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Abstract

Nowadays, ultra-wideband (UWB) and space-division multiplexing (SDM) trans-
missions are emerging as the best candidates to further push the capacity offered by
optical communication systems. The former strategy aims at increasing the capacity
by enlarging the transmission bandwidth. For these systems, a fully numerical ap-
proach for the performance estimation has a prohibitive computational time, due to
the wide bandwidth. On the other hand, an SDM system exploits spatial diversity to
increase the amount of transmitted data. However, the random nature of the inter-
action among spatial paths requires several numerical simulations to collect enough
results to build the system performance statistics.

In such complex scenarios, analytical modeling stands out as a fast yet accurate
tool for system performance estimation, well-suited to assist in the network design
and traffic routing. In this thesis, we propose extensions of analytical models for the
estimation of the system performance for UWB and SDM systems, with a particular
focus on the modeling of the optical fiber nonlinearities.

In the context of UWB transmissions, we first focused on modeling the interac-
tion between the optical fiber Kerr effect and stimulated Raman scattering (SRS).
We proposed a model for the nonlinear interference (NLI) variance which takes into
account the positioning of the equalizers for the SRS compensation. The model is
validated against UWB numerical simulations, showing a very good agreement along
with the importance of addressing the equalizer positioning along the link. Then, we
moved the focus on the modeling of semiconductor optical amplifiers (SOAs). As
a trade-off between simplicity and complexity, we proposed a parametric model for
describing the SOA dynamics.

Regarding SDM transmissions, we first addressed the inclusion of polarization-
dependent loss (PDL) in the NLI modeling. The proposed model accounting for PDL
in single-mode transmissions opens the door to the more general case of mode-
dependent loss in SDM systems. Then, we derived a theoretical model of the NLI
in the presence of arbitrary mode dispersion among strongly coupled modes. Both
models are validated against numerical simulations, repeated for several random re-
alizations, showing excellent agreement.
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Introduction

Optical communication systems sustain most of the current worldwide data traffic,
spacing from terrestrial networks to transoceanic transmissions.

In the past decades, optical networks kept the pace with the growing traffic de-
mand thanks to to the advent of disruptive technologies, (e.g., all-optical amplifiers
and cross-connects, coherent detection, and digital signal processing) and to the ex-
tensive leverage of multiplexing in the degrees of freedom offered by the standard
single-mode optical fiber. Multiplexing in frequency (wavelength-division multiplex-
ing) and polarization (polarization-division multiplexing), combined with the use of
advanced modulation formats, pushed the capacity of commercial optical systems up
to almost 100 Tb/s [1] over submarine distances.

Nevertheless, the disparity between the traffic growth and the system capacity
growth rate (∼ 60% vs ∼ 20% [2]) motivated the search for novel techniques and
technologies. Nowadays, two main approaches stand out as the best candidates to
meet the capacity demand: ultra-wideband (UWB) transmissions and space-division
multiplexed (SDM) systems.

UWB transmissions aim at empowering the frequency multiplexing by increasing
the transmission bandwidth. This solution offers the possibility to increase the capac-
ity exploiting the wide bandwidth over which modern single-mode fibers exhibit low
attenuation values, beyond the usually adopted C band (∼ 5 THz). In particular, a
widespread solution adopted by vendors is the deployment of multi-band C+L band
systems (∼ 13 THz bandwidth). Despite the potential scaling of the system capac-
ity with the transmission bandwidth, the design of such multi-band systems needs to
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face several challenges. From the technological point of view, one of the main issues
is represented by the amplification of such wide bandwidths signals. For instance,
semiconductor optical amplifiers are gaining interest due to their wide amplifica-
tion bandwidth. Moreover, the optical fiber exhibits a different nonlinear response
over wide bandwidths which leads to stimulated Raman scattering. Such a nonlin-
ear process causes the amplification of low-frequency components while depleting
high frequencies. This phenomenon becomes more severe as the transmission band-
width increases, thus requiring to be addressed properly for a reliable estimation of
the system performance.

On the other hand, SDM systems offer the possibility to unleash the spatial
dimension. One possibility to achieve spatial diversity is the deployment of paral-
lel single-mode fibers. While this solution allows relying on the same technologies
adopted in common optical communication systems, extensive research has been
done on SDM systems based on optical fibers that intrinsically accommodate dif-
ferent spatial paths. To be cost-effective, the latter systems need to fully implement
SDM. In particular, one of the main challenges is related to optical amplifiers able
to uniformly amplify all the spatial paths carried by SDM fibers. Even in this sce-
nario, the system performance estimation becomes non-trivial due to the linear and
nonlinear interaction among the spatial paths during propagation along with the op-
tical fiber. For instance, due to random perturbation in the optical fibers, the different
modes mix during propagation and experience different delays, i.e., mode dispersion.

Both types of systems need a quick and reliable way to estimate the overall per-
formance, to assist the design stage. While a fully numerical approach is too time-
consuming for such complex systems, analytical models represent the ultimate tool
for a fast system performance estimation along with a physical understanding of the
underlying impairments. To achieve an accurate estimate, the analytical models from
the single-mode and single-band literature must be extended to account for the phys-
ical impairments arising in SDM and UWB transmissions.

This thesis will propose extensions to analytical models for the performance es-
timation of UWB and SDM scenarios, with a particular focus on fiber nonlinearities.
The remainder of the thesis is structured as follows.
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Chapter 1 reviews the basic concepts of optical communications and introduces
the notation that will be adopted in the remainder of the thesis.

Chapter 2 introduces the Gaussian noise model [3] and the enhanced Gaussian
noise model [4] for the estimation of the fiber nonlinearities, with a detailed descrip-
tion of the supporting proofs. Strategies for the efficient implementation of such mod-
els are discussed.

The remainder of the thesis is divided into two parts. Part I is devoted to ultra-
wideband transmissions, and is composed of Chapters 3 and 4, while Part II focuses
on SDM systems, and contains Chapters 5 and 6.

Chapter 3 proposes an extension of the enhanced Gaussian noise model to include
stimulated Raman scattering, accounting for an arbitrary positioning of equalizers in
the link for the compensation of stimulated Raman scattering on the signal power.
Novel extensions of closed-form expressions available in the literature [5] to sparse
equalizers positioning are presented.

In Chapter 4 we discuss the modeling of semiconductor optical amplifiers. This
chapter aims to propose a simple model for the amplifier to be used in the estimation
of the overall system performance. As a first step, in this chapter, we exploit such a
model for fast and accurate numerical simulations. This work was carried out during
a six months internship at Nokia Bell Labs, France.

Chapter 5 proposes an extension of the enhanced Gaussian noise model to include
random polarization-dependent losses. The model serves as a first step towards the
inclusion of mode-dependent losses in an SDM system.

In Chapter 6 we propose the ergodic Gaussian noise model, i.e., an original ex-
tension of the Gaussian noise model to account for mode dispersion in SDM trans-
missions.

Finally, we will draw our conclusions.





Chapter 1

Review of background theory

In this chapter, we review basic concepts of background theory on optical communi-
cations. The structure of the chapter follows the structure of a generic optical com-
munication system, as sketched in Fig. 1.1, with a particular focus on the fiber-optic
channel.

1.1 Digital modulation schemes

We assume the transmitted signal to be a linearly modulated digital signal, which can
be expressed as:

s(t) =
∞

∑
k=−∞

ak p(t − kT ) (1.1)

where ak is the digital symbol at time k, while p(t − kT ) is the supporting pulse at
the kth symbol time of duration T . The pulse is normalized such that the average
transmitted power is given by P = E

{︁
|ak|2

}︁
, with E indicating expectation.

Figure 1.1: Block diagram of a generic optical communication system.
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Figure 1.2: Constellation diagrams. From left to right: on-off keying (OOK), quadra-
ture phase shift keying (QPSK), and 16 quadrature amplitude modulation (QAM).

We suppose each transmitted symbol to take values within an alphabet of cardi-
nality M, according to the chosen modulation format, and with a uniform probability
distribution. The most popular modulation formats are amplitude-only, phase-only,
or phase and amplitude modulation. The latter modulation formats are of particular
interest in modern communication systems since they carry information symbols in
both in-phase (I) and quadrature (Q) components. A notable example is quadrature
amplitude modulation (QAM) formats. In the low-pass description, the symbols are
thus, in general, complex numbers, that can be reported in the complex plane (IQ
plane), describing a constellation. Figure 1.2 shows an example of three polar con-
stellations. First, we observe on-off keying (OOK) modulation, which modulates only
the in-phase component, in a binary alphabet. A second example is quadrature phase-
shift keying (QPSK), composed of four symbols shifted in the phase of π/2. The last
example reported in Fig. 1.2 is a QAM modulation with cardinality M = 16.

Root-raised cosine (RRC) pulses are typically used as supporting pulses, being
immune to inter-symbol interference once detected by a matched filter [6] and be-
cause of their band-limited property. An example of such pulses is sketched in Fig.
1.3 for different roll-off factors, which govern the pulse shape, as a function of time
expressed as multiples of the symbol time. A small roll-off factor near 0 is typically
adopted in modern communication systems since it yields a small bandwidth occu-
pation in the frequency domain. For the sake of completeness, Fig. 1.3 reports in the
inset the modulus of the RRC in the frequency-domain |P̃( f )|. We recall that in this
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Figure 1.3: Root-raised cosine (RRC) pulse with roll-off factor 0, 0.5 and 1. Inset:
frequency-domain representation. T : symbol time.

thesis, a generic function p(t) is related to its Fourier transform P̃(ω) by:

P̃(ω) = F{p(t)}=
∫︂ +∞

−∞

p(t)e− jωtdt

p(t) = F−1{︁P̃(ω)
}︁
=
∫︂ +∞

−∞

P̃(ω)e jωt dω

2π

(1.2)

where ω is the angular frequency, related to the frequency f by ω = 2π f . As usual
in the literature, in this thesis, we will call both ω and f simply frequency since the
meaning is clear from the notation.

1.2 Optical modulation

The digital signal carrying the desired information is then used to modulate an op-
tical carrier generated by a laser source. In fiber-optic communication systems, the
modulated light is then confined and guided by an optical fiber. The optical fiber
is a waveguide composed of two concentric cylinders made of silica. The guiding is
achieved through internal reflection, thanks to the refractive index difference between
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Figure 1.4: Sketch of the structure of a generic optical fiber.

the inner and the outer structures, respectively the fiber core and cladding. Fig. 1.4
sketches the structure of a generic optical fiber.

The dimension of the core and the refractive index difference discriminate the
number of modes that can be guided by the optical fiber. A single-mode fiber (SMF)
is an optical fiber that guides only the fundamental mode of light [7].

Assuming that the light is polarized along the x axis, the electric field for the
fundamental mode at time t and generic coordinate z along the optical fiber length
can be written as [7]

E⃗(x,y,z, t) = x̂
{︂

Re
[︂
F(x,y)E(z, t)e j(β0z−Ωct)

]︂}︂
(1.3)

where Ωc is the central optical frequency, x̂ is the polarization unit vector, and β0

is the propagation constant. E(z, t) is the slowly-varying pulse envelope, also known
as low-pass equivalent, whose instantaneous power is |E(z, t)|2. For communication
purposes, at coordinate z = 0 it is E(0, t) = s(t), with s(t) the linearly modulated
signal in Eq. (1.1).

The term F(x,y) in Eq. (1.3) indicates the transverse field distribution, which
fades exponentially outside the fiber core [7], and is independent of the longitudinal
coordinate z. For the fundamental model, such transverse distribution is typically
approximated as Gaussian [7].
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1.3 Multiplexing

In this section, we briefly review multiplexing techniques and introduce the notation
that will be used for the remainder of this thesis.

1.3.1 Wavelength-division multiplexing

The fiber-optic channel offers a much wider bandwidth compared to electronics.
Therefore, it is natural to exploit it by multiplexing techniques. A popular technique is
wavelength-division multiplexing (WDM). WDM is a technique that multiplexes to-
gether independent signals modulated at different carrier frequencies, thus increasing
the system throughput without stressing the modulator bandwidth. A WDM signal
resulting from the multiplexing of Nch channels can be written as

E(0, t) =
Nch

∑
h=1

∞

∑
k=−∞

akh ph(t − kTh)e jωht (1.4)

where akh is the digital symbol carried by channel h at time k, while ωh is the low-
pass channel central frequency in the band-pass reference system centered at Ωc. In
the most general case, an arbitrary channel-dependent phase-shift can be included in
Eq. (1.4). The frequency-domain representation of this WDM signal is given by:

Ẽ(0,ω) =
Nch

∑
h=1

∞

∑
k=−∞

akh p̃h(ω −ωh)e− j(ω−ωh)kTh

≜
Nch

∑
h=1

∞

∑
k=−∞

akhG̃kh(0,ω −ωh)

(1.5)

where G̃kh(0,ω −ωh) is the Fourier transform of the following basis function:

Gkh(0, t)≜ p(t − kTh)e jωht . (1.6)

Figure 1.5(a) sketches the WDM mechanism for a simple case of 3 channels
having carrier frequencies Ω1,Ω2, and Ω3. The three independent signals are multi-
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Figure 1.5: Sketch of the WDM technique. (a): three independent signals having dif-
ferent carriers are multiplexed together into a WDM signal. (b): frequency domain
low-pass equivalent of the field.

plexed together to compose a WDM field. The low-pass equivalent of such a WDM
field, which is defined in Eq. (1.5), is depicted in Fig. 1.5(b).

It can be seen form Eq. (1.4) that the WDM field can be written compactly as a
superposition of Nch channels:

E(0, t) =
Nch

∑
h=1

Eh(0, t)e jωht (1.7)

where each Eh writes as in Eq. (1.1).

1.3.2 Polarization-division multiplexing

Polarization-division multiplexing (PDM) is a technique that exploits the two or-
thogonal polarizations of light to transmit information. Each polarization tributary is
modulated as in Eq. (1.1). The complex envelope can thus be written as a 2D complex
vector, collecting both x and y polarizations, hence a Jones vector [8]. We adopt the
bra-ket notation for vectors, namely:

|E⟩≜

[︄
Ex

Ey

]︄
, ⟨E|≜

[︁
E∗

x , E∗
y
]︁

(1.8)

where |·⟩ is the ket and identifies a column vector, and its transpose-conjugate ⟨·| is
called bra, with superscript ∗ indicating the complex conjugate.
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The PDM field can thus be written in a vectorial form as:

|E(0, t)⟩= ∑
j∈x,y

Nch

∑
h=1

∞

∑
k=−∞

akh j√
2
|Gkh(0, t)⟩ (1.9)

where akh j is the digital symbol at time k, WDM channel-index h, and polarization j,
while the basis function generalizes to the following expression:

|Gkh(0, t)⟩≜ ph(t − kTh)e jωht | j⟩ (1.10)

being | j⟩ a two entry unit-vector identifying the jth polarization. The factor 1/
√

2
in Eq. (1.9) accounts for the fact that each polarization carries 1/2 of the average
transmitted power P.

The field in Eq. (1.8) can also be expressed to highlight the so-called field’s
state of polarization (SOP) with the following formalism |E⟩ = E0Ĵ, where E0 =√︁

|Ex|2 + |Ey|2 is the field amplitude while the vector Ĵ is a unit Jones vector repre-
senting the field SOP [8].

1.3.3 Space-division multiplexing

Multiplexing in frequency and polarization, exploiting both in-phase and quadrature
components, allows increasing the amount of transmitted data. A possible solution
to further increase the capacity is to unleash the spatial dimension in space-division-
multiplexed systems. There are several technical approaches to achieve space-division
multiplexing [9], as depicted in a schematic way in Fig. 1.6.

The most intuitive approach to perform spatial multiplexing is to use a bundle of
optical fibers, each supporting a single-mode, as represented in Fig. 1.6(a). However,
the cost per bit of this solution remains unchanged, thus making the total investment
too expensive. A first SDM solution that may reduce the cost per bit is a multi-core
fiber (MCF), see Fig. 1.6(b). In a multi-core fiber, spatial multiplexing is achieved
by physically distinct cores integrated directly into the fiber cross-section. Another
SDM option is represented by multi-mode fibers (MMFs), as sketched in Fig. 1.6(c).
Here the core is usually larger than in MCF, thus supporting more spatial modes. In
this thesis, SDM is intended as achieved through the latter type of fibers.
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Figure 1.6: Different techniques for space-division multiplexing. Fiber bundle (a),
multi-core fiber (b), and multi-mode fiber (c).

MCF and MMF may reduce the cost per bit once used with an optical amplifier
that integrates the spatial dimension as well. However, the major problem of such
systems is the presence of crosstalk among the modes, which can arise either by
linear or nonlinear effects.

For an SDM transmission, the field complex envelope can be generalized as

|E(0, t)⟩= ∑
j∈D

Nch

∑
h=1

∞

∑
k=−∞

akh j√
2
|Gkh(0, t)⟩ (1.11)

being D the set of modes supported by the optical fiber. The set of modes has dimen-
sion 2Nm, with the factor 2 accounting for the two polarizations per spatial mode. In
this scenario, the field envelope |E⟩ having 2Nm entries is called hyper-polarization
vector [10] and generalizes the two-dimensional Jones vector of the PDM transmis-
sion. The average power P is intended as power per-mode, hence the factor 1/

√
2

appears in Eq. (1.11) as in Eq. (1.9).

Atomic notation

We now introduce a useful notation that compacts together the time, frequency, and
polarization/mode index as follows:

∑
n3∈D

Nch

∑
n2=1

∞

∑
n1=−∞

an1n2n3 → ∑
n

an (1.12)
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where an is the generic information symbol per (time, frequency, polarization/mode)
channel use, i.e., an atom of source information, and the vector n should be read as:

n = [n1, n2, n3] (1.13)
time frequency

mode

According to this atomic notation, the field envelope of a PDM or SDM transmitted
field writes as:

|E(0, t)⟩= ∑
n

an |Gn(0, t)⟩ (1.14)

with basis function:

|Gn(0, t)⟩≜ p(t −n1Tn2)e
jωn2 t |n3⟩ (1.15)

where the dimension of the vector |n3⟩ depends on the number of supported modes.

1.4 The fiber-optic channel

An optical fiber supports the propagation of an electromagnetic wave confined within
it. Such a wave experiences many effects during propagation, as we show now. We
start with the simplest case of pure scalar propagation, i.e., without any polarization
effect.

1.4.1 Scalar propagation

The propagation of a field envelope along the optical fiber is governed by the follow-
ing nonlinear Schrödinger equation (NLSE), which is derived from the Maxwell’s
equations [7]:

∂E(z, t)
∂ z

=−α

2
E(z, t)− jβ0E(z, t)−β1

∂E(z, t)
∂ t

+ j
β2

2
∂ 2E(z, t)

∂ t2 +
β3

6
∂ 3E(z, t)

∂ t3

− jγ
(︃
(1− fR)|E(z, t)|2 + fR

∫︂ t

0
hR(t − t ′)|E(z, t ′)|2dt ′

)︃
E(z, t). (1.16)
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The first row on the right-hand side accounts for linear effects experienced by the
electric field, while the second row accounts for nonlinear effects. We describe them
separately as follows.

Linear effects

The first term on the right-hand side of Eq. (1.16) is the attenuation which accounts
for the vanishing of the signal along z due to the fiber loss. The fiber attenuation
coefficient α , which is wavelength-dependent, is typically expressed in dB/km.

An example of fiber attenuation versus wavelength for single mode-fiber is re-
ported in Fig. 1.7, taken from [11]. The wavelength-dependent fiber loss is caused by
both intrinsic and extrinsic phenomena. In particular, intrinsic mechanisms such as
Rayleigh scattering and infrared absorption [7] set the fundamental theoretical mini-
mum value of attenuation to about 0.16 dB/km. On the other hand, extrinsic factors
such as manufacturing imperfections can enhance fiber losses. For instance, Fig. 1.7
shows the so-called OH peaks around 1244 and 1390 nm, which occur due to the
absorption of water molecules residual from the manufacturing process.

The wavelength dependence of the attenuation profile implies the existence of
wavelength ranges more favorable for communication purposes, called telecommu-
nication windows. The current window adopted for optical communication is cen-
tered at 1550 nm, where the optical fiber exhibits a minimum value in the attenuation
of ≈ 0.2 dB/km for SMF. Such a conventional bandwidth (C-band) covers the in-
terval 1530− 1565 nm. Despite the slightly higher attenuation coefficient, the long
wavelengths (L-band) in the range 1565− 1625 nm are currently adopted to further
exploit the wide bandwidth of the optical fiber. However, in modern optical fibers,
the OH peak can be successfully removed by a proper manufacturing process [9].
As a result, low-attenuation transmissions are feasible over wider bandwidths. Other
standardized bandwidths that exhibit an attenuation coefficient lower than 0.4 dB in
OH peak-free fiber are the S-band (1460−1530 nm), the E-band (1360−1460 nm),
and the O-band (1260−1360 nm).

If the bandwidth of E(z, t) is confined within a telecommunication window, the
wavelength dependence of α can be safely neglected, as in Eq. 1.16.



1.4. The fiber-optic channel 15

1000 1200 1400 1600 1800

Wavelength [nm]

0.1

1

10

 
 [

d
B

/k
m

]

attenuation

Rayleigh absorption

Infrared absorption

Figure 1.7: Attenuation profile of a single-mode fiber. Data from [11].

The other coefficients related to linear effects occurring during the field propaga-
tion along z are βn, n = 1,2,3, which are the coefficients of the Taylor expansion of
the propagation constant β (ω), usually truncated up to the third order:

β (ω) = β0 +β1ω +
1
2

β2ω
2 +

1
6

β3ω
3 (1.17)

Formally, the ℓth coefficient can be found as:

βℓ ≜
dℓβ (ω)

dωℓ

⃓⃓⃓
ω=0

(1.18)

where ω = 0 is the low-pass frequency corresponding to the carrier frequency.
To each coefficient, we can associate a physical action. For instance, the term β0

in Eq. (1.16) is a constant phase rotation, while β1 induces a group velocity vg with
β1 = 1/vg. The group velocity describes the velocity at which the field envelope trav-
els. Hence, because of β1, a signal after z km experiences a group delay, or walk-off,
of β1z. The second-order coefficient β2 accounts for the group velocity dispersion
(GVD), i.e., the dependence of group velocity with frequency. Such a frequency de-
pendence causes pulse broadening since different pulse spectral components arrive
at different time instants at the fiber output. The delay spread ∆T of two frequencies
spaced ∆ω due to GVD after L km of optical fiber can be found as [12]:
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∆T ≜ Lβ2∆ω (1.19)

with ∆ω the width of the transmitted pulse. Such a phenomenon, also known as
chromatic dispersion [7], can be highly detrimental if not compensated properly since
pulse broadening generates inter-symbol interference on the digital signal.

A measure of chromatic dispersion is typically provided in terms of the fiber
dispersion coefficient D [ps/nm/km], which is related to β2 through the following:

D ≜−2πc
λ 2

0
β2 (1.20)

where λ0 is the wavelength at which we evaluated β2, with c the speed of light in the
vacuum. If we change the reference wavelength, the dispersion coefficient changes
value because of third-order dispersion, usually called fiber slope S ps/nm2/km. The
slope is proportional to the β3 parameter by

S =

(︃
2πc
λ 2

0

)︃2

β3 +

(︃
4πc
λ 3

0

)︃
β2. (1.21)

As a result, the fiber dispersion is wavelength-dependent, as depicted in Fig. 1.8
for a standard single-mode fiber [12]. The figure shows that the SMF exhibits a dis-
persion coefficient value ≈ 17 ps/nm/km at the reference wavelength 1550 nm asso-
ciated with the minimum of fiber attenuation. The zero-dispersion wavelength for the
SMF is near 1300 nm. Since the dispersion curve in Fig. 1.8 is due to both waveguide
and material dispersion, it is possible to design optical fibers such that the dispersion
curve is shifted. In particular, fibers having zero dispersion at 1550 nm were manu-
factured to avoid pulse broadening, called dispersion-shifted fibers (DSF). While the
zero-dispersion coefficient yields benefits from the linear propagation point of view,
it is extremely detrimental when nonlinear effects arise. For this reason, non-zero
dispersion-shifted fibers (NZDSF) with low dispersion in the range 4-8 ps/nm/km
around 1550 nm were designed.

In the presence of only chromatic dispersion and third-order dispersion, the solu-
tion of the NLSE is:
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Figure 1.8: Dispersion coefficient vs. wavelength of a single-mode fiber. Data from
[12].

E(z, t) = F−1
{︃

Ẽ(0,ω)e− j
(︂

β2
2 ω2+

β3
6 ω3

)︂
z
}︃

(1.22)

hence a pure phase-shift in the frequency domain, and a pulse broadening in the time
domain [7]. For ultra-wideband transmission even α is a function of ω . It can be
included in the frequency domain solution Eq. (1.22) by e−

α(ω)
2 z.

Nonlinear effects

The optical fiber manifests an instantaneous nonlinear response to an intense electric
field, resulting in the so-called Kerr effect. Such an effect exhibits a memoryless
nature coming from the instantaneous response of the glass electrons to the field. As
a consequence, the fiber refractive index shows an electric field dependence which,
in turn, causes a transfer of energy among frequencies. The memoryless contribution
is described by − jγ|E(z, t)|2E(z, t) in Eq. (1.16), with γ the nonlinear coefficient of
the optical fiber:

γ ≜
2πn2

λ0Aeff
(1.23)
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with n2 the fiber nonlinear index and Aeff the fiber effective area.
It is convenient to work in the following phase-shifted, pre-attenuated, and re-

tarded reference system:

A(z, t) = E(z, t −β1z)e−
α

2 z− jβ0z (1.24)

such that the NLSE in Eq. (1.16), with fR = 0 (i.e., in the absence of the Raman
effect), rewrites as:

∂A(z, t)
∂ z

= j
β2

2
∂ 2A(z, t)

∂ t2 +
β3

6
∂ 3A(z, t)

∂ t3 − jγe−αz|A(z, t)|2A(z, t). (1.25)

In the presence of only the Kerr effect and attenuation, the NLSE can be eas-
ily solved in a closed-form expression. The solution is found to be a signal power-
dependent phase shift, namely:

A(z, t) = e− jγLeff(z)|A(0,t)|2A(0, t) (1.26)

with γLeff(z)|A(0, t)|2 a nonlinear phase. Leff is the effective length of the Kerr effect,
defined as:

Leff(z)≜
z∫︂

0

e−αξ dξ =
1− e−αz

α
. (1.27)

As a reference, the effective length of an SMF fiber of 100 km having α = 0.2
dB/km is Leff ≈ 21.5 km, meaning that the Kerr effects are more significant at the
fiber beginning due to the signal power loss along distance caused by the fiber loss.
It is worth noting that, although the effect of Kerr nonlinearity in the time domain is
a pure phase-shift, it yields a spectrum broadening in the frequency domain [7].

In the presence of wavelength-division multiplexing, a frequency disaggregated
or separate-field point of view [7] can be adopted to simplify the analysis. The elec-
tric field can thus be written as the superposition of the electric fields associated with
each channel in a WDM system. Each WDM channel travels with its phase shift,
group velocity, and GVD, hence with coefficients:
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βℓi ≜
dℓβ (ω)

dωℓ

⃓⃓⃓
ω=ωi

(1.28)

where βℓi is the ℓth order Taylor coefficient relative to channel i. More explicitly, they
are related to the coefficients βi, introduced in Eq. (1.18) at the reference frequency
ω = 0, by:

β0i ≜ β1ωi +
β2

2
ω

2
i +

β3

6
ω

3
i (1.29)

β1i ≜ β1 +β2ωi +
β3

2
ω

2
i (1.30)

β2i ≜ β2 +β3ωi (1.31)

β3i ≜ β3. (1.32)

The separate-field point of view thus requires expressing the propagation of the
WDM signal along the optical fiber through a set of differential equations, one for
each channel. For instance, the evolution along z of the generic channel Ai centered
at frequency ωi writes in terms of separate-field NLSE as:

∂Ai(z, t)
∂ z

=−β1i
∂Ai(z, t)

∂ t
+ j

β2i

2
∂ 2Ai(z, t)

∂ t2 +
β3i

6
∂ 3Ai(z, t)

∂ t3

− jγe−αz
∑

h,m,n∈B
A∗

h(z, t)Am(z, t)An(z, t)e− j∆βhmniz (1.33)

where the summation in the nonlinear term is limited to the set:

B= {(h,m,n) : ωm +ωn −ωh −ωi = 0} (1.34)

ensuring the conservation of energy [7], and ∆βhmni is the phase matching coefficient
defined as:

∆βhmni ≜ β0m +β0n −β0h −β0i. (1.35)

Depending on the values of h,m,n, i, we can identify different implications of the
Kerr effects on the channels. The effect that accounts for intra-channel nonlinearity is
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self-phase modulation (SPM) [7] and it occurs when h=m= n= i. On the other hand,
when the terms in Eq. (1.35) are pair-wise degenerate, e.g., (h = m) ̸= (n = i)or(h =

n) ̸= (m = i), the nonlinear Kerr effect manifests as cross-phase modulation (XPM)
which accounts for the nonlinear interaction between two non-degenerate frequency
channels. In both cases, a phase-matching condition is satisfied, resulting in ∆β = 0.

Other valid configurations of the frequency indices generally resulting in ∆β ̸= 0
yield to the four-wave mixing (FWM) effect [7]. FWM is a nonlinear process that
transfers energy among four frequencies satisfying the principle of energy conserva-
tion in Eq. (1.34). As a consequence of FWM, energy can arise on an idle frequency
if the other three involved frequencies have a non-zero power at z = 0.

The glass nuclei respond to the electric field in a non-instantaneous way. This re-
sponse is known as the vibrational or Raman response. The second nonlinear term in
Eq. (1.16) models the Raman effect, caused by the non-instantaneous fiber response:

− jγ fR

∫︂ t

0
hR(t − t ′)|E(z, t ′)|2dt ′E(z, t) (1.36)

where fR is the fractional Raman contribution, whose value is ≈ 0.2 for single-mode
fibers [10, 13]. It can be seen that Eq. (1.36) expresses a convolution between the
function hR and the signal power, where hR is the Raman response function [7]. Of
particular interest is the Fourier transform of the Raman response h̃R(ω), which ex-
hibits a real and imaginary part, namely:

h̃R(ω) = r̃R(ω)+ jg̃R(ω) (1.37)

where the real part is responsible for Raman-induced index changes [14] while g̃R(ω)

is the Raman gain spectrum [14, 15]. The Raman gain is responsible for the so-
called Stimulated Raman Scattering (SRS), a nonlinear process that amplifies lower
frequencies while depleting the higher ones [7]. While the real part of the Raman
response is typically overlooked because it yields minor implications [16], the Ra-
man gain represents a non-negligible impairment for wide bandwidth transmissions.
In such cases, it is possible to approximate the NLSE expression by replacing the
fiber losses with a more generic term A(z,ω). Namely, in the frequency domain:
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α → A(z,ω), thus requiring a convolution in the time domain. Such a frequency-
dependent term A(z,ω) accounts for the losses/gains experienced along the optical
fiber due to both fiber loss and Raman gain. For the sake of completeness, the NLSE
in the frequency domain is then:

∂ Ẽ(z,ω)

∂ z
≃−A(z,ω)

2
Ẽ(z,ω)− jβ (ω)Ẽ(z,ω)

− jγ(1− fR)Ẽ(z,ω)⊗ Ẽ∗
(z,−ω)⊗ Ẽ(z,ω)

(1.38)

with ⊗ denoting the convolution operation. Hence, the signal power at a given coor-
dinate z is related to the input power by the following power profile:

ρ(z,ω) = e−
∫︁ z

0 A(ζ ,ω)dζ (1.39)

which reduces to e−αz in the absence of Raman scattering. The Raman effect will be
treated in more detail in Chapter 3.

1.4.2 Dual-polarization propagation

Exploiting the two polarizations of the field allows increasing the amount of transmit-
ted data. However, the propagation of the two polarizations cannot be simply modeled
as a pair of NLSE in Eq. (1.16), due to the presence of polarization-related impair-
ments, such as the fiber birefringence. Birefringence is the property of exhibiting dif-
ferent refractive indexes for different polarizations, and it arises from broken circular
symmetry of the optical fiber, due to, e.g., imperfections, external stress, or bending.
Birefringence, besides changing the propagation constant of the propagating polar-
izations, causes an exchange of power between them over a period called beat length,
which is defined as LB ≜ 2π

|β0,x−β0,y| [m] where |β0,x−β0,y| is the birefringence strength.
Due to random perturbations, polarization mode dispersion (PMD) [7, 8] arises.

In particular, the two polarizations are delayed one respect to the other, by random
differential group delay (DGD) [17].

The evolution along the optical fiber of a PDM signal is thus governed by a pair
of coupled differential equations, one describing the propagation of each polariza-
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tion. The two equations can be compacted together in a unique vectorial equation,
the so-called coupled NLSE (CNLSE). Neglecting the Raman effect for the sake of
simplicity1, the CNLSE writes as

∂ |E⟩
∂ z

=−α

2
|E⟩− jB(0) |E⟩−B(1) ∂ |E⟩

∂ t
+ j

β2

2
∂ 2 |E⟩

∂ t2 +
β3

6
∂ 3 |E⟩

∂ t3

− jγ
(︃
⟨E|E⟩ |E⟩− 1

3
⟨E|σ3 |E⟩σ3 |E⟩

)︃ (1.40)

with σ3 the following Pauli matrix:

σ3 =

[︄
0 j

− j 0

]︄
. (1.41)

The matrices B(0) and B(1) are the birefringence and PMD matrix, respectively.
Mathematically, the matrix B(n) with n = 0,1 appearing in Eq. (1.40) has a determin-
istic and a perturbation-related term as follows:

B(n) ≜ D(n)+P(n) (1.42)

where the matrix D collects the deterministic terms that are proper of the fiber under
test. Such a deterministic matrix is a 2× 2 diagonal matrix with non-zero elements
equal to the propagation constant β0,p for D(0) and the inverse group velocity β1,p

in D(1), with p = x,y. On the other hand, the matrix P accounts for the effects aris-
ing from perturbations, such as birefringence for n = 0 and PMD for n = 1. Please
note that, due to the presence of random perturbations, the CNLSE is a stochastic
differential equation.

Due to the fiber imperfections, the two polarizations mix together during propa-
gation. These dynamics occur in a length scale usually much smaller than the length
scale over which the nonlinear effects change. Such a difference in the length scales
allows to average the nonlinear term of Eq. (1.40) with respect to the fast rotations of

1Note that the Raman gain can be included by substituting the attenuation coefficient with the proper
profile.
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|E⟩, according to the method of averaging. The result of the averaging yields to the
well-known Manakov-PMD equation [18]:

∂ |E⟩
∂ z

=−α

2
|E⟩−B(1) ∂ |E⟩

∂ t
+ j

β2

2
∂ 2 |E⟩

∂ t2 +
β3

6
∂ 3 |E⟩

∂ t3

− jκγ ⟨E|E⟩ |E⟩
(1.43)

where κ is the Manakov coefficient, resulting from the averaging process, and B(1)

is a rotated version of B(1) in the reference system that follows B(0). In single-mode
fiber, the coefficient assumes the value κ = 8

9 .
In the absence of PMD, Eq. (1.43) becomes completely deterministic, and it is

simply known as Manakov equation. In the phase-rotated, retarded and pre-attenuated
reference systems considered in Eq. (1.24), the Manakov equation becomes:

∂ |A⟩
∂ z

= j
β2

2
∂ 2 |A⟩

∂ t2 +
β3

6
∂ 3 |A⟩

∂ t3 − jγκe−αz ⟨A|A⟩ |A⟩ . (1.44)

As for the scalar case, it is useful to split the propagation equation of the WDM
signal into a system of differential equations, one for each WDM channel, according
to the separate-field point of view. For instance, for a channel centered at frequency
ωi the Manakov equation writes as:

∂ |Ai⟩
∂ z

= j
β2i

2
∂ 2 |Ai⟩

∂ t2 +
β3i

6
∂ 3 |Ai⟩

∂ t3 − jγκe−αz
∑

h,m,n∈B
⟨Ah|Am⟩ |An⟩e− j∆βhmniz (1.45)

with B the same set of channel indexes commented in the scalar case, and ∆βhmni

the phase matching coefficient. Such a separate-field approach allows a meaningful
insight on the Kerr effect. In particular, focusing on phase-matched combinations
of the channel indexes, the nonlinear term can be expressed as the summations of
different contributions. If we neglect FWM, channel i experiences the following Kerr
effect:

⟨Ah|Am⟩ |An⟩= ⟨Ai|Ai⟩ |Ai⟩⏞ ⏟⏟ ⏞
SPM

+∑
n̸=i

(︂
⟨An|An⟩ |Ai⟩⏞ ⏟⏟ ⏞

XPM

+ |An⟩⟨An|Ai⟩⏞ ⏟⏟ ⏞
XPolM

)︂
(1.46)
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where XPolM stands for cross-polarization modulation (XPolM) [19]. It is worth
noting that, while scalar nonlinear effects induce a phase shift on the signal, XPolM
induces a rotation of the state of polarization on the Poincaré sphere [19].

1.4.3 SDM propagation

In SDM, different spatial modes travel with different propagation constants. How-
ever, for some modes, such a difference is usually small. A set of spatial modes
with an almost identical propagation constant is called a group of quasi-degenerate
modes [10]. In these fibers, the modes couple along propagation in a random way due
to refractive index perturbations [20]. On a length scale of meters, only the two polar-
izations of the same mode couple along propagation, as in single-mode fibers. After
hundred of meters, the coupling between quasi-degenerate modes within a group
becomes non-negligible. As the propagation distance increases, all the optical fiber
modes couple. However, over short distances, the strength of the coupling between
modes belonging to different groups may be moderate compared to the strong cou-
pling of modes within the same group. For any sufficiently long propagation distance,
all the modes supported by the fiber couple together. For the sake of simplicity, we
will focus only on this latter regime of linear strong mode coupling.

In the strong coupling regime, the Manakov equation was extended to model
SDM propagation [10] supporting 2Nm modes as:

∂ |E⟩
∂ z

=−A |E⟩−B(1) ∂ |E⟩
∂ t

+ j
1
2
B(2) ∂ 2 |E⟩

∂ t2 +
1
6
B(3) ∂ 3 |E⟩

∂ t3

− jκγ ⟨E|E⟩ |E⟩ (1.47)

where |E⟩ is now the hyper-polarization vector with 2Nm entries and the coefficient
matrices are now 2Nm × 2Nm. In the most general case, all the coefficients can be
mode-dependent, including the fiber attenuation which is now generalized through
the matrix A. As in dual-polarization cases, we adopted a reference system tracking
B(0) perturbations, which is now 2Nm × 2Nm. Within a group of modes, the quasi
degeneracy makes the deterministic contribution in B(1) well described by a scalar
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effect, hence with matrices proportional to the identity matrix. On the other hand,
the matrices B(2) and B(3) are well described by deterministic diagonal matrices, in
most of the fibers supporting SDM, collecting on the diagonal elements the β2 and
β3 coefficient of each mode.

Regarding the nonlinear term, the Manakov coefficient κ resulting from the av-
eraging process must be re-defined in this framework, and the nonlinear coefficient
should be scaled as γSDM = γSMF/Nm [10]. The latter scaling can be included in the
re-definition of the Manakov coefficient:

κ =
4
3

2
2Nm +1

(1.48)

by keeping the nonlinear coefficient γ unchanged, as defined in Eq. (1.23).

1.5 Approximate solutions of the Manakov equation

Due to the absence of a general analytical solution for the field propagation along the
optical fiber in the presence of both linear and nonlinear impairments, two strategies
are viable: approximated theoretical approaches or numerical methods. We briefly
review two popular methods in this framework, i.e, the first-order regular perturbation
method and the split-step Fourier method algorithm. We focus on the single-mode
Manakov equation in the absence of polarization-related effects.

1.5.1 First-order regular perturbation

An analytical technique to approximate the Manakov equation is represented by the
first-order regular perturbation (RP1) method [21, 22], which consists in expanding
the field in a first-order series with respect to the nonlinear coefficient γ . The RP1
solution of the single-mode Manakov equation is

|A(z, t)⟩ ≃ |A⟩(0)+ γ |A⟩(1) (1.49)

where the first term on the right-hand side is the zeroth-order solution, hence the
solution of the linear propagation, and is given by the following expression:
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|A⟩(0) = eLz |A(0, t)⟩ (1.50)

where L is the linear operator. In the considered phase-rotated, retarded and pre-
attenuated reference system, such an operator is defined in the time domain as:

L≜ j
β2

2
∂ 2

∂ t2 +
β3

6
∂ 3

∂ t3 (1.51)

with a much more convenient frequency-domain representation:

F
{︂

eLz
}︂
≜ e− j

(︂
β2
2 ω2+

β3
6 ω3

)︂
z
. (1.52)

The first-order solution in Eq. (1.49) is found as follows [22]

γ |A⟩(1) =
∫︂ z

0
eL(z−ζ )N

(︂
eLζ |A(0, t)⟩

)︂
dζ (1.53)

where we defined the nonlinear operator N applied to |A(z, t)⟩ as

N (|A(z, t)⟩)≜− jγ
8
9

e−αz ⟨A(z, t)|A(z, t)⟩ |A(z, t)⟩ . (1.54)

After performing a zero-forcing equalization of the linear effects, i.e., concatena-
tion with e−Lz, the received signal |AR⟩ is:

|AR⟩ ≃ |A(0, t)⟩+ |n(z, t)⟩ (1.55)

where |n(z, t)⟩ represents the interference with respect to the desired signal due to the
presence of Kerr effects, and it is known in the literature as the nonlinear interference
(NLI). The RP1 solution is the key ingredient to evaluate the variance of the NLI, a
topic that will be covered in Chapter 2.

1.5.2 Split-step Fourier method

The most widely used numerical method to solve the field propagation along the
optical fiber is the split-step Fourier method (SSFM) [7, 23, 24]. SSFM is a pseudo-
spectral method which owes its name to back and forth Fourier transforms across
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several spatial steps. To understand such a method, it is convenient to read Eq. (1.44)
in terms of linear and nonlinear operators, namely:

∂ |A⟩
∂ z

= j
β2

2
∂ 2 |A⟩

∂ t2 +
β3

6
∂ 3 |A⟩

∂ t3⏞ ⏟⏟ ⏞
L(|A⟩)

− jγ
8
9

e−αz ⟨A|A⟩ |A⟩⏞ ⏟⏟ ⏞
N(|A⟩)

(1.56)

where the linear and nonlinear operators are defined in Eq. (1.51) and Eq. (1.54),
respectively. Although the linear and nonlinear effects occur jointly during propaga-
tion, the key idea behind SSFM is to treat the two operators as independent across
a small spatial step h. Leveraging the operators’ independence, over a distance h the
linear and nonlinear propagation can be solved separately. In fact, in the absence of
nonlinear effects, the propagation has a solution as in Eq. (1.22). Such a linear step
is efficiently solved in the frequency domain, in which GVD is a pure phase rotation.
On the other hand, the propagation in the presence of nonlinear effects and fiber at-
tenuation over h, called the nonlinear step, has a simple closed-form solution in the
time domain, as reported in Eq. (1.26).

To solve the propagation along the whole fiber length, the SSFM thus splits the
optical fiber length into Nh steps, each composed of a linear and nonlinear step. The
concatenation of each nonlinear and linear step (and vice versa) is interleaved by a
Fourier transform, to move from time to frequency domain (and vice versa). A qual-
itative sketch of the SSFM approach is represented in Fig. 1.9. The figure depicts the
most simple SSFM scheme, in which the linear and nonlinear operators are applied
over the same length h, which is the same for all the Nh steps. This scheme represents
an asymmetric SSFM approach with uniform step size [25].

The step choice is a crucial point in the SSFM since it determines its solution ac-
curacy. On this note, it was shown in [26] that applying the operators’ concatenation
LNL, with the linear operator L over a length h/2, yields a smaller error. Such a
step choice is called symmetric step approach [27], opposite to the asymmetric step
depicted in Fig. 1.9. Apart from the concatenation order of L and N within the same
step, the other two aspects setting the accuracy of the SSFM are the length of the first
step and the step updating rule, which, together, determine the number of total steps
in which the fiber is discretized. The first step should be tailored to correctly capture
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Figure 1.9: Sketch of the SSFM idea: concatenation of linear and nonlinear small
steps, with back and forth Fourier transforms.

the FWM impact, as proposed in [28]:

h1 =
∆φFWM

|β2|(2πBWDM)2 (1.57)

where ∆φFWM is the maximum tolerable FWM phase shift, and BWDM is the WDM
signal bandwidth. Regarding the updating rule, the constant local error (CLE) crite-
rion allows accurate SSFM implementation by keeping constant along distance the
SSFM error [26, 29]. Another well-known criterion for the step update is the nonlin-
ear phase criterion (NLP) [27], which updates the step such that the nonlinear phase
accumulated within a step is below a maximum tolerable value. In both cases, the
updating rule can be written as:

hk+1 ≃ hke
α

q hk (1.58)

where the parameter q takes value 1 for the NLP, and 2 or 3 respectively for the CLE
with symmetric or asymmetric step [28].

An accurate SSFM based simulation requires propagating an adequate number of
data symbols to capture the worst-case walk-off among channels, thus avoiding arti-
ficial periodic crosstalk resonances during propagation. Since i) the walk-off scales
with the inverse of the bandwidth, ii) the number of discrete points per symbol scales
with bandwidth, and iii) the step scales with the inverse of the square of the band-
width (see Eq. (1.57)), the computational cost of a simulation scales at least with the
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fourth power of the bandwidth. By including also the cost of the fast Fourier trans-
form (FFT) in the discussion, in [30] we showed that the number of multiplications
scales as:

Cm = O
(︁
|β2|B4

WDML2 (︁log2
(︁
|β2|B2

WDML
)︁
+1+κe

)︁)︁
. (1.59)

where O(·) is the Big O Landau symbol, κe represents the cost of an exponentiation,
while the cost of FFT was considered to scale with NFFT log2 NFFT, with NFFT the
number of NFFT samples.

1.6 Multi-span optical-links

The simplest point-to-point optical link can be seen as a concatenation of optical
fibers, each followed by an optical amplifier recovering the intrinsic fiber loss. A
lumped optical amplifier is a device that allows recovering the signal power with-
out the necessity of optical-to-electric conversion. Nowadays, the most widely used
optical amplifier is the Erbium-doped fiber amplifier (EDFA), which belongs to the
category of rare-earth-doped fiber amplifiers and provides amplification in both the C
and L bands. In brief, an EDFA is an optical fiber doped with Erbium ions, capable of
providing gain via stimulated emission. For stimulated emission to take place, a pop-
ulation inversion is necessary, which is obtained by pumping at suitable wavelengths,
such as 980 nm or 1480 nm [12]. In addition to desired stimulated emission of pho-
tons, the amplifier also spontaneously emits photons out of phase with respect to the
signal photons. Such a spontaneous emission represents a source of noise, yielding
the so-called amplified spontaneous emission (ASE) noise. The noise introduced by
each amplifier thus propagates for the remainder of the link. As a consequence, the
received signal in Eq. (1.55) must be extended to account for the received ASE noise
|w(z, t)⟩, namely:

|AR⟩ ≃ |A(0, t)⟩+ |w(z, t)⟩+ |n(z, t)⟩ . (1.60)

The ASE noise is typically modeled as an additive white Gaussian noise (AWGN).
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The ASE variance at the end of a homogeneous link composed of N identical ampli-
fiers, in the absence of Raman scattering, is equal to [12]

σ
2
ASE = N ×hνFGB (1.61)

where h is the Planck’s constant, ν is the channel central frequency, G is the amplifier
gain, here assumed frequency-independent, and B is receiver noise equivalent band-
width. The quantity F is called the amplifier noise figure and quantifies the degrada-
tion of the system performance due to the presence of ASE. The noise figure can be
related to the EDFA spontaneous emission factor nsp by F ≜ 2nsp(G−1)/G [12].

The stochastic differential equation (SDE) in Eq. (6.9) can be expressed in inte-
gral form as:

U(z) = U(0)− jωµ

2Nm

∫︂ z

0
U(ζ )◦dW(ζ ) (1.62)

where the symbol ◦ indicates the Stratonovich integral [31]. Other types of optical
amplifiers based on different amplification mechanisms exist. For instance, due to
their wider amplification bandwidth, semiconductor optical amplifiers (SOAs) rep-
resent an interesting, although not yet deployed, alternative to rare-earth-doped fiber
amplifiers. These amplifiers will be discussed later in Chapter 4. Alternatively, opti-
cal amplification can be performed also in a distributed manner, opposite to lumped
amplification, exploiting the SRS process taking place in the optical fiber. The am-
plification thus occurs via the transfer of power from a pump to the useful signal, in
a distributed manner along the fiber length. The pump, which gets depleted by the
SRS process, is transmitted at a higher frequency with respect to the useful signal for
efficient SRS to take place.

In addition to optical amplification to counteract fiber losses, the other linear im-
pairments must be addressed in the link design. A key aspect is the management of
chromatic dispersion, to counteract the GVD-induced pulse broadening. The com-
pensation of the chromatic dispersion in the optical domain is performed by means
of dispersion compensating fibers (DCFs). These fibers can be designed such that the
dispersion accumulated at their output compensates for the dispersion accumulated
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Figure 1.10: Sketch of a dispersion uncompensated (DU), and dispersion managed
(DM) link. The red fibers are DCFs

up to their input Dcum,in, namely:

Dcum,in +DDCFLDCF = 0 (1.63)

with LDCF the DCF length. Dispersion compensation strategies differ from the posi-
tion of the DCFs along the link. In particular, modern optical communication links
are designed with a unique DCF at the link-end (or a combination of link-start/end)
that compensates for the dispersion accumulated along the whole link. This type of
link is called dispersion-uncompensated (DU) link.

On the other hand, the dispersion compensation can be performed on a per span
basis. In this case, a DCF is placed after each span-end. These links are called
dispersion-managed (DM) links. In DM links some residual dispersion per span may
be used to mitigate nonlinear effects and to relax its accumulation along the distance.
A sketch is reported in Fig. 1.10 for a 5 span link.

In both DM and DU the residual dispersion accumulated during the entire prop-
agation is removed at the transmitter/receiver side, either by a DCF or by electronic
dispersion compensation. The last option is currently preferred thanks to fast digital
signal processing since it can be easily tuned and is lossless, contrary to DCF.

1.7 Quality of transmission metrics

In modern receivers, coherent detection is applied to retrieve the transmitted sequence
on the in-phase and quadrature components of both polarization tributaries or modes.
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In such receivers, after analog to digital conversion of the received signal, digital sig-
nal processing (DSP) is applied. At this stage, static and adaptive channel equaliza-
tion can be applied, followed by carrier frequency and phase estimation. Finally, the
samples are fed to the detector which provides the estimated sequence of transmitted
symbols which is then demapped into a sequence of bits.

The estimation of the quality of transmission (QoT) can be performed based on
different metrics. One of the most widely adopted metrics is the bit error rate (BER).
Such a metric is typically evaluated before the forward error correction decoder (pre-
FEC) and can be mapped one-to-one to the post-FEC BER when hard-decision de-
coding is used. However, the advent of powerful soft-decision FEC codes, such as
turbo codes, made the estimation of the actual performance based on pre-FEC BER
less accurate. For this reason, quality of transmission metrics related to the informa-
tion theory [32] have become popular in recent years [33].

1.7.1 Signal-to-noise ratio

By definition, the signal-to-noise ratio (SNR) is the ratio between the signal and noise
power. In long-haul optical transmission systems, the main impairments setting the
SNR are ASE noise and Kerr effects. According to the regular perturbation model
of the optical fiber, the fiber nonlinear effects are described as an NLI statistically
independent of ASE, hence the SNR of a generic WDM channel can be written as

SNR =
P

σ2
NLI +σ2

ASE
(1.64)

with P the channel power, σ2
ASE the ASE noise variance in Eq. (1.61), and σ2

NLI the
NLI variance. For fast system performance estimation, it is mandatory to rely on fast
analytical expression for the latter variance. Chapter 2 of this thesis will be devoted
to reviewing in the detail the theory behind the estimation of σ2

NLI.

Since the Kerr effect is cubic in the field, the NLI variance scales cubically with
the channel power [34, 35] namely:

σ
2
NLI = aNLP3 (1.65)
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Figure 1.11: Example of the typical SNR bell-curve vs. channel power.

with aNL a coefficient in [W−2]. As a consequence, the SNR in Eq. (1.64) has two
asymptotic behavior versus signal power. At a small power, where the nonlinear ef-
fects are negligible, the main impairment is given by ASE noise, namely SNR ≈
SNRLIN with SNRLIN ≜ P

σ2
ASE

. This operation regime is hence called the linear regime.
In the linear regime, an increase of 1 dB in the signal power yields 1 dB of SNR
increase. On the other hand, as the signal power increases the nonlinear effects be-
come non-negligible and eventually outweigh the ASE noise. In the nonlinear regime,
i.e., at high signal power, the SNR can be approximated as SNR ≈ SNRNL, with
SNRNL ≜ 1

aNLP2 thus exhibiting 2 dB of decrease for 1 dB of signal power increase.

As a consequence of the two operational regimes, the SNR curve versus signal
power, in a dB scale, assumes a typical bell shape. An example is sketched in Fig.
1.11, in which the slopes of the asymptotic regimes are highlighted. Due to its con-
cave shape, the SNR curve (or the bell-curve) has an optimum, which is associated
with a best power value [9]:

PNLT =

(︄
σ2

ASE
2aNL

)︄1/3

(1.66)

and it is usually called nonlinear threshold (NLT) [36]. At such optimal power, the
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ASE noise variance is two times the NLI variance.
The SNR in Eq. (1.64) can be found by concatenation of the inverse linear and

nonlinear SNR, namely, the following relationship holds:

SNR =

(︃
1

SNRLIN
+

1
SNRNL

)︃−1

(1.67)

where SNRLIN and SNRNL are computed end-to-end. Alternatively, adopting an in-
coherent point of view, which neglects the correlation among the different spans, the
end-to-end SNR can be computed as a concatenation of span-by-span metrics, as
follows:

SNR =

(︄
N

∑
i=1

1
SNRLIN,i

+
N

∑
i=1

1
SNRNL,i

)︄−1

(1.68)

with N the number of spans in the link. The topic of incoherent and coherent accu-
mulation will be treated in more details in Chapter 2 and 3.

1.7.2 Achievable information rate

The achievable information rate (AIR) provides an estimation of the bit rate that can
be achieved in the presence of soft-decision decoding. In the most general case, the
AIR can be estimated by evaluating the mutual information [32] through mismatched-
decoding [9]. Such a metric represents a lower bound on the channel capacity [37],
which sets the fundamental limit on the number of information bits that can be re-
liably transferred in the channel. In the simplest case of an AWGN channel, such a
channel capacity is expressed by the elegant Shannon formula [37]:

C = log2(1+SNR) (1.69)

which is a function of the SNR and it is achieved by a Gaussian distribution of
the transmitted symbols. Other distributions of the transmitted symbols yield lower
mutual information, as depicted in Fig. 1.12 for M-QAM modulation formats with
uniformly distributed symbols. This gap-to-capacity can be reduced employing of
probabilistic shaping techniques. This technique consists in drawing the transmitted
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Figure 1.12: Mutual information vs. signal-to-noise ratio for uniformly distributed
M-QAM modulation formats. Dashed line: Shannon formula of the AWGN channel
capacity, achieved by Gaussian distributed symbols.

symbols from their alphabet with a Maxwell-Boltzmann distribution [38], instead of
uniformly, hence resembling a Gaussian distribution.





Chapter 2

Theoretical models for the
nonlinear interference variance

The regular perturbation analyzed in Section 1.5.1 approximates the distortion of the
Kerr effect by an additive interference to the signal. As discussed in Sec 1.7.1, the
variance of such NLI is a key ingredient for the computation of the SNR and thus
the design and the analysis of optical links. The NLI variance can be estimated by
a numerical implementation of the SSFM algorithm, at the price of observing many
symbols to smooth the estimation error. On the other hand, the RP1 method opened
the door to analytical modes, such as the Gaussian noise (GN) model [3, 39] and
the enhanced Gaussian noise (EGN) model [40, 41], also known as the nonlinear
interference noise (NLIN) model [42]. In this chapter we introduce such models with
a detailed description of the supporting proofs. Parts of the material presented in this
chapter were published in [30, 43].

2.1 Nonlinear interference

The nonlinear interference at the receiver, after the compensation of the linear effects
accumulated during propagation, is defined consistently with Eq. (1.53) as
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|n(z, t)⟩≜
∫︂ z

0
e−LζN

(︂
eLζ |A(0, t)⟩

)︂
dζ (2.1)

with L and N the linear and nonlinear operators, respectively. The NLI is additive
along distance, and its generic contribution generated at coordinate ζ depends on the
unperturbed signal up to that coordinate and experiences only linear effects up to the
end [41]. In the frequency domain, the NLI |ñ(ω)⟩ is given by the Fourier transform
of Eq. (2.1):

|ñ(ω)⟩=− j
8
9

γ

∫︂∫︂
∞

−∞

η(ω,ω1,ω2)

×⟨Ã(0,ω +ω1 +ω2)|Ã(0,ω +ω2)⟩ |Ã(0,ω +ω1)⟩
dω1

2π

dω2

2π

(2.2)

where |Ã(0,ω)⟩ is the Fourier transform of the transmitted field, while η is the link
kernel weighting the inner FWM process. We will discuss the kernel in detail in the
next section. Exploiting the atom notation presented in Chapter 1, such a Fourier
transform can be written as

|Ã(0,ω)⟩= ∑
n

an√
2
|G̃n(0,ω)⟩ (2.3)

where the basis functions are defined as

|G̃n(0,ω)⟩≜ G̃n1n2(0,ω) |n3⟩ (2.4)

with G̃n1n2 a scalar function equal to:

G̃n1n2(0,ω) = p̃n2
(ω −ωn2)e

− j(ω−ωn2 )n1Tn2 . (2.5)

Equation (2.2) can thus be rewritten putting in evidence the data symbols as

|ñ(ω)⟩=− j
8
9

(︃
1√
2

)︃3

γ ∑
h,m,n

a∗haman

∫︂∫︂
∞

−∞

η(ω,ω1,ω2)

×⟨G̃h(0,ω +ω1 +ω2)|G̃m(0,ω +ω2)⟩ |G̃n(0,ω +ω1)⟩
dω1

2π

dω2

2π
.

(2.6)
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Such an NLI is received by the detector, which operates sampling, demodulation,
and matched filtering to the received field. In our framework, the aforementioned
operations correspond to the inner product

∫︁
∞

−∞
⟨G̃i(ω)|G̃n(ω)⟩ dω

2π
.

As a consequence, neglecting ASE noise, we obtain the following equivalent
discrete-time model for the fiber-optic channel:

ui = ai +ni (2.7)

which relates the transmitted atom ai to the received atom ui. The discrete-time NLI
in Eq. (2.7) can be written as:

ni = ∑
h,m,n

a∗hamanXhmni . (2.8)

The term Xhmni is the function weighting the mixing at the symbol level, namely:

Xhmni =− j
8
9

(︃
1√
2

)︃3

γ

∫︂∫︂∫︂
∞

−∞

η(ω,ω1,ω2)

×⟨G̃h(0,ω +ω1 +ω2)|G̃m(0,ω +ω2)⟩

×⟨G̃i(0,ω)|G̃n(0,ω +ω1)⟩
dω1

2π

dω2

2π

dω

2π

(2.9)

which, in the scalar case of single-polarization in a birefringent fiber, reduces to the
expression:

Shmni =− j
8
9

γ

∫︂∫︂∫︂
∞

−∞

η(ω,ω1,ω2)

× G̃h1h2(0,ω +ω1 +ω2)G̃m1m2(0,ω +ω2)

× G̃i1i2(0,ω)G̃n1n2(0,ω +ω1)
dω1

2π

dω2

2π

dω

2π

(2.10)

which benefits from useful symmetric properties such as

Shmni = S∗mhin, Shmni = Shnmi. (2.11)
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In particular, applying the basis function definition in Eq. (2.4), we note that the
following relationship holds between the term Xhmni and its scalar version:

Xhmni =

(︃
1√
2

)︃3

Shmni ⟨h3|m3⟩⟨i3|n3⟩

=

(︃
1√
2

)︃3

Shmniδh3m3δi3n3

(2.12)

with δi j a Kronecker’s delta.

2.1.1 Link kernel

The term η(ω,ω1,ω2) in Eq. (2.2) is the so-called link kernel (also known as link
function [40]) weighting the four-wave mixing interaction among signal frequencies.
For a homogeneous dispersion-uncompensated link composed of N identical spans,
each of length L, such a link kernel can be written as

η(ω,ω1,ω2) =
N

∑
k=1

e j∆β (k−1)L
∫︂ L

0
e j∆βζ e−αζ dζ (2.13)

where the phase-matching coefficient ∆β is defined in Eq. (1.35) and can be expanded
in terms of the fiber dispersion coefficients by:

∆β ≜ β (ω)−β (ω +ω1)−β (ω +ω2)+β (ω +ω1 +ω2)

= ω1ω2

[︂
β2 +

1
2
(2ω +ω1 +ω2)β3

]︂
.

(2.14)

Note that here, contrary to Eq. (1.33), we are not stressing the carrier indexes since
at this level we are viewing the entire WDM as a unique channel.

The integral in Eq. (2.13) weights the FWM in a generic span, while e j∆β (k−1)L

accounts for the accumulated phase mismatch among the frequencies before entering
the kth span. The link kernel can be written in the compact form:

η(ω,ω1,ω2) = χ(ω,ω1,ω2)η1(ω,ω1,ω2) (2.15)
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where η1 is the single-span kernel, which accounts for the NLI generated by a span.
In this framework, the z-integral can be expressed in a closed-form formula through

η1 ≜
∫︂ L

0
e−αζ e j∆βζ dζ =

1− e−αLe j∆βL

α − j∆β
. (2.16)

Even the summation in Eq. (2.13) can be closed yielding the so-called phased-
array term χ [44]:

χ ≜
N

∑
k=1

e j∆β (k−1)L =
1− e jN∆βL

1− e j∆βL (2.17)

which accounts for the NLI accumulation span-by-span for identical spans [3].

2.1.2 Nonlinear interference variance

The evaluation of the NLI variance on a generic (time, frequency, mode) channel use
requires the calculation of the following moment:

E [nin∗i ] = ∑
h,m,n

∑
l,j,o

E
[︁
a∗hamanala∗j a∗o

]︁
XhmniX

∗
ljoi. (2.18)

Assuming all the ah to be complex zero-mean independent random variables
with n-fold rotational symmetry and n≥ 4, only combinations with an equal num-
ber of conjugate/non-conjugate pairs are non-zero. Therefore, the only terms surviv-
ing in Eq. (2.18) are those in the form [45]: E

[︁
|ah|2|am|2|an|2

]︁
, E
[︁
|ah|4|am|2

]︁
, and

E
[︁
|ah|6

]︁
. Exploiting the cumulant theory as in [41], these moments can be expressed

in the compact notation

E
[︁
|ah|2|am|2|an|2

]︁
= κ

(h)
1;1 κ

(m)
1;1 κ

(n)
1;1 (2.19)

E
[︁
|ah|4|am|2

]︁
= κ

(h)
2;2 κ

(m)
1;1 (2.20)

E
[︁
|ah|6

]︁
= κ

(h)
3;3 (2.21)

where the cumulants κ1;1,κ2;2 and κ3;3 are defined as:
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κ1;1 = E
[︁
|a|2
]︁

(2.22)

κ2;2 = E
[︁
|a|2
]︁2(︄E

[︁
|a|4
]︁

E [|a|2]2
−2

)︄
≜ E

[︁
|a|2
]︁2

Φ (2.23)

κ3;3 = E
[︁
|a|2
]︁3(︄E

[︁
|a|6
]︁

E [|a|2]3
−9

E
[︁
|a|4
]︁

E [|a|2]2
+12

)︄
≜ E

[︁
|a|2
]︁3

Ψ (2.24)

where we put in evidence the average power and implicitly defined the factors Φ and
Ψ as typically done in the literature [40]. The term in Eq. (2.19) involves second-order
moments of the transmitted symbols and hence weights the so-called second-order
noise (SON). Such a second-order noise terms involves three non-degenerate pairs of
conjugate/non-conjugate symbols. Among these six possible indexes combinations,
only two configurations yields a valid pair’s triplet, namely:

SON =

⎧⎨⎩h = l,m = j,n = o → XhmniX
∗
hmni

h = l,m = o,n = j → XhmniX
∗
hnmi

(2.25)

It is worth noting that, in the scalar case, the two contributions in Eq. (2.25) are
degenerate since Xhmni → Shmni = Shnmi.

The four discarded combinations in the SON term are those where a pair conju-
gate/ non-conjugate yielding a modulus square belongs to the same time-discrete NLI
in Eq. (2.18), either ni or n∗i . These terms can be safely neglected as their contribution
is an average phase rotation that can be removed by a carrier phase estimator (CPE).

The term described by Eq. (2.20) weights the fourth-order noise (FON) contri-
bution to NLI. It involves a quadruplet of conjugate/non-conjugate symbols and one
pair, associated with a different index. There are nine possible configurations of in-
dexes for this scenario. Four of these combinations will be discarded since they are
removed by the CPE. Among the remaining configurations, we identify two different
contributions, called the F4 and Q4 term following the notation of [41], as follows:
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FON =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h = m = l = j,n = o → XhhniX
∗
hhni F4

h = m = l = o,n = j → XhhniX
∗
hnhi F4

h = n = l = j,m = o → XhmhiX
∗
hhmi F4

h = n = l = o,m = j → XhmhiX
∗
hmhi F4

m = n = j = o,h = l → XhnniX
∗
hnni Q4.

(2.26)

We thus have four F4 contributions and one Q4 combination. This discrimination
F4/Q4 is useful since in Section 2.3 we will show that the F4 terms have all the same
variance, which is different from the Q4 term.

Finally, the moment in Eq. (2.21) acts as a weight for the so-called higher-order
noise (HON) term, which involves sixth-order moments of the symbols. We call such
a contribution the Q6 term, which is associated with all-degenerates indexes in Eq.
(2.18), namely:

HON : h = m = n = l = j = o → XhhhiX
∗
hhhi Q6. (2.27)

Combining now the pieces from Eqs.(2.25)-(2.27), the NLI variance in Eq. (2.18)
can be written as [43]:

E [nin∗i ] = ∑
h,m,n

κ
(h)
1;1 κ

(n)
1;1 κ

(m)
1;1 Xhmni (X

∗
hmni +X∗

hnmi) (SON)

+ ∑
h,n

κ
(h)
2;2 κ

(n)
1;1

(︂
|Xhhni +Xhnhi|2 + |Xhnni|2

)︂
(F4+Q4)

+ ∑
h

κ
(h)
3;3 |Xhhhi|2 (Q6)

(2.28)

which represents a generalization of the master theorem in [41].

In the literature, several efforts have been made to provide analytical expressions
for the NLI contributions in Eq. (2.28). In the remainder of this chapter, we will
review the theoretical derivation of these expressions consistently with the notation
used in this work.
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2.2 The Gaussian noise model

Among all the theoretical models proposed in the literature, thanks to its simplicity,
the GN model [3] has become the most popular analytical model for the NLI variance
estimation. The model’s simplicity comes from the key assumption that the signal is
a stochastic process with Gaussian statistics. Such an assumption is well satisfied,
e.g., by probabilistic shaped modulation formats, or by any signal after accumulat-
ing a sufficient dispersion, as in typical dispersion-uncompensated links. Assuming
Gaussian distributed symbols yields κ2;2 = 0 and κ3;3 = 0 thus nullifying the FON
and HON contributions and significantly reducing the complexity of Eq. (2.18). For
this reason, the SON contribution is often called the GN term in the literature, being
the only non-zero contribution in a Gaussian framework.

In the absence of polarization dependent effects, such as polarization-dependent
loss or polarization mode dispersion, the SON/GN contribution to the NLI variance
on polarization i3 ∈ (x,y) can be written as:

σ
2
GNi3 = κ

3
1;1 ∑

h,m,n
Xhmni (X

∗
hmni +X∗

hnmi)

=
1
8

κ
3
1;1 ∑

h1,m1,n1

∑
h2,m2,n2

(︄
∑

h3,m3,n3

δh3m3δi3n3 + ∑
h3,m3,n3

δh3m3δi3n3δh3n3δi3m3

)︄
|Shmni|2

(2.29)

where we simplified the notation exploiting κ
(h)
1;1 κ

(n)
1;1 κ

(m)
1;1 = κ3

1;1, and we expressed
the variance in terms of the function Shmni weighting the FWM process for a single-
polarization propagation as reported in Eq. (2.10). This allows to simplify the overall
expression by exploiting the symmetries of Shmni. The verbatim application of Eq.
(2.10) yields the combination of Kronecker’s delta in Eq. (2.29). Consistently with
the derivation in [41], such weight is equal to 3. Combining this observation with the
definition in Eq. (2.10), the variance can be expressed as:
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σ
2
GNi3 = 3

1
8

κ
3
1;1 ∑

h1,m1,n1

∑
h2,m2,n2

|Shmni|2

= 3
(︃

8
9

)︃2 1
8

γ
2
κ

3
1;1 ∑

h1,m1,n1
h2,m2,n2

∫︂∫︂∫︂ ∫︂∫︂∫︂
∞

−∞

η(ω,ω1,ω2)η
∗(µ,µ1,µ2)

× G̃∗
h1h2

(0,ω +ω1 +ω2)G̃m1m2(0,ω +ω2)G̃
∗
i1i2(0,ω)

× G̃n1n2(0,ω +ω1)G̃h1h2(0,µ +µ1 +µ2)G̃
∗
m1m2

(0,µ +µ2)

× G̃i1i2(0,µ)G̃
∗
n1n2

(0,µ +µ1)
dω1

2π

dω2

2π

dω

2π

dµ1

2π

dµ2

2π

dµ

2π
.

(2.30)

Although selecting only the valid index combination as per Eq. (2.25) reduces the
number of summations, the final result in Eq. (2.30) still depends on an infinite sum-
mation over the discrete-time index. However, in the special case of sinc pulses, such
a summation can be dropped, with significant simplifications, as already observed
in [21, 46], thanks to the Poisson summation formula:

∞

∑
k=−∞

e jkωT =
2π

T

∞

∑
k=−∞

δ

(︃
ω − 2πk

T

)︃
(2.31)

where δ (ω) indicates a Dirac’s delta, while the exponential functions are within the
definition of the basis functions as per Eq. (2.5). For the sake of clearness, we now
explicitly substitute Eq. (2.5) in Eq. (2.30), namely:

σ
2
GNi3 = 3

(︃
8
81

)︃
γ

2
κ

3
1;1 ∑

h1,m1,n1
h2,m2,n2

∫︂∫︂∫︂ ∫︂∫︂∫︂
∞

−∞

η(ω,ω1,ω2)η
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× p̃∗h2
(ω +ω1 +ω2 −ωh2)p̃m2

(ω +ω2 −ωm2)p̃∗i2(ω −ωi2)

× p̃n2
(ω +ω1 −ωn2)p̃h2

(µ +µ1 +µ2 −ωh2)p̃∗m2
(µ +µ2 −ωm2)

× p̃i2(µ −ωi2)p̃∗n2
(µ +µ1 −ωn2)

× e j(ω+ω1+ω2−µ−µ1−µ2)h1Th2 e j(µ+µ2−ω−ω2)m1Tm2

× e j(ω−µ)i1Ti2 e j(µ+µ1−ω−ω1)n1Tn2
dω1

2π

dω2

2π

dω

2π

dµ1

2π

dµ2

2π

dµ

2π
.

(2.32)
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Thanks to the Poisson formula, all summations in Eq. (2.30) over temporal in-
dexes can be dropped, imposing to zero the frequency combination at the exponent.
This coincides with imposing equality between the frequency combination appearing
as the argument of basis functions in Eq. (2.30) having the same index. Equating the
arguments yields the following linear systems:⎧⎪⎪⎪⎨⎪⎪⎪⎩

h → ω +ω1 +ω2 = µ1 +µ2 +µ

m → ω +ω2 = µ +µ2

n → ω +ω1 = µ +µ1

(2.33)

whose solution is ω1 = µ1, ω2 = µ2, ω = µ. We can thus drop three integrals, for in-
stance the ones with (µ,µ1,µ2), by using the previous substitution. As a consequence,
the NLI variance of the SON/GN contribution can be expressed in the following sim-
plified integral:

σ
2
GNi3 = 3

(︃
8
81

)︃
1

T 3 γ
2
κ

3
1;1 ∑

h,m,n

∫︂∫︂∫︂
∞

−∞

|η(ω,ω1,ω2)|2

×|p̃h(ω +ω1 +ω2 −ωh)|2|p̃m(ω +ω2 −ωm)|2

×|p̃i(ω −ωi)|2|p̃n(ω +ω1 −ωn)|2
dω1

2π

dω2

2π

dω

2π
.

(2.34)

Thanks to the performed simplifications, only the summations over channel indexes
h2,m2, and n2 survive. For this reason, in Eq. (2.34) we dropped the subscript 2 in
favor of a simpler notation h2,m2,n2 → h,m,n.

The variance in Eq. (2.34) is computed on one polarization. The result can be
extended to the total variance (x+y). In the absence of polarization effects, the (x+y)
variance of the GN term can be simply found as [41]:

σ
2
GN = 2σ

2
GNi3 (2.35)

while different expressions hold with extra polarization effects not accounted by the
Manakov equation, e.g., see Chapter 5 and 6. For the remainder of this work, all
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the variances expressed without putting in evidence the polarization index, e.g., σ2
GN,

must be read as (x+ y) variances.

It is worth mentioning that, in some cases, it is important to have access to the
correlation between the NLI generated at different spans. In such cases, it is more
convenient to express the link kernel in Eq. (2.34) in terms of summation of contri-
butions, instead of the compact phased-array notation. Namely:

σ
2
GNi3 = 3

N

∑
k,s=1

CGN(k,s) (2.36)

CGN(k,s)≜
(︃

8
81

)︃
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2
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∞

−∞

η
(k)(ω,ω1,ω2)

(︂
η
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)︂∗
×|p̃h(ω +ω1 +ω2 −ωh)|2|p̃m(ω +ω2 −ωm)|2

×|p̃i(ω −ωi)|2|p̃n(ω +ω1 −ωn)|2
dω1

2π

dω2

2π

dω

2π

(2.37)

where η(k) is the fiber kernel in span k, and CGN(k,s) is the cross-correlation between
span k and s. Such a notation will be particularly useful in the next chapters.

Although the NLI variance expression in Eq. (2.34) yields significant simplifica-
tions with respect to the starting expression in Eq. (2.30), it still involves the compu-
tation of three summations over the channel indexes h,m,n and three frequency inte-
grals. The computation of the NLI variance can be further simplified by i) exploiting
the physical insight on the valid FWM processes thus limiting the combinations of
channel indexes and limiting the integration regions, and ii) introducing approxima-
tions to calculate the integrals in closed-form expressions. The following two sections
are devoted to reviewing these topics.

2.2.1 Physical insight

The nonlinear Kerr effect is generally classified with different names depending on
the involved channels, as reviewed in Chapter 1. Historically, the classification was
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Figure 2.1: Frequencies ω1, ω2 involved in the Kerr effect at ω = 0, where the fourth
frequency of the FWM-related process is ω3 = ω1 +ω2 for the law of energy conser-
vation.

conceived for quasi constant-wave (CW) WDM channels spaced far apart, thus fo-
cusing only on the carriers involved in the process [7]. Referring to Eq. (2.34) where
the indexes h,m,n label the WDM channels, in the standard classification the con-
tribution in the nonlinear term summation with indexes h=m=n= i corresponds to
SPM, those with indexes (h=m) ̸=(n= i) to XPM, and all remaining contributions
to FWM [7].

However, in modern transmissions with large bandwidth efficiency, it was first
showed in [3] that channels may interact through the Kerr effect even if their carrier
frequencies do not satisfy the law of conservation of energy. In this framework, it is
more appropriate to interpret the Kerr nonlinearity as an FWM among the Fourier
frequencies of the WDM spectrum satisfying ω = ω1 +ω2 −ω3. For the sake of ex-
ample, if the frequency under test is ω = 0, the remaining frequencies are constrained
by ω3 = ω1+ω2. As a consequence, only sub-regions of the plane (ω1, ω2) will play
a role in the NLI variance.

Fig. 2.1 sketches an example of the frequency domains in the (ω1, ω2) plane
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Figure 2.2: Examples of NLI classification, referred to a sub-region of Fig. 2.1.

involved in such FWM, for a 9 channel transmission. The diagonal dotted axis repre-
sents the constrained frequency ω3 =ω1+ω2. We refer without loss of generality to a
single polarization since the additional contributions coming from cross-polarization
interactions can be treated similarly. In Fig. 2.1 we note that the traditional SPM,
XPM, and FWM terms, which would correspond in the quasi-CW regime to dots
on a regular grid having the carrier frequency spacing, show-up now as hexagons (in-
scribed in a square of edge equal to the channel bandwidth B) centered at grid dots. In
this thesis, we will keep calling the contributions of such hexagons as SPM (purple),
XPM (green), and classic FWM (red).

However, when the channel spacing is smaller than 3/2 the channel bandwidth,
new important triangular domains appear in addition to classical hexagon regions,
as first noticed in [3]. Such domains correspond to channel indexes combinations
governed by the relation n = h+m− i±1.

It is worth noting that in [3, 40] all contributions involving two channels were
called cross-channel interference (XCI), while all the contributions involving three
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or four channels were called multi-channel interference (MCI). We will call the con-
tributions of the blue triangles in Fig. 2.1 as XCI (this is consistent with the XCI
naming in [40]), and those of the orange triangles as MCI as better specified in Fig.
2.2, where we highlight by examples the position of the four spectral frequencies
generating the Kerr nonlinearity (the purple arrow is the frequency under test ω), our
labeling, and their channel index relations.

The efficiency of a generic FWM process is weighted by the kernel, which de-
pends on the phase-matching coefficient ∆β , being maximum for ∆β =0. This can
occur only when the four frequencies are degenerate or pair-wise degenerate, e.g.,
the carrier frequencies involved in the SPM and XPM effects. In Fig. 2.2, the con-
tributions of SPM and XPM are thus highly efficient. Among the other effects, XCI
is generally efficient since it involves closer frequencies coming from neighboring
channels. In particular, XCI contributions are characterized by three spectral compo-
nents in the channel under test (CUT) while the fourth component belongs to one of
the two neighboring channels, or vice-versa (three frequencies in the interfering chan-
nel, and one in the CUT). Classic FWM and MCI are generally much less efficient
since they involve far-away frequencies.

2.2.2 Closed-form expressions

Even by tailoring the integration domain to compute only valid contributions to the
FWM process in Eq. (2.34), the frequency integrals cannot be solved analytically and
call for a numerical computation, without extra approximations. Such a computation
can be kept in the order of seconds, as will be discussed later in this chapter, which
is relevantly smaller than the time required by the SSFM, but still too long for de-
ciding the routing in a live network. The ultimate complexity reduction is enabled
by approximated closed-form analytical expressions of Eq. (2.34). In this section, we
present the closed-form expression for the SON/GN term variance derived in [3].

As a first approximation, the NLI is assumed to be uniformly distributed over
the channel bandwidth, i.e., having a flat power spectral density equal to its value at
the channel center frequency. To further simplify the analytical manipulation of Eq.
(2.34), the matched filter is assumed to have a rectangular transfer function, as per
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the noise equivalent bandwidth definition.
As a second key approximation, it can be assumed that the only non-negligible

inter-channel nonlinear effect is XPM [3, 42]. Hence, FWM, XCI and MCI contri-
butions are neglected. Under these assumptions, the GN term variance at the central
frequency of the ith channel for a single-span link can be approximated as:

σ
2
GN,1(i)≈ σ

2
SPM,1(i)+∑

ℓ̸=i
σ

2
XPM,1(ℓ) (2.38)

where σ2
SPM,1(i) is the single-span SPM variance at the central frequency of channel

i, while σ2
XPM,1(ℓ) is the single-span XPM variance due to the interfering channel ℓ.

Such single-span variances were derived in a closed-form manner in [3] by approxi-
mating the hexagons in Fig. 2.1 with squares, and are here reported:
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(2.40)

where Li2 is the dilogarithm special function1. Consistently with [3] these expres-
sions are (x+ y) variances, related to the per-polarization variance by Eq. (2.35).

As shown in [4], the NLI variance generated in each span cannot be summed as
for uncorrelated random variables. In other words, the NLI variance at the end of a
N span link does not coincide with the sum of the individual per-span NLI variances,
meaning that the correlations among the spans play an important role. The NLI thus

1The special function Li2(x) is implemented as dilog(1-x) in MATLAB.
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accumulates coherently along the link. Such a coherent accumulation is captured by
the phased-array in Eq. (2.17) and is included in the closed-form expressions using
the simple scaling rule [3, 47, 48]

σ
2
GN(i)≈ N1+ε

σ
2
GN,1(i) (2.41)

where ε plays the role of a coherence correction. An expression for this factor was
derived in [3] as:

ε ≈
ln
(︂

1+ 2
αNL

1−N+NHarNum(N−1)

asinh( π2
2α

β2B2
WDM)

)︂
ln(N)

(2.42)

with BWDM the WDM bandwidth and HarNum(n) the nth harmonic number. This
correction factor can take values between 0 and 1. The case of ε = 0 means incoherent
accumulation, hence the NLI variance grows with the number of spans. DU links are
typically associated with a smaller value of ε compared to DM links (ε ≈ 0.22 vs.
ε ≈ 0.66 in [36]), due to the decorrelation provided by the accumulated dispersion.
Moreover, it was shown in [3] that the coherence factor decreases with the WDM
bandwidth. For SMF fibers, an ε ≈ 0.3 was measured by experiments [48]. The factor
reaches values around 0.05 for wideband systems, where XPM is the dominating
effect [49]. The accumulation of NLI can thus be safely considered incoherent in
such systems, thanks to the high walk-off.

2.3 The Enhanced Gaussian noise model

The signal Gaussianity assumption at the core of the GN model allows significant
simplifications since the FON and HON contributions to the overall NLI variance are
zero in this framework. However, it was first shown in [42] that neglecting the FON
contribution results in an over-estimation of the XPM variance, with a modulation-
format dependent error. Such a result is justified by the fact that the FON contri-
bution is weighted by the fourth-order cumulants of the transmitted symbols, which
are generally negative for the most popular modulation formats [50]. As an example,
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Modulation format Factor Φ Factor Ψ

64QAM -0.619 1.79

16QAM -0.68 2.08

QPSK -1 4

Table 2.1: Value of Φ and Ψ in Eq. (2.22) weighting FON and HON contributions.

the values of the factors Φ and Ψ in Eq. (2.22) involved in the fourth and sixth-order
moments are listed in Tab. 2.1. In particular, it is worth noting that the term Φ weight-
ing the FON contribution has a negative sign for non-Gaussian distributed symbols,
which is higher in absolute value for low cardinality modulation formats.

In [21] it was first highlighted that an accurate estimate of the NLI variance re-
quired a modulation-format aware model. A further step was taken in [40] and [41],
where also the HON was included in the so-called EGN model. In addition, in [40]
the FON contribution was included for all nonlinear effects (SPM, XPM, FWM, XCI,
and MCI according to the nomenclature in Fig. 2.2).

In this section, we will review the expressions of the F4, Q4, and Q6 contribu-
tions to the NLI variance. These terms, combined with the SON/GN contribution
expression, represent all the pieces required for evaluating Eq. (2.18).

Fourth-order noise

The FON contribution is the most important modulation-format correction to the GN
model [21]. The general NLI variance expression in Eq. (2.18) exhibits two kinds of
FON contributions, labeled as F4 and Q4, which differ in the indexes configuration.

We first focus on the F4 term, which yields the most significant contribution as
shown in [41]. Such a term is associated with index configurations in the form hhni
and hnhi. Contrary to the GN contribution, due to the constraints on the index com-
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binations, the F4 part does not contribute to all the nonlinear effects. In other words,
only sub-regions of the integration domains shown in Fig. 2.1 will participate in the
computation of the F4 term variance. As an example, we depicted in Fig. 2.3 the
same 9 channels scenario of the previous figure highlighting in red the valid integra-
tion domains. In particular, such a FON term contributes to SPM, XPM, and partially
to XCI, while all the FWM and MCI regions do not satisfy the index constraint.

Similarly to the GN contribution, we now write the F4 term variance as:
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where, once again, we expressed the variance in terms of the scalar function Shhni

exploiting its symmetries, and highlighting the combination of Kronecker’s delta re-
sulting from expressing Xhhni in terms of Shhni, as per Eq. (2.12). Such combination
results in a weight 5 for the F4 term [41].

Following the same steps of the GN part, we can apply the Poisson formula and
hence drop the time summations. As a consequence, also some integrals in frequency
can be dropped as well. Applying similar ideas as in Eq. (2.33) we build the following
system to identify the integrals that can be dropped:⎧⎨⎩h → ω +ω1 +ω2 +µ +µ2 = ω +ω2 +µ +µ1 +µ2

n → ω +ω1 = µ +µ1

(2.44)
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Figure 2.3: Integration domains with non-zero F4 contributions highlighted in red,
with reference to Fig. 2.1.

whose solution is ω1 = µ1, ω = µ. We can thus drop two integrals, for instance the
ones with (µ,µ1), by using the previous substitution. As a consequence, the NLI
variance of the F4 contribution can be expressed as follows:

σ
2
F4i3 = 5

(︃
8
81

)︃
1

T 2 γ
2
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2π

dµ2

2π

= 5
N

∑
k,s=1

CF4(k,s)

(2.45)

where in the last equality we expressed the variance of the F4 term as a function of
the span cross-correlations CF4, with similar motivations to get Eq. (2.37) for the GN
term. We do not explicitly provide the expression of the cross-correlation since it can
be simply obtained from the above equation by substituting the link kernel η with the
fiber kernel up to span k and s.
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We note that, regardless of the simplifications provided by the Poisson formula,
the F4 variance still requires the computation of four integrals in frequency, contrary
to three integrals in the GN contribution in Eq. (2.34).

Similarly to the F4 term, in Fig. 2.4 we show the integration domains satisfy-
ing the index combinations hnni associated with the Q4 term. In particular, we note
that such an index configuration reduces the valid integration domains to only the
hexagons and triangles lying along the ω3 axis. As a main consequence, there is no
Q4 contribution to XPM. For this reason, the F4 term typically dominates over the
Q4 one, hence being the main FON contribution. Another difference with respect to
F4 is that Q4 contributes partially to FWM and XCI, as highlighted in Fig. 2.4.

The variance of Q4 is given by the following:
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(2.46)

where we observe the absence of any weight, differently from the F4 and GN term.
This comes from applying Eq. (2.12) and noticing that: ∑h3,n3 δh3n3δi3n3 = 1.

Similarly to the previous cases, the Q4 variance expression can be simplified by
dropping integrals according to the linear system:

⎧⎨⎩h → ω +ω1 +ω2 = µ +µ1 +µ2

n → ω +ω +ω1 +ω2 = µ +µ +µ1 +µ2

(2.47)



2.3. The Enhanced Gaussian noise model 57

Figure 2.4: Integration domains with non-zero Q4 contributions highlighted in red,
with reference to Fig. 2.1.

whose solution is µ2 = ω1 +ω2 − µ1, ω = µ. We can thus drop two integrals, for
instance the ones with (µ,µ2), by using the previous substitution.

As a consequence, the NLI variance of the Q4 contribution can be expressed in
the following simplified integral notation:
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CQ4(k,s).

(2.48)
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Higher-order noise

Finally, we now treat the so-called HON contribution to the NLI variance as ex-
pressed in Eq. (2.18). This term involves the sixth-order moment of the transmitted
symbols and is associated with the indexes configuration hhhi. We thus note that such
a HON contribution contributes marginally to the overall NLI variance since only a
small subset of nonlinear effects can be associated with such an index configuration.
Namely, Q6 contributes only to SPM and to the configurations of XCI having three
spectral components in one of the two next-neighboring channels. Overall, we have
three regions in the integration domains picture of Fig. 2.1 which are valid, as high-
lighted in red in Fig. 2.5. As a consequence, the HON variance generally represents
the smallest contribution to the overall NLI variance as reported in [41].

Similarly to the GN and FON terms, we now express the Q6 contribution to the
NLI variance as:
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(2.49)

We then apply the Poisson formula to simplify the variance expression. Since
there is only one index involved, the integral to be dropped comes from the following:

h → ω +ω1 +ω2 −ω −ω1 −ω −ω2 = µ +µ1 +µ2 −µ −µ1 −µ −µ2 (2.50)

having solution ω = µ and hence allowing to drop only the integral for µ .
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The resulting Q6 variance expression is then given by:
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(2.51)

Although Q6 represents the smallest contribution among those treated in this sec-
tion, it is the term requiring the highest number of frequency integrals.

Figure 2.5: Integration domains with non-zero Q6 contributions highlighted in red,
with reference to Fig. 2.1.
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2.4 Monte Carlo Integration

A simple and effective method to evaluate the triple integrals at the heart of the NLI
variance in Eq. (2.34) was proposed by Dar et al. in [46]. The authors proposed to ex-
ploit Monte Carlo (MC) integration instead of quadrature rules based on interpolating
polynomial.

In brief, Monte Carlo integration relies on a random sampling of a function f (x)
to numerically compute an estimate of its integral, namely

I =
∫︂
V

f (x)dx ≈ V
NMC

NMC

∑
j=1

f (x j) (2.52)

where NMC is the number of samples, and f (xi) is the integrand evaluated in the
samples drawn with a uniform distribution, and V is the volume of the set V.

Apart from its simplicity, the MC method represents an efficient approach for
multi-dimensional problems, since the standard deviation of the MC error, contrary
to quadrature rules, scales with 1/

√
NMC independently of the number of dimensions.

Hence, it better tolerates the so-called “curse of dimensionality” [51].

The MC idea can be fully exploited by randomly sampling also the triple summa-
tion ∑h,n,m over the channel indexes in Eq. (2.34). The approach gives some advan-
tages in evaluating FWM contributions because it removes the loops on the channel
indexes in ∑h,n,m in favor of a single MC summation, whose vectorized implemen-
tation yields some improvements in numerical interpreted languages such as MAT-
LAB. With reference to Fig. 2.1, we note that the FWM integration regions are placed
within a hexagon macro-region. This shape results from the combination of two con-
straints: h = m+ n− i for the energy conservation and (h,m,n) ∈ (1, . . . ,Nch), since
the channels involved in the FWM process must be within the WDM bandwidth. As a
result, for a given channel index n and CUT index i, only the channels m for which the
channel h belongs to the WDM comb are valid. It is then clear that an unconstrained
sampling of channel indexes in (1, . . . ,Nch) would waste samples. Therefore, instead
of sampling the channels independently over a square grid, we suggest sampling only
in the visible islands in Fig. 2.1, thus by generating one channel index at random (e.g.,
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Figure 2.6: Example of PMF in Eq. (2.53) with parameter q = 0.5.

n) while conditioning the generation of the remaining one (e.g., m).
We also found some advantages in using importance sampling (IS) [52,53] through

different sampling distributions than the simplest uniform distribution adopted by the
MC method. A first IS strategy, also called stratified-sampling (SS) [51, 54], is to es-
timate independently each nonlinear effect according to the terminology of Fig. 2.1.
Instead of uniformly selecting the channels joining the NLI process, we propose to
estimate XPM due to channel n, n ̸= nCUT, by selecting it through a warped proba-
bility mass function (PMF) equal to

p(n) =
c

|n−nCUT|q
(2.53)

with c a normalization constant. Such a sub-optimal PMF pushes more samples in
channels closer to the CUT, with a probability governed by q. Intuitively, such chan-
nels are expected to dominate the NLI variance. The parameter q can be found by
a least-squares fitting of the optimal SS-strategy σn/∑n σn [51], with σn the stan-
dard deviation of the integrand within stratum n. The value of σn can be found by
a short MC pre-run (e.g., a factor 100 shorter of the target number of samples) in
the XPM hexagons, with minor implications on the total computational time. The
least-squares fitting helps in smoothing the uncertainty of σn estimations. The FWM
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Figure 2.7: Ratio of the number of samples with MC and SS to get a given relative
error (-30 dB) vs. WDM bandwidth. 10 span SMF link.

and XCI islands can be sampled in the same way by using the same PMF for each
channel involved in the process. The sampling according to the warped PMF can be
done by the inverse-transform sampling method [51]. For the sake of completeness,
an example of the PMF p(n) for a 101 channels transmission is reported in Fig. 2.6.

The samples generation and the pre-run add a small overhead to the computa-
tional time. However, the proposed SS strategy allows saving samples, particularly
for the most computationally intensive terms as FWM, XCI, and MCI. Figure 2.7
shows the ratio of the number of samples required by MC and SS for the evaluation
of each nonlinear effect at the same relative error of -30 dB. The figure refers to 10
spans. We note significant savings for multi-channel effects, with increasing gains for
increasing bandwidths.

The variables (ω,ω1,ω2) within each island are sampled randomly by MC. How-
ever, for homogeneous point-to-point links, it is possible to apply IS even within the
islands of Fig. 2.1, in particular for the GN contribution. The motivation comes from
the observation that in such ultra-long links the phased-array term in Eq. (2.17) be-
comes a peaked function, whose random sampling is very inefficient by standard
MC. The problem can be circumvented in the following way. The triple integral in
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Figure 2.8: Example of kernel and Monte Carlo (MC) or importance sampling (IS)
distributions for sampling the frequency ω2 normalized to the symbol rate. Both sam-
pling strategies randomly select a lobe of the kernel.

Eq. (2.34) is weighted by the kernel function, hence by the phase-matching coeffi-
cient ∆β between the four frequencies involved in the FWM process. If, for instance,
we sample (h,m,n) in Eq. (2.34) by a discrete uniform distribution and (ω,ω1) by a
uniform distribution as in the MC method, it is convenient to sample the remaining
ω2 over the regions where the kernel takes the largest absolute value. Such regions
appear periodically at ω2 values where the phased array has resonances, that is for
∆β = 2πk with k an integer. Figure 2.8 sketches the idea, where we can observe: the
kernel function (absolute squared value) versus the variable ω2 for a given random
choice of the remaining variables; the probability density function (PDF) of ω2 with
pure MC sampling (red dashed) and an example of importance sampling by using a
Gaussian PDF for ω2 (solid green).

In practice, pure MC is equivalent to randomly selecting a given lobe of the
phased-array, i.e., a value of k, with a discrete uniform distribution, and to randomly
sample with a uniform distribution between the two neighboring lobes, as illustrated
in the figure. On the other hand, IS concentrates probability around the peak. The best
IS PDF replicates the kernel shape. However, it may be better to use simpler PDFs
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BWDM [GHz] length [km] std(aNL dB) time [s]

MC IS MC IS

50 1000 0.01 0.01 0.1 0.1

50 10000 0.04 0.04 0.1 0.1

5050 1000 0.08 0.07 1.1 1.5

5050 10000 0.24 0.04 1.1 1.5

10050 1000 0.10 0.09 1.1 1.5

10050 10000 0.37 0.06 1.1 1.5

Table 2.2: Computational time per channel and accuracy. Standard Monte Carlo (MC)
method vs importance sampling (IS) technique.

in favor of simpler algorithms, motivated by the observation that a PDF sufficiently
concentrated around the peak, may give some computational advantages. In particu-
lar, we used a Gaussian PDF of variance equal to twice the variance of the absolute
squared value of the kernel around a lobe.

As a reference, Tab. 2.2 shows some values of the uncertainty on the normalized
variance aNL ≜ σ2

GN/P3 obtained by evaluating Eq. (2.34) with the proposed meth-
ods, and the corresponding computational time in different scenarios, by using MC
or IS with 106 samples per effect. All the results are referred to the central WDM
channel and are obtained with an INTEL XEON E5-2650 v4 2.20GHz CPU-based
architecture. IS was applied only to XPM and FWM hexagons of Fig. 2.1 which
experience the largest number of phased-array peaks.

The computational time per channel, reported in Tab. 2.2, is very short. If the
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NLI variance of each channel is required, the computation has to be repeated for
each of them. However, since the NLI variance is a smooth function over the WDM
bandwidth, we suggest estimating it just for a few channels and to use interpolation
to find the missing values.





Part I

Ultra-wideband transmissions





Chapter 3

EGN model in the presence of
Stimulated Raman Scattering

The imaginary part of the Raman response leads to SRS which amplifies low fre-
quencies at the expense of high frequencies. While SRS among WDM channels can
be safely neglected in C band transmissions (≈5 THz), as the peak value of the Ra-
man gain is at a frequency shift ≈ 14 THz [7], its effect becomes relevant in ultra-
wideband transmissions covering the C+L band (≈ 10 THz bandwidth).

Due to SRS, the signal power profile with respect to frequency becomes tilted.
Such an SRS-induced tilt can be removed by means of equalizers. However, the dis-
tributed interaction during propagation between the Kerr effect and the Raman scat-
tering cannot be removed by such equalizers. As a consequence, the NLI variance
exhibit a residual SRS tilt. In addition, a residual SRS tilt is present even in the ASE
noise variance, with a different slope.

Such an undesired SRS-tilt becomes increasingly important for increasing band-
widths. Since the numerical and experimental investigation of ultra-wideband trans-
missions is extremely complex (see Eq. (1.59)), it is fundamental to find fast analyti-
cal models able to capture the SRS impact on the system performance.

Several efforts have been made in the literature to model the impact of SRS on
the received signal. An extension of the GN model to include inter-channel SRS in
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the estimation of the NLI variance was proposed in integral form [55–57], and in
closed-form [5, 58] for the SPM and XPM contributions.

The short computational time of Raman-aware GN models enables addressing
complex design problems, such as the optimal channel power allocation at the trans-
mitter side to counteract the SRS effect, as done in [55,59]. In both works, the authors
tackled the problem of optimal power allocation in the presence of uncompensated
SRS. These studies were motivated by the fact that in practical systems the dynamic
gain equalizers (DGEs) for the compensation of the SRS on the signal power are not
placed after each span. For instance, a compensation period value of 4-5 spans can
be found in the terrestrial systems literature [55, 59, 60].

In this chapter, we first present an extension of the EGN model to include the
SRS gain which allows us to investigate the impact of SRS on the NLI variance
and SNR for different modulation formats in ultra-wideband transmissions. Similarly
to [61] this model relies on the presence of an ideal DGE at each span end. However,
contrary to the aforementioned work, the proposed SRS-EGN model accounts also
for XCI, MCI, and FWM (according to the nomenclature in Chapter 2, see Fig. 2.2)
in a modulation format-aware manner.

Then, we extend such a model in the DGE-SRS-EGN model which accounts for
a sparse DGE position along the optical link for the compensation of the SRS gain
on the signal power. We show that such a sparse positioning of DGE has serious
implications on the model accuracy. The proposed model includes the interaction
between the nonlinear Kerr effect and accumulated SRS in a modulation format-
aware manner. We also provide a simple extension to account for a signal-power
pre-emphasis at the transmitter side.

Finally, in a GN model framework, we extend the closed-form expressions of [5]
to include such sparse DGE positioning along the link. We exploit such closed-form
expressions to investigate the optimization of signal-power pre-emphasis in the shape
of an opposite SRS gain, to maximize either (i) the minimum SNR in the WDM comb
or (ii) the total AIR.

The work presented in this chapter was published in [30, 62–65].
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3.1 Stimulated Raman Scattering

The power evolution along distance z for the ith WDM channel, with i = 1 the left-
most channel in frequency and i=Nch the rightmost channel in frequency, is governed
by the following [7, 66]:

dPi

dz
=−Pi

i−1

∑
j=1

ω j

ωi
g̃R(|ωi −ω j|)Pj +Pi

Nch

∑
j=i+1

g̃R(|ωi −ω j|)Pj −α(ωi)Pi (3.1)

with Pi the ith channel power at carrier frequency ωi, α the fiber attenuation coeffi-
cient, and g̃R(|ωi −ω j|) the polarization-averaged Raman gain which is a function of
the spacing between channel i and j. The first term on the right-hand side accounts
for the depletion of the channel power Pi due to the amplification of the channels
j = 1, . . . , i− 1 centered at lower frequencies while the second term is the gain ex-
perienced by the ith channel thanks to the power transfer from channels at higher
frequencies. Solving the power evolution in the presence of SRS requires the numeri-
cal solution of a system of coupled ordinary differential equations (ODEs), one ODE
for each WDM channel.

An example of normalized polarization-averaged Raman gain versus the fre-
quency shift between two channels is depicted in Fig. 3.1. It can be seen that such a
gain profile can be approximated as a linear function only up to its peak profile, hence
for a frequency shift smaller than ≈ 14 THz. This reasoning was applied in [67] in
the derivation of the so-called triangular approximation of the Raman gain, where
the gain is approximated as a linear function from the origin up to the peak value,
then with zero for all the frequency components higher than the peak frequency.

In [69] it was shown that Eq. (3.1) allows an analytical solution under the fol-
lowing assumptions: i) linear dependency of g̃R(|ωi − ω j|) on the frequency shift
ωi −ω j, ii) frequency-independent fiber attenuation coefficient, and iii) ω j

ωi
≈ 1. The

power evolution equation can be thus simplified in the following

dPi

dz
= Pi

Nch

∑
j=1

Cr(ω j −ωi)Pj −αPi (3.2)
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Figure 3.1: Raman gain profile for a SMF interpolated from [7] with a peak value of
0.42 (W ·km)−1 as per [68].

where the first term in the right-hand side accounts for the amplification of the power
Pi at the expenses of each channel j in the comb such that ω j > ωi, and depletion
to the benefit of a channel having ω j < ωi. The coefficient Cr represents the slope of
the linear approximation of the Raman gain and can be found by means of a linear
regression on the experimental data.

The system of coupled ODEs can be written as a single equation in terms of
WDM power spectral density (PSD) G instead of channel powers, namely:

dG(z,ω)

dz
= G(z,ω)Cr

∫︂
∞

−∞

(ν −ω)G(z,ν)dν −αG(z,ω) (3.3)

where the summation over the channels was replaced by an integration in frequency.
Dividing Eq. (3.3) by G(z,ω) and taking the derivative with respect to frequency:

d
dω

(︄ dG(z,ω)
dz

G(z,ω)

)︄
=−Cr

∫︂
∞

−∞

G(z,ν)dν (3.4)

where we can recognize in the frequency integral on the right-hand side the total
WDM power at coordinate z, which is assumed to decrease exponentially along the
fiber length, namely:
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∫︂
∞

−∞

G(z,ν)dν = Pte−αz (3.5)

where Pt =
∫︁

∞

−∞
G(ν)dν is the WDM total power at the transmitter side, with G(ν) =

G(0,ν). Equation (3.4) can thus be rewritten in the following compact form:

d
dω

d
dz

lnG(z,ω) =−CrPte−αz. (3.6)

Following [69], integrating Eq. (3.6) first with respect to distance and then with
respect to frequency yields a closed-form solution, by imposing the exponential decay
condition for the total power in Eq. (3.5).

With respect to the original problem in Eq. (3.2), hence from the channel power
point of view, such a solution can be expressed as follows:

Pi(z) = e−αzH(ωi,z)Pi(0) (3.7)

hence the signal power undergoes fiber attenuation and SRS gain, defined as:

H(ωi,z) =
Pte−CrPtLeff(z)ωi∫︁

∞

−∞
G(ν)e−CrPtLeff(z)ν dν

2π

(3.8)

where G(ν) indicates the WDM signal PSD at the fiber input. From Eq. (3.7) it can
be seen that the SRS gain induces a frequency-dependent tilt in the signal power
profile and it does not affect the total power, which vanishes only through the fiber
attenuation.

Figure 3.2 shows the power versus frequency after a single span of 100 km of
SMF having attenuation coefficient α = 0.2 dB/km for a 10 THz transmission with
total WDM power of 23 dBm. Due to the SRS-induced power transfer, the originally
frequency-flat power profile exhibits a tilt. The figure compares the numerical solu-
tion1 of the system of coupled differential equations in Eq. (3.1) with the analytical
expression in Eq. (3.7), based on the triangular approximation. Note that after the
fiber we compensated the fiber losses. It can be seen that the analytical expression

1Solved with the ode45 MATLAB function.
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Figure 3.2: Power after one span of SMF for a 10 THz transmission. Solid: numerical
solution of Eq. (3.1). Dashed: analytical solution in Eq. (3.7). Dotted: transmitted
power.

based on the linear approximation of the Raman gain is in excellent agreement with
the numerical solution in the bandwidth under test. The coefficient of the linear ap-
proximation of the Raman gain was Cr = 0.028/(2π) (W ·km ·THz · rad)−1 found by
means of a linear regression of the gain in Fig. 3.1 over 10 THz.

The analytical expression of the power evolution in Eq. (3.7) has two main ad-
vantages compared to the numerical solution. First, it allows to include the SRS in
the GN/EGN model by modifying the power profile during propagation. Second, it
highlights the key quantities involved in the SRS gain, such as the total WDM power.
For instance, Fig. 3.3 shows the SRS gain versus frequency for the same WDM trans-
mission of Fig. 3.2 with different total power values. It can be seen that the SRS tilt
is enhanced by the increase of power.

It is worth noting that Eq. (3.1) is not limited to describe the power evolution
of a single-span system. In fact, the system of differential equations can be solved
span-by-span by applying at each iteration the correct initial condition, i.e., the signal
power at the input of the mth span is the solution of the (m− 1)th iteration. Such a
span input power coincides with the power launched into the link only in the presence
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Figure 3.3: SRS gain after one span of SMF for a 10 THz transmission at three dif-
ferent total WDM powers. Solid: numerical solution of Eq. (3.1). Dashed: analytical
solution in Eqs. (3.7)-(3.8).

of a DGE at each span-end, which restores the nominal power equalizing the SRS
gain. However, in the most general case of arbitrary DGE positioning along the link,
there is an uncompensated SRS gain that accumulates from DGE-to-DGE. Figure
3.4(a) sketches an example. The link is composed of ND link sections, identified
by the presence of a DGE at the end of each section. In the most general case, the
sections can have a different number of spans Ns each. To highlight the effects of
the SRS accumulation across the spans, Fig. 3.4(b) sketches an example of the signal
PSD evolution in the first section of a link with Ns = 3 spans.

Under the same assumption of Eq.(3.2), the problem of the power evolution in
the presence of accumulated SRS can be solved analytically following similar steps
used to derive Eq. (3.7). Let us generalize the definition of SRS gain at coordinate z
in Eq. (3.8), to the SRS gain experienced by the WDM channel centered at frequency
ωi from the input of link up to coordinate z of the mth span, with m = 1, . . . ,Ns, as

Hm(ωi,z) =
Pte−mCrPtLeff(z)ωi∫︁

∞

−∞
G(ν)e−mCrPtLeff(z)ν dν

2π

(3.9)
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number of spans Ns(d) each, and b) WDM PSD tilt evolution due to the accumulated
SRS in a link section with Ns = 3 spans.

such that Eq. (3.8) is a particular case of the more general Eq. (3.9) with m = 1. Thus,
Eq. (3.7) with the Raman gain in Eq. (3.9) represents the analytical solution of the
multi-span power evolution and encompasses all the arbitrary placement of the DGE
along the link. As an example, Fig. 3.5 compares the SRS gain after m = 1,2,4 spans
obtained by numerically solving the systems of ODEs and the theoretical gain in Eq.
(3.9), showing an excellent agreement.

3.2 SNR generalization

After SRS gain equalization on the desired signal at the receiver, the SNR expression
in Eq. (1.64) must be generalized to include the residual SRS gain on the NLI and
ASE variance. Such a residual gain yields a frequency-dependent SNR, namely

SNR(ν) =
P

σ2
NLI(ν)+σ2

ASE(ν)
(3.10)

where ν is a generic WDM channel central frequency.
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Figure 3.5: Raman gain after m spans of SMF without DGEs for a 10 THz trans-
mission. Solid: numerical solution of Eq. (3.1). Dashed: analytical solution in Eqs.
(3.7)-(3.9). Total WDM power: 23 dBm.

The ASE variance in Eq. (1.61) can thus be generalized as follows:

σ
2
ASE(ν) = hνFGB

ND

∑
d=1

Ns(d)

∑
k=1

HNs(d)−k(ν ,L)
HNs(d)(ν ,L)

= hνFGB
ND

∑
d=1

Ns(d)

∑
k=1

H−1
k (ν ,L)

(3.11)

where HNs(d)−k(ν ,L) is the SRS gain accumulated in the subsequent Ns(d)− k spans
and H−1

Ns(d)
(ν ,L) is the gain of an ideal DGE which perfectly compensates the SRS

gain experienced by the signal power in the dth link section of Ns(d) spans. It is
worth noting that Eq. (3.11) assumes ideal DGEs, i.e., noiseless and lossless devices.
An extension to lossy and noisy DGE nodes will be tackled in Section 3.5.

An equivalent block diagram representation of a link section is sketched in Fig.
3.6. For the sake of simplicity, the diagram does not report the NLI variance which
will be extensively treated in what follows. Note that we are assuming the signal
power to be transparent from section to section since the DGE at the end of each
section restores the nominal power level.
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Figure 3.6: Equivalent block diagram representation of a link section, i.e., the cascade
of Ns amplified spans and a DGE. ASEk, k = 1, . . .Ns, is the variance of the ASE noise
introduced by the kth amplifier.

In the following sections, we will focus on the generalization of the link kernel
presented in Section 2.1.1 to include SRS, which can be used in the GN/EGN model
frameworks presented in Chapter 2 to estimate the NLI variance.

3.3 The SRS-EGN model

Including SRS in the NLI model requires a frequency-dependent power profile, due
to the nature of the Raman scattering process. The Manakov equation in Eq. (1.44)
and its RP1 solution in Eq. (1.49)-(1.53), can thus be extended by substituting the
fiber attenuation α with a proper frequency-dependent term including the SRS gain,
as discussed in Chapter 1.

With ideal DGEs and amplifiers after each span, both the SRS gain and the fiber
loss are perfectly recovered at the span end. Hence, the normalized power profile,
with the SRS gain triangular approximation, becomes

ρ(ζ ,ω) = ϒ(Leff(ζ ))e−αζ e−PtCrLeff(ζ )ω (3.12)

where the factor ϒ is a normalization factor ensuring that the total power decreases
exponentially along the fiber length, see Eq. (3.5), yielding:

ϒ(Leff(ζ ))≜
Pt∫︁

∞

−∞
G(ν)e−PtCrLeff(ζ )ν dν

2π

. (3.13)
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Similarly to the previous analyzed case without SRS, in which ρ = e−αζ , we note
that the normalized power profile is span-independent. The link kernel in Eq. (2.13),
that we report here for the reader convenience

η(ω,ω1,ω2) =
N

∑
k=1

e j∆β (k−1)L
∫︂ L

0
e j∆βζ e−αζ dζ (3.14)

can then be written in terms of a generic power profile as follows:

η(ω,ω1,ω2) =
N

∑
k=1

e j∆β (k−1)L
∫︂ L

0
e j∆βζ

×

√︄
ρ(ζ ,ω +ω1 +ω2)ρ(ζ ,ω +ω1)ρ(ζ ,ω +ω2)

ρ(ζ ,ω)
dζ (3.15)

where the only difference with respect to the link kernel treated in Chapter 2 is the
presence of ρ(ζ ,ω) instead of the power loss induced by the fiber attenuation.

After the substitution of the extended power profile in Eq. (3.12), the kernel can still
be expressed as the product of two terms:

η(ω,ω1,ω2) = χ(ω,ω1,ω2)η
R
1 (ω,ω1,ω2) (3.16)

where χ is the phased-array term defined in Eq. (2.17), accounting for accumulated
effects, while ηR

1 is a generalization of the single-span kernel η1 to the case with
SRS, equal to [57]

η
R
1 =

∫︂ L

0
ϒ(Leff(ζ ))e−αζ e−PtCrLeff(ζ )(ω+ω1+ω2)e j∆βζ dζ (3.17)

≈
(︂

1− s
)︂

η1 +
1− e−2αL+ j∆βL

2α − j∆β
s (3.18)

where s ≜ PtCr(ω+ω1+ω2)
α

, and η1 is given in Eq. (2.16). The last approximation has
been derived in [5] under the assumption that the power is uniformly distributed
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across the WDM bandwidth and that SRS is weak. The weak SRS assumption al-
lows to expand the SRS term with a Taylor series truncated to the first order, namely:

e−PtCrLeff(ζ )ω ≈ 1−PtCrLeff(ζ )ω (3.19)

for the SRS exponential in Eq. (3.17) and Eq. (3.13). In particular, the first order
series expansion in Eq. (3.19) yields ϒ ≈ 1 when the power is uniformly distributed
over the WDM bandwidth, which significantly simplifies the analytical expression of
the kernel, avoiding the numerical computation of the integral in Eq. (3.15).

Due to the shape of the Raman gain versus frequency shift depicted in Fig. 3.1, it
is clear that its linear approximation holds only for bandwidths not exceeding ≈ 15
THz. For larger bandwidths, not only the triangular approximation of the Raman
gain does fail, but also the assumption of a frequency-independent fiber attenuation
becomes unjustified [70].

The extension of the EGN model in the SRS-EGN model goes straightforward by
replacing the new link kernel in the framework presented in Chapter 2 to obtain all
the contributions to the NLI variance. However, it is worth noting that, in the presence
of SRS, the link kernel depends on the total power Pt. As a consequence, the scaling
rule with P3 for the NLI variance of Eq. (1.65) holds only at fixed total power.

3.3.1 Numerical validation

We implemented the new generalized SRS-EGN model by adopting the link kernel
expression in Eq. (3.16) in the EGN model. In particular, the frequency integrals
involved in the variance computation are performed by means of Monte Carlo inte-
gration [46], and all the nonlinear effects (SPM, XPM, FWM, XCI, and MCI) are
included.

The links under test were DU links composed of SMFs and based on ideal end-
span lumped amplification with frequency-flat gain. The SRS gain on the signal was
recovered by ideal DGEs at each span-end. The SMFs parameters are listed in Tab.
3.1. In addition, the slope of the triangular approximation of the Raman gain of the
fiber was Cr = 0.028/(2π) (THz·rad·km·W)−1.
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Fiber parameter Value

Attenuation α 0.2 dB/km

Length L 100 km

Dispersion D 17 ps/(nm·km)

Dispersion slope S 0.057 ps/(nm2·km)

Nonlinear coefficient γ 1.26 1/(W·km)

Table 3.1: Single-mode fiber parameters considered in this work.

While the EGN model relies on a linear approximation of the Raman gain, in the
SSFM simulations we used a polynomial interpolation of the experimental gain as in
Fig. 3.1, and we accounted for both real and imaginary parts of the Raman spectrum,
see Eq. (1.37).

The WDM signal was a comb of PDM signals with channel spacing ∆ f = 50
GHz. Each channel was shaped with RRC pulses of 0.01 roll-off and modulated at
the symbol rate 49 Gbaud. The number of symbols was 67550, and the SSFM solved
the Manakov equation with SRS through a symmetric-step updated according to the
CLE criterion with a maximum tolerable FWM phase matching ∆φFWM= 10 rad [28].
At the receiver, ideal chromatic dispersion compensation was followed by a matched
filter detection and a least-squares equalizer with 1 tap that recovered the average
polarization and phase mismatch. The NLI variance in the SSFM simulations was
estimated as the variance of the difference between the received and the transmitted
sequence of complex symbols, in the absence of ASE noise.

In a first test, we investigated 64QAM signals with a 0 dBm transmitted power per
channel, over a WDM bandwidth of 10 THz. As a reference, such a channel power is
close to the NLT value for the central channel in the absence of SRS and with EDFA’s
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Figure 3.7: NLI variance σ2
NLI vs. frequency shift. PDM-64QAM, 201 channels, after

100 km and 10 × 100 km. DGE placed at each span end. Solid line: SSFM simula-
tions. Dashed lines: SRS-EGN model.

noise figure F = 5 dB. Figure 3.12 shows the NLI variance versus the frequency shift
after n× 100 km with n = 1,10. We used solid lines for SSFM results and dashed
lines for the SRS-EGN model estimation. It is worth noting that the NLI variance in
Fig. 3.7 exhibits a tilt, regardless of the presence of a DGE at each span-end. This
tilt is due to the distributed interaction between SRS and Kerr effects and cannot
be removed by the zero-forcing equalization of the DGEs. It can be seen from the
figure that the model is in good agreement with the SSFM simulations, confirming
the capability of the SRS-EGN model to capture this residual SRS gain on the NLI
variance, as well as the validity of the linear approximation of the Raman profile up
to a bandwidth of 10 THz.

3.3.2 Impact of the modulation format

To appreciate the impact of the modulation format, Fig. 3.8 shows the NLI variance
as a function of the frequency shift with respect to the WDM central frequency, ob-
tained with the SRS-EGN model. We compare PDM signals modulated by 64QAM
and QPSK. We considered a 10 THz transmission with a symbol rate of 49 Gbaud
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Figure 3.8: NLI variance σ2
NLI in the presence of SRS vs. frequency shift. 201 chan-

nels, 10 × 100 km SMF link. Solid lines: SRS-EGN model. Circles: 64QAM. Trian-
gles: QPSK. Dashed lines: F4 contribution in absolute value.

and channel spacing of 50 GHz over a 10×100 km DU-link composed of SMFs. The
total transmitted power was Pt = 24 dBm. As can be seen in the figure, the SRS-GN
model provides the same estimated value of σ2

NLI for both modulation formats. The
estimation error introduced by the GN-model is more severe for the QPSK than the
64QAM, due to a higher, in absolute terms, FON contribution. In particular, we re-
ported with dashed lines the F4 term contribution, in absolute value, which is 2 dB
higher for QPSK than for 64QAM. However, it is worth noting that the SRS induces
an identical tilt in the NLI variance profile regardless of the modulation format. Fig-
ure 3.8 suggests that such a tilt might be mitigated by adopting heterogeneous mod-
ulation formats. Namely, a possible strategy is to assign the modulation format with
smaller σ2

NLI, due to a more negative F4 contribution, to channels at lower frequen-
cies which are those most amplified by the SRS, to counterbalance the tilt in the NLI
variance profile.

The results of a first investigation on the heterogeneous modulation format strat-
egy are reported in Fig. 3.9 for a simple scenario with a 51 channel WDM trans-
mission, for the same link of Fig. 3.8. In this case, we considered a channel power
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Figure 3.9: NLI variance σ2
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with enhanced SRS, 10 × 100 km SMF link. Solid lines: SSFM simulations. Dashed
lines: SRS-EGN model. Dotted: SRS-GN model QPSK||64QAM: WDM with left-
half QPSK, right-half 64QAM.

of 3 dBm and we artificially inflated the Raman gain by considering a slope for its
linear approximation equal to Cr = 0.14/(2π) (THz·rad·km·W)−1 to emphasize the
SRS over the 2.5 THz bandwidth of the WDM, a value for which reliable SSFM
simulations are feasible in a short time. The figure shows the NLI variance obtained
with SSFM simulations (solid lines) and the SRS-EGN model (dashed lines) for a
homogeneous modulation format scenario with PDM-64QAM and a heterogeneous
scenario where the left-half of the spectrum, including the central channel, is PDM-
QPSK modulated, while the right-half carries PDM-64QAM channels. It can be seen
that the maximum error introduced by the EGN is ≈ 0.3 dB while the SRS-GN model
(dotted) overestimates σ2

NLI by ≈ 1.4 dB. It is interesting to notice that the use of het-
erogeneous modulation formats affects the Raman-induced tilt in NLI variance.

Exploiting the SRS-EGN model, we analyzed the same link and set-up of Fig. 3.8
over the WDM bandwidth of ≈ 10 THz. Here we also accounted for the Raman tilt on
the ASE noise arising from lumped optical amplifiers having noise figure 5 dB. We
computed the SNR for both the homogeneous/heterogeneous modulation format se-
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tups. As homogeneous cases, we considered PDM-QPSK or PDM-Gaussian modula-
tion formats (i.e., complex Gaussian distributed symbols). For the heterogeneous sce-
narios, we considered the 101 frequency left-most channels modulated PDM-QPSK,
while the remaining 100 right-most channels were PDM-Gaussian modulated. Figure
3.10(a) shows the SNR as a function of the frequency shift with respect to the WDM
central frequency for the four scenarios.

First, it can be seen that the SNR is frequency-dependent although the signal
power has been equalized by the DGE. This is a consequence of the fact that the
noise variance is frequency-dependent. To better understand the reasons for the SNR
behavior, in Fig. 3.10(b) we reported the corresponding variances of the linear and
nonlinear noise. The main section of the figure represents the NLI variance while the
ASE variance can be found in the inset. While the tilt in the NLI variance is due to
distributed SRS and has the same sign of the tilt induced in the signal power before
equalization, the non-flat profile of the ASE variance is due to the presence of the
DGE and thus exhibits an opposite tilt.

Second, we note that, contrary to the GN model prediction, the homogeneous and
the heterogeneous scenarios do not coincide. The SRS-EGN model can account for
the impact of the modulation format on the NLI variance, both for homogeneous and
heterogeneous cases, thus providing different SNR values for each scenario. Regard-
ing the heterogeneous cases, we note that the two spectrum allocation strategies are
not equivalent in terms of Raman-induced tilt in the SNR. While the asymptotic tilt
far from the WDM center is of negative slope and follows the homogeneous case,
in the center of the spectrum the slope of the tilt depends on the spectrum allocation
strategy. In particular, when QPSK is on the left-hand side the tilt is positive and adds
up with the tilt of ASE, while in the other case it counteracts the tilt of ASE. Focusing
on the homogeneous cases (dashed and dotted lines) in Figs. 3.10(a)-(b), thanks to the
Raman-aware EGN-model, we notice that while NLI variance experiences the same
tilt for both modulation formats, the tilt in the SNR is different due to the different
balance between NLI and ASE.
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Figure 3.10: (a) SNR and (b) NLI variance, with ASE noise variance in the inset, vs.
frequency shift. 201 channels, 10 × 100 km. QPSK||Gaussian: WDM with left-half
QPSK, right-half Gaussian distributed symbols. Gaussian||QPSK: WDM with left-
half Gaussian distributed symbols, right-half QPSK.
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Figure 3.11: SNR gap between the two outer channels vs. the WDM bandwidth.

To better appreciate the SRS impact on the SNR, in Fig. 3.11 we plot the SNR
gap ∆SNR between the two outer channels of the spectrum as a function of the WDM
bandwidth. We observe that the QPSK scenario is the most affected by the Raman tilt
and it represents the worst case in terms of GN model error. In particular, we observe
1 dB more SRS tilt at 10 THz compared to the Gaussian scenario. For the sake of
comparison, in Fig. 3.11 we also reported the SNR gap due to the third-order disper-
sion induced tilt in the absence of Raman. We note that here the modulation format
has a minor effect. We thus conclude that the error in the SNR estimation intro-
duced by neglecting the modulation format, as the GN-model does, is not frequency-
independent.

3.4 The DGE-SRS-EGN model

The SRS-EGN model presented in Section 3.3 is based on the power profile in Eq.
(3.12) derived under the assumption that the SRS gain is compensated at each span-
end through a DGE. Such an assumption can be limiting for estimating the perfor-
mance of a practical terrestrial system, where such dynamic devices are placed more
sparsely along the link. For instance, a compensation period of 4-5 spans can be found
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in the literature [55, 59, 60].

The structure of a link with sparse DGE positioning is sketched in Fig. 3.4. In
this scenario, the Raman gain-tilt is not recovered at every span. As a result, the SRS
gain accumulates between two DGEs, and its expression can be generalized as in Eq.
(3.9). Such an accumulation undermines the assumptions of weak SRS gain that lead
to Eq. (3.17). Moreover, the absence of gain equalization at the end of each span
allows other residual gains/losses to accumulate from span to span.

Similar scenarios were considered in [55], where the accumulation of Raman
scattering was included by numerically solving the power evolution. Here we propose
a simplified expression of the power profile.

3.4.1 Integral model

Let us focus on a given link section between two neighboring DGEs. The PSD of the
signal at the input of the kth span, k ∈ (1, . . . ,Ns), should account for the accumulated
SRS and any extra gain/loss per span Λ(ω):

Gk(ω) = G(ω)e−PtCr((k−1)Leff(L))ωΛ(ω)(k−1) (3.20)

where, for the sake of simplicity, we assumed identical Λ(ω) per span. Please note
that such an extra gain/loss reduces to 1 when a DGE is placed at the end of each
span. The normalization factor should change accordingly:

ϒk(Leff(ζ ))≜
Pt∫︁

∞

−∞
Gk(ν)e−PtCrLeff(ζ )ν dν

2π

(3.21)

where ζ is the local coordinate within the kth span. In this framework, the normalized
power profile between two neighboring DGEs can be written as

ρk(ζ ,ω) = ϒk(Leff(ζ ))⏞ ⏟⏟ ⏞
normalizationfactor

Λ(ω)(k−1)⏞ ⏟⏟ ⏞
acc. loss

e−αζ⏞⏟⏟⏞
local loss

e−PtCr(k−1)Leff(L)ω⏞ ⏟⏟ ⏞
acc.SRS

e−PtCrLeff(ζ )ω⏞ ⏟⏟ ⏞
localSRS

(3.22)

where the different contributions to the extended power profile are highlighted.
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Contrary to the previous cases, the power profile in Eq. (3.22) is span-dependent.
It is worth noting that Eq. (3.22) does not hold with a frequency-dependent attenua-
tion α(ω), since the signal power profile has been derived with a frequency-independent
loss [69] in the triangular approximation of SRS. As an approximation, Eq. (3.22) can
be used as well by forcing a constant α(ω)≡α only in the attenuation profile e−αζ at
local coordinate ζ , while its full profile α(ω) can be left in the accumulated gain/loss
term Λ(ω).

The substitution of the new power profile Eq. (3.22) in Eq. (3.15) yields the link
kernel expression

η =
ND

∑
d=1

e j∆β (d−1)LNs(d)
Ns(d)

∑
k=1

e j∆β (k−1)Lg(ω,ω1,ω2)
k−1

2

× e−PtCr(k−1)Leff(L)(ω+ω1+ω2) η
R
k (ω,ω1,ω2)

(3.23)

where d is the index of the link section between two DGEs, Ns(d) is the number
of spans in the dth link section, k is the span index within a section, and the term
g(ω,ω1,ω2) collecting extra gains/losses is defined as

g(ω,ω1,ω2) =
Λ(ω +ω1)Λ(ω +ω2)Λ(ω +ω1 +ω2)

Λ(ω)
. (3.24)

The single-span kernel generalizes to:

η
R
k =

∫︂ L

0
ϒk(Leff(ζ ))e−αζ e−PtCrLeff(ζ )(ω+ω1+ω2)e j∆βζ dζ (3.25)

with the main difference with Eq. (3.17) that the normalization factor depends on the
span index k within the link section, as per Eq. (3.21).

Since the exponential SRS in ϒ includes also the accumulated gain, the weak
SRS assumption used in [5] yielding ϒ ≈ 1 may not be justified in this more general
scenario with sparse DGEs. As a direct consequence, the z-integral in Eq. (3.25)
cannot be expressed in closed-form and requires to be evaluated through numerical
integration. For this reason, in this work, we refer to this model as the integral model.

Contrary to Section 2.1.1 and 3.3 it is not possible to simply identify a phased-
array term accounting for the accumulated effects between spans, since the spans are
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not all identical due to the absence of a DGE at some spans. The outer summation
over d in Eq. (3.23) accounts for the dispersion accumulated in the previous link
sections. Note that there is no accumulated SRS from previous link sections since
each section ends with an ideal DGE. The inner summation over k, on the other hand,
accounts for both dispersion and SRS accumulated within the section.

We note that the proposed model can be easily generalized to account for a non-
uniform power allocation. For instance, a power pre-emphasis might be applied to the
transmitted signal to counteract the SRS effect [55] [56] [59]. We find it convenient to
investigate a pre-emphasis in the form of an SRS gain with an opposite sign, namely

Pi = H−k(ωi,L)P. (3.26)

Using this notation, the pre-emphasis is governed by the factor k which indicates the
amount of SRS that is pre-compensated, expressed in an equivalent number of spans.
As a consequence, the link kernel in Eq. (3.23) can be applied verbatim after the
following substitution in the Raman exponential:

(k−1) with−−−−−−−→
pre-emphasis

(k− k−1) (3.27)

where k− k plays the role of an equivalent span index.

3.4.2 Simplified model

The numerical effort to evaluate the general kernel in Eq. (3.23) with sparse DGEs is
particularly heavy since the integrand function is quickly oscillating, thus requiring
many function evaluations for an accurate result. For this reason, in this section we
introduce approximations of the z-integral in Eq. (3.23), with big savings in computa-
tional time. For the sake of simplicity and generality, we search for an approximation
yielding a link kernel in the same form as the one without SRS accumulation in Eq.
(3.16), i.e.,

η(ω,ω1,ω2)≈ χ
R(ω,ω1,ω2)η

R
1 (ω,ω1,ω2) (3.28)
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where ηR
1 is the single-span kernel in Eq. (3.17) and χR is an inter-span term. Note

that Eq. (3.28) differs from the model without accumulated SRS only in the term χR.
Removing the dependence of ϒ on z yields great numerical savings since it re-

sults in an integral along the distance that can be evaluated in closed-form. This idea
was implicit in [5] where ϒ was approximated to 1, as a result of a weak-SRS as-
sumption. As commented before, this approximation does no longer hold with sparse
DGE positioning, hence it must be properly adapted to the new scenario. Since ϒ is a
monotonic function of Leff(ζ ), it can be bounded by ϒ(Leff(L))≤ ϒ(Leff(ζ ))≤ ϒ(0).
Hence, it seems reasonable to approximate the integral in Eq. (3.25) by a weighted
midpoint numerical quadrature [71]. To further increase the accuracy, we perform
such an approximation after making the change of variable Leff(ζ ) = y, namely:

η
R
k =

∫︂ Leff(L)

0
ϒk(y)e−PtCry(ω+ω1+ω2)e− j ∆β

α
ln(1−αy)dy (3.29)

≜
∫︂ Leff(L)

0
ϒk(y)w(y)dy (3.30)

≈ ϒk

(︂Leff(L)
2

)︂∫︂ Leff(L)

0
w(y)dy (3.31)

where the exponential functions have been used as the weighting function w(y), and
in the last step, according to the midpoint rule [71], the integrand function ϒ is fac-
tored out and sampled at its midpoint. We note that integrating the weighting function
corresponds to carrying out the integration of ηR

k as if ϒ = 1. Therefore, assuming
now a local weak-SRS regime for the integral computation is legit, and we get:

η
R
k ≈ ϒk

(︂Leff(L)
2

)︂
η

R
1 (ω,ω1,ω2) (3.32)

where ηR
1 (ω,ω1,ω2) is the closed-form expression of the single-span kernel with-

out accumulated SRS in Eq. (3.17). The midpoint rule has an error scaling with
O(Leff(L)3) [71] hence is a good compromise between accuracy and simplicity. As a
result of the approximation, we thus propose to approximate the local term Leff(ζ ) in
Eq. (3.21) with a lumped factor 1

2 Leff(L), obtaining the following midpoint normal-
ization factor
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ϒk ≜
Pt∫︁

∞

−∞
G(ν)Λ(ν)(k−1)e−PtCr(k− 1

2 )Leff(L)ν dν

2π

. (3.33)

Thanks to this approximation, the link kernel in Eq. (3.23) can be written as

η =
ND

∑
d=1

e j∆β (d−1)LNs(d)
Ns(d)

∑
k=1

e j∆β (k−1)Lg(ω,ω1,ω2)
k−1

2

× e−PtCr(k−1)Leff(L)(ω+ω1+ω2) ϒk η
R
1 (ω,ω1,ω2)

(3.34)

which can now be easily expressed in the compact form of Eq. (3.28), where we
defined

χ
R ≜

ND

∑
d=1

e j∆β (d−1)LNs(d)
Ns(d)

∑
k=1

e j∆β (k−1)Lg(ω,ω1,ω2)
k−1

2

× e−PtCr(k−1)Leff(L)(ω+ω1+ω2) ϒk.

(3.35)

We call the simplified model the NLI model based on the link kernel of Eq. (3.34)
which relies on the approximated normalization factor defined in Eq. (3.33).

3.4.3 GN-term closed-form expressions

In this section, we generalize the closed-form expressions of the SPM and XPM
variance, first derived in [5] in a GN-framework with DGE at every span, to the case
of accumulated SRS, i.e., sparse DGE positioning along the link.

For the reader’s convenience, we report here the single-span variance expressions
of [5]. The SPM variance for channel i can be written as

σ
2
SPM,1(i)≈

4
9

P3
i

B2
i

γ2π

φi3α2

×
[︂Ti −α2

α
asinh

(︂
φiB2

i

πα

)︂
+

4α2 −Ti

2α
asinh

(︂
φiB2

i

2πα

)︂]︂ (3.36)

with φi =
3
2 π2(β2 +β3ωi), Ti = (2α −PtCrωi)

2, and ωi ≜ 2π fi, with fi the low-pass
carrier frequency of channel i, referred, without loss of generality, to the reference
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system centered at the WDM central frequency [5]. The XPM contribution of the ℓth
interfering channel to channel i is

σ
2
XPM,1(i, ℓ)≈

32
27

P2
ℓ Pi

Bℓ

γ2

φi,ℓ3α2

×
[︂Tℓ−α2

α
atan

(︂
φi,ℓBi

α

)︂
+

4α2 −Tℓ
2α

atan
(︂

φi,ℓBi

2α

)︂]︂ (3.37)

with Bi the bandwidth of channel i, and φi,ℓ = π(ωℓ−ωi)[β2 +
1
2 β3(ωℓ+ωi)]. The

approximation is reliable if |ωi −ωℓ| ≫ 2πBi [5].
As in the case of the absence of SRS, the NLI accumulation of channel i along

the link can be approximated through the simple scaling rules

σ
2
SPM,N(i) = N 1+ε

i σ
2
SPM,1(i) (3.38)

σ
2
XPM,N(i) = ∑

ℓ̸=i
Nℓ σ

2
XPM,1(i, ℓ) (3.39)

where the scaling factor is defined as Nℓ ≜ |χ(0,0,ωℓ)|2inc and the subscript inc in-
dicates that only the incoherent contribution is taken into account, i.e., correlations
between different spans are neglected.

In the absence of accumulated SRS, the coherent and incoherent contributions [3]
to the modulus square of χ can be derived as

|χ|2 =
N

∑
k=1

e j∆βL(k−1)
N

∑
s=1

e− j∆βL(s−1) =
N−1

∑
k=0

e j∆βLk
N−1

∑
s=0

e− j∆βLs

= 1+ ∑
k ̸=0

e j∆βLk + . . .+1+ ∑
k ̸=N−1

e j∆βLke−(N−1) j∆βL

= N + ∑
k ̸=0

e j∆βLk + . . . ∑
k ̸=N−1

e j∆βL(k−(N−1))

= N⏞⏟⏟⏞
incoherent

+2
N−1

∑
n=1

(N −n)cos(∆βL×n)⏞ ⏟⏟ ⏞
coherent

(3.40)



94 Chapter 3. EGN model in the presence of Stimulated Raman Scattering

hence the incoherent contribution amounts to N = N, consistently with Eq. (2.41).
As done in Chapter 2, the coherent NLI accumulation along spans has been in-

cluded through the coherence factor ε . Contrary to the previous case, we now in-
cluded the coherence factor only in the SPM accumulation in Eq. (3.38), as done
in [5]. We thus assume incoherent XPM motivated by the large walk-off experienced
in a typical DU link. Hence, the coherence factor in Eq. (2.42) is now modified re-
placing the WDM bandwidth BWDM with the channel bandwidth B.

Note that the scaling rules in Eq. (3.38) and (3.39) require the accumulated effects
to be factored out by the term χ . Unfortunately, the proposed integral model cannot
be cast in this form. On the other hand, the simplified model presented in this section
can be expressed in such a form as in Eq. (3.28). Therefore, the simplified model
opens the path to closed-form expressions in the presence of accumulated SRS.

For a single-span, ηR
1 in the simplified model coincides with the closed-form ex-

pression of the single-span z-integral derived in [5], therefore the single-span SPM
and XPM variance expressions in Eq. (3.36) and Eq. (3.37) still hold in this frame-
work. On the other hand, in a multi-span link the term N must be modified to account
for sparse DGE positioning along the distance.

For the sake of simplicity, let us focus on a link section and assume that there
are no extra losses (Λ(ω)=1). After sampling the factor χR at central channel fre-
quency ωℓ of the interfering channel and defining b ≜ PtCtLeffωℓ, Eq. (3.40) can be
generalized in

|χR|2 =
Ns

∑
k=1

ϒke−b(k−1)e j∆βL(k−1)
Ns

∑
s=1

ϒse−b(s−1)e− j∆βL(s−1)

= ϒ
2
1 + ∑

k ̸=1
ϒkϒ1e−b(k−1)e j∆βL(k−1)+ . . .+ϒ

2
Ns

e−2(Ns−1)b

+ ∑
k ̸=Ns

ϒkϒNse
j∆βL(k−Ns)e−b(k+Ns−2)

=
Ns

∑
r=1

ϒ
2
r e−2b(r−1)

⏞ ⏟⏟ ⏞
incoherent

+
Ns

∑
s=1

∑
k ̸=s

ϒkϒse−b(k+s−2)e j∆βL(k−s)

⏞ ⏟⏟ ⏞
coherent

.

(3.41)
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Case Scaling factor Nℓ

Ns = 1 N

Ns > 1, Simplified model
ND

∑
d=1

Ns(d)

∑
k=1

ϒ2
kΛ(ωℓ)

2(k−1)e−2PtCrLeff(L)ωℓ(k−1)

Ns > 1, Integral model not available

Table 3.2: Scaling factor Nℓ for NLI accumulation with spans. Ns = 1: case analyzed
in [5]. Ns > 1: novel extension with sparse DGE positioning along the link.

It is worth noting that sampling the factor χR at the central channel frequencies
implies the assumption of frequency-flat SRS gain within a channel bandwidth, which
is consistent with the assumptions underlying the single-span variance expressions in
Eq.(3.36) and Eq. (3.37).

The values of the scaling factor N are summarized in Tab. 3.2, where we in-
cluded also the additional gain/loss term Λ(ωℓ) and the external summation on the
link sections. Note that the case Ns = 1, for which the scaling factor simply reduces
to the number of spans N, encompasses both the case of absence of local SRS, as
in [3], and the absence of accumulated SRS, as in [5]. With Ns > 1 and the integral
model, the scaling factor N does not exist, hence the single-span contribution can-
not be scaled for the given number of spans. In such a case, a full numerical spatial
integration over the entire link length is necessary.

3.4.4 Numerical validation

We implemented both the integral and the approximated model by adopting the link
kernel expressions in Eq. (3.23) and Eq. (3.34), respectively, in the EGN model.
Throughout this section, we will refer to the respective EGN models with the labels
"integral DGE-SRS-EGN" and "simplified DGE-SRS-EGN" model. In particular, in
both models, the frequency integrals involved in the variance computation are per-
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Figure 3.12: NLI variance σ2
NLI vs. frequency shift. PDM-64QAM, 201 channels,

10 × 100 km with DGE period Ns =1,2 or 5 spans. Solid line: SSFM simulations.
Markers: Integral DGE-SRS-EGN. Dashed line: simplified DGE-SRS-EGN model.

formed through Monte Carlo integration, and all the nonlinear effects (SPM, XPM,
FWM, XCI, and MCI) are included.

Due to the oscillatory nature of the fiber kernel, the z-integration of the integral
model is implemented through the Filon’s method [72]. Such a method is a quadrature
technique for highly oscillating function integrals in the form

∫︁ b
a f (x)e jωg(x)dx, hence

suitable for Eq. (3.23). On the other hand, the simplified DGE-SRS-EGN model re-
lied on the closed-form expression of the single-span kernel, as well as the GN-term
closed-form expressions.

Figure 3.12 shows the NLI variance versus the frequency shift after 10 spans with
DGE placed every 1, 2, or 5 spans. All the transmission and link parameters, except
for the DGE period, are the same used for Fig. 3.7. We used solid lines for SSFM
results, markers for the integral DGE-SRS-EGN model, and dashed lines for the sim-
plified DGE-SRS-EGN model. It can be seen that both the integral and the simplified
EGN models proposed in this work correctly estimate the impact of accumulated
SRS on the NLI. Both models exhibit an average error across the WDM bandwidth
smaller than 0.3 dB for each DGE placement configuration, with the largest value
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Figure 3.13: NLI variance σ2
NLI vs. frequency shift. PDM-16QAM, 201 channels,

10 × 100 km with DGE period Ns=1,2 or 5 spans. Solid line: SSFM simulations.
Markers: Integral DGE-SRS-EGN. Dashed line: simplified DGE-SRS-EGN model.

concentrated at the bandwidth edges. In particular, we verified that the error of the
integral DGE-SRS-EGN model is mainly related to the underlying triangular approx-
imation of the Raman gain.

Most important, it can be seen that the NLI tilt is emphasized by the accumulation
of SRS between DGEs, yielding curves with Ns > 1 far apart from the benchmark
Ns =1 case usually analyzed in the literature. For instance, even with a DGE every
two spans, i.e., Ns=2, the gap with the curve having a DGE at every span is ≈ 2 dB.

Then, we verified the accuracy of the proposed models for a 16QAM modulation,
for the same set-up of Fig. 3.12. Figure 3.13 shows a good agreement between theory
and SSFM simulations, with similar accuracy as that of the 64QAM case.

It is worth noting that simulating the transmission of a WDM bandwidth of 10
THz over 1000 km via SSFM had a nearly prohibitive cost in terms of computational
time, requiring at least 21 days for each curve in Fig. 3.12 and 3.13 using graphical
process units (GPUs).
As an example of the complexity reduction enabled by the simplified model, we re-
port the computational times required to compute the NLI variance with the two mod-
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Figure 3.14: NLI variance σ2
NLI vs. frequency shift. Gaussian distributed symbols,

201 channels, 10 × 100 km with DGE period Ns=1,2 or 5 spans. Markers: Inte-
gral DGE-SRS-GN. Dashed line: simplified DGE-SRS-GN. Dotted: extended-closed
forms.

els. Using a server-grade architecture, the integral model required ≈ 50 min/channel
to compute the NLI variance of Fig. 3.12. The simplified model required less than 1
min/channel by using the same number of Monte Carlo samples for frequency inte-
gration.

The computational time can be further reduced by replacing the Monte Carlo
integrations in the frequency domain with the closed-form expressions introduced
in Section 3.4.3. Although such expressions can be computed in a few seconds, it
is worth noting that they i) account only for SPM and XPM, ii) postulate a scaling
of SPM with the coherence factor ε , iii) use the same ε as the case without SRS,
and iv) assume Gaussian distributed symbols. We thus investigated the reliability
of such expressions with Gaussian distributed symbols, while all the other link and
transmission parameters were those of Fig. 3.12. The corresponding NLI variance, as
well as its estimation by the integral and the simplified model, are reported in Fig.
3.14. The dotted lines represent the closed-form results, the solid lines indicate the
simplified Monte Carlo model while the markers represent the σ2

NLI obtained with
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Figure 3.15: Launch power for variable pre-emphasis factor k, see Eq. (3.26), vs.
frequency shift.

the integral model. The figure shows that the average gap between the closed-form
and its Monte Carlo counterpart is less than 0.1 dB for all the DGE periods, making
the closed-form expression a fast reliable alternative for estimations with Gaussian
distributed symbols. The closed-form expression accuracy is expected to decrease
when low-dispersion fibers or low symbol rates are taken into account, due to the
higher relative contribution of FWM.

Pre-emphasis

We checked the validity of the model with transmitted signal power pre-emphasis
as per Eq. (3.26). Since SSFM simulations of 10 THz over 1000 km are extremely
time-consuming, we focused on a faster set-up by reducing the bandwidth and the
link length. We thus transmitted 51 channels, with the same frequency spacing and
symbol rate as in the previous figures, with channel power P = 3 dBm.

To test the impact of the pre-emphasis only, we estimated the NLI variance after
300 km, without intermediate DGEs. We considered both SMFs and NZDSFs, with
dispersion parameter D = 17ps/(nm·km) and D = 4.5ps/(nm·km), respectively. For
the sake of comparison, the NZDSF under test differed from the SMF considered so
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Figure 3.16: NLI variance σ2
NLI vs. frequency shift. Gaussian distributed symbols,

51 channels, 3 × 100 km of SMFs or NZDSFs, without inline DGEs. Variable pre-
emphasis factor k, see Eq. (3.26). Solid: SSFM. Markers: Integral DGE-SRS-GN
model. Dotted: extended-closed forms by using Eq. (3.26).

far only in the dispersion coefficient. For both cases, we report the NLI variance in the
absence of SRS pre-compensation (k = 0) and for two pre-emphasis choices k=1,3.
The launch power in Eq. (3.26) for the three cases is reported in Fig. 3.15. We recall
that, according to Eq. (3.27), a pre-emphasis factor of k yields a frequency-flat signal
power after k spans.

Figure 3.16 shows the NLI variance estimated with SSFM simulations, the inte-
gral DGE-SRS-EGN model and the closed-form expressions modified according to
Eq. (3.27). It can be seen that the simulations are in good agreement with the theory.
In particular, the modified closed-forms exhibit a maximum error of ≈ 0.25 dB with
SMFs, and an average error across the WDM bandwidth smaller than 0.1 dB. The
maximum gap slightly increases to 0.3 dB with NZDSFs, while on average it is 0.2
dB. This can be mainly attributed to the absence of FWM, XCI, and MCI terms in
the closed-form expressions, whose relative contribution to the overall NLI increase
at lower dispersion.
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Figure 3.17: Attenuation coefficient of a Corning ULL fiber vs. wavelength. Solid
line: extracted from [70]. Dashed: quadratic polynomial interpolation.

Frequency-dependent attenuation

In this section, we check the validity of Eq. (3.22) with a frequency-dependent fiber
attenuation. To this aim, we included a frequency-dependent attenuation profile in
the SSFM simulations. Here we changed the fiber, a Corning ULL, for which an
experimental attenuation profile is available in [70]. We approximated such a profile
with a quadratic fitting polynomial in a dB scale:

α [dB/km]≈ α2(λ −λ0)
2 +α1(λ −λ0)+α0 (3.42)

with λ0 = 1550 nm and coefficients: α2 = 3.7685×10−6, α1 =−7.3764×10−5, and
α0 = 0.162. The attenuation profile and its quadratic fitting are shown in Fig. 3.17.

The link under test was composed of N = 5 spans with DGE repetition every 1
and 5 spans. Each amplifier had a frequency-independent gain restoring the nominal
total power, and the frequency-dependent residual loss was equalized by the DGE.

Figure 3.18 shows the NLI variance estimated with SSFM simulations, the inte-
gral and the simplified DGE-SRS-EGN model with local fiber attenuation coefficient
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Figure 3.18: NLI variance σ2
NLI vs. frequency shift. PDM-64QAM, 201 channels, 5 ×

100 km of ULL fiber with DGE period Ns=1,5 spans. Solid line: SSFM simulations
with α(ω). Dashed line: simplified DGE-SRS-EGN. Markers: integral DGE-SRS-
EGN.

in Eq. (3.22) equal to α = α0 dB/km. The average error across the WDM bandwidth
between simulations and theory is less than 0.3 dB for Ns = 1, meaning that neglect-
ing the local effects of the frequency-dependent fiber attenuation as in Eq. (3.22) has
a minor impact on the NLI, consistently with the discussion in [57]. When the DGE
period is increased to Ns = 5 spans, the average error is ≈ 0.3 dB.

In particular, we note that the impact of a sparse DGE positioning on the NLI
variance is barely affected by the frequency-dependent fiber attenuation. Figure 3.18
shows a maximum gap of ≈8 dB between the curves with Ns = 1 and 5 spans, which
is comparable to the gap estimated with a frequency-flat fiber attenuation.

3.4.5 Modulation format

We next investigate the joint impact of the modulation format and the accumulated
SRS on the NLI variance using the simplified model. We considered the transmission
of a Bt=0.05×Nch THz WDM comb with variable bandwidth Bt=(1,2.5,5,7.5,10)
THz and Nch = (21,51,101,151,201) channels, respectively. The channel power was
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Figure 3.19: For a 30×100 km link with DGE repetition every Ns=1 and Ns=3 spans:
(a) NLI variance tilt in dB due to SRS (between the two edge WDM channels) for
QPSK (dash-dotted), 16QAM (dotted), 64QAM (solid) and Gaussian (dashed) trans-
missions vs. WDM bandwidth; (b) ASE variance tilt in dB versus WDM bandwidth.
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fixed to 1 dBm.

We considered different modulation formats: Gaussian, 64QAM, 16QAM, and
QPSK. The link under test was composed of 30 spans of SMFs with DGE placed
every 1 or 3 spans. For each scenario, we measured the tilt of the variance as the
difference between the value in dB over the first and the last WDM channel in fre-
quency.

Figure 3.19(a) shows the SRS-induced NLI variance tilt as a function of the
WDM bandwidth. It can be seen that with a DGE after each span, the NLI-tilt is
almost independent of the modulation format. This observation is consistent with the
results reported in the literature [61] and in Fig. 3.8. On the other hand, when the
DGE period is increased to 3 spans, the tilt increases significantly as the bandwidth
increases. For the extreme case of Bt = 10 THz, we estimated ≈ 2 dB of difference
between the tilt of PDM-QPSK and PDM-Gaussian transmission.

For the sake of completeness, we report in Figure 3.19(b) the ASE variance tilt
for the same link, with a frequency-flat EDFA noise figure of 5 dB. Note that the ASE
variance undergoes an SRS-induced tilt with an opposite sign compared to the NLI
variance, yet not identical in absolute value.

We then estimated the received SNR with both ASE and NLI. Figure 3.20(a)
shows the SNR versus the frequency offset from the central channel at Bt = 10 THz,
with DGE placed every 1 and 3 spans. It can be seen that the SRS-induced tilt on
the SNR with Ns = 1 does depend on the modulation format although the NLI-tilt is
almost format-independent, due to the different balance between the NLI and ASE
variances. Therefore, the error introduced in the SNR estimation by neglecting the
modulation format is frequency-dependent.

Figure 3.20(a) also shows that the SNR non-flatness in frequency is enhanced by
the presence of accumulated SRS. In particular, the SNR deviation across the WDM
bandwidth increases by ≈ 4 dB when the number of spans between the equalizers
increases from 1 to 3.

It is worth noting that such tilts on the ASE and NLI have different implica-
tions on the system design. For instance, a 1 dB variation in the NLI variance, ASE
variance, or SNR, corresponds approximately to a deviation of 1/3, 2/3, and 1 dB,
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Figure 3.20: SNR vs. frequency offset from central channel at WDM bandwidth 10
THz for: (a) same setup of Fig. 3.19; (b) with power pre-emphasis factor k̄ in Eq.
(3.26) optimized to reduce the SNR variations in frequency.
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respectively, in the system reach [9, p. 324]. The same scaling laws apply even for
the errors introduced by the models.

To counteract this undesired imbalance in the SNR and achieve similar per-
formance on all the WDM channels, a power pre-emphasis can be applied at the
transmitter side [55, 56, 59, 73, 74]. Figure 3.20(b) shows the SNR estimation ver-
sus frequency, for the same setup of Fig. 3.20(a), with signal power pre-emphasis as
per Eq. (3.26). The pre-emphasis factor k̄ was optimized to minimize the maximum
SNR difference between two arbitrary channels at fixed total power. Namely, the pre-
emphasis factor was k̄ = 1 for Ns = 1 and k̄ = 2 for Ns = 3. Please note that a fast
optimization of the pre-emphasis factor is possible thanks to the proposed simplified
DGE-SRS-EGN model.

In the absence of signal power pre-emphasis, in Fig. 3.20(a) we measured up to
8 dB of SNR imbalance for the case having Ns = 3. On the other hand, Fig. 3.20(a)
shows that the maximum SNR deviation in frequency can be reduced to ≈ 1.5 dB
with optimized pre-emphasis factor k̄.

Although the pre-emphasis through k̄ is sub-optimal and counteracts only the
SRS tilt, the simplicity of the generalized simplified model and its approximated
closed-form formulas is remarkable. Such models can be used for fast predictions of
system performance closer to reality than existing models unaware of pre-emphasis.
More accurate predictions with arbitrary pre-emphasis can be obtained by using the
integral model.

3.4.6 Self- and cross-channel effects

Finally, we investigate the accuracy of the simplified DGE-SRS-EGN model on the
estimation of SPM and XPM, using the integral DGE-SRS-EGN model as a bench-
mark. We perform the exploration at variable symbol rates, thus extending the main
findings of [49] to SRS. To this aim, we considered the transmission of a 16QAM
WDM signal having Bt=10 THz and Nch = (1601,801,401,201,101) channels with
symbol rate R = (6.125,12.25,24.5,49,98) Gbaud. The relative channel spacing
∆ f/R was fixed to 1.02 and the total WDM power was Pt = 23 dBm. The link under
test was composed of 20 spans of SMFs with DGE placed every 4 spans.
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Figure 3.21: NLI variance σ2
NLI of SPM and XPM, normalized to the cube of the

channel power, vs. the symbol rate, estimated for the (a) first, and (b) last WDM
channel. PDM-16QAM, Bt = 10 THz, Pt = 23 dBm, 20 × 100 km of SMFs with
DGE period Ns = 4 spans.
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The model predictions are depicted in Fig. 3.21. Figure 3.21(a) and (b) show the
variance of the first and last WDM channel in frequency, respectively, normalized
to the cube of the channel power. We focused on the first and last WDM channels
since they experience the largest SRS, thus representing a worst-case scenario for the
underlying weak-SRS assumption adopted by the simplified model. FWM is not re-
ported since its variance was estimated to be 6 dB smaller than XPM at 6 Gbaud, with
an increasing gap for increasing R. In both figures, it can be seen that the difference
between the simplified (dashed) and the integral model (markers) is negligible over
the entire symbol rate axis for both nonlinear effects.

In the same figure, we also show with dotted lines the same curves in the absence
of SRS. The figure shows that the presence of SRS changes the balance between the
nonlinear effects in a frequency-dependent manner. For instance, the SRS-unaware
model predicts that the crossing point between SPM and XPM on the first WDM
channel occurs at R = 88 Gbaud. SRS moves such a point to 44 Gbaud by inflating
more SPM than XPM.

An opposite behavior occurs for the last WDM channel, as shown in Fig. 3.21(b).
In the absence of SRS, the crossing point is R = 91 Gbaud, slightly different from
3.21(a) because of third-order dispersion. On the contrary, when SRS is taken into
account, XPM remains the main nonlinear impairment, being the crossing point with
SPM at R = 510 Gbaud.

3.5 Optimization of signal power pre-emphasis

In this section, we exploit the DGE-SRS-GN model closed-form expression to op-
timize the signal power allocation to maximize either (i) the minimum SNR in the
WDM comb or (ii) the achievable information rate. Previous results from the liter-
ature [55, 59] confirmed the intuition that more power should be allocated to those
channels that are most depleted by the SRS. In particular, optimal power levels vs fre-
quency exhibits an almost-linear behavior in the dB scale over the C+L band. How-
ever, the optimization problem over ultra-wide bandwidths without any constraints on
the channel power levels can have high complexity. For instance, in [59] the authors
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Figure 3.22: Sketch of a generic link structure with ND sections of Ns spans each. The
DGE node is the cascade of a lossy ROADM and an amplifier.

relied on the steepest descent algorithm combined with particle swarm optimization
and the GN model. We are thus motivated to reduce the complexity of the problem by
introducing a constraint. We limit the search space to power allocations in the form of
an opposite SRS gain, as for the pre-emphasis in Eq. (3.26), which is a linear function
in a dB scale.

We aim at estimating the SNR of a link having sparse DGE positioning for the
SRS gain equalization on the signal power. Figure 3.22 shows an example of the link
under test, with a total of N spans subdivided into ND sections of Ns spans each,
with end-section DGEs. All line amplifiers have flat gain equal to the span loss and
identical noise figure.

Contrary to the previous sections of this chapter, we model the DGE as a lossy
filter followed by a noisy flat amplifier restoring the TX total power Pt. Such a model
emulates the equalization usually performed in a reconfigurable optical add-drop
multiplexer (ROADM) node through wavelength selective switches (WSS).

Under the assumption of identical spans and ND link sections, the variance of the
ASE noise introduced by the line amplifiers in Eq. (3.11) generalizes to

σ
2
ASE(ν) = hνFBND

(︄
G

Ns

∑
k=1

H−1
k (ν ,L)+GD

)︄
(3.43)

with F the amplifier noise figure, G the gain equal to the span loss, and GD the gain
of the amplifier within the DGE node that recovers its losses. The factor H−1

k (ν ,L)
accounts for the net SRS gain experienced by the ASE noise introduced by the kth
amplifier, including the DGE gain, as in Eq. (3.11). The equivalent block diagram
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Figure 3.23: Equivalent block diagram representation of a link section with noisy
DGE node. ASEk, k = 1, . . .Ns, is the variance of the ASE noise introduced by the kth
amplifier without the effects of Raman scattering.

representation of a link section in Fig. 3.6 thus generalizes the one sketched in Fig.
3.23 including the ASE noise introduced by the amplifier within the DGE node.

As a sanity check of the SNR estimation based on the DGE-SRS-GN model, Fig.
3.24 shows a comparison with SSFM simulations for a 4×100 km link of SMF with
parameters listed in Tab 3.1. We focused on a simple scenario of 51 WDM channels
with Gaussian-distributed symbols, symbol rate R = 49 Gbaud, and channel spacing
∆ f = 50 GHz. The pre-emphasis was applied with a factor k̄ = 4 at a total WDM
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Figure 3.24: SNR vs. frequency with a DGE at each span-end (Ns = 1) and without
inline DGEs (Ns = 4). Markers: SSFM simulations. Lines: DGE-SRS-GN model.
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Figure 3.25: Launch power for pre-emphasis factor k = 0 or k = 4 and total power
Pt = 22,23 dBm, vs. frequency shift.

power of 20 dBm. To stress the model, we artificially inflated the Raman gain slope
to Cr = 5× 0.028/(2π) (THz·rad·km·W)−1 to emphasize the SRS over the 2.5 THz
bandwidth of the signal, a value for which reliable SSFM double checks were fea-
sible. The amplifiers’ noise figure was F = 5 dB. Each DGE node introduced both
SRS-dependent losses, due to the passive equalization, and additional 11 dB of SRS-
independent losses due to the WSSs cascade in the ROADM node. At the receiver
side, the pre-emphasis is removed from the signal. As a consequence, the ASE vari-
ance in Eq. (3.43) is further subject to the pre-emphasis undo, i.e., a multiplication
by 1/H−k̄(ν ,L), while the NLI variance expression obtained adopting Eq. (3.26) is
already in the reference system that equalizes such an operation. Figure 3.24 shows
the RX SNR obtained with the placement of a DGE at each span-end (Ns = 1) and
without inline DGEs (Ns = 4). For both cases, the theoretical estimation is in good
agreement with the simulations.

We next optimize the power allocation in terms of signal power pre-emphasis
for link topologies with different numbers of DGEs. For a fixed total power Pt, we
first proceed with an uniform power allocation among all the WDM channels, i.e.,
P = Pt/Nch. Then, we impose an opposite-sign SRS gain, as per Eq. (3.26), governed



112 Chapter 3. EGN model in the presence of Stimulated Raman Scattering

by the pre-emphasis factor k̄. An example is sketched in Fig. 3.25 for two total power
values, and a 10 THz WDM signal. The dashed lines correspond to the homogeneous
power allocation before pre-emphasis, hence with k̄ = 0, while the solid lines report
the channel power values after the pre-emphasis filtering with a factor k̄ = 4.

We considered two different optimization strategies. The first strategy aims at
maximizing the performance of the worst channel in the WDM comb, thus avoiding
penalizing some users due to SRS-induced unbalances, namely

(Pt, k̄)opt = argmax
Pt,k̄

(minSNR( fi)) (3.44)

where the min is taken among the WDM channels. We call it the max-min strategy.

The second strategy aims at maximizing the link AIR when treating NLI as a
Gaussian noise:

(Pt, k̄)opt = argmax
Pt,k̄

(︄
2B

Nch

∑
i=1

log2(1+SNR( fi))

)︄
(3.45)

and we call this the max-AIR strategy.

For these optimizations, the link under test was composed of 12×100 km of SMF
with parameters as in Tab. 3.1 and Cr = 0.028/(2π) (THz·rad·km·W)−1. The trans-
mitted signal was composed of 201 WDM channels carrying Gaussian-distributed
symbols, with R and ∆ f as in Fig. 3.24, for a total bandwidth of 10 THz. We consid-
ered four link topologies with DGEs placed every Ns =1,2,3 or 4 spans. For each link
topology, we varied the power Pt from 20 to 24 dBm, by steps of 0.5 dB, and k̄ from
0 to 4, by steps of 0.1, and tested all the combinations of (Pt, k̄).

The optimized pair of total power and pre-emphasis factor (Pt, k̄)opt values for the
two strategies are reported in Fig. 3.26 for the different link topologies. Solid lines
refers to the max-min strategy, while dashed lines to the max-AIR strategy.

The figure shows that each DGE placement along the link calls for a different
power allocation. In particular, as the DGE period increases more pre-emphasis is
needed to counteract the accumulation of the SRS gain. Moreover, such an optimal
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Figure 3.26: Optimal total power (left axis) and optimal pre-emphasis factor (right
axis) vs. the DGE period Ns, i.e., number of spans between two equalizers, for the
two strategies.

power allocation differs for the two strategies. We note that the max-AIR strategy
accepts 0.5−1 dB more total power, hence more SRS gain, compared to the max-
min strategy which needs to limit the amount of SRS-tilt to increase the performance
of the worst channel in the comb.

For the sake of completeness, the total AIR and minimum SNR as a function of
the total power and pre-emphasis factor are reported in Fig. 3.27 and 3.28, respec-
tively. It can be seen that these surfaces are concave and hence an isolated maximum
exists. In both figures, the magenta circle highlights the optimal solution according
to the max-AIR strategy while the green triangle indicates the optimal solution for
the max-min strategy. It is worth noting that, thanks to the GN model closed-form
expression simplicity, the exhaustive search results reported in Fig. 3.27 and 3.28
can be computed in a couple of minutes, without the need for complex algorithmic
optimizations.

The estimated total AIR and minimum SNR in the WDM comb are represented in
Fig. 3.30 for max-AIR (top) and max-min (bottom). Hence, the top figure collects the
values relative to the magenta circles in Fig. 3.27 while the bottom figure collects the
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value the green triangles values in Fig. 3.28. Figure 3.29 also reports with markers the
optimization results obtained without pre-emphasis (k̄ = 0), hence with an optimized
frequency-flat power. We note that the latter results are below the solid lines obtained
with optimized pre-emphasis for all the values of the DGE period. In particular, the
benefit of the k̄-optimized pre-emphasis increases with the number of spans between
neighboring DGEs, for both strategies.

Figure 3.29 shows that, in both cases, the best link topology is the one having

(a) (b)

(c) (d)

Figure 3.27: Total AIR vs. total power and pre-emphasis factor for Ns =1,2,3, and
4. Magenta circles and green triangles: (Pt, k̄)opt according to the max-AIR and the
max-min strategy, respectively.
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a DGE at each span-end. Increasing the DGE period, hence moving towards less
expensive link structures with fewer equalizers, introduces a penalty in the objective
function. For the max-min strategy, such a penalty is up to 3 dB for Ns = 4 when
no pre-emphasis is applied. However, we note that such a penalty reduces to less
than 1 dB by applying an optimized pre-emphasis. Similarly, for the max-AIR case,
such a cost-saving link structure implies less than 10% of capacity reduction with the
optimal power allocation.

(a) (b)

(c) (d)

Figure 3.28: Minimum SNR across the WDM comb vs. total power and pre-emphasis
factor for Ns =1,2,3, and 4. Magenta circles and green triangles: (Pt, k̄)opt according
to the max-AIR and the max-min strategy, respectively.
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The SNR at the optimal power allocation is reported in Fig. 3.30, versus the fre-
quency shift with respect to the central WDM frequency. Such an SNR is almost
frequency-flat for the max-min strategy (solid lines), hence yielding similar perfor-
mance for all channels. On the other hand, the SNR curves maximizing the total
capacity exhibit up to 2 dB of tilt across the bandwidth for Ns = 1. It can be seen
that such an SNR tilt decreases as the spans between neighboring DGEs increase.
Therefore, the cost-saving solution of Ns = 4, which introduces a penalty in the to-
tal achievable information rate, has the advantage to mitigate the SNR variations in
frequency.





Chapter 4

Modeling of semiconductor optical
amplifiers

Ultra-wideband transmissions for high capacity systems face many challenges. From
the technological point of view, an important issue that must be addressed is the need
to broaden the amplification bandwidth. The most promising strategies investigated in
the literature are multi-band EDFA amplification [75], Raman amplification [76–79],
hybrid EDFA-Raman schemes [80, 81], parametric amplifiers [82], and SOAs.

Regardless of their amplification bandwidth beyond 12 THz, in the past years,
SOAs were not considered suitable for WDM transmission systems, due to their noise
figure, typically higher than EDFAs, and their poor nonlinear gain dynamics [12,
83]. Motivated by the advent of transmissions beyond the C band, the feasibility
of WDM transmission along an SOA-amplified link was investigated numerically in
[84] and demonstrated experimentally in [85] thus stimulating further studies [86,87]
and design of novel SOAs. In particular, in [88] the GN model for the estimation of
the NLI variance was extended to an SOA-amplified optical link.

Both the numerical (SSFM) and the analytical (GN model) estimation of the per-
formance of an SOA-amplified system requires a reliable field propagation model
along the amplifier. In the literature, several SOA models were proposed, spacing
from very accurate models [83, 89] based on tens of parameters related to the phys-
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ical device characteristic, to simpler parametric models well suited to be fitted to
experimental results [90–94]. Thanks to its simplicity, the latter category of mod-
els, typically called integrated-gain or reservoir models, gained particular interest in
long-haul transmission systems to relax the complexity of the system. In this sce-
nario, it is desirable to find a trade-off between the model accuracy and the numerical
effort required to simulate each amplifier.

In this chapter, we first review the Connelly model in [89] for a bulk InP–InGaAsP
SOA. Then, to simplify such a cumbersome model, we identify its key features and
investigate their role in SOA behavior. As another simplification technique, we pro-
pose a parametric integrated-gain model whose parameters are extracted by fitting to
the reference model [89].

Finally, we investigate the performance of an SOA-amplified. In this Chapter, we
relied on SSFM simulations for the estimation of the system performance to test the
integrated-gain model in such a multi-span context. Such a numerical investigation
might serve as a first step towards the extension of the GN-model to SOA-amplified
links based on the proposed integrated-gain model for the amplifier, as it was done
in [88] with the simple model in [90].

The work presented in this chapter was carried out during a six-month internship
at Nokia Bell Labs, Paris-Saclay, France.

4.1 Connelly model overview

SOAs are composed of an active material in which light amplification is provided
by stimulated emission of photons resulting from carrier recombination across the
conduction band (CB) and valence band (VB). For amplification to be possible, pop-
ulation inversion is required which is provided by an electrical bias current I.

The carrier density n is depleted, and hence the material gain is reduced, not
only by recombination resulting in frequency-dependent signal amplification but also
because of spontaneous emission resulting in ASE noise. In addition, the propagation
of both signal and noise along the SOA length is bidirectional due to the presence of
reflective facets at the SOA edges.
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For small input signal power, the SOA amplification is a linear process with the
signal power providing the maximum available gain, also called small-signal gain,
which is independent of input power variations. As the input signal power increase,
the carrier density gets depleted by signal amplification triggering a nonlinear regime
in which the available gain decreases with the growth of the input power. From a
dynamic point of view, the SOA gain fluctuates in time in response to the temporal
variations of the input signal.

Mathematically, the propagation of the signal field Ek(z, t) at frequency ωk along
the amplifier length, for the forward (+) and backward (−) direction, is governed by
the following equation [89]

∂E±
k (z, t)
∂ z

=
{︂
∓ jβk ±

1
2

[︂
Γ(1+ jαH)gk(n)−αs(n)

]︂}︂
E±

k (z, t) (4.1)

where: βk is the propagation coefficient, Γ is the optical confinement factor, n is
the carrier density, αs is the SOA loss coefficient, αH is the linewidth enhancement
factor, and gk(n) is the material gain, which depends both on the wavelength and the
carrier density. The corresponding signal power is defined as P±

k (z, t) = |E±
k (z, t)|2.

The expression of the material gain coefficient and the definition of all the involved
parameters and physical quantities can be found in Appendix A. The attenuation
coefficient is linearly related to the carrier density by αs(n)≜ K0 +ΓK1n.

Similarly, the ASE noise field Wj(z, t) at frequency ω j propagates along the z
direction according to

∂W±
ℓ (z, t)
∂ z

=
{︂
∓ jβℓ±

1
2

[︂
Γ(1+ jαH)gℓ(n)−αs(n)

]︂}︂
W±

ℓ (z, t)+ν
±
ℓ (z, t) (4.2)

where ν
±
ℓ (z, t) is the spontaneously emitted noise coupled into Wℓ(z, t). As for the

signal, the noise power is given by N±
ℓ (z, t) = |W±

ℓ (z, t)|2.

The signal and noise evolution depend on the carrier density n(z, t) in the active
region, which obeys the following rate equation [89]:
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∂n(z, t)
∂ t

=
I

qVa
− r(n)

− Γ

Aa

Nch

∑
k=1

gk(n)
P+

k (z, t)+P−
k (z, t)

h̄ωk

− 2Γ

Aa

Nase

∑
ℓ=1

Kℓgℓ(n)
N+
ℓ (z, t)+N−

ℓ (z, t)
h̄ωℓ

(4.3)

where: Nch and Nase are the number of signal and ASE channels, I is the bias current,
q is the elementary charge, Aa and Va are the SOA’s active region area and volume,
h̄ is the Planck constant divided by 2π , and Kℓ is a normalization factor. r(n) is the
recombination rate, defined as:

r(n)≜ Aradn+Bradn2 +Anradn+Bnradn2 +Caugn3 +Dleakn3.5. (4.4)

For the sake of simplicity, the values of the coefficients of the recombination rate
along with all the other SOA parameters considered in this work are collected in Tab.
A.1 in Appendix A.

4.1.1 Numerical solution

With a constant-wave signal and in the absence of ASE, it is ∂n/∂ t = 0. A steady-
state carrier density n̄ thus exists, such that:

F(n̄)≜
I

qVa
− r(n̄)

− Γ

Aa

Nch

∑
k=1

gk(n̄)
P+

k (z)+P−
k (z)

h̄ωk

− 2Γ

Aa

Nase

∑
ℓ=1

Kℓgℓ(n̄)
N+
ℓ (z)+N−

ℓ (z)
h̄ωℓ

= 0. (4.5)

As there is no analytical solution for the steady-state model, we adopted the nu-
merical solution proposed in [89], here summarized for the sake of completeness.
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The numerical algorithm consists in dividing the amplifier into Nsec sections of length
Lsec. For each section j, the carrier density is assumed constant and it is approximated
with its value in the center of the section, namely:

n̄(z)≈ n̄
(︃

z j + z j+1

2

)︃
z j < z < z j+1. (4.6)

This method allows to split the signal and noise propagation along z into a concatena-
tion of Nsec propagation equations. Since the parameters of each section are constant,
the input-output fields of the section k are related by:

E±
k (z j) = exp

{︂[︂
− jβk +

1
2

(︂
Γ(1+ jαH)ḡk(z j∓1)−αs¯ (z j∓1)

)︂]︂
Lsec

}︂
E±

k (z j∓1).

(4.7)

Similarly, with constant parameters per section Eq. (4.2) can be solved with zero
initial condition at the SOA input. The ASE input power for a generic section j can
then be expressed as:

N±
ℓ (z j) = exp

{︂
[Γḡℓ(z j∓1)−αs¯ (z j∓1)]Lsec

}︂
N±
ℓ (z j∓1)

+
exp
{︂
[Γḡℓ(z j∓1)−αs¯ (z j∓1)]Lsec

}︂
−1

Γḡℓ(z j∓1)−αs¯ (z j∓1)
|ν±

ℓ (z j∓1)|2.
(4.8)

Accounting for input-output coupling losses αc and SOA facets reflectivity coef-
ficients r1 and r2, the signal at the input of the first section and at the SOA output are
respectively:

E+
k (z1) =

√
αc(1−

√
r1)E+

k,in (4.9)

E+
k,out =

√
αc(1−

√
r2)E+

k (La) (4.10)

where E+
k,in is the signal entering the SOA and La is the SOA length. The signal field

traveling in the backward direction at the boundary is E−
k (La) =

√
r2E+

k (La). Regard-
ing the noise, the boundary conditions are N+

ℓ (z1) = 0, and N−
ℓ (La) = r2N+

ℓ (La). A
sketch of the section-wise SOA discretization is shown in Fig. 4.1.
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Figure 4.1: Sketch of the SOA amplifier divided into sections.

The key steps of the steady-state algorithm are summarized in Fig. 4.2. The al-
gorithm iteratively adjusts the carrier density values of each section j by means of
a weight w( j) such that F(n̄(z j)), defined in Eq. (4.5), approaches zero. For each
section, we used a weight initial value equal to w( j) = 0.1, which gets halved every
time that the sign of F( j) changes with respect to the previous iteration. The algo-
rithm stops when the maximum relative change in the carrier density with respect to
the previous iteration is below a threshold value ϑ = 0.001. The threshold value was
found by iteratively adapting its value until the maximum percentage variation in the
exponent of Eq. (4.7) was below 1%.

The carrier density n̄0 in the absence of signal and noise, which satisfies the fol-
lowing:

F(n0̄) =
I

qVa
− r(n0̄) = 0 (4.11)

is used as initial value for the steady-state model. This value is found by means of the
Newton’s method [71], which iteratively updates the carrier density according to:

n̄new = n̄old −
F(n̄old)

Ḟ(n̄old)
(4.12)

where we adopted the following compact notation Ḟ(n̄) = dF(n̄)
dn̄ . The algorithm be-

gins with a carrier density initial value of 1024 m−3 and terminates when the percent-
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Figure 4.2: Steady-state algorithm [89].
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age variation in n̄, with respect to the previous iteration, is below 0.1%.
Having found the steady-state solution of the carrier density, we use it to solve

the time evolution of the carrier density rate equation, Eq. (4.3), through the fourth-
order Runge-Kutta method (RK4) [71]. The carrier density initial value for the time
evolution is a vector having Nsec elements:

n(t0)≜ {n(z1, t0), . . . ,n(zNsec , t0)}. (4.13)

The vector of initial values can be found as the solution of a steady-state pre-run.
Time-dependent quantities are discretized assumed to be constant within a time step.
Hence, at each time t the quantities dependent on the carrier density value are com-
puted, and the z-propagation equations in Eq. (4.7)-(4.8) are solved with the current
value of n(t).

4.2 SOA model simplifications

The model reviewed in Sec. 4.1 is based on a system of coupled differential equations
in space and time, and relies on tens of parameters, as reported in Tab. A.1. From a
system point of view, it is desirable to rely on a simpler model that captures the SOA
key features.

To simplify the amplifier model, we identify three main features characteriz-
ing the SOA behavior: spatial resolution (z-dependent parameters), presence of ASE
noise, and bidirectionality (presence of reflective facets). We consider all the possible
combinations of these SOA key features, obtaining eight different amplifier configu-
rations, and we investigate the impact of these features on the overall SOA behavior.
This amplifier model decomposition is sketched by the binary tree in Fig. 4.3.

On top of the tree, we start by choosing between the presence or absence of re-
flective facets, hence unidirectional or bidirectional field propagation. Then, for each
case, we consider both a noisy and noiseless amplifier model. At this level of the tree,
we have four leaves each representing a possible SOA model. For instance, UN stands
for unidirectional and noisy amplifier. As a last step, we choose weather to include
the spatial resolution in the model. This feature is labeled as multi-section (M) in Fig.
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4.3, with reference to the discretization approach along the SOA length required to
solve such a model. In the most simple case, we reduce the SOA to be unidirectional,
without ASE noise, and having carrier density constant along its length. This last as-
sumption goes by the name of single-section (S), since it represents a special case
of the space-resolved model having spatial resolution equal to the whole amplifier
length. Following this logic, this simple SOA configuration is represented by the left-
most leaf of the binary tree and it is labeled U-S. On the contrary, the rightmost leaf
represents the most rigorous SOA characterizations considered in this work, which is
comprehensive of all the key features. This BNM model coincides with the Connelly
model in Sec. 4.1.

Figure 4.3: A binary tree of the possible SOA modeling choices. We adopted the
following nomenclature: "U" for unidirectional SOA, "B" for bidirectional SOA, "N"
for noisy SOA, "-" for noiseless SOA, "S" (single-section) for the absence of spatial
resolution, and "M" (multi-section) for inclusion of spatial resolution. The leftmost
leaf represents the simplest SOA according to the adopted categories, i.e., U-S, while
the rightmost leaf BNM represents the Connelly model in Sec. 4.1, which is the most
complex model considered in this work.
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Figure 4.4: Steady-state gain vs. SOA total input power at 1520 nm (top), 1550 nm
(center), and 1565 nm (bottom), computed with the eight SOA models in Fig. 4.3.
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At first, we focus on the static behavior of a generic single SOA in an optical link.
We simulate the field propagation along the SOA for the eight amplifier configura-
tions represented by the eight final leaves of Fig 4.3. The numerical implementation
of the amplifier is discussed in Sec. 4.1.1, and all values used in this work are reported
in Tab. A.1. We considered a C-band transmission of 3 CW signals at wavelengths
λ1 = 1520 nm, λ2 = 1550 nm, and λ3 = 1565 nm. Figure 4.4 shows the input-output
SOA gain at steady-state, measured as the difference (in dB) between the output and
input power at each wavelength, as a function of the total signal power at SOA input.
The input power values were chosen considering that, in an optical link, the signal
power suffers from ≈ 20 dB of fiber losses over 100 km of span length. The power
allocation was homogeneous, such that each channel carried 1/3 of the total power.

Figure 4.4 collects the results obtained with the eight SOA models. The dashed
curves are associated with the four unidirectional SOA models, while the solid lines
represent bidirectional models. We used empty markers for noiseless models and
full markers for noisy SOAs. Finally, circles are associated with single-sections im-
plementations while triangles identify multi-section models. For this latter case, we
found that a spatial resolution of 50 section was enough to provide accurate results
for the SOA under test.

Regarding the noisy models, all the gain curves exhibit a small-signal gain regime
at small input power values. In this regime, the signal power is outweighed by the
ASE power, and spontaneous emission represents the major contribution to carrier
depletion. As a consequence, the gain is independent of small variations in such low
signal power. The nonlinear regime is then triggered at different input power accord-
ing to the wavelength and the considered amplifier model. In particular, at 1520 nm
the nonlinear regime is triggered at smaller input powers compared to the higher
wavelengths under test. On the contrary, noiseless amplifiers operate in the nonlinear
regime for the whole range of considered power values. In fact, for these ampli-
fiers, the small-signal gain regime requires input powers that are orders of magnitude
smaller than the considered values.

Figure 4.4 also shows that unidirectional models overestimate the SOA small-
signal gain, meaning that the presence of reflective facets particularly inflates the
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ASE noise power by introducing the backward propagating noise. In addition, it can
be seen that, for each wavelength, the absence of spatial resolution in the modeling
of the SOA results in a smaller steady-state gain in the small-signal gain regime. The
discrepancy with respect to space-resolved models is more significant for unidirec-
tional amplifiers. On the other hand, as the nonlinear regime is triggered, the slope of
the gain curves is steeper for those models that account for the z-dependency of the
carrier density.

As a next investigation, we considered only two SOA models, the UNM and
BNM models, and we focused on the impact of the number of WDM channels on
the SOA gain. At first, we simulated the transmission of a single CW signal for three
different wavelengths λ1 =1520 nm, λ2 =1550 nm, and λ3 =1565 nm to cover the
Nch = 1 scenario.

Then, we considered the Nch = 3 case, that is the one in Fig. 4.4. Finally, we in-
creased the channel number by keeping fixed the three wavelengths of interest (WOI)
λ1,λ2,λ3 and including equally spaced channels, namely Nch = 7 with 7.5 nm spac-
ing, and Nch = 13 with 3.75 nm spacing. The results are reported in Fig. 4.5. The
figure shows that single channel transmissions are not enough to characterize the
wavelength-dependent gain for a full C-band transmission. On the other hand, we
measured a negligible discrepancy between the 7 and 13 channel cases, for all the
wavelengths and for SOA models, as highlighted in the insets of Fig. 4.5. Moreover,
it can be noticed that the transmission of the three WOIs yields a gain discrepancy
of less than 1 dB compared to the 13 channel cases. This small gap at low channel
count can be attributed to the fact that the WOIs are chosen to include the C-band
edges, i.e., 1520 nm and 1565 nm, in addition to the wavelength 1550 nm for which
the material gain is close to its maximum value. Hence, adding further channels in
these ranges has a minor impact. Therefore, Fig. 4.5 suggests that transmission of 7
wavelengths with 7.5 nm of spacing can be sufficient to characterize the steady-state
gain of a WDM full C-band transmission.

Figure 4.6 reports the results of Fig. 4.5 for the 7 channel case and BNM model.
It can be noticed that not only the small-signal gain is wavelength dependent, but
also that the gain curve slopes in the nonlinear regime are different. In particular, the
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*

Figure 4.5: Steady-state gain vs. SOA total input power, measured at the WOI 1520
nm (top), 1550 nm (center), and 1565 nm (bottom), for Nch = 1,3,7,13 channels.
Dashed lines: UNM. Solid lines: BNM.
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Figure 4.6: Steady-state gain vs. SOA total input power, measured at the WOI 1520
nm, 1550 nm, and 1565 nm for a 7 WDM channel transmission with channel spacing
7.5 nm. The SOA model is BNM. Dashed lines highlight the different slopes of the
gain curves in the nonlinear regime.

smallest wavelength 1520 nm exhibits the smallest linear gain and the steepest slope
in the nonlinear regime. The slope decreases as the wavelength increase, while the
small-signal gain reaches its maximum at 1550 nm and then decreases.

For the sake of completeness, we reported in Fig. 4.7 the steady-state gain as
a function of wavelength for different total input power values. The setup and the
SOA model are the same as Fig. 4.6. The figure clearly shows the gain wavelength
dependency as well as the nonlinear gain compression phenomenon. It can be seen
that as the input power increases the wavelength associated with the gain peak in-
creases. Therefore, the wavelength dependency represents a key feature for the SOA
steady-state gain characterization, on top of the other classified features.

4.3 The integrated-gain model

In the previous section, we investigated the possibility of simplifying the cumbersome
SOA model in [89] by removing some basic amplifier features at the modeling stage,
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Figure 4.7: Steady-state gain vs. wavelength for a 7 WDM channel transmission
equally spaced over the wavelength axis, for different input power. The SOA model
is BNM.

still relying on the same framework for describing the material gain, which can be
found in Appendix A.

Another approach to simplify the SOA modeling is represented by parametric
models [90–92, 94]. The key idea shared by all these model is to work with a lin-
earized and z-integrated material gain. The former approximation consists in mod-
eling the material gain as a linear function of the carrier density. Such an approach
drastically simplifies the problem by removing many parameters and functions in-
volved in the material gain description. In addition, the carrier density dependency
on distance is removed by means of an integration along z.

In this section, we propose a parametric model that we called the integrated-gain
model. We start from the rate equation without ASE noise:

∂n(z, t)
∂ t

=
I

qVa
− r(n)− Γ

Aa

Nch

∑
r=1

gr(n)
Pr(z, t)
h̄ωk

which is coupled to the following simplified expression of the evolution of the signal
power along distance:
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∂Pr(z, t)
∂ z

= Γgr(n)Pr(z, t) (4.14)

where SOA absorption is neglected.
As a first simplification, we approximate the recombination rate to be a linear

function of the carrier density, namely r(n)≈ n
τk

[90] where we let the carrier lifetime
τ be a function of the wavelength. We then introduce the definitions nss ≜ I

qVa
τk and

Psat,k ≜h̄ωkAa/τk, where the latter quantity is called the saturation power [90]. Hence
we obtain a differential equation for each wavelength λk in the form:

τk
∂n(z, t)

∂ t
= nss −n−Γ

Nch

∑
r=1

gr(n)
Pr(z, t)
Psat,r

. (4.15)

A key step towards a simpler model is to approximate the material gain as a linear
function of the carrier density [14, 94] as:

gr(n)≈
1
Γ

ar(n−n0r). (4.16)

We thus have to solve:

τk
∂n(z, t)

∂ t
= nss −n−

Nch

∑
r=1

ar(n−n0r)
Pr(z, t)
Psat,r

(4.17)

coupled with:

∂Pr(z, t)
∂ z

= ar(n−n0r)Pr(z, t). (4.18)

We found convenient introducing a z-independent aggregate carrier density:

n ≜
∫︂ La

0
n(z, t)dz. (4.19)

To let appear this factor in the rate equation, we first integrate the right-hand side of
Eq. (4.17) over the distance:

∫︂ La

0
ar(n−n0r)Pr(z, t)dz = Pr(0, t)(e

∫︁ La
0 ar(n−n0r)dz −1) (4.20)

where the input-output signal powers are related by Eq. (4.18), whose solution is:
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Pr(z, t) = e
∫︁ z

0 ar(n−n0r)dζ Pr(0, t). (4.21)

Then, we define the z-integrated gain (after the linear approximation) as:

hr ≜
∫︂ La

0
ar(n−n0r)dz = ar(n−n0r). (4.22)

The rate equation thus simplifies in the following expression:

τk
dn(t)

dt
= nss −n−

Nch

∑
r=1

(ehr −1)
Pr(0, t)
Psat,r

(4.23)

which can be rearranged in terms of hk, by exploiting Eq. (4.22), as:

τk
dhk(t)

dt
= h0k −hk −ak

Nch

∑
r=1

εr(ehr −1)Pr(0, t) (4.24)

with h0k ≜ ak(nss −n0k) and εr ≜ 1/Psat,r. Such a simple integrated-gain (IG) model
is based on four wavelength-dependent parameters τk,h0k,ak,εk that can be used as
fitting parameters to be properly tuned. The proposed model can be seen as an ex-
tended version of the model in [90], based on the integrated gain, where we included
the wavelength dependency of the material gain. The proposed model also differs
from the multi-stage reservoir model proposed in [94], where the rate equation is ma-
nipulated obtaining a wavelength-independent differential equation for the reservoir
in each stage.

Similarly to [92, 94] we now include the spatial resolution via a multi-stage
model. The idea of the multi-stage model is to use the integrated-gain model along a
section, or stage, of length Lst and model the evolution along distance as a concate-
nation of stages. For the generic stage s = 1, . . . ,Nst we can write a rate equation in
the form:

τk
dhks(t)

dt
= h0ks −hks −aks

Nch

∑
r=1

εrs(ehrs −1)Pr(zs, t) (4.25)
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Figure 4.8: Sketch of the SOA modeled through a two-stage integrated gain hk for
wavelength λk with lumped losses.

being Pr(zs, t) the signal power at the input of the sth section at coordinate zs, with
z1 = 0. We also found a benefit in including the SOA losses by means of a lumped
attenuation αrs, similarly to [92]:

τk
dhks(t)

dt
= h0ks −hks −aks

Nch

∑
r=1

εrse−αrsLst(ehrs −1)Pr(zs, t) (4.26)

where the loss αrs is stage and wavelength dependent, and is treated as another model
fitting parameter. The idea is sketched in Fig. 4.8 for two stages.

4.3.1 Numerical implementation

The right-hand side of the rate equation in Eq. (4.26) at steady-state can be written as

D(h̄ks) = h0ks − h̄ks −aks

Nch

∑
r=1

εrse−αrsLst(eh̄rs −1)Pr(zs) (4.27)

for each stage s = 1, . . . ,Nst, with h̄ the time-averaged integrated gain. Solving the
steady-state model means searching for time averaged and space integrated gain h̄ks

such that D(h̄ks) = 0. The problem can be solved by iteratively adjusting the value of
h̄ks as in the algorithm described in Sec. 4.1.1.

The steady-state wavelength and stage-dependent model fitting parameters (εks,

h0ks,aks,αks) are found by minimizing the least square error, over a set of Npow differ-
ent input signal power, between the per-stage gain of the integrated-gain (IG) model
GIG

ks and the gain GC
ks computed with the Connelly model in the same SOA chunk.
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We performed the fitting step by means of the MATLAB function lsqcurvefit,
which iteratively adjusts the values of (εks,h0ks,aks,αks) until the condition eks < θe

is met, being eks the least-squares error and θe a threshold. The flowchart of the
adopted algorithm is shown in Fig. 4.9. The numerical solution for the single-stage
integrated model follows the same flowchart with Nst = 1.

We now search for the best τ in a least-squares sense. For each stage s the time
evolution in Eq. (4.26) is solved by means of the RK4 method, as in Section 4.1.1,
starting from the steady-state integrated gain. The algorithm stops when the error,
in least-squares sense, between the SOA output signal power obtained with the IG
model and the Connelly model, is minimized.

Figure 4.9: Steady-state algorithm for best parameter settings of the proposed
integrated-gain model.
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4.3.2 Numerical results

In this section, we test the accuracy of the proposed integrated-gain model, first in its
simplest single-stage form, and then in the multi-stage version with the inclusion of
lumped losses.

Single-stage IG model without losses

At first, we tested the single-stage IG model without lumped losses, which is gov-
erned by Eq. (4.24). The model parameters are found by least-squares error fitting
as per Sec. 4.3.1. Figure 4.10 shows the static gain obtained with the BNM model
versus the total input power, measured at three wavelengths of interest out of 7 trans-
mitted wavelengths, for the same setup of Fig. 4.6. Dashed lines represent the gain
computed with the IG model. It can be seen that the matching between the BNM and
the IG model is excellent in the linear regime while it becomes poor in the highly
nonlinear regime.

Such a poor performance of the IG model in the nonlinear regime results also in
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Figure 4.10: Steady-state gain vs. total input power measured at 1520 nm, 1550 nm,
and 1565 nm, for the 7-channel case of Fig. 4.6. Solid: BNM SOA model. Dashed:
single-stage IG model without losses fitted to BNM model.
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Figure 4.11: Output signal power vs. time, for the 7-channel case of Fig. 4.6, mea-
sured at 1520 nm, 1550 nm, and 1565 nm. Solid: BNM SOA model. Dashed: lossless
single-stage IG model without losses fitted to BNM model. Total input power (a) −16
dBm and (b) −10 dBm.
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an inaccurate description of the signal evolution in time, at high input power. As an
example, we considered the transmission of OOK modulated signals, with rectangu-
lar supporting pulses of 0.64 ns. The evolution in time and space is solved by means
of the BNM model and the single-stage IG model without losses.

Figure 4.11 shows the signal power versus time at the output of the amplifier for
the wavelengths of interest at total input power (a) −16 dBm and (b) −10 dBm. From
the figure, a characteristic overshoot at the rising edge can be observed. This behavior
is due to the fact that temporal variations in the input signal result in temporal fluctu-
ations in the SOA gain. In particular, when the SOA operates in the nonlinear regime,
the gain of the amplifier is a function of the input power, as previously discussed.
Hence, temporal oscillations in the signal power yield a transient in the temporal dy-
namics of the gain. As a consequence, at the rising edge, the gain transient manifests
an overshoot, which can be observed for all the wavelengths, and is more severe for
high signal power values, as shown in the bottom part of the figure.

In Fig. 4.11 we also observe an excellent match between the lossless IG-model
and the BNM model in the low power regime, where the static fitting captured the
full SOA behavior. This is not true in the nonlinear regime with an error up to 2
dB. Therefore, the single-stage IG model cannot be considered reliable in the SOA
nonlinear regime.

Unidirectional multi-stage IG model with lumped losses

The investigations carried out in Sec. 4.2 showed that the slope of the static gain
curve is affected by the spatial resolution. We are thus motivated to investigate the
multi-stage IG model. Such a model includes the spatial resolution by means of stage
concatenation, as discussed in Sec. 4.3, as if several short amplifiers were concate-
nated to build the SOA, provided that the signal in the backward propagation direction
is negligible. To account for the SOA distance-dependent absorption, the multi-stage
IG model also includes a stage-dependent lumped loss.

We found that a stage-dependent fitting is essential to capture the correct space
evolution of the gain along the SOA length. In addition, we accounted for the carrier
density-dependent material absorption by including a stage-dependent lumped loss
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Figure 4.12: Steady-state gain vs. total input power. 2 channels WDM transmission
at λ1 = 1520 nm and λ2 = 1550 nm. UNM model (solid), and multi-stage IG model
with lumped losses and 25 (dashed), 10 (dotted), and 1 (markers) stages.

in the set of static fitting parameters. It is worth noting that a stage-dependent fitting
approach requires the knowledge of the true amplifier gain at different coordinates.
In this work, these gain values are provided by numerical simulations of the refer-
ence SOA model (here the UNM model). Investigations on efficient stage-dependent
parameters extraction from experimental measurements are left as future work.

Figure 4.12 shows the static gain curve as a function of the total input power
measured at λ1 = 1520 nm and λ2 = 1550 nm. Since we assumed zero reflectivity,
we now consider the UNM model as the reference model, whose results are reported
with solid lines. Dotted and dashed lines refer to a 10-stage and 25-stage IG model,
respectively. For completeness, markers represent the result of the single-stage IG
model. Each stage of the IG model had the same length of m UNM model sections,
with m =5 for the 10-stage IG model, and m =2 in the 25-stage case. It can be seen
from the figure that the multi-stage model well captures the amplifier behavior at the
two wavelengths under investigation, even in the high nonlinear regime, with better
accuracy when a finer spatial resolution is used by means of 25 stages.

Regarding the dynamic behavior, Fig. 4.13 shows the signal output power at the
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Figure 4.13: Output signal power vs. time for a 2 channel WDM transmission at
λ1 = 1520 nm and λ2 = 1550 nm. Solid: UNM SOA model. Dashed: 25-stages IG
model. Total input power −25 dBm.

two wavelengths when the SOA is described through the UNM model or the 25-stage
IG model. The input power was -25 dBm, a value for which the amplifier exhibits
a nonlinear behavior, see Fig. 4.12. It can be seen that the two models are in good
agreement, showing a mismatch within 0.5 dB. Therefore, in the remainder of this
work, we will focus on a 25-stage IG model.

4.4 SOA-amplified optical line

In this section, we investigate the performance of an SOA-amplified optical line in
terms of SNR. We considered the transmission of 3 equally-spaced WDM channels
spanning the C band, centered at 1520 nm, 1540 nm, and 1560 nm respectively. The
modulation format was single-polarization QPSK, and the symbol rate was 49 Gbaud.
In order to obtain accurate results, we transmitted sequences of 65536 symbols, which
were enough to capture the maximum walk-off among channels. At the receiver side,
chromatic dispersion compensation, matched filtering, and average carrier phase re-
covery were performed. At first, we calculate the SNR at the output of a single SOA.
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Figure 4.14: SNR vs. channel power at the SOA input, after 1 span. WDM signal with
channels centered at 1520 nm, 1540 nm, and 1560 nm. Single-polarization QPSK
modulation format. Markers: UNM SOA model. Dashed: 25-stage IG model.

Then, we concatenate SOAs both in the presence and absence of the optical fiber.

The field propagation inside the SOA was simulated by means of the UNM
model, hence assuming zero reflectivity, or by the multi-stage IG model with lumped
losses. For each input power value, both steady-state models were solved to identify
the initial conditions for the dynamic evolution.

On the other hand, the propagation along the optical fiber was simulated through
the SSFM with a separate-field point of view, and CLE criterion with maximum tol-
erable FWM phase shift in the first step [28] equal to 20 rad. In this work, we limited
the analysis to SMFs whose parameters are the same as in Tab. 3.1.

In Fig. 4.15 we reported the SNR bell-curves as a function of the power at the
SOA input, with and without the optical fiber before the amplifier, measured after
the first SOA in the link. The power at the amplifier output is controlled such that
the total average power is constant, and the power profile at the amplifier output is
frequency-flat. The figure shows that the 25-stage IG model (dashed line) provides
an excellent match up to the nonlinear threshold, i.e., up to the maximum SNR value.
However, it can be seen that the SOA under test, having parameters as in Tab. A.1
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(a) (b) (c)

Brad [m3s−1] 2.6×10−6 2×10−6 1.6×10−6

F [dB] @ 1520 nm 9.1 9.7 10.5

F [dB] @ 1540 nm 9.2 9.9 10.9

F [dB] @ 1560 nm 9.5 10.5 11.7

Table 4.1: Pseudo-linear SOAs characteristics.

of Appendix A, is not well-suited for long-haul transmissions. In fact, its nonlinear
regime is triggered for very small input powers compared to typical powers of long-
haul transmissions (about -5 to 0 dBm).

For this reason, we tested the performance of the so-called pseudo-linear SOAs,
which differ from the SOA of Tab. A.1 in three parameters: the bias current I =
60 mA, the linewidth factor αH = 0, and the bimolecular radiative recombination
Brad. We considered three pseudo-linear SOAs having different values of Brad: (a)
2.6×10−6, (b) 2×10−6 and (c) 1.6×10−6 m3s−1. Unfortunately, this linearization of
the amplifier behavior implies an increase in the noise figure F compared to the SOA
adopted in Fig. 4.14, which was 7 dB. The noise figure values are summarized in Tab.
4.1 for the three amplifiers under test.

The left-hand side of Fig. 4.15 shows the SNR after the concatenation of 10 am-
plifiers (without optical fibers) versus the transmitted channel power, using the UNM
model. For the sake of comparison, we reported also the results obtained with EDFA-
based amplification. The EDFA has the same noise figure as the pseudo-linear SOA.
It can be seen that, in the absence of the optical fiber, the EDFA provides a linear SNR
over the whole power range, while for the SOA the nonlinear regime is triggered at
different powers according to the Brad value. Since we are considering pseudo-linear
SOAs with the aforementioned parameters, the nonlinear regime is characterized by
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a mild SNR decrease typical of a bell-curve near the NLT.

The right-hand side of Fig. 4.15 shows also the SNR curves in the presence of an
optical fiber in each span. In this case, we increased the transmitted power by 20 dB
in order to have the same power at the amplifier input as in the case without optical
fibers. It can be seen that the NLT in the bell-curves with EDFA-based amplification
is around 2 dBm, hence −18 dBm at the amplifier input. We note from the left part of
the figure that the nonlinear regime is triggered approximately at −22,−20 and −18
dBm of input power, respectively, for the cases (a), (b), and (c). As a consequence,
the SNR values of the SOA-based amplification are smaller than those estimated for
the EDFA-based link around the NLT, for the cases (a) and (b).

The gap between the SOA and EDFA results can be reduced considering even
more linear SOA devices whose nonlinear regime is triggered at higher input pow-
ers. For the most linear SOA under test, the SOA nonlinearities are triggered at input
power levels comparable to the NLT of the EDFA-based SNR curve. Hence, for sce-
nario (c) in Fig. 4.15, the bell-curves are almost overlapped. In the limit case in which
the SOA operates in a linear regime across the whole range of power values under
test, the SNRs curves coincide. However, the linear SOA obtained with this proce-
dure has a noise figure that is too high for transmissions purposes, and it serves only
as a sanity check.

Solving the algorithm in Sec. 4.1.1 for each amplifier within the optical line pro-
vides an accurate estimation of the system performance, yet time-consuming. We
are thus motivated to investigate the accuracy of the IG model for a multi-span link.
Although the initial fitting stage requires solving the reference UNM model for the
extraction of the model parameters, this step is done only once and the computational
effort required to simulate the propagation along the multi-span link is then reduced
by a factor of 3 compared to the UNM model.

Figure 4.16 shows a comparison between the SNR obtained with the UNM model
and the multi-stage IG model, for the pseudo-linear SOA (c), hence the most linear
SOA under test. We reported with dashed lines the results obtained with the 10 and
25-stage IG model with lumped losses, wherein the static and dynamic parameters
are extracted in advance as discussed in Sec. 4.3.1. The top image of Fig. 4.17 shows
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pseudo-linear SOA (a)

pseudo-linear SOA (b)

pseudo-linear SOA (c)

Figure 4.15: SNR vs. transmitted channel power. 10 × 100 km SMFs link, amplified
with pseudo-linear SOAs (empty markers) or EDFA (full markers). (a), (b) and (c):
different kind of pseudo-linear SOAs, see Tab. 4.1.
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a very good agreement between the UNM model and the 25-stage IG model for all
the wavelengths. On the other hand, we note that reducing the number of stages to 10
provides worse matching, as already observed in Fig. 4.12, although it allows slightly
faster simulations.

Finally, for the sake of completeness, in Fig. 4.17 we report the results obtained
with the UNM model and the 25-stage IG, with and without the optical fiber, for
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Figure 4.16: SNR vs. amplifier input channel power. 10 × 100 km SMFs link with
pseudo-linear SOA (c) as per Tab. 4.1. Markers: UNM model. Dashed: Multi-stage
IG model with 25 (top) and 10 stages (bottom).
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pseudo-linear SOA (a)

pseudo-linear SOA (b)

pseudo-linear SOA (c)

Figure 4.17: SNR vs. transmitted channel power. 10 × 100 km SMFs link with
pseudo-linear SOA amplification, see Tab. 4.1. Markers: UNM model. Dashed: 25-
stage IG model with a pre-run for fitting.
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the three pseudo-linear SOAs in Tab. 4.1. We reported the SNR as a function of the
channel power at the amplifier input in a range between −34 dBm and −16 dBm,
which corresponds to channel powers at the amplifier output between −14 dBm and
4 dBm, respectively. The figure shows that, for realistic power values, the proposed
multi-stage IG model with lumped losses can be safely used for the SNR estimation
of an optical link based on pseudo-linear SOA with zero reflectivity.





Part II

Spatial multiplexing





Chapter 5

EGN model with polarization
dependent loss

In spatially multiplexed links the polarizations of the propagating field generally ex-
perience different effects. The problem is present even in dual-polarization transmis-
sions. A particular polarization-related problem is due to the losses introduced by
an optical device, which can depend on the state of polarization of the input field.
Such a phenomenon is known as polarization-dependent loss (PDL) [8], and mani-
fests itself as an unequal loss of energy. In particular, contrary to the optical fiber,
the PDL introduced by lumped devices such as EDFAs and WSSs is typically non-
negligible [95]. As amplifiers and switches densely populate the optical networks, it
follows that the accumulation of PDL along the distance can be particularly detri-
mental in dual-polarization transmissions.

In optical communication systems, the PDL experienced by the signal can be
equalized at the receiver through digital-signal processing [96,97]. However, the PDL
accumulated along the link in the ASE and the NLI partially remains. The distributed
generation of the two effects along the distance results in different PDL impairments.
As a result, the estimation of the system performance in terms of SNR must account
for PDL even in the presence of equalization. Since PDL randomly fluctuates over
time, it might not be sufficient to assess the average system performance, since for
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some PDL realizations the SNR can fall below a given threshold causing the system
outage. The performance analysis should thus focus on such an outage probability.
Because of the random fluctuations, the problem of estimating such a probability is
particularly challenging, especially in numerical simulations where low outage values
call for many time-consuming simulations, but also in experiments where collecting
many observations may require a huge amount of resources to save and post-process
the results.

Such difficulties in the numerical complexity stimulated the development of theo-
retical models for quick estimation of the PDL effects. Most of the literature focused
on the interplay between PDL and ASE noise in the linear regime [17, 98–101]. On
the other hand, the interplay between PDL and the fiber nonlinear Kerr effect has
been overlooked and received much less attention, and most of the literature focused
on numerical/experimental investigations [102–109], with contrasting results.

To analytically handle the impact of PDL on NLI in a simple way, the first choice
is to include PDL in the perturbative models introduced in Chapter 2. The scalar
theory of the GN model was extended to include polarization effects in [110], and
first included PDL in the GN model framework in [111] for a quick estimation of the
PDF of the NLI.

In this chapter, besides providing a novel mathematical formalism to cope with
PDL in the GN model, we derive a PDL-aware EGN model, hence including PDL
even in the FON and HON contributions to the NLI. The general theory will be
double-checked against SSFM simulations. The work presented in this chapter was
partially published in [43].

5.1 Polarization-dependent loss

The PDL is defined as the ratio of the maximum and minimum transmission intensi-
ties [8, 17]:

ς =
Rmax

Rmin
(5.1)

where the transmission coefficient R of an optical device is given by the product
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R≜ ⟨s†|T†T |s⟩ with T the PDL matrix of the device, and |s⟩ the SOP of the field at
the device input. The PDL matrix T can be described by a matrix exponential, whose
expression is given in [8]:

T = e−αp/2exp
(︂

α̂p ·
→
σ

2

)︂
(5.2)

where
→
αp = α̂pαp is the 3D PDL vector in the Stokes space [8]. αp represents the

PDL loss common to the two polarization while α̂p is a unit Stokes vector pointing in
the direction for maximum transmission. The vector

→
σ in Eq. (5.2) is the well-known

spin vector of Pauli matrices [8]. Such a PDL matrix is typically expanded in the
following form:

T = e−αp/2
(︂

cosh
(︂

αp

2

)︂
I+ sinh

(︂
αp

2

)︂(︂
α̂p ·

→
σ

)︂)︂
. (5.3)

Applying the definition of transmission coefficient, it follows that:

R=
1

1+Γ

(︁
1+Γ

(︁
α̂p · ŝ

)︁)︁
(5.4)

where we defined Γ ≜ tanhαp as in [8]. Such a parameter is related to the extrema
of transmission through (Rmax −Rmin)/(Rmax +Rmin). From Eq. (5.4) it can be seen
that the maximum transmission occurs when the input SOP is aligned with the PDL
maximum axes, hence α̂p · ŝ = 1 → Rmax = 1. On the other hand, the minimum is
such that: α̂p · ŝ = −1 → Rmin = e−2αp . It is common in the literature to express the
PDL as a function of the parameter Γ in a dB scale [107, 108], namely:

ςdB = 10log10

(︃
1+Γ

1−Γ

)︃
. (5.5)

5.2 The PDL-EGN model

In the presence of PDL, the linear operator in Eq. (1.52) mus be modified as:
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F
{︂

eLz
}︂
= e− j

(︂
β2
2 ω2+

β3
6 ω3

)︂
zU(z) (5.6)

F
{︂

e−Lz
}︂
= e j

(︂
β2
2 ω2+

β3
6 ω3

)︂
zU−1(z) (5.7)

where, in this chapter, the matrix U accounts only for a frequency-independent PDL
accumulated up to coordinate z. We assume that PDL is introduced only by lumped
devices, such as EDFA and WSS, placed at coordinates zp : p = 0, . . . ,N − 1, with
z0 = 0 and N the total number of PDL blocks. The average power loss induced by
PDL is recovered after each block by an equalizer having gain GE, such that the
matrix U depends on the kth device at coordinate zk ≤ z with PDL matrix Mk by [8]:

U(z) = MpMp−1 · · ·M0, zp < z < zp+1 (5.8)

Mk ≜ GE,kTk = W†
k

⎡⎢⎢⎣
√

1+Γk 0

0
√

1−Γk

⎤⎥⎥⎦Wk (5.9)

where the Wk are matrices uniformly distributed in the set of the 2×2 unitary random
matrices (Haar matrices) , and T is the PDL matrix before applying the equalizer gain,
as in Eq. (5.3). With many identically distributed PDL elements, the resulting PDL
of the link, expressed in dB, follows a Maxwellian distribution [99] with an average
value scaling with

√
N.

In the absence of noise, the power imbalance between polarizations due to PDL
can be removed at the receiver side. For instance, a zero-forcing equalizer can be
applied. Unfortunately, PDL remains in both the ASE and the NLI after the equal-
ization. Focusing on the ASE noise for the sake of simplicity, the motivation can be
grasped from Fig. 5.1. The figure sketches the PDL effects on the signal and ASE
noise along a 3 span link with 3 lumped PDL elements. In particular, in the figure
the zero-forcing equalization is represented as a round-trip propagation of the signal,
thus returning equal to itself at reception. However, it can be seen that ASE follows an
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Figure 5.1: Sketch of the effects experienced by the signal |A⟩ and the ASE |w⟩ along
propagation, including zero-forcing equalization by the cascade of M−1

k matrices, for
a link having 3 lumped PDL elements.

incomplete round-trip since it is introduced in the link in a distributed way, resulting
in residual PDL.

After linear equalization, the received ASE |w̃(ω)⟩ is related to the ASE |w̃m(ω)⟩
emitted by in-line amplifiers at coordinate zm by:

|w̃(ω)⟩=
M

∑
m=1

M−1
0 M−1

1 · · ·M−1
m−1 |w̃m(ω)⟩ (5.10)

with M the number of amplifiers. In the example depicted in Fig. 5.1 where the trans-
mitted has no PDL, i.e., M0 = I, we have:

|w̃(ω)⟩= |w̃1(ω)⟩+M−1
1 |w̃2(ω)⟩+M−1

1 M−1
2 |w̃3(ω)⟩

= |w̃1(ω)⟩+U(z1)
−1 |w̃2(ω)⟩+U(z2)

−1 |w̃3(ω)⟩ .
(5.11)

Regarding the NLI, Eq. (2.2) must be generalized to include PDL. The derivation
follows the same idea of Chapter 2, with the proper linear operator defined in Eq.
(5.6) hence obtaining:

|ñ(ω)⟩=− j
8
9

γ

∫︂∫︂
∞

−∞

N−1

∑
p=0

η
(p)(ω,ω1,ω2)

×⟨Ã(ω +ω1 +ω2)|P(zp)|Ã(ω +ω2)⟩ |Ã(ω +ω1)⟩
dω1

2π

dω2

2π

(5.12)



158 Chapter 5. EGN model with polarization dependent loss

Figure 5.2: Sketch of a 3 spans link having 5 PDL elements (3 amplifiers, 2 WSS).
Bottom: PDL elements coordinates identifying link segments. Each segment k con-
taining an optical fiber is associated with a fiber kernel η(k). Segments containing
only PDL blocks have zero kernel.

where η(p) is the kernel of the optical fiber in the link segment [zp, zp+1]. To compact
the notation, we introduced the following definition:

P(zp)≜ U†(zp)U(zp). (5.13)

Note that the in Eq. (5.12) we exploited the relationship I = U−1(zp)U(zp) which
holds only for frequency-independent matrices U.

As an example to clarify the notation, Fig. 5.2 sketches a 3 span link, which can
be seen as a segment of a wider network. Such a link is composed of 5 PDL elements:
3 inline amplifiers and 2 WSS for add/drop operation. Hence, in this example, p =

0, . . . ,4 with PDL element coordinates from z0 to z4, highlighted in the bottom part
of the figure. It is worth noting that not every segment [zp, zp+1] contains an optical
fiber, due to the presence of cascades of PDL elements, as the segment [z3,z4] in
Fig. 5.2. Since the segments contain only lumped elements, they do no contribute to
the kernel, hence they have η(p) = 0 in Eq. (5.12). Figure 5.2 highlights the three
segments having an optical fiber and hence non-zero η(p). In the example under test,
the overall link kernel is ∑p η(p) = η(0)+η(1)+η(2), where each η(k) = η1e j∆βkL

for segments including an optical fiber, with η1 the single-span kernel in Eq. (2.16).

Both the NLI and the ASE accumulate linearly with the propagation distance,
both being additive under the model assumptions. Moreover, by comparing Eq. (5.10)
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and Eq. (5.12), we observe that after zero-forcing equalization they both depend on
the PDL accumulated before their generation. However, such a dependence follows
completely different relationships. In particular, the quadratic dependence on the en-
tries of matrix U(zp) in the NLI is expected to induce larger random fluctuations of
the SNR compared to the linear dependence in the ASE case.

By following the same steps as in Chapter 2, we get the following discrete-time
channel model relating the transmitted atom ai to the received one

ui = ai +wi +ni. (5.14)

The sampled ASE is defined as

wi =
∫︂

∞

−∞

⟨G̃i(ω)|w̃(ω)⟩ dω

2π
(5.15)

while the sampled NLI ni is given in Eq. (2.8), with the only difference that the
function Xhmni weighting the mixing at the symbol level defined in Eq. (2.9) must
be generalized to include PDL, consistently with Eq. (5.12). The novel expression of
this function is given by:

Xhmni =− j
8
9

(︃
1√
2

)︃3

γ

N−1

∑
p=0

∫︂∫︂∫︂
∞

−∞

η
(p)(ω,ω1,ω2)

×⟨G̃h(ω +ω1 +ω2)|P(zp)|G̃m(ω +ω2)⟩

×⟨G̃i(ω)|G̃n(ω +ω1)⟩
dω1

2π

dω2

2π

dω

2π

=

(︃
1

2
√

2

)︃N−1

∑
p=0

Ph3m3(zp)δi3n3Shmni(zp).

(5.16)

where the δ indicates Kronecker’s delta. In the final identity we expanded the tensor
in terms of the function Shmni weighting the FWM interaction at the scalar level in
the segment [zp, zp+1]:
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Shmni(zp)≜− j
8
9

∫︂∫︂∫︂
∞

−∞

η
(p)(ω,ω1,ω2)G̃

∗
h1h2

(ω +ω1 +ω2)

× G̃m1m2(ω +ω2)G̃
∗
i1i2(ω)G̃n1n2(ω +ω1)

dω1

2π

dω2

2π

dω

2π

(5.17)

where Shmni(zp) is a segment of the scalar function Shmni in Eq. (2.9), hence ∑pShmni

(zp) = Shmni. It is worth noting that the presence of the term Ph3m3(zp) does not allow
to express the link kernel in a closed-form as in Eq. (2.15). Nevertheless, the term
Ph3m3(zp) is frequency independent and can be factored out of the frequency integrals.

5.2.1 ASE variance

Several efforts have been made in the literature to address the PDL impact on ASE
noise, for instance [8,17,101,102]. We now review the key results regarding the ASE
noise variance, consistently with the adopted notation.

By definition, the variance of the ASE atom i is σ2
ASE = E[wiw∗

i ]. From Eq. (5.15),
we start from the following object:

wiw∗
i =

∫︂∫︂
∞

−∞

⟨G̃i(µ)|w̃(µ)⟩⟨w̃(ω)|G̃i(ω)⟩ dω

2π

dµ

2π

= ∑
m,p

∫︂∫︂
∞

−∞

⟨G̃i(µ)|U−1(zm−1)|w̃m(µ)⟩

×⟨w̃p(ω)|
(︁
U−1(zp−1)

)︁† |G̃i(ω)⟩ dω

2π

dµ

2π
.

(5.18)

The ASE sources along the link are assumed independent and identically distributed,
with [112]:

E [|w̃m(ω)⟩⟨w̃p(µ)|] =
N0

2
δ (ω −µ)δmpI (5.19)

where the two δ indicate Dirac/Kronecker’s delta, respectively, while N0 = hνFG
is the one-sided, dual-polarization, PSD of ASE per amplifier. Therefore, taking the
expectation E of Eq. (5.18) yields the following expression of the ASE variance for
the generic i3 ∈ (x,y):
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σ
2
ASEi3 =

N0B
2

M

∑
p=1

P−1
i3i3(zp). (5.20)

Please note that the matrices P(zp) and hence their elements Pi3 j3(zp) are not inde-
pendent but related by the concatenation rule of PDL [17].

5.2.2 NLI variance

The general expression of the NLI variance derived in Eq. (2.28) holds even in the
presence of PDL. In this section, we will derive expressions for the GN, F4, Q4, and
Q6 variances by applying the novel PDL-aware tensor to the theoretical framework
of Chapter 2.

GN term

In order to extend the GN term variance expression derived in Eq. (2.30) to the pres-
ence of PDL, we start from the general expression in terms of the Xhmni. We then
substitute to this tensor its expression in Eq. (5.16), namely:

σ
2
GNi3 = κ

3
1;1 ∑

h,m,n
Xhmni (X

∗
hmni +X∗

hnmi)

=
1
8

κ
3
1;1 ∑

h1,m1,n1

∑
h2,m2,n2

N−1

∑
p,ℓ=0

Shmni(zp)S
∗
hmni(zℓ)

×
(︂

∑
h3,m3

Ph3m3(zp)P∗
h3m3

(zℓ)+∑
h3

Ph3i3(zp)P∗
h3i3(zℓ)

)︂
=

N−1

∑
p,ℓ=0

CGN(p, ℓ)
(︂

∑
h3,m3

Ph3m3(zp)P∗
h3m3

(zℓ)+∑
h3

Ph3i3(zp)P∗
h3i3(zℓ)

)︂
(5.21)

where the scalar cross-correlation CGN(p, ℓ) is the same as in Chapter 2 in the absence
of PDL, here reported for the reader convenience:
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CGN(p, ℓ)≜
(︃

8
81

)︃
1

T 3 γ
2
κ

3
1;1 ∑

h,m,n

∫︂∫︂∫︂
∞

−∞

η
(p)(ω,ω1,ω2)

(︂
η
(ℓ)(ω,ω1,ω2)

)︂∗
×|p̃h(ω +ω1 +ω2 −ωh)|2|p̃m(ω +ω2 −ωm)|2

×|p̃i(ω −ωi)|2|p̃n(ω +ω1 −ωn)|2
dω1

2π

dω2

2π

dω

2π
.

(5.22)

It is worth noting that, in the absence of PDL, the GN term variance in Eq. (2.30)
involves products between identity matrices, resulting in a weighting factor 3. In the
presence of PDL, this weighting factor generalizes to the expression in Eq. (5.21).

We note that the absence of the modulus square of the kernel |η |2 is induced by
the presence of PDL. Namely, each cross-correlation CGN(p, ℓ) must be evaluated
separately and thus a spatial disaggregation cannot be used like in the scalar case.
Fortunately, the PDL-dependent part can be factored out of the frequency integrals.
From the numeric point of view, the evaluation of each PDL-independent CGN(p, ℓ)
is straightforward by using the methods described in Chapter 2. These terms can be
pre-computed since they do not depend on the PDL realization. Once the CGN(p, ℓ)
are available, the impact of PDL reduces to the computation of the 2×2 matrices P.
Such a weight must be evaluated for several PDL realizations. Thanks to its simple
expression, it can be done very quickly.

The GN-term variance result can be easily generalized to the spatial-covariance
matrix. We introduce the 2×2 GN covariance matrix between the polarizations, KGN :
K (GN)

i3 j3 = E[n′
in

′∗
j ], i1,2 = j1,2, (i3, j3) ∈ (x,y), which takes the elegant form1 [111]:

KGN ≜

⎡⎢⎢⎣ var(NLI(GN)
x ) cov

(︁
NLI(GN)

x ,NLI(GN)
y
)︁

cov
(︁
NLI(GN)

x ,NLI(GN)
y
)︁

var
(︁
NLI(GN)

y
)︁

⎤⎥⎥⎦ (5.23)

=
N−1

∑
p,ℓ=0

CGN(p, ℓ)
(︂

Tr
[︁
P(zp)P†(zℓ)

]︁
I+P(zp)P†(zℓ)

)︂
(5.24)

1n
′

i is the NLI after recovering the average carrier phase rotation [111].
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with the matrix trace defined as ∑i, j Ai jB∗
i j = Tr[AB†]. Note that, in the absence of

PDL, the last line in the above equation reduces to 3I since P(zp) = I for each p, in
agreement with [41].

FON contributions

We now focus on the F4 contribution, which represents the most significant EGN
model correction as discussed in Chapters 2 and 3. We generalize the variance ex-
pression in Eq. (2.43), which was derived in the absence of polarization-dependent
effects, by using the proper PDL-dependent weights. In particular, the product of
identity matrices leading to a multiplicative factor 5 in Eq. (2.43) must be modified
by substituting the proper entries of the matrix P. Such an extended-expression can
be written as:

σ
2
F4i3 = ∑

h,n
κ
(h)
2;2 κ

(n)
1;1 |Xhhni +Xhnhi|2

=
1
8 ∑

h1,n1

∑
h2,n2

κ
(h)
2;2 κ

(n)
1;1

N−1

∑
p,ℓ=0

Shhni(zp)S
∗
hhni(zℓ)

×
(︂
∑
h3

Ph3h3(zp)P∗
h3h3

(zs)+2Pi3i3(zp)P∗
i3i3(zs)+∑

n3

Pi3n3(zp)P∗
i3n3

(zs)
)︂

=
N−1

∑
p,ℓ=0

CF4(p, ℓ)
(︂
∑
h3

Ph3h3(zp)P∗
h3h3

(zs)

+2Pi3i3(zp)P∗
i3i3(zs)+∑

n3

Pi3n3(zp)P∗
i3n3

(zs)
)︂

(5.25)

where CF4(p, ℓ) is the same as in Eq. (2.45) while its weight reduces to 5 in the case
of no PDL, i.e., with P = I.

Similarly to the GN term, the result can be extended to the covariance matrix,
which can be written as:

KF4 = E[n
′
in

′∗
j ]
⃓⃓⃓
onlyF4

=
N−1

∑
p,ℓ=0

CF4(p, ℓ)F(zp,zℓ) (5.26)
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where the matrix F(zp,zℓ) has the following entries:

F11 = 4P11(zp)P∗
11(zℓ)+P22(zp)P∗

22(zℓ)+P12(zp)P∗
12(zℓ)

F12 = P22(zp)P∗
21(zℓ)+P12(zp)P∗

11(zℓ)

F21 = P11(zp)P∗
12(zℓ)+P21(zp)P∗

22(zℓ)

F22 = 4P22(zp)P∗
22(zℓ)+P11(zp)P∗

11(zℓ)+P21(zp)P∗
21(zℓ).

(5.27)

Regarding the other FON term, i.e., the Q4 contribution, the extended variance
becomes:

σ
2
Q4i3 = ∑

h,n
κ
(h)
2;2 κ

(n)
1;1 |Xhnni|2

=
1
8 ∑

h1,n1

∑
h2,n2

κ
(h)
2;2 κ

(n)
1;1

N−1

∑
p,ℓ=0

Shnni(zp)S
∗
hnni(zℓ)∑

h3

Ph3i3(zp)P∗
h3i3(zs)

=
N−1

∑
p,ℓ=0

CQ4(p, ℓ)∑
h3

Ph3i3(zp)P∗
h3i3(zs)

(5.28)

where it is easy to see that, in the absence of PDL, the cross-correlation in Eq. (5.28)
is weighted by a factor 1, hence obtaining the same Q4 variance derived in Chapter
2. The covariance matrix is then given by the following equation:

KQ4 = E[n
′
in

′∗
j ]
⃓⃓⃓
onlyQ4

=
N−1

∑
p,ℓ=0

CQ4(p, ℓ)Q(zp,zℓ) (5.29)

where the entries of the matrix Q(zp,zℓ) can be expressed as:

Q11 = P11(zp)P∗
11(zℓ)+P21(zp)P∗

21(zℓ)

Q12 = Q21 = 0

Q22 = P22(zp)P∗
22(zℓ)+P12(zp)P∗

12(zℓ) .

(5.30)
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Q6 term

The last contribution to the overall NLI variance is the HON term, called Q6 in Chap-
ter 2. The Q6 variance generalized to include PDL writes as:

σ
2
Q6i3 = ∑

h
κ
(h)
3;3 |Xhhhi|2

=
1
8 ∑

h1,n1

∑
h2

κ
(h)
3;3

N−1

∑
p,ℓ=0

Shhhi(zp)S
∗
hhhi(zℓ)Pi3i3(zp)P∗

i3i3(zs)

=
N−1

∑
p,ℓ=0

CQ6(p, ℓ)Pi3i3(zp)P∗
i3i3(zs).

(5.31)

Extending the results from the variance of one polarization to the covariance ma-
trix, be obtain:

KQ6 = E[n
′
in

′∗
j ]
⃓⃓⃓
onlyQ6

=
N−1

∑
p,ℓ=0

CQ6(p, ℓ)H(zp,zℓ) (5.32)

with CQ6(p, ℓ) the scalar Q6 cross-correlation between trunk p and trunk ℓ, while
matrix H has entries:

Hii = Pii(zp)P∗
ii (zℓ), i = 1,2

Hi j = 0, i ̸= j .
(5.33)

Please note that in the absence of PDL we have H = I.

5.2.3 Per-polarization PDL-aware SNR

In the presence of PDL, and in the absence of joint channel equalization and FEC
decoding, it is more meaningful to deal with the per-polarization SNR, because of the
asymmetrical behavior of noise power. Neglecting ASE-NLI interaction, the overall
SNR of the generic polarization i3 ∈ (x,y), follows the usual concatenation rule:

1
SNRi3

=
1

SNRi3
ASE

+
1

SNRi3
NLI

(5.34)
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where SNRi3
ASE is the ASE-only SNR given by:

SNRi3
ASE =

P/2
σ2

ASEi3

=
SNRi3

ASE(PDL=0)
1
M ∑

M
p=1 P−1

i3i3(zp)
(5.35)

with P the (x+ y) signal power and SNRi3
ASE(PDL=0) = P/(N0MB).

The NLI-only SNR in Eq. (5.34) can be computed as:

SNRi3
NLI =

1(︁
K (GN)

i3i3
+K (F4)

i3i3
+K (Q4)

i3i3
+K (Q6)

i3i3

)︁
(Pi3/2)2

, i3 ∈ (x,y). (5.36)

The denominator of Eq. (5.35), equal to the span-average of P−1
i3i3 , is the random PDL

loss/gain per polarization.

5.3 Numerical results

We validated the proposed model against SSFM based simulations. As a first test, we
neglected ASE noise and focused only on the PDL-impaired nonlinear interference,
which represents the main novelty. The WDM signal was composed of 11×50 GHz
channels with RRC pulses with roll-off 0.01 having a symbol rate of 49 Gbaud and
channel spacing of 50 GHz. The lasers’ SOP was randomly chosen on the Poincaré
sphere. To test the validity of the PDL-GN model we first considered PDM signals
with Gaussian distributed symbols.

The links under test were either 10×100 km or 20×100 km links of SMFs, with
fiber parameter as in Tab. 3.1. Two dispersion-management schemes were investi-
gated: a DM scheme with 30 ps/nm of residual dispersion after each span, or DU.
The residual dispersion at the link-end was then compensated at the receiver input. In
any case, each amplifier in the link introduced 0.5 dB of PDL.

The propagation along such links was simulated by the SSFM and compared with
the prediction of the PDL-GN model. In the PDL-GN matched filtering, zero-forcing
PDL equalization and CPE are implicit in the model. On the other hand, in the SSFM
case we implemented matched filtering followed by a 1-tap zero-forcing equalizer,
and by a CPE recovering the average phase rotation induced by the fibers.
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Figure 5.3: Estimate of the PDF of the SNR per polarization by SSFM simulations
(triangles for DM30, circles for DU) and the corresponding (almost overlapped)
PDL-GN PDFs (solid lines).

We estimated the PDF of the received SNR by Monte Carlo simulations by sim-
ulating 1000 different random PDL realizations, both with SSFM runs and with the
PDL-GN model. For each realization, the SOP of the channel lasers was varied as
well. For the SSFM simulations, we used a symmetric step with a first step accumu-
lating an FWM phase of 20 rad [28] and CLE updating rule. The number of symbols
was set to 65536, in order to capture the largest walk-off among channels and to
have a negligible error from the Monte Carlo estimation [107]. In the PDL-GN, the
frequency integrals were solved by means of Monte Carlo integration.

Figure 5.3 depicts the estimated PDF of the SNR per polarization at the central
WDM channel by SSFM (symbols) and the PDL-GN model (lines). In order to com-
pare the different links, we plotted the PDFs versus the SNR offset from its mean.
The model is in excellent agreement with SSFM results for both numbers of spans,
thus confirming its validity. Although it is not shown in the figure, the mean SNR of
SSFM simulations was within 0.1 dB of that from the PDL-GN model, for both links.

In particular, we note that dispersion management does not affect the PDF shape,
while it strongly impacts the average value (here not shown). In fact, the DM30 sce-
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Figure 5.4: Network under investigation. 3200 km with initial add block, final drop
block and a ROADM for optical bypass every 400 km.

nario is affected by a higher average NLI compared to the DU case, due to the higher
correlation of the NLI among different spans.

In a second test, we investigated a different and more realistic distribution of PDL
along the optical link. We thus focused on a 3200 km network segment. Differently
from the previous case, we included the presence of ROADMs for the add and drop of
the CUT at the beginning and end of the segment, as well as ROADMs placed every 4
spans for cross-connections. We assumed that each inline ROADM performed optical
bypass, hence two WSSs are crossed. The PDL was 0.1 dB within EDFAs and 0.4
dB within each WSS, respectively [108]. Figure 5.4 sketches the link under test, as a
segment of a wider network.

We investigated the transmission of 21 channels carrying PDM-star 8QAM mod-
ulation format. In this setup, we included ASE with a frequency-flat gain recovering
fiber losses and a noise figure of 5 dB per amplifier. It is worth noting that, with ideal
equalization, the last PDL element (hence the drop block) impacts equally ASE, NLI,
and signal, hence with no implications on the statistics.

The PDF of the per-polarization SNR offset, estimated by the PDL-EGN and by
SSFM at power 1 dBm per channel maximizing the SNR is reported in Fig. 5.5. Even
in this scenario, we observe a good match between the models and SSFM simulations.
Although it is not shown in the figure, we observed that the PDL-EGN model exhibits
a bias of 0.1 dB compared to the SSFM results.

It is useful to compare the computational times of the PDL-EGN model and the
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Figure 5.5: PDF estimate of the SNR offset from its mean, per polarization, by the
PDL-EGN (solid line) and SSFM (symbols). 32×100 km SMF link with star-8QAM-
modulation format, with different PDL between EDFA and ROADM.

SSFM. As a reference, an SSFM simulation, with step setup as in [28], took 1 day to
run 125 PDL seeds on a cluster using INTEL XEON E5- 2683v4 2.1GHz 32 cores
central processing units (CPU) with 128 GB of RAM and NVIDIA Tesla P100 GPU.
The same seeds have been simulated in a fraction of a second with the PDL-EGN,
plus the overhead for the computation of the span cross-correlations of the order of
seconds for the PDL-GN and a few minutes for the PDL-EGN. Not surprisingly, with
the EGN we were able to simulate 106 PDL seeds, while with SSFM only 103.

5.3.1 Outage probability

We now leverage the small computation time of the proposed model to estimate the
probability that the system is in outage. The outage probability is here defined as
the probability that the SNR falls below the threshold of 10.56 dB, corresponding
to a Q-factor of 6.5 dB for star 8QAM formats. Figure 5.6(a) shows the mean per-
polarization SNR versus launched channel power. We observe that the optimal chan-
nel power is 1 dBm. Moreover, the curve exhibits the typical slope of +1 dB/dB in
the linear regime and -2 dB/dB in the nonlinear regime, as discussed in Fig. 1.11.
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Figure 5.6: (a): mean SNR per polarization vs. power. (b): outage probability @ Q-
factor = 6.5 dB. All curves with the proposed model with only ASE or NLI (dashed
lines) or with both ASE and NLI (solid lines). Star-8QAM 32× 100 km SMF link
with different PDL between EDFA and ROADM, see text.
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On the other hand, Fig. 5.6(b) reports the outage probability versus the same
power, showing several interesting features. First, we observe that the minimum out-
age probability is 3 · 10−4, a non-negligible value indicating the importance of in-
cluding PDL in the link design. Second, the best power for the mean SNR does not
coincide with the best power for the outage probability, with a gap of 0.4 dB. This is
strictly related to the nonlinear relation between the outage probability and the SNR.
Third, we still observe a factor 2 between the slopes of the asymptotes on the outage
probability graphs. Such an observation can be very useful for quickly scaling the
outage probability with power.

5.3.2 NLI vs ASE

In the theoretical section of this chapter, we pointed out that the NLI and the ASE
noise are impacted by PDL in different ways. We now compare the statistics of the
linear SNR in Eq. (5.35) and the nonlinear SNR in Eq. (5.36) for the same link con-
sidered in Fig. 5.6. We perform the comparison at a channel power yielding the same
average noise variances, which was 2 dBm for this setup. The PDF of the ASE-only
and NLI-only SNR are depicted in Fig. 5.7(a). We used symbols to represent SSFM
results and lines for the PDL-EGN model. We observe that, in this setup, the PDF
of the ASE-only case is slightly larger than that of the NLI-only case, although the
average values are similar. Most important, the ASE-only and the NLI-only PDFs
have different shapes, hence the NLI cannot be treated as an equivalent extra-ASE
distributed along the link. Such observation also suggests that the shape of the PDF
of the SNR depends on the transmitted power which determines whether the NLI or
the ASE noise is dominant. As an example, Fig. 5.7(b) shows the PDF estimate of
the SNR (including NLI and ASE noises) at different channel powers.

It is worth noting that if instead of plotting the per-polarization SNR PDF, we
plot the PDF of the overall PDM SNR, as usually done in the literature, we obtain a
sharply different behavior, as depicted in Fig. 5.8 with the PDL-EGN model. To esti-
mate the PDM SNR, or simply SNR, it is sufficient to substitute the per-polarization
power with the (x+ y) power, both for the signal and the noise. This difference is
due to the fact that the PDFs of the PDL-impacted linear SNR on the best and worst-
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Figure 5.7: PDF estimate of (a) ASE-only and NLI-only per-polarization SNR us-
ing the proposed PDL-EGN model (solid line) and SSFM simulations (circles: ASE,
triangles: NLI). Power 2 dBm. (b) per-polarization SNR offset at different channel
powers, including both ASE and NLI.
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Figure 5.8: Estimate of the PDF of the linear and nonlinear PDM SNR usually
adopted in the literature by the proposed PDL-EGN model. Same setup of Fig. 5.7(a)

performing polarization are antithetic, as was shown in [107]. On the other hand,
SPM- and XPM-like contributions operate through a common scalar nonlinear phase
on both polarizations, thus yielding similar PDFs for the two polarizations having
tails in the same direction. As a result, the (x+y) PDF in the NLI-only case is broader
than the ASE-only case.

To further stress the importance of properly modeling the PDL impact on NLI, we
now explore two alternative approximated methods for the estimation of the SNR’s
PDF. First, we investigate the possibility of modeling the overall noise as an ASE-like
noise having an equivalent noise figure Feq such that, on average with respect to the
PDL realizations, the variance of the equivalent noise σ2

eqi3 matches the variance of
the actual noise, i.e., ASE+NLI, in the absence of PDL. Namely, the equivalent noise
variance is calculated as in Eq. (5.20):

σ
2
eqi3 ≜

hνFeqGB
2

M

∑
p=1

P−1
i3i3(zp) (5.37)

with the following equivalent noise figure:
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Feq = F +
2σ

2 (NOPDL)
NLIi3

MhνGB
. (5.38)

In this strategy, the NLI is treated as an extra ASE noise and hence undergoes PDL
in the same manner. To further simplify the modeling, one could account for PDL
only in the ASE noise and treat the NLI as if it would be unaffected by PDL, hence
estimated via the classic GN/EGN model in Chapter 2.

Figure 5.9 shows the PDF estimate of the (x+ y) SNR for the same setup of Fig.
5.8. In solid line we reported the PDL-EGN estimate, in dashed line the equivalent
noise approach, and in dotted line the EGN model estimate with PDL included only
in the ASE noise. Although the average SNR values coincide in the three approaches,
the PDF shape is clearly different. In particular, neglecting any impact of PDL on the
Kerr effect is particularly detrimental yielding a much narrower PDF.
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Figure 5.9: Estimate of the PDF of PDM SNR. Solid: PDL-EGN model estimate.
Dashed: linear SNR with inflated average ASE variance. Dotted: EGN model esti-
mate with PDL included only in the ASE noise.
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5.3.3 Modulation format

We next investigated the impact of the modulation format. The link is the same as Fig.
5.7 with both ASE and NLI, and channel power 2 dBm. The PDF was estimated with
the proposed PDL-EGN model for different modulation formats and shown in Fig.
5.10. Consistently with the literature [39–41] and the other chapters of this thesis, we
observe that the GN model underestimates the average value of the other modulation
formats.

The maximum mismatch is associated with the QPSK case, due to the significant
FON contribution, with an error up to 0.77 dB. However, we note that the shapes
of the PDFs are less impacted, with a slightly wider PDF for the QPSK modulation
format. As a comparison metric, we can consider the difference between the average
SNR and the SNR at a fixed PDF estimate equal to 10−4, here called ∆SNR. For
instance, this ∆SNR in the GN case is 0.58 dB, while for QPSK, by using the same
random seeds, we estimated ∆SNR = 0.76 dB.
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Figure 5.10: Same setup of Fig. 5.7 with ASE and NLI, for different modulation
formats.
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5.3.4 Number of channels

We tested the impact of the number of channels on the SNR PDF. To this aim, instead
of performing time-consuming SSFM simulations, we exploited the proposed PDL-
GN model which was validated in the previous sections.

The link under test was the same as Fig. 5.4 with the setup used for Fig. 5.5,
except for the number of channels and the channel power. The WDM comb was
composed of 3, 21, or 101 channels. For the link under test, the optimal power maxi-
mizing the SNR for such a WDM transmission (i.e., the NLT) was P = 1.4, 0.7, and
0.4 dBm respectively. In order to compare the impact of PDL on the PDFs, Fig. 5.11
shows the PDF of the per-polarization SNR offset with respect to the mean value,
instead of the PDF of the SNR. It can be seen that the PDFs are almost identical in
the three cases under test. A similar result is obtained when increasing the power by
3 dB from the optimal one.
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Figure 5.11: PDF estimate of the SNR offset from its mean, for a WDM comb of 3, 21
or 101 channels. PDL-GN model. 32×100 km SMF link with different PDL between
EDFA and ROADM. Each SNR curve evaluated at the relative optimal power (NLT).
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5.3.5 PDL profile impact

As a last investigation, we compare the outage probability of links having a different
PDL profile. For the sake of simplicity, we considered the presence of a PDL element
at each span-end. The total amount of PDL was fixed to 30 dB, and we considered
three different distributions of such total PDL:

1. The first PDL element introduces 2 dB of PDL and the remaining PDL is
equally partitioned among the other PDL elements (0.47 dB each);

2. All the devices introduce the same amount of PDL equal to 0.5 dB;

3. The last PDL block has 2 dB of PDL. Similarly to the first case, the remainder
is split among the other devices.

All the links under test were 60× 100 km of SMF, having parameters listed in
Tab. 3.1. The transmitted signal was a WDM comb of 51 PDM-QPSK modulated
channels. We estimated the outage probability by means of the proposed PDL-EGN
model, with 106 PDL realizations. The results are reported in Fig. 5.12.
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Figure 5.12: Outage probability estimated with the PDL-EGN model for a 60×100
km link with PDL distributed in three different ways (see text).
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The figure shows that the PDL profile has a non-negligible impact on the system
performance. First of all, comparing the curve relative to case 1 and 3 we note that
switching the first and the last PDL elements do not yield the same outage probability.
In particular, it is more detrimental to have a higher amount of PDL in the first ele-
ment, with a non-negligible outage probability of 10−3 at the best power, instead of
the last one. The reason is that the PDL introduced by the last block can be equalized
as well on the NLI and the ASE noise, while the PDL introduced in the first block re-
mains on the noises even after equalization. For the same reason, the link with higher
PDL concentrated in the last block performs better than the homogeneous link, in
which a slightly higher PDL is introduced by the blocks that cannot be recovered.



Chapter 6

The ergodic GN model with modal
dispersion

Perturbations of the symmetrical structure of a single-mode fiber yield birefringence,
polarization mixing, and PMD. As a result of PMD, a random DGD between the two
polarizations arises [8]. Such a random DGD accumulates with the square root of
length [17], hence becoming potentially detrimental for long-haul transmissions.

Although the effects of PMD on the useful signal can be compensated with a
multiple-input multiple-output (MIMO) based DSP, its impact remains in the nonlin-
ear interference. Unfortunately, the numerical estimation of the interaction between
PMD and the fiber Kerr effect has great complexity, due to the random nature of
PMD which calls for the evaluation of many random seeds. Despite their complexity,
numerical and experimental studies were performed in the literature [113,114], high-
lighting a beneficial effect of PMD in mitigating the NLI. Nevertheless, for practical
values of PMD in modern optical fibers, the impact on the system performance for
typical DU links is almost negligible. For this reason, the inclusion of PMD in the
GN model was overlooked in the single-mode transmission literature.

On the other hand, in a multi-mode transmission, the modal dispersion (MD)
can introduce a random mixing and delay among the polarizations of all the guided
modes [20]. In such SDM fibers, the values of modal dispersion are orders of magni-
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tude larger than in an SMF [115, 116]. As a consequence, neglecting the interaction
between MD and the Kerr effect might not be justified in this context. The presence
of MD was neglected in the GN model extension to SDM in [117, 118], while it was
included in [119] for limiting scenarios of large MD values by neglecting the impact
of MD within a channel bandwidth. Arbitrary values of MD were taken into account
in [120] only with respect to self-channel nonlinear effects.

In this chapter, we first propose an extension of the GN model to fully account
for the impact of arbitrary values of MD on the NLI. The model is validated against
SSFM simulations and exploited to investigate the impact of MD for different system
setups. Then, we present a simplified expression for the XPM variance, at arbitrary
MD values, derived under the assumption of [119].

The work reported in this chapter was partially published in [121].

6.1 Modal dispersion

The phenomenon of modal dispersion manifests as a distortion of the pulse transmit-
ted at the fiber input, due to the induced mode-dependent delay, and as a frequency-
dependent change of the SOP at the fiber output.

6.1.1 The PMD vector

In an SMF, the SOPs that, to first order, do not change in frequency after crossing the
fiber are called principal states of polarization (PSP). Light launched along the two
PSP sees a different fiber refractive index, hence it experiences a different delay. The
DGD measures this differential delay between the fast and slow PSP. In the literature
it is customary to represent the effects of PMD through the PMD vector [8, 122],
which can be expressed by the following Stokes vector [8]:

τ⃗ = τ p̂ (6.1)

having the same orientation p̂ of the slow PSP and length equal to the DGD τ . The
PMD vector evolution along the distance is governed by the following equation:
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∂ τ⃗

∂ z
=

∂ β⃗

∂ω
+ β⃗ × τ⃗ (6.2)

where
−→
β is the vector of local birefringence [8]. The random nature of the birefrin-

gence vector yields a random PMD vector, usually modeled with independent and
identically distributed (i.i.d) Gaussian entries. As a consequence, its length, i.e. the
DGD, becomes a random variable. Due to the Gaussian distribution of the PMD vec-
tor entries, the DGD has a Maxwellian distribution [17] whose mean value scales
with the square-root of distance:

E[τ(z)] = κPMD
√

z. (6.3)

Random perturbations also cause the PMD vector to depend on frequency. Its fre-
quency autocorrelation function was derived in [123].

6.1.2 The MD vector

Such a formalism was extended to SDM transmissions in [124], where the authors
introduced the MD vector. The MD vector is a generalization of the PMD vector in
Eq. (6.1) in a 4N2

m − 1 dimensional space, with Nm the number of spatial modes. Its
length thus generalizes to

τ ≜

√︄
2Nm

2Nm

∑
n=1

t2
n (6.4)

where tn are the individual delays of the polarizations n = 1, . . . ,2Nm. Similarly to the
single-mode case, the MD vector is a random vector which evolves along distance
according to Eq. (6.2), generalized to the higher dimensional Stokes space. Modeling
its entries as i.i.d Gaussian random variables, the MD length in Eq. (6.4) is now a
chi-distributed random variable [124, 125].

To quantify MD it is customary in the literature to focus on the mode-averaged in-
tensity impulse response (IIR) I(t), i.e., the output power when a single-mode carry-
ing white noise is excited on input [125]. The variance T 2

I of such a Gaussian-shaped
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IIR is related to E[τ2] in Eq. (6.3) and the spatial mode dispersion (SMD) parameter
in [126], by:

T 2
I =

E[τ2]

4N2
m

=
1

2Nm

2Nm

∑
n=1

E[t2
n ]≜

SMD2 · z
4

. (6.5)

6.1.3 The linear fiber response with MD

Due to the random nature of MD, the linear operator in Eq. (1.52) can be generalized
to the following expression:

F
{︂

eLz
}︂
= e− j

(︂
β2
2 ω2+

β3
6 ω3

)︂
zU(z,ω) (6.6)

where U(z,ω) is a 2Nm × 2Nm unitary matrix that accounts for random coupling
among modes and modal dispersion. Such a transfer matrix is fast-varying along the
propagation length, due to the fast variation of birefringence. A possible strategy to
describe its evolution along distance is represented by the so-called waveplate model
[8]. The idea behind this approach is to model the optical fiber as a concatenation of
sections, or waveplates, over which the axes of birefringence are constant. Along this
correlation length Lcorr, the propagation can be modeled as ideal, i.e., unperturbed, in
the proper reference system. Then, the random rotation of the axes of birefringence
makes the next waveplates uncorrelated to the previous one. The overall fiber transfer
matrix can thus be seen as the product of Nw independent random matrices, one for
each section of the waveplate model:

U(z,ω) =
Nw

∏
k=1

Mk(ω). (6.7)

The matrix characterizing each waveplate k = 1, . . . ,Nw can be expressed, in fre-
quency, as a matrix exponential [20] of the matrix B(1) in Eq. (1.47), and can be
diagonalized as follow:



6.1. Modal dispersion 183

Mk(ω) = e− jB(1)
k Lcorr

= Vk

⎡⎢⎢⎢⎢⎢⎢⎣
e− jωt1 0

. . .

0 e− jωt2Nm

⎤⎥⎥⎥⎥⎥⎥⎦V†
k

(6.8)

where Vk is a frequency-independent unitary matrix accounting for the change of
basis into the waveplate reference system, while the diagonal matrix describes the
uncoupled propagation along the waveplate length.

Alternatively to the discretized approach adopted by the waveplate model, the
evolution of the transfer matrix can be modeled by means of the following differential
equation [125, 127]:

dU(z,ω)

dz
=− jωµ

2Nm
B(1)U(z,ω) (6.9)

where the generic elements of the matrix dW≡ dW(z)=B(1)dz describes a Brownian
motion, having properties:

dWkn = dW ∗
nk

E [dWkn] = 0

E [dWi jdW ∗
kn] = 2δikδ jn ·dz.

(6.10)

The parameter µ in Eq. (6.9) identifies the strength of MD, and is related to the
SMD coefficient in Eq. (6.5) through the following equation:

µ =

√︄
N3

m

4N2
m −1

SMD . (6.11)

In particular, for an SMF the PMD parameter in Eq. (6.3) is related to the param-
eter µ through [125, 127]:
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µ =

√︃
π

8
κPMD. (6.12)

6.2 The ergodic MD-GN model

In order to include MD in the GN model, we proceed by substituting the extended
linear operator of Eq. (6.6) in the NLI general expression in Eq. (2.1). As a result, the
tensor of Eq. (2.9) generalizes to the following:

Xhmni =− j
(︃

1√
2

)︃3

κγ

∫︂ L

0
e−αz

∫︂∫︂∫︂
∞

−∞

e j∆β z ⟨G̃h(0,ω+ω1+ω2)|P(z,ω +ω2,ω1)

|G̃m(0,ω +ω2)⟩⟨G̃i(0,ω)|P†(z,ω,ω1)|G̃n(0,ω +ω1)⟩
dω

2π

dω1

2π

dω2

2π
dz

(6.13)

where the Manakov coefficient κ is redefined as in Eq. (1.48), and the matrix P is
defined in terms of the transfer matrix U similarly to Eq. (5.13):

P(z,ω,ω1)≜ U†(z,ω +ω1)U(z,ω). (6.14)

Note that, contrary to the case with only PDL in Eq. (5.12), the matrix P is frequency-
dependent and appears two times in Eq. (6.13).

The novel tensor is then substituted in the general expression of the variance
of the SON/GN term, as per Eq. (2.28). After applying the Poisson formula in Eq.
(2.31), as in Chapter 2, we can remove the summation over time indexes and drop
three frequency integrals. The variance of the GN term on the generic polarization i3
can then be written as:
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σ
2
GNi3 = κ

3
1;1 ∑

h,m,n
Xhmni (X

∗
hmni +X∗

hnmi)

=
1

8T 3 κ
2
γ

2
κ

3
1;1 ∑

h2,m2,n2

∫︂∫︂∫︂
∞

−∞

(︂
|η(1)

i3i3(ω,ω1,ω2)|2 + |η(2)
i3i3(ω,ω1,ω2)|2

)︂
×|p̃h2

(ω +ω1 +ω2 −ωh2)|
2|p̃m2

(ω +ω2 −ωm2)|2

×|p̃i2(ω −ωi2)|2|p̃n2
(ω +ω1 −ωn2)|2

dω1

2π

dω2

2π

dω

2π
.

(6.15)

Contrary to the general theory presented in Chapter 2, the two terms XhmniX
∗
hmni

and XhmniX
∗
hnmi are not degenerate due to the presence of MD. In particular, they are

associated with a fiber kernel η
(1)
i3i3 and η

(2)
i3i3 , respectively. The modulus square of such

fiber kernels, also known as the FWM efficiency, appearing in Eq. (6.15) is obtained
through a double integration along distance as follow:

|η(1)
i3i3(ω,ω1,ω2)|2 =

∫︂ L

0

∫︂ L

0
e−(α+ j∆β )ze−(α− j∆β )s

Λi3i3(z,s,ω,ω1,ω2)dzds (6.16a)

|η(2)
i3i3(ω,ω1,ω2)|2 =

∫︂ L

0

∫︂ L

0
e−(α+ j∆β )ze−(α− j∆β )s

Ξi3i3(z,s,ω,ω1,ω2)dzds (6.16b)

for a single-span with fiber length L, where Λi3i3 and Ξi3i3 indicate the (i3, i3) entry of
the following matrices:

ΛΛΛ ≜ Tr
[︁
P(z,ω +ω2,ω1)P†(s,ω +ω2,ω1)

]︁
P†(z,ω,ω1)P(s,ω,ω1)

ΞΞΞ ≜ P†(z,ω,ω2)P†(s,ω +ω2,ω1)P(z,ω +ω1,ω2)P(s,ω,ω1) .
(6.17)

Please note that the matrix P reduces to a 2Nm × 2Nm identity matrix in the
absence of MD. In such a case, the above matrices take the simple expressions
ΛΛΛ = 2NmI and ΞΞΞ = I, hence yielding an overall 2Nm +1 weight that can be factored
out of the integrals. Such a weight coincides with the factor 3 reported in Chapter
2 for a single-mode fiber and is consistent with [41]. We recall that in the absence
polarization-dependent effects it is
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|η(1)
i3i3 |

2

2Nm
= |η(2)

i3i3 |
2 = |η1|2 =

1− e−αL(e− j∆βL + e j∆βL)+ e−2αL

α2 +∆β 2 ≈ 1
α2 +∆β 2 (6.18)

where η1 is the single-span fiber kernel as defined in Eq. (2.16), and the last approx-
imation holds for any sufficiently long optical fiber having L ≫ 1/α .

We note that the only novelty is introduced by matrices ΛΛΛ and ΞΞΞ. However, the
random nature of these matrices makes it unfeasible to approach Eq. (6.15) numeri-
cally. Intending to reduce the problem complexity we thus propose to average the NLI
variance with respect to the MD realizations. In practice, we propose to replace ΛΛΛ and
ΞΞΞ in the FWM efficiency terms with E[ΛΛΛ] and E[ΞΞΞ], respectively. Such a calculation
will be the topic of the next section.

6.2.1 Ergodic NLI variance

The stochastic differential equation (SDE) in Eq. (6.9) can be expressed in integral
form as:

U(z) = U(0)− jωµ

2Nm

∫︂ z

0
U(ζ )◦dW(ζ ) (6.19)

where the symbol ◦ indicates the Stratonovich integral [31] defined as the limit of the
partial sums

∑
ℓ

U(ζℓ)+U(ζℓ−1)

2
(W(ζℓ)−W(ζℓ−1)) (6.20)

with ℓ the index of the integration interval. For our purposes, it is more convenient to
interpret stochastic integrals in the Ito sense [18, 31, 127]. Such a stochastic integral,
expressed as

∫︁ z
0 U(ζ )dW(ζ ), is defined as the limit of

∑
ℓ

U(ζℓ−1)(W(ζℓ)−W(ζℓ−1)) (6.21)

where the increment points "towards the future" [31, p. 92].
As a first step, we thus convert Eq. (6.9) governing the evolution of the transfer

matrix in Ito’s form by applying the conversion [31] to each element of the matrix:



6.2. The ergodic MD-GN model 187

dU =−ω2µ2

2Nm
Udz− jωµ

2Nm
(dW)U (6.22)

where the first term on the right-hand side is the Ito’s correction term. It is convenient
to get rid of such a term by moving in the following reference system:

U(z,ω)≜ e−
ω2µ2z

2Nm R(z,ω) (6.23)

with the matrix R evolving along distance according to the following SDE:

dR =− jωµ

2Nm
(dW)R. (6.24)

We thus define the matrix Q which plays the role of P in the novel reference system:

Qi j(z)≜ R†(z,νi)R(z,ν j) (6.25)

where we exploited the following compact notation for the involved frequencies:

ν1 ≜ ω +ω1 +ω2, ν2 ≜ ω +ω2

ν3 ≜ ω +ω1, ν4 ≜ ω .
(6.26)

The SDE for the matrix Qi j(z) in Eq. (6.25) can be computed as:

dQi j(z) = (dR†(z,νi))R(z,ν j)+R†(z,νi)(dR(z,ν j))

+(dR†(z,νi))(dR(z,ν j)) .
(6.27)

Expressing now the matrices of interest in the new notation yields:

ΛΛΛ ≜ e−
µ2(z+s)

2Nm (ν2
1+ν2

2+ν2
3+ν2

4)ΛΛΛ
′

ΞΞΞ ≜ e−
µ2(z+s)

2Nm (ν2
1+ν2

2+ν2
3+ν2

4)ΞΞΞ
′

(6.28)

where we defined:
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ΛΛΛ
′
= Tr

[︂
Q12(z)Q†

12(s)
]︂

Q†
34(z)Q34(s)

ΞΞΞ
′
= Q42(z)Q†

12(s)Q
†
31(z)Q34(s)

(6.29)

having the same structure of Eq. (6.17). Treating s as a fixed spatial coordinate, the
SDE of matrices ΛΛΛ

′
and ΞΞΞ

′
with respect to coordinate z can be written as:

dΛΛΛ
′
= Tr

[︂
(dQ12(z))Q†

12(s)
]︂

Q†
34(z)Q34(s)+Tr

[︂
Q12(z)Q†

12(s)
]︂

× (dQ†
34(z))Q34(s)+Tr

[︂
(dQ12(z))Q†

12(s)
]︂
(dQ†

34(z))Q34(s)
(6.30)

dΞΞΞ
′
= (dQ42(z))Q†

12(s)Q
†
31(z)Q34(s)+Q42(z)Q†

12(s)(dQ†
31(z))Q34(s)

+(dQ42(z))Q†
12(s)(dQ†

31(z))Q34(s).
(6.31)

We now take the average of the above equations. Such an averaging process in-
volves the evaluation of E [dQi j], that is the expectation of Eq. (6.27). It is worth
noting that in such computation, only the average of the second order product sur-
vives (dR†(z,νi))(dR(z,ν j)). Hence, the expectation reduces to:

E [dQi j] = E
[︁
(dR†(z,νi))(dR(z,ν j))

]︁
= 2Nm

νiν jµ
2

2N2
m

E [Qi j] (6.32)

where we substituted dR†(z,νi) with the right-hand side of Eq. (6.24), and exploited
the following property E

[︁
A(dW)†(dW)B

]︁
= 2NmABdz, along with the properties

of the matrix dW in Eq. (6.10). Similar reasoning can be applied to compute the
expectation of the last addend in Eq. (6.30) and Eq. (6.31) as:

E
[︂
Tr
[︂
(dQ12(z))Q†

12(s)
]︂
(dQ†

34(z))Q34(s)
]︂
=

(ν1 −ν2)(ν3 −ν4)µ
2

2N2
m

E
[︂
ΞΞΞ

′
]︂

(6.33)

E
[︂
(dQ42(z))Q†

12(s)(dQ†
31(z))Q34(s)

]︂
=

(ν4 −ν2)(ν3 −ν1)µ
2

2N2
m

E
[︂
ΛΛΛ

′
]︂

(6.34)
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where we exploited the following properties:

E
[︁
A(dW)†BdW

]︁
= 2Tr[B]Adz

E
[︁
Tr [(dW)A]BdW†]︁= 2BAdz.

(6.35)

Finally, after returning back to the original frequency notation through Eq. (6.26)
and hence to the original matrices ΛΛΛ and ΞΞΞ, the evolution with respect to ξ = |z− s|
is given by the following system of ordinary differential equations:

dE [ΛΛΛ]

dξ
=

µ2

Nm

(︃
−ω

2
1E [ΛΛΛ]+

ω2
1

2Nm
E [ΞΞΞ]

)︃
dE [ΞΞΞ]

dξ
=

µ2

Nm

(︃
ω2

2
2Nm

E [ΛΛΛ]−ω
2
2E [ΞΞΞ]

)︃
.

(6.36)

Such a linear system can be written in a vectorial form in terms of its 2×2 matrix:

A =

⎡⎢⎢⎢⎣ −ω2
1

ω2
1

2Nm

ω2
2

2Nm
−ω2

2

⎤⎥⎥⎥⎦ (6.37)

and a solution can be found by applying the matrix exponential e
µ2
Nm

Aξ to the follow-
ing initial values:

E [ΛΛΛ(ξ = 0)] = 2NmI (6.38)

E [ΞΞΞ(ξ = 0)] = I . (6.39)

The problem allows a closed-form solution provided that the matrix exponential
is computed analytically. To this aim, we rewrite such a matrix exponential applying
the Cayley-Hamilton theorem, thus obtaining the simplified expression:

e
µ2
Nm

Aξ = e−p µ2
Nm

ξ

[︄(︄
cosh

(︃
q

µ2

Nm
ξ

)︃
+ p

sinh
(︂

q µ2

Nm
ξ

)︂
q

)︄
I+

sinh
(︂

q µ2

Nm
ξ

)︂
q

A

]︄
(6.40)
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where the parameters p and q depend on the frequency involved in the FWM process
and are defined as:

p ≜−Tr[A]

2
=

ω2
1 +ω2

2
2

(6.41)

q ≜

√︄
p2 −ω2

1 ω2
2

(︃
1− 1

4N2
m

)︃
. (6.42)

We thus find that the system of ODEs in Eq. (6.36) allows the following compact
solution:

E [ΛΛΛ] = m1

(︃
e(q−p) µ2

Nm
|z−s| (1+ c1)+ e−(q+p) µ2

Nm
|z−s| (1− c1)

)︃
E [ΞΞΞ] = m2

(︃
e(q−p) µ2

Nm
|z−s| (1+ c2)+ e−(q+p) µ2

Nm
|z−s| (1− c2)

)︃ (6.43)

where we defined:

cℓ ≜

⎧⎨⎩
p
q −

ω2
1

q

(︂
1− 1

4N2
m

)︂
ℓ= 1

p
q ℓ= 2

(6.44)

and

mℓ ≜

⎧⎨⎩Nm ℓ= 1
1
2 ℓ= 2 .

(6.45)

6.2.2 FWM efficiency

The next step towards evaluating the NLI variance is to substitute Λi3i3(z,s,ω, ω1,ω2)

and Ξi3i3(z,s,ω,ω1,ω2) in Eqs. (6.16a)-(6.16b) with their average value at each co-
ordinate, as computed in the previous section and reported in Eq. (6.43). Thanks to
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the structure of the system solution in Eq. (6.43), the average value of the FWM
efficiency of generic type ℓ in Eqs. (6.16a)-(6.16b) can be written as:

E
[︂
|η(ℓ)(ω,ω1,ω2)|2

]︂
= mℓ

∫︂ L

0

∫︂ L

0
e−α(z+s)e j∆β (z−s)

×
(︃

e(q−p) µ2
Nm

|z−s| (1+ cℓ)+ e−(q+p) µ2
Nm

|z−s| (1− cℓ)
)︃

dzds.

(6.46)

We note that the novel FWM efficiency is a linear combination of exponential
functions, and therefore can be evaluated in a closed-form similarly to the case with-
out MD. Solving the double integral along distance yields the following expression:

E
[︂
|η(ℓ)(ω,ω1,ω2)|2

]︂
= mℓ

{︄
(1+ cℓ)

[︄
η1(α1)

α3 + j∆β
+

(︃
α −α1

(α1 + j∆β )(α3 + j∆β )

)︃

× 1− e−2αL

2α
− e−(α1+ j∆β )L − e−2αL

(α3 − j∆β )(α1 + j∆β )

]︄

+(1− cℓ)

[︄
η1(α2)

α4 + j∆β
+

(︃
α −α2

(α2 + j∆β )(α4 + j∆β )

)︃

× 1− e−2αL

2α
− e−(α2+ j∆β )L − e−2αL

(α4 − j∆β )(α2 + j∆β )

)︄]︄}︄
(6.47)

where the coefficients αn with n = 1, . . . ,4 are MD-dependent equivalent attenuation
coefficients defined as:

α1 ≜ α − (q− p)
µ2

Nm
, α3 ≜ α +(q− p)

µ2

Nm

α2 ≜ α +(q+ p)
µ2

Nm
, α4 ≜ α − (q+ p)

µ2

Nm
.

(6.48)

η1(αn) in Eq. (6.47) must be interpreted as the fiber kernel without MD, as in Eq.
(2.16), evaluated at the equivalent attenuation in Eq. (6.48). The novel FWM effi-
ciency expression in Eq. (6.47) is less compact than the well-known formula without
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MD. Nevertheless, it involves the same basic operations and can thus be computed
quickly. For any sufficiently long optical fiber, such averaged FWM efficiency can be
further simplified in the elegant expression:

E
[︂
|η(ℓ)(ω,ω1,ω2)|2

]︂
≈ mℓ

{︄
(1+ cℓ)

α1

α
|η1(α1)|2 +(1− cℓ)

α2

α
|η1(α2)|2

}︄
(6.49)

with |η1(αn)|2 the FWM efficiency without MD, as approximated in Eq. (6.18) for
a long fiber, evaluated at the equivalent attenuation αn. Once the FWM efficiency is
known, the variance can be efficiently calculated through the Monte Carlo method
discussed in Chapter 2.

6.3 Inter-channel MD simplification

A possible simplification to the model proposed in Sec. 6.2 is represented by the
inter-channel MD assumption. Such a simplification consists in approximating the
MD-induced phase shift of each frequency component within a WDM channel with
the one experienced by the channel central frequency, hence neglecting the MD ef-
fects within a channel. The idea is sketched in Fig. 6.1, which shows the propagation
constant as a step-wise function of frequency, with steps having the width of the
channel bandwidth. In other words, the transfer matrix U(z,ω) is sampled only at
the channel center frequency, and the same value is applied to all the other channel
frequencies.

Under the inter-channel MD simplification, the variance of SPM is not affected
by MD. From a mathematical point of view, such simplification yields P = I when
evaluating SPM, because all the unitary transfer matrices U are sampled at the same
frequency, i.e., the central frequency of the channel under test. We thus focus on
applying the inter-channel MD approximation to the derivation of the XPM variance.

The tensor indexes associated with a valid XPM process are hhii2 and hihi2,
where we used a unique subscript 2 as a short-hand notation to indicate channel
indexes. The two sets of indexes are associated with different integration regions in
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Figure 6.1: Sketch of the frequency-dependent propagation constant induced by MD
on a generic mode of interest, and its inter-channel approximation, flat in each chan-
nel bandwidth.

Figure 6.2: Frequency integration domains relative to XPM and SPM (see Fig. 2.1)
for a 2 channel WDM signal, with emphasis on the different combinations of channel
indexes for XPM.

the (ω1,ω2) plane of Fig. 2.1. In particular, we recall that the XPM integration regions
lie along the axis. According to our notation, the combination hhii2 is related to the
integration regions along the ω2 axis, as sketched in Fig. 6.2 for a 2 channel signal.
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frequency combination short-hand notation hhii2 sampling hihi2 sampling

ω +ω1 +ω2 ν1 ∆ω ∆ω

ω +ω2 ν2 ∆ω 0

ω +ω1 ν3 0 ∆ω

ω ν4 0 0

Table 6.1: Frequency sampling induced by the inter-channel MD approximation.

Since the XPM variance is additive in the number of channels, we can focus on a 2
channel setup with generic channel spacing ∆ω . Therefore, the computation of the
XPM variance involves the calculation of the following terms:

(Xhhii2 +Xhihi2)
(︁
X∗

hhii2 +X∗
hihi2

)︁
(6.50)

which, in turn, requires evaluating four FWM efficiency terms: two of the type in Eq.
(6.16a), and two of the type in Eq. (6.16b).

Applying the inter-channel MD idea implies performing different samplings for
the two integration regions depicted in Fig. 6.2, hence for the tensors in Eq. (6.50),
as summarized in Tab. 6.1. Such a sampling induces the following simplification in
the matrices ΛΛΛ and ΞΞΞ, defined in Eq. (6.17), involved in the FWM efficiency:

Xhhii2X
∗
hhii2 → ΛΛΛ = Tr[I]I = 2NmI

Xhihi2X
∗
hihi2 → ΛΛΛ = Tr

[︃
U†(z,∆ω)U(s,∆ω)

]︃
U(z,∆ω)U†(s,∆ω)

Xhihi2X
∗
hhii2 → ΞΞΞ = I

Xhhii2X
∗
hihi2 → ΞΞΞ = I.

(6.51)

We thus note that out of the four terms in Eq. (6.51) which contribute in Eq.
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(6.50), three are unaffected by inter-channel MD. In particular, only in the computa-
tion of Xhhii2X

∗
hhii2 the product of matrices P accounting for MD does not reduce to

the identity matrix. This observation allows us to significantly reduce the complex-
ity of the calculations carried out in Sec. 6.2.1. Following the same steps, we can
compute the average value of the only MD-affected term in Eq. (6.51), as:

E
[︂
ΛΛΛ

]︂
=

1
2Nm

(︃
1+(4N2

m −1)e−
∆ω2µ2

Nm
|z−s|

)︃
(6.52)

and use it to compute the average FWM efficiency E|η(1)(ω,∆ω,0)|2, see Eq. (6.16a).
In the other three contributions in Eq. (6.51), which are not affected by MD, the FWM
process is weighted by the FWM efficiency |η1|2 in Eq. (6.18).

In the variance computation, all four contributions must be taken into account. In
particular, the summation of the four FWM efficiency terms requires the evaluation
of the following expression:

1
2Nm

∫︂ L

0

∫︂ L

0
e−α(z+s)e j∆β (z−s)

(︃
1+(4N2

m −1)e−
∆ω2µ2

Nm
|z−s|

)︃
dzds+(2Nm +2)|η1|2

=
(2Nm +1)2

2Nm
|η1|2 −

(4N2
m −1)∆ω2µ2

N2
m(α + j∆β )2 −∆ω4µ4

(︂1− e−2αL

2α

)︂
+

4N2
m −1

2Nm

(︄
1− e−αL+ j∆βL− ∆ω2µ2

Nm
L

α2 − (∆ω2µ2

Nm
− j∆β )2

− e−αL− j∆βL− ∆ω2µ2
Nm

L − e−2αL

α2 − (∆ω2µ2

Nm
+ j∆β )2

)︄

≈ 2Nm +1
2Nm

(︄
(2Nm +1) |η1(α)|2 + (2Nm −1)αm

α
|η1 (αm)|2

)︄
(6.53)

where the last approximation holds for a span length L ≫ 1/α . We introduced the
following equivalent attenuation in Eq. (6.53):

αm ≜ α +
∆ω2µ2

Nm
(6.54)

to compact the notation. We can now express the XPM ergodic variance, as a result
of the frequency integration, in the following elegant expression:
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σ
2
GNi3,XPM ≈ 2Nm +1

2Nm

(︄
(2Nm +1)σ2

GNi3,XPM,1(α)

+
(2Nm −1)αm

α
σ

2
GNi3,XPM,1 (αm)

)︄ (6.55)

where σ2
GNi3,XPM,1 is the single-span XPM variance without any weighting factor. For

the reader convenience, we report here the expression of such term:

σ
2
GNi3,XPM,1 ≜

1
T 3 κ

2
γ

2
κ

3
1;1 ∑

h,m,n

∫︂∫︂∫︂
∞

−∞

|η(ω,ω1,ω2)|2|p̃h(ω +ω1 +ω2 −ωh)|2

×|p̃m(ω +ω2 −ωm)|2|p̃i(ω −ωi)|2|p̃n(ω +ω1 −ωn)|2
dω1

2π

dω2

2π

dω

2π

=
κ2

8/81
CGN(1,1)

(6.56)

with CGN(1,1) defined in Eq. (2.37).

The proposed simplified formula for the XPM variance with inter-channel MD
sampling can be seen as an extension of the work in [119] for an arbitrary MD. If we
let the parameter µ tend to 0 or to infinity, we obtain the following expressions:

σ
2
GNi3,XPM =

⎧⎨⎩2(2Nm +1)σ2
GNi3,XPM,1(α) µ → 0

(2Nm+1)2

2Nm
σ2

GNi3,XPM,1(α) µ → ∞

(6.57)

thus matching the findings of [119].

The ultimate simplification enabled by the inter-channel MD model is the possi-
bility to evaluate the XPM variance in a closed-form expression relying on formulas
from the literature for σ2

GNi3,XPM,1 computed at equivalent attenuation values.
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6.4 Numerical results

In this section, we first test the validity of the GN model based on the inter-channel
MD assumption by comparison with SSFM simulations performed in the same frame-
work. Then, we perform full-MD simulations to investigate the goodness of the inter-
channel MD assumption and to check the full-MD GN model proposed in Sec. 6.2.1.

The GN model was implemented exploiting Monte Carlo integration as described
in Chapter 2 with the novel FWM efficiency, while SSFM simulations were based on
a waveplate model of the optical fiber and were repeated for various realizations of
the random waveplates. In this framework, we set up the SSFM such that the fiber
discretization in terms of the step length and the number of waveplates adjusts to the
desired value of modal dispersion. To this aim, we chose the first SSFM step h1 such
that the worst-case walk-off was equal to 1/10 of the symbol time, and the length
of each waveplate was 2h1. Namely, we computed the first step value by solving the
equation:

|β2|2πBWDMh1 +SMD

√︃
h1

2
=

1
10R

(6.58)

and the SSFM step was then updated through the CLE criterion.

For all the simulated scenarios, the transmitted channels carried 131072 Gaussian
distributed symbols, hence complying with the GN model assumptions.

6.4.1 The inter-channel MD GN model

As a first test, we validate the model for a single-mode transmission with arbitrary
PMD. As discussed in the previous section, SPM is unaffected by the inter-channel
PMD. Therefore, we focus on investigating the validity of the XPM variance expres-
sion in Eq. (6.55). To this aim, we limited the simulated scenarios to a 2 channels
transmission. The XPM variance was isolated in SSFM simulations by a heteroge-
neous power allocation. Namely, the transmitted power on the CUT was PCUT =−30
dBm while the interfering channel had power PINT = 0 dBm, such that the SPM
contribution to the NLI variance on the CUT can be safely neglected. All the XPM
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Figure 6.3: XPM variance per-polarization vs. PMD parameter for a 2 channel trans-
mission with ∆ f = 50 GHz over 1 span of SMF. Extended GN model and max-min
bars of SSFM for 1000 seeds, with only inter-channel PMD.

results reported in this section are then scaled to match the XPM variance of homoge-
neous power transmission with channel power P = PINT, hence they are normalized
to PCUTP2

INT and then multiplied by P3 (in linear scale).

Figure 6.3 shows the XPM variance estimation for a 50 GHz spacing transmis-
sion at 49 Gbaud, over a single-span of SMF with variable inter-channel PMD. Solid
lines represent the inter-channel MD GN model results, while SSFM results are rep-
resented through bars spanning between the maximum and minimum values observed
in the 1000 random realizations. It can be seen that XPM is mitigated by the presence
of PMD, which contributes to channel decorrelation. In the limit of high PMD values,
the XPM variance is reduced by 1.25 dB, consistently with Eq. (6.57). Apart from
the excellent agreement in the whole range of values, the figure shows a small impact
of the waveplates’ randomness, with a maximum excursion of ≈ 0.1 dB between the
maximum and minimum value, hence justifying the approach of averaging the FWM
efficiency.

We then varied the main system parameters involved in the novel XPM variance
expression, such as channel spacing and chromatic dispersion. To better describe
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Figure 6.4: Normalized XPM variance vs. PMD parameter for a 2 channel trans-
mission with ∆ f = 50 GHz over 1 span of SMF with variable dispersion. Extended
ergodic GN model (lines) and SSFM (markers), with only inter-channel PMD.

the impact of PMD on XPM, we represent the results in terms of XPM variance
normalized to is value without PMD, namely:

∆σ
2
XPM ≜

σ2
GNi3,XPM

σ2
GNi3,XPM,no PMD

. (6.59)

Figure 6.4 shows the normalized XPM variance ∆σ2
XPM for the same setup of Fig.

6.3 with a variable dispersion. The GN model prediction suggests that the beneficial
effect of PMD on the XPM variance is less evident at high dispersion values, where
GVD masks the decorrelation yielded by PMD. As a consequence, the normalized
variance curves in Fig. 6.4 require a higher value of PMD to saturate at their asymp-
totic value of -1.25 dB as the dispersion increases. To confirm such a behavior, we
performed SSFM simulations for 100 random seeds and reported the average results
with markers for the cases D = 2 ps/(nm·km) and D = 17 ps/(nm·km).

In the same spirit, we fixed the dispersion to D = 17 ps/(nm·km) and varied the
channel spacing ∆ f from 50 GHz to 1 THz. The results are collected in Fig. 6.5 in
terms of normalized variance as per Eq. (6.59). The figure shows that PMD is more
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Figure 6.5: Normalized XPM variance vs. PMD parameter for a 2 channel transmis-
sion with variable channel spacing over 1 span of SMF with D = 17 ps/(nm·km).
Extended ergodic GN model (lines) and SSFM (markers), with only inter-channel
PMD.

effective in mitigating XPM for far apart channels since the phase-shift induced by
modal dispersion increases with the frequency separation. In fact, it can be seen that
∆σ2

XPM converges more rapidly to its asymptotic value for increasing values of chan-
nel spacing. The results were double-checked against SSFM simulation (markers)
with 100 random seeds for ∆ f = 50 GHz and 500 GHz. On average, the matching
with the ergodic GN model is good at both spacing values.

Finally, we validated the GN model in the presence of inter-channel MD for an
SDM transmission having a variable number of strongly-coupled spatial modes. Fig-
ure 6.6 shows the XPM variance for a 2 channel transmission having ∆ f = 100 GHz.
Solid lines refer to the GN model estimation while markers to SSFM results averaged
over 10 random seeds. First of all, we note an excellent agreement, thus confirming
the model validity for SDM systems with variable MD values, provided that the intra-
channel MD effects are negligible. Secondly, it can be seen that all the curves eventu-
ally saturate to an asymptotic value, as for the dual-polarization case. The saturation
value depends now on the number of spatial modes, namely (2Nm +1)/4Nm, which
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Figure 6.6: XPM variance per-polarization vs. SMD parameter for a 2 channel trans-
mission with ∆ f = 100 GHz over 1 span at a variable number of modes Nm. Extended
ergodic GN model (lines) and SSFM (markers), with only inter-channel MD.

coincides with -1.25 dB for Nm = 1.
Finally, Fig. 6.6 shows that the XPM variance is mitigated by an increasing num-

ber of spatial modes, consistently with the results reported in [10, 119] for strongly
coupled modes. In particular, Eq. (6.57) suggests the following scaling of XPM with
the number of modes:

σ2
GNi3,XPM

σ2
GNi3,XPM(Nm = 1)

=

⎧⎨⎩ 3
2Nm+1 µ → 0
1

Nm
µ → ∞

(6.60)

which is confirmed by the results in Fig. 6.6.

6.4.2 Full MD

We now remove the inter-channel MD simplification and devote this section to nu-
merical results obtained with the ergodic MD-GN model presented in Sec. 6.2. To
validate such a model, we performed realistic full-MD SSFM simulations as a bench-
mark, contrary to the previous section.
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Figure 6.7: SPM variance per-polarization vs. SMD parameter over 1 span of MMF
with Nm = 2 and Nm = 4 modes. Ergodic MD-GN (solid: full-MD, dashed: inter-
channel MD) model and SSFM (markers).

As a first test, we simulated the transmission of a 2 channel signal with spac-
ing 100 GHz and symbol rate 49 Gbaud, over 100 km of an MMF supporting 2
or 4 spatial modes. We estimated both the SPM and the XPM variance at variable
SMD parameter values. Figure 6.7 shows excellent agreement between the SPM vari-
ance estimated by the ergodic MD-GN model (solid lines) and the SSFM simulations
(markers). For the sake of completeness, we also reported the results obtained with
the inter-channel MD simplification. As previously discussed, in this framework SPM
is not impacted by the MD, yielding a flat line in Fig. 6.7. We note that such an ap-
proximation introduce less than 0.5 dB of error for SMD values below ≈ 5ps/

√
km,

which is a practical value for several deployed fibers [115, 128]. However, for in-
creasing values of the SMD parameter, SPM vanishes when the full-MD is taken into
account. Such behavior was already observed in [120], where the authors proposed a
heuristic scaling of σ2

SPM with SMD to account for the intra-channel MD effects.

The estimated XPM variance for the same setup is reported in Fig. 6.8. From
the figure, we note the different behavior of the XPM curves when the full-MD is
taken into account. In particular, the curves do not exhibit saturation to the asymptotic
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Figure 6.8: XPM variance per-polarization vs. SMD parameter for a 2 channel trans-
mission with ∆ f = 100 GHz over 1 span of MMF with Nm = 2 and Nm = 4 modes. Er-
godic MD-GN (solid: full-MD, dashed: inter-channel MD) model and SSFM (mark-
ers).

value predicted by inter-channel MD assumption in Eq. (6.57) in the considered range
of SDM values. The ergodic MD-GN model curves well match the inter-channel
MD results up to ≈ 5ps/

√
km, as observed for SPM in Fig. 6.7, and they reach a

plateau around ≈ 8ps/
√

km. For increasing SMD values, the XPM variance is then
inflated by the presence of a non-negligible intra-channel MD, thus diverging from
the inter-channel MD results. Such peculiar behavior, confirmed by full-MD SSFM
simulations, can be attributed to an MD-reduced walk-off.

For the same setup of Fig. 6.8 we extended the SMD values range and we ran
SSFM simulation for 1000 random seeds, hence waveplates realizations. Figure 6.9
shows the histogram of the SSFM results (blurred region) compared with the model
prediction. By extending the SMD axis, we observe a peak value around an SMD of ≈
35ps/

√
km, followed by a monotonic decrease for very large values of the SMD, due

to the beneficial effect of MD in mitigating the accumulation of the Kerr nonlinearity.

We then tested the accuracy of the ergodic MD-GN model at variable channel
spacing and fixed SMD parameter, for a transmission of Nm = 2 spatial modes. The
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Figure 6.9: XPM variance per-polarization vs. SMD parameter for a 2 channel trans-
mission with ∆ f = 100 GHz over 1 span of MMF with Nm = 2 and Nm = 4 modes.
Ergodic MD-GN model (solid line), inter-channel MD GN model (dashed), and 2D
histogram of the SSFM results.

SSFM and ergodic MD-GN model results at SMD 3 and 8 ps/
√

km are reported in
Fig. 6.10(a). We observe an excellent agreement in the considered range of ∆ f up to
500 GHz. The figure also shows the max-min bars for SSFM results on top of the
markers, which indicate the average values over 1500 random seeds. Such bars are
very narrow, thus suggesting that the average approach used in the calculation of the
fiber kernel is sufficient to capture the MD effect on XPM at realistic values of SMD.
The randomness becomes more evident at high SMD (roughly > 20ps/

√
km), as

visible in the histogram reported in Fig. 6.9. Similarly, Fig. 6.10(b) shows the results
for a fixed channel spacing ∆ f = 100 GHz and variable dispersion values. Here we
also plotted the SPM contribution. As expected, it can be seen that dispersion is more
effective in mitigating XPM compared to SPM, thanks to the walk-off. However, we
note that the slope of the variance curves versus dispersion depends on the value of
the SMD parameter, being steeper at 8 ps/

√
km.

Having checked the model against SSFM simulations, we now exploit it to inves-
tigate the impact of full-MD on the XPM variance by varying the system parameters.
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Figure 6.10: (a) XPM variance per-polarization vs. channel spacing or (b) XPM and
SPM variance vs. dispersion. 2 channel transmission over 1 span of MMF with Nm =

2. SMD parameter equal to 3 or 8 ps/
√

km. Ergodic MD-GN model (solid) and SSFM
(markers with max-min bars for 1500 seeds).
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Figure 6.11: Normalized XPM variance vs. SMD parameter for a 2 channel transmis-
sion with ∆ f = 100 GHz over 1 span of MMF with Nm = 2. Results obtained with
the ergodic MD-GN model.

Figure 6.11 shows ∆σ2
XPM at different dispersion values as a function of the SMD

parameter. The channel spacing between the two transmitted channels was fixed to
∆ f = 100 GHz, and the number of spatial modes was Nm = 2. The figure shows that,
except for the case without dispersion, all the curves exhibit the same qualitative be-
havior of those reported in Fig. 6.9 for D = 17 ps/(nm·km). In particular, the curves
exhibit a peak associated with an SMD value depending on the dispersion coefficient.
For a decreasing dispersion, such inflation becomes less evident and starts to manifest
at smaller SMD. In the limit case of zero-dispersion, where the decorrelation yielded
by MD is not masked by the walk-off, ∆σ2

XPM rapidly vanishes.

On the other hand, Fig. 6.12 collects the results obtained with the model for a
variable channel spacing and a fixed dispersion value D = 17 ps/(nm·km), versus the
SMD parameter. First, we note that all the curves exhibit a local minimum around the
same SMD parameter ≈ 8 ps/

√
km regardless of the channel spacing. Second, it can

be seen that, at high channel spacing, ∆σ2
XPM reaches a plateau around ≈ 5 ps/

√
km.

Such a plateau coincides with the asymptotic value predicted by the inter-channel
MD simplification, meaning that at high channel spacing the inter-channel MD effect
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Figure 6.12: Normalized XPM variance vs. SMD parameter for a 2 channel trans-
mission over 1 span of MMF with D = 17 ps/(nm·km) and Nm = 2. Results obtained
with the ergodic MD-GN model.

dominates over the intra-channel one, for such SMD parameter values. Eventually,
the XPM inflation is kicked in by a very large SMD parameter.

For the sake of completeness, we then tested the ergodic MD-GN model by vary-
ing the number of WDM channels. All the other parameters are the same as Fig. 6.9.
We considered a fixed SMD value of 3 or 8 ps/

√
km, and varied the number of chan-

nels from 2 to 21. The results obtained with the ergodic MD-GN model (solid lines)
and the SSFM (markers), in a logarithmic scale, are reported in Fig. 6.13, along with
the prediction of the GN model without MD (dashed lines). The figure shows both
the XPM variance and the SPM+XPM variance. The figure confirms the excellent
agreement between the proposed model and the SSFM simulations even at a higher
channel number count. Moreover, we note that the presence of SMD affects the slope
of the variance curves. In particular, it can be seen that in the presence of SMD the
variance increases less rapidly with the number of channels, thanks to the beneficial
effects of MD in mitigating the XPM variance.

As the last investigation, we tested the ergodic MD-GN model for a transmission
over a 5 span link. To this aim, we performed SSFM simulations for 1000 random
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Figure 6.14: XPM variance per-polarization vs. SMD parameter for a 2 channel trans-
mission over 5 spans, with Nm = 1,2,4 spatial modes. Ergodic MD-GN model (solid)
and max-min bars of SSFM for 1000 seeds.
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seeds. All the transmission parameters are the same as Fig. 6.9, with a variable num-
ber of spatial modes Nm = 1,2,4. Figure 6.14 reports the SSFM results by means of
max-min bars and the ergodic MD-GN model prediction in solid lines. For the sake
of simplicity, the multi-span ergodic MD-GN model is implemented relying on the
phased-array term in the absence of MD, as per Eq. (2.17), while the single-span ker-
nel is given in Eq. (6.47). The excellent agreement shown in Fig. 6.14 suggests that
neglecting the MD accumulated along the spans is a good approximation. Moreover,
we note that the qualitative behavior of the XPM variance curves observed for N = 1
is maintained even for longer links.





Conclusions

In this work, we addressed physical layer modeling problems in the context of ultra-
wideband transmissions and space-division multiplexing, for high capacity optical
communication systems. The main goal of the thesis was to propose models for the
system performance estimation, with a particular focus on the extension of analytical
models for the estimation of the NLI variance. The first part of the thesis was devoted
to ultra-wideband transmissions, while the second part tackled the topic of space-
division multiplexing.

In Chapter 2 we presented in detail the GN and EGN model, thus laying the
theoretical foundation for the investigation of UWB and SDM extensions.

In Chapter 3 we addressed the problem of including the SRS in the EGN model.
At first, we proceeded by assuming the presence of a DGE at each span-end, as typ-
ically done in the literature. Contrary to other works, we fully accounted for the
interaction between the Kerr effect and the SRS in a modulation-format-aware man-
ner. The proposed model was validated against 10 THz SSFM simulations, showing
a very good agreement. We highlighted the importance of taking into account the
modulation format for an accurate estimation of the frequency-tilted SNR.

In the same chapter, we extended the proposed model to practical scenarios hav-
ing arbitrary positioning of the DGEs along the link for SRS gain equalization. In
addition, we derived a simplified version of the model which allowed us to signif-
icantly reduce the computational time. In the framework of the GN-model, we ex-
tended closed-form expressions of the NLI variance available in the literature, to the
case of an arbitrary DGE positioning. We validated the proposed model against 10
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THz SSFM simulations considering a variable number of spans between the equal-
izers and different modulation formats, observing an excellent agreement. Most im-
portantly, we showed that the DGE placement along the link has a serious impact on
the NLI variance and on the overall SNR, and cannot be neglected.

The proposed model not only allowed us to gain a deep insight into the interac-
tion between SRS and the Kerr effect for different transmission scenarios but also
opened the path to fast power allocation optimization. In particular, we investigated
the optimization of a signal power pre-emphasis in the form of an opposite SRS gain,
leveraging the simplicity of the closed-form expressions extended to include such a
pre-emphasis, without the need of advanced numerical optimization algorithms as
usually done in the literature.

In Chapter 4 we moved the focus from the optical fiber to the optical amplifier. In
particular, we investigated models for the signal evolution along the length of a semi-
conductor optical amplifier. The work was carried out during a six-month internship
at Nokia Bell Labs (France) and was motivated by the interest that such amplifiers
are gaining in the UWB context. The goal of this work was to analyze SOA models
from the literature and to find a trade-off between simplicity and accuracy.

At first, we proceeded by analyzing the SOA’s main characteristics and their im-
pact on the amplifier modeling. Then, we proposed a parametric model able to cap-
ture the main SOA dynamics. In particular, we found that the space-resolution, the
wavelength dependency of the gain, and the inclusion of material absorption play
an important role in the SOA dynamics. Therefore, the proposed model includes
space-resolution via stage concatenation, material absorption through lumped losses,
and wavelength-dependency of all the parameters. After a fitting stage, the proposed
model showed good accuracy in the estimation of the SNR for an SOA-amplified link
with reduced computational times with respect to our benchmark.

In the remainder of the thesis, we focused on analytical models of the NLI vari-
ance in the presence of mode-dependent effects, starting with addressing the impact
of PDL in a dual-polarization scenario. As a major result, in Chapter 5 we extended
the EGN model to account for PDL. We presented a detailed derivation of the ex-
tended formulas and we validated the model against SSFM simulations for many
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random realizations. The proposed model showed excellent accuracy and allowed to
compute the system performance statistics, such as the outage probability and the
PDF of the SNR, in a short time.

We showed that the impact of PDL on the NLI is different from its impact on the
ASE noise. To confirm the importance of properly addressing PDL in the GN/EGN
model, we showed that treating the PDL impact on the NLI in an approximated way,
as typically done in the literature, yields an inaccurate estimation of the system outage
probability, thus affecting the allocation of the system margins.

In Chapter 6 we extended the GN model to include modal dispersion. This work
was motivated by the fact that in SDM transmissions the values of MD are typically
much higher than the PMD values for single-mode transmissions. In the literature,
the MD was included in the GN model only for very high values, far from practical
scenarios. In this chapter, we presented a detailed derivation of the GN model exten-
sion which holds for arbitrary MD values in a context of strongly coupled modes,
along with a simplified version that neglects the MD impact within the channel band-
width, consistently with the approximations done in the literature. In both cases, we
evaluated the average of the NLI variance with respect to random realizations. We re-
ferred to the novel GN model as the ergodic GN model, following a similar definition
generally used for the ergodic capacity of wireless networks.

We carried out numerical validations to test the accuracy of the proposed model
and to verify that the averaging process was justified. We found an excellent agree-
ment between the SSFM and GN model average values, and we reported small fluc-
tuations in the SSFM results with respect to the random seeds, thus confirming that
the evaluation of the average NLI variance was enough to capture the impact of MD.

We then exploited the proposed model to investigate the impact of MD on the
NLI for several transmission scenarios. We showed that MD has a beneficial effect in
mitigating both SPM and XPM. We thus confirmed the importance of fully account-
ing for MD in the modeling of the NLI. Finally, we extended closed-form formulas
of the GN model available in the literature for SMF to the SDM case with small, yet
practical, values of modal dispersion. The novel formulas can be used to design and
analyze the upcoming SDM networks based on strongly coupled modes.





Appendix A

Connelly model: extra equations
and parameters

The SOA material gain can be written as g = g′+ g′′, with g′ a gain coefficient and
g′′ an absorption coefficient, respectively:
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where Hg(n) is the band-gap energy, with coefficients defined in Tab A.1:

Hg(n) = q(1.35−0.775rAs +0.149r2
As)−qKgn1/3. (A.3)

fc,k, fv,k in Eq. (A.1)-(A.2) are the Fermi-Dirac distributions in the CB and VB, re-
spectively:



216 Appendix A. Connelly model: extra equations and parameters
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depending on the following functions of the carrier density:
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with κ the Boltzmann constant, and:
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Finally, the recombination carrier lifetime τ in Eq. (A.1)-(A.2) can be approximated
as [89]:

τ(n) =
1

Arad +Bradn
. (A.11)

All the SOA coefficients are defined in Tab. A.1 along with their values considered
in this work.
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Table A.1: Definitions of the symbols adopted in the SOA model and SOA parameters
value used in this work.

Symbol Description Value in this work

Te Temperature [K] 300

La Length [m] 700×10−6

Aa Area [m2] 0.16×10−12

Va Volume [m3] 112×10−18

Γ Confinement factor 0.45

αH Linewidth enhancement factor 6

K0 Carrier independent absorption [m−1] 6200

K1 Carrier dependent absorption [m2] 7500

I Bias current [A] 130×10−3

r1 Input facet reflectivity 5×10−5

r2 Output facet reflectivity 5×10−5

αc Coupling losses 0.5

Kg Band-gape shrinkage coefficient [eV] 0.9×10−10

neq0 Equivalent refractive index at n = 0 3.22

dneq/dn Differential of Equivalent refractive index -1.34×10−26

n1 Active region refractive index 3.22
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Arad Linear radiative recombination [s−1] 1×107

Anrad Linear non-radiative recombination [s−1] 3.5×108

Brad Bimolecular radiative recombination [m3s−1] 5.6×10−16

Bnrad Bimolecular non-radiative recombination [m3s−1] 0

Caug Auger recombination [m6s−1] 3×10−41

Dleak Leakage recombination [m13.5s−1] 0

me Effective mass of electron in the CB [kg] 4.10×10−32

mhh Effective mass of heavy hole in the VB [kg] 4.19×10−31

mℓh Effective mass of light hole in the VB [kg] 5.06×10−32

rAs Fraction of Arsenide in the active region 0.892
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