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Introduction

One day I will find the right words,
and they will be simple.

Jack Kerouac

Digital cameras are increasingly integrated into any modern system, whether they
are surveillance cameras, cell phone cameras or artificial satellites. Visual informa-
tion is present in most industrial environments as a powerful input for machinery
control and preventive diagnosis. Nowadays, object detection and instance segmen-
tation are two of the most studied topics in the computer vision community, be-
cause they reflect one of the key problems for many of the existing applications,
where we have to deal with many heterogeneous objects inside an image. These
tasks are fundamental for several applications, including medical diagnostics [8, 9],
autonomous driving [10], alarm systems [11], agriculture optimization [12], visual
product search [13], and many others. This because from a simple image we can dis-
cover e.g. the presence of a tumor, or the presence of traces of harmful insects for
the crop, or the spread of a particular clothing among the users of the social net-
work. Recognizing the objects in a image allows on one hand to be able to exclude
everything that is not interesting for the task to be performed, and on the other hand
it allows to build more complex reasoning and conceptual maps like for example in
top part of Figure 1. Each of these applications introduce many open challenges for
state-of-the-art algorithms. In order to work well, they need to take into account en-
vironments with an increasing variance of object shape, size, illumination, occlusion
and so on.
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For instance, the car system have to be aware that it could face heavy traffic sit-
uations, with many objects moving in any direction and partially occluded. It should
work independently from space (e.g. in any part of the world) and time (e.g. in any
weather condition). The car system not only must perform well with objects whose
design is constantly evolving over the years, but also, as in bottom part of Figure 1,
takes into account very particular situations where special means of transport, such
as elephants, are used.

Figure 1: Top: Scene Graph Generation (SGG) task example from Visual Genome
Dataset [3]. Down: Driving environment example from COCO Dataset [4].

Usually, the tasks of object detection and instance segmentation are strictly con-
nected, offering in output the classification, localization and segmentation of a num-
ber of instances not defined a priori, each of them belonging to an object class in
a predefined list. In Figure 2 some examples are shown taken from heterogeneous
environments in common scenarios. Classical computer vision algorithms were still
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comfortable tools that satisfied the required performances until a few years ago, be-
cause industrial environments are strictly controlled and bounded. Nowadays, the
applications could involve more heterogeneous environments, with rather variable
conditions. In this situation, advanced deep learning techniques have taken over any
other approach, surpassing the state of the art basically in every field. Since our goal
from the beginning has been the application of image processing to social network
images, the search for innovative techniques related to this field of deep learning was
evident from the beginning.

Figure 2: Object Detection and Instance Segmentation tasks examples from COCO
Dataset [4].

Most of the recent deep learning models descend from the two-stage architecture
called Mask R-CNN [14]. In this type of architecture, the first stage is devoted to the
search of interesting regions independently from the class, while the second is used to
perform classification, localization and segmentation on each of them. This divide-
and-conquer approach was first introduced in the ancestor network called Region-
based CNN (R-CNN) [15], which has evolved in several successive architectures.
Although it achieved excellent results, several studies [16], [17], [18] have recently
discovered some of its critical issues which can limit its potentiality. Most of these
issues have not been solved yet and several blocks of these architectures are still
under-explored and far from being optimized or well understood.
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This thesis tackles some important aspects of these two tasks, Object Detection
and Instance Segmentation, in multiple settings: Supervised Learning, Self-Supervised
and Semi-Supervised Learning. We will go in details and tackle multiple intrinsic
imbalance problems of current models, defining new tasks and new architectures to
improve the general performance.

To summarize, this thesis has the following main contributions:

• A novel Region of Interest (RoI) extraction layer called GRoIE is proposed,
with the aim of a more generic, configurable and interchangeable framework
for RoI extraction to tackle the Feature Level Imbalance (FLI) problem.

• The redesign of the model heads (FCC) toward a fully convolutional approach,
with an empirical analysis that supports some architectural preferences depend-
ing on the task.

• An extensive analysis of the IoU Distribution Imbalance (IDI) problem in the
RPN generated proposals, which we treat with a single- and double-head loop
architecture (R3-CNN) between the detection head and the RoI extractor, and
a brand-new internal loop for the segmentation head itself.

• The proposal of SBR-CNN, a new architecture composed by R3-CNN, FCC
and GRoIE, which maintains its qualities if plugged into major state-of-the-art
models.

• The definition of two new datasets called Leaf Diseases Dataset (LDD) and
ADIDAS Social Network Dataset (ASND).

• The definition of a new auxiliary task C2SSL with the purpose of enhancing the
instance segmentation training on vines diseases detection and segmentation.

• Multiple improvements on the Teacher-Student model on Semi-Supervised
Learning setting for the Object Detection task (IL-net).
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Resolution of Feature Level Imbalance with GRoIE

A particular attention has been recently given to Instance Segmentation, by exploiting
the results achievable by two-stage networks (such as Mask R-CNN), derived from
R-CNN. In these complex architectures, a crucial role is played by the Region of
Interest (RoI) extraction layer, devoted to extracting a coherent subset of features
from a single Feature Pyramid Network (FPN) layer attached on top of a backbone.
Our research is motivated by the need to overcome the limitations of existing RoI
extractors which select only one (the best) layer from FPN. Our intuition is that all
the layers of FPN retain useful information. Furthermore, our GRoIE addresses the
problem called Feature Level Imbalance (FLI) [16]. The hierarchical structure of
FPN (originally designed to provide multi-scale features) does not provide a good
integration between low- and high-level features among different layers. To address
this problem, the classical approach is to balance the information before the FPN.
On the contrary, our novel architecture puts forward a more effective solution, fusing
information from all the FPN layers in a smart way.

Task-Head optimal design with FCC

In addition, we address the common problem of the explosion of the number of pa-
rameters, due to the introduction of new components or expansion of existing ones
(e.g. [19]). The increased complexity leads to an increase in the search space for the
optimization during the training, and, in turn, negatively impacts the generalization
capability of the network. The research for a new and lighter head architecture gave
an unexpected confirmation in support of an intuition made by [20] about the link
between the task to learn and the latest layers. We extend their work toward a fully
convolutional solution.

Resolution of IoU Distribution Imbalance with R3-CNN

The problem, called IoU (Intersection over Union) Distribution Imbalance (IDI),
arises when the positive Regions of Interest (RoIs) proposals provided by the RPN
during the training of the detection and segmentation heads have an imbalanced dis-
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tribution. Due to some intrinsic problems of the anchor system, the number of avail-
able RoIs decreases exponentially with the increase of the IoU threshold, which leads
the network to easily overfit to low quality proposals. In this work, we first deeply
investigate the origin of the IDI problem and, consequently, we propose a new way to
balance positive samples by exploiting the re-sampling technique introduced by the
cascade models [21].

Our proposed technique generates new proposals with a pre-selected IoU quality
in order to equally cover all IoU values. Our new R3-CNN [2] architecture and the
corresponding training mechanism that we propose present a trade-off between the
conflicting goals of making a more balanced training and maintaining the number of
parameters as low as possible. We show that our model is able to obtain the same
performance of complex networks such as HTC [22] with a network as light as Mask
R-CNN [14].

SBR-CNN: a new Instance Segmentation model

To demonstrate that the previously defined network improvement could work to-
gether, we describe the experimental results obtained by our brand new architecture,
called SBR-CNN, which merges the best configuration of R3-CNN, GRoIE and FCC
together.

New datasets: LDD and ASND

To proper meet well-defined prerequisites and also test the performance of our de-
signed networks in different conditions, we defined two new datasets.

The first dataset, called Leaf Diseases Dataset (LDD), contains images of leaves
and bunches of grapes, affected by one or more diseases. The purpose behind the
creation of the dataset is the implementation of an automatic system for the analysis
of vine diseases by an unexperienced user. It contains both annotations for object
detection and instance segmentation in a COCO-like format, used in a Supervised
Learning setting.

The second dataset, called ADIDAS Social Network Dataset (ASND), contains
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images coming from Instagram social network. The purpose of this dataset is to train
a network which is able to analyze images and find the required types of clothes in
social network images. Because most of them come from the customers themselves,
the images can have potentially any visual characteristic and could contain an unde-
fined number of instances. The dataset contains annotations for object detection in a
COCO-like format, used in multiple Semi-Supervised Learning settings, in addition
the most common Supervised Learning.

Auxiliary self-learning task C2SSL on leaf diseases segmentation

The performance of our previously introduced network R3-CNN are evaluated by
training it on our new LDD dataset, which contains diseased grape leaves and bunches.
The unique feature of this dataset is that the disease instances are contained in total
within instances of the leaf and bunches. Since the dataset contains both information
about position of the objects and their segmentation, this allowed us to have very
precise value of instances overlap. This leads us to introduce a new auxiliary self-
learning task which, by adding it to the existing multi-task learning environment,
pushes the network to distinguish between healthy and sick leaves or grapes and,
on the other hand, to learn to detect those anomalous cases in which a disease is
recognized outside a plant. These twofold aspect offers a way to increase both ob-
ject detection and instance segmentation performance, with the advantage to keep
unchanged the computationally cost of the evaluation phase.

Improving Localization with IL-net in a SSOD setting

Supervised learning usually requires a large amount of annotated training data which
can be expensive and time-consuming to produce. Semi-Supervised Learning (SSL),
on the other hand, addresses this issue by taking advantage of large unlabeled data
accompanied by a small labeled dataset. We have two distinct datasets on which to
train the network: for the first, we have the ground truth and, for the second, we have
no additional information. In a similar context, the Semi-Supervised Object Detection
(SSOD) is a SSL but with the specific task of Object Detection. We started from the
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successful ideas applied to SSOD and collected in [7].
From our analysis it turned out that, since we have a Teacher who creates pseudo-

labels for the Student on the dataset without ground-truth, we must keep in mind
that about 50% of them are wrong. This means that we could jeopardize the Student
training. Our priority is to preserve the latter as much as possible from the errors
introduced by the former. In this Teacher-Student setting, the quality of these predic-
tions is difficult to control by applying only a simple confidence thresholding. For
this reason, there is a need for an additional way to strengthen the region proposals
and reduce the number of erroneous predictions by the Teacher. In the proposed ar-
chitecture, we introduce a new task used for the classification of the bounding boxes
(bboxes), with the aim of distinguishing good quality ones from the others. This new
score exploits the information complementary to the class score already used in these
networks, allowing a different level of filtering.

In addition, we show how to take advantage of the regression tasks on the unsu-
pervised learning part. Usually, they are excluded in the unsupervised training phase.
The justification is that the classification score is not able to filter the potentially in-
correct bboxes [7, 23]. In our hypothesis, the major problem is represented by how
the loss contributions balance between them, a well-known problem in literature and
usually called Objective Imbalance [16]. In order to obtain a positive effect from
regression losses, an adequate balance of the contribution of these two losses (re-
gression and category classification) is a possible solution to the abovementioned
problem. In this way, we prevent the regression losses on unsupervised dataset from
dominating the training, a phenomenon that greatly amplifies the error introduced by
inaccurate Teacher predictions.

Thesis Structure

This thesis is organized in the following way:

• Part I will describe in details the state-of-the-art for the related topics of the
dissertation.

• Part II will present the research findings. Firstly, in Section 2.1 we propose the
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GRoIE architecture. In Section 2.2 the R3-CNN architecture is defined. Then,
in Section 2.3 the SBR-CNN architecture is proposed which contains multiple
contributions: the review of the GRoIE architecture and the proposal of a new
more performing one, the FCC heads which confirms and extends empirical
results to define the rules to follow for an optimal architecture, towards a fully-
convolutional approach, and the extension of the R3-CNN model. In Section
2.4 the new IL-net architecture for Semi-Supervised Learning is shown. In
Section 2.5 and 2.6 the datasets LDD and ASND are defined, respectively.
Finally, in Section 2.7 the new auxiliary self-learning task C2SSL is described.

• Part III will present conclusions and future works.





Chapter 1

Background

The Spartans do not ask how many
the enemies are but where they are.

Plutarch

In this chapter we will focus on most important Object Detection and Instance
Segmentation models, defining building blocks in details and exploring the most im-
portant learning settings.

1.1 Components

Backbone

The first building block of a Faster R-CNN, and all models that share the same struc-
ture, usually is a Convolutional Neural Network (CNN), previously trained to classify
objects, without the classification head. A typical example is a ResNet [24], which
has the particularity to introduce residual blocks at multiple levels.

The ResNet reformulates internally the layers as shown in Figure 1.1. Compared
with previously defined CNN, it has the advantage to easier optimize the weights and
gain accuracy with the increasing of the depth.
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Figure 1.1: ResNet residual learning building block.

Region Proposal Network

Figure 1.2: Region Proposal Network.

The Region Proposal Network (RPN) is the top head of a Faster R-CNN [25] for
the first stage. It splits the image in input in regions with multiple shapes, where the
center is called anchor. Authors chose three scales and three aspect-ratio for these
regions, defining nine shapes. It is composed by a classification and a regression
branches. The first to distinguish a generic object from the background, and the sec-
ond to regress the coordinate of a bounding box respect to the fixed anchors. The
classifier output is built as a 3D tensor, where the first two dimensions identify the
coordinates of the Anchor respect to the image in input and the third dimension define
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the region shape. To each output of this tensor pi is assigned a label if the Intersec-
tion over Union (IoU) between the relative anchor and the ground truth bounding
box is the highest. The regression output is built also as a 3D tensor, where the first
two dimensions have the same meaning of the classification output. Each sub-tensor
ti, pointed by these two dimensions, contains four parameterized coordinates of the
predicted bounding box.

tx =
x− xa

wa
, ty =

y− ya

ya

tw = log(
w
wa

), th = log(
h
ha

)

t∗x =
x∗− xa

wa
, t∗y =

y∗− ya

ya

t∗w = log(
w∗

wa
), t∗h = log(

h∗

ha
)

(1.1)

Where the coordinates parametrization is shown, where x, y, w and h represents
the region center and its width and height. Variable x, xa and x∗ are the predicted
region, the anchor bounding box and the ground truth bounding box, respectively
(likewise for y, w and h).

The final loss is composed as follow:

L(pi, ti) =
1

Ncls
∑

i
Lcls(pi, p∗i )+λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1.2)

Where, i is the index of an anchor, pi is the predicted probability of anchor i to be an
object; p∗i is the ground-truth label, equals to 1 if the anchor is positive, 0 otherwise;
ti is the vector representing the 4 parametrized coordinates of the predicted bounding
box; t∗i is the ground truth bounding box associated with the positive anchor; Lcls is
the classification loss over the two-classes (foreground and background), usually a
binary cross-entropy, and Lreg is the regression loss, usually the smooth l1 loss; The
two loss components are normalized by the hyper-parameters Ncls and Nreg.
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Figure 1.3: Feature Pyramids implementation: (a) using an image pyramid; (b) single
scale feature map; (c) reuse of pyramidal feature hierarchy computed by the back-
bone; (d) FPN connected on top of a backbone.

Feature Pyramid Network

The Feature Pyramid Network (FPN) [26] is a building block connected on top of
a backbone, to offer features optimized for different scales. Because elaborating the
image at different scales is costly, the FPN reuses pyramidal hierarchy of backbone
to construct a feature pyramids.

RoI Pool

A Region of Interest Pooling (RoI Pool) [27] is an operation performed to extract a
small feature map for a RoI in input. In a Object Detection or Instance Segmenta-
tion network is used by the RoI Extractor to extract from the FPN layers the features
corresponding to a RPN proposal, returning a fixed-size feature map independently
from the RoI shape. Original model split the region proposal into equally sized sec-
tions and then max-pooling the values in each sub-window, making approximations
about the size of the section with a quantization method.
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To avoid quantization during the extraction, which introduces misalignments, a
new RoI Pooling module called RoI Align has been proposed [14] and shown in
Figure 1.4.

Figure 1.4: The dashed grid represents the input features, solid lines the RoI and the
dots the four sampling points in each bin, computed with bilinear interpolation.

To properly align the extracted features with the input, it uses bilinear interpo-
lation to compute the exact values for each location, aggregating the result with the
max or average function.

RoI Extractor

As it can be seen in Figure 1.5, the layer (highlighted in red) connecting the two steps
is usually represented by the RoI Extractor.

In a two-stage detection framework, a FPN layer is chosen heuristically as input
for the RoI pooler. The original version [26] select with the following formula the
FPN layer where apply the RoI pooling:

k =
⌊

k0 + log2

(√
wh/244

)⌋
(1.3)

where k0 represents the highest level feature map, w and h are the width and height
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Figure 1.5: Typical components of a two-stage R-CNN-like architecture for instance
segmentation. The RoI extractor is highlighted in red.

of the RoI, and 224 is the typical image size used to pre-train the backbone with
ImageNet dataset.

Non-Local Attention

A particular type of attention module built with only convolutional layers is called
Non-Local Attention [28]. It has the advantage to capture long-range dependency,
shown in Figure 1.6, conversely to convolutional layers which take into account only
a strict number of neighbors.

Figure 1.6: A spacetime non-local operation in a network trained for video classifi-
cation.

In Figure 1.7 the non-local block is presented, where the feature maps has the
following shape T ×H×W ×C, where C is the number of channels, ⊗ is the matrix
multiplication,

⊕
is the element-wise sum.
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Figure 1.7: A spacetime non-local block.

The g function is a linear embedding in the form of g(x) = Wx, with W as a
weight matrix to be learned. The f function could be one of the following:

• a Gaussian function f (xi,x j) = exT
i x j

• an embedded Gaussian function f (xi,x j) = eθ(xi)
T θ(x j)

• the dot-product similarity f (xi,x j) = θ(xi)
T θ(x j)

The module is a generalization of the classical non-local mean operator [29].

1.2 Models

Object Detection and Instance Segmentation models followed an evolution strictly
correlated. This is especially true for a type of architecture called two-stages, which
formed the basis for most of the state-of-the-art networks. The first stage is devoted
to the search of interesting regions independently from the class, while the second is
used to perform classification, localization and segmentation on each of them. This
strategy has proved to be very useful to keep under control the explosion of the num-
ber of parameters in case the number of classes is high. This divide-and-conquer
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approach was first introduced in the ancestor network called Region-based CNN (R-
CNN) [15], and in this section several successive and most important architectures
are described.

Faster R-CNN

Figure 1.8: Faster R-CNN model as unified network for object detection.

The Faster R-CNN model contains the following building blocks:

• backbone (Section 1.1), a CNN network devoted to transform the input image
information to a compressed and high-level representation.

• FPN (Section 1.1), also called neck, connected on top of a backbone, usually
has the objective to offer a multiple-scale representation for the backbone fea-
tures.
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• RPN (Section 1.1), which complete the first stage and is composed by a classi-
fier and a regression branches for bounding boxes.

• RoI Extractor (Section 1.1), useful to extract the corresponding features for
each proposal from the RPN with the help of a RoI pool module (Section 1.1).
It constitutes the link between the first and the second stage.

• RoI Head, which forms the second stage and it is devoted to classify each
proposal from the RPN by the class and has another regression layer to better
localize the object found.

FC1 FC2

FC

FC

Figure 1.9: Faster R-CNN RoI head (or also Detection Head).

The RoI head (or also Detection Head) is shown in Figure 1.9, with two shared
fully-connected layers first, followed by two branches, one for each task to solve, also
in this case built as fully-connected layers. The classification branch gives in output
n+ 1 softmax values, where n is the number of classes defined and the last class is
the background. The regression branch gives in output 4 values, conditioned by the
class, with the same meaning of the RPN output tensors.

The total loss for the RoI Head is the composition the weighted sum of the clas-
sification and regression losses as follow:

LRoI = αLRoI
cls +βLRoI

regr (1.4)

Where, LRoI
cls is a categorical cross-entropy loss and LRoI

regr a smooth L1 loss, α and β

are hyper-parameters to balance the contributions.
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The total loss function for the Faster R-CNN is the composition of the two stages
losses, RPN and RoI Head:

L = αLRPN +βLRoI (1.5)

Where, α and β are other hyper-parameters to balance the contributions.

Figure 1.10: Faster R-CNN model detection examples.

Some examples of final detections are shown in Figure 1.10.

Mask R-CNN

In addition to the object detection tasks, the Mask R-CNN [14] model includes also
the segmentation task. It is composed by the same two-stage architecture of a Faster
R-CNN, but includes also a branch to compute the segmentation, in parallel to RoI
Head. In Figure 1.11 the RoI head architecture is shown, where the final binary mask
in output is highlighted. It is formed by values trained by a binary cross-entropy to
be 1 or 0 depending if the portion of image takes part of the object, or not.

Two more novelty have been introduced. The first is the replacement of the RoI
pool module with a new one more effective, such as RoIAlign (see section 1.1) and
an additional dedicated RoI Extractor for the segmentation branch.
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Figure 1.11: Mask R-CNN RoI head model for Instance Segmentation, with and
w/out the FPN.

Some examples of final detections and segmentations are shown in Figure 1.12.

Cascade R-CNN

The Cascade R-CNN [19] is essentially a object detection model which improves
the RoI head performance using a multi-stage detection sub-networks connected in
cascade.

Authors identified the problem of performance degradation with the increase of
the IoU threshold. They described one of the hidden problems called Exponential
Vanishing Positive Samples (EVPS) problem, which causes the aforementioned ef-
fect, and they offered a new architecture to solve it.

The IoU threshold is used to determine if a detection could be considered positive
or negative, comparing the overlap (IoU) between the bounding box and the ground
truth. If the proposal has an IoU w.r.t the ground truth above the threshold u, then it
is considered as an example for the class:

y =

gy if IoU (x,g)> u

0 otherwise
(1.6)

Where, gy is the class label for the ground truth object g and x is a bounding box
proposal.
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Figure 1.12: Mask R-CNN model detection and segmentation examples.

They follow the idea that a single detector is unlikely to be able to train uniformly
on all quality levels of IoU. For this reason, they put multiple detectors in cascade,
where each one trains with a different distribution of proposals. This specialization
permits to train each one differently from the others and, at inference time, the col-
lection and merge of all predictions increase the general quality of the results. They
obtained this effect using the detection of the previous stage as new list of proposals
for the following one. In addition, they use a IoU threshold ut , increasing its value at
each stage, where ut > ut−1.

HTC

In [22], authors proposed Hybrid Task Cascade architecture (HTC) to introduce the
cascade also to instance segmentation. Instead of performing the object detection
and instance segmentation tasks separately, they interweave them. In Figure 1.15, the
connection between the detection and segmentation heads is shown. They connect
multiple segmentation heads in cascade, exploiting the proposals at each stage to
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Figure 1.13: Architecture frameworks: "I" is input image, "conv" backbone convolu-
tions, "pool" region-wise feature extraction (RoI Extractor), "H" network head, "B"
bounding box, and "C" classification. "B0" is proposals in all architectures coming
from the RPN.

Figure 1.14: The IoU histogram of training samples. The distribution of the first stage
is the output of the RPN, the others are the output of the following stages.

train and refine segmentation. The interleaved execution is described as follow:

xbox
t = P(x,rt−1), rt = Bt(xbox

t ),

xmask
t = P(x,rt), mt = Mt(xmask

t ),
(1.7)

Where, x are the CNN features from backbone, xbox
t and xmask

t the box and mask
features extracted from x and corresponding to the RoI with the help of the RoI Ex-
tractor, P(·) is the pooling operator, Bt and Mt the detection and mask heads of the
t-th stage, rt and mt the corresponding box and mask predictions.

Furthermore, a mask information flow is implemented to permit a further im-
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Figure 1.15: Hybrid Task Cascade architecture.

provement on mask prediction accuracy. The only difference respect to the previously
defined mask prediction mt is the follow:

mt = Mt(F(xmask
t ,m−t−1)) (1.8)

Where, m−t−1 is the intermediate features of Mt−1 and they use it as mask representa-
tion for the previous stage t−1. F(·) is defined as function which combine the output
of the stage t with the preceding one. In this way, a progressive refinement is done. It
is implemented as sum of two terms:

F(xmask
t ,mt−1) = xmask

t +Gt(m−t−1) (1.9)

Where, m−t−1 is the RoI features before the deconvolutional layer, with the size 14×
14, Gt is a 1× 1 convolutional layer. At stage t, all preceding mask heads forward
with the RoI of the current stage to compute m−t−1.

m−1 = M−1 (xmask
t ),

m−2 = M−2 (F(xmask
t ,m−1 )),

...

m−t−1 = M−t (F(xmask
t ,m−t−2)),

(1.10)
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GC-net

In [30], authors made a empirical analysis of a network which is using Non-Local
blocks (see Section 1.1), and found that global contexts is the same for different
query positions. For this reason, they created a simplified version compared to NL-
Net [28] and SENet [31], with the objective to maintain performance, but using less
computation.

Figure 1.16: Architecture comparison between main attention blocks.

In Figure 1.16, the comparison between main attention blocks is done. The new
Global Context (GC) block can be summarized with three sub-blocks:

1. global attention pooling, which uses a convolutional layer 1× 1 and a soft-
max function to obtain the attention weights, and then performs the attention
pooling.

2. feature transform with a convolutional layer 1×1.

3. feature aggregation, which uses the add function to aggregate the global con-
text.

The GC block has been added to all layers in a ResNet (c3+c4+c5) to form the GC-net
model.
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Mask scoring R-CNN

In [32], authors studied the mask quality, defined as IoU between the instance mask
and its ground truth.

Figure 1.17: Comparison of Mask R-CNN and Mask Scoring R-CNN for the rela-
tionship between the classification score and the MaskIoU.

They taken inspiration from the AP definition for instance segmentation which
uses pixel-level IoU between the predicted mask and its ground truth mask to define
instance segmentation quality. In Figure 1.18, the architecture for the new branch is
proposed and the final objective is to learn to predict the mask IoU for each segmen-
tation.

The smask is defined as score for the predicted mask, as follow:

smask = scls · sIoU (1.11)

Where, scls is the classification score done in the detection head and sIoU is the re-
gressed MaskIoU value, which represents the target to learn with a l2 loss.

In Figure 1.17, the distribution of MaskIoU score over classification score is
shown, comparing Mask R-CNN with the new Mask Scoring R-CNN model.
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Figure 1.18: Mask Scoring R-CNN architecture.

1.3 Learning settings

Supervised Learning

A Supervised Learning strategy is a machine learning algorithm characterized by
the use of two datasets, one for training the model to learn by examples, and one to
validate how good the model has learned, comparing what the network predicts with
what we expect.

Ds = {xs
i ,y

s
i}

Ns
i=1

Dv = {xv
i ,y

v
i }

Nv
i=1

(1.12)

Where, Ds is the training dataset, composed by Ns pairs, each one formed by an input
example xs with the corresponding label ys and Dv is the validation dataset, composed
by Nv pairs, each one formed by an input example xv with the corresponding label
yv. The model f (θ), composed by the parameters θ , learns to map a input x into a
output y, also called ground-truth.
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Ds (supervised dataset) Du (unsupervised dataset)

Figure 1.19: Supervised and unsupervised datasets.

Semi-Supervised Learning

Differently from the previous learning method, in case of Semi-Supervised Learning
(SSL), in addition to the validation dataset, we have two datasets for training: Du and
Ds. In figure 1.19 both are showed.

Du = {xu
i }

Nu
i=1 (1.13)

Where, Ds is a dataset provided with ground-truth and typically smaller, and the
second dataset Du contains Nu input examples xu without any labels. The loss is
composed by two distinct terms:

L = αLsup +βLunsup (1.14)

where Lsup is the loss coming from the training on the supervised dataset Ds, Lunsup

is the loss coming from the training on the unsupervised dataset Du, and α and β are
constant values to balance the training.

This type of learning is used in case collecting examples in input x is an easy task,
but producing the associated ground-truth is costly in terms of time and effort. This
is usually true in the case we need to train a model for the tasks of Object Detection
and Instance Segmentation. We refer to Semi-Supervised Object Detection (SSOD)
when the final task is Object Detection.
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Self-Supervised Learning

There is some special cases where the ground-truth can be generated automatically
offline, before the training start, or online, when the training is on going. A typical
example is jigsaw puzzles, where the image in input is divided in squares and rear-
ranged in a random way, and the network learns to solve the puzzle. The creation
of the supervised signal is entrusted to a function which generate a new input every
training iteration.

Teacher-Student Learning

Figure 1.20: Illustrations of KD methods with S-T frameworks from [5]. (a) for model
compression and for knowledge transfer, e.g., (b) semi-supervised learning and (c)
self-supervised learning.

In a Teacher-Student learning setting [5], we have two independent models, where
usually a transfer learning approach is applied. Broadly applied in model compression
and knowledge transfer, where the Teacher is a model bigger than the Student, the
paradigm has extended its borders also in other cases. Unlike from what one might
expect, in [33] authors demonstrated that it can be useful also in case of Defective
Teacher, using a poorly-trained teacher, or Reverse Knowledge Distillation, when
the Teacher and the Student roles are inverted. In early implementations [34], the
Teacher was trained first and the Student starts the train later. Nowadays, Teacher and
Student training could happen at same time. In [7], the Teacher and the Student are
the same model and the Student trains on Ds and Du at same time, using the ground
truth when available or using the pseudo-labels generated by the Teacher otherwise,
and transfer Knowledge to the Teacher, alternatively in each iteration. In Figure 1.20,
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some Teacher-Student methods are shown.

Model ensembling techniques

Figure 1.21: The Mean Teacher method from [6].

In literature, researchers have explored multiple ways to use predictions coming
from multiple models. In the first type of ensembling, there are multiple predictions
done to the same input and meshed together to form the final result. One of most re-
cent example is the Temporal Ensembling [35] method, which extends the Π-model,
by taking into account multiple predictions of same network, each one done in a dif-
ferent epoch of the training. The predictions are merged together with the exponential
moving average of label predictions and included some penalization techniques for
the ones inconsistent with the target.

Recently, authors in [6] proposed the Mean Teacher model, a new way alternative
to Temporal Ensembling [35]. In this case, the method average together the weights
of the network instead of the label predictions, always through the exponential mov-
ing average (EMA). In Figure 1.21, the training of a labeled example is shown. Both
Teacher and Student evaluate the input applying a different level of noise. The soft-
max output of the models are compared using classification cost and a consistency
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cost function is evaluated between Teacher and Student predictions. Then, the Stu-
dent weights are updated with gradient descent and the Teacher weights are updated
with exponential moving average of the student weights.

Later, in [7], authors used the Mean Teacher technique to knowledge transfer
from the Student to the Teacher with the following EMA formula:

θt ← αθt +(1−α)θs (1.15)

Where θt are the Teacher weights, θs are the Student weights and α is a smoothing
coefficient hyperparameter.

Pseudo-labeling

When we talk about Semi-Supervised Learning, usually we define a way to auto-
matically generate the labels for the unsupervised dataset Du. One example of this
techniques is Pseudo-labeling [36], where we train a model to generate the best la-
bels it can. This new dataset could be modeled as follow:

D̃u = {xu
i ỹu

i }
Nu
i=1

ỹu
i = yu

i +ni
(1.16)

Where D̃u is the new unsupervised dataset, ỹu
i is the label predicted by the network for

the i-th example, yu
i is the real ground-truth that we do not know and ni is a additional

noise introduced by the network itself. If the model performance are high, then the
noise part is small and ỹu

i will converge to yu
i . Otherwise, the noise will predominate

and the probability of an erroneous prediction will be high.

Unbiased Teacher

In [7], authors collected best performing ideas around Semi-Supervised Learning
and built the Unbiased Teacher model. It consists of two stages: Burn-In Stage and
Teacher-Student Mutual Learning Stage. The first consists of a number of iterations
of Supervised Learning through the supervised dataset Ds, where the Student receives
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Figure 1.22: The Unbiased Teacher method from [7].

as input the images weak-augmented and the same input strongly-augmented. This
stage is useful to warm-up the student model and usually consists of two thousand
iterations. Because the Student model is a Faster R-CNN model, its loss for the burn-
up stage is the following:

Lsup = ∑
i

(
Lrpn

cls (x
s
i ,y

s
i )+Lrpn

reg (x
s
i ,y

s
i )+LRoI

cls (x
s
i ,y

s
i )+LRoI

reg (x
s
i ,y

s
i )

)
(1.17)

Where the Lrpn
cls and the Lrpn

reg are the classification and regression losses, respectively,
for the Region Proposal Network (RPN) stage; the LRoI

cls and LRoI
reg are the classification

and regression losses, respectively, for the RoI head model of Faster R-CNN.

Then, the Teacher model is initialized as clone of Student weights and the second
stage starts and goes on until the end of the training. For each iteration, a batch of im-
ages from Du are weakly-augmented and passed as input to the Teacher in evaluation
mode, which generates the pseudo-labels filtered by a classification score threshold
defined as hyperparameter. Now, the student is firstly trained on weak- and strongly-
augmented images coming from Ds and its ground-truth. Then, it is trained with the
strongly-augmented images from Du with the pseudo-labels generated by the Teacher.

The Student weights are trained with back-propagation for the Ds as in Formula
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1.17. For the dataset Du, the losses applied are only the classification losses.

θs← θs + γ
∂ (Lsup +λuLunsup)

∂θs
, Lunsup = ∑

i

(
Lrpn

cls (x
u
i , ŷ

u
i )+Lroi

cls(x
u
i , ŷ

u
i )

)
(1.18)

The unsupervised losses from the bounding box are discarded since the naive
confidence thresholding does not guarantee to filter out the wrong pseudo bounding
boxes. Finally, the knowledge is partially passed back from the Student to the Teacher
with EMA (see Formula 1.15).
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Research findings

All we have to decide is what to do
with the time that is given us.

J.R.R. Tolkien
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2.1 A Novel Region of Interest Extraction Layer
for Instance Segmentation [1]

Normality is a paved road. It is easy
to walk but no flowers grow on it.

Vincent Van Gogh

2.1.1 Introduction

Figure 2.1: Typical components of a two-stage R-CNN-like architecture for instance
segmentation.

Nowadays, instance segmentation is one of the most studied topics in the com-
puter vision community. It differs from both object detection, where the final output
is the set of rectangular bounding boxes which localize and classify any object in-
stance, and semantic segmentation, where the goal is to classify any image pixel
without considering if it is part of a specific instance. In instance segmentation, the
final goal is to be able to cut the single instances of objects from the original image.
Its characteristics make this task very useful for several advanced applications, such
as object relationship detection, automatic image captioning, content-based image
retrieval, and many others.

In the recent literature, many studies have addressed the instance segmentation
problem. The proposed architectures can be grouped into two main categories: one-
step and two-step architectures. The one-step architectures obtain the results with a
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single pass, making a direct prediction from the input image. On the contrary, an
architecture belonging to the second category (two-step) is usually composed of a
Region Proposal Network (RPN) [15], which returns a list of Regions of Interest
(RoI) that are likely to contain the searched object, followed by a more specialized
network with the purpose of detecting or segmenting the object/instance within each
of the bounding boxes found. These networks descend from their ancestor network
called R-CNN [15].

The typical components of a two-step architecture are shown in Fig. 2.1. As it
can be seen in the diagram, the layer (highlighted in red) connecting the two steps is
usually represented by the RoI extractor, which is the main focus of this contribution.
Since this layer plays a crucial role in terms of final results, it should be carefully
designed to minimize the loss of information.

The main objective of this layer is to perform pooling in order to transform the
input region, which can be of any size, to a fixed-size feature map. Several previ-
ous papers have tackled this problem using different RoI pooling algorithms such
as RoI Align [14], RoI Warp [37] and Precise RoI Pooling [23]. Since instances of
objects can appear in the image with different scales, the existing architectures (as
shown in Fig. 2.1) exploit a Feature Pyramid Network (FPN) [26] combined with an
RPN (e.g. Fast R-CNN [27], Faster R-CNN [25] and Mask R-CNN [14]), to generate
multi-scale feature maps. An FPN is composed of a bottom-up pathway, where final
convolutional layers from the backbone are often chosen, followed by a top-down
pathway to reconstruct spatial resolution from the upper layers of the pyramid that
have a higher semantic value. With the introduction of a FPN, the fundamental issue
is the selection of a FPN layer to which the RoI pooler will be applied.

Traditional methods make the selection based on the RoI obtained by the RPN.
They use the formula proposed by [26] to discover the best k-th layer to sample from,
which is based on the width w and height h of the RoI as follows:

k =
⌊

k0 + log2

(√
wh/244

)⌋
(2.1)

where k0 represents the highest level feature map and 224 is the typical image size
used to pre-train the backbone with ImageNet dataset. This hard selection of a single
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layer of FPN might limit the power of the network’s description and our intuition
(supported by previous works, such as [38]) is that if all scale-specific features are
retained, better object detection and segmentation results can be achieved.

The main contributions of this section are the following:

1. A novel RoI extraction layer called GRoIE is proposed, with the aim of a
more generic, configurable and interchangeable framework for RoI extraction
in two-step architectures for instance segmentation.

2. Exhaustive ablation study on different components of the proposed layer is
conducted in order to evaluate how the performance changes depending on the
various choices.

3. GRoIE is introduced to the major state-of-the-art architectures to demonstrate
its superior performance with respect to traditional RoI extraction layers.

The section is organized as follows. sub-section 2.1.2 describes the state of the
art. In sub-section 2.1.3, the proposed architecture is described in detail. Section 2.1.4
describes the experimental methodology as well as our in-depth ablation study on
component selection. Additionally, in this section, we show how the inclusion of
GRoIE layer in state-of-the-art architectures can lead to significant improvements in
the overall performance.

2.1.2 Related Work

As mentioned in the introduction, modern detectors employ a RoI extraction layer
to select the features produced by the backbone network according to the candidate
bounding boxes coming from a RPN. This layer was first introduced in R-CNN net-
work. Since then, many architectures derived from R-CNN (e.g., Mask R-CNN, Grid
R-CNN [39], Cascade R-CNN [21], HTC [22] and GC-net [30]) have used this layer
as well. Usually, to be more invariant to object scale, the layer is not directly applied
to the backbone features, but instead to an FPN attached on top of the backbone.

In [26], a RoI pooling action is applied to a single heuristically-selected FPN
output layer. This approach suffers from a problem related to untapped information.
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In [40], the authors propose to extract mask proposals from each scale separately,
rescale them and include the resulting scales in a unique multi-scale ranked list.
Eventually, only the best proposals are selected. In [41], the authors propose to fuse
features belonging to different scales by max function, using an independent back-
bone for each image scale. In our work, on the contrary, we utilize a feature pyramid
to simplify the network and avoid doubling the number of parameters for each scale.
In SharpMask [42], the authors make a coarse mask prediction after which they fuse
feature layer back in a top-down fashion until reaching the same size of the input im-
age. In PANet [38], the authors highlight that the information is not strictly connected
with a single layer of the FPN. They propagate low-level features, building another
FPN-like structure coupled with the original FPN, where the RoI-pooled images are
combined. Our proposed GRoIE layer is inspired by this approach with the difference
that it is more lightweight because of not using any extra FPN-coupled stack and pro-
poses a novel way to aggregate data from the RoI-pooled features. Auto-FPN [43]
extends PANet model by applying the Neural Architecture Search (NAS) concept.
Also, AugFPN [44] can be considered an extension of PANet model. The module
we directly compare our module with is the Soft RoI Selector, which performs a RoI
pooling on each FPN layer for concatenating the results. Subsequently, through the
Adaptive Spatial Fusion, they are combined to create a weight map which passes
through 1x1 and 3x3 convolutions sequentially. In our case, we first apply a distinct
convolutional operation on each layer of the FPN output which very effectively helps
the network to automatically focus on the best scales. Next, we apply a sum instead
of concatenation because we have proven it has a greater learning potential for the
network. Finally, an attention layer is applied that combines fully-connected layers
and convolutions to further filter the multi-scale context.

In Multi-Scale Subnet [45], authors propose an alternative method to RoI Align
which uses crop-resized branches to extract the RoI at different scales. They use
convolution with 1x1 kernel to simply maintain the same number of outputs for each
branch without the purpose of helping the network to process data. Then, before sum-
ming all branches, they apply an average pooling to reduce each branch to the same
size. Finally, a convolutional layer with 3x3 kernel is used as post-processing stage.
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In our ablation study, we demonstrate that these convolutional configurations for pre-
and post-processing are not the best ones possible to achieve better performance.

IONet [46] proposes not to use any FPN network but concatenated, re-scaled and
dimension-reduced features directly from the backbone before performing classifi-
cation and bounding box regression. Finally, Hypercolumn [47] employs a hyper-
column representation to classify a pixel, using convolutions with 1x1 kernel and
up-sampling the results to a common size to be able to sum them all. In this case, the
absence of a optimized RoI pooling solution and an FPN can negatively affect the
final performance. Moreover, simply processing columns of pixels taken from differ-
ent stages of the backbone can be a limitation. In fact, in our ablation study we will
demonstrate that adjacent pixels are important for optimally extracting information
within the various features.

2.1.3 Generic RoI Extraction Layer

The FPN is an architecture commonly used to extract features from different image
resolutions. It has been demonstrated to have an effective power to maintain spatial
information avoiding the expensive computation caused by a separate elaboration of
each scale. Inside a two-stage detection framework, one FPN output layer is heuris-
tically selected as unique source of RoI Pooling action. Although the formula is well
thought out, it is clear that the layer selection is the result of an arbitrary choice.

In order to demonstrate this statement, we have compared this heuristic (proposed
by [26]) as baseline with a random selection of the FPN layer to sample from. Ta-
ble 2.1 shows the average precision (AP) with different metrics (detailed in Section
2.1.4). Comparing the first two rows of the table, it is evident that the difference be-
tween the randomly-selected and the heuristic choice is not enormous. As a further
proof, Fig. 2.2 shows the progress with training epochs and demonstrates that the
progress is similar. This is understandable considering that each FPN layer is derived
from the previous one. It means that information is existent in the FPN layers, but in
a more or less tangled way to be classified by the following modules of the network.

These results highlight that the network is capable of extracting information with
good enough quality to discriminate classes from any available scale. To corroborate
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Method AP AP50 AP75 APs APm APl

baseline [26] 36.5 58.4 39.1 21.9 40.4 46.8
random 34.8 56.9 37.0 19.1 39.3 45.2
sum 36.8 59.0 39.5 22.0 41.0 47.2

Table 2.1: Comparison of different methods for selecting FPN layers. Training and
testing are performed on COCO minival dataset with 12 training epochs. For expla-
nation of the different evaluation metrics in the table columns, please refer to section
2.1.4

this finding, we have also tried to sum the FPN layers, obtaining an improvement of
0.3% in average precision (see Table 2.1 and Fig. 2.2). This enhancement suggests
that if all the layers are aggregated appropriately, it is more likely to produce higher
quality features.

Based on these preliminary ideas, we propose a novel RoI extraction layer called
Generic RoI Extractor (GRoIE) whose architecture can be seen in Fig. 2.3.

GRoIE is composed of the following modules:

1. RoI pooler module: it is a module that performs a max pooling on non-
uniform region of interest to obtain a fixed-size representation. Currently, many
pooling techniques such as RoI Pooling [27] and RoI Align [14] are available.
Among the existing RoI pooling techniques, we found RoI Align [14] as the
most appropriate since it reduces a rectangular feature map region by dividing
the original RoI in equal boxes and applying bilinear interpolation inside each
of them. This helps to avoid pixel quantization.

2. Pre-processing module: its objective is to apply a preliminary elaboration
to the pooled regions. This gives the network an additional degree of free-
dom which is specific for each image scale. This module is devoted to pre-
processing the feature maps and it is usually obtained by means of a con-
volutional layer associated with each image scale. As will be shown in the
ablation analysis reported in Section 2.1.4, the optimal configuration consists
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of a single 5x5 convolutional layer per scale. Our experiments suggest that it
is not convenient to process the features individually which can be explained
by acknowledging that each feature is semantically connected with adjacent
features. This is particularly true, remembering that the final objective is object
detection/segmentation and, usually, objects are spread over a consistent region
of the image.

3. Aggregation module: it defines how to aggregate the single RoIs coming from
each branch. The most frequent operations are concatenation and summation.
There are multiple ways of merging different branches. After our ablation anal-

Figure 2.2: Average precision trend for different FPN layer selection strategies. Train-
ing and testing are performed on COCO minival dataset with 12 training epochs.
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Figure 2.3: Generic RoI Extraction framework. (1) RoI Pooler. (2) Preprocessing
phase. (3) Aggregation function. (4) Post-processing phase.

ysis, we found that the sum is able to minimize the number of features to be
computed for the next layer, and this requires less effort from the network to
converge to a stable training.

4. Post-processing module: it is an extra elaboration step applied to the merged
features before eventually returning them. It permits the network to learn global
features, jointly considering all the scales. To strengthen informative power of
the final RoI, three module types have been considered for post-processing: a
convolutional layer, a non-local layer [28] and an attention layer [48]. Although
the attention module is more complex because it requires also a fully-connected
layer, our ablation analysis demonstrates that it is the best performing choice.
The reason is that unlike the pre-processing module, the main objective of this
layer is to eliminate useless information. In particular, the “query content and
relative position" configuration, called ε2 in [48], attention factor is used. This
is more sensitive to the query content and have the higher impact on image
contents.

Summarizing, starting from a region produced by the RPN, for each scale, a fixed-
size RoI is pooled from the region. The resulting n feature maps are, first, separately
pre-processed and, then, merged into a single feature map. Finally, post-processing
is applied to extract global information. This architecture grants an equal contribu-
tion of each scale and benefits from the information embodied in all FPN layers by
overcoming the limitations inherent in the arbitrary choice of a single FPN layer. It
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is worth noting that this procedure is valid for both object detection and instance
segmentation.

2.1.4 Experiments

In this section two sets of experiments are reported. The first set is a module-wise
ablation analysis of the proposed GRoIE layer with the aim of finding the best com-
bination of choices for each of the modules described in the previous section. As was
mentioned above, GRoIE can be plugged into architectures for both object detection
(bounding box) and instance segmentation.

In the first set of experiments, we focus on object detection task only and em-
ploy the well-known Faster R-CNN as baseline. In the second set, we apply GRoIE,
with the best configuration found, to different architectures with the aim of showing
the improvement in average precision for both object detection and instance seg-
mentation. This will allow us to show that the improvement produced by GRoIE is
independent from both tasks as well as the utilized architecture.

Dataset and Evaluation Metrics

Datasets. In order to evaluate our proposal, we performed experiments on MS COCO
dataset 2017 [4] which is the de facto standard dataset for large-scale object detection
and instance segmentation tasks. It is composed of 80 object categories and contains
more than 116 thousand images in its training set.

Evaluation Metrics. To extract the metrics, we used the official COCO python pack-
age. The validation dataset, referred to as minival, includes 5000 images.

The package calculates the Average Precision (AP) with different IoU (Intersec-
tion over the Union) thresholds for both bounding box and segmentation tasks. The
primary metric, indicated simply as AP, is calculated with IoU thresholds from 0.5 to
0.95. Other metrics include AP50 with the IoU threshold of 0.5 and AP75 with 0.75.
In addition, separate metrics are calculated for small (APs), medium (APm) and large
(APl) objects.
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Implementation details

All the results with which we compare ours are not taken from the original papers,
but they were obtained by training on the same hardware, with the same configuration
(apart the RoI extractor) and by using the original authors’ code when available.
These precautions are taken in order not to have the comparison affected by any
small changes in either the configuration or the code. We used MMDetection [49] as
base framework to develop our code.

The following base configuration was used for every experiment. Experiments
were conducted on 6 GPUs (Nvidia Tesla P100 with 12 GB of memory) for 12 epochs
with an initial learning rate of 0.015, with a weight decay of 0.0001 after 9 and 11
epochs, a batch size of 2 images per GPU, and a random seed always equals to the
number zero. Since in most of the experiments reported in the literature, reference
hardware is composed of 8 GPUs with batch size 2 and learning rate equal to 0.02,
we followed the Linear Scaling Rule proposed in [50] to have a fair comparison.
The long edge and short edge of the images were resized to 1333 and 800, but the
aspect ratio was maintained. ResNet50 [24] was used as backbone and RoI Align
was selected for the RoI Pooling module (no ablation analysis was conducted on this
module).

Module-wise ablation analysis

In this section, we investigate how the choices of the GRoIE modules influence its fi-
nal performance. We compare our RoI Extractor architectures with the baseline repre-
sented by the single-layer RoI extractor proposed as part of the Faster R-CNN on [25]
paper.

Aggregation module analysis. We start from aggregation module because choosing
how to merge the data technically has a significant importance on the architecture
of the module itself. In order to evaluate the effects of different choices separately,
neither pre-processing nor post-processing are applied in this experiment. Each FPN
output layer is RoI pooled to create a 256 dimensional feature map and subsequently
merged to form a single RoI.
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Method AP AP50 AP75 APs APm APl

baseline 36.5 58.4 39.1 21.9 40.4 46.8
sum 36.8 59.0 39.5 22.0 41.0 47.2
sum+ 36.0 57.9 38.3 21.6 39.7 46.1
concat 36.1 58.0 38.6 21.4 40.3 45.7

Table 2.2: Ablation analysis on aggregation module.

There are mainly two choices for aggregating different branches: concatenation
and summation. In the first case, we need to reduce the feature maps from 1024 to
256 dimensions because we have 4 FPN layers, each one composed by 256 dimen-
sions feature maps. This can be easily done using a convolutional layer with 1x1 ker-
nel. A sum-based aggregation is simpler, but a fair comparison with concatenation is
needed. Therefore, in addition to a naive sum operator, we included a variant of sum
aggregation followed by a convolutional layer with 1x1 kernel as post-processing.
We call this sum+.

Table 2.2 shows the comparison between the proposed choices and a single-layer
RoI extractor module (indicated as “baseline”). To better justify our final choice, we
show in Fig. 2.4 the trend in average precision when the training epochs progress.
Looking at the results of sum+ and concatenation, one might argue that the integra-
tion of different FPN layers, the basis of our work, is not always beneficial. This can
be attributed to the added complexity which can be, in some cases, counterproduc-
tive and generate side effects. In the case of sum, while at the beginning the trend is
very similar, later in the training this operator achieves better accuracy with a stable
trend, suggesting that this gap could potentially increase with more training epochs.
Therefore, we selected sum operator for the aggregation module of GRoIE.

Pre-processing module analysis. For this ablation analysis, as mentioned above
and based on the findings of the previous module, we chose the sum operator for
the aggregation module and did not apply any post-processing. With regard to pre-
processing, we consider three possible choices: using a convolutional layer with dif-
ferent kernel sizes, using a non-local module or using an attention module which was
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Figure 2.4: Aggregation module analysis of average precisions trend on training.

described in the previous section.

Table 2.3 shows the comparison of these choices with the baseline as in the case
of the aggregation module. Regarding the convolutional layer, it can be noticed that
by increasing the kernel size, the results are consistently improved. This confirms
the close correlation between neighboring features. We should mention that the pro-
cessed feature maps are only 7x7 in size. This stopped us from increasing the kernel
furthermore.

Post-processing module analysis. Finally, we analyze the post-processing module,
by keeping the sum operator as aggregation strategy and not applying pre-processing.

Comparing Tables 2.3 and 2.4 which contain results for pre- and post-processing
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Method AP AP50 AP75 APs APm APl

baseline 36.5 58.4 39.1 21.9 40.4 46.8
conv 1x1 36.2 58.1 38.9 21.3 40.0 46.1
conv 3x3 37.0 58.6 40.1 22.0 40.9 47.0
conv 5x5 37.2 59.0 40.4 21.9 41.1 48.3
Non-local 36.5 58.5 39.0 21.9 40.5 46.7
Attention 36.4 58.3 39.1 21.8 40.4 46.7

Table 2.3: Ablation analysis on pre-processing module.

Method AP AP50 AP75 APs APm APl

baseline 36.5 58.4 39.1 21.9 40.4 46.8
conv 1x1 36.0 57.9 38.3 21.6 39.7 46.1
conv 3x3 36.6 58.3 39.3 21.3 40.5 46.6
conv 5x5 36.6 58.4 39.5 21.6 40.5 46.9
Non-local 36.7 58.8 38.9 21.8 40.9 46.8
Attention 36.8 58.8 39.9 21.9 40.4 47.0

Table 2.4: Ablation analysis on post-processing module.
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Object detection Instance segmentation
Method Backbone AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

Faster R-CNN r50-FPN 36.5 58.4 39.1 21.9 40.4 46.8 N/A N/A N/A N/A N/A N/A
+GRoIE (ours) r50-FPN 37.5 59.2 40.6 22.3 41.5 47.8 N/A N/A N/A N/A N/A N/A

Grid R-CNN r50-FPN 39.1 57.2 42.2 22.1 43.0 50.6 N/A N/A N/A N/A N/A N/A
+GRoIE (ours) r50-FPN 39.8 58.1 42.9 23.6 43.9 51.5 N/A N/A N/A N/A N/A N/A

Mask R-CNN r50-FPN 37.3 58.9 40.4 21.7 41.1 48.2 34.1 55.5 36.1 18.0 37.6 46.7
+GRoIE (ours) r50-FPN 38.4 59.9 41.7 22.9 42.1 49.7 35.8 57.1 38.0 19.1 39.0 48.7

GC-net r50-FPN 39.5 62.0 42.7 24.6 43.2 51.6 35.9 58.5 38.0 20.4 39.4 49.0
+GRoIE (ours) r50-FPN 40.3 62.4 44.0 24.2 44.4 52.5 37.2 59.3 39.8 20.2 41.0 51.2

Table 2.5: Average precision w/ and w/o our GRoIE module. In the case of object
detection networks, since they do not make image segmentation, an N/A has been
inserted.

modules reveals a major difference. While in the former, convolutional layers with
different kernel sizes improve the results but non-local/attention modules do not, in
the latter table the outcomes are opposite; that is, improvement of convolutional lay-
ers is negligible, while non-local and attention methods bring about noticeable en-
hancement. This can be explained by the fact that while in pre-processing there is
the need to extract spatial contributions of the different layers where convolution acts
correctly, in the post-processing phase the layers have already been merged by the
aggregation module. Therefore, convolution does not add significant information. On
the contrary, in post-processing, non-local and attention methods are able to remove
useless information by focusing only on the significant parts of the image with atten-
tion mechanism.

Application of GRoIE to different architectures

As stated at the beginning of this section, the second set of experiments starts from
the choices made on GRoIE modules based on the ablation analysis and integrates our
proposed layer within several state-of-the-art architectures, with the aim of evaluating
its benefits for both object detection and instance segmentation. We have considered,
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Figure 2.5: Object detection average precision on minival COCO dataset.

first of all, the networks that best represent the two-stage networks: Faster R-CNN
and Mask R-CNN. Furthermore, we have taken into consideration the networks that
have shown the best results in the recent years: Grid R-CNN [39] for object detection
and GC-net [30] for instance segmentation too. For the latter network, there are two
RoI extractors. The first one is used for the detection part to extract the RoIs provided
by the RPN; the second one is used by the segmentation part to extract the RoIs
provided by the detection.

For this experiment, we have thus replaced only the standard RoI extraction mod-
ules with GRoIE in its most performing configuration: sum as aggregation function,
5x5 convolution for pre-processing and attention module for post-processing.
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Figure 2.6: Instance segmentation average precision on minival COCO dataset.

Table 2.5 shows the achieved results for both object detection (bounding boxes)
and instance segmentation. It is rather evident that the introduction of GRoIE as RoI
extraction layer strongly contributes to an improvement in precision in all the tested
architectures. As expected, the amount of this improvement is not always the same
and varies from a minimum of 0.7% AP to a maximum of 1.1% AP for bounding
boxes, and from a minimum of 1.3% AP to a maximum of 1.7% AP for instance seg-
mentation. Looking at the other evaluation metrics, the gain is even more noticeable,
with a maximum of 2.2% for APl in GC-net.

This improvement is even more evident from Figs. 2.5 and 2.6, where the average
precision is illustrated with the progress of training epochs. In these graphs, it can be
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seen that in later epochs the positive effect of GRoIE increases, suggesting that it can
arguably be even higher with more training epochs.

2.1.5 Conclusion

In this thesis, we proposed a novel RoI extraction layer for two-step architectures
designed for object detection and instance segmentation. The intuition underlying
our proposal is that all the feature scales obtained by an FPN are potentially equally-
useful for obtaining good final results. The proposed layer, called GRoIE (Generic
RoI Extractor), builds upon this intuition by first pre-processing each single layer,
then aggregating them together, and finally applying attentive mechanisms as post-
processing in order to remove useless (global) information.

Experiments are conducted on COCO dataset and a comprehensive ablation study
has been conducted in order to select the best configuration of modules. Furthermore,
the addition of GRoIE to state-of-the-art two-step architectures for both object de-
tection and instance segmentation has shown a consistent improvement in average
precision in all the experiments.

While preliminary, the results reported in this theses are quite promising and
seem to indicate the potentiality of GRoIE as novel extraction layer. As a conse-
quence, our future works will concentrate on exploiting the modularity of GRoIE to
further enhance the quality of the output features to improve the overall accuracy of
different computer vision applications. In addition, neural networks are now increas-
ingly heavy to perform. For this reason, an important field of exploration also for
GRoIE regards precisely adopting every possible stratagem to lighten the workload
while keeping performance unchanged.
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2.2 Recursively Refined R-CNN:
Instance Segmentation with Self-RoI Rebalancing [2]

Life is like an echo: if you do not like
what you see, you need to change the
message that you send.

James Joyce

2.2.1 Introduction

Computer vision is a field of continuous experimentation, where new and better per-
forming algorithms are developed every day and are able to operate in environments
with increasingly extreme conditions. In particular, object detection, and instance
segmentation as its narrower extension, offers complex challenges which are utilized
in various applications, including medical diagnostics [8], autonomous driving [10],
visual product search [13], and many others. All these applications demand high-
performing systems in terms of prediction quality, as well as low memory usage.
Therefore, a desirable architecture is as light as possible regarding the parameter
count since it reduces the search space and enhances generalization, while retaining
high-quality detection and segmentation performance.

However, often these two goals are conflicting. The R3-CNN architecture and the
corresponding training mechanism that we propose present a trade-off between these
two conflicting goals. We show that our model is able to obtain the same performance
of complex networks (such as HTC [22]) with a network as light as Mask R-CNN
[14].

The accuracy of instance segmentation systems is strongly based on the concept
of intersection over union (IoU), which is used to identify the detection precision
with respect to the ground truth. The higher this value is, the more accurate and the
less noisy the predictions are. However, by increasing the IoU threshold, a prob-
lem called exponentially vanishing positive samples [51] (EVPS) is also introduced,
meaning that it can give rise to the problem of good proposals scarcity compared to
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low-quality ones. This usually leads to a training that is excessively biased towards
low-quality predictions. In order to solve this issue, Cascade R-CNN [51] first, and
its descendant HTC later, introduced a cascade mechanism where multiple object de-
tectors are trained sequentially in order to take advantage of the previous one and to
increase the prediction quality gradually. This means that each stage performs two
tasks: first, the detector is training itself, and, then, it is also devoted to identifying
the region proposals for subsequent stages. Unfortunately, this also translates into an
increase in network complexity in terms of the number of parameters.

In this work, we propose a new way to balance positive samples by exploiting the
re-sampling technique, introduced by the cascade models. Our proposed technique
generates new proposals with a pre-selected IoU quality in order to equally cover all
IoU values. We carry out an extensive ablation study and compare our results with
the state of the art in order to demonstrate the advantages of the proposed solution
and its applicability to different existing architectures.

The main contributions of this section are the following:

• An effective solution to deal with the EVPS problem with a single-detector
model, rebalancing the proposals with respect to the IoU thresholds through a
recursive re-sampling mechanism. This mechanism has the goal of eventually
feeding the network with an equal distribution of samples.

• An exhaustive ablation study on all the components of our R3-CNN architec-
ture in order to evaluate how the performance is affected by each component.

• Our R3-CNN is introduced into major state-of-the-art models to demonstrate
that it boosts the performance independently from the baseline model used.

2.2.2 Related Works

Multi-stage Detection/Instance Segmentation. The early works on object detection
and instance segmentation were based on the assumption that single-stage end-to-end
networks are sufficient to recognize and segment the objects. For instance, YOLO
network [52] optimizes localization and classification in one step. Starting with the
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R-CNN network [15], the idea of a two-stage architecture was introduced, where, in
the first stage, a network called RPN (Region Proposal Network) analyzes the whole
image and identifies the regions where the probability of finding an object is high. In
the second stage, another network performs a more refined analysis on each single
region. After this seminal work, others have further refined this idea. The Cascade
R-CNN architecture [51] uses multiple bounding-box heads connected sequentially,
where each one refines the proposals produced by the previous one. The minimum
IoU required for positive examples is increased at each stage, taking into account a
different set of proposals. Other studies [53–55] introduced a similar cascade con-
cept, but applied to the RPN network, where multiple RPNs are sequenced and the
results from the previous stage are fed into the next stage. Our work is inspired by
HTC network [22], which introduces a particular cascade operation also on the mask
extraction modules. However, all these multi-stage networks are quite complex in
terms of the number of parameters.

IoU distribution imbalance. Authors in [16] describe the problem as a skewed IoU
distribution observed in bounding boxes used in training and evaluation. In [56], the
authors highlight the significant imbalance between background and foreground RoI
examples and present a hard example mining algorithm to easily select the most sig-
nificant ones. While in their case the aim is balancing the background (negative) and
the foreground (positive) RoIs, in our work the primary goal is to balance RoIs across
the entire positive spectrum of the IoU. In [57], an IoU-balanced sampling technique
is proposed to mine hard examples. However, the sampling always takes place on
the results of the RPN which, as we will see, is not very optimized to provide high-
quality RoIs. In our case, we apply re-sampling to the detector itself, which has, on
average, a much higher probability of returning more significant RoIs. In [58], the
sources of false positives are analyzed and an extra independent classification head is
introduced to be plugged into the original architecture to reduce hard false positives.
In [59], the authors introduce a new IoU-prediction branch which supports classifi-
cation and localization. They propose to manually generate samples around ground
truths instead of using RPN for localization and IoU prediction branches in training.
In [22, 51], overfitting due to EVPS problem for large thresholds is addressed using
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multiple detectors connected sequentially. They re-sample the ground truth in a se-
quential manner to progressively improve hypothesis quality. Unlike them, we tackle
the problem with a single detector and a single segmentation head. In [60], they of-
fer an interpretation similar to ours about the fact that IoU imbalance has an adverse
effect on performance. However, while they use an algorithm to systematically gen-
erate the RoIs with the chosen quality, we rely only on the capabilities of the detector
itself.

2.2.3 Recursively Refined R-CNN

In this section, first we briefly introduce the idea behind multi-stage processing. Then
we describe our R3-CNN architecture with its evolution from a sequential to a recur-
sive pipeline, which offers a change of perspective on training.

As shown in Fig. 2.7 (a), the HTC (Hybrid Task Cascade) multi-stage architec-
ture [22] mainly follows the idea that a single detector is unlikely to be able to train
uniformly on all quality levels of IoU. The cascade architecture tries to solve the
EVPS problem by training multiple regressors connected sequentially, each of which
is specialized in a predetermined and growing IoU minimum threshold. Each regres-
sor performs a conversion of its localization results into a new list of proposals for
the following regressor. Although this type of architecture clearly improves the over-
all performance, it also introduces a considerable number of new parameters into the
network. In fact, with respect to its predecessor Mask R-CNN, the number of detec-
tion and segmentation modules triples. To reduce the complexity of cascade networks
and to address the EVPS problem, we design a lighter architecture with single detec-
tion and mask heads uniformly trained on all IoU levels. Authors in [51] underlined
the cost-sensitive learning problem [61, 62], where the optimization of different IoU
thresholds requires various loss functions. Inspired by this study, we address the prob-
lem using multiple selective training, which focuses on a specific IoU quality in each
step and recursively feeds them into the detector. The intuition is that the detector
training and its ability to return an adequate number of proposals of a certain quality
level will happen at the same time.

In Fig. 2.7 (b), the new R3-CNN architecture along with our training paradigm are



2.2. Recursively Refined R-CNN:
Instance Segmentation with Self-RoI Rebalancing [2] 57

RoI Head (loop 3x)

F

RPN

Pool

   Proposals

B1
Features

Proposals Segmentation

M1

RoI Head 3x

F

RPN

Pool B1

Features

Pool B2 Pool B3

M2M1 M3

   Proposals Features      Proposals Features      Proposals

Segmentation Segmentation                       Segmentation

(a) HTC (b) R3-CNN

           Proposals

Figure 2.7: Network design. (a) HTC: a multi-stage network which trains each head in
a cascade fashion. (b) R3-CNN: our architecture which introduces a loop mechanism
to self-train the heads.

shown. In this loop (recursive) architecture, the detector and the RoI pooling modules
are connected in a cycle. As in HTC, the first set of RoI proposals is provided by the
RPN. After that, the RoI pooler crops and converts them to fixed-size feature maps,
which are used to train the B1 block. Then, with an appropriate IoU threshold, the
ground truth re-sampling takes place by the B1 block to generate a new proposal set.
The result is then used both in the segmentation module M1 and as the new input for
the pooler which closes the loop. By the IoU threshold manipulation, the network can
force the detection to extract those RoIs with IoU quality levels which are typically
missed. The cycle continues three times (3x loop) to guarantee the rebalancing of RoI
levels.

Fig. 2.8 (a) shows the generated RoI distribution for each IoU level in Mask R-
CNN as well as the EVPS problem. The distribution of the rebalanced samples by
our model, on the other hand, can be seen in Fig. 2.8 (b) and (c). For the latter, it
is worth emphasizing some important details emerging from these graphs: (i) Con-
sidering only the first loop trend, R3-CNN looks quite similar to Mask R-CNN; (ii)
Conversely, considering the sum of the first two loops, our distribution looks much
more balanced; (iii) The third loop significantly increases the number of high-quality
RoIs.

Despite the fact that our architecture contains a single detector, its behavior shows
a unique and well-defined trend in terms of RoI distribution within different loops.
We believe this is the reason why R3-CNN outperforms Mask R-CNN. It is able to
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Figure 2.8: The IoU histogram of training samples for Mask R-CNN with a 3x sched-
ule (36 epochs) (a), and R3-CNN where each loop uses different IoU thresholds [0.5,
0.6, 0.7], decreasingly (b) and increasingly (c). Better seen in color.

mimic the Cascade R-CNN behavior in the RoI distribution (as also shown in [51]),
achieved by HTC, but using only a single detector and significantly fewer parameters.

For a given loop t, let us define h as the sole classifier and f as the sole regressor
which is trained for a selected IoU threshold ut , with ut > ut−1, by minimizing the
loss function of Cascade R-CNN [51]:

L(xt ,g) = Lcls
(
h
(
xt) ,yt)+λ

[
yt > 1

]
Lloc

(
f
(
xt ,bt) ,g) (2.2)

where xt represents the input features of the t-th loop, bt = f
(
xt−1,bt−1

)
is the new

sampled set of proposals coming from the previous loop (with b0 coming from the
RPN), g is the ground truth, and λ is a positive coefficient. yt represents the label of
xt given the IoU threshold ut , the proposals bt and the ground truth label gy with the
following equation:

yt =

gy if IoU (bt ,g)> ut

0 otherwise
(2.3)

At inference time, the same loop procedure is applied and all the predictions are
merged together by computing the mean of the classification values. As it will be
shown in the experiments, using loops also at inference (or evaluation) time is not
optional, meaning that the loop mechanism is intrinsic to the weights of the network.
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2.2.4 Experiments

Dataset and Evaluation Metrics

Dataset. As the majority of recent literature on instance segmentation, we perform
our tests on the MS COCO 2017 dataset [4]. The training dataset consists of more
than 117,000 images and 80 different classes of objects.

Evaluation Metrics. We used the same evaluation functions offered by the python
pycocotools software package. All the evaluation phases have been performed on
the COCO minival 2017 validation dataset, which contains 5000 images. We report
the Average Precision (AP) with different IoU thresholds for both bounding box and
segmentation tasks. The main metric (AP) is computed with IoUs from 0.5 to 0.95.
Others include AP50 and AP75 with 0.5 and 0.75 minimum IoU thresholds, and APs,
APm and APl for small, medium and large objects, respectively.

Implementation details

To perform a fair comparison, we obtain all the reported results by training the net-
works with the same hardware and, when possible, the same software configuration.
When available, the original code released by the authors or the corresponding imple-
mentation in MMDetection [49] framework were used. Our code is also developed
within this framework. In the case of HTC, we did not consider the semantic segmen-
tation branch.

We performed a distributed training on 2 servers, each equipped with 2x16 IBM
POWER9 cores, 256 GB of memory and 4 x NVIDIA Volta V100 GPUs with Nvlink
2.0 and 16GB of memory. Each training consists of 12 epochs with Stochastic Gradi-
ent Descent (SGD) optimization algorithm, an initial learning rate of 0.02, a weight
decay of 0.0001, and a momentum of 0.9. The learning rate decays at epochs 8 and
11. We used batch size of 2 for each GPU. We fixed the long edge and short edge
of the images to 1333 and 800, maintaining the aspect ratio. ResNet 50 [24] was
used as the backbone. If not specified differently, the number of loops in training and
evaluation are the same.
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Analysis of R3-CNN

Description. In this part, we demonstrate the potentiality offered by a naive three-
stage loop compared to Mask R-CNN and the original three-stage cascade HTC. To
have a fair comparison, we select the optimal configuration for the HTC network as
baseline and also apply it to training our R3-CNN. In the advanced version, we re-
place fully-connected layers from detection head with lightweight convolutions with
kernel 7× 7 and a Non-Local block [28] with incremented kernel size of 7× 7 to
better exploit information. We also build a brand new branch using only convolutions
and Non-Local blocks to include a new learning task to improve segmentation as
described in [32]. Since our naive version has slightly fewer parameters than Mask
R-CNN, it is also insightful to compare it with our model. Finally, we also want to
demonstrate the following important claim: it does not matter the way or order with
which the IoU thresholds are changed (either incrementally or decrementally), since
in both cases a more balanced IoU distribution is achieved (see Figure 2.8).

Results. In Table 2.6, we report speed in evaluation and memory usage in training,
distinguishing between memory usage of the entire training process and model size
(proportional to the number of parameters). Comparing the naive version (row #4)
with HTC (row #3), it can be seen that our model has significantly fewer parameters
and is more memory efficient. While the segmentation precision (SAP) is practically
the same, there is a slight loss in BAP. Also, the speed of naive is slightly better
than HTC. Regarding the advanced version (row #6), it surpasses the HTC accuracy
in both tasks, while saving a significant number of parameters and using the same
amount of memory in training. The only disadvantage is the reduced speed due to
Non-Local blocks.

Compared to Mask R-CNN (row #1), the naive R3-CNN has the same complexity,
but achieves a much higher precision in both tasks. To further investigate how well
our recursive mechanism works, we also compare it with Mask R-CNN trained with
triple number of epochs (row #2). While more training helps Mask R-CNN produce
a higher precision, it is still outperformed by naive R3-CNN. This demonstrates that
our loop mechanism is not simply another way of training the network for more
epochs, but that it represents a different and more effective training strategy. This can
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# Model # Params TS Lt H BAP SAP Speed Mem. usage Model size

1 Mask (1x) 44,170 K - 1 1 38.2 34.7 11.5 4.4 GB 339 MB
2 Mask (3x) 44,170 K - 1 1 39.2 35.5 5.4 4.4 GB 339 MB
3 HTC 77,230 K Inc 3 3 41.7 36.9 5.4 6.8 GB 591 MB
4 R3-CNN (naive) 43,912 K Inc 3 1 40.9 36.8 5.5 5.9 GB 337 MB
5 R3-CNN (naive) 43,912 K Dec 3 1 40.4 36.7 5.5 5.9 GB 337 MB
6 R3-CNN (advanced) 50,072 K Inc 3 1 42.0 38.2 1.0 6.8 GB 384 MB

Table 2.6: Comparing trainable parameters with the bounding box and segmentation
average precision. K: thousand. Column Lt : number of stages. Speed is image per
second. TS: Training strategies. Inc: progressively increasing and Dec: decreasing
IoU quality through loops.

be explained by the fact that while in Mask R-CNN the RoI proposals are always
provided by the RPN, in our case they are provided by the detection head which
generates higher quality and more balanced RoIs (see Figure 2.8).

Finally, to show that the order of changes in IoU threshold is not crucial to perfor-
mance, in rows #4 and #5, we report a comparison between increasing and decreasing
IoU thresholds through loops. Although there is a slight degradation of precision us-
ing the decreasing training strategy, it is almost negligible due to a more balanced
IoU distribution achieved in both cases, but skewed to high-quality RoIs in the first
case and low-quality in the latter.

Ablation study on the evaluation phase

Description. In this subsection we focus on how the results are affected by the num-
ber of cycles in the evaluation phase. We consider the naive version mentioned above
as pre-trained model, which consists of three loops in the training and evaluation
phases.

Results. From Table 2.7, it is evident that the loop mechanism is of paramount im-
portance for the evaluation phase too. In fact, when we train the network with the 3x
loops and then evaluate it with one loop, it performs even worse than Mask R-CNN
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(row #2). On the contrary, with two loops, the result is significantly better (row #3). It
also underperforms the three-loop evaluation only slightly (row #4). Therefore, this
version could be considered a good compromise between execution time and detec-
tion quality. From four loops onward, the performance tends to remain almost stable.
This is consistent with our initial hypothesis of a link between evaluation and the
loop mechanism, and confirms that in order to have higher performance with more
than three loops in the evaluation, we also need to increase the number of loops in
the training phase.

Ablation study on the training phase

Description. In this experiment, the network is trained with a number of loops vary-
ing from 1 to 4. The number of loops for the evaluation changes accordingly.

Results. The comparative results are reported in Table 2.8. The precision of the sin-
gle loop (row #2) is comparable to Mask R-CNN, and not much different from the
above-mentioned model with one-loop evaluation (row #2 of Table 2.7). This con-
nection with the previous experiment suggests that the detector is strictly optimized
on the corresponding sample distribution. The performance is improved by the train-
ing strategies with two and three loops, though significantly by the former and only
slightly over that by the latter. Regarding more than 3 loops (row #5), the improve-
ment is negligible.

Extensions on R3-CNN

Description. Our final experiments show that R3-CNN model can be plugged in
seamlessly to several state-of-the-art architectures for instance segmentation, consis-
tently improving their performance, which demonstrates its generalizability. In this
experiment, we select our best-performing version previously called advanced (see
Table 2.6 row #6) and renamed R3-CNN-L model. The experiment tested different
state-of-the-art models, namely GRoIE [1], GC-net [30], DCN [63], with and with-
out the R3-CNN-L version. When compatible, we also merged the original model
with HTC as baseline. For example, HTC+GC-Net is composed of both HTC and
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# Model Lt H Le BAP SAP

1 Mask 1 1 1 38.2 34.7
2

R3-CNN

3 1 1 37.9 35.4
3 3 1 2 40.5 36.6
4 3 1 3 40.9 36.8
5 3 1 4 40.9 36.7
6 3 1 5 40.9 36.7

Table 2.7: Impact of evaluation loops Le

in a 3-loop and one-head-per-type R3-
CNN model. Row #4 is the naive R3-
CNN in Table 2.6.

# Model Lt H BAP SAP

1 Mask 1 1 38.2 34.7
2

R3-CNN

1 1 37.7 34.7
3 2 1 40.4 36.4
4 3 1 40.9 36.8
5 4 1 40.9 36.8

Table 2.8: Impact of the number of train-
ing loops in a one-head-per-type R3-
CNN model. Row #4 is the naive R3-
CNN in Table 2.6.

GC-Net merged together.

Results. The results are summarized in Table 2.9, where best results for each compar-
ison are reported in bold, while the second best is in red. From the table we can see
that almost all the best and second-best scores belong to R3-CNN architectures, both
in object detection and instance segmentation. However, there are two cases in which
this does not happen. The first one is the combination of GC-Net and HTC which
outperforms R3-CNN-L in APm by 0.6% (row #7), and the other one is the combi-
nation of DCN and HTC which outperforms R3-CNN-L in APl by the same amount
(row #10). Apart from these rare cases, these experiments confirm that the proposed
R3-CNN consistently brings benefits to existing object detection and instance seg-
mentation models, in terms of both precision and reduced number of parameters.

2.2.5 Conclusions

In this section, we introduced the R3-CNN architecture to address the issue of expo-
nentially vanishing positive samples in training by rebalancing the training proposals
with respect to the IoU thresholds, through a recursive re-sampling mechanism in a
single detector architecture. We demonstrated that a good training needs to take into
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Bounding Box (object detection) Mask (instance segmentation)
# Method Backbone AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

1 Mask r50-FPN 37.3 58.9 40.4 21.7 41.1 48.2 34.1 55.5 36.1 18.0 37.6 46.7
2 HTC r50-FPN 41.7 60.4 45.2 24.0 44.8 54.7 36.9 57.6 39.9 19.8 39.8 50.1
3 R3-CNN-L r50-FPN 42.0 61.0 46.3 24.5 45.2 55.7 38.2 58.0 41.4 20.4 41.0 52.8

4 GRoIE r50-FPN 38.6 59.4 42.1 22.5 42.0 50.5 35.8 56.5 38.4 19.2 39.0 48.7
5 R3-CNN-L+GRoIE r50-FPN 42.0 61.2 45.6 24.4 45.2 55.7 39.1 58.8 42.3 20.7 42.1 54.3

6 GC-Net r50-FPN 40.5 62.0 44.0 23.8 44.4 52.7 36.4 58.7 38.5 19.7 40.2 49.1
7 HTC+GC-Net r50-FPN 43.9 63.1 47.7 26.2 47.7 57.6 38.7 60.4 41.7 21.6 42.2 52.5
8 R3-CNN-L+GC-Net r50-FPN 44.3 64.1 48.4 27.0 47.1 58.9 40.2 61.1 43.5 22.6 42.8 56.0

9 DCN r50-FPN 41.9 62.9 45.9 24.2 45.5 55.5 37.6 60.0 40.0 20.2 40.8 51.6
10 HTC+DCN r50-FPN 44.7 63.8 48.6 26.5 48.2 60.2 39.4 61.2 42.3 21.9 42.7 54.9
11 R3-CNN-L+DCN r50-FPN 44.8 64.3 48.9 26.6 48.3 59.6 40.4 61.3 44.0 22.3 43.6 56.1

Table 2.9: Performance of the state-of-the-art models with and without R3-CNN
model. Bold values are best results, red ones are second-best values.

account the diversity of IoU quality of the RoIs used to learn, more than aiming to
have only high quality RoIs. Our extensive set of experiments and ablation studies
provide a comprehensive understanding of the benefits and limitations of the pro-
posed models. R3-CNN offers a good flexibility to use intermediate versions between
the naive version and HTC, permitting to play with the number of loops, depend-
ing if we privilege precision, number of parameters or speed. Overall, the proposed
R3-CNN architecture demonstrates its usefulness when used in conjunction with sev-
eral state-of-the-art models, achieving considerable improvements over the existing
models.
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2.3 Self-Balanced R-CNN for Instance Segmentation

We do not free ourselves from
something by avoiding it, but only by
living though it.

Cesare Pavese

2.3.1 Introduction

Nowadays, instance segmentation is one of the most studied topics in the computer
vision community, because it reflects one of the key problems for many of the existing
applications where we have to deal with many heterogeneous objectives inside an
image. It offers, as output, the localization and segmentation of a number of instances
not defined a priori, each of them belonging to a list of classes. This task is important
for several applications, including medical diagnostics [8], autonomous driving [10],
alarm systems [11], agriculture optimization [12], visual product search [13], and
many others.

Most of the recent models descend from the two-stage architecture called Mask
R-CNN [14]. The first stage is devoted to the search of interesting regions indepen-
dently from the class, while the second is used to perform classification, localization
and segmentation on each of them. This divide-and-conquer approach was first intro-
duced in the ancestor network called Region-based CNN (R-CNN) [15], which has
evolved in several successive architectures. Although it achieved excellent results,
several studies [16], [17], [18] have recently discovered some of its critical issues
which can limit its potentiality. These issues have not been solved yet and several
blocks of these architectures are still under-explored and far from optimized and well
understood.

This section approaches mainly two of the imbalance problems mentioned in
[16]. The first problem, called IoU Distribution Imbalance (IDI), arises when the
positive Regions of Interest (RoIs) proposals provided by the RPN during the train-
ing of the detection and segmentation heads have an imbalanced distribution. Due to
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some intrinsic problems of the anchor system, the number of available RoIs decreases
exponentially with the increase of the IoU threshold, which leads the network to eas-
ily overfit to low quality proposals. Our work extends the analysis on R3-CNN, first
introduced in [2], to understand architectural limits and proposes advanced configu-
rations in between and an architectural improvement for the segmentation head.

The second problem, called Feature Level Imbalance (FLI), arises when the fea-
tures are selected from the Feature Pyramid Network (FPN) for their localization and
segmentation. As highlighted in [16], the hierarchical structure of FPN (originally de-
signed to provide multi-scale features) does not provide a good integration between
low- and high-level features among different layers. To address this problem, the
classical approach is to balance the information before the FPN. On the contrary, our
work enhances the GRoIE [1] architecture and puts forward a more effective solution,
fusing information from all the FPN layers.

In addition, we address the common problem of the explosion of the number
of parameters, due to the introduction of new components or expansion of existing
ones (e.g. [19]). The increased complexity leads to an increase in the search space
for optimization during the training, and, in turn, negatively impacts the generaliza-
tion capability of the network. Moreover, our empirical results support the intuition
made by [20] about the connection between the task to solve and the utilized layers,
extending their work toward a fully convolutional solution.

To summarize, this section has the following main contributions:

• An extensive analysis of the IDI problem in the RPN generated proposals,
which we treat with a single- and double-head loop architecture (R3-CNN) be-
tween the detection head and the RoI extractor, and a brand-new internal loop
for the segmentation head itself.

• Redesign of the model heads (FCC) toward a fully convolutional approach,
with empirical analysis that supports some architectural preferences depending
on the task.

• A better performing GRoIE model is proposed for extraction of RoIs in a two-
stage instance segmentation and object detection architecture.
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• An exhaustive ablation study on all the components.

• The proposal of SBR-CNN, a new architecture composed of R3-CNN, FCC
and GRoIE, which maintains its qualities if plugged into major state-of-the-art
models.

2.3.2 Related Works

Multi-stage Detection/Instance Segmentation. Single-stage and two-stage archi-
tectures for object detection have been researched for several years. For instance,
YOLO network proposed in [52] optimizes localization and classification in one step
and [64] proposes a single-shot network which uses bounding box regression. Since
the single-stage architectures do not always provide acceptable performance and re-
quire a lot of memory in applications with thousands of classes, a region-based recog-
nition method was proposed [15], where first part processes input images, while the
second part processes bounding boxes found by the previous one. This approach has
been used in the Mask R-CNN architecture [14], obtained by adding a segmenta-
tion branch to the Faster R-CNN [25]. This idea has been refined by several studies.
For instance, [65] provides a composite backbone network in a cascade fashion. The
Cascade R-CNN architecture [19] puts forward the utilization of multiple bound-
ing box heads, which are sequentially connected, refining predictions at each stage.
In [53–55], they introduced a similar cascade concept but applied to the RPN net-
work. In addition, the Hybrid Task Cascade (HTC) network [22], by which this work
is inspired, applies cascade operation on the mask head as well. Our work pushes in
the same direction but changes the paradigm from cascade to loop, where the sin-
gle neural network block is trained to perform more than one function by applying
different conditioning in the input.

IoU distribution imbalance. A two-stage network uses the first stage to produce a
set of bounding box proposals for the following stage, filtering positive ones through
a threshold applied to the IoU between them and the ground truth. The IoU distribu-
tion imbalance problem is described as a skewed IoU distribution [16] that is seen
in bounding boxes which are utilized in training and evaluation. In [56], the authors
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propose a hard example mining algorithm to select the most significant RoIs to deal
with background/foreground imbalance. Their work differs from ours because our
primary goal is to balance the RoIs across the positive spectrum of the IoU. In [57],
the authors propose an IoU-balanced sampling method which mines the hard exam-
ples. The proposed sampling is performed on the results of the RPN which is not very
optimized in producing high-quality RoIs as we will see. On the other hand, we ap-
ply the resampling on the detector itself, which increases the probability of returning
more significant RoIs.

After analyzing the sources of false positives and to reduce them, [58] introduces
an extra independent classification head to be attached to the original architecture.
In [66], the authors propose a new IoU prediction branch which supports classifi-
cation and localization. Instead of utilizing RPN for localization and IoU prediction
branches in the training phase, they propose manually generating samples around
ground truth.

In [19,22,67], they address the exponentially vanishing positive samples problem,
utilizing three sequentially connected detectors to improve the hypothesis quality
progressively, by resampling the ground truth. It differs from our approach since we
deal with the problem using a single detector and a segmentation head. Authors of
[60] give an interpretation about the fact that IoU imbalance negatively impacts the
performance which is similar to ours. However, differently from us, they designed an
algorithm to systematically generate the RoIs with required quality, where we base
our work on the capabilities of the detector itself.

Feature-level imbalance. A two-stage network deals with images containing objects
of any size with the help of an FPN attached to the backbone. How the RoI extraction
layer combines the information provided by the FPN is of paramount importance to
embody the highest amount of useful information. This layer has been used by many
derivative models such as Mask R-CNN, Grid [39], Cascade R-CNN [21], HTC [22]
and GC-net [30]. In [26], the authors apply an RoI pooling to a single and heuristi-
cally chosen FPN output layer. However, as underlined by [16], this method is de-
fective due to a problem related to untapped information. Authors of [40] propose
to separately extract mask proposals from each scale and rescale them while includ-
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ing the results in a unique and multi-scale ranked list, selecting only the best ones.
In [41], the authors use a backbone for each image scale, merging them with a max
function. On the contrary, we use an FPN which simplifies the network and avoids
doubling the network parameters for each scale.

In SharpMask model [42], after making a coarse mask prediction, authors fuse
feature layers back in a top-down fashion in order to reach the same size of the input
image. Authors of PANet [38] point out that the information is not strictly connected
with a single layer of the FPN. By propagating low-level features, they build another
structure similar to FPN, coupled with it, combining the images pooled by the RoIs.
While our proposed GRoIE layer is inspired by this approach, it differs from that in
its size. We propose a novel way to aggregate data from the features pooled by RoIs
making the network more lightweight without extra stacks coupled with FPN.

Auto-FPN [43] applies Neural Architecture Search (NAS) to the FPN. PANet has
been extended by AugFPN [68]. The module with which we compare our module is
called the Soft RoI Selector [68], which includes an RoI pooling layer on each FPN
layer to concatenate the results. Then, they are combined using the Adaptive Spatial
Fusion in order to build a weight map that is fed into 1x1 and 3x3 convolutions
sequentially. In our work, we first carry out a distinct convolution operation on each
output layer of the FPN network. After that, instead of concatenating, we sum the
results since it is potentially more helpful for the network. In the end, we apply an
attention layer whose job is to further filter the multi-scale context.

Authors of Multi-Scale Subnet [45] propose an alternative technique to RoI Align
which employs cropped and resized branches for RoI extraction at different scales.
In order to maintain the same number of outputs for each branch, they utilize con-
volutions with 1x1 kernel size, performing an average pooling to diminish them to
the same size before summing them up. Finally, they use a convolutional layer with
3x3 kernel size as the post-processing stage. In our ablation study, we show that these
convolutional configurations to carry out pre- and post-processing are not the optimal
ones that can lead to better performance.

The IONet model [46] proposes doing away with any FPN network and, in-
stead, using re-scaled, concatenated, and condensed (dimension-wise) features di-
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rectly from the backbone before doing classification and regression. Finally, Hyper-
column [47] utilizes a hypercolumn representation to classify a pixel, with 1x1 con-
volutions and up-sampling the results to a common size so that they can be summed.
Here, the absence of an optimized RoI pooling solution and an FPN layer and the
simple processing of columns of pixels that have been taken from various stages of
the backbone can be a limitation. In fact, we show in our ablation study that the
adjacent pixels are necessary for optimal information extraction.

In [69] they avoid to select the FPN layer and then RoI crop the features, attaching
a convolutional branch on top of the last FPN layer and conditioning on the instance.
In our case, we avoid the risk to loose information in intermediate FPN layers, leaving
to the network the job of conditionally merging them for each instance.

2.3.3 Recursively Refined R-CNN (R3-CNN)

Figure 2.9: Percentage of times in which, during the RPN training, there does not
exist an anchor with a certain value of IoU w.r.t. the ground-truth bounding boxes.

In a typical two-stage network for instance segmentation, to obtain a good train-
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ing of the network, we need as good candidates as possible from the RPN. We could
highlight at least two problems which are parts of so called IoU Distribution Imbal-
ance (IDI) that afflict the training. The first one, shown in Fig. 2.9, is related to the
anchor system. It is called Exponential Vanishing Ground-Truth (EVGT) problem,
where the higher the IoU threshold to label positive anchors is, the exponentially
higher the percentage of missed ground-truth bounding boxes (gt-bboxes) can be.
For instance, more than 80% of the gt-bboxes do not have a corresponding anchor
with an IoU (w.r.t. the gt-bbox) between 0.85 and 0.9. Since, for every image, the
anchors’ maximum IoU varies from one gt-bbox to another, if we choose a too high
IoU threshold, some of the objects could be completely ignored during the training,
reducing the number of truly used annotations. For example, if the gt-bbox is in an
unfortunate place where the maximum IoU between that and all available anchors is
0.55 and we choose a minimum threshold of 0.6, then no anchors will be associated
with that object and it will be seen as part of the background during the training. That
is why we are usually obliged to use a very low threshold (typically 0.3 as a limit),
since otherwise we could run into a case where a consistent part of the ground-truth is
ignored. The second, called Exponentially Vanishing Positive Samples (EVPS) prob-
lem [19], is partially connected with the first one because training the RPN with a
too low threshold will reflect the low quality issue on its proposals. Even in the best
case, where each gt-bbox has the number of positive anchors greater than zero, the
number of proposals from the RPN still diminishes exponentially with the increase
of the required IoU threshold (see Fig. 2.11a).

Fig. 2.10(a) shows the Hybrid Task Cascade (HTC) model [22], greatly inspired
by Cascade R-CNN network [19], which trains multiple regressors connected sequen-
tially, each of which is specialized in a predetermined and growing IoU minimum
threshold. This architecture offers a boost in performance at the cost of the duplicate
heads, three times the ones used in Mask R-CNN.

In order to reduce the complexity, we designed a lighter architecture called Re-
cursively Refined R-CNN (R3-CNN) (see Fig. 2.10(b)) to address the IDI problem
by having single detection and mask heads trained uniformly on all the IoU lev-
els. In [19], it has been pointed out that the cost-sensitive learning problem [61, 62],
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Figure 2.10: Network design. (a) HTC: a multi-stage network which trains each head
in a cascade fashion. (b) R3-CNN: our architecture which introduces two loop mech-
anisms to self-train the heads.

connected with the optimization of multiple IoU thresholds, needs multiple loss func-
tions. This encouraged us to look for a multiple selective training to address the prob-
lem. Using a different and uniformly chosen IoU threshold in the range between 0.5
and 0.9 for each loop, we sample a proposal list to feed the detector itself each time
with a different IoU quality distribution, relying on RPN only in the initial loop. Fur-
thermore, this new list of proposals is used to feed the segmentation head M1, which
incorporates an internal loop to refine the mask.

Fig. 2.11 (a) shows the generated RoI distribution for each IoU level in Mask
R-CNN and it highlights the EVPS problem. In Fig. 2.11 (b) and (c), we can see how
our model rebalances the sample distribution.

In order to show the rebalancing, during the training we collected the information
of IoU of the proposals with the gt-bboxes. To make the comparison fairer, we trained
the Mask R-CNN three times the number of epochs. In Fig. 2.11a, we can see that the
distribution of IoUs in Mask R-CNN maintains its exponentially decreasing trend.

Shown in Fig. 2.11b, R3-CNN presents a well-defined IoU distribution for each
loop. With two loops, we already have a more balanced trend and, by summing the
third, the slope starts to invert. The same trend can be observed in Cascade R-CNN,
where the IoU histogram of the nth stage of Cascade R-CNN (as shown in [19] - Fig.
4) can be compared with the nth loop of R3-CNN.

Let us now define how the detection head loss (see Fig. 2.10(b)) is composed,
followed by the definition of the loss of the mask head. For a given loop t, let us
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(a) Mask R-CNN trained 36 epochs. (b) R3-CNN

Figure 2.11: The IoU distribution of training samples for Mask R-CNN with a 3x
schedule (36 epochs) (a), and R3-CNN where at each loop it uses a different IoU
threshold [0.5, 0.6, 0.7] (b). Better seen in color.

define B1 as the detection head, composed of h as the classifier and f as the regressor,
which are trained for a selected IoU threshold ut , with ut > ut−1. Let xt represent the
extracted features from the input features x using the proposals bt. In the first loop,
the initial set of proposals (b0) comes from the RPN. For the rest of the loops, in loop
t, we have a set of NP proposals bt =

{
bt

1,b
t
2, . . . ,b

t
NP

}
obtained by the regressor f

using the extracted features xt−1 and the set of proposals bt−1 from the previous loop.

A given proposal bt
i ∈bt is compared with all the NGT gt-bboxes g= {g1,g2, . . . ,gNGT }

by computing their overlap through the IoU. If none of these comparisons results in
an IoU greater than the selected threshold ut for the current loop, the label yt

i = 0
corresponding to the class "background" is assigned to bt

i . Otherwise, the label lx cor-
responding to the class of the gt-bbox gx with the maximum IoU is assigned to yt

i:

lx = arg max
lx̄

IoU
(
bt

i,gx̄
)
∀gx̄ ∈ g|IoU

(
bt

i,gx̄
)
> ut (2.4)

where lx̄ is the label assigned to gx̄. The detection head loss for the loop t can be
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computed similarly as in Cascade R-CNN [19]:

Lt
bbox
(
xt,g

)
=

Lcls
(
h
(
xt) ,yt) ∀bt

i | yt
i = 0

Lcls
(
h
(
xt) ,yt)+λLloc

(
f
(
xt,bt) ,g) otherwise

(2.5)

where yt is the set of labels assigned to the proposals bt and λ is a positive coefficient.
The classification loss Lcls is a multi-class cross entropy loss. If yt

i is not zero, the
localization loss Lloc is also used, which is computed with a smooth L1 loss.

Regarding the segmentation branch performed by the M1 mask head, a separate
RoI extraction module is employed to obtain the features xt for the proposals bt

provided by the B1 detection head. Similar to HTC, but with a single mask head,
R3-CNN uses an internal loop of j iterations, with j = t, meaning that in the first
loop of R3-CNN, a single iteration ( j = 1) is performed, then two iterations in the
second loop, and so forth. At each internal iteration, the mask head receives as input
the features xt summed with the result of a 1×1 convolution C1 applied to the output
of the previous internal iteration:

m0 = M1
(
xt +C1(0)

)
m1 = M1

(
xt +C1(m0)

)
...

mj−1 = M1
(

xt +C1(mj−2)
) (2.6)

where C1 is applied to a null tensor 0 at the first loop, and to the output of the previous
iteration for the subsequent. With this mechanism, the network iteratively refines its
segmentation output.

The final output mj−1 of the internal loop is then upsampled with U to reshape
its size from 14× 14 to 28× 28. Finally, another 1× 1 convolution C2 is applied in
order to reduce the number of channels to the number of classes:

mj =C2

(
U
(

mj−1
))

(2.7)
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The loss function for the segmentation Lt
mask is computed over mj as follows:

Lt
mask = BCE

(
mj,m̂

)
(2.8)

where m̂ represents the segmentation of the ground-truth object and BCE is the binary
cross entropy loss function.

In the end, the total loss for loop t is composed as the sum of previous losses:

Lt = αt
(
Lt

bbox +Lt
mask
)

(2.9)

where αt represents a hyper-parameter defined statically in order to weight the dif-
ferent contributions of each loop.

We maintain the loop mechanism also at inference time and, at the end, we merge
all the predictions, computing the average of the classification predictions.

2.3.4 Fully Connected Channels (FCC)

In order to further reduce the network size, we propose to replace fully connected
(FC) layers with convolutions. In R3-CNN model, they are included in two modules:
in the detection head and in the Mask IoU branch [32], which learns a quality score
for each mask.

In the detection head, the first two FC layers are shared between the localization
and the classification tasks, followed by one smaller FC layer for each branch (see
Fig. 2.12(a)). Our goal is to replace the first two shared FC layers, which contain most
of the weights, with convolutional layers, in order to obtain a lighter network (see
Fig. 2.12(b)). With the term L2C we will refer, hereinafter, to these two convolutional
layers together. The input feature map has the shape of n× channels× 7× 7 (n is
the number of proposals), characterized by a very small width and height. A similar
problem, addressed by [1], demonstrates how performance improves as the kernel
size increases, covering almost the entire features shape. We chose a large kernel size
of 7× 7 with padding 3 in order to maintain the input shape, halving the number
of channels in input. So, the first layer has 256 channels in input and 128 in output,
while the second one reduces channels from 128 to 64.
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Figure 2.12: (a) Original HTC detector head. (b) Our lighter detector using convolu-
tions with 7×7 kernels. (c) Evolution of (b) with rectangular convolutions. (d) Evo-
lution of (b) with non-local pre-processing block. (e) Evolution of (c) with non-local
pre-processing block.
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Name # Params Description
FC 1 12,846,080 256×7×7×1024 (W) + 1024 (b)
L2C (conv1) 1,605,760 256×7×7×128 (W) + 128 (b)
L2C (conv1a) 1,376,512 256×7×3×256 (W) + 256 (b)
L2C (conv1b) 688,256 256×3×7×128 (W) + 128 (b)
FC 2 1,049,600 1024×1024 (W) + 1024 (b)
L2C (conv2) 401,472 128×7×7×64 (W) + 64 (b)
L2C (conv2a) 344,192 128×7×3×128 (W) + 128 (b)
L2C (conv2b) 172,096 128×3×7×64 (W) + 64 (b)

Table 2.10: Parameter count for FC & L2C with 7× 7 and rectangular kernels. W:
weights; b: bias.

Fig. 2.12(c) shows an alternative version which substitutes each convolution with
two of them but with a small kernel (7× 3 with padding 3, and 3× 7 with padding
1), with the aim of increasing the average precision and execution time. Table 2.10
shows the sharp reduction obtained by the introduction of both L2C versions.

A heavier version of FCC includes also one non-local layer before the convo-
lutions (see Fig. 2.12(d) and (e)). Our non-local layer, differently from the original
one [28], increases the kernels of internal convolutions from 1× 1 to 7× 7, in or-
der to better exploit the information that is flowing inside the features in input. The
disadvantage of increased execution time could be alleviated in future versions, for
instance, by using depth-wise convolutions [70] or similar mechanisms.

In terms of number of parameters, FCC architectures reduces them from 14M to
2.2M, 2.8M, 8.6M, and 9.2M if we use versions b, c, d, and e, respectively.

These changes in the architecture have been considered also for the Mask IoU
module, which is composed of four convolutional layers followed by three FC layers.
Also in this case, the first two FC layers have been replaced, achieving the following
weight reduction: from 16.3M to 4.6M, 5.1M, 10.6M and 11.1M with version b, c, d
and e, respectively.

As previously noticed by [20], the architecture is influenced by the task that it
tries to solve. In our case, we observed that convolutions can successfully substitute
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FC layers in all cases. But, if the task involves a classification, a mechanism to pre-
serve spatial sensitivity information is needed (with an enhanced non-local module).
Conversely, when the network learns a regression task, as for the Mask IoU branch,
an attention module is not needed.

2.3.5 Generic RoI Extraction Layer (GRoIE)

The FPN is a commonly used architecture for extracting features from different image
resolutions without separately elaborating each scale. In a two-stage detection frame-
work similar to one mentioned in this section, the output layer of an FPN network is
chosen heuristically as a unique source of sequential RoI pooling. However, while the
formula has been designed very well, it is obvious that the layer is selected arbitrarily.
Furthermore, the mere combination of the layers that are provided by the backbone
can result in a non-uniform distribution of low- and high-level information in the FPN
layers [16]. This phenomenon necessitates finding a way to avoid losing information
by selecting only one of them as well as correctly combining them in order to ob-
tain a re-balanced distribution. The enhancement obtained from the GRoIE [1] (Fig.
2.13) suggests that if all the layers are aggregated appropriately through some extra
convolutional filters, it is more likely to produce higher quality features. The goal is
to solve the feature imbalance problem of FPN by considering all the layers, leaving
the task of learning the best way of aggregating them to the network. To summarize,
given a proposed region, a fixed-size RoI is pooled from each FPN layer. Then, the
n resulting feature maps are pre-processed separately and summed together to form
a single feature map. In the end, after a post-processing stage, global information is
extracted. This architecture guarantees an equal contribution of all scales, benefiting
from the embodied information in all FPN layers and overcoming the limitations of
choosing an arbitrary FPN layer. This procedure can be applied to both object de-
tection and instance segmentation. Our work focused on even improving the GRoIE
model and evaluating new building blocks for the pre- and the post-processing stages.
In particular, as we did for the FCC, we tested bigger and rectangular kernels for the
convolutional layers, to better exploit the close correlation between neighboring fea-
tures. The advantage to involve near features is even more evident when applied to a
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Figure 2.13: GRoIE framework. (1) RoI Pooler. (2) Pre-processing phase. (3) Aggre-
gation function. (4) Post-processing phase.

more sophisticated non-local module, which includes an attention mechanism. How-
ever, as we will see in the ablation study, it is extremely important to do it in the right
point of the chain.

2.3.6 Experiments

This section reports the extensive experiments carried out to demonstrate the effec-
tiveness of the proposed architecture. After introducing the dataset, the evaluation
metrics, the implementation details and the table legend, the following subsections
report the results on the three main novelties of the architecture, namely the Re-
cursively Refined R-CNN (R3-CNN), the Fully Connected Channels (FCC) and the
Generic RoI Extraction layer (GRoIE). Finally, the last subsection shows how all
these novelties together can bring performance benefits to several state-of-the-art in-
stance segmentation architectures.

Dataset and Evaluation Metrics

Dataset. As the majority of recent literature on instance segmentation, we perform
our tests on the MS COCO 2017 dataset [4]. The training dataset consists of more
than 117,000 images and 80 different classes of objects.

Evaluation Metrics. We used the same evaluation functions offered by the python
pycocotools software package, performed on the COCO minival 2017 validation
dataset, which contains 5000 images.
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We report the mean Average Precision (AP) for both bounding box (BAP) and
segmentation (SAP) tasks. The primary metric AP is computed as average over results
with IoU thresholds from 0.5 to 0.95. Other metrics include AP50 and AP75 with 0.5
and 0.75 minimum IoU thresholds, respectively. Separate metrics are calculated for
small (APs), medium (APm) and large (APl) objects.

Implementation Details

In order to perform a fair comparison, we use same the hardware and software con-
figuration to carry out the experiments. When available, the original code released
by the authors was used. Otherwise, we used the corresponding implementations in
MMDetection [49] framework. In the case of HTC, we do not consider the semantic
segmentation branch.

Unless mentioned otherwise, the following configuration has been used. We per-
formed a distributed training on 2 servers, each one equipped with 2x16 IBM POWER9
cores and 256 GB of memory plus 4 x NVIDIA Volta V100 GPUs with Nvlink 2.0
and 16GB of memory. Each training consists of 12 epochs with Stochastic Gradient
Descent (SGD) optimization algorithm, batch size 2 for each GPU, an initial learning
rate of 0.02, a weight decay of 0.0001, and a momentum of 0.9. The steps to decay
the learning rate was set at epochs 8 and 11. Regarding the images, we fixed the long
edge and short edge of the images to 1333 and 800, maintaining the aspect ratio.
ResNet50 [24] was used as the backbone.

Table Legend

To ease the understanding of the following tables, we shortly introduce the notation
used. Since R3-CNN has the loop both in training and evaluation phase, we denote
the number of training and evaluation loops as Lt and Le, respectively. Whenever
only Lt is reported, Le is intended to have the same value of Lt . In the case of HTC,
Lt corresponds to the number of stages.

The column H (heads) specify how many pairs of detection (B) and mask (M)
heads are included. In the case of multiple pairs (H > 1), the column Alt. (alternation)
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# Model # Params Lt H BAP SAP Mem Model Speed

1 Mask (1x) 44,170 K 1 1 38.2 34.7 4.4G 339M 11.6
2 Mask (3x) 44,170 K 1 1 39.2 35.5 4.4G 339M 11.6
3 HTC 77,230 K 3 3 41.7 36.9 6.8G 591M 3.3
4 R3-CNN (naive) 43,912 K 3 1 40.9 37.2 6.7G 337M 3.4
5 R3-CNN (deeper) 60,604 K 3 2 41.8 37.5 7.0G 464M 3.4

Table 2.11: Comparison between R3-CNN, Mask R-CNN, and HTC. Column Model
contains the number of parameters (millions). 3x means training with 36 epochs.

gives information about which one is used for each loop. For example, in row #3 of
Table 2.14, the model is using three loops for training and evaluation, and two pairs
of B and M. The column Alt reports "abb", meaning that B1 and M1 are used only in
the first loop, while B2 and M2 are used for the second and third loops.

The columns MIoU , L2C, NLb, NLa are flags indicating the presence of the Mask
IoU branch with the associated loss, the substitution of the FC layers with convolu-
tions (L2C), inside the detection head (in Table 2.15) or Mask IoU branch (in Table
2.16), and finally, the introduction of our non-local blocks with kernels 7×7 before
(NLb) and after (NLa) the L2C convolutions. The column Speed refers to the number
of processed images per second on evaluation phase with batch size equal to one and
one GPU.

Results for Recursively Refined R-CNN (R3-CNN)

Preliminary analysis of R3-CNN

Description. We compared Mask R-CNN and HTC with two R3-CNN models: naive
(one pair of bounding box B and mask M) and deeper (two pairs, with the alternation
aab). To carry out a fair comparison, the Mask R-CNN was trained with 36 epochs
instead of 12, and the optimal configuration for the HTC network was used.

Results. The naive version has the biggest reduction in terms of the number of pa-
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rameters, loosing 0.8 in BAP but gaining 0.3 in SAP compared to HTC. Regarding
the deeper version, it matches the HTC in BAP and further increases the gap in SAP,
while still saving a considerable number of parameters. Both of them require the same
amount of memory, as well as the inference time as HTC. This is due to the fact that
the training procedure and the utilized components are very similar to those of HTC.

Compared to Mask R-CNN, our R3-CNN (in both versions) outperforms it, even
when Mask R-CNN is trained for a triple number of epochs (row #2). This can be ex-
plained by the very different way of training the network, helping to achieve a higher
quality of the bounding boxes during the training. Moreover, the training phase for
R3-CNN is faster than Mask R-CNN (about 25 hours versus 35 hours), although R3-
CNN has the disadvantage of requiring the loop mechanism also in the evaluation
phase.

Ablation study on the training phase
Description. In these experiments, the network is trained with a number of loops
varying from 1 to 4. The number of loops for the evaluation changes accordingly.
The basic architecture for all the tests in these experiments is the naive R3-CNN with
single pair of detection and mask heads. It means that all the R3-CNN models have the
same number of parameters but they are trained more if the number of loop increases.

Results. The results are reported in Table 2.12. Using a single loop (row #2) not only

# Model Lt H BAP SAP

1 Mask 1 1 38.2 34.7
2

R3-CNN

1 1 37.6 34.6
3 2 1 40.4 36.7
4 3 1 40.9 37.2
5 4 1 40.9 37.4

Table 2.12: Impact of the number of training loops in a R3-CNN. Row #4 is the naive
R3-CNN in Table 2.11.



2.3. Self-Balanced R-CNN for Instance Segmentation 83

produces a similar IoU distribution to Mask R-CNN as mentioned in Section 2.3.3,
but also leads to a similar performance. With two loops (row #3), we can reach al-
most the peak performance of R3-CNN thanks to the rebalancing of IoU, surpassing
the performance of Mask R-CNN. In the case of three loops, the network provides
more high-quality proposals, reaching even better performance on both tasks. Adding
four loops for training does not improve object detection task but still improves seg-
mentation.

Ablation study on the evaluation phase

Description. In this experiment we focus on how the results are affected by the num-
ber of loops in the evaluation phase. We consider the naive architecture mentioned
above as the pre-trained model and we vary the number of evaluation loops.

Results. From Table 2.13, we observe that we can not avoid to use the loop in the
evaluation phase, because it plays the role to provide high quality RoIs to the net-
work. Though, already with two loops the AP values are significantly better (row
#3). From four loops onward, the performance tends to remain almost stable in both
detection and segmentation tasks.

Ablation study on a two-heads-per-type model

# Model Lt H Le BAP SAP

1 Mask 1 1 1 38.2 34.7
2

R3-CNN

3 1 1 37.7 35.1
3 3 1 2 40.5 36.9
4 3 1 3 40.9 37.2
5 3 1 4 40.8 37.2
6 3 1 5 40.9 37.3

Table 2.13: Impact of evaluation loops Le in a three-loop and one-head-per-type R3-
CNN model. Row #4 is the naive R3-CNN in Table 2.11.
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# Model Lt H Alt. BAP SAP

1 HTC 3 3 abc 41.7 36.9
2

R3-CNN

2 2 ab 40.9 36.5
3 3 2 abb 41.8 37.2
4 3 2 aab 41.8 37.5
5 3 2 aba 41.5 37.2
6 4 2 aabb 42.1 37.7
7 4 2 abab 41.9 37.6
8 5 2 aabbb 41.8 37.5

Table 2.14: The impact of the number of training loops and pair alternation in two-
heads-per-type (two pairs B/M) in the R3-CNN.

Description. In this experiment, we evaluate the performance on changing the num-
ber of loops and the alternation between the pairs of heads in the architecture. It is
worth emphasizing that increasing the number of loops does not change the number
of weights.

Results. Table 2.14 reports the results. In case of two loops (row #2), the model
shows good precision, but still worse than HTC. With three loops and aab alternation
(row #4), R3-CNN surpasses HTC in both task.

With four loops (rows #6 and #7), the performances are all higher than HTC,
especially for aabb alternation (row #6). Finally, with five (row #8) loops the perfor-
mance is not increasing anymore.

Results for Fully Connected Channels (FCC)

Ablation study on the Detection Head

Description. In this section, we evaluate the effect of the head redesign toward a
fully convolutional approach. We tested both L2C versions (see Fig. 2.12 (b-d) and
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Fig. 2.12(c-e) in orange) and the introduction of the non-local layer with larger ker-
nels before (column NLb) the L2C convolutions (see Figure 2.12(d) and (e)) and, to
have a more complete ablation study, also after them (column NLa). In order to pro-
vide a more comprehensive analysis, the case of two heads per type (column H) and
four loops during training (column Lt) were also considered.

Results. Table 2.15 summarizes the results. As expected, the presence of only L2C
(see Fig. 2.12(b)) has an impact on performance (see row #2 vs #3). Rectangular
convolutions (row #4 and Fig. 2.12(c) and (e)) help to almost completely mitigate
this loss, approaching the original performance (row #2), but with the advantage of
lowering the number of parameters and speeding up the execution compared to row
#3.

# Model Lt H L2C NLb NLa BAP SAP Speed # Params (M)

1 HTC 3 3 41.7 36.9 3.3 77.2
2

R3-CNN

3 1 40.9 37.2 3.4 43.9
3 3 1 7×7 39.8 36.4 2.2 32.2
4 3 1 7×3→ 3×7 40.6 36.8 2.8 32.7
5 3 1 7×7 X 41.8 37.6 1.0 38.6
6 3 1 7×3→ 3×7 X 41.7 37.6 1.2 37.9
7 3 1 7×7 X X 41.8 37.6 0.9 39.0
8

R3-CNN

4 2 41.9 37.5 2.9 60.6
9 4 2 7×7 41.4 37.2 1.8 37.1

10 4 2 7×3→ 3×7 41.0 37.1 2.4 38.3
11 4 2 7×7 X 42.9 38.1 0.8 50.0
12 4 2 7×3→ 3×7 X 42.6 37.8 0.9 51.1

Table 2.15: Impact of FCC module configurations applied to R3-CNN detector. Row
#2 is the R3-CNN in row #4 of Table 2.11.

The non-local block before L2C (row #5) boosts the performance, matching BAP

of HTC and surpassing its SAP by a good margin. Conversely, its introduction after
L2C does not bring any benefits.

In the case of two heads per type and four loops, L2C produces higher perfor-
mance (see rows #9 and #8) compared to row #3. Rectangular convolutions (row
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#10) worsen the performance compared to row #9, but have the advantage of a good
increase in speed. As in the previous case, the introduction of our non-local module
(row #11 and #12) produces a good performance boost with respect to the model
without them (row #9 and #10).

To summarize, FCC with only L2C makes the network lighter, reducing the wight
by 14 to 18 percent, while slightly worsening the performance compared to using FC
layers. Moreover, a boost in performance is achieved by the non-local block inserted
before L2C, surpassing the original performance with a good margin, albeit at the
cost of a higher execution time.

Ablation study on Mask IoU module

Description. In order to increase performance even further, we borrowed the Mask
IoU learning task from [32] and redesigned its branch to introduce as few weights as
possible. After testing the original Mask IoU branch, as done previously on detection
head, we conducted an ablation study. We considered two baselines: a lighter (row
#2) and a better-performing (row #8) model in Table 2.16. They also correspond to
rows #6 and #11 in Table 2.15, respectively.

# Model Lt H MIoU L2C NLb NLa BAP SAP Speed # Params (M)

1 HTC 3 3 41.7 36.9 3.3 77.2
2

R3-CNN

3 1 41.7 37.6 1.2 37.9
3 3 1 X 41.6 38.5 1.1 54.9
4 3 1 X 7×7 41.7 38.4 1.1 43.2
5 3 1 X 7×3→ 3×7 41.8 38.4 1.1 44.3
6 3 1 X 7×7 X 41.4 38.3 1.1 49.6
7 3 1 X 7×7 X X 41.6 38.3 1.1 50.0
8

R3-CNN

4 2 42.9 38.1 0.8 50.0
9 4 2 X 42.7 38.6 0.9 66.3
10 4 2 X 7×7 42.7 38.7 0.8 54.6
11 4 2 X 7×7 X 42.8 38.7 0.8 61.0
12 4 2 X 7×7 X X 42.7 38.6 0.8 61.4

Table 2.16: Impact of FCC to Mask IoU branch.
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Results. Table 2.16 summarizes the results. As expected, original Mask IoU module
(rows #3 and #9) improves the segmentation. Differently from the detection head,
the redesigned Mask IoU branch with only L2C with 7× 7 kernels (rows #4 and
#10) is enough to maintain almost the same performance compared to the original
branch (rows #3 and #9), but introduces few new parameters and almost does not
affect the execution time. Contrary to the previous experiment, neither rectangular
convolutions (row #5) nor our non-local blocks (rows #6 and #7) bring any noticeable
improvement.

Results on Generic RoI Extractor (GRoIE)

For the following experiments, we chose the Faster R-CNN as the baseline to have a
generic and lightweight model to compare with.

Pre-processing module analysis

Description. For this ablation analysis, we did not apply any post-processing. We
tested two types of pre-processing: a convolutional layer with different kernel sizes
and a non-local block.

Method AP AP50 AP75 APs APm APl

baseline 37.4 58.1 40.4 21.2 41.0 48.1
conv 3×3 38.1 58.7 41.5 22.2 41.7 49.0
conv 5×5 38.2 59.2 41.6 22.5 41.6 49.0
conv 7×7 38.3 59.2 41.6 22.7 41.7 49.4
conv 7×3→ 7×7 37.9 58.5 41.3 22.0 41.5 49.1
Non-local 1×1 37.7 58.9 40.7 22.0 41.4 48.5
Non-local 7×7 38.4 59.2 41.9 22.5 42.1 49.5

Table 2.17: Ablation analysis on pre-processing module.

Results. Table 2.17 shows the results. The increase in the kernel size improves the fi-
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nal performance, confirming the close correlation between neighboring features. The
use of a rectangular convolution did not help as it did in Section 2.3.6 for the de-
tection head. In the case of the non-local module, the original one does not have the
expected benefit. Our non-local module with a larger kernels gives a slight advantage
over the others, but not enough to justify the introduced slowdown.

Post-processing module analysis

Description. In this experiment we analyze the post-processing module, by not ap-
plying any pre-processing.

Method AP AP50 AP75 APs APm APl

baseline 37.4 58.1 40.4 21.2 41.0 48.1
conv 3x3 37.3 58.3 40.4 21.2 41.0 48.5
conv 5x5 37.8 58.7 40.9 22.2 41.2 48.8
conv 7x7 37.9 59.0 41.2 21.5 41.8 48.6
conv 7x3→ 3x7 37.4 58.4 40.5 21.4 40.9 48.7
Non-local 1x1 37.8 59.1 40.5 22.0 41.7 48.3
Non-local 7x7 38.7 59.7 42.3 22.7 42.4 49.7

Table 2.18: Ablation analysis on post-processing module.

Results. Comparing Tables 2.17 and 2.18, we can notice that performance trend is
the same. However, in the post-processing, the convolutional performance increment
is less evident. Contrary to the original non-local, our version with 7×7 kernels ob-
tained a considerably high improvement.

GRoIE module analysis

Description. Finally, we tested the GRoIE architecture with the best-performing pre-
and post-processing modules: a 7× 7 convolution as pre-processing and non-local
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with 7×7 kernels as post-processing.

Method AP AP50 AP75 APs APm APl

baseline 37.4 58.1 40.4 21.2 41.0 48.1
GRoIE 39.3 59.8 43.0 23.0 42.7 50.8

Table 2.19: Best GRoIE configurations.

Results. From Table 2.19, we can observe a great improvement in the performance,
surpassing the original AP by 1.9%.

Experiments on SBR-CNN

Description. In this experiment, we compare Mark-RCNN, CondInst [69] and HTC
with our SBR-CNN (Self-Balanced R-CNN) model with the following configuration:
the best-performing three-loop model with the rebuilt detection head and MaskIoU
head (see row #4 of Table 2.16), with our GRoIE having its best configuration (see
Table 2.19) in place of both Bounding Box and Mask RoI extractors. In addition, we
take into account GC-Net [30] and Deformable Convolutional Networks (DCN) [63],
investigating whether the performance benefit we bring is independent of the underly-
ing architecture. To be as fair as possible, we compare also GC-Net and DCN joined
with HTC. For example, HTC+GC-Net means that we considered the combination
of both architectures.

Results. In Table 2.20 we see that, independently from the architecture, our SBR-
CNN reaches the highest AP values in all metrics in both tasks, even if the counterpart
is merged with HTC. More specifically, fusing other models with SBR-CNN not only
maintains the performance increment but also increases the gap in favor of SBR-
CNN.

In case of BAP, for instance, looking at the BAP in the standalone case (row #4),
SBR-CNN outperforms HTC (row #3) by a 0.3% margin only. But, when combined
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Bounding Box Mask
# Method AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

1 Mask 37.3 58.9 40.4 21.7 41.1 48.2 34.1 55.5 36.1 18.0 37.6 46.7
2 CondInst 38.3 57.3 41.3 22.9 41.9 49.0 34.4 54.9 36.6 15.8 37.9 49.5
3 HTC 41.7 60.4 45.2 24.0 44.8 54.7 36.9 57.6 39.9 19.8 39.8 50.1
4 SBR-CNN 42.0 61.1 46.2 24.2 45.3 55.3 39.2 58.7 42.4 20.6 42.6 54.2
5 GC-Net 40.5 62.0 44.0 23.8 44.4 52.7 36.4 58.7 38.5 19.7 40.2 49.1
6 HTC+GC-Net 43.9 63.1 47.7 26.2 47.7 57.6 38.7 60.4 41.7 21.6 42.2 52.5
7 SBR-CNN+GC-Net 44.8 64.6 49.0 27.2 48.0 58.8 41.3 62.1 44.7 23.1 44.6 56.4
8 DCN 41.9 62.9 45.9 24.2 45.5 55.5 37.6 60.0 40.0 20.2 40.8 51.6
9 HTC+DCN 44.7 63.8 48.6 26.5 48.2 60.2 39.4 61.2 42.3 21.9 42.7 54.9
10 SBR-CNN+DCN 45.3 64.6 49.7 27.2 48.8 60.6 41.5 62.2 45.0 22.9 45.1 58.0

Table 2.20: Performance of the state-of-the-art models compared with SBR-CNN
model. Bold and red values are respectively the best and second-best results.

with GC-Net and DCN, this improvement is even higher (0.9% in the case of GC-
Net - row #7 vs #6 - and 0.6% in the case of DCN - row #10 vs #9). Considering all
metrics, the improvement is up by 1.5% (see AP50 in row #7 vs #6).

In case of SAP, it fluctuates from +2.1% up to +2.6%, when comparing SBR-
CNN+GC-Net with HTC+GC-Net (row #7 vs #6). Considering all metrics, the high-
est improvement is +4.1% (see APl in row #10 vs #9).

2.3.7 Conclusions

We propose a new object detection and instance segmentation architecture called
SBR-CNN, which addresses two of intrinsic imbalances which affect two-stage archi-
tectures descending from Mask R-CNN: the IoU Distribution Imbalance of positive
input bounding boxes with the help of a new mechanism for refining RoIs through a
loop between detection head and RoI extractor, and a loop for mask refinement inside
the segmentation head. Furthermore, we address the Feature Imbalance that afflicts
the FPN layers, proposing a better performing RoI Extractor which better integrates
low- and high-level information. Finally, we investigate the effect of a redesign of the
model head toward a lightweight fully convolutional solution. Our empirical stud-
ies confirmed that if the task involves classification, there is the necessity to main-
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tain some spatial sensitivity information by the enhanced non-local block. Otherwise,
when a regression task is involved, a convolutional head is enough. Our SBR-CNN
proves to be successfully integrated into other state-of-the-art models, reaching a
45.3% AP for object detection and 41.5% AP for instance segmentation, using only
a small backbone such as ResNet-50.
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2.4 Improving Localization for Semi-Supervised Object De-
tection

We all have an unsuspected reserve
of strength inside that emerges when
life puts us to the test.

Isabel Allende

2.4.1 Introduction

Supervised learning usually requires a large amount of annotated training data which
can be expensive and time-consuming to produce. Semi-Supervised Learning (SSL),
on the other hand, addresses this issue by taking advantage of large unlabeled data
accompanied by a small labeled dataset. Usually, in an SSL setting, we have two
models that act as Teacher and Student. The latter is trained in a supervised way,
drawing the needed ground truths from the dataset, if exist, and from the Teacher’s
predictions, otherwise.

This approach can be beneficial in many machine learning tasks including object
detection, whose final result is a list of bounding boxes (bboxes) and the correspond-
ing classes. In this task, the network is devoted to finding the position of the localized
objects in an image, as well as identifying which class they belong to. Hereinafter, we
will refer to this specific application as Semi-Supervised Object Detection (SSOD).
In [7], authors have collected many interesting ideas applied to SSOD. Among them,
the one that seems more promising is the Mean Teacher [71], which uses the Expo-
nential Moving Average (EMA) as a knowledge transfer technique from the Student
to the Teacher. In particular, while the Teacher produces pseudo-labels on unlabeled
and weakly augmented images to obtain more reliable labels, the Student is trained
using the pseudo-labels as ground-truth on the same images, but strongly augmented
to differentiate the training. In weak augmentation, only a random horizontal flip
is applied, while in strong augmentation, other transformations such as randomly
adding color jittering, grayscale, Gaussian blur, and cutout patches are also used.
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Although they obtain good performances with this pseudo-labeling technique, the
Student model is still influenced by the Teacher’s erroneous predictions. The qual-
ity of these predictions is difficult to control by applying only a simple confidence
thresholding. For this reason, there is a need for an additional way to strengthen the
region proposals and reduce the number of erroneous predictions by the Teacher. In
the proposed architecture, we introduce a new task used for the classification of the
bboxes, with the aim of distinguishing good quality ones from the others. This new
score exploits the information complementary to the class score already used in these
networks, allowing a different level of filtering. In addition, we show how to take
advantage of the regression tasks on the unsupervised learning part. Usually, they are
excluded in the unsupervised training phase. The justification is that the classifica-
tion score is not able to filter the potentially incorrect bboxes [7, 23]. A well-known
problem during training is the Objective Imbalance [16], which is characterized by
the difficulty in balancing the different loss contributions. In our hypothesis, this is
the case for the unsupervised training part. In order to obtain a positive effect from
regression losses, an adequate balance of the contribution of these two losses (re-
gression and category classification) is a possible solution to the above-mentioned
problem. In this way, we prevent the regression losses on unsupervised dataset from
dominating the training, a phenomenon that greatly amplifies the error introduced by
inaccurate Teacher predictions.

The main contributions of this section are the following:

• a new bounding box IoU (Intersection over Union) classification task to filter
out errors on pseudo-labels produced by the Teacher;

• the introduction of a regression task on the unlabeled dataset which can help
the network to learn better;

• an exhaustive ablation study on all the components of the architecture.
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2.4.2 Related Work

Semi-Supervised Learning for Object Detection. In [72], the authors proposed the
Π-Model which is an ensemble of the predictions of the model at different epochs
under multiple regularizations and input augmentation conditions. The predictions
for the unlabeled images are merged together to form a better predictor. In [73], the
authors proposed Consistency-based Semi-supervised Learning for Object Detection
(CSD), which uses consistency constraints as a self-training task to obtain a better
training of the network. In [74], an SSL framework with Self-Training (via pseudo
label) and the Augmentation driven Consistency regularization (STAC) is introduced,
exploiting weak data augmentation for model training and strong data augmenta-
tion for pseudo-labeling. Several works [7,71,75] proposed to use the Mean Teacher
model, applying EMA to the weights instead of the predictions, facilitating knowl-
edge transfer from Student to the Teacher model at each iteration. For one-stage ob-
ject detection models, authors of [76] use an Expectation-Maximization approach,
generating pseudo-labels in the expectation step and training the model on them in
the maximization step, optimizing for classification in each iteration and for local-
ization in each epoch. In [77], the authors propose a Soft Teacher mechanism where
the classification loss of each unlabeled box is weighted by the Teacher classification
score, also using a box jittering approach to select the most reliable pseudo-bboxes.
In [34], authors utilize SelectiveNet to properly filter pseudo-bboxes trained after the
Teacher. In [78], the authors propose two models, one of which generates a proposal
list of bounding boxes and the second one refines these proposals, using the average
class probability and the weighted average of the bounding box coordinates.

Bounding Box Intersection over Union (BBox IoU). In [79], the authors added a
new branch on top of the Fast R-CNN model to estimate standard deviation of each
bounding box and use it at Non-maximum Suppression (NMS) level to give more
weight to the less uncertain ones. In [23, 66], the authors added a new branch on top
of the Faster R-CNN to regress bounding box IoU and to multiply this value with the
classification score to compute final score of the suppression criterion of the NMS.
In the same direction, Fitness NMS was proposed in [80] to correct the detection
score for better selecting bounding boxes which maximize their estimated IoU with
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the ground-truth.

2.4.3 Teacher-Student Learning Architecture

In SSOD, we have two datasets. The first set Ds = {xs
i ,y

s
i}

Ns
i=1, typically smaller, con-

tains Ns images xs with the corresponding labels ys, and the second set Du = {xu
i }

Nu
i=1

contains Nu images xu without labels. Similarly to [7], our architecture is composed
of two identical models where one behaves as Teacher and the other as the Student. At
each iteration of the semi-supervised training, the Student is trained with one batch of
images coming from Ds (supervised training) and one from Du (unsupervised train-
ing), using the pseudo-labels generated by the Teacher as ground-truth and filtered by
a threshold. Then, the Student transfers the learned knowledge to the Teacher using
the EMA applied to the weights.

In our model, the total loss L for the Student is composed of two terms, which
come from the the supervised Lsup and unsupervised Lunsup training:

L = Lsup +Lunsup

Lsup = ∑
i

Lcls +Lreg +LIoU

Lunsup = ∑
i

αLcls +βLreg + γLIoU

Lcls = Lrpn
cls (x

s
i ,y

s
i )+Lroi

cls(x
s
i ,y

s
i )

Lreg = Lrpn
reg (x

s
i ,y

s
i )+Lroi

reg(x
s
i ,y

s
i )

(2.10)

where Lcls contains the sum of Region Proposal Network (RPN) and Region of Inter-
est (RoI) classification losses, while Lreg contains the sum of RPN and RoI regression
losses. The LIoU loss will be defined in Subsection 2.4.3. α , β and γ represent how
much weight each component of the unsupervised training has. The new terms intro-
duced in this section, w.r.t. the ones defined in [7], are shown in bold in the above
equations and will be described in the following.
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Bounding Box Regression on Unsupervised Training

The training consists of two phases, the burn up stage and Teacher-Student Mutual
Learning stage. In the first stage, the Student is trained only on the labeled dataset,
following the standard supervised training procedure. Then, for the second stage, at
each iteration, the Student is trained on two batches at the same time, one coming
from the labeled dataset and the other coming from the unlabeled dataset. For the
latter, the baseline [7] trains only the RPN and RoI head classifier and disregards
regression. The authors justify this choice noticing that the classification confidence
thresholds are not able to filter the incorrect bounding box regression. Our hypothesis
is that training also on pseudo bounding box regression could help the Student as long
as the task is correctly weighted with respect to the others. Category classification
and regression tasks are learned in parallel. Given that the classification performance
improves during the training, we can also expect the bounding box regression to
behave the same way. In other words, while the training proceeds, the average quality
of the pseudo-labels increases and so does the classification confidence value.

During the Student training, although pseudo bounding boxes are filtered with
a threshold on classification confidence score, we still have bounding boxes of any
IoU quality. This problem is related to the uncertainty on prediction. Figure 2.14a
visualizes the IoU distribution quality with respect to the ground-truth of the Teacher
filtered predictions. We can notice that the number of pseudo bounding boxes with
IoU less than the threshold (0.6 in our experiments) remains almost constant during
the entire training, unlike the others which slowly increase. In Figure 2.14b, we show
only the filtered pseudo bounding boxes that the Teacher has wrongly classified and
split by their IoU. In Figure 2.14c, the same data are shown using a different graph.
We can notice that the number of wrongly classified pseudo-bboxes decreases ex-
ponentially with the increase of the quality, and this trend remains the same during
the training. The bounding boxes with low quality (IoU < 0.6) represent 45% of the
total pseudo-bboxes and more than 90% of classification errors. This means that the
low-quality IoU bboxes contain almost all the classification errors.

By looking at Figure 2.14d, we can see that the unsupervised regression loss
(from RPN and RoI heads) represents between 20% and 30% of the total loss. Con-
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(a) count pseudo bboxes (b) count class errors

(c) count class errors per IoU (d) Unsupervised Lcls and Lreg

Figure 2.14: The pseudo bounding boxes generated during training: (2.14a) IoU dis-
tribution of pseudo-bboxes, (2.14b) distribution of pseudo-bboxes when the predicted
class is wrong. (2.14c) number of pseudo-bboxes per IoU collected every 5000 iter-
ations. (2.14d) Unsupervised classification and regression losses comparison during
the training. Better seen in color.

versely, the unsupervised classification loss (from RPN and RoI heads) accounts only
for 15% (at most) of the total loss. This means that an error in pseudo-labels has al-
most three times (see blue line in Figure 2.14d) more weight on regression branch
than on classification branch. To avoid the amplification of the errors, an appropriate
value for β is chosen, by under-weighting the regression contribution and making it
comparable with the classification one.
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Figure 2.15: Faster R-CNN architecture with our branch in red.

Bounding Box IoU Classification Task

As noted by [23, 66], adding a new task related to the IoU prediction could help the
network to train better. Our model learns to predict the bounding box quality, using
this value to further filter pseudo-labels in conjunction with the classification score.
Differently from them, we train the model to make a binary classification instead of
a regression since it is sufficient (and easier to learn) for the purpose of filtering.

Fig. 2.15 illustrates the architecture of a two-stage object detection model such as
Faster R-CNN [25] with our additional branch highlighted in red. For each positive
bounding box (i.e., the ones recognized as foreground), it concatenates the output of
the shared layers (xsh

i , with the size of 1024), all the classification scores (si, with the
size of the number of classes plus the background) and all bounding box regression
deltas (di, with the size of 4). All these features are passed to the IoU cls branch (also
called f (·) in the following), which outputs a vector with the same size as si (i.e.,
one for each class). This will return the ith IoU classification, called IoU score qIoU ,
corresponding to the predicted bbox. The f (·) branch consists of two fully-connected
layers with an ELU [81] activation function between them and a sigmoid activation
function at the end.

The loss LIoU
i for the new branch of IoU classification, conditioned on the class,
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is defined as:

qIoU
i = f (concat(xsh

i ,si,di))

LIoU
i = FL(qIoU

i , ti)
(2.11)

where the FL function is the Focal Loss [82] with its own γ value equal to 1.5 and ti
represents the binary target label. For the ith bounding box, the branch output qIoU

i ∈
[0,1] is a single value which predicts if it is a high- or low-quality bounding box. The
target ti and its IoU are defined as follows:

IoUi = maxIoU
(
bt

i,g
)
∀bi ∈ B|IoU (bi,g)> u

ti =

1 IoUi > µ

0 otherwise

(2.12)

where B is the list of proposals coming from the RPN, bi are the ith predicted bound-
ing boxes, g is the ground-truth bounding box, u is the minimum IoU threshold to
consider the bounding bi as positive example (typically set to 0.5) and µ (set to 0.75)
is the minimum IoU threshold to be classified as high-quality.

In the evaluation phase, the Teacher’s filtering of the predicted bounding boxes
with low confidence is preceded by the IoU classification filtering, which uses a new
IoU inference threshold θ (set to 0.4).

2.4.4 Experiments

Dataset. We perform our tests on the MS COCO 2017 dataset [4]. The training
dataset consists of more than 117,000 images and 80 different classes of objects,
where 10% of the labeled images are used.
Evaluation Metrics. All the tests are done on COCO minival 2017 validation dataset,
which contains 5000 images. We report mean Average Precision (mAP) and AP50 and
AP75 with 0.5 and 0.75 minimum IoU thresholds, and APs, APm and APl for small,
medium and large objects, respectively.
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# β AP AP50 AP75 APs APm APl

0 0.5 31.775 51.450 34.190 16.952 34.384 41.549
1 1.0 31.947 51.530 34.270 16.949 34.900 41.306
2 2.0 31.754 51.078 34.143 16.691 35.008 41.670
3 4.0 30.445 49.387 32.727 15.044 33.200 40.209

Table 2.21: Performance varying the weight loss β on unsupervised regression losses.

# Method AP AP50 AP75 APs APm APl

1 UT 31.027 50.757 33.056 17.014 33.684 40.322
2 Ours (with filter) 31.604 51.181 33.962 16.816 34.283 40.809
3 Ours (w/out filter) 31.509 51.118 33.564 16.848 34.684 40.582

Table 2.22: Performance comparison with original Unbiased Teacher (UT) model:
(2) Training with BBox IoU branch with and (3) w/out pseudo-labels filtering.

Implementation details. All the values are obtained running the training with the
same hardware and hyper-parameters. When available, the original code released by
the authors is used. Our code is developed on top of the Unbiased Teacher [7] source
code. We perform the training on a single machine with 6 Tesla P100 GPUs with
12GB of memory. The train lasts 180,000 iterations with a batch size of 2 images per
GPU for the supervised part and 2 images for the unsupervised part, with α set to 4.
We use the Stochastic Gradient Descent (SGD) optimization algorithm with a learn-
ing rate of 0.0075, a weight decay of 0.0001, and a momentum of 0.9. The learning
rate decays at iteration 179990 and 179995. We use the Faster R-CNN with FPN [26]
and the ResNet 50 [24] backbone for the teacher and student models, initialized by
pre-trained on ImageNet, and the same augmentation of Unbiased Teacher [7].

Ablation study

Unsupervised regression loss. In this experiment, we empirically show that we can
also use regression losses on RPN and RoI head for the unsupervised part. We test
different weights for the constant β in the loss formula (see eq. 2.10). In Figure 2.16a
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(a) Unsup regression loss weights. (b) Classification vs Regression.

(c) Filtering with bbox IoU score. (d) Count filtered pseudo-bboxes.

Figure 2.16: Ablation studies: (2.16a) weights for unsupervised regression loss on
RPN and RoI. (2.16b) classification vs regression loss on bbox IoU branch. (2.16c)
filtering bbox on inference with bbox IoU classification score. (2.16d) count bboxes
filtered by inference threshold µ during training.

and Table 2.21, we can see that greatly amplifying the contribution can be deleteri-
ous, becoming counterproductive in the case of β equal to 4.

Bounding box IoU branch loss type. Our proposal involves a new IoU classifica-
tion task, trained with a binary cross-entropy function. In this experiment, we test
how performance changes in case our new branch learns a regression task instead of
a classification, using a smooth L1 loss. In this case, the ground-truth is represented
by the real IoU value between the bbox and the ground-truth. In Figure 2.16b, we
can see that classification branch is more stable and reaches a slightly higher perfor-
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# µ AP AP50 AP75 APs APm APl

1 0.5 31.199 51.009 33.047 16.187 34.000 40.180
2 0.6 31.128 50.785 33.268 17.102 33.805 39.932
3 0.7 31.461 51.319 33.637 16.714 34.217 40.100
4 0.75 31.604 51.181 33.962 16.816 34.283 40.809
5 0.8 31.336 50.601 33.707 16.327 34.180 40.476
6 0.9 27.125 43.515 28.800 12.815 29.486 36.034

Table 2.23: Performance using BBox IoU classification branch with inference thresh-
old θ fixed to 0.5 and varying training threshold µ .

# θ AP AP50 AP75 APs APm APl

0 0.3 31.404 51.205 33.792 16.273 34.542 40.851
1 0.4 31.630 51.185 34.044 17.387 34.494 40.784
2 0.5 31.604 51.181 33.962 16.816 34.283 40.809
3 0.6 31.158 50.227 33.418 16.203 33.687 40.323
4 0.7 30.649 49.216 33.138 16.532 33.409 39.542

Table 2.24: Performance using BBox IoU classification branch with training thresh-
old µ fixed to 0.75 and varying inference threshold θ .

mance.

With and without filtering bboxes. The bbox IoU branch learns to recognize high
quality bounding boxes and, as the default behavior, also to pre-filter Teacher’s pseudo-
bboxes depending on our new threshold score. In Figure 2.16c and in Table 2.22 (rows
#2 and #3), we see that our new branch contributes to the increase of the general per-
formance (+0.48% mAP). Then, another small improvement is given by the filtering
phase, increasing the performance by +0.1% mAP.

Bounding box training threshold µ . In this experiment, we test the bbox IoU classi-
fication branch, setting inference threshold θ to 0.5 and varying the training threshold
µ . From Table 2.23, it is clear that the choice of a correct threshold greatly influences
the performance. On the one hand, if the threshold is too low, it does not help the
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# Lunsup
reg xsh scores deltas AP AP50 AP75 APs APm APl

1 31.027 50.757 33.056 17.014 33.684 40.322
2 X 31.947 51.530 34.270 16.949 34.900 41.306
3 X X 31.754 51.189 34.032 16.850 34.657 41.320
4 X X X 32.166 51.772 34.765 16.647 34.999 41.870
5 X X X X 31.923 51.464 34.070 16.202 35.197 41.368
6 X X X 31.630 51.185 34.044 17.387 34.494 40.784

Table 2.25: Study on unsupervised regression losses and IoU classification loss.

network to learn more descriptive feature maps. On the other hand, if it is too high,
the risk to wrongly filter out the bounding boxes will increase. As we can see in Fig.
2.16d, with the increase of IoU threshold µ , the number of teacher pseudo-bboxes
filtered during the training increases exponentially. This is likely due to an imbal-
ance in training, where the higher the threshold, the fewer high-quality examples are
available. The best value is in the middle between the threshold u (0.5) and the IoU
maximum value 1.0.

Bounding box inference filter threshold θ . In this experiment, we test our bbox
IoU branch, setting the training threshold µ to 0.75 (best value previously found) and
varying the inference threshold θ . In Table 2.24, we see that the best value for this
threshold is in the middle as expected because the branch is trained to reply 1 if the
bbox is good enough and 0 otherwise.

IL-net: Improving Localization net. Finally, we test the full architecture IL-net,
composed of the unsupervised regression losses and the new IoU classification branch.
Since, using both of them, the contribution of the new branch is absorbed by the loss
of unsupervised regression (see rows 2 and 5 in Table 2.25), we performed an abla-
tion study reducing the values in input to the new branch (see eq. 2.11). This analysis
has allowed us to highlight that by removing the contribution of the deltas, we can
increase the general performance. This behavior could be explained by the fact that
the deltas are optimized from both losses (Lreg

usup and LIoU ), causing the conflict as a
result.
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2.4.5 Conclusions

In this section, we proposed two new architectural enhancements with respect to the
network proposed in [7]: a new bounding box IoU classification task to filter out
errors on pseudo-labels produced by the Teacher and the introduction of the unsuper-
vised regression losses. For the former, we introduced a lightweight branch to predict
the bounding box IoU quality. For the latter, we demonstrated how to successfully
integrate it in the training, balancing the training tasks. Our new model called IL-net,
which contains both, increases the general SSOD performance by a 1.14% AP on
COCO dataset in a limited annotation regime.
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2.5 A new dataset for Grape Diseases Instance Segmenta-
tion

Before you heal someone, ask him if
he’s willing to give up the things that
make him sick.

Hippocrates

2.5.1 Introduction

Recognize plant diseases is as deeply felt problems in the agricultural sector. Early
disease detection and diagnosis is a key aspect for a correct and sustainable disease
control. Traditionally, the diagnosis of leaf and cluster diseases of grapes relies on ex-
pert judgment based on visual inspection of the disease symptoms and signs, which
usually leads to high cost and a risk of error. With the rapid development of artificial
intelligence, machine learning methods have been applied to plant disease detection
to make it smarter. In recent years, deep learning approaches led to a huge improve-
ment of image analysis with the tasks of object detection [83] and its evolution, in-
stance segmentation [84]. A main problem related with these deep learning tasks is
the need of a labeled dataset with a large amount of images in order to obtain an
acceptable performance. The purpose behind the creation of this dataset is the imple-
mentation of an automatic system for the analysis of the leaves and bunches of vines
through images, in order to identify the diseases that affect them. The project was
born in collaboration with Horta s.r.l, a spin off company of the Università Cattolica
del Sacro Cuore in Piacenza (Italy), that develops and provides web based services
to agricultural and agro-industrial chains, with the aim of increasing competitiveness
and sustainability of crop management and ensuring greater food safety, within the
project "AGREED - Agriculture, Green & Digital" (ARS01_00254 on PON “Ricerca
e Innovazione” 2014-2020 and FSC funds). The final purpose is to give the possibility
to an inexperienced user to analyze the general status of the plants and identify any
diseases through a photo taken from a mobile device. Our goal is to be able to iden-
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tify each disease in a very precise way, and provide the user with information about
the disease severity. The information provided could be integrated automatically in
broader management tools, such as Decision support systems (DSSs), and increase
the support they give to farmers for the sustainable management of vineyards. For this
reason we have chosen the instance segmentation task because it allows to examine
the leaves and grapes accurately. As far as we know, no similar methods have been
developed before.

2.5.2 Related

At the state of the art there are several attempts to analyze plants and their dis-
eases. Table 2.26 reports a summary with the salient characteristics for each of them.
In [85], authors formed a dataset of grapevine leaves in order to detect the Esca dis-
ease through an image classification algorithm. In [86], the authors formed a dataset
for three common grape leaf diseases (Black rot, Black measles, also called Esca, and
Leaf blight) and for the Mites of grape; the dataset contains 4,449 original images of
grape leaf diseases labeled with bounding boxes. In [87], authors formed a dataset
of 300 images for five grape varieties: Chardonnay, Cabernet Franc, Cabernet Sauvi-
gnon, Sauvignon Blanc and Syrah; the dataset is public and contains label for grape
detection and instance segmentation. In [88], authors formed a dataset for disease im-
age recognition, which contains label to classify four diseases of wheat: stripe rust,
leaf rust, grape downy mildew, grape powdery mildew. In [89], authors labeled with
bounding boxes 5,000 images of tomato diseases. In [90], authors concentrated their
work around the Esca diseases to be able to make object detection; for this scope,
they labeled 6,000 images of Bordeaux vineyards.

2.5.3 Leaf Diseases Dataset

Our dataset contains 1,092 RGB images of grapes and 17,706 annotations in COCO-
like [4] format for the tasks of Object Detection and Instance Segmentation. The
images were collected from Horta’s internal databases, the competition Grapevine
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Name Images (k) Classes Task
Alessandrini, M., et al. [85] 1,770 1 grape diseases Image Classification
Xie, Xiaoyue, et al. [86] 4,449 4 grape diseases Object Detection
Santos, Thiago T., et al. [87] 300 5 grapes Object Detection and Instance Segmentation
Wang, Haiguang, et al. [88] 185 5 grape diseases Image Classification
Fuentes, Alvaro, et al. [89] 5,000 9 tomato diseases Object Detection
Rançon, Florian, et al. [90] 6,000 1 grape diseases Object Detection

Table 2.26: Agriculture datasets.

(a) bunch of grapes affected by powdery
mildew (oidio).

(b) leaves affected by downy mildew (per-
onospora).

Figure 2.17: Example of segmentation with the help of Label Studio.

Disease Images 1, and from search engine scraping; all segmentations were manually
made by the authors. In Figure 2.17 there are some examples of labeled images. The
annotations identifies 10 categories of objects: leaf, grape and eight diseases. Table
2.27 shows the following information: the ids, label key and name, if it is a diseases
or not, and the total available annotations.

In Figure 2.18 the directory structure is highlighted. It is composed by: annota-
tions directory for training and validation dataset in COCO-like format (json files)
and the images directory, which contains the images in jpg and png formats.

Annotations are split in training (80%) and validation (20%) dataset, with the

1https://www.kaggle.com/piyushmishra1999/plantvillage-grape
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Key Count Label Name Type

1 BRF 5478 black_rot_foglia Black Rot leaf disease
2 BRG 1443 black_rot_grappolo Black Rot grape disease
3 BF 88 botrite_foglia Botrite leaf disease
4 BG 612 botrite_grappolo Botrite grape disease
6 FV 1647 foglia_vite Vine leaf leaf
7 GV 993 grappolo_vite Bunch of grapevines grape
9 OF 2086 oidio_foglia Oidio leaf disease
10 OG 1740 oidio_grappolo Oidio grape disease
12 PF 2565 peronospora_foglia Peronospora leaf disease
13 PG 1054 peronospora_grappolo Peronospora grape disease

17706 Total

Table 2.27: LDD annotations description.

Figure 2.18: LDD directory composition.

help of the cocosplit 2 utility.

In Figure 2.23 some examples for each class are shown.

Annotation procedure.

To make the annotations Label Studio v1.5 3 was used with the following configura-
tion:

2https://github.com/akarazniewicz/cocosplit
3https://labelstud.io/
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Listing 2.1: "Label Studio Instance Segmentation configuration"

<View>
<Image name="image" value="$image" zoom="true" zoomControl="true"/>
<PolygonLabels name="label" toName="image" strokeWidth="3"

pointSize="small" opacity="0.9">
<Label value="black_rot_foglia" background="#D4380D"/>
<Label value="black_rot_grappolo" background="#FFC069"/>
<Label value="botrite_foglia" background="#AD8B00"/>
<Label value="botrite_grappolo" background="#D3F261"/>
<Label value="oidio_foglia" background="#096DD9"/>
<Label value="oidio_grappolo" background="#ADC6FF"/>
<Label value="peronospora_foglia" background="#F759AB"/>
<Label value="peronospora_grappolo" background="#FFA39E"/>
<Label value="foglia_vite" background="#AD8B00"/>
<Label value="grappolo_vite" background="#D3F261"/>

</PolygonLabels>
</View>

Figure 2.19: Label Studio web interface.
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Example of web interface can be seen in Figure 2.19 where, for each image, the
user can select the proper category and then the polygon which identify the instance.

First, the annotations has been created by a student. Then, to improve the qual-
ity, an agronomist expert on this field has reviewed and fixed them. At the end, the
annotations have been exported in COCO-like format.

Statistics.

(a) Percentage of instances per category. (b) Categories per image

Figure 2.20: Dataset LDD: (2.20a) Percentage of instances for each category. (2.20b)
Percentage of annotated categories per image. Better seen in color.

In Figure 2.21, the percentage of instances for each category are represented. The
dataset is strongly unbalanced, but the same distribution can be appreciated in both
training and validation dataset. As shown in Figure 2.20b, the maximum number of
unique categories for each image can vary from one to five, with more than 80% of
the images containing two classes. This could be explained by the fact that, usually,
the image contains a leaf or a grape affected by a particular disease. Contrary to
the number of classes per image, the number of instances is much more varied, as
shown in Figure 2.21, with more than one hundred different instances for complex
images. Figures 2.22 offer a different point of view, showing that mean percentage
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Figure 2.21: Annotations per image: percentage of images in LDD.

of the instance size respect to the image size is very low, with more than 80% of the
instances being in the range [0%,0.05%]. Figure 2.22a shows the distributions for
leaves and grapes, which are much more diverse respect to diseases.

2.5.4 Experiments

Evaluation Metrics. All the tests are done on LDD validation dataset, which contains
212 images and 3’234 annotations. We report mean Average Precision (mAP) and
AP50 and AP75 with 0.5 and 0.75 minimum IoU thresholds, and APs, APm and APl for
small, medium and large objects, respectively.

Implementation details. All the values are obtained running the training with the
same hardware and hyper-parameters. When available, the original code released by
the authors is used. Our code is developed on top of the MMDetection [49] source
code. We perform the training on a single machine with 1 NVIDIA GeForce RTX
2070 with 8GB of memory. The train lasts 12 epochs with a batch size of 2 images.
We use the Stochastic Gradient Descent (SGD) optimization algorithm with a learn-
ing rate of 0.00125, a weight decay of 0.0001, and a momentum of 0.9. The learning
rate decays at epoch 8 and 11. We use the ResNet 50 [24] backbone for the models,
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(a) leaves and grapes instances (b) diseases instances

(c) all instances

Figure 2.22: Dataset LDD instance sizes distribution: (2.22a) only leaves and Grapes.
(2.22b) only diseases. (2.22) all dataset. Better seen in color.

initialized by pre-trained on ImageNet.

For the experiment, basic Mask R-CNN [14] and R3-CNN [2] models were used,
with the intention to test the models to the dataset and give a baseline.

Table 2.28 shows the training results for the task of Object Detection and In-
stance Segmentation. Best values are given by the R3-CNN. More in detail, Tables
2.29 and 2.30 show AP values for each category for object detection and instance seg-
mentation, respectively. Figure 2.24 shows some examples of R3-CNN predictions
compared with ground-truth. For black rot on leaves, one of most represented dis-
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Bounding Box Mask
# Method AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

1 Mask R-CNN 21.0 36.8 21.9 9.1 18.8 21.2 20.2 35.6 21.6 8.8 17.2 20.1
2 R3-CNN 22.7 38.4 22.8 9.5 19.9 30.9 22.2 36.2 24.3 9.4 19.3 29.8

Table 2.28: Performance of Mask R-CNN and R3-CNN models.

ease in our dataset, we reached promising results. The same for leaves, even though
there were much fewer instances. Conversely, a grape of wine is more difficult to
detect achieving a third of performances compared to leaves with two thirds of its
instances. Despite a fair number of instances, most difficult disease to detect is per-
onospora_grappolo (Downy mildew on bunches). Figure 2.25 shows the confusion
matrix for the R3-CNN model.

# Method BRF BRG BF BG FV GV OF OG PF PG AVG

1 Mask R-CNN 45.8 14.3 41.7 6.0 51.3 14.0 4.8 16.9 14.2 0.9 21.0
2 R3-CNN 49.1 15.2 40.4 7.0 55.3 16.7 6.0 18.2 17.4 1.4 22.7

Table 2.29: BBox AP per category. See Table 2.27 for class key.

# Method BRF BRG BF BG FV GV OF OG PF PG AVG

1 Mask R-CNN 48.6 15.0 40.4 5.4 50.3 10.3 4.4 14.3 12.1 0.7 20.2
2 R3-CNN 52.0 16.2 44.6 4.6 54.8 11.6 5.0 15.8 15.7 1.3 22.2

Table 2.30: Segmentation AP per category. See Table 2.27 for class key.

2.5.5 Discussion

We introduced a new dataset for segmenting the most common leaf and grapes dis-
eases in their natural environment. The main idea behind the realization of this dataset
was to use images with few leaves or bunches affected by a few diseases in fore-
ground in order to facilitate and speed-up the manual process of labeling. This choice
explains the number of categories per image shown in Figure 2.20b and can possibly
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led to a degradation of performances in case of the segmentation of images with an
high numbers of leaves or grapes, that are very common into a natural environment.

Emphasis was placed on generating ground truth labels where the disease’s poly-
gon was entirely contained inside the leaf or cluster polygon, in order to encourage
the strict connection between infected organ and disease, trying to avoid cases where
an isolated disease is shown.

Another peculiarity of this dataset is related to the choice of decomposing big
sized ground truth polygons into smaller ones in order to realize the most accurate
labeling possible. In particular this approach was used for the labeling of cluster and
their diseases in order to exclude the small gaps that are present between berries in
a bunch. A consequence of this label partitioning is the predominance of small sized
instances in the dataset, as show in Figure 2.22c, which can led to a more challenging
segmentation task.

2.5.6 Conclusion

In this section, we have described our LDD dataset, which contains images com-
ing mostly from the environment in which the vines are cultivated and catalogs the
objects found inside the images through bounding boxes and segmentations in the
COCO format, which is common in the state of the art.

For future developments, we need to increase the amount of images, in particular
for those categories that are not enough represented like Powdery (Oidio) and Downy
(Peronospora) mildews on both grapes and leaves. The final goal is to collect at least
the amount of 500 images of each disease in order to become the first benchmark
dataset for the most common instance segmentation architectures for this kind of
application. We hope that our contribution will lead to new developments on the
instance segmentation task in disease diagnosis on grape leaves and bunches.
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Figure 2.23: Samples of annotated images in LDD.
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Figure 2.24: R3-CNN prediction examples (right) compared with ground-truth (left).

Figure 2.25: R3-CNN confusion matrix.
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2.6 A new dataset for Clothing Detection for Semi-Supervised
Learning

The first step does not take you
where you want, but it takes you
away.

Alejandro Jodorowsky

2.6.1 Introduction

For companies that produce clothes it is very important to know what customers
think about their products, to have an idea of what the distinctive characteristics of
their brands are, and also to be able to plan future production. Social networks offer
a huge amount of useful information that must be pre-processed and aggregated in
a rational way. In particular, the social network Instagram offers the possibility to
search based on hashtag to direct the search. These hashtags are additional informa-
tion added directly by users of the social network itself. The information inside a post
are many, but the most relevant for our scope are the image and the comments related
to it. This image can have potentially any visual characteristic and could contain the
most varied objects. First, an image processing phase should happen, consisting in
understanding what it contains and, in a more advanced phase, extracting a concep-
tual map also of the correlations between the objects themselves. Then, the objects
connection with the text would be analyzed.

The purpose of the following dataset is precisely cover the first step described
before. That is, to be able to offer a set of images taken from the social network
and catalog them with respect to a certain number of predefined classes. The defined
classes are selected directly in collaboration with the Adidas company. In addition,
the dataset has to cover the additional case of training with a Semi-Supervised Lean-
ing setting. This is extremely important case study, because when an image cataloging
project is in the early stage, the biggest problem is labeling new images, given that
it is a time-consuming and costly process. On the contrary, getting new images is
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very simple. This use case is usually covered by a particular type of training called
Semi-Supervised Learning (SSL). For this reason, the dataset defines a set of config-
urations useful for testing models in a SSL settings. In the following pages, we will
describe them more in details.

2.6.2 Related

Name Images (k) Classes Source Key features
ModaNet 55 13 chictopia.com There is always one person wearing

the objects.
DeepFashion 800 13 online shopping websites

(Forever212, Mogujie)
Well-posed shop images to uncon-
strained consumer photos with low
resolution (256×256).

DeepFashion2 491 13 DeepFashion, online
shopping websites.

Fashionpedia 48 46 Flickr

Table 2.31: Fashion dataset comparison.

In Table 2.31 are reported some of the most recent fashion datasets which deal
with the object detection topic. The dataset Modanet [91] collects images from the
website chictopia.com, where usually there is a person wearing clothing belong-
ing to the defined class. The Deepfashion [92] dataset which contains images from
Forever212 and Mogujieonline shopping websites. The DeepFashion2 [93], which
extends previously cited dataset. Finally, Fashionpedia [94] which contains images
taken from Flickr website. We could say that most of them already do a good job, but
they are not enough for our particular needs. The first reason is because our research
commitment points especially towards a particular domain, which is one of most used
social network nowadays: Instagram. Because this social network is used especially
by customers, we could deal with the so called "into the wild" case, where images
could have any possible resolution, number of objects, light, etc. The second reason
is because the classes of garments we are interested in not always are present in the
datasets previously described. Because all these reasons, we decided to face up the
creation of this new dataset, called ASND.
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2.6.3 ADIDAS Social Network Dataset

The dataset contains 3,999 RGB images and 15,545 annotations in COCO-like [4]
format for the tasks of Object Detection. The classes defined were selected directly
in collaboration with the Adidas company. The images are coming from Instagram
public pages and they have been collected with our scraper 4 written from scratch. It
permits to search by hashtag and download the entire post automatically. Usually, the
hashtag used to search images was #adidas. In Figure 2.31 we can see some images
collected for each class.

Figure 2.26: ASND directory composition.

In Figure 2.26 the directory structure is highlighted. It is composed by: annota-
tions directory for training and validation dataset in COCO-like format (json files),
the images directory, containing the images in jpg format, and the dataset seed con-
taining the image ids for the semi-supervised learning settings (see section 2.6.3 for
details). In Table 2.32 the ids, name and the total available annotations are shown.

With the help of the cocosplit 5 utility, we split the dataset in 80% for training
and 20% for validation.

4https://github.com/hachreak/scraper
5https://github.com/akarazniewicz/cocosplit
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Key Count Label

0 B 361 Bras
1 J 1193 Jackets
2 P 2855 Pants
3 S 6615 Shoes
4 SH 964 Shorts
5 SD 1043 Skirt/Dresses
6 SL 1174 Sweatshirts(LONG SLEEVES)
7 T 1417 T-Shirt(SHORT SLEEVES)
8 TS 923 Tanks(SLEEVELES)

15545 Total

Table 2.32: ASND annotations description.

Annotation procedure

To make the annotations, we made use of Label Studio v1.5 6 with the following
configuration:

Listing 2.2: "Label Studio Object Detection configuration"

<View>
<Image name="image" value="$image"/>
<RectangleLabels name="label" toName="image">

<Label value="Shoes" background="#FFA39E"/>
<Label value="Shorts" background="#D4380D"/>
<Label value="Pants" background="#FFC069"/>
<Label value="Bras" background="#AD8B00"/>
<Label value="Tanks(SLEEVELES)" background="#389E0D"/>
<Label value="T−Shirt(SHORT SLEEVES)" background="#5CDBD3"/>
<Label value="Sweatshirts(LONG SLEEVES)" background="#096DD9"/>
<Label value="Skirt/Dresses" background="#ADC6FF"/>
<Label value="Jackets" background="#9254DE"/>

</RectangleLabels>
</View>

6https://labelstud.io/
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Figure 2.27: Label Studio web interface.

Example of web interface can be seen in Figure 2.27 where, for each image, the
user has to select the proper category and, then, the bounding box which contains the
instance.

First, the annotations has been created by a student. Then, to improve the quality,
a review step has been done by another author. At the end, the annotations have been
exported in COCO-like format.

Semi-supervised Learning settings

Usually, a Semi-supervised Learning setting implies to have two dataset for train-
ing: the first, which contains the images and also the ground-truth, and the second,
which contains only the images, without any additional information. We used cocos-
plit again to split the training dataset in the two parts: supervised dataset (Ds) and
unsupervised dataset (Du). The following are the configurations taken into account to
train a model on these Semi-Supervised Learning settings: 5%, 10%, 20% and 50%.
E.g. for the last case we have 50% of all annotations in Ds and the rest in Du.

In Table 2.33 are collected all useful information about the number of annotations
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per class.

% # files # labels B J P S SH SD SL T TS

5.0 159 612 13 36 80 228 50 39 54 82 30
10.0 319 1176 25 74 134 509 75 73 81 114 91
20.0 639 2633 65 164 264 1277 166 176 182 210 129
50.0 1599 6267 110 518 732 2803 336 375 477 544 372

100.0 3199 12361 277 980 1501 5292 718 821 925 1082 765

Table 2.33: ASND Semi-Supervised Learning settings for Du.

Statistics

Figure 2.28: Annotations per image: percentage of images in ASND dataset.

In Figure 2.28, we show the percentage of instances for each category. Apart for
shoes class, the others are almost balanced in number of annotations. As shown in
Figure 2.30a, very few images contains all the categories. Half of the images contain
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Figure 2.29: Percentage of annotated instances per image in ASND.

one single class, then less then 30% only two and so on, decreasing exponentially. A
similar trend could be found in Figure 2.29, where we show the number of instances
contained in a image. Very few images contain more than thirteen bounding boxes.
Anyway, there are few of them that could have more than fifty annotations, up to
214 annotations. Finally, in Figures 2.30b, we can see how big the bounding boxes
are respect to the image size. We see that 50% of them are quite small, covering
less than 0.05% of the image size. The rest of annotations are distributed between all
percentage values, decreasing with the increasing of the percentage.

2.6.4 Experiments

In the following experiments, we tested the dataset in multiple Semi-Supervised
Learning settings. Firstly, it is interesting to observe what is the baseline for a state-
of-the-art semi-supervised model [7], which use a Faster R-CNN network [25], a
well-known network in the literature. This could give us a baseline for the perfor-
mance and know what is the minimum quantity of images needed to complete a
training without diverge.

In Figure 2.32a the results of the training in multiple Semi-Supervised Learn-
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(a) Categories per image (b) Instance size respect to image size

Figure 2.30: Dataset ASND: (2.30a) Percentage of annotated categories per image.
(2.30b) The distribution of instance sizes. Better seen in color.

ing settings are shown and compared with a supervised training only. As expected,
increasing the size of the supervised dataset (the dataset with the ground-truth) re-
spect to the unsupervised dataset, greatly increase the performance. Below 5% the
training fails due to lack of images. This could be understandable, because we are
dealing with a dataset that could be considered small if compared with e.g. COCO
dataset [4], which contains more then 117’000 images. What we did not expect is
that already with only 50% of the images labeled we reached almost the same per-
formance of a simple supervised training with all the ground-truth available. This
could be a shadow effect of the EMA training, which permits a new degree of free-
dom respect to a training where we can modify only the learning-rate. EMA has a
smooth effect on training and permits to obtain the best from the student despite the
noise introduced by the teacher respect to the real ground-truth. In Figure 2.32b, the
comparison of Supervised Learning and the 50% SSL settings is proposed in details.

2.6.5 Conclusions

In this section, we introduced a new dataset for the task of object detection for clothes,
with the images coming from the users of the Instagram social network. They have
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been all labeled respect to nine defined categories and made available in COCO-
like format for Supervised Learning training and also for multiple Semi-Supervised
Learning settings. We made available a baseline with state of the art model for Semi-
Supervised Learning. For future works, we need to extend the dataset and annotate
more images. In addition, we would like to include also some more advanced tasks,
like Instance Segmentation. Finally, it would be interesting to investigate even more
in detail the effect of EMA on training which, in our opinion, was decisive to achieve
comparable performance with supervised training, but with only half of the annota-
tions.
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Figure 2.31: Samples of annotated images in ASND.
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(a) SSL settings vs SL. (b) 50% Teacher-Student vs SL.

Figure 2.32: Ablation studies: (2.32a) Faster R-CNN training on ASND dataset in
Supervised and multiple Semi-Supervised Learning settings. (2.32b) Compare in de-
tails Supervised Learning with Teacher and Student on 50% Semi-Supervised Learn-
ing setting.
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2.7 A Novel auxiliary self-learning task for Instance Seg-
mentation

I don’t need a friend who changes
when I change and who nods when I
nod; my shadow does that much
better.

Plutarch

2.7.1 Introduction

The Instance Segmentation task, an extension of the well-known Object Detection
task, is fundamental in many areas. One of these application fields that is gaining
momentum is precision agriculture, where being able to automatically identify the
fruits and the diseases associated with them, allows to effectively scale and automate
the surveillance and their protection from pathogens and insects that could affect the
plants growth. In this thesis we will focus on a particular plant, namely the vineyard.
Nowadays enormous progress has been made in this field that guarantee its perfor-
mance, especially in the context of deep learning, which has increasingly taken hold
as a method capable of adapting to many challenging situations. Despite this, there is
still a lot to do to ensure the robustness of these models and the scientific community
works hard every day to improve them in many aspects such as precision, recall but
also speed of execution and scalability.

The objective of this section of the thesis is to measure the effectiveness of mod-
els such as the Mask R-CNN [14] and R3-CNN [2] into the precision agriculture
territory, because they represent the, constantly evolving, state of the art. Starting
from these models, we have tried to extend them to achieve even higher performance.
This research led us to the definition of what we have called the "container and con-
tent" auxiliary self-training task, or simply C2SSL. As the name suggests, a new type
of self-training task has been defined, auxiliary respect to the main one, where the
ground truth is automatically generated online during training. This new branch of
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the network has been tested on the LDD dataset, defined in section 2.5, and takes ad-
vantage of a characteristic of the classes within it. Since diseases of leaves and grape
bunches are always contained within the leaf or grape bunches themselves, we have
used this additional information to define our new task.

The main contributions of these following sections are the following:

• a new auxiliary self-training classification task to identify, on one side, if leaves
or grape bunches are healthy or sick and, on the other side, if the detected
disease is correctly classified together with the leaf or grape bunch that contains
it.

• an exhaustive ablation study on all the components of the architecture.

2.7.2 Related

Many different self-training task have been defined with the objective to improve the
training without the need to manually define new labels [95]. One well-know tech-
nique involve the rotation prediction applied to the input image [96]. In [97], authors
use an hole-filling self-training task to train an autoencoder. In [98], authors defined
a Jigsaw Puzzles to pre-train the network and use the learned features in a differ-
ent task. In [99], authors defined three new auxiliary self-training tasks recycling the
bounding boxes: multi-object labeling, closeness labeling and foreground labeling.
In our work, we have followed a similar idea but defining a different self-training
task. A different approach has been used in [100], where authors included a new net-
work to generate labels for the introduced auxiliary task. In a context of semantic
segmentation, authors in [101] reused existing segmentation labels to create a new
task which improve the main task.

2.7.3 Container and Content Self-Supervised Learning Task

The LDD dataset contains bbox and segmentation of leaves, bunch of grape and their
diseases (see Section 2.5 for more details). The structure of the dataset provides us
with one more relevant intrinsic information that can be exploited for the purpose of
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general training improvement. We are talking about container and content informa-
tion. If we consider the following two distinct sets "leaves and bunches of grapes"
and "diseases", we realize that the segmentation of an instance of the second type
always falls within the segmentation of an instance of the first type.

Hence, we can highlight two distinct situations. The first, called container situa-
tion, where an instance of the first type does contain or does not contain at least one
instance of the second type. In other words, we could teach the network to recognize
a healthy grape or leaf from a sick one. The second, called content situation, where an
instance of the second type is contained or not inside an instance of the first type. In
other words, we could teach the network to recognize those anomalous cases where
the disease has been detected but not the corresponding leaf or grape.

Since the container and content information is not explicitly defined in the dataset,
we have integrated an online system for computing the ground-truth during the train-
ing itself. For each bounding box in the proposal list coming from RPN, the system
compute the Intersection over Foreground (IoF) in one of the following way:

1. if the object detected is a leaf or grape (container situation), then we compute
the IoF between it and all ground-truth bounding boxes belonging to a leaf
diseases or grape diseases, depending if its category is leaf or a grape.

2. if the object detected is a disease (content situation), then we compute the IoF
between it and all ground-truth bounding boxes belonging to a leaf or grape,
depending of the type of diseases.

This is expressed in the following formula:

IoFi
(
bt

i,g
)
=


Areai∪Areagt

i
Areai

if bboxi class is container
Areai∪Areagt

i
Areagt

i
otherwise

IoFi = max IoF
(
bt

i,g
)
∀bi ∈ B|IoF (bi,g)> u

(2.13)

After that, for each proposal, we select the max IoFi value. Finally, we compute
the ground-truth ti comparing the IoFi with the predefined threshold µ as described
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in the following formula:

ti =

1 IoFi > µ

0 otherwise
(2.14)

In Figure 2.33 the proposed architecture for the new branch is shown. Inside the
detection branch, we connected C2SSL to the output of the shared fully-connected
layer.

F

RPN

Pool

Proposals

Shared

deltas

cls

cIoF

C2SSL

FC

Detection Head

Figure 2.33: Faster R-CNN detection head architecture with our C2SSL branch in
red.

The loss computed between the output cIoF
i and the ground-truth ti is the weighted

focal loss [82] (FL), where ωi are the class weights previously computed by us to
rebalance the loss respect to the classes.

Lcc =−
n

∑
i=1

ωi ∗FL(xi, ti) (2.15)

In this case, we defined four distinct classes: leaf or grape is healthy, leaf or grape
is sick, disease is isolated (out of any leaves or grapes), disease is inside a leaf or
grape.

To choose ωi values, we monitored the quantities of examples per category we
have during the training. In Figure 2.34 the mean value per epoch for each category
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Figure 2.34: Average number of self-generated ground-truth per iteration.

is shown. We used the following formula to compute the final weight ωi values:

Resti =
∑

n
j=1 mean j−meani

∑
n
j=1 mean j

ωi =
Resti

∑
n
j=1 Resti

(2.16)

Where meani is the average number of ground-truth for the i-th category considering
all twelve epochs, and n is the number of categories (four in our case). We found the
following values: 0.33, 0.29, 0.33, 0.05.

2.7.4 Experiments

Dataset. We perform our tests on LDD, which contains 881 images, 14’721 annota-
tions and 10 classes. See Section 2.5 for details.
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Evaluation Metrics. All the tests are done on LDD validation dataset, which contains
212 images and 3’234 annotations. We report mean Average Precision (mAP) and
AP50 and AP75 with 0.5 and 0.75 minimum IoU thresholds, and APs, APm and APl for
small, medium and large objects, respectively.
Implementation details. All the values are obtained running the training with the
same hardware and hyper-parameters. For each configuration, we run three times and
compute the AP average value. When available, the original code released by the
authors is used. Our code is developed on top of the MMDetection [49] source code.
We perform the training on a single machine with 1 NVIDIA GeForce RTX 2070
with 8GB of memory. The train lasts 12 epochs with a batch size of 2 images. We use
the Stochastic Gradient Descent (SGD) optimization algorithm with a learning rate of
0.00125, a weight decay of 0.0001, and a momentum of 0.9. The learning rate decays
at epoch 8 and 11. We use the ResNet 50 [24] backbone for the models, initialized by
pre-trained on ImageNet.

Bounding Box Mask
# Method Loss AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

1 Mask R-CNN 20.73 36.60 21.20 9.00 17.80 23.07 19.90 35.37 20.63 8.80 16.40 22.17
2 R3-CNN 22.77 38.47 23.07 9.60 20.20 29.00 22.10 36.57 24.43 9.50 19.43 29.57
3 R3-CNN + Container FL 23.20 38.63 24.10 9.53 19.77 30.73 22.60 36.93 25.93 9.50 19.67 30.43
4 R3-CNN + Content FL 23.10 38.13 24.83 9.33 20.40 29.37 22.27 36.43 25.43 9.23 19.77 28.43
5 R3-CNN + Both WCE 23.47 38.67 24.50 9.93 19.93 30.17 22.63 37.03 24.70 9.77 19.10 30.23
6 R3-CNN + Both FL 23.76 39.12 24.88 9.86 20.92 31.26 22.82 37.30 25.28 9.70 19.82 30.52

Table 2.34: Performance of Mask R-CNN and R3-CNN models with container/con-
tained branch. WCE: Weighted Cross Entropy, FL: Focal Loss. Bold values are best
results, red ones are second-best values.

Ablation study: losses comparison

In Table 2.34, the comparison of our model with Mask R-CNN and R3-CNN is shown.
Different loss modalities are investigated. In the first configuration (row #3) the loss
is applied only in the case of container case, detecting healthy / sick plants with
a focal loss [82]. In the next example (row #4), the loss applied only in the case
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of content case, detecting if the diseases are in or out of the plant with the Focal
Loss. Finally, we test the use of both self-supervised losses (row #5 and #6), with a
weighted cross-entropy and the Focal Loss, respectively. We achieve the best results
using both self-supervised losses, increasing performance by a +1.0% and 0.73% for
object detection and instance segmentation, respectively.

Ablation study: threshold µ

Bounding Box Mask
# µ AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl

1 0.35 23.02 38.56 22.88 9.72 20.14 29.90 22.42 36.94 24.78 9.58 19.16 29.96
2 0.45 23.76 39.12 24.88 9.86 20.92 31.26 22.82 37.30 25.28 9.70 19.82 30.52
3 0.55 23.22 38.56 24.28 9.84 19.66 30.44 22.48 36.86 24.80 9.62 19.00 30.18
4 0.65 23.34 38.84 23.74 9.76 19.92 30.02 22.64 37.12 24.50 9.66 19.24 30.14
5 0.75 23.57 38.73 25.25 9.88 19.75 30.82 22.65 37.12 25.07 9.70 19.15 30.32
6 0.85 23.20 38.80 24.00 9.97 19.82 30.20 22.57 37.45 24.55 9.88 19.30 29.98
7 0.95 23.45 38.73 24.98 9.55 19.48 31.20 22.60 37.00 25.05 9.40 18.88 30.25

Table 2.35: Performance of R3-CNN model with both container/content losses but
varying the threshold µ value. Bold values are best results, red ones are second-best
values.

In this experiment we test how much the performance are influenced by the
threshold µ (see Formula 2.14). We use as baseline the previously winner model
(see row #5 in Table 2.34). In Table 2.35 the results are shown. We can not define
a unequivocal trend on results, but this could be also explained because the size of
the dataset. We still can find a winner in row #2. Anyway, independently from the
threshold, always the network gets benefits.

2.7.5 Conclusions

In this thesis, we proposed a new architecture for the Instance Segmentation task to
exploit intrinsic characteristics of the LDD dataset, previously defined in Section 2.5.
The dataset offers segmentation for leaves, grapes and height different diseases of
vines. We found a way to build a new ground-truth information online during the
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training, which gives us information about two new situations: the so called con-
tainer situation, to classify the leaf or grape as healthy or sick, and content situation,
to classify the diseases isolated or inside the vine. This new detection branch offer
the opportunity to enrich the training with a new auxiliary self-training task, which
proved to be useful to increase the performance, simply forcing an additional con-
straint on the search for the optimal values of the network weights. Indeed, our new
architecture increases the AP value by a +1.0% and 0.72% for Object Detection and
Instance Segmentation, respectively. It is worth notice that, the novel branch is used
only in training, hence not computationally affects the evaluation phase.
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Conclusions

Success is not final, failure is not
fatal: it is the courage to continue
that counts.

Winston Churchill

In this thesis, the topics of Object Detection and Instance Segmentation have been
addressed under different aspects. The most important subjects can be summarized
in dataset creation, supervised, semi-supervised and self-supervised learning settings
and architectural innovation. Firstly, in Section 2.1 a novel RoI extraction layer, called
GRoIE, is proposed with the aim of a more generic, configurable and interchangeable
framework for RoI extraction to tackle the Feature Level Imbalance (FLI) problem.
In Section 2.2 the R3-CNN model is defined by a loop architecture, to solve the IoU
Distribution Imbalance (IDI) problem in the RPN generated proposals. Then, in Sec-
tion 2.3 we deeply investigated about the origin of the IDI problem and defined the
SBR-CNN architecture. This section contains the following contributions: (i) the re-
view of the GRoIE architecture and the proposal of a new more performing one, (ii)
the FCC heads which confirms and extends empirical results to define the rules to
follow for an optimal architecture, towards a fully-convolutional approach, and (iii)
the extension of the R3-CNN model.

In Section 2.4 the new IL-net architecture for Semi-Supervised Learning is pro-
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posed, which introduces the regression losses on the unsupervised learning part, and
a new branch to classify the quality of the bounding boxes and, consequently, filter
the pseudo ground-truth generated by the Teacher. In Section 2.5 and 2.6 the datasets
Leaf Diseases Dataset (LDD) and ADIDAS Social Network Dataset (ASND) are
described, respectively. Finally, in Section 2.7 the new auxiliary self-learning task
C2SSL is described with the purpose of enhancing the instance segmentation train-
ing on vines diseases detection and segmentation, building a new ground-truth online
with the information of container and content classes.

To conclude, we can summarize the lessons learned as follows. Although neural
networks remain a phenomenal tool, much work still needs to be done to make them
less as black boxes. However, it is possible to identify the hidden problems through
the identification of checkpoints that allow a deeper observability. Usually, hidden
problems are always related to some kind of imbalance. One of the major problems
is precisely to build these diagnostic tools and choose the relevant information to
monitor in order to reconstruct the internal state of the system. The most problematic
issues addressed are the Objective Imbalance in IL-net, the Feature Level Imbalance
for GRoIE, the IoU Distribution Imbalance and Exponential Vanishing Ground-Truth
problems for R3-CNN. Of course, once a problem is identified, it is easier to identify
the solution as well.

The other take away conclusion is connected with the Multi-Task Learning. Even
if only in the training phase, the introduction of new related tasks has always had the
power to improve the performance of the main task. We have seen this powerful tool
in action during the description of IL-net and C2SSL, where two new self-supervised
tasks have been added, with the advantage of not requiring any additional labels.
Obviously, all that glitters is not gold and requires that the definition of a new task
makes sense for the network and adds new constraints to the loss function construc-
tively, allowing to discard a-priori some local minima and allowing to move towards
the optimal solution more quickly.
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Future works

As for the future, your task is not to
foresee it, but to enable it.

Antoine de Saint Exupéry

A lot of works have been done and even more could be do to find new ways to
improve models. Regarding GRoIE, new configurations can be explored, in terms of
components, exploring how the architecture and layers could affect final result. For
FCC, it is necessary to go deeper into the analysis and exploit the previously acquired
empirical knowledge and look for a more generic rule for layer selection depending
on the task. In case of R3-CNN, it would be advisable to test its performance inside
new models that contains vision transformers [102] to verify that it works as well
as in the examined cases. The analysis of the weaknesses of the RPN highlighted
the need to replace the anchor system with an anchor-free [18]. Future models will
certainly do without it, so we will need to investigate new effective methods to im-
prove training and find a way to move R3-CNN into this research direction. Another
important research path is represented by the C2SSL model, which will need to be ex-
tended and generalized for a generic instance segmentation dataset, regardless from
the a-priori knowledge of the interdependency between the classes. Semi-Supervised
Learning could be considered a very important topic today, but still to be adequately
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explored. In particular, IL-net needs to be extended and new techniques to catch er-
rors in pseudo-labels need to be designed. For instance, the ambiguous pseudo-bbox
concept could be reused from the Selective Net [103] model and integrated with our
IoU quality score. Furthermore, the effect of the noise inside labels is a very intrigu-
ing and full of pitfalls topic that needs to be developed and deepened. Authors in [33]
scratched the surface with an interesting dualism between knowledge distillation and
label smoothing regularization, but more work is needed to extend these arguments
in different contexts, as the label-noise context. Finally, there is the need to extend
the datasets LDD and ASND to include more examples and new classes, as well as
adding new tasks.
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