UNIVERSITA DI PARMA
UNIVERSITA DEGLI STUDI DI PARMA

DOTTORATO DI RICERCA IN
“TECNOLOGIE DELL'INFORMAZIONE”

CICLO XXXIV

Algorithms for Cutting and Packing

Problems

Coordinatore e relatore:

Chiar.mo Prof. Marco Locatelli

Correlatore:

Chiar.mo Prof. Manuel Ilori

Dottorando: Tiago Silveira

Anni Accademici 2018/2019 —2020/2021

To the two great loves of my life,

Sabrina and Bento.

Abstract

This thesis analyzes two fundamental problems in the “Cutting and Packing” (C&P) field:
first, a specific problem called Pallet Building Problem (PBP) which has practical constraints
is approached; then base variants of the so-called Rectangular Cutting Problem (RCP) are
addressed.

In C&P problems, there are sets of small objects (items) that must be cut/packed from/onto
large objects (containers). We address the case where containers are identical one another: in
terms of PBP, the geometric shapes for both the items and containers are 3-dimensional boxes;
on the other hand, in the case of RCP, the geometric shapes are 2-dimensional rectangles,
somewhat simplifying the problem, but not making it easy per se.

In the PBP, the aim is to pack a given set of items into layers and then build pallets by
stacking layers one on top of the other, by minimizing the number of pallets used. In the RCP,
the aim is to cut a set of items from a container, while maximizing a profit function. We are
considering a base set of constraints for both problems. They are as follows: (i) items must fit
entirely within the container; (if) items cannot overlap.

When addressing PBP, we take into account a larger set of constraints. In this case, some
non-trivial operational constraints that originate from a real-world automated application are
also included: in practice, items are grouped into families and must be packed into horizontal
layers. To facilitate loading/unloading operations, items from the same family packed into the
same layer should be contiguous with one another and at least one of them must be visible
from the outside. In addition to these, we consider stackability and fill factor constraints.

The techniques we develop to solve the target problems are heuristic, exact, metaheuristic
and matheuristic algorithms.

Due to a more complex set of constraints, we divide the PBP into two phases: (i) layer
building; (i) pallet building. In simple terms, items are first grouped into horizontal layers,
and then layers are stacked one over the other to form pallets. To solve this problem, we
propose heuristics and matheuristics based on heuristics and integer linear models. The main
heuristic we highlight is the adaptation of the Extreme Points Heuristic (Crainic et al. [22]) to
meet the new constraints. In regards to the mathematical models, we propose them for solving
specific parts of the problem, since a single model for the entire problem might be unfeasible.
We then propose matheuristic algorithms by taking advantage of these efficient heuristics and
the mathematical models. In addition to that, a significant improvement in the solution was
noticed when adapting the PBP to the GRASP metaheuristic with reactive method.

When it comes to RCP, we propose a new technique to generate both the guillotine

and first-order non-guillotine (G5 pattern) cuts. Based on the original and innovative idea of
floating cuts, this model is a tree search where branching occurs by successive cuts (detailed
in Chapter 8). However, unlike all known models, the exact position of the cuts is not fixed,
instead it remains floating until a concrete small rectangle (also known as item) is assigned to a
child node. This model does not include decision variables neither for the position coordinates
of the items nor for the coordinates of the cuts. Under this framework, it is possible to address
problems where: items have fixed orientations or can be rotated by 90 degrees; the value of
each item is either proportional to its area or arbitrary; the demand of each item type is either
equal to one or has a multiplicity greater than one. We present the entire formulation, along
with algorithms that support the management of the variables’ indices, required when tree
search procedures are modeled as mixed-integer problems. In addition to that, we add a set of
valid inequalities to the model to reduce symmetry and to strengthen the formulation.
Extensive computational experiments were performed using real life instances from an
Italian company as well as benchmark instances taken from literature in order to evaluate the
algorithms effectiveness. We carried out a comprehensive analysis of the results using the
proposed techniques, detailing their pros and cons. In a general analysis, the results confirm
the power and flexibility of the algorithms and models. However, even more importantly, this
is a new way of looking at these problems which could serve as a catalyst to even better

approaches, with the consequent economic and environmental benefits.

Table of Contents

Acknowledgments

1 Introduction
1.1 Cutting and Packing problems
1.1.1 Structures
1.1.2 Constraints
1.2 Contributions
1.3 Outlineofthework

2 Description of the Cutting and Packing Problems
2.1 Introduction
2.2 Pallet Building Problem with practical constraints
221 TItemfamilies,
2.2.2 Layersclassification
223 Constraints e
224 Problemoutline,
2.3 Rectangular Cutting Problem
23.1 Classesaddressed
2.3.2 Problemoutline L.

3 Literature Review
3.1 Introduction
3.2 PBPrelatedworks.

XV

O 00 O\ W K~

11
11
11
12
12
13
18
20
21
22

ii Table of Contents
33 RCPrelatedworks, 31
3.3.1 Non-guillotine cutting patterns 31
3.3.2 QGuillotine cutting patterns 32

4 Solution of a Practical Pallet Building Problem with Visibility and Con-

tiguity Constraints 39
4.1 Abstract 39
4.2 Contributions 40
4.3 Solution algorithmo oo oL 40
43.1 Creatinglayers 40
43.2 Buildingpallets 0oL, 47
4.4 Computational results 47
441 Instanceso 48
4.4.2 Parametric configurations 49
443 Evaluation 49
45 Conclusions 52

Reactive GRASP-based Algorithm for Pallet Building Problem with Vis-

ibility and Contiguity Constraints 55
5.1 Abstract 55
5.2 Solution algorithm 56
5.2.1 Two-step heuristic 56
5.2.2 Reactive GRASP metaheuristic 56
5.3 Computational results 0oL, 61
5.3.1 Parametric configurations 62
5.32 EBEvaluation 63
54 Conclusions 65

A Mixed Approach for Pallet Building Problem with Practical Constraints 67
6.1 Abstract 67
6.2 Solution algorithm o Lo 67

6.2.1 Two-step heuristic 69

Table of Contents iii

6.3

6.4

Computational results 71
6.3.1 Parametric configurations 72
6.3.2 Experimental evaluation 72
Conclusions 75

7 Mathematical Models and Heuristic Algorithms for Pallet Building Prob-

lems with Practical Constraints 77
7.1 Abstract 77
7.2 AMILP formulation 77
7.2.1 MILP formulation to create layers 78
7.2.2 Mathematical formulation for building pallets 87
7.3 Solution algorithms 0oL 87
7.3.1 Constructive heuristic 87
7.3.2 Reactive GRASP metaheuristic 88
7.3.3 Embedding the mathematical models in the heuristics 88
7.4 Computationalresults 89
7.4.1 Parametric configurations 89
742 Evaluation 91
7.5 Conclusions 94

8 The “Floating Cuts” Model: A General and Flexible Mixed-Integer Pro-

gramming Model for Rectangular Cutting Problems 95
8.1 Abstract 95
8.2 Contributions L 96
8.3 Workorganization. L oL 97
8.4 The ‘floating cuts’ MILP model for the two-dimensional SLOPP . . 98
8.4.1 Objective function and general constraints 102
8.4.2 Length of children sub-rectangles constraints 103
8.4.3 Width of children sub-rectangles constraints 104
8.4.4 Decision variablesdomain 104
8.4.5 Model strengthening 105
8.5 Computational experiments for the non-guillotine problem 107

iv Table of Contents
8.6 Extension of the model to the guillotine problem 112
8.6.1 Symmetryreduction 115
8.6.2 Computational experiments - guillotine cutting patterns . . . 116
8.6.3 The ‘floating cuts’ MILP model for the guillotine k-staged
two-dimensional SLOPP 120
8.7 Computational experiments - guillotine problem 129
8.7.1 Non-staged 2DSKP and 2DSLOPP - comparison between
FC4_Strengthened and FCmodels 129
8.7.2 Comparison with mathematical models from the literature . 132
8.8 Conclusions and futureworko, 138
9 Conclusions 141
9.1 What are the main questions answered? 143
9.2 What could have been done better? 143
9.3 What are the possible directions for the future? 145
Bibliography 147
Appendix 159
GREP algorithm for the PBP with visibility and contiguity constraints 159
Floating cuts algorithms for non-guillotinecuts 161
Floating cuts: experiments for parameter settings 165

Solutions from floating cuts models 169

List of Figures

1.1
1.2

2.1

2.2

23

24

25

Real-world solution forthe PBP.
Cutting process of a solution for the RCP (image from Rexel [91]). .

Graphic representation of a layer with width W and length L, and the
representation of the vertices related toitem j.
Item positions and separating axes: (2.2a) items overlap and no sep-
arating axis exists; no overlap between items includes the subcases:
(2.2b), two separating axes; (2.2c) a horizontal separating axis; and
(2.2d) a vertical separating axis.
Contiguity relation based on the overlapping relation: given the items
set G (2.3a), both similar items j and ¢ are enlarged by &£/2 in each
direction (2.3b) according to the smallest edge length £: j and ¢
will not be contiguous if their enlarged regions are either separated
(2.3c) or, at most, share a portion of an edge (2.3d). Instead, they are
contiguous if the enlarged regions overlap (2.3e), as it is impossible
to insert another item between jandg.
Examples of layouts that breach the constraints of either the contiguity
or visibility when considering two types of items (light gray and dark
gray) of similar dimensions: (2.4a) two groups of dark gray items
separated by a distance equal to &; (2.4b) a single group of dark gray
items placed at ¢ distance from the layer border.

Graphical illustration of the stackability constraint.

13

14

16

17
18

vi

List of Figures

2.6

2.7

2.8

4.1

4.2

4.3

4.4

5.1

PBPtoyinstance.,
Types of orthogonalcuts.

RCPtoyinstance.

Extreme points: (4.1a) Black and white points form the current set
E; the white point is chosen to pack k and is then removed from E;
dark gray points are added to E after the packing; (4.1b) Case where
EPH generates only extreme points that are infeasible for the PBP
with visibility and contiguity constraints; (4.1c) New extreme points
created for contiguity: after packing k in the white point, four extreme
points (represented by dark gray points) are included in E; (4.1d) New
extreme points created for visibility: new dark gray points that meet

visibility constraints are addedto E.

Partial solutions and their feasible (black) and infeasible (light gray)
extreme points for the next item of type k: representation of the
extreme points that meet visibility (4.2a) and contiguity (4.2b) cons-

traints. e e e e e e e

Fitness evaluation functions of feasible extreme points, considering a

new dark grayitem. oL

Layers for the PBP instance 2, formed by 9 single-item layers (layer
border in blue), 1 single-family layer (layer border in gray), and 6
residual layers (layer border in red). Solution obtained by using the

Bounding Box fitness evaluation function.

Behavior of the values for the logarithmic function which represents
the variable v, esiguar When considering the increase/decrease in the

number of residual layers for a total of 70 layers.

20

24

42

43

45

52

List of Figures

vii

6.1

7.1

7.2

7.3

7.4

8.1
8.2
8.3
8.4

Frameworks of the constructive approaches for the PBP: (6.1a) EPMH
is an algorithm based on deterministic methods to create layers and
pallets; (6.1b) MEPMH is an algorithm based on methods to: (i) create
layers by using random choices, and (ii) build pallets by solving a

mathematical model.

Special case for the contiguity constraint: the contiguity constraint
is always met when considering the group of light and dark items
(Figures 7.1a and 7.1b). For what concerns the light items, items 1
and 2 are contiguous and so are items 2 and 3, so that the contiguity
relation defines a connected graph. The same holds for the dark items.
However, in practice, when considering Figure 7.1b, we notice that

the group of dark items creates a physical barrier between the light

Contiguous items by item type: (7.2a) graphic and (7.2b) graph rep-

FESENtatioNn. e e e e e e e e e e e

Max-flow representation: light items 2 and 3 are not contiguous, but
both are contiguous to light item 1, maintaining the overall connection
of this group. The same holds for the dark items.
Item group not fulfilling the contiguity constraint: for the item dispo-
sition in 7.4a, the max-flow in 7.4b shows that only items 1 and 2 are
contiguous, resulting in a flow to D equal to 2, that is different from

the number of items (3inthiscase).

Istordercut.
Example.
Symmetric patterns. oL

Summary of the preliminary experiments for (8.4a) 2DSKP and (8.4b)
2DSLOPP, when considering the average for the 4 variants addressed.
In both cases, i = 4 presents the best trade-off between the Z value

of the objective function and the solver Gap.

68

81

83

&4

85

98
99
106

viii

List of Figures

8.5

8.6
8.7
8.8
8.9

8.10
8.11
8.12

8.13

Analysis of the gap reported by Gurobi for FC5_Base and FC5_-
Strengthened models.

Example of a guillotine cutting pattern if Lcc = 0 and/or Wee = 0.

Example of equivalent guillotine cutting patterns when Wee = 0. . .
Example of equivalent guillotine cutting patterns when Lcc =0. . .
Analysis of the gap reported by Gurobi for the models FC4_Base and
FC4_Strengthened.
Types of cuts and sub-rectangles generated.
Example.
A cutting pattern with a horizontal first cut, and the correspondent
pattern with the items and the plate rotated obtained with a vertical
firsteut.

Analysis of the gap reported by Gurobi for the FC4_Strengthened and
FC2models.

Solution of instance ‘CW2’ on the variant F/U non-staged as non-
guillotine constraint, when considering FC5_Strengthened with h=4

(objective function value =23524).

Solution of instance ‘gcutl1’ on the variant F/U with 2-stages as guil-
lotine constraint, when considering FC2 with h=6 (objective function
value =942219). e

Solution of instance ‘gcut5’ on the variant F/U non-staged as guillo-
tine constraint, when considering FC4_Strengthened with h=4 (ob-
jective function = 195582).

Solution of instance ‘CW2’ on the variant F/U non-staged as guillotine
constraint, when considering FC4_Strengthened with h=4 (objective
function =23418).
Solution of instance ‘CW2’ on the variant F/U non-staged as guillotine

constraint, when considering FC2 with h=5 (objective function value
=23196). e

114
115
116

117
121
122

128

132

169

169

170

170

List of Figures ix

6 Solution of instance ‘3s’ on the variant F/U with 2-stages as guillotine
constraint, when considering FC2 with h=6 (objective function value
=2599). . . 171

7 Solution of instance ‘cul’ on the variant F/U non-staged as guillotine
constraint, when considering FC4_Strengthened with h=4 (objective
function = 12330).o 172

8 Solution of instance ‘ngcutl0’ on the variant F/W non-staged as non-
guillotine constraint, when considering FC5_Strengthened with h=4
(objective function=1452).. 172

List of Tables

3.1

4.1
4.2

5.1

6.1
6.2

7.1

7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6

8.7

Classification of the problem variants found in the literature review. 37

Instances settings. 48

Computational results (average results on 24 instances on each line). 50

Computational results (individual and average). 64
Computational results (individual average). 73
Improvement in solution when using MEPMH. 75

Computational results for the proposed algorithms (the best results

are highlightedinbold). 91
Computational results per layer type. 92
Computational results for GRASP-based algorithms. 93
Characteristics of the instances. 110
Computational results for first-order non-guillotine SKP. 111
Computational results for first-order non-guillotine SLOPP. 113
Computational results for guillotine SKP. 118
Computational results for guillotine SLOPP. 119

Computational results for guillotine SKP comparison between FC4_-
Strengthened and FC2. 130
Computational results for guillotine SLOPP comparison between
FC4_Strengthened and FC2. 131

xii List of Tables

8.8 Computational results for 2-stage - F/U SKP comparison between
Martinetal. [73]and FC2. 133

8.9 Computational results non-staged - F/U SKP comparing Furini et al.
[44], Martin et al. [75] and FC4_Strengthened. 134

8.10 Computational results for 2-stage -F/U SLOPP comparison between
Lodi and Monaci [70]and FC2. 135

8.11 Computational results for non-staged - F/U SLOPP comparing Furini
et al. [44], Martin et al. [75] and FC4_Strengthened. 136

8.12 Computational results for non-staged - F/'W SLOPP comparing Furini
et al. [44], Martin et al. [75] and FC4_Strengthened. 137

1 FC5_Strengthened preliminary computational experiments for the
first-order non-guillotine 2DSKP. oL, 165

2 FCS5_Strengthened preliminary computational experiments for the
first-order non-guillotine 2DSLOPP. 166

3 FC4_Strengthened preliminary computational experiments for the
guillotine 2DSKP. 167

4 FC4_Strengthened preliminary computational experiments for the
guillotine 2DSLOPP.o oL 168

Acronyms

2D 2-dimensional.

2DCSP 2-dimensional Cutting Stock Problem.

2DSKP 2-dimensional Single Knapsack Problem.

2DSLOPP 2-dimensional Single Large Object Placement Problem.
3D 3-dimensional.

3DSLOPP 3-dimensional Single Large Object Placement Problem.
BPP Bin Packing Problem.

C&P Cutting and Packing.

CLP Container Loading Problem.

EPFULL MMEPMH Full.
EPH Extreme Points Heuristic.

EPMH Extreme Points Modified Heuristic.

FC2 Floating Cuts Model for k-staged Guillotine Cutting and Packing Problems.

FC4 Floating Cuts Model for Non-Staged Guillotine Cutting and Packing Problems.

Xiv Acronyms

FC5 Floating Cuts Model for First-Order Non-Guillotine Cutting and Packing Prob-

lems.

FIS First Improvement Strategy.

GRASP Greedy Randomized Adaptive Search Procedure.
GREP Reactive GRASP with Extreme Points Modified Heuristic.

GREPFULL MMGREP Full.
ILP Integer Linear Program.

MEPMH Mixed Extreme Points Modified Heuristic.
MILP Mixed-Integer Linear Programming.
MMEPMH EPMH with Mathematical Model.

MMGREP GREP with Mathematical Model.
NP Non-Deterministic Polynomial Time.

PBP Pallet Building Problem.

PLP Pallet Loading Problem.
RCP Rectangular Cutting Problem.

SLH Skylines Heuristic.
SPP Strip Packing Problem.

SSSCSP Single Stock-Size Cutting Stock Problem.

VRP Vehicle Routing Problem.

Acknowledgments

First and foremost, thank God for allowing me to experience this fantastic stage
of my life.

I would like to thank each and every person who helped me during this work, in
both professional and personal growth. This has been, quite literally, the most intense
period of my life so far.

I would also like to thank Sabrina, my wife and my love, for all the support and
understanding during this period, especially while I may have been right next to her
physically, there were many times that my mind and thoughts were on my work. And,
of course, thank to Bento, our “most original creation” and biggest blessing during
this period.

Furthermore, thanks to my father and mother, Mauro and Cirene, for encouraging
me to take on and supporting me in overcoming this challenge. My brothers Gustavo
and Gabriel, I thank them for advising and helping me live in a faraway place with a
completely different lifestyle.

I would like to thank the Catholic Church on behalf of Don Umberto Cocconi.
This man who represents the image of God on Earth helped me not only in this work,
but also in my own personal and spiritual growth, learning solidarity and generosity.
Also, I thank my friends Abdullah, Marcio Rosario, and Erika dos Santos for helping
me during the moments of difficulty.

My deepest gratitude also go to my dear professors. My advisor, Marco Locatelli
(Don Marco), who worked tirelessly to help me complete this demanding task. My
co-advisor, Manuel Iori, who not only provided opportunities and motivation for
this research, but opened my mind while respecting my freedom of choice. Mayron
Moreira, for his support prior to undertaking and during this project. Fabio Furini, for
introducing me to the theory of the linear programming. Additionally, I would like

to take the opportunity to express a special gratitude to those who taught me about

xvi Acknowledgments

so many cutting and packing problems and most importantly how to succeed when
working in a team: José Fernando, Maria Anténia and Elsa Silva. Just as important, the
technical and theoretical acknowledgements, here I would like to thank the reviewers
of this thesis for their valuable corrections and advice, which helped me improve this
research and contributed decisively to my professional growth as a researcher.

I also want to thank my friends involved in this journey. In Italy, they were of
great support and helped make this period smoother: Gabriele Calzavara, Fabrizio,
Serena Gambuto, Silvia Carusi, Enea, Louka Musa, Salvatore Diletto, Medhi, Bassem,
Thssan, Samba, Sabrina, Monia, and Murad, all of whom from Parma; and all DISMI
research members from Reggio Emilia. A special thanks to those who were willing to
interrupt their day do day lives to support my family during this time: Maria Teresa
D’Amico, Enrico Giuranno, and Annagiulia Farella. For those in Brazil, who still
provided strength regardless of the distance: Anderson Albuquerque and Humberto
Brandao, thank you so much.

A special note of gratitude to Paul Campos, my friend and English teacher in this
journey. I also thank my English teacher Marco Fernandez for his valuable contribution
in writing this thesis.

Last but not least, I thank the University of Parma for this wonderful time, and
the Federal University of Alfenas for their support and the opportunity.

“Christo nihil praeponere”. St. Cyprian of Carthage

Chapter 1

Introduction

“Verba volant, scripta manent”

“Paper is forbearing”

— Latin proverb

This work investigates two problems from the Cutting and Packing field named
Pallet Building Problem (PBP) or Distributor’s Pallet Loading, and Rectangular
Cutting Problem (RCP).

Essentially, when addressing the PBP, we aim to load a predetermined set of small
items (also called cargo) onto one or more large pallets (objects called containers) by
meeting general and specific constraints to minimize the number of pallets used.

From a practical point of view, typical items include, e.g., food packaging, heavy
boxes in rectangular containers for shipment of goods, soft drink bottles, and cans.
Figure 1.1 shows a real-world solution for a regular PBP. Having said that, the loading
of items and, therefore, the problem of the creation of pallets is fundamental to the
logistics field, as it impacts not only the company’s costs but also the customer’s final
price (e.g., with the impact of freight logistics).

The specific PBP that we address originates from a real-world automated appli-
cation and is thus subject to some non-trivial operational constraints. Items should

be packed into layers, that must then be piled one over the other while adhering to

2 Chapter 1. Introduction

Figure 1.1: Real-world solution for the PBP.

stackability rules. Moreover, items are grouped into families, and, to facilitate load-
ing/unloading operations, items from the same family packed into the same layer

should be contiguous to one another.

While considering RCP, at first this may seem both simple and narrow problem,
but in reality there are various challenging variants that arise in practice, driven
by different operational, physical, and technological constraints. When it comes to
practical applications, the RCP emerges in different industrial applications, such as
wood, metal, glass, steel, fabric, and paper (e.g. Parrefio and Alvarez-Valdes [81],
Malaguti et al. [71], Polyakovskiy and M’Hallah [84], Libralesso and Fontan [66]).
Figure 1.2 represents a real-world cutting process in a textile industry based on the

solution (drawn lines) for the RCP.

1.0. Introduction 3

Figure 1.2: Cutting process of a solution for the RCP (image from Rexel [91]).

According to the constraints considered in the problem, the RCP is classified in
a specific variant of the problem (see Section 2.3). All variants of the problem have
been extensively studied, and different mixed-integer programming models have been
proposed, taking advantage of the specificities that differentiate them. However, there
is still need for a model that is both generally applicable and flexible, which would
allow these variants to be easily addressed through small changes in the model. To
this end, our approach covers these features while considering variants that include

basic packing constraints, i.e., overlap constraints for items placed inside a container.

Theoretically speaking, both RCP and PBP are NP-hard because they are general-
izations of the Bin Packing Problem (BPP), which is known to be NP-hard (Delorme
etal. [30]). Considering algorithmic strategies to solve related problems, the literature
presents efficient exact algorithms to very specific cases. When addressing generic
cases, the exact approaches are less used, and heuristic solutions are widely available.
Given this peculiarity, we propose some strategies to solve the discussed problems.
We model and implement a new exact algorithm for the RCP and two exact techniques

for the PBP. In addition, we propose heuristic solution algorithms for the PBP, since

4 Chapter 1. Introduction

it is frequently encountered at the operational level during a robotized packing sys-
tem’s everyday working activity. Last, but not least, we create a new algorithm that
combines the previous proposed strategies (exact and heuristic algorithms), which is
also referred as matheuristic algorithm. The strategies and details of the algorithms

are described later.

1.1 Cutting and Packing problems

The problems we face lie in the field of Cutting and Packing (C&P), one of the most
studied fields of Operations Research and involve several interesting practical and
theoretical problems (Bortfeldt and Wischer [13], Crainic et al. [23], Iori et al. [57],
Malaguti et al. [71], Parrefio and Alvarez-Valdes [81], Polyakovskiy and M’Hallah
[84], Scheithauer [96]). Due to their seemingly simple concept and vast applicability,
C&P problems have attracted researchers’ attention.

Although conceptually different, the C&P problems have a similar structure: to
put it simply, in cutting problems, a set of stock units has to be cut to produce smaller
items, while in packing problems, a set of items has to be packed into one or more
containers. In general, the objective in these problems is maximizing the utilization
of the container area in which items will be placed, thereby reducing the waste of
raw materials. Some practical applications involve the production of materials that
come in panels (such as wood or glass), the optimization of layouts (as in industry
or newspaper paging), and the loading and subsequent transportation of items in
containers, just to name a few.

C&P solution techniques are prevalent in companies that mass produce due to the
downside of economies of scale, since they amplify possible “bad usage” in direct
proportion to their production. Therefore, improvements in performance as well as the
reduction of time/material and space waste are directly related to the use of efficient
methods.

In regards to the creation of a solution to a C&P problem, in the past the most part
of C&P tasks have been performed by skilled experts, but this has been changing over

the years thanks to automated-packing systems. Currently, the literature presents two

1.1. Cutting and Packing problems 5

distinct scopes related to the algorithms used for this purpose: given an instance of the
problem, companies may demand an immediate solution on the spot (online solution)
or in an agreed predetermined period of time (offline solution). Although the reduction
of the production costs stimulates the creation of algorithmic strategies for generating
more efficient solutions, the development of new methods and algorithms to obtain
online solutions is a complex task, since in many cases it is hard to improve the trade-
off “cost-benefit” to obtain a better instant solution (i.e., solution created in a very short
time limit) when considering a production chain. On the other hand, in those cases
where considering an online solution is not necessary, it is easier to balance the trade-
off “cost-benefit” to meet companies’ business requirements, although the complexity
of this type of problem remains the same. In this case, an algorithmic strategy could
improve quality if the required constraints also keep the problem scalable, i.e., the
time to solve the problem remains acceptable to the company after new constraints are
added. With that in mind, we are herein proposing offline algorithms to the problems
addressed, although some heuristics are so efficient that they could be used as an

online version.

1.1.1 Structures

All C&P problems consider an item as a basic element. When we address a generic
2D problem, an item is represented by a simple polygon, i.e., a closed surface limited
by straight segments connected to at most two other segments. Given such represen-
tation, it may be difficult to express restrictions on items, like, e.g., the non-overlap
constraints. However, this representation can be simplified if all items are of a similar
basic shape in nature (e.g. circles, triangles or rectangles).

When considering only rectangular shapes for both items and containers, as well as
a packing in which the items are placed with the edges aligned parallel to the floor and
the walls of the container, we have an orthogonal version of the problem. In this case,
we could ignore the polygon structure of the edges to meet the overlap constraints, as
it is enough to take into account the polygon vertices to check for overlaps. In fact,
this representation can be simplified even further, with only one reference point and

polygon dimensions being enough. For more details about structures, representation

6 Chapter 1. Introduction

and algorithm complexities for polygons, we refer to Preparata and Shamos [86].
Another important characteristic when solving a C&P problem is the heterogeneity

of the items. The literature classifies it into the following:
* Homogeneous: when the problem is formed by only one type of item;

* Heterogeneous: when the problem is formed by more than one type of item. In

this case, we can classify it in two other ways:

— Weakly heterogeneous: few types of items, but many items for each type;

— Strongly heterogeneous: many types of items, but few items for each type.

When considering the PBP addressed in this work, we classify it as strongly
heterogeneous. Regarding RCP, once a small quantity of items is used, we classify it

as weakly heterogeneous.

1.1.2 Constraints

In terms of the constraints, we describe the most common ones found in the C&P

literature, dividing them into groups as suggested by Bortfeldt and Wascher [13].

» Container: constraints related to the container. Commonly referred to as “Weight
Limit”, a maximum weight that can be loaded into the container, and “Weight
Distribution”, the unyielding need to have the cargo spread as evenly as possible

over the container floor for structural and safety reasons.

* Item: constraints related to an individual item. Commonly referred to as “Load-
ing Priorities”, these are the scenarios where it is known before hand there is
insufficient space for all items, therefore these must be loaded in accordance
with their priority; “Orientation”, cases in which items can be rotated ac-
cording to a set of allowed rotations (generic case), or vertically/horizontally
(orthogonal case); “Stacking” any cases where it is clearly indicated that an
item can be placed on top of others. When considering the demand d for an
item i, the problem is either “Unbounded” (d; = o) or “Bounded” (d; # o).

1.1. Cutting and Packing problems 7

As for the profit value v of each item i, the problem is called “Unweighted”
when v; is equal or proportional to the area of the item, or “Weighted” when

v; is a predefined value.

» Cargo: constraints related to the entire set or to a subset of items. In this case,
we have two of them: “Complete Shipment”, which states that if at least one
item of a type is loaded, all other items of the same type must be included in
this shipment (Hit-or-Miss), additionally indicating whether or not the items
are placed in the same container; and “Allocation”, which requires that a set or

class of items must be placed together (connected/separated).

* Positioning: constraints related to the position of items inside the container. It is
classified in “Absolute”, which forces specific items to (or not to) be placed in a
certain position/area of the container, “Relative”, which forces certain items to
be placed together in the container, and “Multi-drop”, which is a combination
of Absolute and Relative positioning, i.e., the set of items should be placed

together and the arrangement of the items should be the order of unloading.

* Load: constraints related to the result of the packing process. We relate “Sta-
bility” to the displacement of the items, being “Vertical” used to prevent the
items from falling off the original stack (related to the force of gravity), and
“Horizontal” used to prevent the items from shifting while the container is
being transported (related to the force of inertia); and “Cutting Pattern” to
the arrangement/layout intricacy, allowing complex placements to increase the
container occupation, subdividing it into “Guillotineable Pattern”, in which
the loading pattern can be obtained by parallel orthogonal “cuts”, i.e., the con-
tainer must be divided by continuous perpendicular cuts between their parallel
edges, and “Non Guillotineable Pattern” or “Robot-packable Pattern”, where
items can be loaded anywhere in a container by a “robot”, i.e., items can be
placed in designated positions that do not necessarily follow a guillotineable
pattern. Regarding Guillotineable Pattern, it is possible to consider the number
of stages of cuts. In a “k-staged” problem, there is a limit to cut in at most

k stage sequences so that each stage represents a set of parallel guillotine cuts

8 Chapter 1. Introduction

performed on the “product” obtained in the previous stage (similarly, the cuts
in each stage should be orthogonal to the cuts in the previous stage); on the
other hand, if there is no limit to the number of stages, the problem is called

“Non-staged”.

The problems we face include many of the aforementioned constraints. Specifi-
cally, when we have to take into account PBP, we have vertical and horizontal orien-
tation, stacking by fragile items, complete shipment in different containers, allocation
by maintaining contact of a specific set, relative positioning, and vertical stability of
the load. When it comes to RCP, this set of constraints is simplified by making use of
orientation and overlap constraints, although the difficulty of the problem remains.

In spite of the previous constraints being the most common in literature, we
introduce new constraints not yet formally included in practical or theoretical work.
In particular, we highlight the visibility and contiguity among items that belong
to the same family. The concept of contiguity has already been addressed in the
C&P literature (see, e.g., Scheithauer and Sommerweig [97] and Terno et al. [103]),
although we could not find a univocal and formal description, more than likely because
it is included in heuristic algorithms. Both constraints are the most important ones

addressed in this work, and will be detailed in the following sections.

1.2 Contributions

PBP and RCP are hard practical problems related to the operational level in the day
to day activities of automated-packing systems. For this reason, in order to effectively
deal with these problems swiftly and efficiently, we found it necessary to adopt
heuristic and exact algorithms, in addition to combining them to increase the quality
of the solution. We derived part of the proposed algorithms from the most recent
successful C&P studies, by embedding in them a tailored approach to the operational
constraints of the problem at hand.

In summary, the main contributions of this work can be sketched as follows:

(i) the PBP that derived from a real-world industrial application is presented, in

1.3. Outline of the work 9

addition to the RCP in its theoretical version;

(ii) the concept of contiguity of items, that is so useful in practice during load-
ing/unloading operations and yet it has never been formally addressed in liter-

ature, is discussed in detail;

(iit) a formal mathematical formulation of the PBP with contiguity and visibility
constraints is presented, to the best of our knowledge, for the first time in the

literature;

(iv) a formal mathematical formulation for the RCP for guillotine and 1st-order
non-guillotine cuts, which does not include decision variables for neither the
items position coordinates nor for cut coordinates, based on the original and

innovative idea of floating cuts.

(v) new algorithms, made up by combining heuristics, metaheuristic, and mathemat-

ical models, are proposed to solve the problems discussed herein;

(vi) extensive computational tests on instances derived from a real-world case study

and literature are given.

1.3 Outline of the work

This chapter introduces the main concepts of the problems addressed in this work, in
addition to the contributions for the literature. Chapter 2 provides a formal description
of the PBP and the RCP. We are focusing on describing the problems formally and,
when it comes to the PBP, the main constraints named “visibility” and “contiguity”.
Chapter 3 presents the main contributions we found in literature to solve the problems
faced. We describe the papers related to the problems, their variations, similarities,
constraints addressed, and algorithmic strategies in a concise way. Chapter 4 presents
our first paper in which we describe the PBP with visibility and contiguity constraints
and present the first heuristic algorithm to solve it. Chapter 5 presents a new algorith-

mic solution for the PBP. In this paper we solve the problem by means of a GRASP

10 Chapter 1. Introduction

metaheuristic and a reactive method for finding more optimized solutions. Chapter 6
presents an extension of the work in Chapter 4. We mix the initial heuristic with a
mathematical method to improve the packing process. We are not proposing a com-
plete exact algorithm, but rather analyzing the impact of tailoring an exact part to
the heuristic algorithm. Chapter 7 presents the main idea proposed in this thesis in
a full formal description as well as heuristic and exact algorithms. Specifically, this
chapter provides mathematical models for the layer creation, pallet creation, and the
different solution algorithms that have been developed. Chapter 8 presents the new
mixed-integer linear programming proposed to solve variants of the RCP based on
floating cuts to generate the guillotine and 1st-order non-guillotine cuts. Conclusions

and various future research directions are given in Chapter 9.

Chapter 2

Description of the Cutting and
Packing Problems

2.1 Introduction

The following chapter presents the basic definitions for the problems addressed in this
work. We formalize the Pallet Building Problem and the Rectangular Cutting Problem,
highlighting the main constraints included therein. In addition to that, several basic

structures are also detailed.

2.2 Pallet Building Problem with practical constraints

We are given a set R of identical pallets. Each pallet has a two-dimensional loading
surface of width W € Z} and length L € Z7, which can be used to load items up to a
maximum height H € Z;. We are also given aset / = {1,2,...,n} of 3D rectangular
item types, where each item type i € I contains b’ identical items, each having width
w; € Z;, length [; € Z, and height h; € Z}, such that w; < W, [; < L, and h; < H.

When loading the items, 90-degree rotations are allowed.

12 Chapter 2. Description of the Cutting and Packing Problems

2.2.1 Item families

In addition to item type, the concept of family is also essential to describe the PBP.
Type only refers to a specific characteristic, while family is a more general concept,
covering at least one characteristic, e.g., geometric dimensions, material type, purpose
of use, and so on. More in detail, item types are partitioned into a set F of families as
follows. Each item type i belongs to a given family f € F, which, in the real instances
we have addressed, is defined as a set of item types having similar height and weight.
Note, however, that in other applications, families could also be defined differently,

e.g., each family could be made up of products of the same customer.

2.2.2 Layers classification

Items can be used to form layers. Each layer is a 2D packing of items whose total
width does not exceed W, and whose total length does not exceed L. When building
a 2D packing, we suppose a layer occupies the positive quadrant of the Cartesian
system, with width parallel to the x-axis, length parallel to the y-axis, and bottom-left
corner located in the origin of the axes, i.e., we refer to the point (0,0) as the reference
point of a layer. Figure 2.1 describes this notation. When packing an item j in a layer,
we refer to the reference point of j as its bottom-left vertex (x, y1;). The three other
item vertices can be directly determined as (x2;,y1;), (X1, y2), (x25,y2;), Where
X2j =x1j+wj and yo; = yi; +/;. If item j is rotated, then width and length of the
item must be switched. Regarding the composition of the layers, we consider three

types of layers:
o single-item layers are formed by a unique type of items;

* single-family layers are formed by different item types, but all belonging to the

same family;

* residual layers are formed by a combination of items of different families or
by items belonging to the same family in case these do not cover a minimum

predefined area of the loading surface (see the fill factor constraint described

2.2. Pallet Building Problem with practical constraints 13

(L, 0) (L, W)

(x,) (x2), ¥3))

(x4, yy)) w; (o)

(0,0) 0,m)

Figure 2.1: Graphic representation of a layer with width W and length L, and the
representation of the vertices related to item ;.

below). A pallet can contain at most one residual layer, which has to be placed
on top of all other layers.

2.2.3 Constraints

Similar to all packing problems, items cannot overlap. To this aim, we apply the
Separating Axis theorem (see, e.g., Gottschalk [47]) to find a feasible position for
each item inside a layer. This theorem is applied to general shapes and states that two
convex polytopes are disjoint if and only if there is an orthogonal axis, the separating
axis, which separates either faces or edges of the two polytopes. Applying this theorem
to our purpose, two rectangles do not overlap if and only if we can draw a straight
horizontal line or straight vertical line or both between them. Figure 2.2 shows the

cases addressed by this theorem.

2.2.3.1 Contiguity and Visibility constraints

Let us call a group a set of items having the same item type and being loaded in
the same layer. Besides the overlap constraint, packings of items in a layer should
fulfill two operational constraints that concern groups and are aimed at easing load-

ing/unloading operations when the pallet is composed/delivered. These constraints

14 Chapter 2. Description of the Cutting and Packing Problems

b

(a) (b)

e — |
Xy X
s —

(© @

Figure 2.2: Item positions and separating axes: (2.2a) items overlap and no separating
axis exists; no overlap between items includes the subcases: (2.2b), two separating
axes; (2.2c) a horizontal separating axis; and (2.2d) a vertical separating axis.

are named contiguity and visibility constraints, and are defined as follows:

* contiguity: given two items of the same group, we introduce a maximum distance
that can separate the two items in order to consider them as contiguous. Let
G C I be a generic subset of item types packed into a layer, |G| > 3 with at
least two items of the same group, we define parameter & as

0 < ¢ < minjeg(w;, 1),

i.e., £ lies in the interval between O and the smallest edge length among all

2.2. Pallet Building Problem with practical constraints 15

items in G. This way, two items j, g selected from this layer are considered as
contiguous if the smallest distance between the edges of j and the edges of ¢
is strictly lower than £. In other words, we guarantee that no other item can fit
between j and g. The contiguity relation can be modeled by the overlapping
relation. Indeed, we can view contiguity between two items as an overlap
between the two items if their sizes are augmented by % in each direction.
Figure 2.3 illustrates this fact, considering the items j and ¢ when the parameter

& is fixed to the value min;cg (w;, [;).

The notion of contiguity between items is employed to define the contiguity
constraint for items of a given type i over a generic layer. Such constraint is
met if, for each type i € G, any item of type i is contiguous to at least another
item of the same type (of course, provided that the number of items of that type
is larger than one) and, moreover, there are no separated sub-groups of items
of type i (i.e., subgroups whose distance is & or more). Stated in another way,
the graph whose nodes are the items of type i and whose edges are defined by
the contiguity relation, must be connected. Addressing a practical scenario, this
constraint is very useful when a high number of different products (items) have
to be placed in a container (layer). Indeed, contiguous item groups require less

effort and time for load/unload operations.

* visibility: similarly to what we stated for the contiguity, we say that a group is
visible from outside if, for at least one item in that group, the distance between
its edges and one of the borders of the layer is strictly lower than &. In the
same line, this constraint is very useful in a practical scenario to reduce the
unload time because it allows to see from the outside which items compose
the layer in a pallet. In general, this constraint is more commonly applied in
small and medium companies due to their greater level of non robotized work

in packaging logistics.

In Figure 2.4a, we show an example where the contiguity constraint is not met. The
fact that items of the same type are spread around within the layer slows down both

the loading and the unloading operations. In Figure 2.4b, we show an example where

16 Chapter 2. Description of the Cutting and Packing Problems

(a) Items set G = {j, q,1}

&2 &2
— —

&2 &2

t
[
§2 £2 ¢

— —
§2 §2

(b) Items j and g enlarged by £/2, considering the edge length & of item 7

(c) j and g are not contigu- (d) j and g are not contigu-

e) j and ¢ are contiguous
ous ous ©J q &

Figure 2.3: Contiguity relation based on the overlapping relation: given the items set
G (2.3a), both similar items j and ¢ are enlarged by &/2 in each direction (2.3b)
according to the smallest edge length &: j and ¢ will not be contiguous if their
enlarged regions are either separated (2.3c) or, at most, share a portion of an edge
(2.3d). Instead, they are contiguous if the enlarged regions overlap (2.3e), as it is
impossible to insert another item between j and g.

the visibility constraint is not met. In this case, we notice that the set of items lying

2.2. Pallet Building Problem with practical constraints 17

(a) (b)

Figure 2.4: Examples of layouts that breach the constraints of either the contiguity or
visibility when considering two types of items (light gray and dark gray) of similar
dimensions: (2.4a) two groups of dark gray items separated by a distance equal to &;
(2.4b) a single group of dark gray items placed at ¢ distance from the layer border.

completely in the interior of the layer can only be loaded before and unloaded after
the other items, thus forcing a precedence in the order with which the items are loaded

and unloaded.

2.2.3.2 Stackability and Fill Factor constraints

Considering layers in a pallet, the height of each layer corresponds to the height of
the highest item in the layer (recall that in single-family layers the heights of the items
are quite similar). The height cannot exceed H. Moreover, we impose two additional

conditions:

* astackability constraint imposes that resistant items cannot be on top of fragile
ones. For a layer f with a set of items ¢, its stackability p ¢ is set equal to the
largest stackability value among all items in ¢. Layer f cannot be put below

layer g if py < pg (see Figure 2.5).

* a layer can be used to support other layers only if its total area loaded with
items reaches a minimum fraction « of the total loading surface W L. Parameter
0 < a < 1is called fill-factor. A layer with a loaded area lower than aW L can

still be used to build a pallet but can only be the topmost layer. We call this

18 Chapter 2. Description of the Cutting and Packing Problems

Stackability 1 —_,

Stackability 3 ~ { ’l//,\l/,,l
Stackability 5 ——> ”“IHIIIIII‘
Stackability 7

Stackability 9 -

Figure 2.5: Graphical illustration of the stackability constraint.

the fill factor constraint. The choice of the parameter @ will be commented in
Chapter 7.

We note that the stackability constraint above introduces a simplification of the
real weight that an item has to bear in a load. The simplification is widely adopted in
the literature as it works well in practice, see, e.g., Bortfeldt and Wischer [13]. For a
more elaborate formulation of load-bearing constraints, we refer, e.g., to de Queiroz
and Miyazawa [28, 29].

About layers classification, we remark that both single-item and single-family
layers are required to meet a so called fill factor constraint, i.e., items on these
layers should cover a minimum occupation area (see below for a formal description).
Moreover, as previously mentioned, items belonging to the same family are required
to have similar heights. Both requirements aim at guaranteeing that single-item and
single-family layers can be used in a 3D packing to support other layers that are packed

on top of them. Note that these requirements are not imposed for residual layers.

2.2.4 Problem outline

The PBP that we face aims to load all items into the minimum number of pallets by

ensuring that the following constraints are satisfied:

« all items are packed in layers by satisfying contiguity and visibility constraints;

2.2. Pallet Building Problem with practical constraints 19

 at most one residual layer can be used per pallet, and, in such a case, it is placed

at the top of the pallet;

* single-item layers can be used to support any type of layers on top of them, as
well as single-family layers can be used to support single-family and residual

layers, as long as stackability and fill-factor constraints are satisfied;
* the total height of the layers in any pallet does not exceed H.

Figure 2.6 shows a toy instance of the described PBP with a single pallet. Figure
2.6a represents family 1 with six item types. Figure 2.6b represents family 2 with one
item type. Figure 2.6¢ represents family 3 with two item types. Figure 2.6d represents
the pallet. First, layers are created as shown in Figure 2.6e with, from top to bottom,
a residual, four single-family and two single-item layers, respectively; next, the layers
are packed inside the pallet for building the final solution as displayed in Figure 2.6f.

20 Chapter 2. Description of the Cutting and Packing Problems

T g =
—_——
== . g

(a) (b) (©)

®

Figure 2.6: PBP toy instance.

2.3 Rectangular Cutting Problem

For this problem, there is one 2D rectangular plate with length L € Z} and width
W e ZZ, and the goal is to cut from it a set of n 2D items indexed by i,i = 1, ..., n.
Each item i has a length [; € Z}, a width w; € Z}, a profit value v; € Z}, and a
demand d; € Z}, such that/; < L, and w; < W. The objective is to maximize the total
profit from items assigned to the rectangular plate while fulfilling the constraints of

the problem.

2.3. Rectangular Cutting Problem 21

2.3.1 Classes addressed

When considering demand of the items, we deal with two RCP classes, according
to the typology of Wischer et al. [109]: dealing with d; = 1 (the unitary demand)
for each item type i, this problem is classified as the 2-dimensional Single Knapsack
Problem (2DSKP); when it comes to a variable demand d; for a type i, the problem
is called the 2-dimensional Single Large Object Placement Problem (2DSLOPP). In
both cases, the goal remains to cut a set of small rectangular items from a single large
rectangular object (e.g., a bin, panel, or stock sheet) while maximizing the total profit

associated with the items.

2.3.1.1 Variants

Depending on the industrial application, technological constraints must be considered
within the cutting process. In this regard, different variants of the RCP arise. Therefore,
from this perspective, we take into account the following constraints.

Firstly, regarding the items profit, we address the Unweighted and Weighted cases
for both variants.

Secondly, an additional constraint regarding guillotine cuts is the number of stages.
Thus, k-staged and non-staged versions of these problems are also considered.

Finally, the main constraints we account for in this problem are those related to
the cutting patterns. We are taking into consideration both “Guillotine” and “Non-
Guillotine” cuts (the main concept of cutting patterns is explained in Chapter 1).
Since a non-guillotine cut includes more cutting options, it tends to be more densely
packed. Furthermore, when dealing with non-guillotine cuts, the literature presents
some distinct types of cuts (see, e.g., the L-shaped cut from Lins et al. [67], and the
higher order non-guillotine cut defined by Martins and Dell [76]), however we will
only be looking at the /st-order non-guillotine cut in our work. In simple terms, this
cut type produces five new rectangles arranged in such a way that it does not form a
guillotine cutting pattern (Arenales and Morabito [8]). This pattern corresponds to a
G5 recursive structure. Figure 2.7 shows a graphical example for the cutting patterns

described. Note that the guillotine example is represented by images (2.7a) and (2.7b)

22 Chapter 2. Description of the Cutting and Packing Problems

1 1 2
2 3
(a) 1-staged guillotine cut type (b) 2-staged guillotine cut type
2
1
5
3
4

(c) First-order non-guillotine cut type

Figure 2.7: Types of orthogonal cuts.

in Figure 2.7, differing only by the number of stages, being 1-staged and 2-staged,

respectively.

2.3.2 Problem outline

The RCP that we address aims at loading as many items as possible into a single rect-
angular plate resulting in a maximum profit by ensuring that the following constraints
are satisfied:

* items in the plate cannot overlap with each other, and the cut pattern applied in

the plate includes both guillotine and non-guillotine types;

2.3. Rectangular Cutting Problem 23

¢ the problem should include the following problem classes: 2DSKP and 2DSLOPP;

* the problem classes handled should fulfill a combination of three specific con-

straints: number of stages, item rotation and type of profit. Specifically, we are
interested in solving the following variants:
(i) non-staged, no rotation, and unweighted;
(i) non-staged, 90 degrees rotation allowed, and unweighted;
(iii) non-staged, no rotation, and weighted;
(iv) non-staged, 90 degrees rotation allowed, and weighted;

(v) 2-stages, no rotation, and unweighted;

Figure 2.8 shows a toy instance for the RCP addressed. Figure (2.8a) represents a
2D item set. Figure (2.8b) represents the 2D plate. Figure (2.8c) represents a solution

for the non-staged non-guillotine 2DSKP, and Figure (2.8d) represents a solution for
the non-staged guillotine 2DSLOPP.

24

Chapter 2. Description of the Cutting and Packing Problems

F

(a) 2D items

(b) 2D plate

F
A B D B B
F
C E G D D
(c) 2DSKP solution (d) 2DSLOPP solution

Figure 2.8: RCP toy instance.

Chapter 3

Literature Review

3.1 Introduction

The field that involves C&P problems arouses interest in many researchers, which
is mainly due to its challenging nature and the sheer number of real problems that
can be modeled based on it. Every year, new techniques to develop solutions to these
problems are addressed in literature, in addition to improvements to existing ones,
both in terms of solution quality, performance and ways to manage the structures of
the models developed.

Approaches to address C&P problems began to surface around 1960, with the
adoption of simple mathematical models for 2D versions of the problem (see Gilmore
and Gomory [45]). In contrast, approaches to handling practical cases of packing
problems addressing 3D models were only developed years later thanks in large part
to Tsai [104], who proposed a robotic 3D pallet loading with boxes of various sizes.
Nowadays, we have a large assortment of strategies to solve these problems such as
heuristics, exact and approximation methods.

Several interesting surveys and books have been published in recent years to try
to review the fast-growing C&P literature, see, e.g., Crainic et al. [23], lori et al. [57],
Lodi et al. [69], Scheithauer [96] and Silva et al. [102]. For a recent review of the

latest publications in the field of knapsack problems, we refer the reader to Cacchiani

26 Chapter 3. Literature Review

etal. [15, 16].

A typology of C&P problems has been proposed initially by Dyckhoff [34]. In that
work, Dyckhoff was able to describe the basic structure concerning C&P, modifying
the classification of the algorithmic strategies to obtain solutions, classifying them
in specific groups. However, the proposed classification was not generic enough, and
some problems remained yet unclassified. To cover these cases, a new typology was
proposed by Wischer et al. [109]. Later, Bortfeldt and Wischer [13] extended the study
in Wischer [109] by considering the area of container loading and its main constraints.
Specifically, they formalized the main concepts of loading containers with items and
the related constraints. They noted that “the space available for packing above a
pallet might be interpreted as a container, too”, so they discussed constraints that can
arise either when loading a container or a pallet. Indeed, apart from container-related
constraints (such as weight limit and distribution), they also discussed item-related
constraints (as loading priorities, orientation, dimension and stacking) that can be
useful for pallets. The authors also considered cargo-related constraints, positioning
constraints, and other load-related constraints that may appear during transportation
(see also lori and Martello [58, 59]) such as vertical and horizontal stability.

In the following, we highlight the main work that we have found in literature
addressing C&P problems related to the PBP and RCP. We address the techniques to
create partial and complete solutions, with exact and heuristic algorithms to solve the

practical and theoretical versions of these problems.

3.2 PBP related works

The PBP emerges as a variant of the Container Loading Problem (CLP), which has
received large attention in the last years. As previously mentioned, in Bortfeldt and
Wiischer [13], a comprehensive survey of the main constraints used in the literature is
presented. The authors verified that heuristic approaches are more frequently used than
exact and approximation-guarantee algorithms. In Silva et al. [102], the Pallet Loading
Problem (PLP) is considered. In this problem, a set of two-dimensional rectangular

items needs to be packed without overlapping and by allowing a 90° rotation into a

3.2. PBP related works 27

two-dimensional bin. The authors proposed a broad analysis of the solution methods
and some aspects concerning computational complexity, upper bounds, and data sets
most used in numerical experiments. In Crainic et al. [23], a survey is presented about
2D and 3D Orthogonal Packing Problems, focusing on data structures for the packing
representation and the item-positioning rules. Concerning criteria to place items, they
highlighted: (i) interval graphs (Fekete and Schepers [39]), to represent the overlap
between items; (ii) corner points (Martello et al.[72]), that describe feasible places
to pack an item in a partial solution; and (iii) extreme points (Crainic et al. [22]), that
increase the amount of feasible regions on the partial packing of the corner points.
Recently, Iori et al. [57] proposed a survey on variants of 2D packing problems,
considering techniques to represent and handle items, relaxation methods, as well as
exact and heuristic approaches. We also refer to Wischer et al. [109] for a categorized
typology of 2D packing problems, besides Delorme et al. [31] for a state-of-the-art

computational analysis.

The PBP can be separated into two subsequent decisions: the first one consists
of creating 2D layers, while the second one involves stacking layers to form pallets
and thus considers the 3D characteristics. In the following, we discuss some relevant
approaches for 2D and 3D, respectively.

For what concerns heuristics for 2D problems, Chazelle [17] described an efficient
way to implement the famous bottom-left heuristic, which packs the items, one at a
time in a given order, in the lowest and left-most position. In Burke et al. [14], a new
placement heuristic, called best-fit, is presented for a 2D cutting problem, allowing
non-guillotine packings and rotations of 90 degrees. This technique uses a dynamic
search based on the “niches”, which are the available bottom-most gaps for an item in
the partial packing. In terms of metaheuristics, in Alvarez-Valdes et al. [7], a GRASP
approach is developed for the 2D Strip Packing Problem (SPP), which is the problem
of packing items into a strip of a given width by minimizing the used height. In the
constructive phase, the items are placed into rectangles following specific criteria. A
new rule attempts to foresee the future effect of the tallest object in the final solution
to avoid spikes. The local search iteratively destroys and rebuilds portions of the

current solution. Extensive computational experiments attested to the effectiveness

28 Chapter 3. Literature Review

of the proposed strategy. Imahori and Yagiura [56] improved the technique proposed
by Burke et al. [14] by presenting a quicker implementation based on a balanced
binary search tree and a priority heap with a doubly-linked list. In Leung et al. [65],
a complete set of techniques to deal with the 2D SPP is presented. The authors use
the so-called “skyline” approach in conjunction with greedy local search, a simulated
annealing metaheuristic, and a multi-start diversification strategy. We also mention
the so-called G4-Heuristic, developed by Scheithauer and Terno [99] for the PLP.
In terms of exact algorithms, the use of Combinatorial Benders decompositions has
recently lead to good computational results for a number of 2D packing problems, as
in, e.g., Coté et al. [25, 26] and Delorme et al. [31].

Regarding 3D problems, Haessler and Talbot [51] addressed a real CLP involving
some practical constraints. They proposed an integer programming formulation and
a heuristic algorithm. Bischoftf and Ratcliff [11] presented two heuristics for the
CLP: the first one produces loading patterns with a high degree of stability; the
second one considers a multi-drop situation in which a Last-In-First-Out constraint
is imposed on the cargo. Terno et al. [103] proposed the parallel generalized layer-
wise loading approach (PGL-approach) for the CLP. The constraints they consider
are: (i) weight capacity; (ii) placement (some items cannot be inserted over the
others); (iii) splitting (items of the same type should be loaded in a minimum number
of containers); (iv) connectivity; and (v) stability. Using a complex branch-and-
bound algorithm, the authors show a certain degree of competitiveness compared
with classical solutions reported in the literature. Bortfeldt and Gehring [12] proposed
a hybrid genetic algorithm to solve the CLP with a single container and a strongly
heterogeneous set of boxes, considering orientation, stability, stacking, weight, and
balance. The results showed a better efficiency with more significant heterogeneity
of the box sets. Egeblad et al. [35] addressed the CLP for a single container (in
the knapsack version), using irregular shaped items, and taking a stability constraint
into account. They performed tests on randomly generated and real-world instances
derived from a prominent European furniture producer. J6zefowska et al. [63] studied
the CLP considering rotation, stackability, and stability constraints. They considered

a case study arising from a household equipment factory, proposing a best-fit heuristic

3.2. PBP related works 29

based on the idea of wall-building over available space. Kurpel et al. [64] presented
techniques to obtain bounds and exact approaches to solving input minimization
and output maximization versions of the multiple CLP with rectangular boxes. They
adapted and evaluated four discretization techniques from the literature and considered
mathematical formulations to practical constraints such as rotation, vertical stability,
and separation of the boxes. We also refer to a GRASP-based algorithm for the
3D BPP proposed by Parrefio et al. [82]. The related algorithm was developed by
using a maximal-space heuristic for the CLP during the constructive phase, and
several moves were combined in a Variable Neighborhood Descent approach in the
improvement phase. Da Silva et al. [27] proposed a matheuristic framework to solve
two CLP named 3-dimensional Single Large Object Placement Problem (3DSLOPP)
and Single Stock-Size Cutting Stock Problem (SSSCSP) (according to the typology
proposed by Wischer et al. [109]), considering seven practical constraints (orientation,
load balance, loading priorities, positioning, stacking, stability and weight limit). The
method consists of a wall-building approach by means of box arrangements: first,
the solution is created by dividing the original problem into two smaller problems
(Knapsack Problem and one-dimensional Packing Problem), which are solved through
two mathematical formulations; then, a greedy improvement is carried out, using a
heuristic that removes the walls with the lowest quality, recreates them, and re-applies
the previous mathematical formulations to try to improve the solution. In Gzara et
al. [48], an extension of the paper by Elhedhli et al. [37], is proposed to solve the
3D BPP. The authors proposed a layer-based column generation approach through
a column generation framework, which provides a pool of layers to construct bins.
The bins are created one at a time by means of a heuristic that selects layers ordered
in descending order of density, meeting several constraints such as vertical support,
load-bearing, planogram sequencing, and bin weight limits. About load-bearing, the
algorithm ensures that the items of the top layer have sufficient support from below of,
at least, 70%, and, in addition, it uses an efficient graph representation to update the
total weight to which an item is subjected. Other approaches based on mathematical
models can be found in Alvarez-Valdes et al. [6], Martins and Dell [76], NeliSen [79],
Ribeiro and Lorena [92], and Wu and Ting [110]. For what concerns the use of 3D

30 Chapter 3. Literature Review

packing problems arising in freight transportation, we refer to the surveys by lori and
Martello [58], Schmid et al. [100] and Vidal et al. [106].

The works that, in our opinion, most resemble ours are Alonso et al. [4] and
Ranck Junior et al. [88], which, however, do not consider families nor visibility and

contiguity constraints.

Ranck Junior et al. [88] addressed a real problem of a beverage company for
packing boxes into a multi-compartment container and delivering over a predefined
route, meeting the practical constraints of orientation, stability, load-bearing strength,
and load balancing. The proposed heuristic is a hybrid method to create a solution
based on layers. These are created via the First Fit and Best Fit heuristics; next,
to generate a final solution, a mathematical model is solved, meeting the delivery
constraints over the boxes. An iterated local search is carried out over individual

layers as an improvement phase, in an attempt to generate new box dispositions.

Alonso et al. [4] considered practical constraints through a real example originat-
ing from a logistics company required to load products into pallets (pallet building)
and then load the created pallets into trucks (truck loading), by considering several
practical constraints. For the pallet building, they incorporated orientation, support,
priority, and stackability constraints. Regarding the truck loading, they adopted re-
strictions due to priority among pallets, stability, and stackability. They proposed a
GRASP algorithm using a constructive phase, a randomized strategy to diversify the
solutions, and an improvement phase. The efficiency of their GRASP was analyzed by
comparing it with lower bounding procedures, showing good results. The study was
later extended by Alonso et al. [1, 2], who developed mathematical models for the
case of multiple container loading, addressing several additional practical constraints
such as vertical and horizontal stability, multi-drop, and load balance. A further ex-
tension was proposed by Alonso et al. [3], which studied the advantages of using a
metaheuristic algorithm when comparing to an integer programming formulation.

Finally, it is worth mentioning in relation to both similar works that, although they
deal with several practical constraints and present similarities to our problem, their
main idea is optimizing the occupation in bins, i.e., maximizing the fill factor. In this

sense, our proposal goes further by additionally requiring other practical constraints

3.3. RCP related works 31

(contiguity for items, visibility for families, layer disposition) to solve the problem

addressed.

3.3 RCP related works

When it comes to RCP, this literature review will focus on exact methods to solve the
2DSKP and 2DSLOPP in both the non-guillotine and guillotine cuts. Mainly, it will be
divided into two parts: papers dealing with non-guillotine cutting patterns and papers
considering only guillotine cutting patterns. The literature considering guillotine cuts
will be divided into: the papers considering a limited number of stages (k-staged);

and the papers considering an unlimited number of stages (non-staged).

3.3.1 Non-guillotine cutting patterns

The first mathematical model dealing with general non-guillotine cutting patterns was
proposed by Beasley [9]. The 2DSLOPP was modelled as a zero-one Integer Linear
Program (ILP) model with O (m|L||W|) decision variables and O (| L||W|) constraints,
since it is based on the discretization of the set of possible positions to place an item.
The decision variables are related to whether a piece of a particular type is cut with
its bottom-left corner at a certain position or not. The size of the model could be
significantly reduced by considering normal patterns. However, the model was not
solved monolithically, instead, an upper bound on the optimal solution was derived
by using a tree search approach based upon Lagrangean relaxation of the ILP model,
and a subgradient optimisation was used to minimise the upper bound obtained from
the Lagrangean relaxation.

A zero-one ILP model for the general non-guillotine 2DSKP was proposed by
Scheithauer and Terno [98]. The decision variables represent whether an item is cut
to the right/left or above/below another item. In this problem formulation, all items
are cut from an enlarged large rectangular object. However, a binary decision variable
is used to count, in terms of contribution to the objective function, the items that are
positioned in the initial large rectangular object. No computational experiments using

this model was reported.

32 Chapter 3. Literature Review

In Arenales and Morabito [8], the unbounded 2DSLOPP was solved using an
AND/OR graph and a tree search procedure. A cutting pattern is built up by making
successive cuts, either a single guillotine cut or a first-order non-guillotine cut. The
tree search procedure includes heuristics that can be used to prune the tree; however,
it may be the case, depending on the parameters, that the optimal solution is lost.

Hadjiconstantinou and Christofides [49] developed a tree-search exact algorithm
for the 2DSLOPP that places the next item considering the left-most downward
strategy. The search was limited by an upper bound based on a Lagrangian relaxation
procedure and improved using subgradient optimization. Later, Hadjiconstantinou
and Iori [50] solved the 2DSLOPP by means of genetic algorithm.

Fekete and Schepers [39, 40] and Fekete et al. [41] proposed an optimal tree search
based algorithm based upon a graph-theoretic representation of the relative position
of items in a feasible cutting pattern. The projections of cut items are made onto both
the horizontal and vertical edges of the large rectangular object. Each projection is
then translated into a graph, where the nodes in the graph are the cut items, and an
edge joins two nodes if the projections of the corresponding cut items overlap. The
authors proved that a cutting pattern is feasible if the projection graphs have certain
properties. In the tree search procedure, branching to enumerate cutting patterns is
related to whether an edge is included in or not from a projection graph. Upper bounds
derived from the solution to knapsack problems and problem reduction tests are used

to shorten the search.

3.3.2 Guillotine cutting patterns
3.3.2.1 k-staged guillotine

The 2DSKP has been widely studied in the literature. The seminal work considering
two-staged guillotine cutting patterns goes back to Gilmore and Gomory [45], where a
dynamic programming procedure was proposed and embedded in a column generation
procedure to solve the 2-dimensional Cutting Stock Problem (2DCSP).

ILP models have been considered for problems limited to two or three stages. In

[70] two models with a polynomial number of variables and constraints was proposed

3.3. RCP related works 33

for the 2DSKP. The models were based on the observation that two-staged patterns
are composed by levels, and it assumed that the total number of items is the maximum
number of potential levels that can be initialized. The decision variables corresponded
to the assignment of items to levels and the assignment of levels to the large object.
The models were extended to different variants of the problem: the unbounded case,
the possibility of a 90 degrees rotation of the small items, and the double constrained
case, with a lower and an upper bound on the number of times that an item can be
placed on the large object. In Puchinger and Raidl [87], one of the ILP models of
Lodi and Monaci [70] was extended to three-staged patterns and used in a column
generation procedure to solve the 2DBPP.

Hifi [53] studied the two- and three-staged problems. The two-staged problem con-
sidered that items could be rotated and was solved by an exact algorithm that resulted
from the extension of Gilmore and Gomory’s procedure. The three-staged problem
considered both the fixed and rotated positioning of the item and was solved by an
algorithm based on a graph search combined with dynamic programming procedures.
Hifi and M’Hallah [54] proposed an exact algorithm based on a branch-and-bound
procedure using a bottom-up strategy for the two-staged problem, introducing new

upper bounds and new pruning strategies for the unbounded problem variant.

3.3.2.2 Non-staged guillotine

Christofides and Whitlock [19] presented the first exact tree search method for the
non-staged 2DSLOPP. The size of the tree was limited by a bound derived from
a state space relaxation of a dynamic programming formulation. Christofides and
Hadjiconstantinou [18] improved the tree search algorithm by limiting the size of
the tree search using a bound based on the Lagrangean relaxation of an integer
programming model and defined dominance rules to remove repeated patterns through
symmetry breaking and cut ordering. Similarly, Cung et al. [24] and Velasco and
Uchoa [105] considered exact tree search algorithms with improved bounds using
dynamic programming procedures.

Morabito et al. [78] proposed the AND/OR graph model for the unconstrained and

non-staged problem. In this approach, the cutting patterns are represented as complete

34 Chapter 3. Literature Review

paths in the AND/OR graph, where the AND vertex corresponds to a cutting decision
resulting in several sub-plates and the OR vertex represents a sub-plate. The authors
considered a hybrid strategy combining a depth search heuristic and hill climbing to

search the graph.

Cintra et al. [20] and Russo et al. [94, 95] considered a dynamic programming
procedure for the unbounded case. Cintra et al. [20] used algorithms based on dynamic
programming to solve the 2DSLOPP with different variants allowing the rotation of
orthogonal items, k-staged patterns, and non-staged patterns. All cuts were performed
on discretization points obtained by integer conic combinations of the width or the
height. Russo et al. [94] corrected and improved one of the two dynamic programming
procedures proposed by Gilmore and Gomory [46] and considered in their algorithm
the reduction of the discretization points proposed by Cintra et al. [20]. Russo et al.
[95] modified and improved the dynamic programming procedure proposed by Russo
et al. [94], reducing the search space and avoiding redundant solutions. Combined
with computational refinements, this allowed the authors to obtain the optimal solution

for very large instances that had not yet been solved.

Dolatabadi et al. [32] also used a dynamic programming algorithm for the non-
staged guillotine 2DSLOPP. The authors used a recursive exact procedure combined
with an implicit enumeration of all feasible patterns by recursively dividing the bin
into two parts by guillotine cuts (horizontal or vertical). The procedure was then
embedded into two exact algorithms and computationally tested on a set of instances
from the literature. In Russo et al. [93], a survey on relaxations for two-dimensional
guillotine cutting problems and a categorization of the resulting bounds was presented.
In this work, the authors pointed out that the procedure from Dolatabadi et al. [32] is
not exact since the extension proposed for a dynamic programming from the literature
considering maximal profit solutions was not accurate. More recently, Clautiaux et
al. [21] proposed a hypergraph model for the non-staged guillotine 2DSKP, where
a cutting pattern was represented by a flow in the directed acyclic hypergraph. The
hypergraph model is derived from a forward labeling dynamic programming recursion
that enumerated all non-dominated feasible cutting patterns. To reduce the hypergraph

size, the authors used dominance rules and a filtering procedure based on Lagrangian

3.3. RCP related works 35

reduced costs fixing of hyperarcs. The model was extended in order to consider
other variants of the problem, as a k-staged version and the 2DSLOPP. Extensive
computational experiments were performed and compared with the solutions obtained
with the dynamic programming algorithm proposed by Dolatabadi et al. [32] and the
solutions obtained by the ILP model proposed by Lodi and Monaci [70].

Pisinger and Sigurd [83] solved the 2DSKP by constraint programming, consider-
ing non-guillotine and guillotine cutting patterns with a limited and unlimited number
of stages. The solution was then embedded in a column generation procedure for the
2DBPP.

Messaoud et al. [77] presented a polynomial algorithm to determine whether a
given pattern is guillotinable. The authors defined the necessary and sufficient condi-
tions for a cutting pattern to be guillotinable and formulated guillotine constraints into
linear inequalities. Based on the mathematical constraints, a guillotine SPP capable
of being extended to the 2DSKP was formulated. However, the linear relaxation of
the model was weak and in the computational results, only instances with five items
were solved with a small computing time.

Furini et al. [44] proposed a Mixed-Integer Linear Programming (MILP) model for
the non-staged guillotine 2DSKP with a pseudo-polynomial number of variables and
constraints. The model was an extension of the pseudo-polynomial model proposed
by Silva et al. [101] for the two-staged and three-staged 2DCSP. The computational
performance was also improved using an exact procedure that selected the sub-set of
variables that contained an optimal solution. The modeling of non-staged guillotine
cuts was extended to the 2DCSP and the SPP.

Recently, Martin et al. [73] proposed new ILP models for the 2DSLOPP which
were based on the grid model proposed by Beasley [9] for the non-guillotine problem.
The new models were developed for the non-staged problems, two-staged problems,
and one-group cutting patterns. Based on the computational experiments, the authors
concluded that the ILP models performed well in problem instances with items that
were large with respect to the object, but performed disadvantageously in problem

instances with many small item types.

Martin et al. [74] proposed new pseudo-polynomial MILP models for the non-

36 Chapter 3. Literature Review

staged and k-staged 2DSLOPP which were based on the classic bottom-up packing
approach of Wang [107]. The computational experiments showed that the models are
well suited to problem instances where the maximum number of small items that can

be packed in the large object is small.

A top-down cutting approach for the two and three-dimensional SKP and SLOPP
is presented by Martin et al. [75]. The pseudo-polynomial MILP model explicitly
uses a binary tree structure as input for variables and constraints indexing. The nodes
of the binary tree are rectangles, and the branches are guillotine cuts. The algorithm
for the binary tree requires an upper bound on the number of items in the optimal
solution. In this MILP model, the cut positioned is not previously defined as in the
MILP models proposed in this work. The computational experiments with benchmark
instances shows that the model is competitive with the literature when the number of

items in the optimal solution is small or moderate.

Finally, we also refer to the empirical analysis of exact algorithms provided by

Becker and Buriol [10] for the one-dimensional unbounded Knapsack Problem.

In Table 3.1, the papers considered in the literature review for the guillotine
problem were classified according to the type of problem. The abbreviations used
are 2DSLOPP for the 2-dimensional Single Large Object Placement Problem, and
2DSKP for the 2-dimensional Single Knapsack Problem. Other features taken into
consideration are: the number of stages considered (k) — oo is used if the problem
is non-staged —; if a 90 degrees rotation of the items is allowed; and if the problem
is weighted or unweighted. Moreover, the instances considered in the computational

experiments in the respective paper were identified.

3.3. RCP related works

37

Table 3.1: Classification of the problem variants found in the literature review.

Publication 2DSLOPP 2DSKP % Rotation Weighted Instances

Christofides and Whit- X X No cgeutl-3

lock [19]

Christofides and Had- X X No geutl-3 wang3 OF1-2

jiconstantinou [18]

Lodi and Monaci [70] X 2 Yes HH 2 3 Al-2 STS2 STS4 CHL1-2 CW1-3 Hchl2
Hchl9 2s 3s Als-2s STS2s STS4s OF1-2 W CHL1s-2s
A3-5CHL5-7 CU1-2 Hchl3s-8s BW HZ2 MW1 UW1
W1 B HHZI Ul-2 UUI

Hifi and M’Hallah [54] X 2 No 23 Al1-5STS2 STS4 CHL1-2 CW1-3 Hchl2 Hchl9 2s
3s Als-2s STS2s STS4s OF1-2 W CHL1s-2s CHL5-7
CU1-2 Hchl3s-4s Hchl6s-Hchi8s HH

Puchinger and Raidl X 3 No

[87]

Pisinger and Sigurd X X X No

[83]

Cung et al. [24] X X Yes 2 3 A1-5 STS2 STS4 CHL1-4 2s 3s Als-2s STS2s
STS4s CHL1s-4s HH CHL5-7 Hchl1-2 Hchl9 Hehl3s-
8s

Dolatabadi et al. [32] X X No geutl-geut-13, cgeutl-cgeut3, wang20, okpl-okps,
APT30-APT39, APT40-APT49

Furini et al. [44] X X No geutl-12 wang20 cgeutl-3 okpl-5 2s 3s Als-2s
STS2s STS4s HH 2 3 A1-2 STS2 STS4 CHL1 OF1-2
W CHLI1s-2s A3-5 CHL2 CW1-3 Hchl2 Hchl9 CHLS-
7 CU1-2 Hchl3s-4s Hchl6s-8s

Clautiaux et al. [21] X 2,4 x Yes 2s 3s Als-2s STS2s STS4s OF1-2 W CHLIs-4s
CHLS5-7 ATP30-39 CUI-11 Hchl3s-8s cgeutl-3 Al-
2 STS2 STS4 CHL1-4 CW1-11 ATP40-49 Hchll-2
Hchl9 okpl-5

Velasco and Uchoa X X Yes Wang1-3 OF1-2 CUI-11 ChW1-3 CWI1-11 ATP30-

[105] 49

Martin et al. [73] X X 2 x No cgeutl-3 OF1-2 Wang20 gcutl-12

Martin et al. [74] X X 2 X Yes cgeutl-3 OF1-2 Wang20 okp1-5 geutl-13 ATP30-39
ATP40-49

Martin et al. [75] X X X No cgeutl-3 OF1-2 Wang20 okpl-5 geutl-13 CUI1-11
CWI-11

‘Floating cuts’ model X X X X Yes cgeutl-3 CW1-3 okpl-okp5 geutl-12 CU1-11 CW1-

11 OF1-2 2s 3s Als-2s STS2s STS4s W CHLI1s-2s
CHLS-7 Hchl3s-8s cgeutl-3 CHL5-6 A3-5

Chapter 4

Solution of a Practical Pallet
Building Problem with Visibility
and Contiguity Constraints

4.1 Abstract

We study a Pallet Building Problem (PBP) that originates from a case study at a
company that produces pallet building automated systems. The problem takes into
account well known constraints, such as rotation and stackability, and we introduce
two practical constraints named visibility and contiguity between items of the same
type. We formalize the problem and propose heuristic algorithms to solve it, using a
strategy that first creates 2D layers and, then, creates the final 3D pallets. The proposed
heuristic is based mainly on the Extreme Points Heuristic, that is tailored to choose
feasible positions to pack items during the construction of the solution. Besides that,
we adapt our proposed heuristic using other basic heuristics from the literature, con-
sidering different constraints. The performance of the algorithms is assessed through
extensive computational tests on real-world instances, and the obtained results show

the proposed heuristics are able to create compact packing in a very short time.

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and
40 Contiguity Constraints

4.2 Contributions

Our main contributions in this work can be sketched as follows: an interesting prob-
lem that derives from a real-world industrial application is presented (Chapter 1);
the concept of contiguity of items is used, that is very useful in practice during load-
ing/unloading operations but has never been formally treated in the literature (Chapter
2); a 2-step heuristic algorithm to solve the problem addressed; and extensive com-

putational tests on instances derived from the real-world case study are given.

4.3 Solution algorithm

This section presents the 2-step heuristic that we developed to solve the PBP with
visibility and contiguity constraints, which we call Extreme Points Modified Heuristic
(EPMH). EPMH produces feasible solutions by dividing the problem into two parts.
First, we create layers to deal with individual items separately. This phase forces the
presence of packing, visibility, and contiguity constraints through a process guided by
an evaluation function. Second, the pallet generation step tries to minimize the quantity
of pallets using a greedy strategy. Next, we particularly focus in the description of
the first step (layers creation), as the second step (pallets creation) is based on a quite

standard algorithm.

4.3.1 Creating layers
4.3.1.1 Item positioning

To pack an item in a layer, we propose an adaptation of the Extreme Points Heuristic
(EPH) presented by Crainic et al. [22] . Originally, EPH was built for 3D packings,
but we restrict here the discussion to the 2D case. EPH works with the concept of
extreme points. An extreme point e is a point in the 2D space where an item can be
packed by taking into account the partial solution built so far. For the sake of clarity,
packing an item in an extreme point e means packing its bottom-left corner (reference

point) in e.

4.3. Solution algorithm 41

In EPH, the items are packed one at a time in the layer, by considering a set E
of available extreme points initialized with the origin point (0, 0). Then, each time
a new item is packed, E is updated by removing the point used for the packing and
possibly inserting new extreme points. These new extreme points are obtained by
computing the projection of the last item packed over the partial packing solution
under construction, considering the axes x and y. For the x-axis, EPH horizontally
projects the top edge of the item to its left, until the projection touches a previously
packed item or the left border of the layer (i.e., the y-axis). This is the first extreme
point that is possibly created. For the y-axis, instead, EPH considers the right edge
of the item and vertically projects it towards the bottom until the projection reaches
a previously packed item or the bottom border of the layer (i.e., the x-axis). This is
the second extreme point possibly created. These two points are added to E if they
were not already included in it. Figure 4.1a depicts an example with a set E formed
by white and black points. The white point is selected for packing an item of type k
and is thus removed from E. The dark gray points are the new extreme points added

to E after the packing.

Note that, besides the projections from the last item packed, it is mandatory to
verify all projections from previously packed items on the last item. This step, that
we name past projections, is needed to find new extreme points not yet available. We

execute it right after having computed the projections from the last item packed.

The original EPH solves a pure 2D packing problem, so we need to include a set
of changes to be able to solve the more complex PBP with visibility and contiguity
constraints. The first modification we apply consists in increasing the search space
inside a layer. The EPH creates only two new extreme points at a time, whereas
visibility and contiguity constraints narrow the search space. As a consequence, a
layer could be closed even when its occupation is low because E does not contain
any feasible extreme point. Figure 4.1b shows an example where this situation occurs
because none of the current feasible extreme points fulfills the contiguity constraints.

To overcome this limitation, we included some new extreme points, considering
two cases for contiguity and visibility. In the first case, the extreme points are included

around the last item packed to allow the contiguity with the next items of the same

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and
42 Contiguity Constraints

o

(a) (b)
= N
| ||

(© (d)

Figure 4.1: Extreme points: (4.1a) Black and white points form the current set E; the
white point is chosen to pack k and is then removed from E; dark gray points are
added to E after the packing; (4.1b) Case where EPH generates only extreme points
that are infeasible for the PBP with visibility and contiguity constraints; (4.1c) New
extreme points created for contiguity: after packing k in the white point, four extreme
points (represented by dark gray points) are included in E; (4.1d) New extreme points
created for visibility: new dark gray points that meet visibility constraints are added
to E.

type. Basically, four new points are added: the item top-left and bottom-right corners
allow the top and right connections, respectively, and the points on the left and below
the item enable the left and bottom connections, respectively. Figure 4.1c shows the
new extreme points.

Extreme points regarding the visibility case are included close to the top and right
layer borders, when the current item has a different type from the previously packed

item and there is no point in E that allows the current item to meet all constraints. In

4.3. Solution algorithm 43

| B

() (b)

Figure 4.2: Partial solutions and their feasible (black) and infeasible (light gray)
extreme points for the next item of type k: representation of the extreme points that
meet visibility (4.2a) and contiguity (4.2b) constraints.

this case, two new points are added: the first feasible point that meets the contiguity to
the top layer border, proceeding from right to the left; and the first feasible point that
meets the contiguity to the right layer border, proceeding from top to bottom. Figure

4.1d shows the new extreme points for this case.

The second modification is related to performance. Current extreme points are
directly linked to visibility and contiguity constraints. These points can be either
feasible or infeasible for the current item according to its type and to the partial
solution (because of contiguity and visibility). Thus, we work with two extreme points
sets: feasible extreme points, Er, and infeasible extreme points, E;, representing,
respectively, points that meet or do not meet the visibility and contiguity constraints
for the current item. Therefore, before adding an item to the partial solution, we
first update these two sets, and only after this is done we check if the item overlaps
with previously packed items. Note that these two sets are related to the current
configuration, and after the addition of a new item, infeasible points may become
feasible and vice-versa. The benefit of using these sets is that we avoid checking
the overlapping constraint for all extreme points. An example of sets E ¢ and E; is

provided in Figure 4.2.

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and
44 Contiguity Constraints

4.3.1.2 Evaluation functions

Given the next item k, the point e € E that results in the best packing has to be
chosen. For that purpose, the algorithm uses an evaluation function d to calculate the
fitness for each e to aggregate k into a group. That said, we propose the following

fitness evaluation functions:

* LOWEST X: finds the point that has the minimum x value among all feasible

points;

* LOWEST Y: finds the point that has the minimum y value among all feasible

points;

* BOUNDING BOX: calculates the bounding box area — minimum rectangle area
that covers a set of items — with k, and finds the point which minimizes the area

among all bounding boxes;
* BOUDING SQUARE: same as above but with squares instead of boxes;

* SIMPLE CONTACTS: calculates the number of contacts — a contact between
two items happens when they meet the contiguity previously described in this
Section, i.e., when their distance is lower than ¢ — with k, and finds the point

which maximizes this number;

e COMPLEX CONTACTS: similar to the previous one, but the number of con-
tacts is switched by the contact length — the euclidian distance of edge overlap
between different items — among the items that meet the contiguity with k. It

finds the point which maximizes this value;

* DISTANCE SUM: calculates the distance sum among the center of gravity of
each packed item with the center of gravity of k, and finds the point which

minimizes this sum;

* CENTER OF GRAVITY: evaluates the distance between the center of gravity
of the partial packing and the center of gravity of k, and finds the point that

minimizes this distance.

4.3. Solution algorithm

45

(a) Lower X

(c) Bounding Box

(e) Simple Contacts

oy
[

(g) Distance Sum

(b) Lower Y

(d) Bounding Square

(L

(f) Complex Contacts

(h) Center of Gravity

Figure 4.3: Fitness evaluation functions of feasible extreme points, considering a new
dark gray item.

Figure 4.3 shows a graphical example for each fitness evaluation function pro-

posed.

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and
46 Contiguity Constraints

4.3.1.3 Item grouping

The fitness of a new item k is calculated from the partial packing in the layer using
a specific group of items, formed by some or the whole set of their items. To form
these groups, we proposed the following strategy: when k is the first item of a spe-
cific type in the partial solution, its fitness is calculated considering all items of the
partial packing in the layer. When there is at least one item of the same type of k, the

fitness is calculated by considering the group formed by the items of this specific type.

4.3.1.4 Layer creation and classification

The heuristic tries in a first phase to create as many single-item and single-family
layers as possible. Then, in a second phase, it takes care of creating the residual
layers. This is because at most one residual layer can be inserted in a pallet, and so
their number should be as small as possible.

In the first phase, the algorithm establishes a specific order for families and their
item types, assigning them to the data structure S. Using this order, the heuristic tries
to generate single-item layers by packing items one at a time according to the concept
of modified extreme points that we describe below. If the packing obtained with a
single item type meets the fill-factor constraint, but also has free space to potentially
accommodate more items, then the heuristic tries to add more items of the same family
to generate a single-family layer. Once no more item fits the residual space, the layer
is closed. When, instead, the current packing of a layer does not fulfill the minimum
fill-factor, then the layer is destroyed and all items are inserted in a residual item list.
As speed-up technique, when the sum of the areas of the items of a specific family is
not enough to meet the fill-factor constraint, then the items are directly inserted in the
residual item list.

At the end of the first phase, no more single-item and single-family layers can be
built, so the heuristic focuses on the items in the residual list. The same criterion used
in the first phase is also used in this second phase to select items one at a time and fill

a layer as much as possible. The process is repeated, layer after layer, until all items

4.4. Computational results 47

have been packed in residual layers.
The classification of a layer is made after it is closed, analyzing its occupation,

the families and the item types that are included in it.

4.3.2 Building pallets

Once all layers have been generated, we need to stack them in the minimum number
of pallets. To this aim, we developed a simple greedy constructive heuristic that works
as follows. Recall the height of a layer is calculated as the height of the highest item
in the layer, and, similarly, the stackability of a layer is computed as the maximum
stackability among the items in the layer. Single-item, single-family and residual
groups of layers are sorted according to non increasing stackability, breaking ties by
non increasing height, and this order is maintained all throughout the algorithm.

As residual layers need to be packed in separated pallets, the heuristic starts by
choosing the first residual layer, if any, in the order, and uses it to initialize a pallet.
Then, it fills the current pallet with single-item layers, one at a time in the order above,
by fulfilling stackability and maximum height constraints. If the current pallet has still
unused height, but no more single-item layer can enter it, the heuristic attempts filling
the pallet with single-family layers. In this case too, the layers are scanned according
to the above order. The process is repeated until no more layer can enter the pallet. In
such case the pallet is closed and a new pallet is considered. The process continues

until all layers are packed into pallets, thus creating a feasible solution.

4.4 Computational results

In this section, we present the details of the instances that we adopted for our tests
and then show the computational results that we achieved. All experiments have been
conducted on a PC Intel Core i5 Dual-Core 1.8GHz CPU, 8GB RAM, macOS Catalina
Operating System. The algorithms have been implemented in Java (Oracle® JDK 8).
Due to its deterministic nature, each heuristic was run only once. Because of the high
number of instances addressed, in the following we mostly report average results for

groups of instances.

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and
48 Contiguity Constraints

4.4.1 Instances

The results were obtained from a real-world database provided by an Italian company.
We randomly selected 24 strongly heterogeneous instances, that are separated into
4 groups, each containing 6 instances, being characterized by different intervals in
the number of distinct items: from 17 to 32; from 33 to 48; from 49 to 64; and
from 65 to 80. The average number of items for each instance is approximately 690.
Table 4.1 summarizes the details of the instances. Its columns are: ID number of
the instance, number of item types (n), number of families, and total number of
items (3 b'). The instances are of different difficulty. The larger the numbers of item
types, families and items are, the more complex becomes the instance to be solved.
In particular, the most challenging instances are those with more than 50 item types,
15 families, and 700 items. We report the database with the whole set of instances in

https://github.com/silveira-tt/PBP_instances.

Table 4.1: Instances settings.

S

n N. of families > b’

I
SETE
; 34 177 1639282
A
.
R
S
17 61 10 300
18 19 797
T
2w
23 13 738

24 66 19 767

https://github.com/silveira-tt/PBP_instances

4.4. Computational results 49

4.4.2 Parametric configurations

For all instances, as a company requirement, the fill factor was set to 75%, and the
container dimensions were set to 1500, 1250, and 1050 for height, width, and length,
respectively. The algorithm uses an initial structure S sorted by non-increasing value
of stackability for families, and a non-increasing value of height for item types. We
tested it allowing rotation of 90 degrees of the items.

4.4.3 Evaluation

We solved the proposed instances with three algorithms. The first one is the basic
EPH described in Section 4.3, and the second is the constructive heuristic based
on skylines and proposed by Leung et al. [65], named Skylines Heuristic (SLH) in
the following. These two methods are taken from the literature and do not take into
account contiguity and visibility of the items. The third method is the newly-proposed
EPMH method, attempted with the different evaluation functions discussed in the
previous section. All such methods are adopted to generate 2D layers, which are then
put together into pallets by the greedy heuristic of Section 4.3.2. In this way, it is
possible to have a real estimate of how the composition of the layers interferes in the
pallet building, even though the final pallets are not necessarily the best ones in all
cases, due to its construction based on the greedy heuristic.

The computational results that we obtained are summarized in Table 4.2. Each
row in the table provides average results for a given algorithm on the 24 attempted
instances. We tested the two heuristics from the literature, namely EPH and SLH, with
(R) and without (-) rotation. We then tested EPMH with 8 different evaluation func-
tions, attempting 4 different configurations: R/B stands for 90 degrees rotation allowed
and visibility constraint imposed; R/- stands for rotation allowed and no visibility con-
straint imposed; -/B stands for no rotation allowed and visibility constraint imposed;
and -/- stands for no rotation allowed but also no visibility constraint imposed. In all
cases, the EPMH meets the contiguity constraint among items in the same group. In
this way, we provide information on 240 solutions obtained, 10 for each of the 24

instances.

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and

ty Constraints

igui

Cont

50

).

me

tances on each li

ms

I results (average results on 24 i

: Computationa

Table 4.2

0L0°0 'y 6L9 0 0 %hE€6'SL €1°eT STL 88'CI 18°0 sTey 059 e WOS
STro 0 0 0 0 %9E9L SL'TT 6L'L 88°TI 18°0 ey w9t a7 HONVISIA
0800 L9Y 889 0 0 %hSTIL 681 676 b(hd! 8°0 STy L€ - P
o 0 0 0 0 %L999 6781 001 pnd! €80 8¢TH LT'€T a4
890°0 L9V €99 0 0 %E6'SL 96'CC €L 88°CI 80 LI’y L9'9T e ALIAVID
001°0 0 0 0 0 %E€6'SL £8'CC €9°L 88°TI 18°0 X994 8¢€9C d/- d0
080°0 L9V SL'9 0 0 %S IL el 888 0071 £€8°0 6C'Tr 88'¢€T -/l YALNAD
621°0 0 0 0 0 bILYY ST8I1 1201 00'¥1 £8°0 'y 80°¢C a7d — HINdH
9L0°0 Ty 09 0 0 %E€6'SL 8€TT 80'8 €8°CI %0 6Tty 129t e
911°0 0 0 0 0 %81°8L €9°TC €8'L €8°C1 80 (34 €€°9C a7 wMMMMMNW
980°0 1494 869 0 0 %b0S'T9 £eSI 96’6 8691 8°0 8811 0$°0C - -
0110 0 0 0 0 %919 8EYI [N 8691 +8°0 80°cH SL61 a4
9210 8¢°¢ L9Y 0 0 %E6'SL LI'TT 8¢€'8 €8°T1 18°0 8CEY 09T e
611°0 0 0 0 0 %hE€6'SL Wt €18 £8°CI 18°0 8¢'eY €19¢ d/- mhumﬂm_&ﬂw
LLOO 70t 1455 0 0 %bISTL 6L°81 676 1Tv1 80 60Ty £€E°€T -d HNdE
orro 0 0 0 0 %80°¢L ¥S'81 9’6 ¥4 4! 8°0 1Ty €I'ee ad
L90°0 ¥S'€ 80°S 0 0 %bLOYL £€TT WL £8°CI 380 80°¢ct 96'ST e HIVNOS
901°0 0 0 0 0 %8L'LL LI'TT LI'8 €8°C1 18°0 LIy 88°ST a7 ONI
180°0 £8'¢ (189 0 0 %hSSTL SL8T €96 b(hd! £8°0 Wy 0S¢ - -aNnnodga
0110 0 0 0 0 %00'0L 8081 6201 00v1 €80 8¢t 00°€T a4 —HWdA
890°0 6L°¢ 8¢S 0 0 %E6'SL 0T 708 €8°T1 80 06T L9°ST e XOf DNI
(48] 0 0 0 0 %bLY'SL £97C 6L'L €8°CI 18°0 STey L19C d/- —aNnog
0L0°0 96'¢ 809 0 0 %L999 vo°L 001 6L°1T 98°0 €8°0F 001 -/d — HNdE
Yo1°0 0 0 0 0 %bL9"99 €9°L 8S°I1 6L'1T 98°0 00'T¥ IrL ad
LLOO Ir'e L9Y 0 0 %bLOYL 80°CC 18 £8°CI %0 erey 96'ST e
801°0 0 0 0 0 %E6'SL 9T 96°L €8°C1 18°0 STey L19T d/- A¥IMOT
6L0°0 £e'e wy 0 0 %h80°€L w8l 00'6 (2R $80 SL1Y £8'CC - —HAdA
LET'O 0 0 0 0 %80°¢L L9°81 888 (394! S80 881t 00°€T a4
8900 L9T e 0 0 %TTTL L9'1T L9°8 €8°T1 80 LI’y 86°ST e
wro 0 0 0 0 bLOPL 00T 9’8 €8°CI 18°0 6Tty 88°ST d/- X YIMOT
890°0 wT 6T 0 0 %bOLTL 1281 9’6 8EYI +8°0 Y0ty 6LTT -/ —HdA
191°0 0 0 0 0 %h80°€L 1781 8¢6 wyl 8°0 00Ty £8'7C ad
1100 LTS 00°L 1494 L9'S %h61'LL o'yt 009 6LYT 8L0 STSY 8S°LT - IS
600°0 8¢°¢ SLy 8¢°¢ 8¢V %80°€L ST8I LI'L SLII +8°0 LIty €8'7C d
920°0 ey ws 88'¢ SLY %hLOYL IL1e 0s'8 €8°CI 380 70’y 8S°ST - Hdq
€200 sTe LTy €101 LTTT %9€'9L 8861 €16 o'yl 80 ey SLYT h: |
s1oke| SWAI s10ke| SwY s1ofe| s10ke| s10ke|) .
(soas)auwi], J[qISIA-UOU J[qISIA-UOU snongnuod snonSnuod Tenpisal Jo siofe] Arurey war 0w Zo\mm_ Zo:.an_ urensuo) wyLIos|y
JO°N JO°N -uou Jo °N -uou Jo ‘N Juaorad "Xe [enpisay -o[urg -9[uIg 1y ac ONJON

4.4. Computational results 51

The information on algorithm and constraint configuration is contained in the first
two columns. In the six successive columns, we report, respectively, the average of
the total number of pallets and layers created in the solution, the average fill factor
considering the 2D space of all layers, as well as the average number of single-
item, single-family and residual layers. Then we report, in five additional columns,
the maximum percentage of residual layers found among the instances (worst case
result), the average number of items not satisfying the contiguity or the visibility
constraint, the average number of layers for which at least an item does not meet
the contiguity or the visibility constraint. The last column reports the computational
time in seconds. To facilitate the analysis of the results, we highlight in bold the best

average values for each column and constraint configuration.

Let us focus first on the performance of EPH and SLH. From Table 4.2, we can
notice that disregarding rotation of the items has a considerable effect in the solution
cost, with an important increase in the number of single-family and single-item layers,
as well as a decrease in the number of residual layers. Between these two algorithms,
SLH has a slightly better performance. This happens because the skyline structure is
an efficient structure that allows one to analyze only a small part of the search space.
However, this heuristic has also the disadvantage of forming empty holes depending
on the sequence of the input items. We can also notice that the average 2D fill factor

achieved is quite stable around 80%.

Now, let us consider the results obtained by the 8 attempted EPMH configurations.
Also in this case, rotation has a relevant impact on the solution cost. As regards to
the visibility constraint, we can notice a slight difference in the number of layers,
considering both meeting rotation constraint and not. Concerning the runtime, the
visibility constraint has a more significant influence than the rotation constraint.
Comparing the results obtained by the proposed fitness evaluation functions, the
Bounding Box function found the best average results, at least for the configurations
R/B and R/-. The best average results for the configurations -/B and -/- were instead
achieved by the Lower X function. For what concerns the number of residual layers,
the values found by the EPMH with Bounding Box were considerably smaller than

those obtained with other functions. All computational efforts were very low, always

Chapter 4. Solution of a Practical Pallet Building Problem with Visibility and
52 Contiguity Constraints

Figure 4.4: Layers for the PBP instance 2, formed by 9 single-item layers (layer border
in blue), 1 single-family layer (layer border in gray), and 6 residual layers (layer border
in red). Solution obtained by using the Bounding Box fitness evaluation function.

requiring less than 0.2 second on average. This is a very important detail for future
research as we can expect to create more complex algorithms, maybe based on iterated
executions of the proposed heuristics, without incurring in large computational efforts.

An example of a solution obtained for instance 2 is provided in Figure 4.4. We
can notice 9 single-item layers, 1 single-family layer and 6 residual layers. The layers

sum up to a total of 9 pallets.

4.5 Conclusions

In this chapter, we studied a pallet building problem with item rotations and practical
constraints involving visibility and contiguity. We proposed a 2-step constructive
heuristic that enlarges the well-known extreme points heuristic from the literature.

In a first step, we generate 2D layers by considering a larger set of extreme points

4.5. Conclusions 53

(candidate locations for packing) that are useful to model contiguity and visibility
requirements. In the second step, we used the created 2D layers to build 3D pallets by
using a simple greedy strategy. Extensive computational experiments on real-world
instances proved the effectiveness of the proposed heuristic.

To evaluate the extreme points, we proposed several fitness evaluation functions,
and found that the one based on the concept of Bounding Box gave better results than
the other ones on average. We also analyzed the influence of some constraints (e.g.,
rotation and visibility) when tailoring our heuristic to basic 2D packing heuristics from
the literature, gaining interesting insights in the difficulty of the real-world instances
that we tested.

As future work, we intend to develop metaheuristic algorithms to try to enhance
the quality of the solutions that we generated so far. We are also interested in extending
the concept of family to address characteristics beyond the geometric ones. In that way,
it will be possible to address more complex problems when using the contiguity and
visibility constraints, as for example, the Vehicle Routing Problem (VRP). Bringing
both problems together (PBP and VRP), the shared knowledge about well-defined
families is useful for the whole process (packing and delivery), helping to solve both
problems in a more efficient way.

Chapter 5

Reactive GRASP-based Algorithm
for Pallet Building Problem with
Visibility and Contiguity
Constraints

5.1 Abstract

In this chapter, we study again the Pallet Building Problem (PBP) addressed in
the previous one and we propose to solve it by means of a GRASP metaheuristic.
The algorithm is based on the already discussed Extreme Points Modified Heuristic
(EPMH) coupled with a reactive mechanism. It uses again a two-step strategy, in which
items are first grouped into horizontal layers, and then layers are stacked one over the
other to form pallets. The performance of the algorithm is assessed through extensive
computational tests on real-world instances. The results show that the GRASP is able
to create very compact packings for most of the instances with a limited computational
effort.

Chapter 5. Reactive GRASP-based Algorithm for Pallet Building Problem with
56 Visibility and Contiguity Constraints

5.2 Solution algorithm

This section presents the full technique to solve the problem addressed, which we call
Reactive GRASP with Extreme Points Modified Heuristic (GREP). GREP produces
feasible solutions by using a two-step heuristic (Section 5.2.1) inside the GRASP

framework tailored to a reactive method (Section 5.2.2).

5.2.1 Two-step heuristic

GREP is based on the two-step heuristic named Extreme Points Modified Heuristic
(EPMH) of Section 4.3. We have specifically adapted its deterministic parts in order
to be able to include them within the GRASP framework. We detail the adaptations
to the EPMH methods in the following section.

5.2.2 Reactive GRASP metaheuristic

The Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic
originally developed by Feo and Resende [42, 43]. Roughly speaking, it is an iterative
technique that mixes greedy and randomized processes with local search through a
two-phase approach: first, a random greedy procedure is used to explore the solution
space; then, local search procedures are invoked to improve solutions. Due to its
simplicity and efficiency, the GRASP metaheuristic has been adopted to solve a large
variety of problems, see, e.g., Resende and Ribeiro [90].

An original optimization heuristic can be changed to improve its efficiency without
removing its original concept. To this regard, an interesting modification on the basic
GRASP is to include the so-called reactive method, proposed firstly in Prais and
Ribeiro [85]. Basically, this is a probabilistic method that selects an element among
many options, where each option receives an independent probability that is adaptively
modified according to the quality of the solutions previously found. This approach
increases the robustness of the original GRASP metaheuristic, with the advantage of
not requiring calibration efforts.

The Reactive GRASP with Extreme Points Modified Heuristic for the PBP pro-

5.2. Solution algorithm 57

posed is described in Algorithm 1 (available in Appendix). Let us consider the input
variables: I: item type set; L: pallet set; D: criteria set for selecting extreme points;
order_family,order_type: criteria to sort families and item types; €: randomness
percentage; o: reactive parameter; 5: upper bound decrease percentage; ¢ : number of
iterations to update probabilities; and max,: maximum number of rejected solutions.
First, the required variables are initialized (line 2) and the item type set is sorted (line
3). Then, as long as the stopping condition is not met (i.e., a maximum execution time
is not reached, line 4), the algorithm selects a fitness evaluation function (line 5) to
construct a feasible solution to the problem (line 8). The solution is evaluated (line
9) according to a fitness function, to be maximized. We will use the fitness function
(5.1), discussed later on in Section 5.2.2.3. The fitness of the solution is compared to
the current reference value U (line 10): if the solution fitness is higher than U, then the
algorithm tries to improve the solution by local search (line 12); otherwise, the local
search is not performed and the reference value is decreased after a prefixed number
of iterations without an improvement (lines 17-19). Lines 20-29 refer to the reactive
method: the best (line 20), worst (line 23) and mean (lines 25-26) fitness values are
possibly updated; next, after a prefixed number of iterations (line 27), all fitness values
are re-evaluated (line 28) and the probability functions of the reactive method (which
are used in the constructive phase, as discussed next) are updated (line 29).

In the remaining part of this section, we give full details on the procedures invoked
by GREP and on the way parameters are used and updated.

5.2.2.1 Constructive phase

In this phase, we select one item at a time and pack it in an extreme point (if any), until
a layer has been created. We reiterate until all items have been packed into layers, and

then stack the layers into pallets.

Creating layers

Choosing an item

Chapter 5. Reactive GRASP-based Algorithm for Pallet Building Problem with
58 Visibility and Contiguity Constraints

The choice of a new element is flexible in GRASP algorithms, since not necessarily
the current best element, with respect to a given criterion, is selected, but rather a
restricted candidate list of items is considered and the next element is randomly
selected from such list. This concept is easily adapted to the deterministic method of
selecting the next item described for the layer creation heuristic (Section 4.3.1.4) and
leads to a greedy randomized heuristic that works as follows.

First, the algorithm establishes a specific order for the families and item types,
assigning them to the data structure S. Then, it defines the selectable range based on a
parameter €. Let Fg be the sorted set of families representing the order of the families
in §, and Gy C S the sorted set of item types s € S representing the order of the
item types of a family f € Fs. A family f is selected randomly among the first €| Fs|
families, and then an item type s € G ¢ is selected among the first €|G ¢| item types.

Choosing an extreme point

Once an item of type s € S has been selected for packing, the heuristic determines
in which extreme point it should be placed. This is again obtained by performing an
adaptation in the greedy heuristic of Section 4.3.1.1 that takes into consideration €.
Let T be the set of all extreme points of Ef for the item type s. Each extreme point
in T is evaluated according to a fitness function d. Then, the heuristic sorts all points
in T by decreasing value of fitness, and randomly selects the extreme point where to
pack the current item among the first €|T| extreme points of T, i.e., the parameter €
stands for the percentage of the best extreme points of E ¢ that can be chosen randomly.

Reactive method

In this process, a key role is played by the fitness functions used to evaluate the
quality of the assignment of an item to an extreme point. The reactive method that
we adopted serves indeed to this aim. We use an overall set D, which is composed
by different fitness evaluation functions, namely: Lower x; Lower y; Bounding Box;
Bounding Square; Simple Contacts; Complex Contacts; Distance Sum; Center of
Gravity (Section 4.3.1.2 for details).

The reactive method works as follows: given the fitness evaluation function set

5.2. Solution algorithm 59

D and the probability set P, to choose in the current iteration the function d € D
associated with the item type s € S, the method initializes P4 to 1/|D| and updates
these values after a given number y of iterations has been elapsed, considering the
quality of the generated solutions. In particular, probabilities P, are updated at line
29 of Algorithm 1. Note that the better the partial solution found by d is, the greater
becomes the probability P, to select d in the next iterations.

Layer creation and classification
The rest of the heuristic works exactly as defined previously (Section 4.3.1.4), and

the algorithm continues until all items have been packed into layers.

Building pallets

After the layers have been created, GREP stacks them in the minimum number
of pallets possible by using the constructive heuristic for pallet building presented
in Section 4.3.2, concluding this constructive phase. It is important to highlight that
the exploration of the search space provided by GRASP metaheuristic is adapted
explicitly to the first step of the two-step heuristic (layer creation) being applied to the

problem, since the remaining step (pallet building) is relatively simpler to solve.

5.2.2.2 Improvement phase

The improvement phase is based on a local search that tries to improve the quality of
the solution generated in the constructive phase by applying small changes to it. This
is not always an easy task, since in view of the hard PBP constraints, any change in
the solution may create infeasibility. For example, in the PBP it is difficult to change
the position of individual items without violating contiguity and visibility constraints.
Therefore, we opted to generate new solutions from scratch, by applying the small
local search changes directly to the initial order of S provided to the constructive
heuristic.

In detail, we first randomly select two families f, and f; (if any) and switch the

order of their items in S. Then, for each family f € F, we randomly select two item

Chapter 5. Reactive GRASP-based Algorithm for Pallet Building Problem with
60 Visibility and Contiguity Constraints

types i and iy (if any) in f and switch the order of their items in S. These changes
are applied according to a First Improvement Strategy (FIS): considering the original
data structure S, a change is applied as soon as it improves the quality of the solution,
otherwise it is disregarded and a new one is generated, until a maximum number of
iterations € is reached. It is worth highlighting that, if a change does not improve the
solution, then the next change is applied to the original structure S, and not to the
modified one.

Despite the improvement phase constitutes an essential part of the GREP, it is not
always carried out, since low-quality starting solutions tend to produce low-quality
final solutions. Thus, as shown at line 10 of Algorithm 1, we consider a threshold U
to decide if it is worth looking for an improvement. The value of U is initialized with
the value of the first solution created. Whenever a new solution has a fitness better
than U, the improvement phase is performed and U is updated.

To avoid stagnation during the process, GREP controls U in the following way
(lines 16-19 of Algorithm 1): if the fitness of a new solution does not reach U, then
GREP increases an iteration counter « that enumerates the number of consecutive
solution rejections. Whenever « gets larger than a maximum number of rejected
solutions (max,), U is decreased to BU (8 € R,0 < 8 < 1) and « is reset to 0. Thus,
the algorithm forces the improvement phase for solutions which are not necessarily
the best ones but are of “good enough” quality. We also highlight that, as soon as a
new solution with fitness higher than U is reached, U is set to this new fitness value
and « is reset to O (lines 11 and 14 of Algorithm 1).

5.2.2.3 Evaluating a solution

A basic strategy to compare solutions is to evaluate them on the basis of the number
of pallets they produce. However, due to the complexity of the PBP with contiguity
and visibility constraints, taking only this value into account may not be appropriate.
Analyzing the structure of a solution, it is possible to extract more interesting infor-
mation, and these peculiarities can help explore the search space. To this regard, let
n, be the number of residual layers, n; the total number of layers,), the total number

of pallets, and f; the average fraction of the 2D occupation of the layers in a solution.

5.3. Computational results 61

Obviously, a good solution is a solution with small n, and n,, values and with large

fi value. Thus, GREP calculates the fitness function of a solution as:

Vresidual T Vpallets fi

V= ,
3

G.D

where Vyegiquar and vpairers are logarithmic functions that consider the proportion

of, respectively, n, and n,, over n;, being defined as

ny+1
Vresidual = _IOgn,+1 m’
l
np+1
Vpallets = =108, 4 il

All components of the summation in (5.1) are in the range between 0 and 1, and V
is their average value, which we would like to maximize. The idea behind the use of
logarithmic functions is to perform evaluations that are more sensitive to variations
in the numbers n, of residual layers and n,, of pallets when these numbers are close
to 0. To clarify this point, we can consider Figure 5.1. Such figure shows the behavior
of Vyesidual s a function of n,, when considering n; = 70 layers in total. We notice
that the logarithmic curve decreases as n,- increases and has larger derivative at small
values of n, (value v,qes5 as a function of the number of pallets n,, behaves in a

completely similar way).

5.3 Computational results

All experiments have been conducted on a Virtual Machine VMware®, Intel® Xeon®
CPU E5-2640 v2 2.00GHz, 16GB RAM, Ubuntu Server 18.04 OS. The algorithms

have been implemented in Java and ran using Oracle® JDK 11.

We used GREP (Section 5.2) to solve the same 24 instances presented in Section
4.4.1.

Chapter 5. Reactive GRASP-based Algorithm for Pallet Building Problem with
62 Visibility and Contiguity Constraints

0.9

0.8 \\
0.7

17 L
& \
=05
>

\\

0.3 N

o2 \

0.1

0
10 20 30 40 50 60 70

Number of residual layers

Figure 5.1: Behavior of the values for the logarithmic function which represents the
variable v,esiduqr When considering the increase/decrease in the number of residual
layers for a total of 70 layers.

5.3.1 Parametric configurations

Regarding GREP, we set its time limit to 5 minutes for each instance, running the
algorithm 10 times. It is worth noting that the time limit was defined based on a simple
parametric configuration test by considering a longer execution time. In the end, this
value was considered more suitable because most of the improvements to the solution
happened within this time range.

For all instances, the fill factor and the values for container dimensions are similar
to those defined in Chapter 4. We tested a number of configurations, including allowing
or not allowing rotation of 90 degrees of the items and the criteria to sort the items
in the initial structure S. In this case, S is sorted by random order for families, and a

non-increasing order of width for item types, since these parameters showed a better

5.3. Computational results 63

performance when comparing to the results of other sorting criteria.

Additionally, we carried out a simple test for parametric configuration of €, €, and
[using a restrict set of values, and we have chosen € = 0.15, Q =25, and 8 = 0.98.
The remaining parameters are ¥ = 500, o = 10, and max, =5, as suggested in Alonso
et al. [5].

5.3.2 Evaluation

We report the individual and average results for GREP to analyze its performance.
Besides that, we show the best average results obtained in Section 4.4.3 over the same
instances, in order to compare the performance between both strategies in a consistent
way. These results are summarized in Table 5.1.

Table 5.1 reports: algorithm; instance (average or individual ones), total number
of pallets in the solution; total number of layers created; in the six successive columns
it reports the minimum, maximum and average pallets utilization (‘Pallet filling (%)’)
and layers utilization (‘2D fill factor (%)’), respectively; average number of single-
item, single-family and residual layers; maximum percentage of residual layers found
among the instances (worst case result); minimum, maximum and average values of
the objective function; total number of iterations; total number of local searches; ratio
between the total number of local searches and the total number of iterations. Con-
sidering GREP, each row provides the average individual results after 10 iterations,
except the last line which reports the average among all individual results, exclud-
ing the value for the column ‘Max percent. RL’, which stands for the largest value
among all. Considering EPMH, the respective row reports the best average among
all individual results when using the Bounding Box function, meeting all constraints
used in this work, i.e., those ones meeting contiguity, rotation (R), and visibility (B)
constraints. We highlight in bold the best average values for each column.

From Table 5.1, considering the average results, we notice that the number of layers
in EPMH is slightly lower than in GREP, but the number of pallets is considerably
larger. Thus, we highlight that the minimization of the number of layers is less relevant
than the way in which these are created, since the overall number of pallets depends

on the disposition of items within the layers. Considering layer type fields, we observe

ty Constraints

igui

ility and Cont

isi

V.

I results (individual and average).

Computationa

- - I - - - L99 9L 9Il 81T 98 - - - - - 0w Sl DAV | HAdA
68°L 918 ISEIL 6950 PLSO S9S0 00S 0°S 9VL T 68 GS6 89 19 8 ST Iy TII DAV

09°L S9% STI9 PPSO 6SSO I¥SO 61 69 8TC 991 ¥8 S6 8 19 ¥8 Tl €9r STl vT

669 PEF Y0T9 950 S8S0 ¥9S0 SII €€ vz TEl 68 S6 L9 69 98 LT 6%y LOI €T

998 L8¢ 89vy €¥S0 TSSO LESO tEL 08 87C 8'8C 8 S6 €9 €9 ¥8 Sl 965 TSI 4

SeL 8l €698 €LS0 6LS0 TLSO LIl 6 $9T 90T S8 S6 8 0L S8 vb 0€s IT k4

6L'8 8IS L68S 89S0 SLSO 9SO FII €9 €€T 9T 98 S6 8 69 L8 91 TSS 9€l 0T

1T8 06S S9Y9 FLSO 1650 89S0 91l 8€ 9¥C L6l 98 96 SL 69 98 T€ I10S 0TI 61

816 067 €€ SIS0 8IS0 11S0 L0T 6L 891 €l 68 8 IL 0S 68 Il 18 97Tl 81

S6'L LITI €0EST TSSO TSSO TSSO 881 0€ T0l 8T €8 9 0L T T8 Tl 09I 09 L1

vT8 LIL L£98 ¥SS0 T9S0 TSSO tSI LL Y6l 67T L8 L6 TL TL S8 ¥S 00S ITI 91

9L 60L t0E6 6650 6650 €650 €8 0 €€C L0T S8 S6 8 L S8 Ly O08F Il S1

LSL 9TS 9¥69 9PS0 L¥SO THSO SSI 0 9¢l 9€l €8 8 69 IS L8 Il TTE 00! 1

059 08 €09TI SLSO €650 S9S0 6€l 9F Lyl L€l 98 S6 69 99 88 ¥T 0€C LS €1 | dIID
896 €59 SPL9 9050 TISO TOSO €61 I8 9Ll €91 ¥Y8 S6 T Lv ¥8 Il 0T 8l Tl

68'L S6L SLOOI 9950 9950 9950 8SI 0€ '8 9L 68 9 9. 9 S8 Il 06l OL 11

LOL 6LL TTOIL 66V0 66V0 66V0 0ST 09 98 7’6 W8 ¥6 IL T LL €l 0T 06 ol

£96 9IEl TI9€1 SI90 +€90 €190 STI 0T ¥'s 9'8 98 96 ¥L €9 98 € 091 6% 60

PITL LLS 6Vl €S0 9TS0 1TS0 €SI 6€l S§SI L9 98 S6 89 99 s8 0T Il6 tTT 80

SI'8 L8 €SI01 K90 SP90 6£90 6°€ 0c L€l €9¢ 98 € IL SL 88 ¢ 0TS TT L0

688 LOE SPPE 0090 0090 0090 L€ 0 [\2 000 L8 8 69 LL 68 €I 0801 06T 90

S9°L T8l 09081 6§90 1990 +S90 89 0c oL €0C L8 ¥6 8L 0L S8 S€ €6C 09 S0

99°C 19ST 9LTSY 9K 9SH0 9SK0 00S 0°€ 0T 01 6L T6 9 8 65 T 09 0¢ 0

9¢'S LPOI 1SS61 TS890 T80 TS9O L€ ol 06 0Ll ¥8 S6 99 8. 68 S9 0LT 09 €0

0SS LE9T €LL6T €IS0 TTSO 00SO 9T IY 1T 86 8 68 9L OF 9L ¥I 091 9 20

L69 L8 ¥869 8990 8990 8990 TT 01 6Tl 1TE €8 ¥6 SS €L ¥8 vF 09 Ol 10

() (ST (L) 88y Xew WAL CpYTd (TH) skep siofep SAV XeN WINL BAV XON UINL e oo

LL/ST "Yodreas “JeIdl uojuny -or1ad muo\mﬁ_ %ZE.& wa)r ?UV J010e) AoNov . ! ! :.a ‘sug .w~<
oney 0L feoL, 2a122fq0 XeN pIs9y -9|Sulg -9[Sulg 1y ac Suiry Je[red N BN

Table 5.1

Chapter 5. Reactive GRASP-based Algorithm for Pallet Building Problem with

64

5.4. Conclusions 65

an increase in the number of single-item and single-family layers, while the number
of residual layers is reduced, when using GREP. About the quality metric that analyze
the worst case result (‘Max percent. RL’), the reported value is significantly better
when using GREP (at most 50%). Regarding to execution time, EPMH carried out in
104 milliseconds (not reported in that table), in contrast to 5 minutes for GREP.

Considering the individual results of GREP from Table 5.1, let us focus first on
the utilization of layers and pallets. Regarding the 2D fill factor, this value is quite
stable (85% in average). In contrast, this behaviour is quite different when we analyze
the pallet filling, in which the values fluctuate between 25% and 84% in average.

For what concerns the GRASP metaheuristic, we highlight the influence of the
strategy to readapt the U B value. As the U B value is related to the local search process,
itis interesting to adjust it according to the quality and time spent to find a new solution.
In particular, the rate of change of the U B value is quite important: large and frequent
variations of UB tend to favor a larger number of local searches, while small and not
frequent variations tend to reduce the number of local searches. Thus, we balance
this trade-off using a small (2%) but fast (after 5 iterations without improvement)
decrement in U B, which contributes to both exploitation and exploration of the search
space. In the end, GREP carried out on average a percentage of local searches equal
to 8%.

5.4 Conclusions

In this chapter, we proposed an extension of the work proposed in Chapter 4 based on
the GRASP metaheuristic with reactive method when applying the Extreme Points
Modified Heuristic (EPMH) for creating 2D layers and the Greedy heuristic for
creating 3D pallets. Regarding the reactive method, it allows a more flexible search
on the solution space when using a set of fitness evaluation functions in the EPMH
to find a new place to pack items. Additionally, the GRASP upper bound updating
strategy is essential to control the exploration and exploitation of the search space, and,
consequently, to improve the solution quality. Extensive computational experiments

on real-world instances reported good final results, thus showing that the algorithm

Chapter 5. Reactive GRASP-based Algorithm for Pallet Building Problem with
66 Visibility and Contiguity Constraints

proposed is an efficient strategy for this type of problem.

As future work, we intend to develop other types of local searches to try to
enhance the quality of the solutions generated so far. Additionally, we intend to study
extensions of the GRASP metaheuristic (Resende and Ribeiro [90]), as well as to
consider the recently developed fixed set search metaheuristic (Jovanovic et al. [60],
Jovanovic and Vol [61, 62]), and the most recent improvement strategies from the

literature that address learning mechanism, such as Support Vector Machine.

Chapter 6

A Mixed Approach for Pallet
Building Problem with Practical
Constraints

6.1 Abstract

We study the Pallet Building Problem (PBP) with contiguity and visibility constraints
addressed in the previous chapters and we propose to solve it by extending the Extreme
Points Modified Heuristic (EPMH) (Chapter 4.3) by invoking an exact method to stack
layers one over the other to form pallets. The performance of the algorithm is assessed
through extensive computational tests on real-world instances. The results show that
the exact model considerably increases the solution quality, creating very compact

packings with a limited computational effort.

6.2 Solution algorithm

This section presents the full technique that we developed to solve the PBP with
visibility and contiguity constraints, which we call Mixed Extreme Points Modified
Heuristic MEPMH). MEPMH produces feasible solutions by using a two-step heuris-

Chapter 6. A Mixed Approach for Pallet Building Problem with Practical
68 Constraints

Choose the random
parameter e

Y Y
Run EPMH to create
Run EPMH to create the layers set L, by

considering 'e' during
the selection of a new
item

the layers set L

A 4 A 4
Optimize the
mathematical model
6.2.1.2 to obtain the
final pallets

Run the greedy
heuristic to obtain the
final pallets

(a) EPMH framework (b) MEPMH framework

Figure 6.1: Frameworks of the constructive approaches for the PBP: (6.1a) EPMH
is an algorithm based on deterministic methods to create layers and pallets; (6.1b)
MEPMH is an algorithm based on methods to: (i) create layers by using random
choices, and (i) build pallets by solving a mathematical model.

tic: first, it creates layers to deal with individual items separately using a heuristic
method (Section 6.2.1.1), forcing the presence of packing, fill factor, visibility, and
contiguity constraints; second, the pallet generation step tries to minimize the number
of pallets using an exact method (Section 6.2.1.2), forcing the presence of stacka-
bility and layers sequence constraints. Figure 6.1 shows the frameworks for both the
EPMH and MEPMH in order to outline the modifications introduced in the algorithm
proposed.

6.2. Solution algorithm 69

6.2.1 Two-step heuristic

MEPMH is based on the Extreme Points Modified Heuristic (EPMH) described in
Section 4.3. We have replaced the layer stacking heuristic method with an exact algo-
rithm, as well as modified the layer creation method in order to test the effectiveness

of random choices in the deterministic process while making it more flexible.

6.2.1.1 Creating layers

This section corresponds to the EPMH methods to create layers (Section 4.3.1). We
include slight modifications to a few of them, that are detailed below.

The first modification is to the evaluation function used. In this case, function d, the
Bounding Box function, as suggested in Chapter 4 thanks to its superior performance
over the results obtained with other fitness evaluation functions. In summary, this
function calculates the bounding box area — minimum rectangle area covering a set
of items — with k£ and finds the extreme point e that minimizes the area among all
bounding boxes generated when positioning the reference point of k over e.

The next modifications increases the search space by adding unpredictability to
the process. The first modification addresses the selection of the next item. This
process has already been described and applied in Section 5.2.2.1, in which it uses
the structure S composed of sorted items, and the available range over S is based on
the parameter €.

The final modification includes the possibility of selecting extreme points that are
not the most suitable when basing on the greedy rank. As before, the selection of an
extreme point also uses the parameter € to include unpredictability to the process.

This modification has been described in Section 5.2.2.1.

6.2.1.2 Creating pallets

The proposed mathematical model deals with the insertion of the generated layers
into pallets in such a way that the number of pallets is minimized. In simple words,
this mathematical model “sorts” the layers in pallets as described in Section 2: a pallet

is made up by single-item layers in its base (if any), single-family layers in the middle

Chapter 6. A Mixed Approach for Pallet Building Problem with Practical
70 Constraints

(if any), and, possibly, by a residual layer in its top part. This practical constraint is
defined to simplify the problem avoiding the addition of the stability constraint, since
this structure generates more stable pallets when compared to the use of shuffled layer
types.

For the sake of clarity, we present the following notation for data of the mathe-
matical model: P stands for the set of pallets; R stands for the set of residual layers; /
stands for the set of single-item layers; F' stands for the set of single-family layers; M
=1UF; L=RU M; H stands for the height of the pallet; /4, stands for the height of
layer ¢; and S, stands for the stackability of layer . We make use of two families of

binary variables:

X;p @ itis equal to 1 if layer ¢ € L is packed in pallet p € P, 0 otherwise;

yp :itis equal to 1 if pallet p € P is used, O otherwise.

Then, we obtain the following mathematical model:

Minimize Z Yp 6.1)
peP
subject to " hyx,p, < Hy), peP (6.2)
teL
D xp=1 rel (6.3)
peP
thp <yp peP (6.4)
teER
Z Xvp <|IM|(1-x,,) tER peP (6.5)
t'eM: Sy <S;
DT xep <= x1p) teF, peP (6.6)
t'el:S <S;
xip €{0,1} tel, peP (6.7)

v, €{0,1} peP. (6.8)

6.3. Computational results 71

The objective function (6.1) aims at minimizing the number of used pallets. Con-
straints (6.2) ensure that the sum of the heights of all layers in p is not higher than H if
pallet p is used. Constraints (6.3) ensure that each layer is placed in exactly one pallet.
Constraints (6.4) ensure that at most a residual layer ¢ € R can be packed in a pallet
p € P (namely, at the top of the pallet). Constraints (6.5) ensure that, for each layer
t € R, the layers ' € M with stackability lower than ¢ cannot be placed on the same
pallet with # (recall that ¢ is placed on top of all other layers and, thus, its stackability
cannot be larger than that of the other layers in the pallet). Constraints (6.6) are similar
to the previous ones, but we have the correspondence between single-item and single-
family layers in the pallet, by requiring that all stackability values of the single-item
layers are greater than the stackability values of the single-family layers (since the
former are always placed below the latter). Note that stackability constraints should
also be imposed between each pair of single-item or single-family layers. However,
once we have established which single-item (single-family) layers are placed on the
pallet, we only need to order them according to their stackability value. Constraints
(6.7) and (6.8) are binary conditions for the variables.

As described in Chapter 2, we highlight that the height of each layer is the height
of the highest item in the layer. Similarly, the stackability of a layer is computed as
the maximum stackability value among the items in the layer. This exact algorithm

concludes the 2-step heuristic and allows us to have a feasible solution.

6.3 Computational results

We used MEPMH (Section 6.2) to solve the same 24 instances presented in Section
4.4.1.

All experiments have been conducted on a Virtual Machine VMware®, Intel
Xeon® CPU E5-2640 v2 2.00GHz, 16GB RAM, Linux Ubuntu Server 18.04 OS.
The algorithms have been implemented in Java and ran using Oracle® JDK 11.
Additionally, we used the solver IBM ILOG® CPLEX 12.10 to solve the mathematical

model.

Chapter 6. A Mixed Approach for Pallet Building Problem with Practical
72 Constraints

6.3.1 Parametric configurations

The algorithm uses an initial structure S sorted by a random order for families,
and a non-increasing order of width for item types. For each instance, we ran the
algorithm 15 times. The time limit for the solver was set to 30 seconds. Additionally,
the container dimensions were set equal to 1500, 1250, and 1050 for height, width,
and length, respectively. We tested them, by allowing rotation of 90 degrees of the
items.

We carried out a detailed test for selecting the value of both fill factor and parameter
€. About the fill factor, we have tested values {0.55, 0.65, 0.75}; these values define
a threshold that represents the minimum value of occupation for defining a residual
layer. In this way, as long as the final layers present a fill factor that is able to create
stable pallets, a proper adjustment of this parameter might allow us to generate more
single-item and single-family layers, increasing the quality of the final solution as a
result. About parameter €, we have chosen the value set {0.00, 0.05, 0.15, 0.25}. In

this case, the larger the value is, the more random the process is.

6.3.2 Experimental evaluation

We report the average results for MEPMH to analyze its performance, considering
all the previous configurations. Besides that, we show the average results obtained by
EPMH, which uses the greedy algorithm to create pallets, as described in Chapter
4. We have conducted these experiments over the same instances to compare the
performance of the two strategies consistently. It is worth saying that the layer solution
is always constructed from scratch however, since the random number generator was
reset for each new test, the resulting number of layers may be slightly different.

The average results for both MEPMH and EPMH are summarized in Table 6.1.
In this table, each row provides average results for a given algorithm on the 360
solutions obtained, 15 for each of the 24 attempted instances. The information about
the algorithm is contained in the first column, followed by the minimum fill factor
to create a layer, the choice factor (value of €), the total number of pallets in the

solution and the total number of layers created. In the six successive columns, we

73

6.3. Computational results

Table 6.1: Computational results (individual average).

L1¥'6 c8'¢ St'ST 80°9C 8L 6 Le 09 6L 8T 8¢St PTIL S0
9TY'6 e 6191 ¥¥'eC 18 6 Le €9 €8 LT seey 1801 SI'o 0
61L'8 <9'¢ 66Vl €I'€C V8 96 & 9 c8 0€ LLTY 8E0I SO0
881'8 89'¢ 0061 €1'€C #8 96 Iy 99 98 0€ 081F 9€0r 000
€CLTI 8%'9 €Syl vreT 6L 6 oy SS 08 LT S¥vr 6£7TI S0
°L9°01 18Y 0061 LI'€C T8 g6 w 19 €8 € 86Tty 9I'll SI'o .
7956 YLV €Oyl 6LTC P8 96 8¢ €9 98 8¢ LSIY ¥LOI <00 90| HNdEN
LST'6 LY 00vI 6LTC ¥8 96 9¢ €9 98 LT 91y SL01 000
96L°El 8TYl v¥'0lI 9T'8I 8 g6 8¢ 6¢ 6L 0l 86Cy 96°LI STo
TeLel +8'8 Ier €€1e €8 S6 44 IS 18 ST 8TTr 9¢¢l ST0 L0
(AN} 19°L ISTT 6L1T 98 96 & 96 78 LT 160y 6TTI S0'0
141541 €9'L ¢Sl 6L1T 98 96 Iy <¢ c8 91 v6'0F 9¢TI 000
L1070 ¥8'¢ vPS1T S1'9C 8L 6 g€ 9¢ 08 0C €Sy ¥6'11 S0
910°0 79°¢ 0T91 TY'eT 18 S6 I 6§ €8 0c STer 8Y'I1 S1'o 0
S10°0 89°¢ 66Vl €1'€C ¥8 96 Iy 6S [SY 81 6L1v 01l <00
$10°0 89'¢ 0061 €1'€C ¥8 96 Iy 65 S8 81 I81¥ 9TII 000
810°0 6v'9 STyl TLET 6L 6 6¢ TS 08 9y 90°¢€l S0
Zo.o owﬁ _._A: mo.MN 8 S6 o LS €8 91 omANv :m._ I mfo <90 HNGE
S10°0 YLV €Ovl 6LTT P8 96 LE 65 78 @ LSy OF'TT <00
S10°0 oLV 00vI 6LTC ¥8 96 9¢ 68 78 @SSy ¥l 000
€200 SeEvl 9v'0l €I'8I 8 6 6 Lt 08 6 €6y 6v8l S0
0200 €L'8 0TTl 9¢'IT €8 S6 Iy 6F 78 €1 6Tty 18¢l 10 Lo
9100 6S'L €SI 6L1T 98 96 o €S c8 LT T6OY 6LTI SO0
9100 19'L €SI 6L1T 98 96 Iy €S S8 91 €60y ¥87I 000
(wro9s) (T) s1oke sioke] SAY XBN UIN SAY XN UIA Py S— 3) J0)0BY
oun, s1oke] Aprurey wo) (9)) 10)0€] (%) N 10N 10108] My |wyprosy
’ ISy -d[Bulg -9[3ulg 1y ac uily 191red ao104) UIN

report, respectively, the minimum, maximum, and average pallet utilization and the

minimum, maximum, and average fill factor, considering the 2D area of all layers.

Then, the average number of single-item, single-family and residual layers, and the

computational time (represented by seconds.milliseconds). About the EPMH, we

reported the best results that met rotation, contiguity and visibility constraints (all

Chapter 6. A Mixed Approach for Pallet Building Problem with Practical
74 Constraints

constraints used in this work), using the Bounding Box function.

The first comment on Table 6.1 is about the number of created layers. As EPMH
and MEPMH use the same algorithm to create layers, the 2D fill factor and the number
of layers are very similar, showing only slight differences due to the randomness of
the process provided by the choice factor. Besides that, the distribution among layers

(single-item, single-family and residual) presents the same similarities.

Although the creation of layers is similar for both algorithms, the analysis of the
parameters of minimum fill factor and choice factor is critical. Let us focus first on
the analysis of the minimum fill factor. Here, the lower is this value, the higher the
improvement in the quality of the solution is. Therefore, we notice an interesting
situation: even though the algorithm uses the smallest value for the minimum fill
factor (0.55), the final average and minimum 2D fill factor remain quite similar to
the values obtained when we use the highest value for this parameter (0.75). This is
an important consideration, because, notwithstanding a company needs a minimum
occupation of a layer and even when we allow the algorithm to use a value for this
parameter that is lower than this threshold, the algorithm still creates better solutions
maintaining the stability of the pallets. Of course, a layer with a small fill factor may
cause instability if another layer is posed on the top of it. In this case the occupation
of the layer can be increased by so called filler boxes, which allow to increase the

occupation area and, thus, the stability.

Considering the choice factor, this parameter presents a general behavior: a more
significant improvement in the quality of the solution made by the configurations 0.05
and 0.15. It is important to highlight that the higher the values for this parameter, the
larger the algorithm’s randomness. Therefore, analyzing the results, we notice that
high randomness brings a broad exploration, but the algorithm is not able to find
good-quality solutions.

Last but not least, let us consider the part of the algorithm to create pallets. In this
scenario, we can notice substantial differences. The first one is about the execution
time. In this case, the execution time of MEPMH is greater than the execution time
of EPMH, since the mathematical model in MEPMH is more complex to solve than

the respective heuristic algorithm in EPMH. However, the final execution time of

6.4. Conclusions 75

MEPMH leveled out between 8.188 and 13.796 seconds on average, thus showing a
high performance, that can be easily accepted for an industrial software application.
The most important analysis when considering the final solution is about the
comparison of the final number of pallets between the two algorithms. In this case,
we can notice the improvement that MEPMH adds to the algorithm. To understand

this comparison, we highlight the respective values in Table 6.2.

Table 6.2: Improvement in solution when using MEPMH.

Min. fill factor Choice factor (¢) Improvement (%)
0.00 3.74
0.05 391
0.75 0.15 3.26
0.25 2.87
0.00 5.78
0.05 5.79
0.65 0.15 6.30
0.25 5.13
0.00 7.99
0.05 8.14
0.35 0.15 5.84
0.25 5.86

More in detail, Table 6.2 shows the minimum fill factor to create a layer, the choice
factor (value of the parameter €), and the percentage of improvement that MEPMH
presented over EPMH, i.e., the percentage reduction of the number of pallets when
comparing both algorithms. In this table, we can notice the improvement leveling out
between 2.87% and 8.14%. Therefore, in the same line as in the previous analysis,
the greatest improvements occur when the algorithm uses the lowest value for the

minimum fill factor (0.55) and low values for the choice factor (0.05 and 0.15).

6.4 Conclusions

This chapter addressed a Pallet Building Problem from a case study in a company by
considering practical constraints, such as rotation of the items, fill factor, stackability,

visibility, and contiguity constraints. We proposed an extension of the work in Chapter

Chapter 6. A Mixed Approach for Pallet Building Problem with Practical
76 Constraints

4, using a modification of a 2-step heuristic that includes a mathematical model to
create pallets. We use the efficient Extreme Points Modified Heuristic (EPMH) for
creating 2D layers, including in the algorithm the exact method to increase the quality
of the solution to create 3D pallets. To analyze the effectiveness of the proposed
heuristic, we carried out extensive computational experiments on real-world instances,
testing a set of parameter values for the minimum fill factor of a layer, as well as for the
random choice factor used to choose the next item to be packed. Despite the complexity
of the real-world instances, good final results are reported in a short execution time,
thus showing that the inclusion of the mathematical model in the algorithm is an
efficient strategy to create compact solutions for this type of problems.

As future work, we intend to create matheuristics by means the EPMH and an
exact mathematical model to solve the layer creation to try to enhance the quality of the
solutions generated. Additionally, we are interested in proposing formal mathematical
models to express the concept of contiguity and visibility of items, thus filling a gap

in the existing literature.

Chapter 7

Mathematical Models and
Heuristic Algorithms for Pallet
Building Problems with Practical
Constraints

7.1 Abstract

In this paper, we conclude our study in the Pallet Building Problem (PBP) with
contiguity and visibility constraints addressed in the previous chapters. We present a
formal mathematical description for layer and pallet creation subproblems and then
we propose new algorithms, made up by combining heuristics, metaheuristic, and
mathematical model to solve the overall problem. The performance of the algorithms

is assessed through extensive computational tests on real-world instances.

7.2 A MILP formulation

While a mathematical programming model for the whole problem would be possible,

its dimension would be quite large and impossible to solve within reasonable comput-

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
78 Problems with Practical Constraints

ing times. For this reason, we define two separate Mixed-Integer Linear Programming
(MILP) formulations, one for the creation of single layers from a selected set of items,

and one for the creation of pallets once the layers are given.

7.2.1 MILP formulation to create layers

Let G be the set of items that can be inserted into a given layer. Let m be the number
of different item types in G and, for each item type i, let b’ be the number of items of
type i in G. The proposed mathematical model finds a feasible disposition for items
in G by meeting the following constraints.

Non overlap
Let us define ®g = {(i,p,j,q) :i,p=1,....,m,j=1,...,b,g=1,...,bP,i >

pV(i=pAj>q)} The problem of determining if the items of the set G can fit

into a layer without overlapping can be modeled as follows:

Zizl ol =1 (i,p.j.q) € g (1.1)
W —x; s W(=oh) (ip.j.g) €Pg (7.2)
xéj —qu <W(1 - 05.22) (i,p,],q) € g (7.3)
Y =Y <L(-00)) (i.p.j.q) € Pg (7.4)
¥oj =Yy SLU=0f) (p.j.q) € g (7.5)
xhi=xH(L=rywh 4l =1, m =1, b (7.6)
Yo =y Hrwi e (L=l i=1, . m =1, b (1.7)
O<xi, <xj, <W i=1,...,mj=1,...,b (7.8)
0<yi;<yy,; <L i=1...,mj=1,...0b (7.9)
ri € {0,1} i=1,...,mj=1,...,b (7.10)
ojf;u € {0,1} (i,p.j.q) € Pgu=1,...,4 (7.11)

7.2. A MILP formulation 79

For item j of type i, variables xi -and y' . represent the minimum x and y coor-
J Lj
dinates, respectively, while x} . and y? . represent the maximum x and y coordinates.
J J

The binary variable r;'. defines the orientation for item j of type i. It is equal to 1 when
ip .
jqu'®
equal to 1 when there is a separation axis between item j of type i and item g of type

a 90-degree rotation is applied to the item, O otherwise. The binary variable o

p, more precisely, a vertical separation axis for u € {1, 2}, and a horizontal separation
axis for u € {3,4}. Constraints (7.1) ensure that between items j and ¢ there is at
least one separating axis. Constraints (7.2) ensure that there is a vertical separating
axis between item j and item g if the binary variable 0;’; | is equal to 1 (in this case j
lies at the right of ¢). Similarly for constraints (7.3) (in this case j lies at the left of ¢).
Constraints (7.4) ensure that there is a horizontal separating axis between item j and
item g if the binary variable 0;’; 5 s equal to 1 (in this case j lies above g). Similarly
for constraints (7.5) (in this case j lies below g). Constraints (7.6) and (7.7) define the
x3 and y, coordinates of the items, taking into account their orientation. Constraints
(7.8) and (7.9) ensure that the items lie inside the layer.

Grouping items

In order to meet the contiguity constraints, we first need to model the contiguity
relation between items of the same type i. As previously seen in Section 2.2.3.1,
contiguity is modeled as an overlap between enlarged items (enlarged by £/2 in each
direction). Thus, we can model contiguity by turning the non overlapping constraints
(7.2)-(7.5) into overlapping constraints between the enlarged items. More precisely,

for two items j and g of the same type, contiguity is modeled as follows:

(qu + %) — (xlj - %) >-W(l - Cijq)

(ij + g) - (xlq - g) > —W(l - d_jq)

(y2q + %) - (ylj - %) >-L(1-djq)

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building

80 Problems with Practical Constraints
3 & -
()’2]‘+§ —|Y1e = 5| 2 L —djq)
dis €{0,1}

The binary variable d iq models contiguity since it can be equal to 1 only when there
is an overlap between the enlarged items j and g. Now, let 7g = {(i,j,q) : i =
1,...,m,1 < g < j < b'}. The problem of determining if item j is contiguous to

item g of the same type i can be modeled as follows:

xéq—xij+§2—W (I—Jiq) (i,j,q) € 1g (7.12)
xgj—x;'q+‘§ >-W(1-d,) (i.j.q) €1g (7.13)
Yoy = Vi +§ >-L(1-d}) (i,j,q) €1g (7.14)
ygj—y§q+§z—L(1—d'j.q) (i,j,q) € 16 (7.15)
', €{0,1} (i,j.q) € 1. (7.16)

Remark 1 The notion of contiguity that we have introduced is a mild one. It may
happen that items are contiguous according to this definition but there is no visible
space between them. A simple example is detailed in Figure 7.1.

The adoption of a suitable objective function which tends to group items of the
same type makes unlikely the situation displayed in Figure 7.1. However, we can
also deal with this by strengthening the conditions under which contiguity holds. To
this end, in addition to the previous constraints (7.12)-(7.16), we may also add the
following ones, where Y; = min{wy, h;}, i.e., Y; is the length of the shortest edge for
items of type i:

diy < di +diy+di 3 +d; , ~2 (i,].q) € 1g,

Jja =
‘ S Y; : -
xlzq—xl]jZ?l_(W"'?l)(l_d;ql) (i,),9) € 7g

7.2. A MILP formulation 81

(a) (b)

Figure 7.1: Special case for the contiguity constraint: the contiguity constraint is
always met when considering the group of light and dark items (Figures 7.1a and
7.1b). For what concerns the light items, items 1 and 2 are contiguous and so are
items 2 and 3, so that the contiguity relation defines a connected graph. The same
holds for the dark items. However, in practice, when considering Figure 7.1b, we
notice that the group of dark items creates a physical barrier between the light ones.

Y; Y;

oy 2 g e (=dl) g e
y;q_y’ijzg—(L+%) (l—d§q3) (i,],9) €16
yéj_y’iqz%—(L+%) (1-d',) (i.j,9) €1g
d;-quE{O,l} (i,j,q9) etgu=1,...,4.

According to these constraints, contiguity between items j and q occurs or, equiv-
alently, d_j. g can be equal to 1, if and only if three of the binary variables dj. aw
u=1,...,4, areequal to 1. In this case the projections along the x-axis (or along the
P . . r i _ i _ . . r i _ i _
y-axis) of the horizontal sides (if dqu djq2 1)or vertzc?(l sides (if djq3 djq 4=1)
of items j and q share a segment of length at least equal to . For instance, if d;. qu = 1
Joru =1,2,3, then the upper horizontal side of an item and the lower horizontal side
of the other item are at distance lower than & in view of constraints (7.12)-(7.16),
and, moreover, their projections along the x-axis share a segment of length at least
%. Note that two out of four of these binary variables, namely, one for the horizontal

sides (u € {1,2}) and one for the vertical sides (u € {3,4}), can always be set equal

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
82 Problems with Practical Constraints

to 1. We point out that we do not include the last set of constraints in our computa-
tional experiments. Their addition is advised if the notion of contiguity needs to be

strengthened.
Unique connected component

We can associate an oriented graph F; = (V;, A;) to each item type i as follows,

where J; denotes the set of all items of type i (note that |J;| = b):

e anode j is associated to each item in J;; one of these nodes (it does not matter
which one) is selected as a representative for all items of type i, and we denote

it with index 1;
¢ two additional nodes are introduced, a source S and a destination D;
* an arc from S to each node in J; is introduced and its capacity is fixed to 1;
* asingle oriented arc from node 1 to node D with infinite capacity is introduced;

 given (i,j,q) € 7g,q # 1, an arc between node j € J; and node ¢ € J; and
an arc between node g € J; and node j € J; are introduced both with capacity
b' - qu. Note, in particular, that if items j and g are not contiguous, i.e., if
d;. ¢ = 0, then the capacity of the arcs is 0. In fact, arcs exiting from node 1 can

be omitted.

Figures 7.2-7.4 illustrate the notions introduced above. In all cases the dotted and
continuous arcs represent arcs with null capacity and with strictly positive capacity,
respectively. For two distinct item types, Figure 7.2 illustrates the two graphs induced
by the contiguity relations between the items, while the complete graph is represented
in Figure 7.3. Given graph F;, whose arcs have capacity depending on the contiguity
variables aTj.q, the contiguity constraint for items of type i is met if the restriction of
the graph to the nodes in J;, i.e., nodes corresponding to items of type i, is connected.
This is equivalent to require that the maximum flow between node S and node D,

which cannot be larger than b', is exactly equal to b'.

7.2. A MILP formulation 83

ﬂ\\
\
s
\

/
\
! \
i
\

2 @
3 ‘

(b)

(a)

Figure 7.2: Contiguous items by item type: (7.2a) graphic and (7.2b) graph represen-
tation.

Figure 7.3 shows the max-flow problem for the item disposition presented in
Figure 7.2a. In this case the contiguity constraint is met. On the other hand, Figure
7.4 shows a case where the contiguity constraint is not met. Thus, we propose the
following constraints to guarantee contiguity between items of the same type, based

on the above max-flow formulation:

1,20 (i,j.q) € 1g (7.17)
fa; 20 (i.j.q) € 7g.q # 1 (7.18)
G Sdjg b (i,J,9) € 16 (7.19)
g Sdjg - V' (i,j.q) €1g,q #1 (7.20)
fi; <1 i=1,...,mj=1,...,b (7.21)
>0 i=1,...,mj=1,...,b (7.22)
bi i bi [[. . [.
Zqzlf;q =Zq:2fq‘j+f§j i=1,...mj=2,...,b,q#] (7.23)
. bt . .
fllD=Zj:2f_;l+f§1 i=1,...,m (7.24)

fip=b i=1,....,m (7.25)

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
84 Problems with Practical Constraints

Figure 7.3: Max-flow representation: light items 2 and 3 are not contiguous, but both
are contiguous to light item 1, maintaining the overall connection of this group. The
same holds for the dark items.

Variable fj’ , can be strictly positive only when j and g of the same type i are
contiguous, otherwise its value is equal to 0. Constraints (7.17) and (7.18) ensure
nonnegativity of the flow along arcs between nodes in J;; (7.19) and (7.20) are the
capacity constraints for the same arcs (note again that for arcs between nodes such that
d_3. 0= 0 the capacity is equal to 0); constraints (7.21) and (7.22) impose nonnegativity
of the flow and the capacity, respectively, for arcs between node S and nodes in J;;
constraints (7.23) ensure flow conservation for all nodes in J; except node 1; constraints
(7.24) ensure flow conservation for node 1, and, thus, also defines the overall flow
received by node D finally, constraints (7.25) impose that the maximum flow between
S and D is b’, which ensures that items in J; form a connected component and, thus,

that the contiguity constraint for items of type i is met.

Item visibility

7.2. A MILP formulation 85

(b)

(a)

Figure 7.4: Item group not fulfilling the contiguity constraint: for the item disposition
in 7.4a, the max-flow in 7.4b shows that only items 1 and 2 are contiguous, resulting
in a flow to D equal to 2, that is different from the number of items (3 in this case).

To meet the visibility constraint, each group of items of type i € G must have at
least one item visible from the border. In simple terms, we apply the idea of grouping
items considering the borders as generic items (top, bottom, right, left) that must be
contiguous to a specific item of the group i (without loss of generality, we set this
item equal to 1). More precisely, visibility is modeled by imposing the contiguity
between item 1 of the given type, enlarged by % in all directions, and the borders of
the layer, all moved by % towards the interior of the layer. That leads to the following

constraints to model the group visibility:

4

D vzl i=1,....m (7.26)
le—gswu—vg i=1,....,m (7.27)
x§1+§2Wvg i=1...,m (7.28)
y’il—%sL(l—vg i=1,....m (7.29)
y§1+§ > LV i=1,....m (7.30)

vi e {0,1} i=1,....mu=1,....,4 (7.31)

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
86 Problems with Practical Constraints

The binary variable v, is equal to 1 when item 1 of type i is contiguous (i..e, within
distance &) to one of the borders of the layer. In particular, taking into account
constraints (7.27)-(7.30), v‘i = 1 ensures contiguity to the leftmost vertical side of the
layer, vé = 1 ensures contiguity to the rightmost vertical side, vg = 1 ensures contiguity
to the lowermost horizontal side, v, = 1 ensures contiguity to the uppermost horizontal
side. Constraint (7.26) ensure that item 1 of type i is within distance ¢ from at least

one of the sides of the layer.
Bounding box

In the proposed approach, for a given set of items, we would like to establish
whether there exists a way to place them over the layer so that all constraints are
met. Under this respect the problem is a feasibility one. However, it is convenient to
introduce an objective function which should favor compact arrangements for items
of the same type. Here we use the concept of Bounding Box (rectangle convex hull)
to group items of the same type. Therefore, we propose a mathematical model to
minimize the sum of the (semi)perimeters of the bounding boxes that cover all items
of each item type i € G inside the layer. The overall model to place items over the

layer is the following:

Minimize " [(X5 = X}) + (¥ - ¥])] (7.32)

subject to X| < xi; i=1,...,mj=1,...,b" (7.33)
Y{ <yi; i=1,....mj=1,....b" (134
X5 > xb; i=1...omj=1,...,b" (135
Yy > yh, i=1,...,mj=1,....b" (136
(7.1) = (7.31).

Variables X i and Y, 1‘ represent, respectively, the minimum x and y bounding box coor-
dinates for items of type i, while Xé' and Yzi represent the maximum x and y bounding

box coordinates when considering item group of type i. Constraints (7.33)-(7.36)

7.3. Solution algorithms 87

define the extreme points of a bounding box enclosing all items of type i, while the
objective function is the sum of the (semi)perimeters of the bounding boxes for all

the item types inside the layer, to be minimized.

As a final remark, we point out once again that the model is applied to a fixed
set of items. Once the model has been solved, if a solution has been detected, then
a new item is added to the set and the new model is solved. Instead, if no feasible

solution is detected, the layer is declared complete and a new one is started.

7.2.2 Mathematical formulation for building pallets

After all items have been packed into layers, we need to put layers together into
the minimum number of pallets. This mathematical formulation has already been

described previously, and we refer to the Section 6.2.1.2 for details.

7.3 Solution algorithms

In this section, we present the heuristic algorithms that we developed to solve the PBP
addressed. We first adopted a constructive heuristic (Section 7.3.1), then extended
it to obtain a reactive GRASP metaheuristic (Section 7.3.2), and finally embedded
the mathematical models of Section 7.2, obtaining a so-called matheuristic (Section
7.3.3). All these methods are based on the decomposition of the PBP into its two main
components, first layer creation and then pallet building, already adopted in Section
7.2.

7.3.1 Constructive heuristic

The constructive heuristic is based on the flexible Extreme Points Modified Heuristic
(EPMH) of Section 6.2. We refer to Chapter 6 for details.

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
88 Problems with Practical Constraints

7.3.2 Reactive GRASP metaheuristic

The reactive GRASP metaheuristic is based on the Reactive GRASP with Extreme
Points Modified Heuristic (GREP) (Section 5.2). We refer to Chapter 5 for details.

7.3.3 Embedding the mathematical models in the heuristics

We created some variants of the aforementioned heuristics by making use of the
mathematical models of Section 7.2.

For what concerns the creation of the pallets once the layers have been built, we
created a variant of the EPMH, called EPMH with Mathematical Model MMEPMH),
in which we first attempt to create the pallets through the quick greedy heuristic of
Section 4.3.2. Then, we perform a second attempt in which we create a (hopefully
better) solution by using the model of Section 6.2.1.2 with a short time limit. Note
that this model is relatively simple and is usually solved within a very short time.
However, in some cases it takes more time and for this reason we imposed a time limit
to its solution. To increase the execution speed of the solver, in the second attempt
we set the initial model solution to the solution found by the heuristic during the first
attempt. The main idea of this combination is to take advantage of the EPMH in order
to create a solution in a very short time and then, check the possibility of reducing
the final number of pallets by using a mathematical model, which, although more
time consuming, usually leads to better solutions. The same idea has been used in
the GREP algorithm of Section 5.2.2, leading to an alternative algorithm that we call
GREP with Mathematical Model (MMGREP). In this case, the GRASP metaheuristic
is exploited to find solutions better than those returned by the EPMH.

For what concerns the creation of the layers, we did not find convenient using the
model of Section 7.2.1 from scratch, as too time consuming, but we opted, instead, to
use it to create denser layers than the ones produced by the heuristic of Section 7.3.1.
In detail, after the heuristic has created a layer, we attempt to include other items in
the layer, one at a time, while preserving feasibility. In simple terms, we insert in the
set of items to be packed by the model a new item of an item type already contained

in the layer: if the model returns a feasible packing, then we attempt inserting a new

7.4. Computational results 89

item of the same type (if any); if the model does not find a feasible solution, then we
attempt inserting an item of a different type (if any). In a family layer, the process
is executed considering the only family in the layer. For residual layers, instead, all
families and item types are attempted. At each iteration, the model is allowed to run
for a short time limit. The process is iterated until no more item can fit into the current
layer or a maximum overall time limit is reached. We obtained in this way a modified
version of MMEPMH, that we call MMEPMH Full (EPFULL), and a modified version
of MMGREP, that we call MMGREP Full (GREPFULL). These strategies allow to
create more compact layers and to detect better solutions. However, that comes at
the cost of larger execution times, since the mathematical model is complex and its

solution time consuming.

7.4 Computational results

All experiments have been conducted on a Virtual Machine VMware, Intel Xeon CPU
E5-2640 v2 2.00GHz, 16GB RAM, Linux Ubuntu Server 18.04 Operating System.
The algorithms have been implemented in Java and executed using Oracle JDK 11.
We used the solver Gurobi Optimizer 9.1.0 to solve the mathematical models.

We used the algorithms proposed (Section 7.3.3) to solve the same 24 instances

presented in Section 4.4.1.

7.4.1 Parametric configurations

For all instances, the minimum required fill factor was set to 55%, and the container
dimensions were set to 1500, 1250, and 1050 for height, width, and length, respec-
tively. We allowed rotation of 90 degrees of the items. Note that the minimum fill
factor value has been set equal to a relatively small value (55%) since we experimen-
tally observed that larger values impose stronger constraints on the creation of layers
and lead to poorer solutions (for more details, see Chapter 6). We also remark that
this is just a minimum fill factor value, but, as we will see in the reported results, the
average fill factor of the layers is considerably larger than such minimum. As already

pointed out in the previous chapter, the occupation of the layer with a small fill factor

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
90 Problems with Practical Constraints

can be increased by so called filler boxes, which allow to increase the occupation area
and, thus, the stability.

We solved the instances by using all the algorithmic variants described in Section
7.3. For each variant, we carried out a simple test for parametric configuration. When
GRASP is applied, we set € = 0.15, o = 10, max, = 5, 8 = 0.98, Q = 25, and
¥ =500, as described in Chapter 5. For the variant GREPFULL, instead, we set £ =
1 and ¢ = 10, due to the reduced number of iterations when using the mathematical

models.

All variants involving GRASP have been run 15 times each, so as to obtain a
robust evaluation of the performance. These algorithms use an initial structure S
sorted by random order for families, and a non-increasing order of width for item
types. The deterministic algorithms (EPMH, MMEPMH and EPFULL) use instead
the Bounding Box function to evaluate the creation of item groups in a layer, as
suggested in Chapter 4, and are run only once. After preliminary experiments, when
considering the variants that use only the model for pallet creation (MMEPMH and
MMGREP), we set the time limit for the solver to 30 seconds. When considering the
variants that use both models (EPFULL and GREPFULL), we set the time limit to
1 second for the layer creation model and 3 seconds for the pallet creation model.
Actually, we also tried larger time limits, but the increased computing times were
not compensated by higher quality solutions. When considering GRASP variants, the
whole time for the algorithms was set to 5 minutes, except for GREPFULL, where it

was set to 15 minutes.

Due to the large number of tests that we performed, in the following we report
only aggregate results. For the sake of clarity, we separated the results in different
tables in which each row provides average results for a given algorithm on the 360
solutions obtained (15 for each of the 24 attempted instances) in case of randomized
algorithms and 24 solutions (one per instance) in case of deterministic algorithms. For
a more detailed comparison among the algorithms, we refer to https://github.
com/silveira-tt/ANOR_PBP-Appendix, where we report full details of all

the computational tests that we performed over each instance.

https://github.com/silveira-tt/ANOR_PBP-Appendix
https://github.com/silveira-tt/ANOR_PBP-Appendix

7.4. Computational results 91

7.4.2 Evaluation

The average results are summarized in Table 7.1. In the first three columns the
table reports, respectively, the name of the algorithm, the total number of pallets in
the solution obtained and the total number of layers created. In the six successive
columns, it reports the minimum, maximum and average pallet utilization percentage
and fill factor percentage (2D space of all layers). Note that the minimum fill factor
is below the imposed lower bound (55%), since layers on top of all the others (in
particular, residual layers) are allowed to violate such bound. The last column reports
the computational time (in seconds). To facilitate the analysis of the results, we
highlight in bold the best results of pallets and layers obtained.

From Table 7.1, we can notice that the number of layers in EPMH is slightly
lower than in GREP, but the number of pallets is larger. Thus, we can highlight
that the minimization of the number of layers is less relevant than the way in which
these are created, since the overall number of pallets depends on the disposition
of items within the layers. This situation also occurs when comparing MMEPMH
and MMGREP, but not when considering the algorithms with mathematical models
EPFULL and GREPFULL. For what concerns 3D pallet filling and 2D fill factor, the
best performance is, in general, obtained by model-based algorithms, but with the
disadvantage of a larger computational time. The choice of the algorithm obviously

depends on how much time we can dedicate to the whole operation. MMEPMH

Table 7.1: Computational results for the proposed algorithms (the best results are
highlighted in bold).

N. N. 3D pallet 2D fill
Algorithm of of filling (%) factor (%) Seconds
pallets layers Min Max Avg Min Max Avg
EPMH 1129 41.88 22 84 59 36 96 83 0.03
GREP 10.80 42.02 26 85 62 49 95 84 300.00

MMEPMH 10.33 4188 32 8 66 36 96 &3 3.69
MMGREP 1033 4271 34 8 66 50 95 83 300.00
EPFULL 10.13 41.13 31 86 67 45 95 86 18491
GREPFULL 9.97 40.78 33 8 68 54 95 86 900.00

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
92 Problems with Practical Constraints

Table 7.2: Computational results per layer type.

Algorithm Single-item Single-family Residual
layers layers layers
EPMH 23.08 15.08 3.71
GREP 23.79 15.00 3.24
MMEPMH 23.08 15.08 3.71
MMGREP 24.59 14.89 3.24
EPFULL 16.96 20.88 3.29
GREPFULL 16.59 21.09 3.09

represents a good compromise between quality of the solutions and computing times
but, of course, if minutes rather than seconds are allowed to perform the computations,
then EPFULL and GREPFULL appears to be the best choices.

Secondly, we present an analysis of layers type in the solution, summarized in
Table 7.2. This table presents, for each algorithm, the average number of single-item,
single-family and residual layers.

Considering layer type, we observe a tendency to create more homogeneous layers
when using the GRASP metaheuristic, by increasing the number of single-item or
single-family layers, and reducing the number of residual ones. About the quality
metric that analyzes the worst case result, the reported value is significantly better
when using GRASP-based algorithms in general. Also note that in the algorithms
where layer creation is based on the solution of mathematical models, the number
of single-family layers increases with respect to the number of single-item layers, in
view of the higher ability of the mathematical model solvers in further adding items

of the same type in single-item layers, thus reducing the number of such layers.

For a deeper analysis of the GRASP-based algorithms, we present Table 7.3. In
this table, for each algorithm, we report, respectively, the minimum, maximum and
average values of the fitness function (5.1), adopted to guide the search, the average

number of iterations, and the average number of local searches performed.

For what concerns the fitness function values, GREP presents the most stable
results, whereas MMGREP presents a large variation among average and extreme
values. The best results are obtained by GREPFULL, which also delivers the lowest

7.4. Computational results 93

Table 7.3: Computational results for GRASP-based algorithms.

Algorithm Objective function Iterations Local
Min Max Avg searches
GREP 0.5936 0.5952 0.5946 7888 1097
MMGREP 0.5794 0.6045 0.5962 5574 807
GREPFULL 0.6031 0.6125 0.6087 8.62 1.82

number of pallets. This confirms that the fitness function provides a good representa-

tion of the search space.

Considering the obtained results, we have a large reduction of the number of local
searches in GREPFULL with respect to the other ones, but this is obviously due to
the reduced number of iterations when using that algorithm.

Considering the previous results, we may highlight the most important parts of
each algorithm. Algorithm EPMH obtains the lowest computing time, but it does
not always find a solution of good quality. Hence, this strategy is suitable to be ap-
plied within metaheuristic or matheuristic approaches. For what concerns algorithm
MMEPMH, it provides a better compromise between computational effort and quality,
since it brings an improvement in the solution quality without excessively increasing
the execution time. When taking metaheuristic into account, we can notice a consid-
erable increment in the execution time. However, in general, this extra time is used
to perform a better exploration of the search space, which is obtained by the random-
ized greedy construction and local search improvement phases of Algorithm 1. For
example, algorithm GREP brings that benefit, improving the solution quality while
maintaining a good compromise between time and quality. However, for algorithm
MMGREP that does not happen, since the average quality of the solution is similar
to algorithm MMEPMH, besides increasing the execution time. Algorithms EPFULL
and GREPFULL make full use of the mathematical models introduced in Sections
7.2.1-6.2.1.2. Through a good mix of quick greedy construction of layers and pallets,
better exploration of the solution space by means of randomization and local search,
and search for improved solution by means of mathematical models invoked for short

time limits, these approaches are able to return better quality solutions. They require

Chapter 7. Mathematical Models and Heuristic Algorithms for Pallet Building
94 Problems with Practical Constraints

computing times larger than the other approaches but still compatible with the needs

of a company if the pallet creation is performed offline.

7.5 Conclusions

In this chapter, we concluded our studies regarding the Pallet Building Problem
with item rotations and practical constraints involving visibility and contiguity. We
proposed matheuristic algorithms and a mathematical formulation for the addressed
problem, filling a gap in the existing literature. In general, our complete algorithm
is based on a two-step heuristic approach, first creating layers and then pallets. We
tailored each proposed strategy to GRASP metaheuristic with reactive method. Re-
garding to heuristic algorithms, these are an Extreme Points Modified Heuristic for
creating 2D layers and a greedy heuristic for creating 3D pallets. Regarding to math-
ematical models, we embedded them in the previous heuristics, creating in this way
variants to the two-step heuristic both to compact items into layers and to stack layers
into pallets. Extensive computational experiments on real-world instances proved the
effectiveness of the proposed algorithms.

When it comes to the matheuristics proposed, the embedded mathematical models
have shown a capacity of improvement of the quality of the solutions found, without
increasing too much the computing time. In spite of the complexity of the real-world
instances and the short execution times, interesting final results are reported, thus
showing that the combination heuristics/mathematical models/metaheuristic is an
efficient strategy for this type of problem.

As future work, as an alternative to the approaches proposed in this chapter, and,
thus, a possible further topic for future research, we mention heuristics based on
building blocks (see, e.g., Liu et al. [68], Ren et al. [89], Wang et al. [108], Zhang
et al. [111]). Each block is made up by items of the same type, so that a block
automatically satisfies contiguity between these items. However, basic building block

heuristics should be adapted to meet also the visibility constraint.

Chapter 8

The “Floating Cuts” Model: A
General and Flexible
Mixed-Integer Programming
Model for Rectangular Cutting
Problems

8.1 Abstract

Cutting and Packing problems are challenging combinatorial optimization problems
that have many relevant industrial applications and arise whenever a raw material has
to be cut into smaller parts while minimizing waste, or products have to be packed,
minimizing the empty space. Thus, the optimal solution to these problems has a
positive economic and environmental impact.

In many practical applications, both the raw material and the cut parts have a rect-
angular shape, and cutting plans are generated for one raw material rectangle (also

known as plate) at a time. This is what is known in the literature as the (2-dimensional)

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
96 Programming Model for Rectangular Cutting Problems

Rectangular Cutting Problem. Current cutting technologies impose several geomet-
ric and quantitative constraints to this problem, the most relevant of which are the
guillotine cuts.

Based on the idea of the floating cuts, a general and flexible mixed-integer pro-
gramming model for the non-guillotine and guillotine problem is proposed. To the
best of our knowledge, it is the first Mixed-Integer Linear Programming model in the
literature for both non-guillotine and guillotine problems, and a few of their variations.
The basic idea of this model is a tree search where branching occurs by successive
first-order non-guillotine-type cuts. The exact position of the cuts is not fixed, but
instead remains floating until a concrete small rectangle (also known as item) is as-
signed to a child node. This model does not include decision variables either for the
position coordinates of the items or for the coordinates of the cuts. This highlights the
main similarities and differences when comparing the proposed model to the ‘one-
cuts’ model from Dyckhoff [33] (also presented by Furini et al. [44]): both models
contain divisions of the rectangles into smaller ones, however, this model includes the
decision of the sizes of the subrectangles in a decision variable, unlike the ‘one-cuts’
model. Not only that but, the ‘one-cuts’ model requires the calculation of all container
positions prior to optimizing the model, in contrast to the ‘floating cuts’ model.

Extensive computational experiments were run to evaluate the model’s perfor-
mance considering the many different problem variants and to compare it with the
state-of-the-art formulations of each variant. The results confirm the power of this
flexible model, as it outperforms the state-of-the-art approaches for some variants
while remaining very competitive for the others. But, even more importantly, this is
a new way of looking at these problems which may trigger even better approaches,

with the consequent economic and environmental benefits.

8.2 Contributions

In this work, a new Mixed-Integer Linear Programming (MILP) model for first-order
non-guillotine cutting patterns is proposed. The MILP model can be adapted for

dealing with guillotine constraints, allowing guillotine cutting patterns.

8.3. Work organization 97

The main contribution of this new MILP model is its flexibility, since: it can be
used for non-guillotine and guillotine cutting patterns, without affecting the structure
of the model; it can be used for the 2DSKP and for the 2DSLOPP (introduced in
Section 2.3) and to different variants of the problem; the weighted and unweighted
versions can be considered; 90 degrees rotation of the items is allowed; both the
bounded and unbounded variants of the problem are considered.

Based on the proposed model, a specific k-staged MILP for the guillotine version
is also developed, taking advantage of the structure related to the guillotine constraint.
Any k can be defined and in extreme cases, co can be considered, allowing non-
staged cutting patterns. Moreover, these new MILP models do not require decision
variables either for the coordinates where items are placed or for the position of the
cuts, substantially reducing the size of the model.

Contributing to the wide use of this model is the fact that the 2DSKP and
2DSLOPP also arise as sub-problems (pricing problems) embedded in column gen-
eration procedures to solve the 2-dimensional Bin Packing Problem (2DBPP) and the
2-dimensional Cutting Stock Problem (2DCSP), meaning that this new MILP can also

be used in the resolution of these problems.

8.3 Work organization

The work is organized as follows.

In Section 8.4, the new MILP formulation is introduced and the ‘floating cuts’
model and the supporting algorithms for the formulation are described. Valid inequal-
ities are proposed and added to the model to reduce symmetry and to strengthen the
formulation.

In Section 8.5, the effectiveness of the valid inequalities is assessed through
computational experiments.

In Section 8.6, an extension of the ‘floating cuts’ model through new valid in-
equalities to the guillotine problem is proposed and assessed through extensive com-
putational experiments. Additionally, a new model to deal with k-staged problems is

developed.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
98 Programming Model for Rectangular Cutting Problems

Section 8.7 is dedicated to the computational experiments for guillotine cutting
patterns. The first floating cuts model extended for the guillotine constraint is com-
pared against the model specifically designed for the guillotine problem. Both models
are also compared with state-of-the-art formulations.

Finally, in Section 8.8, conclusions and future work are discussed.

8.4 The ‘floating cuts’ MILP model for the two-dimensional
SLOPP

For the sake of simplicity, the model will be presented and explained taking into ac-
count the 2DSLOPP in terms of formulation. All other formulations will be developed

from this one, by adding different objectives or new constraints.

As already stated and explained, the cutting problem considered in this work
allows cuts of type first-order non-guillotine. The model is based on the assumption

that from a given rectangle, a maximum of five new rectangles can be obtained.

L;
j+1 j+2
Top right (TR)
Top left (TL
op left (TL) j+5s j+3
Center (CC)
Lug
Bottom
j+4 right
(BR)
Bottom left (BL)

Figure 8.1: 1st order cut.

In Figure 8.1, rectangles and sub-rectangles are numbered on the top left corner.

From a cut in a sub-rectangle j may result a maximum of five new sub-rectangles:

8.4. The ‘floating cuts’ MILP model for the two-dimensional SLOPP 99

top left (j + 1), top right (j + 2), bottom right (j + 3), bottom left (j + 4) and center
(j +5). The new sub-rectangles can be further cut in a recursive way. Note that if the

center sub-rectangle (j + 5) does not exist, the cut is of type guillotine.

In Figure 8.2 (a), an example of a tree of sub-rectangles is presented. If index O is
assigned to the root node (initial plate), indexes 1, 2, 3, 4, and 5 are assigned to the
top left, top right, bottom right, bottom left and center sub-rectangles (respectively).
In the same way, if sub-rectangle 1 is cut, it can result in sub-rectangles 6, 7, 8, 9 and
10 (top left, top right, bottom right, bottom left, and center), and so forth for the other
sub-rectangles. An illustration of the sub-rectangles indexing is presented in Figure
8.2 (b).

root

(a) Tree example

10 11 12

(b) Sub-rectangle index

Figure 8.2: Example.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
100 Programming Model for Rectangular Cutting Problems

Sub-rectangles index enumeration

For a sub-rectangle tree with £ levels, it is possible to enumerate all indexes of the
sub-rectangles and store them in a vector M". Since M" depends on the number
of levels of the tree and from a given cut, five new sub-rectangles are obtained, the
number of elements of M" is |M"| = Z?:o 57,

The model proposed is parametric since their dimension (number of variables and
constraints) is dependent on the number of levels of the tree (%) and the corresponding
number of sub-rectangles (|M"|). Thus, the model becomes more complex as the value
of h increases.

Two special sets of indexes are considered: 1) element O is the root node and does
not have a father sub-rectangle; and 2) the elements of the last level of the tree, known
as leaves, do not have children. Every element j (not a leaf) has 5 children in the M"
vector (top left (TL), top right (TR), bottom right (BR), bottom left (BL) and center
(CC)), whichcanbetraced: TL=5-j+1;TR=5-j+2;BR=5-j+3;BL=5-j+4
and CC = 5 - j + 5. Therefore, given an index j (Vj # 0), it is possible to obtain
the sub-rectangle’s relative position (top left, top right, bottom right, bottom left and
center) using Algorithm 2 (“mod” stands for the remainder of the integer division).
Having the relative position of a given sub-rectangle j, it is possible to identify the
index of the father of j using Algorithm 3. It is also possible to identify the level of
the tree of a given sub-rectangle j using Algorithm 4. The algorithms mentioned in
this section can be found in Appendix.

For this problem, there is one rectangular plate with length L and width W, and
the goal is to cut from it a set of n items indexed by i,i = 1, ..., n. Each item 7 has a
length /;, a width w;, a maximum demand d; and a value v;. The main objective is to

maximize the value of the items assigned to the rectangular plate.

The main and new idea of this MILP model is that it is possible to enumerate
the set m (m = |M"|) of all possible sub-rectangles j, j = 1, ...,m from any initial
plate, without explicitly identifying their dimensions. Therefore, a decision variable
is associated with a cut, and not to the position of the cut. The decision variables are

formally defined below.

8.4. The ‘floating cuts’ MILP model for the two-dimensional SLOPP 101

Decision Variables:

1, if sub-rectangle j is cut, j=0,...,m
Xj =

0, otherwise

1,if item i is assigned to sub-rectangle j, j=0,...m
6,'1' =

0, otherwise

s;j - number of items of type i placed side by side (horizontally) in sub-rectangle j,

j=0,..m.

t;; - number of items of type i placed on the top of each other (vertically) in

sub-rectangle j, j =0, ..., m.

1,if items are placed side by side in sub-rectangle j, j =0, ...,m

0, otherwise
L; - length of sub-rectangle j, j =0, ..., m;

W; - width of sub-rectangle j, j =0, ..., m;

Data:

TL(j) - Top left sub-rectangle index resulting from a cut in sub-rectangle j, j =0, ..., m;
TR(j) - Top right sub-rectangle index resulting from a cut in sub-rectangle j, j =0, ..., m;
CC(j) - Center sub-rectangle index resulting from a cut in sub-rectangle j, j =0, ..., m;
BL(j) - Bottom Left sub-rectangle index resulting from a cut in sub-rectangle j, j =0, ..., m;

BR(j) - Bottom right sub-rectangle index resulting from a cut in sub-rectangle j, j =0, ..., m;

For the sake of clarity, the mathematical formulation (8.1)-(8.33) is divided and
explained in four sub-sections:

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
102 Programming Model for Rectangular Cutting Problems

8.4.1 Objective function and general constraints

n o m
Maximize szi . (Sij'l'tij) (8.1)
=1 j=1
n
Subject to: X+ » 6;; <1 Vji=0,..,m (8.2)
i=1
m
Z(s,jni,) < d;, Vi=1,..,n; (8.3)
7=0
Sij < d; - 6ij’ Vi=1,..,n;j=0,....,m; (8.4)
ti <d; - i, Vi=1,.,n,j=0,...,m; (8.5)
n
Zl,"sij SLj, Vji=0,..,m; (8.6)
i=1
n
Dowictip < W, Vji=0,..,m; (8.7)
i=1
li'(sij SL]'+L(1—51']'), Vi=1,..,n;j=0,....,m; (8.8)
wi-0;j < W; +W(l- (5”‘), Vi=1,..,n;j=0,....,m; (8.9)
Sij < d; - Zj» Vi=1,..,n;j = 0,...,m; (8.10)
tij Sd,"(l—Zj), Vi=1,..,n;,j=0,...,m; (8.11)
Ly=L; (8.12)
Wo = W; (8.13)
Sij+tj 2 5,‘], Vi=1,..,n;j=0,...,m; (8.14)

The objective function (8.1) maximizes the values of the items assigned to the
rectangular plate. Constraints (8.2) ensure that for each sub-rectangle j, only three
scenarios can exist: the sub-rectangle is cut or items of type i are assigned to the
sub-rectangle; or the sub-rectangle stays without any modification. Constraints (8.3)

ensure that the demand of each item type i is not exceeded. Constraints (8.4) e (8.5)

8.4. The ‘floating cuts’ MILP model for the two-dimensional SLOPP 103

are used to connect decision variables s,;, t;; and ¢;;. It is guaranteed that the items
geometrically fit in the sub-rectangle in constraints (8.6) - (8.7). Constraints (8.8) -
(8.9) ensure that at least one item fits in sub-rectangle j. Constraints (8.10) and (8.11)
ensure that for a given sub-rectangle j it is only allowed the assignment of items
grouped horizontally or vertically. Constraints (8.12) and (8.13) initialize the root
sub-rectangle with the dimensions of the plate. Constraints (8.14) are used to connect

sij, t;j and 6;;, regarding the quantity of items and the assignment to a sub-rectangle.

8.4.2 Length of children sub-rectangles constraints

Lrrj)+Lrr(j) £ L(1 —x;)+Lj, Vj=0,..m; (8.15)
Lrrj) + Lrrg) = Lj = L(1 = x;), Vj=0,..,m; (8.16)
Lrr(j) +Lec) +Lprj) < L(1 —x;) +Lj, Vj=0,..,m; (817
Lrr(j) +Lcc) +Lpr) = Lj — L(1 - xj), Vi=0,..,m; (8.18)
Lpr(jy+Lpr(jy < L(1-x;)+Lj, Vji=0,..m; (8.19)
Lpr(j) + Ler(j) 2 Lj — L(1 —xj), Vji=0,..m; (820)
Lty +Lrr(j) +Leey + Ly + Ler(j) <3-L-x;, Vj=0,...,m; (821)

Constraints (8.15) - (8.21) are associated with length of the sub-rectangles if a cut is
performed in the j sub-rectangles. Constraints (8.15) - (8.16) ensure that when a cut is
performed, the sum of the lengths of the resulting top left and top right sub-rectangles
is equal to the length of the father sub-rectangle. Constraints (8.17) - (8.18) ensure
that when a cut is performed, the sum of the lengths of the resulting top left, center
and bottom right sub-rectangles is equal to the length of the father sub-rectangle.
Constraints (8.19) - (8.20) ensure that when a cut is performed, the sum of the lengths
of the resulting bottom left, and bottom right sub-rectangles is equal to the length
of the father sub-rectangle. In the opposite way, constraints (8.21) ensure that if the

father sub-rectangle is not cut the resulting sub-rectangles have length equal to zero.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
104 Programming Model for Rectangular Cutting Problems

8.4.3 Width of children sub-rectangles constraints

WrL(y +WaLg) < W —x;j) + W, Vi=0,...m; (822)
Wrr(y + WaL() = W(x; — 1)+ W, Vi=0,...m; (823)
Wrr(y) +Weeo) +Wargy < W(l—x) +W;, Vj=0,..,m; (824)
Wik +Weey +Wany =W - D+W;, Vj=0,...,m; (8.25)
Wrr() + Ware) < W(1 —x;) + W, Vi=0,...,m; (826)
Wrr(j) + War(j) = W(x; — 1) + W, Vi=0,...m; (827

WTL(j) + WTR(j) +WCC(]') +WBL(j) + WBR(j) <3-W " Xj, Vji=0,..,m;
(8.28)

Constraints (8.22) - (8.28) are associated with the width of the resulting sub-rectangles
if sub-rectangle j is cut. Constraints (8.22) - (8.23) ensure that if sub-rectangle j is
cut, the sum of the width of the top left and bottom left sub-rectangle is equal to the
width of the father sub-rectangle. Similarly, (8.24) - (8.25) ensure that if sub-rectangle
j is cut, the sum of the width of the top right, center and bottom left sub-rectangles
is equal to the width of the father sub-rectangle. Constraints (8.26) - (8.27) ensure
that if sub-rectangle j is cut, the sum of the width of the top right and bottom right
sub-rectangles is equal to the width of the father sub-rectangle. Constraints (8.28)
guarantee that if sub-rectangle j is not cut, the resulting sub-rectangles have width

equal to zero.

8.4.4 Decision variables domain

x; €{0,1}, Vji=0,..m; (8.29)

8.4. The ‘floating cuts’ MILP model for the two-dimensional SLOPP 105

0ij € {0, 1}, Vi=1,...,n;j=0,..,m; (8.30)
sij,tij € No, Vi=1,..,n;j=0,...,m; (8.31)
zj €1{0,1}, j=0,..,m; (8.32)
L;,W; >0, Vj=0,...,m. (8.33)

Decision variables related to the cutting of a sub-rectangle are binary and presented
in constraints (8.29). The decision variables related to the assignment of items to
sub-rectangles are also of the binary type and are defined by constraints (8.30). The
decision variables related to the quantity of items of type i that are horizontally
and vertically assigned to sub-rectangle j are integer and greater or equal to zero
(8.31). Decision variables (8.32) are related to the type of assignment of items to sub-
rectangles, it is equal to one if the items are assigned side by side (horizontally) and
zero otherwise. Lastly, constraints (8.33) are related to the size of the sub-rectangles

and can take any value greater or equal to zero.

8.4.5 Model strengthening

To strengthen the MILP formulation (8.1)-(8.33), a set of valid inequality constraints
were added to the model and are described next.

Symmetry

The four non-guillotine cutting patterns in Figure 8.3 are equivalent. Constraints
(8.34) - (8.35) are added to the model to reduce symmetry by ensuring that the model
can generate only the first-order non-guillotine cutting pattern of type (a) of Figure 8.3.

LBL(j) = LTL(j)> Vj=0,...,m; (8.34)

LTL(j) > LBR(j), Vji=0,..,m; (8.35)

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer

106 Programming Model for Rectangular Cutting Problems
2 2
1 1
5 5
3 3
4 4
(a) (b)
4 4
3 3
5 5
1 1
2 2
(c) (d)

Figure 8.3: Symmetric patterns.

Area bound

Constraints (8.36) state that the total area of the rectangles cut does not exceed the

initial rectangle area.

n m
Dlliowi Y (sij+ti) SL-W (8.36)
i=1 j=0
Leaves don’t branch
The set [M"~1|, ..., |M"| represents the sub-rectangles’ indexes belonging to the last

level of the sub-rectangles tree. Constraints (8.37) ensure that in the last level of the

tree, the sub-rectangles can not be further cut.

x;=0 Vi= M"Y, M (8.37)

8.5. Computational experiments for the non-guillotine problem 107

If a sub-rectangle is not cut, it has no descendants

If a sub-rectangle is not cut (x; = 0), then it has no descendants.

5 n
Z(x5~j+k + Z Oi(5-j+k)) S 5 X}, Vj=0,..m; (8.38)
k=1 i=1

8.5 Computational experiments for the non-guillotine prob-

lem

Computational experiments were performed to evaluate the performance of the orig-
inal ‘floating cuts’ model with the model strengthened with a set of valid inequality
constraints. Since five new sub-rectangles can be generated from a cut, the ‘float-
ing cuts’ model will be represented by the acronym “FC5”, more precisely the
model (8.1)-(8.33) is named “FC5_Base”, and the model (8.1) - (8.38) is named
“FC5_Strengthened”. Graphical examples of non-guillotine solutions obtained are
provides in Appendix.

The proposed models can be used to solve the two-dimensional SLOPP and
SKP. The computational experiments include four different variants for each type of

problem:

F/U -The orientation of the items is fixed (no 90 degrees rotation is allowed),

and the problem is unweighted, i.e., the value of each item is equal to its area;

e R/U - The items can be rotated 90 degrees, and the problem is unweighted;

L]

F/W - The orientation of the items is fixed, and the problem is weighted, i.e.,

the value of each item is not equal to its area;

* R/W - The items can be rotated 90 degrees, and the problem is weighted.

The computational experiments were run on Gurobi 9.1.2 using an Intel Xeon
Gold 6148 CPU 2.40GHz, with 96.0 GB of RAM, under Windows 10 operating

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
108 Programming Model for Rectangular Cutting Problems

system, and the model was implemented with Python. The optimality gap was set to

0.01% (Gurobi default value) and the time limit was set to 900 seconds.

Model size increases with larger values of %, and as it is known, the performance
of the MILP solvers decreases as the size of models to be solved increases. The first
preliminary experiments were performed to determine the value of 4 to consider.
Parameter & was initially set to the lowest value (4 = 1) and iteratively incremented
while there was an average improvement in the quality of the solution. Figure 8.4
shows the average results for the 4 variations when considering both the 2DSKP and
2DSLOPP, according to the & value. Therefore, we concluded that / equal to 4 is the
most suitable value. In Appendix, Tables 1 and 2 present the preliminary experiments.
We highlight that the maximum number of levels of the sub-rectangles tree was set to
6, since, for some instances, the solver was not able to find a feasible solution within

the time limit.

The computational experiments were run over a selection of problem instances
taken from the literature. The selection was made considering problem instances for
the weighted 2DSLOPP (as this is the most complete type/variant of the problem, in
terms of piece data), which were used in at least three papers published since 2016.
Three data sets, in a total of 11 instances, were identified with these characteristics:
the cgcutl-3, originally proposed by Christofides and Whitlock [19], the CW1-3,
originally proposed by Hifi [53], and the okpl-5, proposed by Fekete and Schepers
[40]. Besides, the set of instances ngcutl-12 originally proposed by Beasley [9] for
the first mathematical model dealing with non-guillotine cutting patterns were also
considered.

A description of the problem instances is presented in Table 8.1. For each instance,
the following is identified: the number of different item types (n); the total number of
items (N = })'" | d;); the length (L) and the width (W) of the large object; the smallest
edge length (/,,;,,) and width (w,,;,) among all the item types.

In a problem instance for the weighted 2DSLOPP, the item types are characterized
by a length /;, a width w;, a value v;, and a maximum demand d;. When addressing
the unweighted variant, the value of the items is set to v; = [; - w;. If the problem type

is the 2DSKP, the maximum demand is set to one (d; = 1). The only exceptions go to

8.5. Computational experiments for the non-guillotine problem 109

Evolution of the solution FC5 for the 2DSKP based on the parameter h

14000

12000

10000

8000

H
Gap

6000

4000

2000

==z —Gap

(a) 2DSKP
Evolution of the solution FC5 for the 2DSLOPP based on the parameter h

16000 200%

13877 13879 13848 180%

13314
160%
12000
180%
10411
10000
120%
N 8000 100%
6967
m 80%
6000
0%
000
40%
2000
20%
6 2,06%
0,00% 001% 3,02% 3,62%
0 R o
1 2 3 4 s 6

7 —Gap

(b) 2DSLOPP

Gap

Figure 8.4: Summary of the preliminary experiments for (8.4a) 2DSKP and (8.4b)
2DSLOPP, when considering the average for the 4 variants addressed. In both cases,
h = 4 presents the best trade-off between the Z value of the objective function and
the solver Gap.

instances cgcutl-3 and ngcutl-12, since in these instances, the number of item types
(n) is small, the total number of items (N) is used by replicating the items according
to its demand. Therefore, depending on the problem types and variants, the demand

(d;) and the value (v;) of the items were updated as described.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
110 Programming Model for Rectangular Cutting Problems

Table 8.1: Characteristics of the instances.

Instance n N L W lmin Wmin

cgcutl 7 16 15 10 2 1

cgeut2 10 23 40 70 9 7

cgeut3 19 62 40 70 9 11
CW1 25 67 105 125 21 25
CwW2 35 63 165 145 34 34
CW3 40 96 207 267 45 59
okpl 15 50 100 100 1 1

okp2 30 30 100 100 1

okp3 30 30 100 100 3 3

okp4 33 57 100 100 1 2
okp5 29 97 100 100 1 3

ngcutl 5 10 10 10 2 2
ngcut2 7 17 10 10 1 1

ngeut3 10 21 10 10 1 1

ngeutd 5 7 15 10 7 1

ngeutd 7 14 15 10 2 1

ngeut6 10 15 15 10 2 1

ngcut? 5 8 20 20 1 1

ngcut8 7 13 20 20 6 1

ngeut9 10 18 20 20 1 2

ngcut10 5 13 30 30 1 2

ngeutll 7 15 30 30 3 2

ngeutl2 10 22 30 30 2 1

In Table 8.2 we present the results for the four variants of the 2DSKP. The table
is divided into four parts regarding the problem variants (F/U, R/U, F/'W and F/W).
The first column identifies the problem instance and the following column refers to
the number of levels of the sub-rectangle tree considered (2 = 4). The following
three columns are dedicated to report the results obtained with FC5_Base model.
Column (Z) presents the value of the objective function of the solution obtained by
Gurobi, column (Gap®(%)) presents the gap value reported by Gurobi and the total
computational time in seconds is reported in column (T(s)), “TL” means the time
limit of 900 seconds was reached. The following columns present the results for
the FC5_Strengthened model, and the last column is used to present the value of
the optimal solution when it is known. This structure is repeated for each problem
variant. It is highlighted in bold in column Z whenever the optimal solution is obtained,
compared to the values in column OPT from the literature. In column (Gap®(%)), the

cases where the solver proves optimality are highlighted in bold.

Analysing the results, it is clear that constraints (8.34) - (8.38) strengthened the

8.5. Computational experiments for the non-guillotine problem 111

Table 8.2: Computational results for first-order non-guillotine SKP.

F/U OPT R/U OPT
Instance h FC5_Base FC5_ t d h FC5_Base FC5_ I d

7 Gap'(%) T(s) 7 Gap'(%) T(s) 7 Gap'(%) T(s) 7 Gap'(%) T(s)
cgeutl 144 56.25 TL 145 345 TL - 150 50.00 TL 150 0.00 9.69 150
cgeut2 2778 56.37 TL 2740 2.19 TL - 2775 56.54 TL 2738 226 TL -
cgeut3 2721 509.00 TL 2721 2.90 TL - 2723 1221.04 TL 2754 1.67 TL -
CW1 13057 288.93 TL 12797 2.56 TL - 12797 296.84 TL 12797 2.56 TL -
Ccw2 23240 360.20 TL 23524 1.71 TL - 23599 554.55 TL 23299 2.69 TL -
CwW3 54343 351.14 TL 54343 1.70 TL - 54721 582.96 TL 54721 1.00 TL -
okpl 9284 38.35 TL 9284 7.71 TL - 9688 32.58 TL 9688 3.22 TL -
okp2 9749 222.06 TL 9681 3.30 TL - 9876 217.92 TL 9921 0.80 TL -
okp3 9734 270.60 TL 9838 1.65 TL - 9893 264.64 TL 9799 2.05 TL -
okp4 9824 231.60 TL 9818 1.85 TL - 9841 270.56 TL 9854 1.48 TL -
okpS 9749 197.69 TL 9876 1.26 TL - 9921 192.53 TL 9833 1.70 TL -
ngeutl 4 95 100.00 TL 95 5.26 TL - 4 97 95.88 TL 97 3.09 TL -
ngeut2 97 185.57 TL 97 3.09 TL - 100 177.00 TL 100 0.00 160.72 100
ngeut3 100 177.00 TL 100 0.00 75.19 100 100 177.00 TL 100 0.00 530.19 100
ngeutd 138 17.39 TL 138 2.17 TL - 138 17.39 TL 138 2.17 TL -
ngeut5s 140 152.14 TL 140 7.14 TL - 150 13533 TL 150 0.00 4.05 150
ngeut6 150 93.33 TL 150 0.00 29.13 150 150 93.33 TL 150 0.00 18.60 150
ngeut? 175 0.00 3.16 175 0.00 1.00 - 175 0.00 391 175 0.00 1.84 -
ngeut8 380 66.58 TL 380 5.26 TL - 387 63.57 TL 386 3.63 TL -
ngcut9 390 149.74 TL 390 2.56 TL - 400 143.50 TL 400 0.00 198.47 400
ngeutl0 879 95.68 TL 879 1.93 TL - 879 95.68 TL 879 2.16 TL -
ngeutl 1 842 76.13 TL 842 6.89 TL - 873 69.87 TL 873 3.09 TL -
ngeutl2 894 156.82 TL 898 0.22 TL - 900 155.11 TL 899 0.11 TL 900

Average 167.50 861.96 2.82 788.06 215.82 862.00 1.46 666.94
F/'W OPT R/W OPT
cgeutl 244 49.18 TL 244 6.56 TL 244 260 40.0 TL 260 0.00 175.52 -
cgeut2 2856 55.78 TL 2856 224 TL 2892 2866 55.2 TL 2860 2.10 TL -
cgeut3 1860 450.00 TL 1860 8.60 TL 1860 1780 900.6 TL 1940 4.12 TL -
Cw1 5010 11691 TL 4860 9.82 TL - 4944 119.8 TL 4944 10.05 TL =
Ccw2 4767 161.88 TL 4767 13.36 TL - 5083 206.4 TL 5062 6.64 TL -
CwW3 4593 319.70 TL 4719 12.82 TL - 5008 284.9 TL 4938 7.82 TL -
okpl 23771 31.77 TL 23771 12.40 TL N 26081 20.1 TL 25721 4.19 TL -
okp2 21976 170.54 TL 21947 11.44 TL - 23288 1553 TL 24263 2.54 TL -
okp3 24019 220.74 TL 23740 11.85 TL - 25216 205.5 TL 25278 6.16 TL -
okp4 26470 180.96 TL 26470 9.25 TL - 27568 198.2 TL 27568 5.15 TL -
okp5 21976 157.20 TL 21976 11.29 TL - 23645 139.0 TL 24263 2.62 TL -
ngcutl 4 164 102.44 TL 164 22.56 TL 164 4 193 72.0 TL 193 13.47 TL -
ngcut2 230 153.48 TL 230 11.30 TL 230 250 133.2 TL 250 2.00 TL -
ngeut3 247 128.34 TL 247 7.69 TL 247 259 117.8 TL 259 2.70 TL -
ngeutd 268 12.69 TL 268 261 TL 268 268 12.7 TL 268 261 TL -
ngeuts 358 71.79 TL 358 4.19 TL 358 370 66.2 TL 370 0.81 TL -
ngeuté 289 76.82 TL 289 9.69 TL 289 298 715 TL 298 6.38 TL -
ngeut? 430 0.00 2.85 430 0.00 1.54 430 430 0.00 3.07 430 0.00 2.04 -
ngcut8 834 69.19 TL 834 12.47 TL 834 886 59.3 TL 886 5.87 TL -
ngcut9 924 107.90 TL 924 4.11 TL 924 908 111.6 TL 918 4.79 TL -
ngeutl0 1452 81.20 TL 1452 0.00 682.57 1452 1452 81.2 TL 1452 4.48 TL -
ngeutl 1 1688 72.45 TL 1688 12.20 TL 1688 1786 63.0 TL 1786 4.93 TL -
ngcutl2 1865 133.62 TL 1865 9.44 TL 1865 1932 125.5 TL 1932 5.64 TL -

Average 127.15 861.95 8.95 85240 140.83 861.96 4.57 830.37

base ‘floating cuts’ mathematical model with a positive impact on the gaps reported
by Gurobi. The average Gurobi gap for the FC5_Base model for the four problem
variants (F/U, R/U, F/W, R/W) was 162.83%, while for the FC5_Strengthened model
was only 4.45%.

Although the addition of valid inequality constraints improved the linear program-

ming relaxation bounds (LP-bounds), the impact on the value of the solutions was not

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
112 Programming Model for Rectangular Cutting Problems

so impressive. In some instances, lower values of the objective function were reported
for the FC5_Strengthened model. The solver proved the optimality in 14 cases with
the FC5_Strengthened model and only 4 cases with the FC5_Base model from 92
cases tested for the 2DSKP.

For problem variant F/W, the optimal solutions is known from the literature in
15 instances. In this case, the optimal value was obtained by the FC5_Base and
FC5_Strengthened model in 14 instances. However, the solver could only certificate
optimality in three of them.

In Table 8.3 we present the results for 2DSLOPP. The structure of this table is
similar to the previous one. The behaviour observed for 2DSKP remains for 2DSLOPP.
For the FC5_Strengthened model, the solver obtained lower gaps in comparison to the
FC5_Base model, and this difference is more impressive for the unweighted versions
(F/U and R/U). The best performance was obtained for problem variant R/U with an
average gap of 0.97% from the solver. For problem variant F/W, the optimal solution
is known from the literature for 20 instances. The solver was able to reach the optimal
solution for 17 instances for both models. However, it could only prove optimality for
one instance (ngcut7) with FC5_Base model and two instances (ngcut7 and ngcut10)
for the FC5_Strengthened model.

Column “Best” in problem variant R/W presents the best solutions found in
Egeblad and Pisinger [36] and He et al. [52], all the values are marked with “*”.
The solver was able to find the same values for the FC5_Base and FC5_Strengthened
models in 15 instances out of 20.

In Figure 8.5 we present the box plots for the gaps given by Gurobi on the different
experiments. The box plot with no fill color were obtained for the gaps of the FC5_Base
model. It is clear that the valid inequalities improved the gaps. For the base model,
worse gaps were obtained for the 2DSLOPP in comparison with 2DSKP.

8.6 Extension of the model to the guillotine problem

An important constraint from practice regarding the cutting problems is related to the

guillotine cuts. The mathematical formulation (8.1) - (8.38) can be extended to ensure

8.6. Extension of the model to the guillotine problem 113

Table 8.3: Computational results for first-order non-guillotine SLOPP.

F/U OPT R/U OPT
Instance h FC5_Base FC5_Strengthened h FC5_Base FC5_Strengthened

Z Gap'(%) T(s) Z Gap'(%) T(s) Z Gap*(%) T(s) Z Gap'(%) T(s)
cgeutl 144 56.25 TL 144 4.17 TL - 150 50.00 TL 150 0.00 4.34 150
cgeut2 2740 58.54 TL 2778 0.79 TL - 2775 56.54 TL 2775 0.90 TL -
cgeut3 2721 936.24 TL 2721 2.90 TL - 2776 1146.36 TL 2771 1.05 TL -
CW1 13057 746.05 TL 12777 272 TL - 12972 751.60 TL 12972 1.18 TL -
Ccw2 23240 1003.64 TL 23418 2.17 TL - 23670 983.59 TL 23643 1.19 TL -
CwW3 53997 1356.25 TL 54708 1.03 TL - 54608 1339.95 TL 54477 1.45 TL -
okpl 9938 251.32 TL 9974 0.26 TL - 9960 250.54 TL 9968 0.32 TL -
okp2 9749 222.06 TL 9681 3.30 TL - 9876 217.92 TL 9921 0.80 TL -
okp3 9734 270.60 TL 9734 2.73 TL - 9893 264.64 TL 9893 1.08 TL -
okp4 9958 505.74 TL 9976 0.24 TL - 9977 504.59 TL 9979 0.21 TL -
okp5 9982 668.36 TL 9982 0.18 TL - 10000 666.98 TL 10000 0.00 3097 10000
ngeutl 4 95 100.00 TL 95 5.26 TL - 4 97 95.88 TL 97 3.09 TL -
ngeut2 97 185.57 TL 97 3.09 TL - 100 177.00 TL 100 0.00 427 100
ngeut3 100 177.00 TL 100 0.00 278 100 100 177.00 TL 100 0.00 5.44 100
ngeutd 138 17.39 TL 138 217 TL - 138 17.39 TL 138 2.17 TL -
ngeuts 140 152.14 TL 140 7.14 TL - 150 13533 TL 150 0.00 1.46 150
ngeut6 150 93.33 TL 150 0.00 19.63 150 150 93.33 TL 150 0.00 4.49 150
ngeut7 175 0.00 2.20 175 0.00 1.14 - 175 0.00 1.62 175 0.00 0.75 -
ngcut8 380 66.58 TL 380 526 TL - 387 63.57 TL 387 3.36 TL -
ngeut9 390 149.74 TL 390 2.56 TL - 400 143.50 TL 400 0.00 7.02 400
ngeut10 879 95.68 TL 879 2.39 TL - 879 95.68 TL 879 2.39 TL -
ngeutl1 842 76.13 TL 842 6.89 TL - 873 69.87 TL 873 3.09 TL -
ngeutl2 898 155.68 TL 898 0.22 TL - 900 155.11 TL 900 0.00 16.89 900

Average 31932 861.92 241 784.50 324.19 861.90 097 551.72
F/W OPT R/W Best
cgeutl 244 49.18 TL 244 6.56 TL 244 260 40.00 TL 260 0.00 9823 260*
cgeut2 2856 55.78 TL 2856 224 TL 2892 2880 54.48 TL 2883 1.28 TL 2909*
cgeut3 1840 681.52 TL 1860 9.68 TL 1860 1900 1006.32 TL 1920 6.25 TL 1940*
CW1 6402 35551 TL 6402 12.09 TL - 6936 320.44 TL 6808 541 TL -
Ccw2 5354 426.90 TL 5543 8.70 TL - 5548 408.47 TL 5604 7.51 TL -
CW3 5689 684.67 TL 5689 7.00 TL - 5689 684.67 TL 5736 6.12 TL -
okpl 27718 22574 TL 27718 5.48 TL 27718 28423 217.66 TL 28423 2.86 TL 28423%
okp2 21976 170.54 TL 22119 10.19 TL 22502 23288 155.30 TL 23645 534 TL 24263*
okp3 24019 220.74 TL 23740 11.85 TL 24019 25216 205.52 TL 25081 6.82 TL 25216*
okp4 32893 343.99 TL 32893 3.59 TL 32893 32784 34546 TL 32893 3.00 TL 32893*
okp5 27923 492.10 TL 27923 4.38 TL 27923 27983 490.83 TL 27983 4.15 TL 27983*
ngcutl 4 164 102.44 TL 164 22.56 TL 164 4 193 72.02 TL 193 4.15 TL 193*
ngeut2 230 153.48 TL 230 10.00 TL 230 250 133.20 TL 250 2.80 TL 250*
ngeut3 247 128.34 TL 247 7.69 TL 247 259 117.76 TL 259 2.70 TL 259*%
ngeutd 268 12.69 TL 268 2.61 TL 268 268 12.69 TL 268 2.61 TL 268*
ngeut5 358 71.79 TL 358 4.19 TL 358 370 66.22 TL 370 0.81 TL 370*
ngeut6 289 76.82 TL 289 9.69 TL 289 298 71.48 TL 298 6.38 TL 300%*
ngeut7 430 0.00 1.72 430 0.00 1.44 430 430 0.00 1.22 430 0.00 1.21 430*
ngeut8 834 69.19 TL 834 12.47 TL 834 886 59.26 TL 886 5.87 TL 886*
ngeut9 924 107.90 TL 924 4.11 TL 924 924 107.90 TL 924 411 TL 924
ngeutl0 1452 81.20 TL 1452 0.00 286.01 1452 1452 81.20 TL 1452 4.48 TL 1452%
ngeutl 1 1688 72.45 TL 1688 11.85 TL 1688 1786 62.99 TL 1786 6.27 TL 1786*
ngcut12 1865 133.62 TL 1865 10.78 TL 1865 1932 125.52 TL 1932 5.33 TL 1932*

Average 205.07 861.90 7.73 835.15 21041 861.88 4.10 826.98

that only cutting patterns of type guillotine are obtained.

In a first-order non-guillotine cutting pattern (Figure 8.1), if the sub-rectangle on
the center does not exist, i.e., Lcc = 0 and/or W = 0, the cutting pattern would be
of type guillotine. An example of guillotine cutting patterns obtained when Lcc =0
and/or Wee = 0 is presented in Figure 8.6.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer

114 Programming Model for Rectangular Cutting Problems
SKP SLOPP
1600 1600
1400 1400 ° °
1200 ° 1200
__ 1000 __ 1000
X o §
g 800 5 800

600

.
.
: . x| [+
° X
200 2
% 1 CJ = =
0 — - T e 0 — —- T e

[CJFCcs B_F/U M FCS.S_FU [FCS_BR/U FC5_S_R/U

S
S

<}
S

[JFCs_B_F/U M FC5_S_F/U [FC5_B_R/U FC5_S_R/U
[J res_B_F/w M Fes_s_F/w [res_B_R/wW M FC5_S_R/W [OrFcs B F/w M rFcs_s F/w [JFcs_B_R/w M FC5_S_R/W

Figure 8.5: Analysis of the gap reported by Gurobi for FC5_Base and FC5_Strength-
ened models.

TR
TL TL

TR

BR

BL BL BR

(a) (b)

Figure 8.6: Example of a guillotine cutting pattern if Lcc = 0 and/or Wee = 0.

Based on this insight, decision variable Scc(;) was defined:

1, ensures Wee(j) =0, j=0,...m
Bee(j) =
0, ensures Lcc(jy =0, j=0,...m
Lcce) < Becj) - L, Vj=0,...,m; (8.39)

Weey < (1 =Bee)) - W, Vji=0,..m; (8.40)

8.6. Extension of the model to the guillotine problem 115

Constraints (8.39) ensure that if decision variable Bcc ;) is equal to one, the
length of the sub-rectangle on the center will be zero. Constraints (8.40) ensure that
if decision variable Scc(;) is equal to zero, the width of the sub-rectangle on the
center, will be zero. These constraints ensure that the sub-rectangle on the center of
a first-order non-guillotine pattern does not exist, and the cutting pattern becomes a

guillotine one.

TL TR TL TR

BL BR BL BR

(a) (b)

Figure 8.7: Example of equivalent guillotine cutting patterns when W¢ee = 0.

8.6.1 Symmetry reduction

The addition of constraints (8.39) and (8.40) to the MILP model ensures guillotine
cutting patterns. However, the relative positions of the five sub-rectangles of the first
order cutting patterns remain the same. The main characteristic is that at least one
of the dimensions of the center sub-rectangle is equal to zero. Constraints (8.34) and
(8.35), to reduce symmetry, are also maintained for the guillotine version. However,
when Wee = 0 equivalent patterns, as presented in Figure 8.7, can be obtained.
Constraints (8.41) and (8.42) are added to the mathematical formulation to reduce
this symmetry.

Lpr(j) < Lprj +L- (1 =Bcc)) Vj=0,..m; (8.41)
Lrr(j) < Lty + L - (1 = Beej))s Vj=0,..m; (8.42)

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
116 Programming Model for Rectangular Cutting Problems

Similarly, when Lcc = 0 the four equivalent cutting patterns of Figure 8.8 can

be produced. To address this symmetry, constraints (8.43) and (8.44) are added to the

model.
TR TL TR
TL
BR BL BR
BL
(a) (b)
TL
UL TR TR
BL
LEIL BR BR
(© (d)

Figure 8.8: Example of equivalent guillotine cutting patterns when Lcc = 0.

WeLi) < Wrrg) + W - Bece), Vji=0,..,m; (8.43)
Wrr(j) < War(j) +W - Bccj), Vi=0,..,m; (8.44)

8.6.2 Computational experiments - guillotine cutting patterns

The computational experiments presented in this subsection aim to evaluate the impact
of valid inequality constraints (8.41) - (8.44) on the MILP model for the guillotine

8.6. Extension of the model to the guillotine problem 117

problem. The guillotine cutting patterns obtained are of type non-staged, which means

there is no limitation on the number of stages.

The ‘floating cuts’ model with guillotine constraints (8.1)-(8.40) is named “FC4_-
Base” since from the guillotine cut, a maximum of four sub-rectangles are generated.
The “floating cuts’ model for the guillotine problems strengthened with the set of valid
inequality constraints (8.41) - (8.44) is named “FC4_Strengthened”.

The computational results for 2DSKP and 2DSLOPP with FC4_Base and FC4_-
Strengthened are presented in tables 8.4 and 8.5. The structure of the tables remains

the same as the previous tables.

The addition of reducing symmetry constraints (8.41) - (8.44) impacted the values
of the gap reported by Gurobi for both 2DSKP and 2DSLOPP. In Figure 8.9 we
present the box-plots for the values of the Gurobi’s gap for the different variants for
the 2DSKP and 2DSLOPP with FC4_Base and FC4_Strengthened. The box plots for
the FC4_Base model are represented without fill color. Constraints (8.41) - (8.44) had
a higher impact on variants with the orientation of the items fixed (F/U and F/W) for
2DSKP and 2DSLOPP. Generally, the gaps are smaller for both the FC4_Strengthened
and FC4_Base model for the 2DSLOPP compared to 2DSKP.

The full occupation of the plate was obtained for the FC4_Strengthened model
for 2DSKP variant R/U in 6 instances (cgcutl, ngcut2-3, ngcut 5-6 and ngcut9), and
Gurobi proved optimality. For these 6 instances the solver’s average time was 12.66

SKP SLOPP
25 25

20 20

15

o e

Gap (%)

10

Ll i# b s

O FcaB_F/u MFCa_S_F/U [JFca_BR/U FC4_S_R/U O rcaB_F/u M Fca_S_F/U [JFCa_BR/U FC4_S_R/U

[JFcaB_F/w M Fca_s_F/w [JFca_B_R/W M FC4_S_R/W [JrcaB_F/w M FCa_s_ F/w [JFrcaBR/W M FC4_S_R/W

Figure 8.9: Analysis of the gap reported by Gurobi for the models FC4_Base and
FC4_Strengthened.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
118 Programming Model for Rectangular Cutting Problems

Table 8.4: Computational results for guillotine SKP.

F/U OPT R/U OPT
Instance h FC4_Base FC4_ t d h FC4_Base FC4_ I d

7 Gap'(%) T(s) 7 Gap'(%) T(s) 7 Gap'(%) T(s) 7 Gap'(%) T(s)
cgeutl 144 4.17 TL 144 4.17 TL - 150 0.00 18.22 150 0.00 1241 150
cgeut2 2740 2.19 TL 2740 2.19 TL - 2759 1.49 TL 2769 112 TL -
cgeut3 2721 2.90 TL 2721 2.90 TL - 2754 1.67 TL 2754 1.67 TL -
CWI 12797 2.56 TL 12797 2.56 TL - 12777 2.72 TL 12797 2.56 TL -
Ccw2 23240 295 TL 23240 2.95 TL - 23299 2.69 TL 23643 119 TL -
CwW3 53755 2.82 TL 53755 2.82 TL - 54041 227 TL 54070 222 TL -
okpl 8836 13.17 TL 8836 13.17 TL - 9448 5.84 TL 9448 5.84 TL -
okp2 9773 2.32 TL 9749 2.58 TL - 9828 1.75 TL 9828 175 TL -
okp3 9838 1.65 TL 9838 1.65 TL - 9843 1.60 TL 9893 1.08 TL -
okp4 9831 1.72 TL 9818 1.85 TL - 9816 1.87 TL 9810 1.94 TL -
okpS 9773 2.32 TL 9749 2.58 TL - 9921 0.80 TL 9780 2.25 TL -
ngeutl 4 95 5.26 TL 95 0.00 326.07 - 4 97 3.09 TL 97 3.09 TL -
ngeut2 97 3.09 TL 97 3.09 TL - 100 0.00 2325 100 0.00 1138 100
ngeut3 100 0.00 7.06 100 0.00 4.83 100 100 0.00 5291 100 0.00 19.53 100
ngeutd 138 0.00 646.89 138 0.00 25.64 - 138 2.17 TL 138 0.00 18.13 -
ngeut5s 140 7.14 TL 140 0.00 1028 - 150 0.00 4.40 150 0.00 238 150
ngcut6 148 1.35 TL 148 1.35 TL - 150 0.00 10.82 150 0.00 1348 150
ngeut? 175 0.00 1.12 175 0.00 0.74 - 175 0.00 1.96 175 0.00 2.16 -
ngeut8 380 5.26 TL 380 5.26 TL - 386 3.63 TL 386 3.63 TL -
ngcut9 390 2.56 TL 390 2.56 TL - 400 0.00 38.30 400 0.00 2181 400
ngeutl0 879 1.93 TL 879 0.00 1897 - 879 2.16 TL 879 091 TL -
ngeutl 1 842 6.89 TL 842 6.89 TL - 867 3.81 TL 873 3.09 TL -
ngeutl2 894 0.67 TL 894 0.67 TL - 891 1.01 TL 895 0.56 TL -

Average 3.17 811.96 2.58 68276 1.68 633.30 143 59201
F/'W OPT R/W OPT
cgeutl 244 6.56 TL 244 6.15 TL 244 260 0.00 114.08 260 0.00 97.64 -
cgeut2 2856 224 TL 2856 224 TL 2892 2892 0.97 TL 2848 2.53 TL -
cgeut3 1860 8.60 TL 1860 8.60 TL 1860 1900 6.32 TL 1900 6.32 TL -
Cw1 4841 10.25 TL 4837 10.17 TL - 5012 7.00 TL 4930 8.62 TL =
Ccw2 4673 15.56 TL 4673 15.37 TL - 5062 6.68 TL 5017 7.57 TL -
CwW3 4593 15.92 TL 4593 16.07 TL - 4887 8.94 TL 4936 7.68 TL -
okpl 22752 17.70 TL 22752 17.38 TL N 25721 4.22 TL 25721 4.14 TL -
okp2 21814 11.81 TL 22502 8.33 TL - 23513 5.84 TL 23513 5.86 TL -
okp3 23743 11.94 TL 24019 10.84 TL - 25216 6.22 TL 25216 6.22 TL -
okp4 25939 11.45 TL 25939 11.23 TL - 27568 5.62 TL 27568 5.25 TL -
okp5 21814 13.36 TL 21814 12.08 TL - 23523 5.87 TL 24263 2.58 TL -
ngcutl 4 164 22.56 TL 164 0.00 243.10 - 4 193 4.15 TL 193 4.15 TL -
ngcut2 230 10.00 TL 230 2.61 TL - 250 1.20 TL 250 1.20 TL -
ngeut3 247 7.69 TL 247 7.29 TL - 259 2.70 TL 259 2.70 TL -
ngeutd 268 261 TL 268 0.00 3442 - 268 261 TL 268 0.00 3621 -
ngeut5s 358 4.19 TL 358 0.00 8.93 - 370 0.81 TL 370 0.00 1036 -
ngeuté 289 9.69 TL 289 4.15 TL - 298 6.38 TL 298 6.38 TL -
ngeut? 430 0.00 1.48 430 0.00 0.73 - 430 0.00 1.94 430 0.00 2.14 -
ngcut8 834 12.47 TL 834 12.47 TL - 886 5.87 TL 886 5.87 TL -
ngcut9 924 4.11 TL 924 0.00 2393 - 924 4.11 TL 908 5.95 TL -
ngeutl0 1452 0.00 5232 1452 0.00 1641 - 1452 4.48 TL 1452 4.48 TL -
ngeutl 1 1688 10.72 TL 1688 9.66 TL - 1786 5.32 TL 1780 5.45 TL -
ngcutl2 1865 9.38 TL 1865 9.38 TL - 1932 5.64 TL 1932 5.59 TL -

Average 9.51 824.99 7.13 680.20 439 827.70 4.28 750.67

seconds. For the guillotine 2DSKP the solver proved optimality in 14 cases for the
FC4_Base model and 23 cases for the FC4_Strengthened model out of 92 cases tested.

For the 2DSLOPP, a similar behaviour of 2DSKP was observed. The FC4_Base
and FC4_Strengthened models performed better for the unweighted version (solver
proved optimality in 25 cases out of 92) of the problem than the weighted (solver
proved optimality in 13 cases out of 92). Besides, for the 2DSLOPP R/U version, the

8.6. Extension of the model to the guillotine problem

119

Table 8.5: Computational results for guillotine SLOPP.

F/U OPT R/U OPT
Instance h FC4_Base FC4_Strengthened FC4_Base FC4_Strengthened

Z Gap*(%) T(s) Z Gap®*(%) T(s) Z Gap®*(%) T(s) 7 Gap*(%) T(s)
cgeutl 144 4.17 TL 144 4.17 TL - 150 0.00 2224 150 0.00 4.46 150
cgeut2 2740 2.19 TL 2778 0.79 TL - 2776 0.87 TL 2751 1.78 TL -
cgeut3 2721 2.90 TL 2721 2.90 TL - 2754 1.67 TL 2754 1.67 TL -
CW1 12825 2.34 TL 12777 272 TL - 12906 1.70 TL 13053 0.55 TL -
Cw2 23240 2.95 TL 23418 217 TL - 23607 1.35 TL 23670 1.08 TL -
CW3 54063 223 TL 54063 223 TL - 54608 121 TL 54290 1.80 TL -
okpl 9938 0.62 TL 9938 0.62 TL - 9968 0.32 TL 9960 0.40 TL -
okp2 9681 330 TL 9743 2.64 TL - 9842 1.61 TL 9842 1.61 TL -
okp3 9838 1.65 TL 9812 1.92 TL - 9893 1.08 TL 9893 1.08 TL -
okp4 9976 0.24 TL 9976 0.24 TL - 9977 0.23 TL 9979 0.21 TL -
okp5 9982 0.18 TL 9952 0.48 TL - 10000 0.00 20.64 10000 0.00 31.60 10000
ngeutl 4 95 5.26 TL 95 5.26 TL - 97 3.09 TL 97 3.09 TL -
ngeut2 97 3.09 TL 97 3.09 TL - 100 0.00 6.24 100 0.00 2.67 100
ngeut3 100 0.00 8.97 100 0.00 1.84 100 100 0.00 6.00 100 0.00 551 100
ngeutd 138 2.17 TL 138 0.00 547 - 138 2.17 TL 138 0.00 99.24 -
ngeut5 140 7.14 TL 140 0.00 8.00 - 150 0.00 248 150 0.00 1.52 150
ngeut6 148 1.35 TL 148 1.35 TL - 150 0.00 8.75 150 0.00 3.54 150
ngcut7 175 0.00 0.68 175 0.00 0.42 - 175 0.00 1.90 175 0.00 1.48 -
ngeut8 380 5.26 TL 380 5.26 TL - 386 3.63 TL 386 3.63 TL -
ngeut9 390 2.56 TL 390 2.56 TL - 400 0.00 54.89 400 0.00 21.20 400
ngcutl0 879 2.39 TL 879 0.00 3255 - 879 2.39 TL 879 2.39 TL -
ngeutl 1 842 6.89 TL 842 6.89 TL - 873 3.09 TL 873 3.09 TL -
ngeutl2 898 0.22 TL 898 0.22 TL - 900 0.00 3644 900 0.00 11.12 900

Average 2.57 823.07 1.98 707.23 1.06 555.37 0.97 517.19
F/W OPT R/W OPT
cgeutl 244 6.56 TL 244 6.56 TL 244 260 0.00 2599 260 0.00 31.03 -
cgeut2 2856 224 TL 2856 224 TL 2892 2861 2.06 TL 2865 1.92 TL -
cgeut3 1860 8.60 TL 1860 8.60 TL 1860 1900 7.37 TL 1900 7.37 TL -
CWI 6402 11.67 TL 6402 11.67 TL 6402 6766 6.06 TL 6766 6.06 TL -
Ccw2 5354 12.53 TL 5354 12.53 TL 5354 5604 751 TL 5604 751 TL -
CwW3 5689 6.52 TL 5689 6.40 TL 5689 5689 6.86 TL 5689 6.52 TL -
okpl 27589 5.97 TL 27589 5.88 TL 27589 28423 2.86 TL 28090 3.99 TL -
okp2 21976 10.90 TL 21947 11.05 TL 22503 23523 5.95 TL 23513 5.83 TL -
okp3 23743 11.83 TL 23743 11.81 TL 24019 25174 6.40 TL 24881 7.81 TL -
okp4 32893 3.00 TL 32893 2.88 TL 32893 32893 334 TL 32893 3.63 TL -
okp5 27923 4.33 TL 27923 4.20 TL 27923 27983 4.15 TL 27983 4.15 TL -
ngcutl 4 164 9.15 TL 164 732 TL - 193 4.15 TL 193 4.15 TL -
ngeut2 230 11.74 TL 230 8.70 TL - 250 2.40 TL 250 2.40 TL -
ngeut3 247 7.69 TL 247 6.88 TL - 259 2.70 TL 259 2.70 TL -
ngeutd 268 0.00 369.86 268 0.00 7.73 - 268 0.00 34572 268 0.00 72.77 -
ngeuts 358 4.19 TL 358 0.00 9.93 - 370 0.00 676.13 370 0.00 33.34 -
ngcut6 289 9.69 TL 289 4.50 TL - 298 6.38 TL 298 6.38 TL -
ngcut7 430 0.00 0.58 430 0.00 0.60 - 430 0.00 111 430 0.00 1.07 -
ngcut8 834 12.47 TL 834 12.47 TL - 886 5.87 TL 886 5.87 TL -
ngeut9 924 4.11 TL 924 0.00 306.37 - 924 4.11 TL 924 4.11 TL -
ngeut10 1452 0.00 113.35 1452 0.00 313.26 - 1452 4.82 TL 1452 4.48 TL -
ngeutl 1 1688 11.85 TL 1688 8.59 TL - 1786 6.27 TL 1786 5.32 TL -
ngeutl2 1865 9.01 TL 1865 9.01 TL - 1932 6.73 TL 1932 5.07 TL -

Average 7.13 804.51 6.14 732.86 4.17 789.91 4.14 750.31

average gap for the FC4_Strengthened model was less than 1%, and full occupancy

was obtained for 8 instances, 73% of ngcut instances.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
120 Programming Model for Rectangular Cutting Problems

8.6.3 The ‘floating cuts’ MILP model for the guillotine k-staged two-
dimensional SLOPP

In practice, it is common to consider an additional constraint related to the number
of stages regarding guillotine cutting patterns. The MILP model (8.1) - (8.44) allows
guillotine cutting patterns of type non-staged. However, in some cases, the number of
stages should be limited due to machinery constraints. Introducing this constraint of
the number of stages in MILP model (8.1) - (8.44) is not straightforward. This section
proposes a new MILP for k-staged cutting patterns based on the one presented to deal
with first-order non-guillotine cutting problems.

The MILP model for the k-staged problem is based on the assumption that in a
given rectangle, only three situations may occur: the rectangle is cut horizontally; the
rectangle is cut vertically; or an item is assigned to the rectangle. If a rectangle is cut
vertically, two new rectangles are obtained, i.e., the left and the right sub-rectangles.
The width of the new sub-rectangles is equal to the width of the rectangle/sub-rectangle
of the previous level and the sum of the lengths of the left and right sub-rectangles is
equal to the length of the rectangle/sub-rectangle of the previous level. Similarly, if a
horizontal cut is performed, two new rectangles are obtained, i.e., the top and bottom
sub-rectangles. Their dimensions can also be calculated considering the dimensions
of the rectangle/sub-rectangle of the previous level. The MILP model for the k-staged
problem hereafter will be named “FC2”, since from a cut a maximum of two sub-
rectangles are generated.

In Figure 8.10, rectangles and sub-rectangles are numbered on the top left corner.
In rectangle j, two types of cuts can be performed, i.e., vertical and horizontal. If
a vertical cut is performed, a maximum of two new sub-rectangles is obtained, i.e.,
sub-rectangle j + 1 (left) and sub-rectangle j + 2 (right), and their dimensions are
obtained considering the dimension of rectangle j. If a horizontal cut is performed,
a maximum of two new sub-rectangles is created, i.e., sub-rectangle j + 3 (top) and
sub-rectangle j+4 (bottom), and, similarly, their dimensions are obtained considering
the dimensions of rectangle j. The new sub-rectangles can be further cut vertically or
horizontally, in a recursive way.

In Figure 8.11 (a), an example of a tree of sub-rectangles is presented. If index O is

8.6. Extension of the model to the guillotine problem 121

L;
J
=

Lin+ Lo =L; Lps=Lia=1L;
Jj+1 Ej+2 = Jj+3 Top =
+ ¥
: o sub-rectangle ﬁ-

Left ! Right Smsmemmmmmmmmemmmmmmee r
© e = j+4 =
sub-rectangle , sub-rectangle | ¥ Bottom T
' I I
' sub-rectangle

- = : =

Figure 8.10: Types of cuts and sub-rectangles generated.

assigned to the root node (initial plate), indexes 1, 2, 3, and 4 are assigned to the left,
right, top and bottom sub-rectangles (respectively). In the same way, if sub-rectangle
1 is cut, it can result in sub-rectangles 5, 6, 7 and 8 (left, right, top, and bottom), and
so forth for the other sub-rectangles. An illustration of the sub-rectangles indexing is

presented in Figure 8.11 (b).

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
122 Programming Model for Rectangular Cutting Problems

root

AN AN N AN

(a) Tree example

0 1 2 3 4 5 6 7 8 lg r10

(b) Sub-rectangle index

Figure 8.11: Example.

Decision variables 6;;, s;;, t;;, 2;, L; and W; remain as in the formulation for the
first-order non-guillotine cutting patterns. The new decision variables considered are
the following:

1, if sub-rectangle j is cut vertically, j=0,...m
)Cj =

0, otherwise

1, if sub-rectangle j is cut horizontally, j=0,...,m
yj =

0, otherwise

8.6. Extension of the model to the guillotine problem 123

Maximize (8.1)

n
Subject to: X +y;+ > 6;; < 1, Vj=0,..,m; (8.45)
i=1

(8.3) — (8.14),

The objective function is the same as (8.1) and constraints (8.3) - (8.14) remain
from the model for the first-order non-guillotine cutting patterns. Constraints (8.2) are
replaced by (8.45), ensuring that a sub-rectangle j can be cut vertically or horizontally
or an item is assigned to it.

The constraints of the new MILP for the k-staged problem are grouped regard-
ing the vertical and horizontal cuts constraints and the decision variables domain.
The parameter D used in those constraints stands for the rectangular plate’s largest

dimension, i.e., D = max{L,W}.

8.6.3.1 Vertical cuts constraints

Lijy + Lyjy < D(1 —x;) + Ly, Vji=0,..,m; (8.46)
Liy+ L) 2 Ly = D(1 = x;), Vi=0,..,m; (8.47)
Ligjy + Ly(j) < D - xj, Vj=0,..,m; (8.48)
Wiy < D(1—x;) +Wj, Vj=0,..m; (8.49)
Wiy 2 D(x; = 1) + Wy, Vji=0,..m; (8.50)
Wy < D(1—x;) + Wj,, Vji=0,..m; (8.51)
W) 2 D(xj = 1) + Wy, Vi=0,..m; (8.52)
Wiy + Wi <2-D - xj, Vji=0,..,m; (8.53)

Constraints (8.46) - (8.53) are associated with vertical cuts performed in the
father sub-rectangles. Constraints (8.46) - (8.47) ensure that when a vertical cut is

performed, the sum of the lengths of the resulting left and right sub-rectangles is

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
124 Programming Model for Rectangular Cutting Problems

equal to the length of the father sub-rectangle. Similarly, constraints (8.49) - (8.52)
ensure that when a vertical cut is performed, the width of the resulting left and right
sub-rectangles is equal to the width of the father sub-rectangle. Oppositely, if a vertical
cut is not performed on the father sub-rectangle (x; = 0), constraints (8.48) and (8.53)
ensure that the length and the width of the left and right sub-rectangles are set to zero,

respectively.

8.6.3.2 Horizontal cuts constraints

Wiy +Wh(j) < D(1=y;)+Wj, Vj=0,..m; (8.54)
Wiy + Woj) = W;—D(1-y)), Vi=0,...m (8.55)
Wiy +Wpiy <D -y, Vj=0,..,m; (8.56)
Lijy <D(l-y;)+Lj, Vj=0,...,m; (8.57)
Lijy = D(yj - 1) +Lj, Vji=0,..,m; (8.58)
Lyy < D(1—-yj)+Lj, Vji=0,..,m; (8.59)
Lpy 2 D(y; —1)+L;j, Vj=0,..m; (8.60)
Lijy+Lp)y <2-D-yj, Vj=0,..m; (8.61)

Constraints (8.54) - (8.61) are related to horizontal cuts performed in the father
sub-rectangle. Constraints (8.54) and (8.55) ensure that if a horizontal cut is performed
in the father sub-rectangle, the sum of the width of the resulting top and bottom sub-
rectangles is equal to the width of the father sub-rectangle. Constraints (8.57) - (8.60)
guarantee that the length of the resulting top and bottom sub-rectangles is equal to
the length of the father sub-rectangle.

Constraints (8.56) and (8.61) ensure that if a horizontal cut is not performed
(y; = 0) in the father sub-rectangle, the length and the width of the top and bottom

sub-rectangles are set to zero, respectively.

8.6. Extension of the model to the guillotine problem 125

8.6.3.3 Decision variables domain

(8.30) — (8.33),
xj,yj €{0,1}, Vj=0,..,m; (8.62)

Decision variables related to the type of cut are binary, as can be observed in
constraints (8.62).

8.6.3.4 Sub-rectangles index enumeration

Similarly to the MILP for the non-guillotine problem, it is possible to enumerate all
possible indexes of the sub-rectangles of the tree and store them in vector M". In this
case, a tree with 4 levels has Z;’:O 47 elements.

Every element j (not a leaf) has 4 children in the M”" vector (left, right, top, and
bottom), which can be traced: [=4 - j+ 1;r=4-j+2;t=4-j+3;eb=4-j+4.
Therefore, given an index j (Vj # 0), it is possible to obtain the sub-rectangle’s rela-
tive position (left, right, top, and bottom) adapting Algorithm 2 and use an adaptation
of Algorithm 3 to identify the father of a sub-rectangle j.

8.6.3.5 Model strengthening

To strengthen the MILP formulation for the staged problem, a set of valid inequality
constraints were added to the model. The area bound (8.36) is also considered.

Last level rectangles

Similarly to constraints (8.37), constraints (8.63) ensure that the sub-rectangles of the

last level cannot be further cut, i.e., only items can be assigned to them.

xj+y; =0, Vji= M"Y, M (8.63)

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
126 Programming Model for Rectangular Cutting Problems

Symmetry reduction
Lyjs1 — Lajso > D(xj = 1), Vji=0,..|M" (8.64)
Wi.js3 = Wajua = D(y; — 1), Vji=0,..,|M" (8.65)

Constraints (8.64) and (8.65) are used to reduce symmetry in the generation of
sub-rectangles by imposing that the left (top) sub-rectangle is larger than the right

(bottom) sub-rectangle when a vertical (horizontal) cut is applied.

Relation between father and children sub-rectangles

4 n n
Z(x4-j+k + V4. jek + Z Oi(4-j+k)) S22~ Z i Vji=0,..[M"?
=1 im1 im1
(8.66)
4 n n
Do Gitageny S2=2- > 61, Vj=IM"2, L M
=1 i=1 im1

(8.67)

Constraints (8.66) and (8.67) ensure that if an item is allocated to a sub-rectangle
J, then j has no descendants.

4 n
Z(X4.\/+k + V4. jik + Z Oi(a-j+k) S 2-(xj+y)), Vj=0,..|M"?
k=1 i=1
(8.68)
4 n
DU Giageiy 20 (xj+yp), V= MR
k=1 i=1

(8.69)

Constraints (8.68) and (8.69) ensure that if a sub-rectangle j is not cut, then j

has no descendants. This condition prevents a rectangle from remaining “undecided”

8.6. Extension of the model to the guillotine problem 127

(i.e., it is neither cut nor it has an item assigned to it) along several levels of the tree.

8.6.3.6 k-staged cutting patterns

The limitation on the number of stages can be considered by simply removing the
decision variables associated with the sub-rectangles that require the generation of a
number of stages larger than the k stage limit. To identify these decision variables,
we need to calculate how many changes in the orientation of the cuts (horizontal or
vertical) need to occur up to the j sub-rectangle. For example, if a sub-rectangle is
generated after two vertical cuts, followed by a horizontal cut, this corresponds to two
stages. Algorithm 5 (available in Appendix) determines the number of changes in the

orientation of the guillotine cuts for a given sub-rectangle ;.

8.6.3.7 Item rotation

To consider item rotation, as it is done in a generalized way, a replica of each item
rotated by 90 degrees (the length of the replica is equal to the width of the original item,
and vice-versa) is added to the data. Constraints (8.3) should be updated accordingly
to guarantee that the original item and its replica do not exceed the original item’s
demand.

An interesting insight pops up when item rotation is allowed. Until now, we have
considered that the first cut on the plate could be either vertical or horizontal. However,
when items can rotate, we can fix the first cut (to make the explanation simpler, let us
assume that we fix it vertically) without loss of generality/optimality, as any cutting
pattern we would obtain with a horizontal first cut can be obtained with a vertical first
cut using the rotated items and a rotated plate. Figure (8.12) visually depicts this
insight.

This means that if we allow the rotation of the plate, we can fix the first cut and
cut off half of the search tree, at the cost of inserting one additional binary variable,
which stands for the decision of rotating the plate or not. Therefore, to the previously

presented model, we insert a new binary variable r:

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
128 Programming Model for Rectangular Cutting Problems

Figure 8.12: A cutting pattern with a horizontal first cut, and the correspondent pattern

with the items and the plate rotated obtained with a vertical first cut.

r €{0,1};

a new constraint forcing the first cut to be vertical:

xo=1;

and replace constraints (8.12) and (8.13) with the following constraints:

Lo=W-r+L-(1-r);
Wo=L-r+W-(1-r);

heavily reducing symmetry in the model.

(8.70)

(8.71)

(8.72)
(8.73)

8.7. Computational experiments - guillotine problem 129

8.7 Computational experiments - guillotine problem

In this section, the computational experiments are divided into two parts. Firstly it
is presented a comparison between the model for first-order non-guillotine patterns
with guillotine constraints ((8.1) - (8.44)) the FC4_Strengthened, and the model
designed explicitly for guillotine cutting patterns “FC2”. Secondly, it is presented a
comparison of the FC4_Strengthened and FC2 models proposed for guillotine cutting
patterns with the existing models from the literature. Graphical examples of guillotine

solutions obtained are provides in Appendix.

8.7.1 Non-staged 2DSKP and 2DSLOPP - comparison between FC4_-
Strengthened and FC models

Similarly to what was done for the model for first-order non-guillotine cutting patterns,
preliminary experiments were conducted to determine the best 4 for the FC2 model.
In Appendix, Tables 3 and 4 for 2DSKP and 2DSLOPP, respectively, present all the
experiments. We performed an analysis for the parameter / similar to that in Section
8.5, although we do not present the charts in this section. In the computational
experiments for the 2DSKP, it will be considered /4 = 6, and for the 2DSLOPP, it will
be h =5.

The comparison between both models is presented in Tables 8.6 and 8.7. For
the 2DSKP, the FC4_Strengthened model performed better in problem variants F/U,
F/W and R/U in terms of the number of optimal solutions proved by the solver and
regarding the average gap. The opposite behaviour was found in problem variant R/W,
in which the FC2 model had six optimal solutions against 5 from FC4_Strengthened
model.

Regarding the 2DSLOPP, the FC2 model had the worst performance regarding
the gap with an average value of 39.99%, while the gap for the FC4_Strengthened
model was 5.42%. In Figure 8.13, it can be seen that the worst gaps were obtained for
variants F/W and R/W.

For 2DSLOPP variant R/U the full occupation was found in seven instances

with both models. The solver proved optimality in these seven instances with the

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
130 Programming Model for Rectangular Cutting Problems

Table 8.6: Computational results for guillotine SKP comparison between FC4_-
Strengthened and FC2.

F/U OPT R/U OPT
Instance FC4_Strengthened FC2 FC4_Strengthened FC2

h 7 Gap*(%) T(s) h Z Gap®(%) T(s) h Z Gap®(%) T(s) h 7 Gap*(%) T(s)
cgeutl 144 4.17 TL 144 4.17 TL - 150 0.00 1241 150 0.00 2834 150
cgeut2 2740 2.19 TL 2740 2.19 TL - 2769 1.12 TL 2678 4.56 TL -
cgeut3 2721 2.90 TL 2721 2.90 TL - 2754 1.67 TL 2754 1.67 TL -
CW1 12797 2.56 TL 12797 2.56 TL - 12797 2.56 TL 12777 272 TL -
Ccw2 23240 2.95 TL 23240 2.95 TL - 23643 1.19 TL 23299 2.69 TL -
CW3 53755 2.82 TL 53755 2.82 TL - 54070 222 TL 54022 2.31 TL -
okpl 8836 13.17 TL 8836 13.17 TL - 9448 5.84 TL 9448 5.84 TL -
okp2 9749 2.58 TL 9615 4.00 TL - 9828 1.75 TL 9863 1.39 TL -
okp3 9838 1.65 TL 9838 1.65 TL - 9893 1.08 TL 9751 2.55 TL -
okp4 9818 1.85 TL 9677 334 TL - 9810 1.94 TL 9823 1.80 TL -
okp5 9749 2.58 TL 9615 4.00 TL - 9780 225 TL 9863 1.39 TL -
ngeutl 4 95 0.00 32607 6 95 5.26 TL - 4 97 3.09 TL 6 77 23.38 TL -
ngeut2 97 3.09 TL 97 3.09 TL - 100 0.00 1138 92 5.44 TL 100
ngeut3 100 0.00 4.83 100 0.00 115.16 100 100 0.00 1953 100 0.00 7655 100
ngeutd 138 0.00 25.64 138 217 TL - 138 0.00 18.13 108 0.00 2.81 -
ngeuts 140 0.00 10.28 140 7.14 TL - 150 0.00 2.38 143 4.90 TL 150
ngcut6 148 1.35 TL 148 1.35 TL - 150 0.00 1348 148 1.35 TL 150
ngeut7 175 0.00 0.74 175 0.00 541 - 175 0.00 2.16 154 0.00 1.55 -
ngeut8 380 5.26 TL 380 5.26 TL - 386 3.63 TL 312 0.00 332 -
ngcut9 390 2.56 TL 387 3.36 TL - 400 0.00 2181 391 230 TL 400
ngeut10 879 0.00 1897 660 0.00 9.58 - 879 091 TL 690 0.00 2.10 -
ngeutl 1 842 6.89 TL 651 15.05 TL - 873 3.09 TL 749 0.00 293 -
ngeutl2 894 0.67 TL 792 13.64 TL - 895 0.56 TL 820 9.76 TL -

Average 2.58 68276 4.35 788.27 14359201 322 631.20
F/W OPT R/W OPT
cgeutl 244 6.15 TL 244 779 TL 244 260 0.00 97.64 260 0.00 447.82 -
cgeut2 2856 224 TL 2856 224 TL 2892 2848 2.53 TL 2860 2.10 TL -
cgeut3 1860 8.60 TL 1860 8.60 TL 1860 1900 6.32 TL 1900 6.32 TL -
CW1 4837 10.17 TL 4837 11.83 TL - 4930 8.62 TL 4874 10.69 TL -
Ccw2 4673 15.37 TL 4673 15.77 TL - 5017 7.57 TL 5062 6.82 TL -
CwW3 4593 16.07 TL 4593 15.76 TL - 4936 7.68 TL 4874 9.23 TL -
okpl 22752 17.38 TL 22752 17.88 TL - 25721 4.14 TL 25721 4.18 TL -
okp2 22502 833 TL 21416 16.59 TL - 23513 5.86 TL 23513 5.80 TL -
okp3 24019 10.84 TL 23740 13.09 TL - 25216 6.22 TL 25216 6.18 TL -
okp4 25939 11.23 TL 25939 12.50 TL - 27568 525 TL 27568 533 TL -
okp5 21814 12.08 TL 21127 15.77 TL - 24263 2.58 TL 23513 6.00 TL -
ngeutl 4 164 0.00 243.10 6 141 0.00 16.47 - 4 193 4.15 TL 6 145 15.86 TL -
ngeut2 230 2.61 TL 198 0.00 37.81 - 250 1.20 TL 198 4.04 TL -
ngeut3 247 7.29 TL 201 19.90 TL - 259 2.70 TL 214 12.62 TL -
ngeutd 268 0.00 3442 207 0.00 3.84 - 268 0.00 36.21 207 0.00 213 -
ngeuts 358 0.00 8.93 262 12.98 TL - 370 0.00 1036 284 4.23 TL -
ngeut6 289 4.15 TL 282 9.57 TL - 298 6.38 TL 298 3.69 TL -
ngeut7 430 0.00 0.73 374 0.00 4.67 - 430 0.00 2.14 374 0.00 355 -
ngeut8 834 12.47 TL 673 0.00 7.03 - 886 5.87 TL 673 0.00 3.77 -
ngeut9 924 0.00 2393 839 3.34 TL - 908 5.95 TL 839 3.46 TL -
ngeut10 1452 0.00 1641 998 0.00 7.87 - 1452 4.48 TL 1063 0.00 2.89 -
ngeutl1 1688 9.66 TL 1195 20.42 TL - 1780 545 TL 1439 0.00 4.33 -
ngeutl2 1865 9.38 TL 1615 14.30 TL - 1932 5.59 TL 1661 8.31 TL -

Average 7.13 680.20 9.49 668.60 4.28 750.67 4.99 685.41

FC4_Strengthened model, while with the FC2 model it only proved optimality in two

instances.

The optimal solution in 2DSLOPP variant F/W was known from the literature in
11 instances (cgcutl-3, CW1-3, okp1-5). Both models reached the optimal solution in
eight instances. However, the solver could not prove it and the gaps are much smaller
in the FC4_Strengthened model compared to the FC2 model.

8.7. Computational experiments - guillotine problem 131

Table 8.7: Computational results for guillotine SLOPP comparison between
FC4_Strengthened and FC2.

F/U OPT R/U OPT
Instance FC4_Strengthened FC2 FC4_Strengthened FC2

h Z Gap®*(%) T(s) h Z Gap®(%) T(s) h Z Gap®(%) T(s) h Z Gap®*(%) T(s)
cgeutl 144 4.17 TL 144 56.25 TL - 150 0.00 4.46 150 50.00 TL 150
cgeut2 2778 0.79 TL 2740 58.54 TL - 2751 1.78 TL 2757 57.56 TL -
cgeut3 2721 2.90 TL 2721 147.01 TL - 2754 1.67 TL 2754 164.60 TL -
CWI 12777 272 TL 12885 175.94 TL - 13053 0.55 TL 12972 262.00 TL -
cw2 23418 217 TL 23196 319.65 TL - 23670 1.08 TL 23670 207.02 TL -
CW3 54063 223 TL 53983 350.35 TL - 54290 1.80 TL 54608 355.14 TL -
okpl 9938 0.62 TL 9922 213.18 TL - 9960 0.40 TL 9960 186.37 TL -
okp2 9743 2.64 TL 9534 4.89 TL - 9842 1.61 TL 9828 1.75 TL -
okp3 9812 1.92 TL 9681 3.30 TL - 9893 1.08 TL 9755 251 TL -
okp4 9976 0.24 TL 9852 203.09 TL - 9979 0.21 TL 9979 156.30 TL -
okp5 9952 0.48 TL 9965 291.51 TL - 10000 0.00 31.60 10000 243.80 TL 10000
ngeutl 4 95 526 TL 5 95 0.00 476.36 - 4 97 3.09 TL 5 97 22.68 TL -
ngeut2 97 3.09 TL 97 22.68 TL - 100 0.00 2.67 100 55.00 TL 100
ngeut3 100 0.00 1.84 100 105.00 TL 100 100 0.00 551 100 102.00 TL 100
ngeutd 138 0.00 5.47 138 0.00 392.35 - 138 0.00 99.24 138 0.00 304.16 -
ngeut5 140 0.00 8.00 140 0.00 288.20 - 150 0.00 1.52 150 18.00 TL 150
ngeut6 148 1.35 TL 148 6351 TL - 150 0.00 3.54 150 69.33 TL 150
ngeut? 175 0.00 0.42 175 0.00 3.40 - 175 0.00 1.48 175 0.00 1.97 -
ngeut8 380 526 TL 380 56.58 TL - 386 3.63 TL 386 63.99 TL -
ngeut9 390 2.56 TL 390 59.74 TL - 400 0.00 21.20 400 65.50 TL 400
ngeut10 879 0.00 3255 879 0.00 666.14 - 879 239 TL 879 19.57 TL -
ngeutll 842 6.89 TL 842 14.61 TL - 873 3.09 TL 873 49.26 TL -
ngeutl12 898 0.22 TL 894 68.12 TL - 900 0.00 11.12 900 71.33 TL 900

Average 1.98 707.23 96.26 783.76 097 517.19 96.68 835.05
F/w OPT R/IW OPT
cgeutl 244 6.56 TL 244 49.18 TL 244 260 0.00 31.03 260 40.00 TL -
cgeut2 2856 224 TL 2856 55.78 TL 2892 2865 1.92 TL 2863 55.40 TL -
cgeut3 1860 8.60 TL 1860 112.37 TL 1860 1900 7.37 TL 1900 169.47 TL -
CWI 6402 11.67 TL 6402 148.56 TL 6402 6766 6.06 TL 6766 165.36 TL -
cw2 5354 12.53 TL 5354 177.16 TL 5354 5604 751 TL 5471 167.19 TL -
CW3 5689 6.40 TL 5689 160.63 TL 5689 5689 6.52 TL 5744 196.38 TL -
okpl 27589 5.88 TL 27589 219.06 TL 27589 28090 3.99 TL 28090 182.50 TL -
okp2 21947 11.05 TL 21154 15.44 TL 22503 23513 5.83 TL 23513 5.99 TL -
okp3 23743 11.81 TL 23743 12.48 TL 24019 24881 7.81 TL 24485 9.68 TL -
okp4 32893 2.88 TL 32893 152.60 TL 32893 32893 3.63 TL 32893 140.94 TL -
okp5 27923 420 TL 27923 30826 TL 27923 27983 4.15 TL 27983 174.29 TL -
ngeutl 4 164 732 TL 5 164 0.00 542.73 - 4 193 4.15 TL 5 193 0.00 645.25 -
ngeut2 230 8.70 TL 230 2391 TL - 250 2.40 TL 250 33.20 TL -
ngcut3 247 6.88 TL 247 52.63 TL - 259 2.70 TL 259 56.37 TL -
ngeut4 268 0.00 7.73 268 0.00 336.92 - 268 0.00 7277 268 0.00 353.22 -
ngeut5 358 0.00 9.93 358 0.00 295.82 - 370 0.00 3334 370 0.00 417.62 -
ngeut6 289 4.50 TL 276 42.03 TL - 298 6.38 TL 298 50.00 TL -
ngeut? 430 0.00 0.60 430 0.00 2.88 - 430 0.00 1.07 430 0.00 254 -
ngeut8 834 12.47 TL 828 4191 TL - 886 587 TL 886 59.26 TL -
ngeut9 924 0.00 306.37 924 35.82 TL - 924 4.11 TL 924 40.58 TL -
ngeut10 1452 0.00 313.26 1452 0.00 161.26 - 1452 4.48 TL 1452 10.40 TL -
ngeutl 1 1688 8.59 TL 1688 17.36 TL - 1786 532 TL 1786 43.84 TL -
ngeutl2 1865 9.01 TL 1865 60.75 TL - 1932 5.07 TL 1932 59.52 TL B

Average 6.14 732.86 73.30 762.59 414 750.31 72.19 805.16

Summing up, the FC4_Strengthened model with guillotine constraint outper-
formed the FC2 model in both problem types. This supremacy is because when a cut
is performed in this model, four new rectangles can be produced, while with the FC2
model, only two new rectangles are obtained. In this way, the FC2 model requires
a deeper level in the tree search to find similar solutions, which results in a more

complex tree search.

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer

132 Programming Model for Rectangular Cutting Problems
SKP SLOPP
25 350
300
20
250
g . . £ 200
8 1 - & 150
X 100
5 o /3
% I "
0 él 0 R =3 =
O rca r/u Mrc2_Fu [JFcaR/U FC2_R/U [JrFca F/u B Fc2_Fu [JFca R/U FC2_R/U
O rca //w M rc2_F/w [Fca r/W B FC2_R/W [rFca r/w W rFc2_F/w [rFca R/w B FC2_R/W

Figure 8.13: Analysis of the gap reported by Gurobi for the FC4_Strengthened and
FC2 models.

8.7.2 Comparison with mathematical models from the literature

In this section, the performance of the ‘floating cuts’ FC4_Strengthened and FC2
models are compared with other exact approaches. For each instance we detail the
number of item types n and the value of the optimal solution known from the literature
(OPT), for each approach from the literature it is presented the gap to the optimal so-
lution (Gap®”* (%)), and solution time (T(s)) reported by the authors. For the ‘floating
cuts’ model, the following is presented: the 4 considered, the gap to the optimal solu-
tion (Gap“?’ (%)), the gap reported by the solver (Gap®(%)) and the total time (T(s)).
The gap to the optimal solution (Gap??’(%))) is computed as 100 = (opt — o fv)/opt,
where opt and o fv are, respectively, the optimal solution and objective function value
of the model.

2DSKP

The computational experiments were performed on the gcutl-12 instances originally
proposed by Beasley [9]. Recently, these instances have been used in Furini et al. [44],
Martin et al. [73], and Martin et al. [75].

For the 2-stages - F/U problem variant, FC2 model was considered, since it allows
the limitation on the number of stages. Preliminary experiments were also conducted

to define the best £ to use for the variant 2-stages F/U and the results can be assessed

8.7. Computational experiments - guillotine problem 133

in Appendix, Tables 3 and 4 for 2DSKP and 2DSLOPP, respectively. It was concluded
that & = 6 will be used. It is considered that the first cut is horizontal, as in Martin et
al. [73], so the decision variable related to the horizontal cut in the initial rectangle is
fixed to one (yg = 1). The computational results are compared in Table 8.8. In Martin
et al. [73], a time limit of one hour was defined, and the symbol “*” is used when the
solver ran out of memory during its execution and a gap of 100 means that no integer
solution was found.

The solver proved optimality for the ‘floating cuts’ model in all but one instance.
Although the value obtained was the optimal (gcut8). The average time was 251.87
seconds. For the model from Martin et al. [73], the solver ran out of memory in three
instances, and the average time was 333.74 seconds.

For the 2DSKP with guillotine constraints and no limitation on the number of
stages, the FC4_Strengthened model will be used with # = 4 as previously defined
in the preliminary experiments. The results of this model with gcutl-12 problem
instances were compared with the results of Furini et al. [44], and Martin et al. [75],
and can be analysed in Table 8.9.

The ’floating cuts’ model and the 2d-Top model from Martin et al. [75] outperform

the model from Furini et al. [44] since the solver proved optimality in only two out

Table 8.8: Computational results for 2-stage - F/U SKP comparison between Martin
et al. [73] and FC2.

2-stage - F/U
Instance n OPT Martin et al. [73] FC2

Gap?P" (%) T(s) h Gap°”' (%) Gap* (%) T(s)

geutl 10 43024 0.00 1.72 0.00 0.00 3.56
geut2 20 57996 0.00 39.02 0.00 0.00 8555
gcut3 30 59895 0.00 57151 0.00 0.00 108.98
geutd 50 60504 100.00 * 0.00 0.00 772.78
geutS 10 193379 0.00 1.96 0.00 0.00 3446
geut6 20 224399 0.00 32.44 6 0.00 0.00 50.24
geut7 30 238974 0.00 96.12 0.00 0.00 31033
geut8 50 245758 100.00 * 0.00 1.73 TL
geut9 10 919476 0.00 1.35 0.00 0.00 29.10
geutl0 20 856445 0.00 15.32 0.00 0.00 108.22
geutll 30 942219 0.00 224423 0.00 0.00 389.58
geutl2 50 970744 100.00 * 0.00 0.00 229.61

Average 25.00 333.74 0.00 0.14 251.87

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
134 Programming Model for Rectangular Cutting Problems

Table 8.9: Computational results non-staged - F/U SKP comparing Furini et al. [44],
Martin et al. [75] and FC4_Strengthened.

Non-staged - F/U

Instance n OPT Furini et al. [44] Martin et al. [75] FC4_Strengthened
Gap°?! (%) T(s) Gap?P" (%) T(s) h Gap??' (%) Gap®*(%) T(s)
geutl 10 48368 0.00 8.80 0.00 0.04 0.00 0.00 642.25
geut2 20 59307 100.00 TL 0.00 4.65 0.00 5.38 TL
geut3 30 60241 100.00 TL 0.00 13.12 0.00 3.75 TL
geutd 50 60942 100.00 TL 0.00 509.84 0.00 2.56 TL
geut5 10 195582 1.40 TL 0.00 0.21 0.00 0.00 646.35
geut6 20 236305 100.00 TL 0.00 0.70 4 0.00 5.80 TL
geut7 30 238974 100.00 TL 0.00 2.74 0.00 4.61 TL
geut8 50 245758 100.00 TL 0.00 6244 0.00 1.73 TL
geut9 10 919476 0.00 2847.90 0.00 0.28 0.00 8.76 TL
geutl0 20 903435 100.00 TL 0.00 0.78 0.00 10.69 TL
geutll 30 955389 100.00 TL 0.00 14.48 0.00 4.67 TL
geutl2 50 970744 100.00 TL 0.00 14.74 0.00 3.01 TL
Average 7512 215223 0.00 52.00 0.00 425 857.38

of 12 instances. The solver performed very well with the 2d-Top model from Martin
et al. [75], proving optimality in all instances with an average of 52 seconds. In
comparison, the solver for the ‘floating cuts’ model could only prove one optimal
solution. However, the value of all solutions is optimal since Gap®?’(%) was always

ZEr0.

2DSLOPP

For the 2DSLOPP in variant F/U with 2-stages as guillotine constraint, 24 problem
instances proposed in Hifi and Roucairol [55] were considered in the computational
experiments and compared with the results obtained with the exact model ‘M1’
proposed in Lodi and Monaci [70] with the first cut horizontal. The computational
results can be analysed in Table 8.10. The FC2 model was used in these experiments
due to the limitation on the number of stages.

For the integer programming model proposed in Lodi and Monaci [70], the solver
was able to prove optimality in all problem instances with an average computational
time of 43.11 seconds.

The solver proved optimality in 7 out of 24 instances for the ‘floating cuts model’.

However, the optimal value of the solution is obtained for 15 out of the 24 instances.

8.7. Computational experiments - guillotine problem 135

Table 8.10: Computational results for 2-stage -F/U SLOPP comparison between Lodi
and Monaci [70] and FC2.

2-stage - F/U

Instance n OPT Lodi and Monaci [70] FC2
Gap®”" (%) T(s) h Gap?P' (%) Gap®(%) T(s)
2s 10 2430 0.00 0.48 0.00 18.60 TL
3s 20 2599 0.00 0.33 0.00 0.00 383.60
Als 20 2950 0.00 0.27 0.00 0.00 692.58
A2s 20 3423 0.00 2.57 0.00 0.00 819.96
STS2s 30 4569 0.00 10.12 0.04 40.53 TL
STS4s 20 9481 0.00 13.10 0.35 33.52 TL
OF1 10 2713 0.00 0.07 0.00 0.00 77.56
OF2 10 2515 0.00 0.28 0.00 0.00 260.17
W 20 2623 0.00 0.75 0.00 0.00 470.23
CHL1s 30 13036 0.00 4.30 0.07 46.50 TL
CHL2s 10 3162 0.00 0.18 0.00 14.80 TL
A3 20 5380 0.00 1.78 6 0.00 28.18 TL
A4 20 5885 0.00 1.58 0.00 22.18 TL
A5 20 12553 0.00 3.97 0.00 26.06 TL
CHL5 10 363 0.00 0.03 0.00 0.00 123.00
CHL6 30 16572 0.00 21.50 0.57 50.15 TL
CHL7 35 16728 0.00 54.23 1.14 48.25 TL
CUl 25 12312 0.00 11.78 0.00 43.79 TL
CU2 35 26100 0.00 3.67 0.00 28.71 TL
Hchl3s 10 11961 0.00 31293 0.60 36.40 TL
Hchl4s 10 11408 0.00 402.13 0.47 20.50 TL
Hchl6s 22 60170 0.00 19.60 1.36 50.24 TL
Hchl7s 40 62459 0.00 168.20 0.56 87.98 TL
Hchi8s 10 729 0.00 0.72 0.00 6.72 TL
Average 0.00 43.11 0.21 25.13 756.00

For the 2DSLOPP with variant F/U with guillotine constrained with unlimited
number of stages the following instances were used: OF1-2 originally proposed by
Oliveira and Ferreira [80], CU1-11 proposed by Fayard et al. [38] and Wang20
proposed by Wang [107].

The results of the FC4_Strengthened for all problem instances can be compared
with the results from Martin et al. [75]. In Martin et al. [75] a time limit of 900 seconds
was considered. The gap presented in Martin et al. [75] is for the optimal solution,
and no information is given about the gap of the solver. Only for instances of2 and
wang20, the optimality was proven by the solver for the 2d-Top model from Martin
et al. [75] since the time limit was not reached. For this model, the solver reached
the optimal value in 7 instances out of 14, while the FC4_Strengthened reached the

optimal solution in 4 instances, although the solver was not able to prove it. Regarding

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
136 Programming Model for Rectangular Cutting Problems

the value of the solution, the model from Martin et al. [75] obtained lower gaps than
the proposed model in 8 instances. The proposed model reached lower gaps in three
instances on the other side. In this way, both models seem to share the same weakness,
the certificate of quality due to weak LP-bounds.

The computational results for OF1-2, CU1-2 and Wang20 problem instances,
obtained by the ‘floating cuts’ model, were compared with the results of the mathe-
matical model presented in Furini et al. [44]. The model from Furini et al. [44] was
able to prove optimality in 4 out of 5 instances, while the proposed model reached
the optimal value in 3 out of 5. However, for problem instance cu2, the solver was not
able to find a feasible solution in 1 hour for the model from Furini et al. [44], while
the solver stopped in 900 seconds for the proposed model with a gap of 0.56% for the
optimal solution.

The three data sets used in the first set of computational experiments presented
in Section 8.5 were also used for the 2DSLOPP with F/W variant (cgcutl-3, CW1-3,
and okpl-5). Besides, problem instances CW4-11 from Fayard et al. [38] are also

included.

As in the unweighted version of the problem, the results of the proposed model

Table 8.11: Computational results for non-staged - F/U SLOPP comparing Furini et
al. [44], Martin et al. [75] and FC4_Strengthened.

Non-staged - F/U

Instance n OPT Furini et al. [44] Martin et al. [75] FC4_Strengthened
Gap®P" (%) T(s) Gap®P" (%) T(s) h Gap°?’ (%) Gap®(%) T(s)
ofl 10 2737 0.00 53.90 0.00 TL 0.88 321 TL
of2 10 2690 0.00 66.00 0.00 5.94 0.00 409 TL
cul 25 12330 0.00 1460.80 0.15 TL 0.00 1.38 TL
cu2 35 26100 100.00 TL 0.00 TL 0.56 1.14 TL
cu3 45 16723 - - 0.69 TL 1.00 1.18 TL
cud 45 99495 - - 0.20 TL 0.23 1.64 TL
cu5 50 173364 - - 0.53 TL 4 0.20 147 TL
cub6 45 158572 - - 0.00 TL 0.51 087 TL
cu7 25 247150 - - 0.00 TL 0.41 476 TL
cu8 35 433331 - - 0.14 TL 0.26 2.68 TL
cu9 25 657055 - - 0.00 TL 0.00 227 TL
cul0 40 773772 - - 0.85 TL 0.51 1.59 TL
cull 50 924696 - - 2.02 TL 2.95 375 TL
wang20 19 2721 0.00 60.70 0.00 435.10 0.00 290 TL

Average 20.00 1048.28 0.33 803.79 0.54 235 TL

8.7. Computational experiments - guillotine problem 137

were compared to the results from Martin et al. [75], and Furini et al. [44].

The average gap obtained by the solver for the proposed model is larger for the
weighted instances (10.45%) than the unweighted instances (2.35%). The proposed
model reached the optimal solution in 14 out of 19 instances. Although, the solver

was not able to prove optimality in none of them.

For the 14 instances solved with the model from Martin et al. [75], the solver
reached the optimality in all but one instance. However, the solver proved the opti-

mality in only 5 instances.

The solver was able to obtain the optimal solution for the model from Furini et al.
[44] in 5 out of the 11 instances tested. The solver could not find a feasible solution
in two instances (CW2 and CW3). For the instances in which the optimality was not

reached for the model of Furini et al. [44], the proposed model could obtain lower

gaps.

Table 8.12: Computational results for non-staged - F/'W SLOPP comparing Furini et
al. [44], Martin et al. [75] and FC4_Strengthened.

Non-staged - F/W

Instance n OPT Furini et al. [44] Martin et al. [75] FC4_Strengthened

Gap°?" (%) T(s) Gap®?" (%) T(s) h Gap°”' (%) Gap*(%) T(s)

cgeutl 7 244 0.00 0.10 0.00 4.92 0.00 6.56 TL
cgeut2 10 2892 0.00 58.40 1.24 TL 1.24 224 TL
cgeut3 19 1860 0.00 58.60 0.00 8.28 0.00 8.60 TL
okpl 15 27589 0.00 490.50 - - 0.00 588 TL
okp2 30 22503 30.00 TL - - 2.47 11.05 TL
okp3 30 24019 8.80 TL - - 1.15 11.81 TL
okp4 33 32893 0.00 684.40 - - 0.00 2.88 TL
okp5 29 27923 0.00 2118.60 - - 0.00 420 TL
CW1 25 6402 70.70 TL 0.00 TL 0.00 11.67 TL
CW2 35 5354 100.00 TL 0.00 409.66 4 0.00 1253 TL
CW3 40 5689 100.00 TL 0.00 TL 0.00 640 TL
CW4 39 6175 - - 0.00 TL 0.00 33.04 TL
CW5 35 11659 - - 0.00 TL 0.00 7.69 TL
CW6 55 12923 - - 0.00 TL 2.10 945 TL
CW7 45 9898 - - 0.00 TL 0.00 1539 TL
CW8 60 4605 - - 0.00 TL 2.19 1328 TL
CW9 50 10748 - - 0.00 TL 0.00 1477 TL
CWI10 60 6515 - - 0.00 583.77 0.00 10.02 TL
CWI11 60 6321 - - 0.00 21453 0.00 11.11 TL

Average 28.14 1946.42 0.09 666.44 0.48 1045 TL

Chapter 8. The “Floating Cuts” Model: A General and Flexible Mixed-Integer
138 Programming Model for Rectangular Cutting Problems

8.8 Conclusions and future work

In this Chapter, first-order non-guillotine and guillotine cutting and packing problems
were solved by a new general and flexible Mixed-Integer Linear Programming (MILP)
model: the ‘floating cuts’ model. In this tree search-based model the position of the
cut is not fixed when branching. The ‘floating cuts’ model depends on the definition
of the number of levels of the sub-rectangles tree, which turns it into a parametric
model. As the model is based on a tree search formulation, we propose algorithms to
identify the relative position of a sub-rectangle, the father of a sub-rectangle, and the
level of the tree where a sub-rectangle is located.

Three different ‘floating cuts’ models were proposed: the FC5 for first-order
non-guillotine cutting and packing problems, the FC4 for the non-staged guillotine
cutting and packing problems and the FC2 for k-staged guillotine cutting and packing
problems.

The computational experiments were run with two goals: (1) to evaluate the
performance of the MILP models for the several problem types and variants, always
considering the same set of problem instances and only adapting the data parameters
according to the problem variant; and (2) to compare the ‘floating cuts’ model with
the state-of-the-art exact methods.

For the test cases for the non-guillotine problem for which the optimal solutions
were known, the solver for the FC5 reached the optimal solution in 91% of the cases.
Besides, 75% of the gaps reported by the solver for the FC5_Strengthened were less
than or equal to 6,15% with an average value of 4,07%.

Regarding the extension of the FCS5 to the guillotine version of the problem, the
FC4 (FC4_Base and FC4_Strengthened), the solver obtained the optimal value for 8
out of 11 instances for which the optimal solution was known from the literature.

This supports the claim that the ‘floating cuts’ model is a general and flexible
model, but, above all, paves the way for further research on this idea, which may lead
to even better results in the future.

Regarding the comparison with other exact methods, the FC4_Strengthened model
outperforms the exact method proposed by Furini et al. [44] for the 2-staged and non-

8.8. Conclusions and future work 139

staged F/U variants of the 2DSKP, and also outperforms the results of Martin et al.
[73] for the 2-staged F/U problem variant.

For the non-staged - F/U 2DSKP, the value of the solutions obtained for Martin
et al. [75] and the FC4_Strengthened is the same. However, Martin et al. [75] outper-
formed the proposed floating cuts model since the solver was able to prove optimality
for all tested instances, while only two were proven for the FC4_Strengthened. For
the 2DSLOPP similar results were obtained for both models.

For the non-staged - F/W 2DSLOPP, the model from Martin et al. [75] and the
FC4_Strengthened model outperformed the model from Furini et al. [44], and the re-
sults from Martin et al. [75] are slightly better than the ones from the FC4_Strengthened
model.

The main drawback of the ‘floating cuts’ models is that it cannot prove the overall
optimality of the solution in a single run, i.e., the solutions are optimal for the tree
height (/) considered in that run. Overall optimality requires an iterative framework
where the model is set up and run with an increasing value of 4. However, when
solving instances for which the optimal solution is known, it was clear that most of
the times the model could find the optimal solutions. In the other cases, the gaps were
fairly low. The fast convergence to very good solutions and the low solution times
open future research opportunities regarding the use of the ‘floating cuts’ model in

the context of matheuristics.

Chapter 9

Conclusions

We presented a broad yet concise study of the C&P problems named Pallet Building
Problem (PBP) and Rectangular Cutting Problem (RCP). When considering PBP, we
solve a variation of the root problem, including in it standard constraints (rotation,
stackability etc.) as well as new practical constraints (visibility and contiguity). On the
other hand, when considering RCP, we solve the classic variations of the problem by
using the innovative idea of floating-cuts to place items inside a container. We proposed
techniques to solve both problems based on heuristic, metaheuristic, matheuristic
and exact methods. The instances used were taken from an Italian company (PBP)
in addition to instances taken from the related literature (RCP). Our work yielded

effectively compact and competitive results.

In Chapter 4 a new heuristic technique was introduced to solve the PBP. The
advantage of using this technique is its low execution time, allowing it to create a
solution in milliseconds. Additionally, we analyzed the grouping of items by using
several evaluation functions. It includes generality to the proposal, when adding the
possibility to choose different functions tailored to the instance that will be solved.

In Chapter 5 we have included improvements on our previous work now allowing
automated choice of the evaluation functions during the optimization process. This
is possible by using GRASP metaheuristic with the choice of evaluation function

based on the reactive method. In this case, in addition to the extensive exploration

142 Chapter 9. Conclusions

of the search space provided by the GRASP metaheuristic, the optimization process
has improved because the reactive method interacts dynamically during the solution

construction, resulting in a broader process which is less related to parametric settings.

In Chapter 6 we extended the basic technique for solving the PBP by replacing the
heuristic method for piling layers with an exact method. The key point here is the fact
that most of the time it is more efficient to devote additional time on layer optimization
rather than starting a new solution at the individual items level. Nevertheless, given
the inherent challenges of optimizing anything, a more precise analysis for different

scenarios is needed.

In Chapter 7 we conclude our proposal for the PBP by formally describing the
problem in detail, which to the best of our knowledge has never been documented in
literature, and by proposing exact methods to help the heuristic algorithm resolve the
problem of packing items in layers. We recognize the optimization potential of this
method, as well as its weakness when addressing complex scenarios. However, the
combination of exact and heuristic methods guided by a metaheuristic one can improve

the results and make the algorithm competitive both theoretically and practically.

In Chapter 8 we propose new Mixed-Integer Linear Programming (MILP) models
to solve guillotine and non-guillotine cuts, based on the recent and innovative idea of
floating cuts on a tree search. The model proposed is parametric since its dimension
(number of variables and constraints) is dependent on the number #/ of levels of the
tree, i.e., the model becomes more complex as the value of 4 increases. Simply put, the
technique consists of enumerating all possible solutions from a single plate, which are
strongly reduced by including valid inequality constraints for eliminating symmetric
solutions. The proposed models are flexible enough to solve two classes of the RCP
as well as many of their variants. Despite the drawback of not proving optimality in
a single run, the models are very competitive both in terms of quality of the solution

and in terms of solution gap when the optimal solution value is known.

9.1. What are the main questions answered? 143

9.1 What are the main questions answered?

Via our work we were able to answer many questions about PBP and RCP, although
there are many more unanswered questions to be addressed by future research.

In the category of questions answered, we highlight the combination of heuristic,
exact and metaheuristic techniques, and the impact each one has on the whole pro-
cess. Naturally, not all the cases were included, given the large number of possible
scenarios. However, in these works we were able to analyze various scenarios in order
to standardize the execution of the algorithm developed.

Additionally, this work also highlights the necessity for parametric tuning of the
solution techniques when used independently or combined with others to create an
efficient algorithm. As stated, it was not a trivial task to define a configuration that
would yield a reasonably efficient solution, since the set of parameters used is directly
linked to the quality of the solutions.

An important achievement of this work is directly related to the RCP technique,
which in turn is based on floating cuts. As previously mentioned, the floating cuts
strategy makes the mathematical models for C&P more efficient and flexible, since
there is no need for the variables that decide the position of the cuts in a container.
Therefore, we were able to include a series of simplifications to the model as well as
substantially reducing the number of variables and constraints when developing the
MILP model based on this strategy.

9.2 What could have been done better?

Taking into consideration the steps taken in the development of this research, I would
like to highlight some points that could help, were it to start today.

The first point is related to the database and the partnership with the company to
solve the PBP with practical constraints. Our partnership was explicitly restricted to
the use of the real database, leading to no direct contact with the real life scenario in
day to day operations. Research that is limited in such practical applications so that it

can only be developed in the theoretical field has its effectiveness drastically reduced,

144 Chapter 9. Conclusions

given that theory and practice are intrinsically linked. Therefore, keeping theory and
practice together would be ideal not only for this research, but also for any successive

research that may be required.

When it comes to the algorithms, the wide application of the technique for the PBP
is another point that I wish had been done. The reasoning for this is the wide application
achieved with the implementation of said model for several variants for the RCP. In
that regard, we were able to approach a considerably wider range of problems, which
in practical situations is much more advantageous. A simple example of situations
not covered adequately was dealing with instances consisting of only similar items,
this requires a more robust algorithm than the one used herein in order to efficiently

create compact solutions.

Regarding the practical problem, we gave too much attention to the new practical
constraints, inadvertently overlooking other constraints that should have had similar
consideration, for example, the ‘stackability’ constraint, which is of utmost importance
in the PBP. Even though the problem can still be solved efficiently in several cases,
however the disregard of a more refined formulation for this constraint leads to a
solution with less applicability in practical real-world situations.

Regarding the planning of experiments, a few points could have been taken into
consideration to improve our research. For example, a study of the evolution of
the solution quality for the algorithms proposed would have increased the scientific
contributions reached in this work. In addition to that, I would like to point out the
lack of a more accurate study of GRASP-based algorithms. We took for granted that
they would be more efficient algorithms, however we overlooked the analysis which

could have brought new scientific knowledge.

Finally, a critical thinking deduction that fits the philosophical field of research.
The process to develop the best algorithm for a problem requires a long journey, with
small contributions each day. I think the main point is not to try to make the perfect
algorithm in one try, but to start from a basic initial proposal, and the improvements
will come through dedication and hard work. Additionally, suggesting new solutions
is commendable even if they may seem silly, because the most awesome solutions are

often born from simple concepts, and the attitude of advancing into the unknown is

9.3. What are the possible directions for the future? 145

what differentiates the research activity from other professions.

9.3

What are the possible directions for the future?

To finish, possible areas of interest in the near future are included below:

L]

How does one improve the trade-off of the algorithm while meeting all con-
straints included here in a real world situation? Are there other constraints
that must be fulfilled or other situations that have yet to be addressed while

considering the current set of constraints?

Would including other techniques during the optimization process in the PBP
help the optimization? And more specifically, would it be useful to use machine

learning to choose the next item to be placed in a container?

Is it possible to develop an efficient pseudo-polynomial algorithm to solve the
PBP? If so, what would be its best complexity threshold when considering a

generic case?

Is there a simple way to choose the level 4 of the tree search when solving the
RCP? Would it be possible to apply other cuts to further strengthen the model?

Taking into account the floating cuts technique, would it be useful to expand
this idea to other cutting patterns? And how useful would it be to include other

packing constraints in this model (e.g., visibility and contiguity constraints)?

In view of all that has been presented, it is our honest hope that this work can and

will be a useful contribution for future researchers.

Bibliography

[1]

(2]

[3]

[5]

[6]

[7]

Alonso, M., Alvarez-Valdes, R., Iori, M., Parrefio, F.: Mathematical models

for multi container loading problems with practical constraints. Computers &
Industrial Engineering 127, 722-733 (2019)

Alonso, M., Alvarez-Valdes, R., lori, M., Parrefio, F., Tamarit, J.: Mathematical
models for multi container loading problems. OMEGA 66, 106-117 (2017)

Alonso, M., Alvarez-Valdes, R., Parrefio, F.: A GRASP algorithm for multi
container loading problems with practical constraints. 40R-Q J Oper Res 18,
49-72 (2020)

Alonso, M., Alvarez-Valdes, R., Parrefio, F., Tamarit, J.: Algorithms for pallet
building and truck loading in an interdepot transportation problem. Mathemat-
ical Problems in Engineering 2016, 1-11 (2016)

Alonso, M., Alvarez-Valdes, R., Tamarit, J., Parrefio, F.: A reactive GRASP
algorithm for the container loading problem with load-bearing constraints.
European Journal of Industrial Engineering 8, 669-694 (2014)

Alvarez-Valdes, R., Parrefio, F., Tamarit, J.: A branch-and-cut algorithm for
the pallet loading problem. Computers & Operations Research 32, 3007-3029
(2005)

Alvarez-Valdes, R., Parrefio, F., Tamarit, J.: Reactive GRASP for the strip-
packing problem. Computers & Operations Research 35, 1065-1083 (2008)

148 Bibliography

[8] Arenales, M., Morabito, R.: An and/or-graph approach to the solution of two-
dimensional non-guillotine cutting problems. European Journal of Operational
Research 84(3), 599-617 (1995)

[9] Beasley, J.: An exact two-dimensional non-guillotine cutting tree search pro-
cedure. Operations Research 33(1), 49—64 (1985)

[10] Becker, H., Buriol, L.: An empirical analysis of exact algorithms for the un-
bounded knapsack problem. European Journal of Operational Research 277(1),
84-99 (2019)

[11] Bischoff, E., Ratcliff, M.: Issues in the development of approaches to container
loading. Omega 23, 377-390 (1995)

[12] Bortfeldt, A., Gehring, H.: A hybrid genetic algorithm for the container loading
problem. European Journal of Operational Research 131, 143-161 (2001)

[13] Bortfeldt, A., Wischer, G.: Constraints in container loading — a state-of-the-art
review. European Journal of Operational Research 229, 1-20 (2013)

[14] Burke, E., Kendall, G., Whitwell, G.: A new placement heuristic for the or-
thogonal stock-cutting problem. Operations Research 52, 655-671 (2004)

[15] Cacchiani, V., lori, M., Locatelli, A., Martello, S.: Knapsack problems - an
overview of recent advances. Part I: Single Knapsack Problems. Computers &

Operations Research (2022, forthcoming)

[16] Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems -
an overview of recent advances. Part II: Multiple, Multidimensional, and
Quadratic Knapsack Problems. Computers & Operations Research (2022,
forthcoming)

[17] Chazelle, B.: The bottomn-left bin-packing heuristic: An efficient implemen-
tation. IEEE Transactions on Computers C-32, 697-707 (1983)

Bibliography 149

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

Christofides, N., Hadjiconstantinou, E.: An exact algorithm for orthogonal 2-
d cutting problems using guillotine cuts. European Journal of Operational
Research 83(1), 21-38 (1995)

Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting prob-
lems. Operations Research 25(1), 30-44 (1977)

Cintra, G., Miyazawa, F., Wakabayashi, Y., Xavier, E.: Algorithms for two-
dimensional cutting stock and strip packing problems using dynamic pro-
gramming and column generation. European Journal of Operational Research
191(1), 61-85 (2008)

Clautiaux, F., Sadykov, R., Vanderbeck, F., Viaud, Q.: Combining dynamic
programming with filtering to solve a four-stage two-dimensional guillotine-

cut bounded knapsack problem. Discrete Optimization (2018)

Crainic, T., Perboli, G., Tadei, R.: Extreme point-based heuristics for three-
dimensional bin packing. INFORMS Journal on Computing 20, 368-384
(2008)

Crainic, T., Perboli, G., Tadei, R.: Recent advances in multi-dimensional pack-

ing problems. In: New Technologies, chap. 5. IntechOpen (2012)

Cung, V.D., Hifi, M., Cun, B.L.: Constrained two-dimensional cutting stock
problems a best-first branch-and-bound algorithm. International Transactions
in Operational Research 7(3), 185-210 (2000)

Coté, J.F., Dell’Amico, M., Iori, M.: Combinatorial benders’ cuts for the strip
packing problem. Operations Research 62, 643-661 (2014)

Coté, J.F., Haouari, M., Iori, M.: Combinatorial benders decomposition for the
two-dimensional bin packing problem. INFORMS Journal on Computing pp.
1-16 (2021)

150

Bibliography

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

da Silva, E.F., Ledo, A.A.S., Toledo, FM.B., Wauters, T.: A matheuristic frame-
work for the three-dimensional single large object placement problem with
practical constraints. Computers & Operations Research 124, 105058 (2020)

de Queiroz, T., Miyazawa, F.: Two-dimensional strip packing problem with
load balancing, load bearing and multi-drop constraints. International Journal
of Production Economics 145, 511-530 (2013)

de Queiroz, T., Miyazawa, F.: Order and static stability into the strip packing
problem. Annals of Operations Research 223, 137-154 (2014)

Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems:
Mathematical models and exact algorithms. European Journal of Operational
Research 255, 1-20 (2016)

Delorme, M., lori, M., Martello, S.: Logic based benders decomposition for
orthogonal stock cutting problems. Computers & Operations Research 78,
290-298 (2017)

Dolatabadi, M., Lodi, A., Monaci, M.: Exact algorithms for the two-
dimensional guillotine knapsack. Computers and Operations Research 39(1),
48-53 (2012)

Dyckhoft, H.: A new linear programming approach to the cutting stock problem.
Operations Research 29(6), 1092-1104 (1981)

Dyckhoft, H.: A typology of cutting and packing problems. European J. Oper-
ational Research 44, 145-159 (1990)

Egeblad, J., Garavelli, C., Lisi, S., Pisinger, D.: Heuristics for container loading
of furniture. European Journal of Operational Research 200, 881-892 (2010)

Egeblad, J., Pisinger, D.: Heuristic approaches for the two-and three-
dimensional knapsack packing problem. Computers & Operations Research
36(4), 1026-1049 (2009)

Bibliography 151

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Elhedhli, S., Gzara, F., Yildiz, B.: Three-dimensional bin packing and mixed-
case palletization. INFORMS Journal on Optimization 1(4), 323-352 (2019)

Fayard, D., Hifi, M., Zissimopoulos, V.: An efficient approach for large-scale
two-dimensional guillotine cutting stock problems. Journal of the Operational
Research Society 49(12), 1270-1277 (1998)

Fekete, S., Schepers, J.: A new exact algorithm for general orthogonal d-
dimensional knapsack problems. In: Algorithms — ESA °97, pp. 144-156
(1997)

Fekete, S., Schepers, J.: On more-dimensional packing III: Exact algorithms
(2000). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.9488

Fekete, S., Schepers, J., van der Veen, J.: An exact algorithm for higher-
dimensional orthogonal packing. Operations Research 55(3), 569-587 (2007)

Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters 8, 67-71 (1989)

Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal
of Global Optimization 6, 109-133 (1995)

Furini, F., Malaguti, E., Thomopulos, D.: Modeling two-dimensional guillotine
cutting problems via integer programming. INFORMS Journal on Computing
28(4), 736-751 (2016)

Gilmore, P., Gomory, R.: Multistage cutting stock problems of two or more
dimensions. Operations Research 13, 94-120 (1965)

Gilmore, P., Gomory, R.: The theory and computation of knapsack functions.
Operations Research 14(6), 1045-1074 (1966)

Gottschalk, S.: Separating axis theorem. Tech. rep., Technical Report TR96-
024, Department of Computer Science, UNC Chapel Hill (1996)

152

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Gzara, F., Elhedhli, S., Yildiz, B.C.: The pallet loading problem: Three-
dimensional bin packing with practical constraints. European Journal of Op-
erational Research 287(3), 1062-1074 (2020)

Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthog-
onal, two-dimensional knapsack problems. European Journal of Operational
Research 83(1), 39-56 (1995)

Hadjiconstantinou, E., Iori, M.: A hybrid genetic algorithm for the two-
dimensional single large object placement problem. European Journal of
Operational Research 183(3), 1150-1166 (2007)

Haessler, R., Talbot, F.: Load planning for shipments of low density products.
European Journal of Operational Research 44, 289-299 (1990)

He, K., Huang, W., Jin, Y.: An efficient deterministic heuristic for two-
dimensional rectangular packing. Computers & Operations Research 39(7),
1355-1363 (2012)

Hifi, M.: Exact algorithms for large-scale unconstrained two and three staged
cutting problems. Computational Optimization and Applications 18(1), 63—88
(2001)

Hifi, M., M’Hallah, R.: An exact algorithm for constrained two-dimensional
two-staged cutting problems. Operations Research 53(1), 140-150 (2005)

Hifi, M., Roucairol, C.: Approximate and exact algorithms for constrained
(un) weighted two-dimensional two-staged cutting stock problems. Journal of
Combinatorial Optimization 5(4), 465-494 (2001)

Imabhori, S., Yagiura, M.: The best-fit heuristic for the rectangular strip packing
problem: An efficient implementation and the worst-case approximation ratio.
Computers & Operations Research 37, 325-333 (2010)

Bibliography 153

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Iori, M., de Lima, V., Martello, S., Miyazawa, F., Monaci, M.: Exact solution
techniques for two-dimensional cutting and packing. European Journal of
Operational Research 289(2), 399-415 (2021)

Iori, M., Martello, S.: Routing problems with loading constraints. TOP 18,
4-27 (2010)

Iori, M., Martello, S.: An annotated bibliography of combined routing and
loading problems. Yugoslav Journal of Operations Research 23, 311-326
(2013)

Jovanovic, R., Tuba, M., VoB3, S.: Fixed set search applied to the traveling
salesman problem. In: Hybrid Metaheuristics, International Workshop on
Hybrid Metaheuristics, pp. 63—77. Springer International Publishing (2019)

Jovanovic, R., VoB, S.: Fixed set search applied to the minimum weighted
vertex cover problem. In: Analysis of Experimental Algorithms, SEA 2019,
vol. 11544, pp. 490-504. Springer (2019)

Jovanovic, R., VoB, S.: The fixed set search applied to the power dominating
set problem. Expert Systems p. €12559 (2020)

Jozefowska, J., Pawlak, G., Pesch, E., Morze, M., Kowalski, D.: Fast truck-
packing of 3D boxes. Engineering Management in Production and Services
10, 2940 (2018)

Kurpel, D., Scarpin, C., Pécora Junior, J., Schenekemberg, C., Coelho, L.:
The exact solutions of several types of container loading problems. European
Journal of Operational Research 284, 87-107 (2020)

Leung, S., Zhang, D., Sim, K.: A two-stage intelligent search algorithm for
the two-dimensional strip packing problem. European Journal of Operational
Research 215, 57-69 (2011)

154

Bibliography

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Libralesso, L., Fontan, F.: An anytime tree search algorithm for the 2018
ROADEF/EURO challenge glass cutting problem. CoRR abs/2004.00963
(2020). URL https://arxiv.org/abs/2004.00963

Lins, L., Lins, S., Morabito, R.: An l-approach for packing (I, w)-rectangles
into rectangular and 1-shaped pieces. The Journal of the Operational Research
Society 54(7), 777-789 (2003)

Liu, J., Yue, Y., Dong, Z., Maple, C., Keech, M.: A novel hybrid tabu search
approach to container loading. Computers and Operations Research 38, 797—
807 (2011)

Lodi, A., Martello, S., Monaci, M., Vigo, D.: Two-Dimensional Bin Packing
Problems, pp. 107-129. John Wiley & Sons, Ltd (2014)

Lodi, A., Monaci, M.: Integer linear programming models for 2-staged two-
dimensional knapsack problems. Mathematical Programming 94(2-3), 257—
278 (2003)

Malaguti, E., Durdn, R.M., Toth, P.: Approaches to real world two-dimensional
cutting problems. Omega 47, 99-115 (2014)

Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing prob-
lem. Operations Research 48, 256-267 (2000)

Martin, M., Birgin, E., Lobato, R., Morabito, R., Munari, P.: Models for the two-
dimensional rectangular single large placement problem with guillotine cuts

and constrained pattern. International Transactions in Operational Research
27(2), 767-793 (2020)

Martin, M., Morabito, R., Munari, P.: A bottom-up packing approach for model-
ing the constrained two-dimensional guillotine placement problem. Computers
& Operations Research 115, 104851 (2020)

https://arxiv.org/abs/2004.00963

Bibliography 155

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Martin, M., Morabito, R., Munari, P.: A top-down cutting approach for mod-
eling the constrained two- and three-dimensional guillotine cutting problems.
Journal of the Operational Research Society 72(12), 2755-2769 (2021)

Martins, G., Dell, R.: Solving the pallet loading problem. European Journal of
Operational Research 184, 429-440 (2008)

Messaoud, S., Chu, C., Espinouse, M.L.: Characterization and modelling of
guillotine constraints. European Journal of Operational Research 191(1), 112—
126 (2008)

Morabito, R., Arenales, M., Arcaro, V.: An and—or-graph approach for two-
dimensional cutting problems. European Journal of Operational Research
58(2), 263-271 (1992)

Neligen, J.: How to use structural constraints to compute an upper bound for
the pallet loading problem. European Journal of Operational Research 84,
662-680 (1995)

Oliveira, J., Ferreira, J.: An improved version of Wang’s algorithm for two-
dimensional cutting problems. European Journal of Operational Research
44(2), 256-266 (1990)

Parrefio, F., Alvarez-Valdes, R.: Mathematical models for a cutting problem in
the glass manufacturing industry. Omega p. 102432 (2021)

Parrefio, F., Alvarez-Valdes, R., Oliveira, J., Tamarit, J.: A hybrid grasp/vnd
algorithm for two- and three-dimensional bin packing. Annals of Operations
Research 179, 203-220 (2010)

Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint pro-
gramming for solving the two-dimensional bin-packing problem. INFORMS
Journal on Computing 19(1), 36-51 (2007)

Polyakovskiy, S., M’Hallah, R.: Just-in-time two-dimensional bin packing.
Omega 102, 102311 (2021)

156

Bibliography

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Prais, M., Ribeiro, C.: Reactive GRASP: An application to a matrix decompo-
sition problem in TDMA traffic assignment. INFORMS Journal on Computing
12(3), 164-176 (2000)

Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag, Berlin, Heidelberg (1985)

Puchinger, J., Raidl, G.: Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research 183(3), 1304-1327
(2007)

Ranck Junior, R., Yanasse, H., Morabito, R., Junqueira, L.: A hybrid approach
for a multi-compartment container loading problem. Expert Systems with
Applications 137, 471-492 (2019)

Ren, J., Tian, Y., Sawaragi, T.: A tree search method for the container loading
problem with shipment priority. European Journal of Operational Research
214, 526-535 (2011)

Resende, M., Ribeiro, C.: Greedy Randomized Adaptive Search Procedures:
Advances and Extensions, pp. 169-220. Springer International Publishing,
Cham (2019)

Rexel: REXEL straight knife machine (2022). URL http://www.rexel.
com.pl. [Online; accessed 19-March-2022]

Ribeiro, G., Lorena, L.: Lagrangean relaxation with clusters and column gen-
eration for the manufacturers pallet loading problem. Computers & Operations
Research 34, 2695-2708 (2007)

Russo, M., Boccia, M., Sforza, A., Sterle, C.: Constrained two-dimensional
guillotine cutting problem: upper-bound review and categorization. Interna-
tional Transactions in Operational Research 27(2), 794-834 (2020)

http://www.rexel.com.pl
http://www.rexel.com.pl

Bibliography 157

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

Russo, M., Sforza, A., Sterle, C.: An improvement of the knapsack func-
tion based algorithm of Gilmore and Gomory for the unconstrained two-
dimensional guillotine cutting problem. International Journal of Production
Economics 145(2), 451-462 (2013)

Russo, M., Sforza, A., Sterle, C.: An exact dynamic programming algorithm for
large-scale unconstrained two-dimensional guillotine cutting problems. Com-
puters & Operations Research 50, 97-114 (2014)

Scheithauer, G.: Introduction to Cutting and Packing Optimization. Springer
International Publishing (2018)

Scheithauer, G., Sommerweif, U.: 4-block heuristic for the rectangle packing
problem. European Journal of Operational Research 108, 509-526 (1998)

Scheithauer, G., Terno, J.: Modeling of packing problems. Optimization 28(1),
63-84 (1993)

Scheithauer, G., Terno, J.: The G4-heuristic for the pallet loading problem. The
Journal of the Operational Research Society 47, 511-522 (1996)

Schmid, V., Doerner, K., Laporte, G.: Rich routing problems arising in supply
chain management. European Journal of Operational Research 224, 435-448
(2013)

Silva, E., Alvelos, F., de Carvalho, J.: An integer programming model for two-
and three-stage two-dimensional cutting stock problems. European Journal of
Operational Research 205(3), 699-708 (2010)

Silva, E., Oliveira, J., Wischer, G.: The pallet loading problem: a review of
solution methods and computational experiments. International Transactions
in Operational Research 23, 147-172 (2016)

Terno, J., Scheithauer, G., Sommerweig, U., Riehme, J.: An efficient approach
for the multi-pallet loading problem. European Journal of Operational Research
123, 372-381 (2000)

158

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Tsai, D.: Modeling and analysis of three-dimensional robotic palletizing sys-

tems for mixed carton sizes. Ph.D. thesis, lowa State University (1987)

Velasco, A., Uchoa, E.: Improved state space relaxation for constrained two-
dimensional guillotine cutting problems. European Journal of Operational
Research 272(1), 106-120 (2019)

Vidal, T., Crainic, T., Gendreau, M., Prins, C.: Heuristics for multi-attribute
vehicle routing problems: A survey and synthesis. European Journal of Oper-
ational Research 231, 1-21 (2013)

Wang, P.: Two algorithms for constrained two-dimensional cutting stock prob-
lems. Operations Research 31(3), 573-586 (1983)

Wang, Z., Li, K., Levy, J.: A heuristic for the container loading problem: A
tertiary-tree-based dynamic space decomposition approach. European Journal
of Operational Research 191, 86-99 (2008)

Wischer, G., Haugner, H., Schumann, H.: An improved typology of cutting and
packing problems. European Journal of Operational Research 183, 1109—-1130
(2007)

Wu, K., Ting, C.: A two-phase algorithm for the manufacturer’s pallet loading
problem. In: IEEE International Conference on Industrial Engineering and
Engineering Management, pp. 1574-1578 (2007)

Zhang, D., Peng, Y., Leung, S.: A heuristic block-loading algorithm based on
multi-layer search for the container loading problem. Computers and Opera-
tions Research 39, 2267-2276 (2012)

Appendix

GREP algorithm for the PBP with visibility and contiguity

constraints

160

Appendix

Algorithm 1: GREP(I, D, order_family,order_type, €, 0, B, ¥, max,)

1 begin
2 INtTTIALIZATION(RUM I ter, Viest, Viworst, U, sumg, meang, K, ng, Pg);
3 S « sortItEMS(/, order_family, order_type);
4 while norSTorConpiTioN(time) do
5 d < cHOOSECRITERION(D, Pg); // select a function d
6 ng =ng+ 1;
7 numlter = numlter + 1;
Sol « CoNsTRUCTIVE(S, L, d, €); // EPMH solution
V <« EVALUATESOLUTION(S0!);
10 if V > U then // upper bound is improved
11 k=0;
12 Sol « IMPROVEMENT(S, L, d, €); // local search
13 V « EVALUATESOLUTION(S0!);
14 U<V, // new upper bound
15 else // upper bound is not improved
16 K — k+1;
17 if « > max, then
18 U « pU; // reduce the upper bound
19 k=0,
/+ Basic update (fitness and solution) */
20 if V > Vj.s then
21 Vbest < V;
22 Solpes: — Sol;
23 if V <V, ors: then
24 L Vworst <V,
/+ Update reactive variables (function d) */
25 sumg = sumg +V;
26 meang = %;
/+ Update reactive structures (set D) */
27 if mod(numliter,y) = 0 then
meang—Viors .
28 \» evald(_(vb;gst_—vworstt)g, VdED,
evalg .
29 Py — s—— iy » Vd €D;
30 | return Solpest;

Appendix. Floating cuts algorithms for non-guillotine cuts

161

Floating cuts algorithms for non-guillotine cuts

Algorithm 2: Identify the relative position of sub-rectangle j

1

LRI - YL OV)

e ke e e e
= T I N R]

Function ReLaTIvEPOSITION

Input: ;.

Output: TL||TR||BR||BL||CC.

if j mod 5 == 1 then
\ return 7TL;

end

else if j mod 5 == 2 then

return TR;

end

else if j mod 5 == 3 then
| return BR;

end

else if j mod 5 == 4 then
| return BL;

end

else
‘ return CC;

end

162

Appendix

Algorithm 3: Identify the father of sub-rectangle j

1

NIRRT I N7 T S

o e e e e e
T N N e S

Function FATHER

Input: ;.

Output: Index of the father of sub-rectangle j.

if ReLaTivePositioN(j) == T'L then
‘ return (1%));

end

else if RELATIVEPOSITION(j) == TR then
‘ return ((15;2));

end

else if RELATIVEPOSITION(j) == BR then
‘ return ((15;3));

end

else if ReLaTrveEPosiTioN(j) == BL then
‘ return (@);

end

else
‘ return ((-’5;5));

end

Algorithm 4: Identify the level of the tree where sub-rectangle j is located

1

[T RENC I N T NI R N

Function LEVEL

Input: ;.
Output: level & of the tree.
if j == 0 then
| return0;
end
h=1;
while - > 1 do
| h++s
end
return h;

Appendix. Floating cuts algorithms for non-guillotine cuts 163

Algorithm 5: Number of stages to reach sub-rectangle j

1 Function STAGEs

Input: ;.

Output: number of stages nS to reach sub-rectangle j.

if j == 0 then

return (j);

end

nS =1,

while j # 0 do

if (((RELATIVEPOSITION(FATHER(j)) == ¢ or RELATIVEPOSITION(FATHER(j)) == b) and
(ReLATIVEPOSITION(j) == | or RELATIVEPOSITION(j) == 1)) or
((RELATIVEPOSITION(FATHER(j)) == [or RELATIVEPOSITION(FATHER()) == r) and
(RELATIVEPOSITION(j) == f or RELATIVEPOSITION()) ==)))) then

PO N7/ N R ¥

8 ‘ nS ++;

9 end

10 J = FATHER(J);
11 end

12 return (nS);

165

ings

ts for parameter sett

. experimmen

Appendix. Floating cuts

ings

i ts for parameter sett

. expermmen

Floating cuts

ts for the first-order

men

gthened preliminary computational exper

FC5_Stren

Table 1

non-guillotine 2DSKP.

L Jur 0 L 96T ST 1L 9T €9TrT L LO'S SP9€T L0 000 L6161 800 000 0S8% cdyo
L Jur 0 L €0T6 0ISLT 1L 9NY 896LT 1L 109 895LT 98¢ 000 1LLST $0'0 000 1099 pdyo
L Jur 0 1L 089 9ITST 1L 919 8LTST 1L €vL TE6HT 90T 000 06812 800 000 T€09 gdyo
L Jur 0 1L 16T €9tre 1L ¥$T (37474 1L 61°S SP9€T St'T 000 L6161 LO'0 000 058t tdyo
L Jur 0 LTI TeLse 1L 61y 12L5T 1L wr 12LST €0 000 $90TT L0'0 000 8999 1dyo
L Jur 0 L TT89 €10S 1L L 8€6 1L 09 €108 €70 000 919¢ 800 000 L €MD M
L Jur 0 L YL €T6r 1L ¥9'9 7908 1L 0’9 790 LTO 000 16S€ 80°0 000 6¥L MO
L Jur 0 L 96T 098% 1L SO0T ¥r6v 1L 181 060S 610 000 0s€€ LO0 000 $OL 1MD
L Jur 0 L ITHOL 0061 1L (487 or61 1L €9 0061 €€y 000 08T1 010 000 00§ €08
L Jur 0 1L S6S 96LT L 01 098¢C 1L L60 T68¢C 170 000 0€61 900 000 8¢ Qnogo
L Jur 0 L 0007 09T TSSLT 000 09T LLEE 000 09T SI'0_ 000 [9¥4 100000 99 1085
L Jur 0 L 9FPT pI8IT 1L 6TTT 9L61T 1L 86'01 9L61T 970 000 6LOLT €00 000 0S8t gdyo
L Jur 0 TL 89Tl 6€65T 1L ST6 0L9T 1L €Le 0L¥9T 690 000 898€T L0'0 000 1099 ydyo
L Jur 0 L TS96 610%T 1L ST OvLET 1L I EvLET L90 000 LS661 LO0 000 T€09 gdyo
L Jur 0 L 9601 T0STT 1L P11 LP6IT 1L 0601 9L61T 770 000 6L6LI €00 000 058% dyo
L PL69E 8999 L L€l ILLec 1L or'el 1LLET S6'ILY 000 £297C 1€0 000 LLT61 100 000 8999 1dyo
L 60°L01 LSt L P91 €6Sh L Tl 6ILY 1L orel 6ILY $1°0 000 165¢€ €00 000 L €MD JIVES
L 8S9L 66SY L TULT EL9F L 9€€l L9LY 1L 9TSI €L9% w0 000 86£€ €00 000 6hL TMD
L Jur 0 L 098 010$ 1L 86 098 1L oLy 060$ 010 000 0s€e 1000 000 $0L TMD
L T6'S6T 086 L I9%T 08LI 1L 09°'8 0981 L 09°'8 0981 Tre 000 08zI1 80°0 000 00S €108
1L Jur 0 L #CT 968¢ 1L 7T 968¢ 1L we 168¢ ro 000 0€61 S00 000 T8¢ nosd
L LIS 0vT 1L 6LL ¥hC 1L 959 rhe 1L 959 ax 900 000 80T 100000 99 11085
L Jur 0 1L 6TT 9LL6 L oLl £€86 1L LT] SL86 790 000 9L68 $0'0 000 L8€T gdyo
L Jur 0 L 9FE0l 0£86 L 8Y'l 7586 1L 60'1 7686 8S'T 000 766 $0'0 000 9LET pdyo
L Jur 0 L 80T £686 1L S0'T 66L6 1L 80 L166 8I'T 000 076 L0'0 000 0S€T gdyo
L Jur 0 L ELYT §996 1L 080 1266 1L 9Tl 9L86 ¥TT 000 9L68 $0'0 000 L8€T tdyo
L Jur 0 L 6TT 9LL6 1L e 8896 L we 8896 170 000 8918 €00 000 89T 1dyo
L Jur 0 L SPE01 TEEPS 1L 001 1TLYS 1L 10°1 61L1S LY'E 000 [32529 $0'0 000 0S261 £MD nra
L 0€¥01 ITvec IL SLPOI OLgg 1L 69T 66C€T 1L 99'l SESET 6£€ 000 YTreT LO0 000 TL96 TMD
L SU6IT 8L6IT 1L TS0 LSOET L 9T L6LTI 1L 50 LSOET LT 000 896CI L00 000 (452 1MD
L Jur 0 L €8T €TLT L L9 vSLT 1L 09°1 9Lt €€y 000 089¢C 600 000 £€€T €108
L Jur 0 L T0T WL 1L 9T 8€LT 1L €Tl 99.T 610 000 0181 €00 000 9 o8>
L ur 0 L €0TS 8pl 696 000 0ST €69 000 0ST 610 000 LTT 100 000 43 1noso
L Jur 0 1L 9Tl 986 1L 9T'1 9L86 1L 9Tl 9L86 610 000 9L68 900 000 L8€T gdyo
L LETT 1668 1L €0T 1086 1L S8l 8186 1L 6L'1 786 650 000 0916 200 000 9LET pdyo
L 65901 1896 L 6TE0I 8686 L S9'l 8€86 1L 91 886 9I'T 000 STr8 LO'0 000 0S€T gdyo
AL SLTIT Stb6 L L6 8196 L 0€'€ 1896 1L 9Tl 9L86 w0 000 9L68 L0'0 000 L8€T zdyo
L SOTYT 99LE L ILL ¥826 1L L 826 9¢'80€ 000 9LL8 91’0 000 90¥L 100 000 89T 1dyo
L T8S0T S0LES IL OL'T [970349 1L oL'T 1349749 1L oLt (34329 Lo 000 [32329 200 000 0ST61 €MD o/
L 06'S0T 0bTET L 06'S01 0vTeT 1L 1 YTSET 1L (7R PTSET 680 000 0STET LO0 000 TL96 MO
L Jur 0 1L TS0 LSOET 1L 96T L6LTI 1L 50 LSOET 80 000 0S+Tl 100 000 TSLy 1MD
L 8ISKT +8TT 1L 067 1eLe L 06T IeLe 1L e 9TLT 0F'T 000 0L¥T LO0 000 €eel €08
L Jur 0 1L 6L0 8LLT L 61T orLe 1L 0T LeLT 800 000 0181 S00 000 9 Qnogo
L jur 0 L 9Ty vl L [543 Syl 0I'ISE 000 54! #0'0 000 30 100 000 [43 1nogo
®L (pden 7z G (p)den 7 (O (p)den 7)L (p)den 7)L (p)den 7 ®L (p)den 7
9 S ¥ € T I

Q0ULISU] JUBLIBA

Appendix

166

ts for the first-order

gthened preliminary computational experimen

FC5_Stren
non-guillotine 2DSLOPP.

Table 2

1L 8¢Y €6LC 1L SIy €86 1L SI't €86L 1L Iy €86, 6V'6T 000 €86, 600 000 95651 cdyo
1L 18'8 pEEIE 1L 99y LLSTE 1L 00°€ €687 1L 00°€ €687 08'6S 000 L061€ 810 000 #8981 pdyo
1L Jut 0 1L 9 91zst 1L 89 180sT 1L €L Te6vT 09T 000 0681C 600 000 T€09 edyo
1L 05’8 €10€c 1L 61'9 €Isec 1L vES Sy9eT 1L or's SY9ET 690 000 L6161 80°0 000 058% tdyo
1L 80 0608T 1L POy 0608c IL 98T €8T 1L SLT €TY8T THP9 000 0608T 600 000 80091 1dy0
1L 9Tl 86€S 1L 00'L 6895 L 9 9€LS 1L €5°S 9€LS €€9L 000 6895 P10 000 97T €MD M
1L 6691 0SIS 1L 1S'L 09 L 1SL 709 1L €0°L 709 91'8S 000 1LyS L0 000 €22C MO
1L Jur 0 1L 869 9L L 1S 8089 1L €9°¢ 99L9 S9'6€ 000 $LS9 v1I'0 000 9€1T MO
1L LEL 0061 1L LEL 0061 1L ST9 0261 1L LEL 0061 0L0S 000 0061 110 000 0801 £mo3d
1L 66'1 €987 1L 8T 6£87 L 8Tl €887 1L 171 6887 616t 000 8097 80°0 000 Sr6 oz
1L vl 65T €67EL 000 09T €286 000 09T L6111 000 09T 0TST 000 7T 800 000 431 1030
1L 3¢t c6Lc 1L 8¢t €t6Lz 1L S €6LC 1L 0Tt €26LC SSIT 000 €T6LT SO0 000 95651 cdyo
1L c9'¢ €687 1L c9'¢ €687 1L 65°€ €687 1L SLT €687 OI'Fl 000 8€TI€ 110 000 #8981 pdyo
1L €rel ovLgc 1L 86Tl evLec AL S811 OVLEC 8I'LS8 000 €vLEC TLT 000 L5661 €00 000 T€09 edyo
1L €081 vSilc 1L o€l Te0TT AL 6101 611TT TIHOS 0070 9L61T 190 000 6L6L1 LOO 000 058% tdyo
1L 1£°6 9pL9T 1L 98¢ L9z 1L 8PS 81LLT 1L 61°S L19LT 9¥01 000 7689 900 000 80091 1dyo
1L 00'L 6895 1L 00'L 6895 1L 00L 6895 1L 0r'9 6895 9601 000 LSSS 600 000 97T €MD /A
1L S0 0StS 1L €6TI bSES L 0L 3499 1L 808 [3499 91'81 000 P6£S 900 000 880C (2%}
1L €71 T0P9 1L €71 T0v9 1L 60Tl T0V9 1L YOIl TO9 066 000 0£29 P10 000 T MO
1L 60Tl 081 1L 89°6 0981 1L 896 0981 1L 098 0981 €9l 000 0281 €00 000 0801 £mo3d
1L 96t T8LT 1L vTT 9687 1L +TT 98¢ 1L vTT 98¢ 989 000 8LST 00 000 S6 [ALEEE]
1L €8 [344 1L 8€'L 7T 1L 959 jadd 1L 19 9T €1 000 0€T 200 000 43 130
SS'60L 000 00001 90°801 000 00001 L60E 000 00001 €Y 000 00001 SLO 000 00001 010 000 $2€9 cdyo
1L AN 7886 1L L8] 9186 L 120 6L66 1L 170 6L66 €6'891 000 €166 TI0 000 0969 pdyo
1L 8LT 0£L6 1L 80°1 €686 1L 801 €686 1L 80'1 €686 9T 000 016 900 000 0S€T edyo
1L 88T 0TL6 1L 08°0 1266 1L 080 1266 1L SL1 8786 0Tl 000 9L68 SO0 000 L8€T Tdyo
1L 0r'0 0966 1L 970 $L66 L €0 8966 1L 970 7L66 LTS 000 0266 600 000 0L9S 1dyo
1L Jur 0 1L 8¢l SISy 1L St'l LLyYS L $6'0 0sLyS 1L 90 SI0SS TI'0 000 089%€ €MD o
1L Jur 0 1L 68°0 siLec 1L 61 €v9eT 1L 9l 08S€T 81'S9L 000 0SLET 10 000 PPITI TMO
1L Jur 0 1L 50 LSOE1 L 8l TL6TI 1L €0 €90¢€1 0S°0TS 000 €50¢€1 LO0 000 087L 1MD
1L €8T €7LT 1L 09'1 96LT 1L S0l 1LLT 1L L9'1 ¥SLT 6779 000 95LT 900 000 LLTT €mo3d
1L LT1 <9LT 1L 0€C LELT L 060 SLLT 1L 89T LzLe €881 000 95T <00 000 S6 modo
1L St'e Syl 1786 000 0S1 PEY 000 0S1 Iy 000 0S1 9EvT 000 Lp1 900 000 9 1232
1L Y70 9L66 1L 81°0 7866 1L 810 7866 1L 810 7866 vre6 000 7866 80°0 000 $T€9 cdyo
1L Y70 9L66 1L wo 8566 1L +T0 9L66 1L vT0 9L66 vT8T 000 96L6 900 000 0969 pdyo
1L 61 7186 1L <91 8686 1L €LT PELE 1L <91 8€86 9TS 000 STv8 €00 000 0S€T edyo
1L or'e 1296 1L 0€'€ 1896 1L 0g€ 1896 1L 9Tl 9.86 90 000 9L68 00 000 L8€T Tdyo
1L 90 866 1L 970 $L66 L 920 ¥L66 1L 970 7L66 9P 000 7656 <00 000 0L9S 1dyo
1L oLt evers L oLt €pers AL €01 80LYS 1L €01 S0LYS 6TTST 000 1LSYS 910 000 089P€ €MD n/d
1L Jur 0 1L S6T obcec IL LIT 8IveT 1L 89°C 1066 6¥'8TCT 000 8I¥EC 910 000 2ata! MO
1L %0 LSOET 1L 50 LSOST 1L TLT LLLTI 1L 0T 19821 Sr6L 000 <8871 80°0 000 08TL 1MD
1L 06T 1eLe 1L 06T 1TLe 1L 06¢ 1TLe 1L 06T 1eLe L69T 000 01LT $00 000 LLTT €nosd
1L S1T 1%LT 1L 61°C orLT 1AL 6L0 8LLT 1L 61T orLe S1I'9 000 8SHT 200 000 Sv6 Tnosd
1L LIt fad! 1L LIy fad! 1L LIy jad! 1L Sre Syl €0 000 171 200 000 9 130085
L (Opden 7z SL (pden 7z GL Opden 7z L (Opden 7z Cp)deo 7 GL (Opden 7z
9 < ¥ € T 1

QouBISU] JUBLIEA

167

Appendix. Floating cuts: experiments for parameter settings

me

ts for the guillot

men

gthened preliminary computational exper

FC4_Stren

Table 3

2DSKP.

L €9 96£6 1L €79 96£6 LT 000 06£6 Lr1 000 7618 600 000 1629 200 000 ssep 100 Jut) sdyo
L T €656 €6619 000 €656 68T€ 000 00€6 6LL 000 9028 0z0 000 7689 100 000 LoLy 00 Ju 0 pdyo
L 6£9 66€6 L 44 66£6 09'1€ 000 7898 880 000 9L08 620 000 0£sS 100 000 0597 100 Jut 0 gdyo
L €r9 96£6 1L €79 96£6 99 000 06£6 82T 000 618 S0 000 1629 00 000 sser 000 Jut 0 zdyo
L LI 991L LIS 000 991L 0TS 000 991L 680 000 T8€9 910 000 8S1¢ 100 000 8S1t 000 Jut 0 1dyo
L W8T ssLes IL 8T SSLES 68FE 000 SSLES 990 000 SSLES THO 000 0TITE TO0 000 0zize 000 Jut 0 €MD N/
L S6T o¥ZeET 6LYIL 000 OFZET SEST 000 OrTET 680 000 ovzer 1€0 000 P61 100 000 TISEL €00 Ju 0 [20%}
L e LLLTI STEER 000 LLLTL 90°SS 000 LLLTL LSO 000 0SKTl 9£0 000 196L 100 000 LEEL €00 Jut 0 1M
L €L 665T 1L €LL 665T et 000 665T P8 000 oLrT 610 000 LLTT 200 000 60T 100 Ju 0 gnoso
AL €TST OEhT 1L 06L1 SLET 8981 000 80CT 660 000 TIL 800 000 1621 200 000 98 100 Jut 0 nodd
ALy or1 1128 000 orl ol 000 wl S§0 000 43 200000 08 £00_ 000 9 100 Jut 0 1no3d
L I8 696tc 1L 009 €Isec 1L 009 €ISET 6£0T 000 €157 170 000 T€891 100 000 6016 $00 000 058 sdyo
L 98¢ 89SLT 1L 339 89SLT 1L 98 89SLT SYIE 000 89SLT STO 000 900I1T SO0 000 6T8T1 900 000 1099 pdyo
L 18L 188b7 1L 819 9IzsT 1L 6LL or8kT $STE 000 ssevT STO 100 TI0IT 1000 000 0611 100 000 T€09 gdyo
L 16L 8e1€ 1L 08°s €1s€c 1L 66'S €1SET 6LST 000 €LSTC 610 000 T€891 100 000 6016 100 000 058t zdyo
L 18F 1cse 1L 81t 1TLST S0'98E 000 12t TSI 000 €5SYT K00 000 0620c 100 000 $00TT 100 000 8999 1d3o
AL P8El bl 1L €T6 pL8Y 1L wL 9€6t 1SS1 000 PL8Y 010 000 0€6T SO0 000 081 SO0 000 L MO MU
L 886 1861 1L 89 7908 1L or9 7908 8011 000 2908 €0 000 SE6T SO0 000 061 100 000 6¥L (%%}
L LE0T 0g6h 1L 6901 tL8t 1L 959 T108 91l 000 YOLY L00 000 o1Le 00 000 L6E1 100 000 0L M0
L LEL 0061 1L €9 0061 1L w9 0061 SL6E 000 0zL 9€'T 000 0821 €00 000 0r6 900 000 00s gnogo
L 08¢ €18T 1L 0re 098T 1L Lvy S6LT 981 000 Tse 900 000 SI91 900 000 86 SO0 000 8¢ nad>
AL SIl 092 Wiry 000 092 96T€ 000 092 YSIL 000 86T SO0 000 161 SO0 000 431 900000 99 1no3d
AL 8yl STl 1L LSt Lene 1L 1871 pSTIT 9STT 000 $I80T TEO 000 65191 600 000 1888 100 000 058t sdyo
AL 99Tl 6£6ST 1L 0sTl 6£65T 1L €01 YSLST TO8T 000 ovIST 090 000 9001T 900 00°0 6821 SO0 000 1099 pdyo
AL IrEl shsc 1L 60l OpLET 1L 9811 OPLET ~ SS€T 000 S8TET €€0 000 TIOIT 910 000 6LYI1 100 000 T€09 gdyo
L el 96T IL 6591 9IvIT 1L 1961 #S1IT #F'SE 000 $Z80T I¥0 000 65191 SO0 000 1888 SO0 000 058 Tdyo
AL €881 s 1L 8L TSLTT IFI9L 000 €LSTC TES 000 yzzic S0 000 €6081 LO0 000 $00T1 100 000 8999 1dyo
L TE6l 6TS 1L 9Ll 65 1L LO91 €65t TI0T 000 €65t ¥T0 000 6L8T 800 000 081 100 000 L MO M/
L TULl €9 1L LLST L9 1L ST L9t 6L'6T 000 €L9% 0£0 000 SE6T €00 000 061 100 000 oYL [2%%}
AL 0881 08St 1L €811 LESt 1L 6L01 LESY ST 000 Tisy 800 000 01LT 00 000 L6ET 100 000 0L 1MD
L 896 0981 L 098 0981 1L 098 0981 PrEL 000 0zLl S60 000 08zl 600 000 098 100 000 00§ £noso
L 96+ LT 1L yTT 98T 1L ¥8'S 65LT 1S 000 T9¢€T 900 000 <191 00 000 86 P00 000 8¢ nodd
AL 6LL i 1L 6L'L T 1L 959 rte 108 000 9¢T P10 000 81 $0'0 000 431 $0°0_ 000 99 1noso
L LTe €896 1L 6¢'1 €986 1L 67T 9LL6 189 000 9596 070 000 8808 100 000 9Ly 100 000 L8€T cdyo
L 081 €286 1L 08'1 €286 1L 081 €286 06'LE 000 9186 $T0 000 928 100 000 LoLY 100 000 9LET pdyo
L 0T 66L6 1L SST 1SL6 L €Tl 6186 S6LE 000 S6L6 910 000 1€16 100 000 059 100 000 0seT edyo
L 80€ 10L6 1L 6€°1 €986 1L 6€°1 €986 9119 000 9596 T 000 8808 900 000 €9Ly 100 000 L8€T 7dyo
L 609 9TH6 1L P8¢ 816 1L 609 9216 LT 000 0L68 00 000 TiL 100 000 8SIy 100 000 897T 1dyo
L I€T Tors 1L €T wors 1L €T TIPS L9'98E 000 8Y9PS 88°0 000 TS SO0 000 Ol1EE 1000 000 0ST61 €MD naAw
L LT 987€T 1L 69T 66T€T 1L PLT LISET SST9T 000 LSSET ¥TT 000 8LZET SO0 000 9L991 100 000 TL96 (7%
L 95T L6l 1L we LLLer 1L we LLLTL 89°L8 000 L6LTI 990 000 895T1 100 000 9L26 100 000 WLy 1MD
L €8T €2LT 1L L9'1 ySLT 1L L9'1 ¥sLT 87°L88 000 ¥SLT 61t 000 €2LT LOO 000 19¢C 100 000 3331 €no3>
L 9t 8L9T 1L 9t 8L9T 1L €8 1L9T 85T 000 [49¢4 900 000 61 900 000 98 100 000 oy s>
867€ 000 0s1 PEST 000 0s1 1z 000 0st 6£8 000 8yl 900000 101 200000 9 SO0 000 43 1nogo
L §v9 7656 1L 00t <196 1L 00t $196 89°0S 000 06£6 860 000 TEHL LOO 000 sser 100 000 L8ET cdyo
L €59 L8€6 1L PEE LL96 1L 9'e 9996 SSYS 000 9996 1€0 000 1518 €00 000 LoLy SO0 000 9LET pdyo
L o€ 1896 L 91 8€86 1L €LT YELG €478 000 1896 10 000 2968 €00 000 059 100 000 oseT edyo
L 00t 196 1L 00t 196 1L 65T L9L6 91'9¢ 000 €296 L9°0° 000 P89L P10 000 sty SO0 000 L8€T zdyo
AL LIEl 9688 1L LI'El 988 ELTYS 000 5.8 9z01 000 o118 $T0 000 829 LOO 000 8S1Y 100 000 897T 1dyo
L W8T ssLes 1L 8T ssLes 1L (434 SSLES LEPTI 000 89LES 620 000 SSLES SO0 000 887¢€ 100 000 0ST61 €MD n/dAuw
L $6T ovzer 1L 6T orzer 1L 6T OPTET TEOS 000 0vzeT 8€0 000 ovzeET P10 0000 [30dl 100 000 TL96 (0%}
L 98T oLl Il 95T L6zl 1L we LLLTL 9E°SE 000 L6LT1 170 000 oSkl SO0 000 (3483 SO0 000 Ly 1M
L SL9 €297 1L 06T 12 1L 06T 17Le 8LY8 000 1zLe 860 000 oLrT 900 000 T60C 100 000 3331 €no3>
I 61T orLT 1L 61T orLT 1L $59 879T w0y 000 Twee 900 000 61 200 000 98 100 000 (2 anads
L L0y fadl 1L LIy hudl 1L PI'L orl 88¢ 000 el SI'0_ 000 L6 #00_ 000 9 100000 43 1nog>
(L (p)den 7 G Cp)den 7 [ON (p)den 7)L (Op)de 7 GL (p)deo 7 GL (p)den 7 (L (pden 7z
L 9 S v 3 4 1
q QduRISU] JUBLIBA

Appendix

168

me

ts for the guillot

men

gthened preliminary computational exper

FC4_Stren

Table 4

2DSLOPP.

L €L°091 7L86 1L €06E pL86 L wo 7186 9,65 000 9¥86 YEE 000 L8L6 110 000 7088 00 Jut 0 sdyo
1L 6976 8566 B 8ELL 8566 8579 000 8566 €9 000 286 S61 000 0968 €10 000 09¢8 100 Jur 0 pdyo
I 6€9 666 867S8 00°0 666 PS'ST 000 7898 €60 000 9L08 080 000 0€SS 00 000 09 P00 Ju 0 gdyo
1 €79 96£6 B €9 96€6 1962 000 06€6 €T 000 618 €10 000 1629 SO0 000 sser 100 Jur 0 zdyo
L 0L9L 99€6 g\ 011 99€6 PIPS 000 99€6 €PYT 000 9616 96 000 08€8 P10 000 0828 €00 Jut 0 1dyo
1L 9S°S6 €90vs 1L LY'SE €90VS €TSHL 000 €90PS €IST 000 €90PS S6T 000 TSLIS 0T0 000 TCLIS 100 Jur 0 €MD (VT
L 9668 ovzer L SS8E OPTET 1KLY 000 ovzET €66 000 ovzeET $81 000 €LTIT L10 000 €TIT Y00 Jw 0 [2%%)
L 6188 068cl 1L 9881 068T1 8TT9 000 0681 9LTL 000 068C1 ¥ET 000 TWETL PE0 000 L6 000 Jur 0 M0
U TELE 665T LY'T8E 000 665T 6L1T 000 665T SL'S 000 855T S61 000 SObT 890 000 LLTT 00 Jut 0 €3>
L LL8L 0grT L €681 0ET 6v9L 000 0€bT ol 000 19¢2 9L0 000 802 900 000 €681 000 Ju 0 anadd
L LSEl ovl 01'6L 000 or1 68T 000 ovl 90 000 ozl YEO 000 801 900 000 801 000 Jut 0 o3>
AL LPPsEEl €66 L €065 €86LC 1L 6TPLl €86, 1L 1617 €86,T €06 000 €86,C 810 000 €26LC 600 0000 9s6S1 sdyo
AL SIPI089TIT 0TI9 B 60681 €68T€ 1L poOPl €68T€ 1L L €687€ LF9 000 8€TIE 8T0 000 $OSYT 010 0000 #8981 pdyo
L PLPTS9 9sL 1L 6L 188 1L 89'6 S8pbT OLTLL 000 SSEVT €40 000 TI0IT 600 000 0611 €000 0000 TEO9 €dyo
L LI8LSE €56 B 619 €1sc 1L 66' €1SET OI'LOI 000 €LSTT 850 000 €891 110 000 6076 TI0 0000 0S8k zdyo
UL 98°EISEGET $891 L STLIT 0608T 1L 0581 0608C 1L 8L 06082 186 000 0608 170 000 $689T 800 0000 80091 1dyo
1L 0000SSLILY 95k B SEL6T 18IS 1L 86961 thLS 1L 6069 6895 €087 000 L89S 80 000 oty 170 0000 9TTC €MD M/
AL 910LKS sie L L6'1TT tSES L 6I'L91 1L¥S L L8319 098 8607 000 8SbS 10 000 ey 020 0000 €T2T M
L Jur 0 L SOTPT 9PLY 1L 9€'691 9.9 1L oI'sy 9rL9 6L'6 000 9rL9 050 000 [7ked SI'0 0000 9€IT 1MD
L 61°9LS 0921 B\ PO'E9E OF8I L LF'691 0061 L 89°€9 0061 PrIT 000 0061 SLO 000 001 TTO 0000 0801 €3>
I 1919 €5LT L L9SS 8S8T 1L or'sS €98T 1L TI6T 9T8e 6v'c 000 Tt SI'0 000 €651 010 0000 S¥6 nodd
I €91y LsT L 000r 09T L 000r 09T 8r'¥ST 000 09T 62T 000 we P10 000 0T LO0 0000 TEL 13>
L Jur 0 L Twwo9E €L 1L 97'80€ €T6LT 1L 199 €T6LT 98'L 000 €26LC 1T0 000 €26LC LOO 0000 9S651 sdyo
L gu 0 L 67T0C €68T€ 1L 09°TSI €68T€ TTPIE 000 €682€ 098 000 8ETIE $T0 000 POSYT 900 0000 8981 pdyo
L Jur 0 L pEST e8zer 1L 8V'TI EPLET €6TFL 000 S8TET €50 000 TI0IT 010 000 6LPIT TO0 0000 TE09 gdyo
L gu 0 B ISYT $S00T 1L ST PSIIT PSTIHT 000 $T80T $SO 000 65191 110 000 1888 W00 0000 0S8k zdyo
L u 0 1L 1062 68SLT 1L 90°61T 68SLT I8'EST 000 68SLT LTS 000 1202 91'0 000 PLOET TOO 0000 80091 Idyo
L Jur 0 b €L°66T €6tS 1L €9°091 6895 1L 6LPE 6898 1921 000 L8€S 860 000 8Tht 600 0000 97T €MD MUl
L ur 0 1L 89'EET EE0S L 9I'LLL ¥SES L 909y tSES S6TL 000 0s1§ 90 000 0LSE 600 0000 880T %)
L Jur 0 g TW6SHT TP 1L 9s'8Yl TP 1L 0TI T0r9 96 000 8695 O 000 LOTY 110 0000 TIT M0
L gu 0 L T8'89T 0981 L LETIT 0981 L6'SS8 000 0981 €L 000 0081 620 000 orrl SO0 0000 0801 €3>
L Ju 0 B 8L'SS 9S8T 1L 8L'SS 9S8T 1L 68'C 89LT wT 000 88€T T 000 €651 W00 0000 SP6 onodd
AL 6L6h (344 L 8I'6h 1T L 816k T 0801000 jud SI'e 000 [y44 SI'0_ 000 L91 W00 0000 zEl 110980
1L $8°L628 879 L 8I'vbt 00001 1L 08'€C 00001 1L 9LIL 00001 0ST9 000 00001 170 000 00001 80°0 0000 +T€9 cdyo
L 16°ISHI P0ET L Y985 0L66 L 0£9SI 6L66 L 0S9T 6L66 6L°01 000 586 860 000 1088 TU0 0000 0969 pdyo
1L S0°€ST 995 B s$T 15L6 1L 15T SSL6 1L 60'C S6L6 S90 000 1€16 110 000 059 LOO 0000 0SET gdyo
AL TH986T 879 L €6T L6 L Ll 8786 POPIE 000 9596 80 000 8808 600 000 €9LY €00 0000 L8ET zdyo
AL LI'6818TOLI 096 B S§IPT 0966 1L LE'9ST 0966 1L WOT 0966 98 000 0966 €20 000 96£6 P10 0000 0L9S 1dyo
AL EPSIHT orze L Lo0Ly 0T8ES IL PISSE 809bS 1L 1T6Tl ¥9IvS 81'8TE 000 809vS 9TT 000 LISES €20 0000 089F€ €MD /iAW
AL TTLLYE L96T B\ LOISE 0ss€T 1L W0L0T 0L9€T 1L 60111 0L9ET 8109 000 0L9€T ¥60 000 IZEIT €10 0000 thIvl TMO
L Ju 0 B ocIer TeTl 1L 0097 TLeTl 1L 9r'18 TLETI 606S 000 6T 670 000 901T1 010 0000 08TL M0
L 919 h9T 1L P98EY 9SLT 1L 0991 ¥SLT 1L 809 1LLT 176 000 95LT 9Tl 000 91LT 810 0000 LLTT €3>
L T6S 0£LT B 8TLS T9LT 1L 9SLS LSLT 1L 8897 LSLT L1 000 e 010 000 €651 010 0000 SP6 onodd
1L 00°0S 0s1 L 000 01 L 000S 051 £TYSP 000 0s1 8L0 000 orl L00__000 L 000000 +9 111983
L Ju 0 L 8Y'ESt €86 L 1167 $966 L TS TS66 9T 000 7986 170 000 €86 900 0000 +TE9 sdyo
L u 0 1L TSEIT 9£86 1L 60°€0T TS86 1L 8I'El 8566 8% 000 286 9€0 000 1058 900 0000 0969 pdyo
s (S 3 8968 B 0€'€ 1896 L o€ 1896 6681 000 1896 060 000 7968 900 000 059 900 0000 0SET gdyo
L u 0 1L 9€9 0r6 1L 68 PES6 9I'LYT 000 €276 651 000 ¥89L €10 000 sty W0 0000 L8ET zdyo
L Jur 0 B 66'€YT 8686 1L 8I'€IT 7266 LO'T68 000 8686 WY 000 0856 0T0 000 91+8 110 0000 0L9S 1dyo
L gu 0 L 19°€9¢ €86€S 1L SE0SE €866 1L OI'6L S66ES PI'ES 000 0stPS 670 000 LIS 800 0000 089FE €MD QAU
L Jur 0 B 8Lsee 9lTer 1L So6lE 96lsT IL Y069 8IPEC €5°SH 000 8IPEC LLO 000 €LTIT €00 0000 PPIFI TMD
L gu 0 L ety Te9Tl 1L PoSLI $88TI (1L €0y 068T1 90PT 000 068T1 $TO 000 0611 TO0 0000 08TL 1MO
1L S00tE 1992 B 95'81E 00LT 1L 0Ll 1eLe 81°99S 000 12Le 8TS 000 1992 P70 000 oLyT 01’0 0000 LLTT €3>
L pS8S orLe b\ PS8S OBLT L PSS OVLT 9T°9S 000 9897 91T 000 01€T €10 000 €651 900 0000 SP6 nodd
1L 8906 811 L ST9S bl 1L ST9S bl L8'99 000 faa! I 000 6C1 600000 801 1000000 +9 o3
©L (p)den z GL (pdey 7 GL Opden 7z L (pden 7 L (pdey 7 GL Cp)den 7z SL Cpden 7z
L 9 S v € T 1
q 0urISU] JUBLIBA

Appendix. Solutions from floating cuts models 169

Solutions from floating cuts models

2DSKP

92 x 74 35x70/38x72

103 x 68 62x 73

Figure 1: Solution of instance ‘CW2’ on the variant F/U non-staged as non-guillotine
constraint, when considering FC5_Strengthened with h=4 (objective function value
=23524).

623 x 306 344 x 301

614 x 289 340 x 296

509 x 389 475 x 362

Figure 2: Solution of instance ‘gcutl1’ on the variant F/U with 2-stages as guillotine
constraint, when considering FC2 with h=6 (objective function value = 942219).

170

Appendix

198 x 205

132x 174

272 x 147

352 x 145

164 x 250

Figure 3: Solution of instance ‘gcut5’ on the variant F/U non-staged as guillotine con-
straint, when considering FC4_Strengthened with h=4 (objective function = 195582).

2DSLOPP
94 x 36
35x70|35x70
94 x 36
86x 73 38x72(38x72

Figure 4: Solution of instance ‘CW?2’ on the variant F/U non-staged as guillotine con-
straint, when considering FC4_Strengthened with h=4 (objective function = 23418).

Appendix. Solutions from floating cuts models 171

62 x 50 34x49 || 34x49 | 34x49

46 x 43 46 x 43 71 x42

80x 51 80 x 51

Figure 5: Solution of instance ‘CW2’ on the variant F/U non-staged as guillotine
constraint, when considering FC2 with h=5 (objective function value = 23196).

21x 12 19x 11

21x 12 19x 11

21x 12 19x 11

16 x 25

24 x 34

Figure 6: Solution of instance ‘3s’ on the variant F/U with 2-stages as guillotine
constraint, when considering FC2 with h=6 (objective function value = 2599).

172

Appendix

58 x 49

29x 75

29x 75

20 x 56120 x 56

42 x 69

Figure 7: Solution of instance ‘cul’ on the variant F/U non-staged as guillotine con-
straint, when considering FC4_Strengthened with h=4 (objective function = 12330).

27x9

27x9

27x9

Figure 8: Solution of instance ‘ngcutl0’ on the variant F/W non-staged as non-
guillotine constraint, when considering FC5_Strengthened with h=4 (objective func-

tion = 1452).

	Acknowledgments
	Introduction
	Cutting and Packing problems
	Structures
	Constraints

	Contributions
	Outline of the work

	Description of the Cutting and Packing Problems
	Introduction
	Pallet Building Problem with practical constraints
	Item families
	Layers classification
	Constraints
	Problem outline

	Rectangular Cutting Problem
	Classes addressed
	Problem outline

	Literature Review
	Introduction
	PBP related works
	RCP related works
	Non-guillotine cutting patterns
	Guillotine cutting patterns

	Solution of a Practical Pallet Building Problem with Visibility and Contiguity Constraints
	Abstract
	Contributions
	Solution algorithm
	Creating layers
	Building pallets

	Computational results
	Instances
	Parametric configurations
	Evaluation

	Conclusions

	Reactive GRASP-based Algorithm for Pallet Building Problem with Visibility and Contiguity Constraints
	Abstract
	Solution algorithm
	Two-step heuristic
	Reactive GRASP metaheuristic

	Computational results
	Parametric configurations
	Evaluation

	Conclusions

	A Mixed Approach for Pallet Building Problem with Practical Constraints
	Abstract
	Solution algorithm
	Two-step heuristic

	Computational results
	Parametric configurations
	Experimental evaluation

	Conclusions

	Mathematical Models and Heuristic Algorithms for Pallet Building Problems with Practical Constraints
	Abstract
	A MILP formulation
	MILP formulation to create layers
	Mathematical formulation for building pallets

	Solution algorithms
	Constructive heuristic
	Reactive GRASP metaheuristic
	Embedding the mathematical models in the heuristics

	Computational results
	Parametric configurations
	Evaluation

	Conclusions

	The ``Floating Cuts'' Model: A General and Flexible Mixed-Integer Programming Model for Rectangular Cutting Problems
	Abstract
	Contributions
	Work organization
	The `floating cuts' MILP model for the two-dimensional SLOPP
	Objective function and general constraints
	Length of children sub-rectangles constraints
	Width of children sub-rectangles constraints
	Decision variables domain
	Model strengthening

	Computational experiments for the non-guillotine problem
	Extension of the model to the guillotine problem
	Symmetry reduction
	Computational experiments - guillotine cutting patterns
	The `floating cuts' MILP model for the guillotine k-staged two-dimensional SLOPP

	Computational experiments - guillotine problem
	Non-staged 2DSKP and 2DSLOPP - comparison between FC4_Strengthened and FC models
	Comparison with mathematical models from the literature

	Conclusions and future work

	Conclusions
	What are the main questions answered?
	What could have been done better?
	What are the possible directions for the future?

	Bibliography
	Appendix
	GREP algorithm for the PBP with visibility and contiguity constraints
	Floating cuts algorithms for non-guillotine cuts
	Floating cuts: experiments for parameter settings
	Solutions from floating cuts models

