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Introduction



2

This part includes two chapters. In the first chapter, we provide the context for

thesis topic and give reasons why it is important and valuable to analyze textual

content. We also present the thesis structure at the end of Chapter 1. In Chapter 2,

we give a summary of each one of the works that make up this thesis.



Chapter 1

Context

Adidas is a large company with numerous customers. More than 34 million people

follow its latest products only on Instagram. As the satisfaction of these clients has

a direct impact on the company’s sales and consequently on its profits, it is crucial

for the company managers to gain knowledge of how the consumers feel about their

products. However, with millions of people talking and writing about various prod-

ucts, it is extremely difficult, if not impossible, to manually analyze the user opinions.

Similar to Adidas, there are thousands of businesses with many customers publishing

their opinions on the products and services that the companies deliver.

Apart from businesses, understanding how people perceive an event, a person,

a campaign, or any other collective matter can be of great interest for those who are

involved. With the numerous number of sources publishing data at a fast pace, there is

a need for automatic analysis of these data. In some situations, the automatic analysis

can also be used to reduce harm that might be caused by online communities. For

instance, automatic models can be built to identify the toxic content and slow down

the spread of misinformation.

Text analysis consists of a broad range of methods and algorithms that can be

used to tackle the automatic analysis of user-generated data in the textual format.

Sentiment Analysis (SA) in general, and Aspect-Based Sentiment Analysis (ABSA)

in particular, is a subarea of text analysis that deals with sentiment extraction from
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such raw data. In its simplest form, the user-generated sentences or comments can be

classified into two classes, namely positive and negative. While this classification is

fruitful to some extent, it ignores the neutral opinions and forces them to be one of

the two classes. In addition, it does not provide any information on what entity the

sentiments refer to. These problems are addressed by ABSA, which takes into ac-

count the neutral class. In addition, it contains another task called Aspect Extraction

(AE) which deals with the extraction of the entity towards which the extracted senti-

ment refers to. In some cases, there can be several categories to which the a sentence

may belong. For instance, we might want to identify whether a question is about a

location, a human being, a value, an entity etc. The number of categories can go up

to hundreds, which can be addressed by text classification.

In addition to ABSA and text classification, there are numerous other applications

of text analysis that we can adopt based on our needs. In this thesis, however, we

mostly deal with the two above-mentioned areas and propose some solutions that can

be advantageous.

1.1 Thesis Structure

The thesis is organized in four parts:

• Part I, the current one, provides the context for this thesis. In addition, it intro-

duces the problems we have addressed as well as our proposed solutions.

• Part II deals with the background knowledge and the main models that have

been used in this work. It explains convolutional and recurrent neural networks

as well as the Transformer and the BERT models. In addition, several data

augmentation methods are discussed. We also review the related works along

the way.

• Part III comprises the research findings as well as the proposed models for the

addressed problems.
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• Part IV gives a general conclusion of the thesis and discusses the future direc-

tions.



Chapter 2

Problems and Solutions

In this thesis, we tackle several different problems in text analysis. They range from

dealing with sequence labeling tasks, to text classification and data augmentation.

Additionally, we introduce an annotated dataset for the task of emotion analysis.

The contributions of this thesis is as follows:

• Integration of adversarial training technique with the BERT language model

for Aspect-Based Sentiment Analysis (ABSA)

• Two simple modules that are added on top of the BERT model and help im-

prove the performance of the system for ABSA

• A simple bag-of-words model for toxic language detection

• An easy to implement yet effective data augmentation method for text classifi-

cation tasks

• An annotated multimodal dataset extracted from social media for Aspect-Based

Emotion Analysis (ABEA)
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2.1 Adversarial Training for Aspect-Based Sentiment Anal-

ysis with BERT

Aspect-Based Sentiment Analysis (ABSA) studies the extraction of sentiments and

their targets. Collecting labeled data for this task in order to help neural networks

generalize better can be laborious and time-consuming. As an alternative, similar

data to the real-world examples can be created artificially through an adversarial pro-

cess which is carried out in the embedding space. Although these examples are not

real sentences, they have been shown to act as a regularization method which can

make neural networks more robust. In this work, we fine-tune the general purpose

BERT and domain specific post-trained BERT (BERT-PT) using adversarial train-

ing. After improving the results of post-trained BERT with different hyperparame-

ters, we propose a novel architecture called BERT Adversarial Training (BAT) [10]

to utilize adversarial training for the two major tasks of Aspect Extraction and As-

pect Sentiment Classification in sentiment analysis. The proposed model outperforms

the general BERT as well as the in-domain post-trained BERT in both tasks. To the

best of our knowledge, this is the first study on the application of adversarial train-

ing in ABSA. The code is publicly available on a GitHub repository at https:

//github.com/IMPLabUniPr/Adversarial-Training-for-ABSA

2.2 Improving BERT Performance for Aspect-Based Senti-

ment Analysis

In this work, we propose two simple modules called Parallel Aggregation and Hier-

archical Aggregation [11] to be utilized on top of BERT for two main ABSA tasks,

namely Aspect Extraction (AE) and Aspect Sentiment Classification (ASC). With the

proposed modules, we show that the intermediate layers of the BERT architecture can

be utilized for the enhancement of the model performance1.

1https://github.com/IMPLabUniPr/BERT-for-ABSA
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2.3 Toxic Spans Detection with CharacterBERT and Bag-

of-Words Model

With the ever-increasing availability of digital information, toxic content is also on

the rise. Therefore, the detection of this type of language is of paramount importance.

We tackle this problem utilizing a combination of a state-of-the-art pre-trained lan-

guage model (CharacterBERT) and a traditional bag-of-words technique. Since the

content is full of toxic words that have not been written according to their dictionary

spelling, attendance to individual characters is crucial. Therefore, we use Charac-

terBERT to extract features based on the word characters. It consists of a Charac-

terCNN module that learns character embeddings from the context. These are, then,

fed into the well-known BERT architecture. The bag-of-words method [12], on the

other hand, further improves upon that by making sure that some frequently used

toxic words get labeled accordingly. The code is available for further research and

reproduction of the results2.

2.4 AEDA: An Easier Data Augmentation Technique for

Text Classification

In this work, we propose AEDA (An Easier Data Augmentation) technique [6] to

help improve the performance on text classification tasks. AEDA includes only ran-

dom insertion of punctuation marks into the original text. This is an easier technique

to implement for data augmentation than EDA method [9] with which we compare

our results. In addition, it keeps the order of the words while changing their posi-

tions in the sentence leading to a better generalized performance. Furthermore, the

deletion operation in EDA can cause loss of information which, in turn, misleads the

network, whereas AEDA preserves all the input information. Following the baseline,

we perform experiments on five different datasets for text classification. We show that

using the AEDA-augmented data for training, the models show superior performance

2https://github.com/IMPLabUniPr/UniParma-at-semeval-2021-task-5
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compared to using the EDA-augmented data in all five datasets. The source code is

available for further study and reproduction of the results3.

2.5 Aspect-Based Emotion Analysis and Multimodal Coref-

erence: A Case Study of Customer Comments on Adi-

das Instagram Posts

While aspect-based sentiment analysis of user-generated content has received a lot

of attention in the past years, emotion detection at the aspect level has been rela-

tively unexplored. Moreover, given the rise of more visual content on social media

platforms, we want to meet the ever-growing share of multimodal content. In this pa-

per, we present a multimodal dataset for Aspect-Based Emotion Analysis (ABEA).

Additionally, we take the first steps in investigating the utility of multimodal coref-

erence resolution in an ABEA framework. The presented dataset consists of 4,900

comments on 175 images and is annotated with aspect and emotion categories and

the emotional dimensions of valence and arousal. Our preliminary experiments sug-

gest that ABEA does not benefit from multimodal coreference resolution, and that

aspect and emotion classification only requires textual information. However, when

more specific information about the aspects is desired, image recognition could be

essential.

3https://github.com/akkarimi/aeda_nlp
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This part consists of two chapters which provide an explanation of the baselines

and review some of the related works. In Chapter 3, we define aspect-based sentiment

analysis as well as aspect-based emotion analysis and describe a deep pre-trained

language model called BERT, along with its variants, that we have utilized in our

experiments. In Chapter 4, we go over some of the data augmentation techniques that

can be used for increasing the amount of training data.



Chapter 3

Aspect-Based Sentiment Analysis

and Deep Learning Methods

In this chapter, we go over the main background topics of the thesis, namely Aspect-

Based Sentiment Analysis (ABSA), Aspect-Based Emotion Analysis (ABEA), and

the pre-trained language models used to carry out the experiments. To tackle ABSA

and other tasks, we have made use of a pre-trained language called BERT and its vari-

ants. A key component of these models is the Transformer architecture that has paved

the way for faster pre-training of the model. Therefore, in this chapter, after explain-

ing the ABSA task and its subtasks, we give a brief explanation of the Transformer

module as well as the different flavors of the BERT model.

3.1 What Is ABSA?

In general, the sentiment analysis task deals with specifying whether a sentence is

positive, negative, or neutral. However, this task can extract little information from

the content. Questions such as What is the target of the extracted sentiment? or Which

category does an entity belong to? can not be answered by this general task. In or-

der to address this issue, a fine-grained task called Aspect-Based Sentiment Analy-

sis (ABSA) has been proposed [13, 14, 15]. ABSA was originally divided into four
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labeled “B” and the rest is assigned the label “I”.

3.1.2 Aspect Sentiment Classification (ASC)

Given one or multiple aspect terms, this task deals with the extraction of sentiments

towards those aspect terms. This is a three-class text classification with positive,

negative, and neutral classes. The ASC task can become more challenging if there

are several aspects in a given sequence since each of those aspects might have differ-

ent polarities. One simple solution which we utilize is to replicate the sequence in the

training data as many times as the number of its aspects and give each replica one of

the sentiments.

3.1.3 Aspect-Based Emotion Analysis (ABEA)

While being similar to ABSA, Aspect-Based Emotion Analysis (ABEA) aims at

deepening its scope by analyzing emotional dimension such as joy and anger in

addition to general multiclass classification of sequences. As a result, the purpose of

ABEA is to extract more information regarding different feelings of the writer. Each

one of the emotional dimensions can be seen as a separate classification task or all the

specified emotions can be classified at once. We can notice that this deeper analysis

of the content can be more informative for the interested parties. However, a problem

that comes up is the need for additional annotated datasets specifically designed for

this task. As one of our contributions, we have collected such a dataset and made it

available for further research.

3.2 The Transformer

The Transformer model [1] was originally proposed for machine translation. As a

result, it has an encoder-decoder architecture. However, for language modeling, the

encoder part of the Transformer would suffice. Therefore, the BERT architecture con-

sists of several Transformer encoders put together. The main motivation for the Trans-

former model was to do away with sequential models since due to their sequential
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Figure 3.2: Self-attention in Transformer [1]

characteristic, they can be time-consuming to train. On the contrary, the Transformer

model can be parallelized which, in turn, makes it faster to train.

3.2.1 Self-attention

Figure 3.3 (left), shows the components of the Transformer model. As we can see,

it consists of a multi-head attention and a feed-forward layer as well as addition and

normalization layers. The multi-head attention itself consists of multiple identical

modules called self-attention which is at the core of the Transformer model. Figure

3.2 depicts this module. In mathematical terms, this module calculates Formula 3.1:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (3.1)

where Q, K, V are called query, key, and value matrices, respectively, and consist

of vectors with the same names coming from the input sentence. In the denominator,

dk is a normalization factor and is equal to the dimension of the query and key values.

The self-attention module can be described as a mapping function that maps queries

and key− value pairs to the output. From Formula 3.1, we can see that it results in

a weighted sum over the values, meaning that parts of the sentence that carry more

related information to the task at hand are given a higher weight. As a result, the

Transformer learns more representative embeddings of the words in the vocabulary.
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and is then able to perform downstream tasks by fine-tuning with a small amount of

labeled data.

3.3.2 RoBERTa

The RoBERTa model [16] is a variant of the BERT model with an almost identical

architecture. However, the hyperparameters of BERT have been carefully tuned in

order to obtain a better performance. Some of these hyperparameters include training

the model for a longer period of time, using longer input sequences for training,

utilizing larger batch sizes, and making use of more data to train on.

3.3.3 Post-trained BERT (BERT-PT)

The pre-trained BERT model has been trained on Wikipedia articles and the Book-

Corpus dataset. As a result, it has learned some general knowledge about the lan-

guage. However, in order to have a superior performance when dealing with specific

domains such as restaurant and laptops reviews, it needs to be trained further on some

related data. Authors of [17] has post-trained this model on Amazon laptop reviews

[18] and the Yelp dataset challenge1. The result is the post-trained BERT (BERT-

PT) that outperforms the general-purpose BERT model on the laptop and restaurant

datasets from SemEval 2014 [13] and 2016 [15] competitions. In our models for

ABSA, we utilize the post-trained parameters to initialize the network and build on

that.

3.4 Convolutional Neural Networks

The utilized CNN is a simple network consisting of one layer of convolution which

is one-dimensional and one pooling layer. Assuming that there are m words in a

sentence and that each sentence is represented by a k-dimensional vector, the input

sentence will have an m× k representation. The word vectors used for initialization

have been trained by [19].

1https://www.yelp.com/dataset/challenge
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Figure 3.4: CNN proposed by [2] for sentence classification

Figure 3.4 depicts the architecture of the CNN model used for sentence classi-

fication. The convolution layer consists of several kernels with various sizes. The

kernel size indicates the number of words it takes into account when processing the

input sentence. In other words, a convolution of size n can capture the n-gram fea-

tures. This can be particularly helpful as the information in a sentence is contained in

chunks and considering words separately could cause information loss. In the utilized

CNN, three kernels of size 3, 4, 5 are used. After applying the various-sized convolu-

tions, the resulting outputs (feature maps) are concatenated. Then, a max-over-time

pooling operation [20] is applied to the resulted feature maps. In the end, to acquire

a probability distribution over the labels, a fully connected softmax layer is used.

3.4.1 Double Embedding CNN

An example of the CNN model used for ABSA is the Double Embedding CNN model

[3]. Similar to BERT-PT, its authors use general-purpose and domain-specific embed-

dings in order to gain a better performance of aspect extraction task. However, instead

of using the BERT model, they utilize the word vectors introduced by [21] to ob-

tain the general word embeddings. Then, using the fastText library [22], they obtain

domain-specific word embeddings from in-domain laptop and restaurant datasets.









Chapter 4

Data Augmentation Methods

In this chapter, we review some of the data augmentation techniques, including our

proposed method called AEDA.

Data augmentation has long been practiced to increase the amount of training data

in many areas of machine learning such as computer vision and NLP [25, 26, 27]. It

refers to the manipulation of the training data in order to create new samples that are

similar to the real ones with only a small difference. The goal is to introduce distorted

samples so that the network can become more robust to a variety of changes in the

input sequence. As a result, data augmentation is expected to improve generalization

and the performance on the unseen data. While data augmentation can help the model,

the cost of its process needs to be taken into account. Some methods require large

models whereas others need extra resources.

4.1 EDA: Easy Data Augmentation Techniques

The EDA method [9] is one of the easiest data augmentation techniques that we can

use. Given the input sequence, it augments it using four simple operations, namely

Synonym Replacement (SR), Random Insertion (RI), Random Deletion (RD), and

Random Swap (RS). Some of the examples created by this method can be seen in

Table 4.1.
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Operation Sentence

None A sad, superior human comedy played out on the back roads of life.

SR A lamentable, superior human comedy played out on the backward

road of life.

RI A sad, superior human comedy played out on funniness the back

roads of life.

RS A sad, superior human comedy played out on roads back the of life.

RD A sad, superior human out on the roads of life.

Table 4.1: EDA [9] examples

4.2 Data Augmentation Using Back-translation

Back-translation [28] is a data augmentation method that leverages machine transla-

tion systems. In this method, we can translate the training data into one or several

other languages and then back-translate them to the source language. As a conse-

quence, this method not only might substitute words with their synonyms but also

it can change the grammatical structure of the input sequence. Another advantage

of this technique is that we have many options to choose from as the middle lan-

guage. This can mean that for a given training sample, we can have several augmented

samples. However, the disadvantage of back-translation is that it requires a machine

translation system. In addition, the quality of the translated sentences depends on the

quality of the translation system which can be poor for low-resource languages.

4.3 Mixup Data Augmentation and Its Variants

The mixup data augmentation method [29] takes two random examples from the

training set in order to create a linear and convex combination of them. With this

method, both input and its label go through the same transformation. The input is

a raw vector and the label is a one-hot vector. If we consider xi, x j to be raw input
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Figure 4.1: Mixup Transformer [5]

vectors and yi, y j their respective labels, then the new data point is created by:

x̃ = λxi +(1−λ )x j

ỹ = λyi +(1−λ )y j

(4.1)

where λ ∈ [0,1]. It was shown that this method can improve the performance as

well as the robustness of the network. Based on this technique, several other variants

have been proposed, among which mixup Transformer and HypMix can be men-

tioned.

4.3.1 Mixup Transformer

While the original mixup method uses raw input vectors to create new samples,

Mixup Transformer uses the Transformer encoder to obtain vector representations

of a pair of sentences. These representations are then linearly interpolated to create a

mixed representation. Correspondingly, their labels are also interpolated. Figure 4.1

shows a diagram of this method. While this method shows improvement over the

BERTbase model, it is still expensive to implement since it requires the Transformer

encoder.

4.3.2 HypMix: Hyperbolic Interpolative Data Augmentation

The HypMix method [30] introduces a similar interpolation technique as the mixup

method with the difference that it uses hyperbolic space instead of the Euclidean
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Chancellor Gordon Brown has sought to quell speculation over who should run

the Labour Party and turned the attack on the op(B)position Conservatives. 75%

World 94% Business [31]

seoul allies calm on nuclear (atomic) shock. south korea’s key allies play down a

shock admission its scientists experimented to enrich uranium. 74.25% Sci/Tech

86.66% World [32]

Table 4.2: Examples of white-box and black-box attacks. The adversarial attacks

replace the green letter (word) in the original sentence with the red letter (word).

Respectively, the predictions of the original and the adversarial examples with the

network’s confidence are in green and red.

space to transform the training samples. Due to its nature, HypMix can address the

geometric complexities of hidden space better than its counterparts in the Euclidean

space. Similarly to the mixup Transformer, its disadvantage is that a language model

is required to carry out the augmentation.

4.4 Adversarial Examples

While neural networks make mistakes in their predictions, we can also make them do

this deliberately. In other words, we can target the shortcomings of neural works with

various methods that modify the input sequences to fool them. In computer vision, for

instance, this is done by modifying the pixels of an image in a way that the changes

are not visible to the human eye but the network misclassifies with a high certainty.

The newly created artificial examples that fool the neural network model are called

adversarial examples (aka attacks).

In text processing, there are two main categories for creating adversarial exam-

ples. One is called black-box attacks which consists of modifying the raw input se-

quence directly. For instance, we can randomly select some letters and change their

case [31] or we can substitute words with similar words [32]. Table 4.2 shows two

examples of black-box attacks. Another set of methods is called white-box attacks
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Figure 4.2: Punctuation marks used for AEDA [6]

where we can access the network from inside and modify the word embeddings. For

instance, FGSM [33] perturbs the original sequence by adding the gradient of the loss

function to it.

While the adversarial examples are designed to mislead the network, we can con-

sider them as augmented data and add them to the training data. This will possibly

have the same effect as the other data augmentation methods, which is to make the

model perform more robustly and show better generalization.

4.5 AEDA: An Easier Data Augmentation

The above-mentioned augmentation methods require an extra resource in order to be

implemented. For instance, while EDA is simple and pretty straightforward to imple-

ment, it still needs a dictionary of synonyms. Similarly, the mixup methods need a

language model to produce the embeddings as the inputs to the augmentation method.

To further simplify data augmentation, we propose AEDA which does not require any

resources, be it another language model or additional resources such as dictionaries

while being effective in the generalization of the network. It only includes random in-

sertion of punctuation marks which can be seen in Figure 4.2. The insertion of these

marks changes the position of the words in a sequence forcing the network not to

memorize the training data. Therefore, it improves the model performance especially

where there is a small amount of data.
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This part consists of five chapters. In Chapter 5, we explain our proposed model

called BAT that trains the BERT model in adversarial manner to address the Aspect-

Based Sentiment Analysis (ABSA) task. In Chapter 6, we give a description of the

two modules that are added on top of BERT to tackle the ABSA task. In Chapter 7,

we describe our bag-of-words model combined with CharacterBERT for toxic lan-

guage detection. In Chapter 8, the explanation of our novel data augmentation method

called AEDA is given. Finally, in Chapter 9, a description of our annotated dataset

for aspect-based emotion analysis is provided.



Chapter 5

Adversarial Training for

Aspect-Based Sentiment Analysis

with BERT

5.1 Introduction

Understanding what people are talking about and how they feel about it is valuable

especially for industries which need to know the customers’ opinions on their prod-

ucts. Aspect-Based Sentiment Analysis (ABSA) is a branch of sentiment analysis

which deals with extracting the opinion targets (aspects) as well as the sentiment

expressed towards them. For instance, in the sentence the spaghetti was out of this

world, a positive sentiment is mentioned towards the target which is spaghetti. Per-

forming these tasks requires a deep understanding of the language. Traditional ma-

chine learning methods such as Support Vector Machines (SVM) [34], Naive Bayes

[35], Decision Trees [36], Maximum Entropy [37] have long been practiced to ac-

quire such knowledge. However, in recent years due to the abundance of available

data and computational power, deep learning methods such as Convolutional Neu-

ral Nets (CNNs) [38, 2, 39], Recurrent Neural Networks (RNNs) [40, 41, 42], and

the Transformer [1] have outperformed the traditional machine learning techniques



5.1. Introduction 30

in various tasks of sentiment analysis. Bidirectional Encoder Representations from

Transformers (BERT) [7] is a deep and powerful language model which uses the en-

coder of the Transformer in a self-supervised manner to learn the language model. It

has been shown to result in state-of-the-art performances on the GLUE benchmark

[43] including text classification. In [17], it is shown that adding domain-specific

information to this model can enhance its performance in ABSA. Using their post-

trained BERT (BERT-PT), we add adversarial examples to further improve BERT’s

performance on Aspect Extraction (AE) and Aspect Sentiment Classification (ASC)

which are two major tasks in ABSA. A brief overview of these two sub-tasks is given

in Section 5.3.

Adversarial examples are a way of fooling a neural network to behave incorrectly

[44]. They are created by applying small perturbations to the original inputs. In the

case of images, the perturbations can be invisible to human eye, but can cause neural

networks to output a completely different response from the true one. Since neural

nets make mistakes on these examples, introducing them to the network during the

training can improve their performance. This is called adversarial training which acts

as a regularizer to help the network generalize better [33]. Due to the discrete nature

of text, it is not feasible to produce perturbed examples from the original inputs. As

a workaround, authors of [45] apply this technique to the word embedding space for

text classification. Inspired by them and building on the work of [17], we experiment

with adversarial training for ABSA.

Our main contribution in this work is the proposal of a novel architecture to ap-

ply adversarial training in the fine-tuning process of BERT language model for aspect

extraction and aspect sentiment classification tasks in sentiment analysis. Our experi-

ments show that the proposed model outperforms the performances of general BERT

as well as domain specific BERT-PT. As a minor contribution we demonstrate that

the number of training epochs and dropout values can have significant impacts on the

model’s performance.
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5.2 Related Work

Since the early works on ABSA [46, 47, 48], several methods have been put forward

to address the problem. In this section, we review some of the works which have

utilized deep learning techniques.

In [49], the authors design a seven-layer CNN architecture and make use of both

part of speech tagging and word embeddings as features. In [3], convolutional neu-

ral networks and domain-specific data are utilized for AE and ASC. They show that

adding the word embeddings produced from the domain-specific data to the gen-

eral purpose embeddings semantically enriches them regarding the task at hand. A

recent work shows that using in-domain data can enhance the performance of the

state-of-the-art language model (BERT) [17]. Similarly, BERT is fine-tuned by [50]

on domain-specific data for ASC. They perform a two-stage process, first of which

is self-supervised in-domain fine-tuning, followed by supervised task-specific fine-

tuning. Working on the same task, authors of [51] apply graph convolutional networks

taking into consideration the assumption that in sentences with multiple aspects, the

sentiment about one aspect can help determine the sentiment of another aspect.

Since its introduction by [52], attention mechanism has become widely popular

in many natural language processing tasks including sentiment analysis. In [4], the

authors design a network to transfer aspect knowledge learned from a coarse-grained

network which performs aspect category sentiment classification to a fine-grained

one performing aspect-level sentiment classification. This is carried out using an at-

tention mechanism (Coarse2Fine) which contains an autoencoder that emphasizes

the aspect term by learning its representation from the category embedding. Similar

to the Transformer, which does away with RNNs and CNNs and use only attention

for translation, in [53], an attention model is designed for ASC with the difference

that they use lighter (weight-wise) multi-head attentions for context and target word

modeling. Using bidirectional LSTMs [24], authors of [54] propose a model that

takes into account the history of aspects with an attention block called Truncated

History Attention (THA). To capture the opinion summary, they also introduce Se-

lective Transformation Network (STN) which highlights more important information
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with respect to a given aspect. In [55], aspect extraction task is approached in an un-

supervised way. Functioning the same way as an autoencoder, their model has been

designed to reconstruct sentence embeddings in which aspect-related words are given

higher weights through attention mechanism.

While adversarial training has been utilized for sentence classification [45, 56],

its effects have not been studied in ABSA. Therefore, in this work, we study the

impact of applying adversarial training to the powerful BERT language model.

5.3 Aspect-Based Sentiment Analysis Tasks

In this section, we give a brief description of two major tasks in ABSA which are

called Aspect Extraction (AE) and Aspect Sentiment Classification (ASC). These

tasks were sub-tasks of task 4 in SemEval 2014 contest [13], and since then they

have been the focus of attention in many studies.

Aspect Extraction. Given a collection of review sentences, the goal is to extract

all the terms, such as waiter, food, and price in the case of restaurants, which point to

aspects of a larger entity [13]. In order to perform this task, it is usually modeled as

a sequence labeling task, where each word of the input is labeled as one of the three

letters in {B, I,O}. Label B stands for Beginning of the aspect terms, I for Inside

(aspect terms’ continuation), and O for Outside or non-aspect terms. The reason for

Inside label is that sometimes aspects can contain two or more words and the system

has to return all of them as the aspect. In order for a sequence (s) of n words to be fed

into the BERT architecture, they are represented as

[CLS],w1,w2, ...,wn, [SEP]

where the [CLS] token is an indicator of the beginning of the sequence as well as

its sentiment when performing sentiment classification. The [SEP] token is a token

to separate a sequence from the subsequent one. Finally, wi are the words of the

sequence. After they go through the BERT model, for each item of the sequence,

a vector representation of the size 768, size of BERT’s hidden layers, is computed.
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Figure 5.1: BERT word embedding layer [7]

Then, we apply a fully connected layer to classify each word vector as one of the

three labels.

Aspect Sentiment Classification. Given the aspects with the review sentence,

the aim in ASC is to classify the sentiment towards each aspect as positive, negative,

neutral. In this task, the input format for the BERT model is the same as in AE.

The [CLS] token in the input representation (Figure 5.1) of the BERT is where the

sentiment is encoded. After the input goes through the network, in the last layer

the sentiment is extracted from this token by applying a fully connected layer to its

encoding.

Input sequences can have multiple aspects, meaning that a sequence can contain

multiple targets with a specific sentiment polarity while BERT architecture has one

element which is responsible for sentiment representation of each input. This problem

is addressed in the preprocessing step when preparing the input data for the model.

Sequences with multiple aspects are repeated as many times as the number of aspects

they contain, each time with one of their specific aspect sentiments.

5.4 Model

Our model is depicted in Figure 5.2. As can be seen, we create adversarial examples

from BERT embeddings using the gradient of the loss. Then, we feed the perturbed

examples to the BERT encoder to calculate the adversarial loss. In the end, the back-
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Figure 5.2: The proposed architecture: BERT Adversarial Training (BAT)

propagation algorithm is applied to the sum of both losses.

BERT Word Embedding Layer. The calculation of input embeddings in BERT

is carried out using three different embeddings. As shown in Figure 5.1, it is com-

puted by summing over token, segment, and position embeddings. Token embedding

is the vector representation of each token in the vocabulary which is achieved using

WordPiece embeddings [57]. Position embeddings are used to preserve the informa-

tion about the position of the words in the sentence. Segment embeddings are used

in order to distinguish between sentences if there is more than one (e.g. for question

answering task there are two). Words belonging to one sentence are labeled the same.

BERT Encoder. BERT encoder is constructed by making use of Transformer

blocks from the Transformer model. For BERT-BASE, these blocks are used in 12

layers, each of which consists of 12 multi-head attention blocks. In order to make the

model aware of both previous and future contexts, BERT uses the Masked Language

Model (MLM) where 15% of the input sentence is masked for prediction.

Fully Connected Layer and Loss Function. The job of the fully connected layer

in the architecture is to classify the output embeddings of BERT encoder into senti-

ment classes. Therefore, its size is 768×3 where the first element is the hidden layers’

size of BERT encoder and the second element is the number of classes. For the loss

function, we use cross entropy loss implemented in Pytorch.
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Adversarial Examples. Adversarial examples are created to attack a neural net-

work to make erroneous predictions. There are two main types of adversarial attacks

which are called white-box and black-box. White-box attacks [31] have access to the

model parameters, while black-box attacks [58] work only on the input and output. In

this work, we utilize a white-box method working on the embedding level. In order

to create adversarial examples, we utilize the formula used by [45], where the per-

turbations are created using gradient of the loss function. Assuming p(y|x;θ) is the

probability of label y given the input x and the model parameters θ , in order to find

the adversarial examples the following minimization problem should be solved:

radv = arg min
r,||r||≤ε

log p(y|x+ r; θ̂) (5.1)

where r denotes the perturbations on the input and θ̂ is a constant copy of θ in order

not to allow the gradients to propagate in the process of constructing the artificial

examples. Solving the above minimization problem means that we are searching for

the worst perturbations while trying to minimize the loss of the model. An approx-

imate solution for Equation 5.1 is found by linearizing log p(y|x;θ) around x [33].

Therefore, the following perturbations are added to the input embeddings to create

new adversarial sentences in the embedding space.

radv =−ε
g

||g||2
(5.2)

where

g = ∇x log p(y|x; θ̂) (5.3)

and ε is the size of the perturbations. In order to find values which outperform the

original results, we carried out experiments with five values for epsilon whose re-

sults are presented in Figure 5.4 and discussed in Section 5.6. After the adversarial

examples go through the network, their loss is calculated as follows:

− log p(y|x+ radv;θ)

Then, this loss is added to the loss of the real examples in order to compute the

model’s overall loss.
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Train Test

Dataset S A S A

Laptop 3045 2358 800 654

Rest16 2000 1743 676 622

Table 5.1: Laptop and restaurant datasets for AE. S: Sentences; A: Aspects; Rest16:

Restaurant dataset from SemEval 2016

Train Test

Dataset Pos Neg Neu Pos Neg Neu

Laptop 987 866 460 341 128 169

Rest14 2164 805 633 728 196 196

Table 5.2: Laptop and restaurant datasets for ASC. Pos, Neg, Neu: Number of posi-

tive, negative, and neutral sentiments, respectively; Rest14: Restaurant dataset from

SemEval 2014

5.5 Experimental Setup

Datasets. In order for the results to be consistent with previous works, we experi-

mented with the benchmark datasets from SemEval 2014 task 4 [13] and SemEval

2016 task 5 [15] competitions. The laptop dataset is taken from SemEval 2014 and

is used for both AE and ASC tasks. However, the restaurant dataset for AE is a Se-

mEval 2014 dataset while for ASC is a SemEval 2016 dataset. The reason for the

difference is to be consistent with BERT-PT. The summary of these datasets can be

seen in Tables 5.1 and 5.2.

Implementation details. We performed all our experiments on a GPU (GeForce

RTX 2070) with 8 GB of memory. Except for the code specific to our model, we

adapted the codebase utilized by BERT-PT. For the Subsection A of Section 5.6, to

carry out the experiments of BERT-PT model, batches of 32 were specified. However,
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for our proposed model, we reduced the batch size to 16 in order for the GPU to be

able to store the network. For Subsection B, we used batches of 16 for all them. For

optimization, the Adam optimizer with a learning rate of 3e−5 was used. From Se-

mEval’s training data, 150 examples were chosen for the validation and the remaining

was used for training the model.

Implementing the creation of adversarial examples for ASC task was slightly dif-

ferent from doing it for AE task. During our experiments, we realized that modifying

all the elements of input vectors does not improve the results. Therefore, we decided

not to modify the vector for the [CLS] token. Since the [CLS] token is responsible for

the class label in the output, it seems reasonable not to change it in the first place

and only perform the modification on the word vectors of the input sentence. In other

words, regarding the fact that the [CLS] token is the class label, to create an adversar-

ial example, we should only change the words of the sentence, not the label.

Evaluation. To evaluate the performance of the model, we utilized the official

script of the SemEval contest for AE. These results are reported as F1 scores. For

ASC, to be consistent with BERT-PT, we utilized their script whose results are re-

ported in Accuracy and Macro-F1 (MF1) measures. Macro-F1 is the average of F1

score for each class and it is used to deal with the issue of unbalanced classes.

5.6 Experiments

5.6.1 Hyperparameters and adversarial training

In order to carry out the experiments, first we initialize our model with post-trained

BERT which has been trained using uncased version of BERT-BASE on laptop and

restaurant data. We attempt to discover what number of training epochs and which

dropout probability yield the best performance for BERT-PT. Since one and two train-

ing epochs result in very low scores, results of 3 to 10 training epochs have been

depicted. For AE, we experiment with 10 different dropout values in the fully con-

nected (linear) layer. The results can be seen in Figure 5.3 for laptop and restaurant

datasets. To be consistent with the previous work and because of the results having

high variance, each point in the figure (F1 score) is the average of 9 runs. In the end,
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sets as for both domains the last 150 examples of the SemEval training set were

selected. Therefore, it can be said that the examples in the validation and test sets for

laptop have more similar patterns than those of restaurant dataset. To be consistent

with BERT-PT, we performed the same selection.

In order to compare the effect of adversarial examples on the performance of the

model, we choose the best dropout for each number of epochs and experiment with

five different values for epsilon (perturbation size). The results for laptop and restau-

rant can be seen in Figure 5.4. As is noticeable, in terms of scores, they follow the

same pattern as the original ones. Although most of the epsilon values improve the

results, it can be seen in Figure 5.4 that not all of them will enhance the model’s

performance. In the case of ε = 5.0 for AE, while it boosts the performance in the

restaurant domain for most of the training epochs, it negatively affects the perfor-

mance in the laptop domain. The reason for this could be the creation of adversarial

examples which are not similar to the original ones but are labeled the same. In other

words, the new examples greatly differ from the original ones but are fed to the net

as being similar, leading to the network’s poorer performance.

Observing, from AE task, that higher dropouts perform poorly, we experiment

with the 5 lower values for ASC task in BERT-PT experiments. In addition, for BAT

experiments, two different values {0.01,0.1} for epsilon are tested to make them

more diverse. The results are depicted in Figures 5.5 and 5.6 for BERT-PT and BAT,

respectively. While in AE, towards higher number of training epochs, there is an

upward trend for restaurant and a downward trend for laptop, in ASC a clear pattern is

not observed. Regarding the dropout, lower values (0.1 for laptop, 0.2 for restaurant)

yield the best results for BERT-PT in AE task, but in ASC a dropout probability of

0.4 results in top performance in both domains. The top performing epsilon value for

both domains in ASC, as can be seen in Figure 5.6, is 5.0 which is the same as the

best value for restaurant domain in AE task. This is different from the top performing

ε = 0.2 for laptop in AE task which was mentioned above.

From the experiments on BERT-PT hyperparameters, we extract the best results

of BERT-PT and compare them with those of BAT. These are summarized in Tables

5.3 and 5.4 for aspect extraction and aspect sentiment classification, respectively. The





5.6. Experiments 41

Domain Laptop Rest16

Methods F1 F1

THA/STN [54] 79.52 73.61

DE-CNN [3] 81.59 74.37

BERT [17] 79.28 74.10

BERT-PT [17] 84.26 77.97

BERT-PT (best) 84.88 80.69

BAT (Ours) 85.57 81.50

Table 5.3: Comparison of best results for Aspect Extraction

Domain Laptop Rest14

Methods Acc MF1 Acc MF1

MGAN [54] 76.21 71.42 81.49 71.48

BERT [17] 75.29 71.91 81.54 71.94

BERT-PT [17] 78.07 75.08 84.95 76.96

BERT-PT (best) 78.89 75.89 85.92 79.12

BAT (Ours) 79.35 76.5 86.03 79.24

Table 5.4: Comparison of best results for Aspect sentiment classification. Acc: Accu-

racy; MF1: Macro-F1

though at different rates. While for laptop there are similar improvements in both

tasks (+0.69 in AE, +0.61 in ASC), for restaurant we observe different enhancements

(+0.81 in AE, +0.12 in ASC). This could be attributed to the fact that these are two

different datasets whereas the laptop dataset is the same for both tasks. Furthermore,

the perturbation size plays an important role in performance of the system. By choos-

ing the appropriate ones, as was shown, better results are achieved.
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Aspect Extraction (AE) Aspect Sentiment Classification (ASC)

Domain Laptop Rest16 Laptop Rest14

Methods F1 F1 Acc MF1 Acc MF1

BERT-BASE 81.19 75.54 75.46 71.88 80.73 70.82

BAT (ε = 0.01) 81.93 (+0.74) 76.16 (+0.62) 75.34 (-0.12) 71.86 (-0.02) 81.50 (+0.77) 72.25 (+1.43)

BAT (ε = 0.1) 81.33 (+0.14) 75.87 (+0.33) 75.88 (+0.54) 72.21 (+0.33) 80.77 (+0.04) 70.94 (+0.12)

BAT (ε = 1.0) 81.55 (+0.36) 76.37 (+0.83) 74.89 (-0.45) 71.30 (-0.58) 81.20 (+0.47) 71.84 (+1.02)

BAT (ε = 2.0) 81.58 (+0.39) 76.38 (+0.84) 75.71 (+0.25) 71.99 (+0.11) 82.27 (+1.54) 73.70 (+2.88)

BAT (ε = 5.0) 80.34 (-0.85) 76.26 (+0.72) 74.16 (-1.3) 70.89 (-0.99) 80.34 (-0.39) 71.04 (+0.22)

Table 5.5: Comparison of BAT results using BERT-BASE initialization

Aspect Extraction (AE) Aspect Sentiment Classification (ASC)

Domain Laptop Rest16 Laptop Rest14

Methods F1 F1 Acc MF1 Acc MF1

BERT-PT 84.8 79.22 77.53 74.72 84.54 76.57

BAT (ε = 0.01) 85.25 (+0.45) 80.15 (+0.93) 77.99 (+0.46) 74.96 (+0.24) 84.80 (+0.26) 77.12 (+0.55)

BAT (ε = 0.1) 85.17 (+0.37) 79.42 (+0.2) 77.99 (+0.46) 74.98 (+0.26) 84.65 (+0.11) 76.94 (+0.37)

BAT (ε = 1.0) 85.06 (+0.26) 79.80 (+0.58) 78.18 (+0.65) 75.31 (+0.59) 85.29 (+0.75) 77.86 (+1.29)

BAT (ε = 2.0) 84.69 (-0.11) 79.89 (+0.67) 78.42 (+0.89) 75.32 (+0.6) 85.21 (+0.67) 77.75 (+1.18)

BAT (ε = 5.0) 83.76 (-1.04) 80.2 (+0.98) 76.80 (-0.73) 73.72 (-1.0) 85.60 (+1.06) 78.40 (+1.83)

Table 5.6: Comparison of BAT results using BERT-PT initialization

5.6.2 Perturbation size in adversarial training

In order to discover the effect of adversarial training on the performance of the

model, first we fix the number of training epochs at 4 and dropout value at 0.1 as

our base configuration. Then we apply the BAT model with five perturbation sizes

of {0.01,0.1,1.0,2.0,5.0} to both BERT-BASE and BERT-PT with the same con-

figurations. The results can be found in Tables 5.5 and 5.6, respectively. Results are

reported from our implementation. As can be seen from the results, in the majority

of cases for all the epsilon values, the performance over the base models improves.

However, in a few cases and for the same reason which was mentioned above, it falls

bellow the baseline. Although the BAT model in the search for the worst case adver-

sarial examples opts for larger values leading to top performances in most cases, it
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runs the risk of breaking out of the safe zone and produces examples which are not

similar to (or in the vicinity of) original ones. This causes the model to sometimes

perform poorly with large epsilon values. On the other hand, the smallest values in

general enhance the performance of both baseline models more consistently, though

with less significant amounts.

5.7 Conclusion

In this work, we introduced the application of adversarial training in Aspect-Based

Sentiment Analysis. The experiments with our proposed architecture show that the

performance of the general purpose BERT and in-domain post-trained BERT on as-

pect extraction and aspect sentiment classification tasks are improved by utilizing

adversarial examples during the network training. As future work, other white-box

adversarial attacks as well as black-box ones can be utilized for a comparison of

adversarial training methods for various sentiment analysis tasks. Furthermore, the

impact of adversarial training in the other tasks in ABSA namely Aspect Category

Detection and Aspect Category Polarity could be investigated.



Chapter 6

Improving BERT Performance for

Aspect-Based Sentiment Analysis

6.1 Introduction

In an industry setting, it is extremely important to have a valid conception of how con-

sumers perceive the products. Nowadays, they communicate their perception through

their comments on the products, using mostly social networks. They might have pos-

itive opinions which can lead to the success of a business or negative ones possibly

leading to its demise. Due to the abundance of these views in many areas, their anal-

ysis is a time-consuming and labor-intensive task which is why a variety of machine

learning techniques such as Support Vector Machines (SVM) [59, 34, 60], Maximum

Entropy [61, 37], Naive Bayes [62, 35, 63], and Decision Trees [64, 36] have been

proposed to perform opinion mining.

In recent years, Deep Learning (DL) techniques have been widely utilized due to

the increase in computational power and the huge amount of freely available data on

the Web [39, 40, 41]. One of the areas on which these techniques have had a great

impact is Natural Language Processing (NLP) where modeling (i.e. understanding)

the language plays a crucial role. BERT [7] is a state-of-the-art model of this kind

which has become widely utilized in many NLP tasks [65, 66] as well as in other
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fields [67, 68]. It has been trained on a large corpus of Wikipedia documents and

books in order to learn the language syntax and semantics from the context. The

main component of its architecture is called the Transformer [1] block consisting of

attention heads. These heads have been designed to pay particular attention to parts

of the input sentences that correspond to a particular given task [69]. In this work, we

utilize BERT for Aspect-Based Sentiment Analysis (ABSA) tasks.

Our main contribution is the proposal of two simple modules that can help im-

prove the performance of the BERT model. In our models we opt for Conditional

Random Fields (CRFs) for the sequence labeling task which yield better results. In

addition, our experiments show that training BERT for more number of epochs does

not cause the model to overfit. However, after a certain number of training epochs,

the learning seems to stop.

6.2 Related Work

Recently, there has been a large body of work which utilizes the BERT model for

various tasks in NLP in general such as text classification [70], question answering

[71], summarization [72] and, in particular, ABSA tasks [73].

Using Graph Convolutional Networks (GCNs), authors of [51] take into account

sentiment dependencies in a sequence. In other words, they show that when there

are multiple aspects in a sequence, the sentiment of one of them can affect that of

the other one. Making use of this information can increase the performance of the

model. Some studies convert the Aspect Extraction (AE) task into a sentence-pair

classification task. For instance, in [74], auxiliary sentences are constructed using the

aspect terms of a sequence. Then, utilizing both sequences, they fine-tune BERT on

this specific task.

Word and sentence level representations of a model can also be enriched using

domain-specific data. This is shown in [17] by post-training the BERT model, which

they call BERT-PT, on additional restaurant and laptop data. In our experiments, we

use their pre-trained model for the initialization of our models. Due to the particular

architecture of the BERT model, extra modules can be attached on top of it. The
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authors of [4] add different layers such as an RNN and a CRF layer to perform ABSA

in an end-to-end fashion. In our work, we use the same layer modules from the BERT

architecture and employ the hidden layers for prediction as well.

6.3 Aspect-Based Sentiment Analysis Tasks

Two of the main tasks in ABSA are Aspect Extraction (AE) and Aspect Sentiment

Classification (ASC). While the latter deals with the semantics of a sentence as a

whole, the former is concerned with finding which word that sentiment refers to. We

briefly describe them in this section.

6.3.1 Aspect Extraction

In AE, the goal is to extract a specific aspect of a product towards which some type

of sentiment is expressed in a review. For instance, in the sentence, “The laptop has

a good battery.”, the word battery is the aspect which is extracted. Sometimes, the

aspect words can be multiple in which case all of them need to be labeled accordingly.

This task can be seen as a sequence labeling task, where the words are assigned

a label from the set of three letters namely {B, I, O}. Each word in the sequence

can be the beginning word of aspect terms (B), among the aspect terms (I), or not

an aspect term (O). The classification of each word into one of these three classes,

is accomplished using a fully connected layer on top of the BERT architecture and

applying the Softmax function.

6.3.2 Aspect Sentiment Classification

In this task, the goal is to extract the sentiment expressed in a review by the con-

sumer. Given a sequence, one of the three classes of Positive, Negative, and Neutral

is extracted as the class of that sequence. The representation for this element is em-

bodied in the architecture of the BERT model. For each sequence as input, there are

two extra tokens that are used by the BERT model:

[CLS],w1,w2, ...,wn, [SEP]
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where wi are the sequence words and [CLS] and [SEP] tokens are concatenated to

the sentence in the input stage. While the [CLS] token is there to store the sentiment

representation of the sentence, the [SEP] token is used to separate input sequences in

case there are more than one (e.g. in a question answering task). In the final layer of

the architecture, a Softmax function is applied to the [CLS] embedding and the class

probability is computed.

6.4 Models

Deep models can capture deeper knowledge of the language as they grow. As shown

by [75], the initial to middle layers of BERT can extract syntactic information, whereas

the language semantics are represented in higher layers. Since extracting the sentence

sentiment is semantically demanding, we expect to see this in higher layers of the net-

work. This is the intuition behind our models where we exploit the final layers of the

BERT model.

The two models that we introduce here are similar in principle, but slightly differ

in implementation. Also, for the two tasks, the losses are computed differently. While

for the ASC task we utilize cross-entropy loss, for the AE task, we make use of

CRFs. The reason for this choice is that the AE task can be treated as sequence

labeling. Therefore, taking into account the previous labels in the sequence is of high

importance, which is exactly what the CRF layer does.

6.4.1 Conditional Random Fields

CRFs [76] are a type of graphical models and have been used both in computer vision

(e.g. for pixel-level labeling [77]) and in NLP for sequence labeling.

Since AE can be considered a sequence labeling task, we opt for using a CRF

layer in the last part of our models. The justification for the use of a CRF module for

AE is that doing so helps the network to take into account the joint distribution of

the labels. This can be significant since the labels of sequence words are dependent

on the words that appear before them. For instance, as is seen in Figure 6.1, the

occurrence of the adjective good can give the model a clue that the next word is
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Figure 6.1: An example of representing a sentence with its word labels using CRFs.

probably not another adjective. The equation with which the joint probability of the

labels is computed is as follows:

p(y|x) = 1
Z(x)

T

∏
t=1

exp

{

K

∑
k=1

θk fk(yt ,yt−1,xt)

}

(6.1)

In Formula 6.1, x is the observed sequence, y is the sequence of labels, and k and t

are the indices for feature functions and time steps in the sequence, respectively. The

relations between sequence words are represented by using feature functions { fk}.

These relations can be strong or weak, or non-existent at all. They are controlled by

their weights {θk} which are computed during the training phase. Finally, Z(x) is a

normalization factor.

6.4.2 Parallel Aggregation

In [78], the authors show that the hidden layers of deep models can be exploited

more to extract region specific information. Inspired by their work, we propose a

model called P-SUM applying BERT layer modules on each one of the best perform-

ing BERT layers. Figure 6.2 shows the details of this model. We exploit the last four

layers of the BERT model by adding one more BERT layer plus a fully connected

layer and calculating the loss of that branch on the input data, using a Softmax func-

tion and a conditional random fields layer. The reason is that all deeper layers contain

most of the related information regarding the task. Therefore, extracting this informa-

tion from each one of them and combining them can produce richer representations

of the semantics. In order to calculate the total loss, the loss values of all branches

are summed up which is indicated with Σ notation in the diagram. This is done so, in
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Figure 6.2: Parallel aggregation (P-SUM)

order to take all the losses into account when optimizing the parameters. However,

to compute the network’s output logits, we average over the output logits of the four

branches.

6.4.3 Hierarchical Aggregation

Our hierarchical aggregation (H-SUM) model is inspired by the use of Feature Pyra-

mid Networks (FPNs) [79]. The goal is to extract more semantics from the hidden

layers of the BERT model. The architecture of the H-SUM model can be seen in

Figure 6.3. Here, after applying a BERT layer on each one of the hidden layers, the

output is aggregated (element-wise) with the previous layer. At the same time, similar

to the P-SUM, each branch produces a loss value which contributes to the total loss

equally since the total loss is the summation of all of them.

6.5 Experiments

In order to carry out our experiments, we use the same codebase as [17]. We ran the

experiments on a GPU (GeForce RTX 2070) with 8 GB of memory using batches of
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Figure 6.3: Hierarchical aggregation (H-SUM)

Train Test

Dataset S A S A

LPT14 3045 2358 800 654

RST16 2000 1743 676 622

Table 6.1: Laptop (LPT14) and restaurant (RST16) datasets from SemEval 2014 and

2016, respectively, for AE. S: Number of sentences; A: Number of aspects.

16 for both our models and the BERT-PT model as the baseline. For training, Adam

optimizer was used and the learning rate was set to 3e − 5. From the distributed

training data, we used 150 examples as the validation. To evaluate the models, the

official scripts were used for the AE tasks and the script from the same codebase was

used for the ASC task. Results are reported in F1 for AE and in Accuracy and MF1

for ASC. While F1 score is the harmonic mean of precision and recall, MF1 score is

the average of F1 score for each class.

6.5.1 Datasets

In our experiments, we utilized laptop and restaurant datasets from SemEval 2014

[80] Subtask 2 and 2016 [15] Subtask 1. The collections consist of user reviews
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Train Test

Dataset S Pos Neg Neu S Pos Neg Neu

LPT14 2313 987 866 460 638 341 128 169

RST14 3102 2164 805 633 1120 728 196 196

Table 6.2: Laptop (LPT14) and restaurant (RST14) datasets from SemEval 2014 for

ASC. S: Number of all sentences; Pos, Neg, Neu: Number of positive, negative, and

neutral sentiments, respectively.

which have been annotated manually. Tables 6.1 and 6.2 show the statistics of these

datasets. In choosing the datasets, we opted for the ones utilized in previous works

[10, 17] so that we can draw a reliable comparison between the performance of our

models and those ones.

6.5.2 Performance of BERT Layers

Depending on the depth of the network, it can perform differently. Therefore, we

carried out experiments to find out how each layer of the BERT model performs. The

results are shown in Figure 6.4. As can be seen, better performance is achieved in the

deeper layers, especially the last four. Therefore, our modules operate on these four

layers to achieve an improved model.

6.5.3 Increasing Training Epochs

More training can lead to a better performance of the network. However, one risks

the peril of overfitting especially when the number of training examples are not con-

sidered to be large compared to the number of parameters contained in the model.

However, in the case of BERT, as was also observed by [4], it seems that with more

training the model does not overfit although the number of the training data points is

relatively small. The reason behind this could be the fact that we are using an already

pre-trained model which has seen an enormous amount of data (Wikipedia and Books

Corpus). Therefore, we can expect that by performing more training, the model will
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AE ASC

LPT14 RST16 LPT14 RST14

Models F1 F1 Acc MF1 Acc MF1

BERT 79.28 74.10 75.29 71.91 81.54 71.94

DE-CNN [3] 81.59 74.37 - - - -

BERT-PT [17] 84.26 77.97 78.07 75.08 84.95 76.96

BAT [10] 85.57 81.50 79.35 76.50 86.03 79.24

BERT-PT* 85.57 81.57 78.21 75.03 85.43 77.68

P-SUM 85.94 81.99 79.55 76.81 86.30 79.68

H-SUM 86.09 82.34 79.40 76.52 86.37 79.67

Table 6.3: Comparison of the results for Aspect Extraction (AE) and Aspect Sen-

timent Classification (ASC). BERT-PT* is the original BERT-PT model using our

model selection. The boldfaced numbers show the outperforming models using the

same settings. Each score in the table is the average of 9 runs. Results for the cited

papers are reported from the corresponding paper. The other models are run for 4

epochs. LPT: Laptop, RST: Restaurant, Acc: Accuracy , MF1: Macro-F1. Values are

percentages.

validation sets (Figure 6.4). Therefore, in Table 6.3, we report the original BERT-

PT scores as well as the ones for our model selection. From Table 6.3, it can also

be seen that the proposed models outperform the newly selected BERT-PT model in

both datasets and tasks with improvements in MF1 score as high as +1.78 and +2 for

ASC on laptop and restaurant, respectively.

It is also worth noting that, in terms of accuracy, the H-SUM module performs

better than the P-SUM module in most cases. This could be attributed to the hierar-

chical structure of the module and the fact that each branch of this module benefits

from the information processed in the preceding branch.
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6.7 Conclusion

We proposed two simple modules utilizing the hidden layers of the BERT language

model to produce deeper semantic representations of input sequences. The layers are

once aggregated in a parallel fashion and once hierarchically. For each branch of the

architecture built on top of the selected hidden layers, we compute the loss separately.

These losses are then aggregated to produce the final loss of the model. We address

aspect extraction using conditional random fields which helps to take into account

the joint distribution of the sequence labels to achieve more accurate predictions. Our

experiments show that the proposed approaches outperform the post-trained vanilla

BERT model.



Chapter 7

Toxic Spans Detection with

CharacterBERT and

Bag-of-Words Model

7.1 Introduction

The user generated digital content is increasing rapidly every second of the day. This

can include some toxic language whose detection can be difficult due to the com-

plexities of human languages. We address this problem by participating in SemEval

Workshop 2021 Task 5 [81].

In many cases, the data, which are considered to be toxic, contain words that have

not been written in their standard forms. There might also be a lot of misspelling or

letter replacements. In addition, usually the words that are considered to be the most

offensive are bleeped which makes them difficult to be recognized if we use a model

which learns the content representation based on the words. Apart from word related

issues, the context also plays a crucial role in the meaning that a word conveys since

words in different contexts can have various meanings.

Therefore, in order to cope with these issues, we opt for a recently pre-trained

language model which has been trained on character level. CharacterBERT [8] is a
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deep neural network model that has been pre-trained on Wikipedia and OpenWebText

[82] corpora using the BERT architecture [7] with an addition of a character-aware

Convolutional Neural Network (CNN) [83, 84]. BERT-based models have now be-

come pervasive in many different natural language processing tasks such as reading

comprehension [17], named entity recognition [85], sentiment analysis [11], and lan-

guage understanding [86] as well as similar ones to toxic language detection such as

propaganda detection [87]. While the BERT model is beneficial in extracting the con-

textual information from the text on the word level, the character-aware CNN attends

to the individual letters which helps in dealing with out-of-vocabulary, unknown and

rare words.

In addition to using a deep language model for detecting toxic language, we em-

ploy a very simple Bag-of-Words model that can achieve a close performance to that

of the deep model. By building a dictionary of toxic words from the training data

and by taking into account their frequency and ratio of toxicity, we come up with a

simple model that performs as closely as about 2 percent difference in performance

to the deep model’s result. Moreover, we improve the results of CharacterBERT by

combining it with the output of a version of the Bag-of-Words model.

7.2 System Description

Our system consists of four main stages namely, pre-processing, applying Character-

BERT, applying Bag-of-Words model, and finally combining the results of the two

models. We describe each of these stages in the following subsections.

7.2.1 Pre-processing

The training dataset consists of rows of various lengths and an array of character

spans indicating their toxic parts. Each row can contain several sentences. Table 7.1

shows three examples of the training data.

We approach the task of toxic spans detection as a sequence labelling task where

each word of the input row is classified into one of the predefined classes. We define

three classes of {B, I, O}, meaning that each word can be the first word (B) of a set of
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spans text

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

Another violent and aggressive immi-

grant killing a innocent and intelligent

US Citizen.... Sarcasm

[0, 1, 2, 3] Damn, a whole family. Sad indeed.

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] What a knucklehead. How can anyone

not know this would be offensive??

Table 7.1: Three examples from the training set

continuous toxic words, in between (I), or not toxic (O). Therefore, in order for both

of our models to be able to process these inputs, we first need to break the rows into

words and label them as one of the above-mentioned classes. This was carried out by

simply splitting each input row at the space characters. Then, after creating a dataset

that has been labeled on the word level, we can use it as the input of our models. The

same is done for the Bag-of-Words model with a difference in treating the bleeped

words which is described in Subsection 7.2.3.

7.2.2 CharacterBERT

CharacterBERT model is almost identical to the well-known BERT model with a

difference in initial embedding. In the general BERT model, words are broken into

pieces and the embeddings for these word pieces are computed. In CharacterBERT,

however, words are divided into letters or characters. Then, using CNN modules the

embeddings are computed on the character level (Figure 7.1). This makes the net-

work extract features on the lowest level, making it suitable for contexts which con-

tain many unseen vocabulary terms such as misspelled words or technical jargon.

After the initial character-aware CNN layer, there is the BERTbase architecture which

contains 12 layers (blocks) of Transformer [1] with the hidden size of 768 and 12

attention heads. The final layer representations are converted into logits using a fully

connected layer after which a Softmax layer is applied to extract the token’s (word’s)

class.
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Figure 7.1: The difference between the BERT and CharacterBERT models is the way

they compute the initial embeddings. The former uses word-piece embeddings while

the latter uses character embeddings. Figure taken from [8].

7.2.3 Bag-of-Words Model

This model is a simple script of fewer than 80 lines of code. However, its performance

on the Toxic Spans Detection task can get very close to the CharacterBERT model

which has millions of parameters. In this model, by examining the training set, we

first build a dictionary of toxic words with their frequency. Table 7.2 presents the top

ten words of this dictionary in terms of frequency.

Then, we locate the words from the toxic dictionary in each sentence of the test

set. If the word is found and its frequency as well as its toxicity ratio in the training

set are higher than certain values, it is labeled as toxic. This ratio which we call

toxicity ratio (Formula 7.1) along with the term frequency are the only parameters of

the Bag-of-Words model.
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Word Frequency

stupid 973

idiot 557

idiots 353

stupidity 223

ignorant 190

dumb 157

moron 147

fool 141

pathetic 138

crap 121

Table 7.2: Top 10 toxic words in the training set

toxicity ratio =
labeled as toxic frequency

total frequency
(7.1)

The test dataset also contains words that are bleeped. Since these words can be con-

sidered toxic with a high certainty (otherwise they would not be bleeped), we extract

them separately from the test set and label them directly as toxic.

7.2.4 Combining the Two Models

In order to get the improved version of the toxic language labeling, the union of the

spans detected by the bag-of-words model and that of CharacterBERT is taken. The

results will improve if there are words labeled correctly with the Bag-of-Words model

that are not in the output for CharacterBERT. This can be achieved by specifying

a high toxicity ratio for a word to be labeled as toxic. Also, the wrongly labeled

tokens should not be too many since it can have a negative effect on the F1 score.

Therefore, the frequency with which a toxic word appears should be somewhat high.

Striking a balance between these two parameters can help improve the output of

CharacterBERT.
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Model F1

CharacterBERT 65.13

BoW (v1) 51.75

BoW with best parameters (v2) 62.79

CharacterBERT + BoW (v2) 65.87

CharacterBERT + BoW (v1) 66.72

Table 7.3: Comparing results of the proposed models. The boldfaced one is the sub-

mitted version. BoW: Bag-of-Words model.

deep model. Figure 7.2 shows this model’s performance for its two parameters on the

validation set. One parameter represents the minimum frequency with which a toxic

word appears in the resized training set and the other one is its minimum toxicity ratio

in the resized training data.

We can see from Figure 7.2 that the best results are achieved when the minimum

frequency is 20 and the minimum ratio is 0.3 or 0.4. Since a larger ratio can be a sign

of more toxicity, we choose 0.4 as the ratio and a frequency of 20 as the thresholds

with which we apply the model on the test set. This gives an F1 score of 62.79 percent

(Table 7.3) which is not that much below the result of the deep model.

We can also see from Table 7.3 that although combining the output of the Bag-of-

Words model with that of CharacterBERT improves the results a little bit, it is still is

not as significant as the first version. In the first version of the Bag-of-Words model,

which was found during our primary experiments, the minimum word frequency is

40 and the minimum toxicity ratio is 0.7. With these parameters, only 10 words are

selected from the training set. The frequency and toxicity ratio of these words can be

seen in Table 7.4.

Although the performance of this version is a lot lower than the second version

(v2) of the BoW model, it helps to improve the performance of CharacterBERT.

The reason for this behavior can be attributed to the fact that models with higher

thresholds both in terms of frequency and toxicity ratio tend to output more certain

results, albeit fewer words than the ones that should be labeled as toxic. Therefore,



7.4. Conclusion 63

Word Frequency Toxicity Ratio

stupid 973 0.78

idiot 557 0.84

idiots 353 0.81

stupidity 223 0.77

moron 147 0.71

idiotic 98 0.74

hypocrite 75 0.88

shit 56 0.72

scum 52 0.70

hypocrites 44 0.76

Table 7.4: Words selected as the toxic words with minimum frequency of 40 and

minimum toxicity ratio of 0.7 (BoW (v1))

many toxic words that are less probable are not extracted and F1 score drops.

Looking at Figure 7.3, we can see that, indeed, the best parameters from the

experiments on the validation set (ratios 0.3 and 0.4 with frequencies 10 and 20) yield

some of the best results on the test set. However, when these results are combined

with the output of the CharacterBERT, we see that the higher the toxicity ratio the

better the results (Figure 7.4) until 0.7 which gives the maximum improvement. The

0.8 ratio makes the predictions still a little better but 0.9 does not affect them since

the words that are labeled as toxic with this certainty have most probably been found

also by CharacterBERT.

7.4 Conclusion

We described the system we utilized to detect toxic language. In our approach, we

first fine-tune CharacterBERT, a character-level pre-trained language model, on the

toxic training data. Then using a simple bag-of-words model, we further improve

the results of this system. The Bag-of-Words model labels the words based on their





Chapter 8

AEDA: An Easier Data

Augmentation Technique for Text

Classification

8.1 Introduction

Text classification is a major area of study in natural language processing (NLP) with

numerous applications such as sentiment analysis, toxicity detection, and question

answering, to name but a few. In order to build text classifiers that perform well, the

training data need to be large enough so that the model can generalize to the unseen

data. However, for many machine learning (ML) applications and domains, there do

not exist sufficient labeled data for training. In this situation, data augmentation (DA)

can provide a solution and help improve the performance of ML systems [88, 89, 90].

DA can be carried out in many different ways such as by modifying elements of the

input sequence, namely word substitution, deletion, and insertion [9, 39], and back-

translation [28]. It can also be performed by noise injection in the input sequence [91]

or in the embedding space utilizing a deep language model [86, 10, 92].

Using a deep language model to do DA can be complicated, while word replace-

ment techniques with the help of a word thesaurus, even though a simple method,
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8.2 Related Work

Although the textual content is always increasing, data augmentation is still a highly

active area of research since for machine learning applications, especially the new

ones, the initial annotated data are usually small. As a result, researchers are con-

stantly coming up with innovative ideas to create new data from the available content.

Some have experimented at the input sequence level performing operations on

words. For example, to improve machine translation quality, authors of [89] uti-

lize substitution of common words with rare ones, thus providing more context for

the rare words, while [28] uses back-translation where automatically translated data

along with the original human-translated data are employed to train a neural machine

translation system. In [94], words are replaced with their synonyms for classifying

tweets. Similarly, authors of [95] replace sentence fragments from common cate-

gories with each other in order to produce new sentences.

Others have opted for using pre-trained language models such as BERT [7]. In

[96], the authors utilize contextual augmentation, replacing the words with the pre-

diction of a bidirectional language model at a desired position in the sentence. In

[97] and [98], they utilize reinforcement learning with a conditional language model

which is carried out by attaching the correct label to the input sequence when training

[99]. Working with Transformer model [1], authors of [5] propose Mix-Transformer

where two input sentences and their corresponding labels are linearly interpolated to

create new samples.

In [91], the authors make use of data noising which can be considered similar

to our work with the difference that they replace words choosing from the unigram

frequency distribution or insert the underscore character as a placeholder, whereas

we insert punctuation characters which usually occur in sentences. The related works

mostly use some auxiliary data or a complicated language model to produce aug-

mented data. Conversely, our method is extremely simple to implement and does not

need any extra data. In addition, it shows superior performance to EDA in both simple

models such as RNNs and CNNs and deep models such as BERT.
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8.3 AEDA Augmentation

In order to insert the punctuation marks, we randomly choose a number between

1 and one-third of the length of the sequence which indicates how many insertions

will be carried out. The reason is that we want to ensure there is at least on inserted

mark and at the same time we do not want to insert too many punctuation marks as

too much noise might have a negative effect on the model, although this effect can

be investigated in future work. Then, positions in the sequence are also specified in

random as many as the selected number in the previous step. In the end, for each

chosen position, a punctuation mark is picked randomly from the six punctuation

marks in {".", ";", "?", ":", "!", ","}. Table 8.1 shows three augmentation samples by

the AEDA technique.

Original a sad , superior human comedy played out on the back roads of life .

Aug 1 a sad , superior human comedy played out on the back roads ; of life ; .

Aug 2 a , sad . , superior human ; comedy . played . out on the back roads of life .

Aug 3 : a sad ; , superior ! human : comedy , played out ? on the back roads of life .

Table 8.1: Examples of the augmented data using the AEDA technique

8.4 Experimental Setup

Since we compare our proposed method with [9], we used the same codebase as theirs

with no changes in the implementation of the models. We executed the code using a

GeForce RTX 2070 GPU with 8 GB of memory.

8.4.1 Datasets

We experiment with the same five datasets as our baseline. They include SST2 [100]

Standford Sentiment Treebank, CR [46, 101, 102] Customer Reviews dataset, SUBJ

[103] Subjectivity/Objectivity dataset, TREC [104] Question Classification dataset,

and PC [105] Pros and Cons dataset. Table 8.2 shows the statistics of the utilized
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Dataset Nclass Lavg Ntrain Ntest |V|

SST-2 2 19 7791 1821 15771

CR 2 19 4067 451 9048

SUBJ 2 25 9000 1000 22715

TREC 6 10 5452 500 9448

PC 2 7 40000 5806 26090

Table 8.2: Statistics of the utilized datasets. Nclass: Number of classes, Lavg: Sentence

average length, Ntrain: Number of training samples, Ntest : Number of test samples,

|V|: Number of unique words

datasets.

The train and test sets utilized for the experiments for these datasets were not

made available by the baseline. Therefore, after collecting them, we shuffled and

divided them into train and test sets with almost the same size as the ones reported

by the baseline. For the CR dataset, we combined all the reviews from the three

cited sources. The annotations included multiple target sentiments for each sentence.

Therefore, to convert them into binary classes, we considered a sentence positive if

there was no negative sentiment and negative if there was no positive sentiment. The

datasets are available along the source code.

8.4.2 Models

To be consistent as well as for a fair comparison of the effects of EDA- and AEDA-

augmented data, we used the same Recurrent Neural Network (RNN) [23] and Con-

volutional Neural Network (CNN) [2] as implemented in the baseline. For the initial-

ization of the models, GloVe word vectors [21] were utilized.

8.5 Results

To evaluate the quality of augmented sentences, we performed experiments using the

data augmented by both EDA and AEDA as well as the original data. For the results
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Training set size

Model 500 2,000 5,000 full set

RNN 73.5 82.6 85.9 87.9

+EDA 76.1 81.3 85.2 86.5

+AEDA 77.8 83.9 87.2 88.6

CNN 76.5 83.8 87.0 87.9

+EDA 77.5 82.2 84.5 86.1

+AEDA 78.5 84.4 86.5 88.1

Average 75.0 83.2 86.5 87.9

+EDA 76.8 81.8 84.9 86.3

+AEDA 78.2 84.2 86.9 88.4

Table 8.3: Comparing average performance of EDA and AEDA across all datasets on

different training set sizes. For each training sample, 16 augmented sentences were

added. Scores are the average of 5 runs. Numbers are in percentages.

reported in Table 8.3, we added 16 augmentations and for the ones in Figure 8.2, 9

augmentations to be consistent with the baseline. All experiments were repeated with

5 different seed numbers and the average scores are reported.

8.5.1 AEDA Outperforms EDA

The results of the experiments with 500, 2000, 5000 and full dataset sizes for training

are reported in Table 8.3. We can see that in some small datasets, EDA improves the

results while for bigger ones it has a negative effect on the performance of the models.

Conversely, AEDA gives a performance boost on all datasets, showing greater boosts

for smaller ones. For instance, with 500 sentences, the average absolute improvement

is 3.2% while for full dataset it is 0.5%. The reason why EDA does not perform

well can be attributed to the operations such as deletion and substitution which insert

more misleading information to the network as the number of augmentations grows.

In contrast, AEDA keeps the original information in all augmentations.





8.6. Ablation Study 72

8.5.2 Trend on Training Set Sizes

Figure 8.2 shows how both models perform on different fractions of the training set.

These fractions include {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} percent. We can

see that AEDA outperforms EDA in all tasks as well as showing improvements over

the original data. One observation to point out is that also EDA works well on small

datasets which can be because of lower number of augmentations compared to the

ones reported in Table 8.3.

8.6 Ablation Study

In this section, we investigate how much gain there is for different number of aug-

mentations, the effect of random initialization, and whether AEDA can improve deep

models.

8.6.1 Number of Augmentations

Figure 8.3 presents the impact of adding various numbers of augmentations to the

training set. We can see that only one augmentation can improve the performance by

an absolute amount of 1.5% to 2.5% for all dataset sizes. However, as the augmenta-

tions increase, the smallest dataset greatly benefits from that by an improvement of

almost 4% while the full dataset only gains 1%. The middle-sized ones have a gain

in between (2% to 2.5%).

8.6.2 Effect of Random Initialization

When conducting the experiments, we noticed that different seed numbers produce

different results. As a result, we ran the experiments for 5 times. However, in each

run with the same seed number, the results can be slightly different due to the local

and global generators in TensorFlow. Therefore, to ensure that 5 runs show the cor-

rect trend, we chose two of the datasets (CR and TREC) and ran the models for 21

different seeds (zero to 20). From Figure 8.4, we see that the trend is similar to Figure

8.2, which shows the average results of 5 seeds.
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8.6.3 Using AEDA with Deep Models

The performance of AEDA on a deep model such as BERT is mixed. Table 8.4 shows

the results of our experiments with the BERT model. We trained the model used in

[93] for 3 epochs with its default settings and observed that adding one augmentation

for each training sample increased the performance by 0.15% for SST2 and 0.76%

for TREC while making it deteriorate slightly for the others. However, in all cases,

except for the CR dataset, it still outperforms the EDA method. The reason why

AEDA does not always help a deep model can be the fact that pre-trained models have

already seen a considerable amount of data with possibly similar noises to AEDA.

Nevertheless, it is worth noting that, as we saw for RNN and CNN models, adding

more augmentations might be more advantageous especially for small fractions of

the datasets. This can be explored in the future work.

Model SST2 CR SUBJ TREC PC

BERT 91.85 90.55 97.04 96.48 96.40

+EDA 91.85 90.55 96.24 96.84 96.08

+AEDA 92.00 90.42 96.86 97.24 96.13

Table 8.4: Comparing the impact of EDA and AEDA on the BERT model. The model

was trained on the combination of the original data and one augmentation for each

training sample. The scores are the average of 5 runs.

8.7 Discussion

Comparing the results that we have gained in our experiments with the ones reported

in [9], we can see some discrepancy, especially in the impact of EDA on improving

the performance of the models. We speculate that the difference can be caused by the

inconsistency in the training and test sets. Although we obtained the datasets from

the same references they have specified, some of them are not divided into train and

test datasets ready to be used. As mentioned in Section 8.4.1, we randomly divided
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them into train and test sets. In addition, some of them have different sizes which can

produce different results.

With that said, to conduct a fair evaluation, we kept the same setting for all com-

parisons in terms of the utilized library and source code, train and test sets, number

of augmentations, number of runs, batch size, and learning rate.

8.8 Conclusion and Future Work

We proposed an easy data augmentation technique for text classification tasks. Exten-

sive experiments on five different datasets showed that this extremely simple method

which uses punctuation marks outperforms the EDA technique which includes ran-

dom deletion, insertion, and substitution of words, on all the utilized datasets. The

future work will focus on exploiting the proposed method regarding which punctu-

ation marks can have more impact, which ones to add or discard, and how many of

them can be used to achieve a better performance. In addition, the question whether

the punctuation marks should be inserted randomly or some positions are more ef-

fective will be investigated.



Chapter 9

Aspect-Based Emotion Analysis

and Multimodal Coreference:

A Case Study of Customer

Comments on Adidas Instagram

Posts

9.1 Introduction

Nowadays, all large companies and brands own a designated page or channel on so-

cial media platforms which allows them to directly communicate with various stake-

holders, most notably the general public. This rise of social media communication has

also propagated research on automatically analysing user-generated content which is

often full of opinions and emotions. As a consequence, research on sentiment and

emotion analysis has thrived.

Since companies not only want to know which general opinions their stakehold-

ers hold on their company or brand, but also want to learn which products or which
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features of their products are greatly appreciated or disliked by the online commu-

nity. As a result, the research domain of sentiment analysis has started to focus more

and more on fine-grained sentiment analysis at the feature or aspect level [106]. This

is referred to as Aspect-Based Sentiment Analysis (ABSA), which focuses on the

detection of all sentiment expressions within a given document and the concepts and

aspects (or features) to which they refer. Following the task description in the Se-

mEval 2015 shared task on this topic [14], aspect-based sentiment analysis can be

decomposed into three subtasks, namely aspect term extraction, aspect category clas-

sification and aspect term polarity classification.

In its original sense, sentiment analysis involves classifying instances as one of

the three classes positive, negative, and neutral, but more recently, many research ob-

jectives shifted to extracting more fine-grained emotional information like the emo-

tional categories anger, sadness, and joy [107]. When performing emotion detection

at the aspect level, we can analogously refer to this as Aspect-Based Emotion Anal-

ysis (ABEA) [108].

Given the rise of more visual content, which is illustrated by the popularity of

platforms such as Instagram and TikTok, we want to investigate whether text-based

models are sufficient to classify social media content which clearly exhibits both

textual and visual information in terms of aspect and sentiment/emotion. Moreover,

whenever images are presented, text is often used to pinpoint specific aspects of an

image (e.g. Love the color of these). By closely analyzing these instances, and espe-

cially those where anaphors are used, we wish to get more insights into whether it

would be helpful to include visual information in the ABEA pipeline by means of

multimodal coreference resolution.

We perform a case study using customer comments on the Adidas Instagram

page by collecting 4,900 comments on 175 Instagram images, and annotating them

with aspect categories and emotional information. Moreover, the annotators indicated

for each comment whether the image was necessary for a full understanding of the

comment. By comparing the performance of the aspect classification and emotion

analysis models on both types of comments, we can assess whether comments that

rely on visual information for a full understanding are more difficult to classify than
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comments that do not rely on visual information.

The contributions of this work are twofold. Firstly, we present a multimodal

dataset that can be used in the context of aspect-based sentiment and emotion de-

tection, consisting of 4,900 comments on 175 images and annotated with both aspect

and emotion labels. The dataset is freely available for further study1. Moreover, we

assess the utility of multimodal coreference resolution in an ABEA framework.

The next section is dedicated to the description of related work (Section 9.2).

In Section 9.3, we describe the data collection and annotation process. The method-

ology of the experiments to assess the importance of visual content for ABEA and

the results of these experiments are reported in Section 9.4. The results are further

discussed in Section 9.5, followed by a conclusion in Section 9.6.

9.2 Related Work

In its original use, the goal of sentiment analysis was to classify text documents in

terms of polarity (i.e. positive or negative) [109]. Through the years, the objective of

sentiment analysis evolved to extracting more fine-grained insights about subjective

information in texts and the need for sentiment analysis on the feature or aspect level

was first expressed by [106]. ABSA received a lot of attention in the context of a

shared task at SemEval 2014 [13] and 2015 [14], which provided datasets of English

reviews in two domains (laptops and restaurants), annotated with aspect terms, aspect

categories and sentiment labels.

The evolution of extracting more and more fine-grained subjective information

also caused a switch in focus from polarity to emotion [107]. Instead of focusing

on the positive/negative dichotomy, the goal in emotion analysis is to extract specific

emotional states, such as the basic emotion categories of Ekman: anger, disgust, fear,

joy, sadness, and surprise [110]. Recently, various studies performed emotion detec-

tion based on emotional dimensions instead of categories [111, 112]. They follow the

theory of [113], who claim that every emotional state can be represented by the three

dimensions valence, arousal and dominance.

1https://lt3.ugent.be/resources/multimodal-abea/
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Mostly, emotion detection is performed at the sentence or document level. Anal-

ogously to ABSA, one could analyze emotions at the aspect level as well, resulting

in Aspect-Based Emotion Analysis (ABEA). Some studies have been carried out on

this subject [108], but there are no publicly available datasets that have specifically

been made for ABEA.

A problem in aspect-based sentiment and emotion analysis is that aspect terms

are often not explicitly mentioned. This can manifest itself in various ways, e.g. by an

implicit aspect that can only be inferred from the contextual meaning (e.g. my mouth

is still watering!, which has a food-related but implicit aspect) or by an anaphor

referring to an antecedent previously mentioned in the text (e.g. They were absolutely

horrible.). In an age where visual content is becoming more and more prevalent —

see also the work on multimodal NLP [114] — it is even possible that these implicit

aspects can only be understood with the help of the image accompanying the text.

Looking at both ABSA and ABEA, the same first two subtasks can be defined:

aspect term extraction and aspect category classification. Regarding the latter, one

could hypothesize that this task might suffer from these implicit aspects and that

coreference resolution is needed to overcome this. However, previous research has

shown that coreference resolution does not necessarily improve aspect term classifi-

cation [115]. When linking anaphors to their correct antecedent in restaurant reviews,

this additional semantic information did not really help to better classify the aspects

into predefined categories, suggesting that the models have enough with the contex-

tual lexical information alone. However, in the context of multimodal coreference,

where text and image appear together, this has not been investigated yet.

9.3 Dataset

9.3.1 Dataset Collection

The Adidas Instagram page (@adidasoriginals) has more than 37 million followers

with a great number of comments on each post, which makes it a rich page for col-

lecting opinions on the brand and its products. In order to scrape all the posts on the
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Instagram page, we first obtained their shortcodes, by which each unique post can be

identified. This was done using the Selenium package and the Beautiful Soup library

in Python. The Selenium package automates browsing and interacting with the web.

We used it to automatically open the page and scroll down until all posts were visible.

Then, using the Beautiful Soup library, we extracted the shortcode for each post from

the HTML source code of the fully loaded page.

The next step was to open each post and click on the Load more comments button

in order to acquire all the comments under each post. After all comments were loaded,

once again using the HTML source code, we extracted the comments for individual

posts. Since our objective was to annotate only the English comments, we used the

langdetect library2 to recognize the language of the comment and filter out the non-

English ones. Our tool for downloading shortcodes and comments is available on

GitHub3.

In order to download the Instagram images, we used the scraper software pack-

age4. This software contains a command line utility that takes as input a file contain-

ing a list of the shortcodes and the name of the directory in which we want to store the

images. The shortcode is used to build an absolute path for the post. For each post,

the web page is downloaded in HTML format and then the temporary image URL

path is collected from the metadata. Subsequently, for each image URL, an HTTP

request is made to download the image and save it on the hard disk.

9.3.2 Dataset Annotation

The comments of 175 Instagram images were annotated by two students who were

enrolled in the final year of a Bachelor’s program in Applied Linguistics. The annota-

tors were provided with an Excel file containing the image and comment. They were

asked to view the comments from the perspective of the person who wrote them and

to indicate whether an emotion was expressed. If that was the case, they were asked

to specify this emotion. Initially, the emotions of interest were anger, fear, joy, love,

2https://pypi.org/project/langdetect
3https://github.com/akkarimi/instascraper
4https://github.com/hachreak/scraper
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Main Category Subcategories Example

Company General,

reliability

Looks likes I’m Adidas fan now. Got to

make daddy in law happy @jazminchris-

tine_

Marcom General,

promotions

Thanks for the birthday coupon

Personnel General,

friendliness,

service,

reception, speed,

information,

availability,

familiarity

Still no one reply to me of this wind

jacket. As I’ve leave my phone number

to your retail shop staff in Causewaybay!

Even no stock or when will restock! But

until now still no feedback. What the hell

of customer services? Very disappointed

Product General, price,

quality,

availability,

variety

Hope it will be available in the philip-

pines.

Social media Content I was 2013 in chicago...very nice and very

nice picture ;) @adidasoriginals

Website General,

information,

user-friendliness

What’s wrong with the app? I’ve been try-

ing to place an order 3 days already

Table 9.1: Aspect taxonomy and examples from the dataset for each main category

and sadness, conforming to [116]. However, after a trial annotation round, fear was

removed from the label set as it was almost never indicated. However, the category

longing was included instead to account for the emotion of desire, which was often

expressed in the context of wanting the Adidas product that was represented in the

Instagram post. Additionally, the annotators had to rate the emotional dimensions of

valence (negative-positive) and arousal (calm-excited) on a 5-point scale.
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Class IAA

Aspect 0.598

Emotion 0.618

Valence 0.466

Arousal 0.337

Table 9.3: Inter-annotator agreement for aspect and emotion categories (Cohens’s

Kappa) and emotional dimensions (Krippendorff’s alpha).

The comments accompanying the first ten images were annotated by both anno-

tators (trial annotation round consisting of 90 comments) in order to calculate inter-

annotator agreement (in the final dataset, only Annotator 1’s annotations of the first

90 comments were taken into account). For the emotion categories and aspect cat-

egories, Cohen’s Kappa was calculated. For the emotional dimensions (valence and

arousal), Krippendorff’s alpha was used. The agreement scores are shown in Table

9.3 and reveal a moderate to substantial agreement for aspect and emotion categories,

and a fair to moderate agreement for emotional dimensions.

After this initial trial annotation round, the annotators sat together to align their

annotation method. The remaining comments were more or less equally divided

among the annotators. The annotators were free to discuss the annotations with each

other when necessary in order to further guarantee consistency.

A summary of the data annotations can be found in Tables 9.4 and 9.5. Out of

2,615 emotional comments, joy is the most dominant category (1,198 comments),

followed by anger and longing (593 and 589 comments, respectively). As regards

the aspect categories, the product category was clearly most prevalent. We therefore

decided to only keep the subcategories for this particular category, but work with the

main categories for the other aspect classes. The store/office class was omitted, as

there were no instances annotated with this category.

A notable part of the instances contained an implicit aspect term. For 695 out of

2,615 emotional comments, it was not possible to indicate the aspect term associa-

tion with the emotion and they received the null tag as aspect term. Moreover, 883 of
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Emotion (#) Valence (#) Arousal (#)

Neutral 2,285 1 167 1 696

Anger 593 2 456 2 1,258

Joy 1,198 3 644 3 500

Longing 589 4 1,079 4 138

Love 191 5 269 5 23

Sadness 44

� 2,317 � 2,317 � 2,317

¶ 2,583 ¶ 298 ¶ 298

Total 4,900 Total 2,615 Total 2,615

Table 9.4: Number of comments per emotion category / emotional rating. � means

that the image was needed for understanding the comment, ¶ means that the image

was not needed and the text alone was sufficient.

the instances, where an aspect term could be indicated, contained an anaphoric pro-

noun (this, that, these, those and it). We can thus say that 1,578 instances (i.e. 60%)

contained an implicit aspect term.

For approximately half of the instances (2,317 out of 4,900), visual information

was needed to completely understand the comment. This mainly concerned the emo-

tional instances. When only taking the emotional comments into account (see also

the numbers for valence and arousal in Table 9.4 and the aspect categories in Table

9.5), the image was needed for the vast majority of instances (2,317 out of 2,615).

9.4 Experiments & Results

In order to investigate the influence of visual content on the first two subtasks of

aspect-based emotion analysis (aspect category classification and emotion analysis),

we applied RoBERTa models [16] to our data and compared the performance on the

comments for which the annotators indicated that no visual information was needed

for a complete understanding versus the comments where the text alone sufficed. As
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Aspect (#)

Company 94

Marcom 20

Personnel 12

Product - availability 225

Product - general 1,650

Product - price 32

Product - quality 35

Product - variety 117

Social media 401

Website 29

� 2,317

¶ 298

Total 2,615

Table 9.5: Number of comments per aspect category. � means that the image was

needed for understanding the comment, ¶ means that the image was not needed and

the text alone was sufficient.

we are dealing with short social media texts, we use the RoBERTa-based language

model trained on Twitter data from [117]. For aspect classification, we use the base

model (twitter-roberta-base6) and for emotion, valence and arousal classification, we

use the twitter-roberta-emotion model7.

For emotion classification, all instances were used (4,900 comments), while for

valence, arousal and aspect classification only the non-neutral tweets were taken

into account (2,615 comments). We used 10-fold cross validation to finetune the

RoBERTa models for 3 epochs, with a dropout of 0.2, maximum sequence length

and batch size of 64 and learning rate of 5e-05.

Table 9.6 shows the accuracy of these models. We report the performance on

6https://huggingface.co/cardiffnlp/twitter-roberta-base
7https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion
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Task All � ¶

Aspect 0.784 0.815 0.544

Emotion 0.675 0.838 0.528

Valence 0.559 0.574 0.450

Arousal 0.693 0.611 0.638

Table 9.6: Accuracy of aspect and emotion classification for the complete dataset

(All), and for subsets of the data containing either only instances where visual infor-

mation was needed for full understanding (�) or instances where visual information

was not needed (¶).

the full subsets, but also calculate the accuracy after filtering the instances based on

whether visual information was required for full understanding. On the full dataset,

aspect classification is 78% accurate. For emotion classification, accuracy is 68%,

and for valence and arousal classification, it amounts to 56% and 69%, respectively.

Contrary to what we expected, the aspect, emotion and valence classification

models perform better on comments where visual information is needed, compared

to comments where the text alone suffices. Especially for aspect and emotion classifi-

cation, the difference is substantial (82% versus 54% for aspect and 84% versus 53%

for emotion classification). This is counter-intuitive, as the models do not actually

have access to that visual information. In the next section, this will be examined in

closer detail.

9.5 Discussion

We take a closer look at the comments and predictions to get more insights into the

importance of visual information for classification. More specifically, we investigate

implicit aspect mentions in the comments. The pronouns this, that, these, those and

it appear in 883 of the 2,615 non-neutral comments, and 695 comments have the null

tag as aspect term. The vast majority of these comments are indicated by the annota-

tors as needing the image for full understanding (869 of the comments with pronouns
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and 622 of the comments with null, i.e. 1,491 out of 1,578 or 94%). However, given

the results shown in Table 9.6, it does not seem that these implicit aspects cause

problems for the classifier, as the performance of aspect classification is even higher

for these instances. This suggests that aspect-based sentiment and emotion analysis

would not benefit from multimodal coreference resolution.

However, a lot depends on the aspect labels of interest. In our case, the aspect

labels seem broad enough to only rely on the text for extracting the aspects. Some

examples are shown in Table 9.7. In the sentence where can I get these same ones? for

example, one does need the image to know to what specific entity is being referred,

but the text alone is enough to know that this comment is about a product (and the

availability thereof). However, when one needs to know which specific product the

comment is about, image recognition is still needed.

Most of the aspects in the dataset are subcategories of the product category (cf.

Table 9.5). When we look at the top three aspects in the comments with implicit

aspect, product - general is dominant as well (1,123 comments) followed by the so-

cial media (244 comments) and product - availability category (130 comments). The

majority of the product - general and product - availability instances with implicit

aspects are correctly classified (1,165 out of 1,253, i.e. 93%). For the social media

category however, only 102 out of 244 instances are correctly classified (42%) and

are often misclassified as product - general.

For emotion classification, it is less surprising that the lack of visual information

does not hamper performance, as emotional information is probably only present

in the textual comment and not in the originally posted picture. One would expect

that there is no difference in performance between the � subset and the ¶ subset.

However, the performance on the � subset is higher than that of the ¶ subset. A

possible explanation for this could be that the comments which refer to the original

picture are more straightforward by themselves.
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Comment Aspect �/ ¶ F/C

Super super in love with this

work of art

Product - general � C

where can I get these same ones Product -

availability

� C

The same in black and I will buy

this zxflux !!!

Product - variety � C

@_6079 this pic is awesome Social media � F

Table 9.7: Examples of comments that include an anaphor. � means that the image

was needed for understanding the comment, ¶ means that the image was not needed

and text alone was sufficient. When the classifier made a correct prediction, it is

indicated with a C; when a false prediction was made, it is indicated with an F.

9.6 Conclusion

We presented a multimodal dataset that can be used in the context of aspect-based

sentiment and emotion detection, consisting of 4,900 comments on 175 images and

annotated with both aspect and emotion labels. We assessed the utility of multimodal

coreference resolution in an ABEA framework. Based on these preliminary experi-

ments, we can assume that ABEA does not benefit from multimodal coreference res-

olution. However, when more specific information (e.g. product type, product color,

etc) that is more fine-grained than the broad aspect categories, is needed, computer

vision techniques will become necessary.
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Part IV

Conclusions and Future Work



The last part of the thesis consists of two chapters. In Chapter 10, we summarize

and provide some conclusions for the thesis. Then, in the final chapter (Chapter 11),

we highlight some of the directions that can be taken in order to address some of the

problems faced in this thesis.



Chapter 10

Conclusions

In this thesis, we addressed several tasks in Natural Language Processing (NLP),

namely Aspect-Based Sentiment Analysis (ABSA), Toxic Language Detection (TLD),

Text Classification (TC), and Aspect-Based Emotion Analysis (ABEA).

In Chapter 5, we introduced a novel architecture called BAT that uses adversarial

training with the BERT language model to tackle the ABSA task. In order to perform

adversarial training, we first create adversarial examples from the input embeddings.

These examples are artificial samples that are similar to the real-world examples but

perturbed by a small change so that when introduced to a neural network, the network

will classify them wrongly. To create them, we normalize the gradient of the loss for

the forward pass of the BERT model and multiply it by a small perturbation number

and add the result to the initial embeddings of the real examples. Feeding the network

with these examples helps the network to become more robust and show a better

performance.

In another effort to tackle the ABSA task, in Chapter 6, we introduced two mod-

ules that can be added on top of the BERT model to improve the performance over

our previously proposed BAT model. These modules consist of utilizing the BERT

layers put together in two parallel and hierarchical manners and take advantage of the

last four layers of the BERT architecture.

In Chapter 7, we address the task of toxic language detection using another vari-
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ant of the BERT model called CharacterBERT and combining it with an extremely

simple yet effective bag-of-words model. While CharacterBERT can deal with out-

of-domain vocabulary as well as the misspellings, the bag-of-words model makes

sure to extract the toxic words that have a high toxicity ratio. This is carried out by

calculating the ratio of the number of times a word is labeled toxic in the training set

over the number of times it appears in total. The bag-of-words model alone, though

embarrassingly simple, comes very close to the CharacterBERT model in terms of

performance, showing the fact that in some cases there is no need to use large pre-

trained language models in order to gain a reasonable performance.

Data augmentation is a way to deal with data scarcity in various NLP tasks. How-

ever, the cost of augmentation can sometimes be expensive in terms of the time it re-

quires to be carried out as well as the storage it needs and its complexity. To address

all these issues, in Chapter 8, we proposed a simple data augmentation technique

called AEDA which is easy to implement and requires almost no time to run and no

storage except for what is necessary to store the raw data. This method includes only

the insertion of punctuation marks into the raw sentences. By doing such, we change

the position of the words in the sentence which makes the network generalize better.

At the same time, and contrary to the well-known EDA method, we do not delete

the words to avoid information loss. Through an extensive set of experiments, we

show that it works surprisingly well despite its simplicity and outperforms the EDA

augmentation method.

Finally, in Chapter 9, we introduced a new multimodal dataset for Aspect-Based

Emotion Analysis (ABEA). The dataset consists of images from the Adidas Insta-

gram page along with their comments. We annotated the comments and took the

first steps towards multimodal coreference resolution in ABEA using the annotated

dataset. We argued that multimodal coreference resolution is not fruitful in our ABEA

setting and provided a baseline for future work by experimenting with the dataset us-

ing RoBERTa language model, another variant of the BERT model.

To conclude, we investigated and proposed several methods to perform text anal-

ysis using deep neural networks. While the models helped to improve the previous

state-of-the-art models. they can have some drawbacks. For instance, the adversarial
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training method can be expensive to carry out especially when the utilized language

model becomes larger. In fact, the size of the pre-trained deep language models is a

major issue that needs to be addressed in order for them to be faster and more envi-

ronmentally friendly. We addressed this issue by introducing the bag-of-words model

for toxic language detection and the AEDA data augmentation method for text classi-

fication which do not require large models while being beneficial in improving their

performance.



Chapter 11

Future Work

As we showed in the work on the AEDA data augmentation technique, it helps the

networks to generalize better on the test data. However, it is not clear which aug-

mented samples help more and which ones help less. It might also be the case that

some of them change the ground-truth label. In addition, a study on the effect of dif-

ferent punctuation marks and their positions can shed more light on how effective the

AEDA technique is. An investigation of these directions seems to be worthwhile.

Another direction can be addressing the size of the pre-trained language mod-

els. While they have achieved state-of-the-art performance in many NLP tasks, their

training is time-consuming and requires a large amount of computational time and

power. As a result, there is a need to find methods that can reduce this computation

cost and make them faster. One possible solution is to use newly-emerged architec-

tures called Adapters [118]. These are small modules that are inserted into the larger

architecture and contain a smaller number of parameters compared to the large model.

During training, the parameters of the large model are frozen and only the adapter’s

parameters are trained. This reduces both the training time and the utilized compute

power.

Another problem in many NLP applications - especially at the time of their emer-

gence - is the scarcity of training data. Since acquiring a large labeled data for these

applications can be time-consuming and costly, we can benefit from methods that
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leverage the existing data to create new ones for better training of our models. One

solution is to focus on semi-supervised learning which requires a small amount of

labeled data and enables us to utilize a large amount of unlabeled data. In this setting,

there are two identical networks one of which is trained on labeled data and makes

predictions on the unlabeled data, creating a pseudo-labeled dataset. Then, the other

network is trained on the newly-created pseudo-labeled dataset. This way, we can

leverage the unlabeled dataset to our benefit.

Finally, capsule networks [119] have shown promising results in the computer

vision tasks. While they have been extensively explored for image and video analysis,

their efficiency in NLP tasks remains somewhat unknown. For a better understanding

of the relationship between aspect terms and sentiments or emotions in ABSA and

ABEA, one can investigate the effects of capsule networks in conjunction with the

pre-trained language models, the adapters, or the traditional word vectors.
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