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ABSTRACT

The dissertation comprises three chapters, in which the whole thesis focuses
on the nonparametric solution for hypothesis testing of multivariate and com-
plex datasets. The dataset’s complexity includes the violation of parametric
assumptions, small sample size, one-sided alternative hypothesis, and missing
data. In the second chapter, we review about permutation test for analyzing
complex datasets. We attempt to figure out the limitation of the previous
studies and suggest some possible remedies. In chapter 3, we study the
power performance and asymptotic properties of the combined permutation
test (CPT) for complex data. The simulation results reveal that the CPT
is the only nonparametric solution to tackle the loss of degrees of freedom
when the number of response variables is greater than the sample size. For
the two-sample test, the most powerful CPT is that based on the Tippett
combination when the percentage of true partial alternative hypotheses is
≤ 30%, that based on the Fisher combination when the percentage is > 30%
and < 100%, and that based on the Liptak combination when the percentage
is 100%. Finally, we analyzed the multidimensional sustainable development
goals in Ethiopia using CPT. Moreover, we advance the power behavior of the
CPT for multivariate analysis of variance, especially for the “big dataset”.
The simulation proves that the power of CPT increases as the number of
samples and variables of the dataset increases. Besides, the proportion of
true partial alternative hypotheses is more vital than the absolute number
of variables in explaining the power improvement of CPT. Finally, we ap-
ply the CPT to study the organizational well-being of University workers.
In chapter 4, we propose CPT for testing the significance of the multivari-
ate linear regression model coefficients. The simulation results prove that
the proposed CPT is exact, unbiased, and consistent to test the significance
of coefficients. The power of CPT increases as the number of dependent
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variables increases with fixed sample size. We applied the CPT to analyze
multidimensional private firm performance in Ethiopia. Finally, chapter 5
consists of the summary of findings and future research work guidelines.
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CHAPTER 1

INTRODUCTION

The dissertation comprises three chapters and focuses on a nonparametric so-
lution for hypothesis testing of multivariate and complex datasets. The com-
plexity of the dataset includes the violation of parametric assumptions, small
sample size (especially when the number of variables is larger than the sample
size), one-sided alternative hypothesis, and missing data. Hence, throughout
the dissertation, we propose a family of nonparametric tests called combined
permutation tests (CPT) for hypothesis testing. In addition, throughout the
dissertation, we consider multivariate problems. In what follows, all the sim-
ulations and application of the proposed method to real datasets considered
high dimensional responses by developing specific R scripts for each chapter.

A nonparametric test is vital when the traditional parametric approach
is not suitable for the features of sample data and the study design. For
example, the formal definition of big data may comprise volume, variety,
and velocity. Roughly speaking, volume in this dissertation context covers
the case in which the number of response variables is much larger than the
sample size. For this reason, the volume of the big data may create a complex
dataset for which the parametric approach has got problems due to the loss
of degrees of freedom. For instance, in hypothesis testing of multivariate
location parameters for two or more groups using the standard parametric
test such as the Hotelling T2 test, it is impossible when the sample size is
smaller than the number of response variables.

The CPT is a vital statistical tool for testing coefficients’ significance
linear and non-linear models, especially for small sample sizes.

CPT is a suitable methodology when the problem can be broken down into
many partial or sub-problems. In other words, when we have multivariate
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outcomes or multiple groups, we break down the complex null hypothesis
into sub null hypotheses based on each aspect. Moreover, when we have a
matrix of regression coefficients, we consider sub hypotheses based on the
single coefficients. As a result, we need partial permutation test statistics
for testing each sub null hypothesis, and finally, we combine them to make
global information using the combined permutation test. For this reason,
the p-values of each partial permutation test are combined using suitable
functions. However, choosing the best combining function that determines
the most powerful combined permutation test is challenging. Moreover, the
power of the combined permutation test is highly dependent on the true
partial alternative hypotheses. Hence, in this dissertation, the relationship
between power and percentage of true partial alternative hypothesis is defined
through simulation studies.

In the parametric methods, the functional form and the probability dis-
tribution of the data must be known to conduct estimation and hypothesis
testing. However, they are optional in the nonparametric approach. For
instance, before applying the parametric methods for estimation and hy-
pothesis testing, linear, non-linear, polynomial, logit, log-log, exponential,
and normality form of the sample data must be known. On the other hand,
neither functional form of the data nor probability distribution of sample
data is required to apply the combined permutation test.

Moreover, the complex nature of the economic dataset often requires per-
mutation tests. For instance, datasets about sustainability ( economic, so-
cial, and environmental dimensions) require distribution-free methods since
the standard parametric approach is not suitable due to high dimensional
outcomes, missing data, and correlated response variables (for example, sus-
tainability indicators). Hence, we extend the application of the permutation
test to problems concerning sustainable development goals and private firm
performance in Ethiopia, useful to design suitable economic policy and public
policy.

In the second chapter, we study an important statistical tool for analyz-
ing complex datasets when parametric tests are not flexible, feasible, and
powerful due to the violation of assumptions. In particular, we review the
application of the permutation test for hypothesis testing in the compara-
tive studies. Moreover, we review the application of the permutation test for
the multivariate regression model. In addition, we attempt to figure out the
limitations of the previous studies and suggest some possible remedies.

Chapter 3 studies power performance and asymptotic properties of the
combined permutation for complex data. The standard parametric tests may
not be suitable in specific conditions, such as in the presence of small sample
sizes. We compare the power behavior of combined permutation tests for
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various scenarios through a simulation study. Moreover, we compare the
power behavior of different combining functions as a function of the number
of variables and the percentage of true partial alternative hypotheses to set
the general rule. Finally, in the framework of sustainable development goals,
we apply the permutation test to compare the living conditions of refugees
and the hosting community households in Ethiopia.

Moreover, we study the power behavior of the permutation tests for mul-
tivariate analysis of variance. Hence, in this chapter, we compare the power
behavior of different combination-based tests as a function of the proportion
of true partial alternative hypotheses and the number of groups. However, for
the multivariate multisample location problem, a comparative study of the
power behavior of the most crucial CPT as the number of variables diverges
is missing. Hence, we study the “big data” problem within the permutation
MANOVA framework.

In chapter 4, we study the combined permutation tests for testing the
significance of coefficients of multivariate regression models. However, the
standard multivariate parametric tests may not suit hypothesis testing on
regression coefficients in various conditions, such as small sample sizes and
non-normal errors. Hence, we simulated datasets to compare the power be-
havior of combined permutation tests with the typical parametric multivari-
ate test (Pillai’s Trace test) for various scenarios. In addition, we investigate
the power behavior under different correlation matrices of the multivariate
response and mild multicollinearity. Moreover, we study the power behavior
of Fisher and Tippett combinations as a function of the number of non-zero
coefficients or the percentage of true alternative hypotheses. Finally, we ap-
ply the combined permutation tests to analyze multidimensional private firm
performance in Ethiopia.

The whole dissertation is structured as follows. Following Chapter 1 gen-
eral introduction, Chapter 2 is a theoretical chapter, which covers the general
literature review about the permutation tests. In Chapter 3, we study the
power and asymptotic properties of combined permutation tests for the two-
sample problem with high dimensional responses, and it deals with combined
permutation tests for multivariate multisample problems. Moreover, Chapter
4 examines the robustness of combined permutation tests on the significance
of the multivariate regression model coefficients under various scenarios. Fi-
nally, Chapter 5 is dedicated to the conclusions of the thesis and possible
future research areas.
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CHAPTER 2

REVIEW ABOUT THE PERMUTATION

APPROACH IN HYPOTHESIS TESTING

2.1 Introduction to Permutation Tests

In many fields, the application of permutation tests for real data analysis
has increased. For instance, many papers use permutation tests in ecology,
neurosciences, biostatistics and econometrics[1, 2, 3, 4, 5, 6]. However, [7]
initially introduced the permutation test in a problem for paired agricultural
data collected by Charles Darwin. Since then, the permutation approach has
become a valid solution for testing problems when the parametric methods
are not suitable, feasible, and powerful due to the violations of assumptions[8,
9, 10, 11, 12].

Due to the fact that they are flexible, powerful and robust, permutation
tests are becoming very popular in several empirical disciplines for any type
of complex data structure [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

Furthermore, [38] provided the formal and concise definition of permuta-
tion test :

“Permutation tests for a hypothesis exist whenever the joint dis-
tribution of the observations under the hypothesis has a certain
kind of symmetry, namely when a set of permutations of the ob-
servations leave the distribution the same (the distributions are
invariant under a group of permutations)”.

In many cases, the permutation test is mainly based on the equality of dis-
tributions under the null hypothesis.

4
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Although the permutation test is a type of re-sampling method like boot-
strapping, unlike bootstrapping, the sampling process in the permutation
test takes place by conditioning to the observed dataset[39, 40, 5]. In other
words, given the sample dataset, we could re-sample observations many times
without replacement to estimate the empirical null distribution of the per-
mutation test statistic. In multivariate permutation tests, the dependency
between response variables is taken into account without modeling the de-
pendency structure of the joint distribution. Extensive simulation results in
previous studies revealed that the permutation tests are much powerful than
the bootstrap method [41, 42, 43, 40, 44]. Moreover, the bootstrap test is
much more computationally intensive than the permutation test.

The permutation test has essential advantages and a few disadvantages.
In other words, thanks to the improvement of computers power and speed,
computational limitations of permutation tests could be compensated by
their huge advantages [45].

There are many R packages and source codes developed in the R pro-
gramming language dedicated to permutation tests. Traditional software
like SPSS and STATA have also an option for the permutation test. Some
examples of useful R packages for permutation tests include lmperm package
[46], coin package [47], flip package [48], and others. Similarly, some useful
R packages and source functions for the application of permutation tests are
described in [39] and [4].

2.1.1 Mild Assumptions of Permutation Tests

Even though the permutation tests are nonparametric methods, they are
based on some mild assumptions commonly met in many real-world situ-
ations[49, 50, 51]. For instance, [52] focuses on the mild condition of ex-
changeability. Moreover, other researchers studied conditions and properties
of permutation tests such as the appropriate formulations of the null hy-
pothesis, unbiasedness and consistency [53, 54, 39]. On the other hand, [55]
argued that permutation tests could also be applied for non-exchangeable
error terms.

Exchangeability is a simple and weak condition. For instance, in experi-
mental designs, the random allocation of subjects to treatments is sufficient
to justify the exchangeability. Moreover, the independence of observations
may be sufficient in an observational study.

Furthermore, depending on the goal of analysis, different types of ex-
changeablility conditions are introduced[52]: preserving transforms, asymp-
totic exchangeability, partial exchangeability, and weak exchangeability. For
example, if the interest of the study is testing the significance of coefficients

5



PhD Thesis A.Getnet Melak

in the presence of nuisance parameters in the linear model, exchangeability-
preserving transform is considered[52]. Exchangeability and conditioning on
the sample dataset imply an important invariance property[54, 52]. In other
words, under exchangeability, the joint distribution of the observations is in-
variant under the resampling of subjects. As a result, sufficient permutation
test statistics can be computed.

2.1.2 Computation of P-Values in Permutation Tests

In the permutation test, the hypothesis testing procedure takes place by cal-
culating the p-values of the permutation test statistic[56]. She studied the
multivariate permutation analysis of variance for multifactor and complex
designs by calculating the asymptotic permutation p-values. Her method is
based on computing the distance matrix from the permuted datasets and
ranking the distances to construct the permutation test. However, the ro-
bustness depends on the choice of the method for computing distances, and
it also requires balanced replicates for each cell. Moreover, the author noted
that computing fully nonparametric p-values for higher-order interaction is
challenging. Hence, a sort of restricted permutations or the so-called syn-
chronized permutation could provide an approximate result [57, 58].

In hypothesis testing, the permutation test is the method of computing p-
value empirically conditional on sample data to make the appropriate decision
about the null hypothesis. For a preassigned level of significance α, we could
compare the p-value obtained from the permutation test with α to accept or
reject the null hypothesis in favor of the alternative hypothesis.

In the literature, the conditional Monte Carlo method is useful for the
computation of p-values according to the permutation principle[59, 60, 61,
57, 53, 39, 62, 63]. Often, a number of conditional Monte Carlo permutations
of 1000 should be sufficient to have a good approximation of the null permu-
tation distribution and obtain p-values very close to the exact ones [64, 65].
Some authors use 10000 permutations[39, 66]. To get exact p-values all, the
possible permutations n! must be considered. However, when the sample
size is large, determining all the possible permutations is computationally
challenging, and a conditional Monte Carlo approach is considered for com-
puting the permutation distribution of the test statistic and for estimating
the p-values[67, 68].

Furthermore, [67] used a simulation study to determine the appropri-
ate number of permutations to get well-approximated p-values. He found
that the number of permutations(R) required for estimating the power of
the permutation test and estimating p-values for practical data analysis is
different depending on the level of significance. For instance, 1000 and 5000
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permutations are sufficient for estimating power performance and p-values
respectively for practical data analysis at 5% nominal level. Moreover, due
to the invariance property, the permutation distribution of the test statistic
obtained from all possible permutations (n!), and with conditional Monte
Carlo method asymptotically provide the same conclusion.

This chapter considers a review of permutation tests for comparative
studies and linear regression models. The chapter is structured as follows.
Section 2 is about a permutation test for comparative studies. The permu-
tation solutions for regression are presented in section 3. Section 4, presents
the permutation solution for the comparisons of dependent sample. Section
5 covers permutation solution for missing data problems. Finally, section 6
comprises the conclusions.

2.2 Permutation Test for Comparative Stud-

ies

When researchers conduct the hypothesis testing to compare groups based
on a shift in location or scale parameter for univariate and multivariate con-
tinuous outcomes, the standard parametric approach might not be a suitable
choice for various reasons such as skewed data, excess kurtosis, non-normal
data, unequal variances, small sample sizes, missing data, and others. In ad-
dition, comparing the difference in proportion between groups for categorical
variables using the standard parametric test may not be appropriate. Hence,
the nonparametric solution using permutation tests is an inevitable choice
for such problems.

2.2.1 Permutation Approach for Two-Sample Problems

When the assumptions of normality and equal variance are violated in two-
sample location problems, the permutation test is a suitable solution[69, 45,
70, 71, 72, 73, 74, 75, 76, 77]. The reason is that the standard Student’s t-test
for univariate response and its multivariate extension Hotelling T-square test
cannot provide reliable results when these assumptions are not satisfied.

Furthermore, when the type of alternative hypothesis is directional, there
is no parametric solution to test the shift in location between two samples
for multivariate response variables[78, 4]. In other words, when there is a
positive and negative treatment effect or shift in location parameter under
the alternative hypothesis, the standard parametric two-sample test based on
t-test for univariate response and Hotelling T-square test for the multivariate

7
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test have no extension for the multi-sided alternative hypothesis. Hence, the
permutation solution provides a valuable contribution to such problems.

The permutation test for two-sample problems when the treatment ef-
fect is some known constant is well investigated in the literature, see for
example[79, 4, 80, 81, 82]. However, this permutation solution needs to be
applied when the treatment effect is not constant or the so-called heteroge-
neous treatment effect. In such a case, there is an interesting recent devel-
opment of permutation test for testing the heterogeneous treatment effect
when there is an unknown nuisance parameter[59]. This approach used a
martingale transformed test statistic for two samples to control the limiting
rejections probabilities based on the pivotal statistic. The simulation results
revealed that the method of[59] controls the type I error rate.

Similarly, many authors recommended the use of pivotal statistics in per-
mutation tests to get good approximation[1, 83, 66]. However, since the
permutation test is in the family of distribution-free tests, pivotal quan-
tity is neither necessary nor sufficient conditions to apply permutation tests.
However, the permutation test also provides well-approximated results if the
researcher uses the pivotal test statistic.

The traditional parametric approach can not apply when we have mixed
multivariate variables. On the other hand, as[72] investigated in his research
work, the permutation principle provides a solution. For instance, in the case
of two groups, he used the sample total for a numeric variable and the Fisher
exact type permutation test statistic for the categorical variable to test a sig-
nificant shift in the location parameter. Then, to synthesize the information
of the two test statistics, he considered the combination of p-values of the test
statistics using the nonparametric combination method[39]. In particular, he
used the Tippett combining function since he suspected that the first aspect
corresponding to sample total has a large p-value under the alternative hy-
pothesis for heavy-tailed distributions. Finally, he classified the numerical
variable as dichotomous based on the median of the variables. Technically,
he considered the robustness of the permutation test in the presence of a
mixed response.

He simulated data from continuous and discrete distributions. He also
studied the robustness of the permutation test for the two-sample location
problem under different heavy-tailed distributions like the Cauchy, the half-
Cauchy, and some mixtures of normal distributions with unequal variances
using Monte Carlo simulations compared with student t-test. Consequently,
his proposal of the bi-aspect permutation test provided a well-approximated
type I error rate robust and powerful results.

8
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2.2.2 Permutation Solution for Two-sample Location-
scale Problems

The traditional parametric approach, does not provide solutions for testing
location and scale parameter jointly [4]. In other words, if the researcher is
interested in examining the treatment effects in the first moment and the
second moment, that is, so-called change in both mean and variance, the
traditional parametric test could not jointly account for such a problem.

In contrast, the permutation approach solves such a complex problem.
For instance, [39] used the multi-aspect permutation principle to test a shift
in location parameter and changes in variability between two samples for
univariate as well as multivariate outcomes. The permutation solution for the
location-scale problem is somehow analogous to that for the mixture variables
problem. [39] tested the significance of location and scale parameters using
the difference of means and differences of the sum of squares as a statistic
for the test on location and scale parameter respectively. In addition, a
multi-aspect permutation test for the first and second moment in practical
landmark shape data analysis is found in[84].

Moreover, [45] proposed an interesting study for a completely random-
ized experimental design to test a shift in location parameter and change in
scale parameter for two samples. The method of[45] to jointly test the sig-
nificance of location and scale parameter is somehow different from[39]. This
is because[45] considered an omnibus statistic. Whereas in[39] different test
statistics for the different aspects were considered. The three omnibus per-
mutation tests were Euclidean commensuration, Hotelling commensuration,
and the permutation version of the Bartlett-Nanda-Pillai test. A simulation
study under various distributions was carried out to compare them with the
parametric Bartlett-Nanda-Pillai trace test. The simulation results revealed
that the Euclidean commensuration permutation test was the most perfor-
mant irrespective of the considered distributions for a bivariate response.
The power of the tests was not performant for the other distance. In other
words, the power performance of those methods depends on the choice of
distance metrics. In addition, the Hotelling commensuration permutation
test was not stable due to the loss of degrees of freedom.

2.2.3 Permutation Approach for Small Sample Multi-
variate Problems

Although the literature about solutions for multivariate tests with the num-
ber of variables greater than the number of observations is not rich, some
authors addressed the problem[74, 39, 71]. In two-sample or multi-sample
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tests, when sample sizes are smaller than the number of response variables,
the classic parametric tests such as the Hotelling T2- test cannot be used due
to the loss of degrees of freedom. In this case permutation solutions are pos-
sible [39]. For these tests the so-called finite-sample consistency is satisfied.
This property implies that, under some conditions, the power of the test in
H1 increases with the number of variables irrespective of the finite sample
sizes.

Furthermore, [74] proposed an invariant inter-point distance method us-
ing the permutation principle to compare the location parameters for mul-
tivariate two-sample problems in the presence of high dimensional response
variables with fixed small sample sizes. They simulated data to compare
the power behavior of the permutation test with nonparametric tests (such
as multivariate generalization of the run test[85], nearest neighbor [86], and
Rosenbaum test statistics [87] under normal and Laplace distributions. They
found that the permutation test is powerful in testing the significance of loca-
tion and scale parameters in the presence of small sample sizes with divergent
response variables under normality and Laplace distributions. Finally, they
proved that the permutation test is more powerful than other nonparametric
tests.

Moreover, the power of multivariate generalization of the run test, near-
est neighbor, and Rosenbaum test statistic dropped to zero as the dimension
of the response variables increased indefinitely. In contrast, the power of the
permutation test based on the inter-point distance tends to one when the
number of components of the response variable increases for a given fixed
sample size. The simulation also revealed the cut-off(minimum) sample sizes
(5 or 4) for each group under the divergent number of response variables in
which the power behavior of the permutation test could approximate one.
The simulation proved that the permutation test is consistent and powerful
when the number of responses diverges with small fixed sample sizes even
under the Behrens-Fisher problem. However, their method assumed the uni-
formly bounded forth moments and week correlation among the components
of the response variables.

Furthermore, [88] proposed a recent development to improve the power
behavior of a multivariate version of the two-sample permutation test, the
so-called combination-based permutation test. The main property of the
combination-based permutation tests is that they condense the statistical
information of all response variables into one statistic to decide on the null
hypothesis, and they implicitly take into account the dependency between
response variables.

Another contribution to the multivariate tests with a large number of
response variables is [50]. Through Monte Carlo simulations, they found
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that the power behavior of Hotelling T-square and rank-based test decrease
as the number of variables increase with fixed sample size, while the power of
combination-based permutation tests increased monotonically as the number
of responses variables increased with fixed sample size. The power of the
combination-based permutation tests is good even for small shifts in mean
differences.

Nevertheless, when the sample size is less than the number of response
variables, the Hotelling T-square test, and the nonparametric rank-based
test cannot be applied. The proposed multi-aspect strategy improved the
power of the permutation test for skewed distribution. However, the iterated
combining techniques do not improve the power of the test. Thus, other tech-
niques are necessary to support the decision about the appropriate combining
functions to maximize the power of the combined permutation test.

2.2.4 Permutation Test for the Two-sample Behrens-
Fisher Problem

A comparative study on location is called the Behrens-Fisher problem when
we have unequal unknown variances of the populations[89]. [70] proposed an
asymptotic test based on the permutation version of Welch test, which is an
extension of Pitman’s permutation test for the Behrens-Fisher problem on
the equality of two population means. Although the permutation approach
provides an exact test under the IID assumption in the null hypothesis, the
Janssen method based on the studentized statistic does not require the IID
assumption to obtain an asymptotic test. [70] applied this method for a
composite null hypothesis against one-sided alternatives. The simulation
results revealed that the permutation test is more powerful than the Welch
test[90] for skewed distributions. The limitation of this method is that it is
not stable for an unbalanced design.

According to [39] studentized and non-studentized permutation test statis-
tics are permutationally equivalent due to the conditioning on the sample
data and invariance property, and they provide approximately similar re-
sults. Thus, eliminating the denominator of the studentized permutation
test statistic may improve the computational aspect of this test statistic.

Furthermore, many authors solved the Behrens-Fisher problem nonpara-
metrically using the permutation approach. For more example see[91, 89, 40,
92, 93]. In addition, more recent solutions to the multivariate Behrens-Fisher
problem for the dissimilarity-based measure is found in[94], and an approxi-
mate randomization test for the high-dimensional two-sample Behrens-Fisher
problem under arbitrary covariances are found in[41].
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2.2.5 Permutation Principle for Multi-Sample Prob-
lems

In addition to a vast literature on two-sample permutation tests, there are
many scientific contributions (theoretical and applied) on the univariate and
multivariate multisample extensions, such as the permutation analysis of
variance (ANOVA) and the permutation multivariate analysis of variance
(MANOVA) [42, 95, 96, 43, 80, 82, 97, 83, 98, 99].

The standard parametric F test for ANOVA requires equal variances,
normality, continuous response, and IID conditions. Similar assumptions
are required for multivariate multi-sample or the so-called MANOVA. In
addition, even if the assumptions of (M)ANOVA are satisfied, there are some
conditions in which the classical (M)ANOVA cannot be applied[100, 101,
102]. Some examples are small sample sizes, correlated responses, and others.
Hence, in such a problem, the permutation solution for (M)ANOVA is an
unavoidable method of hypothesis testing for multiple samples.

Similar to what happens in the two-sample multivariate location problem,
the loss of degrees of freedom due to a large number of response variables
with fixed sample sizes is quite common in MANOVA. In this case, the
MANOVA tests, as well as the nonparametric rank-based tests, could not be
applied in the presence of small sample sizes with the number of responses
diverges [88]. In such a situation, the nonparametric solution based on the
permutation approach is an inevitable choice.

Permutation (M)ANOVA provides accurate and reliable (powerful) re-
sults [80]. In other words, hypothesis testing of significant mean difference
among groups based on the permutation test under the null hypothesis yields
a type I error rate that respects the predetermined level of significance α and
rejects the null hypothesis when the alternative is true with high probability.
According to[39] and [5] permutation tests are exact, unbiased, and consis-
tent.

[80] compares the power behavior of permutation test based on different
permutation test statistics for continuous and count data in case of unbal-
anced sample sizes, heteroscedasticity, correlation, and a large number of
responses. The simulation results reveal that the power of the permutation
test decreases in the presence of positive correlations among the response
variables. It is highly unreliable for the negative correlation scenario. How-
ever, since the permutation test is a conditional inference that relies on the
sample data, the response variables are supposed to be positively related. For
this reason, in our opinion, simulating from a negative correlation structure
does not make sense.
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2.2.6 Permuting the Observations in Multi-sample Prob-
lems

In general, to get reliable and accurate results based on the permutation
test, when Ho is true, the permutations of the statistical units for one way
(M)ANOVA can be applied by exchanging the row vectors of the observa-
tions between treatment groups or factor levels irrespective of the outcome
variables[95, 43, 80, 83]. However, the permutation principle for the two-way
(M)ANOVA or general factorial design requires some restrictions. For this
reason, researchers used synchronized permutation to permute row vectors
of the observations between levels of one factor by keeping the other factors
as a block[57, 4, 103, 58, 104, 83].

In addition, the synchronization process could be constrained or uncon-
strained depending on the sample size in each level [105, 103, 106]. In the
case of constrained synchronization, if we have an unbalanced design, the
smallest sample size determines the number of units to be exchanged within
treatment levels, and the position of the units must be fixed. While in uncon-
strained synchronized permutations the position of the units doesn’t matter
to permute the observations (see[96] for a detailed explanation).

[96] developed a synchronized permutation test for unbalanced two-factor
ANOVA with two levels. Since the error terms are not exchangeable between
the two factors under the null hypothesis, they used the synchronized permu-
tation principle. However, the error terms are exchangeable within the levels
of one factor by considering the other factor as a block to get an approximate
exact p-value. They used the weighted sum of observations within each cell
as a permutation test statistic to test the significance of factors’ main effect
and interaction effects.

The conditional Monte Carlo simulations revealed that the power per-
formance of the permutation test is somehow influenced by the permutation
mechanism (constrained or unconstrained) and the type of weights. For in-
stance, the constrained synchronized permutation mechanisms reduced the
power of the permutation test. In addition, the test was conservative for
restricted weighted and constrained synchronized permutation mechanisms.
However, it seems that the power of the test using the constrained syn-
chronized permutations is unstable for small sample sizes in the case of an
unbalanced design.

2.2.7 The Permutation Test Statistic for (M)ANOVA

Due to the random nature of the permutation principle, obtaining the opti-
mum permutation test statistic is among the challenging problems [88]. In
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permutation MANOVA, different test statistics have been considered, for ex-
ample, distance-based and (M)ANOVA statistics. Thus, comparing the type,
I error rate, and the power of the test based on those test statistics are crucial
for selecting appropriate test statistics and improving the power performance
of the permutation test. In line with this, there is an interesting paper about
the power comparison of distance-based statistics, and MANOVA statistics
in a multi-sample comparative study [107]. They classified the statistics as
distance-based when they used the average distance of pairs of units or the
dissimilarity measures, and variable-based statistics when they used sum-
mary statistics such as Wilks lambda, likelihood ratio type, and ANOVA F
type statistic.

Nevertheless, the distance-based statistic requires the transformation or
standardization of the original data. Besides, variable-based statistic re-
quires normality assumption. Therefore, the permutation test statistics are
an inevitable choice to make inferences based on mild conditions. In the
permutation principle, the variable-based test statistics are often preferable
to the distance-based ones. First, a different summary statistic for each as-
pect or variable is used, and then the information provided by partial tests is
combined. As a result, the power of the combined permutation test is greater
than the power of the other parametric and nonparametric competitors.

As defined by [107], the statistical power of the permutation test is:
“. . . the proportion of times it was significant at the α level, for N sets
of data generated from the same distribution. For each of these data sets,
statistical significance was assessed using R permutations . . . ”. As far as
the distance-based statistic is concerned, the standardization and transfor-
mation of the original dataset might impact the power of the test. Thus,
this issue and the robustness of variable-based statistics over distance-based
statistics are studied[107]. The necessary procedures to test the multivariate
data are transformation, standardization, choice of the distance metrics, and
test statistic. Regarding the distance metrics, the most commonly used are
Euclidean, Bray-Curtis, and Manhattan. However, the distance measures
cannot account for the possible correlation of the multivariate outcomes.

They designed a simulation study to compare the power behavior under
the null and the alternative hypothesis. The simulation results revealed that
the p-values are more or less affected by the transformation of the original
data. More precisely, this effect is pronounced for Bray-Curtis distance mea-
sures for unbalanced design. The standardization and transformation of data
have a significant influence on the power of the test.

Furthermore, comparative studies based on the permutation tests for
ANOVA were proposed using different test statistics such as F type statistic
ATS[108], Wald type statistic WTS [43, 103], Fisher-Pitman [97], studentized
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test statistic[42, 43, 109, 89, 110], and distance-based statistic [80, 111]. Al-
though Wald type statistic is useful for comparing the means of multivariate
outcomes among groups, it requires the computation of the sample covariance
matrix and difficulty of convergence for large sample size [103]. However, [42]
introduced the modified form of the Wald type statistic that used the identity
weight.

Regarding the impacts of distance metrics, the Euclidean distance-based
test statistic seems more performant than other distance-based statistics
[80, 111]. Some distance-based permutation statistics have no extension for
a categorical response. However, [98] extended the application of distance-
based permutation statistics for categorical and continuous outcomes for
(M)ANOVA setup.

In the literature, the permutation solution for MANOVA used Eigenval-
ues by partitioning the total variability to each factors[80, 111, 83]. However,
the Eigenvalues obtained from the distance matrix sometimes are negative.
The negative Eigenvalues have got difficulty in interpreting the results, and
some authors corrected it by adding a constant to the sum of squares [112].
Whereas[111] proposed permutation version of Euclidean-based statistic in
hypothesis testing of MANOVA or MANCOVA by partitioning the total vari-
ability or the dissimilarity because the pseudo F- statistic could be derived
from the Euclidean distance matrix to test the significance of the factors.
They carried out a simulation study to test the accuracy of the proposed
method called distance-based redundancy analysis (dB-RDA), which does
not require any correction to have positive Eigenvalues with three competi-
tors such as Bray-Curtis distances (Dir), the [113] method of distance-based
redundancy analysis (LA) and axes (Pos) analysis for testing fixed, random,
and mixed effects. The simulation results provided the preassigned nomi-
nal level for the fixed effect model. In contrast, the test was conservative
for random and mixed linear models, especially for small sample sizes and
lognormal distribution. The proposed distance-based redundancy analysis
(dB-RDA) provided a well-approximated type I error rate. However, the
simulation can be extended to check the good power performance under the
alternative hypothesis.

In one-way ANOVA design, when the assumptions of the F test are vi-
olated, a permutation version of the Fisher-Pitman test could be used for
testing the equality of location parameters among the groups [97]. The ad-
vantage of the Fisher-Pitman test is the way the permutation test statistic
is computed. Since the total observations N =

∑S
g=1 ng , number of groups

S, and the total sample mean Ȳ are permutationally constant due to the
invariance property under exchangeability, the ANOVA F test could be sim-
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plified to the Fisher-Pitman permutation test statistic or the weighted sum
of squares of the within-group sample means Ȳg,

T =
S∑

g=1

ng(Ȳg)
2 (2.1)

Thus, it is simple to compute the Fisher-Pitman permutation test statistic,
and somehow the computationally intensive nature of the permutation test is
also controlled by taking the simplified form of the permutation test statis-
tic. Moreover, for balanced sample size in each group, the Fisher-Pitman
permutation test statistic further simplified to

T =
S∑

g=1

(Ȳg)
2 (2.2)

since the sample sizes for balanced design are equal. Besides, Fisher- Pitman
permutation test is a perfect solution for Behrens-Fisher statistical problem.

2.2.8 Permutation Test for Multi-sample Behrens-Fisher
Problem

[42] proposed a solution for the multivariate Behrens-Fisher problem of two-
way MANOVA. He used the ANOVA type statistic ATS to test the equality of
population mean vectors under heteroscedastic error variances. The asymp-
totic null distribution of ATS is a mixture of central chi-square distributions.
This method is robust against skewed distributions, unequal variances, and
nested factorial designs. They proved that the permutation version of ATS is
consistent. However, although the ATS works well for finite sample sizes and
small groups, they noted that the ATS is affected by the number of groups,
suggesting the standardized form. In addition, they derived the confidence
region for the interval estimation of mean vectors. Besides, it was more pow-
erful than its competitor WTS and the bootstrap method regardless of the
distributions’ variance structure, sample sizes, and skewness.

Similarly, [83] developed a family of permutation tests for hypothesis
testing of the equality of treatment effects on multivariate outcomes when the
standard parametric MANOVA tests are not applicable due to the stringent
assumptions. The proposed solution used squared Euclidean distance as a
permutation test statistic. This method is crucial for testing the significance
of both factors’ main effects and interaction effects. Moreover, they developed
permutation solutions for general factorial designs and complex models like
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nested or hierarchical models based on a distance measure. One advantage of
this test is that it considers the possible dependency among the components
of multivariate outcomes in multifactorial designs, which is problematic to
cope with using traditional parametric MANOVA.

Nonetheless, attention must be considered when testing the interaction
effects since error terms are not always exchangeable under the null hypoth-
esis to get exact p-values. In addition, the distance-based statistic requires
the transformation of the data. In this case, the interpretation of the results
may change with the data transformation. Moreover, if the number of groups
is more than two, a posterior hypothesis testing can be applied to identify
which groups are significantly contributing to significant mean differences
using the permutation version of the t-test .

[43] extended the application of permutation tests to general factorial de-
signs with two or more factors, nested and hierarchical design in the presence
of heteroscedasticity. The Wald type parametric test cannot provide a valid
result for the hetroscedastic case and small sample sizes. The distribution
of the Wald type test hardly approximates the chi-square distribution with
small sample sizes.

Furthermore, when the number of factors and levels increase indefinitely
in factorial designs, the Wald type parametric test could not efficiently cope
with the hypothesis testing of treatments effects. In contrast, the proposed
Wald type permutation test statistic works well under small sample sizes,
heteroscedastic errors, and many factors. In addition, they considered the
standardized Wald type permuted statistic using the estimated variance ob-
tained from permuted data. However, the computation of the error variance
may slow down the calculation of the permutation test, and it needs simplifi-
cation. Finally, they proved that the distribution of Wald type permutation
test statistic conditional on the sample data weakly converged in probability
to the central chi-square distribution.

Moreover, their simulation study revealed that the chi-square test, the
parametric ANOVA, and the Wald type parametric test provided a liberal
type I error, especially under small sample sizes and skewed error distribu-
tions. In contrast, the Wald type permutation test respects the nominal α
level irrespective of the sample size, covariance structure, and other factors
except for a little inaccurate nature for skewed log-normal distribution for
unequal variances.

2.2.9 Permutation Test for Categorical Data

Hypothesis testing problems for categorical data, especially in the multivari-
ate case, are not easy to solve. With multidimensional variables, a crucial and
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complex aspect concerns the dependence structure of the response compo-
nents. For this reason, following a distribution-free approach for such testing
problems in the presence of the multivariate dependent variables is crucial.

Permutation solutions for multivariate stochastic ordering are investi-
gated by [114, 115, 116, 81, 117, 118]. Statistical ordering is typical of various
complex problems such as tests for restricted (directional) alternatives [119],
multiple comparisons [120], ranking populations[114].

For instance, [118] applied multivariate permutation tests for comparing
two populations in the presence of a multivariate categorical response. She
focused on the so-called case-control study and used the odds ratio as the
test statistic. If we consider the contingency table where rows correspond
to treatments and columns to response categories (or vice versa), permuta-
tions can be applied by tables with different joint absolute frequencies but
the same marginal absolute frequencies. Investigating the treatment effect
is equivalent to testing the association between responses and treatments.
Unlike the classical chi-square test, there are no restrictions on the minimum
frequency value in the single cells in the permutation test. [118] proved that
the permutation test is robust even for small sample sizes and, in some cases,
minimal frequencies.

In practice, parametric tests such as the likelihood ratio test could not
be appropriate for testing the stochastic dominance for ordered categori-
cal variables. On the other hand, a fascinating application of permutation
tests for univariate and multivariate ordered categorical variables under re-
stricted alternatives was proposed by [116]. The proposed method is based on
transformingg the categorical response variables into numeric variables. The
global null hypothesis is based on the treatment and control group equality.
First, Ho is broken down into k-1 sub null hypotheses, where k is the cate-
gories of the ordinal variable. Then, the partial permutation test statistics
were used to test each sub-null hypothesis based on the sample moments.
Next, they controlled the possible incorrect rejection of the null hypothe-
ses or the so-called family-wise error rate. Finally, the simulated data from
an ordinal multinomial distribution with four categories using the GenOrd R

package to investigate the power behavior of permutation test (Fisher and
Liptak combining function) compared to the competitor rank based Wilcoxon
test and the Brunnel–Munzel test after ranking the units or categories. The
empirical power comparison provided similar results, especially under the
null hypothesis for different nominal levels.

Whereas under the alternative, the permutation test based on the sample
moments is the most powerful by applying score transformation. They noted
that the power of their permutation test is affected by the weights or score
transformation, for example, symmetric or asymmetric scores. For this rea-
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son, Liptak combining function is relatively more powerful than the Fisher
combining function.

Furthermore, when the nature of the response variables is ordinal, for
example, Likert-scale questionnaires, tests for group comparisons can be car-
ried out by replacing the ordered categories with numeric scores[79]. They
applied the Wilks lambda type permutation statistic based on the rank trans-
formations of units, and this test statistic works for skewed data such as
ordinal dependent multivariate outcomes. They carried out a Monte Carlo
simulation study to investigate power behavior and type I error rate of the
permutation test for multivariate analysis of ordinal variables by generating
data from the multivariate ordinal distributions. The competitor tests were
the traditional MONAOVA test based on Wilks lambda, the nonparametric
Wilks, structural equation models for MANOVA tests, the test based on spa-
tial signs with inner centering and outer centering, and others. Except for
the structural equation models for MANOVA tests, all the tests respect the
nominal α level under Ho. The structural equations’ system seems powerful,
but this is due to the inflated type I error rate because it is anti-conservative
under Ho.

One main interest in hypothesis testing of categorical data is to rank
several groups based on some characteristics. For instance, in a biomedical
study, several groups of patients can be ordered based on dose levels. Hence,
such ranking of groups can be broken down into several the stochastic dom-
inance or directional of pairwise comparisons. [114] proposed a metric-free
permutation test for comparing and ranking multivariate populations. When
the null hypothesis of equality of the multivariate populations is rejected, the
need arises to determine which groups show significant differences to deter-
mine a final ranking. The post hoc comparison is the solution for such kind
of problem. Moreover, their permutation solution for stochastic dominance
and ranking can apply to mixed response variables.

Using Anderson- Darling type permutation statistic, they simulated mul-
tivariate ordinal categorical data to investigate the ranking of populations for
the different number of groups, small sample sizes, and different skewed and
normal distributions. The simulation results revealed that the estimate of
correct global and correct individual ranking is close to the actual rank under
the homogeneity assumptions irrespective of the sample size and choice of
error distributions. In addition, the bias was fewer under the null hypothesis.
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2.3 Permutation Approach for Tests on the

Parameters of the Regression Model

The classical test of significance of the model coefficients in the parametric ap-
proach requires the estimation of model coefficients and other parameters to
construct the test statistic. However, estimating the model coefficients might
be problematic in high dimensionality, few degrees of freedom, and violation
of assumptions (such as non-normal data, not IID errors, heteroscedastic
variance). For instance, when the assumed distribution of errors is implau-
sible, estimate the model coefficients using popular techniques such as the
maximum likelihood estimator.

Moreover, the ordinary least square estimation method cannot be applied
when the assumptions of linearity and IID are violated. For this reason, the
classical significance test of model coefficients based on the parametric ap-
proach might not be suitable. Whereas, some nonparametric solutions, in
particular the permutation approach, do not require the estimation of nui-
sance parameters such as the covariance structure to derive the permutation
test statistic. Moreover, the permutation test doesn’t require specifying the
underlying distribution to test the significance of the model parameters in
linear or nonlinear models.

In the literature of nonparametric regression analysis, the vast majority
of research was dedicated to investigating the nonparametric estimation of
the coefficients of linear regression and panel regression/ longitudinal models
when the underlying distribution of the error terms are unknown, See for
more details in the literature[121, 122, 123, 124].

One of the popular methods of nonparametric estimation is the smoother
kernel, which does not require the functional form of the regression model to
be known [124]. However, the nonparametric regression mainly relies on the
bandwidth; the determination of the bandwidth is computationally inten-
sive. There is a variety of bandwidth calculation methods such as the rule
of thumb, plug-in methods, cross-validation, and bootstrap method [124].
There are many R packages dedicated to computing the bandwidth in order
to reduce the computationally intensive nature of bandwidth computation
such as np package [124], kernel smoother package [125] and npregfast pack-
age [126].

Furthermore, many authors only considered single independent variables
while [124] extended to continuous multiple independent variables and the
mixed type of multiple independent variables. However, extending the non-
parametric regression to multivariate models might be difficult because of
the computational demand.
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Some contributions are dedicated to permutation tests on the significance
of model parameters in the literature. A non exhaustive list of contributions
on this topic includes [1, 127, 128, 129, 6].

However, some distinctions about the adopted approach must be made.
For instance, some authors used permutations of raw data [95, 6] while other
researchers permuting the residuals of the full model [130, 131]. Moreover,
some of the researchers permuted the residuals of the reduced model, and
they found approximate permutation p-values [132, 133, 66, 134]. A frequent
method is permuting the dependent variables but permuting the design ma-
trix is also considered as we see in Table 2.1. Under the null hypothesis, some
authors also considered the permutation of both the dependent variables and
the design matrix ( the explanatory variables).

Consider the regression model:

Y = Xβ + Zγ + ϵ (2.3)

Where Y is the response variable, X is the main explanatory variable with
regression coefficients β, Z is nuisance variables with nuisance parameter γ,
and ϵ is the error terms. Then, we summarize different methods of permu-
tations from the previous studies in Table 2.1, where P is the permutation
matrix, H̃ is ride estimates, λ is regularization parameters, R is the residuals,
R̃ is ridge residuals. Finally, we refer the reader for detailed definition, ex-
planation, and notation used for the list of considered permutation methods
[1, 128, 6].

Table 2.1: Linear model after permutation

Method permuted Model
Draper–Stoneman Y = PXβ + Zγ + ϵ
Still–White PRZY = Xβ + ϵ
Freedman–Lane (PRZ +HZ)Y = Xβ + Zγ + ϵ
Manly PY = Xβ + Zγ + ϵ
ter Braake (PRM +HM)Y = Xβ + Zγ + ϵ
Kennedy PRZY = RZXβ + ϵ
Huh–Jhun PQ′RZY = Q′RZXβ + ϵ
Smith Y = PRZXβ + Zγ + ϵ

Freedman–Lane HD (PR̃λ+ H̃λ)Y = Xβ + Zγ + ϵ

Double residualization (PR̃λ+ H̃λ)Y = R̃λXβ + ϵ

The inferential results based on permuting of raw data, residuals of the full
model, and residuals of the reduced model more or less provided the same
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conclusions except for skewed data and presence of outliers [135, 6, 136].
Nonetheless, extensive simulation studies were performed to compare the
powerfulness of different permutation methods of the data. Hence, among
permutation methods of Table 2.1, the most accurate and reliable permu-
tation test, which controls the type I error rate, was obtained using the
Freedman-Lane permutation method [1, 128, 6].

2.3.1 Permutation Test for Testing Partial Regression
Coefficients

In many practical applications, testing the significance of partial regression
coefficients is quite common since the nature of the study leads to focus on
a sub-set of explanatory variables. However, in multiple linear regression,
the test on the significance of partial regression coefficients is a complex task
also for the permutation approach since under Ho exchangeability does not
apply unless the effect of associated nuisance variables is eliminated.

If the test concerns all the explanatory variables, residuals are exchange-
able under the null hypothesis, and the test on the whole regression coef-
ficients is possible. In this case, we can obtain an exact permutation test.
However, computing an exact p-value might be difficult in the case of the
significance test of the partial regression coefficients. An approximate per-
mutation solution is possible by estimating the nuisance parameters and per-
muting the residuals of the reduced model similarly to Freedman-Lane[6].

[6] proved that the permutation distribution of the square of Pearson
partial correlation coefficient obtained from different permutation principles
by permuting raw data, residuals of the reduced model, and residuals of full
model approximately follows the normal distribution under the null hypothe-
sis. One advantage of their permutation test is that it can also be applied for
a one-sided significance test of partial regression coefficients. They simulated
data to compare power behavior of permutation test based on the Freedman-
Lane and Kennedy permutation method with t-test under the null hypothesis
and alternative hypothesis for different sample sizes, the number of predic-
tors, and different error distributions. The simulation results revealed that
the Kennedy permutation method inflated the type I error rate, especially
for a small sample size. While, the Freedman-Lane permutation method
provided a rejection rate under null hypothesis similar to α regardless of the
number of predictor variables, sample sizes, and error distributions. However,
their methods work only for linear models. In our opinion, the extension to
the general mixed model is possible by considering Kendall correlation co-
efficients instead of Pearson partial correlation coefficients as a permutation
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test statistic.
One of the most exciting applications of permutation tests in general liner

models concerns problems with confounding factors [128]. When the signifi-
cance of regression coefficients is tested, the confounding effect of covariates
must be eliminated through a suitable permutation strategy of statistical
units. Hence, the permutation test statistic is computed as a function of
the observed data of the predictors. However, since the parameters of the
confounding factors are unknown the permutation solution provided an ap-
proximate result.

In what follows, the design matrix is partitioned into two parts, such as
predictors and confounding factors. Similarly, the vector of regression coeffi-
cients is also partitioned. They explained how the exchangeability condition
is considered under the null hypothesis (some variables have zero effects)
for different error term structures such as independent symmetric errors, ex-
changeable errors, and block dependent error terms. In case of dependency
of the error terms due to blocks, the exchangeability could be applied by per-
muting units within blocks or exchanging the whole blocks (see the formal
reasoning in [128]).

The permutation test statistic could be based on the estimated coeffi-
cients [128]. However, they recommended a pivotal test statistic similar to
Anderson’s, such as F statistic, t-test statistic, Pearson’s correlation coef-
ficient, and coefficient of determination. Furthermore, they considered an
extensive simulation study to compare the power behavior of different per-
mutation methods (see Table 2.1) with the parametric method based on the
F test under different scenarios such as skewed distributions, balanced and
unbalanced sample sizes, equal and unequal variances, and even in the pres-
ence of outliers. The permutation approach to account for the outliers is
interesting. Under the null hypothesis that the model coefficients are zero,
the Still–White and Kennedy solutions are conservative, especially for small
sample sizes. On the other hand, Freedman–Lane and Smith’s proposals
seem to perform well under the null hypothesis respecting the nominal level
α.

Moreover, the power behavior of the permutation test based on Freed-
man–Lane under the alternative hypothesis outperforms those of other per-
mutation methods and the parametric F test regardless of sample sizes, error
distributions, and other conditions.

Apart from the violation of assumptions, in some cases, the parametric
tests are not feasible for hypothesis testing of parameters in a linear model,
for example, the presence of outliers with small sample sizes, mixed error
distributions, and nonrandom sampling. To overcome these problems[129],
proposed an R package called lmPerm, which is based on the permutation
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approach, for computing the p-values of the tests on the significance of re-
gression coefficients. Also, this package is suitable for analyzing polynomial
models and multivariate responses. They noted that permuting rows of obser-
vations is possible even in the presence of interaction effects. They considered
the simulation study to investigate the power behavior of the permutation
test based on the lmp function and the standard F test. The simulations
revealed that the F test is conservative and less powerful for small sample
sizes, especially under non-non-normal distributions. Regarding the outliers,
the power of the parametric F test decreases as the percentage of outliers
increases and the sample sizes decrease.

The permutation test is performant even in a high percentage of outliers
and small sample sizes. In the case of heterogeneous variances, the two meth-
ods have the same power performance. However, a limitation of this method
is that it is computationally intensive when an exact permutation strategy
is considered (all permutations of the data are taken into account). They
proposed other methods based on stopping sampling upon meeting given
criteria to overcome this problem. For example, the estimated standard de-
viation of p-values is less than 0.1. However, estimation of standard deviation
may not be convenient for some reasons, and it is better to approximate the
permutations distribution via the conditional Monte Carlo procedure.

2.3.2 Permutation Tests for Longitudinal Model Coef-
ficients

Due to heteroscedastic and autocorrelated errors, estimating and testing the
significance of coefficients of the panel, longitudinal, and mixed-effects mod-
els using standard parametric methods may be problematic. In contrast,
the permutation approach has at least an approximate solution for such
problems[137]. However, sometimes exact results based on the permuta-
tion approach for autocorrelated error terms might be challenging since the
exchangeability condition may not work in this circumstance.

On the other hand, in the case of non-autocorrelated error terms, for in-
stance, for the general fixed-effect model, an exact permutation solution can
be obtained, even in the presence of heteroscedastic error variance. [138] pro-
posed an exact multivariate permutation solution for mixed variables within
the fixed effect framework even in heteroscedastic variance. Their permu-
tation solution could account for the model misspecification. However, this
cannot be generalized in the case of unbalanced sample sizes.

One of the advantages of the permutation tests is their robustness to de-
parture from error normality and their capacity to consider the multivariate
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responses’ dependence structure. However, their theoretical proposal needs
validation through an extension of the simulation study to know how the
power of permutation test is performant to test the fixed effect model co-
efficients in comparison with the standard parametric test under different
scenarios by considering different levels of multicollinearity, correlated re-
sponses, small sample sizes, unequal variances, and unbalanced sample sizes.
Moreover, an extension to test the significance of general mixed effects is
possible.

Furthermore, in the linear mixed model, one concern is the inclusion
and exclusion of the random component, which accounts for the individual
heterogeneity in the longitudinal study. In a linear mixed model, the test on
the random effects is crucial. In what follows, the standard parametric tests
such as score test, Wald test, and likelihood test might not be applicable
under some conditions, for instance, small sample sizes [139]. In addition, as
Lee and Braun explained, the parametric tests do not have some approximate
distributions under the null hypothesis, such as a chi-square distribution,
since the variance component of the random effect is zero under the null
hypothesis. Moreover, the significance test of random effect coefficients, using
a parametric test, is not robust to the distribution of the random component.

However, the permutation approach can be applied to test the significance
of random effect parameters. [139] proposed permutation test statistic based
on the best linear unbiased predictions (BLUPs) and the restricted likelihood
ratio test for testing the random effect coefficients in the linear mixed model
(LMM). When they are concerned with single random effect parameters, the
testing procedure is equivalent to testing whether the variance component
is zero or not. Under null variance, they permuted the estimated residuals.
The estimated residuals are obtained by subtracting the fixed part from the
response. Whereas, when they are concerned with the significance of some
random effect parameters, the effect of nuisance components was eliminated
by taking the appropriate weight matrix. The simulation results revealed that
the permutation test based on BLUP and the restricted likelihood ratio test
respected α under the null hypothesis. In contrast, the parametric test based
on the asymptotic likelihood ratio test in some cases, especially with small
sample sizes, is anti-conservative because of the inflated type I error rate. The
power behavior under the non-zero variance component or non-zero random
effect revealed that the permutation test is better than the counterpart of
the asymptotic likelihood ratio test regardless of error distributions and the
sample sizes.

Nonetheless, the BLUP permutation test statistic is not a reasonable
solution when we have two or more random coefficients. Moreover, a si-
multaneous testing method was proposed based on the restricted likelihood
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ratio test approach that requires estimating the variance component at each
permutation.

In addition, hypothesis testing on generally mixed model coefficients in
the case of multivariate response is also another challenging problem within
the standard parametric approach based on the likelihood ratio test [137].
The challenge might arise due to the dependency among the response vari-
ables. They proposed a permutation strategy for testing the significance of
vector generalized linear mixed models (VGLM) parameters in the presence
of factors regardless of the known multivariate distributions. In particular,
they proposed a permutation method to test the significance of the interac-
tion effect between units for the family of VGLM. The proposed method can
be applied for testing coefficients of linear models, nonlinear models, general
linear models, mixed models, and general mixed models, beyond as men-
tioned VGLM whereas, the permutation solution of[6] couldn’t be applied to
VGLM parameters.

The permutation solution is flexible and applicable to any model (linear
or non-linear model, with continuous or binary response). For example, a
combined permutation test could test the significance of coefficients of both
fixed effects and random effects of a general(linear) mixed model.

Testing for the interaction effects with the permutation approach, some of
the coefficients are considered nuisance parameters, and their corresponding
variables are eliminated in the analysis through residualization. In this case,
the exact permutation test is possible when the exchangeability condition is
fulfilled, and this might not be the case if we have two or more factors so
that an approximate significance test is possible. [137] simulated data from
two samples for both univariate and multivariate cases under different dis-
tributions to compare the power behavior of the exact permutation test, the
asymptotic permutation test, and the likelihood ratio test. They found that
both the exact and asymptotic permutation test provided rejection rates close
to α under Ho for balanced sample sizes. In comparison, the likelihood test
is conservative. The power of the permutation test is greater than the like-
lihood test regardless of constant variance and normality. However, further
simulation studies may be designed to investigate how mild multicollinearity
affects the type I error rate and the power of the permutation test.
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2.4 Permutation Tests for Dependent Sam-

ples

This section is dedicated to the permutation approach for the comparative
study of dependent samples. We discuss the permutation (M)ANOVA for
longitudinal datasets and two-sample or multi-sample tests for paired data or
repeated measures. We start from the simple repeated measures experimental
design or tests for paired samples, and we extend the review to more complex
designs. The typical parametric solution for the two-sample test on location
for dependent samples is the so-called paired t-test. However, this solution
is not appropriate for small sample sizes and non-normal data [55].

Furthermore, when the error distribution is unspecified, the nonpara-
metric approach based on the Wilcoxon signed-rank test is used for this
problem. Nonetheless, the nonparametric rank test also requires continuous
distribution and homoscedasticity to units [4]. The re-sampling method, in
particular, permutation test for such problem can also be applied to dis-
crete data, assuming unequal variances between units, and it is more power-
ful[140, 84, 141, 142].

[55] studied the permutation solution for paired data, comparing it with
the nonparametric Bootstrap and the parametric paired t-test in case of
small sample sizes and skewed distributions. Under the null hypothesis, the
paired sample problem, the observations are exchangeable within the statis-
tical units. Therefore, the permutation inference requires the mild condition
of exchangeability under the null hypothesis [52, 39, 54]. However, the per-
mutation test can be applied under some conditions for hypothesis testing
of location or scale parameters under exchangeable and non-exchangeable
error terms. See, for example, the permutation approach for paired samples
studied by [143, 55, 109, 144].

They assumed three simple conditions in which the permutation principle
can work to obtain an asymptotic p-value. Those are the distribution-free
nature of the test, the convergent limiting distribution of the test, and con-
sistency of the test [145, 146, 147]. A simulation study revealed that the
standard paired t-test was conservative for skewed distributions. The boot-
strap method provided a liberal type I error rate for small sample sizes.
The permutation test respects α under the null hypothesis regardless of the
dependency among paired samples, sample sizes, and skewness of the dis-
tributions. The permutation test is more powerful than the paired t-test,
especially for skewed distributions.

Analogous to the comparative study of mean and variance for independent
samples, hypothesis testing of mean and variance simultaneously is also a
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fascinating area of research in the paired sample. In other words, apart
from the average shift between paired samples, the change in variance that
arises due to individual heterogeneity and treatment in paired data might
be the focus of the research. In this regard, [145] introduced the multi-
aspect permutation procedure for testing mean and variance for paired data.
Furthermore, they are interested in testing the effect of treatment on the
first and second moments of paired data. Hence, the null hypothesis is the
equality of moments (first and second) of pre-treatment and post-treatment.

Accordingly, different partial permutation test statistics for each aspect
were considered based on the sum of observed data differences and squared of
observed data, respectively. Finally, they combine the p-values of the partial
permutation tests to obtain a global p-value using the nonparametric combi-
nation method [39, 140, 84]. Finally, they used different resampling tests to
investigate the comparative performance as a function of the dependency of
paired responses: Pitman’s test based on Pearson’s product-moment correla-
tion coefficient, jackknife test based on the ratio log of the sample variances,
and Spearman’s rank correlation coefficient. The simulation results revealed
that the permutation test has a good power behavior to study the effect of
treatment on the mean and variance of paired data in the presence of corre-
lation among pre-treatment and post-treatment observations. Moreover, the
simulation supported that the power of the test is also good under normality
and for small sample sizes.

Furthermore, parametric ANOVA for repeated measure designs also re-
quires certain assumptions (such as normality, constant variance, and no
correlation between units) to test the mean difference among groups over
time. For this reason, a robust and flexible test about the mean difference
among groups in repeated measure designs requires a distribution-free test
such as a permutation test. [148] deeply explained the split-plot analysis for
repeated measure experiment when the assumption of constant correlation
is satisfied. They noted that in case of violation of parametric ANOVA as-
sumptions, obtaining an exact p-value is not possible, and a nonparametric
test is crucial.

However, the nonparametric hypothesis testing using the permutation ap-
proach also needs careful consideration of what to permute [148]. According
to them, in repeated measure designs, “...The permutations should corre-
spond to the randomization”. In other words, for experimental design, the
permutation is possible under the null hypothesis in which observations are
exchangeable due to randomization. For instance, in a case-control study
of repeated measure designs, row vectors of the observations are permuted
among case and control groups. However, permutation of the measurements
within statistical units is not possible since the randomization does not ap-
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ply[148].
The null hypothesis may be equality of means for different follow-up times

in some repeated measure designs. Hence, in this case, under the null hy-
pothesis, the observations within statistical units are observed randomly, and
permutation of measurements within statistical units is possible. Although
the principle of permutations, corresponding to randomization, is restricted
to the experimental design, for observational or survey study, some mild
conditions are sufficient such as independence of observations to perform the
permutations under exchangeability.

In the literature, if the permutation test is exact, the probability of re-
jecting the true null hypothesis does not exceed the preassigned level of
significance under the null hypothesis of no treatment effect [39, 12]. The
permutation test could provide an exact and approximate p-value depend-
ing on the exchangeability condition under the null hypothesis in repeated
(M)ANOVA design or general mixed models [57]. They used different permu-
tations in repeated measure designs to obtain exact and approximate results,
such as permuting reduced residuals (balanced and unbalanced design) and
modified residuals. According to them, for a balanced design, the reduced
residuals could be permuted under the null hypothesis if it results in zero
expectation after removing the effect of nuisance variables. In other words,
the observations of the residuals are permuted in a row-wise fashion rather
than permuting within individuals. They provided a necessary and sufficient
condition to define the reduced residuals for a mixed linear model or repeated
measures.

In addition, in the case of the non-spherical distribution of residuals, an
exact p-value is obtained by modifying the reduced residuals and removing
the correlation within subjects. In repeated measure design or mixed linear
model, the random effect does not affect the principle of permuting the ob-
servations. In other words, under the null hypothesis, the outcome variable is
equal to the measurement error term and the random error term. As a result,
since the random error term has zero expectation under the null hypothe-
sis, it does not affect the permutations. They designed a simulation study
to compare three types of permutations (raw data, reduced residuals, and
modified residuals) with the counterpart of the F test for repeated measures
ANOVA under different distributions.

As a result, the simulations provided an approximate type I error rate
close to the nominal level for all permutation methods. Furthermore, the
power behavior of the permutation test based on permuting the reduced
residuals, the raw data, and modified residuals provided similar power per-
formance regardless of non-normal distributions. Moreover, the power be-
havior of the permutation test was performant over the standard F test
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for repeated ANOVA, especially for non-normal distributions. However, the
modified residuals permutation method needs to estimate the Eigenvalues
at each permutation to obtain an exact p-value, and it might increase the
computation time.

In a comparative study of dependent samples for multivariate outcomes,
apart from the dependency among the response variables, there is also depen-
dency among the observations over the follow-up time, known as intraclass
correlation. Consequently, the power of the parametric test is not optimal if
we are not controlling the intraclass correlation [149]. In other words, besides
normality and constant variance, hypothesis testing of repeated measures or
longitudinal analysis using the parametric test for two or more groups re-
quires the equality of correlations. However, a steady correlation in follow-up
studies is unlikely to hold since observations within statistical units are highly
related over time. For this reason, assuming constant correlation within in-
dividuals seems impossible. For instance, [150] proposed permutation test
regardless of the dependencies among the observations for testing treatment
effects in multivariate repeated measures or longitudinal MANOVA setting.
The permutation procedure in their study is just taking place by permuting
the pooled data regardless of the dependency within subjects. Then they
considered the permutation version of Wald test to test the mean differ-
ence among groups over time for the multivariate longitudinal dataset. They
proved that the Wald type and studentized Wald type permutation statis-
tic approximates the same distribution under the null hypothesis. Since the
parametric Wald type test requires a large sample, they considered a simula-
tion study to investigate the power improvement of Wald type permutation
test statistic and ANOVA type statistic for small sample sizes under various
distributions and covariance structures.

Consequently, the simulation results revealed that the Wald type statistic
provided a liberal type I error rate for small sample sizes and high follow-up
time points. Besides, the type I error rate exceeded the nominal level for
testing the interaction effects. The ANOVA type statistic provided an ap-
proximate significance level for small sample size and normal distribution,
and it provided a conservative type I error rate for high follow-up time and
non-normal data. The proposed Wald type permutation statistic provided
an exact nominal level regardless of the sample size and error distribution
despite the dependencies of the observations. However, the Wald type per-
mutation statistic is also quite conservative for high follow-up periods and
testing interaction effect in a longitudinal study.
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2.5 Permutation Approach for Missing Data

The most challenging problem in statistical data analysis, especially hypoth-
esis testing, is missing observations. In particular, the missing value is the
most frequent problem in follow-up studies, such as in longitudinal data,
panel data, survival data, and time-series data. Moreover, the missingness
issue is also quite common in the cross-sectional study. Missing observation is
a general term that comprises censored as well as truncated values [151, 152].
The missingness means that the researcher could not record the observations
for some statistical units for various reasons, such as the available value,
dropouts, detection limit, and survey nonresponse. Therefore, most para-
metric methods are not feasible for hypothesis testing in the presence of one
or more missing values in the dataset.

In the literature, the parametric solution for missing data problems is
highly relying on the stringent assumption of missing completely at random
(MCAR) missing mechanism[39]. In other words, the probability of a miss-
ingness value is unrelated to treatments, censoring process, and observed
values of the outcome variables [153, 154, 155]. Moreover, when the missing
data process is missing not at random (MNAR), the parametric methods are
not flexible to account for the missingness of the data. Whereas distribution-
free testing methods, such as the permutation test overcome the problem of
missing data (including censoring and truncation) conveniently and efficiently
[156, 35, 157, 39, 158].

In paired designs with missing data, the commonly used nonparametric
log-rank test might not be the general solution in some situations, such as
small sample sizes. For this situation, some researchers propose the use of a
permutation approach[159, 157].

In particular, [157] use a permutation test for a comparative study of pre-
treatment and post-treatment effect for incomplete paired data. First, they
consider two permutation test statistics computed from paired and incom-
plete data using the mean differences. Then, they take the linear combination
of the paired and unpaired statistics to construct the overall permutation test
statistic. Finally, they simulate data under normal and skewed distributions
to investigate the power behavior of the permutation test by comparing it
with standard paired t-test and Bhoj t-test based on paired and unpaired
data [160]. The simulation results revealed that the parametric paired t-test
doesn’t control the type I error rate. On the contrary, the permutation test
and the Bhoj t-test controlled the type I error rate and provided higher power
regardless of the underlying distributions and sample sizes.

However, their method requires estimating the combining parameter of
the two permuted test statistics. In our opinion, after considering two dif-
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ferent partial permutation tests for paired and unpaired data, the partial
information can be combined according to the nonparametric combination
approach [39].

The censoring problem, specifically right censoring, is quite common in
survival analysis. Hence, a nonparametric approach such as permutation test
is useful [156, 161, 35]. In particular, there is an interesting study about the
permutation solution for comparing the survival curves of two independent
samples in the presence of right censoring data [158]. As they explained, the
distribution of right censoring might be equal or unequal in the two inde-
pendent samples. In what follows, if the distributions of the right censoring
are equal under the null hypothesis, the censoring happens according to a
random process, and it can be ignorable [158].

However, unequal censoring distributions under the null hypothesis may
affect the estimation and hypothesis testing. [158] considered the composite
hypothesis of equality of survival curves for time to the event and censored
value. They broke down the null hypothesis into sub hypotheses one for each
aspect, and the null distribution of the partial permutation test statistics are
derived by permuting the sample data. Their solution can be extended to
the missing data problem following the nonparametric combination procedure
[39]. The inference about the observed failure time is considered conditional
on the censoring value[158]. They designed a simulation study to investigate
the power performance of the permutation test compared to the log-rank
test and weighted Kaplan-Meier test for both equal censoring and unequal
censoring. The simulation results prove that the permutation test is reliable
and robust for equal censoring, especially for the small sample sizes. Overall
the permutation test is performant to account for the censoring problem
without specifying the underlying distribution and modeling the dependency
structure between survival time and censoring.

2.6 Some Remarks

The use of permutation tests for data analysis in many fields has increased.
It is a vital statistical tool for analyzing complex datasets when parametric
tests are not applicable or not powerful due to the violation of assumptions.
Permutation test tackles Behrens-Fisher problem in hypothesis testing. The
use of pivotal statistics is neither necessary nor sufficient for a permutation
test. Moreover, exchangeability is a sufficient condition in the permutation
principle. The permutation strategy can be applied in the paired sample
by permuting the signs. Whereas, in repeated measure designs, the permu-
tations should correspond to the randomization[148]. Besides, permutation

32



PhD Thesis A.Getnet Melak

tests can be applied for testing coefficients of the linear models, nonlinear
models, general linear models, mixed models, and general mixed models.
Last but not least, the permutation test can solve hypothesis testing problems
of directional alternatives, umbrella alternatives, location-scale parameters,
missing data problems, and others.
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CHAPTER 3

ADVANCES ON POWER AND ASYMPTOTIC

PROPERTIES OF COMBINED PERMUTATION

TESTS

3.1 Combined Permutation Tests for Two-sample

Problems

The parametric tests cannot be applied when the number of variables is
greater than sample sizes since the degrees of freedom must be positive[39].
Furthermore, many stringent assumptions make parametric tests less flexible
and less powerful[5, 4]. On the other hand, combined permutation tests are
a general tool for testing several multivariate problems under mild condi-
tion[39].

Many researchers’ studies combined permutation tests regarding their
assumption, applications, properties, and robustness[4, 39]. However, the
literature lacks evidence on the power performance of combining functions
concerning the percentage of true partial alternative hypotheses for two-
sample problems. Hence, we study the power behavior of CPT for different
percentages.

Consider the dataset:

X = {Xj, j = 1, 2} = {Xqji, i = 1, · · ·nj, j = 1, 2, q = 1, · · ·Q} (3.1)

Which takes value on the Q-dimensional space χ, for which σ algebra A and
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a nonparametric family Fj ∈ P (non-degenerate unknown distribution) is
defined. Where Xj is the dataset of the jth group.

The null hypothesis is equality of multivariate distributions of responses
on two groups:

Ho : {F1 = F2} = {X1
d
=X2} (3.2)

Let the null hypothesis Ho of a testing procedure is broken down into k
sub-null hypotheses

Ho1, . . . , Hok (3.3)

and the global null hypothesis

Ho : ∩k
i=1H0i (3.4)

is true if all the k partial hypotheses are jointly true. Likewise, the alternative
hypothesis H1 is broken down into k partial alternatives and

H1 : ∪k
i=1H1i (3.5)

is true if at least one partial null hypothesis is false.
Besides, let

T = T(X) (3.6)

is k-dimensional vector of test statistics and each component of Ti(X) be
suitable to test each partial hypothesis Hoi against H1i. Hence, the global
multivariate test to test the significance of global null hypothesis is obtained
by combining the k-partial tests, by using a suitable combining function.
The most widely used combining functions are the Tippett the Fisher and
the Liptak [5, 39].

We are performing simulation studies about the power performance of
different CPTs in the case of two samples. Hence, the preliminary results
show that the most powerful CPT is based on the Tippett combination when
the percentage of true partial alternative hypotheses is ≤ 30%, that based on
the Fisher combination when the percentage is > 30% and < 100%, and that
based on the Liptak combination when the percentage is 100% (see Figure
A.1 in the appendix).
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3.1.1 Application of Permutation Approach for Sus-
tainability

The sustainability agenda has been among the hot topic around the globe.
Initially, the idea of sustainability seems only environmental protection and
limited to developed nations[162, 163]. However, it comprises the environ-
mental, economical and social aspects[164, 163, 165].

Since sustainable development goals (SDGs) are ongoing issues, obtaining
a reliable dataset is problematic. The united nation developed the 17 stan-
dard indicators with 169 targets in 2015[166]. The substantiality indicators
are a vital tool to quantify the SDGs[167].

Due to high conflicts in the neighboring countries in the last two decades,
Ethiopia is the second-largest refugee-hosting country next to Uganda in sub-
Saharan Africa countries [168]. The refugees from Eritrea, Somalis, South
Sudanese, and Sudanese have an impact on the source of conflicts in Ethiopia.
Hence, we investigate the SDGs (social, environmental, and economic sus-
tainability) by assessing the living condition of refugees and the hosting com-
munity households in Ethiopia.

The dataset is obtained from the World Bank[168], Ethiopian skills profile
survey 2017. There are 5 separated household refugees and 5 host commu-
nities within a 5kms radius, in the Somalia region of Ethiopia, in Buramino
camp (code 33). There are multidimensional sustainability measures in terms
of the standard of living of households. We have Q=30 variables (partial
tests) in the study.

Parametric tests are not suitable due to correlated responses, one-sided
alternative hypotheses, mixed variables, and the presence of a high number
of variables with small sample sizes. We want to test:Ho : {F1(X) = F2(X)}
and H1 : F1(X) ≤F2(X), where H1: the standard of living for separated
refugees is a worse than the host community households in Ethiopia.

The Fisher combining function provides the p-value of 0.013, which is
less than α = 0.05, and we carry out a posthoc analysis in Table A.11 (see
appendix). Thus, the separated refugees living in the Buramino camp have
worse standard of living than the host community households in Ethiopia.
This result is consistent with the World Bank report[168].

3.2 Advances on Permutation Multivariate Anal-

ysis of Variance for Big Data

In many multivariate analyses of variance (MANOVA) applications, the clas-
sic parametric solutions for testing equality hypotheses in population means
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or multisample and multivariate location problems might not be suitable for
various reasons. For instance, the stringent and implausible assumptions of
iid observations and multivariate normality are the main reasons for consid-
ering parametric methods neither flexible nor robust and consequently often
unsuitable. Moreover, in the presence of big data with a high number of
response variables, great attention should be paid to when the number of re-
sponse variables is larger than the sample sizes because of the loss of degrees
of freedom. Even if there is not a unique definition, in statistics, a dataset
is usually classified as ”big data” if it represents a collection of informative
data, extensive in terms of volume, velocity, and variety, such that specific
analytical technologies and methods are required for the extraction of value
or knowledge [169]. Big data are typical of many empirical disciplines such
as biomedicine, economics, biology, ICT, education and research, financial
services, social media, automotive industries, e.tc[170]. Frequently, the high
volume of big data depends on the multivariate nature of the dataset due to
a large number of variables. In addition, the variety of big data, due to the
presence of different types of variables (quantitative and qualitative) and to
the variability and heterogeneity of data, makes inferential problems more
complex and requires robust and valid techniques to make inferences. For
instance, in studies focused on social media, text, video, audio, and image
data are jointly analyzed. Hence, tests of hypotheses for big data must be
addressed with appropriate methods that lead to reliable decisions in short
times and take into account the variability and heterogeneity of the informa-
tion.

A typical approach to variable-oriented multivariate problems consists in
the application of exploratory methods based on dimensionality reduction
such as principal component analysis (PCA) or factor analysis (FA)[171,
172]. For two-sample multivariate testing problems, a typical solution is the
Hotelling T-square test in the presence of numeric data. These methods
are based on stringent assumptions such as the linearity of the relationships
between variables or normality.

Linearity is an extreme and often unrealistic assumption. On the other
hand, normality is a reasonable assumption only with large sample sizes due
to the asymptotic properties of the statistics. Nevertheless, even in cases
where linearity and normality are reasonable assumptions, especially in in-
ferential problems, in many variables, the estimation of a large number of
unknown parameters, such as covariances or correlations, is required. More-
over, when the sample size is less than the number of variables, a problem
related to the degrees of freedom arises and some typical parametric methods,
such as the Hotelling T-square test, are not applicable.

In such problems, nonparametric methods are preferable because they
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don’t require that the underlying probability law belongs to a given family
of distributions and no parameters need to be estimated. In particular, per-
mutation tests follow a distribution-free approach and are almost as powerful
as parametric methods based on normality when this assumption is true but
much more powerful when the true underlying distribution deviates from the
Gaussian [5, 83].

Solutions for multivariate tests within the family of permutation meth-
ods consider the dependence between response variables without modeling
it explicitly, and consequently without the need of estimating parameters or
assuming linearity [173, 4, 105]. Permutation solutions for multivariate lo-
cation problems have been proposed and studied mainly in terms of power
and robustness to the underlying distribution, especially comparing their
performance with that of the classic parametric tests[80, 83, 5]. An excit-
ing proposal is based on the combination of the univariate permutation tests
of the marginal variables [5]. [173, 39] proved that the power of the most
commonly used combined permutation tests, with fixed sample size and a
divergent number of variables under the alternative hypothesis, tends to one
in the two-sample problem.

A different combined test is obtained according to the combining function
used. Hence a deep study to compare different combined tests, especially for
big data with a large number of variables, is essential and suitable in order
to find the most powerful test under different scenarios. However, for the
multivariate multisample location problem, a comparative study of the power
behavior of the most crucial combined permutation tests as the number of
variables diverges is missing. In particular, it is useful to know under which
conditions each of the different tests is preferable in terms of power, how
the power of each test increases when the number of variables under the
alternative hypothesis diverges, and the power behavior of each test as a
function of the proportion of true alternative hypotheses.

This chapter aims to fill this gap in the literature about combined per-
mutation tests. The paper is organized as follows. Section 2 is dedicated to
a literature review of the MANOVA problem. The method of the combined
permutation test is described in section 3. In section 4, comparative simula-
tion study results are reported and discussed. In section 5, the application
of the method to a real case study is presented. Finally, the conclusions are
in section 6.
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3.3 Literature Review

The goal of several empirical studies is the comparison of two or more pop-
ulations in the presence of multivariate response variables. Often, regardless
of the number of factors, the problem consists in the testing significance of
treatment effects or the presence of a shift in some location parameters. The
variation of population means was investigated using multivariate analysis of
variance (MANOVA). Various parametric multivariate tests based on strong
assumptions have been proposed to test whether there is a significant differ-
ence between group means. The most commonly used are Hotelling T-square
test [100], the test of[101] and the proposal of [102]. The main assumptions
of these tests are normality, constant variances, and continuous responses.
Moreover, these methods cannot be applied for big datasets when the number
of response variables exceeds the sample size.

Nonparametric solutions have been proposed to overcome the limits of
the parametric tests due to the lack of robustness [39, 4, 80, 174]. For in-
stance, [83] introduced a nonparametric solution based on the permutation
test for an ecological problem. The permutation test statistic was the Fisher
F ratio obtained from a distance matrix, and the simulation results proved
the appropriateness of the permutation test for both one-way and two-way
MANOVA. [80] studied the accuracy and power of permutation tests for
MANOVA based on different test statistics. According to his study, the sum
of squares between groups with the Euclidean distance was preferable to the
Chord distance and the sum of Fs of univariate ANOVA. Moreover, the sim-
ulation study revealed that the permutation test was powerful also under
heteroscedastic and with unbalanced samples.

Several works concerning applications of permutation tests for one-way
and two-way MANOVA have been published in the literature. A non-exhaustive
list includes the following papers[99, 175, 176, 113, 177, 111, 79, 105]. How-
ever, the extension of the permutation test for two-way MANOVA requires
great attention in permuting the statistical units between groups because the
exchangeability condition is guaranteed only within the levels of one factor
by considering the second factor as a block. Thus, constrained permutations
are essential[83]. The two-sample multivariate problem has been frequently
considered[39, 178]. Instead, the multisample case has been addressed by
fewer authors (see [174]). In some cases, permutation solutions for complex
problems such as for multi-aspect tests are introduced[179]. In addition, for
directional alternatives [180, 116], and tests for categorical data [62, 180]
have been developed. This paper focuses on multisample location problems
for numeric variables and non-directional alternative hypotheses.
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3.4 Methods

3.4.1 Multivariate Permutation Test

The permutation test is a distribution-free test based on the assumption
of exchangeability under the null hypothesis [5]. To apply the permutation
principle, the sample data are partitioned into groups based on the treatment
levels in an experimental study and pseudogroups in an observational study.
To this end, the structure of the dataset for S ≥ 2 independent samples and
V-dimensional response is represented by:

Y = {Yigq, i = 1 · · ·ng, g = 1 · · ·S, q = 1 · · ·V } (3.7)

The dataset Y takes values on the V-dimensional sample space Ω for which
a σ-algebra A and a nonparametric family P (non-degenerate unknown dis-
tribution) are defined and supposed to be exchangeable.

Hypothesis testing based on the permutation approach requires a clear
formulation of the null hypothesis. The null hypothesis in the MANOVA
problem is defined as the equality of S multivariate (unknown) distributions:

Ho : {P1 = · · · = PS} = {Y1
d
= · · · d

=YS}. (3.8)

Under homoscedasticity, the difference between the groups is due to a shift in
location. Thus, the null hypothesis could be formulated as equality of group
means for each response variable. Let Yg be a V-variate numeric random
variable such that Yg = µ + δg + ϵg, with µ vector of unknown parameters,
δg, g = 1 · · ·S, vectors of treatment effects and ϵg, g = 1 · · ·S, exchangeable
random vectors that follow an unknown probability distribution with equal
variance-covariance matrix Σ and such that E(ϵg) = 0.

The null hypothesis is:

Ho : {δ1 = · · · = δS = 0} (3.9)

A further decomposition of the null hypothesis with respect to the marginal
distributions of the multivariate response can be considered. The multivari-
ate hypothesis can be broken down into V partial null hypotheses:

Ho : ∩V
q=1(δ1q = · · · = δSq = 0) ≡ ∩V

q=1Hoq (3.10)

The intersection symbol means that the null hypothesis of the overall problem
is true if all the V partial null hypotheses are true. Accordingly, with a
similar approach, the alternative multivariate hypothesis H1 of inequality in
distribution may be represented as follows:

H1 : ∪V
q=1H̄oq (3.11)
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Where the union symbol indicates that the alternative hypothesis is true if
at least one partial null hypothesis is false and H̄oq denote the negation of the
qth partial null hypothesis. It is worth noting that directional alternatives are
also possible, but this paper focuses on two-tailed multisample multivariate
problems.

When the overall null hypothesis is true and equality in distribution holds,
the vector of V observations concerning a generic statistical unit comes from
any of the S populations with equal probability. In other words, exchange-
ability of the units with respect to the populations/samples is satisfied. In
order to determine the null distribution of the test statistic, all the possible
assignments of the n units to the S samples can be considered. By assuming
that the n1 units of the first sample correspond to the first n1 rows of the
observed dataset Y, the n2 units of the second sample correspond to the
next n2 rows of the dataset, and so on, until the nS units of the Sth sample
that correspond to the last nS rows of the dataset. Each possible assignment
is equivalent to a permutation of the rows of the dataset or to resampling
without replacement the n units with n = n1 + n2 + · · · + nS.

Frequently, for computational convenience, instead of considering the ex-
act test, based on all the n!/(ΠS

g=1ng!) possible assignments of the n units
to the S groups, a random sample of permutations is used according to the
Conditional Monte Carlo method.

3.4.2 Partial Tests

The method of Combined Permutation Test (CPT) to the permutation MANOVA
presented above consists of one univariate permutation test for each partial
hypothesis and in combination the p-values of the univariate tests. Accord-
ing to the permutation distribution, the dependence between the univariate
partial test statistics is taken into account in the resampling strategy by per-
muting the rows of the observed dataset instead of permuting the elements
of the columns independently.

A suitable test statistic for each partial permutation test is the so called
Treatment Sum of Squares (STreat) that depends on the deviations of the
within group sample means from the total sample mean. Hence, the qth

partial test statistic or test statistic of the qth partial test, with q = 1 · · ·V ,
is

Tq =
S∑

g=1

ng(Ȳgq − Ȳ.q)
2 (3.12)

With Ȳ.q =
∑

g ngȲgq/
∑

g ng =
∑

g ngȲgq/n, where Ȳgq represents the mean

of the values of the qth variable observed in the gth sample. The multivariate

41



PhD Thesis A.Getnet Melak

permutation distribution of the test statistic T = (T1 · · ·TV ) under the null
hypothesis is obtained through the following procedure:

1. Compute the vector of observed values of T from the dataset Y:

Tobs = T(Y ) = (T(1,obs) · · ·T(V,obs))

2. Randomly permute the rows of the dataset (or reassign statistical units
to groups) and compute the values of the test statistics as a function
of the permuted dataset: T p = T (Y p)

3. Repeat step (2) R times independently and compute the permutation
test statistics. Let T p

(q,r) be the value of the qth partial test statistic

related to the rth permutation of the dataset Y p
r . Hence T p

r = T (Y p
r ) =

(T p
(1,r) · · ·T

p
(V,r))

4. Estimate the significance level function of the partial tests function:λpq(r) =
{ 1
2
+
∑

r I[T
p
q(r)

≥Tq(obs)]}
R+1

, q = 1 · · ·V . Where I(E) is indicator function of E

that takes value 1 if E is true and 0 otherwise.The p-value of the qth

partial test is λ̂p(q,r) = λ(T p
(q,r)).

3.4.3 Combination

According to the method based on the combination of partial permutation
tests, the test statistic for the overall problem is obtained by combining the
p-values of the partial tests. The synthesis of the information provided by
the partial tests regarding the marginal variables is provided by applying a
suitable combining function ψ. Hence, the test statistic useful for the overall
test, the multivariate analysis of variance, is Tcomb = ψ(λ1 · · ·λV ).

The proposal of combining p-values of partial tests in order to solve mul-
tivariate, multi-aspect, multi-strata tests, or other complex testing problems
that can be broken down into partial univariate tests, appeared for the first
time in the literature twenty years ago in [5] and was later studied and de-
veloped by several authors. For extended but not exhaustive reviews, see
[173, 4]. Since, for the combination of the partial tests, ψ(.) must satisfy
some simple, mild, and easily attainable conditions, several different func-
tions can be used, and each of them corresponds to a different solution with
specific properties within the family of combined permutation tests.

A suitable combining function ψ : (0, 1)V → ℜ must satisfy the following
properties:

1. ∀λ′q, λ′′q in(0, 1), λ′q ≤ λ′′q ↔ ψ(. . . λ′q · · · ) ≥ ψ(· · ·λ′′q · · · ) ceteris paribus
(non-increasing monotony)
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2. ∃λq ∈ {λ1 · · ·λV }s.t.λq → 0 ↔ ψ(λ1 · · ·λV ) → ψ̄ ≤ ∞ (finite supre-
mum)

3. ∀α ∈ (0, 1),∃T(comb,α) ≤ ψ̄ where T(comb,α) is the test critical value (finite
critical value)

The most popular combining functions in the literature of combined permu-
tation tests are Fisher, Liptak and Tippett functions. The Fisher omnibus
combining function is

TF = −2
∑
q

log(λq) (3.13)

Where log(x) denotes the natural logarithm of x. Liptak’s combining
function is based on the transformation of the complement to one of the
p-values through the inverse of the cumulative distribution function (or the
quantile function) of the standard normal distribution:

TL =
∑
q

Φ−1(1 − λq) (3.14)

Where ϕ(x) = P (X ≤ x) with X ∼ N(0, 1). Tippett combination is
based on an order statistic and considers an observed value of the combined
test statistic, the complement to one of the most significant p-value:

TT = max(1≤q≤V )(1 − λq) (3.15)

Under the null distribution, if the V partial tests are independent and contin-
uous, the Tippett function follows the uniform distribution in (0,1). Without
loss of generality, let us assume that the null hypothesis of the overall problem
is rejected for large values of the combined test statistic Tcomb. It is trivial
to show that all three combination rules defined above satisfy this condition.
Given that the observed value of the combined test statistic Tcomb,obs.The
p-value of the permutation MANOVA with the combined permutation test
is given by

λ̂(comb,obs) = λ(T(comb,obs)) (3.16)

The three presented tests can have much different power behaviors under
different conditions; hence a comparative analysis to deepen their properties,
advantages, and limits is vital to support the analyst in deciding which test
to use based on the power.
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3.5 Simulation Study

A Monte Carlo simulation study investigated the power behavior of the three
combined permutation tests defined in the previous section for the MANOVA
problem. Different scenarios, under the null and the alternative hypothesis,
were considered in order to compare the power of the three proposals as
a function of the sample sizes, the number of samples, of the number of
components of the multivariate response, and the proportion of true partial
alternative hypothesis when H0 is false.

Data were simulated according to the one-way MANOVA model. We
considered multivariate datasets with two different sizes from the point of
view of the number of responses: V = 50 and V = 100. With regard to
the number of compared samples, S = 3 and S = 5 are the cases taken
into account. Simulated data were generated from q-variate normal random
variables (probabilistic condition most favorable to the classic parametric
tests) under homoscedasticity. For all the S populations, the variance of
each of the V components of the multivariate response and the correlation
between any pair of variables was set equal to 1 and to 0.3 respectively.
Hence, the V × V covariance matrix of each population is Σ = [σqj] with
σqq = 1, q = 1 · · ·V , and σqj = 0.3, i ̸= j ∈ {1 · · ·V }.
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Table 3.1: Rejection rates of CPTs for V=100 and α=0.05.

S n τ ψ Proportion of true partial alternative hypotheses (p)
0 0.06 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1

F 0.047 0.082 0.108 0.25 0.462 0.642 0.776 0.87 0.918 0.924
0.5 L 0.045 0.078 0.074 0.156 0.308 0.466 0.596 0.792 0.882 0.914

T 0.05 0.426 0.546 0.64 0.752 0.798 0.846 0.858 0.898 0.928
10 F 0.036 0.106 0.31 0.918 1 1 1 1 1 1

1 L 0.034 0.078 0.138 0.418 0.806 0.882 0.916 0.93 0.986 1
T 0.054 0.988 1 1 1 1 1 1 1 1

3 F 0.056 0.104 0.24 0.89 1 1 1 1 1 1
0.5 L 0.056 0.08 0.132 0.34 0.822 0.884 0.902 0.938 0.988 1

T 0.058 0.94 0.99 1 1 1 1 1 1 1
30 F 0.046 0.124 0.342 0.996 1 1 1 1 1 1

1 L 0.046 0.086 0.16 0.432 0.872 0.87 0.878 0.956 0.984 1
T 0.052 1 1 1 1 1 1 1 1 1
F 0.046 0.136 0.374 0.968 1 1 1 1 1 1

0.5 L 0.042 0.1 0.18 0.486 0.812 0.904 0.956 0.965 0.986 1
T 0.052 0.984 1 1 1 1 1 1 1 1

10 F 0.052 0.144 0.359 0.988 1 1 1 1 1 1
1 L 0.054 0.104 0.168 0.502 0.838 0.862 0.924 0.934 0.984 1

T 0.056 1 1 1 1 1 1 1 1 1
5 F 0.05 0.13 0.37 0.994 1 1 1 1 1 1

0.5 L 0.052 0.076 0.178 0.442 0.802 0.89 0.892 0.922 0.98 1
T 0.054 1 1 1 1 1 1 1 1 1

30 F 0.044 0.124 0.352 0.996 1 1 1 1 1 1
1 L 0.034 0.072 0.156 0.5 0.84 0.898 0.904 0.944 0.98 1

T 0.05 1 1 1 1 1 1 1 1 1

Source: author computations. F: Fisher, L: Liptak, T:Tippett, τ : location shift,
ψ:combining function

The number of simulated datasets and the number R of permutations
were both equal to 1000. In the simulations, we considered the balanced
design with size n1 = · · · = nS = n. The two sample sizes taken into
account are n = 10 and n = 30. In the simulations, µ = 0. Let p be
the proportion of true partial alternative hypothesis. Then, the V-variate
normal distribution of the random variable that simulates data for the gth

sample (g = 1 · · ·S) has a vector of means with (p-1)V zeros and pV val-
ues equal to τ(g − 1). Formally δg = τ(g − 1)(1,0)T . Where 1 is a vector
of pq elements equal to 1 and 0 is a vector of (p-1)V elements equal to 0
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and T is the transpose. To consider different shifts in the population loca-
tions, the simulations were carried out with τ=0.5 and τ=1.0. Moreover, the
different proportions p of true alternative hypotheses used in the scenarios
are 0.00,0.05/0.06,0.10,0.20,0.30,0.40,0.50,0.70,0.90,1. The first positive pro-
portion in the list is 0.05 if V=100 (5 true partial alternative hypotheses)
and 0.06 if V=50 (3 true partial alternative hypotheses). The significance
level chosen in all the scenarios is α=0.05. All simulations were carried out
with the R programming software version 4.1.0. The authors created specific
scripts for this purpose.

Table 3.1 shows the rejection rates of the tests under all different cases
when the number of variables V is equal to 100. The performance of the
tests under H0 can be evaluated from the column corresponding to p=0.00
(no true partial alternative hypotheses). It is evident that, in most cases, the
rejection rates are either less than or very close to the nominal α level 0.05.
The test based on the Tippet combination exceeds α more frequently than
the others, but the probability of wrong rejection of H0 seems to be not far
from 0.05; hence we can say that all the tests are well approximated.

When p > 0, the power behavior of the tests can be assessed under H1.
Unbiasedness of all the tests is demonstrated because the rejection rates
are greater under the alternative hypothesis than under the null hypothesis.
Moreover, the greater the sample size, the higher the power, thanks to the
consistency of the tests. As expected, the power is an increasing function of
the shift of the population locations that depend on τ . Finally, the greater
the number of samples, the higher the rejection rates of the tests. Focusing
on the effect of p on the estimated probability of rejecting H0 when it is
false, the increasing monotonic relationship is evident for all the tests. The
growth rate of the power concerning p is high, and when 100% of the partial
alternative hypotheses is true, the rejection of H0 is sure or almost sure.

From the comparative analysis, the Liptak test is always the worst, ex-
cept in the case in which all the partial alternative hypotheses are true. In
this scenario, the power of all the combined tests tends to be one, and the
tests are equivalent. In general, the lower performance of the test based on
the Liptak combination is evident, and it is uniformly less powerful than the
other permutation MANOVAs. In contrast, the Fisher combining function
provided moderate power performance. This is consistent with [39] statement
about the preferability of other tests than Liptak, except for p=1. However,
when the proportion of true partial alternative hypotheses is low, the com-
bined test based on Tippett’s rule is by far the best. Also, this conclusion
is not surprising, according to[5] but, in our simulation study, the extent of
the difference in the performance of the test based on Tippet’s function can
be evaluated. Moreover, according to these results, Tippet’s combination
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is never less performant than the others, except in the first set, when S=3,
n=10 and τ=0.5 when p ≥ 0.90, where the differences in the rejection rates
of the various tests are negligible.

In Table 3.2, the rejection rates of the tests when the number of variables
is V=50 are reported. Again the good performance of the test under the null
hypothesis (p=0.00) is proved by the values of the estimated power. These
values are usually not greater than α=0.05 even if sometimes, especially in the
case of Tippet’s combination, they exceed the significance level. Nevertheless,
when greater than 0.05, the rejection rates under H0 are not far from α, and
the tests are well approximated. Hence this conclusion is valid regardless of
the number of variables V.

Table 3.2 also confirms that the probability of right rejection of the null
hypothesis of MANOVA by the combined permutation tests increases with
the sample size n, with the number of samples S, with the shift parameter τ
and with the proportion of true partial alternative hypotheses p. Another em-
pirical evidence of the simulation study is that the power is generally greater
with 100 variables than with 50 variables. This statement seems clear think-
ing to the tendency of the power to one when the number of variables diverges
in the two-sample problem proved by [39]. They focus on the relationship
between the power of the overall test and non-centrality parameter in case
100% of the variables are under the alternative hypothesis. According to our
results, the power of the multisample tests in the case V=100 is much greater
than in the case V=50 only when the percentage of true partial alternative
hypotheses is low; otherwise, the difference seems not evident and always
in the same direction. Hence, in our opinion, the proportion of true partial
alternative hypotheses matters, and it is more important than the absolute
number of true partial alternatives. For instance, when V=50 and p=0.40,
the number of true partial alternative hypotheses is 20, exactly as when
V=100 and p=0.20. Nevertheless, in the former case, when S=3, n=10 and
τ=0.5 the rejection rates of the tests based on Fisher, Liptak, and Tippett
combination are 0.626, 0.490, and 0.636 respectively; instead in the latter
case, under the same scenario, 0.250, 0.156 and 0.640 respectively. Hence,
even if the number of true alternative hypotheses is the same, the power of
the tests based on Fisher and Liptak combinations is much lower when the
proportion of true partial alternative hypotheses is smaller. Tippett repre-
sents an exception. Consider, under the same scenario, the case V=50 and
p=0.20 (rejection rate 0.466) and V=100 and p=0.10 (rejection rate 0.546).
Hence, with the same proportion p, the power increases with V only in the
case of Tippett’s combination.

In general, the case V=50 confirms that the Liptak combination is the
best choice only when p=1, but in this situation, the power of the other tests

47



PhD Thesis A.Getnet Melak

is very similar. In most of the considered settings, the Tippett combination
is preferable because the power quickly tends to 1 as the proportion of true
alternative hypotheses diverges. When S=3, n=10, and τ=0.5, this is the
most powerful test up to p=0.40. For larger values of p, it becomes the less
powerful test.

Table 3.2: Rejection rates of CPTs for V=50 and α=0.05.

S n τ ψ Proportion of true partial alternative hypotheses (p)
0 0.06 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1

F 0.05 0.082 0.096 0.23 0.414 0.626 0.766 0.87 0.924 0.886
0.5 L 0.054 0.066 0.074 0.142 0.258 0.49 0.668 0.828 0.912 0.888

T 0.057 0.268 0.316 0.466 0.556 0.636 0.726 0.768 0.818 0.81
10 F 0.042 0.054 0.26 0.892 0.996 1 1 1 1 1

3 L 0.038 0.068 0.12 0.446 0.812 0.938 0.95 0.986 0.988 1
1 T 0.05 0.094 0.966 1 1 1 1 1 1 1

F 0.052 0.1 0.23 0.824 1 1 1 1 1 1
0.5 L 0.054 0.07 0.138 0.348 0.756 0.936 0.954 0.974 0.992 1

T 0.056 0.876 0.96 0.994 0.998 0.998 1 1 0.998 1
30 F 0.038 0.128 0.278 0.996 1 1 1 1 1 1

1 L 0.04 0.092 0.14 0.424 0.846 0.938 0.948 0.974 0.98 1
T 0.05 1 1 1 1 1 1 1 1
F 0.038 0.164 0.31 0.904 0.998 1 1 1 1 1

0.5 L 0.044 0.132 0.162 0.408 0.798 0.944 0.952 0.97 0.988 1
T 0.051 0.946 0.994 0.996 1 1 1 1 1 1

10 F 0.048 0.182 0.174 0.978 1 1 1 1 1 1
1 L 0.052 0.114 0.356 0.452 0.826 0.95 0.948 0.97 0.994 1

T 0.054 1 1 1 1 1 1 1 1 1
5 F 0.052 0.126 0.316 0.99 1 1 1 1 1 1

0.5 L 0.048 0.076 0.156 0.458 0.836 0.94 0.956 0.976 0.996 1
T 0.054 1 1 1 1 1 1 1 1 1

30 F 0.051 0.136 0.348 0.986 1 1 1 1 1 1
1 L 0.049 0.072 0.156 0.468 0.852 0.938 0.954 0.976 0.99 1

T 0.053 1 1 1 1 1 1 1 1 1
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3.6 Case Study about Organizational Well-

being of University Workers

Organizational wellbeing is the first element that influences a public organi-
zation’s effectiveness, efficiency, productivity, and development. Therefore,
as part of objective 3 of the 2014-2016 Positive Action Plan proposed by the
Equality Opportunities Office of the University of Ferrara (UNIFE), the Rec-
tor’s Delegate for Equal Opportunities presented a project to promote the
improvement of the working well-being of the administrative-technical staff.
This project consists of the definition of interventions aimed at improving
the quality of working life based on findings deriving from empirical surveys.

A questionnaire was administered to a sample of 120 employees of UNIFE
in order to assess the degree of work-related stress, to detect the opinions
of employees with respect to the organization and the working environment
and identify possible actions to improve the general conditions of the public
employees at UNIFE. One goal of the survey was also to test the existence
of possible differences in organizational well-being among sub-groups of em-
ployees defined by gender and age.

The 120 respondents represent a random sample of the population of the
technical-administrative staff. In order to test for the joint effect of gender
and age on the organizational wellbeing at UNIFE, a simple random sample
of 30 employees was selected from each of the following four groups: FU50:
50 years old or younger females, FO50: over 50 years old females, MU50: 50
years old or younger males and MO50: over 50 years old males.

The questionnaire, consisting of 79 questions, was administered to the
respondents from the 4th to the 11th of December 2014. The Italian National
Anti-Corruption Authority designed the questionnaire (ANAC) and the Na-
tional Institute for Occupational Accident Insurance (INAIL) that decided
to adopt a Likert scale, based on the first six integer values representing the
level of agreement concerning the 79 statements (1= not at all,· · · , 6=com-
pletely). The 79 statements are reported in Appendix A.10.

Let Yqg be the random variable that represents the response concerning
the qth statement of an employee belonging to group g, with q = 1 · · · 79
and g ∈ S = FU50, FO50,MU50, FO50. The following hypotheses can
represent the testing problem:

H0 : ∩79
q=1[Y(q,FU50)

d
=Y(q,FO50)

d
=Y(q,MU50)

d
=Y(v,MO50)] (3.17)

H1 : ∪79
q=1[∃g′, g′′ ∈ Ss.t.Y(q,g′)

d

̸=Y(q,g′′)] (3.18)
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The significance level is α=0.05. According to the simulation study, the
most suitable testing method seems to be the combined permutation test
based on the Tippett combining function. The application of this test pro-
vides a p-value of 0.755, much greater than α. Hence the null hypothesis
cannot be rejected. At the significance level of 0.05, there is no empirical
evidence to reject the null hypothesis of no difference in the organizational
wellbeing between groups in favor of the hypothesis that the organizational
wellbeing of the groups is not the same. In other words, we cannot conclude
that there is a significant effect of gender and age on the employees’ wellbe-
ing. The authors carried out the analysis by creating specific R scripts for
the implementation of the methodology.

3.7 Conclusions

The work aimed to deepen the study of the power behavior of combined
permutation tests for two-samples and MANOVA problems with big data.
The assessment of the convergence rate of the power to one as the number of
variables increases and a comparison between the three most commonly used
members within this family of tests represent the primary scientific added
value of the paper.

For the two-sample test, the most powerful CPT is that based on the Tip-
pett combination when the percentage of true partial alternative hypotheses
is ≤ 30%, that based on the Fisher combination when the percentage is
> 30% and < 100%, and that based on the Liptak combination when the
percentage is 100%.

These nonparametric multisample location tests are well approximated,
consistent, unbiased, and robust for small sample sizes. However, the power
is also an increasing function of the number of samples and the number of
dataset variables. The asymptotic behavior of the tests when the number of
variables diverges was studied. The simulations proved that the proportion
of true partial alternative hypotheses is more vital than the absolute number
of dataset variables in explaining the power increase. The test based on the
Tippett combination represents an exception to this general rule.

This test seems to be much more powerful than the others when the
proportion of true partial alternative hypotheses is not large but competitive
when the proportions are close to one. This is the only condition in which
the Liptak combination test is competitive, but this test is by far the least
powerful for small proportions of true alternatives.
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Definitely, it seems that, among the distribution free solutions to the mul-
tivariate analysis of variance in the family of combined permutation tests, the
method based on the Tippet combination is in general preferable, especially
if there are no preventive information about the possible percentage of vari-
ables (or marginal distributions) under the alternative hypothesis. Instead of
the Tippett combination, the Fisher rule can be applied when the percentage
is close to 100%. On the other hand, the Liptak combination seems to be
non-convenient in general.

This methodological tool is an essential and valuable solution to testing
problems for big data, especially when the number of variables is enormous
and the sample sizes are small.
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CHAPTER 4

APPLICATION OF COMBINED PERMUTATION

TESTS FOR TESTING MULTIVARIATE

REGRESSION COEFFICIENTS

4.1 Introduction

In recent decades, following the rapid growth of efficient statistical software
and the high demand for efficient data analysis methods, by industries, firms,
hospitals, companies, and institutions, new statistical techniques for multi-
variate and complex datasets have been created all over the world by data
scientists, researchers, scholars, and practitioners.

Due to the complex nature of the datasets about environmental and eco-
nomic sustainability, the usual parametric testing procedure may not be a
suitable method. For instance, there are datasets about firm performance,
where performance is multidimensional with a high number of components
[181]. Even though some researchers use unidimensional measurements of
firm performance, it is unrealistic to investigate a firms’ performance using
a single indicator[182]. Hence, many researchers use multidimensional mea-
sures [183, 181]. For instance, [181] introduces the subjective model with
nine determinants/dimensions of performance, such as profitability, growth,
the market value of the firm, customer satisfaction, employee satisfaction,
environmental audit, corporate governance, and social aspects.

In many studies concerning firms’ performance, the scholars use different
multivariate models to investigate the relationship between performance and
other variables, such as linear and nonlinear models and subjective models
[184, 182, 185]. To investigate the association between potential predictors
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and the multivariate responses representing firms’ performance, one may fol-
low a different parametric approach such as Wilk’s lambda test, Pillai-Trace
multivariate test, Roy’s largest root, or other statistics for the MANCOVA
problem.

In this chapter, we focus on the multivariate multiple linear regression
model, which is popular in many fields but characterized by stringent as-
sumptions [186, 187, 188]. In case of violating the parametric assumptions,
researchers, scholars, and academicians must consider suitable remedies such
as logarithmic transformation, square root, variables’ removing, increase of
sample sizes, and others. However, the data transformation may not be
appropriate.

In some empirical studies, a typical practice is to carry out estimates
and test the model by considering the regression equations separately or by
assuming independence of the components of multivariate response. When
the dependence is taken into account, according to the parametric approach,
it must be specified and represented by a set of parameters (for example,
covariance or correlation), and such parameters must be estimated. In the
presence of non-normal errors, covariances or correlations are not suitable for
representing the dependence.

Often, in many fields such as in clinical trials, engineering, economics,
and others, researchers are willing to use a small number of sampling units
or experimental units to reduce cost, time, and resources in hypothesis test-
ing. However, they might be interested in studying many variables, such
as independent variables in a multivariate regression analysis or explanatory
variables in multiple regression. As a result, the statistical power of the
classic parametric t and F tests on the regression coefficients is low due to
small sample sizes and consequently inflated variance and loss of degrees of
freedom. Moreover, the statistical inference might give misleading results.

The other more challenging problem in studying multivariate models is
related to the dependence structure of the errors (and of the dependent vari-
ables), given that the assumption of independence is extreme and unrealis-
tic. For this reason, some typical parametric approaches are not suitable for
hypothesis testing of multivariate models. One of these approaches is the
likelihood ratio test [186, 188].

We develop a solution within the family of combined permutation tests
because nonparametric and suitable for complex testing problems that can
be broken down into partial (independent tests)[81, 116, 39, 4].

The typical application of permutation tests consists of two-samples or
multi-sample tests, where two or more groups are compared in terms of lo-
cation or scale. For instance, many authors regarding permutation tests are
frequently interested in testing the effect of treatments on the univariate or
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multivariate responses[189, 116, 190, 39]. On the other hand, some authors
introduce the application of permutation tests on the coefficients of simple
regression, partial regression, and multiple linear regression using different
test statistics[6, 191, 192, 97, 21, 193]. However, to the best of our knowl-
edge, testing the impact of explanatory variables on the multivariate response
of linear models within the permutation approach has not been considered.
Hence, to fill the gap in the literature, we propose a method based on the
combined permutation tests for testing the validity of the model as a whole.
In other words, we focus on the joint significance of the regression coefficients
estimates. Furthermore, we study the power behavior of the method under
different settings and compare it with the main parametric competitor, the
Pillai-Trace test.

The chapter is structured as follows: section 2 is dedicated to the lit-
erature review about the multivariate regression. Section 3 is dedicated to
the presentation of the new method based on combined permutation tests.
Section four is about the simulation study. In section five, we present the
application of combined permutation tests about private firm performance
in Ethiopia. Finally, section six is dedicated to the conclusions.

4.2 Literature Review on Multivariate Re-

gression Models

4.2.1 Basic Notions on Multivariate Regression Model

The main goal of regression analysis is to investigate the relationship between
inputs (predictors, explanatory variables, regressors, and independent vari-
ables) with one or more outputs ( responses or dependent variables). Regres-
sion analysis includes suitable inferential techniques to use sample data for
estimation of parameters, tests of hypotheses, and predictions [186, 187, 194].
The validity of the regression analysis results depends on the satisfaction of
some assumptions about the model.

The multiple regression model with more than one dependent variable is
called multivariate multiple regression model (MMR) [186, 187, 188].

The multivariate regression model is widely applicable in many areas of
fields such as in medicine, genetics, economics, finance, engineering, politics,
economics, businesses, and others [186, 195, 187, 188].

Consider the multivariate multiple linear regression model in the equation
form:

Yid = β0d +
∑

βjdXij + ϵid, i = 1, · · · , n, j = 1, · · · , p, d = 1, · · · , V (4.1)
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That corresponds to the following matrix algebra representation:

Y = XB + E (4.2)


y1,1 y1,2 · · · y1,V
y2,1 y2,2 · · · y2,V

...
...

. . .
...

yn,1 yn,2 · · · yn,V

 =


1 x1,1 · · · x1,p
1 x2,1 · · · x2,p
1 x3,1 · · · x3,p
...

...
. . .

...
1 xn,1 · · · xn,p




β0,1 β0,2 · · · β0,V
β1,1 β1,2 · · · β1,V
β2,1 β2,2 · · · β2,V

...
...

. . .
...

βp,1 βp,2 · · · βp,V



+


ϵ1,1 ϵ1,2 · · · ϵ1,V
ϵ2,1 ϵ2,2 · · · ϵ2,V
...

...
. . .

...
ϵn,1 ϵn,2 · · · ϵn,V


Where Y is the nxV matrix of responses, X is the nx(p+1) design matrix

of predictors, B is the (p+1)xV matrix of regression coefficient’s, E is the
nxV matrix of error terms, n is the number of statistical units, V is the
number of responses and p is the number of regressors. The corresponding
dth response variable has the regression model represented by:

Yd = XB(d) + E(d) (4.3)

Where Yd, β(d) and E(d) represent the dth column of Y, B and E respec-
tively.

4.2.2 Assumptions of Multivariate Multiple Linear Re-
gression

The dependent variables in linear regression analysis must be continuous.
In contrast, the independent variables can be continuous, categorical, and
mixed. Assumptions, estimation methods, tests of hypotheses, and diagnos-
tic analysis of MMR are similar to those of the classic multiple linear models.
The goodness of fit and model diagnostics in MMR is mainly carried out for
one regression model at a time [196, 197].

The assumptions of the multivariate multiple regression model are an
extension of those of the univariate multiple regression model: linearity in
parameters, multivariate normality of the errors, homoscedasticity, indepen-
dence of the vectors of error terms with respect to units, and others. If one
of these assumptions is violated, the resulting statistical inference will give
misleading conclusions[196, 194]. Consequently, we need a robust method
that works under mild assumptions.
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Some useful R functions in R statistical environment for data manipulation
in multivariate regression are pairs and summary [198].

4.2.3 Estimation of Multivariate Multiple Linear Re-
gression

In the model and consequently, in the estimation procedures, the design ma-
trix or matrix of predictors is fixed and unique for all the response variables.
Thus, to estimate the matrix of coefficients B, the OLS estimation method
can be used considering the full column rank of X. OLS does not require any
distributional assumption of the error terms[195, 194]. Manually, we can es-
timate B by minimizing the squared cross-product matrix of residuals as in a
univariate case and considering all explanatory variables equally important.
Under the null hypothesis B = 0, the estimated B̂ is given by:

B̂ = (X ′X)−1X ′Y (4.4)

The estimated dth vector of regression coefficients is given by:

B̂d = (X ′X)−1X ′Yd (4.5)

However, when the interest is focused on a subset of the explanatory vari-
ables, the reduced form of the model is estimated using Lagrangian method
under the restricted model according to constraints CB = 0 [195]. Where
the contrast matrix C is Sx(p+1), has a full row rank S ≤ (p + 1). The
estimated B under the restriction CB = 0 becomes:

B̃ = B̂− (X ′X)−1C ′[(C(X ′X)−1C ′)−1CB̂] (4.6)

The R statistical software has many options to perform the estimation of
a matrix of coefficients using OLS [198]. The most typical is the lm function.

4.2.4 Tests for the Multivariate Multiple Linear Re-
gression Model

When one or more assumptions of the classic parametric approach are vio-
lated, testing the significance of the matrix of regression coefficients in mul-
tivariate regression analysis is a challenging problem. In this case, a more
robust statistical method is required. For example, testing the statistical sig-
nificance of the regression coefficient of the multivariate multiple regression
(MMR) is frequently done using the likelihood ratio test (LRT) or Hotelling
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T2 test [188]. However, those tests require stringent assumptions not always
plausible or reasonable.

The necessary R functions for the significance test are those of the (M)ANOVA
tests such as anova or manova in the car package and linearHypothesis()
[199, 194]. To test the significance of some (not all) regression coefficients
the update function can be used to fit the reduced model and then the anova
for the comparison of the full model with the reduced one. Alternatively,
for the Hoteling T2 test, the hoteling.test function is available in the MASS
standard package [198]. The linearHypothesis is a special function to perform
the four parametric tests for the MANOVA, such as Wilks’ lambda, Pillai’s
trace test, Hotelling-Lawley trace, and Roy’s greatest root test.

The Wilks lambda statistic ∧ is given by: ∧ = det(Σ̂)

det(Σ̃)
, ratio between the

sum of squares cross products of the residuals of the full model and the sum
of squares cross products of the reduced model (under null hypothesis), and it
approximates to a chi-square distribution χ2 with Vp degrees of freedom[200].

− klog∧ ≈ χ2 (4.7)

where k = (n− (V + p+ 1)/2), log is natural logarithm, V and p are number
of response and explanatory variables respectively. Moreover, Let Ẽ = nΣ̂
and H̃ = n(Σ̃ − Σ̂) then the Pillai’s trace test is

∑ λd

1+λd
, where λd is the

nonzero eigenvalues of H̃Ẽ−1.

4.3 Methodology of the Permutation MANOVA

for the Multivariate Regression Model

4.3.1 Permutation Test

In the parametric approach, the probability that the test statistic takes values
more extreme than the observed one under the null hypothesis is computed
assuming a known and completely specified probability distribution. In other
words, the p-value is computed according to the chi-square or Hotelling T 2

distribution. However, if the null hypothesis is false, the analysis is not valid
because the distribution in H1 is not equal to the assumed one. Hence,
obtaining the quantiles is impossible unless we know the non-central param-
eters. In contrast, the permutation test is distribution-free and calculates
the rejection probabilities or p-values under the null hypothesis regardless
of the distribution of the error terms. By resampling (shuffling) the rows
of the matrix of the explanatory variables many times, the p-values can be
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computed as the fraction of permuted datasets for which the value of the test
statistic is greater than or equal to the observed one.

The permutation test is nonparametric; it does not rely on assumptions
about the underlying distribution and requires exchangeability under Ho. In
the null hypothesis that the whole set of explanatory variables does not affect
the response, exchangeability is satisfied. In fact, in Ho, all the regression
coefficients are null, and each vector of observed responses can relate to any
vector of observed values of the predictors with the same probability.

In the previous studies concerning permutation tests for linear regression
models, researchers use three different permutation strategies[95, 130, 131,
133, 66, 134]. For instance, by considering nuisance variables in the equation,
testing the significance of the partial regression coefficients is made by using
constrained permutation of residuals under the reduced model. On the other
hand, by considering no nuisance explanatory variables in the study, some au-
thors permute the observations of the dependent variable Y. When the test
concerns all the explanatory variables, no constrain is needed, and exchange-
ability permits the permutations of residuals obtained by the OLS estimates
of parameters. Finally, some authors obtain the permutation distribution
of the test statistics by permuting the rows of the matrix of explanatory
variables [191, 192, 6, 97].

To calculate the null permutation distribution of the test statistic and its
corresponding p-value, we should evaluate the possible permutation sample
space and its cardinality n! [5, 39, 4]. However, when the sample size n is
large, the sample space’s determination is complicated and time-consuming.
For this reason, we apply the conditional Monte Carlo Procedure (MCP) by
considering a random sample of R ≤ n! permutations. Then, according to
the Glivenko-Cantelli theorem, the approximation of the permutation test
obtained with the conditional Monte Carlo is very high, and such test can
be considered almost equivalent to the exact test.

4.3.2 Combined Permutation Test

When a testing problem can be broken down into partial tests, the method-
ology on the combined permutation test is suitable and effective. It requires
applying a univariate permutation test for each partial problem and obtain-
ing a multivariate test statistic. To compute the p-value of the original global
test, a suitable combining function may be used to reduce the multivariate
test statistic into one (combined) univariate test statistic. The arguments of
the combining function are the p-values of the partial tests.
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4.3.3 The null hypothesis

Let us consider problems where the null hypothesis to be tested is that the
components of the matrix of regression coefficients are equal to zero except
for the constraints ( the predictors do not affect the multivariate responses).
The global alternative is that at least one predictor has a significant effect.
Hence, the null hypothesis Ho can be broken down into null sub-hypotheses
such that the global null hypothesis is true if all the partial hypotheses are
jointly true. Likewise, the alternative hypothesis H1 is broken down into
partial alternatives such that H1 is true if at least one partial alternative
hypothesis is true. Formally:

Hod(j) : {βjd = 0, j = 1, · · · , p, d = 1, · · · , V } (4.8)

Ho : {
⋂
d,j

Hod(j)} (4.9)

H1d(j) : {βjd ̸= 0} (4.10)

H1 : {
⋃
d,j

H1d(j)} (4.11)

Under the null hypothesis, exchangeability holds, and by permuting ob-
served Y, it is possible to determine the null distribution of the test statistics.
Thus, the permuted dataset is:

Z∗ = (Y ∗
u∗(i)d, Xij), i = 1, · · · , n, d = 1, · · · , V, j = 1, · · · , p} (4.12)

where
Y ∗
u∗(i)d = XB + Eu∗(i)d (4.13)

u∗(i) is a permutation of units/labels (i = 1, · · · , n).

4.3.4 Permutation Test Statistic

Let us denote the corresponding (p.V)-dimensional vector of test statistics by
T = T(Z) and each component of the Tdj(Z) be suitable to test the partial
null hypothesis Hod(j) against the partial alternatives H1d(j).

The partial permutation tests must be analyzed jointly. If all partial
tests Tdj(Z) are marginally unbiased and consistent, then the combined test
is unbiased and consistent. Hence, they are stochastically larger in H1 than
Ho. As the sample sizes tend to infinity, the probability that the permutation
p-values are less than α under H1 tends to 1 [39].
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We propose using the regression coefficients’ estimators or other permuta-
tionally equivalent statistics (such as the t- statistic of the classic parametric
t-test) as univariate test statistics of the partial test on a single coefficient.
The OLS estimators represent a suitable choice under the assumption of ho-
moscedasticity of errors and uncorrelated errors. Hence, Tdj(Z) = β̂jd with

β̂jd = [(X ′X)−1X ′Y ]jd. The widely used parametric maximum likelihood es-
timators (MLE) require the more stringent assumption of multivariate nor-
mality for the joint distribution of the error terms.

The general procedure for performing such a combined test is the follow-
ing:

1. Calculate the matrix of observed values of T from the dataset Z under
the full model. T : Tobs = T (Z) and combine using suitable combining
function Ψ.

2. Consider a permutation of the rows of the matrix of response variables
Y.

3. Compute the corresponding values of the test statistics from the per-
muted dataset T∗

(1) = T(Z∗
(1)).

4. Repeat step(2 − 3) R times independently to get T∗
(r) = T(Z∗

(r)), r =
1, · · · , R , according to the conditional Monte Carlo method .

5. Consider the estimate of the significance level function for each partial

test L̂jd(t) =
0.5+

∑
r I[T

∗
jd(r)

≥t]

R+1
= P̂ (T ∗

jd ≥ t), with j = 1, · · · , p, d =
1, · · · , V , where I(A) is the indicator function of A.

6. For each r compute λ̂∗jd(r) = L̂jd(tjd(r)) and λ̂jd(0) = L̂jd(tjd,obs), Where

tjd(r) and tjd,obs are the value taken by Tjd in the rth permuted dataset

and in the observed one respectively. λ̂jd(0) is the estimated p-value of
the partial test corresponding to the dth response and the jthpredictor
according to the null permutation distribution of the multivariate test
statistic.

7. For each r calculate the combined test statistic T ′′∗
(r) = Ψ(λ̂∗11(r), λ̂

∗
21(r), · · · , λ̂∗pV (r))

and compute T ′′
(0) = Ψ(λ̂11(0), λ̂21(0), · · · , λ̂pV (0) using suitable combining

function Ψ .

8. Calculate the estimate of the p-value of the global (combined) test

λ̂′′ =
∑

r

I[T ′′∗
(r)

≥T ′′∗
(0)

]+0.5

R+1
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Provided that a suitable estimation method for single regression coeffi-
cients is available, the proposed method can be easily extended to nonlinear
models, general linear models, mixed models, general mixed models, and
vector generalized linear mixed models (VGLM).

4.3.5 Combination Functions

As said the univariate test statistic T ′′ for the global problem is obtained
by combining the p-values of the partial tests on the regression coefficients
λ11, λ21, · · · , λpV with a suitable function Ψ : T ′′ = Ψ(λ11, λ21, · · · , λpV ). Ψ
is continuous and measurable for all p-values.

The most widely used combining functions are the following:
Tippett Combining function :

T ′′
T = maxj,d(1 − λjd) (4.14)

Fisher omnibus combining function:

T ′′
F = −2

∑
j,d

ln(λjd) (4.15)

Liptak combining function :

T ′′
L =

∑
j,d

Φ−1(1 − λjd) (4.16)

Where Φ is the cumulative distribution function of the standard normal
random variable and ln is the natural logarithm. Without loss of generality,
let us assume that all combining functions are significant for large values[5,
39]. The combining functions must satisfy the following condition to get
valid results:

1. It must be non-increasing in each p-values: Ψ(..., λjd, ...) ≥ Ψ(..., λ′jd, ...)λjd <
λ′jd.

2. It attains its supremum value Ψ̄, when at least one partial p-value
attains zero: minj,dλjd −→ 0 =⇒ Ψ(· · · , λjd, · · · ) −→ Ψ̄

3. ∀α > 0, the critical value T ′′
α < Ψ̄.
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4.3.6 Power of CPT

Let

Π(B, α,T, P, n) =

∑
(λ′′(To) <= α)

R
(4.17)

Where λ′′(To) is the probability that the test statistic takes values greater
than or equal to observed To. In this study, we investigate the power of per-
mutation test and compared it to a parametric competitor using simulation
studies.

The R environment has a package called lmPerm useful to analyze the
multivariate regression model using the permuted Y ∗ for tests and for esti-
mates OLS through the lmp function[129]. However, for this study, we use
the classic lm function, and we develop a specific R script for the simulation
study and data analysis.

4.4 Simulation Study

In this simulation study, multivariate datasets were generated from multi-
variate normal distributions. In addition, specific R scripts were created to
perform the simulation study.

The power behavior of the combined permutation test on the significance
of regression coefficients (permutation MANOVA) is compared with that
of the classic parametric competitor, the Pillai-Trace test. The simulation
process is divided into three steps.

1. Definition of the setting parameters

2. Random generation of the predictors data, that is the X matrix of
independent variables

3. Random generation of errors’ values in order to compute the simulated
data of the dependent variables. That is Y matrix of responses.

We consider p the case of two explanatory variables, hence p=2. To sim-
ulate the data the bivariate predictor is assumed to follow a normal dis-
tribution with null vector of means: (X1, X2)

′ ∼ N2(0, Σx) . Σx = [σx,lj]
with σx,jj = 1, j = 1, 2. In order to consider both the cases of uncorrelated
and correlated predictors, the considered values of the covariance parame-
ters σx,12 = σx,21ρx are 0 and 0.3. The choice of considering only two cases
of ρx, that is ρx = 0 and ρx = 0.3 is due to the belief that the level of
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multicollinearity doesn’t affect the power of the permutation test. High mul-
ticollinearity is not an interesting case for the simulation study. Hence, we
includes in the settings only the situations of uncorrelated orthogonal pre-
dictors and moderate collinearity (quite realistic in real applications with
two explanatory variables). The errors are simulated from V-variate normal
distributions with null vector of means and covariance matrix Σϵ = [σϵ,ds].
We set up σϵ,dd = 1,∀d ∈ {1 · · ·V }, and σϵ,ds constant with respect to the
subjects d and s, with d ̸= s ∈ {1, 2, · · · , V }. To simulate null, weak and
strong correlation between the V-components, three values are considered:
σϵ,ds = ρϵ = 0.0, σϵ,ds = ρϵ = 0.3 and σϵ,ds = ρϵ = 0.8.

It is worth noting that under the null hypothesis, the V-variate errors
(and the corresponding V-variate responses) are exchangeable with respect
to the statistical units. The constants of the V model equations are set up
at zero that is βo,jd = 0, j = 1, · · · , p, d = 1, · · · , V . Hence, to compute the
simulated values of the dependent variables, for simplicity of representation
we can consider, as B matrix of regression coefficients for the 2x2 matrix
that includes only the model slopes. The simulation take into account the

following B matrix

[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
1 0
1 0

]
,

[
1 1
1 0

]
,

[
1 1
1 1

]
. The

considered simulation sample sizes are n = 10, 20, 30, 40, 70, 100. Finally,
for investigating the asymptotic power behavior when the number of model
equations (response) diverges, keeping the sample size fixed, different val-
ues of V are considered. We considered 1000 simulated datasets and 1000
permutations.

4.4.1 Simulation Results and Discussion

When B =

[
0 0
0 0

]
, that is under Ho, as shown in Table 4.1-Table 4.4 and

figure 4.1d, combined permutation tests have rejection rates close to the sig-
nificance level α = 0.05. There are some exceptions to this general rule,
but this is true also for the parametric Pillai-Trace test, and it seems not
correlated to the sample size. Whereas the Pillai-Trace test seems to be con-
servative for small sample sizes. Hence, under Ho, the power of the combined
permutation tests tends to respect the nominal α level, and we can say that
these tests are well approximated.

As shown in Fig. 4.1a-c, Table (4.5, 4.6, 4.7, 4.8) and Table A3 (in the
appendix) the power of the combined permutation tests under H1, that is
when B ̸= 0 is greater than the power under Ho. This proves that the tests
are unbiased, and the parametric Pillai test. This is true regardless of the
correlation of the model equations. Fig.4.3 and Table 4.8 show that this is
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true regardless of collinearity among predictors. In general, it is evident that
when the alternative hypothesis is true, the power increases as a function of
the sample sizes, and it tends to one as n diverges. Hence, the tests under
study are consistent.

Table 4.1: The Power of the tests for ρϵ = 0.3, ρx = 0, α = 0.05 and

B =

[
0 0
0 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.05 0.05 0.049 0.057 0.049 0.055
CPT Tippett 0.056 0.052 0.047 0.051 0.047 0.057
Parmetric Pillai 0.024 0.041 0.05 0.048 0.05 0.06

Table 4.2: The Power of the tests for ρϵ = 0.8, ρx = 0, α = 0.05 and

B=

[
0 0
0 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.041 0.041 0.052 0.051 0.053 0.04
CPT Tippett 0.042 0.052 0.052 0.051 0.051 0.054
Parametric Pillai 0.027 0.041 0.042 0.058 0.062 0.049

Table 4.3: The Power of the tests for ρx = 0.0, ρϵ = 0, α = 0.05 and

B=

[
0 0
0 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.051 0.05 0.045 0.044 0.049 0.039
CPT Tippett 0.048 0.048 0.044 0.042 0.045 0.044
Parametric Pillai 0.023 0.039 0.036 0.04 0.044 0.04

For small sample sizes, the power of the combined permutation test using

Tippett for B =

[
1 0
0 0

]
is more powerful than the competitor multivariate

parametric test such as Pillai’s-Trace test regardless of the correlation setup.
In other words, the CPT based on the Tippett combination is the most pow-
erful of the compared tests when only one coefficient is not null see (Fig.4.1a,
4.3a, 4.3c). When the number of coefficients not equal to zero is two, the
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Figure 4.1: The power behaviour for different value of B,n, ρx = 0.0, ρϵ = 0.3
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Table 4.4: The Power of the tests for ρx = 0.3, ρϵ = 0, α = 0.05 and

B=

[
0 0
0 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.058 0.059 0.05 0.054 0.052 0.039
CPT Tippett 0.051 0.052 0.052 0.049 0.052 0.039
Parametric Pillai 0.028 0.049 0.048 0.046 0.05 0.035

most powerful test is the CPT based on Fisher combination regardless of the
values of the correlations mainly when the sample size is n=10 see (Fig. 4.1b,
4.2a, 4.3b, Table 4.5, Table 4.6 and TableA.6 (in the appendix)). For small
sample sizes, the superiority of CPT based on Fisher’s is much more evident

when B =

[
1 1
1 1

]
, even if when n ≥ 20 the performance of the Pillai- Trace

test is similar see Fig. 4.1c, 4.2b and Table 4.7. However, in some cases, such
as when the sample size is large, the parametric Pillai-Trace test is somewhat

performant. For instance, when B =

[
1 1
1 0

]
, without loss of generality, the

Pillai multivariate test seems performant, as shown in Table 4.8.

Table 4.5: The Power of the tests for ρϵ = 0.3, ρx = 0, α = 0.05 and

B =

[
1 0
1 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.4 0.941 0.998 1 1 1
CPT Tippett 0.269 0.877 0.997 1 1 1
Parametric Pillai 0.349 0.98 1 1 1 1

Table 4.6: The Power of test for ρx = 0.0, ρϵ = 0, α = 0.05 and B =

[
1 0
1 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.403 0.931 0.999 1 1 1
CPT Tippett 0.328 0.873 0.995 1 1 1
Parametric Pillai 0.304 0.965 1 1 1 1

As expected the power of the tests is non increasing function of the cor-
relation between equations ρϵ. For instance, this is evident in Table 4.9,
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Figure 4.2: The power behaviour for different value of B, n, ρx = 0.0, ρϵ = 0.8

Table 4.7: The Power of the tests for ρx = 0.0, ρϵ = 0, α = 0.05 and

B =

[
1 1
1 1

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.748 1 1 1 1 1
CPT Tippett 0.504 0.979 1 1 1 1
Parametric Pillai 0.538 1 1 1 1 1

where the rejection rates for n=30, ρx = 0.0 and B=

[
1 1
0 0

]
are reported. If

the equations are uncorrelated the global information provided by both of
them is higher than in the case of non-zero correlation. This is reflected in
the dependence of partial tests and therefore on the power of the regression
MANOVA. The higher the correlation, the greater the redundant informa-
tion provided by partial tests of different equations which results in fewer
additional gain in power contribution for each equation in the global test.

The second part of the simulation is about the small sample problem with
a divergent number of dependent variables, namely equations, typical of some
big data problems of genetics, marketing, psychology, and other fields. Data
are simulated for a given sample size n = 10, correlation among responses
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Figure 4.3: The power behaviour for different value of B, n
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Table 4.8: The power of the tests for different values of ρϵ, ρx, n and B

ρ B Tests Sample size(n)
10 20 30 40 70 100

B3 Tippett 0.269 0.877 0.997 1 1 1
ρϵ = 0.3 Fisher 0.4 0.941 0.998 1 1 1
ρx = 0 Pillai 0.349 0.98 1 1 1 1

B5 Tippett 0.511 0.962 1 1 1 1
Fisher 0.652 0.986 1 1 1 1
Pillai 0.71 0.997 1 1 1 1

B2 Tippett 0.385 0.838 0.978 0.998 1 1
Fisher 0.256 0.675 0.682 0.699 0.708 0.9
Pillai 0.393 0.985 1 1 1 1

ρϵ = 0.8 B3 Tippett 0.32 0.855 0.994 1 1 1
ρx = 0 Fisher 0.363 0.927 0.995 1 1 1

Pillai 0.349 0.98 1 1 1 1
B5 Tippett 0.535 0.968 1 1 1 1

Fisher 0.613 0.992 1 1 1 1
Pillai 0.885 1 1 1 1

B3 Tippett 0.328 0.873 0.995 1 1 1
Fisher 0.403 0.931 0.999 1 1 1
Pillai 0.304 0.965 1 1 1 1

B5 Tippett 0.542 0.973 1 1 1 1
Fisher 0.7 0.991 1 1 1 1

ρx = 0 Pillai 0.672 0.994 1 1 1 1
ρϵ = 0 B6 Tippett 0.504 0.979 1 1 1 1

Fisher 0.538 1 1 1 1 1
Pillai 0.43 0.98 1 1 1 1

B3 Tippett 0.191 0.662 0.957 0.997 1 1
Fisher 0.237 0.759 0.969 0.999 1 1
Pillai 0.376 0.991 0.999 1 1 1

B4 Tippett 0.494 0.93 0.995 1 1 1
ρx = 0.3 Fisher 0.448 0.923 0.997 1 1 1
ρϵ = 0 Pillai 0.326 0.973 1 1 1 1

B5 Tippett 0.419 0.92 0.998 1 1 1
Fisher 0.495 0.996 0.999 1 1 1
Pillai 0.695 0.997 1 1 1 1

B6 Tippett 0.275 0.843 0.989 1 1 1
Fisher 0.45 0.95 0.999 1 1 1
Pillai 0.611 0.999 1 1 1 1

B2 =

[
1 0
0 0

]
, B3 =

[
1 0
1 0

]
, B4 =

[
1 1
0 0

]
, B5 =

[
1 1
1 0

]
, B6 =

[
1 1
1 1

]
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Table 4.9: The power of the compared tests as a function of ρϵ with ρx = 0

ρϵ 0 0.3 0.8
CPT Fisher 0.999 0.997 0.977
CPT Tippett 0.998 0.994 0.987
Parametric Pillai 1 0.993 0.966

(ρϵ = 0.3), fixed number of explanatory variables (p = 2), multicollinearity
(ρX = 0.3), and all elements of the matrix B, that is all the regression coef-
ficients, non-zero. When p ∗ V > n, the Pillai-Trace multivariate test cannot
be applied see Table 4.10. The loss of degrees of freedom due to the in-
creased number of dependent variables implies that the parametric approach
is not applicable for big data problems with small sample sizes. Moreover, the
power of the Pillai-Trace test decreases as the number of dependent variables
increases. On the other hand, the power of the proposed nonparametric mul-
tivariate tests based on the permutation approach increases as the number
of components of the multivariate response increases.

Table 4.10: The power of test for divergent number of responses, ρϵ = ρx =

0.3, B=

[
1 1
1 1

]
V 2 4 8 12
CPT Fisher 0.434 0.477 0.497 0.519
CPT Tippett 0.284 0.3 0.312 0.326
Prametric Pillai 0.783 0.258 NA NA

The power of the combined permutation test is increasing function of the
number of non-zero coefficients as shown in Table 4.11, where the rejection
rates of the two proposed permutation solutions are reported as a function
of the B matrix, for n=20, ρϵ = ρx = 0.3. Tippett combination is preferable
when only one coefficient is not equal to zero. When the number of non-zero
coefficients is greater than two, the Fisher combination is preferable.

Table 4.11: The power of test as a function of non-zero coefficients, ρϵ =
ρx = 0.3, n=20

B

[
0 0
0 0

] [
1 0
0 0

] [
1 1
0 0

] [
1 0
1 0

] [
1 1
1 0

] [
1 1
1 1

]
CPT Fisher 0.05 0.739 0.962 0.963 0.986 0.997
CPT Tippett 0.052 0.858 0.959 0.961 0.962 0.967
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The third part of the simulation is about a large number of response
variables V = 3, large explanatory p = 14 (some continuous and others
binary), large sample size n = 848. We perform this simulation to examine
whether the proposed combined permutation test is suitable for the firm
performance dataset or not. Hence, we consider the correlation matrix of
firm performance as to measure dependency of equations (see Table A.8
in the appendix). As we see in Table A.7 in the appendix, the power of
both parametric and nonparametric methods converges to one. Due to the
Central limit theorem, for the large enough sample sizes, the parametric
method provides high power performance of the test. Similarly, the CPT
provides a performant power for a large sample size due to consistent property
regardless of the dimension of variables. Hence, CPT is robust for divergent
variables with small sample sizes and a divergent number of variables with
large sample sizes. Moreover, the proposed combined permutation tests are a
suitable method for analyzing firm performance datasets with 3 dimensional
responses and 11 explanatory variables for 848 private firms, and we use a
firm dataset for the case study.

71



PhD Thesis A.Getnet Melak

4.5 CPT for Private Firm Performance Anal-

ysis

Firms’ financial and business performance has an increasingly significant
role in promoting economic growth and sustainable development around
the globe. Similarly, the firm performance has a remarkable contribution
to economic growth and sustainable economic development of fast-growing
countries like Ethiopia by eradicating poverty, creating job opportunities,
enhancing the GDP value, and enhancing the welfare of the society.

Firm performance could be considered the firm’s effectiveness, success,
and efficiency. Firm performance such as growth in sales, profitability, labor
productivity, employment growth, and customer satisfaction are significant
indicators to determine economic growth and sustainable development[201].
For instance, firstly, the higher profitability for the investor, the better the
return of the investment, which in turn incentive investors to invest more
capital, and the demand for labor increases as well. Again the increase in
demand for labor increases the employees’ wage, reducing income inequality
to some extent. Secondly, it has a vital role in promoting economic growth
and achieving sustainable development. The greater the firm’s performance,
the higher the attitude towards reinvestment the need for capital and skillful
labor. The combination of the labor force, saving, and investment increases
production and promotes economic growth[202, 203, 204].

Efficient and specialized workers can increase the production of goods and
improve the quality of products and services, also introducing (innovation
and improved technology)[205]. Efficient labors promote productivity and,
in turn, contributes to increased profitability.

The growth of performance is one of the goals of the growth and trans-
formation plan (GTP I &II) of Ethiopia[206]. The reformed government
of Ethiopia emphasizes the importance of private enterprises. Therefore,
Ethiopia is promoting investments infrastructures, reducing crime and cor-
ruption, tax regulation, fostering innovation, improving the contribution of
industrial sectors to the GDP, and exporting more products to bring the
rapid growth[207].

Many researchers use the financial perspective to measure firms’ perfor-
mance[208, 209]. They considered profitability in terms of financial ratios
such as return on investment, return on equity, and asset turnover; growth
in terms of increase in total sales and revenues; liquidity in terms of cash
flow; solvency in terms of leverage; and risk in terms of financial leverage.

Although there are many financial indicators and other nonfinancial mea-
sures that represent firms’ performance [181], other researchers in the liter-

72



PhD Thesis A.Getnet Melak

ature use business perspective to measure the firm performance in terms of
productivity, flexibility, and adaptability[210, 181, 211, 201].

On the other hand, in the literature, there are many empirical and the-
oretical contributions about the impact of sustainability indicators on firm
performance[212, 213, 214, 215, 216]. For instance, [214] studied the associa-
tion between environmental sustainability and multidimensional measures of
firm performance including financial, and non-financial aspects transformed
using factor analysis in India. In addition, [212] investigated the relationship
between innovation, firm performance, and the three pillars of sustainability
such as social, environmental, and economic sustainability. Moreover, many
obstacles hinder the private firms’ performance. Enterprise has been vul-
nerable to many factors to achieve its performance [207, 217] such as crime,
corruption, weak access to finance, outage of power supply, and others.

However, there is a lack of empirical analysis about private firms’ perfor-
mance in Ethiopia and their association with sustainability indicators to the
best of our knowledge. Thus, we conduct a multivariate regression analy-
sis with multidimensional variables representing private firms’ performance.
This high number of regression coefficients suggests the advisability of adopt-
ing the combined permutation test for the regression MANOVA of the model.

4.5.1 Data and Method

The dataset for this study is obtained from the World Bank 2015 Ethiopian
enterprise survey[218]. The dataset has 848 private firms, and it does not
include firms from the agricultural sector and public firms.

The components of the multidimensional response are profitability, growth,
and labor productivity represented by the indicators real annual total sales
growth (GS), employment growth (GE), and labor productivity growth (GLP),
respectively, expressed as percentages. For details about the calculations of
those dimensions, we refer the reader to the World Bank 2015 report [218].
Hence, GS = (1/t).( S−S′

(S+S′)/2
).100, where S is the total annual sales for all

products and services, t is the number of years, and S ′ is the total annual
sales for all products and services t years ago. GE = (1/t).( L−L′

(L+L′)/2
).100,

where L and L′ are permanent full-time workers of the current and previous
period respectively. Moreover, GLP = (1/t).( (S/L)−(S′/L′)

((S/L)+(S′/L′))/2
).100.

The selected business environment or sustainability indicators as explana-
tory variables in this study are access to finance, corruption, crime, infras-
tructure (electricity outage), ICT, unskilled labor force, the informality of
firms, tax rates, and regulation, innovation, firm size, trade, percentage of
firms ownership, and female owners.
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The ownership status of the firms has a crucial role in determining the
firms’ performance. That is, the higher percentage of ownership by private
firms, the higher firms’ expected performance, and inspiring the government
towards a privatization strategy.

Corruption is the abuse of managers or officials of public administration
for private gain, and it is supposed to reduce firms’ performance[219]. For
example, in dead in the corrupted system, private firms are asked to pay
illegally for import licenses, water connection, electricity connection, and
construction permits, and these practices might affect firm performance.

Innovation is one of the distinguishing features of the world’s economy
in developed and developing countries. According to Schumpeter, innova-
tion is the means to allocate resources effectively, and it boosts production
growth[220]. Similarly, when firms are capable of using the advanced or lat-
est technology and innovation, they could improve their production process
and increase productivity[221].

In developing countries, access to finance has a significant role in de-
termining the private firm performance[222]. Getting loans or credit allows
firms to employ more workers and make more investments.

Infrastructure is the cornerstone to facilitate private and public firms’
economic growth and development. For instance, without sufficient electric
power and ICT, the sustainable development goals and the private firm’s
performance are distant goals. In Ethiopia, power outages are a typical situ-
ation, and they might hinder firms’ performance[207]. On the other hand, the
use of ICT and the internet helps private firms to reduce the communication
costs[223, 224].

Firm size is defined as a categorical variable, and the categories are micro
(< 5 employees), small firms (5 − 19 employees), medium firms (20 − 99
employees), and large firms (100 or more employees). The size of firms has
a significant role in the performance. There are some arguments about the
effect of the size of firms on private firm performance. Some of the researchers
argue that the larger firm size, the higher the firm performance because
they find those big companies have better performance than small companies
[225, 226].

4.5.2 Results of the Case Study

The global p-value of the test on the hypothesis that the explanatory vari-
ables significantly affect the multidimensional firms’ performance measures,
using CPT with Tippett combining function, is 0.001. We use Tippett com-
bining function since we suspect that only a few predictors are significantly
associated with firms’ performance. Thus, the global p-value is less than
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α = 0.05, and we reject the null hypothesis.
To determine which explanatory variables significantly contribute to pri-

vate firm performance, we conduct post hoc analysis by controlling the
family-wise error rate (FWER) and displaying the adjusted p- values in Table
4.12. Hence, small firm size, percentage of ownership, finance, power outage
(hours), and ICT significantly contribute to the firm performance at a 0.05
level of significance. In particular, small firm size and power outage (hours)
are related to real annual labor productivity growth. In addition, the per-
centage of ownership and ICT positively affects the real annual employment
growth. Moreover, finance significantly contributes to growth in total sales.

To sum up, the contributions of firms’ private ownership status on per-
centage annual employment growth in Ethiopia has a crucial role in support-
ing the privatization strategy of firms by policymakers. This result provides
evidence in favor of the privatization of firms in Ethiopia. Furthermore, the
firms’ ownership is crucial for job creation and reducing the unemployment
rate since it contributes to the annual growth in employment. Hence, the
firms’ ownership status has important policy implications in determining the
Ethiopian transformation into a middle-income country.

Access to loans or credit from the financial system contributes to annual
growth in sales of private firms in Ethiopia. Hence, it improves the total
output of the private firms produced in the fiscal year. Therefore, a feasi-
ble financial system could be vital for facilitating the economic growth of
Ethiopia by providing loans or credit to private firms. This result is consis-
tent with the study about the role of finance in promoting firms’ growth by
[217].

Some of the researchers argue that the firm size is increasing function
of performance [225, 226]. In contrast, we obtain that small firms signifi-
cantly contribute to firms’ performance. Moreover, the electric power out-
ages negatively affect the annual sales growth of private firms in Ethiopia.
Therefore, to tackle this problem, the Ethiopian government must finish the
Great Ethiopian Renaissance Dam (GERD) and start generating hydroelec-
tric power as soon as possible to promote rapid economic development. Fi-
nally, ICT is positively significant with the growth in employment of private
firms in Ethiopia.
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Table 4.12: The significance test of multivariate regression coefficients

Variables GS(%) GE(%) GLP(%)
Medium firm size 0.955(0.988) 0.755(0.988) 0.847(0.988)
Micro firm size 0.791(0.991) 0.826(0.991) 0.806(0.991)
Small firm size 0.049(0.089) 0.089(0.846) 0.007(0.016*)
Firms ownership(%) 0.524(0.756) 0.001(0.0001*) 0.630(0.756)
Females owner 0.342(0.591) 0.272(0.591) 0.830(0.830)
Regulation and tax 0.587(0.801) 0.919(0.919) 0.466(0.779)
Corruption 0.146 (0.266) 0.299(0.299) 0.069(0.178)
Firms informality 0.936(0.936) 0.187(0.431) 0.180(0.431)
Finance 0.001(0.0001*) 0.498(0.498) 0.058(0.111)
Power outage(hours) 0.579(0.807) 0.846(0.846) 0.014(0.037*)
ICT 0.507(0.743) 0.013(0.034*) 0.765(0.765)
Innovation 0.774(0.799) 0.434(0.779) 0.511(0.799)
Trade 0.600(0.844) 0.576(0.844) 0.531(0.844)
Unskilled labour 0.612(0.751) 0.052(0.116) 0.691(0.751)
Note:the table contains raw p-value and adjusted p-value in side the parenthesis,the bold
value with star is significant at 1%or5%

4.6 Conclusions

The chapter aims to propose a nonparametric solution within the family of
combined permutation tests for testing the joint significance of the multi-
variate regression coefficients and investigate its power behavior through a
comparative simulation study. The proposed test is exact, unbiased, and
consistent regardless of sample sizes, dependency among responses, and mul-
ticollinearity. Moreover, the type I error rate of the main parametric com-
petitor for small sample sizes is distant from α (conservative).

In conclusion, the power behavior of the proposed solution is better than
the Pillai multivariate parametric test even under multivariate normality and
homoscedastic error terms. Furthermore, the simulation results reveal that
the power of the Pillai-Trace test decreases much faster than the proposed
permutation solution in the presence of dependency among response vari-
ables.

In general, the power of the parametric Pillai’s-Trace test decreases as the
number of non-zero coefficients (i.e., the number of responses and relevant
predictors) increases and cannot be applied when the number of coefficients
is larger than the sample sizes. In contrast, the power of the proposed per-
mutation test increases as the number of dependent variables increases with
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fixed sample size.
In addition, as the number of non-zero coefficients (the percentage of true

alternative hypotheses) is large, the Fisher combination is more powerful than
Tippett and vice versa.

Finally, the case study shows that small firm size, percentage of owner-
ship, finance, power outage (hours), and ICT significantly affect the firms’
performance at 5% level of significance. Therefore, a feasible financial system
could be vital for facilitating the economic growth of Ethiopia by providing
loans or credit to private firms. Therefore, we suggest that the Ethiopian gov-
ernment should finish the Great Ethiopian Renaissance Dam (GERD) and
start generating hydroelectric power as soon as possible to promote rapid
economic development.
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CHAPTER 5

GENERAL CONCLUSION

Often, in empirical studies, the features of datasets have a complexity that
makes them difficult to manage and analyze, such as multivariate responses,
small sample sizes, unknown dependence structure of variables, non-normal
distributions, and big data characteristics. Therefore, the parametric ap-
proach may not be suitable, flexible, and robust. In general, the parametric
methods require stringent assumptions (often unrealistic) such that the in-
ferential results are not reliable. Hence, a nonparametric solution is often
preferable if not necessary. The thesis focuses on complex testing problems,
typical of empirical economic, social, or environmental sustainability stud-
ies. After a review of permutation methods, for tests of hypothesis, we take
into account two common but complex problems such as multivariate tests
for comparing groups in the presence of numeric variables and tests on the
significance of the regression coefficients (jointly considered) in a multivari-
ate linear regression analysis (regression MANOVA). Finally, through Monte
Carlo simulation, we propose solutions within the family of combined per-
mutation tests and deepen the investigation on their properties, especially
in particular conditions such as small sample sizes and a large number of
responses.

5.1 Final Remarks

According to the simulation studies concerning the location problem for nu-
meric variables with independent samples, CPT is unbiased, consistent, and
powerful for small sample sizes. The test is not only consistent in the classic
sense; when the number of responses diverges under the alternative hypoth-
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esis, keeping fixed the sample sizes, the power tends to one. We prove that
the most vital parameter determining the convergence to one of the power is
the percentage of true partial alternative hypotheses rather than the absolute
number of the true partial alternative hypothesis.

The comparative study of the different CPT provides evidence that the
test based on the Tippett combination is much more powerful until a given
percentage of the true partial alternative hypothesis. After this threshold,
that depends on some factors such as sample sizes, number of samples, and
others. The Fisher combination is preferable when this percentage is greater
than this threshold (even if the Tippett combination remains performant).
The Liptak combination is the most powerful only when 100% of the partial
alternative hypothesis is true, but the rejection rates of all the tests are
similar in this situation. This property makes CPT an essential solution for
tests of hypotheses for big data, with a large number of responses and (but
not only) small sample sizes.

For the regression MANOVA, the proposed permutation solution is ro-
bust and suitable for many predictors and (or) responses, competitive to the
parametric Pillai test, and valid with the parametric approach is not appli-
cable (sample size less than a number of variables). An essential property of
the proposed solution, based on the combination of the partial permutation
tests on the single coefficients, is that it appropriately considers the regres-
sion MANOVA as a multivariate test with possibility, in case significance of
the global test on the whole set of regression coefficients, of attributing the
global significance to some specific regression coefficients. This can be done
by considering adjusted partial p-values to control the family-wise error rate
and avoid the inflation of the type I error rate of the global test. Therefore,
linking the tests on the significance of the single regression coefficients to the
general MANOVA problem is more appropriate than considering the single
tests separately, as usually done in practice.
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[93] H. Scheffé, “Practical solutions of the behrens-fisher problem,” Journal
of the American Statistical Association, vol. 65, no. 332, pp. 1501–1508,
1970.

[94] M. J. Anderson, D. C. Walsh, K. Robert Clarke, R. N. Gorley, and
E. Guerra-Castro, “Some solutions to the multivariate behrens–fisher
problem for dissimilarity-based analyses,” Australian & New Zealand
Journal of Statistics, vol. 59, no. 1, pp. 57–79, 2017.

[95] B. F. Manly, Randomization, bootstrap and Monte Carlo methods in
biology. chapman and hall/CRC, 2018.

88



PhD Thesis A.Getnet Melak

[96] S. Hahn and L. Salmaso, “A comparison of different synchronized per-
mutation approaches to testing effects in two-level two-factor unbal-
anced anova designs,” Statistical Papers, vol. 58, no. 1, pp. 123–146,
2017.

[97] K. J. Berry, P. W. Mielke Jr, and H. W. Mielke, “The fisher-pitman
permutation test: an attractive alternative to the f test,” Psychological
reports, vol. 90, no. 2, pp. 495–502, 2002.

[98] P. R. Peres-Neto and D. A. Jackson, “How well do multivariate data
sets match? the advantages of a procrustean superimposition approach
over the mantel test,” Oecologia, vol. 129, no. 2, pp. 169–178, 2001.

[99] N. Mantel and R. S. Valand, “A technique of nonparametric multivari-
ate analysis,” Biometrics, pp. 547–558, 1970.

[100] H. Hotelling, “Relations between two sets of variates,” in Breakthroughs
in statistics. Springer, 1992, pp. 162–190.

[101] S. S. Wilks, “Certain generalizations in the analysis of variance,”
Biometrika, pp. 471–494, 1932.

[102] K. S. Pillai, “Some new test criteria in multivariate analysis,” The
Annals of Mathematical Statistics, pp. 117–121, 1955.

[103] S. Hahn, F. Konietschke, and L. Salmaso, “A comparison of efficient
permutation tests for unbalanced anova in two by two designs–and their
behavior under heteroscedasticity,” arXiv preprint arXiv:1309.7781,
2013.

[104] D. Basso, M. Chiarandini, and L. Salmaso, “Synchronized permutation
tests in replicated i× j designs,” Journal of Statistical Planning and
Inference, vol. 137, no. 8, pp. 2564–2578, 2007.

[105] R. Arboretti, R. Ceccato, L. Corain, F. Ronchi, and L. Salmaso, “Mul-
tivariate small sample tests for two-way designs with applications to
industrial statistics,” Statistical Papers, vol. 59, no. 4, pp. 1483–1503,
2018.

[106] L. Corain and L. Salmaso, “A critical review and a comparative study
on conditional permutation tests for two-way anova,” Communications
in Statistics—Simulation and Computation®, vol. 36, no. 4, pp. 791–
805, 2007.

89



PhD Thesis A.Getnet Melak

[107] D. I. Warton and H. M. Hudson, “A manova statistic is just as power-
ful as distance-based statistics, for multivariate abundances,” Ecology,
vol. 85, no. 3, pp. 858–874, 2004.

[108] E. Brunner and M. L. Puri, “Nonparametric methods in factorial de-
signs,” Statistical papers, vol. 42, no. 1, pp. 1–52, 2001.

[109] E. Chung and J. P. Romano, “Exact and asymptotically robust per-
mutation tests,” The Annals of Statistics, vol. 41, no. 2, pp. 484–507,
2013.

[110] G. Neuhaus, “Conditional rank tests for the two-sample problem under
random censorship,” The Annals of Statistics, pp. 1760–1779, 1993.

[111] B. H. McArdle and M. J. Anderson, “Fitting multivariate models to
community data: a comment on distance-based redundancy analysis,”
Ecology, vol. 82, no. 1, pp. 290–297, 2001.

[112] J. C. Gower and P. Legendre, “Metric and euclidean properties of dis-
similarity coefficients,” Journal of classification, vol. 3, no. 1, pp. 5–48,
1986.

[113] P. Legendre and M. J. Anderson, “Distance-based redundancy analysis:
testing multispecies responses in multifactorial ecological experiments,”
Ecological monographs, vol. 69, no. 1, pp. 1–24, 1999.

[114] R. Arboretti, S. Bonnini, L. Corain, and L. Salmaso, “A permutation
approach for ranking of multivariate populations,” Journal of Multi-
variate Analysis, vol. 132, pp. 39–57, 2014.

[115] S. Bonnini, “Testing for heterogeneity with categorical data: permu-
tation solution vs. bootstrap method,” Communications in Statistics-
Theory and Methods, vol. 43, no. 4, pp. 906–917, 2014.

[116] R. A. Giancristofaro and S. Bonnini, “Some new results on univari-
ate and multivariate permutation tests for ordinal categorical variables
under restricted alternatives,” Statistical Methods and Applications,
vol. 18, no. 2, pp. 221–236, 2009.

[117] ——, “Permutation tests for heterogeneity comparisons in presence
of categorical variables with application to university evaluation,”
Metodoloski Zvezki, vol. 4, no. 1, p. 21, 2007.

[118] R. A. Giancristofaro, “Multivariate permutation tests in genetics,” Sta-
tistica, vol. 62, no. 4, pp. 681–694, 2002.

90



PhD Thesis A.Getnet Melak

[119] P. H. Westfall, R. D. Tobias, and R. D. Wolfinger, Multiple comparisons
and multiple tests using SAS. SAS Institute, 2011.

[120] S. S. Gupta and S. Panchapakesan, Multiple decision procedures: theory
and methodology of selecting and ranking populations. SIAM, 2002.

[121] A. M. Mami, M. M. Mansour, and A. M. Jaber, “Scholars journal of
physics, mathematics and statistics,” 2020.

[122] N. E. Helwig and M. N. E. Helwig, “Package ‘npreg’,” 2019.

[123] J. M. Rodriguez-Poo and A. Soberón, “Nonparametric estimation of
fixed effects panel data varying coefficient models,” Journal of Multi-
variate Analysis, vol. 133, pp. 95–122, 2015.

[124] J. S. Racine, Nonparametric econometrics: A primer. Now Publishers
Inc, 2008, vol. 4.

[125] R. C. Team et al., “R: A language and environment for statistical
computing,” 2013.

[126] M. Sestelo, N. M. Villanueva, L. Meira-Machado, and J. Roca-
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Table A.1: The Power of tests for ρx = 0.3, ρϵ = 0, α = 0.05 and B=

[
1 0
0 1

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.584 0.987 1 1 1 1
CPT Tippett 0.57 0.978 0.999 1 1 1
Parametric Pillai 0.696 0.995 1 1 1 1

Table A.2: .The Power of test for ρx = 0.0, ρϵ = 0.8,α = 0.05 and B =

[
1 0
0 1

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.567 0.985 0.999 1 1 1
CPT Tippett 0.55 0.969 0.998 1 1 1
Parametric Pillai 0.882 0.999 1 1 1 1

Table A.3: The Power of test for ρx = 0.0, ρϵ = 0.3,α = 0.05 and B=

[
1 1
1 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.652 0.986 1 1 1 1
CPT Tippett 0.511 0.962 1 1 1 1
Parametric Pillai 0.71 0.997 1 1 1 1
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Table A.4: The Power of test for ρx = 0.0, ρϵ = 0.8, α = 0.05 and B=

[
1 1
1 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.613 0.992 1 1 1 1
CPT Tippett 0.535 0.968 1 1 1 1
Parametric Pillai 0.885 1 1 1 1 1

Table A.5: The Power of test for ρx = 0.0, ρϵ = 0.8,α = 0.05 and B=

[
1 0
0 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.256 0.675 0.682 0.699 0.708 0.728
CPT Tippett 0.385 0.838 0.978 0.998 1 1
Parametric Pillai 0.393 0.985 1 1 1 1

Table A.6: The Power of test for ρx = 0.3, ρϵ = 0 ,α = 0.05 and B =

[
1 0
1 0

]
Sample size 10 20 30 40 70 100
CPT Fisher 0.448 0.923 0.997 1 1 1
CPT Tippett 0.494 0.93 0.995 1 1 1
Prametric Pillai 0.326 0.973 1 1 1 1

Table A.7: The Power of test for large Y, large X, and n = 848, ρx = 0.3,
ρϵ = 0.3

Sample size 848
CPT Fisher 1
CPT Tippett 1
Parametric Pillai 1

Table A.8: The correlation between Firm performance variables

Variables Gs GE GLP
GS 1 0.2 0.5
GE 0.2 1 0.1
GLP 0.5 0.1 1
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Table A.9: Descriptive statistics for continuous variables

Variables Min 1stQ Median 3rdQ Max Mean SD
GS 0.00 0.00 9.42 24.55 66.73 18.68 23.21
GE 0.00 0.00 2.52 12.53 1000 17.65 73.29
GLP 0.00 0.00 20.09 21.96 683.33 20.08 44.31
Firm ownership 0.00 50.00 99.00 100.00 100.00 77.41 28.64
Power outage 0.00 6.00 12.00 15.00 365 14.97 18.88
trade 0.00 60.00 65.00 65.00 365 65.19 46.0.17
unskilled labour 0.00 0.00 30.00 30.00 5050.00 30.5 179.508
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Table A.10: Organizational Well-being variables

Code Statement
A.01 My working place is safe
A.02 I have been informed about the risks connected to my job
A.03 I am satisfied about the environment of my working place
A.04 I have suffered harassment
A.05 My dignity has been harmed at work
A.06 At work the smoking ban is respected
A.07 I usually take enough breaks
A.08 I can work hard
A.09 I am not confortable when I am working
A.10 The colleagues are not polite with me
A.11 I am allowed to take a break when I wish
A.12 I don’t have the chance to take enough breaks
B.10 At work I have suffered bullying
B.01 In the workplace I am respected in my trade union membership
B.02 In the workplace I am respected in my political orientation
B.03 In the workplace I am respected in my religious faith
B.04 My gender identity is an obstacle to my enhancement at work
B.05 In the workplace I am respected in my ethnicity and race
B.06 In the workplace I am respected in relation to my mother tongue
B.07 My age is an obstacle to my enhancement at work
B.08 In the workplace I am respected in relation to my mother tongue
C.01 The workload is assigned with equity
C.02 The responsabilities are assigned with equity
C.03 My salary is proportional to the commitment
C.04 The pay is differentiated according to quantity and quality of work
C.05 My manager makes work decisions impartially
D.01 At UNIFE the profession path employee is well defined and clear
D.02 At UNIFE the career opportunities depend on merit
D.03 UNIFE gives the possibility to develop skills and aptitudes of individuals
D.04 My current role is appropriate to my professional profile
D.05 I am satisfied with my professional path within UNIFE
E.01 I know what is expected of my work
E.02 I have the skills to do my job
E.03 I have the resources and tools to do my job
E.04 I have an adequate level of autonomy in my work
E.05 My work gives me a sense of personal fulfillment
E.06 I know how to do my job
E.07 I understand what is expected of me at work
E.08 I have freedom of choice in deciding how to do my job
E.09 I have unattainable deadlines
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Table A.11: Adjusted and raw p-values

variables Raw p-values Adjusted p-values
cons.ex.pricefood 0.97990201 1
cons.ex.nonfood.price 0.78092191 1
asset.price.sell.birr. 0.93850615 1
rooms n 0.50044996 0.9961
water home 1 1
tedu h 1 1
thealth h 1 1
tmarket h 1 1
twater h 1 1
electricity phone 0.22437756 0.8616
electricity hours 0. 0.83751625 1
electricity hours kdk 1 1
cook 0.50074993 0.9961
share facility 0.21947805 0.8297
tmarket kdk 1 1
acc int 0.50174983 0.9961
phone network 0.02649735 0.01747
share num 0.98190181 1
land access yn 0.22567743 0.8688
acc bank1 0.2229777 0.8616
acc bank2 1 1
beh risk bus 0.50074993 0.9961
satisf life 1 1
satisf prev 0.92320768 1
rate personal 0.72612739 1
rate personal future 0.0219978 0.01423
health satisfaction 0.49455054 0.9961
school satisfaction 0.14548545 0.6343
empl satisfaction 0.49555044 0.9961
safe violence 1 1
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