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Abstract

For linear time-invariant systems, we introduce a simplified behavioral approach
which is based on piecewise infinitely differentiable functions. Compared to the func-
tion space used in the standard behavioral approach, our setting allows to simplify
mathematical machinery while at the same time preserving the richness of signal’s
features required in many practical applications (e.g. mechatronics one). We employ
the simplified behavioral approach to derive two main contributions to the field of
inversion-based control. As a first contribution, we introduce a novel solution to the
stable input-output inversion problem for square nonminimum-phase systems. Dif-
ferently from state-of-the-art solutions, our solution can be applied to nondecoupable
systems too. As a second contribution, we formally prove the equivalence among
the two most common inversion architectures: the closed-loop and plant inversion
architecture. This equivalence dictates that the two architectures deliver the same
performances for any disturbance and mis-modeling affecting the controlled plant.
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Chapter 1

Introduction

The focus of this thesis is on the inversion-based control of linear time-invariant sys-
tems. For a minimum-phase system, an inversion-based controller amounts to the
inverse of the system’s matrix transfer function (standard inverse procedure). How-
ever, it is well known that, for nonminimum-phase systems (i.e. systems having at
least one zero with positive real part) the standard inverse is unstable and the cor-
responding output unbounded. Although several approximated inversion procedures
have been proposed to obtain a stable inverse for the class of nonminimum-phase
systems [27], [49], [52], in this work we are interested in exact inversion procedures.

In [15] and [25], in a state-space setting, an exact stable (noncausal) solution to
the inversion-based control problem was shown to exist for linear systems decoupable
by static state feedback (cf. Chapter 4). The resulting inversion approach is known as
the stable inversion procedure.

1.1 Motivation

The main goal of this thesis, is to present a new solution to the stable inversion prob-
lem which can also be applied to nondecoupable systems. As we are going to show,
in order to conveniently approach this problem, it is beneficial to rely on a theory of
linear time-invariant systems which is centered on input-output trajectories. Indeed,
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addressing a stable-inversion problem entails more than simply looking for an inverse
input. In particular, the function space of involved signals must be wisely chosen and
conditions for guaranteeing the existence of an inverse input must be studied (i.e. a
study on continuity properties of input-output pairs is required).

In the late ’80s, as an attempt to rigorously approach the analysis of linear time-
invariant systems, in [64], J. C. Willems introduced the behavioral approach to sys-
tems and control. The core idea of the behavioral approach is to view a dynamical
system as a collection of admissible trajectories, the behavior set. The main conse-
quence of such viewpoint is that system’s structure and properties are also defined in
terms of features exhibited by this set [65].

In order to define the behavior set, in most cases, one needs to specify an equation
together with a function space. All elements in the given function space which sat-
isfy the chosen equation constitute the behavior set. In [65], Polderman and Willems
considered behaviors induced by linear ordinary differential equations and, in order
to allow for discontinuous signals, they proposed as functions space Lloc1 , the set of
locally integrable functions. Formally, uuu ∈ Lloc1 if∫ b

a
||uuu(t)||dt < ∞ (1.1)

for all a,b ∈ R. Weak solutions are then introduced by replacing the ordinary differ-
ential equation with a suitable integral equation which must hold almost everywhere
on R [65]. We refer to this resulting setting as the Lloc1 behavioral theory (or standard
behavioral theory).

In this thesis, instead of working with the more general space of locally integrable
functions, we restrict our interest to the simpler space of piecewise C∞ functions,
C∞
p (cf. Section 2.2 in Chapter 2). There are two main reasons for such a choice.

Firstly, working in C∞
p allows for the introduction of a straightforward theory of weak

solutions which does not require advanced topics of functional analysis. Indeed, since
C∞
p functions are Riemann-integrable and because we define weak solutions in terms

of an integral equation that must be satisfied for all time instants (see Definition 9); we
are able to simplify the derivation of several results, which, in the standard behavioral
theory, are either obtained via advanced (and rather abstract) mathematical tools (see
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Remark 2.4.14 in [65]) or can not be derived at all. In order to justify this, in Chapter
3, 4 and 5 we present several applications of our simplified behavioral approach to
inversion-based control.

The second reason for working with C∞
p functions is that C∞

p is a sufficiently rich
function space for many applications, e.g. electromechanical ones ([12]). In other
words, when compared with C∞

p , the additional features that Lloc1 allows are not so
relevant in real-world applications (think about functions whose limit at a certain
point does not exist or functions with vertical asymptotes).

We refer to the resulting behavioral approach based on the space of C∞
p functions

as the C∞
p behavioral approach (or simplified behavioral approach).

1.2 Thesis structure and contributions

In Chapter 2 we introduce the space of C∞
p functions and the simplified behavioral

approach for linear time-invariant systems. In introducing our behavioral approach,
we take into account both input-output and input-state-output representations. Then,
we prove that under natural assumptions, input-output and input-state-output repre-
sentations are equivalent, i.e. their behavior sets are the same.

In Chapter 3, we take advantage of the simplified behavioral approach and we
derive a new straightforward relationship between jumps of the input signal (and its
derivatives) with jumps of the output signal (and its derivatives). As an application,
we propose to use our findings in solving an initial conditions problem.

In Chapter 4 we present the new solution to the stable input-output inversion
problem. Although our solution relies on an input-output representation of the sys-
tem, on several occasions we still exploit an input-state-output representation (for
instance, in order to characterize the continuity properties of input-output pairs).

Chapter 5 presents another application of the simplified behavioral approach.
Specifically, we prove the equivalence among two of the most common feedforward-
feedback inversion-based architectures employed in practical applications.

Finally, Appendices A, B conclude the thesis. In Appendix A, we report the nota-
tion and basic results about polynomial matrices and matrix fraction descriptions. In
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Appendix B, we present the Beghelli-Guidorzi input-output form. The background
material presented in Appendix A is used in Chapters 2 and 4. Instead, Appendix B
is only required in the proof of Theorem 2 in Chapter 2.

1.2.1 List of publications

The content of the thesis is based on the following publications.

• Chapter 3:

– J. Kavaja and A. Piazzi. Input-output jumps of scalar linear systems.
IFAC-PapersOnLine, 52(17):13–18, 2019.

• Chapter 4:

– J. Kavaja, A. Minari, and A. Piazzi. Stable input-output inversion for
nondecoupable nonminimum-phase linear systems. In 2018 European
Control Conference (ECC), pages 2855–2860. IEEE, 2018.

– J. Kavaja and A. Piazzi. On the structure of the multivariable free re-
sponse. Submitted to 30th Mediterranean Conference on Control and
Automation.

• Chapter 5:

– J. Kavaja and A. Piazzi. On the equivalence of model inversion architec-
tures for control applications. In 2020 59th IEEE Conference on Decision
and Control (CDC), pages 5173–5179. IEEE, 2020.

– J. Kavaja and A. Piazzi. On the equivalence of inversion-based control
architectures. Submitted to Transactions on Automatic Control.

1.3 General notation

The following notation will be employed throughout this thesis. Further notation,
when needed, will be added at the beginning of each chapter.
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N>0 denotes the set of natural numbers greater than 0.
Scalars and real-valued functions are denoted by lower-case letters. Vectors and

vector-valued functions are denoted by bold lower-case letters, whereas matrices are
denoted by capital letters with a few exceptions carefully remarked. Given a matrix
C ∈Rm×n, its entries are denoted by ci j or (C)i j, i = 1, . . . ,m, j = 1, . . . ,n, so that C≡
[ci j] or C ≡ [(C)i j]. The i-th row and the j-th column of C are denoted by ccci ∈ R1×n

and ccc j ∈ Rm×1 ≡ Rm respectively.
The set of real coefficients polynomials in the indeterminate s is denoted by R[s].

The degree of the null polynomial is −1. The notation Rm×n[s] denotes polynomial
matrices, i.e. m×n matrices whose entries are elements of R[s]. Laurent polynomials
and rational functions in the indeterminate s, with real coefficients, are denoted by
R[s,s−1] and R(s) respectively. Their matrix counterparts are denoted by Rm×n[s,s−1]

and Rm×n(s) respectively.
A function fff ≡ [ f1, f2, . . . , fm]

> : R→ Rm belongs to Cn(R,Rm) if all its compo-
nents fi are continuous with continuous derivatives until the n-th order over R. When
the number of components of fff is clear from the context, we write Cn to denote
Cn(R,Rm). If fff ∈Cn then we say fff has continuity order n. If for all components of
fff there exist derivatives of any order on D⊆ R then fff belongs to C∞(D,Rm).

We denote the n-th order derivative of fff by fff (n) := [ f (n)1 , f (n)2 , . . . , f (n)m ]> or Dn fff :=
[Dn f1,Dn f2, . . . ,Dn fm]

>, where D stands for the derivative operator. The notation
fff (t+) denotes the right-hand limit of fff at t, namely: fff (t+) = limv→t+ fff (v). Simi-
larly, we denote the left-hand limit of fff at t by fff (t−).





Chapter 2

The simplified behavior of linear
time-invariant systems

2.1 Introduction

The essence of the behavioral approach to systems and control theory lies in viewing
a dynamical system as a set of admissible trajectories [65]. It is well known that
the set of possible trajectories for a variety of physical systems can be conveniently
represented as the solution set of a differential equation of form:

R(D)www = 0, (2.1)

where R(s) ∈ Rg×q[s] is a polynomial matrix, D ≡ d
dt is the derivative operator and

www ∈ Rq is the manifest variable, i.e. it is the physical variable which one wants to
model and is the reason why (2.1) is derived. Representations of this form are called
kernel representations. However, when modeling from first principles, it is more com-
mon to end up with a differential equation of form:

R(D)www = M(D)`̀̀ (2.2)

where M ∈ Rg×d [s] and `̀̀ ∈ Rd is the so-called latent variable. At first, when the
modeling process starts, latent variables are not meant to be modeled, nevertheless,
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they still come into play either because they are needed to explain the physical process
or because they allow for a more convenient representation of the laws governing www
[65]. A typical example of latent variable representation is the input-state-output one:

ẋxx = Axxx+Buuu

yyy =Cxxx
, (2.3)

where uuu ∈Rm, yyy ∈Rp and xxx ∈Rn are the input, output and state variable respectively
and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. In this context, it is assumed that (2.3) aims
at describing the relationship between uuu and yyy (so that the manifest variable is www =[
uuu> yyy>

]>
) while xxx is only considered in order to allow the resulting representation

to be a first-order differential equation. Hence, the state variable is viewed as a latent
variable.

It is then natural to ask whether (2.3) admits a representation of form (2.1) and,
more specifically, an input-output representation:

P(D)yyy = Q(D)uuu (2.4)

where P(s) ∈ Rp×p[s] is assumed invertible, Q(s) ∈ Rp×m and P−1(s)Q(s) is strictly
proper.

This problem entails two sub-problems [56]. First, one has to decide what are
equivalent representations and, then, one must describe how to go from one repre-
sentation to the other. As for the first problem, several notions of equivalence have
been proposed in the literature. Among these, we recall the definitions proposed by
Rosenbrock [53] and Wolovich [66] which are aimed at more general representations
of form:

P(D)zzz = Q(D)uuu

yyy = R(D)zzz+W (D)uuu
. (2.5)

Remark that, when P(s) = sI−A, Q(s) = B, R(s) = C and W (s) = 0, representa-
tion (2.5) reduces to (2.3). Whereas, when W (s) = 0 and R(s) = I, it reduces to an
input-output representation of form (2.4). Another definition of equivalence, only for
input-state-output and input-output representations, is also reported in Guidorzi [23].
Nevertheless, in the behavioral framework, there is no ambiguity in deciding when
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two representations are equivalent. The only sensible definition is to consider two
representations equivalent if they have same behavior. Hence, in what follows, we
focus on this definition of equivalence.

In [65], by relying on a procedure for eliminating latent variables (Theorem 6.2.6
in [65]), representations (2.3) and (2.4) are shown to be equivalent in the single-input
single-output case only. Here, we extend this result to the multi-input multi-output
case. However, for the sake of simplicity of presentation, we make other simplify-
ing assumptions. Namely, we assume that in (2.3), (C,A) is observable and (A,B) is
controllable with rankC = p. Furthermore, we assume that in (2.4), pair P(s),Q(s)
is left-coprime (see Appendix A). Rather than using the elimination procedure de-
scribed in [65], we exploit the structure of observable state-space representations and
we show how to derive an input-output representation starting from an input-state-
output one and vice versa. An advantage of this approach is that, as a by-product, we
obtain a recipe for constructing the state variable starting from an input-output rep-
resentation. We remark that such a recipe is only sketched in [65] but is not formally
proven. Our proof is inspired by [22], [23], however, differently form these works,
we employ a behavioral setting and we allow for weak solutions of the involved dif-
ferential equations. We also point-out that a similar proof has also been sketched by
Willems (see Theorem 5.1 and 6.2 in [63]), however several details of that proof have
been omitted.

Chapter organization: This chapter is organized as follows. In Section 2.2 we in-
troduce the space of C∞

p functions. This function space is employed in Section 2.3 to
introduce the notion of weak solution and that of behavior for input-output equations.
In doing so, we present three equivalent definitions of behavior set. As we show, ac-
cording to the intended usage, one definition could be more suitable than the others.
Next, in Section 2.3 we extend the same notions to input-state-output representations
and we prove the equivalence between input-output and input-state-output represen-
tations. Finally, in Section 2.5 we conclude the chapter.

Notation: Given a strictly proper matrix transfer function H(s) = P−1(s)Q(s)
where P(s) = ∑

nP
i=0 Pisi ∈ Rp×p[s], Q(s) = ∑

nQ
i=0 Qisi ∈ Rp×m[s], with nP := maxi{ni

P}
and ni

P the i-th row degree of P(s) (see Appendix A), we define the asterisk operator
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∗ by:
∗ : Rp×(p+m)[s]→ Rp×(p+m)[s]

[P(s) Q(s)] 7→ [P∗(s) Q∗(s)] := snP [P(
1
s
) Q(

1
s
)],

and the bar operator ¯ by:

¯ : Rp×(p+m)[s]→ Rp×(p+m)[s]

[P(s) Q(s)] 7→ [P̄(s) Q̄(s)] := diag{sn1
P ,sn2

P , . . . ,snp
P}[P(1

s
) Q(

1
s
)].

2.2 The space of piecewise C∞ functions: C∞
p

The space of piecewise C∞ functions was originally introduced in [12] for scalar-
valued functions. In this section, we extend its definition to vector-valued functions.

Definition 1 (Sparse set). A set S ⊂ R is said to be sparse if, for every a,b ∈ R,
S∩ [a,b] has finite cardinality or it is the empty set.

Definition 2. The set of piecewise C∞ functions, denoted C∞
p , consists of all functions

fff for which there exists a sparse set S such that fff ∈ C∞(R \ S,Rm) and the limits
fff (n)(t−) and fff (n)(t+) exist and are finite for any n ∈ N and t ∈ S.

When fff ∈C∞
p is defined in t ∈ S, conventionally fff (t) := fff (t+).

Observe that, by construction, C∞
p is a closed space with respect to derivation. In

other words, the derivative of a C∞
p function belongs to C∞

p .

Definition 3. C−1(R,Rm) := C∞
p (R,Rm) denotes the set of piecewise C∞ functions

defined over the whole set of reals.

Remark that if fff ∈ C−1(R,Rm) then fff is right-continuous over R, i.e. fff (t) =
fff (t+).

Definition 4. The zero-order discontinuity set of fff is S(0)fff := {t ∈R : fff is not defined
in t, i.e. at least one component of fff is not defined in t, or fff (t−) 6= fff (t+)}.
Given n ∈ N>0, the n-th order discontinuity set of fff is S(n)fff := {t ∈ R : fff (n) does not
exist in t, i.e. at least one component of fff (n) does not exists in t}.
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The following are two straightforward results about discontinuity sets.

Lemma 1. Let fff ∈C−1(R,Rm) and n∈N. Then fff ∈Cn(R,Rm) if and only if S(n)fff = /0.

Lemma 2. Let fff ∈C−1(R,Rm) and L ∈ Rn×m be a matrix with rank(L) = m. Then
S(0)fff = S(0)L fff .

Proof: Taking into account that fff ∈C∞
p (R,Rm) (cf. Definition 3) we have S(0)fff =

{t ∈ R : fff (t−) 6= fff (t+)} and S(0)L fff = {t ∈ R : L fff (t−) 6= L fff (t+)}. Relation L fff (t−) 6=
L fff (t+) is equivalent to L( fff (t−)− fff (t+)) 6= 0, i.e. fff (t−)− fff (t+) /∈ kerL. But kerL =

{000} so that fff (t−)− fff (t+) 6= 0. �

Functions in C∞
p are Riemann integrable (see Theorem 6.10 in [54]), furthermore,

integrating a function in C∞
p results in another C∞

p function (see Theorem 6.20 in [54]).
In other words, C∞

p is a closed space with respect to integration. This motivates the
following definition.

Definition 5. Let fff ∈ C∞
p , we denote by

∫
fff ≡

∫ 1 fff the function FFF : R→ Rm, t 7→
FFF(t) =

∫ t
0 fff (ξ )dξ where

∫
stands for the Riemann integral operator. Given k ∈ Z,

we set
∫ 0 fff := fff and define

∫ k fff by the recursion
∫ k fff :=

∫
(
∫ k−1 fff ) if k ≥ 1 and∫ k fff := D−k fff if k ≤−1.

We now present three technical results, for a proof of these see [12].

Lemma 3. Let fff ∈Cp with p ∈ N∪{−1} and k ∈ N. Then∫ k
fff ∈Cp+k.

Lemma 4. Let fff ∈C∞
p and p,k ∈ N. Then Dk

(∫ p fff
)

is defined on R if p > k and on
R\S(k−p)

fff if p≤ k. Furthermore

Dk
(∫ p

fff
)
=
∫ p−k

fff .

Lemma 5. Let fff ∈C∞
p ∩C0 then∫

D fff (t) = fff (t)− fff (0), t ∈ R.
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Next, we introduce constant-coefficient operators. These will allow for compact
notations of differential and integral equations.

Definition 6. A constant-coefficient differential (integral) operator is a function

A : C∞
p →C∞

p

fff 7→
n

∑
i=0

AiDi fff , n ∈ N, Ai ∈ Rp×m

(
fff 7→

n

∑
i=0

Ai

∫ i
fff , n ∈ N, Ai ∈ Rp×m

)
.

The notation ∑
n
i=0 AiDi

(
∑

n
i=0 Ai

∫ i ) is used to denote A, i.e. A = ∑
n
i=0 AiDi

(
A =

∑
n
i=0 Ai

∫ i ).
We say that the polynomial matrix associated to the constant-coefficient differ-

ential (or integral) operator A = ∑
n
i=0 AiDi

(
A = ∑

n
i=0 Ai

∫ i ) is PA(s) = ∑
n
i=0 Aisi ∈

Rp×m[s]. Similarly, given a polynomial matrix A(s)=∑
n
i=0 Aisi, the constant-coefficient

differential (or integral) operator associated to A(s) is A(D) = ∑
n
i=0 AiDi

(
A(
∫
) =

∑
n
i=0 Ai

∫ i
)

.

Definition 7. A constant-coefficient differential-integral operator is a function

A : C∞
p →C∞

p

fff 7→
nA

∑
i=−mA

Ai

∫ i
fff , mA,nA ∈ N, Ai ∈ Rp×m.

The notation ∑
nA
i=−mA

Ai
∫ i is used to denote A, i.e. A = ∑

nA
i=−mA

Ai
∫ i.

It is natural to associate a Laurent polynomial (matrix) to these operators.

Definition 8. The Laurent polynomial (matrix) associated to the constant-coefficient
differential-integral operator A = ∑

nA
i=−mA

Ai
∫ i is

PA(s) :=
nA

∑
i=−mA

Aisi ∈ Rp×m[s,s−1].

Given a Laurent polynomial A(s)=∑
nA
i=−mA

Aisi ∈Rp×m[s,s−1], the constant-coefficient
differential-integral operator associated to A(s) is A(

∫
) = ∑

nA
i=−mA

Ai
∫ i.
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A useful result about the composition of constant-coefficient differential-integral
operators is the following.

Proposition 1. Let A = ∑
nA
i=−mA

Ai
∫ i with Ai ∈ Rp×p, B = ∑

nB
i=−mB

Bi
∫ i with Bi ∈

Rp×m and fff ∈C∞
p ∩CmB−1. Then

A(B fff )(t) = (PA ·PB)(
∫
) fff (t)−www(t), t ∈ R\S(mA+mB)

fff ,

where www ∈ Rp[s] is such that degwww≤ nA−1. Furthermore, if mB = 0 then www = 000.

Proof. The function A(B fff )(t)=∑
nA
i=−mA

Ai
∫ i
(

∑
nB
j=−mB

B j
∫ j fff

)
(t) for t ∈R\S(mA+mB)

fff

can be expanded as:

A(B fff )(t) =
nA

∑
i=1

nB

∑
j=1

AiB j

∫ i+ j
fff (t) +

nA

∑
i=1

Ai

∫ i( 0

∑
j=−mB

B j

∫ j
fff
)
(t)︸ ︷︷ ︸

(a)

+
0

∑
i=−mA

nB

∑
j=1

AiB j

∫ i+ j
fff (t)︸ ︷︷ ︸

(b)

+
0

∑
i=−mA

0

∑
j=−mB

AiB j

∫ i+ j
fff (t),

(2.6)

where, term (b) follows from Lemma 4, while, by virtue of Lemma 5 and assumption
fff ∈C∞

p ∩CmB−1, term (a) can be expressed as:

nA

∑
i=1

0

∑
j=−mB

AiB j

∫ i+ j
fff (t)+www(t), degwww≤ nA−1. (2.7)

Note that, if mB = 0 then www(t) = 000. Substituting expression (2.7) in (2.6) yields:

A(B fff )(t) =
nA

∑
i=−mA

nB

∑
j=mB

AiB j

∫ i+ j

︸ ︷︷ ︸(
PA·PB

)
(

∫
)

fff (t)+www(t), t ∈ R\S(mA+mB)
fff , deg(www)≤ nA−1.

(2.8)
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2.3 Behavior of input-output representations

We consider the linear time-invariant system Σ described by the differential equation:

P(D)yyy(t) = Q(D)uuu(t), (2.9)

where uuu,yyy denote the system’s input and output respectively and P(D),Q(D) are
constant-coefficient differential operators associated to the polynomial matrices P(s)
= ∑

nP
i=0 Pisi ∈ Rp×p[s], Q(s) = ∑

nQ
i=0 Qisi ∈ Rp×m[s] with detP(s) 6= 0 and P(s), Q(s)

left coprime (cf. Appendix A). We say that (2.9) is the differential equation associated
to
(
P(s),Q(s)

)
. The matrix transfer function of Σ is

H(s) = P−1(s)Q(s) ∈ Rp×m(s) (2.10)

which we assume to be strictly proper so that nP > nQ.
A strong solution (or classical solution) of (2.9) is a pair (uuu,yyy) ∈ C∞

p (R,Rm)×
C∞
p (R,Rp) such that all involved derivatives exist. However, in order to allow for dis-

continuities in the input and output of Σ, this concept of solution must be generalized.
Inspired by [65], we adopt the following definition of weak solution.

Definition 9. A pair (uuu,yyy) ∈ C∞
p (R,Rm)×C∞

p (R,Rp) is a weak solution of the dif-
ferential equation (2.9) if there exists ggg(t) ∈ Rp[t], degggg≤ nP−1 such that:

nP

∑
i=0

Pi

∫ nP−i
yyy(t) =

nQ

∑
i=0

Qi

∫ nP−i
uuu(t)+ggg(t), t ∈ R (2.11)

Remark 1. In our definition of weak solution, the integral equation (2.11) must be
satisfied for all t ∈ R. This is different from the weak solution definition reported in
[65] where the integral equation could be false over a sparse set (see the discussion
following Example 2.3.5 in [65]).

It should be noted that every strong solution is a weak solution (in order to see
this, simply integrate (2.9) nP times). However, the converse is generally not true. In-
deed, differently from (2.9), equation (2.11) does not impose any additional require-
ments on the continuity order of uuu (actually, as we will see in Chapter 3, equation
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(2.11) introduces some constraints among the continuity orders of the input and of
the output).

By applying the asterisk operator ∗ on [P(s) Q(s)] (see the notation paragraph at
the beginning of this chapter) a more compact way to express the integral equation
(2.11) can be obtained. Note that P∗(s) = ∑

nP
i=0 PisnP−i and Q∗(s) = ∑

nQ
i=0 QisnP−i so

that (2.11) can be written as:

P∗(
∫
)yyy(t) = Q∗(

∫
)uuu(t)+ggg(t), t ∈ R. (2.12)

Property 1. Let (uuu,yyy) be a solution of (2.11) with ggg(t) = [g1(t) . . .gp(t)]>,

gi(t) =
nP−1

∑
k=0

gi,ktk, i = 1, . . . , p.

Then, gi(t) is such that gi,k = 0, k = 0,1, . . . ,nP− ni
P− 1 where ni

P is the i-th row
degree of P(s) (see Appendix A).

Proof. Let the i-th row of (2.11) be such that ni
P < nP. Then, this row can be expressed

as:
nP

∑
k=0

pppi
k

∫ nP−k
yyy(t) =

nQ

∑
k=0

qqqi
k

∫ nP−k
uuu(t)+

nP−1

∑
k=0

gi,ktk, (2.13)

where pppi
k ∈R1×p, qqqi

k ∈R1×m denote the i-th row of Pk and Qk respectively. By defini-
tion of row degree, pppi

k = 000, k = nP,nP−1, . . . ,ni
P+1. Furthermore, since P−1(s)Q(s)

is strictly proper, it follows that qqqi
k = 000, k = nP,nP−1, . . . ,ni

P. Then, (2.13) becomes:

ni
P

∑
k=0

pppi
k

∫ nP−k
yyy(t) =

ni
P−1

∑
k=0

qqqi
k

∫ nP−k
uuu(t)+

nP−1

∑
k=0

gi,ktk, (2.14)

Evaluating the previous expression at t = 0 yields gi,0 = 0. By Lemma 3
∫ nP−ni

P yyy ∈
CnP−ni

P−1 and
∫ nP−ni

P+1 uuu ∈ CnP−ni
P . Hence, if nP− ni

P > 1, by differentiating (2.14)
and evaluating the resulting expression at t = 0, yields gi,1 = 0. Iterating this rea-
soning, thereby differentiating a total of nP− ni

P− 1 times, results in gi,k = 0, k =

0,1, . . . ,nP−ni
P−1.
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Definition 10. The behavior of Σ is the set:

B := {(uuu,yyy)∈C∞
p (R,Rm)×C∞

p (R,Rp) | (uuu,yyy) is a weak solution of (2.9) }. (2.15)

Remark 2. We identify Σ with its behavior set. Instead, we simply consider the differ-
ential equation (2.9) as a representation of Σ. In other words, once the representation
(2.9) is given, the system is uniquely specified by the set of weak solutions of (2.9).
However, the same system can have more than one input-output differential equation
representing it.

While for single-input single-output systems the differential equation (2.9) is a
unique input-output representation (up to a scaling factor) of the behavior set (and
therefore of Σ), for multi-input multi-output systems the same behavior can be repre-
sented by (apparently) infinite different differential equations. To see this, consider a
second linear time-invariant system ΣU described by the differential equation

Z(D)yyy(t) = S(D)uuu(t) (2.16)

where Z(D), S(D) are constant-coefficient differential operators associated to Z(s) =
U(s)P(s) ∈ Rp×p[s] and S(s) = U(s)Q(s) ∈ Rp×m[s] respectively where U(s) is as-
sumed to be invertible. Observe that Z−1(s)S(s) = P−1(s)Q(s) = H(s) so that, by the
hypothesis of strict properness of H(s), it follows nZ > nS. Then, we denote by BU

the behavior set of ΣU , i.e.:

BU := {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rp) | ∃gggU(t) ∈ Rp[t], deggggU ≤ nZ−1 :

Z∗(
∫
)yyy(t) = S∗(

∫
)uuu(t)+gggU(t), t ∈ R},

(2.17)
where Z∗(s) = snZU(1

s )P(
1
s ) and S∗(s) = snZU(1

s )S(
1
s ).

Theorem 1. Let U(s)∈Rp×p[s] be any unimodular matrix then B =BU , i.e. Σ=ΣU .

Theorem 1 means that the behavior of the differential equation associated to the
pair

(
P(s),Q(s)

)
is the same as that of the differential equation associated to the pair(

U(s)P(s),U(s)Q(s)
)

where U(s) is a unimodular matrix.
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Proof. We prove the result by mutual inclusion.
(B ⊂BU):
Let (uuu,yyy)∈B. First observe that Z∗(s)=K(s)P∗(s), S∗(s)=K(s)Q∗(s) where K(s)=
snZ−nPU(1

s ). The constant-coefficient differential-integral operator associated to K(s)
is K(

∫
) = ∑

nK
i=−mK

Ki
∫ i, where, if nZ − nP > 0 then nK ≤ nZ − nP otherwise if nZ −

nP ≤ 0 then nK = 0 and Ki = 0, i = nZ−nP +1, . . . ,0. It follows that

deg
(

K(
∫
)ggg
)
≤ nZ−1, degggg≤ nP−1. (2.18)

Next, by noting that mP∗ ,mQ∗ = 0, uuu,yyy ∈C∞
p ∩C−1, nK−1 ≤ nZ−1 we can employ

Proposition 1 to obtain:

K(
∫
)
(

P∗(
∫
)yyy
)
(t) = Z∗(

∫
)yyy(t), t ∈ R\S(mK)

yyy , (2.19)

K(
∫
)
(

Q∗(
∫
)uuu
)
(t) = S∗(

∫
)uuu(t), t ∈ R\S(mK)

uuu . (2.20)

Since by assumption (uuu,yyy) satisfies (2.12), it follows from (2.18)-(2.20):

Z∗(
∫
)yyy(t) = S∗(

∫
)uuu(t)+gggU(t), t ∈ R\ (S(mK)

yyy ∪S(mK)
uuu ), deggggU(t)≤ nZ−1,

(2.21)
where gggU(t) := K(

∫
)ggg(t). We now show that (2.21) actually holds for any t ∈R. This

can be done through a continuity argument. Take t0 ∈ S(mK)
yyy ∪S(mK)

uuu then

Z∗(
∫
)yyy(t0) = Z∗(

∫
)yyy(t+0 ) = S∗(

∫
)uuu(t+0 )+gggU(t

+
0 ) = S∗(

∫
)uuu(t0)+gggU(t0).

(BU ⊂B):
This part of the proof is analogous to the previous one and is therefore only sketched.
Indeed, since P∗(s)=K−1(s)Z∗(s), Q∗(s)=K−1(s)S∗(s), instead of working with the
operator associated to K(s), this time we deal with the operator W (

∫
) = ∑

nW
i=mW

Wi
∫ i

associated to W (s) := K−1(s) = snP−nZU−1( 1
s ). It is important to note that, since U(s)

is unimodular, the inverse of U(s) is still a polynomial matrix which implies that we
can still come up with a bound on nW as done in the previous part for nK . Then, using
Proposition 1, in the same way as done above, allows to conclude the proof.
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Remark 3. The previous result is the analogous of Theorem 2.5.4 presented in [65].
However, remark that the proof we present here is explicit, i.e. our definition of weak
solution, coupled with the properties of C∞

p , allow us to explicitly show that the in-
tegral equation defining weak solutions for one differential equation is satisfied by
any pair in the behavior set of the other differential equation. This is opposite to
[65] where the proof is presented only for the C∞-part of the behavior set and then
extended to the rest of the behavior via convergence arguments.

In Definition 9, we introduced what it means for a pair (uuu,yyy) ∈ C∞
p (R,Rm)×

C∞
p (R,Rp) to be a weak solution of the differential equation (2.9). In practice, the ra-

tionale behind such definition can be considered to be the following. Given a strong
(classical) solution of (2.9), we integrate expression (2.9) nP times. It is clear, that
such an operation results in the integral expression (2.11) which we then interpret
as an equation generalizing (2.9). The reason for such a choice is twofold. Firstly, a
strong solution is still a solution of (2.9) (i.e. the set of strong solutions is preserved),
and secondly, working with an integral equation is advantageous as it allows to over-
come the smoothness constraints imposed by (2.9) on the input uuu thereby allowing
for solutions that are not continuous.

As we described above, the result of integrating equation (2.9) a total of nP times,
is captured by the asterisk ∗ operator applied on [P(s) Q(s)]. However, we should note
that there is another way to end-up with an integral equation that preserves the set of
strong solutions. This variant is captured by the bar ¯ operator applied on [P(s) Q(s)]
(see the notation paragraph at the beginning of this chapter). Indeed, as we are going
to see next, we can consider each of the scalar equations in (2.9) separately and
integrate each of these a number of times equal to the highest-order derivative that
appears in each of them, which, in general, is lower than nP. Not surprisingly, this
new definition of weak solution is equivalent to the one we introduced above.
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Recall that

P̄(s) =


sn1

P

sn2
P

. . .

snp
P

P(
1
s
); Q̄(s) =


sn1

P

sn2
P

. . .

snp
P

Q(
1
s
), (2.22)

where n1
P,n

2
P, . . . ,n

p
P denote the row degrees of P(s), nP = max{n1

P,n
2
P, . . . ,n

p
P}.

Property 2. Consider the set

B̄ := {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rp) | ∃ḡgg(t) ∈ Rp[t], deg ḡggi(t)≤ ni
P−1, i = 1, . . . , p :

P̄(
∫
)yyy(t) = Q̄(

∫
)uuu(t)+ ḡgg(t), t ∈ R}

,

(2.23)
then B = B̄.

Proof. (B ⊂ B̄): Let (uuu,yyy) ∈ B. Observe that P̄(s) = K(s)P∗(s) where K(s) =
diag{ 1

snP−n1
P
, 1

snP−n2
P
, . . . , 1

snP−np
P
}. The constant-coefficient operator associated to K(s)

is K(
∫
) = ∑

0
i=−mK

Ki
∫ i where nK = 0 because of the definition nP = maxi{ni

P}. Our
goal is to evaluate the expression:

K(
∫
)
(
P∗(
∫
)yyy
)
(t) = K(

∫
)
(
Q∗(

∫
)uuu+ggg

)
(t) (2.24)

In order to do so, we consider each term in (2.24) separately and by using Proposition
1, we obtain:

K(
∫
)P∗(

∫
)yyy(t) = P̄(

∫
)yyy(t), t ∈ R\S(mK)

yyy , (2.25)

K(
∫
)Q∗(

∫
)uuu(t) = Q̄(

∫
)uuu(t), t ∈ R\S(mK)

uuu . (2.26)

Next, remark that

K(
∫
)ggg(t) =

[
DnP−n1

Pggg1 DnP−n2
Pggg2 . . . DnP−np

Pgggp

]>
(t), (2.27)
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where, since by hypothesis degggg(t)≤ nP−1, it follows deg
(
K(
∫
)ggg
)

i(t)≤ ni
P−1, i=

1, . . . , p. Setting ḡgg(t) := K(
∫
)ggg(t) ∈ Rp[s], and substituting (2.25) - (2.26) in (2.24)

we obtain:

P̄(
∫
)yyy(t) = Q̄(

∫
)uuu(t)+ ḡgg(t), t ∈R\(S(mK)

yyy ∪S(mK)
uuu ), deg ḡggi ≤ ni

P−1, i = 1, . . . , p.
(2.28)

Finally, by a continuity argument we can show that equation (2.28) is true for any
t ∈ R. Take t0 ∈ (SmK

yyy ∪SmK
uuu ) then:

P̄(
∫
)yyy(t0) = P̄(

∫
)yyy(t+0 ) = Q̄(

∫
)uuu(t+0 )+ ḡgg(t+0 ) = Q̄(

∫
)uuu(t0)+ ḡgg(t0).

(B̄ ⊂B): Let (uuu,yyy) ∈ B̄. Clearly, P∗(s) =W (s)P̄(s), Q∗(s) =W (s)Q̄(s) where
W (s) := K−1(s) = diag{snP−n1

P ,snP−n2
P , . . . ,snP−np

P}. The integral operator associated
to W (s) is W (

∫
) = ∑

nW
i=0Wi

∫ i. Then, since only integral operators appear, the expres-
sion:

W (
∫
)
(
P̄(
∫
)yyy
)
(t) =W (

∫
)
(
Q̄(
∫
)uuu+ ḡgg

)
, (2.29)

is certainly equivalent to:

P∗(
∫
)yyy(t) = Q∗(

∫
)uuu+ggg(t), t ∈ R, degggg≤ nP−1. (2.30)

We apply the previous result in the proof of the next property.

Property 3. Let (uuu,yyy) ∈B then yyy ∈C0.

Proof. Recall that there always exists a unimodular matrix U(s) ∈ Rp×p[s] such that
PR(s) =U(s)P(s) is row reduced (see Definition 29 and Theorem 10 in Appendix A).
Hence, it follows from Theorem 1 that the behavior of (2.9) is the same as that of

PR(D)yyy(t) = QR(D)uuu(t)

where QR(s) = U(s)Q(s). For simplicity of notation we will next drop the subscript
R and we will refer to equation (2.9) assuming that P(s) is row reduced.
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Using Property 2, (uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rp) is a weak solution of (2.9) if
there exists ḡgg ∈ Rp[s], with deg ḡi ≤ ni

P−1 such that:

P̄(
∫
)yyy(t) = Q̄(

∫
)uuu(t)+ ḡgg(t), t ∈ R, (2.31)

where expressions for P̄(s) and Q̄(s) are given in (2.22). Let us set P̄(s)=∑
nP
i=0 P̄isnP−i,

Q̄(s) = ∑
nP−1
i=0 Q̄isnP−i. Observe that

P(s) =


sn1

P

sn2
P

. . .

snp
P

Phr+Pl(s)

where Phr is the row degree coefficient matrix of P(s) (see Appendix A) and Pl(s)
a suitable polynomial matrix whose degree of the i-th row is less than ni

P. Hence, it
follows that P̄nP = Phr and, since P(s) is row reduced, P̄nP is invertible. This allows to
write (2.31) as:

yyy(t) =−
nP−1

∑
i=0

P−1
hr P̄i

∫ nP−i
yyy(t)+

nP−1

∑
i=0

P−1
hr Q̄i

∫ nP−i
uuu(t)+ ḡgg(t), t ∈ R, (2.32)

from which, by virtue of Lemma 3, the thesis follows.

By comparing definitions of B and B̄ we see that, in defining weak solutions,
what really matters is integrating each i-th row at least ni

P times. Integrating more
than ni

P times will not alter the behavior set. Based on this observation, we introduce
a third equivalent definition of weak solution for the differential equation (2.9). Let

K(s) := diag{sk, . . . ,sk},
kP∗(s) :=K(s)P∗(s), kQ∗(s) := K(s)Q∗(s).

where k ∈ N>0. Then, the following property follows.

Property 4. Consider the set

kB := {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rp) | ∃ kggg(t) ∈ Rp[t], deg kggg≤ nP + k−1 :

kP∗(
∫
)yyy(t) = kQ∗(

∫
)uuu(t)+ kggg(t), t ∈ R}

,

(2.33)
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then B = kB.

Proof. Once again we perform the proof by mutual inclusion.
(B ⊂ kB): Since (uuu,yyy) ∈B then P∗(

∫
)yyy(t) = Q∗(

∫
)uuu(t)+ggg(t), degggg≤ nP−1,

t ∈ R. Clearly,

K(
∫
)
(
P∗(
∫
)yyy
)
= kP∗(

∫
)yyy,

K(
∫
)
(
Q∗(

∫
)uuu
)
= kQ∗(

∫
)uuu,

K(
∫
)ggg = kggg, deg kggg≤ nP + k+1,

hence, kP∗(
∫
)yyy(t) = kQ∗(

∫
)uuu(t)+ kggg(t), t ∈ R, i.e. (uuu,yyy) ∈ kB.

(kB ⊂ B): Recall that, if (uuu,yyy) ∈ kB then kP∗(
∫
)yyy(t) = kQ∗(

∫
)uuu(t) + kggg(t),

deg kggg≤ nP + k−1, t ∈ R. It follows from Proposition 1 that:

K−1(
∫
)
( kP∗(

∫
)yyy
)
(t) = P∗(

∫
)yyy(t), t ∈ R\S(k)yyy ,

K−1(
∫
)
( kQ∗(

∫
)uuu
)
(t) = Q∗(

∫
)uuu(t), t ∈ R\S(k)uuu ,

K−1(
∫
) kggg = ggg, degggg≤ nP−1.

(2.34)

Hence, P∗(
∫
)yyy(t) =Q∗(

∫
)uuu(t)+ggg(t), t ∈R\

(
S(k)yyy ∪S(k)uuu

)
. By means of the now usual

continuity argument it is easy to show that the last relation is true for any t ∈ R.

We will employ this property in the next section.

2.4 Behavior of input-state-output representations

It is well known that we can always associate to the matrix transfer function H(s) of
Σ an input-state-output representation:

ẋxx = Axxx+Buuu (2.35)

yyy =Cxxx, (2.36)

such that H(s) = C(sI−A)−1B and where xxx ∈ C∞
p (R,Rn) denotes the state of the

system, uuu ∈ C∞
p (R,Rm), yyy ∈ C∞

p (R,Rp) are the input and output respectively, A ∈
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Rn×n and B ∈ Rn×m, C ∈ Rp×n. We assume that the pair (C,A) is observable and
(A,B) is controllable with rankC = p.

Remark that we introduced the input-state-output representation (2.35)-(2.36)
by relying on the equality between transfer matrices P−1(s)Q(s) = C(sI −A)−1B.
Clearly, this establishes a link between the input-output representation (2.9) of Σ and
(2.35)-(2.36). However, it is at this point unclear whether the system represented by
(2.35)-(2.36) is actually Σ itself. In order to address this problem, we should at first
introduce what is the behavior of an input-state-output representation. This is done in
what follows.

Since equation (2.36) is a static map, i.e. it does not contain any derivatives, we
will for the moment focus only on (2.35). This differential equation can be written in
the form:

(DI−A)xxx = Buuu. (2.37)

Clearly, since sI − A is invertible, and because (sI − A)−1B is strictly proper, we
can interpret (2.35) as a differential equation with input uuu and output xxx. Therefore,
according to Definition 9 a pair (uuu,xxx) ∈C∞

p (R,Rm)×C∞
p (R,Rn) is a weak solution

of (2.35) if there exists a constant ccc ∈ Rn such that

xxx(t) = A
∫

xxx(t)+B
∫

uuu(t)+ ccc, t ∈ R. (2.38)

Clearly, our definition of behavior set applies to (2.35)-(2.36). Hence, we are
next going to introduce what is the behavior of this model. Before doing so, we
should first note that we view (uuu,yyy) as the raison d’être of (2.35)-(2.36) while we
simply interpret xxx as an auxiliary variable. What we mean by this is that we are
not directly interested in xxx, nevertheless this variable is still taken into account as it
allows us to describe the relation between (uuu,yyy) in a convenient way, namely with a
first order differential equation. For this reason, we call (uuu,yyy) the manifest variables
while we refer to xxx as the latent variable. This distinction between variables justifies
the following definition of behavior.

Definition 11. The manifest behavior Bi(s)o of the system described by equations
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(2.35)-(2.36) is the set

Bi(s)o := {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rp) | ∃xxx ∈C∞
p (R,Rn),ccc ∈ Rn :

(uuu,xxx) is a solution of (2.38) and yyy(t) =Cxxx(t), t ∈ R}
(2.39)

The next Theorem shows that B = Bi(s)o.

Theorem 2. Consider the input-output representation (2.9) where P−1(s)Q(s) is
strictly proper and P(s),Q(s) are left coprime matrices. Let the input-state-output
representation (2.35)-(2.36) be a minimal realization of P−1(s)Q(s) with rankC = p.
Then, B = Bi(s)o.

Proof. First, consider the input-state-output representation. Since (C,A) is observ-
able and rankC = p, there exists a change of coordinates xxx = T www such that the state-
space representation (2.35)-(2.36) is transformed into the observability form

ẇww = Aowww+Bouuu, (2.40)

yyy =Cowww, (2.41)

where the expressions for matrices Ao, Co are given in (B.9)-(B.12) and Bo = T−1B
has no specific structure. Recall that we denote by (v1,v2, . . . ,vp) the ordered set of
Kronecker invariants of the pair (C,A), vi j, i, j = 1, . . . , p are defined in (B.6) and
ai j,k, k = 1, . . . ,vi j are the characteristic parameters of (A,C) (see Appendix B and in
particular (B.5)).

It is clear that the manifest behavior of (2.40)-(2.41) is equal to Bi(s)o (i.e. a
change of coordinates does not affect the behavior set). Hence, we will now express
Bi(s)o in terms of representation (2.40)-(2.41). Let v denote the maximum observ-
ability index of pair (A,C), i.e. v := max{v1,v2, . . . ,vp} and consider the integral
equation: ∫ v−1

www(t) = Ao

∫ v
www(t)+Bo

∫ v
uuu(t)+ γγγtv−1, t ∈ R. (2.42)

By virtue of Property 4 we can express Bi(s)o as:

Bi(s)o = {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rp) | ∃www ∈C∞
p (R,Rn),γγγ ∈ Rn :

(uuu,www) is a solution of (2.42) and yyy(t) =Cowww(t), t ∈ R}.
(2.43)
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We are now going to leverage the special structure of (Co,Ao) in order to observe the
state, i.e. our goal is to deduce an expression of www in terms of uuu and yyy only. The i-th
row of (2.41), i = 1, . . . , p, yields yi = wv1+···+vi−1+1 from which we deduce yi ∈ C0

and ∫ v−1
wv1+···+vi−1+1 =

∫ v−1
yi. (2.44)

Next, we consider the v1 + · · ·+ vi−1 + 1 row of the integral equation (2.42). Re-
mark that we can compactly refer to this row as (see also (B.13)): ccci

o
∫ v−1 www(t) =

ccci
o
(
Ao
∫ v www(t)+Bo

∫ v uuu(t)+ γγγtv−1
)
. This yields:

∫ v−1
wv1+···+vi−1+1(t) =

∫ v
wv1+···+vi−1+2(t)+ ccci

oBo

∫ v
uuu(t)+ ccci

oγγγtv−1. (2.45)

We substitute (2.44) in (2.45) and, since v ≥ vi and yi ∈ C0, by differentiating the
resulting expression we get:

∫ v−1
wv1+···+vi−1+2(t) =

∫ v−2
yi(t)− ccci

oBo

∫ v−1
uuu(t)− ccci

oγγγ(v−1)tv−2. (2.46)

By iterating this reasoning we end up with the following expression for each of the
components of www:

∫ v−1
wv1+···+vi−1+k(t) =

∫ v−k
yi(t)− ccci

oBo

∫ v−k+1
uuu(t)− ccci

oAoBo

∫ v−k+2
uuu(t)− . . .

− ccci
oAk−2

o Bo

∫ v−1
uuu(t)−

k−2

∑
j=0

ccci
oA j

oγγγ

[ k− j−1

∏
l=1

(v− l)
]
tv−k+ j,

(2.47)
where i = 1, . . . , p, v0 := 0, k = 1, . . . ,vi.

It is easy to verify that substituting expressions (2.47), and its integral, for i =
1, . . . , p, k = 1, . . . ,vi−1 (remark that we excluded the case k = vi) back into the (v1+

· · ·+ vi−1 + k)-th row of (2.42) results into a set of identities. However, performing
the same substitution into the p remaining rows of (2.42), i.e. the rows located at
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positions v1 + · · ·+ vi, i = 1, . . . , p results into:∫ v−vi

yi−
vi−2

∑
j=0

ccci
oA j

oBo

∫ v−vi+ j+1
uuu−

vi−2

∑
j=0

ccci
oA j

oγγγ

[ k− j−1

∏
l=1

(v− l)
]
tv−k+ j =

aaav1+···+vi
o


∫ v y1∫ v−1 y1− ccc1

oB
∫ v uuu− ccc1

oγγγtv−1

...


︸ ︷︷ ︸

www

+ccci
oAvi−1Bo

∫ v
uuu+ ccci

oAvi−1
γγγtv−1,

(2.48)

where aaav1+···+vi
o denotes the v1 + · · ·+ vi row of Ao, i.e. aaav1+···+vi

o = [aaai j] ∈ R1×n, j =
1, . . . , p with

aaai j =
[
ai j,1 ai j,2 . . . ai j,vi j 0v j−vi j

]
∈ R1×v j . (2.49)

It is now only a matter of appropriately re-ordering terms before recognizing that
equation (2.48), i = 1, . . . , p, is the i− th row of:

P∗g (
∫
)yyy(t) = Q∗g(

∫
)uuu(t)+ggg(t), degggg≤ v−1, (2.50)

with P∗g (s) = svPg(1
s ), Q∗g(s) = svQg(

1
s ) where Pg(s) is given by (B.19)-(B.21) and

Qg(s) is described in (B.22)-(B.27). This means (Pg(s),Qg(s)) is a pair of matrices in
the canonical Beghelli-Guidorzi input-output form. Further, recall that (2.50) is the
definition of weak solution (cf. Definition 9 and (2.12)) of the input-output equation

Pg(D)yyy = Qg(D)uuu. (2.51)

Then, it follows from (2.50) that Bi(s)o coincides with the behavior of the differential
equation associated to (Pg(s),Qg(s))

It remains to be shown that (Pg(s),Qg(s)) is the Beghelli-Guidorzi canonical form
of P(s),Q(s). To do so, remark that, since Pg(s) is row reduced, then degdetPg =

∑
p
i=1 vi = n. Furthermore, clearly, H(s) = C(sI−A)−1B = P−1

g (s)Qg(s). Hence, by
Theorem 13 we deduce (Pg,Qg) is left coprime. Then, since H(s) = P−1

g (s)Qg(s) =
P−1(s)Q(s), by Theorem 14 there exits a unimodular matrix U(s)∈Rp×p(s) such that
Pg(s) =U(s)P(s), Qg(s) =U(s)Q(s). Hence, (Pg(s),Qg(s)) is the Beghelli-Guidorzi
form of P(s),Q(s). Therefore, by virtue of Theorem 1 we deduce that B = Bi(s)o.
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Remark 4. The construction of the input-output representation (2.51) starting from
the state-space model (2.40)-(2.41) has been presented originally in [22]. There, it
was assumed that all involved signals are strong solutions of the differential equation
(2.40)-(2.41). Here, we extended the proof to the more general case in which weak
solutions of (2.40)-(2.41) are considered.

Remark 5. The components of polynomial ggg(t) in (2.50) are of form

gi(t) =
v−1

∑
k=v−vi

gi,k
[ v−k−1

∏
j=1

(v− j)
]
tk, (2.52)

where gi,k ∈ R are determined by the entries of the product

Mγγγ = G =


ggg1

ggg2
...

gggp

 , gggi =


gi,v−1

gi,v−2
...

gi,v−vi

 , (2.53)

where M is the invertible matrix given in (B.25)-(B.27). Note that, since M is struc-
turally invertible, relations (2.52),(2.53) also allow to recover γγγ given a polynomial
ggg(t) = [g1(t) g2(t) . . .gp(t)]> where gi(t) are of form (2.52) (see also Property 1).

Theorem 2 means that, under the given assumptions, input-output and input-state-
output representations are equivalent, i.e. they have the same behavior set. This means
that we can switch between one or the other representation at will. We will exploit
this result in Chapter 4.

2.5 Conclusions

In this chapter, we have introduced the space of vector-valued C∞
p functions. Then,

we defined weak solutions together with the associated concept of C∞
p behavior for

input-output representations. Furthermore, we showed that the behavior set admits
three equivalent definitions. Although being equivalent, according to the intended
usage, working with one definition could be more or less advantageous if compared
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with the others. In this regard, we showed that the representation of the behavior set
given in Property 2 is especially useful when one needs an expression of yyy, which,
for instance, is needed when studying continuity properties of (uuu, yyy).

In the last part of the chapter, we extended the notion of C∞
p behavior to input-

state-output representations. In Theorem 2, we showed that, under natural assump-
tions, input-output and input-state-output representations are equivalent, i.e. they
have the same behavior set. This result, will play a role in the derivation of the stable-
inversion procedure described in Chapter 4.



Chapter 3

Input-output jumps for scalar
systems

3.1 Introduction

Classical control theory relies on linear constant-coefficient differential equations and
Laplace transforms for describing and analyzing the dynamics of control systems
(cf. [9, 40, 16]). However, in explaining the transient response, classical treatments
encounter difficulties or pitfalls in the case of non-zero (discontinuous) initial con-
ditions [34]. In particular, it is well known that, when initial conditions at time 0+

are available, the use of straightforward Laplace properties, such as e.g. the trans-
form of the (usual) derivative function, allow to easily find the transform of the total
response thereby allowing to obtain the explicit expression of the (output) response
over R≥0. Nevertheless, initial conditions are usually known only at time 0− (also
called pre-initial conditions) and this causes a difficulty.

In certain cases, this difficulty is worked around by means of physical insights.
For instance, this is the case of certain mechanical and electrical systems, where con-
ditions at time 0+ (also called post-initial conditions) can be derived from the pre-
initial conditions. In other cases, an alternative tentative approach achieving the same
goal consists in obtaining the post-initial conditions through the so-called technique
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of impulse matching as presented with an example in [57]. Nevertheless, the main-
stream way to determine the total response is to directly use the pre-initial conditions
(cf. e.g. [9]). This is achieved by using the L− definition of the Laplace transform
and by relying on generalized derivatives rather than ’usual’ derivatives (see [28] and
[34]). However, the use of generalized derivatives as done in this context appears
somewhat unsatisfactory or convolute [21, 35, 1].

Here, by relying on the C∞
p behavioral approach introduced in Chapter 2, we de-

rive a simple relation between the initial conditions at time 0+ with those at time 0−.
We remark that working in C∞

p is of crucial importance for achieving this result. In-
deed, the assumption f ∈C∞

p (R,R) guarantees that right and left limits exists and are
bounded everywhere on the time axis for f itself and for any of its derivatives Di f ,
∀i≥ 1. This, in turn, guarantees that initial conditions do exists and are bounded for
any possible system trajectory. This situation is opposite to the more general Lloc1 be-
havioral theory [65] whose function space of locally integrable functions does neither
guarantee the existence nor the boundedness of left and right limits thereby prevent-
ing the development of the approach herein described.

Even though our results are valid for multivariable systems, for the sake of sim-
plicity, we present our study for scalar systems only. Specifically, considering a sys-
tem whose order and relative degree are n and r = n−m respectively, we employ the
C∞
p behavioral approach in order to relate the jump discontinuities of the input and

its derivatives up to the order m− 1 to the jump discontinuities of the output and its
derivatives up to the order n− 1 (cf. Proposition 2 and Corollary 1). Indeed, as we
saw in the previous chapter, when jump discontinuities occur, the differential equa-
tion (2.9) cannot be satisfied in the usual sense over the entire time axis because the
input and the output cannot be differentiated up to the required orders. To overcome
this obstruction, in Chapter 2, we introduced the concept of weak solution (see Def-
inition 9) where the integral equation (2.11) replaces the differential equation (2.9).
In this way the behavior of the system is defined as the set of all input-output (sig-
nal) pairs that are weak solutions of the differential equation, i.e. the input-output
pairs actually satisfy (in the usual sense) the corresponding integral equation over the
entire time axis (cf. Definition 10).
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Here, we deduce the input-output jump relations (3.4)-(3.5) by taking left and
right limits on the kth derivative of the integral equation characterizing the weak so-
lution at each given time instant, not only at the conventional origin time 0. These
relations are also simplified in (3.11) by introducing a lower triangular Toeplitz ma-
trix (defined by Markov parameters) that directly relates the output jumps to the input
ones. The found relations permit to easily compute the output conditions at time 0+

from the pre-initial conditions (involving both the input and the output at time 0−)
and the input conditions at time 0+. As a possible application, we employ the found
relations in order to solve the initial conditions problem (cf. Problem 1) in a behav-
ioral setting, i.e. to determine the total response starting from an arbitrary system
evolution.

Chapter organization: The rest of the chapter is organized as follows. In Section
2 we specialize some of the results introduced in Chapter 2 to the case of single-
input single-output systems. Furthermore, we introduce some additional key notions
of behavioral theory, such as e.g. the input-output representation (cf. Theorem 3),
which will be useful in solving Problem 1. The third section is focused on the main
result, i.e. the input-output jump relations which are expressed in vector form by
Proposition 2 and Corollary 1. The found relations are applied to solve the initial
conditions problem (i.e. Problem 1) in Section 4. A result used in this solution is
Corollary 2. It provides the initial conditions of the free response at time 0+ from
the knowledge of the pre-initial conditions. An example of solution of Problem 1 is
reported in Section 5.

The content of this chapter is based on [31].

Notation: The Laplace transform of f is denoted by L [ f (t)] or F(s).

3.2 Preliminaries

As in the previous chapter, we consider the linear time-invariant system Σ described
by the differential equation (2.9). However, since we are here interested in single-
input single-output systems only, in order to favor readability, we express (2.9) in a
more suitable notation for scalar systems.
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Let Σ be the continuous-time scalar linear system with input u ∈ C∞
p (R,R) and

output y ∈C∞
p (R,R) described by the differential equation

a(D)y(t) = b(D)u(t), (3.1)

where a(D), b(D) are the constant-coefficients differential operators associated to
the coprime polynomials a(s) = ∑

n
i=0 aisi, b(s) = ∑

m
i=0 bisi ∈ R[s] with m ≤ n. The

transfer function of Σ is

H(s) =
b(s)
a(s)

=
bmsm +bm−1sm−1 + · · ·+b0

ansn +an−1sn−1 + · · ·+a0
.

According to Definition 9, a pair (u,y) ∈C∞
p (R,R)2 is a weak solution of

n

∑
i=0

aiDiy(t) =
m

∑
i=0

biDiu(t) (3.2)

if there exists a polynomial g∈R[s] with degg≤ n−1 for which the integral equation

n

∑
i=0

ai

∫ n−i
y(t) =

m

∑
i=0

bi

∫ n−i
u(t)+g(t) (3.3)

is satisfied for all t ∈ R. Following Definition 10 the behavior of Σ is

B := { (u,y) ∈C∞
p (R,R)2 : (u,y) is a weak solution of (3.2) } .

A property on the continuity order of the output is the following.

Property 5. Let (u,y) ∈B, then y ∈Cr−1.

The poles of Σ are the roots (with multiplicity) of a(s). The associated concept of
pole modes can be then introduced.

Definition 12. [Pole modes of Σ] Given a real (complex) pole p ∈ R (p = σ ± jω ∈
C) with multiplicity µ , the associated modes are

ept , tept , . . . , tµ−1ept (eσt cos(ωt),eσt sin(ωt), . . .

, tµ−1eσt cos(ωt), tµ−1eσt sin(ωt)
)
.

All the pole modes of Σ are denoted by mi(t), i = 1, . . . ,n.
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Denote by h(t) the analytical extension over R of L −1[H(s)]. Then, an explicit
(input-output) representation of the system behavior is the following.

Theorem 3. [Behavior’s input-output representation] Define the following set

Bi/o := {(u,y) ∈C∞
p (R)2 : y(t) =

∫ t

0
h(t− v)u(v)dv

+
n

∑
i=1

fimi(t), t ∈ R, fi ∈ R}.

Then Bi/o = B.

For a proof of Proposition 5 and Theorem 3 see [12].

3.3 Input-Output jump relations

Form a causal viewpoint, jump discontinuities on the input and its derivatives cause
jump discontinuities on the output and its derivatives. A set of algebraic relations
between them is presented in the following result.

Proposition 2. [Input-output jump relations] Let be given any (u,y) ∈B. Then, at
any time t ∈R the possible input and output jump discontinuities (up to the (m−1)th
and (n−1)th derivative order respectively) satisfy the following relations:

y(i)(t+) = y(i)(t−), i = 0,1, . . . ,r−1 (void if r = 0) (3.4)
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an 0 . . . 0

an−1 an
. . .

...
...

. . .
. . . 0

ar+1 . . . an−1 an




y(r)
(
t+
)
− y(r)

(
t−
)

y(r+1)
(
t+
)
− y(r+1)

(
t−
)

...

y(n−1)
(
t+
)
− y(n−1)

(
t−
)

=


bm 0 . . . 0

bm−1 bm
. . .

...
...

. . .
. . . 0

b1 . . . bm−1 bm




u
(
t+
)
−u
(
t−
)

u(1)
(
t+
)
−u(1)

(
t−
)

...

u(m−1)
(
t+
)
−u(m−1)

(
t−
)


(void if m = 0).

(3.5)

Proof. Consider any pair (u,y) ∈B and choose any time t ∈R. Then, relations (3.4)
derive straightforwardly from Proposition 5. (The output has always continuity order
r−1.) Pair (u,y) satisfies the integral equation (3.3) which can be written as

n

∑
i=0

ai

∫ n−i
y(v) =

n

∑
i=0

bi

∫ n−i
u(v)+g(v), v ∈ R (3.6)

having set bi = 0, i = m+1, . . . ,n for the case r ≥ 1.

Consider any k ∈ N, 0≤ k ≤ n−1 and take the kth derivative of (3.6). By virtue
of Lemma 4 there exists a neighborhood of t, Ik(t), for which this derivative can be
expressed as

n

∑
i=0

ai

∫ n−i−k
y(v) =

n

∑
i=0

bi

∫ n−i−k
u(v)+Dkg(v),

v ∈ Ik(t)\{t}.
(3.7)

By some algebraic manipulations and by taking into account that an integral operator
having a negative exponent is actually a derivative operator (cf. Definition 5), (3.7) is
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written as
k

∑
i=0

an−iDk−iy(v)−
k

∑
i=0

bn−iDk−iu(v) =−
n−(k+1)

∑
i=0

ai

∫ n−i−k
y(v)+

n−(k+1)

∑
i=0

bi

∫ n−i−k
u(v)+Dkg(v),

v ∈ Ik(t)\{t}.

(3.8)

By Lemma 3, the right-hand side of (3.8) is a sum of continuous functions. Hence,
take the right and left limits of (3.8) at t to obtain ∑

k
i=0 an−iDk−iy(t+)−∑

k
i=0 bn−iDk−iu(t+) = c

∑
k
i=0 an−iDk−iy(t−)−∑

k
i=0 bn−iDk−iu(t−) = c

(3.9)

with c ∈ R,

c =−
n−(k+1)

∑
i=0

ai

∫ n−i−k
y(t)+

n−(k+1)

∑
i=0

bi

∫ n−i−k
u(t)

+Dkg(t).

Form the difference of the equations in (3.9) we eventually have

k

∑
i=0

an−i

(
Dk−iy(t+)−Dk−iy(t−)

)
=

k

∑
i=0

bn−i

(
Dk−iu(t+)−Dk−iu(t−)

)
, 0≤ k ≤ n−1.

(3.10)

When r = 0, note that the above relations (3.10) are the scalar version of the vector
relation in (3.5).

Now, consider the case r ≥ 1. Relations (3.10) are still valid, in particular on the
index subset r ≤ k ≤ n− 1. By taking into account that Diy(t+)−Diy(t−) = 0 and
bn−i = 0, i = 0, . . . ,r− 1 (cf. (3.4) and the assumption on (3.6) respectively), these
relations can be simplified as follows:

k−r

∑
i=0

an−i

(
Dk−iy(t+)−Dk−iy(t−)

)
=

k

∑
i=r

bn−i

(
Dk−iu(t+)−Dk−iu(t−)

)
, r ≤ k ≤ n−1.
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The above scalar relations can be then rewritten in vector form to obtain the input-
output jump relations (3.5) and this concludes the proof.

Remark 6. The set of relations (3.4) and the vector equation (3.5) form a set of
n scalar linear relations. When r = 0 the set (3.4) is empty whereas when m = 0
equation (3.5) is absent.

Let us introduce the Markov parameters of Σ, hi, i∈N for which H(s)=∑
∞
i=0 his−i

(see [10]). The next result is a useful technical lemma. (Without loss of generality we
assume an = 1 in the following.)

Lemma 6. The first n+ 1 Markov parameters of Σ can be recursively obtained by
means of the following relations:

hi = 0, 0≤ i≤ r−1, (void if r = 0);hr = bm

hr+i = bm−i−∑
i
j=1 an− jhr+i− j, 1≤ i≤ m

.

For brevity a proof is omitted. (It can be found in [10] when r = 1.)

Corollary 1. Let be given any (u,y) in B and any time t ∈R. Then, the input-output
jump relations (3.5) can also be expressed as

y(r)
(
t+
)
− y(r)

(
t−
)

y(r+1)
(
t+
)
− y(r+1)

(
t−
)

...

y(n−1)
(
t+
)
− y(n−1))

(
t−
)

=


hr 0 . . . 0

hr+1 hr
. . .

...
...

. . .
. . . 0

hn−1 . . . hr+1 hr




u
(
t+
)
−u
(
t−
)

u(1)
(
t+
)
−u(1)

(
t−
)

...

u(m−1)
(
t+
)
−u(m−1)

(
t−
)


. (3.11)

A proof of the above corollary is omitted for brevity.
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Remark 7. It is worth stressing that the input-output jump relations presented in
Proposition 2 and Corollary 1 hold at any instant of the time axis not only at the
origin time 0. From this viewpoint, the time 0 has nothing special. Indeed, jump dis-
continuities in the input-output evolution can happen at any time instant for which
the found relations still hold. Moreover, if at a given time t the input has not discon-
tinuities up to the derivative of order m−1, i.e. u(i)(t−) = u(i)(t+), i = 0,1, . . . ,m−1
then by the input-output relations (3.4)-(3.5) it follows in turn that the output too
has no discontinuities up to the derivative of order n− 1, i.e. y(i)(t−) = y(i)(t+),
i = 0,1, . . . ,n− 1. When this happens for some neighborhood N of t the input u ∈
Cm−1(N,R) and y ∈Cn−1(N,R) (cf. Proposition 4 in [12]).

3.4 Application to the initial conditions problem

As an application of the found input-output jump relations (3.4)-(3.5) we consider
the following initial conditions problem.

Problem 1. [The initial conditions problem] Let be given any input-output pair
(u0,y0) ∈ B whose signals u0, y0 are known for t < 0 and suppose that, at time
t = 0, a new input u1(t), t ≥ 0 is applied to Σ. Find the corresponding output y1(t),
t ≥ 0.

We propose the following solution to this problem. Let the signals u0|u1, y0|y1 be
defined as

u0|u1(t) :=

u0(t) if t < 0

u1(t) if t ≥ 0
, y0|y1(t) :=

y0(t) if t < 0

y1(t) if t ≥ 0

so that evidently (u0|u1,y0|y1) ∈ B. By Theorem 3 there exist real coefficients fi,
i = 1, . . . ,n for which

y0|y1(t) =
∫ t

0
h(t− v)u0|u1(v)dv+

n

∑
i=1

fimi(t), t ∈ R. (3.12)

Define
y1d(t) :=

∫ t

0
h(t− v)u1(v)dv, t ≥ 0 (3.13)
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and

y1e(t) :=
n

∑
i=1

fimi(t), t ∈ R (3.14)

so that (3.12) implies
y1(t) = y1d(t)+ y1e(t), t ≥ 0, (3.15)

i.e. the total response of Σ is the sum of the forced response y1d(t) and the free (or
natural) response y1e(t) (cf. [33]). The forced response is then determined by the
convolution of h(t) and u1(t) (or equivalently by L −1[H(s)U1(s)] with U1(s) :=
L [u1(t)]) whereas the free response can be determined by means of the input-output
jump relations (3.4)-(3.5). Indeed, relation (3.12) holds for any u1 ∈C∞

p (R≥0), hence
if u1(t) = 0, t ≥ 0 it follows that (u0|0,y0|y1e) ∈B. By applying Proposition 2 and
Corollary 1 to pair (u0|0,y0|y1e) the following straightforward result is obtained.

Corollary 2. Let us consider the assumptions of Problem 1. Then, the free response
y1e(t) (3.14) has initial conditions at time 0+ given by the following relations:

y(i)1e(0
+) = y(i)0 (0−), i = 0,1, . . . ,r−1 (void if r = 0) (3.16)


y(r)1e (0

+)

y(r+1)
1e (0+)

...

y(n−1)
1e (0+)

=


y(r)0 (0−)

y(r+1)
0 (0−)

...

y(n−1)
0 (0−)



−


hr 0 . . . 0

hr+1 hr
. . .

...
...

. . .
. . . 0

hn−1 . . . hr+1 hr




u0(0−)

u(1)0 (0−)
...

u(m−1)
0 (0−)


(void if m = 0) (3.17)

Proof. Relations (3.16) are just those in (3.4) applied to the output y0|y1e at time 0.
On the other hand, the vector equality (3.17) follows from that in (3.11) by taking
into account that the initial conditions of the input u0|0 at time 0+ are all zeros.
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A way to determine the free response is to compute the coefficients fi’s appearing
in (3.14). Take the derivatives of y1e(t) up to the order n−1 and evaluate them at time
0+ to obtain the following algebraic linear equation in the unknowns fi’s:

m1(0+) . . . mn(0+)

m(1)
1 (0+) . . . m(1)

n (0+)
...

...

m(n−1)
1 (0+) . . . m(n−1)

n (0+)




f1

f2
...

fn

=


y1e(0+)

y(1)1e (0
+)

...

y(n−1)
1e (0+)

. (3.18)

The right-hand side of (3.18) is computed by means of Corollary 2. Then, the fi’s
can be uniquely determined because the coefficient matrix in (3.18), denoted by M
in the following, is always nonsingular. For example, if all the poles are simple and
real (i.e. the roots of a(s) are pi ∈R, i = 1, . . . ,n and pi 6= p j if i 6= j) M becomes the
classic Vandermonde matrix

1 1 . . . 1
p1 p2 . . . pn
...

...
...

pn−1
1 pn−1

2 . . . pn−1
n


whose determinant is ∏1≤i< j≤n(pi− p j) 6= 0. When there are poles (real or complex)
with multiplicities, M becomes a generalized Vandermonde matrix which is still non-
singular (cf. [29]).

Another way to find the free response (3.14) is the Laplace transform method.
The pair (u0|0,y0|y1e) satisfies the integral equation (3.3). Take the the nth derivative
of this integral equation on [0,+∞) to obtain

n

∑
i=0

aiDiy1e(t) = 0

and by applying the Laplace transform

n

∑
i=0

aisiY1e(s)−
n

∑
i=1

ai

i−1

∑
j=0

y(i−1− j)
1e (0+)s j = 0
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and eventually

Y1e(s) =
∑

n
i=1 ∑

i−1
j=0 aiy

(i−1− j)
1e (0+)s j

a(s)
. (3.19)

The free response is then given by

y1e(t) = L −1[Y1e(s)].

The explicit computation of this inverse Laplace transform can be routinely per-
formed by partial fraction decomposition and subsequent application of Laplace table
correspondences.

3.5 An example

Consider a system Σ having transfer function (cf. [47])

H(s) =−4
(s−1)(s+1)

(s+2)(s2 + s+2)
.

Its order and relative degree are n = 3 and r = 1 respectively. The following instance
of the initial conditions problem is set (cf. Problem 1): Let u0(t) = sin(t) and y0(t) =

4
√

2
5 sin

(
t−atan(3)

)
, t ∈ R for which (u0,y0) ∈B and suppose at time t = 0 a new

input u1(t) = 1, t ≥ 0 is applied. Find the corresponding output y1(t), t ≥ 0.

A solution to this problem can be given as follows (cf. Section 4). The output y1

is the total response for which y1(t) = y1d(t)+y1e(t), t ≥ 0 (cf. (3.15)). The computa-
tion of the forced response y1d does not involve the initial conditions. In a customary
way, it can be done by means of the convolution integral (3.13) or by a Laplace pro-
cedure. With the latter y1d(t) = L −1[H(s)U1(s)] with U1(s) = s−1 so that by partial
fraction decomposition and inverse Laplace transform:

y1d(t) = 1+
3
2

e−2t − 5
2

e−
1
2 t cos(

√
7

2
t)− 9

√
7

14
e−

1
2 t sin(

√
7

2
t). (3.20)

The free response is y1e(t) = f1m1(t)+ f2m2(t)+ f3m3(t) (cf. (3.14) and Defi-
nition 12 on pole modes of Σ) and can be determined by means of Corollary 2. The
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pre-initial conditions, i.e. the initial conditions of signals u0 and y0 at 0− are the fol-
lowing: u0 (0−) = 0, u(1)0 (0−) = 1 and y0(0−) = − 12

5 , y(1)0 (0−) = 4
5 , y(2)0 (0−) = 12

5 .
The transfer function can be expressed as H(s)= −4s2+4

s3+3s2+4s+4 and by applying Lemma
6 the Markov parameters h0 = 0, h1 = −4, and h2 = 12 are determined. Therefore,
from (3.16) and (3.17) we obtain the free response initial conditions at 0+:

y1e(0+) = y0(0−) =−
12
5
, (3.21)

and y(1)1e (0
+)

y(2)1e (0
+)

=

 4
5

12
5

−
−4 0

12 −4

0

1

=

 4
5

32
5

. (3.22)

The poles of Σ are −2 and − 1
2 ± j

√
7

2 with associated modes m1(t) = e−2t , m2(t) =
e−

1
2 t cos(

√
7

2 t), and m3(t) = e−
1
2 t sin(

√
7

2 t). The modes are used in defining the Van-
dermonde matrix M in (3.18) so as to compute the coefficients fi’s of the free re-
sponse: 

1 1 0

−2 − 1
2

√
7

2

4 − 3
2 −

√
7

2




f1

f2

f3

=


− 12

5

4
5

32
5

 =⇒


f1

f2

f3

=


3
5

−3
1√
7

;

hence,

y1e(t) =
3
5

e−2t −3e−
1
2 t cos

(√7
2

t
)
+

1√
7

e−
1
2 t sin

(√7
2

t
)
. (3.23)

Alternatively, still using the found initial conditions at 0+ in (3.21)-(3.22), the free re-
sponse (3.23) can be directly determined (cf. (3.19)) by the inverse Laplace transform
of

Y1e(s) =
−12

5 s2− 32
5 s− 4

5
s3 +3s2 +4s+4

.

Eventually, the sum of the forced and free responses (3.20) and (3.23) gives the
sought total response (t ≥ 0):

y1(t) = 1+
21
10

e−2t − 11
2

e−
1
2 t cos(

√
7

2
t)−
√

7
2

e−
1
2 t sin(

√
7

2
t).
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The following figures illustrate all the involved signals. Figure 3.1 plots the input
u0|u1(t). The forced and free responses are plotted in Figure 3.2 and Figure 3.3 plots
the resulting output y0|y1(t).

-10 -5 0 5 10 15

t

-1

-0.5

0

0.5

1

1.5

u0|u1

Figure 3.1: Plot of the input signal u0|u1 in the time interval [−13,18]. The blue
and red curves are the plots of u0(t) = sin(t), t ∈ [−13,0) and u1(t) = 1, t ∈ [0,18]
respectively.

0 2 4 6 8 10 12

t

-2

-1

0

1

2

Forced response y1d and free response y1e, t ≥ 0

Figure 3.2: Plot of the forced response y1d (in orange) and free response y1e (in green).
The sum of these signals yields y1.
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-10 -5 0 5 10 15

t

-4

-2

0

2
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y0|y1

Figure 3.3: Plot of the output signal y0|y1 in the time interval [−13,18]. The blue
curve is y0(t), t ∈ [−13,0) whereas the red one is y1(t), t ∈ [0,18].

3.6 Conclusions

The jump discontinuities of the input vector (u(t),u(1)(t), . . . ,u(m−1)(t)) cause jump
discontinuities on the output vector (y(t),y(1)(t), . . . ,y(n−1)(t)) at any given time t ∈
R. Straightforward algebraic relations between them have been established in (3.4)
and (3.5) (or (3.11)) for linear time-invariant scalar systems. Significantly, these re-
lations have been obtained by means of a simplified behavioral approach that avoids
generalized derivatives and ad hoc assumptions. With ease, the found input-output
jump relations have direct application to solve the initial conditions problem. The
present findings may be a useful complement in the classic control systems educa-
tion.





Chapter 4

Stable input-output inversion

4.1 Introduction

Performances in the control and regulation of dynamic systems can be improved by
the adoption of feedforward control techniques [59]. Among these, the input-output
inversion technique (or inversion-based control), allows to choose a desired output
thereby computing the control input via an inversion procedure. For minimum-phase
systems, the procedure uses directly the inverse system to obtain a so-called standard
inversion [58, 24]. However, this inversion fails in the nonminimum-phase case be-
cause it leads to an unbounded inverse input regardless of the boundedness of the
desired output.

A breakthrough leading to a bounded (noncausal) inverse input for nonminimum-
phase systems was presented in [11, 15] and [25] for the nonlinear and linear cases
respectively. In these works, the (stable) input-output inversion relies on the con-
struction of the normal form in a state-space setting [26]. Then, a bounded noncausal
solution of the zero dynamics driven by the desired output can be determined by a
convolution integral (linear case) or by Picard iterations (nonlinear case). Eventually,
a bounded noncausal inverse input is determined. However, the normal form can only
be determined when the corresponding decoupling matrix [26] is nonsingular. Hence,
only for (input-output) decoupable systems these procedures are effective [17].
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Here, we formalize the stable input-output inversion problem in the C∞
p behavioral

setting presented in Chapter 2. Focusing on multivariable nonminimum-phase linear
systems, we present a new solution to this problem. Our solution, relies only on an
input-output representation of the behavior set. In particular, we use the inverse of
the system matrix transfer function and we split the zero dynamics matrix transfer
function into stable and unstable parts. Using such an approach, which does not rely
on a state space representation, is advantageous as it allows to come up with a solution
that is applicable to nondecoupable systems, i.e. systems that cannot be decoupled by
state feedback (cf. (4.9), Definition 15 and Theorem 4).

Even though our solution does not require an input-state-output representation
per se, it turns out that such a representation simplifies the derivation of several other
results that lead to our input-output inversion formula. For instance, this is used for
establishing relations between continuity orders of inputs and outputs (Proposition
4) or for characterizing the input’s zero dynamics (Property 7). Alternating between
input-output and input-state-output representations is made possible by Theorem 2
in Chapter 2 which guarantees that the behavior set of the two representations is the
same.

It should be pointed out that the C∞
p behavioral approach we present in this the-

sis is paramount in achieving sound results for the inversion-based control problem
(Problem 2). On the contrary, the more general behavioral theory originally intro-
duced in [65], which relies on the space Lloc1 , appears not to be suitable for address-
ing the problem we present in this chapter. Indeed, in the Lloc1 behavioral theory, the
integral equation (2.11) does not need to hold everywhere on R (see the discussion in
[65] following Example 2.3.5). It follows from this fact that the output corresponding
to a certain fixed uuu is not unique. This implies that, trying to solve the input-output
inversion problem in the Lloc1 behavioral theory would result in an ill-posed problem
as the output generated by an input uuu is not unique.

Chapter organization: In Section 4.2 we introduce the considered system and,
by means of an input-state-output representation, we establish some relationships
between continuity orders of the input and the output (cf. Proposition 4 and Theo-
rem 5). Subsequently, in Section 4.3, we use matrix fraction descriptions in order to
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characterize the matrix transfer function and its inverse. Especially relevant are the
results on the input’s zero dynamics (Property 7) and the input’s particular solution
(Proposition 6). In a behavioral setting, we pose and solve the stable input-output
inversion problem in Section 4.4 (cf. Problem 2 and Theorem 8). The partial fraction
expansion of the zero dynamics matrix transfer function (cf. (4.24), (4.25)) leads to
the inversion formula (4.29) which is a direct generalization of an analogous formula
for scalar systems [41, 12]. Finally, Section 4.5 presents an example of feedforward
regulation for a nondecoupable system.

The content of this chapter is based on [30].
Notation:

We say fff is causal if fff (t) = 000, t < 0. The notation L [·] and L −1[·] denotes the
Laplace and inverse Laplace transform respectively. We denote the unit step function
by 1(t): 1(t) = 0 if t < 0 and 1(t) = 1 if t ≥ 0. The empty set is /0. Given a scalar
i ∈ R we define iii := [i, i . . . , i]> ∈ Rm.

4.2 Preliminaries

Let Σ be the (square) linear time-invariant continuous-time system satisfying

ẋxx = Axxx+Buuu, (4.1)

yyy =Cxxx (4.2)

where xxx ∈ C∞
p (R,Rn) is the state, uuu,yyy ∈ C∞

p (R,Rm) are the input and the output re-
spectively, and A∈Rn×n, B∈Rn×m, C ∈Rm×n. The following assumptions are made:
1) Σ is controllable and observable; 2) Σ is nonminimum-phase and the zero dynamics
[26] is hyperbolic (i.e. there are no zeros on the imaginary axis of C); 3) Σ is invert-
ible, i.e. there exists the inverse of its matrix transfer function H(s) :=C(sI−A)−1B.
Remark that since H(s) is invertible, it follows rank(B) = rank(C) = m (observe that
by assumption Σ is square). Solutions of the state equation (4.1) are introduced as
weak solutions (see Section 2.4). Then, the manifest Behavior Bi(s)o of Σ is intro-
duced in Definition 11. Under the current assumptions, a useful characterization of
weak solutions is the following.
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Proposition 3. Given an input uuu ∈C∞
p (R,Rm), a function xxx ∈C∞

p (R,Rn) is a weak
solution of (4.1) if and only if the following conditions hold:

a) xxx ∈C0(R,Rn), (4.3)

b) S(1)xxx = S(0)uuu , (4.4)

c) ẋxx(t) = Axxx(t)+Buuu(t), t ∈ R\S(0)uuu . (4.5)

Proof. (=⇒):
It follows from (2.38) and Lemma 3 that xxx is continuous, hence condition (4.3)

holds. Remark that: Dxxx(t) is defined on t ∈R\S(1)xxx , D
(
A
∫

xxx
)
(t) = Axxx(t) for all t ∈R

and D
(
B
∫

uuu
)
(t) = Buuu(t) is only defined on R\S(0)Buuu . Since rankB = m, by Lemma 2,

we get S(0)Buuu = S(0)uuu . Hence, by taking into account that two functions are equal only if
they have same domain, by differentiating (2.38) we deduce (4.4) and (4.5).

(⇐=):
Since by hypothesis xxx ∈C0(R,Rn), integration of (4.5) yields (2.38) where ccc =

xxx(0).

Let P(s),Q(s) ∈ Rm×m[s] be suitable left coprime matrices such that H(s) =
P−1(s)Q(s) and consider the input-output representation (see Section 2.3):

P(D)yyy(t) = Q(D)uuu(t), t ∈ R. (4.6)

Solutions of (4.6) are introduced in Definition 9 and the corresponding behavior
set B is introduced in Definition 10. Furthermore, it follows from Theorem 2 that
Bi(s)o = B. This means that system Σ admits both representations (4.1)-(4.2) and
(4.6). In other words, we can conveniently switch between such representations. We
will exploit this fact in the rest of this chapter and address our problems in one or the
other representations according to the advantages offered by each representation.

Definition 13 (Relative degree). Under the current assumptions, Σ has (vector) rel-
ative degree rrr = [r1 r2 · · · rm]

T , with ri := min{ j : ccciA j−1B 6= 000, j = 1, . . . ,n}, i =
1, . . . ,m.

Remark 8. It is the observability assumption together with rankB = m that guaran-
tees the existence of ri, i = 1, . . . ,m.
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The i-th component of the relative degree is the minimum derivation order neces-
sary for the input uuu to appear in a derivative of the i-th output’s component. Indeed,
from (4.2) and (4.5) it follows that for i = 1, . . . ,m:

y(ri)
i (t) = ccciArixxx(t)+ ccciAri−1Buuu(t), t ∈ R\S(0)uuu (4.7)

with ccciAri−1B 6= 000.

Definition 14 (Vector derivative). Given fff ∈C∞
p (R,Rm) and a vector kkk∈Nm, the kkk-th

order derivative of fff is denoted by fff (kkk) and is defined as fff (kkk) := ( f (k1)
1 , . . . , f (km)

m ).

With the help of the above vector derivative notation, the m scalar equation (4.7)
can be joined into the following vector equation:

yyy(rrr)(t) = Ψxxx(t)+Γuuu(t), t ∈ R\S(0)uuu , (4.8)

where:

Ψ :=


ccc1Ar1

ccc2Ar2

...

cccmArm

 ∈ Rm×n, Γ :=


ccc1Ar1−1B
ccc2Ar2−1B

...

cccmArm−1B

 ∈ Rm×m. (4.9)

The introduced matrix Γ, called the decoupling matrix, has a significant role in
the control of square multivariable systems. Indeed, Γ must be nonsingular when: 1)
the construction of the normal form of Σ [39] is required such as e.g. in solving the
stable input-output inversion problem in a state-space setting [15, 25]; 2) input-output
decoupling by static state feedback is sought [17].

In particular a systems is said to be decoupable according the following definition.

Definition 15 (Decoupable systems). Σ is said to be (input-output) decoupable (by
static state feedback) if there exist constant matrices Fx ∈ Rm×n and Fv ∈ Rm×m such
that uuu = Fxxxx+Fvvvv, (with vvv ∈ Rm being the new input vector), determines a closed-
loop matrix transfer function C(sI−A−BFx)

−1BFv that is diagonal.

Theorem 4 ([17]). Σ is decoupable if and only if the decoupling matrix Γ is nonsin-
gular.
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Remark 9. Our approach can allow that Γ be singular. Hence, stable inversion (cf.
Theorem 8) is extended to nondecoupable systems.

The relative degree concept dictates a first result on the output continuity orders.

Lemma 7. Let (uuu,yyy) ∈B. Then yi ∈Cri−1, i = 1, . . . ,m.

Proof: From (4.2) we have yi(t) = cccixxx(t), t ∈R and y(k)i (t) = ccciAkxxx(t), t ∈R\S(0)uuu ,
k = 1, . . . ,ri− 1 (cf. Definition 13 and Proposition (3)). By mathematical induction
we now prove that yi ∈Ck, k = 0,1, . . . ,ri−1. The base case of k = 0 is already proved
because xxx∈C0(R,Rn) (see also Proposition 3). For the induction step assume yi ∈Ck

with k≤ ri−2. Hence y(k+1)
i (t) = ccciAk+1xxx(t), t ∈R\S(0)uuu . Let t1 ∈ S(0)uuu , it follows that

y(k+1)
i (t−1 ) = y(k+1)

i (t+1 ) because the state xxx(t) is continuous. Hence y(k+1)
i exists and

is continuous in t1 because y(k)i is continuous over R. Therefore yi ∈Ck+1. �

A relation between the continuity orders of the input and output signals can be
expressed as follows.

Proposition 4. Let (uuu,yyy)∈B and p∈N∪{−1}. If uuu∈Cp(R,Rm) then yi ∈Cp+ri(R,R),
i = 1, . . . ,m.

Proof: Note that the case p = −1 is already proved in Lemma 7. Then, by in-
duction we will prove that yi ∈Ck+ri , k = 0,1, . . . , p. First, the base case of k = 0 is
considered. Since uuu ∈ C∞

p (R,Rm)∩Cp we have S(p)
uuu = /0 and consequently S(0)uuu = /0

(cf. Lemma 1). From (4.7) we conclude that yi ∈Cri . For the induction step assume
that yi ∈Cri+k with k≤ p−1 and p≥ 1. We will show that yi ∈Cri+k+1. Indeed, take
the derivative of order k+1 of relation (4.7) and obtain y(ri+k+1)

i (t) = ccciAri+k+1xxx(t)+
ccci

∑
k+1
j=0 Ari+k− jBuuu( j)(t). This relation holds for all t ∈ R because k+ 1 ≤ p and uuu ∈

C∞
p (R,Rm). Hence yi ∈Ck+1+ri . �

Definition 16 (Smoothness degree). A signal fff ∈C∞
p with fff = ( f1, . . . , fm) is said to

have smoothness degree−1 if fff /∈C0(R,Rm). Signal fff has smoothness degree p∈N
if fff ∈Cp(R,Rm) and fff /∈Cp+1(R,Rm).

For decoupable systems, a stronger result on input-output continuity orders is the
following.
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Theorem 5. Let Σ be input-output decoupable. Consider (uuu,yyy) ∈ B and p ∈ N∪
{−1}. Then uuu has smoothness degree p if and only if yyy(rrr) has smoothness degree p.

Proof. [=⇒] : If uuu has smoothness degree p then, in particular, uuu∈Cp(R,Rm). Hence,
by Proposition 4 it follows that yyy(rrr) ∈ Cp(R,Rm). Hence, it remains to be shown
that yyy(rrr) /∈Cp+1(R,Rm). To do so, we first consider p = −1. Since uuu ∈C∞

p (R,Rm),
then uuu has smoothness degree −1 if ∃t̄ : uuu(t̄−) 6= uuu(t̄+). Then, taking into account
that detΓ 6= 0 we deduce from (4.8) that yyy(rrr)(t̄−) 6= yyy(rrr)(t̄+), i.e. yyy(rrr) has smooth-
ness degree −1. Now consider p≥ 0. Computing yyy(rrr+ppp+111) from (4.8) (recall that by
hypothesis uuu ∈Cp(R,Rm)) yields:

yyy(rrr+ppp+111)(t) =ΨAp+1xxx(t)+
p

∑
j=0

ΨAp− jBu( j)(t)+Γuuu(p+1)(t), t ∈R\S(p+1)
uuu . (4.10)

Take t̄ ∈ S(p+1)
uuu . Then, it follows from the previous relation that yyy(rrr+ppp+111)(t−) 6=

yyy(rrr+ppp+111)(t+), i.e. yyy(rrr) /∈Cp+1(R,Rm).
[⇐=] : If yyy(rrr) has smoothness degree p, then, in particular, yyy(rrr) /∈ Cp+1(R,Rm).

Then, by negation of Proposition 4 we deduce uuu /∈ Cp+1(R,Rm). Hence, it remains
to be shown that uuu ∈Cp(R,Rm) for p≥ 0. We prove this fact by induction. If p = 0
then from (4.8) it follows uuu(t−) = uuu(t+), ∀t ∈R, i.e. uuu∈C0(R,Rm). For the induction
step assume that uuu ∈Cp(R,Rm), p ≥ 0. This means that (4.10) holds. Furthermore,
since (by hypothesis) yyy(rrr+ppp+111) is continuous, it follows from (4.10) that uuu(p+1)(t−) =
uuu(p+1)(t+), ∀t ∈ R. Since uuu ∈Cp(R,Rm) this means u ∈Cp+1(R,Rm).

4.3 Input-output properties

The poles of Σ are introduced as the roots of the pole polynomial according to the
following definition.

Definition 17 (pole polynomial [2]). The pole polynomial pH(s) of Σ is defined as
the monic least common denominator of all nonzero minors of H(s).

Under the current assumptions pH(s) = det(sI−A) and also pH(s) = cdetP(s)
with a suitable c 6= 0.
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Definition 18 (minimal pole polynomial [2]). The minimal pole polynomial p′H(s) of
Σ is defined as the monic least common denominator of all nonzero entries of H(s).

The zeros of Σ are the roots of the zero polynomial according to this definition.

Definition 19 (zero polynomial [2]). The zero polynomial zH(s) of Σ is defined as
the monic greatest common divisor of the numerators of all the highest-order nonzero
minors of H(s) after all their denominators have been set equal to pH(s).

Remark that zH(s) = c1 det

[
sI−A −B

C 0

]
and also zH(s) = c2 detQ(s) with suit-

able scalars c1,c2 6= 0.
By assumption, Σ is invertible. Hence, H−1(s) is well defined and

H−1(s) = Q−1(s)P(s) =
adj[Q(s)]P(s)

detQ(s)
. (4.11)

The polynomial division of every entry of the product adj[Q(s)]P(s) leads to

(adj[Q(s)]P(s))i j = q0,i j(s)detQ(s)+ p0,i j(s) (4.12)

where q0,i j(s) and p0,i j(s) are (unique) polynomials for which deg p0,i j(s)< degdetQ(s).
By defying Q0(s) := [q0,i j(s)], P0(s) := [p0,i j(s)], and H0 := P0(s)/detQ(s) it follows
that

H−1(s) = Q0(s)+H0(s) (4.13)

where H0(s) is a strictly proper rational matrix that represents the so-called zero
dynamics [26]. Remark that matrices Q0(s), H0(s) are unique. Furthermore, since
H(s) is (strictly) proper, Q0 is invertible and its inverse is proper (see Lemma 3.12 in
[2]).

Lemma 8. There exists a polynomial matrix P1(s) such that

H0(s) = Q−1(s)P1(s). (4.14)

Proof: From (4.11) and (4.13) we obtain Q−1(s)P(s) = Q0(s)+H0(s). By mul-
tiplying this relation by Q(s) from the left P(s) = Q(s)Q0(s) + Q(s)H0(s). Here
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Q(s)H0(s) is necessarily a polynomial matrix because it is the difference of two
polynomial matrices. Hence, define P1(s) := Q(s)H0(s) and multiply this relation
by Q−1(s) from the left to obtain (4.14), the left MFD of H0(s). �

The dual concept of minimal pole polynomial, i.e. the minimal zero polynomial
is then introduced.

Definition 20 (minimal zero polynomial). The minimal zero polynomial z′H(s) of Σ

is defined as the monic least common denominator of all nonzero entries of H0(s).

Remark 10. From the previous definitions and Lemma 8 it follows that the (minimal)
zero polynomial of Σ is equal to the (minimal) pole polynomial associated to H0(s).

Pole and zero modes are crucial notions which are introduced as follows.

Definition 21 (pole and zero modes). Given a real or complex pole (zero) p ∈ R or
p=σ± jω ∈C (z∈R or z= ρ± jψ ∈C) with multiplicity µ (ν) as a root of the min-
imal pole (zero) polynomial p′H(s) (z′H(s)), the associated pole (zero) modes are the
time-functions ept , tept , . . . , tµ−1ept or eσt cos(ωt),eσt sin(ωt), . . . , tµ−1eσt cos(ωt),
tµ−1eσt sin(ωt) (ezt , tezt , . . . , tν−1ezt or eρt cos(ψt),eρt sin(ψt), . . . , tν−1eρt cos(ψt),
tν−1eψt sin(ψt)) respectively. All the pole (zero) modes are denoted by mP

i (t) (mZ
i (t)),

i = 1, . . . ,mP(mZ) with mP := deg p′H (mZ := degz′H).

Definition 22 (Autonomous behavior). The autonomous behavior of Σ is the set

Baut := {yyyhom ∈C∞
p (R,Rm) : yyyhom is a weak solution of P(D)yyyhom(t) = 0} (4.15)

The following property characterizes the structure of Baut.

Property 6. Let yyyhom ∈Baut then

yyyhom(t) =
mP

∑
i=1

fff im
P
i (t), t ∈ R, (4.16)

with fff i ∈Fi where Fi, i = 1, . . . ,mP are suitable subspaces of Rm.

Definition 23 (Inverse system autonomous behavior). The autonomous behavior of
the inverse system of Σ is the set

B′aut := {uuuhom ∈C∞
p (R,Rm) : uuuhom is a weak solution of Q(D)uuuhom(t) = 0} (4.17)
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Property 7. Let uuuhom ∈B′aut then

uuuhom(t) =
mZ

∑
i=1

gggim
Z
i (t) (4.18)

with gggi ∈ Gi where Gi, i = 1, . . . ,mZ are suitable subspaces of Rm.

Mathematically Properties 6 and 7 are actually the same result but conjugated
with respect to the P(D) and Q(D) matrix operators respectively. For brevity the
proof is omitted. An alternative, equivalent formulation of this result is reported in
[65, Theorem 3.2.16, p. 77].

Remark 11. The time-function (4.16) is the free output response or output’s pole
dynamics. It is the system output when the input is kept to zero: (0,yyyhom)∈B. Dually,
the time-function (4.18) is the input’s zero dynamics. It is the system input when the
output is kept to zero: (uuuhom,0) ∈B.

Define h(t) ∈ Rm×m and h0(t) ∈ Rm×m as the analytical extensions over R of
L −1[H(s)] and L −1[H0(s)] respectively (h(t)1(t) and h0(t)1(t) are the impulse ma-
trix responses of Σ and of the zero dynamics system respectively). Also define qi, i =
1, . . . ,m as the degree of the i-th column of Q0(s), i.e. qi := max j=1,...,m degq0, ji(s),
so that qqq := [q1 · · ·qm]

T .

Lemma 9. Given system Σ, then qqq≥ rrr (component-wise inequality). If the decoupling
matrix Γ is nonsingular, qqq = rrr.

Proof. It follows from (4.8) that

H(s) =


s−r1

. . .

s−rm

 H̃(s), (4.19)

where H̃(s) := Γ+Ψ(sI−A)−1B. Clearly, since H(s) is invertible then H̃(s) is in-
vertible too. Recall that H−1(s) can be decomposed as in (4.13) with Q0(s) invertible.
In the same way, we decompose H̃−1(s) as:

H̃−1(s) = Q̃0(s)+ H̃0(s) (4.20)
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where H̃0(s)∈Rm×m(s) is strictly proper and Q̃0(s)∈Rm×m(s) is invertible. Then, in
follows from (4.19) that:

Q̃0(s)−Q0(s)


s−r1

. . .

s−rm

=−H̃0(s)+H0


s−r1

. . .

s−rm

 .
Since the right-hand side of the previous expression is the sum of strictly proper
matrices, it follows:

lim
s→∞

(
Q̃0(s)−Q0(s)


s−r1

. . .

s−rm

)= 0,

or, stated component-wise:

lim
s→∞

( q̃0,i j(s)sr j −q0,i j(s)
sr j

)
= 0. (4.21)

Since Q̃0(s) is invertible, for any column j ∈ {1, . . . ,m} there exists an index i,
which we denote as i( j), such that q̃0,i( j) j(s) 6= 0. Hence, it follows from (4.21) that
degq0,i( j) j ≥ r j. Therefore, for each j-th column of Q0(s) there exists an element with
degree at least r j, i.e. q j ≥ r j or equivalently qqq≥ rrr.

It remains to be shown that when Γ is invertible then qqq = rrr. In order to do so,
remark that, since H̃(s) is proper and lims→∞ H̃(s) = Γ, with detΓ 6= 0, it follows that
H̃−1(s) is proper (see Corollary 3.13 in [2]). This means that Q̃0 ∈ Rm×m, i.e. Q̃0 is a
real (invertible) matrix. Hence, taking into account (4.21) we deduce qqq = rrr.

The following results emphasize relevant particular solutions of the differential
equation (4.6) [12].

Proposition 5 (Output’s particular solution). Let uuu∈C∞
p (R,Rm) and define yyypar(t) :=∫ t

0 h(t− v)uuu(t)dv, t ∈ R. Then (uuu,yyypar) ∈B.
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Proposition 6 (Input’s particular solution). Let yyy ∈ C∞
p (R,Rm) and yi ∈ Cqi−1, i =

1, . . . ,m. Define

uuupar(t) := Q0(D)yyy(t+)+
∫ t

0
h0(t− v)yyy(t)dv, t ∈ R.

Then (uuupar,yyy) ∈B.

Useful characterizations of the behavior B are the following.

Theorem 6. Define

Bi/o := {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rm) :

yyy(t) =
∫ t

0
h(t− v)uuu(v)dv+ yyyhom(t), t ∈ R, yyyhom ∈Baut}.

(4.22)

Then Bi/o = B.

Theorem 7. Define

Bo/i := {(uuu,yyy) ∈C∞
p (R,Rm)×C∞

p (R,Rm) : yi ∈Cqi−1, i = 1, . . . ,m,

uuu(t) = Q0(t)yyy(t+)+
∫ t

0
h0(t− v)yyy(v)dv+uuuhom(t), t ∈ R, uuuhom ∈B′aut}.

(4.23)
Then Bo/i ⊂B.

Corollary 3. Assume that the decoupling matrix Γ is nonsingular. Then Bo/i = B.

Proof. A glimpse of the proofs of the above results is proposed. Theorems 6 and 7
follow from Properties 6 and 7 (on the set of solutions of the homogeneous differen-
tial equations P(D)yyyhom(t) = 0 and Q(D)uuuhom(t) = 0) and Propositions 5 and 6 (on
the output’s and input’s particular solutions of the differential equation P(D)yyy(t) =
Q(D)uuu(t)) respectively. Indeed, as known [65], the set of (weak) solutions of (4.6)
(i.e. the behavior B) is given by a particular solution plus the set of all solutions of
the associated homogeneous differential equation. Corollary 3 follows from Theo-
rems 7 and 5. In the scalar case, complete proofs of Theorem 6 and Corollary 3 are
reported in [12].
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4.4 Stable input-output inversion

The stable input-output inversion problem can be addressed as follows.

Problem 2. Given a desired, bounded, sufficiently smooth output yyyd ∈ C∞
p (R,Rm)

find a bounded input uuud ∈C∞
p (R,Rm) such that (uuud,yyyd) ∈B.

By assumption, the zero dynamics of Σ is hyperbolic, i.e. the real parts of the
system zeros are negative or positive. Hence, the zero polynomial (cf. Definition 19)
can be factorized as zH(s) = z−H(s)z

+
H(s) where z−H(s) and z+H(s) are monic polynomi-

als with root’s real parts that are all negative and positive respectively. It follows that
detQ(s) = cz−H(s)z

+
H(s) with a suitable scalar c 6= 0.

The matrix transfer function of the zero dynamics of Σ is H0(s) =
P0(s)

detQ(s) =[
p0,i j(s)
detQ(s)

]
(cf. (4.12) and (4.13); i, j = 1, . . . ,m). By partial fraction expansion, the

entries of H0(s) can be rewritten as

p0,i j(s)
detQ(s)

=
p−0,i j(s)

z−H(s)
+

p+0,i j(s)

z+H(s)
(4.24)

where p−0,i j(s), p+0,i j(s) are polynomials with deg p−0,i j(s) < degz−H(s), deg p+0,i j(s) <

degz+H(s). Define P−0 (s) := [p−0,i j(s)], P+
0 (s) := [p+0,i j(s)] and H−0 := P−0 (s)

z−H(s)
, H+

0 :=
P+

0 (s)
z+H(s)

. Hence, H0(s) is split into stable and unstable parts:

H0(s) = H−0 (s)+H+
0 (s). (4.25)

The strictly proper rational matrices H−0 (s) and H+
0 (s) can be represented by left

MFDs according to the following result.

Lemma 10. There exist polynomial matrices P−1 (s) and P+
1 (s) such that

H−0 (s) = Q−1(s)P−1 (s), H+
0 (s) = Q−1(s)P+

1 (s). (4.26)

Proof. It is omitted for brevity.

Let h−0 (t) ∈ Rm×m and h+0 (t) ∈ Rm×m be the analytical extensions over R of
L −1[H−0 (s)] and L −1[H+

0 (s)] for which

h0(t) = h−0 (t)+h+0 (t), t ∈ R. (4.27)
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All the matrix functions h0(t), h−0 (t), h+0 (t) satisfy the homogeneous matrix differen-
tial equation associated to the operator Q(D).

Lemma 11. The following relations hold: Q(D)h0(t) = 0, Q(D)h−0 (t) = 0 and
Q(D)h+0 (t) = 0, t ∈ R.

Proof: It is based on the MFDs provided by Lemma 8 and Lemma 10 and on the
concept of impulse response matrix [2]. Function h0(t)1(t) is the impulse response
matrix of the zero system of Σ whose matrix transfer function is H0(s) = Q−1(s)P1(s)
(cf. (4.14)). This system is then described by the differential equation Q(D)ηηη(t) =
P1(D)yyy(t) where yyy(t) and ηηη(t) are the input and the output respectively. Hence, it
holds Q(D)h0(t) = 0 for t > 0 and by analytical extension for all t ∈ R. A similar
reasoning leads to Q(D)h−0 (t) = 0 and Q(D)h+0 (t) = 0 for all t ∈ R. �

Denote by mZ−
i (t), i = 1, . . .m−Z and mZ+

i (t), i = 1, . . .m+
Z the stable and unstable

zero modes (m−Z +m+
Z = mZ; cf. Definition 21). Taking into account Lemma 11 and

Property 7, there exist matrices G−i ,G
+
i ∈Rm×m such that imG−i ⊆ G −i , imG+

i ⊆ G +
i

and

h−0 (t) =
m−Z

∑
i=1

G−i mZ−
i (t), h+0 (t) =

m+
Z

∑
i=1

G+
i mZ+

i (t) (4.28)

where G −i and G +
i are the (input) subspaces of Rm associated to the modes mZ−

i (t)
and mZ+

i (t).
The next result gives an explicit closed-form expression of the inverse input uuud

solving Problem 2.

Theorem 8 (Stable inversion formula). Let be given a desired output yyyd ∈C∞
p (R,Rm)

for which yd,i ∈ Cqi−1 and yd,i,y
(1)
d,i , . . . ,y

(qi)
d,i are all bounded (i = 1, . . . ,m). Then a

solution to Problem 2 can be expressed as follows:

uuud(t) = Q0(D)yyyd(t
+)+

∫ t

−∞

h−0 (t− v)yyyd(v)dv

−
∫ +∞

t
h+0 (t− v)yyyd(v)dv, t ∈ R. (4.29)

Proof. From (4.28), the right side of (4.29) can be written as
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Q0(D)yyyd(t
+)+

m−Z

∑
i=1

G−i

∫ t

−∞

yyyd(v)m
Z−
i (t− v)dv

−
m+

Z

∑
i=1

G+
i

∫ +∞

t
yyyd(v)m

Z+
i (t− v)dv. (4.30)

All the addends of the above expression are bounded and so is the resulting uuud(t). In-
deed, Q0(D)yyyd(t

+) involves derivatives of yyyd that are bounded by assumption and all
the the integrals appearing in (4.30) are bounded too. For simplicity, in the following,
we consider that the minimal zero polynomial mZ(s) (cf. Definition 20 ) has only sim-
ple real roots. For example, assume mZ+

i (t) = ez+i t with z+i > 0 and define yyyd,sup :=
supt∈R |yyyd(t)| ∈ Rm (the absolute value and the supremum are applied component-
wise). Hence, |

∫ +∞

t yyyd(v)m
Z+
i (t − v)dv| ≤ yyyd,sup

∫ +∞

t ez+i (t−v)dv = 1
z+i
· yyyd,sup, t ∈ R.

Similarly, the boundedness of
∫ t
−∞

yyyd(v)m
Z−
i (t− v)dv can be ascertained.

We will now show that (uuud,yyyd) ∈Bo/i (cf. Theorem 7). In (4.29), break the in-
tegrals into two parts at zero and rearrange them by taking into account (4.27) to
obtain:

uuud(t) = Q0(D)yyyd(t
+)+

∫ t

0
h0(t− v)yyyd(v)dv

+
∫ 0

−∞

h−0 (t− v)yyyd(v)dv−
∫ +∞

0
h+0 (t− v)yyyd(v)dv.

The last two integrals above are suitable linear combinations of the zero modes of Σ.
Indeed, by (4.28) and still considering mZ−

i (t) = ez−i t , mZ+
i (t) = ez+i t (z−i < 0, z+i > 0)

these integrals can be expressed as

m−Z

∑
i=1

G−i

∫ 0

−∞

ez−i (t−v)yyyd(v)dv−
m+

Z

∑
i=1

G+
i

∫ +∞

0
ez+i (t−v)yyyd(v)dv=

m−Z

∑
i=1

G−i lll−i ez−i t−
m+

Z

∑
i=1

G+
i lll+i ez+i t

(4.31)
where lll−i :=

∫ 0
−∞

e−z−i tyyyd(v)dv ∈ Rm and lll+i :=
∫ +∞

0 e−z+i tyyyd(v)dv ∈ Rm having taken
into account that yyyd is bounded over R. From imG−i ⊆ G −i and imG+

i ⊆ G +
i we

obtain imG−i lll−i ∈ G −i and imG+
i lll+i ∈ G +

i so that (4.31) is equal to ∑
mZ
i=1 gggim

Z
i (t), gggi ∈

Gi (cf. (4.28) and Property 7). Hence uuud(t) = Q0(D)yyyd(t
+)+

∫ t
0 h0(t − v)yyyd(v)dv+

∑
mZ
i=1 gggim

Z
i (t) and along with yd,i ∈Cqi−1, i= 1, . . . ,m this proves that (uuud,yyyd)∈Bo/i.

Theorem 7 states that Bo/i ⊆B so that (uuud,yyyd) ∈B.
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Remark 12. Formula (4.29) can be applied to both decoupable and nondecoupable
systems. In the former case, it appears that the inverse input (4.29) is equal to that
obtained by the state-space approaches [15, 25].

4.5 An example

Consider the system Σ with

A =



−1 0 −1 0 0 0
0 −2 0 0 0 1
1 0 0 0 0 1
0 1 0 −2 0 0
1 0 1 −1 0 1
0 0 0 −1 −1 −1


, B =



1 0
0 1
0 0
0 0
0 0
0 0


,

C =

[
1 0 0 0 0 0
0 0 1 0 0 0

]
. (4.32)

This system is controllable and observable. The zero polynomial and the zero mini-
mal polynomial coincides, i.e. zH(s) = z′H(s) = s−1. Hence, Σ is nonminimum-phase

and its zero dynamics is hyperbolic. The decoupling matrix Γ =

[
1 0
1 0

]
is singular

(cf. (4.9)) so that the system is nondecoupable. This precludes the possibility of ap-
plying the state-space inversion procedure of [15, 25]. Nevertheless, Σ is invertible
and the stable input-output inversion provided by formula (4.29) can be applied.

The vector relative degree is rrr = [1 2]T and the vector of the column degrees of
Q0(s) is qqq = [3 4]T (cf. (4.13) and Lemma 9). We desire a set-point transition on the
outputs with a smooth planning given by the transition polynomials [44]. Specifically,
outputs 1 and 2 should move from 0 to ydc,1 := 2, and ydc,2 := 4 with interval times
τ1 = 1 s and τ2 = 2 s respectively. To obtain a continuous inverse input uuud(t) (cf.
(4.29)) we choose yd,1(t) and yd,2(t) with smoothness degrees (cf. Definition 16)
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equal to 3 and 4 respectively. The resulting expressions for yd,1, yd,2 are:

yd,1(t) :=


0, t < 0

[−20( t
τ1
)7 +70( t

τ1
)6−84( t

τ1
)5 +35( t

τ1
)4]2, 0≤ t ≤ 1

2 t > 1

, (4.33)

yd,2(t) :=


0, t < 0

[70( t
τ2
)9−315( t

τ2
)8 +540( t

τ2
)7−420( t

τ2
)6 +126( t

τ2
)5]4, 0≤ t ≤ 2

4 t > 2

.

(4.34)
The inversion procedure (cf. Section 4.4) requires to compute the differential operator
Q0(D):

Q0(D) =

[
D+1 1

D3 +6D2 +14D+19 −D4−6D3−15D2−25D−32

]
,

h−0 (t) = 000 ∈ R2×2, and

h+0 (t) =

[
0 0

18et −36et

]
, t ∈ R.

The inverse input uuud(t), which is determined by (4.29), and output yyyd(t) are then plot-
ted in Figure 4.1. Note that, in this case, uuud(t) does not have postaction (or postactu-
ation) [18] (at time max{τ1,τ2}= 2 s the system is at the equilibrium) because there
are no zeros with negative real part. On the other hand, input uuud exhibits preaction (or
preactuation) [36, 15] which is due to the positive real zero 1 (see ud,2(t), t ∈ [−1,0],
in Figure 4.1).

4.6 Conclusions

Input-output inversion allows virtual decoupling by feedforward control [46], i.e.
by appropriately designing the desired (vector) output it is possible to decouple all
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Figure 4.1: Input and output components ud,1(t), yd,1(t) and ud,2(t), yd,2(t) are plotted
with red and blue lines respectively.

.

the scalar outputs from each other. Hence, the found inversion formula (4.29) that
is based on the matrix transfer function inverse H−1(s) (cf. (4.13)) allows input-
output decoupling also for nonminimum-phase linear systems that are not decoupable
by state feedback. To deal with these nondecoupable systems a possible state-space
alternative approach may be based on the dynamic extension algorithm [26]. In such
a way the decoupling matrix in the augmented state-space becomes nonsingular so
that the stable inversion method of [15, 25] can be applied. However, the resulting
overall inversion procedure may be cumbersome. This possible approach should be
investigated in a future research.



Chapter 5

On the equivalence of
inversion-based control
architectures for scalar systems

5.1 Introduction

Feedforward control can improve the performances of feedback control systems. As
we described in the previous chapter, when specific signal features at the output of
a controlled system are required, inversion-based control may be a very effective
feedforward technique to be used.

Given a desired output signal, an inversion-based controller computes the inverse
input that, in absence of modeling errors and disturbances, allows to obtain the de-
sired signal at the output of the controlled system. However, inversion-based con-
trollers cannot compensate for tracking errors caused by modeling inaccuracies or
disturbances [14]. In practice, a feedback controller is almost always needed either
for increasing the control system robustness or because the plant (the controlled sys-
tem) has to be stabilized. The structure in which the inversion-based and feedback
controllers are arranged is referred to as an inversion-based control architecture or
briefly inversion architecture. There are two main inversion architectures:
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• the plant inversion architecture [14], [67] (cf. Fig. 5.1) and

• the closed-loop inversion architecture [43], [45] (cf. Fig. 5.2).

In absence of modeling errors and disturbances they both yield the same output, the
desired output signal. However, in practice, modeling errors due to the plant’s un-
certainties, perturbations and disturbances always occur. Hence, in both architectures
the actual plant’s output differs from the desired one.

As a consequence, from the viewpoint of the control applications, the relevant
question is: which one of the two architectures performs better? Comparisons ad-
dressing this question have appeared in the control literature for scalar (single-input
single-output) discrete-time linear systems [50, 51, 8].

In [50], for the minimum-phase case (the nominal plant and the feedback con-
troller are both minimum-phase) an algebraic analysis shows both architectures to
be equivalent in presence of uncertain plant dynamics. For the nonminimum-phase
case (more specifically, the plant is nonminimum-phase whereas the controller is
minimum-phase) the comparison shows that the two architectures perform differ-
ently when approximate stable inverses are used. For settle time applications (i.e. set-
point regulation) the closed-loop inversion architecture appears to achieve superior
performances. Further comparisons, still using approximate stable inverses, confirm
the better performance of the closed-loop inversion architecture [51, 8]. However
these comparisons seem not to be conclusive nor fully general because they depend
on specific applications. As a consequence, the plant inversion architecture has still
been used as reference architecture in several subsequent studies e.g. [61, 6].

For scalar continuous-time linear systems, we show that the two inversion archi-
tectures are fully equivalent when exact stable inverse inputs are used as feedforward
controllers. In the general nonminimum-phase case — in which both the plant and
the feedback controller can be nonminimum-phase — an equivalence result is estab-
lished. Essentially, it can be stated as follows. For any desired output (signal) and
any disturbance and plant perturbation for which the feedback controller ensures
closed-loop stability, the inputs and the outputs of the perturbed plant are the same
bounded signals in both architectures (Theorem 9).
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The equivalence result is deduced within the C∞
p behavioral framework introduced

in Chapter 2. Specific keystones to achieve the result are:

• the concept of forced response of a system initially at rest at time −∞ (cf.
Section 5.3);

• the algebraic identity (5.37) relating the feedback controller C to the unstable
zero dynamics of the nominal plant P and closed-loop system H (cf. Proposi-
tion 14);

• the preaction signals of the closed-loop system H and plant P (related to the
stable inverses, cf. Remark 13, (5.13), and (5.25)) being shown to be an input
and the corresponding output of the feedback controller C respectively (Propo-
sition 15).

The equivalence still holds in practice when a careful truncation of the preac-
tion control occurs (cf. Remark 13 and Subsection 5.7.1). Nevertheless the ease of
implementation and different preaction and postaction times of the stable inverses
may indicate that one architecture is preferable than the other depending on the ad-
dressed control application (cf. Subsection 5.7.2). To help in choosing the preferable
architecture new more precise rules to set the truncations of the preaction and postac-
tion control are introduced. These are given by the output-error-based preaction and
postaction times (Definitions 27 and 28).

Chapter organization: This chapter is organized as follows. Section 5.2 recaps
the necessary preliminaries: a behavioral presentation of a scalar system (Subsection
5.2.1) and the related stable input-output inversion (Subsection 5.2.2). Section 5.3
introduces the concept of forced response from time −∞ and associated properties.
The inversion-based control architectures are presented in Section 5.4. Equivalence
results between the architectures by using standard inverses are given in Section 5.5.
The next Section 5.6 reports key algebraic results in Subsection 5.6.1 and conse-
quently, in Subsection 5.6.2, the full equivalence result when stable inverses are used.
An example with simulation comparisons highlights the results in Subsection 5.7.1
and a related discussion is reported in Subsection 5.7.2. Final remarks end the paper
in Section 5.8.
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The content of this chapter is based on [32].
Notation: Given a real function f : R→ R, the following shorthand notations

are used: f (−∞) := limt→−∞ f (t), f (+∞) := limt→+∞ f (t). We say that f is a causal
signal when f (t) = 0, t < 0. The symbol ≡ denotes an identity that holds over R:
f ≡ 0, i.e. f (t) = 0, t ∈ R; f ≡ g, i.e. f (t) = g(t), t ∈ R. The Laplace transform of f
is F(s) :=L [ f (t)]. The analytical extension over R of the inverse Laplace transform
is denoted by L −1

ae [·] (defined by analytic continuation for negative times).
The polynomial p(s) ∈ R[s] is said to be Hurwitz if all its roots have negative

real parts. The left half-plane (LHP) and right half-plane (RHP) denote the sets of
complex numbers having negative and positive real parts respectively. A linear, time-
invariant system is said to be minimum-phase if all its zeros lie on the LHP or there
are no (finite) zeros at all. It is said to be nonminimum-phase if there exists a system’s
zero on the RHP. System’s zeros that lie on the RHP are said to be nonminimum-phase
or unstable.

5.2 Preliminaries

5.2.1 System’s behavioral presentation

As in the previous chapters, we consider the linear time-invariant continuous-time
system H defined by its transfer function

H(s) =
b(s)
a(s)

=
bmsm +bm−1sm−1 + · · ·+b0

ansn +an−1sn−1 + · · ·+a0
. (5.1)

Polynomials a(s) and b(s) (with dega = n ≥ degb = m) are coprime and b(s) has
no roots on the imaginary axis (the zero dynamics of H is hyperbolic). The relative
degree of H is r := n−m. The scalar input and output of H, u and y respectively,
belong to C∞

p (R), the set of piecewise C∞-functions (see Section 2.2)
The behavior of H (see Chapter 2 and in particular Section 2.3), which is here

denoted by BH , is the set of ordered pairs (u,y) ∈C∞
p (R)2 that are weak solutions of

the differential equation
n

∑
i=0

aiDiy =
m

∑
i=0

biDiu . (5.2)
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Actually, a pair (u,y) is a weak solution of (5.2) if there exists a polynomial g(t) with
degg≤ n−1 such that the integral equation (see Section 2.3)

n

∑
i=0

ai

∫ n−i
y(t) =

m

∑
i=0

bi

∫ n−i
u(t)+g(t) (5.3)

is satisfied for all t ∈ R. A relevant property of the behavior BH is the following
(C−1 :=C∞

p (R)).

Proposition 7 ([12]). Consider a pair (u,y) ∈BH and let p ∈ Z with p≥−1. Then
u ∈Cp if and only if y ∈Cr+p.

The pole and zero modes of H can be introduced as follows [12].

Definition 24 (pole and zero modes). Given a real (complex) pole of H, p ∈ R
(p = σ± jω ∈C) with multiplicity µ , the associated modes are: ept , tep, . . . , tµ−1ept

(eσt cos(ωt), eσt sin(ωt), . . . , tµ−1eσt cos(ωt), tµ−1eσt sin(ωt)). All the pole modes
of H are denoted by mp

i (t), i = 1, . . . ,n.
Given a real (complex) zero of H, z∈R (z= ρ± jψ ∈C) with multiplicity ν , the asso-
ciated modes are: ezt , tez, . . . , tν−1ezt (eρt cos(ψt), eρt sin(ψt), . . . , tν−1eσt cos(ψt),
tµ−1eσt sin(ψt)). All the zero modes of H are denoted by mz

i (t), i = 1, . . . ,m.
Pole and zero modes are said to be stable (unstable) if they converge to 0 as t goes to
+∞ (−∞).

By polynomial division of b(s) by a(s), we rewrite the system’s transfer function
as

H(s) = hhg+Hdy(s)

where hhg := lims→∞ H(s) is the system’s high-frequency gain [37] and Hdy(s) is a
strictly proper rational function representing the (purely) dynamic part of H. (Note
that if the relative degree r ≥ 1 then hhg = 0 and H(s) = Hdy(s).) Then define

hdy(t) := L −1
ae [Hdy(s)] (5.4)

and a useful characterization of the behavior set BH is the following [12].
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Proposition 8 (Input-output representation of BH).

BH = {(u,y) ∈C∞
p (R)2 : y(t) = hhgu(t)

+
∫ t

0
hdy(t− v)u(v)dv+

n

∑
i=1

fimP
i (t), t ∈ R; fi ∈ R}. (5.5)

By polynomial division, write a(s) = q(s)b(s)+ c(s) with degc ≤ m− 1 so that
the transfer function inverse becomes

H−1(s) = q(s)+H0(s) (5.6)

with H0(s) := c(s)/b(s) representing the zero dynamics of H. Define h0(t) :=L −1
ae [H0(s)]

and introduce the output-input representation of the behavior BH [12].

Proposition 9 (Output-input representation of BH).

BH = {(u,y) ∈C∞
p (R)2 : y ∈Cr−1, u(t) = q(D)y(t+)

+
∫ t

0
h0(t− v)y(v)dv+

m

∑
i=1

gimZ
i (t), t ∈ R;gi ∈ R}. (5.7)

5.2.2 Stable input-output inversion for scalar systems

Let be given a causal desired output (signal) yd of H and assume that yd ∈C∞
p (R)∩

Cr−1 and yd, y(1)d , . . . , y(r)d are all bounded time-functions on R. The standard inverse
(input) can be expressed as (cf. Proposition 9)

u′H,d(t) = q(D)yd(t+)+
∫ t

0
h0(t− v)yd(v)dv, t ∈ R. (5.8)

As known, if H is nonminimum-phase u′H,d(t) diverges exponentially because the
zero dynamics H0(s) is unstable [15]. In this case u′H,d(t) cannot be used for control
applications. Nevertheless, a bounded noncausal inverse input exists [15, 25]. By
partial fraction decomposition, H0(s) can be split as

H0(s) = H−0 (s)+H+
0 (s) (5.9)
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where H−0 (s) and H+
0 (s) represent the stable and unstable zero dynamics respectively.

Hence, define h−0 (t) := L −1
ae [H−0 (s)], h+0 (t) := L −1

ae [H+
0 (s)] so that

h0(t) = h−0 (t)+h+0 (t), t ∈ R (5.10)

and the bounded noncausal inverse input — called the stable inverse — can be ex-
pressed as [12]

uH,d(t) = q(D)yd(t+)+
∫ t

0
h−0 (t− v)yd(v)dv

−
∫ +∞

t
h+0 (t− v)yd(v)dv, t ∈ R. (5.11)

A relationship between u′H,d and uH,d can be established (cf. [41]).

Proposition 10. The stable inverse uH,d can be expressed as

uH,d(t) = u′H,d(t)+uH,ps(t) t ∈ R, (5.12)

where

uH,ps(t) :=−
∫ +∞

0
h+0 (t− v)yd(v)dv (5.13)

is a (linear) combination of the system’s unstable zero modes.

Remark 13. Note that the standard inverse u′H,d is always a causal signal whereas
the stable inverse uH,d is noncausal if H is nonminimum-phase, i.e. h+0 6≡ 0. In this
case, by relation (5.12) uH,d(t) = uH,ps(t) for negative times and this input is the so-
called preaction (or preactuation) control that corresponds to the output being kept
to zero [15, 12]. We denote uH,ps extended over R as the preaction signal.

Remark 14. Note that both u′H,d(t) and uH,d(t) in (5.8) and (5.11) can be interpreted
as the outcomes of linear operators applied to yd(t).

5.3 The system’s forced response from time −∞

The following definitions are introduced.
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Definition 25 (System initially at rest). Let be given a system H with input u and
output y, i.e. (u,y) ∈BH (cf. Subsection 5.2.1). H is said to be initially at rest (at
time −∞) if u(−∞) = 0 and y(−∞) = 0.

Definition 26 (Forced response from time −∞). Assume that H is asymptotically
stable. Let be given a pair (u,y) ∈BH with u(−∞) = 0 and y(−∞) = 0. Then y is
called a forced response from time −∞ or, more precisely, a forced response to input
u of H initially at rest (at time −∞).

A key result is the following.

Proposition 11 (Uniqueness of the forced response). Assume that H is asymptoti-
cally stable and let be given a pair (u,y) ∈ BH with u(−∞) = 0 and y(−∞) = 0.
Then, y is the unique forced response to input u of H initially at rest (at time −∞).

Proof. Suppose there exists another forced response y1 ∈C∞
p (R) such that y1(−∞) =

0 and (u,y1) ∈BH . Since BH is a linear space (cf. [12]) the difference of two pairs
in BH is still a pair of BH . Hence, (0,y1−y) ∈BH and limt→−∞ y1(t)−y(t) = 0. By
Proposition 8, there exist coefficients fi ∈ R, i = 1, . . .n such that

y1(t)− y(t) =
n

∑
i=1

fim
p
i (t), t ∈ R (5.14)

where the mp
i (t), i = 1, . . .n are the pole modes of H (cf. Definition 24). The asymp-

totic stability of H implies the following. If mp
i (t) is associated to a real pole we have

limt→−∞ mp
i (t) = +∞ whereas if mp

i (t) is associated to a complex pole then the mode
mp

i (t) oscillates between −∞ and +∞ as t goes to −∞. By taking into account that
mp

i (t), i = 1, . . .n is a linear independent base in C∞ it follows that fi = 0, i = 1, . . .n
necessarily, otherwise the limit limt→−∞ y1(t)− y(t) = 0 cannot hold. Hence, from
(5.14) we obtain y1 ≡ y and this proves the sought uniqueness.

Given an input u∈C∞
p (R) with u(−∞)= 0 the computation of the forced response

from time −∞ is addressed by the following result.
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Proposition 12 (Forced response operator). Assume that H is asymptotically stable.
Let be given an input u ∈C∞

p (R) with u(−∞) = 0 and introduce the following opera-
tor:

H(u)(t) := hhgu(t)+
∫ t

−∞

hdy(t− v)u(v)dv, t ∈ R. (5.15)

Then (u,H(u)) ∈B and H(u)(−∞) = 0, i.e. H(u)(t) is the forced response to input
u of H from time −∞.

Proof. Assume for simplicity that all the poles of H(s) are real and simple so that
hdy(t) = ∑

n
i=1 diepit , t ∈ R (cf. (5.4)). First we show that (u,H(u)) ∈ B. Rewrite

relation (5.15) as H(u)(t) = hhgu(t)+
∫ 0
−∞

hdy(t−v)u(v)dv+
∫ t

0 hdy(t−v)u(v)dv and
note that

∫ 0
−∞

hdy(t− v)u(v)dv = ∑
n
i=1 fiepit , t ∈ R with

fi := di

∫ 0

−∞

e−pivu(v)dv.

Coefficient fi is well-defined because the involved integral is finite. Indeed pi < 0 (H
is asymptotically stable) and u(t) is bounded over (−∞,0] because u ∈ C∞

p (R) and
u(−∞) = 0. Therefore, by Proposition 8 it follows that (u,H(u)) ∈B.

In the following we prove that H(u)(−∞) = 0, i.e. limt→−∞ H(u)(t) = 0. The
hypothesis u(−∞)= 0 means that for any ε > 0 there exists Tε > 0 such that |u(t)|< ε

∀t <−Tε . From (5.15)

|H(u)(t)| ≤ |hhg||u(t)|+
n

∑
i=1

epit |di|
∣∣∣∣∫ t

−∞

e−pivu(v)dv
∣∣∣∣ ,

t ∈ R. If t <−Tε then
∣∣∫ t
−∞

e−pivu(v)dv
∣∣≤ ε

−pi
e−pit . Hence

|H(u)(t)|<

(
|hhg|+

n

∑
i=1

|di|
−pi

)
· ε ∀t <−Tε . (5.16)

Since ε can be chosen arbitrarily small, inequality (5.16) proves that H(u)(−∞) =

0.

Remark 15. With a slight abuse of notation we denote the forced response operator
introduced in (5.15) with the same symbol H used to denote the system itself and its
transfer function H(s). The context clarifies what H stands for.
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A related technical result that does not require the system’s asymptotic stability
follows.

Lemma 12. Assume that H is initially at rest at time−∞ with (u,y) ∈BH . The input
u be identically zero, i.e. u≡ 0, and the output y be bounded over R. Then y≡ 0, i.e.
the output is identically zero too.

Proof. Since u ≡ 0, by Proposition 8, y(t) = ∑
n
i=1 fim

p
i (t), t ∈ R. Then, by a contra-

diction argument we prove fi = 0, i = 1, . . .n so that y≡ 0. Indeed, suppose that there
exists f j 6= 0 for some j ∈ {1, . . . ,n}. There are two cases for the corresponding pole
mode mp

j (t): (1) It is unbounded over R because the associated pole has negative
or positive real part or it is a multiple pole on the imaginary axis with multiplicity
greater or equal to two. (2) It is bounded over R because the associated pole is simple
and purely imaginary. In this case mp

j (t) = 1 or sin(ωt) or cos(ωt) (cf. Definition 24).

For the case (1) f jm
p
j (t) is unbounded over R and so is y(t) because any linear

combination of other pole modes cannot make y(t) bounded over R (the set mp
i (t),

i = 1, . . . ,n is a linear independent base) and so we have a contradiction. For the
case (2) limt→−∞ f jm

p
j (t) 6= 0 and this implies that limt→−∞ y(t) 6= 0 because any

linear combination of other pole modes cannot make y(−∞) = 0. Since the system is
initially at rest, here there is a contradiction.

5.4 The inversion-based control architectures

In the framework of inversion-based control, consider a plant to be controlled whose
nominal transfer function is P(s) and its relative degree is rP (≥ 0). The actual plant
that may differ from the nominal plant due to model inaccuracies and perturbations is
denoted by P̃ and its transfer function is P̃(s). The set of all possible perturbed plants
P̃ belongs to P , the uncertain plant set (also P ∈P).

There are two main inversion-based control architectures (also called schemes
in the following): 1) the plant inversion architecture [14, 67] and 2) the closed-loop
inversion architecture [43, 45]. They are depicted by block diagrams in Fig. 5.1 and
5.2 respectively.
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Figure 5.1: Plant inversion architecture or scheme 1.

Figure 5.2: Closed-loop inversion architecture or scheme 2 in which H := (1 +

CP)−1CP.

Both architectures use a (feedback) controller C having relative degree rC ≥ 0.
This controller is designed to ensure the well-posedness [62] and the internal asymp-
totic stability of the closed-loop system for any P̃ ∈P . Thus, the following assump-
tion is considered [60].

Assumption 1. For any P̃ ∈P: (i) lim|s|→∞ 1+C(s)P̃(s) 6= 0; (ii) all the roots of
1+C(s)P̃(s) = 0 have negative real parts; (iii) there are no pole-zero cancellations
between C(s) and P̃(s) on the closed RHP.

Further assumptions are the following.

Assumption 2. The zero dynamics of plant P and controller C are both hyperbolic,
i.e. there are no zeros of P(s) and C(s) on the imaginary axis of the complex plane.

Assumption 3. The disturbance d ∈C∞
p (R) is bounded over R.

The nominal closed-loop transfer function is H(s) := [1+C(s)P(s)]−1C(s)P(s)
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and its relative degree is r = rC + rP. Let the causal desired output be

yd ∈C∞
p (R)∩Cr−1 (5.17)

and assume that yd and its derivatives y(1)d , . . . , y(r)d are all bounded time-functions (cf.
Subsection 5.2.2). The inverse inputs applied to H that cause yd are the standard in-
verse u′H,d and the stable inverse uH,d. These inverses whose closed-form expressions
are reported in (5.8) and (5.11) are used in the closed-loop inversion architecture or
scheme 2.

The nominal plant and the controller transfer function are written as

P(s) =
bP(s)
aP(s)

and C(s) =
bC(s)
aC(s)

(5.18)

with aP(s), bP(s) and aC(s), bC(s) being both coprime polynomial pairs. By Assump-
tion 2, polynomials bP(s) and bC(s) can be factorized as

bP(s) = b−P (s)b
+
P (s) and bC(s) = b−C (s)b

+
C (s) (5.19)

with b−P (s), b−C (s), b+P (−s), and b+C (−s) being all Hurwitz polynomials.
The input-output inversion of the nominal plant follows (cf. Subsection 5.2.2).

By polynomial division aP(s) = qP(s)bP(s)+ cP(s) with degcP < degbP so that the
plant’s transfer function inverse is expressed by

P−1(s) = qP(s)+P0(s) (5.20)

with P0(s)=
cP(s)
bP(s)

representing the plant’s zero dynamics. P0(s) can be split into stable
and unstable parts by partial fraction expansion as

P0(s) =
cP(s)

b−P (s)b
+
P (s)

= P−0 (s)+P+
0 (s) (5.21)

having set P−0 (s) = c−P (s)
b−P (s)

, P+
0 (s) = c+P (s)

b+P (s)
with c−P and c+P being suitable polynomials.

Define p0(t) :=L −1
ae [P0(s)], p−0 (t) :=L −1

ae [P−0 (s)], and p+0 (t) :=L −1
ae [P+

0 (s)] so that
the standard inverse input and the stable inverse one can be expressed respectively as
(t ∈ R)

u′P,d(t) = qP(D)yd(t+)+
∫ t

0
p0(t− v)yd(v)dv, (5.22)
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uP,d(t) = qP(D)yd(t+)+
∫ t

0
p−0 (t− v)yd(v)dv

−
∫ +∞

t
p+0 (t− v)yd(v)dv. (5.23)

Analogously to (5.12), the stable inverse uP,d can be written as

uP,d(t) = u′P,d(t)+uP,ps(t), t ∈ R (5.24)

in which
uP,ps(t) :=−

∫ +∞

0
p+0 (t− v)yd(v)dv (5.25)

that is defined on R is the plant’s preaction signal (cf. Remark 13).
The inverses (5.22) and (5.23) are used in the plant inversion architecture or

scheme 1.

Remark 16. To spare symbols to be used, H denotes both a generic system in the
preliminaries in Section 5.2 and the nominal closed-loop system of scheme 2.

Remark 17. Note that the desired output yd (5.17) has a continuity order sufficiently
high to be inverted on the nominal plant P (cf. [12]). Indeed, yd ∈Cr−1 implies yd ∈
CrP−1 because r = rC + rP ≥ rP.

5.5 Equivalence results with standard inverses

When the inversion architectures 1 and 2 (cf. Fig. 5.1 and 5.2) are used with standard
inverses — which are always causal signals — the following result follows.

Proposition 13. Assume the inversion architectures 1 and 2 are at rest at time −∞

and apply the desired output yd and the standard inverses u′P,d and u′H,d respectively.
Then u1 ≡ u2 and y1 ≡ y2 for any perturbed plant P̃ ∈P and any disturbance d.

Proof. The linearity of both the control schemes 1 and 2 and the inversion opera-
tors (5.22) and (5.8) (cf. Remark 14) implies that signals u1, u2 and y1, y2 can be
determined as with j = 1,2

u j(t) = u j(t)|yd≡0,d +u j(t)|yd,d≡0, t ∈ R; (5.26)

y j(t) = y j(t)|yd≡0,d + y j(t)|yd,d≡0, t ∈ R. (5.27)
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When the desired output is identically zero over R, evidently u1(t)|yd≡0,d = u2(t)|yd≡0,d

and y1(t)|yd≡0,d = y2(t)|yd≡0,d for all t ∈ R. Moreover, since the control schemes are
at rest at time −∞ and yd, u′P,d, and u′H,d are all causal, it follows that u1(t)|yd,d≡0 =

u2(t)|yd,d≡0 = 0 and y1(t)|yd,d≡0 = y2(t)|yd,d≡0 = 0, t < 0. To complete these iden-
tities for nonnegative times consider the following. Let us define Yd(s) := L [yd(t)]
and with j = 1,2

U j(s) := L [u j(t)|yd,d≡0], Yj(s) := L [y j(t)|yd,d≡0].

The Laplace transforms of the standard inverses are simply expressed by

L [u′P,d(t)] = P−1(s)Yd(s), L [u′H,d(t)] = H−1(s)Yd(s)

and the control schemes dictate the following algebraic relations (for simplicity the
argument s is dropped):

U1 = P−1Yd+C(Yd− P̃U1) , (5.28)

U2 =C(H−1Yd− P̃U2) . (5.29)

Since H−1 =C−1P−1(1+CP), equality (5.29) becomes after some algebraic manip-
ulations

U2 = P−1Yd+C(Yd− P̃U2) . (5.30)

Therefore, from (5.28) and (5.30) it follows that

U1 =U2 = (1+CP̃)−1(P−1 +C)Yd .

Hence, by Laplace anti-transformation u1(t)|yd,d≡0 = u2(t)|yd,d≡0, t ≥ 0. Since Y1 =

P̃U1 and Y2 = P̃U2 we also deduce Y1 = Y2 and finally y1(t)|yd,d≡0 = u2(t)|yd,d≡0,
t ≥ 0.

Proposition 13 states an equivalence between the two architectures regardless of
whether or not the (nominal) plant and the controller are minimum-phase. However,
when the plant is nonminimum-phase the standard inverses u′P,d and u′H,d are both
exponentially unbounded so that these cannot be used in a real implementation.
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On the other hand, when the plant and controller are minimum-phase the standard
inverses u′P,d and u′H,d are both bounded (over R) because the inverse systems P−1 and
H−1 are asymptotically stable (cf. Assumption 2). Hence, architectures 1 and 2 can
use these standard inverses and the resulting signals (in particular u1, y1 and u2, y2)
are all bounded due to the standing assumptions (cf. Assumptions 1 and 3). Therefore,
Proposition 13 directly leads to the following result.

Corollary 4 (Minimum-phase case equivalence). Let P and C be minimum-phase
systems. Assume the inversion architectures 1 and 2 are at rest at time −∞ and apply
the desired output yd and the standard inverses u′P,d and u′H,d respectively. Then u1 ≡
u2 and y1 ≡ y2 for any perturbed plant P̃ ∈P and any disturbance d. Moreover, all
these signals are bounded.

Corollary 4 means that when P and C are minimum-phase, the plant and the
closed-loop inversion architectures deliver the same performance regardless of un-
certainties, perturbations, and disturbances on the plant. Essentially, this result was
originally stated in [50] for discrete-time systems.

Remark 18. The statement of Corollary 4 also holds by using the stable inverses uP,d

and uH,d. Indeed, when P and C are minimum-phase uP,d and uH,d coincide with the
standard inverses u′P,d and u′H,d respectively, i.e. uP,d ≡ u′P,d, uH,d ≡ u′H,d (cf. Proposi-
tion 10 and Remark 13).

5.6 Equivalence of the inversion architectures with stable
inverses

For the general nonminimum-phase case, this section addresses the equivalence of
the inversion-based control architectures when stable inverses are used. Before in-
troducing the main result (Theorem 9 in Subsection 5.6.2) some crucial algebraic
relations are first presented.
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5.6.1 Algebraic results

The inverse transfer function of the closed-loop system H can be expressed as (cf.
(5.6), (5.9) and (5.18), (5.19))

H−1(s) = q(s)+H−0 (s)+H+
0 (s) (5.31)

with

H−0 (s) =
c−H(s)

b−C (s)b
−
P (s)

, H+
0 (s) =

c+H(s)
b+C (s)b

+
P (s)

(5.32)

where c−H , c+H are suitable polynomials. Factorize the polynomial b+C (s) as

b+C (s) = b+CC(s)b
+
CP(s) (5.33)

such that b+CC and b+CP are coprime and b+CP has all the common roots of b+C and b+P (i.e.
if z+ satisfies b+C (z

+) = 0, b+P (z
+) = 0 then b+CP(z

+) = 0). Hence, the closed-loop’s
unstable zero dynamics H+

0 (s) can be split up as follows

H+
0 (s) = H+

0,CC(s)+H+
0,P(s) (5.34)

with

H+
0,CC(s) =

d+
CC(s)

b+CC(s)
, H+

0,P(s) =
d+

P (s)
b+CP(s)b

+
P (s)

(5.35)

where d+
CC, and d+

P are suitable polynomials. H+
0,CC and H+

0,P represent the closed-
loop’s unstable zero dynamics due to different sets of nonminimum-phase zeros of
H. H+

0,CC exhibits the dynamics due to the nonminimum-phase zeros of C that do not
coincide with any zero of P. H+

0,P shows the dynamics due to the nonminimum-phase
zeros of P that may have increased multiplicity due to the possible presence of shared
zeros with C.

Define
h+0,CC(t) := L −1

ae [H+
0,CC(s)], h+0,P(t) := L −1

ae [H+
0,P(s)]

and the algebraic relation (5.34) implies the following useful identity:

h+0 (t) = h+0,CC(t)+h+0,P(t), t ∈ R. (5.36)

The fundamental algebraic result leading to Theorem 9 is the following.



5.6. Equivalence of the inversion architectures with stable inverses 79

Proposition 14. There exists a polynomial λ (s) such that

aC(s)P+
0 (s)−bC(s)H+

0,P(s) = λ (s) . (5.37)

Proof. In the following the complex variable s has been omitted for simplicity. The
inverse closed-loop transfer function can be expressed as (cf. (5.31), (5.32), (5.34),
and (5.35))

H−1 = q+
c−H

b−C b−P
+

d+
CC

b+CC
+H+

0,P .

Multiplying H−1 by bC, we obtain (cf. (5.19) and (5.33))

bCH−1 = bCq+
b+C c−H

b−P
+b−C b+CPd+

CC +bCH+
0,P . (5.38)

By polynomial division of b+C c−H by b−P , there exist polynomials α , β for which
b+C c−H/b−P = α +(β/b−P ) so that (5.38) becomes

bCH−1 = bCq+α +
β

b−P
+b−C b+CPd+

CC +bCH+
0,P . (5.39)

On the other hand, by definition of H it follows that H−1 = 1+C−1P−1 and by
(5.20) and (5.21) we have

bCH−1 = bC +aCqP +
aCc−P
b−P

+aCP+
0

The polynomial division of aCc−P by b−P permits to write aCc−P /b−P = γ +(δ/b−P ) with
suitable γ , δ polynomials. Hence

bCH−1 = bC +aCqP + γ +
δ

b−P
+aCP+

0 (5.40)

The right sides of (5.39) and (5.40) represent the same rational function bCH−1 in
different ways. Now consider the partial fraction decomposition of bCH−1. The par-
tial fractions associated to the stable poles of bCH−1 can only be found in the par-
tial fraction decompositions of β/b−P and δ/b−P because the other poles of bCH−1

are to be found in bCH+
0,P and aCP+

0 and they are all unstable. The uniqueness of
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the partial fraction decomposition along with β/b−P and δ/b−P being strictly proper
rational functions dictates that β/b−P = δ/b−P so that β = δ . Finally, the differ-
ence of the right side of (5.40) and that of (5.39) leads to (5.37) having set λ :=
bCq+α +b−C b+CPd+

CC−bC−aCqP− γ .

In the following we assume for simplicity that the nonminimum-phase zeros of C
and P are simple and real. Accordingly, we set

b+C (s) =
m+

CC

∏
i=1

(s− z+CC,i)
m+

CP

∏
i=1

(s− z+CP,i)

b+P (s) =
m+

PP

∏
i=1

(s− z+PP,i)
m+

CP

∏
i=1

(s− z+CP,i)

where z+CP,i, i = 1, . . . ,m+
CP are the common unstable zeros of C and P whereas z+CC,i,

i = 1, . . . ,m+
CC and z+PP,i, i = 1, . . . ,m+

PP are the unshared unstable zeros of C and P
respectively. Hence, by partial fraction decomposition P+

0 , H+
0,P, and H+

0,CC can be
expressed as (cf. (5.21) and (5.35))

P+
0 (s) =

m+
PP

∑
i=1

αi

s− z+PP,i
+

m+
CP

∑
i=1

βi

s− z+CP,i
, (5.41)

H+
0,P(s) =

m+
PP

∑
i=1

γi

s− z+PP,i

+
m+

CP

∑
i=1

(
δi

s− z+CP,i
+

εi

(s− z+CP,i)
2

)
, (5.42)

H+
0,CC(s) =

m+
CC

∑
i=1

ηi

s− z+CC,i
. (5.43)

Then, the algebraic relation (5.37) leads to the following lemma.

Lemma 13. Coefficients of the decompositions of P+
0 and H+

0,P in (5.41) and (5.42)
satisfy the following identities

αiaC(z+PP,i) = γibC(z+PP,i), i = 1, . . . ,m+
PP, (5.44)

βiaC(z+CP,i) = εibC,i(z+CP,i), i = 1, . . . ,m+
CP, (5.45)



5.6. Equivalence of the inversion architectures with stable inverses 81

where bC,i(s), i = 1, . . . ,m+
CP are polynomials defined by bC,i(s) := bC(s)/(s− z+CP,i).

Proof. Let us insert the partial fraction decompositions of P+
0 (s) and H+

0,P(s) (cf.
(5.41), (5.42)) in the identity (5.37). The resulting equality is then multiplied by s−
z+PP,i, i = 1, . . . ,m+

PP to obtain

aC(s)

αi +∑
j 6=i

α j(s− z+PP,i)

s− z+PP, j
+

m+
CP

∑
j=1

β j(s− z+PP,i)

s− z+CP, j


−bC(s)

γi +∑
j 6=i

γ j(s− z+PP,i)

s− z+PP, j
+

m+
CP

∑
j=1

[
δ j(s− z+PP,i)

s− z+CP, j

+
ε j(s− z+PP,i)

(s− z+CP, j)
2

]}
= λ (s)(s− z+PP,i).

By setting s = z+PP,i the identity (5.44) follows.
In a similar way, insert decompositions (5.41) and (5.42) in the identity (5.37)

having expressed bC(s) = bC,i(s)(s− z+CP,i), i = 1, . . . ,m+
CP. The resulting equality is

multiplied by s− z+CP,i to obtain

aC(s)

m+
PP

∑
j=1

α j(s− z+CP,i)

s− z+PP, j
+βi +∑

j 6=i

β j(s− z+CP,i)

s− z+CP, j


−bC,i(s)

m+
PP

∑
j=1

γ j(s− z+CP,i)
2

s− z+PP, j
+δi(s− z+CP,i)

+∑
j 6=i

δ j(s− z+CP,i)
2

s− z+CP, j
+εi +∑

j 6=i

ε j(s− z+CP,i)
2

(s− z+CP, j)
2

]
= λ (s)(s− z+CP,i).

Finally, set s = z+CP,i to obtain the identity (5.45).

5.6.2 Comparison with stable inverses

The stable inverses uP,d and uH,d to be applied to the control architectures 1 and
2 are obtained by adding to the standard inverses the preaction signals uP,ps and
uH,ps respectively (cf. (5.25), (5.13) and Remark 13). Closed-form expressions of
these signals can be determined as follows. First, recall that p+0 (t) = L −1

ae [P+
0 (s)],
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h+0 (t) = L −1
ae [H+

0 (s)] and from (5.41), (5.42), (5.43) and (5.34) obtain (t ∈ R)

p+0 (t) =
m+

PP

∑
i=1

αiez+PP,it +
m+

CP

∑
i=1

βie
z+CP,it , (5.46)

h+0 (t) =
m+

CC

∑
i=1

ηie
z+CC,it +

m+
PP

∑
i=1

γiez+PP,it

+
m+

CP

∑
i=1

(
δie

z+CP,it + εite
z+CP,it
)
. (5.47)

Then, by the direct computation of the integrals (5.25) and (5.13) we have (t ∈ R)

uP,ps(t) =−
m+

PP

∑
i=1

αi fi · ez+PP,it −
m+

CP

∑
i=1

βigi · ez+CP,it , (5.48)

uH,ps(t) =−
m+

CC

∑
i=1

ηixi · ez+CC,it −
m+

PP

∑
i=1

γi fi · ez+PP,it

−
m+

CP

∑
i=1

(δigi− εiwi + εigi · t) · ez+CP,it (5.49)

with fi :=
∫ +∞

0 e−z+PP,ivyd(v)dv, gi :=
∫ +∞

0 e−z+CP,iv ·yd(v)dv, xi :=
∫ +∞

0 e−z+CC,ivyd(v)dv,
wi :=

∫ +∞

0 e−z+CP,iv · v · yd(v)dv.
Remarkably, the preaction signals uP,ps and uH,ps are tightly related one to the

other by the controller dynamics as herein shown.

Proposition 15. The preaction signals uP,ps and uH,ps satisfy the differential equation
associated to the controller C:

aC(D)uP,ps(t) = bC(D)uH,ps(t), t ∈ R. (5.50)

Proof. Given a polynomial w(s) then w(D)ezt = w(z)ezt , t ∈R so that if z is a root of
w(s) then w(D)ezt ≡ 0. Hence, from (5.48) we obtain (in the following t ∈ R)

aC(D)uP,ps(t) =−
m+

PP

∑
i=1

αi fiaC(z+PP,i)e
z+PP,it

−
m+

CP

∑
i=1

βigiaC(z+CP,i)e
z+CP,it .

(5.51)
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On the other hand, from (5.49) we have

bC(D)uH,ps(t) =−
m+

PP

∑
i=1

γi fibC(z+PP,i)e
z+PP,it

−
m+

CP

∑
i=1

εigibC(D)(tez+CP,it) .

(5.52)

Taking into account that (cf. Lemma 13) bC(D) = bC,i(D)(D− z+CP,i), i = 1, . . . ,m+
CP

and (D−z+CP,i)(te
z+CP,it) = ez+CP,it it follows that bC(D)(tez+CP,it) = bC,i(z+CP,i)e

z+CP,it . Hence,
by recalling identities (5.44) and (5.45) we conclude that expressions (5.51) and
(5.52) coincide.

Remark 19. The differential identity (5.50) has a noteworthy system interpretation.
When the closed-loop’s preaction signal uH,ps(t), t ∈ R is injected at the controller
input, the corresponding output is the plant’s preaction signal uP,ps(t), t ∈ R, i.e.
(uH,ps,uP,ps) ∈BC (cf. Fig. 5.3).

Figure 5.3: A special input-output pair of the controller C: the preaction signals
uH,ps(t) and uP,ps(t).

The equivalence of the inversion-based control architectures asserted by Corol-
lary 4 in the restricted minimum-phase case is extended to the general nonminimum-
phase case when using stable inverses. This is the main finding herein stated.

Theorem 9. Assume the inversion architectures 1 and 2 are at rest at time −∞ and
apply the desired output yd and the stable inverses uP,d and uH,d respectively. Then
u1 ≡ u2 and y1 ≡ y2 for any perturbed plant P̃∈P and any disturbance d. Moreover,
all these signals are bounded.
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Proof. From (5.24) and (5.12) the stable inverses to be applied to the control archi-
tectures 1 and 2 can be written as uP,d = u′P,d+uP,ps and uH,d = u′H,d+uH,ps respec-
tively. Hence, by the linearity of these architectures the control inputs u1 and u2 can
be determined as

u1(t) = u1(t)∣∣∣∣yd,u′P,d,duP,ps≡0

+u1(t)∣∣∣∣yd≡0,u′P,d≡0,d≡0
uP,ps

, (5.53)

u2(t) = u2(t)∣∣∣∣yd,u′H,d,d
uH,ps≡0

+u2(t)∣∣∣∣yd≡0,u′H,d≡0,d≡0
uH,ps

. (5.54)

The equivalence provided by Proposition 13 for standard inverses showed that

u1
∣∣∣∣yd,u′P,d,duP,ps≡0

≡ u2
∣∣∣∣yd,u′H,d,d
uH,ps≡0

.

Thus, to prove that u1 ≡ u2 we need to ascertain

u1(t)∣∣∣∣yd≡0,u′P,d≡0,d≡0
uP,ps

= u2(t)∣∣∣∣yd≡0,u′H,d≡0,d≡0
uH,ps

, t ∈ R (5.55)

and in the following the signals in (5.55) are simply denoted by u1 and u2.
Under the assumption of yd ≡ 0, u′P,d ≡ 0, u′H,d ≡ 0, and d ≡ 0 the only external

inputs in schemes 1 and 2 are the preaction signals uP,ps and uH,ps respectively. In
this scenario, the transfer functions from uP,ps to u1 and from uH,ps to u2 are

T1(s) :=
1

1+C(s)P̃(s)
, T2(s) :=

C(s)
1+C(s)P̃(s)

(5.56)

respectively. Set P̃(s) = bP̃(s)/aP̃(s) with aP̃, bP̃ being suitable polynomials. Hence

T1(s) =
aP̃(s)aC(s)

acl(s)
, T2(s) =

aP̃(s)bC(s)
acl(s)

(5.57)

with acl(s) := aC(s)aP̃(s)+bC(s)bP̃(s) being an Hurwitz polynomial by Assumption
1. The inversion architectures are initially at rest, i.e. both C and P̃ are initially at
rest, and uP,ps(−∞) = 0, uH,ps(−∞) = 0 (cf. (5.48), (5.49)). Therefore u1(−∞) =

0, u2(−∞) = 0 and u1, u2 are the forced responses to inputs uP,ps, uH,ps of T1, T2
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from time −∞ respectively, i.e. u1(t) = T1(uP,ps)(t), u2(t) = T2(uH,ps)(t), t ∈ R (cf.
Proposition 12).

The pairs (uP,ps,u1) and (uH,ps,u2) are weak solutions of the differential equa-
tions associated to T1 and T2 respectively, but since uP,ps, uH,ps ∈C∞ and by virtue of
Proposition 7 u1, u2 ∈C∞, they are also strong solutions (cf. [12]), i.e.

acl(D)u1(t) = aP̃(D)aC(D)uP,ps(t), t ∈ R, (5.58)

acl(D)u2(t) = aP̃(D)bC(D)uH,ps(t), t ∈ R. (5.59)

Since aC(D)uP,ps(−∞) = 0, bC(D)uH,ps(−∞) = 0 from (5.58) and (5.59) it follows
that u1 and u2 are the forced responses to input aC(D)uP,ps and bC(D)uH,ps respec-
tively of the system associated to the transfer function aP̃(s)/acl(s). But signals
aC(D)uP,ps and bC(D)uH,ps coincide as shown in (5.50) (cf. Proposition 15). Hence,
by Proposition 11 the forced responses u1 and u2 must be the same unique signal, i.e.
identity (5.55) holds. It is then proved that u1 ≡ u2 under the application of yd, uP,d

(in scheme 1) and uH,d (in scheme 2) for any perturbed plant P̃ and disturbance d.

Moreover, u1, u2 as well as y1, y2 are bounded over R. Indeed, the external inputs
of schemes 1 and 2, i.e. yd, uP,d, uH,d and d, are all bounded over R (cf. Subsection
5.2.2 and Assumption 3) and the closed-loop system in schemes 1 and 2 is internally
asymptotically stable (cf. Assumption 1). Since schemes 1 and 2 are initially at rest,
all the signals are zero at time −∞. Hence, the formal outputs of P̃ in these schemes,
i.e. y1− d and y2− d respectively (the plant’s outputs unaffected by the disturbance
d), are both zero at time−∞ and bounded over R. Then (u1,y1−d), (u2,y2−d)∈BP̃.
From u1 ≡ u2 the difference between these pairs is (0,y2− y1) and it still belongs to
BP̃ with y2−y1 being bounded over R. Hence, by Lemma 12 y2−y1≡ 0, i.e. y1≡ y2.
This concludes the proof.
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5.7 Simulation comparison and discussion

5.7.1 Simulation example

A set-point regulation problem for a nonminimum-phase plant affected by perturba-
tions is addressed by inversion-based control. The nominal plant is [47]

P(s) =−4
(s−1)(s+1)

(s+2)(s2 + s+2)

with relative degree rP = 1. For the simulative implementation we compare the plant
inversion architecture (cf. Fig. 5.1) with the closed-loop inversion architecture (cf.
Fig. 5.2). Both schemes use the same controller

C(s) =−7
(s+2)(s2 + s+2)(s−2)
s(s+1)(s+10)(s+20)

(its relative degree is rC = 0) for which the closed-loop internal asymptotic stability
is ensured for any perturbed plant belonging to an uncertain set P (Assumption 1).
In the simulations, the following perturbed plant is considered

P̃(s) =−3.8
(s−1.05)(s+0.97)

(s+2.1)(s2 +1.05s+1.9)(0.01s+1)

in which both parametric and high-frequency perturbations are present. Both the plant
P and controller C have an hyperbolic zero dynamics (Assumption 2) and for sim-
plicity, the disturbance d is set to be identically zero, i.e. d ≡ 0 (cf. Assumption 3).

The nominal closed-loop system is H = [1+CP]−1CP with relative degree r =
rC + rP = 1. The desired output yd is a monotonically increasing function defined by
a transition polynomial [44],[38] whose smoothness degree [12] is chosen equal to 1
(yd ∈C∞

p (R)∩C1; cf. Proposition 7 and Remark 17):

yd(t) :=


0 t < 0

3
( t

τ

)2−2
( t

τ

)3 t ∈ [0,τ]

1 t > τ

.

The chosen transition time is τ = 3 s (cf. Fig. 5.4). The stable inverse inputs uP,d
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Figure 5.4: Plot of the desired output.
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Figure 5.5: Plots of the stable inverses uP,d (in blue) and uH,d (in red) for the plant
and closed-loop inversion architectures respectively.

and uH,d to be applied on schemes 1 and 2 are determined by formulas (5.23) and
(5.11) respectively (cf. Fig. 5.5). Stable inverses differ from standard inverses by the
preaction signals (cf. Remark 13 and (5.25), (5.13)). In this example

uP,ps(t) =
1+5e−3

3
et , (5.60)

uH,ps(t) =
11+55e−3

6
et − 22+44e−6

21
e2t . (5.61)

Significantly, the controller’s unstable zero mode e2t only appears in the closed-
loop’s preaction signal whereas et (the plant’s unstable zero mode) appears in both
the plant’s and closed-loop’s preaction signals.
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To perform the simulations it is necessary to truncate the exact infinite preaction
control starting from time−∞. Hence, a preaction time tpre is set for which the preac-
tion control is almost identically zero on (−∞,−tpre). This means that the preaction
control can be applied at time −tpre with a negligible error on the resulting system
response. Following a rule of thumb proposed in [38] (also cf. [42])

tpre = fpre/drhp (5.62)

where fpre is a selectable factor to be chosen in the interval [5,10] and drhp is the
minimum distance of the unstable zeros from the imaginary axis. We choose fpre =
10 and in this example tpre = 10 s for both signals (5.60) and (5.61). Consequently,
for both schemes the preaction control starts at time −10 s.

The simulation results are reported in Fig. 5.6 and 5.7. These highlight that the
plots of the plant’s input-output pairs (u1,y1) and (u2,y2) in schemes 1 and 2 al-
most coincide. Indeed, with a negligible error due to the preaction truncations (tpre =
10 s) we almost have u1 ≡ u2 and y1 ≡ y2: maxt∈R |u1(t)−u2(t)|= 7.47×10−4 and
maxt∈R |y1(t)− y2(t)|= 4.40×10−5. This is the expected result because the equiva-
lence theorem (Theorem 1) predicts that the two inversion-based control architectures
deliver the same performances.
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Figure 5.6: Plant’s input (u1) and output (y1) in the plant inversion architecture
(scheme 1) with preaction time tpre = 10 s.

On the other hand, it may be interesting to see what a rough truncation of the
preaction controls determines. To this aim set e.g. tpre = 2 s (and so not following
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Figure 5.7: Plant’s input (u2) and output (y2) in the closed-loop inversion architecture
(scheme 2) with preaction time tpre = 10 s.

the rule (5.62)) in both schemes. Simulation results in Fig. 5.8 and 5.9 show what
happens. The pairs (u1,y1) and (u2,y2) are sharply different, especially the inputs:
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Figure 5.8: Plant’s input (u1) and output (y1) in the plant inversion architecture
(scheme 1) with preaction time tpre = 2 s.

maxt∈R |u1(t)−u2(t)|= 2.09 and maxt∈R |y1(t)−y2(t)|= 0.123. Hence, when (sub-
stantially) inexact inversion is implemented the two inversion-based control architec-
tures are no longer equivalent.
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Figure 5.9: Plant’s input (u2) and output (y2) in the closed-loop inversion architecture
(scheme 2) with preaction time tpre = 2 s.

5.7.2 Discussion

When measuring the performances on the perturbed plant’s input and output the two
inversion-based control architectures are equivalent provided that a careful trunca-
tion of the preaction control is made (cf. the example in Subsection 5.7.1). However,
still holding this equivalence a control engineer may choose one or the other archi-
tecture on the grounds of implementation issues. These may regard 1) the ease of
implementation and 2) the span times of the stable inverses.

(1) The inversion required by the plant inversion does not need knowledge of the
controller. This may be a possible advantage over the closed-loop inversion architec-
ture in which the inversion also depends on the controller. This may be relevant in
application where supervisory control dictates a change of the controller depending
on operational conditions.

On the other hand, in the minimum-phase case (both the plant and the controller
do not have unstable zeros) with a high-gain controller the closed-loop inversion
architecture may be advantageous. Indeed, in this case we may use an approximate
inverse input simply given by the desired output itself [20].

(2) The span times of a stable inverse are the preaction time, the transition time
and the postaction time. These times measure three different consecutive periods in
which the stable inverse differ from the beginning and final steady-state inputs (sim-
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ply 0 and 1 in the previous example; a more general context is described in [38] ).
The preaction time tpre that sets the starting of the preaction control may be dif-

ferent in the two architectures. Following rule (5.62) the preaction time is different in
the two architectures only if

drhp(C)< drhp(P) (5.63)

where drhp(C) and drhp(P) are the minimum distances of the unstable zeros from the
imaginary axis for the controller and the nominal plant respectively (having chosen
the same factor frhp for both schemes). If (5.63) is satisfied tpre is smaller for the
plant inversion architecture and so this architecture may be preferable in an actual
implementation. However, nonminimum-phase controllers are somewhat infrequent
in feedback systems [19] and satisfaction of condition(5.63) may be even more rare.

Hence, in the majority of cases, i.e. when the controller is minimum-phase or
drhp(C)≥ drhp(P), the preaction time set by rule (5.62) is the same in both architec-
tures. However, this rule appears a rough formula that cannot be tuned to choose the
acceptable mismatch between the plant’s output and the desired output. Hence, the
following more precise new rule is introduced to set preaction times.

Definition 27 (Output-error-based preaction time). Let be given a threshold ε > 0.
Then set

tP,pre = min
{

η ≥ 0 : max
t∈R
|y1(t)− yd(t)| ≤ ε ,

y1(t) = (1+CP)−1P(ǔP,d)(t)+H(yd)(t), t ∈ R
}
,

tH,pre = min
{

η ≥ 0 : max
t∈R
|y2(t)− yd(t)| ≤ ε ,

y2(t) = H(ǔH,d)(t), t ∈ R
}

with ǔP,d(t) := 0, ǔH,d(t) := 0 if t < −η and ǔP,d(t) := uP,d(t), ǔH,d(t) := uH,d(t)
otherwise (cf. the subsequent Remark 20).

In our example with the new rule by choosing ε = 10−4 we obtain the different
preaction times

tP,pre = 8.75 s and tH,pre = 9.13 s (5.64)
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for schemes 1 and 2 respectively. Significantly, these truncated preactions still mean
an almost exact inversion of yd in both schemes. As a confirmation, the simulations
with the perturbed plant P̃ show that u1 and u2 almost coincide (maxt∈R |u1(t)−
u2(t)| = 1.74 · 10−3) as well as y1 and y2 do (maxt∈R |y1(t)− y2(t)| = 1.12 · 10−4).
Therefore, figures in (5.64) show that scheme 1 (the plant inversion architecture) has
a preaction time that is 4.2% shorter than that of scheme 2 and this may be a possible
advantage of scheme 1 over scheme 2.

Typically, a desired output yd is designed to join two distinct steady-state output
segments by a desired transition output signal [42, 38]. Denoting by τ the corre-
sponding transition time, the stable inverse ud of a given system can be decomposed
as

ud(t) = uss(t)+upost(t), t ≥ τ

in which uss is the steady-state input and upost is the so-called postaction (or postac-
tuation) control [42, 12]. This upost is a linear combination of the system’s stable
zero modes. Hence, ud(t)∼= uss(t) for t ≥ τ + tpost where tpost is the postaction time
of ud [42, 38]. In analogy to Definition 27, the postaction times can be set by the
following new rule.

Definition 28 (Output-error-based postaction time). Let be given a threshold ε > 0.
Then set

tP,post = min
{

θ ≥ 0 : max
t∈R
|y1(t)− yd(t)| ≤ ε,

y1(t) = (1+CP)−1P(ûP,d)(t)+H(yd)(t), t ∈ R
}
,

tH,post = min
{

θ ≥ 0 : max
t∈R
|y2(t)− yd(t)| ≤ ε,

y2(t) = H(ûH,d)(t), t ∈ R
}

with ûP,d(t) := uP,d(t), ûH,d(t) := uH,d(t) if t < τ+θ and ûP,d(t) := uP,ss(t), ûH,d(t) :=
uH,ss(t) otherwise.

Remark 20. In Definition 27 (Definition 28), signals y1 and y2 are the outputs of the
nominal plant P in schemes 1 and 2 when the preaction controls (postaction controls)
of uP,d and uH,d are truncated at time −η (τ +θ ).
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In our example, still choosing ε = 10−4 the new rule sets the following postaction
times (cf. Fig. 5.5):

tP,post = 6.96 s and tH,post = 0 s. (5.65)

Actually, tH,post is zero for any ε > 0 because there is no postaction control due
to the absence of stable zeros in the nominal closed-loop system (H(s) = [28(s−
2)(s− 1)]/(s3 + 58s2 + 116s+ 56)). The truncation of the postaction control of uP,d

with tP,post = 6.96 s gives a negligible error in simulation. Indeed, along with no
truncations of the preaction controls of uP,d and uH,d the comparison between the
schemes with the perturbed plant shows u1∼= u2 and y1∼= y2 (maxt∈R |u1(t)−u2(t)|=
1.01 ·10−4, maxt∈R |y1(t)−y2(t)|= 8.89 ·10−5). The zero postaction time associated
to scheme 2 shows that scheme 2 may be better than scheme 1.

The total span time of a stable inverse defined as the sum of the preaction, tran-
sition and postaction times may be a comprehensive figure to help to assess the im-
plementation of the schemes. In the presented example tP,span = tP,pre+ τ + tP,post =
18.71 s and tH,span = tH,pre+ τ + tH,post = 12.13 s (the transition time τ is the same
in both schemes since it is a feature of yd only). The reason why a shorter interval
[−tpre,τ + tpost] may be useful mainly lies in the fact that a real-time update of the
desired output is of concern in applications for which successive output transitions
have to be implemented [38, 3, 7].

Broadly speaking, preaction times are similar in the schemes when the controller
is minimum-phase. When it is nonminimum-phase tH,pre tends to be a bit longer than
tP,pre because in this case the closed-loop system H has more unstable zeros than the
plant P. When the controller determines stable pole-zero cancellations with the nom-
inal plant, the postaction time tH,post is usually shorter than tP,post in many instances.
Even tH,post = 0 when all the stable poles of P are canceled by the controller and
no other stable zeros are added by the controller (as it happens in our example). In
this case, seeking a shorter total span time the closed-loop inversion architecture is
preferable.
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5.8 Conclusions

The two main inversion-based control architectures, i.e. the plant and closed-loop in-
version architectures, have been shown to be equivalent for the control of nonminimum-
phase plants. Remarkably, this equivalence still holds when the architectures’ feed-
back controller is nonminimum-phase too. By using a behavioral approach, the equiv-
alence has been proved by showing that in both architectures the inputs and outputs
of a perturbed plant are the same signals.

Beyond the equivalence, output-error-based rules to set the truncations of the pre-
action and postaction control of a stable inverse have been introduced. Still holding
the architectures’ equivalence when careful truncations are adopted, the preaction and
postaction times are different in the architectures. This and other considerations may
imply preferring one architecture with respect to the other in the practical implemen-
tation.

When inexact or approximate inversion is used (such as e.g. when the preaction
control is abruptly truncated) the architectures’ equivalence is lost. Hence, this case
which is relevant in many instances deserves further investigations and comparisons
between the architectures (cf. [50, 51, 8, 13]). On the other hand, with the aim to
achieve high performances in control applications, future research on inversion ar-
chitectures may focus on the (feedback) controller design methodology. Indeed, ap-
parently very few contributions have appeared in the control literature on this topic
(cf. [43, 48]).



Appendix A

Useful results about polynomial
matrices and matrix fraction
descriptions

The content of this chapter is mainly taken from [66], [28] and [55].

A.1 Background on polynomial matrices

Let U(s) ∈Rp×p[s] be a polynomial matrix, if detU(s) is a nonzero constant then we
say U(s) is a unimodular matrix. It is straightforward to show that U(s) is unimodular
if and only if U−1(s) is a polynomial matrix. Some examples of unimodular matrices
are: the identity matrix, invertible matrices on R and lower/upper triangular square
polynomial matrices with nonzero constants on the main diagonal. Further, observe
that the product of unimodular matrices is unimodular.

We say that two polynomial matrices Q1(s),Q2(s) ∈ Rp×m are row equivalent
(column equivalent) if there exists a unimodular matrix U(s) such that Q1(s) =
U(s)Q2(s) ( Q1(s) = Q2(s)U(s) ).

Given a polynomial matrix Q(s) ∈ Rp×m[s], the degree of the i-th row of Q(s)
is the degree of the highest degree polynomial in qqqi(s) (i.e. in the i-th row of Q(s)).
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We denote the degree of the i-th row of Q(s) by ni
Q. The degree of Q(s) is defined as

nQ := max{n1
Q, . . . ,n

p
Q}.

Let P(s) ∈ Rp×p. The row degree coefficient matrix (leading coefficient matrix)
Phr ∈ Rp×p of P(s), is the real matrix whose elements are the coefficients of the
highest degree terms in each row of P(s), i.e. the (i, j) entry of Phr is the coefficient
of the monomial of degree ni

P in
(
P(s)

)
i j. Observe that, if P(s) has row degrees

ni
P ≥ 0, i = 1, . . . ,m, then

P(s) =


sn1

P

sn2
P

. . .

snp
P

Phr+Pl(s), (A.1)

where Pl(s) is a suitable polynomial matrix whose i-th row degree is less then ni
P,

i = 1, . . . , p. Remark that we required ni
P ≥ 0 in order to make sure that all elements

in (A.1) are polynomials. For instance, if P(s) is invertible then it is always possible
to express it as in (A.1).

Property 8 ([66]). If P(s) is such that ni
P ≥ 0, i = 1, . . . , p, then:

detP(s) = detPhr(s) · sn1
P+n2

P+···+np
P +g(s), degg(s)< sn1

P+n2
P+···+np

P .

We deduce from Property 8 that, for an invertible matrix, degdetP(s) can not be
higher than ∑

p
i=1 ni

P, however it can be lower. This means that two invertible matri-
ces can have determinants of same degree but different row degrees as these can be
artificially high (e.g. P1(s) =U(s)P2(s) with U(s) unimodular).

Definition 29. A square nonsingular matrix is row reduced (or row proper) if detPhr 6=
0.

It follows that a nonsingular matrix P(s) is row reduced if and only if degdetP(s)=

∑
p
i=0 ni

P.

Theorem 10 ([66]). A nonsingular polynomial matrix P(s) is row equivalent to a row
proper matrix, i.e. one can always find a unimodular matrix U(s) sch that U(s)P(s)
is row reduced.
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Theorem 11 ([66]). Any polynomial matrix Z(s) ∈ Rp×m[s], with p ≤ m, is column
equivalent to the lower triangular matrix:

Ẑ(s) =


ẑ1,1(s) 0 0 . . . 01×(m−p)

ẑ2,1(s) ẑ2,2(s) 0 . . . 01×(m−p)
...

...
. . .

. . .
...

ẑp,1(s) ẑp,2(s) . . . ẑp,p(s) 01×(m−p)

 , (A.2)

where, if deg ẑi,i(s)≥ 0 then ẑi,1(s), ẑi,2(s), . . . , ẑi,i−1(s) have lower degree than ẑi,i(s),
i = 2, . . . , p.

If Z(s) in Theorem 11 is of rank p, then the polynomials ẑi,i(s), i = 1, . . . , p are
nonzero and, without loss of generality, they can be assumed to be monic (if they
are not, simply multiply Ẑ(s) by a suitable diagonal matrix to make them monic). In
this case, the structure of Ẑ(s) described in Theorem 11 is known as the row Hermite
form of Z(s) (see Theorem 16.7 in [55]). Furthermore, observe that if Z(s) = P(s) is
invertible then Ẑ(s) = P̂(s) is row reduced. It follows from Theorem 10 and Theorem
11 that any nonsingular polynomial matrix P(s) can be reduced to row proper form
by either row or column operations.

Let L(s) ∈ Rp×p[s] be such that:

P(s) = L(s)Q(s),

then we say that:

• L(s) is a left divisor of P(s);

• P(s) is a right multiple of L(s).

Observe that if P(s) is a non singular matrix, then any divisor of P(s) is nonsingular.

Definition 30. A greatest common left divisor of P(s), Q(s) is a left divisor of P(s)
and Q(s) (i.e. a common left divisor) which is a right multiple of every common left
divisor of P(s), Q(s).

A useful way to find a greatest common left divisor is the following.
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Theorem 12 ([66]). If Z(s) := [P(s) Q(s)] ∈ Rp×(p+m)[s] is reduced to the lower tri-
angular form Ẑ(s) = [L(s) 0p×m] as described in Theorem 11, then L(s) is a greatest
common divisor of P(s), Q(s).

The previous theorem describes how to find only one greatest common left di-
visor. The next result characterizes how greatest common left divisors are related to
one other.

Property 9. [66] If L(s) is a greatest common left divisor of P(s) and Q(s), with
P(s) nonsingular, then any other greatest common left divisor G(s) of P(s) and Q(s)
is column equivalent to L(s), i.e. G(s) = L(s)U(s) with U(s) unimodular.

Definition 31. The polynomial matrices P(s),Q(s), are said relatively left prime (or
simply left coprime) if all greatest common left divisors are unimodular matrices.

A.2 Polynomial matrix fraction descriptions and their role
in realization theory

Let H(s)∈Rp×m(s) be a rational matrix and consider two polynomial matrices P(s)∈
Rp×p[s], Q(s) ∈ Rp×m[s] where P(s) is assumed to be invertible. We say that the
product P−1(s)Q(s) is a left matrix fraction description (abbreviated lMFD or simply
MFD) of H(s) if H(s) = P−1(s)Q(s). We define the degree of the left matrix fraction
description to be degdetP(s).

Definition 32. The left matrix fraction description P−1(s)Q(s) is said left coprime if
P(s), Q(s) are left coprime polynomial matrices.

Observe that since P(s) is assumed to be invertible, the pair P(s), Q(s) has only
nonsingular common left divisors. Next, remark that extracting common left divi-
sors entails reducing the degree of the matrix fraction description. To see this, sup-
pose L(s) is a common left divisor of P(s) and Q(s), i.e. P(s) = L(s)P2(s), Q(s) =
L(s)Q2(s), where P2(s),Q2(s) are suitable polynomial matrices. Clearly, degdetP(s)=
degdetL(s)+ degdetP2(s) which, if L(s) is not unimodular, implies degdetP(s) >
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degdetP2(s). Hence, P−1
2 (s)Q2(s) is a matrix fraction description for H(s) of lower

degree than P(s)−1Q(s). It follows that if P(s) and Q(s) are left coprime then ex-
tracting common left divisors does not result in any reduction in the degree of the
matrix fraction description. Otherwise, if they are not left coprime, the maximum re-
duction occurs by extracting a greatest common left divisor. This discussion should
be enough to justify that extracting common left divisors from P(s) and Q(s) is the
multivariable counterpart of canceling common factors in scalar transfer functions.

Property 10. Let H(s) be a strictly proper matrix transfer function described by the
left matrix fraction description P−1(s)Q(s). Then there exists a completely observable
realization of H(s) with order equal to degdetP(s).

Proof. See for instance the Observability form realization, Section 6.4.4 in [28] (or
the Observer form realization, Section 6.4.3, in [28]).

Theorem 13 ([55]). Let H(s) = P−1(s)Q(s) be a strictly proper matrix transfer func-
tion and (A,B,C) be a realization of order degdetP(s) of H(s). Then, (A,B,C) is a
minimal realization of H(s) if and only if the matrix fraction description P−1(s)Q(s)
is left coprime.

It follows from the previous theorem that all minimal realizations of H(s) have
order degdetP(s), where P−1(s)Q(s) is any left coprime matrix fraction description
of H(s).

Theorem 14 ([55]). Let H(s) = P−1(s)Q(s) = P−1
1 (s)Q1(s) with H(s) strictly proper

and (P(s),Q(s)), (P1(s),Q1(s)) left coprime. Then, there exists a unimodular poly-
nomial matrix U(s) ∈ Rp×p[s] such that

P1(s) =U(s)P(s), Q1(s) =U(s)Q(s). (A.3)





Appendix B

The observability canonical form
and its link to the
Beghelli-Guidorzi input-output
form

The content of this chapter is taken from [22], [5] and [23].

B.1 The observability canonical form for completely observ-
able systems

Consider the state-space model

ẋxx = Axxx+Buuu

yyy =Cxxx
, (B.1)

where xxx(t) ∈Rn denotes the state of the system, uuu(t) ∈Rm is the input and yyy(t) ∈Rp

is the output. We assume rankC = p and that the system is observable, i.e. the matrix

O =
[
C> A>C> . . . A>(n−1)C>

]>
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is full column rank. The observability assumption implies that we can select n lin-
early independent row vectors form O. Clearly, such a choice can be made in many
different ways but it is useful for us to follow a specific fixed order in selecting these
independent vectors. To do so, we start by selecting the first row vector of O and
we evaluate in ascending order each of the subsequent row vectors in the observabil-
ity matrix. Evaluating these vectors means to check if these are linearly independent
from all the previous rows of O. Once a certain row vector is found to be linearly in-
dependent from the previous ones, it is selected and added to a sequence that contains
all previously selected vectors which are associated to the same output component,
i.e. let ccciA j be the selected vector, then it is added at the end of the sequence of form:

ccci, ccciA, ccciA2, . . . ,ccciA j−1.

Following this setting, we end up with m sequences (remark that by assumption all
rows of C are linearly independent), one for each output component:

ccc1, ccc1A, ccc1A2, . . . ,ccc1Av1−1, (B.2)

ccc2, ccc2A, ccc2A2, . . . ,ccc2Av2−1, (B.3)

...

cccp, cccpA, cccpA2, . . . ,cccpAvp−1, (B.4)

where v1,v2, . . . ,vp are the number of vectors that have been added to each of the
sequences (B.2)-(B.4). Observe that these sequences do not have ’holes’, i.e. ccciAvi

is the first row vector that does not enter the i-th sequence in (B.2)-(B.4). Indeed, if
we denote by ccciAvi the first vector of the i-th sequence in (B.2)-(B.4) that is linearly
dependent from the previous rows of O, then we can write:

ccciAvi =
p

∑
j=1

vi j

∑
k=1

ai j,kccc jAk−1, (B.5)
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where ai j,k ∈ R are suitable coefficients and, because of the order followed in select-
ing independent vectors, the parameters vi j are given by:

vi j :=


vi if i = j;

min{vi +1, v j} if i > j;

min{vi, v j} if i < j.

(B.6)

It follows from (B.5) that all subsequent vectors ccciAvi+ j, j = 1, . . . will not be se-
lected, i.e. they will not enter the i-th sequence. In other words, for each of the se-
quences (B.2)-(B.4), once the first dependent vector ccciAvi is found, then the sequence
stops increasing its size (cf. Property 3.3.4 in [4]).

Remark that, because of the observability assumption, v1 + v2 + · · ·+ vp = n,
i.e. the vectors that form the sequences (B.2)-(B.4) are a base of Rn. The tuple
(v1,v2, . . . ,vp) is called the ordered set of Kronecker invariants of (C,A). The ad-
jective ordered is here used to emphasize the fact that the i-th element of the tuple,
vi, is associated to the i-th output component. The integers v1, v2, . . . vp are called
Kronecker invariants of the pair (C,A). Note that, since rankC = p then vi ≥ 1. The
scalars ai j,k that appear in (B.5) are called characteristic parameters of (C,A). The
vectors that have made their way into sequences (B.2)-(B.4) are said regular vectors.

Note that the pair (CT,T−1AT ), for any invertible T , has same Kronecker invari-
ants and characteristics parameters as the pair (C,A). This means that the function
which associates to the pair (C,A) its corresponding Kronecker invariants and char-
acteristic parameters is invariant with respect to the equivalence relation resulting by
a change of coordinates (for a detailed discussion, see [23]).

Set

T−1 :=
[
ccc1> (ccc1A)> . . . (ccc1Av1−1)> . . . cccp> (cccpA)> . . . (cccpAvp−1)>

]>
,

(B.7)
then, performing the change of coordinates xxx = T www yields:

ẇww = Aowww+Bouuu

yyy =Cowww
, (B.8)



104
Appendix B. The observability canonical form and its link to the

Beghelli-Guidorzi input-output form

with

Ao = T−1AT = [Ao,i j], i, j = 1, . . . , p, (B.9)

where matrices Ao,ii ∈ Rvi×vi , which form the block diagonal part of Ao, are in com-
panion form, i.e.

Ao,ii =



0 1 0 . . . 0
0 0 1
...

...
. . .

0 0 . . . 1

aii,1 aii,2 . . . aii,vi


, i = 1, . . . , p, (B.10)

and the other block matrices Ao,i j ∈ Rvi×v j are of form:

Ao,i j =

[
0(vi−1)×v j

ai j,1 ai j,2 . . . ai j,vi j 0 . . . 0

]
, i 6= j, i, j = 1, . . . , p.

(B.11)
The input matrix Bo = T−1B does not have a specific structure (in general, it is a full
matrix), while the output matrix Co =CT ∈ Rp×n is:

Co =


1

0p×(v1−1)

0

0p×(v2−1) . . .

0

0p×(vp−1)
0 1 0
...

...
...

0 0 1

 . (B.12)

We call the resulting model (Ao,Bo,Co) the observability form of system (A,B,C).
The name ’observability form’ stems from the fact that we can extract the canonical
base of Rn from the observability matrix of (Ao,Co). Indeed, taking into account the
simple structure of the pair (Ao,Co), it is easy to verify that:

In×n =
[
ccc1

ooo
>

(ccc1
oooAo)

> . . . (ccc1
oooAv1−1

o )> . . . cccp
ooo
>

(cccp
oooAo)

> . . . (cccp
oooAvp−1

o )>
]>

.

(B.13)
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B.2 The Beghelli-Guidorzi input-output form

Let H(s) = C(sI−A)−1B be the strictly proper matrix transfer function associated
to the state space model (B.1) and P−1(s)Q(s) be any matrix fraction description of
H(s) with degP(s) = n. We are now going to see that it is possible to manipulate
P(s),Q(s) so as to obtain a new matrix fraction description of H(s) which exhibits a
strong link with the observability form of (A,B,C).

It was shown in [5] that there always exists a unimodular matrix U(s) ∈ Rp×p[s]
such that the pair (

Pg(s),Qg(s)
)
, (B.14)

where Pg(s) :=U(s)P(s), Qg(s) :=U(s)Q(s), satisfies all the following conditions:

1. The polynomials on the main diagonal of Pg(s) are monic;

2. The degrees of the polynomial entries of Pg(s) satisfy the following constraints:

degPg,ii(s)≥ degPg,i j(s) if i > j; (B.15)

degPg,ii(s)> degPg,i j(s) if i < j; (B.16)

degPg,ii(s)> degPg, ji(s) if i 6= j. (B.17)

3. The degrees of the entries of Pg(s) and Qg(s) are such that:

degPg,ii(s)> detQg,i j(s). (B.18)

It should be noted that, because of conditions (B.15), (B.16), the i-th row degree
of Pg(s) is ni

Pg = degPg,ii ≥ 0. Furthermore, since the elements on the main diagonal
Pg,ii(s) are monic (recall condition 1.), it follows from (B.15), (B.16), that Pg(s) is
row reduced. Indeed the leading coefficient matrix of Pg(s), Pghr , is a lower triangular
matrix of form:

Pghr =


1 0 . . . 0

∗ 1 0
...

... ∗
. . . 0

∗ . . . ∗ 1

 .



106
Appendix B. The observability canonical form and its link to the

Beghelli-Guidorzi input-output form

Since Pg(s) is row reduced, this means that condition (B.18) is equivalent to requiring
that H(s) is strictly proper (see for instance Lemma 6.3-11 in [28]).

We call (Pg(s),Qg(s)) the Beghelli-Guidorzi form of (P(s),Q(s)). It can be shown
that there is one and only one pair (Pg(s),Qg(s)) row equivalent to (P(s),Q(s)). Actu-
ally, more can be shown. Namely, (Pg(s),Qg(s)) is a canonical form of (P(s),Q(s)),
see [23] for more details. An algorithm to obtain the unimodular matrix U(s) which
transforms the pair (P(s),Q(s)) into (Pg(s),Qg(s)) is described in [5].

Recall that we defined P(s), Q(s) such that H(s) = P−1(s)Q(s), degdetP(s) =
n where H(s) is the matrix transfer function of model (B.1). It turns out that the
Beghelli-Guidorzi form of (P(s),Q(s)) has some straightforward algebraic links with
the observability form of (B.1). In other words, the knowledge of matrices (Ao,Bo,Co),
which form the observability form of (B.1), is sufficient for constructing the Beghelli-
Guidorzi form of (P(s),Q(s)). This is summarized in what follows. Let

Pg = [pg,i j(s)], i, j = 1, . . . , p, (B.19)

then

pg,ii(s) = svi−aii,vis
vi−1−·· ·−aii,2s−aii,1, i = 1, . . . p, (B.20)

pg,i j(s) =−ai j,vi j s
vi j−1−·· ·−ai j,2s−ai j,1, i, j = 1, . . . p, (B.21)

where vi denote the observability indexes of (C,A), vi j are defined in (B.6) and ai j,k,
k = 1, . . . ,vi j, are the characteristic parameters of (C,A). This means that the ob-
servability indexes and the characteristic parameters of (C,A) are everything that is
needed to construct Pg(s). Remark that the row degrees of Pg(s) coincide with the
ordered set of observability indexes of (C,A).

As for Qg(s), let us denote the entries of Qg(s) by

Qg(s) = [qg,i j(s)], i = 1, . . . , p, j = 1, . . . ,m, (B.22)

then these are expressed as

qg,i j(s) = βi j,vis
vi−1 + · · ·+βi j,2s+βi j,1, (B.23)
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where the coefficients βi j,k, k = 1, . . . ,vi are determined by the entries of the matrix

Bg = MBo =


Bg,1

Bg,2
...

Bg,p

 , Bg,i =


βi1,1 βi2,1 . . . βim,1

βi1,2 βi2,2 . . . βim,2
...

βi1,vi βi2,vi . . . βim,vi

 (B.24)

where
M = [Mi j], i, j = 1, . . . , p (B.25)

is a structurally nonsingular matrix whose constituting blocks have form:

Mii =



−aii,2 −aii,3 . . . −aii,vi 1
−aii,3 −aii,4 . . . 1 0

... . .
.

0 0

−aii,vi
. .
.

0 . . .
...

1 0 . . . . . . 0


, (B.26)

Mi j =



−ai j,2 −ai j,3 . . . −ai j,vi j 01×v j−vi j

−ai j,3 −ai j,4 . . . 0 0
... . .

.
0 0

−ai j,vi j
. .
.

0 . . .
...

0vi−vi j×1 0 . . . . . . 0


. (B.27)
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