − δ)

γP

µ

)︃
− aS

2 γP

µ
= 0, (5.13)

which admits as a solution:

rSYMPTO
C = rNA

C

γP
µ

δ + (1 − δ)γP
µ

. (5.14)

This threshold is that of Eq. (5.2) and is valid for arbitrary ρA(aS).
Finally, the epidemic threshold can be obtained explicitly also assuming a homo-

geneous population ρS(aS) = δ(aS − a) in the absence of delays τC = 0 in manual CT,
i.e. γA = γP. Substituting this in Eq. (5.10) we get a quadratic equation in r:

4a2δ2εr2 + 2a
(︃

δ +
γP

µ
(1 − δ − δε)

)︃
r − γP

µ
= 0, (5.15)

which admits as a solution for the epidemic threshold:

rMANUAL
C =

2 γP
µ rNA

C

δ + (1 − δ − εδ)γP
µ +

√︂
(δ + (1 − δ − εδ)γP

µ )2 + 4δ2ε γP
µ

. (5.16)

In this case the epidemic threshold explicitly shows a non-trivial dependence on the
parameters of the model and in particular on the recall probability ε.

5.4 Digital contact tracing on AD network

We introduce in our model the digital tracing (app-based), described in Section 5.1.3,
by assuming that each node with activity aS has a probability f (aS) of downloading
the tracing app before the outbreak begins. As soon as presymptomatic individuals
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FIGURE 5.6: Digital CT. We schematically represent the digital tracing protocol: all nodes
are endowed with the app with probability f (red edge). Asymptomatic individuals (blue)
activate CT only if they downloaded the app: every contact engaged in the time window
TCT (dashed links) with other nodes with the app is traced, while the other links are not.
Effectively traced asymptomatic nodes become traced asymptomatic (green). We show the
two main processes on which CT can be applied: asymptomatic individuals can be traced if
infected by a presymptomatic node or if they infect a node who will then develop symptoms,
only if both downloaded the app.

develop symptoms P → I the digital CT is activated only if they downloaded the
app, otherwise the tracing is not activated. When digital CT is activated, all and
only the contacts engaged with nodes endowed with the app are traced with proba-
bility 1, while the other contacts are not traced. Then a traced node is tested and, if
asymptomatic A, is isolated (a, b) = (0, 0): we assume that in the digital case there
are no delays in tracing and isolation, therefore the time elapsed between the isola-
tion of the index case and its asymptomatic contacts is 0. This is an approximation
that favours digital tracing, given that technical delays are always present in the no-
tifications, in the isolation and adherence to quarantine. However, in this way we
can interpret the delay in manual CT τC as the relative delay of the manual CT with
respect to the digital CT: results in the UK and Switzerland estimated an acceleration
in the digital CT of about 1-2 days compared to the manual one [205]. See Figures
5.4 and 5.6 for a schematic representation of the digital CT.

The tracing is implemented also in this case by introducing two further compart-
ments into the compartment model: T traced asymptomatic and Q isolated asymp-
tomatic. Asymptomatic individuals A become traced asymptomatics T as soon as
they make a contact with an individual who will then activate CT. A traced node
T is still infectious, behaving as susceptible (aT, bT) = (aS, bS), and with a rate
γA = 1/τA it is isolated T

γA−→ Q; isolated asymptomatic nodes Q are no longer
infectious (aQ, bQ) = (0, 0). Taking into account the need for the presymptomatic
node to develop symptoms to activate tracing we have τA = τP, i.e. γA = γP.

The key parameters of digital tracing are the time-window TCT on which the CT
is performed and the probability f (aS) that a node has adopted the app. The time
window TCT is set equal in the manual and digital case TCT = τ, as discussed in
Section 5.3.

We consider the most general condition in which f depends on the activity of a
node aS, thus the level of penetration of the app in the population is f =

∫︁
daSρS(aS) f (aS).

This allows to model different distributions of the app in a heterogeneous popula-
tion, i.e. correlations between f and aS, which can emerge spontaneously, as ob-
served empirically [230, 231], or can be implemented app adoption strategies (see
Section 5.9.3).

In the presence of digital CT the population is divided into two subpopulations,
one of nodes endowed with the app and one of those without the app (see Figure
5.6), whose epidemic clinical stages are described through different compartmental
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epidemic models: nodes with the app follow the compartmental epidemic model
shown in Figure 5.4; nodes without the app follow the compartmental epidemic
model of Figure 5.2. Thus, in this case it is necessary to distinguish the compart-
ments for the two populations, indicating with X the compartments for individuals
without an app and indicating with Xα (with the superscript α) compartments for
individuals with the app. In the presence of a purely digital CT, tracing can only
take place on events involving two nodes with the app (within the same subpopula-
tion), while in all other cases (contacts between nodes in the subpopulation without
the app or contacts between two different subpopulations) it cannot be activated.
In Appendix A we report all the contact-induced (e.g. infection and tracing) and
spontaneous (e.g. recovery) transitions.

Similarly to the manual CT, the model is exactly mean-field and the analytical
calculation of epidemic threshold can be performed with reference to the SIS model
without loss of generality (see Appendix A). We describe the epidemic dynamics
through the same activity-attractiveness-based mean-field approach described for the
manual CT in Section 5.3.

At the mean-field level, the epidemic dynamics is described by the probabilities
(one for each compartment in the two different subpopulations): PaS,bS(t), IaS,bS(t),
1 − PaS,bS(t)− IaS,bS(t) for a node of class (aS, bS) without the app, that will develop
symptoms (if infected), to be respectively presymptomatic, infected symptomatic or
susceptible at time t; AaS,bS(t), 1 − AaS,bS(t) for a node of class (aS, bS) without the
app, that will not develop symptoms (if infected), to be respectively infected asymp-
tomatic or susceptible at time t; Pα

aS,bS
(t), Iα

aS,bS
(t), 1 − Pα

aS,bS
(t)− Iα

aS,bS
(t) for a node

of class (aS, bS) with the app, that will develop symptoms (if infected), to be re-
spectively presymptomatic, infected symptomatic or susceptible at time t; Aα

aS,bS
(t),

Tα
aS,bS

(t), Qα
aS,bS

(t), 1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t) for a node of class (aS, bS) with
the app, that will not develop symptoms (if infected), to be respectively infected
asymptomatic, traced asymptomatic, isolated asymptomatic or susceptible at time t.

In the mean-field approach, the average attractiveness is:

⟨b(t)⟩ = bS − (1 − δ) f bSQα(t)− δ( f bS Iα(t) + (1 − f )bS I(t)), (5.17)

where we define g =
∫︁

daSdbSρ(aS, bS)gaS,bS .
We assume to be in the thermodynamic limit and we consider the case of a gen-

eral joint distribution ρ(aS, bS), so this is the most general case in which the probabil-
ity of app adoption f (aS, bS) depends on the class (aS, bS), but later we will consider
f (aS).

The probabilities that define the epidemic dynamics evolve according to the fol-
lowing equations:

∂tPaS,bS(t) = −γPPaS,bS(t) + λaS(1 − IaS,bS(t)− PaS,bS(t))
F(t)
⟨b(t)⟩

+ λbS(1 − IaS,bS(t)− PaS,bS(t))
G(t)
⟨b(t)⟩ ,

(5.18)

∂tPα
aS,bS

(t) = −γPPα
aS,bS

(t) + λaS(1 − Iα
aS,bS

(t)− Pα
aS,bS

(t))
F(t)
⟨b(t)⟩

+ λbS(1 − Iα
aS,bS

(t)− Pα
aS,bS

(t))
G(t)
⟨b(t)⟩ ,

(5.19)

with F(t) = δ( f bSPα(t)+ (1 − f )bSP(t))+ (1− δ)( f bSTα(t)+ f bS Aα(t)+ (1 − f )bS A(t))
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and G(t) = δ( f aSPα(t)+ (1 − f )aSP(t))+ (1− δ)( f aSTα(t)+ f aS Aα(t)+ (1 − f )aS A(t)).
For both the subpopulations, the first term on the right-hand side is due to the spon-
taneous symptoms development; the second and third terms are the contagion terms
in which a susceptible node of class (aS, bS) is infected through a contact with a
presymptomatic or with an asymptomatic non-isolated infected of any class (a′S, b′S)
(i.e. the term is averaged on the class of the involved infected node) and belonging
to any subpopulation. The two terms correspond respectively to the case in which
the link is activated by the susceptible node or by the infected node.

∂t IaS,bS(t) = −µI IaS,bS(t) + γPPaS,bS(t), (5.20)
∂t Iα

aS,bS
(t) = −µI Iα

aS,bS
(t) + γPPα

aS,bS
(t), (5.21)

for both subpopulations, the first term on the right-hand side is due to the sponta-
neous recovery process and the second to the spontaneous symptoms development
process.

∂t AaS,bS(t) = −µAaS,bS(t) + λaS(1 − AaS,bS(t))
F(t)
⟨b(t)⟩

+ λbS(1 − AaS,bS(t))
G(t)
⟨b(t)⟩ ,

(5.22)

where the first term on the right-hand side is due to the spontaneous recovery; the
second and third terms are the contagion terms in which a susceptible node of class
(aS, bS) is infected through a contact with a presymptomatic individual or with an
asymptomatic non-isolated infected individual of any class (a′S, b′S) (i.e. the term
is averaged on the class of the involved infected node) and belonging to any sub-
population. The two terms correspond respectively to the case in which the link is
activated by the susceptible node or by the infected node. In this case, there are no
tracing terms since the equations describe an asymptomatic without the app.

∂t Aα
aS,bS

(t) = − µAα
aS,bS

(t)

+ λaS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
F(t)− δ f bSPα(t)

⟨b(t)⟩

+ λbS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
G(t)− δ f aSPα(t)

⟨b(t)⟩

− λδaS Aα
aS,bS

(t)
f bS − f bSPα(t)− f bS Iα(t)

⟨b(t)⟩

− λδbS Aα
aS,bS

(t)
f aS − f aSPα(t)− f aS Iα(t)

⟨b(t)⟩ ,

(5.23)

where the first term on the right-hand side is due to the spontaneous recovery pro-
cess; the second and third term are the contagion terms in which a susceptible node
of class (aS, bS) is infected through a contact with an infected individual respectively
in the case in which the link is activated by the susceptible node or by the infected
node. These terms take into account that the contagion may be due to an asymp-
tomatic non-isolated infected individual belonging to both subpopulations or to a
presymptomatic individual without the app. Both terms of contagion are mediated
on the activity and attractiveness of the infected node involved. The fourth and fifth
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term correspond to the contribution of the tracing of infected asymptomatic individ-
uals with the app and of class (aS, bS) who have infected a susceptible node with the
app who will then develop symptoms. The two terms correspond respectively to the
case in which the link is activated by the infected node or by the susceptible node
and are both mediated on the activity and attractiveness (a′S, b′S) of the susceptible.

∂tTα
aS,bS

(t) = − (µ + γP)Tα
aS,bS

(t)

+ λaS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
δ f bSPα(t)
⟨b(t)⟩

+ λbS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
δ f aSPα(t)
⟨b(t)⟩

+ λδaS Aα
aS,bS

(t)
f bS − f bSPα(t)− f bS Iα(t)

⟨b(t)⟩

+ λδbS Aα
aS,bS

(t)
f aS − f aSPα(t)− f aS Iα(t)

⟨b(t)⟩ ,

(5.24)

where the first term on the right-hand side is due to the spontaneous recovery pro-
cess and isolation by tracing; the second and third terms are the contagion terms in
which a susceptible node of class (aS, bS) with the app is infected through a contact
with a presymptomatic infected individual with app and is traced. The two terms
correspond respectively to the case in which the link is activated by the susceptible
node or by the infected node and both are averaged on the activity and attractiveness
of the infected node involved. The fourth and fifth terms correspond to the contri-
bution of the tracing of asymptomatic infected individuals with the app and of class
(aS, bS) who have infected a susceptible node with the app who will then develop
symptoms. The two terms correspond respectively to the case in which the link is
activated by the infected node or by the susceptible node and are both mediated on
the activity and attractiveness (a′S, b′S) of the susceptible node.

∂tQα
aS,bS

(t) = −µQα
aS,bS

(t) + γPTα
aS,bS

(t), (5.25)

where the first term on the right-hand side is due to spontaneous recovery while the
second term to the isolation of traced asymptomatic nodes.

These equations constitute a set of eight coupled non-linear differential equations
for each class (aS, bS), which are not closed nor complete due to the presence of the
averaged probabilities. Moreover, the averaged probabilities P(t), I(t), A(t), Pα(t),
Iα(t), Aα(t), Tα(t) and Qα(t), which represent the average probability for a node to
belong to these compartments, are much more interesting variables compared to the
single probability for each class (aS, bS). Thus, by averaging on the classes (aS, bS) it
is possible to obtain a system of fourteen coupled non-linear differential equations
that is closed and complete: this set of equations admits as a solution the absorbing
state, that is the configuration with all nodes susceptible. The epidemic threshold
can thus be obtained with a linear stability analysis around the absorbing state: see
Appendix A for the details of the computation of the system of equations and for the
linear stability analysis. The epidemic threshold can be obtained from the following
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relation:

8r3δ2(1 − δ)
f a2

S f aS

aS

f a3
S

1 + 2rδaS
f aS
aS

γP
µ

− 4r2δ(1 − δ)

⎡⎣ f a2
S

2
+

γP
µ

f aS
f a3

S

1 + 2rδaS
f aS
aS

⎤⎦ γP
µ

+ 2ra2
SaS

(︃
γP
µ

+ 1
)︃(︃

δ +
γP
µ
(1 − δ)

)︃
− aS

2 γP
µ

(︃
γP
µ

+ 1
)︃
= 0,

(5.26)
which hold for ρ(aS, bS) = ρS(aS)δ(bS − aS), with generic ρS(aS) and thus the recall

probability becomes ε(aS).
Eq. (5.26) represents a closed and exact relation for the analytical estimation of

the epidemic threshold. Furthermore, the relation is strongly general since it holds
for a generic epidemic with symptomatic and asymptomatic infections, i.e. for arbi-
trary δ, τP and τ, which occurs on an AD network with arbitrary ρS(aS), assuming
ρ(aS, bS) = ρS(aS)δ(aS − bS), with symptomatic isolation and manual CT, with arbi-
trary distribution of the app in the population f (aS) and with arbitrary penetration
of the app f .

The epidemic threshold depends in a complex way on all the parameters of the
epidemic model (see Eq. (5.26)): in particular, it depends on the correlations between
the probability of adoption of the app f (aS) and the activity aS and also depends
on high-order moments of the distribution ρS(aS). This suggests that the epidemic
threshold strongly depends on the heterogeneity of ρS(aS), on its shape and on how
the app is distributed in the population, as we will see in Sections 5.6 and 5.9.3.

The epidemic threshold rC can be obtained by solving Eq. (5.26) numerically
in r in the general case with heterogeneity and specific distribution of the app in the
population. However, in some limit cases it is possible to solve Eq. (5.26) analytically
and obtain an explicit form of the epidemic threshold.

The non-adaptive case (NA), in which all infected nodes behave as susceptible, can
be obtained by fixing f (aS) = 0 ∀ aS and γP/µ = 1. Substituting this in Eq. (5.26) is
obtained:

rNA
C =

aS

2a2
S

. (5.27)

This threshold is that of Eq. (5.1) (as in the manual case) and is valid for arbitrary
ρS(aS); moreover it reproduces the result obtained in Chapters 2 and 4 for the ADA
model without adaptivity (see Eq. (2.53) and Eq. (4.25)).

The case in which only the symptomatics are isolated can be obtained by fixing
f (aS) = 0 ∀ aS. Substituting this in Eq. (5.26) is obtained:

rSYMPTO
C = rNA

C

γP
µ

δ + (1 − δ)γP
µ

. (5.28)

This threshold is that of Eq. (5.2) (as in the manual case) and is valid for arbitrary
ρS(aS).

Finally, the epidemic threshold can be obtained explicitly also assuming a ho-
mogeneous population ρS(aS) = δ(aS − a). Substituting this in Eq. (5.26) we get a
quadratic equation in r:

4a2δ f
(︃

δ +
γP

µ
(1 − δ)(1 − f )

)︃
r2 + 2a

(︃
δ +

γP

µ
(1 − δ − δ f )

)︃
r − γP

µ
= 0, (5.29)
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which admits as a solution for the epidemic threshold:

rAPP
C =

2 γP
µ rNA

C

δ + (1 − δ − f δ)γP
µ +

√︂
(δ + (1 − δ − f δ)γP

µ )2 + 4δ f γP
µ (δ + γP

µ (1 − f )(1 − δ))
.

(5.30)
In this case, the epidemic threshold explicitly shows a non-trivial dependence on
the model parameters and in particular on the level of adoption of the app in the
population f .

5.5 Stochastic vs prearranged contacts sampling

Hereafter, we compare the effectiveness of manual and digital CT in reducing the im-
pact of the epidemic, obtaining fundamental insights into the detailed mechanisms
of the two protocols and their intrinsic differences. We fix ε = f 2, assuming a uni-
form f (aS) = f ∀aS: under this condition manual and digital CT have the same prob-
ability of tracing a single contact, i.e. they reconstruct the same number of contacts.
This allows to compare the two protocols and obtain their relative effectiveness un-
der the same tracing conditions, thus comparing their basic mechanisms. However,
it should be noted that typically in real conditions f 2 < ε, indeed f 2 ≈ 0.01 − 0.1 in
many states [27, 205, 227, 228], while ε ≈ 0.3− 0.5 since typically the 30%-50% of the
contacts is easily traceable as it occurs at home, at school or at work [172, 205]. These
considerations allow to compare the two protocols in a more realistic scenario, even
if we consider the same conditions of tracing a link to compare them in principle.

At first, we compare the two tracing protocols in case of a population with ho-
mogeneous activity and attractiveness, i.e. ρ(aS, bS) = δ(aS − a)δ(bS − a), and in the
absence of delays in manual tracing, i.e. τC = 0: thus both f and ε are constant. In
this case, we have an explicit form of the epidemic threshold for both manual and
digital CT (see Eqs. (5.16) and (5.30)).

In Figure 5.7 we compare the increase in the epidemic threshold rC/rNA
C pro-

duced by the two tracing protocols as a function of ε = f 2. Both protocols increase
significantly the epidemic threshold and produce the same increase, i.e. the same
epidemic threshold rC, for ε = f 2 = 0 and for ε = f 2 = 1: in the former case,
the tracing is not applied and only symptomatic individuals are isolated, thus the
epidemic threshold is rSYMPTO

C of Eq. (5.2); in the latter case, all contacts are traced
in both protocols and therefore the threshold is the same, since all asymptomatic
are traced with no delay in both processes. For intermediate values of ε = f 2 the
manual tracing is surprisingly always more effective than the digital one, since the
increase produced in the epidemic threshold is always higher than that of the app-
based mechanism (see the inset of Figure 5.7).

We are considering the simplest case of a homogeneous population without de-
lays, therefore the difference observed between the performance of the two protocols
is completely due to an intrinsic difference in the two types of tracing, i.e. an intrinsic
difference in contacts sampling and exploration.

Digital CT divides the population into two subpopulations, one that downloaded
the app and one that did not, generating a sub-network: all the links created within
this sub-network are traceable, while all the links outside it or involving a single
node of the sub-network cannot be traced. The digital CT does not take place on the
complete population but is localized on a prearranged subpopulation. Digital CT
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FIGURE 5.7: Effects of manual and digital CT in homogeneous population. We plot, as a
function of ε = f 2, the ratio rC/rNA

C between the epidemic threshold in the presence of CT
and symptomatic isolation and the threshold of the non-adaptive case. The inset shows the
ratio rMANUAL

C /rAPP
C between the epidemic threshold in the presence of manual CT and that

in the presence of digital CT, as a function of ε = f 2. We consider ρ(aS, bS) = δ(aS − a)δ(bS −
b), (1 − δ) = 0.43, τP = 1.5 days, τ = 14 days and τC = 0 [28].

corresponds to a quenched configuration: traceable nodes are pre-allocated and be-
long deterministically to a quenched prearranged fraction of nodes that have down-
loaded the app. See Figure 5.8 for a schematic representation of the digital sampling.

The manual CT performs a stochastic sampling of the contacts and the network
of traceable nodes coincides with the entire population. Indeed, the manual ap-
proach can potentially reach the entire population since anyone who has come into
contact with a symptomatic index case can be traced through the random explo-
ration of the contacts. Manual CT corresponds to an annealed configuration: the
traced nodes are dynamically generated by the epidemic, which producing symp-
tomatics activates tracing potentially on the entire population of the node contacts.
See Figure 5.8 for a schematic representation of the manual sampling.

The two protocols present an intrinsic difference in the nature of the contacts
sampling and exploration, i.e. quenched vs annealed or prearranged vs stochas-
tic sampling. This inherent difference favours manual over digital CT in reducing
the impact of the epidemic, since manual CT is able to reach a wider set of nodes
compared to digital CT, even in the hypothesis of equal probability of tracing a link
ε = f 2. This is clearly shown analyzing the differences of the two protocols in tracing
multiple infection processes: in Figure 5.8 we show the simplest example.

If an asymptomatic node A infects a node through symptomatic infection, the
infector will be traced with probability ε in the manual CT and f 2 in the digital
CT: thus the node is traced with the same probability for ε = f 2. However, if the
same node infects two susceptible nodes with symptomatic infections, the infector
will be traced if at least one of the two links has been traced: in the manual CT
it is traced with probability pM = 1 − (1 − ε)2, while in the digital CT it is traced
with probability pD = f (1 − (1 − f )2). For ε = f 2, the probability of tracing the
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FIGURE 5.8: Prearranged vs stochastic sampling in CT (i.e. quenched vs annealed). In
panel a we show schematically a simple example of tracing multiple infection processes,
which clarify the inherent difference in contact sampling between manual and digital CT
(see the main text for the detailed description) [28]. In panel b we show the intrinsic dif-
ference between manual and digital CT in tracing the population (orange nodes): for the
manual procedure, the whole population is potentially reachable (blue nodes); for the dig-
ital procedure, only a preallocated sub-network is reachable (blue nodes), corresponding to
the nodes who downloaded the app (red edge).

asymptomatic node with the manual CT is pM = 2 f 2 − f 4, while in the digital CT it
is pD = 2 f 2 − f 3: pM is always higher or equal to pD. This simple example shows
that considering a many-body process with multiple infections, the probability of
tracing an asymptomatic node is always higher in the manual CT than in the digital
CT, even assuming the same probability of tracing a link ε = f 2: this is due to the
intrinsic difference of the two protocols in the sampling of contacts.

This result is obtained shifting the point of view from a single two-body infection
process to a two-link infection process involving three nodes: the reasoning is sim-
ilar when considering multiple higher-order infection processes involving a larger
number of nodes. In such conditions this effect is further amplified up to the com-
plete sequence of interactions in the network, favouring the manual protocol over
the digital one and producing the better performance of the manual CT observed in
Figure 5.7 in which the complete network is considered.

This first comparison highlights the intrinsic difference in the nature of contacts
sampling performed by the two tracing protocols, which favours manual CT over
digital CT and is crucial for understanding the fundamental mechanisms of CT.
Starting from this baseline, we investigate the effects of realistic conditions such as
a heterogeneous population, delays in manual tracing and limited scalability, to un-
derstand their role in realistic implementation of CT.
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5.6 Effects of heterogeneity in agents behaviour

Many real systems present strong heterogeneity in the agents behaviour, due to a
different propensity of individuals to undertake social interactions: this can be mod-
elled into our model by considering a realistic power-law distribution of activity
and a positive correlation between activity and attractiveness, as observed in many
empirical cases [13, 14, 72, 76]:

ρ(aS, bS) = ρS(aS)δ(bS − aS) ∼ a−(ν+1)
S δ(bS − aS), (5.31)

with a ∈ [am, aM], aM = ηam, with ν ∈ [0.5, 2] coherent with those obtained empiri-
cally. In this case, the population is characterized by the presence of hubs with high
activity and attractiveness. Hereafter, unless otherwise specified, we set η = 103

and am is fixed so that aS = 6.7 days−1, reproducing the average number of daily
contacts per individual observed in real populations through surveys [172, 241].

The distribution ρS(aS) of Eq. (5.31) is maximally broad for ν = 1, indeed the ra-
tio a2

S/aS
2 is maximized for ν = 1, as shown in Figure 5.9a, and it estimates the het-

erogeneity of ρS(aS). Indeed, for ν → ∞ the distribution approximates a maximally
homogeneous Dirac delta function ρS(aS) → δ(aS − aS); for ν → 0 the distribution is
counterintuitively more homogeneous than at ν = 1 due to cut-off effects and to the
constraints imposed on the distribution. Figure 5.9b shows the distribution P(k) of
the number of contacts k performed by an individual in the time window TCT in our
network model, for the described parameters: the obtained distribution is compat-
ible with those obtained from empirical dataset and surveys, both for the average
number of contacts and for the overall shape of the distribution.

We determine the pure effect of heterogeneity on the relative effectiveness of
the two tracing protocols, by setting ρ(aS, bS) as in Eq. (5.31), by considering the
manual CT without delays τC = 0 and without limited scalability ε(aS) = ε ∀aS
and considering f (aS) = f ∀aS. The epidemic threshold rC is obtained numerically
starting from the Eqs. (5.10) and (5.26).

In Figure 5.10a-b we show the increase in the epidemic threshold rC/rNA
C pro-

duced by the two CT protocols with respect to the non-adaptive case, as a function
of the exponent ν of the distribution ρS(aS) of Eq. (5.31), by fixing ε = f 2 = 0.1 (i.e.
f ≈ 0.316) and ε = f 2 = 0.6 (i.e. f ≈ 0.775). Both tracing protocols maximize their
effectiveness in heterogeneous populations for ν ∼ 1− 1.5: indeed, in heterogeneous
populations the epidemic is driven by hubs, who behave like superspreaders, and
the CT significantly reduce the impact of the epidemic by tracing and isolating some
of them. The maximum efficacy does not occur exactly at ν = 1, where the distri-
bution ρS(aS) is maximally heterogeneous (see Figure 5.9a), but it shifts to different
values of ν ∼ 1: indeed the epidemic threshold for both CT protocols depends both
on the fluctuations of aS, i.e. a2

S/aS
2, and on higher-order moments such as a3

S (see
Eqs. (5.10) and (5.26)), as well as on the epidemiological parameters.

Figure 5.10a-c shows clearly that manual CT produces a significantly higher in-
crease in the epidemic threshold than the digital CT, even assuming ε = f 2. More-
over these differences are maximized for ν ∼ 1 − 1.5, i.e. they are wider in the het-
erogeneous case with respect to the homogeneous case, as shown by comparing the
homogeneous case of Figure 5.7 and the heterogeneous case of Figure 5.10c. Thus,
heterogeneity in agent behaviour strongly amplify the intrinsic differences between
the two tracing procedure, enhancing the stochastic effects of contact sampling and
exploration and extending the advantage of manual CT over digital CT.
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FIGURE 5.9: Heterogeneous activity distribution. Panel a shows the ratio a2
S/aS

2 as a

function of the exponent ν for the distribution ρS(aS) ∼ a−(ν+1)
S , with aS ∈ [am, aM],

η = aM/am = 103 [28]. In panel b we plot the distribution P(k) of the contacts per-
formed by an individual in a time window TCT and the distribution P(kT) of the contacts
traced with manual CT for an index case on the window TCT , in the presence of the lim-
ited scalability described by ε(aS) as in Eq. (5.3) for kc = 130, and for different values of
ε (see legend). All distributions are obtained for the considered AD network model with
ρ(aS, bS) ∼ a−(ν+1)

S δ(bS − aS), fixing ν = 1, aS ∈ [am, aM], η = aM/am = 103, aS = 6.7
days−1 and TCT = 14 days [28]. In the lower panel we show schematically the difference
between manual and digital CT in a heterogeneous population (orange nodes - their size is
proportional to their activity): in manual CT all nodes are traceable (blue nodes), including
the hubs; in digital CT only the nodes with the app (red edge) are traceable (blue nodes).
The hubs without the app are completely invisible to digital CT.

This effect is due to the superior ability of manual CT to sample and trace hubs,
i.e. nodes with high activity, compared to the digital CT. In a heterogeneous popula-
tion the epidemic is driven and sustained by nodes with high activity/attractiveness
(i.e. superspreaders). In the presence of digital CT, hubs without the app are invis-
ible to the tracing and cannot be traced (see Figure 5.9): thus, they continue to be
involved in interactions, producing contagion and sustaining the epidemic. On the
contrary, manual CT is very effective in identifying hubs due to their high number of
contacts and thanks to the stochastic nature of the sampling of contacts (see Figure
5.9): indeed, the hubs appear with high probability in the contact list of many index
cases, due to their high number of contacts, and the stochastic annealed exploration
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FIGURE 5.10: Effects of heterogeneity on CT. In panels a-b we plot, as a function of the
exponent ν, the ratio rC/rNA

C between the epidemic threshold in the presence of CT and
the threshold of the non-adaptive case. The inset shows, as a function of ν, the ratio
rMANUAL

C /rAPP
C between the threshold in the presence of manual CT and that in the pres-

ence of digital CT. In panel a ε = f 2 = 0.1 ( f ≈ 0.316), while in the panel b ε = f 2 = 0.6
( f ≈ 0.775). In panel c the ratio rC/rNA

C is plotted as a function of ε = f 2 for both the tracing
protocols and for ν = 1.5. In the inset the ratio rMANUAL

C /rAPP
C is plotted as a function of

ε = f 2 for several exponents ν. In panels a-c we consider ρ(aS, bS) as in Eq. (5.31), with
aS ∈ [am, aM = 103am], aS = 6.7 days−1, (1 − δ) = 0.43, τP = 1.5 days, τ = TCT = 14 days,
τC = 0 and ε(aS) = ε ∀aS. Panel d is the same of panel a but different distributions ρ(aS, bS)
are considered (see legend), manual CT is characterized by a delay of τC = 3 days and by
limited scalability with ε(aS) as in Eq. (5.3) for kc = 130 [28].

is able to reach them easily.
The results obtained are also robust by modifying the functional form of ρ(aS, bS):

in Figure 5.10d we compare the increase in the epidemic threshold produced by
the two CT procedures for two distributions ρ(aS, bS): the one of Eq. (5.31) and
ρ(aS, bS) ∼ a−(ν+1)

S δ(bS − b), i.e. the same distribution but the attractiveness is the
same bS = b for all nodes. In the latter case, the differences between manual and
digital CT are reduced compared to the former case, as shown in the inset of Figure
5.10d. However, manual CT is still more effective for heterogeneous populations,
under moderate τC and ε = f 2 conditions, even in the presence of delays and lim-
ited scalability (see Section 5.7). The reduction in the differences between the two
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CT protocols is due to the removal of the correlations between activity and attrac-
tiveness: indeed, this reduces the heterogeneity of the population by introducing a
term of homogeneity, further confirming the effect of heterogeneity.

5.7 Effects of limited scalability and delays in manual CT

As we point out in Section 5.1.3, in real conditions there are some limitations to
the effectiveness of manual CT, which could be overcome by digital CT, such as the
presence of delays and limited scalability. We introduce into our model a relative
delay in isolation in manual CT with respect to digital CT of about τC = 3 days,
consistent with estimated speed-up is isolation observed through the digital CT in
UK and Switzerland [24, 205].

We also introduce local limited scalability in manual CT with ε(aS) as in Eq. (5.3).
We consider ρ(aS, bS) heterogeneous as in Eq. (5.31) with ν = 1 and, in accordance
with realistic estimates for the maximum number of contacts manually traced for
very active individuals, we fix kc = 130 [237, 240, 242]: this allows our model to
reproduce several distributions and statistics in the number of contacts manually
traced [172, 237, 243]. Indeed, as shown in Figure 5.9b, the distribution P(kT) of
the number of contacts traced by an index case on the time window TCT by man-
ual CT reproduces the distributions observed empirically, both for its shape and its
momenta [237, 243]. For example, the average number of contacts traced for each
index case is approximately 10 − 60 (depending on ε ≈ 0.1 − 0.5), consistent with
the data reported on the effects of manual CT for COVID-19 and on the estimates
of resources allocated for tracing when no other restrictions are implemented [237,
240, 242]. Indeed, in the presence of other measures, such as social distancing or
lockdowns, the average number of daily contacts would be lower and thus also the
number of traced contacts per index case. Analogous distributions, consistent with
those observed empirically, are obtained for different parameters of kc or for differ-
ent ν.

The epidemic threshold rC is obtained numerically, solving Eqs. (5.10) and (5.26):
in Figure 5.11a-b we compare the increase in the epidemic threshold produced by
the two protocols by setting ε = f 2, where ε =

∫︁
daSρS(aS)ε(aS), as the exponent ν

of the distribution ρS(aS) varies. Regardless of ε, the effectiveness of manual CT is
reduced by delays and limited scalability. For small ε = f 2 = 0.1 (which however
correspond to a high adoption of the app f ≈ 0.316) and realistic delay τC = 3 days,
the limited scalability and delays make digital CT more effective than the manual
CT only in homogeneous populations, i.e. for ν → ∞ or for ν → 0, while in hetero-
geneous populations manual CT is still more efficient (see Figure 5.11a). Thus, for
moderates ε = f 2 and τC, the inherent differences in contact sampling amplified by
heterogeneity still favour manual over digital CT, also considering limited scalabil-
ity and delays. On the contrary, for high delays τC and for high values ε = f 2, digital
CT becomes more effective than manual CT even in heterogeneous populations (see
Figure 5.11b).

The advantages of manual CT induced by the sampling properties and by het-
erogeneity are quite robust in realistic conditions to delays and limited scalability.
Indeed, in realistic heterogeneous populations digital CT produces effects compara-
ble to manual CT only for high levels ε = f 2, i.e. for irrealistic high app adoption
level such as f ≈ 0.775, and for considerable delays in manual CT. This is illustrated
in Figure 5.11c, where the increase in the epidemic threshold for manual and digital
CT is plotted as a function of ε = f 2 for several τC values and for a heterogeneous
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FIGURE 5.11: Effects of tracing delay and limited scalability in manual contact tracing. In
panels a-b we plot, as a function of the exponent ν, the ratio rC/rNA

C between the epidemic
threshold in the presence of CT and the threshold of the non-adaptive case. The insets show,
as a function of ν, the ratio rMANUAL

C /rAPP
C between the threshold in the presence of manual

CT and that in the presence of digital CT. In panel a ε = f 2 = 0.1 ( f ≈ 0.316) and τC = 3
days; in panel b ε = f 2 = 0.6 ( f ≈ 0.775) and τC = 5 days. In panel c we plot the ratio
rC/rNA

C as a function of ε = f 2 for both tracing protocols, by fixing ν = 1.5. In the inset the
ratio rMANUAL

C /rAPP
C is plotted as a function of τC for several ε values. Panel d is the same of

panel a but different values of kc are considered, also considering the case without limited
scalability, i.e. kc → ∞ (see legend). In all panels we consider ρ(aS, bS) of Eq. (5.31) with
aS ∈ [am, aM = 103am], aS = 6.7 days−1, (1 − δ) = 0.43, τP = 1.5 days, τ = TCT = 14 days
and limited scalability ε(aS) as in Eq. (5.3), moreover in panels a-c kc = 130 [28].

population: high values of ε = f 2 and τC are required for digital tracing to perform
better than manual tracing in a heterogeneous population. Moreover, considering
realistic f 2 ≈ 0.01 − 0.1 values and ε ≈ 0.3 − 0.5 values, manual CT is still strongly
more effective than the digital one in heterogeneous populations, even considering
delays and local limited scalability.

The results obtained holds also by considering different kc values. A higher value
of kc reduces the effects of limited scalability by bringing the results closer to the
scalable case; while a lower value of kc increases the effect of limited scalability,
reducing the differences between the two procedures of CT. However, a change of
kc in a realistic range has minimal effects on the results, especially for heterogeneous
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populations (see Figure 5.11d).

5.8 Effects of CT on the epidemic active phase

So far we focused on the effects of tracing on the epidemic threshold: we now con-
sider also the active phase of the epidemic, in order to understand comprehensively
the overall effect of the CT protocols on the epidemic and also their cost in term of
the activity level of the population, i.e. on the population functionality, which is a
crucial aspect ad discussed in Sections 5.1.2 and 5.1.3.

We performed numerical simulations of the epidemic process on the adaptive
activity-driven network to investigate the active phase: the simulations are imple-
mented using a continuous-time Gillespie-like algorithm [176], described in detail
in Appendix B.

The results of the numerical simulation are averaged over different realizations
of the temporal dynamics and of the disorder, so that the error on the height of the
infection peak is less than 6%. In all simulations the initial conditions are imposed by
infecting the node with the highest activity aS [184] and the tracing is immediately
implemented from the beginning of the epidemic.

In Figure 5.12 we show the temporal dynamics of the epidemic, plotting the tem-
poral evolution of the fraction of infected individuals In f (t) and of the fraction of
recovered nodes R(t), by considering several values of ε = f 2, of τC and of r/rNA

C ,
and by taking into account local limited scalability in manual CT. Furthermore, in
the insets of Figure 5.12 we report the temporal evolution of the average activity
⟨a(t)⟩ of the population and of the fraction of nodes in isolation Iso(t): these vari-
ables allow to understand the cost of the CT protocols in terms of the activity level
of the population, i.e. on the population functionality.

In Figure 5.12a we consider ε = f 2 = 0.1, τC = 3 days and r/rNA
C = 3.1, i.e. r ∼ rC

in the presence of CT (see Figure 5.11). The infection peak with manual CT is lower
than the digital one, it is slightly anticipated and the overall duration of the epidemic
is reduced (peak width). This temporal dynamic produces an epidemic final size
that in the manual CT is about half of that obtained by applying digital CT. Both the
manual and digital CT produce a reduction in the average activity, which presents a
minimum that slightly anticipates the peak in the number of isolated nodes: indeed
the first nodes to get infected and to be isolated are those with high activity, thus their
isolation produce a reduction of the activity in the early stages of the epidemic. The
average activity, even at the minimum, still remains very high equal to about 98% of
the pre-epidemic period for both the CT protocols. These results confirms that both
manual and digital CT are very effective in limiting the impact of the epidemic on the
population without disrupting societal activity and functionality of the population.
Furthermore, the infection peak is lower for the manual CT, since this procedure
produce a lower fraction of infected individuals.

These differences between manual and digital CT are again due to the hetero-
geneity of the population and to the intrinsic difference in contact sampling: manual
CT is very effective in tracing high-activity nodes (see Section 5.6) and therefore iso-
lates them at the beginning of the epidemic, drastically reducing the spread of the
epidemic and partially the activity of the population by isolating only a few very
active nodes. This produce a reduced peak of infection, a reduced peak of isolation
and a reduction in activity. Digital CT, on the other hand, is not effective in tracing
high-activity nodes (see Section 5.6), therefore the epidemic spreads more, sustained
by the superspreaders, producing a higher infection peak and consequently a higher
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FIGURE 5.12: Effects of CT on the epidemic active phase. In all panels we plot the temporal
evolution of the fraction of infected nodes In f (t) and the fraction of recovered nodes R(t),
for manual and digital CT. The insets represent the temporal evolution of the fraction of
isolated nodes Iso(t) and of the average activity ⟨a(t)⟩ normalized with aS. The curves are
obtained through numerical simulations and are mediated on different realizations of the
temporal dynamics and disorder. The errors, evaluated through the standard deviation, are
smaller or comparable with the curves thickness. In all panels ρ(aS, bS) is fixed as in Eq.
(5.31) with aS ∈ [am, aM = 103am], ν = 1.5, aS = 6.7 days−1, N = 5 103, (1 − δ) = 0.43,
τP = 1.5 days, τ = TCT = 14 days and ε(aS) as in Eq. (5.3) with kc = 130. In panel a
ε = f 2 = 0.1, τC = 3 days, r/rNA

C = 3.1; in panel b ε = f 2 = 0.1, τC = 0 days, r/rNA
C = 4;

in panel c ε = f 2 = 0.1, τC = 5 days, r/rNA
C = 3.1; in panel d ε = f 2 = 0.1, τC = 5 days,

r/rNA
C = 7; in panel e ε = f 2 = 0.6, τC = 5 days, r/rNA

C = 4.5 [28].
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isolation peak. The reduction in activity, however, is similar to the manual CT: in the
manual procedure are isolate less nodes but with a higher activity, while in the digi-
tal approach are isolated more nodes but with a lower activity.

The differences in the active phase between the two protocols are reduced by
increasing the delay in manual tracing τC: indeed the differences are maximized
for τC = 0, as shown in Figure 5.12b to be compared with Figure 5.12a. However,
manual CT remains more effective for small ε = f 2 even with considerable delays
τC, as show in Figure 5.12c. If the system is deeply in the active phase r ≫ rC,
the differences between the two protocols are reduced due to the high infectivity of
the system, but manual CT remains more advantageous (see Figure 5.12d). Digital
CT becomes more effective than manual tracing only in unrealistic conditions of
high app adoption ε = f 2 and severe delays τC: in this case the infection peak in
the presence of the digital protocol is lower, narrower and anticipated, producing a
lower epidemic final size compared to the manual CT (see Figure 5.12e).

These results show that the results obtained focusing on the epidemic threshold
hold also for the epidemic active phase: the manual CT is more effective than the
digital CT, for realistic parameter values, in reducing the impact of the epidemic.
These effects are obtained by isolating a smaller number of individual and without
interrupting the population activity: this is a crucial property of all containment
measures aimed at ensuring the functionality of the population.

5.9 Hybrid contact tracing on AD network

We compare the purely manual CT and the purely digital CT in reducing the impact
of an epidemic, characterizing their specific properties: however, typically digital
CT and manual CT are complementary tools integrated in hybrid protocols. In-
deed, digital CT was proposed alongside the traditional manual CT, with the aim
of enhancing tracing and overcoming the main critical issues of manual tracing (see
Section 5.1.3).

We now integrate the two procedures into a hybrid protocol to determine their rel-
ative contribution in reducing the impact of the epidemic when combined. This al-
lows to obtain crucial insights for the optimization of the tracing strategies, through
a careful integration of the two protocols and allocation of tracing resources.

In the hybrid protocol, each node with activity aS downloads the app with prob-
ability f (aS). When presymptomatic nodes develop symptoms P → I they activate
CT on the contacts engaged in the previous time window TCT. If the index case
downloaded the app, activates both manual and digital CT: all their contacts with
the app are traced digitally and, if found in state A, they are isolated without delay;
while the other contacts are traced manually with probability ε(aS) and, if found in
state A, they are isolated with a delay τC. If the index case did not download the app,
only the manual CT is activated and all contacts, whether they have the app or not,
are traced manually with probability ε(aS) and isolated with delay τC, if found to
be infected asymptomatic A. The hybrid protocol is schematically shown in Figure
5.13.

The compartmental epidemic model is analogous to that of digital tracing and
the detailed spontaneous and contact-induced transitions are analogous to those of
digital CT (see Appendix A). The population is divided into two subpopulations,
one with the app and one without the app, therefore the epidemic compartments
are distinguished for the two populations, as in the digital tracing (see Section 5.4),
indicating with X the compartments for individuals without the app and indicating
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FIGURE 5.13: Epidemic model with hybrid CT. In panel a we schematically represent the
compartmental epidemic model with hybrid CT for a node endowed with the tracing app,
who can be traced both manually (red arrows) or digitally (blue arrows). Nodes without the
app follow the compartmental epidemic model of Figure 5.4 since they can only be traced
manually. The infection and tracing rates are not indicated, since they are complex but are
described in detail in the main text and in Appendix A. In panel b we schematically show
the main tracing mechanisms of the hybrid protocol activated by a symptomatic individual
(blue node): an index case who downloaded the app (with probability f - red edge) digitally
traces (red arrows) all the contacts engaged with nodes with the app and manually traces
(blue arrows) contacts engaged with nodes without the app with probability ε; an index
case who did not download the app traces all the contacts manually (blue arrows) with
probability ε.

with SXα (with the superscript α) compartments for individuals with the app. How-
ever, in the hybrid protocol an individual who downloaded the app can be traced
either with the manual protocol, with an isolation delay τC, or with the digital pro-
tocol, without isolation delay. On the contrary, a node without the app can only be
traced manually with isolation delay τC. It is necessary to introduce an additional
compartment Tα

M for nodes with app traced manually: their transition to the com-
partment of the isolated asymptomatic Tα

M → Qα occurs with rate γA = 1/(τP + τC),
while the transition Tα → Qα occurs with rate γP = 1/τP, where Tα indicates now
the compartment of asymptomatic with the app traced digitally. Thus, nodes with
the app follow the compartmental epidemic model in Figure 5.13, while nodes with-
out the app follow the compartmental epidemic model of Figure 5.4.

The population is divided into two subpopulations, however, unlike the pure
digital tracing, hybrid CT can trace links between the two different subpopulations
and within each subpopulation. Indeed, the links in the subpopulation with the app
are traced digitally, while the links between the different subpopulations and in the
app-free subpopulation are traced manually. This aspect enhances both manual and
digital CT: all links invisible to the pure digital CT due to the quenched nature of
the protocol are now traceable manually; compared to the pure manual case some
links can be traced faster and without limited scalability. Integrating the two proto-
cols the advantages of the two approaches are combined, i.e. the advantage of the
stochastic sampling of the manual CT, especially in heterogeneous populations, and
the advantage of digital CT in the rapidity of the tracing and in the scalability.
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Similarly to the purely manual and digital CT, the model is exactly mean-field
and the analytical calculation of epidemic threshold can be performed with refer-
ence to the SIS model without loss of generality (see Appendix A). We describe the
epidemic dynamics through the same activity-attractiveness-based mean-field approach
described for the manual CT in Section 5.3.

At the mean-field level, the epidemic dynamics are described by the probabili-
ties defined in Section 5.4 for the digital protocol, with these additional/redefined
probabilities: Tα

aS,bS
(t), Tα

aS,bS|M(t), 1− Aα
aS,bS

(t)− Tα
aS,bS

(t)− Tα
aS,bS|M(t)− Qα

aS,bS
(t) for

a node of class (aS, bS) with the app, that will not develop symptoms (if infected),
to be respectively asymptomatic traced digitally, asymptomatic traced manually or
susceptible at time t; TaS,bS(t), QaS,bS(t), 1− AaS,bS(t)− TaS,bS(t)− QaS,bS(t) for a node
of class (aS, bS) without the app, that will not develop symptoms (if infected), to be
respectively traced asymptomatic, isolated asymptomatic or susceptible at time t.

In the mean-field approach, the average attractiveness is:

⟨b(t)⟩ = bS − (1 − δ)( f bSQα(t) + (1 − f )bSQ(t))− δ( f bS Iα(t) + (1 − f )bS I(t)),
(5.32)

where we define g =
∫︁

daSdbSρ(aS, bS)gaS,bS . We assume to be in the thermodynamic
limit and we consider the case of ρ(aS, bS) = ρS(aS)δ(bS − aS), so in this case the
probability of adoption of the app f (aS) and the recall probability ε(aS) depend on
the activity class aS of the node.

The probabilities that define the epidemic dynamics evolve according to the fol-
lowing equations, which are obtained analogously to the equations for the manual
and digital CT separately:

∂tPaS(t) = −γPPaS(t) + 2λ(1 − PaS(t)− IaS(t))
aS

⟨b(t)⟩Z(t) (5.33)

∂t IaS(t) = −µI IaS(t) + γPPaS(t) (5.34)

∂tPα
aS
(t) = −γPPα

aS
(t) + 2λ(1 − Pα

aS
(t)− Iα

aS
(t))

aS

⟨b(t)⟩Z(t) (5.35)

∂t Iα
aS
(t) = −µI Iα

aS
(t) + γPPα

aS
(t) (5.36)

∂t AaS(t) = − µAaS(t)

+ 2λ(1 − AaS(t)− TaS(t)− QaS(t))
aS

⟨b(t)⟩W(t)

− 2λδAaS(t)
aS

⟨b(t)⟩ (aSε f − aSε f Pα(t)− aSε f Iα(t))

− 2λδAaS(t)
aS

⟨b(t)⟩ (aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t))]

(5.37)

∂tTaS(t) = − (µ + γA)TaS(t)

+ 2λδ
aS

⟨b(t)⟩ (1 − AaS(t)− TaS(t)− QaS(t))[aSε f Pα(t) + aSε(1 − f )P(t)]

+ 2λδAaS(t)
aS

⟨b(t)⟩ (aSε f − aSε f Pα(t)− aSε f Iα(t))

+ 2λδAaS(t)
aS

⟨b(t)⟩ (aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t))]

(5.38)

∂tQaS(t) = −µQaS(t) + γATaS(t) (5.39)
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∂t Aα
aS
(t) = − µAα

aS
(t)

+ 2λ(1 − Aα
aS
(t)− Tα

aS
(t)− Tα

aS|M(t)− Qα
aS
(t))

aS

⟨b(t)⟩T(t)

− 2λδAα
aS
(t)

aS

⟨b(t)⟩ (aS f − aS f Pα(t)− aS f Iα(t))

− 2λδAα
aS
(t)

aS

⟨b(t)⟩ (aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t))

(5.40)

∂tTα
aS
(t) = − (µ + γP)Tα

aS
(t)

+ 2λδ
aS

⟨b(t)⟩ (1 − Aα
aS
(t)− Tα

aS
(t)− Tα

aS|M(t)− Qα
aS
(t))aS f Pα(t)

+ 2λδAα
aS
(t)

aS

⟨b(t)⟩ [aS f − aS f Pα(t)− aS f Iα(t)]

(5.41)

∂tTα
aS|M(t) = − (µ + γA)Tα

aS|M(t)

+ 2λδ
aS

⟨b(t)⟩ (1 − Aα
aS
(t)− Tα

aS
(t)− Tα

aS|M(t)− Qα
aS
(t))aSε(1 − f )P(t)

+ 2λδAα
aS
(t)

aS

⟨b(t)⟩ [aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t)]

(5.42)

∂tQα
aS
(t) = −µQα

aS
(t) + γPTα

aS
(t) + γATα

aS|M(t) (5.43)

where

Z(t) = δ(aS f Pα(t) + aS(1 − f )P(t))

+ (1 − δ)(aS f Aα(t) + aS f Tα(t) + aS f Tα
M(t) + aS(1 − f )T(t) + aS(1 − f )A(t))

(5.44)

T(t) = δaS(1 − ε)(1 − f )P(t)

+ (1 − δ)(aS f Aα(t) + aS f Tα(t) + aS f Tα
M(t) + aS(1 − f )T(t) + aS(1 − f )A(t))

(5.45)

W(t) = δ(aS(1 − ε) f Pα(t) + aS(1 − ε)(1 − f )P(t))

+ (1 − δ)(aS f Aα(t) + aS f Tα(t) + aS f Tα
M(t) + aS(1 − f )T(t) + aS(1 − f )A(t))

(5.46)

These equations constitute a set of eleven coupled non-linear differential equa-
tions for each class aS, which are not closed nor complete due to the presence of
the averaged probabilities. Moreover, the averaged probabilities are much more in-
teresting variables compared to the single probability for each class aS. Thus, by
averaging on the activity we obtain a system of twenty-two coupled non-linear dif-
ferential equations that is closed and complete: this set of equations admits as a
solution the absorbing state, that is the configuration with all nodes susceptible. The
epidemic threshold can thus be obtained with a linear stability analysis around the
absorbing state: see Appendix A for the details of the computation of the system of
equations and for the linear stability analysis.

In this case it is not possible to obtain a closed relation for the epidemic threshold,
which can only be obtained by imposing numerically the stability of the absorbing
state, i.e. by imposing all eigenvalues of the Jacobian matrix of the system to be
negative (see Appendix A). We obtain numerically the epidemic threshold for the
hybrid protocol for arbitrary distribution of the activity ρS(aS), for arbitrary distri-
bution of the app in the population f (aS) and for arbitrary recall probability ε(aS).
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The terms in the matrix J that determines the epidemic threshold suggest that rC
depends strongly on the heterogeneity and on the high-order moments of the distri-
bution ρS(aS); furthermore it depends on the correlations ε(aS) and f (aS), but also
on the cross-correlations between f and ε, i.e. on the correlations between the prob-
ability for a node to remember their contact and to download the tracing app.

Some limit cases can be considered: by setting ε(aS) = 0 ∀ aS we obtain the same
conditions of Eq. (5.26) for the epidemic threshold, i.e. the purely digital CT; by
setting f (aS) = 0 ∀ aS we obtain the same conditions of Eq. (5.10) for the epidemic
threshold, i.e. the purely manual CT.

5.9.1 Effects of hybrid CT

In Figure 5.14a we plot the increase rAPP+MANUAL
C /rNA

C in the epidemic threshold
produced by the hybrid CT protocol with respect to the non-adaptive case for a fixed
realistic ε and varying f 2, by assuming f (aS) = f ∀aS, for realistic heterogeneous
populations. This allows to estimate the contribution of digital CT in the hybrid
protocol for different level of app adoption f , since the manual CT contribution is
fixed with ε. In general, even a small probability f allows to increase the epidemic
threshold compared to the case in which only manual CT is applied, as observed
in the inset of Figure 5.14a. Since digital CT can reach otherwise untraced nodes
and speed up tracing in some cases, even for low levels of app adoption a small
mitigation effect is present [189]. However, the digital contribution grows relatively
slowly with f 2: the contribution of digital CT is significant only for high f , i.e. an
unrealistic level of app adoption, considering the penetration of smartphones in the
population [25, 221, 225] and the current levels of app adoption (see Section 5.1.3)
[27, 227, 228].

In Figure 5.14b we plot the increase in the epidemic threshold produced by man-
ual CT in the hybrid protocol for fixed realistic f app adoption level, estimating its
contribution to the mitigation of the epidemic as ε varies. A small ε is sufficient to
obtain a strong increase in the epidemic threshold, compared to the case in which
only digital tracing was applied. Panels a and b of Figure 5.14 show that manual
and digital CT have very different effects even if integrated into a hybrid protocol:
manual CT increases the threshold rapidly, in realistic conditions of digital tracing
f ∼ 0.2, producing an increase of about 80% with only ε ≳ 0.3; digital CT, in realistic
conditions of manual tracing ε ≳ 0.3, produces a significant increase of at least 50%
only for f ≳ 0.6 − 0.75. These values are consistent with those obtained in other
works [24, 26, 27, 201, 225].

This different contribution of the two tracings to the hybrid protocol is further
shown in Figure 5.14c where the increase in the epidemic threshold produced by
the hybrid protocol rMANUAL+APP

C /rNA
C is represented as a function of f 2 and ε via a

heat-map. These differences are due to the intrinsic differences of the two protocols.
Digital CT, as we discussed in Section 5.6, is not effective in tracing superspread-
ers, while manual CT is very effective in doing so: thus by activating the manual
CT together with the digital one, a small ε is enough to effectively trace the super-
spreaders otherwise not traced digitally, strongly impacting the mitigation of the
epidemic. Then the increment saturates due to the limited scalability and delays that
characterize manual CT. By activating digital tracing together with manual tracing,
the superspreaders are already traced by the manual method and digital CT need a
high f to have a sufficiently large subpopulation with the app to involve many hubs
and many nodes, in order to speed up tracing and enhance its effectiveness.
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FIGURE 5.14: Effects of hybrid CT protocol. In panel a we plot, as a function of f 2, the ratio
rMANUAL+APP

C /rNA
C between the epidemic threshold in the presence of the hybrid protocol

and the threshold of the non-adaptive case, by fixing realistic values of ε (see legend). In the
inset the ratio rMANUAL+APP

C /rMANUAL
C , between the threshold when the hybrid protocol is

implemented and when only the manual CT is considered, is plotted as a function of f 2. In
panel b the ratio rMANUAL+APP

C /rNA
C is plotted as a function of ε, by fixing realistic values

of f 2 (see legend). In the inset the ratio rMANUAL+APP
C /rAPP

C , between the threshold when
the hybrid protocol is implemented and when only the digital CT is considered, is plotted
as a function of ε. In panel c we plot the ratio rMANUAL+APP

C /rNA
C as a function of ε and

f 2 through a heat-map. The red bash-dotted lines correspond to ε = 0.3 and f = 0.2, i.e.
the red dashed curves in panels a-b. In all panels we consider ρ(aS, bS) as Eq. (5.31) with
aS ∈ [am, aM = 103am], ν = 1.5, aS = 6.7 days−1, (1− δ) = 0.43, τP = 1.5 days, τ = TCT = 14
days, τC = 3 days and limited scalability ε(aS) as in Eq. (5.3) with kc = 130 [28].

Integrating the two tracing protocols is always an effective strategy, as the two
protocols enhance each other with their mutual advantages. However, the analy-
sis carried out also show a key role played by manual tracing in any hybrid realistic
protocol, since it produces a dominant and significantly higher contribution than the
digital one in realistically heterogeneous populations and for a realistic parametriza-
tion of the model. In particular, careful integration strategies and resources alloca-
tion policies need to be implemented in order to optimize the integration and the
outcome of CT.
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FIGURE 5.15: Effects of deterministic household CT. In panels a-b we plot, as a function of
the exponent ν, the ratio rC/rNA

C between the epidemic threshold in the presence of tracing
and the threshold in the non-adaptive case, considering both CT protocols augmented by
the additional deterministic household CT. In the inset we plot, as a function of ν, the ratio
rMANUAL

C /rAPP
C between the epidemic threshold in the presence of augmented manual CT

and the threshold of augmented digital CT. In panel a we fix τC = 3 days and f 2 = 0.1; in
panel b we fix τC = 5 days and f 2 = 0.6. In panel c the ratio rC/rNA

C is plotted as a function
of ε = f 2 + εh for both augmented CT protocols, setting ν = 1.5 and for different values of
τC. In the inset the ratio rMANUAL

C /rAPP
C is plotted as a function of τC for several values of

f 2. In all panels we consider s = 3 as the size of household, ε∗h = 1, i.e. εh = 0.028, ρ(aS, bS)

as in Eq. (5.31) with aS ∈ [am, aM = 103am], aS = 6.7 days−1, (1 − δ) = 0.43, τP = 1.5 days,
τ = TCT = 14 days and ε(aS) as in Eq. (5.3) with kc = 130 [28].

5.9.2 Deterministic household CT

The hybrid CT presented in Section 5.9 allows to model specific realistic behaviours
observed in the implementation of contact tracing in structured populations. For ex-
ample, when individuals develop symptoms, their household is always traced: this
can be modelled in our framework assuming that a number of contacts, correspond-
ing to the household, is always traced [244]. This augment both protocols with a
deterministic household tracing term, modelled with a part of the contacts always
traced, since in our model the network has no structure or memory.

Augmented digital tracing is modelled using the hybrid tracing formalism: the
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digital CT is augmented by assuming an additional manual component of tracing
activated by the index case, which traces at least s contacts equal to the size of the
household (on average s = 3 in several populations [245]). If the index case has less
than s contacts in the tracing window, all the contact will be traced: this corresponds
to fixing a recall probability εh(aS) defined as in Eq. (5.3) but with kc = s and ε∗h = 1.
The probability of tracing a contact in augmented digital CT is εh + f 2, where εh =∫︁

daSρS(aS)εh(aS). Manual CT is implemented considering both delays and limited
scalability.

The augmented manual tracing is performed with the formalism of the manual
tracing, with delay τC and limited scalability ε(aS) of Eq. (5.3), only assuming that
ε = f 2 + εh so that the probability of tracing a link is the same as compared to the
augmented digital CT. In this case, even for the augmented manual CT at least the
household tracing is performed thanks to the term εh, indeed for f 2 = 0 we have
ε = εh and therefore both augmented protocols trace a minimum fraction of contacts.

In Figure 5.15 we show that the results produced in Section 5.7 are robust with
respect to the addition of the deterministic tracing of the households, which augment
the tracing protocols. For low values of f 2, i.e. of ε = f 2 + εh, augmented manual
CT is more advantageous than augmented digital CT in heterogeneous populations:
the digital protocol becomes more effective in heterogeneous populations only for
high level of app adoption or unrealistic long delays of manual CT (see Figure 5.15).

5.9.3 Correlations in CT app adoption

In the previous Sections we always considered the tracing app uniformly distributed
over the population: however we have shown the role of superspreaders in the
epidemic and of the correlations f (aS) in shaping the epidemic threshold. More-
over, economic, social and personal factors are known to favour or disadvantage the
download of the app. Thus, it is useful to determine the contribution of digital CT
in the presence of an uneven distribution of the application.

Economic and psychological factors may have opposite forces in correlating or
uncorrelating f with the activity of the nodes aS: on the one hand, very active people
for economic reasons may decide not to download the app to avoid isolation, while
on the other hand, the most active people such as young people are those with more
modern smartphones that allow the use of the app [229]. Personal data of the trac-
ing app users are not available for privacy reasons [214, 215] although they could
shed light on the real shape of the f (aS) distribution: however, evidences emerged,
mainly through surveys during the COVID-19 pandemic, suggesting that those who
downloaded the tracing apps for COVID-19 are very cautious and inactive people,
i.e. f and aS are anti-correlated [230, 231].

To estimate the effect of app distribution in the population f (aS), we consid-
ered the hybrid tracing protocol on a heterogeneous population, investigating the
effect of digital tracing by considering different f (aS) and varying the overall level
of adoption f =

∫︁
daSρS(aS) f (aS). In order to obtain information on the effects of

correlations f (aS) we consider three limit cases, which are hardly realistic but pro-
vide useful insight in the understanding of the role of f (aS):

• the uncorrelated case: f (aS) = f ∀ aS, i.e. the app is uniformly distributed
over the population;

• the positively correlated case: f (aS) = θ(aS − ap
0), with θ(x) Heaviside step

function, i.e. the app is downloaded from all nodes with activity higher than
ap

0 ;
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FIGURE 5.16: Effects of correlations between app adoption and activity. In the up-
per panel we schematically represent the three app adoption strategies: the uniform one
f (aS) = f ∀aS, the one targeted on high-activity nodes f (aS) = θ(aS − ap

0 ) and the one tar-
geted on low-activity nodes f (aS) = θ(an

0 − aS). In the population (orange nodes) nodes
size is proportional to their activity and only individuals with the app (red edge) are dig-
itally traceable (blue nodes). In the lower panel we plot, as a function of f , the ratio
rAPP+MANUAL

C /rMANUAL
C , between the epidemic threshold for the hybrid protocol and the

threshold when only the manual CT is applied, for the three app adoption distributions. We
consider ε = 0.4, ρ(aS, bS) as in Eq. (5.31) with aS ∈ [am, aM = 103am], ν = 1.5, aS = 6.7
days−1, (1 − δ) = 0.43, τP = 1.5 days, τ = TCT = 14 days, τC = 3 days and ε(aS) as in Eq.
(5.3) with kc = 130 [28].

• the negatively correlated case: f (aS) = θ(an
0 − aS), with θ(x) Heaviside step

function, i.e. the app is downloaded from all nodes with activity lower than
an

0 .

We compare the effects of hybrid CT for the three conditions in the app distribution,
by fixing ap

0 and an
0 so that the overall level of adoption of the app in the population

is f the same.
Figure 5.16 shows that the correlations in the tracing app adoption are crucial

for determining the contribution of digital tracing in the hybrid protocol: if the app
is downloaded from all hubs (positive correlations) a minimum level of adoption
is sufficient f ∼ 0 to achieve a significant increase in the epidemic threshold; on
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the contrary, if the app is downloaded from all nodes with lower activity (negative
correlations), an almost complete adoption of the app is required f ∼ 1 to obtain a
significant increase in the epidemic threshold, much higher than that required for an
uniform app distribution.

This result is due to the key role played by superspreaders: if the adoption of the
app is targeted on large-activity nodes, all the hubs are traceable and a small f ∼ 0 is
sufficient to easily block the diffusion by quickly tracing all the hubs; on the contrary,
if the adoption is targeted on low-activity nodes, the hubs do not download the app
and sustain the epidemic, thus the digital tracing of poorly active node has no effect.
This again shows the crucial role of superspreaders.

These findings further reinforce our findings on the dominant and crucial role
of manual tracing: indeed, several evidences emerged recently on negative corre-
lations between app adoption and activity, which further advantage manual over
digital CT. Moreover, these results provide hints for optimizing the integration of
manual and digital CT in hybrid protocols: for example, a targeted adoption of the
app on more active population classes would be extremely beneficial.

The model presented indicates that manual tracing, despite its limitations, is ef-
fective in reducing the impact of an epidemic, especially in heterogeneous popula-
tions, compared to its digital version. This is due to an intrinsic difference in the
nature of the contact sampling and exploration that manual tracing perform in an
annealed configuration, as opposed to digital tracing which is in a quenched and
prearranged configuration. This is a crucial point, since it emphasizes that digital
tracing is not only a faster and more economic version of manual tracing, but they
are inherently different protocols. These fundamental differences, amplified by het-
erogeneities, can be mitigated by some technical limitations of manual CT, but they
are nevertheless insurmountable differences.

Manual tracing must play a central role in every epidemic control policy and
every hybrid tracing protocol. Effective tracing policies must be based on an accu-
rate integration of the two mechanisms, based on cost analysis, resource allocation
and optimization of their effectiveness. Our results and insights in the fundamen-
tal properties of manual and digital CT could help in designing optimized tracing
strategies.

Finally, due to the complexity of epidemic spreading and epidemic control, es-
pecially in reference to their actual implementation, we neglected some realistic el-
ements that could impact equally on both traces, such as non-complete isolation, or
could favour manual CT, such as delays in digital CT, the existence of additional
sources of heterogeneity such as in the viral load [238], in the recovery time [246]
and in the temporal interactions dynamics [85].
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Chapter 6

Contact tracing and the control of
epidemics in gatherings

In this Chapter we describe the results of Ref. [20, 32]: we discuss the higher-order
nature of social interactions, showing its crucial role in the spread of epidemics, due
to the generation of superspreading events (SSEs). We also show the role of SSEs for
COVID-19 spreading [20]. We implement contact tracing on simplicial activity-driven
networks [32], investigating its effect for an epidemic tailored to describe SARS-CoV-2
transmission. We characterize the basic mechanism of contact tracing on gatherings,
suggesting optimal tracing strategies. Finally, we show the relevance of our results
on a real dataset of gatherings collected in a University.

6.1 Simplicial nature of social interactions

In recent years, the architecture of social dynamics has been mainly modelled with
networks of pairwise interactions. This approach, as discussed in Chapters 1-2, al-
lowed to unveil the fundamental mechanisms of social dynamics and their effect
on the epidemic spreading. However, these two-body interactions represent only a
small part of social contacts, since in real settings social interactions are organized
into larger groups, whose size depends on the environment in which they were cre-
ated and on the associated social activity (e.g. meetings at work, meetings with
friends, casual encounters on public transport, attendance at school or university),
featuring heterogeneity in groups size (see Figure 1.11) [89, 92].

A description of the real contact patterns must take into account both the tem-
poral and the simplicial dimension of social interactions [89, 92]. Thus higher-order
structures need to be considered as building blocks of the social structure: more ad-
vanced and complex mathematical tools have been introduced to describe higher-
order interactions, such as hypergraphs and simplicial complexes (see Figure 6.1)
[29, 30, 91, 247].

Simplicial complexes have been introduced in detail in Section 1.6.4 (see Figure 1.9
and Figure 6.1), as collections of simplices K = {σ1, σ2, . . . , σk} including all the σi
subfaces of each dimension ∀i = 1, . . . , k. They overcome many of the limitations
of considering only pairwise interactions, for example by describing effectively so-
cial groups in which reasonably a group interaction implies also all the underlying
pairwise interactions.

Hypergraphs represent the most general mathematical framework for describing
higher-order interactions (see Figure 6.1): an hypergraph is defined by a pair (V ,H)
where V is a set of nodes and H is a set of hyperlinks, where a hyperlink is a non-
empty subset of V specifying which nodes participate to an interaction. For exam-
ple, note that a hypergraph can include a 3-body interaction [a, b, c] without any
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FIGURE 6.1: Representations of higher-order interactions. A set of interactions (panel A)
can be represented using only pairwise interactions (panel B): by means of a graph (panel
C); through a bipartite graph in which one layer corresponds to the interactions and one to
the nodes (panel D); through a network of motifs (panel E), e.g. cliques representing the
densest subgraphs (panel F). The same set of interactions (panel A) can be represented using
higher-order structures (panel G), in the form of hyperedges and simplices: through simpli-
cial complexes (panel H), which require the presence of all possible sub-simplices (panel J)
and make it possible to distinguish higher-order interactions or combinations of low-order
interactions (panel I); through hypergraphs (panel L) which are a more flexible representa-
tion than simplicial complexes (panel K). Image from [29] under CC BY 4.0 license.

constraints on the existence of the two-body interactions [a, b], [a, c] and [b, c], unlike
a simplicial complex. This mathematical structure is extremely flexible, but at the
cost of higher complexity, for example it can be very complicated to extend concepts
of graph theory to them [29].

Higher-order structures exhibit structural properties that strongly differ from the
simple pairwise representation [29, 247]; moreover the simplicial nature of interac-
tions profoundly impacts epidemic processes occurring on such structures (see Sec-
tion 2.3.4). In the presence of higher-order interactions, new contagion mechanisms
are active beside the standard simple contagion, such as simplicial and complex con-
tagions (see Figure 2.11), which produce a rich and complex epidemic dynamics [30].

Even considering simple contagion alone, an epidemic on a system with higher-
order interactions is characterized by an extremely different dynamic compared to
the spread on a network of pairwise interactions [29, 87]. The formation of large
social groups implies the formation of a number of connections that grows quadrat-
ically with the size of the group: this can be highly dangerous for the generation
of explosive superspreading events (SSEs). Understanding these types of events is
critical for characterizing the spread of an epidemic.

6.1.1 Superspreading events (SSEs)

A key role in the epidemic spreading is played by superspreading events (SSEs), that
are events in which a large number of infections occurs at the same time, compared

https://creativecommons.org/licenses/by/4.0/
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a b c

FIGURE 6.2: Superspreading events (SSEs). Panel a shows an infection network character-
ized by SSEs, which appear as hubs (coloured dark red), while most of the nodes feature
small degree being events with few infections. The network is obtained with k = 0.1 dis-
persion parameter, i.e. 80% of infections are caused by 10% of the population. k provides
a measure of the intensity of the SSEs (see panel b): low k corresponds to strong SSEs (e.g.
COVID-19, MERS, SARS), while higher k represents diseases more homogeneous (e.g. 1918
pandemic flu). In panel c an infection network is shown without SSEs. Image from [248]
under CC BY 4.0 license.

to the usual events. Hence, they represent a constant fuel for the epidemic, sustain-
ing and driving the transmission. Their presence may be due to specific pathogen
transmission mechanisms, e.g. specific transmission mechanisms in different envi-
ronments, such as closed and poorly ventilated environments for pathogens charac-
terized by airborne transmission, and to the interaction dynamics, e.g. large gather-
ings [31]. Indeed, in the latter case an infected node experiences a significant increase
in the susceptible population reachable compared to the usual average. See Figure
6.2 for a schematic representation of infection networks with and without SSEs.

Epidemics characterized by SSEs feature an overdispersion in the transmissibil-
ity: few cases are responsible for the majority of infections (Pareto rule or 80/20 rule),
while most of the infected individuals do not generate secondary infections, produc-
ing outbreak extinctions (see Figure 6.2) [31, 249, 250]. Indeed, most of the infections
are determined by SSEs events, i.e. by a limited number of explosive events. Thus,
the early epidemic phases are characterized by a higher randomness and stochas-
ticity, with rare and explosive increases in the number of new secondary infections
reported in the first few generations [31, 249]. After the initial stages the growth
becomes exponential, since the number of infected individuals is high enough to
continuously produce SSEs, which act as the fuel for the epidemic and for the out-
breaks.

6.1.2 SSEs in COVID-19 pandemic

Superspreading events have been identified during the COVID-19 pandemic, even
in the early stages of the pandemic, suggesting that the transmission of SARS-CoV-2
is mainly driven by SSEs [31, 249]. During the early stages of the COVID-19 pan-
demic, I spent a research period at the EPIcx lab of the Pierre Louis Institute of Epi-
demiology and Public Health (INSERM, Sorbonne Université - Paris). We dealt with
the early data on the spread of COVID-19 in China and outside China, developing
risk assessments of the pathogen importation.

https://creativecommons.org/licenses/by/4.0/
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FIGURE 6.3: Imported cases of COVID-19 by date of travel and of reporting. We plot
the number of confirmed international cases of COVID-19 imported outside China by date
of travel and by date of reporting, between 03rd January 2020 and 13th February 2020.
Coloured stars correspond to the model predictions, while void stars correspond to impor-
tations from Iran and Italy, originated in late February 2020 and not captured by the model
because of its assumptions. We also indicate the timing of the interventions implemented by
China to contain the spreading. Image from [20] under CC BY 4.0 license.

We collected and recorded all the available information for the first 288 con-
firmed COVID-19 cases outside China from 03rd January 2020 to 13th February
2020, through institutional sources (e.g. local Ministry of Health), health authori-
ties and the media [20, 251]. We traced each of the 288 cases in detail, identifying
whether they were successfully identified and isolated after the travel from China,
whether they resulted in onward transmission or whether they originated from lo-
cal transmission. We built a model for the temporal dynamics of the number of
confirmed cases outside China, accounting for the control measures implemented
in China [107], for the early stages of COVID-19 spread when China was the only
epicentre of the epidemic and in the other states extensive local transmission had
not been identified. The model, whose results are shown in Figure 6.3, shows the
strong effectiveness of the drastic measures imposed by China, i.e. travel bans and
containment measures, and estimates that only the 36% of imported cases were de-
tected, i.e 6 out of 10 imported cases went undetected. This underdetection fuelled
local community transmission in many states, leading in the late February 2020 to a
sustained transmission in many states around the world (e.g. Italy, Iran).

The detailed tracing of the first clusters of COVID-19 infection allowed to obtain
important information on the basic mechanisms of transmission, in particular on
superspreading events. Despite in that period the testing capacity was low and the
actual number of infections was underestimated, we identified numerous SSEs. One
of the most well-known superspreading events, also reported by media [252], was
the case of GB03 (according to our database [251]): an asymptomatic Briton who

https://creativecommons.org/licenses/by/4.0/
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infected at least 11 people at a ski resort in the Alps (cluster cFR02). The index case
GB03 was infected during a conference at the Grand Hyatt Singapore (cluster cSG02),
in which at least 8 infections occurred. We identified other SSEs: the contagion of at
least 16 people in the cluster cDE01 in Germany with index case DE0; the contagion
of at least 10 people in the cluster cSG01 in Singapore at the Yong Thai Hang shop.

All these events show the role of SSEs, occurring mainly in social environments,
in the early stages of the pandemic, which shaped the stochastic dynamics observed
in the number of imported confirmed cases (see Figure 6.3).

In the following phases the evidences of the role of SSEs in COVID-19 transmis-
sion were consolidated [31, 249, 253–257]. A huge number of SSEs have been ob-
served and documented worldwide [258, 259], whose details have been collected in
several databases [253, 260, 261]: these events are predominantly related to social ac-
tivities (e.g. religious events, restaurants, sporting events, conferences) and almost
always involve large social groups, i.e. large gatherings. They also occur mostly
indoors, in crowded and poorly ventilated environments, due to the transmission
mechanisms of SARS-CoV-2 [253, 260, 261].

The SARS-CoV-2 transmission dynamics is mainly driven and sustained by su-
perspreading events: indeed about 60-75% of new infected individuals do not pro-
duce secondary infections, while about 10-20% of them produce 80% of secondary
infections, propelled by SSEs (see Figure 6.2) [249, 250].

The presence of superspreading events cannot be overlooked due to their central
role in transmission dynamics. This is crucial for the development of control and
containment measure.

6.1.3 Control of epidemics in gatherings

On the one hand SSEs are threatening, but on the other hand they can be exploited
to improve the effectiveness of response measures with the same resources imple-
mented, since optimized targeted measures on SSEs are more effective than population-
wide ones [31, 249, 257].

The control of outbreaks and their suppression can be obtained by reducing the
size and frequency of SSEs: trimming the heavy tails of large secondary infections
by blocking the SSEs would make the transmission chains collapse more frequently
leading to the extinction of the outbreaks [31]. This goal can be pursued with differ-
ent control and containment measures [31, 249] due to the different possible sources
of SSEs. The first targeted measures for limiting SSEs consisted in the closure of non-
essential social activities in which the risk of SSEs was higher (e.g. gyms, restaurants)
with strong economic, social and psychological costs. Thus, an alternative strategy
was that of controlling SSEs by implementing limitations to the maximum size of
allowed gatherings: in many states gatherings beyond a certain size sM were pro-
hibited, with sM ranging in 4 − 1000 according to the epidemiological situation [19,
262]: also limiting the gatherings size proved to be an effective measure for limiting
SSEs [19, 248, 254, 262, 263].

These interventions are incompatible with a fully active population: hence, al-
ternative measures should be developed to limit SSEs and at the same time keep
the population active, without activity disruption. One of the main measures for
controlling SSEs is intensive contact tracing, which identifies individuals who par-
ticipated in a superspreading event and remove them from the chains of infection:
for example, CT allowed to identify the largest cluster of infection in South Korea at
the Shincheonji Church in which more than 5000 cases were produced [31].
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a b

FIGURE 6.4: Forward and backward CT. In panel a a schematic representation of forward
CT is shown: starting from known cases (black), only people exposed to them and poten-
tially infected by them (forward) are notified and isolated (green). In panel b a schematic
representation of bidirectional CT, i.e. forward and backward CT combined, is shown: start-
ing from known cases (black), people exposed to them (forward) and also potential infectors
(backward) are notified and isolated (green). Image from [188] under CC BY 4.0 license.

The effectiveness of CT significantly increases if CT not only searches to whom
the diseases spread (from the index case) but also searches the infector of the in-
dex case [188, 202, 249, 264]. Indeed, when considering pairwise interactions, two
CT mechanisms can be identified (see Figure 6.4): forward CT, which searches for
individuals infected by the index case who activate the CT: thus this tracing pro-
gresses forward in time; backward CT, which searches for the primary source of in-
fection of the index case who activate the CT: thus this tracing progresses backward
in time. For the real implementation, the two mechanisms differ in the time window
on which the CT is activated, since backward CT requires to consider wider time
windows in order to be activated. The backward CT is therefore more expensive
and labour-intensive, requiring to trace a higher number of people for each index
case [249].

In the presence of SSEs backward CT is extremely effective. Each newly infected
individual has a high probability of being infected in a SSEs and of transmitting the
infection to few people, due to overdispersion: therefore the forward CT can trace
only a small number of individuals, while the backward CT is able to identify and
trace SSEs (see Figure 6.4) [188, 202, 264]. Bidirectional tracing, which combines
forward and backward CT, has been successfully implemented in Japan [249, 265–
267]. Conversely, the European countries mainly implement forward CT, due to the
high cost of implementing backward CT [249, 268, 269].

All these results on the efficacy of the CT were obtained considering branching
processes and static networks, i.e. only for pairwise interactions. However, a crucial
role in the generation of SSEs is played by large gatherings, whose modelling re-
quires considering higher-order interactions. To determine the overall effectiveness
of CT, its basic mechanisms and its effect on SSEs, it is necessary to take into account
the simplicial nature of social interactions.

The effectiveness and basic mechanisms of CT on gatherings and groups have
not been fully assessed so far: in the next Sections we introduce an epidemic model
on a simplicial temporal activity-driven network, with the implementation of CT on
groups and gatherings [32].

https://creativecommons.org/licenses/by/4.0/
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6.2 Epidemics on simplicial AD network

We consider an epidemic model describing the main clinical phases of SARS-CoV-
2 [16, 179, 236], which is applicable to any infectious disease presenting asymp-
tomatic and presymptomatic transmission as observed for COVID-19 [106, 195–197,
270, 271]. The epidemic model is composed of five compartments: S susceptible, A
infected asymptomatic, P infected presymptomatic, I infected symptomatic, and R
recovered (see Figure 6.5). Susceptible individuals can be infected with probability
λ when involved in a contact with an infected node (either A, P and I). An infected
node has probability δ of following a symptomatic route, becoming presymptomatic

after infection S λδ−→ P, and a probability (1 − δ) of following the asymptomatic

route becoming infected asymptomatic S
λ(1−δ)−−−−→ A. A presymptomatic individ-

ual spontaneously develops symptoms with rate γP becoming symptomatic: with
a Poissonian process P

γP−→ I where γP = 1/τP and τP is the average duration of
the presymptomatic phase. Asymptomatic and symptomatic nodes recover sponta-
neously respectively with rate µ = 1/τ and µI = µγP/(γP − µ), so that the average
period of contagiousness is τ for both symptomatic and asymptomatic ones. The
model neglects hospitalizations and deaths, which do not modify the dynamics of
infection and do not modify the results on the effectiveness of the CT.

The epidemic model is implemented on an equivalent formulation of the sim-
plicial activity-driven model (SAD) introduced in Section 1.6.4. The building blocks
of the model are simplices which describe social groups [87]: the individuals in the
population are represented by nodes and interact with each other by participating
in active simplices of different sizes. The network of interactions evolves over time
through a Poissonian activation dynamics of simplices with activation rate a, i.e.
the activity of simplices. The activation of a simplex of size s corresponds to an in-
stantaneous event (see Section 1.6.4), thus the links are destroyed and the process is
then iterated without memory of past interactions. The size of an active simplex s is
extracted from the distribution Ψ(s), which model the heterogeneity in the gather-
ings size [87, 89, 92]. See Figure 6.5 for a schematic representation of the simplicial
network evolution.

The nodes participating in an active simplex are randomly selected in the pop-
ulation, with probability pj ∝ bj proportional to their attractiveness bj [14, 28, 72].
We assume that initially each node is assigned an attractiveness bS in the susceptible
state, extracted from the distribution ρS(bS). As discussed in Chapter 4, adaptive
behaviours can be modelled by a change in the attractiveness of a node: thus, we as-
sume that the attractiveness bX of a node changes with the dynamic state of the node
X = {S, P, I, A, R} (see Figure 6.5). Susceptible S, presymptomatic P, asymptomatic
A and recovered R individuals participate in simplices with the same probability,
i.e. they do not change attractiveness bS = bA = bP = bR; while symptomatics I
are immediately isolated bI = 0 upon the symptoms development and do not par-
ticipate in active simplices [241]. Notice that P presymptomatic individuals can also
represent individuals with mild symptoms still participating in simplices, at least
for some time before isolation. These adaptive behaviours are implemented in ac-
tive formulation (see Chapter 4), with the aim of guaranteeing the functionality and
activity of the population [14].

Hereafter, we consider the homogeneous case ρS(bS) = δ(bS − b) in which all
nodes participate with the same probability in active simplices (when they are not
isolated), i.e. bS = bA = bP = bR = b: this allows to develop a completely analytical
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FIGURE 6.5: Epidemic model without contact tracing and network evolution. In panel a we
schematically represent the compartmental epidemic model without contact tracing and the
corresponding adaptive activity-driven network, with different attractiveness bX depending
on the health status of the node X. In panel b a schematic representation of the temporal
evolution of the simplicial activity-driven network is shown: simplices of different size s ac-
tivate over time and involve randomly selected (green) nodes in instantaneous interactions,
creating a fully connected cluster.

description of the epidemic dynamics, even in the presence of CT. See Chapter 5 for
details on the effects of heterogeneity in agents behaviour [28].

The control parameter of the epidemic model is the infection probability λ and
the epidemic threshold is λC, i.e. the critical value of λ above which the epidemic
produce extensive outbreaks, reaching a finite fraction of the entire population.

The epidemic threshold can be obtained analytically through a mean-field approach
(see Appendix C for the detailed derivation), which is exact since all local correla-
tions are destroyed by the random selection of participants in the simplices without
memory (Markovian dynamics). In the non-adaptive case (NA), i.e. if we assume
that also symptomatic individuals are not isolated bI = bS, we obtain:

λNA
C =

µ

a⟨s(s − 1)⟩ =
µ

n
, (6.1)

where ⟨ f (s)⟩ =
∫︁

dsΨ(s) f (s) and n = a⟨s(s − 1)⟩ is the average number of contacts
engaged by an individual per unit of time. This threshold is that of Eq. (2.72), since
the epidemic model is the SIR model in which the infected are distinguished in P, A
and I but with no differences in their behaviour or infectiousness.

If we consider the isolation of symptomatic individuals bI = 0, the threshold is
(see Appendix C for the detailed derivation):

λ
sympto
C = λNA

C

γP
µ

δ + γP
µ (1 − δ)

. (6.2)
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P I

FIGURE 6.6: Contact tracing on simplices. We schematically represent the contact tracing
on simplices: a presymptomatic individual (red node) develops symptoms at time t and
activates CT on all the simplices in which participated over the time window TCT .

These results represent the baseline on which we will evaluate the effect of the trac-
ing of gatherings.

6.3 Contact tracing on simplices

On the proposed model we introduce the contact tracing in its manual formulation,
to trace and isolate asymptomatic infected individuals. The CT is activated by a
presymptomatic individual who develops symptoms and is isolated P → I: each
of the simplices in which the index case participated in the time window TCT is
traced as a whole with recall probability ϵ(s) regardless of the actual number of
presymptomatic nodes in it. All nodes that participated in a traced simplex are
tested and, if found in the asymptomatic infected state A, are isolated: see Figure
6.6 for a schematic representation of the tracing procedure. The CT is directly imple-
mented on simplices, which are traced as a whole, thus implementing a tracing on
gatherings.

This is a realistic implementation of the tracing of gatherings: generally health
authorities trace an event with a certain probability ϵ(s) if it contained at least one
node which then became symptomatic. For example school class are very easy to
be traced even with just one symptomatic, while gatherings on public transport are
almost impossible to be traced even in presence of many presymptomatic in the
gathering. This allows to model specific policies and tracing strategies on gather-
ings and events implemented by authorities. Moreover, this approach realistically
assumes that the entire event or gathering is identified as a cluster of infection and
is traced as potentially contagious, as a whole group [249, 252, 259, 272].

The probability ϵ(s) takes into account several factors: first of all, the recall prob-
ability, i.e. the fact that the index case can report only a part of the gatherings in
which participated, for limited memory but also for the decision of not reporting
all the simplices. Furthermore, ϵ(s) takes into account that some of the gatherings
are very easy to be traced (e.g. school classes or work meetings), while others are
almost impossible to be reconstructed (e.g. gatherings on public transport, restau-
rants or shops). Finally, note that we consider the general case of ϵ(s) dependent on
the simplex size: this allows to model realistic conditions of correlations between the
probability of tracing a simplex and its size, or specific tracing strategies on gather-
ings guided by their size (e.g. targeted).

The tracing is implemented by introducing two further compartments into the
compartmental model: AT traced asymptomatic and AQ isolated asymptomatic.
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FIGURE 6.7: Epidemic model with contact tracing. We schematically represent the enlarged
compartmental epidemic model with contact tracing on gatherings, explicitly differentiating
its forward, backward and sideward implementations: the transition rates for the infection
and for the tracing are discussed in detail in Appendix C. Moreover, we show the corre-
sponding adaptive activity-driven network, with different attractiveness bX depending on
the dynamic status of the node X.

Asymptomatic individuals A become traced asymptomatics AT as soon as they par-
ticipate in a simplex with a presymptomatic individual who will then activate CT
and trace the simplex (with probability ϵ(s)). A traced node AT is still infectious, be-
having as susceptible bAT = bS and participating in new simplices, and with a rate
γA is isolated AT

γA−→ AQ; isolated asymptomatic nodes AQ are no longer infectious
bAQ = 0, since they do not participate in simplices (see Figure 6.7 for the complete
epidemic compartmental model with CT). We assume that the tracing is faster than
the epidemic evolutions, hence it can be considered instantaneous: thus, the transi-
tion AT → AQ occurs with rate γA = γP = 1/τP, i.e. the same rate of symptoms
onset, taking into account the need for the index case to develop symptoms to acti-
vate CT. See Chapter 5 for details on the effects of delay in CT [28].

The epidemic model corresponds to a SIR model where infected individuals are
distinguished on the basis of the presence of symptoms, the tracing and isolation sta-
tus, identifying different states during the period of contagiousness (see Figure 6.7).
Furthermore, the model is exactly mean-field given that the dynamics is Markovian
and there are no local correlations, which are continuously destroyed by the random
selections of participants for active simplices: this allows to state that the SIS and
SIR model have the same epidemic threshold [126, 128–130]. Hence, the analytical
calculation of epidemic threshold is performed for the SIS model (see Appendix C).

The epidemic dynamics can be described through a mean-field approach, since all
nodes participate equally in active simplices, featuring the same attractiveness b,
and since the model is exactly mean-field. The epidemic dynamics is described by
the probabilities X(t) that a node belongs to the compartment X at time t, with X =
{S, P, I, A, AT, AQ}. In this approach the average attractiveness is ⟨b(t)⟩ = b[S(t) +
P(t) + A(t) + AT(t)], we assume to be in the thermodynamic limit and we consider
arbitrary ϵ(s) and Ψ(s).

The evolution equations for the probabilities X(t) can be obtained by considering
the simplices temporal evolution, the epidemic spreading and the adaptive coupling
between the two dynamics due to symptomatic isolation and CT. In Appendix C we
report in details all the contact-induced (e.g. infection and tracing) and spontaneous
(e.g. recovery) transitions.
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The probability P(t) that a node is infected presymptomatic evolves accordingly
to the equation (see Appendix C for the detailed derivation):

∂tP(t) = −γPP(t) + a
S(t)

S(t) + Y(t)
δ

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

, (6.3)

where Y(t) = P(t) + A(t) + AT(t). The first term on the right-hand side takes
into account the spontaneous development of symptoms, while the second term de-
scribes symptomatic infections within active simplices.

The temporal evolution of the probability I(t) that a node is infected symp-
tomatic is governed by the equation:

∂t I(t) = −µI I(t) + γPP(t), (6.4)

where the first and second terms on the right-hand side are respectively due to spon-
taneous recovery and spontaneous symptoms development.

The probability A(t) that a node is infected asymptomatic evolves accordingly
to the equation (see Appendix C for the detailed derivation):

∂t A(t) = −µA(t) + a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− C(t),

(6.5)
where Y(t) = P(t) + A(t) + AT(t). The first term on the right-hand side takes into
account spontaneous recovery, the second term describes asymptomatic infections
within active simplices and the third term C(t) is the CT term.

The evolution equation for the probability AT(t) that a node is traced asymp-
tomatic is:

∂t AT(t) = −(µ + γP)AT(t) + C(t) (6.6)

where the first term on the right-hand side is due to the spontaneous recovery and
to the isolation of traced asymptomatic, the second term C(t) is the CT term.

Finally, the temporal evolution of the probability AQ(t) that a node is isolated
asymptomatic is:

∂t AQ(t) = −µAQ(t) + γP AT(t), (6.7)

where the first term on right-hand side is due to spontaneous recovery while the
second term accounts for isolation of traced asymptomatic nodes.

The set of equations describing the epidemic can be completed by obtaining the
tracing term C(t), which closes the equations for the probabilities A(t) and AT(t).
When contact tracing is implemented on gatherings three basic tracing mechanisms
are activated: forward CT, backward CT and sideward CT. Therefore, the tracing
term C(t) in the mean-field equations is the sum of three contributions:

C(t) = CForward(t) + CBackward(t) + CSideward(t). (6.8)

Forward and backward CT have been briefly described in Section 6.1.3, highlighting
their differences and effects in model with pairwise interactions; the sideward CT
is a mechanism emerging from the implementation of the tracing on gatherings,
which exploits the higher-order structure of the interactions and we first identify in
simplices, dubbing it sideward CT for its basic lateral mechanism (see Section 6.3.3).
Each of the three CT mechanisms contributes to the epidemic equations differently,
depending on their properties and basic functioning.
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FIGURE 6.8: Forward CT on simplices. We schematically represent the forward CT on sim-
plices: the detailed description of the CT mechanism is reported in the main text and in
Appendix C.

6.3.1 Forward CT

The forward CT is a tracing mechanism that searches individuals infected by the
index case before detection, thus it occurs following the infection links forwards in
time. In particular, forward CT looks for asymptomatic individuals infected by a
presymptomatic individual, who activates CT upon symptoms development.

This mechanism is activated if in a simplex there are at least one presymptomatic
node and one susceptible node, who is infected by the presymptomatic with an
asymptomatic infection. If the presymptomatic node effectively traces the simplex
(probability ϵ(s)), the susceptible node is traced at the time of the infection event, i.e.
directly becomes traced asymptomatic S → AT, and will then be isolated AT → AQ
when the presymptomatic develops symptoms. In Figure 6.8 a schematic represen-
tation of forward CT is shown.

Forward tracing takes place along the infection link that generates the infected
asymptomatic and in the same direction of the pathogen transmission: thus it is
dubbed as forward CT (see Figure 6.8).

The forward CT term in the mean-field equations is (see Appendix C for the
detailed derivation):

CForward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

P(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

, (6.9)

where we recall that Y(t) = P(t) + A(t) + AT(t). This term accounts for the activa-
tion a of a simplex, the probability sS(t)/(S(t) + Y(t)) that a susceptible node par-
ticipates in a simplex of size s and the probability

[︂
1 − (1 − λP(t)/[S(t) + Y(t)])s−1

]︂
that among the remaining (s − 1) nodes at least one of them is presymptomatic and
infects the susceptible one with an asymptomatic infection (1 − δ). Finally ϵ(s) is
the probability that the simplex is traced and the term is averaged over the size s of
the active simplex.
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FIGURE 6.9: Backward CT on simplices. We schematically represent the backward CT on
simplices: the detailed description of the CT mechanism is reported in the main text and in
Appendix C.

6.3.2 Backward CT

The backward CT is a tracing mechanism that searches for the primary source of
infection of the index case, thus it occurs following the transmission chain back-
wards in time. In particular, backward CT looks for asymptomatic individuals who
infected a susceptible through symptomatic infection, producing a presymptomatic
that activates CT upon symptoms development.

This mechanism is activated if in a simplex there are an asymptomatic node and
at least one susceptible node, who is infected by the asymptomatic node with symp-
tomatic infection. If the new presymptomatic node effectively traces the simplex
(probability ϵ(s)), the asymptomatic node is traced at the time of the infection event,
i.e. becomes traced asymptomatic A → AT, and will then be isolated AT → AQ
when the presymptomatic develops symptoms. The asymptomatic nodes traced
with backward CT are already infected when entering in the active simplex, thus be-
fore tracing they have potentially already infected other nodes, at least in the traced
simplex. In Figure 6.9 a schematic representation of backward CT is shown.

Backward tracing takes place along the infection link that generates the index
case but in the opposite direction of the pathogen transmission: thus it is dubbed
backward CT, following the infection process backwards in time (see Figure 6.9).

The backward CT term in the mean-field equations is (see Appendix C for the
detailed derivation):

CBackward(t) = a
A(t)

S(t) + Y(t)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λδ

S(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

, (6.10)

where we recall that Y(t) = P(t) + A(t) + AT(t). This term accounts for the activa-
tion a of a simplex, the probability sA(t)/(S(t) + Y(t)) that an asymptomatic node
participates in a simplex of size s and the probability

[︂
1 − (1 − λδS(t)/[S(t) + Y(t)])s−1

]︂
that among the remaining (s − 1) nodes at least one of them is susceptible and in-
fected by the asymptomatic node with a symptomatic infection. Finally ϵ(s) is the
probability that the simplex is traced and the term is averaged over the size s of the
active simplex.
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FIGURE 6.10: Sideward CT on simplices. We schematically represent the sideward CT on
simplices: the detailed description of the CT mechanism is reported in the main text and
in Appendix C. Sideward CT can be activated both if the infector is infected asymptomatic
A or traced asymptomatic AT . In the former case, the backward CT is also activated in the
same simplex by the new presymptomatic S → P, as shown in Figure 6.9: for simplicity we
do not indicate this tracing.

6.3.3 Sideward CT

The sideward CT is a tracing mechanism that indirectly traces individuals who par-
ticipated in a gathering together with the index case, who activates the CT, even if
they were not directly infected by nor they have directly transmitted the infection
to the index case. It is a qualitatively different tracing mechanism compared to the
forward and backward CT, which instead trace links in which the nodes involved
are directly linked by an infection event. In particular, the sideward CT searches for
asymptomatic individuals infected by other asymptomatics, exploiting the presence
in the simplex of a third presymptomatic node, who activates CT.

This mechanism is activated if in a simplex there are at least one asymptomatic
node (or traced asymptomatic), a susceptible node that is infected by the asymp-
tomatic (or traced asymptomatic) node with an asymptomatic infection and at least
one susceptible node that is infected by the asymptomatic node (or traced asymp-
tomatic) with a symptomatic infection. If the new presymptomatic node effectively
traces the simplex (probability ϵ(s)), the new asymptomatic node is traced, with
sideward CT, at the time of the infection event, i.e. directly becomes traced asymp-
tomatic S → AT, and will then be isolated AT → AQ when the presymptomatic
develops symptoms. In Figure 6.10 a schematic representation of forward CT is
shown. Note that the backward CT is also activated on the source of infection of the
presymptomatic, i.e. on the asymptomatic node that entered the simplex infected.

Sideward tracing occurs laterally and indirectly, since it takes place along a link
that does not transmit the infection: indeed, the tracing occurs along the contact be-
tween the new presymptomatic index case S → P and the new asymptomatic node
S → AT, while the infections occurred along the contacts connecting the asymp-
tomatic (or traced asymptomatic) individual and the two susceptibles. Thus, we
dub this mechanism as sideward CT (see Figure 6.10).

The sideward CT requires the presence of a gathering of size s ≥ 3: this necessary
condition and the lateral nature of sideward CT highlight that this mechanism is
peculiar of CT on gatherings, exploiting the simplicial structure of the interactions.
In model with pairwise interactions sideward CT cannot be activated.
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Forward CT Backward CT Sideward CT
Involved

Nodes
P

S → AT

A
S → P

A/AT
S → AT
S → P

Traced
Nodes S P−→ AT A → AT S

A/AT−−→ AT

Conditions
Tracing following
forwards infection

link. Existing ∀s

Tracing following
backwards

infection link.
Existing ∀s

Lateral tracing
following a link
different from
infection links.

Existing for s ≥ 3

TABLE 6.1: Summary of the basic mechanisms of CT on simplices. We summarize the
main features of forward, backward and sideward CT, distinguishing the nodes involved in
the process, the traced nodes and the conditions for the specific CT mechanisms to occur.

The sideward CT term in the mean-field equations is (see Appendix C for the
detailed derivation):

CSideward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

A(t) + AT(t)
S(t) + Y(t)

)︃s−1
]︄

×
[︄

1 −
(︃

1 − λδ
S(t)

S(t) + Y(t)

)︃s−2
]︄⟩︄ (6.11)

where we recall that Y(t) = P(t) + A(t) + AT(t). This term accounts for the activa-
tion a of a simplex, the probability sS(t)/(S(t)+Y(t)) that a susceptible node partic-
ipates in a simplex of size s, the probability

[︂
1 − (1 − λ[A(t) + AT(t)]/[S(t) + Y(t)])s−1

]︂
that among the remaining (s− 1) nodes at least one of them is infected asymptomatic
(or traced asymptomatic) and infects the susceptible node with an asymptomatic in-
fection (1 − δ), the probability

[︂
1 − (1 − λδS(t)/[S(t) + Y(t)])s−2

]︂
that at least one

of the remaining (s − 2) nodes is susceptible and is infected in the simplex with a
symptomatic infection. Finally ϵ(s) is the probability that the simplex is traced and
the term is averaged over the size s of the activate simplex.

6.3.4 Complete CT on gatherings

When the contact tracing is implemented on gatherings, over a sufficiently large time
window TCT, all three tracing mechanisms are active. These mechanisms solve all
the possible tracing processes: symptomatic individuals are immediately isolated
with the appearance of symptoms; asymptomatic individuals are traced and iso-
lated at their infection with forward CT, if infected by a presymptomatic node, and
with sideward CT, if infected by an asymptomatic node (or traced asymptomatic);
asymptomatic individuals who escape forward and sideward CT are traced with
backward CT when they infect an individual with symptomatic infection. The three
tracing mechanisms are qualitatively different: a comparison between the tracing
mechanisms is shown in Table 6.1 and comparing Figures 6.8-6.10.

The tracing processes described consider the necessary and sufficient conditions,
i.e. the minimum conditions, for the CT mechanisms to be activated: they describe
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the first-order mechanisms in the density of infected individuals, requiring the pres-
ence of one infected individual for the activation of CT. For example, the sideward
CT could be activated even if the two infections are generated by two distinct in-
fected individuals or if a presymptomatic individual is present initially in the sim-
plex, without the need for a symptomatic infection: however these are second-order
terms, requiring the presence of at least two infected nodes initially in the simplex.
We only consider first-order terms, since we focus on the epidemic threshold and all
the higher-order terms do not survive the linearization procedure for the calculation
of the threshold. Moreover, as discussed in Chapter 5, contact tracing is applicable
only in low incidence regimes, i.e. when the system is near the critical point [249]:
thus, in realistic regimes for CT implementation it is a good approximation to con-
sider only the first-order mechanisms for CT activation.

The CT terms obtained for the different tracing mechanisms allow to obtain the
complete CT term C(t) in Eqs. (6.5) and (6.6) for the evolution of A(t) and AT(t),
closing the set of Eqs. (6.3)-(6.7) (see Appendix C):

∂tP(t) = −γPP(t) + a
S(t)

S(t) + Y(t)
δ

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

(6.12)

∂t I(t) = −µI I(t) + γPP(t) (6.13)

∂t A(t) = −µA(t) + a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− CForward(t)− CBackward(t)− CSideward(t)
(6.14)

∂t AT(t) = −(µ + γP)AT(t) + CForward(t) + CBackward(t) + CSideward(t) (6.15)
∂t AQ(t) = −µAQ(t) + γP AT(t) (6.16)

with:

CForward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

P(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

(6.17)

CBackward(t) = a
A(t)

S(t) + Y(t)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λδ

S(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

(6.18)

CSideward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

A(t) + AT(t)
S(t) + Y(t)

)︃s−1
]︄

×
[︄

1 −
(︃

1 − λδ
S(t)

S(t) + Y(t)

)︃s−2
]︄⟩︄ (6.19)

where S(t) = 1 − P(t)− I(t)− A(t)− AT(t)− AQ(t), Y(t) = P(t) + A(t) + AT(t).
The CT terms feature a non-trivial dependence on the probability of infection λ:

this complicates the calculation of the epidemic threshold and requires to consider
λ as the control parameter, since in this case µ is not simply a scaling factor of λ
and the stability conditions do not depend solely on λ/µ (see Section 6.7.1). The
critical behaviour of the system is defined by the epidemic threshold λC, i.e. the
critical value of λ, above which the system reaches a finite fraction of the population
through extensive outbreaks.

Eqs. (6.12)-(6.16) admit the absorbing state, in which all individuals are suscepti-
ble, as a stationary state: thus, the epidemic threshold can be obtained by imposing
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the stability of the absorbing state, through a linear stability analysis. We linearize
Eqs. (6.12)-(6.16) around the absorbing state, obtaining a closed and complete set of
five linear coupled differential equations:

∂tP(t) = −γPP(t) + λδa⟨s(s − 1)⟩[P(t) + A(t) + AT(t)] (6.20)
∂t I(t) = −µI I(t) + γPP(t) (6.21)

∂t A(t) = −µA(t) + λ(1 − δ)a⟨s(s − 1)⟩[P(t) + A(t) + AT(t)]

− CForward(t)− CBackward(t)− CSideward(t)

(6.22)

∂t AT(t) = −(µ + γP)AT(t) + CForward(t) + CBackward(t) + CSideward(t) (6.23)
∂t AQ(t) = −µAQ(t) + γP AT(t) (6.24)

with the linearized CT terms:

CForward(t) = λ(1 − δ)a⟨ϵ(s)s(s − 1)⟩P(t) (6.25)

CBackward(t) = a
⟨︂

ϵ(s)s
[︂
1 − (1 − λδ)s−1

]︂⟩︂
A(t) (6.26)

CSideward(t) = λ(1 − δ)a
⟨︁
ϵ(s)s(s − 1)

[︁
1 − (1 − λδ)s−2]︁⟩︁ [A(t) + AT(t)] (6.27)

This approach allows to obtain the epidemic threshold for an arbitrary epidemic
with asymptomatic and presymptomatic infection (arbitrary epidemiological pa-
rameters) in the presence of CT on gatherings, for arbitrary distribution of the sim-
plex size Ψ(s) and for arbitrary recall probability ϵ(s).

In the general case it is not possible to obtain a closed relation for the epidemic
threshold λC, which can only be obtained by imposing numerically the stability of
the absorbing state (see Appendix C). However, in some limit cases it is possible to
solve analytically the stability conditions and obtain an explicit analytic form for λC.

The non-adaptive case (NA), in which all infected nodes behave as susceptible, can
be obtained by fixing ϵ(s) = 0 ∀ s, i.e. no tracing of the asymptomatics, and γP/µ =
1, i.e. the presymptomatic phase coincide with the period of contagiousness and
thus no isolation occurs. Considering this scenario, the condition for the epidemic
threshold becomes:

−µ + λa⟨s(s − 1)⟩ = 0, (6.28)

which admits as a solution:

λNA
C =

µ

a⟨s(s − 1)⟩ =
µ

n
. (6.29)

This threshold is that of Eq. (6.1) and is valid for arbitrary Ψ(s) [87].
The case in which only the symptomatics are isolated can be obtained by fixing

ϵ(s) = 0 ∀ s. Considering this scenario, the condition for the epidemic threshold
becomes:

−γPµ + λn(δµ + (1 − δ)γP) = 0, (6.30)

which admits as a solution:

λ
sympto
C = λNA

C

γP
µ

δ + (1 − δ)γP
µ

. (6.31)

This threshold is that of Eq. (6.2) and is valid for arbitrary Ψ(s).
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Finally, the epidemic threshold can be obtained explicitly also assuming a homo-
geneous distribution of the simplices size Ψ(s) = δ(s − s), with a constant recall prob-
ability ϵ(s) = ϵ. At first we consider s = 2, i.e. the formation of only pairwise
interactions, obtaining a quadratic equation in λ for the epidemic threshold:

λ2

µ2 n2δ2ϵ +
λ

µ
n
(︃

δ + (1 − δ − δϵ)
γP

µ

)︃
− γP

µ
= 0, (6.32)

which admits as a solution:

λs=2
C = λNA

C

2 γP
µ

δ + (1 − δ − ϵδ)γP
µ +

√︂
(δ + (1 − δ − ϵδ)γP

µ )2 + 4δ2ϵ γP
µ

. (6.33)

This threshold reproduces the results obtained in Chapter 5 (see Eq. (5.16)) [28].
On the other side, considering s → ∞, i.e. active simplices involve all the popu-

lation, a linear equation in λ for the epidemic threshold is obtained:

λ[δµn(γP + µ) + nγP(1 − δ)(µ + γP(1 − ϵ))]− γPµ(µ + γP) = 0, (6.34)

which admits as a solution:

λs→∞
C = λNA

C

γP
µ (γP + µ)

δ(γP + µ) + γP(1 − δ)(1 + γP
µ (1 − ϵ))

(6.35)

This threshold allows to obtain the maximum allowed value of the epidemic thresh-
old: indeed, the threshold is maximized for s → ∞ and ϵ = 1. In this case, all the
simplices are effectively traced ϵ = 1 and all the asymptomatic nodes are traced at
their infection S → AT, with the sideward CT if infected by A or AT and with the
forward CT if infected by P: indeed for s → ∞ the probability that a node is traced
with sideward CT → 1 while the probability to be traced with backward CT → 0
(see Eqs. (6.11) and (6.10)). The maximum threshold then becomes (replacing ϵ = 1
in Eq. (6.35)):

λmax
C = λNA

C

γP
µ (γP + µ)

γP + δµ
(6.36)

Notice that the epidemic threshold λC is always finite (also considering a generic
Ψ(s)), even if ϵ(s) = 1 ∀s, due to the presymptomatic phase P in which infections
occur and due to the delay between tracing and isolation.

6.4 Effects of CT mechanisms on simplices

In order to estimate the effectiveness of CT on gatherings and to compare the con-
tribution of the three CT mechanisms for different structure of interactions, we con-
sider different size distribution Ψ(s) and we fix the average number of contacts en-
gaged by an individual per unit of time n = a⟨s(s − 1)⟩, comparing different Ψ(s)
but under the same conditions of link formation. Indeed, the average number of con-
tacts performed by an individual is the same, but by changing Ψ(s) these contacts
are organized on simplices with a differently distributed size. This allows to deter-
mine the pure effect of the distribution Ψ(s), i.e. of the structure of the interactions,
without bias due to an increase or a reduction in the number of connections deter-
mined by a different shape of Ψ(s). The three CT terms in the mean-field equations
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can be rewritten by making explicit the dependence on n:

CForward = λ(1 − δ)n
⟨ϵ(s)s(s − 1)⟩
⟨s(s − 1)⟩ P(t), (6.37)

CBackward =
n

⟨s(s − 1)⟩

⟨︂
ϵ(s)s

[︂
1 − (1 − λδ)s−1

]︂⟩︂
A(t), (6.38)

CSideward = λ(1 − δ)
n

⟨s(s − 1)⟩
⟨︁
ϵ(s)s(s − 1)

[︁
1 − (1 − λδ)s−2]︁⟩︁ [A(t) + AT(t)] .

(6.39)

The model presented is extremely general describing an arbitrary epidemic with
asymptomatic and symptomatic phases. In this thesis we focus mainly on the COVID-
19 epidemic, tailoring the model parameters to describe SARS-CoV-2: the fraction of
individuals who develop symptoms δ = 0.57 [187], the average time of the presymp-
tomatic phase τP = 1.5 days [16, 197, 237] and the average time of contagiousness
τ = 14 days, i.e. the average recovery time [179, 238]. We fix the CT time-window
TCT assuming that it is long enough to implement all the CT mechanisms, thus we
fix TCT = τ = 14 days [188, 202, 237]. Finally, we fix the average number of daily
contacts per individual n = 14 days−1, reproducing the value observed in real popu-
lations through surveys [172, 241]. Moreover, we consider a uniform tracing strategy
ϵ(s) = ϵ with ϵ ∼ 0.3 − 0.5, as observed from empirical data on CT [172, 249].

The effect of the overall CT and of the single CT mechanisms is estimated by cal-
culating the increase in the epidemic threshold they produce with respect to the non-
adaptive case, i.e. when no measures are implemented (see Appendix C and Chapter
3): initially we calculate the increase produced by the symptomatics isolation, then
we determine the increase produced by each single CT mechanism and when all the
CT mechanisms are active simultaneously. The gain in λC is estimated as a func-
tion of the average simplex size ⟨s⟩ and for different Ψ(s): Ψ(s) = δ(s − s), i.e. all
the simplices feature the same size s = ⟨s⟩ (see Figure 6.11a,b); Ψ(s) ∼ e−βs with
s ∈ [2, ∞), i.e. an exponential distribution, varying ⟨s⟩ with β (see Figure 6.11c,d);
Ψ(s) ∼ s−(ν+1) with s ∈ [sm, sM], i.e. a power-law distribution as observed in many
real systems [89, 92], varying ⟨s⟩ with ν (see Figure 6.11e,f).

Figure 6.11a,c,e shows that the three tracing mechanisms feature different effi-
cacy regimes depending on the structure of the interactions, reflecting the different
mechanisms underlying them and their specific functioning.

The effects of the symptomatic isolation and of forward CT are independent of
the distribution Ψ(s) and of the average size of the simplices ⟨s⟩, indeed both are
infection-like terms which do not change with Ψ(s) since n is fixed. Due to the
symptomatic isolation, a fraction δ of the newly infected nodes is isolated after an
average time τP from the infection, therefore its contribution depends solely on the
average number of contacts n performed by an infected individual, independently of
how they are structured in simplices Ψ(s) (see Eqs. (6.20)-(6.24)). Similarly, forward
CT directly follows the chains of infection forward in time, tracing and isolating the
asymptomatic products of infections generated by presymptomatics, thus it depends
solely on the average number of contacts n performed by a presymptomatic node,
independently of how they are structured in simplices Ψ(s) (see Eq. (6.37)).

On the contrary, the effects of backward and sideward CT strongly depend on
the distribution Ψ(s) and on the average simplices size ⟨s⟩ (see Figure 6.11a,c,e),
since they are not simply infection-like terms but are influenced by the structure of
interactions.
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FIGURE 6.11: Effects of forward, backward and sideward contact tracing. In panel a we
plot the ratio λC/λNA

C between the epidemic threshold in the presence of CT and the thresh-
old in the non-adaptive case, as a function of s for Ψ(s) = δ(s − s): the curves correspond to
the activation of a single tracing mechanism, to the simultaneous activation of all the tracing
mechanisms and to the activation of only the isolation of the symptomatics (see legend). In
panel b we plot the ratio λC/λNA

C as a function of s under the same conditions as panel a
and progressively activating all the tracing mechanisms starting from the isolation of the
symptomatics. Panels c-d are analogous to panels a-b but for Ψ(s) ∼ e−βs with s ∈ [2, ∞)
and ⟨s⟩ varies by changing the coefficient β. Panels e-f are analogous to panels a-b but for
Ψ(s) ∼ s−(ν+1) with s ∈ [2, 500] and ⟨s⟩ varies by changing the exponent ν. In all panels
n = 14 days−1, (1 − δ) = 0.43, τP = 1.5 days, τ = TCT = 14 days and ϵ(s) = ϵ = 0.3 ∀s.
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The sideward CT is extremely effective on large gatherings: its effectiveness is
minimum for ⟨s⟩ ∼ 2, grows quickly with ⟨s⟩ and then saturates to a maximum
value. Indeed, for ⟨s⟩ ∼ 2 the sideward CT is not active, since it requires s ≥ 3 to
be activated (see Section 6.3.3). In large simplices, i.e. for large ⟨s⟩, the probability
of activating the lateral tracing is increased thanks to the wide simplicial structure;
sideward CT can trace all the new asymptomatic infections occurring within them:
hence, it identifies and isolates a high number of infected nodes, curbing the spread
of the epidemic by stopping the explosive effects of SSEs (see Eq. (6.39)).

The backward CT is extremely effective on small gatherings: its effectiveness is
maximum for ⟨s⟩ ∼ 2, then decays quickly with ⟨s⟩ to a minimum value. Indeed, in
large simplices, i.e. for large ⟨s⟩, the backward CT traces only the primary source of
infection of the index case, while all other numerous infections occurring within it go
undetected. In small simplices the backward CT is effective since it easily identifies
the sources of infections within pairwise interactions, which could not be blocked
otherwise (see Eq. (6.38)).

Non-trivial reinforcement mechanisms emerge when the three types of CT are
combined together, because of their deep interplay and their functioning. The in-
crease in the epidemic threshold shows a non-monotonous trend with the average
simplices size ⟨s⟩, for all the Ψ(s) considered. The effectiveness features a maximum
for intermediate ⟨s⟩: for nodes all of the same size or with a sharp exponential dis-
tribution Ψ(s) the maximum efficacy occurs for ⟨s⟩ in the order of 100 nodes, while
for broader distributions such as power-law Ψ(s) it is placed at more realistic values
⟨s⟩ ≈ 10. This non-monotonous behaviour emerges from the combination of back-
ward and sideward CT: their opposite behaviour with ⟨s⟩ gives rise to the observed
non-monotonic behaviour when they are combined.

Finally, we estimate the relative contribution of the three CT mechanisms to the
performance of CT on gatherings. In Figure 6.11b,d,f, starting from the symptomatic
isolation, we estimate the increase in the threshold produced by the progressive acti-
vation of the forward CT, the backward CT and finally the sideward CT, as a function
of the average simplex size ⟨s⟩ and for several distributions Ψ(s). For ⟨s⟩ ∼ 2 the CT
is dominated by the contribution of the backward CT, while increasing ⟨s⟩ the con-
tribution of the sideward CT increases significantly dominating the CT. This again
confirms the great effectiveness of the sideward CT in tracing large simplices.

6.4.1 The role of the symptomatic fraction

The contribution of the CT mechanisms to the control of the epidemic and the posi-
tion of the CT maximum efficacy depend on the fraction of symptomatic individuals
δ. In the presence of a large fraction of asymptomatics, i.e. small δ, the contribution
of forward CT and backward CT is reduced, since symptomatic infections are rare,
while sideward CT contribution is increased since it traces asymptomatic infections
generated by asymptomatics, which are very frequent. Conversely, for a high frac-
tion of symptomatics δ, an increase in the contribution of forward and backward CT
and a reduction in the efficacy of sideward CT are expected.

To investigate the effects of varying the parameter δ, we consider the homoge-
neous case Ψ(s) = δ(s − s) and we compare the case s = 2, where sideward CT
is absent and backward CT dominates, with the case s → ∞, where backward CT
is absent and dominates the sideward CT (see Eqs. (6.38) and (6.39)). An explicit
expression for the epidemic threshold can be obtained for both cases (see Eqs. (6.33)
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FIGURE 6.12: The role of the symptomatic fraction. In panel a we plot, as a function of
ϵ(s) = ϵ∗ ∀s, the ratio λs→∞

C /λs=2
C between the epidemic threshold for s → ∞ and the

threshold for s = 2, fixing Ψ(s) = δ(s − s). The threshold is obtained in the presence of
all the CT mechanisms and for different values of the fraction of symptomatics δ (see leg-
end). The vertical dashed lines identify the value ϵC of Eq. (6.42) for the considered δ > 1/2
values. In panels b-c we plot, as a function of s, the ratio λC/λNA

C between the epidemic
threshold in the presence of CT and the threshold in the non-adaptive case, starting from the
symptomatic isolation and progressively activating all the tracing mechanisms. In panel b
we fix δ = 0.3, while in panel c we fix δ = 0.7. Panels d-e are analogous to panels b-c but
for Ψ(s) ∼ s−(ν+1) with s ∈ [2, 500] and ⟨s⟩ varies by changing the coefficient ν. In all panels
n = 14 days−1, τP = 1.5 days, τ = TCT = 14 days and ϵ(s) = ϵ = 0.6 ∀s.
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and (6.35)), which allow to directly compare the two regimes. For δ < 1/2:

λs=2
C < λs→∞

C . (6.40)

Thus, for infectious diseases with a high fraction of asymptomatic (e.g. COVID-19,
HIV - see Table 5.1) the sideward CT is more effective than the backward CT, as
expected. For δ > 1/2: {︄

λs=2
C ≥ λs→∞

C if ϵ ≤ ϵC

λs=2
C < λs→∞

C if ϵ > ϵC
(6.41)

where:

ϵC =
(γP + µ)(1 − 2δ)

(1 − 2δ)γP − δµ
. (6.42)

Thus, for infectious diseases with a low fraction of asymptomatic (e.g. SARS, Small-
pox - see Table 5.1) the relative efficacy of sideward and backward CT exhibits two
different regimes depending on the tracing capacity ϵ. For ϵ < ϵC the backward CT
is more effective than the sideward CT, as expected; for ϵ > ϵC the sideward CT is
more effective than the backward CT, however this effect occurs only for ϵ ∼ 1 since
ϵC grows very rapidly with δ and hence ϵC ∼ 1.

In Figure 6.12a we show this behaviour, plotting the ratio λs→∞
C /λs=2

C as a func-
tion of ϵ = ϵ∗ for several δ values, thus showing the different regimes described.
The effect of δ is shown more clearly in Figure 6.12b-e, where Figure 6.11b,f is re-
produced but for different values of δ: for small δ the most effective mechanism is
sideward CT, CT is much more effective on large simplices, i.e. for large ⟨s⟩, and the
efficacy of symptomatic isolation and forward CT is reduced. For large δ the most
effective mechanism is the backward CT, the CT is much more effective in small
simplices, i.e. for ⟨s⟩ ∼ 2, and the efficacy of symptomatic isolation and forward CT
is increased. On the contrary, for δ ∼ 1/2, i.e. close to the critical value between
the two regimes, both sideward and backward CT are effective, producing the non-
monotonous behaviour of the tracing efficacy observed in Figure 6.11.

6.5 Contact tracing strategies

Many infectious diseases, including COVID-19, are mainly driven by superspread-
ing events (see Sections 6.1.1 and 6.1.2), which easily occur within large gatherings:
hence control measures must address them to defuse the explosive effect of SSEs (see
Section 6.1.3). This suggests focusing the tracing resources on large groups.

The model we propose allows to implement specific tracing strategies by an ap-
propriate shape of the function ϵ(s). We consider three extreme strategies (schemat-
ically represented in Figure 6.13):

• the uniform strategy ϵ(s) = ϵ∗ ∀s, where all simplices of any size have the
same probability of being traced;

• the strategy targeted on large simplices ϵ(s) = θ(s − s∗), where θ(x) is the
Heaviside function and all simplices of size s ≥ s∗ are traced, while all smaller
simplices are not traced;

• the strategy targeted on small simplices ϵ(s) = θ(s∗ − s), where θ(x) is the
Heaviside function and all simplices with size s ≤ s∗ are traced, while all larger
simplices are not traced.
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FIGURE 6.13: Tracing strategies on gatherings. We schematically represent the three trac-
ing strategies: the uniform strategy ϵ(s) = ϵ∗ ∀s; the strategy targeted on large simplices
ϵ(s) = θ(s − s∗); the strategy targeted on small simplices ϵ(s) = θ(s∗ − s). The red simplices
schematically represent those traced by the corresponding strategy: all the strategies trace
11 nodes, but a different number of links ranging from 7, in the strategy targeted on small
simplices, up to 25, in the strategy targeted on large gatherings.

The uniform case corresponds to the absence of a specific tracing policy, since all sim-
plices are traced with the same probability. The tracing targeted on large simplices
is a tracing policy requiring to keep track of all participants in events and gatherings
larger than a certain threshold s∗, for example by requesting reservations or keeping
a list of participants. This policy has been implemented in many states in response
to COVID-19 pandemic, during the reopening phase after the extensive lockdowns
[249, 273, 274]. The tracing targeted on small simplices in a unrealistic scenario, since
it consists in keeping track of only the smallest simplices, concentrating the tracing
resources only on binary interactions and completely neglecting large gatherings:
we consider this case to further highlight the key role of large gatherings and SSEs,
as well as to investigate the effects of negative correlations in ϵ(s) that could emerge
spontaneously in the absence of specific tracing strategies.

We compare the tracing strategies by fixing the resources allocated for tracing, i.e.
the average fraction of traced nodes ϵ∗ = ⟨ϵ(s)(s−1)⟩

⟨s−1⟩ : in the uniform case ϵ(s) = ϵ∗ ∀s,
while in the two targeted cases we fix ϵ∗ by fixing the threshold size s∗.

In Figure 6.14 we show the increase in the epidemic threshold λC/λNA
C produced

by each of the tracing strategies as a function of ϵ∗, for a realistic Ψ(s) ∼ s−(ν+1) with
s ∈ [sm, sM] and ν = 1.5 [89, 92]. The three strategies have the same performance
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FIGURE 6.14: The effects of tracing strategies. In the panel a we plot, as a function of
ϵ∗ = ⟨ϵ(s)(s − 1)⟩/⟨s − 1⟩, the ratio λC/λNA

C between the epidemic threshold in the pres-
ence of CT and the threshold of the non-adaptive case, progressively activating the different
mechanisms of CT starting from the isolation of the symptomatics. We consider a synthetic
distribution Ψ(s) ∼ s−(ν+1) with s ∈ [2, 200] and ν = 1.5 and the tracing strategy targeted
on small simplices. Panel b is analogous to panel a but considering the targeted strategy
on large simplices. Panel c is analogous to panel a but considering the uniform strategy. In
panel d we plot s∗ as a function of ϵ∗ for the targeted strategies (see legend). In all panels
n = 14 days−1, τP = 1.5 days, τ = TCT = 14 days and (1 − δ) = 0.43.

for ϵ∗ = 0, since the CT is not applied, and for ϵ∗ = 1, since all the simplices are
traced. However, for intermediate ϵ∗ their performance is completely different: the
strategy targeted on large simplices is the most effective strategy, since a small ϵ∗

is sufficient to produce a significant increase in the epidemic threshold; conversely,
the strategy targeted on small simplices requires that ϵ∗ ∼ 1, i.e. to trace almost
all nodes, to generate a significant increase in the epidemic threshold; the uniform
strategy interpolates between the two targeted strategies. This is due to the role of
the SSEs: the three strategies trace the same fraction of nodes ϵ∗, i.e. they have the
same cost in tracing resources, but the strategy targeted on large gatherings trace
a number of links considerably higher than the other strategies (see Figure 6.13)
directly addressing SSEs, since in large simplices the number of interactions is much
higher than in small simplices with the same number of nodes involved.

The strategy targeted on small simplices is comparable with that targeted on
large gatherings only for ϵ∗ ∼ 1 since in this condition s∗ → sM (see Figure 6.14d)
and also the large gatherings are traced. On the other side, the effectiveness of the
strategy targeted on large simplices saturates with ϵ∗ since in that case s∗ → 2 (see
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Figure 6.14d) and only small simplices are additionally traced by increasing ϵ∗.
The CT mechanisms play a different role in the various tracing strategies: the ef-

fect of the sideward CT is clearly dominant in the strategy targeted on large gather-
ings, even for ϵ∗ ∼ 0, while in the strategy targeted on small simplices the backward
CT dominates up to ϵ∗ ∼ 1 where the contribution of the sideward CT increases.
In the uniform strategy, on the other hand, there is an intermediate behaviour, with
both backward and sideward CTs effectiveness increasing with ϵ∗. This behaviour
is clearly due to the effectiveness of sideward CT in tracing large simplices and of
backward CT in tracing small gatherings (see Section 6.4), confirming again the cru-
cial role of the sideward CT in tracing gatherings.

6.6 Empirical dataset of gatherings in a University

Now we implement our approach in a real setting, considering data of gatherings
within the University of Parma (Italy) and comparing different mitigation and con-
tainment measures for the COVID-19 epidemic.

The social interaction dynamics and the formation of gatherings can be recon-
structed in detail by various tools (e.g. contact diaries, wearable RFID sensors, apps
on smartphones, GPS data in mobile phones) [41–44, 172, 241]. Recently, the WiFi
network has been proposed as a tool for reconstructing the social dynamics and thus
for contact tracing [26, 275–281]: the users connections to the Access Points (APs) of
a WiFi network can provide information on the distance, timing and duration of
contacts.

The use of the WiFi connections to the same AP as a proxy for the distance and
duration of interactions has some limitations, especially when compared with the
precision and detail of other tools such as wearable RFID sensors, since the sensitiv-
ity and precision of WiFi approach depends on the APs coverage of the space, i.e.
on their number and their location, and on the extension of the area covered by their
signal. However, the WiFi approach also has several advantages: it consists in a
passive data collection with almost no cost, since data derive automatically from the
normal functioning and management of the WiFi infrastructure and not from the di-
rect active implementation of a contact reconstruction system; the approach allows
to investigate the social dynamics in large populations and in several settings, since
the WiFi networks are already present in many large organizations.

The University of Parma has a unique WiFi network in all its buildings and
premises, which consists of 713 wireless APs (see Figure 6.16a). The University WiFi
network is accessible to all individuals with an institutional account of the Univer-
sity of Parma (i.e. students, professors, researchers and university staff), to guests
with a temporary account and to anyone with an account for the EDUROAM net-
work. All wireless APs, user connection requests and user sessions are recorded and
managed by the login management system and are collected by the "ICT services"
(ICTs) office of the University.

The staff of the ICTs office can extract a tabular file from the login management
system on a daily basis, i.e. the log file, containing all the data for user connections
to the WiFi network (see Appendix D for a detailed description of the log files).
The access to the log files is allowed only to the ICTs office. A procedure has been
developed which takes log files as input, completely anonymizes data and computes
the aggregate measures of our interest: this procedure is performed directly by the
ICTs office in its domain. The complete procedure is described in Appendix D.
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We have direct access only to two aggregated and anonymized data: the time se-
ries of presences in the University, i.e. the temporal evolution of the total number of
connections to the WiFi network, which can estimate the reliability of the measure-
ment and of the data collected; the statistics of the gatherings size in the University,
i.e. the number of gatherings of size s observed in the University, which allows to
obtain important information on the structure of interactions and the empirical dis-
tribution Ψ(s).

6.6.1 Attendance and simplex size distribution from WiFi data

The procedure described in Appendix D is applied to the log files produced by
the University login management system over a period of approximately 6 months,
from 10th December 2020 to 9th May 2021. During this period, two phases can be
distinguished based on the implementation of different levels of restrictions for the
COVID-19 pandemic, due to the epidemiological situation in Parma [274]:

• Closure phase: this phase covers the period from 10th December 2020 to 21st
February 2021 and from 15th March 2021 to 18th April 2021; a total number of
7138 active users has been observed in this phase. All lectures were offered on-
line on video-conferencing platforms, the access to the University was allowed
only to authorized personnel (e.g. professors, researchers) and to students for
laboratory activities;

• Partial opening phase: this phase covers the period from 22nd February 2021
to 14th March 2021 and from 19th April 2021 to 9th May 2021; a total num-
ber of 7835 active users has been observed in this phase. First-year lectures
were offered in-person (approximately 25% of students enrolled in the degree
courses), while the lessons were still offered remotely for all other students.
Furthermore, the libraries and study spaces were open, with a reduction in the
maximum capacity of the rooms and a compulsory seat reservation.

In Table 6.2 we schematically summarize the main differences in the two periods of
restrictions, regarding the University activities [274].

The anonymized and aggregated data on the temporal evolution of presences
in the University are useful for showing the reliability of the measure and of the
collected data: in Figure 6.15 we show the total number of users connected to the
WiFi network over time. The data cover the period from 05th April 2021 to 30th
April 2021, thus overlapping both the closure and the partial opening periods: dif-
ferences can be identified in the attendance level between the two regimes. More-
over, weekly and daily temporal patterns in the attendance can be identified: the
presences are minimum during weekends and, among working days, are lower on
Mondays and Fridays; during the early hours of the morning the presences increase
rapidly, followed by a reduction at lunchtime, a resumption in the afternoon and
finally a complete emptying in the evening, with a minimum during night hours
(8:00 p.m. - 7:00 a.m.). Notice the low attendance on 05th April 2021 being Easter
Monday, which is a holiday in Italy.

Notice that the WiFi data underestimate the total number of presences in the
University, since not all individuals connect to the WiFi network. Through a com-
parison with the seats reservation data in classrooms and study spaces (mandatory
for the University regulations [274]) and with data on structured staff presences (e.g.
researchers, professors and university staff), based on their personal access badges,
we can estimate that the number of people actually present is about double that
estimated with WiFi data.
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FIGURE 6.15: Attendance at the University of Parma form WiFi data. We plot the temporal
evolution of the total number of users connected to the WiFi network of the University of
Parma from 05th April 2021 to 30th April 2021. The considered period covers both the partial
opening phase (from 19th April to 30th April 2021) and closure phase (from 05th April to
18th April 2021).

The anonymized and aggregated WiFi data on connections can provide the gath-
erings size statistics within the University. We consider a gathering of size s as
a group of s users who are simultaneously connected to the same AP for at least
∆T = 15 minutes, by considering epidemiologically relevant gatherings (see Figure
6.16a for a schematic representation). Indeed, the indoor transmission of SARS-CoV-
2 is mainly due to its airborne nature [275, 282–284] and thus occurs on spatial scales
comparable to those covered by the WiFi signal of an AP, making the connection to
the same AP a good proxy for a contact. Moreover, we consider clusters with in-
teractions lasting at least 15 minutes, taking into account the average exposure time
needed for the transmission of SARS-CoV-2, as considered in the tracing apps and
in the traditional tracing [237, 285]. This suggests that, with appropriate privacy-
preserving protocols, WiFi data could be used to implement an alternative passive
contact tracing for controlling COVID-19 diffusion [279–281].

The procedure described in Appendix D allows to obtain the number of 15-
minutes gatherings of size s observed in the University, providing the empirical
simplex size distribution Ψ(s). The procedure is implemented on the data by re-
moving holidays, night hours and weekends in order to refer only to working days
and working hours, i.e. from 7:00 a.m. to 8:00 p.m..

We distinguish the closure and the partial opening phases, obtaining two dis-
tinct distributions Ψ(s) for the two periods which are plotted in Figure 6.16b: both
are heterogeneous, as observed in other datasets with different data collection meth-
ods [89, 92]. However, the two distributions strongly differ: the distribution in the
closure period is less heterogeneous, it features an upper cut-off sM lower than that
of the partial opening period and it shows a significantly higher probability of sim-
plices with size s = 0, 1, i.e. no one or only one user connected to an AP. This is
due to the restrictions in the educational and working activities in the University
during the closure phase (see Table 6.2). We consider the same activity a of the APs
in the two periods, recording the presence of simplices on fixed time intervals of
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FIGURE 6.16 & TABLE 6.2: WiFi data for gatherings in the University of Parma. Panel a
shows a map of the "Parco Area delle Scienze" Campus of the University of Parma, where all
the scientific departments and research institutes are located. The map shows schematically
the buildings in which APs of the WiFi network are present and where the gatherings are
recorded. In panel b we plot the empirical distributions Ψ(s) of the gatherings size recorded
through the WiFi data during the partial opening and the closure periods. The main plot
is in log-log scale, while the inset is in linear scale. In the Table we briefly summarize the
main differences between the closure phase and the partial opening phase. [* with reduced
maximum capacity and mandatory seats reservation].

15 minutes, and we consider also the activation of simplices of size s = 0, 1, which
thus encode the effective social activity of the University. This approach allows to
describe the data for the two periods with the simplicial activity-driven model de-
scribed in the previous Sections, with the same activity a for the two periods but
different distribution Ψ(s).

6.7 Epidemic control strategies in a University

Starting from the empirical data on gatherings at the University of Parma, we ana-
lyze different epidemic control strategies in the framework of the simplicial activity-
driven network and the epidemic model presented in the previous Sections.

The closure of teaching and research activities in the University had a strong im-
pact on the interaction dynamics, i.e. on the distribution Ψ(s). Its effect on the epi-
demic can be estimated by the epidemic threshold: assuming that only the isolation
of symptomatic individuals is implemented, the epidemic thresholds in the closure
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and partial opening periods can be obtained with Eq. (6.2) by replacing the appropri-
ate empirical distribution Ψ(s). The symptomatic isolation during the partial open-
ing period allows to increase the epidemic threshold by a factor λ

opening
C /λNA

C ≃ 2.04
compared to the non-adaptive case, where we assume that the Ψ(s) is that of the par-
tial opening period. If we consider also the closure of the University, the increment
becomes λclosure

C /λNA
C ≃ 5.35. Thus:

λclosure
C

λ
opening
C

=
⟨s(s − 1)⟩opening

⟨s(s − 1)⟩closure
≃ 2.63, (6.43)

The closure deeply affects the epidemic spreading by almost tripling the epidemic
threshold compared to the partial opening period.

The University closure was extremely effective for the epidemic control [19, 143,
174], but at a high psychological, social and didactic cost, interrupting most of the
didactic, research and working activities [286, 287]. Contact tracing is a good alterna-
tive to keep the population active still managing to control the epidemic. We assess
whether CT on gatherings can be implemented during the partial opening period to
control the epidemic by avoiding closures and their drawbacks.

We consider the system in the partial opening phase and we implement the dif-
ferent CT strategies described in Section 6.5, comparing them by fixing the resources
allocated for the tracing, i.e. the average fraction of traced nodes ϵ∗ = ⟨ϵ(s)(s−1)⟩

⟨s−1⟩ . In
Figure 6.17a we show the increase in the epidemic threshold produced by the dif-
ferent tracing strategies, as a function of ϵ∗: the effects of the different strategies are
similar to those observed for a heterogeneous synthetic distribution Ψ(s) in Section
6.5, due to the heterogeneity in the empirical Ψ(s). The strategy targeted on large
gatherings is the most effective, defusing SSEs.

In Figure 6.17a we compare the impact of closures and of CT during the partial
opening period: the tracing strategy targeted on large simplices produces the same
results of the closures for ϵ∗ ≳ 0.47, which corresponds to tracing all simplices with
size s ≥ 6, i.e. the 16.1% of gatherings. Thus, a considerable tracing effort is needed
to produce similar result of closure, even targeting the resources on large gatherings.
This is due to the differences between the two interventions: the closure directly
impacts the structure of the interactions and the distribution Ψ(s), by removing the
SSEs; contact tracing does not intervene directly on the structure of the interactions,
but identifies and isolates infected individuals after the interactions occurred. The
tracing is therefore not able, even if targeted on large simplices, to completely defuse
the explosiveness of the SSEs, but can reduce its impact by tracing and isolating the
infected generated in them.

The closures were implemented during a phase of sustained community trans-
mission, in order to bring the epidemic into a regressive phase: their intensity was
therefore determined by the need of a immediate block of transmission. The Univer-
sity closure produced an increase in the epidemic threshold of λclosure

C /λNA
C ≃ 5.35,

which brings the system deeply into the absorbing phase if we consider a basic re-
production number R0 = λ/λNA

C ≈ 4.5, e.g. for a variant of SARS-CoV-2 that is
highly transmissible and in the presence of additional containment measures (e.g.
the use of face masks and physical distancing) [16, 118, 119, 288–293]. CT cannot be
used with this aim since it is effective only in low incidence regimes (see Chapter 5),
but it is a valid alternative to keep the system close to the critical point, i.e. under
control. Figure 6.17a shows that targeted tracing on large gatherings keep the sys-
tem under control for ϵ∗ ≳ 0.27 by tracing all the gatherings of a size s ≥ 9, that
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FIGURE 6.17: Contact tracing on empirical University gatherings data. In panel a we plot,
as a function of ϵ∗ = ⟨ϵ(s)(s − 1)⟩/⟨s − 1⟩, the ratio λC/λNA

C between the epidemic thresh-
old in the presence of CT and the threshold in the non-adaptive case, by considering the
three tracing strategies (see legends). The three horizontal curves correspond to: the in-
crease λ

opening
C /λNA

C ≃ 2.04 produced by the isolation of symptomatics during the partial
opening phase (dotted line); the increase λclosure

C /λNA
C ≃ 5.35 produced by the isolation of

symptomatics and by the closure (dot-dashed line); the value of the basic reproduction num-
ber R0 = λ/λNA

C = 4.5 (dashed line). In the inset we plot the threshold size s∗ for the two
targeted strategies as a function of ϵ∗. In panel b we plot the ratio λC/λNA

C as a function of
ϵ∗ by progressively activating the CT mechanisms starting from the isolation of the symp-
tomatics. In this case we consider the uniform tracing strategy. Panel c is analogous to panel
b but with the tracing strategy targeted on small simplices. Panel d is analogous to panel
b but with the tracing strategy targeted on large simplices. In all panels we consider the
empirical Ψ(s) distribution of the partial opening period, n = 14 days−1, τP = 1.5 days,
τ = TCT = 14 days and (1 − δ) = 0.43.

corresponds to the 6.2% of the gatherings, which is a reasonably realistic effort.
Our results show that the epidemic can be kept under control in the partial open-

ing period by tracing all gatherings of size s ≥ 9 occurring within the University.
The tracing targeted on large gatherings can be implemented relatively simply in
the University, for example making it mandatory to register attendance in univer-
sity buildings, to reserve seats in classrooms and study spaces [274]. Moreover, the
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FIGURE 6.18: The role of the recovery rate. In panel a we plot, as a function of ϵ∗, the
ratio λC/λNA

C between the epidemic threshold in the presence of CT and the threshold of the
non-adaptive case, progressively activating the different mechanisms of CT starting from the
isolation of the symptomatics. We consider the empirical distribution Ψ(s) of the gatherings
size during the partial opening phase and we consider a tracing strategy targeted on large
simplices. Panel b is analogous to panel a, but we consider a synthetic distribution Ψ(s) ∼
s−(ν+1) with s ∈ [2, 200] and ν = 1.5. In all panels n = 14 days−1, τP = 1.5 days, τ = TCT = 8
days and (1 − δ) = 0.43.

WiFi data themselves could be exploited directly to implement CT on gatherings,
through appropriate privacy-preserving protocols [279–281] (see Section 6.6).

Finally, Figure 6.17b-d shows that, in the real conditions of the partial opening
phase, backward CT plays the dominant role in all the tracing strategies and the
sideward CT is crucial in the strategy targeted on large gatherings, by significantly
increasing the threshold. The effect of sideward CT, however, is lower compared
to that for a synthetic heterogeneous Ψ(s) distribution (Section 6.5): indeed, during
the partial opening period many restrictions are still active (see Table 6.2 and Section
6.6.1), which still limit the heterogeneity in Ψ(s), e.g. producing a small upper cut-off
sM ≈ 60. We expect that in the full opening condition for the University, sM and het-
erogeneity in Ψ(s) would be increased, as observed in analogous pre-pandemic data
in University Campuses [89, 92], further increasing the effectiveness of the strategy
targeted on large simplices and the role of the sideward CT.

6.7.1 The role of the recovery rate

The CT terms feature a non-linear dependence on the probability of infection λ due
to the higher-order nature of interactions (see Eqs. (6.37)-(6.39)): hence, the recovery
rate µ is not simply a scaling factor of the probability of infection λ and of its critical
value λC, as typically occurs in epidemics on temporal networks (see Chapter 2).
This implies that the conditions for the stability of the absorbing state do not simply
depend on the ratio λ/µ: the role of µ need to be investigated.

In Figure 6.18 we reproduce Figures 6.14b and Figure 6.17d, comparing the con-
tribution of the different CT mechanisms in the presence of a tracing strategy tar-
geted on large simplices, for a different value of µ. The relative contribution of the
different CT mechanisms does not change qualitatively with τ = 1/µ: this is a non-
trivial property of the model which confirms the stability of our results. These results
are valid both considering the empirical Ψ(s) during the partial opening phase and
for a synthetic Ψ(s) ∼ s−(ν+1).
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FIGURE 6.19: Effects of a small fraction of untraced large gatherings. We consider the
tracing strategy targeted on large simplices with a small error ϵ(s) = (1 − α)θ(s − s∗) with
fixed s∗. In the panel a we plot the critical value αC that brings the system above the epidemic
threshold, as a function of ϵ∗, i.e. the average fraction of nodes traced when α = 0, which
fixes s∗. In particular, we plot the curve for different values of R0 = λ/λNA

C and for the
empirical distribution Ψ(s) of gatherings size during the partial opening phase. Panel b
is analogous to panel a, but we consider a synthetic distribution Ψ(s) ∼ s−(ν+1) with s ∈
[2, 200] and ν = 1.5. In all panels n = 14 days−1, τP = 1.5 days, τ = TCT = 14 days and
(1 − δ) = 0.43.

6.7.2 Effects of small errors in targeted CT strategies

The tracing strategy targeted on large gatherings assumes that all the simplices with
s ≥ s∗ are traced perfectly. However under realistic conditions it is difficult for all
major gatherings to be fully traced: in general a fraction α of large simplices cannot
be traced for various reasons. Therefore it is important to determine the effect of this
small fraction α of untraced large gatherings.

Our model allows to introduce this untraced fraction α by considering the trac-
ing probability ϵ(s) = (1 − α)θ(s − s∗) and keeping the threshold size s∗ fixed, so
that the strategy consists in tracing all simplices of size s ≥ s∗ with a probability
(1 − α), where α ∈ [0, 1]. For α = 0 the perfect targeted strategy is recovered and
the average fraction of nodes traced is ϵ∗ = ⟨ϵ(s)(s−1)⟩

⟨s−1⟩ ; if α > 0 in the tracing strategy

is not perfect, the average fraction of nodes traced is ⟨ϵ(s)(s−1)⟩
⟨s−1⟩ < ϵ∗ and the epi-

demic threshold is reduced; for α = 1 no simplex is traced since ϵ(s) = 0 ∀s and the
epidemic threshold is that of Eq. (6.2), with only symptomatic isolation.

We define the critical fraction of untraced large simplices αC as the maximum
error allowed in tracing large gatherings to keep the epidemic under control with CT,
i.e. for α > αC the system returns in the active phase. αC depends on R0 = λ/λNA

C
and on the traced simplices, i.e. on s∗ that fixes the fraction of nodes traced ϵ∗ for a
perfect tracing α = 0. For small ϵ∗ the system is in the active phase even for α = 0
for the considered R0: in this case we set αC = 0. For higher values of ϵ∗, the system
is in the absorbing phase for α = 0, thus αC > 0 is finite. The value of ϵ∗C that defines
the transition between the two regimes depends on the R0 considered and can be
determined starting from Figure 6.17a and Figure 6.14b.

In Figure 6.19 we plot αC as a function of ϵ∗ for several R0: as the transmissi-
bility of the pathogen increases, i.e. R0, a higher ϵ∗C is required to move the system
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into the absorbing state with perfect CT and the critical fraction αC decreases con-
siderably. Furthermore αC grows rapidly with the tracing capacity ϵ∗, indicating the
stability of our results: if the system is deeply inside the absorbing phase, i.e. if ϵ∗ is
sufficiently high, for reasonable values of α the system remains under the epidemic
threshold. Thus, the effect of a small fraction of untraced large simplices is strong,
but not enough to deteriorate the tracing effectiveness in realistic conditions.

We implemented contact tracing on gatherings, showing that due to the simpli-
cial structure of interactions backward and forward CT are augmented with side-
ward CT, which, by exploiting the higher-order nature of interactions, traces nodes
that have not been directly infected by (forward CT) nor they have transmitted the
pathogen to the index case (backward CT). We show the crucial role of sideward
CT in tracing large gatherings and in reducing the impact of the SSEs, especially in
tracing strategies targeted on large simplices.

We implemented our model on an empirical dataset of gatherings within a Uni-
versity Campus, reconstructed from WiFi data. We suggested optimal choices of the
typical size of the gatherings to be traced in order to avoid the closure of the Univer-
sity and to manage the control the epidemic. Moreover, we show how these types of
passively obtained data constitute a crucial source of information for the tracing of
gatherings and could be a new weapon against the spread of epidemics if supported
by appropriate privacy-preserving protocols [26, 275–278].

We did not consider vaccinations [294, 295] and others related interventions, such
as allowing access to the University only to individuals equipped with a vaccination
certificate, e.g. EU Digital COVID Certificate [274, 296, 297], in a full opening regime:
however we expect these effects to do not change the overall picture. Moreover, we
expect the effect of sideward CT on the active phase to be even more marked, given
the non-linear effect due to the presence of more than one infected node within a
single gathering. These are promising directions for future works.
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Conclusion

In this thesis we dealt with epidemic processes on adaptive temporal networks, pre-
senting some challenging problems in modelling epidemics in the presence of adap-
tive behaviours and characterizing the basic mechanisms governing epidemic con-
trol measures.

In the first part of this work, we reviewed the foundations of the theory of epi-
demic processes on time-varying adaptive networks. We initially presented the main
properties of temporal networks deriving from the temporal dimension, showing its
dramatic effects on the structural and temporal properties of the network. Then, we
presented the modelling framework of epidemic processes on temporal networks,
highlighting how the network evolution deeply influence the epidemic dynamics.
We focused on the class of activity-driven networks, which represents an extremely
advantageous scheme for introducing specific mechanisms that shape the social dy-
namics (e.g. memory, burstiness, higher-order interactions) without losing the possi-
bility of treating the model analytically. Finally, we introduced the concept of adap-
tiveness, that is the second level of coupling between the epidemic dynamics and the
interaction dynamics, since the presence of epidemics induces adaptive behaviours
in the population that modify the network dynamics (e.g. risk perception, epidemic
control and containment measures).

In the second part of this work, we formulated an adaptive variant of the activity-
driven network, assuming a generic change in the activity and attractiveness of the
nodes depending on their health status. This model allows to directly implement
adaptive behaviours observed during the early stages of the COVID-19 pandemic,
also with respect to the timing in their implementation. Moreover, by suitably mod-
ifying the proposed model, we described several features of contact tracing, by im-
plementing its different protocols and assessing its effect on gatherings, inspired by
the crucial role played by tracing in controlling the spread of SARS-CoV-2.

The models and formalisms introduced constitute a significant advance in the
modelling of activity-driven networks as a substrate for epidemic processes, intro-
ducing the deep adaptive couplings between the social and the epidemic dynam-
ics. By using a simple adaptive mechanism, the model reproduces a large set of be-
havioural changes, also providing analytical estimates of their impact on the spread
of the epidemic. Furthermore, it allows the implementation of complex adaptive be-
haviours such as the readdressing of social activity, modelled with a rewiring of the
links, and the contact tracing, which constitutes a third dynamics of superinfection,
that follows infections identifying and isolating exposed contacts. The proposed
approach provides a deep understanding of the foundations of the adaptive mecha-
nisms and of the functioning mechanisms of control and containment measures, for
example by unveiling the intrinsic differences between manual and digital tracing
protocols in contacts sampling (annealed vs quenched). Furthermore, the adopted
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modelling framework allows to introduce specific topological and structural prop-
erties of the network of interactions and to estimate their effects on control mea-
sures and their effectiveness, for example the effect of heterogeneity in the agents
behaviour, i.e. the presence of superspreaders, or the presence of groups and gath-
erings, i.e. the presence of superspreading events.

These results are relevant in the modelling framework of epidemic processes on
adaptive temporal networks, but also have relevance in the understanding and im-
plementation of epidemic control policies. The proposed simplified model, amenable
of analytic control, allows to clearly estimate the effect of specific measures and their
interplay with the social dynamics. For example, the comparison between manual
and digital tracing protocols indicated directions for optimizing the integration of
the two protocols in hybrid procedures, showing how manual tracing should be
crucial and suggesting an app adoption targeted on the most active individuals.
Similarly, the implementation of tracing on gatherings shows how tracing strategies
targeted on large gatherings are optimal and allow the control of the epidemic with-
out activity disruption. Moreover, it identifies the optimal size of gatherings to be
traced to achieve containment in a real University setting, starting from data on gath-
erings in the University reconstructed from user connections to the WiFi network.

The proposed approach presents some shortcomings: for example, as far as the
network evolution is concerned, we do not consider the presence of memory effects
in the link formation and we neglect the bursty dynamics of interactions, by assum-
ing a Poissonian activation dynamics of the interactions. However, thanks to the
flexibility of activity-driven networks, the model can be straightforwardly extended
with the introduction of further mechanisms shaping the evolution of the network,
allowing to investigate their coupling with adaptive behaviours. Similarly, other
limitations derive from the epidemiological level, for example we do not consider
vaccination policies, the presence of heterogeneity in the susceptibility or in the in-
fectious period: we expect that the general picture is not modified by these elements,
which however can be introduced in the proposed formalism with suitable modifi-
cations.

The approach introduced in this thesis and the proposed modelling framework
open promising new directions on different levels, on the one hand for the explo-
ration of adaptive behaviours and control measures starting from first principles, on
the other for investigating the complex interplay between the social dynamics and
the epidemic dynamics. We believe that this modelling perspective can represent a
starting point for the development of simplified models for the study of epidemic
processes in temporal networks in the presence of adaptive behaviours, as well as
to develop ideas to optimize epidemic control strategies. Promising perspective are
in the direction of modelling of multi-step contact tracing, digital contact tracing in
gatherings or higher-order contact tracing protocols.
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Appendix A

Analytical derivation of the
epidemic threshold for CT
protocols

In this Appendix we derive the equations for the evolution of an epidemic with
presymptomatic and asymptomatic transmission on the activity-driven network with
attractiveness, considering the isolation of symptomatic nodes and the implementa-
tion of contact tracing protocols on asymptomatic individuals. We derive the mean-
field equations for manual, digital and hybrid CT protocols, and we obtain the con-
dition for the stability of the absorbing state, i.e. the epidemic threshold [28]. The
detailed epidemic model and the detailed implementation of adaptive behaviours
are described in Chapter 5.

A.1 Manual CT

We first focus on manual CT which occurs in two ways: asymptomatic nodes A
can be traced when infected by a presymptomatic P or when they are the source
of infection of a susceptible node that will develop symptoms (see Figure 5.5). The
tracing is effective with probability ε(aS), with aS activity of the index case.

All the possible transitions among the compartments are depicted in Figure 5.4.
The infection and CT transitions are:

P + S λδ−→ P + P A + S λδε−→ T + P T + S λδε−→ T + P (A.1)

P + S
λ(1−δ)ε−−−−→ P + T A + S

λ(1−δ)−−−−→ A + A T + S
λ(1−δ)−−−−→ T + A

(A.2)

P + S
λ(1−δ)(1−ε)−−−−−−−→ P + A A + S

λδ(1−ε)−−−−→ A + P T + S
λδ(1−ε)−−−−→ T + P

(A.3)

In the event A + S → T + P both individuals change state; in the event T + S λδε−→
T + P the individual T is traced two times (also from the individual infected while
already traced), but this has no consequences.

The spontaneous transitions are:

P
γP−→ I A

µ−→ R I
µI−→ R (A.4)

T
γA−→ Q T

µ−→ R Q
µ−→ R (A.5)



168 Appendix A. Analytical derivation of the epidemic threshold for CT protocols

We divide the population into classes of nodes with the same activity and at-
tractiveness (aS, bS), considering them statistically equivalent: this is the activity-
attractiveness-based mean-field approach. The approach is exact since the model is ex-
actly mean-field, indeed all local correlations are removed by link reshuffling. Fur-
thermore, the mean-field epidemic threshold of the SIS and SIR model are the same,
so we can consider the evolution equations of the SIS model [126, 128–130]. Finally,
the proposed model, in which a symptomatic or presymptomatic pathway occurs at
the time of infection, is completely equivalent to initially assigning symptomaticity
(with probability δ) or asymptomaticity (with probability (1 − δ)) to a node: we will
deal with the model in this second formulation for simplicity.

As described in Chapter 5, the epidemic is described in the mean-field approach
by the following equations for the probabilities that a symptomatic or asymptomatic
node belongs to a specific compartment (see Section 5.3 for the full description of
each equation):

∂tPaS,bS(t) = −γPPaS,bS(t) + λaS(1 − IaS,bS(t)− PaS,bS(t))
B(t)
⟨b(t)⟩

+ λbS(1 − IaS,bS(t)− PaS,bS(t))
C(t)
⟨b(t)⟩

(A.6)

∂t IaS,bS(t) = −µI IaS,bS(t) + γPPaS,bS(t) (A.7)
∂t AaS,bS(t) = − µAaS,bS(t)

+ λaS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
B(t)− δεbSP(t)

⟨b(t)⟩

+ λbS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
C(t)− δεaSP(t)

⟨b(t)⟩

− λaSδAaS,bS(t)
εbS − εbS I(t)− εbSP(t)

⟨b(t)⟩

− λbSδAaS,bS(t)
εaS − εaS I(t)− εaSP(t)

⟨b(t)⟩

(A.8)

∂tTaS,bS(t) = − (µ + γA)TaS,bS(t)

+ λbS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
δεaSP(t)
⟨b(t)⟩

+ λaS(1 − AaS,bS(t)− TaS,bS(t)− QaS,bS(t))
δεbSP(t)
⟨b(t)⟩

+ λbSδAaS,bS(t)
εaS − εaS I(t)− εaSP(t)

⟨b(t)⟩

+ λaSδAaS,bS(t)
εbS − εbS I(t)− εbSP(t)

⟨b(t)⟩

(A.9)

∂tQaS,bS(t) = −µQaS,bS(t) + γATaS,bS(t) (A.10)

where we define g =
∫︁

daSdbSρ(aS, bS)gaS,bS , B(t) = δbSP(t) + (1 − δ)[bST(t) +
bS A(t)], C(t) = δaSP(t) + (1 − δ)[aST(t) + aS A(t)] and the average attractiveness
at time t is ⟨b(t)⟩ = bS − (1 − δ)bSQ(t)− δbS I(t). Moreover, we consider the system
in the thermodynamic limit.

Eqs. (A.6)-(A.10) constitute a set of five coupled non-linear differential equations
and describes the epidemic in the presence of manual CT. It admits the absorbing
state, in which all individuals are susceptible, as a solution: the epidemic threshold
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can be obtained by imposing the stability of the absorbing state, through a linear
stability analysis.

Hereafter, we consider the realistic case of positive correlations between activ-
ity and attractiveness, while we keep the distribution of activities generic, fixing
ρ(aS, bS) = ρS(aS)δ(bS − aS), with arbitrary ρS(aS).

The variables of interest for the epidemic are the probabilities averaged over ac-
tivity and attractiveness: P(t), I(t), A(t), T(t), Q(t). Their temporal dynamics can be
obtained by averaging the Eqs. (A.6) - (A.10) on aS (since we assume bS = aS). Sim-
ilarly, the temporal dynamics of aST(t), aS A(t), aSP(t) and εaSP(t) can be obtained
by multiplying Eqs. (A.6) - (A.10) for aSρS(aS) or ε(aS)aSρS(aS) and integrating over
the activity. Indeed, these equations are necessary to close the system of equations
so that it is complete in the averaged variables.

The equations for the averaged probabilities compose a set of nine coupled dif-
ferential equations (neglecting second order terms):

∂t I(t) = −µI I(t) + γPP(t) (A.11)

∂tP(t) = −γPP(t) + 2λ[δaSP(t) + (1 − δ)(aST(t) + aS A(t))] (A.12)

∂tQ(t) = −µQ(t) + γAT(t) (A.13)

∂tT(t) = −(µ + γA)T(t) + 2λδεaSP(t) + 2λδaS A(t)
εaS

aS
(A.14)

∂t A(t) = −µA(t) + 2λ[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]

− 2λδaS A(t)
εaS

aS

(A.15)

∂taSP(t) = −γPaSP(t) + 2λ
a2

S
aS

[δaSP(t) + (1 − δ)(aST(t) + aS A(t))] (A.16)

∂tεaSP(t) = −γPεaSP(t) + 2λ
εa2

S
aS

[δaSP(t) + (1 − δ)(aST(t) + aS A(t))] (A.17)

∂taST(t) = −(µ + γA)aST(t) + 2λδ
a2

S
aS

εaSP(t) + 2λδa2
S A(t)

εaS

aS
(A.18)

∂taS A(t) = −µaS A(t) + 2λ
a2

S
aS

[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]

− 2λδa2
S A(t)

εaS

aS
(A.19)

The linearized set of equations obtained, however, is not closed as it depends on
the variable a2

S A(t). Indeed, in general the linearized equations for the terms an
S A(t)

and an
ST(t) always involve terms like an+1

S A(t), due to the tracing terms and for each
n ≥ 0. The system would require an infinite set of coupled equations to be closed.

We close the equations by expressing a2
S A(t) as a function of the other averaged

probabilities: by definition a2
S A(t) =

∫︁
daSρS(aS)a2

S AaS(t), thus the system can be
closed by expressing AaS(t) as a function of the other average variables. For the
calculation of the epidemic threshold we are interested in the steady state and, in
particular, in the absorbing state: so we can consider Eq. (A.8) for AaS,bS(t) and
linearize it around the absorbing state close to the steady state, i.e. for ∂t AaS,bS(t) ∼ 0
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and fixing ρ(aS, bS) = ρS(aS)δ(aS − bS):

AaS(t) ≃
2λaS[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]

µaS + 2λδaSεaS
. (A.20)

Substituting Eq. (A.20) in the definition of a2
S A(t), we obtain a2

S A(t) as a function of
the only nine variables of which we have an equation:

a2
S A(t) ≃ 2r

aS
[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]K, (A.21)

where r = λ/µ and K =
a3

S

1+2rδaS
εaS
aS

=
∫︁

daSρS(aS)
a3

S

1+2rδaS
εaS
aS

.

This allows us to obtain the linearized equations for aST(t) and aS A(t) so that
they depend only on the nine variables for which we have an equation:

∂taST(t) = − (µ + γA)aST(t) + 2λδ
a2

S
aS

εaSP(t)

+ 4λr
εaS

aS
2 δK[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]

(A.22)

∂taS A(t) = − µaS A(t)

+ 2λ
a2

S
aS

[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]

− 4λr
εaS

aS
2 δK[δ(aSP(t)− εaSP(t)) + (1 − δ)(aST(t) + aS A(t))]

(A.23)

In this way the epidemic is completely described by a closed and complete set
of nine linearized equations in nine variables (Eqs. (A.11)-(A.17) and Eqs. (A.22)-
(A.23)), which admits the following Jacobian matrix:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µI γP 0 0 0 0 0 0 0
0 −γP 0 0 0 2λδ 0 2λ(1 − δ) 2λ(1 − δ)
0 0 −µ γA 0 0 0 0 0
0 0 0 −µ − γA 0 0 2λδ 0 2λδ εaS

aS

0 0 0 0 −µ 2λδ −2λδ 2λ(1 − δ) 2λ(1 − δ)− 2λδ εaS
aS

0 0 0 0 0 −γP + ∆ 0 Γ Γ
0 0 0 0 0 ϕ −γP Φ Φ
0 0 0 0 0 θ ∆ − θ −µ − γA + Ψ Ψ
0 0 0 0 0 ∆ − θ θ − ∆ Γ − Ψ −µ + Γ − Ψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[︃
A(5x5) C(5x4)
O(4x5) B(4x4)

]︃
(A.24)

where ∆ = 2λδ
a2

S
aS

, Γ = 2λ(1 − δ)
a2

S
aS

, ϕ = 2λδ
εa2

S
aS

, Φ = 2λ(1 − δ)
εa2

S
aS

, θ = 4λrδ2 εaS
aS

2 K

and Ψ = 4λrδ(1 − δ) εaS
aS

2 K.

The absorbing state is stable if all eigenvalues of the Jacobian matrix are nega-
tive. Since the matrix is composed of four blocks, we can consider separately the two
blocks on the diagonal: for A the eigenvalues are ξ1,2 = −µ, ξ3 = −µI , ξ4 = −γP,
ξ5 = −µ − γA, all negative. Thus the epidemic threshold can be obtained by impos-
ing all eigenvalues of the block B, which is a matrix 4x4, to be negative. B feature
a characteristic polynomial of degree 4: we apply the Descartes’ rule of signs to
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impose all roots to be negative and we obtain the condition for the stability of the
absorbing state:

8r3δ2(1 − δ)
εa2

S εaS

aS

a3
S

1 + 2rδaS
εaS
aS

γA

µ
− 4r2δ(1 − δ)

[︄
εa2

S a2
S +

γP

µ
εaS

a3
S

1 + 2rδaS
εaS
aS

]︄
γA

µ

+ 2ra2
SaS

(︃
γA

µ
+ 1
)︃(︃

δ +
γP

µ
(1 − δ)

)︃
− aS

2 γP

µ

(︃
γA

µ
+ 1
)︃
< 0.

(A.25)
By setting the equality we obtain Eq. (5.10), i.e. a closed relation for the epidemic
threshold rC. Moreover, the epidemic threshold obtained with this mean-field ap-
proach is exact and holds for manual CT, with arbitrary delay τC (encoded in γA),
for arbitrary activity distribution ρS(aS) and for arbitrary recall probability ε(aS). In
general rC is obtained numerically from Eq. (5.10), however in Section 5.3 we show
some limit cases in which the epidemic threshold can be obtained explicitly.

A.2 Digital CT

We now consider the digital CT: each individual is either endowed or not with the
app with a probability f (aS) depending on the activity. Also in this case, asymp-
tomatic individuals A can be traced when infected by a presymptomatic P or when
they are the source of infection for a susceptible node that will develop symptoms,
but only if both the nodes involved in the contact downloaded the app.

In this case, different compartments are introduced for individuals without the
app (S, I, P, etc.) and with the app (denoted with the superscript α: Sα, Iα, Pα,
etc.). In this case T = 0 and Q = 0, since we are considering purely digital CT,
nevertheless here we write also the transitions involving them since they may play
a role for hybrid protocols (see Section A.3).

All the possible transitions among the compartments are depicted in Figure 5.4.
The infection and CT transitions involving both individuals without the app (in such
cases no new traced individuals are generated):

P + S λδ−→ P + P A + S λδ−→ A + P T + S λδ−→ T + P
(A.26)

P + S
λ(1−δ)−−−−→ P + A A + S

λ(1−δ)−−−−→ A + A T + S
λ(1−δ)−−−−→ T + A

(A.27)

Those involving only one individual with the app (in such cases no new traced indi-
viduals are generated):

Pα + S λδ−→ Pα + P Aα + S λδ−→ Aα + P Tα + S λδ−→ Tα + P
(A.28)

Pα + S
λ(1−δ)−−−−→ Pα + A Aα + S

λ(1−δ)−−−−→ Aα + A Tα + S
λ(1−δ)−−−−→ Tα + A

(A.29)

P + Sα λδ−→ P + Pα A + Sα λδ−→ A + Pα T + Sα λδ−→ T + Pα

(A.30)
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P + Sα λ(1−δ)−−−−→ P + Aα A + Sα λ(1−δ)−−−−→ A + Aα T + Sα λ(1−δ)−−−−→ T + Aα

(A.31)

Those involving both individuals with the app (in such cases new traced individuals
can be generated):

Pα + Sα λδ−→ Pα + Pα Aα + Sα λδ−→ Tα + Pα Tα + Sα λδ−→ Tα + Pα

(A.32)

Pα + Sα λ(1−δ)−−−−→ Pα + Tα Aα + Sα λ(1−δ)−−−−→ Aα + Aα Tα + Sα λ(1−δ)−−−−→ Tα + Aα

(A.33)

We divide the population into classes of nodes with the same activity and at-
tractiveness (aS, bS), considering them statistically equivalent: this is the activity-
attractiveness-based mean-field approach. The approach is exact since the model is ex-
actly mean-field, indeed all local correlations are removed by link reshuffling. Fur-
thermore, the mean-field epidemic threshold of the SIS and SIR model are the same,
so we can consider the evolution equations of the SIS model [126, 128–130]. Finally,
the proposed model, in which a symptomatic or presymptomatic pathway occurs at
the time of infection, is completely equivalent to initially assigning symptomaticity
(with probability δ) or asymptomaticity (with probability (1 − δ)) to a node: we will
deal with the model in this second formulation for simplicity.

As described in Chapter 5, the epidemic is described in the mean-field approach
by the following equations for the probabilities that a symptomatic or asymptomatic
node belongs to a specific compartment (see Section 5.4 for the full description of
each equation):

∂tPaS,bS(t) = −γPPaS,bS(t) + λaS(1 − IaS,bS(t)− PaS,bS(t))
F(t)
⟨b(t)⟩

+ λbS(1 − IaS,bS(t)− PaS,bS(t))
G(t)
⟨b(t)⟩

(A.34)

∂t IaS,bS(t) = −µI IaS,bS(t) + γPPaS,bS(t) (A.35)

∂tPα
aS,bS

(t) = −γPPα
aS,bS

(t) + λaS(1 − Iα
aS,bS

(t)− Pα
aS,bS

(t))
F(t)
⟨b(t)⟩

+ λbS(1 − Iα
aS,bS

(t)− Pα
aS,bS

(t))
G(t)
⟨b(t)⟩

(A.36)

∂t Iα
aS,bS

(t) = −µI Iα
aS,bS

(t) + γPPα
aS,bS

(t) (A.37)

∂t Aα
aS,bS

(t) = − µAα
aS,bS

(t)

+ λaS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
F(t)− δ f bSPα(t)

⟨b(t)⟩

+ λbS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
G(t)− δ f aSPα(t)

⟨b(t)⟩

− λδaS Aα
aS,bS

(t)
f bS − f bSPα(t)− f bS Iα(t)

⟨b(t)⟩

− λδbS Aα
aS,bS

(t)
f aS − f aSPα(t)− f aS Iα(t)

⟨b(t)⟩

(A.38)

∂tQα
aS,bS

(t) = −µQα
aS,bS

(t) + γPTα
aS,bS

(t) (A.39)
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∂tTα
aS,bS

(t) = − (µ + γP)Tα
aS,bS

(t)

+ λaS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
δ f bSPα(t)
⟨b(t)⟩

+ λbS(1 − Aα
aS,bS

(t)− Tα
aS,bS

(t)− Qα
aS,bS

(t))
δ f aSPα(t)
⟨b(t)⟩

+ λδaS Aα
aS,bS

(t)
f bS − f bSPα(t)− f bS Iα(t)

⟨b(t)⟩

+ λδbS Aα
aS,bS

(t)
f aS − f aSPα(t)− f aS Iα(t)

⟨b(t)⟩

(A.40)

∂t AaS,bS(t) = −µAaS,bS(t) + λaS(1 − AaS,bS(t))
F(t)
⟨b(t)⟩

+ λbS(1 − AaS,bS(t))
G(t)
⟨b(t)⟩

(A.41)

where we define g =
∫︁

daSdbSρ(aS, bS)gaS,bS , F(t) = δ( f bSPα(t) + (1 − f )bSP(t)) +
(1− δ)( f bSTα(t)+ f bS Aα(t)+ (1 − f )bS A(t)), G(t) = δ( f aSPα(t)+ (1 − f )aSP(t))+
(1− δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t)) and the average attractiveness at time
t is ⟨b(t)⟩ = bS − (1 − δ) f bSQα(t)− δ( f bS Iα(t) + (1 − f )bS I(t)). Moreover, we con-
sider the system in the thermodynamic limit.

Eqs. (A.34)-(A.41) constitute a set of eight coupled non-linear differential equa-
tions and describes the epidemic in the presence of digital CT. It admits the absorb-
ing state, in which all individuals are susceptible, as a solution: the epidemic thresh-
old can be obtained by imposing the stability of the absorbing state, through a linear
stability analysis.

Hereafter, we consider the realistic case of positive correlations between activ-
ity and attractiveness, while we keep the distribution of activities generic, fixing
ρ(aS, bS) = ρS(aS)δ(bS − aS), with arbitrary ρS(aS).

The variables of interest for the epidemic are the probabilities averaged over ac-
tivity and attractiveness: P(t), I(t), A(t), Pα(t), Iα(t), Aα(t), Qα(t), Tα(t). Their tem-
poral dynamics can be obtained by averaging the Eqs. (A.34) - (A.41) on aS (since we
assume bS = aS). Similarly, the temporal dynamics of f aSPα(t), f aSTα(t), aS Aα(t),
f aS Aα(t), (1 − f )aSP(t), (1 − f )aS A(t) can be obtained by multiplying Eqs. (A.34)
- (A.41) for aSρS(aS), f (aS)aSρS(aS) or (1 − f (aS))aSρS(aS) and integrating over the
activity. Indeed, these equations are necessary to close the system of equations so
that it is complete in the averaged variables.

The equations for the averaged probabilities compose a set of fourteen coupled
differential equations (neglecting second order terms):

∂tP(t) = −γPP(t) + 2λδ( f aSPα(t) + (1 − f )aSP(t))

+ 2λ(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

(A.42)

∂t I(t) = −µI I(t) + γPP(t) (A.43)

∂tPα(t) = −γPPα(t) + 2λδ( f aSPα(t) + (1 − f )aSP(t))

+ 2λ(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

(A.44)

∂t Iα(t) = −µI Iα(t) + γPPα(t) (A.45)

∂t A(t) = −µA(t) + 2λδ( f aSPα(t) + (1 − f )aSP(t))

+ 2λ(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

(A.46)
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∂tQα(t) = −µQα(t) + γPTα(t) (A.47)

∂tTα(t) = −(µ + γP)Tα(t) + 2λδ f aSPα(t) + 2λδaS Aα(t)
f aS

aS
(A.48)

∂t Aα(t) = −µAα(t) + 2λδ(1 − f )aSP(t)

+ 2λ(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

− 2λδaS Aα(t)
f aS

aS
(A.49)

∂t f aSPα(t) = − γP f aSPα(t) + 2λ
f a2

S
aS

δ( f aSPα(t) + (1 − f )aSP(t))

+ 2λ
f a2

S
aS

(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

(A.50)

∂t(1 − f )aSP(t) = − γP(1 − f )aSP(t) + 2λ
(1 − f )a2

S
aS

δ( f aSPα(t) + (1 − f )aSP(t))

+ 2λ
(1 − f )a2

S
aS

(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

(A.51)

∂t(1 − f )aS A(t) = − µ(1 − f )aS A(t) + 2λ
(1 − f )a2

S
aS

δ( f aSPα(t) + (1 − f )aSP(t))

+ 2λ
(1 − f )a2

S
aS

(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

(A.52)

∂t f aSTα(t) = −(µ + γP) f aSTα(t) + 2λδ
f a2

S
aS

f aSPα(t) + 2λδ f a2
S Aα(t)

f aS

aS
(A.53)

∂taS Aα(t) = − µaS Aα(t) + 2λ
a2

S
aS

δ(1 − f )aSP(t)

+ 2λ
a2

S
aS

(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

− 2λδa2
S Aα(t)

f aS

aS

(A.54)

∂t f aS Aα(t) = −µ f aS Aα(t) + 2λ
f a2

S
aS

δ(1 − f )aSP(t)

+ 2λ
f a2

S
aS

(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

− 2λδ f a2
S Aα(t)

f aS

aS
(A.55)

The linearized set of equations obtained, however, is not closed as it depends
on the variables f a2

S Aα(t) and a2
S Aα(t). Indeed, in general the linearized equations

for the terms an
STα(t) and an

S Aα(t) always involve terms like an+1
S Aα(t), due to the

tracing terms and for each n ≥ 0. The system would require an infinite set of coupled
equations to be closed.
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We close the equations by expressing f a2
S Aα(t) and a2

S Aα(t) as a function of the
other averaged probabilities: by definition f a2

S Aα(t) =
∫︁

daSρS(aS) f (aS)a2
S Aα

aS
(t)

and a2
S Aα(t) =

∫︁
daSρS(aS)a2

S Aα
aS
(t), thus the system can be closed by expressing

Aα
aS
(t) as a function of the other average variables. For the calculation of the epi-

demic threshold we are interested in the steady state and, in particular, in the ab-
sorbing state: so we can consider Eq. (A.38) for Aα

aS,bS
(t), we linearize it around the

absorbing state close to the steady state, i.e. ∂t Aα
aS,bS

(t) ∼ 0 by fixing ρ(aS, bS) =

ρS(aS)δ(aS − bS):

Aα
aS
(t) ≃ 2λaS[δ(1 − f )aSP(t) + (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))]

µaS + 2λδaS f aS
.

(A.56)
Substituting Eq. (A.56) in the definition of f a2

S Aα(t) and of a2
S Aα(t), we obtain the

two variables as a function of the only fourteen variables of which we have an equa-
tion:

f a2
S Aα(t) ≃ 2

aS
r[δ(1 − f )aSP(t) + (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))]H,

(A.57)

a2
S Aα(t) ≃ 2

aS
r[δ(1 − f )aSP(t) + (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))]Z,

(A.58)

where H =
f a3

S

1+2rδaS
f aS
aS

=
∫︁

daSρS(aS)
f (aS)a3

S

1+2rδaS
f aS
aS

, Z =
a3

S

1+2rδaS
f aS
aS

.

This allows us to obtain the linearized equations for aS Aα, f aS Aα and f aSTα so
that they depend only on the fourteen variables for which we have an equation:

∂taS Aα(t) = − µaS Aα(t)

+ 2λ
a2

S
aS

[δ(1 − f )aSP(t) + (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))]

− 4λrδ
f aS

aS
2 δ(1 − f )aSP(t)Z

− 4λrδ
f aS

aS
2 (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))Z

(A.59)

∂t f aS Aα(t) = − µ f aS Aα(t) + 2λ
f a2

S
aS

δ(1 − f )aSP(t)

+ 2λ
f a2

S
aS

(1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))

− 4λrδ
f aS

aS
2 δ(1 − f )aSP(t)H

− 4λrδ
f aS

aS
2 (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))H

(A.60)
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∂t f aSTα(t) = − (µ + γP) f aSTα(t) + 2λδ
f a2

S
aS

f aSPα(t)

+ 4λrδ
f aS

aS
2 δ(1 − f )aSP(t)H

+ 4λrδ
f aS

aS
2 (1 − δ)( f aSTα(t) + f aS Aα(t) + (1 − f )aS A(t))H

(A.61)

In this way the epidemic is completely described by a closed and complete set
of fourteen linearized equations in fourteen variables (Eqs. (A.42)-(A.52) and Eqs.
(A.59)-A.61), which admits the following Jacobian matrix:

J =
[︃

A(9x9) C(9x5)
O(5x9) B(5x5)

]︃
(A.62)

Where O is the zero matrix, and:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µI γP 0 0 0 0 0 0 0
0 −γP 0 0 0 0 0 0 0
0 0 −µI γP 0 0 0 0 0
0 0 0 −γP 0 0 0 0 0
0 0 0 0 −µ 0 0 0 0
0 0 0 0 0 −µ +γP 0 0

0 0 0 0 0 0 −µ − γP 0 2λδ
f aS
aS

0 0 0 0 0 0 0 −µ −2λδ
f aS
aS

0 0 0 0 0 0 0 0 −µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.63)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
2λδ 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)

0 0 0 0 0
2λδ 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)
2λδ 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)

0 0 0 0 0
2λδ 0 0 0 0

0 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)
0 ∆ + ϕ − Φ Z

H θ + Γ − Ψ Z
H θ + Γ − Ψ Z

H θ + Γ − Ψ Z
H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.64)

B =

⎡⎢⎢⎢⎢⎣
−γP + ∆ ∆ Γ Γ Γ

ϕ −γP + ϕ θ θ θ
ϕ ϕ −µ + θ θ θ
∆ Φ Ψ −µ − γP + Ψ Ψ

∆ − Φ Γ − Ψ Γ − Ψ −µ + Γ − Ψ

⎤⎥⎥⎥⎥⎦ (A.65)

where ∆ = 2λδ
f a2

S
aS

, Γ = 2λ(1 − δ)
f a2

S
aS

, ϕ = 2λδ
(1− f )a2

S
aS

, θ = 2λ(1 − δ)
(1− f )a2

S
aS

,

Φ = 4λrδ2 f aS
aS

2 H and Ψ = 4λrδ(1 − δ) f aS
aS

2 H.
The absorbing state is stable if all eigenvalues of the Jacobian matrix are negative.

Since the matrix is composed of four blocks, we can consider separately the two
blocks on the diagonal: for A the eigenvalues are ξ1,2 = −µI , ξ3,4,5,6 = −µ, ξ7,8 =
−γP, ξ9 = −µ − γP, all negative. Thus the epidemic threshold can be obtained by
imposing all eigenvalues of the block B, which is a matrix 5x5, to be negative. B
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feature a characteristic polynomial of degree 5: we apply the Descartes’ rule of signs
to impose all roots to be negative and we obtain the condition for the stability of the
absorbing state:

8r3δ2(1 − δ)
f a2

S f aS

aS

f a3
S

1 + 2rδaS
f aS
aS

γP

µ
− 4r2δ(1 − δ)

⎡⎣ f a2
S

2
+

γP

µ
f aS

f a3
S

1 + 2rδaS
f aS
aS

⎤⎦ γP

µ

+ 2ra2
SaS

(︃
γP

µ
+ 1
)︃(︃

δ +
γP

µ
(1 − δ)

)︃
− aS

2 γP

µ

(︃
γP

µ
+ 1
)︃
< 0.

(A.66)
By setting the equality we obtain Eq. (5.26), i.e. a closed relation for the epidemic

threshold rC. Moreover, the epidemic threshold obtained with this mean-field ap-
proach is exact and holds for digital CT, for arbitrary activity distribution ρS(aS) and
distribution of the app in the population f (aS). In general rC is obtained numeri-
cally from Eq. (5.26), however in Section 5.4 we show some limit cases in which the
epidemic threshold can be obtained explicitly.

A.3 Hybrid CT

We now consider the hybrid CT: each individual is either endowed or not with the
app with a probability f (aS) depending on the activity. Symptomatic nodes with
the app activate both digital and manual CT, their contacts with the app are traced
digitally while the other contacts are traced manually; symptomatic nodes without
the app activate only manual CT on all their contacts.

In this case asymptomatic nodes A can be traced T when infected by a presymp-
tomatic P or when they are source of infection of a susceptible node that will develop
symptoms. The contact-induce and spontaneous transitions occurring in the pres-
ence of hybrid CT can be deduced by the transitions described in Sections A.1 and
A.2 for manual and digital CT: analogously to digital CT, different compartments
are introduced for individuals without the app (S, I, P, etc.) and with the app (de-
noted with the superscript α: Sα, Iα, Pα, etc.). In this case T ̸= 0 and Q ̸= 0, since
we are considering also manual CT. Moreover, a further compartment is introduced,
Tα

M, indicating individuals who downloaded the app traced manually, so that their
transition to the Qα occurs with a rate γA = 1/(τP + τC).

We divide the population into classes of nodes with the same activity and at-
tractiveness (aS, bS), considering them statistically equivalent: this is the activity-
attractiveness-based mean-field approach. The approach is exact since the model is ex-
actly mean-field, indeed all local correlations are removed by link reshuffling. Fur-
thermore, the mean-field epidemic threshold of the SIS and SIR model are the same,
so we can consider the evolution equations of the SIS model [126, 128–130].

Hereafter, we consider the realistic case of positive correlations between activity
and attractiveness, while we keep the distribution of activities generic, fixing for
ρ(aS, bS) = ρS(aS)δ(bS − aS), with arbitrary ρS(aS).

As described in Chapter 5, the epidemic is described in the mean-field approach
by the following equations for the probabilities that a symptomatic or asymptomatic
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node belongs to a specific compartment (see Section 5.9):

∂tPaS(t) = −γPPaS(t) + 2λ(1 − PaS(t)− IaS(t))
aS

⟨b(t)⟩Z(t) (A.67)

∂t IaS(t) = −µI IaS(t) + γPPaS(t) (A.68)

∂tPα
aS
(t) = −γPPα

aS
(t) + 2λ(1 − Pα

aS
(t)− Iα

aS
(t))

aS

⟨b(t)⟩Z(t) (A.69)

∂t Iα
aS
(t) = −µI Iα

aS
(t) + γPPα

aS
(t) (A.70)

∂t AaS(t) = − µAaS(t)

+ 2λ(1 − AaS(t)− TaS(t)− QaS(t))
aS

⟨b(t)⟩W(t)

− 2λδAaS(t)
aS

⟨b(t)⟩ (aSε f − aSε f Pα(t)− aSε f Iα(t))

− 2λδAaS(t)
aS

⟨b(t)⟩ (aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t))]

(A.71)

∂tTaS(t) = − (µ + γA)TaS(t)

+ 2λδ
aS

⟨b(t)⟩ (1 − AaS(t)− TaS(t)− QaS(t))[aSε f Pα(t) + aSε(1 − f )P(t)]

+ 2λδAaS(t)
aS

⟨b(t)⟩ (aSε f − aSε f Pα(t)− aSε f Iα(t))

+ 2λδAaS(t)
aS

⟨b(t)⟩ (aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t))]

(A.72)

∂tQaS(t) = −µQaS(t) + γATaS(t) (A.73)
∂t Aα

aS
(t) = − µAα

aS
(t)

+ 2λ(1 − Aα
aS
(t)− Tα

aS
(t)− Tα

aS|M(t)− Qα
aS
(t))

aS

⟨b(t)⟩T(t)

− 2λδAα
aS
(t)

aS

⟨b(t)⟩ (aS f − aS f Pα(t)− aS f Iα(t))

− 2λδAα
aS
(t)

aS

⟨b(t)⟩ (aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t))

(A.74)

∂tTα
aS
(t) = − (µ + γP)Tα

aS
(t)

+ 2λδ
aS

⟨b(t)⟩ (1 − Aα
aS
(t)− Tα

aS
(t)− Tα

aS|M(t)− Qα
aS
(t))aS f Pα(t)

+ 2λδAα
aS
(t)

aS

⟨b(t)⟩ [aS f − aS f Pα(t)− aS f Iα(t)]

(A.75)

∂tTα
aS|M(t) = − (µ + γA)Tα

aS|M(t)

+ 2λδ
aS

⟨b(t)⟩ (1 − Aα
aS
(t)− Tα

aS
(t)− Tα

aS|M(t)− Qα
aS
(t))aSε(1 − f )P(t)

+ 2λδAα
aS
(t)

aS

⟨b(t)⟩ [aSε(1 − f )− aSε(1 − f )P(t)− aSε(1 − f )I(t)]

(A.76)

∂tQα
aS
(t) = −µQα

aS
(t) + γPTα

aS
(t) + γATα

aS|M(t) (A.77)
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where:

Z(t) = δ(aS f Pα(t) + aS(1 − f )P(t))

+ (1 − δ)(aS f Aα(t) + aS f Tα(t) + aS f Tα
M(t) + aS(1 − f )T(t) + aS(1 − f )A(t))

(A.78)

T(t) = δaS(1 − ε)(1 − f )P(t)

+ (1 − δ)(aS f Aα(t) + aS f Tα(t) + aS f Tα
M(t) + aS(1 − f )T(t) + aS(1 − f )A(t))

(A.79)

W(t) = δ(aS(1 − ε) f Pα(t) + aS(1 − ε)(1 − f )P(t))

+ (1 − δ)(aS f Aα(t) + aS f Tα(t) + aS f Tα
M(t) + aS(1 − f )T(t) + aS(1 − f )A(t))

(A.80)

Moreover, we define g =
∫︁

daSρS(aS)gaS and the average attractiveness at time t is
⟨b(t)⟩ = bS − (1 − δ)( f bSQα(t) + (1 − f )bSQ(t))− δ( f bS Iα(t) + (1 − f )bS I(t)). We
consider the system in the thermodynamic limit.

Eqs. (A.67)-(A.77) constitute a set of eleven coupled non-linear differential equa-
tions and describes the epidemic in the presence of hybrid CT. It admits the ab-
sorbing state, in which all individuals are susceptible, as a solution: the epidemic
threshold can be obtained by imposing the stability of the absorbing state, through
a linear stability analysis.

Similarly to the manual and digital case of Sections A.1 and A.2, we consider the
averaged variables (eventually multiplied by combinations of aS, ε(aS) and f (aS)) by
averaging (A.67)-(A.77) on the activity. Then we close the equations in analogously
to the purely manual and digital case. We obtain a complex closed and complete set
of twenty-two coupled non-linear differential equations, which admits the following
Jacobian matrix, obtained by linearizing the system around the absorbing state:

J =
[︃

A(13x13) C(13x9)
O(9x13) B(9x9)

]︃
(A.81)

where O is the zero matrix.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µI γP 0 0 0 0 0 0 0 0 0 0 0
0 −γP 0 0 0 0 0 0 0 0 0 0 0
0 0 −µI γP 0 0 0 0 0 0 0 0 0
0 0 0 −γP 0 0 0 0 0 0 0 0 0
0 0 0 0 −µ γA 0 0 0 0 0 0 0
0 0 0 0 0 −ω 0 0 0 0 0 2λδ aSε

aS
0

0 0 0 0 0 0 −µ 0 0 0 0 −2λδ aSε
aS

0
0 0 0 0 0 0 0 −µ γP γA 0 0 0

0 0 0 0 0 0 0 0 −α 0 0 0 2λδ
aS f
aS

0 0 0 0 0 0 0 0 0 −ω 0 0 C
0 0 0 0 0 0 0 0 0 0 −µ 0 B
0 0 0 0 0 0 0 0 0 0 0 −µ 0
0 0 0 0 0 0 0 0 0 0 0 0 −µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.82)
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 2λδ 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)
0 0 0 0 0 0 0 0 0
0 0 2λδ 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)
0 0 0 0 0 0 0 0 0

2λδ 2λδ 0 0 0 0 0 0 0
−2λδ −2λδ 2λδ 2λδ 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)

0 0 0 0 0 0 0 0 0
0 0 0 2λδ 0 0 0 0 0

2λδ 0 0 0 0 0 0 0 0
−2λδ 0 2λδ 0 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ) 2λ(1 − δ)
−Ψδ −Ψδ Ψδ Ψδ Ψ(1 − δ) Ψ(1 − δ) Ψ(1 − δ) Ψ(1 − δ) Ψ(1 − δ)
−θδ 0 θδ 0 θ(1 − δ) θ(1 − δ) θ(1 − δ) θ(1 − δ) θ(1 − δ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.83)

with Ψ = 2λ
a2

S
aS

− 4λrδ aSε

aS
2 K, θ = 2λ

a2
S

aS
− 4λrδ

aSε(1− f )+aS f
aS

2 J, K =
a3

S

1+2raSδ
aSε
aS

, J =

a3
S

1+2raSδ
aS f+aSε(1− f )

aS

, ω = µ+γA, α = µ+γP, B = −2λδ
aS f+aSε(1− f )

aS
and C = 2λδ

aSε(1− f )
aS

.

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γP 0 Ξδ Ξδ Ξσ Ξσ Ξσ Ξσ Ξσ
0 −γP Πδ Πδ Πσ Πσ Πσ Πσ Πσ
0 0 −γP + ∆δ ∆δ ∆σ ∆σ ∆σ ∆σ ∆σ
0 0 βδ −γP + βδ βσ βσ βσ βσ βσ

Ωδ Ωδ ϕδ ϕδ −ω + ϕσ ϕσ ϕσ ϕσ ϕσ
−Γδ 0 Γδ βδ Γσ −α + Γσ Γσ Γσ Γσ
Σδ 0 Φδ 0 Φσ Φσ −ω + Φσ Φσ Φσ
−Ωδ −Ωδ Ωδ Ωδ Ωσ Ωσ Ωσ −µ + Ωσ Ωσ
−Λδ 0 Λδ 0 Λσ Λσ Λσ Λσ −µ + Λσ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.84)

with σ = (1 − δ), Ξ = 2λ
a2

Sε(1− f )
aS

, Π = 2λ
a2

Sε f
aS

, ∆ = 2λ
a2

S(1− f )
aS

, β = 2λ
a2

S f
aS

, ϕ =

4λrδ aSε

aS
2 H, Γ = 4λrδ

aS f
aS

2 Y, Φ = 4λrδ
aSε(1− f )

aS
2 Y, H =

(1− f )a3
S

1+2rδaS
aSε
aS

, Y =
f a3

S

1+2rδaS
aSε(1− f )+aS f

aS

,

Ω = ∆ − ϕ, Σ = β − Φ and Λ = −Γ − Φ + β.

The absorbing state is stable if all eigenvalues of the Jacobian matrix are nega-
tive. Since the matrix is composed of four blocks, we can consider separately the
two blocks on the diagonal: for A the eigenvalues are ξ1,2 = −µI , ξ3,4,5,6,7,8 = −µ,
ξ9,10 = −γP, ξ11 = −µ − γP, ξ12,13 = −µ − γA, all negative. Thus the epidemic
threshold can be obtained by imposing all eigenvalues of the block B, which is a
matrix 9x9, to be negative. The epidemic threshold in the hybrid case is therefore
obtained by numerically diagonalizing the matrix B and imposing all its eigenval-
ues to be negative: this allows to obtain analytically the epidemic threshold for the
hybrid CT for arbitrary activity distribution ρS(aS), recall probability ε(aS) and dis-
tribution of the app in the population f (aS).
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Appendix B

Continuous-time Gillespie-like
algorithm for CT simulations

In this Appendix we describe the scheme of the continuous-time Gillespie-like al-
gorithm implemented to numerically simulate the epidemic dynamics in the active
phase and the dynamics of the activity-driven network, which are coupled by the
isolation of symptomatic individuals and by manual and digital contact tracing. The
model considered is fully described in Chapter 5.

We consider a network of N nodes and each node is initially assigned with two
parameters (aS, bS) extracted from the joint distribution ρS(aS, bS). Initially the net-
work evolve in the absorbing state (i.e. all nodes are susceptible) and the pathogen
does not spread:

1. At time t = 0 each node i is assigned with its activation time extracted from
the distribution Ψai

S
(ti) = ai

Se−ai
Sti ;

2. The time is set at the minimum activation time t = ti: the node i with the lowest
activation time ti is activated and generates m links with m nodes randomly
selected with probability proportional to their attractiveness bj

S;

3. The new activation time ti + τ of node i is obtained by drawing the inter-event
time τ from the inter-event times distribution Ψai

S
(τ) = ai

Se−ai
Sτ;

4. All the links are destroyed and the process is iterated from point 2 up to the
relaxation time t0, in which the dynamics of the network is relaxed to equilib-
rium (i.e. no more aging effects are present).

At this point the epidemic dynamic is implemented:

1. At time t = t0 each node is assigned with an activation time ti, resulting from
the relaxation dynamics, and the system is then initialized in a configuration
of susceptible, infected and recovered.

Digital CT: the app is initially assigned to each node of activity aS with prob-
ability f (aS);

2. The minimum activation time ti is considered. Nodes infected at time t recover
at time ti with probability

[︂
1 − e−µ(ti−t)

]︂
if asymptomatic (A, T, Q) or with

probability
[︂
1 − e−µI(ti−t)

]︂
if symptomatic (I): thus they change their activity

and attractiveness (aX, bX) → (aR, bR), with X = {A, T, Q, I};
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3. Traced asymptomatic individuals at time t are isolated at time ti with probabil-
ity
[︂
1 − e−(ti−t)/τC

]︂
, thus they change their activity and attractiveness (aT, bT) →

(aQ, bQ) = (0, 0).

Digital CT: τC = 0; Manual CT: τC > 0;

4. Presymptomatic individuals at time t develop symptoms at time ti with proba-
bility

[︂
1 − e−γP(ti−t)

]︂
: thus they change their activity and attractiveness (aP, bP) →

(aI , bI) = (0, 0) and activate contact tracing.

Manual CT: contact tracing is enabled for each symptomatic node. Each con-
tact made in the time window TCT is traced with probability ε(aS), where aS
is the activity of the symptomatic node. Each node tested and found asymp-
tomatic is traced and changes its activity and attractiveness (aA, bA) → (aT, bT);

Digital CT: contact tracing is enabled only if the symptomatic node has adopted
the app. Each contact performed in the time window TCT is traced with proba-
bility 1 if the other node involved has downloaded the app or with probability
0 otherwise. Each node tested and found asymptomatic is traced and changes
its activity and attractiveness (aA, bA) → (aT, bT);

5. The time is then set at the minimum activation time t = ti and the node i
with the lowest activation time ti is activated. The active node i generates
exactly m links with m randomly selected nodes, with probability proportional
to their attractiveness bj. The contacts are collected in the contact list of both
the involved nodes.

6. If the nodes involved in an active link are one susceptible and one infected,
an infection occurs with probability λ: the susceptible node become presymp-
tomatic with probability δ or asymptomatic with probability (1− δ) and changes
behaviour (aS, bS) → (aX, bX);

7. The new activation time ti + τ of node i is obtained by drawing the inter-event
time τ from the inter-event times distribution Ψai

X
(τ) = ai

Xe−ai
Xτ, where X =

{S, A, T, Q, P, I, R} denotes the dynamic status of node i at time ti. All links
are destroyed and the process is iterated from step 2 until the system reaches
the configuration without infected individuals.
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Appendix C

Mean-field equations and epidemic
threshold for simplicial CT

In this Appendix we derive the mean-field equations for the evolution of an epi-
demic with presymptomatic and asymptomatic transmission on simplicial activity-
driven networks, considering the isolation of symptomatic nodes and the imple-
mentation of contact tracing on gatherings. Moreover, we analytically derive the
epidemic threshold [32]. The detailed epidemic model and the detailed implemen-
tation of CT on gatherings are described in Chapter 6.

The epidemic model corresponds to the SIR model with further distinction in the
infected state based on the appearance of symptoms, on tracing and isolation. The
transitions between the different compartments are shown in Figure 6.7. The CT is
implemented on simplices, i.e. gatherings, with its three mechanisms: forward CT,
backward CT and sideward CT (see Chapter 6). We consider the manual implemen-
tation of the contact tracing [28]: each simplex in which a symptomatic individual
participated is traced as a whole with probability ϵ(s), where s is the size of the
simplex.

The infection and forward CT transitions are (considering the minimum condi-
tions for CT to be activated):

P + S λδ−→ P + P (C.1)

P + S
λ(1−δ)ϵ−−−−→ P + AT (C.2)

P + S
λ(1−δ)(1−ϵ)−−−−−−−→ P + A (C.3)

A susceptible individual S can be infected by a presymptomatic node P and become
presymptomatic (Eq. (C.1)) or asymptomatic (Eqs. (C.2) and (C.3)). In the latter case,
the asymptomatic can be traced with probability ϵ(s) with forward CT, activated by
the infector P upon symptoms development, becoming traced asymptomatic AT (Eq.
(C.2)), otherwise it becomes infected asymptomatic A (Eq. (C.3)).

The infection and backward CT transitions are (considering the minimum con-
ditions for CT to be activated):

A + S λδϵ−−→ AT + P (C.4)

A + S
λδ(1−ϵ)−−−−→ A + P (C.5)

AT + S λδ−→ AT + P (C.6)

A susceptible individual S can be infected by an asymptomatic node A (Eqs. (C.4)
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and (C.5)) or by a traced asymptomatic node AT (Eq. (C.6)) and become presymp-
tomatic. The asymptomatic A infector can be traced with probability ϵ(s) with back-
ward CT, activated by the presymptomatic P upon symptoms development, becom-
ing traced asymptomatic AT (Eq. (C.4)), otherwise it remains infected asymptomatic
A (Eq. (C.5)). Also traced asymptomatic AT infectors could be traced twice with
backward CT activated by the new presymptomatic P, but this has no consequences
on the nodes status (Eq. (C.6)).

The infection and sideward CT transitions are (considering the minimum condi-
tions for CT to be activated):

A + S
λ(1−δ)ϵ−−−−→ A + AT if in the same simplex exists A + S λδ−→ A + P

(C.7)

A + S
λ(1−δ)(1−ϵ)−−−−−−−→ A + A if in the same simplex exists A + S λδ−→ A + P

(C.8)

A + S
λ(1−δ)−−−−→ A + A otherwise (C.9)

AT + S
λ(1−δ)ϵ−−−−→ AT + AT if in the same simplex exists AT + S λδ−→ AT + P

(C.10)

AT + S
λ(1−δ)(1−ϵ)−−−−−−−→ AT + A if in the same simplex exists AT + S λδ−→ AT + P

(C.11)

AT + S
λ(1−δ)−−−−→ AT + A otherwise (C.12)

A susceptible individual S can be infected by an asymptomatic node A (Eqs. (C.7)-
(C.9)) or by a traced asymptomatic node AT (Eqs. (C.10)-(C.12)) and becomes asymp-
tomatic. The whole simplex can be traced with probability ϵ(s) if in the same sim-
plex a symptomatic infection occurs: in this case the newly infected asymptomatic is
traced with sideward CT, becoming traced asymptomatic AT (Eqs. (C.7) and (C.10)),
otherwise if the simplex is not traced (Eqs. (C.8) and (C.11)) or no symptomatic infec-
tions occur in the simplex (Eqs. (C.9) and (C.12)) the newly infected asymptomatic
remains A. Notice that the asymptomatic infector can be traced with backward CT
in the events of Eqs. (C.7)-(C.8), as described in Eqs. (C.4)-(C.5).

Finally, the spontaneous transitions are:

P
γP−→ I A

µ−→ R I
µI−→ R (C.13)

AT
γP−→ AQ AT

µ−→ R AQ
µ−→ R (C.14)

All these transitions consider the necessary and sufficient conditions, i.e. the
minimum conditions, for the CT mechanisms to be activated, indeed they describe
the first-order mechanisms for CT activation, which require the presence of one in-
fected individual to activate CT, unlike higher-order terms which require the pres-
ence of more than one infected individuals. For example, the sideward CT on an
asymptomatic infection can be activated even if a presymptomatic individual is
present initially in the simplex, without the need for a symptomatic infection, how-
ever this is a second-order term, requiring the presence of at least two infected nodes
initially in the simplex. We only consider first-order terms, since we focus on the
epidemic threshold and all higher-order terms do not survive the linearization pro-
cedure for the calculation of the threshold (see Chapter 6).
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We consider the homogeneous case, with all nodes featuring the same attractive-
ness when susceptible bS = b, and we apply a mean-field approach, by considering
all nodes statistically equivalent. The approach is exact since the model is exactly
mean-field, as all local correlations are destroyed by the random selection of partic-
ipants in the simplices without memory (Markovian dynamics). Furthermore, the
mean-field epidemic threshold of the SIS and SIR model are the same, so we can
consider the evolution equations of the SIS model [126, 128–130].

As described in Chapter 6, the epidemic is described by the probabilities X(t) for
a node to belong to a specific compartment at time t, with X = {S, P, I, A, AT, AQ}.
We derive the equations for the temporal evolution of the probabilities by taking
into account the network dynamics, the epidemic spreading and the CT protocol.

The network evolves with simplices activations, which occur over time with a
Poissonian dynamics with activation rate a and their size distribution is Ψ(s): nodes
participate in active simplices with probability proportional to their attractiveness
pX ∝ bX. Presymptomatic, infected asymptomatic and traced asymptomatic indi-
viduals behave as susceptible bP = bA = bAT = bS = b, while symptomatic or iso-
lated asymptomatic individuals do not participate in simplices bI = bAQ = 0. Hence,
the average attractiveness at time t is ⟨b(t)⟩ = b(S(t) + P(t) + A(t) + AT(t)), and
we consider the thermodynamic limit. We define PX(t) the probability that a node
participating in a simplex active at time t belongs to compartment X. Thus:

PX(t) = X(t)
bX

⟨b(t)⟩ . (C.15)

This means that PX(t) = X(t)
S(t)+P(t)+A(t)+AT(t)

for X = S, P, A, AT, while PI(t) =

PAQ(t) = 0 ∀t.
The temporal evolution of the probability P(t) that a node is infected presymp-

tomatic is governed by the equation:

∂tP(t) = −γPP(t) +
∫︂

dsΨ(s)asPS(t)Zs(t)δ, (C.16)

where the first term on the right-hand side is due to the spontaneous symptoms
development, while the second term is due to symptomatic contagion in simplices:
the infection occurs if a simplex of size s is activated a, a susceptible node participates
with probability sPS(t) in the active simplex and with probability Zs(t) is infected
by at least one of the remaining (s − 1) nodes, the infection is symptomatic with
probability δ. The infection term is averaged over the simplex size, by multiplying
the term for Ψ(s) and integrating over the simplex size.

Zs(t) represents the probability that at least one of the other (s − 1) nodes in the
active simplex infects the susceptible node, and therefore it is defined as:

Zs(t) = 1 − ξ(t)s−1, (C.17)

where ξ(t) is the probability that a node in the active simplex does not infect the sus-
ceptible node. Since the simplex constitutes a fully connected cluster, all the nodes
involved in it are connected to the susceptible node, thus ξ(t) is defined as:

ξ(t) = PS(t) + (1 − λ)[PP(t) + PA(t) + PAT (t)] = 1 − λ
P(t) + A(t) + AT(t)

S(t) + P(t) + A(t) + AT(t)
.

(C.18)



186 Appendix C. Mean-field equations and epidemic threshold for simplicial CT

Thus, by substituting Eqs. (C.17) and (C.18) in Eq. (C.16) we get the complete equa-
tion for the evolution of P(t):

∂tP(t) = −γPP(t) + a
S(t)

S(t) + Y(t)
δ

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

, (C.19)

where we define ⟨ f (s)⟩ =
∫︁

dsΨ(s) f (s) and Y(t) = P(t) + A(t) + AT(t), i.e. the
probability for a node to be infected and contagious participating in simplices.

The probability I(t) that a node is infected symptomatic evolves accordingly to
the equation:

∂t I(t) = −µI I(t) + γPP(t), (C.20)

where the first and second terms on the right-hand side are respectively due to spon-
taneous recovery and spontaneous symptoms development.

The temporal evolution of the probability A(t) that a node is infected asymp-
tomatic (not traced nor isolated) is governed by the equation:

∂t A(t) = −µA(t) +
∫︂

dsΨ(s)asPS(t)Zs(t)(1 − δ)

−
∫︂

dsΨ(s)CForward
s (t)

−
∫︂

dsΨ(s)CBackward
s (t)

−
∫︂

dsΨ(s)CSideward
s (t),

(C.21)

where the first term on the right-hand side is due to the spontaneous recovery, while
the second term is due to asymptomatic infection in simplices: the infection occurs
if a simplex of size s is activated a, a susceptible node participates with probability
sPS(t) in the active simplex and with probability Zs(t) is infected by at least one
of the other (s − 1) nodes, the infection is asymptomatic with probability (1 − δ).
Finally, the third, fourth and fifth terms account respectively for forward, backward
and sideward CT. Both infection and CT terms are averaged on the simplex size, by
multiplying for Ψ(s) and integrating over the simplex size.

The infection term can be obtained by simply substituting in Eq. (C.21) the defi-
nition of PS(t) and of Zs(t) as in Eq. (C.17), obtaining:

∂t A(t) = −µA(t) + a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− CForward(t)− CBackward(t)− CSideward(t),
(C.22)

where Y(t) = P(t) + A(t) + AT(t) and we define CL =
∫︁

dsΨ(s)CL
s (t), with L =

Forward, Backward, Sideward.
The probability AT(t) that a node is traced asymptomatic evolves accordingly to

the equation:

∂t AT(t) = −(µ + γP)AT(t) +
∫︂

dsΨ(s)CForward
s (t)

+
∫︂

dsΨ(s)CBackward
s (t)

+
∫︂

dsΨ(s)CSideward
s (t),

(C.23)
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where the first term on the right-hand side is due to the spontaneous recovery pro-
cess and to the isolation of traced asymptomatic, the second, third and fourth terms
are respectively due to forward, backward and sideward CT.

Finally, the temporal evolution of the probability AQ(t) that a node is isolated
asymptomatic is:

∂t AQ(t) = −µAQ(t) + γP AT(t), (C.24)

where the first term on right-hand side is due to spontaneous recovery while the
second term accounts for isolation of traced asymptomatic nodes.

Hereafter we evaluate separately each CT term for completing the mean-field
equations for A(t) and AT(t).

C.1 Forward CT

Forward CT allows to trace an asymptomatic individual infected by a presymp-
tomatic, who developing symptoms activates the CT on the simplex in which the
infection occurred. This tracing mechanism is described in detail in Chapter 6, its
term in the mean-field equations is:

CForward =
∫︂

dsΨ(s)asPS(t)ϵ(s)(1 − δ)Fs(t). (C.25)

In this term, the activation a of a simplex of size s is considered: sPS(t) is the proba-
bility that a susceptible individual participates in the simplex; Fs(t) is the probability
that at least one of the other (s − 1) nodes is presymptomatic and infects the suscep-
tible individual; (1 − δ) is the probability that the infection is asymptomatic. The
simplex is traced with probability ϵ(s), which depends on its size.

Since the simplex constitutes a fully connected cluster, all the nodes involved in
it are connected to the susceptible node, thus Fs(t) is defined as:

Fs(t) = 1 − k(t)s−1, (C.26)

where k(t) is the probability that a node in the active simplex is not presymptomatic,
or, if presymptomatic, does not infect the susceptible node. Therefore, by definition:

k(t) = PS(t) + PA(t) + PAT (t) + (1 − λ)PP(t) = 1 − λ
P(t)

S(t) + P(t) + A(t) + AT(t)
.

(C.27)
Substituting Eqs. (C.26) and (C.27) in Eq. (C.25) we get:

CForward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

P(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

, (C.28)

where we recall that Y(t) = P(t) + A(t) + AT(t).

C.2 Backward CT

Backward CT allows to trace an asymptomatic individual who is the primary source
of infection for a symptomatic individual, who developing symptoms activates the
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CT on the simplex in which the infection occurred. This tracing mechanism is de-
scribed in detail in Chapter 6, its term in the mean-field equations is:

CBackward(t) =
∫︂

dsΨ(s)asPA(t)ϵ(s)Ws(t). (C.29)

In this term, the activation a of a simplex of size s is considered: sPA(t) is the prob-
ability that an asymptomatic individual A participates in the simplex; Ws(t) is the
probability that at least one of the other (s − 1) nodes is susceptible S and is infected
by the asymptomatic node with symptomatic infection. The simplex is traced with
probability ϵ(s), which depends on its size.

Since the simplex constitutes a fully connected cluster, all the nodes involved in
it are connected to the asymptomatic node, thus Ws(t) is defined as:

Ws(t) = 1 − ϕ(t)s−1, (C.30)

where ϕ(t) is the probability that a node in the active simplex is not susceptible, or,
if susceptible, is not infected with a symptomatic infection. Therefore, by definition:

ϕ(t) = PP(t) + PA(t) + PAT (t) + (1 − λ)PS(t) + λ(1 − δ)PS(t) = 1 − λδ
S(t)

S(t) + Y(t)
.

(C.31)
Substituting Eqs. (C.30) and (C.31) in Eq. (C.29) we get:

CBackward(t) = a
A(t)

S(t) + Y(t)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λδ

S(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

, (C.32)

where we recall that Y(t) = P(t) + A(t) + AT(t).

C.3 Sideward CT

Sideward CT allows to trace an asymptomatic individual infected by another asymp-
tomatic (or traced asymptomatic) individual, if in the same simplex a symptomatic
infection occurs producing a presymptomatic node, who developing symptoms acti-
vates the CT on the simplex in which the infection occurred. This tracing mechanism
is described in detail in Chapter 6, its term in the mean-field equations is:

CSideward(t) =
∫︂

dsΨ(s)asPS(t)(1 − δ)Hs(t)ϵ(s)Ks(t). (C.33)

In this term, the activation a of a simplex of size s is considered: sPS(t) is the prob-
ability that a susceptible individual participates in the simplex; Hs(t) is the proba-
bility that at least one of the other (s − 1) nodes is infected asymptomatic (or traced
asymptomatic) and infects the susceptible node; (1 − δ) is the probability that the
infection is asymptomatic; Ks(t) is the probability that at least one of the remain-
ing (s − 2) nodes is susceptible and is infected in the simplex with a symptomatic
infection. The simplex is traced with probability ϵ(s), which depends on its size.

Since the simplex constitutes a fully connected cluster, all the nodes involved in
it are connected to the susceptible node, thus Hs(t) is defined as:

Hs(t) = 1 − h(t)s−1, (C.34)
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where h(t) is the probability that a node in the active simplex does not infect the
susceptible, or, if it infects the susceptible one, it is presymptomatic P. Therefore, by
definition:

h(t) = PS(t) + (1 − λ)(PA(t) + PAT (t)) + PP(t) = 1 − λ
A(t) + AT(t)

S(t) + P(t) + A(t) + AT(t)
.

(C.35)
Analogously, since the simplex constitutes a fully connected cluster all the (s− 2)

nodes involved in it are connected to the asymptomatic node, thus Ks(t) is defined
as:

Ks(t) = 1 − ϕ(t)s−2, (C.36)

where ϕ(t) is the probability that a node in the active simplex is not susceptible, or,
if susceptible, is not infected with a symptomatic infection. Thus, ϕ(t) is the same of
Eq. (C.31).

Substituting Eqs. (C.34)-(C.36) in Eq. (C.33) we get:

CSideward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

A(t) + AT(t)
S(t) + Y(t)

)︃s−1
]︄

×
[︄

1 −
(︃

1 − λδ
S(t)

S(t) + Y(t)

)︃s−2
]︄⟩︄

,

(C.37)

where we recall that Y(t) = P(t) + A(t) + AT(t).

C.4 Complete CT on gatherings

Substituting Eqs. (C.28), (C.32) and (C.37) in Eqs. (C.22) we get the complete equa-
tion for the evolution of A(t):

∂t A(t) = −µA(t) + a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

P(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− a
A(t)

S(t) + Y(t)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λδ

S(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

A(t) + AT(t)
S(t) + Y(t)

)︃s−1
]︄

×
[︄

1 −
(︃

1 − λδ
S(t)

S(t) + Y(t)

)︃s−2
]︄⟩︄

.

(C.38)
where we recall that Y(t) = P(t) + A(t) + AT(t).

Analogously, substituting Eqs. (C.28), (C.32) and (C.37) in Eq. (C.23) we get the
complete equation for the evolution of AT(t):



190 Appendix C. Mean-field equations and epidemic threshold for simplicial CT

∂t AT(t) = − (µ + γP)AT(t)

+ a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

P(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

+ a
A(t)

S(t) + Y(t)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λδ

S(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

+ a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

A(t) + AT(t)
S(t) + Y(t)

)︃s−1
]︄

×
[︄

1 −
(︃

1 − λδ
S(t)

S(t) + Y(t)

)︃s−2
]︄⟩︄

(C.39)

We obtain a complete and close set of five coupled non-linear differential equa-
tions in the probabilities X(t) that a node belongs to the compartment X:

∂tP(t) = −γPP(t) + a
S(t)

S(t) + Y(t)
δ

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

(C.40)

∂t I(t) = −µI I(t) + γPP(t) (C.41)

∂t A(t) = −µA(t) + a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
s

[︄
1 −

(︃
1 − λ

Y(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

− CForward(t)− CBackward(t)− CSideward(t)
(C.42)

∂t AT(t) = −(µ + γP)AT(t) + CForward(t) + CBackward(t) + CSideward(t) (C.43)
∂t AQ(t) = −µAQ(t) + γP AT(t) (C.44)

with:

CForward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

P(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

(C.45)

CBackward(t) = a
A(t)

S(t) + Y(t)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λδ

S(t)
S(t) + Y(t)

)︃s−1
]︄⟩︄

(C.46)

CSideward(t) = a
S(t)

S(t) + Y(t)
(1 − δ)

⟨︄
ϵ(s)s

[︄
1 −

(︃
1 − λ

A(t) + AT(t)
S(t) + Y(t)

)︃s−1
]︄

×
[︄

1 −
(︃

1 − λδ
S(t)

S(t) + Y(t)

)︃s−2
]︄⟩︄ (C.47)

where S(t) = 1 − P(t) − I(t) − A(t) − AT(t) − AQ(t) and Y(t) = P(t) + A(t) +
AT(t).

Eqs. (C.40)-(C.44) describe the epidemic spreading in the presence of forward,
backward and sideward CT on gatherings. The set of equations admits the absorbing
state, in which all individuals are susceptible, as a stationary state: the epidemic
threshold can be obtained by imposing the stability of the absorbing state, through
a linear stability analysis.

As discussed in Chapter 6, the CT terms feature a highly non-trivial dependence
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on λ (see Eqs. (C.28),(C.32) and (C.37)): this complicates the calculation of the epi-
demic threshold and impose to consider the probability of infection λ as the control
parameter, describing the critical behaviour in terms of the epidemic threshold λC.
Indeed, the recovery rate µ is not a simply scaling factor of λ and the conditions for
the stability of the absorbing state do not simply depend on the ratio λ/µ.

We linearize Eqs. (C.40)-(C.44) around the absorbing state, obtaining a closed
and complete set of five linear coupled differential equations:

∂tP(t) = −γPP(t) + λδa⟨s(s − 1)⟩[P(t) + A(t) + AT(t)] (C.48)
∂t I(t) = −µI I(t) + γPP(t) (C.49)

∂t A(t) = −µA(t) + λ(1 − δ)a⟨s(s − 1)⟩[P(t) + A(t) + AT(t)]

− CForward(t)− CBackward(t)− CSideward(t)

(C.50)

∂t AT(t) = −(µ + γP)AT(t) + CForward(t) + CBackward(t) + CSideward(t) (C.51)
∂t AQ(t) = −µAQ(t) + γP AT(t) (C.52)

with the linearized CT terms:

CForward(t) = λ(1 − δ)a⟨ϵ(s)s(s − 1)⟩P(t) (C.53)

CBackward(t) = a
⟨︂

ϵ(s)s
[︂
1 − (1 − λδ)s−1

]︂⟩︂
A(t) (C.54)

CSideward(t) = λ(1 − δ)a
⟨︁
ϵ(s)s(s − 1)

[︁
1 − (1 − λδ)s−2]︁⟩︁ [A(t) + AT(t)] (C.55)

Each node performs on average n = a⟨s(s − 1)⟩ contacts per unit of time, which
are arranged in simplices whose size s is extracted from the distribution Ψ(s). As
discussed in Chapter 6, we consider this quantity constant: this allows to compare
the effects of CT for different distribution Ψ(s) in the same condition of link forma-
tion, i.e. when the same number of contacts is performed through simplices of dif-
ferently distributed size. We consider the linearized system of equations and make
the dependence on n explicit, obtaining the following equations:

∂tP(t) = −γPP(t) + λδn[P(t) + A(t) + AT(t)] (C.56)
∂t I(t) = −µI I(t) + γPP(t) (C.57)

∂t A(t) = −µA(t) + λ(1 − δ)n[P(t) + A(t) + AT(t)]

− CForward(t)− CBackward(t)− CSideward(t)

(C.58)

∂t AT(t) = −(µ + γP)AT(t) + CForward(t) + CBackward(t) + CSideward(t) (C.59)
∂t AQ(t) = −µAQ(t) + γP AT(t) (C.60)

where the linearized CT terms are:

CForward(t) = λ(1 − δ)n
⟨ϵ(s)s(s − 1)⟩
⟨s(s − 1)⟩ P(t) (C.61)

CBackward(t) =
n

⟨s(s − 1)⟩

⟨︂
ϵ(s)s

[︂
1 − (1 − λδ)s−1

]︂⟩︂
A(t) (C.62)

CSideward(t) = λ(1 − δ)
n

⟨s(s − 1)⟩
⟨︁
ϵ(s)s(s − 1)

[︁
1 − (1 − λδ)s−2]︁⟩︁ [A(t) + AT(t)]

(C.63)
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The linearized equations can be rewritten as:⎡⎢⎢⎢⎢⎣
∂t AQ(t)
∂t I(t)
∂tP(t)
∂t A(t)

∂t AT(t)

⎤⎥⎥⎥⎥⎦ = J

⎡⎢⎢⎢⎢⎣
AQ(t)
I(t)
P(t)
A(t)

AT(t)

⎤⎥⎥⎥⎥⎦ (C.64)

where J is the Jacobian matrix of this set of coupled equations:

J =

⎡⎢⎢⎢⎢⎢⎢⎣
−µ 0 0 0 γP
0 −µI γP 0 0
0 0 −γP + β β β

0 0 ∆
(︂

1 − ⟨ϵ(s)s(s−1)⟩
⟨s(s−1)⟩

)︂
−µ + ∆ − Γ − Φ ∆ − Φ

0 0 ∆ ⟨ϵ(s)s(s−1)⟩
⟨s(s−1)⟩ +Γ + Φ −µ − γP + Φ

⎤⎥⎥⎥⎥⎥⎥⎦
=

[︃
A(2x2) C(2x3)
O(3x2) B(3x3)

]︃
(C.65)

where β = λδn, ∆ = λ(1 − δ)n, Γ = n
⟨s(s−1)⟩

⟨︁
ϵ(s)s

[︁
1 − (1 − λδ)s−1]︁⟩︁ and Φ =

λ(1 − δ) n
⟨s(s−1)⟩

⟨︁
ϵ(s)s(s − 1)

[︁
1 − (1 − λδ)s−2]︁⟩︁.

The absorbing state is stable if all eigenvalues of the Jacobian matrix are negative.
Since the matrix is composed of four blocks, we can consider separately the two
blocks on the diagonal: for A the eigenvalues are ξ1 = −µ, ξ2 = −µI , all negative.
Thus the epidemic threshold can be obtained by imposing all eigenvalues of the
block B, which is a matrix 3x3, to be negative.

This analytical approach allows to obtain the epidemic threshold for a general
epidemic with asymptomatic and presymptomatic infections, in the presence of CT
on gatherings, considered as the combination of forward, backward and sideward
CT, for arbitrary simplex size distribution Ψ(s) and for arbitrary distribution of the
recall probability on the simplex size ϵ(s), i.e. for arbitrary tracing strategy.

In general, the epidemic threshold can be obtained by numerically diagonalizing
the matrix B and by imposing all its eigenvalues to be negative. However in some
limit cases, it is possible to analytically solve the stability conditions and obtain an
explicit form for λC, as discussed in Chapter 6.
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Appendix D

WiFi data for the University of
Parma

In this Appendix we describe the WiFi data of the University of Parma and the pre-
processing procedure, which provide the aggregated and anonymized data on the
temporal evolution of the number of presences in the University and on the statistics
of the gatherings size.

The University of Parma has a unique WiFi network in all its buildings and
premises: the network consists of 713 wireless Access Points (APs) and allows users
to make more than 10 000 connections per day. All wireless APs, user connection
requests and user sessions are recorded and managed by the login management sys-
tem and are collected by the "ICT services" (ICTs) office of the University.

The staff of the ICTs office can extract a tabular file from the login management
system on a daily basis, i.e. the log file, containing all the data for user connections
to the University WiFi network. This file contains a line for each connection or dis-
connection event from the network, i.e. from an AP, with several information on the
corresponding event:

• Username: the user’s email address;

• Type of user: distinguishes the user on the basis of the academic role (e.g. stu-
dent or structured staff) and on the basis of the university origin (e.g. affiliated
with the University of Parma or guest);

• Calling device ID: the MAC address of the connecting device;

• Type of device: distinguishes the type of connecting device (e.g. computers,
smartphones or tablets);

• Called station ID: the MAC address of the AP to which the user is connected;

• Status type: indicates whether the event corresponds to the beginning (Start)
or the end (End) of the user service;

• Date-time: indicates the day and time of the event;

• Session ID: a unique accounting ID that allows to easily match session start
and end events in the log file.

Passive data, such as the ones deriving from the management of the WiFi net-
work, require to be preprocessed and to be subjected to appropriate data anonymiza-
tion and aggregation algorithms, before any data analysis. Indeed, the log files
contain personal information and, according to the European regulation on privacy
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(GDPR), we cannot access and use them directly: to respect the principles of data
minimization and to comply with the latest Regulation on Privacy and Electronic
Communications, a Data Protection Impact Assessment has been conducted.

A procedure has been developed, which is performed directly by the ICTs office
in its domain: this procedure takes log files as input, completely anonymizes data
and computes the aggregate data of our interest, i.e. the temporal dynamics of the
total number of users connected to the network and the number of gatherings of a
certain size s observed over a specific time window. The access to the log files is
allowed only to the ICTs office, which carries out the developed procedure: we have
direct access only to the aggregated anonymized data of our interest, i.e. to the two
measures.

The procedure is the following:

1. a pseudo-anonymization of the data is performed: all personal information
(e.g. username, type of user, calling device ID and device type) are removed
and are replaced with random 16-digit hexadecimal strings. The procedure
maintains all the correlations between the attributes for all lines of the log files,
so that the pseudo-anonymized data are consistent. Whenever a replacement
of personal data with a random string occurs, the personal data-string match
is saved in a keys file and that match is used each time the specific sensitive
data is found. The seed for the generation of the random strings is changed
every 24 hours.

2. if two or more connections of the same user are recorded to the same AP and
their temporal distance ∆t is lower than 5 minutes, a single connection is con-
sidered, beginning with the first connection and ending with the last discon-
nection. Indeed, some connections can be very short due to the weakness of
the WiFi signal or because of the device going into standby, and therefore not
for a real disconnection of the user;

3. the considered time window is divided into intervals of ∆T minutes. For each
interval ∆T the procedure determines the total number of users connected to
the entire WiFi network and for each AP the number of users s connected to it
in the entire time interval (see Figure 6.16a). This procedure estimates the size
s of a gathering, i.e. a cluster, in correspondence with an AP active for a time
∆t.

4. the procedure provides the two anonymized and aggregated quantities, which
are the only ones we can direct access:

• the temporal dynamics of attendance, i.e. the total number of users con-
nected to the University WiFi network within each ∆T time interval;

• the statistics of the gatherings size, i.e. the number of ∆T-clusters of size
s present within the University during the observation window.

5. All temporary data are deleted after 24-hours and only aggregate data are kept.
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